opcodes/
[deliverable/binutils-gdb.git] / gas / config / tc-mips.c
1 /* tc-mips.c -- assemble code for a MIPS chip.
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5 Contributed by the OSF and Ralph Campbell.
6 Written by Keith Knowles and Ralph Campbell, working independently.
7 Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
8 Support.
9
10 This file is part of GAS.
11
12 GAS is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 3, or (at your option)
15 any later version.
16
17 GAS is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with GAS; see the file COPYING. If not, write to the Free
24 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
25 02110-1301, USA. */
26
27 #include "as.h"
28 #include "config.h"
29 #include "subsegs.h"
30 #include "safe-ctype.h"
31
32 #include "opcode/mips.h"
33 #include "itbl-ops.h"
34 #include "dwarf2dbg.h"
35 #include "dw2gencfi.h"
36
37 #ifdef DEBUG
38 #define DBG(x) printf x
39 #else
40 #define DBG(x)
41 #endif
42
43 #ifdef OBJ_MAYBE_ELF
44 /* Clean up namespace so we can include obj-elf.h too. */
45 static int mips_output_flavor (void);
46 static int mips_output_flavor (void) { return OUTPUT_FLAVOR; }
47 #undef OBJ_PROCESS_STAB
48 #undef OUTPUT_FLAVOR
49 #undef S_GET_ALIGN
50 #undef S_GET_SIZE
51 #undef S_SET_ALIGN
52 #undef S_SET_SIZE
53 #undef obj_frob_file
54 #undef obj_frob_file_after_relocs
55 #undef obj_frob_symbol
56 #undef obj_pop_insert
57 #undef obj_sec_sym_ok_for_reloc
58 #undef OBJ_COPY_SYMBOL_ATTRIBUTES
59
60 #include "obj-elf.h"
61 /* Fix any of them that we actually care about. */
62 #undef OUTPUT_FLAVOR
63 #define OUTPUT_FLAVOR mips_output_flavor()
64 #endif
65
66 #if defined (OBJ_ELF)
67 #include "elf/mips.h"
68 #endif
69
70 #ifndef ECOFF_DEBUGGING
71 #define NO_ECOFF_DEBUGGING
72 #define ECOFF_DEBUGGING 0
73 #endif
74
75 int mips_flag_mdebug = -1;
76
77 /* Control generation of .pdr sections. Off by default on IRIX: the native
78 linker doesn't know about and discards them, but relocations against them
79 remain, leading to rld crashes. */
80 #ifdef TE_IRIX
81 int mips_flag_pdr = FALSE;
82 #else
83 int mips_flag_pdr = TRUE;
84 #endif
85
86 #include "ecoff.h"
87
88 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
89 static char *mips_regmask_frag;
90 #endif
91
92 #define ZERO 0
93 #define ATREG 1
94 #define TREG 24
95 #define PIC_CALL_REG 25
96 #define KT0 26
97 #define KT1 27
98 #define GP 28
99 #define SP 29
100 #define FP 30
101 #define RA 31
102
103 #define ILLEGAL_REG (32)
104
105 #define AT mips_opts.at
106
107 /* Allow override of standard little-endian ECOFF format. */
108
109 #ifndef ECOFF_LITTLE_FORMAT
110 #define ECOFF_LITTLE_FORMAT "ecoff-littlemips"
111 #endif
112
113 extern int target_big_endian;
114
115 /* The name of the readonly data section. */
116 #define RDATA_SECTION_NAME (OUTPUT_FLAVOR == bfd_target_ecoff_flavour \
117 ? ".rdata" \
118 : OUTPUT_FLAVOR == bfd_target_coff_flavour \
119 ? ".rdata" \
120 : OUTPUT_FLAVOR == bfd_target_elf_flavour \
121 ? ".rodata" \
122 : (abort (), ""))
123
124 /* Information about an instruction, including its format, operands
125 and fixups. */
126 struct mips_cl_insn
127 {
128 /* The opcode's entry in mips_opcodes or mips16_opcodes. */
129 const struct mips_opcode *insn_mo;
130
131 /* True if this is a mips16 instruction and if we want the extended
132 form of INSN_MO. */
133 bfd_boolean use_extend;
134
135 /* The 16-bit extension instruction to use when USE_EXTEND is true. */
136 unsigned short extend;
137
138 /* The 16-bit or 32-bit bitstring of the instruction itself. This is
139 a copy of INSN_MO->match with the operands filled in. */
140 unsigned long insn_opcode;
141
142 /* The frag that contains the instruction. */
143 struct frag *frag;
144
145 /* The offset into FRAG of the first instruction byte. */
146 long where;
147
148 /* The relocs associated with the instruction, if any. */
149 fixS *fixp[3];
150
151 /* True if this entry cannot be moved from its current position. */
152 unsigned int fixed_p : 1;
153
154 /* True if this instruction occurred in a .set noreorder block. */
155 unsigned int noreorder_p : 1;
156
157 /* True for mips16 instructions that jump to an absolute address. */
158 unsigned int mips16_absolute_jump_p : 1;
159 };
160
161 /* The ABI to use. */
162 enum mips_abi_level
163 {
164 NO_ABI = 0,
165 O32_ABI,
166 O64_ABI,
167 N32_ABI,
168 N64_ABI,
169 EABI_ABI
170 };
171
172 /* MIPS ABI we are using for this output file. */
173 static enum mips_abi_level mips_abi = NO_ABI;
174
175 /* Whether or not we have code that can call pic code. */
176 int mips_abicalls = FALSE;
177
178 /* Whether or not we have code which can be put into a shared
179 library. */
180 static bfd_boolean mips_in_shared = TRUE;
181
182 /* This is the set of options which may be modified by the .set
183 pseudo-op. We use a struct so that .set push and .set pop are more
184 reliable. */
185
186 struct mips_set_options
187 {
188 /* MIPS ISA (Instruction Set Architecture) level. This is set to -1
189 if it has not been initialized. Changed by `.set mipsN', and the
190 -mipsN command line option, and the default CPU. */
191 int isa;
192 /* Enabled Application Specific Extensions (ASEs). These are set to -1
193 if they have not been initialized. Changed by `.set <asename>', by
194 command line options, and based on the default architecture. */
195 int ase_mips3d;
196 int ase_mdmx;
197 int ase_smartmips;
198 int ase_dsp;
199 int ase_dspr2;
200 int ase_mt;
201 /* Whether we are assembling for the mips16 processor. 0 if we are
202 not, 1 if we are, and -1 if the value has not been initialized.
203 Changed by `.set mips16' and `.set nomips16', and the -mips16 and
204 -nomips16 command line options, and the default CPU. */
205 int mips16;
206 /* Non-zero if we should not reorder instructions. Changed by `.set
207 reorder' and `.set noreorder'. */
208 int noreorder;
209 /* Non-zero if we should not permit the register designated "assembler
210 temporary" to be used in instructions. The value is the register
211 number, normally $at ($1). Changed by `.set at=REG', `.set noat'
212 (same as `.set at=$0') and `.set at' (same as `.set at=$1'). */
213 unsigned int at;
214 /* Non-zero if we should warn when a macro instruction expands into
215 more than one machine instruction. Changed by `.set nomacro' and
216 `.set macro'. */
217 int warn_about_macros;
218 /* Non-zero if we should not move instructions. Changed by `.set
219 move', `.set volatile', `.set nomove', and `.set novolatile'. */
220 int nomove;
221 /* Non-zero if we should not optimize branches by moving the target
222 of the branch into the delay slot. Actually, we don't perform
223 this optimization anyhow. Changed by `.set bopt' and `.set
224 nobopt'. */
225 int nobopt;
226 /* Non-zero if we should not autoextend mips16 instructions.
227 Changed by `.set autoextend' and `.set noautoextend'. */
228 int noautoextend;
229 /* Restrict general purpose registers and floating point registers
230 to 32 bit. This is initially determined when -mgp32 or -mfp32
231 is passed but can changed if the assembler code uses .set mipsN. */
232 int gp32;
233 int fp32;
234 /* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
235 command line option, and the default CPU. */
236 int arch;
237 /* True if ".set sym32" is in effect. */
238 bfd_boolean sym32;
239 /* True if floating-point operations are not allowed. Changed by .set
240 softfloat or .set hardfloat, by command line options -msoft-float or
241 -mhard-float. The default is false. */
242 bfd_boolean soft_float;
243
244 /* True if only single-precision floating-point operations are allowed.
245 Changed by .set singlefloat or .set doublefloat, command-line options
246 -msingle-float or -mdouble-float. The default is false. */
247 bfd_boolean single_float;
248 };
249
250 /* This is the struct we use to hold the current set of options. Note
251 that we must set the isa field to ISA_UNKNOWN and the ASE fields to
252 -1 to indicate that they have not been initialized. */
253
254 /* True if -mgp32 was passed. */
255 static int file_mips_gp32 = -1;
256
257 /* True if -mfp32 was passed. */
258 static int file_mips_fp32 = -1;
259
260 /* 1 if -msoft-float, 0 if -mhard-float. The default is 0. */
261 static int file_mips_soft_float = 0;
262
263 /* 1 if -msingle-float, 0 if -mdouble-float. The default is 0. */
264 static int file_mips_single_float = 0;
265
266 static struct mips_set_options mips_opts =
267 {
268 /* isa */ ISA_UNKNOWN, /* ase_mips3d */ -1, /* ase_mdmx */ -1,
269 /* ase_smartmips */ 0, /* ase_dsp */ -1, /* ase_dspr2 */ -1, /* ase_mt */ -1,
270 /* mips16 */ -1, /* noreorder */ 0, /* at */ ATREG,
271 /* warn_about_macros */ 0, /* nomove */ 0, /* nobopt */ 0,
272 /* noautoextend */ 0, /* gp32 */ 0, /* fp32 */ 0, /* arch */ CPU_UNKNOWN,
273 /* sym32 */ FALSE, /* soft_float */ FALSE, /* single_float */ FALSE
274 };
275
276 /* These variables are filled in with the masks of registers used.
277 The object format code reads them and puts them in the appropriate
278 place. */
279 unsigned long mips_gprmask;
280 unsigned long mips_cprmask[4];
281
282 /* MIPS ISA we are using for this output file. */
283 static int file_mips_isa = ISA_UNKNOWN;
284
285 /* True if -mips16 was passed or implied by arguments passed on the
286 command line (e.g., by -march). */
287 static int file_ase_mips16;
288
289 #define ISA_SUPPORTS_MIPS16E (mips_opts.isa == ISA_MIPS32 \
290 || mips_opts.isa == ISA_MIPS32R2 \
291 || mips_opts.isa == ISA_MIPS64 \
292 || mips_opts.isa == ISA_MIPS64R2)
293
294 /* True if we want to create R_MIPS_JALR for jalr $25. */
295 #ifdef TE_IRIX
296 #define MIPS_JALR_HINT_P(EXPR) HAVE_NEWABI
297 #else
298 /* As a GNU extension, we use R_MIPS_JALR for o32 too. However,
299 because there's no place for any addend, the only acceptable
300 expression is a bare symbol. */
301 #define MIPS_JALR_HINT_P(EXPR) \
302 (!HAVE_IN_PLACE_ADDENDS \
303 || ((EXPR)->X_op == O_symbol && (EXPR)->X_add_number == 0))
304 #endif
305
306 /* True if -mips3d was passed or implied by arguments passed on the
307 command line (e.g., by -march). */
308 static int file_ase_mips3d;
309
310 /* True if -mdmx was passed or implied by arguments passed on the
311 command line (e.g., by -march). */
312 static int file_ase_mdmx;
313
314 /* True if -msmartmips was passed or implied by arguments passed on the
315 command line (e.g., by -march). */
316 static int file_ase_smartmips;
317
318 #define ISA_SUPPORTS_SMARTMIPS (mips_opts.isa == ISA_MIPS32 \
319 || mips_opts.isa == ISA_MIPS32R2)
320
321 /* True if -mdsp was passed or implied by arguments passed on the
322 command line (e.g., by -march). */
323 static int file_ase_dsp;
324
325 #define ISA_SUPPORTS_DSP_ASE (mips_opts.isa == ISA_MIPS32R2 \
326 || mips_opts.isa == ISA_MIPS64R2)
327
328 #define ISA_SUPPORTS_DSP64_ASE (mips_opts.isa == ISA_MIPS64R2)
329
330 /* True if -mdspr2 was passed or implied by arguments passed on the
331 command line (e.g., by -march). */
332 static int file_ase_dspr2;
333
334 #define ISA_SUPPORTS_DSPR2_ASE (mips_opts.isa == ISA_MIPS32R2 \
335 || mips_opts.isa == ISA_MIPS64R2)
336
337 /* True if -mmt was passed or implied by arguments passed on the
338 command line (e.g., by -march). */
339 static int file_ase_mt;
340
341 #define ISA_SUPPORTS_MT_ASE (mips_opts.isa == ISA_MIPS32R2 \
342 || mips_opts.isa == ISA_MIPS64R2)
343
344 /* The argument of the -march= flag. The architecture we are assembling. */
345 static int file_mips_arch = CPU_UNKNOWN;
346 static const char *mips_arch_string;
347
348 /* The argument of the -mtune= flag. The architecture for which we
349 are optimizing. */
350 static int mips_tune = CPU_UNKNOWN;
351 static const char *mips_tune_string;
352
353 /* True when generating 32-bit code for a 64-bit processor. */
354 static int mips_32bitmode = 0;
355
356 /* True if the given ABI requires 32-bit registers. */
357 #define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
358
359 /* Likewise 64-bit registers. */
360 #define ABI_NEEDS_64BIT_REGS(ABI) \
361 ((ABI) == N32_ABI \
362 || (ABI) == N64_ABI \
363 || (ABI) == O64_ABI)
364
365 /* Return true if ISA supports 64 bit wide gp registers. */
366 #define ISA_HAS_64BIT_REGS(ISA) \
367 ((ISA) == ISA_MIPS3 \
368 || (ISA) == ISA_MIPS4 \
369 || (ISA) == ISA_MIPS5 \
370 || (ISA) == ISA_MIPS64 \
371 || (ISA) == ISA_MIPS64R2)
372
373 /* Return true if ISA supports 64 bit wide float registers. */
374 #define ISA_HAS_64BIT_FPRS(ISA) \
375 ((ISA) == ISA_MIPS3 \
376 || (ISA) == ISA_MIPS4 \
377 || (ISA) == ISA_MIPS5 \
378 || (ISA) == ISA_MIPS32R2 \
379 || (ISA) == ISA_MIPS64 \
380 || (ISA) == ISA_MIPS64R2)
381
382 /* Return true if ISA supports 64-bit right rotate (dror et al.)
383 instructions. */
384 #define ISA_HAS_DROR(ISA) \
385 ((ISA) == ISA_MIPS64R2)
386
387 /* Return true if ISA supports 32-bit right rotate (ror et al.)
388 instructions. */
389 #define ISA_HAS_ROR(ISA) \
390 ((ISA) == ISA_MIPS32R2 \
391 || (ISA) == ISA_MIPS64R2 \
392 || mips_opts.ase_smartmips)
393
394 /* Return true if ISA supports single-precision floats in odd registers. */
395 #define ISA_HAS_ODD_SINGLE_FPR(ISA) \
396 ((ISA) == ISA_MIPS32 \
397 || (ISA) == ISA_MIPS32R2 \
398 || (ISA) == ISA_MIPS64 \
399 || (ISA) == ISA_MIPS64R2)
400
401 /* Return true if ISA supports move to/from high part of a 64-bit
402 floating-point register. */
403 #define ISA_HAS_MXHC1(ISA) \
404 ((ISA) == ISA_MIPS32R2 \
405 || (ISA) == ISA_MIPS64R2)
406
407 #define HAVE_32BIT_GPRS \
408 (mips_opts.gp32 || !ISA_HAS_64BIT_REGS (mips_opts.isa))
409
410 #define HAVE_32BIT_FPRS \
411 (mips_opts.fp32 || !ISA_HAS_64BIT_FPRS (mips_opts.isa))
412
413 #define HAVE_64BIT_GPRS (!HAVE_32BIT_GPRS)
414 #define HAVE_64BIT_FPRS (!HAVE_32BIT_FPRS)
415
416 #define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
417
418 #define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
419
420 /* True if relocations are stored in-place. */
421 #define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI)
422
423 /* The ABI-derived address size. */
424 #define HAVE_64BIT_ADDRESSES \
425 (HAVE_64BIT_GPRS && (mips_abi == EABI_ABI || mips_abi == N64_ABI))
426 #define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES)
427
428 /* The size of symbolic constants (i.e., expressions of the form
429 "SYMBOL" or "SYMBOL + OFFSET"). */
430 #define HAVE_32BIT_SYMBOLS \
431 (HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32)
432 #define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS)
433
434 /* Addresses are loaded in different ways, depending on the address size
435 in use. The n32 ABI Documentation also mandates the use of additions
436 with overflow checking, but existing implementations don't follow it. */
437 #define ADDRESS_ADD_INSN \
438 (HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
439
440 #define ADDRESS_ADDI_INSN \
441 (HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
442
443 #define ADDRESS_LOAD_INSN \
444 (HAVE_32BIT_ADDRESSES ? "lw" : "ld")
445
446 #define ADDRESS_STORE_INSN \
447 (HAVE_32BIT_ADDRESSES ? "sw" : "sd")
448
449 /* Return true if the given CPU supports the MIPS16 ASE. */
450 #define CPU_HAS_MIPS16(cpu) \
451 (strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0 \
452 || strncmp (TARGET_CANONICAL, "mips-lsi-elf", sizeof ("mips-lsi-elf") - 1) == 0)
453
454 /* True if CPU has a dror instruction. */
455 #define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
456
457 /* True if CPU has a ror instruction. */
458 #define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU)
459
460 /* True if CPU has seq/sne and seqi/snei instructions. */
461 #define CPU_HAS_SEQ(CPU) ((CPU) == CPU_OCTEON)
462
463 /* True if CPU does not implement the all the coprocessor insns. For these
464 CPUs only those COP insns are accepted that are explicitly marked to be
465 available on the CPU. ISA membership for COP insns is ignored. */
466 #define NO_ISA_COP(CPU) ((CPU) == CPU_OCTEON)
467
468 /* True if mflo and mfhi can be immediately followed by instructions
469 which write to the HI and LO registers.
470
471 According to MIPS specifications, MIPS ISAs I, II, and III need
472 (at least) two instructions between the reads of HI/LO and
473 instructions which write them, and later ISAs do not. Contradicting
474 the MIPS specifications, some MIPS IV processor user manuals (e.g.
475 the UM for the NEC Vr5000) document needing the instructions between
476 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
477 MIPS64 and later ISAs to have the interlocks, plus any specific
478 earlier-ISA CPUs for which CPU documentation declares that the
479 instructions are really interlocked. */
480 #define hilo_interlocks \
481 (mips_opts.isa == ISA_MIPS32 \
482 || mips_opts.isa == ISA_MIPS32R2 \
483 || mips_opts.isa == ISA_MIPS64 \
484 || mips_opts.isa == ISA_MIPS64R2 \
485 || mips_opts.arch == CPU_R4010 \
486 || mips_opts.arch == CPU_R10000 \
487 || mips_opts.arch == CPU_R12000 \
488 || mips_opts.arch == CPU_R14000 \
489 || mips_opts.arch == CPU_R16000 \
490 || mips_opts.arch == CPU_RM7000 \
491 || mips_opts.arch == CPU_VR5500 \
492 )
493
494 /* Whether the processor uses hardware interlocks to protect reads
495 from the GPRs after they are loaded from memory, and thus does not
496 require nops to be inserted. This applies to instructions marked
497 INSN_LOAD_MEMORY_DELAY. These nops are only required at MIPS ISA
498 level I. */
499 #define gpr_interlocks \
500 (mips_opts.isa != ISA_MIPS1 \
501 || mips_opts.arch == CPU_R3900)
502
503 /* Whether the processor uses hardware interlocks to avoid delays
504 required by coprocessor instructions, and thus does not require
505 nops to be inserted. This applies to instructions marked
506 INSN_LOAD_COPROC_DELAY, INSN_COPROC_MOVE_DELAY, and to delays
507 between instructions marked INSN_WRITE_COND_CODE and ones marked
508 INSN_READ_COND_CODE. These nops are only required at MIPS ISA
509 levels I, II, and III. */
510 /* Itbl support may require additional care here. */
511 #define cop_interlocks \
512 ((mips_opts.isa != ISA_MIPS1 \
513 && mips_opts.isa != ISA_MIPS2 \
514 && mips_opts.isa != ISA_MIPS3) \
515 || mips_opts.arch == CPU_R4300 \
516 )
517
518 /* Whether the processor uses hardware interlocks to protect reads
519 from coprocessor registers after they are loaded from memory, and
520 thus does not require nops to be inserted. This applies to
521 instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
522 requires at MIPS ISA level I. */
523 #define cop_mem_interlocks (mips_opts.isa != ISA_MIPS1)
524
525 /* Is this a mfhi or mflo instruction? */
526 #define MF_HILO_INSN(PINFO) \
527 ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
528
529 /* Returns true for a (non floating-point) coprocessor instruction. Reading
530 or writing the condition code is only possible on the coprocessors and
531 these insns are not marked with INSN_COP. Thus for these insns use the
532 condition-code flags. */
533 #define COP_INSN(PINFO) \
534 (PINFO != INSN_MACRO \
535 && ((PINFO) & (FP_S | FP_D)) == 0 \
536 && ((PINFO) & (INSN_COP | INSN_READ_COND_CODE | INSN_WRITE_COND_CODE)))
537
538 /* MIPS PIC level. */
539
540 enum mips_pic_level mips_pic;
541
542 /* 1 if we should generate 32 bit offsets from the $gp register in
543 SVR4_PIC mode. Currently has no meaning in other modes. */
544 static int mips_big_got = 0;
545
546 /* 1 if trap instructions should used for overflow rather than break
547 instructions. */
548 static int mips_trap = 0;
549
550 /* 1 if double width floating point constants should not be constructed
551 by assembling two single width halves into two single width floating
552 point registers which just happen to alias the double width destination
553 register. On some architectures this aliasing can be disabled by a bit
554 in the status register, and the setting of this bit cannot be determined
555 automatically at assemble time. */
556 static int mips_disable_float_construction;
557
558 /* Non-zero if any .set noreorder directives were used. */
559
560 static int mips_any_noreorder;
561
562 /* Non-zero if nops should be inserted when the register referenced in
563 an mfhi/mflo instruction is read in the next two instructions. */
564 static int mips_7000_hilo_fix;
565
566 /* The size of objects in the small data section. */
567 static unsigned int g_switch_value = 8;
568 /* Whether the -G option was used. */
569 static int g_switch_seen = 0;
570
571 #define N_RMASK 0xc4
572 #define N_VFP 0xd4
573
574 /* If we can determine in advance that GP optimization won't be
575 possible, we can skip the relaxation stuff that tries to produce
576 GP-relative references. This makes delay slot optimization work
577 better.
578
579 This function can only provide a guess, but it seems to work for
580 gcc output. It needs to guess right for gcc, otherwise gcc
581 will put what it thinks is a GP-relative instruction in a branch
582 delay slot.
583
584 I don't know if a fix is needed for the SVR4_PIC mode. I've only
585 fixed it for the non-PIC mode. KR 95/04/07 */
586 static int nopic_need_relax (symbolS *, int);
587
588 /* handle of the OPCODE hash table */
589 static struct hash_control *op_hash = NULL;
590
591 /* The opcode hash table we use for the mips16. */
592 static struct hash_control *mips16_op_hash = NULL;
593
594 /* This array holds the chars that always start a comment. If the
595 pre-processor is disabled, these aren't very useful */
596 const char comment_chars[] = "#";
597
598 /* This array holds the chars that only start a comment at the beginning of
599 a line. If the line seems to have the form '# 123 filename'
600 .line and .file directives will appear in the pre-processed output */
601 /* Note that input_file.c hand checks for '#' at the beginning of the
602 first line of the input file. This is because the compiler outputs
603 #NO_APP at the beginning of its output. */
604 /* Also note that C style comments are always supported. */
605 const char line_comment_chars[] = "#";
606
607 /* This array holds machine specific line separator characters. */
608 const char line_separator_chars[] = ";";
609
610 /* Chars that can be used to separate mant from exp in floating point nums */
611 const char EXP_CHARS[] = "eE";
612
613 /* Chars that mean this number is a floating point constant */
614 /* As in 0f12.456 */
615 /* or 0d1.2345e12 */
616 const char FLT_CHARS[] = "rRsSfFdDxXpP";
617
618 /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
619 changed in read.c . Ideally it shouldn't have to know about it at all,
620 but nothing is ideal around here.
621 */
622
623 static char *insn_error;
624
625 static int auto_align = 1;
626
627 /* When outputting SVR4 PIC code, the assembler needs to know the
628 offset in the stack frame from which to restore the $gp register.
629 This is set by the .cprestore pseudo-op, and saved in this
630 variable. */
631 static offsetT mips_cprestore_offset = -1;
632
633 /* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
634 more optimizations, it can use a register value instead of a memory-saved
635 offset and even an other register than $gp as global pointer. */
636 static offsetT mips_cpreturn_offset = -1;
637 static int mips_cpreturn_register = -1;
638 static int mips_gp_register = GP;
639 static int mips_gprel_offset = 0;
640
641 /* Whether mips_cprestore_offset has been set in the current function
642 (or whether it has already been warned about, if not). */
643 static int mips_cprestore_valid = 0;
644
645 /* This is the register which holds the stack frame, as set by the
646 .frame pseudo-op. This is needed to implement .cprestore. */
647 static int mips_frame_reg = SP;
648
649 /* Whether mips_frame_reg has been set in the current function
650 (or whether it has already been warned about, if not). */
651 static int mips_frame_reg_valid = 0;
652
653 /* To output NOP instructions correctly, we need to keep information
654 about the previous two instructions. */
655
656 /* Whether we are optimizing. The default value of 2 means to remove
657 unneeded NOPs and swap branch instructions when possible. A value
658 of 1 means to not swap branches. A value of 0 means to always
659 insert NOPs. */
660 static int mips_optimize = 2;
661
662 /* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
663 equivalent to seeing no -g option at all. */
664 static int mips_debug = 0;
665
666 /* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */
667 #define MAX_VR4130_NOPS 4
668
669 /* The maximum number of NOPs needed to fill delay slots. */
670 #define MAX_DELAY_NOPS 2
671
672 /* The maximum number of NOPs needed for any purpose. */
673 #define MAX_NOPS 4
674
675 /* A list of previous instructions, with index 0 being the most recent.
676 We need to look back MAX_NOPS instructions when filling delay slots
677 or working around processor errata. We need to look back one
678 instruction further if we're thinking about using history[0] to
679 fill a branch delay slot. */
680 static struct mips_cl_insn history[1 + MAX_NOPS];
681
682 /* Nop instructions used by emit_nop. */
683 static struct mips_cl_insn nop_insn, mips16_nop_insn;
684
685 /* The appropriate nop for the current mode. */
686 #define NOP_INSN (mips_opts.mips16 ? &mips16_nop_insn : &nop_insn)
687
688 /* If this is set, it points to a frag holding nop instructions which
689 were inserted before the start of a noreorder section. If those
690 nops turn out to be unnecessary, the size of the frag can be
691 decreased. */
692 static fragS *prev_nop_frag;
693
694 /* The number of nop instructions we created in prev_nop_frag. */
695 static int prev_nop_frag_holds;
696
697 /* The number of nop instructions that we know we need in
698 prev_nop_frag. */
699 static int prev_nop_frag_required;
700
701 /* The number of instructions we've seen since prev_nop_frag. */
702 static int prev_nop_frag_since;
703
704 /* For ECOFF and ELF, relocations against symbols are done in two
705 parts, with a HI relocation and a LO relocation. Each relocation
706 has only 16 bits of space to store an addend. This means that in
707 order for the linker to handle carries correctly, it must be able
708 to locate both the HI and the LO relocation. This means that the
709 relocations must appear in order in the relocation table.
710
711 In order to implement this, we keep track of each unmatched HI
712 relocation. We then sort them so that they immediately precede the
713 corresponding LO relocation. */
714
715 struct mips_hi_fixup
716 {
717 /* Next HI fixup. */
718 struct mips_hi_fixup *next;
719 /* This fixup. */
720 fixS *fixp;
721 /* The section this fixup is in. */
722 segT seg;
723 };
724
725 /* The list of unmatched HI relocs. */
726
727 static struct mips_hi_fixup *mips_hi_fixup_list;
728
729 /* The frag containing the last explicit relocation operator.
730 Null if explicit relocations have not been used. */
731
732 static fragS *prev_reloc_op_frag;
733
734 /* Map normal MIPS register numbers to mips16 register numbers. */
735
736 #define X ILLEGAL_REG
737 static const int mips32_to_16_reg_map[] =
738 {
739 X, X, 2, 3, 4, 5, 6, 7,
740 X, X, X, X, X, X, X, X,
741 0, 1, X, X, X, X, X, X,
742 X, X, X, X, X, X, X, X
743 };
744 #undef X
745
746 /* Map mips16 register numbers to normal MIPS register numbers. */
747
748 static const unsigned int mips16_to_32_reg_map[] =
749 {
750 16, 17, 2, 3, 4, 5, 6, 7
751 };
752
753 /* Classifies the kind of instructions we're interested in when
754 implementing -mfix-vr4120. */
755 enum fix_vr4120_class
756 {
757 FIX_VR4120_MACC,
758 FIX_VR4120_DMACC,
759 FIX_VR4120_MULT,
760 FIX_VR4120_DMULT,
761 FIX_VR4120_DIV,
762 FIX_VR4120_MTHILO,
763 NUM_FIX_VR4120_CLASSES
764 };
765
766 /* ...likewise -mfix-loongson2f-jump. */
767 static bfd_boolean mips_fix_loongson2f_jump;
768
769 /* ...likewise -mfix-loongson2f-nop. */
770 static bfd_boolean mips_fix_loongson2f_nop;
771
772 /* True if -mfix-loongson2f-nop or -mfix-loongson2f-jump passed. */
773 static bfd_boolean mips_fix_loongson2f;
774
775 /* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if
776 there must be at least one other instruction between an instruction
777 of type X and an instruction of type Y. */
778 static unsigned int vr4120_conflicts[NUM_FIX_VR4120_CLASSES];
779
780 /* True if -mfix-vr4120 is in force. */
781 static int mips_fix_vr4120;
782
783 /* ...likewise -mfix-vr4130. */
784 static int mips_fix_vr4130;
785
786 /* ...likewise -mfix-24k. */
787 static int mips_fix_24k;
788
789 /* ...likewise -mfix-cn63xxp1 */
790 static bfd_boolean mips_fix_cn63xxp1;
791
792 /* We don't relax branches by default, since this causes us to expand
793 `la .l2 - .l1' if there's a branch between .l1 and .l2, because we
794 fail to compute the offset before expanding the macro to the most
795 efficient expansion. */
796
797 static int mips_relax_branch;
798 \f
799 /* The expansion of many macros depends on the type of symbol that
800 they refer to. For example, when generating position-dependent code,
801 a macro that refers to a symbol may have two different expansions,
802 one which uses GP-relative addresses and one which uses absolute
803 addresses. When generating SVR4-style PIC, a macro may have
804 different expansions for local and global symbols.
805
806 We handle these situations by generating both sequences and putting
807 them in variant frags. In position-dependent code, the first sequence
808 will be the GP-relative one and the second sequence will be the
809 absolute one. In SVR4 PIC, the first sequence will be for global
810 symbols and the second will be for local symbols.
811
812 The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
813 SECOND are the lengths of the two sequences in bytes. These fields
814 can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
815 the subtype has the following flags:
816
817 RELAX_USE_SECOND
818 Set if it has been decided that we should use the second
819 sequence instead of the first.
820
821 RELAX_SECOND_LONGER
822 Set in the first variant frag if the macro's second implementation
823 is longer than its first. This refers to the macro as a whole,
824 not an individual relaxation.
825
826 RELAX_NOMACRO
827 Set in the first variant frag if the macro appeared in a .set nomacro
828 block and if one alternative requires a warning but the other does not.
829
830 RELAX_DELAY_SLOT
831 Like RELAX_NOMACRO, but indicates that the macro appears in a branch
832 delay slot.
833
834 The frag's "opcode" points to the first fixup for relaxable code.
835
836 Relaxable macros are generated using a sequence such as:
837
838 relax_start (SYMBOL);
839 ... generate first expansion ...
840 relax_switch ();
841 ... generate second expansion ...
842 relax_end ();
843
844 The code and fixups for the unwanted alternative are discarded
845 by md_convert_frag. */
846 #define RELAX_ENCODE(FIRST, SECOND) (((FIRST) << 8) | (SECOND))
847
848 #define RELAX_FIRST(X) (((X) >> 8) & 0xff)
849 #define RELAX_SECOND(X) ((X) & 0xff)
850 #define RELAX_USE_SECOND 0x10000
851 #define RELAX_SECOND_LONGER 0x20000
852 #define RELAX_NOMACRO 0x40000
853 #define RELAX_DELAY_SLOT 0x80000
854
855 /* Branch without likely bit. If label is out of range, we turn:
856
857 beq reg1, reg2, label
858 delay slot
859
860 into
861
862 bne reg1, reg2, 0f
863 nop
864 j label
865 0: delay slot
866
867 with the following opcode replacements:
868
869 beq <-> bne
870 blez <-> bgtz
871 bltz <-> bgez
872 bc1f <-> bc1t
873
874 bltzal <-> bgezal (with jal label instead of j label)
875
876 Even though keeping the delay slot instruction in the delay slot of
877 the branch would be more efficient, it would be very tricky to do
878 correctly, because we'd have to introduce a variable frag *after*
879 the delay slot instruction, and expand that instead. Let's do it
880 the easy way for now, even if the branch-not-taken case now costs
881 one additional instruction. Out-of-range branches are not supposed
882 to be common, anyway.
883
884 Branch likely. If label is out of range, we turn:
885
886 beql reg1, reg2, label
887 delay slot (annulled if branch not taken)
888
889 into
890
891 beql reg1, reg2, 1f
892 nop
893 beql $0, $0, 2f
894 nop
895 1: j[al] label
896 delay slot (executed only if branch taken)
897 2:
898
899 It would be possible to generate a shorter sequence by losing the
900 likely bit, generating something like:
901
902 bne reg1, reg2, 0f
903 nop
904 j[al] label
905 delay slot (executed only if branch taken)
906 0:
907
908 beql -> bne
909 bnel -> beq
910 blezl -> bgtz
911 bgtzl -> blez
912 bltzl -> bgez
913 bgezl -> bltz
914 bc1fl -> bc1t
915 bc1tl -> bc1f
916
917 bltzall -> bgezal (with jal label instead of j label)
918 bgezall -> bltzal (ditto)
919
920
921 but it's not clear that it would actually improve performance. */
922 #define RELAX_BRANCH_ENCODE(uncond, likely, link, toofar) \
923 ((relax_substateT) \
924 (0xc0000000 \
925 | ((toofar) ? 1 : 0) \
926 | ((link) ? 2 : 0) \
927 | ((likely) ? 4 : 0) \
928 | ((uncond) ? 8 : 0)))
929 #define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
930 #define RELAX_BRANCH_UNCOND(i) (((i) & 8) != 0)
931 #define RELAX_BRANCH_LIKELY(i) (((i) & 4) != 0)
932 #define RELAX_BRANCH_LINK(i) (((i) & 2) != 0)
933 #define RELAX_BRANCH_TOOFAR(i) (((i) & 1) != 0)
934
935 /* For mips16 code, we use an entirely different form of relaxation.
936 mips16 supports two versions of most instructions which take
937 immediate values: a small one which takes some small value, and a
938 larger one which takes a 16 bit value. Since branches also follow
939 this pattern, relaxing these values is required.
940
941 We can assemble both mips16 and normal MIPS code in a single
942 object. Therefore, we need to support this type of relaxation at
943 the same time that we support the relaxation described above. We
944 use the high bit of the subtype field to distinguish these cases.
945
946 The information we store for this type of relaxation is the
947 argument code found in the opcode file for this relocation, whether
948 the user explicitly requested a small or extended form, and whether
949 the relocation is in a jump or jal delay slot. That tells us the
950 size of the value, and how it should be stored. We also store
951 whether the fragment is considered to be extended or not. We also
952 store whether this is known to be a branch to a different section,
953 whether we have tried to relax this frag yet, and whether we have
954 ever extended a PC relative fragment because of a shift count. */
955 #define RELAX_MIPS16_ENCODE(type, small, ext, dslot, jal_dslot) \
956 (0x80000000 \
957 | ((type) & 0xff) \
958 | ((small) ? 0x100 : 0) \
959 | ((ext) ? 0x200 : 0) \
960 | ((dslot) ? 0x400 : 0) \
961 | ((jal_dslot) ? 0x800 : 0))
962 #define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
963 #define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
964 #define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x100) != 0)
965 #define RELAX_MIPS16_USER_EXT(i) (((i) & 0x200) != 0)
966 #define RELAX_MIPS16_DSLOT(i) (((i) & 0x400) != 0)
967 #define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x800) != 0)
968 #define RELAX_MIPS16_EXTENDED(i) (((i) & 0x1000) != 0)
969 #define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x1000)
970 #define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) &~ 0x1000)
971 #define RELAX_MIPS16_LONG_BRANCH(i) (((i) & 0x2000) != 0)
972 #define RELAX_MIPS16_MARK_LONG_BRANCH(i) ((i) | 0x2000)
973 #define RELAX_MIPS16_CLEAR_LONG_BRANCH(i) ((i) &~ 0x2000)
974
975 /* Is the given value a sign-extended 32-bit value? */
976 #define IS_SEXT_32BIT_NUM(x) \
977 (((x) &~ (offsetT) 0x7fffffff) == 0 \
978 || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
979
980 /* Is the given value a sign-extended 16-bit value? */
981 #define IS_SEXT_16BIT_NUM(x) \
982 (((x) &~ (offsetT) 0x7fff) == 0 \
983 || (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
984
985 /* Is the given value a zero-extended 32-bit value? Or a negated one? */
986 #define IS_ZEXT_32BIT_NUM(x) \
987 (((x) &~ (offsetT) 0xffffffff) == 0 \
988 || (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))
989
990 /* Replace bits MASK << SHIFT of STRUCT with the equivalent bits in
991 VALUE << SHIFT. VALUE is evaluated exactly once. */
992 #define INSERT_BITS(STRUCT, VALUE, MASK, SHIFT) \
993 (STRUCT) = (((STRUCT) & ~((MASK) << (SHIFT))) \
994 | (((VALUE) & (MASK)) << (SHIFT)))
995
996 /* Extract bits MASK << SHIFT from STRUCT and shift them right
997 SHIFT places. */
998 #define EXTRACT_BITS(STRUCT, MASK, SHIFT) \
999 (((STRUCT) >> (SHIFT)) & (MASK))
1000
1001 /* Change INSN's opcode so that the operand given by FIELD has value VALUE.
1002 INSN is a mips_cl_insn structure and VALUE is evaluated exactly once.
1003
1004 include/opcode/mips.h specifies operand fields using the macros
1005 OP_MASK_<FIELD> and OP_SH_<FIELD>. The MIPS16 equivalents start
1006 with "MIPS16OP" instead of "OP". */
1007 #define INSERT_OPERAND(FIELD, INSN, VALUE) \
1008 INSERT_BITS ((INSN).insn_opcode, VALUE, OP_MASK_##FIELD, OP_SH_##FIELD)
1009 #define MIPS16_INSERT_OPERAND(FIELD, INSN, VALUE) \
1010 INSERT_BITS ((INSN).insn_opcode, VALUE, \
1011 MIPS16OP_MASK_##FIELD, MIPS16OP_SH_##FIELD)
1012
1013 /* Extract the operand given by FIELD from mips_cl_insn INSN. */
1014 #define EXTRACT_OPERAND(FIELD, INSN) \
1015 EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD)
1016 #define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \
1017 EXTRACT_BITS ((INSN).insn_opcode, \
1018 MIPS16OP_MASK_##FIELD, \
1019 MIPS16OP_SH_##FIELD)
1020 \f
1021 /* Global variables used when generating relaxable macros. See the
1022 comment above RELAX_ENCODE for more details about how relaxation
1023 is used. */
1024 static struct {
1025 /* 0 if we're not emitting a relaxable macro.
1026 1 if we're emitting the first of the two relaxation alternatives.
1027 2 if we're emitting the second alternative. */
1028 int sequence;
1029
1030 /* The first relaxable fixup in the current frag. (In other words,
1031 the first fixup that refers to relaxable code.) */
1032 fixS *first_fixup;
1033
1034 /* sizes[0] says how many bytes of the first alternative are stored in
1035 the current frag. Likewise sizes[1] for the second alternative. */
1036 unsigned int sizes[2];
1037
1038 /* The symbol on which the choice of sequence depends. */
1039 symbolS *symbol;
1040 } mips_relax;
1041 \f
1042 /* Global variables used to decide whether a macro needs a warning. */
1043 static struct {
1044 /* True if the macro is in a branch delay slot. */
1045 bfd_boolean delay_slot_p;
1046
1047 /* For relaxable macros, sizes[0] is the length of the first alternative
1048 in bytes and sizes[1] is the length of the second alternative.
1049 For non-relaxable macros, both elements give the length of the
1050 macro in bytes. */
1051 unsigned int sizes[2];
1052
1053 /* The first variant frag for this macro. */
1054 fragS *first_frag;
1055 } mips_macro_warning;
1056 \f
1057 /* Prototypes for static functions. */
1058
1059 #define internalError() \
1060 as_fatal (_("internal Error, line %d, %s"), __LINE__, __FILE__)
1061
1062 enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
1063
1064 static void append_insn
1065 (struct mips_cl_insn *, expressionS *, bfd_reloc_code_real_type *);
1066 static void mips_no_prev_insn (void);
1067 static void macro_build (expressionS *, const char *, const char *, ...);
1068 static void mips16_macro_build
1069 (expressionS *, const char *, const char *, va_list *);
1070 static void load_register (int, expressionS *, int);
1071 static void macro_start (void);
1072 static void macro_end (void);
1073 static void macro (struct mips_cl_insn * ip);
1074 static void mips16_macro (struct mips_cl_insn * ip);
1075 #ifdef LOSING_COMPILER
1076 static void macro2 (struct mips_cl_insn * ip);
1077 #endif
1078 static void mips_ip (char *str, struct mips_cl_insn * ip);
1079 static void mips16_ip (char *str, struct mips_cl_insn * ip);
1080 static void mips16_immed
1081 (char *, unsigned int, int, offsetT, bfd_boolean, bfd_boolean, bfd_boolean,
1082 unsigned long *, bfd_boolean *, unsigned short *);
1083 static size_t my_getSmallExpression
1084 (expressionS *, bfd_reloc_code_real_type *, char *);
1085 static void my_getExpression (expressionS *, char *);
1086 static void s_align (int);
1087 static void s_change_sec (int);
1088 static void s_change_section (int);
1089 static void s_cons (int);
1090 static void s_float_cons (int);
1091 static void s_mips_globl (int);
1092 static void s_option (int);
1093 static void s_mipsset (int);
1094 static void s_abicalls (int);
1095 static void s_cpload (int);
1096 static void s_cpsetup (int);
1097 static void s_cplocal (int);
1098 static void s_cprestore (int);
1099 static void s_cpreturn (int);
1100 static void s_dtprelword (int);
1101 static void s_dtpreldword (int);
1102 static void s_gpvalue (int);
1103 static void s_gpword (int);
1104 static void s_gpdword (int);
1105 static void s_cpadd (int);
1106 static void s_insn (int);
1107 static void md_obj_begin (void);
1108 static void md_obj_end (void);
1109 static void s_mips_ent (int);
1110 static void s_mips_end (int);
1111 static void s_mips_frame (int);
1112 static void s_mips_mask (int reg_type);
1113 static void s_mips_stab (int);
1114 static void s_mips_weakext (int);
1115 static void s_mips_file (int);
1116 static void s_mips_loc (int);
1117 static bfd_boolean pic_need_relax (symbolS *, asection *);
1118 static int relaxed_branch_length (fragS *, asection *, int);
1119 static int validate_mips_insn (const struct mips_opcode *);
1120
1121 /* Table and functions used to map between CPU/ISA names, and
1122 ISA levels, and CPU numbers. */
1123
1124 struct mips_cpu_info
1125 {
1126 const char *name; /* CPU or ISA name. */
1127 int flags; /* ASEs available, or ISA flag. */
1128 int isa; /* ISA level. */
1129 int cpu; /* CPU number (default CPU if ISA). */
1130 };
1131
1132 #define MIPS_CPU_IS_ISA 0x0001 /* Is this an ISA? (If 0, a CPU.) */
1133 #define MIPS_CPU_ASE_SMARTMIPS 0x0002 /* CPU implements SmartMIPS ASE */
1134 #define MIPS_CPU_ASE_DSP 0x0004 /* CPU implements DSP ASE */
1135 #define MIPS_CPU_ASE_MT 0x0008 /* CPU implements MT ASE */
1136 #define MIPS_CPU_ASE_MIPS3D 0x0010 /* CPU implements MIPS-3D ASE */
1137 #define MIPS_CPU_ASE_MDMX 0x0020 /* CPU implements MDMX ASE */
1138 #define MIPS_CPU_ASE_DSPR2 0x0040 /* CPU implements DSP R2 ASE */
1139
1140 static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *);
1141 static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
1142 static const struct mips_cpu_info *mips_cpu_info_from_arch (int);
1143 \f
1144 /* Pseudo-op table.
1145
1146 The following pseudo-ops from the Kane and Heinrich MIPS book
1147 should be defined here, but are currently unsupported: .alias,
1148 .galive, .gjaldef, .gjrlive, .livereg, .noalias.
1149
1150 The following pseudo-ops from the Kane and Heinrich MIPS book are
1151 specific to the type of debugging information being generated, and
1152 should be defined by the object format: .aent, .begin, .bend,
1153 .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
1154 .vreg.
1155
1156 The following pseudo-ops from the Kane and Heinrich MIPS book are
1157 not MIPS CPU specific, but are also not specific to the object file
1158 format. This file is probably the best place to define them, but
1159 they are not currently supported: .asm0, .endr, .lab, .struct. */
1160
1161 static const pseudo_typeS mips_pseudo_table[] =
1162 {
1163 /* MIPS specific pseudo-ops. */
1164 {"option", s_option, 0},
1165 {"set", s_mipsset, 0},
1166 {"rdata", s_change_sec, 'r'},
1167 {"sdata", s_change_sec, 's'},
1168 {"livereg", s_ignore, 0},
1169 {"abicalls", s_abicalls, 0},
1170 {"cpload", s_cpload, 0},
1171 {"cpsetup", s_cpsetup, 0},
1172 {"cplocal", s_cplocal, 0},
1173 {"cprestore", s_cprestore, 0},
1174 {"cpreturn", s_cpreturn, 0},
1175 {"dtprelword", s_dtprelword, 0},
1176 {"dtpreldword", s_dtpreldword, 0},
1177 {"gpvalue", s_gpvalue, 0},
1178 {"gpword", s_gpword, 0},
1179 {"gpdword", s_gpdword, 0},
1180 {"cpadd", s_cpadd, 0},
1181 {"insn", s_insn, 0},
1182
1183 /* Relatively generic pseudo-ops that happen to be used on MIPS
1184 chips. */
1185 {"asciiz", stringer, 8 + 1},
1186 {"bss", s_change_sec, 'b'},
1187 {"err", s_err, 0},
1188 {"half", s_cons, 1},
1189 {"dword", s_cons, 3},
1190 {"weakext", s_mips_weakext, 0},
1191 {"origin", s_org, 0},
1192 {"repeat", s_rept, 0},
1193
1194 /* For MIPS this is non-standard, but we define it for consistency. */
1195 {"sbss", s_change_sec, 'B'},
1196
1197 /* These pseudo-ops are defined in read.c, but must be overridden
1198 here for one reason or another. */
1199 {"align", s_align, 0},
1200 {"byte", s_cons, 0},
1201 {"data", s_change_sec, 'd'},
1202 {"double", s_float_cons, 'd'},
1203 {"float", s_float_cons, 'f'},
1204 {"globl", s_mips_globl, 0},
1205 {"global", s_mips_globl, 0},
1206 {"hword", s_cons, 1},
1207 {"int", s_cons, 2},
1208 {"long", s_cons, 2},
1209 {"octa", s_cons, 4},
1210 {"quad", s_cons, 3},
1211 {"section", s_change_section, 0},
1212 {"short", s_cons, 1},
1213 {"single", s_float_cons, 'f'},
1214 {"stabn", s_mips_stab, 'n'},
1215 {"text", s_change_sec, 't'},
1216 {"word", s_cons, 2},
1217
1218 { "extern", ecoff_directive_extern, 0},
1219
1220 { NULL, NULL, 0 },
1221 };
1222
1223 static const pseudo_typeS mips_nonecoff_pseudo_table[] =
1224 {
1225 /* These pseudo-ops should be defined by the object file format.
1226 However, a.out doesn't support them, so we have versions here. */
1227 {"aent", s_mips_ent, 1},
1228 {"bgnb", s_ignore, 0},
1229 {"end", s_mips_end, 0},
1230 {"endb", s_ignore, 0},
1231 {"ent", s_mips_ent, 0},
1232 {"file", s_mips_file, 0},
1233 {"fmask", s_mips_mask, 'F'},
1234 {"frame", s_mips_frame, 0},
1235 {"loc", s_mips_loc, 0},
1236 {"mask", s_mips_mask, 'R'},
1237 {"verstamp", s_ignore, 0},
1238 { NULL, NULL, 0 },
1239 };
1240
1241 extern void pop_insert (const pseudo_typeS *);
1242
1243 void
1244 mips_pop_insert (void)
1245 {
1246 pop_insert (mips_pseudo_table);
1247 if (! ECOFF_DEBUGGING)
1248 pop_insert (mips_nonecoff_pseudo_table);
1249 }
1250 \f
1251 /* Symbols labelling the current insn. */
1252
1253 struct insn_label_list
1254 {
1255 struct insn_label_list *next;
1256 symbolS *label;
1257 };
1258
1259 static struct insn_label_list *free_insn_labels;
1260 #define label_list tc_segment_info_data.labels
1261
1262 static void mips_clear_insn_labels (void);
1263
1264 static inline void
1265 mips_clear_insn_labels (void)
1266 {
1267 register struct insn_label_list **pl;
1268 segment_info_type *si;
1269
1270 if (now_seg)
1271 {
1272 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
1273 ;
1274
1275 si = seg_info (now_seg);
1276 *pl = si->label_list;
1277 si->label_list = NULL;
1278 }
1279 }
1280
1281 \f
1282 static char *expr_end;
1283
1284 /* Expressions which appear in instructions. These are set by
1285 mips_ip. */
1286
1287 static expressionS imm_expr;
1288 static expressionS imm2_expr;
1289 static expressionS offset_expr;
1290
1291 /* Relocs associated with imm_expr and offset_expr. */
1292
1293 static bfd_reloc_code_real_type imm_reloc[3]
1294 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1295 static bfd_reloc_code_real_type offset_reloc[3]
1296 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1297
1298 /* These are set by mips16_ip if an explicit extension is used. */
1299
1300 static bfd_boolean mips16_small, mips16_ext;
1301
1302 #ifdef OBJ_ELF
1303 /* The pdr segment for per procedure frame/regmask info. Not used for
1304 ECOFF debugging. */
1305
1306 static segT pdr_seg;
1307 #endif
1308
1309 /* The default target format to use. */
1310
1311 const char *
1312 mips_target_format (void)
1313 {
1314 switch (OUTPUT_FLAVOR)
1315 {
1316 case bfd_target_ecoff_flavour:
1317 return target_big_endian ? "ecoff-bigmips" : ECOFF_LITTLE_FORMAT;
1318 case bfd_target_coff_flavour:
1319 return "pe-mips";
1320 case bfd_target_elf_flavour:
1321 #ifdef TE_VXWORKS
1322 if (!HAVE_64BIT_OBJECTS && !HAVE_NEWABI)
1323 return (target_big_endian
1324 ? "elf32-bigmips-vxworks"
1325 : "elf32-littlemips-vxworks");
1326 #endif
1327 #ifdef TE_TMIPS
1328 /* This is traditional mips. */
1329 return (target_big_endian
1330 ? (HAVE_64BIT_OBJECTS
1331 ? "elf64-tradbigmips"
1332 : (HAVE_NEWABI
1333 ? "elf32-ntradbigmips" : "elf32-tradbigmips"))
1334 : (HAVE_64BIT_OBJECTS
1335 ? "elf64-tradlittlemips"
1336 : (HAVE_NEWABI
1337 ? "elf32-ntradlittlemips" : "elf32-tradlittlemips")));
1338 #else
1339 return (target_big_endian
1340 ? (HAVE_64BIT_OBJECTS
1341 ? "elf64-bigmips"
1342 : (HAVE_NEWABI
1343 ? "elf32-nbigmips" : "elf32-bigmips"))
1344 : (HAVE_64BIT_OBJECTS
1345 ? "elf64-littlemips"
1346 : (HAVE_NEWABI
1347 ? "elf32-nlittlemips" : "elf32-littlemips")));
1348 #endif
1349 default:
1350 abort ();
1351 return NULL;
1352 }
1353 }
1354
1355 /* Return the length of instruction INSN. */
1356
1357 static inline unsigned int
1358 insn_length (const struct mips_cl_insn *insn)
1359 {
1360 if (!mips_opts.mips16)
1361 return 4;
1362 return insn->mips16_absolute_jump_p || insn->use_extend ? 4 : 2;
1363 }
1364
1365 /* Initialise INSN from opcode entry MO. Leave its position unspecified. */
1366
1367 static void
1368 create_insn (struct mips_cl_insn *insn, const struct mips_opcode *mo)
1369 {
1370 size_t i;
1371
1372 insn->insn_mo = mo;
1373 insn->use_extend = FALSE;
1374 insn->extend = 0;
1375 insn->insn_opcode = mo->match;
1376 insn->frag = NULL;
1377 insn->where = 0;
1378 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
1379 insn->fixp[i] = NULL;
1380 insn->fixed_p = (mips_opts.noreorder > 0);
1381 insn->noreorder_p = (mips_opts.noreorder > 0);
1382 insn->mips16_absolute_jump_p = 0;
1383 }
1384
1385 /* Record the current MIPS16 mode in now_seg. */
1386
1387 static void
1388 mips_record_mips16_mode (void)
1389 {
1390 segment_info_type *si;
1391
1392 si = seg_info (now_seg);
1393 if (si->tc_segment_info_data.mips16 != mips_opts.mips16)
1394 si->tc_segment_info_data.mips16 = mips_opts.mips16;
1395 }
1396
1397 /* Install INSN at the location specified by its "frag" and "where" fields. */
1398
1399 static void
1400 install_insn (const struct mips_cl_insn *insn)
1401 {
1402 char *f = insn->frag->fr_literal + insn->where;
1403 if (!mips_opts.mips16)
1404 md_number_to_chars (f, insn->insn_opcode, 4);
1405 else if (insn->mips16_absolute_jump_p)
1406 {
1407 md_number_to_chars (f, insn->insn_opcode >> 16, 2);
1408 md_number_to_chars (f + 2, insn->insn_opcode & 0xffff, 2);
1409 }
1410 else
1411 {
1412 if (insn->use_extend)
1413 {
1414 md_number_to_chars (f, 0xf000 | insn->extend, 2);
1415 f += 2;
1416 }
1417 md_number_to_chars (f, insn->insn_opcode, 2);
1418 }
1419 mips_record_mips16_mode ();
1420 }
1421
1422 /* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly
1423 and install the opcode in the new location. */
1424
1425 static void
1426 move_insn (struct mips_cl_insn *insn, fragS *frag, long where)
1427 {
1428 size_t i;
1429
1430 insn->frag = frag;
1431 insn->where = where;
1432 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
1433 if (insn->fixp[i] != NULL)
1434 {
1435 insn->fixp[i]->fx_frag = frag;
1436 insn->fixp[i]->fx_where = where;
1437 }
1438 install_insn (insn);
1439 }
1440
1441 /* Add INSN to the end of the output. */
1442
1443 static void
1444 add_fixed_insn (struct mips_cl_insn *insn)
1445 {
1446 char *f = frag_more (insn_length (insn));
1447 move_insn (insn, frag_now, f - frag_now->fr_literal);
1448 }
1449
1450 /* Start a variant frag and move INSN to the start of the variant part,
1451 marking it as fixed. The other arguments are as for frag_var. */
1452
1453 static void
1454 add_relaxed_insn (struct mips_cl_insn *insn, int max_chars, int var,
1455 relax_substateT subtype, symbolS *symbol, offsetT offset)
1456 {
1457 frag_grow (max_chars);
1458 move_insn (insn, frag_now, frag_more (0) - frag_now->fr_literal);
1459 insn->fixed_p = 1;
1460 frag_var (rs_machine_dependent, max_chars, var,
1461 subtype, symbol, offset, NULL);
1462 }
1463
1464 /* Insert N copies of INSN into the history buffer, starting at
1465 position FIRST. Neither FIRST nor N need to be clipped. */
1466
1467 static void
1468 insert_into_history (unsigned int first, unsigned int n,
1469 const struct mips_cl_insn *insn)
1470 {
1471 if (mips_relax.sequence != 2)
1472 {
1473 unsigned int i;
1474
1475 for (i = ARRAY_SIZE (history); i-- > first;)
1476 if (i >= first + n)
1477 history[i] = history[i - n];
1478 else
1479 history[i] = *insn;
1480 }
1481 }
1482
1483 /* Emit a nop instruction, recording it in the history buffer. */
1484
1485 static void
1486 emit_nop (void)
1487 {
1488 add_fixed_insn (NOP_INSN);
1489 insert_into_history (0, 1, NOP_INSN);
1490 }
1491
1492 /* Initialize vr4120_conflicts. There is a bit of duplication here:
1493 the idea is to make it obvious at a glance that each errata is
1494 included. */
1495
1496 static void
1497 init_vr4120_conflicts (void)
1498 {
1499 #define CONFLICT(FIRST, SECOND) \
1500 vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND
1501
1502 /* Errata 21 - [D]DIV[U] after [D]MACC */
1503 CONFLICT (MACC, DIV);
1504 CONFLICT (DMACC, DIV);
1505
1506 /* Errata 23 - Continuous DMULT[U]/DMACC instructions. */
1507 CONFLICT (DMULT, DMULT);
1508 CONFLICT (DMULT, DMACC);
1509 CONFLICT (DMACC, DMULT);
1510 CONFLICT (DMACC, DMACC);
1511
1512 /* Errata 24 - MT{LO,HI} after [D]MACC */
1513 CONFLICT (MACC, MTHILO);
1514 CONFLICT (DMACC, MTHILO);
1515
1516 /* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU
1517 instruction is executed immediately after a MACC or DMACC
1518 instruction, the result of [either instruction] is incorrect." */
1519 CONFLICT (MACC, MULT);
1520 CONFLICT (MACC, DMULT);
1521 CONFLICT (DMACC, MULT);
1522 CONFLICT (DMACC, DMULT);
1523
1524 /* VR4181A errata MD(4): "If a MACC or DMACC instruction is
1525 executed immediately after a DMULT, DMULTU, DIV, DIVU,
1526 DDIV or DDIVU instruction, the result of the MACC or
1527 DMACC instruction is incorrect.". */
1528 CONFLICT (DMULT, MACC);
1529 CONFLICT (DMULT, DMACC);
1530 CONFLICT (DIV, MACC);
1531 CONFLICT (DIV, DMACC);
1532
1533 #undef CONFLICT
1534 }
1535
1536 struct regname {
1537 const char *name;
1538 unsigned int num;
1539 };
1540
1541 #define RTYPE_MASK 0x1ff00
1542 #define RTYPE_NUM 0x00100
1543 #define RTYPE_FPU 0x00200
1544 #define RTYPE_FCC 0x00400
1545 #define RTYPE_VEC 0x00800
1546 #define RTYPE_GP 0x01000
1547 #define RTYPE_CP0 0x02000
1548 #define RTYPE_PC 0x04000
1549 #define RTYPE_ACC 0x08000
1550 #define RTYPE_CCC 0x10000
1551 #define RNUM_MASK 0x000ff
1552 #define RWARN 0x80000
1553
1554 #define GENERIC_REGISTER_NUMBERS \
1555 {"$0", RTYPE_NUM | 0}, \
1556 {"$1", RTYPE_NUM | 1}, \
1557 {"$2", RTYPE_NUM | 2}, \
1558 {"$3", RTYPE_NUM | 3}, \
1559 {"$4", RTYPE_NUM | 4}, \
1560 {"$5", RTYPE_NUM | 5}, \
1561 {"$6", RTYPE_NUM | 6}, \
1562 {"$7", RTYPE_NUM | 7}, \
1563 {"$8", RTYPE_NUM | 8}, \
1564 {"$9", RTYPE_NUM | 9}, \
1565 {"$10", RTYPE_NUM | 10}, \
1566 {"$11", RTYPE_NUM | 11}, \
1567 {"$12", RTYPE_NUM | 12}, \
1568 {"$13", RTYPE_NUM | 13}, \
1569 {"$14", RTYPE_NUM | 14}, \
1570 {"$15", RTYPE_NUM | 15}, \
1571 {"$16", RTYPE_NUM | 16}, \
1572 {"$17", RTYPE_NUM | 17}, \
1573 {"$18", RTYPE_NUM | 18}, \
1574 {"$19", RTYPE_NUM | 19}, \
1575 {"$20", RTYPE_NUM | 20}, \
1576 {"$21", RTYPE_NUM | 21}, \
1577 {"$22", RTYPE_NUM | 22}, \
1578 {"$23", RTYPE_NUM | 23}, \
1579 {"$24", RTYPE_NUM | 24}, \
1580 {"$25", RTYPE_NUM | 25}, \
1581 {"$26", RTYPE_NUM | 26}, \
1582 {"$27", RTYPE_NUM | 27}, \
1583 {"$28", RTYPE_NUM | 28}, \
1584 {"$29", RTYPE_NUM | 29}, \
1585 {"$30", RTYPE_NUM | 30}, \
1586 {"$31", RTYPE_NUM | 31}
1587
1588 #define FPU_REGISTER_NAMES \
1589 {"$f0", RTYPE_FPU | 0}, \
1590 {"$f1", RTYPE_FPU | 1}, \
1591 {"$f2", RTYPE_FPU | 2}, \
1592 {"$f3", RTYPE_FPU | 3}, \
1593 {"$f4", RTYPE_FPU | 4}, \
1594 {"$f5", RTYPE_FPU | 5}, \
1595 {"$f6", RTYPE_FPU | 6}, \
1596 {"$f7", RTYPE_FPU | 7}, \
1597 {"$f8", RTYPE_FPU | 8}, \
1598 {"$f9", RTYPE_FPU | 9}, \
1599 {"$f10", RTYPE_FPU | 10}, \
1600 {"$f11", RTYPE_FPU | 11}, \
1601 {"$f12", RTYPE_FPU | 12}, \
1602 {"$f13", RTYPE_FPU | 13}, \
1603 {"$f14", RTYPE_FPU | 14}, \
1604 {"$f15", RTYPE_FPU | 15}, \
1605 {"$f16", RTYPE_FPU | 16}, \
1606 {"$f17", RTYPE_FPU | 17}, \
1607 {"$f18", RTYPE_FPU | 18}, \
1608 {"$f19", RTYPE_FPU | 19}, \
1609 {"$f20", RTYPE_FPU | 20}, \
1610 {"$f21", RTYPE_FPU | 21}, \
1611 {"$f22", RTYPE_FPU | 22}, \
1612 {"$f23", RTYPE_FPU | 23}, \
1613 {"$f24", RTYPE_FPU | 24}, \
1614 {"$f25", RTYPE_FPU | 25}, \
1615 {"$f26", RTYPE_FPU | 26}, \
1616 {"$f27", RTYPE_FPU | 27}, \
1617 {"$f28", RTYPE_FPU | 28}, \
1618 {"$f29", RTYPE_FPU | 29}, \
1619 {"$f30", RTYPE_FPU | 30}, \
1620 {"$f31", RTYPE_FPU | 31}
1621
1622 #define FPU_CONDITION_CODE_NAMES \
1623 {"$fcc0", RTYPE_FCC | 0}, \
1624 {"$fcc1", RTYPE_FCC | 1}, \
1625 {"$fcc2", RTYPE_FCC | 2}, \
1626 {"$fcc3", RTYPE_FCC | 3}, \
1627 {"$fcc4", RTYPE_FCC | 4}, \
1628 {"$fcc5", RTYPE_FCC | 5}, \
1629 {"$fcc6", RTYPE_FCC | 6}, \
1630 {"$fcc7", RTYPE_FCC | 7}
1631
1632 #define COPROC_CONDITION_CODE_NAMES \
1633 {"$cc0", RTYPE_FCC | RTYPE_CCC | 0}, \
1634 {"$cc1", RTYPE_FCC | RTYPE_CCC | 1}, \
1635 {"$cc2", RTYPE_FCC | RTYPE_CCC | 2}, \
1636 {"$cc3", RTYPE_FCC | RTYPE_CCC | 3}, \
1637 {"$cc4", RTYPE_FCC | RTYPE_CCC | 4}, \
1638 {"$cc5", RTYPE_FCC | RTYPE_CCC | 5}, \
1639 {"$cc6", RTYPE_FCC | RTYPE_CCC | 6}, \
1640 {"$cc7", RTYPE_FCC | RTYPE_CCC | 7}
1641
1642 #define N32N64_SYMBOLIC_REGISTER_NAMES \
1643 {"$a4", RTYPE_GP | 8}, \
1644 {"$a5", RTYPE_GP | 9}, \
1645 {"$a6", RTYPE_GP | 10}, \
1646 {"$a7", RTYPE_GP | 11}, \
1647 {"$ta0", RTYPE_GP | 8}, /* alias for $a4 */ \
1648 {"$ta1", RTYPE_GP | 9}, /* alias for $a5 */ \
1649 {"$ta2", RTYPE_GP | 10}, /* alias for $a6 */ \
1650 {"$ta3", RTYPE_GP | 11}, /* alias for $a7 */ \
1651 {"$t0", RTYPE_GP | 12}, \
1652 {"$t1", RTYPE_GP | 13}, \
1653 {"$t2", RTYPE_GP | 14}, \
1654 {"$t3", RTYPE_GP | 15}
1655
1656 #define O32_SYMBOLIC_REGISTER_NAMES \
1657 {"$t0", RTYPE_GP | 8}, \
1658 {"$t1", RTYPE_GP | 9}, \
1659 {"$t2", RTYPE_GP | 10}, \
1660 {"$t3", RTYPE_GP | 11}, \
1661 {"$t4", RTYPE_GP | 12}, \
1662 {"$t5", RTYPE_GP | 13}, \
1663 {"$t6", RTYPE_GP | 14}, \
1664 {"$t7", RTYPE_GP | 15}, \
1665 {"$ta0", RTYPE_GP | 12}, /* alias for $t4 */ \
1666 {"$ta1", RTYPE_GP | 13}, /* alias for $t5 */ \
1667 {"$ta2", RTYPE_GP | 14}, /* alias for $t6 */ \
1668 {"$ta3", RTYPE_GP | 15} /* alias for $t7 */
1669
1670 /* Remaining symbolic register names */
1671 #define SYMBOLIC_REGISTER_NAMES \
1672 {"$zero", RTYPE_GP | 0}, \
1673 {"$at", RTYPE_GP | 1}, \
1674 {"$AT", RTYPE_GP | 1}, \
1675 {"$v0", RTYPE_GP | 2}, \
1676 {"$v1", RTYPE_GP | 3}, \
1677 {"$a0", RTYPE_GP | 4}, \
1678 {"$a1", RTYPE_GP | 5}, \
1679 {"$a2", RTYPE_GP | 6}, \
1680 {"$a3", RTYPE_GP | 7}, \
1681 {"$s0", RTYPE_GP | 16}, \
1682 {"$s1", RTYPE_GP | 17}, \
1683 {"$s2", RTYPE_GP | 18}, \
1684 {"$s3", RTYPE_GP | 19}, \
1685 {"$s4", RTYPE_GP | 20}, \
1686 {"$s5", RTYPE_GP | 21}, \
1687 {"$s6", RTYPE_GP | 22}, \
1688 {"$s7", RTYPE_GP | 23}, \
1689 {"$t8", RTYPE_GP | 24}, \
1690 {"$t9", RTYPE_GP | 25}, \
1691 {"$k0", RTYPE_GP | 26}, \
1692 {"$kt0", RTYPE_GP | 26}, \
1693 {"$k1", RTYPE_GP | 27}, \
1694 {"$kt1", RTYPE_GP | 27}, \
1695 {"$gp", RTYPE_GP | 28}, \
1696 {"$sp", RTYPE_GP | 29}, \
1697 {"$s8", RTYPE_GP | 30}, \
1698 {"$fp", RTYPE_GP | 30}, \
1699 {"$ra", RTYPE_GP | 31}
1700
1701 #define MIPS16_SPECIAL_REGISTER_NAMES \
1702 {"$pc", RTYPE_PC | 0}
1703
1704 #define MDMX_VECTOR_REGISTER_NAMES \
1705 /* {"$v0", RTYPE_VEC | 0}, clash with REG 2 above */ \
1706 /* {"$v1", RTYPE_VEC | 1}, clash with REG 3 above */ \
1707 {"$v2", RTYPE_VEC | 2}, \
1708 {"$v3", RTYPE_VEC | 3}, \
1709 {"$v4", RTYPE_VEC | 4}, \
1710 {"$v5", RTYPE_VEC | 5}, \
1711 {"$v6", RTYPE_VEC | 6}, \
1712 {"$v7", RTYPE_VEC | 7}, \
1713 {"$v8", RTYPE_VEC | 8}, \
1714 {"$v9", RTYPE_VEC | 9}, \
1715 {"$v10", RTYPE_VEC | 10}, \
1716 {"$v11", RTYPE_VEC | 11}, \
1717 {"$v12", RTYPE_VEC | 12}, \
1718 {"$v13", RTYPE_VEC | 13}, \
1719 {"$v14", RTYPE_VEC | 14}, \
1720 {"$v15", RTYPE_VEC | 15}, \
1721 {"$v16", RTYPE_VEC | 16}, \
1722 {"$v17", RTYPE_VEC | 17}, \
1723 {"$v18", RTYPE_VEC | 18}, \
1724 {"$v19", RTYPE_VEC | 19}, \
1725 {"$v20", RTYPE_VEC | 20}, \
1726 {"$v21", RTYPE_VEC | 21}, \
1727 {"$v22", RTYPE_VEC | 22}, \
1728 {"$v23", RTYPE_VEC | 23}, \
1729 {"$v24", RTYPE_VEC | 24}, \
1730 {"$v25", RTYPE_VEC | 25}, \
1731 {"$v26", RTYPE_VEC | 26}, \
1732 {"$v27", RTYPE_VEC | 27}, \
1733 {"$v28", RTYPE_VEC | 28}, \
1734 {"$v29", RTYPE_VEC | 29}, \
1735 {"$v30", RTYPE_VEC | 30}, \
1736 {"$v31", RTYPE_VEC | 31}
1737
1738 #define MIPS_DSP_ACCUMULATOR_NAMES \
1739 {"$ac0", RTYPE_ACC | 0}, \
1740 {"$ac1", RTYPE_ACC | 1}, \
1741 {"$ac2", RTYPE_ACC | 2}, \
1742 {"$ac3", RTYPE_ACC | 3}
1743
1744 static const struct regname reg_names[] = {
1745 GENERIC_REGISTER_NUMBERS,
1746 FPU_REGISTER_NAMES,
1747 FPU_CONDITION_CODE_NAMES,
1748 COPROC_CONDITION_CODE_NAMES,
1749
1750 /* The $txx registers depends on the abi,
1751 these will be added later into the symbol table from
1752 one of the tables below once mips_abi is set after
1753 parsing of arguments from the command line. */
1754 SYMBOLIC_REGISTER_NAMES,
1755
1756 MIPS16_SPECIAL_REGISTER_NAMES,
1757 MDMX_VECTOR_REGISTER_NAMES,
1758 MIPS_DSP_ACCUMULATOR_NAMES,
1759 {0, 0}
1760 };
1761
1762 static const struct regname reg_names_o32[] = {
1763 O32_SYMBOLIC_REGISTER_NAMES,
1764 {0, 0}
1765 };
1766
1767 static const struct regname reg_names_n32n64[] = {
1768 N32N64_SYMBOLIC_REGISTER_NAMES,
1769 {0, 0}
1770 };
1771
1772 static int
1773 reg_lookup (char **s, unsigned int types, unsigned int *regnop)
1774 {
1775 symbolS *symbolP;
1776 char *e;
1777 char save_c;
1778 int reg = -1;
1779
1780 /* Find end of name. */
1781 e = *s;
1782 if (is_name_beginner (*e))
1783 ++e;
1784 while (is_part_of_name (*e))
1785 ++e;
1786
1787 /* Terminate name. */
1788 save_c = *e;
1789 *e = '\0';
1790
1791 /* Look for a register symbol. */
1792 if ((symbolP = symbol_find (*s)) && S_GET_SEGMENT (symbolP) == reg_section)
1793 {
1794 int r = S_GET_VALUE (symbolP);
1795 if (r & types)
1796 reg = r & RNUM_MASK;
1797 else if ((types & RTYPE_VEC) && (r & ~1) == (RTYPE_GP | 2))
1798 /* Convert GP reg $v0/1 to MDMX reg $v0/1! */
1799 reg = (r & RNUM_MASK) - 2;
1800 }
1801 /* Else see if this is a register defined in an itbl entry. */
1802 else if ((types & RTYPE_GP) && itbl_have_entries)
1803 {
1804 char *n = *s;
1805 unsigned long r;
1806
1807 if (*n == '$')
1808 ++n;
1809 if (itbl_get_reg_val (n, &r))
1810 reg = r & RNUM_MASK;
1811 }
1812
1813 /* Advance to next token if a register was recognised. */
1814 if (reg >= 0)
1815 *s = e;
1816 else if (types & RWARN)
1817 as_warn (_("Unrecognized register name `%s'"), *s);
1818
1819 *e = save_c;
1820 if (regnop)
1821 *regnop = reg;
1822 return reg >= 0;
1823 }
1824
1825 /* Return TRUE if opcode MO is valid on the currently selected ISA and
1826 architecture. Use is_opcode_valid_16 for MIPS16 opcodes. */
1827
1828 static bfd_boolean
1829 is_opcode_valid (const struct mips_opcode *mo)
1830 {
1831 int isa = mips_opts.isa;
1832 int fp_s, fp_d;
1833
1834 if (mips_opts.ase_mdmx)
1835 isa |= INSN_MDMX;
1836 if (mips_opts.ase_dsp)
1837 isa |= INSN_DSP;
1838 if (mips_opts.ase_dsp && ISA_SUPPORTS_DSP64_ASE)
1839 isa |= INSN_DSP64;
1840 if (mips_opts.ase_dspr2)
1841 isa |= INSN_DSPR2;
1842 if (mips_opts.ase_mt)
1843 isa |= INSN_MT;
1844 if (mips_opts.ase_mips3d)
1845 isa |= INSN_MIPS3D;
1846 if (mips_opts.ase_smartmips)
1847 isa |= INSN_SMARTMIPS;
1848
1849 /* Don't accept instructions based on the ISA if the CPU does not implement
1850 all the coprocessor insns. */
1851 if (NO_ISA_COP (mips_opts.arch)
1852 && COP_INSN (mo->pinfo))
1853 isa = 0;
1854
1855 if (!OPCODE_IS_MEMBER (mo, isa, mips_opts.arch))
1856 return FALSE;
1857
1858 /* Check whether the instruction or macro requires single-precision or
1859 double-precision floating-point support. Note that this information is
1860 stored differently in the opcode table for insns and macros. */
1861 if (mo->pinfo == INSN_MACRO)
1862 {
1863 fp_s = mo->pinfo2 & INSN2_M_FP_S;
1864 fp_d = mo->pinfo2 & INSN2_M_FP_D;
1865 }
1866 else
1867 {
1868 fp_s = mo->pinfo & FP_S;
1869 fp_d = mo->pinfo & FP_D;
1870 }
1871
1872 if (fp_d && (mips_opts.soft_float || mips_opts.single_float))
1873 return FALSE;
1874
1875 if (fp_s && mips_opts.soft_float)
1876 return FALSE;
1877
1878 return TRUE;
1879 }
1880
1881 /* Return TRUE if the MIPS16 opcode MO is valid on the currently
1882 selected ISA and architecture. */
1883
1884 static bfd_boolean
1885 is_opcode_valid_16 (const struct mips_opcode *mo)
1886 {
1887 return OPCODE_IS_MEMBER (mo, mips_opts.isa, mips_opts.arch) ? TRUE : FALSE;
1888 }
1889
1890 /* This function is called once, at assembler startup time. It should set up
1891 all the tables, etc. that the MD part of the assembler will need. */
1892
1893 void
1894 md_begin (void)
1895 {
1896 const char *retval = NULL;
1897 int i = 0;
1898 int broken = 0;
1899
1900 if (mips_pic != NO_PIC)
1901 {
1902 if (g_switch_seen && g_switch_value != 0)
1903 as_bad (_("-G may not be used in position-independent code"));
1904 g_switch_value = 0;
1905 }
1906
1907 if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_arch))
1908 as_warn (_("Could not set architecture and machine"));
1909
1910 op_hash = hash_new ();
1911
1912 for (i = 0; i < NUMOPCODES;)
1913 {
1914 const char *name = mips_opcodes[i].name;
1915
1916 retval = hash_insert (op_hash, name, (void *) &mips_opcodes[i]);
1917 if (retval != NULL)
1918 {
1919 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
1920 mips_opcodes[i].name, retval);
1921 /* Probably a memory allocation problem? Give up now. */
1922 as_fatal (_("Broken assembler. No assembly attempted."));
1923 }
1924 do
1925 {
1926 if (mips_opcodes[i].pinfo != INSN_MACRO)
1927 {
1928 if (!validate_mips_insn (&mips_opcodes[i]))
1929 broken = 1;
1930 if (nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
1931 {
1932 create_insn (&nop_insn, mips_opcodes + i);
1933 if (mips_fix_loongson2f_nop)
1934 nop_insn.insn_opcode = LOONGSON2F_NOP_INSN;
1935 nop_insn.fixed_p = 1;
1936 }
1937 }
1938 ++i;
1939 }
1940 while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
1941 }
1942
1943 mips16_op_hash = hash_new ();
1944
1945 i = 0;
1946 while (i < bfd_mips16_num_opcodes)
1947 {
1948 const char *name = mips16_opcodes[i].name;
1949
1950 retval = hash_insert (mips16_op_hash, name, (void *) &mips16_opcodes[i]);
1951 if (retval != NULL)
1952 as_fatal (_("internal: can't hash `%s': %s"),
1953 mips16_opcodes[i].name, retval);
1954 do
1955 {
1956 if (mips16_opcodes[i].pinfo != INSN_MACRO
1957 && ((mips16_opcodes[i].match & mips16_opcodes[i].mask)
1958 != mips16_opcodes[i].match))
1959 {
1960 fprintf (stderr, _("internal error: bad mips16 opcode: %s %s\n"),
1961 mips16_opcodes[i].name, mips16_opcodes[i].args);
1962 broken = 1;
1963 }
1964 if (mips16_nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
1965 {
1966 create_insn (&mips16_nop_insn, mips16_opcodes + i);
1967 mips16_nop_insn.fixed_p = 1;
1968 }
1969 ++i;
1970 }
1971 while (i < bfd_mips16_num_opcodes
1972 && strcmp (mips16_opcodes[i].name, name) == 0);
1973 }
1974
1975 if (broken)
1976 as_fatal (_("Broken assembler. No assembly attempted."));
1977
1978 /* We add all the general register names to the symbol table. This
1979 helps us detect invalid uses of them. */
1980 for (i = 0; reg_names[i].name; i++)
1981 symbol_table_insert (symbol_new (reg_names[i].name, reg_section,
1982 reg_names[i].num, /* & RNUM_MASK, */
1983 &zero_address_frag));
1984 if (HAVE_NEWABI)
1985 for (i = 0; reg_names_n32n64[i].name; i++)
1986 symbol_table_insert (symbol_new (reg_names_n32n64[i].name, reg_section,
1987 reg_names_n32n64[i].num, /* & RNUM_MASK, */
1988 &zero_address_frag));
1989 else
1990 for (i = 0; reg_names_o32[i].name; i++)
1991 symbol_table_insert (symbol_new (reg_names_o32[i].name, reg_section,
1992 reg_names_o32[i].num, /* & RNUM_MASK, */
1993 &zero_address_frag));
1994
1995 mips_no_prev_insn ();
1996
1997 mips_gprmask = 0;
1998 mips_cprmask[0] = 0;
1999 mips_cprmask[1] = 0;
2000 mips_cprmask[2] = 0;
2001 mips_cprmask[3] = 0;
2002
2003 /* set the default alignment for the text section (2**2) */
2004 record_alignment (text_section, 2);
2005
2006 bfd_set_gp_size (stdoutput, g_switch_value);
2007
2008 #ifdef OBJ_ELF
2009 if (IS_ELF)
2010 {
2011 /* On a native system other than VxWorks, sections must be aligned
2012 to 16 byte boundaries. When configured for an embedded ELF
2013 target, we don't bother. */
2014 if (strncmp (TARGET_OS, "elf", 3) != 0
2015 && strncmp (TARGET_OS, "vxworks", 7) != 0)
2016 {
2017 (void) bfd_set_section_alignment (stdoutput, text_section, 4);
2018 (void) bfd_set_section_alignment (stdoutput, data_section, 4);
2019 (void) bfd_set_section_alignment (stdoutput, bss_section, 4);
2020 }
2021
2022 /* Create a .reginfo section for register masks and a .mdebug
2023 section for debugging information. */
2024 {
2025 segT seg;
2026 subsegT subseg;
2027 flagword flags;
2028 segT sec;
2029
2030 seg = now_seg;
2031 subseg = now_subseg;
2032
2033 /* The ABI says this section should be loaded so that the
2034 running program can access it. However, we don't load it
2035 if we are configured for an embedded target */
2036 flags = SEC_READONLY | SEC_DATA;
2037 if (strncmp (TARGET_OS, "elf", 3) != 0)
2038 flags |= SEC_ALLOC | SEC_LOAD;
2039
2040 if (mips_abi != N64_ABI)
2041 {
2042 sec = subseg_new (".reginfo", (subsegT) 0);
2043
2044 bfd_set_section_flags (stdoutput, sec, flags);
2045 bfd_set_section_alignment (stdoutput, sec, HAVE_NEWABI ? 3 : 2);
2046
2047 mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
2048 }
2049 else
2050 {
2051 /* The 64-bit ABI uses a .MIPS.options section rather than
2052 .reginfo section. */
2053 sec = subseg_new (".MIPS.options", (subsegT) 0);
2054 bfd_set_section_flags (stdoutput, sec, flags);
2055 bfd_set_section_alignment (stdoutput, sec, 3);
2056
2057 /* Set up the option header. */
2058 {
2059 Elf_Internal_Options opthdr;
2060 char *f;
2061
2062 opthdr.kind = ODK_REGINFO;
2063 opthdr.size = (sizeof (Elf_External_Options)
2064 + sizeof (Elf64_External_RegInfo));
2065 opthdr.section = 0;
2066 opthdr.info = 0;
2067 f = frag_more (sizeof (Elf_External_Options));
2068 bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
2069 (Elf_External_Options *) f);
2070
2071 mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
2072 }
2073 }
2074
2075 if (ECOFF_DEBUGGING)
2076 {
2077 sec = subseg_new (".mdebug", (subsegT) 0);
2078 (void) bfd_set_section_flags (stdoutput, sec,
2079 SEC_HAS_CONTENTS | SEC_READONLY);
2080 (void) bfd_set_section_alignment (stdoutput, sec, 2);
2081 }
2082 else if (mips_flag_pdr)
2083 {
2084 pdr_seg = subseg_new (".pdr", (subsegT) 0);
2085 (void) bfd_set_section_flags (stdoutput, pdr_seg,
2086 SEC_READONLY | SEC_RELOC
2087 | SEC_DEBUGGING);
2088 (void) bfd_set_section_alignment (stdoutput, pdr_seg, 2);
2089 }
2090
2091 subseg_set (seg, subseg);
2092 }
2093 }
2094 #endif /* OBJ_ELF */
2095
2096 if (! ECOFF_DEBUGGING)
2097 md_obj_begin ();
2098
2099 if (mips_fix_vr4120)
2100 init_vr4120_conflicts ();
2101 }
2102
2103 void
2104 md_mips_end (void)
2105 {
2106 if (! ECOFF_DEBUGGING)
2107 md_obj_end ();
2108 }
2109
2110 void
2111 md_assemble (char *str)
2112 {
2113 struct mips_cl_insn insn;
2114 bfd_reloc_code_real_type unused_reloc[3]
2115 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
2116
2117 imm_expr.X_op = O_absent;
2118 imm2_expr.X_op = O_absent;
2119 offset_expr.X_op = O_absent;
2120 imm_reloc[0] = BFD_RELOC_UNUSED;
2121 imm_reloc[1] = BFD_RELOC_UNUSED;
2122 imm_reloc[2] = BFD_RELOC_UNUSED;
2123 offset_reloc[0] = BFD_RELOC_UNUSED;
2124 offset_reloc[1] = BFD_RELOC_UNUSED;
2125 offset_reloc[2] = BFD_RELOC_UNUSED;
2126
2127 if (mips_opts.mips16)
2128 mips16_ip (str, &insn);
2129 else
2130 {
2131 mips_ip (str, &insn);
2132 DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
2133 str, insn.insn_opcode));
2134 }
2135
2136 if (insn_error)
2137 {
2138 as_bad ("%s `%s'", insn_error, str);
2139 return;
2140 }
2141
2142 if (insn.insn_mo->pinfo == INSN_MACRO)
2143 {
2144 macro_start ();
2145 if (mips_opts.mips16)
2146 mips16_macro (&insn);
2147 else
2148 macro (&insn);
2149 macro_end ();
2150 }
2151 else
2152 {
2153 if (imm_expr.X_op != O_absent)
2154 append_insn (&insn, &imm_expr, imm_reloc);
2155 else if (offset_expr.X_op != O_absent)
2156 append_insn (&insn, &offset_expr, offset_reloc);
2157 else
2158 append_insn (&insn, NULL, unused_reloc);
2159 }
2160 }
2161
2162 /* Convenience functions for abstracting away the differences between
2163 MIPS16 and non-MIPS16 relocations. */
2164
2165 static inline bfd_boolean
2166 mips16_reloc_p (bfd_reloc_code_real_type reloc)
2167 {
2168 switch (reloc)
2169 {
2170 case BFD_RELOC_MIPS16_JMP:
2171 case BFD_RELOC_MIPS16_GPREL:
2172 case BFD_RELOC_MIPS16_GOT16:
2173 case BFD_RELOC_MIPS16_CALL16:
2174 case BFD_RELOC_MIPS16_HI16_S:
2175 case BFD_RELOC_MIPS16_HI16:
2176 case BFD_RELOC_MIPS16_LO16:
2177 return TRUE;
2178
2179 default:
2180 return FALSE;
2181 }
2182 }
2183
2184 static inline bfd_boolean
2185 got16_reloc_p (bfd_reloc_code_real_type reloc)
2186 {
2187 return reloc == BFD_RELOC_MIPS_GOT16 || reloc == BFD_RELOC_MIPS16_GOT16;
2188 }
2189
2190 static inline bfd_boolean
2191 hi16_reloc_p (bfd_reloc_code_real_type reloc)
2192 {
2193 return reloc == BFD_RELOC_HI16_S || reloc == BFD_RELOC_MIPS16_HI16_S;
2194 }
2195
2196 static inline bfd_boolean
2197 lo16_reloc_p (bfd_reloc_code_real_type reloc)
2198 {
2199 return reloc == BFD_RELOC_LO16 || reloc == BFD_RELOC_MIPS16_LO16;
2200 }
2201
2202 /* Return true if the given relocation might need a matching %lo().
2203 This is only "might" because SVR4 R_MIPS_GOT16 relocations only
2204 need a matching %lo() when applied to local symbols. */
2205
2206 static inline bfd_boolean
2207 reloc_needs_lo_p (bfd_reloc_code_real_type reloc)
2208 {
2209 return (HAVE_IN_PLACE_ADDENDS
2210 && (hi16_reloc_p (reloc)
2211 /* VxWorks R_MIPS_GOT16 relocs never need a matching %lo();
2212 all GOT16 relocations evaluate to "G". */
2213 || (got16_reloc_p (reloc) && mips_pic != VXWORKS_PIC)));
2214 }
2215
2216 /* Return the type of %lo() reloc needed by RELOC, given that
2217 reloc_needs_lo_p. */
2218
2219 static inline bfd_reloc_code_real_type
2220 matching_lo_reloc (bfd_reloc_code_real_type reloc)
2221 {
2222 return mips16_reloc_p (reloc) ? BFD_RELOC_MIPS16_LO16 : BFD_RELOC_LO16;
2223 }
2224
2225 /* Return true if the given fixup is followed by a matching R_MIPS_LO16
2226 relocation. */
2227
2228 static inline bfd_boolean
2229 fixup_has_matching_lo_p (fixS *fixp)
2230 {
2231 return (fixp->fx_next != NULL
2232 && fixp->fx_next->fx_r_type == matching_lo_reloc (fixp->fx_r_type)
2233 && fixp->fx_addsy == fixp->fx_next->fx_addsy
2234 && fixp->fx_offset == fixp->fx_next->fx_offset);
2235 }
2236
2237 /* See whether instruction IP reads register REG. CLASS is the type
2238 of register. */
2239
2240 static int
2241 insn_uses_reg (const struct mips_cl_insn *ip, unsigned int reg,
2242 enum mips_regclass regclass)
2243 {
2244 if (regclass == MIPS16_REG)
2245 {
2246 gas_assert (mips_opts.mips16);
2247 reg = mips16_to_32_reg_map[reg];
2248 regclass = MIPS_GR_REG;
2249 }
2250
2251 /* Don't report on general register ZERO, since it never changes. */
2252 if (regclass == MIPS_GR_REG && reg == ZERO)
2253 return 0;
2254
2255 if (regclass == MIPS_FP_REG)
2256 {
2257 gas_assert (! mips_opts.mips16);
2258 /* If we are called with either $f0 or $f1, we must check $f0.
2259 This is not optimal, because it will introduce an unnecessary
2260 NOP between "lwc1 $f0" and "swc1 $f1". To fix this we would
2261 need to distinguish reading both $f0 and $f1 or just one of
2262 them. Note that we don't have to check the other way,
2263 because there is no instruction that sets both $f0 and $f1
2264 and requires a delay. */
2265 if ((ip->insn_mo->pinfo & INSN_READ_FPR_S)
2266 && ((EXTRACT_OPERAND (FS, *ip) & ~(unsigned) 1)
2267 == (reg &~ (unsigned) 1)))
2268 return 1;
2269 if ((ip->insn_mo->pinfo & INSN_READ_FPR_T)
2270 && ((EXTRACT_OPERAND (FT, *ip) & ~(unsigned) 1)
2271 == (reg &~ (unsigned) 1)))
2272 return 1;
2273 }
2274 else if (! mips_opts.mips16)
2275 {
2276 if ((ip->insn_mo->pinfo & INSN_READ_GPR_S)
2277 && EXTRACT_OPERAND (RS, *ip) == reg)
2278 return 1;
2279 if ((ip->insn_mo->pinfo & INSN_READ_GPR_T)
2280 && EXTRACT_OPERAND (RT, *ip) == reg)
2281 return 1;
2282 }
2283 else
2284 {
2285 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_X)
2286 && mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RX, *ip)] == reg)
2287 return 1;
2288 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_Y)
2289 && mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RY, *ip)] == reg)
2290 return 1;
2291 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_Z)
2292 && (mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (MOVE32Z, *ip)]
2293 == reg))
2294 return 1;
2295 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_T) && reg == TREG)
2296 return 1;
2297 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_SP) && reg == SP)
2298 return 1;
2299 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_31) && reg == RA)
2300 return 1;
2301 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_GPR_X)
2302 && MIPS16_EXTRACT_OPERAND (REGR32, *ip) == reg)
2303 return 1;
2304 }
2305
2306 return 0;
2307 }
2308
2309 /* This function returns true if modifying a register requires a
2310 delay. */
2311
2312 static int
2313 reg_needs_delay (unsigned int reg)
2314 {
2315 unsigned long prev_pinfo;
2316
2317 prev_pinfo = history[0].insn_mo->pinfo;
2318 if (! mips_opts.noreorder
2319 && (((prev_pinfo & INSN_LOAD_MEMORY_DELAY)
2320 && ! gpr_interlocks)
2321 || ((prev_pinfo & INSN_LOAD_COPROC_DELAY)
2322 && ! cop_interlocks)))
2323 {
2324 /* A load from a coprocessor or from memory. All load delays
2325 delay the use of general register rt for one instruction. */
2326 /* Itbl support may require additional care here. */
2327 know (prev_pinfo & INSN_WRITE_GPR_T);
2328 if (reg == EXTRACT_OPERAND (RT, history[0]))
2329 return 1;
2330 }
2331
2332 return 0;
2333 }
2334
2335 /* Move all labels in insn_labels to the current insertion point. */
2336
2337 static void
2338 mips_move_labels (void)
2339 {
2340 segment_info_type *si = seg_info (now_seg);
2341 struct insn_label_list *l;
2342 valueT val;
2343
2344 for (l = si->label_list; l != NULL; l = l->next)
2345 {
2346 gas_assert (S_GET_SEGMENT (l->label) == now_seg);
2347 symbol_set_frag (l->label, frag_now);
2348 val = (valueT) frag_now_fix ();
2349 /* mips16 text labels are stored as odd. */
2350 if (mips_opts.mips16)
2351 ++val;
2352 S_SET_VALUE (l->label, val);
2353 }
2354 }
2355
2356 static bfd_boolean
2357 s_is_linkonce (symbolS *sym, segT from_seg)
2358 {
2359 bfd_boolean linkonce = FALSE;
2360 segT symseg = S_GET_SEGMENT (sym);
2361
2362 if (symseg != from_seg && !S_IS_LOCAL (sym))
2363 {
2364 if ((bfd_get_section_flags (stdoutput, symseg) & SEC_LINK_ONCE))
2365 linkonce = TRUE;
2366 #ifdef OBJ_ELF
2367 /* The GNU toolchain uses an extension for ELF: a section
2368 beginning with the magic string .gnu.linkonce is a
2369 linkonce section. */
2370 if (strncmp (segment_name (symseg), ".gnu.linkonce",
2371 sizeof ".gnu.linkonce" - 1) == 0)
2372 linkonce = TRUE;
2373 #endif
2374 }
2375 return linkonce;
2376 }
2377
2378 /* Mark instruction labels in mips16 mode. This permits the linker to
2379 handle them specially, such as generating jalx instructions when
2380 needed. We also make them odd for the duration of the assembly, in
2381 order to generate the right sort of code. We will make them even
2382 in the adjust_symtab routine, while leaving them marked. This is
2383 convenient for the debugger and the disassembler. The linker knows
2384 to make them odd again. */
2385
2386 static void
2387 mips16_mark_labels (void)
2388 {
2389 segment_info_type *si = seg_info (now_seg);
2390 struct insn_label_list *l;
2391
2392 if (!mips_opts.mips16)
2393 return;
2394
2395 for (l = si->label_list; l != NULL; l = l->next)
2396 {
2397 symbolS *label = l->label;
2398
2399 #if defined(OBJ_ELF) || defined(OBJ_MAYBE_ELF)
2400 if (IS_ELF)
2401 S_SET_OTHER (label, ELF_ST_SET_MIPS16 (S_GET_OTHER (label)));
2402 #endif
2403 if ((S_GET_VALUE (label) & 1) == 0
2404 /* Don't adjust the address if the label is global or weak, or
2405 in a link-once section, since we'll be emitting symbol reloc
2406 references to it which will be patched up by the linker, and
2407 the final value of the symbol may or may not be MIPS16. */
2408 && ! S_IS_WEAK (label)
2409 && ! S_IS_EXTERNAL (label)
2410 && ! s_is_linkonce (label, now_seg))
2411 S_SET_VALUE (label, S_GET_VALUE (label) | 1);
2412 }
2413 }
2414
2415 /* End the current frag. Make it a variant frag and record the
2416 relaxation info. */
2417
2418 static void
2419 relax_close_frag (void)
2420 {
2421 mips_macro_warning.first_frag = frag_now;
2422 frag_var (rs_machine_dependent, 0, 0,
2423 RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1]),
2424 mips_relax.symbol, 0, (char *) mips_relax.first_fixup);
2425
2426 memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes));
2427 mips_relax.first_fixup = 0;
2428 }
2429
2430 /* Start a new relaxation sequence whose expansion depends on SYMBOL.
2431 See the comment above RELAX_ENCODE for more details. */
2432
2433 static void
2434 relax_start (symbolS *symbol)
2435 {
2436 gas_assert (mips_relax.sequence == 0);
2437 mips_relax.sequence = 1;
2438 mips_relax.symbol = symbol;
2439 }
2440
2441 /* Start generating the second version of a relaxable sequence.
2442 See the comment above RELAX_ENCODE for more details. */
2443
2444 static void
2445 relax_switch (void)
2446 {
2447 gas_assert (mips_relax.sequence == 1);
2448 mips_relax.sequence = 2;
2449 }
2450
2451 /* End the current relaxable sequence. */
2452
2453 static void
2454 relax_end (void)
2455 {
2456 gas_assert (mips_relax.sequence == 2);
2457 relax_close_frag ();
2458 mips_relax.sequence = 0;
2459 }
2460
2461 /* Classify an instruction according to the FIX_VR4120_* enumeration.
2462 Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected
2463 by VR4120 errata. */
2464
2465 static unsigned int
2466 classify_vr4120_insn (const char *name)
2467 {
2468 if (strncmp (name, "macc", 4) == 0)
2469 return FIX_VR4120_MACC;
2470 if (strncmp (name, "dmacc", 5) == 0)
2471 return FIX_VR4120_DMACC;
2472 if (strncmp (name, "mult", 4) == 0)
2473 return FIX_VR4120_MULT;
2474 if (strncmp (name, "dmult", 5) == 0)
2475 return FIX_VR4120_DMULT;
2476 if (strstr (name, "div"))
2477 return FIX_VR4120_DIV;
2478 if (strcmp (name, "mtlo") == 0 || strcmp (name, "mthi") == 0)
2479 return FIX_VR4120_MTHILO;
2480 return NUM_FIX_VR4120_CLASSES;
2481 }
2482
2483 #define INSN_ERET 0x42000018
2484 #define INSN_DERET 0x4200001f
2485
2486 /* Return the number of instructions that must separate INSN1 and INSN2,
2487 where INSN1 is the earlier instruction. Return the worst-case value
2488 for any INSN2 if INSN2 is null. */
2489
2490 static unsigned int
2491 insns_between (const struct mips_cl_insn *insn1,
2492 const struct mips_cl_insn *insn2)
2493 {
2494 unsigned long pinfo1, pinfo2;
2495
2496 /* This function needs to know which pinfo flags are set for INSN2
2497 and which registers INSN2 uses. The former is stored in PINFO2 and
2498 the latter is tested via INSN2_USES_REG. If INSN2 is null, PINFO2
2499 will have every flag set and INSN2_USES_REG will always return true. */
2500 pinfo1 = insn1->insn_mo->pinfo;
2501 pinfo2 = insn2 ? insn2->insn_mo->pinfo : ~0U;
2502
2503 #define INSN2_USES_REG(REG, CLASS) \
2504 (insn2 == NULL || insn_uses_reg (insn2, REG, CLASS))
2505
2506 /* For most targets, write-after-read dependencies on the HI and LO
2507 registers must be separated by at least two instructions. */
2508 if (!hilo_interlocks)
2509 {
2510 if ((pinfo1 & INSN_READ_LO) && (pinfo2 & INSN_WRITE_LO))
2511 return 2;
2512 if ((pinfo1 & INSN_READ_HI) && (pinfo2 & INSN_WRITE_HI))
2513 return 2;
2514 }
2515
2516 /* If we're working around r7000 errata, there must be two instructions
2517 between an mfhi or mflo and any instruction that uses the result. */
2518 if (mips_7000_hilo_fix
2519 && MF_HILO_INSN (pinfo1)
2520 && INSN2_USES_REG (EXTRACT_OPERAND (RD, *insn1), MIPS_GR_REG))
2521 return 2;
2522
2523 /* If we're working around 24K errata, one instruction is required
2524 if an ERET or DERET is followed by a branch instruction. */
2525 if (mips_fix_24k)
2526 {
2527 if (insn1->insn_opcode == INSN_ERET
2528 || insn1->insn_opcode == INSN_DERET)
2529 {
2530 if (insn2 == NULL
2531 || insn2->insn_opcode == INSN_ERET
2532 || insn2->insn_opcode == INSN_DERET
2533 || (insn2->insn_mo->pinfo
2534 & (INSN_UNCOND_BRANCH_DELAY
2535 | INSN_COND_BRANCH_DELAY
2536 | INSN_COND_BRANCH_LIKELY)) != 0)
2537 return 1;
2538 }
2539 }
2540
2541 /* If working around VR4120 errata, check for combinations that need
2542 a single intervening instruction. */
2543 if (mips_fix_vr4120)
2544 {
2545 unsigned int class1, class2;
2546
2547 class1 = classify_vr4120_insn (insn1->insn_mo->name);
2548 if (class1 != NUM_FIX_VR4120_CLASSES && vr4120_conflicts[class1] != 0)
2549 {
2550 if (insn2 == NULL)
2551 return 1;
2552 class2 = classify_vr4120_insn (insn2->insn_mo->name);
2553 if (vr4120_conflicts[class1] & (1 << class2))
2554 return 1;
2555 }
2556 }
2557
2558 if (!mips_opts.mips16)
2559 {
2560 /* Check for GPR or coprocessor load delays. All such delays
2561 are on the RT register. */
2562 /* Itbl support may require additional care here. */
2563 if ((!gpr_interlocks && (pinfo1 & INSN_LOAD_MEMORY_DELAY))
2564 || (!cop_interlocks && (pinfo1 & INSN_LOAD_COPROC_DELAY)))
2565 {
2566 know (pinfo1 & INSN_WRITE_GPR_T);
2567 if (INSN2_USES_REG (EXTRACT_OPERAND (RT, *insn1), MIPS_GR_REG))
2568 return 1;
2569 }
2570
2571 /* Check for generic coprocessor hazards.
2572
2573 This case is not handled very well. There is no special
2574 knowledge of CP0 handling, and the coprocessors other than
2575 the floating point unit are not distinguished at all. */
2576 /* Itbl support may require additional care here. FIXME!
2577 Need to modify this to include knowledge about
2578 user specified delays! */
2579 else if ((!cop_interlocks && (pinfo1 & INSN_COPROC_MOVE_DELAY))
2580 || (!cop_mem_interlocks && (pinfo1 & INSN_COPROC_MEMORY_DELAY)))
2581 {
2582 /* Handle cases where INSN1 writes to a known general coprocessor
2583 register. There must be a one instruction delay before INSN2
2584 if INSN2 reads that register, otherwise no delay is needed. */
2585 if (pinfo1 & INSN_WRITE_FPR_T)
2586 {
2587 if (INSN2_USES_REG (EXTRACT_OPERAND (FT, *insn1), MIPS_FP_REG))
2588 return 1;
2589 }
2590 else if (pinfo1 & INSN_WRITE_FPR_S)
2591 {
2592 if (INSN2_USES_REG (EXTRACT_OPERAND (FS, *insn1), MIPS_FP_REG))
2593 return 1;
2594 }
2595 else
2596 {
2597 /* Read-after-write dependencies on the control registers
2598 require a two-instruction gap. */
2599 if ((pinfo1 & INSN_WRITE_COND_CODE)
2600 && (pinfo2 & INSN_READ_COND_CODE))
2601 return 2;
2602
2603 /* We don't know exactly what INSN1 does. If INSN2 is
2604 also a coprocessor instruction, assume there must be
2605 a one instruction gap. */
2606 if (pinfo2 & INSN_COP)
2607 return 1;
2608 }
2609 }
2610
2611 /* Check for read-after-write dependencies on the coprocessor
2612 control registers in cases where INSN1 does not need a general
2613 coprocessor delay. This means that INSN1 is a floating point
2614 comparison instruction. */
2615 /* Itbl support may require additional care here. */
2616 else if (!cop_interlocks
2617 && (pinfo1 & INSN_WRITE_COND_CODE)
2618 && (pinfo2 & INSN_READ_COND_CODE))
2619 return 1;
2620 }
2621
2622 #undef INSN2_USES_REG
2623
2624 return 0;
2625 }
2626
2627 /* Return the number of nops that would be needed to work around the
2628 VR4130 mflo/mfhi errata if instruction INSN immediately followed
2629 the MAX_VR4130_NOPS instructions described by HIST. */
2630
2631 static int
2632 nops_for_vr4130 (const struct mips_cl_insn *hist,
2633 const struct mips_cl_insn *insn)
2634 {
2635 int i, j, reg;
2636
2637 /* Check if the instruction writes to HI or LO. MTHI and MTLO
2638 are not affected by the errata. */
2639 if (insn != 0
2640 && ((insn->insn_mo->pinfo & (INSN_WRITE_HI | INSN_WRITE_LO)) == 0
2641 || strcmp (insn->insn_mo->name, "mtlo") == 0
2642 || strcmp (insn->insn_mo->name, "mthi") == 0))
2643 return 0;
2644
2645 /* Search for the first MFLO or MFHI. */
2646 for (i = 0; i < MAX_VR4130_NOPS; i++)
2647 if (MF_HILO_INSN (hist[i].insn_mo->pinfo))
2648 {
2649 /* Extract the destination register. */
2650 if (mips_opts.mips16)
2651 reg = mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RX, hist[i])];
2652 else
2653 reg = EXTRACT_OPERAND (RD, hist[i]);
2654
2655 /* No nops are needed if INSN reads that register. */
2656 if (insn != NULL && insn_uses_reg (insn, reg, MIPS_GR_REG))
2657 return 0;
2658
2659 /* ...or if any of the intervening instructions do. */
2660 for (j = 0; j < i; j++)
2661 if (insn_uses_reg (&hist[j], reg, MIPS_GR_REG))
2662 return 0;
2663
2664 return MAX_VR4130_NOPS - i;
2665 }
2666 return 0;
2667 }
2668
2669 /* Return the number of nops that would be needed if instruction INSN
2670 immediately followed the MAX_NOPS instructions given by HIST,
2671 where HIST[0] is the most recent instruction. If INSN is null,
2672 return the worse-case number of nops for any instruction. */
2673
2674 static int
2675 nops_for_insn (const struct mips_cl_insn *hist,
2676 const struct mips_cl_insn *insn)
2677 {
2678 int i, nops, tmp_nops;
2679
2680 nops = 0;
2681 for (i = 0; i < MAX_DELAY_NOPS; i++)
2682 {
2683 tmp_nops = insns_between (hist + i, insn) - i;
2684 if (tmp_nops > nops)
2685 nops = tmp_nops;
2686 }
2687
2688 if (mips_fix_vr4130)
2689 {
2690 tmp_nops = nops_for_vr4130 (hist, insn);
2691 if (tmp_nops > nops)
2692 nops = tmp_nops;
2693 }
2694
2695 return nops;
2696 }
2697
2698 /* The variable arguments provide NUM_INSNS extra instructions that
2699 might be added to HIST. Return the largest number of nops that
2700 would be needed after the extended sequence. */
2701
2702 static int
2703 nops_for_sequence (int num_insns, const struct mips_cl_insn *hist, ...)
2704 {
2705 va_list args;
2706 struct mips_cl_insn buffer[MAX_NOPS];
2707 struct mips_cl_insn *cursor;
2708 int nops;
2709
2710 va_start (args, hist);
2711 cursor = buffer + num_insns;
2712 memcpy (cursor, hist, (MAX_NOPS - num_insns) * sizeof (*cursor));
2713 while (cursor > buffer)
2714 *--cursor = *va_arg (args, const struct mips_cl_insn *);
2715
2716 nops = nops_for_insn (buffer, NULL);
2717 va_end (args);
2718 return nops;
2719 }
2720
2721 /* Like nops_for_insn, but if INSN is a branch, take into account the
2722 worst-case delay for the branch target. */
2723
2724 static int
2725 nops_for_insn_or_target (const struct mips_cl_insn *hist,
2726 const struct mips_cl_insn *insn)
2727 {
2728 int nops, tmp_nops;
2729
2730 nops = nops_for_insn (hist, insn);
2731 if (insn->insn_mo->pinfo & (INSN_UNCOND_BRANCH_DELAY
2732 | INSN_COND_BRANCH_DELAY
2733 | INSN_COND_BRANCH_LIKELY))
2734 {
2735 tmp_nops = nops_for_sequence (2, hist, insn, NOP_INSN);
2736 if (tmp_nops > nops)
2737 nops = tmp_nops;
2738 }
2739 else if (mips_opts.mips16
2740 && (insn->insn_mo->pinfo & (MIPS16_INSN_UNCOND_BRANCH
2741 | MIPS16_INSN_COND_BRANCH)))
2742 {
2743 tmp_nops = nops_for_sequence (1, hist, insn);
2744 if (tmp_nops > nops)
2745 nops = tmp_nops;
2746 }
2747 return nops;
2748 }
2749
2750 /* Fix NOP issue: Replace nops by "or at,at,zero". */
2751
2752 static void
2753 fix_loongson2f_nop (struct mips_cl_insn * ip)
2754 {
2755 if (strcmp (ip->insn_mo->name, "nop") == 0)
2756 ip->insn_opcode = LOONGSON2F_NOP_INSN;
2757 }
2758
2759 /* Fix Jump Issue: Eliminate instruction fetch from outside 256M region
2760 jr target pc &= 'hffff_ffff_cfff_ffff. */
2761
2762 static void
2763 fix_loongson2f_jump (struct mips_cl_insn * ip)
2764 {
2765 if (strcmp (ip->insn_mo->name, "j") == 0
2766 || strcmp (ip->insn_mo->name, "jr") == 0
2767 || strcmp (ip->insn_mo->name, "jalr") == 0)
2768 {
2769 int sreg;
2770 expressionS ep;
2771
2772 if (! mips_opts.at)
2773 return;
2774
2775 sreg = EXTRACT_OPERAND (RS, *ip);
2776 if (sreg == ZERO || sreg == KT0 || sreg == KT1 || sreg == ATREG)
2777 return;
2778
2779 ep.X_op = O_constant;
2780 ep.X_add_number = 0xcfff0000;
2781 macro_build (&ep, "lui", "t,u", ATREG, BFD_RELOC_HI16);
2782 ep.X_add_number = 0xffff;
2783 macro_build (&ep, "ori", "t,r,i", ATREG, ATREG, BFD_RELOC_LO16);
2784 macro_build (NULL, "and", "d,v,t", sreg, sreg, ATREG);
2785 }
2786 }
2787
2788 static void
2789 fix_loongson2f (struct mips_cl_insn * ip)
2790 {
2791 if (mips_fix_loongson2f_nop)
2792 fix_loongson2f_nop (ip);
2793
2794 if (mips_fix_loongson2f_jump)
2795 fix_loongson2f_jump (ip);
2796 }
2797
2798 /* Output an instruction. IP is the instruction information.
2799 ADDRESS_EXPR is an operand of the instruction to be used with
2800 RELOC_TYPE. */
2801
2802 static void
2803 append_insn (struct mips_cl_insn *ip, expressionS *address_expr,
2804 bfd_reloc_code_real_type *reloc_type)
2805 {
2806 unsigned long prev_pinfo, pinfo;
2807 relax_stateT prev_insn_frag_type = 0;
2808 bfd_boolean relaxed_branch = FALSE;
2809 segment_info_type *si = seg_info (now_seg);
2810
2811 if (mips_fix_loongson2f)
2812 fix_loongson2f (ip);
2813
2814 /* Mark instruction labels in mips16 mode. */
2815 mips16_mark_labels ();
2816
2817 prev_pinfo = history[0].insn_mo->pinfo;
2818 pinfo = ip->insn_mo->pinfo;
2819
2820 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
2821 {
2822 /* There are a lot of optimizations we could do that we don't.
2823 In particular, we do not, in general, reorder instructions.
2824 If you use gcc with optimization, it will reorder
2825 instructions and generally do much more optimization then we
2826 do here; repeating all that work in the assembler would only
2827 benefit hand written assembly code, and does not seem worth
2828 it. */
2829 int nops = (mips_optimize == 0
2830 ? nops_for_insn (history, NULL)
2831 : nops_for_insn_or_target (history, ip));
2832 if (nops > 0)
2833 {
2834 fragS *old_frag;
2835 unsigned long old_frag_offset;
2836 int i;
2837
2838 old_frag = frag_now;
2839 old_frag_offset = frag_now_fix ();
2840
2841 for (i = 0; i < nops; i++)
2842 emit_nop ();
2843
2844 if (listing)
2845 {
2846 listing_prev_line ();
2847 /* We may be at the start of a variant frag. In case we
2848 are, make sure there is enough space for the frag
2849 after the frags created by listing_prev_line. The
2850 argument to frag_grow here must be at least as large
2851 as the argument to all other calls to frag_grow in
2852 this file. We don't have to worry about being in the
2853 middle of a variant frag, because the variants insert
2854 all needed nop instructions themselves. */
2855 frag_grow (40);
2856 }
2857
2858 mips_move_labels ();
2859
2860 #ifndef NO_ECOFF_DEBUGGING
2861 if (ECOFF_DEBUGGING)
2862 ecoff_fix_loc (old_frag, old_frag_offset);
2863 #endif
2864 }
2865 }
2866 else if (mips_relax.sequence != 2 && prev_nop_frag != NULL)
2867 {
2868 /* Work out how many nops in prev_nop_frag are needed by IP. */
2869 int nops = nops_for_insn_or_target (history, ip);
2870 gas_assert (nops <= prev_nop_frag_holds);
2871
2872 /* Enforce NOPS as a minimum. */
2873 if (nops > prev_nop_frag_required)
2874 prev_nop_frag_required = nops;
2875
2876 if (prev_nop_frag_holds == prev_nop_frag_required)
2877 {
2878 /* Settle for the current number of nops. Update the history
2879 accordingly (for the benefit of any future .set reorder code). */
2880 prev_nop_frag = NULL;
2881 insert_into_history (prev_nop_frag_since,
2882 prev_nop_frag_holds, NOP_INSN);
2883 }
2884 else
2885 {
2886 /* Allow this instruction to replace one of the nops that was
2887 tentatively added to prev_nop_frag. */
2888 prev_nop_frag->fr_fix -= mips_opts.mips16 ? 2 : 4;
2889 prev_nop_frag_holds--;
2890 prev_nop_frag_since++;
2891 }
2892 }
2893
2894 #ifdef OBJ_ELF
2895 /* The value passed to dwarf2_emit_insn is the distance between
2896 the beginning of the current instruction and the address that
2897 should be recorded in the debug tables. For MIPS16 debug info
2898 we want to use ISA-encoded addresses, so we pass -1 for an
2899 address higher by one than the current. */
2900 dwarf2_emit_insn (mips_opts.mips16 ? -1 : 0);
2901 #endif
2902
2903 /* Record the frag type before frag_var. */
2904 if (history[0].frag)
2905 prev_insn_frag_type = history[0].frag->fr_type;
2906
2907 if (address_expr
2908 && *reloc_type == BFD_RELOC_16_PCREL_S2
2909 && (pinfo & INSN_UNCOND_BRANCH_DELAY || pinfo & INSN_COND_BRANCH_DELAY
2910 || pinfo & INSN_COND_BRANCH_LIKELY)
2911 && mips_relax_branch
2912 /* Don't try branch relaxation within .set nomacro, or within
2913 .set noat if we use $at for PIC computations. If it turns
2914 out that the branch was out-of-range, we'll get an error. */
2915 && !mips_opts.warn_about_macros
2916 && (mips_opts.at || mips_pic == NO_PIC)
2917 && !mips_opts.mips16)
2918 {
2919 relaxed_branch = TRUE;
2920 add_relaxed_insn (ip, (relaxed_branch_length
2921 (NULL, NULL,
2922 (pinfo & INSN_UNCOND_BRANCH_DELAY) ? -1
2923 : (pinfo & INSN_COND_BRANCH_LIKELY) ? 1
2924 : 0)), 4,
2925 RELAX_BRANCH_ENCODE
2926 (pinfo & INSN_UNCOND_BRANCH_DELAY,
2927 pinfo & INSN_COND_BRANCH_LIKELY,
2928 pinfo & INSN_WRITE_GPR_31,
2929 0),
2930 address_expr->X_add_symbol,
2931 address_expr->X_add_number);
2932 *reloc_type = BFD_RELOC_UNUSED;
2933 }
2934 else if (*reloc_type > BFD_RELOC_UNUSED)
2935 {
2936 /* We need to set up a variant frag. */
2937 gas_assert (mips_opts.mips16 && address_expr != NULL);
2938 add_relaxed_insn (ip, 4, 0,
2939 RELAX_MIPS16_ENCODE
2940 (*reloc_type - BFD_RELOC_UNUSED,
2941 mips16_small, mips16_ext,
2942 prev_pinfo & INSN_UNCOND_BRANCH_DELAY,
2943 history[0].mips16_absolute_jump_p),
2944 make_expr_symbol (address_expr), 0);
2945 }
2946 else if (mips_opts.mips16
2947 && ! ip->use_extend
2948 && *reloc_type != BFD_RELOC_MIPS16_JMP)
2949 {
2950 if ((pinfo & INSN_UNCOND_BRANCH_DELAY) == 0)
2951 /* Make sure there is enough room to swap this instruction with
2952 a following jump instruction. */
2953 frag_grow (6);
2954 add_fixed_insn (ip);
2955 }
2956 else
2957 {
2958 if (mips_opts.mips16
2959 && mips_opts.noreorder
2960 && (prev_pinfo & INSN_UNCOND_BRANCH_DELAY) != 0)
2961 as_warn (_("extended instruction in delay slot"));
2962
2963 if (mips_relax.sequence)
2964 {
2965 /* If we've reached the end of this frag, turn it into a variant
2966 frag and record the information for the instructions we've
2967 written so far. */
2968 if (frag_room () < 4)
2969 relax_close_frag ();
2970 mips_relax.sizes[mips_relax.sequence - 1] += 4;
2971 }
2972
2973 if (mips_relax.sequence != 2)
2974 mips_macro_warning.sizes[0] += 4;
2975 if (mips_relax.sequence != 1)
2976 mips_macro_warning.sizes[1] += 4;
2977
2978 if (mips_opts.mips16)
2979 {
2980 ip->fixed_p = 1;
2981 ip->mips16_absolute_jump_p = (*reloc_type == BFD_RELOC_MIPS16_JMP);
2982 }
2983 add_fixed_insn (ip);
2984 }
2985
2986 if (address_expr != NULL && *reloc_type <= BFD_RELOC_UNUSED)
2987 {
2988 if (address_expr->X_op == O_constant)
2989 {
2990 unsigned int tmp;
2991
2992 switch (*reloc_type)
2993 {
2994 case BFD_RELOC_32:
2995 ip->insn_opcode |= address_expr->X_add_number;
2996 break;
2997
2998 case BFD_RELOC_MIPS_HIGHEST:
2999 tmp = (address_expr->X_add_number + 0x800080008000ull) >> 48;
3000 ip->insn_opcode |= tmp & 0xffff;
3001 break;
3002
3003 case BFD_RELOC_MIPS_HIGHER:
3004 tmp = (address_expr->X_add_number + 0x80008000ull) >> 32;
3005 ip->insn_opcode |= tmp & 0xffff;
3006 break;
3007
3008 case BFD_RELOC_HI16_S:
3009 tmp = (address_expr->X_add_number + 0x8000) >> 16;
3010 ip->insn_opcode |= tmp & 0xffff;
3011 break;
3012
3013 case BFD_RELOC_HI16:
3014 ip->insn_opcode |= (address_expr->X_add_number >> 16) & 0xffff;
3015 break;
3016
3017 case BFD_RELOC_UNUSED:
3018 case BFD_RELOC_LO16:
3019 case BFD_RELOC_MIPS_GOT_DISP:
3020 ip->insn_opcode |= address_expr->X_add_number & 0xffff;
3021 break;
3022
3023 case BFD_RELOC_MIPS_JMP:
3024 if ((address_expr->X_add_number & 3) != 0)
3025 as_bad (_("jump to misaligned address (0x%lx)"),
3026 (unsigned long) address_expr->X_add_number);
3027 ip->insn_opcode |= (address_expr->X_add_number >> 2) & 0x3ffffff;
3028 break;
3029
3030 case BFD_RELOC_MIPS16_JMP:
3031 if ((address_expr->X_add_number & 3) != 0)
3032 as_bad (_("jump to misaligned address (0x%lx)"),
3033 (unsigned long) address_expr->X_add_number);
3034 ip->insn_opcode |=
3035 (((address_expr->X_add_number & 0x7c0000) << 3)
3036 | ((address_expr->X_add_number & 0xf800000) >> 7)
3037 | ((address_expr->X_add_number & 0x3fffc) >> 2));
3038 break;
3039
3040 case BFD_RELOC_16_PCREL_S2:
3041 if ((address_expr->X_add_number & 3) != 0)
3042 as_bad (_("branch to misaligned address (0x%lx)"),
3043 (unsigned long) address_expr->X_add_number);
3044 if (mips_relax_branch)
3045 goto need_reloc;
3046 if ((address_expr->X_add_number + 0x20000) & ~0x3ffff)
3047 as_bad (_("branch address range overflow (0x%lx)"),
3048 (unsigned long) address_expr->X_add_number);
3049 ip->insn_opcode |= (address_expr->X_add_number >> 2) & 0xffff;
3050 break;
3051
3052 default:
3053 internalError ();
3054 }
3055 }
3056 else if (*reloc_type < BFD_RELOC_UNUSED)
3057 need_reloc:
3058 {
3059 reloc_howto_type *howto;
3060 int i;
3061
3062 /* In a compound relocation, it is the final (outermost)
3063 operator that determines the relocated field. */
3064 for (i = 1; i < 3; i++)
3065 if (reloc_type[i] == BFD_RELOC_UNUSED)
3066 break;
3067
3068 howto = bfd_reloc_type_lookup (stdoutput, reloc_type[i - 1]);
3069 if (howto == NULL)
3070 {
3071 /* To reproduce this failure try assembling gas/testsuites/
3072 gas/mips/mips16-intermix.s with a mips-ecoff targeted
3073 assembler. */
3074 as_bad (_("Unsupported MIPS relocation number %d"), reloc_type[i - 1]);
3075 howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_16);
3076 }
3077
3078 ip->fixp[0] = fix_new_exp (ip->frag, ip->where,
3079 bfd_get_reloc_size (howto),
3080 address_expr,
3081 reloc_type[0] == BFD_RELOC_16_PCREL_S2,
3082 reloc_type[0]);
3083
3084 /* Tag symbols that have a R_MIPS16_26 relocation against them. */
3085 if (reloc_type[0] == BFD_RELOC_MIPS16_JMP
3086 && ip->fixp[0]->fx_addsy)
3087 *symbol_get_tc (ip->fixp[0]->fx_addsy) = 1;
3088
3089 /* These relocations can have an addend that won't fit in
3090 4 octets for 64bit assembly. */
3091 if (HAVE_64BIT_GPRS
3092 && ! howto->partial_inplace
3093 && (reloc_type[0] == BFD_RELOC_16
3094 || reloc_type[0] == BFD_RELOC_32
3095 || reloc_type[0] == BFD_RELOC_MIPS_JMP
3096 || reloc_type[0] == BFD_RELOC_GPREL16
3097 || reloc_type[0] == BFD_RELOC_MIPS_LITERAL
3098 || reloc_type[0] == BFD_RELOC_GPREL32
3099 || reloc_type[0] == BFD_RELOC_64
3100 || reloc_type[0] == BFD_RELOC_CTOR
3101 || reloc_type[0] == BFD_RELOC_MIPS_SUB
3102 || reloc_type[0] == BFD_RELOC_MIPS_HIGHEST
3103 || reloc_type[0] == BFD_RELOC_MIPS_HIGHER
3104 || reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP
3105 || reloc_type[0] == BFD_RELOC_MIPS_REL16
3106 || reloc_type[0] == BFD_RELOC_MIPS_RELGOT
3107 || reloc_type[0] == BFD_RELOC_MIPS16_GPREL
3108 || hi16_reloc_p (reloc_type[0])
3109 || lo16_reloc_p (reloc_type[0])))
3110 ip->fixp[0]->fx_no_overflow = 1;
3111
3112 if (mips_relax.sequence)
3113 {
3114 if (mips_relax.first_fixup == 0)
3115 mips_relax.first_fixup = ip->fixp[0];
3116 }
3117 else if (reloc_needs_lo_p (*reloc_type))
3118 {
3119 struct mips_hi_fixup *hi_fixup;
3120
3121 /* Reuse the last entry if it already has a matching %lo. */
3122 hi_fixup = mips_hi_fixup_list;
3123 if (hi_fixup == 0
3124 || !fixup_has_matching_lo_p (hi_fixup->fixp))
3125 {
3126 hi_fixup = ((struct mips_hi_fixup *)
3127 xmalloc (sizeof (struct mips_hi_fixup)));
3128 hi_fixup->next = mips_hi_fixup_list;
3129 mips_hi_fixup_list = hi_fixup;
3130 }
3131 hi_fixup->fixp = ip->fixp[0];
3132 hi_fixup->seg = now_seg;
3133 }
3134
3135 /* Add fixups for the second and third relocations, if given.
3136 Note that the ABI allows the second relocation to be
3137 against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
3138 moment we only use RSS_UNDEF, but we could add support
3139 for the others if it ever becomes necessary. */
3140 for (i = 1; i < 3; i++)
3141 if (reloc_type[i] != BFD_RELOC_UNUSED)
3142 {
3143 ip->fixp[i] = fix_new (ip->frag, ip->where,
3144 ip->fixp[0]->fx_size, NULL, 0,
3145 FALSE, reloc_type[i]);
3146
3147 /* Use fx_tcbit to mark compound relocs. */
3148 ip->fixp[0]->fx_tcbit = 1;
3149 ip->fixp[i]->fx_tcbit = 1;
3150 }
3151 }
3152 }
3153 install_insn (ip);
3154
3155 /* Update the register mask information. */
3156 if (! mips_opts.mips16)
3157 {
3158 if (pinfo & INSN_WRITE_GPR_D)
3159 mips_gprmask |= 1 << EXTRACT_OPERAND (RD, *ip);
3160 if ((pinfo & (INSN_WRITE_GPR_T | INSN_READ_GPR_T)) != 0)
3161 mips_gprmask |= 1 << EXTRACT_OPERAND (RT, *ip);
3162 if (pinfo & INSN_READ_GPR_S)
3163 mips_gprmask |= 1 << EXTRACT_OPERAND (RS, *ip);
3164 if (pinfo & INSN_WRITE_GPR_31)
3165 mips_gprmask |= 1 << RA;
3166 if (pinfo & INSN_WRITE_FPR_D)
3167 mips_cprmask[1] |= 1 << EXTRACT_OPERAND (FD, *ip);
3168 if ((pinfo & (INSN_WRITE_FPR_S | INSN_READ_FPR_S)) != 0)
3169 mips_cprmask[1] |= 1 << EXTRACT_OPERAND (FS, *ip);
3170 if ((pinfo & (INSN_WRITE_FPR_T | INSN_READ_FPR_T)) != 0)
3171 mips_cprmask[1] |= 1 << EXTRACT_OPERAND (FT, *ip);
3172 if ((pinfo & INSN_READ_FPR_R) != 0)
3173 mips_cprmask[1] |= 1 << EXTRACT_OPERAND (FR, *ip);
3174 if (pinfo & INSN_COP)
3175 {
3176 /* We don't keep enough information to sort these cases out.
3177 The itbl support does keep this information however, although
3178 we currently don't support itbl fprmats as part of the cop
3179 instruction. May want to add this support in the future. */
3180 }
3181 /* Never set the bit for $0, which is always zero. */
3182 mips_gprmask &= ~1 << 0;
3183 }
3184 else
3185 {
3186 if (pinfo & (MIPS16_INSN_WRITE_X | MIPS16_INSN_READ_X))
3187 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (RX, *ip);
3188 if (pinfo & (MIPS16_INSN_WRITE_Y | MIPS16_INSN_READ_Y))
3189 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (RY, *ip);
3190 if (pinfo & MIPS16_INSN_WRITE_Z)
3191 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (RZ, *ip);
3192 if (pinfo & (MIPS16_INSN_WRITE_T | MIPS16_INSN_READ_T))
3193 mips_gprmask |= 1 << TREG;
3194 if (pinfo & (MIPS16_INSN_WRITE_SP | MIPS16_INSN_READ_SP))
3195 mips_gprmask |= 1 << SP;
3196 if (pinfo & (MIPS16_INSN_WRITE_31 | MIPS16_INSN_READ_31))
3197 mips_gprmask |= 1 << RA;
3198 if (pinfo & MIPS16_INSN_WRITE_GPR_Y)
3199 mips_gprmask |= 1 << MIPS16OP_EXTRACT_REG32R (ip->insn_opcode);
3200 if (pinfo & MIPS16_INSN_READ_Z)
3201 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (MOVE32Z, *ip);
3202 if (pinfo & MIPS16_INSN_READ_GPR_X)
3203 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (REGR32, *ip);
3204 }
3205
3206 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
3207 {
3208 /* Filling the branch delay slot is more complex. We try to
3209 switch the branch with the previous instruction, which we can
3210 do if the previous instruction does not set up a condition
3211 that the branch tests and if the branch is not itself the
3212 target of any branch. */
3213 if ((pinfo & INSN_UNCOND_BRANCH_DELAY)
3214 || (pinfo & INSN_COND_BRANCH_DELAY))
3215 {
3216 if (mips_optimize < 2
3217 /* If we have seen .set volatile or .set nomove, don't
3218 optimize. */
3219 || mips_opts.nomove != 0
3220 /* We can't swap if the previous instruction's position
3221 is fixed. */
3222 || history[0].fixed_p
3223 /* If the previous previous insn was in a .set
3224 noreorder, we can't swap. Actually, the MIPS
3225 assembler will swap in this situation. However, gcc
3226 configured -with-gnu-as will generate code like
3227 .set noreorder
3228 lw $4,XXX
3229 .set reorder
3230 INSN
3231 bne $4,$0,foo
3232 in which we can not swap the bne and INSN. If gcc is
3233 not configured -with-gnu-as, it does not output the
3234 .set pseudo-ops. */
3235 || history[1].noreorder_p
3236 /* If the branch is itself the target of a branch, we
3237 can not swap. We cheat on this; all we check for is
3238 whether there is a label on this instruction. If
3239 there are any branches to anything other than a
3240 label, users must use .set noreorder. */
3241 || si->label_list != NULL
3242 /* If the previous instruction is in a variant frag
3243 other than this branch's one, we cannot do the swap.
3244 This does not apply to the mips16, which uses variant
3245 frags for different purposes. */
3246 || (! mips_opts.mips16
3247 && prev_insn_frag_type == rs_machine_dependent)
3248 /* Check for conflicts between the branch and the instructions
3249 before the candidate delay slot. */
3250 || nops_for_insn (history + 1, ip) > 0
3251 /* Check for conflicts between the swapped sequence and the
3252 target of the branch. */
3253 || nops_for_sequence (2, history + 1, ip, history) > 0
3254 /* We do not swap with a trap instruction, since it
3255 complicates trap handlers to have the trap
3256 instruction be in a delay slot. */
3257 || (prev_pinfo & INSN_TRAP)
3258 /* If the branch reads a register that the previous
3259 instruction sets, we can not swap. */
3260 || (! mips_opts.mips16
3261 && (prev_pinfo & INSN_WRITE_GPR_T)
3262 && insn_uses_reg (ip, EXTRACT_OPERAND (RT, history[0]),
3263 MIPS_GR_REG))
3264 || (! mips_opts.mips16
3265 && (prev_pinfo & INSN_WRITE_GPR_D)
3266 && insn_uses_reg (ip, EXTRACT_OPERAND (RD, history[0]),
3267 MIPS_GR_REG))
3268 || (mips_opts.mips16
3269 && (((prev_pinfo & MIPS16_INSN_WRITE_X)
3270 && (insn_uses_reg
3271 (ip, MIPS16_EXTRACT_OPERAND (RX, history[0]),
3272 MIPS16_REG)))
3273 || ((prev_pinfo & MIPS16_INSN_WRITE_Y)
3274 && (insn_uses_reg
3275 (ip, MIPS16_EXTRACT_OPERAND (RY, history[0]),
3276 MIPS16_REG)))
3277 || ((prev_pinfo & MIPS16_INSN_WRITE_Z)
3278 && (insn_uses_reg
3279 (ip, MIPS16_EXTRACT_OPERAND (RZ, history[0]),
3280 MIPS16_REG)))
3281 || ((prev_pinfo & MIPS16_INSN_WRITE_T)
3282 && insn_uses_reg (ip, TREG, MIPS_GR_REG))
3283 || ((prev_pinfo & MIPS16_INSN_WRITE_31)
3284 && insn_uses_reg (ip, RA, MIPS_GR_REG))
3285 || ((prev_pinfo & MIPS16_INSN_WRITE_GPR_Y)
3286 && insn_uses_reg (ip,
3287 MIPS16OP_EXTRACT_REG32R
3288 (history[0].insn_opcode),
3289 MIPS_GR_REG))))
3290 /* If the branch writes a register that the previous
3291 instruction sets, we can not swap (we know that
3292 branches write only to RD or to $31). */
3293 || (! mips_opts.mips16
3294 && (prev_pinfo & INSN_WRITE_GPR_T)
3295 && (((pinfo & INSN_WRITE_GPR_D)
3296 && (EXTRACT_OPERAND (RT, history[0])
3297 == EXTRACT_OPERAND (RD, *ip)))
3298 || ((pinfo & INSN_WRITE_GPR_31)
3299 && EXTRACT_OPERAND (RT, history[0]) == RA)))
3300 || (! mips_opts.mips16
3301 && (prev_pinfo & INSN_WRITE_GPR_D)
3302 && (((pinfo & INSN_WRITE_GPR_D)
3303 && (EXTRACT_OPERAND (RD, history[0])
3304 == EXTRACT_OPERAND (RD, *ip)))
3305 || ((pinfo & INSN_WRITE_GPR_31)
3306 && EXTRACT_OPERAND (RD, history[0]) == RA)))
3307 || (mips_opts.mips16
3308 && (pinfo & MIPS16_INSN_WRITE_31)
3309 && ((prev_pinfo & MIPS16_INSN_WRITE_31)
3310 || ((prev_pinfo & MIPS16_INSN_WRITE_GPR_Y)
3311 && (MIPS16OP_EXTRACT_REG32R (history[0].insn_opcode)
3312 == RA))))
3313 /* If the branch writes a register that the previous
3314 instruction reads, we can not swap (we know that
3315 branches only write to RD or to $31). */
3316 || (! mips_opts.mips16
3317 && (pinfo & INSN_WRITE_GPR_D)
3318 && insn_uses_reg (&history[0],
3319 EXTRACT_OPERAND (RD, *ip),
3320 MIPS_GR_REG))
3321 || (! mips_opts.mips16
3322 && (pinfo & INSN_WRITE_GPR_31)
3323 && insn_uses_reg (&history[0], RA, MIPS_GR_REG))
3324 || (mips_opts.mips16
3325 && (pinfo & MIPS16_INSN_WRITE_31)
3326 && insn_uses_reg (&history[0], RA, MIPS_GR_REG))
3327 /* If one instruction sets a condition code and the
3328 other one uses a condition code, we can not swap. */
3329 || ((pinfo & INSN_READ_COND_CODE)
3330 && (prev_pinfo & INSN_WRITE_COND_CODE))
3331 || ((pinfo & INSN_WRITE_COND_CODE)
3332 && (prev_pinfo & INSN_READ_COND_CODE))
3333 /* If the previous instruction uses the PC, we can not
3334 swap. */
3335 || (mips_opts.mips16
3336 && (prev_pinfo & MIPS16_INSN_READ_PC))
3337 /* If the previous instruction had a fixup in mips16
3338 mode, we can not swap. This normally means that the
3339 previous instruction was a 4 byte branch anyhow. */
3340 || (mips_opts.mips16 && history[0].fixp[0])
3341 /* If the previous instruction is a sync, sync.l, or
3342 sync.p, we can not swap. */
3343 || (prev_pinfo & INSN_SYNC)
3344 /* If the previous instruction is an ERET or
3345 DERET, avoid the swap. */
3346 || (history[0].insn_opcode == INSN_ERET)
3347 || (history[0].insn_opcode == INSN_DERET))
3348 {
3349 if (mips_opts.mips16
3350 && (pinfo & INSN_UNCOND_BRANCH_DELAY)
3351 && (pinfo & (MIPS16_INSN_READ_X | MIPS16_INSN_READ_31))
3352 && ISA_SUPPORTS_MIPS16E)
3353 {
3354 /* Convert MIPS16 jr/jalr into a "compact" jump. */
3355 ip->insn_opcode |= 0x0080;
3356 install_insn (ip);
3357 insert_into_history (0, 1, ip);
3358 }
3359 else
3360 {
3361 /* We could do even better for unconditional branches to
3362 portions of this object file; we could pick up the
3363 instruction at the destination, put it in the delay
3364 slot, and bump the destination address. */
3365 insert_into_history (0, 1, ip);
3366 emit_nop ();
3367 }
3368
3369 if (mips_relax.sequence)
3370 mips_relax.sizes[mips_relax.sequence - 1] += 4;
3371 }
3372 else
3373 {
3374 /* It looks like we can actually do the swap. */
3375 struct mips_cl_insn delay = history[0];
3376 if (mips_opts.mips16)
3377 {
3378 know (delay.frag == ip->frag);
3379 move_insn (ip, delay.frag, delay.where);
3380 move_insn (&delay, ip->frag, ip->where + insn_length (ip));
3381 }
3382 else if (relaxed_branch)
3383 {
3384 /* Add the delay slot instruction to the end of the
3385 current frag and shrink the fixed part of the
3386 original frag. If the branch occupies the tail of
3387 the latter, move it backwards to cover the gap. */
3388 delay.frag->fr_fix -= 4;
3389 if (delay.frag == ip->frag)
3390 move_insn (ip, ip->frag, ip->where - 4);
3391 add_fixed_insn (&delay);
3392 }
3393 else
3394 {
3395 move_insn (&delay, ip->frag, ip->where);
3396 move_insn (ip, history[0].frag, history[0].where);
3397 }
3398 history[0] = *ip;
3399 delay.fixed_p = 1;
3400 insert_into_history (0, 1, &delay);
3401 }
3402
3403 /* If that was an unconditional branch, forget the previous
3404 insn information. */
3405 if (pinfo & INSN_UNCOND_BRANCH_DELAY)
3406 {
3407 mips_no_prev_insn ();
3408 }
3409 }
3410 else if (pinfo & INSN_COND_BRANCH_LIKELY)
3411 {
3412 /* We don't yet optimize a branch likely. What we should do
3413 is look at the target, copy the instruction found there
3414 into the delay slot, and increment the branch to jump to
3415 the next instruction. */
3416 insert_into_history (0, 1, ip);
3417 emit_nop ();
3418 }
3419 else
3420 insert_into_history (0, 1, ip);
3421 }
3422 else
3423 insert_into_history (0, 1, ip);
3424
3425 /* We just output an insn, so the next one doesn't have a label. */
3426 mips_clear_insn_labels ();
3427 }
3428
3429 /* Forget that there was any previous instruction or label. */
3430
3431 static void
3432 mips_no_prev_insn (void)
3433 {
3434 prev_nop_frag = NULL;
3435 insert_into_history (0, ARRAY_SIZE (history), NOP_INSN);
3436 mips_clear_insn_labels ();
3437 }
3438
3439 /* This function must be called before we emit something other than
3440 instructions. It is like mips_no_prev_insn except that it inserts
3441 any NOPS that might be needed by previous instructions. */
3442
3443 void
3444 mips_emit_delays (void)
3445 {
3446 if (! mips_opts.noreorder)
3447 {
3448 int nops = nops_for_insn (history, NULL);
3449 if (nops > 0)
3450 {
3451 while (nops-- > 0)
3452 add_fixed_insn (NOP_INSN);
3453 mips_move_labels ();
3454 }
3455 }
3456 mips_no_prev_insn ();
3457 }
3458
3459 /* Start a (possibly nested) noreorder block. */
3460
3461 static void
3462 start_noreorder (void)
3463 {
3464 if (mips_opts.noreorder == 0)
3465 {
3466 unsigned int i;
3467 int nops;
3468
3469 /* None of the instructions before the .set noreorder can be moved. */
3470 for (i = 0; i < ARRAY_SIZE (history); i++)
3471 history[i].fixed_p = 1;
3472
3473 /* Insert any nops that might be needed between the .set noreorder
3474 block and the previous instructions. We will later remove any
3475 nops that turn out not to be needed. */
3476 nops = nops_for_insn (history, NULL);
3477 if (nops > 0)
3478 {
3479 if (mips_optimize != 0)
3480 {
3481 /* Record the frag which holds the nop instructions, so
3482 that we can remove them if we don't need them. */
3483 frag_grow (mips_opts.mips16 ? nops * 2 : nops * 4);
3484 prev_nop_frag = frag_now;
3485 prev_nop_frag_holds = nops;
3486 prev_nop_frag_required = 0;
3487 prev_nop_frag_since = 0;
3488 }
3489
3490 for (; nops > 0; --nops)
3491 add_fixed_insn (NOP_INSN);
3492
3493 /* Move on to a new frag, so that it is safe to simply
3494 decrease the size of prev_nop_frag. */
3495 frag_wane (frag_now);
3496 frag_new (0);
3497 mips_move_labels ();
3498 }
3499 mips16_mark_labels ();
3500 mips_clear_insn_labels ();
3501 }
3502 mips_opts.noreorder++;
3503 mips_any_noreorder = 1;
3504 }
3505
3506 /* End a nested noreorder block. */
3507
3508 static void
3509 end_noreorder (void)
3510 {
3511
3512 mips_opts.noreorder--;
3513 if (mips_opts.noreorder == 0 && prev_nop_frag != NULL)
3514 {
3515 /* Commit to inserting prev_nop_frag_required nops and go back to
3516 handling nop insertion the .set reorder way. */
3517 prev_nop_frag->fr_fix -= ((prev_nop_frag_holds - prev_nop_frag_required)
3518 * (mips_opts.mips16 ? 2 : 4));
3519 insert_into_history (prev_nop_frag_since,
3520 prev_nop_frag_required, NOP_INSN);
3521 prev_nop_frag = NULL;
3522 }
3523 }
3524
3525 /* Set up global variables for the start of a new macro. */
3526
3527 static void
3528 macro_start (void)
3529 {
3530 memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes));
3531 mips_macro_warning.delay_slot_p = (mips_opts.noreorder
3532 && (history[0].insn_mo->pinfo
3533 & (INSN_UNCOND_BRANCH_DELAY
3534 | INSN_COND_BRANCH_DELAY
3535 | INSN_COND_BRANCH_LIKELY)) != 0);
3536 }
3537
3538 /* Given that a macro is longer than 4 bytes, return the appropriate warning
3539 for it. Return null if no warning is needed. SUBTYPE is a bitmask of
3540 RELAX_DELAY_SLOT and RELAX_NOMACRO. */
3541
3542 static const char *
3543 macro_warning (relax_substateT subtype)
3544 {
3545 if (subtype & RELAX_DELAY_SLOT)
3546 return _("Macro instruction expanded into multiple instructions"
3547 " in a branch delay slot");
3548 else if (subtype & RELAX_NOMACRO)
3549 return _("Macro instruction expanded into multiple instructions");
3550 else
3551 return 0;
3552 }
3553
3554 /* Finish up a macro. Emit warnings as appropriate. */
3555
3556 static void
3557 macro_end (void)
3558 {
3559 if (mips_macro_warning.sizes[0] > 4 || mips_macro_warning.sizes[1] > 4)
3560 {
3561 relax_substateT subtype;
3562
3563 /* Set up the relaxation warning flags. */
3564 subtype = 0;
3565 if (mips_macro_warning.sizes[1] > mips_macro_warning.sizes[0])
3566 subtype |= RELAX_SECOND_LONGER;
3567 if (mips_opts.warn_about_macros)
3568 subtype |= RELAX_NOMACRO;
3569 if (mips_macro_warning.delay_slot_p)
3570 subtype |= RELAX_DELAY_SLOT;
3571
3572 if (mips_macro_warning.sizes[0] > 4 && mips_macro_warning.sizes[1] > 4)
3573 {
3574 /* Either the macro has a single implementation or both
3575 implementations are longer than 4 bytes. Emit the
3576 warning now. */
3577 const char *msg = macro_warning (subtype);
3578 if (msg != 0)
3579 as_warn ("%s", msg);
3580 }
3581 else
3582 {
3583 /* One implementation might need a warning but the other
3584 definitely doesn't. */
3585 mips_macro_warning.first_frag->fr_subtype |= subtype;
3586 }
3587 }
3588 }
3589
3590 /* Read a macro's relocation codes from *ARGS and store them in *R.
3591 The first argument in *ARGS will be either the code for a single
3592 relocation or -1 followed by the three codes that make up a
3593 composite relocation. */
3594
3595 static void
3596 macro_read_relocs (va_list *args, bfd_reloc_code_real_type *r)
3597 {
3598 int i, next;
3599
3600 next = va_arg (*args, int);
3601 if (next >= 0)
3602 r[0] = (bfd_reloc_code_real_type) next;
3603 else
3604 for (i = 0; i < 3; i++)
3605 r[i] = (bfd_reloc_code_real_type) va_arg (*args, int);
3606 }
3607
3608 /* Build an instruction created by a macro expansion. This is passed
3609 a pointer to the count of instructions created so far, an
3610 expression, the name of the instruction to build, an operand format
3611 string, and corresponding arguments. */
3612
3613 static void
3614 macro_build (expressionS *ep, const char *name, const char *fmt, ...)
3615 {
3616 const struct mips_opcode *mo;
3617 struct mips_cl_insn insn;
3618 bfd_reloc_code_real_type r[3];
3619 va_list args;
3620
3621 va_start (args, fmt);
3622
3623 if (mips_opts.mips16)
3624 {
3625 mips16_macro_build (ep, name, fmt, &args);
3626 va_end (args);
3627 return;
3628 }
3629
3630 r[0] = BFD_RELOC_UNUSED;
3631 r[1] = BFD_RELOC_UNUSED;
3632 r[2] = BFD_RELOC_UNUSED;
3633 mo = (struct mips_opcode *) hash_find (op_hash, name);
3634 gas_assert (mo);
3635 gas_assert (strcmp (name, mo->name) == 0);
3636
3637 while (1)
3638 {
3639 /* Search until we get a match for NAME. It is assumed here that
3640 macros will never generate MDMX, MIPS-3D, or MT instructions. */
3641 if (strcmp (fmt, mo->args) == 0
3642 && mo->pinfo != INSN_MACRO
3643 && is_opcode_valid (mo))
3644 break;
3645
3646 ++mo;
3647 gas_assert (mo->name);
3648 gas_assert (strcmp (name, mo->name) == 0);
3649 }
3650
3651 create_insn (&insn, mo);
3652 for (;;)
3653 {
3654 switch (*fmt++)
3655 {
3656 case '\0':
3657 break;
3658
3659 case ',':
3660 case '(':
3661 case ')':
3662 continue;
3663
3664 case '+':
3665 switch (*fmt++)
3666 {
3667 case 'A':
3668 case 'E':
3669 INSERT_OPERAND (SHAMT, insn, va_arg (args, int));
3670 continue;
3671
3672 case 'B':
3673 case 'F':
3674 /* Note that in the macro case, these arguments are already
3675 in MSB form. (When handling the instruction in the
3676 non-macro case, these arguments are sizes from which
3677 MSB values must be calculated.) */
3678 INSERT_OPERAND (INSMSB, insn, va_arg (args, int));
3679 continue;
3680
3681 case 'C':
3682 case 'G':
3683 case 'H':
3684 /* Note that in the macro case, these arguments are already
3685 in MSBD form. (When handling the instruction in the
3686 non-macro case, these arguments are sizes from which
3687 MSBD values must be calculated.) */
3688 INSERT_OPERAND (EXTMSBD, insn, va_arg (args, int));
3689 continue;
3690
3691 case 'Q':
3692 INSERT_OPERAND (SEQI, insn, va_arg (args, int));
3693 continue;
3694
3695 default:
3696 internalError ();
3697 }
3698 continue;
3699
3700 case '2':
3701 INSERT_OPERAND (BP, insn, va_arg (args, int));
3702 continue;
3703
3704 case 't':
3705 case 'w':
3706 case 'E':
3707 INSERT_OPERAND (RT, insn, va_arg (args, int));
3708 continue;
3709
3710 case 'c':
3711 INSERT_OPERAND (CODE, insn, va_arg (args, int));
3712 continue;
3713
3714 case 'T':
3715 case 'W':
3716 INSERT_OPERAND (FT, insn, va_arg (args, int));
3717 continue;
3718
3719 case 'd':
3720 case 'G':
3721 case 'K':
3722 INSERT_OPERAND (RD, insn, va_arg (args, int));
3723 continue;
3724
3725 case 'U':
3726 {
3727 int tmp = va_arg (args, int);
3728
3729 INSERT_OPERAND (RT, insn, tmp);
3730 INSERT_OPERAND (RD, insn, tmp);
3731 continue;
3732 }
3733
3734 case 'V':
3735 case 'S':
3736 INSERT_OPERAND (FS, insn, va_arg (args, int));
3737 continue;
3738
3739 case 'z':
3740 continue;
3741
3742 case '<':
3743 INSERT_OPERAND (SHAMT, insn, va_arg (args, int));
3744 continue;
3745
3746 case 'D':
3747 INSERT_OPERAND (FD, insn, va_arg (args, int));
3748 continue;
3749
3750 case 'B':
3751 INSERT_OPERAND (CODE20, insn, va_arg (args, int));
3752 continue;
3753
3754 case 'J':
3755 INSERT_OPERAND (CODE19, insn, va_arg (args, int));
3756 continue;
3757
3758 case 'q':
3759 INSERT_OPERAND (CODE2, insn, va_arg (args, int));
3760 continue;
3761
3762 case 'b':
3763 case 's':
3764 case 'r':
3765 case 'v':
3766 INSERT_OPERAND (RS, insn, va_arg (args, int));
3767 continue;
3768
3769 case 'i':
3770 case 'j':
3771 case 'o':
3772 macro_read_relocs (&args, r);
3773 gas_assert (*r == BFD_RELOC_GPREL16
3774 || *r == BFD_RELOC_MIPS_LITERAL
3775 || *r == BFD_RELOC_MIPS_HIGHER
3776 || *r == BFD_RELOC_HI16_S
3777 || *r == BFD_RELOC_LO16
3778 || *r == BFD_RELOC_MIPS_GOT16
3779 || *r == BFD_RELOC_MIPS_CALL16
3780 || *r == BFD_RELOC_MIPS_GOT_DISP
3781 || *r == BFD_RELOC_MIPS_GOT_PAGE
3782 || *r == BFD_RELOC_MIPS_GOT_OFST
3783 || *r == BFD_RELOC_MIPS_GOT_LO16
3784 || *r == BFD_RELOC_MIPS_CALL_LO16);
3785 continue;
3786
3787 case 'u':
3788 macro_read_relocs (&args, r);
3789 gas_assert (ep != NULL
3790 && (ep->X_op == O_constant
3791 || (ep->X_op == O_symbol
3792 && (*r == BFD_RELOC_MIPS_HIGHEST
3793 || *r == BFD_RELOC_HI16_S
3794 || *r == BFD_RELOC_HI16
3795 || *r == BFD_RELOC_GPREL16
3796 || *r == BFD_RELOC_MIPS_GOT_HI16
3797 || *r == BFD_RELOC_MIPS_CALL_HI16))));
3798 continue;
3799
3800 case 'p':
3801 gas_assert (ep != NULL);
3802
3803 /*
3804 * This allows macro() to pass an immediate expression for
3805 * creating short branches without creating a symbol.
3806 *
3807 * We don't allow branch relaxation for these branches, as
3808 * they should only appear in ".set nomacro" anyway.
3809 */
3810 if (ep->X_op == O_constant)
3811 {
3812 if ((ep->X_add_number & 3) != 0)
3813 as_bad (_("branch to misaligned address (0x%lx)"),
3814 (unsigned long) ep->X_add_number);
3815 if ((ep->X_add_number + 0x20000) & ~0x3ffff)
3816 as_bad (_("branch address range overflow (0x%lx)"),
3817 (unsigned long) ep->X_add_number);
3818 insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
3819 ep = NULL;
3820 }
3821 else
3822 *r = BFD_RELOC_16_PCREL_S2;
3823 continue;
3824
3825 case 'a':
3826 gas_assert (ep != NULL);
3827 *r = BFD_RELOC_MIPS_JMP;
3828 continue;
3829
3830 case 'C':
3831 INSERT_OPERAND (COPZ, insn, va_arg (args, unsigned long));
3832 continue;
3833
3834 case 'k':
3835 INSERT_OPERAND (CACHE, insn, va_arg (args, unsigned long));
3836 continue;
3837
3838 default:
3839 internalError ();
3840 }
3841 break;
3842 }
3843 va_end (args);
3844 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
3845
3846 append_insn (&insn, ep, r);
3847 }
3848
3849 static void
3850 mips16_macro_build (expressionS *ep, const char *name, const char *fmt,
3851 va_list *args)
3852 {
3853 struct mips_opcode *mo;
3854 struct mips_cl_insn insn;
3855 bfd_reloc_code_real_type r[3]
3856 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
3857
3858 mo = (struct mips_opcode *) hash_find (mips16_op_hash, name);
3859 gas_assert (mo);
3860 gas_assert (strcmp (name, mo->name) == 0);
3861
3862 while (strcmp (fmt, mo->args) != 0 || mo->pinfo == INSN_MACRO)
3863 {
3864 ++mo;
3865 gas_assert (mo->name);
3866 gas_assert (strcmp (name, mo->name) == 0);
3867 }
3868
3869 create_insn (&insn, mo);
3870 for (;;)
3871 {
3872 int c;
3873
3874 c = *fmt++;
3875 switch (c)
3876 {
3877 case '\0':
3878 break;
3879
3880 case ',':
3881 case '(':
3882 case ')':
3883 continue;
3884
3885 case 'y':
3886 case 'w':
3887 MIPS16_INSERT_OPERAND (RY, insn, va_arg (*args, int));
3888 continue;
3889
3890 case 'x':
3891 case 'v':
3892 MIPS16_INSERT_OPERAND (RX, insn, va_arg (*args, int));
3893 continue;
3894
3895 case 'z':
3896 MIPS16_INSERT_OPERAND (RZ, insn, va_arg (*args, int));
3897 continue;
3898
3899 case 'Z':
3900 MIPS16_INSERT_OPERAND (MOVE32Z, insn, va_arg (*args, int));
3901 continue;
3902
3903 case '0':
3904 case 'S':
3905 case 'P':
3906 case 'R':
3907 continue;
3908
3909 case 'X':
3910 MIPS16_INSERT_OPERAND (REGR32, insn, va_arg (*args, int));
3911 continue;
3912
3913 case 'Y':
3914 {
3915 int regno;
3916
3917 regno = va_arg (*args, int);
3918 regno = ((regno & 7) << 2) | ((regno & 0x18) >> 3);
3919 MIPS16_INSERT_OPERAND (REG32R, insn, regno);
3920 }
3921 continue;
3922
3923 case '<':
3924 case '>':
3925 case '4':
3926 case '5':
3927 case 'H':
3928 case 'W':
3929 case 'D':
3930 case 'j':
3931 case '8':
3932 case 'V':
3933 case 'C':
3934 case 'U':
3935 case 'k':
3936 case 'K':
3937 case 'p':
3938 case 'q':
3939 {
3940 gas_assert (ep != NULL);
3941
3942 if (ep->X_op != O_constant)
3943 *r = (int) BFD_RELOC_UNUSED + c;
3944 else
3945 {
3946 mips16_immed (NULL, 0, c, ep->X_add_number, FALSE, FALSE,
3947 FALSE, &insn.insn_opcode, &insn.use_extend,
3948 &insn.extend);
3949 ep = NULL;
3950 *r = BFD_RELOC_UNUSED;
3951 }
3952 }
3953 continue;
3954
3955 case '6':
3956 MIPS16_INSERT_OPERAND (IMM6, insn, va_arg (*args, int));
3957 continue;
3958 }
3959
3960 break;
3961 }
3962
3963 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
3964
3965 append_insn (&insn, ep, r);
3966 }
3967
3968 /*
3969 * Sign-extend 32-bit mode constants that have bit 31 set and all
3970 * higher bits unset.
3971 */
3972 static void
3973 normalize_constant_expr (expressionS *ex)
3974 {
3975 if (ex->X_op == O_constant
3976 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
3977 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
3978 - 0x80000000);
3979 }
3980
3981 /*
3982 * Sign-extend 32-bit mode address offsets that have bit 31 set and
3983 * all higher bits unset.
3984 */
3985 static void
3986 normalize_address_expr (expressionS *ex)
3987 {
3988 if (((ex->X_op == O_constant && HAVE_32BIT_ADDRESSES)
3989 || (ex->X_op == O_symbol && HAVE_32BIT_SYMBOLS))
3990 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
3991 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
3992 - 0x80000000);
3993 }
3994
3995 /*
3996 * Generate a "jalr" instruction with a relocation hint to the called
3997 * function. This occurs in NewABI PIC code.
3998 */
3999 static void
4000 macro_build_jalr (expressionS *ep)
4001 {
4002 char *f = NULL;
4003
4004 if (MIPS_JALR_HINT_P (ep))
4005 {
4006 frag_grow (8);
4007 f = frag_more (0);
4008 }
4009 macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG);
4010 if (MIPS_JALR_HINT_P (ep))
4011 fix_new_exp (frag_now, f - frag_now->fr_literal,
4012 4, ep, FALSE, BFD_RELOC_MIPS_JALR);
4013 }
4014
4015 /*
4016 * Generate a "lui" instruction.
4017 */
4018 static void
4019 macro_build_lui (expressionS *ep, int regnum)
4020 {
4021 expressionS high_expr;
4022 const struct mips_opcode *mo;
4023 struct mips_cl_insn insn;
4024 bfd_reloc_code_real_type r[3]
4025 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
4026 const char *name = "lui";
4027 const char *fmt = "t,u";
4028
4029 gas_assert (! mips_opts.mips16);
4030
4031 high_expr = *ep;
4032
4033 if (high_expr.X_op == O_constant)
4034 {
4035 /* We can compute the instruction now without a relocation entry. */
4036 high_expr.X_add_number = ((high_expr.X_add_number + 0x8000)
4037 >> 16) & 0xffff;
4038 *r = BFD_RELOC_UNUSED;
4039 }
4040 else
4041 {
4042 gas_assert (ep->X_op == O_symbol);
4043 /* _gp_disp is a special case, used from s_cpload.
4044 __gnu_local_gp is used if mips_no_shared. */
4045 gas_assert (mips_pic == NO_PIC
4046 || (! HAVE_NEWABI
4047 && strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0)
4048 || (! mips_in_shared
4049 && strcmp (S_GET_NAME (ep->X_add_symbol),
4050 "__gnu_local_gp") == 0));
4051 *r = BFD_RELOC_HI16_S;
4052 }
4053
4054 mo = hash_find (op_hash, name);
4055 gas_assert (strcmp (name, mo->name) == 0);
4056 gas_assert (strcmp (fmt, mo->args) == 0);
4057 create_insn (&insn, mo);
4058
4059 insn.insn_opcode = insn.insn_mo->match;
4060 INSERT_OPERAND (RT, insn, regnum);
4061 if (*r == BFD_RELOC_UNUSED)
4062 {
4063 insn.insn_opcode |= high_expr.X_add_number;
4064 append_insn (&insn, NULL, r);
4065 }
4066 else
4067 append_insn (&insn, &high_expr, r);
4068 }
4069
4070 /* Generate a sequence of instructions to do a load or store from a constant
4071 offset off of a base register (breg) into/from a target register (treg),
4072 using AT if necessary. */
4073 static void
4074 macro_build_ldst_constoffset (expressionS *ep, const char *op,
4075 int treg, int breg, int dbl)
4076 {
4077 gas_assert (ep->X_op == O_constant);
4078
4079 /* Sign-extending 32-bit constants makes their handling easier. */
4080 if (!dbl)
4081 normalize_constant_expr (ep);
4082
4083 /* Right now, this routine can only handle signed 32-bit constants. */
4084 if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000))
4085 as_warn (_("operand overflow"));
4086
4087 if (IS_SEXT_16BIT_NUM(ep->X_add_number))
4088 {
4089 /* Signed 16-bit offset will fit in the op. Easy! */
4090 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg);
4091 }
4092 else
4093 {
4094 /* 32-bit offset, need multiple instructions and AT, like:
4095 lui $tempreg,const_hi (BFD_RELOC_HI16_S)
4096 addu $tempreg,$tempreg,$breg
4097 <op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
4098 to handle the complete offset. */
4099 macro_build_lui (ep, AT);
4100 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
4101 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT);
4102
4103 if (!mips_opts.at)
4104 as_bad (_("Macro used $at after \".set noat\""));
4105 }
4106 }
4107
4108 /* set_at()
4109 * Generates code to set the $at register to true (one)
4110 * if reg is less than the immediate expression.
4111 */
4112 static void
4113 set_at (int reg, int unsignedp)
4114 {
4115 if (imm_expr.X_op == O_constant
4116 && imm_expr.X_add_number >= -0x8000
4117 && imm_expr.X_add_number < 0x8000)
4118 macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j",
4119 AT, reg, BFD_RELOC_LO16);
4120 else
4121 {
4122 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
4123 macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT);
4124 }
4125 }
4126
4127 /* Warn if an expression is not a constant. */
4128
4129 static void
4130 check_absolute_expr (struct mips_cl_insn *ip, expressionS *ex)
4131 {
4132 if (ex->X_op == O_big)
4133 as_bad (_("unsupported large constant"));
4134 else if (ex->X_op != O_constant)
4135 as_bad (_("Instruction %s requires absolute expression"),
4136 ip->insn_mo->name);
4137
4138 if (HAVE_32BIT_GPRS)
4139 normalize_constant_expr (ex);
4140 }
4141
4142 /* Count the leading zeroes by performing a binary chop. This is a
4143 bulky bit of source, but performance is a LOT better for the
4144 majority of values than a simple loop to count the bits:
4145 for (lcnt = 0; (lcnt < 32); lcnt++)
4146 if ((v) & (1 << (31 - lcnt)))
4147 break;
4148 However it is not code size friendly, and the gain will drop a bit
4149 on certain cached systems.
4150 */
4151 #define COUNT_TOP_ZEROES(v) \
4152 (((v) & ~0xffff) == 0 \
4153 ? ((v) & ~0xff) == 0 \
4154 ? ((v) & ~0xf) == 0 \
4155 ? ((v) & ~0x3) == 0 \
4156 ? ((v) & ~0x1) == 0 \
4157 ? !(v) \
4158 ? 32 \
4159 : 31 \
4160 : 30 \
4161 : ((v) & ~0x7) == 0 \
4162 ? 29 \
4163 : 28 \
4164 : ((v) & ~0x3f) == 0 \
4165 ? ((v) & ~0x1f) == 0 \
4166 ? 27 \
4167 : 26 \
4168 : ((v) & ~0x7f) == 0 \
4169 ? 25 \
4170 : 24 \
4171 : ((v) & ~0xfff) == 0 \
4172 ? ((v) & ~0x3ff) == 0 \
4173 ? ((v) & ~0x1ff) == 0 \
4174 ? 23 \
4175 : 22 \
4176 : ((v) & ~0x7ff) == 0 \
4177 ? 21 \
4178 : 20 \
4179 : ((v) & ~0x3fff) == 0 \
4180 ? ((v) & ~0x1fff) == 0 \
4181 ? 19 \
4182 : 18 \
4183 : ((v) & ~0x7fff) == 0 \
4184 ? 17 \
4185 : 16 \
4186 : ((v) & ~0xffffff) == 0 \
4187 ? ((v) & ~0xfffff) == 0 \
4188 ? ((v) & ~0x3ffff) == 0 \
4189 ? ((v) & ~0x1ffff) == 0 \
4190 ? 15 \
4191 : 14 \
4192 : ((v) & ~0x7ffff) == 0 \
4193 ? 13 \
4194 : 12 \
4195 : ((v) & ~0x3fffff) == 0 \
4196 ? ((v) & ~0x1fffff) == 0 \
4197 ? 11 \
4198 : 10 \
4199 : ((v) & ~0x7fffff) == 0 \
4200 ? 9 \
4201 : 8 \
4202 : ((v) & ~0xfffffff) == 0 \
4203 ? ((v) & ~0x3ffffff) == 0 \
4204 ? ((v) & ~0x1ffffff) == 0 \
4205 ? 7 \
4206 : 6 \
4207 : ((v) & ~0x7ffffff) == 0 \
4208 ? 5 \
4209 : 4 \
4210 : ((v) & ~0x3fffffff) == 0 \
4211 ? ((v) & ~0x1fffffff) == 0 \
4212 ? 3 \
4213 : 2 \
4214 : ((v) & ~0x7fffffff) == 0 \
4215 ? 1 \
4216 : 0)
4217
4218 /* load_register()
4219 * This routine generates the least number of instructions necessary to load
4220 * an absolute expression value into a register.
4221 */
4222 static void
4223 load_register (int reg, expressionS *ep, int dbl)
4224 {
4225 int freg;
4226 expressionS hi32, lo32;
4227
4228 if (ep->X_op != O_big)
4229 {
4230 gas_assert (ep->X_op == O_constant);
4231
4232 /* Sign-extending 32-bit constants makes their handling easier. */
4233 if (!dbl)
4234 normalize_constant_expr (ep);
4235
4236 if (IS_SEXT_16BIT_NUM (ep->X_add_number))
4237 {
4238 /* We can handle 16 bit signed values with an addiu to
4239 $zero. No need to ever use daddiu here, since $zero and
4240 the result are always correct in 32 bit mode. */
4241 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
4242 return;
4243 }
4244 else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
4245 {
4246 /* We can handle 16 bit unsigned values with an ori to
4247 $zero. */
4248 macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
4249 return;
4250 }
4251 else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)))
4252 {
4253 /* 32 bit values require an lui. */
4254 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_HI16);
4255 if ((ep->X_add_number & 0xffff) != 0)
4256 macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
4257 return;
4258 }
4259 }
4260
4261 /* The value is larger than 32 bits. */
4262
4263 if (!dbl || HAVE_32BIT_GPRS)
4264 {
4265 char value[32];
4266
4267 sprintf_vma (value, ep->X_add_number);
4268 as_bad (_("Number (0x%s) larger than 32 bits"), value);
4269 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
4270 return;
4271 }
4272
4273 if (ep->X_op != O_big)
4274 {
4275 hi32 = *ep;
4276 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
4277 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
4278 hi32.X_add_number &= 0xffffffff;
4279 lo32 = *ep;
4280 lo32.X_add_number &= 0xffffffff;
4281 }
4282 else
4283 {
4284 gas_assert (ep->X_add_number > 2);
4285 if (ep->X_add_number == 3)
4286 generic_bignum[3] = 0;
4287 else if (ep->X_add_number > 4)
4288 as_bad (_("Number larger than 64 bits"));
4289 lo32.X_op = O_constant;
4290 lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
4291 hi32.X_op = O_constant;
4292 hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
4293 }
4294
4295 if (hi32.X_add_number == 0)
4296 freg = 0;
4297 else
4298 {
4299 int shift, bit;
4300 unsigned long hi, lo;
4301
4302 if (hi32.X_add_number == (offsetT) 0xffffffff)
4303 {
4304 if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
4305 {
4306 macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
4307 return;
4308 }
4309 if (lo32.X_add_number & 0x80000000)
4310 {
4311 macro_build (&lo32, "lui", "t,u", reg, BFD_RELOC_HI16);
4312 if (lo32.X_add_number & 0xffff)
4313 macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
4314 return;
4315 }
4316 }
4317
4318 /* Check for 16bit shifted constant. We know that hi32 is
4319 non-zero, so start the mask on the first bit of the hi32
4320 value. */
4321 shift = 17;
4322 do
4323 {
4324 unsigned long himask, lomask;
4325
4326 if (shift < 32)
4327 {
4328 himask = 0xffff >> (32 - shift);
4329 lomask = (0xffff << shift) & 0xffffffff;
4330 }
4331 else
4332 {
4333 himask = 0xffff << (shift - 32);
4334 lomask = 0;
4335 }
4336 if ((hi32.X_add_number & ~(offsetT) himask) == 0
4337 && (lo32.X_add_number & ~(offsetT) lomask) == 0)
4338 {
4339 expressionS tmp;
4340
4341 tmp.X_op = O_constant;
4342 if (shift < 32)
4343 tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
4344 | (lo32.X_add_number >> shift));
4345 else
4346 tmp.X_add_number = hi32.X_add_number >> (shift - 32);
4347 macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
4348 macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", "d,w,<",
4349 reg, reg, (shift >= 32) ? shift - 32 : shift);
4350 return;
4351 }
4352 ++shift;
4353 }
4354 while (shift <= (64 - 16));
4355
4356 /* Find the bit number of the lowest one bit, and store the
4357 shifted value in hi/lo. */
4358 hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
4359 lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
4360 if (lo != 0)
4361 {
4362 bit = 0;
4363 while ((lo & 1) == 0)
4364 {
4365 lo >>= 1;
4366 ++bit;
4367 }
4368 lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit);
4369 hi >>= bit;
4370 }
4371 else
4372 {
4373 bit = 32;
4374 while ((hi & 1) == 0)
4375 {
4376 hi >>= 1;
4377 ++bit;
4378 }
4379 lo = hi;
4380 hi = 0;
4381 }
4382
4383 /* Optimize if the shifted value is a (power of 2) - 1. */
4384 if ((hi == 0 && ((lo + 1) & lo) == 0)
4385 || (lo == 0xffffffff && ((hi + 1) & hi) == 0))
4386 {
4387 shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
4388 if (shift != 0)
4389 {
4390 expressionS tmp;
4391
4392 /* This instruction will set the register to be all
4393 ones. */
4394 tmp.X_op = O_constant;
4395 tmp.X_add_number = (offsetT) -1;
4396 macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
4397 if (bit != 0)
4398 {
4399 bit += shift;
4400 macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", "d,w,<",
4401 reg, reg, (bit >= 32) ? bit - 32 : bit);
4402 }
4403 macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", "d,w,<",
4404 reg, reg, (shift >= 32) ? shift - 32 : shift);
4405 return;
4406 }
4407 }
4408
4409 /* Sign extend hi32 before calling load_register, because we can
4410 generally get better code when we load a sign extended value. */
4411 if ((hi32.X_add_number & 0x80000000) != 0)
4412 hi32.X_add_number |= ~(offsetT) 0xffffffff;
4413 load_register (reg, &hi32, 0);
4414 freg = reg;
4415 }
4416 if ((lo32.X_add_number & 0xffff0000) == 0)
4417 {
4418 if (freg != 0)
4419 {
4420 macro_build (NULL, "dsll32", "d,w,<", reg, freg, 0);
4421 freg = reg;
4422 }
4423 }
4424 else
4425 {
4426 expressionS mid16;
4427
4428 if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
4429 {
4430 macro_build (&lo32, "lui", "t,u", reg, BFD_RELOC_HI16);
4431 macro_build (NULL, "dsrl32", "d,w,<", reg, reg, 0);
4432 return;
4433 }
4434
4435 if (freg != 0)
4436 {
4437 macro_build (NULL, "dsll", "d,w,<", reg, freg, 16);
4438 freg = reg;
4439 }
4440 mid16 = lo32;
4441 mid16.X_add_number >>= 16;
4442 macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
4443 macro_build (NULL, "dsll", "d,w,<", reg, reg, 16);
4444 freg = reg;
4445 }
4446 if ((lo32.X_add_number & 0xffff) != 0)
4447 macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
4448 }
4449
4450 static inline void
4451 load_delay_nop (void)
4452 {
4453 if (!gpr_interlocks)
4454 macro_build (NULL, "nop", "");
4455 }
4456
4457 /* Load an address into a register. */
4458
4459 static void
4460 load_address (int reg, expressionS *ep, int *used_at)
4461 {
4462 if (ep->X_op != O_constant
4463 && ep->X_op != O_symbol)
4464 {
4465 as_bad (_("expression too complex"));
4466 ep->X_op = O_constant;
4467 }
4468
4469 if (ep->X_op == O_constant)
4470 {
4471 load_register (reg, ep, HAVE_64BIT_ADDRESSES);
4472 return;
4473 }
4474
4475 if (mips_pic == NO_PIC)
4476 {
4477 /* If this is a reference to a GP relative symbol, we want
4478 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
4479 Otherwise we want
4480 lui $reg,<sym> (BFD_RELOC_HI16_S)
4481 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
4482 If we have an addend, we always use the latter form.
4483
4484 With 64bit address space and a usable $at we want
4485 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
4486 lui $at,<sym> (BFD_RELOC_HI16_S)
4487 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
4488 daddiu $at,<sym> (BFD_RELOC_LO16)
4489 dsll32 $reg,0
4490 daddu $reg,$reg,$at
4491
4492 If $at is already in use, we use a path which is suboptimal
4493 on superscalar processors.
4494 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
4495 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
4496 dsll $reg,16
4497 daddiu $reg,<sym> (BFD_RELOC_HI16_S)
4498 dsll $reg,16
4499 daddiu $reg,<sym> (BFD_RELOC_LO16)
4500
4501 For GP relative symbols in 64bit address space we can use
4502 the same sequence as in 32bit address space. */
4503 if (HAVE_64BIT_SYMBOLS)
4504 {
4505 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
4506 && !nopic_need_relax (ep->X_add_symbol, 1))
4507 {
4508 relax_start (ep->X_add_symbol);
4509 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
4510 mips_gp_register, BFD_RELOC_GPREL16);
4511 relax_switch ();
4512 }
4513
4514 if (*used_at == 0 && mips_opts.at)
4515 {
4516 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_HIGHEST);
4517 macro_build (ep, "lui", "t,u", AT, BFD_RELOC_HI16_S);
4518 macro_build (ep, "daddiu", "t,r,j", reg, reg,
4519 BFD_RELOC_MIPS_HIGHER);
4520 macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16);
4521 macro_build (NULL, "dsll32", "d,w,<", reg, reg, 0);
4522 macro_build (NULL, "daddu", "d,v,t", reg, reg, AT);
4523 *used_at = 1;
4524 }
4525 else
4526 {
4527 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_HIGHEST);
4528 macro_build (ep, "daddiu", "t,r,j", reg, reg,
4529 BFD_RELOC_MIPS_HIGHER);
4530 macro_build (NULL, "dsll", "d,w,<", reg, reg, 16);
4531 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S);
4532 macro_build (NULL, "dsll", "d,w,<", reg, reg, 16);
4533 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16);
4534 }
4535
4536 if (mips_relax.sequence)
4537 relax_end ();
4538 }
4539 else
4540 {
4541 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
4542 && !nopic_need_relax (ep->X_add_symbol, 1))
4543 {
4544 relax_start (ep->X_add_symbol);
4545 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
4546 mips_gp_register, BFD_RELOC_GPREL16);
4547 relax_switch ();
4548 }
4549 macro_build_lui (ep, reg);
4550 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
4551 reg, reg, BFD_RELOC_LO16);
4552 if (mips_relax.sequence)
4553 relax_end ();
4554 }
4555 }
4556 else if (!mips_big_got)
4557 {
4558 expressionS ex;
4559
4560 /* If this is a reference to an external symbol, we want
4561 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
4562 Otherwise we want
4563 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
4564 nop
4565 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
4566 If there is a constant, it must be added in after.
4567
4568 If we have NewABI, we want
4569 lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
4570 unless we're referencing a global symbol with a non-zero
4571 offset, in which case cst must be added separately. */
4572 if (HAVE_NEWABI)
4573 {
4574 if (ep->X_add_number)
4575 {
4576 ex.X_add_number = ep->X_add_number;
4577 ep->X_add_number = 0;
4578 relax_start (ep->X_add_symbol);
4579 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4580 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
4581 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
4582 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4583 ex.X_op = O_constant;
4584 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
4585 reg, reg, BFD_RELOC_LO16);
4586 ep->X_add_number = ex.X_add_number;
4587 relax_switch ();
4588 }
4589 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4590 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
4591 if (mips_relax.sequence)
4592 relax_end ();
4593 }
4594 else
4595 {
4596 ex.X_add_number = ep->X_add_number;
4597 ep->X_add_number = 0;
4598 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4599 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4600 load_delay_nop ();
4601 relax_start (ep->X_add_symbol);
4602 relax_switch ();
4603 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4604 BFD_RELOC_LO16);
4605 relax_end ();
4606
4607 if (ex.X_add_number != 0)
4608 {
4609 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
4610 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4611 ex.X_op = O_constant;
4612 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
4613 reg, reg, BFD_RELOC_LO16);
4614 }
4615 }
4616 }
4617 else if (mips_big_got)
4618 {
4619 expressionS ex;
4620
4621 /* This is the large GOT case. If this is a reference to an
4622 external symbol, we want
4623 lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
4624 addu $reg,$reg,$gp
4625 lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
4626
4627 Otherwise, for a reference to a local symbol in old ABI, we want
4628 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
4629 nop
4630 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
4631 If there is a constant, it must be added in after.
4632
4633 In the NewABI, for local symbols, with or without offsets, we want:
4634 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
4635 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
4636 */
4637 if (HAVE_NEWABI)
4638 {
4639 ex.X_add_number = ep->X_add_number;
4640 ep->X_add_number = 0;
4641 relax_start (ep->X_add_symbol);
4642 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_GOT_HI16);
4643 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
4644 reg, reg, mips_gp_register);
4645 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
4646 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
4647 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
4648 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4649 else if (ex.X_add_number)
4650 {
4651 ex.X_op = O_constant;
4652 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4653 BFD_RELOC_LO16);
4654 }
4655
4656 ep->X_add_number = ex.X_add_number;
4657 relax_switch ();
4658 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4659 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
4660 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4661 BFD_RELOC_MIPS_GOT_OFST);
4662 relax_end ();
4663 }
4664 else
4665 {
4666 ex.X_add_number = ep->X_add_number;
4667 ep->X_add_number = 0;
4668 relax_start (ep->X_add_symbol);
4669 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_GOT_HI16);
4670 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
4671 reg, reg, mips_gp_register);
4672 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
4673 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
4674 relax_switch ();
4675 if (reg_needs_delay (mips_gp_register))
4676 {
4677 /* We need a nop before loading from $gp. This special
4678 check is required because the lui which starts the main
4679 instruction stream does not refer to $gp, and so will not
4680 insert the nop which may be required. */
4681 macro_build (NULL, "nop", "");
4682 }
4683 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4684 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4685 load_delay_nop ();
4686 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4687 BFD_RELOC_LO16);
4688 relax_end ();
4689
4690 if (ex.X_add_number != 0)
4691 {
4692 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
4693 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4694 ex.X_op = O_constant;
4695 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4696 BFD_RELOC_LO16);
4697 }
4698 }
4699 }
4700 else
4701 abort ();
4702
4703 if (!mips_opts.at && *used_at == 1)
4704 as_bad (_("Macro used $at after \".set noat\""));
4705 }
4706
4707 /* Move the contents of register SOURCE into register DEST. */
4708
4709 static void
4710 move_register (int dest, int source)
4711 {
4712 macro_build (NULL, HAVE_32BIT_GPRS ? "addu" : "daddu", "d,v,t",
4713 dest, source, 0);
4714 }
4715
4716 /* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
4717 LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
4718 The two alternatives are:
4719
4720 Global symbol Local sybmol
4721 ------------- ------------
4722 lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
4723 ... ...
4724 addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
4725
4726 load_got_offset emits the first instruction and add_got_offset
4727 emits the second for a 16-bit offset or add_got_offset_hilo emits
4728 a sequence to add a 32-bit offset using a scratch register. */
4729
4730 static void
4731 load_got_offset (int dest, expressionS *local)
4732 {
4733 expressionS global;
4734
4735 global = *local;
4736 global.X_add_number = 0;
4737
4738 relax_start (local->X_add_symbol);
4739 macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest,
4740 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4741 relax_switch ();
4742 macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest,
4743 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4744 relax_end ();
4745 }
4746
4747 static void
4748 add_got_offset (int dest, expressionS *local)
4749 {
4750 expressionS global;
4751
4752 global.X_op = O_constant;
4753 global.X_op_symbol = NULL;
4754 global.X_add_symbol = NULL;
4755 global.X_add_number = local->X_add_number;
4756
4757 relax_start (local->X_add_symbol);
4758 macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j",
4759 dest, dest, BFD_RELOC_LO16);
4760 relax_switch ();
4761 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16);
4762 relax_end ();
4763 }
4764
4765 static void
4766 add_got_offset_hilo (int dest, expressionS *local, int tmp)
4767 {
4768 expressionS global;
4769 int hold_mips_optimize;
4770
4771 global.X_op = O_constant;
4772 global.X_op_symbol = NULL;
4773 global.X_add_symbol = NULL;
4774 global.X_add_number = local->X_add_number;
4775
4776 relax_start (local->X_add_symbol);
4777 load_register (tmp, &global, HAVE_64BIT_ADDRESSES);
4778 relax_switch ();
4779 /* Set mips_optimize around the lui instruction to avoid
4780 inserting an unnecessary nop after the lw. */
4781 hold_mips_optimize = mips_optimize;
4782 mips_optimize = 2;
4783 macro_build_lui (&global, tmp);
4784 mips_optimize = hold_mips_optimize;
4785 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16);
4786 relax_end ();
4787
4788 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp);
4789 }
4790
4791 /*
4792 * Build macros
4793 * This routine implements the seemingly endless macro or synthesized
4794 * instructions and addressing modes in the mips assembly language. Many
4795 * of these macros are simple and are similar to each other. These could
4796 * probably be handled by some kind of table or grammar approach instead of
4797 * this verbose method. Others are not simple macros but are more like
4798 * optimizing code generation.
4799 * One interesting optimization is when several store macros appear
4800 * consecutively that would load AT with the upper half of the same address.
4801 * The ensuing load upper instructions are ommited. This implies some kind
4802 * of global optimization. We currently only optimize within a single macro.
4803 * For many of the load and store macros if the address is specified as a
4804 * constant expression in the first 64k of memory (ie ld $2,0x4000c) we
4805 * first load register 'at' with zero and use it as the base register. The
4806 * mips assembler simply uses register $zero. Just one tiny optimization
4807 * we're missing.
4808 */
4809 static void
4810 macro (struct mips_cl_insn *ip)
4811 {
4812 unsigned int treg, sreg, dreg, breg;
4813 unsigned int tempreg;
4814 int mask;
4815 int used_at = 0;
4816 expressionS expr1;
4817 const char *s;
4818 const char *s2;
4819 const char *fmt;
4820 int likely = 0;
4821 int dbl = 0;
4822 int coproc = 0;
4823 int lr = 0;
4824 int imm = 0;
4825 int call = 0;
4826 int off;
4827 offsetT maxnum;
4828 bfd_reloc_code_real_type r;
4829 int hold_mips_optimize;
4830
4831 gas_assert (! mips_opts.mips16);
4832
4833 treg = (ip->insn_opcode >> 16) & 0x1f;
4834 dreg = (ip->insn_opcode >> 11) & 0x1f;
4835 sreg = breg = (ip->insn_opcode >> 21) & 0x1f;
4836 mask = ip->insn_mo->mask;
4837
4838 expr1.X_op = O_constant;
4839 expr1.X_op_symbol = NULL;
4840 expr1.X_add_symbol = NULL;
4841 expr1.X_add_number = 1;
4842
4843 switch (mask)
4844 {
4845 case M_DABS:
4846 dbl = 1;
4847 case M_ABS:
4848 /* bgez $a0,.+12
4849 move v0,$a0
4850 sub v0,$zero,$a0
4851 */
4852
4853 start_noreorder ();
4854
4855 expr1.X_add_number = 8;
4856 macro_build (&expr1, "bgez", "s,p", sreg);
4857 if (dreg == sreg)
4858 macro_build (NULL, "nop", "", 0);
4859 else
4860 move_register (dreg, sreg);
4861 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", dreg, 0, sreg);
4862
4863 end_noreorder ();
4864 break;
4865
4866 case M_ADD_I:
4867 s = "addi";
4868 s2 = "add";
4869 goto do_addi;
4870 case M_ADDU_I:
4871 s = "addiu";
4872 s2 = "addu";
4873 goto do_addi;
4874 case M_DADD_I:
4875 dbl = 1;
4876 s = "daddi";
4877 s2 = "dadd";
4878 goto do_addi;
4879 case M_DADDU_I:
4880 dbl = 1;
4881 s = "daddiu";
4882 s2 = "daddu";
4883 do_addi:
4884 if (imm_expr.X_op == O_constant
4885 && imm_expr.X_add_number >= -0x8000
4886 && imm_expr.X_add_number < 0x8000)
4887 {
4888 macro_build (&imm_expr, s, "t,r,j", treg, sreg, BFD_RELOC_LO16);
4889 break;
4890 }
4891 used_at = 1;
4892 load_register (AT, &imm_expr, dbl);
4893 macro_build (NULL, s2, "d,v,t", treg, sreg, AT);
4894 break;
4895
4896 case M_AND_I:
4897 s = "andi";
4898 s2 = "and";
4899 goto do_bit;
4900 case M_OR_I:
4901 s = "ori";
4902 s2 = "or";
4903 goto do_bit;
4904 case M_NOR_I:
4905 s = "";
4906 s2 = "nor";
4907 goto do_bit;
4908 case M_XOR_I:
4909 s = "xori";
4910 s2 = "xor";
4911 do_bit:
4912 if (imm_expr.X_op == O_constant
4913 && imm_expr.X_add_number >= 0
4914 && imm_expr.X_add_number < 0x10000)
4915 {
4916 if (mask != M_NOR_I)
4917 macro_build (&imm_expr, s, "t,r,i", treg, sreg, BFD_RELOC_LO16);
4918 else
4919 {
4920 macro_build (&imm_expr, "ori", "t,r,i",
4921 treg, sreg, BFD_RELOC_LO16);
4922 macro_build (NULL, "nor", "d,v,t", treg, treg, 0);
4923 }
4924 break;
4925 }
4926
4927 used_at = 1;
4928 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
4929 macro_build (NULL, s2, "d,v,t", treg, sreg, AT);
4930 break;
4931
4932 case M_BALIGN:
4933 switch (imm_expr.X_add_number)
4934 {
4935 case 0:
4936 macro_build (NULL, "nop", "");
4937 break;
4938 case 2:
4939 macro_build (NULL, "packrl.ph", "d,s,t", treg, treg, sreg);
4940 break;
4941 default:
4942 macro_build (NULL, "balign", "t,s,2", treg, sreg,
4943 (int)imm_expr.X_add_number);
4944 break;
4945 }
4946 break;
4947
4948 case M_BEQ_I:
4949 s = "beq";
4950 goto beq_i;
4951 case M_BEQL_I:
4952 s = "beql";
4953 likely = 1;
4954 goto beq_i;
4955 case M_BNE_I:
4956 s = "bne";
4957 goto beq_i;
4958 case M_BNEL_I:
4959 s = "bnel";
4960 likely = 1;
4961 beq_i:
4962 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
4963 {
4964 macro_build (&offset_expr, s, "s,t,p", sreg, 0);
4965 break;
4966 }
4967 used_at = 1;
4968 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
4969 macro_build (&offset_expr, s, "s,t,p", sreg, AT);
4970 break;
4971
4972 case M_BGEL:
4973 likely = 1;
4974 case M_BGE:
4975 if (treg == 0)
4976 {
4977 macro_build (&offset_expr, likely ? "bgezl" : "bgez", "s,p", sreg);
4978 break;
4979 }
4980 if (sreg == 0)
4981 {
4982 macro_build (&offset_expr, likely ? "blezl" : "blez", "s,p", treg);
4983 break;
4984 }
4985 used_at = 1;
4986 macro_build (NULL, "slt", "d,v,t", AT, sreg, treg);
4987 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
4988 break;
4989
4990 case M_BGTL_I:
4991 likely = 1;
4992 case M_BGT_I:
4993 /* check for > max integer */
4994 maxnum = 0x7fffffff;
4995 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4)
4996 {
4997 maxnum <<= 16;
4998 maxnum |= 0xffff;
4999 maxnum <<= 16;
5000 maxnum |= 0xffff;
5001 }
5002 if (imm_expr.X_op == O_constant
5003 && imm_expr.X_add_number >= maxnum
5004 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4))
5005 {
5006 do_false:
5007 /* result is always false */
5008 if (! likely)
5009 macro_build (NULL, "nop", "", 0);
5010 else
5011 macro_build (&offset_expr, "bnel", "s,t,p", 0, 0);
5012 break;
5013 }
5014 if (imm_expr.X_op != O_constant)
5015 as_bad (_("Unsupported large constant"));
5016 ++imm_expr.X_add_number;
5017 /* FALLTHROUGH */
5018 case M_BGE_I:
5019 case M_BGEL_I:
5020 if (mask == M_BGEL_I)
5021 likely = 1;
5022 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
5023 {
5024 macro_build (&offset_expr, likely ? "bgezl" : "bgez", "s,p", sreg);
5025 break;
5026 }
5027 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
5028 {
5029 macro_build (&offset_expr, likely ? "bgtzl" : "bgtz", "s,p", sreg);
5030 break;
5031 }
5032 maxnum = 0x7fffffff;
5033 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4)
5034 {
5035 maxnum <<= 16;
5036 maxnum |= 0xffff;
5037 maxnum <<= 16;
5038 maxnum |= 0xffff;
5039 }
5040 maxnum = - maxnum - 1;
5041 if (imm_expr.X_op == O_constant
5042 && imm_expr.X_add_number <= maxnum
5043 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4))
5044 {
5045 do_true:
5046 /* result is always true */
5047 as_warn (_("Branch %s is always true"), ip->insn_mo->name);
5048 macro_build (&offset_expr, "b", "p");
5049 break;
5050 }
5051 used_at = 1;
5052 set_at (sreg, 0);
5053 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
5054 break;
5055
5056 case M_BGEUL:
5057 likely = 1;
5058 case M_BGEU:
5059 if (treg == 0)
5060 goto do_true;
5061 if (sreg == 0)
5062 {
5063 macro_build (&offset_expr, likely ? "beql" : "beq",
5064 "s,t,p", 0, treg);
5065 break;
5066 }
5067 used_at = 1;
5068 macro_build (NULL, "sltu", "d,v,t", AT, sreg, treg);
5069 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
5070 break;
5071
5072 case M_BGTUL_I:
5073 likely = 1;
5074 case M_BGTU_I:
5075 if (sreg == 0
5076 || (HAVE_32BIT_GPRS
5077 && imm_expr.X_op == O_constant
5078 && imm_expr.X_add_number == (offsetT) 0xffffffff))
5079 goto do_false;
5080 if (imm_expr.X_op != O_constant)
5081 as_bad (_("Unsupported large constant"));
5082 ++imm_expr.X_add_number;
5083 /* FALLTHROUGH */
5084 case M_BGEU_I:
5085 case M_BGEUL_I:
5086 if (mask == M_BGEUL_I)
5087 likely = 1;
5088 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
5089 goto do_true;
5090 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
5091 {
5092 macro_build (&offset_expr, likely ? "bnel" : "bne",
5093 "s,t,p", sreg, 0);
5094 break;
5095 }
5096 used_at = 1;
5097 set_at (sreg, 1);
5098 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
5099 break;
5100
5101 case M_BGTL:
5102 likely = 1;
5103 case M_BGT:
5104 if (treg == 0)
5105 {
5106 macro_build (&offset_expr, likely ? "bgtzl" : "bgtz", "s,p", sreg);
5107 break;
5108 }
5109 if (sreg == 0)
5110 {
5111 macro_build (&offset_expr, likely ? "bltzl" : "bltz", "s,p", treg);
5112 break;
5113 }
5114 used_at = 1;
5115 macro_build (NULL, "slt", "d,v,t", AT, treg, sreg);
5116 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
5117 break;
5118
5119 case M_BGTUL:
5120 likely = 1;
5121 case M_BGTU:
5122 if (treg == 0)
5123 {
5124 macro_build (&offset_expr, likely ? "bnel" : "bne",
5125 "s,t,p", sreg, 0);
5126 break;
5127 }
5128 if (sreg == 0)
5129 goto do_false;
5130 used_at = 1;
5131 macro_build (NULL, "sltu", "d,v,t", AT, treg, sreg);
5132 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
5133 break;
5134
5135 case M_BLEL:
5136 likely = 1;
5137 case M_BLE:
5138 if (treg == 0)
5139 {
5140 macro_build (&offset_expr, likely ? "blezl" : "blez", "s,p", sreg);
5141 break;
5142 }
5143 if (sreg == 0)
5144 {
5145 macro_build (&offset_expr, likely ? "bgezl" : "bgez", "s,p", treg);
5146 break;
5147 }
5148 used_at = 1;
5149 macro_build (NULL, "slt", "d,v,t", AT, treg, sreg);
5150 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
5151 break;
5152
5153 case M_BLEL_I:
5154 likely = 1;
5155 case M_BLE_I:
5156 maxnum = 0x7fffffff;
5157 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4)
5158 {
5159 maxnum <<= 16;
5160 maxnum |= 0xffff;
5161 maxnum <<= 16;
5162 maxnum |= 0xffff;
5163 }
5164 if (imm_expr.X_op == O_constant
5165 && imm_expr.X_add_number >= maxnum
5166 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4))
5167 goto do_true;
5168 if (imm_expr.X_op != O_constant)
5169 as_bad (_("Unsupported large constant"));
5170 ++imm_expr.X_add_number;
5171 /* FALLTHROUGH */
5172 case M_BLT_I:
5173 case M_BLTL_I:
5174 if (mask == M_BLTL_I)
5175 likely = 1;
5176 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
5177 {
5178 macro_build (&offset_expr, likely ? "bltzl" : "bltz", "s,p", sreg);
5179 break;
5180 }
5181 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
5182 {
5183 macro_build (&offset_expr, likely ? "blezl" : "blez", "s,p", sreg);
5184 break;
5185 }
5186 used_at = 1;
5187 set_at (sreg, 0);
5188 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
5189 break;
5190
5191 case M_BLEUL:
5192 likely = 1;
5193 case M_BLEU:
5194 if (treg == 0)
5195 {
5196 macro_build (&offset_expr, likely ? "beql" : "beq",
5197 "s,t,p", sreg, 0);
5198 break;
5199 }
5200 if (sreg == 0)
5201 goto do_true;
5202 used_at = 1;
5203 macro_build (NULL, "sltu", "d,v,t", AT, treg, sreg);
5204 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
5205 break;
5206
5207 case M_BLEUL_I:
5208 likely = 1;
5209 case M_BLEU_I:
5210 if (sreg == 0
5211 || (HAVE_32BIT_GPRS
5212 && imm_expr.X_op == O_constant
5213 && imm_expr.X_add_number == (offsetT) 0xffffffff))
5214 goto do_true;
5215 if (imm_expr.X_op != O_constant)
5216 as_bad (_("Unsupported large constant"));
5217 ++imm_expr.X_add_number;
5218 /* FALLTHROUGH */
5219 case M_BLTU_I:
5220 case M_BLTUL_I:
5221 if (mask == M_BLTUL_I)
5222 likely = 1;
5223 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
5224 goto do_false;
5225 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
5226 {
5227 macro_build (&offset_expr, likely ? "beql" : "beq",
5228 "s,t,p", sreg, 0);
5229 break;
5230 }
5231 used_at = 1;
5232 set_at (sreg, 1);
5233 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
5234 break;
5235
5236 case M_BLTL:
5237 likely = 1;
5238 case M_BLT:
5239 if (treg == 0)
5240 {
5241 macro_build (&offset_expr, likely ? "bltzl" : "bltz", "s,p", sreg);
5242 break;
5243 }
5244 if (sreg == 0)
5245 {
5246 macro_build (&offset_expr, likely ? "bgtzl" : "bgtz", "s,p", treg);
5247 break;
5248 }
5249 used_at = 1;
5250 macro_build (NULL, "slt", "d,v,t", AT, sreg, treg);
5251 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
5252 break;
5253
5254 case M_BLTUL:
5255 likely = 1;
5256 case M_BLTU:
5257 if (treg == 0)
5258 goto do_false;
5259 if (sreg == 0)
5260 {
5261 macro_build (&offset_expr, likely ? "bnel" : "bne",
5262 "s,t,p", 0, treg);
5263 break;
5264 }
5265 used_at = 1;
5266 macro_build (NULL, "sltu", "d,v,t", AT, sreg, treg);
5267 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
5268 break;
5269
5270 case M_DEXT:
5271 {
5272 unsigned long pos;
5273 unsigned long size;
5274
5275 if (imm_expr.X_op != O_constant || imm2_expr.X_op != O_constant)
5276 {
5277 as_bad (_("Unsupported large constant"));
5278 pos = size = 1;
5279 }
5280 else
5281 {
5282 pos = (unsigned long) imm_expr.X_add_number;
5283 size = (unsigned long) imm2_expr.X_add_number;
5284 }
5285
5286 if (pos > 63)
5287 {
5288 as_bad (_("Improper position (%lu)"), pos);
5289 pos = 1;
5290 }
5291 if (size == 0 || size > 64
5292 || (pos + size - 1) > 63)
5293 {
5294 as_bad (_("Improper extract size (%lu, position %lu)"),
5295 size, pos);
5296 size = 1;
5297 }
5298
5299 if (size <= 32 && pos < 32)
5300 {
5301 s = "dext";
5302 fmt = "t,r,+A,+C";
5303 }
5304 else if (size <= 32)
5305 {
5306 s = "dextu";
5307 fmt = "t,r,+E,+H";
5308 }
5309 else
5310 {
5311 s = "dextm";
5312 fmt = "t,r,+A,+G";
5313 }
5314 macro_build ((expressionS *) NULL, s, fmt, treg, sreg, pos, size - 1);
5315 }
5316 break;
5317
5318 case M_DINS:
5319 {
5320 unsigned long pos;
5321 unsigned long size;
5322
5323 if (imm_expr.X_op != O_constant || imm2_expr.X_op != O_constant)
5324 {
5325 as_bad (_("Unsupported large constant"));
5326 pos = size = 1;
5327 }
5328 else
5329 {
5330 pos = (unsigned long) imm_expr.X_add_number;
5331 size = (unsigned long) imm2_expr.X_add_number;
5332 }
5333
5334 if (pos > 63)
5335 {
5336 as_bad (_("Improper position (%lu)"), pos);
5337 pos = 1;
5338 }
5339 if (size == 0 || size > 64
5340 || (pos + size - 1) > 63)
5341 {
5342 as_bad (_("Improper insert size (%lu, position %lu)"),
5343 size, pos);
5344 size = 1;
5345 }
5346
5347 if (pos < 32 && (pos + size - 1) < 32)
5348 {
5349 s = "dins";
5350 fmt = "t,r,+A,+B";
5351 }
5352 else if (pos >= 32)
5353 {
5354 s = "dinsu";
5355 fmt = "t,r,+E,+F";
5356 }
5357 else
5358 {
5359 s = "dinsm";
5360 fmt = "t,r,+A,+F";
5361 }
5362 macro_build ((expressionS *) NULL, s, fmt, treg, sreg, (int) pos,
5363 (int) (pos + size - 1));
5364 }
5365 break;
5366
5367 case M_DDIV_3:
5368 dbl = 1;
5369 case M_DIV_3:
5370 s = "mflo";
5371 goto do_div3;
5372 case M_DREM_3:
5373 dbl = 1;
5374 case M_REM_3:
5375 s = "mfhi";
5376 do_div3:
5377 if (treg == 0)
5378 {
5379 as_warn (_("Divide by zero."));
5380 if (mips_trap)
5381 macro_build (NULL, "teq", "s,t,q", 0, 0, 7);
5382 else
5383 macro_build (NULL, "break", "c", 7);
5384 break;
5385 }
5386
5387 start_noreorder ();
5388 if (mips_trap)
5389 {
5390 macro_build (NULL, "teq", "s,t,q", treg, 0, 7);
5391 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", sreg, treg);
5392 }
5393 else
5394 {
5395 expr1.X_add_number = 8;
5396 macro_build (&expr1, "bne", "s,t,p", treg, 0);
5397 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", sreg, treg);
5398 macro_build (NULL, "break", "c", 7);
5399 }
5400 expr1.X_add_number = -1;
5401 used_at = 1;
5402 load_register (AT, &expr1, dbl);
5403 expr1.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
5404 macro_build (&expr1, "bne", "s,t,p", treg, AT);
5405 if (dbl)
5406 {
5407 expr1.X_add_number = 1;
5408 load_register (AT, &expr1, dbl);
5409 macro_build (NULL, "dsll32", "d,w,<", AT, AT, 31);
5410 }
5411 else
5412 {
5413 expr1.X_add_number = 0x80000000;
5414 macro_build (&expr1, "lui", "t,u", AT, BFD_RELOC_HI16);
5415 }
5416 if (mips_trap)
5417 {
5418 macro_build (NULL, "teq", "s,t,q", sreg, AT, 6);
5419 /* We want to close the noreorder block as soon as possible, so
5420 that later insns are available for delay slot filling. */
5421 end_noreorder ();
5422 }
5423 else
5424 {
5425 expr1.X_add_number = 8;
5426 macro_build (&expr1, "bne", "s,t,p", sreg, AT);
5427 macro_build (NULL, "nop", "", 0);
5428
5429 /* We want to close the noreorder block as soon as possible, so
5430 that later insns are available for delay slot filling. */
5431 end_noreorder ();
5432
5433 macro_build (NULL, "break", "c", 6);
5434 }
5435 macro_build (NULL, s, "d", dreg);
5436 break;
5437
5438 case M_DIV_3I:
5439 s = "div";
5440 s2 = "mflo";
5441 goto do_divi;
5442 case M_DIVU_3I:
5443 s = "divu";
5444 s2 = "mflo";
5445 goto do_divi;
5446 case M_REM_3I:
5447 s = "div";
5448 s2 = "mfhi";
5449 goto do_divi;
5450 case M_REMU_3I:
5451 s = "divu";
5452 s2 = "mfhi";
5453 goto do_divi;
5454 case M_DDIV_3I:
5455 dbl = 1;
5456 s = "ddiv";
5457 s2 = "mflo";
5458 goto do_divi;
5459 case M_DDIVU_3I:
5460 dbl = 1;
5461 s = "ddivu";
5462 s2 = "mflo";
5463 goto do_divi;
5464 case M_DREM_3I:
5465 dbl = 1;
5466 s = "ddiv";
5467 s2 = "mfhi";
5468 goto do_divi;
5469 case M_DREMU_3I:
5470 dbl = 1;
5471 s = "ddivu";
5472 s2 = "mfhi";
5473 do_divi:
5474 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
5475 {
5476 as_warn (_("Divide by zero."));
5477 if (mips_trap)
5478 macro_build (NULL, "teq", "s,t,q", 0, 0, 7);
5479 else
5480 macro_build (NULL, "break", "c", 7);
5481 break;
5482 }
5483 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
5484 {
5485 if (strcmp (s2, "mflo") == 0)
5486 move_register (dreg, sreg);
5487 else
5488 move_register (dreg, 0);
5489 break;
5490 }
5491 if (imm_expr.X_op == O_constant
5492 && imm_expr.X_add_number == -1
5493 && s[strlen (s) - 1] != 'u')
5494 {
5495 if (strcmp (s2, "mflo") == 0)
5496 {
5497 macro_build (NULL, dbl ? "dneg" : "neg", "d,w", dreg, sreg);
5498 }
5499 else
5500 move_register (dreg, 0);
5501 break;
5502 }
5503
5504 used_at = 1;
5505 load_register (AT, &imm_expr, dbl);
5506 macro_build (NULL, s, "z,s,t", sreg, AT);
5507 macro_build (NULL, s2, "d", dreg);
5508 break;
5509
5510 case M_DIVU_3:
5511 s = "divu";
5512 s2 = "mflo";
5513 goto do_divu3;
5514 case M_REMU_3:
5515 s = "divu";
5516 s2 = "mfhi";
5517 goto do_divu3;
5518 case M_DDIVU_3:
5519 s = "ddivu";
5520 s2 = "mflo";
5521 goto do_divu3;
5522 case M_DREMU_3:
5523 s = "ddivu";
5524 s2 = "mfhi";
5525 do_divu3:
5526 start_noreorder ();
5527 if (mips_trap)
5528 {
5529 macro_build (NULL, "teq", "s,t,q", treg, 0, 7);
5530 macro_build (NULL, s, "z,s,t", sreg, treg);
5531 /* We want to close the noreorder block as soon as possible, so
5532 that later insns are available for delay slot filling. */
5533 end_noreorder ();
5534 }
5535 else
5536 {
5537 expr1.X_add_number = 8;
5538 macro_build (&expr1, "bne", "s,t,p", treg, 0);
5539 macro_build (NULL, s, "z,s,t", sreg, treg);
5540
5541 /* We want to close the noreorder block as soon as possible, so
5542 that later insns are available for delay slot filling. */
5543 end_noreorder ();
5544 macro_build (NULL, "break", "c", 7);
5545 }
5546 macro_build (NULL, s2, "d", dreg);
5547 break;
5548
5549 case M_DLCA_AB:
5550 dbl = 1;
5551 case M_LCA_AB:
5552 call = 1;
5553 goto do_la;
5554 case M_DLA_AB:
5555 dbl = 1;
5556 case M_LA_AB:
5557 do_la:
5558 /* Load the address of a symbol into a register. If breg is not
5559 zero, we then add a base register to it. */
5560
5561 if (dbl && HAVE_32BIT_GPRS)
5562 as_warn (_("dla used to load 32-bit register"));
5563
5564 if (! dbl && HAVE_64BIT_OBJECTS)
5565 as_warn (_("la used to load 64-bit address"));
5566
5567 if (offset_expr.X_op == O_constant
5568 && offset_expr.X_add_number >= -0x8000
5569 && offset_expr.X_add_number < 0x8000)
5570 {
5571 macro_build (&offset_expr, ADDRESS_ADDI_INSN,
5572 "t,r,j", treg, sreg, BFD_RELOC_LO16);
5573 break;
5574 }
5575
5576 if (mips_opts.at && (treg == breg))
5577 {
5578 tempreg = AT;
5579 used_at = 1;
5580 }
5581 else
5582 {
5583 tempreg = treg;
5584 }
5585
5586 if (offset_expr.X_op != O_symbol
5587 && offset_expr.X_op != O_constant)
5588 {
5589 as_bad (_("expression too complex"));
5590 offset_expr.X_op = O_constant;
5591 }
5592
5593 if (offset_expr.X_op == O_constant)
5594 load_register (tempreg, &offset_expr, HAVE_64BIT_ADDRESSES);
5595 else if (mips_pic == NO_PIC)
5596 {
5597 /* If this is a reference to a GP relative symbol, we want
5598 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
5599 Otherwise we want
5600 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
5601 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
5602 If we have a constant, we need two instructions anyhow,
5603 so we may as well always use the latter form.
5604
5605 With 64bit address space and a usable $at we want
5606 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
5607 lui $at,<sym> (BFD_RELOC_HI16_S)
5608 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
5609 daddiu $at,<sym> (BFD_RELOC_LO16)
5610 dsll32 $tempreg,0
5611 daddu $tempreg,$tempreg,$at
5612
5613 If $at is already in use, we use a path which is suboptimal
5614 on superscalar processors.
5615 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
5616 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
5617 dsll $tempreg,16
5618 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
5619 dsll $tempreg,16
5620 daddiu $tempreg,<sym> (BFD_RELOC_LO16)
5621
5622 For GP relative symbols in 64bit address space we can use
5623 the same sequence as in 32bit address space. */
5624 if (HAVE_64BIT_SYMBOLS)
5625 {
5626 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
5627 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
5628 {
5629 relax_start (offset_expr.X_add_symbol);
5630 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5631 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
5632 relax_switch ();
5633 }
5634
5635 if (used_at == 0 && mips_opts.at)
5636 {
5637 macro_build (&offset_expr, "lui", "t,u",
5638 tempreg, BFD_RELOC_MIPS_HIGHEST);
5639 macro_build (&offset_expr, "lui", "t,u",
5640 AT, BFD_RELOC_HI16_S);
5641 macro_build (&offset_expr, "daddiu", "t,r,j",
5642 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
5643 macro_build (&offset_expr, "daddiu", "t,r,j",
5644 AT, AT, BFD_RELOC_LO16);
5645 macro_build (NULL, "dsll32", "d,w,<", tempreg, tempreg, 0);
5646 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
5647 used_at = 1;
5648 }
5649 else
5650 {
5651 macro_build (&offset_expr, "lui", "t,u",
5652 tempreg, BFD_RELOC_MIPS_HIGHEST);
5653 macro_build (&offset_expr, "daddiu", "t,r,j",
5654 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
5655 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16);
5656 macro_build (&offset_expr, "daddiu", "t,r,j",
5657 tempreg, tempreg, BFD_RELOC_HI16_S);
5658 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16);
5659 macro_build (&offset_expr, "daddiu", "t,r,j",
5660 tempreg, tempreg, BFD_RELOC_LO16);
5661 }
5662
5663 if (mips_relax.sequence)
5664 relax_end ();
5665 }
5666 else
5667 {
5668 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
5669 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
5670 {
5671 relax_start (offset_expr.X_add_symbol);
5672 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5673 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
5674 relax_switch ();
5675 }
5676 if (!IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
5677 as_bad (_("offset too large"));
5678 macro_build_lui (&offset_expr, tempreg);
5679 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5680 tempreg, tempreg, BFD_RELOC_LO16);
5681 if (mips_relax.sequence)
5682 relax_end ();
5683 }
5684 }
5685 else if (!mips_big_got && !HAVE_NEWABI)
5686 {
5687 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
5688
5689 /* If this is a reference to an external symbol, and there
5690 is no constant, we want
5691 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5692 or for lca or if tempreg is PIC_CALL_REG
5693 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
5694 For a local symbol, we want
5695 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5696 nop
5697 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
5698
5699 If we have a small constant, and this is a reference to
5700 an external symbol, we want
5701 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5702 nop
5703 addiu $tempreg,$tempreg,<constant>
5704 For a local symbol, we want the same instruction
5705 sequence, but we output a BFD_RELOC_LO16 reloc on the
5706 addiu instruction.
5707
5708 If we have a large constant, and this is a reference to
5709 an external symbol, we want
5710 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5711 lui $at,<hiconstant>
5712 addiu $at,$at,<loconstant>
5713 addu $tempreg,$tempreg,$at
5714 For a local symbol, we want the same instruction
5715 sequence, but we output a BFD_RELOC_LO16 reloc on the
5716 addiu instruction.
5717 */
5718
5719 if (offset_expr.X_add_number == 0)
5720 {
5721 if (mips_pic == SVR4_PIC
5722 && breg == 0
5723 && (call || tempreg == PIC_CALL_REG))
5724 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
5725
5726 relax_start (offset_expr.X_add_symbol);
5727 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5728 lw_reloc_type, mips_gp_register);
5729 if (breg != 0)
5730 {
5731 /* We're going to put in an addu instruction using
5732 tempreg, so we may as well insert the nop right
5733 now. */
5734 load_delay_nop ();
5735 }
5736 relax_switch ();
5737 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
5738 tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register);
5739 load_delay_nop ();
5740 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5741 tempreg, tempreg, BFD_RELOC_LO16);
5742 relax_end ();
5743 /* FIXME: If breg == 0, and the next instruction uses
5744 $tempreg, then if this variant case is used an extra
5745 nop will be generated. */
5746 }
5747 else if (offset_expr.X_add_number >= -0x8000
5748 && offset_expr.X_add_number < 0x8000)
5749 {
5750 load_got_offset (tempreg, &offset_expr);
5751 load_delay_nop ();
5752 add_got_offset (tempreg, &offset_expr);
5753 }
5754 else
5755 {
5756 expr1.X_add_number = offset_expr.X_add_number;
5757 offset_expr.X_add_number =
5758 ((offset_expr.X_add_number + 0x8000) & 0xffff) - 0x8000;
5759 load_got_offset (tempreg, &offset_expr);
5760 offset_expr.X_add_number = expr1.X_add_number;
5761 /* If we are going to add in a base register, and the
5762 target register and the base register are the same,
5763 then we are using AT as a temporary register. Since
5764 we want to load the constant into AT, we add our
5765 current AT (from the global offset table) and the
5766 register into the register now, and pretend we were
5767 not using a base register. */
5768 if (breg == treg)
5769 {
5770 load_delay_nop ();
5771 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5772 treg, AT, breg);
5773 breg = 0;
5774 tempreg = treg;
5775 }
5776 add_got_offset_hilo (tempreg, &offset_expr, AT);
5777 used_at = 1;
5778 }
5779 }
5780 else if (!mips_big_got && HAVE_NEWABI)
5781 {
5782 int add_breg_early = 0;
5783
5784 /* If this is a reference to an external, and there is no
5785 constant, or local symbol (*), with or without a
5786 constant, we want
5787 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
5788 or for lca or if tempreg is PIC_CALL_REG
5789 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
5790
5791 If we have a small constant, and this is a reference to
5792 an external symbol, we want
5793 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
5794 addiu $tempreg,$tempreg,<constant>
5795
5796 If we have a large constant, and this is a reference to
5797 an external symbol, we want
5798 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
5799 lui $at,<hiconstant>
5800 addiu $at,$at,<loconstant>
5801 addu $tempreg,$tempreg,$at
5802
5803 (*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
5804 local symbols, even though it introduces an additional
5805 instruction. */
5806
5807 if (offset_expr.X_add_number)
5808 {
5809 expr1.X_add_number = offset_expr.X_add_number;
5810 offset_expr.X_add_number = 0;
5811
5812 relax_start (offset_expr.X_add_symbol);
5813 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5814 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5815
5816 if (expr1.X_add_number >= -0x8000
5817 && expr1.X_add_number < 0x8000)
5818 {
5819 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
5820 tempreg, tempreg, BFD_RELOC_LO16);
5821 }
5822 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
5823 {
5824 /* If we are going to add in a base register, and the
5825 target register and the base register are the same,
5826 then we are using AT as a temporary register. Since
5827 we want to load the constant into AT, we add our
5828 current AT (from the global offset table) and the
5829 register into the register now, and pretend we were
5830 not using a base register. */
5831 if (breg != treg)
5832 dreg = tempreg;
5833 else
5834 {
5835 gas_assert (tempreg == AT);
5836 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5837 treg, AT, breg);
5838 dreg = treg;
5839 add_breg_early = 1;
5840 }
5841
5842 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
5843 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5844 dreg, dreg, AT);
5845
5846 used_at = 1;
5847 }
5848 else
5849 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
5850
5851 relax_switch ();
5852 offset_expr.X_add_number = expr1.X_add_number;
5853
5854 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5855 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5856 if (add_breg_early)
5857 {
5858 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5859 treg, tempreg, breg);
5860 breg = 0;
5861 tempreg = treg;
5862 }
5863 relax_end ();
5864 }
5865 else if (breg == 0 && (call || tempreg == PIC_CALL_REG))
5866 {
5867 relax_start (offset_expr.X_add_symbol);
5868 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5869 BFD_RELOC_MIPS_CALL16, mips_gp_register);
5870 relax_switch ();
5871 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5872 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5873 relax_end ();
5874 }
5875 else
5876 {
5877 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5878 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5879 }
5880 }
5881 else if (mips_big_got && !HAVE_NEWABI)
5882 {
5883 int gpdelay;
5884 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
5885 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
5886 int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
5887
5888 /* This is the large GOT case. If this is a reference to an
5889 external symbol, and there is no constant, we want
5890 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5891 addu $tempreg,$tempreg,$gp
5892 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5893 or for lca or if tempreg is PIC_CALL_REG
5894 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
5895 addu $tempreg,$tempreg,$gp
5896 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
5897 For a local symbol, we want
5898 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5899 nop
5900 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
5901
5902 If we have a small constant, and this is a reference to
5903 an external symbol, we want
5904 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5905 addu $tempreg,$tempreg,$gp
5906 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5907 nop
5908 addiu $tempreg,$tempreg,<constant>
5909 For a local symbol, we want
5910 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5911 nop
5912 addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
5913
5914 If we have a large constant, and this is a reference to
5915 an external symbol, we want
5916 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5917 addu $tempreg,$tempreg,$gp
5918 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5919 lui $at,<hiconstant>
5920 addiu $at,$at,<loconstant>
5921 addu $tempreg,$tempreg,$at
5922 For a local symbol, we want
5923 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5924 lui $at,<hiconstant>
5925 addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
5926 addu $tempreg,$tempreg,$at
5927 */
5928
5929 expr1.X_add_number = offset_expr.X_add_number;
5930 offset_expr.X_add_number = 0;
5931 relax_start (offset_expr.X_add_symbol);
5932 gpdelay = reg_needs_delay (mips_gp_register);
5933 if (expr1.X_add_number == 0 && breg == 0
5934 && (call || tempreg == PIC_CALL_REG))
5935 {
5936 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
5937 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
5938 }
5939 macro_build (&offset_expr, "lui", "t,u", tempreg, lui_reloc_type);
5940 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5941 tempreg, tempreg, mips_gp_register);
5942 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
5943 tempreg, lw_reloc_type, tempreg);
5944 if (expr1.X_add_number == 0)
5945 {
5946 if (breg != 0)
5947 {
5948 /* We're going to put in an addu instruction using
5949 tempreg, so we may as well insert the nop right
5950 now. */
5951 load_delay_nop ();
5952 }
5953 }
5954 else if (expr1.X_add_number >= -0x8000
5955 && expr1.X_add_number < 0x8000)
5956 {
5957 load_delay_nop ();
5958 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
5959 tempreg, tempreg, BFD_RELOC_LO16);
5960 }
5961 else
5962 {
5963 /* If we are going to add in a base register, and the
5964 target register and the base register are the same,
5965 then we are using AT as a temporary register. Since
5966 we want to load the constant into AT, we add our
5967 current AT (from the global offset table) and the
5968 register into the register now, and pretend we were
5969 not using a base register. */
5970 if (breg != treg)
5971 dreg = tempreg;
5972 else
5973 {
5974 gas_assert (tempreg == AT);
5975 load_delay_nop ();
5976 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5977 treg, AT, breg);
5978 dreg = treg;
5979 }
5980
5981 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
5982 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
5983
5984 used_at = 1;
5985 }
5986 offset_expr.X_add_number =
5987 ((expr1.X_add_number + 0x8000) & 0xffff) - 0x8000;
5988 relax_switch ();
5989
5990 if (gpdelay)
5991 {
5992 /* This is needed because this instruction uses $gp, but
5993 the first instruction on the main stream does not. */
5994 macro_build (NULL, "nop", "");
5995 }
5996
5997 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5998 local_reloc_type, mips_gp_register);
5999 if (expr1.X_add_number >= -0x8000
6000 && expr1.X_add_number < 0x8000)
6001 {
6002 load_delay_nop ();
6003 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
6004 tempreg, tempreg, BFD_RELOC_LO16);
6005 /* FIXME: If add_number is 0, and there was no base
6006 register, the external symbol case ended with a load,
6007 so if the symbol turns out to not be external, and
6008 the next instruction uses tempreg, an unnecessary nop
6009 will be inserted. */
6010 }
6011 else
6012 {
6013 if (breg == treg)
6014 {
6015 /* We must add in the base register now, as in the
6016 external symbol case. */
6017 gas_assert (tempreg == AT);
6018 load_delay_nop ();
6019 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6020 treg, AT, breg);
6021 tempreg = treg;
6022 /* We set breg to 0 because we have arranged to add
6023 it in in both cases. */
6024 breg = 0;
6025 }
6026
6027 macro_build_lui (&expr1, AT);
6028 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
6029 AT, AT, BFD_RELOC_LO16);
6030 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6031 tempreg, tempreg, AT);
6032 used_at = 1;
6033 }
6034 relax_end ();
6035 }
6036 else if (mips_big_got && HAVE_NEWABI)
6037 {
6038 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
6039 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
6040 int add_breg_early = 0;
6041
6042 /* This is the large GOT case. If this is a reference to an
6043 external symbol, and there is no constant, we want
6044 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6045 add $tempreg,$tempreg,$gp
6046 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
6047 or for lca or if tempreg is PIC_CALL_REG
6048 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
6049 add $tempreg,$tempreg,$gp
6050 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
6051
6052 If we have a small constant, and this is a reference to
6053 an external symbol, we want
6054 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6055 add $tempreg,$tempreg,$gp
6056 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
6057 addi $tempreg,$tempreg,<constant>
6058
6059 If we have a large constant, and this is a reference to
6060 an external symbol, we want
6061 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6062 addu $tempreg,$tempreg,$gp
6063 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
6064 lui $at,<hiconstant>
6065 addi $at,$at,<loconstant>
6066 add $tempreg,$tempreg,$at
6067
6068 If we have NewABI, and we know it's a local symbol, we want
6069 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
6070 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
6071 otherwise we have to resort to GOT_HI16/GOT_LO16. */
6072
6073 relax_start (offset_expr.X_add_symbol);
6074
6075 expr1.X_add_number = offset_expr.X_add_number;
6076 offset_expr.X_add_number = 0;
6077
6078 if (expr1.X_add_number == 0 && breg == 0
6079 && (call || tempreg == PIC_CALL_REG))
6080 {
6081 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
6082 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
6083 }
6084 macro_build (&offset_expr, "lui", "t,u", tempreg, lui_reloc_type);
6085 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6086 tempreg, tempreg, mips_gp_register);
6087 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6088 tempreg, lw_reloc_type, tempreg);
6089
6090 if (expr1.X_add_number == 0)
6091 ;
6092 else if (expr1.X_add_number >= -0x8000
6093 && expr1.X_add_number < 0x8000)
6094 {
6095 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
6096 tempreg, tempreg, BFD_RELOC_LO16);
6097 }
6098 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
6099 {
6100 /* If we are going to add in a base register, and the
6101 target register and the base register are the same,
6102 then we are using AT as a temporary register. Since
6103 we want to load the constant into AT, we add our
6104 current AT (from the global offset table) and the
6105 register into the register now, and pretend we were
6106 not using a base register. */
6107 if (breg != treg)
6108 dreg = tempreg;
6109 else
6110 {
6111 gas_assert (tempreg == AT);
6112 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6113 treg, AT, breg);
6114 dreg = treg;
6115 add_breg_early = 1;
6116 }
6117
6118 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
6119 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
6120
6121 used_at = 1;
6122 }
6123 else
6124 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
6125
6126 relax_switch ();
6127 offset_expr.X_add_number = expr1.X_add_number;
6128 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6129 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
6130 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
6131 tempreg, BFD_RELOC_MIPS_GOT_OFST);
6132 if (add_breg_early)
6133 {
6134 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6135 treg, tempreg, breg);
6136 breg = 0;
6137 tempreg = treg;
6138 }
6139 relax_end ();
6140 }
6141 else
6142 abort ();
6143
6144 if (breg != 0)
6145 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", treg, tempreg, breg);
6146 break;
6147
6148 case M_MSGSND:
6149 {
6150 unsigned long temp = (treg << 16) | (0x01);
6151 macro_build (NULL, "c2", "C", temp);
6152 }
6153 /* AT is not used, just return */
6154 return;
6155
6156 case M_MSGLD:
6157 {
6158 unsigned long temp = (0x02);
6159 macro_build (NULL, "c2", "C", temp);
6160 }
6161 /* AT is not used, just return */
6162 return;
6163
6164 case M_MSGLD_T:
6165 {
6166 unsigned long temp = (treg << 16) | (0x02);
6167 macro_build (NULL, "c2", "C", temp);
6168 }
6169 /* AT is not used, just return */
6170 return;
6171
6172 case M_MSGWAIT:
6173 macro_build (NULL, "c2", "C", 3);
6174 /* AT is not used, just return */
6175 return;
6176
6177 case M_MSGWAIT_T:
6178 {
6179 unsigned long temp = (treg << 16) | 0x03;
6180 macro_build (NULL, "c2", "C", temp);
6181 }
6182 /* AT is not used, just return */
6183 return;
6184
6185 case M_J_A:
6186 /* The j instruction may not be used in PIC code, since it
6187 requires an absolute address. We convert it to a b
6188 instruction. */
6189 if (mips_pic == NO_PIC)
6190 macro_build (&offset_expr, "j", "a");
6191 else
6192 macro_build (&offset_expr, "b", "p");
6193 break;
6194
6195 /* The jal instructions must be handled as macros because when
6196 generating PIC code they expand to multi-instruction
6197 sequences. Normally they are simple instructions. */
6198 case M_JAL_1:
6199 dreg = RA;
6200 /* Fall through. */
6201 case M_JAL_2:
6202 if (mips_pic == NO_PIC)
6203 macro_build (NULL, "jalr", "d,s", dreg, sreg);
6204 else
6205 {
6206 if (sreg != PIC_CALL_REG)
6207 as_warn (_("MIPS PIC call to register other than $25"));
6208
6209 macro_build (NULL, "jalr", "d,s", dreg, sreg);
6210 if (mips_pic == SVR4_PIC && !HAVE_NEWABI)
6211 {
6212 if (mips_cprestore_offset < 0)
6213 as_warn (_("No .cprestore pseudo-op used in PIC code"));
6214 else
6215 {
6216 if (! mips_frame_reg_valid)
6217 {
6218 as_warn (_("No .frame pseudo-op used in PIC code"));
6219 /* Quiet this warning. */
6220 mips_frame_reg_valid = 1;
6221 }
6222 if (! mips_cprestore_valid)
6223 {
6224 as_warn (_("No .cprestore pseudo-op used in PIC code"));
6225 /* Quiet this warning. */
6226 mips_cprestore_valid = 1;
6227 }
6228 if (mips_opts.noreorder)
6229 macro_build (NULL, "nop", "");
6230 expr1.X_add_number = mips_cprestore_offset;
6231 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
6232 mips_gp_register,
6233 mips_frame_reg,
6234 HAVE_64BIT_ADDRESSES);
6235 }
6236 }
6237 }
6238
6239 break;
6240
6241 case M_JAL_A:
6242 if (mips_pic == NO_PIC)
6243 macro_build (&offset_expr, "jal", "a");
6244 else if (mips_pic == SVR4_PIC)
6245 {
6246 /* If this is a reference to an external symbol, and we are
6247 using a small GOT, we want
6248 lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
6249 nop
6250 jalr $ra,$25
6251 nop
6252 lw $gp,cprestore($sp)
6253 The cprestore value is set using the .cprestore
6254 pseudo-op. If we are using a big GOT, we want
6255 lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
6256 addu $25,$25,$gp
6257 lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
6258 nop
6259 jalr $ra,$25
6260 nop
6261 lw $gp,cprestore($sp)
6262 If the symbol is not external, we want
6263 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6264 nop
6265 addiu $25,$25,<sym> (BFD_RELOC_LO16)
6266 jalr $ra,$25
6267 nop
6268 lw $gp,cprestore($sp)
6269
6270 For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
6271 sequences above, minus nops, unless the symbol is local,
6272 which enables us to use GOT_PAGE/GOT_OFST (big got) or
6273 GOT_DISP. */
6274 if (HAVE_NEWABI)
6275 {
6276 if (! mips_big_got)
6277 {
6278 relax_start (offset_expr.X_add_symbol);
6279 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6280 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
6281 mips_gp_register);
6282 relax_switch ();
6283 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6284 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP,
6285 mips_gp_register);
6286 relax_end ();
6287 }
6288 else
6289 {
6290 relax_start (offset_expr.X_add_symbol);
6291 macro_build (&offset_expr, "lui", "t,u", PIC_CALL_REG,
6292 BFD_RELOC_MIPS_CALL_HI16);
6293 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
6294 PIC_CALL_REG, mips_gp_register);
6295 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6296 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
6297 PIC_CALL_REG);
6298 relax_switch ();
6299 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6300 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE,
6301 mips_gp_register);
6302 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
6303 PIC_CALL_REG, PIC_CALL_REG,
6304 BFD_RELOC_MIPS_GOT_OFST);
6305 relax_end ();
6306 }
6307
6308 macro_build_jalr (&offset_expr);
6309 }
6310 else
6311 {
6312 relax_start (offset_expr.X_add_symbol);
6313 if (! mips_big_got)
6314 {
6315 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6316 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
6317 mips_gp_register);
6318 load_delay_nop ();
6319 relax_switch ();
6320 }
6321 else
6322 {
6323 int gpdelay;
6324
6325 gpdelay = reg_needs_delay (mips_gp_register);
6326 macro_build (&offset_expr, "lui", "t,u", PIC_CALL_REG,
6327 BFD_RELOC_MIPS_CALL_HI16);
6328 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
6329 PIC_CALL_REG, mips_gp_register);
6330 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6331 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
6332 PIC_CALL_REG);
6333 load_delay_nop ();
6334 relax_switch ();
6335 if (gpdelay)
6336 macro_build (NULL, "nop", "");
6337 }
6338 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6339 PIC_CALL_REG, BFD_RELOC_MIPS_GOT16,
6340 mips_gp_register);
6341 load_delay_nop ();
6342 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
6343 PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16);
6344 relax_end ();
6345 macro_build_jalr (&offset_expr);
6346
6347 if (mips_cprestore_offset < 0)
6348 as_warn (_("No .cprestore pseudo-op used in PIC code"));
6349 else
6350 {
6351 if (! mips_frame_reg_valid)
6352 {
6353 as_warn (_("No .frame pseudo-op used in PIC code"));
6354 /* Quiet this warning. */
6355 mips_frame_reg_valid = 1;
6356 }
6357 if (! mips_cprestore_valid)
6358 {
6359 as_warn (_("No .cprestore pseudo-op used in PIC code"));
6360 /* Quiet this warning. */
6361 mips_cprestore_valid = 1;
6362 }
6363 if (mips_opts.noreorder)
6364 macro_build (NULL, "nop", "");
6365 expr1.X_add_number = mips_cprestore_offset;
6366 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
6367 mips_gp_register,
6368 mips_frame_reg,
6369 HAVE_64BIT_ADDRESSES);
6370 }
6371 }
6372 }
6373 else if (mips_pic == VXWORKS_PIC)
6374 as_bad (_("Non-PIC jump used in PIC library"));
6375 else
6376 abort ();
6377
6378 break;
6379
6380 case M_LB_AB:
6381 s = "lb";
6382 goto ld;
6383 case M_LBU_AB:
6384 s = "lbu";
6385 goto ld;
6386 case M_LH_AB:
6387 s = "lh";
6388 goto ld;
6389 case M_LHU_AB:
6390 s = "lhu";
6391 goto ld;
6392 case M_LW_AB:
6393 s = "lw";
6394 goto ld;
6395 case M_LWC0_AB:
6396 s = "lwc0";
6397 /* Itbl support may require additional care here. */
6398 coproc = 1;
6399 goto ld;
6400 case M_LWC1_AB:
6401 s = "lwc1";
6402 /* Itbl support may require additional care here. */
6403 coproc = 1;
6404 goto ld;
6405 case M_LWC2_AB:
6406 s = "lwc2";
6407 /* Itbl support may require additional care here. */
6408 coproc = 1;
6409 goto ld;
6410 case M_LWC3_AB:
6411 s = "lwc3";
6412 /* Itbl support may require additional care here. */
6413 coproc = 1;
6414 goto ld;
6415 case M_LWL_AB:
6416 s = "lwl";
6417 lr = 1;
6418 goto ld;
6419 case M_LWR_AB:
6420 s = "lwr";
6421 lr = 1;
6422 goto ld;
6423 case M_LDC1_AB:
6424 s = "ldc1";
6425 /* Itbl support may require additional care here. */
6426 coproc = 1;
6427 goto ld;
6428 case M_LDC2_AB:
6429 s = "ldc2";
6430 /* Itbl support may require additional care here. */
6431 coproc = 1;
6432 goto ld;
6433 case M_LDC3_AB:
6434 s = "ldc3";
6435 /* Itbl support may require additional care here. */
6436 coproc = 1;
6437 goto ld;
6438 case M_LDL_AB:
6439 s = "ldl";
6440 lr = 1;
6441 goto ld;
6442 case M_LDR_AB:
6443 s = "ldr";
6444 lr = 1;
6445 goto ld;
6446 case M_LL_AB:
6447 s = "ll";
6448 goto ld;
6449 case M_LLD_AB:
6450 s = "lld";
6451 goto ld;
6452 case M_LWU_AB:
6453 s = "lwu";
6454 ld:
6455 if (breg == treg || coproc || lr)
6456 {
6457 tempreg = AT;
6458 used_at = 1;
6459 }
6460 else
6461 {
6462 tempreg = treg;
6463 }
6464 goto ld_st;
6465 case M_SB_AB:
6466 s = "sb";
6467 goto st;
6468 case M_SH_AB:
6469 s = "sh";
6470 goto st;
6471 case M_SW_AB:
6472 s = "sw";
6473 goto st;
6474 case M_SWC0_AB:
6475 s = "swc0";
6476 /* Itbl support may require additional care here. */
6477 coproc = 1;
6478 goto st;
6479 case M_SWC1_AB:
6480 s = "swc1";
6481 /* Itbl support may require additional care here. */
6482 coproc = 1;
6483 goto st;
6484 case M_SWC2_AB:
6485 s = "swc2";
6486 /* Itbl support may require additional care here. */
6487 coproc = 1;
6488 goto st;
6489 case M_SWC3_AB:
6490 s = "swc3";
6491 /* Itbl support may require additional care here. */
6492 coproc = 1;
6493 goto st;
6494 case M_SWL_AB:
6495 s = "swl";
6496 goto st;
6497 case M_SWR_AB:
6498 s = "swr";
6499 goto st;
6500 case M_SC_AB:
6501 s = "sc";
6502 goto st;
6503 case M_SCD_AB:
6504 s = "scd";
6505 goto st;
6506 case M_CACHE_AB:
6507 s = "cache";
6508 goto st;
6509 case M_SDC1_AB:
6510 s = "sdc1";
6511 coproc = 1;
6512 /* Itbl support may require additional care here. */
6513 goto st;
6514 case M_SDC2_AB:
6515 s = "sdc2";
6516 /* Itbl support may require additional care here. */
6517 coproc = 1;
6518 goto st;
6519 case M_SDC3_AB:
6520 s = "sdc3";
6521 /* Itbl support may require additional care here. */
6522 coproc = 1;
6523 goto st;
6524 case M_SDL_AB:
6525 s = "sdl";
6526 goto st;
6527 case M_SDR_AB:
6528 s = "sdr";
6529 st:
6530 tempreg = AT;
6531 used_at = 1;
6532 ld_st:
6533 if (coproc
6534 && NO_ISA_COP (mips_opts.arch)
6535 && (ip->insn_mo->pinfo2 & (INSN2_M_FP_S | INSN2_M_FP_D)) == 0)
6536 {
6537 as_bad (_("opcode not supported on this processor: %s"),
6538 mips_cpu_info_from_arch (mips_opts.arch)->name);
6539 break;
6540 }
6541
6542 /* Itbl support may require additional care here. */
6543 if (mask == M_LWC1_AB
6544 || mask == M_SWC1_AB
6545 || mask == M_LDC1_AB
6546 || mask == M_SDC1_AB
6547 || mask == M_L_DAB
6548 || mask == M_S_DAB)
6549 fmt = "T,o(b)";
6550 else if (mask == M_CACHE_AB)
6551 fmt = "k,o(b)";
6552 else if (coproc)
6553 fmt = "E,o(b)";
6554 else
6555 fmt = "t,o(b)";
6556
6557 if (offset_expr.X_op != O_constant
6558 && offset_expr.X_op != O_symbol)
6559 {
6560 as_bad (_("expression too complex"));
6561 offset_expr.X_op = O_constant;
6562 }
6563
6564 if (HAVE_32BIT_ADDRESSES
6565 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
6566 {
6567 char value [32];
6568
6569 sprintf_vma (value, offset_expr.X_add_number);
6570 as_bad (_("Number (0x%s) larger than 32 bits"), value);
6571 }
6572
6573 /* A constant expression in PIC code can be handled just as it
6574 is in non PIC code. */
6575 if (offset_expr.X_op == O_constant)
6576 {
6577 expr1.X_add_number = ((offset_expr.X_add_number + 0x8000)
6578 & ~(bfd_vma) 0xffff);
6579 normalize_address_expr (&expr1);
6580 load_register (tempreg, &expr1, HAVE_64BIT_ADDRESSES);
6581 if (breg != 0)
6582 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6583 tempreg, tempreg, breg);
6584 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_LO16, tempreg);
6585 }
6586 else if (mips_pic == NO_PIC)
6587 {
6588 /* If this is a reference to a GP relative symbol, and there
6589 is no base register, we want
6590 <op> $treg,<sym>($gp) (BFD_RELOC_GPREL16)
6591 Otherwise, if there is no base register, we want
6592 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
6593 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6594 If we have a constant, we need two instructions anyhow,
6595 so we always use the latter form.
6596
6597 If we have a base register, and this is a reference to a
6598 GP relative symbol, we want
6599 addu $tempreg,$breg,$gp
6600 <op> $treg,<sym>($tempreg) (BFD_RELOC_GPREL16)
6601 Otherwise we want
6602 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
6603 addu $tempreg,$tempreg,$breg
6604 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6605 With a constant we always use the latter case.
6606
6607 With 64bit address space and no base register and $at usable,
6608 we want
6609 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
6610 lui $at,<sym> (BFD_RELOC_HI16_S)
6611 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
6612 dsll32 $tempreg,0
6613 daddu $tempreg,$at
6614 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6615 If we have a base register, we want
6616 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
6617 lui $at,<sym> (BFD_RELOC_HI16_S)
6618 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
6619 daddu $at,$breg
6620 dsll32 $tempreg,0
6621 daddu $tempreg,$at
6622 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6623
6624 Without $at we can't generate the optimal path for superscalar
6625 processors here since this would require two temporary registers.
6626 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
6627 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
6628 dsll $tempreg,16
6629 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
6630 dsll $tempreg,16
6631 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6632 If we have a base register, we want
6633 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
6634 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
6635 dsll $tempreg,16
6636 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
6637 dsll $tempreg,16
6638 daddu $tempreg,$tempreg,$breg
6639 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6640
6641 For GP relative symbols in 64bit address space we can use
6642 the same sequence as in 32bit address space. */
6643 if (HAVE_64BIT_SYMBOLS)
6644 {
6645 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6646 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
6647 {
6648 relax_start (offset_expr.X_add_symbol);
6649 if (breg == 0)
6650 {
6651 macro_build (&offset_expr, s, fmt, treg,
6652 BFD_RELOC_GPREL16, mips_gp_register);
6653 }
6654 else
6655 {
6656 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6657 tempreg, breg, mips_gp_register);
6658 macro_build (&offset_expr, s, fmt, treg,
6659 BFD_RELOC_GPREL16, tempreg);
6660 }
6661 relax_switch ();
6662 }
6663
6664 if (used_at == 0 && mips_opts.at)
6665 {
6666 macro_build (&offset_expr, "lui", "t,u", tempreg,
6667 BFD_RELOC_MIPS_HIGHEST);
6668 macro_build (&offset_expr, "lui", "t,u", AT,
6669 BFD_RELOC_HI16_S);
6670 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
6671 tempreg, BFD_RELOC_MIPS_HIGHER);
6672 if (breg != 0)
6673 macro_build (NULL, "daddu", "d,v,t", AT, AT, breg);
6674 macro_build (NULL, "dsll32", "d,w,<", tempreg, tempreg, 0);
6675 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
6676 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_LO16,
6677 tempreg);
6678 used_at = 1;
6679 }
6680 else
6681 {
6682 macro_build (&offset_expr, "lui", "t,u", tempreg,
6683 BFD_RELOC_MIPS_HIGHEST);
6684 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
6685 tempreg, BFD_RELOC_MIPS_HIGHER);
6686 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16);
6687 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
6688 tempreg, BFD_RELOC_HI16_S);
6689 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16);
6690 if (breg != 0)
6691 macro_build (NULL, "daddu", "d,v,t",
6692 tempreg, tempreg, breg);
6693 macro_build (&offset_expr, s, fmt, treg,
6694 BFD_RELOC_LO16, tempreg);
6695 }
6696
6697 if (mips_relax.sequence)
6698 relax_end ();
6699 break;
6700 }
6701
6702 if (breg == 0)
6703 {
6704 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6705 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
6706 {
6707 relax_start (offset_expr.X_add_symbol);
6708 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_GPREL16,
6709 mips_gp_register);
6710 relax_switch ();
6711 }
6712 macro_build_lui (&offset_expr, tempreg);
6713 macro_build (&offset_expr, s, fmt, treg,
6714 BFD_RELOC_LO16, tempreg);
6715 if (mips_relax.sequence)
6716 relax_end ();
6717 }
6718 else
6719 {
6720 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6721 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
6722 {
6723 relax_start (offset_expr.X_add_symbol);
6724 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6725 tempreg, breg, mips_gp_register);
6726 macro_build (&offset_expr, s, fmt, treg,
6727 BFD_RELOC_GPREL16, tempreg);
6728 relax_switch ();
6729 }
6730 macro_build_lui (&offset_expr, tempreg);
6731 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6732 tempreg, tempreg, breg);
6733 macro_build (&offset_expr, s, fmt, treg,
6734 BFD_RELOC_LO16, tempreg);
6735 if (mips_relax.sequence)
6736 relax_end ();
6737 }
6738 }
6739 else if (!mips_big_got)
6740 {
6741 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
6742
6743 /* If this is a reference to an external symbol, we want
6744 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6745 nop
6746 <op> $treg,0($tempreg)
6747 Otherwise we want
6748 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6749 nop
6750 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
6751 <op> $treg,0($tempreg)
6752
6753 For NewABI, we want
6754 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
6755 <op> $treg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
6756
6757 If there is a base register, we add it to $tempreg before
6758 the <op>. If there is a constant, we stick it in the
6759 <op> instruction. We don't handle constants larger than
6760 16 bits, because we have no way to load the upper 16 bits
6761 (actually, we could handle them for the subset of cases
6762 in which we are not using $at). */
6763 gas_assert (offset_expr.X_op == O_symbol);
6764 if (HAVE_NEWABI)
6765 {
6766 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6767 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
6768 if (breg != 0)
6769 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6770 tempreg, tempreg, breg);
6771 macro_build (&offset_expr, s, fmt, treg,
6772 BFD_RELOC_MIPS_GOT_OFST, tempreg);
6773 break;
6774 }
6775 expr1.X_add_number = offset_expr.X_add_number;
6776 offset_expr.X_add_number = 0;
6777 if (expr1.X_add_number < -0x8000
6778 || expr1.X_add_number >= 0x8000)
6779 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6780 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6781 lw_reloc_type, mips_gp_register);
6782 load_delay_nop ();
6783 relax_start (offset_expr.X_add_symbol);
6784 relax_switch ();
6785 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
6786 tempreg, BFD_RELOC_LO16);
6787 relax_end ();
6788 if (breg != 0)
6789 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6790 tempreg, tempreg, breg);
6791 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
6792 }
6793 else if (mips_big_got && !HAVE_NEWABI)
6794 {
6795 int gpdelay;
6796
6797 /* If this is a reference to an external symbol, we want
6798 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6799 addu $tempreg,$tempreg,$gp
6800 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
6801 <op> $treg,0($tempreg)
6802 Otherwise we want
6803 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6804 nop
6805 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
6806 <op> $treg,0($tempreg)
6807 If there is a base register, we add it to $tempreg before
6808 the <op>. If there is a constant, we stick it in the
6809 <op> instruction. We don't handle constants larger than
6810 16 bits, because we have no way to load the upper 16 bits
6811 (actually, we could handle them for the subset of cases
6812 in which we are not using $at). */
6813 gas_assert (offset_expr.X_op == O_symbol);
6814 expr1.X_add_number = offset_expr.X_add_number;
6815 offset_expr.X_add_number = 0;
6816 if (expr1.X_add_number < -0x8000
6817 || expr1.X_add_number >= 0x8000)
6818 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6819 gpdelay = reg_needs_delay (mips_gp_register);
6820 relax_start (offset_expr.X_add_symbol);
6821 macro_build (&offset_expr, "lui", "t,u", tempreg,
6822 BFD_RELOC_MIPS_GOT_HI16);
6823 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
6824 mips_gp_register);
6825 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6826 BFD_RELOC_MIPS_GOT_LO16, tempreg);
6827 relax_switch ();
6828 if (gpdelay)
6829 macro_build (NULL, "nop", "");
6830 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6831 BFD_RELOC_MIPS_GOT16, mips_gp_register);
6832 load_delay_nop ();
6833 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
6834 tempreg, BFD_RELOC_LO16);
6835 relax_end ();
6836
6837 if (breg != 0)
6838 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6839 tempreg, tempreg, breg);
6840 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
6841 }
6842 else if (mips_big_got && HAVE_NEWABI)
6843 {
6844 /* If this is a reference to an external symbol, we want
6845 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6846 add $tempreg,$tempreg,$gp
6847 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
6848 <op> $treg,<ofst>($tempreg)
6849 Otherwise, for local symbols, we want:
6850 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
6851 <op> $treg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
6852 gas_assert (offset_expr.X_op == O_symbol);
6853 expr1.X_add_number = offset_expr.X_add_number;
6854 offset_expr.X_add_number = 0;
6855 if (expr1.X_add_number < -0x8000
6856 || expr1.X_add_number >= 0x8000)
6857 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6858 relax_start (offset_expr.X_add_symbol);
6859 macro_build (&offset_expr, "lui", "t,u", tempreg,
6860 BFD_RELOC_MIPS_GOT_HI16);
6861 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
6862 mips_gp_register);
6863 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6864 BFD_RELOC_MIPS_GOT_LO16, tempreg);
6865 if (breg != 0)
6866 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6867 tempreg, tempreg, breg);
6868 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
6869
6870 relax_switch ();
6871 offset_expr.X_add_number = expr1.X_add_number;
6872 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6873 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
6874 if (breg != 0)
6875 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6876 tempreg, tempreg, breg);
6877 macro_build (&offset_expr, s, fmt, treg,
6878 BFD_RELOC_MIPS_GOT_OFST, tempreg);
6879 relax_end ();
6880 }
6881 else
6882 abort ();
6883
6884 break;
6885
6886 case M_LI:
6887 case M_LI_S:
6888 load_register (treg, &imm_expr, 0);
6889 break;
6890
6891 case M_DLI:
6892 load_register (treg, &imm_expr, 1);
6893 break;
6894
6895 case M_LI_SS:
6896 if (imm_expr.X_op == O_constant)
6897 {
6898 used_at = 1;
6899 load_register (AT, &imm_expr, 0);
6900 macro_build (NULL, "mtc1", "t,G", AT, treg);
6901 break;
6902 }
6903 else
6904 {
6905 gas_assert (offset_expr.X_op == O_symbol
6906 && strcmp (segment_name (S_GET_SEGMENT
6907 (offset_expr.X_add_symbol)),
6908 ".lit4") == 0
6909 && offset_expr.X_add_number == 0);
6910 macro_build (&offset_expr, "lwc1", "T,o(b)", treg,
6911 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
6912 break;
6913 }
6914
6915 case M_LI_D:
6916 /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
6917 wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
6918 order 32 bits of the value and the low order 32 bits are either
6919 zero or in OFFSET_EXPR. */
6920 if (imm_expr.X_op == O_constant || imm_expr.X_op == O_big)
6921 {
6922 if (HAVE_64BIT_GPRS)
6923 load_register (treg, &imm_expr, 1);
6924 else
6925 {
6926 int hreg, lreg;
6927
6928 if (target_big_endian)
6929 {
6930 hreg = treg;
6931 lreg = treg + 1;
6932 }
6933 else
6934 {
6935 hreg = treg + 1;
6936 lreg = treg;
6937 }
6938
6939 if (hreg <= 31)
6940 load_register (hreg, &imm_expr, 0);
6941 if (lreg <= 31)
6942 {
6943 if (offset_expr.X_op == O_absent)
6944 move_register (lreg, 0);
6945 else
6946 {
6947 gas_assert (offset_expr.X_op == O_constant);
6948 load_register (lreg, &offset_expr, 0);
6949 }
6950 }
6951 }
6952 break;
6953 }
6954
6955 /* We know that sym is in the .rdata section. First we get the
6956 upper 16 bits of the address. */
6957 if (mips_pic == NO_PIC)
6958 {
6959 macro_build_lui (&offset_expr, AT);
6960 used_at = 1;
6961 }
6962 else
6963 {
6964 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
6965 BFD_RELOC_MIPS_GOT16, mips_gp_register);
6966 used_at = 1;
6967 }
6968
6969 /* Now we load the register(s). */
6970 if (HAVE_64BIT_GPRS)
6971 {
6972 used_at = 1;
6973 macro_build (&offset_expr, "ld", "t,o(b)", treg, BFD_RELOC_LO16, AT);
6974 }
6975 else
6976 {
6977 used_at = 1;
6978 macro_build (&offset_expr, "lw", "t,o(b)", treg, BFD_RELOC_LO16, AT);
6979 if (treg != RA)
6980 {
6981 /* FIXME: How in the world do we deal with the possible
6982 overflow here? */
6983 offset_expr.X_add_number += 4;
6984 macro_build (&offset_expr, "lw", "t,o(b)",
6985 treg + 1, BFD_RELOC_LO16, AT);
6986 }
6987 }
6988 break;
6989
6990 case M_LI_DD:
6991 /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
6992 wide, IMM_EXPR is the entire value and the GPRs are known to be 64
6993 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
6994 the value and the low order 32 bits are either zero or in
6995 OFFSET_EXPR. */
6996 if (imm_expr.X_op == O_constant || imm_expr.X_op == O_big)
6997 {
6998 used_at = 1;
6999 load_register (AT, &imm_expr, HAVE_64BIT_FPRS);
7000 if (HAVE_64BIT_FPRS)
7001 {
7002 gas_assert (HAVE_64BIT_GPRS);
7003 macro_build (NULL, "dmtc1", "t,S", AT, treg);
7004 }
7005 else
7006 {
7007 macro_build (NULL, "mtc1", "t,G", AT, treg + 1);
7008 if (offset_expr.X_op == O_absent)
7009 macro_build (NULL, "mtc1", "t,G", 0, treg);
7010 else
7011 {
7012 gas_assert (offset_expr.X_op == O_constant);
7013 load_register (AT, &offset_expr, 0);
7014 macro_build (NULL, "mtc1", "t,G", AT, treg);
7015 }
7016 }
7017 break;
7018 }
7019
7020 gas_assert (offset_expr.X_op == O_symbol
7021 && offset_expr.X_add_number == 0);
7022 s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
7023 if (strcmp (s, ".lit8") == 0)
7024 {
7025 if (mips_opts.isa != ISA_MIPS1)
7026 {
7027 macro_build (&offset_expr, "ldc1", "T,o(b)", treg,
7028 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
7029 break;
7030 }
7031 breg = mips_gp_register;
7032 r = BFD_RELOC_MIPS_LITERAL;
7033 goto dob;
7034 }
7035 else
7036 {
7037 gas_assert (strcmp (s, RDATA_SECTION_NAME) == 0);
7038 used_at = 1;
7039 if (mips_pic != NO_PIC)
7040 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
7041 BFD_RELOC_MIPS_GOT16, mips_gp_register);
7042 else
7043 {
7044 /* FIXME: This won't work for a 64 bit address. */
7045 macro_build_lui (&offset_expr, AT);
7046 }
7047
7048 if (mips_opts.isa != ISA_MIPS1)
7049 {
7050 macro_build (&offset_expr, "ldc1", "T,o(b)",
7051 treg, BFD_RELOC_LO16, AT);
7052 break;
7053 }
7054 breg = AT;
7055 r = BFD_RELOC_LO16;
7056 goto dob;
7057 }
7058
7059 case M_L_DOB:
7060 /* Even on a big endian machine $fn comes before $fn+1. We have
7061 to adjust when loading from memory. */
7062 r = BFD_RELOC_LO16;
7063 dob:
7064 gas_assert (mips_opts.isa == ISA_MIPS1);
7065 macro_build (&offset_expr, "lwc1", "T,o(b)",
7066 target_big_endian ? treg + 1 : treg, r, breg);
7067 /* FIXME: A possible overflow which I don't know how to deal
7068 with. */
7069 offset_expr.X_add_number += 4;
7070 macro_build (&offset_expr, "lwc1", "T,o(b)",
7071 target_big_endian ? treg : treg + 1, r, breg);
7072 break;
7073
7074 case M_L_DAB:
7075 /*
7076 * The MIPS assembler seems to check for X_add_number not
7077 * being double aligned and generating:
7078 * lui at,%hi(foo+1)
7079 * addu at,at,v1
7080 * addiu at,at,%lo(foo+1)
7081 * lwc1 f2,0(at)
7082 * lwc1 f3,4(at)
7083 * But, the resulting address is the same after relocation so why
7084 * generate the extra instruction?
7085 */
7086 /* Itbl support may require additional care here. */
7087 coproc = 1;
7088 if (mips_opts.isa != ISA_MIPS1)
7089 {
7090 s = "ldc1";
7091 goto ld;
7092 }
7093
7094 s = "lwc1";
7095 fmt = "T,o(b)";
7096 goto ldd_std;
7097
7098 case M_S_DAB:
7099 if (mips_opts.isa != ISA_MIPS1)
7100 {
7101 s = "sdc1";
7102 goto st;
7103 }
7104
7105 s = "swc1";
7106 fmt = "T,o(b)";
7107 /* Itbl support may require additional care here. */
7108 coproc = 1;
7109 goto ldd_std;
7110
7111 case M_LD_AB:
7112 if (HAVE_64BIT_GPRS)
7113 {
7114 s = "ld";
7115 goto ld;
7116 }
7117
7118 s = "lw";
7119 fmt = "t,o(b)";
7120 goto ldd_std;
7121
7122 case M_SD_AB:
7123 if (HAVE_64BIT_GPRS)
7124 {
7125 s = "sd";
7126 goto st;
7127 }
7128
7129 s = "sw";
7130 fmt = "t,o(b)";
7131
7132 ldd_std:
7133 if (offset_expr.X_op != O_symbol
7134 && offset_expr.X_op != O_constant)
7135 {
7136 as_bad (_("expression too complex"));
7137 offset_expr.X_op = O_constant;
7138 }
7139
7140 if (HAVE_32BIT_ADDRESSES
7141 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
7142 {
7143 char value [32];
7144
7145 sprintf_vma (value, offset_expr.X_add_number);
7146 as_bad (_("Number (0x%s) larger than 32 bits"), value);
7147 }
7148
7149 /* Even on a big endian machine $fn comes before $fn+1. We have
7150 to adjust when loading from memory. We set coproc if we must
7151 load $fn+1 first. */
7152 /* Itbl support may require additional care here. */
7153 if (! target_big_endian)
7154 coproc = 0;
7155
7156 if (mips_pic == NO_PIC
7157 || offset_expr.X_op == O_constant)
7158 {
7159 /* If this is a reference to a GP relative symbol, we want
7160 <op> $treg,<sym>($gp) (BFD_RELOC_GPREL16)
7161 <op> $treg+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
7162 If we have a base register, we use this
7163 addu $at,$breg,$gp
7164 <op> $treg,<sym>($at) (BFD_RELOC_GPREL16)
7165 <op> $treg+1,<sym>+4($at) (BFD_RELOC_GPREL16)
7166 If this is not a GP relative symbol, we want
7167 lui $at,<sym> (BFD_RELOC_HI16_S)
7168 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
7169 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
7170 If there is a base register, we add it to $at after the
7171 lui instruction. If there is a constant, we always use
7172 the last case. */
7173 if (offset_expr.X_op == O_symbol
7174 && (valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
7175 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
7176 {
7177 relax_start (offset_expr.X_add_symbol);
7178 if (breg == 0)
7179 {
7180 tempreg = mips_gp_register;
7181 }
7182 else
7183 {
7184 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7185 AT, breg, mips_gp_register);
7186 tempreg = AT;
7187 used_at = 1;
7188 }
7189
7190 /* Itbl support may require additional care here. */
7191 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
7192 BFD_RELOC_GPREL16, tempreg);
7193 offset_expr.X_add_number += 4;
7194
7195 /* Set mips_optimize to 2 to avoid inserting an
7196 undesired nop. */
7197 hold_mips_optimize = mips_optimize;
7198 mips_optimize = 2;
7199 /* Itbl support may require additional care here. */
7200 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
7201 BFD_RELOC_GPREL16, tempreg);
7202 mips_optimize = hold_mips_optimize;
7203
7204 relax_switch ();
7205
7206 /* We just generated two relocs. When tc_gen_reloc
7207 handles this case, it will skip the first reloc and
7208 handle the second. The second reloc already has an
7209 extra addend of 4, which we added above. We must
7210 subtract it out, and then subtract another 4 to make
7211 the first reloc come out right. The second reloc
7212 will come out right because we are going to add 4 to
7213 offset_expr when we build its instruction below.
7214
7215 If we have a symbol, then we don't want to include
7216 the offset, because it will wind up being included
7217 when we generate the reloc. */
7218
7219 if (offset_expr.X_op == O_constant)
7220 offset_expr.X_add_number -= 8;
7221 else
7222 {
7223 offset_expr.X_add_number = -4;
7224 offset_expr.X_op = O_constant;
7225 }
7226 }
7227 used_at = 1;
7228 macro_build_lui (&offset_expr, AT);
7229 if (breg != 0)
7230 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
7231 /* Itbl support may require additional care here. */
7232 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
7233 BFD_RELOC_LO16, AT);
7234 /* FIXME: How do we handle overflow here? */
7235 offset_expr.X_add_number += 4;
7236 /* Itbl support may require additional care here. */
7237 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
7238 BFD_RELOC_LO16, AT);
7239 if (mips_relax.sequence)
7240 relax_end ();
7241 }
7242 else if (!mips_big_got)
7243 {
7244 /* If this is a reference to an external symbol, we want
7245 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7246 nop
7247 <op> $treg,0($at)
7248 <op> $treg+1,4($at)
7249 Otherwise we want
7250 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7251 nop
7252 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
7253 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
7254 If there is a base register we add it to $at before the
7255 lwc1 instructions. If there is a constant we include it
7256 in the lwc1 instructions. */
7257 used_at = 1;
7258 expr1.X_add_number = offset_expr.X_add_number;
7259 if (expr1.X_add_number < -0x8000
7260 || expr1.X_add_number >= 0x8000 - 4)
7261 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
7262 load_got_offset (AT, &offset_expr);
7263 load_delay_nop ();
7264 if (breg != 0)
7265 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
7266
7267 /* Set mips_optimize to 2 to avoid inserting an undesired
7268 nop. */
7269 hold_mips_optimize = mips_optimize;
7270 mips_optimize = 2;
7271
7272 /* Itbl support may require additional care here. */
7273 relax_start (offset_expr.X_add_symbol);
7274 macro_build (&expr1, s, fmt, coproc ? treg + 1 : treg,
7275 BFD_RELOC_LO16, AT);
7276 expr1.X_add_number += 4;
7277 macro_build (&expr1, s, fmt, coproc ? treg : treg + 1,
7278 BFD_RELOC_LO16, AT);
7279 relax_switch ();
7280 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
7281 BFD_RELOC_LO16, AT);
7282 offset_expr.X_add_number += 4;
7283 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
7284 BFD_RELOC_LO16, AT);
7285 relax_end ();
7286
7287 mips_optimize = hold_mips_optimize;
7288 }
7289 else if (mips_big_got)
7290 {
7291 int gpdelay;
7292
7293 /* If this is a reference to an external symbol, we want
7294 lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
7295 addu $at,$at,$gp
7296 lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
7297 nop
7298 <op> $treg,0($at)
7299 <op> $treg+1,4($at)
7300 Otherwise we want
7301 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7302 nop
7303 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
7304 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
7305 If there is a base register we add it to $at before the
7306 lwc1 instructions. If there is a constant we include it
7307 in the lwc1 instructions. */
7308 used_at = 1;
7309 expr1.X_add_number = offset_expr.X_add_number;
7310 offset_expr.X_add_number = 0;
7311 if (expr1.X_add_number < -0x8000
7312 || expr1.X_add_number >= 0x8000 - 4)
7313 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
7314 gpdelay = reg_needs_delay (mips_gp_register);
7315 relax_start (offset_expr.X_add_symbol);
7316 macro_build (&offset_expr, "lui", "t,u",
7317 AT, BFD_RELOC_MIPS_GOT_HI16);
7318 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7319 AT, AT, mips_gp_register);
7320 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
7321 AT, BFD_RELOC_MIPS_GOT_LO16, AT);
7322 load_delay_nop ();
7323 if (breg != 0)
7324 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
7325 /* Itbl support may require additional care here. */
7326 macro_build (&expr1, s, fmt, coproc ? treg + 1 : treg,
7327 BFD_RELOC_LO16, AT);
7328 expr1.X_add_number += 4;
7329
7330 /* Set mips_optimize to 2 to avoid inserting an undesired
7331 nop. */
7332 hold_mips_optimize = mips_optimize;
7333 mips_optimize = 2;
7334 /* Itbl support may require additional care here. */
7335 macro_build (&expr1, s, fmt, coproc ? treg : treg + 1,
7336 BFD_RELOC_LO16, AT);
7337 mips_optimize = hold_mips_optimize;
7338 expr1.X_add_number -= 4;
7339
7340 relax_switch ();
7341 offset_expr.X_add_number = expr1.X_add_number;
7342 if (gpdelay)
7343 macro_build (NULL, "nop", "");
7344 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
7345 BFD_RELOC_MIPS_GOT16, mips_gp_register);
7346 load_delay_nop ();
7347 if (breg != 0)
7348 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
7349 /* Itbl support may require additional care here. */
7350 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
7351 BFD_RELOC_LO16, AT);
7352 offset_expr.X_add_number += 4;
7353
7354 /* Set mips_optimize to 2 to avoid inserting an undesired
7355 nop. */
7356 hold_mips_optimize = mips_optimize;
7357 mips_optimize = 2;
7358 /* Itbl support may require additional care here. */
7359 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
7360 BFD_RELOC_LO16, AT);
7361 mips_optimize = hold_mips_optimize;
7362 relax_end ();
7363 }
7364 else
7365 abort ();
7366
7367 break;
7368
7369 case M_LD_OB:
7370 s = HAVE_64BIT_GPRS ? "ld" : "lw";
7371 goto sd_ob;
7372 case M_SD_OB:
7373 s = HAVE_64BIT_GPRS ? "sd" : "sw";
7374 sd_ob:
7375 macro_build (&offset_expr, s, "t,o(b)", treg, BFD_RELOC_LO16, breg);
7376 if (!HAVE_64BIT_GPRS)
7377 {
7378 offset_expr.X_add_number += 4;
7379 macro_build (&offset_expr, s, "t,o(b)", treg + 1,
7380 BFD_RELOC_LO16, breg);
7381 }
7382 break;
7383
7384 /* New code added to support COPZ instructions.
7385 This code builds table entries out of the macros in mip_opcodes.
7386 R4000 uses interlocks to handle coproc delays.
7387 Other chips (like the R3000) require nops to be inserted for delays.
7388
7389 FIXME: Currently, we require that the user handle delays.
7390 In order to fill delay slots for non-interlocked chips,
7391 we must have a way to specify delays based on the coprocessor.
7392 Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
7393 What are the side-effects of the cop instruction?
7394 What cache support might we have and what are its effects?
7395 Both coprocessor & memory require delays. how long???
7396 What registers are read/set/modified?
7397
7398 If an itbl is provided to interpret cop instructions,
7399 this knowledge can be encoded in the itbl spec. */
7400
7401 case M_COP0:
7402 s = "c0";
7403 goto copz;
7404 case M_COP1:
7405 s = "c1";
7406 goto copz;
7407 case M_COP2:
7408 s = "c2";
7409 goto copz;
7410 case M_COP3:
7411 s = "c3";
7412 copz:
7413 if (NO_ISA_COP (mips_opts.arch)
7414 && (ip->insn_mo->pinfo2 & INSN2_M_FP_S) == 0)
7415 {
7416 as_bad (_("opcode not supported on this processor: %s"),
7417 mips_cpu_info_from_arch (mips_opts.arch)->name);
7418 break;
7419 }
7420
7421 /* For now we just do C (same as Cz). The parameter will be
7422 stored in insn_opcode by mips_ip. */
7423 macro_build (NULL, s, "C", ip->insn_opcode);
7424 break;
7425
7426 case M_MOVE:
7427 move_register (dreg, sreg);
7428 break;
7429
7430 #ifdef LOSING_COMPILER
7431 default:
7432 /* Try and see if this is a new itbl instruction.
7433 This code builds table entries out of the macros in mip_opcodes.
7434 FIXME: For now we just assemble the expression and pass it's
7435 value along as a 32-bit immediate.
7436 We may want to have the assembler assemble this value,
7437 so that we gain the assembler's knowledge of delay slots,
7438 symbols, etc.
7439 Would it be more efficient to use mask (id) here? */
7440 if (itbl_have_entries
7441 && (immed_expr = itbl_assemble (ip->insn_mo->name, "")))
7442 {
7443 s = ip->insn_mo->name;
7444 s2 = "cop3";
7445 coproc = ITBL_DECODE_PNUM (immed_expr);;
7446 macro_build (&immed_expr, s, "C");
7447 break;
7448 }
7449 macro2 (ip);
7450 break;
7451 }
7452 if (!mips_opts.at && used_at)
7453 as_bad (_("Macro used $at after \".set noat\""));
7454 }
7455
7456 static void
7457 macro2 (struct mips_cl_insn *ip)
7458 {
7459 unsigned int treg, sreg, dreg, breg;
7460 unsigned int tempreg;
7461 int mask;
7462 int used_at;
7463 expressionS expr1;
7464 const char *s;
7465 const char *s2;
7466 const char *fmt;
7467 int likely = 0;
7468 int dbl = 0;
7469 int coproc = 0;
7470 int lr = 0;
7471 int imm = 0;
7472 int off;
7473 offsetT maxnum;
7474 bfd_reloc_code_real_type r;
7475
7476 treg = (ip->insn_opcode >> 16) & 0x1f;
7477 dreg = (ip->insn_opcode >> 11) & 0x1f;
7478 sreg = breg = (ip->insn_opcode >> 21) & 0x1f;
7479 mask = ip->insn_mo->mask;
7480
7481 expr1.X_op = O_constant;
7482 expr1.X_op_symbol = NULL;
7483 expr1.X_add_symbol = NULL;
7484 expr1.X_add_number = 1;
7485
7486 switch (mask)
7487 {
7488 #endif /* LOSING_COMPILER */
7489
7490 case M_DMUL:
7491 dbl = 1;
7492 case M_MUL:
7493 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", sreg, treg);
7494 macro_build (NULL, "mflo", "d", dreg);
7495 break;
7496
7497 case M_DMUL_I:
7498 dbl = 1;
7499 case M_MUL_I:
7500 /* The MIPS assembler some times generates shifts and adds. I'm
7501 not trying to be that fancy. GCC should do this for us
7502 anyway. */
7503 used_at = 1;
7504 load_register (AT, &imm_expr, dbl);
7505 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", sreg, AT);
7506 macro_build (NULL, "mflo", "d", dreg);
7507 break;
7508
7509 case M_DMULO_I:
7510 dbl = 1;
7511 case M_MULO_I:
7512 imm = 1;
7513 goto do_mulo;
7514
7515 case M_DMULO:
7516 dbl = 1;
7517 case M_MULO:
7518 do_mulo:
7519 start_noreorder ();
7520 used_at = 1;
7521 if (imm)
7522 load_register (AT, &imm_expr, dbl);
7523 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", sreg, imm ? AT : treg);
7524 macro_build (NULL, "mflo", "d", dreg);
7525 macro_build (NULL, dbl ? "dsra32" : "sra", "d,w,<", dreg, dreg, RA);
7526 macro_build (NULL, "mfhi", "d", AT);
7527 if (mips_trap)
7528 macro_build (NULL, "tne", "s,t,q", dreg, AT, 6);
7529 else
7530 {
7531 expr1.X_add_number = 8;
7532 macro_build (&expr1, "beq", "s,t,p", dreg, AT);
7533 macro_build (NULL, "nop", "", 0);
7534 macro_build (NULL, "break", "c", 6);
7535 }
7536 end_noreorder ();
7537 macro_build (NULL, "mflo", "d", dreg);
7538 break;
7539
7540 case M_DMULOU_I:
7541 dbl = 1;
7542 case M_MULOU_I:
7543 imm = 1;
7544 goto do_mulou;
7545
7546 case M_DMULOU:
7547 dbl = 1;
7548 case M_MULOU:
7549 do_mulou:
7550 start_noreorder ();
7551 used_at = 1;
7552 if (imm)
7553 load_register (AT, &imm_expr, dbl);
7554 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t",
7555 sreg, imm ? AT : treg);
7556 macro_build (NULL, "mfhi", "d", AT);
7557 macro_build (NULL, "mflo", "d", dreg);
7558 if (mips_trap)
7559 macro_build (NULL, "tne", "s,t,q", AT, 0, 6);
7560 else
7561 {
7562 expr1.X_add_number = 8;
7563 macro_build (&expr1, "beq", "s,t,p", AT, 0);
7564 macro_build (NULL, "nop", "", 0);
7565 macro_build (NULL, "break", "c", 6);
7566 }
7567 end_noreorder ();
7568 break;
7569
7570 case M_DROL:
7571 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
7572 {
7573 if (dreg == sreg)
7574 {
7575 tempreg = AT;
7576 used_at = 1;
7577 }
7578 else
7579 {
7580 tempreg = dreg;
7581 }
7582 macro_build (NULL, "dnegu", "d,w", tempreg, treg);
7583 macro_build (NULL, "drorv", "d,t,s", dreg, sreg, tempreg);
7584 break;
7585 }
7586 used_at = 1;
7587 macro_build (NULL, "dsubu", "d,v,t", AT, 0, treg);
7588 macro_build (NULL, "dsrlv", "d,t,s", AT, sreg, AT);
7589 macro_build (NULL, "dsllv", "d,t,s", dreg, sreg, treg);
7590 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7591 break;
7592
7593 case M_ROL:
7594 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
7595 {
7596 if (dreg == sreg)
7597 {
7598 tempreg = AT;
7599 used_at = 1;
7600 }
7601 else
7602 {
7603 tempreg = dreg;
7604 }
7605 macro_build (NULL, "negu", "d,w", tempreg, treg);
7606 macro_build (NULL, "rorv", "d,t,s", dreg, sreg, tempreg);
7607 break;
7608 }
7609 used_at = 1;
7610 macro_build (NULL, "subu", "d,v,t", AT, 0, treg);
7611 macro_build (NULL, "srlv", "d,t,s", AT, sreg, AT);
7612 macro_build (NULL, "sllv", "d,t,s", dreg, sreg, treg);
7613 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7614 break;
7615
7616 case M_DROL_I:
7617 {
7618 unsigned int rot;
7619 char *l;
7620 char *rr;
7621
7622 if (imm_expr.X_op != O_constant)
7623 as_bad (_("Improper rotate count"));
7624 rot = imm_expr.X_add_number & 0x3f;
7625 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
7626 {
7627 rot = (64 - rot) & 0x3f;
7628 if (rot >= 32)
7629 macro_build (NULL, "dror32", "d,w,<", dreg, sreg, rot - 32);
7630 else
7631 macro_build (NULL, "dror", "d,w,<", dreg, sreg, rot);
7632 break;
7633 }
7634 if (rot == 0)
7635 {
7636 macro_build (NULL, "dsrl", "d,w,<", dreg, sreg, 0);
7637 break;
7638 }
7639 l = (rot < 0x20) ? "dsll" : "dsll32";
7640 rr = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
7641 rot &= 0x1f;
7642 used_at = 1;
7643 macro_build (NULL, l, "d,w,<", AT, sreg, rot);
7644 macro_build (NULL, rr, "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
7645 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7646 }
7647 break;
7648
7649 case M_ROL_I:
7650 {
7651 unsigned int rot;
7652
7653 if (imm_expr.X_op != O_constant)
7654 as_bad (_("Improper rotate count"));
7655 rot = imm_expr.X_add_number & 0x1f;
7656 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
7657 {
7658 macro_build (NULL, "ror", "d,w,<", dreg, sreg, (32 - rot) & 0x1f);
7659 break;
7660 }
7661 if (rot == 0)
7662 {
7663 macro_build (NULL, "srl", "d,w,<", dreg, sreg, 0);
7664 break;
7665 }
7666 used_at = 1;
7667 macro_build (NULL, "sll", "d,w,<", AT, sreg, rot);
7668 macro_build (NULL, "srl", "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
7669 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7670 }
7671 break;
7672
7673 case M_DROR:
7674 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
7675 {
7676 macro_build (NULL, "drorv", "d,t,s", dreg, sreg, treg);
7677 break;
7678 }
7679 used_at = 1;
7680 macro_build (NULL, "dsubu", "d,v,t", AT, 0, treg);
7681 macro_build (NULL, "dsllv", "d,t,s", AT, sreg, AT);
7682 macro_build (NULL, "dsrlv", "d,t,s", dreg, sreg, treg);
7683 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7684 break;
7685
7686 case M_ROR:
7687 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
7688 {
7689 macro_build (NULL, "rorv", "d,t,s", dreg, sreg, treg);
7690 break;
7691 }
7692 used_at = 1;
7693 macro_build (NULL, "subu", "d,v,t", AT, 0, treg);
7694 macro_build (NULL, "sllv", "d,t,s", AT, sreg, AT);
7695 macro_build (NULL, "srlv", "d,t,s", dreg, sreg, treg);
7696 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7697 break;
7698
7699 case M_DROR_I:
7700 {
7701 unsigned int rot;
7702 char *l;
7703 char *rr;
7704
7705 if (imm_expr.X_op != O_constant)
7706 as_bad (_("Improper rotate count"));
7707 rot = imm_expr.X_add_number & 0x3f;
7708 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
7709 {
7710 if (rot >= 32)
7711 macro_build (NULL, "dror32", "d,w,<", dreg, sreg, rot - 32);
7712 else
7713 macro_build (NULL, "dror", "d,w,<", dreg, sreg, rot);
7714 break;
7715 }
7716 if (rot == 0)
7717 {
7718 macro_build (NULL, "dsrl", "d,w,<", dreg, sreg, 0);
7719 break;
7720 }
7721 rr = (rot < 0x20) ? "dsrl" : "dsrl32";
7722 l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
7723 rot &= 0x1f;
7724 used_at = 1;
7725 macro_build (NULL, rr, "d,w,<", AT, sreg, rot);
7726 macro_build (NULL, l, "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
7727 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7728 }
7729 break;
7730
7731 case M_ROR_I:
7732 {
7733 unsigned int rot;
7734
7735 if (imm_expr.X_op != O_constant)
7736 as_bad (_("Improper rotate count"));
7737 rot = imm_expr.X_add_number & 0x1f;
7738 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
7739 {
7740 macro_build (NULL, "ror", "d,w,<", dreg, sreg, rot);
7741 break;
7742 }
7743 if (rot == 0)
7744 {
7745 macro_build (NULL, "srl", "d,w,<", dreg, sreg, 0);
7746 break;
7747 }
7748 used_at = 1;
7749 macro_build (NULL, "srl", "d,w,<", AT, sreg, rot);
7750 macro_build (NULL, "sll", "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
7751 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7752 }
7753 break;
7754
7755 case M_S_DOB:
7756 gas_assert (mips_opts.isa == ISA_MIPS1);
7757 /* Even on a big endian machine $fn comes before $fn+1. We have
7758 to adjust when storing to memory. */
7759 macro_build (&offset_expr, "swc1", "T,o(b)",
7760 target_big_endian ? treg + 1 : treg, BFD_RELOC_LO16, breg);
7761 offset_expr.X_add_number += 4;
7762 macro_build (&offset_expr, "swc1", "T,o(b)",
7763 target_big_endian ? treg : treg + 1, BFD_RELOC_LO16, breg);
7764 break;
7765
7766 case M_SEQ:
7767 if (sreg == 0)
7768 macro_build (&expr1, "sltiu", "t,r,j", dreg, treg, BFD_RELOC_LO16);
7769 else if (treg == 0)
7770 macro_build (&expr1, "sltiu", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7771 else
7772 {
7773 macro_build (NULL, "xor", "d,v,t", dreg, sreg, treg);
7774 macro_build (&expr1, "sltiu", "t,r,j", dreg, dreg, BFD_RELOC_LO16);
7775 }
7776 break;
7777
7778 case M_SEQ_I:
7779 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
7780 {
7781 macro_build (&expr1, "sltiu", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7782 break;
7783 }
7784 if (sreg == 0)
7785 {
7786 as_warn (_("Instruction %s: result is always false"),
7787 ip->insn_mo->name);
7788 move_register (dreg, 0);
7789 break;
7790 }
7791 if (CPU_HAS_SEQ (mips_opts.arch)
7792 && -512 <= imm_expr.X_add_number
7793 && imm_expr.X_add_number < 512)
7794 {
7795 macro_build (NULL, "seqi", "t,r,+Q", dreg, sreg,
7796 (int) imm_expr.X_add_number);
7797 break;
7798 }
7799 if (imm_expr.X_op == O_constant
7800 && imm_expr.X_add_number >= 0
7801 && imm_expr.X_add_number < 0x10000)
7802 {
7803 macro_build (&imm_expr, "xori", "t,r,i", dreg, sreg, BFD_RELOC_LO16);
7804 }
7805 else if (imm_expr.X_op == O_constant
7806 && imm_expr.X_add_number > -0x8000
7807 && imm_expr.X_add_number < 0)
7808 {
7809 imm_expr.X_add_number = -imm_expr.X_add_number;
7810 macro_build (&imm_expr, HAVE_32BIT_GPRS ? "addiu" : "daddiu",
7811 "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7812 }
7813 else if (CPU_HAS_SEQ (mips_opts.arch))
7814 {
7815 used_at = 1;
7816 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7817 macro_build (NULL, "seq", "d,v,t", dreg, sreg, AT);
7818 break;
7819 }
7820 else
7821 {
7822 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7823 macro_build (NULL, "xor", "d,v,t", dreg, sreg, AT);
7824 used_at = 1;
7825 }
7826 macro_build (&expr1, "sltiu", "t,r,j", dreg, dreg, BFD_RELOC_LO16);
7827 break;
7828
7829 case M_SGE: /* sreg >= treg <==> not (sreg < treg) */
7830 s = "slt";
7831 goto sge;
7832 case M_SGEU:
7833 s = "sltu";
7834 sge:
7835 macro_build (NULL, s, "d,v,t", dreg, sreg, treg);
7836 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
7837 break;
7838
7839 case M_SGE_I: /* sreg >= I <==> not (sreg < I) */
7840 case M_SGEU_I:
7841 if (imm_expr.X_op == O_constant
7842 && imm_expr.X_add_number >= -0x8000
7843 && imm_expr.X_add_number < 0x8000)
7844 {
7845 macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j",
7846 dreg, sreg, BFD_RELOC_LO16);
7847 }
7848 else
7849 {
7850 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7851 macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t",
7852 dreg, sreg, AT);
7853 used_at = 1;
7854 }
7855 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
7856 break;
7857
7858 case M_SGT: /* sreg > treg <==> treg < sreg */
7859 s = "slt";
7860 goto sgt;
7861 case M_SGTU:
7862 s = "sltu";
7863 sgt:
7864 macro_build (NULL, s, "d,v,t", dreg, treg, sreg);
7865 break;
7866
7867 case M_SGT_I: /* sreg > I <==> I < sreg */
7868 s = "slt";
7869 goto sgti;
7870 case M_SGTU_I:
7871 s = "sltu";
7872 sgti:
7873 used_at = 1;
7874 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7875 macro_build (NULL, s, "d,v,t", dreg, AT, sreg);
7876 break;
7877
7878 case M_SLE: /* sreg <= treg <==> treg >= sreg <==> not (treg < sreg) */
7879 s = "slt";
7880 goto sle;
7881 case M_SLEU:
7882 s = "sltu";
7883 sle:
7884 macro_build (NULL, s, "d,v,t", dreg, treg, sreg);
7885 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
7886 break;
7887
7888 case M_SLE_I: /* sreg <= I <==> I >= sreg <==> not (I < sreg) */
7889 s = "slt";
7890 goto slei;
7891 case M_SLEU_I:
7892 s = "sltu";
7893 slei:
7894 used_at = 1;
7895 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7896 macro_build (NULL, s, "d,v,t", dreg, AT, sreg);
7897 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
7898 break;
7899
7900 case M_SLT_I:
7901 if (imm_expr.X_op == O_constant
7902 && imm_expr.X_add_number >= -0x8000
7903 && imm_expr.X_add_number < 0x8000)
7904 {
7905 macro_build (&imm_expr, "slti", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7906 break;
7907 }
7908 used_at = 1;
7909 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7910 macro_build (NULL, "slt", "d,v,t", dreg, sreg, AT);
7911 break;
7912
7913 case M_SLTU_I:
7914 if (imm_expr.X_op == O_constant
7915 && imm_expr.X_add_number >= -0x8000
7916 && imm_expr.X_add_number < 0x8000)
7917 {
7918 macro_build (&imm_expr, "sltiu", "t,r,j", dreg, sreg,
7919 BFD_RELOC_LO16);
7920 break;
7921 }
7922 used_at = 1;
7923 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7924 macro_build (NULL, "sltu", "d,v,t", dreg, sreg, AT);
7925 break;
7926
7927 case M_SNE:
7928 if (sreg == 0)
7929 macro_build (NULL, "sltu", "d,v,t", dreg, 0, treg);
7930 else if (treg == 0)
7931 macro_build (NULL, "sltu", "d,v,t", dreg, 0, sreg);
7932 else
7933 {
7934 macro_build (NULL, "xor", "d,v,t", dreg, sreg, treg);
7935 macro_build (NULL, "sltu", "d,v,t", dreg, 0, dreg);
7936 }
7937 break;
7938
7939 case M_SNE_I:
7940 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
7941 {
7942 macro_build (NULL, "sltu", "d,v,t", dreg, 0, sreg);
7943 break;
7944 }
7945 if (sreg == 0)
7946 {
7947 as_warn (_("Instruction %s: result is always true"),
7948 ip->insn_mo->name);
7949 macro_build (&expr1, HAVE_32BIT_GPRS ? "addiu" : "daddiu", "t,r,j",
7950 dreg, 0, BFD_RELOC_LO16);
7951 break;
7952 }
7953 if (CPU_HAS_SEQ (mips_opts.arch)
7954 && -512 <= imm_expr.X_add_number
7955 && imm_expr.X_add_number < 512)
7956 {
7957 macro_build (NULL, "snei", "t,r,+Q", dreg, sreg,
7958 (int) imm_expr.X_add_number);
7959 break;
7960 }
7961 if (imm_expr.X_op == O_constant
7962 && imm_expr.X_add_number >= 0
7963 && imm_expr.X_add_number < 0x10000)
7964 {
7965 macro_build (&imm_expr, "xori", "t,r,i", dreg, sreg, BFD_RELOC_LO16);
7966 }
7967 else if (imm_expr.X_op == O_constant
7968 && imm_expr.X_add_number > -0x8000
7969 && imm_expr.X_add_number < 0)
7970 {
7971 imm_expr.X_add_number = -imm_expr.X_add_number;
7972 macro_build (&imm_expr, HAVE_32BIT_GPRS ? "addiu" : "daddiu",
7973 "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7974 }
7975 else if (CPU_HAS_SEQ (mips_opts.arch))
7976 {
7977 used_at = 1;
7978 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7979 macro_build (NULL, "sne", "d,v,t", dreg, sreg, AT);
7980 break;
7981 }
7982 else
7983 {
7984 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7985 macro_build (NULL, "xor", "d,v,t", dreg, sreg, AT);
7986 used_at = 1;
7987 }
7988 macro_build (NULL, "sltu", "d,v,t", dreg, 0, dreg);
7989 break;
7990
7991 case M_DSUB_I:
7992 dbl = 1;
7993 case M_SUB_I:
7994 if (imm_expr.X_op == O_constant
7995 && imm_expr.X_add_number > -0x8000
7996 && imm_expr.X_add_number <= 0x8000)
7997 {
7998 imm_expr.X_add_number = -imm_expr.X_add_number;
7999 macro_build (&imm_expr, dbl ? "daddi" : "addi", "t,r,j",
8000 dreg, sreg, BFD_RELOC_LO16);
8001 break;
8002 }
8003 used_at = 1;
8004 load_register (AT, &imm_expr, dbl);
8005 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", dreg, sreg, AT);
8006 break;
8007
8008 case M_DSUBU_I:
8009 dbl = 1;
8010 case M_SUBU_I:
8011 if (imm_expr.X_op == O_constant
8012 && imm_expr.X_add_number > -0x8000
8013 && imm_expr.X_add_number <= 0x8000)
8014 {
8015 imm_expr.X_add_number = -imm_expr.X_add_number;
8016 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "t,r,j",
8017 dreg, sreg, BFD_RELOC_LO16);
8018 break;
8019 }
8020 used_at = 1;
8021 load_register (AT, &imm_expr, dbl);
8022 macro_build (NULL, dbl ? "dsubu" : "subu", "d,v,t", dreg, sreg, AT);
8023 break;
8024
8025 case M_TEQ_I:
8026 s = "teq";
8027 goto trap;
8028 case M_TGE_I:
8029 s = "tge";
8030 goto trap;
8031 case M_TGEU_I:
8032 s = "tgeu";
8033 goto trap;
8034 case M_TLT_I:
8035 s = "tlt";
8036 goto trap;
8037 case M_TLTU_I:
8038 s = "tltu";
8039 goto trap;
8040 case M_TNE_I:
8041 s = "tne";
8042 trap:
8043 used_at = 1;
8044 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
8045 macro_build (NULL, s, "s,t", sreg, AT);
8046 break;
8047
8048 case M_TRUNCWS:
8049 case M_TRUNCWD:
8050 gas_assert (mips_opts.isa == ISA_MIPS1);
8051 used_at = 1;
8052 sreg = (ip->insn_opcode >> 11) & 0x1f; /* floating reg */
8053 dreg = (ip->insn_opcode >> 06) & 0x1f; /* floating reg */
8054
8055 /*
8056 * Is the double cfc1 instruction a bug in the mips assembler;
8057 * or is there a reason for it?
8058 */
8059 start_noreorder ();
8060 macro_build (NULL, "cfc1", "t,G", treg, RA);
8061 macro_build (NULL, "cfc1", "t,G", treg, RA);
8062 macro_build (NULL, "nop", "");
8063 expr1.X_add_number = 3;
8064 macro_build (&expr1, "ori", "t,r,i", AT, treg, BFD_RELOC_LO16);
8065 expr1.X_add_number = 2;
8066 macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16);
8067 macro_build (NULL, "ctc1", "t,G", AT, RA);
8068 macro_build (NULL, "nop", "");
8069 macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S",
8070 dreg, sreg);
8071 macro_build (NULL, "ctc1", "t,G", treg, RA);
8072 macro_build (NULL, "nop", "");
8073 end_noreorder ();
8074 break;
8075
8076 case M_ULH:
8077 s = "lb";
8078 goto ulh;
8079 case M_ULHU:
8080 s = "lbu";
8081 ulh:
8082 used_at = 1;
8083 if (offset_expr.X_add_number >= 0x7fff)
8084 as_bad (_("operand overflow"));
8085 if (! target_big_endian)
8086 ++offset_expr.X_add_number;
8087 macro_build (&offset_expr, s, "t,o(b)", AT, BFD_RELOC_LO16, breg);
8088 if (! target_big_endian)
8089 --offset_expr.X_add_number;
8090 else
8091 ++offset_expr.X_add_number;
8092 macro_build (&offset_expr, "lbu", "t,o(b)", treg, BFD_RELOC_LO16, breg);
8093 macro_build (NULL, "sll", "d,w,<", AT, AT, 8);
8094 macro_build (NULL, "or", "d,v,t", treg, treg, AT);
8095 break;
8096
8097 case M_ULD:
8098 s = "ldl";
8099 s2 = "ldr";
8100 off = 7;
8101 goto ulw;
8102 case M_ULW:
8103 s = "lwl";
8104 s2 = "lwr";
8105 off = 3;
8106 ulw:
8107 if (offset_expr.X_add_number >= 0x8000 - off)
8108 as_bad (_("operand overflow"));
8109 if (treg != breg)
8110 tempreg = treg;
8111 else
8112 {
8113 used_at = 1;
8114 tempreg = AT;
8115 }
8116 if (! target_big_endian)
8117 offset_expr.X_add_number += off;
8118 macro_build (&offset_expr, s, "t,o(b)", tempreg, BFD_RELOC_LO16, breg);
8119 if (! target_big_endian)
8120 offset_expr.X_add_number -= off;
8121 else
8122 offset_expr.X_add_number += off;
8123 macro_build (&offset_expr, s2, "t,o(b)", tempreg, BFD_RELOC_LO16, breg);
8124
8125 /* If necessary, move the result in tempreg the final destination. */
8126 if (treg == tempreg)
8127 break;
8128 /* Protect second load's delay slot. */
8129 load_delay_nop ();
8130 move_register (treg, tempreg);
8131 break;
8132
8133 case M_ULD_A:
8134 s = "ldl";
8135 s2 = "ldr";
8136 off = 7;
8137 goto ulwa;
8138 case M_ULW_A:
8139 s = "lwl";
8140 s2 = "lwr";
8141 off = 3;
8142 ulwa:
8143 used_at = 1;
8144 load_address (AT, &offset_expr, &used_at);
8145 if (breg != 0)
8146 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8147 if (! target_big_endian)
8148 expr1.X_add_number = off;
8149 else
8150 expr1.X_add_number = 0;
8151 macro_build (&expr1, s, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8152 if (! target_big_endian)
8153 expr1.X_add_number = 0;
8154 else
8155 expr1.X_add_number = off;
8156 macro_build (&expr1, s2, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8157 break;
8158
8159 case M_ULH_A:
8160 case M_ULHU_A:
8161 used_at = 1;
8162 load_address (AT, &offset_expr, &used_at);
8163 if (breg != 0)
8164 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8165 if (target_big_endian)
8166 expr1.X_add_number = 0;
8167 macro_build (&expr1, mask == M_ULH_A ? "lb" : "lbu", "t,o(b)",
8168 treg, BFD_RELOC_LO16, AT);
8169 if (target_big_endian)
8170 expr1.X_add_number = 1;
8171 else
8172 expr1.X_add_number = 0;
8173 macro_build (&expr1, "lbu", "t,o(b)", AT, BFD_RELOC_LO16, AT);
8174 macro_build (NULL, "sll", "d,w,<", treg, treg, 8);
8175 macro_build (NULL, "or", "d,v,t", treg, treg, AT);
8176 break;
8177
8178 case M_USH:
8179 used_at = 1;
8180 if (offset_expr.X_add_number >= 0x7fff)
8181 as_bad (_("operand overflow"));
8182 if (target_big_endian)
8183 ++offset_expr.X_add_number;
8184 macro_build (&offset_expr, "sb", "t,o(b)", treg, BFD_RELOC_LO16, breg);
8185 macro_build (NULL, "srl", "d,w,<", AT, treg, 8);
8186 if (target_big_endian)
8187 --offset_expr.X_add_number;
8188 else
8189 ++offset_expr.X_add_number;
8190 macro_build (&offset_expr, "sb", "t,o(b)", AT, BFD_RELOC_LO16, breg);
8191 break;
8192
8193 case M_USD:
8194 s = "sdl";
8195 s2 = "sdr";
8196 off = 7;
8197 goto usw;
8198 case M_USW:
8199 s = "swl";
8200 s2 = "swr";
8201 off = 3;
8202 usw:
8203 if (offset_expr.X_add_number >= 0x8000 - off)
8204 as_bad (_("operand overflow"));
8205 if (! target_big_endian)
8206 offset_expr.X_add_number += off;
8207 macro_build (&offset_expr, s, "t,o(b)", treg, BFD_RELOC_LO16, breg);
8208 if (! target_big_endian)
8209 offset_expr.X_add_number -= off;
8210 else
8211 offset_expr.X_add_number += off;
8212 macro_build (&offset_expr, s2, "t,o(b)", treg, BFD_RELOC_LO16, breg);
8213 break;
8214
8215 case M_USD_A:
8216 s = "sdl";
8217 s2 = "sdr";
8218 off = 7;
8219 goto uswa;
8220 case M_USW_A:
8221 s = "swl";
8222 s2 = "swr";
8223 off = 3;
8224 uswa:
8225 used_at = 1;
8226 load_address (AT, &offset_expr, &used_at);
8227 if (breg != 0)
8228 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8229 if (! target_big_endian)
8230 expr1.X_add_number = off;
8231 else
8232 expr1.X_add_number = 0;
8233 macro_build (&expr1, s, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8234 if (! target_big_endian)
8235 expr1.X_add_number = 0;
8236 else
8237 expr1.X_add_number = off;
8238 macro_build (&expr1, s2, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8239 break;
8240
8241 case M_USH_A:
8242 used_at = 1;
8243 load_address (AT, &offset_expr, &used_at);
8244 if (breg != 0)
8245 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8246 if (! target_big_endian)
8247 expr1.X_add_number = 0;
8248 macro_build (&expr1, "sb", "t,o(b)", treg, BFD_RELOC_LO16, AT);
8249 macro_build (NULL, "srl", "d,w,<", treg, treg, 8);
8250 if (! target_big_endian)
8251 expr1.X_add_number = 1;
8252 else
8253 expr1.X_add_number = 0;
8254 macro_build (&expr1, "sb", "t,o(b)", treg, BFD_RELOC_LO16, AT);
8255 if (! target_big_endian)
8256 expr1.X_add_number = 0;
8257 else
8258 expr1.X_add_number = 1;
8259 macro_build (&expr1, "lbu", "t,o(b)", AT, BFD_RELOC_LO16, AT);
8260 macro_build (NULL, "sll", "d,w,<", treg, treg, 8);
8261 macro_build (NULL, "or", "d,v,t", treg, treg, AT);
8262 break;
8263
8264 default:
8265 /* FIXME: Check if this is one of the itbl macros, since they
8266 are added dynamically. */
8267 as_bad (_("Macro %s not implemented yet"), ip->insn_mo->name);
8268 break;
8269 }
8270 if (!mips_opts.at && used_at)
8271 as_bad (_("Macro used $at after \".set noat\""));
8272 }
8273
8274 /* Implement macros in mips16 mode. */
8275
8276 static void
8277 mips16_macro (struct mips_cl_insn *ip)
8278 {
8279 int mask;
8280 int xreg, yreg, zreg, tmp;
8281 expressionS expr1;
8282 int dbl;
8283 const char *s, *s2, *s3;
8284
8285 mask = ip->insn_mo->mask;
8286
8287 xreg = MIPS16_EXTRACT_OPERAND (RX, *ip);
8288 yreg = MIPS16_EXTRACT_OPERAND (RY, *ip);
8289 zreg = MIPS16_EXTRACT_OPERAND (RZ, *ip);
8290
8291 expr1.X_op = O_constant;
8292 expr1.X_op_symbol = NULL;
8293 expr1.X_add_symbol = NULL;
8294 expr1.X_add_number = 1;
8295
8296 dbl = 0;
8297
8298 switch (mask)
8299 {
8300 default:
8301 internalError ();
8302
8303 case M_DDIV_3:
8304 dbl = 1;
8305 case M_DIV_3:
8306 s = "mflo";
8307 goto do_div3;
8308 case M_DREM_3:
8309 dbl = 1;
8310 case M_REM_3:
8311 s = "mfhi";
8312 do_div3:
8313 start_noreorder ();
8314 macro_build (NULL, dbl ? "ddiv" : "div", "0,x,y", xreg, yreg);
8315 expr1.X_add_number = 2;
8316 macro_build (&expr1, "bnez", "x,p", yreg);
8317 macro_build (NULL, "break", "6", 7);
8318
8319 /* FIXME: The normal code checks for of -1 / -0x80000000 here,
8320 since that causes an overflow. We should do that as well,
8321 but I don't see how to do the comparisons without a temporary
8322 register. */
8323 end_noreorder ();
8324 macro_build (NULL, s, "x", zreg);
8325 break;
8326
8327 case M_DIVU_3:
8328 s = "divu";
8329 s2 = "mflo";
8330 goto do_divu3;
8331 case M_REMU_3:
8332 s = "divu";
8333 s2 = "mfhi";
8334 goto do_divu3;
8335 case M_DDIVU_3:
8336 s = "ddivu";
8337 s2 = "mflo";
8338 goto do_divu3;
8339 case M_DREMU_3:
8340 s = "ddivu";
8341 s2 = "mfhi";
8342 do_divu3:
8343 start_noreorder ();
8344 macro_build (NULL, s, "0,x,y", xreg, yreg);
8345 expr1.X_add_number = 2;
8346 macro_build (&expr1, "bnez", "x,p", yreg);
8347 macro_build (NULL, "break", "6", 7);
8348 end_noreorder ();
8349 macro_build (NULL, s2, "x", zreg);
8350 break;
8351
8352 case M_DMUL:
8353 dbl = 1;
8354 case M_MUL:
8355 macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", xreg, yreg);
8356 macro_build (NULL, "mflo", "x", zreg);
8357 break;
8358
8359 case M_DSUBU_I:
8360 dbl = 1;
8361 goto do_subu;
8362 case M_SUBU_I:
8363 do_subu:
8364 if (imm_expr.X_op != O_constant)
8365 as_bad (_("Unsupported large constant"));
8366 imm_expr.X_add_number = -imm_expr.X_add_number;
8367 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,4", yreg, xreg);
8368 break;
8369
8370 case M_SUBU_I_2:
8371 if (imm_expr.X_op != O_constant)
8372 as_bad (_("Unsupported large constant"));
8373 imm_expr.X_add_number = -imm_expr.X_add_number;
8374 macro_build (&imm_expr, "addiu", "x,k", xreg);
8375 break;
8376
8377 case M_DSUBU_I_2:
8378 if (imm_expr.X_op != O_constant)
8379 as_bad (_("Unsupported large constant"));
8380 imm_expr.X_add_number = -imm_expr.X_add_number;
8381 macro_build (&imm_expr, "daddiu", "y,j", yreg);
8382 break;
8383
8384 case M_BEQ:
8385 s = "cmp";
8386 s2 = "bteqz";
8387 goto do_branch;
8388 case M_BNE:
8389 s = "cmp";
8390 s2 = "btnez";
8391 goto do_branch;
8392 case M_BLT:
8393 s = "slt";
8394 s2 = "btnez";
8395 goto do_branch;
8396 case M_BLTU:
8397 s = "sltu";
8398 s2 = "btnez";
8399 goto do_branch;
8400 case M_BLE:
8401 s = "slt";
8402 s2 = "bteqz";
8403 goto do_reverse_branch;
8404 case M_BLEU:
8405 s = "sltu";
8406 s2 = "bteqz";
8407 goto do_reverse_branch;
8408 case M_BGE:
8409 s = "slt";
8410 s2 = "bteqz";
8411 goto do_branch;
8412 case M_BGEU:
8413 s = "sltu";
8414 s2 = "bteqz";
8415 goto do_branch;
8416 case M_BGT:
8417 s = "slt";
8418 s2 = "btnez";
8419 goto do_reverse_branch;
8420 case M_BGTU:
8421 s = "sltu";
8422 s2 = "btnez";
8423
8424 do_reverse_branch:
8425 tmp = xreg;
8426 xreg = yreg;
8427 yreg = tmp;
8428
8429 do_branch:
8430 macro_build (NULL, s, "x,y", xreg, yreg);
8431 macro_build (&offset_expr, s2, "p");
8432 break;
8433
8434 case M_BEQ_I:
8435 s = "cmpi";
8436 s2 = "bteqz";
8437 s3 = "x,U";
8438 goto do_branch_i;
8439 case M_BNE_I:
8440 s = "cmpi";
8441 s2 = "btnez";
8442 s3 = "x,U";
8443 goto do_branch_i;
8444 case M_BLT_I:
8445 s = "slti";
8446 s2 = "btnez";
8447 s3 = "x,8";
8448 goto do_branch_i;
8449 case M_BLTU_I:
8450 s = "sltiu";
8451 s2 = "btnez";
8452 s3 = "x,8";
8453 goto do_branch_i;
8454 case M_BLE_I:
8455 s = "slti";
8456 s2 = "btnez";
8457 s3 = "x,8";
8458 goto do_addone_branch_i;
8459 case M_BLEU_I:
8460 s = "sltiu";
8461 s2 = "btnez";
8462 s3 = "x,8";
8463 goto do_addone_branch_i;
8464 case M_BGE_I:
8465 s = "slti";
8466 s2 = "bteqz";
8467 s3 = "x,8";
8468 goto do_branch_i;
8469 case M_BGEU_I:
8470 s = "sltiu";
8471 s2 = "bteqz";
8472 s3 = "x,8";
8473 goto do_branch_i;
8474 case M_BGT_I:
8475 s = "slti";
8476 s2 = "bteqz";
8477 s3 = "x,8";
8478 goto do_addone_branch_i;
8479 case M_BGTU_I:
8480 s = "sltiu";
8481 s2 = "bteqz";
8482 s3 = "x,8";
8483
8484 do_addone_branch_i:
8485 if (imm_expr.X_op != O_constant)
8486 as_bad (_("Unsupported large constant"));
8487 ++imm_expr.X_add_number;
8488
8489 do_branch_i:
8490 macro_build (&imm_expr, s, s3, xreg);
8491 macro_build (&offset_expr, s2, "p");
8492 break;
8493
8494 case M_ABS:
8495 expr1.X_add_number = 0;
8496 macro_build (&expr1, "slti", "x,8", yreg);
8497 if (xreg != yreg)
8498 move_register (xreg, yreg);
8499 expr1.X_add_number = 2;
8500 macro_build (&expr1, "bteqz", "p");
8501 macro_build (NULL, "neg", "x,w", xreg, xreg);
8502 }
8503 }
8504
8505 /* For consistency checking, verify that all bits are specified either
8506 by the match/mask part of the instruction definition, or by the
8507 operand list. */
8508 static int
8509 validate_mips_insn (const struct mips_opcode *opc)
8510 {
8511 const char *p = opc->args;
8512 char c;
8513 unsigned long used_bits = opc->mask;
8514
8515 if ((used_bits & opc->match) != opc->match)
8516 {
8517 as_bad (_("internal: bad mips opcode (mask error): %s %s"),
8518 opc->name, opc->args);
8519 return 0;
8520 }
8521 #define USE_BITS(mask,shift) (used_bits |= ((mask) << (shift)))
8522 while (*p)
8523 switch (c = *p++)
8524 {
8525 case ',': break;
8526 case '(': break;
8527 case ')': break;
8528 case '+':
8529 switch (c = *p++)
8530 {
8531 case '1': USE_BITS (OP_MASK_UDI1, OP_SH_UDI1); break;
8532 case '2': USE_BITS (OP_MASK_UDI2, OP_SH_UDI2); break;
8533 case '3': USE_BITS (OP_MASK_UDI3, OP_SH_UDI3); break;
8534 case '4': USE_BITS (OP_MASK_UDI4, OP_SH_UDI4); break;
8535 case 'A': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
8536 case 'B': USE_BITS (OP_MASK_INSMSB, OP_SH_INSMSB); break;
8537 case 'C': USE_BITS (OP_MASK_EXTMSBD, OP_SH_EXTMSBD); break;
8538 case 'D': USE_BITS (OP_MASK_RD, OP_SH_RD);
8539 USE_BITS (OP_MASK_SEL, OP_SH_SEL); break;
8540 case 'E': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
8541 case 'F': USE_BITS (OP_MASK_INSMSB, OP_SH_INSMSB); break;
8542 case 'G': USE_BITS (OP_MASK_EXTMSBD, OP_SH_EXTMSBD); break;
8543 case 'H': USE_BITS (OP_MASK_EXTMSBD, OP_SH_EXTMSBD); break;
8544 case 'I': break;
8545 case 't': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8546 case 'T': USE_BITS (OP_MASK_RT, OP_SH_RT);
8547 USE_BITS (OP_MASK_SEL, OP_SH_SEL); break;
8548 case 'x': USE_BITS (OP_MASK_BBITIND, OP_SH_BBITIND); break;
8549 case 'X': USE_BITS (OP_MASK_BBITIND, OP_SH_BBITIND); break;
8550 case 'p': USE_BITS (OP_MASK_CINSPOS, OP_SH_CINSPOS); break;
8551 case 'P': USE_BITS (OP_MASK_CINSPOS, OP_SH_CINSPOS); break;
8552 case 'Q': USE_BITS (OP_MASK_SEQI, OP_SH_SEQI); break;
8553 case 's': USE_BITS (OP_MASK_CINSLM1, OP_SH_CINSLM1); break;
8554 case 'S': USE_BITS (OP_MASK_CINSLM1, OP_SH_CINSLM1); break;
8555
8556 default:
8557 as_bad (_("internal: bad mips opcode (unknown extension operand type `+%c'): %s %s"),
8558 c, opc->name, opc->args);
8559 return 0;
8560 }
8561 break;
8562 case '<': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
8563 case '>': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
8564 case 'A': break;
8565 case 'B': USE_BITS (OP_MASK_CODE20, OP_SH_CODE20); break;
8566 case 'C': USE_BITS (OP_MASK_COPZ, OP_SH_COPZ); break;
8567 case 'D': USE_BITS (OP_MASK_FD, OP_SH_FD); break;
8568 case 'E': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8569 case 'F': break;
8570 case 'G': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
8571 case 'H': USE_BITS (OP_MASK_SEL, OP_SH_SEL); break;
8572 case 'I': break;
8573 case 'J': USE_BITS (OP_MASK_CODE19, OP_SH_CODE19); break;
8574 case 'K': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
8575 case 'L': break;
8576 case 'M': USE_BITS (OP_MASK_CCC, OP_SH_CCC); break;
8577 case 'N': USE_BITS (OP_MASK_BCC, OP_SH_BCC); break;
8578 case 'O': USE_BITS (OP_MASK_ALN, OP_SH_ALN); break;
8579 case 'Q': USE_BITS (OP_MASK_VSEL, OP_SH_VSEL);
8580 USE_BITS (OP_MASK_FT, OP_SH_FT); break;
8581 case 'R': USE_BITS (OP_MASK_FR, OP_SH_FR); break;
8582 case 'S': USE_BITS (OP_MASK_FS, OP_SH_FS); break;
8583 case 'T': USE_BITS (OP_MASK_FT, OP_SH_FT); break;
8584 case 'V': USE_BITS (OP_MASK_FS, OP_SH_FS); break;
8585 case 'W': USE_BITS (OP_MASK_FT, OP_SH_FT); break;
8586 case 'X': USE_BITS (OP_MASK_FD, OP_SH_FD); break;
8587 case 'Y': USE_BITS (OP_MASK_FS, OP_SH_FS); break;
8588 case 'Z': USE_BITS (OP_MASK_FT, OP_SH_FT); break;
8589 case 'a': USE_BITS (OP_MASK_TARGET, OP_SH_TARGET); break;
8590 case 'b': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8591 case 'c': USE_BITS (OP_MASK_CODE, OP_SH_CODE); break;
8592 case 'd': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
8593 case 'f': break;
8594 case 'h': USE_BITS (OP_MASK_PREFX, OP_SH_PREFX); break;
8595 case 'i': USE_BITS (OP_MASK_IMMEDIATE, OP_SH_IMMEDIATE); break;
8596 case 'j': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break;
8597 case 'k': USE_BITS (OP_MASK_CACHE, OP_SH_CACHE); break;
8598 case 'l': break;
8599 case 'o': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break;
8600 case 'p': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break;
8601 case 'q': USE_BITS (OP_MASK_CODE2, OP_SH_CODE2); break;
8602 case 'r': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8603 case 's': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8604 case 't': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8605 case 'u': USE_BITS (OP_MASK_IMMEDIATE, OP_SH_IMMEDIATE); break;
8606 case 'v': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8607 case 'w': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8608 case 'x': break;
8609 case 'z': break;
8610 case 'P': USE_BITS (OP_MASK_PERFREG, OP_SH_PERFREG); break;
8611 case 'U': USE_BITS (OP_MASK_RD, OP_SH_RD);
8612 USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8613 case 'e': USE_BITS (OP_MASK_VECBYTE, OP_SH_VECBYTE); break;
8614 case '%': USE_BITS (OP_MASK_VECALIGN, OP_SH_VECALIGN); break;
8615 case '[': break;
8616 case ']': break;
8617 case '1': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
8618 case '2': USE_BITS (OP_MASK_BP, OP_SH_BP); break;
8619 case '3': USE_BITS (OP_MASK_SA3, OP_SH_SA3); break;
8620 case '4': USE_BITS (OP_MASK_SA4, OP_SH_SA4); break;
8621 case '5': USE_BITS (OP_MASK_IMM8, OP_SH_IMM8); break;
8622 case '6': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8623 case '7': USE_BITS (OP_MASK_DSPACC, OP_SH_DSPACC); break;
8624 case '8': USE_BITS (OP_MASK_WRDSP, OP_SH_WRDSP); break;
8625 case '9': USE_BITS (OP_MASK_DSPACC_S, OP_SH_DSPACC_S);break;
8626 case '0': USE_BITS (OP_MASK_DSPSFT, OP_SH_DSPSFT); break;
8627 case '\'': USE_BITS (OP_MASK_RDDSP, OP_SH_RDDSP); break;
8628 case ':': USE_BITS (OP_MASK_DSPSFT_7, OP_SH_DSPSFT_7);break;
8629 case '@': USE_BITS (OP_MASK_IMM10, OP_SH_IMM10); break;
8630 case '!': USE_BITS (OP_MASK_MT_U, OP_SH_MT_U); break;
8631 case '$': USE_BITS (OP_MASK_MT_H, OP_SH_MT_H); break;
8632 case '*': USE_BITS (OP_MASK_MTACC_T, OP_SH_MTACC_T); break;
8633 case '&': USE_BITS (OP_MASK_MTACC_D, OP_SH_MTACC_D); break;
8634 case 'g': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
8635 default:
8636 as_bad (_("internal: bad mips opcode (unknown operand type `%c'): %s %s"),
8637 c, opc->name, opc->args);
8638 return 0;
8639 }
8640 #undef USE_BITS
8641 if (used_bits != 0xffffffff)
8642 {
8643 as_bad (_("internal: bad mips opcode (bits 0x%lx undefined): %s %s"),
8644 ~used_bits & 0xffffffff, opc->name, opc->args);
8645 return 0;
8646 }
8647 return 1;
8648 }
8649
8650 /* UDI immediates. */
8651 struct mips_immed {
8652 char type;
8653 unsigned int shift;
8654 unsigned long mask;
8655 const char * desc;
8656 };
8657
8658 static const struct mips_immed mips_immed[] = {
8659 { '1', OP_SH_UDI1, OP_MASK_UDI1, 0},
8660 { '2', OP_SH_UDI2, OP_MASK_UDI2, 0},
8661 { '3', OP_SH_UDI3, OP_MASK_UDI3, 0},
8662 { '4', OP_SH_UDI4, OP_MASK_UDI4, 0},
8663 { 0,0,0,0 }
8664 };
8665
8666 /* Check whether an odd floating-point register is allowed. */
8667 static int
8668 mips_oddfpreg_ok (const struct mips_opcode *insn, int argnum)
8669 {
8670 const char *s = insn->name;
8671
8672 if (insn->pinfo == INSN_MACRO)
8673 /* Let a macro pass, we'll catch it later when it is expanded. */
8674 return 1;
8675
8676 if (ISA_HAS_ODD_SINGLE_FPR (mips_opts.isa))
8677 {
8678 /* Allow odd registers for single-precision ops. */
8679 switch (insn->pinfo & (FP_S | FP_D))
8680 {
8681 case FP_S:
8682 case 0:
8683 return 1; /* both single precision - ok */
8684 case FP_D:
8685 return 0; /* both double precision - fail */
8686 default:
8687 break;
8688 }
8689
8690 /* Cvt.w.x and cvt.x.w allow an odd register for a 'w' or 's' operand. */
8691 s = strchr (insn->name, '.');
8692 if (argnum == 2)
8693 s = s != NULL ? strchr (s + 1, '.') : NULL;
8694 return (s != NULL && (s[1] == 'w' || s[1] == 's'));
8695 }
8696
8697 /* Single-precision coprocessor loads and moves are OK too. */
8698 if ((insn->pinfo & FP_S)
8699 && (insn->pinfo & (INSN_COPROC_MEMORY_DELAY | INSN_STORE_MEMORY
8700 | INSN_LOAD_COPROC_DELAY | INSN_COPROC_MOVE_DELAY)))
8701 return 1;
8702
8703 return 0;
8704 }
8705
8706 /* This routine assembles an instruction into its binary format. As a
8707 side effect, it sets one of the global variables imm_reloc or
8708 offset_reloc to the type of relocation to do if one of the operands
8709 is an address expression. */
8710
8711 static void
8712 mips_ip (char *str, struct mips_cl_insn *ip)
8713 {
8714 char *s;
8715 const char *args;
8716 char c = 0;
8717 struct mips_opcode *insn;
8718 char *argsStart;
8719 unsigned int regno;
8720 unsigned int lastregno = 0;
8721 unsigned int lastpos = 0;
8722 unsigned int limlo, limhi;
8723 char *s_reset;
8724 char save_c = 0;
8725 offsetT min_range, max_range;
8726 int argnum;
8727 unsigned int rtype;
8728
8729 insn_error = NULL;
8730
8731 /* If the instruction contains a '.', we first try to match an instruction
8732 including the '.'. Then we try again without the '.'. */
8733 insn = NULL;
8734 for (s = str; *s != '\0' && !ISSPACE (*s); ++s)
8735 continue;
8736
8737 /* If we stopped on whitespace, then replace the whitespace with null for
8738 the call to hash_find. Save the character we replaced just in case we
8739 have to re-parse the instruction. */
8740 if (ISSPACE (*s))
8741 {
8742 save_c = *s;
8743 *s++ = '\0';
8744 }
8745
8746 insn = (struct mips_opcode *) hash_find (op_hash, str);
8747
8748 /* If we didn't find the instruction in the opcode table, try again, but
8749 this time with just the instruction up to, but not including the
8750 first '.'. */
8751 if (insn == NULL)
8752 {
8753 /* Restore the character we overwrite above (if any). */
8754 if (save_c)
8755 *(--s) = save_c;
8756
8757 /* Scan up to the first '.' or whitespace. */
8758 for (s = str;
8759 *s != '\0' && *s != '.' && !ISSPACE (*s);
8760 ++s)
8761 continue;
8762
8763 /* If we did not find a '.', then we can quit now. */
8764 if (*s != '.')
8765 {
8766 insn_error = _("unrecognized opcode");
8767 return;
8768 }
8769
8770 /* Lookup the instruction in the hash table. */
8771 *s++ = '\0';
8772 if ((insn = (struct mips_opcode *) hash_find (op_hash, str)) == NULL)
8773 {
8774 insn_error = _("unrecognized opcode");
8775 return;
8776 }
8777 }
8778
8779 argsStart = s;
8780 for (;;)
8781 {
8782 bfd_boolean ok;
8783
8784 gas_assert (strcmp (insn->name, str) == 0);
8785
8786 ok = is_opcode_valid (insn);
8787 if (! ok)
8788 {
8789 if (insn + 1 < &mips_opcodes[NUMOPCODES]
8790 && strcmp (insn->name, insn[1].name) == 0)
8791 {
8792 ++insn;
8793 continue;
8794 }
8795 else
8796 {
8797 if (!insn_error)
8798 {
8799 static char buf[100];
8800 sprintf (buf,
8801 _("opcode not supported on this processor: %s (%s)"),
8802 mips_cpu_info_from_arch (mips_opts.arch)->name,
8803 mips_cpu_info_from_isa (mips_opts.isa)->name);
8804 insn_error = buf;
8805 }
8806 if (save_c)
8807 *(--s) = save_c;
8808 return;
8809 }
8810 }
8811
8812 create_insn (ip, insn);
8813 insn_error = NULL;
8814 argnum = 1;
8815 lastregno = 0xffffffff;
8816 for (args = insn->args;; ++args)
8817 {
8818 int is_mdmx;
8819
8820 s += strspn (s, " \t");
8821 is_mdmx = 0;
8822 switch (*args)
8823 {
8824 case '\0': /* end of args */
8825 if (*s == '\0')
8826 return;
8827 break;
8828
8829 case '2': /* dsp 2-bit unsigned immediate in bit 11 */
8830 my_getExpression (&imm_expr, s);
8831 check_absolute_expr (ip, &imm_expr);
8832 if ((unsigned long) imm_expr.X_add_number != 1
8833 && (unsigned long) imm_expr.X_add_number != 3)
8834 {
8835 as_bad (_("BALIGN immediate not 1 or 3 (%lu)"),
8836 (unsigned long) imm_expr.X_add_number);
8837 }
8838 INSERT_OPERAND (BP, *ip, imm_expr.X_add_number);
8839 imm_expr.X_op = O_absent;
8840 s = expr_end;
8841 continue;
8842
8843 case '3': /* dsp 3-bit unsigned immediate in bit 21 */
8844 my_getExpression (&imm_expr, s);
8845 check_absolute_expr (ip, &imm_expr);
8846 if (imm_expr.X_add_number & ~OP_MASK_SA3)
8847 {
8848 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8849 OP_MASK_SA3, (unsigned long) imm_expr.X_add_number);
8850 }
8851 INSERT_OPERAND (SA3, *ip, imm_expr.X_add_number);
8852 imm_expr.X_op = O_absent;
8853 s = expr_end;
8854 continue;
8855
8856 case '4': /* dsp 4-bit unsigned immediate in bit 21 */
8857 my_getExpression (&imm_expr, s);
8858 check_absolute_expr (ip, &imm_expr);
8859 if (imm_expr.X_add_number & ~OP_MASK_SA4)
8860 {
8861 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8862 OP_MASK_SA4, (unsigned long) imm_expr.X_add_number);
8863 }
8864 INSERT_OPERAND (SA4, *ip, imm_expr.X_add_number);
8865 imm_expr.X_op = O_absent;
8866 s = expr_end;
8867 continue;
8868
8869 case '5': /* dsp 8-bit unsigned immediate in bit 16 */
8870 my_getExpression (&imm_expr, s);
8871 check_absolute_expr (ip, &imm_expr);
8872 if (imm_expr.X_add_number & ~OP_MASK_IMM8)
8873 {
8874 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8875 OP_MASK_IMM8, (unsigned long) imm_expr.X_add_number);
8876 }
8877 INSERT_OPERAND (IMM8, *ip, imm_expr.X_add_number);
8878 imm_expr.X_op = O_absent;
8879 s = expr_end;
8880 continue;
8881
8882 case '6': /* dsp 5-bit unsigned immediate in bit 21 */
8883 my_getExpression (&imm_expr, s);
8884 check_absolute_expr (ip, &imm_expr);
8885 if (imm_expr.X_add_number & ~OP_MASK_RS)
8886 {
8887 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8888 OP_MASK_RS, (unsigned long) imm_expr.X_add_number);
8889 }
8890 INSERT_OPERAND (RS, *ip, imm_expr.X_add_number);
8891 imm_expr.X_op = O_absent;
8892 s = expr_end;
8893 continue;
8894
8895 case '7': /* four dsp accumulators in bits 11,12 */
8896 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
8897 s[3] >= '0' && s[3] <= '3')
8898 {
8899 regno = s[3] - '0';
8900 s += 4;
8901 INSERT_OPERAND (DSPACC, *ip, regno);
8902 continue;
8903 }
8904 else
8905 as_bad (_("Invalid dsp acc register"));
8906 break;
8907
8908 case '8': /* dsp 6-bit unsigned immediate in bit 11 */
8909 my_getExpression (&imm_expr, s);
8910 check_absolute_expr (ip, &imm_expr);
8911 if (imm_expr.X_add_number & ~OP_MASK_WRDSP)
8912 {
8913 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8914 OP_MASK_WRDSP,
8915 (unsigned long) imm_expr.X_add_number);
8916 }
8917 INSERT_OPERAND (WRDSP, *ip, imm_expr.X_add_number);
8918 imm_expr.X_op = O_absent;
8919 s = expr_end;
8920 continue;
8921
8922 case '9': /* four dsp accumulators in bits 21,22 */
8923 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
8924 s[3] >= '0' && s[3] <= '3')
8925 {
8926 regno = s[3] - '0';
8927 s += 4;
8928 INSERT_OPERAND (DSPACC_S, *ip, regno);
8929 continue;
8930 }
8931 else
8932 as_bad (_("Invalid dsp acc register"));
8933 break;
8934
8935 case '0': /* dsp 6-bit signed immediate in bit 20 */
8936 my_getExpression (&imm_expr, s);
8937 check_absolute_expr (ip, &imm_expr);
8938 min_range = -((OP_MASK_DSPSFT + 1) >> 1);
8939 max_range = ((OP_MASK_DSPSFT + 1) >> 1) - 1;
8940 if (imm_expr.X_add_number < min_range ||
8941 imm_expr.X_add_number > max_range)
8942 {
8943 as_bad (_("DSP immediate not in range %ld..%ld (%ld)"),
8944 (long) min_range, (long) max_range,
8945 (long) imm_expr.X_add_number);
8946 }
8947 INSERT_OPERAND (DSPSFT, *ip, imm_expr.X_add_number);
8948 imm_expr.X_op = O_absent;
8949 s = expr_end;
8950 continue;
8951
8952 case '\'': /* dsp 6-bit unsigned immediate in bit 16 */
8953 my_getExpression (&imm_expr, s);
8954 check_absolute_expr (ip, &imm_expr);
8955 if (imm_expr.X_add_number & ~OP_MASK_RDDSP)
8956 {
8957 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8958 OP_MASK_RDDSP,
8959 (unsigned long) imm_expr.X_add_number);
8960 }
8961 INSERT_OPERAND (RDDSP, *ip, imm_expr.X_add_number);
8962 imm_expr.X_op = O_absent;
8963 s = expr_end;
8964 continue;
8965
8966 case ':': /* dsp 7-bit signed immediate in bit 19 */
8967 my_getExpression (&imm_expr, s);
8968 check_absolute_expr (ip, &imm_expr);
8969 min_range = -((OP_MASK_DSPSFT_7 + 1) >> 1);
8970 max_range = ((OP_MASK_DSPSFT_7 + 1) >> 1) - 1;
8971 if (imm_expr.X_add_number < min_range ||
8972 imm_expr.X_add_number > max_range)
8973 {
8974 as_bad (_("DSP immediate not in range %ld..%ld (%ld)"),
8975 (long) min_range, (long) max_range,
8976 (long) imm_expr.X_add_number);
8977 }
8978 INSERT_OPERAND (DSPSFT_7, *ip, imm_expr.X_add_number);
8979 imm_expr.X_op = O_absent;
8980 s = expr_end;
8981 continue;
8982
8983 case '@': /* dsp 10-bit signed immediate in bit 16 */
8984 my_getExpression (&imm_expr, s);
8985 check_absolute_expr (ip, &imm_expr);
8986 min_range = -((OP_MASK_IMM10 + 1) >> 1);
8987 max_range = ((OP_MASK_IMM10 + 1) >> 1) - 1;
8988 if (imm_expr.X_add_number < min_range ||
8989 imm_expr.X_add_number > max_range)
8990 {
8991 as_bad (_("DSP immediate not in range %ld..%ld (%ld)"),
8992 (long) min_range, (long) max_range,
8993 (long) imm_expr.X_add_number);
8994 }
8995 INSERT_OPERAND (IMM10, *ip, imm_expr.X_add_number);
8996 imm_expr.X_op = O_absent;
8997 s = expr_end;
8998 continue;
8999
9000 case '!': /* MT usermode flag bit. */
9001 my_getExpression (&imm_expr, s);
9002 check_absolute_expr (ip, &imm_expr);
9003 if (imm_expr.X_add_number & ~OP_MASK_MT_U)
9004 as_bad (_("MT usermode bit not 0 or 1 (%lu)"),
9005 (unsigned long) imm_expr.X_add_number);
9006 INSERT_OPERAND (MT_U, *ip, imm_expr.X_add_number);
9007 imm_expr.X_op = O_absent;
9008 s = expr_end;
9009 continue;
9010
9011 case '$': /* MT load high flag bit. */
9012 my_getExpression (&imm_expr, s);
9013 check_absolute_expr (ip, &imm_expr);
9014 if (imm_expr.X_add_number & ~OP_MASK_MT_H)
9015 as_bad (_("MT load high bit not 0 or 1 (%lu)"),
9016 (unsigned long) imm_expr.X_add_number);
9017 INSERT_OPERAND (MT_H, *ip, imm_expr.X_add_number);
9018 imm_expr.X_op = O_absent;
9019 s = expr_end;
9020 continue;
9021
9022 case '*': /* four dsp accumulators in bits 18,19 */
9023 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
9024 s[3] >= '0' && s[3] <= '3')
9025 {
9026 regno = s[3] - '0';
9027 s += 4;
9028 INSERT_OPERAND (MTACC_T, *ip, regno);
9029 continue;
9030 }
9031 else
9032 as_bad (_("Invalid dsp/smartmips acc register"));
9033 break;
9034
9035 case '&': /* four dsp accumulators in bits 13,14 */
9036 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
9037 s[3] >= '0' && s[3] <= '3')
9038 {
9039 regno = s[3] - '0';
9040 s += 4;
9041 INSERT_OPERAND (MTACC_D, *ip, regno);
9042 continue;
9043 }
9044 else
9045 as_bad (_("Invalid dsp/smartmips acc register"));
9046 break;
9047
9048 case ',':
9049 ++argnum;
9050 if (*s++ == *args)
9051 continue;
9052 s--;
9053 switch (*++args)
9054 {
9055 case 'r':
9056 case 'v':
9057 INSERT_OPERAND (RS, *ip, lastregno);
9058 continue;
9059
9060 case 'w':
9061 INSERT_OPERAND (RT, *ip, lastregno);
9062 continue;
9063
9064 case 'W':
9065 INSERT_OPERAND (FT, *ip, lastregno);
9066 continue;
9067
9068 case 'V':
9069 INSERT_OPERAND (FS, *ip, lastregno);
9070 continue;
9071 }
9072 break;
9073
9074 case '(':
9075 /* Handle optional base register.
9076 Either the base register is omitted or
9077 we must have a left paren. */
9078 /* This is dependent on the next operand specifier
9079 is a base register specification. */
9080 gas_assert (args[1] == 'b' || args[1] == '5'
9081 || args[1] == '-' || args[1] == '4');
9082 if (*s == '\0')
9083 return;
9084
9085 case ')': /* these must match exactly */
9086 case '[':
9087 case ']':
9088 if (*s++ == *args)
9089 continue;
9090 break;
9091
9092 case '+': /* Opcode extension character. */
9093 switch (*++args)
9094 {
9095 case '1': /* UDI immediates. */
9096 case '2':
9097 case '3':
9098 case '4':
9099 {
9100 const struct mips_immed *imm = mips_immed;
9101
9102 while (imm->type && imm->type != *args)
9103 ++imm;
9104 if (! imm->type)
9105 internalError ();
9106 my_getExpression (&imm_expr, s);
9107 check_absolute_expr (ip, &imm_expr);
9108 if ((unsigned long) imm_expr.X_add_number & ~imm->mask)
9109 {
9110 as_warn (_("Illegal %s number (%lu, 0x%lx)"),
9111 imm->desc ? imm->desc : ip->insn_mo->name,
9112 (unsigned long) imm_expr.X_add_number,
9113 (unsigned long) imm_expr.X_add_number);
9114 imm_expr.X_add_number &= imm->mask;
9115 }
9116 ip->insn_opcode |= ((unsigned long) imm_expr.X_add_number
9117 << imm->shift);
9118 imm_expr.X_op = O_absent;
9119 s = expr_end;
9120 }
9121 continue;
9122
9123 case 'A': /* ins/ext position, becomes LSB. */
9124 limlo = 0;
9125 limhi = 31;
9126 goto do_lsb;
9127 case 'E':
9128 limlo = 32;
9129 limhi = 63;
9130 goto do_lsb;
9131 do_lsb:
9132 my_getExpression (&imm_expr, s);
9133 check_absolute_expr (ip, &imm_expr);
9134 if ((unsigned long) imm_expr.X_add_number < limlo
9135 || (unsigned long) imm_expr.X_add_number > limhi)
9136 {
9137 as_bad (_("Improper position (%lu)"),
9138 (unsigned long) imm_expr.X_add_number);
9139 imm_expr.X_add_number = limlo;
9140 }
9141 lastpos = imm_expr.X_add_number;
9142 INSERT_OPERAND (SHAMT, *ip, imm_expr.X_add_number);
9143 imm_expr.X_op = O_absent;
9144 s = expr_end;
9145 continue;
9146
9147 case 'B': /* ins size, becomes MSB. */
9148 limlo = 1;
9149 limhi = 32;
9150 goto do_msb;
9151 case 'F':
9152 limlo = 33;
9153 limhi = 64;
9154 goto do_msb;
9155 do_msb:
9156 my_getExpression (&imm_expr, s);
9157 check_absolute_expr (ip, &imm_expr);
9158 /* Check for negative input so that small negative numbers
9159 will not succeed incorrectly. The checks against
9160 (pos+size) transitively check "size" itself,
9161 assuming that "pos" is reasonable. */
9162 if ((long) imm_expr.X_add_number < 0
9163 || ((unsigned long) imm_expr.X_add_number
9164 + lastpos) < limlo
9165 || ((unsigned long) imm_expr.X_add_number
9166 + lastpos) > limhi)
9167 {
9168 as_bad (_("Improper insert size (%lu, position %lu)"),
9169 (unsigned long) imm_expr.X_add_number,
9170 (unsigned long) lastpos);
9171 imm_expr.X_add_number = limlo - lastpos;
9172 }
9173 INSERT_OPERAND (INSMSB, *ip,
9174 lastpos + imm_expr.X_add_number - 1);
9175 imm_expr.X_op = O_absent;
9176 s = expr_end;
9177 continue;
9178
9179 case 'C': /* ext size, becomes MSBD. */
9180 limlo = 1;
9181 limhi = 32;
9182 goto do_msbd;
9183 case 'G':
9184 limlo = 33;
9185 limhi = 64;
9186 goto do_msbd;
9187 case 'H':
9188 limlo = 33;
9189 limhi = 64;
9190 goto do_msbd;
9191 do_msbd:
9192 my_getExpression (&imm_expr, s);
9193 check_absolute_expr (ip, &imm_expr);
9194 /* Check for negative input so that small negative numbers
9195 will not succeed incorrectly. The checks against
9196 (pos+size) transitively check "size" itself,
9197 assuming that "pos" is reasonable. */
9198 if ((long) imm_expr.X_add_number < 0
9199 || ((unsigned long) imm_expr.X_add_number
9200 + lastpos) < limlo
9201 || ((unsigned long) imm_expr.X_add_number
9202 + lastpos) > limhi)
9203 {
9204 as_bad (_("Improper extract size (%lu, position %lu)"),
9205 (unsigned long) imm_expr.X_add_number,
9206 (unsigned long) lastpos);
9207 imm_expr.X_add_number = limlo - lastpos;
9208 }
9209 INSERT_OPERAND (EXTMSBD, *ip, imm_expr.X_add_number - 1);
9210 imm_expr.X_op = O_absent;
9211 s = expr_end;
9212 continue;
9213
9214 case 'D':
9215 /* +D is for disassembly only; never match. */
9216 break;
9217
9218 case 'I':
9219 /* "+I" is like "I", except that imm2_expr is used. */
9220 my_getExpression (&imm2_expr, s);
9221 if (imm2_expr.X_op != O_big
9222 && imm2_expr.X_op != O_constant)
9223 insn_error = _("absolute expression required");
9224 if (HAVE_32BIT_GPRS)
9225 normalize_constant_expr (&imm2_expr);
9226 s = expr_end;
9227 continue;
9228
9229 case 'T': /* Coprocessor register. */
9230 /* +T is for disassembly only; never match. */
9231 break;
9232
9233 case 't': /* Coprocessor register number. */
9234 if (s[0] == '$' && ISDIGIT (s[1]))
9235 {
9236 ++s;
9237 regno = 0;
9238 do
9239 {
9240 regno *= 10;
9241 regno += *s - '0';
9242 ++s;
9243 }
9244 while (ISDIGIT (*s));
9245 if (regno > 31)
9246 as_bad (_("Invalid register number (%d)"), regno);
9247 else
9248 {
9249 INSERT_OPERAND (RT, *ip, regno);
9250 continue;
9251 }
9252 }
9253 else
9254 as_bad (_("Invalid coprocessor 0 register number"));
9255 break;
9256
9257 case 'x':
9258 /* bbit[01] and bbit[01]32 bit index. Give error if index
9259 is not in the valid range. */
9260 my_getExpression (&imm_expr, s);
9261 check_absolute_expr (ip, &imm_expr);
9262 if ((unsigned) imm_expr.X_add_number > 31)
9263 {
9264 as_bad (_("Improper bit index (%lu)"),
9265 (unsigned long) imm_expr.X_add_number);
9266 imm_expr.X_add_number = 0;
9267 }
9268 INSERT_OPERAND (BBITIND, *ip, imm_expr.X_add_number);
9269 imm_expr.X_op = O_absent;
9270 s = expr_end;
9271 continue;
9272
9273 case 'X':
9274 /* bbit[01] bit index when bbit is used but we generate
9275 bbit[01]32 because the index is over 32. Move to the
9276 next candidate if index is not in the valid range. */
9277 my_getExpression (&imm_expr, s);
9278 check_absolute_expr (ip, &imm_expr);
9279 if ((unsigned) imm_expr.X_add_number < 32
9280 || (unsigned) imm_expr.X_add_number > 63)
9281 break;
9282 INSERT_OPERAND (BBITIND, *ip, imm_expr.X_add_number - 32);
9283 imm_expr.X_op = O_absent;
9284 s = expr_end;
9285 continue;
9286
9287 case 'p':
9288 /* cins, cins32, exts and exts32 position field. Give error
9289 if it's not in the valid range. */
9290 my_getExpression (&imm_expr, s);
9291 check_absolute_expr (ip, &imm_expr);
9292 if ((unsigned) imm_expr.X_add_number > 31)
9293 {
9294 as_bad (_("Improper position (%lu)"),
9295 (unsigned long) imm_expr.X_add_number);
9296 imm_expr.X_add_number = 0;
9297 }
9298 /* Make the pos explicit to simplify +S. */
9299 lastpos = imm_expr.X_add_number + 32;
9300 INSERT_OPERAND (CINSPOS, *ip, imm_expr.X_add_number);
9301 imm_expr.X_op = O_absent;
9302 s = expr_end;
9303 continue;
9304
9305 case 'P':
9306 /* cins, cins32, exts and exts32 position field. Move to
9307 the next candidate if it's not in the valid range. */
9308 my_getExpression (&imm_expr, s);
9309 check_absolute_expr (ip, &imm_expr);
9310 if ((unsigned) imm_expr.X_add_number < 32
9311 || (unsigned) imm_expr.X_add_number > 63)
9312 break;
9313 lastpos = imm_expr.X_add_number;
9314 INSERT_OPERAND (CINSPOS, *ip, imm_expr.X_add_number - 32);
9315 imm_expr.X_op = O_absent;
9316 s = expr_end;
9317 continue;
9318
9319 case 's':
9320 /* cins and exts length-minus-one field. */
9321 my_getExpression (&imm_expr, s);
9322 check_absolute_expr (ip, &imm_expr);
9323 if ((unsigned long) imm_expr.X_add_number > 31)
9324 {
9325 as_bad (_("Improper size (%lu)"),
9326 (unsigned long) imm_expr.X_add_number);
9327 imm_expr.X_add_number = 0;
9328 }
9329 INSERT_OPERAND (CINSLM1, *ip, imm_expr.X_add_number);
9330 imm_expr.X_op = O_absent;
9331 s = expr_end;
9332 continue;
9333
9334 case 'S':
9335 /* cins32/exts32 and cins/exts aliasing cint32/exts32
9336 length-minus-one field. */
9337 my_getExpression (&imm_expr, s);
9338 check_absolute_expr (ip, &imm_expr);
9339 if ((long) imm_expr.X_add_number < 0
9340 || (unsigned long) imm_expr.X_add_number + lastpos > 63)
9341 {
9342 as_bad (_("Improper size (%lu)"),
9343 (unsigned long) imm_expr.X_add_number);
9344 imm_expr.X_add_number = 0;
9345 }
9346 INSERT_OPERAND (CINSLM1, *ip, imm_expr.X_add_number);
9347 imm_expr.X_op = O_absent;
9348 s = expr_end;
9349 continue;
9350
9351 case 'Q':
9352 /* seqi/snei immediate field. */
9353 my_getExpression (&imm_expr, s);
9354 check_absolute_expr (ip, &imm_expr);
9355 if ((long) imm_expr.X_add_number < -512
9356 || (long) imm_expr.X_add_number >= 512)
9357 {
9358 as_bad (_("Improper immediate (%ld)"),
9359 (long) imm_expr.X_add_number);
9360 imm_expr.X_add_number = 0;
9361 }
9362 INSERT_OPERAND (SEQI, *ip, imm_expr.X_add_number);
9363 imm_expr.X_op = O_absent;
9364 s = expr_end;
9365 continue;
9366
9367 default:
9368 as_bad (_("internal: bad mips opcode (unknown extension operand type `+%c'): %s %s"),
9369 *args, insn->name, insn->args);
9370 /* Further processing is fruitless. */
9371 return;
9372 }
9373 break;
9374
9375 case '<': /* must be at least one digit */
9376 /*
9377 * According to the manual, if the shift amount is greater
9378 * than 31 or less than 0, then the shift amount should be
9379 * mod 32. In reality the mips assembler issues an error.
9380 * We issue a warning and mask out all but the low 5 bits.
9381 */
9382 my_getExpression (&imm_expr, s);
9383 check_absolute_expr (ip, &imm_expr);
9384 if ((unsigned long) imm_expr.X_add_number > 31)
9385 as_warn (_("Improper shift amount (%lu)"),
9386 (unsigned long) imm_expr.X_add_number);
9387 INSERT_OPERAND (SHAMT, *ip, imm_expr.X_add_number);
9388 imm_expr.X_op = O_absent;
9389 s = expr_end;
9390 continue;
9391
9392 case '>': /* shift amount minus 32 */
9393 my_getExpression (&imm_expr, s);
9394 check_absolute_expr (ip, &imm_expr);
9395 if ((unsigned long) imm_expr.X_add_number < 32
9396 || (unsigned long) imm_expr.X_add_number > 63)
9397 break;
9398 INSERT_OPERAND (SHAMT, *ip, imm_expr.X_add_number - 32);
9399 imm_expr.X_op = O_absent;
9400 s = expr_end;
9401 continue;
9402
9403 case 'k': /* cache code */
9404 case 'h': /* prefx code */
9405 case '1': /* sync type */
9406 my_getExpression (&imm_expr, s);
9407 check_absolute_expr (ip, &imm_expr);
9408 if ((unsigned long) imm_expr.X_add_number > 31)
9409 as_warn (_("Invalid value for `%s' (%lu)"),
9410 ip->insn_mo->name,
9411 (unsigned long) imm_expr.X_add_number);
9412 if (*args == 'k')
9413 {
9414 if (mips_fix_cn63xxp1 && strcmp ("pref", insn->name) == 0)
9415 switch (imm_expr.X_add_number)
9416 {
9417 case 5:
9418 case 25:
9419 case 26:
9420 case 27:
9421 case 28:
9422 case 29:
9423 case 30:
9424 case 31: /* These are ok. */
9425 break;
9426
9427 default: /* The rest must be changed to 28. */
9428 imm_expr.X_add_number = 28;
9429 break;
9430 }
9431 INSERT_OPERAND (CACHE, *ip, imm_expr.X_add_number);
9432 }
9433 else if (*args == 'h')
9434 INSERT_OPERAND (PREFX, *ip, imm_expr.X_add_number);
9435 else
9436 INSERT_OPERAND (SHAMT, *ip, imm_expr.X_add_number);
9437 imm_expr.X_op = O_absent;
9438 s = expr_end;
9439 continue;
9440
9441 case 'c': /* break code */
9442 my_getExpression (&imm_expr, s);
9443 check_absolute_expr (ip, &imm_expr);
9444 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE)
9445 as_warn (_("Code for %s not in range 0..1023 (%lu)"),
9446 ip->insn_mo->name,
9447 (unsigned long) imm_expr.X_add_number);
9448 INSERT_OPERAND (CODE, *ip, imm_expr.X_add_number);
9449 imm_expr.X_op = O_absent;
9450 s = expr_end;
9451 continue;
9452
9453 case 'q': /* lower break code */
9454 my_getExpression (&imm_expr, s);
9455 check_absolute_expr (ip, &imm_expr);
9456 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE2)
9457 as_warn (_("Lower code for %s not in range 0..1023 (%lu)"),
9458 ip->insn_mo->name,
9459 (unsigned long) imm_expr.X_add_number);
9460 INSERT_OPERAND (CODE2, *ip, imm_expr.X_add_number);
9461 imm_expr.X_op = O_absent;
9462 s = expr_end;
9463 continue;
9464
9465 case 'B': /* 20-bit syscall/break code. */
9466 my_getExpression (&imm_expr, s);
9467 check_absolute_expr (ip, &imm_expr);
9468 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE20)
9469 as_warn (_("Code for %s not in range 0..1048575 (%lu)"),
9470 ip->insn_mo->name,
9471 (unsigned long) imm_expr.X_add_number);
9472 INSERT_OPERAND (CODE20, *ip, imm_expr.X_add_number);
9473 imm_expr.X_op = O_absent;
9474 s = expr_end;
9475 continue;
9476
9477 case 'C': /* Coprocessor code */
9478 my_getExpression (&imm_expr, s);
9479 check_absolute_expr (ip, &imm_expr);
9480 if ((unsigned long) imm_expr.X_add_number > OP_MASK_COPZ)
9481 {
9482 as_warn (_("Coproccesor code > 25 bits (%lu)"),
9483 (unsigned long) imm_expr.X_add_number);
9484 imm_expr.X_add_number &= OP_MASK_COPZ;
9485 }
9486 INSERT_OPERAND (COPZ, *ip, imm_expr.X_add_number);
9487 imm_expr.X_op = O_absent;
9488 s = expr_end;
9489 continue;
9490
9491 case 'J': /* 19-bit wait code. */
9492 my_getExpression (&imm_expr, s);
9493 check_absolute_expr (ip, &imm_expr);
9494 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE19)
9495 {
9496 as_warn (_("Illegal 19-bit code (%lu)"),
9497 (unsigned long) imm_expr.X_add_number);
9498 imm_expr.X_add_number &= OP_MASK_CODE19;
9499 }
9500 INSERT_OPERAND (CODE19, *ip, imm_expr.X_add_number);
9501 imm_expr.X_op = O_absent;
9502 s = expr_end;
9503 continue;
9504
9505 case 'P': /* Performance register. */
9506 my_getExpression (&imm_expr, s);
9507 check_absolute_expr (ip, &imm_expr);
9508 if (imm_expr.X_add_number != 0 && imm_expr.X_add_number != 1)
9509 as_warn (_("Invalid performance register (%lu)"),
9510 (unsigned long) imm_expr.X_add_number);
9511 INSERT_OPERAND (PERFREG, *ip, imm_expr.X_add_number);
9512 imm_expr.X_op = O_absent;
9513 s = expr_end;
9514 continue;
9515
9516 case 'G': /* Coprocessor destination register. */
9517 if (((ip->insn_opcode >> OP_SH_OP) & OP_MASK_OP) == OP_OP_COP0)
9518 ok = reg_lookup (&s, RTYPE_NUM | RTYPE_CP0, &regno);
9519 else
9520 ok = reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &regno);
9521 INSERT_OPERAND (RD, *ip, regno);
9522 if (ok)
9523 {
9524 lastregno = regno;
9525 continue;
9526 }
9527 else
9528 break;
9529
9530 case 'b': /* base register */
9531 case 'd': /* destination register */
9532 case 's': /* source register */
9533 case 't': /* target register */
9534 case 'r': /* both target and source */
9535 case 'v': /* both dest and source */
9536 case 'w': /* both dest and target */
9537 case 'E': /* coprocessor target register */
9538 case 'K': /* 'rdhwr' destination register */
9539 case 'x': /* ignore register name */
9540 case 'z': /* must be zero register */
9541 case 'U': /* destination register (clo/clz). */
9542 case 'g': /* coprocessor destination register */
9543 s_reset = s;
9544 if (*args == 'E' || *args == 'K')
9545 ok = reg_lookup (&s, RTYPE_NUM, &regno);
9546 else
9547 {
9548 ok = reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &regno);
9549 if (regno == AT && mips_opts.at)
9550 {
9551 if (mips_opts.at == ATREG)
9552 as_warn (_("used $at without \".set noat\""));
9553 else
9554 as_warn (_("used $%u with \".set at=$%u\""),
9555 regno, mips_opts.at);
9556 }
9557 }
9558 if (ok)
9559 {
9560 c = *args;
9561 if (*s == ' ')
9562 ++s;
9563 if (args[1] != *s)
9564 {
9565 if (c == 'r' || c == 'v' || c == 'w')
9566 {
9567 regno = lastregno;
9568 s = s_reset;
9569 ++args;
9570 }
9571 }
9572 /* 'z' only matches $0. */
9573 if (c == 'z' && regno != 0)
9574 break;
9575
9576 if (c == 's' && !strncmp (ip->insn_mo->name, "jalr", 4))
9577 {
9578 if (regno == lastregno)
9579 {
9580 insn_error = _("source and destination must be different");
9581 continue;
9582 }
9583 if (regno == 31 && lastregno == 0xffffffff)
9584 {
9585 insn_error = _("a destination register must be supplied");
9586 continue;
9587 }
9588 }
9589 /* Now that we have assembled one operand, we use the args string
9590 * to figure out where it goes in the instruction. */
9591 switch (c)
9592 {
9593 case 'r':
9594 case 's':
9595 case 'v':
9596 case 'b':
9597 INSERT_OPERAND (RS, *ip, regno);
9598 break;
9599 case 'd':
9600 case 'G':
9601 case 'K':
9602 case 'g':
9603 INSERT_OPERAND (RD, *ip, regno);
9604 break;
9605 case 'U':
9606 INSERT_OPERAND (RD, *ip, regno);
9607 INSERT_OPERAND (RT, *ip, regno);
9608 break;
9609 case 'w':
9610 case 't':
9611 case 'E':
9612 INSERT_OPERAND (RT, *ip, regno);
9613 break;
9614 case 'x':
9615 /* This case exists because on the r3000 trunc
9616 expands into a macro which requires a gp
9617 register. On the r6000 or r4000 it is
9618 assembled into a single instruction which
9619 ignores the register. Thus the insn version
9620 is MIPS_ISA2 and uses 'x', and the macro
9621 version is MIPS_ISA1 and uses 't'. */
9622 break;
9623 case 'z':
9624 /* This case is for the div instruction, which
9625 acts differently if the destination argument
9626 is $0. This only matches $0, and is checked
9627 outside the switch. */
9628 break;
9629 case 'D':
9630 /* Itbl operand; not yet implemented. FIXME ?? */
9631 break;
9632 /* What about all other operands like 'i', which
9633 can be specified in the opcode table? */
9634 }
9635 lastregno = regno;
9636 continue;
9637 }
9638 switch (*args++)
9639 {
9640 case 'r':
9641 case 'v':
9642 INSERT_OPERAND (RS, *ip, lastregno);
9643 continue;
9644 case 'w':
9645 INSERT_OPERAND (RT, *ip, lastregno);
9646 continue;
9647 }
9648 break;
9649
9650 case 'O': /* MDMX alignment immediate constant. */
9651 my_getExpression (&imm_expr, s);
9652 check_absolute_expr (ip, &imm_expr);
9653 if ((unsigned long) imm_expr.X_add_number > OP_MASK_ALN)
9654 as_warn (_("Improper align amount (%ld), using low bits"),
9655 (long) imm_expr.X_add_number);
9656 INSERT_OPERAND (ALN, *ip, imm_expr.X_add_number);
9657 imm_expr.X_op = O_absent;
9658 s = expr_end;
9659 continue;
9660
9661 case 'Q': /* MDMX vector, element sel, or const. */
9662 if (s[0] != '$')
9663 {
9664 /* MDMX Immediate. */
9665 my_getExpression (&imm_expr, s);
9666 check_absolute_expr (ip, &imm_expr);
9667 if ((unsigned long) imm_expr.X_add_number > OP_MASK_FT)
9668 as_warn (_("Invalid MDMX Immediate (%ld)"),
9669 (long) imm_expr.X_add_number);
9670 INSERT_OPERAND (FT, *ip, imm_expr.X_add_number);
9671 if (ip->insn_opcode & (OP_MASK_VSEL << OP_SH_VSEL))
9672 ip->insn_opcode |= MDMX_FMTSEL_IMM_QH << OP_SH_VSEL;
9673 else
9674 ip->insn_opcode |= MDMX_FMTSEL_IMM_OB << OP_SH_VSEL;
9675 imm_expr.X_op = O_absent;
9676 s = expr_end;
9677 continue;
9678 }
9679 /* Not MDMX Immediate. Fall through. */
9680 case 'X': /* MDMX destination register. */
9681 case 'Y': /* MDMX source register. */
9682 case 'Z': /* MDMX target register. */
9683 is_mdmx = 1;
9684 case 'D': /* floating point destination register */
9685 case 'S': /* floating point source register */
9686 case 'T': /* floating point target register */
9687 case 'R': /* floating point source register */
9688 case 'V':
9689 case 'W':
9690 rtype = RTYPE_FPU;
9691 if (is_mdmx
9692 || (mips_opts.ase_mdmx
9693 && (ip->insn_mo->pinfo & FP_D)
9694 && (ip->insn_mo->pinfo & (INSN_COPROC_MOVE_DELAY
9695 | INSN_COPROC_MEMORY_DELAY
9696 | INSN_LOAD_COPROC_DELAY
9697 | INSN_LOAD_MEMORY_DELAY
9698 | INSN_STORE_MEMORY))))
9699 rtype |= RTYPE_VEC;
9700 s_reset = s;
9701 if (reg_lookup (&s, rtype, &regno))
9702 {
9703 if ((regno & 1) != 0
9704 && HAVE_32BIT_FPRS
9705 && ! mips_oddfpreg_ok (ip->insn_mo, argnum))
9706 as_warn (_("Float register should be even, was %d"),
9707 regno);
9708
9709 c = *args;
9710 if (*s == ' ')
9711 ++s;
9712 if (args[1] != *s)
9713 {
9714 if (c == 'V' || c == 'W')
9715 {
9716 regno = lastregno;
9717 s = s_reset;
9718 ++args;
9719 }
9720 }
9721 switch (c)
9722 {
9723 case 'D':
9724 case 'X':
9725 INSERT_OPERAND (FD, *ip, regno);
9726 break;
9727 case 'V':
9728 case 'S':
9729 case 'Y':
9730 INSERT_OPERAND (FS, *ip, regno);
9731 break;
9732 case 'Q':
9733 /* This is like 'Z', but also needs to fix the MDMX
9734 vector/scalar select bits. Note that the
9735 scalar immediate case is handled above. */
9736 if (*s == '[')
9737 {
9738 int is_qh = (ip->insn_opcode & (1 << OP_SH_VSEL));
9739 int max_el = (is_qh ? 3 : 7);
9740 s++;
9741 my_getExpression(&imm_expr, s);
9742 check_absolute_expr (ip, &imm_expr);
9743 s = expr_end;
9744 if (imm_expr.X_add_number > max_el)
9745 as_bad (_("Bad element selector %ld"),
9746 (long) imm_expr.X_add_number);
9747 imm_expr.X_add_number &= max_el;
9748 ip->insn_opcode |= (imm_expr.X_add_number
9749 << (OP_SH_VSEL +
9750 (is_qh ? 2 : 1)));
9751 imm_expr.X_op = O_absent;
9752 if (*s != ']')
9753 as_warn (_("Expecting ']' found '%s'"), s);
9754 else
9755 s++;
9756 }
9757 else
9758 {
9759 if (ip->insn_opcode & (OP_MASK_VSEL << OP_SH_VSEL))
9760 ip->insn_opcode |= (MDMX_FMTSEL_VEC_QH
9761 << OP_SH_VSEL);
9762 else
9763 ip->insn_opcode |= (MDMX_FMTSEL_VEC_OB <<
9764 OP_SH_VSEL);
9765 }
9766 /* Fall through */
9767 case 'W':
9768 case 'T':
9769 case 'Z':
9770 INSERT_OPERAND (FT, *ip, regno);
9771 break;
9772 case 'R':
9773 INSERT_OPERAND (FR, *ip, regno);
9774 break;
9775 }
9776 lastregno = regno;
9777 continue;
9778 }
9779
9780 switch (*args++)
9781 {
9782 case 'V':
9783 INSERT_OPERAND (FS, *ip, lastregno);
9784 continue;
9785 case 'W':
9786 INSERT_OPERAND (FT, *ip, lastregno);
9787 continue;
9788 }
9789 break;
9790
9791 case 'I':
9792 my_getExpression (&imm_expr, s);
9793 if (imm_expr.X_op != O_big
9794 && imm_expr.X_op != O_constant)
9795 insn_error = _("absolute expression required");
9796 if (HAVE_32BIT_GPRS)
9797 normalize_constant_expr (&imm_expr);
9798 s = expr_end;
9799 continue;
9800
9801 case 'A':
9802 my_getExpression (&offset_expr, s);
9803 normalize_address_expr (&offset_expr);
9804 *imm_reloc = BFD_RELOC_32;
9805 s = expr_end;
9806 continue;
9807
9808 case 'F':
9809 case 'L':
9810 case 'f':
9811 case 'l':
9812 {
9813 int f64;
9814 int using_gprs;
9815 char *save_in;
9816 char *err;
9817 unsigned char temp[8];
9818 int len;
9819 unsigned int length;
9820 segT seg;
9821 subsegT subseg;
9822 char *p;
9823
9824 /* These only appear as the last operand in an
9825 instruction, and every instruction that accepts
9826 them in any variant accepts them in all variants.
9827 This means we don't have to worry about backing out
9828 any changes if the instruction does not match.
9829
9830 The difference between them is the size of the
9831 floating point constant and where it goes. For 'F'
9832 and 'L' the constant is 64 bits; for 'f' and 'l' it
9833 is 32 bits. Where the constant is placed is based
9834 on how the MIPS assembler does things:
9835 F -- .rdata
9836 L -- .lit8
9837 f -- immediate value
9838 l -- .lit4
9839
9840 The .lit4 and .lit8 sections are only used if
9841 permitted by the -G argument.
9842
9843 The code below needs to know whether the target register
9844 is 32 or 64 bits wide. It relies on the fact 'f' and
9845 'F' are used with GPR-based instructions and 'l' and
9846 'L' are used with FPR-based instructions. */
9847
9848 f64 = *args == 'F' || *args == 'L';
9849 using_gprs = *args == 'F' || *args == 'f';
9850
9851 save_in = input_line_pointer;
9852 input_line_pointer = s;
9853 err = md_atof (f64 ? 'd' : 'f', (char *) temp, &len);
9854 length = len;
9855 s = input_line_pointer;
9856 input_line_pointer = save_in;
9857 if (err != NULL && *err != '\0')
9858 {
9859 as_bad (_("Bad floating point constant: %s"), err);
9860 memset (temp, '\0', sizeof temp);
9861 length = f64 ? 8 : 4;
9862 }
9863
9864 gas_assert (length == (unsigned) (f64 ? 8 : 4));
9865
9866 if (*args == 'f'
9867 || (*args == 'l'
9868 && (g_switch_value < 4
9869 || (temp[0] == 0 && temp[1] == 0)
9870 || (temp[2] == 0 && temp[3] == 0))))
9871 {
9872 imm_expr.X_op = O_constant;
9873 if (! target_big_endian)
9874 imm_expr.X_add_number = bfd_getl32 (temp);
9875 else
9876 imm_expr.X_add_number = bfd_getb32 (temp);
9877 }
9878 else if (length > 4
9879 && ! mips_disable_float_construction
9880 /* Constants can only be constructed in GPRs and
9881 copied to FPRs if the GPRs are at least as wide
9882 as the FPRs. Force the constant into memory if
9883 we are using 64-bit FPRs but the GPRs are only
9884 32 bits wide. */
9885 && (using_gprs
9886 || ! (HAVE_64BIT_FPRS && HAVE_32BIT_GPRS))
9887 && ((temp[0] == 0 && temp[1] == 0)
9888 || (temp[2] == 0 && temp[3] == 0))
9889 && ((temp[4] == 0 && temp[5] == 0)
9890 || (temp[6] == 0 && temp[7] == 0)))
9891 {
9892 /* The value is simple enough to load with a couple of
9893 instructions. If using 32-bit registers, set
9894 imm_expr to the high order 32 bits and offset_expr to
9895 the low order 32 bits. Otherwise, set imm_expr to
9896 the entire 64 bit constant. */
9897 if (using_gprs ? HAVE_32BIT_GPRS : HAVE_32BIT_FPRS)
9898 {
9899 imm_expr.X_op = O_constant;
9900 offset_expr.X_op = O_constant;
9901 if (! target_big_endian)
9902 {
9903 imm_expr.X_add_number = bfd_getl32 (temp + 4);
9904 offset_expr.X_add_number = bfd_getl32 (temp);
9905 }
9906 else
9907 {
9908 imm_expr.X_add_number = bfd_getb32 (temp);
9909 offset_expr.X_add_number = bfd_getb32 (temp + 4);
9910 }
9911 if (offset_expr.X_add_number == 0)
9912 offset_expr.X_op = O_absent;
9913 }
9914 else if (sizeof (imm_expr.X_add_number) > 4)
9915 {
9916 imm_expr.X_op = O_constant;
9917 if (! target_big_endian)
9918 imm_expr.X_add_number = bfd_getl64 (temp);
9919 else
9920 imm_expr.X_add_number = bfd_getb64 (temp);
9921 }
9922 else
9923 {
9924 imm_expr.X_op = O_big;
9925 imm_expr.X_add_number = 4;
9926 if (! target_big_endian)
9927 {
9928 generic_bignum[0] = bfd_getl16 (temp);
9929 generic_bignum[1] = bfd_getl16 (temp + 2);
9930 generic_bignum[2] = bfd_getl16 (temp + 4);
9931 generic_bignum[3] = bfd_getl16 (temp + 6);
9932 }
9933 else
9934 {
9935 generic_bignum[0] = bfd_getb16 (temp + 6);
9936 generic_bignum[1] = bfd_getb16 (temp + 4);
9937 generic_bignum[2] = bfd_getb16 (temp + 2);
9938 generic_bignum[3] = bfd_getb16 (temp);
9939 }
9940 }
9941 }
9942 else
9943 {
9944 const char *newname;
9945 segT new_seg;
9946
9947 /* Switch to the right section. */
9948 seg = now_seg;
9949 subseg = now_subseg;
9950 switch (*args)
9951 {
9952 default: /* unused default case avoids warnings. */
9953 case 'L':
9954 newname = RDATA_SECTION_NAME;
9955 if (g_switch_value >= 8)
9956 newname = ".lit8";
9957 break;
9958 case 'F':
9959 newname = RDATA_SECTION_NAME;
9960 break;
9961 case 'l':
9962 gas_assert (g_switch_value >= 4);
9963 newname = ".lit4";
9964 break;
9965 }
9966 new_seg = subseg_new (newname, (subsegT) 0);
9967 if (IS_ELF)
9968 bfd_set_section_flags (stdoutput, new_seg,
9969 (SEC_ALLOC
9970 | SEC_LOAD
9971 | SEC_READONLY
9972 | SEC_DATA));
9973 frag_align (*args == 'l' ? 2 : 3, 0, 0);
9974 if (IS_ELF && strncmp (TARGET_OS, "elf", 3) != 0)
9975 record_alignment (new_seg, 4);
9976 else
9977 record_alignment (new_seg, *args == 'l' ? 2 : 3);
9978 if (seg == now_seg)
9979 as_bad (_("Can't use floating point insn in this section"));
9980
9981 /* Set the argument to the current address in the
9982 section. */
9983 offset_expr.X_op = O_symbol;
9984 offset_expr.X_add_symbol = symbol_temp_new_now ();
9985 offset_expr.X_add_number = 0;
9986
9987 /* Put the floating point number into the section. */
9988 p = frag_more ((int) length);
9989 memcpy (p, temp, length);
9990
9991 /* Switch back to the original section. */
9992 subseg_set (seg, subseg);
9993 }
9994 }
9995 continue;
9996
9997 case 'i': /* 16 bit unsigned immediate */
9998 case 'j': /* 16 bit signed immediate */
9999 *imm_reloc = BFD_RELOC_LO16;
10000 if (my_getSmallExpression (&imm_expr, imm_reloc, s) == 0)
10001 {
10002 int more;
10003 offsetT minval, maxval;
10004
10005 more = (insn + 1 < &mips_opcodes[NUMOPCODES]
10006 && strcmp (insn->name, insn[1].name) == 0);
10007
10008 /* If the expression was written as an unsigned number,
10009 only treat it as signed if there are no more
10010 alternatives. */
10011 if (more
10012 && *args == 'j'
10013 && sizeof (imm_expr.X_add_number) <= 4
10014 && imm_expr.X_op == O_constant
10015 && imm_expr.X_add_number < 0
10016 && imm_expr.X_unsigned
10017 && HAVE_64BIT_GPRS)
10018 break;
10019
10020 /* For compatibility with older assemblers, we accept
10021 0x8000-0xffff as signed 16-bit numbers when only
10022 signed numbers are allowed. */
10023 if (*args == 'i')
10024 minval = 0, maxval = 0xffff;
10025 else if (more)
10026 minval = -0x8000, maxval = 0x7fff;
10027 else
10028 minval = -0x8000, maxval = 0xffff;
10029
10030 if (imm_expr.X_op != O_constant
10031 || imm_expr.X_add_number < minval
10032 || imm_expr.X_add_number > maxval)
10033 {
10034 if (more)
10035 break;
10036 if (imm_expr.X_op == O_constant
10037 || imm_expr.X_op == O_big)
10038 as_bad (_("expression out of range"));
10039 }
10040 }
10041 s = expr_end;
10042 continue;
10043
10044 case 'o': /* 16 bit offset */
10045 /* Check whether there is only a single bracketed expression
10046 left. If so, it must be the base register and the
10047 constant must be zero. */
10048 if (*s == '(' && strchr (s + 1, '(') == 0)
10049 {
10050 offset_expr.X_op = O_constant;
10051 offset_expr.X_add_number = 0;
10052 continue;
10053 }
10054
10055 /* If this value won't fit into a 16 bit offset, then go
10056 find a macro that will generate the 32 bit offset
10057 code pattern. */
10058 if (my_getSmallExpression (&offset_expr, offset_reloc, s) == 0
10059 && (offset_expr.X_op != O_constant
10060 || offset_expr.X_add_number >= 0x8000
10061 || offset_expr.X_add_number < -0x8000))
10062 break;
10063
10064 s = expr_end;
10065 continue;
10066
10067 case 'p': /* pc relative offset */
10068 *offset_reloc = BFD_RELOC_16_PCREL_S2;
10069 my_getExpression (&offset_expr, s);
10070 s = expr_end;
10071 continue;
10072
10073 case 'u': /* upper 16 bits */
10074 if (my_getSmallExpression (&imm_expr, imm_reloc, s) == 0
10075 && imm_expr.X_op == O_constant
10076 && (imm_expr.X_add_number < 0
10077 || imm_expr.X_add_number >= 0x10000))
10078 as_bad (_("lui expression not in range 0..65535"));
10079 s = expr_end;
10080 continue;
10081
10082 case 'a': /* 26 bit address */
10083 my_getExpression (&offset_expr, s);
10084 s = expr_end;
10085 *offset_reloc = BFD_RELOC_MIPS_JMP;
10086 continue;
10087
10088 case 'N': /* 3 bit branch condition code */
10089 case 'M': /* 3 bit compare condition code */
10090 rtype = RTYPE_CCC;
10091 if (ip->insn_mo->pinfo & (FP_D| FP_S))
10092 rtype |= RTYPE_FCC;
10093 if (!reg_lookup (&s, rtype, &regno))
10094 break;
10095 if ((strcmp(str + strlen(str) - 3, ".ps") == 0
10096 || strcmp(str + strlen(str) - 5, "any2f") == 0
10097 || strcmp(str + strlen(str) - 5, "any2t") == 0)
10098 && (regno & 1) != 0)
10099 as_warn (_("Condition code register should be even for %s, was %d"),
10100 str, regno);
10101 if ((strcmp(str + strlen(str) - 5, "any4f") == 0
10102 || strcmp(str + strlen(str) - 5, "any4t") == 0)
10103 && (regno & 3) != 0)
10104 as_warn (_("Condition code register should be 0 or 4 for %s, was %d"),
10105 str, regno);
10106 if (*args == 'N')
10107 INSERT_OPERAND (BCC, *ip, regno);
10108 else
10109 INSERT_OPERAND (CCC, *ip, regno);
10110 continue;
10111
10112 case 'H':
10113 if (s[0] == '0' && (s[1] == 'x' || s[1] == 'X'))
10114 s += 2;
10115 if (ISDIGIT (*s))
10116 {
10117 c = 0;
10118 do
10119 {
10120 c *= 10;
10121 c += *s - '0';
10122 ++s;
10123 }
10124 while (ISDIGIT (*s));
10125 }
10126 else
10127 c = 8; /* Invalid sel value. */
10128
10129 if (c > 7)
10130 as_bad (_("invalid coprocessor sub-selection value (0-7)"));
10131 ip->insn_opcode |= c;
10132 continue;
10133
10134 case 'e':
10135 /* Must be at least one digit. */
10136 my_getExpression (&imm_expr, s);
10137 check_absolute_expr (ip, &imm_expr);
10138
10139 if ((unsigned long) imm_expr.X_add_number
10140 > (unsigned long) OP_MASK_VECBYTE)
10141 {
10142 as_bad (_("bad byte vector index (%ld)"),
10143 (long) imm_expr.X_add_number);
10144 imm_expr.X_add_number = 0;
10145 }
10146
10147 INSERT_OPERAND (VECBYTE, *ip, imm_expr.X_add_number);
10148 imm_expr.X_op = O_absent;
10149 s = expr_end;
10150 continue;
10151
10152 case '%':
10153 my_getExpression (&imm_expr, s);
10154 check_absolute_expr (ip, &imm_expr);
10155
10156 if ((unsigned long) imm_expr.X_add_number
10157 > (unsigned long) OP_MASK_VECALIGN)
10158 {
10159 as_bad (_("bad byte vector index (%ld)"),
10160 (long) imm_expr.X_add_number);
10161 imm_expr.X_add_number = 0;
10162 }
10163
10164 INSERT_OPERAND (VECALIGN, *ip, imm_expr.X_add_number);
10165 imm_expr.X_op = O_absent;
10166 s = expr_end;
10167 continue;
10168
10169 default:
10170 as_bad (_("bad char = '%c'\n"), *args);
10171 internalError ();
10172 }
10173 break;
10174 }
10175 /* Args don't match. */
10176 if (insn + 1 < &mips_opcodes[NUMOPCODES] &&
10177 !strcmp (insn->name, insn[1].name))
10178 {
10179 ++insn;
10180 s = argsStart;
10181 insn_error = _("illegal operands");
10182 continue;
10183 }
10184 if (save_c)
10185 *(--argsStart) = save_c;
10186 insn_error = _("illegal operands");
10187 return;
10188 }
10189 }
10190
10191 #define SKIP_SPACE_TABS(S) { while (*(S) == ' ' || *(S) == '\t') ++(S); }
10192
10193 /* This routine assembles an instruction into its binary format when
10194 assembling for the mips16. As a side effect, it sets one of the
10195 global variables imm_reloc or offset_reloc to the type of
10196 relocation to do if one of the operands is an address expression.
10197 It also sets mips16_small and mips16_ext if the user explicitly
10198 requested a small or extended instruction. */
10199
10200 static void
10201 mips16_ip (char *str, struct mips_cl_insn *ip)
10202 {
10203 char *s;
10204 const char *args;
10205 struct mips_opcode *insn;
10206 char *argsstart;
10207 unsigned int regno;
10208 unsigned int lastregno = 0;
10209 char *s_reset;
10210 size_t i;
10211
10212 insn_error = NULL;
10213
10214 mips16_small = FALSE;
10215 mips16_ext = FALSE;
10216
10217 for (s = str; ISLOWER (*s); ++s)
10218 ;
10219 switch (*s)
10220 {
10221 case '\0':
10222 break;
10223
10224 case ' ':
10225 *s++ = '\0';
10226 break;
10227
10228 case '.':
10229 if (s[1] == 't' && s[2] == ' ')
10230 {
10231 *s = '\0';
10232 mips16_small = TRUE;
10233 s += 3;
10234 break;
10235 }
10236 else if (s[1] == 'e' && s[2] == ' ')
10237 {
10238 *s = '\0';
10239 mips16_ext = TRUE;
10240 s += 3;
10241 break;
10242 }
10243 /* Fall through. */
10244 default:
10245 insn_error = _("unknown opcode");
10246 return;
10247 }
10248
10249 if (mips_opts.noautoextend && ! mips16_ext)
10250 mips16_small = TRUE;
10251
10252 if ((insn = (struct mips_opcode *) hash_find (mips16_op_hash, str)) == NULL)
10253 {
10254 insn_error = _("unrecognized opcode");
10255 return;
10256 }
10257
10258 argsstart = s;
10259 for (;;)
10260 {
10261 bfd_boolean ok;
10262
10263 gas_assert (strcmp (insn->name, str) == 0);
10264
10265 ok = is_opcode_valid_16 (insn);
10266 if (! ok)
10267 {
10268 if (insn + 1 < &mips16_opcodes[bfd_mips16_num_opcodes]
10269 && strcmp (insn->name, insn[1].name) == 0)
10270 {
10271 ++insn;
10272 continue;
10273 }
10274 else
10275 {
10276 if (!insn_error)
10277 {
10278 static char buf[100];
10279 sprintf (buf,
10280 _("opcode not supported on this processor: %s (%s)"),
10281 mips_cpu_info_from_arch (mips_opts.arch)->name,
10282 mips_cpu_info_from_isa (mips_opts.isa)->name);
10283 insn_error = buf;
10284 }
10285 return;
10286 }
10287 }
10288
10289 create_insn (ip, insn);
10290 imm_expr.X_op = O_absent;
10291 imm_reloc[0] = BFD_RELOC_UNUSED;
10292 imm_reloc[1] = BFD_RELOC_UNUSED;
10293 imm_reloc[2] = BFD_RELOC_UNUSED;
10294 imm2_expr.X_op = O_absent;
10295 offset_expr.X_op = O_absent;
10296 offset_reloc[0] = BFD_RELOC_UNUSED;
10297 offset_reloc[1] = BFD_RELOC_UNUSED;
10298 offset_reloc[2] = BFD_RELOC_UNUSED;
10299 for (args = insn->args; 1; ++args)
10300 {
10301 int c;
10302
10303 if (*s == ' ')
10304 ++s;
10305
10306 /* In this switch statement we call break if we did not find
10307 a match, continue if we did find a match, or return if we
10308 are done. */
10309
10310 c = *args;
10311 switch (c)
10312 {
10313 case '\0':
10314 if (*s == '\0')
10315 {
10316 /* Stuff the immediate value in now, if we can. */
10317 if (imm_expr.X_op == O_constant
10318 && *imm_reloc > BFD_RELOC_UNUSED
10319 && *imm_reloc != BFD_RELOC_MIPS16_GOT16
10320 && *imm_reloc != BFD_RELOC_MIPS16_CALL16
10321 && insn->pinfo != INSN_MACRO)
10322 {
10323 valueT tmp;
10324
10325 switch (*offset_reloc)
10326 {
10327 case BFD_RELOC_MIPS16_HI16_S:
10328 tmp = (imm_expr.X_add_number + 0x8000) >> 16;
10329 break;
10330
10331 case BFD_RELOC_MIPS16_HI16:
10332 tmp = imm_expr.X_add_number >> 16;
10333 break;
10334
10335 case BFD_RELOC_MIPS16_LO16:
10336 tmp = ((imm_expr.X_add_number + 0x8000) & 0xffff)
10337 - 0x8000;
10338 break;
10339
10340 case BFD_RELOC_UNUSED:
10341 tmp = imm_expr.X_add_number;
10342 break;
10343
10344 default:
10345 internalError ();
10346 }
10347 *offset_reloc = BFD_RELOC_UNUSED;
10348
10349 mips16_immed (NULL, 0, *imm_reloc - BFD_RELOC_UNUSED,
10350 tmp, TRUE, mips16_small,
10351 mips16_ext, &ip->insn_opcode,
10352 &ip->use_extend, &ip->extend);
10353 imm_expr.X_op = O_absent;
10354 *imm_reloc = BFD_RELOC_UNUSED;
10355 }
10356
10357 return;
10358 }
10359 break;
10360
10361 case ',':
10362 if (*s++ == c)
10363 continue;
10364 s--;
10365 switch (*++args)
10366 {
10367 case 'v':
10368 MIPS16_INSERT_OPERAND (RX, *ip, lastregno);
10369 continue;
10370 case 'w':
10371 MIPS16_INSERT_OPERAND (RY, *ip, lastregno);
10372 continue;
10373 }
10374 break;
10375
10376 case '(':
10377 case ')':
10378 if (*s++ == c)
10379 continue;
10380 break;
10381
10382 case 'v':
10383 case 'w':
10384 if (s[0] != '$')
10385 {
10386 if (c == 'v')
10387 MIPS16_INSERT_OPERAND (RX, *ip, lastregno);
10388 else
10389 MIPS16_INSERT_OPERAND (RY, *ip, lastregno);
10390 ++args;
10391 continue;
10392 }
10393 /* Fall through. */
10394 case 'x':
10395 case 'y':
10396 case 'z':
10397 case 'Z':
10398 case '0':
10399 case 'S':
10400 case 'R':
10401 case 'X':
10402 case 'Y':
10403 s_reset = s;
10404 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &regno))
10405 {
10406 if (c == 'v' || c == 'w')
10407 {
10408 if (c == 'v')
10409 MIPS16_INSERT_OPERAND (RX, *ip, lastregno);
10410 else
10411 MIPS16_INSERT_OPERAND (RY, *ip, lastregno);
10412 ++args;
10413 continue;
10414 }
10415 break;
10416 }
10417
10418 if (*s == ' ')
10419 ++s;
10420 if (args[1] != *s)
10421 {
10422 if (c == 'v' || c == 'w')
10423 {
10424 regno = mips16_to_32_reg_map[lastregno];
10425 s = s_reset;
10426 ++args;
10427 }
10428 }
10429
10430 switch (c)
10431 {
10432 case 'x':
10433 case 'y':
10434 case 'z':
10435 case 'v':
10436 case 'w':
10437 case 'Z':
10438 regno = mips32_to_16_reg_map[regno];
10439 break;
10440
10441 case '0':
10442 if (regno != 0)
10443 regno = ILLEGAL_REG;
10444 break;
10445
10446 case 'S':
10447 if (regno != SP)
10448 regno = ILLEGAL_REG;
10449 break;
10450
10451 case 'R':
10452 if (regno != RA)
10453 regno = ILLEGAL_REG;
10454 break;
10455
10456 case 'X':
10457 case 'Y':
10458 if (regno == AT && mips_opts.at)
10459 {
10460 if (mips_opts.at == ATREG)
10461 as_warn (_("used $at without \".set noat\""));
10462 else
10463 as_warn (_("used $%u with \".set at=$%u\""),
10464 regno, mips_opts.at);
10465 }
10466 break;
10467
10468 default:
10469 internalError ();
10470 }
10471
10472 if (regno == ILLEGAL_REG)
10473 break;
10474
10475 switch (c)
10476 {
10477 case 'x':
10478 case 'v':
10479 MIPS16_INSERT_OPERAND (RX, *ip, regno);
10480 break;
10481 case 'y':
10482 case 'w':
10483 MIPS16_INSERT_OPERAND (RY, *ip, regno);
10484 break;
10485 case 'z':
10486 MIPS16_INSERT_OPERAND (RZ, *ip, regno);
10487 break;
10488 case 'Z':
10489 MIPS16_INSERT_OPERAND (MOVE32Z, *ip, regno);
10490 case '0':
10491 case 'S':
10492 case 'R':
10493 break;
10494 case 'X':
10495 MIPS16_INSERT_OPERAND (REGR32, *ip, regno);
10496 break;
10497 case 'Y':
10498 regno = ((regno & 7) << 2) | ((regno & 0x18) >> 3);
10499 MIPS16_INSERT_OPERAND (REG32R, *ip, regno);
10500 break;
10501 default:
10502 internalError ();
10503 }
10504
10505 lastregno = regno;
10506 continue;
10507
10508 case 'P':
10509 if (strncmp (s, "$pc", 3) == 0)
10510 {
10511 s += 3;
10512 continue;
10513 }
10514 break;
10515
10516 case '5':
10517 case 'H':
10518 case 'W':
10519 case 'D':
10520 case 'j':
10521 case 'V':
10522 case 'C':
10523 case 'U':
10524 case 'k':
10525 case 'K':
10526 i = my_getSmallExpression (&imm_expr, imm_reloc, s);
10527 if (i > 0)
10528 {
10529 if (imm_expr.X_op != O_constant)
10530 {
10531 mips16_ext = TRUE;
10532 ip->use_extend = TRUE;
10533 ip->extend = 0;
10534 }
10535 else
10536 {
10537 /* We need to relax this instruction. */
10538 *offset_reloc = *imm_reloc;
10539 *imm_reloc = (int) BFD_RELOC_UNUSED + c;
10540 }
10541 s = expr_end;
10542 continue;
10543 }
10544 *imm_reloc = BFD_RELOC_UNUSED;
10545 /* Fall through. */
10546 case '<':
10547 case '>':
10548 case '[':
10549 case ']':
10550 case '4':
10551 case '8':
10552 my_getExpression (&imm_expr, s);
10553 if (imm_expr.X_op == O_register)
10554 {
10555 /* What we thought was an expression turned out to
10556 be a register. */
10557
10558 if (s[0] == '(' && args[1] == '(')
10559 {
10560 /* It looks like the expression was omitted
10561 before a register indirection, which means
10562 that the expression is implicitly zero. We
10563 still set up imm_expr, so that we handle
10564 explicit extensions correctly. */
10565 imm_expr.X_op = O_constant;
10566 imm_expr.X_add_number = 0;
10567 *imm_reloc = (int) BFD_RELOC_UNUSED + c;
10568 continue;
10569 }
10570
10571 break;
10572 }
10573
10574 /* We need to relax this instruction. */
10575 *imm_reloc = (int) BFD_RELOC_UNUSED + c;
10576 s = expr_end;
10577 continue;
10578
10579 case 'p':
10580 case 'q':
10581 case 'A':
10582 case 'B':
10583 case 'E':
10584 /* We use offset_reloc rather than imm_reloc for the PC
10585 relative operands. This lets macros with both
10586 immediate and address operands work correctly. */
10587 my_getExpression (&offset_expr, s);
10588
10589 if (offset_expr.X_op == O_register)
10590 break;
10591
10592 /* We need to relax this instruction. */
10593 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
10594 s = expr_end;
10595 continue;
10596
10597 case '6': /* break code */
10598 my_getExpression (&imm_expr, s);
10599 check_absolute_expr (ip, &imm_expr);
10600 if ((unsigned long) imm_expr.X_add_number > 63)
10601 as_warn (_("Invalid value for `%s' (%lu)"),
10602 ip->insn_mo->name,
10603 (unsigned long) imm_expr.X_add_number);
10604 MIPS16_INSERT_OPERAND (IMM6, *ip, imm_expr.X_add_number);
10605 imm_expr.X_op = O_absent;
10606 s = expr_end;
10607 continue;
10608
10609 case 'a': /* 26 bit address */
10610 my_getExpression (&offset_expr, s);
10611 s = expr_end;
10612 *offset_reloc = BFD_RELOC_MIPS16_JMP;
10613 ip->insn_opcode <<= 16;
10614 continue;
10615
10616 case 'l': /* register list for entry macro */
10617 case 'L': /* register list for exit macro */
10618 {
10619 int mask;
10620
10621 if (c == 'l')
10622 mask = 0;
10623 else
10624 mask = 7 << 3;
10625 while (*s != '\0')
10626 {
10627 unsigned int freg, reg1, reg2;
10628
10629 while (*s == ' ' || *s == ',')
10630 ++s;
10631 if (reg_lookup (&s, RTYPE_GP | RTYPE_NUM, &reg1))
10632 freg = 0;
10633 else if (reg_lookup (&s, RTYPE_FPU, &reg1))
10634 freg = 1;
10635 else
10636 {
10637 as_bad (_("can't parse register list"));
10638 break;
10639 }
10640 if (*s == ' ')
10641 ++s;
10642 if (*s != '-')
10643 reg2 = reg1;
10644 else
10645 {
10646 ++s;
10647 if (!reg_lookup (&s, freg ? RTYPE_FPU
10648 : (RTYPE_GP | RTYPE_NUM), &reg2))
10649 {
10650 as_bad (_("invalid register list"));
10651 break;
10652 }
10653 }
10654 if (freg && reg1 == 0 && reg2 == 0 && c == 'L')
10655 {
10656 mask &= ~ (7 << 3);
10657 mask |= 5 << 3;
10658 }
10659 else if (freg && reg1 == 0 && reg2 == 1 && c == 'L')
10660 {
10661 mask &= ~ (7 << 3);
10662 mask |= 6 << 3;
10663 }
10664 else if (reg1 == 4 && reg2 >= 4 && reg2 <= 7 && c != 'L')
10665 mask |= (reg2 - 3) << 3;
10666 else if (reg1 == 16 && reg2 >= 16 && reg2 <= 17)
10667 mask |= (reg2 - 15) << 1;
10668 else if (reg1 == RA && reg2 == RA)
10669 mask |= 1;
10670 else
10671 {
10672 as_bad (_("invalid register list"));
10673 break;
10674 }
10675 }
10676 /* The mask is filled in in the opcode table for the
10677 benefit of the disassembler. We remove it before
10678 applying the actual mask. */
10679 ip->insn_opcode &= ~ ((7 << 3) << MIPS16OP_SH_IMM6);
10680 ip->insn_opcode |= mask << MIPS16OP_SH_IMM6;
10681 }
10682 continue;
10683
10684 case 'm': /* Register list for save insn. */
10685 case 'M': /* Register list for restore insn. */
10686 {
10687 int opcode = 0;
10688 int framesz = 0, seen_framesz = 0;
10689 int nargs = 0, statics = 0, sregs = 0;
10690
10691 while (*s != '\0')
10692 {
10693 unsigned int reg1, reg2;
10694
10695 SKIP_SPACE_TABS (s);
10696 while (*s == ',')
10697 ++s;
10698 SKIP_SPACE_TABS (s);
10699
10700 my_getExpression (&imm_expr, s);
10701 if (imm_expr.X_op == O_constant)
10702 {
10703 /* Handle the frame size. */
10704 if (seen_framesz)
10705 {
10706 as_bad (_("more than one frame size in list"));
10707 break;
10708 }
10709 seen_framesz = 1;
10710 framesz = imm_expr.X_add_number;
10711 imm_expr.X_op = O_absent;
10712 s = expr_end;
10713 continue;
10714 }
10715
10716 if (! reg_lookup (&s, RTYPE_GP | RTYPE_NUM, &reg1))
10717 {
10718 as_bad (_("can't parse register list"));
10719 break;
10720 }
10721
10722 while (*s == ' ')
10723 ++s;
10724
10725 if (*s != '-')
10726 reg2 = reg1;
10727 else
10728 {
10729 ++s;
10730 if (! reg_lookup (&s, RTYPE_GP | RTYPE_NUM, &reg2)
10731 || reg2 < reg1)
10732 {
10733 as_bad (_("can't parse register list"));
10734 break;
10735 }
10736 }
10737
10738 while (reg1 <= reg2)
10739 {
10740 if (reg1 >= 4 && reg1 <= 7)
10741 {
10742 if (!seen_framesz)
10743 /* args $a0-$a3 */
10744 nargs |= 1 << (reg1 - 4);
10745 else
10746 /* statics $a0-$a3 */
10747 statics |= 1 << (reg1 - 4);
10748 }
10749 else if ((reg1 >= 16 && reg1 <= 23) || reg1 == 30)
10750 {
10751 /* $s0-$s8 */
10752 sregs |= 1 << ((reg1 == 30) ? 8 : (reg1 - 16));
10753 }
10754 else if (reg1 == 31)
10755 {
10756 /* Add $ra to insn. */
10757 opcode |= 0x40;
10758 }
10759 else
10760 {
10761 as_bad (_("unexpected register in list"));
10762 break;
10763 }
10764 if (++reg1 == 24)
10765 reg1 = 30;
10766 }
10767 }
10768
10769 /* Encode args/statics combination. */
10770 if (nargs & statics)
10771 as_bad (_("arg/static registers overlap"));
10772 else if (nargs == 0xf)
10773 /* All $a0-$a3 are args. */
10774 opcode |= MIPS16_ALL_ARGS << 16;
10775 else if (statics == 0xf)
10776 /* All $a0-$a3 are statics. */
10777 opcode |= MIPS16_ALL_STATICS << 16;
10778 else
10779 {
10780 int narg = 0, nstat = 0;
10781
10782 /* Count arg registers. */
10783 while (nargs & 0x1)
10784 {
10785 nargs >>= 1;
10786 narg++;
10787 }
10788 if (nargs != 0)
10789 as_bad (_("invalid arg register list"));
10790
10791 /* Count static registers. */
10792 while (statics & 0x8)
10793 {
10794 statics = (statics << 1) & 0xf;
10795 nstat++;
10796 }
10797 if (statics != 0)
10798 as_bad (_("invalid static register list"));
10799
10800 /* Encode args/statics. */
10801 opcode |= ((narg << 2) | nstat) << 16;
10802 }
10803
10804 /* Encode $s0/$s1. */
10805 if (sregs & (1 << 0)) /* $s0 */
10806 opcode |= 0x20;
10807 if (sregs & (1 << 1)) /* $s1 */
10808 opcode |= 0x10;
10809 sregs >>= 2;
10810
10811 if (sregs != 0)
10812 {
10813 /* Count regs $s2-$s8. */
10814 int nsreg = 0;
10815 while (sregs & 1)
10816 {
10817 sregs >>= 1;
10818 nsreg++;
10819 }
10820 if (sregs != 0)
10821 as_bad (_("invalid static register list"));
10822 /* Encode $s2-$s8. */
10823 opcode |= nsreg << 24;
10824 }
10825
10826 /* Encode frame size. */
10827 if (!seen_framesz)
10828 as_bad (_("missing frame size"));
10829 else if ((framesz & 7) != 0 || framesz < 0
10830 || framesz > 0xff * 8)
10831 as_bad (_("invalid frame size"));
10832 else if (framesz != 128 || (opcode >> 16) != 0)
10833 {
10834 framesz /= 8;
10835 opcode |= (((framesz & 0xf0) << 16)
10836 | (framesz & 0x0f));
10837 }
10838
10839 /* Finally build the instruction. */
10840 if ((opcode >> 16) != 0 || framesz == 0)
10841 {
10842 ip->use_extend = TRUE;
10843 ip->extend = opcode >> 16;
10844 }
10845 ip->insn_opcode |= opcode & 0x7f;
10846 }
10847 continue;
10848
10849 case 'e': /* extend code */
10850 my_getExpression (&imm_expr, s);
10851 check_absolute_expr (ip, &imm_expr);
10852 if ((unsigned long) imm_expr.X_add_number > 0x7ff)
10853 {
10854 as_warn (_("Invalid value for `%s' (%lu)"),
10855 ip->insn_mo->name,
10856 (unsigned long) imm_expr.X_add_number);
10857 imm_expr.X_add_number &= 0x7ff;
10858 }
10859 ip->insn_opcode |= imm_expr.X_add_number;
10860 imm_expr.X_op = O_absent;
10861 s = expr_end;
10862 continue;
10863
10864 default:
10865 internalError ();
10866 }
10867 break;
10868 }
10869
10870 /* Args don't match. */
10871 if (insn + 1 < &mips16_opcodes[bfd_mips16_num_opcodes] &&
10872 strcmp (insn->name, insn[1].name) == 0)
10873 {
10874 ++insn;
10875 s = argsstart;
10876 continue;
10877 }
10878
10879 insn_error = _("illegal operands");
10880
10881 return;
10882 }
10883 }
10884
10885 /* This structure holds information we know about a mips16 immediate
10886 argument type. */
10887
10888 struct mips16_immed_operand
10889 {
10890 /* The type code used in the argument string in the opcode table. */
10891 int type;
10892 /* The number of bits in the short form of the opcode. */
10893 int nbits;
10894 /* The number of bits in the extended form of the opcode. */
10895 int extbits;
10896 /* The amount by which the short form is shifted when it is used;
10897 for example, the sw instruction has a shift count of 2. */
10898 int shift;
10899 /* The amount by which the short form is shifted when it is stored
10900 into the instruction code. */
10901 int op_shift;
10902 /* Non-zero if the short form is unsigned. */
10903 int unsp;
10904 /* Non-zero if the extended form is unsigned. */
10905 int extu;
10906 /* Non-zero if the value is PC relative. */
10907 int pcrel;
10908 };
10909
10910 /* The mips16 immediate operand types. */
10911
10912 static const struct mips16_immed_operand mips16_immed_operands[] =
10913 {
10914 { '<', 3, 5, 0, MIPS16OP_SH_RZ, 1, 1, 0 },
10915 { '>', 3, 5, 0, MIPS16OP_SH_RX, 1, 1, 0 },
10916 { '[', 3, 6, 0, MIPS16OP_SH_RZ, 1, 1, 0 },
10917 { ']', 3, 6, 0, MIPS16OP_SH_RX, 1, 1, 0 },
10918 { '4', 4, 15, 0, MIPS16OP_SH_IMM4, 0, 0, 0 },
10919 { '5', 5, 16, 0, MIPS16OP_SH_IMM5, 1, 0, 0 },
10920 { 'H', 5, 16, 1, MIPS16OP_SH_IMM5, 1, 0, 0 },
10921 { 'W', 5, 16, 2, MIPS16OP_SH_IMM5, 1, 0, 0 },
10922 { 'D', 5, 16, 3, MIPS16OP_SH_IMM5, 1, 0, 0 },
10923 { 'j', 5, 16, 0, MIPS16OP_SH_IMM5, 0, 0, 0 },
10924 { '8', 8, 16, 0, MIPS16OP_SH_IMM8, 1, 0, 0 },
10925 { 'V', 8, 16, 2, MIPS16OP_SH_IMM8, 1, 0, 0 },
10926 { 'C', 8, 16, 3, MIPS16OP_SH_IMM8, 1, 0, 0 },
10927 { 'U', 8, 16, 0, MIPS16OP_SH_IMM8, 1, 1, 0 },
10928 { 'k', 8, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 0 },
10929 { 'K', 8, 16, 3, MIPS16OP_SH_IMM8, 0, 0, 0 },
10930 { 'p', 8, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 1 },
10931 { 'q', 11, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 1 },
10932 { 'A', 8, 16, 2, MIPS16OP_SH_IMM8, 1, 0, 1 },
10933 { 'B', 5, 16, 3, MIPS16OP_SH_IMM5, 1, 0, 1 },
10934 { 'E', 5, 16, 2, MIPS16OP_SH_IMM5, 1, 0, 1 }
10935 };
10936
10937 #define MIPS16_NUM_IMMED \
10938 (sizeof mips16_immed_operands / sizeof mips16_immed_operands[0])
10939
10940 /* Handle a mips16 instruction with an immediate value. This or's the
10941 small immediate value into *INSN. It sets *USE_EXTEND to indicate
10942 whether an extended value is needed; if one is needed, it sets
10943 *EXTEND to the value. The argument type is TYPE. The value is VAL.
10944 If SMALL is true, an unextended opcode was explicitly requested.
10945 If EXT is true, an extended opcode was explicitly requested. If
10946 WARN is true, warn if EXT does not match reality. */
10947
10948 static void
10949 mips16_immed (char *file, unsigned int line, int type, offsetT val,
10950 bfd_boolean warn, bfd_boolean small, bfd_boolean ext,
10951 unsigned long *insn, bfd_boolean *use_extend,
10952 unsigned short *extend)
10953 {
10954 const struct mips16_immed_operand *op;
10955 int mintiny, maxtiny;
10956 bfd_boolean needext;
10957
10958 op = mips16_immed_operands;
10959 while (op->type != type)
10960 {
10961 ++op;
10962 gas_assert (op < mips16_immed_operands + MIPS16_NUM_IMMED);
10963 }
10964
10965 if (op->unsp)
10966 {
10967 if (type == '<' || type == '>' || type == '[' || type == ']')
10968 {
10969 mintiny = 1;
10970 maxtiny = 1 << op->nbits;
10971 }
10972 else
10973 {
10974 mintiny = 0;
10975 maxtiny = (1 << op->nbits) - 1;
10976 }
10977 }
10978 else
10979 {
10980 mintiny = - (1 << (op->nbits - 1));
10981 maxtiny = (1 << (op->nbits - 1)) - 1;
10982 }
10983
10984 /* Branch offsets have an implicit 0 in the lowest bit. */
10985 if (type == 'p' || type == 'q')
10986 val /= 2;
10987
10988 if ((val & ((1 << op->shift) - 1)) != 0
10989 || val < (mintiny << op->shift)
10990 || val > (maxtiny << op->shift))
10991 needext = TRUE;
10992 else
10993 needext = FALSE;
10994
10995 if (warn && ext && ! needext)
10996 as_warn_where (file, line,
10997 _("extended operand requested but not required"));
10998 if (small && needext)
10999 as_bad_where (file, line, _("invalid unextended operand value"));
11000
11001 if (small || (! ext && ! needext))
11002 {
11003 int insnval;
11004
11005 *use_extend = FALSE;
11006 insnval = ((val >> op->shift) & ((1 << op->nbits) - 1));
11007 insnval <<= op->op_shift;
11008 *insn |= insnval;
11009 }
11010 else
11011 {
11012 long minext, maxext;
11013 int extval;
11014
11015 if (op->extu)
11016 {
11017 minext = 0;
11018 maxext = (1 << op->extbits) - 1;
11019 }
11020 else
11021 {
11022 minext = - (1 << (op->extbits - 1));
11023 maxext = (1 << (op->extbits - 1)) - 1;
11024 }
11025 if (val < minext || val > maxext)
11026 as_bad_where (file, line,
11027 _("operand value out of range for instruction"));
11028
11029 *use_extend = TRUE;
11030 if (op->extbits == 16)
11031 {
11032 extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
11033 val &= 0x1f;
11034 }
11035 else if (op->extbits == 15)
11036 {
11037 extval = ((val >> 11) & 0xf) | (val & 0x7f0);
11038 val &= 0xf;
11039 }
11040 else
11041 {
11042 extval = ((val & 0x1f) << 6) | (val & 0x20);
11043 val = 0;
11044 }
11045
11046 *extend = (unsigned short) extval;
11047 *insn |= val;
11048 }
11049 }
11050 \f
11051 struct percent_op_match
11052 {
11053 const char *str;
11054 bfd_reloc_code_real_type reloc;
11055 };
11056
11057 static const struct percent_op_match mips_percent_op[] =
11058 {
11059 {"%lo", BFD_RELOC_LO16},
11060 #ifdef OBJ_ELF
11061 {"%call_hi", BFD_RELOC_MIPS_CALL_HI16},
11062 {"%call_lo", BFD_RELOC_MIPS_CALL_LO16},
11063 {"%call16", BFD_RELOC_MIPS_CALL16},
11064 {"%got_disp", BFD_RELOC_MIPS_GOT_DISP},
11065 {"%got_page", BFD_RELOC_MIPS_GOT_PAGE},
11066 {"%got_ofst", BFD_RELOC_MIPS_GOT_OFST},
11067 {"%got_hi", BFD_RELOC_MIPS_GOT_HI16},
11068 {"%got_lo", BFD_RELOC_MIPS_GOT_LO16},
11069 {"%got", BFD_RELOC_MIPS_GOT16},
11070 {"%gp_rel", BFD_RELOC_GPREL16},
11071 {"%half", BFD_RELOC_16},
11072 {"%highest", BFD_RELOC_MIPS_HIGHEST},
11073 {"%higher", BFD_RELOC_MIPS_HIGHER},
11074 {"%neg", BFD_RELOC_MIPS_SUB},
11075 {"%tlsgd", BFD_RELOC_MIPS_TLS_GD},
11076 {"%tlsldm", BFD_RELOC_MIPS_TLS_LDM},
11077 {"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16},
11078 {"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16},
11079 {"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16},
11080 {"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16},
11081 {"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL},
11082 #endif
11083 {"%hi", BFD_RELOC_HI16_S}
11084 };
11085
11086 static const struct percent_op_match mips16_percent_op[] =
11087 {
11088 {"%lo", BFD_RELOC_MIPS16_LO16},
11089 {"%gprel", BFD_RELOC_MIPS16_GPREL},
11090 {"%got", BFD_RELOC_MIPS16_GOT16},
11091 {"%call16", BFD_RELOC_MIPS16_CALL16},
11092 {"%hi", BFD_RELOC_MIPS16_HI16_S}
11093 };
11094
11095
11096 /* Return true if *STR points to a relocation operator. When returning true,
11097 move *STR over the operator and store its relocation code in *RELOC.
11098 Leave both *STR and *RELOC alone when returning false. */
11099
11100 static bfd_boolean
11101 parse_relocation (char **str, bfd_reloc_code_real_type *reloc)
11102 {
11103 const struct percent_op_match *percent_op;
11104 size_t limit, i;
11105
11106 if (mips_opts.mips16)
11107 {
11108 percent_op = mips16_percent_op;
11109 limit = ARRAY_SIZE (mips16_percent_op);
11110 }
11111 else
11112 {
11113 percent_op = mips_percent_op;
11114 limit = ARRAY_SIZE (mips_percent_op);
11115 }
11116
11117 for (i = 0; i < limit; i++)
11118 if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0)
11119 {
11120 int len = strlen (percent_op[i].str);
11121
11122 if (!ISSPACE ((*str)[len]) && (*str)[len] != '(')
11123 continue;
11124
11125 *str += strlen (percent_op[i].str);
11126 *reloc = percent_op[i].reloc;
11127
11128 /* Check whether the output BFD supports this relocation.
11129 If not, issue an error and fall back on something safe. */
11130 if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc))
11131 {
11132 as_bad (_("relocation %s isn't supported by the current ABI"),
11133 percent_op[i].str);
11134 *reloc = BFD_RELOC_UNUSED;
11135 }
11136 return TRUE;
11137 }
11138 return FALSE;
11139 }
11140
11141
11142 /* Parse string STR as a 16-bit relocatable operand. Store the
11143 expression in *EP and the relocations in the array starting
11144 at RELOC. Return the number of relocation operators used.
11145
11146 On exit, EXPR_END points to the first character after the expression. */
11147
11148 static size_t
11149 my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
11150 char *str)
11151 {
11152 bfd_reloc_code_real_type reversed_reloc[3];
11153 size_t reloc_index, i;
11154 int crux_depth, str_depth;
11155 char *crux;
11156
11157 /* Search for the start of the main expression, recoding relocations
11158 in REVERSED_RELOC. End the loop with CRUX pointing to the start
11159 of the main expression and with CRUX_DEPTH containing the number
11160 of open brackets at that point. */
11161 reloc_index = -1;
11162 str_depth = 0;
11163 do
11164 {
11165 reloc_index++;
11166 crux = str;
11167 crux_depth = str_depth;
11168
11169 /* Skip over whitespace and brackets, keeping count of the number
11170 of brackets. */
11171 while (*str == ' ' || *str == '\t' || *str == '(')
11172 if (*str++ == '(')
11173 str_depth++;
11174 }
11175 while (*str == '%'
11176 && reloc_index < (HAVE_NEWABI ? 3 : 1)
11177 && parse_relocation (&str, &reversed_reloc[reloc_index]));
11178
11179 my_getExpression (ep, crux);
11180 str = expr_end;
11181
11182 /* Match every open bracket. */
11183 while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
11184 if (*str++ == ')')
11185 crux_depth--;
11186
11187 if (crux_depth > 0)
11188 as_bad (_("unclosed '('"));
11189
11190 expr_end = str;
11191
11192 if (reloc_index != 0)
11193 {
11194 prev_reloc_op_frag = frag_now;
11195 for (i = 0; i < reloc_index; i++)
11196 reloc[i] = reversed_reloc[reloc_index - 1 - i];
11197 }
11198
11199 return reloc_index;
11200 }
11201
11202 static void
11203 my_getExpression (expressionS *ep, char *str)
11204 {
11205 char *save_in;
11206 valueT val;
11207
11208 save_in = input_line_pointer;
11209 input_line_pointer = str;
11210 expression (ep);
11211 expr_end = input_line_pointer;
11212 input_line_pointer = save_in;
11213
11214 /* If we are in mips16 mode, and this is an expression based on `.',
11215 then we bump the value of the symbol by 1 since that is how other
11216 text symbols are handled. We don't bother to handle complex
11217 expressions, just `.' plus or minus a constant. */
11218 if (mips_opts.mips16
11219 && ep->X_op == O_symbol
11220 && strcmp (S_GET_NAME (ep->X_add_symbol), FAKE_LABEL_NAME) == 0
11221 && S_GET_SEGMENT (ep->X_add_symbol) == now_seg
11222 && symbol_get_frag (ep->X_add_symbol) == frag_now
11223 && symbol_constant_p (ep->X_add_symbol)
11224 && (val = S_GET_VALUE (ep->X_add_symbol)) == frag_now_fix ())
11225 S_SET_VALUE (ep->X_add_symbol, val + 1);
11226 }
11227
11228 char *
11229 md_atof (int type, char *litP, int *sizeP)
11230 {
11231 return ieee_md_atof (type, litP, sizeP, target_big_endian);
11232 }
11233
11234 void
11235 md_number_to_chars (char *buf, valueT val, int n)
11236 {
11237 if (target_big_endian)
11238 number_to_chars_bigendian (buf, val, n);
11239 else
11240 number_to_chars_littleendian (buf, val, n);
11241 }
11242 \f
11243 #ifdef OBJ_ELF
11244 static int support_64bit_objects(void)
11245 {
11246 const char **list, **l;
11247 int yes;
11248
11249 list = bfd_target_list ();
11250 for (l = list; *l != NULL; l++)
11251 #ifdef TE_TMIPS
11252 /* This is traditional mips */
11253 if (strcmp (*l, "elf64-tradbigmips") == 0
11254 || strcmp (*l, "elf64-tradlittlemips") == 0)
11255 #else
11256 if (strcmp (*l, "elf64-bigmips") == 0
11257 || strcmp (*l, "elf64-littlemips") == 0)
11258 #endif
11259 break;
11260 yes = (*l != NULL);
11261 free (list);
11262 return yes;
11263 }
11264 #endif /* OBJ_ELF */
11265
11266 const char *md_shortopts = "O::g::G:";
11267
11268 enum options
11269 {
11270 OPTION_MARCH = OPTION_MD_BASE,
11271 OPTION_MTUNE,
11272 OPTION_MIPS1,
11273 OPTION_MIPS2,
11274 OPTION_MIPS3,
11275 OPTION_MIPS4,
11276 OPTION_MIPS5,
11277 OPTION_MIPS32,
11278 OPTION_MIPS64,
11279 OPTION_MIPS32R2,
11280 OPTION_MIPS64R2,
11281 OPTION_MIPS16,
11282 OPTION_NO_MIPS16,
11283 OPTION_MIPS3D,
11284 OPTION_NO_MIPS3D,
11285 OPTION_MDMX,
11286 OPTION_NO_MDMX,
11287 OPTION_DSP,
11288 OPTION_NO_DSP,
11289 OPTION_MT,
11290 OPTION_NO_MT,
11291 OPTION_SMARTMIPS,
11292 OPTION_NO_SMARTMIPS,
11293 OPTION_DSPR2,
11294 OPTION_NO_DSPR2,
11295 OPTION_COMPAT_ARCH_BASE,
11296 OPTION_M4650,
11297 OPTION_NO_M4650,
11298 OPTION_M4010,
11299 OPTION_NO_M4010,
11300 OPTION_M4100,
11301 OPTION_NO_M4100,
11302 OPTION_M3900,
11303 OPTION_NO_M3900,
11304 OPTION_M7000_HILO_FIX,
11305 OPTION_MNO_7000_HILO_FIX,
11306 OPTION_FIX_24K,
11307 OPTION_NO_FIX_24K,
11308 OPTION_FIX_LOONGSON2F_JUMP,
11309 OPTION_NO_FIX_LOONGSON2F_JUMP,
11310 OPTION_FIX_LOONGSON2F_NOP,
11311 OPTION_NO_FIX_LOONGSON2F_NOP,
11312 OPTION_FIX_VR4120,
11313 OPTION_NO_FIX_VR4120,
11314 OPTION_FIX_VR4130,
11315 OPTION_NO_FIX_VR4130,
11316 OPTION_FIX_CN63XXP1,
11317 OPTION_NO_FIX_CN63XXP1,
11318 OPTION_TRAP,
11319 OPTION_BREAK,
11320 OPTION_EB,
11321 OPTION_EL,
11322 OPTION_FP32,
11323 OPTION_GP32,
11324 OPTION_CONSTRUCT_FLOATS,
11325 OPTION_NO_CONSTRUCT_FLOATS,
11326 OPTION_FP64,
11327 OPTION_GP64,
11328 OPTION_RELAX_BRANCH,
11329 OPTION_NO_RELAX_BRANCH,
11330 OPTION_MSHARED,
11331 OPTION_MNO_SHARED,
11332 OPTION_MSYM32,
11333 OPTION_MNO_SYM32,
11334 OPTION_SOFT_FLOAT,
11335 OPTION_HARD_FLOAT,
11336 OPTION_SINGLE_FLOAT,
11337 OPTION_DOUBLE_FLOAT,
11338 OPTION_32,
11339 #ifdef OBJ_ELF
11340 OPTION_CALL_SHARED,
11341 OPTION_CALL_NONPIC,
11342 OPTION_NON_SHARED,
11343 OPTION_XGOT,
11344 OPTION_MABI,
11345 OPTION_N32,
11346 OPTION_64,
11347 OPTION_MDEBUG,
11348 OPTION_NO_MDEBUG,
11349 OPTION_PDR,
11350 OPTION_NO_PDR,
11351 OPTION_MVXWORKS_PIC,
11352 #endif /* OBJ_ELF */
11353 OPTION_END_OF_ENUM
11354 };
11355
11356 struct option md_longopts[] =
11357 {
11358 /* Options which specify architecture. */
11359 {"march", required_argument, NULL, OPTION_MARCH},
11360 {"mtune", required_argument, NULL, OPTION_MTUNE},
11361 {"mips0", no_argument, NULL, OPTION_MIPS1},
11362 {"mips1", no_argument, NULL, OPTION_MIPS1},
11363 {"mips2", no_argument, NULL, OPTION_MIPS2},
11364 {"mips3", no_argument, NULL, OPTION_MIPS3},
11365 {"mips4", no_argument, NULL, OPTION_MIPS4},
11366 {"mips5", no_argument, NULL, OPTION_MIPS5},
11367 {"mips32", no_argument, NULL, OPTION_MIPS32},
11368 {"mips64", no_argument, NULL, OPTION_MIPS64},
11369 {"mips32r2", no_argument, NULL, OPTION_MIPS32R2},
11370 {"mips64r2", no_argument, NULL, OPTION_MIPS64R2},
11371
11372 /* Options which specify Application Specific Extensions (ASEs). */
11373 {"mips16", no_argument, NULL, OPTION_MIPS16},
11374 {"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
11375 {"mips3d", no_argument, NULL, OPTION_MIPS3D},
11376 {"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
11377 {"mdmx", no_argument, NULL, OPTION_MDMX},
11378 {"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
11379 {"mdsp", no_argument, NULL, OPTION_DSP},
11380 {"mno-dsp", no_argument, NULL, OPTION_NO_DSP},
11381 {"mmt", no_argument, NULL, OPTION_MT},
11382 {"mno-mt", no_argument, NULL, OPTION_NO_MT},
11383 {"msmartmips", no_argument, NULL, OPTION_SMARTMIPS},
11384 {"mno-smartmips", no_argument, NULL, OPTION_NO_SMARTMIPS},
11385 {"mdspr2", no_argument, NULL, OPTION_DSPR2},
11386 {"mno-dspr2", no_argument, NULL, OPTION_NO_DSPR2},
11387
11388 /* Old-style architecture options. Don't add more of these. */
11389 {"m4650", no_argument, NULL, OPTION_M4650},
11390 {"no-m4650", no_argument, NULL, OPTION_NO_M4650},
11391 {"m4010", no_argument, NULL, OPTION_M4010},
11392 {"no-m4010", no_argument, NULL, OPTION_NO_M4010},
11393 {"m4100", no_argument, NULL, OPTION_M4100},
11394 {"no-m4100", no_argument, NULL, OPTION_NO_M4100},
11395 {"m3900", no_argument, NULL, OPTION_M3900},
11396 {"no-m3900", no_argument, NULL, OPTION_NO_M3900},
11397
11398 /* Options which enable bug fixes. */
11399 {"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
11400 {"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
11401 {"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
11402 {"mfix-loongson2f-jump", no_argument, NULL, OPTION_FIX_LOONGSON2F_JUMP},
11403 {"mno-fix-loongson2f-jump", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_JUMP},
11404 {"mfix-loongson2f-nop", no_argument, NULL, OPTION_FIX_LOONGSON2F_NOP},
11405 {"mno-fix-loongson2f-nop", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_NOP},
11406 {"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120},
11407 {"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120},
11408 {"mfix-vr4130", no_argument, NULL, OPTION_FIX_VR4130},
11409 {"mno-fix-vr4130", no_argument, NULL, OPTION_NO_FIX_VR4130},
11410 {"mfix-24k", no_argument, NULL, OPTION_FIX_24K},
11411 {"mno-fix-24k", no_argument, NULL, OPTION_NO_FIX_24K},
11412 {"mfix-cn63xxp1", no_argument, NULL, OPTION_FIX_CN63XXP1},
11413 {"mno-fix-cn63xxp1", no_argument, NULL, OPTION_NO_FIX_CN63XXP1},
11414
11415 /* Miscellaneous options. */
11416 {"trap", no_argument, NULL, OPTION_TRAP},
11417 {"no-break", no_argument, NULL, OPTION_TRAP},
11418 {"break", no_argument, NULL, OPTION_BREAK},
11419 {"no-trap", no_argument, NULL, OPTION_BREAK},
11420 {"EB", no_argument, NULL, OPTION_EB},
11421 {"EL", no_argument, NULL, OPTION_EL},
11422 {"mfp32", no_argument, NULL, OPTION_FP32},
11423 {"mgp32", no_argument, NULL, OPTION_GP32},
11424 {"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
11425 {"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
11426 {"mfp64", no_argument, NULL, OPTION_FP64},
11427 {"mgp64", no_argument, NULL, OPTION_GP64},
11428 {"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH},
11429 {"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH},
11430 {"mshared", no_argument, NULL, OPTION_MSHARED},
11431 {"mno-shared", no_argument, NULL, OPTION_MNO_SHARED},
11432 {"msym32", no_argument, NULL, OPTION_MSYM32},
11433 {"mno-sym32", no_argument, NULL, OPTION_MNO_SYM32},
11434 {"msoft-float", no_argument, NULL, OPTION_SOFT_FLOAT},
11435 {"mhard-float", no_argument, NULL, OPTION_HARD_FLOAT},
11436 {"msingle-float", no_argument, NULL, OPTION_SINGLE_FLOAT},
11437 {"mdouble-float", no_argument, NULL, OPTION_DOUBLE_FLOAT},
11438
11439 /* Strictly speaking this next option is ELF specific,
11440 but we allow it for other ports as well in order to
11441 make testing easier. */
11442 {"32", no_argument, NULL, OPTION_32},
11443
11444 /* ELF-specific options. */
11445 #ifdef OBJ_ELF
11446 {"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
11447 {"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
11448 {"call_nonpic", no_argument, NULL, OPTION_CALL_NONPIC},
11449 {"non_shared", no_argument, NULL, OPTION_NON_SHARED},
11450 {"xgot", no_argument, NULL, OPTION_XGOT},
11451 {"mabi", required_argument, NULL, OPTION_MABI},
11452 {"n32", no_argument, NULL, OPTION_N32},
11453 {"64", no_argument, NULL, OPTION_64},
11454 {"mdebug", no_argument, NULL, OPTION_MDEBUG},
11455 {"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
11456 {"mpdr", no_argument, NULL, OPTION_PDR},
11457 {"mno-pdr", no_argument, NULL, OPTION_NO_PDR},
11458 {"mvxworks-pic", no_argument, NULL, OPTION_MVXWORKS_PIC},
11459 #endif /* OBJ_ELF */
11460
11461 {NULL, no_argument, NULL, 0}
11462 };
11463 size_t md_longopts_size = sizeof (md_longopts);
11464
11465 /* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
11466 NEW_VALUE. Warn if another value was already specified. Note:
11467 we have to defer parsing the -march and -mtune arguments in order
11468 to handle 'from-abi' correctly, since the ABI might be specified
11469 in a later argument. */
11470
11471 static void
11472 mips_set_option_string (const char **string_ptr, const char *new_value)
11473 {
11474 if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
11475 as_warn (_("A different %s was already specified, is now %s"),
11476 string_ptr == &mips_arch_string ? "-march" : "-mtune",
11477 new_value);
11478
11479 *string_ptr = new_value;
11480 }
11481
11482 int
11483 md_parse_option (int c, char *arg)
11484 {
11485 switch (c)
11486 {
11487 case OPTION_CONSTRUCT_FLOATS:
11488 mips_disable_float_construction = 0;
11489 break;
11490
11491 case OPTION_NO_CONSTRUCT_FLOATS:
11492 mips_disable_float_construction = 1;
11493 break;
11494
11495 case OPTION_TRAP:
11496 mips_trap = 1;
11497 break;
11498
11499 case OPTION_BREAK:
11500 mips_trap = 0;
11501 break;
11502
11503 case OPTION_EB:
11504 target_big_endian = 1;
11505 break;
11506
11507 case OPTION_EL:
11508 target_big_endian = 0;
11509 break;
11510
11511 case 'O':
11512 if (arg == NULL)
11513 mips_optimize = 1;
11514 else if (arg[0] == '0')
11515 mips_optimize = 0;
11516 else if (arg[0] == '1')
11517 mips_optimize = 1;
11518 else
11519 mips_optimize = 2;
11520 break;
11521
11522 case 'g':
11523 if (arg == NULL)
11524 mips_debug = 2;
11525 else
11526 mips_debug = atoi (arg);
11527 break;
11528
11529 case OPTION_MIPS1:
11530 file_mips_isa = ISA_MIPS1;
11531 break;
11532
11533 case OPTION_MIPS2:
11534 file_mips_isa = ISA_MIPS2;
11535 break;
11536
11537 case OPTION_MIPS3:
11538 file_mips_isa = ISA_MIPS3;
11539 break;
11540
11541 case OPTION_MIPS4:
11542 file_mips_isa = ISA_MIPS4;
11543 break;
11544
11545 case OPTION_MIPS5:
11546 file_mips_isa = ISA_MIPS5;
11547 break;
11548
11549 case OPTION_MIPS32:
11550 file_mips_isa = ISA_MIPS32;
11551 break;
11552
11553 case OPTION_MIPS32R2:
11554 file_mips_isa = ISA_MIPS32R2;
11555 break;
11556
11557 case OPTION_MIPS64R2:
11558 file_mips_isa = ISA_MIPS64R2;
11559 break;
11560
11561 case OPTION_MIPS64:
11562 file_mips_isa = ISA_MIPS64;
11563 break;
11564
11565 case OPTION_MTUNE:
11566 mips_set_option_string (&mips_tune_string, arg);
11567 break;
11568
11569 case OPTION_MARCH:
11570 mips_set_option_string (&mips_arch_string, arg);
11571 break;
11572
11573 case OPTION_M4650:
11574 mips_set_option_string (&mips_arch_string, "4650");
11575 mips_set_option_string (&mips_tune_string, "4650");
11576 break;
11577
11578 case OPTION_NO_M4650:
11579 break;
11580
11581 case OPTION_M4010:
11582 mips_set_option_string (&mips_arch_string, "4010");
11583 mips_set_option_string (&mips_tune_string, "4010");
11584 break;
11585
11586 case OPTION_NO_M4010:
11587 break;
11588
11589 case OPTION_M4100:
11590 mips_set_option_string (&mips_arch_string, "4100");
11591 mips_set_option_string (&mips_tune_string, "4100");
11592 break;
11593
11594 case OPTION_NO_M4100:
11595 break;
11596
11597 case OPTION_M3900:
11598 mips_set_option_string (&mips_arch_string, "3900");
11599 mips_set_option_string (&mips_tune_string, "3900");
11600 break;
11601
11602 case OPTION_NO_M3900:
11603 break;
11604
11605 case OPTION_MDMX:
11606 mips_opts.ase_mdmx = 1;
11607 break;
11608
11609 case OPTION_NO_MDMX:
11610 mips_opts.ase_mdmx = 0;
11611 break;
11612
11613 case OPTION_DSP:
11614 mips_opts.ase_dsp = 1;
11615 mips_opts.ase_dspr2 = 0;
11616 break;
11617
11618 case OPTION_NO_DSP:
11619 mips_opts.ase_dsp = 0;
11620 mips_opts.ase_dspr2 = 0;
11621 break;
11622
11623 case OPTION_DSPR2:
11624 mips_opts.ase_dspr2 = 1;
11625 mips_opts.ase_dsp = 1;
11626 break;
11627
11628 case OPTION_NO_DSPR2:
11629 mips_opts.ase_dspr2 = 0;
11630 mips_opts.ase_dsp = 0;
11631 break;
11632
11633 case OPTION_MT:
11634 mips_opts.ase_mt = 1;
11635 break;
11636
11637 case OPTION_NO_MT:
11638 mips_opts.ase_mt = 0;
11639 break;
11640
11641 case OPTION_MIPS16:
11642 mips_opts.mips16 = 1;
11643 mips_no_prev_insn ();
11644 break;
11645
11646 case OPTION_NO_MIPS16:
11647 mips_opts.mips16 = 0;
11648 mips_no_prev_insn ();
11649 break;
11650
11651 case OPTION_MIPS3D:
11652 mips_opts.ase_mips3d = 1;
11653 break;
11654
11655 case OPTION_NO_MIPS3D:
11656 mips_opts.ase_mips3d = 0;
11657 break;
11658
11659 case OPTION_SMARTMIPS:
11660 mips_opts.ase_smartmips = 1;
11661 break;
11662
11663 case OPTION_NO_SMARTMIPS:
11664 mips_opts.ase_smartmips = 0;
11665 break;
11666
11667 case OPTION_FIX_24K:
11668 mips_fix_24k = 1;
11669 break;
11670
11671 case OPTION_NO_FIX_24K:
11672 mips_fix_24k = 0;
11673 break;
11674
11675 case OPTION_FIX_LOONGSON2F_JUMP:
11676 mips_fix_loongson2f_jump = TRUE;
11677 break;
11678
11679 case OPTION_NO_FIX_LOONGSON2F_JUMP:
11680 mips_fix_loongson2f_jump = FALSE;
11681 break;
11682
11683 case OPTION_FIX_LOONGSON2F_NOP:
11684 mips_fix_loongson2f_nop = TRUE;
11685 break;
11686
11687 case OPTION_NO_FIX_LOONGSON2F_NOP:
11688 mips_fix_loongson2f_nop = FALSE;
11689 break;
11690
11691 case OPTION_FIX_VR4120:
11692 mips_fix_vr4120 = 1;
11693 break;
11694
11695 case OPTION_NO_FIX_VR4120:
11696 mips_fix_vr4120 = 0;
11697 break;
11698
11699 case OPTION_FIX_VR4130:
11700 mips_fix_vr4130 = 1;
11701 break;
11702
11703 case OPTION_NO_FIX_VR4130:
11704 mips_fix_vr4130 = 0;
11705 break;
11706
11707 case OPTION_FIX_CN63XXP1:
11708 mips_fix_cn63xxp1 = TRUE;
11709 break;
11710
11711 case OPTION_NO_FIX_CN63XXP1:
11712 mips_fix_cn63xxp1 = FALSE;
11713 break;
11714
11715 case OPTION_RELAX_BRANCH:
11716 mips_relax_branch = 1;
11717 break;
11718
11719 case OPTION_NO_RELAX_BRANCH:
11720 mips_relax_branch = 0;
11721 break;
11722
11723 case OPTION_MSHARED:
11724 mips_in_shared = TRUE;
11725 break;
11726
11727 case OPTION_MNO_SHARED:
11728 mips_in_shared = FALSE;
11729 break;
11730
11731 case OPTION_MSYM32:
11732 mips_opts.sym32 = TRUE;
11733 break;
11734
11735 case OPTION_MNO_SYM32:
11736 mips_opts.sym32 = FALSE;
11737 break;
11738
11739 #ifdef OBJ_ELF
11740 /* When generating ELF code, we permit -KPIC and -call_shared to
11741 select SVR4_PIC, and -non_shared to select no PIC. This is
11742 intended to be compatible with Irix 5. */
11743 case OPTION_CALL_SHARED:
11744 if (!IS_ELF)
11745 {
11746 as_bad (_("-call_shared is supported only for ELF format"));
11747 return 0;
11748 }
11749 mips_pic = SVR4_PIC;
11750 mips_abicalls = TRUE;
11751 break;
11752
11753 case OPTION_CALL_NONPIC:
11754 if (!IS_ELF)
11755 {
11756 as_bad (_("-call_nonpic is supported only for ELF format"));
11757 return 0;
11758 }
11759 mips_pic = NO_PIC;
11760 mips_abicalls = TRUE;
11761 break;
11762
11763 case OPTION_NON_SHARED:
11764 if (!IS_ELF)
11765 {
11766 as_bad (_("-non_shared is supported only for ELF format"));
11767 return 0;
11768 }
11769 mips_pic = NO_PIC;
11770 mips_abicalls = FALSE;
11771 break;
11772
11773 /* The -xgot option tells the assembler to use 32 bit offsets
11774 when accessing the got in SVR4_PIC mode. It is for Irix
11775 compatibility. */
11776 case OPTION_XGOT:
11777 mips_big_got = 1;
11778 break;
11779 #endif /* OBJ_ELF */
11780
11781 case 'G':
11782 g_switch_value = atoi (arg);
11783 g_switch_seen = 1;
11784 break;
11785
11786 /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
11787 and -mabi=64. */
11788 case OPTION_32:
11789 if (IS_ELF)
11790 mips_abi = O32_ABI;
11791 /* We silently ignore -32 for non-ELF targets. This greatly
11792 simplifies the construction of the MIPS GAS test cases. */
11793 break;
11794
11795 #ifdef OBJ_ELF
11796 case OPTION_N32:
11797 if (!IS_ELF)
11798 {
11799 as_bad (_("-n32 is supported for ELF format only"));
11800 return 0;
11801 }
11802 mips_abi = N32_ABI;
11803 break;
11804
11805 case OPTION_64:
11806 if (!IS_ELF)
11807 {
11808 as_bad (_("-64 is supported for ELF format only"));
11809 return 0;
11810 }
11811 mips_abi = N64_ABI;
11812 if (!support_64bit_objects())
11813 as_fatal (_("No compiled in support for 64 bit object file format"));
11814 break;
11815 #endif /* OBJ_ELF */
11816
11817 case OPTION_GP32:
11818 file_mips_gp32 = 1;
11819 break;
11820
11821 case OPTION_GP64:
11822 file_mips_gp32 = 0;
11823 break;
11824
11825 case OPTION_FP32:
11826 file_mips_fp32 = 1;
11827 break;
11828
11829 case OPTION_FP64:
11830 file_mips_fp32 = 0;
11831 break;
11832
11833 case OPTION_SINGLE_FLOAT:
11834 file_mips_single_float = 1;
11835 break;
11836
11837 case OPTION_DOUBLE_FLOAT:
11838 file_mips_single_float = 0;
11839 break;
11840
11841 case OPTION_SOFT_FLOAT:
11842 file_mips_soft_float = 1;
11843 break;
11844
11845 case OPTION_HARD_FLOAT:
11846 file_mips_soft_float = 0;
11847 break;
11848
11849 #ifdef OBJ_ELF
11850 case OPTION_MABI:
11851 if (!IS_ELF)
11852 {
11853 as_bad (_("-mabi is supported for ELF format only"));
11854 return 0;
11855 }
11856 if (strcmp (arg, "32") == 0)
11857 mips_abi = O32_ABI;
11858 else if (strcmp (arg, "o64") == 0)
11859 mips_abi = O64_ABI;
11860 else if (strcmp (arg, "n32") == 0)
11861 mips_abi = N32_ABI;
11862 else if (strcmp (arg, "64") == 0)
11863 {
11864 mips_abi = N64_ABI;
11865 if (! support_64bit_objects())
11866 as_fatal (_("No compiled in support for 64 bit object file "
11867 "format"));
11868 }
11869 else if (strcmp (arg, "eabi") == 0)
11870 mips_abi = EABI_ABI;
11871 else
11872 {
11873 as_fatal (_("invalid abi -mabi=%s"), arg);
11874 return 0;
11875 }
11876 break;
11877 #endif /* OBJ_ELF */
11878
11879 case OPTION_M7000_HILO_FIX:
11880 mips_7000_hilo_fix = TRUE;
11881 break;
11882
11883 case OPTION_MNO_7000_HILO_FIX:
11884 mips_7000_hilo_fix = FALSE;
11885 break;
11886
11887 #ifdef OBJ_ELF
11888 case OPTION_MDEBUG:
11889 mips_flag_mdebug = TRUE;
11890 break;
11891
11892 case OPTION_NO_MDEBUG:
11893 mips_flag_mdebug = FALSE;
11894 break;
11895
11896 case OPTION_PDR:
11897 mips_flag_pdr = TRUE;
11898 break;
11899
11900 case OPTION_NO_PDR:
11901 mips_flag_pdr = FALSE;
11902 break;
11903
11904 case OPTION_MVXWORKS_PIC:
11905 mips_pic = VXWORKS_PIC;
11906 break;
11907 #endif /* OBJ_ELF */
11908
11909 default:
11910 return 0;
11911 }
11912
11913 mips_fix_loongson2f = mips_fix_loongson2f_nop || mips_fix_loongson2f_jump;
11914
11915 return 1;
11916 }
11917 \f
11918 /* Set up globals to generate code for the ISA or processor
11919 described by INFO. */
11920
11921 static void
11922 mips_set_architecture (const struct mips_cpu_info *info)
11923 {
11924 if (info != 0)
11925 {
11926 file_mips_arch = info->cpu;
11927 mips_opts.arch = info->cpu;
11928 mips_opts.isa = info->isa;
11929 }
11930 }
11931
11932
11933 /* Likewise for tuning. */
11934
11935 static void
11936 mips_set_tune (const struct mips_cpu_info *info)
11937 {
11938 if (info != 0)
11939 mips_tune = info->cpu;
11940 }
11941
11942
11943 void
11944 mips_after_parse_args (void)
11945 {
11946 const struct mips_cpu_info *arch_info = 0;
11947 const struct mips_cpu_info *tune_info = 0;
11948
11949 /* GP relative stuff not working for PE */
11950 if (strncmp (TARGET_OS, "pe", 2) == 0)
11951 {
11952 if (g_switch_seen && g_switch_value != 0)
11953 as_bad (_("-G not supported in this configuration."));
11954 g_switch_value = 0;
11955 }
11956
11957 if (mips_abi == NO_ABI)
11958 mips_abi = MIPS_DEFAULT_ABI;
11959
11960 /* The following code determines the architecture and register size.
11961 Similar code was added to GCC 3.3 (see override_options() in
11962 config/mips/mips.c). The GAS and GCC code should be kept in sync
11963 as much as possible. */
11964
11965 if (mips_arch_string != 0)
11966 arch_info = mips_parse_cpu ("-march", mips_arch_string);
11967
11968 if (file_mips_isa != ISA_UNKNOWN)
11969 {
11970 /* Handle -mipsN. At this point, file_mips_isa contains the
11971 ISA level specified by -mipsN, while arch_info->isa contains
11972 the -march selection (if any). */
11973 if (arch_info != 0)
11974 {
11975 /* -march takes precedence over -mipsN, since it is more descriptive.
11976 There's no harm in specifying both as long as the ISA levels
11977 are the same. */
11978 if (file_mips_isa != arch_info->isa)
11979 as_bad (_("-%s conflicts with the other architecture options, which imply -%s"),
11980 mips_cpu_info_from_isa (file_mips_isa)->name,
11981 mips_cpu_info_from_isa (arch_info->isa)->name);
11982 }
11983 else
11984 arch_info = mips_cpu_info_from_isa (file_mips_isa);
11985 }
11986
11987 if (arch_info == 0)
11988 arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT);
11989
11990 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa))
11991 as_bad (_("-march=%s is not compatible with the selected ABI"),
11992 arch_info->name);
11993
11994 mips_set_architecture (arch_info);
11995
11996 /* Optimize for file_mips_arch, unless -mtune selects a different processor. */
11997 if (mips_tune_string != 0)
11998 tune_info = mips_parse_cpu ("-mtune", mips_tune_string);
11999
12000 if (tune_info == 0)
12001 mips_set_tune (arch_info);
12002 else
12003 mips_set_tune (tune_info);
12004
12005 if (file_mips_gp32 >= 0)
12006 {
12007 /* The user specified the size of the integer registers. Make sure
12008 it agrees with the ABI and ISA. */
12009 if (file_mips_gp32 == 0 && !ISA_HAS_64BIT_REGS (mips_opts.isa))
12010 as_bad (_("-mgp64 used with a 32-bit processor"));
12011 else if (file_mips_gp32 == 1 && ABI_NEEDS_64BIT_REGS (mips_abi))
12012 as_bad (_("-mgp32 used with a 64-bit ABI"));
12013 else if (file_mips_gp32 == 0 && ABI_NEEDS_32BIT_REGS (mips_abi))
12014 as_bad (_("-mgp64 used with a 32-bit ABI"));
12015 }
12016 else
12017 {
12018 /* Infer the integer register size from the ABI and processor.
12019 Restrict ourselves to 32-bit registers if that's all the
12020 processor has, or if the ABI cannot handle 64-bit registers. */
12021 file_mips_gp32 = (ABI_NEEDS_32BIT_REGS (mips_abi)
12022 || !ISA_HAS_64BIT_REGS (mips_opts.isa));
12023 }
12024
12025 switch (file_mips_fp32)
12026 {
12027 default:
12028 case -1:
12029 /* No user specified float register size.
12030 ??? GAS treats single-float processors as though they had 64-bit
12031 float registers (although it complains when double-precision
12032 instructions are used). As things stand, saying they have 32-bit
12033 registers would lead to spurious "register must be even" messages.
12034 So here we assume float registers are never smaller than the
12035 integer ones. */
12036 if (file_mips_gp32 == 0)
12037 /* 64-bit integer registers implies 64-bit float registers. */
12038 file_mips_fp32 = 0;
12039 else if ((mips_opts.ase_mips3d > 0 || mips_opts.ase_mdmx > 0)
12040 && ISA_HAS_64BIT_FPRS (mips_opts.isa))
12041 /* -mips3d and -mdmx imply 64-bit float registers, if possible. */
12042 file_mips_fp32 = 0;
12043 else
12044 /* 32-bit float registers. */
12045 file_mips_fp32 = 1;
12046 break;
12047
12048 /* The user specified the size of the float registers. Check if it
12049 agrees with the ABI and ISA. */
12050 case 0:
12051 if (!ISA_HAS_64BIT_FPRS (mips_opts.isa))
12052 as_bad (_("-mfp64 used with a 32-bit fpu"));
12053 else if (ABI_NEEDS_32BIT_REGS (mips_abi)
12054 && !ISA_HAS_MXHC1 (mips_opts.isa))
12055 as_warn (_("-mfp64 used with a 32-bit ABI"));
12056 break;
12057 case 1:
12058 if (ABI_NEEDS_64BIT_REGS (mips_abi))
12059 as_warn (_("-mfp32 used with a 64-bit ABI"));
12060 break;
12061 }
12062
12063 /* End of GCC-shared inference code. */
12064
12065 /* This flag is set when we have a 64-bit capable CPU but use only
12066 32-bit wide registers. Note that EABI does not use it. */
12067 if (ISA_HAS_64BIT_REGS (mips_opts.isa)
12068 && ((mips_abi == NO_ABI && file_mips_gp32 == 1)
12069 || mips_abi == O32_ABI))
12070 mips_32bitmode = 1;
12071
12072 if (mips_opts.isa == ISA_MIPS1 && mips_trap)
12073 as_bad (_("trap exception not supported at ISA 1"));
12074
12075 /* If the selected architecture includes support for ASEs, enable
12076 generation of code for them. */
12077 if (mips_opts.mips16 == -1)
12078 mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_arch)) ? 1 : 0;
12079 if (mips_opts.ase_mips3d == -1)
12080 mips_opts.ase_mips3d = ((arch_info->flags & MIPS_CPU_ASE_MIPS3D)
12081 && file_mips_fp32 == 0) ? 1 : 0;
12082 if (mips_opts.ase_mips3d && file_mips_fp32 == 1)
12083 as_bad (_("-mfp32 used with -mips3d"));
12084
12085 if (mips_opts.ase_mdmx == -1)
12086 mips_opts.ase_mdmx = ((arch_info->flags & MIPS_CPU_ASE_MDMX)
12087 && file_mips_fp32 == 0) ? 1 : 0;
12088 if (mips_opts.ase_mdmx && file_mips_fp32 == 1)
12089 as_bad (_("-mfp32 used with -mdmx"));
12090
12091 if (mips_opts.ase_smartmips == -1)
12092 mips_opts.ase_smartmips = (arch_info->flags & MIPS_CPU_ASE_SMARTMIPS) ? 1 : 0;
12093 if (mips_opts.ase_smartmips && !ISA_SUPPORTS_SMARTMIPS)
12094 as_warn (_("%s ISA does not support SmartMIPS"),
12095 mips_cpu_info_from_isa (mips_opts.isa)->name);
12096
12097 if (mips_opts.ase_dsp == -1)
12098 mips_opts.ase_dsp = (arch_info->flags & MIPS_CPU_ASE_DSP) ? 1 : 0;
12099 if (mips_opts.ase_dsp && !ISA_SUPPORTS_DSP_ASE)
12100 as_warn (_("%s ISA does not support DSP ASE"),
12101 mips_cpu_info_from_isa (mips_opts.isa)->name);
12102
12103 if (mips_opts.ase_dspr2 == -1)
12104 {
12105 mips_opts.ase_dspr2 = (arch_info->flags & MIPS_CPU_ASE_DSPR2) ? 1 : 0;
12106 mips_opts.ase_dsp = (arch_info->flags & MIPS_CPU_ASE_DSP) ? 1 : 0;
12107 }
12108 if (mips_opts.ase_dspr2 && !ISA_SUPPORTS_DSPR2_ASE)
12109 as_warn (_("%s ISA does not support DSP R2 ASE"),
12110 mips_cpu_info_from_isa (mips_opts.isa)->name);
12111
12112 if (mips_opts.ase_mt == -1)
12113 mips_opts.ase_mt = (arch_info->flags & MIPS_CPU_ASE_MT) ? 1 : 0;
12114 if (mips_opts.ase_mt && !ISA_SUPPORTS_MT_ASE)
12115 as_warn (_("%s ISA does not support MT ASE"),
12116 mips_cpu_info_from_isa (mips_opts.isa)->name);
12117
12118 file_mips_isa = mips_opts.isa;
12119 file_ase_mips16 = mips_opts.mips16;
12120 file_ase_mips3d = mips_opts.ase_mips3d;
12121 file_ase_mdmx = mips_opts.ase_mdmx;
12122 file_ase_smartmips = mips_opts.ase_smartmips;
12123 file_ase_dsp = mips_opts.ase_dsp;
12124 file_ase_dspr2 = mips_opts.ase_dspr2;
12125 file_ase_mt = mips_opts.ase_mt;
12126 mips_opts.gp32 = file_mips_gp32;
12127 mips_opts.fp32 = file_mips_fp32;
12128 mips_opts.soft_float = file_mips_soft_float;
12129 mips_opts.single_float = file_mips_single_float;
12130
12131 if (mips_flag_mdebug < 0)
12132 {
12133 #ifdef OBJ_MAYBE_ECOFF
12134 if (OUTPUT_FLAVOR == bfd_target_ecoff_flavour)
12135 mips_flag_mdebug = 1;
12136 else
12137 #endif /* OBJ_MAYBE_ECOFF */
12138 mips_flag_mdebug = 0;
12139 }
12140 }
12141 \f
12142 void
12143 mips_init_after_args (void)
12144 {
12145 /* initialize opcodes */
12146 bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes;
12147 mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes;
12148 }
12149
12150 long
12151 md_pcrel_from (fixS *fixP)
12152 {
12153 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
12154 switch (fixP->fx_r_type)
12155 {
12156 case BFD_RELOC_16_PCREL_S2:
12157 case BFD_RELOC_MIPS_JMP:
12158 /* Return the address of the delay slot. */
12159 return addr + 4;
12160 default:
12161 /* We have no relocation type for PC relative MIPS16 instructions. */
12162 if (fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != now_seg)
12163 as_bad_where (fixP->fx_file, fixP->fx_line,
12164 _("PC relative MIPS16 instruction references a different section"));
12165 return addr;
12166 }
12167 }
12168
12169 /* This is called before the symbol table is processed. In order to
12170 work with gcc when using mips-tfile, we must keep all local labels.
12171 However, in other cases, we want to discard them. If we were
12172 called with -g, but we didn't see any debugging information, it may
12173 mean that gcc is smuggling debugging information through to
12174 mips-tfile, in which case we must generate all local labels. */
12175
12176 void
12177 mips_frob_file_before_adjust (void)
12178 {
12179 #ifndef NO_ECOFF_DEBUGGING
12180 if (ECOFF_DEBUGGING
12181 && mips_debug != 0
12182 && ! ecoff_debugging_seen)
12183 flag_keep_locals = 1;
12184 #endif
12185 }
12186
12187 /* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede
12188 the corresponding LO16 reloc. This is called before md_apply_fix and
12189 tc_gen_reloc. Unmatched relocs can only be generated by use of explicit
12190 relocation operators.
12191
12192 For our purposes, a %lo() expression matches a %got() or %hi()
12193 expression if:
12194
12195 (a) it refers to the same symbol; and
12196 (b) the offset applied in the %lo() expression is no lower than
12197 the offset applied in the %got() or %hi().
12198
12199 (b) allows us to cope with code like:
12200
12201 lui $4,%hi(foo)
12202 lh $4,%lo(foo+2)($4)
12203
12204 ...which is legal on RELA targets, and has a well-defined behaviour
12205 if the user knows that adding 2 to "foo" will not induce a carry to
12206 the high 16 bits.
12207
12208 When several %lo()s match a particular %got() or %hi(), we use the
12209 following rules to distinguish them:
12210
12211 (1) %lo()s with smaller offsets are a better match than %lo()s with
12212 higher offsets.
12213
12214 (2) %lo()s with no matching %got() or %hi() are better than those
12215 that already have a matching %got() or %hi().
12216
12217 (3) later %lo()s are better than earlier %lo()s.
12218
12219 These rules are applied in order.
12220
12221 (1) means, among other things, that %lo()s with identical offsets are
12222 chosen if they exist.
12223
12224 (2) means that we won't associate several high-part relocations with
12225 the same low-part relocation unless there's no alternative. Having
12226 several high parts for the same low part is a GNU extension; this rule
12227 allows careful users to avoid it.
12228
12229 (3) is purely cosmetic. mips_hi_fixup_list is is in reverse order,
12230 with the last high-part relocation being at the front of the list.
12231 It therefore makes sense to choose the last matching low-part
12232 relocation, all other things being equal. It's also easier
12233 to code that way. */
12234
12235 void
12236 mips_frob_file (void)
12237 {
12238 struct mips_hi_fixup *l;
12239 bfd_reloc_code_real_type looking_for_rtype = BFD_RELOC_UNUSED;
12240
12241 for (l = mips_hi_fixup_list; l != NULL; l = l->next)
12242 {
12243 segment_info_type *seginfo;
12244 bfd_boolean matched_lo_p;
12245 fixS **hi_pos, **lo_pos, **pos;
12246
12247 gas_assert (reloc_needs_lo_p (l->fixp->fx_r_type));
12248
12249 /* If a GOT16 relocation turns out to be against a global symbol,
12250 there isn't supposed to be a matching LO. */
12251 if (got16_reloc_p (l->fixp->fx_r_type)
12252 && !pic_need_relax (l->fixp->fx_addsy, l->seg))
12253 continue;
12254
12255 /* Check quickly whether the next fixup happens to be a matching %lo. */
12256 if (fixup_has_matching_lo_p (l->fixp))
12257 continue;
12258
12259 seginfo = seg_info (l->seg);
12260
12261 /* Set HI_POS to the position of this relocation in the chain.
12262 Set LO_POS to the position of the chosen low-part relocation.
12263 MATCHED_LO_P is true on entry to the loop if *POS is a low-part
12264 relocation that matches an immediately-preceding high-part
12265 relocation. */
12266 hi_pos = NULL;
12267 lo_pos = NULL;
12268 matched_lo_p = FALSE;
12269 looking_for_rtype = matching_lo_reloc (l->fixp->fx_r_type);
12270
12271 for (pos = &seginfo->fix_root; *pos != NULL; pos = &(*pos)->fx_next)
12272 {
12273 if (*pos == l->fixp)
12274 hi_pos = pos;
12275
12276 if ((*pos)->fx_r_type == looking_for_rtype
12277 && symbol_same_p ((*pos)->fx_addsy, l->fixp->fx_addsy)
12278 && (*pos)->fx_offset >= l->fixp->fx_offset
12279 && (lo_pos == NULL
12280 || (*pos)->fx_offset < (*lo_pos)->fx_offset
12281 || (!matched_lo_p
12282 && (*pos)->fx_offset == (*lo_pos)->fx_offset)))
12283 lo_pos = pos;
12284
12285 matched_lo_p = (reloc_needs_lo_p ((*pos)->fx_r_type)
12286 && fixup_has_matching_lo_p (*pos));
12287 }
12288
12289 /* If we found a match, remove the high-part relocation from its
12290 current position and insert it before the low-part relocation.
12291 Make the offsets match so that fixup_has_matching_lo_p()
12292 will return true.
12293
12294 We don't warn about unmatched high-part relocations since some
12295 versions of gcc have been known to emit dead "lui ...%hi(...)"
12296 instructions. */
12297 if (lo_pos != NULL)
12298 {
12299 l->fixp->fx_offset = (*lo_pos)->fx_offset;
12300 if (l->fixp->fx_next != *lo_pos)
12301 {
12302 *hi_pos = l->fixp->fx_next;
12303 l->fixp->fx_next = *lo_pos;
12304 *lo_pos = l->fixp;
12305 }
12306 }
12307 }
12308 }
12309
12310 /* We may have combined relocations without symbols in the N32/N64 ABI.
12311 We have to prevent gas from dropping them. */
12312
12313 int
12314 mips_force_relocation (fixS *fixp)
12315 {
12316 if (generic_force_reloc (fixp))
12317 return 1;
12318
12319 if (HAVE_NEWABI
12320 && S_GET_SEGMENT (fixp->fx_addsy) == bfd_abs_section_ptr
12321 && (fixp->fx_r_type == BFD_RELOC_MIPS_SUB
12322 || hi16_reloc_p (fixp->fx_r_type)
12323 || lo16_reloc_p (fixp->fx_r_type)))
12324 return 1;
12325
12326 return 0;
12327 }
12328
12329 /* Apply a fixup to the object file. */
12330
12331 void
12332 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
12333 {
12334 bfd_byte *buf;
12335 long insn;
12336 reloc_howto_type *howto;
12337
12338 /* We ignore generic BFD relocations we don't know about. */
12339 howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
12340 if (! howto)
12341 return;
12342
12343 gas_assert (fixP->fx_size == 4
12344 || fixP->fx_r_type == BFD_RELOC_16
12345 || fixP->fx_r_type == BFD_RELOC_64
12346 || fixP->fx_r_type == BFD_RELOC_CTOR
12347 || fixP->fx_r_type == BFD_RELOC_MIPS_SUB
12348 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
12349 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY
12350 || fixP->fx_r_type == BFD_RELOC_MIPS_TLS_DTPREL64);
12351
12352 buf = (bfd_byte *) (fixP->fx_frag->fr_literal + fixP->fx_where);
12353
12354 gas_assert (!fixP->fx_pcrel || fixP->fx_r_type == BFD_RELOC_16_PCREL_S2);
12355
12356 /* Don't treat parts of a composite relocation as done. There are two
12357 reasons for this:
12358
12359 (1) The second and third parts will be against 0 (RSS_UNDEF) but
12360 should nevertheless be emitted if the first part is.
12361
12362 (2) In normal usage, composite relocations are never assembly-time
12363 constants. The easiest way of dealing with the pathological
12364 exceptions is to generate a relocation against STN_UNDEF and
12365 leave everything up to the linker. */
12366 if (fixP->fx_addsy == NULL && !fixP->fx_pcrel && fixP->fx_tcbit == 0)
12367 fixP->fx_done = 1;
12368
12369 switch (fixP->fx_r_type)
12370 {
12371 case BFD_RELOC_MIPS_TLS_GD:
12372 case BFD_RELOC_MIPS_TLS_LDM:
12373 case BFD_RELOC_MIPS_TLS_DTPREL32:
12374 case BFD_RELOC_MIPS_TLS_DTPREL64:
12375 case BFD_RELOC_MIPS_TLS_DTPREL_HI16:
12376 case BFD_RELOC_MIPS_TLS_DTPREL_LO16:
12377 case BFD_RELOC_MIPS_TLS_GOTTPREL:
12378 case BFD_RELOC_MIPS_TLS_TPREL_HI16:
12379 case BFD_RELOC_MIPS_TLS_TPREL_LO16:
12380 S_SET_THREAD_LOCAL (fixP->fx_addsy);
12381 /* fall through */
12382
12383 case BFD_RELOC_MIPS_JMP:
12384 case BFD_RELOC_MIPS_SHIFT5:
12385 case BFD_RELOC_MIPS_SHIFT6:
12386 case BFD_RELOC_MIPS_GOT_DISP:
12387 case BFD_RELOC_MIPS_GOT_PAGE:
12388 case BFD_RELOC_MIPS_GOT_OFST:
12389 case BFD_RELOC_MIPS_SUB:
12390 case BFD_RELOC_MIPS_INSERT_A:
12391 case BFD_RELOC_MIPS_INSERT_B:
12392 case BFD_RELOC_MIPS_DELETE:
12393 case BFD_RELOC_MIPS_HIGHEST:
12394 case BFD_RELOC_MIPS_HIGHER:
12395 case BFD_RELOC_MIPS_SCN_DISP:
12396 case BFD_RELOC_MIPS_REL16:
12397 case BFD_RELOC_MIPS_RELGOT:
12398 case BFD_RELOC_MIPS_JALR:
12399 case BFD_RELOC_HI16:
12400 case BFD_RELOC_HI16_S:
12401 case BFD_RELOC_GPREL16:
12402 case BFD_RELOC_MIPS_LITERAL:
12403 case BFD_RELOC_MIPS_CALL16:
12404 case BFD_RELOC_MIPS_GOT16:
12405 case BFD_RELOC_GPREL32:
12406 case BFD_RELOC_MIPS_GOT_HI16:
12407 case BFD_RELOC_MIPS_GOT_LO16:
12408 case BFD_RELOC_MIPS_CALL_HI16:
12409 case BFD_RELOC_MIPS_CALL_LO16:
12410 case BFD_RELOC_MIPS16_GPREL:
12411 case BFD_RELOC_MIPS16_GOT16:
12412 case BFD_RELOC_MIPS16_CALL16:
12413 case BFD_RELOC_MIPS16_HI16:
12414 case BFD_RELOC_MIPS16_HI16_S:
12415 case BFD_RELOC_MIPS16_JMP:
12416 /* Nothing needed to do. The value comes from the reloc entry. */
12417 break;
12418
12419 case BFD_RELOC_64:
12420 /* This is handled like BFD_RELOC_32, but we output a sign
12421 extended value if we are only 32 bits. */
12422 if (fixP->fx_done)
12423 {
12424 if (8 <= sizeof (valueT))
12425 md_number_to_chars ((char *) buf, *valP, 8);
12426 else
12427 {
12428 valueT hiv;
12429
12430 if ((*valP & 0x80000000) != 0)
12431 hiv = 0xffffffff;
12432 else
12433 hiv = 0;
12434 md_number_to_chars ((char *)(buf + (target_big_endian ? 4 : 0)),
12435 *valP, 4);
12436 md_number_to_chars ((char *)(buf + (target_big_endian ? 0 : 4)),
12437 hiv, 4);
12438 }
12439 }
12440 break;
12441
12442 case BFD_RELOC_RVA:
12443 case BFD_RELOC_32:
12444 case BFD_RELOC_16:
12445 /* If we are deleting this reloc entry, we must fill in the
12446 value now. This can happen if we have a .word which is not
12447 resolved when it appears but is later defined. */
12448 if (fixP->fx_done)
12449 md_number_to_chars ((char *) buf, *valP, fixP->fx_size);
12450 break;
12451
12452 case BFD_RELOC_LO16:
12453 case BFD_RELOC_MIPS16_LO16:
12454 /* FIXME: Now that embedded-PIC is gone, some of this code/comment
12455 may be safe to remove, but if so it's not obvious. */
12456 /* When handling an embedded PIC switch statement, we can wind
12457 up deleting a LO16 reloc. See the 'o' case in mips_ip. */
12458 if (fixP->fx_done)
12459 {
12460 if (*valP + 0x8000 > 0xffff)
12461 as_bad_where (fixP->fx_file, fixP->fx_line,
12462 _("relocation overflow"));
12463 if (target_big_endian)
12464 buf += 2;
12465 md_number_to_chars ((char *) buf, *valP, 2);
12466 }
12467 break;
12468
12469 case BFD_RELOC_16_PCREL_S2:
12470 if ((*valP & 0x3) != 0)
12471 as_bad_where (fixP->fx_file, fixP->fx_line,
12472 _("Branch to misaligned address (%lx)"), (long) *valP);
12473
12474 /* We need to save the bits in the instruction since fixup_segment()
12475 might be deleting the relocation entry (i.e., a branch within
12476 the current segment). */
12477 if (! fixP->fx_done)
12478 break;
12479
12480 /* Update old instruction data. */
12481 if (target_big_endian)
12482 insn = (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf[3];
12483 else
12484 insn = (buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | buf[0];
12485
12486 if (*valP + 0x20000 <= 0x3ffff)
12487 {
12488 insn |= (*valP >> 2) & 0xffff;
12489 md_number_to_chars ((char *) buf, insn, 4);
12490 }
12491 else if (mips_pic == NO_PIC
12492 && fixP->fx_done
12493 && fixP->fx_frag->fr_address >= text_section->vma
12494 && (fixP->fx_frag->fr_address
12495 < text_section->vma + bfd_get_section_size (text_section))
12496 && ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
12497 || (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
12498 || (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
12499 {
12500 /* The branch offset is too large. If this is an
12501 unconditional branch, and we are not generating PIC code,
12502 we can convert it to an absolute jump instruction. */
12503 if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
12504 insn = 0x0c000000; /* jal */
12505 else
12506 insn = 0x08000000; /* j */
12507 fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
12508 fixP->fx_done = 0;
12509 fixP->fx_addsy = section_symbol (text_section);
12510 *valP += md_pcrel_from (fixP);
12511 md_number_to_chars ((char *) buf, insn, 4);
12512 }
12513 else
12514 {
12515 /* If we got here, we have branch-relaxation disabled,
12516 and there's nothing we can do to fix this instruction
12517 without turning it into a longer sequence. */
12518 as_bad_where (fixP->fx_file, fixP->fx_line,
12519 _("Branch out of range"));
12520 }
12521 break;
12522
12523 case BFD_RELOC_VTABLE_INHERIT:
12524 fixP->fx_done = 0;
12525 if (fixP->fx_addsy
12526 && !S_IS_DEFINED (fixP->fx_addsy)
12527 && !S_IS_WEAK (fixP->fx_addsy))
12528 S_SET_WEAK (fixP->fx_addsy);
12529 break;
12530
12531 case BFD_RELOC_VTABLE_ENTRY:
12532 fixP->fx_done = 0;
12533 break;
12534
12535 default:
12536 internalError ();
12537 }
12538
12539 /* Remember value for tc_gen_reloc. */
12540 fixP->fx_addnumber = *valP;
12541 }
12542
12543 static symbolS *
12544 get_symbol (void)
12545 {
12546 int c;
12547 char *name;
12548 symbolS *p;
12549
12550 name = input_line_pointer;
12551 c = get_symbol_end ();
12552 p = (symbolS *) symbol_find_or_make (name);
12553 *input_line_pointer = c;
12554 return p;
12555 }
12556
12557 /* Align the current frag to a given power of two. If a particular
12558 fill byte should be used, FILL points to an integer that contains
12559 that byte, otherwise FILL is null.
12560
12561 The MIPS assembler also automatically adjusts any preceding
12562 label. */
12563
12564 static void
12565 mips_align (int to, int *fill, symbolS *label)
12566 {
12567 mips_emit_delays ();
12568 mips_record_mips16_mode ();
12569 if (fill == NULL && subseg_text_p (now_seg))
12570 frag_align_code (to, 0);
12571 else
12572 frag_align (to, fill ? *fill : 0, 0);
12573 record_alignment (now_seg, to);
12574 if (label != NULL)
12575 {
12576 gas_assert (S_GET_SEGMENT (label) == now_seg);
12577 symbol_set_frag (label, frag_now);
12578 S_SET_VALUE (label, (valueT) frag_now_fix ());
12579 }
12580 }
12581
12582 /* Align to a given power of two. .align 0 turns off the automatic
12583 alignment used by the data creating pseudo-ops. */
12584
12585 static void
12586 s_align (int x ATTRIBUTE_UNUSED)
12587 {
12588 int temp, fill_value, *fill_ptr;
12589 long max_alignment = 28;
12590
12591 /* o Note that the assembler pulls down any immediately preceding label
12592 to the aligned address.
12593 o It's not documented but auto alignment is reinstated by
12594 a .align pseudo instruction.
12595 o Note also that after auto alignment is turned off the mips assembler
12596 issues an error on attempt to assemble an improperly aligned data item.
12597 We don't. */
12598
12599 temp = get_absolute_expression ();
12600 if (temp > max_alignment)
12601 as_bad (_("Alignment too large: %d. assumed."), temp = max_alignment);
12602 else if (temp < 0)
12603 {
12604 as_warn (_("Alignment negative: 0 assumed."));
12605 temp = 0;
12606 }
12607 if (*input_line_pointer == ',')
12608 {
12609 ++input_line_pointer;
12610 fill_value = get_absolute_expression ();
12611 fill_ptr = &fill_value;
12612 }
12613 else
12614 fill_ptr = 0;
12615 if (temp)
12616 {
12617 segment_info_type *si = seg_info (now_seg);
12618 struct insn_label_list *l = si->label_list;
12619 /* Auto alignment should be switched on by next section change. */
12620 auto_align = 1;
12621 mips_align (temp, fill_ptr, l != NULL ? l->label : NULL);
12622 }
12623 else
12624 {
12625 auto_align = 0;
12626 }
12627
12628 demand_empty_rest_of_line ();
12629 }
12630
12631 static void
12632 s_change_sec (int sec)
12633 {
12634 segT seg;
12635
12636 #ifdef OBJ_ELF
12637 /* The ELF backend needs to know that we are changing sections, so
12638 that .previous works correctly. We could do something like check
12639 for an obj_section_change_hook macro, but that might be confusing
12640 as it would not be appropriate to use it in the section changing
12641 functions in read.c, since obj-elf.c intercepts those. FIXME:
12642 This should be cleaner, somehow. */
12643 if (IS_ELF)
12644 obj_elf_section_change_hook ();
12645 #endif
12646
12647 mips_emit_delays ();
12648
12649 switch (sec)
12650 {
12651 case 't':
12652 s_text (0);
12653 break;
12654 case 'd':
12655 s_data (0);
12656 break;
12657 case 'b':
12658 subseg_set (bss_section, (subsegT) get_absolute_expression ());
12659 demand_empty_rest_of_line ();
12660 break;
12661
12662 case 'r':
12663 seg = subseg_new (RDATA_SECTION_NAME,
12664 (subsegT) get_absolute_expression ());
12665 if (IS_ELF)
12666 {
12667 bfd_set_section_flags (stdoutput, seg, (SEC_ALLOC | SEC_LOAD
12668 | SEC_READONLY | SEC_RELOC
12669 | SEC_DATA));
12670 if (strncmp (TARGET_OS, "elf", 3) != 0)
12671 record_alignment (seg, 4);
12672 }
12673 demand_empty_rest_of_line ();
12674 break;
12675
12676 case 's':
12677 seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
12678 if (IS_ELF)
12679 {
12680 bfd_set_section_flags (stdoutput, seg,
12681 SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA);
12682 if (strncmp (TARGET_OS, "elf", 3) != 0)
12683 record_alignment (seg, 4);
12684 }
12685 demand_empty_rest_of_line ();
12686 break;
12687
12688 case 'B':
12689 seg = subseg_new (".sbss", (subsegT) get_absolute_expression ());
12690 if (IS_ELF)
12691 {
12692 bfd_set_section_flags (stdoutput, seg, SEC_ALLOC);
12693 if (strncmp (TARGET_OS, "elf", 3) != 0)
12694 record_alignment (seg, 4);
12695 }
12696 demand_empty_rest_of_line ();
12697 break;
12698 }
12699
12700 auto_align = 1;
12701 }
12702
12703 void
12704 s_change_section (int ignore ATTRIBUTE_UNUSED)
12705 {
12706 #ifdef OBJ_ELF
12707 char *section_name;
12708 char c;
12709 char next_c = 0;
12710 int section_type;
12711 int section_flag;
12712 int section_entry_size;
12713 int section_alignment;
12714
12715 if (!IS_ELF)
12716 return;
12717
12718 section_name = input_line_pointer;
12719 c = get_symbol_end ();
12720 if (c)
12721 next_c = *(input_line_pointer + 1);
12722
12723 /* Do we have .section Name<,"flags">? */
12724 if (c != ',' || (c == ',' && next_c == '"'))
12725 {
12726 /* just after name is now '\0'. */
12727 *input_line_pointer = c;
12728 input_line_pointer = section_name;
12729 obj_elf_section (ignore);
12730 return;
12731 }
12732 input_line_pointer++;
12733
12734 /* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
12735 if (c == ',')
12736 section_type = get_absolute_expression ();
12737 else
12738 section_type = 0;
12739 if (*input_line_pointer++ == ',')
12740 section_flag = get_absolute_expression ();
12741 else
12742 section_flag = 0;
12743 if (*input_line_pointer++ == ',')
12744 section_entry_size = get_absolute_expression ();
12745 else
12746 section_entry_size = 0;
12747 if (*input_line_pointer++ == ',')
12748 section_alignment = get_absolute_expression ();
12749 else
12750 section_alignment = 0;
12751 /* FIXME: really ignore? */
12752 (void) section_alignment;
12753
12754 section_name = xstrdup (section_name);
12755
12756 /* When using the generic form of .section (as implemented by obj-elf.c),
12757 there's no way to set the section type to SHT_MIPS_DWARF. Users have
12758 traditionally had to fall back on the more common @progbits instead.
12759
12760 There's nothing really harmful in this, since bfd will correct
12761 SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
12762 means that, for backwards compatibility, the special_section entries
12763 for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
12764
12765 Even so, we shouldn't force users of the MIPS .section syntax to
12766 incorrectly label the sections as SHT_PROGBITS. The best compromise
12767 seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
12768 generic type-checking code. */
12769 if (section_type == SHT_MIPS_DWARF)
12770 section_type = SHT_PROGBITS;
12771
12772 obj_elf_change_section (section_name, section_type, section_flag,
12773 section_entry_size, 0, 0, 0);
12774
12775 if (now_seg->name != section_name)
12776 free (section_name);
12777 #endif /* OBJ_ELF */
12778 }
12779
12780 void
12781 mips_enable_auto_align (void)
12782 {
12783 auto_align = 1;
12784 }
12785
12786 static void
12787 s_cons (int log_size)
12788 {
12789 segment_info_type *si = seg_info (now_seg);
12790 struct insn_label_list *l = si->label_list;
12791 symbolS *label;
12792
12793 label = l != NULL ? l->label : NULL;
12794 mips_emit_delays ();
12795 if (log_size > 0 && auto_align)
12796 mips_align (log_size, 0, label);
12797 mips_clear_insn_labels ();
12798 cons (1 << log_size);
12799 }
12800
12801 static void
12802 s_float_cons (int type)
12803 {
12804 segment_info_type *si = seg_info (now_seg);
12805 struct insn_label_list *l = si->label_list;
12806 symbolS *label;
12807
12808 label = l != NULL ? l->label : NULL;
12809
12810 mips_emit_delays ();
12811
12812 if (auto_align)
12813 {
12814 if (type == 'd')
12815 mips_align (3, 0, label);
12816 else
12817 mips_align (2, 0, label);
12818 }
12819
12820 mips_clear_insn_labels ();
12821
12822 float_cons (type);
12823 }
12824
12825 /* Handle .globl. We need to override it because on Irix 5 you are
12826 permitted to say
12827 .globl foo .text
12828 where foo is an undefined symbol, to mean that foo should be
12829 considered to be the address of a function. */
12830
12831 static void
12832 s_mips_globl (int x ATTRIBUTE_UNUSED)
12833 {
12834 char *name;
12835 int c;
12836 symbolS *symbolP;
12837 flagword flag;
12838
12839 do
12840 {
12841 name = input_line_pointer;
12842 c = get_symbol_end ();
12843 symbolP = symbol_find_or_make (name);
12844 S_SET_EXTERNAL (symbolP);
12845
12846 *input_line_pointer = c;
12847 SKIP_WHITESPACE ();
12848
12849 /* On Irix 5, every global symbol that is not explicitly labelled as
12850 being a function is apparently labelled as being an object. */
12851 flag = BSF_OBJECT;
12852
12853 if (!is_end_of_line[(unsigned char) *input_line_pointer]
12854 && (*input_line_pointer != ','))
12855 {
12856 char *secname;
12857 asection *sec;
12858
12859 secname = input_line_pointer;
12860 c = get_symbol_end ();
12861 sec = bfd_get_section_by_name (stdoutput, secname);
12862 if (sec == NULL)
12863 as_bad (_("%s: no such section"), secname);
12864 *input_line_pointer = c;
12865
12866 if (sec != NULL && (sec->flags & SEC_CODE) != 0)
12867 flag = BSF_FUNCTION;
12868 }
12869
12870 symbol_get_bfdsym (symbolP)->flags |= flag;
12871
12872 c = *input_line_pointer;
12873 if (c == ',')
12874 {
12875 input_line_pointer++;
12876 SKIP_WHITESPACE ();
12877 if (is_end_of_line[(unsigned char) *input_line_pointer])
12878 c = '\n';
12879 }
12880 }
12881 while (c == ',');
12882
12883 demand_empty_rest_of_line ();
12884 }
12885
12886 static void
12887 s_option (int x ATTRIBUTE_UNUSED)
12888 {
12889 char *opt;
12890 char c;
12891
12892 opt = input_line_pointer;
12893 c = get_symbol_end ();
12894
12895 if (*opt == 'O')
12896 {
12897 /* FIXME: What does this mean? */
12898 }
12899 else if (strncmp (opt, "pic", 3) == 0)
12900 {
12901 int i;
12902
12903 i = atoi (opt + 3);
12904 if (i == 0)
12905 mips_pic = NO_PIC;
12906 else if (i == 2)
12907 {
12908 mips_pic = SVR4_PIC;
12909 mips_abicalls = TRUE;
12910 }
12911 else
12912 as_bad (_(".option pic%d not supported"), i);
12913
12914 if (mips_pic == SVR4_PIC)
12915 {
12916 if (g_switch_seen && g_switch_value != 0)
12917 as_warn (_("-G may not be used with SVR4 PIC code"));
12918 g_switch_value = 0;
12919 bfd_set_gp_size (stdoutput, 0);
12920 }
12921 }
12922 else
12923 as_warn (_("Unrecognized option \"%s\""), opt);
12924
12925 *input_line_pointer = c;
12926 demand_empty_rest_of_line ();
12927 }
12928
12929 /* This structure is used to hold a stack of .set values. */
12930
12931 struct mips_option_stack
12932 {
12933 struct mips_option_stack *next;
12934 struct mips_set_options options;
12935 };
12936
12937 static struct mips_option_stack *mips_opts_stack;
12938
12939 /* Handle the .set pseudo-op. */
12940
12941 static void
12942 s_mipsset (int x ATTRIBUTE_UNUSED)
12943 {
12944 char *name = input_line_pointer, ch;
12945
12946 while (!is_end_of_line[(unsigned char) *input_line_pointer])
12947 ++input_line_pointer;
12948 ch = *input_line_pointer;
12949 *input_line_pointer = '\0';
12950
12951 if (strcmp (name, "reorder") == 0)
12952 {
12953 if (mips_opts.noreorder)
12954 end_noreorder ();
12955 }
12956 else if (strcmp (name, "noreorder") == 0)
12957 {
12958 if (!mips_opts.noreorder)
12959 start_noreorder ();
12960 }
12961 else if (strncmp (name, "at=", 3) == 0)
12962 {
12963 char *s = name + 3;
12964
12965 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &mips_opts.at))
12966 as_bad (_("Unrecognized register name `%s'"), s);
12967 }
12968 else if (strcmp (name, "at") == 0)
12969 {
12970 mips_opts.at = ATREG;
12971 }
12972 else if (strcmp (name, "noat") == 0)
12973 {
12974 mips_opts.at = ZERO;
12975 }
12976 else if (strcmp (name, "macro") == 0)
12977 {
12978 mips_opts.warn_about_macros = 0;
12979 }
12980 else if (strcmp (name, "nomacro") == 0)
12981 {
12982 if (mips_opts.noreorder == 0)
12983 as_bad (_("`noreorder' must be set before `nomacro'"));
12984 mips_opts.warn_about_macros = 1;
12985 }
12986 else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
12987 {
12988 mips_opts.nomove = 0;
12989 }
12990 else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
12991 {
12992 mips_opts.nomove = 1;
12993 }
12994 else if (strcmp (name, "bopt") == 0)
12995 {
12996 mips_opts.nobopt = 0;
12997 }
12998 else if (strcmp (name, "nobopt") == 0)
12999 {
13000 mips_opts.nobopt = 1;
13001 }
13002 else if (strcmp (name, "gp=default") == 0)
13003 mips_opts.gp32 = file_mips_gp32;
13004 else if (strcmp (name, "gp=32") == 0)
13005 mips_opts.gp32 = 1;
13006 else if (strcmp (name, "gp=64") == 0)
13007 {
13008 if (!ISA_HAS_64BIT_REGS (mips_opts.isa))
13009 as_warn (_("%s isa does not support 64-bit registers"),
13010 mips_cpu_info_from_isa (mips_opts.isa)->name);
13011 mips_opts.gp32 = 0;
13012 }
13013 else if (strcmp (name, "fp=default") == 0)
13014 mips_opts.fp32 = file_mips_fp32;
13015 else if (strcmp (name, "fp=32") == 0)
13016 mips_opts.fp32 = 1;
13017 else if (strcmp (name, "fp=64") == 0)
13018 {
13019 if (!ISA_HAS_64BIT_FPRS (mips_opts.isa))
13020 as_warn (_("%s isa does not support 64-bit floating point registers"),
13021 mips_cpu_info_from_isa (mips_opts.isa)->name);
13022 mips_opts.fp32 = 0;
13023 }
13024 else if (strcmp (name, "softfloat") == 0)
13025 mips_opts.soft_float = 1;
13026 else if (strcmp (name, "hardfloat") == 0)
13027 mips_opts.soft_float = 0;
13028 else if (strcmp (name, "singlefloat") == 0)
13029 mips_opts.single_float = 1;
13030 else if (strcmp (name, "doublefloat") == 0)
13031 mips_opts.single_float = 0;
13032 else if (strcmp (name, "mips16") == 0
13033 || strcmp (name, "MIPS-16") == 0)
13034 mips_opts.mips16 = 1;
13035 else if (strcmp (name, "nomips16") == 0
13036 || strcmp (name, "noMIPS-16") == 0)
13037 mips_opts.mips16 = 0;
13038 else if (strcmp (name, "smartmips") == 0)
13039 {
13040 if (!ISA_SUPPORTS_SMARTMIPS)
13041 as_warn (_("%s ISA does not support SmartMIPS ASE"),
13042 mips_cpu_info_from_isa (mips_opts.isa)->name);
13043 mips_opts.ase_smartmips = 1;
13044 }
13045 else if (strcmp (name, "nosmartmips") == 0)
13046 mips_opts.ase_smartmips = 0;
13047 else if (strcmp (name, "mips3d") == 0)
13048 mips_opts.ase_mips3d = 1;
13049 else if (strcmp (name, "nomips3d") == 0)
13050 mips_opts.ase_mips3d = 0;
13051 else if (strcmp (name, "mdmx") == 0)
13052 mips_opts.ase_mdmx = 1;
13053 else if (strcmp (name, "nomdmx") == 0)
13054 mips_opts.ase_mdmx = 0;
13055 else if (strcmp (name, "dsp") == 0)
13056 {
13057 if (!ISA_SUPPORTS_DSP_ASE)
13058 as_warn (_("%s ISA does not support DSP ASE"),
13059 mips_cpu_info_from_isa (mips_opts.isa)->name);
13060 mips_opts.ase_dsp = 1;
13061 mips_opts.ase_dspr2 = 0;
13062 }
13063 else if (strcmp (name, "nodsp") == 0)
13064 {
13065 mips_opts.ase_dsp = 0;
13066 mips_opts.ase_dspr2 = 0;
13067 }
13068 else if (strcmp (name, "dspr2") == 0)
13069 {
13070 if (!ISA_SUPPORTS_DSPR2_ASE)
13071 as_warn (_("%s ISA does not support DSP R2 ASE"),
13072 mips_cpu_info_from_isa (mips_opts.isa)->name);
13073 mips_opts.ase_dspr2 = 1;
13074 mips_opts.ase_dsp = 1;
13075 }
13076 else if (strcmp (name, "nodspr2") == 0)
13077 {
13078 mips_opts.ase_dspr2 = 0;
13079 mips_opts.ase_dsp = 0;
13080 }
13081 else if (strcmp (name, "mt") == 0)
13082 {
13083 if (!ISA_SUPPORTS_MT_ASE)
13084 as_warn (_("%s ISA does not support MT ASE"),
13085 mips_cpu_info_from_isa (mips_opts.isa)->name);
13086 mips_opts.ase_mt = 1;
13087 }
13088 else if (strcmp (name, "nomt") == 0)
13089 mips_opts.ase_mt = 0;
13090 else if (strncmp (name, "mips", 4) == 0 || strncmp (name, "arch=", 5) == 0)
13091 {
13092 int reset = 0;
13093
13094 /* Permit the user to change the ISA and architecture on the fly.
13095 Needless to say, misuse can cause serious problems. */
13096 if (strcmp (name, "mips0") == 0 || strcmp (name, "arch=default") == 0)
13097 {
13098 reset = 1;
13099 mips_opts.isa = file_mips_isa;
13100 mips_opts.arch = file_mips_arch;
13101 }
13102 else if (strncmp (name, "arch=", 5) == 0)
13103 {
13104 const struct mips_cpu_info *p;
13105
13106 p = mips_parse_cpu("internal use", name + 5);
13107 if (!p)
13108 as_bad (_("unknown architecture %s"), name + 5);
13109 else
13110 {
13111 mips_opts.arch = p->cpu;
13112 mips_opts.isa = p->isa;
13113 }
13114 }
13115 else if (strncmp (name, "mips", 4) == 0)
13116 {
13117 const struct mips_cpu_info *p;
13118
13119 p = mips_parse_cpu("internal use", name);
13120 if (!p)
13121 as_bad (_("unknown ISA level %s"), name + 4);
13122 else
13123 {
13124 mips_opts.arch = p->cpu;
13125 mips_opts.isa = p->isa;
13126 }
13127 }
13128 else
13129 as_bad (_("unknown ISA or architecture %s"), name);
13130
13131 switch (mips_opts.isa)
13132 {
13133 case 0:
13134 break;
13135 case ISA_MIPS1:
13136 case ISA_MIPS2:
13137 case ISA_MIPS32:
13138 case ISA_MIPS32R2:
13139 mips_opts.gp32 = 1;
13140 mips_opts.fp32 = 1;
13141 break;
13142 case ISA_MIPS3:
13143 case ISA_MIPS4:
13144 case ISA_MIPS5:
13145 case ISA_MIPS64:
13146 case ISA_MIPS64R2:
13147 mips_opts.gp32 = 0;
13148 mips_opts.fp32 = 0;
13149 break;
13150 default:
13151 as_bad (_("unknown ISA level %s"), name + 4);
13152 break;
13153 }
13154 if (reset)
13155 {
13156 mips_opts.gp32 = file_mips_gp32;
13157 mips_opts.fp32 = file_mips_fp32;
13158 }
13159 }
13160 else if (strcmp (name, "autoextend") == 0)
13161 mips_opts.noautoextend = 0;
13162 else if (strcmp (name, "noautoextend") == 0)
13163 mips_opts.noautoextend = 1;
13164 else if (strcmp (name, "push") == 0)
13165 {
13166 struct mips_option_stack *s;
13167
13168 s = (struct mips_option_stack *) xmalloc (sizeof *s);
13169 s->next = mips_opts_stack;
13170 s->options = mips_opts;
13171 mips_opts_stack = s;
13172 }
13173 else if (strcmp (name, "pop") == 0)
13174 {
13175 struct mips_option_stack *s;
13176
13177 s = mips_opts_stack;
13178 if (s == NULL)
13179 as_bad (_(".set pop with no .set push"));
13180 else
13181 {
13182 /* If we're changing the reorder mode we need to handle
13183 delay slots correctly. */
13184 if (s->options.noreorder && ! mips_opts.noreorder)
13185 start_noreorder ();
13186 else if (! s->options.noreorder && mips_opts.noreorder)
13187 end_noreorder ();
13188
13189 mips_opts = s->options;
13190 mips_opts_stack = s->next;
13191 free (s);
13192 }
13193 }
13194 else if (strcmp (name, "sym32") == 0)
13195 mips_opts.sym32 = TRUE;
13196 else if (strcmp (name, "nosym32") == 0)
13197 mips_opts.sym32 = FALSE;
13198 else if (strchr (name, ','))
13199 {
13200 /* Generic ".set" directive; use the generic handler. */
13201 *input_line_pointer = ch;
13202 input_line_pointer = name;
13203 s_set (0);
13204 return;
13205 }
13206 else
13207 {
13208 as_warn (_("Tried to set unrecognized symbol: %s\n"), name);
13209 }
13210 *input_line_pointer = ch;
13211 demand_empty_rest_of_line ();
13212 }
13213
13214 /* Handle the .abicalls pseudo-op. I believe this is equivalent to
13215 .option pic2. It means to generate SVR4 PIC calls. */
13216
13217 static void
13218 s_abicalls (int ignore ATTRIBUTE_UNUSED)
13219 {
13220 mips_pic = SVR4_PIC;
13221 mips_abicalls = TRUE;
13222
13223 if (g_switch_seen && g_switch_value != 0)
13224 as_warn (_("-G may not be used with SVR4 PIC code"));
13225 g_switch_value = 0;
13226
13227 bfd_set_gp_size (stdoutput, 0);
13228 demand_empty_rest_of_line ();
13229 }
13230
13231 /* Handle the .cpload pseudo-op. This is used when generating SVR4
13232 PIC code. It sets the $gp register for the function based on the
13233 function address, which is in the register named in the argument.
13234 This uses a relocation against _gp_disp, which is handled specially
13235 by the linker. The result is:
13236 lui $gp,%hi(_gp_disp)
13237 addiu $gp,$gp,%lo(_gp_disp)
13238 addu $gp,$gp,.cpload argument
13239 The .cpload argument is normally $25 == $t9.
13240
13241 The -mno-shared option changes this to:
13242 lui $gp,%hi(__gnu_local_gp)
13243 addiu $gp,$gp,%lo(__gnu_local_gp)
13244 and the argument is ignored. This saves an instruction, but the
13245 resulting code is not position independent; it uses an absolute
13246 address for __gnu_local_gp. Thus code assembled with -mno-shared
13247 can go into an ordinary executable, but not into a shared library. */
13248
13249 static void
13250 s_cpload (int ignore ATTRIBUTE_UNUSED)
13251 {
13252 expressionS ex;
13253 int reg;
13254 int in_shared;
13255
13256 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
13257 .cpload is ignored. */
13258 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
13259 {
13260 s_ignore (0);
13261 return;
13262 }
13263
13264 /* .cpload should be in a .set noreorder section. */
13265 if (mips_opts.noreorder == 0)
13266 as_warn (_(".cpload not in noreorder section"));
13267
13268 reg = tc_get_register (0);
13269
13270 /* If we need to produce a 64-bit address, we are better off using
13271 the default instruction sequence. */
13272 in_shared = mips_in_shared || HAVE_64BIT_SYMBOLS;
13273
13274 ex.X_op = O_symbol;
13275 ex.X_add_symbol = symbol_find_or_make (in_shared ? "_gp_disp" :
13276 "__gnu_local_gp");
13277 ex.X_op_symbol = NULL;
13278 ex.X_add_number = 0;
13279
13280 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
13281 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
13282
13283 macro_start ();
13284 macro_build_lui (&ex, mips_gp_register);
13285 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
13286 mips_gp_register, BFD_RELOC_LO16);
13287 if (in_shared)
13288 macro_build (NULL, "addu", "d,v,t", mips_gp_register,
13289 mips_gp_register, reg);
13290 macro_end ();
13291
13292 demand_empty_rest_of_line ();
13293 }
13294
13295 /* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
13296 .cpsetup $reg1, offset|$reg2, label
13297
13298 If offset is given, this results in:
13299 sd $gp, offset($sp)
13300 lui $gp, %hi(%neg(%gp_rel(label)))
13301 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
13302 daddu $gp, $gp, $reg1
13303
13304 If $reg2 is given, this results in:
13305 daddu $reg2, $gp, $0
13306 lui $gp, %hi(%neg(%gp_rel(label)))
13307 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
13308 daddu $gp, $gp, $reg1
13309 $reg1 is normally $25 == $t9.
13310
13311 The -mno-shared option replaces the last three instructions with
13312 lui $gp,%hi(_gp)
13313 addiu $gp,$gp,%lo(_gp) */
13314
13315 static void
13316 s_cpsetup (int ignore ATTRIBUTE_UNUSED)
13317 {
13318 expressionS ex_off;
13319 expressionS ex_sym;
13320 int reg1;
13321
13322 /* If we are not generating SVR4 PIC code, .cpsetup is ignored.
13323 We also need NewABI support. */
13324 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
13325 {
13326 s_ignore (0);
13327 return;
13328 }
13329
13330 reg1 = tc_get_register (0);
13331 SKIP_WHITESPACE ();
13332 if (*input_line_pointer != ',')
13333 {
13334 as_bad (_("missing argument separator ',' for .cpsetup"));
13335 return;
13336 }
13337 else
13338 ++input_line_pointer;
13339 SKIP_WHITESPACE ();
13340 if (*input_line_pointer == '$')
13341 {
13342 mips_cpreturn_register = tc_get_register (0);
13343 mips_cpreturn_offset = -1;
13344 }
13345 else
13346 {
13347 mips_cpreturn_offset = get_absolute_expression ();
13348 mips_cpreturn_register = -1;
13349 }
13350 SKIP_WHITESPACE ();
13351 if (*input_line_pointer != ',')
13352 {
13353 as_bad (_("missing argument separator ',' for .cpsetup"));
13354 return;
13355 }
13356 else
13357 ++input_line_pointer;
13358 SKIP_WHITESPACE ();
13359 expression (&ex_sym);
13360
13361 macro_start ();
13362 if (mips_cpreturn_register == -1)
13363 {
13364 ex_off.X_op = O_constant;
13365 ex_off.X_add_symbol = NULL;
13366 ex_off.X_op_symbol = NULL;
13367 ex_off.X_add_number = mips_cpreturn_offset;
13368
13369 macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register,
13370 BFD_RELOC_LO16, SP);
13371 }
13372 else
13373 macro_build (NULL, "daddu", "d,v,t", mips_cpreturn_register,
13374 mips_gp_register, 0);
13375
13376 if (mips_in_shared || HAVE_64BIT_SYMBOLS)
13377 {
13378 macro_build (&ex_sym, "lui", "t,u", mips_gp_register,
13379 -1, BFD_RELOC_GPREL16, BFD_RELOC_MIPS_SUB,
13380 BFD_RELOC_HI16_S);
13381
13382 macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register,
13383 mips_gp_register, -1, BFD_RELOC_GPREL16,
13384 BFD_RELOC_MIPS_SUB, BFD_RELOC_LO16);
13385
13386 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register,
13387 mips_gp_register, reg1);
13388 }
13389 else
13390 {
13391 expressionS ex;
13392
13393 ex.X_op = O_symbol;
13394 ex.X_add_symbol = symbol_find_or_make ("__gnu_local_gp");
13395 ex.X_op_symbol = NULL;
13396 ex.X_add_number = 0;
13397
13398 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
13399 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
13400
13401 macro_build_lui (&ex, mips_gp_register);
13402 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
13403 mips_gp_register, BFD_RELOC_LO16);
13404 }
13405
13406 macro_end ();
13407
13408 demand_empty_rest_of_line ();
13409 }
13410
13411 static void
13412 s_cplocal (int ignore ATTRIBUTE_UNUSED)
13413 {
13414 /* If we are not generating SVR4 PIC code, or if this is not NewABI code,
13415 .cplocal is ignored. */
13416 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
13417 {
13418 s_ignore (0);
13419 return;
13420 }
13421
13422 mips_gp_register = tc_get_register (0);
13423 demand_empty_rest_of_line ();
13424 }
13425
13426 /* Handle the .cprestore pseudo-op. This stores $gp into a given
13427 offset from $sp. The offset is remembered, and after making a PIC
13428 call $gp is restored from that location. */
13429
13430 static void
13431 s_cprestore (int ignore ATTRIBUTE_UNUSED)
13432 {
13433 expressionS ex;
13434
13435 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
13436 .cprestore is ignored. */
13437 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
13438 {
13439 s_ignore (0);
13440 return;
13441 }
13442
13443 mips_cprestore_offset = get_absolute_expression ();
13444 mips_cprestore_valid = 1;
13445
13446 ex.X_op = O_constant;
13447 ex.X_add_symbol = NULL;
13448 ex.X_op_symbol = NULL;
13449 ex.X_add_number = mips_cprestore_offset;
13450
13451 macro_start ();
13452 macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register,
13453 SP, HAVE_64BIT_ADDRESSES);
13454 macro_end ();
13455
13456 demand_empty_rest_of_line ();
13457 }
13458
13459 /* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
13460 was given in the preceding .cpsetup, it results in:
13461 ld $gp, offset($sp)
13462
13463 If a register $reg2 was given there, it results in:
13464 daddu $gp, $reg2, $0 */
13465
13466 static void
13467 s_cpreturn (int ignore ATTRIBUTE_UNUSED)
13468 {
13469 expressionS ex;
13470
13471 /* If we are not generating SVR4 PIC code, .cpreturn is ignored.
13472 We also need NewABI support. */
13473 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
13474 {
13475 s_ignore (0);
13476 return;
13477 }
13478
13479 macro_start ();
13480 if (mips_cpreturn_register == -1)
13481 {
13482 ex.X_op = O_constant;
13483 ex.X_add_symbol = NULL;
13484 ex.X_op_symbol = NULL;
13485 ex.X_add_number = mips_cpreturn_offset;
13486
13487 macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP);
13488 }
13489 else
13490 macro_build (NULL, "daddu", "d,v,t", mips_gp_register,
13491 mips_cpreturn_register, 0);
13492 macro_end ();
13493
13494 demand_empty_rest_of_line ();
13495 }
13496
13497 /* Handle the .dtprelword and .dtpreldword pseudo-ops. They generate
13498 a 32-bit or 64-bit DTP-relative relocation (BYTES says which) for
13499 use in DWARF debug information. */
13500
13501 static void
13502 s_dtprel_internal (size_t bytes)
13503 {
13504 expressionS ex;
13505 char *p;
13506
13507 expression (&ex);
13508
13509 if (ex.X_op != O_symbol)
13510 {
13511 as_bad (_("Unsupported use of %s"), (bytes == 8
13512 ? ".dtpreldword"
13513 : ".dtprelword"));
13514 ignore_rest_of_line ();
13515 }
13516
13517 p = frag_more (bytes);
13518 md_number_to_chars (p, 0, bytes);
13519 fix_new_exp (frag_now, p - frag_now->fr_literal, bytes, &ex, FALSE,
13520 (bytes == 8
13521 ? BFD_RELOC_MIPS_TLS_DTPREL64
13522 : BFD_RELOC_MIPS_TLS_DTPREL32));
13523
13524 demand_empty_rest_of_line ();
13525 }
13526
13527 /* Handle .dtprelword. */
13528
13529 static void
13530 s_dtprelword (int ignore ATTRIBUTE_UNUSED)
13531 {
13532 s_dtprel_internal (4);
13533 }
13534
13535 /* Handle .dtpreldword. */
13536
13537 static void
13538 s_dtpreldword (int ignore ATTRIBUTE_UNUSED)
13539 {
13540 s_dtprel_internal (8);
13541 }
13542
13543 /* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
13544 code. It sets the offset to use in gp_rel relocations. */
13545
13546 static void
13547 s_gpvalue (int ignore ATTRIBUTE_UNUSED)
13548 {
13549 /* If we are not generating SVR4 PIC code, .gpvalue is ignored.
13550 We also need NewABI support. */
13551 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
13552 {
13553 s_ignore (0);
13554 return;
13555 }
13556
13557 mips_gprel_offset = get_absolute_expression ();
13558
13559 demand_empty_rest_of_line ();
13560 }
13561
13562 /* Handle the .gpword pseudo-op. This is used when generating PIC
13563 code. It generates a 32 bit GP relative reloc. */
13564
13565 static void
13566 s_gpword (int ignore ATTRIBUTE_UNUSED)
13567 {
13568 segment_info_type *si;
13569 struct insn_label_list *l;
13570 symbolS *label;
13571 expressionS ex;
13572 char *p;
13573
13574 /* When not generating PIC code, this is treated as .word. */
13575 if (mips_pic != SVR4_PIC)
13576 {
13577 s_cons (2);
13578 return;
13579 }
13580
13581 si = seg_info (now_seg);
13582 l = si->label_list;
13583 label = l != NULL ? l->label : NULL;
13584 mips_emit_delays ();
13585 if (auto_align)
13586 mips_align (2, 0, label);
13587 mips_clear_insn_labels ();
13588
13589 expression (&ex);
13590
13591 if (ex.X_op != O_symbol || ex.X_add_number != 0)
13592 {
13593 as_bad (_("Unsupported use of .gpword"));
13594 ignore_rest_of_line ();
13595 }
13596
13597 p = frag_more (4);
13598 md_number_to_chars (p, 0, 4);
13599 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
13600 BFD_RELOC_GPREL32);
13601
13602 demand_empty_rest_of_line ();
13603 }
13604
13605 static void
13606 s_gpdword (int ignore ATTRIBUTE_UNUSED)
13607 {
13608 segment_info_type *si;
13609 struct insn_label_list *l;
13610 symbolS *label;
13611 expressionS ex;
13612 char *p;
13613
13614 /* When not generating PIC code, this is treated as .dword. */
13615 if (mips_pic != SVR4_PIC)
13616 {
13617 s_cons (3);
13618 return;
13619 }
13620
13621 si = seg_info (now_seg);
13622 l = si->label_list;
13623 label = l != NULL ? l->label : NULL;
13624 mips_emit_delays ();
13625 if (auto_align)
13626 mips_align (3, 0, label);
13627 mips_clear_insn_labels ();
13628
13629 expression (&ex);
13630
13631 if (ex.X_op != O_symbol || ex.X_add_number != 0)
13632 {
13633 as_bad (_("Unsupported use of .gpdword"));
13634 ignore_rest_of_line ();
13635 }
13636
13637 p = frag_more (8);
13638 md_number_to_chars (p, 0, 8);
13639 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
13640 BFD_RELOC_GPREL32)->fx_tcbit = 1;
13641
13642 /* GPREL32 composed with 64 gives a 64-bit GP offset. */
13643 fix_new (frag_now, p - frag_now->fr_literal, 8, NULL, 0,
13644 FALSE, BFD_RELOC_64)->fx_tcbit = 1;
13645
13646 demand_empty_rest_of_line ();
13647 }
13648
13649 /* Handle the .cpadd pseudo-op. This is used when dealing with switch
13650 tables in SVR4 PIC code. */
13651
13652 static void
13653 s_cpadd (int ignore ATTRIBUTE_UNUSED)
13654 {
13655 int reg;
13656
13657 /* This is ignored when not generating SVR4 PIC code. */
13658 if (mips_pic != SVR4_PIC)
13659 {
13660 s_ignore (0);
13661 return;
13662 }
13663
13664 /* Add $gp to the register named as an argument. */
13665 macro_start ();
13666 reg = tc_get_register (0);
13667 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register);
13668 macro_end ();
13669
13670 demand_empty_rest_of_line ();
13671 }
13672
13673 /* Handle the .insn pseudo-op. This marks instruction labels in
13674 mips16 mode. This permits the linker to handle them specially,
13675 such as generating jalx instructions when needed. We also make
13676 them odd for the duration of the assembly, in order to generate the
13677 right sort of code. We will make them even in the adjust_symtab
13678 routine, while leaving them marked. This is convenient for the
13679 debugger and the disassembler. The linker knows to make them odd
13680 again. */
13681
13682 static void
13683 s_insn (int ignore ATTRIBUTE_UNUSED)
13684 {
13685 mips16_mark_labels ();
13686
13687 demand_empty_rest_of_line ();
13688 }
13689
13690 /* Handle a .stabn directive. We need these in order to mark a label
13691 as being a mips16 text label correctly. Sometimes the compiler
13692 will emit a label, followed by a .stabn, and then switch sections.
13693 If the label and .stabn are in mips16 mode, then the label is
13694 really a mips16 text label. */
13695
13696 static void
13697 s_mips_stab (int type)
13698 {
13699 if (type == 'n')
13700 mips16_mark_labels ();
13701
13702 s_stab (type);
13703 }
13704
13705 /* Handle the .weakext pseudo-op as defined in Kane and Heinrich. */
13706
13707 static void
13708 s_mips_weakext (int ignore ATTRIBUTE_UNUSED)
13709 {
13710 char *name;
13711 int c;
13712 symbolS *symbolP;
13713 expressionS exp;
13714
13715 name = input_line_pointer;
13716 c = get_symbol_end ();
13717 symbolP = symbol_find_or_make (name);
13718 S_SET_WEAK (symbolP);
13719 *input_line_pointer = c;
13720
13721 SKIP_WHITESPACE ();
13722
13723 if (! is_end_of_line[(unsigned char) *input_line_pointer])
13724 {
13725 if (S_IS_DEFINED (symbolP))
13726 {
13727 as_bad (_("ignoring attempt to redefine symbol %s"),
13728 S_GET_NAME (symbolP));
13729 ignore_rest_of_line ();
13730 return;
13731 }
13732
13733 if (*input_line_pointer == ',')
13734 {
13735 ++input_line_pointer;
13736 SKIP_WHITESPACE ();
13737 }
13738
13739 expression (&exp);
13740 if (exp.X_op != O_symbol)
13741 {
13742 as_bad (_("bad .weakext directive"));
13743 ignore_rest_of_line ();
13744 return;
13745 }
13746 symbol_set_value_expression (symbolP, &exp);
13747 }
13748
13749 demand_empty_rest_of_line ();
13750 }
13751
13752 /* Parse a register string into a number. Called from the ECOFF code
13753 to parse .frame. The argument is non-zero if this is the frame
13754 register, so that we can record it in mips_frame_reg. */
13755
13756 int
13757 tc_get_register (int frame)
13758 {
13759 unsigned int reg;
13760
13761 SKIP_WHITESPACE ();
13762 if (! reg_lookup (&input_line_pointer, RWARN | RTYPE_NUM | RTYPE_GP, &reg))
13763 reg = 0;
13764 if (frame)
13765 {
13766 mips_frame_reg = reg != 0 ? reg : SP;
13767 mips_frame_reg_valid = 1;
13768 mips_cprestore_valid = 0;
13769 }
13770 return reg;
13771 }
13772
13773 valueT
13774 md_section_align (asection *seg, valueT addr)
13775 {
13776 int align = bfd_get_section_alignment (stdoutput, seg);
13777
13778 if (IS_ELF)
13779 {
13780 /* We don't need to align ELF sections to the full alignment.
13781 However, Irix 5 may prefer that we align them at least to a 16
13782 byte boundary. We don't bother to align the sections if we
13783 are targeted for an embedded system. */
13784 if (strncmp (TARGET_OS, "elf", 3) == 0)
13785 return addr;
13786 if (align > 4)
13787 align = 4;
13788 }
13789
13790 return ((addr + (1 << align) - 1) & (-1 << align));
13791 }
13792
13793 /* Utility routine, called from above as well. If called while the
13794 input file is still being read, it's only an approximation. (For
13795 example, a symbol may later become defined which appeared to be
13796 undefined earlier.) */
13797
13798 static int
13799 nopic_need_relax (symbolS *sym, int before_relaxing)
13800 {
13801 if (sym == 0)
13802 return 0;
13803
13804 if (g_switch_value > 0)
13805 {
13806 const char *symname;
13807 int change;
13808
13809 /* Find out whether this symbol can be referenced off the $gp
13810 register. It can be if it is smaller than the -G size or if
13811 it is in the .sdata or .sbss section. Certain symbols can
13812 not be referenced off the $gp, although it appears as though
13813 they can. */
13814 symname = S_GET_NAME (sym);
13815 if (symname != (const char *) NULL
13816 && (strcmp (symname, "eprol") == 0
13817 || strcmp (symname, "etext") == 0
13818 || strcmp (symname, "_gp") == 0
13819 || strcmp (symname, "edata") == 0
13820 || strcmp (symname, "_fbss") == 0
13821 || strcmp (symname, "_fdata") == 0
13822 || strcmp (symname, "_ftext") == 0
13823 || strcmp (symname, "end") == 0
13824 || strcmp (symname, "_gp_disp") == 0))
13825 change = 1;
13826 else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym))
13827 && (0
13828 #ifndef NO_ECOFF_DEBUGGING
13829 || (symbol_get_obj (sym)->ecoff_extern_size != 0
13830 && (symbol_get_obj (sym)->ecoff_extern_size
13831 <= g_switch_value))
13832 #endif
13833 /* We must defer this decision until after the whole
13834 file has been read, since there might be a .extern
13835 after the first use of this symbol. */
13836 || (before_relaxing
13837 #ifndef NO_ECOFF_DEBUGGING
13838 && symbol_get_obj (sym)->ecoff_extern_size == 0
13839 #endif
13840 && S_GET_VALUE (sym) == 0)
13841 || (S_GET_VALUE (sym) != 0
13842 && S_GET_VALUE (sym) <= g_switch_value)))
13843 change = 0;
13844 else
13845 {
13846 const char *segname;
13847
13848 segname = segment_name (S_GET_SEGMENT (sym));
13849 gas_assert (strcmp (segname, ".lit8") != 0
13850 && strcmp (segname, ".lit4") != 0);
13851 change = (strcmp (segname, ".sdata") != 0
13852 && strcmp (segname, ".sbss") != 0
13853 && strncmp (segname, ".sdata.", 7) != 0
13854 && strncmp (segname, ".sbss.", 6) != 0
13855 && strncmp (segname, ".gnu.linkonce.sb.", 17) != 0
13856 && strncmp (segname, ".gnu.linkonce.s.", 16) != 0);
13857 }
13858 return change;
13859 }
13860 else
13861 /* We are not optimizing for the $gp register. */
13862 return 1;
13863 }
13864
13865
13866 /* Return true if the given symbol should be considered local for SVR4 PIC. */
13867
13868 static bfd_boolean
13869 pic_need_relax (symbolS *sym, asection *segtype)
13870 {
13871 asection *symsec;
13872
13873 /* Handle the case of a symbol equated to another symbol. */
13874 while (symbol_equated_reloc_p (sym))
13875 {
13876 symbolS *n;
13877
13878 /* It's possible to get a loop here in a badly written program. */
13879 n = symbol_get_value_expression (sym)->X_add_symbol;
13880 if (n == sym)
13881 break;
13882 sym = n;
13883 }
13884
13885 if (symbol_section_p (sym))
13886 return TRUE;
13887
13888 symsec = S_GET_SEGMENT (sym);
13889
13890 /* This must duplicate the test in adjust_reloc_syms. */
13891 return (symsec != &bfd_und_section
13892 && symsec != &bfd_abs_section
13893 && !bfd_is_com_section (symsec)
13894 && !s_is_linkonce (sym, segtype)
13895 #ifdef OBJ_ELF
13896 /* A global or weak symbol is treated as external. */
13897 && (!IS_ELF || (! S_IS_WEAK (sym) && ! S_IS_EXTERNAL (sym)))
13898 #endif
13899 );
13900 }
13901
13902
13903 /* Given a mips16 variant frag FRAGP, return non-zero if it needs an
13904 extended opcode. SEC is the section the frag is in. */
13905
13906 static int
13907 mips16_extended_frag (fragS *fragp, asection *sec, long stretch)
13908 {
13909 int type;
13910 const struct mips16_immed_operand *op;
13911 offsetT val;
13912 int mintiny, maxtiny;
13913 segT symsec;
13914 fragS *sym_frag;
13915
13916 if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
13917 return 0;
13918 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
13919 return 1;
13920
13921 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
13922 op = mips16_immed_operands;
13923 while (op->type != type)
13924 {
13925 ++op;
13926 gas_assert (op < mips16_immed_operands + MIPS16_NUM_IMMED);
13927 }
13928
13929 if (op->unsp)
13930 {
13931 if (type == '<' || type == '>' || type == '[' || type == ']')
13932 {
13933 mintiny = 1;
13934 maxtiny = 1 << op->nbits;
13935 }
13936 else
13937 {
13938 mintiny = 0;
13939 maxtiny = (1 << op->nbits) - 1;
13940 }
13941 }
13942 else
13943 {
13944 mintiny = - (1 << (op->nbits - 1));
13945 maxtiny = (1 << (op->nbits - 1)) - 1;
13946 }
13947
13948 sym_frag = symbol_get_frag (fragp->fr_symbol);
13949 val = S_GET_VALUE (fragp->fr_symbol);
13950 symsec = S_GET_SEGMENT (fragp->fr_symbol);
13951
13952 if (op->pcrel)
13953 {
13954 addressT addr;
13955
13956 /* We won't have the section when we are called from
13957 mips_relax_frag. However, we will always have been called
13958 from md_estimate_size_before_relax first. If this is a
13959 branch to a different section, we mark it as such. If SEC is
13960 NULL, and the frag is not marked, then it must be a branch to
13961 the same section. */
13962 if (sec == NULL)
13963 {
13964 if (RELAX_MIPS16_LONG_BRANCH (fragp->fr_subtype))
13965 return 1;
13966 }
13967 else
13968 {
13969 /* Must have been called from md_estimate_size_before_relax. */
13970 if (symsec != sec)
13971 {
13972 fragp->fr_subtype =
13973 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
13974
13975 /* FIXME: We should support this, and let the linker
13976 catch branches and loads that are out of range. */
13977 as_bad_where (fragp->fr_file, fragp->fr_line,
13978 _("unsupported PC relative reference to different section"));
13979
13980 return 1;
13981 }
13982 if (fragp != sym_frag && sym_frag->fr_address == 0)
13983 /* Assume non-extended on the first relaxation pass.
13984 The address we have calculated will be bogus if this is
13985 a forward branch to another frag, as the forward frag
13986 will have fr_address == 0. */
13987 return 0;
13988 }
13989
13990 /* In this case, we know for sure that the symbol fragment is in
13991 the same section. If the relax_marker of the symbol fragment
13992 differs from the relax_marker of this fragment, we have not
13993 yet adjusted the symbol fragment fr_address. We want to add
13994 in STRETCH in order to get a better estimate of the address.
13995 This particularly matters because of the shift bits. */
13996 if (stretch != 0
13997 && sym_frag->relax_marker != fragp->relax_marker)
13998 {
13999 fragS *f;
14000
14001 /* Adjust stretch for any alignment frag. Note that if have
14002 been expanding the earlier code, the symbol may be
14003 defined in what appears to be an earlier frag. FIXME:
14004 This doesn't handle the fr_subtype field, which specifies
14005 a maximum number of bytes to skip when doing an
14006 alignment. */
14007 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
14008 {
14009 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
14010 {
14011 if (stretch < 0)
14012 stretch = - ((- stretch)
14013 & ~ ((1 << (int) f->fr_offset) - 1));
14014 else
14015 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
14016 if (stretch == 0)
14017 break;
14018 }
14019 }
14020 if (f != NULL)
14021 val += stretch;
14022 }
14023
14024 addr = fragp->fr_address + fragp->fr_fix;
14025
14026 /* The base address rules are complicated. The base address of
14027 a branch is the following instruction. The base address of a
14028 PC relative load or add is the instruction itself, but if it
14029 is in a delay slot (in which case it can not be extended) use
14030 the address of the instruction whose delay slot it is in. */
14031 if (type == 'p' || type == 'q')
14032 {
14033 addr += 2;
14034
14035 /* If we are currently assuming that this frag should be
14036 extended, then, the current address is two bytes
14037 higher. */
14038 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
14039 addr += 2;
14040
14041 /* Ignore the low bit in the target, since it will be set
14042 for a text label. */
14043 if ((val & 1) != 0)
14044 --val;
14045 }
14046 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
14047 addr -= 4;
14048 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
14049 addr -= 2;
14050
14051 val -= addr & ~ ((1 << op->shift) - 1);
14052
14053 /* Branch offsets have an implicit 0 in the lowest bit. */
14054 if (type == 'p' || type == 'q')
14055 val /= 2;
14056
14057 /* If any of the shifted bits are set, we must use an extended
14058 opcode. If the address depends on the size of this
14059 instruction, this can lead to a loop, so we arrange to always
14060 use an extended opcode. We only check this when we are in
14061 the main relaxation loop, when SEC is NULL. */
14062 if ((val & ((1 << op->shift) - 1)) != 0 && sec == NULL)
14063 {
14064 fragp->fr_subtype =
14065 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
14066 return 1;
14067 }
14068
14069 /* If we are about to mark a frag as extended because the value
14070 is precisely maxtiny + 1, then there is a chance of an
14071 infinite loop as in the following code:
14072 la $4,foo
14073 .skip 1020
14074 .align 2
14075 foo:
14076 In this case when the la is extended, foo is 0x3fc bytes
14077 away, so the la can be shrunk, but then foo is 0x400 away, so
14078 the la must be extended. To avoid this loop, we mark the
14079 frag as extended if it was small, and is about to become
14080 extended with a value of maxtiny + 1. */
14081 if (val == ((maxtiny + 1) << op->shift)
14082 && ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype)
14083 && sec == NULL)
14084 {
14085 fragp->fr_subtype =
14086 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
14087 return 1;
14088 }
14089 }
14090 else if (symsec != absolute_section && sec != NULL)
14091 as_bad_where (fragp->fr_file, fragp->fr_line, _("unsupported relocation"));
14092
14093 if ((val & ((1 << op->shift) - 1)) != 0
14094 || val < (mintiny << op->shift)
14095 || val > (maxtiny << op->shift))
14096 return 1;
14097 else
14098 return 0;
14099 }
14100
14101 /* Compute the length of a branch sequence, and adjust the
14102 RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
14103 worst-case length is computed, with UPDATE being used to indicate
14104 whether an unconditional (-1), branch-likely (+1) or regular (0)
14105 branch is to be computed. */
14106 static int
14107 relaxed_branch_length (fragS *fragp, asection *sec, int update)
14108 {
14109 bfd_boolean toofar;
14110 int length;
14111
14112 if (fragp
14113 && S_IS_DEFINED (fragp->fr_symbol)
14114 && sec == S_GET_SEGMENT (fragp->fr_symbol))
14115 {
14116 addressT addr;
14117 offsetT val;
14118
14119 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
14120
14121 addr = fragp->fr_address + fragp->fr_fix + 4;
14122
14123 val -= addr;
14124
14125 toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2);
14126 }
14127 else if (fragp)
14128 /* If the symbol is not defined or it's in a different segment,
14129 assume the user knows what's going on and emit a short
14130 branch. */
14131 toofar = FALSE;
14132 else
14133 toofar = TRUE;
14134
14135 if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
14136 fragp->fr_subtype
14137 = RELAX_BRANCH_ENCODE (RELAX_BRANCH_UNCOND (fragp->fr_subtype),
14138 RELAX_BRANCH_LIKELY (fragp->fr_subtype),
14139 RELAX_BRANCH_LINK (fragp->fr_subtype),
14140 toofar);
14141
14142 length = 4;
14143 if (toofar)
14144 {
14145 if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0))
14146 length += 8;
14147
14148 if (mips_pic != NO_PIC)
14149 {
14150 /* Additional space for PIC loading of target address. */
14151 length += 8;
14152 if (mips_opts.isa == ISA_MIPS1)
14153 /* Additional space for $at-stabilizing nop. */
14154 length += 4;
14155 }
14156
14157 /* If branch is conditional. */
14158 if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0))
14159 length += 8;
14160 }
14161
14162 return length;
14163 }
14164
14165 /* Estimate the size of a frag before relaxing. Unless this is the
14166 mips16, we are not really relaxing here, and the final size is
14167 encoded in the subtype information. For the mips16, we have to
14168 decide whether we are using an extended opcode or not. */
14169
14170 int
14171 md_estimate_size_before_relax (fragS *fragp, asection *segtype)
14172 {
14173 int change;
14174
14175 if (RELAX_BRANCH_P (fragp->fr_subtype))
14176 {
14177
14178 fragp->fr_var = relaxed_branch_length (fragp, segtype, FALSE);
14179
14180 return fragp->fr_var;
14181 }
14182
14183 if (RELAX_MIPS16_P (fragp->fr_subtype))
14184 /* We don't want to modify the EXTENDED bit here; it might get us
14185 into infinite loops. We change it only in mips_relax_frag(). */
14186 return (RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2);
14187
14188 if (mips_pic == NO_PIC)
14189 change = nopic_need_relax (fragp->fr_symbol, 0);
14190 else if (mips_pic == SVR4_PIC)
14191 change = pic_need_relax (fragp->fr_symbol, segtype);
14192 else if (mips_pic == VXWORKS_PIC)
14193 /* For vxworks, GOT16 relocations never have a corresponding LO16. */
14194 change = 0;
14195 else
14196 abort ();
14197
14198 if (change)
14199 {
14200 fragp->fr_subtype |= RELAX_USE_SECOND;
14201 return -RELAX_FIRST (fragp->fr_subtype);
14202 }
14203 else
14204 return -RELAX_SECOND (fragp->fr_subtype);
14205 }
14206
14207 /* This is called to see whether a reloc against a defined symbol
14208 should be converted into a reloc against a section. */
14209
14210 int
14211 mips_fix_adjustable (fixS *fixp)
14212 {
14213 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
14214 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
14215 return 0;
14216
14217 if (fixp->fx_addsy == NULL)
14218 return 1;
14219
14220 /* If symbol SYM is in a mergeable section, relocations of the form
14221 SYM + 0 can usually be made section-relative. The mergeable data
14222 is then identified by the section offset rather than by the symbol.
14223
14224 However, if we're generating REL LO16 relocations, the offset is split
14225 between the LO16 and parterning high part relocation. The linker will
14226 need to recalculate the complete offset in order to correctly identify
14227 the merge data.
14228
14229 The linker has traditionally not looked for the parterning high part
14230 relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be
14231 placed anywhere. Rather than break backwards compatibility by changing
14232 this, it seems better not to force the issue, and instead keep the
14233 original symbol. This will work with either linker behavior. */
14234 if ((lo16_reloc_p (fixp->fx_r_type)
14235 || reloc_needs_lo_p (fixp->fx_r_type))
14236 && HAVE_IN_PLACE_ADDENDS
14237 && (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE) != 0)
14238 return 0;
14239
14240 /* There is no place to store an in-place offset for JALR relocations. */
14241 if (fixp->fx_r_type == BFD_RELOC_MIPS_JALR && HAVE_IN_PLACE_ADDENDS)
14242 return 0;
14243
14244 #ifdef OBJ_ELF
14245 /* R_MIPS16_26 relocations against non-MIPS16 functions might resolve
14246 to a floating-point stub. The same is true for non-R_MIPS16_26
14247 relocations against MIPS16 functions; in this case, the stub becomes
14248 the function's canonical address.
14249
14250 Floating-point stubs are stored in unique .mips16.call.* or
14251 .mips16.fn.* sections. If a stub T for function F is in section S,
14252 the first relocation in section S must be against F; this is how the
14253 linker determines the target function. All relocations that might
14254 resolve to T must also be against F. We therefore have the following
14255 restrictions, which are given in an intentionally-redundant way:
14256
14257 1. We cannot reduce R_MIPS16_26 relocations against non-MIPS16
14258 symbols.
14259
14260 2. We cannot reduce a stub's relocations against non-MIPS16 symbols
14261 if that stub might be used.
14262
14263 3. We cannot reduce non-R_MIPS16_26 relocations against MIPS16
14264 symbols.
14265
14266 4. We cannot reduce a stub's relocations against MIPS16 symbols if
14267 that stub might be used.
14268
14269 There is a further restriction:
14270
14271 5. We cannot reduce R_MIPS16_26 relocations against MIPS16 symbols
14272 on targets with in-place addends; the relocation field cannot
14273 encode the low bit.
14274
14275 For simplicity, we deal with (3)-(5) by not reducing _any_ relocation
14276 against a MIPS16 symbol.
14277
14278 We deal with (1)-(2) by saying that, if there's a R_MIPS16_26
14279 relocation against some symbol R, no relocation against R may be
14280 reduced. (Note that this deals with (2) as well as (1) because
14281 relocations against global symbols will never be reduced on ELF
14282 targets.) This approach is a little simpler than trying to detect
14283 stub sections, and gives the "all or nothing" per-symbol consistency
14284 that we have for MIPS16 symbols. */
14285 if (IS_ELF
14286 && fixp->fx_subsy == NULL
14287 && (ELF_ST_IS_MIPS16 (S_GET_OTHER (fixp->fx_addsy))
14288 || *symbol_get_tc (fixp->fx_addsy)))
14289 return 0;
14290 #endif
14291
14292 return 1;
14293 }
14294
14295 /* Translate internal representation of relocation info to BFD target
14296 format. */
14297
14298 arelent **
14299 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
14300 {
14301 static arelent *retval[4];
14302 arelent *reloc;
14303 bfd_reloc_code_real_type code;
14304
14305 memset (retval, 0, sizeof(retval));
14306 reloc = retval[0] = (arelent *) xcalloc (1, sizeof (arelent));
14307 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
14308 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
14309 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
14310
14311 if (fixp->fx_pcrel)
14312 {
14313 gas_assert (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2);
14314
14315 /* At this point, fx_addnumber is "symbol offset - pcrel address".
14316 Relocations want only the symbol offset. */
14317 reloc->addend = fixp->fx_addnumber + reloc->address;
14318 if (!IS_ELF)
14319 {
14320 /* A gruesome hack which is a result of the gruesome gas
14321 reloc handling. What's worse, for COFF (as opposed to
14322 ECOFF), we might need yet another copy of reloc->address.
14323 See bfd_install_relocation. */
14324 reloc->addend += reloc->address;
14325 }
14326 }
14327 else
14328 reloc->addend = fixp->fx_addnumber;
14329
14330 /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
14331 entry to be used in the relocation's section offset. */
14332 if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
14333 {
14334 reloc->address = reloc->addend;
14335 reloc->addend = 0;
14336 }
14337
14338 code = fixp->fx_r_type;
14339
14340 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
14341 if (reloc->howto == NULL)
14342 {
14343 as_bad_where (fixp->fx_file, fixp->fx_line,
14344 _("Can not represent %s relocation in this object file format"),
14345 bfd_get_reloc_code_name (code));
14346 retval[0] = NULL;
14347 }
14348
14349 return retval;
14350 }
14351
14352 /* Relax a machine dependent frag. This returns the amount by which
14353 the current size of the frag should change. */
14354
14355 int
14356 mips_relax_frag (asection *sec, fragS *fragp, long stretch)
14357 {
14358 if (RELAX_BRANCH_P (fragp->fr_subtype))
14359 {
14360 offsetT old_var = fragp->fr_var;
14361
14362 fragp->fr_var = relaxed_branch_length (fragp, sec, TRUE);
14363
14364 return fragp->fr_var - old_var;
14365 }
14366
14367 if (! RELAX_MIPS16_P (fragp->fr_subtype))
14368 return 0;
14369
14370 if (mips16_extended_frag (fragp, NULL, stretch))
14371 {
14372 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
14373 return 0;
14374 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
14375 return 2;
14376 }
14377 else
14378 {
14379 if (! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
14380 return 0;
14381 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
14382 return -2;
14383 }
14384
14385 return 0;
14386 }
14387
14388 /* Convert a machine dependent frag. */
14389
14390 void
14391 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp)
14392 {
14393 if (RELAX_BRANCH_P (fragp->fr_subtype))
14394 {
14395 bfd_byte *buf;
14396 unsigned long insn;
14397 expressionS exp;
14398 fixS *fixp;
14399
14400 buf = (bfd_byte *)fragp->fr_literal + fragp->fr_fix;
14401
14402 if (target_big_endian)
14403 insn = bfd_getb32 (buf);
14404 else
14405 insn = bfd_getl32 (buf);
14406
14407 if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
14408 {
14409 /* We generate a fixup instead of applying it right now
14410 because, if there are linker relaxations, we're going to
14411 need the relocations. */
14412 exp.X_op = O_symbol;
14413 exp.X_add_symbol = fragp->fr_symbol;
14414 exp.X_add_number = fragp->fr_offset;
14415
14416 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
14417 4, &exp, TRUE, BFD_RELOC_16_PCREL_S2);
14418 fixp->fx_file = fragp->fr_file;
14419 fixp->fx_line = fragp->fr_line;
14420
14421 md_number_to_chars ((char *) buf, insn, 4);
14422 buf += 4;
14423 }
14424 else
14425 {
14426 int i;
14427
14428 as_warn_where (fragp->fr_file, fragp->fr_line,
14429 _("relaxed out-of-range branch into a jump"));
14430
14431 if (RELAX_BRANCH_UNCOND (fragp->fr_subtype))
14432 goto uncond;
14433
14434 if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype))
14435 {
14436 /* Reverse the branch. */
14437 switch ((insn >> 28) & 0xf)
14438 {
14439 case 4:
14440 /* bc[0-3][tf]l? and bc1any[24][ft] instructions can
14441 have the condition reversed by tweaking a single
14442 bit, and their opcodes all have 0x4???????. */
14443 gas_assert ((insn & 0xf1000000) == 0x41000000);
14444 insn ^= 0x00010000;
14445 break;
14446
14447 case 0:
14448 /* bltz 0x04000000 bgez 0x04010000
14449 bltzal 0x04100000 bgezal 0x04110000 */
14450 gas_assert ((insn & 0xfc0e0000) == 0x04000000);
14451 insn ^= 0x00010000;
14452 break;
14453
14454 case 1:
14455 /* beq 0x10000000 bne 0x14000000
14456 blez 0x18000000 bgtz 0x1c000000 */
14457 insn ^= 0x04000000;
14458 break;
14459
14460 default:
14461 abort ();
14462 }
14463 }
14464
14465 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
14466 {
14467 /* Clear the and-link bit. */
14468 gas_assert ((insn & 0xfc1c0000) == 0x04100000);
14469
14470 /* bltzal 0x04100000 bgezal 0x04110000
14471 bltzall 0x04120000 bgezall 0x04130000 */
14472 insn &= ~0x00100000;
14473 }
14474
14475 /* Branch over the branch (if the branch was likely) or the
14476 full jump (not likely case). Compute the offset from the
14477 current instruction to branch to. */
14478 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
14479 i = 16;
14480 else
14481 {
14482 /* How many bytes in instructions we've already emitted? */
14483 i = buf - (bfd_byte *)fragp->fr_literal - fragp->fr_fix;
14484 /* How many bytes in instructions from here to the end? */
14485 i = fragp->fr_var - i;
14486 }
14487 /* Convert to instruction count. */
14488 i >>= 2;
14489 /* Branch counts from the next instruction. */
14490 i--;
14491 insn |= i;
14492 /* Branch over the jump. */
14493 md_number_to_chars ((char *) buf, insn, 4);
14494 buf += 4;
14495
14496 /* nop */
14497 md_number_to_chars ((char *) buf, 0, 4);
14498 buf += 4;
14499
14500 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
14501 {
14502 /* beql $0, $0, 2f */
14503 insn = 0x50000000;
14504 /* Compute the PC offset from the current instruction to
14505 the end of the variable frag. */
14506 /* How many bytes in instructions we've already emitted? */
14507 i = buf - (bfd_byte *)fragp->fr_literal - fragp->fr_fix;
14508 /* How many bytes in instructions from here to the end? */
14509 i = fragp->fr_var - i;
14510 /* Convert to instruction count. */
14511 i >>= 2;
14512 /* Don't decrement i, because we want to branch over the
14513 delay slot. */
14514
14515 insn |= i;
14516 md_number_to_chars ((char *) buf, insn, 4);
14517 buf += 4;
14518
14519 md_number_to_chars ((char *) buf, 0, 4);
14520 buf += 4;
14521 }
14522
14523 uncond:
14524 if (mips_pic == NO_PIC)
14525 {
14526 /* j or jal. */
14527 insn = (RELAX_BRANCH_LINK (fragp->fr_subtype)
14528 ? 0x0c000000 : 0x08000000);
14529 exp.X_op = O_symbol;
14530 exp.X_add_symbol = fragp->fr_symbol;
14531 exp.X_add_number = fragp->fr_offset;
14532
14533 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
14534 4, &exp, FALSE, BFD_RELOC_MIPS_JMP);
14535 fixp->fx_file = fragp->fr_file;
14536 fixp->fx_line = fragp->fr_line;
14537
14538 md_number_to_chars ((char *) buf, insn, 4);
14539 buf += 4;
14540 }
14541 else
14542 {
14543 /* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
14544 insn = HAVE_64BIT_ADDRESSES ? 0xdf810000 : 0x8f810000;
14545 exp.X_op = O_symbol;
14546 exp.X_add_symbol = fragp->fr_symbol;
14547 exp.X_add_number = fragp->fr_offset;
14548
14549 if (fragp->fr_offset)
14550 {
14551 exp.X_add_symbol = make_expr_symbol (&exp);
14552 exp.X_add_number = 0;
14553 }
14554
14555 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
14556 4, &exp, FALSE, BFD_RELOC_MIPS_GOT16);
14557 fixp->fx_file = fragp->fr_file;
14558 fixp->fx_line = fragp->fr_line;
14559
14560 md_number_to_chars ((char *) buf, insn, 4);
14561 buf += 4;
14562
14563 if (mips_opts.isa == ISA_MIPS1)
14564 {
14565 /* nop */
14566 md_number_to_chars ((char *) buf, 0, 4);
14567 buf += 4;
14568 }
14569
14570 /* d/addiu $at, $at, <sym> R_MIPS_LO16 */
14571 insn = HAVE_64BIT_ADDRESSES ? 0x64210000 : 0x24210000;
14572
14573 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
14574 4, &exp, FALSE, BFD_RELOC_LO16);
14575 fixp->fx_file = fragp->fr_file;
14576 fixp->fx_line = fragp->fr_line;
14577
14578 md_number_to_chars ((char *) buf, insn, 4);
14579 buf += 4;
14580
14581 /* j(al)r $at. */
14582 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
14583 insn = 0x0020f809;
14584 else
14585 insn = 0x00200008;
14586
14587 md_number_to_chars ((char *) buf, insn, 4);
14588 buf += 4;
14589 }
14590 }
14591
14592 gas_assert (buf == (bfd_byte *)fragp->fr_literal
14593 + fragp->fr_fix + fragp->fr_var);
14594
14595 fragp->fr_fix += fragp->fr_var;
14596
14597 return;
14598 }
14599
14600 if (RELAX_MIPS16_P (fragp->fr_subtype))
14601 {
14602 int type;
14603 const struct mips16_immed_operand *op;
14604 bfd_boolean small, ext;
14605 offsetT val;
14606 bfd_byte *buf;
14607 unsigned long insn;
14608 bfd_boolean use_extend;
14609 unsigned short extend;
14610
14611 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
14612 op = mips16_immed_operands;
14613 while (op->type != type)
14614 ++op;
14615
14616 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
14617 {
14618 small = FALSE;
14619 ext = TRUE;
14620 }
14621 else
14622 {
14623 small = TRUE;
14624 ext = FALSE;
14625 }
14626
14627 resolve_symbol_value (fragp->fr_symbol);
14628 val = S_GET_VALUE (fragp->fr_symbol);
14629 if (op->pcrel)
14630 {
14631 addressT addr;
14632
14633 addr = fragp->fr_address + fragp->fr_fix;
14634
14635 /* The rules for the base address of a PC relative reloc are
14636 complicated; see mips16_extended_frag. */
14637 if (type == 'p' || type == 'q')
14638 {
14639 addr += 2;
14640 if (ext)
14641 addr += 2;
14642 /* Ignore the low bit in the target, since it will be
14643 set for a text label. */
14644 if ((val & 1) != 0)
14645 --val;
14646 }
14647 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
14648 addr -= 4;
14649 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
14650 addr -= 2;
14651
14652 addr &= ~ (addressT) ((1 << op->shift) - 1);
14653 val -= addr;
14654
14655 /* Make sure the section winds up with the alignment we have
14656 assumed. */
14657 if (op->shift > 0)
14658 record_alignment (asec, op->shift);
14659 }
14660
14661 if (ext
14662 && (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)
14663 || RELAX_MIPS16_DSLOT (fragp->fr_subtype)))
14664 as_warn_where (fragp->fr_file, fragp->fr_line,
14665 _("extended instruction in delay slot"));
14666
14667 buf = (bfd_byte *) (fragp->fr_literal + fragp->fr_fix);
14668
14669 if (target_big_endian)
14670 insn = bfd_getb16 (buf);
14671 else
14672 insn = bfd_getl16 (buf);
14673
14674 mips16_immed (fragp->fr_file, fragp->fr_line, type, val,
14675 RELAX_MIPS16_USER_EXT (fragp->fr_subtype),
14676 small, ext, &insn, &use_extend, &extend);
14677
14678 if (use_extend)
14679 {
14680 md_number_to_chars ((char *) buf, 0xf000 | extend, 2);
14681 fragp->fr_fix += 2;
14682 buf += 2;
14683 }
14684
14685 md_number_to_chars ((char *) buf, insn, 2);
14686 fragp->fr_fix += 2;
14687 buf += 2;
14688 }
14689 else
14690 {
14691 int first, second;
14692 fixS *fixp;
14693
14694 first = RELAX_FIRST (fragp->fr_subtype);
14695 second = RELAX_SECOND (fragp->fr_subtype);
14696 fixp = (fixS *) fragp->fr_opcode;
14697
14698 /* Possibly emit a warning if we've chosen the longer option. */
14699 if (((fragp->fr_subtype & RELAX_USE_SECOND) != 0)
14700 == ((fragp->fr_subtype & RELAX_SECOND_LONGER) != 0))
14701 {
14702 const char *msg = macro_warning (fragp->fr_subtype);
14703 if (msg != 0)
14704 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
14705 }
14706
14707 /* Go through all the fixups for the first sequence. Disable them
14708 (by marking them as done) if we're going to use the second
14709 sequence instead. */
14710 while (fixp
14711 && fixp->fx_frag == fragp
14712 && fixp->fx_where < fragp->fr_fix - second)
14713 {
14714 if (fragp->fr_subtype & RELAX_USE_SECOND)
14715 fixp->fx_done = 1;
14716 fixp = fixp->fx_next;
14717 }
14718
14719 /* Go through the fixups for the second sequence. Disable them if
14720 we're going to use the first sequence, otherwise adjust their
14721 addresses to account for the relaxation. */
14722 while (fixp && fixp->fx_frag == fragp)
14723 {
14724 if (fragp->fr_subtype & RELAX_USE_SECOND)
14725 fixp->fx_where -= first;
14726 else
14727 fixp->fx_done = 1;
14728 fixp = fixp->fx_next;
14729 }
14730
14731 /* Now modify the frag contents. */
14732 if (fragp->fr_subtype & RELAX_USE_SECOND)
14733 {
14734 char *start;
14735
14736 start = fragp->fr_literal + fragp->fr_fix - first - second;
14737 memmove (start, start + first, second);
14738 fragp->fr_fix -= first;
14739 }
14740 else
14741 fragp->fr_fix -= second;
14742 }
14743 }
14744
14745 #ifdef OBJ_ELF
14746
14747 /* This function is called after the relocs have been generated.
14748 We've been storing mips16 text labels as odd. Here we convert them
14749 back to even for the convenience of the debugger. */
14750
14751 void
14752 mips_frob_file_after_relocs (void)
14753 {
14754 asymbol **syms;
14755 unsigned int count, i;
14756
14757 if (!IS_ELF)
14758 return;
14759
14760 syms = bfd_get_outsymbols (stdoutput);
14761 count = bfd_get_symcount (stdoutput);
14762 for (i = 0; i < count; i++, syms++)
14763 {
14764 if (ELF_ST_IS_MIPS16 (elf_symbol (*syms)->internal_elf_sym.st_other)
14765 && ((*syms)->value & 1) != 0)
14766 {
14767 (*syms)->value &= ~1;
14768 /* If the symbol has an odd size, it was probably computed
14769 incorrectly, so adjust that as well. */
14770 if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0)
14771 ++elf_symbol (*syms)->internal_elf_sym.st_size;
14772 }
14773 }
14774 }
14775
14776 #endif
14777
14778 /* This function is called whenever a label is defined. It is used
14779 when handling branch delays; if a branch has a label, we assume we
14780 can not move it. */
14781
14782 void
14783 mips_define_label (symbolS *sym)
14784 {
14785 segment_info_type *si = seg_info (now_seg);
14786 struct insn_label_list *l;
14787
14788 if (free_insn_labels == NULL)
14789 l = (struct insn_label_list *) xmalloc (sizeof *l);
14790 else
14791 {
14792 l = free_insn_labels;
14793 free_insn_labels = l->next;
14794 }
14795
14796 l->label = sym;
14797 l->next = si->label_list;
14798 si->label_list = l;
14799
14800 #ifdef OBJ_ELF
14801 dwarf2_emit_label (sym);
14802 #endif
14803 }
14804 \f
14805 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
14806
14807 /* Some special processing for a MIPS ELF file. */
14808
14809 void
14810 mips_elf_final_processing (void)
14811 {
14812 /* Write out the register information. */
14813 if (mips_abi != N64_ABI)
14814 {
14815 Elf32_RegInfo s;
14816
14817 s.ri_gprmask = mips_gprmask;
14818 s.ri_cprmask[0] = mips_cprmask[0];
14819 s.ri_cprmask[1] = mips_cprmask[1];
14820 s.ri_cprmask[2] = mips_cprmask[2];
14821 s.ri_cprmask[3] = mips_cprmask[3];
14822 /* The gp_value field is set by the MIPS ELF backend. */
14823
14824 bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
14825 ((Elf32_External_RegInfo *)
14826 mips_regmask_frag));
14827 }
14828 else
14829 {
14830 Elf64_Internal_RegInfo s;
14831
14832 s.ri_gprmask = mips_gprmask;
14833 s.ri_pad = 0;
14834 s.ri_cprmask[0] = mips_cprmask[0];
14835 s.ri_cprmask[1] = mips_cprmask[1];
14836 s.ri_cprmask[2] = mips_cprmask[2];
14837 s.ri_cprmask[3] = mips_cprmask[3];
14838 /* The gp_value field is set by the MIPS ELF backend. */
14839
14840 bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
14841 ((Elf64_External_RegInfo *)
14842 mips_regmask_frag));
14843 }
14844
14845 /* Set the MIPS ELF flag bits. FIXME: There should probably be some
14846 sort of BFD interface for this. */
14847 if (mips_any_noreorder)
14848 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
14849 if (mips_pic != NO_PIC)
14850 {
14851 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
14852 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
14853 }
14854 if (mips_abicalls)
14855 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
14856
14857 /* Set MIPS ELF flags for ASEs. */
14858 /* We may need to define a new flag for DSP ASE, and set this flag when
14859 file_ase_dsp is true. */
14860 /* Same for DSP R2. */
14861 /* We may need to define a new flag for MT ASE, and set this flag when
14862 file_ase_mt is true. */
14863 if (file_ase_mips16)
14864 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16;
14865 #if 0 /* XXX FIXME */
14866 if (file_ase_mips3d)
14867 elf_elfheader (stdoutput)->e_flags |= ???;
14868 #endif
14869 if (file_ase_mdmx)
14870 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX;
14871
14872 /* Set the MIPS ELF ABI flags. */
14873 if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32)
14874 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32;
14875 else if (mips_abi == O64_ABI)
14876 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64;
14877 else if (mips_abi == EABI_ABI)
14878 {
14879 if (!file_mips_gp32)
14880 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64;
14881 else
14882 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32;
14883 }
14884 else if (mips_abi == N32_ABI)
14885 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ABI2;
14886
14887 /* Nothing to do for N64_ABI. */
14888
14889 if (mips_32bitmode)
14890 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE;
14891
14892 #if 0 /* XXX FIXME */
14893 /* 32 bit code with 64 bit FP registers. */
14894 if (!file_mips_fp32 && ABI_NEEDS_32BIT_REGS (mips_abi))
14895 elf_elfheader (stdoutput)->e_flags |= ???;
14896 #endif
14897 }
14898
14899 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
14900 \f
14901 typedef struct proc {
14902 symbolS *func_sym;
14903 symbolS *func_end_sym;
14904 unsigned long reg_mask;
14905 unsigned long reg_offset;
14906 unsigned long fpreg_mask;
14907 unsigned long fpreg_offset;
14908 unsigned long frame_offset;
14909 unsigned long frame_reg;
14910 unsigned long pc_reg;
14911 } procS;
14912
14913 static procS cur_proc;
14914 static procS *cur_proc_ptr;
14915 static int numprocs;
14916
14917 /* Implement NOP_OPCODE. We encode a MIPS16 nop as "1" and a normal
14918 nop as "0". */
14919
14920 char
14921 mips_nop_opcode (void)
14922 {
14923 return seg_info (now_seg)->tc_segment_info_data.mips16;
14924 }
14925
14926 /* Fill in an rs_align_code fragment. This only needs to do something
14927 for MIPS16 code, where 0 is not a nop. */
14928
14929 void
14930 mips_handle_align (fragS *fragp)
14931 {
14932 char *p;
14933 int bytes, size, excess;
14934 valueT opcode;
14935
14936 if (fragp->fr_type != rs_align_code)
14937 return;
14938
14939 p = fragp->fr_literal + fragp->fr_fix;
14940 if (*p)
14941 {
14942 opcode = mips16_nop_insn.insn_opcode;
14943 size = 2;
14944 }
14945 else
14946 {
14947 opcode = nop_insn.insn_opcode;
14948 size = 4;
14949 }
14950
14951 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
14952 excess = bytes % size;
14953 if (excess != 0)
14954 {
14955 /* If we're not inserting a whole number of instructions,
14956 pad the end of the fixed part of the frag with zeros. */
14957 memset (p, 0, excess);
14958 p += excess;
14959 fragp->fr_fix += excess;
14960 }
14961
14962 md_number_to_chars (p, opcode, size);
14963 fragp->fr_var = size;
14964 }
14965
14966 static void
14967 md_obj_begin (void)
14968 {
14969 }
14970
14971 static void
14972 md_obj_end (void)
14973 {
14974 /* Check for premature end, nesting errors, etc. */
14975 if (cur_proc_ptr)
14976 as_warn (_("missing .end at end of assembly"));
14977 }
14978
14979 static long
14980 get_number (void)
14981 {
14982 int negative = 0;
14983 long val = 0;
14984
14985 if (*input_line_pointer == '-')
14986 {
14987 ++input_line_pointer;
14988 negative = 1;
14989 }
14990 if (!ISDIGIT (*input_line_pointer))
14991 as_bad (_("expected simple number"));
14992 if (input_line_pointer[0] == '0')
14993 {
14994 if (input_line_pointer[1] == 'x')
14995 {
14996 input_line_pointer += 2;
14997 while (ISXDIGIT (*input_line_pointer))
14998 {
14999 val <<= 4;
15000 val |= hex_value (*input_line_pointer++);
15001 }
15002 return negative ? -val : val;
15003 }
15004 else
15005 {
15006 ++input_line_pointer;
15007 while (ISDIGIT (*input_line_pointer))
15008 {
15009 val <<= 3;
15010 val |= *input_line_pointer++ - '0';
15011 }
15012 return negative ? -val : val;
15013 }
15014 }
15015 if (!ISDIGIT (*input_line_pointer))
15016 {
15017 printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
15018 *input_line_pointer, *input_line_pointer);
15019 as_warn (_("invalid number"));
15020 return -1;
15021 }
15022 while (ISDIGIT (*input_line_pointer))
15023 {
15024 val *= 10;
15025 val += *input_line_pointer++ - '0';
15026 }
15027 return negative ? -val : val;
15028 }
15029
15030 /* The .file directive; just like the usual .file directive, but there
15031 is an initial number which is the ECOFF file index. In the non-ECOFF
15032 case .file implies DWARF-2. */
15033
15034 static void
15035 s_mips_file (int x ATTRIBUTE_UNUSED)
15036 {
15037 static int first_file_directive = 0;
15038
15039 if (ECOFF_DEBUGGING)
15040 {
15041 get_number ();
15042 s_app_file (0);
15043 }
15044 else
15045 {
15046 char *filename;
15047
15048 filename = dwarf2_directive_file (0);
15049
15050 /* Versions of GCC up to 3.1 start files with a ".file"
15051 directive even for stabs output. Make sure that this
15052 ".file" is handled. Note that you need a version of GCC
15053 after 3.1 in order to support DWARF-2 on MIPS. */
15054 if (filename != NULL && ! first_file_directive)
15055 {
15056 (void) new_logical_line (filename, -1);
15057 s_app_file_string (filename, 0);
15058 }
15059 first_file_directive = 1;
15060 }
15061 }
15062
15063 /* The .loc directive, implying DWARF-2. */
15064
15065 static void
15066 s_mips_loc (int x ATTRIBUTE_UNUSED)
15067 {
15068 if (!ECOFF_DEBUGGING)
15069 dwarf2_directive_loc (0);
15070 }
15071
15072 /* The .end directive. */
15073
15074 static void
15075 s_mips_end (int x ATTRIBUTE_UNUSED)
15076 {
15077 symbolS *p;
15078
15079 /* Following functions need their own .frame and .cprestore directives. */
15080 mips_frame_reg_valid = 0;
15081 mips_cprestore_valid = 0;
15082
15083 if (!is_end_of_line[(unsigned char) *input_line_pointer])
15084 {
15085 p = get_symbol ();
15086 demand_empty_rest_of_line ();
15087 }
15088 else
15089 p = NULL;
15090
15091 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
15092 as_warn (_(".end not in text section"));
15093
15094 if (!cur_proc_ptr)
15095 {
15096 as_warn (_(".end directive without a preceding .ent directive."));
15097 demand_empty_rest_of_line ();
15098 return;
15099 }
15100
15101 if (p != NULL)
15102 {
15103 gas_assert (S_GET_NAME (p));
15104 if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->func_sym)))
15105 as_warn (_(".end symbol does not match .ent symbol."));
15106
15107 if (debug_type == DEBUG_STABS)
15108 stabs_generate_asm_endfunc (S_GET_NAME (p),
15109 S_GET_NAME (p));
15110 }
15111 else
15112 as_warn (_(".end directive missing or unknown symbol"));
15113
15114 #ifdef OBJ_ELF
15115 /* Create an expression to calculate the size of the function. */
15116 if (p && cur_proc_ptr)
15117 {
15118 OBJ_SYMFIELD_TYPE *obj = symbol_get_obj (p);
15119 expressionS *exp = xmalloc (sizeof (expressionS));
15120
15121 obj->size = exp;
15122 exp->X_op = O_subtract;
15123 exp->X_add_symbol = symbol_temp_new_now ();
15124 exp->X_op_symbol = p;
15125 exp->X_add_number = 0;
15126
15127 cur_proc_ptr->func_end_sym = exp->X_add_symbol;
15128 }
15129
15130 /* Generate a .pdr section. */
15131 if (IS_ELF && !ECOFF_DEBUGGING && mips_flag_pdr)
15132 {
15133 segT saved_seg = now_seg;
15134 subsegT saved_subseg = now_subseg;
15135 expressionS exp;
15136 char *fragp;
15137
15138 #ifdef md_flush_pending_output
15139 md_flush_pending_output ();
15140 #endif
15141
15142 gas_assert (pdr_seg);
15143 subseg_set (pdr_seg, 0);
15144
15145 /* Write the symbol. */
15146 exp.X_op = O_symbol;
15147 exp.X_add_symbol = p;
15148 exp.X_add_number = 0;
15149 emit_expr (&exp, 4);
15150
15151 fragp = frag_more (7 * 4);
15152
15153 md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4);
15154 md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4);
15155 md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4);
15156 md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4);
15157 md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4);
15158 md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4);
15159 md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4);
15160
15161 subseg_set (saved_seg, saved_subseg);
15162 }
15163 #endif /* OBJ_ELF */
15164
15165 cur_proc_ptr = NULL;
15166 }
15167
15168 /* The .aent and .ent directives. */
15169
15170 static void
15171 s_mips_ent (int aent)
15172 {
15173 symbolS *symbolP;
15174
15175 symbolP = get_symbol ();
15176 if (*input_line_pointer == ',')
15177 ++input_line_pointer;
15178 SKIP_WHITESPACE ();
15179 if (ISDIGIT (*input_line_pointer)
15180 || *input_line_pointer == '-')
15181 get_number ();
15182
15183 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
15184 as_warn (_(".ent or .aent not in text section."));
15185
15186 if (!aent && cur_proc_ptr)
15187 as_warn (_("missing .end"));
15188
15189 if (!aent)
15190 {
15191 /* This function needs its own .frame and .cprestore directives. */
15192 mips_frame_reg_valid = 0;
15193 mips_cprestore_valid = 0;
15194
15195 cur_proc_ptr = &cur_proc;
15196 memset (cur_proc_ptr, '\0', sizeof (procS));
15197
15198 cur_proc_ptr->func_sym = symbolP;
15199
15200 ++numprocs;
15201
15202 if (debug_type == DEBUG_STABS)
15203 stabs_generate_asm_func (S_GET_NAME (symbolP),
15204 S_GET_NAME (symbolP));
15205 }
15206
15207 symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
15208
15209 demand_empty_rest_of_line ();
15210 }
15211
15212 /* The .frame directive. If the mdebug section is present (IRIX 5 native)
15213 then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
15214 s_mips_frame is used so that we can set the PDR information correctly.
15215 We can't use the ecoff routines because they make reference to the ecoff
15216 symbol table (in the mdebug section). */
15217
15218 static void
15219 s_mips_frame (int ignore ATTRIBUTE_UNUSED)
15220 {
15221 #ifdef OBJ_ELF
15222 if (IS_ELF && !ECOFF_DEBUGGING)
15223 {
15224 long val;
15225
15226 if (cur_proc_ptr == (procS *) NULL)
15227 {
15228 as_warn (_(".frame outside of .ent"));
15229 demand_empty_rest_of_line ();
15230 return;
15231 }
15232
15233 cur_proc_ptr->frame_reg = tc_get_register (1);
15234
15235 SKIP_WHITESPACE ();
15236 if (*input_line_pointer++ != ','
15237 || get_absolute_expression_and_terminator (&val) != ',')
15238 {
15239 as_warn (_("Bad .frame directive"));
15240 --input_line_pointer;
15241 demand_empty_rest_of_line ();
15242 return;
15243 }
15244
15245 cur_proc_ptr->frame_offset = val;
15246 cur_proc_ptr->pc_reg = tc_get_register (0);
15247
15248 demand_empty_rest_of_line ();
15249 }
15250 else
15251 #endif /* OBJ_ELF */
15252 s_ignore (ignore);
15253 }
15254
15255 /* The .fmask and .mask directives. If the mdebug section is present
15256 (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
15257 embedded targets, s_mips_mask is used so that we can set the PDR
15258 information correctly. We can't use the ecoff routines because they
15259 make reference to the ecoff symbol table (in the mdebug section). */
15260
15261 static void
15262 s_mips_mask (int reg_type)
15263 {
15264 #ifdef OBJ_ELF
15265 if (IS_ELF && !ECOFF_DEBUGGING)
15266 {
15267 long mask, off;
15268
15269 if (cur_proc_ptr == (procS *) NULL)
15270 {
15271 as_warn (_(".mask/.fmask outside of .ent"));
15272 demand_empty_rest_of_line ();
15273 return;
15274 }
15275
15276 if (get_absolute_expression_and_terminator (&mask) != ',')
15277 {
15278 as_warn (_("Bad .mask/.fmask directive"));
15279 --input_line_pointer;
15280 demand_empty_rest_of_line ();
15281 return;
15282 }
15283
15284 off = get_absolute_expression ();
15285
15286 if (reg_type == 'F')
15287 {
15288 cur_proc_ptr->fpreg_mask = mask;
15289 cur_proc_ptr->fpreg_offset = off;
15290 }
15291 else
15292 {
15293 cur_proc_ptr->reg_mask = mask;
15294 cur_proc_ptr->reg_offset = off;
15295 }
15296
15297 demand_empty_rest_of_line ();
15298 }
15299 else
15300 #endif /* OBJ_ELF */
15301 s_ignore (reg_type);
15302 }
15303
15304 /* A table describing all the processors gas knows about. Names are
15305 matched in the order listed.
15306
15307 To ease comparison, please keep this table in the same order as
15308 gcc's mips_cpu_info_table[]. */
15309 static const struct mips_cpu_info mips_cpu_info_table[] =
15310 {
15311 /* Entries for generic ISAs */
15312 { "mips1", MIPS_CPU_IS_ISA, ISA_MIPS1, CPU_R3000 },
15313 { "mips2", MIPS_CPU_IS_ISA, ISA_MIPS2, CPU_R6000 },
15314 { "mips3", MIPS_CPU_IS_ISA, ISA_MIPS3, CPU_R4000 },
15315 { "mips4", MIPS_CPU_IS_ISA, ISA_MIPS4, CPU_R8000 },
15316 { "mips5", MIPS_CPU_IS_ISA, ISA_MIPS5, CPU_MIPS5 },
15317 { "mips32", MIPS_CPU_IS_ISA, ISA_MIPS32, CPU_MIPS32 },
15318 { "mips32r2", MIPS_CPU_IS_ISA, ISA_MIPS32R2, CPU_MIPS32R2 },
15319 { "mips64", MIPS_CPU_IS_ISA, ISA_MIPS64, CPU_MIPS64 },
15320 { "mips64r2", MIPS_CPU_IS_ISA, ISA_MIPS64R2, CPU_MIPS64R2 },
15321
15322 /* MIPS I */
15323 { "r3000", 0, ISA_MIPS1, CPU_R3000 },
15324 { "r2000", 0, ISA_MIPS1, CPU_R3000 },
15325 { "r3900", 0, ISA_MIPS1, CPU_R3900 },
15326
15327 /* MIPS II */
15328 { "r6000", 0, ISA_MIPS2, CPU_R6000 },
15329
15330 /* MIPS III */
15331 { "r4000", 0, ISA_MIPS3, CPU_R4000 },
15332 { "r4010", 0, ISA_MIPS2, CPU_R4010 },
15333 { "vr4100", 0, ISA_MIPS3, CPU_VR4100 },
15334 { "vr4111", 0, ISA_MIPS3, CPU_R4111 },
15335 { "vr4120", 0, ISA_MIPS3, CPU_VR4120 },
15336 { "vr4130", 0, ISA_MIPS3, CPU_VR4120 },
15337 { "vr4181", 0, ISA_MIPS3, CPU_R4111 },
15338 { "vr4300", 0, ISA_MIPS3, CPU_R4300 },
15339 { "r4400", 0, ISA_MIPS3, CPU_R4400 },
15340 { "r4600", 0, ISA_MIPS3, CPU_R4600 },
15341 { "orion", 0, ISA_MIPS3, CPU_R4600 },
15342 { "r4650", 0, ISA_MIPS3, CPU_R4650 },
15343 /* ST Microelectronics Loongson 2E and 2F cores */
15344 { "loongson2e", 0, ISA_MIPS3, CPU_LOONGSON_2E },
15345 { "loongson2f", 0, ISA_MIPS3, CPU_LOONGSON_2F },
15346
15347 /* MIPS IV */
15348 { "r8000", 0, ISA_MIPS4, CPU_R8000 },
15349 { "r10000", 0, ISA_MIPS4, CPU_R10000 },
15350 { "r12000", 0, ISA_MIPS4, CPU_R12000 },
15351 { "r14000", 0, ISA_MIPS4, CPU_R14000 },
15352 { "r16000", 0, ISA_MIPS4, CPU_R16000 },
15353 { "vr5000", 0, ISA_MIPS4, CPU_R5000 },
15354 { "vr5400", 0, ISA_MIPS4, CPU_VR5400 },
15355 { "vr5500", 0, ISA_MIPS4, CPU_VR5500 },
15356 { "rm5200", 0, ISA_MIPS4, CPU_R5000 },
15357 { "rm5230", 0, ISA_MIPS4, CPU_R5000 },
15358 { "rm5231", 0, ISA_MIPS4, CPU_R5000 },
15359 { "rm5261", 0, ISA_MIPS4, CPU_R5000 },
15360 { "rm5721", 0, ISA_MIPS4, CPU_R5000 },
15361 { "rm7000", 0, ISA_MIPS4, CPU_RM7000 },
15362 { "rm9000", 0, ISA_MIPS4, CPU_RM9000 },
15363
15364 /* MIPS 32 */
15365 { "4kc", 0, ISA_MIPS32, CPU_MIPS32 },
15366 { "4km", 0, ISA_MIPS32, CPU_MIPS32 },
15367 { "4kp", 0, ISA_MIPS32, CPU_MIPS32 },
15368 { "4ksc", MIPS_CPU_ASE_SMARTMIPS, ISA_MIPS32, CPU_MIPS32 },
15369
15370 /* MIPS 32 Release 2 */
15371 { "4kec", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15372 { "4kem", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15373 { "4kep", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15374 { "4ksd", MIPS_CPU_ASE_SMARTMIPS, ISA_MIPS32R2, CPU_MIPS32R2 },
15375 { "m4k", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15376 { "m4kp", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15377 { "24kc", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15378 { "24kf2_1", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15379 { "24kf", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15380 { "24kf1_1", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15381 /* Deprecated forms of the above. */
15382 { "24kfx", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15383 { "24kx", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15384 /* 24KE is a 24K with DSP ASE, other ASEs are optional. */
15385 { "24kec", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15386 { "24kef2_1", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15387 { "24kef", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15388 { "24kef1_1", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15389 /* Deprecated forms of the above. */
15390 { "24kefx", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15391 { "24kex", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15392 /* 34K is a 24K with DSP and MT ASE, other ASEs are optional. */
15393 { "34kc", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15394 ISA_MIPS32R2, CPU_MIPS32R2 },
15395 { "34kf2_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15396 ISA_MIPS32R2, CPU_MIPS32R2 },
15397 { "34kf", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15398 ISA_MIPS32R2, CPU_MIPS32R2 },
15399 { "34kf1_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15400 ISA_MIPS32R2, CPU_MIPS32R2 },
15401 /* Deprecated forms of the above. */
15402 { "34kfx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15403 ISA_MIPS32R2, CPU_MIPS32R2 },
15404 { "34kx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15405 ISA_MIPS32R2, CPU_MIPS32R2 },
15406 /* 74K with DSP and DSPR2 ASE, other ASEs are optional. */
15407 { "74kc", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15408 ISA_MIPS32R2, CPU_MIPS32R2 },
15409 { "74kf2_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15410 ISA_MIPS32R2, CPU_MIPS32R2 },
15411 { "74kf", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15412 ISA_MIPS32R2, CPU_MIPS32R2 },
15413 { "74kf1_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15414 ISA_MIPS32R2, CPU_MIPS32R2 },
15415 { "74kf3_2", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15416 ISA_MIPS32R2, CPU_MIPS32R2 },
15417 /* Deprecated forms of the above. */
15418 { "74kfx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15419 ISA_MIPS32R2, CPU_MIPS32R2 },
15420 { "74kx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15421 ISA_MIPS32R2, CPU_MIPS32R2 },
15422 /* 1004K cores are multiprocessor versions of the 34K. */
15423 { "1004kc", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15424 ISA_MIPS32R2, CPU_MIPS32R2 },
15425 { "1004kf2_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15426 ISA_MIPS32R2, CPU_MIPS32R2 },
15427 { "1004kf", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15428 ISA_MIPS32R2, CPU_MIPS32R2 },
15429 { "1004kf1_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15430 ISA_MIPS32R2, CPU_MIPS32R2 },
15431
15432 /* MIPS 64 */
15433 { "5kc", 0, ISA_MIPS64, CPU_MIPS64 },
15434 { "5kf", 0, ISA_MIPS64, CPU_MIPS64 },
15435 { "20kc", MIPS_CPU_ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
15436 { "25kf", MIPS_CPU_ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
15437
15438 /* Broadcom SB-1 CPU core */
15439 { "sb1", MIPS_CPU_ASE_MIPS3D | MIPS_CPU_ASE_MDMX,
15440 ISA_MIPS64, CPU_SB1 },
15441 /* Broadcom SB-1A CPU core */
15442 { "sb1a", MIPS_CPU_ASE_MIPS3D | MIPS_CPU_ASE_MDMX,
15443 ISA_MIPS64, CPU_SB1 },
15444
15445 /* MIPS 64 Release 2 */
15446
15447 /* Cavium Networks Octeon CPU core */
15448 { "octeon", 0, ISA_MIPS64R2, CPU_OCTEON },
15449
15450 /* RMI Xlr */
15451 { "xlr", 0, ISA_MIPS64, CPU_XLR },
15452
15453 /* End marker */
15454 { NULL, 0, 0, 0 }
15455 };
15456
15457
15458 /* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
15459 with a final "000" replaced by "k". Ignore case.
15460
15461 Note: this function is shared between GCC and GAS. */
15462
15463 static bfd_boolean
15464 mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
15465 {
15466 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
15467 given++, canonical++;
15468
15469 return ((*given == 0 && *canonical == 0)
15470 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
15471 }
15472
15473
15474 /* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
15475 CPU name. We've traditionally allowed a lot of variation here.
15476
15477 Note: this function is shared between GCC and GAS. */
15478
15479 static bfd_boolean
15480 mips_matching_cpu_name_p (const char *canonical, const char *given)
15481 {
15482 /* First see if the name matches exactly, or with a final "000"
15483 turned into "k". */
15484 if (mips_strict_matching_cpu_name_p (canonical, given))
15485 return TRUE;
15486
15487 /* If not, try comparing based on numerical designation alone.
15488 See if GIVEN is an unadorned number, or 'r' followed by a number. */
15489 if (TOLOWER (*given) == 'r')
15490 given++;
15491 if (!ISDIGIT (*given))
15492 return FALSE;
15493
15494 /* Skip over some well-known prefixes in the canonical name,
15495 hoping to find a number there too. */
15496 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
15497 canonical += 2;
15498 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
15499 canonical += 2;
15500 else if (TOLOWER (canonical[0]) == 'r')
15501 canonical += 1;
15502
15503 return mips_strict_matching_cpu_name_p (canonical, given);
15504 }
15505
15506
15507 /* Parse an option that takes the name of a processor as its argument.
15508 OPTION is the name of the option and CPU_STRING is the argument.
15509 Return the corresponding processor enumeration if the CPU_STRING is
15510 recognized, otherwise report an error and return null.
15511
15512 A similar function exists in GCC. */
15513
15514 static const struct mips_cpu_info *
15515 mips_parse_cpu (const char *option, const char *cpu_string)
15516 {
15517 const struct mips_cpu_info *p;
15518
15519 /* 'from-abi' selects the most compatible architecture for the given
15520 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
15521 EABIs, we have to decide whether we're using the 32-bit or 64-bit
15522 version. Look first at the -mgp options, if given, otherwise base
15523 the choice on MIPS_DEFAULT_64BIT.
15524
15525 Treat NO_ABI like the EABIs. One reason to do this is that the
15526 plain 'mips' and 'mips64' configs have 'from-abi' as their default
15527 architecture. This code picks MIPS I for 'mips' and MIPS III for
15528 'mips64', just as we did in the days before 'from-abi'. */
15529 if (strcasecmp (cpu_string, "from-abi") == 0)
15530 {
15531 if (ABI_NEEDS_32BIT_REGS (mips_abi))
15532 return mips_cpu_info_from_isa (ISA_MIPS1);
15533
15534 if (ABI_NEEDS_64BIT_REGS (mips_abi))
15535 return mips_cpu_info_from_isa (ISA_MIPS3);
15536
15537 if (file_mips_gp32 >= 0)
15538 return mips_cpu_info_from_isa (file_mips_gp32 ? ISA_MIPS1 : ISA_MIPS3);
15539
15540 return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
15541 ? ISA_MIPS3
15542 : ISA_MIPS1);
15543 }
15544
15545 /* 'default' has traditionally been a no-op. Probably not very useful. */
15546 if (strcasecmp (cpu_string, "default") == 0)
15547 return 0;
15548
15549 for (p = mips_cpu_info_table; p->name != 0; p++)
15550 if (mips_matching_cpu_name_p (p->name, cpu_string))
15551 return p;
15552
15553 as_bad (_("Bad value (%s) for %s"), cpu_string, option);
15554 return 0;
15555 }
15556
15557 /* Return the canonical processor information for ISA (a member of the
15558 ISA_MIPS* enumeration). */
15559
15560 static const struct mips_cpu_info *
15561 mips_cpu_info_from_isa (int isa)
15562 {
15563 int i;
15564
15565 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
15566 if ((mips_cpu_info_table[i].flags & MIPS_CPU_IS_ISA)
15567 && isa == mips_cpu_info_table[i].isa)
15568 return (&mips_cpu_info_table[i]);
15569
15570 return NULL;
15571 }
15572
15573 static const struct mips_cpu_info *
15574 mips_cpu_info_from_arch (int arch)
15575 {
15576 int i;
15577
15578 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
15579 if (arch == mips_cpu_info_table[i].cpu)
15580 return (&mips_cpu_info_table[i]);
15581
15582 return NULL;
15583 }
15584 \f
15585 static void
15586 show (FILE *stream, const char *string, int *col_p, int *first_p)
15587 {
15588 if (*first_p)
15589 {
15590 fprintf (stream, "%24s", "");
15591 *col_p = 24;
15592 }
15593 else
15594 {
15595 fprintf (stream, ", ");
15596 *col_p += 2;
15597 }
15598
15599 if (*col_p + strlen (string) > 72)
15600 {
15601 fprintf (stream, "\n%24s", "");
15602 *col_p = 24;
15603 }
15604
15605 fprintf (stream, "%s", string);
15606 *col_p += strlen (string);
15607
15608 *first_p = 0;
15609 }
15610
15611 void
15612 md_show_usage (FILE *stream)
15613 {
15614 int column, first;
15615 size_t i;
15616
15617 fprintf (stream, _("\
15618 MIPS options:\n\
15619 -EB generate big endian output\n\
15620 -EL generate little endian output\n\
15621 -g, -g2 do not remove unneeded NOPs or swap branches\n\
15622 -G NUM allow referencing objects up to NUM bytes\n\
15623 implicitly with the gp register [default 8]\n"));
15624 fprintf (stream, _("\
15625 -mips1 generate MIPS ISA I instructions\n\
15626 -mips2 generate MIPS ISA II instructions\n\
15627 -mips3 generate MIPS ISA III instructions\n\
15628 -mips4 generate MIPS ISA IV instructions\n\
15629 -mips5 generate MIPS ISA V instructions\n\
15630 -mips32 generate MIPS32 ISA instructions\n\
15631 -mips32r2 generate MIPS32 release 2 ISA instructions\n\
15632 -mips64 generate MIPS64 ISA instructions\n\
15633 -mips64r2 generate MIPS64 release 2 ISA instructions\n\
15634 -march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
15635
15636 first = 1;
15637
15638 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
15639 show (stream, mips_cpu_info_table[i].name, &column, &first);
15640 show (stream, "from-abi", &column, &first);
15641 fputc ('\n', stream);
15642
15643 fprintf (stream, _("\
15644 -mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
15645 -no-mCPU don't generate code specific to CPU.\n\
15646 For -mCPU and -no-mCPU, CPU must be one of:\n"));
15647
15648 first = 1;
15649
15650 show (stream, "3900", &column, &first);
15651 show (stream, "4010", &column, &first);
15652 show (stream, "4100", &column, &first);
15653 show (stream, "4650", &column, &first);
15654 fputc ('\n', stream);
15655
15656 fprintf (stream, _("\
15657 -mips16 generate mips16 instructions\n\
15658 -no-mips16 do not generate mips16 instructions\n"));
15659 fprintf (stream, _("\
15660 -msmartmips generate smartmips instructions\n\
15661 -mno-smartmips do not generate smartmips instructions\n"));
15662 fprintf (stream, _("\
15663 -mdsp generate DSP instructions\n\
15664 -mno-dsp do not generate DSP instructions\n"));
15665 fprintf (stream, _("\
15666 -mdspr2 generate DSP R2 instructions\n\
15667 -mno-dspr2 do not generate DSP R2 instructions\n"));
15668 fprintf (stream, _("\
15669 -mmt generate MT instructions\n\
15670 -mno-mt do not generate MT instructions\n"));
15671 fprintf (stream, _("\
15672 -mfix-loongson2f-jump work around Loongson2F JUMP instructions\n\
15673 -mfix-loongson2f-nop work around Loongson2F NOP errata\n\
15674 -mfix-vr4120 work around certain VR4120 errata\n\
15675 -mfix-vr4130 work around VR4130 mflo/mfhi errata\n\
15676 -mfix-24k insert a nop after ERET and DERET instructions\n\
15677 -mfix-cn63xxp1 work around CN63XXP1 PREF errata\n\
15678 -mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
15679 -mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
15680 -msym32 assume all symbols have 32-bit values\n\
15681 -O0 remove unneeded NOPs, do not swap branches\n\
15682 -O remove unneeded NOPs and swap branches\n\
15683 --trap, --no-break trap exception on div by 0 and mult overflow\n\
15684 --break, --no-trap break exception on div by 0 and mult overflow\n"));
15685 fprintf (stream, _("\
15686 -mhard-float allow floating-point instructions\n\
15687 -msoft-float do not allow floating-point instructions\n\
15688 -msingle-float only allow 32-bit floating-point operations\n\
15689 -mdouble-float allow 32-bit and 64-bit floating-point operations\n\
15690 --[no-]construct-floats [dis]allow floating point values to be constructed\n"
15691 ));
15692 #ifdef OBJ_ELF
15693 fprintf (stream, _("\
15694 -KPIC, -call_shared generate SVR4 position independent code\n\
15695 -call_nonpic generate non-PIC code that can operate with DSOs\n\
15696 -mvxworks-pic generate VxWorks position independent code\n\
15697 -non_shared do not generate code that can operate with DSOs\n\
15698 -xgot assume a 32 bit GOT\n\
15699 -mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
15700 -mshared, -mno-shared disable/enable .cpload optimization for\n\
15701 position dependent (non shared) code\n\
15702 -mabi=ABI create ABI conformant object file for:\n"));
15703
15704 first = 1;
15705
15706 show (stream, "32", &column, &first);
15707 show (stream, "o64", &column, &first);
15708 show (stream, "n32", &column, &first);
15709 show (stream, "64", &column, &first);
15710 show (stream, "eabi", &column, &first);
15711
15712 fputc ('\n', stream);
15713
15714 fprintf (stream, _("\
15715 -32 create o32 ABI object file (default)\n\
15716 -n32 create n32 ABI object file\n\
15717 -64 create 64 ABI object file\n"));
15718 #endif
15719 }
15720
15721 #ifdef TE_IRIX
15722 enum dwarf2_format
15723 mips_dwarf2_format (asection *sec ATTRIBUTE_UNUSED)
15724 {
15725 if (HAVE_64BIT_SYMBOLS)
15726 return dwarf2_format_64bit_irix;
15727 else
15728 return dwarf2_format_32bit;
15729 }
15730 #endif
15731
15732 int
15733 mips_dwarf2_addr_size (void)
15734 {
15735 if (HAVE_64BIT_OBJECTS)
15736 return 8;
15737 else
15738 return 4;
15739 }
15740
15741 /* Standard calling conventions leave the CFA at SP on entry. */
15742 void
15743 mips_cfi_frame_initial_instructions (void)
15744 {
15745 cfi_add_CFA_def_cfa_register (SP);
15746 }
15747
15748 int
15749 tc_mips_regname_to_dw2regnum (char *regname)
15750 {
15751 unsigned int regnum = -1;
15752 unsigned int reg;
15753
15754 if (reg_lookup (&regname, RTYPE_GP | RTYPE_NUM, &reg))
15755 regnum = reg;
15756
15757 return regnum;
15758 }
This page took 0.41115 seconds and 5 git commands to generate.