[ gas/ChangeLog ]
[deliverable/binutils-gdb.git] / gas / config / tc-mips.c
1 /* tc-mips.c -- assemble code for a MIPS chip.
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005 Free Software Foundation, Inc.
4 Contributed by the OSF and Ralph Campbell.
5 Written by Keith Knowles and Ralph Campbell, working independently.
6 Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
7 Support.
8
9 This file is part of GAS.
10
11 GAS is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2, or (at your option)
14 any later version.
15
16 GAS is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GAS; see the file COPYING. If not, write to the Free
23 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
24 02110-1301, USA. */
25
26 #include "as.h"
27 #include "config.h"
28 #include "subsegs.h"
29 #include "safe-ctype.h"
30
31 #include <stdarg.h>
32
33 #include "opcode/mips.h"
34 #include "itbl-ops.h"
35 #include "dwarf2dbg.h"
36 #include "dw2gencfi.h"
37
38 #ifdef DEBUG
39 #define DBG(x) printf x
40 #else
41 #define DBG(x)
42 #endif
43
44 #ifdef OBJ_MAYBE_ELF
45 /* Clean up namespace so we can include obj-elf.h too. */
46 static int mips_output_flavor (void);
47 static int mips_output_flavor (void) { return OUTPUT_FLAVOR; }
48 #undef OBJ_PROCESS_STAB
49 #undef OUTPUT_FLAVOR
50 #undef S_GET_ALIGN
51 #undef S_GET_SIZE
52 #undef S_SET_ALIGN
53 #undef S_SET_SIZE
54 #undef obj_frob_file
55 #undef obj_frob_file_after_relocs
56 #undef obj_frob_symbol
57 #undef obj_pop_insert
58 #undef obj_sec_sym_ok_for_reloc
59 #undef OBJ_COPY_SYMBOL_ATTRIBUTES
60
61 #include "obj-elf.h"
62 /* Fix any of them that we actually care about. */
63 #undef OUTPUT_FLAVOR
64 #define OUTPUT_FLAVOR mips_output_flavor()
65 #endif
66
67 #if defined (OBJ_ELF)
68 #include "elf/mips.h"
69 #endif
70
71 #ifndef ECOFF_DEBUGGING
72 #define NO_ECOFF_DEBUGGING
73 #define ECOFF_DEBUGGING 0
74 #endif
75
76 int mips_flag_mdebug = -1;
77
78 /* Control generation of .pdr sections. Off by default on IRIX: the native
79 linker doesn't know about and discards them, but relocations against them
80 remain, leading to rld crashes. */
81 #ifdef TE_IRIX
82 int mips_flag_pdr = FALSE;
83 #else
84 int mips_flag_pdr = TRUE;
85 #endif
86
87 #include "ecoff.h"
88
89 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
90 static char *mips_regmask_frag;
91 #endif
92
93 #define ZERO 0
94 #define AT 1
95 #define TREG 24
96 #define PIC_CALL_REG 25
97 #define KT0 26
98 #define KT1 27
99 #define GP 28
100 #define SP 29
101 #define FP 30
102 #define RA 31
103
104 #define ILLEGAL_REG (32)
105
106 /* Allow override of standard little-endian ECOFF format. */
107
108 #ifndef ECOFF_LITTLE_FORMAT
109 #define ECOFF_LITTLE_FORMAT "ecoff-littlemips"
110 #endif
111
112 extern int target_big_endian;
113
114 /* The name of the readonly data section. */
115 #define RDATA_SECTION_NAME (OUTPUT_FLAVOR == bfd_target_ecoff_flavour \
116 ? ".rdata" \
117 : OUTPUT_FLAVOR == bfd_target_coff_flavour \
118 ? ".rdata" \
119 : OUTPUT_FLAVOR == bfd_target_elf_flavour \
120 ? ".rodata" \
121 : (abort (), ""))
122
123 /* Information about an instruction, including its format, operands
124 and fixups. */
125 struct mips_cl_insn
126 {
127 /* The opcode's entry in mips_opcodes or mips16_opcodes. */
128 const struct mips_opcode *insn_mo;
129
130 /* True if this is a mips16 instruction and if we want the extended
131 form of INSN_MO. */
132 bfd_boolean use_extend;
133
134 /* The 16-bit extension instruction to use when USE_EXTEND is true. */
135 unsigned short extend;
136
137 /* The 16-bit or 32-bit bitstring of the instruction itself. This is
138 a copy of INSN_MO->match with the operands filled in. */
139 unsigned long insn_opcode;
140
141 /* The frag that contains the instruction. */
142 struct frag *frag;
143
144 /* The offset into FRAG of the first instruction byte. */
145 long where;
146
147 /* The relocs associated with the instruction, if any. */
148 fixS *fixp[3];
149
150 /* True if this entry cannot be moved from its current position. */
151 unsigned int fixed_p : 1;
152
153 /* True if this instruction occurred in a .set noreorder block. */
154 unsigned int noreorder_p : 1;
155
156 /* True for mips16 instructions that jump to an absolute address. */
157 unsigned int mips16_absolute_jump_p : 1;
158 };
159
160 /* The ABI to use. */
161 enum mips_abi_level
162 {
163 NO_ABI = 0,
164 O32_ABI,
165 O64_ABI,
166 N32_ABI,
167 N64_ABI,
168 EABI_ABI
169 };
170
171 /* MIPS ABI we are using for this output file. */
172 static enum mips_abi_level mips_abi = NO_ABI;
173
174 /* Whether or not we have code that can call pic code. */
175 int mips_abicalls = FALSE;
176
177 /* Whether or not we have code which can be put into a shared
178 library. */
179 static bfd_boolean mips_in_shared = TRUE;
180
181 /* This is the set of options which may be modified by the .set
182 pseudo-op. We use a struct so that .set push and .set pop are more
183 reliable. */
184
185 struct mips_set_options
186 {
187 /* MIPS ISA (Instruction Set Architecture) level. This is set to -1
188 if it has not been initialized. Changed by `.set mipsN', and the
189 -mipsN command line option, and the default CPU. */
190 int isa;
191 /* Enabled Application Specific Extensions (ASEs). These are set to -1
192 if they have not been initialized. Changed by `.set <asename>', by
193 command line options, and based on the default architecture. */
194 int ase_mips3d;
195 int ase_mdmx;
196 int ase_smartmips;
197 int ase_dsp;
198 int ase_mt;
199 /* Whether we are assembling for the mips16 processor. 0 if we are
200 not, 1 if we are, and -1 if the value has not been initialized.
201 Changed by `.set mips16' and `.set nomips16', and the -mips16 and
202 -nomips16 command line options, and the default CPU. */
203 int mips16;
204 /* Non-zero if we should not reorder instructions. Changed by `.set
205 reorder' and `.set noreorder'. */
206 int noreorder;
207 /* Non-zero if we should not permit the $at ($1) register to be used
208 in instructions. Changed by `.set at' and `.set noat'. */
209 int noat;
210 /* Non-zero if we should warn when a macro instruction expands into
211 more than one machine instruction. Changed by `.set nomacro' and
212 `.set macro'. */
213 int warn_about_macros;
214 /* Non-zero if we should not move instructions. Changed by `.set
215 move', `.set volatile', `.set nomove', and `.set novolatile'. */
216 int nomove;
217 /* Non-zero if we should not optimize branches by moving the target
218 of the branch into the delay slot. Actually, we don't perform
219 this optimization anyhow. Changed by `.set bopt' and `.set
220 nobopt'. */
221 int nobopt;
222 /* Non-zero if we should not autoextend mips16 instructions.
223 Changed by `.set autoextend' and `.set noautoextend'. */
224 int noautoextend;
225 /* Restrict general purpose registers and floating point registers
226 to 32 bit. This is initially determined when -mgp32 or -mfp32
227 is passed but can changed if the assembler code uses .set mipsN. */
228 int gp32;
229 int fp32;
230 /* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
231 command line option, and the default CPU. */
232 int arch;
233 /* True if ".set sym32" is in effect. */
234 bfd_boolean sym32;
235 };
236
237 /* True if -mgp32 was passed. */
238 static int file_mips_gp32 = -1;
239
240 /* True if -mfp32 was passed. */
241 static int file_mips_fp32 = -1;
242
243 /* This is the struct we use to hold the current set of options. Note
244 that we must set the isa field to ISA_UNKNOWN and the ASE fields to
245 -1 to indicate that they have not been initialized. */
246
247 static struct mips_set_options mips_opts =
248 {
249 ISA_UNKNOWN, -1, -1, 0, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, CPU_UNKNOWN, FALSE
250 };
251
252 /* These variables are filled in with the masks of registers used.
253 The object format code reads them and puts them in the appropriate
254 place. */
255 unsigned long mips_gprmask;
256 unsigned long mips_cprmask[4];
257
258 /* MIPS ISA we are using for this output file. */
259 static int file_mips_isa = ISA_UNKNOWN;
260
261 /* True if -mips16 was passed or implied by arguments passed on the
262 command line (e.g., by -march). */
263 static int file_ase_mips16;
264
265 /* True if -mips3d was passed or implied by arguments passed on the
266 command line (e.g., by -march). */
267 static int file_ase_mips3d;
268
269 /* True if -mdmx was passed or implied by arguments passed on the
270 command line (e.g., by -march). */
271 static int file_ase_mdmx;
272
273 /* True if -msmartmips was passed or implied by arguments passed on the
274 command line (e.g., by -march). */
275 static int file_ase_smartmips;
276
277 #define ISA_SUPPORT_SMARTMIPS (mips_opts.isa == ISA_MIPS32 \
278 || mips_opts.isa == ISA_MIPS32R2)
279
280 /* True if -mdsp was passed or implied by arguments passed on the
281 command line (e.g., by -march). */
282 static int file_ase_dsp;
283
284 /* True if -mmt was passed or implied by arguments passed on the
285 command line (e.g., by -march). */
286 static int file_ase_mt;
287
288 /* The argument of the -march= flag. The architecture we are assembling. */
289 static int file_mips_arch = CPU_UNKNOWN;
290 static const char *mips_arch_string;
291
292 /* The argument of the -mtune= flag. The architecture for which we
293 are optimizing. */
294 static int mips_tune = CPU_UNKNOWN;
295 static const char *mips_tune_string;
296
297 /* True when generating 32-bit code for a 64-bit processor. */
298 static int mips_32bitmode = 0;
299
300 /* True if the given ABI requires 32-bit registers. */
301 #define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
302
303 /* Likewise 64-bit registers. */
304 #define ABI_NEEDS_64BIT_REGS(ABI) \
305 ((ABI) == N32_ABI \
306 || (ABI) == N64_ABI \
307 || (ABI) == O64_ABI)
308
309 /* Return true if ISA supports 64 bit gp register instructions. */
310 #define ISA_HAS_64BIT_REGS(ISA) ( \
311 (ISA) == ISA_MIPS3 \
312 || (ISA) == ISA_MIPS4 \
313 || (ISA) == ISA_MIPS5 \
314 || (ISA) == ISA_MIPS64 \
315 || (ISA) == ISA_MIPS64R2 \
316 )
317
318 /* Return true if ISA supports 64-bit right rotate (dror et al.)
319 instructions. */
320 #define ISA_HAS_DROR(ISA) ( \
321 (ISA) == ISA_MIPS64R2 \
322 )
323
324 /* Return true if ISA supports 32-bit right rotate (ror et al.)
325 instructions. */
326 #define ISA_HAS_ROR(ISA) ( \
327 (ISA) == ISA_MIPS32R2 \
328 || (ISA) == ISA_MIPS64R2 \
329 || mips_opts.ase_smartmips \
330 )
331
332 #define HAVE_32BIT_GPRS \
333 (mips_opts.gp32 || ! ISA_HAS_64BIT_REGS (mips_opts.isa))
334
335 #define HAVE_32BIT_FPRS \
336 (mips_opts.fp32 || ! ISA_HAS_64BIT_REGS (mips_opts.isa))
337
338 #define HAVE_64BIT_GPRS (! HAVE_32BIT_GPRS)
339 #define HAVE_64BIT_FPRS (! HAVE_32BIT_FPRS)
340
341 #define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
342
343 #define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
344
345 /* True if relocations are stored in-place. */
346 #define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI)
347
348 /* The ABI-derived address size. */
349 #define HAVE_64BIT_ADDRESSES \
350 (HAVE_64BIT_GPRS && (mips_abi == EABI_ABI || mips_abi == N64_ABI))
351 #define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES)
352
353 /* The size of symbolic constants (i.e., expressions of the form
354 "SYMBOL" or "SYMBOL + OFFSET"). */
355 #define HAVE_32BIT_SYMBOLS \
356 (HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32)
357 #define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS)
358
359 /* Addresses are loaded in different ways, depending on the address size
360 in use. The n32 ABI Documentation also mandates the use of additions
361 with overflow checking, but existing implementations don't follow it. */
362 #define ADDRESS_ADD_INSN \
363 (HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
364
365 #define ADDRESS_ADDI_INSN \
366 (HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
367
368 #define ADDRESS_LOAD_INSN \
369 (HAVE_32BIT_ADDRESSES ? "lw" : "ld")
370
371 #define ADDRESS_STORE_INSN \
372 (HAVE_32BIT_ADDRESSES ? "sw" : "sd")
373
374 /* Return true if the given CPU supports the MIPS16 ASE. */
375 #define CPU_HAS_MIPS16(cpu) \
376 (strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0 \
377 || strncmp (TARGET_CANONICAL, "mips-lsi-elf", sizeof ("mips-lsi-elf") - 1) == 0)
378
379 /* Return true if the given CPU supports the MIPS3D ASE. */
380 #define CPU_HAS_MIPS3D(cpu) ((cpu) == CPU_SB1 \
381 )
382
383 /* Return true if the given CPU supports the MDMX ASE. */
384 #define CPU_HAS_MDMX(cpu) (FALSE \
385 )
386
387 /* Return true if the given CPU supports the DSP ASE. */
388 #define CPU_HAS_DSP(cpu) (FALSE \
389 )
390
391 /* Return true if the given CPU supports the MT ASE. */
392 #define CPU_HAS_MT(cpu) (FALSE \
393 )
394
395 /* True if CPU has a dror instruction. */
396 #define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
397
398 /* True if CPU has a ror instruction. */
399 #define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU)
400
401 /* True if mflo and mfhi can be immediately followed by instructions
402 which write to the HI and LO registers.
403
404 According to MIPS specifications, MIPS ISAs I, II, and III need
405 (at least) two instructions between the reads of HI/LO and
406 instructions which write them, and later ISAs do not. Contradicting
407 the MIPS specifications, some MIPS IV processor user manuals (e.g.
408 the UM for the NEC Vr5000) document needing the instructions between
409 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
410 MIPS64 and later ISAs to have the interlocks, plus any specific
411 earlier-ISA CPUs for which CPU documentation declares that the
412 instructions are really interlocked. */
413 #define hilo_interlocks \
414 (mips_opts.isa == ISA_MIPS32 \
415 || mips_opts.isa == ISA_MIPS32R2 \
416 || mips_opts.isa == ISA_MIPS64 \
417 || mips_opts.isa == ISA_MIPS64R2 \
418 || mips_opts.arch == CPU_R4010 \
419 || mips_opts.arch == CPU_R10000 \
420 || mips_opts.arch == CPU_R12000 \
421 || mips_opts.arch == CPU_RM7000 \
422 || mips_opts.arch == CPU_VR5500 \
423 )
424
425 /* Whether the processor uses hardware interlocks to protect reads
426 from the GPRs after they are loaded from memory, and thus does not
427 require nops to be inserted. This applies to instructions marked
428 INSN_LOAD_MEMORY_DELAY. These nops are only required at MIPS ISA
429 level I. */
430 #define gpr_interlocks \
431 (mips_opts.isa != ISA_MIPS1 \
432 || mips_opts.arch == CPU_R3900)
433
434 /* Whether the processor uses hardware interlocks to avoid delays
435 required by coprocessor instructions, and thus does not require
436 nops to be inserted. This applies to instructions marked
437 INSN_LOAD_COPROC_DELAY, INSN_COPROC_MOVE_DELAY, and to delays
438 between instructions marked INSN_WRITE_COND_CODE and ones marked
439 INSN_READ_COND_CODE. These nops are only required at MIPS ISA
440 levels I, II, and III. */
441 /* Itbl support may require additional care here. */
442 #define cop_interlocks \
443 ((mips_opts.isa != ISA_MIPS1 \
444 && mips_opts.isa != ISA_MIPS2 \
445 && mips_opts.isa != ISA_MIPS3) \
446 || mips_opts.arch == CPU_R4300 \
447 )
448
449 /* Whether the processor uses hardware interlocks to protect reads
450 from coprocessor registers after they are loaded from memory, and
451 thus does not require nops to be inserted. This applies to
452 instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
453 requires at MIPS ISA level I. */
454 #define cop_mem_interlocks (mips_opts.isa != ISA_MIPS1)
455
456 /* Is this a mfhi or mflo instruction? */
457 #define MF_HILO_INSN(PINFO) \
458 ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
459
460 /* MIPS PIC level. */
461
462 enum mips_pic_level mips_pic;
463
464 /* 1 if we should generate 32 bit offsets from the $gp register in
465 SVR4_PIC mode. Currently has no meaning in other modes. */
466 static int mips_big_got = 0;
467
468 /* 1 if trap instructions should used for overflow rather than break
469 instructions. */
470 static int mips_trap = 0;
471
472 /* 1 if double width floating point constants should not be constructed
473 by assembling two single width halves into two single width floating
474 point registers which just happen to alias the double width destination
475 register. On some architectures this aliasing can be disabled by a bit
476 in the status register, and the setting of this bit cannot be determined
477 automatically at assemble time. */
478 static int mips_disable_float_construction;
479
480 /* Non-zero if any .set noreorder directives were used. */
481
482 static int mips_any_noreorder;
483
484 /* Non-zero if nops should be inserted when the register referenced in
485 an mfhi/mflo instruction is read in the next two instructions. */
486 static int mips_7000_hilo_fix;
487
488 /* The size of the small data section. */
489 static unsigned int g_switch_value = 8;
490 /* Whether the -G option was used. */
491 static int g_switch_seen = 0;
492
493 #define N_RMASK 0xc4
494 #define N_VFP 0xd4
495
496 /* If we can determine in advance that GP optimization won't be
497 possible, we can skip the relaxation stuff that tries to produce
498 GP-relative references. This makes delay slot optimization work
499 better.
500
501 This function can only provide a guess, but it seems to work for
502 gcc output. It needs to guess right for gcc, otherwise gcc
503 will put what it thinks is a GP-relative instruction in a branch
504 delay slot.
505
506 I don't know if a fix is needed for the SVR4_PIC mode. I've only
507 fixed it for the non-PIC mode. KR 95/04/07 */
508 static int nopic_need_relax (symbolS *, int);
509
510 /* handle of the OPCODE hash table */
511 static struct hash_control *op_hash = NULL;
512
513 /* The opcode hash table we use for the mips16. */
514 static struct hash_control *mips16_op_hash = NULL;
515
516 /* This array holds the chars that always start a comment. If the
517 pre-processor is disabled, these aren't very useful */
518 const char comment_chars[] = "#";
519
520 /* This array holds the chars that only start a comment at the beginning of
521 a line. If the line seems to have the form '# 123 filename'
522 .line and .file directives will appear in the pre-processed output */
523 /* Note that input_file.c hand checks for '#' at the beginning of the
524 first line of the input file. This is because the compiler outputs
525 #NO_APP at the beginning of its output. */
526 /* Also note that C style comments are always supported. */
527 const char line_comment_chars[] = "#";
528
529 /* This array holds machine specific line separator characters. */
530 const char line_separator_chars[] = ";";
531
532 /* Chars that can be used to separate mant from exp in floating point nums */
533 const char EXP_CHARS[] = "eE";
534
535 /* Chars that mean this number is a floating point constant */
536 /* As in 0f12.456 */
537 /* or 0d1.2345e12 */
538 const char FLT_CHARS[] = "rRsSfFdDxXpP";
539
540 /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
541 changed in read.c . Ideally it shouldn't have to know about it at all,
542 but nothing is ideal around here.
543 */
544
545 static char *insn_error;
546
547 static int auto_align = 1;
548
549 /* When outputting SVR4 PIC code, the assembler needs to know the
550 offset in the stack frame from which to restore the $gp register.
551 This is set by the .cprestore pseudo-op, and saved in this
552 variable. */
553 static offsetT mips_cprestore_offset = -1;
554
555 /* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
556 more optimizations, it can use a register value instead of a memory-saved
557 offset and even an other register than $gp as global pointer. */
558 static offsetT mips_cpreturn_offset = -1;
559 static int mips_cpreturn_register = -1;
560 static int mips_gp_register = GP;
561 static int mips_gprel_offset = 0;
562
563 /* Whether mips_cprestore_offset has been set in the current function
564 (or whether it has already been warned about, if not). */
565 static int mips_cprestore_valid = 0;
566
567 /* This is the register which holds the stack frame, as set by the
568 .frame pseudo-op. This is needed to implement .cprestore. */
569 static int mips_frame_reg = SP;
570
571 /* Whether mips_frame_reg has been set in the current function
572 (or whether it has already been warned about, if not). */
573 static int mips_frame_reg_valid = 0;
574
575 /* To output NOP instructions correctly, we need to keep information
576 about the previous two instructions. */
577
578 /* Whether we are optimizing. The default value of 2 means to remove
579 unneeded NOPs and swap branch instructions when possible. A value
580 of 1 means to not swap branches. A value of 0 means to always
581 insert NOPs. */
582 static int mips_optimize = 2;
583
584 /* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
585 equivalent to seeing no -g option at all. */
586 static int mips_debug = 0;
587
588 /* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */
589 #define MAX_VR4130_NOPS 4
590
591 /* The maximum number of NOPs needed to fill delay slots. */
592 #define MAX_DELAY_NOPS 2
593
594 /* The maximum number of NOPs needed for any purpose. */
595 #define MAX_NOPS 4
596
597 /* A list of previous instructions, with index 0 being the most recent.
598 We need to look back MAX_NOPS instructions when filling delay slots
599 or working around processor errata. We need to look back one
600 instruction further if we're thinking about using history[0] to
601 fill a branch delay slot. */
602 static struct mips_cl_insn history[1 + MAX_NOPS];
603
604 /* Nop instructions used by emit_nop. */
605 static struct mips_cl_insn nop_insn, mips16_nop_insn;
606
607 /* The appropriate nop for the current mode. */
608 #define NOP_INSN (mips_opts.mips16 ? &mips16_nop_insn : &nop_insn)
609
610 /* If this is set, it points to a frag holding nop instructions which
611 were inserted before the start of a noreorder section. If those
612 nops turn out to be unnecessary, the size of the frag can be
613 decreased. */
614 static fragS *prev_nop_frag;
615
616 /* The number of nop instructions we created in prev_nop_frag. */
617 static int prev_nop_frag_holds;
618
619 /* The number of nop instructions that we know we need in
620 prev_nop_frag. */
621 static int prev_nop_frag_required;
622
623 /* The number of instructions we've seen since prev_nop_frag. */
624 static int prev_nop_frag_since;
625
626 /* For ECOFF and ELF, relocations against symbols are done in two
627 parts, with a HI relocation and a LO relocation. Each relocation
628 has only 16 bits of space to store an addend. This means that in
629 order for the linker to handle carries correctly, it must be able
630 to locate both the HI and the LO relocation. This means that the
631 relocations must appear in order in the relocation table.
632
633 In order to implement this, we keep track of each unmatched HI
634 relocation. We then sort them so that they immediately precede the
635 corresponding LO relocation. */
636
637 struct mips_hi_fixup
638 {
639 /* Next HI fixup. */
640 struct mips_hi_fixup *next;
641 /* This fixup. */
642 fixS *fixp;
643 /* The section this fixup is in. */
644 segT seg;
645 };
646
647 /* The list of unmatched HI relocs. */
648
649 static struct mips_hi_fixup *mips_hi_fixup_list;
650
651 /* The frag containing the last explicit relocation operator.
652 Null if explicit relocations have not been used. */
653
654 static fragS *prev_reloc_op_frag;
655
656 /* Map normal MIPS register numbers to mips16 register numbers. */
657
658 #define X ILLEGAL_REG
659 static const int mips32_to_16_reg_map[] =
660 {
661 X, X, 2, 3, 4, 5, 6, 7,
662 X, X, X, X, X, X, X, X,
663 0, 1, X, X, X, X, X, X,
664 X, X, X, X, X, X, X, X
665 };
666 #undef X
667
668 /* Map mips16 register numbers to normal MIPS register numbers. */
669
670 static const unsigned int mips16_to_32_reg_map[] =
671 {
672 16, 17, 2, 3, 4, 5, 6, 7
673 };
674
675 /* Classifies the kind of instructions we're interested in when
676 implementing -mfix-vr4120. */
677 enum fix_vr4120_class {
678 FIX_VR4120_MACC,
679 FIX_VR4120_DMACC,
680 FIX_VR4120_MULT,
681 FIX_VR4120_DMULT,
682 FIX_VR4120_DIV,
683 FIX_VR4120_MTHILO,
684 NUM_FIX_VR4120_CLASSES
685 };
686
687 /* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if
688 there must be at least one other instruction between an instruction
689 of type X and an instruction of type Y. */
690 static unsigned int vr4120_conflicts[NUM_FIX_VR4120_CLASSES];
691
692 /* True if -mfix-vr4120 is in force. */
693 static int mips_fix_vr4120;
694
695 /* ...likewise -mfix-vr4130. */
696 static int mips_fix_vr4130;
697
698 /* We don't relax branches by default, since this causes us to expand
699 `la .l2 - .l1' if there's a branch between .l1 and .l2, because we
700 fail to compute the offset before expanding the macro to the most
701 efficient expansion. */
702
703 static int mips_relax_branch;
704 \f
705 /* The expansion of many macros depends on the type of symbol that
706 they refer to. For example, when generating position-dependent code,
707 a macro that refers to a symbol may have two different expansions,
708 one which uses GP-relative addresses and one which uses absolute
709 addresses. When generating SVR4-style PIC, a macro may have
710 different expansions for local and global symbols.
711
712 We handle these situations by generating both sequences and putting
713 them in variant frags. In position-dependent code, the first sequence
714 will be the GP-relative one and the second sequence will be the
715 absolute one. In SVR4 PIC, the first sequence will be for global
716 symbols and the second will be for local symbols.
717
718 The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
719 SECOND are the lengths of the two sequences in bytes. These fields
720 can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
721 the subtype has the following flags:
722
723 RELAX_USE_SECOND
724 Set if it has been decided that we should use the second
725 sequence instead of the first.
726
727 RELAX_SECOND_LONGER
728 Set in the first variant frag if the macro's second implementation
729 is longer than its first. This refers to the macro as a whole,
730 not an individual relaxation.
731
732 RELAX_NOMACRO
733 Set in the first variant frag if the macro appeared in a .set nomacro
734 block and if one alternative requires a warning but the other does not.
735
736 RELAX_DELAY_SLOT
737 Like RELAX_NOMACRO, but indicates that the macro appears in a branch
738 delay slot.
739
740 The frag's "opcode" points to the first fixup for relaxable code.
741
742 Relaxable macros are generated using a sequence such as:
743
744 relax_start (SYMBOL);
745 ... generate first expansion ...
746 relax_switch ();
747 ... generate second expansion ...
748 relax_end ();
749
750 The code and fixups for the unwanted alternative are discarded
751 by md_convert_frag. */
752 #define RELAX_ENCODE(FIRST, SECOND) (((FIRST) << 8) | (SECOND))
753
754 #define RELAX_FIRST(X) (((X) >> 8) & 0xff)
755 #define RELAX_SECOND(X) ((X) & 0xff)
756 #define RELAX_USE_SECOND 0x10000
757 #define RELAX_SECOND_LONGER 0x20000
758 #define RELAX_NOMACRO 0x40000
759 #define RELAX_DELAY_SLOT 0x80000
760
761 /* Branch without likely bit. If label is out of range, we turn:
762
763 beq reg1, reg2, label
764 delay slot
765
766 into
767
768 bne reg1, reg2, 0f
769 nop
770 j label
771 0: delay slot
772
773 with the following opcode replacements:
774
775 beq <-> bne
776 blez <-> bgtz
777 bltz <-> bgez
778 bc1f <-> bc1t
779
780 bltzal <-> bgezal (with jal label instead of j label)
781
782 Even though keeping the delay slot instruction in the delay slot of
783 the branch would be more efficient, it would be very tricky to do
784 correctly, because we'd have to introduce a variable frag *after*
785 the delay slot instruction, and expand that instead. Let's do it
786 the easy way for now, even if the branch-not-taken case now costs
787 one additional instruction. Out-of-range branches are not supposed
788 to be common, anyway.
789
790 Branch likely. If label is out of range, we turn:
791
792 beql reg1, reg2, label
793 delay slot (annulled if branch not taken)
794
795 into
796
797 beql reg1, reg2, 1f
798 nop
799 beql $0, $0, 2f
800 nop
801 1: j[al] label
802 delay slot (executed only if branch taken)
803 2:
804
805 It would be possible to generate a shorter sequence by losing the
806 likely bit, generating something like:
807
808 bne reg1, reg2, 0f
809 nop
810 j[al] label
811 delay slot (executed only if branch taken)
812 0:
813
814 beql -> bne
815 bnel -> beq
816 blezl -> bgtz
817 bgtzl -> blez
818 bltzl -> bgez
819 bgezl -> bltz
820 bc1fl -> bc1t
821 bc1tl -> bc1f
822
823 bltzall -> bgezal (with jal label instead of j label)
824 bgezall -> bltzal (ditto)
825
826
827 but it's not clear that it would actually improve performance. */
828 #define RELAX_BRANCH_ENCODE(uncond, likely, link, toofar) \
829 ((relax_substateT) \
830 (0xc0000000 \
831 | ((toofar) ? 1 : 0) \
832 | ((link) ? 2 : 0) \
833 | ((likely) ? 4 : 0) \
834 | ((uncond) ? 8 : 0)))
835 #define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
836 #define RELAX_BRANCH_UNCOND(i) (((i) & 8) != 0)
837 #define RELAX_BRANCH_LIKELY(i) (((i) & 4) != 0)
838 #define RELAX_BRANCH_LINK(i) (((i) & 2) != 0)
839 #define RELAX_BRANCH_TOOFAR(i) (((i) & 1) != 0)
840
841 /* For mips16 code, we use an entirely different form of relaxation.
842 mips16 supports two versions of most instructions which take
843 immediate values: a small one which takes some small value, and a
844 larger one which takes a 16 bit value. Since branches also follow
845 this pattern, relaxing these values is required.
846
847 We can assemble both mips16 and normal MIPS code in a single
848 object. Therefore, we need to support this type of relaxation at
849 the same time that we support the relaxation described above. We
850 use the high bit of the subtype field to distinguish these cases.
851
852 The information we store for this type of relaxation is the
853 argument code found in the opcode file for this relocation, whether
854 the user explicitly requested a small or extended form, and whether
855 the relocation is in a jump or jal delay slot. That tells us the
856 size of the value, and how it should be stored. We also store
857 whether the fragment is considered to be extended or not. We also
858 store whether this is known to be a branch to a different section,
859 whether we have tried to relax this frag yet, and whether we have
860 ever extended a PC relative fragment because of a shift count. */
861 #define RELAX_MIPS16_ENCODE(type, small, ext, dslot, jal_dslot) \
862 (0x80000000 \
863 | ((type) & 0xff) \
864 | ((small) ? 0x100 : 0) \
865 | ((ext) ? 0x200 : 0) \
866 | ((dslot) ? 0x400 : 0) \
867 | ((jal_dslot) ? 0x800 : 0))
868 #define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
869 #define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
870 #define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x100) != 0)
871 #define RELAX_MIPS16_USER_EXT(i) (((i) & 0x200) != 0)
872 #define RELAX_MIPS16_DSLOT(i) (((i) & 0x400) != 0)
873 #define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x800) != 0)
874 #define RELAX_MIPS16_EXTENDED(i) (((i) & 0x1000) != 0)
875 #define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x1000)
876 #define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) &~ 0x1000)
877 #define RELAX_MIPS16_LONG_BRANCH(i) (((i) & 0x2000) != 0)
878 #define RELAX_MIPS16_MARK_LONG_BRANCH(i) ((i) | 0x2000)
879 #define RELAX_MIPS16_CLEAR_LONG_BRANCH(i) ((i) &~ 0x2000)
880
881 /* Is the given value a sign-extended 32-bit value? */
882 #define IS_SEXT_32BIT_NUM(x) \
883 (((x) &~ (offsetT) 0x7fffffff) == 0 \
884 || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
885
886 /* Is the given value a sign-extended 16-bit value? */
887 #define IS_SEXT_16BIT_NUM(x) \
888 (((x) &~ (offsetT) 0x7fff) == 0 \
889 || (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
890
891 /* Is the given value a zero-extended 32-bit value? Or a negated one? */
892 #define IS_ZEXT_32BIT_NUM(x) \
893 (((x) &~ (offsetT) 0xffffffff) == 0 \
894 || (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))
895
896 /* Replace bits MASK << SHIFT of STRUCT with the equivalent bits in
897 VALUE << SHIFT. VALUE is evaluated exactly once. */
898 #define INSERT_BITS(STRUCT, VALUE, MASK, SHIFT) \
899 (STRUCT) = (((STRUCT) & ~((MASK) << (SHIFT))) \
900 | (((VALUE) & (MASK)) << (SHIFT)))
901
902 /* Extract bits MASK << SHIFT from STRUCT and shift them right
903 SHIFT places. */
904 #define EXTRACT_BITS(STRUCT, MASK, SHIFT) \
905 (((STRUCT) >> (SHIFT)) & (MASK))
906
907 /* Change INSN's opcode so that the operand given by FIELD has value VALUE.
908 INSN is a mips_cl_insn structure and VALUE is evaluated exactly once.
909
910 include/opcode/mips.h specifies operand fields using the macros
911 OP_MASK_<FIELD> and OP_SH_<FIELD>. The MIPS16 equivalents start
912 with "MIPS16OP" instead of "OP". */
913 #define INSERT_OPERAND(FIELD, INSN, VALUE) \
914 INSERT_BITS ((INSN).insn_opcode, VALUE, OP_MASK_##FIELD, OP_SH_##FIELD)
915 #define MIPS16_INSERT_OPERAND(FIELD, INSN, VALUE) \
916 INSERT_BITS ((INSN).insn_opcode, VALUE, \
917 MIPS16OP_MASK_##FIELD, MIPS16OP_SH_##FIELD)
918
919 /* Extract the operand given by FIELD from mips_cl_insn INSN. */
920 #define EXTRACT_OPERAND(FIELD, INSN) \
921 EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD)
922 #define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \
923 EXTRACT_BITS ((INSN).insn_opcode, \
924 MIPS16OP_MASK_##FIELD, \
925 MIPS16OP_SH_##FIELD)
926 \f
927 /* Global variables used when generating relaxable macros. See the
928 comment above RELAX_ENCODE for more details about how relaxation
929 is used. */
930 static struct {
931 /* 0 if we're not emitting a relaxable macro.
932 1 if we're emitting the first of the two relaxation alternatives.
933 2 if we're emitting the second alternative. */
934 int sequence;
935
936 /* The first relaxable fixup in the current frag. (In other words,
937 the first fixup that refers to relaxable code.) */
938 fixS *first_fixup;
939
940 /* sizes[0] says how many bytes of the first alternative are stored in
941 the current frag. Likewise sizes[1] for the second alternative. */
942 unsigned int sizes[2];
943
944 /* The symbol on which the choice of sequence depends. */
945 symbolS *symbol;
946 } mips_relax;
947 \f
948 /* Global variables used to decide whether a macro needs a warning. */
949 static struct {
950 /* True if the macro is in a branch delay slot. */
951 bfd_boolean delay_slot_p;
952
953 /* For relaxable macros, sizes[0] is the length of the first alternative
954 in bytes and sizes[1] is the length of the second alternative.
955 For non-relaxable macros, both elements give the length of the
956 macro in bytes. */
957 unsigned int sizes[2];
958
959 /* The first variant frag for this macro. */
960 fragS *first_frag;
961 } mips_macro_warning;
962 \f
963 /* Prototypes for static functions. */
964
965 #define internalError() \
966 as_fatal (_("internal Error, line %d, %s"), __LINE__, __FILE__)
967
968 enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
969
970 static void append_insn
971 (struct mips_cl_insn *ip, expressionS *p, bfd_reloc_code_real_type *r);
972 static void mips_no_prev_insn (void);
973 static void mips16_macro_build
974 (expressionS *, const char *, const char *, va_list);
975 static void load_register (int, expressionS *, int);
976 static void macro_start (void);
977 static void macro_end (void);
978 static void macro (struct mips_cl_insn * ip);
979 static void mips16_macro (struct mips_cl_insn * ip);
980 #ifdef LOSING_COMPILER
981 static void macro2 (struct mips_cl_insn * ip);
982 #endif
983 static void mips_ip (char *str, struct mips_cl_insn * ip);
984 static void mips16_ip (char *str, struct mips_cl_insn * ip);
985 static void mips16_immed
986 (char *, unsigned int, int, offsetT, bfd_boolean, bfd_boolean, bfd_boolean,
987 unsigned long *, bfd_boolean *, unsigned short *);
988 static size_t my_getSmallExpression
989 (expressionS *, bfd_reloc_code_real_type *, char *);
990 static void my_getExpression (expressionS *, char *);
991 static void s_align (int);
992 static void s_change_sec (int);
993 static void s_change_section (int);
994 static void s_cons (int);
995 static void s_float_cons (int);
996 static void s_mips_globl (int);
997 static void s_option (int);
998 static void s_mipsset (int);
999 static void s_abicalls (int);
1000 static void s_cpload (int);
1001 static void s_cpsetup (int);
1002 static void s_cplocal (int);
1003 static void s_cprestore (int);
1004 static void s_cpreturn (int);
1005 static void s_gpvalue (int);
1006 static void s_gpword (int);
1007 static void s_gpdword (int);
1008 static void s_cpadd (int);
1009 static void s_insn (int);
1010 static void md_obj_begin (void);
1011 static void md_obj_end (void);
1012 static void s_mips_ent (int);
1013 static void s_mips_end (int);
1014 static void s_mips_frame (int);
1015 static void s_mips_mask (int reg_type);
1016 static void s_mips_stab (int);
1017 static void s_mips_weakext (int);
1018 static void s_mips_file (int);
1019 static void s_mips_loc (int);
1020 static bfd_boolean pic_need_relax (symbolS *, asection *);
1021 static int relaxed_branch_length (fragS *, asection *, int);
1022 static int validate_mips_insn (const struct mips_opcode *);
1023
1024 /* Table and functions used to map between CPU/ISA names, and
1025 ISA levels, and CPU numbers. */
1026
1027 struct mips_cpu_info
1028 {
1029 const char *name; /* CPU or ISA name. */
1030 int is_isa; /* Is this an ISA? (If 0, a CPU.) */
1031 int isa; /* ISA level. */
1032 int cpu; /* CPU number (default CPU if ISA). */
1033 };
1034
1035 static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *);
1036 static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
1037 static const struct mips_cpu_info *mips_cpu_info_from_arch (int);
1038 \f
1039 /* Pseudo-op table.
1040
1041 The following pseudo-ops from the Kane and Heinrich MIPS book
1042 should be defined here, but are currently unsupported: .alias,
1043 .galive, .gjaldef, .gjrlive, .livereg, .noalias.
1044
1045 The following pseudo-ops from the Kane and Heinrich MIPS book are
1046 specific to the type of debugging information being generated, and
1047 should be defined by the object format: .aent, .begin, .bend,
1048 .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
1049 .vreg.
1050
1051 The following pseudo-ops from the Kane and Heinrich MIPS book are
1052 not MIPS CPU specific, but are also not specific to the object file
1053 format. This file is probably the best place to define them, but
1054 they are not currently supported: .asm0, .endr, .lab, .repeat,
1055 .struct. */
1056
1057 static const pseudo_typeS mips_pseudo_table[] =
1058 {
1059 /* MIPS specific pseudo-ops. */
1060 {"option", s_option, 0},
1061 {"set", s_mipsset, 0},
1062 {"rdata", s_change_sec, 'r'},
1063 {"sdata", s_change_sec, 's'},
1064 {"livereg", s_ignore, 0},
1065 {"abicalls", s_abicalls, 0},
1066 {"cpload", s_cpload, 0},
1067 {"cpsetup", s_cpsetup, 0},
1068 {"cplocal", s_cplocal, 0},
1069 {"cprestore", s_cprestore, 0},
1070 {"cpreturn", s_cpreturn, 0},
1071 {"gpvalue", s_gpvalue, 0},
1072 {"gpword", s_gpword, 0},
1073 {"gpdword", s_gpdword, 0},
1074 {"cpadd", s_cpadd, 0},
1075 {"insn", s_insn, 0},
1076
1077 /* Relatively generic pseudo-ops that happen to be used on MIPS
1078 chips. */
1079 {"asciiz", stringer, 1},
1080 {"bss", s_change_sec, 'b'},
1081 {"err", s_err, 0},
1082 {"half", s_cons, 1},
1083 {"dword", s_cons, 3},
1084 {"weakext", s_mips_weakext, 0},
1085
1086 /* These pseudo-ops are defined in read.c, but must be overridden
1087 here for one reason or another. */
1088 {"align", s_align, 0},
1089 {"byte", s_cons, 0},
1090 {"data", s_change_sec, 'd'},
1091 {"double", s_float_cons, 'd'},
1092 {"float", s_float_cons, 'f'},
1093 {"globl", s_mips_globl, 0},
1094 {"global", s_mips_globl, 0},
1095 {"hword", s_cons, 1},
1096 {"int", s_cons, 2},
1097 {"long", s_cons, 2},
1098 {"octa", s_cons, 4},
1099 {"quad", s_cons, 3},
1100 {"section", s_change_section, 0},
1101 {"short", s_cons, 1},
1102 {"single", s_float_cons, 'f'},
1103 {"stabn", s_mips_stab, 'n'},
1104 {"text", s_change_sec, 't'},
1105 {"word", s_cons, 2},
1106
1107 { "extern", ecoff_directive_extern, 0},
1108
1109 { NULL, NULL, 0 },
1110 };
1111
1112 static const pseudo_typeS mips_nonecoff_pseudo_table[] =
1113 {
1114 /* These pseudo-ops should be defined by the object file format.
1115 However, a.out doesn't support them, so we have versions here. */
1116 {"aent", s_mips_ent, 1},
1117 {"bgnb", s_ignore, 0},
1118 {"end", s_mips_end, 0},
1119 {"endb", s_ignore, 0},
1120 {"ent", s_mips_ent, 0},
1121 {"file", s_mips_file, 0},
1122 {"fmask", s_mips_mask, 'F'},
1123 {"frame", s_mips_frame, 0},
1124 {"loc", s_mips_loc, 0},
1125 {"mask", s_mips_mask, 'R'},
1126 {"verstamp", s_ignore, 0},
1127 { NULL, NULL, 0 },
1128 };
1129
1130 extern void pop_insert (const pseudo_typeS *);
1131
1132 void
1133 mips_pop_insert (void)
1134 {
1135 pop_insert (mips_pseudo_table);
1136 if (! ECOFF_DEBUGGING)
1137 pop_insert (mips_nonecoff_pseudo_table);
1138 }
1139 \f
1140 /* Symbols labelling the current insn. */
1141
1142 struct insn_label_list
1143 {
1144 struct insn_label_list *next;
1145 symbolS *label;
1146 };
1147
1148 static struct insn_label_list *insn_labels;
1149 static struct insn_label_list *free_insn_labels;
1150
1151 static void mips_clear_insn_labels (void);
1152
1153 static inline void
1154 mips_clear_insn_labels (void)
1155 {
1156 register struct insn_label_list **pl;
1157
1158 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
1159 ;
1160 *pl = insn_labels;
1161 insn_labels = NULL;
1162 }
1163 \f
1164 static char *expr_end;
1165
1166 /* Expressions which appear in instructions. These are set by
1167 mips_ip. */
1168
1169 static expressionS imm_expr;
1170 static expressionS imm2_expr;
1171 static expressionS offset_expr;
1172
1173 /* Relocs associated with imm_expr and offset_expr. */
1174
1175 static bfd_reloc_code_real_type imm_reloc[3]
1176 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1177 static bfd_reloc_code_real_type offset_reloc[3]
1178 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1179
1180 /* These are set by mips16_ip if an explicit extension is used. */
1181
1182 static bfd_boolean mips16_small, mips16_ext;
1183
1184 #ifdef OBJ_ELF
1185 /* The pdr segment for per procedure frame/regmask info. Not used for
1186 ECOFF debugging. */
1187
1188 static segT pdr_seg;
1189 #endif
1190
1191 /* The default target format to use. */
1192
1193 const char *
1194 mips_target_format (void)
1195 {
1196 switch (OUTPUT_FLAVOR)
1197 {
1198 case bfd_target_ecoff_flavour:
1199 return target_big_endian ? "ecoff-bigmips" : ECOFF_LITTLE_FORMAT;
1200 case bfd_target_coff_flavour:
1201 return "pe-mips";
1202 case bfd_target_elf_flavour:
1203 #ifdef TE_VXWORKS
1204 if (!HAVE_64BIT_OBJECTS && !HAVE_NEWABI)
1205 return (target_big_endian
1206 ? "elf32-bigmips-vxworks"
1207 : "elf32-littlemips-vxworks");
1208 #endif
1209 #ifdef TE_TMIPS
1210 /* This is traditional mips. */
1211 return (target_big_endian
1212 ? (HAVE_64BIT_OBJECTS
1213 ? "elf64-tradbigmips"
1214 : (HAVE_NEWABI
1215 ? "elf32-ntradbigmips" : "elf32-tradbigmips"))
1216 : (HAVE_64BIT_OBJECTS
1217 ? "elf64-tradlittlemips"
1218 : (HAVE_NEWABI
1219 ? "elf32-ntradlittlemips" : "elf32-tradlittlemips")));
1220 #else
1221 return (target_big_endian
1222 ? (HAVE_64BIT_OBJECTS
1223 ? "elf64-bigmips"
1224 : (HAVE_NEWABI
1225 ? "elf32-nbigmips" : "elf32-bigmips"))
1226 : (HAVE_64BIT_OBJECTS
1227 ? "elf64-littlemips"
1228 : (HAVE_NEWABI
1229 ? "elf32-nlittlemips" : "elf32-littlemips")));
1230 #endif
1231 default:
1232 abort ();
1233 return NULL;
1234 }
1235 }
1236
1237 /* Return the length of instruction INSN. */
1238
1239 static inline unsigned int
1240 insn_length (const struct mips_cl_insn *insn)
1241 {
1242 if (!mips_opts.mips16)
1243 return 4;
1244 return insn->mips16_absolute_jump_p || insn->use_extend ? 4 : 2;
1245 }
1246
1247 /* Initialise INSN from opcode entry MO. Leave its position unspecified. */
1248
1249 static void
1250 create_insn (struct mips_cl_insn *insn, const struct mips_opcode *mo)
1251 {
1252 size_t i;
1253
1254 insn->insn_mo = mo;
1255 insn->use_extend = FALSE;
1256 insn->extend = 0;
1257 insn->insn_opcode = mo->match;
1258 insn->frag = NULL;
1259 insn->where = 0;
1260 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
1261 insn->fixp[i] = NULL;
1262 insn->fixed_p = (mips_opts.noreorder > 0);
1263 insn->noreorder_p = (mips_opts.noreorder > 0);
1264 insn->mips16_absolute_jump_p = 0;
1265 }
1266
1267 /* Install INSN at the location specified by its "frag" and "where" fields. */
1268
1269 static void
1270 install_insn (const struct mips_cl_insn *insn)
1271 {
1272 char *f = insn->frag->fr_literal + insn->where;
1273 if (!mips_opts.mips16)
1274 md_number_to_chars (f, insn->insn_opcode, 4);
1275 else if (insn->mips16_absolute_jump_p)
1276 {
1277 md_number_to_chars (f, insn->insn_opcode >> 16, 2);
1278 md_number_to_chars (f + 2, insn->insn_opcode & 0xffff, 2);
1279 }
1280 else
1281 {
1282 if (insn->use_extend)
1283 {
1284 md_number_to_chars (f, 0xf000 | insn->extend, 2);
1285 f += 2;
1286 }
1287 md_number_to_chars (f, insn->insn_opcode, 2);
1288 }
1289 }
1290
1291 /* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly
1292 and install the opcode in the new location. */
1293
1294 static void
1295 move_insn (struct mips_cl_insn *insn, fragS *frag, long where)
1296 {
1297 size_t i;
1298
1299 insn->frag = frag;
1300 insn->where = where;
1301 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
1302 if (insn->fixp[i] != NULL)
1303 {
1304 insn->fixp[i]->fx_frag = frag;
1305 insn->fixp[i]->fx_where = where;
1306 }
1307 install_insn (insn);
1308 }
1309
1310 /* Add INSN to the end of the output. */
1311
1312 static void
1313 add_fixed_insn (struct mips_cl_insn *insn)
1314 {
1315 char *f = frag_more (insn_length (insn));
1316 move_insn (insn, frag_now, f - frag_now->fr_literal);
1317 }
1318
1319 /* Start a variant frag and move INSN to the start of the variant part,
1320 marking it as fixed. The other arguments are as for frag_var. */
1321
1322 static void
1323 add_relaxed_insn (struct mips_cl_insn *insn, int max_chars, int var,
1324 relax_substateT subtype, symbolS *symbol, offsetT offset)
1325 {
1326 frag_grow (max_chars);
1327 move_insn (insn, frag_now, frag_more (0) - frag_now->fr_literal);
1328 insn->fixed_p = 1;
1329 frag_var (rs_machine_dependent, max_chars, var,
1330 subtype, symbol, offset, NULL);
1331 }
1332
1333 /* Insert N copies of INSN into the history buffer, starting at
1334 position FIRST. Neither FIRST nor N need to be clipped. */
1335
1336 static void
1337 insert_into_history (unsigned int first, unsigned int n,
1338 const struct mips_cl_insn *insn)
1339 {
1340 if (mips_relax.sequence != 2)
1341 {
1342 unsigned int i;
1343
1344 for (i = ARRAY_SIZE (history); i-- > first;)
1345 if (i >= first + n)
1346 history[i] = history[i - n];
1347 else
1348 history[i] = *insn;
1349 }
1350 }
1351
1352 /* Emit a nop instruction, recording it in the history buffer. */
1353
1354 static void
1355 emit_nop (void)
1356 {
1357 add_fixed_insn (NOP_INSN);
1358 insert_into_history (0, 1, NOP_INSN);
1359 }
1360
1361 /* Initialize vr4120_conflicts. There is a bit of duplication here:
1362 the idea is to make it obvious at a glance that each errata is
1363 included. */
1364
1365 static void
1366 init_vr4120_conflicts (void)
1367 {
1368 #define CONFLICT(FIRST, SECOND) \
1369 vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND
1370
1371 /* Errata 21 - [D]DIV[U] after [D]MACC */
1372 CONFLICT (MACC, DIV);
1373 CONFLICT (DMACC, DIV);
1374
1375 /* Errata 23 - Continuous DMULT[U]/DMACC instructions. */
1376 CONFLICT (DMULT, DMULT);
1377 CONFLICT (DMULT, DMACC);
1378 CONFLICT (DMACC, DMULT);
1379 CONFLICT (DMACC, DMACC);
1380
1381 /* Errata 24 - MT{LO,HI} after [D]MACC */
1382 CONFLICT (MACC, MTHILO);
1383 CONFLICT (DMACC, MTHILO);
1384
1385 /* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU
1386 instruction is executed immediately after a MACC or DMACC
1387 instruction, the result of [either instruction] is incorrect." */
1388 CONFLICT (MACC, MULT);
1389 CONFLICT (MACC, DMULT);
1390 CONFLICT (DMACC, MULT);
1391 CONFLICT (DMACC, DMULT);
1392
1393 /* VR4181A errata MD(4): "If a MACC or DMACC instruction is
1394 executed immediately after a DMULT, DMULTU, DIV, DIVU,
1395 DDIV or DDIVU instruction, the result of the MACC or
1396 DMACC instruction is incorrect.". */
1397 CONFLICT (DMULT, MACC);
1398 CONFLICT (DMULT, DMACC);
1399 CONFLICT (DIV, MACC);
1400 CONFLICT (DIV, DMACC);
1401
1402 #undef CONFLICT
1403 }
1404
1405 /* This function is called once, at assembler startup time. It should
1406 set up all the tables, etc. that the MD part of the assembler will need. */
1407
1408 void
1409 md_begin (void)
1410 {
1411 register const char *retval = NULL;
1412 int i = 0;
1413 int broken = 0;
1414
1415 if (mips_pic != NO_PIC)
1416 {
1417 if (g_switch_seen && g_switch_value != 0)
1418 as_bad (_("-G may not be used in position-independent code"));
1419 g_switch_value = 0;
1420 }
1421
1422 if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_arch))
1423 as_warn (_("Could not set architecture and machine"));
1424
1425 op_hash = hash_new ();
1426
1427 for (i = 0; i < NUMOPCODES;)
1428 {
1429 const char *name = mips_opcodes[i].name;
1430
1431 retval = hash_insert (op_hash, name, (void *) &mips_opcodes[i]);
1432 if (retval != NULL)
1433 {
1434 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
1435 mips_opcodes[i].name, retval);
1436 /* Probably a memory allocation problem? Give up now. */
1437 as_fatal (_("Broken assembler. No assembly attempted."));
1438 }
1439 do
1440 {
1441 if (mips_opcodes[i].pinfo != INSN_MACRO)
1442 {
1443 if (!validate_mips_insn (&mips_opcodes[i]))
1444 broken = 1;
1445 if (nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
1446 {
1447 create_insn (&nop_insn, mips_opcodes + i);
1448 nop_insn.fixed_p = 1;
1449 }
1450 }
1451 ++i;
1452 }
1453 while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
1454 }
1455
1456 mips16_op_hash = hash_new ();
1457
1458 i = 0;
1459 while (i < bfd_mips16_num_opcodes)
1460 {
1461 const char *name = mips16_opcodes[i].name;
1462
1463 retval = hash_insert (mips16_op_hash, name, (void *) &mips16_opcodes[i]);
1464 if (retval != NULL)
1465 as_fatal (_("internal: can't hash `%s': %s"),
1466 mips16_opcodes[i].name, retval);
1467 do
1468 {
1469 if (mips16_opcodes[i].pinfo != INSN_MACRO
1470 && ((mips16_opcodes[i].match & mips16_opcodes[i].mask)
1471 != mips16_opcodes[i].match))
1472 {
1473 fprintf (stderr, _("internal error: bad mips16 opcode: %s %s\n"),
1474 mips16_opcodes[i].name, mips16_opcodes[i].args);
1475 broken = 1;
1476 }
1477 if (mips16_nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
1478 {
1479 create_insn (&mips16_nop_insn, mips16_opcodes + i);
1480 mips16_nop_insn.fixed_p = 1;
1481 }
1482 ++i;
1483 }
1484 while (i < bfd_mips16_num_opcodes
1485 && strcmp (mips16_opcodes[i].name, name) == 0);
1486 }
1487
1488 if (broken)
1489 as_fatal (_("Broken assembler. No assembly attempted."));
1490
1491 /* We add all the general register names to the symbol table. This
1492 helps us detect invalid uses of them. */
1493 for (i = 0; i < 32; i++)
1494 {
1495 char buf[5];
1496
1497 sprintf (buf, "$%d", i);
1498 symbol_table_insert (symbol_new (buf, reg_section, i,
1499 &zero_address_frag));
1500 }
1501 symbol_table_insert (symbol_new ("$ra", reg_section, RA,
1502 &zero_address_frag));
1503 symbol_table_insert (symbol_new ("$fp", reg_section, FP,
1504 &zero_address_frag));
1505 symbol_table_insert (symbol_new ("$sp", reg_section, SP,
1506 &zero_address_frag));
1507 symbol_table_insert (symbol_new ("$gp", reg_section, GP,
1508 &zero_address_frag));
1509 symbol_table_insert (symbol_new ("$at", reg_section, AT,
1510 &zero_address_frag));
1511 symbol_table_insert (symbol_new ("$kt0", reg_section, KT0,
1512 &zero_address_frag));
1513 symbol_table_insert (symbol_new ("$kt1", reg_section, KT1,
1514 &zero_address_frag));
1515 symbol_table_insert (symbol_new ("$zero", reg_section, ZERO,
1516 &zero_address_frag));
1517 symbol_table_insert (symbol_new ("$pc", reg_section, -1,
1518 &zero_address_frag));
1519
1520 /* If we don't add these register names to the symbol table, they
1521 may end up being added as regular symbols by operand(), and then
1522 make it to the object file as undefined in case they're not
1523 regarded as local symbols. They're local in o32, since `$' is a
1524 local symbol prefix, but not in n32 or n64. */
1525 for (i = 0; i < 8; i++)
1526 {
1527 char buf[6];
1528
1529 sprintf (buf, "$fcc%i", i);
1530 symbol_table_insert (symbol_new (buf, reg_section, -1,
1531 &zero_address_frag));
1532 }
1533
1534 mips_no_prev_insn ();
1535
1536 mips_gprmask = 0;
1537 mips_cprmask[0] = 0;
1538 mips_cprmask[1] = 0;
1539 mips_cprmask[2] = 0;
1540 mips_cprmask[3] = 0;
1541
1542 /* set the default alignment for the text section (2**2) */
1543 record_alignment (text_section, 2);
1544
1545 bfd_set_gp_size (stdoutput, g_switch_value);
1546
1547 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
1548 {
1549 /* On a native system other than VxWorks, sections must be aligned
1550 to 16 byte boundaries. When configured for an embedded ELF
1551 target, we don't bother. */
1552 if (strcmp (TARGET_OS, "elf") != 0
1553 && strcmp (TARGET_OS, "vxworks") != 0)
1554 {
1555 (void) bfd_set_section_alignment (stdoutput, text_section, 4);
1556 (void) bfd_set_section_alignment (stdoutput, data_section, 4);
1557 (void) bfd_set_section_alignment (stdoutput, bss_section, 4);
1558 }
1559
1560 /* Create a .reginfo section for register masks and a .mdebug
1561 section for debugging information. */
1562 {
1563 segT seg;
1564 subsegT subseg;
1565 flagword flags;
1566 segT sec;
1567
1568 seg = now_seg;
1569 subseg = now_subseg;
1570
1571 /* The ABI says this section should be loaded so that the
1572 running program can access it. However, we don't load it
1573 if we are configured for an embedded target */
1574 flags = SEC_READONLY | SEC_DATA;
1575 if (strcmp (TARGET_OS, "elf") != 0)
1576 flags |= SEC_ALLOC | SEC_LOAD;
1577
1578 if (mips_abi != N64_ABI)
1579 {
1580 sec = subseg_new (".reginfo", (subsegT) 0);
1581
1582 bfd_set_section_flags (stdoutput, sec, flags);
1583 bfd_set_section_alignment (stdoutput, sec, HAVE_NEWABI ? 3 : 2);
1584
1585 #ifdef OBJ_ELF
1586 mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
1587 #endif
1588 }
1589 else
1590 {
1591 /* The 64-bit ABI uses a .MIPS.options section rather than
1592 .reginfo section. */
1593 sec = subseg_new (".MIPS.options", (subsegT) 0);
1594 bfd_set_section_flags (stdoutput, sec, flags);
1595 bfd_set_section_alignment (stdoutput, sec, 3);
1596
1597 #ifdef OBJ_ELF
1598 /* Set up the option header. */
1599 {
1600 Elf_Internal_Options opthdr;
1601 char *f;
1602
1603 opthdr.kind = ODK_REGINFO;
1604 opthdr.size = (sizeof (Elf_External_Options)
1605 + sizeof (Elf64_External_RegInfo));
1606 opthdr.section = 0;
1607 opthdr.info = 0;
1608 f = frag_more (sizeof (Elf_External_Options));
1609 bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
1610 (Elf_External_Options *) f);
1611
1612 mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
1613 }
1614 #endif
1615 }
1616
1617 if (ECOFF_DEBUGGING)
1618 {
1619 sec = subseg_new (".mdebug", (subsegT) 0);
1620 (void) bfd_set_section_flags (stdoutput, sec,
1621 SEC_HAS_CONTENTS | SEC_READONLY);
1622 (void) bfd_set_section_alignment (stdoutput, sec, 2);
1623 }
1624 #ifdef OBJ_ELF
1625 else if (OUTPUT_FLAVOR == bfd_target_elf_flavour && mips_flag_pdr)
1626 {
1627 pdr_seg = subseg_new (".pdr", (subsegT) 0);
1628 (void) bfd_set_section_flags (stdoutput, pdr_seg,
1629 SEC_READONLY | SEC_RELOC
1630 | SEC_DEBUGGING);
1631 (void) bfd_set_section_alignment (stdoutput, pdr_seg, 2);
1632 }
1633 #endif
1634
1635 subseg_set (seg, subseg);
1636 }
1637 }
1638
1639 if (! ECOFF_DEBUGGING)
1640 md_obj_begin ();
1641
1642 if (mips_fix_vr4120)
1643 init_vr4120_conflicts ();
1644 }
1645
1646 void
1647 md_mips_end (void)
1648 {
1649 if (! ECOFF_DEBUGGING)
1650 md_obj_end ();
1651 }
1652
1653 void
1654 md_assemble (char *str)
1655 {
1656 struct mips_cl_insn insn;
1657 bfd_reloc_code_real_type unused_reloc[3]
1658 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1659
1660 imm_expr.X_op = O_absent;
1661 imm2_expr.X_op = O_absent;
1662 offset_expr.X_op = O_absent;
1663 imm_reloc[0] = BFD_RELOC_UNUSED;
1664 imm_reloc[1] = BFD_RELOC_UNUSED;
1665 imm_reloc[2] = BFD_RELOC_UNUSED;
1666 offset_reloc[0] = BFD_RELOC_UNUSED;
1667 offset_reloc[1] = BFD_RELOC_UNUSED;
1668 offset_reloc[2] = BFD_RELOC_UNUSED;
1669
1670 if (mips_opts.mips16)
1671 mips16_ip (str, &insn);
1672 else
1673 {
1674 mips_ip (str, &insn);
1675 DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
1676 str, insn.insn_opcode));
1677 }
1678
1679 if (insn_error)
1680 {
1681 as_bad ("%s `%s'", insn_error, str);
1682 return;
1683 }
1684
1685 if (insn.insn_mo->pinfo == INSN_MACRO)
1686 {
1687 macro_start ();
1688 if (mips_opts.mips16)
1689 mips16_macro (&insn);
1690 else
1691 macro (&insn);
1692 macro_end ();
1693 }
1694 else
1695 {
1696 if (imm_expr.X_op != O_absent)
1697 append_insn (&insn, &imm_expr, imm_reloc);
1698 else if (offset_expr.X_op != O_absent)
1699 append_insn (&insn, &offset_expr, offset_reloc);
1700 else
1701 append_insn (&insn, NULL, unused_reloc);
1702 }
1703 }
1704
1705 /* Return true if the given relocation might need a matching %lo().
1706 This is only "might" because SVR4 R_MIPS_GOT16 relocations only
1707 need a matching %lo() when applied to local symbols. */
1708
1709 static inline bfd_boolean
1710 reloc_needs_lo_p (bfd_reloc_code_real_type reloc)
1711 {
1712 return (HAVE_IN_PLACE_ADDENDS
1713 && (reloc == BFD_RELOC_HI16_S
1714 || reloc == BFD_RELOC_MIPS16_HI16_S
1715 /* VxWorks R_MIPS_GOT16 relocs never need a matching %lo();
1716 all GOT16 relocations evaluate to "G". */
1717 || (reloc == BFD_RELOC_MIPS_GOT16 && mips_pic != VXWORKS_PIC)));
1718 }
1719
1720 /* Return true if the given fixup is followed by a matching R_MIPS_LO16
1721 relocation. */
1722
1723 static inline bfd_boolean
1724 fixup_has_matching_lo_p (fixS *fixp)
1725 {
1726 return (fixp->fx_next != NULL
1727 && (fixp->fx_next->fx_r_type == BFD_RELOC_LO16
1728 || fixp->fx_next->fx_r_type == BFD_RELOC_MIPS16_LO16)
1729 && fixp->fx_addsy == fixp->fx_next->fx_addsy
1730 && fixp->fx_offset == fixp->fx_next->fx_offset);
1731 }
1732
1733 /* See whether instruction IP reads register REG. CLASS is the type
1734 of register. */
1735
1736 static int
1737 insn_uses_reg (const struct mips_cl_insn *ip, unsigned int reg,
1738 enum mips_regclass class)
1739 {
1740 if (class == MIPS16_REG)
1741 {
1742 assert (mips_opts.mips16);
1743 reg = mips16_to_32_reg_map[reg];
1744 class = MIPS_GR_REG;
1745 }
1746
1747 /* Don't report on general register ZERO, since it never changes. */
1748 if (class == MIPS_GR_REG && reg == ZERO)
1749 return 0;
1750
1751 if (class == MIPS_FP_REG)
1752 {
1753 assert (! mips_opts.mips16);
1754 /* If we are called with either $f0 or $f1, we must check $f0.
1755 This is not optimal, because it will introduce an unnecessary
1756 NOP between "lwc1 $f0" and "swc1 $f1". To fix this we would
1757 need to distinguish reading both $f0 and $f1 or just one of
1758 them. Note that we don't have to check the other way,
1759 because there is no instruction that sets both $f0 and $f1
1760 and requires a delay. */
1761 if ((ip->insn_mo->pinfo & INSN_READ_FPR_S)
1762 && ((EXTRACT_OPERAND (FS, *ip) & ~(unsigned) 1)
1763 == (reg &~ (unsigned) 1)))
1764 return 1;
1765 if ((ip->insn_mo->pinfo & INSN_READ_FPR_T)
1766 && ((EXTRACT_OPERAND (FT, *ip) & ~(unsigned) 1)
1767 == (reg &~ (unsigned) 1)))
1768 return 1;
1769 }
1770 else if (! mips_opts.mips16)
1771 {
1772 if ((ip->insn_mo->pinfo & INSN_READ_GPR_S)
1773 && EXTRACT_OPERAND (RS, *ip) == reg)
1774 return 1;
1775 if ((ip->insn_mo->pinfo & INSN_READ_GPR_T)
1776 && EXTRACT_OPERAND (RT, *ip) == reg)
1777 return 1;
1778 }
1779 else
1780 {
1781 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_X)
1782 && mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RX, *ip)] == reg)
1783 return 1;
1784 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_Y)
1785 && mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RY, *ip)] == reg)
1786 return 1;
1787 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_Z)
1788 && (mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (MOVE32Z, *ip)]
1789 == reg))
1790 return 1;
1791 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_T) && reg == TREG)
1792 return 1;
1793 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_SP) && reg == SP)
1794 return 1;
1795 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_31) && reg == RA)
1796 return 1;
1797 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_GPR_X)
1798 && MIPS16_EXTRACT_OPERAND (REGR32, *ip) == reg)
1799 return 1;
1800 }
1801
1802 return 0;
1803 }
1804
1805 /* This function returns true if modifying a register requires a
1806 delay. */
1807
1808 static int
1809 reg_needs_delay (unsigned int reg)
1810 {
1811 unsigned long prev_pinfo;
1812
1813 prev_pinfo = history[0].insn_mo->pinfo;
1814 if (! mips_opts.noreorder
1815 && (((prev_pinfo & INSN_LOAD_MEMORY_DELAY)
1816 && ! gpr_interlocks)
1817 || ((prev_pinfo & INSN_LOAD_COPROC_DELAY)
1818 && ! cop_interlocks)))
1819 {
1820 /* A load from a coprocessor or from memory. All load delays
1821 delay the use of general register rt for one instruction. */
1822 /* Itbl support may require additional care here. */
1823 know (prev_pinfo & INSN_WRITE_GPR_T);
1824 if (reg == EXTRACT_OPERAND (RT, history[0]))
1825 return 1;
1826 }
1827
1828 return 0;
1829 }
1830
1831 /* Move all labels in insn_labels to the current insertion point. */
1832
1833 static void
1834 mips_move_labels (void)
1835 {
1836 struct insn_label_list *l;
1837 valueT val;
1838
1839 for (l = insn_labels; l != NULL; l = l->next)
1840 {
1841 assert (S_GET_SEGMENT (l->label) == now_seg);
1842 symbol_set_frag (l->label, frag_now);
1843 val = (valueT) frag_now_fix ();
1844 /* mips16 text labels are stored as odd. */
1845 if (mips_opts.mips16)
1846 ++val;
1847 S_SET_VALUE (l->label, val);
1848 }
1849 }
1850
1851 /* Mark instruction labels in mips16 mode. This permits the linker to
1852 handle them specially, such as generating jalx instructions when
1853 needed. We also make them odd for the duration of the assembly, in
1854 order to generate the right sort of code. We will make them even
1855 in the adjust_symtab routine, while leaving them marked. This is
1856 convenient for the debugger and the disassembler. The linker knows
1857 to make them odd again. */
1858
1859 static void
1860 mips16_mark_labels (void)
1861 {
1862 if (mips_opts.mips16)
1863 {
1864 struct insn_label_list *l;
1865 valueT val;
1866
1867 for (l = insn_labels; l != NULL; l = l->next)
1868 {
1869 #ifdef OBJ_ELF
1870 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
1871 S_SET_OTHER (l->label, STO_MIPS16);
1872 #endif
1873 val = S_GET_VALUE (l->label);
1874 if ((val & 1) == 0)
1875 S_SET_VALUE (l->label, val + 1);
1876 }
1877 }
1878 }
1879
1880 /* End the current frag. Make it a variant frag and record the
1881 relaxation info. */
1882
1883 static void
1884 relax_close_frag (void)
1885 {
1886 mips_macro_warning.first_frag = frag_now;
1887 frag_var (rs_machine_dependent, 0, 0,
1888 RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1]),
1889 mips_relax.symbol, 0, (char *) mips_relax.first_fixup);
1890
1891 memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes));
1892 mips_relax.first_fixup = 0;
1893 }
1894
1895 /* Start a new relaxation sequence whose expansion depends on SYMBOL.
1896 See the comment above RELAX_ENCODE for more details. */
1897
1898 static void
1899 relax_start (symbolS *symbol)
1900 {
1901 assert (mips_relax.sequence == 0);
1902 mips_relax.sequence = 1;
1903 mips_relax.symbol = symbol;
1904 }
1905
1906 /* Start generating the second version of a relaxable sequence.
1907 See the comment above RELAX_ENCODE for more details. */
1908
1909 static void
1910 relax_switch (void)
1911 {
1912 assert (mips_relax.sequence == 1);
1913 mips_relax.sequence = 2;
1914 }
1915
1916 /* End the current relaxable sequence. */
1917
1918 static void
1919 relax_end (void)
1920 {
1921 assert (mips_relax.sequence == 2);
1922 relax_close_frag ();
1923 mips_relax.sequence = 0;
1924 }
1925
1926 /* Classify an instruction according to the FIX_VR4120_* enumeration.
1927 Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected
1928 by VR4120 errata. */
1929
1930 static unsigned int
1931 classify_vr4120_insn (const char *name)
1932 {
1933 if (strncmp (name, "macc", 4) == 0)
1934 return FIX_VR4120_MACC;
1935 if (strncmp (name, "dmacc", 5) == 0)
1936 return FIX_VR4120_DMACC;
1937 if (strncmp (name, "mult", 4) == 0)
1938 return FIX_VR4120_MULT;
1939 if (strncmp (name, "dmult", 5) == 0)
1940 return FIX_VR4120_DMULT;
1941 if (strstr (name, "div"))
1942 return FIX_VR4120_DIV;
1943 if (strcmp (name, "mtlo") == 0 || strcmp (name, "mthi") == 0)
1944 return FIX_VR4120_MTHILO;
1945 return NUM_FIX_VR4120_CLASSES;
1946 }
1947
1948 /* Return the number of instructions that must separate INSN1 and INSN2,
1949 where INSN1 is the earlier instruction. Return the worst-case value
1950 for any INSN2 if INSN2 is null. */
1951
1952 static unsigned int
1953 insns_between (const struct mips_cl_insn *insn1,
1954 const struct mips_cl_insn *insn2)
1955 {
1956 unsigned long pinfo1, pinfo2;
1957
1958 /* This function needs to know which pinfo flags are set for INSN2
1959 and which registers INSN2 uses. The former is stored in PINFO2 and
1960 the latter is tested via INSN2_USES_REG. If INSN2 is null, PINFO2
1961 will have every flag set and INSN2_USES_REG will always return true. */
1962 pinfo1 = insn1->insn_mo->pinfo;
1963 pinfo2 = insn2 ? insn2->insn_mo->pinfo : ~0U;
1964
1965 #define INSN2_USES_REG(REG, CLASS) \
1966 (insn2 == NULL || insn_uses_reg (insn2, REG, CLASS))
1967
1968 /* For most targets, write-after-read dependencies on the HI and LO
1969 registers must be separated by at least two instructions. */
1970 if (!hilo_interlocks)
1971 {
1972 if ((pinfo1 & INSN_READ_LO) && (pinfo2 & INSN_WRITE_LO))
1973 return 2;
1974 if ((pinfo1 & INSN_READ_HI) && (pinfo2 & INSN_WRITE_HI))
1975 return 2;
1976 }
1977
1978 /* If we're working around r7000 errata, there must be two instructions
1979 between an mfhi or mflo and any instruction that uses the result. */
1980 if (mips_7000_hilo_fix
1981 && MF_HILO_INSN (pinfo1)
1982 && INSN2_USES_REG (EXTRACT_OPERAND (RD, *insn1), MIPS_GR_REG))
1983 return 2;
1984
1985 /* If working around VR4120 errata, check for combinations that need
1986 a single intervening instruction. */
1987 if (mips_fix_vr4120)
1988 {
1989 unsigned int class1, class2;
1990
1991 class1 = classify_vr4120_insn (insn1->insn_mo->name);
1992 if (class1 != NUM_FIX_VR4120_CLASSES && vr4120_conflicts[class1] != 0)
1993 {
1994 if (insn2 == NULL)
1995 return 1;
1996 class2 = classify_vr4120_insn (insn2->insn_mo->name);
1997 if (vr4120_conflicts[class1] & (1 << class2))
1998 return 1;
1999 }
2000 }
2001
2002 if (!mips_opts.mips16)
2003 {
2004 /* Check for GPR or coprocessor load delays. All such delays
2005 are on the RT register. */
2006 /* Itbl support may require additional care here. */
2007 if ((!gpr_interlocks && (pinfo1 & INSN_LOAD_MEMORY_DELAY))
2008 || (!cop_interlocks && (pinfo1 & INSN_LOAD_COPROC_DELAY)))
2009 {
2010 know (pinfo1 & INSN_WRITE_GPR_T);
2011 if (INSN2_USES_REG (EXTRACT_OPERAND (RT, *insn1), MIPS_GR_REG))
2012 return 1;
2013 }
2014
2015 /* Check for generic coprocessor hazards.
2016
2017 This case is not handled very well. There is no special
2018 knowledge of CP0 handling, and the coprocessors other than
2019 the floating point unit are not distinguished at all. */
2020 /* Itbl support may require additional care here. FIXME!
2021 Need to modify this to include knowledge about
2022 user specified delays! */
2023 else if ((!cop_interlocks && (pinfo1 & INSN_COPROC_MOVE_DELAY))
2024 || (!cop_mem_interlocks && (pinfo1 & INSN_COPROC_MEMORY_DELAY)))
2025 {
2026 /* Handle cases where INSN1 writes to a known general coprocessor
2027 register. There must be a one instruction delay before INSN2
2028 if INSN2 reads that register, otherwise no delay is needed. */
2029 if (pinfo1 & INSN_WRITE_FPR_T)
2030 {
2031 if (INSN2_USES_REG (EXTRACT_OPERAND (FT, *insn1), MIPS_FP_REG))
2032 return 1;
2033 }
2034 else if (pinfo1 & INSN_WRITE_FPR_S)
2035 {
2036 if (INSN2_USES_REG (EXTRACT_OPERAND (FS, *insn1), MIPS_FP_REG))
2037 return 1;
2038 }
2039 else
2040 {
2041 /* Read-after-write dependencies on the control registers
2042 require a two-instruction gap. */
2043 if ((pinfo1 & INSN_WRITE_COND_CODE)
2044 && (pinfo2 & INSN_READ_COND_CODE))
2045 return 2;
2046
2047 /* We don't know exactly what INSN1 does. If INSN2 is
2048 also a coprocessor instruction, assume there must be
2049 a one instruction gap. */
2050 if (pinfo2 & INSN_COP)
2051 return 1;
2052 }
2053 }
2054
2055 /* Check for read-after-write dependencies on the coprocessor
2056 control registers in cases where INSN1 does not need a general
2057 coprocessor delay. This means that INSN1 is a floating point
2058 comparison instruction. */
2059 /* Itbl support may require additional care here. */
2060 else if (!cop_interlocks
2061 && (pinfo1 & INSN_WRITE_COND_CODE)
2062 && (pinfo2 & INSN_READ_COND_CODE))
2063 return 1;
2064 }
2065
2066 #undef INSN2_USES_REG
2067
2068 return 0;
2069 }
2070
2071 /* Return the number of nops that would be needed to work around the
2072 VR4130 mflo/mfhi errata if instruction INSN immediately followed
2073 the MAX_VR4130_NOPS instructions described by HISTORY. */
2074
2075 static int
2076 nops_for_vr4130 (const struct mips_cl_insn *history,
2077 const struct mips_cl_insn *insn)
2078 {
2079 int i, j, reg;
2080
2081 /* Check if the instruction writes to HI or LO. MTHI and MTLO
2082 are not affected by the errata. */
2083 if (insn != 0
2084 && ((insn->insn_mo->pinfo & (INSN_WRITE_HI | INSN_WRITE_LO)) == 0
2085 || strcmp (insn->insn_mo->name, "mtlo") == 0
2086 || strcmp (insn->insn_mo->name, "mthi") == 0))
2087 return 0;
2088
2089 /* Search for the first MFLO or MFHI. */
2090 for (i = 0; i < MAX_VR4130_NOPS; i++)
2091 if (!history[i].noreorder_p && MF_HILO_INSN (history[i].insn_mo->pinfo))
2092 {
2093 /* Extract the destination register. */
2094 if (mips_opts.mips16)
2095 reg = mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RX, history[i])];
2096 else
2097 reg = EXTRACT_OPERAND (RD, history[i]);
2098
2099 /* No nops are needed if INSN reads that register. */
2100 if (insn != NULL && insn_uses_reg (insn, reg, MIPS_GR_REG))
2101 return 0;
2102
2103 /* ...or if any of the intervening instructions do. */
2104 for (j = 0; j < i; j++)
2105 if (insn_uses_reg (&history[j], reg, MIPS_GR_REG))
2106 return 0;
2107
2108 return MAX_VR4130_NOPS - i;
2109 }
2110 return 0;
2111 }
2112
2113 /* Return the number of nops that would be needed if instruction INSN
2114 immediately followed the MAX_NOPS instructions given by HISTORY,
2115 where HISTORY[0] is the most recent instruction. If INSN is null,
2116 return the worse-case number of nops for any instruction. */
2117
2118 static int
2119 nops_for_insn (const struct mips_cl_insn *history,
2120 const struct mips_cl_insn *insn)
2121 {
2122 int i, nops, tmp_nops;
2123
2124 nops = 0;
2125 for (i = 0; i < MAX_DELAY_NOPS; i++)
2126 if (!history[i].noreorder_p)
2127 {
2128 tmp_nops = insns_between (history + i, insn) - i;
2129 if (tmp_nops > nops)
2130 nops = tmp_nops;
2131 }
2132
2133 if (mips_fix_vr4130)
2134 {
2135 tmp_nops = nops_for_vr4130 (history, insn);
2136 if (tmp_nops > nops)
2137 nops = tmp_nops;
2138 }
2139
2140 return nops;
2141 }
2142
2143 /* The variable arguments provide NUM_INSNS extra instructions that
2144 might be added to HISTORY. Return the largest number of nops that
2145 would be needed after the extended sequence. */
2146
2147 static int
2148 nops_for_sequence (int num_insns, const struct mips_cl_insn *history, ...)
2149 {
2150 va_list args;
2151 struct mips_cl_insn buffer[MAX_NOPS];
2152 struct mips_cl_insn *cursor;
2153 int nops;
2154
2155 va_start (args, history);
2156 cursor = buffer + num_insns;
2157 memcpy (cursor, history, (MAX_NOPS - num_insns) * sizeof (*cursor));
2158 while (cursor > buffer)
2159 *--cursor = *va_arg (args, const struct mips_cl_insn *);
2160
2161 nops = nops_for_insn (buffer, NULL);
2162 va_end (args);
2163 return nops;
2164 }
2165
2166 /* Like nops_for_insn, but if INSN is a branch, take into account the
2167 worst-case delay for the branch target. */
2168
2169 static int
2170 nops_for_insn_or_target (const struct mips_cl_insn *history,
2171 const struct mips_cl_insn *insn)
2172 {
2173 int nops, tmp_nops;
2174
2175 nops = nops_for_insn (history, insn);
2176 if (insn->insn_mo->pinfo & (INSN_UNCOND_BRANCH_DELAY
2177 | INSN_COND_BRANCH_DELAY
2178 | INSN_COND_BRANCH_LIKELY))
2179 {
2180 tmp_nops = nops_for_sequence (2, history, insn, NOP_INSN);
2181 if (tmp_nops > nops)
2182 nops = tmp_nops;
2183 }
2184 else if (mips_opts.mips16 && (insn->insn_mo->pinfo & MIPS16_INSN_BRANCH))
2185 {
2186 tmp_nops = nops_for_sequence (1, history, insn);
2187 if (tmp_nops > nops)
2188 nops = tmp_nops;
2189 }
2190 return nops;
2191 }
2192
2193 /* Output an instruction. IP is the instruction information.
2194 ADDRESS_EXPR is an operand of the instruction to be used with
2195 RELOC_TYPE. */
2196
2197 static void
2198 append_insn (struct mips_cl_insn *ip, expressionS *address_expr,
2199 bfd_reloc_code_real_type *reloc_type)
2200 {
2201 register unsigned long prev_pinfo, pinfo;
2202 relax_stateT prev_insn_frag_type = 0;
2203 bfd_boolean relaxed_branch = FALSE;
2204
2205 /* Mark instruction labels in mips16 mode. */
2206 mips16_mark_labels ();
2207
2208 prev_pinfo = history[0].insn_mo->pinfo;
2209 pinfo = ip->insn_mo->pinfo;
2210
2211 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
2212 {
2213 /* There are a lot of optimizations we could do that we don't.
2214 In particular, we do not, in general, reorder instructions.
2215 If you use gcc with optimization, it will reorder
2216 instructions and generally do much more optimization then we
2217 do here; repeating all that work in the assembler would only
2218 benefit hand written assembly code, and does not seem worth
2219 it. */
2220 int nops = (mips_optimize == 0
2221 ? nops_for_insn (history, NULL)
2222 : nops_for_insn_or_target (history, ip));
2223 if (nops > 0)
2224 {
2225 fragS *old_frag;
2226 unsigned long old_frag_offset;
2227 int i;
2228
2229 old_frag = frag_now;
2230 old_frag_offset = frag_now_fix ();
2231
2232 for (i = 0; i < nops; i++)
2233 emit_nop ();
2234
2235 if (listing)
2236 {
2237 listing_prev_line ();
2238 /* We may be at the start of a variant frag. In case we
2239 are, make sure there is enough space for the frag
2240 after the frags created by listing_prev_line. The
2241 argument to frag_grow here must be at least as large
2242 as the argument to all other calls to frag_grow in
2243 this file. We don't have to worry about being in the
2244 middle of a variant frag, because the variants insert
2245 all needed nop instructions themselves. */
2246 frag_grow (40);
2247 }
2248
2249 mips_move_labels ();
2250
2251 #ifndef NO_ECOFF_DEBUGGING
2252 if (ECOFF_DEBUGGING)
2253 ecoff_fix_loc (old_frag, old_frag_offset);
2254 #endif
2255 }
2256 }
2257 else if (mips_relax.sequence != 2 && prev_nop_frag != NULL)
2258 {
2259 /* Work out how many nops in prev_nop_frag are needed by IP. */
2260 int nops = nops_for_insn_or_target (history, ip);
2261 assert (nops <= prev_nop_frag_holds);
2262
2263 /* Enforce NOPS as a minimum. */
2264 if (nops > prev_nop_frag_required)
2265 prev_nop_frag_required = nops;
2266
2267 if (prev_nop_frag_holds == prev_nop_frag_required)
2268 {
2269 /* Settle for the current number of nops. Update the history
2270 accordingly (for the benefit of any future .set reorder code). */
2271 prev_nop_frag = NULL;
2272 insert_into_history (prev_nop_frag_since,
2273 prev_nop_frag_holds, NOP_INSN);
2274 }
2275 else
2276 {
2277 /* Allow this instruction to replace one of the nops that was
2278 tentatively added to prev_nop_frag. */
2279 prev_nop_frag->fr_fix -= mips_opts.mips16 ? 2 : 4;
2280 prev_nop_frag_holds--;
2281 prev_nop_frag_since++;
2282 }
2283 }
2284
2285 #ifdef OBJ_ELF
2286 /* The value passed to dwarf2_emit_insn is the distance between
2287 the beginning of the current instruction and the address that
2288 should be recorded in the debug tables. For MIPS16 debug info
2289 we want to use ISA-encoded addresses, so we pass -1 for an
2290 address higher by one than the current. */
2291 dwarf2_emit_insn (mips_opts.mips16 ? -1 : 0);
2292 #endif
2293
2294 /* Record the frag type before frag_var. */
2295 if (history[0].frag)
2296 prev_insn_frag_type = history[0].frag->fr_type;
2297
2298 if (address_expr
2299 && *reloc_type == BFD_RELOC_16_PCREL_S2
2300 && (pinfo & INSN_UNCOND_BRANCH_DELAY || pinfo & INSN_COND_BRANCH_DELAY
2301 || pinfo & INSN_COND_BRANCH_LIKELY)
2302 && mips_relax_branch
2303 /* Don't try branch relaxation within .set nomacro, or within
2304 .set noat if we use $at for PIC computations. If it turns
2305 out that the branch was out-of-range, we'll get an error. */
2306 && !mips_opts.warn_about_macros
2307 && !(mips_opts.noat && mips_pic != NO_PIC)
2308 && !mips_opts.mips16)
2309 {
2310 relaxed_branch = TRUE;
2311 add_relaxed_insn (ip, (relaxed_branch_length
2312 (NULL, NULL,
2313 (pinfo & INSN_UNCOND_BRANCH_DELAY) ? -1
2314 : (pinfo & INSN_COND_BRANCH_LIKELY) ? 1
2315 : 0)), 4,
2316 RELAX_BRANCH_ENCODE
2317 (pinfo & INSN_UNCOND_BRANCH_DELAY,
2318 pinfo & INSN_COND_BRANCH_LIKELY,
2319 pinfo & INSN_WRITE_GPR_31,
2320 0),
2321 address_expr->X_add_symbol,
2322 address_expr->X_add_number);
2323 *reloc_type = BFD_RELOC_UNUSED;
2324 }
2325 else if (*reloc_type > BFD_RELOC_UNUSED)
2326 {
2327 /* We need to set up a variant frag. */
2328 assert (mips_opts.mips16 && address_expr != NULL);
2329 add_relaxed_insn (ip, 4, 0,
2330 RELAX_MIPS16_ENCODE
2331 (*reloc_type - BFD_RELOC_UNUSED,
2332 mips16_small, mips16_ext,
2333 prev_pinfo & INSN_UNCOND_BRANCH_DELAY,
2334 history[0].mips16_absolute_jump_p),
2335 make_expr_symbol (address_expr), 0);
2336 }
2337 else if (mips_opts.mips16
2338 && ! ip->use_extend
2339 && *reloc_type != BFD_RELOC_MIPS16_JMP)
2340 {
2341 if ((pinfo & INSN_UNCOND_BRANCH_DELAY) == 0)
2342 /* Make sure there is enough room to swap this instruction with
2343 a following jump instruction. */
2344 frag_grow (6);
2345 add_fixed_insn (ip);
2346 }
2347 else
2348 {
2349 if (mips_opts.mips16
2350 && mips_opts.noreorder
2351 && (prev_pinfo & INSN_UNCOND_BRANCH_DELAY) != 0)
2352 as_warn (_("extended instruction in delay slot"));
2353
2354 if (mips_relax.sequence)
2355 {
2356 /* If we've reached the end of this frag, turn it into a variant
2357 frag and record the information for the instructions we've
2358 written so far. */
2359 if (frag_room () < 4)
2360 relax_close_frag ();
2361 mips_relax.sizes[mips_relax.sequence - 1] += 4;
2362 }
2363
2364 if (mips_relax.sequence != 2)
2365 mips_macro_warning.sizes[0] += 4;
2366 if (mips_relax.sequence != 1)
2367 mips_macro_warning.sizes[1] += 4;
2368
2369 if (mips_opts.mips16)
2370 {
2371 ip->fixed_p = 1;
2372 ip->mips16_absolute_jump_p = (*reloc_type == BFD_RELOC_MIPS16_JMP);
2373 }
2374 add_fixed_insn (ip);
2375 }
2376
2377 if (address_expr != NULL && *reloc_type <= BFD_RELOC_UNUSED)
2378 {
2379 if (address_expr->X_op == O_constant)
2380 {
2381 unsigned int tmp;
2382
2383 switch (*reloc_type)
2384 {
2385 case BFD_RELOC_32:
2386 ip->insn_opcode |= address_expr->X_add_number;
2387 break;
2388
2389 case BFD_RELOC_MIPS_HIGHEST:
2390 tmp = (address_expr->X_add_number + 0x800080008000ull) >> 48;
2391 ip->insn_opcode |= tmp & 0xffff;
2392 break;
2393
2394 case BFD_RELOC_MIPS_HIGHER:
2395 tmp = (address_expr->X_add_number + 0x80008000ull) >> 32;
2396 ip->insn_opcode |= tmp & 0xffff;
2397 break;
2398
2399 case BFD_RELOC_HI16_S:
2400 tmp = (address_expr->X_add_number + 0x8000) >> 16;
2401 ip->insn_opcode |= tmp & 0xffff;
2402 break;
2403
2404 case BFD_RELOC_HI16:
2405 ip->insn_opcode |= (address_expr->X_add_number >> 16) & 0xffff;
2406 break;
2407
2408 case BFD_RELOC_UNUSED:
2409 case BFD_RELOC_LO16:
2410 case BFD_RELOC_MIPS_GOT_DISP:
2411 ip->insn_opcode |= address_expr->X_add_number & 0xffff;
2412 break;
2413
2414 case BFD_RELOC_MIPS_JMP:
2415 if ((address_expr->X_add_number & 3) != 0)
2416 as_bad (_("jump to misaligned address (0x%lx)"),
2417 (unsigned long) address_expr->X_add_number);
2418 if (address_expr->X_add_number & ~0xfffffff)
2419 as_warn (_("jump address range overflow (0x%lx)"),
2420 (unsigned long) address_expr->X_add_number);
2421 ip->insn_opcode |= (address_expr->X_add_number >> 2) & 0x3ffffff;
2422 break;
2423
2424 case BFD_RELOC_MIPS16_JMP:
2425 if ((address_expr->X_add_number & 3) != 0)
2426 as_bad (_("jump to misaligned address (0x%lx)"),
2427 (unsigned long) address_expr->X_add_number);
2428 if (address_expr->X_add_number & ~0xfffffff)
2429 as_warn (_("jump address range overflow (0x%lx)"),
2430 (unsigned long) address_expr->X_add_number);
2431 ip->insn_opcode |=
2432 (((address_expr->X_add_number & 0x7c0000) << 3)
2433 | ((address_expr->X_add_number & 0xf800000) >> 7)
2434 | ((address_expr->X_add_number & 0x3fffc) >> 2));
2435 break;
2436
2437 case BFD_RELOC_16_PCREL_S2:
2438 if ((address_expr->X_add_number & 3) != 0)
2439 as_bad (_("branch to misaligned address (0x%lx)"),
2440 (unsigned long) address_expr->X_add_number);
2441 if (mips_relax_branch)
2442 goto need_reloc;
2443 if ((address_expr->X_add_number + 0x20000) & ~0x3ffff)
2444 as_bad (_("branch address range overflow (0x%lx)"),
2445 (unsigned long) address_expr->X_add_number);
2446 ip->insn_opcode |= (address_expr->X_add_number >> 2) & 0xffff;
2447 break;
2448
2449 default:
2450 internalError ();
2451 }
2452 }
2453 else if (*reloc_type < BFD_RELOC_UNUSED)
2454 need_reloc:
2455 {
2456 reloc_howto_type *howto;
2457 int i;
2458
2459 /* In a compound relocation, it is the final (outermost)
2460 operator that determines the relocated field. */
2461 for (i = 1; i < 3; i++)
2462 if (reloc_type[i] == BFD_RELOC_UNUSED)
2463 break;
2464
2465 howto = bfd_reloc_type_lookup (stdoutput, reloc_type[i - 1]);
2466 ip->fixp[0] = fix_new_exp (ip->frag, ip->where,
2467 bfd_get_reloc_size (howto),
2468 address_expr,
2469 reloc_type[0] == BFD_RELOC_16_PCREL_S2,
2470 reloc_type[0]);
2471
2472 /* These relocations can have an addend that won't fit in
2473 4 octets for 64bit assembly. */
2474 if (HAVE_64BIT_GPRS
2475 && ! howto->partial_inplace
2476 && (reloc_type[0] == BFD_RELOC_16
2477 || reloc_type[0] == BFD_RELOC_32
2478 || reloc_type[0] == BFD_RELOC_MIPS_JMP
2479 || reloc_type[0] == BFD_RELOC_HI16_S
2480 || reloc_type[0] == BFD_RELOC_LO16
2481 || reloc_type[0] == BFD_RELOC_GPREL16
2482 || reloc_type[0] == BFD_RELOC_MIPS_LITERAL
2483 || reloc_type[0] == BFD_RELOC_GPREL32
2484 || reloc_type[0] == BFD_RELOC_64
2485 || reloc_type[0] == BFD_RELOC_CTOR
2486 || reloc_type[0] == BFD_RELOC_MIPS_SUB
2487 || reloc_type[0] == BFD_RELOC_MIPS_HIGHEST
2488 || reloc_type[0] == BFD_RELOC_MIPS_HIGHER
2489 || reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP
2490 || reloc_type[0] == BFD_RELOC_MIPS_REL16
2491 || reloc_type[0] == BFD_RELOC_MIPS_RELGOT
2492 || reloc_type[0] == BFD_RELOC_MIPS16_GPREL
2493 || reloc_type[0] == BFD_RELOC_MIPS16_HI16_S
2494 || reloc_type[0] == BFD_RELOC_MIPS16_LO16))
2495 ip->fixp[0]->fx_no_overflow = 1;
2496
2497 if (mips_relax.sequence)
2498 {
2499 if (mips_relax.first_fixup == 0)
2500 mips_relax.first_fixup = ip->fixp[0];
2501 }
2502 else if (reloc_needs_lo_p (*reloc_type))
2503 {
2504 struct mips_hi_fixup *hi_fixup;
2505
2506 /* Reuse the last entry if it already has a matching %lo. */
2507 hi_fixup = mips_hi_fixup_list;
2508 if (hi_fixup == 0
2509 || !fixup_has_matching_lo_p (hi_fixup->fixp))
2510 {
2511 hi_fixup = ((struct mips_hi_fixup *)
2512 xmalloc (sizeof (struct mips_hi_fixup)));
2513 hi_fixup->next = mips_hi_fixup_list;
2514 mips_hi_fixup_list = hi_fixup;
2515 }
2516 hi_fixup->fixp = ip->fixp[0];
2517 hi_fixup->seg = now_seg;
2518 }
2519
2520 /* Add fixups for the second and third relocations, if given.
2521 Note that the ABI allows the second relocation to be
2522 against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
2523 moment we only use RSS_UNDEF, but we could add support
2524 for the others if it ever becomes necessary. */
2525 for (i = 1; i < 3; i++)
2526 if (reloc_type[i] != BFD_RELOC_UNUSED)
2527 {
2528 ip->fixp[i] = fix_new (ip->frag, ip->where,
2529 ip->fixp[0]->fx_size, NULL, 0,
2530 FALSE, reloc_type[i]);
2531
2532 /* Use fx_tcbit to mark compound relocs. */
2533 ip->fixp[0]->fx_tcbit = 1;
2534 ip->fixp[i]->fx_tcbit = 1;
2535 }
2536 }
2537 }
2538 install_insn (ip);
2539
2540 /* Update the register mask information. */
2541 if (! mips_opts.mips16)
2542 {
2543 if (pinfo & INSN_WRITE_GPR_D)
2544 mips_gprmask |= 1 << EXTRACT_OPERAND (RD, *ip);
2545 if ((pinfo & (INSN_WRITE_GPR_T | INSN_READ_GPR_T)) != 0)
2546 mips_gprmask |= 1 << EXTRACT_OPERAND (RT, *ip);
2547 if (pinfo & INSN_READ_GPR_S)
2548 mips_gprmask |= 1 << EXTRACT_OPERAND (RS, *ip);
2549 if (pinfo & INSN_WRITE_GPR_31)
2550 mips_gprmask |= 1 << RA;
2551 if (pinfo & INSN_WRITE_FPR_D)
2552 mips_cprmask[1] |= 1 << EXTRACT_OPERAND (FD, *ip);
2553 if ((pinfo & (INSN_WRITE_FPR_S | INSN_READ_FPR_S)) != 0)
2554 mips_cprmask[1] |= 1 << EXTRACT_OPERAND (FS, *ip);
2555 if ((pinfo & (INSN_WRITE_FPR_T | INSN_READ_FPR_T)) != 0)
2556 mips_cprmask[1] |= 1 << EXTRACT_OPERAND (FT, *ip);
2557 if ((pinfo & INSN_READ_FPR_R) != 0)
2558 mips_cprmask[1] |= 1 << EXTRACT_OPERAND (FR, *ip);
2559 if (pinfo & INSN_COP)
2560 {
2561 /* We don't keep enough information to sort these cases out.
2562 The itbl support does keep this information however, although
2563 we currently don't support itbl fprmats as part of the cop
2564 instruction. May want to add this support in the future. */
2565 }
2566 /* Never set the bit for $0, which is always zero. */
2567 mips_gprmask &= ~1 << 0;
2568 }
2569 else
2570 {
2571 if (pinfo & (MIPS16_INSN_WRITE_X | MIPS16_INSN_READ_X))
2572 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (RX, *ip);
2573 if (pinfo & (MIPS16_INSN_WRITE_Y | MIPS16_INSN_READ_Y))
2574 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (RY, *ip);
2575 if (pinfo & MIPS16_INSN_WRITE_Z)
2576 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (RZ, *ip);
2577 if (pinfo & (MIPS16_INSN_WRITE_T | MIPS16_INSN_READ_T))
2578 mips_gprmask |= 1 << TREG;
2579 if (pinfo & (MIPS16_INSN_WRITE_SP | MIPS16_INSN_READ_SP))
2580 mips_gprmask |= 1 << SP;
2581 if (pinfo & (MIPS16_INSN_WRITE_31 | MIPS16_INSN_READ_31))
2582 mips_gprmask |= 1 << RA;
2583 if (pinfo & MIPS16_INSN_WRITE_GPR_Y)
2584 mips_gprmask |= 1 << MIPS16OP_EXTRACT_REG32R (ip->insn_opcode);
2585 if (pinfo & MIPS16_INSN_READ_Z)
2586 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (MOVE32Z, *ip);
2587 if (pinfo & MIPS16_INSN_READ_GPR_X)
2588 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (REGR32, *ip);
2589 }
2590
2591 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
2592 {
2593 /* Filling the branch delay slot is more complex. We try to
2594 switch the branch with the previous instruction, which we can
2595 do if the previous instruction does not set up a condition
2596 that the branch tests and if the branch is not itself the
2597 target of any branch. */
2598 if ((pinfo & INSN_UNCOND_BRANCH_DELAY)
2599 || (pinfo & INSN_COND_BRANCH_DELAY))
2600 {
2601 if (mips_optimize < 2
2602 /* If we have seen .set volatile or .set nomove, don't
2603 optimize. */
2604 || mips_opts.nomove != 0
2605 /* We can't swap if the previous instruction's position
2606 is fixed. */
2607 || history[0].fixed_p
2608 /* If the previous previous insn was in a .set
2609 noreorder, we can't swap. Actually, the MIPS
2610 assembler will swap in this situation. However, gcc
2611 configured -with-gnu-as will generate code like
2612 .set noreorder
2613 lw $4,XXX
2614 .set reorder
2615 INSN
2616 bne $4,$0,foo
2617 in which we can not swap the bne and INSN. If gcc is
2618 not configured -with-gnu-as, it does not output the
2619 .set pseudo-ops. */
2620 || history[1].noreorder_p
2621 /* If the branch is itself the target of a branch, we
2622 can not swap. We cheat on this; all we check for is
2623 whether there is a label on this instruction. If
2624 there are any branches to anything other than a
2625 label, users must use .set noreorder. */
2626 || insn_labels != NULL
2627 /* If the previous instruction is in a variant frag
2628 other than this branch's one, we cannot do the swap.
2629 This does not apply to the mips16, which uses variant
2630 frags for different purposes. */
2631 || (! mips_opts.mips16
2632 && prev_insn_frag_type == rs_machine_dependent)
2633 /* Check for conflicts between the branch and the instructions
2634 before the candidate delay slot. */
2635 || nops_for_insn (history + 1, ip) > 0
2636 /* Check for conflicts between the swapped sequence and the
2637 target of the branch. */
2638 || nops_for_sequence (2, history + 1, ip, history) > 0
2639 /* We do not swap with a trap instruction, since it
2640 complicates trap handlers to have the trap
2641 instruction be in a delay slot. */
2642 || (prev_pinfo & INSN_TRAP)
2643 /* If the branch reads a register that the previous
2644 instruction sets, we can not swap. */
2645 || (! mips_opts.mips16
2646 && (prev_pinfo & INSN_WRITE_GPR_T)
2647 && insn_uses_reg (ip, EXTRACT_OPERAND (RT, history[0]),
2648 MIPS_GR_REG))
2649 || (! mips_opts.mips16
2650 && (prev_pinfo & INSN_WRITE_GPR_D)
2651 && insn_uses_reg (ip, EXTRACT_OPERAND (RD, history[0]),
2652 MIPS_GR_REG))
2653 || (mips_opts.mips16
2654 && (((prev_pinfo & MIPS16_INSN_WRITE_X)
2655 && (insn_uses_reg
2656 (ip, MIPS16_EXTRACT_OPERAND (RX, history[0]),
2657 MIPS16_REG)))
2658 || ((prev_pinfo & MIPS16_INSN_WRITE_Y)
2659 && (insn_uses_reg
2660 (ip, MIPS16_EXTRACT_OPERAND (RY, history[0]),
2661 MIPS16_REG)))
2662 || ((prev_pinfo & MIPS16_INSN_WRITE_Z)
2663 && (insn_uses_reg
2664 (ip, MIPS16_EXTRACT_OPERAND (RZ, history[0]),
2665 MIPS16_REG)))
2666 || ((prev_pinfo & MIPS16_INSN_WRITE_T)
2667 && insn_uses_reg (ip, TREG, MIPS_GR_REG))
2668 || ((prev_pinfo & MIPS16_INSN_WRITE_31)
2669 && insn_uses_reg (ip, RA, MIPS_GR_REG))
2670 || ((prev_pinfo & MIPS16_INSN_WRITE_GPR_Y)
2671 && insn_uses_reg (ip,
2672 MIPS16OP_EXTRACT_REG32R
2673 (history[0].insn_opcode),
2674 MIPS_GR_REG))))
2675 /* If the branch writes a register that the previous
2676 instruction sets, we can not swap (we know that
2677 branches write only to RD or to $31). */
2678 || (! mips_opts.mips16
2679 && (prev_pinfo & INSN_WRITE_GPR_T)
2680 && (((pinfo & INSN_WRITE_GPR_D)
2681 && (EXTRACT_OPERAND (RT, history[0])
2682 == EXTRACT_OPERAND (RD, *ip)))
2683 || ((pinfo & INSN_WRITE_GPR_31)
2684 && EXTRACT_OPERAND (RT, history[0]) == RA)))
2685 || (! mips_opts.mips16
2686 && (prev_pinfo & INSN_WRITE_GPR_D)
2687 && (((pinfo & INSN_WRITE_GPR_D)
2688 && (EXTRACT_OPERAND (RD, history[0])
2689 == EXTRACT_OPERAND (RD, *ip)))
2690 || ((pinfo & INSN_WRITE_GPR_31)
2691 && EXTRACT_OPERAND (RD, history[0]) == RA)))
2692 || (mips_opts.mips16
2693 && (pinfo & MIPS16_INSN_WRITE_31)
2694 && ((prev_pinfo & MIPS16_INSN_WRITE_31)
2695 || ((prev_pinfo & MIPS16_INSN_WRITE_GPR_Y)
2696 && (MIPS16OP_EXTRACT_REG32R (history[0].insn_opcode)
2697 == RA))))
2698 /* If the branch writes a register that the previous
2699 instruction reads, we can not swap (we know that
2700 branches only write to RD or to $31). */
2701 || (! mips_opts.mips16
2702 && (pinfo & INSN_WRITE_GPR_D)
2703 && insn_uses_reg (&history[0],
2704 EXTRACT_OPERAND (RD, *ip),
2705 MIPS_GR_REG))
2706 || (! mips_opts.mips16
2707 && (pinfo & INSN_WRITE_GPR_31)
2708 && insn_uses_reg (&history[0], RA, MIPS_GR_REG))
2709 || (mips_opts.mips16
2710 && (pinfo & MIPS16_INSN_WRITE_31)
2711 && insn_uses_reg (&history[0], RA, MIPS_GR_REG))
2712 /* If one instruction sets a condition code and the
2713 other one uses a condition code, we can not swap. */
2714 || ((pinfo & INSN_READ_COND_CODE)
2715 && (prev_pinfo & INSN_WRITE_COND_CODE))
2716 || ((pinfo & INSN_WRITE_COND_CODE)
2717 && (prev_pinfo & INSN_READ_COND_CODE))
2718 /* If the previous instruction uses the PC, we can not
2719 swap. */
2720 || (mips_opts.mips16
2721 && (prev_pinfo & MIPS16_INSN_READ_PC))
2722 /* If the previous instruction had a fixup in mips16
2723 mode, we can not swap. This normally means that the
2724 previous instruction was a 4 byte branch anyhow. */
2725 || (mips_opts.mips16 && history[0].fixp[0])
2726 /* If the previous instruction is a sync, sync.l, or
2727 sync.p, we can not swap. */
2728 || (prev_pinfo & INSN_SYNC))
2729 {
2730 if (mips_opts.mips16
2731 && (pinfo & INSN_UNCOND_BRANCH_DELAY)
2732 && (pinfo & (MIPS16_INSN_READ_X | MIPS16_INSN_READ_31))
2733 && (mips_opts.isa == ISA_MIPS32
2734 || mips_opts.isa == ISA_MIPS32R2
2735 || mips_opts.isa == ISA_MIPS64
2736 || mips_opts.isa == ISA_MIPS64R2))
2737 {
2738 /* Convert MIPS16 jr/jalr into a "compact" jump. */
2739 ip->insn_opcode |= 0x0080;
2740 install_insn (ip);
2741 insert_into_history (0, 1, ip);
2742 }
2743 else
2744 {
2745 /* We could do even better for unconditional branches to
2746 portions of this object file; we could pick up the
2747 instruction at the destination, put it in the delay
2748 slot, and bump the destination address. */
2749 insert_into_history (0, 1, ip);
2750 emit_nop ();
2751 }
2752
2753 if (mips_relax.sequence)
2754 mips_relax.sizes[mips_relax.sequence - 1] += 4;
2755 }
2756 else
2757 {
2758 /* It looks like we can actually do the swap. */
2759 struct mips_cl_insn delay = history[0];
2760 if (mips_opts.mips16)
2761 {
2762 know (delay.frag == ip->frag);
2763 move_insn (ip, delay.frag, delay.where);
2764 move_insn (&delay, ip->frag, ip->where + insn_length (ip));
2765 }
2766 else if (relaxed_branch)
2767 {
2768 /* Add the delay slot instruction to the end of the
2769 current frag and shrink the fixed part of the
2770 original frag. If the branch occupies the tail of
2771 the latter, move it backwards to cover the gap. */
2772 delay.frag->fr_fix -= 4;
2773 if (delay.frag == ip->frag)
2774 move_insn (ip, ip->frag, ip->where - 4);
2775 add_fixed_insn (&delay);
2776 }
2777 else
2778 {
2779 move_insn (&delay, ip->frag, ip->where);
2780 move_insn (ip, history[0].frag, history[0].where);
2781 }
2782 history[0] = *ip;
2783 delay.fixed_p = 1;
2784 insert_into_history (0, 1, &delay);
2785 }
2786
2787 /* If that was an unconditional branch, forget the previous
2788 insn information. */
2789 if (pinfo & INSN_UNCOND_BRANCH_DELAY)
2790 mips_no_prev_insn ();
2791 }
2792 else if (pinfo & INSN_COND_BRANCH_LIKELY)
2793 {
2794 /* We don't yet optimize a branch likely. What we should do
2795 is look at the target, copy the instruction found there
2796 into the delay slot, and increment the branch to jump to
2797 the next instruction. */
2798 insert_into_history (0, 1, ip);
2799 emit_nop ();
2800 }
2801 else
2802 insert_into_history (0, 1, ip);
2803 }
2804 else
2805 insert_into_history (0, 1, ip);
2806
2807 /* We just output an insn, so the next one doesn't have a label. */
2808 mips_clear_insn_labels ();
2809 }
2810
2811 /* Forget that there was any previous instruction or label. */
2812
2813 static void
2814 mips_no_prev_insn (void)
2815 {
2816 prev_nop_frag = NULL;
2817 insert_into_history (0, ARRAY_SIZE (history), NOP_INSN);
2818 mips_clear_insn_labels ();
2819 }
2820
2821 /* This function must be called before we emit something other than
2822 instructions. It is like mips_no_prev_insn except that it inserts
2823 any NOPS that might be needed by previous instructions. */
2824
2825 void
2826 mips_emit_delays (void)
2827 {
2828 if (! mips_opts.noreorder)
2829 {
2830 int nops = nops_for_insn (history, NULL);
2831 if (nops > 0)
2832 {
2833 while (nops-- > 0)
2834 add_fixed_insn (NOP_INSN);
2835 mips_move_labels ();
2836 }
2837 }
2838 mips_no_prev_insn ();
2839 }
2840
2841 /* Start a (possibly nested) noreorder block. */
2842
2843 static void
2844 start_noreorder (void)
2845 {
2846 if (mips_opts.noreorder == 0)
2847 {
2848 unsigned int i;
2849 int nops;
2850
2851 /* None of the instructions before the .set noreorder can be moved. */
2852 for (i = 0; i < ARRAY_SIZE (history); i++)
2853 history[i].fixed_p = 1;
2854
2855 /* Insert any nops that might be needed between the .set noreorder
2856 block and the previous instructions. We will later remove any
2857 nops that turn out not to be needed. */
2858 nops = nops_for_insn (history, NULL);
2859 if (nops > 0)
2860 {
2861 if (mips_optimize != 0)
2862 {
2863 /* Record the frag which holds the nop instructions, so
2864 that we can remove them if we don't need them. */
2865 frag_grow (mips_opts.mips16 ? nops * 2 : nops * 4);
2866 prev_nop_frag = frag_now;
2867 prev_nop_frag_holds = nops;
2868 prev_nop_frag_required = 0;
2869 prev_nop_frag_since = 0;
2870 }
2871
2872 for (; nops > 0; --nops)
2873 add_fixed_insn (NOP_INSN);
2874
2875 /* Move on to a new frag, so that it is safe to simply
2876 decrease the size of prev_nop_frag. */
2877 frag_wane (frag_now);
2878 frag_new (0);
2879 mips_move_labels ();
2880 }
2881 mips16_mark_labels ();
2882 mips_clear_insn_labels ();
2883 }
2884 mips_opts.noreorder++;
2885 mips_any_noreorder = 1;
2886 }
2887
2888 /* End a nested noreorder block. */
2889
2890 static void
2891 end_noreorder (void)
2892 {
2893 mips_opts.noreorder--;
2894 if (mips_opts.noreorder == 0 && prev_nop_frag != NULL)
2895 {
2896 /* Commit to inserting prev_nop_frag_required nops and go back to
2897 handling nop insertion the .set reorder way. */
2898 prev_nop_frag->fr_fix -= ((prev_nop_frag_holds - prev_nop_frag_required)
2899 * (mips_opts.mips16 ? 2 : 4));
2900 insert_into_history (prev_nop_frag_since,
2901 prev_nop_frag_required, NOP_INSN);
2902 prev_nop_frag = NULL;
2903 }
2904 }
2905
2906 /* Set up global variables for the start of a new macro. */
2907
2908 static void
2909 macro_start (void)
2910 {
2911 memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes));
2912 mips_macro_warning.delay_slot_p = (mips_opts.noreorder
2913 && (history[0].insn_mo->pinfo
2914 & (INSN_UNCOND_BRANCH_DELAY
2915 | INSN_COND_BRANCH_DELAY
2916 | INSN_COND_BRANCH_LIKELY)) != 0);
2917 }
2918
2919 /* Given that a macro is longer than 4 bytes, return the appropriate warning
2920 for it. Return null if no warning is needed. SUBTYPE is a bitmask of
2921 RELAX_DELAY_SLOT and RELAX_NOMACRO. */
2922
2923 static const char *
2924 macro_warning (relax_substateT subtype)
2925 {
2926 if (subtype & RELAX_DELAY_SLOT)
2927 return _("Macro instruction expanded into multiple instructions"
2928 " in a branch delay slot");
2929 else if (subtype & RELAX_NOMACRO)
2930 return _("Macro instruction expanded into multiple instructions");
2931 else
2932 return 0;
2933 }
2934
2935 /* Finish up a macro. Emit warnings as appropriate. */
2936
2937 static void
2938 macro_end (void)
2939 {
2940 if (mips_macro_warning.sizes[0] > 4 || mips_macro_warning.sizes[1] > 4)
2941 {
2942 relax_substateT subtype;
2943
2944 /* Set up the relaxation warning flags. */
2945 subtype = 0;
2946 if (mips_macro_warning.sizes[1] > mips_macro_warning.sizes[0])
2947 subtype |= RELAX_SECOND_LONGER;
2948 if (mips_opts.warn_about_macros)
2949 subtype |= RELAX_NOMACRO;
2950 if (mips_macro_warning.delay_slot_p)
2951 subtype |= RELAX_DELAY_SLOT;
2952
2953 if (mips_macro_warning.sizes[0] > 4 && mips_macro_warning.sizes[1] > 4)
2954 {
2955 /* Either the macro has a single implementation or both
2956 implementations are longer than 4 bytes. Emit the
2957 warning now. */
2958 const char *msg = macro_warning (subtype);
2959 if (msg != 0)
2960 as_warn (msg);
2961 }
2962 else
2963 {
2964 /* One implementation might need a warning but the other
2965 definitely doesn't. */
2966 mips_macro_warning.first_frag->fr_subtype |= subtype;
2967 }
2968 }
2969 }
2970
2971 /* Read a macro's relocation codes from *ARGS and store them in *R.
2972 The first argument in *ARGS will be either the code for a single
2973 relocation or -1 followed by the three codes that make up a
2974 composite relocation. */
2975
2976 static void
2977 macro_read_relocs (va_list *args, bfd_reloc_code_real_type *r)
2978 {
2979 int i, next;
2980
2981 next = va_arg (*args, int);
2982 if (next >= 0)
2983 r[0] = (bfd_reloc_code_real_type) next;
2984 else
2985 for (i = 0; i < 3; i++)
2986 r[i] = (bfd_reloc_code_real_type) va_arg (*args, int);
2987 }
2988
2989 /* Build an instruction created by a macro expansion. This is passed
2990 a pointer to the count of instructions created so far, an
2991 expression, the name of the instruction to build, an operand format
2992 string, and corresponding arguments. */
2993
2994 static void
2995 macro_build (expressionS *ep, const char *name, const char *fmt, ...)
2996 {
2997 const struct mips_opcode *mo;
2998 struct mips_cl_insn insn;
2999 bfd_reloc_code_real_type r[3];
3000 va_list args;
3001
3002 va_start (args, fmt);
3003
3004 if (mips_opts.mips16)
3005 {
3006 mips16_macro_build (ep, name, fmt, args);
3007 va_end (args);
3008 return;
3009 }
3010
3011 r[0] = BFD_RELOC_UNUSED;
3012 r[1] = BFD_RELOC_UNUSED;
3013 r[2] = BFD_RELOC_UNUSED;
3014 mo = (struct mips_opcode *) hash_find (op_hash, name);
3015 assert (mo);
3016 assert (strcmp (name, mo->name) == 0);
3017
3018 /* Search until we get a match for NAME. It is assumed here that
3019 macros will never generate MDMX or MIPS-3D instructions. */
3020 while (strcmp (fmt, mo->args) != 0
3021 || mo->pinfo == INSN_MACRO
3022 || !OPCODE_IS_MEMBER (mo,
3023 (mips_opts.isa
3024 | (file_ase_mips16 ? INSN_MIPS16 : 0)
3025 | (mips_opts.ase_smartmips ? INSN_SMARTMIPS : 0)),
3026 mips_opts.arch)
3027 || (mips_opts.arch == CPU_R4650 && (mo->pinfo & FP_D) != 0))
3028 {
3029 ++mo;
3030 assert (mo->name);
3031 assert (strcmp (name, mo->name) == 0);
3032 }
3033
3034 create_insn (&insn, mo);
3035 for (;;)
3036 {
3037 switch (*fmt++)
3038 {
3039 case '\0':
3040 break;
3041
3042 case ',':
3043 case '(':
3044 case ')':
3045 continue;
3046
3047 case '+':
3048 switch (*fmt++)
3049 {
3050 case 'A':
3051 case 'E':
3052 INSERT_OPERAND (SHAMT, insn, va_arg (args, int));
3053 continue;
3054
3055 case 'B':
3056 case 'F':
3057 /* Note that in the macro case, these arguments are already
3058 in MSB form. (When handling the instruction in the
3059 non-macro case, these arguments are sizes from which
3060 MSB values must be calculated.) */
3061 INSERT_OPERAND (INSMSB, insn, va_arg (args, int));
3062 continue;
3063
3064 case 'C':
3065 case 'G':
3066 case 'H':
3067 /* Note that in the macro case, these arguments are already
3068 in MSBD form. (When handling the instruction in the
3069 non-macro case, these arguments are sizes from which
3070 MSBD values must be calculated.) */
3071 INSERT_OPERAND (EXTMSBD, insn, va_arg (args, int));
3072 continue;
3073
3074 default:
3075 internalError ();
3076 }
3077 continue;
3078
3079 case 't':
3080 case 'w':
3081 case 'E':
3082 INSERT_OPERAND (RT, insn, va_arg (args, int));
3083 continue;
3084
3085 case 'c':
3086 INSERT_OPERAND (CODE, insn, va_arg (args, int));
3087 continue;
3088
3089 case 'T':
3090 case 'W':
3091 INSERT_OPERAND (FT, insn, va_arg (args, int));
3092 continue;
3093
3094 case 'd':
3095 case 'G':
3096 case 'K':
3097 INSERT_OPERAND (RD, insn, va_arg (args, int));
3098 continue;
3099
3100 case 'U':
3101 {
3102 int tmp = va_arg (args, int);
3103
3104 INSERT_OPERAND (RT, insn, tmp);
3105 INSERT_OPERAND (RD, insn, tmp);
3106 continue;
3107 }
3108
3109 case 'V':
3110 case 'S':
3111 INSERT_OPERAND (FS, insn, va_arg (args, int));
3112 continue;
3113
3114 case 'z':
3115 continue;
3116
3117 case '<':
3118 INSERT_OPERAND (SHAMT, insn, va_arg (args, int));
3119 continue;
3120
3121 case 'D':
3122 INSERT_OPERAND (FD, insn, va_arg (args, int));
3123 continue;
3124
3125 case 'B':
3126 INSERT_OPERAND (CODE20, insn, va_arg (args, int));
3127 continue;
3128
3129 case 'J':
3130 INSERT_OPERAND (CODE19, insn, va_arg (args, int));
3131 continue;
3132
3133 case 'q':
3134 INSERT_OPERAND (CODE2, insn, va_arg (args, int));
3135 continue;
3136
3137 case 'b':
3138 case 's':
3139 case 'r':
3140 case 'v':
3141 INSERT_OPERAND (RS, insn, va_arg (args, int));
3142 continue;
3143
3144 case 'i':
3145 case 'j':
3146 case 'o':
3147 macro_read_relocs (&args, r);
3148 assert (*r == BFD_RELOC_GPREL16
3149 || *r == BFD_RELOC_MIPS_LITERAL
3150 || *r == BFD_RELOC_MIPS_HIGHER
3151 || *r == BFD_RELOC_HI16_S
3152 || *r == BFD_RELOC_LO16
3153 || *r == BFD_RELOC_MIPS_GOT16
3154 || *r == BFD_RELOC_MIPS_CALL16
3155 || *r == BFD_RELOC_MIPS_GOT_DISP
3156 || *r == BFD_RELOC_MIPS_GOT_PAGE
3157 || *r == BFD_RELOC_MIPS_GOT_OFST
3158 || *r == BFD_RELOC_MIPS_GOT_LO16
3159 || *r == BFD_RELOC_MIPS_CALL_LO16);
3160 continue;
3161
3162 case 'u':
3163 macro_read_relocs (&args, r);
3164 assert (ep != NULL
3165 && (ep->X_op == O_constant
3166 || (ep->X_op == O_symbol
3167 && (*r == BFD_RELOC_MIPS_HIGHEST
3168 || *r == BFD_RELOC_HI16_S
3169 || *r == BFD_RELOC_HI16
3170 || *r == BFD_RELOC_GPREL16
3171 || *r == BFD_RELOC_MIPS_GOT_HI16
3172 || *r == BFD_RELOC_MIPS_CALL_HI16))));
3173 continue;
3174
3175 case 'p':
3176 assert (ep != NULL);
3177
3178 /*
3179 * This allows macro() to pass an immediate expression for
3180 * creating short branches without creating a symbol.
3181 *
3182 * We don't allow branch relaxation for these branches, as
3183 * they should only appear in ".set nomacro" anyway.
3184 */
3185 if (ep->X_op == O_constant)
3186 {
3187 if ((ep->X_add_number & 3) != 0)
3188 as_bad (_("branch to misaligned address (0x%lx)"),
3189 (unsigned long) ep->X_add_number);
3190 if ((ep->X_add_number + 0x20000) & ~0x3ffff)
3191 as_bad (_("branch address range overflow (0x%lx)"),
3192 (unsigned long) ep->X_add_number);
3193 insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
3194 ep = NULL;
3195 }
3196 else
3197 *r = BFD_RELOC_16_PCREL_S2;
3198 continue;
3199
3200 case 'a':
3201 assert (ep != NULL);
3202 *r = BFD_RELOC_MIPS_JMP;
3203 continue;
3204
3205 case 'C':
3206 insn.insn_opcode |= va_arg (args, unsigned long);
3207 continue;
3208
3209 case 'k':
3210 insn.insn_opcode |= va_arg (args, unsigned long) << OP_SH_CACHE;
3211 continue;
3212
3213 default:
3214 internalError ();
3215 }
3216 break;
3217 }
3218 va_end (args);
3219 assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
3220
3221 append_insn (&insn, ep, r);
3222 }
3223
3224 static void
3225 mips16_macro_build (expressionS *ep, const char *name, const char *fmt,
3226 va_list args)
3227 {
3228 struct mips_opcode *mo;
3229 struct mips_cl_insn insn;
3230 bfd_reloc_code_real_type r[3]
3231 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
3232
3233 mo = (struct mips_opcode *) hash_find (mips16_op_hash, name);
3234 assert (mo);
3235 assert (strcmp (name, mo->name) == 0);
3236
3237 while (strcmp (fmt, mo->args) != 0 || mo->pinfo == INSN_MACRO)
3238 {
3239 ++mo;
3240 assert (mo->name);
3241 assert (strcmp (name, mo->name) == 0);
3242 }
3243
3244 create_insn (&insn, mo);
3245 for (;;)
3246 {
3247 int c;
3248
3249 c = *fmt++;
3250 switch (c)
3251 {
3252 case '\0':
3253 break;
3254
3255 case ',':
3256 case '(':
3257 case ')':
3258 continue;
3259
3260 case 'y':
3261 case 'w':
3262 MIPS16_INSERT_OPERAND (RY, insn, va_arg (args, int));
3263 continue;
3264
3265 case 'x':
3266 case 'v':
3267 MIPS16_INSERT_OPERAND (RX, insn, va_arg (args, int));
3268 continue;
3269
3270 case 'z':
3271 MIPS16_INSERT_OPERAND (RZ, insn, va_arg (args, int));
3272 continue;
3273
3274 case 'Z':
3275 MIPS16_INSERT_OPERAND (MOVE32Z, insn, va_arg (args, int));
3276 continue;
3277
3278 case '0':
3279 case 'S':
3280 case 'P':
3281 case 'R':
3282 continue;
3283
3284 case 'X':
3285 MIPS16_INSERT_OPERAND (REGR32, insn, va_arg (args, int));
3286 continue;
3287
3288 case 'Y':
3289 {
3290 int regno;
3291
3292 regno = va_arg (args, int);
3293 regno = ((regno & 7) << 2) | ((regno & 0x18) >> 3);
3294 insn.insn_opcode |= regno << MIPS16OP_SH_REG32R;
3295 }
3296 continue;
3297
3298 case '<':
3299 case '>':
3300 case '4':
3301 case '5':
3302 case 'H':
3303 case 'W':
3304 case 'D':
3305 case 'j':
3306 case '8':
3307 case 'V':
3308 case 'C':
3309 case 'U':
3310 case 'k':
3311 case 'K':
3312 case 'p':
3313 case 'q':
3314 {
3315 assert (ep != NULL);
3316
3317 if (ep->X_op != O_constant)
3318 *r = (int) BFD_RELOC_UNUSED + c;
3319 else
3320 {
3321 mips16_immed (NULL, 0, c, ep->X_add_number, FALSE, FALSE,
3322 FALSE, &insn.insn_opcode, &insn.use_extend,
3323 &insn.extend);
3324 ep = NULL;
3325 *r = BFD_RELOC_UNUSED;
3326 }
3327 }
3328 continue;
3329
3330 case '6':
3331 MIPS16_INSERT_OPERAND (IMM6, insn, va_arg (args, int));
3332 continue;
3333 }
3334
3335 break;
3336 }
3337
3338 assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
3339
3340 append_insn (&insn, ep, r);
3341 }
3342
3343 /*
3344 * Sign-extend 32-bit mode constants that have bit 31 set and all
3345 * higher bits unset.
3346 */
3347 static void
3348 normalize_constant_expr (expressionS *ex)
3349 {
3350 if (ex->X_op == O_constant
3351 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
3352 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
3353 - 0x80000000);
3354 }
3355
3356 /*
3357 * Sign-extend 32-bit mode address offsets that have bit 31 set and
3358 * all higher bits unset.
3359 */
3360 static void
3361 normalize_address_expr (expressionS *ex)
3362 {
3363 if (((ex->X_op == O_constant && HAVE_32BIT_ADDRESSES)
3364 || (ex->X_op == O_symbol && HAVE_32BIT_SYMBOLS))
3365 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
3366 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
3367 - 0x80000000);
3368 }
3369
3370 /*
3371 * Generate a "jalr" instruction with a relocation hint to the called
3372 * function. This occurs in NewABI PIC code.
3373 */
3374 static void
3375 macro_build_jalr (expressionS *ep)
3376 {
3377 char *f = NULL;
3378
3379 if (HAVE_NEWABI)
3380 {
3381 frag_grow (8);
3382 f = frag_more (0);
3383 }
3384 macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG);
3385 if (HAVE_NEWABI)
3386 fix_new_exp (frag_now, f - frag_now->fr_literal,
3387 4, ep, FALSE, BFD_RELOC_MIPS_JALR);
3388 }
3389
3390 /*
3391 * Generate a "lui" instruction.
3392 */
3393 static void
3394 macro_build_lui (expressionS *ep, int regnum)
3395 {
3396 expressionS high_expr;
3397 const struct mips_opcode *mo;
3398 struct mips_cl_insn insn;
3399 bfd_reloc_code_real_type r[3]
3400 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
3401 const char *name = "lui";
3402 const char *fmt = "t,u";
3403
3404 assert (! mips_opts.mips16);
3405
3406 high_expr = *ep;
3407
3408 if (high_expr.X_op == O_constant)
3409 {
3410 /* we can compute the instruction now without a relocation entry */
3411 high_expr.X_add_number = ((high_expr.X_add_number + 0x8000)
3412 >> 16) & 0xffff;
3413 *r = BFD_RELOC_UNUSED;
3414 }
3415 else
3416 {
3417 assert (ep->X_op == O_symbol);
3418 /* _gp_disp is a special case, used from s_cpload.
3419 __gnu_local_gp is used if mips_no_shared. */
3420 assert (mips_pic == NO_PIC
3421 || (! HAVE_NEWABI
3422 && strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0)
3423 || (! mips_in_shared
3424 && strcmp (S_GET_NAME (ep->X_add_symbol),
3425 "__gnu_local_gp") == 0));
3426 *r = BFD_RELOC_HI16_S;
3427 }
3428
3429 mo = hash_find (op_hash, name);
3430 assert (strcmp (name, mo->name) == 0);
3431 assert (strcmp (fmt, mo->args) == 0);
3432 create_insn (&insn, mo);
3433
3434 insn.insn_opcode = insn.insn_mo->match;
3435 INSERT_OPERAND (RT, insn, regnum);
3436 if (*r == BFD_RELOC_UNUSED)
3437 {
3438 insn.insn_opcode |= high_expr.X_add_number;
3439 append_insn (&insn, NULL, r);
3440 }
3441 else
3442 append_insn (&insn, &high_expr, r);
3443 }
3444
3445 /* Generate a sequence of instructions to do a load or store from a constant
3446 offset off of a base register (breg) into/from a target register (treg),
3447 using AT if necessary. */
3448 static void
3449 macro_build_ldst_constoffset (expressionS *ep, const char *op,
3450 int treg, int breg, int dbl)
3451 {
3452 assert (ep->X_op == O_constant);
3453
3454 /* Sign-extending 32-bit constants makes their handling easier. */
3455 if (!dbl)
3456 normalize_constant_expr (ep);
3457
3458 /* Right now, this routine can only handle signed 32-bit constants. */
3459 if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000))
3460 as_warn (_("operand overflow"));
3461
3462 if (IS_SEXT_16BIT_NUM(ep->X_add_number))
3463 {
3464 /* Signed 16-bit offset will fit in the op. Easy! */
3465 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg);
3466 }
3467 else
3468 {
3469 /* 32-bit offset, need multiple instructions and AT, like:
3470 lui $tempreg,const_hi (BFD_RELOC_HI16_S)
3471 addu $tempreg,$tempreg,$breg
3472 <op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
3473 to handle the complete offset. */
3474 macro_build_lui (ep, AT);
3475 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
3476 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT);
3477
3478 if (mips_opts.noat)
3479 as_bad (_("Macro used $at after \".set noat\""));
3480 }
3481 }
3482
3483 /* set_at()
3484 * Generates code to set the $at register to true (one)
3485 * if reg is less than the immediate expression.
3486 */
3487 static void
3488 set_at (int reg, int unsignedp)
3489 {
3490 if (imm_expr.X_op == O_constant
3491 && imm_expr.X_add_number >= -0x8000
3492 && imm_expr.X_add_number < 0x8000)
3493 macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j",
3494 AT, reg, BFD_RELOC_LO16);
3495 else
3496 {
3497 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
3498 macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT);
3499 }
3500 }
3501
3502 /* Warn if an expression is not a constant. */
3503
3504 static void
3505 check_absolute_expr (struct mips_cl_insn *ip, expressionS *ex)
3506 {
3507 if (ex->X_op == O_big)
3508 as_bad (_("unsupported large constant"));
3509 else if (ex->X_op != O_constant)
3510 as_bad (_("Instruction %s requires absolute expression"),
3511 ip->insn_mo->name);
3512
3513 if (HAVE_32BIT_GPRS)
3514 normalize_constant_expr (ex);
3515 }
3516
3517 /* Count the leading zeroes by performing a binary chop. This is a
3518 bulky bit of source, but performance is a LOT better for the
3519 majority of values than a simple loop to count the bits:
3520 for (lcnt = 0; (lcnt < 32); lcnt++)
3521 if ((v) & (1 << (31 - lcnt)))
3522 break;
3523 However it is not code size friendly, and the gain will drop a bit
3524 on certain cached systems.
3525 */
3526 #define COUNT_TOP_ZEROES(v) \
3527 (((v) & ~0xffff) == 0 \
3528 ? ((v) & ~0xff) == 0 \
3529 ? ((v) & ~0xf) == 0 \
3530 ? ((v) & ~0x3) == 0 \
3531 ? ((v) & ~0x1) == 0 \
3532 ? !(v) \
3533 ? 32 \
3534 : 31 \
3535 : 30 \
3536 : ((v) & ~0x7) == 0 \
3537 ? 29 \
3538 : 28 \
3539 : ((v) & ~0x3f) == 0 \
3540 ? ((v) & ~0x1f) == 0 \
3541 ? 27 \
3542 : 26 \
3543 : ((v) & ~0x7f) == 0 \
3544 ? 25 \
3545 : 24 \
3546 : ((v) & ~0xfff) == 0 \
3547 ? ((v) & ~0x3ff) == 0 \
3548 ? ((v) & ~0x1ff) == 0 \
3549 ? 23 \
3550 : 22 \
3551 : ((v) & ~0x7ff) == 0 \
3552 ? 21 \
3553 : 20 \
3554 : ((v) & ~0x3fff) == 0 \
3555 ? ((v) & ~0x1fff) == 0 \
3556 ? 19 \
3557 : 18 \
3558 : ((v) & ~0x7fff) == 0 \
3559 ? 17 \
3560 : 16 \
3561 : ((v) & ~0xffffff) == 0 \
3562 ? ((v) & ~0xfffff) == 0 \
3563 ? ((v) & ~0x3ffff) == 0 \
3564 ? ((v) & ~0x1ffff) == 0 \
3565 ? 15 \
3566 : 14 \
3567 : ((v) & ~0x7ffff) == 0 \
3568 ? 13 \
3569 : 12 \
3570 : ((v) & ~0x3fffff) == 0 \
3571 ? ((v) & ~0x1fffff) == 0 \
3572 ? 11 \
3573 : 10 \
3574 : ((v) & ~0x7fffff) == 0 \
3575 ? 9 \
3576 : 8 \
3577 : ((v) & ~0xfffffff) == 0 \
3578 ? ((v) & ~0x3ffffff) == 0 \
3579 ? ((v) & ~0x1ffffff) == 0 \
3580 ? 7 \
3581 : 6 \
3582 : ((v) & ~0x7ffffff) == 0 \
3583 ? 5 \
3584 : 4 \
3585 : ((v) & ~0x3fffffff) == 0 \
3586 ? ((v) & ~0x1fffffff) == 0 \
3587 ? 3 \
3588 : 2 \
3589 : ((v) & ~0x7fffffff) == 0 \
3590 ? 1 \
3591 : 0)
3592
3593 /* load_register()
3594 * This routine generates the least number of instructions necessary to load
3595 * an absolute expression value into a register.
3596 */
3597 static void
3598 load_register (int reg, expressionS *ep, int dbl)
3599 {
3600 int freg;
3601 expressionS hi32, lo32;
3602
3603 if (ep->X_op != O_big)
3604 {
3605 assert (ep->X_op == O_constant);
3606
3607 /* Sign-extending 32-bit constants makes their handling easier. */
3608 if (!dbl)
3609 normalize_constant_expr (ep);
3610
3611 if (IS_SEXT_16BIT_NUM (ep->X_add_number))
3612 {
3613 /* We can handle 16 bit signed values with an addiu to
3614 $zero. No need to ever use daddiu here, since $zero and
3615 the result are always correct in 32 bit mode. */
3616 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
3617 return;
3618 }
3619 else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
3620 {
3621 /* We can handle 16 bit unsigned values with an ori to
3622 $zero. */
3623 macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
3624 return;
3625 }
3626 else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)))
3627 {
3628 /* 32 bit values require an lui. */
3629 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_HI16);
3630 if ((ep->X_add_number & 0xffff) != 0)
3631 macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
3632 return;
3633 }
3634 }
3635
3636 /* The value is larger than 32 bits. */
3637
3638 if (!dbl || HAVE_32BIT_GPRS)
3639 {
3640 char value[32];
3641
3642 sprintf_vma (value, ep->X_add_number);
3643 as_bad (_("Number (0x%s) larger than 32 bits"), value);
3644 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
3645 return;
3646 }
3647
3648 if (ep->X_op != O_big)
3649 {
3650 hi32 = *ep;
3651 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
3652 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
3653 hi32.X_add_number &= 0xffffffff;
3654 lo32 = *ep;
3655 lo32.X_add_number &= 0xffffffff;
3656 }
3657 else
3658 {
3659 assert (ep->X_add_number > 2);
3660 if (ep->X_add_number == 3)
3661 generic_bignum[3] = 0;
3662 else if (ep->X_add_number > 4)
3663 as_bad (_("Number larger than 64 bits"));
3664 lo32.X_op = O_constant;
3665 lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
3666 hi32.X_op = O_constant;
3667 hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
3668 }
3669
3670 if (hi32.X_add_number == 0)
3671 freg = 0;
3672 else
3673 {
3674 int shift, bit;
3675 unsigned long hi, lo;
3676
3677 if (hi32.X_add_number == (offsetT) 0xffffffff)
3678 {
3679 if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
3680 {
3681 macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
3682 return;
3683 }
3684 if (lo32.X_add_number & 0x80000000)
3685 {
3686 macro_build (&lo32, "lui", "t,u", reg, BFD_RELOC_HI16);
3687 if (lo32.X_add_number & 0xffff)
3688 macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
3689 return;
3690 }
3691 }
3692
3693 /* Check for 16bit shifted constant. We know that hi32 is
3694 non-zero, so start the mask on the first bit of the hi32
3695 value. */
3696 shift = 17;
3697 do
3698 {
3699 unsigned long himask, lomask;
3700
3701 if (shift < 32)
3702 {
3703 himask = 0xffff >> (32 - shift);
3704 lomask = (0xffff << shift) & 0xffffffff;
3705 }
3706 else
3707 {
3708 himask = 0xffff << (shift - 32);
3709 lomask = 0;
3710 }
3711 if ((hi32.X_add_number & ~(offsetT) himask) == 0
3712 && (lo32.X_add_number & ~(offsetT) lomask) == 0)
3713 {
3714 expressionS tmp;
3715
3716 tmp.X_op = O_constant;
3717 if (shift < 32)
3718 tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
3719 | (lo32.X_add_number >> shift));
3720 else
3721 tmp.X_add_number = hi32.X_add_number >> (shift - 32);
3722 macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
3723 macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", "d,w,<",
3724 reg, reg, (shift >= 32) ? shift - 32 : shift);
3725 return;
3726 }
3727 ++shift;
3728 }
3729 while (shift <= (64 - 16));
3730
3731 /* Find the bit number of the lowest one bit, and store the
3732 shifted value in hi/lo. */
3733 hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
3734 lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
3735 if (lo != 0)
3736 {
3737 bit = 0;
3738 while ((lo & 1) == 0)
3739 {
3740 lo >>= 1;
3741 ++bit;
3742 }
3743 lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit);
3744 hi >>= bit;
3745 }
3746 else
3747 {
3748 bit = 32;
3749 while ((hi & 1) == 0)
3750 {
3751 hi >>= 1;
3752 ++bit;
3753 }
3754 lo = hi;
3755 hi = 0;
3756 }
3757
3758 /* Optimize if the shifted value is a (power of 2) - 1. */
3759 if ((hi == 0 && ((lo + 1) & lo) == 0)
3760 || (lo == 0xffffffff && ((hi + 1) & hi) == 0))
3761 {
3762 shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
3763 if (shift != 0)
3764 {
3765 expressionS tmp;
3766
3767 /* This instruction will set the register to be all
3768 ones. */
3769 tmp.X_op = O_constant;
3770 tmp.X_add_number = (offsetT) -1;
3771 macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
3772 if (bit != 0)
3773 {
3774 bit += shift;
3775 macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", "d,w,<",
3776 reg, reg, (bit >= 32) ? bit - 32 : bit);
3777 }
3778 macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", "d,w,<",
3779 reg, reg, (shift >= 32) ? shift - 32 : shift);
3780 return;
3781 }
3782 }
3783
3784 /* Sign extend hi32 before calling load_register, because we can
3785 generally get better code when we load a sign extended value. */
3786 if ((hi32.X_add_number & 0x80000000) != 0)
3787 hi32.X_add_number |= ~(offsetT) 0xffffffff;
3788 load_register (reg, &hi32, 0);
3789 freg = reg;
3790 }
3791 if ((lo32.X_add_number & 0xffff0000) == 0)
3792 {
3793 if (freg != 0)
3794 {
3795 macro_build (NULL, "dsll32", "d,w,<", reg, freg, 0);
3796 freg = reg;
3797 }
3798 }
3799 else
3800 {
3801 expressionS mid16;
3802
3803 if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
3804 {
3805 macro_build (&lo32, "lui", "t,u", reg, BFD_RELOC_HI16);
3806 macro_build (NULL, "dsrl32", "d,w,<", reg, reg, 0);
3807 return;
3808 }
3809
3810 if (freg != 0)
3811 {
3812 macro_build (NULL, "dsll", "d,w,<", reg, freg, 16);
3813 freg = reg;
3814 }
3815 mid16 = lo32;
3816 mid16.X_add_number >>= 16;
3817 macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
3818 macro_build (NULL, "dsll", "d,w,<", reg, reg, 16);
3819 freg = reg;
3820 }
3821 if ((lo32.X_add_number & 0xffff) != 0)
3822 macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
3823 }
3824
3825 static inline void
3826 load_delay_nop (void)
3827 {
3828 if (!gpr_interlocks)
3829 macro_build (NULL, "nop", "");
3830 }
3831
3832 /* Load an address into a register. */
3833
3834 static void
3835 load_address (int reg, expressionS *ep, int *used_at)
3836 {
3837 if (ep->X_op != O_constant
3838 && ep->X_op != O_symbol)
3839 {
3840 as_bad (_("expression too complex"));
3841 ep->X_op = O_constant;
3842 }
3843
3844 if (ep->X_op == O_constant)
3845 {
3846 load_register (reg, ep, HAVE_64BIT_ADDRESSES);
3847 return;
3848 }
3849
3850 if (mips_pic == NO_PIC)
3851 {
3852 /* If this is a reference to a GP relative symbol, we want
3853 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
3854 Otherwise we want
3855 lui $reg,<sym> (BFD_RELOC_HI16_S)
3856 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
3857 If we have an addend, we always use the latter form.
3858
3859 With 64bit address space and a usable $at we want
3860 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
3861 lui $at,<sym> (BFD_RELOC_HI16_S)
3862 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
3863 daddiu $at,<sym> (BFD_RELOC_LO16)
3864 dsll32 $reg,0
3865 daddu $reg,$reg,$at
3866
3867 If $at is already in use, we use a path which is suboptimal
3868 on superscalar processors.
3869 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
3870 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
3871 dsll $reg,16
3872 daddiu $reg,<sym> (BFD_RELOC_HI16_S)
3873 dsll $reg,16
3874 daddiu $reg,<sym> (BFD_RELOC_LO16)
3875
3876 For GP relative symbols in 64bit address space we can use
3877 the same sequence as in 32bit address space. */
3878 if (HAVE_64BIT_SYMBOLS)
3879 {
3880 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
3881 && !nopic_need_relax (ep->X_add_symbol, 1))
3882 {
3883 relax_start (ep->X_add_symbol);
3884 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
3885 mips_gp_register, BFD_RELOC_GPREL16);
3886 relax_switch ();
3887 }
3888
3889 if (*used_at == 0 && !mips_opts.noat)
3890 {
3891 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_HIGHEST);
3892 macro_build (ep, "lui", "t,u", AT, BFD_RELOC_HI16_S);
3893 macro_build (ep, "daddiu", "t,r,j", reg, reg,
3894 BFD_RELOC_MIPS_HIGHER);
3895 macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16);
3896 macro_build (NULL, "dsll32", "d,w,<", reg, reg, 0);
3897 macro_build (NULL, "daddu", "d,v,t", reg, reg, AT);
3898 *used_at = 1;
3899 }
3900 else
3901 {
3902 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_HIGHEST);
3903 macro_build (ep, "daddiu", "t,r,j", reg, reg,
3904 BFD_RELOC_MIPS_HIGHER);
3905 macro_build (NULL, "dsll", "d,w,<", reg, reg, 16);
3906 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S);
3907 macro_build (NULL, "dsll", "d,w,<", reg, reg, 16);
3908 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16);
3909 }
3910
3911 if (mips_relax.sequence)
3912 relax_end ();
3913 }
3914 else
3915 {
3916 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
3917 && !nopic_need_relax (ep->X_add_symbol, 1))
3918 {
3919 relax_start (ep->X_add_symbol);
3920 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
3921 mips_gp_register, BFD_RELOC_GPREL16);
3922 relax_switch ();
3923 }
3924 macro_build_lui (ep, reg);
3925 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
3926 reg, reg, BFD_RELOC_LO16);
3927 if (mips_relax.sequence)
3928 relax_end ();
3929 }
3930 }
3931 else if (!mips_big_got)
3932 {
3933 expressionS ex;
3934
3935 /* If this is a reference to an external symbol, we want
3936 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
3937 Otherwise we want
3938 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
3939 nop
3940 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
3941 If there is a constant, it must be added in after.
3942
3943 If we have NewABI, we want
3944 lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
3945 unless we're referencing a global symbol with a non-zero
3946 offset, in which case cst must be added separately. */
3947 if (HAVE_NEWABI)
3948 {
3949 if (ep->X_add_number)
3950 {
3951 ex.X_add_number = ep->X_add_number;
3952 ep->X_add_number = 0;
3953 relax_start (ep->X_add_symbol);
3954 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
3955 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
3956 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
3957 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
3958 ex.X_op = O_constant;
3959 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
3960 reg, reg, BFD_RELOC_LO16);
3961 ep->X_add_number = ex.X_add_number;
3962 relax_switch ();
3963 }
3964 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
3965 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
3966 if (mips_relax.sequence)
3967 relax_end ();
3968 }
3969 else
3970 {
3971 ex.X_add_number = ep->X_add_number;
3972 ep->X_add_number = 0;
3973 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
3974 BFD_RELOC_MIPS_GOT16, mips_gp_register);
3975 load_delay_nop ();
3976 relax_start (ep->X_add_symbol);
3977 relax_switch ();
3978 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
3979 BFD_RELOC_LO16);
3980 relax_end ();
3981
3982 if (ex.X_add_number != 0)
3983 {
3984 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
3985 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
3986 ex.X_op = O_constant;
3987 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
3988 reg, reg, BFD_RELOC_LO16);
3989 }
3990 }
3991 }
3992 else if (mips_big_got)
3993 {
3994 expressionS ex;
3995
3996 /* This is the large GOT case. If this is a reference to an
3997 external symbol, we want
3998 lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
3999 addu $reg,$reg,$gp
4000 lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
4001
4002 Otherwise, for a reference to a local symbol in old ABI, we want
4003 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
4004 nop
4005 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
4006 If there is a constant, it must be added in after.
4007
4008 In the NewABI, for local symbols, with or without offsets, we want:
4009 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
4010 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
4011 */
4012 if (HAVE_NEWABI)
4013 {
4014 ex.X_add_number = ep->X_add_number;
4015 ep->X_add_number = 0;
4016 relax_start (ep->X_add_symbol);
4017 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_GOT_HI16);
4018 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
4019 reg, reg, mips_gp_register);
4020 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
4021 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
4022 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
4023 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4024 else if (ex.X_add_number)
4025 {
4026 ex.X_op = O_constant;
4027 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4028 BFD_RELOC_LO16);
4029 }
4030
4031 ep->X_add_number = ex.X_add_number;
4032 relax_switch ();
4033 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4034 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
4035 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4036 BFD_RELOC_MIPS_GOT_OFST);
4037 relax_end ();
4038 }
4039 else
4040 {
4041 ex.X_add_number = ep->X_add_number;
4042 ep->X_add_number = 0;
4043 relax_start (ep->X_add_symbol);
4044 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_GOT_HI16);
4045 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
4046 reg, reg, mips_gp_register);
4047 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
4048 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
4049 relax_switch ();
4050 if (reg_needs_delay (mips_gp_register))
4051 {
4052 /* We need a nop before loading from $gp. This special
4053 check is required because the lui which starts the main
4054 instruction stream does not refer to $gp, and so will not
4055 insert the nop which may be required. */
4056 macro_build (NULL, "nop", "");
4057 }
4058 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4059 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4060 load_delay_nop ();
4061 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4062 BFD_RELOC_LO16);
4063 relax_end ();
4064
4065 if (ex.X_add_number != 0)
4066 {
4067 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
4068 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4069 ex.X_op = O_constant;
4070 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4071 BFD_RELOC_LO16);
4072 }
4073 }
4074 }
4075 else
4076 abort ();
4077
4078 if (mips_opts.noat && *used_at == 1)
4079 as_bad (_("Macro used $at after \".set noat\""));
4080 }
4081
4082 /* Move the contents of register SOURCE into register DEST. */
4083
4084 static void
4085 move_register (int dest, int source)
4086 {
4087 macro_build (NULL, HAVE_32BIT_GPRS ? "addu" : "daddu", "d,v,t",
4088 dest, source, 0);
4089 }
4090
4091 /* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
4092 LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
4093 The two alternatives are:
4094
4095 Global symbol Local sybmol
4096 ------------- ------------
4097 lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
4098 ... ...
4099 addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
4100
4101 load_got_offset emits the first instruction and add_got_offset
4102 emits the second for a 16-bit offset or add_got_offset_hilo emits
4103 a sequence to add a 32-bit offset using a scratch register. */
4104
4105 static void
4106 load_got_offset (int dest, expressionS *local)
4107 {
4108 expressionS global;
4109
4110 global = *local;
4111 global.X_add_number = 0;
4112
4113 relax_start (local->X_add_symbol);
4114 macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest,
4115 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4116 relax_switch ();
4117 macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest,
4118 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4119 relax_end ();
4120 }
4121
4122 static void
4123 add_got_offset (int dest, expressionS *local)
4124 {
4125 expressionS global;
4126
4127 global.X_op = O_constant;
4128 global.X_op_symbol = NULL;
4129 global.X_add_symbol = NULL;
4130 global.X_add_number = local->X_add_number;
4131
4132 relax_start (local->X_add_symbol);
4133 macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j",
4134 dest, dest, BFD_RELOC_LO16);
4135 relax_switch ();
4136 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16);
4137 relax_end ();
4138 }
4139
4140 static void
4141 add_got_offset_hilo (int dest, expressionS *local, int tmp)
4142 {
4143 expressionS global;
4144 int hold_mips_optimize;
4145
4146 global.X_op = O_constant;
4147 global.X_op_symbol = NULL;
4148 global.X_add_symbol = NULL;
4149 global.X_add_number = local->X_add_number;
4150
4151 relax_start (local->X_add_symbol);
4152 load_register (tmp, &global, HAVE_64BIT_ADDRESSES);
4153 relax_switch ();
4154 /* Set mips_optimize around the lui instruction to avoid
4155 inserting an unnecessary nop after the lw. */
4156 hold_mips_optimize = mips_optimize;
4157 mips_optimize = 2;
4158 macro_build_lui (&global, tmp);
4159 mips_optimize = hold_mips_optimize;
4160 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16);
4161 relax_end ();
4162
4163 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp);
4164 }
4165
4166 /*
4167 * Build macros
4168 * This routine implements the seemingly endless macro or synthesized
4169 * instructions and addressing modes in the mips assembly language. Many
4170 * of these macros are simple and are similar to each other. These could
4171 * probably be handled by some kind of table or grammar approach instead of
4172 * this verbose method. Others are not simple macros but are more like
4173 * optimizing code generation.
4174 * One interesting optimization is when several store macros appear
4175 * consecutively that would load AT with the upper half of the same address.
4176 * The ensuing load upper instructions are ommited. This implies some kind
4177 * of global optimization. We currently only optimize within a single macro.
4178 * For many of the load and store macros if the address is specified as a
4179 * constant expression in the first 64k of memory (ie ld $2,0x4000c) we
4180 * first load register 'at' with zero and use it as the base register. The
4181 * mips assembler simply uses register $zero. Just one tiny optimization
4182 * we're missing.
4183 */
4184 static void
4185 macro (struct mips_cl_insn *ip)
4186 {
4187 register int treg, sreg, dreg, breg;
4188 int tempreg;
4189 int mask;
4190 int used_at = 0;
4191 expressionS expr1;
4192 const char *s;
4193 const char *s2;
4194 const char *fmt;
4195 int likely = 0;
4196 int dbl = 0;
4197 int coproc = 0;
4198 int lr = 0;
4199 int imm = 0;
4200 int call = 0;
4201 int off;
4202 offsetT maxnum;
4203 bfd_reloc_code_real_type r;
4204 int hold_mips_optimize;
4205
4206 assert (! mips_opts.mips16);
4207
4208 treg = (ip->insn_opcode >> 16) & 0x1f;
4209 dreg = (ip->insn_opcode >> 11) & 0x1f;
4210 sreg = breg = (ip->insn_opcode >> 21) & 0x1f;
4211 mask = ip->insn_mo->mask;
4212
4213 expr1.X_op = O_constant;
4214 expr1.X_op_symbol = NULL;
4215 expr1.X_add_symbol = NULL;
4216 expr1.X_add_number = 1;
4217
4218 switch (mask)
4219 {
4220 case M_DABS:
4221 dbl = 1;
4222 case M_ABS:
4223 /* bgez $a0,.+12
4224 move v0,$a0
4225 sub v0,$zero,$a0
4226 */
4227
4228 start_noreorder ();
4229
4230 expr1.X_add_number = 8;
4231 macro_build (&expr1, "bgez", "s,p", sreg);
4232 if (dreg == sreg)
4233 macro_build (NULL, "nop", "", 0);
4234 else
4235 move_register (dreg, sreg);
4236 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", dreg, 0, sreg);
4237
4238 end_noreorder ();
4239 break;
4240
4241 case M_ADD_I:
4242 s = "addi";
4243 s2 = "add";
4244 goto do_addi;
4245 case M_ADDU_I:
4246 s = "addiu";
4247 s2 = "addu";
4248 goto do_addi;
4249 case M_DADD_I:
4250 dbl = 1;
4251 s = "daddi";
4252 s2 = "dadd";
4253 goto do_addi;
4254 case M_DADDU_I:
4255 dbl = 1;
4256 s = "daddiu";
4257 s2 = "daddu";
4258 do_addi:
4259 if (imm_expr.X_op == O_constant
4260 && imm_expr.X_add_number >= -0x8000
4261 && imm_expr.X_add_number < 0x8000)
4262 {
4263 macro_build (&imm_expr, s, "t,r,j", treg, sreg, BFD_RELOC_LO16);
4264 break;
4265 }
4266 used_at = 1;
4267 load_register (AT, &imm_expr, dbl);
4268 macro_build (NULL, s2, "d,v,t", treg, sreg, AT);
4269 break;
4270
4271 case M_AND_I:
4272 s = "andi";
4273 s2 = "and";
4274 goto do_bit;
4275 case M_OR_I:
4276 s = "ori";
4277 s2 = "or";
4278 goto do_bit;
4279 case M_NOR_I:
4280 s = "";
4281 s2 = "nor";
4282 goto do_bit;
4283 case M_XOR_I:
4284 s = "xori";
4285 s2 = "xor";
4286 do_bit:
4287 if (imm_expr.X_op == O_constant
4288 && imm_expr.X_add_number >= 0
4289 && imm_expr.X_add_number < 0x10000)
4290 {
4291 if (mask != M_NOR_I)
4292 macro_build (&imm_expr, s, "t,r,i", treg, sreg, BFD_RELOC_LO16);
4293 else
4294 {
4295 macro_build (&imm_expr, "ori", "t,r,i",
4296 treg, sreg, BFD_RELOC_LO16);
4297 macro_build (NULL, "nor", "d,v,t", treg, treg, 0);
4298 }
4299 break;
4300 }
4301
4302 used_at = 1;
4303 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
4304 macro_build (NULL, s2, "d,v,t", treg, sreg, AT);
4305 break;
4306
4307 case M_BEQ_I:
4308 s = "beq";
4309 goto beq_i;
4310 case M_BEQL_I:
4311 s = "beql";
4312 likely = 1;
4313 goto beq_i;
4314 case M_BNE_I:
4315 s = "bne";
4316 goto beq_i;
4317 case M_BNEL_I:
4318 s = "bnel";
4319 likely = 1;
4320 beq_i:
4321 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
4322 {
4323 macro_build (&offset_expr, s, "s,t,p", sreg, 0);
4324 break;
4325 }
4326 used_at = 1;
4327 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
4328 macro_build (&offset_expr, s, "s,t,p", sreg, AT);
4329 break;
4330
4331 case M_BGEL:
4332 likely = 1;
4333 case M_BGE:
4334 if (treg == 0)
4335 {
4336 macro_build (&offset_expr, likely ? "bgezl" : "bgez", "s,p", sreg);
4337 break;
4338 }
4339 if (sreg == 0)
4340 {
4341 macro_build (&offset_expr, likely ? "blezl" : "blez", "s,p", treg);
4342 break;
4343 }
4344 used_at = 1;
4345 macro_build (NULL, "slt", "d,v,t", AT, sreg, treg);
4346 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
4347 break;
4348
4349 case M_BGTL_I:
4350 likely = 1;
4351 case M_BGT_I:
4352 /* check for > max integer */
4353 maxnum = 0x7fffffff;
4354 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4)
4355 {
4356 maxnum <<= 16;
4357 maxnum |= 0xffff;
4358 maxnum <<= 16;
4359 maxnum |= 0xffff;
4360 }
4361 if (imm_expr.X_op == O_constant
4362 && imm_expr.X_add_number >= maxnum
4363 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4))
4364 {
4365 do_false:
4366 /* result is always false */
4367 if (! likely)
4368 macro_build (NULL, "nop", "", 0);
4369 else
4370 macro_build (&offset_expr, "bnel", "s,t,p", 0, 0);
4371 break;
4372 }
4373 if (imm_expr.X_op != O_constant)
4374 as_bad (_("Unsupported large constant"));
4375 ++imm_expr.X_add_number;
4376 /* FALLTHROUGH */
4377 case M_BGE_I:
4378 case M_BGEL_I:
4379 if (mask == M_BGEL_I)
4380 likely = 1;
4381 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
4382 {
4383 macro_build (&offset_expr, likely ? "bgezl" : "bgez", "s,p", sreg);
4384 break;
4385 }
4386 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
4387 {
4388 macro_build (&offset_expr, likely ? "bgtzl" : "bgtz", "s,p", sreg);
4389 break;
4390 }
4391 maxnum = 0x7fffffff;
4392 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4)
4393 {
4394 maxnum <<= 16;
4395 maxnum |= 0xffff;
4396 maxnum <<= 16;
4397 maxnum |= 0xffff;
4398 }
4399 maxnum = - maxnum - 1;
4400 if (imm_expr.X_op == O_constant
4401 && imm_expr.X_add_number <= maxnum
4402 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4))
4403 {
4404 do_true:
4405 /* result is always true */
4406 as_warn (_("Branch %s is always true"), ip->insn_mo->name);
4407 macro_build (&offset_expr, "b", "p");
4408 break;
4409 }
4410 used_at = 1;
4411 set_at (sreg, 0);
4412 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
4413 break;
4414
4415 case M_BGEUL:
4416 likely = 1;
4417 case M_BGEU:
4418 if (treg == 0)
4419 goto do_true;
4420 if (sreg == 0)
4421 {
4422 macro_build (&offset_expr, likely ? "beql" : "beq",
4423 "s,t,p", 0, treg);
4424 break;
4425 }
4426 used_at = 1;
4427 macro_build (NULL, "sltu", "d,v,t", AT, sreg, treg);
4428 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
4429 break;
4430
4431 case M_BGTUL_I:
4432 likely = 1;
4433 case M_BGTU_I:
4434 if (sreg == 0
4435 || (HAVE_32BIT_GPRS
4436 && imm_expr.X_op == O_constant
4437 && imm_expr.X_add_number == (offsetT) 0xffffffff))
4438 goto do_false;
4439 if (imm_expr.X_op != O_constant)
4440 as_bad (_("Unsupported large constant"));
4441 ++imm_expr.X_add_number;
4442 /* FALLTHROUGH */
4443 case M_BGEU_I:
4444 case M_BGEUL_I:
4445 if (mask == M_BGEUL_I)
4446 likely = 1;
4447 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
4448 goto do_true;
4449 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
4450 {
4451 macro_build (&offset_expr, likely ? "bnel" : "bne",
4452 "s,t,p", sreg, 0);
4453 break;
4454 }
4455 used_at = 1;
4456 set_at (sreg, 1);
4457 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
4458 break;
4459
4460 case M_BGTL:
4461 likely = 1;
4462 case M_BGT:
4463 if (treg == 0)
4464 {
4465 macro_build (&offset_expr, likely ? "bgtzl" : "bgtz", "s,p", sreg);
4466 break;
4467 }
4468 if (sreg == 0)
4469 {
4470 macro_build (&offset_expr, likely ? "bltzl" : "bltz", "s,p", treg);
4471 break;
4472 }
4473 used_at = 1;
4474 macro_build (NULL, "slt", "d,v,t", AT, treg, sreg);
4475 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
4476 break;
4477
4478 case M_BGTUL:
4479 likely = 1;
4480 case M_BGTU:
4481 if (treg == 0)
4482 {
4483 macro_build (&offset_expr, likely ? "bnel" : "bne",
4484 "s,t,p", sreg, 0);
4485 break;
4486 }
4487 if (sreg == 0)
4488 goto do_false;
4489 used_at = 1;
4490 macro_build (NULL, "sltu", "d,v,t", AT, treg, sreg);
4491 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
4492 break;
4493
4494 case M_BLEL:
4495 likely = 1;
4496 case M_BLE:
4497 if (treg == 0)
4498 {
4499 macro_build (&offset_expr, likely ? "blezl" : "blez", "s,p", sreg);
4500 break;
4501 }
4502 if (sreg == 0)
4503 {
4504 macro_build (&offset_expr, likely ? "bgezl" : "bgez", "s,p", treg);
4505 break;
4506 }
4507 used_at = 1;
4508 macro_build (NULL, "slt", "d,v,t", AT, treg, sreg);
4509 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
4510 break;
4511
4512 case M_BLEL_I:
4513 likely = 1;
4514 case M_BLE_I:
4515 maxnum = 0x7fffffff;
4516 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4)
4517 {
4518 maxnum <<= 16;
4519 maxnum |= 0xffff;
4520 maxnum <<= 16;
4521 maxnum |= 0xffff;
4522 }
4523 if (imm_expr.X_op == O_constant
4524 && imm_expr.X_add_number >= maxnum
4525 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4))
4526 goto do_true;
4527 if (imm_expr.X_op != O_constant)
4528 as_bad (_("Unsupported large constant"));
4529 ++imm_expr.X_add_number;
4530 /* FALLTHROUGH */
4531 case M_BLT_I:
4532 case M_BLTL_I:
4533 if (mask == M_BLTL_I)
4534 likely = 1;
4535 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
4536 {
4537 macro_build (&offset_expr, likely ? "bltzl" : "bltz", "s,p", sreg);
4538 break;
4539 }
4540 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
4541 {
4542 macro_build (&offset_expr, likely ? "blezl" : "blez", "s,p", sreg);
4543 break;
4544 }
4545 used_at = 1;
4546 set_at (sreg, 0);
4547 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
4548 break;
4549
4550 case M_BLEUL:
4551 likely = 1;
4552 case M_BLEU:
4553 if (treg == 0)
4554 {
4555 macro_build (&offset_expr, likely ? "beql" : "beq",
4556 "s,t,p", sreg, 0);
4557 break;
4558 }
4559 if (sreg == 0)
4560 goto do_true;
4561 used_at = 1;
4562 macro_build (NULL, "sltu", "d,v,t", AT, treg, sreg);
4563 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
4564 break;
4565
4566 case M_BLEUL_I:
4567 likely = 1;
4568 case M_BLEU_I:
4569 if (sreg == 0
4570 || (HAVE_32BIT_GPRS
4571 && imm_expr.X_op == O_constant
4572 && imm_expr.X_add_number == (offsetT) 0xffffffff))
4573 goto do_true;
4574 if (imm_expr.X_op != O_constant)
4575 as_bad (_("Unsupported large constant"));
4576 ++imm_expr.X_add_number;
4577 /* FALLTHROUGH */
4578 case M_BLTU_I:
4579 case M_BLTUL_I:
4580 if (mask == M_BLTUL_I)
4581 likely = 1;
4582 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
4583 goto do_false;
4584 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
4585 {
4586 macro_build (&offset_expr, likely ? "beql" : "beq",
4587 "s,t,p", sreg, 0);
4588 break;
4589 }
4590 used_at = 1;
4591 set_at (sreg, 1);
4592 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
4593 break;
4594
4595 case M_BLTL:
4596 likely = 1;
4597 case M_BLT:
4598 if (treg == 0)
4599 {
4600 macro_build (&offset_expr, likely ? "bltzl" : "bltz", "s,p", sreg);
4601 break;
4602 }
4603 if (sreg == 0)
4604 {
4605 macro_build (&offset_expr, likely ? "bgtzl" : "bgtz", "s,p", treg);
4606 break;
4607 }
4608 used_at = 1;
4609 macro_build (NULL, "slt", "d,v,t", AT, sreg, treg);
4610 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
4611 break;
4612
4613 case M_BLTUL:
4614 likely = 1;
4615 case M_BLTU:
4616 if (treg == 0)
4617 goto do_false;
4618 if (sreg == 0)
4619 {
4620 macro_build (&offset_expr, likely ? "bnel" : "bne",
4621 "s,t,p", 0, treg);
4622 break;
4623 }
4624 used_at = 1;
4625 macro_build (NULL, "sltu", "d,v,t", AT, sreg, treg);
4626 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
4627 break;
4628
4629 case M_DEXT:
4630 {
4631 unsigned long pos;
4632 unsigned long size;
4633
4634 if (imm_expr.X_op != O_constant || imm2_expr.X_op != O_constant)
4635 {
4636 as_bad (_("Unsupported large constant"));
4637 pos = size = 1;
4638 }
4639 else
4640 {
4641 pos = (unsigned long) imm_expr.X_add_number;
4642 size = (unsigned long) imm2_expr.X_add_number;
4643 }
4644
4645 if (pos > 63)
4646 {
4647 as_bad (_("Improper position (%lu)"), pos);
4648 pos = 1;
4649 }
4650 if (size == 0 || size > 64
4651 || (pos + size - 1) > 63)
4652 {
4653 as_bad (_("Improper extract size (%lu, position %lu)"),
4654 size, pos);
4655 size = 1;
4656 }
4657
4658 if (size <= 32 && pos < 32)
4659 {
4660 s = "dext";
4661 fmt = "t,r,+A,+C";
4662 }
4663 else if (size <= 32)
4664 {
4665 s = "dextu";
4666 fmt = "t,r,+E,+H";
4667 }
4668 else
4669 {
4670 s = "dextm";
4671 fmt = "t,r,+A,+G";
4672 }
4673 macro_build ((expressionS *) NULL, s, fmt, treg, sreg, pos, size - 1);
4674 }
4675 break;
4676
4677 case M_DINS:
4678 {
4679 unsigned long pos;
4680 unsigned long size;
4681
4682 if (imm_expr.X_op != O_constant || imm2_expr.X_op != O_constant)
4683 {
4684 as_bad (_("Unsupported large constant"));
4685 pos = size = 1;
4686 }
4687 else
4688 {
4689 pos = (unsigned long) imm_expr.X_add_number;
4690 size = (unsigned long) imm2_expr.X_add_number;
4691 }
4692
4693 if (pos > 63)
4694 {
4695 as_bad (_("Improper position (%lu)"), pos);
4696 pos = 1;
4697 }
4698 if (size == 0 || size > 64
4699 || (pos + size - 1) > 63)
4700 {
4701 as_bad (_("Improper insert size (%lu, position %lu)"),
4702 size, pos);
4703 size = 1;
4704 }
4705
4706 if (pos < 32 && (pos + size - 1) < 32)
4707 {
4708 s = "dins";
4709 fmt = "t,r,+A,+B";
4710 }
4711 else if (pos >= 32)
4712 {
4713 s = "dinsu";
4714 fmt = "t,r,+E,+F";
4715 }
4716 else
4717 {
4718 s = "dinsm";
4719 fmt = "t,r,+A,+F";
4720 }
4721 macro_build ((expressionS *) NULL, s, fmt, treg, sreg, pos,
4722 pos + size - 1);
4723 }
4724 break;
4725
4726 case M_DDIV_3:
4727 dbl = 1;
4728 case M_DIV_3:
4729 s = "mflo";
4730 goto do_div3;
4731 case M_DREM_3:
4732 dbl = 1;
4733 case M_REM_3:
4734 s = "mfhi";
4735 do_div3:
4736 if (treg == 0)
4737 {
4738 as_warn (_("Divide by zero."));
4739 if (mips_trap)
4740 macro_build (NULL, "teq", "s,t,q", 0, 0, 7);
4741 else
4742 macro_build (NULL, "break", "c", 7);
4743 break;
4744 }
4745
4746 start_noreorder ();
4747 if (mips_trap)
4748 {
4749 macro_build (NULL, "teq", "s,t,q", treg, 0, 7);
4750 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", sreg, treg);
4751 }
4752 else
4753 {
4754 expr1.X_add_number = 8;
4755 macro_build (&expr1, "bne", "s,t,p", treg, 0);
4756 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", sreg, treg);
4757 macro_build (NULL, "break", "c", 7);
4758 }
4759 expr1.X_add_number = -1;
4760 used_at = 1;
4761 load_register (AT, &expr1, dbl);
4762 expr1.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
4763 macro_build (&expr1, "bne", "s,t,p", treg, AT);
4764 if (dbl)
4765 {
4766 expr1.X_add_number = 1;
4767 load_register (AT, &expr1, dbl);
4768 macro_build (NULL, "dsll32", "d,w,<", AT, AT, 31);
4769 }
4770 else
4771 {
4772 expr1.X_add_number = 0x80000000;
4773 macro_build (&expr1, "lui", "t,u", AT, BFD_RELOC_HI16);
4774 }
4775 if (mips_trap)
4776 {
4777 macro_build (NULL, "teq", "s,t,q", sreg, AT, 6);
4778 /* We want to close the noreorder block as soon as possible, so
4779 that later insns are available for delay slot filling. */
4780 end_noreorder ();
4781 }
4782 else
4783 {
4784 expr1.X_add_number = 8;
4785 macro_build (&expr1, "bne", "s,t,p", sreg, AT);
4786 macro_build (NULL, "nop", "", 0);
4787
4788 /* We want to close the noreorder block as soon as possible, so
4789 that later insns are available for delay slot filling. */
4790 end_noreorder ();
4791
4792 macro_build (NULL, "break", "c", 6);
4793 }
4794 macro_build (NULL, s, "d", dreg);
4795 break;
4796
4797 case M_DIV_3I:
4798 s = "div";
4799 s2 = "mflo";
4800 goto do_divi;
4801 case M_DIVU_3I:
4802 s = "divu";
4803 s2 = "mflo";
4804 goto do_divi;
4805 case M_REM_3I:
4806 s = "div";
4807 s2 = "mfhi";
4808 goto do_divi;
4809 case M_REMU_3I:
4810 s = "divu";
4811 s2 = "mfhi";
4812 goto do_divi;
4813 case M_DDIV_3I:
4814 dbl = 1;
4815 s = "ddiv";
4816 s2 = "mflo";
4817 goto do_divi;
4818 case M_DDIVU_3I:
4819 dbl = 1;
4820 s = "ddivu";
4821 s2 = "mflo";
4822 goto do_divi;
4823 case M_DREM_3I:
4824 dbl = 1;
4825 s = "ddiv";
4826 s2 = "mfhi";
4827 goto do_divi;
4828 case M_DREMU_3I:
4829 dbl = 1;
4830 s = "ddivu";
4831 s2 = "mfhi";
4832 do_divi:
4833 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
4834 {
4835 as_warn (_("Divide by zero."));
4836 if (mips_trap)
4837 macro_build (NULL, "teq", "s,t,q", 0, 0, 7);
4838 else
4839 macro_build (NULL, "break", "c", 7);
4840 break;
4841 }
4842 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
4843 {
4844 if (strcmp (s2, "mflo") == 0)
4845 move_register (dreg, sreg);
4846 else
4847 move_register (dreg, 0);
4848 break;
4849 }
4850 if (imm_expr.X_op == O_constant
4851 && imm_expr.X_add_number == -1
4852 && s[strlen (s) - 1] != 'u')
4853 {
4854 if (strcmp (s2, "mflo") == 0)
4855 {
4856 macro_build (NULL, dbl ? "dneg" : "neg", "d,w", dreg, sreg);
4857 }
4858 else
4859 move_register (dreg, 0);
4860 break;
4861 }
4862
4863 used_at = 1;
4864 load_register (AT, &imm_expr, dbl);
4865 macro_build (NULL, s, "z,s,t", sreg, AT);
4866 macro_build (NULL, s2, "d", dreg);
4867 break;
4868
4869 case M_DIVU_3:
4870 s = "divu";
4871 s2 = "mflo";
4872 goto do_divu3;
4873 case M_REMU_3:
4874 s = "divu";
4875 s2 = "mfhi";
4876 goto do_divu3;
4877 case M_DDIVU_3:
4878 s = "ddivu";
4879 s2 = "mflo";
4880 goto do_divu3;
4881 case M_DREMU_3:
4882 s = "ddivu";
4883 s2 = "mfhi";
4884 do_divu3:
4885 start_noreorder ();
4886 if (mips_trap)
4887 {
4888 macro_build (NULL, "teq", "s,t,q", treg, 0, 7);
4889 macro_build (NULL, s, "z,s,t", sreg, treg);
4890 /* We want to close the noreorder block as soon as possible, so
4891 that later insns are available for delay slot filling. */
4892 end_noreorder ();
4893 }
4894 else
4895 {
4896 expr1.X_add_number = 8;
4897 macro_build (&expr1, "bne", "s,t,p", treg, 0);
4898 macro_build (NULL, s, "z,s,t", sreg, treg);
4899
4900 /* We want to close the noreorder block as soon as possible, so
4901 that later insns are available for delay slot filling. */
4902 end_noreorder ();
4903 macro_build (NULL, "break", "c", 7);
4904 }
4905 macro_build (NULL, s2, "d", dreg);
4906 break;
4907
4908 case M_DLCA_AB:
4909 dbl = 1;
4910 case M_LCA_AB:
4911 call = 1;
4912 goto do_la;
4913 case M_DLA_AB:
4914 dbl = 1;
4915 case M_LA_AB:
4916 do_la:
4917 /* Load the address of a symbol into a register. If breg is not
4918 zero, we then add a base register to it. */
4919
4920 if (dbl && HAVE_32BIT_GPRS)
4921 as_warn (_("dla used to load 32-bit register"));
4922
4923 if (! dbl && HAVE_64BIT_OBJECTS)
4924 as_warn (_("la used to load 64-bit address"));
4925
4926 if (offset_expr.X_op == O_constant
4927 && offset_expr.X_add_number >= -0x8000
4928 && offset_expr.X_add_number < 0x8000)
4929 {
4930 macro_build (&offset_expr, ADDRESS_ADDI_INSN,
4931 "t,r,j", treg, sreg, BFD_RELOC_LO16);
4932 break;
4933 }
4934
4935 if (!mips_opts.noat && (treg == breg))
4936 {
4937 tempreg = AT;
4938 used_at = 1;
4939 }
4940 else
4941 {
4942 tempreg = treg;
4943 }
4944
4945 if (offset_expr.X_op != O_symbol
4946 && offset_expr.X_op != O_constant)
4947 {
4948 as_bad (_("expression too complex"));
4949 offset_expr.X_op = O_constant;
4950 }
4951
4952 if (offset_expr.X_op == O_constant)
4953 load_register (tempreg, &offset_expr, HAVE_64BIT_ADDRESSES);
4954 else if (mips_pic == NO_PIC)
4955 {
4956 /* If this is a reference to a GP relative symbol, we want
4957 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
4958 Otherwise we want
4959 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
4960 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
4961 If we have a constant, we need two instructions anyhow,
4962 so we may as well always use the latter form.
4963
4964 With 64bit address space and a usable $at we want
4965 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
4966 lui $at,<sym> (BFD_RELOC_HI16_S)
4967 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
4968 daddiu $at,<sym> (BFD_RELOC_LO16)
4969 dsll32 $tempreg,0
4970 daddu $tempreg,$tempreg,$at
4971
4972 If $at is already in use, we use a path which is suboptimal
4973 on superscalar processors.
4974 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
4975 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
4976 dsll $tempreg,16
4977 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
4978 dsll $tempreg,16
4979 daddiu $tempreg,<sym> (BFD_RELOC_LO16)
4980
4981 For GP relative symbols in 64bit address space we can use
4982 the same sequence as in 32bit address space. */
4983 if (HAVE_64BIT_SYMBOLS)
4984 {
4985 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
4986 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
4987 {
4988 relax_start (offset_expr.X_add_symbol);
4989 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
4990 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
4991 relax_switch ();
4992 }
4993
4994 if (used_at == 0 && !mips_opts.noat)
4995 {
4996 macro_build (&offset_expr, "lui", "t,u",
4997 tempreg, BFD_RELOC_MIPS_HIGHEST);
4998 macro_build (&offset_expr, "lui", "t,u",
4999 AT, BFD_RELOC_HI16_S);
5000 macro_build (&offset_expr, "daddiu", "t,r,j",
5001 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
5002 macro_build (&offset_expr, "daddiu", "t,r,j",
5003 AT, AT, BFD_RELOC_LO16);
5004 macro_build (NULL, "dsll32", "d,w,<", tempreg, tempreg, 0);
5005 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
5006 used_at = 1;
5007 }
5008 else
5009 {
5010 macro_build (&offset_expr, "lui", "t,u",
5011 tempreg, BFD_RELOC_MIPS_HIGHEST);
5012 macro_build (&offset_expr, "daddiu", "t,r,j",
5013 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
5014 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16);
5015 macro_build (&offset_expr, "daddiu", "t,r,j",
5016 tempreg, tempreg, BFD_RELOC_HI16_S);
5017 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16);
5018 macro_build (&offset_expr, "daddiu", "t,r,j",
5019 tempreg, tempreg, BFD_RELOC_LO16);
5020 }
5021
5022 if (mips_relax.sequence)
5023 relax_end ();
5024 }
5025 else
5026 {
5027 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
5028 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
5029 {
5030 relax_start (offset_expr.X_add_symbol);
5031 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5032 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
5033 relax_switch ();
5034 }
5035 if (!IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
5036 as_bad (_("offset too large"));
5037 macro_build_lui (&offset_expr, tempreg);
5038 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5039 tempreg, tempreg, BFD_RELOC_LO16);
5040 if (mips_relax.sequence)
5041 relax_end ();
5042 }
5043 }
5044 else if (!mips_big_got && !HAVE_NEWABI)
5045 {
5046 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
5047
5048 /* If this is a reference to an external symbol, and there
5049 is no constant, we want
5050 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5051 or for lca or if tempreg is PIC_CALL_REG
5052 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
5053 For a local symbol, we want
5054 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5055 nop
5056 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
5057
5058 If we have a small constant, and this is a reference to
5059 an external symbol, we want
5060 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5061 nop
5062 addiu $tempreg,$tempreg,<constant>
5063 For a local symbol, we want the same instruction
5064 sequence, but we output a BFD_RELOC_LO16 reloc on the
5065 addiu instruction.
5066
5067 If we have a large constant, and this is a reference to
5068 an external symbol, we want
5069 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5070 lui $at,<hiconstant>
5071 addiu $at,$at,<loconstant>
5072 addu $tempreg,$tempreg,$at
5073 For a local symbol, we want the same instruction
5074 sequence, but we output a BFD_RELOC_LO16 reloc on the
5075 addiu instruction.
5076 */
5077
5078 if (offset_expr.X_add_number == 0)
5079 {
5080 if (mips_pic == SVR4_PIC
5081 && breg == 0
5082 && (call || tempreg == PIC_CALL_REG))
5083 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
5084
5085 relax_start (offset_expr.X_add_symbol);
5086 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5087 lw_reloc_type, mips_gp_register);
5088 if (breg != 0)
5089 {
5090 /* We're going to put in an addu instruction using
5091 tempreg, so we may as well insert the nop right
5092 now. */
5093 load_delay_nop ();
5094 }
5095 relax_switch ();
5096 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
5097 tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register);
5098 load_delay_nop ();
5099 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5100 tempreg, tempreg, BFD_RELOC_LO16);
5101 relax_end ();
5102 /* FIXME: If breg == 0, and the next instruction uses
5103 $tempreg, then if this variant case is used an extra
5104 nop will be generated. */
5105 }
5106 else if (offset_expr.X_add_number >= -0x8000
5107 && offset_expr.X_add_number < 0x8000)
5108 {
5109 load_got_offset (tempreg, &offset_expr);
5110 load_delay_nop ();
5111 add_got_offset (tempreg, &offset_expr);
5112 }
5113 else
5114 {
5115 expr1.X_add_number = offset_expr.X_add_number;
5116 offset_expr.X_add_number =
5117 ((offset_expr.X_add_number + 0x8000) & 0xffff) - 0x8000;
5118 load_got_offset (tempreg, &offset_expr);
5119 offset_expr.X_add_number = expr1.X_add_number;
5120 /* If we are going to add in a base register, and the
5121 target register and the base register are the same,
5122 then we are using AT as a temporary register. Since
5123 we want to load the constant into AT, we add our
5124 current AT (from the global offset table) and the
5125 register into the register now, and pretend we were
5126 not using a base register. */
5127 if (breg == treg)
5128 {
5129 load_delay_nop ();
5130 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5131 treg, AT, breg);
5132 breg = 0;
5133 tempreg = treg;
5134 }
5135 add_got_offset_hilo (tempreg, &offset_expr, AT);
5136 used_at = 1;
5137 }
5138 }
5139 else if (!mips_big_got && HAVE_NEWABI)
5140 {
5141 int add_breg_early = 0;
5142
5143 /* If this is a reference to an external, and there is no
5144 constant, or local symbol (*), with or without a
5145 constant, we want
5146 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
5147 or for lca or if tempreg is PIC_CALL_REG
5148 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
5149
5150 If we have a small constant, and this is a reference to
5151 an external symbol, we want
5152 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
5153 addiu $tempreg,$tempreg,<constant>
5154
5155 If we have a large constant, and this is a reference to
5156 an external symbol, we want
5157 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
5158 lui $at,<hiconstant>
5159 addiu $at,$at,<loconstant>
5160 addu $tempreg,$tempreg,$at
5161
5162 (*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
5163 local symbols, even though it introduces an additional
5164 instruction. */
5165
5166 if (offset_expr.X_add_number)
5167 {
5168 expr1.X_add_number = offset_expr.X_add_number;
5169 offset_expr.X_add_number = 0;
5170
5171 relax_start (offset_expr.X_add_symbol);
5172 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5173 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5174
5175 if (expr1.X_add_number >= -0x8000
5176 && expr1.X_add_number < 0x8000)
5177 {
5178 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
5179 tempreg, tempreg, BFD_RELOC_LO16);
5180 }
5181 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
5182 {
5183 int dreg;
5184
5185 /* If we are going to add in a base register, and the
5186 target register and the base register are the same,
5187 then we are using AT as a temporary register. Since
5188 we want to load the constant into AT, we add our
5189 current AT (from the global offset table) and the
5190 register into the register now, and pretend we were
5191 not using a base register. */
5192 if (breg != treg)
5193 dreg = tempreg;
5194 else
5195 {
5196 assert (tempreg == AT);
5197 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5198 treg, AT, breg);
5199 dreg = treg;
5200 add_breg_early = 1;
5201 }
5202
5203 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
5204 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5205 dreg, dreg, AT);
5206
5207 used_at = 1;
5208 }
5209 else
5210 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
5211
5212 relax_switch ();
5213 offset_expr.X_add_number = expr1.X_add_number;
5214
5215 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5216 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5217 if (add_breg_early)
5218 {
5219 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5220 treg, tempreg, breg);
5221 breg = 0;
5222 tempreg = treg;
5223 }
5224 relax_end ();
5225 }
5226 else if (breg == 0 && (call || tempreg == PIC_CALL_REG))
5227 {
5228 relax_start (offset_expr.X_add_symbol);
5229 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5230 BFD_RELOC_MIPS_CALL16, mips_gp_register);
5231 relax_switch ();
5232 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5233 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5234 relax_end ();
5235 }
5236 else
5237 {
5238 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5239 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5240 }
5241 }
5242 else if (mips_big_got && !HAVE_NEWABI)
5243 {
5244 int gpdelay;
5245 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
5246 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
5247 int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
5248
5249 /* This is the large GOT case. If this is a reference to an
5250 external symbol, and there is no constant, we want
5251 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5252 addu $tempreg,$tempreg,$gp
5253 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5254 or for lca or if tempreg is PIC_CALL_REG
5255 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
5256 addu $tempreg,$tempreg,$gp
5257 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
5258 For a local symbol, we want
5259 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5260 nop
5261 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
5262
5263 If we have a small constant, and this is a reference to
5264 an external symbol, we want
5265 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5266 addu $tempreg,$tempreg,$gp
5267 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5268 nop
5269 addiu $tempreg,$tempreg,<constant>
5270 For a local symbol, we want
5271 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5272 nop
5273 addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
5274
5275 If we have a large constant, and this is a reference to
5276 an external symbol, we want
5277 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5278 addu $tempreg,$tempreg,$gp
5279 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5280 lui $at,<hiconstant>
5281 addiu $at,$at,<loconstant>
5282 addu $tempreg,$tempreg,$at
5283 For a local symbol, we want
5284 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5285 lui $at,<hiconstant>
5286 addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
5287 addu $tempreg,$tempreg,$at
5288 */
5289
5290 expr1.X_add_number = offset_expr.X_add_number;
5291 offset_expr.X_add_number = 0;
5292 relax_start (offset_expr.X_add_symbol);
5293 gpdelay = reg_needs_delay (mips_gp_register);
5294 if (expr1.X_add_number == 0 && breg == 0
5295 && (call || tempreg == PIC_CALL_REG))
5296 {
5297 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
5298 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
5299 }
5300 macro_build (&offset_expr, "lui", "t,u", tempreg, lui_reloc_type);
5301 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5302 tempreg, tempreg, mips_gp_register);
5303 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
5304 tempreg, lw_reloc_type, tempreg);
5305 if (expr1.X_add_number == 0)
5306 {
5307 if (breg != 0)
5308 {
5309 /* We're going to put in an addu instruction using
5310 tempreg, so we may as well insert the nop right
5311 now. */
5312 load_delay_nop ();
5313 }
5314 }
5315 else if (expr1.X_add_number >= -0x8000
5316 && expr1.X_add_number < 0x8000)
5317 {
5318 load_delay_nop ();
5319 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
5320 tempreg, tempreg, BFD_RELOC_LO16);
5321 }
5322 else
5323 {
5324 int dreg;
5325
5326 /* If we are going to add in a base register, and the
5327 target register and the base register are the same,
5328 then we are using AT as a temporary register. Since
5329 we want to load the constant into AT, we add our
5330 current AT (from the global offset table) and the
5331 register into the register now, and pretend we were
5332 not using a base register. */
5333 if (breg != treg)
5334 dreg = tempreg;
5335 else
5336 {
5337 assert (tempreg == AT);
5338 load_delay_nop ();
5339 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5340 treg, AT, breg);
5341 dreg = treg;
5342 }
5343
5344 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
5345 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
5346
5347 used_at = 1;
5348 }
5349 offset_expr.X_add_number =
5350 ((expr1.X_add_number + 0x8000) & 0xffff) - 0x8000;
5351 relax_switch ();
5352
5353 if (gpdelay)
5354 {
5355 /* This is needed because this instruction uses $gp, but
5356 the first instruction on the main stream does not. */
5357 macro_build (NULL, "nop", "");
5358 }
5359
5360 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5361 local_reloc_type, mips_gp_register);
5362 if (expr1.X_add_number >= -0x8000
5363 && expr1.X_add_number < 0x8000)
5364 {
5365 load_delay_nop ();
5366 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5367 tempreg, tempreg, BFD_RELOC_LO16);
5368 /* FIXME: If add_number is 0, and there was no base
5369 register, the external symbol case ended with a load,
5370 so if the symbol turns out to not be external, and
5371 the next instruction uses tempreg, an unnecessary nop
5372 will be inserted. */
5373 }
5374 else
5375 {
5376 if (breg == treg)
5377 {
5378 /* We must add in the base register now, as in the
5379 external symbol case. */
5380 assert (tempreg == AT);
5381 load_delay_nop ();
5382 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5383 treg, AT, breg);
5384 tempreg = treg;
5385 /* We set breg to 0 because we have arranged to add
5386 it in in both cases. */
5387 breg = 0;
5388 }
5389
5390 macro_build_lui (&expr1, AT);
5391 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5392 AT, AT, BFD_RELOC_LO16);
5393 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5394 tempreg, tempreg, AT);
5395 used_at = 1;
5396 }
5397 relax_end ();
5398 }
5399 else if (mips_big_got && HAVE_NEWABI)
5400 {
5401 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
5402 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
5403 int add_breg_early = 0;
5404
5405 /* This is the large GOT case. If this is a reference to an
5406 external symbol, and there is no constant, we want
5407 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5408 add $tempreg,$tempreg,$gp
5409 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5410 or for lca or if tempreg is PIC_CALL_REG
5411 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
5412 add $tempreg,$tempreg,$gp
5413 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
5414
5415 If we have a small constant, and this is a reference to
5416 an external symbol, we want
5417 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5418 add $tempreg,$tempreg,$gp
5419 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5420 addi $tempreg,$tempreg,<constant>
5421
5422 If we have a large constant, and this is a reference to
5423 an external symbol, we want
5424 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5425 addu $tempreg,$tempreg,$gp
5426 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5427 lui $at,<hiconstant>
5428 addi $at,$at,<loconstant>
5429 add $tempreg,$tempreg,$at
5430
5431 If we have NewABI, and we know it's a local symbol, we want
5432 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
5433 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
5434 otherwise we have to resort to GOT_HI16/GOT_LO16. */
5435
5436 relax_start (offset_expr.X_add_symbol);
5437
5438 expr1.X_add_number = offset_expr.X_add_number;
5439 offset_expr.X_add_number = 0;
5440
5441 if (expr1.X_add_number == 0 && breg == 0
5442 && (call || tempreg == PIC_CALL_REG))
5443 {
5444 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
5445 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
5446 }
5447 macro_build (&offset_expr, "lui", "t,u", tempreg, lui_reloc_type);
5448 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5449 tempreg, tempreg, mips_gp_register);
5450 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
5451 tempreg, lw_reloc_type, tempreg);
5452
5453 if (expr1.X_add_number == 0)
5454 ;
5455 else if (expr1.X_add_number >= -0x8000
5456 && expr1.X_add_number < 0x8000)
5457 {
5458 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
5459 tempreg, tempreg, BFD_RELOC_LO16);
5460 }
5461 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
5462 {
5463 int dreg;
5464
5465 /* If we are going to add in a base register, and the
5466 target register and the base register are the same,
5467 then we are using AT as a temporary register. Since
5468 we want to load the constant into AT, we add our
5469 current AT (from the global offset table) and the
5470 register into the register now, and pretend we were
5471 not using a base register. */
5472 if (breg != treg)
5473 dreg = tempreg;
5474 else
5475 {
5476 assert (tempreg == AT);
5477 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5478 treg, AT, breg);
5479 dreg = treg;
5480 add_breg_early = 1;
5481 }
5482
5483 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
5484 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
5485
5486 used_at = 1;
5487 }
5488 else
5489 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
5490
5491 relax_switch ();
5492 offset_expr.X_add_number = expr1.X_add_number;
5493 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5494 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
5495 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
5496 tempreg, BFD_RELOC_MIPS_GOT_OFST);
5497 if (add_breg_early)
5498 {
5499 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5500 treg, tempreg, breg);
5501 breg = 0;
5502 tempreg = treg;
5503 }
5504 relax_end ();
5505 }
5506 else
5507 abort ();
5508
5509 if (breg != 0)
5510 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", treg, tempreg, breg);
5511 break;
5512
5513 case M_J_A:
5514 /* The j instruction may not be used in PIC code, since it
5515 requires an absolute address. We convert it to a b
5516 instruction. */
5517 if (mips_pic == NO_PIC)
5518 macro_build (&offset_expr, "j", "a");
5519 else
5520 macro_build (&offset_expr, "b", "p");
5521 break;
5522
5523 /* The jal instructions must be handled as macros because when
5524 generating PIC code they expand to multi-instruction
5525 sequences. Normally they are simple instructions. */
5526 case M_JAL_1:
5527 dreg = RA;
5528 /* Fall through. */
5529 case M_JAL_2:
5530 if (mips_pic == NO_PIC)
5531 macro_build (NULL, "jalr", "d,s", dreg, sreg);
5532 else
5533 {
5534 if (sreg != PIC_CALL_REG)
5535 as_warn (_("MIPS PIC call to register other than $25"));
5536
5537 macro_build (NULL, "jalr", "d,s", dreg, sreg);
5538 if (mips_pic == SVR4_PIC && !HAVE_NEWABI)
5539 {
5540 if (mips_cprestore_offset < 0)
5541 as_warn (_("No .cprestore pseudo-op used in PIC code"));
5542 else
5543 {
5544 if (! mips_frame_reg_valid)
5545 {
5546 as_warn (_("No .frame pseudo-op used in PIC code"));
5547 /* Quiet this warning. */
5548 mips_frame_reg_valid = 1;
5549 }
5550 if (! mips_cprestore_valid)
5551 {
5552 as_warn (_("No .cprestore pseudo-op used in PIC code"));
5553 /* Quiet this warning. */
5554 mips_cprestore_valid = 1;
5555 }
5556 expr1.X_add_number = mips_cprestore_offset;
5557 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
5558 mips_gp_register,
5559 mips_frame_reg,
5560 HAVE_64BIT_ADDRESSES);
5561 }
5562 }
5563 }
5564
5565 break;
5566
5567 case M_JAL_A:
5568 if (mips_pic == NO_PIC)
5569 macro_build (&offset_expr, "jal", "a");
5570 else if (mips_pic == SVR4_PIC)
5571 {
5572 /* If this is a reference to an external symbol, and we are
5573 using a small GOT, we want
5574 lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
5575 nop
5576 jalr $ra,$25
5577 nop
5578 lw $gp,cprestore($sp)
5579 The cprestore value is set using the .cprestore
5580 pseudo-op. If we are using a big GOT, we want
5581 lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
5582 addu $25,$25,$gp
5583 lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
5584 nop
5585 jalr $ra,$25
5586 nop
5587 lw $gp,cprestore($sp)
5588 If the symbol is not external, we want
5589 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5590 nop
5591 addiu $25,$25,<sym> (BFD_RELOC_LO16)
5592 jalr $ra,$25
5593 nop
5594 lw $gp,cprestore($sp)
5595
5596 For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
5597 sequences above, minus nops, unless the symbol is local,
5598 which enables us to use GOT_PAGE/GOT_OFST (big got) or
5599 GOT_DISP. */
5600 if (HAVE_NEWABI)
5601 {
5602 if (! mips_big_got)
5603 {
5604 relax_start (offset_expr.X_add_symbol);
5605 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
5606 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
5607 mips_gp_register);
5608 relax_switch ();
5609 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
5610 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP,
5611 mips_gp_register);
5612 relax_end ();
5613 }
5614 else
5615 {
5616 relax_start (offset_expr.X_add_symbol);
5617 macro_build (&offset_expr, "lui", "t,u", PIC_CALL_REG,
5618 BFD_RELOC_MIPS_CALL_HI16);
5619 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
5620 PIC_CALL_REG, mips_gp_register);
5621 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
5622 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
5623 PIC_CALL_REG);
5624 relax_switch ();
5625 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
5626 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE,
5627 mips_gp_register);
5628 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5629 PIC_CALL_REG, PIC_CALL_REG,
5630 BFD_RELOC_MIPS_GOT_OFST);
5631 relax_end ();
5632 }
5633
5634 macro_build_jalr (&offset_expr);
5635 }
5636 else
5637 {
5638 relax_start (offset_expr.X_add_symbol);
5639 if (! mips_big_got)
5640 {
5641 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
5642 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
5643 mips_gp_register);
5644 load_delay_nop ();
5645 relax_switch ();
5646 }
5647 else
5648 {
5649 int gpdelay;
5650
5651 gpdelay = reg_needs_delay (mips_gp_register);
5652 macro_build (&offset_expr, "lui", "t,u", PIC_CALL_REG,
5653 BFD_RELOC_MIPS_CALL_HI16);
5654 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
5655 PIC_CALL_REG, mips_gp_register);
5656 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
5657 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
5658 PIC_CALL_REG);
5659 load_delay_nop ();
5660 relax_switch ();
5661 if (gpdelay)
5662 macro_build (NULL, "nop", "");
5663 }
5664 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
5665 PIC_CALL_REG, BFD_RELOC_MIPS_GOT16,
5666 mips_gp_register);
5667 load_delay_nop ();
5668 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5669 PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16);
5670 relax_end ();
5671 macro_build_jalr (&offset_expr);
5672
5673 if (mips_cprestore_offset < 0)
5674 as_warn (_("No .cprestore pseudo-op used in PIC code"));
5675 else
5676 {
5677 if (! mips_frame_reg_valid)
5678 {
5679 as_warn (_("No .frame pseudo-op used in PIC code"));
5680 /* Quiet this warning. */
5681 mips_frame_reg_valid = 1;
5682 }
5683 if (! mips_cprestore_valid)
5684 {
5685 as_warn (_("No .cprestore pseudo-op used in PIC code"));
5686 /* Quiet this warning. */
5687 mips_cprestore_valid = 1;
5688 }
5689 if (mips_opts.noreorder)
5690 macro_build (NULL, "nop", "");
5691 expr1.X_add_number = mips_cprestore_offset;
5692 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
5693 mips_gp_register,
5694 mips_frame_reg,
5695 HAVE_64BIT_ADDRESSES);
5696 }
5697 }
5698 }
5699 else if (mips_pic == VXWORKS_PIC)
5700 as_bad (_("Non-PIC jump used in PIC library"));
5701 else
5702 abort ();
5703
5704 break;
5705
5706 case M_LB_AB:
5707 s = "lb";
5708 goto ld;
5709 case M_LBU_AB:
5710 s = "lbu";
5711 goto ld;
5712 case M_LH_AB:
5713 s = "lh";
5714 goto ld;
5715 case M_LHU_AB:
5716 s = "lhu";
5717 goto ld;
5718 case M_LW_AB:
5719 s = "lw";
5720 goto ld;
5721 case M_LWC0_AB:
5722 s = "lwc0";
5723 /* Itbl support may require additional care here. */
5724 coproc = 1;
5725 goto ld;
5726 case M_LWC1_AB:
5727 s = "lwc1";
5728 /* Itbl support may require additional care here. */
5729 coproc = 1;
5730 goto ld;
5731 case M_LWC2_AB:
5732 s = "lwc2";
5733 /* Itbl support may require additional care here. */
5734 coproc = 1;
5735 goto ld;
5736 case M_LWC3_AB:
5737 s = "lwc3";
5738 /* Itbl support may require additional care here. */
5739 coproc = 1;
5740 goto ld;
5741 case M_LWL_AB:
5742 s = "lwl";
5743 lr = 1;
5744 goto ld;
5745 case M_LWR_AB:
5746 s = "lwr";
5747 lr = 1;
5748 goto ld;
5749 case M_LDC1_AB:
5750 if (mips_opts.arch == CPU_R4650)
5751 {
5752 as_bad (_("opcode not supported on this processor"));
5753 break;
5754 }
5755 s = "ldc1";
5756 /* Itbl support may require additional care here. */
5757 coproc = 1;
5758 goto ld;
5759 case M_LDC2_AB:
5760 s = "ldc2";
5761 /* Itbl support may require additional care here. */
5762 coproc = 1;
5763 goto ld;
5764 case M_LDC3_AB:
5765 s = "ldc3";
5766 /* Itbl support may require additional care here. */
5767 coproc = 1;
5768 goto ld;
5769 case M_LDL_AB:
5770 s = "ldl";
5771 lr = 1;
5772 goto ld;
5773 case M_LDR_AB:
5774 s = "ldr";
5775 lr = 1;
5776 goto ld;
5777 case M_LL_AB:
5778 s = "ll";
5779 goto ld;
5780 case M_LLD_AB:
5781 s = "lld";
5782 goto ld;
5783 case M_LWU_AB:
5784 s = "lwu";
5785 ld:
5786 if (breg == treg || coproc || lr)
5787 {
5788 tempreg = AT;
5789 used_at = 1;
5790 }
5791 else
5792 {
5793 tempreg = treg;
5794 }
5795 goto ld_st;
5796 case M_SB_AB:
5797 s = "sb";
5798 goto st;
5799 case M_SH_AB:
5800 s = "sh";
5801 goto st;
5802 case M_SW_AB:
5803 s = "sw";
5804 goto st;
5805 case M_SWC0_AB:
5806 s = "swc0";
5807 /* Itbl support may require additional care here. */
5808 coproc = 1;
5809 goto st;
5810 case M_SWC1_AB:
5811 s = "swc1";
5812 /* Itbl support may require additional care here. */
5813 coproc = 1;
5814 goto st;
5815 case M_SWC2_AB:
5816 s = "swc2";
5817 /* Itbl support may require additional care here. */
5818 coproc = 1;
5819 goto st;
5820 case M_SWC3_AB:
5821 s = "swc3";
5822 /* Itbl support may require additional care here. */
5823 coproc = 1;
5824 goto st;
5825 case M_SWL_AB:
5826 s = "swl";
5827 goto st;
5828 case M_SWR_AB:
5829 s = "swr";
5830 goto st;
5831 case M_SC_AB:
5832 s = "sc";
5833 goto st;
5834 case M_SCD_AB:
5835 s = "scd";
5836 goto st;
5837 case M_CACHE_AB:
5838 s = "cache";
5839 goto st;
5840 case M_SDC1_AB:
5841 if (mips_opts.arch == CPU_R4650)
5842 {
5843 as_bad (_("opcode not supported on this processor"));
5844 break;
5845 }
5846 s = "sdc1";
5847 coproc = 1;
5848 /* Itbl support may require additional care here. */
5849 goto st;
5850 case M_SDC2_AB:
5851 s = "sdc2";
5852 /* Itbl support may require additional care here. */
5853 coproc = 1;
5854 goto st;
5855 case M_SDC3_AB:
5856 s = "sdc3";
5857 /* Itbl support may require additional care here. */
5858 coproc = 1;
5859 goto st;
5860 case M_SDL_AB:
5861 s = "sdl";
5862 goto st;
5863 case M_SDR_AB:
5864 s = "sdr";
5865 st:
5866 tempreg = AT;
5867 used_at = 1;
5868 ld_st:
5869 /* Itbl support may require additional care here. */
5870 if (mask == M_LWC1_AB
5871 || mask == M_SWC1_AB
5872 || mask == M_LDC1_AB
5873 || mask == M_SDC1_AB
5874 || mask == M_L_DAB
5875 || mask == M_S_DAB)
5876 fmt = "T,o(b)";
5877 else if (mask == M_CACHE_AB)
5878 fmt = "k,o(b)";
5879 else if (coproc)
5880 fmt = "E,o(b)";
5881 else
5882 fmt = "t,o(b)";
5883
5884 if (offset_expr.X_op != O_constant
5885 && offset_expr.X_op != O_symbol)
5886 {
5887 as_bad (_("expression too complex"));
5888 offset_expr.X_op = O_constant;
5889 }
5890
5891 if (HAVE_32BIT_ADDRESSES
5892 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
5893 {
5894 char value [32];
5895
5896 sprintf_vma (value, offset_expr.X_add_number);
5897 as_bad (_("Number (0x%s) larger than 32 bits"), value);
5898 }
5899
5900 /* A constant expression in PIC code can be handled just as it
5901 is in non PIC code. */
5902 if (offset_expr.X_op == O_constant)
5903 {
5904 expr1.X_add_number = ((offset_expr.X_add_number + 0x8000)
5905 & ~(bfd_vma) 0xffff);
5906 normalize_address_expr (&expr1);
5907 load_register (tempreg, &expr1, HAVE_64BIT_ADDRESSES);
5908 if (breg != 0)
5909 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5910 tempreg, tempreg, breg);
5911 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_LO16, tempreg);
5912 }
5913 else if (mips_pic == NO_PIC)
5914 {
5915 /* If this is a reference to a GP relative symbol, and there
5916 is no base register, we want
5917 <op> $treg,<sym>($gp) (BFD_RELOC_GPREL16)
5918 Otherwise, if there is no base register, we want
5919 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
5920 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
5921 If we have a constant, we need two instructions anyhow,
5922 so we always use the latter form.
5923
5924 If we have a base register, and this is a reference to a
5925 GP relative symbol, we want
5926 addu $tempreg,$breg,$gp
5927 <op> $treg,<sym>($tempreg) (BFD_RELOC_GPREL16)
5928 Otherwise we want
5929 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
5930 addu $tempreg,$tempreg,$breg
5931 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
5932 With a constant we always use the latter case.
5933
5934 With 64bit address space and no base register and $at usable,
5935 we want
5936 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
5937 lui $at,<sym> (BFD_RELOC_HI16_S)
5938 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
5939 dsll32 $tempreg,0
5940 daddu $tempreg,$at
5941 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
5942 If we have a base register, we want
5943 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
5944 lui $at,<sym> (BFD_RELOC_HI16_S)
5945 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
5946 daddu $at,$breg
5947 dsll32 $tempreg,0
5948 daddu $tempreg,$at
5949 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
5950
5951 Without $at we can't generate the optimal path for superscalar
5952 processors here since this would require two temporary registers.
5953 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
5954 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
5955 dsll $tempreg,16
5956 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
5957 dsll $tempreg,16
5958 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
5959 If we have a base register, we want
5960 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
5961 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
5962 dsll $tempreg,16
5963 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
5964 dsll $tempreg,16
5965 daddu $tempreg,$tempreg,$breg
5966 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
5967
5968 For GP relative symbols in 64bit address space we can use
5969 the same sequence as in 32bit address space. */
5970 if (HAVE_64BIT_SYMBOLS)
5971 {
5972 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
5973 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
5974 {
5975 relax_start (offset_expr.X_add_symbol);
5976 if (breg == 0)
5977 {
5978 macro_build (&offset_expr, s, fmt, treg,
5979 BFD_RELOC_GPREL16, mips_gp_register);
5980 }
5981 else
5982 {
5983 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5984 tempreg, breg, mips_gp_register);
5985 macro_build (&offset_expr, s, fmt, treg,
5986 BFD_RELOC_GPREL16, tempreg);
5987 }
5988 relax_switch ();
5989 }
5990
5991 if (used_at == 0 && !mips_opts.noat)
5992 {
5993 macro_build (&offset_expr, "lui", "t,u", tempreg,
5994 BFD_RELOC_MIPS_HIGHEST);
5995 macro_build (&offset_expr, "lui", "t,u", AT,
5996 BFD_RELOC_HI16_S);
5997 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
5998 tempreg, BFD_RELOC_MIPS_HIGHER);
5999 if (breg != 0)
6000 macro_build (NULL, "daddu", "d,v,t", AT, AT, breg);
6001 macro_build (NULL, "dsll32", "d,w,<", tempreg, tempreg, 0);
6002 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
6003 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_LO16,
6004 tempreg);
6005 used_at = 1;
6006 }
6007 else
6008 {
6009 macro_build (&offset_expr, "lui", "t,u", tempreg,
6010 BFD_RELOC_MIPS_HIGHEST);
6011 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
6012 tempreg, BFD_RELOC_MIPS_HIGHER);
6013 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16);
6014 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
6015 tempreg, BFD_RELOC_HI16_S);
6016 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16);
6017 if (breg != 0)
6018 macro_build (NULL, "daddu", "d,v,t",
6019 tempreg, tempreg, breg);
6020 macro_build (&offset_expr, s, fmt, treg,
6021 BFD_RELOC_LO16, tempreg);
6022 }
6023
6024 if (mips_relax.sequence)
6025 relax_end ();
6026 break;
6027 }
6028
6029 if (breg == 0)
6030 {
6031 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6032 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
6033 {
6034 relax_start (offset_expr.X_add_symbol);
6035 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_GPREL16,
6036 mips_gp_register);
6037 relax_switch ();
6038 }
6039 macro_build_lui (&offset_expr, tempreg);
6040 macro_build (&offset_expr, s, fmt, treg,
6041 BFD_RELOC_LO16, tempreg);
6042 if (mips_relax.sequence)
6043 relax_end ();
6044 }
6045 else
6046 {
6047 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6048 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
6049 {
6050 relax_start (offset_expr.X_add_symbol);
6051 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6052 tempreg, breg, mips_gp_register);
6053 macro_build (&offset_expr, s, fmt, treg,
6054 BFD_RELOC_GPREL16, tempreg);
6055 relax_switch ();
6056 }
6057 macro_build_lui (&offset_expr, tempreg);
6058 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6059 tempreg, tempreg, breg);
6060 macro_build (&offset_expr, s, fmt, treg,
6061 BFD_RELOC_LO16, tempreg);
6062 if (mips_relax.sequence)
6063 relax_end ();
6064 }
6065 }
6066 else if (!mips_big_got)
6067 {
6068 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
6069
6070 /* If this is a reference to an external symbol, we want
6071 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6072 nop
6073 <op> $treg,0($tempreg)
6074 Otherwise we want
6075 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6076 nop
6077 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
6078 <op> $treg,0($tempreg)
6079
6080 For NewABI, we want
6081 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
6082 <op> $treg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
6083
6084 If there is a base register, we add it to $tempreg before
6085 the <op>. If there is a constant, we stick it in the
6086 <op> instruction. We don't handle constants larger than
6087 16 bits, because we have no way to load the upper 16 bits
6088 (actually, we could handle them for the subset of cases
6089 in which we are not using $at). */
6090 assert (offset_expr.X_op == O_symbol);
6091 if (HAVE_NEWABI)
6092 {
6093 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6094 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
6095 if (breg != 0)
6096 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6097 tempreg, tempreg, breg);
6098 macro_build (&offset_expr, s, fmt, treg,
6099 BFD_RELOC_MIPS_GOT_OFST, tempreg);
6100 break;
6101 }
6102 expr1.X_add_number = offset_expr.X_add_number;
6103 offset_expr.X_add_number = 0;
6104 if (expr1.X_add_number < -0x8000
6105 || expr1.X_add_number >= 0x8000)
6106 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6107 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6108 lw_reloc_type, mips_gp_register);
6109 load_delay_nop ();
6110 relax_start (offset_expr.X_add_symbol);
6111 relax_switch ();
6112 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
6113 tempreg, BFD_RELOC_LO16);
6114 relax_end ();
6115 if (breg != 0)
6116 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6117 tempreg, tempreg, breg);
6118 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
6119 }
6120 else if (mips_big_got && !HAVE_NEWABI)
6121 {
6122 int gpdelay;
6123
6124 /* If this is a reference to an external symbol, we want
6125 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6126 addu $tempreg,$tempreg,$gp
6127 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
6128 <op> $treg,0($tempreg)
6129 Otherwise we want
6130 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6131 nop
6132 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
6133 <op> $treg,0($tempreg)
6134 If there is a base register, we add it to $tempreg before
6135 the <op>. If there is a constant, we stick it in the
6136 <op> instruction. We don't handle constants larger than
6137 16 bits, because we have no way to load the upper 16 bits
6138 (actually, we could handle them for the subset of cases
6139 in which we are not using $at). */
6140 assert (offset_expr.X_op == O_symbol);
6141 expr1.X_add_number = offset_expr.X_add_number;
6142 offset_expr.X_add_number = 0;
6143 if (expr1.X_add_number < -0x8000
6144 || expr1.X_add_number >= 0x8000)
6145 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6146 gpdelay = reg_needs_delay (mips_gp_register);
6147 relax_start (offset_expr.X_add_symbol);
6148 macro_build (&offset_expr, "lui", "t,u", tempreg,
6149 BFD_RELOC_MIPS_GOT_HI16);
6150 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
6151 mips_gp_register);
6152 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6153 BFD_RELOC_MIPS_GOT_LO16, tempreg);
6154 relax_switch ();
6155 if (gpdelay)
6156 macro_build (NULL, "nop", "");
6157 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6158 BFD_RELOC_MIPS_GOT16, mips_gp_register);
6159 load_delay_nop ();
6160 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
6161 tempreg, BFD_RELOC_LO16);
6162 relax_end ();
6163
6164 if (breg != 0)
6165 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6166 tempreg, tempreg, breg);
6167 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
6168 }
6169 else if (mips_big_got && HAVE_NEWABI)
6170 {
6171 /* If this is a reference to an external symbol, we want
6172 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6173 add $tempreg,$tempreg,$gp
6174 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
6175 <op> $treg,<ofst>($tempreg)
6176 Otherwise, for local symbols, we want:
6177 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
6178 <op> $treg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
6179 assert (offset_expr.X_op == O_symbol);
6180 expr1.X_add_number = offset_expr.X_add_number;
6181 offset_expr.X_add_number = 0;
6182 if (expr1.X_add_number < -0x8000
6183 || expr1.X_add_number >= 0x8000)
6184 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6185 relax_start (offset_expr.X_add_symbol);
6186 macro_build (&offset_expr, "lui", "t,u", tempreg,
6187 BFD_RELOC_MIPS_GOT_HI16);
6188 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
6189 mips_gp_register);
6190 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6191 BFD_RELOC_MIPS_GOT_LO16, tempreg);
6192 if (breg != 0)
6193 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6194 tempreg, tempreg, breg);
6195 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
6196
6197 relax_switch ();
6198 offset_expr.X_add_number = expr1.X_add_number;
6199 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6200 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
6201 if (breg != 0)
6202 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6203 tempreg, tempreg, breg);
6204 macro_build (&offset_expr, s, fmt, treg,
6205 BFD_RELOC_MIPS_GOT_OFST, tempreg);
6206 relax_end ();
6207 }
6208 else
6209 abort ();
6210
6211 break;
6212
6213 case M_LI:
6214 case M_LI_S:
6215 load_register (treg, &imm_expr, 0);
6216 break;
6217
6218 case M_DLI:
6219 load_register (treg, &imm_expr, 1);
6220 break;
6221
6222 case M_LI_SS:
6223 if (imm_expr.X_op == O_constant)
6224 {
6225 used_at = 1;
6226 load_register (AT, &imm_expr, 0);
6227 macro_build (NULL, "mtc1", "t,G", AT, treg);
6228 break;
6229 }
6230 else
6231 {
6232 assert (offset_expr.X_op == O_symbol
6233 && strcmp (segment_name (S_GET_SEGMENT
6234 (offset_expr.X_add_symbol)),
6235 ".lit4") == 0
6236 && offset_expr.X_add_number == 0);
6237 macro_build (&offset_expr, "lwc1", "T,o(b)", treg,
6238 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
6239 break;
6240 }
6241
6242 case M_LI_D:
6243 /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
6244 wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
6245 order 32 bits of the value and the low order 32 bits are either
6246 zero or in OFFSET_EXPR. */
6247 if (imm_expr.X_op == O_constant || imm_expr.X_op == O_big)
6248 {
6249 if (HAVE_64BIT_GPRS)
6250 load_register (treg, &imm_expr, 1);
6251 else
6252 {
6253 int hreg, lreg;
6254
6255 if (target_big_endian)
6256 {
6257 hreg = treg;
6258 lreg = treg + 1;
6259 }
6260 else
6261 {
6262 hreg = treg + 1;
6263 lreg = treg;
6264 }
6265
6266 if (hreg <= 31)
6267 load_register (hreg, &imm_expr, 0);
6268 if (lreg <= 31)
6269 {
6270 if (offset_expr.X_op == O_absent)
6271 move_register (lreg, 0);
6272 else
6273 {
6274 assert (offset_expr.X_op == O_constant);
6275 load_register (lreg, &offset_expr, 0);
6276 }
6277 }
6278 }
6279 break;
6280 }
6281
6282 /* We know that sym is in the .rdata section. First we get the
6283 upper 16 bits of the address. */
6284 if (mips_pic == NO_PIC)
6285 {
6286 macro_build_lui (&offset_expr, AT);
6287 used_at = 1;
6288 }
6289 else
6290 {
6291 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
6292 BFD_RELOC_MIPS_GOT16, mips_gp_register);
6293 used_at = 1;
6294 }
6295
6296 /* Now we load the register(s). */
6297 if (HAVE_64BIT_GPRS)
6298 {
6299 used_at = 1;
6300 macro_build (&offset_expr, "ld", "t,o(b)", treg, BFD_RELOC_LO16, AT);
6301 }
6302 else
6303 {
6304 used_at = 1;
6305 macro_build (&offset_expr, "lw", "t,o(b)", treg, BFD_RELOC_LO16, AT);
6306 if (treg != RA)
6307 {
6308 /* FIXME: How in the world do we deal with the possible
6309 overflow here? */
6310 offset_expr.X_add_number += 4;
6311 macro_build (&offset_expr, "lw", "t,o(b)",
6312 treg + 1, BFD_RELOC_LO16, AT);
6313 }
6314 }
6315 break;
6316
6317 case M_LI_DD:
6318 /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
6319 wide, IMM_EXPR is the entire value and the GPRs are known to be 64
6320 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
6321 the value and the low order 32 bits are either zero or in
6322 OFFSET_EXPR. */
6323 if (imm_expr.X_op == O_constant || imm_expr.X_op == O_big)
6324 {
6325 used_at = 1;
6326 load_register (AT, &imm_expr, HAVE_64BIT_FPRS);
6327 if (HAVE_64BIT_FPRS)
6328 {
6329 assert (HAVE_64BIT_GPRS);
6330 macro_build (NULL, "dmtc1", "t,S", AT, treg);
6331 }
6332 else
6333 {
6334 macro_build (NULL, "mtc1", "t,G", AT, treg + 1);
6335 if (offset_expr.X_op == O_absent)
6336 macro_build (NULL, "mtc1", "t,G", 0, treg);
6337 else
6338 {
6339 assert (offset_expr.X_op == O_constant);
6340 load_register (AT, &offset_expr, 0);
6341 macro_build (NULL, "mtc1", "t,G", AT, treg);
6342 }
6343 }
6344 break;
6345 }
6346
6347 assert (offset_expr.X_op == O_symbol
6348 && offset_expr.X_add_number == 0);
6349 s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
6350 if (strcmp (s, ".lit8") == 0)
6351 {
6352 if (mips_opts.isa != ISA_MIPS1)
6353 {
6354 macro_build (&offset_expr, "ldc1", "T,o(b)", treg,
6355 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
6356 break;
6357 }
6358 breg = mips_gp_register;
6359 r = BFD_RELOC_MIPS_LITERAL;
6360 goto dob;
6361 }
6362 else
6363 {
6364 assert (strcmp (s, RDATA_SECTION_NAME) == 0);
6365 used_at = 1;
6366 if (mips_pic != NO_PIC)
6367 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
6368 BFD_RELOC_MIPS_GOT16, mips_gp_register);
6369 else
6370 {
6371 /* FIXME: This won't work for a 64 bit address. */
6372 macro_build_lui (&offset_expr, AT);
6373 }
6374
6375 if (mips_opts.isa != ISA_MIPS1)
6376 {
6377 macro_build (&offset_expr, "ldc1", "T,o(b)",
6378 treg, BFD_RELOC_LO16, AT);
6379 break;
6380 }
6381 breg = AT;
6382 r = BFD_RELOC_LO16;
6383 goto dob;
6384 }
6385
6386 case M_L_DOB:
6387 if (mips_opts.arch == CPU_R4650)
6388 {
6389 as_bad (_("opcode not supported on this processor"));
6390 break;
6391 }
6392 /* Even on a big endian machine $fn comes before $fn+1. We have
6393 to adjust when loading from memory. */
6394 r = BFD_RELOC_LO16;
6395 dob:
6396 assert (mips_opts.isa == ISA_MIPS1);
6397 macro_build (&offset_expr, "lwc1", "T,o(b)",
6398 target_big_endian ? treg + 1 : treg, r, breg);
6399 /* FIXME: A possible overflow which I don't know how to deal
6400 with. */
6401 offset_expr.X_add_number += 4;
6402 macro_build (&offset_expr, "lwc1", "T,o(b)",
6403 target_big_endian ? treg : treg + 1, r, breg);
6404 break;
6405
6406 case M_L_DAB:
6407 /*
6408 * The MIPS assembler seems to check for X_add_number not
6409 * being double aligned and generating:
6410 * lui at,%hi(foo+1)
6411 * addu at,at,v1
6412 * addiu at,at,%lo(foo+1)
6413 * lwc1 f2,0(at)
6414 * lwc1 f3,4(at)
6415 * But, the resulting address is the same after relocation so why
6416 * generate the extra instruction?
6417 */
6418 if (mips_opts.arch == CPU_R4650)
6419 {
6420 as_bad (_("opcode not supported on this processor"));
6421 break;
6422 }
6423 /* Itbl support may require additional care here. */
6424 coproc = 1;
6425 if (mips_opts.isa != ISA_MIPS1)
6426 {
6427 s = "ldc1";
6428 goto ld;
6429 }
6430
6431 s = "lwc1";
6432 fmt = "T,o(b)";
6433 goto ldd_std;
6434
6435 case M_S_DAB:
6436 if (mips_opts.arch == CPU_R4650)
6437 {
6438 as_bad (_("opcode not supported on this processor"));
6439 break;
6440 }
6441
6442 if (mips_opts.isa != ISA_MIPS1)
6443 {
6444 s = "sdc1";
6445 goto st;
6446 }
6447
6448 s = "swc1";
6449 fmt = "T,o(b)";
6450 /* Itbl support may require additional care here. */
6451 coproc = 1;
6452 goto ldd_std;
6453
6454 case M_LD_AB:
6455 if (HAVE_64BIT_GPRS)
6456 {
6457 s = "ld";
6458 goto ld;
6459 }
6460
6461 s = "lw";
6462 fmt = "t,o(b)";
6463 goto ldd_std;
6464
6465 case M_SD_AB:
6466 if (HAVE_64BIT_GPRS)
6467 {
6468 s = "sd";
6469 goto st;
6470 }
6471
6472 s = "sw";
6473 fmt = "t,o(b)";
6474
6475 ldd_std:
6476 if (offset_expr.X_op != O_symbol
6477 && offset_expr.X_op != O_constant)
6478 {
6479 as_bad (_("expression too complex"));
6480 offset_expr.X_op = O_constant;
6481 }
6482
6483 if (HAVE_32BIT_ADDRESSES
6484 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
6485 {
6486 char value [32];
6487
6488 sprintf_vma (value, offset_expr.X_add_number);
6489 as_bad (_("Number (0x%s) larger than 32 bits"), value);
6490 }
6491
6492 /* Even on a big endian machine $fn comes before $fn+1. We have
6493 to adjust when loading from memory. We set coproc if we must
6494 load $fn+1 first. */
6495 /* Itbl support may require additional care here. */
6496 if (! target_big_endian)
6497 coproc = 0;
6498
6499 if (mips_pic == NO_PIC
6500 || offset_expr.X_op == O_constant)
6501 {
6502 /* If this is a reference to a GP relative symbol, we want
6503 <op> $treg,<sym>($gp) (BFD_RELOC_GPREL16)
6504 <op> $treg+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
6505 If we have a base register, we use this
6506 addu $at,$breg,$gp
6507 <op> $treg,<sym>($at) (BFD_RELOC_GPREL16)
6508 <op> $treg+1,<sym>+4($at) (BFD_RELOC_GPREL16)
6509 If this is not a GP relative symbol, we want
6510 lui $at,<sym> (BFD_RELOC_HI16_S)
6511 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
6512 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
6513 If there is a base register, we add it to $at after the
6514 lui instruction. If there is a constant, we always use
6515 the last case. */
6516 if (offset_expr.X_op == O_symbol
6517 && (valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6518 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
6519 {
6520 relax_start (offset_expr.X_add_symbol);
6521 if (breg == 0)
6522 {
6523 tempreg = mips_gp_register;
6524 }
6525 else
6526 {
6527 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6528 AT, breg, mips_gp_register);
6529 tempreg = AT;
6530 used_at = 1;
6531 }
6532
6533 /* Itbl support may require additional care here. */
6534 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
6535 BFD_RELOC_GPREL16, tempreg);
6536 offset_expr.X_add_number += 4;
6537
6538 /* Set mips_optimize to 2 to avoid inserting an
6539 undesired nop. */
6540 hold_mips_optimize = mips_optimize;
6541 mips_optimize = 2;
6542 /* Itbl support may require additional care here. */
6543 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
6544 BFD_RELOC_GPREL16, tempreg);
6545 mips_optimize = hold_mips_optimize;
6546
6547 relax_switch ();
6548
6549 /* We just generated two relocs. When tc_gen_reloc
6550 handles this case, it will skip the first reloc and
6551 handle the second. The second reloc already has an
6552 extra addend of 4, which we added above. We must
6553 subtract it out, and then subtract another 4 to make
6554 the first reloc come out right. The second reloc
6555 will come out right because we are going to add 4 to
6556 offset_expr when we build its instruction below.
6557
6558 If we have a symbol, then we don't want to include
6559 the offset, because it will wind up being included
6560 when we generate the reloc. */
6561
6562 if (offset_expr.X_op == O_constant)
6563 offset_expr.X_add_number -= 8;
6564 else
6565 {
6566 offset_expr.X_add_number = -4;
6567 offset_expr.X_op = O_constant;
6568 }
6569 }
6570 used_at = 1;
6571 macro_build_lui (&offset_expr, AT);
6572 if (breg != 0)
6573 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
6574 /* Itbl support may require additional care here. */
6575 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
6576 BFD_RELOC_LO16, AT);
6577 /* FIXME: How do we handle overflow here? */
6578 offset_expr.X_add_number += 4;
6579 /* Itbl support may require additional care here. */
6580 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
6581 BFD_RELOC_LO16, AT);
6582 if (mips_relax.sequence)
6583 relax_end ();
6584 }
6585 else if (!mips_big_got)
6586 {
6587 /* If this is a reference to an external symbol, we want
6588 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6589 nop
6590 <op> $treg,0($at)
6591 <op> $treg+1,4($at)
6592 Otherwise we want
6593 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6594 nop
6595 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
6596 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
6597 If there is a base register we add it to $at before the
6598 lwc1 instructions. If there is a constant we include it
6599 in the lwc1 instructions. */
6600 used_at = 1;
6601 expr1.X_add_number = offset_expr.X_add_number;
6602 if (expr1.X_add_number < -0x8000
6603 || expr1.X_add_number >= 0x8000 - 4)
6604 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6605 load_got_offset (AT, &offset_expr);
6606 load_delay_nop ();
6607 if (breg != 0)
6608 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
6609
6610 /* Set mips_optimize to 2 to avoid inserting an undesired
6611 nop. */
6612 hold_mips_optimize = mips_optimize;
6613 mips_optimize = 2;
6614
6615 /* Itbl support may require additional care here. */
6616 relax_start (offset_expr.X_add_symbol);
6617 macro_build (&expr1, s, fmt, coproc ? treg + 1 : treg,
6618 BFD_RELOC_LO16, AT);
6619 expr1.X_add_number += 4;
6620 macro_build (&expr1, s, fmt, coproc ? treg : treg + 1,
6621 BFD_RELOC_LO16, AT);
6622 relax_switch ();
6623 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
6624 BFD_RELOC_LO16, AT);
6625 offset_expr.X_add_number += 4;
6626 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
6627 BFD_RELOC_LO16, AT);
6628 relax_end ();
6629
6630 mips_optimize = hold_mips_optimize;
6631 }
6632 else if (mips_big_got)
6633 {
6634 int gpdelay;
6635
6636 /* If this is a reference to an external symbol, we want
6637 lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6638 addu $at,$at,$gp
6639 lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
6640 nop
6641 <op> $treg,0($at)
6642 <op> $treg+1,4($at)
6643 Otherwise we want
6644 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6645 nop
6646 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
6647 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
6648 If there is a base register we add it to $at before the
6649 lwc1 instructions. If there is a constant we include it
6650 in the lwc1 instructions. */
6651 used_at = 1;
6652 expr1.X_add_number = offset_expr.X_add_number;
6653 offset_expr.X_add_number = 0;
6654 if (expr1.X_add_number < -0x8000
6655 || expr1.X_add_number >= 0x8000 - 4)
6656 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6657 gpdelay = reg_needs_delay (mips_gp_register);
6658 relax_start (offset_expr.X_add_symbol);
6659 macro_build (&offset_expr, "lui", "t,u",
6660 AT, BFD_RELOC_MIPS_GOT_HI16);
6661 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6662 AT, AT, mips_gp_register);
6663 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6664 AT, BFD_RELOC_MIPS_GOT_LO16, AT);
6665 load_delay_nop ();
6666 if (breg != 0)
6667 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
6668 /* Itbl support may require additional care here. */
6669 macro_build (&expr1, s, fmt, coproc ? treg + 1 : treg,
6670 BFD_RELOC_LO16, AT);
6671 expr1.X_add_number += 4;
6672
6673 /* Set mips_optimize to 2 to avoid inserting an undesired
6674 nop. */
6675 hold_mips_optimize = mips_optimize;
6676 mips_optimize = 2;
6677 /* Itbl support may require additional care here. */
6678 macro_build (&expr1, s, fmt, coproc ? treg : treg + 1,
6679 BFD_RELOC_LO16, AT);
6680 mips_optimize = hold_mips_optimize;
6681 expr1.X_add_number -= 4;
6682
6683 relax_switch ();
6684 offset_expr.X_add_number = expr1.X_add_number;
6685 if (gpdelay)
6686 macro_build (NULL, "nop", "");
6687 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
6688 BFD_RELOC_MIPS_GOT16, mips_gp_register);
6689 load_delay_nop ();
6690 if (breg != 0)
6691 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
6692 /* Itbl support may require additional care here. */
6693 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
6694 BFD_RELOC_LO16, AT);
6695 offset_expr.X_add_number += 4;
6696
6697 /* Set mips_optimize to 2 to avoid inserting an undesired
6698 nop. */
6699 hold_mips_optimize = mips_optimize;
6700 mips_optimize = 2;
6701 /* Itbl support may require additional care here. */
6702 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
6703 BFD_RELOC_LO16, AT);
6704 mips_optimize = hold_mips_optimize;
6705 relax_end ();
6706 }
6707 else
6708 abort ();
6709
6710 break;
6711
6712 case M_LD_OB:
6713 s = "lw";
6714 goto sd_ob;
6715 case M_SD_OB:
6716 s = "sw";
6717 sd_ob:
6718 assert (HAVE_32BIT_ADDRESSES);
6719 macro_build (&offset_expr, s, "t,o(b)", treg, BFD_RELOC_LO16, breg);
6720 offset_expr.X_add_number += 4;
6721 macro_build (&offset_expr, s, "t,o(b)", treg + 1, BFD_RELOC_LO16, breg);
6722 break;
6723
6724 /* New code added to support COPZ instructions.
6725 This code builds table entries out of the macros in mip_opcodes.
6726 R4000 uses interlocks to handle coproc delays.
6727 Other chips (like the R3000) require nops to be inserted for delays.
6728
6729 FIXME: Currently, we require that the user handle delays.
6730 In order to fill delay slots for non-interlocked chips,
6731 we must have a way to specify delays based on the coprocessor.
6732 Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
6733 What are the side-effects of the cop instruction?
6734 What cache support might we have and what are its effects?
6735 Both coprocessor & memory require delays. how long???
6736 What registers are read/set/modified?
6737
6738 If an itbl is provided to interpret cop instructions,
6739 this knowledge can be encoded in the itbl spec. */
6740
6741 case M_COP0:
6742 s = "c0";
6743 goto copz;
6744 case M_COP1:
6745 s = "c1";
6746 goto copz;
6747 case M_COP2:
6748 s = "c2";
6749 goto copz;
6750 case M_COP3:
6751 s = "c3";
6752 copz:
6753 /* For now we just do C (same as Cz). The parameter will be
6754 stored in insn_opcode by mips_ip. */
6755 macro_build (NULL, s, "C", ip->insn_opcode);
6756 break;
6757
6758 case M_MOVE:
6759 move_register (dreg, sreg);
6760 break;
6761
6762 #ifdef LOSING_COMPILER
6763 default:
6764 /* Try and see if this is a new itbl instruction.
6765 This code builds table entries out of the macros in mip_opcodes.
6766 FIXME: For now we just assemble the expression and pass it's
6767 value along as a 32-bit immediate.
6768 We may want to have the assembler assemble this value,
6769 so that we gain the assembler's knowledge of delay slots,
6770 symbols, etc.
6771 Would it be more efficient to use mask (id) here? */
6772 if (itbl_have_entries
6773 && (immed_expr = itbl_assemble (ip->insn_mo->name, "")))
6774 {
6775 s = ip->insn_mo->name;
6776 s2 = "cop3";
6777 coproc = ITBL_DECODE_PNUM (immed_expr);;
6778 macro_build (&immed_expr, s, "C");
6779 break;
6780 }
6781 macro2 (ip);
6782 break;
6783 }
6784 if (mips_opts.noat && used_at)
6785 as_bad (_("Macro used $at after \".set noat\""));
6786 }
6787
6788 static void
6789 macro2 (struct mips_cl_insn *ip)
6790 {
6791 register int treg, sreg, dreg, breg;
6792 int tempreg;
6793 int mask;
6794 int used_at;
6795 expressionS expr1;
6796 const char *s;
6797 const char *s2;
6798 const char *fmt;
6799 int likely = 0;
6800 int dbl = 0;
6801 int coproc = 0;
6802 int lr = 0;
6803 int imm = 0;
6804 int off;
6805 offsetT maxnum;
6806 bfd_reloc_code_real_type r;
6807
6808 treg = (ip->insn_opcode >> 16) & 0x1f;
6809 dreg = (ip->insn_opcode >> 11) & 0x1f;
6810 sreg = breg = (ip->insn_opcode >> 21) & 0x1f;
6811 mask = ip->insn_mo->mask;
6812
6813 expr1.X_op = O_constant;
6814 expr1.X_op_symbol = NULL;
6815 expr1.X_add_symbol = NULL;
6816 expr1.X_add_number = 1;
6817
6818 switch (mask)
6819 {
6820 #endif /* LOSING_COMPILER */
6821
6822 case M_DMUL:
6823 dbl = 1;
6824 case M_MUL:
6825 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", sreg, treg);
6826 macro_build (NULL, "mflo", "d", dreg);
6827 break;
6828
6829 case M_DMUL_I:
6830 dbl = 1;
6831 case M_MUL_I:
6832 /* The MIPS assembler some times generates shifts and adds. I'm
6833 not trying to be that fancy. GCC should do this for us
6834 anyway. */
6835 used_at = 1;
6836 load_register (AT, &imm_expr, dbl);
6837 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", sreg, AT);
6838 macro_build (NULL, "mflo", "d", dreg);
6839 break;
6840
6841 case M_DMULO_I:
6842 dbl = 1;
6843 case M_MULO_I:
6844 imm = 1;
6845 goto do_mulo;
6846
6847 case M_DMULO:
6848 dbl = 1;
6849 case M_MULO:
6850 do_mulo:
6851 start_noreorder ();
6852 used_at = 1;
6853 if (imm)
6854 load_register (AT, &imm_expr, dbl);
6855 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", sreg, imm ? AT : treg);
6856 macro_build (NULL, "mflo", "d", dreg);
6857 macro_build (NULL, dbl ? "dsra32" : "sra", "d,w,<", dreg, dreg, RA);
6858 macro_build (NULL, "mfhi", "d", AT);
6859 if (mips_trap)
6860 macro_build (NULL, "tne", "s,t,q", dreg, AT, 6);
6861 else
6862 {
6863 expr1.X_add_number = 8;
6864 macro_build (&expr1, "beq", "s,t,p", dreg, AT);
6865 macro_build (NULL, "nop", "", 0);
6866 macro_build (NULL, "break", "c", 6);
6867 }
6868 end_noreorder ();
6869 macro_build (NULL, "mflo", "d", dreg);
6870 break;
6871
6872 case M_DMULOU_I:
6873 dbl = 1;
6874 case M_MULOU_I:
6875 imm = 1;
6876 goto do_mulou;
6877
6878 case M_DMULOU:
6879 dbl = 1;
6880 case M_MULOU:
6881 do_mulou:
6882 start_noreorder ();
6883 used_at = 1;
6884 if (imm)
6885 load_register (AT, &imm_expr, dbl);
6886 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t",
6887 sreg, imm ? AT : treg);
6888 macro_build (NULL, "mfhi", "d", AT);
6889 macro_build (NULL, "mflo", "d", dreg);
6890 if (mips_trap)
6891 macro_build (NULL, "tne", "s,t,q", AT, 0, 6);
6892 else
6893 {
6894 expr1.X_add_number = 8;
6895 macro_build (&expr1, "beq", "s,t,p", AT, 0);
6896 macro_build (NULL, "nop", "", 0);
6897 macro_build (NULL, "break", "c", 6);
6898 }
6899 end_noreorder ();
6900 break;
6901
6902 case M_DROL:
6903 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
6904 {
6905 if (dreg == sreg)
6906 {
6907 tempreg = AT;
6908 used_at = 1;
6909 }
6910 else
6911 {
6912 tempreg = dreg;
6913 }
6914 macro_build (NULL, "dnegu", "d,w", tempreg, treg);
6915 macro_build (NULL, "drorv", "d,t,s", dreg, sreg, tempreg);
6916 break;
6917 }
6918 used_at = 1;
6919 macro_build (NULL, "dsubu", "d,v,t", AT, 0, treg);
6920 macro_build (NULL, "dsrlv", "d,t,s", AT, sreg, AT);
6921 macro_build (NULL, "dsllv", "d,t,s", dreg, sreg, treg);
6922 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
6923 break;
6924
6925 case M_ROL:
6926 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
6927 {
6928 if (dreg == sreg)
6929 {
6930 tempreg = AT;
6931 used_at = 1;
6932 }
6933 else
6934 {
6935 tempreg = dreg;
6936 }
6937 macro_build (NULL, "negu", "d,w", tempreg, treg);
6938 macro_build (NULL, "rorv", "d,t,s", dreg, sreg, tempreg);
6939 break;
6940 }
6941 used_at = 1;
6942 macro_build (NULL, "subu", "d,v,t", AT, 0, treg);
6943 macro_build (NULL, "srlv", "d,t,s", AT, sreg, AT);
6944 macro_build (NULL, "sllv", "d,t,s", dreg, sreg, treg);
6945 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
6946 break;
6947
6948 case M_DROL_I:
6949 {
6950 unsigned int rot;
6951 char *l, *r;
6952
6953 if (imm_expr.X_op != O_constant)
6954 as_bad (_("Improper rotate count"));
6955 rot = imm_expr.X_add_number & 0x3f;
6956 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
6957 {
6958 rot = (64 - rot) & 0x3f;
6959 if (rot >= 32)
6960 macro_build (NULL, "dror32", "d,w,<", dreg, sreg, rot - 32);
6961 else
6962 macro_build (NULL, "dror", "d,w,<", dreg, sreg, rot);
6963 break;
6964 }
6965 if (rot == 0)
6966 {
6967 macro_build (NULL, "dsrl", "d,w,<", dreg, sreg, 0);
6968 break;
6969 }
6970 l = (rot < 0x20) ? "dsll" : "dsll32";
6971 r = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
6972 rot &= 0x1f;
6973 used_at = 1;
6974 macro_build (NULL, l, "d,w,<", AT, sreg, rot);
6975 macro_build (NULL, r, "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
6976 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
6977 }
6978 break;
6979
6980 case M_ROL_I:
6981 {
6982 unsigned int rot;
6983
6984 if (imm_expr.X_op != O_constant)
6985 as_bad (_("Improper rotate count"));
6986 rot = imm_expr.X_add_number & 0x1f;
6987 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
6988 {
6989 macro_build (NULL, "ror", "d,w,<", dreg, sreg, (32 - rot) & 0x1f);
6990 break;
6991 }
6992 if (rot == 0)
6993 {
6994 macro_build (NULL, "srl", "d,w,<", dreg, sreg, 0);
6995 break;
6996 }
6997 used_at = 1;
6998 macro_build (NULL, "sll", "d,w,<", AT, sreg, rot);
6999 macro_build (NULL, "srl", "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
7000 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7001 }
7002 break;
7003
7004 case M_DROR:
7005 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
7006 {
7007 macro_build (NULL, "drorv", "d,t,s", dreg, sreg, treg);
7008 break;
7009 }
7010 used_at = 1;
7011 macro_build (NULL, "dsubu", "d,v,t", AT, 0, treg);
7012 macro_build (NULL, "dsllv", "d,t,s", AT, sreg, AT);
7013 macro_build (NULL, "dsrlv", "d,t,s", dreg, sreg, treg);
7014 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7015 break;
7016
7017 case M_ROR:
7018 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
7019 {
7020 macro_build (NULL, "rorv", "d,t,s", dreg, sreg, treg);
7021 break;
7022 }
7023 used_at = 1;
7024 macro_build (NULL, "subu", "d,v,t", AT, 0, treg);
7025 macro_build (NULL, "sllv", "d,t,s", AT, sreg, AT);
7026 macro_build (NULL, "srlv", "d,t,s", dreg, sreg, treg);
7027 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7028 break;
7029
7030 case M_DROR_I:
7031 {
7032 unsigned int rot;
7033 char *l, *r;
7034
7035 if (imm_expr.X_op != O_constant)
7036 as_bad (_("Improper rotate count"));
7037 rot = imm_expr.X_add_number & 0x3f;
7038 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
7039 {
7040 if (rot >= 32)
7041 macro_build (NULL, "dror32", "d,w,<", dreg, sreg, rot - 32);
7042 else
7043 macro_build (NULL, "dror", "d,w,<", dreg, sreg, rot);
7044 break;
7045 }
7046 if (rot == 0)
7047 {
7048 macro_build (NULL, "dsrl", "d,w,<", dreg, sreg, 0);
7049 break;
7050 }
7051 r = (rot < 0x20) ? "dsrl" : "dsrl32";
7052 l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
7053 rot &= 0x1f;
7054 used_at = 1;
7055 macro_build (NULL, r, "d,w,<", AT, sreg, rot);
7056 macro_build (NULL, l, "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
7057 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7058 }
7059 break;
7060
7061 case M_ROR_I:
7062 {
7063 unsigned int rot;
7064
7065 if (imm_expr.X_op != O_constant)
7066 as_bad (_("Improper rotate count"));
7067 rot = imm_expr.X_add_number & 0x1f;
7068 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
7069 {
7070 macro_build (NULL, "ror", "d,w,<", dreg, sreg, rot);
7071 break;
7072 }
7073 if (rot == 0)
7074 {
7075 macro_build (NULL, "srl", "d,w,<", dreg, sreg, 0);
7076 break;
7077 }
7078 used_at = 1;
7079 macro_build (NULL, "srl", "d,w,<", AT, sreg, rot);
7080 macro_build (NULL, "sll", "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
7081 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7082 }
7083 break;
7084
7085 case M_S_DOB:
7086 if (mips_opts.arch == CPU_R4650)
7087 {
7088 as_bad (_("opcode not supported on this processor"));
7089 break;
7090 }
7091 assert (mips_opts.isa == ISA_MIPS1);
7092 /* Even on a big endian machine $fn comes before $fn+1. We have
7093 to adjust when storing to memory. */
7094 macro_build (&offset_expr, "swc1", "T,o(b)",
7095 target_big_endian ? treg + 1 : treg, BFD_RELOC_LO16, breg);
7096 offset_expr.X_add_number += 4;
7097 macro_build (&offset_expr, "swc1", "T,o(b)",
7098 target_big_endian ? treg : treg + 1, BFD_RELOC_LO16, breg);
7099 break;
7100
7101 case M_SEQ:
7102 if (sreg == 0)
7103 macro_build (&expr1, "sltiu", "t,r,j", dreg, treg, BFD_RELOC_LO16);
7104 else if (treg == 0)
7105 macro_build (&expr1, "sltiu", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7106 else
7107 {
7108 macro_build (NULL, "xor", "d,v,t", dreg, sreg, treg);
7109 macro_build (&expr1, "sltiu", "t,r,j", dreg, dreg, BFD_RELOC_LO16);
7110 }
7111 break;
7112
7113 case M_SEQ_I:
7114 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
7115 {
7116 macro_build (&expr1, "sltiu", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7117 break;
7118 }
7119 if (sreg == 0)
7120 {
7121 as_warn (_("Instruction %s: result is always false"),
7122 ip->insn_mo->name);
7123 move_register (dreg, 0);
7124 break;
7125 }
7126 if (imm_expr.X_op == O_constant
7127 && imm_expr.X_add_number >= 0
7128 && imm_expr.X_add_number < 0x10000)
7129 {
7130 macro_build (&imm_expr, "xori", "t,r,i", dreg, sreg, BFD_RELOC_LO16);
7131 }
7132 else if (imm_expr.X_op == O_constant
7133 && imm_expr.X_add_number > -0x8000
7134 && imm_expr.X_add_number < 0)
7135 {
7136 imm_expr.X_add_number = -imm_expr.X_add_number;
7137 macro_build (&imm_expr, HAVE_32BIT_GPRS ? "addiu" : "daddiu",
7138 "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7139 }
7140 else
7141 {
7142 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7143 macro_build (NULL, "xor", "d,v,t", dreg, sreg, AT);
7144 used_at = 1;
7145 }
7146 macro_build (&expr1, "sltiu", "t,r,j", dreg, dreg, BFD_RELOC_LO16);
7147 break;
7148
7149 case M_SGE: /* sreg >= treg <==> not (sreg < treg) */
7150 s = "slt";
7151 goto sge;
7152 case M_SGEU:
7153 s = "sltu";
7154 sge:
7155 macro_build (NULL, s, "d,v,t", dreg, sreg, treg);
7156 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
7157 break;
7158
7159 case M_SGE_I: /* sreg >= I <==> not (sreg < I) */
7160 case M_SGEU_I:
7161 if (imm_expr.X_op == O_constant
7162 && imm_expr.X_add_number >= -0x8000
7163 && imm_expr.X_add_number < 0x8000)
7164 {
7165 macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j",
7166 dreg, sreg, BFD_RELOC_LO16);
7167 }
7168 else
7169 {
7170 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7171 macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t",
7172 dreg, sreg, AT);
7173 used_at = 1;
7174 }
7175 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
7176 break;
7177
7178 case M_SGT: /* sreg > treg <==> treg < sreg */
7179 s = "slt";
7180 goto sgt;
7181 case M_SGTU:
7182 s = "sltu";
7183 sgt:
7184 macro_build (NULL, s, "d,v,t", dreg, treg, sreg);
7185 break;
7186
7187 case M_SGT_I: /* sreg > I <==> I < sreg */
7188 s = "slt";
7189 goto sgti;
7190 case M_SGTU_I:
7191 s = "sltu";
7192 sgti:
7193 used_at = 1;
7194 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7195 macro_build (NULL, s, "d,v,t", dreg, AT, sreg);
7196 break;
7197
7198 case M_SLE: /* sreg <= treg <==> treg >= sreg <==> not (treg < sreg) */
7199 s = "slt";
7200 goto sle;
7201 case M_SLEU:
7202 s = "sltu";
7203 sle:
7204 macro_build (NULL, s, "d,v,t", dreg, treg, sreg);
7205 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
7206 break;
7207
7208 case M_SLE_I: /* sreg <= I <==> I >= sreg <==> not (I < sreg) */
7209 s = "slt";
7210 goto slei;
7211 case M_SLEU_I:
7212 s = "sltu";
7213 slei:
7214 used_at = 1;
7215 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7216 macro_build (NULL, s, "d,v,t", dreg, AT, sreg);
7217 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
7218 break;
7219
7220 case M_SLT_I:
7221 if (imm_expr.X_op == O_constant
7222 && imm_expr.X_add_number >= -0x8000
7223 && imm_expr.X_add_number < 0x8000)
7224 {
7225 macro_build (&imm_expr, "slti", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7226 break;
7227 }
7228 used_at = 1;
7229 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7230 macro_build (NULL, "slt", "d,v,t", dreg, sreg, AT);
7231 break;
7232
7233 case M_SLTU_I:
7234 if (imm_expr.X_op == O_constant
7235 && imm_expr.X_add_number >= -0x8000
7236 && imm_expr.X_add_number < 0x8000)
7237 {
7238 macro_build (&imm_expr, "sltiu", "t,r,j", dreg, sreg,
7239 BFD_RELOC_LO16);
7240 break;
7241 }
7242 used_at = 1;
7243 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7244 macro_build (NULL, "sltu", "d,v,t", dreg, sreg, AT);
7245 break;
7246
7247 case M_SNE:
7248 if (sreg == 0)
7249 macro_build (NULL, "sltu", "d,v,t", dreg, 0, treg);
7250 else if (treg == 0)
7251 macro_build (NULL, "sltu", "d,v,t", dreg, 0, sreg);
7252 else
7253 {
7254 macro_build (NULL, "xor", "d,v,t", dreg, sreg, treg);
7255 macro_build (NULL, "sltu", "d,v,t", dreg, 0, dreg);
7256 }
7257 break;
7258
7259 case M_SNE_I:
7260 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
7261 {
7262 macro_build (NULL, "sltu", "d,v,t", dreg, 0, sreg);
7263 break;
7264 }
7265 if (sreg == 0)
7266 {
7267 as_warn (_("Instruction %s: result is always true"),
7268 ip->insn_mo->name);
7269 macro_build (&expr1, HAVE_32BIT_GPRS ? "addiu" : "daddiu", "t,r,j",
7270 dreg, 0, BFD_RELOC_LO16);
7271 break;
7272 }
7273 if (imm_expr.X_op == O_constant
7274 && imm_expr.X_add_number >= 0
7275 && imm_expr.X_add_number < 0x10000)
7276 {
7277 macro_build (&imm_expr, "xori", "t,r,i", dreg, sreg, BFD_RELOC_LO16);
7278 }
7279 else if (imm_expr.X_op == O_constant
7280 && imm_expr.X_add_number > -0x8000
7281 && imm_expr.X_add_number < 0)
7282 {
7283 imm_expr.X_add_number = -imm_expr.X_add_number;
7284 macro_build (&imm_expr, HAVE_32BIT_GPRS ? "addiu" : "daddiu",
7285 "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7286 }
7287 else
7288 {
7289 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7290 macro_build (NULL, "xor", "d,v,t", dreg, sreg, AT);
7291 used_at = 1;
7292 }
7293 macro_build (NULL, "sltu", "d,v,t", dreg, 0, dreg);
7294 break;
7295
7296 case M_DSUB_I:
7297 dbl = 1;
7298 case M_SUB_I:
7299 if (imm_expr.X_op == O_constant
7300 && imm_expr.X_add_number > -0x8000
7301 && imm_expr.X_add_number <= 0x8000)
7302 {
7303 imm_expr.X_add_number = -imm_expr.X_add_number;
7304 macro_build (&imm_expr, dbl ? "daddi" : "addi", "t,r,j",
7305 dreg, sreg, BFD_RELOC_LO16);
7306 break;
7307 }
7308 used_at = 1;
7309 load_register (AT, &imm_expr, dbl);
7310 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", dreg, sreg, AT);
7311 break;
7312
7313 case M_DSUBU_I:
7314 dbl = 1;
7315 case M_SUBU_I:
7316 if (imm_expr.X_op == O_constant
7317 && imm_expr.X_add_number > -0x8000
7318 && imm_expr.X_add_number <= 0x8000)
7319 {
7320 imm_expr.X_add_number = -imm_expr.X_add_number;
7321 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "t,r,j",
7322 dreg, sreg, BFD_RELOC_LO16);
7323 break;
7324 }
7325 used_at = 1;
7326 load_register (AT, &imm_expr, dbl);
7327 macro_build (NULL, dbl ? "dsubu" : "subu", "d,v,t", dreg, sreg, AT);
7328 break;
7329
7330 case M_TEQ_I:
7331 s = "teq";
7332 goto trap;
7333 case M_TGE_I:
7334 s = "tge";
7335 goto trap;
7336 case M_TGEU_I:
7337 s = "tgeu";
7338 goto trap;
7339 case M_TLT_I:
7340 s = "tlt";
7341 goto trap;
7342 case M_TLTU_I:
7343 s = "tltu";
7344 goto trap;
7345 case M_TNE_I:
7346 s = "tne";
7347 trap:
7348 used_at = 1;
7349 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7350 macro_build (NULL, s, "s,t", sreg, AT);
7351 break;
7352
7353 case M_TRUNCWS:
7354 case M_TRUNCWD:
7355 assert (mips_opts.isa == ISA_MIPS1);
7356 used_at = 1;
7357 sreg = (ip->insn_opcode >> 11) & 0x1f; /* floating reg */
7358 dreg = (ip->insn_opcode >> 06) & 0x1f; /* floating reg */
7359
7360 /*
7361 * Is the double cfc1 instruction a bug in the mips assembler;
7362 * or is there a reason for it?
7363 */
7364 start_noreorder ();
7365 macro_build (NULL, "cfc1", "t,G", treg, RA);
7366 macro_build (NULL, "cfc1", "t,G", treg, RA);
7367 macro_build (NULL, "nop", "");
7368 expr1.X_add_number = 3;
7369 macro_build (&expr1, "ori", "t,r,i", AT, treg, BFD_RELOC_LO16);
7370 expr1.X_add_number = 2;
7371 macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16);
7372 macro_build (NULL, "ctc1", "t,G", AT, RA);
7373 macro_build (NULL, "nop", "");
7374 macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S",
7375 dreg, sreg);
7376 macro_build (NULL, "ctc1", "t,G", treg, RA);
7377 macro_build (NULL, "nop", "");
7378 end_noreorder ();
7379 break;
7380
7381 case M_ULH:
7382 s = "lb";
7383 goto ulh;
7384 case M_ULHU:
7385 s = "lbu";
7386 ulh:
7387 used_at = 1;
7388 if (offset_expr.X_add_number >= 0x7fff)
7389 as_bad (_("operand overflow"));
7390 if (! target_big_endian)
7391 ++offset_expr.X_add_number;
7392 macro_build (&offset_expr, s, "t,o(b)", AT, BFD_RELOC_LO16, breg);
7393 if (! target_big_endian)
7394 --offset_expr.X_add_number;
7395 else
7396 ++offset_expr.X_add_number;
7397 macro_build (&offset_expr, "lbu", "t,o(b)", treg, BFD_RELOC_LO16, breg);
7398 macro_build (NULL, "sll", "d,w,<", AT, AT, 8);
7399 macro_build (NULL, "or", "d,v,t", treg, treg, AT);
7400 break;
7401
7402 case M_ULD:
7403 s = "ldl";
7404 s2 = "ldr";
7405 off = 7;
7406 goto ulw;
7407 case M_ULW:
7408 s = "lwl";
7409 s2 = "lwr";
7410 off = 3;
7411 ulw:
7412 if (offset_expr.X_add_number >= 0x8000 - off)
7413 as_bad (_("operand overflow"));
7414 if (treg != breg)
7415 tempreg = treg;
7416 else
7417 {
7418 used_at = 1;
7419 tempreg = AT;
7420 }
7421 if (! target_big_endian)
7422 offset_expr.X_add_number += off;
7423 macro_build (&offset_expr, s, "t,o(b)", tempreg, BFD_RELOC_LO16, breg);
7424 if (! target_big_endian)
7425 offset_expr.X_add_number -= off;
7426 else
7427 offset_expr.X_add_number += off;
7428 macro_build (&offset_expr, s2, "t,o(b)", tempreg, BFD_RELOC_LO16, breg);
7429
7430 /* If necessary, move the result in tempreg the final destination. */
7431 if (treg == tempreg)
7432 break;
7433 /* Protect second load's delay slot. */
7434 load_delay_nop ();
7435 move_register (treg, tempreg);
7436 break;
7437
7438 case M_ULD_A:
7439 s = "ldl";
7440 s2 = "ldr";
7441 off = 7;
7442 goto ulwa;
7443 case M_ULW_A:
7444 s = "lwl";
7445 s2 = "lwr";
7446 off = 3;
7447 ulwa:
7448 used_at = 1;
7449 load_address (AT, &offset_expr, &used_at);
7450 if (breg != 0)
7451 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
7452 if (! target_big_endian)
7453 expr1.X_add_number = off;
7454 else
7455 expr1.X_add_number = 0;
7456 macro_build (&expr1, s, "t,o(b)", treg, BFD_RELOC_LO16, AT);
7457 if (! target_big_endian)
7458 expr1.X_add_number = 0;
7459 else
7460 expr1.X_add_number = off;
7461 macro_build (&expr1, s2, "t,o(b)", treg, BFD_RELOC_LO16, AT);
7462 break;
7463
7464 case M_ULH_A:
7465 case M_ULHU_A:
7466 used_at = 1;
7467 load_address (AT, &offset_expr, &used_at);
7468 if (breg != 0)
7469 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
7470 if (target_big_endian)
7471 expr1.X_add_number = 0;
7472 macro_build (&expr1, mask == M_ULH_A ? "lb" : "lbu", "t,o(b)",
7473 treg, BFD_RELOC_LO16, AT);
7474 if (target_big_endian)
7475 expr1.X_add_number = 1;
7476 else
7477 expr1.X_add_number = 0;
7478 macro_build (&expr1, "lbu", "t,o(b)", AT, BFD_RELOC_LO16, AT);
7479 macro_build (NULL, "sll", "d,w,<", treg, treg, 8);
7480 macro_build (NULL, "or", "d,v,t", treg, treg, AT);
7481 break;
7482
7483 case M_USH:
7484 used_at = 1;
7485 if (offset_expr.X_add_number >= 0x7fff)
7486 as_bad (_("operand overflow"));
7487 if (target_big_endian)
7488 ++offset_expr.X_add_number;
7489 macro_build (&offset_expr, "sb", "t,o(b)", treg, BFD_RELOC_LO16, breg);
7490 macro_build (NULL, "srl", "d,w,<", AT, treg, 8);
7491 if (target_big_endian)
7492 --offset_expr.X_add_number;
7493 else
7494 ++offset_expr.X_add_number;
7495 macro_build (&offset_expr, "sb", "t,o(b)", AT, BFD_RELOC_LO16, breg);
7496 break;
7497
7498 case M_USD:
7499 s = "sdl";
7500 s2 = "sdr";
7501 off = 7;
7502 goto usw;
7503 case M_USW:
7504 s = "swl";
7505 s2 = "swr";
7506 off = 3;
7507 usw:
7508 if (offset_expr.X_add_number >= 0x8000 - off)
7509 as_bad (_("operand overflow"));
7510 if (! target_big_endian)
7511 offset_expr.X_add_number += off;
7512 macro_build (&offset_expr, s, "t,o(b)", treg, BFD_RELOC_LO16, breg);
7513 if (! target_big_endian)
7514 offset_expr.X_add_number -= off;
7515 else
7516 offset_expr.X_add_number += off;
7517 macro_build (&offset_expr, s2, "t,o(b)", treg, BFD_RELOC_LO16, breg);
7518 break;
7519
7520 case M_USD_A:
7521 s = "sdl";
7522 s2 = "sdr";
7523 off = 7;
7524 goto uswa;
7525 case M_USW_A:
7526 s = "swl";
7527 s2 = "swr";
7528 off = 3;
7529 uswa:
7530 used_at = 1;
7531 load_address (AT, &offset_expr, &used_at);
7532 if (breg != 0)
7533 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
7534 if (! target_big_endian)
7535 expr1.X_add_number = off;
7536 else
7537 expr1.X_add_number = 0;
7538 macro_build (&expr1, s, "t,o(b)", treg, BFD_RELOC_LO16, AT);
7539 if (! target_big_endian)
7540 expr1.X_add_number = 0;
7541 else
7542 expr1.X_add_number = off;
7543 macro_build (&expr1, s2, "t,o(b)", treg, BFD_RELOC_LO16, AT);
7544 break;
7545
7546 case M_USH_A:
7547 used_at = 1;
7548 load_address (AT, &offset_expr, &used_at);
7549 if (breg != 0)
7550 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
7551 if (! target_big_endian)
7552 expr1.X_add_number = 0;
7553 macro_build (&expr1, "sb", "t,o(b)", treg, BFD_RELOC_LO16, AT);
7554 macro_build (NULL, "srl", "d,w,<", treg, treg, 8);
7555 if (! target_big_endian)
7556 expr1.X_add_number = 1;
7557 else
7558 expr1.X_add_number = 0;
7559 macro_build (&expr1, "sb", "t,o(b)", treg, BFD_RELOC_LO16, AT);
7560 if (! target_big_endian)
7561 expr1.X_add_number = 0;
7562 else
7563 expr1.X_add_number = 1;
7564 macro_build (&expr1, "lbu", "t,o(b)", AT, BFD_RELOC_LO16, AT);
7565 macro_build (NULL, "sll", "d,w,<", treg, treg, 8);
7566 macro_build (NULL, "or", "d,v,t", treg, treg, AT);
7567 break;
7568
7569 default:
7570 /* FIXME: Check if this is one of the itbl macros, since they
7571 are added dynamically. */
7572 as_bad (_("Macro %s not implemented yet"), ip->insn_mo->name);
7573 break;
7574 }
7575 if (mips_opts.noat && used_at)
7576 as_bad (_("Macro used $at after \".set noat\""));
7577 }
7578
7579 /* Implement macros in mips16 mode. */
7580
7581 static void
7582 mips16_macro (struct mips_cl_insn *ip)
7583 {
7584 int mask;
7585 int xreg, yreg, zreg, tmp;
7586 expressionS expr1;
7587 int dbl;
7588 const char *s, *s2, *s3;
7589
7590 mask = ip->insn_mo->mask;
7591
7592 xreg = MIPS16_EXTRACT_OPERAND (RX, *ip);
7593 yreg = MIPS16_EXTRACT_OPERAND (RY, *ip);
7594 zreg = MIPS16_EXTRACT_OPERAND (RZ, *ip);
7595
7596 expr1.X_op = O_constant;
7597 expr1.X_op_symbol = NULL;
7598 expr1.X_add_symbol = NULL;
7599 expr1.X_add_number = 1;
7600
7601 dbl = 0;
7602
7603 switch (mask)
7604 {
7605 default:
7606 internalError ();
7607
7608 case M_DDIV_3:
7609 dbl = 1;
7610 case M_DIV_3:
7611 s = "mflo";
7612 goto do_div3;
7613 case M_DREM_3:
7614 dbl = 1;
7615 case M_REM_3:
7616 s = "mfhi";
7617 do_div3:
7618 start_noreorder ();
7619 macro_build (NULL, dbl ? "ddiv" : "div", "0,x,y", xreg, yreg);
7620 expr1.X_add_number = 2;
7621 macro_build (&expr1, "bnez", "x,p", yreg);
7622 macro_build (NULL, "break", "6", 7);
7623
7624 /* FIXME: The normal code checks for of -1 / -0x80000000 here,
7625 since that causes an overflow. We should do that as well,
7626 but I don't see how to do the comparisons without a temporary
7627 register. */
7628 end_noreorder ();
7629 macro_build (NULL, s, "x", zreg);
7630 break;
7631
7632 case M_DIVU_3:
7633 s = "divu";
7634 s2 = "mflo";
7635 goto do_divu3;
7636 case M_REMU_3:
7637 s = "divu";
7638 s2 = "mfhi";
7639 goto do_divu3;
7640 case M_DDIVU_3:
7641 s = "ddivu";
7642 s2 = "mflo";
7643 goto do_divu3;
7644 case M_DREMU_3:
7645 s = "ddivu";
7646 s2 = "mfhi";
7647 do_divu3:
7648 start_noreorder ();
7649 macro_build (NULL, s, "0,x,y", xreg, yreg);
7650 expr1.X_add_number = 2;
7651 macro_build (&expr1, "bnez", "x,p", yreg);
7652 macro_build (NULL, "break", "6", 7);
7653 end_noreorder ();
7654 macro_build (NULL, s2, "x", zreg);
7655 break;
7656
7657 case M_DMUL:
7658 dbl = 1;
7659 case M_MUL:
7660 macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", xreg, yreg);
7661 macro_build (NULL, "mflo", "x", zreg);
7662 break;
7663
7664 case M_DSUBU_I:
7665 dbl = 1;
7666 goto do_subu;
7667 case M_SUBU_I:
7668 do_subu:
7669 if (imm_expr.X_op != O_constant)
7670 as_bad (_("Unsupported large constant"));
7671 imm_expr.X_add_number = -imm_expr.X_add_number;
7672 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,4", yreg, xreg);
7673 break;
7674
7675 case M_SUBU_I_2:
7676 if (imm_expr.X_op != O_constant)
7677 as_bad (_("Unsupported large constant"));
7678 imm_expr.X_add_number = -imm_expr.X_add_number;
7679 macro_build (&imm_expr, "addiu", "x,k", xreg);
7680 break;
7681
7682 case M_DSUBU_I_2:
7683 if (imm_expr.X_op != O_constant)
7684 as_bad (_("Unsupported large constant"));
7685 imm_expr.X_add_number = -imm_expr.X_add_number;
7686 macro_build (&imm_expr, "daddiu", "y,j", yreg);
7687 break;
7688
7689 case M_BEQ:
7690 s = "cmp";
7691 s2 = "bteqz";
7692 goto do_branch;
7693 case M_BNE:
7694 s = "cmp";
7695 s2 = "btnez";
7696 goto do_branch;
7697 case M_BLT:
7698 s = "slt";
7699 s2 = "btnez";
7700 goto do_branch;
7701 case M_BLTU:
7702 s = "sltu";
7703 s2 = "btnez";
7704 goto do_branch;
7705 case M_BLE:
7706 s = "slt";
7707 s2 = "bteqz";
7708 goto do_reverse_branch;
7709 case M_BLEU:
7710 s = "sltu";
7711 s2 = "bteqz";
7712 goto do_reverse_branch;
7713 case M_BGE:
7714 s = "slt";
7715 s2 = "bteqz";
7716 goto do_branch;
7717 case M_BGEU:
7718 s = "sltu";
7719 s2 = "bteqz";
7720 goto do_branch;
7721 case M_BGT:
7722 s = "slt";
7723 s2 = "btnez";
7724 goto do_reverse_branch;
7725 case M_BGTU:
7726 s = "sltu";
7727 s2 = "btnez";
7728
7729 do_reverse_branch:
7730 tmp = xreg;
7731 xreg = yreg;
7732 yreg = tmp;
7733
7734 do_branch:
7735 macro_build (NULL, s, "x,y", xreg, yreg);
7736 macro_build (&offset_expr, s2, "p");
7737 break;
7738
7739 case M_BEQ_I:
7740 s = "cmpi";
7741 s2 = "bteqz";
7742 s3 = "x,U";
7743 goto do_branch_i;
7744 case M_BNE_I:
7745 s = "cmpi";
7746 s2 = "btnez";
7747 s3 = "x,U";
7748 goto do_branch_i;
7749 case M_BLT_I:
7750 s = "slti";
7751 s2 = "btnez";
7752 s3 = "x,8";
7753 goto do_branch_i;
7754 case M_BLTU_I:
7755 s = "sltiu";
7756 s2 = "btnez";
7757 s3 = "x,8";
7758 goto do_branch_i;
7759 case M_BLE_I:
7760 s = "slti";
7761 s2 = "btnez";
7762 s3 = "x,8";
7763 goto do_addone_branch_i;
7764 case M_BLEU_I:
7765 s = "sltiu";
7766 s2 = "btnez";
7767 s3 = "x,8";
7768 goto do_addone_branch_i;
7769 case M_BGE_I:
7770 s = "slti";
7771 s2 = "bteqz";
7772 s3 = "x,8";
7773 goto do_branch_i;
7774 case M_BGEU_I:
7775 s = "sltiu";
7776 s2 = "bteqz";
7777 s3 = "x,8";
7778 goto do_branch_i;
7779 case M_BGT_I:
7780 s = "slti";
7781 s2 = "bteqz";
7782 s3 = "x,8";
7783 goto do_addone_branch_i;
7784 case M_BGTU_I:
7785 s = "sltiu";
7786 s2 = "bteqz";
7787 s3 = "x,8";
7788
7789 do_addone_branch_i:
7790 if (imm_expr.X_op != O_constant)
7791 as_bad (_("Unsupported large constant"));
7792 ++imm_expr.X_add_number;
7793
7794 do_branch_i:
7795 macro_build (&imm_expr, s, s3, xreg);
7796 macro_build (&offset_expr, s2, "p");
7797 break;
7798
7799 case M_ABS:
7800 expr1.X_add_number = 0;
7801 macro_build (&expr1, "slti", "x,8", yreg);
7802 if (xreg != yreg)
7803 move_register (xreg, yreg);
7804 expr1.X_add_number = 2;
7805 macro_build (&expr1, "bteqz", "p");
7806 macro_build (NULL, "neg", "x,w", xreg, xreg);
7807 }
7808 }
7809
7810 /* For consistency checking, verify that all bits are specified either
7811 by the match/mask part of the instruction definition, or by the
7812 operand list. */
7813 static int
7814 validate_mips_insn (const struct mips_opcode *opc)
7815 {
7816 const char *p = opc->args;
7817 char c;
7818 unsigned long used_bits = opc->mask;
7819
7820 if ((used_bits & opc->match) != opc->match)
7821 {
7822 as_bad (_("internal: bad mips opcode (mask error): %s %s"),
7823 opc->name, opc->args);
7824 return 0;
7825 }
7826 #define USE_BITS(mask,shift) (used_bits |= ((mask) << (shift)))
7827 while (*p)
7828 switch (c = *p++)
7829 {
7830 case ',': break;
7831 case '(': break;
7832 case ')': break;
7833 case '+':
7834 switch (c = *p++)
7835 {
7836 case '1': USE_BITS (OP_MASK_UDI1, OP_SH_UDI1); break;
7837 case '2': USE_BITS (OP_MASK_UDI2, OP_SH_UDI2); break;
7838 case '3': USE_BITS (OP_MASK_UDI3, OP_SH_UDI3); break;
7839 case '4': USE_BITS (OP_MASK_UDI4, OP_SH_UDI4); break;
7840 case 'A': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
7841 case 'B': USE_BITS (OP_MASK_INSMSB, OP_SH_INSMSB); break;
7842 case 'C': USE_BITS (OP_MASK_EXTMSBD, OP_SH_EXTMSBD); break;
7843 case 'D': USE_BITS (OP_MASK_RD, OP_SH_RD);
7844 USE_BITS (OP_MASK_SEL, OP_SH_SEL); break;
7845 case 'E': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
7846 case 'F': USE_BITS (OP_MASK_INSMSB, OP_SH_INSMSB); break;
7847 case 'G': USE_BITS (OP_MASK_EXTMSBD, OP_SH_EXTMSBD); break;
7848 case 'H': USE_BITS (OP_MASK_EXTMSBD, OP_SH_EXTMSBD); break;
7849 case 'I': break;
7850 case 't': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
7851 case 'T': USE_BITS (OP_MASK_RT, OP_SH_RT);
7852 USE_BITS (OP_MASK_SEL, OP_SH_SEL); break;
7853 default:
7854 as_bad (_("internal: bad mips opcode (unknown extension operand type `+%c'): %s %s"),
7855 c, opc->name, opc->args);
7856 return 0;
7857 }
7858 break;
7859 case '<': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
7860 case '>': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
7861 case 'A': break;
7862 case 'B': USE_BITS (OP_MASK_CODE20, OP_SH_CODE20); break;
7863 case 'C': USE_BITS (OP_MASK_COPZ, OP_SH_COPZ); break;
7864 case 'D': USE_BITS (OP_MASK_FD, OP_SH_FD); break;
7865 case 'E': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
7866 case 'F': break;
7867 case 'G': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
7868 case 'H': USE_BITS (OP_MASK_SEL, OP_SH_SEL); break;
7869 case 'I': break;
7870 case 'J': USE_BITS (OP_MASK_CODE19, OP_SH_CODE19); break;
7871 case 'K': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
7872 case 'L': break;
7873 case 'M': USE_BITS (OP_MASK_CCC, OP_SH_CCC); break;
7874 case 'N': USE_BITS (OP_MASK_BCC, OP_SH_BCC); break;
7875 case 'O': USE_BITS (OP_MASK_ALN, OP_SH_ALN); break;
7876 case 'Q': USE_BITS (OP_MASK_VSEL, OP_SH_VSEL);
7877 USE_BITS (OP_MASK_FT, OP_SH_FT); break;
7878 case 'R': USE_BITS (OP_MASK_FR, OP_SH_FR); break;
7879 case 'S': USE_BITS (OP_MASK_FS, OP_SH_FS); break;
7880 case 'T': USE_BITS (OP_MASK_FT, OP_SH_FT); break;
7881 case 'V': USE_BITS (OP_MASK_FS, OP_SH_FS); break;
7882 case 'W': USE_BITS (OP_MASK_FT, OP_SH_FT); break;
7883 case 'X': USE_BITS (OP_MASK_FD, OP_SH_FD); break;
7884 case 'Y': USE_BITS (OP_MASK_FS, OP_SH_FS); break;
7885 case 'Z': USE_BITS (OP_MASK_FT, OP_SH_FT); break;
7886 case 'a': USE_BITS (OP_MASK_TARGET, OP_SH_TARGET); break;
7887 case 'b': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
7888 case 'c': USE_BITS (OP_MASK_CODE, OP_SH_CODE); break;
7889 case 'd': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
7890 case 'f': break;
7891 case 'h': USE_BITS (OP_MASK_PREFX, OP_SH_PREFX); break;
7892 case 'i': USE_BITS (OP_MASK_IMMEDIATE, OP_SH_IMMEDIATE); break;
7893 case 'j': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break;
7894 case 'k': USE_BITS (OP_MASK_CACHE, OP_SH_CACHE); break;
7895 case 'l': break;
7896 case 'o': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break;
7897 case 'p': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break;
7898 case 'q': USE_BITS (OP_MASK_CODE2, OP_SH_CODE2); break;
7899 case 'r': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
7900 case 's': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
7901 case 't': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
7902 case 'u': USE_BITS (OP_MASK_IMMEDIATE, OP_SH_IMMEDIATE); break;
7903 case 'v': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
7904 case 'w': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
7905 case 'x': break;
7906 case 'z': break;
7907 case 'P': USE_BITS (OP_MASK_PERFREG, OP_SH_PERFREG); break;
7908 case 'U': USE_BITS (OP_MASK_RD, OP_SH_RD);
7909 USE_BITS (OP_MASK_RT, OP_SH_RT); break;
7910 case 'e': USE_BITS (OP_MASK_VECBYTE, OP_SH_VECBYTE); break;
7911 case '%': USE_BITS (OP_MASK_VECALIGN, OP_SH_VECALIGN); break;
7912 case '[': break;
7913 case ']': break;
7914 case '3': USE_BITS (OP_MASK_SA3, OP_SH_SA3); break;
7915 case '4': USE_BITS (OP_MASK_SA4, OP_SH_SA4); break;
7916 case '5': USE_BITS (OP_MASK_IMM8, OP_SH_IMM8); break;
7917 case '6': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
7918 case '7': USE_BITS (OP_MASK_DSPACC, OP_SH_DSPACC); break;
7919 case '8': USE_BITS (OP_MASK_WRDSP, OP_SH_WRDSP); break;
7920 case '9': USE_BITS (OP_MASK_DSPACC_S, OP_SH_DSPACC_S);break;
7921 case '0': USE_BITS (OP_MASK_DSPSFT, OP_SH_DSPSFT); break;
7922 case '\'': USE_BITS (OP_MASK_RDDSP, OP_SH_RDDSP); break;
7923 case ':': USE_BITS (OP_MASK_DSPSFT_7, OP_SH_DSPSFT_7);break;
7924 case '@': USE_BITS (OP_MASK_IMM10, OP_SH_IMM10); break;
7925 case '!': USE_BITS (OP_MASK_MT_U, OP_SH_MT_U); break;
7926 case '$': USE_BITS (OP_MASK_MT_H, OP_SH_MT_H); break;
7927 case '*': USE_BITS (OP_MASK_MTACC_T, OP_SH_MTACC_T); break;
7928 case '&': USE_BITS (OP_MASK_MTACC_D, OP_SH_MTACC_D); break;
7929 case 'g': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
7930 default:
7931 as_bad (_("internal: bad mips opcode (unknown operand type `%c'): %s %s"),
7932 c, opc->name, opc->args);
7933 return 0;
7934 }
7935 #undef USE_BITS
7936 if (used_bits != 0xffffffff)
7937 {
7938 as_bad (_("internal: bad mips opcode (bits 0x%lx undefined): %s %s"),
7939 ~used_bits & 0xffffffff, opc->name, opc->args);
7940 return 0;
7941 }
7942 return 1;
7943 }
7944
7945 /* UDI immediates. */
7946 struct mips_immed {
7947 char type;
7948 unsigned int shift;
7949 unsigned long mask;
7950 const char * desc;
7951 };
7952
7953 static const struct mips_immed mips_immed[] = {
7954 { '1', OP_SH_UDI1, OP_MASK_UDI1, 0},
7955 { '2', OP_SH_UDI2, OP_MASK_UDI2, 0},
7956 { '3', OP_SH_UDI3, OP_MASK_UDI3, 0},
7957 { '4', OP_SH_UDI4, OP_MASK_UDI4, 0},
7958 { 0,0,0,0 }
7959 };
7960
7961 /* This routine assembles an instruction into its binary format. As a
7962 side effect, it sets one of the global variables imm_reloc or
7963 offset_reloc to the type of relocation to do if one of the operands
7964 is an address expression. */
7965
7966 static void
7967 mips_ip (char *str, struct mips_cl_insn *ip)
7968 {
7969 char *s;
7970 const char *args;
7971 char c = 0;
7972 struct mips_opcode *insn;
7973 char *argsStart;
7974 unsigned int regno;
7975 unsigned int lastregno = 0;
7976 unsigned int lastpos = 0;
7977 unsigned int limlo, limhi;
7978 char *s_reset;
7979 char save_c = 0;
7980 offsetT min_range, max_range;
7981
7982 insn_error = NULL;
7983
7984 /* If the instruction contains a '.', we first try to match an instruction
7985 including the '.'. Then we try again without the '.'. */
7986 insn = NULL;
7987 for (s = str; *s != '\0' && !ISSPACE (*s); ++s)
7988 continue;
7989
7990 /* If we stopped on whitespace, then replace the whitespace with null for
7991 the call to hash_find. Save the character we replaced just in case we
7992 have to re-parse the instruction. */
7993 if (ISSPACE (*s))
7994 {
7995 save_c = *s;
7996 *s++ = '\0';
7997 }
7998
7999 insn = (struct mips_opcode *) hash_find (op_hash, str);
8000
8001 /* If we didn't find the instruction in the opcode table, try again, but
8002 this time with just the instruction up to, but not including the
8003 first '.'. */
8004 if (insn == NULL)
8005 {
8006 /* Restore the character we overwrite above (if any). */
8007 if (save_c)
8008 *(--s) = save_c;
8009
8010 /* Scan up to the first '.' or whitespace. */
8011 for (s = str;
8012 *s != '\0' && *s != '.' && !ISSPACE (*s);
8013 ++s)
8014 continue;
8015
8016 /* If we did not find a '.', then we can quit now. */
8017 if (*s != '.')
8018 {
8019 insn_error = "unrecognized opcode";
8020 return;
8021 }
8022
8023 /* Lookup the instruction in the hash table. */
8024 *s++ = '\0';
8025 if ((insn = (struct mips_opcode *) hash_find (op_hash, str)) == NULL)
8026 {
8027 insn_error = "unrecognized opcode";
8028 return;
8029 }
8030 }
8031
8032 argsStart = s;
8033 for (;;)
8034 {
8035 bfd_boolean ok;
8036
8037 assert (strcmp (insn->name, str) == 0);
8038
8039 if (OPCODE_IS_MEMBER (insn,
8040 (mips_opts.isa
8041 | (file_ase_mips16 ? INSN_MIPS16 : 0)
8042 | (mips_opts.ase_mdmx ? INSN_MDMX : 0)
8043 | (mips_opts.ase_dsp ? INSN_DSP : 0)
8044 | (mips_opts.ase_mt ? INSN_MT : 0)
8045 | (mips_opts.ase_mips3d ? INSN_MIPS3D : 0)
8046 | (mips_opts.ase_smartmips ? INSN_SMARTMIPS : 0)),
8047 mips_opts.arch))
8048 ok = TRUE;
8049 else
8050 ok = FALSE;
8051
8052 if (insn->pinfo != INSN_MACRO)
8053 {
8054 if (mips_opts.arch == CPU_R4650 && (insn->pinfo & FP_D) != 0)
8055 ok = FALSE;
8056 }
8057
8058 if (! ok)
8059 {
8060 if (insn + 1 < &mips_opcodes[NUMOPCODES]
8061 && strcmp (insn->name, insn[1].name) == 0)
8062 {
8063 ++insn;
8064 continue;
8065 }
8066 else
8067 {
8068 if (!insn_error)
8069 {
8070 static char buf[100];
8071 sprintf (buf,
8072 _("opcode not supported on this processor: %s (%s)"),
8073 mips_cpu_info_from_arch (mips_opts.arch)->name,
8074 mips_cpu_info_from_isa (mips_opts.isa)->name);
8075 insn_error = buf;
8076 }
8077 if (save_c)
8078 *(--s) = save_c;
8079 return;
8080 }
8081 }
8082
8083 create_insn (ip, insn);
8084 insn_error = NULL;
8085 for (args = insn->args;; ++args)
8086 {
8087 int is_mdmx;
8088
8089 s += strspn (s, " \t");
8090 is_mdmx = 0;
8091 switch (*args)
8092 {
8093 case '\0': /* end of args */
8094 if (*s == '\0')
8095 return;
8096 break;
8097
8098 case '3': /* dsp 3-bit unsigned immediate in bit 21 */
8099 my_getExpression (&imm_expr, s);
8100 check_absolute_expr (ip, &imm_expr);
8101 if (imm_expr.X_add_number & ~OP_MASK_SA3)
8102 {
8103 as_warn (_("DSP immediate not in range 0..%d (%lu)"),
8104 OP_MASK_SA3, (unsigned long) imm_expr.X_add_number);
8105 imm_expr.X_add_number &= OP_MASK_SA3;
8106 }
8107 ip->insn_opcode |= imm_expr.X_add_number << OP_SH_SA3;
8108 imm_expr.X_op = O_absent;
8109 s = expr_end;
8110 continue;
8111
8112 case '4': /* dsp 4-bit unsigned immediate in bit 21 */
8113 my_getExpression (&imm_expr, s);
8114 check_absolute_expr (ip, &imm_expr);
8115 if (imm_expr.X_add_number & ~OP_MASK_SA4)
8116 {
8117 as_warn (_("DSP immediate not in range 0..%d (%lu)"),
8118 OP_MASK_SA4, (unsigned long) imm_expr.X_add_number);
8119 imm_expr.X_add_number &= OP_MASK_SA4;
8120 }
8121 ip->insn_opcode |= imm_expr.X_add_number << OP_SH_SA4;
8122 imm_expr.X_op = O_absent;
8123 s = expr_end;
8124 continue;
8125
8126 case '5': /* dsp 8-bit unsigned immediate in bit 16 */
8127 my_getExpression (&imm_expr, s);
8128 check_absolute_expr (ip, &imm_expr);
8129 if (imm_expr.X_add_number & ~OP_MASK_IMM8)
8130 {
8131 as_warn (_("DSP immediate not in range 0..%d (%lu)"),
8132 OP_MASK_IMM8, (unsigned long) imm_expr.X_add_number);
8133 imm_expr.X_add_number &= OP_MASK_IMM8;
8134 }
8135 ip->insn_opcode |= imm_expr.X_add_number << OP_SH_IMM8;
8136 imm_expr.X_op = O_absent;
8137 s = expr_end;
8138 continue;
8139
8140 case '6': /* dsp 5-bit unsigned immediate in bit 21 */
8141 my_getExpression (&imm_expr, s);
8142 check_absolute_expr (ip, &imm_expr);
8143 if (imm_expr.X_add_number & ~OP_MASK_RS)
8144 {
8145 as_warn (_("DSP immediate not in range 0..%d (%lu)"),
8146 OP_MASK_RS, (unsigned long) imm_expr.X_add_number);
8147 imm_expr.X_add_number &= OP_MASK_RS;
8148 }
8149 ip->insn_opcode |= imm_expr.X_add_number << OP_SH_RS;
8150 imm_expr.X_op = O_absent;
8151 s = expr_end;
8152 continue;
8153
8154 case '7': /* four dsp accumulators in bits 11,12 */
8155 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
8156 s[3] >= '0' && s[3] <= '3')
8157 {
8158 regno = s[3] - '0';
8159 s += 4;
8160 ip->insn_opcode |= regno << OP_SH_DSPACC;
8161 continue;
8162 }
8163 else
8164 as_bad (_("Invalid dsp acc register"));
8165 break;
8166
8167 case '8': /* dsp 6-bit unsigned immediate in bit 11 */
8168 my_getExpression (&imm_expr, s);
8169 check_absolute_expr (ip, &imm_expr);
8170 if (imm_expr.X_add_number & ~OP_MASK_WRDSP)
8171 {
8172 as_warn (_("DSP immediate not in range 0..%d (%lu)"),
8173 OP_MASK_WRDSP,
8174 (unsigned long) imm_expr.X_add_number);
8175 imm_expr.X_add_number &= OP_MASK_WRDSP;
8176 }
8177 ip->insn_opcode |= imm_expr.X_add_number << OP_SH_WRDSP;
8178 imm_expr.X_op = O_absent;
8179 s = expr_end;
8180 continue;
8181
8182 case '9': /* four dsp accumulators in bits 21,22 */
8183 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
8184 s[3] >= '0' && s[3] <= '3')
8185 {
8186 regno = s[3] - '0';
8187 s += 4;
8188 ip->insn_opcode |= regno << OP_SH_DSPACC_S;
8189 continue;
8190 }
8191 else
8192 as_bad (_("Invalid dsp acc register"));
8193 break;
8194
8195 case '0': /* dsp 6-bit signed immediate in bit 20 */
8196 my_getExpression (&imm_expr, s);
8197 check_absolute_expr (ip, &imm_expr);
8198 min_range = -((OP_MASK_DSPSFT + 1) >> 1);
8199 max_range = ((OP_MASK_DSPSFT + 1) >> 1) - 1;
8200 if (imm_expr.X_add_number < min_range ||
8201 imm_expr.X_add_number > max_range)
8202 {
8203 as_warn (_("DSP immediate not in range %ld..%ld (%ld)"),
8204 (long) min_range, (long) max_range,
8205 (long) imm_expr.X_add_number);
8206 }
8207 imm_expr.X_add_number &= OP_MASK_DSPSFT;
8208 ip->insn_opcode |= ((unsigned long) imm_expr.X_add_number
8209 << OP_SH_DSPSFT);
8210 imm_expr.X_op = O_absent;
8211 s = expr_end;
8212 continue;
8213
8214 case '\'': /* dsp 6-bit unsigned immediate in bit 16 */
8215 my_getExpression (&imm_expr, s);
8216 check_absolute_expr (ip, &imm_expr);
8217 if (imm_expr.X_add_number & ~OP_MASK_RDDSP)
8218 {
8219 as_warn (_("DSP immediate not in range 0..%d (%lu)"),
8220 OP_MASK_RDDSP,
8221 (unsigned long) imm_expr.X_add_number);
8222 imm_expr.X_add_number &= OP_MASK_RDDSP;
8223 }
8224 ip->insn_opcode |= imm_expr.X_add_number << OP_SH_RDDSP;
8225 imm_expr.X_op = O_absent;
8226 s = expr_end;
8227 continue;
8228
8229 case ':': /* dsp 7-bit signed immediate in bit 19 */
8230 my_getExpression (&imm_expr, s);
8231 check_absolute_expr (ip, &imm_expr);
8232 min_range = -((OP_MASK_DSPSFT_7 + 1) >> 1);
8233 max_range = ((OP_MASK_DSPSFT_7 + 1) >> 1) - 1;
8234 if (imm_expr.X_add_number < min_range ||
8235 imm_expr.X_add_number > max_range)
8236 {
8237 as_warn (_("DSP immediate not in range %ld..%ld (%ld)"),
8238 (long) min_range, (long) max_range,
8239 (long) imm_expr.X_add_number);
8240 }
8241 imm_expr.X_add_number &= OP_MASK_DSPSFT_7;
8242 ip->insn_opcode |= ((unsigned long) imm_expr.X_add_number
8243 << OP_SH_DSPSFT_7);
8244 imm_expr.X_op = O_absent;
8245 s = expr_end;
8246 continue;
8247
8248 case '@': /* dsp 10-bit signed immediate in bit 16 */
8249 my_getExpression (&imm_expr, s);
8250 check_absolute_expr (ip, &imm_expr);
8251 min_range = -((OP_MASK_IMM10 + 1) >> 1);
8252 max_range = ((OP_MASK_IMM10 + 1) >> 1) - 1;
8253 if (imm_expr.X_add_number < min_range ||
8254 imm_expr.X_add_number > max_range)
8255 {
8256 as_warn (_("DSP immediate not in range %ld..%ld (%ld)"),
8257 (long) min_range, (long) max_range,
8258 (long) imm_expr.X_add_number);
8259 }
8260 imm_expr.X_add_number &= OP_MASK_IMM10;
8261 ip->insn_opcode |= ((unsigned long) imm_expr.X_add_number
8262 << OP_SH_IMM10);
8263 imm_expr.X_op = O_absent;
8264 s = expr_end;
8265 continue;
8266
8267 case '!': /* mt 1-bit unsigned immediate in bit 5 */
8268 my_getExpression (&imm_expr, s);
8269 check_absolute_expr (ip, &imm_expr);
8270 if (imm_expr.X_add_number & ~OP_MASK_MT_U)
8271 {
8272 as_warn (_("MT immediate not in range 0..%d (%lu)"),
8273 OP_MASK_MT_U, (unsigned long) imm_expr.X_add_number);
8274 imm_expr.X_add_number &= OP_MASK_MT_U;
8275 }
8276 ip->insn_opcode |= imm_expr.X_add_number << OP_SH_MT_U;
8277 imm_expr.X_op = O_absent;
8278 s = expr_end;
8279 continue;
8280
8281 case '$': /* mt 1-bit unsigned immediate in bit 4 */
8282 my_getExpression (&imm_expr, s);
8283 check_absolute_expr (ip, &imm_expr);
8284 if (imm_expr.X_add_number & ~OP_MASK_MT_H)
8285 {
8286 as_warn (_("MT immediate not in range 0..%d (%lu)"),
8287 OP_MASK_MT_H, (unsigned long) imm_expr.X_add_number);
8288 imm_expr.X_add_number &= OP_MASK_MT_H;
8289 }
8290 ip->insn_opcode |= imm_expr.X_add_number << OP_SH_MT_H;
8291 imm_expr.X_op = O_absent;
8292 s = expr_end;
8293 continue;
8294
8295 case '*': /* four dsp accumulators in bits 18,19 */
8296 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
8297 s[3] >= '0' && s[3] <= '3')
8298 {
8299 regno = s[3] - '0';
8300 s += 4;
8301 ip->insn_opcode |= regno << OP_SH_MTACC_T;
8302 continue;
8303 }
8304 else
8305 as_bad (_("Invalid dsp/smartmips acc register"));
8306 break;
8307
8308 case '&': /* four dsp accumulators in bits 13,14 */
8309 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
8310 s[3] >= '0' && s[3] <= '3')
8311 {
8312 regno = s[3] - '0';
8313 s += 4;
8314 ip->insn_opcode |= regno << OP_SH_MTACC_D;
8315 continue;
8316 }
8317 else
8318 as_bad (_("Invalid dsp/smartmips acc register"));
8319 break;
8320
8321 case ',':
8322 if (*s++ == *args)
8323 continue;
8324 s--;
8325 switch (*++args)
8326 {
8327 case 'r':
8328 case 'v':
8329 INSERT_OPERAND (RS, *ip, lastregno);
8330 continue;
8331
8332 case 'w':
8333 INSERT_OPERAND (RT, *ip, lastregno);
8334 continue;
8335
8336 case 'W':
8337 INSERT_OPERAND (FT, *ip, lastregno);
8338 continue;
8339
8340 case 'V':
8341 INSERT_OPERAND (FS, *ip, lastregno);
8342 continue;
8343 }
8344 break;
8345
8346 case '(':
8347 /* Handle optional base register.
8348 Either the base register is omitted or
8349 we must have a left paren. */
8350 /* This is dependent on the next operand specifier
8351 is a base register specification. */
8352 assert (args[1] == 'b' || args[1] == '5'
8353 || args[1] == '-' || args[1] == '4');
8354 if (*s == '\0')
8355 return;
8356
8357 case ')': /* these must match exactly */
8358 case '[':
8359 case ']':
8360 if (*s++ == *args)
8361 continue;
8362 break;
8363
8364 case '+': /* Opcode extension character. */
8365 switch (*++args)
8366 {
8367 case '1': /* UDI immediates. */
8368 case '2':
8369 case '3':
8370 case '4':
8371 {
8372 const struct mips_immed *imm = mips_immed;
8373
8374 while (imm->type && imm->type != *args)
8375 ++imm;
8376 if (! imm->type)
8377 internalError ();
8378 my_getExpression (&imm_expr, s);
8379 check_absolute_expr (ip, &imm_expr);
8380 if ((unsigned long) imm_expr.X_add_number & ~imm->mask)
8381 {
8382 as_warn (_("Illegal %s number (%lu, 0x%lx)"),
8383 imm->desc ? imm->desc : ip->insn_mo->name,
8384 (unsigned long) imm_expr.X_add_number,
8385 (unsigned long) imm_expr.X_add_number);
8386 imm_expr.X_add_number &= imm->mask;
8387 }
8388 ip->insn_opcode |= ((unsigned long) imm_expr.X_add_number
8389 << imm->shift);
8390 imm_expr.X_op = O_absent;
8391 s = expr_end;
8392 }
8393 continue;
8394
8395 case 'A': /* ins/ext position, becomes LSB. */
8396 limlo = 0;
8397 limhi = 31;
8398 goto do_lsb;
8399 case 'E':
8400 limlo = 32;
8401 limhi = 63;
8402 goto do_lsb;
8403 do_lsb:
8404 my_getExpression (&imm_expr, s);
8405 check_absolute_expr (ip, &imm_expr);
8406 if ((unsigned long) imm_expr.X_add_number < limlo
8407 || (unsigned long) imm_expr.X_add_number > limhi)
8408 {
8409 as_bad (_("Improper position (%lu)"),
8410 (unsigned long) imm_expr.X_add_number);
8411 imm_expr.X_add_number = limlo;
8412 }
8413 lastpos = imm_expr.X_add_number;
8414 INSERT_OPERAND (SHAMT, *ip, imm_expr.X_add_number);
8415 imm_expr.X_op = O_absent;
8416 s = expr_end;
8417 continue;
8418
8419 case 'B': /* ins size, becomes MSB. */
8420 limlo = 1;
8421 limhi = 32;
8422 goto do_msb;
8423 case 'F':
8424 limlo = 33;
8425 limhi = 64;
8426 goto do_msb;
8427 do_msb:
8428 my_getExpression (&imm_expr, s);
8429 check_absolute_expr (ip, &imm_expr);
8430 /* Check for negative input so that small negative numbers
8431 will not succeed incorrectly. The checks against
8432 (pos+size) transitively check "size" itself,
8433 assuming that "pos" is reasonable. */
8434 if ((long) imm_expr.X_add_number < 0
8435 || ((unsigned long) imm_expr.X_add_number
8436 + lastpos) < limlo
8437 || ((unsigned long) imm_expr.X_add_number
8438 + lastpos) > limhi)
8439 {
8440 as_bad (_("Improper insert size (%lu, position %lu)"),
8441 (unsigned long) imm_expr.X_add_number,
8442 (unsigned long) lastpos);
8443 imm_expr.X_add_number = limlo - lastpos;
8444 }
8445 INSERT_OPERAND (INSMSB, *ip,
8446 lastpos + imm_expr.X_add_number - 1);
8447 imm_expr.X_op = O_absent;
8448 s = expr_end;
8449 continue;
8450
8451 case 'C': /* ext size, becomes MSBD. */
8452 limlo = 1;
8453 limhi = 32;
8454 goto do_msbd;
8455 case 'G':
8456 limlo = 33;
8457 limhi = 64;
8458 goto do_msbd;
8459 case 'H':
8460 limlo = 33;
8461 limhi = 64;
8462 goto do_msbd;
8463 do_msbd:
8464 my_getExpression (&imm_expr, s);
8465 check_absolute_expr (ip, &imm_expr);
8466 /* Check for negative input so that small negative numbers
8467 will not succeed incorrectly. The checks against
8468 (pos+size) transitively check "size" itself,
8469 assuming that "pos" is reasonable. */
8470 if ((long) imm_expr.X_add_number < 0
8471 || ((unsigned long) imm_expr.X_add_number
8472 + lastpos) < limlo
8473 || ((unsigned long) imm_expr.X_add_number
8474 + lastpos) > limhi)
8475 {
8476 as_bad (_("Improper extract size (%lu, position %lu)"),
8477 (unsigned long) imm_expr.X_add_number,
8478 (unsigned long) lastpos);
8479 imm_expr.X_add_number = limlo - lastpos;
8480 }
8481 INSERT_OPERAND (EXTMSBD, *ip, imm_expr.X_add_number - 1);
8482 imm_expr.X_op = O_absent;
8483 s = expr_end;
8484 continue;
8485
8486 case 'D':
8487 /* +D is for disassembly only; never match. */
8488 break;
8489
8490 case 'I':
8491 /* "+I" is like "I", except that imm2_expr is used. */
8492 my_getExpression (&imm2_expr, s);
8493 if (imm2_expr.X_op != O_big
8494 && imm2_expr.X_op != O_constant)
8495 insn_error = _("absolute expression required");
8496 if (HAVE_32BIT_GPRS)
8497 normalize_constant_expr (&imm2_expr);
8498 s = expr_end;
8499 continue;
8500
8501 case 'T': /* Coprocessor register */
8502 /* +T is for disassembly only; never match. */
8503 break;
8504
8505 case 't': /* Coprocessor register number */
8506 if (s[0] == '$' && ISDIGIT (s[1]))
8507 {
8508 ++s;
8509 regno = 0;
8510 do
8511 {
8512 regno *= 10;
8513 regno += *s - '0';
8514 ++s;
8515 }
8516 while (ISDIGIT (*s));
8517 if (regno > 31)
8518 as_bad (_("Invalid register number (%d)"), regno);
8519 else
8520 {
8521 ip->insn_opcode |= regno << OP_SH_RT;
8522 continue;
8523 }
8524 }
8525 else
8526 as_bad (_("Invalid coprocessor 0 register number"));
8527 break;
8528
8529 default:
8530 as_bad (_("internal: bad mips opcode (unknown extension operand type `+%c'): %s %s"),
8531 *args, insn->name, insn->args);
8532 /* Further processing is fruitless. */
8533 return;
8534 }
8535 break;
8536
8537 case '<': /* must be at least one digit */
8538 /*
8539 * According to the manual, if the shift amount is greater
8540 * than 31 or less than 0, then the shift amount should be
8541 * mod 32. In reality the mips assembler issues an error.
8542 * We issue a warning and mask out all but the low 5 bits.
8543 */
8544 my_getExpression (&imm_expr, s);
8545 check_absolute_expr (ip, &imm_expr);
8546 if ((unsigned long) imm_expr.X_add_number > 31)
8547 as_warn (_("Improper shift amount (%lu)"),
8548 (unsigned long) imm_expr.X_add_number);
8549 INSERT_OPERAND (SHAMT, *ip, imm_expr.X_add_number);
8550 imm_expr.X_op = O_absent;
8551 s = expr_end;
8552 continue;
8553
8554 case '>': /* shift amount minus 32 */
8555 my_getExpression (&imm_expr, s);
8556 check_absolute_expr (ip, &imm_expr);
8557 if ((unsigned long) imm_expr.X_add_number < 32
8558 || (unsigned long) imm_expr.X_add_number > 63)
8559 break;
8560 INSERT_OPERAND (SHAMT, *ip, imm_expr.X_add_number - 32);
8561 imm_expr.X_op = O_absent;
8562 s = expr_end;
8563 continue;
8564
8565 case 'k': /* cache code */
8566 case 'h': /* prefx code */
8567 my_getExpression (&imm_expr, s);
8568 check_absolute_expr (ip, &imm_expr);
8569 if ((unsigned long) imm_expr.X_add_number > 31)
8570 as_warn (_("Invalid value for `%s' (%lu)"),
8571 ip->insn_mo->name,
8572 (unsigned long) imm_expr.X_add_number);
8573 if (*args == 'k')
8574 INSERT_OPERAND (CACHE, *ip, imm_expr.X_add_number);
8575 else
8576 INSERT_OPERAND (PREFX, *ip, imm_expr.X_add_number);
8577 imm_expr.X_op = O_absent;
8578 s = expr_end;
8579 continue;
8580
8581 case 'c': /* break code */
8582 my_getExpression (&imm_expr, s);
8583 check_absolute_expr (ip, &imm_expr);
8584 if ((unsigned long) imm_expr.X_add_number > 1023)
8585 as_warn (_("Illegal break code (%lu)"),
8586 (unsigned long) imm_expr.X_add_number);
8587 INSERT_OPERAND (CODE, *ip, imm_expr.X_add_number);
8588 imm_expr.X_op = O_absent;
8589 s = expr_end;
8590 continue;
8591
8592 case 'q': /* lower break code */
8593 my_getExpression (&imm_expr, s);
8594 check_absolute_expr (ip, &imm_expr);
8595 if ((unsigned long) imm_expr.X_add_number > 1023)
8596 as_warn (_("Illegal lower break code (%lu)"),
8597 (unsigned long) imm_expr.X_add_number);
8598 INSERT_OPERAND (CODE2, *ip, imm_expr.X_add_number);
8599 imm_expr.X_op = O_absent;
8600 s = expr_end;
8601 continue;
8602
8603 case 'B': /* 20-bit syscall/break code. */
8604 my_getExpression (&imm_expr, s);
8605 check_absolute_expr (ip, &imm_expr);
8606 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE20)
8607 as_warn (_("Illegal 20-bit code (%lu)"),
8608 (unsigned long) imm_expr.X_add_number);
8609 INSERT_OPERAND (CODE20, *ip, imm_expr.X_add_number);
8610 imm_expr.X_op = O_absent;
8611 s = expr_end;
8612 continue;
8613
8614 case 'C': /* Coprocessor code */
8615 my_getExpression (&imm_expr, s);
8616 check_absolute_expr (ip, &imm_expr);
8617 if ((unsigned long) imm_expr.X_add_number >= (1 << 25))
8618 {
8619 as_warn (_("Coproccesor code > 25 bits (%lu)"),
8620 (unsigned long) imm_expr.X_add_number);
8621 imm_expr.X_add_number &= ((1 << 25) - 1);
8622 }
8623 ip->insn_opcode |= imm_expr.X_add_number;
8624 imm_expr.X_op = O_absent;
8625 s = expr_end;
8626 continue;
8627
8628 case 'J': /* 19-bit wait code. */
8629 my_getExpression (&imm_expr, s);
8630 check_absolute_expr (ip, &imm_expr);
8631 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE19)
8632 as_warn (_("Illegal 19-bit code (%lu)"),
8633 (unsigned long) imm_expr.X_add_number);
8634 INSERT_OPERAND (CODE19, *ip, imm_expr.X_add_number);
8635 imm_expr.X_op = O_absent;
8636 s = expr_end;
8637 continue;
8638
8639 case 'P': /* Performance register */
8640 my_getExpression (&imm_expr, s);
8641 check_absolute_expr (ip, &imm_expr);
8642 if (imm_expr.X_add_number != 0 && imm_expr.X_add_number != 1)
8643 as_warn (_("Invalid performance register (%lu)"),
8644 (unsigned long) imm_expr.X_add_number);
8645 INSERT_OPERAND (PERFREG, *ip, imm_expr.X_add_number);
8646 imm_expr.X_op = O_absent;
8647 s = expr_end;
8648 continue;
8649
8650 case 'b': /* base register */
8651 case 'd': /* destination register */
8652 case 's': /* source register */
8653 case 't': /* target register */
8654 case 'r': /* both target and source */
8655 case 'v': /* both dest and source */
8656 case 'w': /* both dest and target */
8657 case 'E': /* coprocessor target register */
8658 case 'G': /* coprocessor destination register */
8659 case 'K': /* 'rdhwr' destination register */
8660 case 'x': /* ignore register name */
8661 case 'z': /* must be zero register */
8662 case 'U': /* destination register (clo/clz). */
8663 case 'g': /* coprocessor destination register */
8664 s_reset = s;
8665 if (s[0] == '$')
8666 {
8667 if (ISDIGIT (s[1]))
8668 {
8669 ++s;
8670 regno = 0;
8671 do
8672 {
8673 regno *= 10;
8674 regno += *s - '0';
8675 ++s;
8676 }
8677 while (ISDIGIT (*s));
8678 if (regno > 31)
8679 as_bad (_("Invalid register number (%d)"), regno);
8680 }
8681 else if (*args == 'E' || *args == 'G' || *args == 'K')
8682 goto notreg;
8683 else
8684 {
8685 if (s[1] == 'r' && s[2] == 'a')
8686 {
8687 s += 3;
8688 regno = RA;
8689 }
8690 else if (s[1] == 'f' && s[2] == 'p')
8691 {
8692 s += 3;
8693 regno = FP;
8694 }
8695 else if (s[1] == 's' && s[2] == 'p')
8696 {
8697 s += 3;
8698 regno = SP;
8699 }
8700 else if (s[1] == 'g' && s[2] == 'p')
8701 {
8702 s += 3;
8703 regno = GP;
8704 }
8705 else if (s[1] == 'a' && s[2] == 't')
8706 {
8707 s += 3;
8708 regno = AT;
8709 }
8710 else if (s[1] == 'k' && s[2] == 't' && s[3] == '0')
8711 {
8712 s += 4;
8713 regno = KT0;
8714 }
8715 else if (s[1] == 'k' && s[2] == 't' && s[3] == '1')
8716 {
8717 s += 4;
8718 regno = KT1;
8719 }
8720 else if (s[1] == 'z' && s[2] == 'e' && s[3] == 'r' && s[4] == 'o')
8721 {
8722 s += 5;
8723 regno = ZERO;
8724 }
8725 else if (itbl_have_entries)
8726 {
8727 char *p, *n;
8728 unsigned long r;
8729
8730 p = s + 1; /* advance past '$' */
8731 n = itbl_get_field (&p); /* n is name */
8732
8733 /* See if this is a register defined in an
8734 itbl entry. */
8735 if (itbl_get_reg_val (n, &r))
8736 {
8737 /* Get_field advances to the start of
8738 the next field, so we need to back
8739 rack to the end of the last field. */
8740 if (p)
8741 s = p - 1;
8742 else
8743 s = strchr (s, '\0');
8744 regno = r;
8745 }
8746 else
8747 goto notreg;
8748 }
8749 else
8750 goto notreg;
8751 }
8752 if (regno == AT
8753 && ! mips_opts.noat
8754 && *args != 'E'
8755 && *args != 'G'
8756 && *args != 'K')
8757 as_warn (_("Used $at without \".set noat\""));
8758 c = *args;
8759 if (*s == ' ')
8760 ++s;
8761 if (args[1] != *s)
8762 {
8763 if (c == 'r' || c == 'v' || c == 'w')
8764 {
8765 regno = lastregno;
8766 s = s_reset;
8767 ++args;
8768 }
8769 }
8770 /* 'z' only matches $0. */
8771 if (c == 'z' && regno != 0)
8772 break;
8773
8774 /* Now that we have assembled one operand, we use the args string
8775 * to figure out where it goes in the instruction. */
8776 switch (c)
8777 {
8778 case 'r':
8779 case 's':
8780 case 'v':
8781 case 'b':
8782 INSERT_OPERAND (RS, *ip, regno);
8783 break;
8784 case 'd':
8785 case 'G':
8786 case 'K':
8787 case 'g':
8788 INSERT_OPERAND (RD, *ip, regno);
8789 break;
8790 case 'U':
8791 INSERT_OPERAND (RD, *ip, regno);
8792 INSERT_OPERAND (RT, *ip, regno);
8793 break;
8794 case 'w':
8795 case 't':
8796 case 'E':
8797 INSERT_OPERAND (RT, *ip, regno);
8798 break;
8799 case 'x':
8800 /* This case exists because on the r3000 trunc
8801 expands into a macro which requires a gp
8802 register. On the r6000 or r4000 it is
8803 assembled into a single instruction which
8804 ignores the register. Thus the insn version
8805 is MIPS_ISA2 and uses 'x', and the macro
8806 version is MIPS_ISA1 and uses 't'. */
8807 break;
8808 case 'z':
8809 /* This case is for the div instruction, which
8810 acts differently if the destination argument
8811 is $0. This only matches $0, and is checked
8812 outside the switch. */
8813 break;
8814 case 'D':
8815 /* Itbl operand; not yet implemented. FIXME ?? */
8816 break;
8817 /* What about all other operands like 'i', which
8818 can be specified in the opcode table? */
8819 }
8820 lastregno = regno;
8821 continue;
8822 }
8823 notreg:
8824 switch (*args++)
8825 {
8826 case 'r':
8827 case 'v':
8828 INSERT_OPERAND (RS, *ip, lastregno);
8829 continue;
8830 case 'w':
8831 INSERT_OPERAND (RT, *ip, lastregno);
8832 continue;
8833 }
8834 break;
8835
8836 case 'O': /* MDMX alignment immediate constant. */
8837 my_getExpression (&imm_expr, s);
8838 check_absolute_expr (ip, &imm_expr);
8839 if ((unsigned long) imm_expr.X_add_number > OP_MASK_ALN)
8840 as_warn ("Improper align amount (%ld), using low bits",
8841 (long) imm_expr.X_add_number);
8842 INSERT_OPERAND (ALN, *ip, imm_expr.X_add_number);
8843 imm_expr.X_op = O_absent;
8844 s = expr_end;
8845 continue;
8846
8847 case 'Q': /* MDMX vector, element sel, or const. */
8848 if (s[0] != '$')
8849 {
8850 /* MDMX Immediate. */
8851 my_getExpression (&imm_expr, s);
8852 check_absolute_expr (ip, &imm_expr);
8853 if ((unsigned long) imm_expr.X_add_number > OP_MASK_FT)
8854 as_warn (_("Invalid MDMX Immediate (%ld)"),
8855 (long) imm_expr.X_add_number);
8856 INSERT_OPERAND (FT, *ip, imm_expr.X_add_number);
8857 if (ip->insn_opcode & (OP_MASK_VSEL << OP_SH_VSEL))
8858 ip->insn_opcode |= MDMX_FMTSEL_IMM_QH << OP_SH_VSEL;
8859 else
8860 ip->insn_opcode |= MDMX_FMTSEL_IMM_OB << OP_SH_VSEL;
8861 imm_expr.X_op = O_absent;
8862 s = expr_end;
8863 continue;
8864 }
8865 /* Not MDMX Immediate. Fall through. */
8866 case 'X': /* MDMX destination register. */
8867 case 'Y': /* MDMX source register. */
8868 case 'Z': /* MDMX target register. */
8869 is_mdmx = 1;
8870 case 'D': /* floating point destination register */
8871 case 'S': /* floating point source register */
8872 case 'T': /* floating point target register */
8873 case 'R': /* floating point source register */
8874 case 'V':
8875 case 'W':
8876 s_reset = s;
8877 /* Accept $fN for FP and MDMX register numbers, and in
8878 addition accept $vN for MDMX register numbers. */
8879 if ((s[0] == '$' && s[1] == 'f' && ISDIGIT (s[2]))
8880 || (is_mdmx != 0 && s[0] == '$' && s[1] == 'v'
8881 && ISDIGIT (s[2])))
8882 {
8883 s += 2;
8884 regno = 0;
8885 do
8886 {
8887 regno *= 10;
8888 regno += *s - '0';
8889 ++s;
8890 }
8891 while (ISDIGIT (*s));
8892
8893 if (regno > 31)
8894 as_bad (_("Invalid float register number (%d)"), regno);
8895
8896 if ((regno & 1) != 0
8897 && HAVE_32BIT_FPRS
8898 && ! (strcmp (str, "mtc1") == 0
8899 || strcmp (str, "mfc1") == 0
8900 || strcmp (str, "lwc1") == 0
8901 || strcmp (str, "swc1") == 0
8902 || strcmp (str, "l.s") == 0
8903 || strcmp (str, "s.s") == 0
8904 || strcmp (str, "mftc1") == 0
8905 || strcmp (str, "mfthc1") == 0
8906 || strcmp (str, "cftc1") == 0
8907 || strcmp (str, "mttc1") == 0
8908 || strcmp (str, "mtthc1") == 0
8909 || strcmp (str, "cttc1") == 0))
8910 as_warn (_("Float register should be even, was %d"),
8911 regno);
8912
8913 c = *args;
8914 if (*s == ' ')
8915 ++s;
8916 if (args[1] != *s)
8917 {
8918 if (c == 'V' || c == 'W')
8919 {
8920 regno = lastregno;
8921 s = s_reset;
8922 ++args;
8923 }
8924 }
8925 switch (c)
8926 {
8927 case 'D':
8928 case 'X':
8929 INSERT_OPERAND (FD, *ip, regno);
8930 break;
8931 case 'V':
8932 case 'S':
8933 case 'Y':
8934 INSERT_OPERAND (FS, *ip, regno);
8935 break;
8936 case 'Q':
8937 /* This is like 'Z', but also needs to fix the MDMX
8938 vector/scalar select bits. Note that the
8939 scalar immediate case is handled above. */
8940 if (*s == '[')
8941 {
8942 int is_qh = (ip->insn_opcode & (1 << OP_SH_VSEL));
8943 int max_el = (is_qh ? 3 : 7);
8944 s++;
8945 my_getExpression(&imm_expr, s);
8946 check_absolute_expr (ip, &imm_expr);
8947 s = expr_end;
8948 if (imm_expr.X_add_number > max_el)
8949 as_bad(_("Bad element selector %ld"),
8950 (long) imm_expr.X_add_number);
8951 imm_expr.X_add_number &= max_el;
8952 ip->insn_opcode |= (imm_expr.X_add_number
8953 << (OP_SH_VSEL +
8954 (is_qh ? 2 : 1)));
8955 imm_expr.X_op = O_absent;
8956 if (*s != ']')
8957 as_warn(_("Expecting ']' found '%s'"), s);
8958 else
8959 s++;
8960 }
8961 else
8962 {
8963 if (ip->insn_opcode & (OP_MASK_VSEL << OP_SH_VSEL))
8964 ip->insn_opcode |= (MDMX_FMTSEL_VEC_QH
8965 << OP_SH_VSEL);
8966 else
8967 ip->insn_opcode |= (MDMX_FMTSEL_VEC_OB <<
8968 OP_SH_VSEL);
8969 }
8970 /* Fall through */
8971 case 'W':
8972 case 'T':
8973 case 'Z':
8974 INSERT_OPERAND (FT, *ip, regno);
8975 break;
8976 case 'R':
8977 INSERT_OPERAND (FR, *ip, regno);
8978 break;
8979 }
8980 lastregno = regno;
8981 continue;
8982 }
8983
8984 switch (*args++)
8985 {
8986 case 'V':
8987 INSERT_OPERAND (FS, *ip, lastregno);
8988 continue;
8989 case 'W':
8990 INSERT_OPERAND (FT, *ip, lastregno);
8991 continue;
8992 }
8993 break;
8994
8995 case 'I':
8996 my_getExpression (&imm_expr, s);
8997 if (imm_expr.X_op != O_big
8998 && imm_expr.X_op != O_constant)
8999 insn_error = _("absolute expression required");
9000 if (HAVE_32BIT_GPRS)
9001 normalize_constant_expr (&imm_expr);
9002 s = expr_end;
9003 continue;
9004
9005 case 'A':
9006 my_getExpression (&offset_expr, s);
9007 normalize_address_expr (&offset_expr);
9008 *imm_reloc = BFD_RELOC_32;
9009 s = expr_end;
9010 continue;
9011
9012 case 'F':
9013 case 'L':
9014 case 'f':
9015 case 'l':
9016 {
9017 int f64;
9018 int using_gprs;
9019 char *save_in;
9020 char *err;
9021 unsigned char temp[8];
9022 int len;
9023 unsigned int length;
9024 segT seg;
9025 subsegT subseg;
9026 char *p;
9027
9028 /* These only appear as the last operand in an
9029 instruction, and every instruction that accepts
9030 them in any variant accepts them in all variants.
9031 This means we don't have to worry about backing out
9032 any changes if the instruction does not match.
9033
9034 The difference between them is the size of the
9035 floating point constant and where it goes. For 'F'
9036 and 'L' the constant is 64 bits; for 'f' and 'l' it
9037 is 32 bits. Where the constant is placed is based
9038 on how the MIPS assembler does things:
9039 F -- .rdata
9040 L -- .lit8
9041 f -- immediate value
9042 l -- .lit4
9043
9044 The .lit4 and .lit8 sections are only used if
9045 permitted by the -G argument.
9046
9047 The code below needs to know whether the target register
9048 is 32 or 64 bits wide. It relies on the fact 'f' and
9049 'F' are used with GPR-based instructions and 'l' and
9050 'L' are used with FPR-based instructions. */
9051
9052 f64 = *args == 'F' || *args == 'L';
9053 using_gprs = *args == 'F' || *args == 'f';
9054
9055 save_in = input_line_pointer;
9056 input_line_pointer = s;
9057 err = md_atof (f64 ? 'd' : 'f', (char *) temp, &len);
9058 length = len;
9059 s = input_line_pointer;
9060 input_line_pointer = save_in;
9061 if (err != NULL && *err != '\0')
9062 {
9063 as_bad (_("Bad floating point constant: %s"), err);
9064 memset (temp, '\0', sizeof temp);
9065 length = f64 ? 8 : 4;
9066 }
9067
9068 assert (length == (unsigned) (f64 ? 8 : 4));
9069
9070 if (*args == 'f'
9071 || (*args == 'l'
9072 && (g_switch_value < 4
9073 || (temp[0] == 0 && temp[1] == 0)
9074 || (temp[2] == 0 && temp[3] == 0))))
9075 {
9076 imm_expr.X_op = O_constant;
9077 if (! target_big_endian)
9078 imm_expr.X_add_number = bfd_getl32 (temp);
9079 else
9080 imm_expr.X_add_number = bfd_getb32 (temp);
9081 }
9082 else if (length > 4
9083 && ! mips_disable_float_construction
9084 /* Constants can only be constructed in GPRs and
9085 copied to FPRs if the GPRs are at least as wide
9086 as the FPRs. Force the constant into memory if
9087 we are using 64-bit FPRs but the GPRs are only
9088 32 bits wide. */
9089 && (using_gprs
9090 || ! (HAVE_64BIT_FPRS && HAVE_32BIT_GPRS))
9091 && ((temp[0] == 0 && temp[1] == 0)
9092 || (temp[2] == 0 && temp[3] == 0))
9093 && ((temp[4] == 0 && temp[5] == 0)
9094 || (temp[6] == 0 && temp[7] == 0)))
9095 {
9096 /* The value is simple enough to load with a couple of
9097 instructions. If using 32-bit registers, set
9098 imm_expr to the high order 32 bits and offset_expr to
9099 the low order 32 bits. Otherwise, set imm_expr to
9100 the entire 64 bit constant. */
9101 if (using_gprs ? HAVE_32BIT_GPRS : HAVE_32BIT_FPRS)
9102 {
9103 imm_expr.X_op = O_constant;
9104 offset_expr.X_op = O_constant;
9105 if (! target_big_endian)
9106 {
9107 imm_expr.X_add_number = bfd_getl32 (temp + 4);
9108 offset_expr.X_add_number = bfd_getl32 (temp);
9109 }
9110 else
9111 {
9112 imm_expr.X_add_number = bfd_getb32 (temp);
9113 offset_expr.X_add_number = bfd_getb32 (temp + 4);
9114 }
9115 if (offset_expr.X_add_number == 0)
9116 offset_expr.X_op = O_absent;
9117 }
9118 else if (sizeof (imm_expr.X_add_number) > 4)
9119 {
9120 imm_expr.X_op = O_constant;
9121 if (! target_big_endian)
9122 imm_expr.X_add_number = bfd_getl64 (temp);
9123 else
9124 imm_expr.X_add_number = bfd_getb64 (temp);
9125 }
9126 else
9127 {
9128 imm_expr.X_op = O_big;
9129 imm_expr.X_add_number = 4;
9130 if (! target_big_endian)
9131 {
9132 generic_bignum[0] = bfd_getl16 (temp);
9133 generic_bignum[1] = bfd_getl16 (temp + 2);
9134 generic_bignum[2] = bfd_getl16 (temp + 4);
9135 generic_bignum[3] = bfd_getl16 (temp + 6);
9136 }
9137 else
9138 {
9139 generic_bignum[0] = bfd_getb16 (temp + 6);
9140 generic_bignum[1] = bfd_getb16 (temp + 4);
9141 generic_bignum[2] = bfd_getb16 (temp + 2);
9142 generic_bignum[3] = bfd_getb16 (temp);
9143 }
9144 }
9145 }
9146 else
9147 {
9148 const char *newname;
9149 segT new_seg;
9150
9151 /* Switch to the right section. */
9152 seg = now_seg;
9153 subseg = now_subseg;
9154 switch (*args)
9155 {
9156 default: /* unused default case avoids warnings. */
9157 case 'L':
9158 newname = RDATA_SECTION_NAME;
9159 if (g_switch_value >= 8)
9160 newname = ".lit8";
9161 break;
9162 case 'F':
9163 newname = RDATA_SECTION_NAME;
9164 break;
9165 case 'l':
9166 assert (g_switch_value >= 4);
9167 newname = ".lit4";
9168 break;
9169 }
9170 new_seg = subseg_new (newname, (subsegT) 0);
9171 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
9172 bfd_set_section_flags (stdoutput, new_seg,
9173 (SEC_ALLOC
9174 | SEC_LOAD
9175 | SEC_READONLY
9176 | SEC_DATA));
9177 frag_align (*args == 'l' ? 2 : 3, 0, 0);
9178 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
9179 && strcmp (TARGET_OS, "elf") != 0)
9180 record_alignment (new_seg, 4);
9181 else
9182 record_alignment (new_seg, *args == 'l' ? 2 : 3);
9183 if (seg == now_seg)
9184 as_bad (_("Can't use floating point insn in this section"));
9185
9186 /* Set the argument to the current address in the
9187 section. */
9188 offset_expr.X_op = O_symbol;
9189 offset_expr.X_add_symbol =
9190 symbol_new ("L0\001", now_seg,
9191 (valueT) frag_now_fix (), frag_now);
9192 offset_expr.X_add_number = 0;
9193
9194 /* Put the floating point number into the section. */
9195 p = frag_more ((int) length);
9196 memcpy (p, temp, length);
9197
9198 /* Switch back to the original section. */
9199 subseg_set (seg, subseg);
9200 }
9201 }
9202 continue;
9203
9204 case 'i': /* 16 bit unsigned immediate */
9205 case 'j': /* 16 bit signed immediate */
9206 *imm_reloc = BFD_RELOC_LO16;
9207 if (my_getSmallExpression (&imm_expr, imm_reloc, s) == 0)
9208 {
9209 int more;
9210 offsetT minval, maxval;
9211
9212 more = (insn + 1 < &mips_opcodes[NUMOPCODES]
9213 && strcmp (insn->name, insn[1].name) == 0);
9214
9215 /* If the expression was written as an unsigned number,
9216 only treat it as signed if there are no more
9217 alternatives. */
9218 if (more
9219 && *args == 'j'
9220 && sizeof (imm_expr.X_add_number) <= 4
9221 && imm_expr.X_op == O_constant
9222 && imm_expr.X_add_number < 0
9223 && imm_expr.X_unsigned
9224 && HAVE_64BIT_GPRS)
9225 break;
9226
9227 /* For compatibility with older assemblers, we accept
9228 0x8000-0xffff as signed 16-bit numbers when only
9229 signed numbers are allowed. */
9230 if (*args == 'i')
9231 minval = 0, maxval = 0xffff;
9232 else if (more)
9233 minval = -0x8000, maxval = 0x7fff;
9234 else
9235 minval = -0x8000, maxval = 0xffff;
9236
9237 if (imm_expr.X_op != O_constant
9238 || imm_expr.X_add_number < minval
9239 || imm_expr.X_add_number > maxval)
9240 {
9241 if (more)
9242 break;
9243 if (imm_expr.X_op == O_constant
9244 || imm_expr.X_op == O_big)
9245 as_bad (_("expression out of range"));
9246 }
9247 }
9248 s = expr_end;
9249 continue;
9250
9251 case 'o': /* 16 bit offset */
9252 /* Check whether there is only a single bracketed expression
9253 left. If so, it must be the base register and the
9254 constant must be zero. */
9255 if (*s == '(' && strchr (s + 1, '(') == 0)
9256 {
9257 offset_expr.X_op = O_constant;
9258 offset_expr.X_add_number = 0;
9259 continue;
9260 }
9261
9262 /* If this value won't fit into a 16 bit offset, then go
9263 find a macro that will generate the 32 bit offset
9264 code pattern. */
9265 if (my_getSmallExpression (&offset_expr, offset_reloc, s) == 0
9266 && (offset_expr.X_op != O_constant
9267 || offset_expr.X_add_number >= 0x8000
9268 || offset_expr.X_add_number < -0x8000))
9269 break;
9270
9271 s = expr_end;
9272 continue;
9273
9274 case 'p': /* pc relative offset */
9275 *offset_reloc = BFD_RELOC_16_PCREL_S2;
9276 my_getExpression (&offset_expr, s);
9277 s = expr_end;
9278 continue;
9279
9280 case 'u': /* upper 16 bits */
9281 if (my_getSmallExpression (&imm_expr, imm_reloc, s) == 0
9282 && imm_expr.X_op == O_constant
9283 && (imm_expr.X_add_number < 0
9284 || imm_expr.X_add_number >= 0x10000))
9285 as_bad (_("lui expression not in range 0..65535"));
9286 s = expr_end;
9287 continue;
9288
9289 case 'a': /* 26 bit address */
9290 my_getExpression (&offset_expr, s);
9291 s = expr_end;
9292 *offset_reloc = BFD_RELOC_MIPS_JMP;
9293 continue;
9294
9295 case 'N': /* 3 bit branch condition code */
9296 case 'M': /* 3 bit compare condition code */
9297 if (strncmp (s, "$fcc", 4) != 0)
9298 break;
9299 s += 4;
9300 regno = 0;
9301 do
9302 {
9303 regno *= 10;
9304 regno += *s - '0';
9305 ++s;
9306 }
9307 while (ISDIGIT (*s));
9308 if (regno > 7)
9309 as_bad (_("Invalid condition code register $fcc%d"), regno);
9310 if ((strcmp(str + strlen(str) - 3, ".ps") == 0
9311 || strcmp(str + strlen(str) - 5, "any2f") == 0
9312 || strcmp(str + strlen(str) - 5, "any2t") == 0)
9313 && (regno & 1) != 0)
9314 as_warn(_("Condition code register should be even for %s, was %d"),
9315 str, regno);
9316 if ((strcmp(str + strlen(str) - 5, "any4f") == 0
9317 || strcmp(str + strlen(str) - 5, "any4t") == 0)
9318 && (regno & 3) != 0)
9319 as_warn(_("Condition code register should be 0 or 4 for %s, was %d"),
9320 str, regno);
9321 if (*args == 'N')
9322 INSERT_OPERAND (BCC, *ip, regno);
9323 else
9324 INSERT_OPERAND (CCC, *ip, regno);
9325 continue;
9326
9327 case 'H':
9328 if (s[0] == '0' && (s[1] == 'x' || s[1] == 'X'))
9329 s += 2;
9330 if (ISDIGIT (*s))
9331 {
9332 c = 0;
9333 do
9334 {
9335 c *= 10;
9336 c += *s - '0';
9337 ++s;
9338 }
9339 while (ISDIGIT (*s));
9340 }
9341 else
9342 c = 8; /* Invalid sel value. */
9343
9344 if (c > 7)
9345 as_bad (_("invalid coprocessor sub-selection value (0-7)"));
9346 ip->insn_opcode |= c;
9347 continue;
9348
9349 case 'e':
9350 /* Must be at least one digit. */
9351 my_getExpression (&imm_expr, s);
9352 check_absolute_expr (ip, &imm_expr);
9353
9354 if ((unsigned long) imm_expr.X_add_number
9355 > (unsigned long) OP_MASK_VECBYTE)
9356 {
9357 as_bad (_("bad byte vector index (%ld)"),
9358 (long) imm_expr.X_add_number);
9359 imm_expr.X_add_number = 0;
9360 }
9361
9362 INSERT_OPERAND (VECBYTE, *ip, imm_expr.X_add_number);
9363 imm_expr.X_op = O_absent;
9364 s = expr_end;
9365 continue;
9366
9367 case '%':
9368 my_getExpression (&imm_expr, s);
9369 check_absolute_expr (ip, &imm_expr);
9370
9371 if ((unsigned long) imm_expr.X_add_number
9372 > (unsigned long) OP_MASK_VECALIGN)
9373 {
9374 as_bad (_("bad byte vector index (%ld)"),
9375 (long) imm_expr.X_add_number);
9376 imm_expr.X_add_number = 0;
9377 }
9378
9379 INSERT_OPERAND (VECALIGN, *ip, imm_expr.X_add_number);
9380 imm_expr.X_op = O_absent;
9381 s = expr_end;
9382 continue;
9383
9384 default:
9385 as_bad (_("bad char = '%c'\n"), *args);
9386 internalError ();
9387 }
9388 break;
9389 }
9390 /* Args don't match. */
9391 if (insn + 1 < &mips_opcodes[NUMOPCODES] &&
9392 !strcmp (insn->name, insn[1].name))
9393 {
9394 ++insn;
9395 s = argsStart;
9396 insn_error = _("illegal operands");
9397 continue;
9398 }
9399 if (save_c)
9400 *(--s) = save_c;
9401 insn_error = _("illegal operands");
9402 return;
9403 }
9404 }
9405
9406 #define SKIP_SPACE_TABS(S) { while (*(S) == ' ' || *(S) == '\t') ++(S); }
9407
9408 /* This routine assembles an instruction into its binary format when
9409 assembling for the mips16. As a side effect, it sets one of the
9410 global variables imm_reloc or offset_reloc to the type of
9411 relocation to do if one of the operands is an address expression.
9412 It also sets mips16_small and mips16_ext if the user explicitly
9413 requested a small or extended instruction. */
9414
9415 static void
9416 mips16_ip (char *str, struct mips_cl_insn *ip)
9417 {
9418 char *s;
9419 const char *args;
9420 struct mips_opcode *insn;
9421 char *argsstart;
9422 unsigned int regno;
9423 unsigned int lastregno = 0;
9424 char *s_reset;
9425 size_t i;
9426
9427 insn_error = NULL;
9428
9429 mips16_small = FALSE;
9430 mips16_ext = FALSE;
9431
9432 for (s = str; ISLOWER (*s); ++s)
9433 ;
9434 switch (*s)
9435 {
9436 case '\0':
9437 break;
9438
9439 case ' ':
9440 *s++ = '\0';
9441 break;
9442
9443 case '.':
9444 if (s[1] == 't' && s[2] == ' ')
9445 {
9446 *s = '\0';
9447 mips16_small = TRUE;
9448 s += 3;
9449 break;
9450 }
9451 else if (s[1] == 'e' && s[2] == ' ')
9452 {
9453 *s = '\0';
9454 mips16_ext = TRUE;
9455 s += 3;
9456 break;
9457 }
9458 /* Fall through. */
9459 default:
9460 insn_error = _("unknown opcode");
9461 return;
9462 }
9463
9464 if (mips_opts.noautoextend && ! mips16_ext)
9465 mips16_small = TRUE;
9466
9467 if ((insn = (struct mips_opcode *) hash_find (mips16_op_hash, str)) == NULL)
9468 {
9469 insn_error = _("unrecognized opcode");
9470 return;
9471 }
9472
9473 argsstart = s;
9474 for (;;)
9475 {
9476 assert (strcmp (insn->name, str) == 0);
9477
9478 create_insn (ip, insn);
9479 imm_expr.X_op = O_absent;
9480 imm_reloc[0] = BFD_RELOC_UNUSED;
9481 imm_reloc[1] = BFD_RELOC_UNUSED;
9482 imm_reloc[2] = BFD_RELOC_UNUSED;
9483 imm2_expr.X_op = O_absent;
9484 offset_expr.X_op = O_absent;
9485 offset_reloc[0] = BFD_RELOC_UNUSED;
9486 offset_reloc[1] = BFD_RELOC_UNUSED;
9487 offset_reloc[2] = BFD_RELOC_UNUSED;
9488 for (args = insn->args; 1; ++args)
9489 {
9490 int c;
9491
9492 if (*s == ' ')
9493 ++s;
9494
9495 /* In this switch statement we call break if we did not find
9496 a match, continue if we did find a match, or return if we
9497 are done. */
9498
9499 c = *args;
9500 switch (c)
9501 {
9502 case '\0':
9503 if (*s == '\0')
9504 {
9505 /* Stuff the immediate value in now, if we can. */
9506 if (imm_expr.X_op == O_constant
9507 && *imm_reloc > BFD_RELOC_UNUSED
9508 && insn->pinfo != INSN_MACRO)
9509 {
9510 valueT tmp;
9511
9512 switch (*offset_reloc)
9513 {
9514 case BFD_RELOC_MIPS16_HI16_S:
9515 tmp = (imm_expr.X_add_number + 0x8000) >> 16;
9516 break;
9517
9518 case BFD_RELOC_MIPS16_HI16:
9519 tmp = imm_expr.X_add_number >> 16;
9520 break;
9521
9522 case BFD_RELOC_MIPS16_LO16:
9523 tmp = ((imm_expr.X_add_number + 0x8000) & 0xffff)
9524 - 0x8000;
9525 break;
9526
9527 case BFD_RELOC_UNUSED:
9528 tmp = imm_expr.X_add_number;
9529 break;
9530
9531 default:
9532 internalError ();
9533 }
9534 *offset_reloc = BFD_RELOC_UNUSED;
9535
9536 mips16_immed (NULL, 0, *imm_reloc - BFD_RELOC_UNUSED,
9537 tmp, TRUE, mips16_small,
9538 mips16_ext, &ip->insn_opcode,
9539 &ip->use_extend, &ip->extend);
9540 imm_expr.X_op = O_absent;
9541 *imm_reloc = BFD_RELOC_UNUSED;
9542 }
9543
9544 return;
9545 }
9546 break;
9547
9548 case ',':
9549 if (*s++ == c)
9550 continue;
9551 s--;
9552 switch (*++args)
9553 {
9554 case 'v':
9555 MIPS16_INSERT_OPERAND (RX, *ip, lastregno);
9556 continue;
9557 case 'w':
9558 MIPS16_INSERT_OPERAND (RY, *ip, lastregno);
9559 continue;
9560 }
9561 break;
9562
9563 case '(':
9564 case ')':
9565 if (*s++ == c)
9566 continue;
9567 break;
9568
9569 case 'v':
9570 case 'w':
9571 if (s[0] != '$')
9572 {
9573 if (c == 'v')
9574 MIPS16_INSERT_OPERAND (RX, *ip, lastregno);
9575 else
9576 MIPS16_INSERT_OPERAND (RY, *ip, lastregno);
9577 ++args;
9578 continue;
9579 }
9580 /* Fall through. */
9581 case 'x':
9582 case 'y':
9583 case 'z':
9584 case 'Z':
9585 case '0':
9586 case 'S':
9587 case 'R':
9588 case 'X':
9589 case 'Y':
9590 if (s[0] != '$')
9591 break;
9592 s_reset = s;
9593 if (ISDIGIT (s[1]))
9594 {
9595 ++s;
9596 regno = 0;
9597 do
9598 {
9599 regno *= 10;
9600 regno += *s - '0';
9601 ++s;
9602 }
9603 while (ISDIGIT (*s));
9604 if (regno > 31)
9605 {
9606 as_bad (_("invalid register number (%d)"), regno);
9607 regno = 2;
9608 }
9609 }
9610 else
9611 {
9612 if (s[1] == 'r' && s[2] == 'a')
9613 {
9614 s += 3;
9615 regno = RA;
9616 }
9617 else if (s[1] == 'f' && s[2] == 'p')
9618 {
9619 s += 3;
9620 regno = FP;
9621 }
9622 else if (s[1] == 's' && s[2] == 'p')
9623 {
9624 s += 3;
9625 regno = SP;
9626 }
9627 else if (s[1] == 'g' && s[2] == 'p')
9628 {
9629 s += 3;
9630 regno = GP;
9631 }
9632 else if (s[1] == 'a' && s[2] == 't')
9633 {
9634 s += 3;
9635 regno = AT;
9636 }
9637 else if (s[1] == 'k' && s[2] == 't' && s[3] == '0')
9638 {
9639 s += 4;
9640 regno = KT0;
9641 }
9642 else if (s[1] == 'k' && s[2] == 't' && s[3] == '1')
9643 {
9644 s += 4;
9645 regno = KT1;
9646 }
9647 else if (s[1] == 'z' && s[2] == 'e' && s[3] == 'r' && s[4] == 'o')
9648 {
9649 s += 5;
9650 regno = ZERO;
9651 }
9652 else
9653 break;
9654 }
9655
9656 if (*s == ' ')
9657 ++s;
9658 if (args[1] != *s)
9659 {
9660 if (c == 'v' || c == 'w')
9661 {
9662 regno = mips16_to_32_reg_map[lastregno];
9663 s = s_reset;
9664 ++args;
9665 }
9666 }
9667
9668 switch (c)
9669 {
9670 case 'x':
9671 case 'y':
9672 case 'z':
9673 case 'v':
9674 case 'w':
9675 case 'Z':
9676 regno = mips32_to_16_reg_map[regno];
9677 break;
9678
9679 case '0':
9680 if (regno != 0)
9681 regno = ILLEGAL_REG;
9682 break;
9683
9684 case 'S':
9685 if (regno != SP)
9686 regno = ILLEGAL_REG;
9687 break;
9688
9689 case 'R':
9690 if (regno != RA)
9691 regno = ILLEGAL_REG;
9692 break;
9693
9694 case 'X':
9695 case 'Y':
9696 if (regno == AT && ! mips_opts.noat)
9697 as_warn (_("used $at without \".set noat\""));
9698 break;
9699
9700 default:
9701 internalError ();
9702 }
9703
9704 if (regno == ILLEGAL_REG)
9705 break;
9706
9707 switch (c)
9708 {
9709 case 'x':
9710 case 'v':
9711 MIPS16_INSERT_OPERAND (RX, *ip, regno);
9712 break;
9713 case 'y':
9714 case 'w':
9715 MIPS16_INSERT_OPERAND (RY, *ip, regno);
9716 break;
9717 case 'z':
9718 MIPS16_INSERT_OPERAND (RZ, *ip, regno);
9719 break;
9720 case 'Z':
9721 MIPS16_INSERT_OPERAND (MOVE32Z, *ip, regno);
9722 case '0':
9723 case 'S':
9724 case 'R':
9725 break;
9726 case 'X':
9727 MIPS16_INSERT_OPERAND (REGR32, *ip, regno);
9728 break;
9729 case 'Y':
9730 regno = ((regno & 7) << 2) | ((regno & 0x18) >> 3);
9731 MIPS16_INSERT_OPERAND (REG32R, *ip, regno);
9732 break;
9733 default:
9734 internalError ();
9735 }
9736
9737 lastregno = regno;
9738 continue;
9739
9740 case 'P':
9741 if (strncmp (s, "$pc", 3) == 0)
9742 {
9743 s += 3;
9744 continue;
9745 }
9746 break;
9747
9748 case '5':
9749 case 'H':
9750 case 'W':
9751 case 'D':
9752 case 'j':
9753 case 'V':
9754 case 'C':
9755 case 'U':
9756 case 'k':
9757 case 'K':
9758 i = my_getSmallExpression (&imm_expr, imm_reloc, s);
9759 if (i > 0)
9760 {
9761 if (imm_expr.X_op != O_constant)
9762 {
9763 mips16_ext = TRUE;
9764 ip->use_extend = TRUE;
9765 ip->extend = 0;
9766 }
9767 else
9768 {
9769 /* We need to relax this instruction. */
9770 *offset_reloc = *imm_reloc;
9771 *imm_reloc = (int) BFD_RELOC_UNUSED + c;
9772 }
9773 s = expr_end;
9774 continue;
9775 }
9776 *imm_reloc = BFD_RELOC_UNUSED;
9777 /* Fall through. */
9778 case '<':
9779 case '>':
9780 case '[':
9781 case ']':
9782 case '4':
9783 case '8':
9784 my_getExpression (&imm_expr, s);
9785 if (imm_expr.X_op == O_register)
9786 {
9787 /* What we thought was an expression turned out to
9788 be a register. */
9789
9790 if (s[0] == '(' && args[1] == '(')
9791 {
9792 /* It looks like the expression was omitted
9793 before a register indirection, which means
9794 that the expression is implicitly zero. We
9795 still set up imm_expr, so that we handle
9796 explicit extensions correctly. */
9797 imm_expr.X_op = O_constant;
9798 imm_expr.X_add_number = 0;
9799 *imm_reloc = (int) BFD_RELOC_UNUSED + c;
9800 continue;
9801 }
9802
9803 break;
9804 }
9805
9806 /* We need to relax this instruction. */
9807 *imm_reloc = (int) BFD_RELOC_UNUSED + c;
9808 s = expr_end;
9809 continue;
9810
9811 case 'p':
9812 case 'q':
9813 case 'A':
9814 case 'B':
9815 case 'E':
9816 /* We use offset_reloc rather than imm_reloc for the PC
9817 relative operands. This lets macros with both
9818 immediate and address operands work correctly. */
9819 my_getExpression (&offset_expr, s);
9820
9821 if (offset_expr.X_op == O_register)
9822 break;
9823
9824 /* We need to relax this instruction. */
9825 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
9826 s = expr_end;
9827 continue;
9828
9829 case '6': /* break code */
9830 my_getExpression (&imm_expr, s);
9831 check_absolute_expr (ip, &imm_expr);
9832 if ((unsigned long) imm_expr.X_add_number > 63)
9833 as_warn (_("Invalid value for `%s' (%lu)"),
9834 ip->insn_mo->name,
9835 (unsigned long) imm_expr.X_add_number);
9836 MIPS16_INSERT_OPERAND (IMM6, *ip, imm_expr.X_add_number);
9837 imm_expr.X_op = O_absent;
9838 s = expr_end;
9839 continue;
9840
9841 case 'a': /* 26 bit address */
9842 my_getExpression (&offset_expr, s);
9843 s = expr_end;
9844 *offset_reloc = BFD_RELOC_MIPS16_JMP;
9845 ip->insn_opcode <<= 16;
9846 continue;
9847
9848 case 'l': /* register list for entry macro */
9849 case 'L': /* register list for exit macro */
9850 {
9851 int mask;
9852
9853 if (c == 'l')
9854 mask = 0;
9855 else
9856 mask = 7 << 3;
9857 while (*s != '\0')
9858 {
9859 int freg, reg1, reg2;
9860
9861 while (*s == ' ' || *s == ',')
9862 ++s;
9863 if (*s != '$')
9864 {
9865 as_bad (_("can't parse register list"));
9866 break;
9867 }
9868 ++s;
9869 if (*s != 'f')
9870 freg = 0;
9871 else
9872 {
9873 freg = 1;
9874 ++s;
9875 }
9876 reg1 = 0;
9877 while (ISDIGIT (*s))
9878 {
9879 reg1 *= 10;
9880 reg1 += *s - '0';
9881 ++s;
9882 }
9883 if (*s == ' ')
9884 ++s;
9885 if (*s != '-')
9886 reg2 = reg1;
9887 else
9888 {
9889 ++s;
9890 if (*s != '$')
9891 break;
9892 ++s;
9893 if (freg)
9894 {
9895 if (*s == 'f')
9896 ++s;
9897 else
9898 {
9899 as_bad (_("invalid register list"));
9900 break;
9901 }
9902 }
9903 reg2 = 0;
9904 while (ISDIGIT (*s))
9905 {
9906 reg2 *= 10;
9907 reg2 += *s - '0';
9908 ++s;
9909 }
9910 }
9911 if (freg && reg1 == 0 && reg2 == 0 && c == 'L')
9912 {
9913 mask &= ~ (7 << 3);
9914 mask |= 5 << 3;
9915 }
9916 else if (freg && reg1 == 0 && reg2 == 1 && c == 'L')
9917 {
9918 mask &= ~ (7 << 3);
9919 mask |= 6 << 3;
9920 }
9921 else if (reg1 == 4 && reg2 >= 4 && reg2 <= 7 && c != 'L')
9922 mask |= (reg2 - 3) << 3;
9923 else if (reg1 == 16 && reg2 >= 16 && reg2 <= 17)
9924 mask |= (reg2 - 15) << 1;
9925 else if (reg1 == RA && reg2 == RA)
9926 mask |= 1;
9927 else
9928 {
9929 as_bad (_("invalid register list"));
9930 break;
9931 }
9932 }
9933 /* The mask is filled in in the opcode table for the
9934 benefit of the disassembler. We remove it before
9935 applying the actual mask. */
9936 ip->insn_opcode &= ~ ((7 << 3) << MIPS16OP_SH_IMM6);
9937 ip->insn_opcode |= mask << MIPS16OP_SH_IMM6;
9938 }
9939 continue;
9940
9941 case 'm': /* Register list for save insn. */
9942 case 'M': /* Register list for restore insn. */
9943 {
9944 int opcode = 0;
9945 int framesz = 0, seen_framesz = 0;
9946 int args = 0, statics = 0, sregs = 0;
9947
9948 while (*s != '\0')
9949 {
9950 unsigned int reg1, reg2;
9951
9952 SKIP_SPACE_TABS (s);
9953 while (*s == ',')
9954 ++s;
9955 SKIP_SPACE_TABS (s);
9956
9957 my_getExpression (&imm_expr, s);
9958 if (imm_expr.X_op == O_constant)
9959 {
9960 /* Handle the frame size. */
9961 if (seen_framesz)
9962 {
9963 as_bad (_("more than one frame size in list"));
9964 break;
9965 }
9966 seen_framesz = 1;
9967 framesz = imm_expr.X_add_number;
9968 imm_expr.X_op = O_absent;
9969 s = expr_end;
9970 continue;
9971 }
9972
9973 if (*s != '$')
9974 {
9975 as_bad (_("can't parse register list"));
9976 break;
9977 }
9978 ++s;
9979
9980 reg1 = 0;
9981 while (ISDIGIT (*s))
9982 {
9983 reg1 *= 10;
9984 reg1 += *s - '0';
9985 ++s;
9986 }
9987 SKIP_SPACE_TABS (s);
9988 if (*s != '-')
9989 reg2 = reg1;
9990 else
9991 {
9992 ++s;
9993 if (*s != '$')
9994 {
9995 as_bad (_("can't parse register list"));
9996 break;
9997 }
9998 ++s;
9999 reg2 = 0;
10000 while (ISDIGIT (*s))
10001 {
10002 reg2 *= 10;
10003 reg2 += *s - '0';
10004 ++s;
10005 }
10006 }
10007
10008 while (reg1 <= reg2)
10009 {
10010 if (reg1 >= 4 && reg1 <= 7)
10011 {
10012 if (c == 'm' && !seen_framesz)
10013 /* args $a0-$a3 */
10014 args |= 1 << (reg1 - 4);
10015 else
10016 /* statics $a0-$a3 */
10017 statics |= 1 << (reg1 - 4);
10018 }
10019 else if ((reg1 >= 16 && reg1 <= 23) || reg1 == 30)
10020 {
10021 /* $s0-$s8 */
10022 sregs |= 1 << ((reg1 == 30) ? 8 : (reg1 - 16));
10023 }
10024 else if (reg1 == 31)
10025 {
10026 /* Add $ra to insn. */
10027 opcode |= 0x40;
10028 }
10029 else
10030 {
10031 as_bad (_("unexpected register in list"));
10032 break;
10033 }
10034 if (++reg1 == 24)
10035 reg1 = 30;
10036 }
10037 }
10038
10039 /* Encode args/statics combination. */
10040 if (args & statics)
10041 as_bad (_("arg/static registers overlap"));
10042 else if (args == 0xf)
10043 /* All $a0-$a3 are args. */
10044 opcode |= MIPS16_ALL_ARGS << 16;
10045 else if (statics == 0xf)
10046 /* All $a0-$a3 are statics. */
10047 opcode |= MIPS16_ALL_STATICS << 16;
10048 else
10049 {
10050 int narg = 0, nstat = 0;
10051
10052 /* Count arg registers. */
10053 while (args & 0x1)
10054 {
10055 args >>= 1;
10056 narg++;
10057 }
10058 if (args != 0)
10059 as_bad (_("invalid arg register list"));
10060
10061 /* Count static registers. */
10062 while (statics & 0x8)
10063 {
10064 statics = (statics << 1) & 0xf;
10065 nstat++;
10066 }
10067 if (statics != 0)
10068 as_bad (_("invalid static register list"));
10069
10070 /* Encode args/statics. */
10071 opcode |= ((narg << 2) | nstat) << 16;
10072 }
10073
10074 /* Encode $s0/$s1. */
10075 if (sregs & (1 << 0)) /* $s0 */
10076 opcode |= 0x20;
10077 if (sregs & (1 << 1)) /* $s1 */
10078 opcode |= 0x10;
10079 sregs >>= 2;
10080
10081 if (sregs != 0)
10082 {
10083 /* Count regs $s2-$s8. */
10084 int nsreg = 0;
10085 while (sregs & 1)
10086 {
10087 sregs >>= 1;
10088 nsreg++;
10089 }
10090 if (sregs != 0)
10091 as_bad (_("invalid static register list"));
10092 /* Encode $s2-$s8. */
10093 opcode |= nsreg << 24;
10094 }
10095
10096 /* Encode frame size. */
10097 if (!seen_framesz)
10098 as_bad (_("missing frame size"));
10099 else if ((framesz & 7) != 0 || framesz < 0
10100 || framesz > 0xff * 8)
10101 as_bad (_("invalid frame size"));
10102 else if (framesz != 128 || (opcode >> 16) != 0)
10103 {
10104 framesz /= 8;
10105 opcode |= (((framesz & 0xf0) << 16)
10106 | (framesz & 0x0f));
10107 }
10108
10109 /* Finally build the instruction. */
10110 if ((opcode >> 16) != 0 || framesz == 0)
10111 {
10112 ip->use_extend = TRUE;
10113 ip->extend = opcode >> 16;
10114 }
10115 ip->insn_opcode |= opcode & 0x7f;
10116 }
10117 continue;
10118
10119 case 'e': /* extend code */
10120 my_getExpression (&imm_expr, s);
10121 check_absolute_expr (ip, &imm_expr);
10122 if ((unsigned long) imm_expr.X_add_number > 0x7ff)
10123 {
10124 as_warn (_("Invalid value for `%s' (%lu)"),
10125 ip->insn_mo->name,
10126 (unsigned long) imm_expr.X_add_number);
10127 imm_expr.X_add_number &= 0x7ff;
10128 }
10129 ip->insn_opcode |= imm_expr.X_add_number;
10130 imm_expr.X_op = O_absent;
10131 s = expr_end;
10132 continue;
10133
10134 default:
10135 internalError ();
10136 }
10137 break;
10138 }
10139
10140 /* Args don't match. */
10141 if (insn + 1 < &mips16_opcodes[bfd_mips16_num_opcodes] &&
10142 strcmp (insn->name, insn[1].name) == 0)
10143 {
10144 ++insn;
10145 s = argsstart;
10146 continue;
10147 }
10148
10149 insn_error = _("illegal operands");
10150
10151 return;
10152 }
10153 }
10154
10155 /* This structure holds information we know about a mips16 immediate
10156 argument type. */
10157
10158 struct mips16_immed_operand
10159 {
10160 /* The type code used in the argument string in the opcode table. */
10161 int type;
10162 /* The number of bits in the short form of the opcode. */
10163 int nbits;
10164 /* The number of bits in the extended form of the opcode. */
10165 int extbits;
10166 /* The amount by which the short form is shifted when it is used;
10167 for example, the sw instruction has a shift count of 2. */
10168 int shift;
10169 /* The amount by which the short form is shifted when it is stored
10170 into the instruction code. */
10171 int op_shift;
10172 /* Non-zero if the short form is unsigned. */
10173 int unsp;
10174 /* Non-zero if the extended form is unsigned. */
10175 int extu;
10176 /* Non-zero if the value is PC relative. */
10177 int pcrel;
10178 };
10179
10180 /* The mips16 immediate operand types. */
10181
10182 static const struct mips16_immed_operand mips16_immed_operands[] =
10183 {
10184 { '<', 3, 5, 0, MIPS16OP_SH_RZ, 1, 1, 0 },
10185 { '>', 3, 5, 0, MIPS16OP_SH_RX, 1, 1, 0 },
10186 { '[', 3, 6, 0, MIPS16OP_SH_RZ, 1, 1, 0 },
10187 { ']', 3, 6, 0, MIPS16OP_SH_RX, 1, 1, 0 },
10188 { '4', 4, 15, 0, MIPS16OP_SH_IMM4, 0, 0, 0 },
10189 { '5', 5, 16, 0, MIPS16OP_SH_IMM5, 1, 0, 0 },
10190 { 'H', 5, 16, 1, MIPS16OP_SH_IMM5, 1, 0, 0 },
10191 { 'W', 5, 16, 2, MIPS16OP_SH_IMM5, 1, 0, 0 },
10192 { 'D', 5, 16, 3, MIPS16OP_SH_IMM5, 1, 0, 0 },
10193 { 'j', 5, 16, 0, MIPS16OP_SH_IMM5, 0, 0, 0 },
10194 { '8', 8, 16, 0, MIPS16OP_SH_IMM8, 1, 0, 0 },
10195 { 'V', 8, 16, 2, MIPS16OP_SH_IMM8, 1, 0, 0 },
10196 { 'C', 8, 16, 3, MIPS16OP_SH_IMM8, 1, 0, 0 },
10197 { 'U', 8, 16, 0, MIPS16OP_SH_IMM8, 1, 1, 0 },
10198 { 'k', 8, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 0 },
10199 { 'K', 8, 16, 3, MIPS16OP_SH_IMM8, 0, 0, 0 },
10200 { 'p', 8, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 1 },
10201 { 'q', 11, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 1 },
10202 { 'A', 8, 16, 2, MIPS16OP_SH_IMM8, 1, 0, 1 },
10203 { 'B', 5, 16, 3, MIPS16OP_SH_IMM5, 1, 0, 1 },
10204 { 'E', 5, 16, 2, MIPS16OP_SH_IMM5, 1, 0, 1 }
10205 };
10206
10207 #define MIPS16_NUM_IMMED \
10208 (sizeof mips16_immed_operands / sizeof mips16_immed_operands[0])
10209
10210 /* Handle a mips16 instruction with an immediate value. This or's the
10211 small immediate value into *INSN. It sets *USE_EXTEND to indicate
10212 whether an extended value is needed; if one is needed, it sets
10213 *EXTEND to the value. The argument type is TYPE. The value is VAL.
10214 If SMALL is true, an unextended opcode was explicitly requested.
10215 If EXT is true, an extended opcode was explicitly requested. If
10216 WARN is true, warn if EXT does not match reality. */
10217
10218 static void
10219 mips16_immed (char *file, unsigned int line, int type, offsetT val,
10220 bfd_boolean warn, bfd_boolean small, bfd_boolean ext,
10221 unsigned long *insn, bfd_boolean *use_extend,
10222 unsigned short *extend)
10223 {
10224 register const struct mips16_immed_operand *op;
10225 int mintiny, maxtiny;
10226 bfd_boolean needext;
10227
10228 op = mips16_immed_operands;
10229 while (op->type != type)
10230 {
10231 ++op;
10232 assert (op < mips16_immed_operands + MIPS16_NUM_IMMED);
10233 }
10234
10235 if (op->unsp)
10236 {
10237 if (type == '<' || type == '>' || type == '[' || type == ']')
10238 {
10239 mintiny = 1;
10240 maxtiny = 1 << op->nbits;
10241 }
10242 else
10243 {
10244 mintiny = 0;
10245 maxtiny = (1 << op->nbits) - 1;
10246 }
10247 }
10248 else
10249 {
10250 mintiny = - (1 << (op->nbits - 1));
10251 maxtiny = (1 << (op->nbits - 1)) - 1;
10252 }
10253
10254 /* Branch offsets have an implicit 0 in the lowest bit. */
10255 if (type == 'p' || type == 'q')
10256 val /= 2;
10257
10258 if ((val & ((1 << op->shift) - 1)) != 0
10259 || val < (mintiny << op->shift)
10260 || val > (maxtiny << op->shift))
10261 needext = TRUE;
10262 else
10263 needext = FALSE;
10264
10265 if (warn && ext && ! needext)
10266 as_warn_where (file, line,
10267 _("extended operand requested but not required"));
10268 if (small && needext)
10269 as_bad_where (file, line, _("invalid unextended operand value"));
10270
10271 if (small || (! ext && ! needext))
10272 {
10273 int insnval;
10274
10275 *use_extend = FALSE;
10276 insnval = ((val >> op->shift) & ((1 << op->nbits) - 1));
10277 insnval <<= op->op_shift;
10278 *insn |= insnval;
10279 }
10280 else
10281 {
10282 long minext, maxext;
10283 int extval;
10284
10285 if (op->extu)
10286 {
10287 minext = 0;
10288 maxext = (1 << op->extbits) - 1;
10289 }
10290 else
10291 {
10292 minext = - (1 << (op->extbits - 1));
10293 maxext = (1 << (op->extbits - 1)) - 1;
10294 }
10295 if (val < minext || val > maxext)
10296 as_bad_where (file, line,
10297 _("operand value out of range for instruction"));
10298
10299 *use_extend = TRUE;
10300 if (op->extbits == 16)
10301 {
10302 extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
10303 val &= 0x1f;
10304 }
10305 else if (op->extbits == 15)
10306 {
10307 extval = ((val >> 11) & 0xf) | (val & 0x7f0);
10308 val &= 0xf;
10309 }
10310 else
10311 {
10312 extval = ((val & 0x1f) << 6) | (val & 0x20);
10313 val = 0;
10314 }
10315
10316 *extend = (unsigned short) extval;
10317 *insn |= val;
10318 }
10319 }
10320 \f
10321 struct percent_op_match
10322 {
10323 const char *str;
10324 bfd_reloc_code_real_type reloc;
10325 };
10326
10327 static const struct percent_op_match mips_percent_op[] =
10328 {
10329 {"%lo", BFD_RELOC_LO16},
10330 #ifdef OBJ_ELF
10331 {"%call_hi", BFD_RELOC_MIPS_CALL_HI16},
10332 {"%call_lo", BFD_RELOC_MIPS_CALL_LO16},
10333 {"%call16", BFD_RELOC_MIPS_CALL16},
10334 {"%got_disp", BFD_RELOC_MIPS_GOT_DISP},
10335 {"%got_page", BFD_RELOC_MIPS_GOT_PAGE},
10336 {"%got_ofst", BFD_RELOC_MIPS_GOT_OFST},
10337 {"%got_hi", BFD_RELOC_MIPS_GOT_HI16},
10338 {"%got_lo", BFD_RELOC_MIPS_GOT_LO16},
10339 {"%got", BFD_RELOC_MIPS_GOT16},
10340 {"%gp_rel", BFD_RELOC_GPREL16},
10341 {"%half", BFD_RELOC_16},
10342 {"%highest", BFD_RELOC_MIPS_HIGHEST},
10343 {"%higher", BFD_RELOC_MIPS_HIGHER},
10344 {"%neg", BFD_RELOC_MIPS_SUB},
10345 {"%tlsgd", BFD_RELOC_MIPS_TLS_GD},
10346 {"%tlsldm", BFD_RELOC_MIPS_TLS_LDM},
10347 {"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16},
10348 {"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16},
10349 {"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16},
10350 {"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16},
10351 {"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL},
10352 #endif
10353 {"%hi", BFD_RELOC_HI16_S}
10354 };
10355
10356 static const struct percent_op_match mips16_percent_op[] =
10357 {
10358 {"%lo", BFD_RELOC_MIPS16_LO16},
10359 {"%gprel", BFD_RELOC_MIPS16_GPREL},
10360 {"%hi", BFD_RELOC_MIPS16_HI16_S}
10361 };
10362
10363
10364 /* Return true if *STR points to a relocation operator. When returning true,
10365 move *STR over the operator and store its relocation code in *RELOC.
10366 Leave both *STR and *RELOC alone when returning false. */
10367
10368 static bfd_boolean
10369 parse_relocation (char **str, bfd_reloc_code_real_type *reloc)
10370 {
10371 const struct percent_op_match *percent_op;
10372 size_t limit, i;
10373
10374 if (mips_opts.mips16)
10375 {
10376 percent_op = mips16_percent_op;
10377 limit = ARRAY_SIZE (mips16_percent_op);
10378 }
10379 else
10380 {
10381 percent_op = mips_percent_op;
10382 limit = ARRAY_SIZE (mips_percent_op);
10383 }
10384
10385 for (i = 0; i < limit; i++)
10386 if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0)
10387 {
10388 int len = strlen (percent_op[i].str);
10389
10390 if (!ISSPACE ((*str)[len]) && (*str)[len] != '(')
10391 continue;
10392
10393 *str += strlen (percent_op[i].str);
10394 *reloc = percent_op[i].reloc;
10395
10396 /* Check whether the output BFD supports this relocation.
10397 If not, issue an error and fall back on something safe. */
10398 if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc))
10399 {
10400 as_bad ("relocation %s isn't supported by the current ABI",
10401 percent_op[i].str);
10402 *reloc = BFD_RELOC_UNUSED;
10403 }
10404 return TRUE;
10405 }
10406 return FALSE;
10407 }
10408
10409
10410 /* Parse string STR as a 16-bit relocatable operand. Store the
10411 expression in *EP and the relocations in the array starting
10412 at RELOC. Return the number of relocation operators used.
10413
10414 On exit, EXPR_END points to the first character after the expression. */
10415
10416 static size_t
10417 my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
10418 char *str)
10419 {
10420 bfd_reloc_code_real_type reversed_reloc[3];
10421 size_t reloc_index, i;
10422 int crux_depth, str_depth;
10423 char *crux;
10424
10425 /* Search for the start of the main expression, recoding relocations
10426 in REVERSED_RELOC. End the loop with CRUX pointing to the start
10427 of the main expression and with CRUX_DEPTH containing the number
10428 of open brackets at that point. */
10429 reloc_index = -1;
10430 str_depth = 0;
10431 do
10432 {
10433 reloc_index++;
10434 crux = str;
10435 crux_depth = str_depth;
10436
10437 /* Skip over whitespace and brackets, keeping count of the number
10438 of brackets. */
10439 while (*str == ' ' || *str == '\t' || *str == '(')
10440 if (*str++ == '(')
10441 str_depth++;
10442 }
10443 while (*str == '%'
10444 && reloc_index < (HAVE_NEWABI ? 3 : 1)
10445 && parse_relocation (&str, &reversed_reloc[reloc_index]));
10446
10447 my_getExpression (ep, crux);
10448 str = expr_end;
10449
10450 /* Match every open bracket. */
10451 while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
10452 if (*str++ == ')')
10453 crux_depth--;
10454
10455 if (crux_depth > 0)
10456 as_bad ("unclosed '('");
10457
10458 expr_end = str;
10459
10460 if (reloc_index != 0)
10461 {
10462 prev_reloc_op_frag = frag_now;
10463 for (i = 0; i < reloc_index; i++)
10464 reloc[i] = reversed_reloc[reloc_index - 1 - i];
10465 }
10466
10467 return reloc_index;
10468 }
10469
10470 static void
10471 my_getExpression (expressionS *ep, char *str)
10472 {
10473 char *save_in;
10474 valueT val;
10475
10476 save_in = input_line_pointer;
10477 input_line_pointer = str;
10478 expression (ep);
10479 expr_end = input_line_pointer;
10480 input_line_pointer = save_in;
10481
10482 /* If we are in mips16 mode, and this is an expression based on `.',
10483 then we bump the value of the symbol by 1 since that is how other
10484 text symbols are handled. We don't bother to handle complex
10485 expressions, just `.' plus or minus a constant. */
10486 if (mips_opts.mips16
10487 && ep->X_op == O_symbol
10488 && strcmp (S_GET_NAME (ep->X_add_symbol), FAKE_LABEL_NAME) == 0
10489 && S_GET_SEGMENT (ep->X_add_symbol) == now_seg
10490 && symbol_get_frag (ep->X_add_symbol) == frag_now
10491 && symbol_constant_p (ep->X_add_symbol)
10492 && (val = S_GET_VALUE (ep->X_add_symbol)) == frag_now_fix ())
10493 S_SET_VALUE (ep->X_add_symbol, val + 1);
10494 }
10495
10496 /* Turn a string in input_line_pointer into a floating point constant
10497 of type TYPE, and store the appropriate bytes in *LITP. The number
10498 of LITTLENUMS emitted is stored in *SIZEP. An error message is
10499 returned, or NULL on OK. */
10500
10501 char *
10502 md_atof (int type, char *litP, int *sizeP)
10503 {
10504 int prec;
10505 LITTLENUM_TYPE words[4];
10506 char *t;
10507 int i;
10508
10509 switch (type)
10510 {
10511 case 'f':
10512 prec = 2;
10513 break;
10514
10515 case 'd':
10516 prec = 4;
10517 break;
10518
10519 default:
10520 *sizeP = 0;
10521 return _("bad call to md_atof");
10522 }
10523
10524 t = atof_ieee (input_line_pointer, type, words);
10525 if (t)
10526 input_line_pointer = t;
10527
10528 *sizeP = prec * 2;
10529
10530 if (! target_big_endian)
10531 {
10532 for (i = prec - 1; i >= 0; i--)
10533 {
10534 md_number_to_chars (litP, words[i], 2);
10535 litP += 2;
10536 }
10537 }
10538 else
10539 {
10540 for (i = 0; i < prec; i++)
10541 {
10542 md_number_to_chars (litP, words[i], 2);
10543 litP += 2;
10544 }
10545 }
10546
10547 return NULL;
10548 }
10549
10550 void
10551 md_number_to_chars (char *buf, valueT val, int n)
10552 {
10553 if (target_big_endian)
10554 number_to_chars_bigendian (buf, val, n);
10555 else
10556 number_to_chars_littleendian (buf, val, n);
10557 }
10558 \f
10559 #ifdef OBJ_ELF
10560 static int support_64bit_objects(void)
10561 {
10562 const char **list, **l;
10563 int yes;
10564
10565 list = bfd_target_list ();
10566 for (l = list; *l != NULL; l++)
10567 #ifdef TE_TMIPS
10568 /* This is traditional mips */
10569 if (strcmp (*l, "elf64-tradbigmips") == 0
10570 || strcmp (*l, "elf64-tradlittlemips") == 0)
10571 #else
10572 if (strcmp (*l, "elf64-bigmips") == 0
10573 || strcmp (*l, "elf64-littlemips") == 0)
10574 #endif
10575 break;
10576 yes = (*l != NULL);
10577 free (list);
10578 return yes;
10579 }
10580 #endif /* OBJ_ELF */
10581
10582 const char *md_shortopts = "O::g::G:";
10583
10584 struct option md_longopts[] =
10585 {
10586 /* Options which specify architecture. */
10587 #define OPTION_ARCH_BASE (OPTION_MD_BASE)
10588 #define OPTION_MARCH (OPTION_ARCH_BASE + 0)
10589 {"march", required_argument, NULL, OPTION_MARCH},
10590 #define OPTION_MTUNE (OPTION_ARCH_BASE + 1)
10591 {"mtune", required_argument, NULL, OPTION_MTUNE},
10592 #define OPTION_MIPS1 (OPTION_ARCH_BASE + 2)
10593 {"mips0", no_argument, NULL, OPTION_MIPS1},
10594 {"mips1", no_argument, NULL, OPTION_MIPS1},
10595 #define OPTION_MIPS2 (OPTION_ARCH_BASE + 3)
10596 {"mips2", no_argument, NULL, OPTION_MIPS2},
10597 #define OPTION_MIPS3 (OPTION_ARCH_BASE + 4)
10598 {"mips3", no_argument, NULL, OPTION_MIPS3},
10599 #define OPTION_MIPS4 (OPTION_ARCH_BASE + 5)
10600 {"mips4", no_argument, NULL, OPTION_MIPS4},
10601 #define OPTION_MIPS5 (OPTION_ARCH_BASE + 6)
10602 {"mips5", no_argument, NULL, OPTION_MIPS5},
10603 #define OPTION_MIPS32 (OPTION_ARCH_BASE + 7)
10604 {"mips32", no_argument, NULL, OPTION_MIPS32},
10605 #define OPTION_MIPS64 (OPTION_ARCH_BASE + 8)
10606 {"mips64", no_argument, NULL, OPTION_MIPS64},
10607 #define OPTION_MIPS32R2 (OPTION_ARCH_BASE + 9)
10608 {"mips32r2", no_argument, NULL, OPTION_MIPS32R2},
10609 #define OPTION_MIPS64R2 (OPTION_ARCH_BASE + 10)
10610 {"mips64r2", no_argument, NULL, OPTION_MIPS64R2},
10611
10612 /* Options which specify Application Specific Extensions (ASEs). */
10613 #define OPTION_ASE_BASE (OPTION_ARCH_BASE + 11)
10614 #define OPTION_MIPS16 (OPTION_ASE_BASE + 0)
10615 {"mips16", no_argument, NULL, OPTION_MIPS16},
10616 #define OPTION_NO_MIPS16 (OPTION_ASE_BASE + 1)
10617 {"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
10618 #define OPTION_MIPS3D (OPTION_ASE_BASE + 2)
10619 {"mips3d", no_argument, NULL, OPTION_MIPS3D},
10620 #define OPTION_NO_MIPS3D (OPTION_ASE_BASE + 3)
10621 {"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
10622 #define OPTION_MDMX (OPTION_ASE_BASE + 4)
10623 {"mdmx", no_argument, NULL, OPTION_MDMX},
10624 #define OPTION_NO_MDMX (OPTION_ASE_BASE + 5)
10625 {"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
10626 #define OPTION_DSP (OPTION_ASE_BASE + 6)
10627 {"mdsp", no_argument, NULL, OPTION_DSP},
10628 #define OPTION_NO_DSP (OPTION_ASE_BASE + 7)
10629 {"mno-dsp", no_argument, NULL, OPTION_NO_DSP},
10630 #define OPTION_MT (OPTION_ASE_BASE + 8)
10631 {"mmt", no_argument, NULL, OPTION_MT},
10632 #define OPTION_NO_MT (OPTION_ASE_BASE + 9)
10633 {"mno-mt", no_argument, NULL, OPTION_NO_MT},
10634 #define OPTION_SMARTMIPS (OPTION_ASE_BASE + 10)
10635 {"msmartmips", no_argument, NULL, OPTION_SMARTMIPS},
10636 #define OPTION_NO_SMARTMIPS (OPTION_ASE_BASE + 11)
10637 {"mno-smartmips", no_argument, NULL, OPTION_NO_SMARTMIPS},
10638
10639 /* Old-style architecture options. Don't add more of these. */
10640 #define OPTION_COMPAT_ARCH_BASE (OPTION_ASE_BASE + 12)
10641 #define OPTION_M4650 (OPTION_COMPAT_ARCH_BASE + 0)
10642 {"m4650", no_argument, NULL, OPTION_M4650},
10643 #define OPTION_NO_M4650 (OPTION_COMPAT_ARCH_BASE + 1)
10644 {"no-m4650", no_argument, NULL, OPTION_NO_M4650},
10645 #define OPTION_M4010 (OPTION_COMPAT_ARCH_BASE + 2)
10646 {"m4010", no_argument, NULL, OPTION_M4010},
10647 #define OPTION_NO_M4010 (OPTION_COMPAT_ARCH_BASE + 3)
10648 {"no-m4010", no_argument, NULL, OPTION_NO_M4010},
10649 #define OPTION_M4100 (OPTION_COMPAT_ARCH_BASE + 4)
10650 {"m4100", no_argument, NULL, OPTION_M4100},
10651 #define OPTION_NO_M4100 (OPTION_COMPAT_ARCH_BASE + 5)
10652 {"no-m4100", no_argument, NULL, OPTION_NO_M4100},
10653 #define OPTION_M3900 (OPTION_COMPAT_ARCH_BASE + 6)
10654 {"m3900", no_argument, NULL, OPTION_M3900},
10655 #define OPTION_NO_M3900 (OPTION_COMPAT_ARCH_BASE + 7)
10656 {"no-m3900", no_argument, NULL, OPTION_NO_M3900},
10657
10658 /* Options which enable bug fixes. */
10659 #define OPTION_FIX_BASE (OPTION_COMPAT_ARCH_BASE + 8)
10660 #define OPTION_M7000_HILO_FIX (OPTION_FIX_BASE + 0)
10661 {"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
10662 #define OPTION_MNO_7000_HILO_FIX (OPTION_FIX_BASE + 1)
10663 {"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
10664 {"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
10665 #define OPTION_FIX_VR4120 (OPTION_FIX_BASE + 2)
10666 #define OPTION_NO_FIX_VR4120 (OPTION_FIX_BASE + 3)
10667 {"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120},
10668 {"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120},
10669 #define OPTION_FIX_VR4130 (OPTION_FIX_BASE + 4)
10670 #define OPTION_NO_FIX_VR4130 (OPTION_FIX_BASE + 5)
10671 {"mfix-vr4130", no_argument, NULL, OPTION_FIX_VR4130},
10672 {"mno-fix-vr4130", no_argument, NULL, OPTION_NO_FIX_VR4130},
10673
10674 /* Miscellaneous options. */
10675 #define OPTION_MISC_BASE (OPTION_FIX_BASE + 6)
10676 #define OPTION_TRAP (OPTION_MISC_BASE + 0)
10677 {"trap", no_argument, NULL, OPTION_TRAP},
10678 {"no-break", no_argument, NULL, OPTION_TRAP},
10679 #define OPTION_BREAK (OPTION_MISC_BASE + 1)
10680 {"break", no_argument, NULL, OPTION_BREAK},
10681 {"no-trap", no_argument, NULL, OPTION_BREAK},
10682 #define OPTION_EB (OPTION_MISC_BASE + 2)
10683 {"EB", no_argument, NULL, OPTION_EB},
10684 #define OPTION_EL (OPTION_MISC_BASE + 3)
10685 {"EL", no_argument, NULL, OPTION_EL},
10686 #define OPTION_FP32 (OPTION_MISC_BASE + 4)
10687 {"mfp32", no_argument, NULL, OPTION_FP32},
10688 #define OPTION_GP32 (OPTION_MISC_BASE + 5)
10689 {"mgp32", no_argument, NULL, OPTION_GP32},
10690 #define OPTION_CONSTRUCT_FLOATS (OPTION_MISC_BASE + 6)
10691 {"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
10692 #define OPTION_NO_CONSTRUCT_FLOATS (OPTION_MISC_BASE + 7)
10693 {"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
10694 #define OPTION_FP64 (OPTION_MISC_BASE + 8)
10695 {"mfp64", no_argument, NULL, OPTION_FP64},
10696 #define OPTION_GP64 (OPTION_MISC_BASE + 9)
10697 {"mgp64", no_argument, NULL, OPTION_GP64},
10698 #define OPTION_RELAX_BRANCH (OPTION_MISC_BASE + 10)
10699 #define OPTION_NO_RELAX_BRANCH (OPTION_MISC_BASE + 11)
10700 {"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH},
10701 {"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH},
10702 #define OPTION_MSHARED (OPTION_MISC_BASE + 12)
10703 #define OPTION_MNO_SHARED (OPTION_MISC_BASE + 13)
10704 {"mshared", no_argument, NULL, OPTION_MSHARED},
10705 {"mno-shared", no_argument, NULL, OPTION_MNO_SHARED},
10706 #define OPTION_MSYM32 (OPTION_MISC_BASE + 14)
10707 #define OPTION_MNO_SYM32 (OPTION_MISC_BASE + 15)
10708 {"msym32", no_argument, NULL, OPTION_MSYM32},
10709 {"mno-sym32", no_argument, NULL, OPTION_MNO_SYM32},
10710
10711 /* ELF-specific options. */
10712 #ifdef OBJ_ELF
10713 #define OPTION_ELF_BASE (OPTION_MISC_BASE + 16)
10714 #define OPTION_CALL_SHARED (OPTION_ELF_BASE + 0)
10715 {"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
10716 {"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
10717 #define OPTION_NON_SHARED (OPTION_ELF_BASE + 1)
10718 {"non_shared", no_argument, NULL, OPTION_NON_SHARED},
10719 #define OPTION_XGOT (OPTION_ELF_BASE + 2)
10720 {"xgot", no_argument, NULL, OPTION_XGOT},
10721 #define OPTION_MABI (OPTION_ELF_BASE + 3)
10722 {"mabi", required_argument, NULL, OPTION_MABI},
10723 #define OPTION_32 (OPTION_ELF_BASE + 4)
10724 {"32", no_argument, NULL, OPTION_32},
10725 #define OPTION_N32 (OPTION_ELF_BASE + 5)
10726 {"n32", no_argument, NULL, OPTION_N32},
10727 #define OPTION_64 (OPTION_ELF_BASE + 6)
10728 {"64", no_argument, NULL, OPTION_64},
10729 #define OPTION_MDEBUG (OPTION_ELF_BASE + 7)
10730 {"mdebug", no_argument, NULL, OPTION_MDEBUG},
10731 #define OPTION_NO_MDEBUG (OPTION_ELF_BASE + 8)
10732 {"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
10733 #define OPTION_PDR (OPTION_ELF_BASE + 9)
10734 {"mpdr", no_argument, NULL, OPTION_PDR},
10735 #define OPTION_NO_PDR (OPTION_ELF_BASE + 10)
10736 {"mno-pdr", no_argument, NULL, OPTION_NO_PDR},
10737 #define OPTION_MVXWORKS_PIC (OPTION_ELF_BASE + 11)
10738 {"mvxworks-pic", no_argument, NULL, OPTION_MVXWORKS_PIC},
10739 #endif /* OBJ_ELF */
10740
10741 {NULL, no_argument, NULL, 0}
10742 };
10743 size_t md_longopts_size = sizeof (md_longopts);
10744
10745 /* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
10746 NEW_VALUE. Warn if another value was already specified. Note:
10747 we have to defer parsing the -march and -mtune arguments in order
10748 to handle 'from-abi' correctly, since the ABI might be specified
10749 in a later argument. */
10750
10751 static void
10752 mips_set_option_string (const char **string_ptr, const char *new_value)
10753 {
10754 if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
10755 as_warn (_("A different %s was already specified, is now %s"),
10756 string_ptr == &mips_arch_string ? "-march" : "-mtune",
10757 new_value);
10758
10759 *string_ptr = new_value;
10760 }
10761
10762 int
10763 md_parse_option (int c, char *arg)
10764 {
10765 switch (c)
10766 {
10767 case OPTION_CONSTRUCT_FLOATS:
10768 mips_disable_float_construction = 0;
10769 break;
10770
10771 case OPTION_NO_CONSTRUCT_FLOATS:
10772 mips_disable_float_construction = 1;
10773 break;
10774
10775 case OPTION_TRAP:
10776 mips_trap = 1;
10777 break;
10778
10779 case OPTION_BREAK:
10780 mips_trap = 0;
10781 break;
10782
10783 case OPTION_EB:
10784 target_big_endian = 1;
10785 break;
10786
10787 case OPTION_EL:
10788 target_big_endian = 0;
10789 break;
10790
10791 case 'O':
10792 if (arg && arg[1] == '0')
10793 mips_optimize = 1;
10794 else
10795 mips_optimize = 2;
10796 break;
10797
10798 case 'g':
10799 if (arg == NULL)
10800 mips_debug = 2;
10801 else
10802 mips_debug = atoi (arg);
10803 /* When the MIPS assembler sees -g or -g2, it does not do
10804 optimizations which limit full symbolic debugging. We take
10805 that to be equivalent to -O0. */
10806 if (mips_debug == 2)
10807 mips_optimize = 1;
10808 break;
10809
10810 case OPTION_MIPS1:
10811 file_mips_isa = ISA_MIPS1;
10812 break;
10813
10814 case OPTION_MIPS2:
10815 file_mips_isa = ISA_MIPS2;
10816 break;
10817
10818 case OPTION_MIPS3:
10819 file_mips_isa = ISA_MIPS3;
10820 break;
10821
10822 case OPTION_MIPS4:
10823 file_mips_isa = ISA_MIPS4;
10824 break;
10825
10826 case OPTION_MIPS5:
10827 file_mips_isa = ISA_MIPS5;
10828 break;
10829
10830 case OPTION_MIPS32:
10831 file_mips_isa = ISA_MIPS32;
10832 break;
10833
10834 case OPTION_MIPS32R2:
10835 file_mips_isa = ISA_MIPS32R2;
10836 break;
10837
10838 case OPTION_MIPS64R2:
10839 file_mips_isa = ISA_MIPS64R2;
10840 break;
10841
10842 case OPTION_MIPS64:
10843 file_mips_isa = ISA_MIPS64;
10844 break;
10845
10846 case OPTION_MTUNE:
10847 mips_set_option_string (&mips_tune_string, arg);
10848 break;
10849
10850 case OPTION_MARCH:
10851 mips_set_option_string (&mips_arch_string, arg);
10852 break;
10853
10854 case OPTION_M4650:
10855 mips_set_option_string (&mips_arch_string, "4650");
10856 mips_set_option_string (&mips_tune_string, "4650");
10857 break;
10858
10859 case OPTION_NO_M4650:
10860 break;
10861
10862 case OPTION_M4010:
10863 mips_set_option_string (&mips_arch_string, "4010");
10864 mips_set_option_string (&mips_tune_string, "4010");
10865 break;
10866
10867 case OPTION_NO_M4010:
10868 break;
10869
10870 case OPTION_M4100:
10871 mips_set_option_string (&mips_arch_string, "4100");
10872 mips_set_option_string (&mips_tune_string, "4100");
10873 break;
10874
10875 case OPTION_NO_M4100:
10876 break;
10877
10878 case OPTION_M3900:
10879 mips_set_option_string (&mips_arch_string, "3900");
10880 mips_set_option_string (&mips_tune_string, "3900");
10881 break;
10882
10883 case OPTION_NO_M3900:
10884 break;
10885
10886 case OPTION_MDMX:
10887 mips_opts.ase_mdmx = 1;
10888 break;
10889
10890 case OPTION_NO_MDMX:
10891 mips_opts.ase_mdmx = 0;
10892 break;
10893
10894 case OPTION_DSP:
10895 mips_opts.ase_dsp = 1;
10896 break;
10897
10898 case OPTION_NO_DSP:
10899 mips_opts.ase_dsp = 0;
10900 break;
10901
10902 case OPTION_MT:
10903 mips_opts.ase_mt = 1;
10904 break;
10905
10906 case OPTION_NO_MT:
10907 mips_opts.ase_mt = 0;
10908 break;
10909
10910 case OPTION_MIPS16:
10911 mips_opts.mips16 = 1;
10912 mips_no_prev_insn ();
10913 break;
10914
10915 case OPTION_NO_MIPS16:
10916 mips_opts.mips16 = 0;
10917 mips_no_prev_insn ();
10918 break;
10919
10920 case OPTION_MIPS3D:
10921 mips_opts.ase_mips3d = 1;
10922 break;
10923
10924 case OPTION_NO_MIPS3D:
10925 mips_opts.ase_mips3d = 0;
10926 break;
10927
10928 case OPTION_SMARTMIPS:
10929 mips_opts.ase_smartmips = 1;
10930 break;
10931
10932 case OPTION_NO_SMARTMIPS:
10933 mips_opts.ase_smartmips = 0;
10934 break;
10935
10936 case OPTION_FIX_VR4120:
10937 mips_fix_vr4120 = 1;
10938 break;
10939
10940 case OPTION_NO_FIX_VR4120:
10941 mips_fix_vr4120 = 0;
10942 break;
10943
10944 case OPTION_FIX_VR4130:
10945 mips_fix_vr4130 = 1;
10946 break;
10947
10948 case OPTION_NO_FIX_VR4130:
10949 mips_fix_vr4130 = 0;
10950 break;
10951
10952 case OPTION_RELAX_BRANCH:
10953 mips_relax_branch = 1;
10954 break;
10955
10956 case OPTION_NO_RELAX_BRANCH:
10957 mips_relax_branch = 0;
10958 break;
10959
10960 case OPTION_MSHARED:
10961 mips_in_shared = TRUE;
10962 break;
10963
10964 case OPTION_MNO_SHARED:
10965 mips_in_shared = FALSE;
10966 break;
10967
10968 case OPTION_MSYM32:
10969 mips_opts.sym32 = TRUE;
10970 break;
10971
10972 case OPTION_MNO_SYM32:
10973 mips_opts.sym32 = FALSE;
10974 break;
10975
10976 #ifdef OBJ_ELF
10977 /* When generating ELF code, we permit -KPIC and -call_shared to
10978 select SVR4_PIC, and -non_shared to select no PIC. This is
10979 intended to be compatible with Irix 5. */
10980 case OPTION_CALL_SHARED:
10981 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
10982 {
10983 as_bad (_("-call_shared is supported only for ELF format"));
10984 return 0;
10985 }
10986 mips_pic = SVR4_PIC;
10987 mips_abicalls = TRUE;
10988 break;
10989
10990 case OPTION_NON_SHARED:
10991 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
10992 {
10993 as_bad (_("-non_shared is supported only for ELF format"));
10994 return 0;
10995 }
10996 mips_pic = NO_PIC;
10997 mips_abicalls = FALSE;
10998 break;
10999
11000 /* The -xgot option tells the assembler to use 32 bit offsets
11001 when accessing the got in SVR4_PIC mode. It is for Irix
11002 compatibility. */
11003 case OPTION_XGOT:
11004 mips_big_got = 1;
11005 break;
11006 #endif /* OBJ_ELF */
11007
11008 case 'G':
11009 g_switch_value = atoi (arg);
11010 g_switch_seen = 1;
11011 break;
11012
11013 #ifdef OBJ_ELF
11014 /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
11015 and -mabi=64. */
11016 case OPTION_32:
11017 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
11018 {
11019 as_bad (_("-32 is supported for ELF format only"));
11020 return 0;
11021 }
11022 mips_abi = O32_ABI;
11023 break;
11024
11025 case OPTION_N32:
11026 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
11027 {
11028 as_bad (_("-n32 is supported for ELF format only"));
11029 return 0;
11030 }
11031 mips_abi = N32_ABI;
11032 break;
11033
11034 case OPTION_64:
11035 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
11036 {
11037 as_bad (_("-64 is supported for ELF format only"));
11038 return 0;
11039 }
11040 mips_abi = N64_ABI;
11041 if (! support_64bit_objects())
11042 as_fatal (_("No compiled in support for 64 bit object file format"));
11043 break;
11044 #endif /* OBJ_ELF */
11045
11046 case OPTION_GP32:
11047 file_mips_gp32 = 1;
11048 break;
11049
11050 case OPTION_GP64:
11051 file_mips_gp32 = 0;
11052 break;
11053
11054 case OPTION_FP32:
11055 file_mips_fp32 = 1;
11056 break;
11057
11058 case OPTION_FP64:
11059 file_mips_fp32 = 0;
11060 break;
11061
11062 #ifdef OBJ_ELF
11063 case OPTION_MABI:
11064 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
11065 {
11066 as_bad (_("-mabi is supported for ELF format only"));
11067 return 0;
11068 }
11069 if (strcmp (arg, "32") == 0)
11070 mips_abi = O32_ABI;
11071 else if (strcmp (arg, "o64") == 0)
11072 mips_abi = O64_ABI;
11073 else if (strcmp (arg, "n32") == 0)
11074 mips_abi = N32_ABI;
11075 else if (strcmp (arg, "64") == 0)
11076 {
11077 mips_abi = N64_ABI;
11078 if (! support_64bit_objects())
11079 as_fatal (_("No compiled in support for 64 bit object file "
11080 "format"));
11081 }
11082 else if (strcmp (arg, "eabi") == 0)
11083 mips_abi = EABI_ABI;
11084 else
11085 {
11086 as_fatal (_("invalid abi -mabi=%s"), arg);
11087 return 0;
11088 }
11089 break;
11090 #endif /* OBJ_ELF */
11091
11092 case OPTION_M7000_HILO_FIX:
11093 mips_7000_hilo_fix = TRUE;
11094 break;
11095
11096 case OPTION_MNO_7000_HILO_FIX:
11097 mips_7000_hilo_fix = FALSE;
11098 break;
11099
11100 #ifdef OBJ_ELF
11101 case OPTION_MDEBUG:
11102 mips_flag_mdebug = TRUE;
11103 break;
11104
11105 case OPTION_NO_MDEBUG:
11106 mips_flag_mdebug = FALSE;
11107 break;
11108
11109 case OPTION_PDR:
11110 mips_flag_pdr = TRUE;
11111 break;
11112
11113 case OPTION_NO_PDR:
11114 mips_flag_pdr = FALSE;
11115 break;
11116
11117 case OPTION_MVXWORKS_PIC:
11118 mips_pic = VXWORKS_PIC;
11119 break;
11120 #endif /* OBJ_ELF */
11121
11122 default:
11123 return 0;
11124 }
11125
11126 return 1;
11127 }
11128 \f
11129 /* Set up globals to generate code for the ISA or processor
11130 described by INFO. */
11131
11132 static void
11133 mips_set_architecture (const struct mips_cpu_info *info)
11134 {
11135 if (info != 0)
11136 {
11137 file_mips_arch = info->cpu;
11138 mips_opts.arch = info->cpu;
11139 mips_opts.isa = info->isa;
11140 }
11141 }
11142
11143
11144 /* Likewise for tuning. */
11145
11146 static void
11147 mips_set_tune (const struct mips_cpu_info *info)
11148 {
11149 if (info != 0)
11150 mips_tune = info->cpu;
11151 }
11152
11153
11154 void
11155 mips_after_parse_args (void)
11156 {
11157 const struct mips_cpu_info *arch_info = 0;
11158 const struct mips_cpu_info *tune_info = 0;
11159
11160 /* GP relative stuff not working for PE */
11161 if (strncmp (TARGET_OS, "pe", 2) == 0)
11162 {
11163 if (g_switch_seen && g_switch_value != 0)
11164 as_bad (_("-G not supported in this configuration."));
11165 g_switch_value = 0;
11166 }
11167
11168 if (mips_abi == NO_ABI)
11169 mips_abi = MIPS_DEFAULT_ABI;
11170
11171 /* The following code determines the architecture and register size.
11172 Similar code was added to GCC 3.3 (see override_options() in
11173 config/mips/mips.c). The GAS and GCC code should be kept in sync
11174 as much as possible. */
11175
11176 if (mips_arch_string != 0)
11177 arch_info = mips_parse_cpu ("-march", mips_arch_string);
11178
11179 if (file_mips_isa != ISA_UNKNOWN)
11180 {
11181 /* Handle -mipsN. At this point, file_mips_isa contains the
11182 ISA level specified by -mipsN, while arch_info->isa contains
11183 the -march selection (if any). */
11184 if (arch_info != 0)
11185 {
11186 /* -march takes precedence over -mipsN, since it is more descriptive.
11187 There's no harm in specifying both as long as the ISA levels
11188 are the same. */
11189 if (file_mips_isa != arch_info->isa)
11190 as_bad (_("-%s conflicts with the other architecture options, which imply -%s"),
11191 mips_cpu_info_from_isa (file_mips_isa)->name,
11192 mips_cpu_info_from_isa (arch_info->isa)->name);
11193 }
11194 else
11195 arch_info = mips_cpu_info_from_isa (file_mips_isa);
11196 }
11197
11198 if (arch_info == 0)
11199 arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT);
11200
11201 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa))
11202 as_bad ("-march=%s is not compatible with the selected ABI",
11203 arch_info->name);
11204
11205 mips_set_architecture (arch_info);
11206
11207 /* Optimize for file_mips_arch, unless -mtune selects a different processor. */
11208 if (mips_tune_string != 0)
11209 tune_info = mips_parse_cpu ("-mtune", mips_tune_string);
11210
11211 if (tune_info == 0)
11212 mips_set_tune (arch_info);
11213 else
11214 mips_set_tune (tune_info);
11215
11216 if (file_mips_gp32 >= 0)
11217 {
11218 /* The user specified the size of the integer registers. Make sure
11219 it agrees with the ABI and ISA. */
11220 if (file_mips_gp32 == 0 && !ISA_HAS_64BIT_REGS (mips_opts.isa))
11221 as_bad (_("-mgp64 used with a 32-bit processor"));
11222 else if (file_mips_gp32 == 1 && ABI_NEEDS_64BIT_REGS (mips_abi))
11223 as_bad (_("-mgp32 used with a 64-bit ABI"));
11224 else if (file_mips_gp32 == 0 && ABI_NEEDS_32BIT_REGS (mips_abi))
11225 as_bad (_("-mgp64 used with a 32-bit ABI"));
11226 }
11227 else
11228 {
11229 /* Infer the integer register size from the ABI and processor.
11230 Restrict ourselves to 32-bit registers if that's all the
11231 processor has, or if the ABI cannot handle 64-bit registers. */
11232 file_mips_gp32 = (ABI_NEEDS_32BIT_REGS (mips_abi)
11233 || !ISA_HAS_64BIT_REGS (mips_opts.isa));
11234 }
11235
11236 /* ??? GAS treats single-float processors as though they had 64-bit
11237 float registers (although it complains when double-precision
11238 instructions are used). As things stand, saying they have 32-bit
11239 registers would lead to spurious "register must be even" messages.
11240 So here we assume float registers are always the same size as
11241 integer ones, unless the user says otherwise. */
11242 if (file_mips_fp32 < 0)
11243 file_mips_fp32 = file_mips_gp32;
11244
11245 /* End of GCC-shared inference code. */
11246
11247 /* This flag is set when we have a 64-bit capable CPU but use only
11248 32-bit wide registers. Note that EABI does not use it. */
11249 if (ISA_HAS_64BIT_REGS (mips_opts.isa)
11250 && ((mips_abi == NO_ABI && file_mips_gp32 == 1)
11251 || mips_abi == O32_ABI))
11252 mips_32bitmode = 1;
11253
11254 if (mips_opts.isa == ISA_MIPS1 && mips_trap)
11255 as_bad (_("trap exception not supported at ISA 1"));
11256
11257 /* If the selected architecture includes support for ASEs, enable
11258 generation of code for them. */
11259 if (mips_opts.mips16 == -1)
11260 mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_arch)) ? 1 : 0;
11261 if (mips_opts.ase_mips3d == -1)
11262 mips_opts.ase_mips3d = (CPU_HAS_MIPS3D (file_mips_arch)) ? 1 : 0;
11263 if (mips_opts.ase_mdmx == -1)
11264 mips_opts.ase_mdmx = (CPU_HAS_MDMX (file_mips_arch)) ? 1 : 0;
11265 if (mips_opts.ase_dsp == -1)
11266 mips_opts.ase_dsp = (CPU_HAS_DSP (file_mips_arch)) ? 1 : 0;
11267 if (mips_opts.ase_mt == -1)
11268 mips_opts.ase_mt = (CPU_HAS_MT (file_mips_arch)) ? 1 : 0;
11269
11270 file_mips_isa = mips_opts.isa;
11271 file_ase_mips16 = mips_opts.mips16;
11272 file_ase_mips3d = mips_opts.ase_mips3d;
11273 file_ase_mdmx = mips_opts.ase_mdmx;
11274 file_ase_smartmips = mips_opts.ase_smartmips;
11275 file_ase_dsp = mips_opts.ase_dsp;
11276 file_ase_mt = mips_opts.ase_mt;
11277 mips_opts.gp32 = file_mips_gp32;
11278 mips_opts.fp32 = file_mips_fp32;
11279
11280 if (mips_flag_mdebug < 0)
11281 {
11282 #ifdef OBJ_MAYBE_ECOFF
11283 if (OUTPUT_FLAVOR == bfd_target_ecoff_flavour)
11284 mips_flag_mdebug = 1;
11285 else
11286 #endif /* OBJ_MAYBE_ECOFF */
11287 mips_flag_mdebug = 0;
11288 }
11289 }
11290 \f
11291 void
11292 mips_init_after_args (void)
11293 {
11294 /* initialize opcodes */
11295 bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes;
11296 mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes;
11297 }
11298
11299 long
11300 md_pcrel_from (fixS *fixP)
11301 {
11302 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
11303 switch (fixP->fx_r_type)
11304 {
11305 case BFD_RELOC_16_PCREL_S2:
11306 case BFD_RELOC_MIPS_JMP:
11307 /* Return the address of the delay slot. */
11308 return addr + 4;
11309 default:
11310 return addr;
11311 }
11312 }
11313
11314 /* This is called before the symbol table is processed. In order to
11315 work with gcc when using mips-tfile, we must keep all local labels.
11316 However, in other cases, we want to discard them. If we were
11317 called with -g, but we didn't see any debugging information, it may
11318 mean that gcc is smuggling debugging information through to
11319 mips-tfile, in which case we must generate all local labels. */
11320
11321 void
11322 mips_frob_file_before_adjust (void)
11323 {
11324 #ifndef NO_ECOFF_DEBUGGING
11325 if (ECOFF_DEBUGGING
11326 && mips_debug != 0
11327 && ! ecoff_debugging_seen)
11328 flag_keep_locals = 1;
11329 #endif
11330 }
11331
11332 /* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede
11333 the corresponding LO16 reloc. This is called before md_apply_fix and
11334 tc_gen_reloc. Unmatched relocs can only be generated by use of explicit
11335 relocation operators.
11336
11337 For our purposes, a %lo() expression matches a %got() or %hi()
11338 expression if:
11339
11340 (a) it refers to the same symbol; and
11341 (b) the offset applied in the %lo() expression is no lower than
11342 the offset applied in the %got() or %hi().
11343
11344 (b) allows us to cope with code like:
11345
11346 lui $4,%hi(foo)
11347 lh $4,%lo(foo+2)($4)
11348
11349 ...which is legal on RELA targets, and has a well-defined behaviour
11350 if the user knows that adding 2 to "foo" will not induce a carry to
11351 the high 16 bits.
11352
11353 When several %lo()s match a particular %got() or %hi(), we use the
11354 following rules to distinguish them:
11355
11356 (1) %lo()s with smaller offsets are a better match than %lo()s with
11357 higher offsets.
11358
11359 (2) %lo()s with no matching %got() or %hi() are better than those
11360 that already have a matching %got() or %hi().
11361
11362 (3) later %lo()s are better than earlier %lo()s.
11363
11364 These rules are applied in order.
11365
11366 (1) means, among other things, that %lo()s with identical offsets are
11367 chosen if they exist.
11368
11369 (2) means that we won't associate several high-part relocations with
11370 the same low-part relocation unless there's no alternative. Having
11371 several high parts for the same low part is a GNU extension; this rule
11372 allows careful users to avoid it.
11373
11374 (3) is purely cosmetic. mips_hi_fixup_list is is in reverse order,
11375 with the last high-part relocation being at the front of the list.
11376 It therefore makes sense to choose the last matching low-part
11377 relocation, all other things being equal. It's also easier
11378 to code that way. */
11379
11380 void
11381 mips_frob_file (void)
11382 {
11383 struct mips_hi_fixup *l;
11384
11385 for (l = mips_hi_fixup_list; l != NULL; l = l->next)
11386 {
11387 segment_info_type *seginfo;
11388 bfd_boolean matched_lo_p;
11389 fixS **hi_pos, **lo_pos, **pos;
11390
11391 assert (reloc_needs_lo_p (l->fixp->fx_r_type));
11392
11393 /* If a GOT16 relocation turns out to be against a global symbol,
11394 there isn't supposed to be a matching LO. */
11395 if (l->fixp->fx_r_type == BFD_RELOC_MIPS_GOT16
11396 && !pic_need_relax (l->fixp->fx_addsy, l->seg))
11397 continue;
11398
11399 /* Check quickly whether the next fixup happens to be a matching %lo. */
11400 if (fixup_has_matching_lo_p (l->fixp))
11401 continue;
11402
11403 seginfo = seg_info (l->seg);
11404
11405 /* Set HI_POS to the position of this relocation in the chain.
11406 Set LO_POS to the position of the chosen low-part relocation.
11407 MATCHED_LO_P is true on entry to the loop if *POS is a low-part
11408 relocation that matches an immediately-preceding high-part
11409 relocation. */
11410 hi_pos = NULL;
11411 lo_pos = NULL;
11412 matched_lo_p = FALSE;
11413 for (pos = &seginfo->fix_root; *pos != NULL; pos = &(*pos)->fx_next)
11414 {
11415 if (*pos == l->fixp)
11416 hi_pos = pos;
11417
11418 if (((*pos)->fx_r_type == BFD_RELOC_LO16
11419 || (*pos)->fx_r_type == BFD_RELOC_MIPS16_LO16)
11420 && (*pos)->fx_addsy == l->fixp->fx_addsy
11421 && (*pos)->fx_offset >= l->fixp->fx_offset
11422 && (lo_pos == NULL
11423 || (*pos)->fx_offset < (*lo_pos)->fx_offset
11424 || (!matched_lo_p
11425 && (*pos)->fx_offset == (*lo_pos)->fx_offset)))
11426 lo_pos = pos;
11427
11428 matched_lo_p = (reloc_needs_lo_p ((*pos)->fx_r_type)
11429 && fixup_has_matching_lo_p (*pos));
11430 }
11431
11432 /* If we found a match, remove the high-part relocation from its
11433 current position and insert it before the low-part relocation.
11434 Make the offsets match so that fixup_has_matching_lo_p()
11435 will return true.
11436
11437 We don't warn about unmatched high-part relocations since some
11438 versions of gcc have been known to emit dead "lui ...%hi(...)"
11439 instructions. */
11440 if (lo_pos != NULL)
11441 {
11442 l->fixp->fx_offset = (*lo_pos)->fx_offset;
11443 if (l->fixp->fx_next != *lo_pos)
11444 {
11445 *hi_pos = l->fixp->fx_next;
11446 l->fixp->fx_next = *lo_pos;
11447 *lo_pos = l->fixp;
11448 }
11449 }
11450 }
11451 }
11452
11453 /* We may have combined relocations without symbols in the N32/N64 ABI.
11454 We have to prevent gas from dropping them. */
11455
11456 int
11457 mips_force_relocation (fixS *fixp)
11458 {
11459 if (generic_force_reloc (fixp))
11460 return 1;
11461
11462 if (HAVE_NEWABI
11463 && S_GET_SEGMENT (fixp->fx_addsy) == bfd_abs_section_ptr
11464 && (fixp->fx_r_type == BFD_RELOC_MIPS_SUB
11465 || fixp->fx_r_type == BFD_RELOC_HI16_S
11466 || fixp->fx_r_type == BFD_RELOC_LO16))
11467 return 1;
11468
11469 return 0;
11470 }
11471
11472 /* Apply a fixup to the object file. */
11473
11474 void
11475 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
11476 {
11477 bfd_byte *buf;
11478 long insn;
11479 reloc_howto_type *howto;
11480
11481 /* We ignore generic BFD relocations we don't know about. */
11482 howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
11483 if (! howto)
11484 return;
11485
11486 assert (fixP->fx_size == 4
11487 || fixP->fx_r_type == BFD_RELOC_16
11488 || fixP->fx_r_type == BFD_RELOC_64
11489 || fixP->fx_r_type == BFD_RELOC_CTOR
11490 || fixP->fx_r_type == BFD_RELOC_MIPS_SUB
11491 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
11492 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY);
11493
11494 buf = (bfd_byte *) (fixP->fx_frag->fr_literal + fixP->fx_where);
11495
11496 assert (! fixP->fx_pcrel || fixP->fx_r_type == BFD_RELOC_16_PCREL_S2);
11497
11498 /* Don't treat parts of a composite relocation as done. There are two
11499 reasons for this:
11500
11501 (1) The second and third parts will be against 0 (RSS_UNDEF) but
11502 should nevertheless be emitted if the first part is.
11503
11504 (2) In normal usage, composite relocations are never assembly-time
11505 constants. The easiest way of dealing with the pathological
11506 exceptions is to generate a relocation against STN_UNDEF and
11507 leave everything up to the linker. */
11508 if (fixP->fx_addsy == NULL && ! fixP->fx_pcrel && fixP->fx_tcbit == 0)
11509 fixP->fx_done = 1;
11510
11511 switch (fixP->fx_r_type)
11512 {
11513 case BFD_RELOC_MIPS_TLS_GD:
11514 case BFD_RELOC_MIPS_TLS_LDM:
11515 case BFD_RELOC_MIPS_TLS_DTPREL_HI16:
11516 case BFD_RELOC_MIPS_TLS_DTPREL_LO16:
11517 case BFD_RELOC_MIPS_TLS_GOTTPREL:
11518 case BFD_RELOC_MIPS_TLS_TPREL_HI16:
11519 case BFD_RELOC_MIPS_TLS_TPREL_LO16:
11520 S_SET_THREAD_LOCAL (fixP->fx_addsy);
11521 /* fall through */
11522
11523 case BFD_RELOC_MIPS_JMP:
11524 case BFD_RELOC_MIPS_SHIFT5:
11525 case BFD_RELOC_MIPS_SHIFT6:
11526 case BFD_RELOC_MIPS_GOT_DISP:
11527 case BFD_RELOC_MIPS_GOT_PAGE:
11528 case BFD_RELOC_MIPS_GOT_OFST:
11529 case BFD_RELOC_MIPS_SUB:
11530 case BFD_RELOC_MIPS_INSERT_A:
11531 case BFD_RELOC_MIPS_INSERT_B:
11532 case BFD_RELOC_MIPS_DELETE:
11533 case BFD_RELOC_MIPS_HIGHEST:
11534 case BFD_RELOC_MIPS_HIGHER:
11535 case BFD_RELOC_MIPS_SCN_DISP:
11536 case BFD_RELOC_MIPS_REL16:
11537 case BFD_RELOC_MIPS_RELGOT:
11538 case BFD_RELOC_MIPS_JALR:
11539 case BFD_RELOC_HI16:
11540 case BFD_RELOC_HI16_S:
11541 case BFD_RELOC_GPREL16:
11542 case BFD_RELOC_MIPS_LITERAL:
11543 case BFD_RELOC_MIPS_CALL16:
11544 case BFD_RELOC_MIPS_GOT16:
11545 case BFD_RELOC_GPREL32:
11546 case BFD_RELOC_MIPS_GOT_HI16:
11547 case BFD_RELOC_MIPS_GOT_LO16:
11548 case BFD_RELOC_MIPS_CALL_HI16:
11549 case BFD_RELOC_MIPS_CALL_LO16:
11550 case BFD_RELOC_MIPS16_GPREL:
11551 case BFD_RELOC_MIPS16_HI16:
11552 case BFD_RELOC_MIPS16_HI16_S:
11553 /* Nothing needed to do. The value comes from the reloc entry */
11554 break;
11555
11556 case BFD_RELOC_MIPS16_JMP:
11557 /* We currently always generate a reloc against a symbol, which
11558 means that we don't want an addend even if the symbol is
11559 defined. */
11560 *valP = 0;
11561 break;
11562
11563 case BFD_RELOC_64:
11564 /* This is handled like BFD_RELOC_32, but we output a sign
11565 extended value if we are only 32 bits. */
11566 if (fixP->fx_done)
11567 {
11568 if (8 <= sizeof (valueT))
11569 md_number_to_chars ((char *) buf, *valP, 8);
11570 else
11571 {
11572 valueT hiv;
11573
11574 if ((*valP & 0x80000000) != 0)
11575 hiv = 0xffffffff;
11576 else
11577 hiv = 0;
11578 md_number_to_chars ((char *)(buf + (target_big_endian ? 4 : 0)),
11579 *valP, 4);
11580 md_number_to_chars ((char *)(buf + (target_big_endian ? 0 : 4)),
11581 hiv, 4);
11582 }
11583 }
11584 break;
11585
11586 case BFD_RELOC_RVA:
11587 case BFD_RELOC_32:
11588 /* If we are deleting this reloc entry, we must fill in the
11589 value now. This can happen if we have a .word which is not
11590 resolved when it appears but is later defined. */
11591 if (fixP->fx_done)
11592 md_number_to_chars ((char *) buf, *valP, 4);
11593 break;
11594
11595 case BFD_RELOC_16:
11596 /* If we are deleting this reloc entry, we must fill in the
11597 value now. */
11598 if (fixP->fx_done)
11599 md_number_to_chars ((char *) buf, *valP, 2);
11600 break;
11601
11602 case BFD_RELOC_LO16:
11603 case BFD_RELOC_MIPS16_LO16:
11604 /* FIXME: Now that embedded-PIC is gone, some of this code/comment
11605 may be safe to remove, but if so it's not obvious. */
11606 /* When handling an embedded PIC switch statement, we can wind
11607 up deleting a LO16 reloc. See the 'o' case in mips_ip. */
11608 if (fixP->fx_done)
11609 {
11610 if (*valP + 0x8000 > 0xffff)
11611 as_bad_where (fixP->fx_file, fixP->fx_line,
11612 _("relocation overflow"));
11613 if (target_big_endian)
11614 buf += 2;
11615 md_number_to_chars ((char *) buf, *valP, 2);
11616 }
11617 break;
11618
11619 case BFD_RELOC_16_PCREL_S2:
11620 if ((*valP & 0x3) != 0)
11621 as_bad_where (fixP->fx_file, fixP->fx_line,
11622 _("Branch to misaligned address (%lx)"), (long) *valP);
11623
11624 /*
11625 * We need to save the bits in the instruction since fixup_segment()
11626 * might be deleting the relocation entry (i.e., a branch within
11627 * the current segment).
11628 */
11629 if (! fixP->fx_done)
11630 break;
11631
11632 /* update old instruction data */
11633 if (target_big_endian)
11634 insn = (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf[3];
11635 else
11636 insn = (buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | buf[0];
11637
11638 if (*valP + 0x20000 <= 0x3ffff)
11639 {
11640 insn |= (*valP >> 2) & 0xffff;
11641 md_number_to_chars ((char *) buf, insn, 4);
11642 }
11643 else if (mips_pic == NO_PIC
11644 && fixP->fx_done
11645 && fixP->fx_frag->fr_address >= text_section->vma
11646 && (fixP->fx_frag->fr_address
11647 < text_section->vma + bfd_get_section_size (text_section))
11648 && ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
11649 || (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
11650 || (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
11651 {
11652 /* The branch offset is too large. If this is an
11653 unconditional branch, and we are not generating PIC code,
11654 we can convert it to an absolute jump instruction. */
11655 if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
11656 insn = 0x0c000000; /* jal */
11657 else
11658 insn = 0x08000000; /* j */
11659 fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
11660 fixP->fx_done = 0;
11661 fixP->fx_addsy = section_symbol (text_section);
11662 *valP += md_pcrel_from (fixP);
11663 md_number_to_chars ((char *) buf, insn, 4);
11664 }
11665 else
11666 {
11667 /* If we got here, we have branch-relaxation disabled,
11668 and there's nothing we can do to fix this instruction
11669 without turning it into a longer sequence. */
11670 as_bad_where (fixP->fx_file, fixP->fx_line,
11671 _("Branch out of range"));
11672 }
11673 break;
11674
11675 case BFD_RELOC_VTABLE_INHERIT:
11676 fixP->fx_done = 0;
11677 if (fixP->fx_addsy
11678 && !S_IS_DEFINED (fixP->fx_addsy)
11679 && !S_IS_WEAK (fixP->fx_addsy))
11680 S_SET_WEAK (fixP->fx_addsy);
11681 break;
11682
11683 case BFD_RELOC_VTABLE_ENTRY:
11684 fixP->fx_done = 0;
11685 break;
11686
11687 default:
11688 internalError ();
11689 }
11690
11691 /* Remember value for tc_gen_reloc. */
11692 fixP->fx_addnumber = *valP;
11693 }
11694
11695 static symbolS *
11696 get_symbol (void)
11697 {
11698 int c;
11699 char *name;
11700 symbolS *p;
11701
11702 name = input_line_pointer;
11703 c = get_symbol_end ();
11704 p = (symbolS *) symbol_find_or_make (name);
11705 *input_line_pointer = c;
11706 return p;
11707 }
11708
11709 /* Align the current frag to a given power of two. The MIPS assembler
11710 also automatically adjusts any preceding label. */
11711
11712 static void
11713 mips_align (int to, int fill, symbolS *label)
11714 {
11715 mips_emit_delays ();
11716 frag_align (to, fill, 0);
11717 record_alignment (now_seg, to);
11718 if (label != NULL)
11719 {
11720 assert (S_GET_SEGMENT (label) == now_seg);
11721 symbol_set_frag (label, frag_now);
11722 S_SET_VALUE (label, (valueT) frag_now_fix ());
11723 }
11724 }
11725
11726 /* Align to a given power of two. .align 0 turns off the automatic
11727 alignment used by the data creating pseudo-ops. */
11728
11729 static void
11730 s_align (int x ATTRIBUTE_UNUSED)
11731 {
11732 register int temp;
11733 register long temp_fill;
11734 long max_alignment = 15;
11735
11736 /*
11737
11738 o Note that the assembler pulls down any immediately preceding label
11739 to the aligned address.
11740 o It's not documented but auto alignment is reinstated by
11741 a .align pseudo instruction.
11742 o Note also that after auto alignment is turned off the mips assembler
11743 issues an error on attempt to assemble an improperly aligned data item.
11744 We don't.
11745
11746 */
11747
11748 temp = get_absolute_expression ();
11749 if (temp > max_alignment)
11750 as_bad (_("Alignment too large: %d. assumed."), temp = max_alignment);
11751 else if (temp < 0)
11752 {
11753 as_warn (_("Alignment negative: 0 assumed."));
11754 temp = 0;
11755 }
11756 if (*input_line_pointer == ',')
11757 {
11758 ++input_line_pointer;
11759 temp_fill = get_absolute_expression ();
11760 }
11761 else
11762 temp_fill = 0;
11763 if (temp)
11764 {
11765 auto_align = 1;
11766 mips_align (temp, (int) temp_fill,
11767 insn_labels != NULL ? insn_labels->label : NULL);
11768 }
11769 else
11770 {
11771 auto_align = 0;
11772 }
11773
11774 demand_empty_rest_of_line ();
11775 }
11776
11777 static void
11778 s_change_sec (int sec)
11779 {
11780 segT seg;
11781
11782 #ifdef OBJ_ELF
11783 /* The ELF backend needs to know that we are changing sections, so
11784 that .previous works correctly. We could do something like check
11785 for an obj_section_change_hook macro, but that might be confusing
11786 as it would not be appropriate to use it in the section changing
11787 functions in read.c, since obj-elf.c intercepts those. FIXME:
11788 This should be cleaner, somehow. */
11789 obj_elf_section_change_hook ();
11790 #endif
11791
11792 mips_emit_delays ();
11793 switch (sec)
11794 {
11795 case 't':
11796 s_text (0);
11797 break;
11798 case 'd':
11799 s_data (0);
11800 break;
11801 case 'b':
11802 subseg_set (bss_section, (subsegT) get_absolute_expression ());
11803 demand_empty_rest_of_line ();
11804 break;
11805
11806 case 'r':
11807 seg = subseg_new (RDATA_SECTION_NAME,
11808 (subsegT) get_absolute_expression ());
11809 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
11810 {
11811 bfd_set_section_flags (stdoutput, seg, (SEC_ALLOC | SEC_LOAD
11812 | SEC_READONLY | SEC_RELOC
11813 | SEC_DATA));
11814 if (strcmp (TARGET_OS, "elf") != 0)
11815 record_alignment (seg, 4);
11816 }
11817 demand_empty_rest_of_line ();
11818 break;
11819
11820 case 's':
11821 seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
11822 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
11823 {
11824 bfd_set_section_flags (stdoutput, seg,
11825 SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA);
11826 if (strcmp (TARGET_OS, "elf") != 0)
11827 record_alignment (seg, 4);
11828 }
11829 demand_empty_rest_of_line ();
11830 break;
11831 }
11832
11833 auto_align = 1;
11834 }
11835
11836 void
11837 s_change_section (int ignore ATTRIBUTE_UNUSED)
11838 {
11839 #ifdef OBJ_ELF
11840 char *section_name;
11841 char c;
11842 char next_c = 0;
11843 int section_type;
11844 int section_flag;
11845 int section_entry_size;
11846 int section_alignment;
11847
11848 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
11849 return;
11850
11851 section_name = input_line_pointer;
11852 c = get_symbol_end ();
11853 if (c)
11854 next_c = *(input_line_pointer + 1);
11855
11856 /* Do we have .section Name<,"flags">? */
11857 if (c != ',' || (c == ',' && next_c == '"'))
11858 {
11859 /* just after name is now '\0'. */
11860 *input_line_pointer = c;
11861 input_line_pointer = section_name;
11862 obj_elf_section (ignore);
11863 return;
11864 }
11865 input_line_pointer++;
11866
11867 /* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
11868 if (c == ',')
11869 section_type = get_absolute_expression ();
11870 else
11871 section_type = 0;
11872 if (*input_line_pointer++ == ',')
11873 section_flag = get_absolute_expression ();
11874 else
11875 section_flag = 0;
11876 if (*input_line_pointer++ == ',')
11877 section_entry_size = get_absolute_expression ();
11878 else
11879 section_entry_size = 0;
11880 if (*input_line_pointer++ == ',')
11881 section_alignment = get_absolute_expression ();
11882 else
11883 section_alignment = 0;
11884
11885 section_name = xstrdup (section_name);
11886
11887 /* When using the generic form of .section (as implemented by obj-elf.c),
11888 there's no way to set the section type to SHT_MIPS_DWARF. Users have
11889 traditionally had to fall back on the more common @progbits instead.
11890
11891 There's nothing really harmful in this, since bfd will correct
11892 SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
11893 means that, for backwards compatibility, the special_section entries
11894 for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
11895
11896 Even so, we shouldn't force users of the MIPS .section syntax to
11897 incorrectly label the sections as SHT_PROGBITS. The best compromise
11898 seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
11899 generic type-checking code. */
11900 if (section_type == SHT_MIPS_DWARF)
11901 section_type = SHT_PROGBITS;
11902
11903 obj_elf_change_section (section_name, section_type, section_flag,
11904 section_entry_size, 0, 0, 0);
11905
11906 if (now_seg->name != section_name)
11907 free (section_name);
11908 #endif /* OBJ_ELF */
11909 }
11910
11911 void
11912 mips_enable_auto_align (void)
11913 {
11914 auto_align = 1;
11915 }
11916
11917 static void
11918 s_cons (int log_size)
11919 {
11920 symbolS *label;
11921
11922 label = insn_labels != NULL ? insn_labels->label : NULL;
11923 mips_emit_delays ();
11924 if (log_size > 0 && auto_align)
11925 mips_align (log_size, 0, label);
11926 mips_clear_insn_labels ();
11927 cons (1 << log_size);
11928 }
11929
11930 static void
11931 s_float_cons (int type)
11932 {
11933 symbolS *label;
11934
11935 label = insn_labels != NULL ? insn_labels->label : NULL;
11936
11937 mips_emit_delays ();
11938
11939 if (auto_align)
11940 {
11941 if (type == 'd')
11942 mips_align (3, 0, label);
11943 else
11944 mips_align (2, 0, label);
11945 }
11946
11947 mips_clear_insn_labels ();
11948
11949 float_cons (type);
11950 }
11951
11952 /* Handle .globl. We need to override it because on Irix 5 you are
11953 permitted to say
11954 .globl foo .text
11955 where foo is an undefined symbol, to mean that foo should be
11956 considered to be the address of a function. */
11957
11958 static void
11959 s_mips_globl (int x ATTRIBUTE_UNUSED)
11960 {
11961 char *name;
11962 int c;
11963 symbolS *symbolP;
11964 flagword flag;
11965
11966 do
11967 {
11968 name = input_line_pointer;
11969 c = get_symbol_end ();
11970 symbolP = symbol_find_or_make (name);
11971 S_SET_EXTERNAL (symbolP);
11972
11973 *input_line_pointer = c;
11974 SKIP_WHITESPACE ();
11975
11976 /* On Irix 5, every global symbol that is not explicitly labelled as
11977 being a function is apparently labelled as being an object. */
11978 flag = BSF_OBJECT;
11979
11980 if (!is_end_of_line[(unsigned char) *input_line_pointer]
11981 && (*input_line_pointer != ','))
11982 {
11983 char *secname;
11984 asection *sec;
11985
11986 secname = input_line_pointer;
11987 c = get_symbol_end ();
11988 sec = bfd_get_section_by_name (stdoutput, secname);
11989 if (sec == NULL)
11990 as_bad (_("%s: no such section"), secname);
11991 *input_line_pointer = c;
11992
11993 if (sec != NULL && (sec->flags & SEC_CODE) != 0)
11994 flag = BSF_FUNCTION;
11995 }
11996
11997 symbol_get_bfdsym (symbolP)->flags |= flag;
11998
11999 c = *input_line_pointer;
12000 if (c == ',')
12001 {
12002 input_line_pointer++;
12003 SKIP_WHITESPACE ();
12004 if (is_end_of_line[(unsigned char) *input_line_pointer])
12005 c = '\n';
12006 }
12007 }
12008 while (c == ',');
12009
12010 demand_empty_rest_of_line ();
12011 }
12012
12013 static void
12014 s_option (int x ATTRIBUTE_UNUSED)
12015 {
12016 char *opt;
12017 char c;
12018
12019 opt = input_line_pointer;
12020 c = get_symbol_end ();
12021
12022 if (*opt == 'O')
12023 {
12024 /* FIXME: What does this mean? */
12025 }
12026 else if (strncmp (opt, "pic", 3) == 0)
12027 {
12028 int i;
12029
12030 i = atoi (opt + 3);
12031 if (i == 0)
12032 mips_pic = NO_PIC;
12033 else if (i == 2)
12034 {
12035 mips_pic = SVR4_PIC;
12036 mips_abicalls = TRUE;
12037 }
12038 else
12039 as_bad (_(".option pic%d not supported"), i);
12040
12041 if (mips_pic == SVR4_PIC)
12042 {
12043 if (g_switch_seen && g_switch_value != 0)
12044 as_warn (_("-G may not be used with SVR4 PIC code"));
12045 g_switch_value = 0;
12046 bfd_set_gp_size (stdoutput, 0);
12047 }
12048 }
12049 else
12050 as_warn (_("Unrecognized option \"%s\""), opt);
12051
12052 *input_line_pointer = c;
12053 demand_empty_rest_of_line ();
12054 }
12055
12056 /* This structure is used to hold a stack of .set values. */
12057
12058 struct mips_option_stack
12059 {
12060 struct mips_option_stack *next;
12061 struct mips_set_options options;
12062 };
12063
12064 static struct mips_option_stack *mips_opts_stack;
12065
12066 /* Handle the .set pseudo-op. */
12067
12068 static void
12069 s_mipsset (int x ATTRIBUTE_UNUSED)
12070 {
12071 char *name = input_line_pointer, ch;
12072
12073 while (!is_end_of_line[(unsigned char) *input_line_pointer])
12074 ++input_line_pointer;
12075 ch = *input_line_pointer;
12076 *input_line_pointer = '\0';
12077
12078 if (strcmp (name, "reorder") == 0)
12079 {
12080 if (mips_opts.noreorder)
12081 end_noreorder ();
12082 }
12083 else if (strcmp (name, "noreorder") == 0)
12084 {
12085 if (!mips_opts.noreorder)
12086 start_noreorder ();
12087 }
12088 else if (strcmp (name, "at") == 0)
12089 {
12090 mips_opts.noat = 0;
12091 }
12092 else if (strcmp (name, "noat") == 0)
12093 {
12094 mips_opts.noat = 1;
12095 }
12096 else if (strcmp (name, "macro") == 0)
12097 {
12098 mips_opts.warn_about_macros = 0;
12099 }
12100 else if (strcmp (name, "nomacro") == 0)
12101 {
12102 if (mips_opts.noreorder == 0)
12103 as_bad (_("`noreorder' must be set before `nomacro'"));
12104 mips_opts.warn_about_macros = 1;
12105 }
12106 else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
12107 {
12108 mips_opts.nomove = 0;
12109 }
12110 else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
12111 {
12112 mips_opts.nomove = 1;
12113 }
12114 else if (strcmp (name, "bopt") == 0)
12115 {
12116 mips_opts.nobopt = 0;
12117 }
12118 else if (strcmp (name, "nobopt") == 0)
12119 {
12120 mips_opts.nobopt = 1;
12121 }
12122 else if (strcmp (name, "mips16") == 0
12123 || strcmp (name, "MIPS-16") == 0)
12124 mips_opts.mips16 = 1;
12125 else if (strcmp (name, "nomips16") == 0
12126 || strcmp (name, "noMIPS-16") == 0)
12127 mips_opts.mips16 = 0;
12128 else if (strcmp (name, "smartmips") == 0)
12129 {
12130 if (!ISA_SUPPORT_SMARTMIPS)
12131 as_warn ("%s ISA does not support SmartMIPS ASE",
12132 mips_cpu_info_from_isa (mips_opts.isa)->name);
12133 mips_opts.ase_smartmips = 1;
12134 }
12135 else if (strcmp (name, "nosmartmips") == 0)
12136 mips_opts.ase_smartmips = 0;
12137 else if (strcmp (name, "mips3d") == 0)
12138 mips_opts.ase_mips3d = 1;
12139 else if (strcmp (name, "nomips3d") == 0)
12140 mips_opts.ase_mips3d = 0;
12141 else if (strcmp (name, "mdmx") == 0)
12142 mips_opts.ase_mdmx = 1;
12143 else if (strcmp (name, "nomdmx") == 0)
12144 mips_opts.ase_mdmx = 0;
12145 else if (strcmp (name, "dsp") == 0)
12146 mips_opts.ase_dsp = 1;
12147 else if (strcmp (name, "nodsp") == 0)
12148 mips_opts.ase_dsp = 0;
12149 else if (strcmp (name, "mt") == 0)
12150 mips_opts.ase_mt = 1;
12151 else if (strcmp (name, "nomt") == 0)
12152 mips_opts.ase_mt = 0;
12153 else if (strncmp (name, "mips", 4) == 0 || strncmp (name, "arch=", 5) == 0)
12154 {
12155 int reset = 0;
12156
12157 /* Permit the user to change the ISA and architecture on the fly.
12158 Needless to say, misuse can cause serious problems. */
12159 if (strcmp (name, "mips0") == 0 || strcmp (name, "arch=default") == 0)
12160 {
12161 reset = 1;
12162 mips_opts.isa = file_mips_isa;
12163 mips_opts.arch = file_mips_arch;
12164 }
12165 else if (strncmp (name, "arch=", 5) == 0)
12166 {
12167 const struct mips_cpu_info *p;
12168
12169 p = mips_parse_cpu("internal use", name + 5);
12170 if (!p)
12171 as_bad (_("unknown architecture %s"), name + 5);
12172 else
12173 {
12174 mips_opts.arch = p->cpu;
12175 mips_opts.isa = p->isa;
12176 }
12177 }
12178 else if (strncmp (name, "mips", 4) == 0)
12179 {
12180 const struct mips_cpu_info *p;
12181
12182 p = mips_parse_cpu("internal use", name);
12183 if (!p)
12184 as_bad (_("unknown ISA level %s"), name + 4);
12185 else
12186 {
12187 mips_opts.arch = p->cpu;
12188 mips_opts.isa = p->isa;
12189 }
12190 }
12191 else
12192 as_bad (_("unknown ISA or architecture %s"), name);
12193
12194 switch (mips_opts.isa)
12195 {
12196 case 0:
12197 break;
12198 case ISA_MIPS1:
12199 case ISA_MIPS2:
12200 case ISA_MIPS32:
12201 case ISA_MIPS32R2:
12202 mips_opts.gp32 = 1;
12203 mips_opts.fp32 = 1;
12204 break;
12205 case ISA_MIPS3:
12206 case ISA_MIPS4:
12207 case ISA_MIPS5:
12208 case ISA_MIPS64:
12209 case ISA_MIPS64R2:
12210 mips_opts.gp32 = 0;
12211 mips_opts.fp32 = 0;
12212 break;
12213 default:
12214 as_bad (_("unknown ISA level %s"), name + 4);
12215 break;
12216 }
12217 if (reset)
12218 {
12219 mips_opts.gp32 = file_mips_gp32;
12220 mips_opts.fp32 = file_mips_fp32;
12221 }
12222 }
12223 else if (strcmp (name, "autoextend") == 0)
12224 mips_opts.noautoextend = 0;
12225 else if (strcmp (name, "noautoextend") == 0)
12226 mips_opts.noautoextend = 1;
12227 else if (strcmp (name, "push") == 0)
12228 {
12229 struct mips_option_stack *s;
12230
12231 s = (struct mips_option_stack *) xmalloc (sizeof *s);
12232 s->next = mips_opts_stack;
12233 s->options = mips_opts;
12234 mips_opts_stack = s;
12235 }
12236 else if (strcmp (name, "pop") == 0)
12237 {
12238 struct mips_option_stack *s;
12239
12240 s = mips_opts_stack;
12241 if (s == NULL)
12242 as_bad (_(".set pop with no .set push"));
12243 else
12244 {
12245 /* If we're changing the reorder mode we need to handle
12246 delay slots correctly. */
12247 if (s->options.noreorder && ! mips_opts.noreorder)
12248 start_noreorder ();
12249 else if (! s->options.noreorder && mips_opts.noreorder)
12250 end_noreorder ();
12251
12252 mips_opts = s->options;
12253 mips_opts_stack = s->next;
12254 free (s);
12255 }
12256 }
12257 else if (strcmp (name, "sym32") == 0)
12258 mips_opts.sym32 = TRUE;
12259 else if (strcmp (name, "nosym32") == 0)
12260 mips_opts.sym32 = FALSE;
12261 else
12262 {
12263 as_warn (_("Tried to set unrecognized symbol: %s\n"), name);
12264 }
12265 *input_line_pointer = ch;
12266 demand_empty_rest_of_line ();
12267 }
12268
12269 /* Handle the .abicalls pseudo-op. I believe this is equivalent to
12270 .option pic2. It means to generate SVR4 PIC calls. */
12271
12272 static void
12273 s_abicalls (int ignore ATTRIBUTE_UNUSED)
12274 {
12275 mips_pic = SVR4_PIC;
12276 mips_abicalls = TRUE;
12277
12278 if (g_switch_seen && g_switch_value != 0)
12279 as_warn (_("-G may not be used with SVR4 PIC code"));
12280 g_switch_value = 0;
12281
12282 bfd_set_gp_size (stdoutput, 0);
12283 demand_empty_rest_of_line ();
12284 }
12285
12286 /* Handle the .cpload pseudo-op. This is used when generating SVR4
12287 PIC code. It sets the $gp register for the function based on the
12288 function address, which is in the register named in the argument.
12289 This uses a relocation against _gp_disp, which is handled specially
12290 by the linker. The result is:
12291 lui $gp,%hi(_gp_disp)
12292 addiu $gp,$gp,%lo(_gp_disp)
12293 addu $gp,$gp,.cpload argument
12294 The .cpload argument is normally $25 == $t9.
12295
12296 The -mno-shared option changes this to:
12297 lui $gp,%hi(__gnu_local_gp)
12298 addiu $gp,$gp,%lo(__gnu_local_gp)
12299 and the argument is ignored. This saves an instruction, but the
12300 resulting code is not position independent; it uses an absolute
12301 address for __gnu_local_gp. Thus code assembled with -mno-shared
12302 can go into an ordinary executable, but not into a shared library. */
12303
12304 static void
12305 s_cpload (int ignore ATTRIBUTE_UNUSED)
12306 {
12307 expressionS ex;
12308 int reg;
12309 int in_shared;
12310
12311 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
12312 .cpload is ignored. */
12313 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
12314 {
12315 s_ignore (0);
12316 return;
12317 }
12318
12319 /* .cpload should be in a .set noreorder section. */
12320 if (mips_opts.noreorder == 0)
12321 as_warn (_(".cpload not in noreorder section"));
12322
12323 reg = tc_get_register (0);
12324
12325 /* If we need to produce a 64-bit address, we are better off using
12326 the default instruction sequence. */
12327 in_shared = mips_in_shared || HAVE_64BIT_SYMBOLS;
12328
12329 ex.X_op = O_symbol;
12330 ex.X_add_symbol = symbol_find_or_make (in_shared ? "_gp_disp" :
12331 "__gnu_local_gp");
12332 ex.X_op_symbol = NULL;
12333 ex.X_add_number = 0;
12334
12335 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
12336 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
12337
12338 macro_start ();
12339 macro_build_lui (&ex, mips_gp_register);
12340 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
12341 mips_gp_register, BFD_RELOC_LO16);
12342 if (in_shared)
12343 macro_build (NULL, "addu", "d,v,t", mips_gp_register,
12344 mips_gp_register, reg);
12345 macro_end ();
12346
12347 demand_empty_rest_of_line ();
12348 }
12349
12350 /* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
12351 .cpsetup $reg1, offset|$reg2, label
12352
12353 If offset is given, this results in:
12354 sd $gp, offset($sp)
12355 lui $gp, %hi(%neg(%gp_rel(label)))
12356 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
12357 daddu $gp, $gp, $reg1
12358
12359 If $reg2 is given, this results in:
12360 daddu $reg2, $gp, $0
12361 lui $gp, %hi(%neg(%gp_rel(label)))
12362 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
12363 daddu $gp, $gp, $reg1
12364 $reg1 is normally $25 == $t9.
12365
12366 The -mno-shared option replaces the last three instructions with
12367 lui $gp,%hi(_gp)
12368 addiu $gp,$gp,%lo(_gp)
12369 */
12370
12371 static void
12372 s_cpsetup (int ignore ATTRIBUTE_UNUSED)
12373 {
12374 expressionS ex_off;
12375 expressionS ex_sym;
12376 int reg1;
12377
12378 /* If we are not generating SVR4 PIC code, .cpsetup is ignored.
12379 We also need NewABI support. */
12380 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
12381 {
12382 s_ignore (0);
12383 return;
12384 }
12385
12386 reg1 = tc_get_register (0);
12387 SKIP_WHITESPACE ();
12388 if (*input_line_pointer != ',')
12389 {
12390 as_bad (_("missing argument separator ',' for .cpsetup"));
12391 return;
12392 }
12393 else
12394 ++input_line_pointer;
12395 SKIP_WHITESPACE ();
12396 if (*input_line_pointer == '$')
12397 {
12398 mips_cpreturn_register = tc_get_register (0);
12399 mips_cpreturn_offset = -1;
12400 }
12401 else
12402 {
12403 mips_cpreturn_offset = get_absolute_expression ();
12404 mips_cpreturn_register = -1;
12405 }
12406 SKIP_WHITESPACE ();
12407 if (*input_line_pointer != ',')
12408 {
12409 as_bad (_("missing argument separator ',' for .cpsetup"));
12410 return;
12411 }
12412 else
12413 ++input_line_pointer;
12414 SKIP_WHITESPACE ();
12415 expression (&ex_sym);
12416
12417 macro_start ();
12418 if (mips_cpreturn_register == -1)
12419 {
12420 ex_off.X_op = O_constant;
12421 ex_off.X_add_symbol = NULL;
12422 ex_off.X_op_symbol = NULL;
12423 ex_off.X_add_number = mips_cpreturn_offset;
12424
12425 macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register,
12426 BFD_RELOC_LO16, SP);
12427 }
12428 else
12429 macro_build (NULL, "daddu", "d,v,t", mips_cpreturn_register,
12430 mips_gp_register, 0);
12431
12432 if (mips_in_shared || HAVE_64BIT_SYMBOLS)
12433 {
12434 macro_build (&ex_sym, "lui", "t,u", mips_gp_register,
12435 -1, BFD_RELOC_GPREL16, BFD_RELOC_MIPS_SUB,
12436 BFD_RELOC_HI16_S);
12437
12438 macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register,
12439 mips_gp_register, -1, BFD_RELOC_GPREL16,
12440 BFD_RELOC_MIPS_SUB, BFD_RELOC_LO16);
12441
12442 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register,
12443 mips_gp_register, reg1);
12444 }
12445 else
12446 {
12447 expressionS ex;
12448
12449 ex.X_op = O_symbol;
12450 ex.X_add_symbol = symbol_find_or_make ("__gnu_local_gp");
12451 ex.X_op_symbol = NULL;
12452 ex.X_add_number = 0;
12453
12454 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
12455 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
12456
12457 macro_build_lui (&ex, mips_gp_register);
12458 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
12459 mips_gp_register, BFD_RELOC_LO16);
12460 }
12461
12462 macro_end ();
12463
12464 demand_empty_rest_of_line ();
12465 }
12466
12467 static void
12468 s_cplocal (int ignore ATTRIBUTE_UNUSED)
12469 {
12470 /* If we are not generating SVR4 PIC code, or if this is not NewABI code,
12471 .cplocal is ignored. */
12472 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
12473 {
12474 s_ignore (0);
12475 return;
12476 }
12477
12478 mips_gp_register = tc_get_register (0);
12479 demand_empty_rest_of_line ();
12480 }
12481
12482 /* Handle the .cprestore pseudo-op. This stores $gp into a given
12483 offset from $sp. The offset is remembered, and after making a PIC
12484 call $gp is restored from that location. */
12485
12486 static void
12487 s_cprestore (int ignore ATTRIBUTE_UNUSED)
12488 {
12489 expressionS ex;
12490
12491 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
12492 .cprestore is ignored. */
12493 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
12494 {
12495 s_ignore (0);
12496 return;
12497 }
12498
12499 mips_cprestore_offset = get_absolute_expression ();
12500 mips_cprestore_valid = 1;
12501
12502 ex.X_op = O_constant;
12503 ex.X_add_symbol = NULL;
12504 ex.X_op_symbol = NULL;
12505 ex.X_add_number = mips_cprestore_offset;
12506
12507 macro_start ();
12508 macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register,
12509 SP, HAVE_64BIT_ADDRESSES);
12510 macro_end ();
12511
12512 demand_empty_rest_of_line ();
12513 }
12514
12515 /* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
12516 was given in the preceding .cpsetup, it results in:
12517 ld $gp, offset($sp)
12518
12519 If a register $reg2 was given there, it results in:
12520 daddu $gp, $reg2, $0
12521 */
12522 static void
12523 s_cpreturn (int ignore ATTRIBUTE_UNUSED)
12524 {
12525 expressionS ex;
12526
12527 /* If we are not generating SVR4 PIC code, .cpreturn is ignored.
12528 We also need NewABI support. */
12529 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
12530 {
12531 s_ignore (0);
12532 return;
12533 }
12534
12535 macro_start ();
12536 if (mips_cpreturn_register == -1)
12537 {
12538 ex.X_op = O_constant;
12539 ex.X_add_symbol = NULL;
12540 ex.X_op_symbol = NULL;
12541 ex.X_add_number = mips_cpreturn_offset;
12542
12543 macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP);
12544 }
12545 else
12546 macro_build (NULL, "daddu", "d,v,t", mips_gp_register,
12547 mips_cpreturn_register, 0);
12548 macro_end ();
12549
12550 demand_empty_rest_of_line ();
12551 }
12552
12553 /* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
12554 code. It sets the offset to use in gp_rel relocations. */
12555
12556 static void
12557 s_gpvalue (int ignore ATTRIBUTE_UNUSED)
12558 {
12559 /* If we are not generating SVR4 PIC code, .gpvalue is ignored.
12560 We also need NewABI support. */
12561 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
12562 {
12563 s_ignore (0);
12564 return;
12565 }
12566
12567 mips_gprel_offset = get_absolute_expression ();
12568
12569 demand_empty_rest_of_line ();
12570 }
12571
12572 /* Handle the .gpword pseudo-op. This is used when generating PIC
12573 code. It generates a 32 bit GP relative reloc. */
12574
12575 static void
12576 s_gpword (int ignore ATTRIBUTE_UNUSED)
12577 {
12578 symbolS *label;
12579 expressionS ex;
12580 char *p;
12581
12582 /* When not generating PIC code, this is treated as .word. */
12583 if (mips_pic != SVR4_PIC)
12584 {
12585 s_cons (2);
12586 return;
12587 }
12588
12589 label = insn_labels != NULL ? insn_labels->label : NULL;
12590 mips_emit_delays ();
12591 if (auto_align)
12592 mips_align (2, 0, label);
12593 mips_clear_insn_labels ();
12594
12595 expression (&ex);
12596
12597 if (ex.X_op != O_symbol || ex.X_add_number != 0)
12598 {
12599 as_bad (_("Unsupported use of .gpword"));
12600 ignore_rest_of_line ();
12601 }
12602
12603 p = frag_more (4);
12604 md_number_to_chars (p, 0, 4);
12605 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
12606 BFD_RELOC_GPREL32);
12607
12608 demand_empty_rest_of_line ();
12609 }
12610
12611 static void
12612 s_gpdword (int ignore ATTRIBUTE_UNUSED)
12613 {
12614 symbolS *label;
12615 expressionS ex;
12616 char *p;
12617
12618 /* When not generating PIC code, this is treated as .dword. */
12619 if (mips_pic != SVR4_PIC)
12620 {
12621 s_cons (3);
12622 return;
12623 }
12624
12625 label = insn_labels != NULL ? insn_labels->label : NULL;
12626 mips_emit_delays ();
12627 if (auto_align)
12628 mips_align (3, 0, label);
12629 mips_clear_insn_labels ();
12630
12631 expression (&ex);
12632
12633 if (ex.X_op != O_symbol || ex.X_add_number != 0)
12634 {
12635 as_bad (_("Unsupported use of .gpdword"));
12636 ignore_rest_of_line ();
12637 }
12638
12639 p = frag_more (8);
12640 md_number_to_chars (p, 0, 8);
12641 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
12642 BFD_RELOC_GPREL32)->fx_tcbit = 1;
12643
12644 /* GPREL32 composed with 64 gives a 64-bit GP offset. */
12645 fix_new (frag_now, p - frag_now->fr_literal, 8, NULL, 0,
12646 FALSE, BFD_RELOC_64)->fx_tcbit = 1;
12647
12648 demand_empty_rest_of_line ();
12649 }
12650
12651 /* Handle the .cpadd pseudo-op. This is used when dealing with switch
12652 tables in SVR4 PIC code. */
12653
12654 static void
12655 s_cpadd (int ignore ATTRIBUTE_UNUSED)
12656 {
12657 int reg;
12658
12659 /* This is ignored when not generating SVR4 PIC code. */
12660 if (mips_pic != SVR4_PIC)
12661 {
12662 s_ignore (0);
12663 return;
12664 }
12665
12666 /* Add $gp to the register named as an argument. */
12667 macro_start ();
12668 reg = tc_get_register (0);
12669 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register);
12670 macro_end ();
12671
12672 demand_empty_rest_of_line ();
12673 }
12674
12675 /* Handle the .insn pseudo-op. This marks instruction labels in
12676 mips16 mode. This permits the linker to handle them specially,
12677 such as generating jalx instructions when needed. We also make
12678 them odd for the duration of the assembly, in order to generate the
12679 right sort of code. We will make them even in the adjust_symtab
12680 routine, while leaving them marked. This is convenient for the
12681 debugger and the disassembler. The linker knows to make them odd
12682 again. */
12683
12684 static void
12685 s_insn (int ignore ATTRIBUTE_UNUSED)
12686 {
12687 mips16_mark_labels ();
12688
12689 demand_empty_rest_of_line ();
12690 }
12691
12692 /* Handle a .stabn directive. We need these in order to mark a label
12693 as being a mips16 text label correctly. Sometimes the compiler
12694 will emit a label, followed by a .stabn, and then switch sections.
12695 If the label and .stabn are in mips16 mode, then the label is
12696 really a mips16 text label. */
12697
12698 static void
12699 s_mips_stab (int type)
12700 {
12701 if (type == 'n')
12702 mips16_mark_labels ();
12703
12704 s_stab (type);
12705 }
12706
12707 /* Handle the .weakext pseudo-op as defined in Kane and Heinrich.
12708 */
12709
12710 static void
12711 s_mips_weakext (int ignore ATTRIBUTE_UNUSED)
12712 {
12713 char *name;
12714 int c;
12715 symbolS *symbolP;
12716 expressionS exp;
12717
12718 name = input_line_pointer;
12719 c = get_symbol_end ();
12720 symbolP = symbol_find_or_make (name);
12721 S_SET_WEAK (symbolP);
12722 *input_line_pointer = c;
12723
12724 SKIP_WHITESPACE ();
12725
12726 if (! is_end_of_line[(unsigned char) *input_line_pointer])
12727 {
12728 if (S_IS_DEFINED (symbolP))
12729 {
12730 as_bad ("ignoring attempt to redefine symbol %s",
12731 S_GET_NAME (symbolP));
12732 ignore_rest_of_line ();
12733 return;
12734 }
12735
12736 if (*input_line_pointer == ',')
12737 {
12738 ++input_line_pointer;
12739 SKIP_WHITESPACE ();
12740 }
12741
12742 expression (&exp);
12743 if (exp.X_op != O_symbol)
12744 {
12745 as_bad ("bad .weakext directive");
12746 ignore_rest_of_line ();
12747 return;
12748 }
12749 symbol_set_value_expression (symbolP, &exp);
12750 }
12751
12752 demand_empty_rest_of_line ();
12753 }
12754
12755 /* Parse a register string into a number. Called from the ECOFF code
12756 to parse .frame. The argument is non-zero if this is the frame
12757 register, so that we can record it in mips_frame_reg. */
12758
12759 int
12760 tc_get_register (int frame)
12761 {
12762 int reg;
12763
12764 SKIP_WHITESPACE ();
12765 if (*input_line_pointer++ != '$')
12766 {
12767 as_warn (_("expected `$'"));
12768 reg = ZERO;
12769 }
12770 else if (ISDIGIT (*input_line_pointer))
12771 {
12772 reg = get_absolute_expression ();
12773 if (reg < 0 || reg >= 32)
12774 {
12775 as_warn (_("Bad register number"));
12776 reg = ZERO;
12777 }
12778 }
12779 else
12780 {
12781 if (strncmp (input_line_pointer, "ra", 2) == 0)
12782 {
12783 reg = RA;
12784 input_line_pointer += 2;
12785 }
12786 else if (strncmp (input_line_pointer, "fp", 2) == 0)
12787 {
12788 reg = FP;
12789 input_line_pointer += 2;
12790 }
12791 else if (strncmp (input_line_pointer, "sp", 2) == 0)
12792 {
12793 reg = SP;
12794 input_line_pointer += 2;
12795 }
12796 else if (strncmp (input_line_pointer, "gp", 2) == 0)
12797 {
12798 reg = GP;
12799 input_line_pointer += 2;
12800 }
12801 else if (strncmp (input_line_pointer, "at", 2) == 0)
12802 {
12803 reg = AT;
12804 input_line_pointer += 2;
12805 }
12806 else if (strncmp (input_line_pointer, "kt0", 3) == 0)
12807 {
12808 reg = KT0;
12809 input_line_pointer += 3;
12810 }
12811 else if (strncmp (input_line_pointer, "kt1", 3) == 0)
12812 {
12813 reg = KT1;
12814 input_line_pointer += 3;
12815 }
12816 else if (strncmp (input_line_pointer, "zero", 4) == 0)
12817 {
12818 reg = ZERO;
12819 input_line_pointer += 4;
12820 }
12821 else
12822 {
12823 as_warn (_("Unrecognized register name"));
12824 reg = ZERO;
12825 while (ISALNUM(*input_line_pointer))
12826 input_line_pointer++;
12827 }
12828 }
12829 if (frame)
12830 {
12831 mips_frame_reg = reg != 0 ? reg : SP;
12832 mips_frame_reg_valid = 1;
12833 mips_cprestore_valid = 0;
12834 }
12835 return reg;
12836 }
12837
12838 valueT
12839 md_section_align (asection *seg, valueT addr)
12840 {
12841 int align = bfd_get_section_alignment (stdoutput, seg);
12842
12843 #ifdef OBJ_ELF
12844 /* We don't need to align ELF sections to the full alignment.
12845 However, Irix 5 may prefer that we align them at least to a 16
12846 byte boundary. We don't bother to align the sections if we are
12847 targeted for an embedded system. */
12848 if (strcmp (TARGET_OS, "elf") == 0)
12849 return addr;
12850 if (align > 4)
12851 align = 4;
12852 #endif
12853
12854 return ((addr + (1 << align) - 1) & (-1 << align));
12855 }
12856
12857 /* Utility routine, called from above as well. If called while the
12858 input file is still being read, it's only an approximation. (For
12859 example, a symbol may later become defined which appeared to be
12860 undefined earlier.) */
12861
12862 static int
12863 nopic_need_relax (symbolS *sym, int before_relaxing)
12864 {
12865 if (sym == 0)
12866 return 0;
12867
12868 if (g_switch_value > 0)
12869 {
12870 const char *symname;
12871 int change;
12872
12873 /* Find out whether this symbol can be referenced off the $gp
12874 register. It can be if it is smaller than the -G size or if
12875 it is in the .sdata or .sbss section. Certain symbols can
12876 not be referenced off the $gp, although it appears as though
12877 they can. */
12878 symname = S_GET_NAME (sym);
12879 if (symname != (const char *) NULL
12880 && (strcmp (symname, "eprol") == 0
12881 || strcmp (symname, "etext") == 0
12882 || strcmp (symname, "_gp") == 0
12883 || strcmp (symname, "edata") == 0
12884 || strcmp (symname, "_fbss") == 0
12885 || strcmp (symname, "_fdata") == 0
12886 || strcmp (symname, "_ftext") == 0
12887 || strcmp (symname, "end") == 0
12888 || strcmp (symname, "_gp_disp") == 0))
12889 change = 1;
12890 else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym))
12891 && (0
12892 #ifndef NO_ECOFF_DEBUGGING
12893 || (symbol_get_obj (sym)->ecoff_extern_size != 0
12894 && (symbol_get_obj (sym)->ecoff_extern_size
12895 <= g_switch_value))
12896 #endif
12897 /* We must defer this decision until after the whole
12898 file has been read, since there might be a .extern
12899 after the first use of this symbol. */
12900 || (before_relaxing
12901 #ifndef NO_ECOFF_DEBUGGING
12902 && symbol_get_obj (sym)->ecoff_extern_size == 0
12903 #endif
12904 && S_GET_VALUE (sym) == 0)
12905 || (S_GET_VALUE (sym) != 0
12906 && S_GET_VALUE (sym) <= g_switch_value)))
12907 change = 0;
12908 else
12909 {
12910 const char *segname;
12911
12912 segname = segment_name (S_GET_SEGMENT (sym));
12913 assert (strcmp (segname, ".lit8") != 0
12914 && strcmp (segname, ".lit4") != 0);
12915 change = (strcmp (segname, ".sdata") != 0
12916 && strcmp (segname, ".sbss") != 0
12917 && strncmp (segname, ".sdata.", 7) != 0
12918 && strncmp (segname, ".gnu.linkonce.s.", 16) != 0);
12919 }
12920 return change;
12921 }
12922 else
12923 /* We are not optimizing for the $gp register. */
12924 return 1;
12925 }
12926
12927
12928 /* Return true if the given symbol should be considered local for SVR4 PIC. */
12929
12930 static bfd_boolean
12931 pic_need_relax (symbolS *sym, asection *segtype)
12932 {
12933 asection *symsec;
12934 bfd_boolean linkonce;
12935
12936 /* Handle the case of a symbol equated to another symbol. */
12937 while (symbol_equated_reloc_p (sym))
12938 {
12939 symbolS *n;
12940
12941 /* It's possible to get a loop here in a badly written
12942 program. */
12943 n = symbol_get_value_expression (sym)->X_add_symbol;
12944 if (n == sym)
12945 break;
12946 sym = n;
12947 }
12948
12949 symsec = S_GET_SEGMENT (sym);
12950
12951 /* duplicate the test for LINK_ONCE sections as in adjust_reloc_syms */
12952 linkonce = FALSE;
12953 if (symsec != segtype && ! S_IS_LOCAL (sym))
12954 {
12955 if ((bfd_get_section_flags (stdoutput, symsec) & SEC_LINK_ONCE)
12956 != 0)
12957 linkonce = TRUE;
12958
12959 /* The GNU toolchain uses an extension for ELF: a section
12960 beginning with the magic string .gnu.linkonce is a linkonce
12961 section. */
12962 if (strncmp (segment_name (symsec), ".gnu.linkonce",
12963 sizeof ".gnu.linkonce" - 1) == 0)
12964 linkonce = TRUE;
12965 }
12966
12967 /* This must duplicate the test in adjust_reloc_syms. */
12968 return (symsec != &bfd_und_section
12969 && symsec != &bfd_abs_section
12970 && ! bfd_is_com_section (symsec)
12971 && !linkonce
12972 #ifdef OBJ_ELF
12973 /* A global or weak symbol is treated as external. */
12974 && (OUTPUT_FLAVOR != bfd_target_elf_flavour
12975 || (! S_IS_WEAK (sym) && ! S_IS_EXTERNAL (sym)))
12976 #endif
12977 );
12978 }
12979
12980
12981 /* Given a mips16 variant frag FRAGP, return non-zero if it needs an
12982 extended opcode. SEC is the section the frag is in. */
12983
12984 static int
12985 mips16_extended_frag (fragS *fragp, asection *sec, long stretch)
12986 {
12987 int type;
12988 register const struct mips16_immed_operand *op;
12989 offsetT val;
12990 int mintiny, maxtiny;
12991 segT symsec;
12992 fragS *sym_frag;
12993
12994 if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
12995 return 0;
12996 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
12997 return 1;
12998
12999 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
13000 op = mips16_immed_operands;
13001 while (op->type != type)
13002 {
13003 ++op;
13004 assert (op < mips16_immed_operands + MIPS16_NUM_IMMED);
13005 }
13006
13007 if (op->unsp)
13008 {
13009 if (type == '<' || type == '>' || type == '[' || type == ']')
13010 {
13011 mintiny = 1;
13012 maxtiny = 1 << op->nbits;
13013 }
13014 else
13015 {
13016 mintiny = 0;
13017 maxtiny = (1 << op->nbits) - 1;
13018 }
13019 }
13020 else
13021 {
13022 mintiny = - (1 << (op->nbits - 1));
13023 maxtiny = (1 << (op->nbits - 1)) - 1;
13024 }
13025
13026 sym_frag = symbol_get_frag (fragp->fr_symbol);
13027 val = S_GET_VALUE (fragp->fr_symbol);
13028 symsec = S_GET_SEGMENT (fragp->fr_symbol);
13029
13030 if (op->pcrel)
13031 {
13032 addressT addr;
13033
13034 /* We won't have the section when we are called from
13035 mips_relax_frag. However, we will always have been called
13036 from md_estimate_size_before_relax first. If this is a
13037 branch to a different section, we mark it as such. If SEC is
13038 NULL, and the frag is not marked, then it must be a branch to
13039 the same section. */
13040 if (sec == NULL)
13041 {
13042 if (RELAX_MIPS16_LONG_BRANCH (fragp->fr_subtype))
13043 return 1;
13044 }
13045 else
13046 {
13047 /* Must have been called from md_estimate_size_before_relax. */
13048 if (symsec != sec)
13049 {
13050 fragp->fr_subtype =
13051 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
13052
13053 /* FIXME: We should support this, and let the linker
13054 catch branches and loads that are out of range. */
13055 as_bad_where (fragp->fr_file, fragp->fr_line,
13056 _("unsupported PC relative reference to different section"));
13057
13058 return 1;
13059 }
13060 if (fragp != sym_frag && sym_frag->fr_address == 0)
13061 /* Assume non-extended on the first relaxation pass.
13062 The address we have calculated will be bogus if this is
13063 a forward branch to another frag, as the forward frag
13064 will have fr_address == 0. */
13065 return 0;
13066 }
13067
13068 /* In this case, we know for sure that the symbol fragment is in
13069 the same section. If the relax_marker of the symbol fragment
13070 differs from the relax_marker of this fragment, we have not
13071 yet adjusted the symbol fragment fr_address. We want to add
13072 in STRETCH in order to get a better estimate of the address.
13073 This particularly matters because of the shift bits. */
13074 if (stretch != 0
13075 && sym_frag->relax_marker != fragp->relax_marker)
13076 {
13077 fragS *f;
13078
13079 /* Adjust stretch for any alignment frag. Note that if have
13080 been expanding the earlier code, the symbol may be
13081 defined in what appears to be an earlier frag. FIXME:
13082 This doesn't handle the fr_subtype field, which specifies
13083 a maximum number of bytes to skip when doing an
13084 alignment. */
13085 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
13086 {
13087 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
13088 {
13089 if (stretch < 0)
13090 stretch = - ((- stretch)
13091 & ~ ((1 << (int) f->fr_offset) - 1));
13092 else
13093 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
13094 if (stretch == 0)
13095 break;
13096 }
13097 }
13098 if (f != NULL)
13099 val += stretch;
13100 }
13101
13102 addr = fragp->fr_address + fragp->fr_fix;
13103
13104 /* The base address rules are complicated. The base address of
13105 a branch is the following instruction. The base address of a
13106 PC relative load or add is the instruction itself, but if it
13107 is in a delay slot (in which case it can not be extended) use
13108 the address of the instruction whose delay slot it is in. */
13109 if (type == 'p' || type == 'q')
13110 {
13111 addr += 2;
13112
13113 /* If we are currently assuming that this frag should be
13114 extended, then, the current address is two bytes
13115 higher. */
13116 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
13117 addr += 2;
13118
13119 /* Ignore the low bit in the target, since it will be set
13120 for a text label. */
13121 if ((val & 1) != 0)
13122 --val;
13123 }
13124 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
13125 addr -= 4;
13126 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
13127 addr -= 2;
13128
13129 val -= addr & ~ ((1 << op->shift) - 1);
13130
13131 /* Branch offsets have an implicit 0 in the lowest bit. */
13132 if (type == 'p' || type == 'q')
13133 val /= 2;
13134
13135 /* If any of the shifted bits are set, we must use an extended
13136 opcode. If the address depends on the size of this
13137 instruction, this can lead to a loop, so we arrange to always
13138 use an extended opcode. We only check this when we are in
13139 the main relaxation loop, when SEC is NULL. */
13140 if ((val & ((1 << op->shift) - 1)) != 0 && sec == NULL)
13141 {
13142 fragp->fr_subtype =
13143 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
13144 return 1;
13145 }
13146
13147 /* If we are about to mark a frag as extended because the value
13148 is precisely maxtiny + 1, then there is a chance of an
13149 infinite loop as in the following code:
13150 la $4,foo
13151 .skip 1020
13152 .align 2
13153 foo:
13154 In this case when the la is extended, foo is 0x3fc bytes
13155 away, so the la can be shrunk, but then foo is 0x400 away, so
13156 the la must be extended. To avoid this loop, we mark the
13157 frag as extended if it was small, and is about to become
13158 extended with a value of maxtiny + 1. */
13159 if (val == ((maxtiny + 1) << op->shift)
13160 && ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype)
13161 && sec == NULL)
13162 {
13163 fragp->fr_subtype =
13164 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
13165 return 1;
13166 }
13167 }
13168 else if (symsec != absolute_section && sec != NULL)
13169 as_bad_where (fragp->fr_file, fragp->fr_line, _("unsupported relocation"));
13170
13171 if ((val & ((1 << op->shift) - 1)) != 0
13172 || val < (mintiny << op->shift)
13173 || val > (maxtiny << op->shift))
13174 return 1;
13175 else
13176 return 0;
13177 }
13178
13179 /* Compute the length of a branch sequence, and adjust the
13180 RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
13181 worst-case length is computed, with UPDATE being used to indicate
13182 whether an unconditional (-1), branch-likely (+1) or regular (0)
13183 branch is to be computed. */
13184 static int
13185 relaxed_branch_length (fragS *fragp, asection *sec, int update)
13186 {
13187 bfd_boolean toofar;
13188 int length;
13189
13190 if (fragp
13191 && S_IS_DEFINED (fragp->fr_symbol)
13192 && sec == S_GET_SEGMENT (fragp->fr_symbol))
13193 {
13194 addressT addr;
13195 offsetT val;
13196
13197 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
13198
13199 addr = fragp->fr_address + fragp->fr_fix + 4;
13200
13201 val -= addr;
13202
13203 toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2);
13204 }
13205 else if (fragp)
13206 /* If the symbol is not defined or it's in a different segment,
13207 assume the user knows what's going on and emit a short
13208 branch. */
13209 toofar = FALSE;
13210 else
13211 toofar = TRUE;
13212
13213 if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
13214 fragp->fr_subtype
13215 = RELAX_BRANCH_ENCODE (RELAX_BRANCH_UNCOND (fragp->fr_subtype),
13216 RELAX_BRANCH_LIKELY (fragp->fr_subtype),
13217 RELAX_BRANCH_LINK (fragp->fr_subtype),
13218 toofar);
13219
13220 length = 4;
13221 if (toofar)
13222 {
13223 if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0))
13224 length += 8;
13225
13226 if (mips_pic != NO_PIC)
13227 {
13228 /* Additional space for PIC loading of target address. */
13229 length += 8;
13230 if (mips_opts.isa == ISA_MIPS1)
13231 /* Additional space for $at-stabilizing nop. */
13232 length += 4;
13233 }
13234
13235 /* If branch is conditional. */
13236 if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0))
13237 length += 8;
13238 }
13239
13240 return length;
13241 }
13242
13243 /* Estimate the size of a frag before relaxing. Unless this is the
13244 mips16, we are not really relaxing here, and the final size is
13245 encoded in the subtype information. For the mips16, we have to
13246 decide whether we are using an extended opcode or not. */
13247
13248 int
13249 md_estimate_size_before_relax (fragS *fragp, asection *segtype)
13250 {
13251 int change;
13252
13253 if (RELAX_BRANCH_P (fragp->fr_subtype))
13254 {
13255
13256 fragp->fr_var = relaxed_branch_length (fragp, segtype, FALSE);
13257
13258 return fragp->fr_var;
13259 }
13260
13261 if (RELAX_MIPS16_P (fragp->fr_subtype))
13262 /* We don't want to modify the EXTENDED bit here; it might get us
13263 into infinite loops. We change it only in mips_relax_frag(). */
13264 return (RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2);
13265
13266 if (mips_pic == NO_PIC)
13267 change = nopic_need_relax (fragp->fr_symbol, 0);
13268 else if (mips_pic == SVR4_PIC)
13269 change = pic_need_relax (fragp->fr_symbol, segtype);
13270 else if (mips_pic == VXWORKS_PIC)
13271 /* For vxworks, GOT16 relocations never have a corresponding LO16. */
13272 change = 0;
13273 else
13274 abort ();
13275
13276 if (change)
13277 {
13278 fragp->fr_subtype |= RELAX_USE_SECOND;
13279 return -RELAX_FIRST (fragp->fr_subtype);
13280 }
13281 else
13282 return -RELAX_SECOND (fragp->fr_subtype);
13283 }
13284
13285 /* This is called to see whether a reloc against a defined symbol
13286 should be converted into a reloc against a section. */
13287
13288 int
13289 mips_fix_adjustable (fixS *fixp)
13290 {
13291 /* Don't adjust MIPS16 jump relocations, so we don't have to worry
13292 about the format of the offset in the .o file. */
13293 if (fixp->fx_r_type == BFD_RELOC_MIPS16_JMP)
13294 return 0;
13295
13296 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
13297 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
13298 return 0;
13299
13300 if (fixp->fx_addsy == NULL)
13301 return 1;
13302
13303 /* If symbol SYM is in a mergeable section, relocations of the form
13304 SYM + 0 can usually be made section-relative. The mergeable data
13305 is then identified by the section offset rather than by the symbol.
13306
13307 However, if we're generating REL LO16 relocations, the offset is split
13308 between the LO16 and parterning high part relocation. The linker will
13309 need to recalculate the complete offset in order to correctly identify
13310 the merge data.
13311
13312 The linker has traditionally not looked for the parterning high part
13313 relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be
13314 placed anywhere. Rather than break backwards compatibility by changing
13315 this, it seems better not to force the issue, and instead keep the
13316 original symbol. This will work with either linker behavior. */
13317 if ((fixp->fx_r_type == BFD_RELOC_LO16
13318 || fixp->fx_r_type == BFD_RELOC_MIPS16_LO16
13319 || reloc_needs_lo_p (fixp->fx_r_type))
13320 && HAVE_IN_PLACE_ADDENDS
13321 && (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE) != 0)
13322 return 0;
13323
13324 #ifdef OBJ_ELF
13325 /* Don't adjust relocations against mips16 symbols, so that the linker
13326 can find them if it needs to set up a stub. */
13327 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
13328 && S_GET_OTHER (fixp->fx_addsy) == STO_MIPS16
13329 && fixp->fx_subsy == NULL)
13330 return 0;
13331 #endif
13332
13333 return 1;
13334 }
13335
13336 /* Translate internal representation of relocation info to BFD target
13337 format. */
13338
13339 arelent **
13340 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
13341 {
13342 static arelent *retval[4];
13343 arelent *reloc;
13344 bfd_reloc_code_real_type code;
13345
13346 memset (retval, 0, sizeof(retval));
13347 reloc = retval[0] = (arelent *) xcalloc (1, sizeof (arelent));
13348 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
13349 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
13350 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
13351
13352 if (fixp->fx_pcrel)
13353 {
13354 assert (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2);
13355
13356 /* At this point, fx_addnumber is "symbol offset - pcrel address".
13357 Relocations want only the symbol offset. */
13358 reloc->addend = fixp->fx_addnumber + reloc->address;
13359 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
13360 {
13361 /* A gruesome hack which is a result of the gruesome gas
13362 reloc handling. What's worse, for COFF (as opposed to
13363 ECOFF), we might need yet another copy of reloc->address.
13364 See bfd_install_relocation. */
13365 reloc->addend += reloc->address;
13366 }
13367 }
13368 else
13369 reloc->addend = fixp->fx_addnumber;
13370
13371 /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
13372 entry to be used in the relocation's section offset. */
13373 if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
13374 {
13375 reloc->address = reloc->addend;
13376 reloc->addend = 0;
13377 }
13378
13379 code = fixp->fx_r_type;
13380
13381 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
13382 if (reloc->howto == NULL)
13383 {
13384 as_bad_where (fixp->fx_file, fixp->fx_line,
13385 _("Can not represent %s relocation in this object file format"),
13386 bfd_get_reloc_code_name (code));
13387 retval[0] = NULL;
13388 }
13389
13390 return retval;
13391 }
13392
13393 /* Relax a machine dependent frag. This returns the amount by which
13394 the current size of the frag should change. */
13395
13396 int
13397 mips_relax_frag (asection *sec, fragS *fragp, long stretch)
13398 {
13399 if (RELAX_BRANCH_P (fragp->fr_subtype))
13400 {
13401 offsetT old_var = fragp->fr_var;
13402
13403 fragp->fr_var = relaxed_branch_length (fragp, sec, TRUE);
13404
13405 return fragp->fr_var - old_var;
13406 }
13407
13408 if (! RELAX_MIPS16_P (fragp->fr_subtype))
13409 return 0;
13410
13411 if (mips16_extended_frag (fragp, NULL, stretch))
13412 {
13413 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
13414 return 0;
13415 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
13416 return 2;
13417 }
13418 else
13419 {
13420 if (! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
13421 return 0;
13422 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
13423 return -2;
13424 }
13425
13426 return 0;
13427 }
13428
13429 /* Convert a machine dependent frag. */
13430
13431 void
13432 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp)
13433 {
13434 if (RELAX_BRANCH_P (fragp->fr_subtype))
13435 {
13436 bfd_byte *buf;
13437 unsigned long insn;
13438 expressionS exp;
13439 fixS *fixp;
13440
13441 buf = (bfd_byte *)fragp->fr_literal + fragp->fr_fix;
13442
13443 if (target_big_endian)
13444 insn = bfd_getb32 (buf);
13445 else
13446 insn = bfd_getl32 (buf);
13447
13448 if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
13449 {
13450 /* We generate a fixup instead of applying it right now
13451 because, if there are linker relaxations, we're going to
13452 need the relocations. */
13453 exp.X_op = O_symbol;
13454 exp.X_add_symbol = fragp->fr_symbol;
13455 exp.X_add_number = fragp->fr_offset;
13456
13457 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
13458 4, &exp, 1, BFD_RELOC_16_PCREL_S2);
13459 fixp->fx_file = fragp->fr_file;
13460 fixp->fx_line = fragp->fr_line;
13461
13462 md_number_to_chars ((char *) buf, insn, 4);
13463 buf += 4;
13464 }
13465 else
13466 {
13467 int i;
13468
13469 as_warn_where (fragp->fr_file, fragp->fr_line,
13470 _("relaxed out-of-range branch into a jump"));
13471
13472 if (RELAX_BRANCH_UNCOND (fragp->fr_subtype))
13473 goto uncond;
13474
13475 if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype))
13476 {
13477 /* Reverse the branch. */
13478 switch ((insn >> 28) & 0xf)
13479 {
13480 case 4:
13481 /* bc[0-3][tf]l? and bc1any[24][ft] instructions can
13482 have the condition reversed by tweaking a single
13483 bit, and their opcodes all have 0x4???????. */
13484 assert ((insn & 0xf1000000) == 0x41000000);
13485 insn ^= 0x00010000;
13486 break;
13487
13488 case 0:
13489 /* bltz 0x04000000 bgez 0x04010000
13490 bltzal 0x04100000 bgezal 0x04110000 */
13491 assert ((insn & 0xfc0e0000) == 0x04000000);
13492 insn ^= 0x00010000;
13493 break;
13494
13495 case 1:
13496 /* beq 0x10000000 bne 0x14000000
13497 blez 0x18000000 bgtz 0x1c000000 */
13498 insn ^= 0x04000000;
13499 break;
13500
13501 default:
13502 abort ();
13503 }
13504 }
13505
13506 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
13507 {
13508 /* Clear the and-link bit. */
13509 assert ((insn & 0xfc1c0000) == 0x04100000);
13510
13511 /* bltzal 0x04100000 bgezal 0x04110000
13512 bltzall 0x04120000 bgezall 0x04130000 */
13513 insn &= ~0x00100000;
13514 }
13515
13516 /* Branch over the branch (if the branch was likely) or the
13517 full jump (not likely case). Compute the offset from the
13518 current instruction to branch to. */
13519 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
13520 i = 16;
13521 else
13522 {
13523 /* How many bytes in instructions we've already emitted? */
13524 i = buf - (bfd_byte *)fragp->fr_literal - fragp->fr_fix;
13525 /* How many bytes in instructions from here to the end? */
13526 i = fragp->fr_var - i;
13527 }
13528 /* Convert to instruction count. */
13529 i >>= 2;
13530 /* Branch counts from the next instruction. */
13531 i--;
13532 insn |= i;
13533 /* Branch over the jump. */
13534 md_number_to_chars ((char *) buf, insn, 4);
13535 buf += 4;
13536
13537 /* Nop */
13538 md_number_to_chars ((char *) buf, 0, 4);
13539 buf += 4;
13540
13541 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
13542 {
13543 /* beql $0, $0, 2f */
13544 insn = 0x50000000;
13545 /* Compute the PC offset from the current instruction to
13546 the end of the variable frag. */
13547 /* How many bytes in instructions we've already emitted? */
13548 i = buf - (bfd_byte *)fragp->fr_literal - fragp->fr_fix;
13549 /* How many bytes in instructions from here to the end? */
13550 i = fragp->fr_var - i;
13551 /* Convert to instruction count. */
13552 i >>= 2;
13553 /* Don't decrement i, because we want to branch over the
13554 delay slot. */
13555
13556 insn |= i;
13557 md_number_to_chars ((char *) buf, insn, 4);
13558 buf += 4;
13559
13560 md_number_to_chars ((char *) buf, 0, 4);
13561 buf += 4;
13562 }
13563
13564 uncond:
13565 if (mips_pic == NO_PIC)
13566 {
13567 /* j or jal. */
13568 insn = (RELAX_BRANCH_LINK (fragp->fr_subtype)
13569 ? 0x0c000000 : 0x08000000);
13570 exp.X_op = O_symbol;
13571 exp.X_add_symbol = fragp->fr_symbol;
13572 exp.X_add_number = fragp->fr_offset;
13573
13574 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
13575 4, &exp, 0, BFD_RELOC_MIPS_JMP);
13576 fixp->fx_file = fragp->fr_file;
13577 fixp->fx_line = fragp->fr_line;
13578
13579 md_number_to_chars ((char *) buf, insn, 4);
13580 buf += 4;
13581 }
13582 else
13583 {
13584 /* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
13585 insn = HAVE_64BIT_ADDRESSES ? 0xdf810000 : 0x8f810000;
13586 exp.X_op = O_symbol;
13587 exp.X_add_symbol = fragp->fr_symbol;
13588 exp.X_add_number = fragp->fr_offset;
13589
13590 if (fragp->fr_offset)
13591 {
13592 exp.X_add_symbol = make_expr_symbol (&exp);
13593 exp.X_add_number = 0;
13594 }
13595
13596 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
13597 4, &exp, 0, BFD_RELOC_MIPS_GOT16);
13598 fixp->fx_file = fragp->fr_file;
13599 fixp->fx_line = fragp->fr_line;
13600
13601 md_number_to_chars ((char *) buf, insn, 4);
13602 buf += 4;
13603
13604 if (mips_opts.isa == ISA_MIPS1)
13605 {
13606 /* nop */
13607 md_number_to_chars ((char *) buf, 0, 4);
13608 buf += 4;
13609 }
13610
13611 /* d/addiu $at, $at, <sym> R_MIPS_LO16 */
13612 insn = HAVE_64BIT_ADDRESSES ? 0x64210000 : 0x24210000;
13613
13614 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
13615 4, &exp, 0, BFD_RELOC_LO16);
13616 fixp->fx_file = fragp->fr_file;
13617 fixp->fx_line = fragp->fr_line;
13618
13619 md_number_to_chars ((char *) buf, insn, 4);
13620 buf += 4;
13621
13622 /* j(al)r $at. */
13623 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
13624 insn = 0x0020f809;
13625 else
13626 insn = 0x00200008;
13627
13628 md_number_to_chars ((char *) buf, insn, 4);
13629 buf += 4;
13630 }
13631 }
13632
13633 assert (buf == (bfd_byte *)fragp->fr_literal
13634 + fragp->fr_fix + fragp->fr_var);
13635
13636 fragp->fr_fix += fragp->fr_var;
13637
13638 return;
13639 }
13640
13641 if (RELAX_MIPS16_P (fragp->fr_subtype))
13642 {
13643 int type;
13644 register const struct mips16_immed_operand *op;
13645 bfd_boolean small, ext;
13646 offsetT val;
13647 bfd_byte *buf;
13648 unsigned long insn;
13649 bfd_boolean use_extend;
13650 unsigned short extend;
13651
13652 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
13653 op = mips16_immed_operands;
13654 while (op->type != type)
13655 ++op;
13656
13657 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
13658 {
13659 small = FALSE;
13660 ext = TRUE;
13661 }
13662 else
13663 {
13664 small = TRUE;
13665 ext = FALSE;
13666 }
13667
13668 resolve_symbol_value (fragp->fr_symbol);
13669 val = S_GET_VALUE (fragp->fr_symbol);
13670 if (op->pcrel)
13671 {
13672 addressT addr;
13673
13674 addr = fragp->fr_address + fragp->fr_fix;
13675
13676 /* The rules for the base address of a PC relative reloc are
13677 complicated; see mips16_extended_frag. */
13678 if (type == 'p' || type == 'q')
13679 {
13680 addr += 2;
13681 if (ext)
13682 addr += 2;
13683 /* Ignore the low bit in the target, since it will be
13684 set for a text label. */
13685 if ((val & 1) != 0)
13686 --val;
13687 }
13688 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
13689 addr -= 4;
13690 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
13691 addr -= 2;
13692
13693 addr &= ~ (addressT) ((1 << op->shift) - 1);
13694 val -= addr;
13695
13696 /* Make sure the section winds up with the alignment we have
13697 assumed. */
13698 if (op->shift > 0)
13699 record_alignment (asec, op->shift);
13700 }
13701
13702 if (ext
13703 && (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)
13704 || RELAX_MIPS16_DSLOT (fragp->fr_subtype)))
13705 as_warn_where (fragp->fr_file, fragp->fr_line,
13706 _("extended instruction in delay slot"));
13707
13708 buf = (bfd_byte *) (fragp->fr_literal + fragp->fr_fix);
13709
13710 if (target_big_endian)
13711 insn = bfd_getb16 (buf);
13712 else
13713 insn = bfd_getl16 (buf);
13714
13715 mips16_immed (fragp->fr_file, fragp->fr_line, type, val,
13716 RELAX_MIPS16_USER_EXT (fragp->fr_subtype),
13717 small, ext, &insn, &use_extend, &extend);
13718
13719 if (use_extend)
13720 {
13721 md_number_to_chars ((char *) buf, 0xf000 | extend, 2);
13722 fragp->fr_fix += 2;
13723 buf += 2;
13724 }
13725
13726 md_number_to_chars ((char *) buf, insn, 2);
13727 fragp->fr_fix += 2;
13728 buf += 2;
13729 }
13730 else
13731 {
13732 int first, second;
13733 fixS *fixp;
13734
13735 first = RELAX_FIRST (fragp->fr_subtype);
13736 second = RELAX_SECOND (fragp->fr_subtype);
13737 fixp = (fixS *) fragp->fr_opcode;
13738
13739 /* Possibly emit a warning if we've chosen the longer option. */
13740 if (((fragp->fr_subtype & RELAX_USE_SECOND) != 0)
13741 == ((fragp->fr_subtype & RELAX_SECOND_LONGER) != 0))
13742 {
13743 const char *msg = macro_warning (fragp->fr_subtype);
13744 if (msg != 0)
13745 as_warn_where (fragp->fr_file, fragp->fr_line, msg);
13746 }
13747
13748 /* Go through all the fixups for the first sequence. Disable them
13749 (by marking them as done) if we're going to use the second
13750 sequence instead. */
13751 while (fixp
13752 && fixp->fx_frag == fragp
13753 && fixp->fx_where < fragp->fr_fix - second)
13754 {
13755 if (fragp->fr_subtype & RELAX_USE_SECOND)
13756 fixp->fx_done = 1;
13757 fixp = fixp->fx_next;
13758 }
13759
13760 /* Go through the fixups for the second sequence. Disable them if
13761 we're going to use the first sequence, otherwise adjust their
13762 addresses to account for the relaxation. */
13763 while (fixp && fixp->fx_frag == fragp)
13764 {
13765 if (fragp->fr_subtype & RELAX_USE_SECOND)
13766 fixp->fx_where -= first;
13767 else
13768 fixp->fx_done = 1;
13769 fixp = fixp->fx_next;
13770 }
13771
13772 /* Now modify the frag contents. */
13773 if (fragp->fr_subtype & RELAX_USE_SECOND)
13774 {
13775 char *start;
13776
13777 start = fragp->fr_literal + fragp->fr_fix - first - second;
13778 memmove (start, start + first, second);
13779 fragp->fr_fix -= first;
13780 }
13781 else
13782 fragp->fr_fix -= second;
13783 }
13784 }
13785
13786 #ifdef OBJ_ELF
13787
13788 /* This function is called after the relocs have been generated.
13789 We've been storing mips16 text labels as odd. Here we convert them
13790 back to even for the convenience of the debugger. */
13791
13792 void
13793 mips_frob_file_after_relocs (void)
13794 {
13795 asymbol **syms;
13796 unsigned int count, i;
13797
13798 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
13799 return;
13800
13801 syms = bfd_get_outsymbols (stdoutput);
13802 count = bfd_get_symcount (stdoutput);
13803 for (i = 0; i < count; i++, syms++)
13804 {
13805 if (elf_symbol (*syms)->internal_elf_sym.st_other == STO_MIPS16
13806 && ((*syms)->value & 1) != 0)
13807 {
13808 (*syms)->value &= ~1;
13809 /* If the symbol has an odd size, it was probably computed
13810 incorrectly, so adjust that as well. */
13811 if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0)
13812 ++elf_symbol (*syms)->internal_elf_sym.st_size;
13813 }
13814 }
13815 }
13816
13817 #endif
13818
13819 /* This function is called whenever a label is defined. It is used
13820 when handling branch delays; if a branch has a label, we assume we
13821 can not move it. */
13822
13823 void
13824 mips_define_label (symbolS *sym)
13825 {
13826 struct insn_label_list *l;
13827
13828 if (free_insn_labels == NULL)
13829 l = (struct insn_label_list *) xmalloc (sizeof *l);
13830 else
13831 {
13832 l = free_insn_labels;
13833 free_insn_labels = l->next;
13834 }
13835
13836 l->label = sym;
13837 l->next = insn_labels;
13838 insn_labels = l;
13839
13840 #ifdef OBJ_ELF
13841 dwarf2_emit_label (sym);
13842 #endif
13843 }
13844 \f
13845 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13846
13847 /* Some special processing for a MIPS ELF file. */
13848
13849 void
13850 mips_elf_final_processing (void)
13851 {
13852 /* Write out the register information. */
13853 if (mips_abi != N64_ABI)
13854 {
13855 Elf32_RegInfo s;
13856
13857 s.ri_gprmask = mips_gprmask;
13858 s.ri_cprmask[0] = mips_cprmask[0];
13859 s.ri_cprmask[1] = mips_cprmask[1];
13860 s.ri_cprmask[2] = mips_cprmask[2];
13861 s.ri_cprmask[3] = mips_cprmask[3];
13862 /* The gp_value field is set by the MIPS ELF backend. */
13863
13864 bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
13865 ((Elf32_External_RegInfo *)
13866 mips_regmask_frag));
13867 }
13868 else
13869 {
13870 Elf64_Internal_RegInfo s;
13871
13872 s.ri_gprmask = mips_gprmask;
13873 s.ri_pad = 0;
13874 s.ri_cprmask[0] = mips_cprmask[0];
13875 s.ri_cprmask[1] = mips_cprmask[1];
13876 s.ri_cprmask[2] = mips_cprmask[2];
13877 s.ri_cprmask[3] = mips_cprmask[3];
13878 /* The gp_value field is set by the MIPS ELF backend. */
13879
13880 bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
13881 ((Elf64_External_RegInfo *)
13882 mips_regmask_frag));
13883 }
13884
13885 /* Set the MIPS ELF flag bits. FIXME: There should probably be some
13886 sort of BFD interface for this. */
13887 if (mips_any_noreorder)
13888 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
13889 if (mips_pic != NO_PIC)
13890 {
13891 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
13892 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
13893 }
13894 if (mips_abicalls)
13895 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
13896
13897 /* Set MIPS ELF flags for ASEs. */
13898 /* We may need to define a new flag for DSP ASE, and set this flag when
13899 file_ase_dsp is true. */
13900 /* We may need to define a new flag for MT ASE, and set this flag when
13901 file_ase_mt is true. */
13902 if (file_ase_mips16)
13903 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16;
13904 #if 0 /* XXX FIXME */
13905 if (file_ase_mips3d)
13906 elf_elfheader (stdoutput)->e_flags |= ???;
13907 #endif
13908 if (file_ase_mdmx)
13909 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX;
13910
13911 /* Set the MIPS ELF ABI flags. */
13912 if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32)
13913 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32;
13914 else if (mips_abi == O64_ABI)
13915 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64;
13916 else if (mips_abi == EABI_ABI)
13917 {
13918 if (!file_mips_gp32)
13919 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64;
13920 else
13921 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32;
13922 }
13923 else if (mips_abi == N32_ABI)
13924 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ABI2;
13925
13926 /* Nothing to do for N64_ABI. */
13927
13928 if (mips_32bitmode)
13929 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE;
13930 }
13931
13932 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
13933 \f
13934 typedef struct proc {
13935 symbolS *func_sym;
13936 symbolS *func_end_sym;
13937 unsigned long reg_mask;
13938 unsigned long reg_offset;
13939 unsigned long fpreg_mask;
13940 unsigned long fpreg_offset;
13941 unsigned long frame_offset;
13942 unsigned long frame_reg;
13943 unsigned long pc_reg;
13944 } procS;
13945
13946 static procS cur_proc;
13947 static procS *cur_proc_ptr;
13948 static int numprocs;
13949
13950 /* Fill in an rs_align_code fragment. */
13951
13952 void
13953 mips_handle_align (fragS *fragp)
13954 {
13955 if (fragp->fr_type != rs_align_code)
13956 return;
13957
13958 if (mips_opts.mips16)
13959 {
13960 static const unsigned char be_nop[] = { 0x65, 0x00 };
13961 static const unsigned char le_nop[] = { 0x00, 0x65 };
13962
13963 int bytes;
13964 char *p;
13965
13966 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
13967 p = fragp->fr_literal + fragp->fr_fix;
13968
13969 if (bytes & 1)
13970 {
13971 *p++ = 0;
13972 fragp->fr_fix++;
13973 }
13974
13975 memcpy (p, (target_big_endian ? be_nop : le_nop), 2);
13976 fragp->fr_var = 2;
13977 }
13978
13979 /* For mips32, a nop is a zero, which we trivially get by doing nothing. */
13980 }
13981
13982 static void
13983 md_obj_begin (void)
13984 {
13985 }
13986
13987 static void
13988 md_obj_end (void)
13989 {
13990 /* check for premature end, nesting errors, etc */
13991 if (cur_proc_ptr)
13992 as_warn (_("missing .end at end of assembly"));
13993 }
13994
13995 static long
13996 get_number (void)
13997 {
13998 int negative = 0;
13999 long val = 0;
14000
14001 if (*input_line_pointer == '-')
14002 {
14003 ++input_line_pointer;
14004 negative = 1;
14005 }
14006 if (!ISDIGIT (*input_line_pointer))
14007 as_bad (_("expected simple number"));
14008 if (input_line_pointer[0] == '0')
14009 {
14010 if (input_line_pointer[1] == 'x')
14011 {
14012 input_line_pointer += 2;
14013 while (ISXDIGIT (*input_line_pointer))
14014 {
14015 val <<= 4;
14016 val |= hex_value (*input_line_pointer++);
14017 }
14018 return negative ? -val : val;
14019 }
14020 else
14021 {
14022 ++input_line_pointer;
14023 while (ISDIGIT (*input_line_pointer))
14024 {
14025 val <<= 3;
14026 val |= *input_line_pointer++ - '0';
14027 }
14028 return negative ? -val : val;
14029 }
14030 }
14031 if (!ISDIGIT (*input_line_pointer))
14032 {
14033 printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
14034 *input_line_pointer, *input_line_pointer);
14035 as_warn (_("invalid number"));
14036 return -1;
14037 }
14038 while (ISDIGIT (*input_line_pointer))
14039 {
14040 val *= 10;
14041 val += *input_line_pointer++ - '0';
14042 }
14043 return negative ? -val : val;
14044 }
14045
14046 /* The .file directive; just like the usual .file directive, but there
14047 is an initial number which is the ECOFF file index. In the non-ECOFF
14048 case .file implies DWARF-2. */
14049
14050 static void
14051 s_mips_file (int x ATTRIBUTE_UNUSED)
14052 {
14053 static int first_file_directive = 0;
14054
14055 if (ECOFF_DEBUGGING)
14056 {
14057 get_number ();
14058 s_app_file (0);
14059 }
14060 else
14061 {
14062 char *filename;
14063
14064 filename = dwarf2_directive_file (0);
14065
14066 /* Versions of GCC up to 3.1 start files with a ".file"
14067 directive even for stabs output. Make sure that this
14068 ".file" is handled. Note that you need a version of GCC
14069 after 3.1 in order to support DWARF-2 on MIPS. */
14070 if (filename != NULL && ! first_file_directive)
14071 {
14072 (void) new_logical_line (filename, -1);
14073 s_app_file_string (filename, 0);
14074 }
14075 first_file_directive = 1;
14076 }
14077 }
14078
14079 /* The .loc directive, implying DWARF-2. */
14080
14081 static void
14082 s_mips_loc (int x ATTRIBUTE_UNUSED)
14083 {
14084 if (!ECOFF_DEBUGGING)
14085 dwarf2_directive_loc (0);
14086 }
14087
14088 /* The .end directive. */
14089
14090 static void
14091 s_mips_end (int x ATTRIBUTE_UNUSED)
14092 {
14093 symbolS *p;
14094
14095 /* Following functions need their own .frame and .cprestore directives. */
14096 mips_frame_reg_valid = 0;
14097 mips_cprestore_valid = 0;
14098
14099 if (!is_end_of_line[(unsigned char) *input_line_pointer])
14100 {
14101 p = get_symbol ();
14102 demand_empty_rest_of_line ();
14103 }
14104 else
14105 p = NULL;
14106
14107 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
14108 as_warn (_(".end not in text section"));
14109
14110 if (!cur_proc_ptr)
14111 {
14112 as_warn (_(".end directive without a preceding .ent directive."));
14113 demand_empty_rest_of_line ();
14114 return;
14115 }
14116
14117 if (p != NULL)
14118 {
14119 assert (S_GET_NAME (p));
14120 if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->func_sym)))
14121 as_warn (_(".end symbol does not match .ent symbol."));
14122
14123 if (debug_type == DEBUG_STABS)
14124 stabs_generate_asm_endfunc (S_GET_NAME (p),
14125 S_GET_NAME (p));
14126 }
14127 else
14128 as_warn (_(".end directive missing or unknown symbol"));
14129
14130 #ifdef OBJ_ELF
14131 /* Create an expression to calculate the size of the function. */
14132 if (p && cur_proc_ptr)
14133 {
14134 OBJ_SYMFIELD_TYPE *obj = symbol_get_obj (p);
14135 expressionS *exp = xmalloc (sizeof (expressionS));
14136
14137 obj->size = exp;
14138 exp->X_op = O_subtract;
14139 exp->X_add_symbol = symbol_temp_new_now ();
14140 exp->X_op_symbol = p;
14141 exp->X_add_number = 0;
14142
14143 cur_proc_ptr->func_end_sym = exp->X_add_symbol;
14144 }
14145
14146 /* Generate a .pdr section. */
14147 if (OUTPUT_FLAVOR == bfd_target_elf_flavour && ! ECOFF_DEBUGGING
14148 && mips_flag_pdr)
14149 {
14150 segT saved_seg = now_seg;
14151 subsegT saved_subseg = now_subseg;
14152 valueT dot;
14153 expressionS exp;
14154 char *fragp;
14155
14156 dot = frag_now_fix ();
14157
14158 #ifdef md_flush_pending_output
14159 md_flush_pending_output ();
14160 #endif
14161
14162 assert (pdr_seg);
14163 subseg_set (pdr_seg, 0);
14164
14165 /* Write the symbol. */
14166 exp.X_op = O_symbol;
14167 exp.X_add_symbol = p;
14168 exp.X_add_number = 0;
14169 emit_expr (&exp, 4);
14170
14171 fragp = frag_more (7 * 4);
14172
14173 md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4);
14174 md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4);
14175 md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4);
14176 md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4);
14177 md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4);
14178 md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4);
14179 md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4);
14180
14181 subseg_set (saved_seg, saved_subseg);
14182 }
14183 #endif /* OBJ_ELF */
14184
14185 cur_proc_ptr = NULL;
14186 }
14187
14188 /* The .aent and .ent directives. */
14189
14190 static void
14191 s_mips_ent (int aent)
14192 {
14193 symbolS *symbolP;
14194
14195 symbolP = get_symbol ();
14196 if (*input_line_pointer == ',')
14197 ++input_line_pointer;
14198 SKIP_WHITESPACE ();
14199 if (ISDIGIT (*input_line_pointer)
14200 || *input_line_pointer == '-')
14201 get_number ();
14202
14203 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
14204 as_warn (_(".ent or .aent not in text section."));
14205
14206 if (!aent && cur_proc_ptr)
14207 as_warn (_("missing .end"));
14208
14209 if (!aent)
14210 {
14211 /* This function needs its own .frame and .cprestore directives. */
14212 mips_frame_reg_valid = 0;
14213 mips_cprestore_valid = 0;
14214
14215 cur_proc_ptr = &cur_proc;
14216 memset (cur_proc_ptr, '\0', sizeof (procS));
14217
14218 cur_proc_ptr->func_sym = symbolP;
14219
14220 symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
14221
14222 ++numprocs;
14223
14224 if (debug_type == DEBUG_STABS)
14225 stabs_generate_asm_func (S_GET_NAME (symbolP),
14226 S_GET_NAME (symbolP));
14227 }
14228
14229 demand_empty_rest_of_line ();
14230 }
14231
14232 /* The .frame directive. If the mdebug section is present (IRIX 5 native)
14233 then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
14234 s_mips_frame is used so that we can set the PDR information correctly.
14235 We can't use the ecoff routines because they make reference to the ecoff
14236 symbol table (in the mdebug section). */
14237
14238 static void
14239 s_mips_frame (int ignore ATTRIBUTE_UNUSED)
14240 {
14241 #ifdef OBJ_ELF
14242 if (OUTPUT_FLAVOR == bfd_target_elf_flavour && ! ECOFF_DEBUGGING)
14243 {
14244 long val;
14245
14246 if (cur_proc_ptr == (procS *) NULL)
14247 {
14248 as_warn (_(".frame outside of .ent"));
14249 demand_empty_rest_of_line ();
14250 return;
14251 }
14252
14253 cur_proc_ptr->frame_reg = tc_get_register (1);
14254
14255 SKIP_WHITESPACE ();
14256 if (*input_line_pointer++ != ','
14257 || get_absolute_expression_and_terminator (&val) != ',')
14258 {
14259 as_warn (_("Bad .frame directive"));
14260 --input_line_pointer;
14261 demand_empty_rest_of_line ();
14262 return;
14263 }
14264
14265 cur_proc_ptr->frame_offset = val;
14266 cur_proc_ptr->pc_reg = tc_get_register (0);
14267
14268 demand_empty_rest_of_line ();
14269 }
14270 else
14271 #endif /* OBJ_ELF */
14272 s_ignore (ignore);
14273 }
14274
14275 /* The .fmask and .mask directives. If the mdebug section is present
14276 (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
14277 embedded targets, s_mips_mask is used so that we can set the PDR
14278 information correctly. We can't use the ecoff routines because they
14279 make reference to the ecoff symbol table (in the mdebug section). */
14280
14281 static void
14282 s_mips_mask (int reg_type)
14283 {
14284 #ifdef OBJ_ELF
14285 if (OUTPUT_FLAVOR == bfd_target_elf_flavour && ! ECOFF_DEBUGGING)
14286 {
14287 long mask, off;
14288
14289 if (cur_proc_ptr == (procS *) NULL)
14290 {
14291 as_warn (_(".mask/.fmask outside of .ent"));
14292 demand_empty_rest_of_line ();
14293 return;
14294 }
14295
14296 if (get_absolute_expression_and_terminator (&mask) != ',')
14297 {
14298 as_warn (_("Bad .mask/.fmask directive"));
14299 --input_line_pointer;
14300 demand_empty_rest_of_line ();
14301 return;
14302 }
14303
14304 off = get_absolute_expression ();
14305
14306 if (reg_type == 'F')
14307 {
14308 cur_proc_ptr->fpreg_mask = mask;
14309 cur_proc_ptr->fpreg_offset = off;
14310 }
14311 else
14312 {
14313 cur_proc_ptr->reg_mask = mask;
14314 cur_proc_ptr->reg_offset = off;
14315 }
14316
14317 demand_empty_rest_of_line ();
14318 }
14319 else
14320 #endif /* OBJ_ELF */
14321 s_ignore (reg_type);
14322 }
14323
14324 /* A table describing all the processors gas knows about. Names are
14325 matched in the order listed.
14326
14327 To ease comparison, please keep this table in the same order as
14328 gcc's mips_cpu_info_table[]. */
14329 static const struct mips_cpu_info mips_cpu_info_table[] =
14330 {
14331 /* Entries for generic ISAs */
14332 { "mips1", 1, ISA_MIPS1, CPU_R3000 },
14333 { "mips2", 1, ISA_MIPS2, CPU_R6000 },
14334 { "mips3", 1, ISA_MIPS3, CPU_R4000 },
14335 { "mips4", 1, ISA_MIPS4, CPU_R8000 },
14336 { "mips5", 1, ISA_MIPS5, CPU_MIPS5 },
14337 { "mips32", 1, ISA_MIPS32, CPU_MIPS32 },
14338 { "mips32r2", 1, ISA_MIPS32R2, CPU_MIPS32R2 },
14339 { "mips64", 1, ISA_MIPS64, CPU_MIPS64 },
14340 { "mips64r2", 1, ISA_MIPS64R2, CPU_MIPS64R2 },
14341
14342 /* MIPS I */
14343 { "r3000", 0, ISA_MIPS1, CPU_R3000 },
14344 { "r2000", 0, ISA_MIPS1, CPU_R3000 },
14345 { "r3900", 0, ISA_MIPS1, CPU_R3900 },
14346
14347 /* MIPS II */
14348 { "r6000", 0, ISA_MIPS2, CPU_R6000 },
14349
14350 /* MIPS III */
14351 { "r4000", 0, ISA_MIPS3, CPU_R4000 },
14352 { "r4010", 0, ISA_MIPS2, CPU_R4010 },
14353 { "vr4100", 0, ISA_MIPS3, CPU_VR4100 },
14354 { "vr4111", 0, ISA_MIPS3, CPU_R4111 },
14355 { "vr4120", 0, ISA_MIPS3, CPU_VR4120 },
14356 { "vr4130", 0, ISA_MIPS3, CPU_VR4120 },
14357 { "vr4181", 0, ISA_MIPS3, CPU_R4111 },
14358 { "vr4300", 0, ISA_MIPS3, CPU_R4300 },
14359 { "r4400", 0, ISA_MIPS3, CPU_R4400 },
14360 { "r4600", 0, ISA_MIPS3, CPU_R4600 },
14361 { "orion", 0, ISA_MIPS3, CPU_R4600 },
14362 { "r4650", 0, ISA_MIPS3, CPU_R4650 },
14363
14364 /* MIPS IV */
14365 { "r8000", 0, ISA_MIPS4, CPU_R8000 },
14366 { "r10000", 0, ISA_MIPS4, CPU_R10000 },
14367 { "r12000", 0, ISA_MIPS4, CPU_R12000 },
14368 { "vr5000", 0, ISA_MIPS4, CPU_R5000 },
14369 { "vr5400", 0, ISA_MIPS4, CPU_VR5400 },
14370 { "vr5500", 0, ISA_MIPS4, CPU_VR5500 },
14371 { "rm5200", 0, ISA_MIPS4, CPU_R5000 },
14372 { "rm5230", 0, ISA_MIPS4, CPU_R5000 },
14373 { "rm5231", 0, ISA_MIPS4, CPU_R5000 },
14374 { "rm5261", 0, ISA_MIPS4, CPU_R5000 },
14375 { "rm5721", 0, ISA_MIPS4, CPU_R5000 },
14376 { "rm7000", 0, ISA_MIPS4, CPU_RM7000 },
14377 { "rm9000", 0, ISA_MIPS4, CPU_RM9000 },
14378
14379 /* MIPS 32 */
14380 { "4kc", 0, ISA_MIPS32, CPU_MIPS32 },
14381 { "4km", 0, ISA_MIPS32, CPU_MIPS32 },
14382 { "4kp", 0, ISA_MIPS32, CPU_MIPS32 },
14383
14384 /* MIPS32 Release 2 */
14385 { "m4k", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
14386 { "24k", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
14387 { "24kc", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
14388 { "24kf", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
14389 { "24kx", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
14390
14391 /* MIPS 64 */
14392 { "5kc", 0, ISA_MIPS64, CPU_MIPS64 },
14393 { "5kf", 0, ISA_MIPS64, CPU_MIPS64 },
14394 { "20kc", 0, ISA_MIPS64, CPU_MIPS64 },
14395
14396 /* Broadcom SB-1 CPU core */
14397 { "sb1", 0, ISA_MIPS64, CPU_SB1 },
14398
14399 /* End marker */
14400 { NULL, 0, 0, 0 }
14401 };
14402
14403
14404 /* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
14405 with a final "000" replaced by "k". Ignore case.
14406
14407 Note: this function is shared between GCC and GAS. */
14408
14409 static bfd_boolean
14410 mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
14411 {
14412 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
14413 given++, canonical++;
14414
14415 return ((*given == 0 && *canonical == 0)
14416 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
14417 }
14418
14419
14420 /* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
14421 CPU name. We've traditionally allowed a lot of variation here.
14422
14423 Note: this function is shared between GCC and GAS. */
14424
14425 static bfd_boolean
14426 mips_matching_cpu_name_p (const char *canonical, const char *given)
14427 {
14428 /* First see if the name matches exactly, or with a final "000"
14429 turned into "k". */
14430 if (mips_strict_matching_cpu_name_p (canonical, given))
14431 return TRUE;
14432
14433 /* If not, try comparing based on numerical designation alone.
14434 See if GIVEN is an unadorned number, or 'r' followed by a number. */
14435 if (TOLOWER (*given) == 'r')
14436 given++;
14437 if (!ISDIGIT (*given))
14438 return FALSE;
14439
14440 /* Skip over some well-known prefixes in the canonical name,
14441 hoping to find a number there too. */
14442 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
14443 canonical += 2;
14444 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
14445 canonical += 2;
14446 else if (TOLOWER (canonical[0]) == 'r')
14447 canonical += 1;
14448
14449 return mips_strict_matching_cpu_name_p (canonical, given);
14450 }
14451
14452
14453 /* Parse an option that takes the name of a processor as its argument.
14454 OPTION is the name of the option and CPU_STRING is the argument.
14455 Return the corresponding processor enumeration if the CPU_STRING is
14456 recognized, otherwise report an error and return null.
14457
14458 A similar function exists in GCC. */
14459
14460 static const struct mips_cpu_info *
14461 mips_parse_cpu (const char *option, const char *cpu_string)
14462 {
14463 const struct mips_cpu_info *p;
14464
14465 /* 'from-abi' selects the most compatible architecture for the given
14466 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
14467 EABIs, we have to decide whether we're using the 32-bit or 64-bit
14468 version. Look first at the -mgp options, if given, otherwise base
14469 the choice on MIPS_DEFAULT_64BIT.
14470
14471 Treat NO_ABI like the EABIs. One reason to do this is that the
14472 plain 'mips' and 'mips64' configs have 'from-abi' as their default
14473 architecture. This code picks MIPS I for 'mips' and MIPS III for
14474 'mips64', just as we did in the days before 'from-abi'. */
14475 if (strcasecmp (cpu_string, "from-abi") == 0)
14476 {
14477 if (ABI_NEEDS_32BIT_REGS (mips_abi))
14478 return mips_cpu_info_from_isa (ISA_MIPS1);
14479
14480 if (ABI_NEEDS_64BIT_REGS (mips_abi))
14481 return mips_cpu_info_from_isa (ISA_MIPS3);
14482
14483 if (file_mips_gp32 >= 0)
14484 return mips_cpu_info_from_isa (file_mips_gp32 ? ISA_MIPS1 : ISA_MIPS3);
14485
14486 return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
14487 ? ISA_MIPS3
14488 : ISA_MIPS1);
14489 }
14490
14491 /* 'default' has traditionally been a no-op. Probably not very useful. */
14492 if (strcasecmp (cpu_string, "default") == 0)
14493 return 0;
14494
14495 for (p = mips_cpu_info_table; p->name != 0; p++)
14496 if (mips_matching_cpu_name_p (p->name, cpu_string))
14497 return p;
14498
14499 as_bad ("Bad value (%s) for %s", cpu_string, option);
14500 return 0;
14501 }
14502
14503 /* Return the canonical processor information for ISA (a member of the
14504 ISA_MIPS* enumeration). */
14505
14506 static const struct mips_cpu_info *
14507 mips_cpu_info_from_isa (int isa)
14508 {
14509 int i;
14510
14511 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
14512 if (mips_cpu_info_table[i].is_isa
14513 && isa == mips_cpu_info_table[i].isa)
14514 return (&mips_cpu_info_table[i]);
14515
14516 return NULL;
14517 }
14518
14519 static const struct mips_cpu_info *
14520 mips_cpu_info_from_arch (int arch)
14521 {
14522 int i;
14523
14524 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
14525 if (arch == mips_cpu_info_table[i].cpu)
14526 return (&mips_cpu_info_table[i]);
14527
14528 return NULL;
14529 }
14530 \f
14531 static void
14532 show (FILE *stream, const char *string, int *col_p, int *first_p)
14533 {
14534 if (*first_p)
14535 {
14536 fprintf (stream, "%24s", "");
14537 *col_p = 24;
14538 }
14539 else
14540 {
14541 fprintf (stream, ", ");
14542 *col_p += 2;
14543 }
14544
14545 if (*col_p + strlen (string) > 72)
14546 {
14547 fprintf (stream, "\n%24s", "");
14548 *col_p = 24;
14549 }
14550
14551 fprintf (stream, "%s", string);
14552 *col_p += strlen (string);
14553
14554 *first_p = 0;
14555 }
14556
14557 void
14558 md_show_usage (FILE *stream)
14559 {
14560 int column, first;
14561 size_t i;
14562
14563 fprintf (stream, _("\
14564 MIPS options:\n\
14565 -EB generate big endian output\n\
14566 -EL generate little endian output\n\
14567 -g, -g2 do not remove unneeded NOPs or swap branches\n\
14568 -G NUM allow referencing objects up to NUM bytes\n\
14569 implicitly with the gp register [default 8]\n"));
14570 fprintf (stream, _("\
14571 -mips1 generate MIPS ISA I instructions\n\
14572 -mips2 generate MIPS ISA II instructions\n\
14573 -mips3 generate MIPS ISA III instructions\n\
14574 -mips4 generate MIPS ISA IV instructions\n\
14575 -mips5 generate MIPS ISA V instructions\n\
14576 -mips32 generate MIPS32 ISA instructions\n\
14577 -mips32r2 generate MIPS32 release 2 ISA instructions\n\
14578 -mips64 generate MIPS64 ISA instructions\n\
14579 -mips64r2 generate MIPS64 release 2 ISA instructions\n\
14580 -march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
14581
14582 first = 1;
14583
14584 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
14585 show (stream, mips_cpu_info_table[i].name, &column, &first);
14586 show (stream, "from-abi", &column, &first);
14587 fputc ('\n', stream);
14588
14589 fprintf (stream, _("\
14590 -mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
14591 -no-mCPU don't generate code specific to CPU.\n\
14592 For -mCPU and -no-mCPU, CPU must be one of:\n"));
14593
14594 first = 1;
14595
14596 show (stream, "3900", &column, &first);
14597 show (stream, "4010", &column, &first);
14598 show (stream, "4100", &column, &first);
14599 show (stream, "4650", &column, &first);
14600 fputc ('\n', stream);
14601
14602 fprintf (stream, _("\
14603 -mips16 generate mips16 instructions\n\
14604 -no-mips16 do not generate mips16 instructions\n"));
14605 fprintf (stream, _("\
14606 -msmartmips generate smartmips instructions\n\
14607 -mno-smartmips do not generate smartmips instructions\n"));
14608 fprintf (stream, _("\
14609 -mdsp generate DSP instructions\n\
14610 -mno-dsp do not generate DSP instructions\n"));
14611 fprintf (stream, _("\
14612 -mmt generate MT instructions\n\
14613 -mno-mt do not generate MT instructions\n"));
14614 fprintf (stream, _("\
14615 -mfix-vr4120 work around certain VR4120 errata\n\
14616 -mfix-vr4130 work around VR4130 mflo/mfhi errata\n\
14617 -mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
14618 -mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
14619 -mno-shared optimize output for executables\n\
14620 -msym32 assume all symbols have 32-bit values\n\
14621 -O0 remove unneeded NOPs, do not swap branches\n\
14622 -O remove unneeded NOPs and swap branches\n\
14623 --[no-]construct-floats [dis]allow floating point values to be constructed\n\
14624 --trap, --no-break trap exception on div by 0 and mult overflow\n\
14625 --break, --no-trap break exception on div by 0 and mult overflow\n"));
14626 #ifdef OBJ_ELF
14627 fprintf (stream, _("\
14628 -KPIC, -call_shared generate SVR4 position independent code\n\
14629 -non_shared do not generate position independent code\n\
14630 -xgot assume a 32 bit GOT\n\
14631 -mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
14632 -mshared, -mno-shared disable/enable .cpload optimization for\n\
14633 non-shared code\n\
14634 -mabi=ABI create ABI conformant object file for:\n"));
14635
14636 first = 1;
14637
14638 show (stream, "32", &column, &first);
14639 show (stream, "o64", &column, &first);
14640 show (stream, "n32", &column, &first);
14641 show (stream, "64", &column, &first);
14642 show (stream, "eabi", &column, &first);
14643
14644 fputc ('\n', stream);
14645
14646 fprintf (stream, _("\
14647 -32 create o32 ABI object file (default)\n\
14648 -n32 create n32 ABI object file\n\
14649 -64 create 64 ABI object file\n"));
14650 #endif
14651 }
14652
14653 enum dwarf2_format
14654 mips_dwarf2_format (void)
14655 {
14656 if (mips_abi == N64_ABI)
14657 {
14658 #ifdef TE_IRIX
14659 return dwarf2_format_64bit_irix;
14660 #else
14661 return dwarf2_format_64bit;
14662 #endif
14663 }
14664 else
14665 return dwarf2_format_32bit;
14666 }
14667
14668 int
14669 mips_dwarf2_addr_size (void)
14670 {
14671 if (mips_abi == N64_ABI)
14672 return 8;
14673 else
14674 return 4;
14675 }
14676
14677 /* Standard calling conventions leave the CFA at SP on entry. */
14678 void
14679 mips_cfi_frame_initial_instructions (void)
14680 {
14681 cfi_add_CFA_def_cfa_register (SP);
14682 }
14683
This page took 0.465969 seconds and 5 git commands to generate.