gas/:
[deliverable/binutils-gdb.git] / gas / config / tc-mips.c
1 /* tc-mips.c -- assemble code for a MIPS chip.
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005 Free Software Foundation, Inc.
4 Contributed by the OSF and Ralph Campbell.
5 Written by Keith Knowles and Ralph Campbell, working independently.
6 Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
7 Support.
8
9 This file is part of GAS.
10
11 GAS is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2, or (at your option)
14 any later version.
15
16 GAS is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GAS; see the file COPYING. If not, write to the Free
23 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
24 02111-1307, USA. */
25
26 #include "as.h"
27 #include "config.h"
28 #include "subsegs.h"
29 #include "safe-ctype.h"
30
31 #include <stdarg.h>
32
33 #include "opcode/mips.h"
34 #include "itbl-ops.h"
35 #include "dwarf2dbg.h"
36
37 #ifdef DEBUG
38 #define DBG(x) printf x
39 #else
40 #define DBG(x)
41 #endif
42
43 #ifdef OBJ_MAYBE_ELF
44 /* Clean up namespace so we can include obj-elf.h too. */
45 static int mips_output_flavor (void);
46 static int mips_output_flavor (void) { return OUTPUT_FLAVOR; }
47 #undef OBJ_PROCESS_STAB
48 #undef OUTPUT_FLAVOR
49 #undef S_GET_ALIGN
50 #undef S_GET_SIZE
51 #undef S_SET_ALIGN
52 #undef S_SET_SIZE
53 #undef obj_frob_file
54 #undef obj_frob_file_after_relocs
55 #undef obj_frob_symbol
56 #undef obj_pop_insert
57 #undef obj_sec_sym_ok_for_reloc
58 #undef OBJ_COPY_SYMBOL_ATTRIBUTES
59
60 #include "obj-elf.h"
61 /* Fix any of them that we actually care about. */
62 #undef OUTPUT_FLAVOR
63 #define OUTPUT_FLAVOR mips_output_flavor()
64 #endif
65
66 #if defined (OBJ_ELF)
67 #include "elf/mips.h"
68 #endif
69
70 #ifndef ECOFF_DEBUGGING
71 #define NO_ECOFF_DEBUGGING
72 #define ECOFF_DEBUGGING 0
73 #endif
74
75 int mips_flag_mdebug = -1;
76
77 /* Control generation of .pdr sections. Off by default on IRIX: the native
78 linker doesn't know about and discards them, but relocations against them
79 remain, leading to rld crashes. */
80 #ifdef TE_IRIX
81 int mips_flag_pdr = FALSE;
82 #else
83 int mips_flag_pdr = TRUE;
84 #endif
85
86 #include "ecoff.h"
87
88 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
89 static char *mips_regmask_frag;
90 #endif
91
92 #define ZERO 0
93 #define AT 1
94 #define TREG 24
95 #define PIC_CALL_REG 25
96 #define KT0 26
97 #define KT1 27
98 #define GP 28
99 #define SP 29
100 #define FP 30
101 #define RA 31
102
103 #define ILLEGAL_REG (32)
104
105 /* Allow override of standard little-endian ECOFF format. */
106
107 #ifndef ECOFF_LITTLE_FORMAT
108 #define ECOFF_LITTLE_FORMAT "ecoff-littlemips"
109 #endif
110
111 extern int target_big_endian;
112
113 /* The name of the readonly data section. */
114 #define RDATA_SECTION_NAME (OUTPUT_FLAVOR == bfd_target_ecoff_flavour \
115 ? ".rdata" \
116 : OUTPUT_FLAVOR == bfd_target_coff_flavour \
117 ? ".rdata" \
118 : OUTPUT_FLAVOR == bfd_target_elf_flavour \
119 ? ".rodata" \
120 : (abort (), ""))
121
122 /* The ABI to use. */
123 enum mips_abi_level
124 {
125 NO_ABI = 0,
126 O32_ABI,
127 O64_ABI,
128 N32_ABI,
129 N64_ABI,
130 EABI_ABI
131 };
132
133 /* MIPS ABI we are using for this output file. */
134 static enum mips_abi_level mips_abi = NO_ABI;
135
136 /* Whether or not we have code that can call pic code. */
137 int mips_abicalls = FALSE;
138
139 /* Whether or not we have code which can be put into a shared
140 library. */
141 static bfd_boolean mips_in_shared = TRUE;
142
143 /* This is the set of options which may be modified by the .set
144 pseudo-op. We use a struct so that .set push and .set pop are more
145 reliable. */
146
147 struct mips_set_options
148 {
149 /* MIPS ISA (Instruction Set Architecture) level. This is set to -1
150 if it has not been initialized. Changed by `.set mipsN', and the
151 -mipsN command line option, and the default CPU. */
152 int isa;
153 /* Enabled Application Specific Extensions (ASEs). These are set to -1
154 if they have not been initialized. Changed by `.set <asename>', by
155 command line options, and based on the default architecture. */
156 int ase_mips3d;
157 int ase_mdmx;
158 /* Whether we are assembling for the mips16 processor. 0 if we are
159 not, 1 if we are, and -1 if the value has not been initialized.
160 Changed by `.set mips16' and `.set nomips16', and the -mips16 and
161 -nomips16 command line options, and the default CPU. */
162 int mips16;
163 /* Non-zero if we should not reorder instructions. Changed by `.set
164 reorder' and `.set noreorder'. */
165 int noreorder;
166 /* Non-zero if we should not permit the $at ($1) register to be used
167 in instructions. Changed by `.set at' and `.set noat'. */
168 int noat;
169 /* Non-zero if we should warn when a macro instruction expands into
170 more than one machine instruction. Changed by `.set nomacro' and
171 `.set macro'. */
172 int warn_about_macros;
173 /* Non-zero if we should not move instructions. Changed by `.set
174 move', `.set volatile', `.set nomove', and `.set novolatile'. */
175 int nomove;
176 /* Non-zero if we should not optimize branches by moving the target
177 of the branch into the delay slot. Actually, we don't perform
178 this optimization anyhow. Changed by `.set bopt' and `.set
179 nobopt'. */
180 int nobopt;
181 /* Non-zero if we should not autoextend mips16 instructions.
182 Changed by `.set autoextend' and `.set noautoextend'. */
183 int noautoextend;
184 /* Restrict general purpose registers and floating point registers
185 to 32 bit. This is initially determined when -mgp32 or -mfp32
186 is passed but can changed if the assembler code uses .set mipsN. */
187 int gp32;
188 int fp32;
189 /* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
190 command line option, and the default CPU. */
191 int arch;
192 };
193
194 /* True if -mgp32 was passed. */
195 static int file_mips_gp32 = -1;
196
197 /* True if -mfp32 was passed. */
198 static int file_mips_fp32 = -1;
199
200 /* This is the struct we use to hold the current set of options. Note
201 that we must set the isa field to ISA_UNKNOWN and the ASE fields to
202 -1 to indicate that they have not been initialized. */
203
204 static struct mips_set_options mips_opts =
205 {
206 ISA_UNKNOWN, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, CPU_UNKNOWN
207 };
208
209 /* These variables are filled in with the masks of registers used.
210 The object format code reads them and puts them in the appropriate
211 place. */
212 unsigned long mips_gprmask;
213 unsigned long mips_cprmask[4];
214
215 /* MIPS ISA we are using for this output file. */
216 static int file_mips_isa = ISA_UNKNOWN;
217
218 /* True if -mips16 was passed or implied by arguments passed on the
219 command line (e.g., by -march). */
220 static int file_ase_mips16;
221
222 /* True if -mips3d was passed or implied by arguments passed on the
223 command line (e.g., by -march). */
224 static int file_ase_mips3d;
225
226 /* True if -mdmx was passed or implied by arguments passed on the
227 command line (e.g., by -march). */
228 static int file_ase_mdmx;
229
230 /* The argument of the -march= flag. The architecture we are assembling. */
231 static int file_mips_arch = CPU_UNKNOWN;
232 static const char *mips_arch_string;
233
234 /* The argument of the -mtune= flag. The architecture for which we
235 are optimizing. */
236 static int mips_tune = CPU_UNKNOWN;
237 static const char *mips_tune_string;
238
239 /* True when generating 32-bit code for a 64-bit processor. */
240 static int mips_32bitmode = 0;
241
242 /* True if the given ABI requires 32-bit registers. */
243 #define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
244
245 /* Likewise 64-bit registers. */
246 #define ABI_NEEDS_64BIT_REGS(ABI) \
247 ((ABI) == N32_ABI \
248 || (ABI) == N64_ABI \
249 || (ABI) == O64_ABI)
250
251 /* Return true if ISA supports 64 bit gp register instructions. */
252 #define ISA_HAS_64BIT_REGS(ISA) ( \
253 (ISA) == ISA_MIPS3 \
254 || (ISA) == ISA_MIPS4 \
255 || (ISA) == ISA_MIPS5 \
256 || (ISA) == ISA_MIPS64 \
257 || (ISA) == ISA_MIPS64R2 \
258 )
259
260 /* Return true if ISA supports 64-bit right rotate (dror et al.)
261 instructions. */
262 #define ISA_HAS_DROR(ISA) ( \
263 (ISA) == ISA_MIPS64R2 \
264 )
265
266 /* Return true if ISA supports 32-bit right rotate (ror et al.)
267 instructions. */
268 #define ISA_HAS_ROR(ISA) ( \
269 (ISA) == ISA_MIPS32R2 \
270 || (ISA) == ISA_MIPS64R2 \
271 )
272
273 #define HAVE_32BIT_GPRS \
274 (mips_opts.gp32 || ! ISA_HAS_64BIT_REGS (mips_opts.isa))
275
276 #define HAVE_32BIT_FPRS \
277 (mips_opts.fp32 || ! ISA_HAS_64BIT_REGS (mips_opts.isa))
278
279 #define HAVE_64BIT_GPRS (! HAVE_32BIT_GPRS)
280 #define HAVE_64BIT_FPRS (! HAVE_32BIT_FPRS)
281
282 #define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
283
284 #define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
285
286 /* True if relocations are stored in-place. */
287 #define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI)
288
289 /* We can only have 64bit addresses if the object file format supports it. */
290 #define HAVE_32BIT_ADDRESSES \
291 (HAVE_32BIT_GPRS \
292 || (bfd_arch_bits_per_address (stdoutput) == 32 \
293 || ! HAVE_64BIT_OBJECTS)) \
294
295 #define HAVE_64BIT_ADDRESSES (! HAVE_32BIT_ADDRESSES)
296
297 /* Addresses are loaded in different ways, depending on the address size
298 in use. The n32 ABI Documentation also mandates the use of additions
299 with overflow checking, but existing implementations don't follow it. */
300 #define ADDRESS_ADD_INSN \
301 (HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
302
303 #define ADDRESS_ADDI_INSN \
304 (HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
305
306 #define ADDRESS_LOAD_INSN \
307 (HAVE_32BIT_ADDRESSES ? "lw" : "ld")
308
309 #define ADDRESS_STORE_INSN \
310 (HAVE_32BIT_ADDRESSES ? "sw" : "sd")
311
312 /* Return true if the given CPU supports the MIPS16 ASE. */
313 #define CPU_HAS_MIPS16(cpu) \
314 (strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0 \
315 || strncmp (TARGET_CANONICAL, "mips-lsi-elf", sizeof ("mips-lsi-elf") - 1) == 0)
316
317 /* Return true if the given CPU supports the MIPS3D ASE. */
318 #define CPU_HAS_MIPS3D(cpu) ((cpu) == CPU_SB1 \
319 )
320
321 /* Return true if the given CPU supports the MDMX ASE. */
322 #define CPU_HAS_MDMX(cpu) (FALSE \
323 )
324
325 /* True if CPU has a dror instruction. */
326 #define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
327
328 /* True if CPU has a ror instruction. */
329 #define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU)
330
331 /* True if mflo and mfhi can be immediately followed by instructions
332 which write to the HI and LO registers.
333
334 According to MIPS specifications, MIPS ISAs I, II, and III need
335 (at least) two instructions between the reads of HI/LO and
336 instructions which write them, and later ISAs do not. Contradicting
337 the MIPS specifications, some MIPS IV processor user manuals (e.g.
338 the UM for the NEC Vr5000) document needing the instructions between
339 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
340 MIPS64 and later ISAs to have the interlocks, plus any specific
341 earlier-ISA CPUs for which CPU documentation declares that the
342 instructions are really interlocked. */
343 #define hilo_interlocks \
344 (mips_opts.isa == ISA_MIPS32 \
345 || mips_opts.isa == ISA_MIPS32R2 \
346 || mips_opts.isa == ISA_MIPS64 \
347 || mips_opts.isa == ISA_MIPS64R2 \
348 || mips_opts.arch == CPU_R4010 \
349 || mips_opts.arch == CPU_R10000 \
350 || mips_opts.arch == CPU_R12000 \
351 || mips_opts.arch == CPU_RM7000 \
352 || mips_opts.arch == CPU_VR5500 \
353 )
354
355 /* Whether the processor uses hardware interlocks to protect reads
356 from the GPRs after they are loaded from memory, and thus does not
357 require nops to be inserted. This applies to instructions marked
358 INSN_LOAD_MEMORY_DELAY. These nops are only required at MIPS ISA
359 level I. */
360 #define gpr_interlocks \
361 (mips_opts.isa != ISA_MIPS1 \
362 || mips_opts.arch == CPU_R3900)
363
364 /* Whether the processor uses hardware interlocks to avoid delays
365 required by coprocessor instructions, and thus does not require
366 nops to be inserted. This applies to instructions marked
367 INSN_LOAD_COPROC_DELAY, INSN_COPROC_MOVE_DELAY, and to delays
368 between instructions marked INSN_WRITE_COND_CODE and ones marked
369 INSN_READ_COND_CODE. These nops are only required at MIPS ISA
370 levels I, II, and III. */
371 /* Itbl support may require additional care here. */
372 #define cop_interlocks \
373 ((mips_opts.isa != ISA_MIPS1 \
374 && mips_opts.isa != ISA_MIPS2 \
375 && mips_opts.isa != ISA_MIPS3) \
376 || mips_opts.arch == CPU_R4300 \
377 )
378
379 /* Whether the processor uses hardware interlocks to protect reads
380 from coprocessor registers after they are loaded from memory, and
381 thus does not require nops to be inserted. This applies to
382 instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
383 requires at MIPS ISA level I. */
384 #define cop_mem_interlocks (mips_opts.isa != ISA_MIPS1)
385
386 /* Is this a mfhi or mflo instruction? */
387 #define MF_HILO_INSN(PINFO) \
388 ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
389
390 /* MIPS PIC level. */
391
392 enum mips_pic_level mips_pic;
393
394 /* 1 if we should generate 32 bit offsets from the $gp register in
395 SVR4_PIC mode. Currently has no meaning in other modes. */
396 static int mips_big_got = 0;
397
398 /* 1 if trap instructions should used for overflow rather than break
399 instructions. */
400 static int mips_trap = 0;
401
402 /* 1 if double width floating point constants should not be constructed
403 by assembling two single width halves into two single width floating
404 point registers which just happen to alias the double width destination
405 register. On some architectures this aliasing can be disabled by a bit
406 in the status register, and the setting of this bit cannot be determined
407 automatically at assemble time. */
408 static int mips_disable_float_construction;
409
410 /* Non-zero if any .set noreorder directives were used. */
411
412 static int mips_any_noreorder;
413
414 /* Non-zero if nops should be inserted when the register referenced in
415 an mfhi/mflo instruction is read in the next two instructions. */
416 static int mips_7000_hilo_fix;
417
418 /* The size of the small data section. */
419 static unsigned int g_switch_value = 8;
420 /* Whether the -G option was used. */
421 static int g_switch_seen = 0;
422
423 #define N_RMASK 0xc4
424 #define N_VFP 0xd4
425
426 /* If we can determine in advance that GP optimization won't be
427 possible, we can skip the relaxation stuff that tries to produce
428 GP-relative references. This makes delay slot optimization work
429 better.
430
431 This function can only provide a guess, but it seems to work for
432 gcc output. It needs to guess right for gcc, otherwise gcc
433 will put what it thinks is a GP-relative instruction in a branch
434 delay slot.
435
436 I don't know if a fix is needed for the SVR4_PIC mode. I've only
437 fixed it for the non-PIC mode. KR 95/04/07 */
438 static int nopic_need_relax (symbolS *, int);
439
440 /* handle of the OPCODE hash table */
441 static struct hash_control *op_hash = NULL;
442
443 /* The opcode hash table we use for the mips16. */
444 static struct hash_control *mips16_op_hash = NULL;
445
446 /* This array holds the chars that always start a comment. If the
447 pre-processor is disabled, these aren't very useful */
448 const char comment_chars[] = "#";
449
450 /* This array holds the chars that only start a comment at the beginning of
451 a line. If the line seems to have the form '# 123 filename'
452 .line and .file directives will appear in the pre-processed output */
453 /* Note that input_file.c hand checks for '#' at the beginning of the
454 first line of the input file. This is because the compiler outputs
455 #NO_APP at the beginning of its output. */
456 /* Also note that C style comments are always supported. */
457 const char line_comment_chars[] = "#";
458
459 /* This array holds machine specific line separator characters. */
460 const char line_separator_chars[] = ";";
461
462 /* Chars that can be used to separate mant from exp in floating point nums */
463 const char EXP_CHARS[] = "eE";
464
465 /* Chars that mean this number is a floating point constant */
466 /* As in 0f12.456 */
467 /* or 0d1.2345e12 */
468 const char FLT_CHARS[] = "rRsSfFdDxXpP";
469
470 /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
471 changed in read.c . Ideally it shouldn't have to know about it at all,
472 but nothing is ideal around here.
473 */
474
475 static char *insn_error;
476
477 static int auto_align = 1;
478
479 /* When outputting SVR4 PIC code, the assembler needs to know the
480 offset in the stack frame from which to restore the $gp register.
481 This is set by the .cprestore pseudo-op, and saved in this
482 variable. */
483 static offsetT mips_cprestore_offset = -1;
484
485 /* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
486 more optimizations, it can use a register value instead of a memory-saved
487 offset and even an other register than $gp as global pointer. */
488 static offsetT mips_cpreturn_offset = -1;
489 static int mips_cpreturn_register = -1;
490 static int mips_gp_register = GP;
491 static int mips_gprel_offset = 0;
492
493 /* Whether mips_cprestore_offset has been set in the current function
494 (or whether it has already been warned about, if not). */
495 static int mips_cprestore_valid = 0;
496
497 /* This is the register which holds the stack frame, as set by the
498 .frame pseudo-op. This is needed to implement .cprestore. */
499 static int mips_frame_reg = SP;
500
501 /* Whether mips_frame_reg has been set in the current function
502 (or whether it has already been warned about, if not). */
503 static int mips_frame_reg_valid = 0;
504
505 /* To output NOP instructions correctly, we need to keep information
506 about the previous two instructions. */
507
508 /* Whether we are optimizing. The default value of 2 means to remove
509 unneeded NOPs and swap branch instructions when possible. A value
510 of 1 means to not swap branches. A value of 0 means to always
511 insert NOPs. */
512 static int mips_optimize = 2;
513
514 /* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
515 equivalent to seeing no -g option at all. */
516 static int mips_debug = 0;
517
518 /* The previous instruction. */
519 static struct mips_cl_insn prev_insn;
520
521 /* The instruction before prev_insn. */
522 static struct mips_cl_insn prev_prev_insn;
523
524 /* If we don't want information for prev_insn or prev_prev_insn, we
525 point the insn_mo field at this dummy integer. */
526 static const struct mips_opcode dummy_opcode = { NULL, NULL, 0, 0, 0, 0, 0 };
527
528 /* Non-zero if prev_insn is valid. */
529 static int prev_insn_valid;
530
531 /* The frag for the previous instruction. */
532 static struct frag *prev_insn_frag;
533
534 /* The offset into prev_insn_frag for the previous instruction. */
535 static long prev_insn_where;
536
537 /* The reloc type for the previous instruction, if any. */
538 static bfd_reloc_code_real_type prev_insn_reloc_type[3];
539
540 /* The reloc for the previous instruction, if any. */
541 static fixS *prev_insn_fixp[3];
542
543 /* Non-zero if the previous instruction was in a delay slot. */
544 static int prev_insn_is_delay_slot;
545
546 /* Non-zero if the previous instruction was in a .set noreorder. */
547 static int prev_insn_unreordered;
548
549 /* Non-zero if the previous instruction uses an extend opcode (if
550 mips16). */
551 static int prev_insn_extended;
552
553 /* Non-zero if the previous previous instruction was in a .set
554 noreorder. */
555 static int prev_prev_insn_unreordered;
556
557 /* If this is set, it points to a frag holding nop instructions which
558 were inserted before the start of a noreorder section. If those
559 nops turn out to be unnecessary, the size of the frag can be
560 decreased. */
561 static fragS *prev_nop_frag;
562
563 /* The number of nop instructions we created in prev_nop_frag. */
564 static int prev_nop_frag_holds;
565
566 /* The number of nop instructions that we know we need in
567 prev_nop_frag. */
568 static int prev_nop_frag_required;
569
570 /* The number of instructions we've seen since prev_nop_frag. */
571 static int prev_nop_frag_since;
572
573 /* For ECOFF and ELF, relocations against symbols are done in two
574 parts, with a HI relocation and a LO relocation. Each relocation
575 has only 16 bits of space to store an addend. This means that in
576 order for the linker to handle carries correctly, it must be able
577 to locate both the HI and the LO relocation. This means that the
578 relocations must appear in order in the relocation table.
579
580 In order to implement this, we keep track of each unmatched HI
581 relocation. We then sort them so that they immediately precede the
582 corresponding LO relocation. */
583
584 struct mips_hi_fixup
585 {
586 /* Next HI fixup. */
587 struct mips_hi_fixup *next;
588 /* This fixup. */
589 fixS *fixp;
590 /* The section this fixup is in. */
591 segT seg;
592 };
593
594 /* The list of unmatched HI relocs. */
595
596 static struct mips_hi_fixup *mips_hi_fixup_list;
597
598 /* The frag containing the last explicit relocation operator.
599 Null if explicit relocations have not been used. */
600
601 static fragS *prev_reloc_op_frag;
602
603 /* Map normal MIPS register numbers to mips16 register numbers. */
604
605 #define X ILLEGAL_REG
606 static const int mips32_to_16_reg_map[] =
607 {
608 X, X, 2, 3, 4, 5, 6, 7,
609 X, X, X, X, X, X, X, X,
610 0, 1, X, X, X, X, X, X,
611 X, X, X, X, X, X, X, X
612 };
613 #undef X
614
615 /* Map mips16 register numbers to normal MIPS register numbers. */
616
617 static const unsigned int mips16_to_32_reg_map[] =
618 {
619 16, 17, 2, 3, 4, 5, 6, 7
620 };
621
622 static int mips_fix_vr4120;
623
624 /* We don't relax branches by default, since this causes us to expand
625 `la .l2 - .l1' if there's a branch between .l1 and .l2, because we
626 fail to compute the offset before expanding the macro to the most
627 efficient expansion. */
628
629 static int mips_relax_branch;
630 \f
631 /* The expansion of many macros depends on the type of symbol that
632 they refer to. For example, when generating position-dependent code,
633 a macro that refers to a symbol may have two different expansions,
634 one which uses GP-relative addresses and one which uses absolute
635 addresses. When generating SVR4-style PIC, a macro may have
636 different expansions for local and global symbols.
637
638 We handle these situations by generating both sequences and putting
639 them in variant frags. In position-dependent code, the first sequence
640 will be the GP-relative one and the second sequence will be the
641 absolute one. In SVR4 PIC, the first sequence will be for global
642 symbols and the second will be for local symbols.
643
644 The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
645 SECOND are the lengths of the two sequences in bytes. These fields
646 can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
647 the subtype has the following flags:
648
649 RELAX_USE_SECOND
650 Set if it has been decided that we should use the second
651 sequence instead of the first.
652
653 RELAX_SECOND_LONGER
654 Set in the first variant frag if the macro's second implementation
655 is longer than its first. This refers to the macro as a whole,
656 not an individual relaxation.
657
658 RELAX_NOMACRO
659 Set in the first variant frag if the macro appeared in a .set nomacro
660 block and if one alternative requires a warning but the other does not.
661
662 RELAX_DELAY_SLOT
663 Like RELAX_NOMACRO, but indicates that the macro appears in a branch
664 delay slot.
665
666 The frag's "opcode" points to the first fixup for relaxable code.
667
668 Relaxable macros are generated using a sequence such as:
669
670 relax_start (SYMBOL);
671 ... generate first expansion ...
672 relax_switch ();
673 ... generate second expansion ...
674 relax_end ();
675
676 The code and fixups for the unwanted alternative are discarded
677 by md_convert_frag. */
678 #define RELAX_ENCODE(FIRST, SECOND) (((FIRST) << 8) | (SECOND))
679
680 #define RELAX_FIRST(X) (((X) >> 8) & 0xff)
681 #define RELAX_SECOND(X) ((X) & 0xff)
682 #define RELAX_USE_SECOND 0x10000
683 #define RELAX_SECOND_LONGER 0x20000
684 #define RELAX_NOMACRO 0x40000
685 #define RELAX_DELAY_SLOT 0x80000
686
687 /* Branch without likely bit. If label is out of range, we turn:
688
689 beq reg1, reg2, label
690 delay slot
691
692 into
693
694 bne reg1, reg2, 0f
695 nop
696 j label
697 0: delay slot
698
699 with the following opcode replacements:
700
701 beq <-> bne
702 blez <-> bgtz
703 bltz <-> bgez
704 bc1f <-> bc1t
705
706 bltzal <-> bgezal (with jal label instead of j label)
707
708 Even though keeping the delay slot instruction in the delay slot of
709 the branch would be more efficient, it would be very tricky to do
710 correctly, because we'd have to introduce a variable frag *after*
711 the delay slot instruction, and expand that instead. Let's do it
712 the easy way for now, even if the branch-not-taken case now costs
713 one additional instruction. Out-of-range branches are not supposed
714 to be common, anyway.
715
716 Branch likely. If label is out of range, we turn:
717
718 beql reg1, reg2, label
719 delay slot (annulled if branch not taken)
720
721 into
722
723 beql reg1, reg2, 1f
724 nop
725 beql $0, $0, 2f
726 nop
727 1: j[al] label
728 delay slot (executed only if branch taken)
729 2:
730
731 It would be possible to generate a shorter sequence by losing the
732 likely bit, generating something like:
733
734 bne reg1, reg2, 0f
735 nop
736 j[al] label
737 delay slot (executed only if branch taken)
738 0:
739
740 beql -> bne
741 bnel -> beq
742 blezl -> bgtz
743 bgtzl -> blez
744 bltzl -> bgez
745 bgezl -> bltz
746 bc1fl -> bc1t
747 bc1tl -> bc1f
748
749 bltzall -> bgezal (with jal label instead of j label)
750 bgezall -> bltzal (ditto)
751
752
753 but it's not clear that it would actually improve performance. */
754 #define RELAX_BRANCH_ENCODE(uncond, likely, link, toofar) \
755 ((relax_substateT) \
756 (0xc0000000 \
757 | ((toofar) ? 1 : 0) \
758 | ((link) ? 2 : 0) \
759 | ((likely) ? 4 : 0) \
760 | ((uncond) ? 8 : 0)))
761 #define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
762 #define RELAX_BRANCH_UNCOND(i) (((i) & 8) != 0)
763 #define RELAX_BRANCH_LIKELY(i) (((i) & 4) != 0)
764 #define RELAX_BRANCH_LINK(i) (((i) & 2) != 0)
765 #define RELAX_BRANCH_TOOFAR(i) (((i) & 1) != 0)
766
767 /* For mips16 code, we use an entirely different form of relaxation.
768 mips16 supports two versions of most instructions which take
769 immediate values: a small one which takes some small value, and a
770 larger one which takes a 16 bit value. Since branches also follow
771 this pattern, relaxing these values is required.
772
773 We can assemble both mips16 and normal MIPS code in a single
774 object. Therefore, we need to support this type of relaxation at
775 the same time that we support the relaxation described above. We
776 use the high bit of the subtype field to distinguish these cases.
777
778 The information we store for this type of relaxation is the
779 argument code found in the opcode file for this relocation, whether
780 the user explicitly requested a small or extended form, and whether
781 the relocation is in a jump or jal delay slot. That tells us the
782 size of the value, and how it should be stored. We also store
783 whether the fragment is considered to be extended or not. We also
784 store whether this is known to be a branch to a different section,
785 whether we have tried to relax this frag yet, and whether we have
786 ever extended a PC relative fragment because of a shift count. */
787 #define RELAX_MIPS16_ENCODE(type, small, ext, dslot, jal_dslot) \
788 (0x80000000 \
789 | ((type) & 0xff) \
790 | ((small) ? 0x100 : 0) \
791 | ((ext) ? 0x200 : 0) \
792 | ((dslot) ? 0x400 : 0) \
793 | ((jal_dslot) ? 0x800 : 0))
794 #define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
795 #define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
796 #define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x100) != 0)
797 #define RELAX_MIPS16_USER_EXT(i) (((i) & 0x200) != 0)
798 #define RELAX_MIPS16_DSLOT(i) (((i) & 0x400) != 0)
799 #define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x800) != 0)
800 #define RELAX_MIPS16_EXTENDED(i) (((i) & 0x1000) != 0)
801 #define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x1000)
802 #define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) &~ 0x1000)
803 #define RELAX_MIPS16_LONG_BRANCH(i) (((i) & 0x2000) != 0)
804 #define RELAX_MIPS16_MARK_LONG_BRANCH(i) ((i) | 0x2000)
805 #define RELAX_MIPS16_CLEAR_LONG_BRANCH(i) ((i) &~ 0x2000)
806
807 /* Is the given value a sign-extended 32-bit value? */
808 #define IS_SEXT_32BIT_NUM(x) \
809 (((x) &~ (offsetT) 0x7fffffff) == 0 \
810 || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
811
812 /* Is the given value a sign-extended 16-bit value? */
813 #define IS_SEXT_16BIT_NUM(x) \
814 (((x) &~ (offsetT) 0x7fff) == 0 \
815 || (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
816
817 \f
818 /* Global variables used when generating relaxable macros. See the
819 comment above RELAX_ENCODE for more details about how relaxation
820 is used. */
821 static struct {
822 /* 0 if we're not emitting a relaxable macro.
823 1 if we're emitting the first of the two relaxation alternatives.
824 2 if we're emitting the second alternative. */
825 int sequence;
826
827 /* The first relaxable fixup in the current frag. (In other words,
828 the first fixup that refers to relaxable code.) */
829 fixS *first_fixup;
830
831 /* sizes[0] says how many bytes of the first alternative are stored in
832 the current frag. Likewise sizes[1] for the second alternative. */
833 unsigned int sizes[2];
834
835 /* The symbol on which the choice of sequence depends. */
836 symbolS *symbol;
837 } mips_relax;
838 \f
839 /* Global variables used to decide whether a macro needs a warning. */
840 static struct {
841 /* True if the macro is in a branch delay slot. */
842 bfd_boolean delay_slot_p;
843
844 /* For relaxable macros, sizes[0] is the length of the first alternative
845 in bytes and sizes[1] is the length of the second alternative.
846 For non-relaxable macros, both elements give the length of the
847 macro in bytes. */
848 unsigned int sizes[2];
849
850 /* The first variant frag for this macro. */
851 fragS *first_frag;
852 } mips_macro_warning;
853 \f
854 /* Prototypes for static functions. */
855
856 #define internalError() \
857 as_fatal (_("internal Error, line %d, %s"), __LINE__, __FILE__)
858
859 enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
860
861 static void append_insn
862 (struct mips_cl_insn *ip, expressionS *p, bfd_reloc_code_real_type *r);
863 static void mips_no_prev_insn (int);
864 static void mips16_macro_build
865 (expressionS *, const char *, const char *, va_list);
866 static void load_register (int, expressionS *, int);
867 static void macro_start (void);
868 static void macro_end (void);
869 static void macro (struct mips_cl_insn * ip);
870 static void mips16_macro (struct mips_cl_insn * ip);
871 #ifdef LOSING_COMPILER
872 static void macro2 (struct mips_cl_insn * ip);
873 #endif
874 static void mips_ip (char *str, struct mips_cl_insn * ip);
875 static void mips16_ip (char *str, struct mips_cl_insn * ip);
876 static void mips16_immed
877 (char *, unsigned int, int, offsetT, bfd_boolean, bfd_boolean, bfd_boolean,
878 unsigned long *, bfd_boolean *, unsigned short *);
879 static size_t my_getSmallExpression
880 (expressionS *, bfd_reloc_code_real_type *, char *);
881 static void my_getExpression (expressionS *, char *);
882 static void s_align (int);
883 static void s_change_sec (int);
884 static void s_change_section (int);
885 static void s_cons (int);
886 static void s_float_cons (int);
887 static void s_mips_globl (int);
888 static void s_option (int);
889 static void s_mipsset (int);
890 static void s_abicalls (int);
891 static void s_cpload (int);
892 static void s_cpsetup (int);
893 static void s_cplocal (int);
894 static void s_cprestore (int);
895 static void s_cpreturn (int);
896 static void s_gpvalue (int);
897 static void s_gpword (int);
898 static void s_gpdword (int);
899 static void s_cpadd (int);
900 static void s_insn (int);
901 static void md_obj_begin (void);
902 static void md_obj_end (void);
903 static void s_mips_ent (int);
904 static void s_mips_end (int);
905 static void s_mips_frame (int);
906 static void s_mips_mask (int reg_type);
907 static void s_mips_stab (int);
908 static void s_mips_weakext (int);
909 static void s_mips_file (int);
910 static void s_mips_loc (int);
911 static bfd_boolean pic_need_relax (symbolS *, asection *);
912 static int relaxed_branch_length (fragS *, asection *, int);
913 static int validate_mips_insn (const struct mips_opcode *);
914
915 /* Table and functions used to map between CPU/ISA names, and
916 ISA levels, and CPU numbers. */
917
918 struct mips_cpu_info
919 {
920 const char *name; /* CPU or ISA name. */
921 int is_isa; /* Is this an ISA? (If 0, a CPU.) */
922 int isa; /* ISA level. */
923 int cpu; /* CPU number (default CPU if ISA). */
924 };
925
926 static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *);
927 static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
928 static const struct mips_cpu_info *mips_cpu_info_from_arch (int);
929 \f
930 /* Pseudo-op table.
931
932 The following pseudo-ops from the Kane and Heinrich MIPS book
933 should be defined here, but are currently unsupported: .alias,
934 .galive, .gjaldef, .gjrlive, .livereg, .noalias.
935
936 The following pseudo-ops from the Kane and Heinrich MIPS book are
937 specific to the type of debugging information being generated, and
938 should be defined by the object format: .aent, .begin, .bend,
939 .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
940 .vreg.
941
942 The following pseudo-ops from the Kane and Heinrich MIPS book are
943 not MIPS CPU specific, but are also not specific to the object file
944 format. This file is probably the best place to define them, but
945 they are not currently supported: .asm0, .endr, .lab, .repeat,
946 .struct. */
947
948 static const pseudo_typeS mips_pseudo_table[] =
949 {
950 /* MIPS specific pseudo-ops. */
951 {"option", s_option, 0},
952 {"set", s_mipsset, 0},
953 {"rdata", s_change_sec, 'r'},
954 {"sdata", s_change_sec, 's'},
955 {"livereg", s_ignore, 0},
956 {"abicalls", s_abicalls, 0},
957 {"cpload", s_cpload, 0},
958 {"cpsetup", s_cpsetup, 0},
959 {"cplocal", s_cplocal, 0},
960 {"cprestore", s_cprestore, 0},
961 {"cpreturn", s_cpreturn, 0},
962 {"gpvalue", s_gpvalue, 0},
963 {"gpword", s_gpword, 0},
964 {"gpdword", s_gpdword, 0},
965 {"cpadd", s_cpadd, 0},
966 {"insn", s_insn, 0},
967
968 /* Relatively generic pseudo-ops that happen to be used on MIPS
969 chips. */
970 {"asciiz", stringer, 1},
971 {"bss", s_change_sec, 'b'},
972 {"err", s_err, 0},
973 {"half", s_cons, 1},
974 {"dword", s_cons, 3},
975 {"weakext", s_mips_weakext, 0},
976
977 /* These pseudo-ops are defined in read.c, but must be overridden
978 here for one reason or another. */
979 {"align", s_align, 0},
980 {"byte", s_cons, 0},
981 {"data", s_change_sec, 'd'},
982 {"double", s_float_cons, 'd'},
983 {"float", s_float_cons, 'f'},
984 {"globl", s_mips_globl, 0},
985 {"global", s_mips_globl, 0},
986 {"hword", s_cons, 1},
987 {"int", s_cons, 2},
988 {"long", s_cons, 2},
989 {"octa", s_cons, 4},
990 {"quad", s_cons, 3},
991 {"section", s_change_section, 0},
992 {"short", s_cons, 1},
993 {"single", s_float_cons, 'f'},
994 {"stabn", s_mips_stab, 'n'},
995 {"text", s_change_sec, 't'},
996 {"word", s_cons, 2},
997
998 { "extern", ecoff_directive_extern, 0},
999
1000 { NULL, NULL, 0 },
1001 };
1002
1003 static const pseudo_typeS mips_nonecoff_pseudo_table[] =
1004 {
1005 /* These pseudo-ops should be defined by the object file format.
1006 However, a.out doesn't support them, so we have versions here. */
1007 {"aent", s_mips_ent, 1},
1008 {"bgnb", s_ignore, 0},
1009 {"end", s_mips_end, 0},
1010 {"endb", s_ignore, 0},
1011 {"ent", s_mips_ent, 0},
1012 {"file", s_mips_file, 0},
1013 {"fmask", s_mips_mask, 'F'},
1014 {"frame", s_mips_frame, 0},
1015 {"loc", s_mips_loc, 0},
1016 {"mask", s_mips_mask, 'R'},
1017 {"verstamp", s_ignore, 0},
1018 { NULL, NULL, 0 },
1019 };
1020
1021 extern void pop_insert (const pseudo_typeS *);
1022
1023 void
1024 mips_pop_insert (void)
1025 {
1026 pop_insert (mips_pseudo_table);
1027 if (! ECOFF_DEBUGGING)
1028 pop_insert (mips_nonecoff_pseudo_table);
1029 }
1030 \f
1031 /* Symbols labelling the current insn. */
1032
1033 struct insn_label_list
1034 {
1035 struct insn_label_list *next;
1036 symbolS *label;
1037 };
1038
1039 static struct insn_label_list *insn_labels;
1040 static struct insn_label_list *free_insn_labels;
1041
1042 static void mips_clear_insn_labels (void);
1043
1044 static inline void
1045 mips_clear_insn_labels (void)
1046 {
1047 register struct insn_label_list **pl;
1048
1049 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
1050 ;
1051 *pl = insn_labels;
1052 insn_labels = NULL;
1053 }
1054 \f
1055 static char *expr_end;
1056
1057 /* Expressions which appear in instructions. These are set by
1058 mips_ip. */
1059
1060 static expressionS imm_expr;
1061 static expressionS imm2_expr;
1062 static expressionS offset_expr;
1063
1064 /* Relocs associated with imm_expr and offset_expr. */
1065
1066 static bfd_reloc_code_real_type imm_reloc[3]
1067 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1068 static bfd_reloc_code_real_type offset_reloc[3]
1069 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1070
1071 /* These are set by mips16_ip if an explicit extension is used. */
1072
1073 static bfd_boolean mips16_small, mips16_ext;
1074
1075 #ifdef OBJ_ELF
1076 /* The pdr segment for per procedure frame/regmask info. Not used for
1077 ECOFF debugging. */
1078
1079 static segT pdr_seg;
1080 #endif
1081
1082 /* The default target format to use. */
1083
1084 const char *
1085 mips_target_format (void)
1086 {
1087 switch (OUTPUT_FLAVOR)
1088 {
1089 case bfd_target_ecoff_flavour:
1090 return target_big_endian ? "ecoff-bigmips" : ECOFF_LITTLE_FORMAT;
1091 case bfd_target_coff_flavour:
1092 return "pe-mips";
1093 case bfd_target_elf_flavour:
1094 #ifdef TE_TMIPS
1095 /* This is traditional mips. */
1096 return (target_big_endian
1097 ? (HAVE_64BIT_OBJECTS
1098 ? "elf64-tradbigmips"
1099 : (HAVE_NEWABI
1100 ? "elf32-ntradbigmips" : "elf32-tradbigmips"))
1101 : (HAVE_64BIT_OBJECTS
1102 ? "elf64-tradlittlemips"
1103 : (HAVE_NEWABI
1104 ? "elf32-ntradlittlemips" : "elf32-tradlittlemips")));
1105 #else
1106 return (target_big_endian
1107 ? (HAVE_64BIT_OBJECTS
1108 ? "elf64-bigmips"
1109 : (HAVE_NEWABI
1110 ? "elf32-nbigmips" : "elf32-bigmips"))
1111 : (HAVE_64BIT_OBJECTS
1112 ? "elf64-littlemips"
1113 : (HAVE_NEWABI
1114 ? "elf32-nlittlemips" : "elf32-littlemips")));
1115 #endif
1116 default:
1117 abort ();
1118 return NULL;
1119 }
1120 }
1121
1122 /* This function is called once, at assembler startup time. It should
1123 set up all the tables, etc. that the MD part of the assembler will need. */
1124
1125 void
1126 md_begin (void)
1127 {
1128 register const char *retval = NULL;
1129 int i = 0;
1130 int broken = 0;
1131
1132 if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_arch))
1133 as_warn (_("Could not set architecture and machine"));
1134
1135 op_hash = hash_new ();
1136
1137 for (i = 0; i < NUMOPCODES;)
1138 {
1139 const char *name = mips_opcodes[i].name;
1140
1141 retval = hash_insert (op_hash, name, (void *) &mips_opcodes[i]);
1142 if (retval != NULL)
1143 {
1144 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
1145 mips_opcodes[i].name, retval);
1146 /* Probably a memory allocation problem? Give up now. */
1147 as_fatal (_("Broken assembler. No assembly attempted."));
1148 }
1149 do
1150 {
1151 if (mips_opcodes[i].pinfo != INSN_MACRO)
1152 {
1153 if (!validate_mips_insn (&mips_opcodes[i]))
1154 broken = 1;
1155 }
1156 ++i;
1157 }
1158 while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
1159 }
1160
1161 mips16_op_hash = hash_new ();
1162
1163 i = 0;
1164 while (i < bfd_mips16_num_opcodes)
1165 {
1166 const char *name = mips16_opcodes[i].name;
1167
1168 retval = hash_insert (mips16_op_hash, name, (void *) &mips16_opcodes[i]);
1169 if (retval != NULL)
1170 as_fatal (_("internal: can't hash `%s': %s"),
1171 mips16_opcodes[i].name, retval);
1172 do
1173 {
1174 if (mips16_opcodes[i].pinfo != INSN_MACRO
1175 && ((mips16_opcodes[i].match & mips16_opcodes[i].mask)
1176 != mips16_opcodes[i].match))
1177 {
1178 fprintf (stderr, _("internal error: bad mips16 opcode: %s %s\n"),
1179 mips16_opcodes[i].name, mips16_opcodes[i].args);
1180 broken = 1;
1181 }
1182 ++i;
1183 }
1184 while (i < bfd_mips16_num_opcodes
1185 && strcmp (mips16_opcodes[i].name, name) == 0);
1186 }
1187
1188 if (broken)
1189 as_fatal (_("Broken assembler. No assembly attempted."));
1190
1191 /* We add all the general register names to the symbol table. This
1192 helps us detect invalid uses of them. */
1193 for (i = 0; i < 32; i++)
1194 {
1195 char buf[5];
1196
1197 sprintf (buf, "$%d", i);
1198 symbol_table_insert (symbol_new (buf, reg_section, i,
1199 &zero_address_frag));
1200 }
1201 symbol_table_insert (symbol_new ("$ra", reg_section, RA,
1202 &zero_address_frag));
1203 symbol_table_insert (symbol_new ("$fp", reg_section, FP,
1204 &zero_address_frag));
1205 symbol_table_insert (symbol_new ("$sp", reg_section, SP,
1206 &zero_address_frag));
1207 symbol_table_insert (symbol_new ("$gp", reg_section, GP,
1208 &zero_address_frag));
1209 symbol_table_insert (symbol_new ("$at", reg_section, AT,
1210 &zero_address_frag));
1211 symbol_table_insert (symbol_new ("$kt0", reg_section, KT0,
1212 &zero_address_frag));
1213 symbol_table_insert (symbol_new ("$kt1", reg_section, KT1,
1214 &zero_address_frag));
1215 symbol_table_insert (symbol_new ("$zero", reg_section, ZERO,
1216 &zero_address_frag));
1217 symbol_table_insert (symbol_new ("$pc", reg_section, -1,
1218 &zero_address_frag));
1219
1220 /* If we don't add these register names to the symbol table, they
1221 may end up being added as regular symbols by operand(), and then
1222 make it to the object file as undefined in case they're not
1223 regarded as local symbols. They're local in o32, since `$' is a
1224 local symbol prefix, but not in n32 or n64. */
1225 for (i = 0; i < 8; i++)
1226 {
1227 char buf[6];
1228
1229 sprintf (buf, "$fcc%i", i);
1230 symbol_table_insert (symbol_new (buf, reg_section, -1,
1231 &zero_address_frag));
1232 }
1233
1234 mips_no_prev_insn (FALSE);
1235
1236 mips_gprmask = 0;
1237 mips_cprmask[0] = 0;
1238 mips_cprmask[1] = 0;
1239 mips_cprmask[2] = 0;
1240 mips_cprmask[3] = 0;
1241
1242 /* set the default alignment for the text section (2**2) */
1243 record_alignment (text_section, 2);
1244
1245 bfd_set_gp_size (stdoutput, g_switch_value);
1246
1247 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
1248 {
1249 /* On a native system, sections must be aligned to 16 byte
1250 boundaries. When configured for an embedded ELF target, we
1251 don't bother. */
1252 if (strcmp (TARGET_OS, "elf") != 0)
1253 {
1254 (void) bfd_set_section_alignment (stdoutput, text_section, 4);
1255 (void) bfd_set_section_alignment (stdoutput, data_section, 4);
1256 (void) bfd_set_section_alignment (stdoutput, bss_section, 4);
1257 }
1258
1259 /* Create a .reginfo section for register masks and a .mdebug
1260 section for debugging information. */
1261 {
1262 segT seg;
1263 subsegT subseg;
1264 flagword flags;
1265 segT sec;
1266
1267 seg = now_seg;
1268 subseg = now_subseg;
1269
1270 /* The ABI says this section should be loaded so that the
1271 running program can access it. However, we don't load it
1272 if we are configured for an embedded target */
1273 flags = SEC_READONLY | SEC_DATA;
1274 if (strcmp (TARGET_OS, "elf") != 0)
1275 flags |= SEC_ALLOC | SEC_LOAD;
1276
1277 if (mips_abi != N64_ABI)
1278 {
1279 sec = subseg_new (".reginfo", (subsegT) 0);
1280
1281 bfd_set_section_flags (stdoutput, sec, flags);
1282 bfd_set_section_alignment (stdoutput, sec, HAVE_NEWABI ? 3 : 2);
1283
1284 #ifdef OBJ_ELF
1285 mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
1286 #endif
1287 }
1288 else
1289 {
1290 /* The 64-bit ABI uses a .MIPS.options section rather than
1291 .reginfo section. */
1292 sec = subseg_new (".MIPS.options", (subsegT) 0);
1293 bfd_set_section_flags (stdoutput, sec, flags);
1294 bfd_set_section_alignment (stdoutput, sec, 3);
1295
1296 #ifdef OBJ_ELF
1297 /* Set up the option header. */
1298 {
1299 Elf_Internal_Options opthdr;
1300 char *f;
1301
1302 opthdr.kind = ODK_REGINFO;
1303 opthdr.size = (sizeof (Elf_External_Options)
1304 + sizeof (Elf64_External_RegInfo));
1305 opthdr.section = 0;
1306 opthdr.info = 0;
1307 f = frag_more (sizeof (Elf_External_Options));
1308 bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
1309 (Elf_External_Options *) f);
1310
1311 mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
1312 }
1313 #endif
1314 }
1315
1316 if (ECOFF_DEBUGGING)
1317 {
1318 sec = subseg_new (".mdebug", (subsegT) 0);
1319 (void) bfd_set_section_flags (stdoutput, sec,
1320 SEC_HAS_CONTENTS | SEC_READONLY);
1321 (void) bfd_set_section_alignment (stdoutput, sec, 2);
1322 }
1323 #ifdef OBJ_ELF
1324 else if (OUTPUT_FLAVOR == bfd_target_elf_flavour && mips_flag_pdr)
1325 {
1326 pdr_seg = subseg_new (".pdr", (subsegT) 0);
1327 (void) bfd_set_section_flags (stdoutput, pdr_seg,
1328 SEC_READONLY | SEC_RELOC
1329 | SEC_DEBUGGING);
1330 (void) bfd_set_section_alignment (stdoutput, pdr_seg, 2);
1331 }
1332 #endif
1333
1334 subseg_set (seg, subseg);
1335 }
1336 }
1337
1338 if (! ECOFF_DEBUGGING)
1339 md_obj_begin ();
1340 }
1341
1342 void
1343 md_mips_end (void)
1344 {
1345 if (! ECOFF_DEBUGGING)
1346 md_obj_end ();
1347 }
1348
1349 void
1350 md_assemble (char *str)
1351 {
1352 struct mips_cl_insn insn;
1353 bfd_reloc_code_real_type unused_reloc[3]
1354 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1355
1356 imm_expr.X_op = O_absent;
1357 imm2_expr.X_op = O_absent;
1358 offset_expr.X_op = O_absent;
1359 imm_reloc[0] = BFD_RELOC_UNUSED;
1360 imm_reloc[1] = BFD_RELOC_UNUSED;
1361 imm_reloc[2] = BFD_RELOC_UNUSED;
1362 offset_reloc[0] = BFD_RELOC_UNUSED;
1363 offset_reloc[1] = BFD_RELOC_UNUSED;
1364 offset_reloc[2] = BFD_RELOC_UNUSED;
1365
1366 if (mips_opts.mips16)
1367 mips16_ip (str, &insn);
1368 else
1369 {
1370 mips_ip (str, &insn);
1371 DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
1372 str, insn.insn_opcode));
1373 }
1374
1375 if (insn_error)
1376 {
1377 as_bad ("%s `%s'", insn_error, str);
1378 return;
1379 }
1380
1381 if (insn.insn_mo->pinfo == INSN_MACRO)
1382 {
1383 macro_start ();
1384 if (mips_opts.mips16)
1385 mips16_macro (&insn);
1386 else
1387 macro (&insn);
1388 macro_end ();
1389 }
1390 else
1391 {
1392 if (imm_expr.X_op != O_absent)
1393 append_insn (&insn, &imm_expr, imm_reloc);
1394 else if (offset_expr.X_op != O_absent)
1395 append_insn (&insn, &offset_expr, offset_reloc);
1396 else
1397 append_insn (&insn, NULL, unused_reloc);
1398 }
1399 }
1400
1401 /* Return true if the given relocation might need a matching %lo().
1402 Note that R_MIPS_GOT16 relocations only need a matching %lo() when
1403 applied to local symbols. */
1404
1405 static inline bfd_boolean
1406 reloc_needs_lo_p (bfd_reloc_code_real_type reloc)
1407 {
1408 return (HAVE_IN_PLACE_ADDENDS
1409 && (reloc == BFD_RELOC_HI16_S
1410 || reloc == BFD_RELOC_MIPS_GOT16
1411 || reloc == BFD_RELOC_MIPS16_HI16_S));
1412 }
1413
1414 /* Return true if the given fixup is followed by a matching R_MIPS_LO16
1415 relocation. */
1416
1417 static inline bfd_boolean
1418 fixup_has_matching_lo_p (fixS *fixp)
1419 {
1420 return (fixp->fx_next != NULL
1421 && (fixp->fx_next->fx_r_type == BFD_RELOC_LO16
1422 || fixp->fx_next->fx_r_type == BFD_RELOC_MIPS16_LO16)
1423 && fixp->fx_addsy == fixp->fx_next->fx_addsy
1424 && fixp->fx_offset == fixp->fx_next->fx_offset);
1425 }
1426
1427 /* See whether instruction IP reads register REG. CLASS is the type
1428 of register. */
1429
1430 static int
1431 insn_uses_reg (struct mips_cl_insn *ip, unsigned int reg,
1432 enum mips_regclass class)
1433 {
1434 if (class == MIPS16_REG)
1435 {
1436 assert (mips_opts.mips16);
1437 reg = mips16_to_32_reg_map[reg];
1438 class = MIPS_GR_REG;
1439 }
1440
1441 /* Don't report on general register ZERO, since it never changes. */
1442 if (class == MIPS_GR_REG && reg == ZERO)
1443 return 0;
1444
1445 if (class == MIPS_FP_REG)
1446 {
1447 assert (! mips_opts.mips16);
1448 /* If we are called with either $f0 or $f1, we must check $f0.
1449 This is not optimal, because it will introduce an unnecessary
1450 NOP between "lwc1 $f0" and "swc1 $f1". To fix this we would
1451 need to distinguish reading both $f0 and $f1 or just one of
1452 them. Note that we don't have to check the other way,
1453 because there is no instruction that sets both $f0 and $f1
1454 and requires a delay. */
1455 if ((ip->insn_mo->pinfo & INSN_READ_FPR_S)
1456 && ((((ip->insn_opcode >> OP_SH_FS) & OP_MASK_FS) &~(unsigned)1)
1457 == (reg &~ (unsigned) 1)))
1458 return 1;
1459 if ((ip->insn_mo->pinfo & INSN_READ_FPR_T)
1460 && ((((ip->insn_opcode >> OP_SH_FT) & OP_MASK_FT) &~(unsigned)1)
1461 == (reg &~ (unsigned) 1)))
1462 return 1;
1463 }
1464 else if (! mips_opts.mips16)
1465 {
1466 if ((ip->insn_mo->pinfo & INSN_READ_GPR_S)
1467 && ((ip->insn_opcode >> OP_SH_RS) & OP_MASK_RS) == reg)
1468 return 1;
1469 if ((ip->insn_mo->pinfo & INSN_READ_GPR_T)
1470 && ((ip->insn_opcode >> OP_SH_RT) & OP_MASK_RT) == reg)
1471 return 1;
1472 }
1473 else
1474 {
1475 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_X)
1476 && (mips16_to_32_reg_map[((ip->insn_opcode >> MIPS16OP_SH_RX)
1477 & MIPS16OP_MASK_RX)]
1478 == reg))
1479 return 1;
1480 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_Y)
1481 && (mips16_to_32_reg_map[((ip->insn_opcode >> MIPS16OP_SH_RY)
1482 & MIPS16OP_MASK_RY)]
1483 == reg))
1484 return 1;
1485 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_Z)
1486 && (mips16_to_32_reg_map[((ip->insn_opcode >> MIPS16OP_SH_MOVE32Z)
1487 & MIPS16OP_MASK_MOVE32Z)]
1488 == reg))
1489 return 1;
1490 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_T) && reg == TREG)
1491 return 1;
1492 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_SP) && reg == SP)
1493 return 1;
1494 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_31) && reg == RA)
1495 return 1;
1496 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_GPR_X)
1497 && ((ip->insn_opcode >> MIPS16OP_SH_REGR32)
1498 & MIPS16OP_MASK_REGR32) == reg)
1499 return 1;
1500 }
1501
1502 return 0;
1503 }
1504
1505 /* This function returns true if modifying a register requires a
1506 delay. */
1507
1508 static int
1509 reg_needs_delay (unsigned int reg)
1510 {
1511 unsigned long prev_pinfo;
1512
1513 prev_pinfo = prev_insn.insn_mo->pinfo;
1514 if (! mips_opts.noreorder
1515 && (((prev_pinfo & INSN_LOAD_MEMORY_DELAY)
1516 && ! gpr_interlocks)
1517 || ((prev_pinfo & INSN_LOAD_COPROC_DELAY)
1518 && ! cop_interlocks)))
1519 {
1520 /* A load from a coprocessor or from memory. All load delays
1521 delay the use of general register rt for one instruction. */
1522 /* Itbl support may require additional care here. */
1523 know (prev_pinfo & INSN_WRITE_GPR_T);
1524 if (reg == ((prev_insn.insn_opcode >> OP_SH_RT) & OP_MASK_RT))
1525 return 1;
1526 }
1527
1528 return 0;
1529 }
1530
1531 /* Mark instruction labels in mips16 mode. This permits the linker to
1532 handle them specially, such as generating jalx instructions when
1533 needed. We also make them odd for the duration of the assembly, in
1534 order to generate the right sort of code. We will make them even
1535 in the adjust_symtab routine, while leaving them marked. This is
1536 convenient for the debugger and the disassembler. The linker knows
1537 to make them odd again. */
1538
1539 static void
1540 mips16_mark_labels (void)
1541 {
1542 if (mips_opts.mips16)
1543 {
1544 struct insn_label_list *l;
1545 valueT val;
1546
1547 for (l = insn_labels; l != NULL; l = l->next)
1548 {
1549 #ifdef OBJ_ELF
1550 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
1551 S_SET_OTHER (l->label, STO_MIPS16);
1552 #endif
1553 val = S_GET_VALUE (l->label);
1554 if ((val & 1) == 0)
1555 S_SET_VALUE (l->label, val + 1);
1556 }
1557 }
1558 }
1559
1560 /* End the current frag. Make it a variant frag and record the
1561 relaxation info. */
1562
1563 static void
1564 relax_close_frag (void)
1565 {
1566 mips_macro_warning.first_frag = frag_now;
1567 frag_var (rs_machine_dependent, 0, 0,
1568 RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1]),
1569 mips_relax.symbol, 0, (char *) mips_relax.first_fixup);
1570
1571 memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes));
1572 mips_relax.first_fixup = 0;
1573 }
1574
1575 /* Start a new relaxation sequence whose expansion depends on SYMBOL.
1576 See the comment above RELAX_ENCODE for more details. */
1577
1578 static void
1579 relax_start (symbolS *symbol)
1580 {
1581 assert (mips_relax.sequence == 0);
1582 mips_relax.sequence = 1;
1583 mips_relax.symbol = symbol;
1584 }
1585
1586 /* Start generating the second version of a relaxable sequence.
1587 See the comment above RELAX_ENCODE for more details. */
1588
1589 static void
1590 relax_switch (void)
1591 {
1592 assert (mips_relax.sequence == 1);
1593 mips_relax.sequence = 2;
1594 }
1595
1596 /* End the current relaxable sequence. */
1597
1598 static void
1599 relax_end (void)
1600 {
1601 assert (mips_relax.sequence == 2);
1602 relax_close_frag ();
1603 mips_relax.sequence = 0;
1604 }
1605
1606 /* Output an instruction. IP is the instruction information.
1607 ADDRESS_EXPR is an operand of the instruction to be used with
1608 RELOC_TYPE. */
1609
1610 static void
1611 append_insn (struct mips_cl_insn *ip, expressionS *address_expr,
1612 bfd_reloc_code_real_type *reloc_type)
1613 {
1614 register unsigned long prev_pinfo, pinfo;
1615 char *f;
1616 fixS *fixp[3];
1617 int nops = 0;
1618 relax_stateT prev_insn_frag_type = 0;
1619 bfd_boolean relaxed_branch = FALSE;
1620 bfd_boolean force_new_frag = FALSE;
1621
1622 /* Mark instruction labels in mips16 mode. */
1623 mips16_mark_labels ();
1624
1625 prev_pinfo = prev_insn.insn_mo->pinfo;
1626 pinfo = ip->insn_mo->pinfo;
1627
1628 if (mips_relax.sequence != 2
1629 && (!mips_opts.noreorder || prev_nop_frag != NULL))
1630 {
1631 int prev_prev_nop;
1632
1633 /* If the previous insn required any delay slots, see if we need
1634 to insert a NOP or two. There are eight kinds of possible
1635 hazards, of which an instruction can have at most one type.
1636 (1) a load from memory delay
1637 (2) a load from a coprocessor delay
1638 (3) an unconditional branch delay
1639 (4) a conditional branch delay
1640 (5) a move to coprocessor register delay
1641 (6) a load coprocessor register from memory delay
1642 (7) a coprocessor condition code delay
1643 (8) a HI/LO special register delay
1644
1645 There are a lot of optimizations we could do that we don't.
1646 In particular, we do not, in general, reorder instructions.
1647 If you use gcc with optimization, it will reorder
1648 instructions and generally do much more optimization then we
1649 do here; repeating all that work in the assembler would only
1650 benefit hand written assembly code, and does not seem worth
1651 it. */
1652
1653 /* This is how a NOP is emitted. */
1654 #define emit_nop() \
1655 (mips_opts.mips16 \
1656 ? md_number_to_chars (frag_more (2), 0x6500, 2) \
1657 : md_number_to_chars (frag_more (4), 0, 4))
1658
1659 /* The previous insn might require a delay slot, depending upon
1660 the contents of the current insn. */
1661 if (! mips_opts.mips16
1662 && (((prev_pinfo & INSN_LOAD_MEMORY_DELAY)
1663 && ! gpr_interlocks)
1664 || ((prev_pinfo & INSN_LOAD_COPROC_DELAY)
1665 && ! cop_interlocks)))
1666 {
1667 /* A load from a coprocessor or from memory. All load
1668 delays delay the use of general register rt for one
1669 instruction. */
1670 /* Itbl support may require additional care here. */
1671 know (prev_pinfo & INSN_WRITE_GPR_T);
1672 if (mips_optimize == 0
1673 || insn_uses_reg (ip,
1674 ((prev_insn.insn_opcode >> OP_SH_RT)
1675 & OP_MASK_RT),
1676 MIPS_GR_REG))
1677 ++nops;
1678 }
1679 else if (! mips_opts.mips16
1680 && (((prev_pinfo & INSN_COPROC_MOVE_DELAY)
1681 && ! cop_interlocks)
1682 || ((prev_pinfo & INSN_COPROC_MEMORY_DELAY)
1683 && ! cop_mem_interlocks)))
1684 {
1685 /* A generic coprocessor delay. The previous instruction
1686 modified a coprocessor general or control register. If
1687 it modified a control register, we need to avoid any
1688 coprocessor instruction (this is probably not always
1689 required, but it sometimes is). If it modified a general
1690 register, we avoid using that register.
1691
1692 This case is not handled very well. There is no special
1693 knowledge of CP0 handling, and the coprocessors other
1694 than the floating point unit are not distinguished at
1695 all. */
1696 /* Itbl support may require additional care here. FIXME!
1697 Need to modify this to include knowledge about
1698 user specified delays! */
1699 if (prev_pinfo & INSN_WRITE_FPR_T)
1700 {
1701 if (mips_optimize == 0
1702 || insn_uses_reg (ip,
1703 ((prev_insn.insn_opcode >> OP_SH_FT)
1704 & OP_MASK_FT),
1705 MIPS_FP_REG))
1706 ++nops;
1707 }
1708 else if (prev_pinfo & INSN_WRITE_FPR_S)
1709 {
1710 if (mips_optimize == 0
1711 || insn_uses_reg (ip,
1712 ((prev_insn.insn_opcode >> OP_SH_FS)
1713 & OP_MASK_FS),
1714 MIPS_FP_REG))
1715 ++nops;
1716 }
1717 else
1718 {
1719 /* We don't know exactly what the previous instruction
1720 does. If the current instruction uses a coprocessor
1721 register, we must insert a NOP. If previous
1722 instruction may set the condition codes, and the
1723 current instruction uses them, we must insert two
1724 NOPS. */
1725 /* Itbl support may require additional care here. */
1726 if (mips_optimize == 0
1727 || ((prev_pinfo & INSN_WRITE_COND_CODE)
1728 && (pinfo & INSN_READ_COND_CODE)))
1729 nops += 2;
1730 else if (pinfo & INSN_COP)
1731 ++nops;
1732 }
1733 }
1734 else if (! mips_opts.mips16
1735 && (prev_pinfo & INSN_WRITE_COND_CODE)
1736 && ! cop_interlocks)
1737 {
1738 /* The previous instruction sets the coprocessor condition
1739 codes, but does not require a general coprocessor delay
1740 (this means it is a floating point comparison
1741 instruction). If this instruction uses the condition
1742 codes, we need to insert a single NOP. */
1743 /* Itbl support may require additional care here. */
1744 if (mips_optimize == 0
1745 || (pinfo & INSN_READ_COND_CODE))
1746 ++nops;
1747 }
1748
1749 /* If we're fixing up mfhi/mflo for the r7000 and the
1750 previous insn was an mfhi/mflo and the current insn
1751 reads the register that the mfhi/mflo wrote to, then
1752 insert two nops. */
1753
1754 else if (mips_7000_hilo_fix
1755 && MF_HILO_INSN (prev_pinfo)
1756 && insn_uses_reg (ip, ((prev_insn.insn_opcode >> OP_SH_RD)
1757 & OP_MASK_RD),
1758 MIPS_GR_REG))
1759 {
1760 nops += 2;
1761 }
1762
1763 /* If we're fixing up mfhi/mflo for the r7000 and the
1764 2nd previous insn was an mfhi/mflo and the current insn
1765 reads the register that the mfhi/mflo wrote to, then
1766 insert one nop. */
1767
1768 else if (mips_7000_hilo_fix
1769 && MF_HILO_INSN (prev_prev_insn.insn_opcode)
1770 && insn_uses_reg (ip, ((prev_prev_insn.insn_opcode >> OP_SH_RD)
1771 & OP_MASK_RD),
1772 MIPS_GR_REG))
1773
1774 {
1775 ++nops;
1776 }
1777
1778 else if (prev_pinfo & INSN_READ_LO)
1779 {
1780 /* The previous instruction reads the LO register; if the
1781 current instruction writes to the LO register, we must
1782 insert two NOPS. Some newer processors have interlocks.
1783 Also the tx39's multiply instructions can be executed
1784 immediately after a read from HI/LO (without the delay),
1785 though the tx39's divide insns still do require the
1786 delay. */
1787 if (! (hilo_interlocks
1788 || (mips_opts.arch == CPU_R3900 && (pinfo & INSN_MULT)))
1789 && (mips_optimize == 0
1790 || (pinfo & INSN_WRITE_LO)))
1791 nops += 2;
1792 /* Most mips16 branch insns don't have a delay slot.
1793 If a read from LO is immediately followed by a branch
1794 to a write to LO we have a read followed by a write
1795 less than 2 insns away. We assume the target of
1796 a branch might be a write to LO, and insert a nop
1797 between a read and an immediately following branch. */
1798 else if (mips_opts.mips16
1799 && (mips_optimize == 0
1800 || (pinfo & MIPS16_INSN_BRANCH)))
1801 ++nops;
1802 }
1803 else if (prev_insn.insn_mo->pinfo & INSN_READ_HI)
1804 {
1805 /* The previous instruction reads the HI register; if the
1806 current instruction writes to the HI register, we must
1807 insert a NOP. Some newer processors have interlocks.
1808 Also the note tx39's multiply above. */
1809 if (! (hilo_interlocks
1810 || (mips_opts.arch == CPU_R3900 && (pinfo & INSN_MULT)))
1811 && (mips_optimize == 0
1812 || (pinfo & INSN_WRITE_HI)))
1813 nops += 2;
1814 /* Most mips16 branch insns don't have a delay slot.
1815 If a read from HI is immediately followed by a branch
1816 to a write to HI we have a read followed by a write
1817 less than 2 insns away. We assume the target of
1818 a branch might be a write to HI, and insert a nop
1819 between a read and an immediately following branch. */
1820 else if (mips_opts.mips16
1821 && (mips_optimize == 0
1822 || (pinfo & MIPS16_INSN_BRANCH)))
1823 ++nops;
1824 }
1825
1826 /* If the previous instruction was in a noreorder section, then
1827 we don't want to insert the nop after all. */
1828 /* Itbl support may require additional care here. */
1829 if (prev_insn_unreordered)
1830 nops = 0;
1831
1832 /* There are two cases which require two intervening
1833 instructions: 1) setting the condition codes using a move to
1834 coprocessor instruction which requires a general coprocessor
1835 delay and then reading the condition codes 2) reading the HI
1836 or LO register and then writing to it (except on processors
1837 which have interlocks). If we are not already emitting a NOP
1838 instruction, we must check for these cases compared to the
1839 instruction previous to the previous instruction. */
1840 if ((! mips_opts.mips16
1841 && (prev_prev_insn.insn_mo->pinfo & INSN_COPROC_MOVE_DELAY)
1842 && (prev_prev_insn.insn_mo->pinfo & INSN_WRITE_COND_CODE)
1843 && (pinfo & INSN_READ_COND_CODE)
1844 && ! cop_interlocks)
1845 || ((prev_prev_insn.insn_mo->pinfo & INSN_READ_LO)
1846 && (pinfo & INSN_WRITE_LO)
1847 && ! (hilo_interlocks
1848 || (mips_opts.arch == CPU_R3900 && (pinfo & INSN_MULT))))
1849 || ((prev_prev_insn.insn_mo->pinfo & INSN_READ_HI)
1850 && (pinfo & INSN_WRITE_HI)
1851 && ! (hilo_interlocks
1852 || (mips_opts.arch == CPU_R3900 && (pinfo & INSN_MULT)))))
1853 prev_prev_nop = 1;
1854 else
1855 prev_prev_nop = 0;
1856
1857 if (prev_prev_insn_unreordered)
1858 prev_prev_nop = 0;
1859
1860 if (prev_prev_nop && nops == 0)
1861 ++nops;
1862
1863 if (mips_fix_vr4120 && prev_insn.insn_mo->name)
1864 {
1865 /* We're out of bits in pinfo, so we must resort to string
1866 ops here. Shortcuts are selected based on opcodes being
1867 limited to the VR4120 instruction set. */
1868 int min_nops = 0;
1869 const char *pn = prev_insn.insn_mo->name;
1870 const char *tn = ip->insn_mo->name;
1871 if (strncmp (pn, "macc", 4) == 0
1872 || strncmp (pn, "dmacc", 5) == 0)
1873 {
1874 /* Errata 21 - [D]DIV[U] after [D]MACC */
1875 if (strstr (tn, "div"))
1876 min_nops = 1;
1877
1878 /* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU
1879 instruction is executed immediately after a MACC or
1880 DMACC instruction, the result of [either instruction]
1881 is incorrect." */
1882 if (strncmp (tn, "mult", 4) == 0
1883 || strncmp (tn, "dmult", 5) == 0)
1884 min_nops = 1;
1885
1886 /* Errata 23 - Continuous DMULT[U]/DMACC instructions.
1887 Applies on top of VR4181A MD(1) errata. */
1888 if (pn[0] == 'd' && strncmp (tn, "dmacc", 5) == 0)
1889 min_nops = 1;
1890
1891 /* Errata 24 - MT{LO,HI} after [D]MACC */
1892 if (strcmp (tn, "mtlo") == 0
1893 || strcmp (tn, "mthi") == 0)
1894 min_nops = 1;
1895 }
1896 else if (strncmp (pn, "dmult", 5) == 0
1897 && (strncmp (tn, "dmult", 5) == 0
1898 || strncmp (tn, "dmacc", 5) == 0))
1899 {
1900 /* Here is the rest of errata 23. */
1901 min_nops = 1;
1902 }
1903 else if ((strncmp (pn, "dmult", 5) == 0 || strstr (pn, "div"))
1904 && (strncmp (tn, "macc", 4) == 0
1905 || strncmp (tn, "dmacc", 5) == 0))
1906 {
1907 /* VR4181A errata MD(4): "If a MACC or DMACC instruction is
1908 executed immediately after a DMULT, DMULTU, DIV, DIVU,
1909 DDIV or DDIVU instruction, the result of the MACC or
1910 DMACC instruction is incorrect.". This partly overlaps
1911 the workaround for errata 23. */
1912 min_nops = 1;
1913 }
1914 if (nops < min_nops)
1915 nops = min_nops;
1916 }
1917
1918 /* If we are being given a nop instruction, don't bother with
1919 one of the nops we would otherwise output. This will only
1920 happen when a nop instruction is used with mips_optimize set
1921 to 0. */
1922 if (nops > 0
1923 && ! mips_opts.noreorder
1924 && ip->insn_opcode == (unsigned) (mips_opts.mips16 ? 0x6500 : 0))
1925 --nops;
1926
1927 /* Now emit the right number of NOP instructions. */
1928 if (nops > 0 && ! mips_opts.noreorder)
1929 {
1930 fragS *old_frag;
1931 unsigned long old_frag_offset;
1932 int i;
1933 struct insn_label_list *l;
1934
1935 old_frag = frag_now;
1936 old_frag_offset = frag_now_fix ();
1937
1938 for (i = 0; i < nops; i++)
1939 emit_nop ();
1940
1941 if (listing)
1942 {
1943 listing_prev_line ();
1944 /* We may be at the start of a variant frag. In case we
1945 are, make sure there is enough space for the frag
1946 after the frags created by listing_prev_line. The
1947 argument to frag_grow here must be at least as large
1948 as the argument to all other calls to frag_grow in
1949 this file. We don't have to worry about being in the
1950 middle of a variant frag, because the variants insert
1951 all needed nop instructions themselves. */
1952 frag_grow (40);
1953 }
1954
1955 for (l = insn_labels; l != NULL; l = l->next)
1956 {
1957 valueT val;
1958
1959 assert (S_GET_SEGMENT (l->label) == now_seg);
1960 symbol_set_frag (l->label, frag_now);
1961 val = (valueT) frag_now_fix ();
1962 /* mips16 text labels are stored as odd. */
1963 if (mips_opts.mips16)
1964 ++val;
1965 S_SET_VALUE (l->label, val);
1966 }
1967
1968 #ifndef NO_ECOFF_DEBUGGING
1969 if (ECOFF_DEBUGGING)
1970 ecoff_fix_loc (old_frag, old_frag_offset);
1971 #endif
1972 }
1973 else if (prev_nop_frag != NULL)
1974 {
1975 /* We have a frag holding nops we may be able to remove. If
1976 we don't need any nops, we can decrease the size of
1977 prev_nop_frag by the size of one instruction. If we do
1978 need some nops, we count them in prev_nops_required. */
1979 if (prev_nop_frag_since == 0)
1980 {
1981 if (nops == 0)
1982 {
1983 prev_nop_frag->fr_fix -= mips_opts.mips16 ? 2 : 4;
1984 --prev_nop_frag_holds;
1985 }
1986 else
1987 prev_nop_frag_required += nops;
1988 }
1989 else
1990 {
1991 if (prev_prev_nop == 0)
1992 {
1993 prev_nop_frag->fr_fix -= mips_opts.mips16 ? 2 : 4;
1994 --prev_nop_frag_holds;
1995 }
1996 else
1997 ++prev_nop_frag_required;
1998 }
1999
2000 if (prev_nop_frag_holds <= prev_nop_frag_required)
2001 prev_nop_frag = NULL;
2002
2003 ++prev_nop_frag_since;
2004
2005 /* Sanity check: by the time we reach the second instruction
2006 after prev_nop_frag, we should have used up all the nops
2007 one way or another. */
2008 assert (prev_nop_frag_since <= 1 || prev_nop_frag == NULL);
2009 }
2010 }
2011
2012 #ifdef OBJ_ELF
2013 /* The value passed to dwarf2_emit_insn is the distance between
2014 the beginning of the current instruction and the address that
2015 should be recorded in the debug tables. For MIPS16 debug info
2016 we want to use ISA-encoded addresses, so we pass -1 for an
2017 address higher by one than the current. */
2018 dwarf2_emit_insn (mips_opts.mips16 ? -1 : 0);
2019 #endif
2020
2021 /* Record the frag type before frag_var. */
2022 if (prev_insn_frag)
2023 prev_insn_frag_type = prev_insn_frag->fr_type;
2024
2025 if (address_expr
2026 && *reloc_type == BFD_RELOC_16_PCREL_S2
2027 && (pinfo & INSN_UNCOND_BRANCH_DELAY || pinfo & INSN_COND_BRANCH_DELAY
2028 || pinfo & INSN_COND_BRANCH_LIKELY)
2029 && mips_relax_branch
2030 /* Don't try branch relaxation within .set nomacro, or within
2031 .set noat if we use $at for PIC computations. If it turns
2032 out that the branch was out-of-range, we'll get an error. */
2033 && !mips_opts.warn_about_macros
2034 && !(mips_opts.noat && mips_pic != NO_PIC)
2035 && !mips_opts.mips16)
2036 {
2037 relaxed_branch = TRUE;
2038 f = frag_var (rs_machine_dependent,
2039 relaxed_branch_length
2040 (NULL, NULL,
2041 (pinfo & INSN_UNCOND_BRANCH_DELAY) ? -1
2042 : (pinfo & INSN_COND_BRANCH_LIKELY) ? 1 : 0), 4,
2043 RELAX_BRANCH_ENCODE
2044 (pinfo & INSN_UNCOND_BRANCH_DELAY,
2045 pinfo & INSN_COND_BRANCH_LIKELY,
2046 pinfo & INSN_WRITE_GPR_31,
2047 0),
2048 address_expr->X_add_symbol,
2049 address_expr->X_add_number,
2050 0);
2051 *reloc_type = BFD_RELOC_UNUSED;
2052 }
2053 else if (*reloc_type > BFD_RELOC_UNUSED)
2054 {
2055 /* We need to set up a variant frag. */
2056 assert (mips_opts.mips16 && address_expr != NULL);
2057 f = frag_var (rs_machine_dependent, 4, 0,
2058 RELAX_MIPS16_ENCODE (*reloc_type - BFD_RELOC_UNUSED,
2059 mips16_small, mips16_ext,
2060 (prev_pinfo
2061 & INSN_UNCOND_BRANCH_DELAY),
2062 (*prev_insn_reloc_type
2063 == BFD_RELOC_MIPS16_JMP)),
2064 make_expr_symbol (address_expr), 0, NULL);
2065 }
2066 else if (mips_opts.mips16
2067 && ! ip->use_extend
2068 && *reloc_type != BFD_RELOC_MIPS16_JMP)
2069 {
2070 /* Make sure there is enough room to swap this instruction with
2071 a following jump instruction. */
2072 frag_grow (6);
2073 f = frag_more (2);
2074 }
2075 else
2076 {
2077 if (mips_opts.mips16
2078 && mips_opts.noreorder
2079 && (prev_pinfo & INSN_UNCOND_BRANCH_DELAY) != 0)
2080 as_warn (_("extended instruction in delay slot"));
2081
2082 if (mips_relax.sequence)
2083 {
2084 /* If we've reached the end of this frag, turn it into a variant
2085 frag and record the information for the instructions we've
2086 written so far. */
2087 if (frag_room () < 4)
2088 relax_close_frag ();
2089 mips_relax.sizes[mips_relax.sequence - 1] += 4;
2090 }
2091
2092 if (mips_relax.sequence != 2)
2093 mips_macro_warning.sizes[0] += 4;
2094 if (mips_relax.sequence != 1)
2095 mips_macro_warning.sizes[1] += 4;
2096
2097 f = frag_more (4);
2098 }
2099
2100 fixp[0] = fixp[1] = fixp[2] = NULL;
2101 if (address_expr != NULL && *reloc_type <= BFD_RELOC_UNUSED)
2102 {
2103 if (address_expr->X_op == O_constant)
2104 {
2105 unsigned int tmp;
2106
2107 switch (*reloc_type)
2108 {
2109 case BFD_RELOC_32:
2110 ip->insn_opcode |= address_expr->X_add_number;
2111 break;
2112
2113 case BFD_RELOC_MIPS_HIGHEST:
2114 tmp = (address_expr->X_add_number + 0x800080008000ull) >> 48;
2115 ip->insn_opcode |= tmp & 0xffff;
2116 break;
2117
2118 case BFD_RELOC_MIPS_HIGHER:
2119 tmp = (address_expr->X_add_number + 0x80008000ull) >> 32;
2120 ip->insn_opcode |= tmp & 0xffff;
2121 break;
2122
2123 case BFD_RELOC_HI16_S:
2124 tmp = (address_expr->X_add_number + 0x8000) >> 16;
2125 ip->insn_opcode |= tmp & 0xffff;
2126 break;
2127
2128 case BFD_RELOC_HI16:
2129 ip->insn_opcode |= (address_expr->X_add_number >> 16) & 0xffff;
2130 break;
2131
2132 case BFD_RELOC_UNUSED:
2133 case BFD_RELOC_LO16:
2134 case BFD_RELOC_MIPS_GOT_DISP:
2135 ip->insn_opcode |= address_expr->X_add_number & 0xffff;
2136 break;
2137
2138 case BFD_RELOC_MIPS_JMP:
2139 if ((address_expr->X_add_number & 3) != 0)
2140 as_bad (_("jump to misaligned address (0x%lx)"),
2141 (unsigned long) address_expr->X_add_number);
2142 if (address_expr->X_add_number & ~0xfffffff)
2143 as_bad (_("jump address range overflow (0x%lx)"),
2144 (unsigned long) address_expr->X_add_number);
2145 ip->insn_opcode |= (address_expr->X_add_number >> 2) & 0x3ffffff;
2146 break;
2147
2148 case BFD_RELOC_MIPS16_JMP:
2149 if ((address_expr->X_add_number & 3) != 0)
2150 as_bad (_("jump to misaligned address (0x%lx)"),
2151 (unsigned long) address_expr->X_add_number);
2152 if (address_expr->X_add_number & ~0xfffffff)
2153 as_bad (_("jump address range overflow (0x%lx)"),
2154 (unsigned long) address_expr->X_add_number);
2155 ip->insn_opcode |=
2156 (((address_expr->X_add_number & 0x7c0000) << 3)
2157 | ((address_expr->X_add_number & 0xf800000) >> 7)
2158 | ((address_expr->X_add_number & 0x3fffc) >> 2));
2159 break;
2160
2161 case BFD_RELOC_16_PCREL_S2:
2162 goto need_reloc;
2163
2164 default:
2165 internalError ();
2166 }
2167 }
2168 else if (*reloc_type < BFD_RELOC_UNUSED)
2169 need_reloc:
2170 {
2171 reloc_howto_type *howto;
2172 int i;
2173
2174 /* In a compound relocation, it is the final (outermost)
2175 operator that determines the relocated field. */
2176 for (i = 1; i < 3; i++)
2177 if (reloc_type[i] == BFD_RELOC_UNUSED)
2178 break;
2179
2180 howto = bfd_reloc_type_lookup (stdoutput, reloc_type[i - 1]);
2181 fixp[0] = fix_new_exp (frag_now, f - frag_now->fr_literal,
2182 bfd_get_reloc_size(howto),
2183 address_expr,
2184 reloc_type[0] == BFD_RELOC_16_PCREL_S2,
2185 reloc_type[0]);
2186
2187 /* These relocations can have an addend that won't fit in
2188 4 octets for 64bit assembly. */
2189 if (HAVE_64BIT_GPRS
2190 && ! howto->partial_inplace
2191 && (reloc_type[0] == BFD_RELOC_16
2192 || reloc_type[0] == BFD_RELOC_32
2193 || reloc_type[0] == BFD_RELOC_MIPS_JMP
2194 || reloc_type[0] == BFD_RELOC_HI16_S
2195 || reloc_type[0] == BFD_RELOC_LO16
2196 || reloc_type[0] == BFD_RELOC_GPREL16
2197 || reloc_type[0] == BFD_RELOC_MIPS_LITERAL
2198 || reloc_type[0] == BFD_RELOC_GPREL32
2199 || reloc_type[0] == BFD_RELOC_64
2200 || reloc_type[0] == BFD_RELOC_CTOR
2201 || reloc_type[0] == BFD_RELOC_MIPS_SUB
2202 || reloc_type[0] == BFD_RELOC_MIPS_HIGHEST
2203 || reloc_type[0] == BFD_RELOC_MIPS_HIGHER
2204 || reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP
2205 || reloc_type[0] == BFD_RELOC_MIPS_REL16
2206 || reloc_type[0] == BFD_RELOC_MIPS_RELGOT
2207 || reloc_type[0] == BFD_RELOC_MIPS16_GPREL
2208 || reloc_type[0] == BFD_RELOC_MIPS16_HI16_S
2209 || reloc_type[0] == BFD_RELOC_MIPS16_LO16))
2210 fixp[0]->fx_no_overflow = 1;
2211
2212 if (mips_relax.sequence)
2213 {
2214 if (mips_relax.first_fixup == 0)
2215 mips_relax.first_fixup = fixp[0];
2216 }
2217 else if (reloc_needs_lo_p (*reloc_type))
2218 {
2219 struct mips_hi_fixup *hi_fixup;
2220
2221 /* Reuse the last entry if it already has a matching %lo. */
2222 hi_fixup = mips_hi_fixup_list;
2223 if (hi_fixup == 0
2224 || !fixup_has_matching_lo_p (hi_fixup->fixp))
2225 {
2226 hi_fixup = ((struct mips_hi_fixup *)
2227 xmalloc (sizeof (struct mips_hi_fixup)));
2228 hi_fixup->next = mips_hi_fixup_list;
2229 mips_hi_fixup_list = hi_fixup;
2230 }
2231 hi_fixup->fixp = fixp[0];
2232 hi_fixup->seg = now_seg;
2233 }
2234
2235 /* Add fixups for the second and third relocations, if given.
2236 Note that the ABI allows the second relocation to be
2237 against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
2238 moment we only use RSS_UNDEF, but we could add support
2239 for the others if it ever becomes necessary. */
2240 for (i = 1; i < 3; i++)
2241 if (reloc_type[i] != BFD_RELOC_UNUSED)
2242 {
2243 fixp[i] = fix_new (frag_now, fixp[0]->fx_where,
2244 fixp[0]->fx_size, NULL, 0,
2245 FALSE, reloc_type[i]);
2246
2247 /* Use fx_tcbit to mark compound relocs. */
2248 fixp[0]->fx_tcbit = 1;
2249 fixp[i]->fx_tcbit = 1;
2250 }
2251 }
2252 }
2253
2254 if (! mips_opts.mips16)
2255 md_number_to_chars (f, ip->insn_opcode, 4);
2256 else if (*reloc_type == BFD_RELOC_MIPS16_JMP)
2257 {
2258 md_number_to_chars (f, ip->insn_opcode >> 16, 2);
2259 md_number_to_chars (f + 2, ip->insn_opcode & 0xffff, 2);
2260 }
2261 else
2262 {
2263 if (ip->use_extend)
2264 {
2265 md_number_to_chars (f, 0xf000 | ip->extend, 2);
2266 f += 2;
2267 }
2268 md_number_to_chars (f, ip->insn_opcode, 2);
2269 }
2270
2271 /* Update the register mask information. */
2272 if (! mips_opts.mips16)
2273 {
2274 if (pinfo & INSN_WRITE_GPR_D)
2275 mips_gprmask |= 1 << ((ip->insn_opcode >> OP_SH_RD) & OP_MASK_RD);
2276 if ((pinfo & (INSN_WRITE_GPR_T | INSN_READ_GPR_T)) != 0)
2277 mips_gprmask |= 1 << ((ip->insn_opcode >> OP_SH_RT) & OP_MASK_RT);
2278 if (pinfo & INSN_READ_GPR_S)
2279 mips_gprmask |= 1 << ((ip->insn_opcode >> OP_SH_RS) & OP_MASK_RS);
2280 if (pinfo & INSN_WRITE_GPR_31)
2281 mips_gprmask |= 1 << RA;
2282 if (pinfo & INSN_WRITE_FPR_D)
2283 mips_cprmask[1] |= 1 << ((ip->insn_opcode >> OP_SH_FD) & OP_MASK_FD);
2284 if ((pinfo & (INSN_WRITE_FPR_S | INSN_READ_FPR_S)) != 0)
2285 mips_cprmask[1] |= 1 << ((ip->insn_opcode >> OP_SH_FS) & OP_MASK_FS);
2286 if ((pinfo & (INSN_WRITE_FPR_T | INSN_READ_FPR_T)) != 0)
2287 mips_cprmask[1] |= 1 << ((ip->insn_opcode >> OP_SH_FT) & OP_MASK_FT);
2288 if ((pinfo & INSN_READ_FPR_R) != 0)
2289 mips_cprmask[1] |= 1 << ((ip->insn_opcode >> OP_SH_FR) & OP_MASK_FR);
2290 if (pinfo & INSN_COP)
2291 {
2292 /* We don't keep enough information to sort these cases out.
2293 The itbl support does keep this information however, although
2294 we currently don't support itbl fprmats as part of the cop
2295 instruction. May want to add this support in the future. */
2296 }
2297 /* Never set the bit for $0, which is always zero. */
2298 mips_gprmask &= ~1 << 0;
2299 }
2300 else
2301 {
2302 if (pinfo & (MIPS16_INSN_WRITE_X | MIPS16_INSN_READ_X))
2303 mips_gprmask |= 1 << ((ip->insn_opcode >> MIPS16OP_SH_RX)
2304 & MIPS16OP_MASK_RX);
2305 if (pinfo & (MIPS16_INSN_WRITE_Y | MIPS16_INSN_READ_Y))
2306 mips_gprmask |= 1 << ((ip->insn_opcode >> MIPS16OP_SH_RY)
2307 & MIPS16OP_MASK_RY);
2308 if (pinfo & MIPS16_INSN_WRITE_Z)
2309 mips_gprmask |= 1 << ((ip->insn_opcode >> MIPS16OP_SH_RZ)
2310 & MIPS16OP_MASK_RZ);
2311 if (pinfo & (MIPS16_INSN_WRITE_T | MIPS16_INSN_READ_T))
2312 mips_gprmask |= 1 << TREG;
2313 if (pinfo & (MIPS16_INSN_WRITE_SP | MIPS16_INSN_READ_SP))
2314 mips_gprmask |= 1 << SP;
2315 if (pinfo & (MIPS16_INSN_WRITE_31 | MIPS16_INSN_READ_31))
2316 mips_gprmask |= 1 << RA;
2317 if (pinfo & MIPS16_INSN_WRITE_GPR_Y)
2318 mips_gprmask |= 1 << MIPS16OP_EXTRACT_REG32R (ip->insn_opcode);
2319 if (pinfo & MIPS16_INSN_READ_Z)
2320 mips_gprmask |= 1 << ((ip->insn_opcode >> MIPS16OP_SH_MOVE32Z)
2321 & MIPS16OP_MASK_MOVE32Z);
2322 if (pinfo & MIPS16_INSN_READ_GPR_X)
2323 mips_gprmask |= 1 << ((ip->insn_opcode >> MIPS16OP_SH_REGR32)
2324 & MIPS16OP_MASK_REGR32);
2325 }
2326
2327 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
2328 {
2329 /* Filling the branch delay slot is more complex. We try to
2330 switch the branch with the previous instruction, which we can
2331 do if the previous instruction does not set up a condition
2332 that the branch tests and if the branch is not itself the
2333 target of any branch. */
2334 if ((pinfo & INSN_UNCOND_BRANCH_DELAY)
2335 || (pinfo & INSN_COND_BRANCH_DELAY))
2336 {
2337 if (mips_optimize < 2
2338 /* If we have seen .set volatile or .set nomove, don't
2339 optimize. */
2340 || mips_opts.nomove != 0
2341 /* If we had to emit any NOP instructions, then we
2342 already know we can not swap. */
2343 || nops != 0
2344 /* If we don't even know the previous insn, we can not
2345 swap. */
2346 || ! prev_insn_valid
2347 /* If the previous insn is already in a branch delay
2348 slot, then we can not swap. */
2349 || prev_insn_is_delay_slot
2350 /* If the previous previous insn was in a .set
2351 noreorder, we can't swap. Actually, the MIPS
2352 assembler will swap in this situation. However, gcc
2353 configured -with-gnu-as will generate code like
2354 .set noreorder
2355 lw $4,XXX
2356 .set reorder
2357 INSN
2358 bne $4,$0,foo
2359 in which we can not swap the bne and INSN. If gcc is
2360 not configured -with-gnu-as, it does not output the
2361 .set pseudo-ops. We don't have to check
2362 prev_insn_unreordered, because prev_insn_valid will
2363 be 0 in that case. We don't want to use
2364 prev_prev_insn_valid, because we do want to be able
2365 to swap at the start of a function. */
2366 || prev_prev_insn_unreordered
2367 /* If the branch is itself the target of a branch, we
2368 can not swap. We cheat on this; all we check for is
2369 whether there is a label on this instruction. If
2370 there are any branches to anything other than a
2371 label, users must use .set noreorder. */
2372 || insn_labels != NULL
2373 /* If the previous instruction is in a variant frag
2374 other than this branch's one, we cannot do the swap.
2375 This does not apply to the mips16, which uses variant
2376 frags for different purposes. */
2377 || (! mips_opts.mips16
2378 && prev_insn_frag_type == rs_machine_dependent)
2379 /* If the branch reads the condition codes, we don't
2380 even try to swap, because in the sequence
2381 ctc1 $X,$31
2382 INSN
2383 INSN
2384 bc1t LABEL
2385 we can not swap, and I don't feel like handling that
2386 case. */
2387 || (! mips_opts.mips16
2388 && (pinfo & INSN_READ_COND_CODE)
2389 && ! cop_interlocks)
2390 /* We can not swap with an instruction that requires a
2391 delay slot, because the target of the branch might
2392 interfere with that instruction. */
2393 || (! mips_opts.mips16
2394 && (prev_pinfo
2395 /* Itbl support may require additional care here. */
2396 & (INSN_LOAD_COPROC_DELAY
2397 | INSN_COPROC_MOVE_DELAY
2398 | INSN_WRITE_COND_CODE))
2399 && ! cop_interlocks)
2400 || (! (hilo_interlocks
2401 || (mips_opts.arch == CPU_R3900 && (pinfo & INSN_MULT)))
2402 && (prev_pinfo
2403 & (INSN_READ_LO
2404 | INSN_READ_HI)))
2405 || (! mips_opts.mips16
2406 && (prev_pinfo & INSN_LOAD_MEMORY_DELAY)
2407 && ! gpr_interlocks)
2408 || (! mips_opts.mips16
2409 /* Itbl support may require additional care here. */
2410 && (prev_pinfo & INSN_COPROC_MEMORY_DELAY)
2411 && ! cop_mem_interlocks)
2412 /* We can not swap with a branch instruction. */
2413 || (prev_pinfo
2414 & (INSN_UNCOND_BRANCH_DELAY
2415 | INSN_COND_BRANCH_DELAY
2416 | INSN_COND_BRANCH_LIKELY))
2417 /* We do not swap with a trap instruction, since it
2418 complicates trap handlers to have the trap
2419 instruction be in a delay slot. */
2420 || (prev_pinfo & INSN_TRAP)
2421 /* If the branch reads a register that the previous
2422 instruction sets, we can not swap. */
2423 || (! mips_opts.mips16
2424 && (prev_pinfo & INSN_WRITE_GPR_T)
2425 && insn_uses_reg (ip,
2426 ((prev_insn.insn_opcode >> OP_SH_RT)
2427 & OP_MASK_RT),
2428 MIPS_GR_REG))
2429 || (! mips_opts.mips16
2430 && (prev_pinfo & INSN_WRITE_GPR_D)
2431 && insn_uses_reg (ip,
2432 ((prev_insn.insn_opcode >> OP_SH_RD)
2433 & OP_MASK_RD),
2434 MIPS_GR_REG))
2435 || (mips_opts.mips16
2436 && (((prev_pinfo & MIPS16_INSN_WRITE_X)
2437 && insn_uses_reg (ip,
2438 ((prev_insn.insn_opcode
2439 >> MIPS16OP_SH_RX)
2440 & MIPS16OP_MASK_RX),
2441 MIPS16_REG))
2442 || ((prev_pinfo & MIPS16_INSN_WRITE_Y)
2443 && insn_uses_reg (ip,
2444 ((prev_insn.insn_opcode
2445 >> MIPS16OP_SH_RY)
2446 & MIPS16OP_MASK_RY),
2447 MIPS16_REG))
2448 || ((prev_pinfo & MIPS16_INSN_WRITE_Z)
2449 && insn_uses_reg (ip,
2450 ((prev_insn.insn_opcode
2451 >> MIPS16OP_SH_RZ)
2452 & MIPS16OP_MASK_RZ),
2453 MIPS16_REG))
2454 || ((prev_pinfo & MIPS16_INSN_WRITE_T)
2455 && insn_uses_reg (ip, TREG, MIPS_GR_REG))
2456 || ((prev_pinfo & MIPS16_INSN_WRITE_31)
2457 && insn_uses_reg (ip, RA, MIPS_GR_REG))
2458 || ((prev_pinfo & MIPS16_INSN_WRITE_GPR_Y)
2459 && insn_uses_reg (ip,
2460 MIPS16OP_EXTRACT_REG32R (prev_insn.
2461 insn_opcode),
2462 MIPS_GR_REG))))
2463 /* If the branch writes a register that the previous
2464 instruction sets, we can not swap (we know that
2465 branches write only to RD or to $31). */
2466 || (! mips_opts.mips16
2467 && (prev_pinfo & INSN_WRITE_GPR_T)
2468 && (((pinfo & INSN_WRITE_GPR_D)
2469 && (((prev_insn.insn_opcode >> OP_SH_RT) & OP_MASK_RT)
2470 == ((ip->insn_opcode >> OP_SH_RD) & OP_MASK_RD)))
2471 || ((pinfo & INSN_WRITE_GPR_31)
2472 && (((prev_insn.insn_opcode >> OP_SH_RT)
2473 & OP_MASK_RT)
2474 == RA))))
2475 || (! mips_opts.mips16
2476 && (prev_pinfo & INSN_WRITE_GPR_D)
2477 && (((pinfo & INSN_WRITE_GPR_D)
2478 && (((prev_insn.insn_opcode >> OP_SH_RD) & OP_MASK_RD)
2479 == ((ip->insn_opcode >> OP_SH_RD) & OP_MASK_RD)))
2480 || ((pinfo & INSN_WRITE_GPR_31)
2481 && (((prev_insn.insn_opcode >> OP_SH_RD)
2482 & OP_MASK_RD)
2483 == RA))))
2484 || (mips_opts.mips16
2485 && (pinfo & MIPS16_INSN_WRITE_31)
2486 && ((prev_pinfo & MIPS16_INSN_WRITE_31)
2487 || ((prev_pinfo & MIPS16_INSN_WRITE_GPR_Y)
2488 && (MIPS16OP_EXTRACT_REG32R (prev_insn.insn_opcode)
2489 == RA))))
2490 /* If the branch writes a register that the previous
2491 instruction reads, we can not swap (we know that
2492 branches only write to RD or to $31). */
2493 || (! mips_opts.mips16
2494 && (pinfo & INSN_WRITE_GPR_D)
2495 && insn_uses_reg (&prev_insn,
2496 ((ip->insn_opcode >> OP_SH_RD)
2497 & OP_MASK_RD),
2498 MIPS_GR_REG))
2499 || (! mips_opts.mips16
2500 && (pinfo & INSN_WRITE_GPR_31)
2501 && insn_uses_reg (&prev_insn, RA, MIPS_GR_REG))
2502 || (mips_opts.mips16
2503 && (pinfo & MIPS16_INSN_WRITE_31)
2504 && insn_uses_reg (&prev_insn, RA, MIPS_GR_REG))
2505 /* If the previous previous instruction has a load
2506 delay, and sets a register that the branch reads, we
2507 can not swap. */
2508 || (! mips_opts.mips16
2509 /* Itbl support may require additional care here. */
2510 && (((prev_prev_insn.insn_mo->pinfo & INSN_LOAD_COPROC_DELAY)
2511 && ! cop_interlocks)
2512 || ((prev_prev_insn.insn_mo->pinfo
2513 & INSN_LOAD_MEMORY_DELAY)
2514 && ! gpr_interlocks))
2515 && insn_uses_reg (ip,
2516 ((prev_prev_insn.insn_opcode >> OP_SH_RT)
2517 & OP_MASK_RT),
2518 MIPS_GR_REG))
2519 /* If one instruction sets a condition code and the
2520 other one uses a condition code, we can not swap. */
2521 || ((pinfo & INSN_READ_COND_CODE)
2522 && (prev_pinfo & INSN_WRITE_COND_CODE))
2523 || ((pinfo & INSN_WRITE_COND_CODE)
2524 && (prev_pinfo & INSN_READ_COND_CODE))
2525 /* If the previous instruction uses the PC, we can not
2526 swap. */
2527 || (mips_opts.mips16
2528 && (prev_pinfo & MIPS16_INSN_READ_PC))
2529 /* If the previous instruction was extended, we can not
2530 swap. */
2531 || (mips_opts.mips16 && prev_insn_extended)
2532 /* If the previous instruction had a fixup in mips16
2533 mode, we can not swap. This normally means that the
2534 previous instruction was a 4 byte branch anyhow. */
2535 || (mips_opts.mips16 && prev_insn_fixp[0])
2536 /* If the previous instruction is a sync, sync.l, or
2537 sync.p, we can not swap. */
2538 || (prev_pinfo & INSN_SYNC))
2539 {
2540 /* We could do even better for unconditional branches to
2541 portions of this object file; we could pick up the
2542 instruction at the destination, put it in the delay
2543 slot, and bump the destination address. */
2544 emit_nop ();
2545 if (mips_relax.sequence)
2546 mips_relax.sizes[mips_relax.sequence - 1] += 4;
2547 /* Update the previous insn information. */
2548 prev_prev_insn = *ip;
2549 prev_insn.insn_mo = &dummy_opcode;
2550 }
2551 else
2552 {
2553 /* It looks like we can actually do the swap. */
2554 if (! mips_opts.mips16)
2555 {
2556 char *prev_f;
2557 char temp[4];
2558
2559 prev_f = prev_insn_frag->fr_literal + prev_insn_where;
2560 if (!relaxed_branch)
2561 {
2562 /* If this is not a relaxed branch, then just
2563 swap the instructions. */
2564 memcpy (temp, prev_f, 4);
2565 memcpy (prev_f, f, 4);
2566 memcpy (f, temp, 4);
2567 }
2568 else
2569 {
2570 /* If this is a relaxed branch, then we move the
2571 instruction to be placed in the delay slot to
2572 the current frag, shrinking the fixed part of
2573 the originating frag. If the branch occupies
2574 the tail of the latter, we move it backwards,
2575 into the space freed by the moved instruction. */
2576 f = frag_more (4);
2577 memcpy (f, prev_f, 4);
2578 prev_insn_frag->fr_fix -= 4;
2579 if (prev_insn_frag->fr_type == rs_machine_dependent)
2580 memmove (prev_f, prev_f + 4, prev_insn_frag->fr_var);
2581 }
2582
2583 if (prev_insn_fixp[0])
2584 {
2585 prev_insn_fixp[0]->fx_frag = frag_now;
2586 prev_insn_fixp[0]->fx_where = f - frag_now->fr_literal;
2587 }
2588 if (prev_insn_fixp[1])
2589 {
2590 prev_insn_fixp[1]->fx_frag = frag_now;
2591 prev_insn_fixp[1]->fx_where = f - frag_now->fr_literal;
2592 }
2593 if (prev_insn_fixp[2])
2594 {
2595 prev_insn_fixp[2]->fx_frag = frag_now;
2596 prev_insn_fixp[2]->fx_where = f - frag_now->fr_literal;
2597 }
2598 if (prev_insn_fixp[0] && HAVE_NEWABI
2599 && prev_insn_frag != frag_now
2600 && (prev_insn_fixp[0]->fx_r_type
2601 == BFD_RELOC_MIPS_GOT_DISP
2602 || (prev_insn_fixp[0]->fx_r_type
2603 == BFD_RELOC_MIPS_CALL16)))
2604 {
2605 /* To avoid confusion in tc_gen_reloc, we must
2606 ensure that this does not become a variant
2607 frag. */
2608 force_new_frag = TRUE;
2609 }
2610
2611 if (!relaxed_branch)
2612 {
2613 if (fixp[0])
2614 {
2615 fixp[0]->fx_frag = prev_insn_frag;
2616 fixp[0]->fx_where = prev_insn_where;
2617 }
2618 if (fixp[1])
2619 {
2620 fixp[1]->fx_frag = prev_insn_frag;
2621 fixp[1]->fx_where = prev_insn_where;
2622 }
2623 if (fixp[2])
2624 {
2625 fixp[2]->fx_frag = prev_insn_frag;
2626 fixp[2]->fx_where = prev_insn_where;
2627 }
2628 }
2629 else if (prev_insn_frag->fr_type == rs_machine_dependent)
2630 {
2631 if (fixp[0])
2632 fixp[0]->fx_where -= 4;
2633 if (fixp[1])
2634 fixp[1]->fx_where -= 4;
2635 if (fixp[2])
2636 fixp[2]->fx_where -= 4;
2637 }
2638 }
2639 else
2640 {
2641 char *prev_f;
2642 char temp[2];
2643
2644 assert (prev_insn_fixp[0] == NULL);
2645 assert (prev_insn_fixp[1] == NULL);
2646 assert (prev_insn_fixp[2] == NULL);
2647 prev_f = prev_insn_frag->fr_literal + prev_insn_where;
2648 memcpy (temp, prev_f, 2);
2649 memcpy (prev_f, f, 2);
2650 if (*reloc_type != BFD_RELOC_MIPS16_JMP)
2651 {
2652 assert (*reloc_type == BFD_RELOC_UNUSED);
2653 memcpy (f, temp, 2);
2654 }
2655 else
2656 {
2657 memcpy (f, f + 2, 2);
2658 memcpy (f + 2, temp, 2);
2659 }
2660 if (fixp[0])
2661 {
2662 fixp[0]->fx_frag = prev_insn_frag;
2663 fixp[0]->fx_where = prev_insn_where;
2664 }
2665 if (fixp[1])
2666 {
2667 fixp[1]->fx_frag = prev_insn_frag;
2668 fixp[1]->fx_where = prev_insn_where;
2669 }
2670 if (fixp[2])
2671 {
2672 fixp[2]->fx_frag = prev_insn_frag;
2673 fixp[2]->fx_where = prev_insn_where;
2674 }
2675 }
2676
2677 /* Update the previous insn information; leave prev_insn
2678 unchanged. */
2679 prev_prev_insn = *ip;
2680 }
2681 prev_insn_is_delay_slot = 1;
2682
2683 /* If that was an unconditional branch, forget the previous
2684 insn information. */
2685 if (pinfo & INSN_UNCOND_BRANCH_DELAY)
2686 {
2687 prev_prev_insn.insn_mo = &dummy_opcode;
2688 prev_insn.insn_mo = &dummy_opcode;
2689 }
2690
2691 prev_insn_fixp[0] = NULL;
2692 prev_insn_fixp[1] = NULL;
2693 prev_insn_fixp[2] = NULL;
2694 prev_insn_reloc_type[0] = BFD_RELOC_UNUSED;
2695 prev_insn_reloc_type[1] = BFD_RELOC_UNUSED;
2696 prev_insn_reloc_type[2] = BFD_RELOC_UNUSED;
2697 prev_insn_extended = 0;
2698 }
2699 else if (pinfo & INSN_COND_BRANCH_LIKELY)
2700 {
2701 /* We don't yet optimize a branch likely. What we should do
2702 is look at the target, copy the instruction found there
2703 into the delay slot, and increment the branch to jump to
2704 the next instruction. */
2705 emit_nop ();
2706 /* Update the previous insn information. */
2707 prev_prev_insn = *ip;
2708 prev_insn.insn_mo = &dummy_opcode;
2709 prev_insn_fixp[0] = NULL;
2710 prev_insn_fixp[1] = NULL;
2711 prev_insn_fixp[2] = NULL;
2712 prev_insn_reloc_type[0] = BFD_RELOC_UNUSED;
2713 prev_insn_reloc_type[1] = BFD_RELOC_UNUSED;
2714 prev_insn_reloc_type[2] = BFD_RELOC_UNUSED;
2715 prev_insn_extended = 0;
2716 prev_insn_is_delay_slot = 1;
2717 }
2718 else
2719 {
2720 /* Update the previous insn information. */
2721 if (nops > 0)
2722 prev_prev_insn.insn_mo = &dummy_opcode;
2723 else
2724 prev_prev_insn = prev_insn;
2725 prev_insn = *ip;
2726
2727 /* Any time we see a branch, we always fill the delay slot
2728 immediately; since this insn is not a branch, we know it
2729 is not in a delay slot. */
2730 prev_insn_is_delay_slot = 0;
2731
2732 prev_insn_fixp[0] = fixp[0];
2733 prev_insn_fixp[1] = fixp[1];
2734 prev_insn_fixp[2] = fixp[2];
2735 prev_insn_reloc_type[0] = reloc_type[0];
2736 prev_insn_reloc_type[1] = reloc_type[1];
2737 prev_insn_reloc_type[2] = reloc_type[2];
2738 if (mips_opts.mips16)
2739 prev_insn_extended = (ip->use_extend
2740 || *reloc_type > BFD_RELOC_UNUSED);
2741 }
2742
2743 prev_prev_insn_unreordered = prev_insn_unreordered;
2744 prev_insn_unreordered = 0;
2745 prev_insn_frag = frag_now;
2746 prev_insn_where = f - frag_now->fr_literal;
2747 prev_insn_valid = 1;
2748 }
2749 else if (mips_relax.sequence != 2)
2750 {
2751 /* We need to record a bit of information even when we are not
2752 reordering, in order to determine the base address for mips16
2753 PC relative relocs. */
2754 prev_prev_insn = prev_insn;
2755 prev_insn = *ip;
2756 prev_insn_reloc_type[0] = reloc_type[0];
2757 prev_insn_reloc_type[1] = reloc_type[1];
2758 prev_insn_reloc_type[2] = reloc_type[2];
2759 prev_prev_insn_unreordered = prev_insn_unreordered;
2760 prev_insn_unreordered = 1;
2761 }
2762
2763 /* We just output an insn, so the next one doesn't have a label. */
2764 mips_clear_insn_labels ();
2765 }
2766
2767 /* This function forgets that there was any previous instruction or
2768 label. If PRESERVE is non-zero, it remembers enough information to
2769 know whether nops are needed before a noreorder section. */
2770
2771 static void
2772 mips_no_prev_insn (int preserve)
2773 {
2774 if (! preserve)
2775 {
2776 prev_insn.insn_mo = &dummy_opcode;
2777 prev_prev_insn.insn_mo = &dummy_opcode;
2778 prev_nop_frag = NULL;
2779 prev_nop_frag_holds = 0;
2780 prev_nop_frag_required = 0;
2781 prev_nop_frag_since = 0;
2782 }
2783 prev_insn_valid = 0;
2784 prev_insn_is_delay_slot = 0;
2785 prev_insn_unreordered = 0;
2786 prev_insn_extended = 0;
2787 prev_insn_reloc_type[0] = BFD_RELOC_UNUSED;
2788 prev_insn_reloc_type[1] = BFD_RELOC_UNUSED;
2789 prev_insn_reloc_type[2] = BFD_RELOC_UNUSED;
2790 prev_prev_insn_unreordered = 0;
2791 mips_clear_insn_labels ();
2792 }
2793
2794 /* This function must be called whenever we turn on noreorder or emit
2795 something other than instructions. It inserts any NOPS which might
2796 be needed by the previous instruction, and clears the information
2797 kept for the previous instructions. The INSNS parameter is true if
2798 instructions are to follow. */
2799
2800 static void
2801 mips_emit_delays (bfd_boolean insns)
2802 {
2803 if (! mips_opts.noreorder)
2804 {
2805 int nops;
2806
2807 nops = 0;
2808 if ((! mips_opts.mips16
2809 && ((prev_insn.insn_mo->pinfo
2810 & (INSN_LOAD_COPROC_DELAY
2811 | INSN_COPROC_MOVE_DELAY
2812 | INSN_WRITE_COND_CODE))
2813 && ! cop_interlocks))
2814 || (! hilo_interlocks
2815 && (prev_insn.insn_mo->pinfo
2816 & (INSN_READ_LO
2817 | INSN_READ_HI)))
2818 || (! mips_opts.mips16
2819 && (prev_insn.insn_mo->pinfo & INSN_LOAD_MEMORY_DELAY)
2820 && ! gpr_interlocks)
2821 || (! mips_opts.mips16
2822 && (prev_insn.insn_mo->pinfo & INSN_COPROC_MEMORY_DELAY)
2823 && ! cop_mem_interlocks))
2824 {
2825 /* Itbl support may require additional care here. */
2826 ++nops;
2827 if ((! mips_opts.mips16
2828 && ((prev_insn.insn_mo->pinfo & INSN_WRITE_COND_CODE)
2829 && ! cop_interlocks))
2830 || (! hilo_interlocks
2831 && ((prev_insn.insn_mo->pinfo & INSN_READ_HI)
2832 || (prev_insn.insn_mo->pinfo & INSN_READ_LO))))
2833 ++nops;
2834
2835 if (prev_insn_unreordered)
2836 nops = 0;
2837 }
2838 else if ((! mips_opts.mips16
2839 && ((prev_prev_insn.insn_mo->pinfo & INSN_WRITE_COND_CODE)
2840 && ! cop_interlocks))
2841 || (! hilo_interlocks
2842 && ((prev_prev_insn.insn_mo->pinfo & INSN_READ_HI)
2843 || (prev_prev_insn.insn_mo->pinfo & INSN_READ_LO))))
2844 {
2845 /* Itbl support may require additional care here. */
2846 if (! prev_prev_insn_unreordered)
2847 ++nops;
2848 }
2849
2850 if (mips_fix_vr4120 && prev_insn.insn_mo->name)
2851 {
2852 int min_nops = 0;
2853 const char *pn = prev_insn.insn_mo->name;
2854 if (strncmp (pn, "macc", 4) == 0
2855 || strncmp (pn, "dmacc", 5) == 0
2856 || strncmp (pn, "dmult", 5) == 0
2857 || strstr (pn, "div"))
2858 min_nops = 1;
2859 if (nops < min_nops)
2860 nops = min_nops;
2861 }
2862
2863 if (nops > 0)
2864 {
2865 struct insn_label_list *l;
2866
2867 if (insns)
2868 {
2869 /* Record the frag which holds the nop instructions, so
2870 that we can remove them if we don't need them. */
2871 frag_grow (mips_opts.mips16 ? nops * 2 : nops * 4);
2872 prev_nop_frag = frag_now;
2873 prev_nop_frag_holds = nops;
2874 prev_nop_frag_required = 0;
2875 prev_nop_frag_since = 0;
2876 }
2877
2878 for (; nops > 0; --nops)
2879 emit_nop ();
2880
2881 if (insns)
2882 {
2883 /* Move on to a new frag, so that it is safe to simply
2884 decrease the size of prev_nop_frag. */
2885 frag_wane (frag_now);
2886 frag_new (0);
2887 }
2888
2889 for (l = insn_labels; l != NULL; l = l->next)
2890 {
2891 valueT val;
2892
2893 assert (S_GET_SEGMENT (l->label) == now_seg);
2894 symbol_set_frag (l->label, frag_now);
2895 val = (valueT) frag_now_fix ();
2896 /* mips16 text labels are stored as odd. */
2897 if (mips_opts.mips16)
2898 ++val;
2899 S_SET_VALUE (l->label, val);
2900 }
2901 }
2902 }
2903
2904 /* Mark instruction labels in mips16 mode. */
2905 if (insns)
2906 mips16_mark_labels ();
2907
2908 mips_no_prev_insn (insns);
2909 }
2910
2911 /* Set up global variables for the start of a new macro. */
2912
2913 static void
2914 macro_start (void)
2915 {
2916 memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes));
2917 mips_macro_warning.delay_slot_p = (mips_opts.noreorder
2918 && (prev_insn.insn_mo->pinfo
2919 & (INSN_UNCOND_BRANCH_DELAY
2920 | INSN_COND_BRANCH_DELAY
2921 | INSN_COND_BRANCH_LIKELY)) != 0);
2922 }
2923
2924 /* Given that a macro is longer than 4 bytes, return the appropriate warning
2925 for it. Return null if no warning is needed. SUBTYPE is a bitmask of
2926 RELAX_DELAY_SLOT and RELAX_NOMACRO. */
2927
2928 static const char *
2929 macro_warning (relax_substateT subtype)
2930 {
2931 if (subtype & RELAX_DELAY_SLOT)
2932 return _("Macro instruction expanded into multiple instructions"
2933 " in a branch delay slot");
2934 else if (subtype & RELAX_NOMACRO)
2935 return _("Macro instruction expanded into multiple instructions");
2936 else
2937 return 0;
2938 }
2939
2940 /* Finish up a macro. Emit warnings as appropriate. */
2941
2942 static void
2943 macro_end (void)
2944 {
2945 if (mips_macro_warning.sizes[0] > 4 || mips_macro_warning.sizes[1] > 4)
2946 {
2947 relax_substateT subtype;
2948
2949 /* Set up the relaxation warning flags. */
2950 subtype = 0;
2951 if (mips_macro_warning.sizes[1] > mips_macro_warning.sizes[0])
2952 subtype |= RELAX_SECOND_LONGER;
2953 if (mips_opts.warn_about_macros)
2954 subtype |= RELAX_NOMACRO;
2955 if (mips_macro_warning.delay_slot_p)
2956 subtype |= RELAX_DELAY_SLOT;
2957
2958 if (mips_macro_warning.sizes[0] > 4 && mips_macro_warning.sizes[1] > 4)
2959 {
2960 /* Either the macro has a single implementation or both
2961 implementations are longer than 4 bytes. Emit the
2962 warning now. */
2963 const char *msg = macro_warning (subtype);
2964 if (msg != 0)
2965 as_warn (msg);
2966 }
2967 else
2968 {
2969 /* One implementation might need a warning but the other
2970 definitely doesn't. */
2971 mips_macro_warning.first_frag->fr_subtype |= subtype;
2972 }
2973 }
2974 }
2975
2976 /* Read a macro's relocation codes from *ARGS and store them in *R.
2977 The first argument in *ARGS will be either the code for a single
2978 relocation or -1 followed by the three codes that make up a
2979 composite relocation. */
2980
2981 static void
2982 macro_read_relocs (va_list *args, bfd_reloc_code_real_type *r)
2983 {
2984 int i, next;
2985
2986 next = va_arg (*args, int);
2987 if (next >= 0)
2988 r[0] = (bfd_reloc_code_real_type) next;
2989 else
2990 for (i = 0; i < 3; i++)
2991 r[i] = (bfd_reloc_code_real_type) va_arg (*args, int);
2992 }
2993
2994 /* Build an instruction created by a macro expansion. This is passed
2995 a pointer to the count of instructions created so far, an
2996 expression, the name of the instruction to build, an operand format
2997 string, and corresponding arguments. */
2998
2999 static void
3000 macro_build (expressionS *ep, const char *name, const char *fmt, ...)
3001 {
3002 struct mips_cl_insn insn;
3003 bfd_reloc_code_real_type r[3];
3004 va_list args;
3005
3006 va_start (args, fmt);
3007
3008 if (mips_opts.mips16)
3009 {
3010 mips16_macro_build (ep, name, fmt, args);
3011 va_end (args);
3012 return;
3013 }
3014
3015 r[0] = BFD_RELOC_UNUSED;
3016 r[1] = BFD_RELOC_UNUSED;
3017 r[2] = BFD_RELOC_UNUSED;
3018 insn.insn_mo = (struct mips_opcode *) hash_find (op_hash, name);
3019 assert (insn.insn_mo);
3020 assert (strcmp (name, insn.insn_mo->name) == 0);
3021
3022 /* Search until we get a match for NAME. */
3023 while (1)
3024 {
3025 /* It is assumed here that macros will never generate
3026 MDMX or MIPS-3D instructions. */
3027 if (strcmp (fmt, insn.insn_mo->args) == 0
3028 && insn.insn_mo->pinfo != INSN_MACRO
3029 && OPCODE_IS_MEMBER (insn.insn_mo,
3030 (mips_opts.isa
3031 | (file_ase_mips16 ? INSN_MIPS16 : 0)),
3032 mips_opts.arch)
3033 && (mips_opts.arch != CPU_R4650 || (insn.insn_mo->pinfo & FP_D) == 0))
3034 break;
3035
3036 ++insn.insn_mo;
3037 assert (insn.insn_mo->name);
3038 assert (strcmp (name, insn.insn_mo->name) == 0);
3039 }
3040
3041 insn.insn_opcode = insn.insn_mo->match;
3042 for (;;)
3043 {
3044 switch (*fmt++)
3045 {
3046 case '\0':
3047 break;
3048
3049 case ',':
3050 case '(':
3051 case ')':
3052 continue;
3053
3054 case '+':
3055 switch (*fmt++)
3056 {
3057 case 'A':
3058 case 'E':
3059 insn.insn_opcode |= (va_arg (args, int)
3060 & OP_MASK_SHAMT) << OP_SH_SHAMT;
3061 continue;
3062
3063 case 'B':
3064 case 'F':
3065 /* Note that in the macro case, these arguments are already
3066 in MSB form. (When handling the instruction in the
3067 non-macro case, these arguments are sizes from which
3068 MSB values must be calculated.) */
3069 insn.insn_opcode |= (va_arg (args, int)
3070 & OP_MASK_INSMSB) << OP_SH_INSMSB;
3071 continue;
3072
3073 case 'C':
3074 case 'G':
3075 case 'H':
3076 /* Note that in the macro case, these arguments are already
3077 in MSBD form. (When handling the instruction in the
3078 non-macro case, these arguments are sizes from which
3079 MSBD values must be calculated.) */
3080 insn.insn_opcode |= (va_arg (args, int)
3081 & OP_MASK_EXTMSBD) << OP_SH_EXTMSBD;
3082 continue;
3083
3084 default:
3085 internalError ();
3086 }
3087 continue;
3088
3089 case 't':
3090 case 'w':
3091 case 'E':
3092 insn.insn_opcode |= va_arg (args, int) << OP_SH_RT;
3093 continue;
3094
3095 case 'c':
3096 insn.insn_opcode |= va_arg (args, int) << OP_SH_CODE;
3097 continue;
3098
3099 case 'T':
3100 case 'W':
3101 insn.insn_opcode |= va_arg (args, int) << OP_SH_FT;
3102 continue;
3103
3104 case 'd':
3105 case 'G':
3106 case 'K':
3107 insn.insn_opcode |= va_arg (args, int) << OP_SH_RD;
3108 continue;
3109
3110 case 'U':
3111 {
3112 int tmp = va_arg (args, int);
3113
3114 insn.insn_opcode |= tmp << OP_SH_RT;
3115 insn.insn_opcode |= tmp << OP_SH_RD;
3116 continue;
3117 }
3118
3119 case 'V':
3120 case 'S':
3121 insn.insn_opcode |= va_arg (args, int) << OP_SH_FS;
3122 continue;
3123
3124 case 'z':
3125 continue;
3126
3127 case '<':
3128 insn.insn_opcode |= va_arg (args, int) << OP_SH_SHAMT;
3129 continue;
3130
3131 case 'D':
3132 insn.insn_opcode |= va_arg (args, int) << OP_SH_FD;
3133 continue;
3134
3135 case 'B':
3136 insn.insn_opcode |= va_arg (args, int) << OP_SH_CODE20;
3137 continue;
3138
3139 case 'J':
3140 insn.insn_opcode |= va_arg (args, int) << OP_SH_CODE19;
3141 continue;
3142
3143 case 'q':
3144 insn.insn_opcode |= va_arg (args, int) << OP_SH_CODE2;
3145 continue;
3146
3147 case 'b':
3148 case 's':
3149 case 'r':
3150 case 'v':
3151 insn.insn_opcode |= va_arg (args, int) << OP_SH_RS;
3152 continue;
3153
3154 case 'i':
3155 case 'j':
3156 case 'o':
3157 macro_read_relocs (&args, r);
3158 assert (*r == BFD_RELOC_GPREL16
3159 || *r == BFD_RELOC_MIPS_LITERAL
3160 || *r == BFD_RELOC_MIPS_HIGHER
3161 || *r == BFD_RELOC_HI16_S
3162 || *r == BFD_RELOC_LO16
3163 || *r == BFD_RELOC_MIPS_GOT16
3164 || *r == BFD_RELOC_MIPS_CALL16
3165 || *r == BFD_RELOC_MIPS_GOT_DISP
3166 || *r == BFD_RELOC_MIPS_GOT_PAGE
3167 || *r == BFD_RELOC_MIPS_GOT_OFST
3168 || *r == BFD_RELOC_MIPS_GOT_LO16
3169 || *r == BFD_RELOC_MIPS_CALL_LO16);
3170 continue;
3171
3172 case 'u':
3173 macro_read_relocs (&args, r);
3174 assert (ep != NULL
3175 && (ep->X_op == O_constant
3176 || (ep->X_op == O_symbol
3177 && (*r == BFD_RELOC_MIPS_HIGHEST
3178 || *r == BFD_RELOC_HI16_S
3179 || *r == BFD_RELOC_HI16
3180 || *r == BFD_RELOC_GPREL16
3181 || *r == BFD_RELOC_MIPS_GOT_HI16
3182 || *r == BFD_RELOC_MIPS_CALL_HI16))));
3183 continue;
3184
3185 case 'p':
3186 assert (ep != NULL);
3187 /*
3188 * This allows macro() to pass an immediate expression for
3189 * creating short branches without creating a symbol.
3190 * Note that the expression still might come from the assembly
3191 * input, in which case the value is not checked for range nor
3192 * is a relocation entry generated (yuck).
3193 */
3194 if (ep->X_op == O_constant)
3195 {
3196 insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
3197 ep = NULL;
3198 }
3199 else
3200 *r = BFD_RELOC_16_PCREL_S2;
3201 continue;
3202
3203 case 'a':
3204 assert (ep != NULL);
3205 *r = BFD_RELOC_MIPS_JMP;
3206 continue;
3207
3208 case 'C':
3209 insn.insn_opcode |= va_arg (args, unsigned long);
3210 continue;
3211
3212 default:
3213 internalError ();
3214 }
3215 break;
3216 }
3217 va_end (args);
3218 assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
3219
3220 append_insn (&insn, ep, r);
3221 }
3222
3223 static void
3224 mips16_macro_build (expressionS *ep, const char *name, const char *fmt,
3225 va_list args)
3226 {
3227 struct mips_cl_insn insn;
3228 bfd_reloc_code_real_type r[3]
3229 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
3230
3231 insn.insn_mo = (struct mips_opcode *) hash_find (mips16_op_hash, name);
3232 assert (insn.insn_mo);
3233 assert (strcmp (name, insn.insn_mo->name) == 0);
3234
3235 while (strcmp (fmt, insn.insn_mo->args) != 0
3236 || insn.insn_mo->pinfo == INSN_MACRO)
3237 {
3238 ++insn.insn_mo;
3239 assert (insn.insn_mo->name);
3240 assert (strcmp (name, insn.insn_mo->name) == 0);
3241 }
3242
3243 insn.insn_opcode = insn.insn_mo->match;
3244 insn.use_extend = FALSE;
3245
3246 for (;;)
3247 {
3248 int c;
3249
3250 c = *fmt++;
3251 switch (c)
3252 {
3253 case '\0':
3254 break;
3255
3256 case ',':
3257 case '(':
3258 case ')':
3259 continue;
3260
3261 case 'y':
3262 case 'w':
3263 insn.insn_opcode |= va_arg (args, int) << MIPS16OP_SH_RY;
3264 continue;
3265
3266 case 'x':
3267 case 'v':
3268 insn.insn_opcode |= va_arg (args, int) << MIPS16OP_SH_RX;
3269 continue;
3270
3271 case 'z':
3272 insn.insn_opcode |= va_arg (args, int) << MIPS16OP_SH_RZ;
3273 continue;
3274
3275 case 'Z':
3276 insn.insn_opcode |= va_arg (args, int) << MIPS16OP_SH_MOVE32Z;
3277 continue;
3278
3279 case '0':
3280 case 'S':
3281 case 'P':
3282 case 'R':
3283 continue;
3284
3285 case 'X':
3286 insn.insn_opcode |= va_arg (args, int) << MIPS16OP_SH_REGR32;
3287 continue;
3288
3289 case 'Y':
3290 {
3291 int regno;
3292
3293 regno = va_arg (args, int);
3294 regno = ((regno & 7) << 2) | ((regno & 0x18) >> 3);
3295 insn.insn_opcode |= regno << MIPS16OP_SH_REG32R;
3296 }
3297 continue;
3298
3299 case '<':
3300 case '>':
3301 case '4':
3302 case '5':
3303 case 'H':
3304 case 'W':
3305 case 'D':
3306 case 'j':
3307 case '8':
3308 case 'V':
3309 case 'C':
3310 case 'U':
3311 case 'k':
3312 case 'K':
3313 case 'p':
3314 case 'q':
3315 {
3316 assert (ep != NULL);
3317
3318 if (ep->X_op != O_constant)
3319 *r = (int) BFD_RELOC_UNUSED + c;
3320 else
3321 {
3322 mips16_immed (NULL, 0, c, ep->X_add_number, FALSE, FALSE,
3323 FALSE, &insn.insn_opcode, &insn.use_extend,
3324 &insn.extend);
3325 ep = NULL;
3326 *r = BFD_RELOC_UNUSED;
3327 }
3328 }
3329 continue;
3330
3331 case '6':
3332 insn.insn_opcode |= va_arg (args, int) << MIPS16OP_SH_IMM6;
3333 continue;
3334 }
3335
3336 break;
3337 }
3338
3339 assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
3340
3341 append_insn (&insn, ep, r);
3342 }
3343
3344 /*
3345 * Generate a "jalr" instruction with a relocation hint to the called
3346 * function. This occurs in NewABI PIC code.
3347 */
3348 static void
3349 macro_build_jalr (expressionS *ep)
3350 {
3351 char *f = NULL;
3352
3353 if (HAVE_NEWABI)
3354 {
3355 frag_grow (8);
3356 f = frag_more (0);
3357 }
3358 macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG);
3359 if (HAVE_NEWABI)
3360 fix_new_exp (frag_now, f - frag_now->fr_literal,
3361 4, ep, FALSE, BFD_RELOC_MIPS_JALR);
3362 }
3363
3364 /*
3365 * Generate a "lui" instruction.
3366 */
3367 static void
3368 macro_build_lui (expressionS *ep, int regnum)
3369 {
3370 expressionS high_expr;
3371 struct mips_cl_insn insn;
3372 bfd_reloc_code_real_type r[3]
3373 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
3374 const char *name = "lui";
3375 const char *fmt = "t,u";
3376
3377 assert (! mips_opts.mips16);
3378
3379 high_expr = *ep;
3380
3381 if (high_expr.X_op == O_constant)
3382 {
3383 /* we can compute the instruction now without a relocation entry */
3384 high_expr.X_add_number = ((high_expr.X_add_number + 0x8000)
3385 >> 16) & 0xffff;
3386 *r = BFD_RELOC_UNUSED;
3387 }
3388 else
3389 {
3390 assert (ep->X_op == O_symbol);
3391 /* _gp_disp is a special case, used from s_cpload. _gp is used
3392 if mips_no_shared. */
3393 assert (mips_pic == NO_PIC
3394 || (! HAVE_NEWABI
3395 && strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0)
3396 || (! mips_in_shared
3397 && strcmp (S_GET_NAME (ep->X_add_symbol), "_gp") == 0));
3398 *r = BFD_RELOC_HI16_S;
3399 }
3400
3401 insn.insn_mo = (struct mips_opcode *) hash_find (op_hash, name);
3402 assert (insn.insn_mo);
3403 assert (strcmp (name, insn.insn_mo->name) == 0);
3404 assert (strcmp (fmt, insn.insn_mo->args) == 0);
3405
3406 insn.insn_opcode = insn.insn_mo->match | (regnum << OP_SH_RT);
3407 if (*r == BFD_RELOC_UNUSED)
3408 {
3409 insn.insn_opcode |= high_expr.X_add_number;
3410 append_insn (&insn, NULL, r);
3411 }
3412 else
3413 append_insn (&insn, &high_expr, r);
3414 }
3415
3416 /* Generate a sequence of instructions to do a load or store from a constant
3417 offset off of a base register (breg) into/from a target register (treg),
3418 using AT if necessary. */
3419 static void
3420 macro_build_ldst_constoffset (expressionS *ep, const char *op,
3421 int treg, int breg, int dbl)
3422 {
3423 assert (ep->X_op == O_constant);
3424
3425 /* Sign-extending 32-bit constants makes their handling easier. */
3426 if (! dbl && ! ((ep->X_add_number & ~((bfd_vma) 0x7fffffff))
3427 == ~((bfd_vma) 0x7fffffff)))
3428 {
3429 if (ep->X_add_number & ~((bfd_vma) 0xffffffff))
3430 as_bad (_("constant too large"));
3431
3432 ep->X_add_number = (((ep->X_add_number & 0xffffffff) ^ 0x80000000)
3433 - 0x80000000);
3434 }
3435
3436 /* Right now, this routine can only handle signed 32-bit constants. */
3437 if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000))
3438 as_warn (_("operand overflow"));
3439
3440 if (IS_SEXT_16BIT_NUM(ep->X_add_number))
3441 {
3442 /* Signed 16-bit offset will fit in the op. Easy! */
3443 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg);
3444 }
3445 else
3446 {
3447 /* 32-bit offset, need multiple instructions and AT, like:
3448 lui $tempreg,const_hi (BFD_RELOC_HI16_S)
3449 addu $tempreg,$tempreg,$breg
3450 <op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
3451 to handle the complete offset. */
3452 macro_build_lui (ep, AT);
3453 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
3454 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT);
3455
3456 if (mips_opts.noat)
3457 as_bad (_("Macro used $at after \".set noat\""));
3458 }
3459 }
3460
3461 /* set_at()
3462 * Generates code to set the $at register to true (one)
3463 * if reg is less than the immediate expression.
3464 */
3465 static void
3466 set_at (int reg, int unsignedp)
3467 {
3468 if (imm_expr.X_op == O_constant
3469 && imm_expr.X_add_number >= -0x8000
3470 && imm_expr.X_add_number < 0x8000)
3471 macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j",
3472 AT, reg, BFD_RELOC_LO16);
3473 else
3474 {
3475 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
3476 macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT);
3477 }
3478 }
3479
3480 static void
3481 normalize_constant_expr (expressionS *ex)
3482 {
3483 if (ex->X_op == O_constant && HAVE_32BIT_GPRS)
3484 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
3485 - 0x80000000);
3486 }
3487
3488 /* Warn if an expression is not a constant. */
3489
3490 static void
3491 check_absolute_expr (struct mips_cl_insn *ip, expressionS *ex)
3492 {
3493 if (ex->X_op == O_big)
3494 as_bad (_("unsupported large constant"));
3495 else if (ex->X_op != O_constant)
3496 as_bad (_("Instruction %s requires absolute expression"), ip->insn_mo->name);
3497
3498 normalize_constant_expr (ex);
3499 }
3500
3501 /* Count the leading zeroes by performing a binary chop. This is a
3502 bulky bit of source, but performance is a LOT better for the
3503 majority of values than a simple loop to count the bits:
3504 for (lcnt = 0; (lcnt < 32); lcnt++)
3505 if ((v) & (1 << (31 - lcnt)))
3506 break;
3507 However it is not code size friendly, and the gain will drop a bit
3508 on certain cached systems.
3509 */
3510 #define COUNT_TOP_ZEROES(v) \
3511 (((v) & ~0xffff) == 0 \
3512 ? ((v) & ~0xff) == 0 \
3513 ? ((v) & ~0xf) == 0 \
3514 ? ((v) & ~0x3) == 0 \
3515 ? ((v) & ~0x1) == 0 \
3516 ? !(v) \
3517 ? 32 \
3518 : 31 \
3519 : 30 \
3520 : ((v) & ~0x7) == 0 \
3521 ? 29 \
3522 : 28 \
3523 : ((v) & ~0x3f) == 0 \
3524 ? ((v) & ~0x1f) == 0 \
3525 ? 27 \
3526 : 26 \
3527 : ((v) & ~0x7f) == 0 \
3528 ? 25 \
3529 : 24 \
3530 : ((v) & ~0xfff) == 0 \
3531 ? ((v) & ~0x3ff) == 0 \
3532 ? ((v) & ~0x1ff) == 0 \
3533 ? 23 \
3534 : 22 \
3535 : ((v) & ~0x7ff) == 0 \
3536 ? 21 \
3537 : 20 \
3538 : ((v) & ~0x3fff) == 0 \
3539 ? ((v) & ~0x1fff) == 0 \
3540 ? 19 \
3541 : 18 \
3542 : ((v) & ~0x7fff) == 0 \
3543 ? 17 \
3544 : 16 \
3545 : ((v) & ~0xffffff) == 0 \
3546 ? ((v) & ~0xfffff) == 0 \
3547 ? ((v) & ~0x3ffff) == 0 \
3548 ? ((v) & ~0x1ffff) == 0 \
3549 ? 15 \
3550 : 14 \
3551 : ((v) & ~0x7ffff) == 0 \
3552 ? 13 \
3553 : 12 \
3554 : ((v) & ~0x3fffff) == 0 \
3555 ? ((v) & ~0x1fffff) == 0 \
3556 ? 11 \
3557 : 10 \
3558 : ((v) & ~0x7fffff) == 0 \
3559 ? 9 \
3560 : 8 \
3561 : ((v) & ~0xfffffff) == 0 \
3562 ? ((v) & ~0x3ffffff) == 0 \
3563 ? ((v) & ~0x1ffffff) == 0 \
3564 ? 7 \
3565 : 6 \
3566 : ((v) & ~0x7ffffff) == 0 \
3567 ? 5 \
3568 : 4 \
3569 : ((v) & ~0x3fffffff) == 0 \
3570 ? ((v) & ~0x1fffffff) == 0 \
3571 ? 3 \
3572 : 2 \
3573 : ((v) & ~0x7fffffff) == 0 \
3574 ? 1 \
3575 : 0)
3576
3577 /* load_register()
3578 * This routine generates the least number of instructions necessary to load
3579 * an absolute expression value into a register.
3580 */
3581 static void
3582 load_register (int reg, expressionS *ep, int dbl)
3583 {
3584 int freg;
3585 expressionS hi32, lo32;
3586
3587 if (ep->X_op != O_big)
3588 {
3589 assert (ep->X_op == O_constant);
3590
3591 /* Sign-extending 32-bit constants makes their handling easier. */
3592 if (! dbl && ! ((ep->X_add_number & ~((bfd_vma) 0x7fffffff))
3593 == ~((bfd_vma) 0x7fffffff)))
3594 {
3595 if (ep->X_add_number & ~((bfd_vma) 0xffffffff))
3596 as_bad (_("constant too large"));
3597
3598 ep->X_add_number = (((ep->X_add_number & 0xffffffff) ^ 0x80000000)
3599 - 0x80000000);
3600 }
3601
3602 if (IS_SEXT_16BIT_NUM (ep->X_add_number))
3603 {
3604 /* We can handle 16 bit signed values with an addiu to
3605 $zero. No need to ever use daddiu here, since $zero and
3606 the result are always correct in 32 bit mode. */
3607 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
3608 return;
3609 }
3610 else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
3611 {
3612 /* We can handle 16 bit unsigned values with an ori to
3613 $zero. */
3614 macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
3615 return;
3616 }
3617 else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)))
3618 {
3619 /* 32 bit values require an lui. */
3620 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_HI16);
3621 if ((ep->X_add_number & 0xffff) != 0)
3622 macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
3623 return;
3624 }
3625 }
3626
3627 /* The value is larger than 32 bits. */
3628
3629 if (HAVE_32BIT_GPRS)
3630 {
3631 as_bad (_("Number (0x%lx) larger than 32 bits"),
3632 (unsigned long) ep->X_add_number);
3633 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
3634 return;
3635 }
3636
3637 if (ep->X_op != O_big)
3638 {
3639 hi32 = *ep;
3640 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
3641 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
3642 hi32.X_add_number &= 0xffffffff;
3643 lo32 = *ep;
3644 lo32.X_add_number &= 0xffffffff;
3645 }
3646 else
3647 {
3648 assert (ep->X_add_number > 2);
3649 if (ep->X_add_number == 3)
3650 generic_bignum[3] = 0;
3651 else if (ep->X_add_number > 4)
3652 as_bad (_("Number larger than 64 bits"));
3653 lo32.X_op = O_constant;
3654 lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
3655 hi32.X_op = O_constant;
3656 hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
3657 }
3658
3659 if (hi32.X_add_number == 0)
3660 freg = 0;
3661 else
3662 {
3663 int shift, bit;
3664 unsigned long hi, lo;
3665
3666 if (hi32.X_add_number == (offsetT) 0xffffffff)
3667 {
3668 if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
3669 {
3670 macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
3671 return;
3672 }
3673 if (lo32.X_add_number & 0x80000000)
3674 {
3675 macro_build (&lo32, "lui", "t,u", reg, BFD_RELOC_HI16);
3676 if (lo32.X_add_number & 0xffff)
3677 macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
3678 return;
3679 }
3680 }
3681
3682 /* Check for 16bit shifted constant. We know that hi32 is
3683 non-zero, so start the mask on the first bit of the hi32
3684 value. */
3685 shift = 17;
3686 do
3687 {
3688 unsigned long himask, lomask;
3689
3690 if (shift < 32)
3691 {
3692 himask = 0xffff >> (32 - shift);
3693 lomask = (0xffff << shift) & 0xffffffff;
3694 }
3695 else
3696 {
3697 himask = 0xffff << (shift - 32);
3698 lomask = 0;
3699 }
3700 if ((hi32.X_add_number & ~(offsetT) himask) == 0
3701 && (lo32.X_add_number & ~(offsetT) lomask) == 0)
3702 {
3703 expressionS tmp;
3704
3705 tmp.X_op = O_constant;
3706 if (shift < 32)
3707 tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
3708 | (lo32.X_add_number >> shift));
3709 else
3710 tmp.X_add_number = hi32.X_add_number >> (shift - 32);
3711 macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
3712 macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", "d,w,<",
3713 reg, reg, (shift >= 32) ? shift - 32 : shift);
3714 return;
3715 }
3716 ++shift;
3717 }
3718 while (shift <= (64 - 16));
3719
3720 /* Find the bit number of the lowest one bit, and store the
3721 shifted value in hi/lo. */
3722 hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
3723 lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
3724 if (lo != 0)
3725 {
3726 bit = 0;
3727 while ((lo & 1) == 0)
3728 {
3729 lo >>= 1;
3730 ++bit;
3731 }
3732 lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit);
3733 hi >>= bit;
3734 }
3735 else
3736 {
3737 bit = 32;
3738 while ((hi & 1) == 0)
3739 {
3740 hi >>= 1;
3741 ++bit;
3742 }
3743 lo = hi;
3744 hi = 0;
3745 }
3746
3747 /* Optimize if the shifted value is a (power of 2) - 1. */
3748 if ((hi == 0 && ((lo + 1) & lo) == 0)
3749 || (lo == 0xffffffff && ((hi + 1) & hi) == 0))
3750 {
3751 shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
3752 if (shift != 0)
3753 {
3754 expressionS tmp;
3755
3756 /* This instruction will set the register to be all
3757 ones. */
3758 tmp.X_op = O_constant;
3759 tmp.X_add_number = (offsetT) -1;
3760 macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
3761 if (bit != 0)
3762 {
3763 bit += shift;
3764 macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", "d,w,<",
3765 reg, reg, (bit >= 32) ? bit - 32 : bit);
3766 }
3767 macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", "d,w,<",
3768 reg, reg, (shift >= 32) ? shift - 32 : shift);
3769 return;
3770 }
3771 }
3772
3773 /* Sign extend hi32 before calling load_register, because we can
3774 generally get better code when we load a sign extended value. */
3775 if ((hi32.X_add_number & 0x80000000) != 0)
3776 hi32.X_add_number |= ~(offsetT) 0xffffffff;
3777 load_register (reg, &hi32, 0);
3778 freg = reg;
3779 }
3780 if ((lo32.X_add_number & 0xffff0000) == 0)
3781 {
3782 if (freg != 0)
3783 {
3784 macro_build (NULL, "dsll32", "d,w,<", reg, freg, 0);
3785 freg = reg;
3786 }
3787 }
3788 else
3789 {
3790 expressionS mid16;
3791
3792 if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
3793 {
3794 macro_build (&lo32, "lui", "t,u", reg, BFD_RELOC_HI16);
3795 macro_build (NULL, "dsrl32", "d,w,<", reg, reg, 0);
3796 return;
3797 }
3798
3799 if (freg != 0)
3800 {
3801 macro_build (NULL, "dsll", "d,w,<", reg, freg, 16);
3802 freg = reg;
3803 }
3804 mid16 = lo32;
3805 mid16.X_add_number >>= 16;
3806 macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
3807 macro_build (NULL, "dsll", "d,w,<", reg, reg, 16);
3808 freg = reg;
3809 }
3810 if ((lo32.X_add_number & 0xffff) != 0)
3811 macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
3812 }
3813
3814 static inline void
3815 load_delay_nop (void)
3816 {
3817 if (!gpr_interlocks)
3818 macro_build (NULL, "nop", "");
3819 }
3820
3821 /* Load an address into a register. */
3822
3823 static void
3824 load_address (int reg, expressionS *ep, int *used_at)
3825 {
3826 if (ep->X_op != O_constant
3827 && ep->X_op != O_symbol)
3828 {
3829 as_bad (_("expression too complex"));
3830 ep->X_op = O_constant;
3831 }
3832
3833 if (ep->X_op == O_constant)
3834 {
3835 load_register (reg, ep, HAVE_64BIT_ADDRESSES);
3836 return;
3837 }
3838
3839 if (mips_pic == NO_PIC)
3840 {
3841 /* If this is a reference to a GP relative symbol, we want
3842 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
3843 Otherwise we want
3844 lui $reg,<sym> (BFD_RELOC_HI16_S)
3845 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
3846 If we have an addend, we always use the latter form.
3847
3848 With 64bit address space and a usable $at we want
3849 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
3850 lui $at,<sym> (BFD_RELOC_HI16_S)
3851 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
3852 daddiu $at,<sym> (BFD_RELOC_LO16)
3853 dsll32 $reg,0
3854 daddu $reg,$reg,$at
3855
3856 If $at is already in use, we use a path which is suboptimal
3857 on superscalar processors.
3858 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
3859 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
3860 dsll $reg,16
3861 daddiu $reg,<sym> (BFD_RELOC_HI16_S)
3862 dsll $reg,16
3863 daddiu $reg,<sym> (BFD_RELOC_LO16)
3864 */
3865 if (HAVE_64BIT_ADDRESSES)
3866 {
3867 /* ??? We don't provide a GP-relative alternative for these macros.
3868 It used not to be possible with the original relaxation code,
3869 but it could be done now. */
3870
3871 if (*used_at == 0 && !mips_opts.noat)
3872 {
3873 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_HIGHEST);
3874 macro_build (ep, "lui", "t,u", AT, BFD_RELOC_HI16_S);
3875 macro_build (ep, "daddiu", "t,r,j", reg, reg,
3876 BFD_RELOC_MIPS_HIGHER);
3877 macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16);
3878 macro_build (NULL, "dsll32", "d,w,<", reg, reg, 0);
3879 macro_build (NULL, "daddu", "d,v,t", reg, reg, AT);
3880 *used_at = 1;
3881 }
3882 else
3883 {
3884 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_HIGHEST);
3885 macro_build (ep, "daddiu", "t,r,j", reg, reg,
3886 BFD_RELOC_MIPS_HIGHER);
3887 macro_build (NULL, "dsll", "d,w,<", reg, reg, 16);
3888 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S);
3889 macro_build (NULL, "dsll", "d,w,<", reg, reg, 16);
3890 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16);
3891 }
3892 }
3893 else
3894 {
3895 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
3896 && ! nopic_need_relax (ep->X_add_symbol, 1))
3897 {
3898 relax_start (ep->X_add_symbol);
3899 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
3900 mips_gp_register, BFD_RELOC_GPREL16);
3901 relax_switch ();
3902 }
3903 macro_build_lui (ep, reg);
3904 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
3905 reg, reg, BFD_RELOC_LO16);
3906 if (mips_relax.sequence)
3907 relax_end ();
3908 }
3909 }
3910 else if (mips_pic == SVR4_PIC && ! mips_big_got)
3911 {
3912 expressionS ex;
3913
3914 /* If this is a reference to an external symbol, we want
3915 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
3916 Otherwise we want
3917 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
3918 nop
3919 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
3920 If there is a constant, it must be added in after.
3921
3922 If we have NewABI, we want
3923 lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
3924 unless we're referencing a global symbol with a non-zero
3925 offset, in which case cst must be added separately. */
3926 if (HAVE_NEWABI)
3927 {
3928 if (ep->X_add_number)
3929 {
3930 ex.X_add_number = ep->X_add_number;
3931 ep->X_add_number = 0;
3932 relax_start (ep->X_add_symbol);
3933 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
3934 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
3935 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
3936 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
3937 ex.X_op = O_constant;
3938 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
3939 reg, reg, BFD_RELOC_LO16);
3940 ep->X_add_number = ex.X_add_number;
3941 relax_switch ();
3942 }
3943 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
3944 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
3945 if (mips_relax.sequence)
3946 relax_end ();
3947 }
3948 else
3949 {
3950 ex.X_add_number = ep->X_add_number;
3951 ep->X_add_number = 0;
3952 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
3953 BFD_RELOC_MIPS_GOT16, mips_gp_register);
3954 load_delay_nop ();
3955 relax_start (ep->X_add_symbol);
3956 relax_switch ();
3957 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
3958 BFD_RELOC_LO16);
3959 relax_end ();
3960
3961 if (ex.X_add_number != 0)
3962 {
3963 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
3964 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
3965 ex.X_op = O_constant;
3966 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
3967 reg, reg, BFD_RELOC_LO16);
3968 }
3969 }
3970 }
3971 else if (mips_pic == SVR4_PIC)
3972 {
3973 expressionS ex;
3974
3975 /* This is the large GOT case. If this is a reference to an
3976 external symbol, we want
3977 lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
3978 addu $reg,$reg,$gp
3979 lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
3980
3981 Otherwise, for a reference to a local symbol in old ABI, we want
3982 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
3983 nop
3984 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
3985 If there is a constant, it must be added in after.
3986
3987 In the NewABI, for local symbols, with or without offsets, we want:
3988 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
3989 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
3990 */
3991 if (HAVE_NEWABI)
3992 {
3993 ex.X_add_number = ep->X_add_number;
3994 ep->X_add_number = 0;
3995 relax_start (ep->X_add_symbol);
3996 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_GOT_HI16);
3997 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
3998 reg, reg, mips_gp_register);
3999 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
4000 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
4001 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
4002 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4003 else if (ex.X_add_number)
4004 {
4005 ex.X_op = O_constant;
4006 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4007 BFD_RELOC_LO16);
4008 }
4009
4010 ep->X_add_number = ex.X_add_number;
4011 relax_switch ();
4012 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4013 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
4014 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4015 BFD_RELOC_MIPS_GOT_OFST);
4016 relax_end ();
4017 }
4018 else
4019 {
4020 ex.X_add_number = ep->X_add_number;
4021 ep->X_add_number = 0;
4022 relax_start (ep->X_add_symbol);
4023 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_GOT_HI16);
4024 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
4025 reg, reg, mips_gp_register);
4026 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
4027 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
4028 relax_switch ();
4029 if (reg_needs_delay (mips_gp_register))
4030 {
4031 /* We need a nop before loading from $gp. This special
4032 check is required because the lui which starts the main
4033 instruction stream does not refer to $gp, and so will not
4034 insert the nop which may be required. */
4035 macro_build (NULL, "nop", "");
4036 }
4037 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4038 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4039 load_delay_nop ();
4040 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4041 BFD_RELOC_LO16);
4042 relax_end ();
4043
4044 if (ex.X_add_number != 0)
4045 {
4046 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
4047 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4048 ex.X_op = O_constant;
4049 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4050 BFD_RELOC_LO16);
4051 }
4052 }
4053 }
4054 else
4055 abort ();
4056
4057 if (mips_opts.noat && *used_at == 1)
4058 as_bad (_("Macro used $at after \".set noat\""));
4059 }
4060
4061 /* Move the contents of register SOURCE into register DEST. */
4062
4063 static void
4064 move_register (int dest, int source)
4065 {
4066 macro_build (NULL, HAVE_32BIT_GPRS ? "addu" : "daddu", "d,v,t",
4067 dest, source, 0);
4068 }
4069
4070 /* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
4071 LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
4072 The two alternatives are:
4073
4074 Global symbol Local sybmol
4075 ------------- ------------
4076 lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
4077 ... ...
4078 addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
4079
4080 load_got_offset emits the first instruction and add_got_offset
4081 emits the second for a 16-bit offset or add_got_offset_hilo emits
4082 a sequence to add a 32-bit offset using a scratch register. */
4083
4084 static void
4085 load_got_offset (int dest, expressionS *local)
4086 {
4087 expressionS global;
4088
4089 global = *local;
4090 global.X_add_number = 0;
4091
4092 relax_start (local->X_add_symbol);
4093 macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest,
4094 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4095 relax_switch ();
4096 macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest,
4097 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4098 relax_end ();
4099 }
4100
4101 static void
4102 add_got_offset (int dest, expressionS *local)
4103 {
4104 expressionS global;
4105
4106 global.X_op = O_constant;
4107 global.X_op_symbol = NULL;
4108 global.X_add_symbol = NULL;
4109 global.X_add_number = local->X_add_number;
4110
4111 relax_start (local->X_add_symbol);
4112 macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j",
4113 dest, dest, BFD_RELOC_LO16);
4114 relax_switch ();
4115 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16);
4116 relax_end ();
4117 }
4118
4119 static void
4120 add_got_offset_hilo (int dest, expressionS *local, int tmp)
4121 {
4122 expressionS global;
4123 int hold_mips_optimize;
4124
4125 global.X_op = O_constant;
4126 global.X_op_symbol = NULL;
4127 global.X_add_symbol = NULL;
4128 global.X_add_number = local->X_add_number;
4129
4130 relax_start (local->X_add_symbol);
4131 load_register (tmp, &global, HAVE_64BIT_ADDRESSES);
4132 relax_switch ();
4133 /* Set mips_optimize around the lui instruction to avoid
4134 inserting an unnecessary nop after the lw. */
4135 hold_mips_optimize = mips_optimize;
4136 mips_optimize = 2;
4137 macro_build_lui (&global, tmp);
4138 mips_optimize = hold_mips_optimize;
4139 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16);
4140 relax_end ();
4141
4142 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp);
4143 }
4144
4145 /*
4146 * Build macros
4147 * This routine implements the seemingly endless macro or synthesized
4148 * instructions and addressing modes in the mips assembly language. Many
4149 * of these macros are simple and are similar to each other. These could
4150 * probably be handled by some kind of table or grammar approach instead of
4151 * this verbose method. Others are not simple macros but are more like
4152 * optimizing code generation.
4153 * One interesting optimization is when several store macros appear
4154 * consecutively that would load AT with the upper half of the same address.
4155 * The ensuing load upper instructions are ommited. This implies some kind
4156 * of global optimization. We currently only optimize within a single macro.
4157 * For many of the load and store macros if the address is specified as a
4158 * constant expression in the first 64k of memory (ie ld $2,0x4000c) we
4159 * first load register 'at' with zero and use it as the base register. The
4160 * mips assembler simply uses register $zero. Just one tiny optimization
4161 * we're missing.
4162 */
4163 static void
4164 macro (struct mips_cl_insn *ip)
4165 {
4166 register int treg, sreg, dreg, breg;
4167 int tempreg;
4168 int mask;
4169 int used_at = 0;
4170 expressionS expr1;
4171 const char *s;
4172 const char *s2;
4173 const char *fmt;
4174 int likely = 0;
4175 int dbl = 0;
4176 int coproc = 0;
4177 int lr = 0;
4178 int imm = 0;
4179 int call = 0;
4180 int off;
4181 offsetT maxnum;
4182 bfd_reloc_code_real_type r;
4183 int hold_mips_optimize;
4184
4185 assert (! mips_opts.mips16);
4186
4187 treg = (ip->insn_opcode >> 16) & 0x1f;
4188 dreg = (ip->insn_opcode >> 11) & 0x1f;
4189 sreg = breg = (ip->insn_opcode >> 21) & 0x1f;
4190 mask = ip->insn_mo->mask;
4191
4192 expr1.X_op = O_constant;
4193 expr1.X_op_symbol = NULL;
4194 expr1.X_add_symbol = NULL;
4195 expr1.X_add_number = 1;
4196
4197 switch (mask)
4198 {
4199 case M_DABS:
4200 dbl = 1;
4201 case M_ABS:
4202 /* bgez $a0,.+12
4203 move v0,$a0
4204 sub v0,$zero,$a0
4205 */
4206
4207 mips_emit_delays (TRUE);
4208 ++mips_opts.noreorder;
4209 mips_any_noreorder = 1;
4210
4211 expr1.X_add_number = 8;
4212 macro_build (&expr1, "bgez", "s,p", sreg);
4213 if (dreg == sreg)
4214 macro_build (NULL, "nop", "", 0);
4215 else
4216 move_register (dreg, sreg);
4217 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", dreg, 0, sreg);
4218
4219 --mips_opts.noreorder;
4220 break;
4221
4222 case M_ADD_I:
4223 s = "addi";
4224 s2 = "add";
4225 goto do_addi;
4226 case M_ADDU_I:
4227 s = "addiu";
4228 s2 = "addu";
4229 goto do_addi;
4230 case M_DADD_I:
4231 dbl = 1;
4232 s = "daddi";
4233 s2 = "dadd";
4234 goto do_addi;
4235 case M_DADDU_I:
4236 dbl = 1;
4237 s = "daddiu";
4238 s2 = "daddu";
4239 do_addi:
4240 if (imm_expr.X_op == O_constant
4241 && imm_expr.X_add_number >= -0x8000
4242 && imm_expr.X_add_number < 0x8000)
4243 {
4244 macro_build (&imm_expr, s, "t,r,j", treg, sreg, BFD_RELOC_LO16);
4245 break;
4246 }
4247 used_at = 1;
4248 load_register (AT, &imm_expr, dbl);
4249 macro_build (NULL, s2, "d,v,t", treg, sreg, AT);
4250 break;
4251
4252 case M_AND_I:
4253 s = "andi";
4254 s2 = "and";
4255 goto do_bit;
4256 case M_OR_I:
4257 s = "ori";
4258 s2 = "or";
4259 goto do_bit;
4260 case M_NOR_I:
4261 s = "";
4262 s2 = "nor";
4263 goto do_bit;
4264 case M_XOR_I:
4265 s = "xori";
4266 s2 = "xor";
4267 do_bit:
4268 if (imm_expr.X_op == O_constant
4269 && imm_expr.X_add_number >= 0
4270 && imm_expr.X_add_number < 0x10000)
4271 {
4272 if (mask != M_NOR_I)
4273 macro_build (&imm_expr, s, "t,r,i", treg, sreg, BFD_RELOC_LO16);
4274 else
4275 {
4276 macro_build (&imm_expr, "ori", "t,r,i",
4277 treg, sreg, BFD_RELOC_LO16);
4278 macro_build (NULL, "nor", "d,v,t", treg, treg, 0);
4279 }
4280 break;
4281 }
4282
4283 used_at = 1;
4284 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
4285 macro_build (NULL, s2, "d,v,t", treg, sreg, AT);
4286 break;
4287
4288 case M_BEQ_I:
4289 s = "beq";
4290 goto beq_i;
4291 case M_BEQL_I:
4292 s = "beql";
4293 likely = 1;
4294 goto beq_i;
4295 case M_BNE_I:
4296 s = "bne";
4297 goto beq_i;
4298 case M_BNEL_I:
4299 s = "bnel";
4300 likely = 1;
4301 beq_i:
4302 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
4303 {
4304 macro_build (&offset_expr, s, "s,t,p", sreg, 0);
4305 break;
4306 }
4307 used_at = 1;
4308 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
4309 macro_build (&offset_expr, s, "s,t,p", sreg, AT);
4310 break;
4311
4312 case M_BGEL:
4313 likely = 1;
4314 case M_BGE:
4315 if (treg == 0)
4316 {
4317 macro_build (&offset_expr, likely ? "bgezl" : "bgez", "s,p", sreg);
4318 break;
4319 }
4320 if (sreg == 0)
4321 {
4322 macro_build (&offset_expr, likely ? "blezl" : "blez", "s,p", treg);
4323 break;
4324 }
4325 used_at = 1;
4326 macro_build (NULL, "slt", "d,v,t", AT, sreg, treg);
4327 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
4328 break;
4329
4330 case M_BGTL_I:
4331 likely = 1;
4332 case M_BGT_I:
4333 /* check for > max integer */
4334 maxnum = 0x7fffffff;
4335 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4)
4336 {
4337 maxnum <<= 16;
4338 maxnum |= 0xffff;
4339 maxnum <<= 16;
4340 maxnum |= 0xffff;
4341 }
4342 if (imm_expr.X_op == O_constant
4343 && imm_expr.X_add_number >= maxnum
4344 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4))
4345 {
4346 do_false:
4347 /* result is always false */
4348 if (! likely)
4349 macro_build (NULL, "nop", "", 0);
4350 else
4351 macro_build (&offset_expr, "bnel", "s,t,p", 0, 0);
4352 break;
4353 }
4354 if (imm_expr.X_op != O_constant)
4355 as_bad (_("Unsupported large constant"));
4356 ++imm_expr.X_add_number;
4357 /* FALLTHROUGH */
4358 case M_BGE_I:
4359 case M_BGEL_I:
4360 if (mask == M_BGEL_I)
4361 likely = 1;
4362 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
4363 {
4364 macro_build (&offset_expr, likely ? "bgezl" : "bgez", "s,p", sreg);
4365 break;
4366 }
4367 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
4368 {
4369 macro_build (&offset_expr, likely ? "bgtzl" : "bgtz", "s,p", sreg);
4370 break;
4371 }
4372 maxnum = 0x7fffffff;
4373 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4)
4374 {
4375 maxnum <<= 16;
4376 maxnum |= 0xffff;
4377 maxnum <<= 16;
4378 maxnum |= 0xffff;
4379 }
4380 maxnum = - maxnum - 1;
4381 if (imm_expr.X_op == O_constant
4382 && imm_expr.X_add_number <= maxnum
4383 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4))
4384 {
4385 do_true:
4386 /* result is always true */
4387 as_warn (_("Branch %s is always true"), ip->insn_mo->name);
4388 macro_build (&offset_expr, "b", "p");
4389 break;
4390 }
4391 used_at = 1;
4392 set_at (sreg, 0);
4393 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
4394 break;
4395
4396 case M_BGEUL:
4397 likely = 1;
4398 case M_BGEU:
4399 if (treg == 0)
4400 goto do_true;
4401 if (sreg == 0)
4402 {
4403 macro_build (&offset_expr, likely ? "beql" : "beq",
4404 "s,t,p", 0, treg);
4405 break;
4406 }
4407 used_at = 1;
4408 macro_build (NULL, "sltu", "d,v,t", AT, sreg, treg);
4409 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
4410 break;
4411
4412 case M_BGTUL_I:
4413 likely = 1;
4414 case M_BGTU_I:
4415 if (sreg == 0
4416 || (HAVE_32BIT_GPRS
4417 && imm_expr.X_op == O_constant
4418 && imm_expr.X_add_number == (offsetT) 0xffffffff))
4419 goto do_false;
4420 if (imm_expr.X_op != O_constant)
4421 as_bad (_("Unsupported large constant"));
4422 ++imm_expr.X_add_number;
4423 /* FALLTHROUGH */
4424 case M_BGEU_I:
4425 case M_BGEUL_I:
4426 if (mask == M_BGEUL_I)
4427 likely = 1;
4428 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
4429 goto do_true;
4430 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
4431 {
4432 macro_build (&offset_expr, likely ? "bnel" : "bne",
4433 "s,t,p", sreg, 0);
4434 break;
4435 }
4436 used_at = 1;
4437 set_at (sreg, 1);
4438 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
4439 break;
4440
4441 case M_BGTL:
4442 likely = 1;
4443 case M_BGT:
4444 if (treg == 0)
4445 {
4446 macro_build (&offset_expr, likely ? "bgtzl" : "bgtz", "s,p", sreg);
4447 break;
4448 }
4449 if (sreg == 0)
4450 {
4451 macro_build (&offset_expr, likely ? "bltzl" : "bltz", "s,p", treg);
4452 break;
4453 }
4454 used_at = 1;
4455 macro_build (NULL, "slt", "d,v,t", AT, treg, sreg);
4456 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
4457 break;
4458
4459 case M_BGTUL:
4460 likely = 1;
4461 case M_BGTU:
4462 if (treg == 0)
4463 {
4464 macro_build (&offset_expr, likely ? "bnel" : "bne",
4465 "s,t,p", sreg, 0);
4466 break;
4467 }
4468 if (sreg == 0)
4469 goto do_false;
4470 used_at = 1;
4471 macro_build (NULL, "sltu", "d,v,t", AT, treg, sreg);
4472 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
4473 break;
4474
4475 case M_BLEL:
4476 likely = 1;
4477 case M_BLE:
4478 if (treg == 0)
4479 {
4480 macro_build (&offset_expr, likely ? "blezl" : "blez", "s,p", sreg);
4481 break;
4482 }
4483 if (sreg == 0)
4484 {
4485 macro_build (&offset_expr, likely ? "bgezl" : "bgez", "s,p", treg);
4486 break;
4487 }
4488 used_at = 1;
4489 macro_build (NULL, "slt", "d,v,t", AT, treg, sreg);
4490 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
4491 break;
4492
4493 case M_BLEL_I:
4494 likely = 1;
4495 case M_BLE_I:
4496 maxnum = 0x7fffffff;
4497 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4)
4498 {
4499 maxnum <<= 16;
4500 maxnum |= 0xffff;
4501 maxnum <<= 16;
4502 maxnum |= 0xffff;
4503 }
4504 if (imm_expr.X_op == O_constant
4505 && imm_expr.X_add_number >= maxnum
4506 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4))
4507 goto do_true;
4508 if (imm_expr.X_op != O_constant)
4509 as_bad (_("Unsupported large constant"));
4510 ++imm_expr.X_add_number;
4511 /* FALLTHROUGH */
4512 case M_BLT_I:
4513 case M_BLTL_I:
4514 if (mask == M_BLTL_I)
4515 likely = 1;
4516 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
4517 {
4518 macro_build (&offset_expr, likely ? "bltzl" : "bltz", "s,p", sreg);
4519 break;
4520 }
4521 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
4522 {
4523 macro_build (&offset_expr, likely ? "blezl" : "blez", "s,p", sreg);
4524 break;
4525 }
4526 used_at = 1;
4527 set_at (sreg, 0);
4528 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
4529 break;
4530
4531 case M_BLEUL:
4532 likely = 1;
4533 case M_BLEU:
4534 if (treg == 0)
4535 {
4536 macro_build (&offset_expr, likely ? "beql" : "beq",
4537 "s,t,p", sreg, 0);
4538 break;
4539 }
4540 if (sreg == 0)
4541 goto do_true;
4542 used_at = 1;
4543 macro_build (NULL, "sltu", "d,v,t", AT, treg, sreg);
4544 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
4545 break;
4546
4547 case M_BLEUL_I:
4548 likely = 1;
4549 case M_BLEU_I:
4550 if (sreg == 0
4551 || (HAVE_32BIT_GPRS
4552 && imm_expr.X_op == O_constant
4553 && imm_expr.X_add_number == (offsetT) 0xffffffff))
4554 goto do_true;
4555 if (imm_expr.X_op != O_constant)
4556 as_bad (_("Unsupported large constant"));
4557 ++imm_expr.X_add_number;
4558 /* FALLTHROUGH */
4559 case M_BLTU_I:
4560 case M_BLTUL_I:
4561 if (mask == M_BLTUL_I)
4562 likely = 1;
4563 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
4564 goto do_false;
4565 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
4566 {
4567 macro_build (&offset_expr, likely ? "beql" : "beq",
4568 "s,t,p", sreg, 0);
4569 break;
4570 }
4571 used_at = 1;
4572 set_at (sreg, 1);
4573 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
4574 break;
4575
4576 case M_BLTL:
4577 likely = 1;
4578 case M_BLT:
4579 if (treg == 0)
4580 {
4581 macro_build (&offset_expr, likely ? "bltzl" : "bltz", "s,p", sreg);
4582 break;
4583 }
4584 if (sreg == 0)
4585 {
4586 macro_build (&offset_expr, likely ? "bgtzl" : "bgtz", "s,p", treg);
4587 break;
4588 }
4589 used_at = 1;
4590 macro_build (NULL, "slt", "d,v,t", AT, sreg, treg);
4591 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
4592 break;
4593
4594 case M_BLTUL:
4595 likely = 1;
4596 case M_BLTU:
4597 if (treg == 0)
4598 goto do_false;
4599 if (sreg == 0)
4600 {
4601 macro_build (&offset_expr, likely ? "bnel" : "bne",
4602 "s,t,p", 0, treg);
4603 break;
4604 }
4605 used_at = 1;
4606 macro_build (NULL, "sltu", "d,v,t", AT, sreg, treg);
4607 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
4608 break;
4609
4610 case M_DEXT:
4611 {
4612 unsigned long pos;
4613 unsigned long size;
4614
4615 if (imm_expr.X_op != O_constant || imm2_expr.X_op != O_constant)
4616 {
4617 as_bad (_("Unsupported large constant"));
4618 pos = size = 1;
4619 }
4620 else
4621 {
4622 pos = (unsigned long) imm_expr.X_add_number;
4623 size = (unsigned long) imm2_expr.X_add_number;
4624 }
4625
4626 if (pos > 63)
4627 {
4628 as_bad (_("Improper position (%lu)"), pos);
4629 pos = 1;
4630 }
4631 if (size == 0 || size > 64
4632 || (pos + size - 1) > 63)
4633 {
4634 as_bad (_("Improper extract size (%lu, position %lu)"),
4635 size, pos);
4636 size = 1;
4637 }
4638
4639 if (size <= 32 && pos < 32)
4640 {
4641 s = "dext";
4642 fmt = "t,r,+A,+C";
4643 }
4644 else if (size <= 32)
4645 {
4646 s = "dextu";
4647 fmt = "t,r,+E,+H";
4648 }
4649 else
4650 {
4651 s = "dextm";
4652 fmt = "t,r,+A,+G";
4653 }
4654 macro_build ((expressionS *) NULL, s, fmt, treg, sreg, pos, size - 1);
4655 }
4656 break;
4657
4658 case M_DINS:
4659 {
4660 unsigned long pos;
4661 unsigned long size;
4662
4663 if (imm_expr.X_op != O_constant || imm2_expr.X_op != O_constant)
4664 {
4665 as_bad (_("Unsupported large constant"));
4666 pos = size = 1;
4667 }
4668 else
4669 {
4670 pos = (unsigned long) imm_expr.X_add_number;
4671 size = (unsigned long) imm2_expr.X_add_number;
4672 }
4673
4674 if (pos > 63)
4675 {
4676 as_bad (_("Improper position (%lu)"), pos);
4677 pos = 1;
4678 }
4679 if (size == 0 || size > 64
4680 || (pos + size - 1) > 63)
4681 {
4682 as_bad (_("Improper insert size (%lu, position %lu)"),
4683 size, pos);
4684 size = 1;
4685 }
4686
4687 if (pos < 32 && (pos + size - 1) < 32)
4688 {
4689 s = "dins";
4690 fmt = "t,r,+A,+B";
4691 }
4692 else if (pos >= 32)
4693 {
4694 s = "dinsu";
4695 fmt = "t,r,+E,+F";
4696 }
4697 else
4698 {
4699 s = "dinsm";
4700 fmt = "t,r,+A,+F";
4701 }
4702 macro_build ((expressionS *) NULL, s, fmt, treg, sreg, pos,
4703 pos + size - 1);
4704 }
4705 break;
4706
4707 case M_DDIV_3:
4708 dbl = 1;
4709 case M_DIV_3:
4710 s = "mflo";
4711 goto do_div3;
4712 case M_DREM_3:
4713 dbl = 1;
4714 case M_REM_3:
4715 s = "mfhi";
4716 do_div3:
4717 if (treg == 0)
4718 {
4719 as_warn (_("Divide by zero."));
4720 if (mips_trap)
4721 macro_build (NULL, "teq", "s,t,q", 0, 0, 7);
4722 else
4723 macro_build (NULL, "break", "c", 7);
4724 break;
4725 }
4726
4727 mips_emit_delays (TRUE);
4728 ++mips_opts.noreorder;
4729 mips_any_noreorder = 1;
4730 if (mips_trap)
4731 {
4732 macro_build (NULL, "teq", "s,t,q", treg, 0, 7);
4733 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", sreg, treg);
4734 }
4735 else
4736 {
4737 expr1.X_add_number = 8;
4738 macro_build (&expr1, "bne", "s,t,p", treg, 0);
4739 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", sreg, treg);
4740 macro_build (NULL, "break", "c", 7);
4741 }
4742 expr1.X_add_number = -1;
4743 used_at = 1;
4744 load_register (AT, &expr1, dbl);
4745 expr1.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
4746 macro_build (&expr1, "bne", "s,t,p", treg, AT);
4747 if (dbl)
4748 {
4749 expr1.X_add_number = 1;
4750 load_register (AT, &expr1, dbl);
4751 macro_build (NULL, "dsll32", "d,w,<", AT, AT, 31);
4752 }
4753 else
4754 {
4755 expr1.X_add_number = 0x80000000;
4756 macro_build (&expr1, "lui", "t,u", AT, BFD_RELOC_HI16);
4757 }
4758 if (mips_trap)
4759 {
4760 macro_build (NULL, "teq", "s,t,q", sreg, AT, 6);
4761 /* We want to close the noreorder block as soon as possible, so
4762 that later insns are available for delay slot filling. */
4763 --mips_opts.noreorder;
4764 }
4765 else
4766 {
4767 expr1.X_add_number = 8;
4768 macro_build (&expr1, "bne", "s,t,p", sreg, AT);
4769 macro_build (NULL, "nop", "", 0);
4770
4771 /* We want to close the noreorder block as soon as possible, so
4772 that later insns are available for delay slot filling. */
4773 --mips_opts.noreorder;
4774
4775 macro_build (NULL, "break", "c", 6);
4776 }
4777 macro_build (NULL, s, "d", dreg);
4778 break;
4779
4780 case M_DIV_3I:
4781 s = "div";
4782 s2 = "mflo";
4783 goto do_divi;
4784 case M_DIVU_3I:
4785 s = "divu";
4786 s2 = "mflo";
4787 goto do_divi;
4788 case M_REM_3I:
4789 s = "div";
4790 s2 = "mfhi";
4791 goto do_divi;
4792 case M_REMU_3I:
4793 s = "divu";
4794 s2 = "mfhi";
4795 goto do_divi;
4796 case M_DDIV_3I:
4797 dbl = 1;
4798 s = "ddiv";
4799 s2 = "mflo";
4800 goto do_divi;
4801 case M_DDIVU_3I:
4802 dbl = 1;
4803 s = "ddivu";
4804 s2 = "mflo";
4805 goto do_divi;
4806 case M_DREM_3I:
4807 dbl = 1;
4808 s = "ddiv";
4809 s2 = "mfhi";
4810 goto do_divi;
4811 case M_DREMU_3I:
4812 dbl = 1;
4813 s = "ddivu";
4814 s2 = "mfhi";
4815 do_divi:
4816 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
4817 {
4818 as_warn (_("Divide by zero."));
4819 if (mips_trap)
4820 macro_build (NULL, "teq", "s,t,q", 0, 0, 7);
4821 else
4822 macro_build (NULL, "break", "c", 7);
4823 break;
4824 }
4825 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
4826 {
4827 if (strcmp (s2, "mflo") == 0)
4828 move_register (dreg, sreg);
4829 else
4830 move_register (dreg, 0);
4831 break;
4832 }
4833 if (imm_expr.X_op == O_constant
4834 && imm_expr.X_add_number == -1
4835 && s[strlen (s) - 1] != 'u')
4836 {
4837 if (strcmp (s2, "mflo") == 0)
4838 {
4839 macro_build (NULL, dbl ? "dneg" : "neg", "d,w", dreg, sreg);
4840 }
4841 else
4842 move_register (dreg, 0);
4843 break;
4844 }
4845
4846 used_at = 1;
4847 load_register (AT, &imm_expr, dbl);
4848 macro_build (NULL, s, "z,s,t", sreg, AT);
4849 macro_build (NULL, s2, "d", dreg);
4850 break;
4851
4852 case M_DIVU_3:
4853 s = "divu";
4854 s2 = "mflo";
4855 goto do_divu3;
4856 case M_REMU_3:
4857 s = "divu";
4858 s2 = "mfhi";
4859 goto do_divu3;
4860 case M_DDIVU_3:
4861 s = "ddivu";
4862 s2 = "mflo";
4863 goto do_divu3;
4864 case M_DREMU_3:
4865 s = "ddivu";
4866 s2 = "mfhi";
4867 do_divu3:
4868 mips_emit_delays (TRUE);
4869 ++mips_opts.noreorder;
4870 mips_any_noreorder = 1;
4871 if (mips_trap)
4872 {
4873 macro_build (NULL, "teq", "s,t,q", treg, 0, 7);
4874 macro_build (NULL, s, "z,s,t", sreg, treg);
4875 /* We want to close the noreorder block as soon as possible, so
4876 that later insns are available for delay slot filling. */
4877 --mips_opts.noreorder;
4878 }
4879 else
4880 {
4881 expr1.X_add_number = 8;
4882 macro_build (&expr1, "bne", "s,t,p", treg, 0);
4883 macro_build (NULL, s, "z,s,t", sreg, treg);
4884
4885 /* We want to close the noreorder block as soon as possible, so
4886 that later insns are available for delay slot filling. */
4887 --mips_opts.noreorder;
4888 macro_build (NULL, "break", "c", 7);
4889 }
4890 macro_build (NULL, s2, "d", dreg);
4891 break;
4892
4893 case M_DLCA_AB:
4894 dbl = 1;
4895 case M_LCA_AB:
4896 call = 1;
4897 goto do_la;
4898 case M_DLA_AB:
4899 dbl = 1;
4900 case M_LA_AB:
4901 do_la:
4902 /* Load the address of a symbol into a register. If breg is not
4903 zero, we then add a base register to it. */
4904
4905 if (dbl && HAVE_32BIT_GPRS)
4906 as_warn (_("dla used to load 32-bit register"));
4907
4908 if (! dbl && HAVE_64BIT_OBJECTS)
4909 as_warn (_("la used to load 64-bit address"));
4910
4911 if (offset_expr.X_op == O_constant
4912 && offset_expr.X_add_number >= -0x8000
4913 && offset_expr.X_add_number < 0x8000)
4914 {
4915 macro_build (&offset_expr,
4916 (dbl || HAVE_64BIT_ADDRESSES) ? "daddiu" : "addiu",
4917 "t,r,j", treg, sreg, BFD_RELOC_LO16);
4918 break;
4919 }
4920
4921 if (!mips_opts.noat && (treg == breg))
4922 {
4923 tempreg = AT;
4924 used_at = 1;
4925 }
4926 else
4927 {
4928 tempreg = treg;
4929 }
4930
4931 if (offset_expr.X_op != O_symbol
4932 && offset_expr.X_op != O_constant)
4933 {
4934 as_bad (_("expression too complex"));
4935 offset_expr.X_op = O_constant;
4936 }
4937
4938 if (offset_expr.X_op == O_constant)
4939 load_register (tempreg, &offset_expr,
4940 (mips_pic == NO_PIC
4941 ? (dbl || HAVE_64BIT_ADDRESSES)
4942 : HAVE_64BIT_ADDRESSES));
4943 else if (mips_pic == NO_PIC)
4944 {
4945 /* If this is a reference to a GP relative symbol, we want
4946 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
4947 Otherwise we want
4948 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
4949 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
4950 If we have a constant, we need two instructions anyhow,
4951 so we may as well always use the latter form.
4952
4953 With 64bit address space and a usable $at we want
4954 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
4955 lui $at,<sym> (BFD_RELOC_HI16_S)
4956 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
4957 daddiu $at,<sym> (BFD_RELOC_LO16)
4958 dsll32 $tempreg,0
4959 daddu $tempreg,$tempreg,$at
4960
4961 If $at is already in use, we use a path which is suboptimal
4962 on superscalar processors.
4963 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
4964 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
4965 dsll $tempreg,16
4966 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
4967 dsll $tempreg,16
4968 daddiu $tempreg,<sym> (BFD_RELOC_LO16)
4969 */
4970 if (HAVE_64BIT_ADDRESSES)
4971 {
4972 /* ??? We don't provide a GP-relative alternative for
4973 these macros. It used not to be possible with the
4974 original relaxation code, but it could be done now. */
4975
4976 if (used_at == 0 && !mips_opts.noat)
4977 {
4978 macro_build (&offset_expr, "lui", "t,u",
4979 tempreg, BFD_RELOC_MIPS_HIGHEST);
4980 macro_build (&offset_expr, "lui", "t,u",
4981 AT, BFD_RELOC_HI16_S);
4982 macro_build (&offset_expr, "daddiu", "t,r,j",
4983 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
4984 macro_build (&offset_expr, "daddiu", "t,r,j",
4985 AT, AT, BFD_RELOC_LO16);
4986 macro_build (NULL, "dsll32", "d,w,<", tempreg, tempreg, 0);
4987 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
4988 used_at = 1;
4989 }
4990 else
4991 {
4992 macro_build (&offset_expr, "lui", "t,u",
4993 tempreg, BFD_RELOC_MIPS_HIGHEST);
4994 macro_build (&offset_expr, "daddiu", "t,r,j",
4995 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
4996 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16);
4997 macro_build (&offset_expr, "daddiu", "t,r,j",
4998 tempreg, tempreg, BFD_RELOC_HI16_S);
4999 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16);
5000 macro_build (&offset_expr, "daddiu", "t,r,j",
5001 tempreg, tempreg, BFD_RELOC_LO16);
5002 }
5003 }
5004 else
5005 {
5006 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
5007 && ! nopic_need_relax (offset_expr.X_add_symbol, 1))
5008 {
5009 relax_start (offset_expr.X_add_symbol);
5010 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5011 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
5012 relax_switch ();
5013 }
5014 if (!IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
5015 as_bad (_("offset too large"));
5016 macro_build_lui (&offset_expr, tempreg);
5017 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5018 tempreg, tempreg, BFD_RELOC_LO16);
5019 if (mips_relax.sequence)
5020 relax_end ();
5021 }
5022 }
5023 else if (mips_pic == SVR4_PIC && ! mips_big_got && ! HAVE_NEWABI)
5024 {
5025 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
5026
5027 /* If this is a reference to an external symbol, and there
5028 is no constant, we want
5029 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5030 or for lca or if tempreg is PIC_CALL_REG
5031 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
5032 For a local symbol, we want
5033 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5034 nop
5035 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
5036
5037 If we have a small constant, and this is a reference to
5038 an external symbol, we want
5039 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5040 nop
5041 addiu $tempreg,$tempreg,<constant>
5042 For a local symbol, we want the same instruction
5043 sequence, but we output a BFD_RELOC_LO16 reloc on the
5044 addiu instruction.
5045
5046 If we have a large constant, and this is a reference to
5047 an external symbol, we want
5048 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5049 lui $at,<hiconstant>
5050 addiu $at,$at,<loconstant>
5051 addu $tempreg,$tempreg,$at
5052 For a local symbol, we want the same instruction
5053 sequence, but we output a BFD_RELOC_LO16 reloc on the
5054 addiu instruction.
5055 */
5056
5057 if (offset_expr.X_add_number == 0)
5058 {
5059 if (breg == 0 && (call || tempreg == PIC_CALL_REG))
5060 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
5061
5062 relax_start (offset_expr.X_add_symbol);
5063 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5064 lw_reloc_type, mips_gp_register);
5065 if (breg != 0)
5066 {
5067 /* We're going to put in an addu instruction using
5068 tempreg, so we may as well insert the nop right
5069 now. */
5070 load_delay_nop ();
5071 }
5072 relax_switch ();
5073 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
5074 tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register);
5075 load_delay_nop ();
5076 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5077 tempreg, tempreg, BFD_RELOC_LO16);
5078 relax_end ();
5079 /* FIXME: If breg == 0, and the next instruction uses
5080 $tempreg, then if this variant case is used an extra
5081 nop will be generated. */
5082 }
5083 else if (offset_expr.X_add_number >= -0x8000
5084 && offset_expr.X_add_number < 0x8000)
5085 {
5086 load_got_offset (tempreg, &offset_expr);
5087 load_delay_nop ();
5088 add_got_offset (tempreg, &offset_expr);
5089 }
5090 else
5091 {
5092 expr1.X_add_number = offset_expr.X_add_number;
5093 offset_expr.X_add_number =
5094 ((offset_expr.X_add_number + 0x8000) & 0xffff) - 0x8000;
5095 load_got_offset (tempreg, &offset_expr);
5096 offset_expr.X_add_number = expr1.X_add_number;
5097 /* If we are going to add in a base register, and the
5098 target register and the base register are the same,
5099 then we are using AT as a temporary register. Since
5100 we want to load the constant into AT, we add our
5101 current AT (from the global offset table) and the
5102 register into the register now, and pretend we were
5103 not using a base register. */
5104 if (breg == treg)
5105 {
5106 load_delay_nop ();
5107 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5108 treg, AT, breg);
5109 breg = 0;
5110 tempreg = treg;
5111 }
5112 add_got_offset_hilo (tempreg, &offset_expr, AT);
5113 used_at = 1;
5114 }
5115 }
5116 else if (mips_pic == SVR4_PIC && ! mips_big_got && HAVE_NEWABI)
5117 {
5118 int add_breg_early = 0;
5119
5120 /* If this is a reference to an external, and there is no
5121 constant, or local symbol (*), with or without a
5122 constant, we want
5123 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
5124 or for lca or if tempreg is PIC_CALL_REG
5125 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
5126
5127 If we have a small constant, and this is a reference to
5128 an external symbol, we want
5129 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
5130 addiu $tempreg,$tempreg,<constant>
5131
5132 If we have a large constant, and this is a reference to
5133 an external symbol, we want
5134 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
5135 lui $at,<hiconstant>
5136 addiu $at,$at,<loconstant>
5137 addu $tempreg,$tempreg,$at
5138
5139 (*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
5140 local symbols, even though it introduces an additional
5141 instruction. */
5142
5143 if (offset_expr.X_add_number)
5144 {
5145 expr1.X_add_number = offset_expr.X_add_number;
5146 offset_expr.X_add_number = 0;
5147
5148 relax_start (offset_expr.X_add_symbol);
5149 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5150 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5151
5152 if (expr1.X_add_number >= -0x8000
5153 && expr1.X_add_number < 0x8000)
5154 {
5155 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
5156 tempreg, tempreg, BFD_RELOC_LO16);
5157 }
5158 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
5159 {
5160 int dreg;
5161
5162 /* If we are going to add in a base register, and the
5163 target register and the base register are the same,
5164 then we are using AT as a temporary register. Since
5165 we want to load the constant into AT, we add our
5166 current AT (from the global offset table) and the
5167 register into the register now, and pretend we were
5168 not using a base register. */
5169 if (breg != treg)
5170 dreg = tempreg;
5171 else
5172 {
5173 assert (tempreg == AT);
5174 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5175 treg, AT, breg);
5176 dreg = treg;
5177 add_breg_early = 1;
5178 }
5179
5180 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
5181 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5182 dreg, dreg, AT);
5183
5184 used_at = 1;
5185 }
5186 else
5187 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
5188
5189 relax_switch ();
5190 offset_expr.X_add_number = expr1.X_add_number;
5191
5192 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5193 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5194 if (add_breg_early)
5195 {
5196 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5197 treg, tempreg, breg);
5198 breg = 0;
5199 tempreg = treg;
5200 }
5201 relax_end ();
5202 }
5203 else if (breg == 0 && (call || tempreg == PIC_CALL_REG))
5204 {
5205 relax_start (offset_expr.X_add_symbol);
5206 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5207 BFD_RELOC_MIPS_CALL16, mips_gp_register);
5208 relax_switch ();
5209 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5210 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5211 relax_end ();
5212 }
5213 else
5214 {
5215 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5216 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5217 }
5218 }
5219 else if (mips_pic == SVR4_PIC && ! HAVE_NEWABI)
5220 {
5221 int gpdelay;
5222 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
5223 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
5224 int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
5225
5226 /* This is the large GOT case. If this is a reference to an
5227 external symbol, and there is no constant, we want
5228 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5229 addu $tempreg,$tempreg,$gp
5230 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5231 or for lca or if tempreg is PIC_CALL_REG
5232 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
5233 addu $tempreg,$tempreg,$gp
5234 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
5235 For a local symbol, we want
5236 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5237 nop
5238 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
5239
5240 If we have a small constant, and this is a reference to
5241 an external symbol, we want
5242 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5243 addu $tempreg,$tempreg,$gp
5244 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5245 nop
5246 addiu $tempreg,$tempreg,<constant>
5247 For a local symbol, we want
5248 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5249 nop
5250 addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
5251
5252 If we have a large constant, and this is a reference to
5253 an external symbol, we want
5254 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5255 addu $tempreg,$tempreg,$gp
5256 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5257 lui $at,<hiconstant>
5258 addiu $at,$at,<loconstant>
5259 addu $tempreg,$tempreg,$at
5260 For a local symbol, we want
5261 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5262 lui $at,<hiconstant>
5263 addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
5264 addu $tempreg,$tempreg,$at
5265 */
5266
5267 expr1.X_add_number = offset_expr.X_add_number;
5268 offset_expr.X_add_number = 0;
5269 relax_start (offset_expr.X_add_symbol);
5270 gpdelay = reg_needs_delay (mips_gp_register);
5271 if (expr1.X_add_number == 0 && breg == 0
5272 && (call || tempreg == PIC_CALL_REG))
5273 {
5274 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
5275 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
5276 }
5277 macro_build (&offset_expr, "lui", "t,u", tempreg, lui_reloc_type);
5278 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5279 tempreg, tempreg, mips_gp_register);
5280 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
5281 tempreg, lw_reloc_type, tempreg);
5282 if (expr1.X_add_number == 0)
5283 {
5284 if (breg != 0)
5285 {
5286 /* We're going to put in an addu instruction using
5287 tempreg, so we may as well insert the nop right
5288 now. */
5289 load_delay_nop ();
5290 }
5291 }
5292 else if (expr1.X_add_number >= -0x8000
5293 && expr1.X_add_number < 0x8000)
5294 {
5295 load_delay_nop ();
5296 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
5297 tempreg, tempreg, BFD_RELOC_LO16);
5298 }
5299 else
5300 {
5301 int dreg;
5302
5303 /* If we are going to add in a base register, and the
5304 target register and the base register are the same,
5305 then we are using AT as a temporary register. Since
5306 we want to load the constant into AT, we add our
5307 current AT (from the global offset table) and the
5308 register into the register now, and pretend we were
5309 not using a base register. */
5310 if (breg != treg)
5311 dreg = tempreg;
5312 else
5313 {
5314 assert (tempreg == AT);
5315 load_delay_nop ();
5316 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5317 treg, AT, breg);
5318 dreg = treg;
5319 }
5320
5321 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
5322 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
5323
5324 used_at = 1;
5325 }
5326 offset_expr.X_add_number =
5327 ((expr1.X_add_number + 0x8000) & 0xffff) - 0x8000;
5328 relax_switch ();
5329
5330 if (gpdelay)
5331 {
5332 /* This is needed because this instruction uses $gp, but
5333 the first instruction on the main stream does not. */
5334 macro_build (NULL, "nop", "");
5335 }
5336
5337 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5338 local_reloc_type, mips_gp_register);
5339 if (expr1.X_add_number >= -0x8000
5340 && expr1.X_add_number < 0x8000)
5341 {
5342 load_delay_nop ();
5343 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5344 tempreg, tempreg, BFD_RELOC_LO16);
5345 /* FIXME: If add_number is 0, and there was no base
5346 register, the external symbol case ended with a load,
5347 so if the symbol turns out to not be external, and
5348 the next instruction uses tempreg, an unnecessary nop
5349 will be inserted. */
5350 }
5351 else
5352 {
5353 if (breg == treg)
5354 {
5355 /* We must add in the base register now, as in the
5356 external symbol case. */
5357 assert (tempreg == AT);
5358 load_delay_nop ();
5359 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5360 treg, AT, breg);
5361 tempreg = treg;
5362 /* We set breg to 0 because we have arranged to add
5363 it in in both cases. */
5364 breg = 0;
5365 }
5366
5367 macro_build_lui (&expr1, AT);
5368 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5369 AT, AT, BFD_RELOC_LO16);
5370 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5371 tempreg, tempreg, AT);
5372 used_at = 1;
5373 }
5374 relax_end ();
5375 }
5376 else if (mips_pic == SVR4_PIC && HAVE_NEWABI)
5377 {
5378 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
5379 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
5380 int add_breg_early = 0;
5381
5382 /* This is the large GOT case. If this is a reference to an
5383 external symbol, and there is no constant, we want
5384 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5385 add $tempreg,$tempreg,$gp
5386 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5387 or for lca or if tempreg is PIC_CALL_REG
5388 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
5389 add $tempreg,$tempreg,$gp
5390 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
5391
5392 If we have a small constant, and this is a reference to
5393 an external symbol, we want
5394 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5395 add $tempreg,$tempreg,$gp
5396 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5397 addi $tempreg,$tempreg,<constant>
5398
5399 If we have a large constant, and this is a reference to
5400 an external symbol, we want
5401 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5402 addu $tempreg,$tempreg,$gp
5403 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5404 lui $at,<hiconstant>
5405 addi $at,$at,<loconstant>
5406 add $tempreg,$tempreg,$at
5407
5408 If we have NewABI, and we know it's a local symbol, we want
5409 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
5410 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
5411 otherwise we have to resort to GOT_HI16/GOT_LO16. */
5412
5413 relax_start (offset_expr.X_add_symbol);
5414
5415 expr1.X_add_number = offset_expr.X_add_number;
5416 offset_expr.X_add_number = 0;
5417
5418 if (expr1.X_add_number == 0 && breg == 0
5419 && (call || tempreg == PIC_CALL_REG))
5420 {
5421 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
5422 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
5423 }
5424 macro_build (&offset_expr, "lui", "t,u", tempreg, lui_reloc_type);
5425 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5426 tempreg, tempreg, mips_gp_register);
5427 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
5428 tempreg, lw_reloc_type, tempreg);
5429
5430 if (expr1.X_add_number == 0)
5431 ;
5432 else if (expr1.X_add_number >= -0x8000
5433 && expr1.X_add_number < 0x8000)
5434 {
5435 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
5436 tempreg, tempreg, BFD_RELOC_LO16);
5437 }
5438 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
5439 {
5440 int dreg;
5441
5442 /* If we are going to add in a base register, and the
5443 target register and the base register are the same,
5444 then we are using AT as a temporary register. Since
5445 we want to load the constant into AT, we add our
5446 current AT (from the global offset table) and the
5447 register into the register now, and pretend we were
5448 not using a base register. */
5449 if (breg != treg)
5450 dreg = tempreg;
5451 else
5452 {
5453 assert (tempreg == AT);
5454 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5455 treg, AT, breg);
5456 dreg = treg;
5457 add_breg_early = 1;
5458 }
5459
5460 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
5461 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
5462
5463 used_at = 1;
5464 }
5465 else
5466 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
5467
5468 relax_switch ();
5469 offset_expr.X_add_number = expr1.X_add_number;
5470 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5471 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
5472 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
5473 tempreg, BFD_RELOC_MIPS_GOT_OFST);
5474 if (add_breg_early)
5475 {
5476 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5477 treg, tempreg, breg);
5478 breg = 0;
5479 tempreg = treg;
5480 }
5481 relax_end ();
5482 }
5483 else
5484 abort ();
5485
5486 if (breg != 0)
5487 {
5488 char *s;
5489
5490 if (mips_pic == NO_PIC)
5491 s = (dbl || HAVE_64BIT_ADDRESSES) ? "daddu" : "addu";
5492 else
5493 s = ADDRESS_ADD_INSN;
5494
5495 macro_build (NULL, s, "d,v,t", treg, tempreg, breg);
5496 }
5497 break;
5498
5499 case M_J_A:
5500 /* The j instruction may not be used in PIC code, since it
5501 requires an absolute address. We convert it to a b
5502 instruction. */
5503 if (mips_pic == NO_PIC)
5504 macro_build (&offset_expr, "j", "a");
5505 else
5506 macro_build (&offset_expr, "b", "p");
5507 break;
5508
5509 /* The jal instructions must be handled as macros because when
5510 generating PIC code they expand to multi-instruction
5511 sequences. Normally they are simple instructions. */
5512 case M_JAL_1:
5513 dreg = RA;
5514 /* Fall through. */
5515 case M_JAL_2:
5516 if (mips_pic == NO_PIC)
5517 macro_build (NULL, "jalr", "d,s", dreg, sreg);
5518 else if (mips_pic == SVR4_PIC)
5519 {
5520 if (sreg != PIC_CALL_REG)
5521 as_warn (_("MIPS PIC call to register other than $25"));
5522
5523 macro_build (NULL, "jalr", "d,s", dreg, sreg);
5524 if (! HAVE_NEWABI)
5525 {
5526 if (mips_cprestore_offset < 0)
5527 as_warn (_("No .cprestore pseudo-op used in PIC code"));
5528 else
5529 {
5530 if (! mips_frame_reg_valid)
5531 {
5532 as_warn (_("No .frame pseudo-op used in PIC code"));
5533 /* Quiet this warning. */
5534 mips_frame_reg_valid = 1;
5535 }
5536 if (! mips_cprestore_valid)
5537 {
5538 as_warn (_("No .cprestore pseudo-op used in PIC code"));
5539 /* Quiet this warning. */
5540 mips_cprestore_valid = 1;
5541 }
5542 expr1.X_add_number = mips_cprestore_offset;
5543 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
5544 mips_gp_register,
5545 mips_frame_reg,
5546 HAVE_64BIT_ADDRESSES);
5547 }
5548 }
5549 }
5550 else
5551 abort ();
5552
5553 break;
5554
5555 case M_JAL_A:
5556 if (mips_pic == NO_PIC)
5557 macro_build (&offset_expr, "jal", "a");
5558 else if (mips_pic == SVR4_PIC)
5559 {
5560 /* If this is a reference to an external symbol, and we are
5561 using a small GOT, we want
5562 lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
5563 nop
5564 jalr $ra,$25
5565 nop
5566 lw $gp,cprestore($sp)
5567 The cprestore value is set using the .cprestore
5568 pseudo-op. If we are using a big GOT, we want
5569 lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
5570 addu $25,$25,$gp
5571 lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
5572 nop
5573 jalr $ra,$25
5574 nop
5575 lw $gp,cprestore($sp)
5576 If the symbol is not external, we want
5577 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5578 nop
5579 addiu $25,$25,<sym> (BFD_RELOC_LO16)
5580 jalr $ra,$25
5581 nop
5582 lw $gp,cprestore($sp)
5583
5584 For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
5585 sequences above, minus nops, unless the symbol is local,
5586 which enables us to use GOT_PAGE/GOT_OFST (big got) or
5587 GOT_DISP. */
5588 if (HAVE_NEWABI)
5589 {
5590 if (! mips_big_got)
5591 {
5592 relax_start (offset_expr.X_add_symbol);
5593 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
5594 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
5595 mips_gp_register);
5596 relax_switch ();
5597 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
5598 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP,
5599 mips_gp_register);
5600 relax_end ();
5601 }
5602 else
5603 {
5604 relax_start (offset_expr.X_add_symbol);
5605 macro_build (&offset_expr, "lui", "t,u", PIC_CALL_REG,
5606 BFD_RELOC_MIPS_CALL_HI16);
5607 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
5608 PIC_CALL_REG, mips_gp_register);
5609 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
5610 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
5611 PIC_CALL_REG);
5612 relax_switch ();
5613 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
5614 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE,
5615 mips_gp_register);
5616 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5617 PIC_CALL_REG, PIC_CALL_REG,
5618 BFD_RELOC_MIPS_GOT_OFST);
5619 relax_end ();
5620 }
5621
5622 macro_build_jalr (&offset_expr);
5623 }
5624 else
5625 {
5626 relax_start (offset_expr.X_add_symbol);
5627 if (! mips_big_got)
5628 {
5629 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
5630 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
5631 mips_gp_register);
5632 load_delay_nop ();
5633 relax_switch ();
5634 }
5635 else
5636 {
5637 int gpdelay;
5638
5639 gpdelay = reg_needs_delay (mips_gp_register);
5640 macro_build (&offset_expr, "lui", "t,u", PIC_CALL_REG,
5641 BFD_RELOC_MIPS_CALL_HI16);
5642 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
5643 PIC_CALL_REG, mips_gp_register);
5644 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
5645 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
5646 PIC_CALL_REG);
5647 load_delay_nop ();
5648 relax_switch ();
5649 if (gpdelay)
5650 macro_build (NULL, "nop", "");
5651 }
5652 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
5653 PIC_CALL_REG, BFD_RELOC_MIPS_GOT16,
5654 mips_gp_register);
5655 load_delay_nop ();
5656 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5657 PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16);
5658 relax_end ();
5659 macro_build_jalr (&offset_expr);
5660
5661 if (mips_cprestore_offset < 0)
5662 as_warn (_("No .cprestore pseudo-op used in PIC code"));
5663 else
5664 {
5665 if (! mips_frame_reg_valid)
5666 {
5667 as_warn (_("No .frame pseudo-op used in PIC code"));
5668 /* Quiet this warning. */
5669 mips_frame_reg_valid = 1;
5670 }
5671 if (! mips_cprestore_valid)
5672 {
5673 as_warn (_("No .cprestore pseudo-op used in PIC code"));
5674 /* Quiet this warning. */
5675 mips_cprestore_valid = 1;
5676 }
5677 if (mips_opts.noreorder)
5678 macro_build (NULL, "nop", "");
5679 expr1.X_add_number = mips_cprestore_offset;
5680 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
5681 mips_gp_register,
5682 mips_frame_reg,
5683 HAVE_64BIT_ADDRESSES);
5684 }
5685 }
5686 }
5687 else
5688 abort ();
5689
5690 break;
5691
5692 case M_LB_AB:
5693 s = "lb";
5694 goto ld;
5695 case M_LBU_AB:
5696 s = "lbu";
5697 goto ld;
5698 case M_LH_AB:
5699 s = "lh";
5700 goto ld;
5701 case M_LHU_AB:
5702 s = "lhu";
5703 goto ld;
5704 case M_LW_AB:
5705 s = "lw";
5706 goto ld;
5707 case M_LWC0_AB:
5708 s = "lwc0";
5709 /* Itbl support may require additional care here. */
5710 coproc = 1;
5711 goto ld;
5712 case M_LWC1_AB:
5713 s = "lwc1";
5714 /* Itbl support may require additional care here. */
5715 coproc = 1;
5716 goto ld;
5717 case M_LWC2_AB:
5718 s = "lwc2";
5719 /* Itbl support may require additional care here. */
5720 coproc = 1;
5721 goto ld;
5722 case M_LWC3_AB:
5723 s = "lwc3";
5724 /* Itbl support may require additional care here. */
5725 coproc = 1;
5726 goto ld;
5727 case M_LWL_AB:
5728 s = "lwl";
5729 lr = 1;
5730 goto ld;
5731 case M_LWR_AB:
5732 s = "lwr";
5733 lr = 1;
5734 goto ld;
5735 case M_LDC1_AB:
5736 if (mips_opts.arch == CPU_R4650)
5737 {
5738 as_bad (_("opcode not supported on this processor"));
5739 break;
5740 }
5741 s = "ldc1";
5742 /* Itbl support may require additional care here. */
5743 coproc = 1;
5744 goto ld;
5745 case M_LDC2_AB:
5746 s = "ldc2";
5747 /* Itbl support may require additional care here. */
5748 coproc = 1;
5749 goto ld;
5750 case M_LDC3_AB:
5751 s = "ldc3";
5752 /* Itbl support may require additional care here. */
5753 coproc = 1;
5754 goto ld;
5755 case M_LDL_AB:
5756 s = "ldl";
5757 lr = 1;
5758 goto ld;
5759 case M_LDR_AB:
5760 s = "ldr";
5761 lr = 1;
5762 goto ld;
5763 case M_LL_AB:
5764 s = "ll";
5765 goto ld;
5766 case M_LLD_AB:
5767 s = "lld";
5768 goto ld;
5769 case M_LWU_AB:
5770 s = "lwu";
5771 ld:
5772 if (breg == treg || coproc || lr)
5773 {
5774 tempreg = AT;
5775 used_at = 1;
5776 }
5777 else
5778 {
5779 tempreg = treg;
5780 }
5781 goto ld_st;
5782 case M_SB_AB:
5783 s = "sb";
5784 goto st;
5785 case M_SH_AB:
5786 s = "sh";
5787 goto st;
5788 case M_SW_AB:
5789 s = "sw";
5790 goto st;
5791 case M_SWC0_AB:
5792 s = "swc0";
5793 /* Itbl support may require additional care here. */
5794 coproc = 1;
5795 goto st;
5796 case M_SWC1_AB:
5797 s = "swc1";
5798 /* Itbl support may require additional care here. */
5799 coproc = 1;
5800 goto st;
5801 case M_SWC2_AB:
5802 s = "swc2";
5803 /* Itbl support may require additional care here. */
5804 coproc = 1;
5805 goto st;
5806 case M_SWC3_AB:
5807 s = "swc3";
5808 /* Itbl support may require additional care here. */
5809 coproc = 1;
5810 goto st;
5811 case M_SWL_AB:
5812 s = "swl";
5813 goto st;
5814 case M_SWR_AB:
5815 s = "swr";
5816 goto st;
5817 case M_SC_AB:
5818 s = "sc";
5819 goto st;
5820 case M_SCD_AB:
5821 s = "scd";
5822 goto st;
5823 case M_SDC1_AB:
5824 if (mips_opts.arch == CPU_R4650)
5825 {
5826 as_bad (_("opcode not supported on this processor"));
5827 break;
5828 }
5829 s = "sdc1";
5830 coproc = 1;
5831 /* Itbl support may require additional care here. */
5832 goto st;
5833 case M_SDC2_AB:
5834 s = "sdc2";
5835 /* Itbl support may require additional care here. */
5836 coproc = 1;
5837 goto st;
5838 case M_SDC3_AB:
5839 s = "sdc3";
5840 /* Itbl support may require additional care here. */
5841 coproc = 1;
5842 goto st;
5843 case M_SDL_AB:
5844 s = "sdl";
5845 goto st;
5846 case M_SDR_AB:
5847 s = "sdr";
5848 st:
5849 tempreg = AT;
5850 used_at = 1;
5851 ld_st:
5852 /* Itbl support may require additional care here. */
5853 if (mask == M_LWC1_AB
5854 || mask == M_SWC1_AB
5855 || mask == M_LDC1_AB
5856 || mask == M_SDC1_AB
5857 || mask == M_L_DAB
5858 || mask == M_S_DAB)
5859 fmt = "T,o(b)";
5860 else if (coproc)
5861 fmt = "E,o(b)";
5862 else
5863 fmt = "t,o(b)";
5864
5865 /* Sign-extending 32-bit constants makes their handling easier.
5866 The HAVE_64BIT_GPRS... part is due to the linux kernel hack
5867 described below. */
5868 if ((! HAVE_64BIT_ADDRESSES
5869 && (! HAVE_64BIT_GPRS && offset_expr.X_op == O_constant))
5870 && (offset_expr.X_op == O_constant)
5871 && ! ((offset_expr.X_add_number & ~((bfd_vma) 0x7fffffff))
5872 == ~((bfd_vma) 0x7fffffff)))
5873 {
5874 if (offset_expr.X_add_number & ~((bfd_vma) 0xffffffff))
5875 as_bad (_("constant too large"));
5876
5877 offset_expr.X_add_number = (((offset_expr.X_add_number & 0xffffffff)
5878 ^ 0x80000000) - 0x80000000);
5879 }
5880
5881 if (offset_expr.X_op != O_constant
5882 && offset_expr.X_op != O_symbol)
5883 {
5884 as_bad (_("expression too complex"));
5885 offset_expr.X_op = O_constant;
5886 }
5887
5888 /* A constant expression in PIC code can be handled just as it
5889 is in non PIC code. */
5890 if (mips_pic == NO_PIC
5891 || offset_expr.X_op == O_constant)
5892 {
5893 /* If this is a reference to a GP relative symbol, and there
5894 is no base register, we want
5895 <op> $treg,<sym>($gp) (BFD_RELOC_GPREL16)
5896 Otherwise, if there is no base register, we want
5897 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
5898 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
5899 If we have a constant, we need two instructions anyhow,
5900 so we always use the latter form.
5901
5902 If we have a base register, and this is a reference to a
5903 GP relative symbol, we want
5904 addu $tempreg,$breg,$gp
5905 <op> $treg,<sym>($tempreg) (BFD_RELOC_GPREL16)
5906 Otherwise we want
5907 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
5908 addu $tempreg,$tempreg,$breg
5909 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
5910 With a constant we always use the latter case.
5911
5912 With 64bit address space and no base register and $at usable,
5913 we want
5914 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
5915 lui $at,<sym> (BFD_RELOC_HI16_S)
5916 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
5917 dsll32 $tempreg,0
5918 daddu $tempreg,$at
5919 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
5920 If we have a base register, we want
5921 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
5922 lui $at,<sym> (BFD_RELOC_HI16_S)
5923 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
5924 daddu $at,$breg
5925 dsll32 $tempreg,0
5926 daddu $tempreg,$at
5927 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
5928
5929 Without $at we can't generate the optimal path for superscalar
5930 processors here since this would require two temporary registers.
5931 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
5932 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
5933 dsll $tempreg,16
5934 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
5935 dsll $tempreg,16
5936 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
5937 If we have a base register, we want
5938 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
5939 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
5940 dsll $tempreg,16
5941 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
5942 dsll $tempreg,16
5943 daddu $tempreg,$tempreg,$breg
5944 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
5945
5946 If we have 64-bit addresses, as an optimization, for
5947 addresses which are 32-bit constants (e.g. kseg0/kseg1
5948 addresses) we fall back to the 32-bit address generation
5949 mechanism since it is more efficient. Note that due to
5950 the signed offset used by memory operations, the 32-bit
5951 range is shifted down by 32768 here. This code should
5952 probably attempt to generate 64-bit constants more
5953 efficiently in general.
5954
5955 As an extension for architectures with 64-bit registers,
5956 we don't truncate 64-bit addresses given as literal
5957 constants down to 32 bits, to support existing practice
5958 in the mips64 Linux (the kernel), that compiles source
5959 files with -mabi=64, assembling them as o32 or n32 (with
5960 -Wa,-32 or -Wa,-n32). This is not beautiful, but since
5961 the whole kernel is loaded into a memory region that is
5962 addressable with sign-extended 32-bit addresses, it is
5963 wasteful to compute the upper 32 bits of every
5964 non-literal address, that takes more space and time.
5965 Some day this should probably be implemented as an
5966 assembler option, such that the kernel doesn't have to
5967 use such ugly hacks, even though it will still have to
5968 end up converting the binary to ELF32 for a number of
5969 platforms whose boot loaders don't support ELF64
5970 binaries. */
5971 if ((HAVE_64BIT_ADDRESSES
5972 && ! (offset_expr.X_op == O_constant
5973 && IS_SEXT_32BIT_NUM (offset_expr.X_add_number + 0x8000)))
5974 || (HAVE_64BIT_GPRS
5975 && offset_expr.X_op == O_constant
5976 && ! IS_SEXT_32BIT_NUM (offset_expr.X_add_number + 0x8000)))
5977 {
5978 /* ??? We don't provide a GP-relative alternative for
5979 these macros. It used not to be possible with the
5980 original relaxation code, but it could be done now. */
5981
5982 if (used_at == 0 && !mips_opts.noat)
5983 {
5984 macro_build (&offset_expr, "lui", "t,u", tempreg,
5985 BFD_RELOC_MIPS_HIGHEST);
5986 macro_build (&offset_expr, "lui", "t,u", AT,
5987 BFD_RELOC_HI16_S);
5988 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
5989 tempreg, BFD_RELOC_MIPS_HIGHER);
5990 if (breg != 0)
5991 macro_build (NULL, "daddu", "d,v,t", AT, AT, breg);
5992 macro_build (NULL, "dsll32", "d,w,<", tempreg, tempreg, 0);
5993 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
5994 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_LO16,
5995 tempreg);
5996 used_at = 1;
5997 }
5998 else
5999 {
6000 macro_build (&offset_expr, "lui", "t,u", tempreg,
6001 BFD_RELOC_MIPS_HIGHEST);
6002 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
6003 tempreg, BFD_RELOC_MIPS_HIGHER);
6004 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16);
6005 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
6006 tempreg, BFD_RELOC_HI16_S);
6007 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16);
6008 if (breg != 0)
6009 macro_build (NULL, "daddu", "d,v,t",
6010 tempreg, tempreg, breg);
6011 macro_build (&offset_expr, s, fmt, treg,
6012 BFD_RELOC_LO16, tempreg);
6013 }
6014 break;
6015 }
6016
6017 if (offset_expr.X_op == O_constant
6018 && ! IS_SEXT_32BIT_NUM (offset_expr.X_add_number + 0x8000))
6019 as_bad (_("load/store address overflow (max 32 bits)"));
6020
6021 if (breg == 0)
6022 {
6023 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6024 && ! nopic_need_relax (offset_expr.X_add_symbol, 1))
6025 {
6026 relax_start (offset_expr.X_add_symbol);
6027 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_GPREL16,
6028 mips_gp_register);
6029 relax_switch ();
6030 }
6031 macro_build_lui (&offset_expr, tempreg);
6032 macro_build (&offset_expr, s, fmt, treg,
6033 BFD_RELOC_LO16, tempreg);
6034 if (mips_relax.sequence)
6035 relax_end ();
6036 }
6037 else
6038 {
6039 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6040 && ! nopic_need_relax (offset_expr.X_add_symbol, 1))
6041 {
6042 relax_start (offset_expr.X_add_symbol);
6043 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6044 tempreg, breg, mips_gp_register);
6045 macro_build (&offset_expr, s, fmt, treg,
6046 BFD_RELOC_GPREL16, tempreg);
6047 relax_switch ();
6048 }
6049 macro_build_lui (&offset_expr, tempreg);
6050 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6051 tempreg, tempreg, breg);
6052 macro_build (&offset_expr, s, fmt, treg,
6053 BFD_RELOC_LO16, tempreg);
6054 if (mips_relax.sequence)
6055 relax_end ();
6056 }
6057 }
6058 else if (mips_pic == SVR4_PIC && ! mips_big_got)
6059 {
6060 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
6061
6062 /* If this is a reference to an external symbol, we want
6063 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6064 nop
6065 <op> $treg,0($tempreg)
6066 Otherwise we want
6067 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6068 nop
6069 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
6070 <op> $treg,0($tempreg)
6071
6072 For NewABI, we want
6073 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
6074 <op> $treg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
6075
6076 If there is a base register, we add it to $tempreg before
6077 the <op>. If there is a constant, we stick it in the
6078 <op> instruction. We don't handle constants larger than
6079 16 bits, because we have no way to load the upper 16 bits
6080 (actually, we could handle them for the subset of cases
6081 in which we are not using $at). */
6082 assert (offset_expr.X_op == O_symbol);
6083 if (HAVE_NEWABI)
6084 {
6085 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6086 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
6087 if (breg != 0)
6088 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6089 tempreg, tempreg, breg);
6090 macro_build (&offset_expr, s, fmt, treg,
6091 BFD_RELOC_MIPS_GOT_OFST, tempreg);
6092 break;
6093 }
6094 expr1.X_add_number = offset_expr.X_add_number;
6095 offset_expr.X_add_number = 0;
6096 if (expr1.X_add_number < -0x8000
6097 || expr1.X_add_number >= 0x8000)
6098 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6099 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6100 lw_reloc_type, mips_gp_register);
6101 load_delay_nop ();
6102 relax_start (offset_expr.X_add_symbol);
6103 relax_switch ();
6104 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
6105 tempreg, BFD_RELOC_LO16);
6106 relax_end ();
6107 if (breg != 0)
6108 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6109 tempreg, tempreg, breg);
6110 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
6111 }
6112 else if (mips_pic == SVR4_PIC && ! HAVE_NEWABI)
6113 {
6114 int gpdelay;
6115
6116 /* If this is a reference to an external symbol, we want
6117 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6118 addu $tempreg,$tempreg,$gp
6119 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
6120 <op> $treg,0($tempreg)
6121 Otherwise we want
6122 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6123 nop
6124 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
6125 <op> $treg,0($tempreg)
6126 If there is a base register, we add it to $tempreg before
6127 the <op>. If there is a constant, we stick it in the
6128 <op> instruction. We don't handle constants larger than
6129 16 bits, because we have no way to load the upper 16 bits
6130 (actually, we could handle them for the subset of cases
6131 in which we are not using $at). */
6132 assert (offset_expr.X_op == O_symbol);
6133 expr1.X_add_number = offset_expr.X_add_number;
6134 offset_expr.X_add_number = 0;
6135 if (expr1.X_add_number < -0x8000
6136 || expr1.X_add_number >= 0x8000)
6137 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6138 gpdelay = reg_needs_delay (mips_gp_register);
6139 relax_start (offset_expr.X_add_symbol);
6140 macro_build (&offset_expr, "lui", "t,u", tempreg,
6141 BFD_RELOC_MIPS_GOT_HI16);
6142 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
6143 mips_gp_register);
6144 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6145 BFD_RELOC_MIPS_GOT_LO16, tempreg);
6146 relax_switch ();
6147 if (gpdelay)
6148 macro_build (NULL, "nop", "");
6149 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6150 BFD_RELOC_MIPS_GOT16, mips_gp_register);
6151 load_delay_nop ();
6152 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
6153 tempreg, BFD_RELOC_LO16);
6154 relax_end ();
6155
6156 if (breg != 0)
6157 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6158 tempreg, tempreg, breg);
6159 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
6160 }
6161 else if (mips_pic == SVR4_PIC && HAVE_NEWABI)
6162 {
6163 /* If this is a reference to an external symbol, we want
6164 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6165 add $tempreg,$tempreg,$gp
6166 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
6167 <op> $treg,<ofst>($tempreg)
6168 Otherwise, for local symbols, we want:
6169 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
6170 <op> $treg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
6171 assert (offset_expr.X_op == O_symbol);
6172 expr1.X_add_number = offset_expr.X_add_number;
6173 offset_expr.X_add_number = 0;
6174 if (expr1.X_add_number < -0x8000
6175 || expr1.X_add_number >= 0x8000)
6176 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6177 relax_start (offset_expr.X_add_symbol);
6178 macro_build (&offset_expr, "lui", "t,u", tempreg,
6179 BFD_RELOC_MIPS_GOT_HI16);
6180 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
6181 mips_gp_register);
6182 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6183 BFD_RELOC_MIPS_GOT_LO16, tempreg);
6184 if (breg != 0)
6185 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6186 tempreg, tempreg, breg);
6187 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
6188
6189 relax_switch ();
6190 offset_expr.X_add_number = expr1.X_add_number;
6191 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6192 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
6193 if (breg != 0)
6194 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6195 tempreg, tempreg, breg);
6196 macro_build (&offset_expr, s, fmt, treg,
6197 BFD_RELOC_MIPS_GOT_OFST, tempreg);
6198 relax_end ();
6199 }
6200 else
6201 abort ();
6202
6203 break;
6204
6205 case M_LI:
6206 case M_LI_S:
6207 load_register (treg, &imm_expr, 0);
6208 break;
6209
6210 case M_DLI:
6211 load_register (treg, &imm_expr, 1);
6212 break;
6213
6214 case M_LI_SS:
6215 if (imm_expr.X_op == O_constant)
6216 {
6217 used_at = 1;
6218 load_register (AT, &imm_expr, 0);
6219 macro_build (NULL, "mtc1", "t,G", AT, treg);
6220 break;
6221 }
6222 else
6223 {
6224 assert (offset_expr.X_op == O_symbol
6225 && strcmp (segment_name (S_GET_SEGMENT
6226 (offset_expr.X_add_symbol)),
6227 ".lit4") == 0
6228 && offset_expr.X_add_number == 0);
6229 macro_build (&offset_expr, "lwc1", "T,o(b)", treg,
6230 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
6231 break;
6232 }
6233
6234 case M_LI_D:
6235 /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
6236 wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
6237 order 32 bits of the value and the low order 32 bits are either
6238 zero or in OFFSET_EXPR. */
6239 if (imm_expr.X_op == O_constant || imm_expr.X_op == O_big)
6240 {
6241 if (HAVE_64BIT_GPRS)
6242 load_register (treg, &imm_expr, 1);
6243 else
6244 {
6245 int hreg, lreg;
6246
6247 if (target_big_endian)
6248 {
6249 hreg = treg;
6250 lreg = treg + 1;
6251 }
6252 else
6253 {
6254 hreg = treg + 1;
6255 lreg = treg;
6256 }
6257
6258 if (hreg <= 31)
6259 load_register (hreg, &imm_expr, 0);
6260 if (lreg <= 31)
6261 {
6262 if (offset_expr.X_op == O_absent)
6263 move_register (lreg, 0);
6264 else
6265 {
6266 assert (offset_expr.X_op == O_constant);
6267 load_register (lreg, &offset_expr, 0);
6268 }
6269 }
6270 }
6271 break;
6272 }
6273
6274 /* We know that sym is in the .rdata section. First we get the
6275 upper 16 bits of the address. */
6276 if (mips_pic == NO_PIC)
6277 {
6278 macro_build_lui (&offset_expr, AT);
6279 used_at = 1;
6280 }
6281 else if (mips_pic == SVR4_PIC)
6282 {
6283 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
6284 BFD_RELOC_MIPS_GOT16, mips_gp_register);
6285 used_at = 1;
6286 }
6287 else
6288 abort ();
6289
6290 /* Now we load the register(s). */
6291 if (HAVE_64BIT_GPRS)
6292 {
6293 used_at = 1;
6294 macro_build (&offset_expr, "ld", "t,o(b)", treg, BFD_RELOC_LO16, AT);
6295 }
6296 else
6297 {
6298 used_at = 1;
6299 macro_build (&offset_expr, "lw", "t,o(b)", treg, BFD_RELOC_LO16, AT);
6300 if (treg != RA)
6301 {
6302 /* FIXME: How in the world do we deal with the possible
6303 overflow here? */
6304 offset_expr.X_add_number += 4;
6305 macro_build (&offset_expr, "lw", "t,o(b)",
6306 treg + 1, BFD_RELOC_LO16, AT);
6307 }
6308 }
6309 break;
6310
6311 case M_LI_DD:
6312 /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
6313 wide, IMM_EXPR is the entire value and the GPRs are known to be 64
6314 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
6315 the value and the low order 32 bits are either zero or in
6316 OFFSET_EXPR. */
6317 if (imm_expr.X_op == O_constant || imm_expr.X_op == O_big)
6318 {
6319 used_at = 1;
6320 load_register (AT, &imm_expr, HAVE_64BIT_FPRS);
6321 if (HAVE_64BIT_FPRS)
6322 {
6323 assert (HAVE_64BIT_GPRS);
6324 macro_build (NULL, "dmtc1", "t,S", AT, treg);
6325 }
6326 else
6327 {
6328 macro_build (NULL, "mtc1", "t,G", AT, treg + 1);
6329 if (offset_expr.X_op == O_absent)
6330 macro_build (NULL, "mtc1", "t,G", 0, treg);
6331 else
6332 {
6333 assert (offset_expr.X_op == O_constant);
6334 load_register (AT, &offset_expr, 0);
6335 macro_build (NULL, "mtc1", "t,G", AT, treg);
6336 }
6337 }
6338 break;
6339 }
6340
6341 assert (offset_expr.X_op == O_symbol
6342 && offset_expr.X_add_number == 0);
6343 s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
6344 if (strcmp (s, ".lit8") == 0)
6345 {
6346 if (mips_opts.isa != ISA_MIPS1)
6347 {
6348 macro_build (&offset_expr, "ldc1", "T,o(b)", treg,
6349 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
6350 break;
6351 }
6352 breg = mips_gp_register;
6353 r = BFD_RELOC_MIPS_LITERAL;
6354 goto dob;
6355 }
6356 else
6357 {
6358 assert (strcmp (s, RDATA_SECTION_NAME) == 0);
6359 used_at = 1;
6360 if (mips_pic == SVR4_PIC)
6361 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
6362 BFD_RELOC_MIPS_GOT16, mips_gp_register);
6363 else
6364 {
6365 /* FIXME: This won't work for a 64 bit address. */
6366 macro_build_lui (&offset_expr, AT);
6367 }
6368
6369 if (mips_opts.isa != ISA_MIPS1)
6370 {
6371 macro_build (&offset_expr, "ldc1", "T,o(b)",
6372 treg, BFD_RELOC_LO16, AT);
6373 break;
6374 }
6375 breg = AT;
6376 r = BFD_RELOC_LO16;
6377 goto dob;
6378 }
6379
6380 case M_L_DOB:
6381 if (mips_opts.arch == CPU_R4650)
6382 {
6383 as_bad (_("opcode not supported on this processor"));
6384 break;
6385 }
6386 /* Even on a big endian machine $fn comes before $fn+1. We have
6387 to adjust when loading from memory. */
6388 r = BFD_RELOC_LO16;
6389 dob:
6390 assert (mips_opts.isa == ISA_MIPS1);
6391 macro_build (&offset_expr, "lwc1", "T,o(b)",
6392 target_big_endian ? treg + 1 : treg, r, breg);
6393 /* FIXME: A possible overflow which I don't know how to deal
6394 with. */
6395 offset_expr.X_add_number += 4;
6396 macro_build (&offset_expr, "lwc1", "T,o(b)",
6397 target_big_endian ? treg : treg + 1, r, breg);
6398 break;
6399
6400 case M_L_DAB:
6401 /*
6402 * The MIPS assembler seems to check for X_add_number not
6403 * being double aligned and generating:
6404 * lui at,%hi(foo+1)
6405 * addu at,at,v1
6406 * addiu at,at,%lo(foo+1)
6407 * lwc1 f2,0(at)
6408 * lwc1 f3,4(at)
6409 * But, the resulting address is the same after relocation so why
6410 * generate the extra instruction?
6411 */
6412 if (mips_opts.arch == CPU_R4650)
6413 {
6414 as_bad (_("opcode not supported on this processor"));
6415 break;
6416 }
6417 /* Itbl support may require additional care here. */
6418 coproc = 1;
6419 if (mips_opts.isa != ISA_MIPS1)
6420 {
6421 s = "ldc1";
6422 goto ld;
6423 }
6424
6425 s = "lwc1";
6426 fmt = "T,o(b)";
6427 goto ldd_std;
6428
6429 case M_S_DAB:
6430 if (mips_opts.arch == CPU_R4650)
6431 {
6432 as_bad (_("opcode not supported on this processor"));
6433 break;
6434 }
6435
6436 if (mips_opts.isa != ISA_MIPS1)
6437 {
6438 s = "sdc1";
6439 goto st;
6440 }
6441
6442 s = "swc1";
6443 fmt = "T,o(b)";
6444 /* Itbl support may require additional care here. */
6445 coproc = 1;
6446 goto ldd_std;
6447
6448 case M_LD_AB:
6449 if (HAVE_64BIT_GPRS)
6450 {
6451 s = "ld";
6452 goto ld;
6453 }
6454
6455 s = "lw";
6456 fmt = "t,o(b)";
6457 goto ldd_std;
6458
6459 case M_SD_AB:
6460 if (HAVE_64BIT_GPRS)
6461 {
6462 s = "sd";
6463 goto st;
6464 }
6465
6466 s = "sw";
6467 fmt = "t,o(b)";
6468
6469 ldd_std:
6470 if (offset_expr.X_op != O_symbol
6471 && offset_expr.X_op != O_constant)
6472 {
6473 as_bad (_("expression too complex"));
6474 offset_expr.X_op = O_constant;
6475 }
6476
6477 /* Even on a big endian machine $fn comes before $fn+1. We have
6478 to adjust when loading from memory. We set coproc if we must
6479 load $fn+1 first. */
6480 /* Itbl support may require additional care here. */
6481 if (! target_big_endian)
6482 coproc = 0;
6483
6484 if (mips_pic == NO_PIC
6485 || offset_expr.X_op == O_constant)
6486 {
6487 /* If this is a reference to a GP relative symbol, we want
6488 <op> $treg,<sym>($gp) (BFD_RELOC_GPREL16)
6489 <op> $treg+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
6490 If we have a base register, we use this
6491 addu $at,$breg,$gp
6492 <op> $treg,<sym>($at) (BFD_RELOC_GPREL16)
6493 <op> $treg+1,<sym>+4($at) (BFD_RELOC_GPREL16)
6494 If this is not a GP relative symbol, we want
6495 lui $at,<sym> (BFD_RELOC_HI16_S)
6496 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
6497 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
6498 If there is a base register, we add it to $at after the
6499 lui instruction. If there is a constant, we always use
6500 the last case. */
6501 if ((valueT) offset_expr.X_add_number > MAX_GPREL_OFFSET
6502 || nopic_need_relax (offset_expr.X_add_symbol, 1))
6503 used_at = 1;
6504 else
6505 {
6506 relax_start (offset_expr.X_add_symbol);
6507 if (breg == 0)
6508 {
6509 tempreg = mips_gp_register;
6510 }
6511 else
6512 {
6513 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6514 AT, breg, mips_gp_register);
6515 tempreg = AT;
6516 used_at = 1;
6517 }
6518
6519 /* Itbl support may require additional care here. */
6520 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
6521 BFD_RELOC_GPREL16, tempreg);
6522 offset_expr.X_add_number += 4;
6523
6524 /* Set mips_optimize to 2 to avoid inserting an
6525 undesired nop. */
6526 hold_mips_optimize = mips_optimize;
6527 mips_optimize = 2;
6528 /* Itbl support may require additional care here. */
6529 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
6530 BFD_RELOC_GPREL16, tempreg);
6531 mips_optimize = hold_mips_optimize;
6532
6533 relax_switch ();
6534
6535 /* We just generated two relocs. When tc_gen_reloc
6536 handles this case, it will skip the first reloc and
6537 handle the second. The second reloc already has an
6538 extra addend of 4, which we added above. We must
6539 subtract it out, and then subtract another 4 to make
6540 the first reloc come out right. The second reloc
6541 will come out right because we are going to add 4 to
6542 offset_expr when we build its instruction below.
6543
6544 If we have a symbol, then we don't want to include
6545 the offset, because it will wind up being included
6546 when we generate the reloc. */
6547
6548 if (offset_expr.X_op == O_constant)
6549 offset_expr.X_add_number -= 8;
6550 else
6551 {
6552 offset_expr.X_add_number = -4;
6553 offset_expr.X_op = O_constant;
6554 }
6555 }
6556 used_at = 1;
6557 macro_build_lui (&offset_expr, AT);
6558 if (breg != 0)
6559 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
6560 /* Itbl support may require additional care here. */
6561 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
6562 BFD_RELOC_LO16, AT);
6563 /* FIXME: How do we handle overflow here? */
6564 offset_expr.X_add_number += 4;
6565 /* Itbl support may require additional care here. */
6566 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
6567 BFD_RELOC_LO16, AT);
6568 if (mips_relax.sequence)
6569 relax_end ();
6570 }
6571 else if (mips_pic == SVR4_PIC && ! mips_big_got)
6572 {
6573 /* If this is a reference to an external symbol, we want
6574 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6575 nop
6576 <op> $treg,0($at)
6577 <op> $treg+1,4($at)
6578 Otherwise we want
6579 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6580 nop
6581 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
6582 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
6583 If there is a base register we add it to $at before the
6584 lwc1 instructions. If there is a constant we include it
6585 in the lwc1 instructions. */
6586 used_at = 1;
6587 expr1.X_add_number = offset_expr.X_add_number;
6588 if (expr1.X_add_number < -0x8000
6589 || expr1.X_add_number >= 0x8000 - 4)
6590 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6591 load_got_offset (AT, &offset_expr);
6592 load_delay_nop ();
6593 if (breg != 0)
6594 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
6595
6596 /* Set mips_optimize to 2 to avoid inserting an undesired
6597 nop. */
6598 hold_mips_optimize = mips_optimize;
6599 mips_optimize = 2;
6600
6601 /* Itbl support may require additional care here. */
6602 relax_start (offset_expr.X_add_symbol);
6603 macro_build (&expr1, s, fmt, coproc ? treg + 1 : treg,
6604 BFD_RELOC_LO16, AT);
6605 expr1.X_add_number += 4;
6606 macro_build (&expr1, s, fmt, coproc ? treg : treg + 1,
6607 BFD_RELOC_LO16, AT);
6608 relax_switch ();
6609 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
6610 BFD_RELOC_LO16, AT);
6611 offset_expr.X_add_number += 4;
6612 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
6613 BFD_RELOC_LO16, AT);
6614 relax_end ();
6615
6616 mips_optimize = hold_mips_optimize;
6617 }
6618 else if (mips_pic == SVR4_PIC)
6619 {
6620 int gpdelay;
6621
6622 /* If this is a reference to an external symbol, we want
6623 lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6624 addu $at,$at,$gp
6625 lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
6626 nop
6627 <op> $treg,0($at)
6628 <op> $treg+1,4($at)
6629 Otherwise we want
6630 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6631 nop
6632 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
6633 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
6634 If there is a base register we add it to $at before the
6635 lwc1 instructions. If there is a constant we include it
6636 in the lwc1 instructions. */
6637 used_at = 1;
6638 expr1.X_add_number = offset_expr.X_add_number;
6639 offset_expr.X_add_number = 0;
6640 if (expr1.X_add_number < -0x8000
6641 || expr1.X_add_number >= 0x8000 - 4)
6642 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6643 gpdelay = reg_needs_delay (mips_gp_register);
6644 relax_start (offset_expr.X_add_symbol);
6645 macro_build (&offset_expr, "lui", "t,u",
6646 AT, BFD_RELOC_MIPS_GOT_HI16);
6647 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6648 AT, AT, mips_gp_register);
6649 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6650 AT, BFD_RELOC_MIPS_GOT_LO16, AT);
6651 load_delay_nop ();
6652 if (breg != 0)
6653 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
6654 /* Itbl support may require additional care here. */
6655 macro_build (&expr1, s, fmt, coproc ? treg + 1 : treg,
6656 BFD_RELOC_LO16, AT);
6657 expr1.X_add_number += 4;
6658
6659 /* Set mips_optimize to 2 to avoid inserting an undesired
6660 nop. */
6661 hold_mips_optimize = mips_optimize;
6662 mips_optimize = 2;
6663 /* Itbl support may require additional care here. */
6664 macro_build (&expr1, s, fmt, coproc ? treg : treg + 1,
6665 BFD_RELOC_LO16, AT);
6666 mips_optimize = hold_mips_optimize;
6667 expr1.X_add_number -= 4;
6668
6669 relax_switch ();
6670 offset_expr.X_add_number = expr1.X_add_number;
6671 if (gpdelay)
6672 macro_build (NULL, "nop", "");
6673 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
6674 BFD_RELOC_MIPS_GOT16, mips_gp_register);
6675 load_delay_nop ();
6676 if (breg != 0)
6677 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
6678 /* Itbl support may require additional care here. */
6679 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
6680 BFD_RELOC_LO16, AT);
6681 offset_expr.X_add_number += 4;
6682
6683 /* Set mips_optimize to 2 to avoid inserting an undesired
6684 nop. */
6685 hold_mips_optimize = mips_optimize;
6686 mips_optimize = 2;
6687 /* Itbl support may require additional care here. */
6688 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
6689 BFD_RELOC_LO16, AT);
6690 mips_optimize = hold_mips_optimize;
6691 relax_end ();
6692 }
6693 else
6694 abort ();
6695
6696 break;
6697
6698 case M_LD_OB:
6699 s = "lw";
6700 goto sd_ob;
6701 case M_SD_OB:
6702 s = "sw";
6703 sd_ob:
6704 assert (HAVE_32BIT_ADDRESSES);
6705 macro_build (&offset_expr, s, "t,o(b)", treg, BFD_RELOC_LO16, breg);
6706 offset_expr.X_add_number += 4;
6707 macro_build (&offset_expr, s, "t,o(b)", treg + 1, BFD_RELOC_LO16, breg);
6708 break;
6709
6710 /* New code added to support COPZ instructions.
6711 This code builds table entries out of the macros in mip_opcodes.
6712 R4000 uses interlocks to handle coproc delays.
6713 Other chips (like the R3000) require nops to be inserted for delays.
6714
6715 FIXME: Currently, we require that the user handle delays.
6716 In order to fill delay slots for non-interlocked chips,
6717 we must have a way to specify delays based on the coprocessor.
6718 Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
6719 What are the side-effects of the cop instruction?
6720 What cache support might we have and what are its effects?
6721 Both coprocessor & memory require delays. how long???
6722 What registers are read/set/modified?
6723
6724 If an itbl is provided to interpret cop instructions,
6725 this knowledge can be encoded in the itbl spec. */
6726
6727 case M_COP0:
6728 s = "c0";
6729 goto copz;
6730 case M_COP1:
6731 s = "c1";
6732 goto copz;
6733 case M_COP2:
6734 s = "c2";
6735 goto copz;
6736 case M_COP3:
6737 s = "c3";
6738 copz:
6739 /* For now we just do C (same as Cz). The parameter will be
6740 stored in insn_opcode by mips_ip. */
6741 macro_build (NULL, s, "C", ip->insn_opcode);
6742 break;
6743
6744 case M_MOVE:
6745 move_register (dreg, sreg);
6746 break;
6747
6748 #ifdef LOSING_COMPILER
6749 default:
6750 /* Try and see if this is a new itbl instruction.
6751 This code builds table entries out of the macros in mip_opcodes.
6752 FIXME: For now we just assemble the expression and pass it's
6753 value along as a 32-bit immediate.
6754 We may want to have the assembler assemble this value,
6755 so that we gain the assembler's knowledge of delay slots,
6756 symbols, etc.
6757 Would it be more efficient to use mask (id) here? */
6758 if (itbl_have_entries
6759 && (immed_expr = itbl_assemble (ip->insn_mo->name, "")))
6760 {
6761 s = ip->insn_mo->name;
6762 s2 = "cop3";
6763 coproc = ITBL_DECODE_PNUM (immed_expr);;
6764 macro_build (&immed_expr, s, "C");
6765 break;
6766 }
6767 macro2 (ip);
6768 break;
6769 }
6770 if (mips_opts.noat && used_at)
6771 as_bad (_("Macro used $at after \".set noat\""));
6772 }
6773
6774 static void
6775 macro2 (struct mips_cl_insn *ip)
6776 {
6777 register int treg, sreg, dreg, breg;
6778 int tempreg;
6779 int mask;
6780 int used_at;
6781 expressionS expr1;
6782 const char *s;
6783 const char *s2;
6784 const char *fmt;
6785 int likely = 0;
6786 int dbl = 0;
6787 int coproc = 0;
6788 int lr = 0;
6789 int imm = 0;
6790 int off;
6791 offsetT maxnum;
6792 bfd_reloc_code_real_type r;
6793
6794 treg = (ip->insn_opcode >> 16) & 0x1f;
6795 dreg = (ip->insn_opcode >> 11) & 0x1f;
6796 sreg = breg = (ip->insn_opcode >> 21) & 0x1f;
6797 mask = ip->insn_mo->mask;
6798
6799 expr1.X_op = O_constant;
6800 expr1.X_op_symbol = NULL;
6801 expr1.X_add_symbol = NULL;
6802 expr1.X_add_number = 1;
6803
6804 switch (mask)
6805 {
6806 #endif /* LOSING_COMPILER */
6807
6808 case M_DMUL:
6809 dbl = 1;
6810 case M_MUL:
6811 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", sreg, treg);
6812 macro_build (NULL, "mflo", "d", dreg);
6813 break;
6814
6815 case M_DMUL_I:
6816 dbl = 1;
6817 case M_MUL_I:
6818 /* The MIPS assembler some times generates shifts and adds. I'm
6819 not trying to be that fancy. GCC should do this for us
6820 anyway. */
6821 used_at = 1;
6822 load_register (AT, &imm_expr, dbl);
6823 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", sreg, AT);
6824 macro_build (NULL, "mflo", "d", dreg);
6825 break;
6826
6827 case M_DMULO_I:
6828 dbl = 1;
6829 case M_MULO_I:
6830 imm = 1;
6831 goto do_mulo;
6832
6833 case M_DMULO:
6834 dbl = 1;
6835 case M_MULO:
6836 do_mulo:
6837 mips_emit_delays (TRUE);
6838 ++mips_opts.noreorder;
6839 mips_any_noreorder = 1;
6840 used_at = 1;
6841 if (imm)
6842 load_register (AT, &imm_expr, dbl);
6843 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", sreg, imm ? AT : treg);
6844 macro_build (NULL, "mflo", "d", dreg);
6845 macro_build (NULL, dbl ? "dsra32" : "sra", "d,w,<", dreg, dreg, RA);
6846 macro_build (NULL, "mfhi", "d", AT);
6847 if (mips_trap)
6848 macro_build (NULL, "tne", "s,t,q", dreg, AT, 6);
6849 else
6850 {
6851 expr1.X_add_number = 8;
6852 macro_build (&expr1, "beq", "s,t,p", dreg, AT);
6853 macro_build (NULL, "nop", "", 0);
6854 macro_build (NULL, "break", "c", 6);
6855 }
6856 --mips_opts.noreorder;
6857 macro_build (NULL, "mflo", "d", dreg);
6858 break;
6859
6860 case M_DMULOU_I:
6861 dbl = 1;
6862 case M_MULOU_I:
6863 imm = 1;
6864 goto do_mulou;
6865
6866 case M_DMULOU:
6867 dbl = 1;
6868 case M_MULOU:
6869 do_mulou:
6870 mips_emit_delays (TRUE);
6871 ++mips_opts.noreorder;
6872 mips_any_noreorder = 1;
6873 used_at = 1;
6874 if (imm)
6875 load_register (AT, &imm_expr, dbl);
6876 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t",
6877 sreg, imm ? AT : treg);
6878 macro_build (NULL, "mfhi", "d", AT);
6879 macro_build (NULL, "mflo", "d", dreg);
6880 if (mips_trap)
6881 macro_build (NULL, "tne", "s,t,q", AT, 0, 6);
6882 else
6883 {
6884 expr1.X_add_number = 8;
6885 macro_build (&expr1, "beq", "s,t,p", AT, 0);
6886 macro_build (NULL, "nop", "", 0);
6887 macro_build (NULL, "break", "c", 6);
6888 }
6889 --mips_opts.noreorder;
6890 break;
6891
6892 case M_DROL:
6893 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
6894 {
6895 if (dreg == sreg)
6896 {
6897 tempreg = AT;
6898 used_at = 1;
6899 }
6900 else
6901 {
6902 tempreg = dreg;
6903 }
6904 macro_build (NULL, "dnegu", "d,w", tempreg, treg);
6905 macro_build (NULL, "drorv", "d,t,s", dreg, sreg, tempreg);
6906 break;
6907 }
6908 used_at = 1;
6909 macro_build (NULL, "dsubu", "d,v,t", AT, 0, treg);
6910 macro_build (NULL, "dsrlv", "d,t,s", AT, sreg, AT);
6911 macro_build (NULL, "dsllv", "d,t,s", dreg, sreg, treg);
6912 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
6913 break;
6914
6915 case M_ROL:
6916 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
6917 {
6918 if (dreg == sreg)
6919 {
6920 tempreg = AT;
6921 used_at = 1;
6922 }
6923 else
6924 {
6925 tempreg = dreg;
6926 }
6927 macro_build (NULL, "negu", "d,w", tempreg, treg);
6928 macro_build (NULL, "rorv", "d,t,s", dreg, sreg, tempreg);
6929 break;
6930 }
6931 used_at = 1;
6932 macro_build (NULL, "subu", "d,v,t", AT, 0, treg);
6933 macro_build (NULL, "srlv", "d,t,s", AT, sreg, AT);
6934 macro_build (NULL, "sllv", "d,t,s", dreg, sreg, treg);
6935 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
6936 break;
6937
6938 case M_DROL_I:
6939 {
6940 unsigned int rot;
6941 char *l, *r;
6942
6943 if (imm_expr.X_op != O_constant)
6944 as_bad (_("Improper rotate count"));
6945 rot = imm_expr.X_add_number & 0x3f;
6946 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
6947 {
6948 rot = (64 - rot) & 0x3f;
6949 if (rot >= 32)
6950 macro_build (NULL, "dror32", "d,w,<", dreg, sreg, rot - 32);
6951 else
6952 macro_build (NULL, "dror", "d,w,<", dreg, sreg, rot);
6953 break;
6954 }
6955 if (rot == 0)
6956 {
6957 macro_build (NULL, "dsrl", "d,w,<", dreg, sreg, 0);
6958 break;
6959 }
6960 l = (rot < 0x20) ? "dsll" : "dsll32";
6961 r = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
6962 rot &= 0x1f;
6963 used_at = 1;
6964 macro_build (NULL, l, "d,w,<", AT, sreg, rot);
6965 macro_build (NULL, r, "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
6966 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
6967 }
6968 break;
6969
6970 case M_ROL_I:
6971 {
6972 unsigned int rot;
6973
6974 if (imm_expr.X_op != O_constant)
6975 as_bad (_("Improper rotate count"));
6976 rot = imm_expr.X_add_number & 0x1f;
6977 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
6978 {
6979 macro_build (NULL, "ror", "d,w,<", dreg, sreg, (32 - rot) & 0x1f);
6980 break;
6981 }
6982 if (rot == 0)
6983 {
6984 macro_build (NULL, "srl", "d,w,<", dreg, sreg, 0);
6985 break;
6986 }
6987 used_at = 1;
6988 macro_build (NULL, "sll", "d,w,<", AT, sreg, rot);
6989 macro_build (NULL, "srl", "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
6990 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
6991 }
6992 break;
6993
6994 case M_DROR:
6995 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
6996 {
6997 macro_build (NULL, "drorv", "d,t,s", dreg, sreg, treg);
6998 break;
6999 }
7000 used_at = 1;
7001 macro_build (NULL, "dsubu", "d,v,t", AT, 0, treg);
7002 macro_build (NULL, "dsllv", "d,t,s", AT, sreg, AT);
7003 macro_build (NULL, "dsrlv", "d,t,s", dreg, sreg, treg);
7004 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7005 break;
7006
7007 case M_ROR:
7008 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
7009 {
7010 macro_build (NULL, "rorv", "d,t,s", dreg, sreg, treg);
7011 break;
7012 }
7013 used_at = 1;
7014 macro_build (NULL, "subu", "d,v,t", AT, 0, treg);
7015 macro_build (NULL, "sllv", "d,t,s", AT, sreg, AT);
7016 macro_build (NULL, "srlv", "d,t,s", dreg, sreg, treg);
7017 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7018 break;
7019
7020 case M_DROR_I:
7021 {
7022 unsigned int rot;
7023 char *l, *r;
7024
7025 if (imm_expr.X_op != O_constant)
7026 as_bad (_("Improper rotate count"));
7027 rot = imm_expr.X_add_number & 0x3f;
7028 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
7029 {
7030 if (rot >= 32)
7031 macro_build (NULL, "dror32", "d,w,<", dreg, sreg, rot - 32);
7032 else
7033 macro_build (NULL, "dror", "d,w,<", dreg, sreg, rot);
7034 break;
7035 }
7036 if (rot == 0)
7037 {
7038 macro_build (NULL, "dsrl", "d,w,<", dreg, sreg, 0);
7039 break;
7040 }
7041 r = (rot < 0x20) ? "dsrl" : "dsrl32";
7042 l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
7043 rot &= 0x1f;
7044 used_at = 1;
7045 macro_build (NULL, r, "d,w,<", AT, sreg, rot);
7046 macro_build (NULL, l, "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
7047 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7048 }
7049 break;
7050
7051 case M_ROR_I:
7052 {
7053 unsigned int rot;
7054
7055 if (imm_expr.X_op != O_constant)
7056 as_bad (_("Improper rotate count"));
7057 rot = imm_expr.X_add_number & 0x1f;
7058 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
7059 {
7060 macro_build (NULL, "ror", "d,w,<", dreg, sreg, rot);
7061 break;
7062 }
7063 if (rot == 0)
7064 {
7065 macro_build (NULL, "srl", "d,w,<", dreg, sreg, 0);
7066 break;
7067 }
7068 used_at = 1;
7069 macro_build (NULL, "srl", "d,w,<", AT, sreg, rot);
7070 macro_build (NULL, "sll", "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
7071 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7072 }
7073 break;
7074
7075 case M_S_DOB:
7076 if (mips_opts.arch == CPU_R4650)
7077 {
7078 as_bad (_("opcode not supported on this processor"));
7079 break;
7080 }
7081 assert (mips_opts.isa == ISA_MIPS1);
7082 /* Even on a big endian machine $fn comes before $fn+1. We have
7083 to adjust when storing to memory. */
7084 macro_build (&offset_expr, "swc1", "T,o(b)",
7085 target_big_endian ? treg + 1 : treg, BFD_RELOC_LO16, breg);
7086 offset_expr.X_add_number += 4;
7087 macro_build (&offset_expr, "swc1", "T,o(b)",
7088 target_big_endian ? treg : treg + 1, BFD_RELOC_LO16, breg);
7089 break;
7090
7091 case M_SEQ:
7092 if (sreg == 0)
7093 macro_build (&expr1, "sltiu", "t,r,j", dreg, treg, BFD_RELOC_LO16);
7094 else if (treg == 0)
7095 macro_build (&expr1, "sltiu", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7096 else
7097 {
7098 macro_build (NULL, "xor", "d,v,t", dreg, sreg, treg);
7099 macro_build (&expr1, "sltiu", "t,r,j", dreg, dreg, BFD_RELOC_LO16);
7100 }
7101 break;
7102
7103 case M_SEQ_I:
7104 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
7105 {
7106 macro_build (&expr1, "sltiu", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7107 break;
7108 }
7109 if (sreg == 0)
7110 {
7111 as_warn (_("Instruction %s: result is always false"),
7112 ip->insn_mo->name);
7113 move_register (dreg, 0);
7114 break;
7115 }
7116 if (imm_expr.X_op == O_constant
7117 && imm_expr.X_add_number >= 0
7118 && imm_expr.X_add_number < 0x10000)
7119 {
7120 macro_build (&imm_expr, "xori", "t,r,i", dreg, sreg, BFD_RELOC_LO16);
7121 }
7122 else if (imm_expr.X_op == O_constant
7123 && imm_expr.X_add_number > -0x8000
7124 && imm_expr.X_add_number < 0)
7125 {
7126 imm_expr.X_add_number = -imm_expr.X_add_number;
7127 macro_build (&imm_expr, HAVE_32BIT_GPRS ? "addiu" : "daddiu",
7128 "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7129 }
7130 else
7131 {
7132 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7133 macro_build (NULL, "xor", "d,v,t", dreg, sreg, AT);
7134 used_at = 1;
7135 }
7136 macro_build (&expr1, "sltiu", "t,r,j", dreg, dreg, BFD_RELOC_LO16);
7137 break;
7138
7139 case M_SGE: /* sreg >= treg <==> not (sreg < treg) */
7140 s = "slt";
7141 goto sge;
7142 case M_SGEU:
7143 s = "sltu";
7144 sge:
7145 macro_build (NULL, s, "d,v,t", dreg, sreg, treg);
7146 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
7147 break;
7148
7149 case M_SGE_I: /* sreg >= I <==> not (sreg < I) */
7150 case M_SGEU_I:
7151 if (imm_expr.X_op == O_constant
7152 && imm_expr.X_add_number >= -0x8000
7153 && imm_expr.X_add_number < 0x8000)
7154 {
7155 macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j",
7156 dreg, sreg, BFD_RELOC_LO16);
7157 }
7158 else
7159 {
7160 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7161 macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t",
7162 dreg, sreg, AT);
7163 used_at = 1;
7164 }
7165 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
7166 break;
7167
7168 case M_SGT: /* sreg > treg <==> treg < sreg */
7169 s = "slt";
7170 goto sgt;
7171 case M_SGTU:
7172 s = "sltu";
7173 sgt:
7174 macro_build (NULL, s, "d,v,t", dreg, treg, sreg);
7175 break;
7176
7177 case M_SGT_I: /* sreg > I <==> I < sreg */
7178 s = "slt";
7179 goto sgti;
7180 case M_SGTU_I:
7181 s = "sltu";
7182 sgti:
7183 used_at = 1;
7184 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7185 macro_build (NULL, s, "d,v,t", dreg, AT, sreg);
7186 break;
7187
7188 case M_SLE: /* sreg <= treg <==> treg >= sreg <==> not (treg < sreg) */
7189 s = "slt";
7190 goto sle;
7191 case M_SLEU:
7192 s = "sltu";
7193 sle:
7194 macro_build (NULL, s, "d,v,t", dreg, treg, sreg);
7195 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
7196 break;
7197
7198 case M_SLE_I: /* sreg <= I <==> I >= sreg <==> not (I < sreg) */
7199 s = "slt";
7200 goto slei;
7201 case M_SLEU_I:
7202 s = "sltu";
7203 slei:
7204 used_at = 1;
7205 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7206 macro_build (NULL, s, "d,v,t", dreg, AT, sreg);
7207 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
7208 break;
7209
7210 case M_SLT_I:
7211 if (imm_expr.X_op == O_constant
7212 && imm_expr.X_add_number >= -0x8000
7213 && imm_expr.X_add_number < 0x8000)
7214 {
7215 macro_build (&imm_expr, "slti", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7216 break;
7217 }
7218 used_at = 1;
7219 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7220 macro_build (NULL, "slt", "d,v,t", dreg, sreg, AT);
7221 break;
7222
7223 case M_SLTU_I:
7224 if (imm_expr.X_op == O_constant
7225 && imm_expr.X_add_number >= -0x8000
7226 && imm_expr.X_add_number < 0x8000)
7227 {
7228 macro_build (&imm_expr, "sltiu", "t,r,j", dreg, sreg,
7229 BFD_RELOC_LO16);
7230 break;
7231 }
7232 used_at = 1;
7233 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7234 macro_build (NULL, "sltu", "d,v,t", dreg, sreg, AT);
7235 break;
7236
7237 case M_SNE:
7238 if (sreg == 0)
7239 macro_build (NULL, "sltu", "d,v,t", dreg, 0, treg);
7240 else if (treg == 0)
7241 macro_build (NULL, "sltu", "d,v,t", dreg, 0, sreg);
7242 else
7243 {
7244 macro_build (NULL, "xor", "d,v,t", dreg, sreg, treg);
7245 macro_build (NULL, "sltu", "d,v,t", dreg, 0, dreg);
7246 }
7247 break;
7248
7249 case M_SNE_I:
7250 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
7251 {
7252 macro_build (NULL, "sltu", "d,v,t", dreg, 0, sreg);
7253 break;
7254 }
7255 if (sreg == 0)
7256 {
7257 as_warn (_("Instruction %s: result is always true"),
7258 ip->insn_mo->name);
7259 macro_build (&expr1, HAVE_32BIT_GPRS ? "addiu" : "daddiu", "t,r,j",
7260 dreg, 0, BFD_RELOC_LO16);
7261 break;
7262 }
7263 if (imm_expr.X_op == O_constant
7264 && imm_expr.X_add_number >= 0
7265 && imm_expr.X_add_number < 0x10000)
7266 {
7267 macro_build (&imm_expr, "xori", "t,r,i", dreg, sreg, BFD_RELOC_LO16);
7268 }
7269 else if (imm_expr.X_op == O_constant
7270 && imm_expr.X_add_number > -0x8000
7271 && imm_expr.X_add_number < 0)
7272 {
7273 imm_expr.X_add_number = -imm_expr.X_add_number;
7274 macro_build (&imm_expr, HAVE_32BIT_GPRS ? "addiu" : "daddiu",
7275 "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7276 }
7277 else
7278 {
7279 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7280 macro_build (NULL, "xor", "d,v,t", dreg, sreg, AT);
7281 used_at = 1;
7282 }
7283 macro_build (NULL, "sltu", "d,v,t", dreg, 0, dreg);
7284 break;
7285
7286 case M_DSUB_I:
7287 dbl = 1;
7288 case M_SUB_I:
7289 if (imm_expr.X_op == O_constant
7290 && imm_expr.X_add_number > -0x8000
7291 && imm_expr.X_add_number <= 0x8000)
7292 {
7293 imm_expr.X_add_number = -imm_expr.X_add_number;
7294 macro_build (&imm_expr, dbl ? "daddi" : "addi", "t,r,j",
7295 dreg, sreg, BFD_RELOC_LO16);
7296 break;
7297 }
7298 used_at = 1;
7299 load_register (AT, &imm_expr, dbl);
7300 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", dreg, sreg, AT);
7301 break;
7302
7303 case M_DSUBU_I:
7304 dbl = 1;
7305 case M_SUBU_I:
7306 if (imm_expr.X_op == O_constant
7307 && imm_expr.X_add_number > -0x8000
7308 && imm_expr.X_add_number <= 0x8000)
7309 {
7310 imm_expr.X_add_number = -imm_expr.X_add_number;
7311 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "t,r,j",
7312 dreg, sreg, BFD_RELOC_LO16);
7313 break;
7314 }
7315 used_at = 1;
7316 load_register (AT, &imm_expr, dbl);
7317 macro_build (NULL, dbl ? "dsubu" : "subu", "d,v,t", dreg, sreg, AT);
7318 break;
7319
7320 case M_TEQ_I:
7321 s = "teq";
7322 goto trap;
7323 case M_TGE_I:
7324 s = "tge";
7325 goto trap;
7326 case M_TGEU_I:
7327 s = "tgeu";
7328 goto trap;
7329 case M_TLT_I:
7330 s = "tlt";
7331 goto trap;
7332 case M_TLTU_I:
7333 s = "tltu";
7334 goto trap;
7335 case M_TNE_I:
7336 s = "tne";
7337 trap:
7338 used_at = 1;
7339 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7340 macro_build (NULL, s, "s,t", sreg, AT);
7341 break;
7342
7343 case M_TRUNCWS:
7344 case M_TRUNCWD:
7345 assert (mips_opts.isa == ISA_MIPS1);
7346 used_at = 1;
7347 sreg = (ip->insn_opcode >> 11) & 0x1f; /* floating reg */
7348 dreg = (ip->insn_opcode >> 06) & 0x1f; /* floating reg */
7349
7350 /*
7351 * Is the double cfc1 instruction a bug in the mips assembler;
7352 * or is there a reason for it?
7353 */
7354 mips_emit_delays (TRUE);
7355 ++mips_opts.noreorder;
7356 mips_any_noreorder = 1;
7357 macro_build (NULL, "cfc1", "t,G", treg, RA);
7358 macro_build (NULL, "cfc1", "t,G", treg, RA);
7359 macro_build (NULL, "nop", "");
7360 expr1.X_add_number = 3;
7361 macro_build (&expr1, "ori", "t,r,i", AT, treg, BFD_RELOC_LO16);
7362 expr1.X_add_number = 2;
7363 macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16);
7364 macro_build (NULL, "ctc1", "t,G", AT, RA);
7365 macro_build (NULL, "nop", "");
7366 macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S",
7367 dreg, sreg);
7368 macro_build (NULL, "ctc1", "t,G", treg, RA);
7369 macro_build (NULL, "nop", "");
7370 --mips_opts.noreorder;
7371 break;
7372
7373 case M_ULH:
7374 s = "lb";
7375 goto ulh;
7376 case M_ULHU:
7377 s = "lbu";
7378 ulh:
7379 used_at = 1;
7380 if (offset_expr.X_add_number >= 0x7fff)
7381 as_bad (_("operand overflow"));
7382 if (! target_big_endian)
7383 ++offset_expr.X_add_number;
7384 macro_build (&offset_expr, s, "t,o(b)", AT, BFD_RELOC_LO16, breg);
7385 if (! target_big_endian)
7386 --offset_expr.X_add_number;
7387 else
7388 ++offset_expr.X_add_number;
7389 macro_build (&offset_expr, "lbu", "t,o(b)", treg, BFD_RELOC_LO16, breg);
7390 macro_build (NULL, "sll", "d,w,<", AT, AT, 8);
7391 macro_build (NULL, "or", "d,v,t", treg, treg, AT);
7392 break;
7393
7394 case M_ULD:
7395 s = "ldl";
7396 s2 = "ldr";
7397 off = 7;
7398 goto ulw;
7399 case M_ULW:
7400 s = "lwl";
7401 s2 = "lwr";
7402 off = 3;
7403 ulw:
7404 if (offset_expr.X_add_number >= 0x8000 - off)
7405 as_bad (_("operand overflow"));
7406 if (treg != breg)
7407 tempreg = treg;
7408 else
7409 {
7410 used_at = 1;
7411 tempreg = AT;
7412 }
7413 if (! target_big_endian)
7414 offset_expr.X_add_number += off;
7415 macro_build (&offset_expr, s, "t,o(b)", tempreg, BFD_RELOC_LO16, breg);
7416 if (! target_big_endian)
7417 offset_expr.X_add_number -= off;
7418 else
7419 offset_expr.X_add_number += off;
7420 macro_build (&offset_expr, s2, "t,o(b)", tempreg, BFD_RELOC_LO16, breg);
7421
7422 /* If necessary, move the result in tempreg the final destination. */
7423 if (treg == tempreg)
7424 break;
7425 /* Protect second load's delay slot. */
7426 load_delay_nop ();
7427 move_register (treg, tempreg);
7428 break;
7429
7430 case M_ULD_A:
7431 s = "ldl";
7432 s2 = "ldr";
7433 off = 7;
7434 goto ulwa;
7435 case M_ULW_A:
7436 s = "lwl";
7437 s2 = "lwr";
7438 off = 3;
7439 ulwa:
7440 used_at = 1;
7441 load_address (AT, &offset_expr, &used_at);
7442 if (breg != 0)
7443 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
7444 if (! target_big_endian)
7445 expr1.X_add_number = off;
7446 else
7447 expr1.X_add_number = 0;
7448 macro_build (&expr1, s, "t,o(b)", treg, BFD_RELOC_LO16, AT);
7449 if (! target_big_endian)
7450 expr1.X_add_number = 0;
7451 else
7452 expr1.X_add_number = off;
7453 macro_build (&expr1, s2, "t,o(b)", treg, BFD_RELOC_LO16, AT);
7454 break;
7455
7456 case M_ULH_A:
7457 case M_ULHU_A:
7458 used_at = 1;
7459 load_address (AT, &offset_expr, &used_at);
7460 if (breg != 0)
7461 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
7462 if (target_big_endian)
7463 expr1.X_add_number = 0;
7464 macro_build (&expr1, mask == M_ULH_A ? "lb" : "lbu", "t,o(b)",
7465 treg, BFD_RELOC_LO16, AT);
7466 if (target_big_endian)
7467 expr1.X_add_number = 1;
7468 else
7469 expr1.X_add_number = 0;
7470 macro_build (&expr1, "lbu", "t,o(b)", AT, BFD_RELOC_LO16, AT);
7471 macro_build (NULL, "sll", "d,w,<", treg, treg, 8);
7472 macro_build (NULL, "or", "d,v,t", treg, treg, AT);
7473 break;
7474
7475 case M_USH:
7476 used_at = 1;
7477 if (offset_expr.X_add_number >= 0x7fff)
7478 as_bad (_("operand overflow"));
7479 if (target_big_endian)
7480 ++offset_expr.X_add_number;
7481 macro_build (&offset_expr, "sb", "t,o(b)", treg, BFD_RELOC_LO16, breg);
7482 macro_build (NULL, "srl", "d,w,<", AT, treg, 8);
7483 if (target_big_endian)
7484 --offset_expr.X_add_number;
7485 else
7486 ++offset_expr.X_add_number;
7487 macro_build (&offset_expr, "sb", "t,o(b)", AT, BFD_RELOC_LO16, breg);
7488 break;
7489
7490 case M_USD:
7491 s = "sdl";
7492 s2 = "sdr";
7493 off = 7;
7494 goto usw;
7495 case M_USW:
7496 s = "swl";
7497 s2 = "swr";
7498 off = 3;
7499 usw:
7500 if (offset_expr.X_add_number >= 0x8000 - off)
7501 as_bad (_("operand overflow"));
7502 if (! target_big_endian)
7503 offset_expr.X_add_number += off;
7504 macro_build (&offset_expr, s, "t,o(b)", treg, BFD_RELOC_LO16, breg);
7505 if (! target_big_endian)
7506 offset_expr.X_add_number -= off;
7507 else
7508 offset_expr.X_add_number += off;
7509 macro_build (&offset_expr, s2, "t,o(b)", treg, BFD_RELOC_LO16, breg);
7510 break;
7511
7512 case M_USD_A:
7513 s = "sdl";
7514 s2 = "sdr";
7515 off = 7;
7516 goto uswa;
7517 case M_USW_A:
7518 s = "swl";
7519 s2 = "swr";
7520 off = 3;
7521 uswa:
7522 used_at = 1;
7523 load_address (AT, &offset_expr, &used_at);
7524 if (breg != 0)
7525 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
7526 if (! target_big_endian)
7527 expr1.X_add_number = off;
7528 else
7529 expr1.X_add_number = 0;
7530 macro_build (&expr1, s, "t,o(b)", treg, BFD_RELOC_LO16, AT);
7531 if (! target_big_endian)
7532 expr1.X_add_number = 0;
7533 else
7534 expr1.X_add_number = off;
7535 macro_build (&expr1, s2, "t,o(b)", treg, BFD_RELOC_LO16, AT);
7536 break;
7537
7538 case M_USH_A:
7539 used_at = 1;
7540 load_address (AT, &offset_expr, &used_at);
7541 if (breg != 0)
7542 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
7543 if (! target_big_endian)
7544 expr1.X_add_number = 0;
7545 macro_build (&expr1, "sb", "t,o(b)", treg, BFD_RELOC_LO16, AT);
7546 macro_build (NULL, "srl", "d,w,<", treg, treg, 8);
7547 if (! target_big_endian)
7548 expr1.X_add_number = 1;
7549 else
7550 expr1.X_add_number = 0;
7551 macro_build (&expr1, "sb", "t,o(b)", treg, BFD_RELOC_LO16, AT);
7552 if (! target_big_endian)
7553 expr1.X_add_number = 0;
7554 else
7555 expr1.X_add_number = 1;
7556 macro_build (&expr1, "lbu", "t,o(b)", AT, BFD_RELOC_LO16, AT);
7557 macro_build (NULL, "sll", "d,w,<", treg, treg, 8);
7558 macro_build (NULL, "or", "d,v,t", treg, treg, AT);
7559 break;
7560
7561 default:
7562 /* FIXME: Check if this is one of the itbl macros, since they
7563 are added dynamically. */
7564 as_bad (_("Macro %s not implemented yet"), ip->insn_mo->name);
7565 break;
7566 }
7567 if (mips_opts.noat && used_at)
7568 as_bad (_("Macro used $at after \".set noat\""));
7569 }
7570
7571 /* Implement macros in mips16 mode. */
7572
7573 static void
7574 mips16_macro (struct mips_cl_insn *ip)
7575 {
7576 int mask;
7577 int xreg, yreg, zreg, tmp;
7578 expressionS expr1;
7579 int dbl;
7580 const char *s, *s2, *s3;
7581
7582 mask = ip->insn_mo->mask;
7583
7584 xreg = (ip->insn_opcode >> MIPS16OP_SH_RX) & MIPS16OP_MASK_RX;
7585 yreg = (ip->insn_opcode >> MIPS16OP_SH_RY) & MIPS16OP_MASK_RY;
7586 zreg = (ip->insn_opcode >> MIPS16OP_SH_RZ) & MIPS16OP_MASK_RZ;
7587
7588 expr1.X_op = O_constant;
7589 expr1.X_op_symbol = NULL;
7590 expr1.X_add_symbol = NULL;
7591 expr1.X_add_number = 1;
7592
7593 dbl = 0;
7594
7595 switch (mask)
7596 {
7597 default:
7598 internalError ();
7599
7600 case M_DDIV_3:
7601 dbl = 1;
7602 case M_DIV_3:
7603 s = "mflo";
7604 goto do_div3;
7605 case M_DREM_3:
7606 dbl = 1;
7607 case M_REM_3:
7608 s = "mfhi";
7609 do_div3:
7610 mips_emit_delays (TRUE);
7611 ++mips_opts.noreorder;
7612 mips_any_noreorder = 1;
7613 macro_build (NULL, dbl ? "ddiv" : "div", "0,x,y", xreg, yreg);
7614 expr1.X_add_number = 2;
7615 macro_build (&expr1, "bnez", "x,p", yreg);
7616 macro_build (NULL, "break", "6", 7);
7617
7618 /* FIXME: The normal code checks for of -1 / -0x80000000 here,
7619 since that causes an overflow. We should do that as well,
7620 but I don't see how to do the comparisons without a temporary
7621 register. */
7622 --mips_opts.noreorder;
7623 macro_build (NULL, s, "x", zreg);
7624 break;
7625
7626 case M_DIVU_3:
7627 s = "divu";
7628 s2 = "mflo";
7629 goto do_divu3;
7630 case M_REMU_3:
7631 s = "divu";
7632 s2 = "mfhi";
7633 goto do_divu3;
7634 case M_DDIVU_3:
7635 s = "ddivu";
7636 s2 = "mflo";
7637 goto do_divu3;
7638 case M_DREMU_3:
7639 s = "ddivu";
7640 s2 = "mfhi";
7641 do_divu3:
7642 mips_emit_delays (TRUE);
7643 ++mips_opts.noreorder;
7644 mips_any_noreorder = 1;
7645 macro_build (NULL, s, "0,x,y", xreg, yreg);
7646 expr1.X_add_number = 2;
7647 macro_build (&expr1, "bnez", "x,p", yreg);
7648 macro_build (NULL, "break", "6", 7);
7649 --mips_opts.noreorder;
7650 macro_build (NULL, s2, "x", zreg);
7651 break;
7652
7653 case M_DMUL:
7654 dbl = 1;
7655 case M_MUL:
7656 macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", xreg, yreg);
7657 macro_build (NULL, "mflo", "x", zreg);
7658 break;
7659
7660 case M_DSUBU_I:
7661 dbl = 1;
7662 goto do_subu;
7663 case M_SUBU_I:
7664 do_subu:
7665 if (imm_expr.X_op != O_constant)
7666 as_bad (_("Unsupported large constant"));
7667 imm_expr.X_add_number = -imm_expr.X_add_number;
7668 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,4", yreg, xreg);
7669 break;
7670
7671 case M_SUBU_I_2:
7672 if (imm_expr.X_op != O_constant)
7673 as_bad (_("Unsupported large constant"));
7674 imm_expr.X_add_number = -imm_expr.X_add_number;
7675 macro_build (&imm_expr, "addiu", "x,k", xreg);
7676 break;
7677
7678 case M_DSUBU_I_2:
7679 if (imm_expr.X_op != O_constant)
7680 as_bad (_("Unsupported large constant"));
7681 imm_expr.X_add_number = -imm_expr.X_add_number;
7682 macro_build (&imm_expr, "daddiu", "y,j", yreg);
7683 break;
7684
7685 case M_BEQ:
7686 s = "cmp";
7687 s2 = "bteqz";
7688 goto do_branch;
7689 case M_BNE:
7690 s = "cmp";
7691 s2 = "btnez";
7692 goto do_branch;
7693 case M_BLT:
7694 s = "slt";
7695 s2 = "btnez";
7696 goto do_branch;
7697 case M_BLTU:
7698 s = "sltu";
7699 s2 = "btnez";
7700 goto do_branch;
7701 case M_BLE:
7702 s = "slt";
7703 s2 = "bteqz";
7704 goto do_reverse_branch;
7705 case M_BLEU:
7706 s = "sltu";
7707 s2 = "bteqz";
7708 goto do_reverse_branch;
7709 case M_BGE:
7710 s = "slt";
7711 s2 = "bteqz";
7712 goto do_branch;
7713 case M_BGEU:
7714 s = "sltu";
7715 s2 = "bteqz";
7716 goto do_branch;
7717 case M_BGT:
7718 s = "slt";
7719 s2 = "btnez";
7720 goto do_reverse_branch;
7721 case M_BGTU:
7722 s = "sltu";
7723 s2 = "btnez";
7724
7725 do_reverse_branch:
7726 tmp = xreg;
7727 xreg = yreg;
7728 yreg = tmp;
7729
7730 do_branch:
7731 macro_build (NULL, s, "x,y", xreg, yreg);
7732 macro_build (&offset_expr, s2, "p");
7733 break;
7734
7735 case M_BEQ_I:
7736 s = "cmpi";
7737 s2 = "bteqz";
7738 s3 = "x,U";
7739 goto do_branch_i;
7740 case M_BNE_I:
7741 s = "cmpi";
7742 s2 = "btnez";
7743 s3 = "x,U";
7744 goto do_branch_i;
7745 case M_BLT_I:
7746 s = "slti";
7747 s2 = "btnez";
7748 s3 = "x,8";
7749 goto do_branch_i;
7750 case M_BLTU_I:
7751 s = "sltiu";
7752 s2 = "btnez";
7753 s3 = "x,8";
7754 goto do_branch_i;
7755 case M_BLE_I:
7756 s = "slti";
7757 s2 = "btnez";
7758 s3 = "x,8";
7759 goto do_addone_branch_i;
7760 case M_BLEU_I:
7761 s = "sltiu";
7762 s2 = "btnez";
7763 s3 = "x,8";
7764 goto do_addone_branch_i;
7765 case M_BGE_I:
7766 s = "slti";
7767 s2 = "bteqz";
7768 s3 = "x,8";
7769 goto do_branch_i;
7770 case M_BGEU_I:
7771 s = "sltiu";
7772 s2 = "bteqz";
7773 s3 = "x,8";
7774 goto do_branch_i;
7775 case M_BGT_I:
7776 s = "slti";
7777 s2 = "bteqz";
7778 s3 = "x,8";
7779 goto do_addone_branch_i;
7780 case M_BGTU_I:
7781 s = "sltiu";
7782 s2 = "bteqz";
7783 s3 = "x,8";
7784
7785 do_addone_branch_i:
7786 if (imm_expr.X_op != O_constant)
7787 as_bad (_("Unsupported large constant"));
7788 ++imm_expr.X_add_number;
7789
7790 do_branch_i:
7791 macro_build (&imm_expr, s, s3, xreg);
7792 macro_build (&offset_expr, s2, "p");
7793 break;
7794
7795 case M_ABS:
7796 expr1.X_add_number = 0;
7797 macro_build (&expr1, "slti", "x,8", yreg);
7798 if (xreg != yreg)
7799 move_register (xreg, yreg);
7800 expr1.X_add_number = 2;
7801 macro_build (&expr1, "bteqz", "p");
7802 macro_build (NULL, "neg", "x,w", xreg, xreg);
7803 }
7804 }
7805
7806 /* For consistency checking, verify that all bits are specified either
7807 by the match/mask part of the instruction definition, or by the
7808 operand list. */
7809 static int
7810 validate_mips_insn (const struct mips_opcode *opc)
7811 {
7812 const char *p = opc->args;
7813 char c;
7814 unsigned long used_bits = opc->mask;
7815
7816 if ((used_bits & opc->match) != opc->match)
7817 {
7818 as_bad (_("internal: bad mips opcode (mask error): %s %s"),
7819 opc->name, opc->args);
7820 return 0;
7821 }
7822 #define USE_BITS(mask,shift) (used_bits |= ((mask) << (shift)))
7823 while (*p)
7824 switch (c = *p++)
7825 {
7826 case ',': break;
7827 case '(': break;
7828 case ')': break;
7829 case '+':
7830 switch (c = *p++)
7831 {
7832 case 'A': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
7833 case 'B': USE_BITS (OP_MASK_INSMSB, OP_SH_INSMSB); break;
7834 case 'C': USE_BITS (OP_MASK_EXTMSBD, OP_SH_EXTMSBD); break;
7835 case 'D': USE_BITS (OP_MASK_RD, OP_SH_RD);
7836 USE_BITS (OP_MASK_SEL, OP_SH_SEL); break;
7837 case 'E': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
7838 case 'F': USE_BITS (OP_MASK_INSMSB, OP_SH_INSMSB); break;
7839 case 'G': USE_BITS (OP_MASK_EXTMSBD, OP_SH_EXTMSBD); break;
7840 case 'H': USE_BITS (OP_MASK_EXTMSBD, OP_SH_EXTMSBD); break;
7841 case 'I': break;
7842 default:
7843 as_bad (_("internal: bad mips opcode (unknown extension operand type `+%c'): %s %s"),
7844 c, opc->name, opc->args);
7845 return 0;
7846 }
7847 break;
7848 case '<': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
7849 case '>': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
7850 case 'A': break;
7851 case 'B': USE_BITS (OP_MASK_CODE20, OP_SH_CODE20); break;
7852 case 'C': USE_BITS (OP_MASK_COPZ, OP_SH_COPZ); break;
7853 case 'D': USE_BITS (OP_MASK_FD, OP_SH_FD); break;
7854 case 'E': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
7855 case 'F': break;
7856 case 'G': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
7857 case 'H': USE_BITS (OP_MASK_SEL, OP_SH_SEL); break;
7858 case 'I': break;
7859 case 'J': USE_BITS (OP_MASK_CODE19, OP_SH_CODE19); break;
7860 case 'K': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
7861 case 'L': break;
7862 case 'M': USE_BITS (OP_MASK_CCC, OP_SH_CCC); break;
7863 case 'N': USE_BITS (OP_MASK_BCC, OP_SH_BCC); break;
7864 case 'O': USE_BITS (OP_MASK_ALN, OP_SH_ALN); break;
7865 case 'Q': USE_BITS (OP_MASK_VSEL, OP_SH_VSEL);
7866 USE_BITS (OP_MASK_FT, OP_SH_FT); break;
7867 case 'R': USE_BITS (OP_MASK_FR, OP_SH_FR); break;
7868 case 'S': USE_BITS (OP_MASK_FS, OP_SH_FS); break;
7869 case 'T': USE_BITS (OP_MASK_FT, OP_SH_FT); break;
7870 case 'V': USE_BITS (OP_MASK_FS, OP_SH_FS); break;
7871 case 'W': USE_BITS (OP_MASK_FT, OP_SH_FT); break;
7872 case 'X': USE_BITS (OP_MASK_FD, OP_SH_FD); break;
7873 case 'Y': USE_BITS (OP_MASK_FS, OP_SH_FS); break;
7874 case 'Z': USE_BITS (OP_MASK_FT, OP_SH_FT); break;
7875 case 'a': USE_BITS (OP_MASK_TARGET, OP_SH_TARGET); break;
7876 case 'b': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
7877 case 'c': USE_BITS (OP_MASK_CODE, OP_SH_CODE); break;
7878 case 'd': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
7879 case 'f': break;
7880 case 'h': USE_BITS (OP_MASK_PREFX, OP_SH_PREFX); break;
7881 case 'i': USE_BITS (OP_MASK_IMMEDIATE, OP_SH_IMMEDIATE); break;
7882 case 'j': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break;
7883 case 'k': USE_BITS (OP_MASK_CACHE, OP_SH_CACHE); break;
7884 case 'l': break;
7885 case 'o': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break;
7886 case 'p': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break;
7887 case 'q': USE_BITS (OP_MASK_CODE2, OP_SH_CODE2); break;
7888 case 'r': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
7889 case 's': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
7890 case 't': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
7891 case 'u': USE_BITS (OP_MASK_IMMEDIATE, OP_SH_IMMEDIATE); break;
7892 case 'v': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
7893 case 'w': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
7894 case 'x': break;
7895 case 'z': break;
7896 case 'P': USE_BITS (OP_MASK_PERFREG, OP_SH_PERFREG); break;
7897 case 'U': USE_BITS (OP_MASK_RD, OP_SH_RD);
7898 USE_BITS (OP_MASK_RT, OP_SH_RT); break;
7899 case 'e': USE_BITS (OP_MASK_VECBYTE, OP_SH_VECBYTE); break;
7900 case '%': USE_BITS (OP_MASK_VECALIGN, OP_SH_VECALIGN); break;
7901 case '[': break;
7902 case ']': break;
7903 default:
7904 as_bad (_("internal: bad mips opcode (unknown operand type `%c'): %s %s"),
7905 c, opc->name, opc->args);
7906 return 0;
7907 }
7908 #undef USE_BITS
7909 if (used_bits != 0xffffffff)
7910 {
7911 as_bad (_("internal: bad mips opcode (bits 0x%lx undefined): %s %s"),
7912 ~used_bits & 0xffffffff, opc->name, opc->args);
7913 return 0;
7914 }
7915 return 1;
7916 }
7917
7918 /* This routine assembles an instruction into its binary format. As a
7919 side effect, it sets one of the global variables imm_reloc or
7920 offset_reloc to the type of relocation to do if one of the operands
7921 is an address expression. */
7922
7923 static void
7924 mips_ip (char *str, struct mips_cl_insn *ip)
7925 {
7926 char *s;
7927 const char *args;
7928 char c = 0;
7929 struct mips_opcode *insn;
7930 char *argsStart;
7931 unsigned int regno;
7932 unsigned int lastregno = 0;
7933 unsigned int lastpos = 0;
7934 unsigned int limlo, limhi;
7935 char *s_reset;
7936 char save_c = 0;
7937
7938 insn_error = NULL;
7939
7940 /* If the instruction contains a '.', we first try to match an instruction
7941 including the '.'. Then we try again without the '.'. */
7942 insn = NULL;
7943 for (s = str; *s != '\0' && !ISSPACE (*s); ++s)
7944 continue;
7945
7946 /* If we stopped on whitespace, then replace the whitespace with null for
7947 the call to hash_find. Save the character we replaced just in case we
7948 have to re-parse the instruction. */
7949 if (ISSPACE (*s))
7950 {
7951 save_c = *s;
7952 *s++ = '\0';
7953 }
7954
7955 insn = (struct mips_opcode *) hash_find (op_hash, str);
7956
7957 /* If we didn't find the instruction in the opcode table, try again, but
7958 this time with just the instruction up to, but not including the
7959 first '.'. */
7960 if (insn == NULL)
7961 {
7962 /* Restore the character we overwrite above (if any). */
7963 if (save_c)
7964 *(--s) = save_c;
7965
7966 /* Scan up to the first '.' or whitespace. */
7967 for (s = str;
7968 *s != '\0' && *s != '.' && !ISSPACE (*s);
7969 ++s)
7970 continue;
7971
7972 /* If we did not find a '.', then we can quit now. */
7973 if (*s != '.')
7974 {
7975 insn_error = "unrecognized opcode";
7976 return;
7977 }
7978
7979 /* Lookup the instruction in the hash table. */
7980 *s++ = '\0';
7981 if ((insn = (struct mips_opcode *) hash_find (op_hash, str)) == NULL)
7982 {
7983 insn_error = "unrecognized opcode";
7984 return;
7985 }
7986 }
7987
7988 argsStart = s;
7989 for (;;)
7990 {
7991 bfd_boolean ok;
7992
7993 assert (strcmp (insn->name, str) == 0);
7994
7995 if (OPCODE_IS_MEMBER (insn,
7996 (mips_opts.isa
7997 | (file_ase_mips16 ? INSN_MIPS16 : 0)
7998 | (mips_opts.ase_mdmx ? INSN_MDMX : 0)
7999 | (mips_opts.ase_mips3d ? INSN_MIPS3D : 0)),
8000 mips_opts.arch))
8001 ok = TRUE;
8002 else
8003 ok = FALSE;
8004
8005 if (insn->pinfo != INSN_MACRO)
8006 {
8007 if (mips_opts.arch == CPU_R4650 && (insn->pinfo & FP_D) != 0)
8008 ok = FALSE;
8009 }
8010
8011 if (! ok)
8012 {
8013 if (insn + 1 < &mips_opcodes[NUMOPCODES]
8014 && strcmp (insn->name, insn[1].name) == 0)
8015 {
8016 ++insn;
8017 continue;
8018 }
8019 else
8020 {
8021 if (!insn_error)
8022 {
8023 static char buf[100];
8024 sprintf (buf,
8025 _("opcode not supported on this processor: %s (%s)"),
8026 mips_cpu_info_from_arch (mips_opts.arch)->name,
8027 mips_cpu_info_from_isa (mips_opts.isa)->name);
8028 insn_error = buf;
8029 }
8030 if (save_c)
8031 *(--s) = save_c;
8032 return;
8033 }
8034 }
8035
8036 ip->insn_mo = insn;
8037 ip->insn_opcode = insn->match;
8038 insn_error = NULL;
8039 for (args = insn->args;; ++args)
8040 {
8041 int is_mdmx;
8042
8043 s += strspn (s, " \t");
8044 is_mdmx = 0;
8045 switch (*args)
8046 {
8047 case '\0': /* end of args */
8048 if (*s == '\0')
8049 return;
8050 break;
8051
8052 case ',':
8053 if (*s++ == *args)
8054 continue;
8055 s--;
8056 switch (*++args)
8057 {
8058 case 'r':
8059 case 'v':
8060 ip->insn_opcode |= lastregno << OP_SH_RS;
8061 continue;
8062
8063 case 'w':
8064 ip->insn_opcode |= lastregno << OP_SH_RT;
8065 continue;
8066
8067 case 'W':
8068 ip->insn_opcode |= lastregno << OP_SH_FT;
8069 continue;
8070
8071 case 'V':
8072 ip->insn_opcode |= lastregno << OP_SH_FS;
8073 continue;
8074 }
8075 break;
8076
8077 case '(':
8078 /* Handle optional base register.
8079 Either the base register is omitted or
8080 we must have a left paren. */
8081 /* This is dependent on the next operand specifier
8082 is a base register specification. */
8083 assert (args[1] == 'b' || args[1] == '5'
8084 || args[1] == '-' || args[1] == '4');
8085 if (*s == '\0')
8086 return;
8087
8088 case ')': /* these must match exactly */
8089 case '[':
8090 case ']':
8091 if (*s++ == *args)
8092 continue;
8093 break;
8094
8095 case '+': /* Opcode extension character. */
8096 switch (*++args)
8097 {
8098 case 'A': /* ins/ext position, becomes LSB. */
8099 limlo = 0;
8100 limhi = 31;
8101 goto do_lsb;
8102 case 'E':
8103 limlo = 32;
8104 limhi = 63;
8105 goto do_lsb;
8106 do_lsb:
8107 my_getExpression (&imm_expr, s);
8108 check_absolute_expr (ip, &imm_expr);
8109 if ((unsigned long) imm_expr.X_add_number < limlo
8110 || (unsigned long) imm_expr.X_add_number > limhi)
8111 {
8112 as_bad (_("Improper position (%lu)"),
8113 (unsigned long) imm_expr.X_add_number);
8114 imm_expr.X_add_number = limlo;
8115 }
8116 lastpos = imm_expr.X_add_number;
8117 ip->insn_opcode |= (imm_expr.X_add_number
8118 & OP_MASK_SHAMT) << OP_SH_SHAMT;
8119 imm_expr.X_op = O_absent;
8120 s = expr_end;
8121 continue;
8122
8123 case 'B': /* ins size, becomes MSB. */
8124 limlo = 1;
8125 limhi = 32;
8126 goto do_msb;
8127 case 'F':
8128 limlo = 33;
8129 limhi = 64;
8130 goto do_msb;
8131 do_msb:
8132 my_getExpression (&imm_expr, s);
8133 check_absolute_expr (ip, &imm_expr);
8134 /* Check for negative input so that small negative numbers
8135 will not succeed incorrectly. The checks against
8136 (pos+size) transitively check "size" itself,
8137 assuming that "pos" is reasonable. */
8138 if ((long) imm_expr.X_add_number < 0
8139 || ((unsigned long) imm_expr.X_add_number
8140 + lastpos) < limlo
8141 || ((unsigned long) imm_expr.X_add_number
8142 + lastpos) > limhi)
8143 {
8144 as_bad (_("Improper insert size (%lu, position %lu)"),
8145 (unsigned long) imm_expr.X_add_number,
8146 (unsigned long) lastpos);
8147 imm_expr.X_add_number = limlo - lastpos;
8148 }
8149 ip->insn_opcode |= ((lastpos + imm_expr.X_add_number - 1)
8150 & OP_MASK_INSMSB) << OP_SH_INSMSB;
8151 imm_expr.X_op = O_absent;
8152 s = expr_end;
8153 continue;
8154
8155 case 'C': /* ext size, becomes MSBD. */
8156 limlo = 1;
8157 limhi = 32;
8158 goto do_msbd;
8159 case 'G':
8160 limlo = 33;
8161 limhi = 64;
8162 goto do_msbd;
8163 case 'H':
8164 limlo = 33;
8165 limhi = 64;
8166 goto do_msbd;
8167 do_msbd:
8168 my_getExpression (&imm_expr, s);
8169 check_absolute_expr (ip, &imm_expr);
8170 /* Check for negative input so that small negative numbers
8171 will not succeed incorrectly. The checks against
8172 (pos+size) transitively check "size" itself,
8173 assuming that "pos" is reasonable. */
8174 if ((long) imm_expr.X_add_number < 0
8175 || ((unsigned long) imm_expr.X_add_number
8176 + lastpos) < limlo
8177 || ((unsigned long) imm_expr.X_add_number
8178 + lastpos) > limhi)
8179 {
8180 as_bad (_("Improper extract size (%lu, position %lu)"),
8181 (unsigned long) imm_expr.X_add_number,
8182 (unsigned long) lastpos);
8183 imm_expr.X_add_number = limlo - lastpos;
8184 }
8185 ip->insn_opcode |= ((imm_expr.X_add_number - 1)
8186 & OP_MASK_EXTMSBD) << OP_SH_EXTMSBD;
8187 imm_expr.X_op = O_absent;
8188 s = expr_end;
8189 continue;
8190
8191 case 'D':
8192 /* +D is for disassembly only; never match. */
8193 break;
8194
8195 case 'I':
8196 /* "+I" is like "I", except that imm2_expr is used. */
8197 my_getExpression (&imm2_expr, s);
8198 if (imm2_expr.X_op != O_big
8199 && imm2_expr.X_op != O_constant)
8200 insn_error = _("absolute expression required");
8201 normalize_constant_expr (&imm2_expr);
8202 s = expr_end;
8203 continue;
8204
8205 default:
8206 as_bad (_("internal: bad mips opcode (unknown extension operand type `+%c'): %s %s"),
8207 *args, insn->name, insn->args);
8208 /* Further processing is fruitless. */
8209 return;
8210 }
8211 break;
8212
8213 case '<': /* must be at least one digit */
8214 /*
8215 * According to the manual, if the shift amount is greater
8216 * than 31 or less than 0, then the shift amount should be
8217 * mod 32. In reality the mips assembler issues an error.
8218 * We issue a warning and mask out all but the low 5 bits.
8219 */
8220 my_getExpression (&imm_expr, s);
8221 check_absolute_expr (ip, &imm_expr);
8222 if ((unsigned long) imm_expr.X_add_number > 31)
8223 {
8224 as_warn (_("Improper shift amount (%lu)"),
8225 (unsigned long) imm_expr.X_add_number);
8226 imm_expr.X_add_number &= OP_MASK_SHAMT;
8227 }
8228 ip->insn_opcode |= imm_expr.X_add_number << OP_SH_SHAMT;
8229 imm_expr.X_op = O_absent;
8230 s = expr_end;
8231 continue;
8232
8233 case '>': /* shift amount minus 32 */
8234 my_getExpression (&imm_expr, s);
8235 check_absolute_expr (ip, &imm_expr);
8236 if ((unsigned long) imm_expr.X_add_number < 32
8237 || (unsigned long) imm_expr.X_add_number > 63)
8238 break;
8239 ip->insn_opcode |= (imm_expr.X_add_number - 32) << OP_SH_SHAMT;
8240 imm_expr.X_op = O_absent;
8241 s = expr_end;
8242 continue;
8243
8244 case 'k': /* cache code */
8245 case 'h': /* prefx code */
8246 my_getExpression (&imm_expr, s);
8247 check_absolute_expr (ip, &imm_expr);
8248 if ((unsigned long) imm_expr.X_add_number > 31)
8249 {
8250 as_warn (_("Invalid value for `%s' (%lu)"),
8251 ip->insn_mo->name,
8252 (unsigned long) imm_expr.X_add_number);
8253 imm_expr.X_add_number &= 0x1f;
8254 }
8255 if (*args == 'k')
8256 ip->insn_opcode |= imm_expr.X_add_number << OP_SH_CACHE;
8257 else
8258 ip->insn_opcode |= imm_expr.X_add_number << OP_SH_PREFX;
8259 imm_expr.X_op = O_absent;
8260 s = expr_end;
8261 continue;
8262
8263 case 'c': /* break code */
8264 my_getExpression (&imm_expr, s);
8265 check_absolute_expr (ip, &imm_expr);
8266 if ((unsigned long) imm_expr.X_add_number > 1023)
8267 {
8268 as_warn (_("Illegal break code (%lu)"),
8269 (unsigned long) imm_expr.X_add_number);
8270 imm_expr.X_add_number &= OP_MASK_CODE;
8271 }
8272 ip->insn_opcode |= imm_expr.X_add_number << OP_SH_CODE;
8273 imm_expr.X_op = O_absent;
8274 s = expr_end;
8275 continue;
8276
8277 case 'q': /* lower break code */
8278 my_getExpression (&imm_expr, s);
8279 check_absolute_expr (ip, &imm_expr);
8280 if ((unsigned long) imm_expr.X_add_number > 1023)
8281 {
8282 as_warn (_("Illegal lower break code (%lu)"),
8283 (unsigned long) imm_expr.X_add_number);
8284 imm_expr.X_add_number &= OP_MASK_CODE2;
8285 }
8286 ip->insn_opcode |= imm_expr.X_add_number << OP_SH_CODE2;
8287 imm_expr.X_op = O_absent;
8288 s = expr_end;
8289 continue;
8290
8291 case 'B': /* 20-bit syscall/break code. */
8292 my_getExpression (&imm_expr, s);
8293 check_absolute_expr (ip, &imm_expr);
8294 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE20)
8295 as_warn (_("Illegal 20-bit code (%lu)"),
8296 (unsigned long) imm_expr.X_add_number);
8297 ip->insn_opcode |= imm_expr.X_add_number << OP_SH_CODE20;
8298 imm_expr.X_op = O_absent;
8299 s = expr_end;
8300 continue;
8301
8302 case 'C': /* Coprocessor code */
8303 my_getExpression (&imm_expr, s);
8304 check_absolute_expr (ip, &imm_expr);
8305 if ((unsigned long) imm_expr.X_add_number >= (1 << 25))
8306 {
8307 as_warn (_("Coproccesor code > 25 bits (%lu)"),
8308 (unsigned long) imm_expr.X_add_number);
8309 imm_expr.X_add_number &= ((1 << 25) - 1);
8310 }
8311 ip->insn_opcode |= imm_expr.X_add_number;
8312 imm_expr.X_op = O_absent;
8313 s = expr_end;
8314 continue;
8315
8316 case 'J': /* 19-bit wait code. */
8317 my_getExpression (&imm_expr, s);
8318 check_absolute_expr (ip, &imm_expr);
8319 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE19)
8320 as_warn (_("Illegal 19-bit code (%lu)"),
8321 (unsigned long) imm_expr.X_add_number);
8322 ip->insn_opcode |= imm_expr.X_add_number << OP_SH_CODE19;
8323 imm_expr.X_op = O_absent;
8324 s = expr_end;
8325 continue;
8326
8327 case 'P': /* Performance register */
8328 my_getExpression (&imm_expr, s);
8329 check_absolute_expr (ip, &imm_expr);
8330 if (imm_expr.X_add_number != 0 && imm_expr.X_add_number != 1)
8331 {
8332 as_warn (_("Invalid performance register (%lu)"),
8333 (unsigned long) imm_expr.X_add_number);
8334 imm_expr.X_add_number &= OP_MASK_PERFREG;
8335 }
8336 ip->insn_opcode |= (imm_expr.X_add_number << OP_SH_PERFREG);
8337 imm_expr.X_op = O_absent;
8338 s = expr_end;
8339 continue;
8340
8341 case 'b': /* base register */
8342 case 'd': /* destination register */
8343 case 's': /* source register */
8344 case 't': /* target register */
8345 case 'r': /* both target and source */
8346 case 'v': /* both dest and source */
8347 case 'w': /* both dest and target */
8348 case 'E': /* coprocessor target register */
8349 case 'G': /* coprocessor destination register */
8350 case 'K': /* 'rdhwr' destination register */
8351 case 'x': /* ignore register name */
8352 case 'z': /* must be zero register */
8353 case 'U': /* destination register (clo/clz). */
8354 s_reset = s;
8355 if (s[0] == '$')
8356 {
8357
8358 if (ISDIGIT (s[1]))
8359 {
8360 ++s;
8361 regno = 0;
8362 do
8363 {
8364 regno *= 10;
8365 regno += *s - '0';
8366 ++s;
8367 }
8368 while (ISDIGIT (*s));
8369 if (regno > 31)
8370 as_bad (_("Invalid register number (%d)"), regno);
8371 }
8372 else if (*args == 'E' || *args == 'G' || *args == 'K')
8373 goto notreg;
8374 else
8375 {
8376 if (s[1] == 'r' && s[2] == 'a')
8377 {
8378 s += 3;
8379 regno = RA;
8380 }
8381 else if (s[1] == 'f' && s[2] == 'p')
8382 {
8383 s += 3;
8384 regno = FP;
8385 }
8386 else if (s[1] == 's' && s[2] == 'p')
8387 {
8388 s += 3;
8389 regno = SP;
8390 }
8391 else if (s[1] == 'g' && s[2] == 'p')
8392 {
8393 s += 3;
8394 regno = GP;
8395 }
8396 else if (s[1] == 'a' && s[2] == 't')
8397 {
8398 s += 3;
8399 regno = AT;
8400 }
8401 else if (s[1] == 'k' && s[2] == 't' && s[3] == '0')
8402 {
8403 s += 4;
8404 regno = KT0;
8405 }
8406 else if (s[1] == 'k' && s[2] == 't' && s[3] == '1')
8407 {
8408 s += 4;
8409 regno = KT1;
8410 }
8411 else if (s[1] == 'z' && s[2] == 'e' && s[3] == 'r' && s[4] == 'o')
8412 {
8413 s += 5;
8414 regno = ZERO;
8415 }
8416 else if (itbl_have_entries)
8417 {
8418 char *p, *n;
8419 unsigned long r;
8420
8421 p = s + 1; /* advance past '$' */
8422 n = itbl_get_field (&p); /* n is name */
8423
8424 /* See if this is a register defined in an
8425 itbl entry. */
8426 if (itbl_get_reg_val (n, &r))
8427 {
8428 /* Get_field advances to the start of
8429 the next field, so we need to back
8430 rack to the end of the last field. */
8431 if (p)
8432 s = p - 1;
8433 else
8434 s = strchr (s, '\0');
8435 regno = r;
8436 }
8437 else
8438 goto notreg;
8439 }
8440 else
8441 goto notreg;
8442 }
8443 if (regno == AT
8444 && ! mips_opts.noat
8445 && *args != 'E'
8446 && *args != 'G'
8447 && *args != 'K')
8448 as_warn (_("Used $at without \".set noat\""));
8449 c = *args;
8450 if (*s == ' ')
8451 ++s;
8452 if (args[1] != *s)
8453 {
8454 if (c == 'r' || c == 'v' || c == 'w')
8455 {
8456 regno = lastregno;
8457 s = s_reset;
8458 ++args;
8459 }
8460 }
8461 /* 'z' only matches $0. */
8462 if (c == 'z' && regno != 0)
8463 break;
8464
8465 /* Now that we have assembled one operand, we use the args string
8466 * to figure out where it goes in the instruction. */
8467 switch (c)
8468 {
8469 case 'r':
8470 case 's':
8471 case 'v':
8472 case 'b':
8473 ip->insn_opcode |= regno << OP_SH_RS;
8474 break;
8475 case 'd':
8476 case 'G':
8477 case 'K':
8478 ip->insn_opcode |= regno << OP_SH_RD;
8479 break;
8480 case 'U':
8481 ip->insn_opcode |= regno << OP_SH_RD;
8482 ip->insn_opcode |= regno << OP_SH_RT;
8483 break;
8484 case 'w':
8485 case 't':
8486 case 'E':
8487 ip->insn_opcode |= regno << OP_SH_RT;
8488 break;
8489 case 'x':
8490 /* This case exists because on the r3000 trunc
8491 expands into a macro which requires a gp
8492 register. On the r6000 or r4000 it is
8493 assembled into a single instruction which
8494 ignores the register. Thus the insn version
8495 is MIPS_ISA2 and uses 'x', and the macro
8496 version is MIPS_ISA1 and uses 't'. */
8497 break;
8498 case 'z':
8499 /* This case is for the div instruction, which
8500 acts differently if the destination argument
8501 is $0. This only matches $0, and is checked
8502 outside the switch. */
8503 break;
8504 case 'D':
8505 /* Itbl operand; not yet implemented. FIXME ?? */
8506 break;
8507 /* What about all other operands like 'i', which
8508 can be specified in the opcode table? */
8509 }
8510 lastregno = regno;
8511 continue;
8512 }
8513 notreg:
8514 switch (*args++)
8515 {
8516 case 'r':
8517 case 'v':
8518 ip->insn_opcode |= lastregno << OP_SH_RS;
8519 continue;
8520 case 'w':
8521 ip->insn_opcode |= lastregno << OP_SH_RT;
8522 continue;
8523 }
8524 break;
8525
8526 case 'O': /* MDMX alignment immediate constant. */
8527 my_getExpression (&imm_expr, s);
8528 check_absolute_expr (ip, &imm_expr);
8529 if ((unsigned long) imm_expr.X_add_number > OP_MASK_ALN)
8530 {
8531 as_warn ("Improper align amount (%ld), using low bits",
8532 (long) imm_expr.X_add_number);
8533 imm_expr.X_add_number &= OP_MASK_ALN;
8534 }
8535 ip->insn_opcode |= imm_expr.X_add_number << OP_SH_ALN;
8536 imm_expr.X_op = O_absent;
8537 s = expr_end;
8538 continue;
8539
8540 case 'Q': /* MDMX vector, element sel, or const. */
8541 if (s[0] != '$')
8542 {
8543 /* MDMX Immediate. */
8544 my_getExpression (&imm_expr, s);
8545 check_absolute_expr (ip, &imm_expr);
8546 if ((unsigned long) imm_expr.X_add_number > OP_MASK_FT)
8547 {
8548 as_warn (_("Invalid MDMX Immediate (%ld)"),
8549 (long) imm_expr.X_add_number);
8550 imm_expr.X_add_number &= OP_MASK_FT;
8551 }
8552 imm_expr.X_add_number &= OP_MASK_FT;
8553 if (ip->insn_opcode & (OP_MASK_VSEL << OP_SH_VSEL))
8554 ip->insn_opcode |= MDMX_FMTSEL_IMM_QH << OP_SH_VSEL;
8555 else
8556 ip->insn_opcode |= MDMX_FMTSEL_IMM_OB << OP_SH_VSEL;
8557 ip->insn_opcode |= imm_expr.X_add_number << OP_SH_FT;
8558 imm_expr.X_op = O_absent;
8559 s = expr_end;
8560 continue;
8561 }
8562 /* Not MDMX Immediate. Fall through. */
8563 case 'X': /* MDMX destination register. */
8564 case 'Y': /* MDMX source register. */
8565 case 'Z': /* MDMX target register. */
8566 is_mdmx = 1;
8567 case 'D': /* floating point destination register */
8568 case 'S': /* floating point source register */
8569 case 'T': /* floating point target register */
8570 case 'R': /* floating point source register */
8571 case 'V':
8572 case 'W':
8573 s_reset = s;
8574 /* Accept $fN for FP and MDMX register numbers, and in
8575 addition accept $vN for MDMX register numbers. */
8576 if ((s[0] == '$' && s[1] == 'f' && ISDIGIT (s[2]))
8577 || (is_mdmx != 0 && s[0] == '$' && s[1] == 'v'
8578 && ISDIGIT (s[2])))
8579 {
8580 s += 2;
8581 regno = 0;
8582 do
8583 {
8584 regno *= 10;
8585 regno += *s - '0';
8586 ++s;
8587 }
8588 while (ISDIGIT (*s));
8589
8590 if (regno > 31)
8591 as_bad (_("Invalid float register number (%d)"), regno);
8592
8593 if ((regno & 1) != 0
8594 && HAVE_32BIT_FPRS
8595 && ! (strcmp (str, "mtc1") == 0
8596 || strcmp (str, "mfc1") == 0
8597 || strcmp (str, "lwc1") == 0
8598 || strcmp (str, "swc1") == 0
8599 || strcmp (str, "l.s") == 0
8600 || strcmp (str, "s.s") == 0))
8601 as_warn (_("Float register should be even, was %d"),
8602 regno);
8603
8604 c = *args;
8605 if (*s == ' ')
8606 ++s;
8607 if (args[1] != *s)
8608 {
8609 if (c == 'V' || c == 'W')
8610 {
8611 regno = lastregno;
8612 s = s_reset;
8613 ++args;
8614 }
8615 }
8616 switch (c)
8617 {
8618 case 'D':
8619 case 'X':
8620 ip->insn_opcode |= regno << OP_SH_FD;
8621 break;
8622 case 'V':
8623 case 'S':
8624 case 'Y':
8625 ip->insn_opcode |= regno << OP_SH_FS;
8626 break;
8627 case 'Q':
8628 /* This is like 'Z', but also needs to fix the MDMX
8629 vector/scalar select bits. Note that the
8630 scalar immediate case is handled above. */
8631 if (*s == '[')
8632 {
8633 int is_qh = (ip->insn_opcode & (1 << OP_SH_VSEL));
8634 int max_el = (is_qh ? 3 : 7);
8635 s++;
8636 my_getExpression(&imm_expr, s);
8637 check_absolute_expr (ip, &imm_expr);
8638 s = expr_end;
8639 if (imm_expr.X_add_number > max_el)
8640 as_bad(_("Bad element selector %ld"),
8641 (long) imm_expr.X_add_number);
8642 imm_expr.X_add_number &= max_el;
8643 ip->insn_opcode |= (imm_expr.X_add_number
8644 << (OP_SH_VSEL +
8645 (is_qh ? 2 : 1)));
8646 imm_expr.X_op = O_absent;
8647 if (*s != ']')
8648 as_warn(_("Expecting ']' found '%s'"), s);
8649 else
8650 s++;
8651 }
8652 else
8653 {
8654 if (ip->insn_opcode & (OP_MASK_VSEL << OP_SH_VSEL))
8655 ip->insn_opcode |= (MDMX_FMTSEL_VEC_QH
8656 << OP_SH_VSEL);
8657 else
8658 ip->insn_opcode |= (MDMX_FMTSEL_VEC_OB <<
8659 OP_SH_VSEL);
8660 }
8661 /* Fall through */
8662 case 'W':
8663 case 'T':
8664 case 'Z':
8665 ip->insn_opcode |= regno << OP_SH_FT;
8666 break;
8667 case 'R':
8668 ip->insn_opcode |= regno << OP_SH_FR;
8669 break;
8670 }
8671 lastregno = regno;
8672 continue;
8673 }
8674
8675 switch (*args++)
8676 {
8677 case 'V':
8678 ip->insn_opcode |= lastregno << OP_SH_FS;
8679 continue;
8680 case 'W':
8681 ip->insn_opcode |= lastregno << OP_SH_FT;
8682 continue;
8683 }
8684 break;
8685
8686 case 'I':
8687 my_getExpression (&imm_expr, s);
8688 if (imm_expr.X_op != O_big
8689 && imm_expr.X_op != O_constant)
8690 insn_error = _("absolute expression required");
8691 normalize_constant_expr (&imm_expr);
8692 s = expr_end;
8693 continue;
8694
8695 case 'A':
8696 my_getExpression (&offset_expr, s);
8697 *imm_reloc = BFD_RELOC_32;
8698 s = expr_end;
8699 continue;
8700
8701 case 'F':
8702 case 'L':
8703 case 'f':
8704 case 'l':
8705 {
8706 int f64;
8707 int using_gprs;
8708 char *save_in;
8709 char *err;
8710 unsigned char temp[8];
8711 int len;
8712 unsigned int length;
8713 segT seg;
8714 subsegT subseg;
8715 char *p;
8716
8717 /* These only appear as the last operand in an
8718 instruction, and every instruction that accepts
8719 them in any variant accepts them in all variants.
8720 This means we don't have to worry about backing out
8721 any changes if the instruction does not match.
8722
8723 The difference between them is the size of the
8724 floating point constant and where it goes. For 'F'
8725 and 'L' the constant is 64 bits; for 'f' and 'l' it
8726 is 32 bits. Where the constant is placed is based
8727 on how the MIPS assembler does things:
8728 F -- .rdata
8729 L -- .lit8
8730 f -- immediate value
8731 l -- .lit4
8732
8733 The .lit4 and .lit8 sections are only used if
8734 permitted by the -G argument.
8735
8736 The code below needs to know whether the target register
8737 is 32 or 64 bits wide. It relies on the fact 'f' and
8738 'F' are used with GPR-based instructions and 'l' and
8739 'L' are used with FPR-based instructions. */
8740
8741 f64 = *args == 'F' || *args == 'L';
8742 using_gprs = *args == 'F' || *args == 'f';
8743
8744 save_in = input_line_pointer;
8745 input_line_pointer = s;
8746 err = md_atof (f64 ? 'd' : 'f', (char *) temp, &len);
8747 length = len;
8748 s = input_line_pointer;
8749 input_line_pointer = save_in;
8750 if (err != NULL && *err != '\0')
8751 {
8752 as_bad (_("Bad floating point constant: %s"), err);
8753 memset (temp, '\0', sizeof temp);
8754 length = f64 ? 8 : 4;
8755 }
8756
8757 assert (length == (unsigned) (f64 ? 8 : 4));
8758
8759 if (*args == 'f'
8760 || (*args == 'l'
8761 && (g_switch_value < 4
8762 || (temp[0] == 0 && temp[1] == 0)
8763 || (temp[2] == 0 && temp[3] == 0))))
8764 {
8765 imm_expr.X_op = O_constant;
8766 if (! target_big_endian)
8767 imm_expr.X_add_number = bfd_getl32 (temp);
8768 else
8769 imm_expr.X_add_number = bfd_getb32 (temp);
8770 }
8771 else if (length > 4
8772 && ! mips_disable_float_construction
8773 /* Constants can only be constructed in GPRs and
8774 copied to FPRs if the GPRs are at least as wide
8775 as the FPRs. Force the constant into memory if
8776 we are using 64-bit FPRs but the GPRs are only
8777 32 bits wide. */
8778 && (using_gprs
8779 || ! (HAVE_64BIT_FPRS && HAVE_32BIT_GPRS))
8780 && ((temp[0] == 0 && temp[1] == 0)
8781 || (temp[2] == 0 && temp[3] == 0))
8782 && ((temp[4] == 0 && temp[5] == 0)
8783 || (temp[6] == 0 && temp[7] == 0)))
8784 {
8785 /* The value is simple enough to load with a couple of
8786 instructions. If using 32-bit registers, set
8787 imm_expr to the high order 32 bits and offset_expr to
8788 the low order 32 bits. Otherwise, set imm_expr to
8789 the entire 64 bit constant. */
8790 if (using_gprs ? HAVE_32BIT_GPRS : HAVE_32BIT_FPRS)
8791 {
8792 imm_expr.X_op = O_constant;
8793 offset_expr.X_op = O_constant;
8794 if (! target_big_endian)
8795 {
8796 imm_expr.X_add_number = bfd_getl32 (temp + 4);
8797 offset_expr.X_add_number = bfd_getl32 (temp);
8798 }
8799 else
8800 {
8801 imm_expr.X_add_number = bfd_getb32 (temp);
8802 offset_expr.X_add_number = bfd_getb32 (temp + 4);
8803 }
8804 if (offset_expr.X_add_number == 0)
8805 offset_expr.X_op = O_absent;
8806 }
8807 else if (sizeof (imm_expr.X_add_number) > 4)
8808 {
8809 imm_expr.X_op = O_constant;
8810 if (! target_big_endian)
8811 imm_expr.X_add_number = bfd_getl64 (temp);
8812 else
8813 imm_expr.X_add_number = bfd_getb64 (temp);
8814 }
8815 else
8816 {
8817 imm_expr.X_op = O_big;
8818 imm_expr.X_add_number = 4;
8819 if (! target_big_endian)
8820 {
8821 generic_bignum[0] = bfd_getl16 (temp);
8822 generic_bignum[1] = bfd_getl16 (temp + 2);
8823 generic_bignum[2] = bfd_getl16 (temp + 4);
8824 generic_bignum[3] = bfd_getl16 (temp + 6);
8825 }
8826 else
8827 {
8828 generic_bignum[0] = bfd_getb16 (temp + 6);
8829 generic_bignum[1] = bfd_getb16 (temp + 4);
8830 generic_bignum[2] = bfd_getb16 (temp + 2);
8831 generic_bignum[3] = bfd_getb16 (temp);
8832 }
8833 }
8834 }
8835 else
8836 {
8837 const char *newname;
8838 segT new_seg;
8839
8840 /* Switch to the right section. */
8841 seg = now_seg;
8842 subseg = now_subseg;
8843 switch (*args)
8844 {
8845 default: /* unused default case avoids warnings. */
8846 case 'L':
8847 newname = RDATA_SECTION_NAME;
8848 if (g_switch_value >= 8)
8849 newname = ".lit8";
8850 break;
8851 case 'F':
8852 newname = RDATA_SECTION_NAME;
8853 break;
8854 case 'l':
8855 assert (g_switch_value >= 4);
8856 newname = ".lit4";
8857 break;
8858 }
8859 new_seg = subseg_new (newname, (subsegT) 0);
8860 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
8861 bfd_set_section_flags (stdoutput, new_seg,
8862 (SEC_ALLOC
8863 | SEC_LOAD
8864 | SEC_READONLY
8865 | SEC_DATA));
8866 frag_align (*args == 'l' ? 2 : 3, 0, 0);
8867 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
8868 && strcmp (TARGET_OS, "elf") != 0)
8869 record_alignment (new_seg, 4);
8870 else
8871 record_alignment (new_seg, *args == 'l' ? 2 : 3);
8872 if (seg == now_seg)
8873 as_bad (_("Can't use floating point insn in this section"));
8874
8875 /* Set the argument to the current address in the
8876 section. */
8877 offset_expr.X_op = O_symbol;
8878 offset_expr.X_add_symbol =
8879 symbol_new ("L0\001", now_seg,
8880 (valueT) frag_now_fix (), frag_now);
8881 offset_expr.X_add_number = 0;
8882
8883 /* Put the floating point number into the section. */
8884 p = frag_more ((int) length);
8885 memcpy (p, temp, length);
8886
8887 /* Switch back to the original section. */
8888 subseg_set (seg, subseg);
8889 }
8890 }
8891 continue;
8892
8893 case 'i': /* 16 bit unsigned immediate */
8894 case 'j': /* 16 bit signed immediate */
8895 *imm_reloc = BFD_RELOC_LO16;
8896 if (my_getSmallExpression (&imm_expr, imm_reloc, s) == 0)
8897 {
8898 int more;
8899 offsetT minval, maxval;
8900
8901 more = (insn + 1 < &mips_opcodes[NUMOPCODES]
8902 && strcmp (insn->name, insn[1].name) == 0);
8903
8904 /* If the expression was written as an unsigned number,
8905 only treat it as signed if there are no more
8906 alternatives. */
8907 if (more
8908 && *args == 'j'
8909 && sizeof (imm_expr.X_add_number) <= 4
8910 && imm_expr.X_op == O_constant
8911 && imm_expr.X_add_number < 0
8912 && imm_expr.X_unsigned
8913 && HAVE_64BIT_GPRS)
8914 break;
8915
8916 /* For compatibility with older assemblers, we accept
8917 0x8000-0xffff as signed 16-bit numbers when only
8918 signed numbers are allowed. */
8919 if (*args == 'i')
8920 minval = 0, maxval = 0xffff;
8921 else if (more)
8922 minval = -0x8000, maxval = 0x7fff;
8923 else
8924 minval = -0x8000, maxval = 0xffff;
8925
8926 if (imm_expr.X_op != O_constant
8927 || imm_expr.X_add_number < minval
8928 || imm_expr.X_add_number > maxval)
8929 {
8930 if (more)
8931 break;
8932 if (imm_expr.X_op == O_constant
8933 || imm_expr.X_op == O_big)
8934 as_bad (_("expression out of range"));
8935 }
8936 }
8937 s = expr_end;
8938 continue;
8939
8940 case 'o': /* 16 bit offset */
8941 /* Check whether there is only a single bracketed expression
8942 left. If so, it must be the base register and the
8943 constant must be zero. */
8944 if (*s == '(' && strchr (s + 1, '(') == 0)
8945 {
8946 offset_expr.X_op = O_constant;
8947 offset_expr.X_add_number = 0;
8948 continue;
8949 }
8950
8951 /* If this value won't fit into a 16 bit offset, then go
8952 find a macro that will generate the 32 bit offset
8953 code pattern. */
8954 if (my_getSmallExpression (&offset_expr, offset_reloc, s) == 0
8955 && (offset_expr.X_op != O_constant
8956 || offset_expr.X_add_number >= 0x8000
8957 || offset_expr.X_add_number < -0x8000))
8958 break;
8959
8960 s = expr_end;
8961 continue;
8962
8963 case 'p': /* pc relative offset */
8964 *offset_reloc = BFD_RELOC_16_PCREL_S2;
8965 my_getExpression (&offset_expr, s);
8966 s = expr_end;
8967 continue;
8968
8969 case 'u': /* upper 16 bits */
8970 if (my_getSmallExpression (&imm_expr, imm_reloc, s) == 0
8971 && imm_expr.X_op == O_constant
8972 && (imm_expr.X_add_number < 0
8973 || imm_expr.X_add_number >= 0x10000))
8974 as_bad (_("lui expression not in range 0..65535"));
8975 s = expr_end;
8976 continue;
8977
8978 case 'a': /* 26 bit address */
8979 my_getExpression (&offset_expr, s);
8980 s = expr_end;
8981 *offset_reloc = BFD_RELOC_MIPS_JMP;
8982 continue;
8983
8984 case 'N': /* 3 bit branch condition code */
8985 case 'M': /* 3 bit compare condition code */
8986 if (strncmp (s, "$fcc", 4) != 0)
8987 break;
8988 s += 4;
8989 regno = 0;
8990 do
8991 {
8992 regno *= 10;
8993 regno += *s - '0';
8994 ++s;
8995 }
8996 while (ISDIGIT (*s));
8997 if (regno > 7)
8998 as_bad (_("Invalid condition code register $fcc%d"), regno);
8999 if ((strcmp(str + strlen(str) - 3, ".ps") == 0
9000 || strcmp(str + strlen(str) - 5, "any2f") == 0
9001 || strcmp(str + strlen(str) - 5, "any2t") == 0)
9002 && (regno & 1) != 0)
9003 as_warn(_("Condition code register should be even for %s, was %d"),
9004 str, regno);
9005 if ((strcmp(str + strlen(str) - 5, "any4f") == 0
9006 || strcmp(str + strlen(str) - 5, "any4t") == 0)
9007 && (regno & 3) != 0)
9008 as_warn(_("Condition code register should be 0 or 4 for %s, was %d"),
9009 str, regno);
9010 if (*args == 'N')
9011 ip->insn_opcode |= regno << OP_SH_BCC;
9012 else
9013 ip->insn_opcode |= regno << OP_SH_CCC;
9014 continue;
9015
9016 case 'H':
9017 if (s[0] == '0' && (s[1] == 'x' || s[1] == 'X'))
9018 s += 2;
9019 if (ISDIGIT (*s))
9020 {
9021 c = 0;
9022 do
9023 {
9024 c *= 10;
9025 c += *s - '0';
9026 ++s;
9027 }
9028 while (ISDIGIT (*s));
9029 }
9030 else
9031 c = 8; /* Invalid sel value. */
9032
9033 if (c > 7)
9034 as_bad (_("invalid coprocessor sub-selection value (0-7)"));
9035 ip->insn_opcode |= c;
9036 continue;
9037
9038 case 'e':
9039 /* Must be at least one digit. */
9040 my_getExpression (&imm_expr, s);
9041 check_absolute_expr (ip, &imm_expr);
9042
9043 if ((unsigned long) imm_expr.X_add_number
9044 > (unsigned long) OP_MASK_VECBYTE)
9045 {
9046 as_bad (_("bad byte vector index (%ld)"),
9047 (long) imm_expr.X_add_number);
9048 imm_expr.X_add_number = 0;
9049 }
9050
9051 ip->insn_opcode |= imm_expr.X_add_number << OP_SH_VECBYTE;
9052 imm_expr.X_op = O_absent;
9053 s = expr_end;
9054 continue;
9055
9056 case '%':
9057 my_getExpression (&imm_expr, s);
9058 check_absolute_expr (ip, &imm_expr);
9059
9060 if ((unsigned long) imm_expr.X_add_number
9061 > (unsigned long) OP_MASK_VECALIGN)
9062 {
9063 as_bad (_("bad byte vector index (%ld)"),
9064 (long) imm_expr.X_add_number);
9065 imm_expr.X_add_number = 0;
9066 }
9067
9068 ip->insn_opcode |= imm_expr.X_add_number << OP_SH_VECALIGN;
9069 imm_expr.X_op = O_absent;
9070 s = expr_end;
9071 continue;
9072
9073 default:
9074 as_bad (_("bad char = '%c'\n"), *args);
9075 internalError ();
9076 }
9077 break;
9078 }
9079 /* Args don't match. */
9080 if (insn + 1 < &mips_opcodes[NUMOPCODES] &&
9081 !strcmp (insn->name, insn[1].name))
9082 {
9083 ++insn;
9084 s = argsStart;
9085 insn_error = _("illegal operands");
9086 continue;
9087 }
9088 if (save_c)
9089 *(--s) = save_c;
9090 insn_error = _("illegal operands");
9091 return;
9092 }
9093 }
9094
9095 /* This routine assembles an instruction into its binary format when
9096 assembling for the mips16. As a side effect, it sets one of the
9097 global variables imm_reloc or offset_reloc to the type of
9098 relocation to do if one of the operands is an address expression.
9099 It also sets mips16_small and mips16_ext if the user explicitly
9100 requested a small or extended instruction. */
9101
9102 static void
9103 mips16_ip (char *str, struct mips_cl_insn *ip)
9104 {
9105 char *s;
9106 const char *args;
9107 struct mips_opcode *insn;
9108 char *argsstart;
9109 unsigned int regno;
9110 unsigned int lastregno = 0;
9111 char *s_reset;
9112 size_t i;
9113
9114 insn_error = NULL;
9115
9116 mips16_small = FALSE;
9117 mips16_ext = FALSE;
9118
9119 for (s = str; ISLOWER (*s); ++s)
9120 ;
9121 switch (*s)
9122 {
9123 case '\0':
9124 break;
9125
9126 case ' ':
9127 *s++ = '\0';
9128 break;
9129
9130 case '.':
9131 if (s[1] == 't' && s[2] == ' ')
9132 {
9133 *s = '\0';
9134 mips16_small = TRUE;
9135 s += 3;
9136 break;
9137 }
9138 else if (s[1] == 'e' && s[2] == ' ')
9139 {
9140 *s = '\0';
9141 mips16_ext = TRUE;
9142 s += 3;
9143 break;
9144 }
9145 /* Fall through. */
9146 default:
9147 insn_error = _("unknown opcode");
9148 return;
9149 }
9150
9151 if (mips_opts.noautoextend && ! mips16_ext)
9152 mips16_small = TRUE;
9153
9154 if ((insn = (struct mips_opcode *) hash_find (mips16_op_hash, str)) == NULL)
9155 {
9156 insn_error = _("unrecognized opcode");
9157 return;
9158 }
9159
9160 argsstart = s;
9161 for (;;)
9162 {
9163 assert (strcmp (insn->name, str) == 0);
9164
9165 ip->insn_mo = insn;
9166 ip->insn_opcode = insn->match;
9167 ip->use_extend = FALSE;
9168 imm_expr.X_op = O_absent;
9169 imm_reloc[0] = BFD_RELOC_UNUSED;
9170 imm_reloc[1] = BFD_RELOC_UNUSED;
9171 imm_reloc[2] = BFD_RELOC_UNUSED;
9172 imm2_expr.X_op = O_absent;
9173 offset_expr.X_op = O_absent;
9174 offset_reloc[0] = BFD_RELOC_UNUSED;
9175 offset_reloc[1] = BFD_RELOC_UNUSED;
9176 offset_reloc[2] = BFD_RELOC_UNUSED;
9177 for (args = insn->args; 1; ++args)
9178 {
9179 int c;
9180
9181 if (*s == ' ')
9182 ++s;
9183
9184 /* In this switch statement we call break if we did not find
9185 a match, continue if we did find a match, or return if we
9186 are done. */
9187
9188 c = *args;
9189 switch (c)
9190 {
9191 case '\0':
9192 if (*s == '\0')
9193 {
9194 /* Stuff the immediate value in now, if we can. */
9195 if (imm_expr.X_op == O_constant
9196 && *imm_reloc > BFD_RELOC_UNUSED
9197 && insn->pinfo != INSN_MACRO)
9198 {
9199 valueT tmp;
9200
9201 switch (*offset_reloc)
9202 {
9203 case BFD_RELOC_MIPS16_HI16_S:
9204 tmp = (imm_expr.X_add_number + 0x8000) >> 16;
9205 break;
9206
9207 case BFD_RELOC_MIPS16_HI16:
9208 tmp = imm_expr.X_add_number >> 16;
9209 break;
9210
9211 case BFD_RELOC_MIPS16_LO16:
9212 tmp = ((imm_expr.X_add_number + 0x8000) & 0xffff)
9213 - 0x8000;
9214 break;
9215
9216 case BFD_RELOC_UNUSED:
9217 tmp = imm_expr.X_add_number;
9218 break;
9219
9220 default:
9221 internalError ();
9222 }
9223 *offset_reloc = BFD_RELOC_UNUSED;
9224
9225 mips16_immed (NULL, 0, *imm_reloc - BFD_RELOC_UNUSED,
9226 tmp, TRUE, mips16_small,
9227 mips16_ext, &ip->insn_opcode,
9228 &ip->use_extend, &ip->extend);
9229 imm_expr.X_op = O_absent;
9230 *imm_reloc = BFD_RELOC_UNUSED;
9231 }
9232
9233 return;
9234 }
9235 break;
9236
9237 case ',':
9238 if (*s++ == c)
9239 continue;
9240 s--;
9241 switch (*++args)
9242 {
9243 case 'v':
9244 ip->insn_opcode |= lastregno << MIPS16OP_SH_RX;
9245 continue;
9246 case 'w':
9247 ip->insn_opcode |= lastregno << MIPS16OP_SH_RY;
9248 continue;
9249 }
9250 break;
9251
9252 case '(':
9253 case ')':
9254 if (*s++ == c)
9255 continue;
9256 break;
9257
9258 case 'v':
9259 case 'w':
9260 if (s[0] != '$')
9261 {
9262 if (c == 'v')
9263 ip->insn_opcode |= lastregno << MIPS16OP_SH_RX;
9264 else
9265 ip->insn_opcode |= lastregno << MIPS16OP_SH_RY;
9266 ++args;
9267 continue;
9268 }
9269 /* Fall through. */
9270 case 'x':
9271 case 'y':
9272 case 'z':
9273 case 'Z':
9274 case '0':
9275 case 'S':
9276 case 'R':
9277 case 'X':
9278 case 'Y':
9279 if (s[0] != '$')
9280 break;
9281 s_reset = s;
9282 if (ISDIGIT (s[1]))
9283 {
9284 ++s;
9285 regno = 0;
9286 do
9287 {
9288 regno *= 10;
9289 regno += *s - '0';
9290 ++s;
9291 }
9292 while (ISDIGIT (*s));
9293 if (regno > 31)
9294 {
9295 as_bad (_("invalid register number (%d)"), regno);
9296 regno = 2;
9297 }
9298 }
9299 else
9300 {
9301 if (s[1] == 'r' && s[2] == 'a')
9302 {
9303 s += 3;
9304 regno = RA;
9305 }
9306 else if (s[1] == 'f' && s[2] == 'p')
9307 {
9308 s += 3;
9309 regno = FP;
9310 }
9311 else if (s[1] == 's' && s[2] == 'p')
9312 {
9313 s += 3;
9314 regno = SP;
9315 }
9316 else if (s[1] == 'g' && s[2] == 'p')
9317 {
9318 s += 3;
9319 regno = GP;
9320 }
9321 else if (s[1] == 'a' && s[2] == 't')
9322 {
9323 s += 3;
9324 regno = AT;
9325 }
9326 else if (s[1] == 'k' && s[2] == 't' && s[3] == '0')
9327 {
9328 s += 4;
9329 regno = KT0;
9330 }
9331 else if (s[1] == 'k' && s[2] == 't' && s[3] == '1')
9332 {
9333 s += 4;
9334 regno = KT1;
9335 }
9336 else if (s[1] == 'z' && s[2] == 'e' && s[3] == 'r' && s[4] == 'o')
9337 {
9338 s += 5;
9339 regno = ZERO;
9340 }
9341 else
9342 break;
9343 }
9344
9345 if (*s == ' ')
9346 ++s;
9347 if (args[1] != *s)
9348 {
9349 if (c == 'v' || c == 'w')
9350 {
9351 regno = mips16_to_32_reg_map[lastregno];
9352 s = s_reset;
9353 ++args;
9354 }
9355 }
9356
9357 switch (c)
9358 {
9359 case 'x':
9360 case 'y':
9361 case 'z':
9362 case 'v':
9363 case 'w':
9364 case 'Z':
9365 regno = mips32_to_16_reg_map[regno];
9366 break;
9367
9368 case '0':
9369 if (regno != 0)
9370 regno = ILLEGAL_REG;
9371 break;
9372
9373 case 'S':
9374 if (regno != SP)
9375 regno = ILLEGAL_REG;
9376 break;
9377
9378 case 'R':
9379 if (regno != RA)
9380 regno = ILLEGAL_REG;
9381 break;
9382
9383 case 'X':
9384 case 'Y':
9385 if (regno == AT && ! mips_opts.noat)
9386 as_warn (_("used $at without \".set noat\""));
9387 break;
9388
9389 default:
9390 internalError ();
9391 }
9392
9393 if (regno == ILLEGAL_REG)
9394 break;
9395
9396 switch (c)
9397 {
9398 case 'x':
9399 case 'v':
9400 ip->insn_opcode |= regno << MIPS16OP_SH_RX;
9401 break;
9402 case 'y':
9403 case 'w':
9404 ip->insn_opcode |= regno << MIPS16OP_SH_RY;
9405 break;
9406 case 'z':
9407 ip->insn_opcode |= regno << MIPS16OP_SH_RZ;
9408 break;
9409 case 'Z':
9410 ip->insn_opcode |= regno << MIPS16OP_SH_MOVE32Z;
9411 case '0':
9412 case 'S':
9413 case 'R':
9414 break;
9415 case 'X':
9416 ip->insn_opcode |= regno << MIPS16OP_SH_REGR32;
9417 break;
9418 case 'Y':
9419 regno = ((regno & 7) << 2) | ((regno & 0x18) >> 3);
9420 ip->insn_opcode |= regno << MIPS16OP_SH_REG32R;
9421 break;
9422 default:
9423 internalError ();
9424 }
9425
9426 lastregno = regno;
9427 continue;
9428
9429 case 'P':
9430 if (strncmp (s, "$pc", 3) == 0)
9431 {
9432 s += 3;
9433 continue;
9434 }
9435 break;
9436
9437 case '5':
9438 case 'H':
9439 case 'W':
9440 case 'D':
9441 case 'j':
9442 case 'V':
9443 case 'C':
9444 case 'U':
9445 case 'k':
9446 case 'K':
9447 i = my_getSmallExpression (&imm_expr, imm_reloc, s);
9448 if (i > 0)
9449 {
9450 if (imm_expr.X_op != O_constant)
9451 {
9452 mips16_ext = TRUE;
9453 ip->use_extend = TRUE;
9454 ip->extend = 0;
9455 }
9456 else
9457 {
9458 /* We need to relax this instruction. */
9459 *offset_reloc = *imm_reloc;
9460 *imm_reloc = (int) BFD_RELOC_UNUSED + c;
9461 }
9462 s = expr_end;
9463 continue;
9464 }
9465 *imm_reloc = BFD_RELOC_UNUSED;
9466 /* Fall through. */
9467 case '<':
9468 case '>':
9469 case '[':
9470 case ']':
9471 case '4':
9472 case '8':
9473 my_getExpression (&imm_expr, s);
9474 if (imm_expr.X_op == O_register)
9475 {
9476 /* What we thought was an expression turned out to
9477 be a register. */
9478
9479 if (s[0] == '(' && args[1] == '(')
9480 {
9481 /* It looks like the expression was omitted
9482 before a register indirection, which means
9483 that the expression is implicitly zero. We
9484 still set up imm_expr, so that we handle
9485 explicit extensions correctly. */
9486 imm_expr.X_op = O_constant;
9487 imm_expr.X_add_number = 0;
9488 *imm_reloc = (int) BFD_RELOC_UNUSED + c;
9489 continue;
9490 }
9491
9492 break;
9493 }
9494
9495 /* We need to relax this instruction. */
9496 *imm_reloc = (int) BFD_RELOC_UNUSED + c;
9497 s = expr_end;
9498 continue;
9499
9500 case 'p':
9501 case 'q':
9502 case 'A':
9503 case 'B':
9504 case 'E':
9505 /* We use offset_reloc rather than imm_reloc for the PC
9506 relative operands. This lets macros with both
9507 immediate and address operands work correctly. */
9508 my_getExpression (&offset_expr, s);
9509
9510 if (offset_expr.X_op == O_register)
9511 break;
9512
9513 /* We need to relax this instruction. */
9514 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
9515 s = expr_end;
9516 continue;
9517
9518 case '6': /* break code */
9519 my_getExpression (&imm_expr, s);
9520 check_absolute_expr (ip, &imm_expr);
9521 if ((unsigned long) imm_expr.X_add_number > 63)
9522 {
9523 as_warn (_("Invalid value for `%s' (%lu)"),
9524 ip->insn_mo->name,
9525 (unsigned long) imm_expr.X_add_number);
9526 imm_expr.X_add_number &= 0x3f;
9527 }
9528 ip->insn_opcode |= imm_expr.X_add_number << MIPS16OP_SH_IMM6;
9529 imm_expr.X_op = O_absent;
9530 s = expr_end;
9531 continue;
9532
9533 case 'a': /* 26 bit address */
9534 my_getExpression (&offset_expr, s);
9535 s = expr_end;
9536 *offset_reloc = BFD_RELOC_MIPS16_JMP;
9537 ip->insn_opcode <<= 16;
9538 continue;
9539
9540 case 'l': /* register list for entry macro */
9541 case 'L': /* register list for exit macro */
9542 {
9543 int mask;
9544
9545 if (c == 'l')
9546 mask = 0;
9547 else
9548 mask = 7 << 3;
9549 while (*s != '\0')
9550 {
9551 int freg, reg1, reg2;
9552
9553 while (*s == ' ' || *s == ',')
9554 ++s;
9555 if (*s != '$')
9556 {
9557 as_bad (_("can't parse register list"));
9558 break;
9559 }
9560 ++s;
9561 if (*s != 'f')
9562 freg = 0;
9563 else
9564 {
9565 freg = 1;
9566 ++s;
9567 }
9568 reg1 = 0;
9569 while (ISDIGIT (*s))
9570 {
9571 reg1 *= 10;
9572 reg1 += *s - '0';
9573 ++s;
9574 }
9575 if (*s == ' ')
9576 ++s;
9577 if (*s != '-')
9578 reg2 = reg1;
9579 else
9580 {
9581 ++s;
9582 if (*s != '$')
9583 break;
9584 ++s;
9585 if (freg)
9586 {
9587 if (*s == 'f')
9588 ++s;
9589 else
9590 {
9591 as_bad (_("invalid register list"));
9592 break;
9593 }
9594 }
9595 reg2 = 0;
9596 while (ISDIGIT (*s))
9597 {
9598 reg2 *= 10;
9599 reg2 += *s - '0';
9600 ++s;
9601 }
9602 }
9603 if (freg && reg1 == 0 && reg2 == 0 && c == 'L')
9604 {
9605 mask &= ~ (7 << 3);
9606 mask |= 5 << 3;
9607 }
9608 else if (freg && reg1 == 0 && reg2 == 1 && c == 'L')
9609 {
9610 mask &= ~ (7 << 3);
9611 mask |= 6 << 3;
9612 }
9613 else if (reg1 == 4 && reg2 >= 4 && reg2 <= 7 && c != 'L')
9614 mask |= (reg2 - 3) << 3;
9615 else if (reg1 == 16 && reg2 >= 16 && reg2 <= 17)
9616 mask |= (reg2 - 15) << 1;
9617 else if (reg1 == RA && reg2 == RA)
9618 mask |= 1;
9619 else
9620 {
9621 as_bad (_("invalid register list"));
9622 break;
9623 }
9624 }
9625 /* The mask is filled in in the opcode table for the
9626 benefit of the disassembler. We remove it before
9627 applying the actual mask. */
9628 ip->insn_opcode &= ~ ((7 << 3) << MIPS16OP_SH_IMM6);
9629 ip->insn_opcode |= mask << MIPS16OP_SH_IMM6;
9630 }
9631 continue;
9632
9633 case 'e': /* extend code */
9634 my_getExpression (&imm_expr, s);
9635 check_absolute_expr (ip, &imm_expr);
9636 if ((unsigned long) imm_expr.X_add_number > 0x7ff)
9637 {
9638 as_warn (_("Invalid value for `%s' (%lu)"),
9639 ip->insn_mo->name,
9640 (unsigned long) imm_expr.X_add_number);
9641 imm_expr.X_add_number &= 0x7ff;
9642 }
9643 ip->insn_opcode |= imm_expr.X_add_number;
9644 imm_expr.X_op = O_absent;
9645 s = expr_end;
9646 continue;
9647
9648 default:
9649 internalError ();
9650 }
9651 break;
9652 }
9653
9654 /* Args don't match. */
9655 if (insn + 1 < &mips16_opcodes[bfd_mips16_num_opcodes] &&
9656 strcmp (insn->name, insn[1].name) == 0)
9657 {
9658 ++insn;
9659 s = argsstart;
9660 continue;
9661 }
9662
9663 insn_error = _("illegal operands");
9664
9665 return;
9666 }
9667 }
9668
9669 /* This structure holds information we know about a mips16 immediate
9670 argument type. */
9671
9672 struct mips16_immed_operand
9673 {
9674 /* The type code used in the argument string in the opcode table. */
9675 int type;
9676 /* The number of bits in the short form of the opcode. */
9677 int nbits;
9678 /* The number of bits in the extended form of the opcode. */
9679 int extbits;
9680 /* The amount by which the short form is shifted when it is used;
9681 for example, the sw instruction has a shift count of 2. */
9682 int shift;
9683 /* The amount by which the short form is shifted when it is stored
9684 into the instruction code. */
9685 int op_shift;
9686 /* Non-zero if the short form is unsigned. */
9687 int unsp;
9688 /* Non-zero if the extended form is unsigned. */
9689 int extu;
9690 /* Non-zero if the value is PC relative. */
9691 int pcrel;
9692 };
9693
9694 /* The mips16 immediate operand types. */
9695
9696 static const struct mips16_immed_operand mips16_immed_operands[] =
9697 {
9698 { '<', 3, 5, 0, MIPS16OP_SH_RZ, 1, 1, 0 },
9699 { '>', 3, 5, 0, MIPS16OP_SH_RX, 1, 1, 0 },
9700 { '[', 3, 6, 0, MIPS16OP_SH_RZ, 1, 1, 0 },
9701 { ']', 3, 6, 0, MIPS16OP_SH_RX, 1, 1, 0 },
9702 { '4', 4, 15, 0, MIPS16OP_SH_IMM4, 0, 0, 0 },
9703 { '5', 5, 16, 0, MIPS16OP_SH_IMM5, 1, 0, 0 },
9704 { 'H', 5, 16, 1, MIPS16OP_SH_IMM5, 1, 0, 0 },
9705 { 'W', 5, 16, 2, MIPS16OP_SH_IMM5, 1, 0, 0 },
9706 { 'D', 5, 16, 3, MIPS16OP_SH_IMM5, 1, 0, 0 },
9707 { 'j', 5, 16, 0, MIPS16OP_SH_IMM5, 0, 0, 0 },
9708 { '8', 8, 16, 0, MIPS16OP_SH_IMM8, 1, 0, 0 },
9709 { 'V', 8, 16, 2, MIPS16OP_SH_IMM8, 1, 0, 0 },
9710 { 'C', 8, 16, 3, MIPS16OP_SH_IMM8, 1, 0, 0 },
9711 { 'U', 8, 16, 0, MIPS16OP_SH_IMM8, 1, 1, 0 },
9712 { 'k', 8, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 0 },
9713 { 'K', 8, 16, 3, MIPS16OP_SH_IMM8, 0, 0, 0 },
9714 { 'p', 8, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 1 },
9715 { 'q', 11, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 1 },
9716 { 'A', 8, 16, 2, MIPS16OP_SH_IMM8, 1, 0, 1 },
9717 { 'B', 5, 16, 3, MIPS16OP_SH_IMM5, 1, 0, 1 },
9718 { 'E', 5, 16, 2, MIPS16OP_SH_IMM5, 1, 0, 1 }
9719 };
9720
9721 #define MIPS16_NUM_IMMED \
9722 (sizeof mips16_immed_operands / sizeof mips16_immed_operands[0])
9723
9724 /* Handle a mips16 instruction with an immediate value. This or's the
9725 small immediate value into *INSN. It sets *USE_EXTEND to indicate
9726 whether an extended value is needed; if one is needed, it sets
9727 *EXTEND to the value. The argument type is TYPE. The value is VAL.
9728 If SMALL is true, an unextended opcode was explicitly requested.
9729 If EXT is true, an extended opcode was explicitly requested. If
9730 WARN is true, warn if EXT does not match reality. */
9731
9732 static void
9733 mips16_immed (char *file, unsigned int line, int type, offsetT val,
9734 bfd_boolean warn, bfd_boolean small, bfd_boolean ext,
9735 unsigned long *insn, bfd_boolean *use_extend,
9736 unsigned short *extend)
9737 {
9738 register const struct mips16_immed_operand *op;
9739 int mintiny, maxtiny;
9740 bfd_boolean needext;
9741
9742 op = mips16_immed_operands;
9743 while (op->type != type)
9744 {
9745 ++op;
9746 assert (op < mips16_immed_operands + MIPS16_NUM_IMMED);
9747 }
9748
9749 if (op->unsp)
9750 {
9751 if (type == '<' || type == '>' || type == '[' || type == ']')
9752 {
9753 mintiny = 1;
9754 maxtiny = 1 << op->nbits;
9755 }
9756 else
9757 {
9758 mintiny = 0;
9759 maxtiny = (1 << op->nbits) - 1;
9760 }
9761 }
9762 else
9763 {
9764 mintiny = - (1 << (op->nbits - 1));
9765 maxtiny = (1 << (op->nbits - 1)) - 1;
9766 }
9767
9768 /* Branch offsets have an implicit 0 in the lowest bit. */
9769 if (type == 'p' || type == 'q')
9770 val /= 2;
9771
9772 if ((val & ((1 << op->shift) - 1)) != 0
9773 || val < (mintiny << op->shift)
9774 || val > (maxtiny << op->shift))
9775 needext = TRUE;
9776 else
9777 needext = FALSE;
9778
9779 if (warn && ext && ! needext)
9780 as_warn_where (file, line,
9781 _("extended operand requested but not required"));
9782 if (small && needext)
9783 as_bad_where (file, line, _("invalid unextended operand value"));
9784
9785 if (small || (! ext && ! needext))
9786 {
9787 int insnval;
9788
9789 *use_extend = FALSE;
9790 insnval = ((val >> op->shift) & ((1 << op->nbits) - 1));
9791 insnval <<= op->op_shift;
9792 *insn |= insnval;
9793 }
9794 else
9795 {
9796 long minext, maxext;
9797 int extval;
9798
9799 if (op->extu)
9800 {
9801 minext = 0;
9802 maxext = (1 << op->extbits) - 1;
9803 }
9804 else
9805 {
9806 minext = - (1 << (op->extbits - 1));
9807 maxext = (1 << (op->extbits - 1)) - 1;
9808 }
9809 if (val < minext || val > maxext)
9810 as_bad_where (file, line,
9811 _("operand value out of range for instruction"));
9812
9813 *use_extend = TRUE;
9814 if (op->extbits == 16)
9815 {
9816 extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
9817 val &= 0x1f;
9818 }
9819 else if (op->extbits == 15)
9820 {
9821 extval = ((val >> 11) & 0xf) | (val & 0x7f0);
9822 val &= 0xf;
9823 }
9824 else
9825 {
9826 extval = ((val & 0x1f) << 6) | (val & 0x20);
9827 val = 0;
9828 }
9829
9830 *extend = (unsigned short) extval;
9831 *insn |= val;
9832 }
9833 }
9834 \f
9835 struct percent_op_match
9836 {
9837 const char *str;
9838 bfd_reloc_code_real_type reloc;
9839 };
9840
9841 static const struct percent_op_match mips_percent_op[] =
9842 {
9843 {"%lo", BFD_RELOC_LO16},
9844 #ifdef OBJ_ELF
9845 {"%call_hi", BFD_RELOC_MIPS_CALL_HI16},
9846 {"%call_lo", BFD_RELOC_MIPS_CALL_LO16},
9847 {"%call16", BFD_RELOC_MIPS_CALL16},
9848 {"%got_disp", BFD_RELOC_MIPS_GOT_DISP},
9849 {"%got_page", BFD_RELOC_MIPS_GOT_PAGE},
9850 {"%got_ofst", BFD_RELOC_MIPS_GOT_OFST},
9851 {"%got_hi", BFD_RELOC_MIPS_GOT_HI16},
9852 {"%got_lo", BFD_RELOC_MIPS_GOT_LO16},
9853 {"%got", BFD_RELOC_MIPS_GOT16},
9854 {"%gp_rel", BFD_RELOC_GPREL16},
9855 {"%half", BFD_RELOC_16},
9856 {"%highest", BFD_RELOC_MIPS_HIGHEST},
9857 {"%higher", BFD_RELOC_MIPS_HIGHER},
9858 {"%neg", BFD_RELOC_MIPS_SUB},
9859 #endif
9860 {"%hi", BFD_RELOC_HI16_S}
9861 };
9862
9863 static const struct percent_op_match mips16_percent_op[] =
9864 {
9865 {"%lo", BFD_RELOC_MIPS16_LO16},
9866 {"%gprel", BFD_RELOC_MIPS16_GPREL},
9867 {"%hi", BFD_RELOC_MIPS16_HI16_S}
9868 };
9869
9870
9871 /* Return true if *STR points to a relocation operator. When returning true,
9872 move *STR over the operator and store its relocation code in *RELOC.
9873 Leave both *STR and *RELOC alone when returning false. */
9874
9875 static bfd_boolean
9876 parse_relocation (char **str, bfd_reloc_code_real_type *reloc)
9877 {
9878 const struct percent_op_match *percent_op;
9879 size_t limit, i;
9880
9881 if (mips_opts.mips16)
9882 {
9883 percent_op = mips16_percent_op;
9884 limit = ARRAY_SIZE (mips16_percent_op);
9885 }
9886 else
9887 {
9888 percent_op = mips_percent_op;
9889 limit = ARRAY_SIZE (mips_percent_op);
9890 }
9891
9892 for (i = 0; i < limit; i++)
9893 if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0)
9894 {
9895 *str += strlen (percent_op[i].str);
9896 *reloc = percent_op[i].reloc;
9897
9898 /* Check whether the output BFD supports this relocation.
9899 If not, issue an error and fall back on something safe. */
9900 if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc))
9901 {
9902 as_bad ("relocation %s isn't supported by the current ABI",
9903 percent_op[i].str);
9904 *reloc = BFD_RELOC_UNUSED;
9905 }
9906 return TRUE;
9907 }
9908 return FALSE;
9909 }
9910
9911
9912 /* Parse string STR as a 16-bit relocatable operand. Store the
9913 expression in *EP and the relocations in the array starting
9914 at RELOC. Return the number of relocation operators used.
9915
9916 On exit, EXPR_END points to the first character after the expression. */
9917
9918 static size_t
9919 my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
9920 char *str)
9921 {
9922 bfd_reloc_code_real_type reversed_reloc[3];
9923 size_t reloc_index, i;
9924 int crux_depth, str_depth;
9925 char *crux;
9926
9927 /* Search for the start of the main expression, recoding relocations
9928 in REVERSED_RELOC. End the loop with CRUX pointing to the start
9929 of the main expression and with CRUX_DEPTH containing the number
9930 of open brackets at that point. */
9931 reloc_index = -1;
9932 str_depth = 0;
9933 do
9934 {
9935 reloc_index++;
9936 crux = str;
9937 crux_depth = str_depth;
9938
9939 /* Skip over whitespace and brackets, keeping count of the number
9940 of brackets. */
9941 while (*str == ' ' || *str == '\t' || *str == '(')
9942 if (*str++ == '(')
9943 str_depth++;
9944 }
9945 while (*str == '%'
9946 && reloc_index < (HAVE_NEWABI ? 3 : 1)
9947 && parse_relocation (&str, &reversed_reloc[reloc_index]));
9948
9949 my_getExpression (ep, crux);
9950 str = expr_end;
9951
9952 /* Match every open bracket. */
9953 while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
9954 if (*str++ == ')')
9955 crux_depth--;
9956
9957 if (crux_depth > 0)
9958 as_bad ("unclosed '('");
9959
9960 expr_end = str;
9961
9962 if (reloc_index != 0)
9963 {
9964 prev_reloc_op_frag = frag_now;
9965 for (i = 0; i < reloc_index; i++)
9966 reloc[i] = reversed_reloc[reloc_index - 1 - i];
9967 }
9968
9969 return reloc_index;
9970 }
9971
9972 static void
9973 my_getExpression (expressionS *ep, char *str)
9974 {
9975 char *save_in;
9976 valueT val;
9977
9978 save_in = input_line_pointer;
9979 input_line_pointer = str;
9980 expression (ep);
9981 expr_end = input_line_pointer;
9982 input_line_pointer = save_in;
9983
9984 /* If we are in mips16 mode, and this is an expression based on `.',
9985 then we bump the value of the symbol by 1 since that is how other
9986 text symbols are handled. We don't bother to handle complex
9987 expressions, just `.' plus or minus a constant. */
9988 if (mips_opts.mips16
9989 && ep->X_op == O_symbol
9990 && strcmp (S_GET_NAME (ep->X_add_symbol), FAKE_LABEL_NAME) == 0
9991 && S_GET_SEGMENT (ep->X_add_symbol) == now_seg
9992 && symbol_get_frag (ep->X_add_symbol) == frag_now
9993 && symbol_constant_p (ep->X_add_symbol)
9994 && (val = S_GET_VALUE (ep->X_add_symbol)) == frag_now_fix ())
9995 S_SET_VALUE (ep->X_add_symbol, val + 1);
9996 }
9997
9998 /* Turn a string in input_line_pointer into a floating point constant
9999 of type TYPE, and store the appropriate bytes in *LITP. The number
10000 of LITTLENUMS emitted is stored in *SIZEP. An error message is
10001 returned, or NULL on OK. */
10002
10003 char *
10004 md_atof (int type, char *litP, int *sizeP)
10005 {
10006 int prec;
10007 LITTLENUM_TYPE words[4];
10008 char *t;
10009 int i;
10010
10011 switch (type)
10012 {
10013 case 'f':
10014 prec = 2;
10015 break;
10016
10017 case 'd':
10018 prec = 4;
10019 break;
10020
10021 default:
10022 *sizeP = 0;
10023 return _("bad call to md_atof");
10024 }
10025
10026 t = atof_ieee (input_line_pointer, type, words);
10027 if (t)
10028 input_line_pointer = t;
10029
10030 *sizeP = prec * 2;
10031
10032 if (! target_big_endian)
10033 {
10034 for (i = prec - 1; i >= 0; i--)
10035 {
10036 md_number_to_chars (litP, words[i], 2);
10037 litP += 2;
10038 }
10039 }
10040 else
10041 {
10042 for (i = 0; i < prec; i++)
10043 {
10044 md_number_to_chars (litP, words[i], 2);
10045 litP += 2;
10046 }
10047 }
10048
10049 return NULL;
10050 }
10051
10052 void
10053 md_number_to_chars (char *buf, valueT val, int n)
10054 {
10055 if (target_big_endian)
10056 number_to_chars_bigendian (buf, val, n);
10057 else
10058 number_to_chars_littleendian (buf, val, n);
10059 }
10060 \f
10061 #ifdef OBJ_ELF
10062 static int support_64bit_objects(void)
10063 {
10064 const char **list, **l;
10065 int yes;
10066
10067 list = bfd_target_list ();
10068 for (l = list; *l != NULL; l++)
10069 #ifdef TE_TMIPS
10070 /* This is traditional mips */
10071 if (strcmp (*l, "elf64-tradbigmips") == 0
10072 || strcmp (*l, "elf64-tradlittlemips") == 0)
10073 #else
10074 if (strcmp (*l, "elf64-bigmips") == 0
10075 || strcmp (*l, "elf64-littlemips") == 0)
10076 #endif
10077 break;
10078 yes = (*l != NULL);
10079 free (list);
10080 return yes;
10081 }
10082 #endif /* OBJ_ELF */
10083
10084 const char *md_shortopts = "O::g::G:";
10085
10086 struct option md_longopts[] =
10087 {
10088 /* Options which specify architecture. */
10089 #define OPTION_ARCH_BASE (OPTION_MD_BASE)
10090 #define OPTION_MARCH (OPTION_ARCH_BASE + 0)
10091 {"march", required_argument, NULL, OPTION_MARCH},
10092 #define OPTION_MTUNE (OPTION_ARCH_BASE + 1)
10093 {"mtune", required_argument, NULL, OPTION_MTUNE},
10094 #define OPTION_MIPS1 (OPTION_ARCH_BASE + 2)
10095 {"mips0", no_argument, NULL, OPTION_MIPS1},
10096 {"mips1", no_argument, NULL, OPTION_MIPS1},
10097 #define OPTION_MIPS2 (OPTION_ARCH_BASE + 3)
10098 {"mips2", no_argument, NULL, OPTION_MIPS2},
10099 #define OPTION_MIPS3 (OPTION_ARCH_BASE + 4)
10100 {"mips3", no_argument, NULL, OPTION_MIPS3},
10101 #define OPTION_MIPS4 (OPTION_ARCH_BASE + 5)
10102 {"mips4", no_argument, NULL, OPTION_MIPS4},
10103 #define OPTION_MIPS5 (OPTION_ARCH_BASE + 6)
10104 {"mips5", no_argument, NULL, OPTION_MIPS5},
10105 #define OPTION_MIPS32 (OPTION_ARCH_BASE + 7)
10106 {"mips32", no_argument, NULL, OPTION_MIPS32},
10107 #define OPTION_MIPS64 (OPTION_ARCH_BASE + 8)
10108 {"mips64", no_argument, NULL, OPTION_MIPS64},
10109 #define OPTION_MIPS32R2 (OPTION_ARCH_BASE + 9)
10110 {"mips32r2", no_argument, NULL, OPTION_MIPS32R2},
10111 #define OPTION_MIPS64R2 (OPTION_ARCH_BASE + 10)
10112 {"mips64r2", no_argument, NULL, OPTION_MIPS64R2},
10113
10114 /* Options which specify Application Specific Extensions (ASEs). */
10115 #define OPTION_ASE_BASE (OPTION_ARCH_BASE + 11)
10116 #define OPTION_MIPS16 (OPTION_ASE_BASE + 0)
10117 {"mips16", no_argument, NULL, OPTION_MIPS16},
10118 #define OPTION_NO_MIPS16 (OPTION_ASE_BASE + 1)
10119 {"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
10120 #define OPTION_MIPS3D (OPTION_ASE_BASE + 2)
10121 {"mips3d", no_argument, NULL, OPTION_MIPS3D},
10122 #define OPTION_NO_MIPS3D (OPTION_ASE_BASE + 3)
10123 {"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
10124 #define OPTION_MDMX (OPTION_ASE_BASE + 4)
10125 {"mdmx", no_argument, NULL, OPTION_MDMX},
10126 #define OPTION_NO_MDMX (OPTION_ASE_BASE + 5)
10127 {"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
10128
10129 /* Old-style architecture options. Don't add more of these. */
10130 #define OPTION_COMPAT_ARCH_BASE (OPTION_ASE_BASE + 6)
10131 #define OPTION_M4650 (OPTION_COMPAT_ARCH_BASE + 0)
10132 {"m4650", no_argument, NULL, OPTION_M4650},
10133 #define OPTION_NO_M4650 (OPTION_COMPAT_ARCH_BASE + 1)
10134 {"no-m4650", no_argument, NULL, OPTION_NO_M4650},
10135 #define OPTION_M4010 (OPTION_COMPAT_ARCH_BASE + 2)
10136 {"m4010", no_argument, NULL, OPTION_M4010},
10137 #define OPTION_NO_M4010 (OPTION_COMPAT_ARCH_BASE + 3)
10138 {"no-m4010", no_argument, NULL, OPTION_NO_M4010},
10139 #define OPTION_M4100 (OPTION_COMPAT_ARCH_BASE + 4)
10140 {"m4100", no_argument, NULL, OPTION_M4100},
10141 #define OPTION_NO_M4100 (OPTION_COMPAT_ARCH_BASE + 5)
10142 {"no-m4100", no_argument, NULL, OPTION_NO_M4100},
10143 #define OPTION_M3900 (OPTION_COMPAT_ARCH_BASE + 6)
10144 {"m3900", no_argument, NULL, OPTION_M3900},
10145 #define OPTION_NO_M3900 (OPTION_COMPAT_ARCH_BASE + 7)
10146 {"no-m3900", no_argument, NULL, OPTION_NO_M3900},
10147
10148 /* Options which enable bug fixes. */
10149 #define OPTION_FIX_BASE (OPTION_COMPAT_ARCH_BASE + 8)
10150 #define OPTION_M7000_HILO_FIX (OPTION_FIX_BASE + 0)
10151 {"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
10152 #define OPTION_MNO_7000_HILO_FIX (OPTION_FIX_BASE + 1)
10153 {"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
10154 {"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
10155 #define OPTION_FIX_VR4120 (OPTION_FIX_BASE + 2)
10156 #define OPTION_NO_FIX_VR4120 (OPTION_FIX_BASE + 3)
10157 {"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120},
10158 {"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120},
10159
10160 /* Miscellaneous options. */
10161 #define OPTION_MISC_BASE (OPTION_FIX_BASE + 4)
10162 #define OPTION_TRAP (OPTION_MISC_BASE + 0)
10163 {"trap", no_argument, NULL, OPTION_TRAP},
10164 {"no-break", no_argument, NULL, OPTION_TRAP},
10165 #define OPTION_BREAK (OPTION_MISC_BASE + 1)
10166 {"break", no_argument, NULL, OPTION_BREAK},
10167 {"no-trap", no_argument, NULL, OPTION_BREAK},
10168 #define OPTION_EB (OPTION_MISC_BASE + 2)
10169 {"EB", no_argument, NULL, OPTION_EB},
10170 #define OPTION_EL (OPTION_MISC_BASE + 3)
10171 {"EL", no_argument, NULL, OPTION_EL},
10172 #define OPTION_FP32 (OPTION_MISC_BASE + 4)
10173 {"mfp32", no_argument, NULL, OPTION_FP32},
10174 #define OPTION_GP32 (OPTION_MISC_BASE + 5)
10175 {"mgp32", no_argument, NULL, OPTION_GP32},
10176 #define OPTION_CONSTRUCT_FLOATS (OPTION_MISC_BASE + 6)
10177 {"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
10178 #define OPTION_NO_CONSTRUCT_FLOATS (OPTION_MISC_BASE + 7)
10179 {"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
10180 #define OPTION_FP64 (OPTION_MISC_BASE + 8)
10181 {"mfp64", no_argument, NULL, OPTION_FP64},
10182 #define OPTION_GP64 (OPTION_MISC_BASE + 9)
10183 {"mgp64", no_argument, NULL, OPTION_GP64},
10184 #define OPTION_RELAX_BRANCH (OPTION_MISC_BASE + 10)
10185 #define OPTION_NO_RELAX_BRANCH (OPTION_MISC_BASE + 11)
10186 {"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH},
10187 {"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH},
10188 #define OPTION_MSHARED (OPTION_MISC_BASE + 12)
10189 #define OPTION_MNO_SHARED (OPTION_MISC_BASE + 13)
10190 {"mshared", no_argument, NULL, OPTION_MSHARED},
10191 {"mno-shared", no_argument, NULL, OPTION_MNO_SHARED},
10192
10193 /* ELF-specific options. */
10194 #ifdef OBJ_ELF
10195 #define OPTION_ELF_BASE (OPTION_MISC_BASE + 14)
10196 #define OPTION_CALL_SHARED (OPTION_ELF_BASE + 0)
10197 {"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
10198 {"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
10199 #define OPTION_NON_SHARED (OPTION_ELF_BASE + 1)
10200 {"non_shared", no_argument, NULL, OPTION_NON_SHARED},
10201 #define OPTION_XGOT (OPTION_ELF_BASE + 2)
10202 {"xgot", no_argument, NULL, OPTION_XGOT},
10203 #define OPTION_MABI (OPTION_ELF_BASE + 3)
10204 {"mabi", required_argument, NULL, OPTION_MABI},
10205 #define OPTION_32 (OPTION_ELF_BASE + 4)
10206 {"32", no_argument, NULL, OPTION_32},
10207 #define OPTION_N32 (OPTION_ELF_BASE + 5)
10208 {"n32", no_argument, NULL, OPTION_N32},
10209 #define OPTION_64 (OPTION_ELF_BASE + 6)
10210 {"64", no_argument, NULL, OPTION_64},
10211 #define OPTION_MDEBUG (OPTION_ELF_BASE + 7)
10212 {"mdebug", no_argument, NULL, OPTION_MDEBUG},
10213 #define OPTION_NO_MDEBUG (OPTION_ELF_BASE + 8)
10214 {"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
10215 #define OPTION_PDR (OPTION_ELF_BASE + 9)
10216 {"mpdr", no_argument, NULL, OPTION_PDR},
10217 #define OPTION_NO_PDR (OPTION_ELF_BASE + 10)
10218 {"mno-pdr", no_argument, NULL, OPTION_NO_PDR},
10219 #endif /* OBJ_ELF */
10220
10221 {NULL, no_argument, NULL, 0}
10222 };
10223 size_t md_longopts_size = sizeof (md_longopts);
10224
10225 /* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
10226 NEW_VALUE. Warn if another value was already specified. Note:
10227 we have to defer parsing the -march and -mtune arguments in order
10228 to handle 'from-abi' correctly, since the ABI might be specified
10229 in a later argument. */
10230
10231 static void
10232 mips_set_option_string (const char **string_ptr, const char *new_value)
10233 {
10234 if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
10235 as_warn (_("A different %s was already specified, is now %s"),
10236 string_ptr == &mips_arch_string ? "-march" : "-mtune",
10237 new_value);
10238
10239 *string_ptr = new_value;
10240 }
10241
10242 int
10243 md_parse_option (int c, char *arg)
10244 {
10245 switch (c)
10246 {
10247 case OPTION_CONSTRUCT_FLOATS:
10248 mips_disable_float_construction = 0;
10249 break;
10250
10251 case OPTION_NO_CONSTRUCT_FLOATS:
10252 mips_disable_float_construction = 1;
10253 break;
10254
10255 case OPTION_TRAP:
10256 mips_trap = 1;
10257 break;
10258
10259 case OPTION_BREAK:
10260 mips_trap = 0;
10261 break;
10262
10263 case OPTION_EB:
10264 target_big_endian = 1;
10265 break;
10266
10267 case OPTION_EL:
10268 target_big_endian = 0;
10269 break;
10270
10271 case 'O':
10272 if (arg && arg[1] == '0')
10273 mips_optimize = 1;
10274 else
10275 mips_optimize = 2;
10276 break;
10277
10278 case 'g':
10279 if (arg == NULL)
10280 mips_debug = 2;
10281 else
10282 mips_debug = atoi (arg);
10283 /* When the MIPS assembler sees -g or -g2, it does not do
10284 optimizations which limit full symbolic debugging. We take
10285 that to be equivalent to -O0. */
10286 if (mips_debug == 2)
10287 mips_optimize = 1;
10288 break;
10289
10290 case OPTION_MIPS1:
10291 file_mips_isa = ISA_MIPS1;
10292 break;
10293
10294 case OPTION_MIPS2:
10295 file_mips_isa = ISA_MIPS2;
10296 break;
10297
10298 case OPTION_MIPS3:
10299 file_mips_isa = ISA_MIPS3;
10300 break;
10301
10302 case OPTION_MIPS4:
10303 file_mips_isa = ISA_MIPS4;
10304 break;
10305
10306 case OPTION_MIPS5:
10307 file_mips_isa = ISA_MIPS5;
10308 break;
10309
10310 case OPTION_MIPS32:
10311 file_mips_isa = ISA_MIPS32;
10312 break;
10313
10314 case OPTION_MIPS32R2:
10315 file_mips_isa = ISA_MIPS32R2;
10316 break;
10317
10318 case OPTION_MIPS64R2:
10319 file_mips_isa = ISA_MIPS64R2;
10320 break;
10321
10322 case OPTION_MIPS64:
10323 file_mips_isa = ISA_MIPS64;
10324 break;
10325
10326 case OPTION_MTUNE:
10327 mips_set_option_string (&mips_tune_string, arg);
10328 break;
10329
10330 case OPTION_MARCH:
10331 mips_set_option_string (&mips_arch_string, arg);
10332 break;
10333
10334 case OPTION_M4650:
10335 mips_set_option_string (&mips_arch_string, "4650");
10336 mips_set_option_string (&mips_tune_string, "4650");
10337 break;
10338
10339 case OPTION_NO_M4650:
10340 break;
10341
10342 case OPTION_M4010:
10343 mips_set_option_string (&mips_arch_string, "4010");
10344 mips_set_option_string (&mips_tune_string, "4010");
10345 break;
10346
10347 case OPTION_NO_M4010:
10348 break;
10349
10350 case OPTION_M4100:
10351 mips_set_option_string (&mips_arch_string, "4100");
10352 mips_set_option_string (&mips_tune_string, "4100");
10353 break;
10354
10355 case OPTION_NO_M4100:
10356 break;
10357
10358 case OPTION_M3900:
10359 mips_set_option_string (&mips_arch_string, "3900");
10360 mips_set_option_string (&mips_tune_string, "3900");
10361 break;
10362
10363 case OPTION_NO_M3900:
10364 break;
10365
10366 case OPTION_MDMX:
10367 mips_opts.ase_mdmx = 1;
10368 break;
10369
10370 case OPTION_NO_MDMX:
10371 mips_opts.ase_mdmx = 0;
10372 break;
10373
10374 case OPTION_MIPS16:
10375 mips_opts.mips16 = 1;
10376 mips_no_prev_insn (FALSE);
10377 break;
10378
10379 case OPTION_NO_MIPS16:
10380 mips_opts.mips16 = 0;
10381 mips_no_prev_insn (FALSE);
10382 break;
10383
10384 case OPTION_MIPS3D:
10385 mips_opts.ase_mips3d = 1;
10386 break;
10387
10388 case OPTION_NO_MIPS3D:
10389 mips_opts.ase_mips3d = 0;
10390 break;
10391
10392 case OPTION_FIX_VR4120:
10393 mips_fix_vr4120 = 1;
10394 break;
10395
10396 case OPTION_NO_FIX_VR4120:
10397 mips_fix_vr4120 = 0;
10398 break;
10399
10400 case OPTION_RELAX_BRANCH:
10401 mips_relax_branch = 1;
10402 break;
10403
10404 case OPTION_NO_RELAX_BRANCH:
10405 mips_relax_branch = 0;
10406 break;
10407
10408 case OPTION_MSHARED:
10409 mips_in_shared = TRUE;
10410 break;
10411
10412 case OPTION_MNO_SHARED:
10413 mips_in_shared = FALSE;
10414 break;
10415
10416 #ifdef OBJ_ELF
10417 /* When generating ELF code, we permit -KPIC and -call_shared to
10418 select SVR4_PIC, and -non_shared to select no PIC. This is
10419 intended to be compatible with Irix 5. */
10420 case OPTION_CALL_SHARED:
10421 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
10422 {
10423 as_bad (_("-call_shared is supported only for ELF format"));
10424 return 0;
10425 }
10426 mips_pic = SVR4_PIC;
10427 mips_abicalls = TRUE;
10428 if (g_switch_seen && g_switch_value != 0)
10429 {
10430 as_bad (_("-G may not be used with SVR4 PIC code"));
10431 return 0;
10432 }
10433 g_switch_value = 0;
10434 break;
10435
10436 case OPTION_NON_SHARED:
10437 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
10438 {
10439 as_bad (_("-non_shared is supported only for ELF format"));
10440 return 0;
10441 }
10442 mips_pic = NO_PIC;
10443 mips_abicalls = FALSE;
10444 break;
10445
10446 /* The -xgot option tells the assembler to use 32 offsets when
10447 accessing the got in SVR4_PIC mode. It is for Irix
10448 compatibility. */
10449 case OPTION_XGOT:
10450 mips_big_got = 1;
10451 break;
10452 #endif /* OBJ_ELF */
10453
10454 case 'G':
10455 if (mips_pic == SVR4_PIC)
10456 {
10457 as_bad (_("-G may not be used with SVR4 PIC code"));
10458 return 0;
10459 }
10460 else
10461 g_switch_value = atoi (arg);
10462 g_switch_seen = 1;
10463 break;
10464
10465 #ifdef OBJ_ELF
10466 /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
10467 and -mabi=64. */
10468 case OPTION_32:
10469 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
10470 {
10471 as_bad (_("-32 is supported for ELF format only"));
10472 return 0;
10473 }
10474 mips_abi = O32_ABI;
10475 break;
10476
10477 case OPTION_N32:
10478 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
10479 {
10480 as_bad (_("-n32 is supported for ELF format only"));
10481 return 0;
10482 }
10483 mips_abi = N32_ABI;
10484 break;
10485
10486 case OPTION_64:
10487 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
10488 {
10489 as_bad (_("-64 is supported for ELF format only"));
10490 return 0;
10491 }
10492 mips_abi = N64_ABI;
10493 if (! support_64bit_objects())
10494 as_fatal (_("No compiled in support for 64 bit object file format"));
10495 break;
10496 #endif /* OBJ_ELF */
10497
10498 case OPTION_GP32:
10499 file_mips_gp32 = 1;
10500 break;
10501
10502 case OPTION_GP64:
10503 file_mips_gp32 = 0;
10504 break;
10505
10506 case OPTION_FP32:
10507 file_mips_fp32 = 1;
10508 break;
10509
10510 case OPTION_FP64:
10511 file_mips_fp32 = 0;
10512 break;
10513
10514 #ifdef OBJ_ELF
10515 case OPTION_MABI:
10516 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
10517 {
10518 as_bad (_("-mabi is supported for ELF format only"));
10519 return 0;
10520 }
10521 if (strcmp (arg, "32") == 0)
10522 mips_abi = O32_ABI;
10523 else if (strcmp (arg, "o64") == 0)
10524 mips_abi = O64_ABI;
10525 else if (strcmp (arg, "n32") == 0)
10526 mips_abi = N32_ABI;
10527 else if (strcmp (arg, "64") == 0)
10528 {
10529 mips_abi = N64_ABI;
10530 if (! support_64bit_objects())
10531 as_fatal (_("No compiled in support for 64 bit object file "
10532 "format"));
10533 }
10534 else if (strcmp (arg, "eabi") == 0)
10535 mips_abi = EABI_ABI;
10536 else
10537 {
10538 as_fatal (_("invalid abi -mabi=%s"), arg);
10539 return 0;
10540 }
10541 break;
10542 #endif /* OBJ_ELF */
10543
10544 case OPTION_M7000_HILO_FIX:
10545 mips_7000_hilo_fix = TRUE;
10546 break;
10547
10548 case OPTION_MNO_7000_HILO_FIX:
10549 mips_7000_hilo_fix = FALSE;
10550 break;
10551
10552 #ifdef OBJ_ELF
10553 case OPTION_MDEBUG:
10554 mips_flag_mdebug = TRUE;
10555 break;
10556
10557 case OPTION_NO_MDEBUG:
10558 mips_flag_mdebug = FALSE;
10559 break;
10560
10561 case OPTION_PDR:
10562 mips_flag_pdr = TRUE;
10563 break;
10564
10565 case OPTION_NO_PDR:
10566 mips_flag_pdr = FALSE;
10567 break;
10568 #endif /* OBJ_ELF */
10569
10570 default:
10571 return 0;
10572 }
10573
10574 return 1;
10575 }
10576 \f
10577 /* Set up globals to generate code for the ISA or processor
10578 described by INFO. */
10579
10580 static void
10581 mips_set_architecture (const struct mips_cpu_info *info)
10582 {
10583 if (info != 0)
10584 {
10585 file_mips_arch = info->cpu;
10586 mips_opts.arch = info->cpu;
10587 mips_opts.isa = info->isa;
10588 }
10589 }
10590
10591
10592 /* Likewise for tuning. */
10593
10594 static void
10595 mips_set_tune (const struct mips_cpu_info *info)
10596 {
10597 if (info != 0)
10598 mips_tune = info->cpu;
10599 }
10600
10601
10602 void
10603 mips_after_parse_args (void)
10604 {
10605 const struct mips_cpu_info *arch_info = 0;
10606 const struct mips_cpu_info *tune_info = 0;
10607
10608 /* GP relative stuff not working for PE */
10609 if (strncmp (TARGET_OS, "pe", 2) == 0
10610 && g_switch_value != 0)
10611 {
10612 if (g_switch_seen)
10613 as_bad (_("-G not supported in this configuration."));
10614 g_switch_value = 0;
10615 }
10616
10617 if (mips_abi == NO_ABI)
10618 mips_abi = MIPS_DEFAULT_ABI;
10619
10620 /* The following code determines the architecture and register size.
10621 Similar code was added to GCC 3.3 (see override_options() in
10622 config/mips/mips.c). The GAS and GCC code should be kept in sync
10623 as much as possible. */
10624
10625 if (mips_arch_string != 0)
10626 arch_info = mips_parse_cpu ("-march", mips_arch_string);
10627
10628 if (file_mips_isa != ISA_UNKNOWN)
10629 {
10630 /* Handle -mipsN. At this point, file_mips_isa contains the
10631 ISA level specified by -mipsN, while arch_info->isa contains
10632 the -march selection (if any). */
10633 if (arch_info != 0)
10634 {
10635 /* -march takes precedence over -mipsN, since it is more descriptive.
10636 There's no harm in specifying both as long as the ISA levels
10637 are the same. */
10638 if (file_mips_isa != arch_info->isa)
10639 as_bad (_("-%s conflicts with the other architecture options, which imply -%s"),
10640 mips_cpu_info_from_isa (file_mips_isa)->name,
10641 mips_cpu_info_from_isa (arch_info->isa)->name);
10642 }
10643 else
10644 arch_info = mips_cpu_info_from_isa (file_mips_isa);
10645 }
10646
10647 if (arch_info == 0)
10648 arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT);
10649
10650 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa))
10651 as_bad ("-march=%s is not compatible with the selected ABI",
10652 arch_info->name);
10653
10654 mips_set_architecture (arch_info);
10655
10656 /* Optimize for file_mips_arch, unless -mtune selects a different processor. */
10657 if (mips_tune_string != 0)
10658 tune_info = mips_parse_cpu ("-mtune", mips_tune_string);
10659
10660 if (tune_info == 0)
10661 mips_set_tune (arch_info);
10662 else
10663 mips_set_tune (tune_info);
10664
10665 if (file_mips_gp32 >= 0)
10666 {
10667 /* The user specified the size of the integer registers. Make sure
10668 it agrees with the ABI and ISA. */
10669 if (file_mips_gp32 == 0 && !ISA_HAS_64BIT_REGS (mips_opts.isa))
10670 as_bad (_("-mgp64 used with a 32-bit processor"));
10671 else if (file_mips_gp32 == 1 && ABI_NEEDS_64BIT_REGS (mips_abi))
10672 as_bad (_("-mgp32 used with a 64-bit ABI"));
10673 else if (file_mips_gp32 == 0 && ABI_NEEDS_32BIT_REGS (mips_abi))
10674 as_bad (_("-mgp64 used with a 32-bit ABI"));
10675 }
10676 else
10677 {
10678 /* Infer the integer register size from the ABI and processor.
10679 Restrict ourselves to 32-bit registers if that's all the
10680 processor has, or if the ABI cannot handle 64-bit registers. */
10681 file_mips_gp32 = (ABI_NEEDS_32BIT_REGS (mips_abi)
10682 || !ISA_HAS_64BIT_REGS (mips_opts.isa));
10683 }
10684
10685 /* ??? GAS treats single-float processors as though they had 64-bit
10686 float registers (although it complains when double-precision
10687 instructions are used). As things stand, saying they have 32-bit
10688 registers would lead to spurious "register must be even" messages.
10689 So here we assume float registers are always the same size as
10690 integer ones, unless the user says otherwise. */
10691 if (file_mips_fp32 < 0)
10692 file_mips_fp32 = file_mips_gp32;
10693
10694 /* End of GCC-shared inference code. */
10695
10696 /* This flag is set when we have a 64-bit capable CPU but use only
10697 32-bit wide registers. Note that EABI does not use it. */
10698 if (ISA_HAS_64BIT_REGS (mips_opts.isa)
10699 && ((mips_abi == NO_ABI && file_mips_gp32 == 1)
10700 || mips_abi == O32_ABI))
10701 mips_32bitmode = 1;
10702
10703 if (mips_opts.isa == ISA_MIPS1 && mips_trap)
10704 as_bad (_("trap exception not supported at ISA 1"));
10705
10706 /* If the selected architecture includes support for ASEs, enable
10707 generation of code for them. */
10708 if (mips_opts.mips16 == -1)
10709 mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_arch)) ? 1 : 0;
10710 if (mips_opts.ase_mips3d == -1)
10711 mips_opts.ase_mips3d = (CPU_HAS_MIPS3D (file_mips_arch)) ? 1 : 0;
10712 if (mips_opts.ase_mdmx == -1)
10713 mips_opts.ase_mdmx = (CPU_HAS_MDMX (file_mips_arch)) ? 1 : 0;
10714
10715 file_mips_isa = mips_opts.isa;
10716 file_ase_mips16 = mips_opts.mips16;
10717 file_ase_mips3d = mips_opts.ase_mips3d;
10718 file_ase_mdmx = mips_opts.ase_mdmx;
10719 mips_opts.gp32 = file_mips_gp32;
10720 mips_opts.fp32 = file_mips_fp32;
10721
10722 if (mips_flag_mdebug < 0)
10723 {
10724 #ifdef OBJ_MAYBE_ECOFF
10725 if (OUTPUT_FLAVOR == bfd_target_ecoff_flavour)
10726 mips_flag_mdebug = 1;
10727 else
10728 #endif /* OBJ_MAYBE_ECOFF */
10729 mips_flag_mdebug = 0;
10730 }
10731 }
10732 \f
10733 void
10734 mips_init_after_args (void)
10735 {
10736 /* initialize opcodes */
10737 bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes;
10738 mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes;
10739 }
10740
10741 long
10742 md_pcrel_from (fixS *fixP)
10743 {
10744 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
10745 switch (fixP->fx_r_type)
10746 {
10747 case BFD_RELOC_16_PCREL_S2:
10748 case BFD_RELOC_MIPS_JMP:
10749 /* Return the address of the delay slot. */
10750 return addr + 4;
10751 default:
10752 return addr;
10753 }
10754 }
10755
10756 /* This is called before the symbol table is processed. In order to
10757 work with gcc when using mips-tfile, we must keep all local labels.
10758 However, in other cases, we want to discard them. If we were
10759 called with -g, but we didn't see any debugging information, it may
10760 mean that gcc is smuggling debugging information through to
10761 mips-tfile, in which case we must generate all local labels. */
10762
10763 void
10764 mips_frob_file_before_adjust (void)
10765 {
10766 #ifndef NO_ECOFF_DEBUGGING
10767 if (ECOFF_DEBUGGING
10768 && mips_debug != 0
10769 && ! ecoff_debugging_seen)
10770 flag_keep_locals = 1;
10771 #endif
10772 }
10773
10774 /* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede
10775 the corresponding LO16 reloc. This is called before md_apply_fix3 and
10776 tc_gen_reloc. Unmatched relocs can only be generated by use of explicit
10777 relocation operators.
10778
10779 For our purposes, a %lo() expression matches a %got() or %hi()
10780 expression if:
10781
10782 (a) it refers to the same symbol; and
10783 (b) the offset applied in the %lo() expression is no lower than
10784 the offset applied in the %got() or %hi().
10785
10786 (b) allows us to cope with code like:
10787
10788 lui $4,%hi(foo)
10789 lh $4,%lo(foo+2)($4)
10790
10791 ...which is legal on RELA targets, and has a well-defined behaviour
10792 if the user knows that adding 2 to "foo" will not induce a carry to
10793 the high 16 bits.
10794
10795 When several %lo()s match a particular %got() or %hi(), we use the
10796 following rules to distinguish them:
10797
10798 (1) %lo()s with smaller offsets are a better match than %lo()s with
10799 higher offsets.
10800
10801 (2) %lo()s with no matching %got() or %hi() are better than those
10802 that already have a matching %got() or %hi().
10803
10804 (3) later %lo()s are better than earlier %lo()s.
10805
10806 These rules are applied in order.
10807
10808 (1) means, among other things, that %lo()s with identical offsets are
10809 chosen if they exist.
10810
10811 (2) means that we won't associate several high-part relocations with
10812 the same low-part relocation unless there's no alternative. Having
10813 several high parts for the same low part is a GNU extension; this rule
10814 allows careful users to avoid it.
10815
10816 (3) is purely cosmetic. mips_hi_fixup_list is is in reverse order,
10817 with the last high-part relocation being at the front of the list.
10818 It therefore makes sense to choose the last matching low-part
10819 relocation, all other things being equal. It's also easier
10820 to code that way. */
10821
10822 void
10823 mips_frob_file (void)
10824 {
10825 struct mips_hi_fixup *l;
10826
10827 for (l = mips_hi_fixup_list; l != NULL; l = l->next)
10828 {
10829 segment_info_type *seginfo;
10830 bfd_boolean matched_lo_p;
10831 fixS **hi_pos, **lo_pos, **pos;
10832
10833 assert (reloc_needs_lo_p (l->fixp->fx_r_type));
10834
10835 /* If a GOT16 relocation turns out to be against a global symbol,
10836 there isn't supposed to be a matching LO. */
10837 if (l->fixp->fx_r_type == BFD_RELOC_MIPS_GOT16
10838 && !pic_need_relax (l->fixp->fx_addsy, l->seg))
10839 continue;
10840
10841 /* Check quickly whether the next fixup happens to be a matching %lo. */
10842 if (fixup_has_matching_lo_p (l->fixp))
10843 continue;
10844
10845 seginfo = seg_info (l->seg);
10846
10847 /* Set HI_POS to the position of this relocation in the chain.
10848 Set LO_POS to the position of the chosen low-part relocation.
10849 MATCHED_LO_P is true on entry to the loop if *POS is a low-part
10850 relocation that matches an immediately-preceding high-part
10851 relocation. */
10852 hi_pos = NULL;
10853 lo_pos = NULL;
10854 matched_lo_p = FALSE;
10855 for (pos = &seginfo->fix_root; *pos != NULL; pos = &(*pos)->fx_next)
10856 {
10857 if (*pos == l->fixp)
10858 hi_pos = pos;
10859
10860 if ((*pos)->fx_r_type == BFD_RELOC_LO16
10861 && (*pos)->fx_addsy == l->fixp->fx_addsy
10862 && (*pos)->fx_offset >= l->fixp->fx_offset
10863 && (lo_pos == NULL
10864 || (*pos)->fx_offset < (*lo_pos)->fx_offset
10865 || (!matched_lo_p
10866 && (*pos)->fx_offset == (*lo_pos)->fx_offset)))
10867 lo_pos = pos;
10868
10869 matched_lo_p = (reloc_needs_lo_p ((*pos)->fx_r_type)
10870 && fixup_has_matching_lo_p (*pos));
10871 }
10872
10873 /* If we found a match, remove the high-part relocation from its
10874 current position and insert it before the low-part relocation.
10875 Make the offsets match so that fixup_has_matching_lo_p()
10876 will return true.
10877
10878 We don't warn about unmatched high-part relocations since some
10879 versions of gcc have been known to emit dead "lui ...%hi(...)"
10880 instructions. */
10881 if (lo_pos != NULL)
10882 {
10883 l->fixp->fx_offset = (*lo_pos)->fx_offset;
10884 if (l->fixp->fx_next != *lo_pos)
10885 {
10886 *hi_pos = l->fixp->fx_next;
10887 l->fixp->fx_next = *lo_pos;
10888 *lo_pos = l->fixp;
10889 }
10890 }
10891 }
10892 }
10893
10894 /* We may have combined relocations without symbols in the N32/N64 ABI.
10895 We have to prevent gas from dropping them. */
10896
10897 int
10898 mips_force_relocation (fixS *fixp)
10899 {
10900 if (generic_force_reloc (fixp))
10901 return 1;
10902
10903 if (HAVE_NEWABI
10904 && S_GET_SEGMENT (fixp->fx_addsy) == bfd_abs_section_ptr
10905 && (fixp->fx_r_type == BFD_RELOC_MIPS_SUB
10906 || fixp->fx_r_type == BFD_RELOC_HI16_S
10907 || fixp->fx_r_type == BFD_RELOC_LO16))
10908 return 1;
10909
10910 return 0;
10911 }
10912
10913 /* This hook is called before a fix is simplified. We don't really
10914 decide whether to skip a fix here. Rather, we turn global symbols
10915 used as branch targets into local symbols, such that they undergo
10916 simplification. We can only do this if the symbol is defined and
10917 it is in the same section as the branch. If this doesn't hold, we
10918 emit a better error message than just saying the relocation is not
10919 valid for the selected object format.
10920
10921 FIXP is the fix-up we're going to try to simplify, SEG is the
10922 segment in which the fix up occurs. The return value should be
10923 non-zero to indicate the fix-up is valid for further
10924 simplifications. */
10925
10926 int
10927 mips_validate_fix (struct fix *fixP, asection *seg)
10928 {
10929 /* There's a lot of discussion on whether it should be possible to
10930 use R_MIPS_PC16 to represent branch relocations. The outcome
10931 seems to be that it can, but gas/bfd are very broken in creating
10932 RELA relocations for this, so for now we only accept branches to
10933 symbols in the same section. Anything else is of dubious value,
10934 since there's no guarantee that at link time the symbol would be
10935 in range. Even for branches to local symbols this is arguably
10936 wrong, since it we assume the symbol is not going to be
10937 overridden, which should be possible per ELF library semantics,
10938 but then, there isn't a dynamic relocation that could be used to
10939 this effect, and the target would likely be out of range as well.
10940
10941 Unfortunately, it seems that there is too much code out there
10942 that relies on branches to symbols that are global to be resolved
10943 as if they were local, like the IRIX tools do, so we do it as
10944 well, but with a warning so that people are reminded to fix their
10945 code. If we ever get back to using R_MIPS_PC16 for branch
10946 targets, this entire block should go away (and probably the
10947 whole function). */
10948
10949 if (fixP->fx_r_type == BFD_RELOC_16_PCREL_S2
10950 && ((OUTPUT_FLAVOR == bfd_target_ecoff_flavour
10951 || OUTPUT_FLAVOR == bfd_target_elf_flavour)
10952 || bfd_reloc_type_lookup (stdoutput, BFD_RELOC_16_PCREL_S2) == NULL)
10953 && fixP->fx_addsy)
10954 {
10955 if (! S_IS_DEFINED (fixP->fx_addsy))
10956 {
10957 as_bad_where (fixP->fx_file, fixP->fx_line,
10958 _("Cannot branch to undefined symbol."));
10959 /* Avoid any further errors about this fixup. */
10960 fixP->fx_done = 1;
10961 }
10962 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
10963 {
10964 as_bad_where (fixP->fx_file, fixP->fx_line,
10965 _("Cannot branch to symbol in another section."));
10966 fixP->fx_done = 1;
10967 }
10968 else if (S_IS_EXTERNAL (fixP->fx_addsy))
10969 {
10970 symbolS *sym = fixP->fx_addsy;
10971
10972 if (mips_pic == SVR4_PIC)
10973 as_warn_where (fixP->fx_file, fixP->fx_line,
10974 _("Pretending global symbol used as branch target is local."));
10975
10976 fixP->fx_addsy = symbol_create (S_GET_NAME (sym),
10977 S_GET_SEGMENT (sym),
10978 S_GET_VALUE (sym),
10979 symbol_get_frag (sym));
10980 copy_symbol_attributes (fixP->fx_addsy, sym);
10981 S_CLEAR_EXTERNAL (fixP->fx_addsy);
10982 assert (symbol_resolved_p (sym));
10983 symbol_mark_resolved (fixP->fx_addsy);
10984 }
10985 }
10986
10987 return 1;
10988 }
10989
10990 /* Apply a fixup to the object file. */
10991
10992 void
10993 md_apply_fix3 (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
10994 {
10995 bfd_byte *buf;
10996 long insn;
10997 reloc_howto_type *howto;
10998
10999 /* We ignore generic BFD relocations we don't know about. */
11000 howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
11001 if (! howto)
11002 return;
11003
11004 assert (fixP->fx_size == 4
11005 || fixP->fx_r_type == BFD_RELOC_16
11006 || fixP->fx_r_type == BFD_RELOC_64
11007 || fixP->fx_r_type == BFD_RELOC_CTOR
11008 || fixP->fx_r_type == BFD_RELOC_MIPS_SUB
11009 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
11010 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY);
11011
11012 buf = (bfd_byte *) (fixP->fx_frag->fr_literal + fixP->fx_where);
11013
11014 assert (! fixP->fx_pcrel);
11015
11016 /* Don't treat parts of a composite relocation as done. There are two
11017 reasons for this:
11018
11019 (1) The second and third parts will be against 0 (RSS_UNDEF) but
11020 should nevertheless be emitted if the first part is.
11021
11022 (2) In normal usage, composite relocations are never assembly-time
11023 constants. The easiest way of dealing with the pathological
11024 exceptions is to generate a relocation against STN_UNDEF and
11025 leave everything up to the linker. */
11026 if (fixP->fx_addsy == NULL && fixP->fx_tcbit == 0)
11027 fixP->fx_done = 1;
11028
11029 switch (fixP->fx_r_type)
11030 {
11031 case BFD_RELOC_MIPS_JMP:
11032 case BFD_RELOC_MIPS_SHIFT5:
11033 case BFD_RELOC_MIPS_SHIFT6:
11034 case BFD_RELOC_MIPS_GOT_DISP:
11035 case BFD_RELOC_MIPS_GOT_PAGE:
11036 case BFD_RELOC_MIPS_GOT_OFST:
11037 case BFD_RELOC_MIPS_SUB:
11038 case BFD_RELOC_MIPS_INSERT_A:
11039 case BFD_RELOC_MIPS_INSERT_B:
11040 case BFD_RELOC_MIPS_DELETE:
11041 case BFD_RELOC_MIPS_HIGHEST:
11042 case BFD_RELOC_MIPS_HIGHER:
11043 case BFD_RELOC_MIPS_SCN_DISP:
11044 case BFD_RELOC_MIPS_REL16:
11045 case BFD_RELOC_MIPS_RELGOT:
11046 case BFD_RELOC_MIPS_JALR:
11047 case BFD_RELOC_HI16:
11048 case BFD_RELOC_HI16_S:
11049 case BFD_RELOC_GPREL16:
11050 case BFD_RELOC_MIPS_LITERAL:
11051 case BFD_RELOC_MIPS_CALL16:
11052 case BFD_RELOC_MIPS_GOT16:
11053 case BFD_RELOC_GPREL32:
11054 case BFD_RELOC_MIPS_GOT_HI16:
11055 case BFD_RELOC_MIPS_GOT_LO16:
11056 case BFD_RELOC_MIPS_CALL_HI16:
11057 case BFD_RELOC_MIPS_CALL_LO16:
11058 case BFD_RELOC_MIPS16_GPREL:
11059 case BFD_RELOC_MIPS16_HI16:
11060 case BFD_RELOC_MIPS16_HI16_S:
11061 assert (! fixP->fx_pcrel);
11062 /* Nothing needed to do. The value comes from the reloc entry */
11063 break;
11064
11065 case BFD_RELOC_MIPS16_JMP:
11066 /* We currently always generate a reloc against a symbol, which
11067 means that we don't want an addend even if the symbol is
11068 defined. */
11069 *valP = 0;
11070 break;
11071
11072 case BFD_RELOC_64:
11073 /* This is handled like BFD_RELOC_32, but we output a sign
11074 extended value if we are only 32 bits. */
11075 if (fixP->fx_done)
11076 {
11077 if (8 <= sizeof (valueT))
11078 md_number_to_chars (buf, *valP, 8);
11079 else
11080 {
11081 valueT hiv;
11082
11083 if ((*valP & 0x80000000) != 0)
11084 hiv = 0xffffffff;
11085 else
11086 hiv = 0;
11087 md_number_to_chars ((char *)(buf + target_big_endian ? 4 : 0),
11088 *valP, 4);
11089 md_number_to_chars ((char *)(buf + target_big_endian ? 0 : 4),
11090 hiv, 4);
11091 }
11092 }
11093 break;
11094
11095 case BFD_RELOC_RVA:
11096 case BFD_RELOC_32:
11097 /* If we are deleting this reloc entry, we must fill in the
11098 value now. This can happen if we have a .word which is not
11099 resolved when it appears but is later defined. */
11100 if (fixP->fx_done)
11101 md_number_to_chars (buf, *valP, 4);
11102 break;
11103
11104 case BFD_RELOC_16:
11105 /* If we are deleting this reloc entry, we must fill in the
11106 value now. */
11107 if (fixP->fx_done)
11108 md_number_to_chars (buf, *valP, 2);
11109 break;
11110
11111 case BFD_RELOC_LO16:
11112 case BFD_RELOC_MIPS16_LO16:
11113 /* FIXME: Now that embedded-PIC is gone, some of this code/comment
11114 may be safe to remove, but if so it's not obvious. */
11115 /* When handling an embedded PIC switch statement, we can wind
11116 up deleting a LO16 reloc. See the 'o' case in mips_ip. */
11117 if (fixP->fx_done)
11118 {
11119 if (*valP + 0x8000 > 0xffff)
11120 as_bad_where (fixP->fx_file, fixP->fx_line,
11121 _("relocation overflow"));
11122 if (target_big_endian)
11123 buf += 2;
11124 md_number_to_chars (buf, *valP, 2);
11125 }
11126 break;
11127
11128 case BFD_RELOC_16_PCREL_S2:
11129 if ((*valP & 0x3) != 0)
11130 as_bad_where (fixP->fx_file, fixP->fx_line,
11131 _("Branch to odd address (%lx)"), (long) *valP);
11132
11133 /*
11134 * We need to save the bits in the instruction since fixup_segment()
11135 * might be deleting the relocation entry (i.e., a branch within
11136 * the current segment).
11137 */
11138 if (! fixP->fx_done)
11139 break;
11140
11141 /* update old instruction data */
11142 if (target_big_endian)
11143 insn = (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf[3];
11144 else
11145 insn = (buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | buf[0];
11146
11147 if (*valP + 0x20000 <= 0x3ffff)
11148 {
11149 insn |= (*valP >> 2) & 0xffff;
11150 md_number_to_chars (buf, insn, 4);
11151 }
11152 else if (mips_pic == NO_PIC
11153 && fixP->fx_done
11154 && fixP->fx_frag->fr_address >= text_section->vma
11155 && (fixP->fx_frag->fr_address
11156 < text_section->vma + bfd_get_section_size (text_section))
11157 && ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
11158 || (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
11159 || (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
11160 {
11161 /* The branch offset is too large. If this is an
11162 unconditional branch, and we are not generating PIC code,
11163 we can convert it to an absolute jump instruction. */
11164 if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
11165 insn = 0x0c000000; /* jal */
11166 else
11167 insn = 0x08000000; /* j */
11168 fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
11169 fixP->fx_done = 0;
11170 fixP->fx_addsy = section_symbol (text_section);
11171 *valP += md_pcrel_from (fixP);
11172 md_number_to_chars (buf, insn, 4);
11173 }
11174 else
11175 {
11176 /* If we got here, we have branch-relaxation disabled,
11177 and there's nothing we can do to fix this instruction
11178 without turning it into a longer sequence. */
11179 as_bad_where (fixP->fx_file, fixP->fx_line,
11180 _("Branch out of range"));
11181 }
11182 break;
11183
11184 case BFD_RELOC_VTABLE_INHERIT:
11185 fixP->fx_done = 0;
11186 if (fixP->fx_addsy
11187 && !S_IS_DEFINED (fixP->fx_addsy)
11188 && !S_IS_WEAK (fixP->fx_addsy))
11189 S_SET_WEAK (fixP->fx_addsy);
11190 break;
11191
11192 case BFD_RELOC_VTABLE_ENTRY:
11193 fixP->fx_done = 0;
11194 break;
11195
11196 default:
11197 internalError ();
11198 }
11199
11200 /* Remember value for tc_gen_reloc. */
11201 fixP->fx_addnumber = *valP;
11202 }
11203
11204 static symbolS *
11205 get_symbol (void)
11206 {
11207 int c;
11208 char *name;
11209 symbolS *p;
11210
11211 name = input_line_pointer;
11212 c = get_symbol_end ();
11213 p = (symbolS *) symbol_find_or_make (name);
11214 *input_line_pointer = c;
11215 return p;
11216 }
11217
11218 /* Align the current frag to a given power of two. The MIPS assembler
11219 also automatically adjusts any preceding label. */
11220
11221 static void
11222 mips_align (int to, int fill, symbolS *label)
11223 {
11224 mips_emit_delays (FALSE);
11225 frag_align (to, fill, 0);
11226 record_alignment (now_seg, to);
11227 if (label != NULL)
11228 {
11229 assert (S_GET_SEGMENT (label) == now_seg);
11230 symbol_set_frag (label, frag_now);
11231 S_SET_VALUE (label, (valueT) frag_now_fix ());
11232 }
11233 }
11234
11235 /* Align to a given power of two. .align 0 turns off the automatic
11236 alignment used by the data creating pseudo-ops. */
11237
11238 static void
11239 s_align (int x ATTRIBUTE_UNUSED)
11240 {
11241 register int temp;
11242 register long temp_fill;
11243 long max_alignment = 15;
11244
11245 /*
11246
11247 o Note that the assembler pulls down any immediately preceding label
11248 to the aligned address.
11249 o It's not documented but auto alignment is reinstated by
11250 a .align pseudo instruction.
11251 o Note also that after auto alignment is turned off the mips assembler
11252 issues an error on attempt to assemble an improperly aligned data item.
11253 We don't.
11254
11255 */
11256
11257 temp = get_absolute_expression ();
11258 if (temp > max_alignment)
11259 as_bad (_("Alignment too large: %d. assumed."), temp = max_alignment);
11260 else if (temp < 0)
11261 {
11262 as_warn (_("Alignment negative: 0 assumed."));
11263 temp = 0;
11264 }
11265 if (*input_line_pointer == ',')
11266 {
11267 ++input_line_pointer;
11268 temp_fill = get_absolute_expression ();
11269 }
11270 else
11271 temp_fill = 0;
11272 if (temp)
11273 {
11274 auto_align = 1;
11275 mips_align (temp, (int) temp_fill,
11276 insn_labels != NULL ? insn_labels->label : NULL);
11277 }
11278 else
11279 {
11280 auto_align = 0;
11281 }
11282
11283 demand_empty_rest_of_line ();
11284 }
11285
11286 void
11287 mips_flush_pending_output (void)
11288 {
11289 mips_emit_delays (FALSE);
11290 mips_clear_insn_labels ();
11291 }
11292
11293 static void
11294 s_change_sec (int sec)
11295 {
11296 segT seg;
11297
11298 #ifdef OBJ_ELF
11299 /* The ELF backend needs to know that we are changing sections, so
11300 that .previous works correctly. We could do something like check
11301 for an obj_section_change_hook macro, but that might be confusing
11302 as it would not be appropriate to use it in the section changing
11303 functions in read.c, since obj-elf.c intercepts those. FIXME:
11304 This should be cleaner, somehow. */
11305 obj_elf_section_change_hook ();
11306 #endif
11307
11308 mips_emit_delays (FALSE);
11309 switch (sec)
11310 {
11311 case 't':
11312 s_text (0);
11313 break;
11314 case 'd':
11315 s_data (0);
11316 break;
11317 case 'b':
11318 subseg_set (bss_section, (subsegT) get_absolute_expression ());
11319 demand_empty_rest_of_line ();
11320 break;
11321
11322 case 'r':
11323 seg = subseg_new (RDATA_SECTION_NAME,
11324 (subsegT) get_absolute_expression ());
11325 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
11326 {
11327 bfd_set_section_flags (stdoutput, seg, (SEC_ALLOC | SEC_LOAD
11328 | SEC_READONLY | SEC_RELOC
11329 | SEC_DATA));
11330 if (strcmp (TARGET_OS, "elf") != 0)
11331 record_alignment (seg, 4);
11332 }
11333 demand_empty_rest_of_line ();
11334 break;
11335
11336 case 's':
11337 seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
11338 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
11339 {
11340 bfd_set_section_flags (stdoutput, seg,
11341 SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA);
11342 if (strcmp (TARGET_OS, "elf") != 0)
11343 record_alignment (seg, 4);
11344 }
11345 demand_empty_rest_of_line ();
11346 break;
11347 }
11348
11349 auto_align = 1;
11350 }
11351
11352 void
11353 s_change_section (int ignore ATTRIBUTE_UNUSED)
11354 {
11355 #ifdef OBJ_ELF
11356 char *section_name;
11357 char c;
11358 char next_c = 0;
11359 int section_type;
11360 int section_flag;
11361 int section_entry_size;
11362 int section_alignment;
11363
11364 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
11365 return;
11366
11367 section_name = input_line_pointer;
11368 c = get_symbol_end ();
11369 if (c)
11370 next_c = *(input_line_pointer + 1);
11371
11372 /* Do we have .section Name<,"flags">? */
11373 if (c != ',' || (c == ',' && next_c == '"'))
11374 {
11375 /* just after name is now '\0'. */
11376 *input_line_pointer = c;
11377 input_line_pointer = section_name;
11378 obj_elf_section (ignore);
11379 return;
11380 }
11381 input_line_pointer++;
11382
11383 /* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
11384 if (c == ',')
11385 section_type = get_absolute_expression ();
11386 else
11387 section_type = 0;
11388 if (*input_line_pointer++ == ',')
11389 section_flag = get_absolute_expression ();
11390 else
11391 section_flag = 0;
11392 if (*input_line_pointer++ == ',')
11393 section_entry_size = get_absolute_expression ();
11394 else
11395 section_entry_size = 0;
11396 if (*input_line_pointer++ == ',')
11397 section_alignment = get_absolute_expression ();
11398 else
11399 section_alignment = 0;
11400
11401 section_name = xstrdup (section_name);
11402
11403 /* When using the generic form of .section (as implemented by obj-elf.c),
11404 there's no way to set the section type to SHT_MIPS_DWARF. Users have
11405 traditionally had to fall back on the more common @progbits instead.
11406
11407 There's nothing really harmful in this, since bfd will correct
11408 SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
11409 means that, for backwards compatibiltiy, the special_section entries
11410 for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
11411
11412 Even so, we shouldn't force users of the MIPS .section syntax to
11413 incorrectly label the sections as SHT_PROGBITS. The best compromise
11414 seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
11415 generic type-checking code. */
11416 if (section_type == SHT_MIPS_DWARF)
11417 section_type = SHT_PROGBITS;
11418
11419 obj_elf_change_section (section_name, section_type, section_flag,
11420 section_entry_size, 0, 0, 0);
11421
11422 if (now_seg->name != section_name)
11423 free (section_name);
11424 #endif /* OBJ_ELF */
11425 }
11426
11427 void
11428 mips_enable_auto_align (void)
11429 {
11430 auto_align = 1;
11431 }
11432
11433 static void
11434 s_cons (int log_size)
11435 {
11436 symbolS *label;
11437
11438 label = insn_labels != NULL ? insn_labels->label : NULL;
11439 mips_emit_delays (FALSE);
11440 if (log_size > 0 && auto_align)
11441 mips_align (log_size, 0, label);
11442 mips_clear_insn_labels ();
11443 cons (1 << log_size);
11444 }
11445
11446 static void
11447 s_float_cons (int type)
11448 {
11449 symbolS *label;
11450
11451 label = insn_labels != NULL ? insn_labels->label : NULL;
11452
11453 mips_emit_delays (FALSE);
11454
11455 if (auto_align)
11456 {
11457 if (type == 'd')
11458 mips_align (3, 0, label);
11459 else
11460 mips_align (2, 0, label);
11461 }
11462
11463 mips_clear_insn_labels ();
11464
11465 float_cons (type);
11466 }
11467
11468 /* Handle .globl. We need to override it because on Irix 5 you are
11469 permitted to say
11470 .globl foo .text
11471 where foo is an undefined symbol, to mean that foo should be
11472 considered to be the address of a function. */
11473
11474 static void
11475 s_mips_globl (int x ATTRIBUTE_UNUSED)
11476 {
11477 char *name;
11478 int c;
11479 symbolS *symbolP;
11480 flagword flag;
11481
11482 name = input_line_pointer;
11483 c = get_symbol_end ();
11484 symbolP = symbol_find_or_make (name);
11485 *input_line_pointer = c;
11486 SKIP_WHITESPACE ();
11487
11488 /* On Irix 5, every global symbol that is not explicitly labelled as
11489 being a function is apparently labelled as being an object. */
11490 flag = BSF_OBJECT;
11491
11492 if (! is_end_of_line[(unsigned char) *input_line_pointer])
11493 {
11494 char *secname;
11495 asection *sec;
11496
11497 secname = input_line_pointer;
11498 c = get_symbol_end ();
11499 sec = bfd_get_section_by_name (stdoutput, secname);
11500 if (sec == NULL)
11501 as_bad (_("%s: no such section"), secname);
11502 *input_line_pointer = c;
11503
11504 if (sec != NULL && (sec->flags & SEC_CODE) != 0)
11505 flag = BSF_FUNCTION;
11506 }
11507
11508 symbol_get_bfdsym (symbolP)->flags |= flag;
11509
11510 S_SET_EXTERNAL (symbolP);
11511 demand_empty_rest_of_line ();
11512 }
11513
11514 static void
11515 s_option (int x ATTRIBUTE_UNUSED)
11516 {
11517 char *opt;
11518 char c;
11519
11520 opt = input_line_pointer;
11521 c = get_symbol_end ();
11522
11523 if (*opt == 'O')
11524 {
11525 /* FIXME: What does this mean? */
11526 }
11527 else if (strncmp (opt, "pic", 3) == 0)
11528 {
11529 int i;
11530
11531 i = atoi (opt + 3);
11532 if (i == 0)
11533 mips_pic = NO_PIC;
11534 else if (i == 2)
11535 {
11536 mips_pic = SVR4_PIC;
11537 mips_abicalls = TRUE;
11538 }
11539 else
11540 as_bad (_(".option pic%d not supported"), i);
11541
11542 if (mips_pic == SVR4_PIC)
11543 {
11544 if (g_switch_seen && g_switch_value != 0)
11545 as_warn (_("-G may not be used with SVR4 PIC code"));
11546 g_switch_value = 0;
11547 bfd_set_gp_size (stdoutput, 0);
11548 }
11549 }
11550 else
11551 as_warn (_("Unrecognized option \"%s\""), opt);
11552
11553 *input_line_pointer = c;
11554 demand_empty_rest_of_line ();
11555 }
11556
11557 /* This structure is used to hold a stack of .set values. */
11558
11559 struct mips_option_stack
11560 {
11561 struct mips_option_stack *next;
11562 struct mips_set_options options;
11563 };
11564
11565 static struct mips_option_stack *mips_opts_stack;
11566
11567 /* Handle the .set pseudo-op. */
11568
11569 static void
11570 s_mipsset (int x ATTRIBUTE_UNUSED)
11571 {
11572 char *name = input_line_pointer, ch;
11573
11574 while (!is_end_of_line[(unsigned char) *input_line_pointer])
11575 ++input_line_pointer;
11576 ch = *input_line_pointer;
11577 *input_line_pointer = '\0';
11578
11579 if (strcmp (name, "reorder") == 0)
11580 {
11581 if (mips_opts.noreorder && prev_nop_frag != NULL)
11582 {
11583 /* If we still have pending nops, we can discard them. The
11584 usual nop handling will insert any that are still
11585 needed. */
11586 prev_nop_frag->fr_fix -= (prev_nop_frag_holds
11587 * (mips_opts.mips16 ? 2 : 4));
11588 prev_nop_frag = NULL;
11589 }
11590 mips_opts.noreorder = 0;
11591 }
11592 else if (strcmp (name, "noreorder") == 0)
11593 {
11594 mips_emit_delays (TRUE);
11595 mips_opts.noreorder = 1;
11596 mips_any_noreorder = 1;
11597 }
11598 else if (strcmp (name, "at") == 0)
11599 {
11600 mips_opts.noat = 0;
11601 }
11602 else if (strcmp (name, "noat") == 0)
11603 {
11604 mips_opts.noat = 1;
11605 }
11606 else if (strcmp (name, "macro") == 0)
11607 {
11608 mips_opts.warn_about_macros = 0;
11609 }
11610 else if (strcmp (name, "nomacro") == 0)
11611 {
11612 if (mips_opts.noreorder == 0)
11613 as_bad (_("`noreorder' must be set before `nomacro'"));
11614 mips_opts.warn_about_macros = 1;
11615 }
11616 else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
11617 {
11618 mips_opts.nomove = 0;
11619 }
11620 else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
11621 {
11622 mips_opts.nomove = 1;
11623 }
11624 else if (strcmp (name, "bopt") == 0)
11625 {
11626 mips_opts.nobopt = 0;
11627 }
11628 else if (strcmp (name, "nobopt") == 0)
11629 {
11630 mips_opts.nobopt = 1;
11631 }
11632 else if (strcmp (name, "mips16") == 0
11633 || strcmp (name, "MIPS-16") == 0)
11634 mips_opts.mips16 = 1;
11635 else if (strcmp (name, "nomips16") == 0
11636 || strcmp (name, "noMIPS-16") == 0)
11637 mips_opts.mips16 = 0;
11638 else if (strcmp (name, "mips3d") == 0)
11639 mips_opts.ase_mips3d = 1;
11640 else if (strcmp (name, "nomips3d") == 0)
11641 mips_opts.ase_mips3d = 0;
11642 else if (strcmp (name, "mdmx") == 0)
11643 mips_opts.ase_mdmx = 1;
11644 else if (strcmp (name, "nomdmx") == 0)
11645 mips_opts.ase_mdmx = 0;
11646 else if (strncmp (name, "mips", 4) == 0 || strncmp (name, "arch=", 5) == 0)
11647 {
11648 int reset = 0;
11649
11650 /* Permit the user to change the ISA and architecture on the fly.
11651 Needless to say, misuse can cause serious problems. */
11652 if (strcmp (name, "mips0") == 0 || strcmp (name, "arch=default") == 0)
11653 {
11654 reset = 1;
11655 mips_opts.isa = file_mips_isa;
11656 mips_opts.arch = file_mips_arch;
11657 }
11658 else if (strncmp (name, "arch=", 5) == 0)
11659 {
11660 const struct mips_cpu_info *p;
11661
11662 p = mips_parse_cpu("internal use", name + 5);
11663 if (!p)
11664 as_bad (_("unknown architecture %s"), name + 5);
11665 else
11666 {
11667 mips_opts.arch = p->cpu;
11668 mips_opts.isa = p->isa;
11669 }
11670 }
11671 else if (strncmp (name, "mips", 4) == 0)
11672 {
11673 const struct mips_cpu_info *p;
11674
11675 p = mips_parse_cpu("internal use", name);
11676 if (!p)
11677 as_bad (_("unknown ISA level %s"), name + 4);
11678 else
11679 {
11680 mips_opts.arch = p->cpu;
11681 mips_opts.isa = p->isa;
11682 }
11683 }
11684 else
11685 as_bad (_("unknown ISA or architecture %s"), name);
11686
11687 switch (mips_opts.isa)
11688 {
11689 case 0:
11690 break;
11691 case ISA_MIPS1:
11692 case ISA_MIPS2:
11693 case ISA_MIPS32:
11694 case ISA_MIPS32R2:
11695 mips_opts.gp32 = 1;
11696 mips_opts.fp32 = 1;
11697 break;
11698 case ISA_MIPS3:
11699 case ISA_MIPS4:
11700 case ISA_MIPS5:
11701 case ISA_MIPS64:
11702 case ISA_MIPS64R2:
11703 mips_opts.gp32 = 0;
11704 mips_opts.fp32 = 0;
11705 break;
11706 default:
11707 as_bad (_("unknown ISA level %s"), name + 4);
11708 break;
11709 }
11710 if (reset)
11711 {
11712 mips_opts.gp32 = file_mips_gp32;
11713 mips_opts.fp32 = file_mips_fp32;
11714 }
11715 }
11716 else if (strcmp (name, "autoextend") == 0)
11717 mips_opts.noautoextend = 0;
11718 else if (strcmp (name, "noautoextend") == 0)
11719 mips_opts.noautoextend = 1;
11720 else if (strcmp (name, "push") == 0)
11721 {
11722 struct mips_option_stack *s;
11723
11724 s = (struct mips_option_stack *) xmalloc (sizeof *s);
11725 s->next = mips_opts_stack;
11726 s->options = mips_opts;
11727 mips_opts_stack = s;
11728 }
11729 else if (strcmp (name, "pop") == 0)
11730 {
11731 struct mips_option_stack *s;
11732
11733 s = mips_opts_stack;
11734 if (s == NULL)
11735 as_bad (_(".set pop with no .set push"));
11736 else
11737 {
11738 /* If we're changing the reorder mode we need to handle
11739 delay slots correctly. */
11740 if (s->options.noreorder && ! mips_opts.noreorder)
11741 mips_emit_delays (TRUE);
11742 else if (! s->options.noreorder && mips_opts.noreorder)
11743 {
11744 if (prev_nop_frag != NULL)
11745 {
11746 prev_nop_frag->fr_fix -= (prev_nop_frag_holds
11747 * (mips_opts.mips16 ? 2 : 4));
11748 prev_nop_frag = NULL;
11749 }
11750 }
11751
11752 mips_opts = s->options;
11753 mips_opts_stack = s->next;
11754 free (s);
11755 }
11756 }
11757 else
11758 {
11759 as_warn (_("Tried to set unrecognized symbol: %s\n"), name);
11760 }
11761 *input_line_pointer = ch;
11762 demand_empty_rest_of_line ();
11763 }
11764
11765 /* Handle the .abicalls pseudo-op. I believe this is equivalent to
11766 .option pic2. It means to generate SVR4 PIC calls. */
11767
11768 static void
11769 s_abicalls (int ignore ATTRIBUTE_UNUSED)
11770 {
11771 mips_pic = SVR4_PIC;
11772 mips_abicalls = TRUE;
11773
11774 if (g_switch_seen && g_switch_value != 0)
11775 as_warn (_("-G may not be used with SVR4 PIC code"));
11776 g_switch_value = 0;
11777
11778 bfd_set_gp_size (stdoutput, 0);
11779 demand_empty_rest_of_line ();
11780 }
11781
11782 /* Handle the .cpload pseudo-op. This is used when generating SVR4
11783 PIC code. It sets the $gp register for the function based on the
11784 function address, which is in the register named in the argument.
11785 This uses a relocation against _gp_disp, which is handled specially
11786 by the linker. The result is:
11787 lui $gp,%hi(_gp_disp)
11788 addiu $gp,$gp,%lo(_gp_disp)
11789 addu $gp,$gp,.cpload argument
11790 The .cpload argument is normally $25 == $t9.
11791
11792 The -mno-shared option changes this to:
11793 lui $gp,%hi(_gp)
11794 addiu $gp,$gp,%lo(_gp)
11795 and the argument is ignored. This saves an instruction, but the
11796 resulting code is not position independent; it uses an absolute
11797 address for _gp. Thus code assembled with -mno-shared can go into
11798 an ordinary executable, but not into a shared library. */
11799
11800 static void
11801 s_cpload (int ignore ATTRIBUTE_UNUSED)
11802 {
11803 expressionS ex;
11804 int reg;
11805 int in_shared;
11806
11807 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
11808 .cpload is ignored. */
11809 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
11810 {
11811 s_ignore (0);
11812 return;
11813 }
11814
11815 /* .cpload should be in a .set noreorder section. */
11816 if (mips_opts.noreorder == 0)
11817 as_warn (_(".cpload not in noreorder section"));
11818
11819 reg = tc_get_register (0);
11820
11821 /* If we need to produce a 64-bit address, we are better off using
11822 the default instruction sequence. */
11823 in_shared = mips_in_shared || HAVE_64BIT_ADDRESSES;
11824
11825 ex.X_op = O_symbol;
11826 ex.X_add_symbol = symbol_find_or_make (in_shared ? "_gp_disp" : "_gp");
11827 ex.X_op_symbol = NULL;
11828 ex.X_add_number = 0;
11829
11830 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
11831 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
11832
11833 macro_start ();
11834 macro_build_lui (&ex, mips_gp_register);
11835 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
11836 mips_gp_register, BFD_RELOC_LO16);
11837 if (in_shared)
11838 macro_build (NULL, "addu", "d,v,t", mips_gp_register,
11839 mips_gp_register, reg);
11840 macro_end ();
11841
11842 demand_empty_rest_of_line ();
11843 }
11844
11845 /* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
11846 .cpsetup $reg1, offset|$reg2, label
11847
11848 If offset is given, this results in:
11849 sd $gp, offset($sp)
11850 lui $gp, %hi(%neg(%gp_rel(label)))
11851 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
11852 daddu $gp, $gp, $reg1
11853
11854 If $reg2 is given, this results in:
11855 daddu $reg2, $gp, $0
11856 lui $gp, %hi(%neg(%gp_rel(label)))
11857 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
11858 daddu $gp, $gp, $reg1
11859 $reg1 is normally $25 == $t9.
11860
11861 The -mno-shared option replaces the last three instructions with
11862 lui $gp,%hi(_gp)
11863 addiu $gp,$gp,%lo(_gp)
11864 */
11865
11866 static void
11867 s_cpsetup (int ignore ATTRIBUTE_UNUSED)
11868 {
11869 expressionS ex_off;
11870 expressionS ex_sym;
11871 int reg1;
11872
11873 /* If we are not generating SVR4 PIC code, .cpsetup is ignored.
11874 We also need NewABI support. */
11875 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
11876 {
11877 s_ignore (0);
11878 return;
11879 }
11880
11881 reg1 = tc_get_register (0);
11882 SKIP_WHITESPACE ();
11883 if (*input_line_pointer != ',')
11884 {
11885 as_bad (_("missing argument separator ',' for .cpsetup"));
11886 return;
11887 }
11888 else
11889 ++input_line_pointer;
11890 SKIP_WHITESPACE ();
11891 if (*input_line_pointer == '$')
11892 {
11893 mips_cpreturn_register = tc_get_register (0);
11894 mips_cpreturn_offset = -1;
11895 }
11896 else
11897 {
11898 mips_cpreturn_offset = get_absolute_expression ();
11899 mips_cpreturn_register = -1;
11900 }
11901 SKIP_WHITESPACE ();
11902 if (*input_line_pointer != ',')
11903 {
11904 as_bad (_("missing argument separator ',' for .cpsetup"));
11905 return;
11906 }
11907 else
11908 ++input_line_pointer;
11909 SKIP_WHITESPACE ();
11910 expression (&ex_sym);
11911
11912 macro_start ();
11913 if (mips_cpreturn_register == -1)
11914 {
11915 ex_off.X_op = O_constant;
11916 ex_off.X_add_symbol = NULL;
11917 ex_off.X_op_symbol = NULL;
11918 ex_off.X_add_number = mips_cpreturn_offset;
11919
11920 macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register,
11921 BFD_RELOC_LO16, SP);
11922 }
11923 else
11924 macro_build (NULL, "daddu", "d,v,t", mips_cpreturn_register,
11925 mips_gp_register, 0);
11926
11927 if (mips_in_shared || HAVE_64BIT_ADDRESSES)
11928 {
11929 macro_build (&ex_sym, "lui", "t,u", mips_gp_register,
11930 -1, BFD_RELOC_GPREL16, BFD_RELOC_MIPS_SUB,
11931 BFD_RELOC_HI16_S);
11932
11933 macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register,
11934 mips_gp_register, -1, BFD_RELOC_GPREL16,
11935 BFD_RELOC_MIPS_SUB, BFD_RELOC_LO16);
11936
11937 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register,
11938 mips_gp_register, reg1);
11939 }
11940 else
11941 {
11942 expressionS ex;
11943
11944 ex.X_op = O_symbol;
11945 ex.X_add_symbol = symbol_find_or_make ("_gp");
11946 ex.X_op_symbol = NULL;
11947 ex.X_add_number = 0;
11948
11949 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
11950 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
11951
11952 macro_build_lui (&ex, mips_gp_register);
11953 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
11954 mips_gp_register, BFD_RELOC_LO16);
11955 }
11956
11957 macro_end ();
11958
11959 demand_empty_rest_of_line ();
11960 }
11961
11962 static void
11963 s_cplocal (int ignore ATTRIBUTE_UNUSED)
11964 {
11965 /* If we are not generating SVR4 PIC code, or if this is not NewABI code,
11966 .cplocal is ignored. */
11967 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
11968 {
11969 s_ignore (0);
11970 return;
11971 }
11972
11973 mips_gp_register = tc_get_register (0);
11974 demand_empty_rest_of_line ();
11975 }
11976
11977 /* Handle the .cprestore pseudo-op. This stores $gp into a given
11978 offset from $sp. The offset is remembered, and after making a PIC
11979 call $gp is restored from that location. */
11980
11981 static void
11982 s_cprestore (int ignore ATTRIBUTE_UNUSED)
11983 {
11984 expressionS ex;
11985
11986 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
11987 .cprestore is ignored. */
11988 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
11989 {
11990 s_ignore (0);
11991 return;
11992 }
11993
11994 mips_cprestore_offset = get_absolute_expression ();
11995 mips_cprestore_valid = 1;
11996
11997 ex.X_op = O_constant;
11998 ex.X_add_symbol = NULL;
11999 ex.X_op_symbol = NULL;
12000 ex.X_add_number = mips_cprestore_offset;
12001
12002 macro_start ();
12003 macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register,
12004 SP, HAVE_64BIT_ADDRESSES);
12005 macro_end ();
12006
12007 demand_empty_rest_of_line ();
12008 }
12009
12010 /* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
12011 was given in the preceding .cpsetup, it results in:
12012 ld $gp, offset($sp)
12013
12014 If a register $reg2 was given there, it results in:
12015 daddu $gp, $reg2, $0
12016 */
12017 static void
12018 s_cpreturn (int ignore ATTRIBUTE_UNUSED)
12019 {
12020 expressionS ex;
12021
12022 /* If we are not generating SVR4 PIC code, .cpreturn is ignored.
12023 We also need NewABI support. */
12024 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
12025 {
12026 s_ignore (0);
12027 return;
12028 }
12029
12030 macro_start ();
12031 if (mips_cpreturn_register == -1)
12032 {
12033 ex.X_op = O_constant;
12034 ex.X_add_symbol = NULL;
12035 ex.X_op_symbol = NULL;
12036 ex.X_add_number = mips_cpreturn_offset;
12037
12038 macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP);
12039 }
12040 else
12041 macro_build (NULL, "daddu", "d,v,t", mips_gp_register,
12042 mips_cpreturn_register, 0);
12043 macro_end ();
12044
12045 demand_empty_rest_of_line ();
12046 }
12047
12048 /* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
12049 code. It sets the offset to use in gp_rel relocations. */
12050
12051 static void
12052 s_gpvalue (int ignore ATTRIBUTE_UNUSED)
12053 {
12054 /* If we are not generating SVR4 PIC code, .gpvalue is ignored.
12055 We also need NewABI support. */
12056 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
12057 {
12058 s_ignore (0);
12059 return;
12060 }
12061
12062 mips_gprel_offset = get_absolute_expression ();
12063
12064 demand_empty_rest_of_line ();
12065 }
12066
12067 /* Handle the .gpword pseudo-op. This is used when generating PIC
12068 code. It generates a 32 bit GP relative reloc. */
12069
12070 static void
12071 s_gpword (int ignore ATTRIBUTE_UNUSED)
12072 {
12073 symbolS *label;
12074 expressionS ex;
12075 char *p;
12076
12077 /* When not generating PIC code, this is treated as .word. */
12078 if (mips_pic != SVR4_PIC)
12079 {
12080 s_cons (2);
12081 return;
12082 }
12083
12084 label = insn_labels != NULL ? insn_labels->label : NULL;
12085 mips_emit_delays (TRUE);
12086 if (auto_align)
12087 mips_align (2, 0, label);
12088 mips_clear_insn_labels ();
12089
12090 expression (&ex);
12091
12092 if (ex.X_op != O_symbol || ex.X_add_number != 0)
12093 {
12094 as_bad (_("Unsupported use of .gpword"));
12095 ignore_rest_of_line ();
12096 }
12097
12098 p = frag_more (4);
12099 md_number_to_chars (p, 0, 4);
12100 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
12101 BFD_RELOC_GPREL32);
12102
12103 demand_empty_rest_of_line ();
12104 }
12105
12106 static void
12107 s_gpdword (int ignore ATTRIBUTE_UNUSED)
12108 {
12109 symbolS *label;
12110 expressionS ex;
12111 char *p;
12112
12113 /* When not generating PIC code, this is treated as .dword. */
12114 if (mips_pic != SVR4_PIC)
12115 {
12116 s_cons (3);
12117 return;
12118 }
12119
12120 label = insn_labels != NULL ? insn_labels->label : NULL;
12121 mips_emit_delays (TRUE);
12122 if (auto_align)
12123 mips_align (3, 0, label);
12124 mips_clear_insn_labels ();
12125
12126 expression (&ex);
12127
12128 if (ex.X_op != O_symbol || ex.X_add_number != 0)
12129 {
12130 as_bad (_("Unsupported use of .gpdword"));
12131 ignore_rest_of_line ();
12132 }
12133
12134 p = frag_more (8);
12135 md_number_to_chars (p, 0, 8);
12136 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
12137 BFD_RELOC_GPREL32)->fx_tcbit = 1;
12138
12139 /* GPREL32 composed with 64 gives a 64-bit GP offset. */
12140 fix_new (frag_now, p - frag_now->fr_literal, 8, NULL, 0,
12141 FALSE, BFD_RELOC_64)->fx_tcbit = 1;
12142
12143 demand_empty_rest_of_line ();
12144 }
12145
12146 /* Handle the .cpadd pseudo-op. This is used when dealing with switch
12147 tables in SVR4 PIC code. */
12148
12149 static void
12150 s_cpadd (int ignore ATTRIBUTE_UNUSED)
12151 {
12152 int reg;
12153
12154 /* This is ignored when not generating SVR4 PIC code. */
12155 if (mips_pic != SVR4_PIC)
12156 {
12157 s_ignore (0);
12158 return;
12159 }
12160
12161 /* Add $gp to the register named as an argument. */
12162 macro_start ();
12163 reg = tc_get_register (0);
12164 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register);
12165 macro_end ();
12166
12167 demand_empty_rest_of_line ();
12168 }
12169
12170 /* Handle the .insn pseudo-op. This marks instruction labels in
12171 mips16 mode. This permits the linker to handle them specially,
12172 such as generating jalx instructions when needed. We also make
12173 them odd for the duration of the assembly, in order to generate the
12174 right sort of code. We will make them even in the adjust_symtab
12175 routine, while leaving them marked. This is convenient for the
12176 debugger and the disassembler. The linker knows to make them odd
12177 again. */
12178
12179 static void
12180 s_insn (int ignore ATTRIBUTE_UNUSED)
12181 {
12182 mips16_mark_labels ();
12183
12184 demand_empty_rest_of_line ();
12185 }
12186
12187 /* Handle a .stabn directive. We need these in order to mark a label
12188 as being a mips16 text label correctly. Sometimes the compiler
12189 will emit a label, followed by a .stabn, and then switch sections.
12190 If the label and .stabn are in mips16 mode, then the label is
12191 really a mips16 text label. */
12192
12193 static void
12194 s_mips_stab (int type)
12195 {
12196 if (type == 'n')
12197 mips16_mark_labels ();
12198
12199 s_stab (type);
12200 }
12201
12202 /* Handle the .weakext pseudo-op as defined in Kane and Heinrich.
12203 */
12204
12205 static void
12206 s_mips_weakext (int ignore ATTRIBUTE_UNUSED)
12207 {
12208 char *name;
12209 int c;
12210 symbolS *symbolP;
12211 expressionS exp;
12212
12213 name = input_line_pointer;
12214 c = get_symbol_end ();
12215 symbolP = symbol_find_or_make (name);
12216 S_SET_WEAK (symbolP);
12217 *input_line_pointer = c;
12218
12219 SKIP_WHITESPACE ();
12220
12221 if (! is_end_of_line[(unsigned char) *input_line_pointer])
12222 {
12223 if (S_IS_DEFINED (symbolP))
12224 {
12225 as_bad ("ignoring attempt to redefine symbol %s",
12226 S_GET_NAME (symbolP));
12227 ignore_rest_of_line ();
12228 return;
12229 }
12230
12231 if (*input_line_pointer == ',')
12232 {
12233 ++input_line_pointer;
12234 SKIP_WHITESPACE ();
12235 }
12236
12237 expression (&exp);
12238 if (exp.X_op != O_symbol)
12239 {
12240 as_bad ("bad .weakext directive");
12241 ignore_rest_of_line ();
12242 return;
12243 }
12244 symbol_set_value_expression (symbolP, &exp);
12245 }
12246
12247 demand_empty_rest_of_line ();
12248 }
12249
12250 /* Parse a register string into a number. Called from the ECOFF code
12251 to parse .frame. The argument is non-zero if this is the frame
12252 register, so that we can record it in mips_frame_reg. */
12253
12254 int
12255 tc_get_register (int frame)
12256 {
12257 int reg;
12258
12259 SKIP_WHITESPACE ();
12260 if (*input_line_pointer++ != '$')
12261 {
12262 as_warn (_("expected `$'"));
12263 reg = ZERO;
12264 }
12265 else if (ISDIGIT (*input_line_pointer))
12266 {
12267 reg = get_absolute_expression ();
12268 if (reg < 0 || reg >= 32)
12269 {
12270 as_warn (_("Bad register number"));
12271 reg = ZERO;
12272 }
12273 }
12274 else
12275 {
12276 if (strncmp (input_line_pointer, "ra", 2) == 0)
12277 {
12278 reg = RA;
12279 input_line_pointer += 2;
12280 }
12281 else if (strncmp (input_line_pointer, "fp", 2) == 0)
12282 {
12283 reg = FP;
12284 input_line_pointer += 2;
12285 }
12286 else if (strncmp (input_line_pointer, "sp", 2) == 0)
12287 {
12288 reg = SP;
12289 input_line_pointer += 2;
12290 }
12291 else if (strncmp (input_line_pointer, "gp", 2) == 0)
12292 {
12293 reg = GP;
12294 input_line_pointer += 2;
12295 }
12296 else if (strncmp (input_line_pointer, "at", 2) == 0)
12297 {
12298 reg = AT;
12299 input_line_pointer += 2;
12300 }
12301 else if (strncmp (input_line_pointer, "kt0", 3) == 0)
12302 {
12303 reg = KT0;
12304 input_line_pointer += 3;
12305 }
12306 else if (strncmp (input_line_pointer, "kt1", 3) == 0)
12307 {
12308 reg = KT1;
12309 input_line_pointer += 3;
12310 }
12311 else if (strncmp (input_line_pointer, "zero", 4) == 0)
12312 {
12313 reg = ZERO;
12314 input_line_pointer += 4;
12315 }
12316 else
12317 {
12318 as_warn (_("Unrecognized register name"));
12319 reg = ZERO;
12320 while (ISALNUM(*input_line_pointer))
12321 input_line_pointer++;
12322 }
12323 }
12324 if (frame)
12325 {
12326 mips_frame_reg = reg != 0 ? reg : SP;
12327 mips_frame_reg_valid = 1;
12328 mips_cprestore_valid = 0;
12329 }
12330 return reg;
12331 }
12332
12333 valueT
12334 md_section_align (asection *seg, valueT addr)
12335 {
12336 int align = bfd_get_section_alignment (stdoutput, seg);
12337
12338 #ifdef OBJ_ELF
12339 /* We don't need to align ELF sections to the full alignment.
12340 However, Irix 5 may prefer that we align them at least to a 16
12341 byte boundary. We don't bother to align the sections if we are
12342 targeted for an embedded system. */
12343 if (strcmp (TARGET_OS, "elf") == 0)
12344 return addr;
12345 if (align > 4)
12346 align = 4;
12347 #endif
12348
12349 return ((addr + (1 << align) - 1) & (-1 << align));
12350 }
12351
12352 /* Utility routine, called from above as well. If called while the
12353 input file is still being read, it's only an approximation. (For
12354 example, a symbol may later become defined which appeared to be
12355 undefined earlier.) */
12356
12357 static int
12358 nopic_need_relax (symbolS *sym, int before_relaxing)
12359 {
12360 if (sym == 0)
12361 return 0;
12362
12363 if (g_switch_value > 0)
12364 {
12365 const char *symname;
12366 int change;
12367
12368 /* Find out whether this symbol can be referenced off the $gp
12369 register. It can be if it is smaller than the -G size or if
12370 it is in the .sdata or .sbss section. Certain symbols can
12371 not be referenced off the $gp, although it appears as though
12372 they can. */
12373 symname = S_GET_NAME (sym);
12374 if (symname != (const char *) NULL
12375 && (strcmp (symname, "eprol") == 0
12376 || strcmp (symname, "etext") == 0
12377 || strcmp (symname, "_gp") == 0
12378 || strcmp (symname, "edata") == 0
12379 || strcmp (symname, "_fbss") == 0
12380 || strcmp (symname, "_fdata") == 0
12381 || strcmp (symname, "_ftext") == 0
12382 || strcmp (symname, "end") == 0
12383 || strcmp (symname, "_gp_disp") == 0))
12384 change = 1;
12385 else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym))
12386 && (0
12387 #ifndef NO_ECOFF_DEBUGGING
12388 || (symbol_get_obj (sym)->ecoff_extern_size != 0
12389 && (symbol_get_obj (sym)->ecoff_extern_size
12390 <= g_switch_value))
12391 #endif
12392 /* We must defer this decision until after the whole
12393 file has been read, since there might be a .extern
12394 after the first use of this symbol. */
12395 || (before_relaxing
12396 #ifndef NO_ECOFF_DEBUGGING
12397 && symbol_get_obj (sym)->ecoff_extern_size == 0
12398 #endif
12399 && S_GET_VALUE (sym) == 0)
12400 || (S_GET_VALUE (sym) != 0
12401 && S_GET_VALUE (sym) <= g_switch_value)))
12402 change = 0;
12403 else
12404 {
12405 const char *segname;
12406
12407 segname = segment_name (S_GET_SEGMENT (sym));
12408 assert (strcmp (segname, ".lit8") != 0
12409 && strcmp (segname, ".lit4") != 0);
12410 change = (strcmp (segname, ".sdata") != 0
12411 && strcmp (segname, ".sbss") != 0
12412 && strncmp (segname, ".sdata.", 7) != 0
12413 && strncmp (segname, ".gnu.linkonce.s.", 16) != 0);
12414 }
12415 return change;
12416 }
12417 else
12418 /* We are not optimizing for the $gp register. */
12419 return 1;
12420 }
12421
12422
12423 /* Return true if the given symbol should be considered local for SVR4 PIC. */
12424
12425 static bfd_boolean
12426 pic_need_relax (symbolS *sym, asection *segtype)
12427 {
12428 asection *symsec;
12429 bfd_boolean linkonce;
12430
12431 /* Handle the case of a symbol equated to another symbol. */
12432 while (symbol_equated_reloc_p (sym))
12433 {
12434 symbolS *n;
12435
12436 /* It's possible to get a loop here in a badly written
12437 program. */
12438 n = symbol_get_value_expression (sym)->X_add_symbol;
12439 if (n == sym)
12440 break;
12441 sym = n;
12442 }
12443
12444 symsec = S_GET_SEGMENT (sym);
12445
12446 /* duplicate the test for LINK_ONCE sections as in adjust_reloc_syms */
12447 linkonce = FALSE;
12448 if (symsec != segtype && ! S_IS_LOCAL (sym))
12449 {
12450 if ((bfd_get_section_flags (stdoutput, symsec) & SEC_LINK_ONCE)
12451 != 0)
12452 linkonce = TRUE;
12453
12454 /* The GNU toolchain uses an extension for ELF: a section
12455 beginning with the magic string .gnu.linkonce is a linkonce
12456 section. */
12457 if (strncmp (segment_name (symsec), ".gnu.linkonce",
12458 sizeof ".gnu.linkonce" - 1) == 0)
12459 linkonce = TRUE;
12460 }
12461
12462 /* This must duplicate the test in adjust_reloc_syms. */
12463 return (symsec != &bfd_und_section
12464 && symsec != &bfd_abs_section
12465 && ! bfd_is_com_section (symsec)
12466 && !linkonce
12467 #ifdef OBJ_ELF
12468 /* A global or weak symbol is treated as external. */
12469 && (OUTPUT_FLAVOR != bfd_target_elf_flavour
12470 || (! S_IS_WEAK (sym) && ! S_IS_EXTERNAL (sym)))
12471 #endif
12472 );
12473 }
12474
12475
12476 /* Given a mips16 variant frag FRAGP, return non-zero if it needs an
12477 extended opcode. SEC is the section the frag is in. */
12478
12479 static int
12480 mips16_extended_frag (fragS *fragp, asection *sec, long stretch)
12481 {
12482 int type;
12483 register const struct mips16_immed_operand *op;
12484 offsetT val;
12485 int mintiny, maxtiny;
12486 segT symsec;
12487 fragS *sym_frag;
12488
12489 if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
12490 return 0;
12491 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
12492 return 1;
12493
12494 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
12495 op = mips16_immed_operands;
12496 while (op->type != type)
12497 {
12498 ++op;
12499 assert (op < mips16_immed_operands + MIPS16_NUM_IMMED);
12500 }
12501
12502 if (op->unsp)
12503 {
12504 if (type == '<' || type == '>' || type == '[' || type == ']')
12505 {
12506 mintiny = 1;
12507 maxtiny = 1 << op->nbits;
12508 }
12509 else
12510 {
12511 mintiny = 0;
12512 maxtiny = (1 << op->nbits) - 1;
12513 }
12514 }
12515 else
12516 {
12517 mintiny = - (1 << (op->nbits - 1));
12518 maxtiny = (1 << (op->nbits - 1)) - 1;
12519 }
12520
12521 sym_frag = symbol_get_frag (fragp->fr_symbol);
12522 val = S_GET_VALUE (fragp->fr_symbol);
12523 symsec = S_GET_SEGMENT (fragp->fr_symbol);
12524
12525 if (op->pcrel)
12526 {
12527 addressT addr;
12528
12529 /* We won't have the section when we are called from
12530 mips_relax_frag. However, we will always have been called
12531 from md_estimate_size_before_relax first. If this is a
12532 branch to a different section, we mark it as such. If SEC is
12533 NULL, and the frag is not marked, then it must be a branch to
12534 the same section. */
12535 if (sec == NULL)
12536 {
12537 if (RELAX_MIPS16_LONG_BRANCH (fragp->fr_subtype))
12538 return 1;
12539 }
12540 else
12541 {
12542 /* Must have been called from md_estimate_size_before_relax. */
12543 if (symsec != sec)
12544 {
12545 fragp->fr_subtype =
12546 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
12547
12548 /* FIXME: We should support this, and let the linker
12549 catch branches and loads that are out of range. */
12550 as_bad_where (fragp->fr_file, fragp->fr_line,
12551 _("unsupported PC relative reference to different section"));
12552
12553 return 1;
12554 }
12555 if (fragp != sym_frag && sym_frag->fr_address == 0)
12556 /* Assume non-extended on the first relaxation pass.
12557 The address we have calculated will be bogus if this is
12558 a forward branch to another frag, as the forward frag
12559 will have fr_address == 0. */
12560 return 0;
12561 }
12562
12563 /* In this case, we know for sure that the symbol fragment is in
12564 the same section. If the relax_marker of the symbol fragment
12565 differs from the relax_marker of this fragment, we have not
12566 yet adjusted the symbol fragment fr_address. We want to add
12567 in STRETCH in order to get a better estimate of the address.
12568 This particularly matters because of the shift bits. */
12569 if (stretch != 0
12570 && sym_frag->relax_marker != fragp->relax_marker)
12571 {
12572 fragS *f;
12573
12574 /* Adjust stretch for any alignment frag. Note that if have
12575 been expanding the earlier code, the symbol may be
12576 defined in what appears to be an earlier frag. FIXME:
12577 This doesn't handle the fr_subtype field, which specifies
12578 a maximum number of bytes to skip when doing an
12579 alignment. */
12580 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
12581 {
12582 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
12583 {
12584 if (stretch < 0)
12585 stretch = - ((- stretch)
12586 & ~ ((1 << (int) f->fr_offset) - 1));
12587 else
12588 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
12589 if (stretch == 0)
12590 break;
12591 }
12592 }
12593 if (f != NULL)
12594 val += stretch;
12595 }
12596
12597 addr = fragp->fr_address + fragp->fr_fix;
12598
12599 /* The base address rules are complicated. The base address of
12600 a branch is the following instruction. The base address of a
12601 PC relative load or add is the instruction itself, but if it
12602 is in a delay slot (in which case it can not be extended) use
12603 the address of the instruction whose delay slot it is in. */
12604 if (type == 'p' || type == 'q')
12605 {
12606 addr += 2;
12607
12608 /* If we are currently assuming that this frag should be
12609 extended, then, the current address is two bytes
12610 higher. */
12611 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
12612 addr += 2;
12613
12614 /* Ignore the low bit in the target, since it will be set
12615 for a text label. */
12616 if ((val & 1) != 0)
12617 --val;
12618 }
12619 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
12620 addr -= 4;
12621 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
12622 addr -= 2;
12623
12624 val -= addr & ~ ((1 << op->shift) - 1);
12625
12626 /* Branch offsets have an implicit 0 in the lowest bit. */
12627 if (type == 'p' || type == 'q')
12628 val /= 2;
12629
12630 /* If any of the shifted bits are set, we must use an extended
12631 opcode. If the address depends on the size of this
12632 instruction, this can lead to a loop, so we arrange to always
12633 use an extended opcode. We only check this when we are in
12634 the main relaxation loop, when SEC is NULL. */
12635 if ((val & ((1 << op->shift) - 1)) != 0 && sec == NULL)
12636 {
12637 fragp->fr_subtype =
12638 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
12639 return 1;
12640 }
12641
12642 /* If we are about to mark a frag as extended because the value
12643 is precisely maxtiny + 1, then there is a chance of an
12644 infinite loop as in the following code:
12645 la $4,foo
12646 .skip 1020
12647 .align 2
12648 foo:
12649 In this case when the la is extended, foo is 0x3fc bytes
12650 away, so the la can be shrunk, but then foo is 0x400 away, so
12651 the la must be extended. To avoid this loop, we mark the
12652 frag as extended if it was small, and is about to become
12653 extended with a value of maxtiny + 1. */
12654 if (val == ((maxtiny + 1) << op->shift)
12655 && ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype)
12656 && sec == NULL)
12657 {
12658 fragp->fr_subtype =
12659 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
12660 return 1;
12661 }
12662 }
12663 else if (symsec != absolute_section && sec != NULL)
12664 as_bad_where (fragp->fr_file, fragp->fr_line, _("unsupported relocation"));
12665
12666 if ((val & ((1 << op->shift) - 1)) != 0
12667 || val < (mintiny << op->shift)
12668 || val > (maxtiny << op->shift))
12669 return 1;
12670 else
12671 return 0;
12672 }
12673
12674 /* Compute the length of a branch sequence, and adjust the
12675 RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
12676 worst-case length is computed, with UPDATE being used to indicate
12677 whether an unconditional (-1), branch-likely (+1) or regular (0)
12678 branch is to be computed. */
12679 static int
12680 relaxed_branch_length (fragS *fragp, asection *sec, int update)
12681 {
12682 bfd_boolean toofar;
12683 int length;
12684
12685 if (fragp
12686 && S_IS_DEFINED (fragp->fr_symbol)
12687 && sec == S_GET_SEGMENT (fragp->fr_symbol))
12688 {
12689 addressT addr;
12690 offsetT val;
12691
12692 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
12693
12694 addr = fragp->fr_address + fragp->fr_fix + 4;
12695
12696 val -= addr;
12697
12698 toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2);
12699 }
12700 else if (fragp)
12701 /* If the symbol is not defined or it's in a different segment,
12702 assume the user knows what's going on and emit a short
12703 branch. */
12704 toofar = FALSE;
12705 else
12706 toofar = TRUE;
12707
12708 if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
12709 fragp->fr_subtype
12710 = RELAX_BRANCH_ENCODE (RELAX_BRANCH_UNCOND (fragp->fr_subtype),
12711 RELAX_BRANCH_LIKELY (fragp->fr_subtype),
12712 RELAX_BRANCH_LINK (fragp->fr_subtype),
12713 toofar);
12714
12715 length = 4;
12716 if (toofar)
12717 {
12718 if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0))
12719 length += 8;
12720
12721 if (mips_pic != NO_PIC)
12722 {
12723 /* Additional space for PIC loading of target address. */
12724 length += 8;
12725 if (mips_opts.isa == ISA_MIPS1)
12726 /* Additional space for $at-stabilizing nop. */
12727 length += 4;
12728 }
12729
12730 /* If branch is conditional. */
12731 if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0))
12732 length += 8;
12733 }
12734
12735 return length;
12736 }
12737
12738 /* Estimate the size of a frag before relaxing. Unless this is the
12739 mips16, we are not really relaxing here, and the final size is
12740 encoded in the subtype information. For the mips16, we have to
12741 decide whether we are using an extended opcode or not. */
12742
12743 int
12744 md_estimate_size_before_relax (fragS *fragp, asection *segtype)
12745 {
12746 int change;
12747
12748 if (RELAX_BRANCH_P (fragp->fr_subtype))
12749 {
12750
12751 fragp->fr_var = relaxed_branch_length (fragp, segtype, FALSE);
12752
12753 return fragp->fr_var;
12754 }
12755
12756 if (RELAX_MIPS16_P (fragp->fr_subtype))
12757 /* We don't want to modify the EXTENDED bit here; it might get us
12758 into infinite loops. We change it only in mips_relax_frag(). */
12759 return (RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2);
12760
12761 if (mips_pic == NO_PIC)
12762 change = nopic_need_relax (fragp->fr_symbol, 0);
12763 else if (mips_pic == SVR4_PIC)
12764 change = pic_need_relax (fragp->fr_symbol, segtype);
12765 else
12766 abort ();
12767
12768 if (change)
12769 {
12770 fragp->fr_subtype |= RELAX_USE_SECOND;
12771 return -RELAX_FIRST (fragp->fr_subtype);
12772 }
12773 else
12774 return -RELAX_SECOND (fragp->fr_subtype);
12775 }
12776
12777 /* This is called to see whether a reloc against a defined symbol
12778 should be converted into a reloc against a section. */
12779
12780 int
12781 mips_fix_adjustable (fixS *fixp)
12782 {
12783 /* Don't adjust MIPS16 jump relocations, so we don't have to worry
12784 about the format of the offset in the .o file. */
12785 if (fixp->fx_r_type == BFD_RELOC_MIPS16_JMP)
12786 return 0;
12787
12788 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
12789 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
12790 return 0;
12791
12792 if (fixp->fx_addsy == NULL)
12793 return 1;
12794
12795 /* If symbol SYM is in a mergeable section, relocations of the form
12796 SYM + 0 can usually be made section-relative. The mergeable data
12797 is then identified by the section offset rather than by the symbol.
12798
12799 However, if we're generating REL LO16 relocations, the offset is split
12800 between the LO16 and parterning high part relocation. The linker will
12801 need to recalculate the complete offset in order to correctly identify
12802 the merge data.
12803
12804 The linker has traditionally not looked for the parterning high part
12805 relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be
12806 placed anywhere. Rather than break backwards compatibility by changing
12807 this, it seems better not to force the issue, and instead keep the
12808 original symbol. This will work with either linker behavior. */
12809 if ((fixp->fx_r_type == BFD_RELOC_LO16 || reloc_needs_lo_p (fixp->fx_r_type))
12810 && HAVE_IN_PLACE_ADDENDS
12811 && (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE) != 0)
12812 return 0;
12813
12814 #ifdef OBJ_ELF
12815 /* Don't adjust relocations against mips16 symbols, so that the linker
12816 can find them if it needs to set up a stub. */
12817 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
12818 && S_GET_OTHER (fixp->fx_addsy) == STO_MIPS16
12819 && fixp->fx_subsy == NULL)
12820 return 0;
12821 #endif
12822
12823 return 1;
12824 }
12825
12826 /* Translate internal representation of relocation info to BFD target
12827 format. */
12828
12829 arelent **
12830 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
12831 {
12832 static arelent *retval[4];
12833 arelent *reloc;
12834 bfd_reloc_code_real_type code;
12835
12836 memset (retval, 0, sizeof(retval));
12837 reloc = retval[0] = (arelent *) xcalloc (1, sizeof (arelent));
12838 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
12839 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
12840 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
12841
12842 assert (! fixp->fx_pcrel);
12843 reloc->addend = fixp->fx_addnumber;
12844
12845 /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
12846 entry to be used in the relocation's section offset. */
12847 if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
12848 {
12849 reloc->address = reloc->addend;
12850 reloc->addend = 0;
12851 }
12852
12853 code = fixp->fx_r_type;
12854
12855 /* To support a PC relative reloc, we used a Cygnus extension.
12856 We check for that here to make sure that we don't let such a
12857 reloc escape normally. (FIXME: This was formerly used by
12858 embedded-PIC support, but is now used by branch handling in
12859 general. That probably should be fixed.) */
12860 if ((OUTPUT_FLAVOR == bfd_target_ecoff_flavour
12861 || OUTPUT_FLAVOR == bfd_target_elf_flavour)
12862 && code == BFD_RELOC_16_PCREL_S2)
12863 reloc->howto = NULL;
12864 else
12865 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
12866
12867 if (reloc->howto == NULL)
12868 {
12869 as_bad_where (fixp->fx_file, fixp->fx_line,
12870 _("Can not represent %s relocation in this object file format"),
12871 bfd_get_reloc_code_name (code));
12872 retval[0] = NULL;
12873 }
12874
12875 return retval;
12876 }
12877
12878 /* Relax a machine dependent frag. This returns the amount by which
12879 the current size of the frag should change. */
12880
12881 int
12882 mips_relax_frag (asection *sec, fragS *fragp, long stretch)
12883 {
12884 if (RELAX_BRANCH_P (fragp->fr_subtype))
12885 {
12886 offsetT old_var = fragp->fr_var;
12887
12888 fragp->fr_var = relaxed_branch_length (fragp, sec, TRUE);
12889
12890 return fragp->fr_var - old_var;
12891 }
12892
12893 if (! RELAX_MIPS16_P (fragp->fr_subtype))
12894 return 0;
12895
12896 if (mips16_extended_frag (fragp, NULL, stretch))
12897 {
12898 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
12899 return 0;
12900 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
12901 return 2;
12902 }
12903 else
12904 {
12905 if (! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
12906 return 0;
12907 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
12908 return -2;
12909 }
12910
12911 return 0;
12912 }
12913
12914 /* Convert a machine dependent frag. */
12915
12916 void
12917 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp)
12918 {
12919 if (RELAX_BRANCH_P (fragp->fr_subtype))
12920 {
12921 bfd_byte *buf;
12922 unsigned long insn;
12923 expressionS exp;
12924 fixS *fixp;
12925
12926 buf = (bfd_byte *)fragp->fr_literal + fragp->fr_fix;
12927
12928 if (target_big_endian)
12929 insn = bfd_getb32 (buf);
12930 else
12931 insn = bfd_getl32 (buf);
12932
12933 if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
12934 {
12935 /* We generate a fixup instead of applying it right now
12936 because, if there are linker relaxations, we're going to
12937 need the relocations. */
12938 exp.X_op = O_symbol;
12939 exp.X_add_symbol = fragp->fr_symbol;
12940 exp.X_add_number = fragp->fr_offset;
12941
12942 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
12943 4, &exp, 1,
12944 BFD_RELOC_16_PCREL_S2);
12945 fixp->fx_file = fragp->fr_file;
12946 fixp->fx_line = fragp->fr_line;
12947
12948 md_number_to_chars (buf, insn, 4);
12949 buf += 4;
12950 }
12951 else
12952 {
12953 int i;
12954
12955 as_warn_where (fragp->fr_file, fragp->fr_line,
12956 _("relaxed out-of-range branch into a jump"));
12957
12958 if (RELAX_BRANCH_UNCOND (fragp->fr_subtype))
12959 goto uncond;
12960
12961 if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype))
12962 {
12963 /* Reverse the branch. */
12964 switch ((insn >> 28) & 0xf)
12965 {
12966 case 4:
12967 /* bc[0-3][tf]l? and bc1any[24][ft] instructions can
12968 have the condition reversed by tweaking a single
12969 bit, and their opcodes all have 0x4???????. */
12970 assert ((insn & 0xf1000000) == 0x41000000);
12971 insn ^= 0x00010000;
12972 break;
12973
12974 case 0:
12975 /* bltz 0x04000000 bgez 0x04010000
12976 bltzal 0x04100000 bgezal 0x04110000 */
12977 assert ((insn & 0xfc0e0000) == 0x04000000);
12978 insn ^= 0x00010000;
12979 break;
12980
12981 case 1:
12982 /* beq 0x10000000 bne 0x14000000
12983 blez 0x18000000 bgtz 0x1c000000 */
12984 insn ^= 0x04000000;
12985 break;
12986
12987 default:
12988 abort ();
12989 }
12990 }
12991
12992 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
12993 {
12994 /* Clear the and-link bit. */
12995 assert ((insn & 0xfc1c0000) == 0x04100000);
12996
12997 /* bltzal 0x04100000 bgezal 0x04110000
12998 bltzall 0x04120000 bgezall 0x04130000 */
12999 insn &= ~0x00100000;
13000 }
13001
13002 /* Branch over the branch (if the branch was likely) or the
13003 full jump (not likely case). Compute the offset from the
13004 current instruction to branch to. */
13005 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
13006 i = 16;
13007 else
13008 {
13009 /* How many bytes in instructions we've already emitted? */
13010 i = buf - (bfd_byte *)fragp->fr_literal - fragp->fr_fix;
13011 /* How many bytes in instructions from here to the end? */
13012 i = fragp->fr_var - i;
13013 }
13014 /* Convert to instruction count. */
13015 i >>= 2;
13016 /* Branch counts from the next instruction. */
13017 i--;
13018 insn |= i;
13019 /* Branch over the jump. */
13020 md_number_to_chars (buf, insn, 4);
13021 buf += 4;
13022
13023 /* Nop */
13024 md_number_to_chars (buf, 0, 4);
13025 buf += 4;
13026
13027 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
13028 {
13029 /* beql $0, $0, 2f */
13030 insn = 0x50000000;
13031 /* Compute the PC offset from the current instruction to
13032 the end of the variable frag. */
13033 /* How many bytes in instructions we've already emitted? */
13034 i = buf - (bfd_byte *)fragp->fr_literal - fragp->fr_fix;
13035 /* How many bytes in instructions from here to the end? */
13036 i = fragp->fr_var - i;
13037 /* Convert to instruction count. */
13038 i >>= 2;
13039 /* Don't decrement i, because we want to branch over the
13040 delay slot. */
13041
13042 insn |= i;
13043 md_number_to_chars (buf, insn, 4);
13044 buf += 4;
13045
13046 md_number_to_chars (buf, 0, 4);
13047 buf += 4;
13048 }
13049
13050 uncond:
13051 if (mips_pic == NO_PIC)
13052 {
13053 /* j or jal. */
13054 insn = (RELAX_BRANCH_LINK (fragp->fr_subtype)
13055 ? 0x0c000000 : 0x08000000);
13056 exp.X_op = O_symbol;
13057 exp.X_add_symbol = fragp->fr_symbol;
13058 exp.X_add_number = fragp->fr_offset;
13059
13060 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
13061 4, &exp, 0, BFD_RELOC_MIPS_JMP);
13062 fixp->fx_file = fragp->fr_file;
13063 fixp->fx_line = fragp->fr_line;
13064
13065 md_number_to_chars (buf, insn, 4);
13066 buf += 4;
13067 }
13068 else
13069 {
13070 /* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
13071 insn = HAVE_64BIT_ADDRESSES ? 0xdf810000 : 0x8f810000;
13072 exp.X_op = O_symbol;
13073 exp.X_add_symbol = fragp->fr_symbol;
13074 exp.X_add_number = fragp->fr_offset;
13075
13076 if (fragp->fr_offset)
13077 {
13078 exp.X_add_symbol = make_expr_symbol (&exp);
13079 exp.X_add_number = 0;
13080 }
13081
13082 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
13083 4, &exp, 0, BFD_RELOC_MIPS_GOT16);
13084 fixp->fx_file = fragp->fr_file;
13085 fixp->fx_line = fragp->fr_line;
13086
13087 md_number_to_chars (buf, insn, 4);
13088 buf += 4;
13089
13090 if (mips_opts.isa == ISA_MIPS1)
13091 {
13092 /* nop */
13093 md_number_to_chars (buf, 0, 4);
13094 buf += 4;
13095 }
13096
13097 /* d/addiu $at, $at, <sym> R_MIPS_LO16 */
13098 insn = HAVE_64BIT_ADDRESSES ? 0x64210000 : 0x24210000;
13099
13100 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
13101 4, &exp, 0, BFD_RELOC_LO16);
13102 fixp->fx_file = fragp->fr_file;
13103 fixp->fx_line = fragp->fr_line;
13104
13105 md_number_to_chars (buf, insn, 4);
13106 buf += 4;
13107
13108 /* j(al)r $at. */
13109 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
13110 insn = 0x0020f809;
13111 else
13112 insn = 0x00200008;
13113
13114 md_number_to_chars (buf, insn, 4);
13115 buf += 4;
13116 }
13117 }
13118
13119 assert (buf == (bfd_byte *)fragp->fr_literal
13120 + fragp->fr_fix + fragp->fr_var);
13121
13122 fragp->fr_fix += fragp->fr_var;
13123
13124 return;
13125 }
13126
13127 if (RELAX_MIPS16_P (fragp->fr_subtype))
13128 {
13129 int type;
13130 register const struct mips16_immed_operand *op;
13131 bfd_boolean small, ext;
13132 offsetT val;
13133 bfd_byte *buf;
13134 unsigned long insn;
13135 bfd_boolean use_extend;
13136 unsigned short extend;
13137
13138 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
13139 op = mips16_immed_operands;
13140 while (op->type != type)
13141 ++op;
13142
13143 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
13144 {
13145 small = FALSE;
13146 ext = TRUE;
13147 }
13148 else
13149 {
13150 small = TRUE;
13151 ext = FALSE;
13152 }
13153
13154 resolve_symbol_value (fragp->fr_symbol);
13155 val = S_GET_VALUE (fragp->fr_symbol);
13156 if (op->pcrel)
13157 {
13158 addressT addr;
13159
13160 addr = fragp->fr_address + fragp->fr_fix;
13161
13162 /* The rules for the base address of a PC relative reloc are
13163 complicated; see mips16_extended_frag. */
13164 if (type == 'p' || type == 'q')
13165 {
13166 addr += 2;
13167 if (ext)
13168 addr += 2;
13169 /* Ignore the low bit in the target, since it will be
13170 set for a text label. */
13171 if ((val & 1) != 0)
13172 --val;
13173 }
13174 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
13175 addr -= 4;
13176 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
13177 addr -= 2;
13178
13179 addr &= ~ (addressT) ((1 << op->shift) - 1);
13180 val -= addr;
13181
13182 /* Make sure the section winds up with the alignment we have
13183 assumed. */
13184 if (op->shift > 0)
13185 record_alignment (asec, op->shift);
13186 }
13187
13188 if (ext
13189 && (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)
13190 || RELAX_MIPS16_DSLOT (fragp->fr_subtype)))
13191 as_warn_where (fragp->fr_file, fragp->fr_line,
13192 _("extended instruction in delay slot"));
13193
13194 buf = (bfd_byte *) (fragp->fr_literal + fragp->fr_fix);
13195
13196 if (target_big_endian)
13197 insn = bfd_getb16 (buf);
13198 else
13199 insn = bfd_getl16 (buf);
13200
13201 mips16_immed (fragp->fr_file, fragp->fr_line, type, val,
13202 RELAX_MIPS16_USER_EXT (fragp->fr_subtype),
13203 small, ext, &insn, &use_extend, &extend);
13204
13205 if (use_extend)
13206 {
13207 md_number_to_chars (buf, 0xf000 | extend, 2);
13208 fragp->fr_fix += 2;
13209 buf += 2;
13210 }
13211
13212 md_number_to_chars (buf, insn, 2);
13213 fragp->fr_fix += 2;
13214 buf += 2;
13215 }
13216 else
13217 {
13218 int first, second;
13219 fixS *fixp;
13220
13221 first = RELAX_FIRST (fragp->fr_subtype);
13222 second = RELAX_SECOND (fragp->fr_subtype);
13223 fixp = (fixS *) fragp->fr_opcode;
13224
13225 /* Possibly emit a warning if we've chosen the longer option. */
13226 if (((fragp->fr_subtype & RELAX_USE_SECOND) != 0)
13227 == ((fragp->fr_subtype & RELAX_SECOND_LONGER) != 0))
13228 {
13229 const char *msg = macro_warning (fragp->fr_subtype);
13230 if (msg != 0)
13231 as_warn_where (fragp->fr_file, fragp->fr_line, msg);
13232 }
13233
13234 /* Go through all the fixups for the first sequence. Disable them
13235 (by marking them as done) if we're going to use the second
13236 sequence instead. */
13237 while (fixp
13238 && fixp->fx_frag == fragp
13239 && fixp->fx_where < fragp->fr_fix - second)
13240 {
13241 if (fragp->fr_subtype & RELAX_USE_SECOND)
13242 fixp->fx_done = 1;
13243 fixp = fixp->fx_next;
13244 }
13245
13246 /* Go through the fixups for the second sequence. Disable them if
13247 we're going to use the first sequence, otherwise adjust their
13248 addresses to account for the relaxation. */
13249 while (fixp && fixp->fx_frag == fragp)
13250 {
13251 if (fragp->fr_subtype & RELAX_USE_SECOND)
13252 fixp->fx_where -= first;
13253 else
13254 fixp->fx_done = 1;
13255 fixp = fixp->fx_next;
13256 }
13257
13258 /* Now modify the frag contents. */
13259 if (fragp->fr_subtype & RELAX_USE_SECOND)
13260 {
13261 char *start;
13262
13263 start = fragp->fr_literal + fragp->fr_fix - first - second;
13264 memmove (start, start + first, second);
13265 fragp->fr_fix -= first;
13266 }
13267 else
13268 fragp->fr_fix -= second;
13269 }
13270 }
13271
13272 #ifdef OBJ_ELF
13273
13274 /* This function is called after the relocs have been generated.
13275 We've been storing mips16 text labels as odd. Here we convert them
13276 back to even for the convenience of the debugger. */
13277
13278 void
13279 mips_frob_file_after_relocs (void)
13280 {
13281 asymbol **syms;
13282 unsigned int count, i;
13283
13284 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
13285 return;
13286
13287 syms = bfd_get_outsymbols (stdoutput);
13288 count = bfd_get_symcount (stdoutput);
13289 for (i = 0; i < count; i++, syms++)
13290 {
13291 if (elf_symbol (*syms)->internal_elf_sym.st_other == STO_MIPS16
13292 && ((*syms)->value & 1) != 0)
13293 {
13294 (*syms)->value &= ~1;
13295 /* If the symbol has an odd size, it was probably computed
13296 incorrectly, so adjust that as well. */
13297 if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0)
13298 ++elf_symbol (*syms)->internal_elf_sym.st_size;
13299 }
13300 }
13301 }
13302
13303 #endif
13304
13305 /* This function is called whenever a label is defined. It is used
13306 when handling branch delays; if a branch has a label, we assume we
13307 can not move it. */
13308
13309 void
13310 mips_define_label (symbolS *sym)
13311 {
13312 struct insn_label_list *l;
13313
13314 if (free_insn_labels == NULL)
13315 l = (struct insn_label_list *) xmalloc (sizeof *l);
13316 else
13317 {
13318 l = free_insn_labels;
13319 free_insn_labels = l->next;
13320 }
13321
13322 l->label = sym;
13323 l->next = insn_labels;
13324 insn_labels = l;
13325 }
13326 \f
13327 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13328
13329 /* Some special processing for a MIPS ELF file. */
13330
13331 void
13332 mips_elf_final_processing (void)
13333 {
13334 /* Write out the register information. */
13335 if (mips_abi != N64_ABI)
13336 {
13337 Elf32_RegInfo s;
13338
13339 s.ri_gprmask = mips_gprmask;
13340 s.ri_cprmask[0] = mips_cprmask[0];
13341 s.ri_cprmask[1] = mips_cprmask[1];
13342 s.ri_cprmask[2] = mips_cprmask[2];
13343 s.ri_cprmask[3] = mips_cprmask[3];
13344 /* The gp_value field is set by the MIPS ELF backend. */
13345
13346 bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
13347 ((Elf32_External_RegInfo *)
13348 mips_regmask_frag));
13349 }
13350 else
13351 {
13352 Elf64_Internal_RegInfo s;
13353
13354 s.ri_gprmask = mips_gprmask;
13355 s.ri_pad = 0;
13356 s.ri_cprmask[0] = mips_cprmask[0];
13357 s.ri_cprmask[1] = mips_cprmask[1];
13358 s.ri_cprmask[2] = mips_cprmask[2];
13359 s.ri_cprmask[3] = mips_cprmask[3];
13360 /* The gp_value field is set by the MIPS ELF backend. */
13361
13362 bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
13363 ((Elf64_External_RegInfo *)
13364 mips_regmask_frag));
13365 }
13366
13367 /* Set the MIPS ELF flag bits. FIXME: There should probably be some
13368 sort of BFD interface for this. */
13369 if (mips_any_noreorder)
13370 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
13371 if (mips_pic != NO_PIC)
13372 {
13373 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
13374 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
13375 }
13376 if (mips_abicalls)
13377 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
13378
13379 /* Set MIPS ELF flags for ASEs. */
13380 if (file_ase_mips16)
13381 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16;
13382 #if 0 /* XXX FIXME */
13383 if (file_ase_mips3d)
13384 elf_elfheader (stdoutput)->e_flags |= ???;
13385 #endif
13386 if (file_ase_mdmx)
13387 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX;
13388
13389 /* Set the MIPS ELF ABI flags. */
13390 if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32)
13391 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32;
13392 else if (mips_abi == O64_ABI)
13393 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64;
13394 else if (mips_abi == EABI_ABI)
13395 {
13396 if (!file_mips_gp32)
13397 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64;
13398 else
13399 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32;
13400 }
13401 else if (mips_abi == N32_ABI)
13402 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ABI2;
13403
13404 /* Nothing to do for N64_ABI. */
13405
13406 if (mips_32bitmode)
13407 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE;
13408 }
13409
13410 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
13411 \f
13412 typedef struct proc {
13413 symbolS *isym;
13414 unsigned long reg_mask;
13415 unsigned long reg_offset;
13416 unsigned long fpreg_mask;
13417 unsigned long fpreg_offset;
13418 unsigned long frame_offset;
13419 unsigned long frame_reg;
13420 unsigned long pc_reg;
13421 } procS;
13422
13423 static procS cur_proc;
13424 static procS *cur_proc_ptr;
13425 static int numprocs;
13426
13427 /* Fill in an rs_align_code fragment. */
13428
13429 void
13430 mips_handle_align (fragS *fragp)
13431 {
13432 if (fragp->fr_type != rs_align_code)
13433 return;
13434
13435 if (mips_opts.mips16)
13436 {
13437 static const unsigned char be_nop[] = { 0x65, 0x00 };
13438 static const unsigned char le_nop[] = { 0x00, 0x65 };
13439
13440 int bytes;
13441 char *p;
13442
13443 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
13444 p = fragp->fr_literal + fragp->fr_fix;
13445
13446 if (bytes & 1)
13447 {
13448 *p++ = 0;
13449 fragp->fr_fix++;
13450 }
13451
13452 memcpy (p, (target_big_endian ? be_nop : le_nop), 2);
13453 fragp->fr_var = 2;
13454 }
13455
13456 /* For mips32, a nop is a zero, which we trivially get by doing nothing. */
13457 }
13458
13459 static void
13460 md_obj_begin (void)
13461 {
13462 }
13463
13464 static void
13465 md_obj_end (void)
13466 {
13467 /* check for premature end, nesting errors, etc */
13468 if (cur_proc_ptr)
13469 as_warn (_("missing .end at end of assembly"));
13470 }
13471
13472 static long
13473 get_number (void)
13474 {
13475 int negative = 0;
13476 long val = 0;
13477
13478 if (*input_line_pointer == '-')
13479 {
13480 ++input_line_pointer;
13481 negative = 1;
13482 }
13483 if (!ISDIGIT (*input_line_pointer))
13484 as_bad (_("expected simple number"));
13485 if (input_line_pointer[0] == '0')
13486 {
13487 if (input_line_pointer[1] == 'x')
13488 {
13489 input_line_pointer += 2;
13490 while (ISXDIGIT (*input_line_pointer))
13491 {
13492 val <<= 4;
13493 val |= hex_value (*input_line_pointer++);
13494 }
13495 return negative ? -val : val;
13496 }
13497 else
13498 {
13499 ++input_line_pointer;
13500 while (ISDIGIT (*input_line_pointer))
13501 {
13502 val <<= 3;
13503 val |= *input_line_pointer++ - '0';
13504 }
13505 return negative ? -val : val;
13506 }
13507 }
13508 if (!ISDIGIT (*input_line_pointer))
13509 {
13510 printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
13511 *input_line_pointer, *input_line_pointer);
13512 as_warn (_("invalid number"));
13513 return -1;
13514 }
13515 while (ISDIGIT (*input_line_pointer))
13516 {
13517 val *= 10;
13518 val += *input_line_pointer++ - '0';
13519 }
13520 return negative ? -val : val;
13521 }
13522
13523 /* The .file directive; just like the usual .file directive, but there
13524 is an initial number which is the ECOFF file index. In the non-ECOFF
13525 case .file implies DWARF-2. */
13526
13527 static void
13528 s_mips_file (int x ATTRIBUTE_UNUSED)
13529 {
13530 static int first_file_directive = 0;
13531
13532 if (ECOFF_DEBUGGING)
13533 {
13534 get_number ();
13535 s_app_file (0);
13536 }
13537 else
13538 {
13539 char *filename;
13540
13541 filename = dwarf2_directive_file (0);
13542
13543 /* Versions of GCC up to 3.1 start files with a ".file"
13544 directive even for stabs output. Make sure that this
13545 ".file" is handled. Note that you need a version of GCC
13546 after 3.1 in order to support DWARF-2 on MIPS. */
13547 if (filename != NULL && ! first_file_directive)
13548 {
13549 (void) new_logical_line (filename, -1);
13550 s_app_file_string (filename, 0);
13551 }
13552 first_file_directive = 1;
13553 }
13554 }
13555
13556 /* The .loc directive, implying DWARF-2. */
13557
13558 static void
13559 s_mips_loc (int x ATTRIBUTE_UNUSED)
13560 {
13561 if (!ECOFF_DEBUGGING)
13562 dwarf2_directive_loc (0);
13563 }
13564
13565 /* The .end directive. */
13566
13567 static void
13568 s_mips_end (int x ATTRIBUTE_UNUSED)
13569 {
13570 symbolS *p;
13571
13572 /* Following functions need their own .frame and .cprestore directives. */
13573 mips_frame_reg_valid = 0;
13574 mips_cprestore_valid = 0;
13575
13576 if (!is_end_of_line[(unsigned char) *input_line_pointer])
13577 {
13578 p = get_symbol ();
13579 demand_empty_rest_of_line ();
13580 }
13581 else
13582 p = NULL;
13583
13584 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
13585 as_warn (_(".end not in text section"));
13586
13587 if (!cur_proc_ptr)
13588 {
13589 as_warn (_(".end directive without a preceding .ent directive."));
13590 demand_empty_rest_of_line ();
13591 return;
13592 }
13593
13594 if (p != NULL)
13595 {
13596 assert (S_GET_NAME (p));
13597 if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->isym)))
13598 as_warn (_(".end symbol does not match .ent symbol."));
13599
13600 if (debug_type == DEBUG_STABS)
13601 stabs_generate_asm_endfunc (S_GET_NAME (p),
13602 S_GET_NAME (p));
13603 }
13604 else
13605 as_warn (_(".end directive missing or unknown symbol"));
13606
13607 #ifdef OBJ_ELF
13608 /* Generate a .pdr section. */
13609 if (OUTPUT_FLAVOR == bfd_target_elf_flavour && ! ECOFF_DEBUGGING
13610 && mips_flag_pdr)
13611 {
13612 segT saved_seg = now_seg;
13613 subsegT saved_subseg = now_subseg;
13614 valueT dot;
13615 expressionS exp;
13616 char *fragp;
13617
13618 dot = frag_now_fix ();
13619
13620 #ifdef md_flush_pending_output
13621 md_flush_pending_output ();
13622 #endif
13623
13624 assert (pdr_seg);
13625 subseg_set (pdr_seg, 0);
13626
13627 /* Write the symbol. */
13628 exp.X_op = O_symbol;
13629 exp.X_add_symbol = p;
13630 exp.X_add_number = 0;
13631 emit_expr (&exp, 4);
13632
13633 fragp = frag_more (7 * 4);
13634
13635 md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4);
13636 md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4);
13637 md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4);
13638 md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4);
13639 md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4);
13640 md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4);
13641 md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4);
13642
13643 subseg_set (saved_seg, saved_subseg);
13644 }
13645 #endif /* OBJ_ELF */
13646
13647 cur_proc_ptr = NULL;
13648 }
13649
13650 /* The .aent and .ent directives. */
13651
13652 static void
13653 s_mips_ent (int aent)
13654 {
13655 symbolS *symbolP;
13656
13657 symbolP = get_symbol ();
13658 if (*input_line_pointer == ',')
13659 ++input_line_pointer;
13660 SKIP_WHITESPACE ();
13661 if (ISDIGIT (*input_line_pointer)
13662 || *input_line_pointer == '-')
13663 get_number ();
13664
13665 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
13666 as_warn (_(".ent or .aent not in text section."));
13667
13668 if (!aent && cur_proc_ptr)
13669 as_warn (_("missing .end"));
13670
13671 if (!aent)
13672 {
13673 /* This function needs its own .frame and .cprestore directives. */
13674 mips_frame_reg_valid = 0;
13675 mips_cprestore_valid = 0;
13676
13677 cur_proc_ptr = &cur_proc;
13678 memset (cur_proc_ptr, '\0', sizeof (procS));
13679
13680 cur_proc_ptr->isym = symbolP;
13681
13682 symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
13683
13684 ++numprocs;
13685
13686 if (debug_type == DEBUG_STABS)
13687 stabs_generate_asm_func (S_GET_NAME (symbolP),
13688 S_GET_NAME (symbolP));
13689 }
13690
13691 demand_empty_rest_of_line ();
13692 }
13693
13694 /* The .frame directive. If the mdebug section is present (IRIX 5 native)
13695 then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
13696 s_mips_frame is used so that we can set the PDR information correctly.
13697 We can't use the ecoff routines because they make reference to the ecoff
13698 symbol table (in the mdebug section). */
13699
13700 static void
13701 s_mips_frame (int ignore ATTRIBUTE_UNUSED)
13702 {
13703 #ifdef OBJ_ELF
13704 if (OUTPUT_FLAVOR == bfd_target_elf_flavour && ! ECOFF_DEBUGGING)
13705 {
13706 long val;
13707
13708 if (cur_proc_ptr == (procS *) NULL)
13709 {
13710 as_warn (_(".frame outside of .ent"));
13711 demand_empty_rest_of_line ();
13712 return;
13713 }
13714
13715 cur_proc_ptr->frame_reg = tc_get_register (1);
13716
13717 SKIP_WHITESPACE ();
13718 if (*input_line_pointer++ != ','
13719 || get_absolute_expression_and_terminator (&val) != ',')
13720 {
13721 as_warn (_("Bad .frame directive"));
13722 --input_line_pointer;
13723 demand_empty_rest_of_line ();
13724 return;
13725 }
13726
13727 cur_proc_ptr->frame_offset = val;
13728 cur_proc_ptr->pc_reg = tc_get_register (0);
13729
13730 demand_empty_rest_of_line ();
13731 }
13732 else
13733 #endif /* OBJ_ELF */
13734 s_ignore (ignore);
13735 }
13736
13737 /* The .fmask and .mask directives. If the mdebug section is present
13738 (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
13739 embedded targets, s_mips_mask is used so that we can set the PDR
13740 information correctly. We can't use the ecoff routines because they
13741 make reference to the ecoff symbol table (in the mdebug section). */
13742
13743 static void
13744 s_mips_mask (int reg_type)
13745 {
13746 #ifdef OBJ_ELF
13747 if (OUTPUT_FLAVOR == bfd_target_elf_flavour && ! ECOFF_DEBUGGING)
13748 {
13749 long mask, off;
13750
13751 if (cur_proc_ptr == (procS *) NULL)
13752 {
13753 as_warn (_(".mask/.fmask outside of .ent"));
13754 demand_empty_rest_of_line ();
13755 return;
13756 }
13757
13758 if (get_absolute_expression_and_terminator (&mask) != ',')
13759 {
13760 as_warn (_("Bad .mask/.fmask directive"));
13761 --input_line_pointer;
13762 demand_empty_rest_of_line ();
13763 return;
13764 }
13765
13766 off = get_absolute_expression ();
13767
13768 if (reg_type == 'F')
13769 {
13770 cur_proc_ptr->fpreg_mask = mask;
13771 cur_proc_ptr->fpreg_offset = off;
13772 }
13773 else
13774 {
13775 cur_proc_ptr->reg_mask = mask;
13776 cur_proc_ptr->reg_offset = off;
13777 }
13778
13779 demand_empty_rest_of_line ();
13780 }
13781 else
13782 #endif /* OBJ_ELF */
13783 s_ignore (reg_type);
13784 }
13785
13786 /* A table describing all the processors gas knows about. Names are
13787 matched in the order listed.
13788
13789 To ease comparison, please keep this table in the same order as
13790 gcc's mips_cpu_info_table[]. */
13791 static const struct mips_cpu_info mips_cpu_info_table[] =
13792 {
13793 /* Entries for generic ISAs */
13794 { "mips1", 1, ISA_MIPS1, CPU_R3000 },
13795 { "mips2", 1, ISA_MIPS2, CPU_R6000 },
13796 { "mips3", 1, ISA_MIPS3, CPU_R4000 },
13797 { "mips4", 1, ISA_MIPS4, CPU_R8000 },
13798 { "mips5", 1, ISA_MIPS5, CPU_MIPS5 },
13799 { "mips32", 1, ISA_MIPS32, CPU_MIPS32 },
13800 { "mips32r2", 1, ISA_MIPS32R2, CPU_MIPS32R2 },
13801 { "mips64", 1, ISA_MIPS64, CPU_MIPS64 },
13802 { "mips64r2", 1, ISA_MIPS64R2, CPU_MIPS64R2 },
13803
13804 /* MIPS I */
13805 { "r3000", 0, ISA_MIPS1, CPU_R3000 },
13806 { "r2000", 0, ISA_MIPS1, CPU_R3000 },
13807 { "r3900", 0, ISA_MIPS1, CPU_R3900 },
13808
13809 /* MIPS II */
13810 { "r6000", 0, ISA_MIPS2, CPU_R6000 },
13811
13812 /* MIPS III */
13813 { "r4000", 0, ISA_MIPS3, CPU_R4000 },
13814 { "r4010", 0, ISA_MIPS2, CPU_R4010 },
13815 { "vr4100", 0, ISA_MIPS3, CPU_VR4100 },
13816 { "vr4111", 0, ISA_MIPS3, CPU_R4111 },
13817 { "vr4120", 0, ISA_MIPS3, CPU_VR4120 },
13818 { "vr4130", 0, ISA_MIPS3, CPU_VR4120 },
13819 { "vr4181", 0, ISA_MIPS3, CPU_R4111 },
13820 { "vr4300", 0, ISA_MIPS3, CPU_R4300 },
13821 { "r4400", 0, ISA_MIPS3, CPU_R4400 },
13822 { "r4600", 0, ISA_MIPS3, CPU_R4600 },
13823 { "orion", 0, ISA_MIPS3, CPU_R4600 },
13824 { "r4650", 0, ISA_MIPS3, CPU_R4650 },
13825
13826 /* MIPS IV */
13827 { "r8000", 0, ISA_MIPS4, CPU_R8000 },
13828 { "r10000", 0, ISA_MIPS4, CPU_R10000 },
13829 { "r12000", 0, ISA_MIPS4, CPU_R12000 },
13830 { "vr5000", 0, ISA_MIPS4, CPU_R5000 },
13831 { "vr5400", 0, ISA_MIPS4, CPU_VR5400 },
13832 { "vr5500", 0, ISA_MIPS4, CPU_VR5500 },
13833 { "rm5200", 0, ISA_MIPS4, CPU_R5000 },
13834 { "rm5230", 0, ISA_MIPS4, CPU_R5000 },
13835 { "rm5231", 0, ISA_MIPS4, CPU_R5000 },
13836 { "rm5261", 0, ISA_MIPS4, CPU_R5000 },
13837 { "rm5721", 0, ISA_MIPS4, CPU_R5000 },
13838 { "rm7000", 0, ISA_MIPS4, CPU_RM7000 },
13839 { "rm9000", 0, ISA_MIPS4, CPU_RM9000 },
13840
13841 /* MIPS 32 */
13842 { "4kc", 0, ISA_MIPS32, CPU_MIPS32 },
13843 { "4km", 0, ISA_MIPS32, CPU_MIPS32 },
13844 { "4kp", 0, ISA_MIPS32, CPU_MIPS32 },
13845
13846 /* MIPS 64 */
13847 { "5kc", 0, ISA_MIPS64, CPU_MIPS64 },
13848 { "20kc", 0, ISA_MIPS64, CPU_MIPS64 },
13849
13850 /* Broadcom SB-1 CPU core */
13851 { "sb1", 0, ISA_MIPS64, CPU_SB1 },
13852
13853 /* End marker */
13854 { NULL, 0, 0, 0 }
13855 };
13856
13857
13858 /* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
13859 with a final "000" replaced by "k". Ignore case.
13860
13861 Note: this function is shared between GCC and GAS. */
13862
13863 static bfd_boolean
13864 mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
13865 {
13866 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
13867 given++, canonical++;
13868
13869 return ((*given == 0 && *canonical == 0)
13870 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
13871 }
13872
13873
13874 /* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
13875 CPU name. We've traditionally allowed a lot of variation here.
13876
13877 Note: this function is shared between GCC and GAS. */
13878
13879 static bfd_boolean
13880 mips_matching_cpu_name_p (const char *canonical, const char *given)
13881 {
13882 /* First see if the name matches exactly, or with a final "000"
13883 turned into "k". */
13884 if (mips_strict_matching_cpu_name_p (canonical, given))
13885 return TRUE;
13886
13887 /* If not, try comparing based on numerical designation alone.
13888 See if GIVEN is an unadorned number, or 'r' followed by a number. */
13889 if (TOLOWER (*given) == 'r')
13890 given++;
13891 if (!ISDIGIT (*given))
13892 return FALSE;
13893
13894 /* Skip over some well-known prefixes in the canonical name,
13895 hoping to find a number there too. */
13896 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
13897 canonical += 2;
13898 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
13899 canonical += 2;
13900 else if (TOLOWER (canonical[0]) == 'r')
13901 canonical += 1;
13902
13903 return mips_strict_matching_cpu_name_p (canonical, given);
13904 }
13905
13906
13907 /* Parse an option that takes the name of a processor as its argument.
13908 OPTION is the name of the option and CPU_STRING is the argument.
13909 Return the corresponding processor enumeration if the CPU_STRING is
13910 recognized, otherwise report an error and return null.
13911
13912 A similar function exists in GCC. */
13913
13914 static const struct mips_cpu_info *
13915 mips_parse_cpu (const char *option, const char *cpu_string)
13916 {
13917 const struct mips_cpu_info *p;
13918
13919 /* 'from-abi' selects the most compatible architecture for the given
13920 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
13921 EABIs, we have to decide whether we're using the 32-bit or 64-bit
13922 version. Look first at the -mgp options, if given, otherwise base
13923 the choice on MIPS_DEFAULT_64BIT.
13924
13925 Treat NO_ABI like the EABIs. One reason to do this is that the
13926 plain 'mips' and 'mips64' configs have 'from-abi' as their default
13927 architecture. This code picks MIPS I for 'mips' and MIPS III for
13928 'mips64', just as we did in the days before 'from-abi'. */
13929 if (strcasecmp (cpu_string, "from-abi") == 0)
13930 {
13931 if (ABI_NEEDS_32BIT_REGS (mips_abi))
13932 return mips_cpu_info_from_isa (ISA_MIPS1);
13933
13934 if (ABI_NEEDS_64BIT_REGS (mips_abi))
13935 return mips_cpu_info_from_isa (ISA_MIPS3);
13936
13937 if (file_mips_gp32 >= 0)
13938 return mips_cpu_info_from_isa (file_mips_gp32 ? ISA_MIPS1 : ISA_MIPS3);
13939
13940 return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
13941 ? ISA_MIPS3
13942 : ISA_MIPS1);
13943 }
13944
13945 /* 'default' has traditionally been a no-op. Probably not very useful. */
13946 if (strcasecmp (cpu_string, "default") == 0)
13947 return 0;
13948
13949 for (p = mips_cpu_info_table; p->name != 0; p++)
13950 if (mips_matching_cpu_name_p (p->name, cpu_string))
13951 return p;
13952
13953 as_bad ("Bad value (%s) for %s", cpu_string, option);
13954 return 0;
13955 }
13956
13957 /* Return the canonical processor information for ISA (a member of the
13958 ISA_MIPS* enumeration). */
13959
13960 static const struct mips_cpu_info *
13961 mips_cpu_info_from_isa (int isa)
13962 {
13963 int i;
13964
13965 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
13966 if (mips_cpu_info_table[i].is_isa
13967 && isa == mips_cpu_info_table[i].isa)
13968 return (&mips_cpu_info_table[i]);
13969
13970 return NULL;
13971 }
13972
13973 static const struct mips_cpu_info *
13974 mips_cpu_info_from_arch (int arch)
13975 {
13976 int i;
13977
13978 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
13979 if (arch == mips_cpu_info_table[i].cpu)
13980 return (&mips_cpu_info_table[i]);
13981
13982 return NULL;
13983 }
13984 \f
13985 static void
13986 show (FILE *stream, const char *string, int *col_p, int *first_p)
13987 {
13988 if (*first_p)
13989 {
13990 fprintf (stream, "%24s", "");
13991 *col_p = 24;
13992 }
13993 else
13994 {
13995 fprintf (stream, ", ");
13996 *col_p += 2;
13997 }
13998
13999 if (*col_p + strlen (string) > 72)
14000 {
14001 fprintf (stream, "\n%24s", "");
14002 *col_p = 24;
14003 }
14004
14005 fprintf (stream, "%s", string);
14006 *col_p += strlen (string);
14007
14008 *first_p = 0;
14009 }
14010
14011 void
14012 md_show_usage (FILE *stream)
14013 {
14014 int column, first;
14015 size_t i;
14016
14017 fprintf (stream, _("\
14018 MIPS options:\n\
14019 -EB generate big endian output\n\
14020 -EL generate little endian output\n\
14021 -g, -g2 do not remove unneeded NOPs or swap branches\n\
14022 -G NUM allow referencing objects up to NUM bytes\n\
14023 implicitly with the gp register [default 8]\n"));
14024 fprintf (stream, _("\
14025 -mips1 generate MIPS ISA I instructions\n\
14026 -mips2 generate MIPS ISA II instructions\n\
14027 -mips3 generate MIPS ISA III instructions\n\
14028 -mips4 generate MIPS ISA IV instructions\n\
14029 -mips5 generate MIPS ISA V instructions\n\
14030 -mips32 generate MIPS32 ISA instructions\n\
14031 -mips32r2 generate MIPS32 release 2 ISA instructions\n\
14032 -mips64 generate MIPS64 ISA instructions\n\
14033 -mips64r2 generate MIPS64 release 2 ISA instructions\n\
14034 -march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
14035
14036 first = 1;
14037
14038 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
14039 show (stream, mips_cpu_info_table[i].name, &column, &first);
14040 show (stream, "from-abi", &column, &first);
14041 fputc ('\n', stream);
14042
14043 fprintf (stream, _("\
14044 -mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
14045 -no-mCPU don't generate code specific to CPU.\n\
14046 For -mCPU and -no-mCPU, CPU must be one of:\n"));
14047
14048 first = 1;
14049
14050 show (stream, "3900", &column, &first);
14051 show (stream, "4010", &column, &first);
14052 show (stream, "4100", &column, &first);
14053 show (stream, "4650", &column, &first);
14054 fputc ('\n', stream);
14055
14056 fprintf (stream, _("\
14057 -mips16 generate mips16 instructions\n\
14058 -no-mips16 do not generate mips16 instructions\n"));
14059 fprintf (stream, _("\
14060 -mfix-vr4120 work around certain VR4120 errata\n\
14061 -mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
14062 -mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
14063 -O0 remove unneeded NOPs, do not swap branches\n\
14064 -O remove unneeded NOPs and swap branches\n\
14065 --[no-]construct-floats [dis]allow floating point values to be constructed\n\
14066 --trap, --no-break trap exception on div by 0 and mult overflow\n\
14067 --break, --no-trap break exception on div by 0 and mult overflow\n"));
14068 #ifdef OBJ_ELF
14069 fprintf (stream, _("\
14070 -KPIC, -call_shared generate SVR4 position independent code\n\
14071 -non_shared do not generate position independent code\n\
14072 -xgot assume a 32 bit GOT\n\
14073 -mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
14074 -mabi=ABI create ABI conformant object file for:\n"));
14075
14076 first = 1;
14077
14078 show (stream, "32", &column, &first);
14079 show (stream, "o64", &column, &first);
14080 show (stream, "n32", &column, &first);
14081 show (stream, "64", &column, &first);
14082 show (stream, "eabi", &column, &first);
14083
14084 fputc ('\n', stream);
14085
14086 fprintf (stream, _("\
14087 -32 create o32 ABI object file (default)\n\
14088 -n32 create n32 ABI object file\n\
14089 -64 create 64 ABI object file\n"));
14090 #endif
14091 }
14092
14093 enum dwarf2_format
14094 mips_dwarf2_format (void)
14095 {
14096 if (mips_abi == N64_ABI)
14097 {
14098 #ifdef TE_IRIX
14099 return dwarf2_format_64bit_irix;
14100 #else
14101 return dwarf2_format_64bit;
14102 #endif
14103 }
14104 else
14105 return dwarf2_format_32bit;
14106 }
14107
14108 int
14109 mips_dwarf2_addr_size (void)
14110 {
14111 if (mips_abi == N64_ABI)
14112 return 8;
14113 else
14114 return 4;
14115 }
This page took 0.322492 seconds and 5 git commands to generate.