MIPS16: Switch to 32-bit opcode table interpretation
[deliverable/binutils-gdb.git] / gas / config / tc-mips.c
1 /* tc-mips.c -- assemble code for a MIPS chip.
2 Copyright (C) 1993-2016 Free Software Foundation, Inc.
3 Contributed by the OSF and Ralph Campbell.
4 Written by Keith Knowles and Ralph Campbell, working independently.
5 Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
6 Support.
7
8 This file is part of GAS.
9
10 GAS is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3, or (at your option)
13 any later version.
14
15 GAS is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GAS; see the file COPYING. If not, write to the Free
22 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
23 02110-1301, USA. */
24
25 #include "as.h"
26 #include "config.h"
27 #include "subsegs.h"
28 #include "safe-ctype.h"
29
30 #include "opcode/mips.h"
31 #include "itbl-ops.h"
32 #include "dwarf2dbg.h"
33 #include "dw2gencfi.h"
34
35 /* Check assumptions made in this file. */
36 typedef char static_assert1[sizeof (offsetT) < 8 ? -1 : 1];
37 typedef char static_assert2[sizeof (valueT) < 8 ? -1 : 1];
38
39 #ifdef DEBUG
40 #define DBG(x) printf x
41 #else
42 #define DBG(x)
43 #endif
44
45 #define streq(a, b) (strcmp (a, b) == 0)
46
47 #define SKIP_SPACE_TABS(S) \
48 do { while (*(S) == ' ' || *(S) == '\t') ++(S); } while (0)
49
50 /* Clean up namespace so we can include obj-elf.h too. */
51 static int mips_output_flavor (void);
52 static int mips_output_flavor (void) { return OUTPUT_FLAVOR; }
53 #undef OBJ_PROCESS_STAB
54 #undef OUTPUT_FLAVOR
55 #undef S_GET_ALIGN
56 #undef S_GET_SIZE
57 #undef S_SET_ALIGN
58 #undef S_SET_SIZE
59 #undef obj_frob_file
60 #undef obj_frob_file_after_relocs
61 #undef obj_frob_symbol
62 #undef obj_pop_insert
63 #undef obj_sec_sym_ok_for_reloc
64 #undef OBJ_COPY_SYMBOL_ATTRIBUTES
65
66 #include "obj-elf.h"
67 /* Fix any of them that we actually care about. */
68 #undef OUTPUT_FLAVOR
69 #define OUTPUT_FLAVOR mips_output_flavor()
70
71 #include "elf/mips.h"
72
73 #ifndef ECOFF_DEBUGGING
74 #define NO_ECOFF_DEBUGGING
75 #define ECOFF_DEBUGGING 0
76 #endif
77
78 int mips_flag_mdebug = -1;
79
80 /* Control generation of .pdr sections. Off by default on IRIX: the native
81 linker doesn't know about and discards them, but relocations against them
82 remain, leading to rld crashes. */
83 #ifdef TE_IRIX
84 int mips_flag_pdr = FALSE;
85 #else
86 int mips_flag_pdr = TRUE;
87 #endif
88
89 #include "ecoff.h"
90
91 static char *mips_regmask_frag;
92 static char *mips_flags_frag;
93
94 #define ZERO 0
95 #define ATREG 1
96 #define S0 16
97 #define S7 23
98 #define TREG 24
99 #define PIC_CALL_REG 25
100 #define KT0 26
101 #define KT1 27
102 #define GP 28
103 #define SP 29
104 #define FP 30
105 #define RA 31
106
107 #define ILLEGAL_REG (32)
108
109 #define AT mips_opts.at
110
111 extern int target_big_endian;
112
113 /* The name of the readonly data section. */
114 #define RDATA_SECTION_NAME ".rodata"
115
116 /* Ways in which an instruction can be "appended" to the output. */
117 enum append_method {
118 /* Just add it normally. */
119 APPEND_ADD,
120
121 /* Add it normally and then add a nop. */
122 APPEND_ADD_WITH_NOP,
123
124 /* Turn an instruction with a delay slot into a "compact" version. */
125 APPEND_ADD_COMPACT,
126
127 /* Insert the instruction before the last one. */
128 APPEND_SWAP
129 };
130
131 /* Information about an instruction, including its format, operands
132 and fixups. */
133 struct mips_cl_insn
134 {
135 /* The opcode's entry in mips_opcodes or mips16_opcodes. */
136 const struct mips_opcode *insn_mo;
137
138 /* The 16-bit or 32-bit bitstring of the instruction itself. This is
139 a copy of INSN_MO->match with the operands filled in. If we have
140 decided to use an extended MIPS16 instruction, this includes the
141 extension. */
142 unsigned long insn_opcode;
143
144 /* The frag that contains the instruction. */
145 struct frag *frag;
146
147 /* The offset into FRAG of the first instruction byte. */
148 long where;
149
150 /* The relocs associated with the instruction, if any. */
151 fixS *fixp[3];
152
153 /* True if this entry cannot be moved from its current position. */
154 unsigned int fixed_p : 1;
155
156 /* True if this instruction occurred in a .set noreorder block. */
157 unsigned int noreorder_p : 1;
158
159 /* True for mips16 instructions that jump to an absolute address. */
160 unsigned int mips16_absolute_jump_p : 1;
161
162 /* True if this instruction is complete. */
163 unsigned int complete_p : 1;
164
165 /* True if this instruction is cleared from history by unconditional
166 branch. */
167 unsigned int cleared_p : 1;
168 };
169
170 /* The ABI to use. */
171 enum mips_abi_level
172 {
173 NO_ABI = 0,
174 O32_ABI,
175 O64_ABI,
176 N32_ABI,
177 N64_ABI,
178 EABI_ABI
179 };
180
181 /* MIPS ABI we are using for this output file. */
182 static enum mips_abi_level mips_abi = NO_ABI;
183
184 /* Whether or not we have code that can call pic code. */
185 int mips_abicalls = FALSE;
186
187 /* Whether or not we have code which can be put into a shared
188 library. */
189 static bfd_boolean mips_in_shared = TRUE;
190
191 /* This is the set of options which may be modified by the .set
192 pseudo-op. We use a struct so that .set push and .set pop are more
193 reliable. */
194
195 struct mips_set_options
196 {
197 /* MIPS ISA (Instruction Set Architecture) level. This is set to -1
198 if it has not been initialized. Changed by `.set mipsN', and the
199 -mipsN command line option, and the default CPU. */
200 int isa;
201 /* Enabled Application Specific Extensions (ASEs). Changed by `.set
202 <asename>', by command line options, and based on the default
203 architecture. */
204 int ase;
205 /* Whether we are assembling for the mips16 processor. 0 if we are
206 not, 1 if we are, and -1 if the value has not been initialized.
207 Changed by `.set mips16' and `.set nomips16', and the -mips16 and
208 -nomips16 command line options, and the default CPU. */
209 int mips16;
210 /* Whether we are assembling for the mipsMIPS ASE. 0 if we are not,
211 1 if we are, and -1 if the value has not been initialized. Changed
212 by `.set micromips' and `.set nomicromips', and the -mmicromips
213 and -mno-micromips command line options, and the default CPU. */
214 int micromips;
215 /* Non-zero if we should not reorder instructions. Changed by `.set
216 reorder' and `.set noreorder'. */
217 int noreorder;
218 /* Non-zero if we should not permit the register designated "assembler
219 temporary" to be used in instructions. The value is the register
220 number, normally $at ($1). Changed by `.set at=REG', `.set noat'
221 (same as `.set at=$0') and `.set at' (same as `.set at=$1'). */
222 unsigned int at;
223 /* Non-zero if we should warn when a macro instruction expands into
224 more than one machine instruction. Changed by `.set nomacro' and
225 `.set macro'. */
226 int warn_about_macros;
227 /* Non-zero if we should not move instructions. Changed by `.set
228 move', `.set volatile', `.set nomove', and `.set novolatile'. */
229 int nomove;
230 /* Non-zero if we should not optimize branches by moving the target
231 of the branch into the delay slot. Actually, we don't perform
232 this optimization anyhow. Changed by `.set bopt' and `.set
233 nobopt'. */
234 int nobopt;
235 /* Non-zero if we should not autoextend mips16 instructions.
236 Changed by `.set autoextend' and `.set noautoextend'. */
237 int noautoextend;
238 /* True if we should only emit 32-bit microMIPS instructions.
239 Changed by `.set insn32' and `.set noinsn32', and the -minsn32
240 and -mno-insn32 command line options. */
241 bfd_boolean insn32;
242 /* Restrict general purpose registers and floating point registers
243 to 32 bit. This is initially determined when -mgp32 or -mfp32
244 is passed but can changed if the assembler code uses .set mipsN. */
245 int gp;
246 int fp;
247 /* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
248 command line option, and the default CPU. */
249 int arch;
250 /* True if ".set sym32" is in effect. */
251 bfd_boolean sym32;
252 /* True if floating-point operations are not allowed. Changed by .set
253 softfloat or .set hardfloat, by command line options -msoft-float or
254 -mhard-float. The default is false. */
255 bfd_boolean soft_float;
256
257 /* True if only single-precision floating-point operations are allowed.
258 Changed by .set singlefloat or .set doublefloat, command-line options
259 -msingle-float or -mdouble-float. The default is false. */
260 bfd_boolean single_float;
261
262 /* 1 if single-precision operations on odd-numbered registers are
263 allowed. */
264 int oddspreg;
265 };
266
267 /* Specifies whether module level options have been checked yet. */
268 static bfd_boolean file_mips_opts_checked = FALSE;
269
270 /* Do we support nan2008? 0 if we don't, 1 if we do, and -1 if the
271 value has not been initialized. Changed by `.nan legacy' and
272 `.nan 2008', and the -mnan=legacy and -mnan=2008 command line
273 options, and the default CPU. */
274 static int mips_nan2008 = -1;
275
276 /* This is the struct we use to hold the module level set of options.
277 Note that we must set the isa field to ISA_UNKNOWN and the ASE, gp and
278 fp fields to -1 to indicate that they have not been initialized. */
279
280 static struct mips_set_options file_mips_opts =
281 {
282 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
283 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
284 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
285 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
286 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
287 };
288
289 /* This is similar to file_mips_opts, but for the current set of options. */
290
291 static struct mips_set_options mips_opts =
292 {
293 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
294 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
295 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
296 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
297 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
298 };
299
300 /* Which bits of file_ase were explicitly set or cleared by ASE options. */
301 static unsigned int file_ase_explicit;
302
303 /* These variables are filled in with the masks of registers used.
304 The object format code reads them and puts them in the appropriate
305 place. */
306 unsigned long mips_gprmask;
307 unsigned long mips_cprmask[4];
308
309 /* True if any MIPS16 code was produced. */
310 static int file_ase_mips16;
311
312 #define ISA_SUPPORTS_MIPS16E (mips_opts.isa == ISA_MIPS32 \
313 || mips_opts.isa == ISA_MIPS32R2 \
314 || mips_opts.isa == ISA_MIPS32R3 \
315 || mips_opts.isa == ISA_MIPS32R5 \
316 || mips_opts.isa == ISA_MIPS64 \
317 || mips_opts.isa == ISA_MIPS64R2 \
318 || mips_opts.isa == ISA_MIPS64R3 \
319 || mips_opts.isa == ISA_MIPS64R5)
320
321 /* True if any microMIPS code was produced. */
322 static int file_ase_micromips;
323
324 /* True if we want to create R_MIPS_JALR for jalr $25. */
325 #ifdef TE_IRIX
326 #define MIPS_JALR_HINT_P(EXPR) HAVE_NEWABI
327 #else
328 /* As a GNU extension, we use R_MIPS_JALR for o32 too. However,
329 because there's no place for any addend, the only acceptable
330 expression is a bare symbol. */
331 #define MIPS_JALR_HINT_P(EXPR) \
332 (!HAVE_IN_PLACE_ADDENDS \
333 || ((EXPR)->X_op == O_symbol && (EXPR)->X_add_number == 0))
334 #endif
335
336 /* The argument of the -march= flag. The architecture we are assembling. */
337 static const char *mips_arch_string;
338
339 /* The argument of the -mtune= flag. The architecture for which we
340 are optimizing. */
341 static int mips_tune = CPU_UNKNOWN;
342 static const char *mips_tune_string;
343
344 /* True when generating 32-bit code for a 64-bit processor. */
345 static int mips_32bitmode = 0;
346
347 /* True if the given ABI requires 32-bit registers. */
348 #define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
349
350 /* Likewise 64-bit registers. */
351 #define ABI_NEEDS_64BIT_REGS(ABI) \
352 ((ABI) == N32_ABI \
353 || (ABI) == N64_ABI \
354 || (ABI) == O64_ABI)
355
356 #define ISA_IS_R6(ISA) \
357 ((ISA) == ISA_MIPS32R6 \
358 || (ISA) == ISA_MIPS64R6)
359
360 /* Return true if ISA supports 64 bit wide gp registers. */
361 #define ISA_HAS_64BIT_REGS(ISA) \
362 ((ISA) == ISA_MIPS3 \
363 || (ISA) == ISA_MIPS4 \
364 || (ISA) == ISA_MIPS5 \
365 || (ISA) == ISA_MIPS64 \
366 || (ISA) == ISA_MIPS64R2 \
367 || (ISA) == ISA_MIPS64R3 \
368 || (ISA) == ISA_MIPS64R5 \
369 || (ISA) == ISA_MIPS64R6)
370
371 /* Return true if ISA supports 64 bit wide float registers. */
372 #define ISA_HAS_64BIT_FPRS(ISA) \
373 ((ISA) == ISA_MIPS3 \
374 || (ISA) == ISA_MIPS4 \
375 || (ISA) == ISA_MIPS5 \
376 || (ISA) == ISA_MIPS32R2 \
377 || (ISA) == ISA_MIPS32R3 \
378 || (ISA) == ISA_MIPS32R5 \
379 || (ISA) == ISA_MIPS32R6 \
380 || (ISA) == ISA_MIPS64 \
381 || (ISA) == ISA_MIPS64R2 \
382 || (ISA) == ISA_MIPS64R3 \
383 || (ISA) == ISA_MIPS64R5 \
384 || (ISA) == ISA_MIPS64R6)
385
386 /* Return true if ISA supports 64-bit right rotate (dror et al.)
387 instructions. */
388 #define ISA_HAS_DROR(ISA) \
389 ((ISA) == ISA_MIPS64R2 \
390 || (ISA) == ISA_MIPS64R3 \
391 || (ISA) == ISA_MIPS64R5 \
392 || (ISA) == ISA_MIPS64R6 \
393 || (mips_opts.micromips \
394 && ISA_HAS_64BIT_REGS (ISA)) \
395 )
396
397 /* Return true if ISA supports 32-bit right rotate (ror et al.)
398 instructions. */
399 #define ISA_HAS_ROR(ISA) \
400 ((ISA) == ISA_MIPS32R2 \
401 || (ISA) == ISA_MIPS32R3 \
402 || (ISA) == ISA_MIPS32R5 \
403 || (ISA) == ISA_MIPS32R6 \
404 || (ISA) == ISA_MIPS64R2 \
405 || (ISA) == ISA_MIPS64R3 \
406 || (ISA) == ISA_MIPS64R5 \
407 || (ISA) == ISA_MIPS64R6 \
408 || (mips_opts.ase & ASE_SMARTMIPS) \
409 || mips_opts.micromips \
410 )
411
412 /* Return true if ISA supports single-precision floats in odd registers. */
413 #define ISA_HAS_ODD_SINGLE_FPR(ISA, CPU)\
414 (((ISA) == ISA_MIPS32 \
415 || (ISA) == ISA_MIPS32R2 \
416 || (ISA) == ISA_MIPS32R3 \
417 || (ISA) == ISA_MIPS32R5 \
418 || (ISA) == ISA_MIPS32R6 \
419 || (ISA) == ISA_MIPS64 \
420 || (ISA) == ISA_MIPS64R2 \
421 || (ISA) == ISA_MIPS64R3 \
422 || (ISA) == ISA_MIPS64R5 \
423 || (ISA) == ISA_MIPS64R6 \
424 || (CPU) == CPU_R5900) \
425 && (CPU) != CPU_LOONGSON_3A)
426
427 /* Return true if ISA supports move to/from high part of a 64-bit
428 floating-point register. */
429 #define ISA_HAS_MXHC1(ISA) \
430 ((ISA) == ISA_MIPS32R2 \
431 || (ISA) == ISA_MIPS32R3 \
432 || (ISA) == ISA_MIPS32R5 \
433 || (ISA) == ISA_MIPS32R6 \
434 || (ISA) == ISA_MIPS64R2 \
435 || (ISA) == ISA_MIPS64R3 \
436 || (ISA) == ISA_MIPS64R5 \
437 || (ISA) == ISA_MIPS64R6)
438
439 /* Return true if ISA supports legacy NAN. */
440 #define ISA_HAS_LEGACY_NAN(ISA) \
441 ((ISA) == ISA_MIPS1 \
442 || (ISA) == ISA_MIPS2 \
443 || (ISA) == ISA_MIPS3 \
444 || (ISA) == ISA_MIPS4 \
445 || (ISA) == ISA_MIPS5 \
446 || (ISA) == ISA_MIPS32 \
447 || (ISA) == ISA_MIPS32R2 \
448 || (ISA) == ISA_MIPS32R3 \
449 || (ISA) == ISA_MIPS32R5 \
450 || (ISA) == ISA_MIPS64 \
451 || (ISA) == ISA_MIPS64R2 \
452 || (ISA) == ISA_MIPS64R3 \
453 || (ISA) == ISA_MIPS64R5)
454
455 #define GPR_SIZE \
456 (mips_opts.gp == 64 && !ISA_HAS_64BIT_REGS (mips_opts.isa) \
457 ? 32 \
458 : mips_opts.gp)
459
460 #define FPR_SIZE \
461 (mips_opts.fp == 64 && !ISA_HAS_64BIT_FPRS (mips_opts.isa) \
462 ? 32 \
463 : mips_opts.fp)
464
465 #define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
466
467 #define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
468
469 /* True if relocations are stored in-place. */
470 #define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI)
471
472 /* The ABI-derived address size. */
473 #define HAVE_64BIT_ADDRESSES \
474 (GPR_SIZE == 64 && (mips_abi == EABI_ABI || mips_abi == N64_ABI))
475 #define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES)
476
477 /* The size of symbolic constants (i.e., expressions of the form
478 "SYMBOL" or "SYMBOL + OFFSET"). */
479 #define HAVE_32BIT_SYMBOLS \
480 (HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32)
481 #define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS)
482
483 /* Addresses are loaded in different ways, depending on the address size
484 in use. The n32 ABI Documentation also mandates the use of additions
485 with overflow checking, but existing implementations don't follow it. */
486 #define ADDRESS_ADD_INSN \
487 (HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
488
489 #define ADDRESS_ADDI_INSN \
490 (HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
491
492 #define ADDRESS_LOAD_INSN \
493 (HAVE_32BIT_ADDRESSES ? "lw" : "ld")
494
495 #define ADDRESS_STORE_INSN \
496 (HAVE_32BIT_ADDRESSES ? "sw" : "sd")
497
498 /* Return true if the given CPU supports the MIPS16 ASE. */
499 #define CPU_HAS_MIPS16(cpu) \
500 (strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0 \
501 || strncmp (TARGET_CANONICAL, "mips-lsi-elf", sizeof ("mips-lsi-elf") - 1) == 0)
502
503 /* Return true if the given CPU supports the microMIPS ASE. */
504 #define CPU_HAS_MICROMIPS(cpu) 0
505
506 /* True if CPU has a dror instruction. */
507 #define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
508
509 /* True if CPU has a ror instruction. */
510 #define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU)
511
512 /* True if CPU is in the Octeon family */
513 #define CPU_IS_OCTEON(CPU) ((CPU) == CPU_OCTEON || (CPU) == CPU_OCTEONP \
514 || (CPU) == CPU_OCTEON2 || (CPU) == CPU_OCTEON3)
515
516 /* True if CPU has seq/sne and seqi/snei instructions. */
517 #define CPU_HAS_SEQ(CPU) (CPU_IS_OCTEON (CPU))
518
519 /* True, if CPU has support for ldc1 and sdc1. */
520 #define CPU_HAS_LDC1_SDC1(CPU) \
521 ((mips_opts.isa != ISA_MIPS1) && ((CPU) != CPU_R5900))
522
523 /* True if mflo and mfhi can be immediately followed by instructions
524 which write to the HI and LO registers.
525
526 According to MIPS specifications, MIPS ISAs I, II, and III need
527 (at least) two instructions between the reads of HI/LO and
528 instructions which write them, and later ISAs do not. Contradicting
529 the MIPS specifications, some MIPS IV processor user manuals (e.g.
530 the UM for the NEC Vr5000) document needing the instructions between
531 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
532 MIPS64 and later ISAs to have the interlocks, plus any specific
533 earlier-ISA CPUs for which CPU documentation declares that the
534 instructions are really interlocked. */
535 #define hilo_interlocks \
536 (mips_opts.isa == ISA_MIPS32 \
537 || mips_opts.isa == ISA_MIPS32R2 \
538 || mips_opts.isa == ISA_MIPS32R3 \
539 || mips_opts.isa == ISA_MIPS32R5 \
540 || mips_opts.isa == ISA_MIPS32R6 \
541 || mips_opts.isa == ISA_MIPS64 \
542 || mips_opts.isa == ISA_MIPS64R2 \
543 || mips_opts.isa == ISA_MIPS64R3 \
544 || mips_opts.isa == ISA_MIPS64R5 \
545 || mips_opts.isa == ISA_MIPS64R6 \
546 || mips_opts.arch == CPU_R4010 \
547 || mips_opts.arch == CPU_R5900 \
548 || mips_opts.arch == CPU_R10000 \
549 || mips_opts.arch == CPU_R12000 \
550 || mips_opts.arch == CPU_R14000 \
551 || mips_opts.arch == CPU_R16000 \
552 || mips_opts.arch == CPU_RM7000 \
553 || mips_opts.arch == CPU_VR5500 \
554 || mips_opts.micromips \
555 )
556
557 /* Whether the processor uses hardware interlocks to protect reads
558 from the GPRs after they are loaded from memory, and thus does not
559 require nops to be inserted. This applies to instructions marked
560 INSN_LOAD_MEMORY. These nops are only required at MIPS ISA
561 level I and microMIPS mode instructions are always interlocked. */
562 #define gpr_interlocks \
563 (mips_opts.isa != ISA_MIPS1 \
564 || mips_opts.arch == CPU_R3900 \
565 || mips_opts.arch == CPU_R5900 \
566 || mips_opts.micromips \
567 )
568
569 /* Whether the processor uses hardware interlocks to avoid delays
570 required by coprocessor instructions, and thus does not require
571 nops to be inserted. This applies to instructions marked
572 INSN_LOAD_COPROC, INSN_COPROC_MOVE, and to delays between
573 instructions marked INSN_WRITE_COND_CODE and ones marked
574 INSN_READ_COND_CODE. These nops are only required at MIPS ISA
575 levels I, II, and III and microMIPS mode instructions are always
576 interlocked. */
577 /* Itbl support may require additional care here. */
578 #define cop_interlocks \
579 ((mips_opts.isa != ISA_MIPS1 \
580 && mips_opts.isa != ISA_MIPS2 \
581 && mips_opts.isa != ISA_MIPS3) \
582 || mips_opts.arch == CPU_R4300 \
583 || mips_opts.micromips \
584 )
585
586 /* Whether the processor uses hardware interlocks to protect reads
587 from coprocessor registers after they are loaded from memory, and
588 thus does not require nops to be inserted. This applies to
589 instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
590 requires at MIPS ISA level I and microMIPS mode instructions are
591 always interlocked. */
592 #define cop_mem_interlocks \
593 (mips_opts.isa != ISA_MIPS1 \
594 || mips_opts.micromips \
595 )
596
597 /* Is this a mfhi or mflo instruction? */
598 #define MF_HILO_INSN(PINFO) \
599 ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
600
601 /* Whether code compression (either of the MIPS16 or the microMIPS ASEs)
602 has been selected. This implies, in particular, that addresses of text
603 labels have their LSB set. */
604 #define HAVE_CODE_COMPRESSION \
605 ((mips_opts.mips16 | mips_opts.micromips) != 0)
606
607 /* The minimum and maximum signed values that can be stored in a GPR. */
608 #define GPR_SMAX ((offsetT) (((valueT) 1 << (GPR_SIZE - 1)) - 1))
609 #define GPR_SMIN (-GPR_SMAX - 1)
610
611 /* MIPS PIC level. */
612
613 enum mips_pic_level mips_pic;
614
615 /* 1 if we should generate 32 bit offsets from the $gp register in
616 SVR4_PIC mode. Currently has no meaning in other modes. */
617 static int mips_big_got = 0;
618
619 /* 1 if trap instructions should used for overflow rather than break
620 instructions. */
621 static int mips_trap = 0;
622
623 /* 1 if double width floating point constants should not be constructed
624 by assembling two single width halves into two single width floating
625 point registers which just happen to alias the double width destination
626 register. On some architectures this aliasing can be disabled by a bit
627 in the status register, and the setting of this bit cannot be determined
628 automatically at assemble time. */
629 static int mips_disable_float_construction;
630
631 /* Non-zero if any .set noreorder directives were used. */
632
633 static int mips_any_noreorder;
634
635 /* Non-zero if nops should be inserted when the register referenced in
636 an mfhi/mflo instruction is read in the next two instructions. */
637 static int mips_7000_hilo_fix;
638
639 /* The size of objects in the small data section. */
640 static unsigned int g_switch_value = 8;
641 /* Whether the -G option was used. */
642 static int g_switch_seen = 0;
643
644 #define N_RMASK 0xc4
645 #define N_VFP 0xd4
646
647 /* If we can determine in advance that GP optimization won't be
648 possible, we can skip the relaxation stuff that tries to produce
649 GP-relative references. This makes delay slot optimization work
650 better.
651
652 This function can only provide a guess, but it seems to work for
653 gcc output. It needs to guess right for gcc, otherwise gcc
654 will put what it thinks is a GP-relative instruction in a branch
655 delay slot.
656
657 I don't know if a fix is needed for the SVR4_PIC mode. I've only
658 fixed it for the non-PIC mode. KR 95/04/07 */
659 static int nopic_need_relax (symbolS *, int);
660
661 /* handle of the OPCODE hash table */
662 static struct hash_control *op_hash = NULL;
663
664 /* The opcode hash table we use for the mips16. */
665 static struct hash_control *mips16_op_hash = NULL;
666
667 /* The opcode hash table we use for the microMIPS ASE. */
668 static struct hash_control *micromips_op_hash = NULL;
669
670 /* This array holds the chars that always start a comment. If the
671 pre-processor is disabled, these aren't very useful */
672 const char comment_chars[] = "#";
673
674 /* This array holds the chars that only start a comment at the beginning of
675 a line. If the line seems to have the form '# 123 filename'
676 .line and .file directives will appear in the pre-processed output */
677 /* Note that input_file.c hand checks for '#' at the beginning of the
678 first line of the input file. This is because the compiler outputs
679 #NO_APP at the beginning of its output. */
680 /* Also note that C style comments are always supported. */
681 const char line_comment_chars[] = "#";
682
683 /* This array holds machine specific line separator characters. */
684 const char line_separator_chars[] = ";";
685
686 /* Chars that can be used to separate mant from exp in floating point nums */
687 const char EXP_CHARS[] = "eE";
688
689 /* Chars that mean this number is a floating point constant */
690 /* As in 0f12.456 */
691 /* or 0d1.2345e12 */
692 const char FLT_CHARS[] = "rRsSfFdDxXpP";
693
694 /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
695 changed in read.c . Ideally it shouldn't have to know about it at all,
696 but nothing is ideal around here.
697 */
698
699 /* Types of printf format used for instruction-related error messages.
700 "I" means int ("%d") and "S" means string ("%s"). */
701 enum mips_insn_error_format {
702 ERR_FMT_PLAIN,
703 ERR_FMT_I,
704 ERR_FMT_SS,
705 };
706
707 /* Information about an error that was found while assembling the current
708 instruction. */
709 struct mips_insn_error {
710 /* We sometimes need to match an instruction against more than one
711 opcode table entry. Errors found during this matching are reported
712 against a particular syntactic argument rather than against the
713 instruction as a whole. We grade these messages so that errors
714 against argument N have a greater priority than an error against
715 any argument < N, since the former implies that arguments up to N
716 were acceptable and that the opcode entry was therefore a closer match.
717 If several matches report an error against the same argument,
718 we only use that error if it is the same in all cases.
719
720 min_argnum is the minimum argument number for which an error message
721 should be accepted. It is 0 if MSG is against the instruction as
722 a whole. */
723 int min_argnum;
724
725 /* The printf()-style message, including its format and arguments. */
726 enum mips_insn_error_format format;
727 const char *msg;
728 union {
729 int i;
730 const char *ss[2];
731 } u;
732 };
733
734 /* The error that should be reported for the current instruction. */
735 static struct mips_insn_error insn_error;
736
737 static int auto_align = 1;
738
739 /* When outputting SVR4 PIC code, the assembler needs to know the
740 offset in the stack frame from which to restore the $gp register.
741 This is set by the .cprestore pseudo-op, and saved in this
742 variable. */
743 static offsetT mips_cprestore_offset = -1;
744
745 /* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
746 more optimizations, it can use a register value instead of a memory-saved
747 offset and even an other register than $gp as global pointer. */
748 static offsetT mips_cpreturn_offset = -1;
749 static int mips_cpreturn_register = -1;
750 static int mips_gp_register = GP;
751 static int mips_gprel_offset = 0;
752
753 /* Whether mips_cprestore_offset has been set in the current function
754 (or whether it has already been warned about, if not). */
755 static int mips_cprestore_valid = 0;
756
757 /* This is the register which holds the stack frame, as set by the
758 .frame pseudo-op. This is needed to implement .cprestore. */
759 static int mips_frame_reg = SP;
760
761 /* Whether mips_frame_reg has been set in the current function
762 (or whether it has already been warned about, if not). */
763 static int mips_frame_reg_valid = 0;
764
765 /* To output NOP instructions correctly, we need to keep information
766 about the previous two instructions. */
767
768 /* Whether we are optimizing. The default value of 2 means to remove
769 unneeded NOPs and swap branch instructions when possible. A value
770 of 1 means to not swap branches. A value of 0 means to always
771 insert NOPs. */
772 static int mips_optimize = 2;
773
774 /* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
775 equivalent to seeing no -g option at all. */
776 static int mips_debug = 0;
777
778 /* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */
779 #define MAX_VR4130_NOPS 4
780
781 /* The maximum number of NOPs needed to fill delay slots. */
782 #define MAX_DELAY_NOPS 2
783
784 /* The maximum number of NOPs needed for any purpose. */
785 #define MAX_NOPS 4
786
787 /* A list of previous instructions, with index 0 being the most recent.
788 We need to look back MAX_NOPS instructions when filling delay slots
789 or working around processor errata. We need to look back one
790 instruction further if we're thinking about using history[0] to
791 fill a branch delay slot. */
792 static struct mips_cl_insn history[1 + MAX_NOPS];
793
794 /* Arrays of operands for each instruction. */
795 #define MAX_OPERANDS 6
796 struct mips_operand_array {
797 const struct mips_operand *operand[MAX_OPERANDS];
798 };
799 static struct mips_operand_array *mips_operands;
800 static struct mips_operand_array *mips16_operands;
801 static struct mips_operand_array *micromips_operands;
802
803 /* Nop instructions used by emit_nop. */
804 static struct mips_cl_insn nop_insn;
805 static struct mips_cl_insn mips16_nop_insn;
806 static struct mips_cl_insn micromips_nop16_insn;
807 static struct mips_cl_insn micromips_nop32_insn;
808
809 /* The appropriate nop for the current mode. */
810 #define NOP_INSN (mips_opts.mips16 \
811 ? &mips16_nop_insn \
812 : (mips_opts.micromips \
813 ? (mips_opts.insn32 \
814 ? &micromips_nop32_insn \
815 : &micromips_nop16_insn) \
816 : &nop_insn))
817
818 /* The size of NOP_INSN in bytes. */
819 #define NOP_INSN_SIZE ((mips_opts.mips16 \
820 || (mips_opts.micromips && !mips_opts.insn32)) \
821 ? 2 : 4)
822
823 /* If this is set, it points to a frag holding nop instructions which
824 were inserted before the start of a noreorder section. If those
825 nops turn out to be unnecessary, the size of the frag can be
826 decreased. */
827 static fragS *prev_nop_frag;
828
829 /* The number of nop instructions we created in prev_nop_frag. */
830 static int prev_nop_frag_holds;
831
832 /* The number of nop instructions that we know we need in
833 prev_nop_frag. */
834 static int prev_nop_frag_required;
835
836 /* The number of instructions we've seen since prev_nop_frag. */
837 static int prev_nop_frag_since;
838
839 /* Relocations against symbols are sometimes done in two parts, with a HI
840 relocation and a LO relocation. Each relocation has only 16 bits of
841 space to store an addend. This means that in order for the linker to
842 handle carries correctly, it must be able to locate both the HI and
843 the LO relocation. This means that the relocations must appear in
844 order in the relocation table.
845
846 In order to implement this, we keep track of each unmatched HI
847 relocation. We then sort them so that they immediately precede the
848 corresponding LO relocation. */
849
850 struct mips_hi_fixup
851 {
852 /* Next HI fixup. */
853 struct mips_hi_fixup *next;
854 /* This fixup. */
855 fixS *fixp;
856 /* The section this fixup is in. */
857 segT seg;
858 };
859
860 /* The list of unmatched HI relocs. */
861
862 static struct mips_hi_fixup *mips_hi_fixup_list;
863
864 /* The frag containing the last explicit relocation operator.
865 Null if explicit relocations have not been used. */
866
867 static fragS *prev_reloc_op_frag;
868
869 /* Map mips16 register numbers to normal MIPS register numbers. */
870
871 static const unsigned int mips16_to_32_reg_map[] =
872 {
873 16, 17, 2, 3, 4, 5, 6, 7
874 };
875
876 /* Map microMIPS register numbers to normal MIPS register numbers. */
877
878 #define micromips_to_32_reg_d_map mips16_to_32_reg_map
879
880 /* The microMIPS registers with type h. */
881 static const unsigned int micromips_to_32_reg_h_map1[] =
882 {
883 5, 5, 6, 4, 4, 4, 4, 4
884 };
885 static const unsigned int micromips_to_32_reg_h_map2[] =
886 {
887 6, 7, 7, 21, 22, 5, 6, 7
888 };
889
890 /* The microMIPS registers with type m. */
891 static const unsigned int micromips_to_32_reg_m_map[] =
892 {
893 0, 17, 2, 3, 16, 18, 19, 20
894 };
895
896 #define micromips_to_32_reg_n_map micromips_to_32_reg_m_map
897
898 /* Classifies the kind of instructions we're interested in when
899 implementing -mfix-vr4120. */
900 enum fix_vr4120_class
901 {
902 FIX_VR4120_MACC,
903 FIX_VR4120_DMACC,
904 FIX_VR4120_MULT,
905 FIX_VR4120_DMULT,
906 FIX_VR4120_DIV,
907 FIX_VR4120_MTHILO,
908 NUM_FIX_VR4120_CLASSES
909 };
910
911 /* ...likewise -mfix-loongson2f-jump. */
912 static bfd_boolean mips_fix_loongson2f_jump;
913
914 /* ...likewise -mfix-loongson2f-nop. */
915 static bfd_boolean mips_fix_loongson2f_nop;
916
917 /* True if -mfix-loongson2f-nop or -mfix-loongson2f-jump passed. */
918 static bfd_boolean mips_fix_loongson2f;
919
920 /* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if
921 there must be at least one other instruction between an instruction
922 of type X and an instruction of type Y. */
923 static unsigned int vr4120_conflicts[NUM_FIX_VR4120_CLASSES];
924
925 /* True if -mfix-vr4120 is in force. */
926 static int mips_fix_vr4120;
927
928 /* ...likewise -mfix-vr4130. */
929 static int mips_fix_vr4130;
930
931 /* ...likewise -mfix-24k. */
932 static int mips_fix_24k;
933
934 /* ...likewise -mfix-rm7000 */
935 static int mips_fix_rm7000;
936
937 /* ...likewise -mfix-cn63xxp1 */
938 static bfd_boolean mips_fix_cn63xxp1;
939
940 /* We don't relax branches by default, since this causes us to expand
941 `la .l2 - .l1' if there's a branch between .l1 and .l2, because we
942 fail to compute the offset before expanding the macro to the most
943 efficient expansion. */
944
945 static int mips_relax_branch;
946 \f
947 /* The expansion of many macros depends on the type of symbol that
948 they refer to. For example, when generating position-dependent code,
949 a macro that refers to a symbol may have two different expansions,
950 one which uses GP-relative addresses and one which uses absolute
951 addresses. When generating SVR4-style PIC, a macro may have
952 different expansions for local and global symbols.
953
954 We handle these situations by generating both sequences and putting
955 them in variant frags. In position-dependent code, the first sequence
956 will be the GP-relative one and the second sequence will be the
957 absolute one. In SVR4 PIC, the first sequence will be for global
958 symbols and the second will be for local symbols.
959
960 The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
961 SECOND are the lengths of the two sequences in bytes. These fields
962 can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
963 the subtype has the following flags:
964
965 RELAX_USE_SECOND
966 Set if it has been decided that we should use the second
967 sequence instead of the first.
968
969 RELAX_SECOND_LONGER
970 Set in the first variant frag if the macro's second implementation
971 is longer than its first. This refers to the macro as a whole,
972 not an individual relaxation.
973
974 RELAX_NOMACRO
975 Set in the first variant frag if the macro appeared in a .set nomacro
976 block and if one alternative requires a warning but the other does not.
977
978 RELAX_DELAY_SLOT
979 Like RELAX_NOMACRO, but indicates that the macro appears in a branch
980 delay slot.
981
982 RELAX_DELAY_SLOT_16BIT
983 Like RELAX_DELAY_SLOT, but indicates that the delay slot requires a
984 16-bit instruction.
985
986 RELAX_DELAY_SLOT_SIZE_FIRST
987 Like RELAX_DELAY_SLOT, but indicates that the first implementation of
988 the macro is of the wrong size for the branch delay slot.
989
990 RELAX_DELAY_SLOT_SIZE_SECOND
991 Like RELAX_DELAY_SLOT, but indicates that the second implementation of
992 the macro is of the wrong size for the branch delay slot.
993
994 The frag's "opcode" points to the first fixup for relaxable code.
995
996 Relaxable macros are generated using a sequence such as:
997
998 relax_start (SYMBOL);
999 ... generate first expansion ...
1000 relax_switch ();
1001 ... generate second expansion ...
1002 relax_end ();
1003
1004 The code and fixups for the unwanted alternative are discarded
1005 by md_convert_frag. */
1006 #define RELAX_ENCODE(FIRST, SECOND) (((FIRST) << 8) | (SECOND))
1007
1008 #define RELAX_FIRST(X) (((X) >> 8) & 0xff)
1009 #define RELAX_SECOND(X) ((X) & 0xff)
1010 #define RELAX_USE_SECOND 0x10000
1011 #define RELAX_SECOND_LONGER 0x20000
1012 #define RELAX_NOMACRO 0x40000
1013 #define RELAX_DELAY_SLOT 0x80000
1014 #define RELAX_DELAY_SLOT_16BIT 0x100000
1015 #define RELAX_DELAY_SLOT_SIZE_FIRST 0x200000
1016 #define RELAX_DELAY_SLOT_SIZE_SECOND 0x400000
1017
1018 /* Branch without likely bit. If label is out of range, we turn:
1019
1020 beq reg1, reg2, label
1021 delay slot
1022
1023 into
1024
1025 bne reg1, reg2, 0f
1026 nop
1027 j label
1028 0: delay slot
1029
1030 with the following opcode replacements:
1031
1032 beq <-> bne
1033 blez <-> bgtz
1034 bltz <-> bgez
1035 bc1f <-> bc1t
1036
1037 bltzal <-> bgezal (with jal label instead of j label)
1038
1039 Even though keeping the delay slot instruction in the delay slot of
1040 the branch would be more efficient, it would be very tricky to do
1041 correctly, because we'd have to introduce a variable frag *after*
1042 the delay slot instruction, and expand that instead. Let's do it
1043 the easy way for now, even if the branch-not-taken case now costs
1044 one additional instruction. Out-of-range branches are not supposed
1045 to be common, anyway.
1046
1047 Branch likely. If label is out of range, we turn:
1048
1049 beql reg1, reg2, label
1050 delay slot (annulled if branch not taken)
1051
1052 into
1053
1054 beql reg1, reg2, 1f
1055 nop
1056 beql $0, $0, 2f
1057 nop
1058 1: j[al] label
1059 delay slot (executed only if branch taken)
1060 2:
1061
1062 It would be possible to generate a shorter sequence by losing the
1063 likely bit, generating something like:
1064
1065 bne reg1, reg2, 0f
1066 nop
1067 j[al] label
1068 delay slot (executed only if branch taken)
1069 0:
1070
1071 beql -> bne
1072 bnel -> beq
1073 blezl -> bgtz
1074 bgtzl -> blez
1075 bltzl -> bgez
1076 bgezl -> bltz
1077 bc1fl -> bc1t
1078 bc1tl -> bc1f
1079
1080 bltzall -> bgezal (with jal label instead of j label)
1081 bgezall -> bltzal (ditto)
1082
1083
1084 but it's not clear that it would actually improve performance. */
1085 #define RELAX_BRANCH_ENCODE(at, uncond, likely, link, toofar) \
1086 ((relax_substateT) \
1087 (0xc0000000 \
1088 | ((at) & 0x1f) \
1089 | ((toofar) ? 0x20 : 0) \
1090 | ((link) ? 0x40 : 0) \
1091 | ((likely) ? 0x80 : 0) \
1092 | ((uncond) ? 0x100 : 0)))
1093 #define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
1094 #define RELAX_BRANCH_UNCOND(i) (((i) & 0x100) != 0)
1095 #define RELAX_BRANCH_LIKELY(i) (((i) & 0x80) != 0)
1096 #define RELAX_BRANCH_LINK(i) (((i) & 0x40) != 0)
1097 #define RELAX_BRANCH_TOOFAR(i) (((i) & 0x20) != 0)
1098 #define RELAX_BRANCH_AT(i) ((i) & 0x1f)
1099
1100 /* For mips16 code, we use an entirely different form of relaxation.
1101 mips16 supports two versions of most instructions which take
1102 immediate values: a small one which takes some small value, and a
1103 larger one which takes a 16 bit value. Since branches also follow
1104 this pattern, relaxing these values is required.
1105
1106 We can assemble both mips16 and normal MIPS code in a single
1107 object. Therefore, we need to support this type of relaxation at
1108 the same time that we support the relaxation described above. We
1109 use the high bit of the subtype field to distinguish these cases.
1110
1111 The information we store for this type of relaxation is the
1112 argument code found in the opcode file for this relocation, whether
1113 the user explicitly requested a small or extended form, and whether
1114 the relocation is in a jump or jal delay slot. That tells us the
1115 size of the value, and how it should be stored. We also store
1116 whether the fragment is considered to be extended or not. We also
1117 store whether this is known to be a branch to a different section,
1118 whether we have tried to relax this frag yet, and whether we have
1119 ever extended a PC relative fragment because of a shift count. */
1120 #define RELAX_MIPS16_ENCODE(type, small, ext, dslot, jal_dslot) \
1121 (0x80000000 \
1122 | ((type) & 0xff) \
1123 | ((small) ? 0x100 : 0) \
1124 | ((ext) ? 0x200 : 0) \
1125 | ((dslot) ? 0x400 : 0) \
1126 | ((jal_dslot) ? 0x800 : 0))
1127 #define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
1128 #define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
1129 #define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x100) != 0)
1130 #define RELAX_MIPS16_USER_EXT(i) (((i) & 0x200) != 0)
1131 #define RELAX_MIPS16_DSLOT(i) (((i) & 0x400) != 0)
1132 #define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x800) != 0)
1133 #define RELAX_MIPS16_EXTENDED(i) (((i) & 0x1000) != 0)
1134 #define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x1000)
1135 #define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) &~ 0x1000)
1136 #define RELAX_MIPS16_LONG_BRANCH(i) (((i) & 0x2000) != 0)
1137 #define RELAX_MIPS16_MARK_LONG_BRANCH(i) ((i) | 0x2000)
1138 #define RELAX_MIPS16_CLEAR_LONG_BRANCH(i) ((i) &~ 0x2000)
1139
1140 /* For microMIPS code, we use relaxation similar to one we use for
1141 MIPS16 code. Some instructions that take immediate values support
1142 two encodings: a small one which takes some small value, and a
1143 larger one which takes a 16 bit value. As some branches also follow
1144 this pattern, relaxing these values is required.
1145
1146 We can assemble both microMIPS and normal MIPS code in a single
1147 object. Therefore, we need to support this type of relaxation at
1148 the same time that we support the relaxation described above. We
1149 use one of the high bits of the subtype field to distinguish these
1150 cases.
1151
1152 The information we store for this type of relaxation is the argument
1153 code found in the opcode file for this relocation, the register
1154 selected as the assembler temporary, whether in the 32-bit
1155 instruction mode, whether the branch is unconditional, whether it is
1156 compact, whether there is no delay-slot instruction available to fill
1157 in, whether it stores the link address implicitly in $ra, whether
1158 relaxation of out-of-range 32-bit branches to a sequence of
1159 instructions is enabled, and whether the displacement of a branch is
1160 too large to fit as an immediate argument of a 16-bit and a 32-bit
1161 branch, respectively. */
1162 #define RELAX_MICROMIPS_ENCODE(type, at, insn32, \
1163 uncond, compact, link, nods, \
1164 relax32, toofar16, toofar32) \
1165 (0x40000000 \
1166 | ((type) & 0xff) \
1167 | (((at) & 0x1f) << 8) \
1168 | ((insn32) ? 0x2000 : 0) \
1169 | ((uncond) ? 0x4000 : 0) \
1170 | ((compact) ? 0x8000 : 0) \
1171 | ((link) ? 0x10000 : 0) \
1172 | ((nods) ? 0x20000 : 0) \
1173 | ((relax32) ? 0x40000 : 0) \
1174 | ((toofar16) ? 0x80000 : 0) \
1175 | ((toofar32) ? 0x100000 : 0))
1176 #define RELAX_MICROMIPS_P(i) (((i) & 0xc0000000) == 0x40000000)
1177 #define RELAX_MICROMIPS_TYPE(i) ((i) & 0xff)
1178 #define RELAX_MICROMIPS_AT(i) (((i) >> 8) & 0x1f)
1179 #define RELAX_MICROMIPS_INSN32(i) (((i) & 0x2000) != 0)
1180 #define RELAX_MICROMIPS_UNCOND(i) (((i) & 0x4000) != 0)
1181 #define RELAX_MICROMIPS_COMPACT(i) (((i) & 0x8000) != 0)
1182 #define RELAX_MICROMIPS_LINK(i) (((i) & 0x10000) != 0)
1183 #define RELAX_MICROMIPS_NODS(i) (((i) & 0x20000) != 0)
1184 #define RELAX_MICROMIPS_RELAX32(i) (((i) & 0x40000) != 0)
1185
1186 #define RELAX_MICROMIPS_TOOFAR16(i) (((i) & 0x80000) != 0)
1187 #define RELAX_MICROMIPS_MARK_TOOFAR16(i) ((i) | 0x80000)
1188 #define RELAX_MICROMIPS_CLEAR_TOOFAR16(i) ((i) & ~0x80000)
1189 #define RELAX_MICROMIPS_TOOFAR32(i) (((i) & 0x100000) != 0)
1190 #define RELAX_MICROMIPS_MARK_TOOFAR32(i) ((i) | 0x100000)
1191 #define RELAX_MICROMIPS_CLEAR_TOOFAR32(i) ((i) & ~0x100000)
1192
1193 /* Sign-extend 16-bit value X. */
1194 #define SEXT_16BIT(X) ((((X) + 0x8000) & 0xffff) - 0x8000)
1195
1196 /* Is the given value a sign-extended 32-bit value? */
1197 #define IS_SEXT_32BIT_NUM(x) \
1198 (((x) &~ (offsetT) 0x7fffffff) == 0 \
1199 || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
1200
1201 /* Is the given value a sign-extended 16-bit value? */
1202 #define IS_SEXT_16BIT_NUM(x) \
1203 (((x) &~ (offsetT) 0x7fff) == 0 \
1204 || (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
1205
1206 /* Is the given value a sign-extended 12-bit value? */
1207 #define IS_SEXT_12BIT_NUM(x) \
1208 (((((x) & 0xfff) ^ 0x800LL) - 0x800LL) == (x))
1209
1210 /* Is the given value a sign-extended 9-bit value? */
1211 #define IS_SEXT_9BIT_NUM(x) \
1212 (((((x) & 0x1ff) ^ 0x100LL) - 0x100LL) == (x))
1213
1214 /* Is the given value a zero-extended 32-bit value? Or a negated one? */
1215 #define IS_ZEXT_32BIT_NUM(x) \
1216 (((x) &~ (offsetT) 0xffffffff) == 0 \
1217 || (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))
1218
1219 /* Extract bits MASK << SHIFT from STRUCT and shift them right
1220 SHIFT places. */
1221 #define EXTRACT_BITS(STRUCT, MASK, SHIFT) \
1222 (((STRUCT) >> (SHIFT)) & (MASK))
1223
1224 /* Extract the operand given by FIELD from mips_cl_insn INSN. */
1225 #define EXTRACT_OPERAND(MICROMIPS, FIELD, INSN) \
1226 (!(MICROMIPS) \
1227 ? EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD) \
1228 : EXTRACT_BITS ((INSN).insn_opcode, \
1229 MICROMIPSOP_MASK_##FIELD, MICROMIPSOP_SH_##FIELD))
1230 #define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \
1231 EXTRACT_BITS ((INSN).insn_opcode, \
1232 MIPS16OP_MASK_##FIELD, \
1233 MIPS16OP_SH_##FIELD)
1234
1235 /* The MIPS16 EXTEND opcode, shifted left 16 places. */
1236 #define MIPS16_EXTEND (0xf000U << 16)
1237 \f
1238 /* Whether or not we are emitting a branch-likely macro. */
1239 static bfd_boolean emit_branch_likely_macro = FALSE;
1240
1241 /* Global variables used when generating relaxable macros. See the
1242 comment above RELAX_ENCODE for more details about how relaxation
1243 is used. */
1244 static struct {
1245 /* 0 if we're not emitting a relaxable macro.
1246 1 if we're emitting the first of the two relaxation alternatives.
1247 2 if we're emitting the second alternative. */
1248 int sequence;
1249
1250 /* The first relaxable fixup in the current frag. (In other words,
1251 the first fixup that refers to relaxable code.) */
1252 fixS *first_fixup;
1253
1254 /* sizes[0] says how many bytes of the first alternative are stored in
1255 the current frag. Likewise sizes[1] for the second alternative. */
1256 unsigned int sizes[2];
1257
1258 /* The symbol on which the choice of sequence depends. */
1259 symbolS *symbol;
1260 } mips_relax;
1261 \f
1262 /* Global variables used to decide whether a macro needs a warning. */
1263 static struct {
1264 /* True if the macro is in a branch delay slot. */
1265 bfd_boolean delay_slot_p;
1266
1267 /* Set to the length in bytes required if the macro is in a delay slot
1268 that requires a specific length of instruction, otherwise zero. */
1269 unsigned int delay_slot_length;
1270
1271 /* For relaxable macros, sizes[0] is the length of the first alternative
1272 in bytes and sizes[1] is the length of the second alternative.
1273 For non-relaxable macros, both elements give the length of the
1274 macro in bytes. */
1275 unsigned int sizes[2];
1276
1277 /* For relaxable macros, first_insn_sizes[0] is the length of the first
1278 instruction of the first alternative in bytes and first_insn_sizes[1]
1279 is the length of the first instruction of the second alternative.
1280 For non-relaxable macros, both elements give the length of the first
1281 instruction in bytes.
1282
1283 Set to zero if we haven't yet seen the first instruction. */
1284 unsigned int first_insn_sizes[2];
1285
1286 /* For relaxable macros, insns[0] is the number of instructions for the
1287 first alternative and insns[1] is the number of instructions for the
1288 second alternative.
1289
1290 For non-relaxable macros, both elements give the number of
1291 instructions for the macro. */
1292 unsigned int insns[2];
1293
1294 /* The first variant frag for this macro. */
1295 fragS *first_frag;
1296 } mips_macro_warning;
1297 \f
1298 /* Prototypes for static functions. */
1299
1300 enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
1301
1302 static void append_insn
1303 (struct mips_cl_insn *, expressionS *, bfd_reloc_code_real_type *,
1304 bfd_boolean expansionp);
1305 static void mips_no_prev_insn (void);
1306 static void macro_build (expressionS *, const char *, const char *, ...);
1307 static void mips16_macro_build
1308 (expressionS *, const char *, const char *, va_list *);
1309 static void load_register (int, expressionS *, int);
1310 static void macro_start (void);
1311 static void macro_end (void);
1312 static void macro (struct mips_cl_insn *ip, char *str);
1313 static void mips16_macro (struct mips_cl_insn * ip);
1314 static void mips_ip (char *str, struct mips_cl_insn * ip);
1315 static void mips16_ip (char *str, struct mips_cl_insn * ip);
1316 static void mips16_immed
1317 (const char *, unsigned int, int, bfd_reloc_code_real_type, offsetT,
1318 unsigned int, unsigned long *);
1319 static size_t my_getSmallExpression
1320 (expressionS *, bfd_reloc_code_real_type *, char *);
1321 static void my_getExpression (expressionS *, char *);
1322 static void s_align (int);
1323 static void s_change_sec (int);
1324 static void s_change_section (int);
1325 static void s_cons (int);
1326 static void s_float_cons (int);
1327 static void s_mips_globl (int);
1328 static void s_option (int);
1329 static void s_mipsset (int);
1330 static void s_abicalls (int);
1331 static void s_cpload (int);
1332 static void s_cpsetup (int);
1333 static void s_cplocal (int);
1334 static void s_cprestore (int);
1335 static void s_cpreturn (int);
1336 static void s_dtprelword (int);
1337 static void s_dtpreldword (int);
1338 static void s_tprelword (int);
1339 static void s_tpreldword (int);
1340 static void s_gpvalue (int);
1341 static void s_gpword (int);
1342 static void s_gpdword (int);
1343 static void s_ehword (int);
1344 static void s_cpadd (int);
1345 static void s_insn (int);
1346 static void s_nan (int);
1347 static void s_module (int);
1348 static void s_mips_ent (int);
1349 static void s_mips_end (int);
1350 static void s_mips_frame (int);
1351 static void s_mips_mask (int reg_type);
1352 static void s_mips_stab (int);
1353 static void s_mips_weakext (int);
1354 static void s_mips_file (int);
1355 static void s_mips_loc (int);
1356 static bfd_boolean pic_need_relax (symbolS *, asection *);
1357 static int relaxed_branch_length (fragS *, asection *, int);
1358 static int relaxed_micromips_16bit_branch_length (fragS *, asection *, int);
1359 static int relaxed_micromips_32bit_branch_length (fragS *, asection *, int);
1360 static void file_mips_check_options (void);
1361
1362 /* Table and functions used to map between CPU/ISA names, and
1363 ISA levels, and CPU numbers. */
1364
1365 struct mips_cpu_info
1366 {
1367 const char *name; /* CPU or ISA name. */
1368 int flags; /* MIPS_CPU_* flags. */
1369 int ase; /* Set of ASEs implemented by the CPU. */
1370 int isa; /* ISA level. */
1371 int cpu; /* CPU number (default CPU if ISA). */
1372 };
1373
1374 #define MIPS_CPU_IS_ISA 0x0001 /* Is this an ISA? (If 0, a CPU.) */
1375
1376 static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *);
1377 static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
1378 static const struct mips_cpu_info *mips_cpu_info_from_arch (int);
1379 \f
1380 /* Command-line options. */
1381 const char *md_shortopts = "O::g::G:";
1382
1383 enum options
1384 {
1385 OPTION_MARCH = OPTION_MD_BASE,
1386 OPTION_MTUNE,
1387 OPTION_MIPS1,
1388 OPTION_MIPS2,
1389 OPTION_MIPS3,
1390 OPTION_MIPS4,
1391 OPTION_MIPS5,
1392 OPTION_MIPS32,
1393 OPTION_MIPS64,
1394 OPTION_MIPS32R2,
1395 OPTION_MIPS32R3,
1396 OPTION_MIPS32R5,
1397 OPTION_MIPS32R6,
1398 OPTION_MIPS64R2,
1399 OPTION_MIPS64R3,
1400 OPTION_MIPS64R5,
1401 OPTION_MIPS64R6,
1402 OPTION_MIPS16,
1403 OPTION_NO_MIPS16,
1404 OPTION_MIPS3D,
1405 OPTION_NO_MIPS3D,
1406 OPTION_MDMX,
1407 OPTION_NO_MDMX,
1408 OPTION_DSP,
1409 OPTION_NO_DSP,
1410 OPTION_MT,
1411 OPTION_NO_MT,
1412 OPTION_VIRT,
1413 OPTION_NO_VIRT,
1414 OPTION_MSA,
1415 OPTION_NO_MSA,
1416 OPTION_SMARTMIPS,
1417 OPTION_NO_SMARTMIPS,
1418 OPTION_DSPR2,
1419 OPTION_NO_DSPR2,
1420 OPTION_DSPR3,
1421 OPTION_NO_DSPR3,
1422 OPTION_EVA,
1423 OPTION_NO_EVA,
1424 OPTION_XPA,
1425 OPTION_NO_XPA,
1426 OPTION_MICROMIPS,
1427 OPTION_NO_MICROMIPS,
1428 OPTION_MCU,
1429 OPTION_NO_MCU,
1430 OPTION_COMPAT_ARCH_BASE,
1431 OPTION_M4650,
1432 OPTION_NO_M4650,
1433 OPTION_M4010,
1434 OPTION_NO_M4010,
1435 OPTION_M4100,
1436 OPTION_NO_M4100,
1437 OPTION_M3900,
1438 OPTION_NO_M3900,
1439 OPTION_M7000_HILO_FIX,
1440 OPTION_MNO_7000_HILO_FIX,
1441 OPTION_FIX_24K,
1442 OPTION_NO_FIX_24K,
1443 OPTION_FIX_RM7000,
1444 OPTION_NO_FIX_RM7000,
1445 OPTION_FIX_LOONGSON2F_JUMP,
1446 OPTION_NO_FIX_LOONGSON2F_JUMP,
1447 OPTION_FIX_LOONGSON2F_NOP,
1448 OPTION_NO_FIX_LOONGSON2F_NOP,
1449 OPTION_FIX_VR4120,
1450 OPTION_NO_FIX_VR4120,
1451 OPTION_FIX_VR4130,
1452 OPTION_NO_FIX_VR4130,
1453 OPTION_FIX_CN63XXP1,
1454 OPTION_NO_FIX_CN63XXP1,
1455 OPTION_TRAP,
1456 OPTION_BREAK,
1457 OPTION_EB,
1458 OPTION_EL,
1459 OPTION_FP32,
1460 OPTION_GP32,
1461 OPTION_CONSTRUCT_FLOATS,
1462 OPTION_NO_CONSTRUCT_FLOATS,
1463 OPTION_FP64,
1464 OPTION_FPXX,
1465 OPTION_GP64,
1466 OPTION_RELAX_BRANCH,
1467 OPTION_NO_RELAX_BRANCH,
1468 OPTION_INSN32,
1469 OPTION_NO_INSN32,
1470 OPTION_MSHARED,
1471 OPTION_MNO_SHARED,
1472 OPTION_MSYM32,
1473 OPTION_MNO_SYM32,
1474 OPTION_SOFT_FLOAT,
1475 OPTION_HARD_FLOAT,
1476 OPTION_SINGLE_FLOAT,
1477 OPTION_DOUBLE_FLOAT,
1478 OPTION_32,
1479 OPTION_CALL_SHARED,
1480 OPTION_CALL_NONPIC,
1481 OPTION_NON_SHARED,
1482 OPTION_XGOT,
1483 OPTION_MABI,
1484 OPTION_N32,
1485 OPTION_64,
1486 OPTION_MDEBUG,
1487 OPTION_NO_MDEBUG,
1488 OPTION_PDR,
1489 OPTION_NO_PDR,
1490 OPTION_MVXWORKS_PIC,
1491 OPTION_NAN,
1492 OPTION_ODD_SPREG,
1493 OPTION_NO_ODD_SPREG,
1494 OPTION_END_OF_ENUM
1495 };
1496
1497 struct option md_longopts[] =
1498 {
1499 /* Options which specify architecture. */
1500 {"march", required_argument, NULL, OPTION_MARCH},
1501 {"mtune", required_argument, NULL, OPTION_MTUNE},
1502 {"mips0", no_argument, NULL, OPTION_MIPS1},
1503 {"mips1", no_argument, NULL, OPTION_MIPS1},
1504 {"mips2", no_argument, NULL, OPTION_MIPS2},
1505 {"mips3", no_argument, NULL, OPTION_MIPS3},
1506 {"mips4", no_argument, NULL, OPTION_MIPS4},
1507 {"mips5", no_argument, NULL, OPTION_MIPS5},
1508 {"mips32", no_argument, NULL, OPTION_MIPS32},
1509 {"mips64", no_argument, NULL, OPTION_MIPS64},
1510 {"mips32r2", no_argument, NULL, OPTION_MIPS32R2},
1511 {"mips32r3", no_argument, NULL, OPTION_MIPS32R3},
1512 {"mips32r5", no_argument, NULL, OPTION_MIPS32R5},
1513 {"mips32r6", no_argument, NULL, OPTION_MIPS32R6},
1514 {"mips64r2", no_argument, NULL, OPTION_MIPS64R2},
1515 {"mips64r3", no_argument, NULL, OPTION_MIPS64R3},
1516 {"mips64r5", no_argument, NULL, OPTION_MIPS64R5},
1517 {"mips64r6", no_argument, NULL, OPTION_MIPS64R6},
1518
1519 /* Options which specify Application Specific Extensions (ASEs). */
1520 {"mips16", no_argument, NULL, OPTION_MIPS16},
1521 {"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
1522 {"mips3d", no_argument, NULL, OPTION_MIPS3D},
1523 {"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
1524 {"mdmx", no_argument, NULL, OPTION_MDMX},
1525 {"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
1526 {"mdsp", no_argument, NULL, OPTION_DSP},
1527 {"mno-dsp", no_argument, NULL, OPTION_NO_DSP},
1528 {"mmt", no_argument, NULL, OPTION_MT},
1529 {"mno-mt", no_argument, NULL, OPTION_NO_MT},
1530 {"msmartmips", no_argument, NULL, OPTION_SMARTMIPS},
1531 {"mno-smartmips", no_argument, NULL, OPTION_NO_SMARTMIPS},
1532 {"mdspr2", no_argument, NULL, OPTION_DSPR2},
1533 {"mno-dspr2", no_argument, NULL, OPTION_NO_DSPR2},
1534 {"mdspr3", no_argument, NULL, OPTION_DSPR3},
1535 {"mno-dspr3", no_argument, NULL, OPTION_NO_DSPR3},
1536 {"meva", no_argument, NULL, OPTION_EVA},
1537 {"mno-eva", no_argument, NULL, OPTION_NO_EVA},
1538 {"mmicromips", no_argument, NULL, OPTION_MICROMIPS},
1539 {"mno-micromips", no_argument, NULL, OPTION_NO_MICROMIPS},
1540 {"mmcu", no_argument, NULL, OPTION_MCU},
1541 {"mno-mcu", no_argument, NULL, OPTION_NO_MCU},
1542 {"mvirt", no_argument, NULL, OPTION_VIRT},
1543 {"mno-virt", no_argument, NULL, OPTION_NO_VIRT},
1544 {"mmsa", no_argument, NULL, OPTION_MSA},
1545 {"mno-msa", no_argument, NULL, OPTION_NO_MSA},
1546 {"mxpa", no_argument, NULL, OPTION_XPA},
1547 {"mno-xpa", no_argument, NULL, OPTION_NO_XPA},
1548
1549 /* Old-style architecture options. Don't add more of these. */
1550 {"m4650", no_argument, NULL, OPTION_M4650},
1551 {"no-m4650", no_argument, NULL, OPTION_NO_M4650},
1552 {"m4010", no_argument, NULL, OPTION_M4010},
1553 {"no-m4010", no_argument, NULL, OPTION_NO_M4010},
1554 {"m4100", no_argument, NULL, OPTION_M4100},
1555 {"no-m4100", no_argument, NULL, OPTION_NO_M4100},
1556 {"m3900", no_argument, NULL, OPTION_M3900},
1557 {"no-m3900", no_argument, NULL, OPTION_NO_M3900},
1558
1559 /* Options which enable bug fixes. */
1560 {"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
1561 {"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1562 {"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1563 {"mfix-loongson2f-jump", no_argument, NULL, OPTION_FIX_LOONGSON2F_JUMP},
1564 {"mno-fix-loongson2f-jump", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_JUMP},
1565 {"mfix-loongson2f-nop", no_argument, NULL, OPTION_FIX_LOONGSON2F_NOP},
1566 {"mno-fix-loongson2f-nop", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_NOP},
1567 {"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120},
1568 {"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120},
1569 {"mfix-vr4130", no_argument, NULL, OPTION_FIX_VR4130},
1570 {"mno-fix-vr4130", no_argument, NULL, OPTION_NO_FIX_VR4130},
1571 {"mfix-24k", no_argument, NULL, OPTION_FIX_24K},
1572 {"mno-fix-24k", no_argument, NULL, OPTION_NO_FIX_24K},
1573 {"mfix-rm7000", no_argument, NULL, OPTION_FIX_RM7000},
1574 {"mno-fix-rm7000", no_argument, NULL, OPTION_NO_FIX_RM7000},
1575 {"mfix-cn63xxp1", no_argument, NULL, OPTION_FIX_CN63XXP1},
1576 {"mno-fix-cn63xxp1", no_argument, NULL, OPTION_NO_FIX_CN63XXP1},
1577
1578 /* Miscellaneous options. */
1579 {"trap", no_argument, NULL, OPTION_TRAP},
1580 {"no-break", no_argument, NULL, OPTION_TRAP},
1581 {"break", no_argument, NULL, OPTION_BREAK},
1582 {"no-trap", no_argument, NULL, OPTION_BREAK},
1583 {"EB", no_argument, NULL, OPTION_EB},
1584 {"EL", no_argument, NULL, OPTION_EL},
1585 {"mfp32", no_argument, NULL, OPTION_FP32},
1586 {"mgp32", no_argument, NULL, OPTION_GP32},
1587 {"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
1588 {"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
1589 {"mfp64", no_argument, NULL, OPTION_FP64},
1590 {"mfpxx", no_argument, NULL, OPTION_FPXX},
1591 {"mgp64", no_argument, NULL, OPTION_GP64},
1592 {"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH},
1593 {"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH},
1594 {"minsn32", no_argument, NULL, OPTION_INSN32},
1595 {"mno-insn32", no_argument, NULL, OPTION_NO_INSN32},
1596 {"mshared", no_argument, NULL, OPTION_MSHARED},
1597 {"mno-shared", no_argument, NULL, OPTION_MNO_SHARED},
1598 {"msym32", no_argument, NULL, OPTION_MSYM32},
1599 {"mno-sym32", no_argument, NULL, OPTION_MNO_SYM32},
1600 {"msoft-float", no_argument, NULL, OPTION_SOFT_FLOAT},
1601 {"mhard-float", no_argument, NULL, OPTION_HARD_FLOAT},
1602 {"msingle-float", no_argument, NULL, OPTION_SINGLE_FLOAT},
1603 {"mdouble-float", no_argument, NULL, OPTION_DOUBLE_FLOAT},
1604 {"modd-spreg", no_argument, NULL, OPTION_ODD_SPREG},
1605 {"mno-odd-spreg", no_argument, NULL, OPTION_NO_ODD_SPREG},
1606
1607 /* Strictly speaking this next option is ELF specific,
1608 but we allow it for other ports as well in order to
1609 make testing easier. */
1610 {"32", no_argument, NULL, OPTION_32},
1611
1612 /* ELF-specific options. */
1613 {"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
1614 {"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
1615 {"call_nonpic", no_argument, NULL, OPTION_CALL_NONPIC},
1616 {"non_shared", no_argument, NULL, OPTION_NON_SHARED},
1617 {"xgot", no_argument, NULL, OPTION_XGOT},
1618 {"mabi", required_argument, NULL, OPTION_MABI},
1619 {"n32", no_argument, NULL, OPTION_N32},
1620 {"64", no_argument, NULL, OPTION_64},
1621 {"mdebug", no_argument, NULL, OPTION_MDEBUG},
1622 {"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
1623 {"mpdr", no_argument, NULL, OPTION_PDR},
1624 {"mno-pdr", no_argument, NULL, OPTION_NO_PDR},
1625 {"mvxworks-pic", no_argument, NULL, OPTION_MVXWORKS_PIC},
1626 {"mnan", required_argument, NULL, OPTION_NAN},
1627
1628 {NULL, no_argument, NULL, 0}
1629 };
1630 size_t md_longopts_size = sizeof (md_longopts);
1631 \f
1632 /* Information about either an Application Specific Extension or an
1633 optional architecture feature that, for simplicity, we treat in the
1634 same way as an ASE. */
1635 struct mips_ase
1636 {
1637 /* The name of the ASE, used in both the command-line and .set options. */
1638 const char *name;
1639
1640 /* The associated ASE_* flags. If the ASE is available on both 32-bit
1641 and 64-bit architectures, the flags here refer to the subset that
1642 is available on both. */
1643 unsigned int flags;
1644
1645 /* The ASE_* flag used for instructions that are available on 64-bit
1646 architectures but that are not included in FLAGS. */
1647 unsigned int flags64;
1648
1649 /* The command-line options that turn the ASE on and off. */
1650 int option_on;
1651 int option_off;
1652
1653 /* The minimum required architecture revisions for MIPS32, MIPS64,
1654 microMIPS32 and microMIPS64, or -1 if the extension isn't supported. */
1655 int mips32_rev;
1656 int mips64_rev;
1657 int micromips32_rev;
1658 int micromips64_rev;
1659
1660 /* The architecture where the ASE was removed or -1 if the extension has not
1661 been removed. */
1662 int rem_rev;
1663 };
1664
1665 /* A table of all supported ASEs. */
1666 static const struct mips_ase mips_ases[] = {
1667 { "dsp", ASE_DSP, ASE_DSP64,
1668 OPTION_DSP, OPTION_NO_DSP,
1669 2, 2, 2, 2,
1670 -1 },
1671
1672 { "dspr2", ASE_DSP | ASE_DSPR2, 0,
1673 OPTION_DSPR2, OPTION_NO_DSPR2,
1674 2, 2, 2, 2,
1675 -1 },
1676
1677 { "dspr3", ASE_DSP | ASE_DSPR2 | ASE_DSPR3, 0,
1678 OPTION_DSPR3, OPTION_NO_DSPR3,
1679 6, 6, -1, -1,
1680 -1 },
1681
1682 { "eva", ASE_EVA, 0,
1683 OPTION_EVA, OPTION_NO_EVA,
1684 2, 2, 2, 2,
1685 -1 },
1686
1687 { "mcu", ASE_MCU, 0,
1688 OPTION_MCU, OPTION_NO_MCU,
1689 2, 2, 2, 2,
1690 -1 },
1691
1692 /* Deprecated in MIPS64r5, but we don't implement that yet. */
1693 { "mdmx", ASE_MDMX, 0,
1694 OPTION_MDMX, OPTION_NO_MDMX,
1695 -1, 1, -1, -1,
1696 6 },
1697
1698 /* Requires 64-bit FPRs, so the minimum MIPS32 revision is 2. */
1699 { "mips3d", ASE_MIPS3D, 0,
1700 OPTION_MIPS3D, OPTION_NO_MIPS3D,
1701 2, 1, -1, -1,
1702 6 },
1703
1704 { "mt", ASE_MT, 0,
1705 OPTION_MT, OPTION_NO_MT,
1706 2, 2, -1, -1,
1707 -1 },
1708
1709 { "smartmips", ASE_SMARTMIPS, 0,
1710 OPTION_SMARTMIPS, OPTION_NO_SMARTMIPS,
1711 1, -1, -1, -1,
1712 6 },
1713
1714 { "virt", ASE_VIRT, ASE_VIRT64,
1715 OPTION_VIRT, OPTION_NO_VIRT,
1716 2, 2, 2, 2,
1717 -1 },
1718
1719 { "msa", ASE_MSA, ASE_MSA64,
1720 OPTION_MSA, OPTION_NO_MSA,
1721 2, 2, 2, 2,
1722 -1 },
1723
1724 { "xpa", ASE_XPA, 0,
1725 OPTION_XPA, OPTION_NO_XPA,
1726 2, 2, -1, -1,
1727 -1 },
1728 };
1729
1730 /* The set of ASEs that require -mfp64. */
1731 #define FP64_ASES (ASE_MIPS3D | ASE_MDMX | ASE_MSA)
1732
1733 /* Groups of ASE_* flags that represent different revisions of an ASE. */
1734 static const unsigned int mips_ase_groups[] = {
1735 ASE_DSP | ASE_DSPR2 | ASE_DSPR3
1736 };
1737 \f
1738 /* Pseudo-op table.
1739
1740 The following pseudo-ops from the Kane and Heinrich MIPS book
1741 should be defined here, but are currently unsupported: .alias,
1742 .galive, .gjaldef, .gjrlive, .livereg, .noalias.
1743
1744 The following pseudo-ops from the Kane and Heinrich MIPS book are
1745 specific to the type of debugging information being generated, and
1746 should be defined by the object format: .aent, .begin, .bend,
1747 .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
1748 .vreg.
1749
1750 The following pseudo-ops from the Kane and Heinrich MIPS book are
1751 not MIPS CPU specific, but are also not specific to the object file
1752 format. This file is probably the best place to define them, but
1753 they are not currently supported: .asm0, .endr, .lab, .struct. */
1754
1755 static const pseudo_typeS mips_pseudo_table[] =
1756 {
1757 /* MIPS specific pseudo-ops. */
1758 {"option", s_option, 0},
1759 {"set", s_mipsset, 0},
1760 {"rdata", s_change_sec, 'r'},
1761 {"sdata", s_change_sec, 's'},
1762 {"livereg", s_ignore, 0},
1763 {"abicalls", s_abicalls, 0},
1764 {"cpload", s_cpload, 0},
1765 {"cpsetup", s_cpsetup, 0},
1766 {"cplocal", s_cplocal, 0},
1767 {"cprestore", s_cprestore, 0},
1768 {"cpreturn", s_cpreturn, 0},
1769 {"dtprelword", s_dtprelword, 0},
1770 {"dtpreldword", s_dtpreldword, 0},
1771 {"tprelword", s_tprelword, 0},
1772 {"tpreldword", s_tpreldword, 0},
1773 {"gpvalue", s_gpvalue, 0},
1774 {"gpword", s_gpword, 0},
1775 {"gpdword", s_gpdword, 0},
1776 {"ehword", s_ehword, 0},
1777 {"cpadd", s_cpadd, 0},
1778 {"insn", s_insn, 0},
1779 {"nan", s_nan, 0},
1780 {"module", s_module, 0},
1781
1782 /* Relatively generic pseudo-ops that happen to be used on MIPS
1783 chips. */
1784 {"asciiz", stringer, 8 + 1},
1785 {"bss", s_change_sec, 'b'},
1786 {"err", s_err, 0},
1787 {"half", s_cons, 1},
1788 {"dword", s_cons, 3},
1789 {"weakext", s_mips_weakext, 0},
1790 {"origin", s_org, 0},
1791 {"repeat", s_rept, 0},
1792
1793 /* For MIPS this is non-standard, but we define it for consistency. */
1794 {"sbss", s_change_sec, 'B'},
1795
1796 /* These pseudo-ops are defined in read.c, but must be overridden
1797 here for one reason or another. */
1798 {"align", s_align, 0},
1799 {"byte", s_cons, 0},
1800 {"data", s_change_sec, 'd'},
1801 {"double", s_float_cons, 'd'},
1802 {"float", s_float_cons, 'f'},
1803 {"globl", s_mips_globl, 0},
1804 {"global", s_mips_globl, 0},
1805 {"hword", s_cons, 1},
1806 {"int", s_cons, 2},
1807 {"long", s_cons, 2},
1808 {"octa", s_cons, 4},
1809 {"quad", s_cons, 3},
1810 {"section", s_change_section, 0},
1811 {"short", s_cons, 1},
1812 {"single", s_float_cons, 'f'},
1813 {"stabd", s_mips_stab, 'd'},
1814 {"stabn", s_mips_stab, 'n'},
1815 {"stabs", s_mips_stab, 's'},
1816 {"text", s_change_sec, 't'},
1817 {"word", s_cons, 2},
1818
1819 { "extern", ecoff_directive_extern, 0},
1820
1821 { NULL, NULL, 0 },
1822 };
1823
1824 static const pseudo_typeS mips_nonecoff_pseudo_table[] =
1825 {
1826 /* These pseudo-ops should be defined by the object file format.
1827 However, a.out doesn't support them, so we have versions here. */
1828 {"aent", s_mips_ent, 1},
1829 {"bgnb", s_ignore, 0},
1830 {"end", s_mips_end, 0},
1831 {"endb", s_ignore, 0},
1832 {"ent", s_mips_ent, 0},
1833 {"file", s_mips_file, 0},
1834 {"fmask", s_mips_mask, 'F'},
1835 {"frame", s_mips_frame, 0},
1836 {"loc", s_mips_loc, 0},
1837 {"mask", s_mips_mask, 'R'},
1838 {"verstamp", s_ignore, 0},
1839 { NULL, NULL, 0 },
1840 };
1841
1842 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
1843 purpose of the `.dc.a' internal pseudo-op. */
1844
1845 int
1846 mips_address_bytes (void)
1847 {
1848 file_mips_check_options ();
1849 return HAVE_64BIT_ADDRESSES ? 8 : 4;
1850 }
1851
1852 extern void pop_insert (const pseudo_typeS *);
1853
1854 void
1855 mips_pop_insert (void)
1856 {
1857 pop_insert (mips_pseudo_table);
1858 if (! ECOFF_DEBUGGING)
1859 pop_insert (mips_nonecoff_pseudo_table);
1860 }
1861 \f
1862 /* Symbols labelling the current insn. */
1863
1864 struct insn_label_list
1865 {
1866 struct insn_label_list *next;
1867 symbolS *label;
1868 };
1869
1870 static struct insn_label_list *free_insn_labels;
1871 #define label_list tc_segment_info_data.labels
1872
1873 static void mips_clear_insn_labels (void);
1874 static void mips_mark_labels (void);
1875 static void mips_compressed_mark_labels (void);
1876
1877 static inline void
1878 mips_clear_insn_labels (void)
1879 {
1880 struct insn_label_list **pl;
1881 segment_info_type *si;
1882
1883 if (now_seg)
1884 {
1885 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
1886 ;
1887
1888 si = seg_info (now_seg);
1889 *pl = si->label_list;
1890 si->label_list = NULL;
1891 }
1892 }
1893
1894 /* Mark instruction labels in MIPS16/microMIPS mode. */
1895
1896 static inline void
1897 mips_mark_labels (void)
1898 {
1899 if (HAVE_CODE_COMPRESSION)
1900 mips_compressed_mark_labels ();
1901 }
1902 \f
1903 static char *expr_end;
1904
1905 /* An expression in a macro instruction. This is set by mips_ip and
1906 mips16_ip and when populated is always an O_constant. */
1907
1908 static expressionS imm_expr;
1909
1910 /* The relocatable field in an instruction and the relocs associated
1911 with it. These variables are used for instructions like LUI and
1912 JAL as well as true offsets. They are also used for address
1913 operands in macros. */
1914
1915 static expressionS offset_expr;
1916 static bfd_reloc_code_real_type offset_reloc[3]
1917 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1918
1919 /* This is set to the resulting size of the instruction to be produced
1920 by mips16_ip if an explicit extension is used or by mips_ip if an
1921 explicit size is supplied. */
1922
1923 static unsigned int forced_insn_length;
1924
1925 /* True if we are assembling an instruction. All dot symbols defined during
1926 this time should be treated as code labels. */
1927
1928 static bfd_boolean mips_assembling_insn;
1929
1930 /* The pdr segment for per procedure frame/regmask info. Not used for
1931 ECOFF debugging. */
1932
1933 static segT pdr_seg;
1934
1935 /* The default target format to use. */
1936
1937 #if defined (TE_FreeBSD)
1938 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips-freebsd"
1939 #elif defined (TE_TMIPS)
1940 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips"
1941 #else
1942 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX ENDIAN "mips"
1943 #endif
1944
1945 const char *
1946 mips_target_format (void)
1947 {
1948 switch (OUTPUT_FLAVOR)
1949 {
1950 case bfd_target_elf_flavour:
1951 #ifdef TE_VXWORKS
1952 if (!HAVE_64BIT_OBJECTS && !HAVE_NEWABI)
1953 return (target_big_endian
1954 ? "elf32-bigmips-vxworks"
1955 : "elf32-littlemips-vxworks");
1956 #endif
1957 return (target_big_endian
1958 ? (HAVE_64BIT_OBJECTS
1959 ? ELF_TARGET ("elf64-", "big")
1960 : (HAVE_NEWABI
1961 ? ELF_TARGET ("elf32-n", "big")
1962 : ELF_TARGET ("elf32-", "big")))
1963 : (HAVE_64BIT_OBJECTS
1964 ? ELF_TARGET ("elf64-", "little")
1965 : (HAVE_NEWABI
1966 ? ELF_TARGET ("elf32-n", "little")
1967 : ELF_TARGET ("elf32-", "little"))));
1968 default:
1969 abort ();
1970 return NULL;
1971 }
1972 }
1973
1974 /* Return the ISA revision that is currently in use, or 0 if we are
1975 generating code for MIPS V or below. */
1976
1977 static int
1978 mips_isa_rev (void)
1979 {
1980 if (mips_opts.isa == ISA_MIPS32R2 || mips_opts.isa == ISA_MIPS64R2)
1981 return 2;
1982
1983 if (mips_opts.isa == ISA_MIPS32R3 || mips_opts.isa == ISA_MIPS64R3)
1984 return 3;
1985
1986 if (mips_opts.isa == ISA_MIPS32R5 || mips_opts.isa == ISA_MIPS64R5)
1987 return 5;
1988
1989 if (mips_opts.isa == ISA_MIPS32R6 || mips_opts.isa == ISA_MIPS64R6)
1990 return 6;
1991
1992 /* microMIPS implies revision 2 or above. */
1993 if (mips_opts.micromips)
1994 return 2;
1995
1996 if (mips_opts.isa == ISA_MIPS32 || mips_opts.isa == ISA_MIPS64)
1997 return 1;
1998
1999 return 0;
2000 }
2001
2002 /* Return the mask of all ASEs that are revisions of those in FLAGS. */
2003
2004 static unsigned int
2005 mips_ase_mask (unsigned int flags)
2006 {
2007 unsigned int i;
2008
2009 for (i = 0; i < ARRAY_SIZE (mips_ase_groups); i++)
2010 if (flags & mips_ase_groups[i])
2011 flags |= mips_ase_groups[i];
2012 return flags;
2013 }
2014
2015 /* Check whether the current ISA supports ASE. Issue a warning if
2016 appropriate. */
2017
2018 static void
2019 mips_check_isa_supports_ase (const struct mips_ase *ase)
2020 {
2021 const char *base;
2022 int min_rev, size;
2023 static unsigned int warned_isa;
2024 static unsigned int warned_fp32;
2025
2026 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
2027 min_rev = mips_opts.micromips ? ase->micromips64_rev : ase->mips64_rev;
2028 else
2029 min_rev = mips_opts.micromips ? ase->micromips32_rev : ase->mips32_rev;
2030 if ((min_rev < 0 || mips_isa_rev () < min_rev)
2031 && (warned_isa & ase->flags) != ase->flags)
2032 {
2033 warned_isa |= ase->flags;
2034 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2035 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2036 if (min_rev < 0)
2037 as_warn (_("the %d-bit %s architecture does not support the"
2038 " `%s' extension"), size, base, ase->name);
2039 else
2040 as_warn (_("the `%s' extension requires %s%d revision %d or greater"),
2041 ase->name, base, size, min_rev);
2042 }
2043 else if ((ase->rem_rev > 0 && mips_isa_rev () >= ase->rem_rev)
2044 && (warned_isa & ase->flags) != ase->flags)
2045 {
2046 warned_isa |= ase->flags;
2047 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2048 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2049 as_warn (_("the `%s' extension was removed in %s%d revision %d"),
2050 ase->name, base, size, ase->rem_rev);
2051 }
2052
2053 if ((ase->flags & FP64_ASES)
2054 && mips_opts.fp != 64
2055 && (warned_fp32 & ase->flags) != ase->flags)
2056 {
2057 warned_fp32 |= ase->flags;
2058 as_warn (_("the `%s' extension requires 64-bit FPRs"), ase->name);
2059 }
2060 }
2061
2062 /* Check all enabled ASEs to see whether they are supported by the
2063 chosen architecture. */
2064
2065 static void
2066 mips_check_isa_supports_ases (void)
2067 {
2068 unsigned int i, mask;
2069
2070 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2071 {
2072 mask = mips_ase_mask (mips_ases[i].flags);
2073 if ((mips_opts.ase & mask) == mips_ases[i].flags)
2074 mips_check_isa_supports_ase (&mips_ases[i]);
2075 }
2076 }
2077
2078 /* Set the state of ASE to ENABLED_P. Return the mask of ASE_* flags
2079 that were affected. */
2080
2081 static unsigned int
2082 mips_set_ase (const struct mips_ase *ase, struct mips_set_options *opts,
2083 bfd_boolean enabled_p)
2084 {
2085 unsigned int mask;
2086
2087 mask = mips_ase_mask (ase->flags);
2088 opts->ase &= ~mask;
2089 if (enabled_p)
2090 opts->ase |= ase->flags;
2091 return mask;
2092 }
2093
2094 /* Return the ASE called NAME, or null if none. */
2095
2096 static const struct mips_ase *
2097 mips_lookup_ase (const char *name)
2098 {
2099 unsigned int i;
2100
2101 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2102 if (strcmp (name, mips_ases[i].name) == 0)
2103 return &mips_ases[i];
2104 return NULL;
2105 }
2106
2107 /* Return the length of a microMIPS instruction in bytes. If bits of
2108 the mask beyond the low 16 are 0, then it is a 16-bit instruction,
2109 otherwise it is a 32-bit instruction. */
2110
2111 static inline unsigned int
2112 micromips_insn_length (const struct mips_opcode *mo)
2113 {
2114 return mips_opcode_32bit_p (mo) ? 4 : 2;
2115 }
2116
2117 /* Return the length of MIPS16 instruction OPCODE. */
2118
2119 static inline unsigned int
2120 mips16_opcode_length (unsigned long opcode)
2121 {
2122 return (opcode >> 16) == 0 ? 2 : 4;
2123 }
2124
2125 /* Return the length of instruction INSN. */
2126
2127 static inline unsigned int
2128 insn_length (const struct mips_cl_insn *insn)
2129 {
2130 if (mips_opts.micromips)
2131 return micromips_insn_length (insn->insn_mo);
2132 else if (mips_opts.mips16)
2133 return mips16_opcode_length (insn->insn_opcode);
2134 else
2135 return 4;
2136 }
2137
2138 /* Initialise INSN from opcode entry MO. Leave its position unspecified. */
2139
2140 static void
2141 create_insn (struct mips_cl_insn *insn, const struct mips_opcode *mo)
2142 {
2143 size_t i;
2144
2145 insn->insn_mo = mo;
2146 insn->insn_opcode = mo->match;
2147 insn->frag = NULL;
2148 insn->where = 0;
2149 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2150 insn->fixp[i] = NULL;
2151 insn->fixed_p = (mips_opts.noreorder > 0);
2152 insn->noreorder_p = (mips_opts.noreorder > 0);
2153 insn->mips16_absolute_jump_p = 0;
2154 insn->complete_p = 0;
2155 insn->cleared_p = 0;
2156 }
2157
2158 /* Get a list of all the operands in INSN. */
2159
2160 static const struct mips_operand_array *
2161 insn_operands (const struct mips_cl_insn *insn)
2162 {
2163 if (insn->insn_mo >= &mips_opcodes[0]
2164 && insn->insn_mo < &mips_opcodes[NUMOPCODES])
2165 return &mips_operands[insn->insn_mo - &mips_opcodes[0]];
2166
2167 if (insn->insn_mo >= &mips16_opcodes[0]
2168 && insn->insn_mo < &mips16_opcodes[bfd_mips16_num_opcodes])
2169 return &mips16_operands[insn->insn_mo - &mips16_opcodes[0]];
2170
2171 if (insn->insn_mo >= &micromips_opcodes[0]
2172 && insn->insn_mo < &micromips_opcodes[bfd_micromips_num_opcodes])
2173 return &micromips_operands[insn->insn_mo - &micromips_opcodes[0]];
2174
2175 abort ();
2176 }
2177
2178 /* Get a description of operand OPNO of INSN. */
2179
2180 static const struct mips_operand *
2181 insn_opno (const struct mips_cl_insn *insn, unsigned opno)
2182 {
2183 const struct mips_operand_array *operands;
2184
2185 operands = insn_operands (insn);
2186 if (opno >= MAX_OPERANDS || !operands->operand[opno])
2187 abort ();
2188 return operands->operand[opno];
2189 }
2190
2191 /* Install UVAL as the value of OPERAND in INSN. */
2192
2193 static inline void
2194 insn_insert_operand (struct mips_cl_insn *insn,
2195 const struct mips_operand *operand, unsigned int uval)
2196 {
2197 insn->insn_opcode = mips_insert_operand (operand, insn->insn_opcode, uval);
2198 }
2199
2200 /* Extract the value of OPERAND from INSN. */
2201
2202 static inline unsigned
2203 insn_extract_operand (const struct mips_cl_insn *insn,
2204 const struct mips_operand *operand)
2205 {
2206 return mips_extract_operand (operand, insn->insn_opcode);
2207 }
2208
2209 /* Record the current MIPS16/microMIPS mode in now_seg. */
2210
2211 static void
2212 mips_record_compressed_mode (void)
2213 {
2214 segment_info_type *si;
2215
2216 si = seg_info (now_seg);
2217 if (si->tc_segment_info_data.mips16 != mips_opts.mips16)
2218 si->tc_segment_info_data.mips16 = mips_opts.mips16;
2219 if (si->tc_segment_info_data.micromips != mips_opts.micromips)
2220 si->tc_segment_info_data.micromips = mips_opts.micromips;
2221 }
2222
2223 /* Read a standard MIPS instruction from BUF. */
2224
2225 static unsigned long
2226 read_insn (char *buf)
2227 {
2228 if (target_big_endian)
2229 return bfd_getb32 ((bfd_byte *) buf);
2230 else
2231 return bfd_getl32 ((bfd_byte *) buf);
2232 }
2233
2234 /* Write standard MIPS instruction INSN to BUF. Return a pointer to
2235 the next byte. */
2236
2237 static char *
2238 write_insn (char *buf, unsigned int insn)
2239 {
2240 md_number_to_chars (buf, insn, 4);
2241 return buf + 4;
2242 }
2243
2244 /* Read a microMIPS or MIPS16 opcode from BUF, given that it
2245 has length LENGTH. */
2246
2247 static unsigned long
2248 read_compressed_insn (char *buf, unsigned int length)
2249 {
2250 unsigned long insn;
2251 unsigned int i;
2252
2253 insn = 0;
2254 for (i = 0; i < length; i += 2)
2255 {
2256 insn <<= 16;
2257 if (target_big_endian)
2258 insn |= bfd_getb16 ((char *) buf);
2259 else
2260 insn |= bfd_getl16 ((char *) buf);
2261 buf += 2;
2262 }
2263 return insn;
2264 }
2265
2266 /* Write microMIPS or MIPS16 instruction INSN to BUF, given that the
2267 instruction is LENGTH bytes long. Return a pointer to the next byte. */
2268
2269 static char *
2270 write_compressed_insn (char *buf, unsigned int insn, unsigned int length)
2271 {
2272 unsigned int i;
2273
2274 for (i = 0; i < length; i += 2)
2275 md_number_to_chars (buf + i, insn >> ((length - i - 2) * 8), 2);
2276 return buf + length;
2277 }
2278
2279 /* Install INSN at the location specified by its "frag" and "where" fields. */
2280
2281 static void
2282 install_insn (const struct mips_cl_insn *insn)
2283 {
2284 char *f = insn->frag->fr_literal + insn->where;
2285 if (HAVE_CODE_COMPRESSION)
2286 write_compressed_insn (f, insn->insn_opcode, insn_length (insn));
2287 else
2288 write_insn (f, insn->insn_opcode);
2289 mips_record_compressed_mode ();
2290 }
2291
2292 /* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly
2293 and install the opcode in the new location. */
2294
2295 static void
2296 move_insn (struct mips_cl_insn *insn, fragS *frag, long where)
2297 {
2298 size_t i;
2299
2300 insn->frag = frag;
2301 insn->where = where;
2302 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2303 if (insn->fixp[i] != NULL)
2304 {
2305 insn->fixp[i]->fx_frag = frag;
2306 insn->fixp[i]->fx_where = where;
2307 }
2308 install_insn (insn);
2309 }
2310
2311 /* Add INSN to the end of the output. */
2312
2313 static void
2314 add_fixed_insn (struct mips_cl_insn *insn)
2315 {
2316 char *f = frag_more (insn_length (insn));
2317 move_insn (insn, frag_now, f - frag_now->fr_literal);
2318 }
2319
2320 /* Start a variant frag and move INSN to the start of the variant part,
2321 marking it as fixed. The other arguments are as for frag_var. */
2322
2323 static void
2324 add_relaxed_insn (struct mips_cl_insn *insn, int max_chars, int var,
2325 relax_substateT subtype, symbolS *symbol, offsetT offset)
2326 {
2327 frag_grow (max_chars);
2328 move_insn (insn, frag_now, frag_more (0) - frag_now->fr_literal);
2329 insn->fixed_p = 1;
2330 frag_var (rs_machine_dependent, max_chars, var,
2331 subtype, symbol, offset, NULL);
2332 }
2333
2334 /* Insert N copies of INSN into the history buffer, starting at
2335 position FIRST. Neither FIRST nor N need to be clipped. */
2336
2337 static void
2338 insert_into_history (unsigned int first, unsigned int n,
2339 const struct mips_cl_insn *insn)
2340 {
2341 if (mips_relax.sequence != 2)
2342 {
2343 unsigned int i;
2344
2345 for (i = ARRAY_SIZE (history); i-- > first;)
2346 if (i >= first + n)
2347 history[i] = history[i - n];
2348 else
2349 history[i] = *insn;
2350 }
2351 }
2352
2353 /* Clear the error in insn_error. */
2354
2355 static void
2356 clear_insn_error (void)
2357 {
2358 memset (&insn_error, 0, sizeof (insn_error));
2359 }
2360
2361 /* Possibly record error message MSG for the current instruction.
2362 If the error is about a particular argument, ARGNUM is the 1-based
2363 number of that argument, otherwise it is 0. FORMAT is the format
2364 of MSG. Return true if MSG was used, false if the current message
2365 was kept. */
2366
2367 static bfd_boolean
2368 set_insn_error_format (int argnum, enum mips_insn_error_format format,
2369 const char *msg)
2370 {
2371 if (argnum == 0)
2372 {
2373 /* Give priority to errors against specific arguments, and to
2374 the first whole-instruction message. */
2375 if (insn_error.msg)
2376 return FALSE;
2377 }
2378 else
2379 {
2380 /* Keep insn_error if it is against a later argument. */
2381 if (argnum < insn_error.min_argnum)
2382 return FALSE;
2383
2384 /* If both errors are against the same argument but are different,
2385 give up on reporting a specific error for this argument.
2386 See the comment about mips_insn_error for details. */
2387 if (argnum == insn_error.min_argnum
2388 && insn_error.msg
2389 && strcmp (insn_error.msg, msg) != 0)
2390 {
2391 insn_error.msg = 0;
2392 insn_error.min_argnum += 1;
2393 return FALSE;
2394 }
2395 }
2396 insn_error.min_argnum = argnum;
2397 insn_error.format = format;
2398 insn_error.msg = msg;
2399 return TRUE;
2400 }
2401
2402 /* Record an instruction error with no % format fields. ARGNUM and MSG are
2403 as for set_insn_error_format. */
2404
2405 static void
2406 set_insn_error (int argnum, const char *msg)
2407 {
2408 set_insn_error_format (argnum, ERR_FMT_PLAIN, msg);
2409 }
2410
2411 /* Record an instruction error with one %d field I. ARGNUM and MSG are
2412 as for set_insn_error_format. */
2413
2414 static void
2415 set_insn_error_i (int argnum, const char *msg, int i)
2416 {
2417 if (set_insn_error_format (argnum, ERR_FMT_I, msg))
2418 insn_error.u.i = i;
2419 }
2420
2421 /* Record an instruction error with two %s fields S1 and S2. ARGNUM and MSG
2422 are as for set_insn_error_format. */
2423
2424 static void
2425 set_insn_error_ss (int argnum, const char *msg, const char *s1, const char *s2)
2426 {
2427 if (set_insn_error_format (argnum, ERR_FMT_SS, msg))
2428 {
2429 insn_error.u.ss[0] = s1;
2430 insn_error.u.ss[1] = s2;
2431 }
2432 }
2433
2434 /* Report the error in insn_error, which is against assembly code STR. */
2435
2436 static void
2437 report_insn_error (const char *str)
2438 {
2439 const char *msg = concat (insn_error.msg, " `%s'", NULL);
2440
2441 switch (insn_error.format)
2442 {
2443 case ERR_FMT_PLAIN:
2444 as_bad (msg, str);
2445 break;
2446
2447 case ERR_FMT_I:
2448 as_bad (msg, insn_error.u.i, str);
2449 break;
2450
2451 case ERR_FMT_SS:
2452 as_bad (msg, insn_error.u.ss[0], insn_error.u.ss[1], str);
2453 break;
2454 }
2455
2456 free ((char *) msg);
2457 }
2458
2459 /* Initialize vr4120_conflicts. There is a bit of duplication here:
2460 the idea is to make it obvious at a glance that each errata is
2461 included. */
2462
2463 static void
2464 init_vr4120_conflicts (void)
2465 {
2466 #define CONFLICT(FIRST, SECOND) \
2467 vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND
2468
2469 /* Errata 21 - [D]DIV[U] after [D]MACC */
2470 CONFLICT (MACC, DIV);
2471 CONFLICT (DMACC, DIV);
2472
2473 /* Errata 23 - Continuous DMULT[U]/DMACC instructions. */
2474 CONFLICT (DMULT, DMULT);
2475 CONFLICT (DMULT, DMACC);
2476 CONFLICT (DMACC, DMULT);
2477 CONFLICT (DMACC, DMACC);
2478
2479 /* Errata 24 - MT{LO,HI} after [D]MACC */
2480 CONFLICT (MACC, MTHILO);
2481 CONFLICT (DMACC, MTHILO);
2482
2483 /* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU
2484 instruction is executed immediately after a MACC or DMACC
2485 instruction, the result of [either instruction] is incorrect." */
2486 CONFLICT (MACC, MULT);
2487 CONFLICT (MACC, DMULT);
2488 CONFLICT (DMACC, MULT);
2489 CONFLICT (DMACC, DMULT);
2490
2491 /* VR4181A errata MD(4): "If a MACC or DMACC instruction is
2492 executed immediately after a DMULT, DMULTU, DIV, DIVU,
2493 DDIV or DDIVU instruction, the result of the MACC or
2494 DMACC instruction is incorrect.". */
2495 CONFLICT (DMULT, MACC);
2496 CONFLICT (DMULT, DMACC);
2497 CONFLICT (DIV, MACC);
2498 CONFLICT (DIV, DMACC);
2499
2500 #undef CONFLICT
2501 }
2502
2503 struct regname {
2504 const char *name;
2505 unsigned int num;
2506 };
2507
2508 #define RNUM_MASK 0x00000ff
2509 #define RTYPE_MASK 0x0ffff00
2510 #define RTYPE_NUM 0x0000100
2511 #define RTYPE_FPU 0x0000200
2512 #define RTYPE_FCC 0x0000400
2513 #define RTYPE_VEC 0x0000800
2514 #define RTYPE_GP 0x0001000
2515 #define RTYPE_CP0 0x0002000
2516 #define RTYPE_PC 0x0004000
2517 #define RTYPE_ACC 0x0008000
2518 #define RTYPE_CCC 0x0010000
2519 #define RTYPE_VI 0x0020000
2520 #define RTYPE_VF 0x0040000
2521 #define RTYPE_R5900_I 0x0080000
2522 #define RTYPE_R5900_Q 0x0100000
2523 #define RTYPE_R5900_R 0x0200000
2524 #define RTYPE_R5900_ACC 0x0400000
2525 #define RTYPE_MSA 0x0800000
2526 #define RWARN 0x8000000
2527
2528 #define GENERIC_REGISTER_NUMBERS \
2529 {"$0", RTYPE_NUM | 0}, \
2530 {"$1", RTYPE_NUM | 1}, \
2531 {"$2", RTYPE_NUM | 2}, \
2532 {"$3", RTYPE_NUM | 3}, \
2533 {"$4", RTYPE_NUM | 4}, \
2534 {"$5", RTYPE_NUM | 5}, \
2535 {"$6", RTYPE_NUM | 6}, \
2536 {"$7", RTYPE_NUM | 7}, \
2537 {"$8", RTYPE_NUM | 8}, \
2538 {"$9", RTYPE_NUM | 9}, \
2539 {"$10", RTYPE_NUM | 10}, \
2540 {"$11", RTYPE_NUM | 11}, \
2541 {"$12", RTYPE_NUM | 12}, \
2542 {"$13", RTYPE_NUM | 13}, \
2543 {"$14", RTYPE_NUM | 14}, \
2544 {"$15", RTYPE_NUM | 15}, \
2545 {"$16", RTYPE_NUM | 16}, \
2546 {"$17", RTYPE_NUM | 17}, \
2547 {"$18", RTYPE_NUM | 18}, \
2548 {"$19", RTYPE_NUM | 19}, \
2549 {"$20", RTYPE_NUM | 20}, \
2550 {"$21", RTYPE_NUM | 21}, \
2551 {"$22", RTYPE_NUM | 22}, \
2552 {"$23", RTYPE_NUM | 23}, \
2553 {"$24", RTYPE_NUM | 24}, \
2554 {"$25", RTYPE_NUM | 25}, \
2555 {"$26", RTYPE_NUM | 26}, \
2556 {"$27", RTYPE_NUM | 27}, \
2557 {"$28", RTYPE_NUM | 28}, \
2558 {"$29", RTYPE_NUM | 29}, \
2559 {"$30", RTYPE_NUM | 30}, \
2560 {"$31", RTYPE_NUM | 31}
2561
2562 #define FPU_REGISTER_NAMES \
2563 {"$f0", RTYPE_FPU | 0}, \
2564 {"$f1", RTYPE_FPU | 1}, \
2565 {"$f2", RTYPE_FPU | 2}, \
2566 {"$f3", RTYPE_FPU | 3}, \
2567 {"$f4", RTYPE_FPU | 4}, \
2568 {"$f5", RTYPE_FPU | 5}, \
2569 {"$f6", RTYPE_FPU | 6}, \
2570 {"$f7", RTYPE_FPU | 7}, \
2571 {"$f8", RTYPE_FPU | 8}, \
2572 {"$f9", RTYPE_FPU | 9}, \
2573 {"$f10", RTYPE_FPU | 10}, \
2574 {"$f11", RTYPE_FPU | 11}, \
2575 {"$f12", RTYPE_FPU | 12}, \
2576 {"$f13", RTYPE_FPU | 13}, \
2577 {"$f14", RTYPE_FPU | 14}, \
2578 {"$f15", RTYPE_FPU | 15}, \
2579 {"$f16", RTYPE_FPU | 16}, \
2580 {"$f17", RTYPE_FPU | 17}, \
2581 {"$f18", RTYPE_FPU | 18}, \
2582 {"$f19", RTYPE_FPU | 19}, \
2583 {"$f20", RTYPE_FPU | 20}, \
2584 {"$f21", RTYPE_FPU | 21}, \
2585 {"$f22", RTYPE_FPU | 22}, \
2586 {"$f23", RTYPE_FPU | 23}, \
2587 {"$f24", RTYPE_FPU | 24}, \
2588 {"$f25", RTYPE_FPU | 25}, \
2589 {"$f26", RTYPE_FPU | 26}, \
2590 {"$f27", RTYPE_FPU | 27}, \
2591 {"$f28", RTYPE_FPU | 28}, \
2592 {"$f29", RTYPE_FPU | 29}, \
2593 {"$f30", RTYPE_FPU | 30}, \
2594 {"$f31", RTYPE_FPU | 31}
2595
2596 #define FPU_CONDITION_CODE_NAMES \
2597 {"$fcc0", RTYPE_FCC | 0}, \
2598 {"$fcc1", RTYPE_FCC | 1}, \
2599 {"$fcc2", RTYPE_FCC | 2}, \
2600 {"$fcc3", RTYPE_FCC | 3}, \
2601 {"$fcc4", RTYPE_FCC | 4}, \
2602 {"$fcc5", RTYPE_FCC | 5}, \
2603 {"$fcc6", RTYPE_FCC | 6}, \
2604 {"$fcc7", RTYPE_FCC | 7}
2605
2606 #define COPROC_CONDITION_CODE_NAMES \
2607 {"$cc0", RTYPE_FCC | RTYPE_CCC | 0}, \
2608 {"$cc1", RTYPE_FCC | RTYPE_CCC | 1}, \
2609 {"$cc2", RTYPE_FCC | RTYPE_CCC | 2}, \
2610 {"$cc3", RTYPE_FCC | RTYPE_CCC | 3}, \
2611 {"$cc4", RTYPE_FCC | RTYPE_CCC | 4}, \
2612 {"$cc5", RTYPE_FCC | RTYPE_CCC | 5}, \
2613 {"$cc6", RTYPE_FCC | RTYPE_CCC | 6}, \
2614 {"$cc7", RTYPE_FCC | RTYPE_CCC | 7}
2615
2616 #define N32N64_SYMBOLIC_REGISTER_NAMES \
2617 {"$a4", RTYPE_GP | 8}, \
2618 {"$a5", RTYPE_GP | 9}, \
2619 {"$a6", RTYPE_GP | 10}, \
2620 {"$a7", RTYPE_GP | 11}, \
2621 {"$ta0", RTYPE_GP | 8}, /* alias for $a4 */ \
2622 {"$ta1", RTYPE_GP | 9}, /* alias for $a5 */ \
2623 {"$ta2", RTYPE_GP | 10}, /* alias for $a6 */ \
2624 {"$ta3", RTYPE_GP | 11}, /* alias for $a7 */ \
2625 {"$t0", RTYPE_GP | 12}, \
2626 {"$t1", RTYPE_GP | 13}, \
2627 {"$t2", RTYPE_GP | 14}, \
2628 {"$t3", RTYPE_GP | 15}
2629
2630 #define O32_SYMBOLIC_REGISTER_NAMES \
2631 {"$t0", RTYPE_GP | 8}, \
2632 {"$t1", RTYPE_GP | 9}, \
2633 {"$t2", RTYPE_GP | 10}, \
2634 {"$t3", RTYPE_GP | 11}, \
2635 {"$t4", RTYPE_GP | 12}, \
2636 {"$t5", RTYPE_GP | 13}, \
2637 {"$t6", RTYPE_GP | 14}, \
2638 {"$t7", RTYPE_GP | 15}, \
2639 {"$ta0", RTYPE_GP | 12}, /* alias for $t4 */ \
2640 {"$ta1", RTYPE_GP | 13}, /* alias for $t5 */ \
2641 {"$ta2", RTYPE_GP | 14}, /* alias for $t6 */ \
2642 {"$ta3", RTYPE_GP | 15} /* alias for $t7 */
2643
2644 /* Remaining symbolic register names */
2645 #define SYMBOLIC_REGISTER_NAMES \
2646 {"$zero", RTYPE_GP | 0}, \
2647 {"$at", RTYPE_GP | 1}, \
2648 {"$AT", RTYPE_GP | 1}, \
2649 {"$v0", RTYPE_GP | 2}, \
2650 {"$v1", RTYPE_GP | 3}, \
2651 {"$a0", RTYPE_GP | 4}, \
2652 {"$a1", RTYPE_GP | 5}, \
2653 {"$a2", RTYPE_GP | 6}, \
2654 {"$a3", RTYPE_GP | 7}, \
2655 {"$s0", RTYPE_GP | 16}, \
2656 {"$s1", RTYPE_GP | 17}, \
2657 {"$s2", RTYPE_GP | 18}, \
2658 {"$s3", RTYPE_GP | 19}, \
2659 {"$s4", RTYPE_GP | 20}, \
2660 {"$s5", RTYPE_GP | 21}, \
2661 {"$s6", RTYPE_GP | 22}, \
2662 {"$s7", RTYPE_GP | 23}, \
2663 {"$t8", RTYPE_GP | 24}, \
2664 {"$t9", RTYPE_GP | 25}, \
2665 {"$k0", RTYPE_GP | 26}, \
2666 {"$kt0", RTYPE_GP | 26}, \
2667 {"$k1", RTYPE_GP | 27}, \
2668 {"$kt1", RTYPE_GP | 27}, \
2669 {"$gp", RTYPE_GP | 28}, \
2670 {"$sp", RTYPE_GP | 29}, \
2671 {"$s8", RTYPE_GP | 30}, \
2672 {"$fp", RTYPE_GP | 30}, \
2673 {"$ra", RTYPE_GP | 31}
2674
2675 #define MIPS16_SPECIAL_REGISTER_NAMES \
2676 {"$pc", RTYPE_PC | 0}
2677
2678 #define MDMX_VECTOR_REGISTER_NAMES \
2679 /* {"$v0", RTYPE_VEC | 0}, clash with REG 2 above */ \
2680 /* {"$v1", RTYPE_VEC | 1}, clash with REG 3 above */ \
2681 {"$v2", RTYPE_VEC | 2}, \
2682 {"$v3", RTYPE_VEC | 3}, \
2683 {"$v4", RTYPE_VEC | 4}, \
2684 {"$v5", RTYPE_VEC | 5}, \
2685 {"$v6", RTYPE_VEC | 6}, \
2686 {"$v7", RTYPE_VEC | 7}, \
2687 {"$v8", RTYPE_VEC | 8}, \
2688 {"$v9", RTYPE_VEC | 9}, \
2689 {"$v10", RTYPE_VEC | 10}, \
2690 {"$v11", RTYPE_VEC | 11}, \
2691 {"$v12", RTYPE_VEC | 12}, \
2692 {"$v13", RTYPE_VEC | 13}, \
2693 {"$v14", RTYPE_VEC | 14}, \
2694 {"$v15", RTYPE_VEC | 15}, \
2695 {"$v16", RTYPE_VEC | 16}, \
2696 {"$v17", RTYPE_VEC | 17}, \
2697 {"$v18", RTYPE_VEC | 18}, \
2698 {"$v19", RTYPE_VEC | 19}, \
2699 {"$v20", RTYPE_VEC | 20}, \
2700 {"$v21", RTYPE_VEC | 21}, \
2701 {"$v22", RTYPE_VEC | 22}, \
2702 {"$v23", RTYPE_VEC | 23}, \
2703 {"$v24", RTYPE_VEC | 24}, \
2704 {"$v25", RTYPE_VEC | 25}, \
2705 {"$v26", RTYPE_VEC | 26}, \
2706 {"$v27", RTYPE_VEC | 27}, \
2707 {"$v28", RTYPE_VEC | 28}, \
2708 {"$v29", RTYPE_VEC | 29}, \
2709 {"$v30", RTYPE_VEC | 30}, \
2710 {"$v31", RTYPE_VEC | 31}
2711
2712 #define R5900_I_NAMES \
2713 {"$I", RTYPE_R5900_I | 0}
2714
2715 #define R5900_Q_NAMES \
2716 {"$Q", RTYPE_R5900_Q | 0}
2717
2718 #define R5900_R_NAMES \
2719 {"$R", RTYPE_R5900_R | 0}
2720
2721 #define R5900_ACC_NAMES \
2722 {"$ACC", RTYPE_R5900_ACC | 0 }
2723
2724 #define MIPS_DSP_ACCUMULATOR_NAMES \
2725 {"$ac0", RTYPE_ACC | 0}, \
2726 {"$ac1", RTYPE_ACC | 1}, \
2727 {"$ac2", RTYPE_ACC | 2}, \
2728 {"$ac3", RTYPE_ACC | 3}
2729
2730 static const struct regname reg_names[] = {
2731 GENERIC_REGISTER_NUMBERS,
2732 FPU_REGISTER_NAMES,
2733 FPU_CONDITION_CODE_NAMES,
2734 COPROC_CONDITION_CODE_NAMES,
2735
2736 /* The $txx registers depends on the abi,
2737 these will be added later into the symbol table from
2738 one of the tables below once mips_abi is set after
2739 parsing of arguments from the command line. */
2740 SYMBOLIC_REGISTER_NAMES,
2741
2742 MIPS16_SPECIAL_REGISTER_NAMES,
2743 MDMX_VECTOR_REGISTER_NAMES,
2744 R5900_I_NAMES,
2745 R5900_Q_NAMES,
2746 R5900_R_NAMES,
2747 R5900_ACC_NAMES,
2748 MIPS_DSP_ACCUMULATOR_NAMES,
2749 {0, 0}
2750 };
2751
2752 static const struct regname reg_names_o32[] = {
2753 O32_SYMBOLIC_REGISTER_NAMES,
2754 {0, 0}
2755 };
2756
2757 static const struct regname reg_names_n32n64[] = {
2758 N32N64_SYMBOLIC_REGISTER_NAMES,
2759 {0, 0}
2760 };
2761
2762 /* Register symbols $v0 and $v1 map to GPRs 2 and 3, but they can also be
2763 interpreted as vector registers 0 and 1. If SYMVAL is the value of one
2764 of these register symbols, return the associated vector register,
2765 otherwise return SYMVAL itself. */
2766
2767 static unsigned int
2768 mips_prefer_vec_regno (unsigned int symval)
2769 {
2770 if ((symval & -2) == (RTYPE_GP | 2))
2771 return RTYPE_VEC | (symval & 1);
2772 return symval;
2773 }
2774
2775 /* Return true if string [S, E) is a valid register name, storing its
2776 symbol value in *SYMVAL_PTR if so. */
2777
2778 static bfd_boolean
2779 mips_parse_register_1 (char *s, char *e, unsigned int *symval_ptr)
2780 {
2781 char save_c;
2782 symbolS *symbol;
2783
2784 /* Terminate name. */
2785 save_c = *e;
2786 *e = '\0';
2787
2788 /* Look up the name. */
2789 symbol = symbol_find (s);
2790 *e = save_c;
2791
2792 if (!symbol || S_GET_SEGMENT (symbol) != reg_section)
2793 return FALSE;
2794
2795 *symval_ptr = S_GET_VALUE (symbol);
2796 return TRUE;
2797 }
2798
2799 /* Return true if the string at *SPTR is a valid register name. Allow it
2800 to have a VU0-style channel suffix of the form x?y?z?w? if CHANNELS_PTR
2801 is nonnull.
2802
2803 When returning true, move *SPTR past the register, store the
2804 register's symbol value in *SYMVAL_PTR and the channel mask in
2805 *CHANNELS_PTR (if nonnull). The symbol value includes the register
2806 number (RNUM_MASK) and register type (RTYPE_MASK). The channel mask
2807 is a 4-bit value of the form XYZW and is 0 if no suffix was given. */
2808
2809 static bfd_boolean
2810 mips_parse_register (char **sptr, unsigned int *symval_ptr,
2811 unsigned int *channels_ptr)
2812 {
2813 char *s, *e, *m;
2814 const char *q;
2815 unsigned int channels, symval, bit;
2816
2817 /* Find end of name. */
2818 s = e = *sptr;
2819 if (is_name_beginner (*e))
2820 ++e;
2821 while (is_part_of_name (*e))
2822 ++e;
2823
2824 channels = 0;
2825 if (!mips_parse_register_1 (s, e, &symval))
2826 {
2827 if (!channels_ptr)
2828 return FALSE;
2829
2830 /* Eat characters from the end of the string that are valid
2831 channel suffixes. The preceding register must be $ACC or
2832 end with a digit, so there is no ambiguity. */
2833 bit = 1;
2834 m = e;
2835 for (q = "wzyx"; *q; q++, bit <<= 1)
2836 if (m > s && m[-1] == *q)
2837 {
2838 --m;
2839 channels |= bit;
2840 }
2841
2842 if (channels == 0
2843 || !mips_parse_register_1 (s, m, &symval)
2844 || (symval & (RTYPE_VI | RTYPE_VF | RTYPE_R5900_ACC)) == 0)
2845 return FALSE;
2846 }
2847
2848 *sptr = e;
2849 *symval_ptr = symval;
2850 if (channels_ptr)
2851 *channels_ptr = channels;
2852 return TRUE;
2853 }
2854
2855 /* Check if SPTR points at a valid register specifier according to TYPES.
2856 If so, then return 1, advance S to consume the specifier and store
2857 the register's number in REGNOP, otherwise return 0. */
2858
2859 static int
2860 reg_lookup (char **s, unsigned int types, unsigned int *regnop)
2861 {
2862 unsigned int regno;
2863
2864 if (mips_parse_register (s, &regno, NULL))
2865 {
2866 if (types & RTYPE_VEC)
2867 regno = mips_prefer_vec_regno (regno);
2868 if (regno & types)
2869 regno &= RNUM_MASK;
2870 else
2871 regno = ~0;
2872 }
2873 else
2874 {
2875 if (types & RWARN)
2876 as_warn (_("unrecognized register name `%s'"), *s);
2877 regno = ~0;
2878 }
2879 if (regnop)
2880 *regnop = regno;
2881 return regno <= RNUM_MASK;
2882 }
2883
2884 /* Parse a VU0 "x?y?z?w?" channel mask at S and store the associated
2885 mask in *CHANNELS. Return a pointer to the first unconsumed character. */
2886
2887 static char *
2888 mips_parse_vu0_channels (char *s, unsigned int *channels)
2889 {
2890 unsigned int i;
2891
2892 *channels = 0;
2893 for (i = 0; i < 4; i++)
2894 if (*s == "xyzw"[i])
2895 {
2896 *channels |= 1 << (3 - i);
2897 ++s;
2898 }
2899 return s;
2900 }
2901
2902 /* Token types for parsed operand lists. */
2903 enum mips_operand_token_type {
2904 /* A plain register, e.g. $f2. */
2905 OT_REG,
2906
2907 /* A 4-bit XYZW channel mask. */
2908 OT_CHANNELS,
2909
2910 /* A constant vector index, e.g. [1]. */
2911 OT_INTEGER_INDEX,
2912
2913 /* A register vector index, e.g. [$2]. */
2914 OT_REG_INDEX,
2915
2916 /* A continuous range of registers, e.g. $s0-$s4. */
2917 OT_REG_RANGE,
2918
2919 /* A (possibly relocated) expression. */
2920 OT_INTEGER,
2921
2922 /* A floating-point value. */
2923 OT_FLOAT,
2924
2925 /* A single character. This can be '(', ')' or ',', but '(' only appears
2926 before OT_REGs. */
2927 OT_CHAR,
2928
2929 /* A doubled character, either "--" or "++". */
2930 OT_DOUBLE_CHAR,
2931
2932 /* The end of the operand list. */
2933 OT_END
2934 };
2935
2936 /* A parsed operand token. */
2937 struct mips_operand_token
2938 {
2939 /* The type of token. */
2940 enum mips_operand_token_type type;
2941 union
2942 {
2943 /* The register symbol value for an OT_REG or OT_REG_INDEX. */
2944 unsigned int regno;
2945
2946 /* The 4-bit channel mask for an OT_CHANNEL_SUFFIX. */
2947 unsigned int channels;
2948
2949 /* The integer value of an OT_INTEGER_INDEX. */
2950 addressT index;
2951
2952 /* The two register symbol values involved in an OT_REG_RANGE. */
2953 struct {
2954 unsigned int regno1;
2955 unsigned int regno2;
2956 } reg_range;
2957
2958 /* The value of an OT_INTEGER. The value is represented as an
2959 expression and the relocation operators that were applied to
2960 that expression. The reloc entries are BFD_RELOC_UNUSED if no
2961 relocation operators were used. */
2962 struct {
2963 expressionS value;
2964 bfd_reloc_code_real_type relocs[3];
2965 } integer;
2966
2967 /* The binary data for an OT_FLOAT constant, and the number of bytes
2968 in the constant. */
2969 struct {
2970 unsigned char data[8];
2971 int length;
2972 } flt;
2973
2974 /* The character represented by an OT_CHAR or OT_DOUBLE_CHAR. */
2975 char ch;
2976 } u;
2977 };
2978
2979 /* An obstack used to construct lists of mips_operand_tokens. */
2980 static struct obstack mips_operand_tokens;
2981
2982 /* Give TOKEN type TYPE and add it to mips_operand_tokens. */
2983
2984 static void
2985 mips_add_token (struct mips_operand_token *token,
2986 enum mips_operand_token_type type)
2987 {
2988 token->type = type;
2989 obstack_grow (&mips_operand_tokens, token, sizeof (*token));
2990 }
2991
2992 /* Check whether S is '(' followed by a register name. Add OT_CHAR
2993 and OT_REG tokens for them if so, and return a pointer to the first
2994 unconsumed character. Return null otherwise. */
2995
2996 static char *
2997 mips_parse_base_start (char *s)
2998 {
2999 struct mips_operand_token token;
3000 unsigned int regno, channels;
3001 bfd_boolean decrement_p;
3002
3003 if (*s != '(')
3004 return 0;
3005
3006 ++s;
3007 SKIP_SPACE_TABS (s);
3008
3009 /* Only match "--" as part of a base expression. In other contexts "--X"
3010 is a double negative. */
3011 decrement_p = (s[0] == '-' && s[1] == '-');
3012 if (decrement_p)
3013 {
3014 s += 2;
3015 SKIP_SPACE_TABS (s);
3016 }
3017
3018 /* Allow a channel specifier because that leads to better error messages
3019 than treating something like "$vf0x++" as an expression. */
3020 if (!mips_parse_register (&s, &regno, &channels))
3021 return 0;
3022
3023 token.u.ch = '(';
3024 mips_add_token (&token, OT_CHAR);
3025
3026 if (decrement_p)
3027 {
3028 token.u.ch = '-';
3029 mips_add_token (&token, OT_DOUBLE_CHAR);
3030 }
3031
3032 token.u.regno = regno;
3033 mips_add_token (&token, OT_REG);
3034
3035 if (channels)
3036 {
3037 token.u.channels = channels;
3038 mips_add_token (&token, OT_CHANNELS);
3039 }
3040
3041 /* For consistency, only match "++" as part of base expressions too. */
3042 SKIP_SPACE_TABS (s);
3043 if (s[0] == '+' && s[1] == '+')
3044 {
3045 s += 2;
3046 token.u.ch = '+';
3047 mips_add_token (&token, OT_DOUBLE_CHAR);
3048 }
3049
3050 return s;
3051 }
3052
3053 /* Parse one or more tokens from S. Return a pointer to the first
3054 unconsumed character on success. Return null if an error was found
3055 and store the error text in insn_error. FLOAT_FORMAT is as for
3056 mips_parse_arguments. */
3057
3058 static char *
3059 mips_parse_argument_token (char *s, char float_format)
3060 {
3061 char *end, *save_in;
3062 const char *err;
3063 unsigned int regno1, regno2, channels;
3064 struct mips_operand_token token;
3065
3066 /* First look for "($reg", since we want to treat that as an
3067 OT_CHAR and OT_REG rather than an expression. */
3068 end = mips_parse_base_start (s);
3069 if (end)
3070 return end;
3071
3072 /* Handle other characters that end up as OT_CHARs. */
3073 if (*s == ')' || *s == ',')
3074 {
3075 token.u.ch = *s;
3076 mips_add_token (&token, OT_CHAR);
3077 ++s;
3078 return s;
3079 }
3080
3081 /* Handle tokens that start with a register. */
3082 if (mips_parse_register (&s, &regno1, &channels))
3083 {
3084 if (channels)
3085 {
3086 /* A register and a VU0 channel suffix. */
3087 token.u.regno = regno1;
3088 mips_add_token (&token, OT_REG);
3089
3090 token.u.channels = channels;
3091 mips_add_token (&token, OT_CHANNELS);
3092 return s;
3093 }
3094
3095 SKIP_SPACE_TABS (s);
3096 if (*s == '-')
3097 {
3098 /* A register range. */
3099 ++s;
3100 SKIP_SPACE_TABS (s);
3101 if (!mips_parse_register (&s, &regno2, NULL))
3102 {
3103 set_insn_error (0, _("invalid register range"));
3104 return 0;
3105 }
3106
3107 token.u.reg_range.regno1 = regno1;
3108 token.u.reg_range.regno2 = regno2;
3109 mips_add_token (&token, OT_REG_RANGE);
3110 return s;
3111 }
3112
3113 /* Add the register itself. */
3114 token.u.regno = regno1;
3115 mips_add_token (&token, OT_REG);
3116
3117 /* Check for a vector index. */
3118 if (*s == '[')
3119 {
3120 ++s;
3121 SKIP_SPACE_TABS (s);
3122 if (mips_parse_register (&s, &token.u.regno, NULL))
3123 mips_add_token (&token, OT_REG_INDEX);
3124 else
3125 {
3126 expressionS element;
3127
3128 my_getExpression (&element, s);
3129 if (element.X_op != O_constant)
3130 {
3131 set_insn_error (0, _("vector element must be constant"));
3132 return 0;
3133 }
3134 s = expr_end;
3135 token.u.index = element.X_add_number;
3136 mips_add_token (&token, OT_INTEGER_INDEX);
3137 }
3138 SKIP_SPACE_TABS (s);
3139 if (*s != ']')
3140 {
3141 set_insn_error (0, _("missing `]'"));
3142 return 0;
3143 }
3144 ++s;
3145 }
3146 return s;
3147 }
3148
3149 if (float_format)
3150 {
3151 /* First try to treat expressions as floats. */
3152 save_in = input_line_pointer;
3153 input_line_pointer = s;
3154 err = md_atof (float_format, (char *) token.u.flt.data,
3155 &token.u.flt.length);
3156 end = input_line_pointer;
3157 input_line_pointer = save_in;
3158 if (err && *err)
3159 {
3160 set_insn_error (0, err);
3161 return 0;
3162 }
3163 if (s != end)
3164 {
3165 mips_add_token (&token, OT_FLOAT);
3166 return end;
3167 }
3168 }
3169
3170 /* Treat everything else as an integer expression. */
3171 token.u.integer.relocs[0] = BFD_RELOC_UNUSED;
3172 token.u.integer.relocs[1] = BFD_RELOC_UNUSED;
3173 token.u.integer.relocs[2] = BFD_RELOC_UNUSED;
3174 my_getSmallExpression (&token.u.integer.value, token.u.integer.relocs, s);
3175 s = expr_end;
3176 mips_add_token (&token, OT_INTEGER);
3177 return s;
3178 }
3179
3180 /* S points to the operand list for an instruction. FLOAT_FORMAT is 'f'
3181 if expressions should be treated as 32-bit floating-point constants,
3182 'd' if they should be treated as 64-bit floating-point constants,
3183 or 0 if they should be treated as integer expressions (the usual case).
3184
3185 Return a list of tokens on success, otherwise return 0. The caller
3186 must obstack_free the list after use. */
3187
3188 static struct mips_operand_token *
3189 mips_parse_arguments (char *s, char float_format)
3190 {
3191 struct mips_operand_token token;
3192
3193 SKIP_SPACE_TABS (s);
3194 while (*s)
3195 {
3196 s = mips_parse_argument_token (s, float_format);
3197 if (!s)
3198 {
3199 obstack_free (&mips_operand_tokens,
3200 obstack_finish (&mips_operand_tokens));
3201 return 0;
3202 }
3203 SKIP_SPACE_TABS (s);
3204 }
3205 mips_add_token (&token, OT_END);
3206 return (struct mips_operand_token *) obstack_finish (&mips_operand_tokens);
3207 }
3208
3209 /* Return TRUE if opcode MO is valid on the currently selected ISA, ASE
3210 and architecture. Use is_opcode_valid_16 for MIPS16 opcodes. */
3211
3212 static bfd_boolean
3213 is_opcode_valid (const struct mips_opcode *mo)
3214 {
3215 int isa = mips_opts.isa;
3216 int ase = mips_opts.ase;
3217 int fp_s, fp_d;
3218 unsigned int i;
3219
3220 if (ISA_HAS_64BIT_REGS (isa))
3221 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
3222 if ((ase & mips_ases[i].flags) == mips_ases[i].flags)
3223 ase |= mips_ases[i].flags64;
3224
3225 if (!opcode_is_member (mo, isa, ase, mips_opts.arch))
3226 return FALSE;
3227
3228 /* Check whether the instruction or macro requires single-precision or
3229 double-precision floating-point support. Note that this information is
3230 stored differently in the opcode table for insns and macros. */
3231 if (mo->pinfo == INSN_MACRO)
3232 {
3233 fp_s = mo->pinfo2 & INSN2_M_FP_S;
3234 fp_d = mo->pinfo2 & INSN2_M_FP_D;
3235 }
3236 else
3237 {
3238 fp_s = mo->pinfo & FP_S;
3239 fp_d = mo->pinfo & FP_D;
3240 }
3241
3242 if (fp_d && (mips_opts.soft_float || mips_opts.single_float))
3243 return FALSE;
3244
3245 if (fp_s && mips_opts.soft_float)
3246 return FALSE;
3247
3248 return TRUE;
3249 }
3250
3251 /* Return TRUE if the MIPS16 opcode MO is valid on the currently
3252 selected ISA and architecture. */
3253
3254 static bfd_boolean
3255 is_opcode_valid_16 (const struct mips_opcode *mo)
3256 {
3257 return opcode_is_member (mo, mips_opts.isa, 0, mips_opts.arch);
3258 }
3259
3260 /* Return TRUE if the size of the microMIPS opcode MO matches one
3261 explicitly requested. Always TRUE in the standard MIPS mode.
3262 Use is_size_valid_16 for MIPS16 opcodes. */
3263
3264 static bfd_boolean
3265 is_size_valid (const struct mips_opcode *mo)
3266 {
3267 if (!mips_opts.micromips)
3268 return TRUE;
3269
3270 if (mips_opts.insn32)
3271 {
3272 if (mo->pinfo != INSN_MACRO && micromips_insn_length (mo) != 4)
3273 return FALSE;
3274 if ((mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0)
3275 return FALSE;
3276 }
3277 if (!forced_insn_length)
3278 return TRUE;
3279 if (mo->pinfo == INSN_MACRO)
3280 return FALSE;
3281 return forced_insn_length == micromips_insn_length (mo);
3282 }
3283
3284 /* Return TRUE if the size of the MIPS16 opcode MO matches one
3285 explicitly requested. */
3286
3287 static bfd_boolean
3288 is_size_valid_16 (const struct mips_opcode *mo)
3289 {
3290 if (!forced_insn_length)
3291 return TRUE;
3292 if (mo->pinfo == INSN_MACRO)
3293 return FALSE;
3294 if (forced_insn_length == 2 && mips_opcode_32bit_p (mo))
3295 return FALSE;
3296 return TRUE;
3297 }
3298
3299 /* Return TRUE if the microMIPS opcode MO is valid for the delay slot
3300 of the preceding instruction. Always TRUE in the standard MIPS mode.
3301
3302 We don't accept macros in 16-bit delay slots to avoid a case where
3303 a macro expansion fails because it relies on a preceding 32-bit real
3304 instruction to have matched and does not handle the operands correctly.
3305 The only macros that may expand to 16-bit instructions are JAL that
3306 cannot be placed in a delay slot anyway, and corner cases of BALIGN
3307 and BGT (that likewise cannot be placed in a delay slot) that decay to
3308 a NOP. In all these cases the macros precede any corresponding real
3309 instruction definitions in the opcode table, so they will match in the
3310 second pass where the size of the delay slot is ignored and therefore
3311 produce correct code. */
3312
3313 static bfd_boolean
3314 is_delay_slot_valid (const struct mips_opcode *mo)
3315 {
3316 if (!mips_opts.micromips)
3317 return TRUE;
3318
3319 if (mo->pinfo == INSN_MACRO)
3320 return (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) == 0;
3321 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
3322 && micromips_insn_length (mo) != 4)
3323 return FALSE;
3324 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
3325 && micromips_insn_length (mo) != 2)
3326 return FALSE;
3327
3328 return TRUE;
3329 }
3330
3331 /* For consistency checking, verify that all bits of OPCODE are specified
3332 either by the match/mask part of the instruction definition, or by the
3333 operand list. Also build up a list of operands in OPERANDS.
3334
3335 INSN_BITS says which bits of the instruction are significant.
3336 If OPCODE is a standard or microMIPS instruction, DECODE_OPERAND
3337 provides the mips_operand description of each operand. DECODE_OPERAND
3338 is null for MIPS16 instructions. */
3339
3340 static int
3341 validate_mips_insn (const struct mips_opcode *opcode,
3342 unsigned long insn_bits,
3343 const struct mips_operand *(*decode_operand) (const char *),
3344 struct mips_operand_array *operands)
3345 {
3346 const char *s;
3347 unsigned long used_bits, doubled, undefined, opno, mask;
3348 const struct mips_operand *operand;
3349
3350 mask = (opcode->pinfo == INSN_MACRO ? 0 : opcode->mask);
3351 if ((mask & opcode->match) != opcode->match)
3352 {
3353 as_bad (_("internal: bad mips opcode (mask error): %s %s"),
3354 opcode->name, opcode->args);
3355 return 0;
3356 }
3357 used_bits = 0;
3358 opno = 0;
3359 if (opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX)
3360 used_bits = mips_insert_operand (&mips_vu0_channel_mask, used_bits, -1);
3361 for (s = opcode->args; *s; ++s)
3362 switch (*s)
3363 {
3364 case ',':
3365 case '(':
3366 case ')':
3367 break;
3368
3369 case '#':
3370 s++;
3371 break;
3372
3373 default:
3374 if (!decode_operand)
3375 operand = decode_mips16_operand (*s, mips_opcode_32bit_p (opcode));
3376 else
3377 operand = decode_operand (s);
3378 if (!operand && opcode->pinfo != INSN_MACRO)
3379 {
3380 as_bad (_("internal: unknown operand type: %s %s"),
3381 opcode->name, opcode->args);
3382 return 0;
3383 }
3384 gas_assert (opno < MAX_OPERANDS);
3385 operands->operand[opno] = operand;
3386 if (operand && operand->type != OP_VU0_MATCH_SUFFIX)
3387 {
3388 used_bits = mips_insert_operand (operand, used_bits, -1);
3389 if (operand->type == OP_MDMX_IMM_REG)
3390 /* Bit 5 is the format selector (OB vs QH). The opcode table
3391 has separate entries for each format. */
3392 used_bits &= ~(1 << (operand->lsb + 5));
3393 if (operand->type == OP_ENTRY_EXIT_LIST)
3394 used_bits &= ~(mask & 0x700);
3395 }
3396 /* Skip prefix characters. */
3397 if (decode_operand && (*s == '+' || *s == 'm' || *s == '-'))
3398 ++s;
3399 opno += 1;
3400 break;
3401 }
3402 doubled = used_bits & mask & insn_bits;
3403 if (doubled)
3404 {
3405 as_bad (_("internal: bad mips opcode (bits 0x%08lx doubly defined):"
3406 " %s %s"), doubled, opcode->name, opcode->args);
3407 return 0;
3408 }
3409 used_bits |= mask;
3410 undefined = ~used_bits & insn_bits;
3411 if (opcode->pinfo != INSN_MACRO && undefined)
3412 {
3413 as_bad (_("internal: bad mips opcode (bits 0x%08lx undefined): %s %s"),
3414 undefined, opcode->name, opcode->args);
3415 return 0;
3416 }
3417 used_bits &= ~insn_bits;
3418 if (used_bits)
3419 {
3420 as_bad (_("internal: bad mips opcode (bits 0x%08lx defined): %s %s"),
3421 used_bits, opcode->name, opcode->args);
3422 return 0;
3423 }
3424 return 1;
3425 }
3426
3427 /* The MIPS16 version of validate_mips_insn. */
3428
3429 static int
3430 validate_mips16_insn (const struct mips_opcode *opcode,
3431 struct mips_operand_array *operands)
3432 {
3433 unsigned long insn_bits = mips_opcode_32bit_p (opcode) ? 0xffffffff : 0xffff;
3434
3435 return validate_mips_insn (opcode, insn_bits, 0, operands);
3436 }
3437
3438 /* The microMIPS version of validate_mips_insn. */
3439
3440 static int
3441 validate_micromips_insn (const struct mips_opcode *opc,
3442 struct mips_operand_array *operands)
3443 {
3444 unsigned long insn_bits;
3445 unsigned long major;
3446 unsigned int length;
3447
3448 if (opc->pinfo == INSN_MACRO)
3449 return validate_mips_insn (opc, 0xffffffff, decode_micromips_operand,
3450 operands);
3451
3452 length = micromips_insn_length (opc);
3453 if (length != 2 && length != 4)
3454 {
3455 as_bad (_("internal error: bad microMIPS opcode (incorrect length: %u): "
3456 "%s %s"), length, opc->name, opc->args);
3457 return 0;
3458 }
3459 major = opc->match >> (10 + 8 * (length - 2));
3460 if ((length == 2 && (major & 7) != 1 && (major & 6) != 2)
3461 || (length == 4 && (major & 7) != 0 && (major & 4) != 4))
3462 {
3463 as_bad (_("internal error: bad microMIPS opcode "
3464 "(opcode/length mismatch): %s %s"), opc->name, opc->args);
3465 return 0;
3466 }
3467
3468 /* Shift piecewise to avoid an overflow where unsigned long is 32-bit. */
3469 insn_bits = 1 << 4 * length;
3470 insn_bits <<= 4 * length;
3471 insn_bits -= 1;
3472 return validate_mips_insn (opc, insn_bits, decode_micromips_operand,
3473 operands);
3474 }
3475
3476 /* This function is called once, at assembler startup time. It should set up
3477 all the tables, etc. that the MD part of the assembler will need. */
3478
3479 void
3480 md_begin (void)
3481 {
3482 const char *retval = NULL;
3483 int i = 0;
3484 int broken = 0;
3485
3486 if (mips_pic != NO_PIC)
3487 {
3488 if (g_switch_seen && g_switch_value != 0)
3489 as_bad (_("-G may not be used in position-independent code"));
3490 g_switch_value = 0;
3491 }
3492 else if (mips_abicalls)
3493 {
3494 if (g_switch_seen && g_switch_value != 0)
3495 as_bad (_("-G may not be used with abicalls"));
3496 g_switch_value = 0;
3497 }
3498
3499 if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
3500 as_warn (_("could not set architecture and machine"));
3501
3502 op_hash = hash_new ();
3503
3504 mips_operands = XCNEWVEC (struct mips_operand_array, NUMOPCODES);
3505 for (i = 0; i < NUMOPCODES;)
3506 {
3507 const char *name = mips_opcodes[i].name;
3508
3509 retval = hash_insert (op_hash, name, (void *) &mips_opcodes[i]);
3510 if (retval != NULL)
3511 {
3512 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
3513 mips_opcodes[i].name, retval);
3514 /* Probably a memory allocation problem? Give up now. */
3515 as_fatal (_("broken assembler, no assembly attempted"));
3516 }
3517 do
3518 {
3519 if (!validate_mips_insn (&mips_opcodes[i], 0xffffffff,
3520 decode_mips_operand, &mips_operands[i]))
3521 broken = 1;
3522 if (nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3523 {
3524 create_insn (&nop_insn, mips_opcodes + i);
3525 if (mips_fix_loongson2f_nop)
3526 nop_insn.insn_opcode = LOONGSON2F_NOP_INSN;
3527 nop_insn.fixed_p = 1;
3528 }
3529 ++i;
3530 }
3531 while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
3532 }
3533
3534 mips16_op_hash = hash_new ();
3535 mips16_operands = XCNEWVEC (struct mips_operand_array,
3536 bfd_mips16_num_opcodes);
3537
3538 i = 0;
3539 while (i < bfd_mips16_num_opcodes)
3540 {
3541 const char *name = mips16_opcodes[i].name;
3542
3543 retval = hash_insert (mips16_op_hash, name, (void *) &mips16_opcodes[i]);
3544 if (retval != NULL)
3545 as_fatal (_("internal: can't hash `%s': %s"),
3546 mips16_opcodes[i].name, retval);
3547 do
3548 {
3549 if (!validate_mips16_insn (&mips16_opcodes[i], &mips16_operands[i]))
3550 broken = 1;
3551 if (mips16_nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3552 {
3553 create_insn (&mips16_nop_insn, mips16_opcodes + i);
3554 mips16_nop_insn.fixed_p = 1;
3555 }
3556 ++i;
3557 }
3558 while (i < bfd_mips16_num_opcodes
3559 && strcmp (mips16_opcodes[i].name, name) == 0);
3560 }
3561
3562 micromips_op_hash = hash_new ();
3563 micromips_operands = XCNEWVEC (struct mips_operand_array,
3564 bfd_micromips_num_opcodes);
3565
3566 i = 0;
3567 while (i < bfd_micromips_num_opcodes)
3568 {
3569 const char *name = micromips_opcodes[i].name;
3570
3571 retval = hash_insert (micromips_op_hash, name,
3572 (void *) &micromips_opcodes[i]);
3573 if (retval != NULL)
3574 as_fatal (_("internal: can't hash `%s': %s"),
3575 micromips_opcodes[i].name, retval);
3576 do
3577 {
3578 struct mips_cl_insn *micromips_nop_insn;
3579
3580 if (!validate_micromips_insn (&micromips_opcodes[i],
3581 &micromips_operands[i]))
3582 broken = 1;
3583
3584 if (micromips_opcodes[i].pinfo != INSN_MACRO)
3585 {
3586 if (micromips_insn_length (micromips_opcodes + i) == 2)
3587 micromips_nop_insn = &micromips_nop16_insn;
3588 else if (micromips_insn_length (micromips_opcodes + i) == 4)
3589 micromips_nop_insn = &micromips_nop32_insn;
3590 else
3591 continue;
3592
3593 if (micromips_nop_insn->insn_mo == NULL
3594 && strcmp (name, "nop") == 0)
3595 {
3596 create_insn (micromips_nop_insn, micromips_opcodes + i);
3597 micromips_nop_insn->fixed_p = 1;
3598 }
3599 }
3600 }
3601 while (++i < bfd_micromips_num_opcodes
3602 && strcmp (micromips_opcodes[i].name, name) == 0);
3603 }
3604
3605 if (broken)
3606 as_fatal (_("broken assembler, no assembly attempted"));
3607
3608 /* We add all the general register names to the symbol table. This
3609 helps us detect invalid uses of them. */
3610 for (i = 0; reg_names[i].name; i++)
3611 symbol_table_insert (symbol_new (reg_names[i].name, reg_section,
3612 reg_names[i].num, /* & RNUM_MASK, */
3613 &zero_address_frag));
3614 if (HAVE_NEWABI)
3615 for (i = 0; reg_names_n32n64[i].name; i++)
3616 symbol_table_insert (symbol_new (reg_names_n32n64[i].name, reg_section,
3617 reg_names_n32n64[i].num, /* & RNUM_MASK, */
3618 &zero_address_frag));
3619 else
3620 for (i = 0; reg_names_o32[i].name; i++)
3621 symbol_table_insert (symbol_new (reg_names_o32[i].name, reg_section,
3622 reg_names_o32[i].num, /* & RNUM_MASK, */
3623 &zero_address_frag));
3624
3625 for (i = 0; i < 32; i++)
3626 {
3627 char regname[6];
3628
3629 /* R5900 VU0 floating-point register. */
3630 sprintf (regname, "$vf%d", i);
3631 symbol_table_insert (symbol_new (regname, reg_section,
3632 RTYPE_VF | i, &zero_address_frag));
3633
3634 /* R5900 VU0 integer register. */
3635 sprintf (regname, "$vi%d", i);
3636 symbol_table_insert (symbol_new (regname, reg_section,
3637 RTYPE_VI | i, &zero_address_frag));
3638
3639 /* MSA register. */
3640 sprintf (regname, "$w%d", i);
3641 symbol_table_insert (symbol_new (regname, reg_section,
3642 RTYPE_MSA | i, &zero_address_frag));
3643 }
3644
3645 obstack_init (&mips_operand_tokens);
3646
3647 mips_no_prev_insn ();
3648
3649 mips_gprmask = 0;
3650 mips_cprmask[0] = 0;
3651 mips_cprmask[1] = 0;
3652 mips_cprmask[2] = 0;
3653 mips_cprmask[3] = 0;
3654
3655 /* set the default alignment for the text section (2**2) */
3656 record_alignment (text_section, 2);
3657
3658 bfd_set_gp_size (stdoutput, g_switch_value);
3659
3660 /* On a native system other than VxWorks, sections must be aligned
3661 to 16 byte boundaries. When configured for an embedded ELF
3662 target, we don't bother. */
3663 if (strncmp (TARGET_OS, "elf", 3) != 0
3664 && strncmp (TARGET_OS, "vxworks", 7) != 0)
3665 {
3666 (void) bfd_set_section_alignment (stdoutput, text_section, 4);
3667 (void) bfd_set_section_alignment (stdoutput, data_section, 4);
3668 (void) bfd_set_section_alignment (stdoutput, bss_section, 4);
3669 }
3670
3671 /* Create a .reginfo section for register masks and a .mdebug
3672 section for debugging information. */
3673 {
3674 segT seg;
3675 subsegT subseg;
3676 flagword flags;
3677 segT sec;
3678
3679 seg = now_seg;
3680 subseg = now_subseg;
3681
3682 /* The ABI says this section should be loaded so that the
3683 running program can access it. However, we don't load it
3684 if we are configured for an embedded target */
3685 flags = SEC_READONLY | SEC_DATA;
3686 if (strncmp (TARGET_OS, "elf", 3) != 0)
3687 flags |= SEC_ALLOC | SEC_LOAD;
3688
3689 if (mips_abi != N64_ABI)
3690 {
3691 sec = subseg_new (".reginfo", (subsegT) 0);
3692
3693 bfd_set_section_flags (stdoutput, sec, flags);
3694 bfd_set_section_alignment (stdoutput, sec, HAVE_NEWABI ? 3 : 2);
3695
3696 mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
3697 }
3698 else
3699 {
3700 /* The 64-bit ABI uses a .MIPS.options section rather than
3701 .reginfo section. */
3702 sec = subseg_new (".MIPS.options", (subsegT) 0);
3703 bfd_set_section_flags (stdoutput, sec, flags);
3704 bfd_set_section_alignment (stdoutput, sec, 3);
3705
3706 /* Set up the option header. */
3707 {
3708 Elf_Internal_Options opthdr;
3709 char *f;
3710
3711 opthdr.kind = ODK_REGINFO;
3712 opthdr.size = (sizeof (Elf_External_Options)
3713 + sizeof (Elf64_External_RegInfo));
3714 opthdr.section = 0;
3715 opthdr.info = 0;
3716 f = frag_more (sizeof (Elf_External_Options));
3717 bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
3718 (Elf_External_Options *) f);
3719
3720 mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
3721 }
3722 }
3723
3724 sec = subseg_new (".MIPS.abiflags", (subsegT) 0);
3725 bfd_set_section_flags (stdoutput, sec,
3726 SEC_READONLY | SEC_DATA | SEC_ALLOC | SEC_LOAD);
3727 bfd_set_section_alignment (stdoutput, sec, 3);
3728 mips_flags_frag = frag_more (sizeof (Elf_External_ABIFlags_v0));
3729
3730 if (ECOFF_DEBUGGING)
3731 {
3732 sec = subseg_new (".mdebug", (subsegT) 0);
3733 (void) bfd_set_section_flags (stdoutput, sec,
3734 SEC_HAS_CONTENTS | SEC_READONLY);
3735 (void) bfd_set_section_alignment (stdoutput, sec, 2);
3736 }
3737 else if (mips_flag_pdr)
3738 {
3739 pdr_seg = subseg_new (".pdr", (subsegT) 0);
3740 (void) bfd_set_section_flags (stdoutput, pdr_seg,
3741 SEC_READONLY | SEC_RELOC
3742 | SEC_DEBUGGING);
3743 (void) bfd_set_section_alignment (stdoutput, pdr_seg, 2);
3744 }
3745
3746 subseg_set (seg, subseg);
3747 }
3748
3749 if (mips_fix_vr4120)
3750 init_vr4120_conflicts ();
3751 }
3752
3753 static inline void
3754 fpabi_incompatible_with (int fpabi, const char *what)
3755 {
3756 as_warn (_(".gnu_attribute %d,%d is incompatible with `%s'"),
3757 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3758 }
3759
3760 static inline void
3761 fpabi_requires (int fpabi, const char *what)
3762 {
3763 as_warn (_(".gnu_attribute %d,%d requires `%s'"),
3764 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3765 }
3766
3767 /* Check -mabi and register sizes against the specified FP ABI. */
3768 static void
3769 check_fpabi (int fpabi)
3770 {
3771 switch (fpabi)
3772 {
3773 case Val_GNU_MIPS_ABI_FP_DOUBLE:
3774 if (file_mips_opts.soft_float)
3775 fpabi_incompatible_with (fpabi, "softfloat");
3776 else if (file_mips_opts.single_float)
3777 fpabi_incompatible_with (fpabi, "singlefloat");
3778 if (file_mips_opts.gp == 64 && file_mips_opts.fp == 32)
3779 fpabi_incompatible_with (fpabi, "gp=64 fp=32");
3780 else if (file_mips_opts.gp == 32 && file_mips_opts.fp == 64)
3781 fpabi_incompatible_with (fpabi, "gp=32 fp=64");
3782 break;
3783
3784 case Val_GNU_MIPS_ABI_FP_XX:
3785 if (mips_abi != O32_ABI)
3786 fpabi_requires (fpabi, "-mabi=32");
3787 else if (file_mips_opts.soft_float)
3788 fpabi_incompatible_with (fpabi, "softfloat");
3789 else if (file_mips_opts.single_float)
3790 fpabi_incompatible_with (fpabi, "singlefloat");
3791 else if (file_mips_opts.fp != 0)
3792 fpabi_requires (fpabi, "fp=xx");
3793 break;
3794
3795 case Val_GNU_MIPS_ABI_FP_64A:
3796 case Val_GNU_MIPS_ABI_FP_64:
3797 if (mips_abi != O32_ABI)
3798 fpabi_requires (fpabi, "-mabi=32");
3799 else if (file_mips_opts.soft_float)
3800 fpabi_incompatible_with (fpabi, "softfloat");
3801 else if (file_mips_opts.single_float)
3802 fpabi_incompatible_with (fpabi, "singlefloat");
3803 else if (file_mips_opts.fp != 64)
3804 fpabi_requires (fpabi, "fp=64");
3805 else if (fpabi == Val_GNU_MIPS_ABI_FP_64 && !file_mips_opts.oddspreg)
3806 fpabi_incompatible_with (fpabi, "nooddspreg");
3807 else if (fpabi == Val_GNU_MIPS_ABI_FP_64A && file_mips_opts.oddspreg)
3808 fpabi_requires (fpabi, "nooddspreg");
3809 break;
3810
3811 case Val_GNU_MIPS_ABI_FP_SINGLE:
3812 if (file_mips_opts.soft_float)
3813 fpabi_incompatible_with (fpabi, "softfloat");
3814 else if (!file_mips_opts.single_float)
3815 fpabi_requires (fpabi, "singlefloat");
3816 break;
3817
3818 case Val_GNU_MIPS_ABI_FP_SOFT:
3819 if (!file_mips_opts.soft_float)
3820 fpabi_requires (fpabi, "softfloat");
3821 break;
3822
3823 case Val_GNU_MIPS_ABI_FP_OLD_64:
3824 as_warn (_(".gnu_attribute %d,%d is no longer supported"),
3825 Tag_GNU_MIPS_ABI_FP, fpabi);
3826 break;
3827
3828 case Val_GNU_MIPS_ABI_FP_NAN2008:
3829 /* Silently ignore compatibility value. */
3830 break;
3831
3832 default:
3833 as_warn (_(".gnu_attribute %d,%d is not a recognized"
3834 " floating-point ABI"), Tag_GNU_MIPS_ABI_FP, fpabi);
3835 break;
3836 }
3837 }
3838
3839 /* Perform consistency checks on the current options. */
3840
3841 static void
3842 mips_check_options (struct mips_set_options *opts, bfd_boolean abi_checks)
3843 {
3844 /* Check the size of integer registers agrees with the ABI and ISA. */
3845 if (opts->gp == 64 && !ISA_HAS_64BIT_REGS (opts->isa))
3846 as_bad (_("`gp=64' used with a 32-bit processor"));
3847 else if (abi_checks
3848 && opts->gp == 32 && ABI_NEEDS_64BIT_REGS (mips_abi))
3849 as_bad (_("`gp=32' used with a 64-bit ABI"));
3850 else if (abi_checks
3851 && opts->gp == 64 && ABI_NEEDS_32BIT_REGS (mips_abi))
3852 as_bad (_("`gp=64' used with a 32-bit ABI"));
3853
3854 /* Check the size of the float registers agrees with the ABI and ISA. */
3855 switch (opts->fp)
3856 {
3857 case 0:
3858 if (!CPU_HAS_LDC1_SDC1 (opts->arch))
3859 as_bad (_("`fp=xx' used with a cpu lacking ldc1/sdc1 instructions"));
3860 else if (opts->single_float == 1)
3861 as_bad (_("`fp=xx' cannot be used with `singlefloat'"));
3862 break;
3863 case 64:
3864 if (!ISA_HAS_64BIT_FPRS (opts->isa))
3865 as_bad (_("`fp=64' used with a 32-bit fpu"));
3866 else if (abi_checks
3867 && ABI_NEEDS_32BIT_REGS (mips_abi)
3868 && !ISA_HAS_MXHC1 (opts->isa))
3869 as_warn (_("`fp=64' used with a 32-bit ABI"));
3870 break;
3871 case 32:
3872 if (abi_checks
3873 && ABI_NEEDS_64BIT_REGS (mips_abi))
3874 as_warn (_("`fp=32' used with a 64-bit ABI"));
3875 if (ISA_IS_R6 (opts->isa) && opts->single_float == 0)
3876 as_bad (_("`fp=32' used with a MIPS R6 cpu"));
3877 break;
3878 default:
3879 as_bad (_("Unknown size of floating point registers"));
3880 break;
3881 }
3882
3883 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !opts->oddspreg)
3884 as_bad (_("`nooddspreg` cannot be used with a 64-bit ABI"));
3885
3886 if (opts->micromips == 1 && opts->mips16 == 1)
3887 as_bad (_("`%s' cannot be used with `%s'"), "mips16", "micromips");
3888 else if (ISA_IS_R6 (opts->isa)
3889 && (opts->micromips == 1
3890 || opts->mips16 == 1))
3891 as_fatal (_("`%s' cannot be used with `%s'"),
3892 opts->micromips ? "micromips" : "mips16",
3893 mips_cpu_info_from_isa (opts->isa)->name);
3894
3895 if (ISA_IS_R6 (opts->isa) && mips_relax_branch)
3896 as_fatal (_("branch relaxation is not supported in `%s'"),
3897 mips_cpu_info_from_isa (opts->isa)->name);
3898 }
3899
3900 /* Perform consistency checks on the module level options exactly once.
3901 This is a deferred check that happens:
3902 at the first .set directive
3903 or, at the first pseudo op that generates code (inc .dc.a)
3904 or, at the first instruction
3905 or, at the end. */
3906
3907 static void
3908 file_mips_check_options (void)
3909 {
3910 const struct mips_cpu_info *arch_info = 0;
3911
3912 if (file_mips_opts_checked)
3913 return;
3914
3915 /* The following code determines the register size.
3916 Similar code was added to GCC 3.3 (see override_options() in
3917 config/mips/mips.c). The GAS and GCC code should be kept in sync
3918 as much as possible. */
3919
3920 if (file_mips_opts.gp < 0)
3921 {
3922 /* Infer the integer register size from the ABI and processor.
3923 Restrict ourselves to 32-bit registers if that's all the
3924 processor has, or if the ABI cannot handle 64-bit registers. */
3925 file_mips_opts.gp = (ABI_NEEDS_32BIT_REGS (mips_abi)
3926 || !ISA_HAS_64BIT_REGS (file_mips_opts.isa))
3927 ? 32 : 64;
3928 }
3929
3930 if (file_mips_opts.fp < 0)
3931 {
3932 /* No user specified float register size.
3933 ??? GAS treats single-float processors as though they had 64-bit
3934 float registers (although it complains when double-precision
3935 instructions are used). As things stand, saying they have 32-bit
3936 registers would lead to spurious "register must be even" messages.
3937 So here we assume float registers are never smaller than the
3938 integer ones. */
3939 if (file_mips_opts.gp == 64)
3940 /* 64-bit integer registers implies 64-bit float registers. */
3941 file_mips_opts.fp = 64;
3942 else if ((file_mips_opts.ase & FP64_ASES)
3943 && ISA_HAS_64BIT_FPRS (file_mips_opts.isa))
3944 /* Handle ASEs that require 64-bit float registers, if possible. */
3945 file_mips_opts.fp = 64;
3946 else if (ISA_IS_R6 (mips_opts.isa))
3947 /* R6 implies 64-bit float registers. */
3948 file_mips_opts.fp = 64;
3949 else
3950 /* 32-bit float registers. */
3951 file_mips_opts.fp = 32;
3952 }
3953
3954 arch_info = mips_cpu_info_from_arch (file_mips_opts.arch);
3955
3956 /* Disable operations on odd-numbered floating-point registers by default
3957 when using the FPXX ABI. */
3958 if (file_mips_opts.oddspreg < 0)
3959 {
3960 if (file_mips_opts.fp == 0)
3961 file_mips_opts.oddspreg = 0;
3962 else
3963 file_mips_opts.oddspreg = 1;
3964 }
3965
3966 /* End of GCC-shared inference code. */
3967
3968 /* This flag is set when we have a 64-bit capable CPU but use only
3969 32-bit wide registers. Note that EABI does not use it. */
3970 if (ISA_HAS_64BIT_REGS (file_mips_opts.isa)
3971 && ((mips_abi == NO_ABI && file_mips_opts.gp == 32)
3972 || mips_abi == O32_ABI))
3973 mips_32bitmode = 1;
3974
3975 if (file_mips_opts.isa == ISA_MIPS1 && mips_trap)
3976 as_bad (_("trap exception not supported at ISA 1"));
3977
3978 /* If the selected architecture includes support for ASEs, enable
3979 generation of code for them. */
3980 if (file_mips_opts.mips16 == -1)
3981 file_mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_opts.arch)) ? 1 : 0;
3982 if (file_mips_opts.micromips == -1)
3983 file_mips_opts.micromips = (CPU_HAS_MICROMIPS (file_mips_opts.arch))
3984 ? 1 : 0;
3985
3986 if (mips_nan2008 == -1)
3987 mips_nan2008 = (ISA_HAS_LEGACY_NAN (file_mips_opts.isa)) ? 0 : 1;
3988 else if (!ISA_HAS_LEGACY_NAN (file_mips_opts.isa) && mips_nan2008 == 0)
3989 as_fatal (_("`%s' does not support legacy NaN"),
3990 mips_cpu_info_from_arch (file_mips_opts.arch)->name);
3991
3992 /* Some ASEs require 64-bit FPRs, so -mfp32 should stop those ASEs from
3993 being selected implicitly. */
3994 if (file_mips_opts.fp != 64)
3995 file_ase_explicit |= ASE_MIPS3D | ASE_MDMX | ASE_MSA;
3996
3997 /* If the user didn't explicitly select or deselect a particular ASE,
3998 use the default setting for the CPU. */
3999 file_mips_opts.ase |= (arch_info->ase & ~file_ase_explicit);
4000
4001 /* Set up the current options. These may change throughout assembly. */
4002 mips_opts = file_mips_opts;
4003
4004 mips_check_isa_supports_ases ();
4005 mips_check_options (&file_mips_opts, TRUE);
4006 file_mips_opts_checked = TRUE;
4007
4008 if (!bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
4009 as_warn (_("could not set architecture and machine"));
4010 }
4011
4012 void
4013 md_assemble (char *str)
4014 {
4015 struct mips_cl_insn insn;
4016 bfd_reloc_code_real_type unused_reloc[3]
4017 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
4018
4019 file_mips_check_options ();
4020
4021 imm_expr.X_op = O_absent;
4022 offset_expr.X_op = O_absent;
4023 offset_reloc[0] = BFD_RELOC_UNUSED;
4024 offset_reloc[1] = BFD_RELOC_UNUSED;
4025 offset_reloc[2] = BFD_RELOC_UNUSED;
4026
4027 mips_mark_labels ();
4028 mips_assembling_insn = TRUE;
4029 clear_insn_error ();
4030
4031 if (mips_opts.mips16)
4032 mips16_ip (str, &insn);
4033 else
4034 {
4035 mips_ip (str, &insn);
4036 DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
4037 str, insn.insn_opcode));
4038 }
4039
4040 if (insn_error.msg)
4041 report_insn_error (str);
4042 else if (insn.insn_mo->pinfo == INSN_MACRO)
4043 {
4044 macro_start ();
4045 if (mips_opts.mips16)
4046 mips16_macro (&insn);
4047 else
4048 macro (&insn, str);
4049 macro_end ();
4050 }
4051 else
4052 {
4053 if (offset_expr.X_op != O_absent)
4054 append_insn (&insn, &offset_expr, offset_reloc, FALSE);
4055 else
4056 append_insn (&insn, NULL, unused_reloc, FALSE);
4057 }
4058
4059 mips_assembling_insn = FALSE;
4060 }
4061
4062 /* Convenience functions for abstracting away the differences between
4063 MIPS16 and non-MIPS16 relocations. */
4064
4065 static inline bfd_boolean
4066 mips16_reloc_p (bfd_reloc_code_real_type reloc)
4067 {
4068 switch (reloc)
4069 {
4070 case BFD_RELOC_MIPS16_JMP:
4071 case BFD_RELOC_MIPS16_GPREL:
4072 case BFD_RELOC_MIPS16_GOT16:
4073 case BFD_RELOC_MIPS16_CALL16:
4074 case BFD_RELOC_MIPS16_HI16_S:
4075 case BFD_RELOC_MIPS16_HI16:
4076 case BFD_RELOC_MIPS16_LO16:
4077 case BFD_RELOC_MIPS16_16_PCREL_S1:
4078 return TRUE;
4079
4080 default:
4081 return FALSE;
4082 }
4083 }
4084
4085 static inline bfd_boolean
4086 micromips_reloc_p (bfd_reloc_code_real_type reloc)
4087 {
4088 switch (reloc)
4089 {
4090 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4091 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4092 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
4093 case BFD_RELOC_MICROMIPS_GPREL16:
4094 case BFD_RELOC_MICROMIPS_JMP:
4095 case BFD_RELOC_MICROMIPS_HI16:
4096 case BFD_RELOC_MICROMIPS_HI16_S:
4097 case BFD_RELOC_MICROMIPS_LO16:
4098 case BFD_RELOC_MICROMIPS_LITERAL:
4099 case BFD_RELOC_MICROMIPS_GOT16:
4100 case BFD_RELOC_MICROMIPS_CALL16:
4101 case BFD_RELOC_MICROMIPS_GOT_HI16:
4102 case BFD_RELOC_MICROMIPS_GOT_LO16:
4103 case BFD_RELOC_MICROMIPS_CALL_HI16:
4104 case BFD_RELOC_MICROMIPS_CALL_LO16:
4105 case BFD_RELOC_MICROMIPS_SUB:
4106 case BFD_RELOC_MICROMIPS_GOT_PAGE:
4107 case BFD_RELOC_MICROMIPS_GOT_OFST:
4108 case BFD_RELOC_MICROMIPS_GOT_DISP:
4109 case BFD_RELOC_MICROMIPS_HIGHEST:
4110 case BFD_RELOC_MICROMIPS_HIGHER:
4111 case BFD_RELOC_MICROMIPS_SCN_DISP:
4112 case BFD_RELOC_MICROMIPS_JALR:
4113 return TRUE;
4114
4115 default:
4116 return FALSE;
4117 }
4118 }
4119
4120 static inline bfd_boolean
4121 jmp_reloc_p (bfd_reloc_code_real_type reloc)
4122 {
4123 return reloc == BFD_RELOC_MIPS_JMP || reloc == BFD_RELOC_MICROMIPS_JMP;
4124 }
4125
4126 static inline bfd_boolean
4127 b_reloc_p (bfd_reloc_code_real_type reloc)
4128 {
4129 return (reloc == BFD_RELOC_MIPS_26_PCREL_S2
4130 || reloc == BFD_RELOC_MIPS_21_PCREL_S2
4131 || reloc == BFD_RELOC_16_PCREL_S2
4132 || reloc == BFD_RELOC_MIPS16_16_PCREL_S1
4133 || reloc == BFD_RELOC_MICROMIPS_16_PCREL_S1
4134 || reloc == BFD_RELOC_MICROMIPS_10_PCREL_S1
4135 || reloc == BFD_RELOC_MICROMIPS_7_PCREL_S1);
4136 }
4137
4138 static inline bfd_boolean
4139 got16_reloc_p (bfd_reloc_code_real_type reloc)
4140 {
4141 return (reloc == BFD_RELOC_MIPS_GOT16 || reloc == BFD_RELOC_MIPS16_GOT16
4142 || reloc == BFD_RELOC_MICROMIPS_GOT16);
4143 }
4144
4145 static inline bfd_boolean
4146 hi16_reloc_p (bfd_reloc_code_real_type reloc)
4147 {
4148 return (reloc == BFD_RELOC_HI16_S || reloc == BFD_RELOC_MIPS16_HI16_S
4149 || reloc == BFD_RELOC_MICROMIPS_HI16_S);
4150 }
4151
4152 static inline bfd_boolean
4153 lo16_reloc_p (bfd_reloc_code_real_type reloc)
4154 {
4155 return (reloc == BFD_RELOC_LO16 || reloc == BFD_RELOC_MIPS16_LO16
4156 || reloc == BFD_RELOC_MICROMIPS_LO16);
4157 }
4158
4159 static inline bfd_boolean
4160 jalr_reloc_p (bfd_reloc_code_real_type reloc)
4161 {
4162 return reloc == BFD_RELOC_MIPS_JALR || reloc == BFD_RELOC_MICROMIPS_JALR;
4163 }
4164
4165 static inline bfd_boolean
4166 gprel16_reloc_p (bfd_reloc_code_real_type reloc)
4167 {
4168 return (reloc == BFD_RELOC_GPREL16 || reloc == BFD_RELOC_MIPS16_GPREL
4169 || reloc == BFD_RELOC_MICROMIPS_GPREL16);
4170 }
4171
4172 /* Return true if RELOC is a PC-relative relocation that does not have
4173 full address range. */
4174
4175 static inline bfd_boolean
4176 limited_pcrel_reloc_p (bfd_reloc_code_real_type reloc)
4177 {
4178 switch (reloc)
4179 {
4180 case BFD_RELOC_16_PCREL_S2:
4181 case BFD_RELOC_MIPS16_16_PCREL_S1:
4182 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4183 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4184 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
4185 case BFD_RELOC_MIPS_21_PCREL_S2:
4186 case BFD_RELOC_MIPS_26_PCREL_S2:
4187 case BFD_RELOC_MIPS_18_PCREL_S3:
4188 case BFD_RELOC_MIPS_19_PCREL_S2:
4189 return TRUE;
4190
4191 case BFD_RELOC_32_PCREL:
4192 case BFD_RELOC_HI16_S_PCREL:
4193 case BFD_RELOC_LO16_PCREL:
4194 return HAVE_64BIT_ADDRESSES;
4195
4196 default:
4197 return FALSE;
4198 }
4199 }
4200
4201 /* Return true if the given relocation might need a matching %lo().
4202 This is only "might" because SVR4 R_MIPS_GOT16 relocations only
4203 need a matching %lo() when applied to local symbols. */
4204
4205 static inline bfd_boolean
4206 reloc_needs_lo_p (bfd_reloc_code_real_type reloc)
4207 {
4208 return (HAVE_IN_PLACE_ADDENDS
4209 && (hi16_reloc_p (reloc)
4210 /* VxWorks R_MIPS_GOT16 relocs never need a matching %lo();
4211 all GOT16 relocations evaluate to "G". */
4212 || (got16_reloc_p (reloc) && mips_pic != VXWORKS_PIC)));
4213 }
4214
4215 /* Return the type of %lo() reloc needed by RELOC, given that
4216 reloc_needs_lo_p. */
4217
4218 static inline bfd_reloc_code_real_type
4219 matching_lo_reloc (bfd_reloc_code_real_type reloc)
4220 {
4221 return (mips16_reloc_p (reloc) ? BFD_RELOC_MIPS16_LO16
4222 : (micromips_reloc_p (reloc) ? BFD_RELOC_MICROMIPS_LO16
4223 : BFD_RELOC_LO16));
4224 }
4225
4226 /* Return true if the given fixup is followed by a matching R_MIPS_LO16
4227 relocation. */
4228
4229 static inline bfd_boolean
4230 fixup_has_matching_lo_p (fixS *fixp)
4231 {
4232 return (fixp->fx_next != NULL
4233 && fixp->fx_next->fx_r_type == matching_lo_reloc (fixp->fx_r_type)
4234 && fixp->fx_addsy == fixp->fx_next->fx_addsy
4235 && fixp->fx_offset == fixp->fx_next->fx_offset);
4236 }
4237
4238 /* Move all labels in LABELS to the current insertion point. TEXT_P
4239 says whether the labels refer to text or data. */
4240
4241 static void
4242 mips_move_labels (struct insn_label_list *labels, bfd_boolean text_p)
4243 {
4244 struct insn_label_list *l;
4245 valueT val;
4246
4247 for (l = labels; l != NULL; l = l->next)
4248 {
4249 gas_assert (S_GET_SEGMENT (l->label) == now_seg);
4250 symbol_set_frag (l->label, frag_now);
4251 val = (valueT) frag_now_fix ();
4252 /* MIPS16/microMIPS text labels are stored as odd. */
4253 if (text_p && HAVE_CODE_COMPRESSION)
4254 ++val;
4255 S_SET_VALUE (l->label, val);
4256 }
4257 }
4258
4259 /* Move all labels in insn_labels to the current insertion point
4260 and treat them as text labels. */
4261
4262 static void
4263 mips_move_text_labels (void)
4264 {
4265 mips_move_labels (seg_info (now_seg)->label_list, TRUE);
4266 }
4267
4268 static bfd_boolean
4269 s_is_linkonce (symbolS *sym, segT from_seg)
4270 {
4271 bfd_boolean linkonce = FALSE;
4272 segT symseg = S_GET_SEGMENT (sym);
4273
4274 if (symseg != from_seg && !S_IS_LOCAL (sym))
4275 {
4276 if ((bfd_get_section_flags (stdoutput, symseg) & SEC_LINK_ONCE))
4277 linkonce = TRUE;
4278 /* The GNU toolchain uses an extension for ELF: a section
4279 beginning with the magic string .gnu.linkonce is a
4280 linkonce section. */
4281 if (strncmp (segment_name (symseg), ".gnu.linkonce",
4282 sizeof ".gnu.linkonce" - 1) == 0)
4283 linkonce = TRUE;
4284 }
4285 return linkonce;
4286 }
4287
4288 /* Mark MIPS16 or microMIPS instruction label LABEL. This permits the
4289 linker to handle them specially, such as generating jalx instructions
4290 when needed. We also make them odd for the duration of the assembly,
4291 in order to generate the right sort of code. We will make them even
4292 in the adjust_symtab routine, while leaving them marked. This is
4293 convenient for the debugger and the disassembler. The linker knows
4294 to make them odd again. */
4295
4296 static void
4297 mips_compressed_mark_label (symbolS *label)
4298 {
4299 gas_assert (HAVE_CODE_COMPRESSION);
4300
4301 if (mips_opts.mips16)
4302 S_SET_OTHER (label, ELF_ST_SET_MIPS16 (S_GET_OTHER (label)));
4303 else
4304 S_SET_OTHER (label, ELF_ST_SET_MICROMIPS (S_GET_OTHER (label)));
4305 if ((S_GET_VALUE (label) & 1) == 0
4306 /* Don't adjust the address if the label is global or weak, or
4307 in a link-once section, since we'll be emitting symbol reloc
4308 references to it which will be patched up by the linker, and
4309 the final value of the symbol may or may not be MIPS16/microMIPS. */
4310 && !S_IS_WEAK (label)
4311 && !S_IS_EXTERNAL (label)
4312 && !s_is_linkonce (label, now_seg))
4313 S_SET_VALUE (label, S_GET_VALUE (label) | 1);
4314 }
4315
4316 /* Mark preceding MIPS16 or microMIPS instruction labels. */
4317
4318 static void
4319 mips_compressed_mark_labels (void)
4320 {
4321 struct insn_label_list *l;
4322
4323 for (l = seg_info (now_seg)->label_list; l != NULL; l = l->next)
4324 mips_compressed_mark_label (l->label);
4325 }
4326
4327 /* End the current frag. Make it a variant frag and record the
4328 relaxation info. */
4329
4330 static void
4331 relax_close_frag (void)
4332 {
4333 mips_macro_warning.first_frag = frag_now;
4334 frag_var (rs_machine_dependent, 0, 0,
4335 RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1]),
4336 mips_relax.symbol, 0, (char *) mips_relax.first_fixup);
4337
4338 memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes));
4339 mips_relax.first_fixup = 0;
4340 }
4341
4342 /* Start a new relaxation sequence whose expansion depends on SYMBOL.
4343 See the comment above RELAX_ENCODE for more details. */
4344
4345 static void
4346 relax_start (symbolS *symbol)
4347 {
4348 gas_assert (mips_relax.sequence == 0);
4349 mips_relax.sequence = 1;
4350 mips_relax.symbol = symbol;
4351 }
4352
4353 /* Start generating the second version of a relaxable sequence.
4354 See the comment above RELAX_ENCODE for more details. */
4355
4356 static void
4357 relax_switch (void)
4358 {
4359 gas_assert (mips_relax.sequence == 1);
4360 mips_relax.sequence = 2;
4361 }
4362
4363 /* End the current relaxable sequence. */
4364
4365 static void
4366 relax_end (void)
4367 {
4368 gas_assert (mips_relax.sequence == 2);
4369 relax_close_frag ();
4370 mips_relax.sequence = 0;
4371 }
4372
4373 /* Return true if IP is a delayed branch or jump. */
4374
4375 static inline bfd_boolean
4376 delayed_branch_p (const struct mips_cl_insn *ip)
4377 {
4378 return (ip->insn_mo->pinfo & (INSN_UNCOND_BRANCH_DELAY
4379 | INSN_COND_BRANCH_DELAY
4380 | INSN_COND_BRANCH_LIKELY)) != 0;
4381 }
4382
4383 /* Return true if IP is a compact branch or jump. */
4384
4385 static inline bfd_boolean
4386 compact_branch_p (const struct mips_cl_insn *ip)
4387 {
4388 return (ip->insn_mo->pinfo2 & (INSN2_UNCOND_BRANCH
4389 | INSN2_COND_BRANCH)) != 0;
4390 }
4391
4392 /* Return true if IP is an unconditional branch or jump. */
4393
4394 static inline bfd_boolean
4395 uncond_branch_p (const struct mips_cl_insn *ip)
4396 {
4397 return ((ip->insn_mo->pinfo & INSN_UNCOND_BRANCH_DELAY) != 0
4398 || (ip->insn_mo->pinfo2 & INSN2_UNCOND_BRANCH) != 0);
4399 }
4400
4401 /* Return true if IP is a branch-likely instruction. */
4402
4403 static inline bfd_boolean
4404 branch_likely_p (const struct mips_cl_insn *ip)
4405 {
4406 return (ip->insn_mo->pinfo & INSN_COND_BRANCH_LIKELY) != 0;
4407 }
4408
4409 /* Return the type of nop that should be used to fill the delay slot
4410 of delayed branch IP. */
4411
4412 static struct mips_cl_insn *
4413 get_delay_slot_nop (const struct mips_cl_insn *ip)
4414 {
4415 if (mips_opts.micromips
4416 && (ip->insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
4417 return &micromips_nop32_insn;
4418 return NOP_INSN;
4419 }
4420
4421 /* Return a mask that has bit N set if OPCODE reads the register(s)
4422 in operand N. */
4423
4424 static unsigned int
4425 insn_read_mask (const struct mips_opcode *opcode)
4426 {
4427 return (opcode->pinfo & INSN_READ_ALL) >> INSN_READ_SHIFT;
4428 }
4429
4430 /* Return a mask that has bit N set if OPCODE writes to the register(s)
4431 in operand N. */
4432
4433 static unsigned int
4434 insn_write_mask (const struct mips_opcode *opcode)
4435 {
4436 return (opcode->pinfo & INSN_WRITE_ALL) >> INSN_WRITE_SHIFT;
4437 }
4438
4439 /* Return a mask of the registers specified by operand OPERAND of INSN.
4440 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4441 is set. */
4442
4443 static unsigned int
4444 operand_reg_mask (const struct mips_cl_insn *insn,
4445 const struct mips_operand *operand,
4446 unsigned int type_mask)
4447 {
4448 unsigned int uval, vsel;
4449
4450 switch (operand->type)
4451 {
4452 case OP_INT:
4453 case OP_MAPPED_INT:
4454 case OP_MSB:
4455 case OP_PCREL:
4456 case OP_PERF_REG:
4457 case OP_ADDIUSP_INT:
4458 case OP_ENTRY_EXIT_LIST:
4459 case OP_REPEAT_DEST_REG:
4460 case OP_REPEAT_PREV_REG:
4461 case OP_PC:
4462 case OP_VU0_SUFFIX:
4463 case OP_VU0_MATCH_SUFFIX:
4464 case OP_IMM_INDEX:
4465 abort ();
4466
4467 case OP_REG:
4468 case OP_OPTIONAL_REG:
4469 {
4470 const struct mips_reg_operand *reg_op;
4471
4472 reg_op = (const struct mips_reg_operand *) operand;
4473 if (!(type_mask & (1 << reg_op->reg_type)))
4474 return 0;
4475 uval = insn_extract_operand (insn, operand);
4476 return 1 << mips_decode_reg_operand (reg_op, uval);
4477 }
4478
4479 case OP_REG_PAIR:
4480 {
4481 const struct mips_reg_pair_operand *pair_op;
4482
4483 pair_op = (const struct mips_reg_pair_operand *) operand;
4484 if (!(type_mask & (1 << pair_op->reg_type)))
4485 return 0;
4486 uval = insn_extract_operand (insn, operand);
4487 return (1 << pair_op->reg1_map[uval]) | (1 << pair_op->reg2_map[uval]);
4488 }
4489
4490 case OP_CLO_CLZ_DEST:
4491 if (!(type_mask & (1 << OP_REG_GP)))
4492 return 0;
4493 uval = insn_extract_operand (insn, operand);
4494 return (1 << (uval & 31)) | (1 << (uval >> 5));
4495
4496 case OP_SAME_RS_RT:
4497 if (!(type_mask & (1 << OP_REG_GP)))
4498 return 0;
4499 uval = insn_extract_operand (insn, operand);
4500 gas_assert ((uval & 31) == (uval >> 5));
4501 return 1 << (uval & 31);
4502
4503 case OP_CHECK_PREV:
4504 case OP_NON_ZERO_REG:
4505 if (!(type_mask & (1 << OP_REG_GP)))
4506 return 0;
4507 uval = insn_extract_operand (insn, operand);
4508 return 1 << (uval & 31);
4509
4510 case OP_LWM_SWM_LIST:
4511 abort ();
4512
4513 case OP_SAVE_RESTORE_LIST:
4514 abort ();
4515
4516 case OP_MDMX_IMM_REG:
4517 if (!(type_mask & (1 << OP_REG_VEC)))
4518 return 0;
4519 uval = insn_extract_operand (insn, operand);
4520 vsel = uval >> 5;
4521 if ((vsel & 0x18) == 0x18)
4522 return 0;
4523 return 1 << (uval & 31);
4524
4525 case OP_REG_INDEX:
4526 if (!(type_mask & (1 << OP_REG_GP)))
4527 return 0;
4528 return 1 << insn_extract_operand (insn, operand);
4529 }
4530 abort ();
4531 }
4532
4533 /* Return a mask of the registers specified by operands OPNO_MASK of INSN,
4534 where bit N of OPNO_MASK is set if operand N should be included.
4535 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4536 is set. */
4537
4538 static unsigned int
4539 insn_reg_mask (const struct mips_cl_insn *insn,
4540 unsigned int type_mask, unsigned int opno_mask)
4541 {
4542 unsigned int opno, reg_mask;
4543
4544 opno = 0;
4545 reg_mask = 0;
4546 while (opno_mask != 0)
4547 {
4548 if (opno_mask & 1)
4549 reg_mask |= operand_reg_mask (insn, insn_opno (insn, opno), type_mask);
4550 opno_mask >>= 1;
4551 opno += 1;
4552 }
4553 return reg_mask;
4554 }
4555
4556 /* Return the mask of core registers that IP reads. */
4557
4558 static unsigned int
4559 gpr_read_mask (const struct mips_cl_insn *ip)
4560 {
4561 unsigned long pinfo, pinfo2;
4562 unsigned int mask;
4563
4564 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_read_mask (ip->insn_mo));
4565 pinfo = ip->insn_mo->pinfo;
4566 pinfo2 = ip->insn_mo->pinfo2;
4567 if (pinfo & INSN_UDI)
4568 {
4569 /* UDI instructions have traditionally been assumed to read RS
4570 and RT. */
4571 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RT, *ip);
4572 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RS, *ip);
4573 }
4574 if (pinfo & INSN_READ_GPR_24)
4575 mask |= 1 << 24;
4576 if (pinfo2 & INSN2_READ_GPR_16)
4577 mask |= 1 << 16;
4578 if (pinfo2 & INSN2_READ_SP)
4579 mask |= 1 << SP;
4580 if (pinfo2 & INSN2_READ_GPR_31)
4581 mask |= 1 << 31;
4582 /* Don't include register 0. */
4583 return mask & ~1;
4584 }
4585
4586 /* Return the mask of core registers that IP writes. */
4587
4588 static unsigned int
4589 gpr_write_mask (const struct mips_cl_insn *ip)
4590 {
4591 unsigned long pinfo, pinfo2;
4592 unsigned int mask;
4593
4594 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_write_mask (ip->insn_mo));
4595 pinfo = ip->insn_mo->pinfo;
4596 pinfo2 = ip->insn_mo->pinfo2;
4597 if (pinfo & INSN_WRITE_GPR_24)
4598 mask |= 1 << 24;
4599 if (pinfo & INSN_WRITE_GPR_31)
4600 mask |= 1 << 31;
4601 if (pinfo & INSN_UDI)
4602 /* UDI instructions have traditionally been assumed to write to RD. */
4603 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RD, *ip);
4604 if (pinfo2 & INSN2_WRITE_SP)
4605 mask |= 1 << SP;
4606 /* Don't include register 0. */
4607 return mask & ~1;
4608 }
4609
4610 /* Return the mask of floating-point registers that IP reads. */
4611
4612 static unsigned int
4613 fpr_read_mask (const struct mips_cl_insn *ip)
4614 {
4615 unsigned long pinfo;
4616 unsigned int mask;
4617
4618 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4619 | (1 << OP_REG_MSA)),
4620 insn_read_mask (ip->insn_mo));
4621 pinfo = ip->insn_mo->pinfo;
4622 /* Conservatively treat all operands to an FP_D instruction are doubles.
4623 (This is overly pessimistic for things like cvt.d.s.) */
4624 if (FPR_SIZE != 64 && (pinfo & FP_D))
4625 mask |= mask << 1;
4626 return mask;
4627 }
4628
4629 /* Return the mask of floating-point registers that IP writes. */
4630
4631 static unsigned int
4632 fpr_write_mask (const struct mips_cl_insn *ip)
4633 {
4634 unsigned long pinfo;
4635 unsigned int mask;
4636
4637 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4638 | (1 << OP_REG_MSA)),
4639 insn_write_mask (ip->insn_mo));
4640 pinfo = ip->insn_mo->pinfo;
4641 /* Conservatively treat all operands to an FP_D instruction are doubles.
4642 (This is overly pessimistic for things like cvt.s.d.) */
4643 if (FPR_SIZE != 64 && (pinfo & FP_D))
4644 mask |= mask << 1;
4645 return mask;
4646 }
4647
4648 /* Operand OPNUM of INSN is an odd-numbered floating-point register.
4649 Check whether that is allowed. */
4650
4651 static bfd_boolean
4652 mips_oddfpreg_ok (const struct mips_opcode *insn, int opnum)
4653 {
4654 const char *s = insn->name;
4655 bfd_boolean oddspreg = (ISA_HAS_ODD_SINGLE_FPR (mips_opts.isa, mips_opts.arch)
4656 || FPR_SIZE == 64)
4657 && mips_opts.oddspreg;
4658
4659 if (insn->pinfo == INSN_MACRO)
4660 /* Let a macro pass, we'll catch it later when it is expanded. */
4661 return TRUE;
4662
4663 /* Single-precision coprocessor loads and moves are OK for 32-bit registers,
4664 otherwise it depends on oddspreg. */
4665 if ((insn->pinfo & FP_S)
4666 && (insn->pinfo & (INSN_LOAD_MEMORY | INSN_STORE_MEMORY
4667 | INSN_LOAD_COPROC | INSN_COPROC_MOVE)))
4668 return FPR_SIZE == 32 || oddspreg;
4669
4670 /* Allow odd registers for single-precision ops and double-precision if the
4671 floating-point registers are 64-bit wide. */
4672 switch (insn->pinfo & (FP_S | FP_D))
4673 {
4674 case FP_S:
4675 case 0:
4676 return oddspreg;
4677 case FP_D:
4678 return FPR_SIZE == 64;
4679 default:
4680 break;
4681 }
4682
4683 /* Cvt.w.x and cvt.x.w allow an odd register for a 'w' or 's' operand. */
4684 s = strchr (insn->name, '.');
4685 if (s != NULL && opnum == 2)
4686 s = strchr (s + 1, '.');
4687 if (s != NULL && (s[1] == 'w' || s[1] == 's'))
4688 return oddspreg;
4689
4690 return FPR_SIZE == 64;
4691 }
4692
4693 /* Information about an instruction argument that we're trying to match. */
4694 struct mips_arg_info
4695 {
4696 /* The instruction so far. */
4697 struct mips_cl_insn *insn;
4698
4699 /* The first unconsumed operand token. */
4700 struct mips_operand_token *token;
4701
4702 /* The 1-based operand number, in terms of insn->insn_mo->args. */
4703 int opnum;
4704
4705 /* The 1-based argument number, for error reporting. This does not
4706 count elided optional registers, etc.. */
4707 int argnum;
4708
4709 /* The last OP_REG operand seen, or ILLEGAL_REG if none. */
4710 unsigned int last_regno;
4711
4712 /* If the first operand was an OP_REG, this is the register that it
4713 specified, otherwise it is ILLEGAL_REG. */
4714 unsigned int dest_regno;
4715
4716 /* The value of the last OP_INT operand. Only used for OP_MSB,
4717 where it gives the lsb position. */
4718 unsigned int last_op_int;
4719
4720 /* If true, match routines should assume that no later instruction
4721 alternative matches and should therefore be as accommodating as
4722 possible. Match routines should not report errors if something
4723 is only invalid for !LAX_MATCH. */
4724 bfd_boolean lax_match;
4725
4726 /* True if a reference to the current AT register was seen. */
4727 bfd_boolean seen_at;
4728 };
4729
4730 /* Record that the argument is out of range. */
4731
4732 static void
4733 match_out_of_range (struct mips_arg_info *arg)
4734 {
4735 set_insn_error_i (arg->argnum, _("operand %d out of range"), arg->argnum);
4736 }
4737
4738 /* Record that the argument isn't constant but needs to be. */
4739
4740 static void
4741 match_not_constant (struct mips_arg_info *arg)
4742 {
4743 set_insn_error_i (arg->argnum, _("operand %d must be constant"),
4744 arg->argnum);
4745 }
4746
4747 /* Try to match an OT_CHAR token for character CH. Consume the token
4748 and return true on success, otherwise return false. */
4749
4750 static bfd_boolean
4751 match_char (struct mips_arg_info *arg, char ch)
4752 {
4753 if (arg->token->type == OT_CHAR && arg->token->u.ch == ch)
4754 {
4755 ++arg->token;
4756 if (ch == ',')
4757 arg->argnum += 1;
4758 return TRUE;
4759 }
4760 return FALSE;
4761 }
4762
4763 /* Try to get an expression from the next tokens in ARG. Consume the
4764 tokens and return true on success, storing the expression value in
4765 VALUE and relocation types in R. */
4766
4767 static bfd_boolean
4768 match_expression (struct mips_arg_info *arg, expressionS *value,
4769 bfd_reloc_code_real_type *r)
4770 {
4771 /* If the next token is a '(' that was parsed as being part of a base
4772 expression, assume we have an elided offset. The later match will fail
4773 if this turns out to be wrong. */
4774 if (arg->token->type == OT_CHAR && arg->token->u.ch == '(')
4775 {
4776 value->X_op = O_constant;
4777 value->X_add_number = 0;
4778 r[0] = r[1] = r[2] = BFD_RELOC_UNUSED;
4779 return TRUE;
4780 }
4781
4782 /* Reject register-based expressions such as "0+$2" and "(($2))".
4783 For plain registers the default error seems more appropriate. */
4784 if (arg->token->type == OT_INTEGER
4785 && arg->token->u.integer.value.X_op == O_register)
4786 {
4787 set_insn_error (arg->argnum, _("register value used as expression"));
4788 return FALSE;
4789 }
4790
4791 if (arg->token->type == OT_INTEGER)
4792 {
4793 *value = arg->token->u.integer.value;
4794 memcpy (r, arg->token->u.integer.relocs, 3 * sizeof (*r));
4795 ++arg->token;
4796 return TRUE;
4797 }
4798
4799 set_insn_error_i
4800 (arg->argnum, _("operand %d must be an immediate expression"),
4801 arg->argnum);
4802 return FALSE;
4803 }
4804
4805 /* Try to get a constant expression from the next tokens in ARG. Consume
4806 the tokens and return return true on success, storing the constant value
4807 in *VALUE. Use FALLBACK as the value if the match succeeded with an
4808 error. */
4809
4810 static bfd_boolean
4811 match_const_int (struct mips_arg_info *arg, offsetT *value)
4812 {
4813 expressionS ex;
4814 bfd_reloc_code_real_type r[3];
4815
4816 if (!match_expression (arg, &ex, r))
4817 return FALSE;
4818
4819 if (r[0] == BFD_RELOC_UNUSED && ex.X_op == O_constant)
4820 *value = ex.X_add_number;
4821 else
4822 {
4823 match_not_constant (arg);
4824 return FALSE;
4825 }
4826 return TRUE;
4827 }
4828
4829 /* Return the RTYPE_* flags for a register operand of type TYPE that
4830 appears in instruction OPCODE. */
4831
4832 static unsigned int
4833 convert_reg_type (const struct mips_opcode *opcode,
4834 enum mips_reg_operand_type type)
4835 {
4836 switch (type)
4837 {
4838 case OP_REG_GP:
4839 return RTYPE_NUM | RTYPE_GP;
4840
4841 case OP_REG_FP:
4842 /* Allow vector register names for MDMX if the instruction is a 64-bit
4843 FPR load, store or move (including moves to and from GPRs). */
4844 if ((mips_opts.ase & ASE_MDMX)
4845 && (opcode->pinfo & FP_D)
4846 && (opcode->pinfo & (INSN_COPROC_MOVE
4847 | INSN_COPROC_MEMORY_DELAY
4848 | INSN_LOAD_COPROC
4849 | INSN_LOAD_MEMORY
4850 | INSN_STORE_MEMORY)))
4851 return RTYPE_FPU | RTYPE_VEC;
4852 return RTYPE_FPU;
4853
4854 case OP_REG_CCC:
4855 if (opcode->pinfo & (FP_D | FP_S))
4856 return RTYPE_CCC | RTYPE_FCC;
4857 return RTYPE_CCC;
4858
4859 case OP_REG_VEC:
4860 if (opcode->membership & INSN_5400)
4861 return RTYPE_FPU;
4862 return RTYPE_FPU | RTYPE_VEC;
4863
4864 case OP_REG_ACC:
4865 return RTYPE_ACC;
4866
4867 case OP_REG_COPRO:
4868 if (opcode->name[strlen (opcode->name) - 1] == '0')
4869 return RTYPE_NUM | RTYPE_CP0;
4870 return RTYPE_NUM;
4871
4872 case OP_REG_HW:
4873 return RTYPE_NUM;
4874
4875 case OP_REG_VI:
4876 return RTYPE_NUM | RTYPE_VI;
4877
4878 case OP_REG_VF:
4879 return RTYPE_NUM | RTYPE_VF;
4880
4881 case OP_REG_R5900_I:
4882 return RTYPE_R5900_I;
4883
4884 case OP_REG_R5900_Q:
4885 return RTYPE_R5900_Q;
4886
4887 case OP_REG_R5900_R:
4888 return RTYPE_R5900_R;
4889
4890 case OP_REG_R5900_ACC:
4891 return RTYPE_R5900_ACC;
4892
4893 case OP_REG_MSA:
4894 return RTYPE_MSA;
4895
4896 case OP_REG_MSA_CTRL:
4897 return RTYPE_NUM;
4898 }
4899 abort ();
4900 }
4901
4902 /* ARG is register REGNO, of type TYPE. Warn about any dubious registers. */
4903
4904 static void
4905 check_regno (struct mips_arg_info *arg,
4906 enum mips_reg_operand_type type, unsigned int regno)
4907 {
4908 if (AT && type == OP_REG_GP && regno == AT)
4909 arg->seen_at = TRUE;
4910
4911 if (type == OP_REG_FP
4912 && (regno & 1) != 0
4913 && !mips_oddfpreg_ok (arg->insn->insn_mo, arg->opnum))
4914 {
4915 /* This was a warning prior to introducing O32 FPXX and FP64 support
4916 so maintain a warning for FP32 but raise an error for the new
4917 cases. */
4918 if (FPR_SIZE == 32)
4919 as_warn (_("float register should be even, was %d"), regno);
4920 else
4921 as_bad (_("float register should be even, was %d"), regno);
4922 }
4923
4924 if (type == OP_REG_CCC)
4925 {
4926 const char *name;
4927 size_t length;
4928
4929 name = arg->insn->insn_mo->name;
4930 length = strlen (name);
4931 if ((regno & 1) != 0
4932 && ((length >= 3 && strcmp (name + length - 3, ".ps") == 0)
4933 || (length >= 5 && strncmp (name + length - 5, "any2", 4) == 0)))
4934 as_warn (_("condition code register should be even for %s, was %d"),
4935 name, regno);
4936
4937 if ((regno & 3) != 0
4938 && (length >= 5 && strncmp (name + length - 5, "any4", 4) == 0))
4939 as_warn (_("condition code register should be 0 or 4 for %s, was %d"),
4940 name, regno);
4941 }
4942 }
4943
4944 /* ARG is a register with symbol value SYMVAL. Try to interpret it as
4945 a register of type TYPE. Return true on success, storing the register
4946 number in *REGNO and warning about any dubious uses. */
4947
4948 static bfd_boolean
4949 match_regno (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4950 unsigned int symval, unsigned int *regno)
4951 {
4952 if (type == OP_REG_VEC)
4953 symval = mips_prefer_vec_regno (symval);
4954 if (!(symval & convert_reg_type (arg->insn->insn_mo, type)))
4955 return FALSE;
4956
4957 *regno = symval & RNUM_MASK;
4958 check_regno (arg, type, *regno);
4959 return TRUE;
4960 }
4961
4962 /* Try to interpret the next token in ARG as a register of type TYPE.
4963 Consume the token and return true on success, storing the register
4964 number in *REGNO. Return false on failure. */
4965
4966 static bfd_boolean
4967 match_reg (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4968 unsigned int *regno)
4969 {
4970 if (arg->token->type == OT_REG
4971 && match_regno (arg, type, arg->token->u.regno, regno))
4972 {
4973 ++arg->token;
4974 return TRUE;
4975 }
4976 return FALSE;
4977 }
4978
4979 /* Try to interpret the next token in ARG as a range of registers of type TYPE.
4980 Consume the token and return true on success, storing the register numbers
4981 in *REGNO1 and *REGNO2. Return false on failure. */
4982
4983 static bfd_boolean
4984 match_reg_range (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4985 unsigned int *regno1, unsigned int *regno2)
4986 {
4987 if (match_reg (arg, type, regno1))
4988 {
4989 *regno2 = *regno1;
4990 return TRUE;
4991 }
4992 if (arg->token->type == OT_REG_RANGE
4993 && match_regno (arg, type, arg->token->u.reg_range.regno1, regno1)
4994 && match_regno (arg, type, arg->token->u.reg_range.regno2, regno2)
4995 && *regno1 <= *regno2)
4996 {
4997 ++arg->token;
4998 return TRUE;
4999 }
5000 return FALSE;
5001 }
5002
5003 /* OP_INT matcher. */
5004
5005 static bfd_boolean
5006 match_int_operand (struct mips_arg_info *arg,
5007 const struct mips_operand *operand_base)
5008 {
5009 const struct mips_int_operand *operand;
5010 unsigned int uval;
5011 int min_val, max_val, factor;
5012 offsetT sval;
5013
5014 operand = (const struct mips_int_operand *) operand_base;
5015 factor = 1 << operand->shift;
5016 min_val = mips_int_operand_min (operand);
5017 max_val = mips_int_operand_max (operand);
5018
5019 if (operand_base->lsb == 0
5020 && operand_base->size == 16
5021 && operand->shift == 0
5022 && operand->bias == 0
5023 && (operand->max_val == 32767 || operand->max_val == 65535))
5024 {
5025 /* The operand can be relocated. */
5026 if (!match_expression (arg, &offset_expr, offset_reloc))
5027 return FALSE;
5028
5029 if (offset_reloc[0] != BFD_RELOC_UNUSED)
5030 /* Relocation operators were used. Accept the arguent and
5031 leave the relocation value in offset_expr and offset_relocs
5032 for the caller to process. */
5033 return TRUE;
5034
5035 if (offset_expr.X_op != O_constant)
5036 {
5037 /* Accept non-constant operands if no later alternative matches,
5038 leaving it for the caller to process. */
5039 if (!arg->lax_match)
5040 return FALSE;
5041 offset_reloc[0] = BFD_RELOC_LO16;
5042 return TRUE;
5043 }
5044
5045 /* Clear the global state; we're going to install the operand
5046 ourselves. */
5047 sval = offset_expr.X_add_number;
5048 offset_expr.X_op = O_absent;
5049
5050 /* For compatibility with older assemblers, we accept
5051 0x8000-0xffff as signed 16-bit numbers when only
5052 signed numbers are allowed. */
5053 if (sval > max_val)
5054 {
5055 max_val = ((1 << operand_base->size) - 1) << operand->shift;
5056 if (!arg->lax_match && sval <= max_val)
5057 return FALSE;
5058 }
5059 }
5060 else
5061 {
5062 if (!match_const_int (arg, &sval))
5063 return FALSE;
5064 }
5065
5066 arg->last_op_int = sval;
5067
5068 if (sval < min_val || sval > max_val || sval % factor)
5069 {
5070 match_out_of_range (arg);
5071 return FALSE;
5072 }
5073
5074 uval = (unsigned int) sval >> operand->shift;
5075 uval -= operand->bias;
5076
5077 /* Handle -mfix-cn63xxp1. */
5078 if (arg->opnum == 1
5079 && mips_fix_cn63xxp1
5080 && !mips_opts.micromips
5081 && strcmp ("pref", arg->insn->insn_mo->name) == 0)
5082 switch (uval)
5083 {
5084 case 5:
5085 case 25:
5086 case 26:
5087 case 27:
5088 case 28:
5089 case 29:
5090 case 30:
5091 case 31:
5092 /* These are ok. */
5093 break;
5094
5095 default:
5096 /* The rest must be changed to 28. */
5097 uval = 28;
5098 break;
5099 }
5100
5101 insn_insert_operand (arg->insn, operand_base, uval);
5102 return TRUE;
5103 }
5104
5105 /* OP_MAPPED_INT matcher. */
5106
5107 static bfd_boolean
5108 match_mapped_int_operand (struct mips_arg_info *arg,
5109 const struct mips_operand *operand_base)
5110 {
5111 const struct mips_mapped_int_operand *operand;
5112 unsigned int uval, num_vals;
5113 offsetT sval;
5114
5115 operand = (const struct mips_mapped_int_operand *) operand_base;
5116 if (!match_const_int (arg, &sval))
5117 return FALSE;
5118
5119 num_vals = 1 << operand_base->size;
5120 for (uval = 0; uval < num_vals; uval++)
5121 if (operand->int_map[uval] == sval)
5122 break;
5123 if (uval == num_vals)
5124 {
5125 match_out_of_range (arg);
5126 return FALSE;
5127 }
5128
5129 insn_insert_operand (arg->insn, operand_base, uval);
5130 return TRUE;
5131 }
5132
5133 /* OP_MSB matcher. */
5134
5135 static bfd_boolean
5136 match_msb_operand (struct mips_arg_info *arg,
5137 const struct mips_operand *operand_base)
5138 {
5139 const struct mips_msb_operand *operand;
5140 int min_val, max_val, max_high;
5141 offsetT size, sval, high;
5142
5143 operand = (const struct mips_msb_operand *) operand_base;
5144 min_val = operand->bias;
5145 max_val = min_val + (1 << operand_base->size) - 1;
5146 max_high = operand->opsize;
5147
5148 if (!match_const_int (arg, &size))
5149 return FALSE;
5150
5151 high = size + arg->last_op_int;
5152 sval = operand->add_lsb ? high : size;
5153
5154 if (size < 0 || high > max_high || sval < min_val || sval > max_val)
5155 {
5156 match_out_of_range (arg);
5157 return FALSE;
5158 }
5159 insn_insert_operand (arg->insn, operand_base, sval - min_val);
5160 return TRUE;
5161 }
5162
5163 /* OP_REG matcher. */
5164
5165 static bfd_boolean
5166 match_reg_operand (struct mips_arg_info *arg,
5167 const struct mips_operand *operand_base)
5168 {
5169 const struct mips_reg_operand *operand;
5170 unsigned int regno, uval, num_vals;
5171
5172 operand = (const struct mips_reg_operand *) operand_base;
5173 if (!match_reg (arg, operand->reg_type, &regno))
5174 return FALSE;
5175
5176 if (operand->reg_map)
5177 {
5178 num_vals = 1 << operand->root.size;
5179 for (uval = 0; uval < num_vals; uval++)
5180 if (operand->reg_map[uval] == regno)
5181 break;
5182 if (num_vals == uval)
5183 return FALSE;
5184 }
5185 else
5186 uval = regno;
5187
5188 arg->last_regno = regno;
5189 if (arg->opnum == 1)
5190 arg->dest_regno = regno;
5191 insn_insert_operand (arg->insn, operand_base, uval);
5192 return TRUE;
5193 }
5194
5195 /* OP_REG_PAIR matcher. */
5196
5197 static bfd_boolean
5198 match_reg_pair_operand (struct mips_arg_info *arg,
5199 const struct mips_operand *operand_base)
5200 {
5201 const struct mips_reg_pair_operand *operand;
5202 unsigned int regno1, regno2, uval, num_vals;
5203
5204 operand = (const struct mips_reg_pair_operand *) operand_base;
5205 if (!match_reg (arg, operand->reg_type, &regno1)
5206 || !match_char (arg, ',')
5207 || !match_reg (arg, operand->reg_type, &regno2))
5208 return FALSE;
5209
5210 num_vals = 1 << operand_base->size;
5211 for (uval = 0; uval < num_vals; uval++)
5212 if (operand->reg1_map[uval] == regno1 && operand->reg2_map[uval] == regno2)
5213 break;
5214 if (uval == num_vals)
5215 return FALSE;
5216
5217 insn_insert_operand (arg->insn, operand_base, uval);
5218 return TRUE;
5219 }
5220
5221 /* OP_PCREL matcher. The caller chooses the relocation type. */
5222
5223 static bfd_boolean
5224 match_pcrel_operand (struct mips_arg_info *arg)
5225 {
5226 bfd_reloc_code_real_type r[3];
5227
5228 return match_expression (arg, &offset_expr, r) && r[0] == BFD_RELOC_UNUSED;
5229 }
5230
5231 /* OP_PERF_REG matcher. */
5232
5233 static bfd_boolean
5234 match_perf_reg_operand (struct mips_arg_info *arg,
5235 const struct mips_operand *operand)
5236 {
5237 offsetT sval;
5238
5239 if (!match_const_int (arg, &sval))
5240 return FALSE;
5241
5242 if (sval != 0
5243 && (sval != 1
5244 || (mips_opts.arch == CPU_R5900
5245 && (strcmp (arg->insn->insn_mo->name, "mfps") == 0
5246 || strcmp (arg->insn->insn_mo->name, "mtps") == 0))))
5247 {
5248 set_insn_error (arg->argnum, _("invalid performance register"));
5249 return FALSE;
5250 }
5251
5252 insn_insert_operand (arg->insn, operand, sval);
5253 return TRUE;
5254 }
5255
5256 /* OP_ADDIUSP matcher. */
5257
5258 static bfd_boolean
5259 match_addiusp_operand (struct mips_arg_info *arg,
5260 const struct mips_operand *operand)
5261 {
5262 offsetT sval;
5263 unsigned int uval;
5264
5265 if (!match_const_int (arg, &sval))
5266 return FALSE;
5267
5268 if (sval % 4)
5269 {
5270 match_out_of_range (arg);
5271 return FALSE;
5272 }
5273
5274 sval /= 4;
5275 if (!(sval >= -258 && sval <= 257) || (sval >= -2 && sval <= 1))
5276 {
5277 match_out_of_range (arg);
5278 return FALSE;
5279 }
5280
5281 uval = (unsigned int) sval;
5282 uval = ((uval >> 1) & ~0xff) | (uval & 0xff);
5283 insn_insert_operand (arg->insn, operand, uval);
5284 return TRUE;
5285 }
5286
5287 /* OP_CLO_CLZ_DEST matcher. */
5288
5289 static bfd_boolean
5290 match_clo_clz_dest_operand (struct mips_arg_info *arg,
5291 const struct mips_operand *operand)
5292 {
5293 unsigned int regno;
5294
5295 if (!match_reg (arg, OP_REG_GP, &regno))
5296 return FALSE;
5297
5298 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
5299 return TRUE;
5300 }
5301
5302 /* OP_CHECK_PREV matcher. */
5303
5304 static bfd_boolean
5305 match_check_prev_operand (struct mips_arg_info *arg,
5306 const struct mips_operand *operand_base)
5307 {
5308 const struct mips_check_prev_operand *operand;
5309 unsigned int regno;
5310
5311 operand = (const struct mips_check_prev_operand *) operand_base;
5312
5313 if (!match_reg (arg, OP_REG_GP, &regno))
5314 return FALSE;
5315
5316 if (!operand->zero_ok && regno == 0)
5317 return FALSE;
5318
5319 if ((operand->less_than_ok && regno < arg->last_regno)
5320 || (operand->greater_than_ok && regno > arg->last_regno)
5321 || (operand->equal_ok && regno == arg->last_regno))
5322 {
5323 arg->last_regno = regno;
5324 insn_insert_operand (arg->insn, operand_base, regno);
5325 return TRUE;
5326 }
5327
5328 return FALSE;
5329 }
5330
5331 /* OP_SAME_RS_RT matcher. */
5332
5333 static bfd_boolean
5334 match_same_rs_rt_operand (struct mips_arg_info *arg,
5335 const struct mips_operand *operand)
5336 {
5337 unsigned int regno;
5338
5339 if (!match_reg (arg, OP_REG_GP, &regno))
5340 return FALSE;
5341
5342 if (regno == 0)
5343 {
5344 set_insn_error (arg->argnum, _("the source register must not be $0"));
5345 return FALSE;
5346 }
5347
5348 arg->last_regno = regno;
5349
5350 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
5351 return TRUE;
5352 }
5353
5354 /* OP_LWM_SWM_LIST matcher. */
5355
5356 static bfd_boolean
5357 match_lwm_swm_list_operand (struct mips_arg_info *arg,
5358 const struct mips_operand *operand)
5359 {
5360 unsigned int reglist, sregs, ra, regno1, regno2;
5361 struct mips_arg_info reset;
5362
5363 reglist = 0;
5364 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5365 return FALSE;
5366 do
5367 {
5368 if (regno2 == FP && regno1 >= S0 && regno1 <= S7)
5369 {
5370 reglist |= 1 << FP;
5371 regno2 = S7;
5372 }
5373 reglist |= ((1U << regno2 << 1) - 1) & -(1U << regno1);
5374 reset = *arg;
5375 }
5376 while (match_char (arg, ',')
5377 && match_reg_range (arg, OP_REG_GP, &regno1, &regno2));
5378 *arg = reset;
5379
5380 if (operand->size == 2)
5381 {
5382 /* The list must include both ra and s0-sN, for 0 <= N <= 3. E.g.:
5383
5384 s0, ra
5385 s0, s1, ra, s2, s3
5386 s0-s2, ra
5387
5388 and any permutations of these. */
5389 if ((reglist & 0xfff1ffff) != 0x80010000)
5390 return FALSE;
5391
5392 sregs = (reglist >> 17) & 7;
5393 ra = 0;
5394 }
5395 else
5396 {
5397 /* The list must include at least one of ra and s0-sN,
5398 for 0 <= N <= 8. (Note that there is a gap between s7 and s8,
5399 which are $23 and $30 respectively.) E.g.:
5400
5401 ra
5402 s0
5403 ra, s0, s1, s2
5404 s0-s8
5405 s0-s5, ra
5406
5407 and any permutations of these. */
5408 if ((reglist & 0x3f00ffff) != 0)
5409 return FALSE;
5410
5411 ra = (reglist >> 27) & 0x10;
5412 sregs = ((reglist >> 22) & 0x100) | ((reglist >> 16) & 0xff);
5413 }
5414 sregs += 1;
5415 if ((sregs & -sregs) != sregs)
5416 return FALSE;
5417
5418 insn_insert_operand (arg->insn, operand, (ffs (sregs) - 1) | ra);
5419 return TRUE;
5420 }
5421
5422 /* OP_ENTRY_EXIT_LIST matcher. */
5423
5424 static unsigned int
5425 match_entry_exit_operand (struct mips_arg_info *arg,
5426 const struct mips_operand *operand)
5427 {
5428 unsigned int mask;
5429 bfd_boolean is_exit;
5430
5431 /* The format is the same for both ENTRY and EXIT, but the constraints
5432 are different. */
5433 is_exit = strcmp (arg->insn->insn_mo->name, "exit") == 0;
5434 mask = (is_exit ? 7 << 3 : 0);
5435 do
5436 {
5437 unsigned int regno1, regno2;
5438 bfd_boolean is_freg;
5439
5440 if (match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5441 is_freg = FALSE;
5442 else if (match_reg_range (arg, OP_REG_FP, &regno1, &regno2))
5443 is_freg = TRUE;
5444 else
5445 return FALSE;
5446
5447 if (is_exit && is_freg && regno1 == 0 && regno2 < 2)
5448 {
5449 mask &= ~(7 << 3);
5450 mask |= (5 + regno2) << 3;
5451 }
5452 else if (!is_exit && regno1 == 4 && regno2 >= 4 && regno2 <= 7)
5453 mask |= (regno2 - 3) << 3;
5454 else if (regno1 == 16 && regno2 >= 16 && regno2 <= 17)
5455 mask |= (regno2 - 15) << 1;
5456 else if (regno1 == RA && regno2 == RA)
5457 mask |= 1;
5458 else
5459 return FALSE;
5460 }
5461 while (match_char (arg, ','));
5462
5463 insn_insert_operand (arg->insn, operand, mask);
5464 return TRUE;
5465 }
5466
5467 /* OP_SAVE_RESTORE_LIST matcher. */
5468
5469 static bfd_boolean
5470 match_save_restore_list_operand (struct mips_arg_info *arg)
5471 {
5472 unsigned int opcode, args, statics, sregs;
5473 unsigned int num_frame_sizes, num_args, num_statics, num_sregs;
5474 offsetT frame_size;
5475
5476 opcode = arg->insn->insn_opcode;
5477 frame_size = 0;
5478 num_frame_sizes = 0;
5479 args = 0;
5480 statics = 0;
5481 sregs = 0;
5482 do
5483 {
5484 unsigned int regno1, regno2;
5485
5486 if (arg->token->type == OT_INTEGER)
5487 {
5488 /* Handle the frame size. */
5489 if (!match_const_int (arg, &frame_size))
5490 return FALSE;
5491 num_frame_sizes += 1;
5492 }
5493 else
5494 {
5495 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5496 return FALSE;
5497
5498 while (regno1 <= regno2)
5499 {
5500 if (regno1 >= 4 && regno1 <= 7)
5501 {
5502 if (num_frame_sizes == 0)
5503 /* args $a0-$a3 */
5504 args |= 1 << (regno1 - 4);
5505 else
5506 /* statics $a0-$a3 */
5507 statics |= 1 << (regno1 - 4);
5508 }
5509 else if (regno1 >= 16 && regno1 <= 23)
5510 /* $s0-$s7 */
5511 sregs |= 1 << (regno1 - 16);
5512 else if (regno1 == 30)
5513 /* $s8 */
5514 sregs |= 1 << 8;
5515 else if (regno1 == 31)
5516 /* Add $ra to insn. */
5517 opcode |= 0x40;
5518 else
5519 return FALSE;
5520 regno1 += 1;
5521 if (regno1 == 24)
5522 regno1 = 30;
5523 }
5524 }
5525 }
5526 while (match_char (arg, ','));
5527
5528 /* Encode args/statics combination. */
5529 if (args & statics)
5530 return FALSE;
5531 else if (args == 0xf)
5532 /* All $a0-$a3 are args. */
5533 opcode |= MIPS16_ALL_ARGS << 16;
5534 else if (statics == 0xf)
5535 /* All $a0-$a3 are statics. */
5536 opcode |= MIPS16_ALL_STATICS << 16;
5537 else
5538 {
5539 /* Count arg registers. */
5540 num_args = 0;
5541 while (args & 0x1)
5542 {
5543 args >>= 1;
5544 num_args += 1;
5545 }
5546 if (args != 0)
5547 return FALSE;
5548
5549 /* Count static registers. */
5550 num_statics = 0;
5551 while (statics & 0x8)
5552 {
5553 statics = (statics << 1) & 0xf;
5554 num_statics += 1;
5555 }
5556 if (statics != 0)
5557 return FALSE;
5558
5559 /* Encode args/statics. */
5560 opcode |= ((num_args << 2) | num_statics) << 16;
5561 }
5562
5563 /* Encode $s0/$s1. */
5564 if (sregs & (1 << 0)) /* $s0 */
5565 opcode |= 0x20;
5566 if (sregs & (1 << 1)) /* $s1 */
5567 opcode |= 0x10;
5568 sregs >>= 2;
5569
5570 /* Encode $s2-$s8. */
5571 num_sregs = 0;
5572 while (sregs & 1)
5573 {
5574 sregs >>= 1;
5575 num_sregs += 1;
5576 }
5577 if (sregs != 0)
5578 return FALSE;
5579 opcode |= num_sregs << 24;
5580
5581 /* Encode frame size. */
5582 if (num_frame_sizes == 0)
5583 {
5584 set_insn_error (arg->argnum, _("missing frame size"));
5585 return FALSE;
5586 }
5587 if (num_frame_sizes > 1)
5588 {
5589 set_insn_error (arg->argnum, _("frame size specified twice"));
5590 return FALSE;
5591 }
5592 if ((frame_size & 7) != 0 || frame_size < 0 || frame_size > 0xff * 8)
5593 {
5594 set_insn_error (arg->argnum, _("invalid frame size"));
5595 return FALSE;
5596 }
5597 if (frame_size != 128 || (opcode >> 16) != 0)
5598 {
5599 frame_size /= 8;
5600 opcode |= (((frame_size & 0xf0) << 16)
5601 | (frame_size & 0x0f));
5602 }
5603
5604 /* Finally build the instruction. */
5605 if ((opcode >> 16) != 0 || frame_size == 0)
5606 opcode |= MIPS16_EXTEND;
5607 arg->insn->insn_opcode = opcode;
5608 return TRUE;
5609 }
5610
5611 /* OP_MDMX_IMM_REG matcher. */
5612
5613 static bfd_boolean
5614 match_mdmx_imm_reg_operand (struct mips_arg_info *arg,
5615 const struct mips_operand *operand)
5616 {
5617 unsigned int regno, uval;
5618 bfd_boolean is_qh;
5619 const struct mips_opcode *opcode;
5620
5621 /* The mips_opcode records whether this is an octobyte or quadhalf
5622 instruction. Start out with that bit in place. */
5623 opcode = arg->insn->insn_mo;
5624 uval = mips_extract_operand (operand, opcode->match);
5625 is_qh = (uval != 0);
5626
5627 if (arg->token->type == OT_REG)
5628 {
5629 if ((opcode->membership & INSN_5400)
5630 && strcmp (opcode->name, "rzu.ob") == 0)
5631 {
5632 set_insn_error_i (arg->argnum, _("operand %d must be an immediate"),
5633 arg->argnum);
5634 return FALSE;
5635 }
5636
5637 if (!match_regno (arg, OP_REG_VEC, arg->token->u.regno, &regno))
5638 return FALSE;
5639 ++arg->token;
5640
5641 /* Check whether this is a vector register or a broadcast of
5642 a single element. */
5643 if (arg->token->type == OT_INTEGER_INDEX)
5644 {
5645 if (arg->token->u.index > (is_qh ? 3 : 7))
5646 {
5647 set_insn_error (arg->argnum, _("invalid element selector"));
5648 return FALSE;
5649 }
5650 uval |= arg->token->u.index << (is_qh ? 2 : 1) << 5;
5651 ++arg->token;
5652 }
5653 else
5654 {
5655 /* A full vector. */
5656 if ((opcode->membership & INSN_5400)
5657 && (strcmp (opcode->name, "sll.ob") == 0
5658 || strcmp (opcode->name, "srl.ob") == 0))
5659 {
5660 set_insn_error_i (arg->argnum, _("operand %d must be scalar"),
5661 arg->argnum);
5662 return FALSE;
5663 }
5664
5665 if (is_qh)
5666 uval |= MDMX_FMTSEL_VEC_QH << 5;
5667 else
5668 uval |= MDMX_FMTSEL_VEC_OB << 5;
5669 }
5670 uval |= regno;
5671 }
5672 else
5673 {
5674 offsetT sval;
5675
5676 if (!match_const_int (arg, &sval))
5677 return FALSE;
5678 if (sval < 0 || sval > 31)
5679 {
5680 match_out_of_range (arg);
5681 return FALSE;
5682 }
5683 uval |= (sval & 31);
5684 if (is_qh)
5685 uval |= MDMX_FMTSEL_IMM_QH << 5;
5686 else
5687 uval |= MDMX_FMTSEL_IMM_OB << 5;
5688 }
5689 insn_insert_operand (arg->insn, operand, uval);
5690 return TRUE;
5691 }
5692
5693 /* OP_IMM_INDEX matcher. */
5694
5695 static bfd_boolean
5696 match_imm_index_operand (struct mips_arg_info *arg,
5697 const struct mips_operand *operand)
5698 {
5699 unsigned int max_val;
5700
5701 if (arg->token->type != OT_INTEGER_INDEX)
5702 return FALSE;
5703
5704 max_val = (1 << operand->size) - 1;
5705 if (arg->token->u.index > max_val)
5706 {
5707 match_out_of_range (arg);
5708 return FALSE;
5709 }
5710 insn_insert_operand (arg->insn, operand, arg->token->u.index);
5711 ++arg->token;
5712 return TRUE;
5713 }
5714
5715 /* OP_REG_INDEX matcher. */
5716
5717 static bfd_boolean
5718 match_reg_index_operand (struct mips_arg_info *arg,
5719 const struct mips_operand *operand)
5720 {
5721 unsigned int regno;
5722
5723 if (arg->token->type != OT_REG_INDEX)
5724 return FALSE;
5725
5726 if (!match_regno (arg, OP_REG_GP, arg->token->u.regno, &regno))
5727 return FALSE;
5728
5729 insn_insert_operand (arg->insn, operand, regno);
5730 ++arg->token;
5731 return TRUE;
5732 }
5733
5734 /* OP_PC matcher. */
5735
5736 static bfd_boolean
5737 match_pc_operand (struct mips_arg_info *arg)
5738 {
5739 if (arg->token->type == OT_REG && (arg->token->u.regno & RTYPE_PC))
5740 {
5741 ++arg->token;
5742 return TRUE;
5743 }
5744 return FALSE;
5745 }
5746
5747 /* OP_NON_ZERO_REG matcher. */
5748
5749 static bfd_boolean
5750 match_non_zero_reg_operand (struct mips_arg_info *arg,
5751 const struct mips_operand *operand)
5752 {
5753 unsigned int regno;
5754
5755 if (!match_reg (arg, OP_REG_GP, &regno))
5756 return FALSE;
5757
5758 if (regno == 0)
5759 return FALSE;
5760
5761 arg->last_regno = regno;
5762 insn_insert_operand (arg->insn, operand, regno);
5763 return TRUE;
5764 }
5765
5766 /* OP_REPEAT_DEST_REG and OP_REPEAT_PREV_REG matcher. OTHER_REGNO is the
5767 register that we need to match. */
5768
5769 static bfd_boolean
5770 match_tied_reg_operand (struct mips_arg_info *arg, unsigned int other_regno)
5771 {
5772 unsigned int regno;
5773
5774 return match_reg (arg, OP_REG_GP, &regno) && regno == other_regno;
5775 }
5776
5777 /* Read a floating-point constant from S for LI.S or LI.D. LENGTH is
5778 the length of the value in bytes (4 for float, 8 for double) and
5779 USING_GPRS says whether the destination is a GPR rather than an FPR.
5780
5781 Return the constant in IMM and OFFSET as follows:
5782
5783 - If the constant should be loaded via memory, set IMM to O_absent and
5784 OFFSET to the memory address.
5785
5786 - Otherwise, if the constant should be loaded into two 32-bit registers,
5787 set IMM to the O_constant to load into the high register and OFFSET
5788 to the corresponding value for the low register.
5789
5790 - Otherwise, set IMM to the full O_constant and set OFFSET to O_absent.
5791
5792 These constants only appear as the last operand in an instruction,
5793 and every instruction that accepts them in any variant accepts them
5794 in all variants. This means we don't have to worry about backing out
5795 any changes if the instruction does not match. We just match
5796 unconditionally and report an error if the constant is invalid. */
5797
5798 static bfd_boolean
5799 match_float_constant (struct mips_arg_info *arg, expressionS *imm,
5800 expressionS *offset, int length, bfd_boolean using_gprs)
5801 {
5802 char *p;
5803 segT seg, new_seg;
5804 subsegT subseg;
5805 const char *newname;
5806 unsigned char *data;
5807
5808 /* Where the constant is placed is based on how the MIPS assembler
5809 does things:
5810
5811 length == 4 && using_gprs -- immediate value only
5812 length == 8 && using_gprs -- .rdata or immediate value
5813 length == 4 && !using_gprs -- .lit4 or immediate value
5814 length == 8 && !using_gprs -- .lit8 or immediate value
5815
5816 The .lit4 and .lit8 sections are only used if permitted by the
5817 -G argument. */
5818 if (arg->token->type != OT_FLOAT)
5819 {
5820 set_insn_error (arg->argnum, _("floating-point expression required"));
5821 return FALSE;
5822 }
5823
5824 gas_assert (arg->token->u.flt.length == length);
5825 data = arg->token->u.flt.data;
5826 ++arg->token;
5827
5828 /* Handle 32-bit constants for which an immediate value is best. */
5829 if (length == 4
5830 && (using_gprs
5831 || g_switch_value < 4
5832 || (data[0] == 0 && data[1] == 0)
5833 || (data[2] == 0 && data[3] == 0)))
5834 {
5835 imm->X_op = O_constant;
5836 if (!target_big_endian)
5837 imm->X_add_number = bfd_getl32 (data);
5838 else
5839 imm->X_add_number = bfd_getb32 (data);
5840 offset->X_op = O_absent;
5841 return TRUE;
5842 }
5843
5844 /* Handle 64-bit constants for which an immediate value is best. */
5845 if (length == 8
5846 && !mips_disable_float_construction
5847 /* Constants can only be constructed in GPRs and copied to FPRs if the
5848 GPRs are at least as wide as the FPRs or MTHC1 is available.
5849 Unlike most tests for 32-bit floating-point registers this check
5850 specifically looks for GPR_SIZE == 32 as the FPXX ABI does not
5851 permit 64-bit moves without MXHC1.
5852 Force the constant into memory otherwise. */
5853 && (using_gprs
5854 || GPR_SIZE == 64
5855 || ISA_HAS_MXHC1 (mips_opts.isa)
5856 || FPR_SIZE == 32)
5857 && ((data[0] == 0 && data[1] == 0)
5858 || (data[2] == 0 && data[3] == 0))
5859 && ((data[4] == 0 && data[5] == 0)
5860 || (data[6] == 0 && data[7] == 0)))
5861 {
5862 /* The value is simple enough to load with a couple of instructions.
5863 If using 32-bit registers, set IMM to the high order 32 bits and
5864 OFFSET to the low order 32 bits. Otherwise, set IMM to the entire
5865 64 bit constant. */
5866 if (GPR_SIZE == 32 || (!using_gprs && FPR_SIZE != 64))
5867 {
5868 imm->X_op = O_constant;
5869 offset->X_op = O_constant;
5870 if (!target_big_endian)
5871 {
5872 imm->X_add_number = bfd_getl32 (data + 4);
5873 offset->X_add_number = bfd_getl32 (data);
5874 }
5875 else
5876 {
5877 imm->X_add_number = bfd_getb32 (data);
5878 offset->X_add_number = bfd_getb32 (data + 4);
5879 }
5880 if (offset->X_add_number == 0)
5881 offset->X_op = O_absent;
5882 }
5883 else
5884 {
5885 imm->X_op = O_constant;
5886 if (!target_big_endian)
5887 imm->X_add_number = bfd_getl64 (data);
5888 else
5889 imm->X_add_number = bfd_getb64 (data);
5890 offset->X_op = O_absent;
5891 }
5892 return TRUE;
5893 }
5894
5895 /* Switch to the right section. */
5896 seg = now_seg;
5897 subseg = now_subseg;
5898 if (length == 4)
5899 {
5900 gas_assert (!using_gprs && g_switch_value >= 4);
5901 newname = ".lit4";
5902 }
5903 else
5904 {
5905 if (using_gprs || g_switch_value < 8)
5906 newname = RDATA_SECTION_NAME;
5907 else
5908 newname = ".lit8";
5909 }
5910
5911 new_seg = subseg_new (newname, (subsegT) 0);
5912 bfd_set_section_flags (stdoutput, new_seg,
5913 SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_DATA);
5914 frag_align (length == 4 ? 2 : 3, 0, 0);
5915 if (strncmp (TARGET_OS, "elf", 3) != 0)
5916 record_alignment (new_seg, 4);
5917 else
5918 record_alignment (new_seg, length == 4 ? 2 : 3);
5919 if (seg == now_seg)
5920 as_bad (_("cannot use `%s' in this section"), arg->insn->insn_mo->name);
5921
5922 /* Set the argument to the current address in the section. */
5923 imm->X_op = O_absent;
5924 offset->X_op = O_symbol;
5925 offset->X_add_symbol = symbol_temp_new_now ();
5926 offset->X_add_number = 0;
5927
5928 /* Put the floating point number into the section. */
5929 p = frag_more (length);
5930 memcpy (p, data, length);
5931
5932 /* Switch back to the original section. */
5933 subseg_set (seg, subseg);
5934 return TRUE;
5935 }
5936
5937 /* OP_VU0_SUFFIX and OP_VU0_MATCH_SUFFIX matcher; MATCH_P selects between
5938 them. */
5939
5940 static bfd_boolean
5941 match_vu0_suffix_operand (struct mips_arg_info *arg,
5942 const struct mips_operand *operand,
5943 bfd_boolean match_p)
5944 {
5945 unsigned int uval;
5946
5947 /* The operand can be an XYZW mask or a single 2-bit channel index
5948 (with X being 0). */
5949 gas_assert (operand->size == 2 || operand->size == 4);
5950
5951 /* The suffix can be omitted when it is already part of the opcode. */
5952 if (arg->token->type != OT_CHANNELS)
5953 return match_p;
5954
5955 uval = arg->token->u.channels;
5956 if (operand->size == 2)
5957 {
5958 /* Check that a single bit is set and convert it into a 2-bit index. */
5959 if ((uval & -uval) != uval)
5960 return FALSE;
5961 uval = 4 - ffs (uval);
5962 }
5963
5964 if (match_p && insn_extract_operand (arg->insn, operand) != uval)
5965 return FALSE;
5966
5967 ++arg->token;
5968 if (!match_p)
5969 insn_insert_operand (arg->insn, operand, uval);
5970 return TRUE;
5971 }
5972
5973 /* S is the text seen for ARG. Match it against OPERAND. Return the end
5974 of the argument text if the match is successful, otherwise return null. */
5975
5976 static bfd_boolean
5977 match_operand (struct mips_arg_info *arg,
5978 const struct mips_operand *operand)
5979 {
5980 switch (operand->type)
5981 {
5982 case OP_INT:
5983 return match_int_operand (arg, operand);
5984
5985 case OP_MAPPED_INT:
5986 return match_mapped_int_operand (arg, operand);
5987
5988 case OP_MSB:
5989 return match_msb_operand (arg, operand);
5990
5991 case OP_REG:
5992 case OP_OPTIONAL_REG:
5993 return match_reg_operand (arg, operand);
5994
5995 case OP_REG_PAIR:
5996 return match_reg_pair_operand (arg, operand);
5997
5998 case OP_PCREL:
5999 return match_pcrel_operand (arg);
6000
6001 case OP_PERF_REG:
6002 return match_perf_reg_operand (arg, operand);
6003
6004 case OP_ADDIUSP_INT:
6005 return match_addiusp_operand (arg, operand);
6006
6007 case OP_CLO_CLZ_DEST:
6008 return match_clo_clz_dest_operand (arg, operand);
6009
6010 case OP_LWM_SWM_LIST:
6011 return match_lwm_swm_list_operand (arg, operand);
6012
6013 case OP_ENTRY_EXIT_LIST:
6014 return match_entry_exit_operand (arg, operand);
6015
6016 case OP_SAVE_RESTORE_LIST:
6017 return match_save_restore_list_operand (arg);
6018
6019 case OP_MDMX_IMM_REG:
6020 return match_mdmx_imm_reg_operand (arg, operand);
6021
6022 case OP_REPEAT_DEST_REG:
6023 return match_tied_reg_operand (arg, arg->dest_regno);
6024
6025 case OP_REPEAT_PREV_REG:
6026 return match_tied_reg_operand (arg, arg->last_regno);
6027
6028 case OP_PC:
6029 return match_pc_operand (arg);
6030
6031 case OP_VU0_SUFFIX:
6032 return match_vu0_suffix_operand (arg, operand, FALSE);
6033
6034 case OP_VU0_MATCH_SUFFIX:
6035 return match_vu0_suffix_operand (arg, operand, TRUE);
6036
6037 case OP_IMM_INDEX:
6038 return match_imm_index_operand (arg, operand);
6039
6040 case OP_REG_INDEX:
6041 return match_reg_index_operand (arg, operand);
6042
6043 case OP_SAME_RS_RT:
6044 return match_same_rs_rt_operand (arg, operand);
6045
6046 case OP_CHECK_PREV:
6047 return match_check_prev_operand (arg, operand);
6048
6049 case OP_NON_ZERO_REG:
6050 return match_non_zero_reg_operand (arg, operand);
6051 }
6052 abort ();
6053 }
6054
6055 /* ARG is the state after successfully matching an instruction.
6056 Issue any queued-up warnings. */
6057
6058 static void
6059 check_completed_insn (struct mips_arg_info *arg)
6060 {
6061 if (arg->seen_at)
6062 {
6063 if (AT == ATREG)
6064 as_warn (_("used $at without \".set noat\""));
6065 else
6066 as_warn (_("used $%u with \".set at=$%u\""), AT, AT);
6067 }
6068 }
6069
6070 /* Return true if modifying general-purpose register REG needs a delay. */
6071
6072 static bfd_boolean
6073 reg_needs_delay (unsigned int reg)
6074 {
6075 unsigned long prev_pinfo;
6076
6077 prev_pinfo = history[0].insn_mo->pinfo;
6078 if (!mips_opts.noreorder
6079 && (((prev_pinfo & INSN_LOAD_MEMORY) && !gpr_interlocks)
6080 || ((prev_pinfo & INSN_LOAD_COPROC) && !cop_interlocks))
6081 && (gpr_write_mask (&history[0]) & (1 << reg)))
6082 return TRUE;
6083
6084 return FALSE;
6085 }
6086
6087 /* Classify an instruction according to the FIX_VR4120_* enumeration.
6088 Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected
6089 by VR4120 errata. */
6090
6091 static unsigned int
6092 classify_vr4120_insn (const char *name)
6093 {
6094 if (strncmp (name, "macc", 4) == 0)
6095 return FIX_VR4120_MACC;
6096 if (strncmp (name, "dmacc", 5) == 0)
6097 return FIX_VR4120_DMACC;
6098 if (strncmp (name, "mult", 4) == 0)
6099 return FIX_VR4120_MULT;
6100 if (strncmp (name, "dmult", 5) == 0)
6101 return FIX_VR4120_DMULT;
6102 if (strstr (name, "div"))
6103 return FIX_VR4120_DIV;
6104 if (strcmp (name, "mtlo") == 0 || strcmp (name, "mthi") == 0)
6105 return FIX_VR4120_MTHILO;
6106 return NUM_FIX_VR4120_CLASSES;
6107 }
6108
6109 #define INSN_ERET 0x42000018
6110 #define INSN_DERET 0x4200001f
6111 #define INSN_DMULT 0x1c
6112 #define INSN_DMULTU 0x1d
6113
6114 /* Return the number of instructions that must separate INSN1 and INSN2,
6115 where INSN1 is the earlier instruction. Return the worst-case value
6116 for any INSN2 if INSN2 is null. */
6117
6118 static unsigned int
6119 insns_between (const struct mips_cl_insn *insn1,
6120 const struct mips_cl_insn *insn2)
6121 {
6122 unsigned long pinfo1, pinfo2;
6123 unsigned int mask;
6124
6125 /* If INFO2 is null, pessimistically assume that all flags are set for
6126 the second instruction. */
6127 pinfo1 = insn1->insn_mo->pinfo;
6128 pinfo2 = insn2 ? insn2->insn_mo->pinfo : ~0U;
6129
6130 /* For most targets, write-after-read dependencies on the HI and LO
6131 registers must be separated by at least two instructions. */
6132 if (!hilo_interlocks)
6133 {
6134 if ((pinfo1 & INSN_READ_LO) && (pinfo2 & INSN_WRITE_LO))
6135 return 2;
6136 if ((pinfo1 & INSN_READ_HI) && (pinfo2 & INSN_WRITE_HI))
6137 return 2;
6138 }
6139
6140 /* If we're working around r7000 errata, there must be two instructions
6141 between an mfhi or mflo and any instruction that uses the result. */
6142 if (mips_7000_hilo_fix
6143 && !mips_opts.micromips
6144 && MF_HILO_INSN (pinfo1)
6145 && (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1))))
6146 return 2;
6147
6148 /* If we're working around 24K errata, one instruction is required
6149 if an ERET or DERET is followed by a branch instruction. */
6150 if (mips_fix_24k && !mips_opts.micromips)
6151 {
6152 if (insn1->insn_opcode == INSN_ERET
6153 || insn1->insn_opcode == INSN_DERET)
6154 {
6155 if (insn2 == NULL
6156 || insn2->insn_opcode == INSN_ERET
6157 || insn2->insn_opcode == INSN_DERET
6158 || delayed_branch_p (insn2))
6159 return 1;
6160 }
6161 }
6162
6163 /* If we're working around PMC RM7000 errata, there must be three
6164 nops between a dmult and a load instruction. */
6165 if (mips_fix_rm7000 && !mips_opts.micromips)
6166 {
6167 if ((insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULT
6168 || (insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULTU)
6169 {
6170 if (pinfo2 & INSN_LOAD_MEMORY)
6171 return 3;
6172 }
6173 }
6174
6175 /* If working around VR4120 errata, check for combinations that need
6176 a single intervening instruction. */
6177 if (mips_fix_vr4120 && !mips_opts.micromips)
6178 {
6179 unsigned int class1, class2;
6180
6181 class1 = classify_vr4120_insn (insn1->insn_mo->name);
6182 if (class1 != NUM_FIX_VR4120_CLASSES && vr4120_conflicts[class1] != 0)
6183 {
6184 if (insn2 == NULL)
6185 return 1;
6186 class2 = classify_vr4120_insn (insn2->insn_mo->name);
6187 if (vr4120_conflicts[class1] & (1 << class2))
6188 return 1;
6189 }
6190 }
6191
6192 if (!HAVE_CODE_COMPRESSION)
6193 {
6194 /* Check for GPR or coprocessor load delays. All such delays
6195 are on the RT register. */
6196 /* Itbl support may require additional care here. */
6197 if ((!gpr_interlocks && (pinfo1 & INSN_LOAD_MEMORY))
6198 || (!cop_interlocks && (pinfo1 & INSN_LOAD_COPROC)))
6199 {
6200 if (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1)))
6201 return 1;
6202 }
6203
6204 /* Check for generic coprocessor hazards.
6205
6206 This case is not handled very well. There is no special
6207 knowledge of CP0 handling, and the coprocessors other than
6208 the floating point unit are not distinguished at all. */
6209 /* Itbl support may require additional care here. FIXME!
6210 Need to modify this to include knowledge about
6211 user specified delays! */
6212 else if ((!cop_interlocks && (pinfo1 & INSN_COPROC_MOVE))
6213 || (!cop_mem_interlocks && (pinfo1 & INSN_COPROC_MEMORY_DELAY)))
6214 {
6215 /* Handle cases where INSN1 writes to a known general coprocessor
6216 register. There must be a one instruction delay before INSN2
6217 if INSN2 reads that register, otherwise no delay is needed. */
6218 mask = fpr_write_mask (insn1);
6219 if (mask != 0)
6220 {
6221 if (!insn2 || (mask & fpr_read_mask (insn2)) != 0)
6222 return 1;
6223 }
6224 else
6225 {
6226 /* Read-after-write dependencies on the control registers
6227 require a two-instruction gap. */
6228 if ((pinfo1 & INSN_WRITE_COND_CODE)
6229 && (pinfo2 & INSN_READ_COND_CODE))
6230 return 2;
6231
6232 /* We don't know exactly what INSN1 does. If INSN2 is
6233 also a coprocessor instruction, assume there must be
6234 a one instruction gap. */
6235 if (pinfo2 & INSN_COP)
6236 return 1;
6237 }
6238 }
6239
6240 /* Check for read-after-write dependencies on the coprocessor
6241 control registers in cases where INSN1 does not need a general
6242 coprocessor delay. This means that INSN1 is a floating point
6243 comparison instruction. */
6244 /* Itbl support may require additional care here. */
6245 else if (!cop_interlocks
6246 && (pinfo1 & INSN_WRITE_COND_CODE)
6247 && (pinfo2 & INSN_READ_COND_CODE))
6248 return 1;
6249 }
6250
6251 /* Forbidden slots can not contain Control Transfer Instructions (CTIs)
6252 CTIs include all branches and jumps, nal, eret, eretnc, deret, wait
6253 and pause. */
6254 if ((insn1->insn_mo->pinfo2 & INSN2_FORBIDDEN_SLOT)
6255 && ((pinfo2 & INSN_NO_DELAY_SLOT)
6256 || (insn2 && delayed_branch_p (insn2))))
6257 return 1;
6258
6259 return 0;
6260 }
6261
6262 /* Return the number of nops that would be needed to work around the
6263 VR4130 mflo/mfhi errata if instruction INSN immediately followed
6264 the MAX_VR4130_NOPS instructions described by HIST. Ignore hazards
6265 that are contained within the first IGNORE instructions of HIST. */
6266
6267 static int
6268 nops_for_vr4130 (int ignore, const struct mips_cl_insn *hist,
6269 const struct mips_cl_insn *insn)
6270 {
6271 int i, j;
6272 unsigned int mask;
6273
6274 /* Check if the instruction writes to HI or LO. MTHI and MTLO
6275 are not affected by the errata. */
6276 if (insn != 0
6277 && ((insn->insn_mo->pinfo & (INSN_WRITE_HI | INSN_WRITE_LO)) == 0
6278 || strcmp (insn->insn_mo->name, "mtlo") == 0
6279 || strcmp (insn->insn_mo->name, "mthi") == 0))
6280 return 0;
6281
6282 /* Search for the first MFLO or MFHI. */
6283 for (i = 0; i < MAX_VR4130_NOPS; i++)
6284 if (MF_HILO_INSN (hist[i].insn_mo->pinfo))
6285 {
6286 /* Extract the destination register. */
6287 mask = gpr_write_mask (&hist[i]);
6288
6289 /* No nops are needed if INSN reads that register. */
6290 if (insn != NULL && (gpr_read_mask (insn) & mask) != 0)
6291 return 0;
6292
6293 /* ...or if any of the intervening instructions do. */
6294 for (j = 0; j < i; j++)
6295 if (gpr_read_mask (&hist[j]) & mask)
6296 return 0;
6297
6298 if (i >= ignore)
6299 return MAX_VR4130_NOPS - i;
6300 }
6301 return 0;
6302 }
6303
6304 #define BASE_REG_EQ(INSN1, INSN2) \
6305 ((((INSN1) >> OP_SH_RS) & OP_MASK_RS) \
6306 == (((INSN2) >> OP_SH_RS) & OP_MASK_RS))
6307
6308 /* Return the minimum alignment for this store instruction. */
6309
6310 static int
6311 fix_24k_align_to (const struct mips_opcode *mo)
6312 {
6313 if (strcmp (mo->name, "sh") == 0)
6314 return 2;
6315
6316 if (strcmp (mo->name, "swc1") == 0
6317 || strcmp (mo->name, "swc2") == 0
6318 || strcmp (mo->name, "sw") == 0
6319 || strcmp (mo->name, "sc") == 0
6320 || strcmp (mo->name, "s.s") == 0)
6321 return 4;
6322
6323 if (strcmp (mo->name, "sdc1") == 0
6324 || strcmp (mo->name, "sdc2") == 0
6325 || strcmp (mo->name, "s.d") == 0)
6326 return 8;
6327
6328 /* sb, swl, swr */
6329 return 1;
6330 }
6331
6332 struct fix_24k_store_info
6333 {
6334 /* Immediate offset, if any, for this store instruction. */
6335 short off;
6336 /* Alignment required by this store instruction. */
6337 int align_to;
6338 /* True for register offsets. */
6339 int register_offset;
6340 };
6341
6342 /* Comparison function used by qsort. */
6343
6344 static int
6345 fix_24k_sort (const void *a, const void *b)
6346 {
6347 const struct fix_24k_store_info *pos1 = a;
6348 const struct fix_24k_store_info *pos2 = b;
6349
6350 return (pos1->off - pos2->off);
6351 }
6352
6353 /* INSN is a store instruction. Try to record the store information
6354 in STINFO. Return false if the information isn't known. */
6355
6356 static bfd_boolean
6357 fix_24k_record_store_info (struct fix_24k_store_info *stinfo,
6358 const struct mips_cl_insn *insn)
6359 {
6360 /* The instruction must have a known offset. */
6361 if (!insn->complete_p || !strstr (insn->insn_mo->args, "o("))
6362 return FALSE;
6363
6364 stinfo->off = (insn->insn_opcode >> OP_SH_IMMEDIATE) & OP_MASK_IMMEDIATE;
6365 stinfo->align_to = fix_24k_align_to (insn->insn_mo);
6366 return TRUE;
6367 }
6368
6369 /* Return the number of nops that would be needed to work around the 24k
6370 "lost data on stores during refill" errata if instruction INSN
6371 immediately followed the 2 instructions described by HIST.
6372 Ignore hazards that are contained within the first IGNORE
6373 instructions of HIST.
6374
6375 Problem: The FSB (fetch store buffer) acts as an intermediate buffer
6376 for the data cache refills and store data. The following describes
6377 the scenario where the store data could be lost.
6378
6379 * A data cache miss, due to either a load or a store, causing fill
6380 data to be supplied by the memory subsystem
6381 * The first three doublewords of fill data are returned and written
6382 into the cache
6383 * A sequence of four stores occurs in consecutive cycles around the
6384 final doubleword of the fill:
6385 * Store A
6386 * Store B
6387 * Store C
6388 * Zero, One or more instructions
6389 * Store D
6390
6391 The four stores A-D must be to different doublewords of the line that
6392 is being filled. The fourth instruction in the sequence above permits
6393 the fill of the final doubleword to be transferred from the FSB into
6394 the cache. In the sequence above, the stores may be either integer
6395 (sb, sh, sw, swr, swl, sc) or coprocessor (swc1/swc2, sdc1/sdc2,
6396 swxc1, sdxc1, suxc1) stores, as long as the four stores are to
6397 different doublewords on the line. If the floating point unit is
6398 running in 1:2 mode, it is not possible to create the sequence above
6399 using only floating point store instructions.
6400
6401 In this case, the cache line being filled is incorrectly marked
6402 invalid, thereby losing the data from any store to the line that
6403 occurs between the original miss and the completion of the five
6404 cycle sequence shown above.
6405
6406 The workarounds are:
6407
6408 * Run the data cache in write-through mode.
6409 * Insert a non-store instruction between
6410 Store A and Store B or Store B and Store C. */
6411
6412 static int
6413 nops_for_24k (int ignore, const struct mips_cl_insn *hist,
6414 const struct mips_cl_insn *insn)
6415 {
6416 struct fix_24k_store_info pos[3];
6417 int align, i, base_offset;
6418
6419 if (ignore >= 2)
6420 return 0;
6421
6422 /* If the previous instruction wasn't a store, there's nothing to
6423 worry about. */
6424 if ((hist[0].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
6425 return 0;
6426
6427 /* If the instructions after the previous one are unknown, we have
6428 to assume the worst. */
6429 if (!insn)
6430 return 1;
6431
6432 /* Check whether we are dealing with three consecutive stores. */
6433 if ((insn->insn_mo->pinfo & INSN_STORE_MEMORY) == 0
6434 || (hist[1].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
6435 return 0;
6436
6437 /* If we don't know the relationship between the store addresses,
6438 assume the worst. */
6439 if (!BASE_REG_EQ (insn->insn_opcode, hist[0].insn_opcode)
6440 || !BASE_REG_EQ (insn->insn_opcode, hist[1].insn_opcode))
6441 return 1;
6442
6443 if (!fix_24k_record_store_info (&pos[0], insn)
6444 || !fix_24k_record_store_info (&pos[1], &hist[0])
6445 || !fix_24k_record_store_info (&pos[2], &hist[1]))
6446 return 1;
6447
6448 qsort (&pos, 3, sizeof (struct fix_24k_store_info), fix_24k_sort);
6449
6450 /* Pick a value of ALIGN and X such that all offsets are adjusted by
6451 X bytes and such that the base register + X is known to be aligned
6452 to align bytes. */
6453
6454 if (((insn->insn_opcode >> OP_SH_RS) & OP_MASK_RS) == SP)
6455 align = 8;
6456 else
6457 {
6458 align = pos[0].align_to;
6459 base_offset = pos[0].off;
6460 for (i = 1; i < 3; i++)
6461 if (align < pos[i].align_to)
6462 {
6463 align = pos[i].align_to;
6464 base_offset = pos[i].off;
6465 }
6466 for (i = 0; i < 3; i++)
6467 pos[i].off -= base_offset;
6468 }
6469
6470 pos[0].off &= ~align + 1;
6471 pos[1].off &= ~align + 1;
6472 pos[2].off &= ~align + 1;
6473
6474 /* If any two stores write to the same chunk, they also write to the
6475 same doubleword. The offsets are still sorted at this point. */
6476 if (pos[0].off == pos[1].off || pos[1].off == pos[2].off)
6477 return 0;
6478
6479 /* A range of at least 9 bytes is needed for the stores to be in
6480 non-overlapping doublewords. */
6481 if (pos[2].off - pos[0].off <= 8)
6482 return 0;
6483
6484 if (pos[2].off - pos[1].off >= 24
6485 || pos[1].off - pos[0].off >= 24
6486 || pos[2].off - pos[0].off >= 32)
6487 return 0;
6488
6489 return 1;
6490 }
6491
6492 /* Return the number of nops that would be needed if instruction INSN
6493 immediately followed the MAX_NOPS instructions given by HIST,
6494 where HIST[0] is the most recent instruction. Ignore hazards
6495 between INSN and the first IGNORE instructions in HIST.
6496
6497 If INSN is null, return the worse-case number of nops for any
6498 instruction. */
6499
6500 static int
6501 nops_for_insn (int ignore, const struct mips_cl_insn *hist,
6502 const struct mips_cl_insn *insn)
6503 {
6504 int i, nops, tmp_nops;
6505
6506 nops = 0;
6507 for (i = ignore; i < MAX_DELAY_NOPS; i++)
6508 {
6509 tmp_nops = insns_between (hist + i, insn) - i;
6510 if (tmp_nops > nops)
6511 nops = tmp_nops;
6512 }
6513
6514 if (mips_fix_vr4130 && !mips_opts.micromips)
6515 {
6516 tmp_nops = nops_for_vr4130 (ignore, hist, insn);
6517 if (tmp_nops > nops)
6518 nops = tmp_nops;
6519 }
6520
6521 if (mips_fix_24k && !mips_opts.micromips)
6522 {
6523 tmp_nops = nops_for_24k (ignore, hist, insn);
6524 if (tmp_nops > nops)
6525 nops = tmp_nops;
6526 }
6527
6528 return nops;
6529 }
6530
6531 /* The variable arguments provide NUM_INSNS extra instructions that
6532 might be added to HIST. Return the largest number of nops that
6533 would be needed after the extended sequence, ignoring hazards
6534 in the first IGNORE instructions. */
6535
6536 static int
6537 nops_for_sequence (int num_insns, int ignore,
6538 const struct mips_cl_insn *hist, ...)
6539 {
6540 va_list args;
6541 struct mips_cl_insn buffer[MAX_NOPS];
6542 struct mips_cl_insn *cursor;
6543 int nops;
6544
6545 va_start (args, hist);
6546 cursor = buffer + num_insns;
6547 memcpy (cursor, hist, (MAX_NOPS - num_insns) * sizeof (*cursor));
6548 while (cursor > buffer)
6549 *--cursor = *va_arg (args, const struct mips_cl_insn *);
6550
6551 nops = nops_for_insn (ignore, buffer, NULL);
6552 va_end (args);
6553 return nops;
6554 }
6555
6556 /* Like nops_for_insn, but if INSN is a branch, take into account the
6557 worst-case delay for the branch target. */
6558
6559 static int
6560 nops_for_insn_or_target (int ignore, const struct mips_cl_insn *hist,
6561 const struct mips_cl_insn *insn)
6562 {
6563 int nops, tmp_nops;
6564
6565 nops = nops_for_insn (ignore, hist, insn);
6566 if (delayed_branch_p (insn))
6567 {
6568 tmp_nops = nops_for_sequence (2, ignore ? ignore + 2 : 0,
6569 hist, insn, get_delay_slot_nop (insn));
6570 if (tmp_nops > nops)
6571 nops = tmp_nops;
6572 }
6573 else if (compact_branch_p (insn))
6574 {
6575 tmp_nops = nops_for_sequence (1, ignore ? ignore + 1 : 0, hist, insn);
6576 if (tmp_nops > nops)
6577 nops = tmp_nops;
6578 }
6579 return nops;
6580 }
6581
6582 /* Fix NOP issue: Replace nops by "or at,at,zero". */
6583
6584 static void
6585 fix_loongson2f_nop (struct mips_cl_insn * ip)
6586 {
6587 gas_assert (!HAVE_CODE_COMPRESSION);
6588 if (strcmp (ip->insn_mo->name, "nop") == 0)
6589 ip->insn_opcode = LOONGSON2F_NOP_INSN;
6590 }
6591
6592 /* Fix Jump Issue: Eliminate instruction fetch from outside 256M region
6593 jr target pc &= 'hffff_ffff_cfff_ffff. */
6594
6595 static void
6596 fix_loongson2f_jump (struct mips_cl_insn * ip)
6597 {
6598 gas_assert (!HAVE_CODE_COMPRESSION);
6599 if (strcmp (ip->insn_mo->name, "j") == 0
6600 || strcmp (ip->insn_mo->name, "jr") == 0
6601 || strcmp (ip->insn_mo->name, "jalr") == 0)
6602 {
6603 int sreg;
6604 expressionS ep;
6605
6606 if (! mips_opts.at)
6607 return;
6608
6609 sreg = EXTRACT_OPERAND (0, RS, *ip);
6610 if (sreg == ZERO || sreg == KT0 || sreg == KT1 || sreg == ATREG)
6611 return;
6612
6613 ep.X_op = O_constant;
6614 ep.X_add_number = 0xcfff0000;
6615 macro_build (&ep, "lui", "t,u", ATREG, BFD_RELOC_HI16);
6616 ep.X_add_number = 0xffff;
6617 macro_build (&ep, "ori", "t,r,i", ATREG, ATREG, BFD_RELOC_LO16);
6618 macro_build (NULL, "and", "d,v,t", sreg, sreg, ATREG);
6619 }
6620 }
6621
6622 static void
6623 fix_loongson2f (struct mips_cl_insn * ip)
6624 {
6625 if (mips_fix_loongson2f_nop)
6626 fix_loongson2f_nop (ip);
6627
6628 if (mips_fix_loongson2f_jump)
6629 fix_loongson2f_jump (ip);
6630 }
6631
6632 /* IP is a branch that has a delay slot, and we need to fill it
6633 automatically. Return true if we can do that by swapping IP
6634 with the previous instruction.
6635 ADDRESS_EXPR is an operand of the instruction to be used with
6636 RELOC_TYPE. */
6637
6638 static bfd_boolean
6639 can_swap_branch_p (struct mips_cl_insn *ip, expressionS *address_expr,
6640 bfd_reloc_code_real_type *reloc_type)
6641 {
6642 unsigned long pinfo, pinfo2, prev_pinfo, prev_pinfo2;
6643 unsigned int gpr_read, gpr_write, prev_gpr_read, prev_gpr_write;
6644 unsigned int fpr_read, prev_fpr_write;
6645
6646 /* -O2 and above is required for this optimization. */
6647 if (mips_optimize < 2)
6648 return FALSE;
6649
6650 /* If we have seen .set volatile or .set nomove, don't optimize. */
6651 if (mips_opts.nomove)
6652 return FALSE;
6653
6654 /* We can't swap if the previous instruction's position is fixed. */
6655 if (history[0].fixed_p)
6656 return FALSE;
6657
6658 /* If the previous previous insn was in a .set noreorder, we can't
6659 swap. Actually, the MIPS assembler will swap in this situation.
6660 However, gcc configured -with-gnu-as will generate code like
6661
6662 .set noreorder
6663 lw $4,XXX
6664 .set reorder
6665 INSN
6666 bne $4,$0,foo
6667
6668 in which we can not swap the bne and INSN. If gcc is not configured
6669 -with-gnu-as, it does not output the .set pseudo-ops. */
6670 if (history[1].noreorder_p)
6671 return FALSE;
6672
6673 /* If the previous instruction had a fixup in mips16 mode, we can not swap.
6674 This means that the previous instruction was a 4-byte one anyhow. */
6675 if (mips_opts.mips16 && history[0].fixp[0])
6676 return FALSE;
6677
6678 /* If the branch is itself the target of a branch, we can not swap.
6679 We cheat on this; all we check for is whether there is a label on
6680 this instruction. If there are any branches to anything other than
6681 a label, users must use .set noreorder. */
6682 if (seg_info (now_seg)->label_list)
6683 return FALSE;
6684
6685 /* If the previous instruction is in a variant frag other than this
6686 branch's one, we cannot do the swap. This does not apply to
6687 MIPS16 code, which uses variant frags for different purposes. */
6688 if (!mips_opts.mips16
6689 && history[0].frag
6690 && history[0].frag->fr_type == rs_machine_dependent)
6691 return FALSE;
6692
6693 /* We do not swap with instructions that cannot architecturally
6694 be placed in a branch delay slot, such as SYNC or ERET. We
6695 also refrain from swapping with a trap instruction, since it
6696 complicates trap handlers to have the trap instruction be in
6697 a delay slot. */
6698 prev_pinfo = history[0].insn_mo->pinfo;
6699 if (prev_pinfo & INSN_NO_DELAY_SLOT)
6700 return FALSE;
6701
6702 /* Check for conflicts between the branch and the instructions
6703 before the candidate delay slot. */
6704 if (nops_for_insn (0, history + 1, ip) > 0)
6705 return FALSE;
6706
6707 /* Check for conflicts between the swapped sequence and the
6708 target of the branch. */
6709 if (nops_for_sequence (2, 0, history + 1, ip, history) > 0)
6710 return FALSE;
6711
6712 /* If the branch reads a register that the previous
6713 instruction sets, we can not swap. */
6714 gpr_read = gpr_read_mask (ip);
6715 prev_gpr_write = gpr_write_mask (&history[0]);
6716 if (gpr_read & prev_gpr_write)
6717 return FALSE;
6718
6719 fpr_read = fpr_read_mask (ip);
6720 prev_fpr_write = fpr_write_mask (&history[0]);
6721 if (fpr_read & prev_fpr_write)
6722 return FALSE;
6723
6724 /* If the branch writes a register that the previous
6725 instruction sets, we can not swap. */
6726 gpr_write = gpr_write_mask (ip);
6727 if (gpr_write & prev_gpr_write)
6728 return FALSE;
6729
6730 /* If the branch writes a register that the previous
6731 instruction reads, we can not swap. */
6732 prev_gpr_read = gpr_read_mask (&history[0]);
6733 if (gpr_write & prev_gpr_read)
6734 return FALSE;
6735
6736 /* If one instruction sets a condition code and the
6737 other one uses a condition code, we can not swap. */
6738 pinfo = ip->insn_mo->pinfo;
6739 if ((pinfo & INSN_READ_COND_CODE)
6740 && (prev_pinfo & INSN_WRITE_COND_CODE))
6741 return FALSE;
6742 if ((pinfo & INSN_WRITE_COND_CODE)
6743 && (prev_pinfo & INSN_READ_COND_CODE))
6744 return FALSE;
6745
6746 /* If the previous instruction uses the PC, we can not swap. */
6747 prev_pinfo2 = history[0].insn_mo->pinfo2;
6748 if (prev_pinfo2 & INSN2_READ_PC)
6749 return FALSE;
6750
6751 /* If the previous instruction has an incorrect size for a fixed
6752 branch delay slot in microMIPS mode, we cannot swap. */
6753 pinfo2 = ip->insn_mo->pinfo2;
6754 if (mips_opts.micromips
6755 && (pinfo2 & INSN2_BRANCH_DELAY_16BIT)
6756 && insn_length (history) != 2)
6757 return FALSE;
6758 if (mips_opts.micromips
6759 && (pinfo2 & INSN2_BRANCH_DELAY_32BIT)
6760 && insn_length (history) != 4)
6761 return FALSE;
6762
6763 /* On R5900 short loops need to be fixed by inserting a nop in
6764 the branch delay slots.
6765 A short loop can be terminated too early. */
6766 if (mips_opts.arch == CPU_R5900
6767 /* Check if instruction has a parameter, ignore "j $31". */
6768 && (address_expr != NULL)
6769 /* Parameter must be 16 bit. */
6770 && (*reloc_type == BFD_RELOC_16_PCREL_S2)
6771 /* Branch to same segment. */
6772 && (S_GET_SEGMENT (address_expr->X_add_symbol) == now_seg)
6773 /* Branch to same code fragment. */
6774 && (symbol_get_frag (address_expr->X_add_symbol) == frag_now)
6775 /* Can only calculate branch offset if value is known. */
6776 && symbol_constant_p (address_expr->X_add_symbol)
6777 /* Check if branch is really conditional. */
6778 && !((ip->insn_opcode & 0xffff0000) == 0x10000000 /* beq $0,$0 */
6779 || (ip->insn_opcode & 0xffff0000) == 0x04010000 /* bgez $0 */
6780 || (ip->insn_opcode & 0xffff0000) == 0x04110000)) /* bgezal $0 */
6781 {
6782 int distance;
6783 /* Check if loop is shorter than 6 instructions including
6784 branch and delay slot. */
6785 distance = frag_now_fix () - S_GET_VALUE (address_expr->X_add_symbol);
6786 if (distance <= 20)
6787 {
6788 int i;
6789 int rv;
6790
6791 rv = FALSE;
6792 /* When the loop includes branches or jumps,
6793 it is not a short loop. */
6794 for (i = 0; i < (distance / 4); i++)
6795 {
6796 if ((history[i].cleared_p)
6797 || delayed_branch_p (&history[i]))
6798 {
6799 rv = TRUE;
6800 break;
6801 }
6802 }
6803 if (rv == FALSE)
6804 {
6805 /* Insert nop after branch to fix short loop. */
6806 return FALSE;
6807 }
6808 }
6809 }
6810
6811 return TRUE;
6812 }
6813
6814 /* Decide how we should add IP to the instruction stream.
6815 ADDRESS_EXPR is an operand of the instruction to be used with
6816 RELOC_TYPE. */
6817
6818 static enum append_method
6819 get_append_method (struct mips_cl_insn *ip, expressionS *address_expr,
6820 bfd_reloc_code_real_type *reloc_type)
6821 {
6822 /* The relaxed version of a macro sequence must be inherently
6823 hazard-free. */
6824 if (mips_relax.sequence == 2)
6825 return APPEND_ADD;
6826
6827 /* We must not dabble with instructions in a ".set noreorder" block. */
6828 if (mips_opts.noreorder)
6829 return APPEND_ADD;
6830
6831 /* Otherwise, it's our responsibility to fill branch delay slots. */
6832 if (delayed_branch_p (ip))
6833 {
6834 if (!branch_likely_p (ip)
6835 && can_swap_branch_p (ip, address_expr, reloc_type))
6836 return APPEND_SWAP;
6837
6838 if (mips_opts.mips16
6839 && ISA_SUPPORTS_MIPS16E
6840 && gpr_read_mask (ip) != 0)
6841 return APPEND_ADD_COMPACT;
6842
6843 if (mips_opts.micromips
6844 && ((ip->insn_opcode & 0xffe0) == 0x4580
6845 || (!forced_insn_length
6846 && ((ip->insn_opcode & 0xfc00) == 0xcc00
6847 || (ip->insn_opcode & 0xdc00) == 0x8c00))
6848 || (ip->insn_opcode & 0xdfe00000) == 0x94000000
6849 || (ip->insn_opcode & 0xdc1f0000) == 0x94000000))
6850 return APPEND_ADD_COMPACT;
6851
6852 return APPEND_ADD_WITH_NOP;
6853 }
6854
6855 return APPEND_ADD;
6856 }
6857
6858 /* IP is an instruction whose opcode we have just changed, END points
6859 to the end of the opcode table processed. Point IP->insn_mo to the
6860 new opcode's definition. */
6861
6862 static void
6863 find_altered_opcode (struct mips_cl_insn *ip, const struct mips_opcode *end)
6864 {
6865 const struct mips_opcode *mo;
6866
6867 for (mo = ip->insn_mo; mo < end; mo++)
6868 if (mo->pinfo != INSN_MACRO
6869 && (ip->insn_opcode & mo->mask) == mo->match)
6870 {
6871 ip->insn_mo = mo;
6872 return;
6873 }
6874 abort ();
6875 }
6876
6877 /* IP is a MIPS16 instruction whose opcode we have just changed.
6878 Point IP->insn_mo to the new opcode's definition. */
6879
6880 static void
6881 find_altered_mips16_opcode (struct mips_cl_insn *ip)
6882 {
6883 find_altered_opcode (ip, &mips16_opcodes[bfd_mips16_num_opcodes]);
6884 }
6885
6886 /* IP is a microMIPS instruction whose opcode we have just changed.
6887 Point IP->insn_mo to the new opcode's definition. */
6888
6889 static void
6890 find_altered_micromips_opcode (struct mips_cl_insn *ip)
6891 {
6892 find_altered_opcode (ip, &micromips_opcodes[bfd_micromips_num_opcodes]);
6893 }
6894
6895 /* For microMIPS macros, we need to generate a local number label
6896 as the target of branches. */
6897 #define MICROMIPS_LABEL_CHAR '\037'
6898 static unsigned long micromips_target_label;
6899 static char micromips_target_name[32];
6900
6901 static char *
6902 micromips_label_name (void)
6903 {
6904 char *p = micromips_target_name;
6905 char symbol_name_temporary[24];
6906 unsigned long l;
6907 int i;
6908
6909 if (*p)
6910 return p;
6911
6912 i = 0;
6913 l = micromips_target_label;
6914 #ifdef LOCAL_LABEL_PREFIX
6915 *p++ = LOCAL_LABEL_PREFIX;
6916 #endif
6917 *p++ = 'L';
6918 *p++ = MICROMIPS_LABEL_CHAR;
6919 do
6920 {
6921 symbol_name_temporary[i++] = l % 10 + '0';
6922 l /= 10;
6923 }
6924 while (l != 0);
6925 while (i > 0)
6926 *p++ = symbol_name_temporary[--i];
6927 *p = '\0';
6928
6929 return micromips_target_name;
6930 }
6931
6932 static void
6933 micromips_label_expr (expressionS *label_expr)
6934 {
6935 label_expr->X_op = O_symbol;
6936 label_expr->X_add_symbol = symbol_find_or_make (micromips_label_name ());
6937 label_expr->X_add_number = 0;
6938 }
6939
6940 static void
6941 micromips_label_inc (void)
6942 {
6943 micromips_target_label++;
6944 *micromips_target_name = '\0';
6945 }
6946
6947 static void
6948 micromips_add_label (void)
6949 {
6950 symbolS *s;
6951
6952 s = colon (micromips_label_name ());
6953 micromips_label_inc ();
6954 S_SET_OTHER (s, ELF_ST_SET_MICROMIPS (S_GET_OTHER (s)));
6955 }
6956
6957 /* If assembling microMIPS code, then return the microMIPS reloc
6958 corresponding to the requested one if any. Otherwise return
6959 the reloc unchanged. */
6960
6961 static bfd_reloc_code_real_type
6962 micromips_map_reloc (bfd_reloc_code_real_type reloc)
6963 {
6964 static const bfd_reloc_code_real_type relocs[][2] =
6965 {
6966 /* Keep sorted incrementally by the left-hand key. */
6967 { BFD_RELOC_16_PCREL_S2, BFD_RELOC_MICROMIPS_16_PCREL_S1 },
6968 { BFD_RELOC_GPREL16, BFD_RELOC_MICROMIPS_GPREL16 },
6969 { BFD_RELOC_MIPS_JMP, BFD_RELOC_MICROMIPS_JMP },
6970 { BFD_RELOC_HI16, BFD_RELOC_MICROMIPS_HI16 },
6971 { BFD_RELOC_HI16_S, BFD_RELOC_MICROMIPS_HI16_S },
6972 { BFD_RELOC_LO16, BFD_RELOC_MICROMIPS_LO16 },
6973 { BFD_RELOC_MIPS_LITERAL, BFD_RELOC_MICROMIPS_LITERAL },
6974 { BFD_RELOC_MIPS_GOT16, BFD_RELOC_MICROMIPS_GOT16 },
6975 { BFD_RELOC_MIPS_CALL16, BFD_RELOC_MICROMIPS_CALL16 },
6976 { BFD_RELOC_MIPS_GOT_HI16, BFD_RELOC_MICROMIPS_GOT_HI16 },
6977 { BFD_RELOC_MIPS_GOT_LO16, BFD_RELOC_MICROMIPS_GOT_LO16 },
6978 { BFD_RELOC_MIPS_CALL_HI16, BFD_RELOC_MICROMIPS_CALL_HI16 },
6979 { BFD_RELOC_MIPS_CALL_LO16, BFD_RELOC_MICROMIPS_CALL_LO16 },
6980 { BFD_RELOC_MIPS_SUB, BFD_RELOC_MICROMIPS_SUB },
6981 { BFD_RELOC_MIPS_GOT_PAGE, BFD_RELOC_MICROMIPS_GOT_PAGE },
6982 { BFD_RELOC_MIPS_GOT_OFST, BFD_RELOC_MICROMIPS_GOT_OFST },
6983 { BFD_RELOC_MIPS_GOT_DISP, BFD_RELOC_MICROMIPS_GOT_DISP },
6984 { BFD_RELOC_MIPS_HIGHEST, BFD_RELOC_MICROMIPS_HIGHEST },
6985 { BFD_RELOC_MIPS_HIGHER, BFD_RELOC_MICROMIPS_HIGHER },
6986 { BFD_RELOC_MIPS_SCN_DISP, BFD_RELOC_MICROMIPS_SCN_DISP },
6987 { BFD_RELOC_MIPS_TLS_GD, BFD_RELOC_MICROMIPS_TLS_GD },
6988 { BFD_RELOC_MIPS_TLS_LDM, BFD_RELOC_MICROMIPS_TLS_LDM },
6989 { BFD_RELOC_MIPS_TLS_DTPREL_HI16, BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16 },
6990 { BFD_RELOC_MIPS_TLS_DTPREL_LO16, BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16 },
6991 { BFD_RELOC_MIPS_TLS_GOTTPREL, BFD_RELOC_MICROMIPS_TLS_GOTTPREL },
6992 { BFD_RELOC_MIPS_TLS_TPREL_HI16, BFD_RELOC_MICROMIPS_TLS_TPREL_HI16 },
6993 { BFD_RELOC_MIPS_TLS_TPREL_LO16, BFD_RELOC_MICROMIPS_TLS_TPREL_LO16 }
6994 };
6995 bfd_reloc_code_real_type r;
6996 size_t i;
6997
6998 if (!mips_opts.micromips)
6999 return reloc;
7000 for (i = 0; i < ARRAY_SIZE (relocs); i++)
7001 {
7002 r = relocs[i][0];
7003 if (r > reloc)
7004 return reloc;
7005 if (r == reloc)
7006 return relocs[i][1];
7007 }
7008 return reloc;
7009 }
7010
7011 /* Try to resolve relocation RELOC against constant OPERAND at assembly time.
7012 Return true on success, storing the resolved value in RESULT. */
7013
7014 static bfd_boolean
7015 calculate_reloc (bfd_reloc_code_real_type reloc, offsetT operand,
7016 offsetT *result)
7017 {
7018 switch (reloc)
7019 {
7020 case BFD_RELOC_MIPS_HIGHEST:
7021 case BFD_RELOC_MICROMIPS_HIGHEST:
7022 *result = ((operand + 0x800080008000ull) >> 48) & 0xffff;
7023 return TRUE;
7024
7025 case BFD_RELOC_MIPS_HIGHER:
7026 case BFD_RELOC_MICROMIPS_HIGHER:
7027 *result = ((operand + 0x80008000ull) >> 32) & 0xffff;
7028 return TRUE;
7029
7030 case BFD_RELOC_HI16_S:
7031 case BFD_RELOC_HI16_S_PCREL:
7032 case BFD_RELOC_MICROMIPS_HI16_S:
7033 case BFD_RELOC_MIPS16_HI16_S:
7034 *result = ((operand + 0x8000) >> 16) & 0xffff;
7035 return TRUE;
7036
7037 case BFD_RELOC_HI16:
7038 case BFD_RELOC_MICROMIPS_HI16:
7039 case BFD_RELOC_MIPS16_HI16:
7040 *result = (operand >> 16) & 0xffff;
7041 return TRUE;
7042
7043 case BFD_RELOC_LO16:
7044 case BFD_RELOC_LO16_PCREL:
7045 case BFD_RELOC_MICROMIPS_LO16:
7046 case BFD_RELOC_MIPS16_LO16:
7047 *result = operand & 0xffff;
7048 return TRUE;
7049
7050 case BFD_RELOC_UNUSED:
7051 *result = operand;
7052 return TRUE;
7053
7054 default:
7055 return FALSE;
7056 }
7057 }
7058
7059 /* Output an instruction. IP is the instruction information.
7060 ADDRESS_EXPR is an operand of the instruction to be used with
7061 RELOC_TYPE. EXPANSIONP is true if the instruction is part of
7062 a macro expansion. */
7063
7064 static void
7065 append_insn (struct mips_cl_insn *ip, expressionS *address_expr,
7066 bfd_reloc_code_real_type *reloc_type, bfd_boolean expansionp)
7067 {
7068 unsigned long prev_pinfo2, pinfo;
7069 bfd_boolean relaxed_branch = FALSE;
7070 enum append_method method;
7071 bfd_boolean relax32;
7072 int branch_disp;
7073
7074 if (mips_fix_loongson2f && !HAVE_CODE_COMPRESSION)
7075 fix_loongson2f (ip);
7076
7077 file_ase_mips16 |= mips_opts.mips16;
7078 file_ase_micromips |= mips_opts.micromips;
7079
7080 prev_pinfo2 = history[0].insn_mo->pinfo2;
7081 pinfo = ip->insn_mo->pinfo;
7082
7083 /* Don't raise alarm about `nods' frags as they'll fill in the right
7084 kind of nop in relaxation if required. */
7085 if (mips_opts.micromips
7086 && !expansionp
7087 && !(history[0].frag
7088 && history[0].frag->fr_type == rs_machine_dependent
7089 && RELAX_MICROMIPS_P (history[0].frag->fr_subtype)
7090 && RELAX_MICROMIPS_NODS (history[0].frag->fr_subtype))
7091 && (((prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
7092 && micromips_insn_length (ip->insn_mo) != 2)
7093 || ((prev_pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
7094 && micromips_insn_length (ip->insn_mo) != 4)))
7095 as_warn (_("wrong size instruction in a %u-bit branch delay slot"),
7096 (prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0 ? 16 : 32);
7097
7098 if (address_expr == NULL)
7099 ip->complete_p = 1;
7100 else if (reloc_type[0] <= BFD_RELOC_UNUSED
7101 && reloc_type[1] == BFD_RELOC_UNUSED
7102 && reloc_type[2] == BFD_RELOC_UNUSED
7103 && address_expr->X_op == O_constant)
7104 {
7105 switch (*reloc_type)
7106 {
7107 case BFD_RELOC_MIPS_JMP:
7108 {
7109 int shift;
7110
7111 /* Shift is 2, unusually, for microMIPS JALX. */
7112 shift = (mips_opts.micromips
7113 && strcmp (ip->insn_mo->name, "jalx") != 0) ? 1 : 2;
7114 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7115 as_bad (_("jump to misaligned address (0x%lx)"),
7116 (unsigned long) address_expr->X_add_number);
7117 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7118 & 0x3ffffff);
7119 ip->complete_p = 1;
7120 }
7121 break;
7122
7123 case BFD_RELOC_MIPS16_JMP:
7124 if ((address_expr->X_add_number & 3) != 0)
7125 as_bad (_("jump to misaligned address (0x%lx)"),
7126 (unsigned long) address_expr->X_add_number);
7127 ip->insn_opcode |=
7128 (((address_expr->X_add_number & 0x7c0000) << 3)
7129 | ((address_expr->X_add_number & 0xf800000) >> 7)
7130 | ((address_expr->X_add_number & 0x3fffc) >> 2));
7131 ip->complete_p = 1;
7132 break;
7133
7134 case BFD_RELOC_16_PCREL_S2:
7135 {
7136 int shift;
7137
7138 shift = mips_opts.micromips ? 1 : 2;
7139 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7140 as_bad (_("branch to misaligned address (0x%lx)"),
7141 (unsigned long) address_expr->X_add_number);
7142 if (!mips_relax_branch)
7143 {
7144 if ((address_expr->X_add_number + (1 << (shift + 15)))
7145 & ~((1 << (shift + 16)) - 1))
7146 as_bad (_("branch address range overflow (0x%lx)"),
7147 (unsigned long) address_expr->X_add_number);
7148 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7149 & 0xffff);
7150 }
7151 }
7152 break;
7153
7154 case BFD_RELOC_MIPS_21_PCREL_S2:
7155 {
7156 int shift;
7157
7158 shift = 2;
7159 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7160 as_bad (_("branch to misaligned address (0x%lx)"),
7161 (unsigned long) address_expr->X_add_number);
7162 if ((address_expr->X_add_number + (1 << (shift + 20)))
7163 & ~((1 << (shift + 21)) - 1))
7164 as_bad (_("branch address range overflow (0x%lx)"),
7165 (unsigned long) address_expr->X_add_number);
7166 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7167 & 0x1fffff);
7168 }
7169 break;
7170
7171 case BFD_RELOC_MIPS_26_PCREL_S2:
7172 {
7173 int shift;
7174
7175 shift = 2;
7176 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7177 as_bad (_("branch to misaligned address (0x%lx)"),
7178 (unsigned long) address_expr->X_add_number);
7179 if ((address_expr->X_add_number + (1 << (shift + 25)))
7180 & ~((1 << (shift + 26)) - 1))
7181 as_bad (_("branch address range overflow (0x%lx)"),
7182 (unsigned long) address_expr->X_add_number);
7183 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7184 & 0x3ffffff);
7185 }
7186 break;
7187
7188 default:
7189 {
7190 offsetT value;
7191
7192 if (calculate_reloc (*reloc_type, address_expr->X_add_number,
7193 &value))
7194 {
7195 ip->insn_opcode |= value & 0xffff;
7196 ip->complete_p = 1;
7197 }
7198 }
7199 break;
7200 }
7201 }
7202
7203 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
7204 {
7205 /* There are a lot of optimizations we could do that we don't.
7206 In particular, we do not, in general, reorder instructions.
7207 If you use gcc with optimization, it will reorder
7208 instructions and generally do much more optimization then we
7209 do here; repeating all that work in the assembler would only
7210 benefit hand written assembly code, and does not seem worth
7211 it. */
7212 int nops = (mips_optimize == 0
7213 ? nops_for_insn (0, history, NULL)
7214 : nops_for_insn_or_target (0, history, ip));
7215 if (nops > 0)
7216 {
7217 fragS *old_frag;
7218 unsigned long old_frag_offset;
7219 int i;
7220
7221 old_frag = frag_now;
7222 old_frag_offset = frag_now_fix ();
7223
7224 for (i = 0; i < nops; i++)
7225 add_fixed_insn (NOP_INSN);
7226 insert_into_history (0, nops, NOP_INSN);
7227
7228 if (listing)
7229 {
7230 listing_prev_line ();
7231 /* We may be at the start of a variant frag. In case we
7232 are, make sure there is enough space for the frag
7233 after the frags created by listing_prev_line. The
7234 argument to frag_grow here must be at least as large
7235 as the argument to all other calls to frag_grow in
7236 this file. We don't have to worry about being in the
7237 middle of a variant frag, because the variants insert
7238 all needed nop instructions themselves. */
7239 frag_grow (40);
7240 }
7241
7242 mips_move_text_labels ();
7243
7244 #ifndef NO_ECOFF_DEBUGGING
7245 if (ECOFF_DEBUGGING)
7246 ecoff_fix_loc (old_frag, old_frag_offset);
7247 #endif
7248 }
7249 }
7250 else if (mips_relax.sequence != 2 && prev_nop_frag != NULL)
7251 {
7252 int nops;
7253
7254 /* Work out how many nops in prev_nop_frag are needed by IP,
7255 ignoring hazards generated by the first prev_nop_frag_since
7256 instructions. */
7257 nops = nops_for_insn_or_target (prev_nop_frag_since, history, ip);
7258 gas_assert (nops <= prev_nop_frag_holds);
7259
7260 /* Enforce NOPS as a minimum. */
7261 if (nops > prev_nop_frag_required)
7262 prev_nop_frag_required = nops;
7263
7264 if (prev_nop_frag_holds == prev_nop_frag_required)
7265 {
7266 /* Settle for the current number of nops. Update the history
7267 accordingly (for the benefit of any future .set reorder code). */
7268 prev_nop_frag = NULL;
7269 insert_into_history (prev_nop_frag_since,
7270 prev_nop_frag_holds, NOP_INSN);
7271 }
7272 else
7273 {
7274 /* Allow this instruction to replace one of the nops that was
7275 tentatively added to prev_nop_frag. */
7276 prev_nop_frag->fr_fix -= NOP_INSN_SIZE;
7277 prev_nop_frag_holds--;
7278 prev_nop_frag_since++;
7279 }
7280 }
7281
7282 method = get_append_method (ip, address_expr, reloc_type);
7283 branch_disp = method == APPEND_SWAP ? insn_length (history) : 0;
7284
7285 dwarf2_emit_insn (0);
7286 /* We want MIPS16 and microMIPS debug info to use ISA-encoded addresses,
7287 so "move" the instruction address accordingly.
7288
7289 Also, it doesn't seem appropriate for the assembler to reorder .loc
7290 entries. If this instruction is a branch that we are going to swap
7291 with the previous instruction, the two instructions should be
7292 treated as a unit, and the debug information for both instructions
7293 should refer to the start of the branch sequence. Using the
7294 current position is certainly wrong when swapping a 32-bit branch
7295 and a 16-bit delay slot, since the current position would then be
7296 in the middle of a branch. */
7297 dwarf2_move_insn ((HAVE_CODE_COMPRESSION ? 1 : 0) - branch_disp);
7298
7299 relax32 = (mips_relax_branch
7300 /* Don't try branch relaxation within .set nomacro, or within
7301 .set noat if we use $at for PIC computations. If it turns
7302 out that the branch was out-of-range, we'll get an error. */
7303 && !mips_opts.warn_about_macros
7304 && (mips_opts.at || mips_pic == NO_PIC)
7305 /* Don't relax BPOSGE32/64 or BC1ANY2T/F and BC1ANY4T/F
7306 as they have no complementing branches. */
7307 && !(ip->insn_mo->ase & (ASE_MIPS3D | ASE_DSP64 | ASE_DSP)));
7308
7309 if (!HAVE_CODE_COMPRESSION
7310 && address_expr
7311 && relax32
7312 && *reloc_type == BFD_RELOC_16_PCREL_S2
7313 && delayed_branch_p (ip))
7314 {
7315 relaxed_branch = TRUE;
7316 add_relaxed_insn (ip, (relaxed_branch_length
7317 (NULL, NULL,
7318 uncond_branch_p (ip) ? -1
7319 : branch_likely_p (ip) ? 1
7320 : 0)), 4,
7321 RELAX_BRANCH_ENCODE
7322 (AT,
7323 uncond_branch_p (ip),
7324 branch_likely_p (ip),
7325 pinfo & INSN_WRITE_GPR_31,
7326 0),
7327 address_expr->X_add_symbol,
7328 address_expr->X_add_number);
7329 *reloc_type = BFD_RELOC_UNUSED;
7330 }
7331 else if (mips_opts.micromips
7332 && address_expr
7333 && ((relax32 && *reloc_type == BFD_RELOC_16_PCREL_S2)
7334 || *reloc_type > BFD_RELOC_UNUSED)
7335 && (delayed_branch_p (ip) || compact_branch_p (ip))
7336 /* Don't try branch relaxation when users specify
7337 16-bit/32-bit instructions. */
7338 && !forced_insn_length)
7339 {
7340 bfd_boolean relax16 = (method != APPEND_ADD_COMPACT
7341 && *reloc_type > BFD_RELOC_UNUSED);
7342 int type = relax16 ? *reloc_type - BFD_RELOC_UNUSED : 0;
7343 int uncond = uncond_branch_p (ip) ? -1 : 0;
7344 int compact = compact_branch_p (ip) || method == APPEND_ADD_COMPACT;
7345 int nods = method == APPEND_ADD_WITH_NOP;
7346 int al = pinfo & INSN_WRITE_GPR_31;
7347 int length32 = nods ? 8 : 4;
7348
7349 gas_assert (address_expr != NULL);
7350 gas_assert (!mips_relax.sequence);
7351
7352 relaxed_branch = TRUE;
7353 if (nods)
7354 method = APPEND_ADD;
7355 if (relax32)
7356 length32 = relaxed_micromips_32bit_branch_length (NULL, NULL, uncond);
7357 add_relaxed_insn (ip, length32, relax16 ? 2 : 4,
7358 RELAX_MICROMIPS_ENCODE (type, AT, mips_opts.insn32,
7359 uncond, compact, al, nods,
7360 relax32, 0, 0),
7361 address_expr->X_add_symbol,
7362 address_expr->X_add_number);
7363 *reloc_type = BFD_RELOC_UNUSED;
7364 }
7365 else if (mips_opts.mips16 && *reloc_type > BFD_RELOC_UNUSED)
7366 {
7367 bfd_boolean require_unextended;
7368 bfd_boolean require_extended;
7369 symbolS *symbol;
7370 offsetT offset;
7371
7372 if (forced_insn_length != 0)
7373 {
7374 require_unextended = forced_insn_length == 2;
7375 require_extended = forced_insn_length == 4;
7376 }
7377 else
7378 {
7379 require_unextended = (mips_opts.noautoextend
7380 && !mips_opcode_32bit_p (ip->insn_mo));
7381 require_extended = 0;
7382 }
7383
7384 /* We need to set up a variant frag. */
7385 gas_assert (address_expr != NULL);
7386 /* Pass any `O_symbol' expression unchanged as an `expr_section'
7387 symbol created by `make_expr_symbol' may not get a necessary
7388 external relocation produced. */
7389 if (address_expr->X_op == O_symbol)
7390 {
7391 symbol = address_expr->X_add_symbol;
7392 offset = address_expr->X_add_number;
7393 }
7394 else
7395 {
7396 symbol = make_expr_symbol (address_expr);
7397 offset = 0;
7398 }
7399 add_relaxed_insn (ip, 4, 0,
7400 RELAX_MIPS16_ENCODE
7401 (*reloc_type - BFD_RELOC_UNUSED,
7402 require_unextended, require_extended,
7403 delayed_branch_p (&history[0]),
7404 history[0].mips16_absolute_jump_p),
7405 symbol, offset);
7406 }
7407 else if (mips_opts.mips16 && insn_length (ip) == 2)
7408 {
7409 if (!delayed_branch_p (ip))
7410 /* Make sure there is enough room to swap this instruction with
7411 a following jump instruction. */
7412 frag_grow (6);
7413 add_fixed_insn (ip);
7414 }
7415 else
7416 {
7417 if (mips_opts.mips16
7418 && mips_opts.noreorder
7419 && delayed_branch_p (&history[0]))
7420 as_warn (_("extended instruction in delay slot"));
7421
7422 if (mips_relax.sequence)
7423 {
7424 /* If we've reached the end of this frag, turn it into a variant
7425 frag and record the information for the instructions we've
7426 written so far. */
7427 if (frag_room () < 4)
7428 relax_close_frag ();
7429 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (ip);
7430 }
7431
7432 if (mips_relax.sequence != 2)
7433 {
7434 if (mips_macro_warning.first_insn_sizes[0] == 0)
7435 mips_macro_warning.first_insn_sizes[0] = insn_length (ip);
7436 mips_macro_warning.sizes[0] += insn_length (ip);
7437 mips_macro_warning.insns[0]++;
7438 }
7439 if (mips_relax.sequence != 1)
7440 {
7441 if (mips_macro_warning.first_insn_sizes[1] == 0)
7442 mips_macro_warning.first_insn_sizes[1] = insn_length (ip);
7443 mips_macro_warning.sizes[1] += insn_length (ip);
7444 mips_macro_warning.insns[1]++;
7445 }
7446
7447 if (mips_opts.mips16)
7448 {
7449 ip->fixed_p = 1;
7450 ip->mips16_absolute_jump_p = (*reloc_type == BFD_RELOC_MIPS16_JMP);
7451 }
7452 add_fixed_insn (ip);
7453 }
7454
7455 if (!ip->complete_p && *reloc_type < BFD_RELOC_UNUSED)
7456 {
7457 bfd_reloc_code_real_type final_type[3];
7458 reloc_howto_type *howto0;
7459 reloc_howto_type *howto;
7460 int i;
7461
7462 /* Perform any necessary conversion to microMIPS relocations
7463 and find out how many relocations there actually are. */
7464 for (i = 0; i < 3 && reloc_type[i] != BFD_RELOC_UNUSED; i++)
7465 final_type[i] = micromips_map_reloc (reloc_type[i]);
7466
7467 /* In a compound relocation, it is the final (outermost)
7468 operator that determines the relocated field. */
7469 howto = howto0 = bfd_reloc_type_lookup (stdoutput, final_type[i - 1]);
7470 if (!howto)
7471 abort ();
7472
7473 if (i > 1)
7474 howto0 = bfd_reloc_type_lookup (stdoutput, final_type[0]);
7475 ip->fixp[0] = fix_new_exp (ip->frag, ip->where,
7476 bfd_get_reloc_size (howto),
7477 address_expr,
7478 howto0 && howto0->pc_relative,
7479 final_type[0]);
7480
7481 /* Tag symbols that have a R_MIPS16_26 relocation against them. */
7482 if (final_type[0] == BFD_RELOC_MIPS16_JMP && ip->fixp[0]->fx_addsy)
7483 *symbol_get_tc (ip->fixp[0]->fx_addsy) = 1;
7484
7485 /* These relocations can have an addend that won't fit in
7486 4 octets for 64bit assembly. */
7487 if (GPR_SIZE == 64
7488 && ! howto->partial_inplace
7489 && (reloc_type[0] == BFD_RELOC_16
7490 || reloc_type[0] == BFD_RELOC_32
7491 || reloc_type[0] == BFD_RELOC_MIPS_JMP
7492 || reloc_type[0] == BFD_RELOC_GPREL16
7493 || reloc_type[0] == BFD_RELOC_MIPS_LITERAL
7494 || reloc_type[0] == BFD_RELOC_GPREL32
7495 || reloc_type[0] == BFD_RELOC_64
7496 || reloc_type[0] == BFD_RELOC_CTOR
7497 || reloc_type[0] == BFD_RELOC_MIPS_SUB
7498 || reloc_type[0] == BFD_RELOC_MIPS_HIGHEST
7499 || reloc_type[0] == BFD_RELOC_MIPS_HIGHER
7500 || reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP
7501 || reloc_type[0] == BFD_RELOC_MIPS_REL16
7502 || reloc_type[0] == BFD_RELOC_MIPS_RELGOT
7503 || reloc_type[0] == BFD_RELOC_MIPS16_GPREL
7504 || hi16_reloc_p (reloc_type[0])
7505 || lo16_reloc_p (reloc_type[0])))
7506 ip->fixp[0]->fx_no_overflow = 1;
7507
7508 /* These relocations can have an addend that won't fit in 2 octets. */
7509 if (reloc_type[0] == BFD_RELOC_MICROMIPS_7_PCREL_S1
7510 || reloc_type[0] == BFD_RELOC_MICROMIPS_10_PCREL_S1)
7511 ip->fixp[0]->fx_no_overflow = 1;
7512
7513 if (mips_relax.sequence)
7514 {
7515 if (mips_relax.first_fixup == 0)
7516 mips_relax.first_fixup = ip->fixp[0];
7517 }
7518 else if (reloc_needs_lo_p (*reloc_type))
7519 {
7520 struct mips_hi_fixup *hi_fixup;
7521
7522 /* Reuse the last entry if it already has a matching %lo. */
7523 hi_fixup = mips_hi_fixup_list;
7524 if (hi_fixup == 0
7525 || !fixup_has_matching_lo_p (hi_fixup->fixp))
7526 {
7527 hi_fixup = XNEW (struct mips_hi_fixup);
7528 hi_fixup->next = mips_hi_fixup_list;
7529 mips_hi_fixup_list = hi_fixup;
7530 }
7531 hi_fixup->fixp = ip->fixp[0];
7532 hi_fixup->seg = now_seg;
7533 }
7534
7535 /* Add fixups for the second and third relocations, if given.
7536 Note that the ABI allows the second relocation to be
7537 against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
7538 moment we only use RSS_UNDEF, but we could add support
7539 for the others if it ever becomes necessary. */
7540 for (i = 1; i < 3; i++)
7541 if (reloc_type[i] != BFD_RELOC_UNUSED)
7542 {
7543 ip->fixp[i] = fix_new (ip->frag, ip->where,
7544 ip->fixp[0]->fx_size, NULL, 0,
7545 FALSE, final_type[i]);
7546
7547 /* Use fx_tcbit to mark compound relocs. */
7548 ip->fixp[0]->fx_tcbit = 1;
7549 ip->fixp[i]->fx_tcbit = 1;
7550 }
7551 }
7552
7553 /* Update the register mask information. */
7554 mips_gprmask |= gpr_read_mask (ip) | gpr_write_mask (ip);
7555 mips_cprmask[1] |= fpr_read_mask (ip) | fpr_write_mask (ip);
7556
7557 switch (method)
7558 {
7559 case APPEND_ADD:
7560 insert_into_history (0, 1, ip);
7561 break;
7562
7563 case APPEND_ADD_WITH_NOP:
7564 {
7565 struct mips_cl_insn *nop;
7566
7567 insert_into_history (0, 1, ip);
7568 nop = get_delay_slot_nop (ip);
7569 add_fixed_insn (nop);
7570 insert_into_history (0, 1, nop);
7571 if (mips_relax.sequence)
7572 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (nop);
7573 }
7574 break;
7575
7576 case APPEND_ADD_COMPACT:
7577 /* Convert MIPS16 jr/jalr into a "compact" jump. */
7578 if (mips_opts.mips16)
7579 {
7580 ip->insn_opcode |= 0x0080;
7581 find_altered_mips16_opcode (ip);
7582 }
7583 /* Convert microMIPS instructions. */
7584 else if (mips_opts.micromips)
7585 {
7586 /* jr16->jrc */
7587 if ((ip->insn_opcode & 0xffe0) == 0x4580)
7588 ip->insn_opcode |= 0x0020;
7589 /* b16->bc */
7590 else if ((ip->insn_opcode & 0xfc00) == 0xcc00)
7591 ip->insn_opcode = 0x40e00000;
7592 /* beqz16->beqzc, bnez16->bnezc */
7593 else if ((ip->insn_opcode & 0xdc00) == 0x8c00)
7594 {
7595 unsigned long regno;
7596
7597 regno = ip->insn_opcode >> MICROMIPSOP_SH_MD;
7598 regno &= MICROMIPSOP_MASK_MD;
7599 regno = micromips_to_32_reg_d_map[regno];
7600 ip->insn_opcode = (((ip->insn_opcode << 9) & 0x00400000)
7601 | (regno << MICROMIPSOP_SH_RS)
7602 | 0x40a00000) ^ 0x00400000;
7603 }
7604 /* beqz->beqzc, bnez->bnezc */
7605 else if ((ip->insn_opcode & 0xdfe00000) == 0x94000000)
7606 ip->insn_opcode = ((ip->insn_opcode & 0x001f0000)
7607 | ((ip->insn_opcode >> 7) & 0x00400000)
7608 | 0x40a00000) ^ 0x00400000;
7609 /* beq $0->beqzc, bne $0->bnezc */
7610 else if ((ip->insn_opcode & 0xdc1f0000) == 0x94000000)
7611 ip->insn_opcode = (((ip->insn_opcode >>
7612 (MICROMIPSOP_SH_RT - MICROMIPSOP_SH_RS))
7613 & (MICROMIPSOP_MASK_RS << MICROMIPSOP_SH_RS))
7614 | ((ip->insn_opcode >> 7) & 0x00400000)
7615 | 0x40a00000) ^ 0x00400000;
7616 else
7617 abort ();
7618 find_altered_micromips_opcode (ip);
7619 }
7620 else
7621 abort ();
7622 install_insn (ip);
7623 insert_into_history (0, 1, ip);
7624 break;
7625
7626 case APPEND_SWAP:
7627 {
7628 struct mips_cl_insn delay = history[0];
7629
7630 if (relaxed_branch || delay.frag != ip->frag)
7631 {
7632 /* Add the delay slot instruction to the end of the
7633 current frag and shrink the fixed part of the
7634 original frag. If the branch occupies the tail of
7635 the latter, move it backwards to cover the gap. */
7636 delay.frag->fr_fix -= branch_disp;
7637 if (delay.frag == ip->frag)
7638 move_insn (ip, ip->frag, ip->where - branch_disp);
7639 add_fixed_insn (&delay);
7640 }
7641 else
7642 {
7643 /* If this is not a relaxed branch and we are in the
7644 same frag, then just swap the instructions. */
7645 move_insn (ip, delay.frag, delay.where);
7646 move_insn (&delay, ip->frag, ip->where + insn_length (ip));
7647 }
7648 history[0] = *ip;
7649 delay.fixed_p = 1;
7650 insert_into_history (0, 1, &delay);
7651 }
7652 break;
7653 }
7654
7655 /* If we have just completed an unconditional branch, clear the history. */
7656 if ((delayed_branch_p (&history[1]) && uncond_branch_p (&history[1]))
7657 || (compact_branch_p (&history[0]) && uncond_branch_p (&history[0])))
7658 {
7659 unsigned int i;
7660
7661 mips_no_prev_insn ();
7662
7663 for (i = 0; i < ARRAY_SIZE (history); i++)
7664 history[i].cleared_p = 1;
7665 }
7666
7667 /* We need to emit a label at the end of branch-likely macros. */
7668 if (emit_branch_likely_macro)
7669 {
7670 emit_branch_likely_macro = FALSE;
7671 micromips_add_label ();
7672 }
7673
7674 /* We just output an insn, so the next one doesn't have a label. */
7675 mips_clear_insn_labels ();
7676 }
7677
7678 /* Forget that there was any previous instruction or label.
7679 When BRANCH is true, the branch history is also flushed. */
7680
7681 static void
7682 mips_no_prev_insn (void)
7683 {
7684 prev_nop_frag = NULL;
7685 insert_into_history (0, ARRAY_SIZE (history), NOP_INSN);
7686 mips_clear_insn_labels ();
7687 }
7688
7689 /* This function must be called before we emit something other than
7690 instructions. It is like mips_no_prev_insn except that it inserts
7691 any NOPS that might be needed by previous instructions. */
7692
7693 void
7694 mips_emit_delays (void)
7695 {
7696 if (! mips_opts.noreorder)
7697 {
7698 int nops = nops_for_insn (0, history, NULL);
7699 if (nops > 0)
7700 {
7701 while (nops-- > 0)
7702 add_fixed_insn (NOP_INSN);
7703 mips_move_text_labels ();
7704 }
7705 }
7706 mips_no_prev_insn ();
7707 }
7708
7709 /* Start a (possibly nested) noreorder block. */
7710
7711 static void
7712 start_noreorder (void)
7713 {
7714 if (mips_opts.noreorder == 0)
7715 {
7716 unsigned int i;
7717 int nops;
7718
7719 /* None of the instructions before the .set noreorder can be moved. */
7720 for (i = 0; i < ARRAY_SIZE (history); i++)
7721 history[i].fixed_p = 1;
7722
7723 /* Insert any nops that might be needed between the .set noreorder
7724 block and the previous instructions. We will later remove any
7725 nops that turn out not to be needed. */
7726 nops = nops_for_insn (0, history, NULL);
7727 if (nops > 0)
7728 {
7729 if (mips_optimize != 0)
7730 {
7731 /* Record the frag which holds the nop instructions, so
7732 that we can remove them if we don't need them. */
7733 frag_grow (nops * NOP_INSN_SIZE);
7734 prev_nop_frag = frag_now;
7735 prev_nop_frag_holds = nops;
7736 prev_nop_frag_required = 0;
7737 prev_nop_frag_since = 0;
7738 }
7739
7740 for (; nops > 0; --nops)
7741 add_fixed_insn (NOP_INSN);
7742
7743 /* Move on to a new frag, so that it is safe to simply
7744 decrease the size of prev_nop_frag. */
7745 frag_wane (frag_now);
7746 frag_new (0);
7747 mips_move_text_labels ();
7748 }
7749 mips_mark_labels ();
7750 mips_clear_insn_labels ();
7751 }
7752 mips_opts.noreorder++;
7753 mips_any_noreorder = 1;
7754 }
7755
7756 /* End a nested noreorder block. */
7757
7758 static void
7759 end_noreorder (void)
7760 {
7761 mips_opts.noreorder--;
7762 if (mips_opts.noreorder == 0 && prev_nop_frag != NULL)
7763 {
7764 /* Commit to inserting prev_nop_frag_required nops and go back to
7765 handling nop insertion the .set reorder way. */
7766 prev_nop_frag->fr_fix -= ((prev_nop_frag_holds - prev_nop_frag_required)
7767 * NOP_INSN_SIZE);
7768 insert_into_history (prev_nop_frag_since,
7769 prev_nop_frag_required, NOP_INSN);
7770 prev_nop_frag = NULL;
7771 }
7772 }
7773
7774 /* Sign-extend 32-bit mode constants that have bit 31 set and all
7775 higher bits unset. */
7776
7777 static void
7778 normalize_constant_expr (expressionS *ex)
7779 {
7780 if (ex->X_op == O_constant
7781 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7782 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7783 - 0x80000000);
7784 }
7785
7786 /* Sign-extend 32-bit mode address offsets that have bit 31 set and
7787 all higher bits unset. */
7788
7789 static void
7790 normalize_address_expr (expressionS *ex)
7791 {
7792 if (((ex->X_op == O_constant && HAVE_32BIT_ADDRESSES)
7793 || (ex->X_op == O_symbol && HAVE_32BIT_SYMBOLS))
7794 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7795 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7796 - 0x80000000);
7797 }
7798
7799 /* Try to match TOKENS against OPCODE, storing the result in INSN.
7800 Return true if the match was successful.
7801
7802 OPCODE_EXTRA is a value that should be ORed into the opcode
7803 (used for VU0 channel suffixes, etc.). MORE_ALTS is true if
7804 there are more alternatives after OPCODE and SOFT_MATCH is
7805 as for mips_arg_info. */
7806
7807 static bfd_boolean
7808 match_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
7809 struct mips_operand_token *tokens, unsigned int opcode_extra,
7810 bfd_boolean lax_match, bfd_boolean complete_p)
7811 {
7812 const char *args;
7813 struct mips_arg_info arg;
7814 const struct mips_operand *operand;
7815 char c;
7816
7817 imm_expr.X_op = O_absent;
7818 offset_expr.X_op = O_absent;
7819 offset_reloc[0] = BFD_RELOC_UNUSED;
7820 offset_reloc[1] = BFD_RELOC_UNUSED;
7821 offset_reloc[2] = BFD_RELOC_UNUSED;
7822
7823 create_insn (insn, opcode);
7824 /* When no opcode suffix is specified, assume ".xyzw". */
7825 if ((opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0 && opcode_extra == 0)
7826 insn->insn_opcode |= 0xf << mips_vu0_channel_mask.lsb;
7827 else
7828 insn->insn_opcode |= opcode_extra;
7829 memset (&arg, 0, sizeof (arg));
7830 arg.insn = insn;
7831 arg.token = tokens;
7832 arg.argnum = 1;
7833 arg.last_regno = ILLEGAL_REG;
7834 arg.dest_regno = ILLEGAL_REG;
7835 arg.lax_match = lax_match;
7836 for (args = opcode->args;; ++args)
7837 {
7838 if (arg.token->type == OT_END)
7839 {
7840 /* Handle unary instructions in which only one operand is given.
7841 The source is then the same as the destination. */
7842 if (arg.opnum == 1 && *args == ',')
7843 {
7844 operand = (mips_opts.micromips
7845 ? decode_micromips_operand (args + 1)
7846 : decode_mips_operand (args + 1));
7847 if (operand && mips_optional_operand_p (operand))
7848 {
7849 arg.token = tokens;
7850 arg.argnum = 1;
7851 continue;
7852 }
7853 }
7854
7855 /* Treat elided base registers as $0. */
7856 if (strcmp (args, "(b)") == 0)
7857 args += 3;
7858
7859 if (args[0] == '+')
7860 switch (args[1])
7861 {
7862 case 'K':
7863 case 'N':
7864 /* The register suffix is optional. */
7865 args += 2;
7866 break;
7867 }
7868
7869 /* Fail the match if there were too few operands. */
7870 if (*args)
7871 return FALSE;
7872
7873 /* Successful match. */
7874 if (!complete_p)
7875 return TRUE;
7876 clear_insn_error ();
7877 if (arg.dest_regno == arg.last_regno
7878 && strncmp (insn->insn_mo->name, "jalr", 4) == 0)
7879 {
7880 if (arg.opnum == 2)
7881 set_insn_error
7882 (0, _("source and destination must be different"));
7883 else if (arg.last_regno == 31)
7884 set_insn_error
7885 (0, _("a destination register must be supplied"));
7886 }
7887 else if (arg.last_regno == 31
7888 && (strncmp (insn->insn_mo->name, "bltzal", 6) == 0
7889 || strncmp (insn->insn_mo->name, "bgezal", 6) == 0))
7890 set_insn_error (0, _("the source register must not be $31"));
7891 check_completed_insn (&arg);
7892 return TRUE;
7893 }
7894
7895 /* Fail the match if the line has too many operands. */
7896 if (*args == 0)
7897 return FALSE;
7898
7899 /* Handle characters that need to match exactly. */
7900 if (*args == '(' || *args == ')' || *args == ',')
7901 {
7902 if (match_char (&arg, *args))
7903 continue;
7904 return FALSE;
7905 }
7906 if (*args == '#')
7907 {
7908 ++args;
7909 if (arg.token->type == OT_DOUBLE_CHAR
7910 && arg.token->u.ch == *args)
7911 {
7912 ++arg.token;
7913 continue;
7914 }
7915 return FALSE;
7916 }
7917
7918 /* Handle special macro operands. Work out the properties of
7919 other operands. */
7920 arg.opnum += 1;
7921 switch (*args)
7922 {
7923 case '-':
7924 switch (args[1])
7925 {
7926 case 'A':
7927 *offset_reloc = BFD_RELOC_MIPS_19_PCREL_S2;
7928 break;
7929
7930 case 'B':
7931 *offset_reloc = BFD_RELOC_MIPS_18_PCREL_S3;
7932 break;
7933 }
7934 break;
7935
7936 case '+':
7937 switch (args[1])
7938 {
7939 case 'i':
7940 *offset_reloc = BFD_RELOC_MIPS_JMP;
7941 break;
7942
7943 case '\'':
7944 *offset_reloc = BFD_RELOC_MIPS_26_PCREL_S2;
7945 break;
7946
7947 case '\"':
7948 *offset_reloc = BFD_RELOC_MIPS_21_PCREL_S2;
7949 break;
7950 }
7951 break;
7952
7953 case 'I':
7954 if (!match_const_int (&arg, &imm_expr.X_add_number))
7955 return FALSE;
7956 imm_expr.X_op = O_constant;
7957 if (GPR_SIZE == 32)
7958 normalize_constant_expr (&imm_expr);
7959 continue;
7960
7961 case 'A':
7962 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
7963 {
7964 /* Assume that the offset has been elided and that what
7965 we saw was a base register. The match will fail later
7966 if that assumption turns out to be wrong. */
7967 offset_expr.X_op = O_constant;
7968 offset_expr.X_add_number = 0;
7969 }
7970 else
7971 {
7972 if (!match_expression (&arg, &offset_expr, offset_reloc))
7973 return FALSE;
7974 normalize_address_expr (&offset_expr);
7975 }
7976 continue;
7977
7978 case 'F':
7979 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7980 8, TRUE))
7981 return FALSE;
7982 continue;
7983
7984 case 'L':
7985 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7986 8, FALSE))
7987 return FALSE;
7988 continue;
7989
7990 case 'f':
7991 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7992 4, TRUE))
7993 return FALSE;
7994 continue;
7995
7996 case 'l':
7997 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7998 4, FALSE))
7999 return FALSE;
8000 continue;
8001
8002 case 'p':
8003 *offset_reloc = BFD_RELOC_16_PCREL_S2;
8004 break;
8005
8006 case 'a':
8007 *offset_reloc = BFD_RELOC_MIPS_JMP;
8008 break;
8009
8010 case 'm':
8011 gas_assert (mips_opts.micromips);
8012 c = args[1];
8013 switch (c)
8014 {
8015 case 'D':
8016 case 'E':
8017 if (!forced_insn_length)
8018 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
8019 else if (c == 'D')
8020 *offset_reloc = BFD_RELOC_MICROMIPS_10_PCREL_S1;
8021 else
8022 *offset_reloc = BFD_RELOC_MICROMIPS_7_PCREL_S1;
8023 break;
8024 }
8025 break;
8026 }
8027
8028 operand = (mips_opts.micromips
8029 ? decode_micromips_operand (args)
8030 : decode_mips_operand (args));
8031 if (!operand)
8032 abort ();
8033
8034 /* Skip prefixes. */
8035 if (*args == '+' || *args == 'm' || *args == '-')
8036 args++;
8037
8038 if (mips_optional_operand_p (operand)
8039 && args[1] == ','
8040 && (arg.token[0].type != OT_REG
8041 || arg.token[1].type == OT_END))
8042 {
8043 /* Assume that the register has been elided and is the
8044 same as the first operand. */
8045 arg.token = tokens;
8046 arg.argnum = 1;
8047 }
8048
8049 if (!match_operand (&arg, operand))
8050 return FALSE;
8051 }
8052 }
8053
8054 /* Like match_insn, but for MIPS16. */
8055
8056 static bfd_boolean
8057 match_mips16_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
8058 struct mips_operand_token *tokens)
8059 {
8060 const char *args;
8061 const struct mips_operand *operand;
8062 const struct mips_operand *ext_operand;
8063 int required_insn_length;
8064 struct mips_arg_info arg;
8065 int relax_char;
8066
8067 if (forced_insn_length)
8068 required_insn_length = forced_insn_length;
8069 else if (mips_opts.noautoextend && !mips_opcode_32bit_p (opcode))
8070 required_insn_length = 2;
8071 else
8072 required_insn_length = 0;
8073
8074 create_insn (insn, opcode);
8075 imm_expr.X_op = O_absent;
8076 offset_expr.X_op = O_absent;
8077 offset_reloc[0] = BFD_RELOC_UNUSED;
8078 offset_reloc[1] = BFD_RELOC_UNUSED;
8079 offset_reloc[2] = BFD_RELOC_UNUSED;
8080 relax_char = 0;
8081
8082 memset (&arg, 0, sizeof (arg));
8083 arg.insn = insn;
8084 arg.token = tokens;
8085 arg.argnum = 1;
8086 arg.last_regno = ILLEGAL_REG;
8087 arg.dest_regno = ILLEGAL_REG;
8088 relax_char = 0;
8089 for (args = opcode->args;; ++args)
8090 {
8091 int c;
8092
8093 if (arg.token->type == OT_END)
8094 {
8095 offsetT value;
8096
8097 /* Handle unary instructions in which only one operand is given.
8098 The source is then the same as the destination. */
8099 if (arg.opnum == 1 && *args == ',')
8100 {
8101 operand = decode_mips16_operand (args[1], FALSE);
8102 if (operand && mips_optional_operand_p (operand))
8103 {
8104 arg.token = tokens;
8105 arg.argnum = 1;
8106 continue;
8107 }
8108 }
8109
8110 /* Fail the match if there were too few operands. */
8111 if (*args)
8112 return FALSE;
8113
8114 /* Successful match. Stuff the immediate value in now, if
8115 we can. */
8116 clear_insn_error ();
8117 if (opcode->pinfo == INSN_MACRO)
8118 {
8119 gas_assert (relax_char == 0 || relax_char == 'p');
8120 gas_assert (*offset_reloc == BFD_RELOC_UNUSED);
8121 }
8122 else if (relax_char
8123 && offset_expr.X_op == O_constant
8124 && calculate_reloc (*offset_reloc,
8125 offset_expr.X_add_number,
8126 &value))
8127 {
8128 mips16_immed (NULL, 0, relax_char, *offset_reloc, value,
8129 required_insn_length, &insn->insn_opcode);
8130 offset_expr.X_op = O_absent;
8131 *offset_reloc = BFD_RELOC_UNUSED;
8132 }
8133 else if (relax_char && *offset_reloc != BFD_RELOC_UNUSED)
8134 {
8135 if (required_insn_length == 2)
8136 set_insn_error (0, _("invalid unextended operand value"));
8137 forced_insn_length = 4;
8138 insn->insn_opcode |= MIPS16_EXTEND;
8139 }
8140 else if (relax_char)
8141 *offset_reloc = (int) BFD_RELOC_UNUSED + relax_char;
8142
8143 check_completed_insn (&arg);
8144 return TRUE;
8145 }
8146
8147 /* Fail the match if the line has too many operands. */
8148 if (*args == 0)
8149 return FALSE;
8150
8151 /* Handle characters that need to match exactly. */
8152 if (*args == '(' || *args == ')' || *args == ',')
8153 {
8154 if (match_char (&arg, *args))
8155 continue;
8156 return FALSE;
8157 }
8158
8159 arg.opnum += 1;
8160 c = *args;
8161 switch (c)
8162 {
8163 case 'p':
8164 case 'q':
8165 case 'A':
8166 case 'B':
8167 case 'E':
8168 relax_char = c;
8169 break;
8170
8171 case 'I':
8172 if (!match_const_int (&arg, &imm_expr.X_add_number))
8173 return FALSE;
8174 imm_expr.X_op = O_constant;
8175 if (GPR_SIZE == 32)
8176 normalize_constant_expr (&imm_expr);
8177 continue;
8178
8179 case 'a':
8180 case 'i':
8181 *offset_reloc = BFD_RELOC_MIPS16_JMP;
8182 break;
8183 }
8184
8185 operand = decode_mips16_operand (c, mips_opcode_32bit_p (opcode));
8186 if (!operand)
8187 abort ();
8188
8189 /* '6' is a special case. It is used for BREAK and SDBBP,
8190 whose operands are only meaningful to the software that decodes
8191 them. This means that there is no architectural reason why
8192 they cannot be prefixed by EXTEND, but in practice,
8193 exception handlers will only look at the instruction
8194 itself. We therefore allow '6' to be extended when
8195 disassembling but not when assembling. */
8196 if (operand->type != OP_PCREL && c != '6')
8197 {
8198 ext_operand = decode_mips16_operand (c, TRUE);
8199 if (operand != ext_operand)
8200 {
8201 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
8202 {
8203 offset_expr.X_op = O_constant;
8204 offset_expr.X_add_number = 0;
8205 relax_char = c;
8206 continue;
8207 }
8208
8209 /* We need the OT_INTEGER check because some MIPS16
8210 immediate variants are listed before the register ones. */
8211 if (arg.token->type != OT_INTEGER
8212 || !match_expression (&arg, &offset_expr, offset_reloc))
8213 return FALSE;
8214
8215 /* '8' is used for SLTI(U) and has traditionally not
8216 been allowed to take relocation operators. */
8217 if (offset_reloc[0] != BFD_RELOC_UNUSED
8218 && (ext_operand->size != 16 || c == '8'))
8219 return FALSE;
8220
8221 relax_char = c;
8222 continue;
8223 }
8224 }
8225
8226 if (mips_optional_operand_p (operand)
8227 && args[1] == ','
8228 && (arg.token[0].type != OT_REG
8229 || arg.token[1].type == OT_END))
8230 {
8231 /* Assume that the register has been elided and is the
8232 same as the first operand. */
8233 arg.token = tokens;
8234 arg.argnum = 1;
8235 }
8236
8237 if (!match_operand (&arg, operand))
8238 return FALSE;
8239 }
8240 }
8241
8242 /* Record that the current instruction is invalid for the current ISA. */
8243
8244 static void
8245 match_invalid_for_isa (void)
8246 {
8247 set_insn_error_ss
8248 (0, _("opcode not supported on this processor: %s (%s)"),
8249 mips_cpu_info_from_arch (mips_opts.arch)->name,
8250 mips_cpu_info_from_isa (mips_opts.isa)->name);
8251 }
8252
8253 /* Try to match TOKENS against a series of opcode entries, starting at FIRST.
8254 Return true if a definite match or failure was found, storing any match
8255 in INSN. OPCODE_EXTRA is a value that should be ORed into the opcode
8256 (to handle things like VU0 suffixes). LAX_MATCH is true if we have already
8257 tried and failed to match under normal conditions and now want to try a
8258 more relaxed match. */
8259
8260 static bfd_boolean
8261 match_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8262 const struct mips_opcode *past, struct mips_operand_token *tokens,
8263 int opcode_extra, bfd_boolean lax_match)
8264 {
8265 const struct mips_opcode *opcode;
8266 const struct mips_opcode *invalid_delay_slot;
8267 bfd_boolean seen_valid_for_isa, seen_valid_for_size;
8268
8269 /* Search for a match, ignoring alternatives that don't satisfy the
8270 current ISA or forced_length. */
8271 invalid_delay_slot = 0;
8272 seen_valid_for_isa = FALSE;
8273 seen_valid_for_size = FALSE;
8274 opcode = first;
8275 do
8276 {
8277 gas_assert (strcmp (opcode->name, first->name) == 0);
8278 if (is_opcode_valid (opcode))
8279 {
8280 seen_valid_for_isa = TRUE;
8281 if (is_size_valid (opcode))
8282 {
8283 bfd_boolean delay_slot_ok;
8284
8285 seen_valid_for_size = TRUE;
8286 delay_slot_ok = is_delay_slot_valid (opcode);
8287 if (match_insn (insn, opcode, tokens, opcode_extra,
8288 lax_match, delay_slot_ok))
8289 {
8290 if (!delay_slot_ok)
8291 {
8292 if (!invalid_delay_slot)
8293 invalid_delay_slot = opcode;
8294 }
8295 else
8296 return TRUE;
8297 }
8298 }
8299 }
8300 ++opcode;
8301 }
8302 while (opcode < past && strcmp (opcode->name, first->name) == 0);
8303
8304 /* If the only matches we found had the wrong length for the delay slot,
8305 pick the first such match. We'll issue an appropriate warning later. */
8306 if (invalid_delay_slot)
8307 {
8308 if (match_insn (insn, invalid_delay_slot, tokens, opcode_extra,
8309 lax_match, TRUE))
8310 return TRUE;
8311 abort ();
8312 }
8313
8314 /* Handle the case where we didn't try to match an instruction because
8315 all the alternatives were incompatible with the current ISA. */
8316 if (!seen_valid_for_isa)
8317 {
8318 match_invalid_for_isa ();
8319 return TRUE;
8320 }
8321
8322 /* Handle the case where we didn't try to match an instruction because
8323 all the alternatives were of the wrong size. */
8324 if (!seen_valid_for_size)
8325 {
8326 if (mips_opts.insn32)
8327 set_insn_error (0, _("opcode not supported in the `insn32' mode"));
8328 else
8329 set_insn_error_i
8330 (0, _("unrecognized %d-bit version of microMIPS opcode"),
8331 8 * forced_insn_length);
8332 return TRUE;
8333 }
8334
8335 return FALSE;
8336 }
8337
8338 /* Like match_insns, but for MIPS16. */
8339
8340 static bfd_boolean
8341 match_mips16_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8342 struct mips_operand_token *tokens)
8343 {
8344 const struct mips_opcode *opcode;
8345 bfd_boolean seen_valid_for_isa;
8346 bfd_boolean seen_valid_for_size;
8347
8348 /* Search for a match, ignoring alternatives that don't satisfy the
8349 current ISA. There are no separate entries for extended forms so
8350 we deal with forced_length later. */
8351 seen_valid_for_isa = FALSE;
8352 seen_valid_for_size = FALSE;
8353 opcode = first;
8354 do
8355 {
8356 gas_assert (strcmp (opcode->name, first->name) == 0);
8357 if (is_opcode_valid_16 (opcode))
8358 {
8359 seen_valid_for_isa = TRUE;
8360 if (is_size_valid_16 (opcode))
8361 {
8362 seen_valid_for_size = TRUE;
8363 if (match_mips16_insn (insn, opcode, tokens))
8364 return TRUE;
8365 }
8366 }
8367 ++opcode;
8368 }
8369 while (opcode < &mips16_opcodes[bfd_mips16_num_opcodes]
8370 && strcmp (opcode->name, first->name) == 0);
8371
8372 /* Handle the case where we didn't try to match an instruction because
8373 all the alternatives were incompatible with the current ISA. */
8374 if (!seen_valid_for_isa)
8375 {
8376 match_invalid_for_isa ();
8377 return TRUE;
8378 }
8379
8380 /* Handle the case where we didn't try to match an instruction because
8381 all the alternatives were of the wrong size. */
8382 if (!seen_valid_for_size)
8383 {
8384 if (forced_insn_length == 2)
8385 set_insn_error
8386 (0, _("unrecognized unextended version of MIPS16 opcode"));
8387 else
8388 set_insn_error
8389 (0, _("unrecognized extended version of MIPS16 opcode"));
8390 return TRUE;
8391 }
8392
8393 return FALSE;
8394 }
8395
8396 /* Set up global variables for the start of a new macro. */
8397
8398 static void
8399 macro_start (void)
8400 {
8401 memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes));
8402 memset (&mips_macro_warning.first_insn_sizes, 0,
8403 sizeof (mips_macro_warning.first_insn_sizes));
8404 memset (&mips_macro_warning.insns, 0, sizeof (mips_macro_warning.insns));
8405 mips_macro_warning.delay_slot_p = (mips_opts.noreorder
8406 && delayed_branch_p (&history[0]));
8407 if (history[0].frag
8408 && history[0].frag->fr_type == rs_machine_dependent
8409 && RELAX_MICROMIPS_P (history[0].frag->fr_subtype)
8410 && RELAX_MICROMIPS_NODS (history[0].frag->fr_subtype))
8411 mips_macro_warning.delay_slot_length = 0;
8412 else
8413 switch (history[0].insn_mo->pinfo2
8414 & (INSN2_BRANCH_DELAY_32BIT | INSN2_BRANCH_DELAY_16BIT))
8415 {
8416 case INSN2_BRANCH_DELAY_32BIT:
8417 mips_macro_warning.delay_slot_length = 4;
8418 break;
8419 case INSN2_BRANCH_DELAY_16BIT:
8420 mips_macro_warning.delay_slot_length = 2;
8421 break;
8422 default:
8423 mips_macro_warning.delay_slot_length = 0;
8424 break;
8425 }
8426 mips_macro_warning.first_frag = NULL;
8427 }
8428
8429 /* Given that a macro is longer than one instruction or of the wrong size,
8430 return the appropriate warning for it. Return null if no warning is
8431 needed. SUBTYPE is a bitmask of RELAX_DELAY_SLOT, RELAX_DELAY_SLOT_16BIT,
8432 RELAX_DELAY_SLOT_SIZE_FIRST, RELAX_DELAY_SLOT_SIZE_SECOND,
8433 and RELAX_NOMACRO. */
8434
8435 static const char *
8436 macro_warning (relax_substateT subtype)
8437 {
8438 if (subtype & RELAX_DELAY_SLOT)
8439 return _("macro instruction expanded into multiple instructions"
8440 " in a branch delay slot");
8441 else if (subtype & RELAX_NOMACRO)
8442 return _("macro instruction expanded into multiple instructions");
8443 else if (subtype & (RELAX_DELAY_SLOT_SIZE_FIRST
8444 | RELAX_DELAY_SLOT_SIZE_SECOND))
8445 return ((subtype & RELAX_DELAY_SLOT_16BIT)
8446 ? _("macro instruction expanded into a wrong size instruction"
8447 " in a 16-bit branch delay slot")
8448 : _("macro instruction expanded into a wrong size instruction"
8449 " in a 32-bit branch delay slot"));
8450 else
8451 return 0;
8452 }
8453
8454 /* Finish up a macro. Emit warnings as appropriate. */
8455
8456 static void
8457 macro_end (void)
8458 {
8459 /* Relaxation warning flags. */
8460 relax_substateT subtype = 0;
8461
8462 /* Check delay slot size requirements. */
8463 if (mips_macro_warning.delay_slot_length == 2)
8464 subtype |= RELAX_DELAY_SLOT_16BIT;
8465 if (mips_macro_warning.delay_slot_length != 0)
8466 {
8467 if (mips_macro_warning.delay_slot_length
8468 != mips_macro_warning.first_insn_sizes[0])
8469 subtype |= RELAX_DELAY_SLOT_SIZE_FIRST;
8470 if (mips_macro_warning.delay_slot_length
8471 != mips_macro_warning.first_insn_sizes[1])
8472 subtype |= RELAX_DELAY_SLOT_SIZE_SECOND;
8473 }
8474
8475 /* Check instruction count requirements. */
8476 if (mips_macro_warning.insns[0] > 1 || mips_macro_warning.insns[1] > 1)
8477 {
8478 if (mips_macro_warning.insns[1] > mips_macro_warning.insns[0])
8479 subtype |= RELAX_SECOND_LONGER;
8480 if (mips_opts.warn_about_macros)
8481 subtype |= RELAX_NOMACRO;
8482 if (mips_macro_warning.delay_slot_p)
8483 subtype |= RELAX_DELAY_SLOT;
8484 }
8485
8486 /* If both alternatives fail to fill a delay slot correctly,
8487 emit the warning now. */
8488 if ((subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0
8489 && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0)
8490 {
8491 relax_substateT s;
8492 const char *msg;
8493
8494 s = subtype & (RELAX_DELAY_SLOT_16BIT
8495 | RELAX_DELAY_SLOT_SIZE_FIRST
8496 | RELAX_DELAY_SLOT_SIZE_SECOND);
8497 msg = macro_warning (s);
8498 if (msg != NULL)
8499 as_warn ("%s", msg);
8500 subtype &= ~s;
8501 }
8502
8503 /* If both implementations are longer than 1 instruction, then emit the
8504 warning now. */
8505 if (mips_macro_warning.insns[0] > 1 && mips_macro_warning.insns[1] > 1)
8506 {
8507 relax_substateT s;
8508 const char *msg;
8509
8510 s = subtype & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT);
8511 msg = macro_warning (s);
8512 if (msg != NULL)
8513 as_warn ("%s", msg);
8514 subtype &= ~s;
8515 }
8516
8517 /* If any flags still set, then one implementation might need a warning
8518 and the other either will need one of a different kind or none at all.
8519 Pass any remaining flags over to relaxation. */
8520 if (mips_macro_warning.first_frag != NULL)
8521 mips_macro_warning.first_frag->fr_subtype |= subtype;
8522 }
8523
8524 /* Instruction operand formats used in macros that vary between
8525 standard MIPS and microMIPS code. */
8526
8527 static const char * const brk_fmt[2][2] = { { "c", "c" }, { "mF", "c" } };
8528 static const char * const cop12_fmt[2] = { "E,o(b)", "E,~(b)" };
8529 static const char * const jalr_fmt[2] = { "d,s", "t,s" };
8530 static const char * const lui_fmt[2] = { "t,u", "s,u" };
8531 static const char * const mem12_fmt[2] = { "t,o(b)", "t,~(b)" };
8532 static const char * const mfhl_fmt[2][2] = { { "d", "d" }, { "mj", "s" } };
8533 static const char * const shft_fmt[2] = { "d,w,<", "t,r,<" };
8534 static const char * const trap_fmt[2] = { "s,t,q", "s,t,|" };
8535
8536 #define BRK_FMT (brk_fmt[mips_opts.micromips][mips_opts.insn32])
8537 #define COP12_FMT (ISA_IS_R6 (mips_opts.isa) ? "E,+:(d)" \
8538 : cop12_fmt[mips_opts.micromips])
8539 #define JALR_FMT (jalr_fmt[mips_opts.micromips])
8540 #define LUI_FMT (lui_fmt[mips_opts.micromips])
8541 #define MEM12_FMT (mem12_fmt[mips_opts.micromips])
8542 #define LL_SC_FMT (ISA_IS_R6 (mips_opts.isa) ? "t,+j(b)" \
8543 : mem12_fmt[mips_opts.micromips])
8544 #define MFHL_FMT (mfhl_fmt[mips_opts.micromips][mips_opts.insn32])
8545 #define SHFT_FMT (shft_fmt[mips_opts.micromips])
8546 #define TRAP_FMT (trap_fmt[mips_opts.micromips])
8547
8548 /* Read a macro's relocation codes from *ARGS and store them in *R.
8549 The first argument in *ARGS will be either the code for a single
8550 relocation or -1 followed by the three codes that make up a
8551 composite relocation. */
8552
8553 static void
8554 macro_read_relocs (va_list *args, bfd_reloc_code_real_type *r)
8555 {
8556 int i, next;
8557
8558 next = va_arg (*args, int);
8559 if (next >= 0)
8560 r[0] = (bfd_reloc_code_real_type) next;
8561 else
8562 {
8563 for (i = 0; i < 3; i++)
8564 r[i] = (bfd_reloc_code_real_type) va_arg (*args, int);
8565 /* This function is only used for 16-bit relocation fields.
8566 To make the macro code simpler, treat an unrelocated value
8567 in the same way as BFD_RELOC_LO16. */
8568 if (r[0] == BFD_RELOC_UNUSED)
8569 r[0] = BFD_RELOC_LO16;
8570 }
8571 }
8572
8573 /* Build an instruction created by a macro expansion. This is passed
8574 a pointer to the count of instructions created so far, an
8575 expression, the name of the instruction to build, an operand format
8576 string, and corresponding arguments. */
8577
8578 static void
8579 macro_build (expressionS *ep, const char *name, const char *fmt, ...)
8580 {
8581 const struct mips_opcode *mo = NULL;
8582 bfd_reloc_code_real_type r[3];
8583 const struct mips_opcode *amo;
8584 const struct mips_operand *operand;
8585 struct hash_control *hash;
8586 struct mips_cl_insn insn;
8587 va_list args;
8588 unsigned int uval;
8589
8590 va_start (args, fmt);
8591
8592 if (mips_opts.mips16)
8593 {
8594 mips16_macro_build (ep, name, fmt, &args);
8595 va_end (args);
8596 return;
8597 }
8598
8599 r[0] = BFD_RELOC_UNUSED;
8600 r[1] = BFD_RELOC_UNUSED;
8601 r[2] = BFD_RELOC_UNUSED;
8602 hash = mips_opts.micromips ? micromips_op_hash : op_hash;
8603 amo = (struct mips_opcode *) hash_find (hash, name);
8604 gas_assert (amo);
8605 gas_assert (strcmp (name, amo->name) == 0);
8606
8607 do
8608 {
8609 /* Search until we get a match for NAME. It is assumed here that
8610 macros will never generate MDMX, MIPS-3D, or MT instructions.
8611 We try to match an instruction that fulfils the branch delay
8612 slot instruction length requirement (if any) of the previous
8613 instruction. While doing this we record the first instruction
8614 seen that matches all the other conditions and use it anyway
8615 if the requirement cannot be met; we will issue an appropriate
8616 warning later on. */
8617 if (strcmp (fmt, amo->args) == 0
8618 && amo->pinfo != INSN_MACRO
8619 && is_opcode_valid (amo)
8620 && is_size_valid (amo))
8621 {
8622 if (is_delay_slot_valid (amo))
8623 {
8624 mo = amo;
8625 break;
8626 }
8627 else if (!mo)
8628 mo = amo;
8629 }
8630
8631 ++amo;
8632 gas_assert (amo->name);
8633 }
8634 while (strcmp (name, amo->name) == 0);
8635
8636 gas_assert (mo);
8637 create_insn (&insn, mo);
8638 for (; *fmt; ++fmt)
8639 {
8640 switch (*fmt)
8641 {
8642 case ',':
8643 case '(':
8644 case ')':
8645 case 'z':
8646 break;
8647
8648 case 'i':
8649 case 'j':
8650 macro_read_relocs (&args, r);
8651 gas_assert (*r == BFD_RELOC_GPREL16
8652 || *r == BFD_RELOC_MIPS_HIGHER
8653 || *r == BFD_RELOC_HI16_S
8654 || *r == BFD_RELOC_LO16
8655 || *r == BFD_RELOC_MIPS_GOT_OFST);
8656 break;
8657
8658 case 'o':
8659 macro_read_relocs (&args, r);
8660 break;
8661
8662 case 'u':
8663 macro_read_relocs (&args, r);
8664 gas_assert (ep != NULL
8665 && (ep->X_op == O_constant
8666 || (ep->X_op == O_symbol
8667 && (*r == BFD_RELOC_MIPS_HIGHEST
8668 || *r == BFD_RELOC_HI16_S
8669 || *r == BFD_RELOC_HI16
8670 || *r == BFD_RELOC_GPREL16
8671 || *r == BFD_RELOC_MIPS_GOT_HI16
8672 || *r == BFD_RELOC_MIPS_CALL_HI16))));
8673 break;
8674
8675 case 'p':
8676 gas_assert (ep != NULL);
8677
8678 /*
8679 * This allows macro() to pass an immediate expression for
8680 * creating short branches without creating a symbol.
8681 *
8682 * We don't allow branch relaxation for these branches, as
8683 * they should only appear in ".set nomacro" anyway.
8684 */
8685 if (ep->X_op == O_constant)
8686 {
8687 /* For microMIPS we always use relocations for branches.
8688 So we should not resolve immediate values. */
8689 gas_assert (!mips_opts.micromips);
8690
8691 if ((ep->X_add_number & 3) != 0)
8692 as_bad (_("branch to misaligned address (0x%lx)"),
8693 (unsigned long) ep->X_add_number);
8694 if ((ep->X_add_number + 0x20000) & ~0x3ffff)
8695 as_bad (_("branch address range overflow (0x%lx)"),
8696 (unsigned long) ep->X_add_number);
8697 insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
8698 ep = NULL;
8699 }
8700 else
8701 *r = BFD_RELOC_16_PCREL_S2;
8702 break;
8703
8704 case 'a':
8705 gas_assert (ep != NULL);
8706 *r = BFD_RELOC_MIPS_JMP;
8707 break;
8708
8709 default:
8710 operand = (mips_opts.micromips
8711 ? decode_micromips_operand (fmt)
8712 : decode_mips_operand (fmt));
8713 if (!operand)
8714 abort ();
8715
8716 uval = va_arg (args, int);
8717 if (operand->type == OP_CLO_CLZ_DEST)
8718 uval |= (uval << 5);
8719 insn_insert_operand (&insn, operand, uval);
8720
8721 if (*fmt == '+' || *fmt == 'm' || *fmt == '-')
8722 ++fmt;
8723 break;
8724 }
8725 }
8726 va_end (args);
8727 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
8728
8729 append_insn (&insn, ep, r, TRUE);
8730 }
8731
8732 static void
8733 mips16_macro_build (expressionS *ep, const char *name, const char *fmt,
8734 va_list *args)
8735 {
8736 struct mips_opcode *mo;
8737 struct mips_cl_insn insn;
8738 const struct mips_operand *operand;
8739 bfd_reloc_code_real_type r[3]
8740 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
8741
8742 mo = (struct mips_opcode *) hash_find (mips16_op_hash, name);
8743 gas_assert (mo);
8744 gas_assert (strcmp (name, mo->name) == 0);
8745
8746 while (strcmp (fmt, mo->args) != 0 || mo->pinfo == INSN_MACRO)
8747 {
8748 ++mo;
8749 gas_assert (mo->name);
8750 gas_assert (strcmp (name, mo->name) == 0);
8751 }
8752
8753 create_insn (&insn, mo);
8754 for (; *fmt; ++fmt)
8755 {
8756 int c;
8757
8758 c = *fmt;
8759 switch (c)
8760 {
8761 case ',':
8762 case '(':
8763 case ')':
8764 break;
8765
8766 case '0':
8767 case 'S':
8768 case 'P':
8769 case 'R':
8770 break;
8771
8772 case '<':
8773 case '4':
8774 case '5':
8775 case 'H':
8776 case 'W':
8777 case 'D':
8778 case 'j':
8779 case '8':
8780 case 'V':
8781 case 'C':
8782 case 'U':
8783 case 'k':
8784 case 'K':
8785 case 'p':
8786 case 'q':
8787 {
8788 offsetT value;
8789
8790 gas_assert (ep != NULL);
8791
8792 if (ep->X_op != O_constant)
8793 *r = (int) BFD_RELOC_UNUSED + c;
8794 else if (calculate_reloc (*r, ep->X_add_number, &value))
8795 {
8796 mips16_immed (NULL, 0, c, *r, value, 0, &insn.insn_opcode);
8797 ep = NULL;
8798 *r = BFD_RELOC_UNUSED;
8799 }
8800 }
8801 break;
8802
8803 default:
8804 operand = decode_mips16_operand (c, FALSE);
8805 if (!operand)
8806 abort ();
8807
8808 insn_insert_operand (&insn, operand, va_arg (*args, int));
8809 break;
8810 }
8811 }
8812
8813 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
8814
8815 append_insn (&insn, ep, r, TRUE);
8816 }
8817
8818 /*
8819 * Generate a "jalr" instruction with a relocation hint to the called
8820 * function. This occurs in NewABI PIC code.
8821 */
8822 static void
8823 macro_build_jalr (expressionS *ep, int cprestore)
8824 {
8825 static const bfd_reloc_code_real_type jalr_relocs[2]
8826 = { BFD_RELOC_MIPS_JALR, BFD_RELOC_MICROMIPS_JALR };
8827 bfd_reloc_code_real_type jalr_reloc = jalr_relocs[mips_opts.micromips];
8828 const char *jalr;
8829 char *f = NULL;
8830
8831 if (MIPS_JALR_HINT_P (ep))
8832 {
8833 frag_grow (8);
8834 f = frag_more (0);
8835 }
8836 if (mips_opts.micromips)
8837 {
8838 jalr = ((mips_opts.noreorder && !cprestore) || mips_opts.insn32
8839 ? "jalr" : "jalrs");
8840 if (MIPS_JALR_HINT_P (ep)
8841 || mips_opts.insn32
8842 || (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
8843 macro_build (NULL, jalr, "t,s", RA, PIC_CALL_REG);
8844 else
8845 macro_build (NULL, jalr, "mj", PIC_CALL_REG);
8846 }
8847 else
8848 macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG);
8849 if (MIPS_JALR_HINT_P (ep))
8850 fix_new_exp (frag_now, f - frag_now->fr_literal, 4, ep, FALSE, jalr_reloc);
8851 }
8852
8853 /*
8854 * Generate a "lui" instruction.
8855 */
8856 static void
8857 macro_build_lui (expressionS *ep, int regnum)
8858 {
8859 gas_assert (! mips_opts.mips16);
8860
8861 if (ep->X_op != O_constant)
8862 {
8863 gas_assert (ep->X_op == O_symbol);
8864 /* _gp_disp is a special case, used from s_cpload.
8865 __gnu_local_gp is used if mips_no_shared. */
8866 gas_assert (mips_pic == NO_PIC
8867 || (! HAVE_NEWABI
8868 && strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0)
8869 || (! mips_in_shared
8870 && strcmp (S_GET_NAME (ep->X_add_symbol),
8871 "__gnu_local_gp") == 0));
8872 }
8873
8874 macro_build (ep, "lui", LUI_FMT, regnum, BFD_RELOC_HI16_S);
8875 }
8876
8877 /* Generate a sequence of instructions to do a load or store from a constant
8878 offset off of a base register (breg) into/from a target register (treg),
8879 using AT if necessary. */
8880 static void
8881 macro_build_ldst_constoffset (expressionS *ep, const char *op,
8882 int treg, int breg, int dbl)
8883 {
8884 gas_assert (ep->X_op == O_constant);
8885
8886 /* Sign-extending 32-bit constants makes their handling easier. */
8887 if (!dbl)
8888 normalize_constant_expr (ep);
8889
8890 /* Right now, this routine can only handle signed 32-bit constants. */
8891 if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000))
8892 as_warn (_("operand overflow"));
8893
8894 if (IS_SEXT_16BIT_NUM(ep->X_add_number))
8895 {
8896 /* Signed 16-bit offset will fit in the op. Easy! */
8897 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg);
8898 }
8899 else
8900 {
8901 /* 32-bit offset, need multiple instructions and AT, like:
8902 lui $tempreg,const_hi (BFD_RELOC_HI16_S)
8903 addu $tempreg,$tempreg,$breg
8904 <op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
8905 to handle the complete offset. */
8906 macro_build_lui (ep, AT);
8907 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8908 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8909
8910 if (!mips_opts.at)
8911 as_bad (_("macro used $at after \".set noat\""));
8912 }
8913 }
8914
8915 /* set_at()
8916 * Generates code to set the $at register to true (one)
8917 * if reg is less than the immediate expression.
8918 */
8919 static void
8920 set_at (int reg, int unsignedp)
8921 {
8922 if (imm_expr.X_add_number >= -0x8000
8923 && imm_expr.X_add_number < 0x8000)
8924 macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j",
8925 AT, reg, BFD_RELOC_LO16);
8926 else
8927 {
8928 load_register (AT, &imm_expr, GPR_SIZE == 64);
8929 macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT);
8930 }
8931 }
8932
8933 /* Count the leading zeroes by performing a binary chop. This is a
8934 bulky bit of source, but performance is a LOT better for the
8935 majority of values than a simple loop to count the bits:
8936 for (lcnt = 0; (lcnt < 32); lcnt++)
8937 if ((v) & (1 << (31 - lcnt)))
8938 break;
8939 However it is not code size friendly, and the gain will drop a bit
8940 on certain cached systems.
8941 */
8942 #define COUNT_TOP_ZEROES(v) \
8943 (((v) & ~0xffff) == 0 \
8944 ? ((v) & ~0xff) == 0 \
8945 ? ((v) & ~0xf) == 0 \
8946 ? ((v) & ~0x3) == 0 \
8947 ? ((v) & ~0x1) == 0 \
8948 ? !(v) \
8949 ? 32 \
8950 : 31 \
8951 : 30 \
8952 : ((v) & ~0x7) == 0 \
8953 ? 29 \
8954 : 28 \
8955 : ((v) & ~0x3f) == 0 \
8956 ? ((v) & ~0x1f) == 0 \
8957 ? 27 \
8958 : 26 \
8959 : ((v) & ~0x7f) == 0 \
8960 ? 25 \
8961 : 24 \
8962 : ((v) & ~0xfff) == 0 \
8963 ? ((v) & ~0x3ff) == 0 \
8964 ? ((v) & ~0x1ff) == 0 \
8965 ? 23 \
8966 : 22 \
8967 : ((v) & ~0x7ff) == 0 \
8968 ? 21 \
8969 : 20 \
8970 : ((v) & ~0x3fff) == 0 \
8971 ? ((v) & ~0x1fff) == 0 \
8972 ? 19 \
8973 : 18 \
8974 : ((v) & ~0x7fff) == 0 \
8975 ? 17 \
8976 : 16 \
8977 : ((v) & ~0xffffff) == 0 \
8978 ? ((v) & ~0xfffff) == 0 \
8979 ? ((v) & ~0x3ffff) == 0 \
8980 ? ((v) & ~0x1ffff) == 0 \
8981 ? 15 \
8982 : 14 \
8983 : ((v) & ~0x7ffff) == 0 \
8984 ? 13 \
8985 : 12 \
8986 : ((v) & ~0x3fffff) == 0 \
8987 ? ((v) & ~0x1fffff) == 0 \
8988 ? 11 \
8989 : 10 \
8990 : ((v) & ~0x7fffff) == 0 \
8991 ? 9 \
8992 : 8 \
8993 : ((v) & ~0xfffffff) == 0 \
8994 ? ((v) & ~0x3ffffff) == 0 \
8995 ? ((v) & ~0x1ffffff) == 0 \
8996 ? 7 \
8997 : 6 \
8998 : ((v) & ~0x7ffffff) == 0 \
8999 ? 5 \
9000 : 4 \
9001 : ((v) & ~0x3fffffff) == 0 \
9002 ? ((v) & ~0x1fffffff) == 0 \
9003 ? 3 \
9004 : 2 \
9005 : ((v) & ~0x7fffffff) == 0 \
9006 ? 1 \
9007 : 0)
9008
9009 /* load_register()
9010 * This routine generates the least number of instructions necessary to load
9011 * an absolute expression value into a register.
9012 */
9013 static void
9014 load_register (int reg, expressionS *ep, int dbl)
9015 {
9016 int freg;
9017 expressionS hi32, lo32;
9018
9019 if (ep->X_op != O_big)
9020 {
9021 gas_assert (ep->X_op == O_constant);
9022
9023 /* Sign-extending 32-bit constants makes their handling easier. */
9024 if (!dbl)
9025 normalize_constant_expr (ep);
9026
9027 if (IS_SEXT_16BIT_NUM (ep->X_add_number))
9028 {
9029 /* We can handle 16 bit signed values with an addiu to
9030 $zero. No need to ever use daddiu here, since $zero and
9031 the result are always correct in 32 bit mode. */
9032 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
9033 return;
9034 }
9035 else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
9036 {
9037 /* We can handle 16 bit unsigned values with an ori to
9038 $zero. */
9039 macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
9040 return;
9041 }
9042 else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)))
9043 {
9044 /* 32 bit values require an lui. */
9045 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
9046 if ((ep->X_add_number & 0xffff) != 0)
9047 macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
9048 return;
9049 }
9050 }
9051
9052 /* The value is larger than 32 bits. */
9053
9054 if (!dbl || GPR_SIZE == 32)
9055 {
9056 char value[32];
9057
9058 sprintf_vma (value, ep->X_add_number);
9059 as_bad (_("number (0x%s) larger than 32 bits"), value);
9060 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
9061 return;
9062 }
9063
9064 if (ep->X_op != O_big)
9065 {
9066 hi32 = *ep;
9067 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
9068 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
9069 hi32.X_add_number &= 0xffffffff;
9070 lo32 = *ep;
9071 lo32.X_add_number &= 0xffffffff;
9072 }
9073 else
9074 {
9075 gas_assert (ep->X_add_number > 2);
9076 if (ep->X_add_number == 3)
9077 generic_bignum[3] = 0;
9078 else if (ep->X_add_number > 4)
9079 as_bad (_("number larger than 64 bits"));
9080 lo32.X_op = O_constant;
9081 lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
9082 hi32.X_op = O_constant;
9083 hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
9084 }
9085
9086 if (hi32.X_add_number == 0)
9087 freg = 0;
9088 else
9089 {
9090 int shift, bit;
9091 unsigned long hi, lo;
9092
9093 if (hi32.X_add_number == (offsetT) 0xffffffff)
9094 {
9095 if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
9096 {
9097 macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
9098 return;
9099 }
9100 if (lo32.X_add_number & 0x80000000)
9101 {
9102 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
9103 if (lo32.X_add_number & 0xffff)
9104 macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
9105 return;
9106 }
9107 }
9108
9109 /* Check for 16bit shifted constant. We know that hi32 is
9110 non-zero, so start the mask on the first bit of the hi32
9111 value. */
9112 shift = 17;
9113 do
9114 {
9115 unsigned long himask, lomask;
9116
9117 if (shift < 32)
9118 {
9119 himask = 0xffff >> (32 - shift);
9120 lomask = (0xffff << shift) & 0xffffffff;
9121 }
9122 else
9123 {
9124 himask = 0xffff << (shift - 32);
9125 lomask = 0;
9126 }
9127 if ((hi32.X_add_number & ~(offsetT) himask) == 0
9128 && (lo32.X_add_number & ~(offsetT) lomask) == 0)
9129 {
9130 expressionS tmp;
9131
9132 tmp.X_op = O_constant;
9133 if (shift < 32)
9134 tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
9135 | (lo32.X_add_number >> shift));
9136 else
9137 tmp.X_add_number = hi32.X_add_number >> (shift - 32);
9138 macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
9139 macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", SHFT_FMT,
9140 reg, reg, (shift >= 32) ? shift - 32 : shift);
9141 return;
9142 }
9143 ++shift;
9144 }
9145 while (shift <= (64 - 16));
9146
9147 /* Find the bit number of the lowest one bit, and store the
9148 shifted value in hi/lo. */
9149 hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
9150 lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
9151 if (lo != 0)
9152 {
9153 bit = 0;
9154 while ((lo & 1) == 0)
9155 {
9156 lo >>= 1;
9157 ++bit;
9158 }
9159 lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit);
9160 hi >>= bit;
9161 }
9162 else
9163 {
9164 bit = 32;
9165 while ((hi & 1) == 0)
9166 {
9167 hi >>= 1;
9168 ++bit;
9169 }
9170 lo = hi;
9171 hi = 0;
9172 }
9173
9174 /* Optimize if the shifted value is a (power of 2) - 1. */
9175 if ((hi == 0 && ((lo + 1) & lo) == 0)
9176 || (lo == 0xffffffff && ((hi + 1) & hi) == 0))
9177 {
9178 shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
9179 if (shift != 0)
9180 {
9181 expressionS tmp;
9182
9183 /* This instruction will set the register to be all
9184 ones. */
9185 tmp.X_op = O_constant;
9186 tmp.X_add_number = (offsetT) -1;
9187 macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
9188 if (bit != 0)
9189 {
9190 bit += shift;
9191 macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", SHFT_FMT,
9192 reg, reg, (bit >= 32) ? bit - 32 : bit);
9193 }
9194 macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", SHFT_FMT,
9195 reg, reg, (shift >= 32) ? shift - 32 : shift);
9196 return;
9197 }
9198 }
9199
9200 /* Sign extend hi32 before calling load_register, because we can
9201 generally get better code when we load a sign extended value. */
9202 if ((hi32.X_add_number & 0x80000000) != 0)
9203 hi32.X_add_number |= ~(offsetT) 0xffffffff;
9204 load_register (reg, &hi32, 0);
9205 freg = reg;
9206 }
9207 if ((lo32.X_add_number & 0xffff0000) == 0)
9208 {
9209 if (freg != 0)
9210 {
9211 macro_build (NULL, "dsll32", SHFT_FMT, reg, freg, 0);
9212 freg = reg;
9213 }
9214 }
9215 else
9216 {
9217 expressionS mid16;
9218
9219 if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
9220 {
9221 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
9222 macro_build (NULL, "dsrl32", SHFT_FMT, reg, reg, 0);
9223 return;
9224 }
9225
9226 if (freg != 0)
9227 {
9228 macro_build (NULL, "dsll", SHFT_FMT, reg, freg, 16);
9229 freg = reg;
9230 }
9231 mid16 = lo32;
9232 mid16.X_add_number >>= 16;
9233 macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
9234 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9235 freg = reg;
9236 }
9237 if ((lo32.X_add_number & 0xffff) != 0)
9238 macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
9239 }
9240
9241 static inline void
9242 load_delay_nop (void)
9243 {
9244 if (!gpr_interlocks)
9245 macro_build (NULL, "nop", "");
9246 }
9247
9248 /* Load an address into a register. */
9249
9250 static void
9251 load_address (int reg, expressionS *ep, int *used_at)
9252 {
9253 if (ep->X_op != O_constant
9254 && ep->X_op != O_symbol)
9255 {
9256 as_bad (_("expression too complex"));
9257 ep->X_op = O_constant;
9258 }
9259
9260 if (ep->X_op == O_constant)
9261 {
9262 load_register (reg, ep, HAVE_64BIT_ADDRESSES);
9263 return;
9264 }
9265
9266 if (mips_pic == NO_PIC)
9267 {
9268 /* If this is a reference to a GP relative symbol, we want
9269 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
9270 Otherwise we want
9271 lui $reg,<sym> (BFD_RELOC_HI16_S)
9272 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9273 If we have an addend, we always use the latter form.
9274
9275 With 64bit address space and a usable $at we want
9276 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9277 lui $at,<sym> (BFD_RELOC_HI16_S)
9278 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9279 daddiu $at,<sym> (BFD_RELOC_LO16)
9280 dsll32 $reg,0
9281 daddu $reg,$reg,$at
9282
9283 If $at is already in use, we use a path which is suboptimal
9284 on superscalar processors.
9285 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9286 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9287 dsll $reg,16
9288 daddiu $reg,<sym> (BFD_RELOC_HI16_S)
9289 dsll $reg,16
9290 daddiu $reg,<sym> (BFD_RELOC_LO16)
9291
9292 For GP relative symbols in 64bit address space we can use
9293 the same sequence as in 32bit address space. */
9294 if (HAVE_64BIT_SYMBOLS)
9295 {
9296 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
9297 && !nopic_need_relax (ep->X_add_symbol, 1))
9298 {
9299 relax_start (ep->X_add_symbol);
9300 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
9301 mips_gp_register, BFD_RELOC_GPREL16);
9302 relax_switch ();
9303 }
9304
9305 if (*used_at == 0 && mips_opts.at)
9306 {
9307 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
9308 macro_build (ep, "lui", LUI_FMT, AT, BFD_RELOC_HI16_S);
9309 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9310 BFD_RELOC_MIPS_HIGHER);
9311 macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16);
9312 macro_build (NULL, "dsll32", SHFT_FMT, reg, reg, 0);
9313 macro_build (NULL, "daddu", "d,v,t", reg, reg, AT);
9314 *used_at = 1;
9315 }
9316 else
9317 {
9318 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
9319 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9320 BFD_RELOC_MIPS_HIGHER);
9321 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9322 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S);
9323 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9324 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16);
9325 }
9326
9327 if (mips_relax.sequence)
9328 relax_end ();
9329 }
9330 else
9331 {
9332 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
9333 && !nopic_need_relax (ep->X_add_symbol, 1))
9334 {
9335 relax_start (ep->X_add_symbol);
9336 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
9337 mips_gp_register, BFD_RELOC_GPREL16);
9338 relax_switch ();
9339 }
9340 macro_build_lui (ep, reg);
9341 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
9342 reg, reg, BFD_RELOC_LO16);
9343 if (mips_relax.sequence)
9344 relax_end ();
9345 }
9346 }
9347 else if (!mips_big_got)
9348 {
9349 expressionS ex;
9350
9351 /* If this is a reference to an external symbol, we want
9352 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9353 Otherwise we want
9354 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9355 nop
9356 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9357 If there is a constant, it must be added in after.
9358
9359 If we have NewABI, we want
9360 lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
9361 unless we're referencing a global symbol with a non-zero
9362 offset, in which case cst must be added separately. */
9363 if (HAVE_NEWABI)
9364 {
9365 if (ep->X_add_number)
9366 {
9367 ex.X_add_number = ep->X_add_number;
9368 ep->X_add_number = 0;
9369 relax_start (ep->X_add_symbol);
9370 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9371 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
9372 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9373 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9374 ex.X_op = O_constant;
9375 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
9376 reg, reg, BFD_RELOC_LO16);
9377 ep->X_add_number = ex.X_add_number;
9378 relax_switch ();
9379 }
9380 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9381 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
9382 if (mips_relax.sequence)
9383 relax_end ();
9384 }
9385 else
9386 {
9387 ex.X_add_number = ep->X_add_number;
9388 ep->X_add_number = 0;
9389 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9390 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9391 load_delay_nop ();
9392 relax_start (ep->X_add_symbol);
9393 relax_switch ();
9394 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9395 BFD_RELOC_LO16);
9396 relax_end ();
9397
9398 if (ex.X_add_number != 0)
9399 {
9400 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9401 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9402 ex.X_op = O_constant;
9403 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
9404 reg, reg, BFD_RELOC_LO16);
9405 }
9406 }
9407 }
9408 else if (mips_big_got)
9409 {
9410 expressionS ex;
9411
9412 /* This is the large GOT case. If this is a reference to an
9413 external symbol, we want
9414 lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
9415 addu $reg,$reg,$gp
9416 lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
9417
9418 Otherwise, for a reference to a local symbol in old ABI, we want
9419 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9420 nop
9421 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9422 If there is a constant, it must be added in after.
9423
9424 In the NewABI, for local symbols, with or without offsets, we want:
9425 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
9426 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
9427 */
9428 if (HAVE_NEWABI)
9429 {
9430 ex.X_add_number = ep->X_add_number;
9431 ep->X_add_number = 0;
9432 relax_start (ep->X_add_symbol);
9433 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
9434 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9435 reg, reg, mips_gp_register);
9436 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9437 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
9438 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9439 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9440 else if (ex.X_add_number)
9441 {
9442 ex.X_op = O_constant;
9443 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9444 BFD_RELOC_LO16);
9445 }
9446
9447 ep->X_add_number = ex.X_add_number;
9448 relax_switch ();
9449 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9450 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
9451 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9452 BFD_RELOC_MIPS_GOT_OFST);
9453 relax_end ();
9454 }
9455 else
9456 {
9457 ex.X_add_number = ep->X_add_number;
9458 ep->X_add_number = 0;
9459 relax_start (ep->X_add_symbol);
9460 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
9461 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9462 reg, reg, mips_gp_register);
9463 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9464 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
9465 relax_switch ();
9466 if (reg_needs_delay (mips_gp_register))
9467 {
9468 /* We need a nop before loading from $gp. This special
9469 check is required because the lui which starts the main
9470 instruction stream does not refer to $gp, and so will not
9471 insert the nop which may be required. */
9472 macro_build (NULL, "nop", "");
9473 }
9474 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9475 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9476 load_delay_nop ();
9477 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9478 BFD_RELOC_LO16);
9479 relax_end ();
9480
9481 if (ex.X_add_number != 0)
9482 {
9483 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9484 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9485 ex.X_op = O_constant;
9486 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9487 BFD_RELOC_LO16);
9488 }
9489 }
9490 }
9491 else
9492 abort ();
9493
9494 if (!mips_opts.at && *used_at == 1)
9495 as_bad (_("macro used $at after \".set noat\""));
9496 }
9497
9498 /* Move the contents of register SOURCE into register DEST. */
9499
9500 static void
9501 move_register (int dest, int source)
9502 {
9503 /* Prefer to use a 16-bit microMIPS instruction unless the previous
9504 instruction specifically requires a 32-bit one. */
9505 if (mips_opts.micromips
9506 && !mips_opts.insn32
9507 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
9508 macro_build (NULL, "move", "mp,mj", dest, source);
9509 else
9510 macro_build (NULL, "or", "d,v,t", dest, source, 0);
9511 }
9512
9513 /* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
9514 LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
9515 The two alternatives are:
9516
9517 Global symbol Local sybmol
9518 ------------- ------------
9519 lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
9520 ... ...
9521 addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
9522
9523 load_got_offset emits the first instruction and add_got_offset
9524 emits the second for a 16-bit offset or add_got_offset_hilo emits
9525 a sequence to add a 32-bit offset using a scratch register. */
9526
9527 static void
9528 load_got_offset (int dest, expressionS *local)
9529 {
9530 expressionS global;
9531
9532 global = *local;
9533 global.X_add_number = 0;
9534
9535 relax_start (local->X_add_symbol);
9536 macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9537 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9538 relax_switch ();
9539 macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9540 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9541 relax_end ();
9542 }
9543
9544 static void
9545 add_got_offset (int dest, expressionS *local)
9546 {
9547 expressionS global;
9548
9549 global.X_op = O_constant;
9550 global.X_op_symbol = NULL;
9551 global.X_add_symbol = NULL;
9552 global.X_add_number = local->X_add_number;
9553
9554 relax_start (local->X_add_symbol);
9555 macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j",
9556 dest, dest, BFD_RELOC_LO16);
9557 relax_switch ();
9558 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16);
9559 relax_end ();
9560 }
9561
9562 static void
9563 add_got_offset_hilo (int dest, expressionS *local, int tmp)
9564 {
9565 expressionS global;
9566 int hold_mips_optimize;
9567
9568 global.X_op = O_constant;
9569 global.X_op_symbol = NULL;
9570 global.X_add_symbol = NULL;
9571 global.X_add_number = local->X_add_number;
9572
9573 relax_start (local->X_add_symbol);
9574 load_register (tmp, &global, HAVE_64BIT_ADDRESSES);
9575 relax_switch ();
9576 /* Set mips_optimize around the lui instruction to avoid
9577 inserting an unnecessary nop after the lw. */
9578 hold_mips_optimize = mips_optimize;
9579 mips_optimize = 2;
9580 macro_build_lui (&global, tmp);
9581 mips_optimize = hold_mips_optimize;
9582 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16);
9583 relax_end ();
9584
9585 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp);
9586 }
9587
9588 /* Emit a sequence of instructions to emulate a branch likely operation.
9589 BR is an ordinary branch corresponding to one to be emulated. BRNEG
9590 is its complementing branch with the original condition negated.
9591 CALL is set if the original branch specified the link operation.
9592 EP, FMT, SREG and TREG specify the usual macro_build() parameters.
9593
9594 Code like this is produced in the noreorder mode:
9595
9596 BRNEG <args>, 1f
9597 nop
9598 b <sym>
9599 delay slot (executed only if branch taken)
9600 1:
9601
9602 or, if CALL is set:
9603
9604 BRNEG <args>, 1f
9605 nop
9606 bal <sym>
9607 delay slot (executed only if branch taken)
9608 1:
9609
9610 In the reorder mode the delay slot would be filled with a nop anyway,
9611 so code produced is simply:
9612
9613 BR <args>, <sym>
9614 nop
9615
9616 This function is used when producing code for the microMIPS ASE that
9617 does not implement branch likely instructions in hardware. */
9618
9619 static void
9620 macro_build_branch_likely (const char *br, const char *brneg,
9621 int call, expressionS *ep, const char *fmt,
9622 unsigned int sreg, unsigned int treg)
9623 {
9624 int noreorder = mips_opts.noreorder;
9625 expressionS expr1;
9626
9627 gas_assert (mips_opts.micromips);
9628 start_noreorder ();
9629 if (noreorder)
9630 {
9631 micromips_label_expr (&expr1);
9632 macro_build (&expr1, brneg, fmt, sreg, treg);
9633 macro_build (NULL, "nop", "");
9634 macro_build (ep, call ? "bal" : "b", "p");
9635
9636 /* Set to true so that append_insn adds a label. */
9637 emit_branch_likely_macro = TRUE;
9638 }
9639 else
9640 {
9641 macro_build (ep, br, fmt, sreg, treg);
9642 macro_build (NULL, "nop", "");
9643 }
9644 end_noreorder ();
9645 }
9646
9647 /* Emit a coprocessor branch-likely macro specified by TYPE, using CC as
9648 the condition code tested. EP specifies the branch target. */
9649
9650 static void
9651 macro_build_branch_ccl (int type, expressionS *ep, unsigned int cc)
9652 {
9653 const int call = 0;
9654 const char *brneg;
9655 const char *br;
9656
9657 switch (type)
9658 {
9659 case M_BC1FL:
9660 br = "bc1f";
9661 brneg = "bc1t";
9662 break;
9663 case M_BC1TL:
9664 br = "bc1t";
9665 brneg = "bc1f";
9666 break;
9667 case M_BC2FL:
9668 br = "bc2f";
9669 brneg = "bc2t";
9670 break;
9671 case M_BC2TL:
9672 br = "bc2t";
9673 brneg = "bc2f";
9674 break;
9675 default:
9676 abort ();
9677 }
9678 macro_build_branch_likely (br, brneg, call, ep, "N,p", cc, ZERO);
9679 }
9680
9681 /* Emit a two-argument branch macro specified by TYPE, using SREG as
9682 the register tested. EP specifies the branch target. */
9683
9684 static void
9685 macro_build_branch_rs (int type, expressionS *ep, unsigned int sreg)
9686 {
9687 const char *brneg = NULL;
9688 const char *br;
9689 int call = 0;
9690
9691 switch (type)
9692 {
9693 case M_BGEZ:
9694 br = "bgez";
9695 break;
9696 case M_BGEZL:
9697 br = mips_opts.micromips ? "bgez" : "bgezl";
9698 brneg = "bltz";
9699 break;
9700 case M_BGEZALL:
9701 gas_assert (mips_opts.micromips);
9702 br = mips_opts.insn32 ? "bgezal" : "bgezals";
9703 brneg = "bltz";
9704 call = 1;
9705 break;
9706 case M_BGTZ:
9707 br = "bgtz";
9708 break;
9709 case M_BGTZL:
9710 br = mips_opts.micromips ? "bgtz" : "bgtzl";
9711 brneg = "blez";
9712 break;
9713 case M_BLEZ:
9714 br = "blez";
9715 break;
9716 case M_BLEZL:
9717 br = mips_opts.micromips ? "blez" : "blezl";
9718 brneg = "bgtz";
9719 break;
9720 case M_BLTZ:
9721 br = "bltz";
9722 break;
9723 case M_BLTZL:
9724 br = mips_opts.micromips ? "bltz" : "bltzl";
9725 brneg = "bgez";
9726 break;
9727 case M_BLTZALL:
9728 gas_assert (mips_opts.micromips);
9729 br = mips_opts.insn32 ? "bltzal" : "bltzals";
9730 brneg = "bgez";
9731 call = 1;
9732 break;
9733 default:
9734 abort ();
9735 }
9736 if (mips_opts.micromips && brneg)
9737 macro_build_branch_likely (br, brneg, call, ep, "s,p", sreg, ZERO);
9738 else
9739 macro_build (ep, br, "s,p", sreg);
9740 }
9741
9742 /* Emit a three-argument branch macro specified by TYPE, using SREG and
9743 TREG as the registers tested. EP specifies the branch target. */
9744
9745 static void
9746 macro_build_branch_rsrt (int type, expressionS *ep,
9747 unsigned int sreg, unsigned int treg)
9748 {
9749 const char *brneg = NULL;
9750 const int call = 0;
9751 const char *br;
9752
9753 switch (type)
9754 {
9755 case M_BEQ:
9756 case M_BEQ_I:
9757 br = "beq";
9758 break;
9759 case M_BEQL:
9760 case M_BEQL_I:
9761 br = mips_opts.micromips ? "beq" : "beql";
9762 brneg = "bne";
9763 break;
9764 case M_BNE:
9765 case M_BNE_I:
9766 br = "bne";
9767 break;
9768 case M_BNEL:
9769 case M_BNEL_I:
9770 br = mips_opts.micromips ? "bne" : "bnel";
9771 brneg = "beq";
9772 break;
9773 default:
9774 abort ();
9775 }
9776 if (mips_opts.micromips && brneg)
9777 macro_build_branch_likely (br, brneg, call, ep, "s,t,p", sreg, treg);
9778 else
9779 macro_build (ep, br, "s,t,p", sreg, treg);
9780 }
9781
9782 /* Return the high part that should be loaded in order to make the low
9783 part of VALUE accessible using an offset of OFFBITS bits. */
9784
9785 static offsetT
9786 offset_high_part (offsetT value, unsigned int offbits)
9787 {
9788 offsetT bias;
9789 addressT low_mask;
9790
9791 if (offbits == 0)
9792 return value;
9793 bias = 1 << (offbits - 1);
9794 low_mask = bias * 2 - 1;
9795 return (value + bias) & ~low_mask;
9796 }
9797
9798 /* Return true if the value stored in offset_expr and offset_reloc
9799 fits into a signed offset of OFFBITS bits. RANGE is the maximum
9800 amount that the caller wants to add without inducing overflow
9801 and ALIGN is the known alignment of the value in bytes. */
9802
9803 static bfd_boolean
9804 small_offset_p (unsigned int range, unsigned int align, unsigned int offbits)
9805 {
9806 if (offbits == 16)
9807 {
9808 /* Accept any relocation operator if overflow isn't a concern. */
9809 if (range < align && *offset_reloc != BFD_RELOC_UNUSED)
9810 return TRUE;
9811
9812 /* These relocations are guaranteed not to overflow in correct links. */
9813 if (*offset_reloc == BFD_RELOC_MIPS_LITERAL
9814 || gprel16_reloc_p (*offset_reloc))
9815 return TRUE;
9816 }
9817 if (offset_expr.X_op == O_constant
9818 && offset_high_part (offset_expr.X_add_number, offbits) == 0
9819 && offset_high_part (offset_expr.X_add_number + range, offbits) == 0)
9820 return TRUE;
9821 return FALSE;
9822 }
9823
9824 /*
9825 * Build macros
9826 * This routine implements the seemingly endless macro or synthesized
9827 * instructions and addressing modes in the mips assembly language. Many
9828 * of these macros are simple and are similar to each other. These could
9829 * probably be handled by some kind of table or grammar approach instead of
9830 * this verbose method. Others are not simple macros but are more like
9831 * optimizing code generation.
9832 * One interesting optimization is when several store macros appear
9833 * consecutively that would load AT with the upper half of the same address.
9834 * The ensuing load upper instructions are omitted. This implies some kind
9835 * of global optimization. We currently only optimize within a single macro.
9836 * For many of the load and store macros if the address is specified as a
9837 * constant expression in the first 64k of memory (ie ld $2,0x4000c) we
9838 * first load register 'at' with zero and use it as the base register. The
9839 * mips assembler simply uses register $zero. Just one tiny optimization
9840 * we're missing.
9841 */
9842 static void
9843 macro (struct mips_cl_insn *ip, char *str)
9844 {
9845 const struct mips_operand_array *operands;
9846 unsigned int breg, i;
9847 unsigned int tempreg;
9848 int mask;
9849 int used_at = 0;
9850 expressionS label_expr;
9851 expressionS expr1;
9852 expressionS *ep;
9853 const char *s;
9854 const char *s2;
9855 const char *fmt;
9856 int likely = 0;
9857 int coproc = 0;
9858 int offbits = 16;
9859 int call = 0;
9860 int jals = 0;
9861 int dbl = 0;
9862 int imm = 0;
9863 int ust = 0;
9864 int lp = 0;
9865 bfd_boolean large_offset;
9866 int off;
9867 int hold_mips_optimize;
9868 unsigned int align;
9869 unsigned int op[MAX_OPERANDS];
9870
9871 gas_assert (! mips_opts.mips16);
9872
9873 operands = insn_operands (ip);
9874 for (i = 0; i < MAX_OPERANDS; i++)
9875 if (operands->operand[i])
9876 op[i] = insn_extract_operand (ip, operands->operand[i]);
9877 else
9878 op[i] = -1;
9879
9880 mask = ip->insn_mo->mask;
9881
9882 label_expr.X_op = O_constant;
9883 label_expr.X_op_symbol = NULL;
9884 label_expr.X_add_symbol = NULL;
9885 label_expr.X_add_number = 0;
9886
9887 expr1.X_op = O_constant;
9888 expr1.X_op_symbol = NULL;
9889 expr1.X_add_symbol = NULL;
9890 expr1.X_add_number = 1;
9891 align = 1;
9892
9893 switch (mask)
9894 {
9895 case M_DABS:
9896 dbl = 1;
9897 /* Fall through. */
9898 case M_ABS:
9899 /* bgez $a0,1f
9900 move v0,$a0
9901 sub v0,$zero,$a0
9902 1:
9903 */
9904
9905 start_noreorder ();
9906
9907 if (mips_opts.micromips)
9908 micromips_label_expr (&label_expr);
9909 else
9910 label_expr.X_add_number = 8;
9911 macro_build (&label_expr, "bgez", "s,p", op[1]);
9912 if (op[0] == op[1])
9913 macro_build (NULL, "nop", "");
9914 else
9915 move_register (op[0], op[1]);
9916 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", op[0], 0, op[1]);
9917 if (mips_opts.micromips)
9918 micromips_add_label ();
9919
9920 end_noreorder ();
9921 break;
9922
9923 case M_ADD_I:
9924 s = "addi";
9925 s2 = "add";
9926 goto do_addi;
9927 case M_ADDU_I:
9928 s = "addiu";
9929 s2 = "addu";
9930 goto do_addi;
9931 case M_DADD_I:
9932 dbl = 1;
9933 s = "daddi";
9934 s2 = "dadd";
9935 if (!mips_opts.micromips)
9936 goto do_addi;
9937 if (imm_expr.X_add_number >= -0x200
9938 && imm_expr.X_add_number < 0x200)
9939 {
9940 macro_build (NULL, s, "t,r,.", op[0], op[1],
9941 (int) imm_expr.X_add_number);
9942 break;
9943 }
9944 goto do_addi_i;
9945 case M_DADDU_I:
9946 dbl = 1;
9947 s = "daddiu";
9948 s2 = "daddu";
9949 do_addi:
9950 if (imm_expr.X_add_number >= -0x8000
9951 && imm_expr.X_add_number < 0x8000)
9952 {
9953 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
9954 break;
9955 }
9956 do_addi_i:
9957 used_at = 1;
9958 load_register (AT, &imm_expr, dbl);
9959 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
9960 break;
9961
9962 case M_AND_I:
9963 s = "andi";
9964 s2 = "and";
9965 goto do_bit;
9966 case M_OR_I:
9967 s = "ori";
9968 s2 = "or";
9969 goto do_bit;
9970 case M_NOR_I:
9971 s = "";
9972 s2 = "nor";
9973 goto do_bit;
9974 case M_XOR_I:
9975 s = "xori";
9976 s2 = "xor";
9977 do_bit:
9978 if (imm_expr.X_add_number >= 0
9979 && imm_expr.X_add_number < 0x10000)
9980 {
9981 if (mask != M_NOR_I)
9982 macro_build (&imm_expr, s, "t,r,i", op[0], op[1], BFD_RELOC_LO16);
9983 else
9984 {
9985 macro_build (&imm_expr, "ori", "t,r,i",
9986 op[0], op[1], BFD_RELOC_LO16);
9987 macro_build (NULL, "nor", "d,v,t", op[0], op[0], 0);
9988 }
9989 break;
9990 }
9991
9992 used_at = 1;
9993 load_register (AT, &imm_expr, GPR_SIZE == 64);
9994 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
9995 break;
9996
9997 case M_BALIGN:
9998 switch (imm_expr.X_add_number)
9999 {
10000 case 0:
10001 macro_build (NULL, "nop", "");
10002 break;
10003 case 2:
10004 macro_build (NULL, "packrl.ph", "d,s,t", op[0], op[0], op[1]);
10005 break;
10006 case 1:
10007 case 3:
10008 macro_build (NULL, "balign", "t,s,2", op[0], op[1],
10009 (int) imm_expr.X_add_number);
10010 break;
10011 default:
10012 as_bad (_("BALIGN immediate not 0, 1, 2 or 3 (%lu)"),
10013 (unsigned long) imm_expr.X_add_number);
10014 break;
10015 }
10016 break;
10017
10018 case M_BC1FL:
10019 case M_BC1TL:
10020 case M_BC2FL:
10021 case M_BC2TL:
10022 gas_assert (mips_opts.micromips);
10023 macro_build_branch_ccl (mask, &offset_expr,
10024 EXTRACT_OPERAND (1, BCC, *ip));
10025 break;
10026
10027 case M_BEQ_I:
10028 case M_BEQL_I:
10029 case M_BNE_I:
10030 case M_BNEL_I:
10031 if (imm_expr.X_add_number == 0)
10032 op[1] = 0;
10033 else
10034 {
10035 op[1] = AT;
10036 used_at = 1;
10037 load_register (op[1], &imm_expr, GPR_SIZE == 64);
10038 }
10039 /* Fall through. */
10040 case M_BEQL:
10041 case M_BNEL:
10042 macro_build_branch_rsrt (mask, &offset_expr, op[0], op[1]);
10043 break;
10044
10045 case M_BGEL:
10046 likely = 1;
10047 /* Fall through. */
10048 case M_BGE:
10049 if (op[1] == 0)
10050 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[0]);
10051 else if (op[0] == 0)
10052 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[1]);
10053 else
10054 {
10055 used_at = 1;
10056 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
10057 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10058 &offset_expr, AT, ZERO);
10059 }
10060 break;
10061
10062 case M_BGEZL:
10063 case M_BGEZALL:
10064 case M_BGTZL:
10065 case M_BLEZL:
10066 case M_BLTZL:
10067 case M_BLTZALL:
10068 macro_build_branch_rs (mask, &offset_expr, op[0]);
10069 break;
10070
10071 case M_BGTL_I:
10072 likely = 1;
10073 /* Fall through. */
10074 case M_BGT_I:
10075 /* Check for > max integer. */
10076 if (imm_expr.X_add_number >= GPR_SMAX)
10077 {
10078 do_false:
10079 /* Result is always false. */
10080 if (! likely)
10081 macro_build (NULL, "nop", "");
10082 else
10083 macro_build_branch_rsrt (M_BNEL, &offset_expr, ZERO, ZERO);
10084 break;
10085 }
10086 ++imm_expr.X_add_number;
10087 /* FALLTHROUGH */
10088 case M_BGE_I:
10089 case M_BGEL_I:
10090 if (mask == M_BGEL_I)
10091 likely = 1;
10092 if (imm_expr.X_add_number == 0)
10093 {
10094 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ,
10095 &offset_expr, op[0]);
10096 break;
10097 }
10098 if (imm_expr.X_add_number == 1)
10099 {
10100 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ,
10101 &offset_expr, op[0]);
10102 break;
10103 }
10104 if (imm_expr.X_add_number <= GPR_SMIN)
10105 {
10106 do_true:
10107 /* result is always true */
10108 as_warn (_("branch %s is always true"), ip->insn_mo->name);
10109 macro_build (&offset_expr, "b", "p");
10110 break;
10111 }
10112 used_at = 1;
10113 set_at (op[0], 0);
10114 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10115 &offset_expr, AT, ZERO);
10116 break;
10117
10118 case M_BGEUL:
10119 likely = 1;
10120 /* Fall through. */
10121 case M_BGEU:
10122 if (op[1] == 0)
10123 goto do_true;
10124 else if (op[0] == 0)
10125 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10126 &offset_expr, ZERO, op[1]);
10127 else
10128 {
10129 used_at = 1;
10130 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
10131 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10132 &offset_expr, AT, ZERO);
10133 }
10134 break;
10135
10136 case M_BGTUL_I:
10137 likely = 1;
10138 /* Fall through. */
10139 case M_BGTU_I:
10140 if (op[0] == 0
10141 || (GPR_SIZE == 32
10142 && imm_expr.X_add_number == -1))
10143 goto do_false;
10144 ++imm_expr.X_add_number;
10145 /* FALLTHROUGH */
10146 case M_BGEU_I:
10147 case M_BGEUL_I:
10148 if (mask == M_BGEUL_I)
10149 likely = 1;
10150 if (imm_expr.X_add_number == 0)
10151 goto do_true;
10152 else if (imm_expr.X_add_number == 1)
10153 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10154 &offset_expr, op[0], ZERO);
10155 else
10156 {
10157 used_at = 1;
10158 set_at (op[0], 1);
10159 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10160 &offset_expr, AT, ZERO);
10161 }
10162 break;
10163
10164 case M_BGTL:
10165 likely = 1;
10166 /* Fall through. */
10167 case M_BGT:
10168 if (op[1] == 0)
10169 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[0]);
10170 else if (op[0] == 0)
10171 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[1]);
10172 else
10173 {
10174 used_at = 1;
10175 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
10176 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10177 &offset_expr, AT, ZERO);
10178 }
10179 break;
10180
10181 case M_BGTUL:
10182 likely = 1;
10183 /* Fall through. */
10184 case M_BGTU:
10185 if (op[1] == 0)
10186 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10187 &offset_expr, op[0], ZERO);
10188 else if (op[0] == 0)
10189 goto do_false;
10190 else
10191 {
10192 used_at = 1;
10193 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
10194 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10195 &offset_expr, AT, ZERO);
10196 }
10197 break;
10198
10199 case M_BLEL:
10200 likely = 1;
10201 /* Fall through. */
10202 case M_BLE:
10203 if (op[1] == 0)
10204 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
10205 else if (op[0] == 0)
10206 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[1]);
10207 else
10208 {
10209 used_at = 1;
10210 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
10211 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10212 &offset_expr, AT, ZERO);
10213 }
10214 break;
10215
10216 case M_BLEL_I:
10217 likely = 1;
10218 /* Fall through. */
10219 case M_BLE_I:
10220 if (imm_expr.X_add_number >= GPR_SMAX)
10221 goto do_true;
10222 ++imm_expr.X_add_number;
10223 /* FALLTHROUGH */
10224 case M_BLT_I:
10225 case M_BLTL_I:
10226 if (mask == M_BLTL_I)
10227 likely = 1;
10228 if (imm_expr.X_add_number == 0)
10229 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
10230 else if (imm_expr.X_add_number == 1)
10231 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
10232 else
10233 {
10234 used_at = 1;
10235 set_at (op[0], 0);
10236 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10237 &offset_expr, AT, ZERO);
10238 }
10239 break;
10240
10241 case M_BLEUL:
10242 likely = 1;
10243 /* Fall through. */
10244 case M_BLEU:
10245 if (op[1] == 0)
10246 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10247 &offset_expr, op[0], ZERO);
10248 else if (op[0] == 0)
10249 goto do_true;
10250 else
10251 {
10252 used_at = 1;
10253 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
10254 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10255 &offset_expr, AT, ZERO);
10256 }
10257 break;
10258
10259 case M_BLEUL_I:
10260 likely = 1;
10261 /* Fall through. */
10262 case M_BLEU_I:
10263 if (op[0] == 0
10264 || (GPR_SIZE == 32
10265 && imm_expr.X_add_number == -1))
10266 goto do_true;
10267 ++imm_expr.X_add_number;
10268 /* FALLTHROUGH */
10269 case M_BLTU_I:
10270 case M_BLTUL_I:
10271 if (mask == M_BLTUL_I)
10272 likely = 1;
10273 if (imm_expr.X_add_number == 0)
10274 goto do_false;
10275 else if (imm_expr.X_add_number == 1)
10276 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10277 &offset_expr, op[0], ZERO);
10278 else
10279 {
10280 used_at = 1;
10281 set_at (op[0], 1);
10282 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10283 &offset_expr, AT, ZERO);
10284 }
10285 break;
10286
10287 case M_BLTL:
10288 likely = 1;
10289 /* Fall through. */
10290 case M_BLT:
10291 if (op[1] == 0)
10292 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
10293 else if (op[0] == 0)
10294 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[1]);
10295 else
10296 {
10297 used_at = 1;
10298 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
10299 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10300 &offset_expr, AT, ZERO);
10301 }
10302 break;
10303
10304 case M_BLTUL:
10305 likely = 1;
10306 /* Fall through. */
10307 case M_BLTU:
10308 if (op[1] == 0)
10309 goto do_false;
10310 else if (op[0] == 0)
10311 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10312 &offset_expr, ZERO, op[1]);
10313 else
10314 {
10315 used_at = 1;
10316 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
10317 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10318 &offset_expr, AT, ZERO);
10319 }
10320 break;
10321
10322 case M_DDIV_3:
10323 dbl = 1;
10324 /* Fall through. */
10325 case M_DIV_3:
10326 s = "mflo";
10327 goto do_div3;
10328 case M_DREM_3:
10329 dbl = 1;
10330 /* Fall through. */
10331 case M_REM_3:
10332 s = "mfhi";
10333 do_div3:
10334 if (op[2] == 0)
10335 {
10336 as_warn (_("divide by zero"));
10337 if (mips_trap)
10338 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
10339 else
10340 macro_build (NULL, "break", BRK_FMT, 7);
10341 break;
10342 }
10343
10344 start_noreorder ();
10345 if (mips_trap)
10346 {
10347 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10348 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
10349 }
10350 else
10351 {
10352 if (mips_opts.micromips)
10353 micromips_label_expr (&label_expr);
10354 else
10355 label_expr.X_add_number = 8;
10356 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10357 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
10358 macro_build (NULL, "break", BRK_FMT, 7);
10359 if (mips_opts.micromips)
10360 micromips_add_label ();
10361 }
10362 expr1.X_add_number = -1;
10363 used_at = 1;
10364 load_register (AT, &expr1, dbl);
10365 if (mips_opts.micromips)
10366 micromips_label_expr (&label_expr);
10367 else
10368 label_expr.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
10369 macro_build (&label_expr, "bne", "s,t,p", op[2], AT);
10370 if (dbl)
10371 {
10372 expr1.X_add_number = 1;
10373 load_register (AT, &expr1, dbl);
10374 macro_build (NULL, "dsll32", SHFT_FMT, AT, AT, 31);
10375 }
10376 else
10377 {
10378 expr1.X_add_number = 0x80000000;
10379 macro_build (&expr1, "lui", LUI_FMT, AT, BFD_RELOC_HI16);
10380 }
10381 if (mips_trap)
10382 {
10383 macro_build (NULL, "teq", TRAP_FMT, op[1], AT, 6);
10384 /* We want to close the noreorder block as soon as possible, so
10385 that later insns are available for delay slot filling. */
10386 end_noreorder ();
10387 }
10388 else
10389 {
10390 if (mips_opts.micromips)
10391 micromips_label_expr (&label_expr);
10392 else
10393 label_expr.X_add_number = 8;
10394 macro_build (&label_expr, "bne", "s,t,p", op[1], AT);
10395 macro_build (NULL, "nop", "");
10396
10397 /* We want to close the noreorder block as soon as possible, so
10398 that later insns are available for delay slot filling. */
10399 end_noreorder ();
10400
10401 macro_build (NULL, "break", BRK_FMT, 6);
10402 }
10403 if (mips_opts.micromips)
10404 micromips_add_label ();
10405 macro_build (NULL, s, MFHL_FMT, op[0]);
10406 break;
10407
10408 case M_DIV_3I:
10409 s = "div";
10410 s2 = "mflo";
10411 goto do_divi;
10412 case M_DIVU_3I:
10413 s = "divu";
10414 s2 = "mflo";
10415 goto do_divi;
10416 case M_REM_3I:
10417 s = "div";
10418 s2 = "mfhi";
10419 goto do_divi;
10420 case M_REMU_3I:
10421 s = "divu";
10422 s2 = "mfhi";
10423 goto do_divi;
10424 case M_DDIV_3I:
10425 dbl = 1;
10426 s = "ddiv";
10427 s2 = "mflo";
10428 goto do_divi;
10429 case M_DDIVU_3I:
10430 dbl = 1;
10431 s = "ddivu";
10432 s2 = "mflo";
10433 goto do_divi;
10434 case M_DREM_3I:
10435 dbl = 1;
10436 s = "ddiv";
10437 s2 = "mfhi";
10438 goto do_divi;
10439 case M_DREMU_3I:
10440 dbl = 1;
10441 s = "ddivu";
10442 s2 = "mfhi";
10443 do_divi:
10444 if (imm_expr.X_add_number == 0)
10445 {
10446 as_warn (_("divide by zero"));
10447 if (mips_trap)
10448 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
10449 else
10450 macro_build (NULL, "break", BRK_FMT, 7);
10451 break;
10452 }
10453 if (imm_expr.X_add_number == 1)
10454 {
10455 if (strcmp (s2, "mflo") == 0)
10456 move_register (op[0], op[1]);
10457 else
10458 move_register (op[0], ZERO);
10459 break;
10460 }
10461 if (imm_expr.X_add_number == -1 && s[strlen (s) - 1] != 'u')
10462 {
10463 if (strcmp (s2, "mflo") == 0)
10464 macro_build (NULL, dbl ? "dneg" : "neg", "d,w", op[0], op[1]);
10465 else
10466 move_register (op[0], ZERO);
10467 break;
10468 }
10469
10470 used_at = 1;
10471 load_register (AT, &imm_expr, dbl);
10472 macro_build (NULL, s, "z,s,t", op[1], AT);
10473 macro_build (NULL, s2, MFHL_FMT, op[0]);
10474 break;
10475
10476 case M_DIVU_3:
10477 s = "divu";
10478 s2 = "mflo";
10479 goto do_divu3;
10480 case M_REMU_3:
10481 s = "divu";
10482 s2 = "mfhi";
10483 goto do_divu3;
10484 case M_DDIVU_3:
10485 s = "ddivu";
10486 s2 = "mflo";
10487 goto do_divu3;
10488 case M_DREMU_3:
10489 s = "ddivu";
10490 s2 = "mfhi";
10491 do_divu3:
10492 start_noreorder ();
10493 if (mips_trap)
10494 {
10495 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10496 macro_build (NULL, s, "z,s,t", op[1], op[2]);
10497 /* We want to close the noreorder block as soon as possible, so
10498 that later insns are available for delay slot filling. */
10499 end_noreorder ();
10500 }
10501 else
10502 {
10503 if (mips_opts.micromips)
10504 micromips_label_expr (&label_expr);
10505 else
10506 label_expr.X_add_number = 8;
10507 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10508 macro_build (NULL, s, "z,s,t", op[1], op[2]);
10509
10510 /* We want to close the noreorder block as soon as possible, so
10511 that later insns are available for delay slot filling. */
10512 end_noreorder ();
10513 macro_build (NULL, "break", BRK_FMT, 7);
10514 if (mips_opts.micromips)
10515 micromips_add_label ();
10516 }
10517 macro_build (NULL, s2, MFHL_FMT, op[0]);
10518 break;
10519
10520 case M_DLCA_AB:
10521 dbl = 1;
10522 /* Fall through. */
10523 case M_LCA_AB:
10524 call = 1;
10525 goto do_la;
10526 case M_DLA_AB:
10527 dbl = 1;
10528 /* Fall through. */
10529 case M_LA_AB:
10530 do_la:
10531 /* Load the address of a symbol into a register. If breg is not
10532 zero, we then add a base register to it. */
10533
10534 breg = op[2];
10535 if (dbl && GPR_SIZE == 32)
10536 as_warn (_("dla used to load 32-bit register; recommend using la "
10537 "instead"));
10538
10539 if (!dbl && HAVE_64BIT_OBJECTS)
10540 as_warn (_("la used to load 64-bit address; recommend using dla "
10541 "instead"));
10542
10543 if (small_offset_p (0, align, 16))
10544 {
10545 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", op[0], breg,
10546 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2]);
10547 break;
10548 }
10549
10550 if (mips_opts.at && (op[0] == breg))
10551 {
10552 tempreg = AT;
10553 used_at = 1;
10554 }
10555 else
10556 tempreg = op[0];
10557
10558 if (offset_expr.X_op != O_symbol
10559 && offset_expr.X_op != O_constant)
10560 {
10561 as_bad (_("expression too complex"));
10562 offset_expr.X_op = O_constant;
10563 }
10564
10565 if (offset_expr.X_op == O_constant)
10566 load_register (tempreg, &offset_expr, HAVE_64BIT_ADDRESSES);
10567 else if (mips_pic == NO_PIC)
10568 {
10569 /* If this is a reference to a GP relative symbol, we want
10570 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
10571 Otherwise we want
10572 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
10573 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10574 If we have a constant, we need two instructions anyhow,
10575 so we may as well always use the latter form.
10576
10577 With 64bit address space and a usable $at we want
10578 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10579 lui $at,<sym> (BFD_RELOC_HI16_S)
10580 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10581 daddiu $at,<sym> (BFD_RELOC_LO16)
10582 dsll32 $tempreg,0
10583 daddu $tempreg,$tempreg,$at
10584
10585 If $at is already in use, we use a path which is suboptimal
10586 on superscalar processors.
10587 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10588 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10589 dsll $tempreg,16
10590 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
10591 dsll $tempreg,16
10592 daddiu $tempreg,<sym> (BFD_RELOC_LO16)
10593
10594 For GP relative symbols in 64bit address space we can use
10595 the same sequence as in 32bit address space. */
10596 if (HAVE_64BIT_SYMBOLS)
10597 {
10598 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
10599 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
10600 {
10601 relax_start (offset_expr.X_add_symbol);
10602 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10603 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
10604 relax_switch ();
10605 }
10606
10607 if (used_at == 0 && mips_opts.at)
10608 {
10609 macro_build (&offset_expr, "lui", LUI_FMT,
10610 tempreg, BFD_RELOC_MIPS_HIGHEST);
10611 macro_build (&offset_expr, "lui", LUI_FMT,
10612 AT, BFD_RELOC_HI16_S);
10613 macro_build (&offset_expr, "daddiu", "t,r,j",
10614 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
10615 macro_build (&offset_expr, "daddiu", "t,r,j",
10616 AT, AT, BFD_RELOC_LO16);
10617 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
10618 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
10619 used_at = 1;
10620 }
10621 else
10622 {
10623 macro_build (&offset_expr, "lui", LUI_FMT,
10624 tempreg, BFD_RELOC_MIPS_HIGHEST);
10625 macro_build (&offset_expr, "daddiu", "t,r,j",
10626 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
10627 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
10628 macro_build (&offset_expr, "daddiu", "t,r,j",
10629 tempreg, tempreg, BFD_RELOC_HI16_S);
10630 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
10631 macro_build (&offset_expr, "daddiu", "t,r,j",
10632 tempreg, tempreg, BFD_RELOC_LO16);
10633 }
10634
10635 if (mips_relax.sequence)
10636 relax_end ();
10637 }
10638 else
10639 {
10640 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
10641 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
10642 {
10643 relax_start (offset_expr.X_add_symbol);
10644 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10645 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
10646 relax_switch ();
10647 }
10648 if (!IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
10649 as_bad (_("offset too large"));
10650 macro_build_lui (&offset_expr, tempreg);
10651 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10652 tempreg, tempreg, BFD_RELOC_LO16);
10653 if (mips_relax.sequence)
10654 relax_end ();
10655 }
10656 }
10657 else if (!mips_big_got && !HAVE_NEWABI)
10658 {
10659 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
10660
10661 /* If this is a reference to an external symbol, and there
10662 is no constant, we want
10663 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10664 or for lca or if tempreg is PIC_CALL_REG
10665 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
10666 For a local symbol, we want
10667 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10668 nop
10669 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10670
10671 If we have a small constant, and this is a reference to
10672 an external symbol, we want
10673 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10674 nop
10675 addiu $tempreg,$tempreg,<constant>
10676 For a local symbol, we want the same instruction
10677 sequence, but we output a BFD_RELOC_LO16 reloc on the
10678 addiu instruction.
10679
10680 If we have a large constant, and this is a reference to
10681 an external symbol, we want
10682 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10683 lui $at,<hiconstant>
10684 addiu $at,$at,<loconstant>
10685 addu $tempreg,$tempreg,$at
10686 For a local symbol, we want the same instruction
10687 sequence, but we output a BFD_RELOC_LO16 reloc on the
10688 addiu instruction.
10689 */
10690
10691 if (offset_expr.X_add_number == 0)
10692 {
10693 if (mips_pic == SVR4_PIC
10694 && breg == 0
10695 && (call || tempreg == PIC_CALL_REG))
10696 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
10697
10698 relax_start (offset_expr.X_add_symbol);
10699 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10700 lw_reloc_type, mips_gp_register);
10701 if (breg != 0)
10702 {
10703 /* We're going to put in an addu instruction using
10704 tempreg, so we may as well insert the nop right
10705 now. */
10706 load_delay_nop ();
10707 }
10708 relax_switch ();
10709 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10710 tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register);
10711 load_delay_nop ();
10712 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10713 tempreg, tempreg, BFD_RELOC_LO16);
10714 relax_end ();
10715 /* FIXME: If breg == 0, and the next instruction uses
10716 $tempreg, then if this variant case is used an extra
10717 nop will be generated. */
10718 }
10719 else if (offset_expr.X_add_number >= -0x8000
10720 && offset_expr.X_add_number < 0x8000)
10721 {
10722 load_got_offset (tempreg, &offset_expr);
10723 load_delay_nop ();
10724 add_got_offset (tempreg, &offset_expr);
10725 }
10726 else
10727 {
10728 expr1.X_add_number = offset_expr.X_add_number;
10729 offset_expr.X_add_number =
10730 SEXT_16BIT (offset_expr.X_add_number);
10731 load_got_offset (tempreg, &offset_expr);
10732 offset_expr.X_add_number = expr1.X_add_number;
10733 /* If we are going to add in a base register, and the
10734 target register and the base register are the same,
10735 then we are using AT as a temporary register. Since
10736 we want to load the constant into AT, we add our
10737 current AT (from the global offset table) and the
10738 register into the register now, and pretend we were
10739 not using a base register. */
10740 if (breg == op[0])
10741 {
10742 load_delay_nop ();
10743 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10744 op[0], AT, breg);
10745 breg = 0;
10746 tempreg = op[0];
10747 }
10748 add_got_offset_hilo (tempreg, &offset_expr, AT);
10749 used_at = 1;
10750 }
10751 }
10752 else if (!mips_big_got && HAVE_NEWABI)
10753 {
10754 int add_breg_early = 0;
10755
10756 /* If this is a reference to an external, and there is no
10757 constant, or local symbol (*), with or without a
10758 constant, we want
10759 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10760 or for lca or if tempreg is PIC_CALL_REG
10761 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
10762
10763 If we have a small constant, and this is a reference to
10764 an external symbol, we want
10765 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10766 addiu $tempreg,$tempreg,<constant>
10767
10768 If we have a large constant, and this is a reference to
10769 an external symbol, we want
10770 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10771 lui $at,<hiconstant>
10772 addiu $at,$at,<loconstant>
10773 addu $tempreg,$tempreg,$at
10774
10775 (*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
10776 local symbols, even though it introduces an additional
10777 instruction. */
10778
10779 if (offset_expr.X_add_number)
10780 {
10781 expr1.X_add_number = offset_expr.X_add_number;
10782 offset_expr.X_add_number = 0;
10783
10784 relax_start (offset_expr.X_add_symbol);
10785 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10786 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10787
10788 if (expr1.X_add_number >= -0x8000
10789 && expr1.X_add_number < 0x8000)
10790 {
10791 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
10792 tempreg, tempreg, BFD_RELOC_LO16);
10793 }
10794 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
10795 {
10796 unsigned int dreg;
10797
10798 /* If we are going to add in a base register, and the
10799 target register and the base register are the same,
10800 then we are using AT as a temporary register. Since
10801 we want to load the constant into AT, we add our
10802 current AT (from the global offset table) and the
10803 register into the register now, and pretend we were
10804 not using a base register. */
10805 if (breg != op[0])
10806 dreg = tempreg;
10807 else
10808 {
10809 gas_assert (tempreg == AT);
10810 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10811 op[0], AT, breg);
10812 dreg = op[0];
10813 add_breg_early = 1;
10814 }
10815
10816 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
10817 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10818 dreg, dreg, AT);
10819
10820 used_at = 1;
10821 }
10822 else
10823 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
10824
10825 relax_switch ();
10826 offset_expr.X_add_number = expr1.X_add_number;
10827
10828 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10829 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10830 if (add_breg_early)
10831 {
10832 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10833 op[0], tempreg, breg);
10834 breg = 0;
10835 tempreg = op[0];
10836 }
10837 relax_end ();
10838 }
10839 else if (breg == 0 && (call || tempreg == PIC_CALL_REG))
10840 {
10841 relax_start (offset_expr.X_add_symbol);
10842 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10843 BFD_RELOC_MIPS_CALL16, mips_gp_register);
10844 relax_switch ();
10845 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10846 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10847 relax_end ();
10848 }
10849 else
10850 {
10851 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10852 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10853 }
10854 }
10855 else if (mips_big_got && !HAVE_NEWABI)
10856 {
10857 int gpdelay;
10858 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
10859 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
10860 int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
10861
10862 /* This is the large GOT case. If this is a reference to an
10863 external symbol, and there is no constant, we want
10864 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10865 addu $tempreg,$tempreg,$gp
10866 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10867 or for lca or if tempreg is PIC_CALL_REG
10868 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
10869 addu $tempreg,$tempreg,$gp
10870 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
10871 For a local symbol, we want
10872 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10873 nop
10874 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10875
10876 If we have a small constant, and this is a reference to
10877 an external symbol, we want
10878 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10879 addu $tempreg,$tempreg,$gp
10880 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10881 nop
10882 addiu $tempreg,$tempreg,<constant>
10883 For a local symbol, we want
10884 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10885 nop
10886 addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
10887
10888 If we have a large constant, and this is a reference to
10889 an external symbol, we want
10890 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10891 addu $tempreg,$tempreg,$gp
10892 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10893 lui $at,<hiconstant>
10894 addiu $at,$at,<loconstant>
10895 addu $tempreg,$tempreg,$at
10896 For a local symbol, we want
10897 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10898 lui $at,<hiconstant>
10899 addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
10900 addu $tempreg,$tempreg,$at
10901 */
10902
10903 expr1.X_add_number = offset_expr.X_add_number;
10904 offset_expr.X_add_number = 0;
10905 relax_start (offset_expr.X_add_symbol);
10906 gpdelay = reg_needs_delay (mips_gp_register);
10907 if (expr1.X_add_number == 0 && breg == 0
10908 && (call || tempreg == PIC_CALL_REG))
10909 {
10910 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
10911 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
10912 }
10913 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
10914 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10915 tempreg, tempreg, mips_gp_register);
10916 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10917 tempreg, lw_reloc_type, tempreg);
10918 if (expr1.X_add_number == 0)
10919 {
10920 if (breg != 0)
10921 {
10922 /* We're going to put in an addu instruction using
10923 tempreg, so we may as well insert the nop right
10924 now. */
10925 load_delay_nop ();
10926 }
10927 }
10928 else if (expr1.X_add_number >= -0x8000
10929 && expr1.X_add_number < 0x8000)
10930 {
10931 load_delay_nop ();
10932 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
10933 tempreg, tempreg, BFD_RELOC_LO16);
10934 }
10935 else
10936 {
10937 unsigned int dreg;
10938
10939 /* If we are going to add in a base register, and the
10940 target register and the base register are the same,
10941 then we are using AT as a temporary register. Since
10942 we want to load the constant into AT, we add our
10943 current AT (from the global offset table) and the
10944 register into the register now, and pretend we were
10945 not using a base register. */
10946 if (breg != op[0])
10947 dreg = tempreg;
10948 else
10949 {
10950 gas_assert (tempreg == AT);
10951 load_delay_nop ();
10952 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10953 op[0], AT, breg);
10954 dreg = op[0];
10955 }
10956
10957 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
10958 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
10959
10960 used_at = 1;
10961 }
10962 offset_expr.X_add_number = SEXT_16BIT (expr1.X_add_number);
10963 relax_switch ();
10964
10965 if (gpdelay)
10966 {
10967 /* This is needed because this instruction uses $gp, but
10968 the first instruction on the main stream does not. */
10969 macro_build (NULL, "nop", "");
10970 }
10971
10972 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10973 local_reloc_type, mips_gp_register);
10974 if (expr1.X_add_number >= -0x8000
10975 && expr1.X_add_number < 0x8000)
10976 {
10977 load_delay_nop ();
10978 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10979 tempreg, tempreg, BFD_RELOC_LO16);
10980 /* FIXME: If add_number is 0, and there was no base
10981 register, the external symbol case ended with a load,
10982 so if the symbol turns out to not be external, and
10983 the next instruction uses tempreg, an unnecessary nop
10984 will be inserted. */
10985 }
10986 else
10987 {
10988 if (breg == op[0])
10989 {
10990 /* We must add in the base register now, as in the
10991 external symbol case. */
10992 gas_assert (tempreg == AT);
10993 load_delay_nop ();
10994 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10995 op[0], AT, breg);
10996 tempreg = op[0];
10997 /* We set breg to 0 because we have arranged to add
10998 it in in both cases. */
10999 breg = 0;
11000 }
11001
11002 macro_build_lui (&expr1, AT);
11003 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11004 AT, AT, BFD_RELOC_LO16);
11005 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11006 tempreg, tempreg, AT);
11007 used_at = 1;
11008 }
11009 relax_end ();
11010 }
11011 else if (mips_big_got && HAVE_NEWABI)
11012 {
11013 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
11014 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
11015 int add_breg_early = 0;
11016
11017 /* This is the large GOT case. If this is a reference to an
11018 external symbol, and there is no constant, we want
11019 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11020 add $tempreg,$tempreg,$gp
11021 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11022 or for lca or if tempreg is PIC_CALL_REG
11023 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
11024 add $tempreg,$tempreg,$gp
11025 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
11026
11027 If we have a small constant, and this is a reference to
11028 an external symbol, we want
11029 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11030 add $tempreg,$tempreg,$gp
11031 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11032 addi $tempreg,$tempreg,<constant>
11033
11034 If we have a large constant, and this is a reference to
11035 an external symbol, we want
11036 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11037 addu $tempreg,$tempreg,$gp
11038 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11039 lui $at,<hiconstant>
11040 addi $at,$at,<loconstant>
11041 add $tempreg,$tempreg,$at
11042
11043 If we have NewABI, and we know it's a local symbol, we want
11044 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
11045 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
11046 otherwise we have to resort to GOT_HI16/GOT_LO16. */
11047
11048 relax_start (offset_expr.X_add_symbol);
11049
11050 expr1.X_add_number = offset_expr.X_add_number;
11051 offset_expr.X_add_number = 0;
11052
11053 if (expr1.X_add_number == 0 && breg == 0
11054 && (call || tempreg == PIC_CALL_REG))
11055 {
11056 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
11057 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
11058 }
11059 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
11060 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11061 tempreg, tempreg, mips_gp_register);
11062 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11063 tempreg, lw_reloc_type, tempreg);
11064
11065 if (expr1.X_add_number == 0)
11066 ;
11067 else if (expr1.X_add_number >= -0x8000
11068 && expr1.X_add_number < 0x8000)
11069 {
11070 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
11071 tempreg, tempreg, BFD_RELOC_LO16);
11072 }
11073 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
11074 {
11075 unsigned int dreg;
11076
11077 /* If we are going to add in a base register, and the
11078 target register and the base register are the same,
11079 then we are using AT as a temporary register. Since
11080 we want to load the constant into AT, we add our
11081 current AT (from the global offset table) and the
11082 register into the register now, and pretend we were
11083 not using a base register. */
11084 if (breg != op[0])
11085 dreg = tempreg;
11086 else
11087 {
11088 gas_assert (tempreg == AT);
11089 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11090 op[0], AT, breg);
11091 dreg = op[0];
11092 add_breg_early = 1;
11093 }
11094
11095 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
11096 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
11097
11098 used_at = 1;
11099 }
11100 else
11101 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
11102
11103 relax_switch ();
11104 offset_expr.X_add_number = expr1.X_add_number;
11105 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11106 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
11107 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
11108 tempreg, BFD_RELOC_MIPS_GOT_OFST);
11109 if (add_breg_early)
11110 {
11111 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11112 op[0], tempreg, breg);
11113 breg = 0;
11114 tempreg = op[0];
11115 }
11116 relax_end ();
11117 }
11118 else
11119 abort ();
11120
11121 if (breg != 0)
11122 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", op[0], tempreg, breg);
11123 break;
11124
11125 case M_MSGSND:
11126 gas_assert (!mips_opts.micromips);
11127 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x01);
11128 break;
11129
11130 case M_MSGLD:
11131 gas_assert (!mips_opts.micromips);
11132 macro_build (NULL, "c2", "C", 0x02);
11133 break;
11134
11135 case M_MSGLD_T:
11136 gas_assert (!mips_opts.micromips);
11137 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x02);
11138 break;
11139
11140 case M_MSGWAIT:
11141 gas_assert (!mips_opts.micromips);
11142 macro_build (NULL, "c2", "C", 3);
11143 break;
11144
11145 case M_MSGWAIT_T:
11146 gas_assert (!mips_opts.micromips);
11147 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x03);
11148 break;
11149
11150 case M_J_A:
11151 /* The j instruction may not be used in PIC code, since it
11152 requires an absolute address. We convert it to a b
11153 instruction. */
11154 if (mips_pic == NO_PIC)
11155 macro_build (&offset_expr, "j", "a");
11156 else
11157 macro_build (&offset_expr, "b", "p");
11158 break;
11159
11160 /* The jal instructions must be handled as macros because when
11161 generating PIC code they expand to multi-instruction
11162 sequences. Normally they are simple instructions. */
11163 case M_JALS_1:
11164 op[1] = op[0];
11165 op[0] = RA;
11166 /* Fall through. */
11167 case M_JALS_2:
11168 gas_assert (mips_opts.micromips);
11169 if (mips_opts.insn32)
11170 {
11171 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
11172 break;
11173 }
11174 jals = 1;
11175 goto jal;
11176 case M_JAL_1:
11177 op[1] = op[0];
11178 op[0] = RA;
11179 /* Fall through. */
11180 case M_JAL_2:
11181 jal:
11182 if (mips_pic == NO_PIC)
11183 {
11184 s = jals ? "jalrs" : "jalr";
11185 if (mips_opts.micromips
11186 && !mips_opts.insn32
11187 && op[0] == RA
11188 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
11189 macro_build (NULL, s, "mj", op[1]);
11190 else
11191 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
11192 }
11193 else
11194 {
11195 int cprestore = (mips_pic == SVR4_PIC && !HAVE_NEWABI
11196 && mips_cprestore_offset >= 0);
11197
11198 if (op[1] != PIC_CALL_REG)
11199 as_warn (_("MIPS PIC call to register other than $25"));
11200
11201 s = ((mips_opts.micromips
11202 && !mips_opts.insn32
11203 && (!mips_opts.noreorder || cprestore))
11204 ? "jalrs" : "jalr");
11205 if (mips_opts.micromips
11206 && !mips_opts.insn32
11207 && op[0] == RA
11208 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
11209 macro_build (NULL, s, "mj", op[1]);
11210 else
11211 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
11212 if (mips_pic == SVR4_PIC && !HAVE_NEWABI)
11213 {
11214 if (mips_cprestore_offset < 0)
11215 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11216 else
11217 {
11218 if (!mips_frame_reg_valid)
11219 {
11220 as_warn (_("no .frame pseudo-op used in PIC code"));
11221 /* Quiet this warning. */
11222 mips_frame_reg_valid = 1;
11223 }
11224 if (!mips_cprestore_valid)
11225 {
11226 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11227 /* Quiet this warning. */
11228 mips_cprestore_valid = 1;
11229 }
11230 if (mips_opts.noreorder)
11231 macro_build (NULL, "nop", "");
11232 expr1.X_add_number = mips_cprestore_offset;
11233 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
11234 mips_gp_register,
11235 mips_frame_reg,
11236 HAVE_64BIT_ADDRESSES);
11237 }
11238 }
11239 }
11240
11241 break;
11242
11243 case M_JALS_A:
11244 gas_assert (mips_opts.micromips);
11245 if (mips_opts.insn32)
11246 {
11247 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
11248 break;
11249 }
11250 jals = 1;
11251 /* Fall through. */
11252 case M_JAL_A:
11253 if (mips_pic == NO_PIC)
11254 macro_build (&offset_expr, jals ? "jals" : "jal", "a");
11255 else if (mips_pic == SVR4_PIC)
11256 {
11257 /* If this is a reference to an external symbol, and we are
11258 using a small GOT, we want
11259 lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
11260 nop
11261 jalr $ra,$25
11262 nop
11263 lw $gp,cprestore($sp)
11264 The cprestore value is set using the .cprestore
11265 pseudo-op. If we are using a big GOT, we want
11266 lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
11267 addu $25,$25,$gp
11268 lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
11269 nop
11270 jalr $ra,$25
11271 nop
11272 lw $gp,cprestore($sp)
11273 If the symbol is not external, we want
11274 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11275 nop
11276 addiu $25,$25,<sym> (BFD_RELOC_LO16)
11277 jalr $ra,$25
11278 nop
11279 lw $gp,cprestore($sp)
11280
11281 For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
11282 sequences above, minus nops, unless the symbol is local,
11283 which enables us to use GOT_PAGE/GOT_OFST (big got) or
11284 GOT_DISP. */
11285 if (HAVE_NEWABI)
11286 {
11287 if (!mips_big_got)
11288 {
11289 relax_start (offset_expr.X_add_symbol);
11290 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11291 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
11292 mips_gp_register);
11293 relax_switch ();
11294 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11295 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP,
11296 mips_gp_register);
11297 relax_end ();
11298 }
11299 else
11300 {
11301 relax_start (offset_expr.X_add_symbol);
11302 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
11303 BFD_RELOC_MIPS_CALL_HI16);
11304 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11305 PIC_CALL_REG, mips_gp_register);
11306 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11307 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11308 PIC_CALL_REG);
11309 relax_switch ();
11310 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11311 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE,
11312 mips_gp_register);
11313 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11314 PIC_CALL_REG, PIC_CALL_REG,
11315 BFD_RELOC_MIPS_GOT_OFST);
11316 relax_end ();
11317 }
11318
11319 macro_build_jalr (&offset_expr, 0);
11320 }
11321 else
11322 {
11323 relax_start (offset_expr.X_add_symbol);
11324 if (!mips_big_got)
11325 {
11326 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11327 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
11328 mips_gp_register);
11329 load_delay_nop ();
11330 relax_switch ();
11331 }
11332 else
11333 {
11334 int gpdelay;
11335
11336 gpdelay = reg_needs_delay (mips_gp_register);
11337 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
11338 BFD_RELOC_MIPS_CALL_HI16);
11339 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11340 PIC_CALL_REG, mips_gp_register);
11341 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11342 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11343 PIC_CALL_REG);
11344 load_delay_nop ();
11345 relax_switch ();
11346 if (gpdelay)
11347 macro_build (NULL, "nop", "");
11348 }
11349 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11350 PIC_CALL_REG, BFD_RELOC_MIPS_GOT16,
11351 mips_gp_register);
11352 load_delay_nop ();
11353 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11354 PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16);
11355 relax_end ();
11356 macro_build_jalr (&offset_expr, mips_cprestore_offset >= 0);
11357
11358 if (mips_cprestore_offset < 0)
11359 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11360 else
11361 {
11362 if (!mips_frame_reg_valid)
11363 {
11364 as_warn (_("no .frame pseudo-op used in PIC code"));
11365 /* Quiet this warning. */
11366 mips_frame_reg_valid = 1;
11367 }
11368 if (!mips_cprestore_valid)
11369 {
11370 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11371 /* Quiet this warning. */
11372 mips_cprestore_valid = 1;
11373 }
11374 if (mips_opts.noreorder)
11375 macro_build (NULL, "nop", "");
11376 expr1.X_add_number = mips_cprestore_offset;
11377 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
11378 mips_gp_register,
11379 mips_frame_reg,
11380 HAVE_64BIT_ADDRESSES);
11381 }
11382 }
11383 }
11384 else if (mips_pic == VXWORKS_PIC)
11385 as_bad (_("non-PIC jump used in PIC library"));
11386 else
11387 abort ();
11388
11389 break;
11390
11391 case M_LBUE_AB:
11392 s = "lbue";
11393 fmt = "t,+j(b)";
11394 offbits = 9;
11395 goto ld_st;
11396 case M_LHUE_AB:
11397 s = "lhue";
11398 fmt = "t,+j(b)";
11399 offbits = 9;
11400 goto ld_st;
11401 case M_LBE_AB:
11402 s = "lbe";
11403 fmt = "t,+j(b)";
11404 offbits = 9;
11405 goto ld_st;
11406 case M_LHE_AB:
11407 s = "lhe";
11408 fmt = "t,+j(b)";
11409 offbits = 9;
11410 goto ld_st;
11411 case M_LLE_AB:
11412 s = "lle";
11413 fmt = "t,+j(b)";
11414 offbits = 9;
11415 goto ld_st;
11416 case M_LWE_AB:
11417 s = "lwe";
11418 fmt = "t,+j(b)";
11419 offbits = 9;
11420 goto ld_st;
11421 case M_LWLE_AB:
11422 s = "lwle";
11423 fmt = "t,+j(b)";
11424 offbits = 9;
11425 goto ld_st;
11426 case M_LWRE_AB:
11427 s = "lwre";
11428 fmt = "t,+j(b)";
11429 offbits = 9;
11430 goto ld_st;
11431 case M_SBE_AB:
11432 s = "sbe";
11433 fmt = "t,+j(b)";
11434 offbits = 9;
11435 goto ld_st;
11436 case M_SCE_AB:
11437 s = "sce";
11438 fmt = "t,+j(b)";
11439 offbits = 9;
11440 goto ld_st;
11441 case M_SHE_AB:
11442 s = "she";
11443 fmt = "t,+j(b)";
11444 offbits = 9;
11445 goto ld_st;
11446 case M_SWE_AB:
11447 s = "swe";
11448 fmt = "t,+j(b)";
11449 offbits = 9;
11450 goto ld_st;
11451 case M_SWLE_AB:
11452 s = "swle";
11453 fmt = "t,+j(b)";
11454 offbits = 9;
11455 goto ld_st;
11456 case M_SWRE_AB:
11457 s = "swre";
11458 fmt = "t,+j(b)";
11459 offbits = 9;
11460 goto ld_st;
11461 case M_ACLR_AB:
11462 s = "aclr";
11463 fmt = "\\,~(b)";
11464 offbits = 12;
11465 goto ld_st;
11466 case M_ASET_AB:
11467 s = "aset";
11468 fmt = "\\,~(b)";
11469 offbits = 12;
11470 goto ld_st;
11471 case M_LB_AB:
11472 s = "lb";
11473 fmt = "t,o(b)";
11474 goto ld;
11475 case M_LBU_AB:
11476 s = "lbu";
11477 fmt = "t,o(b)";
11478 goto ld;
11479 case M_LH_AB:
11480 s = "lh";
11481 fmt = "t,o(b)";
11482 goto ld;
11483 case M_LHU_AB:
11484 s = "lhu";
11485 fmt = "t,o(b)";
11486 goto ld;
11487 case M_LW_AB:
11488 s = "lw";
11489 fmt = "t,o(b)";
11490 goto ld;
11491 case M_LWC0_AB:
11492 gas_assert (!mips_opts.micromips);
11493 s = "lwc0";
11494 fmt = "E,o(b)";
11495 /* Itbl support may require additional care here. */
11496 coproc = 1;
11497 goto ld_st;
11498 case M_LWC1_AB:
11499 s = "lwc1";
11500 fmt = "T,o(b)";
11501 /* Itbl support may require additional care here. */
11502 coproc = 1;
11503 goto ld_st;
11504 case M_LWC2_AB:
11505 s = "lwc2";
11506 fmt = COP12_FMT;
11507 offbits = (mips_opts.micromips ? 12
11508 : ISA_IS_R6 (mips_opts.isa) ? 11
11509 : 16);
11510 /* Itbl support may require additional care here. */
11511 coproc = 1;
11512 goto ld_st;
11513 case M_LWC3_AB:
11514 gas_assert (!mips_opts.micromips);
11515 s = "lwc3";
11516 fmt = "E,o(b)";
11517 /* Itbl support may require additional care here. */
11518 coproc = 1;
11519 goto ld_st;
11520 case M_LWL_AB:
11521 s = "lwl";
11522 fmt = MEM12_FMT;
11523 offbits = (mips_opts.micromips ? 12 : 16);
11524 goto ld_st;
11525 case M_LWR_AB:
11526 s = "lwr";
11527 fmt = MEM12_FMT;
11528 offbits = (mips_opts.micromips ? 12 : 16);
11529 goto ld_st;
11530 case M_LDC1_AB:
11531 s = "ldc1";
11532 fmt = "T,o(b)";
11533 /* Itbl support may require additional care here. */
11534 coproc = 1;
11535 goto ld_st;
11536 case M_LDC2_AB:
11537 s = "ldc2";
11538 fmt = COP12_FMT;
11539 offbits = (mips_opts.micromips ? 12
11540 : ISA_IS_R6 (mips_opts.isa) ? 11
11541 : 16);
11542 /* Itbl support may require additional care here. */
11543 coproc = 1;
11544 goto ld_st;
11545 case M_LQC2_AB:
11546 s = "lqc2";
11547 fmt = "+7,o(b)";
11548 /* Itbl support may require additional care here. */
11549 coproc = 1;
11550 goto ld_st;
11551 case M_LDC3_AB:
11552 s = "ldc3";
11553 fmt = "E,o(b)";
11554 /* Itbl support may require additional care here. */
11555 coproc = 1;
11556 goto ld_st;
11557 case M_LDL_AB:
11558 s = "ldl";
11559 fmt = MEM12_FMT;
11560 offbits = (mips_opts.micromips ? 12 : 16);
11561 goto ld_st;
11562 case M_LDR_AB:
11563 s = "ldr";
11564 fmt = MEM12_FMT;
11565 offbits = (mips_opts.micromips ? 12 : 16);
11566 goto ld_st;
11567 case M_LL_AB:
11568 s = "ll";
11569 fmt = LL_SC_FMT;
11570 offbits = (mips_opts.micromips ? 12
11571 : ISA_IS_R6 (mips_opts.isa) ? 9
11572 : 16);
11573 goto ld;
11574 case M_LLD_AB:
11575 s = "lld";
11576 fmt = LL_SC_FMT;
11577 offbits = (mips_opts.micromips ? 12
11578 : ISA_IS_R6 (mips_opts.isa) ? 9
11579 : 16);
11580 goto ld;
11581 case M_LWU_AB:
11582 s = "lwu";
11583 fmt = MEM12_FMT;
11584 offbits = (mips_opts.micromips ? 12 : 16);
11585 goto ld;
11586 case M_LWP_AB:
11587 gas_assert (mips_opts.micromips);
11588 s = "lwp";
11589 fmt = "t,~(b)";
11590 offbits = 12;
11591 lp = 1;
11592 goto ld;
11593 case M_LDP_AB:
11594 gas_assert (mips_opts.micromips);
11595 s = "ldp";
11596 fmt = "t,~(b)";
11597 offbits = 12;
11598 lp = 1;
11599 goto ld;
11600 case M_LWM_AB:
11601 gas_assert (mips_opts.micromips);
11602 s = "lwm";
11603 fmt = "n,~(b)";
11604 offbits = 12;
11605 goto ld_st;
11606 case M_LDM_AB:
11607 gas_assert (mips_opts.micromips);
11608 s = "ldm";
11609 fmt = "n,~(b)";
11610 offbits = 12;
11611 goto ld_st;
11612
11613 ld:
11614 /* We don't want to use $0 as tempreg. */
11615 if (op[2] == op[0] + lp || op[0] + lp == ZERO)
11616 goto ld_st;
11617 else
11618 tempreg = op[0] + lp;
11619 goto ld_noat;
11620
11621 case M_SB_AB:
11622 s = "sb";
11623 fmt = "t,o(b)";
11624 goto ld_st;
11625 case M_SH_AB:
11626 s = "sh";
11627 fmt = "t,o(b)";
11628 goto ld_st;
11629 case M_SW_AB:
11630 s = "sw";
11631 fmt = "t,o(b)";
11632 goto ld_st;
11633 case M_SWC0_AB:
11634 gas_assert (!mips_opts.micromips);
11635 s = "swc0";
11636 fmt = "E,o(b)";
11637 /* Itbl support may require additional care here. */
11638 coproc = 1;
11639 goto ld_st;
11640 case M_SWC1_AB:
11641 s = "swc1";
11642 fmt = "T,o(b)";
11643 /* Itbl support may require additional care here. */
11644 coproc = 1;
11645 goto ld_st;
11646 case M_SWC2_AB:
11647 s = "swc2";
11648 fmt = COP12_FMT;
11649 offbits = (mips_opts.micromips ? 12
11650 : ISA_IS_R6 (mips_opts.isa) ? 11
11651 : 16);
11652 /* Itbl support may require additional care here. */
11653 coproc = 1;
11654 goto ld_st;
11655 case M_SWC3_AB:
11656 gas_assert (!mips_opts.micromips);
11657 s = "swc3";
11658 fmt = "E,o(b)";
11659 /* Itbl support may require additional care here. */
11660 coproc = 1;
11661 goto ld_st;
11662 case M_SWL_AB:
11663 s = "swl";
11664 fmt = MEM12_FMT;
11665 offbits = (mips_opts.micromips ? 12 : 16);
11666 goto ld_st;
11667 case M_SWR_AB:
11668 s = "swr";
11669 fmt = MEM12_FMT;
11670 offbits = (mips_opts.micromips ? 12 : 16);
11671 goto ld_st;
11672 case M_SC_AB:
11673 s = "sc";
11674 fmt = LL_SC_FMT;
11675 offbits = (mips_opts.micromips ? 12
11676 : ISA_IS_R6 (mips_opts.isa) ? 9
11677 : 16);
11678 goto ld_st;
11679 case M_SCD_AB:
11680 s = "scd";
11681 fmt = LL_SC_FMT;
11682 offbits = (mips_opts.micromips ? 12
11683 : ISA_IS_R6 (mips_opts.isa) ? 9
11684 : 16);
11685 goto ld_st;
11686 case M_CACHE_AB:
11687 s = "cache";
11688 fmt = (mips_opts.micromips ? "k,~(b)"
11689 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11690 : "k,o(b)");
11691 offbits = (mips_opts.micromips ? 12
11692 : ISA_IS_R6 (mips_opts.isa) ? 9
11693 : 16);
11694 goto ld_st;
11695 case M_CACHEE_AB:
11696 s = "cachee";
11697 fmt = "k,+j(b)";
11698 offbits = 9;
11699 goto ld_st;
11700 case M_PREF_AB:
11701 s = "pref";
11702 fmt = (mips_opts.micromips ? "k,~(b)"
11703 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11704 : "k,o(b)");
11705 offbits = (mips_opts.micromips ? 12
11706 : ISA_IS_R6 (mips_opts.isa) ? 9
11707 : 16);
11708 goto ld_st;
11709 case M_PREFE_AB:
11710 s = "prefe";
11711 fmt = "k,+j(b)";
11712 offbits = 9;
11713 goto ld_st;
11714 case M_SDC1_AB:
11715 s = "sdc1";
11716 fmt = "T,o(b)";
11717 coproc = 1;
11718 /* Itbl support may require additional care here. */
11719 goto ld_st;
11720 case M_SDC2_AB:
11721 s = "sdc2";
11722 fmt = COP12_FMT;
11723 offbits = (mips_opts.micromips ? 12
11724 : ISA_IS_R6 (mips_opts.isa) ? 11
11725 : 16);
11726 /* Itbl support may require additional care here. */
11727 coproc = 1;
11728 goto ld_st;
11729 case M_SQC2_AB:
11730 s = "sqc2";
11731 fmt = "+7,o(b)";
11732 /* Itbl support may require additional care here. */
11733 coproc = 1;
11734 goto ld_st;
11735 case M_SDC3_AB:
11736 gas_assert (!mips_opts.micromips);
11737 s = "sdc3";
11738 fmt = "E,o(b)";
11739 /* Itbl support may require additional care here. */
11740 coproc = 1;
11741 goto ld_st;
11742 case M_SDL_AB:
11743 s = "sdl";
11744 fmt = MEM12_FMT;
11745 offbits = (mips_opts.micromips ? 12 : 16);
11746 goto ld_st;
11747 case M_SDR_AB:
11748 s = "sdr";
11749 fmt = MEM12_FMT;
11750 offbits = (mips_opts.micromips ? 12 : 16);
11751 goto ld_st;
11752 case M_SWP_AB:
11753 gas_assert (mips_opts.micromips);
11754 s = "swp";
11755 fmt = "t,~(b)";
11756 offbits = 12;
11757 goto ld_st;
11758 case M_SDP_AB:
11759 gas_assert (mips_opts.micromips);
11760 s = "sdp";
11761 fmt = "t,~(b)";
11762 offbits = 12;
11763 goto ld_st;
11764 case M_SWM_AB:
11765 gas_assert (mips_opts.micromips);
11766 s = "swm";
11767 fmt = "n,~(b)";
11768 offbits = 12;
11769 goto ld_st;
11770 case M_SDM_AB:
11771 gas_assert (mips_opts.micromips);
11772 s = "sdm";
11773 fmt = "n,~(b)";
11774 offbits = 12;
11775
11776 ld_st:
11777 tempreg = AT;
11778 ld_noat:
11779 breg = op[2];
11780 if (small_offset_p (0, align, 16))
11781 {
11782 /* The first case exists for M_LD_AB and M_SD_AB, which are
11783 macros for o32 but which should act like normal instructions
11784 otherwise. */
11785 if (offbits == 16)
11786 macro_build (&offset_expr, s, fmt, op[0], -1, offset_reloc[0],
11787 offset_reloc[1], offset_reloc[2], breg);
11788 else if (small_offset_p (0, align, offbits))
11789 {
11790 if (offbits == 0)
11791 macro_build (NULL, s, fmt, op[0], breg);
11792 else
11793 macro_build (NULL, s, fmt, op[0],
11794 (int) offset_expr.X_add_number, breg);
11795 }
11796 else
11797 {
11798 if (tempreg == AT)
11799 used_at = 1;
11800 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11801 tempreg, breg, -1, offset_reloc[0],
11802 offset_reloc[1], offset_reloc[2]);
11803 if (offbits == 0)
11804 macro_build (NULL, s, fmt, op[0], tempreg);
11805 else
11806 macro_build (NULL, s, fmt, op[0], 0, tempreg);
11807 }
11808 break;
11809 }
11810
11811 if (tempreg == AT)
11812 used_at = 1;
11813
11814 if (offset_expr.X_op != O_constant
11815 && offset_expr.X_op != O_symbol)
11816 {
11817 as_bad (_("expression too complex"));
11818 offset_expr.X_op = O_constant;
11819 }
11820
11821 if (HAVE_32BIT_ADDRESSES
11822 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
11823 {
11824 char value [32];
11825
11826 sprintf_vma (value, offset_expr.X_add_number);
11827 as_bad (_("number (0x%s) larger than 32 bits"), value);
11828 }
11829
11830 /* A constant expression in PIC code can be handled just as it
11831 is in non PIC code. */
11832 if (offset_expr.X_op == O_constant)
11833 {
11834 expr1.X_add_number = offset_high_part (offset_expr.X_add_number,
11835 offbits == 0 ? 16 : offbits);
11836 offset_expr.X_add_number -= expr1.X_add_number;
11837
11838 load_register (tempreg, &expr1, HAVE_64BIT_ADDRESSES);
11839 if (breg != 0)
11840 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11841 tempreg, tempreg, breg);
11842 if (offbits == 0)
11843 {
11844 if (offset_expr.X_add_number != 0)
11845 macro_build (&offset_expr, ADDRESS_ADDI_INSN,
11846 "t,r,j", tempreg, tempreg, BFD_RELOC_LO16);
11847 macro_build (NULL, s, fmt, op[0], tempreg);
11848 }
11849 else if (offbits == 16)
11850 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
11851 else
11852 macro_build (NULL, s, fmt, op[0],
11853 (int) offset_expr.X_add_number, tempreg);
11854 }
11855 else if (offbits != 16)
11856 {
11857 /* The offset field is too narrow to be used for a low-part
11858 relocation, so load the whole address into the auxiliary
11859 register. */
11860 load_address (tempreg, &offset_expr, &used_at);
11861 if (breg != 0)
11862 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11863 tempreg, tempreg, breg);
11864 if (offbits == 0)
11865 macro_build (NULL, s, fmt, op[0], tempreg);
11866 else
11867 macro_build (NULL, s, fmt, op[0], 0, tempreg);
11868 }
11869 else if (mips_pic == NO_PIC)
11870 {
11871 /* If this is a reference to a GP relative symbol, and there
11872 is no base register, we want
11873 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
11874 Otherwise, if there is no base register, we want
11875 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
11876 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11877 If we have a constant, we need two instructions anyhow,
11878 so we always use the latter form.
11879
11880 If we have a base register, and this is a reference to a
11881 GP relative symbol, we want
11882 addu $tempreg,$breg,$gp
11883 <op> op[0],<sym>($tempreg) (BFD_RELOC_GPREL16)
11884 Otherwise we want
11885 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
11886 addu $tempreg,$tempreg,$breg
11887 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11888 With a constant we always use the latter case.
11889
11890 With 64bit address space and no base register and $at usable,
11891 we want
11892 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11893 lui $at,<sym> (BFD_RELOC_HI16_S)
11894 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11895 dsll32 $tempreg,0
11896 daddu $tempreg,$at
11897 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11898 If we have a base register, we want
11899 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11900 lui $at,<sym> (BFD_RELOC_HI16_S)
11901 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11902 daddu $at,$breg
11903 dsll32 $tempreg,0
11904 daddu $tempreg,$at
11905 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11906
11907 Without $at we can't generate the optimal path for superscalar
11908 processors here since this would require two temporary registers.
11909 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11910 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11911 dsll $tempreg,16
11912 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11913 dsll $tempreg,16
11914 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11915 If we have a base register, we want
11916 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11917 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11918 dsll $tempreg,16
11919 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11920 dsll $tempreg,16
11921 daddu $tempreg,$tempreg,$breg
11922 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11923
11924 For GP relative symbols in 64bit address space we can use
11925 the same sequence as in 32bit address space. */
11926 if (HAVE_64BIT_SYMBOLS)
11927 {
11928 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
11929 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11930 {
11931 relax_start (offset_expr.X_add_symbol);
11932 if (breg == 0)
11933 {
11934 macro_build (&offset_expr, s, fmt, op[0],
11935 BFD_RELOC_GPREL16, mips_gp_register);
11936 }
11937 else
11938 {
11939 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11940 tempreg, breg, mips_gp_register);
11941 macro_build (&offset_expr, s, fmt, op[0],
11942 BFD_RELOC_GPREL16, tempreg);
11943 }
11944 relax_switch ();
11945 }
11946
11947 if (used_at == 0 && mips_opts.at)
11948 {
11949 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
11950 BFD_RELOC_MIPS_HIGHEST);
11951 macro_build (&offset_expr, "lui", LUI_FMT, AT,
11952 BFD_RELOC_HI16_S);
11953 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11954 tempreg, BFD_RELOC_MIPS_HIGHER);
11955 if (breg != 0)
11956 macro_build (NULL, "daddu", "d,v,t", AT, AT, breg);
11957 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
11958 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
11959 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16,
11960 tempreg);
11961 used_at = 1;
11962 }
11963 else
11964 {
11965 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
11966 BFD_RELOC_MIPS_HIGHEST);
11967 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11968 tempreg, BFD_RELOC_MIPS_HIGHER);
11969 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
11970 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11971 tempreg, BFD_RELOC_HI16_S);
11972 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
11973 if (breg != 0)
11974 macro_build (NULL, "daddu", "d,v,t",
11975 tempreg, tempreg, breg);
11976 macro_build (&offset_expr, s, fmt, op[0],
11977 BFD_RELOC_LO16, tempreg);
11978 }
11979
11980 if (mips_relax.sequence)
11981 relax_end ();
11982 break;
11983 }
11984
11985 if (breg == 0)
11986 {
11987 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
11988 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11989 {
11990 relax_start (offset_expr.X_add_symbol);
11991 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_GPREL16,
11992 mips_gp_register);
11993 relax_switch ();
11994 }
11995 macro_build_lui (&offset_expr, tempreg);
11996 macro_build (&offset_expr, s, fmt, op[0],
11997 BFD_RELOC_LO16, tempreg);
11998 if (mips_relax.sequence)
11999 relax_end ();
12000 }
12001 else
12002 {
12003 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
12004 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
12005 {
12006 relax_start (offset_expr.X_add_symbol);
12007 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12008 tempreg, breg, mips_gp_register);
12009 macro_build (&offset_expr, s, fmt, op[0],
12010 BFD_RELOC_GPREL16, tempreg);
12011 relax_switch ();
12012 }
12013 macro_build_lui (&offset_expr, tempreg);
12014 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12015 tempreg, tempreg, breg);
12016 macro_build (&offset_expr, s, fmt, op[0],
12017 BFD_RELOC_LO16, tempreg);
12018 if (mips_relax.sequence)
12019 relax_end ();
12020 }
12021 }
12022 else if (!mips_big_got)
12023 {
12024 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
12025
12026 /* If this is a reference to an external symbol, we want
12027 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12028 nop
12029 <op> op[0],0($tempreg)
12030 Otherwise we want
12031 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12032 nop
12033 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
12034 <op> op[0],0($tempreg)
12035
12036 For NewABI, we want
12037 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
12038 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
12039
12040 If there is a base register, we add it to $tempreg before
12041 the <op>. If there is a constant, we stick it in the
12042 <op> instruction. We don't handle constants larger than
12043 16 bits, because we have no way to load the upper 16 bits
12044 (actually, we could handle them for the subset of cases
12045 in which we are not using $at). */
12046 gas_assert (offset_expr.X_op == O_symbol);
12047 if (HAVE_NEWABI)
12048 {
12049 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12050 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
12051 if (breg != 0)
12052 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12053 tempreg, tempreg, breg);
12054 macro_build (&offset_expr, s, fmt, op[0],
12055 BFD_RELOC_MIPS_GOT_OFST, tempreg);
12056 break;
12057 }
12058 expr1.X_add_number = offset_expr.X_add_number;
12059 offset_expr.X_add_number = 0;
12060 if (expr1.X_add_number < -0x8000
12061 || expr1.X_add_number >= 0x8000)
12062 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12063 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12064 lw_reloc_type, mips_gp_register);
12065 load_delay_nop ();
12066 relax_start (offset_expr.X_add_symbol);
12067 relax_switch ();
12068 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
12069 tempreg, BFD_RELOC_LO16);
12070 relax_end ();
12071 if (breg != 0)
12072 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12073 tempreg, tempreg, breg);
12074 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
12075 }
12076 else if (mips_big_got && !HAVE_NEWABI)
12077 {
12078 int gpdelay;
12079
12080 /* If this is a reference to an external symbol, we want
12081 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12082 addu $tempreg,$tempreg,$gp
12083 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
12084 <op> op[0],0($tempreg)
12085 Otherwise we want
12086 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12087 nop
12088 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
12089 <op> op[0],0($tempreg)
12090 If there is a base register, we add it to $tempreg before
12091 the <op>. If there is a constant, we stick it in the
12092 <op> instruction. We don't handle constants larger than
12093 16 bits, because we have no way to load the upper 16 bits
12094 (actually, we could handle them for the subset of cases
12095 in which we are not using $at). */
12096 gas_assert (offset_expr.X_op == O_symbol);
12097 expr1.X_add_number = offset_expr.X_add_number;
12098 offset_expr.X_add_number = 0;
12099 if (expr1.X_add_number < -0x8000
12100 || expr1.X_add_number >= 0x8000)
12101 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12102 gpdelay = reg_needs_delay (mips_gp_register);
12103 relax_start (offset_expr.X_add_symbol);
12104 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
12105 BFD_RELOC_MIPS_GOT_HI16);
12106 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
12107 mips_gp_register);
12108 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12109 BFD_RELOC_MIPS_GOT_LO16, tempreg);
12110 relax_switch ();
12111 if (gpdelay)
12112 macro_build (NULL, "nop", "");
12113 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12114 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12115 load_delay_nop ();
12116 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
12117 tempreg, BFD_RELOC_LO16);
12118 relax_end ();
12119
12120 if (breg != 0)
12121 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12122 tempreg, tempreg, breg);
12123 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
12124 }
12125 else if (mips_big_got && HAVE_NEWABI)
12126 {
12127 /* If this is a reference to an external symbol, we want
12128 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12129 add $tempreg,$tempreg,$gp
12130 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
12131 <op> op[0],<ofst>($tempreg)
12132 Otherwise, for local symbols, we want:
12133 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
12134 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
12135 gas_assert (offset_expr.X_op == O_symbol);
12136 expr1.X_add_number = offset_expr.X_add_number;
12137 offset_expr.X_add_number = 0;
12138 if (expr1.X_add_number < -0x8000
12139 || expr1.X_add_number >= 0x8000)
12140 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12141 relax_start (offset_expr.X_add_symbol);
12142 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
12143 BFD_RELOC_MIPS_GOT_HI16);
12144 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
12145 mips_gp_register);
12146 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12147 BFD_RELOC_MIPS_GOT_LO16, tempreg);
12148 if (breg != 0)
12149 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12150 tempreg, tempreg, breg);
12151 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
12152
12153 relax_switch ();
12154 offset_expr.X_add_number = expr1.X_add_number;
12155 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12156 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
12157 if (breg != 0)
12158 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12159 tempreg, tempreg, breg);
12160 macro_build (&offset_expr, s, fmt, op[0],
12161 BFD_RELOC_MIPS_GOT_OFST, tempreg);
12162 relax_end ();
12163 }
12164 else
12165 abort ();
12166
12167 break;
12168
12169 case M_JRADDIUSP:
12170 gas_assert (mips_opts.micromips);
12171 gas_assert (mips_opts.insn32);
12172 start_noreorder ();
12173 macro_build (NULL, "jr", "s", RA);
12174 expr1.X_add_number = op[0] << 2;
12175 macro_build (&expr1, "addiu", "t,r,j", SP, SP, BFD_RELOC_LO16);
12176 end_noreorder ();
12177 break;
12178
12179 case M_JRC:
12180 gas_assert (mips_opts.micromips);
12181 gas_assert (mips_opts.insn32);
12182 macro_build (NULL, "jr", "s", op[0]);
12183 if (mips_opts.noreorder)
12184 macro_build (NULL, "nop", "");
12185 break;
12186
12187 case M_LI:
12188 case M_LI_S:
12189 load_register (op[0], &imm_expr, 0);
12190 break;
12191
12192 case M_DLI:
12193 load_register (op[0], &imm_expr, 1);
12194 break;
12195
12196 case M_LI_SS:
12197 if (imm_expr.X_op == O_constant)
12198 {
12199 used_at = 1;
12200 load_register (AT, &imm_expr, 0);
12201 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
12202 break;
12203 }
12204 else
12205 {
12206 gas_assert (imm_expr.X_op == O_absent
12207 && offset_expr.X_op == O_symbol
12208 && strcmp (segment_name (S_GET_SEGMENT
12209 (offset_expr.X_add_symbol)),
12210 ".lit4") == 0
12211 && offset_expr.X_add_number == 0);
12212 macro_build (&offset_expr, "lwc1", "T,o(b)", op[0],
12213 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
12214 break;
12215 }
12216
12217 case M_LI_D:
12218 /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
12219 wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
12220 order 32 bits of the value and the low order 32 bits are either
12221 zero or in OFFSET_EXPR. */
12222 if (imm_expr.X_op == O_constant)
12223 {
12224 if (GPR_SIZE == 64)
12225 load_register (op[0], &imm_expr, 1);
12226 else
12227 {
12228 int hreg, lreg;
12229
12230 if (target_big_endian)
12231 {
12232 hreg = op[0];
12233 lreg = op[0] + 1;
12234 }
12235 else
12236 {
12237 hreg = op[0] + 1;
12238 lreg = op[0];
12239 }
12240
12241 if (hreg <= 31)
12242 load_register (hreg, &imm_expr, 0);
12243 if (lreg <= 31)
12244 {
12245 if (offset_expr.X_op == O_absent)
12246 move_register (lreg, 0);
12247 else
12248 {
12249 gas_assert (offset_expr.X_op == O_constant);
12250 load_register (lreg, &offset_expr, 0);
12251 }
12252 }
12253 }
12254 break;
12255 }
12256 gas_assert (imm_expr.X_op == O_absent);
12257
12258 /* We know that sym is in the .rdata section. First we get the
12259 upper 16 bits of the address. */
12260 if (mips_pic == NO_PIC)
12261 {
12262 macro_build_lui (&offset_expr, AT);
12263 used_at = 1;
12264 }
12265 else
12266 {
12267 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12268 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12269 used_at = 1;
12270 }
12271
12272 /* Now we load the register(s). */
12273 if (GPR_SIZE == 64)
12274 {
12275 used_at = 1;
12276 macro_build (&offset_expr, "ld", "t,o(b)", op[0],
12277 BFD_RELOC_LO16, AT);
12278 }
12279 else
12280 {
12281 used_at = 1;
12282 macro_build (&offset_expr, "lw", "t,o(b)", op[0],
12283 BFD_RELOC_LO16, AT);
12284 if (op[0] != RA)
12285 {
12286 /* FIXME: How in the world do we deal with the possible
12287 overflow here? */
12288 offset_expr.X_add_number += 4;
12289 macro_build (&offset_expr, "lw", "t,o(b)",
12290 op[0] + 1, BFD_RELOC_LO16, AT);
12291 }
12292 }
12293 break;
12294
12295 case M_LI_DD:
12296 /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
12297 wide, IMM_EXPR is the entire value and the GPRs are known to be 64
12298 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
12299 the value and the low order 32 bits are either zero or in
12300 OFFSET_EXPR. */
12301 if (imm_expr.X_op == O_constant)
12302 {
12303 used_at = 1;
12304 load_register (AT, &imm_expr, FPR_SIZE == 64);
12305 if (FPR_SIZE == 64 && GPR_SIZE == 64)
12306 macro_build (NULL, "dmtc1", "t,S", AT, op[0]);
12307 else
12308 {
12309 if (ISA_HAS_MXHC1 (mips_opts.isa))
12310 macro_build (NULL, "mthc1", "t,G", AT, op[0]);
12311 else if (FPR_SIZE != 32)
12312 as_bad (_("Unable to generate `%s' compliant code "
12313 "without mthc1"),
12314 (FPR_SIZE == 64) ? "fp64" : "fpxx");
12315 else
12316 macro_build (NULL, "mtc1", "t,G", AT, op[0] + 1);
12317 if (offset_expr.X_op == O_absent)
12318 macro_build (NULL, "mtc1", "t,G", 0, op[0]);
12319 else
12320 {
12321 gas_assert (offset_expr.X_op == O_constant);
12322 load_register (AT, &offset_expr, 0);
12323 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
12324 }
12325 }
12326 break;
12327 }
12328
12329 gas_assert (imm_expr.X_op == O_absent
12330 && offset_expr.X_op == O_symbol
12331 && offset_expr.X_add_number == 0);
12332 s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
12333 if (strcmp (s, ".lit8") == 0)
12334 {
12335 op[2] = mips_gp_register;
12336 offset_reloc[0] = BFD_RELOC_MIPS_LITERAL;
12337 offset_reloc[1] = BFD_RELOC_UNUSED;
12338 offset_reloc[2] = BFD_RELOC_UNUSED;
12339 }
12340 else
12341 {
12342 gas_assert (strcmp (s, RDATA_SECTION_NAME) == 0);
12343 used_at = 1;
12344 if (mips_pic != NO_PIC)
12345 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12346 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12347 else
12348 {
12349 /* FIXME: This won't work for a 64 bit address. */
12350 macro_build_lui (&offset_expr, AT);
12351 }
12352
12353 op[2] = AT;
12354 offset_reloc[0] = BFD_RELOC_LO16;
12355 offset_reloc[1] = BFD_RELOC_UNUSED;
12356 offset_reloc[2] = BFD_RELOC_UNUSED;
12357 }
12358 align = 8;
12359 /* Fall through */
12360
12361 case M_L_DAB:
12362 /*
12363 * The MIPS assembler seems to check for X_add_number not
12364 * being double aligned and generating:
12365 * lui at,%hi(foo+1)
12366 * addu at,at,v1
12367 * addiu at,at,%lo(foo+1)
12368 * lwc1 f2,0(at)
12369 * lwc1 f3,4(at)
12370 * But, the resulting address is the same after relocation so why
12371 * generate the extra instruction?
12372 */
12373 /* Itbl support may require additional care here. */
12374 coproc = 1;
12375 fmt = "T,o(b)";
12376 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
12377 {
12378 s = "ldc1";
12379 goto ld_st;
12380 }
12381 s = "lwc1";
12382 goto ldd_std;
12383
12384 case M_S_DAB:
12385 gas_assert (!mips_opts.micromips);
12386 /* Itbl support may require additional care here. */
12387 coproc = 1;
12388 fmt = "T,o(b)";
12389 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
12390 {
12391 s = "sdc1";
12392 goto ld_st;
12393 }
12394 s = "swc1";
12395 goto ldd_std;
12396
12397 case M_LQ_AB:
12398 fmt = "t,o(b)";
12399 s = "lq";
12400 goto ld;
12401
12402 case M_SQ_AB:
12403 fmt = "t,o(b)";
12404 s = "sq";
12405 goto ld_st;
12406
12407 case M_LD_AB:
12408 fmt = "t,o(b)";
12409 if (GPR_SIZE == 64)
12410 {
12411 s = "ld";
12412 goto ld;
12413 }
12414 s = "lw";
12415 goto ldd_std;
12416
12417 case M_SD_AB:
12418 fmt = "t,o(b)";
12419 if (GPR_SIZE == 64)
12420 {
12421 s = "sd";
12422 goto ld_st;
12423 }
12424 s = "sw";
12425
12426 ldd_std:
12427 /* Even on a big endian machine $fn comes before $fn+1. We have
12428 to adjust when loading from memory. We set coproc if we must
12429 load $fn+1 first. */
12430 /* Itbl support may require additional care here. */
12431 if (!target_big_endian)
12432 coproc = 0;
12433
12434 breg = op[2];
12435 if (small_offset_p (0, align, 16))
12436 {
12437 ep = &offset_expr;
12438 if (!small_offset_p (4, align, 16))
12439 {
12440 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", AT, breg,
12441 -1, offset_reloc[0], offset_reloc[1],
12442 offset_reloc[2]);
12443 expr1.X_add_number = 0;
12444 ep = &expr1;
12445 breg = AT;
12446 used_at = 1;
12447 offset_reloc[0] = BFD_RELOC_LO16;
12448 offset_reloc[1] = BFD_RELOC_UNUSED;
12449 offset_reloc[2] = BFD_RELOC_UNUSED;
12450 }
12451 if (strcmp (s, "lw") == 0 && op[0] == breg)
12452 {
12453 ep->X_add_number += 4;
12454 macro_build (ep, s, fmt, op[0] + 1, -1, offset_reloc[0],
12455 offset_reloc[1], offset_reloc[2], breg);
12456 ep->X_add_number -= 4;
12457 macro_build (ep, s, fmt, op[0], -1, offset_reloc[0],
12458 offset_reloc[1], offset_reloc[2], breg);
12459 }
12460 else
12461 {
12462 macro_build (ep, s, fmt, coproc ? op[0] + 1 : op[0], -1,
12463 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12464 breg);
12465 ep->X_add_number += 4;
12466 macro_build (ep, s, fmt, coproc ? op[0] : op[0] + 1, -1,
12467 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12468 breg);
12469 }
12470 break;
12471 }
12472
12473 if (offset_expr.X_op != O_symbol
12474 && offset_expr.X_op != O_constant)
12475 {
12476 as_bad (_("expression too complex"));
12477 offset_expr.X_op = O_constant;
12478 }
12479
12480 if (HAVE_32BIT_ADDRESSES
12481 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
12482 {
12483 char value [32];
12484
12485 sprintf_vma (value, offset_expr.X_add_number);
12486 as_bad (_("number (0x%s) larger than 32 bits"), value);
12487 }
12488
12489 if (mips_pic == NO_PIC || offset_expr.X_op == O_constant)
12490 {
12491 /* If this is a reference to a GP relative symbol, we want
12492 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
12493 <op> op[0]+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
12494 If we have a base register, we use this
12495 addu $at,$breg,$gp
12496 <op> op[0],<sym>($at) (BFD_RELOC_GPREL16)
12497 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_GPREL16)
12498 If this is not a GP relative symbol, we want
12499 lui $at,<sym> (BFD_RELOC_HI16_S)
12500 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12501 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12502 If there is a base register, we add it to $at after the
12503 lui instruction. If there is a constant, we always use
12504 the last case. */
12505 if (offset_expr.X_op == O_symbol
12506 && (valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
12507 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
12508 {
12509 relax_start (offset_expr.X_add_symbol);
12510 if (breg == 0)
12511 {
12512 tempreg = mips_gp_register;
12513 }
12514 else
12515 {
12516 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12517 AT, breg, mips_gp_register);
12518 tempreg = AT;
12519 used_at = 1;
12520 }
12521
12522 /* Itbl support may require additional care here. */
12523 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12524 BFD_RELOC_GPREL16, tempreg);
12525 offset_expr.X_add_number += 4;
12526
12527 /* Set mips_optimize to 2 to avoid inserting an
12528 undesired nop. */
12529 hold_mips_optimize = mips_optimize;
12530 mips_optimize = 2;
12531 /* Itbl support may require additional care here. */
12532 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12533 BFD_RELOC_GPREL16, tempreg);
12534 mips_optimize = hold_mips_optimize;
12535
12536 relax_switch ();
12537
12538 offset_expr.X_add_number -= 4;
12539 }
12540 used_at = 1;
12541 if (offset_high_part (offset_expr.X_add_number, 16)
12542 != offset_high_part (offset_expr.X_add_number + 4, 16))
12543 {
12544 load_address (AT, &offset_expr, &used_at);
12545 offset_expr.X_op = O_constant;
12546 offset_expr.X_add_number = 0;
12547 }
12548 else
12549 macro_build_lui (&offset_expr, AT);
12550 if (breg != 0)
12551 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12552 /* Itbl support may require additional care here. */
12553 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12554 BFD_RELOC_LO16, AT);
12555 /* FIXME: How do we handle overflow here? */
12556 offset_expr.X_add_number += 4;
12557 /* Itbl support may require additional care here. */
12558 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12559 BFD_RELOC_LO16, AT);
12560 if (mips_relax.sequence)
12561 relax_end ();
12562 }
12563 else if (!mips_big_got)
12564 {
12565 /* If this is a reference to an external symbol, we want
12566 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12567 nop
12568 <op> op[0],0($at)
12569 <op> op[0]+1,4($at)
12570 Otherwise we want
12571 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12572 nop
12573 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12574 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12575 If there is a base register we add it to $at before the
12576 lwc1 instructions. If there is a constant we include it
12577 in the lwc1 instructions. */
12578 used_at = 1;
12579 expr1.X_add_number = offset_expr.X_add_number;
12580 if (expr1.X_add_number < -0x8000
12581 || expr1.X_add_number >= 0x8000 - 4)
12582 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12583 load_got_offset (AT, &offset_expr);
12584 load_delay_nop ();
12585 if (breg != 0)
12586 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12587
12588 /* Set mips_optimize to 2 to avoid inserting an undesired
12589 nop. */
12590 hold_mips_optimize = mips_optimize;
12591 mips_optimize = 2;
12592
12593 /* Itbl support may require additional care here. */
12594 relax_start (offset_expr.X_add_symbol);
12595 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
12596 BFD_RELOC_LO16, AT);
12597 expr1.X_add_number += 4;
12598 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
12599 BFD_RELOC_LO16, AT);
12600 relax_switch ();
12601 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12602 BFD_RELOC_LO16, AT);
12603 offset_expr.X_add_number += 4;
12604 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12605 BFD_RELOC_LO16, AT);
12606 relax_end ();
12607
12608 mips_optimize = hold_mips_optimize;
12609 }
12610 else if (mips_big_got)
12611 {
12612 int gpdelay;
12613
12614 /* If this is a reference to an external symbol, we want
12615 lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12616 addu $at,$at,$gp
12617 lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
12618 nop
12619 <op> op[0],0($at)
12620 <op> op[0]+1,4($at)
12621 Otherwise we want
12622 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12623 nop
12624 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12625 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12626 If there is a base register we add it to $at before the
12627 lwc1 instructions. If there is a constant we include it
12628 in the lwc1 instructions. */
12629 used_at = 1;
12630 expr1.X_add_number = offset_expr.X_add_number;
12631 offset_expr.X_add_number = 0;
12632 if (expr1.X_add_number < -0x8000
12633 || expr1.X_add_number >= 0x8000 - 4)
12634 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12635 gpdelay = reg_needs_delay (mips_gp_register);
12636 relax_start (offset_expr.X_add_symbol);
12637 macro_build (&offset_expr, "lui", LUI_FMT,
12638 AT, BFD_RELOC_MIPS_GOT_HI16);
12639 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12640 AT, AT, mips_gp_register);
12641 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
12642 AT, BFD_RELOC_MIPS_GOT_LO16, AT);
12643 load_delay_nop ();
12644 if (breg != 0)
12645 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12646 /* Itbl support may require additional care here. */
12647 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
12648 BFD_RELOC_LO16, AT);
12649 expr1.X_add_number += 4;
12650
12651 /* Set mips_optimize to 2 to avoid inserting an undesired
12652 nop. */
12653 hold_mips_optimize = mips_optimize;
12654 mips_optimize = 2;
12655 /* Itbl support may require additional care here. */
12656 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
12657 BFD_RELOC_LO16, AT);
12658 mips_optimize = hold_mips_optimize;
12659 expr1.X_add_number -= 4;
12660
12661 relax_switch ();
12662 offset_expr.X_add_number = expr1.X_add_number;
12663 if (gpdelay)
12664 macro_build (NULL, "nop", "");
12665 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12666 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12667 load_delay_nop ();
12668 if (breg != 0)
12669 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12670 /* Itbl support may require additional care here. */
12671 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12672 BFD_RELOC_LO16, AT);
12673 offset_expr.X_add_number += 4;
12674
12675 /* Set mips_optimize to 2 to avoid inserting an undesired
12676 nop. */
12677 hold_mips_optimize = mips_optimize;
12678 mips_optimize = 2;
12679 /* Itbl support may require additional care here. */
12680 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12681 BFD_RELOC_LO16, AT);
12682 mips_optimize = hold_mips_optimize;
12683 relax_end ();
12684 }
12685 else
12686 abort ();
12687
12688 break;
12689
12690 case M_SAA_AB:
12691 s = "saa";
12692 goto saa_saad;
12693 case M_SAAD_AB:
12694 s = "saad";
12695 saa_saad:
12696 gas_assert (!mips_opts.micromips);
12697 offbits = 0;
12698 fmt = "t,(b)";
12699 goto ld_st;
12700
12701 /* New code added to support COPZ instructions.
12702 This code builds table entries out of the macros in mip_opcodes.
12703 R4000 uses interlocks to handle coproc delays.
12704 Other chips (like the R3000) require nops to be inserted for delays.
12705
12706 FIXME: Currently, we require that the user handle delays.
12707 In order to fill delay slots for non-interlocked chips,
12708 we must have a way to specify delays based on the coprocessor.
12709 Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
12710 What are the side-effects of the cop instruction?
12711 What cache support might we have and what are its effects?
12712 Both coprocessor & memory require delays. how long???
12713 What registers are read/set/modified?
12714
12715 If an itbl is provided to interpret cop instructions,
12716 this knowledge can be encoded in the itbl spec. */
12717
12718 case M_COP0:
12719 s = "c0";
12720 goto copz;
12721 case M_COP1:
12722 s = "c1";
12723 goto copz;
12724 case M_COP2:
12725 s = "c2";
12726 goto copz;
12727 case M_COP3:
12728 s = "c3";
12729 copz:
12730 gas_assert (!mips_opts.micromips);
12731 /* For now we just do C (same as Cz). The parameter will be
12732 stored in insn_opcode by mips_ip. */
12733 macro_build (NULL, s, "C", (int) ip->insn_opcode);
12734 break;
12735
12736 case M_MOVE:
12737 move_register (op[0], op[1]);
12738 break;
12739
12740 case M_MOVEP:
12741 gas_assert (mips_opts.micromips);
12742 gas_assert (mips_opts.insn32);
12743 move_register (micromips_to_32_reg_h_map1[op[0]],
12744 micromips_to_32_reg_m_map[op[1]]);
12745 move_register (micromips_to_32_reg_h_map2[op[0]],
12746 micromips_to_32_reg_n_map[op[2]]);
12747 break;
12748
12749 case M_DMUL:
12750 dbl = 1;
12751 /* Fall through. */
12752 case M_MUL:
12753 if (mips_opts.arch == CPU_R5900)
12754 macro_build (NULL, dbl ? "dmultu" : "multu", "d,s,t", op[0], op[1],
12755 op[2]);
12756 else
12757 {
12758 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", op[1], op[2]);
12759 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12760 }
12761 break;
12762
12763 case M_DMUL_I:
12764 dbl = 1;
12765 /* Fall through. */
12766 case M_MUL_I:
12767 /* The MIPS assembler some times generates shifts and adds. I'm
12768 not trying to be that fancy. GCC should do this for us
12769 anyway. */
12770 used_at = 1;
12771 load_register (AT, &imm_expr, dbl);
12772 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", op[1], AT);
12773 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12774 break;
12775
12776 case M_DMULO_I:
12777 dbl = 1;
12778 /* Fall through. */
12779 case M_MULO_I:
12780 imm = 1;
12781 goto do_mulo;
12782
12783 case M_DMULO:
12784 dbl = 1;
12785 /* Fall through. */
12786 case M_MULO:
12787 do_mulo:
12788 start_noreorder ();
12789 used_at = 1;
12790 if (imm)
12791 load_register (AT, &imm_expr, dbl);
12792 macro_build (NULL, dbl ? "dmult" : "mult", "s,t",
12793 op[1], imm ? AT : op[2]);
12794 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12795 macro_build (NULL, dbl ? "dsra32" : "sra", SHFT_FMT, op[0], op[0], 31);
12796 macro_build (NULL, "mfhi", MFHL_FMT, AT);
12797 if (mips_trap)
12798 macro_build (NULL, "tne", TRAP_FMT, op[0], AT, 6);
12799 else
12800 {
12801 if (mips_opts.micromips)
12802 micromips_label_expr (&label_expr);
12803 else
12804 label_expr.X_add_number = 8;
12805 macro_build (&label_expr, "beq", "s,t,p", op[0], AT);
12806 macro_build (NULL, "nop", "");
12807 macro_build (NULL, "break", BRK_FMT, 6);
12808 if (mips_opts.micromips)
12809 micromips_add_label ();
12810 }
12811 end_noreorder ();
12812 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12813 break;
12814
12815 case M_DMULOU_I:
12816 dbl = 1;
12817 /* Fall through. */
12818 case M_MULOU_I:
12819 imm = 1;
12820 goto do_mulou;
12821
12822 case M_DMULOU:
12823 dbl = 1;
12824 /* Fall through. */
12825 case M_MULOU:
12826 do_mulou:
12827 start_noreorder ();
12828 used_at = 1;
12829 if (imm)
12830 load_register (AT, &imm_expr, dbl);
12831 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t",
12832 op[1], imm ? AT : op[2]);
12833 macro_build (NULL, "mfhi", MFHL_FMT, AT);
12834 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12835 if (mips_trap)
12836 macro_build (NULL, "tne", TRAP_FMT, AT, ZERO, 6);
12837 else
12838 {
12839 if (mips_opts.micromips)
12840 micromips_label_expr (&label_expr);
12841 else
12842 label_expr.X_add_number = 8;
12843 macro_build (&label_expr, "beq", "s,t,p", AT, ZERO);
12844 macro_build (NULL, "nop", "");
12845 macro_build (NULL, "break", BRK_FMT, 6);
12846 if (mips_opts.micromips)
12847 micromips_add_label ();
12848 }
12849 end_noreorder ();
12850 break;
12851
12852 case M_DROL:
12853 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12854 {
12855 if (op[0] == op[1])
12856 {
12857 tempreg = AT;
12858 used_at = 1;
12859 }
12860 else
12861 tempreg = op[0];
12862 macro_build (NULL, "dnegu", "d,w", tempreg, op[2]);
12863 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], tempreg);
12864 break;
12865 }
12866 used_at = 1;
12867 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
12868 macro_build (NULL, "dsrlv", "d,t,s", AT, op[1], AT);
12869 macro_build (NULL, "dsllv", "d,t,s", op[0], op[1], op[2]);
12870 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12871 break;
12872
12873 case M_ROL:
12874 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12875 {
12876 if (op[0] == op[1])
12877 {
12878 tempreg = AT;
12879 used_at = 1;
12880 }
12881 else
12882 tempreg = op[0];
12883 macro_build (NULL, "negu", "d,w", tempreg, op[2]);
12884 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], tempreg);
12885 break;
12886 }
12887 used_at = 1;
12888 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
12889 macro_build (NULL, "srlv", "d,t,s", AT, op[1], AT);
12890 macro_build (NULL, "sllv", "d,t,s", op[0], op[1], op[2]);
12891 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12892 break;
12893
12894 case M_DROL_I:
12895 {
12896 unsigned int rot;
12897 const char *l;
12898 const char *rr;
12899
12900 rot = imm_expr.X_add_number & 0x3f;
12901 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12902 {
12903 rot = (64 - rot) & 0x3f;
12904 if (rot >= 32)
12905 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
12906 else
12907 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
12908 break;
12909 }
12910 if (rot == 0)
12911 {
12912 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
12913 break;
12914 }
12915 l = (rot < 0x20) ? "dsll" : "dsll32";
12916 rr = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
12917 rot &= 0x1f;
12918 used_at = 1;
12919 macro_build (NULL, l, SHFT_FMT, AT, op[1], rot);
12920 macro_build (NULL, rr, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12921 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12922 }
12923 break;
12924
12925 case M_ROL_I:
12926 {
12927 unsigned int rot;
12928
12929 rot = imm_expr.X_add_number & 0x1f;
12930 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12931 {
12932 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1],
12933 (32 - rot) & 0x1f);
12934 break;
12935 }
12936 if (rot == 0)
12937 {
12938 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
12939 break;
12940 }
12941 used_at = 1;
12942 macro_build (NULL, "sll", SHFT_FMT, AT, op[1], rot);
12943 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12944 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12945 }
12946 break;
12947
12948 case M_DROR:
12949 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12950 {
12951 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], op[2]);
12952 break;
12953 }
12954 used_at = 1;
12955 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
12956 macro_build (NULL, "dsllv", "d,t,s", AT, op[1], AT);
12957 macro_build (NULL, "dsrlv", "d,t,s", op[0], op[1], op[2]);
12958 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12959 break;
12960
12961 case M_ROR:
12962 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12963 {
12964 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], op[2]);
12965 break;
12966 }
12967 used_at = 1;
12968 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
12969 macro_build (NULL, "sllv", "d,t,s", AT, op[1], AT);
12970 macro_build (NULL, "srlv", "d,t,s", op[0], op[1], op[2]);
12971 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12972 break;
12973
12974 case M_DROR_I:
12975 {
12976 unsigned int rot;
12977 const char *l;
12978 const char *rr;
12979
12980 rot = imm_expr.X_add_number & 0x3f;
12981 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12982 {
12983 if (rot >= 32)
12984 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
12985 else
12986 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
12987 break;
12988 }
12989 if (rot == 0)
12990 {
12991 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
12992 break;
12993 }
12994 rr = (rot < 0x20) ? "dsrl" : "dsrl32";
12995 l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
12996 rot &= 0x1f;
12997 used_at = 1;
12998 macro_build (NULL, rr, SHFT_FMT, AT, op[1], rot);
12999 macro_build (NULL, l, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
13000 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13001 }
13002 break;
13003
13004 case M_ROR_I:
13005 {
13006 unsigned int rot;
13007
13008 rot = imm_expr.X_add_number & 0x1f;
13009 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
13010 {
13011 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1], rot);
13012 break;
13013 }
13014 if (rot == 0)
13015 {
13016 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
13017 break;
13018 }
13019 used_at = 1;
13020 macro_build (NULL, "srl", SHFT_FMT, AT, op[1], rot);
13021 macro_build (NULL, "sll", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
13022 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13023 }
13024 break;
13025
13026 case M_SEQ:
13027 if (op[1] == 0)
13028 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[2], BFD_RELOC_LO16);
13029 else if (op[2] == 0)
13030 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13031 else
13032 {
13033 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
13034 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
13035 }
13036 break;
13037
13038 case M_SEQ_I:
13039 if (imm_expr.X_add_number == 0)
13040 {
13041 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13042 break;
13043 }
13044 if (op[1] == 0)
13045 {
13046 as_warn (_("instruction %s: result is always false"),
13047 ip->insn_mo->name);
13048 move_register (op[0], 0);
13049 break;
13050 }
13051 if (CPU_HAS_SEQ (mips_opts.arch)
13052 && -512 <= imm_expr.X_add_number
13053 && imm_expr.X_add_number < 512)
13054 {
13055 macro_build (NULL, "seqi", "t,r,+Q", op[0], op[1],
13056 (int) imm_expr.X_add_number);
13057 break;
13058 }
13059 if (imm_expr.X_add_number >= 0
13060 && imm_expr.X_add_number < 0x10000)
13061 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1], BFD_RELOC_LO16);
13062 else if (imm_expr.X_add_number > -0x8000
13063 && imm_expr.X_add_number < 0)
13064 {
13065 imm_expr.X_add_number = -imm_expr.X_add_number;
13066 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
13067 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13068 }
13069 else if (CPU_HAS_SEQ (mips_opts.arch))
13070 {
13071 used_at = 1;
13072 load_register (AT, &imm_expr, GPR_SIZE == 64);
13073 macro_build (NULL, "seq", "d,v,t", op[0], op[1], AT);
13074 break;
13075 }
13076 else
13077 {
13078 load_register (AT, &imm_expr, GPR_SIZE == 64);
13079 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
13080 used_at = 1;
13081 }
13082 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
13083 break;
13084
13085 case M_SGE: /* X >= Y <==> not (X < Y) */
13086 s = "slt";
13087 goto sge;
13088 case M_SGEU:
13089 s = "sltu";
13090 sge:
13091 macro_build (NULL, s, "d,v,t", op[0], op[1], op[2]);
13092 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
13093 break;
13094
13095 case M_SGE_I: /* X >= I <==> not (X < I) */
13096 case M_SGEU_I:
13097 if (imm_expr.X_add_number >= -0x8000
13098 && imm_expr.X_add_number < 0x8000)
13099 macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j",
13100 op[0], op[1], BFD_RELOC_LO16);
13101 else
13102 {
13103 load_register (AT, &imm_expr, GPR_SIZE == 64);
13104 macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t",
13105 op[0], op[1], AT);
13106 used_at = 1;
13107 }
13108 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
13109 break;
13110
13111 case M_SGT: /* X > Y <==> Y < X */
13112 s = "slt";
13113 goto sgt;
13114 case M_SGTU:
13115 s = "sltu";
13116 sgt:
13117 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
13118 break;
13119
13120 case M_SGT_I: /* X > I <==> I < X */
13121 s = "slt";
13122 goto sgti;
13123 case M_SGTU_I:
13124 s = "sltu";
13125 sgti:
13126 used_at = 1;
13127 load_register (AT, &imm_expr, GPR_SIZE == 64);
13128 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
13129 break;
13130
13131 case M_SLE: /* X <= Y <==> Y >= X <==> not (Y < X) */
13132 s = "slt";
13133 goto sle;
13134 case M_SLEU:
13135 s = "sltu";
13136 sle:
13137 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
13138 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
13139 break;
13140
13141 case M_SLE_I: /* X <= I <==> I >= X <==> not (I < X) */
13142 s = "slt";
13143 goto slei;
13144 case M_SLEU_I:
13145 s = "sltu";
13146 slei:
13147 used_at = 1;
13148 load_register (AT, &imm_expr, GPR_SIZE == 64);
13149 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
13150 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
13151 break;
13152
13153 case M_SLT_I:
13154 if (imm_expr.X_add_number >= -0x8000
13155 && imm_expr.X_add_number < 0x8000)
13156 {
13157 macro_build (&imm_expr, "slti", "t,r,j", op[0], op[1],
13158 BFD_RELOC_LO16);
13159 break;
13160 }
13161 used_at = 1;
13162 load_register (AT, &imm_expr, GPR_SIZE == 64);
13163 macro_build (NULL, "slt", "d,v,t", op[0], op[1], AT);
13164 break;
13165
13166 case M_SLTU_I:
13167 if (imm_expr.X_add_number >= -0x8000
13168 && imm_expr.X_add_number < 0x8000)
13169 {
13170 macro_build (&imm_expr, "sltiu", "t,r,j", op[0], op[1],
13171 BFD_RELOC_LO16);
13172 break;
13173 }
13174 used_at = 1;
13175 load_register (AT, &imm_expr, GPR_SIZE == 64);
13176 macro_build (NULL, "sltu", "d,v,t", op[0], op[1], AT);
13177 break;
13178
13179 case M_SNE:
13180 if (op[1] == 0)
13181 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[2]);
13182 else if (op[2] == 0)
13183 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
13184 else
13185 {
13186 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
13187 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
13188 }
13189 break;
13190
13191 case M_SNE_I:
13192 if (imm_expr.X_add_number == 0)
13193 {
13194 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
13195 break;
13196 }
13197 if (op[1] == 0)
13198 {
13199 as_warn (_("instruction %s: result is always true"),
13200 ip->insn_mo->name);
13201 macro_build (&expr1, GPR_SIZE == 32 ? "addiu" : "daddiu", "t,r,j",
13202 op[0], 0, BFD_RELOC_LO16);
13203 break;
13204 }
13205 if (CPU_HAS_SEQ (mips_opts.arch)
13206 && -512 <= imm_expr.X_add_number
13207 && imm_expr.X_add_number < 512)
13208 {
13209 macro_build (NULL, "snei", "t,r,+Q", op[0], op[1],
13210 (int) imm_expr.X_add_number);
13211 break;
13212 }
13213 if (imm_expr.X_add_number >= 0
13214 && imm_expr.X_add_number < 0x10000)
13215 {
13216 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1],
13217 BFD_RELOC_LO16);
13218 }
13219 else if (imm_expr.X_add_number > -0x8000
13220 && imm_expr.X_add_number < 0)
13221 {
13222 imm_expr.X_add_number = -imm_expr.X_add_number;
13223 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
13224 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13225 }
13226 else if (CPU_HAS_SEQ (mips_opts.arch))
13227 {
13228 used_at = 1;
13229 load_register (AT, &imm_expr, GPR_SIZE == 64);
13230 macro_build (NULL, "sne", "d,v,t", op[0], op[1], AT);
13231 break;
13232 }
13233 else
13234 {
13235 load_register (AT, &imm_expr, GPR_SIZE == 64);
13236 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
13237 used_at = 1;
13238 }
13239 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
13240 break;
13241
13242 case M_SUB_I:
13243 s = "addi";
13244 s2 = "sub";
13245 goto do_subi;
13246 case M_SUBU_I:
13247 s = "addiu";
13248 s2 = "subu";
13249 goto do_subi;
13250 case M_DSUB_I:
13251 dbl = 1;
13252 s = "daddi";
13253 s2 = "dsub";
13254 if (!mips_opts.micromips)
13255 goto do_subi;
13256 if (imm_expr.X_add_number > -0x200
13257 && imm_expr.X_add_number <= 0x200)
13258 {
13259 macro_build (NULL, s, "t,r,.", op[0], op[1],
13260 (int) -imm_expr.X_add_number);
13261 break;
13262 }
13263 goto do_subi_i;
13264 case M_DSUBU_I:
13265 dbl = 1;
13266 s = "daddiu";
13267 s2 = "dsubu";
13268 do_subi:
13269 if (imm_expr.X_add_number > -0x8000
13270 && imm_expr.X_add_number <= 0x8000)
13271 {
13272 imm_expr.X_add_number = -imm_expr.X_add_number;
13273 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13274 break;
13275 }
13276 do_subi_i:
13277 used_at = 1;
13278 load_register (AT, &imm_expr, dbl);
13279 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
13280 break;
13281
13282 case M_TEQ_I:
13283 s = "teq";
13284 goto trap;
13285 case M_TGE_I:
13286 s = "tge";
13287 goto trap;
13288 case M_TGEU_I:
13289 s = "tgeu";
13290 goto trap;
13291 case M_TLT_I:
13292 s = "tlt";
13293 goto trap;
13294 case M_TLTU_I:
13295 s = "tltu";
13296 goto trap;
13297 case M_TNE_I:
13298 s = "tne";
13299 trap:
13300 used_at = 1;
13301 load_register (AT, &imm_expr, GPR_SIZE == 64);
13302 macro_build (NULL, s, "s,t", op[0], AT);
13303 break;
13304
13305 case M_TRUNCWS:
13306 case M_TRUNCWD:
13307 gas_assert (!mips_opts.micromips);
13308 gas_assert (mips_opts.isa == ISA_MIPS1);
13309 used_at = 1;
13310
13311 /*
13312 * Is the double cfc1 instruction a bug in the mips assembler;
13313 * or is there a reason for it?
13314 */
13315 start_noreorder ();
13316 macro_build (NULL, "cfc1", "t,G", op[2], RA);
13317 macro_build (NULL, "cfc1", "t,G", op[2], RA);
13318 macro_build (NULL, "nop", "");
13319 expr1.X_add_number = 3;
13320 macro_build (&expr1, "ori", "t,r,i", AT, op[2], BFD_RELOC_LO16);
13321 expr1.X_add_number = 2;
13322 macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16);
13323 macro_build (NULL, "ctc1", "t,G", AT, RA);
13324 macro_build (NULL, "nop", "");
13325 macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S",
13326 op[0], op[1]);
13327 macro_build (NULL, "ctc1", "t,G", op[2], RA);
13328 macro_build (NULL, "nop", "");
13329 end_noreorder ();
13330 break;
13331
13332 case M_ULH_AB:
13333 s = "lb";
13334 s2 = "lbu";
13335 off = 1;
13336 goto uld_st;
13337 case M_ULHU_AB:
13338 s = "lbu";
13339 s2 = "lbu";
13340 off = 1;
13341 goto uld_st;
13342 case M_ULW_AB:
13343 s = "lwl";
13344 s2 = "lwr";
13345 offbits = (mips_opts.micromips ? 12 : 16);
13346 off = 3;
13347 goto uld_st;
13348 case M_ULD_AB:
13349 s = "ldl";
13350 s2 = "ldr";
13351 offbits = (mips_opts.micromips ? 12 : 16);
13352 off = 7;
13353 goto uld_st;
13354 case M_USH_AB:
13355 s = "sb";
13356 s2 = "sb";
13357 off = 1;
13358 ust = 1;
13359 goto uld_st;
13360 case M_USW_AB:
13361 s = "swl";
13362 s2 = "swr";
13363 offbits = (mips_opts.micromips ? 12 : 16);
13364 off = 3;
13365 ust = 1;
13366 goto uld_st;
13367 case M_USD_AB:
13368 s = "sdl";
13369 s2 = "sdr";
13370 offbits = (mips_opts.micromips ? 12 : 16);
13371 off = 7;
13372 ust = 1;
13373
13374 uld_st:
13375 breg = op[2];
13376 large_offset = !small_offset_p (off, align, offbits);
13377 ep = &offset_expr;
13378 expr1.X_add_number = 0;
13379 if (large_offset)
13380 {
13381 used_at = 1;
13382 tempreg = AT;
13383 if (small_offset_p (0, align, 16))
13384 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", tempreg, breg, -1,
13385 offset_reloc[0], offset_reloc[1], offset_reloc[2]);
13386 else
13387 {
13388 load_address (tempreg, ep, &used_at);
13389 if (breg != 0)
13390 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
13391 tempreg, tempreg, breg);
13392 }
13393 offset_reloc[0] = BFD_RELOC_LO16;
13394 offset_reloc[1] = BFD_RELOC_UNUSED;
13395 offset_reloc[2] = BFD_RELOC_UNUSED;
13396 breg = tempreg;
13397 tempreg = op[0];
13398 ep = &expr1;
13399 }
13400 else if (!ust && op[0] == breg)
13401 {
13402 used_at = 1;
13403 tempreg = AT;
13404 }
13405 else
13406 tempreg = op[0];
13407
13408 if (off == 1)
13409 goto ulh_sh;
13410
13411 if (!target_big_endian)
13412 ep->X_add_number += off;
13413 if (offbits == 12)
13414 macro_build (NULL, s, "t,~(b)", tempreg, (int) ep->X_add_number, breg);
13415 else
13416 macro_build (ep, s, "t,o(b)", tempreg, -1,
13417 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13418
13419 if (!target_big_endian)
13420 ep->X_add_number -= off;
13421 else
13422 ep->X_add_number += off;
13423 if (offbits == 12)
13424 macro_build (NULL, s2, "t,~(b)",
13425 tempreg, (int) ep->X_add_number, breg);
13426 else
13427 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13428 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13429
13430 /* If necessary, move the result in tempreg to the final destination. */
13431 if (!ust && op[0] != tempreg)
13432 {
13433 /* Protect second load's delay slot. */
13434 load_delay_nop ();
13435 move_register (op[0], tempreg);
13436 }
13437 break;
13438
13439 ulh_sh:
13440 used_at = 1;
13441 if (target_big_endian == ust)
13442 ep->X_add_number += off;
13443 tempreg = ust || large_offset ? op[0] : AT;
13444 macro_build (ep, s, "t,o(b)", tempreg, -1,
13445 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13446
13447 /* For halfword transfers we need a temporary register to shuffle
13448 bytes. Unfortunately for M_USH_A we have none available before
13449 the next store as AT holds the base address. We deal with this
13450 case by clobbering TREG and then restoring it as with ULH. */
13451 tempreg = ust == large_offset ? op[0] : AT;
13452 if (ust)
13453 macro_build (NULL, "srl", SHFT_FMT, tempreg, op[0], 8);
13454
13455 if (target_big_endian == ust)
13456 ep->X_add_number -= off;
13457 else
13458 ep->X_add_number += off;
13459 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13460 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13461
13462 /* For M_USH_A re-retrieve the LSB. */
13463 if (ust && large_offset)
13464 {
13465 if (target_big_endian)
13466 ep->X_add_number += off;
13467 else
13468 ep->X_add_number -= off;
13469 macro_build (&expr1, "lbu", "t,o(b)", AT, -1,
13470 offset_reloc[0], offset_reloc[1], offset_reloc[2], AT);
13471 }
13472 /* For ULH and M_USH_A OR the LSB in. */
13473 if (!ust || large_offset)
13474 {
13475 tempreg = !large_offset ? AT : op[0];
13476 macro_build (NULL, "sll", SHFT_FMT, tempreg, tempreg, 8);
13477 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13478 }
13479 break;
13480
13481 default:
13482 /* FIXME: Check if this is one of the itbl macros, since they
13483 are added dynamically. */
13484 as_bad (_("macro %s not implemented yet"), ip->insn_mo->name);
13485 break;
13486 }
13487 if (!mips_opts.at && used_at)
13488 as_bad (_("macro used $at after \".set noat\""));
13489 }
13490
13491 /* Implement macros in mips16 mode. */
13492
13493 static void
13494 mips16_macro (struct mips_cl_insn *ip)
13495 {
13496 const struct mips_operand_array *operands;
13497 int mask;
13498 int tmp;
13499 expressionS expr1;
13500 int dbl;
13501 const char *s, *s2, *s3;
13502 unsigned int op[MAX_OPERANDS];
13503 unsigned int i;
13504
13505 mask = ip->insn_mo->mask;
13506
13507 operands = insn_operands (ip);
13508 for (i = 0; i < MAX_OPERANDS; i++)
13509 if (operands->operand[i])
13510 op[i] = insn_extract_operand (ip, operands->operand[i]);
13511 else
13512 op[i] = -1;
13513
13514 expr1.X_op = O_constant;
13515 expr1.X_op_symbol = NULL;
13516 expr1.X_add_symbol = NULL;
13517 expr1.X_add_number = 1;
13518
13519 dbl = 0;
13520
13521 switch (mask)
13522 {
13523 default:
13524 abort ();
13525
13526 case M_DDIV_3:
13527 dbl = 1;
13528 /* Fall through. */
13529 case M_DIV_3:
13530 s = "mflo";
13531 goto do_div3;
13532 case M_DREM_3:
13533 dbl = 1;
13534 /* Fall through. */
13535 case M_REM_3:
13536 s = "mfhi";
13537 do_div3:
13538 start_noreorder ();
13539 macro_build (NULL, dbl ? "ddiv" : "div", "0,x,y", op[1], op[2]);
13540 expr1.X_add_number = 2;
13541 macro_build (&expr1, "bnez", "x,p", op[2]);
13542 macro_build (NULL, "break", "6", 7);
13543
13544 /* FIXME: The normal code checks for of -1 / -0x80000000 here,
13545 since that causes an overflow. We should do that as well,
13546 but I don't see how to do the comparisons without a temporary
13547 register. */
13548 end_noreorder ();
13549 macro_build (NULL, s, "x", op[0]);
13550 break;
13551
13552 case M_DIVU_3:
13553 s = "divu";
13554 s2 = "mflo";
13555 goto do_divu3;
13556 case M_REMU_3:
13557 s = "divu";
13558 s2 = "mfhi";
13559 goto do_divu3;
13560 case M_DDIVU_3:
13561 s = "ddivu";
13562 s2 = "mflo";
13563 goto do_divu3;
13564 case M_DREMU_3:
13565 s = "ddivu";
13566 s2 = "mfhi";
13567 do_divu3:
13568 start_noreorder ();
13569 macro_build (NULL, s, "0,x,y", op[1], op[2]);
13570 expr1.X_add_number = 2;
13571 macro_build (&expr1, "bnez", "x,p", op[2]);
13572 macro_build (NULL, "break", "6", 7);
13573 end_noreorder ();
13574 macro_build (NULL, s2, "x", op[0]);
13575 break;
13576
13577 case M_DMUL:
13578 dbl = 1;
13579 /* Fall through. */
13580 case M_MUL:
13581 macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", op[1], op[2]);
13582 macro_build (NULL, "mflo", "x", op[0]);
13583 break;
13584
13585 case M_DSUBU_I:
13586 dbl = 1;
13587 goto do_subu;
13588 case M_SUBU_I:
13589 do_subu:
13590 imm_expr.X_add_number = -imm_expr.X_add_number;
13591 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,4", op[0], op[1]);
13592 break;
13593
13594 case M_SUBU_I_2:
13595 imm_expr.X_add_number = -imm_expr.X_add_number;
13596 macro_build (&imm_expr, "addiu", "x,k", op[0]);
13597 break;
13598
13599 case M_DSUBU_I_2:
13600 imm_expr.X_add_number = -imm_expr.X_add_number;
13601 macro_build (&imm_expr, "daddiu", "y,j", op[0]);
13602 break;
13603
13604 case M_BEQ:
13605 s = "cmp";
13606 s2 = "bteqz";
13607 goto do_branch;
13608 case M_BNE:
13609 s = "cmp";
13610 s2 = "btnez";
13611 goto do_branch;
13612 case M_BLT:
13613 s = "slt";
13614 s2 = "btnez";
13615 goto do_branch;
13616 case M_BLTU:
13617 s = "sltu";
13618 s2 = "btnez";
13619 goto do_branch;
13620 case M_BLE:
13621 s = "slt";
13622 s2 = "bteqz";
13623 goto do_reverse_branch;
13624 case M_BLEU:
13625 s = "sltu";
13626 s2 = "bteqz";
13627 goto do_reverse_branch;
13628 case M_BGE:
13629 s = "slt";
13630 s2 = "bteqz";
13631 goto do_branch;
13632 case M_BGEU:
13633 s = "sltu";
13634 s2 = "bteqz";
13635 goto do_branch;
13636 case M_BGT:
13637 s = "slt";
13638 s2 = "btnez";
13639 goto do_reverse_branch;
13640 case M_BGTU:
13641 s = "sltu";
13642 s2 = "btnez";
13643
13644 do_reverse_branch:
13645 tmp = op[1];
13646 op[1] = op[0];
13647 op[0] = tmp;
13648
13649 do_branch:
13650 macro_build (NULL, s, "x,y", op[0], op[1]);
13651 macro_build (&offset_expr, s2, "p");
13652 break;
13653
13654 case M_BEQ_I:
13655 s = "cmpi";
13656 s2 = "bteqz";
13657 s3 = "x,U";
13658 goto do_branch_i;
13659 case M_BNE_I:
13660 s = "cmpi";
13661 s2 = "btnez";
13662 s3 = "x,U";
13663 goto do_branch_i;
13664 case M_BLT_I:
13665 s = "slti";
13666 s2 = "btnez";
13667 s3 = "x,8";
13668 goto do_branch_i;
13669 case M_BLTU_I:
13670 s = "sltiu";
13671 s2 = "btnez";
13672 s3 = "x,8";
13673 goto do_branch_i;
13674 case M_BLE_I:
13675 s = "slti";
13676 s2 = "btnez";
13677 s3 = "x,8";
13678 goto do_addone_branch_i;
13679 case M_BLEU_I:
13680 s = "sltiu";
13681 s2 = "btnez";
13682 s3 = "x,8";
13683 goto do_addone_branch_i;
13684 case M_BGE_I:
13685 s = "slti";
13686 s2 = "bteqz";
13687 s3 = "x,8";
13688 goto do_branch_i;
13689 case M_BGEU_I:
13690 s = "sltiu";
13691 s2 = "bteqz";
13692 s3 = "x,8";
13693 goto do_branch_i;
13694 case M_BGT_I:
13695 s = "slti";
13696 s2 = "bteqz";
13697 s3 = "x,8";
13698 goto do_addone_branch_i;
13699 case M_BGTU_I:
13700 s = "sltiu";
13701 s2 = "bteqz";
13702 s3 = "x,8";
13703
13704 do_addone_branch_i:
13705 ++imm_expr.X_add_number;
13706
13707 do_branch_i:
13708 macro_build (&imm_expr, s, s3, op[0]);
13709 macro_build (&offset_expr, s2, "p");
13710 break;
13711
13712 case M_ABS:
13713 expr1.X_add_number = 0;
13714 macro_build (&expr1, "slti", "x,8", op[1]);
13715 if (op[0] != op[1])
13716 macro_build (NULL, "move", "y,X", op[0], mips16_to_32_reg_map[op[1]]);
13717 expr1.X_add_number = 2;
13718 macro_build (&expr1, "bteqz", "p");
13719 macro_build (NULL, "neg", "x,w", op[0], op[0]);
13720 break;
13721 }
13722 }
13723
13724 /* Look up instruction [START, START + LENGTH) in HASH. Record any extra
13725 opcode bits in *OPCODE_EXTRA. */
13726
13727 static struct mips_opcode *
13728 mips_lookup_insn (struct hash_control *hash, const char *start,
13729 ssize_t length, unsigned int *opcode_extra)
13730 {
13731 char *name, *dot, *p;
13732 unsigned int mask, suffix;
13733 ssize_t opend;
13734 struct mips_opcode *insn;
13735
13736 /* Make a copy of the instruction so that we can fiddle with it. */
13737 name = xstrndup (start, length);
13738
13739 /* Look up the instruction as-is. */
13740 insn = (struct mips_opcode *) hash_find (hash, name);
13741 if (insn)
13742 goto end;
13743
13744 dot = strchr (name, '.');
13745 if (dot && dot[1])
13746 {
13747 /* Try to interpret the text after the dot as a VU0 channel suffix. */
13748 p = mips_parse_vu0_channels (dot + 1, &mask);
13749 if (*p == 0 && mask != 0)
13750 {
13751 *dot = 0;
13752 insn = (struct mips_opcode *) hash_find (hash, name);
13753 *dot = '.';
13754 if (insn && (insn->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0)
13755 {
13756 *opcode_extra |= mask << mips_vu0_channel_mask.lsb;
13757 goto end;
13758 }
13759 }
13760 }
13761
13762 if (mips_opts.micromips)
13763 {
13764 /* See if there's an instruction size override suffix,
13765 either `16' or `32', at the end of the mnemonic proper,
13766 that defines the operation, i.e. before the first `.'
13767 character if any. Strip it and retry. */
13768 opend = dot != NULL ? dot - name : length;
13769 if (opend >= 3 && name[opend - 2] == '1' && name[opend - 1] == '6')
13770 suffix = 2;
13771 else if (name[opend - 2] == '3' && name[opend - 1] == '2')
13772 suffix = 4;
13773 else
13774 suffix = 0;
13775 if (suffix)
13776 {
13777 memcpy (name + opend - 2, name + opend, length - opend + 1);
13778 insn = (struct mips_opcode *) hash_find (hash, name);
13779 if (insn)
13780 {
13781 forced_insn_length = suffix;
13782 goto end;
13783 }
13784 }
13785 }
13786
13787 insn = NULL;
13788 end:
13789 free (name);
13790 return insn;
13791 }
13792
13793 /* Assemble an instruction into its binary format. If the instruction
13794 is a macro, set imm_expr and offset_expr to the values associated
13795 with "I" and "A" operands respectively. Otherwise store the value
13796 of the relocatable field (if any) in offset_expr. In both cases
13797 set offset_reloc to the relocation operators applied to offset_expr. */
13798
13799 static void
13800 mips_ip (char *str, struct mips_cl_insn *insn)
13801 {
13802 const struct mips_opcode *first, *past;
13803 struct hash_control *hash;
13804 char format;
13805 size_t end;
13806 struct mips_operand_token *tokens;
13807 unsigned int opcode_extra;
13808
13809 if (mips_opts.micromips)
13810 {
13811 hash = micromips_op_hash;
13812 past = &micromips_opcodes[bfd_micromips_num_opcodes];
13813 }
13814 else
13815 {
13816 hash = op_hash;
13817 past = &mips_opcodes[NUMOPCODES];
13818 }
13819 forced_insn_length = 0;
13820 opcode_extra = 0;
13821
13822 /* We first try to match an instruction up to a space or to the end. */
13823 for (end = 0; str[end] != '\0' && !ISSPACE (str[end]); end++)
13824 continue;
13825
13826 first = mips_lookup_insn (hash, str, end, &opcode_extra);
13827 if (first == NULL)
13828 {
13829 set_insn_error (0, _("unrecognized opcode"));
13830 return;
13831 }
13832
13833 if (strcmp (first->name, "li.s") == 0)
13834 format = 'f';
13835 else if (strcmp (first->name, "li.d") == 0)
13836 format = 'd';
13837 else
13838 format = 0;
13839 tokens = mips_parse_arguments (str + end, format);
13840 if (!tokens)
13841 return;
13842
13843 if (!match_insns (insn, first, past, tokens, opcode_extra, FALSE)
13844 && !match_insns (insn, first, past, tokens, opcode_extra, TRUE))
13845 set_insn_error (0, _("invalid operands"));
13846
13847 obstack_free (&mips_operand_tokens, tokens);
13848 }
13849
13850 /* As for mips_ip, but used when assembling MIPS16 code.
13851 Also set forced_insn_length to the resulting instruction size in
13852 bytes if the user explicitly requested a small or extended instruction. */
13853
13854 static void
13855 mips16_ip (char *str, struct mips_cl_insn *insn)
13856 {
13857 char *end, *s, c;
13858 struct mips_opcode *first;
13859 struct mips_operand_token *tokens;
13860
13861 forced_insn_length = 0;
13862
13863 for (s = str; ISLOWER (*s); ++s)
13864 ;
13865 end = s;
13866 c = *end;
13867 switch (c)
13868 {
13869 case '\0':
13870 break;
13871
13872 case ' ':
13873 s++;
13874 break;
13875
13876 case '.':
13877 if (s[1] == 't' && s[2] == ' ')
13878 {
13879 forced_insn_length = 2;
13880 s += 3;
13881 break;
13882 }
13883 else if (s[1] == 'e' && s[2] == ' ')
13884 {
13885 forced_insn_length = 4;
13886 s += 3;
13887 break;
13888 }
13889 /* Fall through. */
13890 default:
13891 set_insn_error (0, _("unrecognized opcode"));
13892 return;
13893 }
13894
13895 *end = 0;
13896 first = (struct mips_opcode *) hash_find (mips16_op_hash, str);
13897 *end = c;
13898
13899 if (!first)
13900 {
13901 set_insn_error (0, _("unrecognized opcode"));
13902 return;
13903 }
13904
13905 tokens = mips_parse_arguments (s, 0);
13906 if (!tokens)
13907 return;
13908
13909 if (!match_mips16_insns (insn, first, tokens))
13910 set_insn_error (0, _("invalid operands"));
13911
13912 obstack_free (&mips_operand_tokens, tokens);
13913 }
13914
13915 /* Marshal immediate value VAL for an extended MIPS16 instruction.
13916 NBITS is the number of significant bits in VAL. */
13917
13918 static unsigned long
13919 mips16_immed_extend (offsetT val, unsigned int nbits)
13920 {
13921 int extval;
13922 if (nbits == 16)
13923 {
13924 extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
13925 val &= 0x1f;
13926 }
13927 else if (nbits == 15)
13928 {
13929 extval = ((val >> 11) & 0xf) | (val & 0x7f0);
13930 val &= 0xf;
13931 }
13932 else
13933 {
13934 extval = ((val & 0x1f) << 6) | (val & 0x20);
13935 val = 0;
13936 }
13937 return (extval << 16) | val;
13938 }
13939
13940 /* Like decode_mips16_operand, but require the operand to be defined and
13941 require it to be an integer. */
13942
13943 static const struct mips_int_operand *
13944 mips16_immed_operand (int type, bfd_boolean extended_p)
13945 {
13946 const struct mips_operand *operand;
13947
13948 operand = decode_mips16_operand (type, extended_p);
13949 if (!operand || (operand->type != OP_INT && operand->type != OP_PCREL))
13950 abort ();
13951 return (const struct mips_int_operand *) operand;
13952 }
13953
13954 /* Return true if SVAL fits OPERAND. RELOC is as for mips16_immed. */
13955
13956 static bfd_boolean
13957 mips16_immed_in_range_p (const struct mips_int_operand *operand,
13958 bfd_reloc_code_real_type reloc, offsetT sval)
13959 {
13960 int min_val, max_val;
13961
13962 min_val = mips_int_operand_min (operand);
13963 max_val = mips_int_operand_max (operand);
13964 if (reloc != BFD_RELOC_UNUSED)
13965 {
13966 if (min_val < 0)
13967 sval = SEXT_16BIT (sval);
13968 else
13969 sval &= 0xffff;
13970 }
13971
13972 return (sval >= min_val
13973 && sval <= max_val
13974 && (sval & ((1 << operand->shift) - 1)) == 0);
13975 }
13976
13977 /* Install immediate value VAL into MIPS16 instruction *INSN,
13978 extending it if necessary. The instruction in *INSN may
13979 already be extended.
13980
13981 RELOC is the relocation that produced VAL, or BFD_RELOC_UNUSED
13982 if none. In the former case, VAL is a 16-bit number with no
13983 defined signedness.
13984
13985 TYPE is the type of the immediate field. USER_INSN_LENGTH
13986 is the length that the user requested, or 0 if none. */
13987
13988 static void
13989 mips16_immed (const char *file, unsigned int line, int type,
13990 bfd_reloc_code_real_type reloc, offsetT val,
13991 unsigned int user_insn_length, unsigned long *insn)
13992 {
13993 const struct mips_int_operand *operand;
13994 unsigned int uval, length;
13995
13996 operand = mips16_immed_operand (type, FALSE);
13997 if (!mips16_immed_in_range_p (operand, reloc, val))
13998 {
13999 /* We need an extended instruction. */
14000 if (user_insn_length == 2)
14001 as_bad_where (file, line, _("invalid unextended operand value"));
14002 else
14003 *insn |= MIPS16_EXTEND;
14004 }
14005 else if (user_insn_length == 4)
14006 {
14007 /* The operand doesn't force an unextended instruction to be extended.
14008 Warn if the user wanted an extended instruction anyway. */
14009 *insn |= MIPS16_EXTEND;
14010 as_warn_where (file, line,
14011 _("extended operand requested but not required"));
14012 }
14013
14014 length = mips16_opcode_length (*insn);
14015 if (length == 4)
14016 {
14017 operand = mips16_immed_operand (type, TRUE);
14018 if (!mips16_immed_in_range_p (operand, reloc, val))
14019 as_bad_where (file, line,
14020 _("operand value out of range for instruction"));
14021 }
14022 uval = ((unsigned int) val >> operand->shift) - operand->bias;
14023 if (length == 2)
14024 *insn = mips_insert_operand (&operand->root, *insn, uval);
14025 else
14026 *insn |= mips16_immed_extend (uval, operand->root.size);
14027 }
14028 \f
14029 struct percent_op_match
14030 {
14031 const char *str;
14032 bfd_reloc_code_real_type reloc;
14033 };
14034
14035 static const struct percent_op_match mips_percent_op[] =
14036 {
14037 {"%lo", BFD_RELOC_LO16},
14038 {"%call_hi", BFD_RELOC_MIPS_CALL_HI16},
14039 {"%call_lo", BFD_RELOC_MIPS_CALL_LO16},
14040 {"%call16", BFD_RELOC_MIPS_CALL16},
14041 {"%got_disp", BFD_RELOC_MIPS_GOT_DISP},
14042 {"%got_page", BFD_RELOC_MIPS_GOT_PAGE},
14043 {"%got_ofst", BFD_RELOC_MIPS_GOT_OFST},
14044 {"%got_hi", BFD_RELOC_MIPS_GOT_HI16},
14045 {"%got_lo", BFD_RELOC_MIPS_GOT_LO16},
14046 {"%got", BFD_RELOC_MIPS_GOT16},
14047 {"%gp_rel", BFD_RELOC_GPREL16},
14048 {"%half", BFD_RELOC_16},
14049 {"%highest", BFD_RELOC_MIPS_HIGHEST},
14050 {"%higher", BFD_RELOC_MIPS_HIGHER},
14051 {"%neg", BFD_RELOC_MIPS_SUB},
14052 {"%tlsgd", BFD_RELOC_MIPS_TLS_GD},
14053 {"%tlsldm", BFD_RELOC_MIPS_TLS_LDM},
14054 {"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16},
14055 {"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16},
14056 {"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16},
14057 {"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16},
14058 {"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL},
14059 {"%hi", BFD_RELOC_HI16_S},
14060 {"%pcrel_hi", BFD_RELOC_HI16_S_PCREL},
14061 {"%pcrel_lo", BFD_RELOC_LO16_PCREL}
14062 };
14063
14064 static const struct percent_op_match mips16_percent_op[] =
14065 {
14066 {"%lo", BFD_RELOC_MIPS16_LO16},
14067 {"%gprel", BFD_RELOC_MIPS16_GPREL},
14068 {"%got", BFD_RELOC_MIPS16_GOT16},
14069 {"%call16", BFD_RELOC_MIPS16_CALL16},
14070 {"%hi", BFD_RELOC_MIPS16_HI16_S},
14071 {"%tlsgd", BFD_RELOC_MIPS16_TLS_GD},
14072 {"%tlsldm", BFD_RELOC_MIPS16_TLS_LDM},
14073 {"%dtprel_hi", BFD_RELOC_MIPS16_TLS_DTPREL_HI16},
14074 {"%dtprel_lo", BFD_RELOC_MIPS16_TLS_DTPREL_LO16},
14075 {"%tprel_hi", BFD_RELOC_MIPS16_TLS_TPREL_HI16},
14076 {"%tprel_lo", BFD_RELOC_MIPS16_TLS_TPREL_LO16},
14077 {"%gottprel", BFD_RELOC_MIPS16_TLS_GOTTPREL}
14078 };
14079
14080
14081 /* Return true if *STR points to a relocation operator. When returning true,
14082 move *STR over the operator and store its relocation code in *RELOC.
14083 Leave both *STR and *RELOC alone when returning false. */
14084
14085 static bfd_boolean
14086 parse_relocation (char **str, bfd_reloc_code_real_type *reloc)
14087 {
14088 const struct percent_op_match *percent_op;
14089 size_t limit, i;
14090
14091 if (mips_opts.mips16)
14092 {
14093 percent_op = mips16_percent_op;
14094 limit = ARRAY_SIZE (mips16_percent_op);
14095 }
14096 else
14097 {
14098 percent_op = mips_percent_op;
14099 limit = ARRAY_SIZE (mips_percent_op);
14100 }
14101
14102 for (i = 0; i < limit; i++)
14103 if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0)
14104 {
14105 int len = strlen (percent_op[i].str);
14106
14107 if (!ISSPACE ((*str)[len]) && (*str)[len] != '(')
14108 continue;
14109
14110 *str += strlen (percent_op[i].str);
14111 *reloc = percent_op[i].reloc;
14112
14113 /* Check whether the output BFD supports this relocation.
14114 If not, issue an error and fall back on something safe. */
14115 if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc))
14116 {
14117 as_bad (_("relocation %s isn't supported by the current ABI"),
14118 percent_op[i].str);
14119 *reloc = BFD_RELOC_UNUSED;
14120 }
14121 return TRUE;
14122 }
14123 return FALSE;
14124 }
14125
14126
14127 /* Parse string STR as a 16-bit relocatable operand. Store the
14128 expression in *EP and the relocations in the array starting
14129 at RELOC. Return the number of relocation operators used.
14130
14131 On exit, EXPR_END points to the first character after the expression. */
14132
14133 static size_t
14134 my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
14135 char *str)
14136 {
14137 bfd_reloc_code_real_type reversed_reloc[3];
14138 size_t reloc_index, i;
14139 int crux_depth, str_depth;
14140 char *crux;
14141
14142 /* Search for the start of the main expression, recoding relocations
14143 in REVERSED_RELOC. End the loop with CRUX pointing to the start
14144 of the main expression and with CRUX_DEPTH containing the number
14145 of open brackets at that point. */
14146 reloc_index = -1;
14147 str_depth = 0;
14148 do
14149 {
14150 reloc_index++;
14151 crux = str;
14152 crux_depth = str_depth;
14153
14154 /* Skip over whitespace and brackets, keeping count of the number
14155 of brackets. */
14156 while (*str == ' ' || *str == '\t' || *str == '(')
14157 if (*str++ == '(')
14158 str_depth++;
14159 }
14160 while (*str == '%'
14161 && reloc_index < (HAVE_NEWABI ? 3 : 1)
14162 && parse_relocation (&str, &reversed_reloc[reloc_index]));
14163
14164 my_getExpression (ep, crux);
14165 str = expr_end;
14166
14167 /* Match every open bracket. */
14168 while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
14169 if (*str++ == ')')
14170 crux_depth--;
14171
14172 if (crux_depth > 0)
14173 as_bad (_("unclosed '('"));
14174
14175 expr_end = str;
14176
14177 if (reloc_index != 0)
14178 {
14179 prev_reloc_op_frag = frag_now;
14180 for (i = 0; i < reloc_index; i++)
14181 reloc[i] = reversed_reloc[reloc_index - 1 - i];
14182 }
14183
14184 return reloc_index;
14185 }
14186
14187 static void
14188 my_getExpression (expressionS *ep, char *str)
14189 {
14190 char *save_in;
14191
14192 save_in = input_line_pointer;
14193 input_line_pointer = str;
14194 expression (ep);
14195 expr_end = input_line_pointer;
14196 input_line_pointer = save_in;
14197 }
14198
14199 const char *
14200 md_atof (int type, char *litP, int *sizeP)
14201 {
14202 return ieee_md_atof (type, litP, sizeP, target_big_endian);
14203 }
14204
14205 void
14206 md_number_to_chars (char *buf, valueT val, int n)
14207 {
14208 if (target_big_endian)
14209 number_to_chars_bigendian (buf, val, n);
14210 else
14211 number_to_chars_littleendian (buf, val, n);
14212 }
14213 \f
14214 static int support_64bit_objects(void)
14215 {
14216 const char **list, **l;
14217 int yes;
14218
14219 list = bfd_target_list ();
14220 for (l = list; *l != NULL; l++)
14221 if (strcmp (*l, ELF_TARGET ("elf64-", "big")) == 0
14222 || strcmp (*l, ELF_TARGET ("elf64-", "little")) == 0)
14223 break;
14224 yes = (*l != NULL);
14225 free (list);
14226 return yes;
14227 }
14228
14229 /* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
14230 NEW_VALUE. Warn if another value was already specified. Note:
14231 we have to defer parsing the -march and -mtune arguments in order
14232 to handle 'from-abi' correctly, since the ABI might be specified
14233 in a later argument. */
14234
14235 static void
14236 mips_set_option_string (const char **string_ptr, const char *new_value)
14237 {
14238 if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
14239 as_warn (_("a different %s was already specified, is now %s"),
14240 string_ptr == &mips_arch_string ? "-march" : "-mtune",
14241 new_value);
14242
14243 *string_ptr = new_value;
14244 }
14245
14246 int
14247 md_parse_option (int c, const char *arg)
14248 {
14249 unsigned int i;
14250
14251 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
14252 if (c == mips_ases[i].option_on || c == mips_ases[i].option_off)
14253 {
14254 file_ase_explicit |= mips_set_ase (&mips_ases[i], &file_mips_opts,
14255 c == mips_ases[i].option_on);
14256 return 1;
14257 }
14258
14259 switch (c)
14260 {
14261 case OPTION_CONSTRUCT_FLOATS:
14262 mips_disable_float_construction = 0;
14263 break;
14264
14265 case OPTION_NO_CONSTRUCT_FLOATS:
14266 mips_disable_float_construction = 1;
14267 break;
14268
14269 case OPTION_TRAP:
14270 mips_trap = 1;
14271 break;
14272
14273 case OPTION_BREAK:
14274 mips_trap = 0;
14275 break;
14276
14277 case OPTION_EB:
14278 target_big_endian = 1;
14279 break;
14280
14281 case OPTION_EL:
14282 target_big_endian = 0;
14283 break;
14284
14285 case 'O':
14286 if (arg == NULL)
14287 mips_optimize = 1;
14288 else if (arg[0] == '0')
14289 mips_optimize = 0;
14290 else if (arg[0] == '1')
14291 mips_optimize = 1;
14292 else
14293 mips_optimize = 2;
14294 break;
14295
14296 case 'g':
14297 if (arg == NULL)
14298 mips_debug = 2;
14299 else
14300 mips_debug = atoi (arg);
14301 break;
14302
14303 case OPTION_MIPS1:
14304 file_mips_opts.isa = ISA_MIPS1;
14305 break;
14306
14307 case OPTION_MIPS2:
14308 file_mips_opts.isa = ISA_MIPS2;
14309 break;
14310
14311 case OPTION_MIPS3:
14312 file_mips_opts.isa = ISA_MIPS3;
14313 break;
14314
14315 case OPTION_MIPS4:
14316 file_mips_opts.isa = ISA_MIPS4;
14317 break;
14318
14319 case OPTION_MIPS5:
14320 file_mips_opts.isa = ISA_MIPS5;
14321 break;
14322
14323 case OPTION_MIPS32:
14324 file_mips_opts.isa = ISA_MIPS32;
14325 break;
14326
14327 case OPTION_MIPS32R2:
14328 file_mips_opts.isa = ISA_MIPS32R2;
14329 break;
14330
14331 case OPTION_MIPS32R3:
14332 file_mips_opts.isa = ISA_MIPS32R3;
14333 break;
14334
14335 case OPTION_MIPS32R5:
14336 file_mips_opts.isa = ISA_MIPS32R5;
14337 break;
14338
14339 case OPTION_MIPS32R6:
14340 file_mips_opts.isa = ISA_MIPS32R6;
14341 break;
14342
14343 case OPTION_MIPS64R2:
14344 file_mips_opts.isa = ISA_MIPS64R2;
14345 break;
14346
14347 case OPTION_MIPS64R3:
14348 file_mips_opts.isa = ISA_MIPS64R3;
14349 break;
14350
14351 case OPTION_MIPS64R5:
14352 file_mips_opts.isa = ISA_MIPS64R5;
14353 break;
14354
14355 case OPTION_MIPS64R6:
14356 file_mips_opts.isa = ISA_MIPS64R6;
14357 break;
14358
14359 case OPTION_MIPS64:
14360 file_mips_opts.isa = ISA_MIPS64;
14361 break;
14362
14363 case OPTION_MTUNE:
14364 mips_set_option_string (&mips_tune_string, arg);
14365 break;
14366
14367 case OPTION_MARCH:
14368 mips_set_option_string (&mips_arch_string, arg);
14369 break;
14370
14371 case OPTION_M4650:
14372 mips_set_option_string (&mips_arch_string, "4650");
14373 mips_set_option_string (&mips_tune_string, "4650");
14374 break;
14375
14376 case OPTION_NO_M4650:
14377 break;
14378
14379 case OPTION_M4010:
14380 mips_set_option_string (&mips_arch_string, "4010");
14381 mips_set_option_string (&mips_tune_string, "4010");
14382 break;
14383
14384 case OPTION_NO_M4010:
14385 break;
14386
14387 case OPTION_M4100:
14388 mips_set_option_string (&mips_arch_string, "4100");
14389 mips_set_option_string (&mips_tune_string, "4100");
14390 break;
14391
14392 case OPTION_NO_M4100:
14393 break;
14394
14395 case OPTION_M3900:
14396 mips_set_option_string (&mips_arch_string, "3900");
14397 mips_set_option_string (&mips_tune_string, "3900");
14398 break;
14399
14400 case OPTION_NO_M3900:
14401 break;
14402
14403 case OPTION_MICROMIPS:
14404 if (file_mips_opts.mips16 == 1)
14405 {
14406 as_bad (_("-mmicromips cannot be used with -mips16"));
14407 return 0;
14408 }
14409 file_mips_opts.micromips = 1;
14410 mips_no_prev_insn ();
14411 break;
14412
14413 case OPTION_NO_MICROMIPS:
14414 file_mips_opts.micromips = 0;
14415 mips_no_prev_insn ();
14416 break;
14417
14418 case OPTION_MIPS16:
14419 if (file_mips_opts.micromips == 1)
14420 {
14421 as_bad (_("-mips16 cannot be used with -micromips"));
14422 return 0;
14423 }
14424 file_mips_opts.mips16 = 1;
14425 mips_no_prev_insn ();
14426 break;
14427
14428 case OPTION_NO_MIPS16:
14429 file_mips_opts.mips16 = 0;
14430 mips_no_prev_insn ();
14431 break;
14432
14433 case OPTION_FIX_24K:
14434 mips_fix_24k = 1;
14435 break;
14436
14437 case OPTION_NO_FIX_24K:
14438 mips_fix_24k = 0;
14439 break;
14440
14441 case OPTION_FIX_RM7000:
14442 mips_fix_rm7000 = 1;
14443 break;
14444
14445 case OPTION_NO_FIX_RM7000:
14446 mips_fix_rm7000 = 0;
14447 break;
14448
14449 case OPTION_FIX_LOONGSON2F_JUMP:
14450 mips_fix_loongson2f_jump = TRUE;
14451 break;
14452
14453 case OPTION_NO_FIX_LOONGSON2F_JUMP:
14454 mips_fix_loongson2f_jump = FALSE;
14455 break;
14456
14457 case OPTION_FIX_LOONGSON2F_NOP:
14458 mips_fix_loongson2f_nop = TRUE;
14459 break;
14460
14461 case OPTION_NO_FIX_LOONGSON2F_NOP:
14462 mips_fix_loongson2f_nop = FALSE;
14463 break;
14464
14465 case OPTION_FIX_VR4120:
14466 mips_fix_vr4120 = 1;
14467 break;
14468
14469 case OPTION_NO_FIX_VR4120:
14470 mips_fix_vr4120 = 0;
14471 break;
14472
14473 case OPTION_FIX_VR4130:
14474 mips_fix_vr4130 = 1;
14475 break;
14476
14477 case OPTION_NO_FIX_VR4130:
14478 mips_fix_vr4130 = 0;
14479 break;
14480
14481 case OPTION_FIX_CN63XXP1:
14482 mips_fix_cn63xxp1 = TRUE;
14483 break;
14484
14485 case OPTION_NO_FIX_CN63XXP1:
14486 mips_fix_cn63xxp1 = FALSE;
14487 break;
14488
14489 case OPTION_RELAX_BRANCH:
14490 mips_relax_branch = 1;
14491 break;
14492
14493 case OPTION_NO_RELAX_BRANCH:
14494 mips_relax_branch = 0;
14495 break;
14496
14497 case OPTION_INSN32:
14498 file_mips_opts.insn32 = TRUE;
14499 break;
14500
14501 case OPTION_NO_INSN32:
14502 file_mips_opts.insn32 = FALSE;
14503 break;
14504
14505 case OPTION_MSHARED:
14506 mips_in_shared = TRUE;
14507 break;
14508
14509 case OPTION_MNO_SHARED:
14510 mips_in_shared = FALSE;
14511 break;
14512
14513 case OPTION_MSYM32:
14514 file_mips_opts.sym32 = TRUE;
14515 break;
14516
14517 case OPTION_MNO_SYM32:
14518 file_mips_opts.sym32 = FALSE;
14519 break;
14520
14521 /* When generating ELF code, we permit -KPIC and -call_shared to
14522 select SVR4_PIC, and -non_shared to select no PIC. This is
14523 intended to be compatible with Irix 5. */
14524 case OPTION_CALL_SHARED:
14525 mips_pic = SVR4_PIC;
14526 mips_abicalls = TRUE;
14527 break;
14528
14529 case OPTION_CALL_NONPIC:
14530 mips_pic = NO_PIC;
14531 mips_abicalls = TRUE;
14532 break;
14533
14534 case OPTION_NON_SHARED:
14535 mips_pic = NO_PIC;
14536 mips_abicalls = FALSE;
14537 break;
14538
14539 /* The -xgot option tells the assembler to use 32 bit offsets
14540 when accessing the got in SVR4_PIC mode. It is for Irix
14541 compatibility. */
14542 case OPTION_XGOT:
14543 mips_big_got = 1;
14544 break;
14545
14546 case 'G':
14547 g_switch_value = atoi (arg);
14548 g_switch_seen = 1;
14549 break;
14550
14551 /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
14552 and -mabi=64. */
14553 case OPTION_32:
14554 mips_abi = O32_ABI;
14555 break;
14556
14557 case OPTION_N32:
14558 mips_abi = N32_ABI;
14559 break;
14560
14561 case OPTION_64:
14562 mips_abi = N64_ABI;
14563 if (!support_64bit_objects())
14564 as_fatal (_("no compiled in support for 64 bit object file format"));
14565 break;
14566
14567 case OPTION_GP32:
14568 file_mips_opts.gp = 32;
14569 break;
14570
14571 case OPTION_GP64:
14572 file_mips_opts.gp = 64;
14573 break;
14574
14575 case OPTION_FP32:
14576 file_mips_opts.fp = 32;
14577 break;
14578
14579 case OPTION_FPXX:
14580 file_mips_opts.fp = 0;
14581 break;
14582
14583 case OPTION_FP64:
14584 file_mips_opts.fp = 64;
14585 break;
14586
14587 case OPTION_ODD_SPREG:
14588 file_mips_opts.oddspreg = 1;
14589 break;
14590
14591 case OPTION_NO_ODD_SPREG:
14592 file_mips_opts.oddspreg = 0;
14593 break;
14594
14595 case OPTION_SINGLE_FLOAT:
14596 file_mips_opts.single_float = 1;
14597 break;
14598
14599 case OPTION_DOUBLE_FLOAT:
14600 file_mips_opts.single_float = 0;
14601 break;
14602
14603 case OPTION_SOFT_FLOAT:
14604 file_mips_opts.soft_float = 1;
14605 break;
14606
14607 case OPTION_HARD_FLOAT:
14608 file_mips_opts.soft_float = 0;
14609 break;
14610
14611 case OPTION_MABI:
14612 if (strcmp (arg, "32") == 0)
14613 mips_abi = O32_ABI;
14614 else if (strcmp (arg, "o64") == 0)
14615 mips_abi = O64_ABI;
14616 else if (strcmp (arg, "n32") == 0)
14617 mips_abi = N32_ABI;
14618 else if (strcmp (arg, "64") == 0)
14619 {
14620 mips_abi = N64_ABI;
14621 if (! support_64bit_objects())
14622 as_fatal (_("no compiled in support for 64 bit object file "
14623 "format"));
14624 }
14625 else if (strcmp (arg, "eabi") == 0)
14626 mips_abi = EABI_ABI;
14627 else
14628 {
14629 as_fatal (_("invalid abi -mabi=%s"), arg);
14630 return 0;
14631 }
14632 break;
14633
14634 case OPTION_M7000_HILO_FIX:
14635 mips_7000_hilo_fix = TRUE;
14636 break;
14637
14638 case OPTION_MNO_7000_HILO_FIX:
14639 mips_7000_hilo_fix = FALSE;
14640 break;
14641
14642 case OPTION_MDEBUG:
14643 mips_flag_mdebug = TRUE;
14644 break;
14645
14646 case OPTION_NO_MDEBUG:
14647 mips_flag_mdebug = FALSE;
14648 break;
14649
14650 case OPTION_PDR:
14651 mips_flag_pdr = TRUE;
14652 break;
14653
14654 case OPTION_NO_PDR:
14655 mips_flag_pdr = FALSE;
14656 break;
14657
14658 case OPTION_MVXWORKS_PIC:
14659 mips_pic = VXWORKS_PIC;
14660 break;
14661
14662 case OPTION_NAN:
14663 if (strcmp (arg, "2008") == 0)
14664 mips_nan2008 = 1;
14665 else if (strcmp (arg, "legacy") == 0)
14666 mips_nan2008 = 0;
14667 else
14668 {
14669 as_fatal (_("invalid NaN setting -mnan=%s"), arg);
14670 return 0;
14671 }
14672 break;
14673
14674 default:
14675 return 0;
14676 }
14677
14678 mips_fix_loongson2f = mips_fix_loongson2f_nop || mips_fix_loongson2f_jump;
14679
14680 return 1;
14681 }
14682 \f
14683 /* Set up globals to tune for the ISA or processor described by INFO. */
14684
14685 static void
14686 mips_set_tune (const struct mips_cpu_info *info)
14687 {
14688 if (info != 0)
14689 mips_tune = info->cpu;
14690 }
14691
14692
14693 void
14694 mips_after_parse_args (void)
14695 {
14696 const struct mips_cpu_info *arch_info = 0;
14697 const struct mips_cpu_info *tune_info = 0;
14698
14699 /* GP relative stuff not working for PE */
14700 if (strncmp (TARGET_OS, "pe", 2) == 0)
14701 {
14702 if (g_switch_seen && g_switch_value != 0)
14703 as_bad (_("-G not supported in this configuration"));
14704 g_switch_value = 0;
14705 }
14706
14707 if (mips_abi == NO_ABI)
14708 mips_abi = MIPS_DEFAULT_ABI;
14709
14710 /* The following code determines the architecture.
14711 Similar code was added to GCC 3.3 (see override_options() in
14712 config/mips/mips.c). The GAS and GCC code should be kept in sync
14713 as much as possible. */
14714
14715 if (mips_arch_string != 0)
14716 arch_info = mips_parse_cpu ("-march", mips_arch_string);
14717
14718 if (file_mips_opts.isa != ISA_UNKNOWN)
14719 {
14720 /* Handle -mipsN. At this point, file_mips_opts.isa contains the
14721 ISA level specified by -mipsN, while arch_info->isa contains
14722 the -march selection (if any). */
14723 if (arch_info != 0)
14724 {
14725 /* -march takes precedence over -mipsN, since it is more descriptive.
14726 There's no harm in specifying both as long as the ISA levels
14727 are the same. */
14728 if (file_mips_opts.isa != arch_info->isa)
14729 as_bad (_("-%s conflicts with the other architecture options,"
14730 " which imply -%s"),
14731 mips_cpu_info_from_isa (file_mips_opts.isa)->name,
14732 mips_cpu_info_from_isa (arch_info->isa)->name);
14733 }
14734 else
14735 arch_info = mips_cpu_info_from_isa (file_mips_opts.isa);
14736 }
14737
14738 if (arch_info == 0)
14739 {
14740 arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT);
14741 gas_assert (arch_info);
14742 }
14743
14744 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa))
14745 as_bad (_("-march=%s is not compatible with the selected ABI"),
14746 arch_info->name);
14747
14748 file_mips_opts.arch = arch_info->cpu;
14749 file_mips_opts.isa = arch_info->isa;
14750
14751 /* Set up initial mips_opts state. */
14752 mips_opts = file_mips_opts;
14753
14754 /* The register size inference code is now placed in
14755 file_mips_check_options. */
14756
14757 /* Optimize for file_mips_opts.arch, unless -mtune selects a different
14758 processor. */
14759 if (mips_tune_string != 0)
14760 tune_info = mips_parse_cpu ("-mtune", mips_tune_string);
14761
14762 if (tune_info == 0)
14763 mips_set_tune (arch_info);
14764 else
14765 mips_set_tune (tune_info);
14766
14767 if (mips_flag_mdebug < 0)
14768 mips_flag_mdebug = 0;
14769 }
14770 \f
14771 void
14772 mips_init_after_args (void)
14773 {
14774 /* initialize opcodes */
14775 bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes;
14776 mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes;
14777 }
14778
14779 long
14780 md_pcrel_from (fixS *fixP)
14781 {
14782 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
14783 switch (fixP->fx_r_type)
14784 {
14785 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
14786 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
14787 /* Return the address of the delay slot. */
14788 return addr + 2;
14789
14790 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
14791 case BFD_RELOC_MICROMIPS_JMP:
14792 case BFD_RELOC_MIPS16_16_PCREL_S1:
14793 case BFD_RELOC_16_PCREL_S2:
14794 case BFD_RELOC_MIPS_21_PCREL_S2:
14795 case BFD_RELOC_MIPS_26_PCREL_S2:
14796 case BFD_RELOC_MIPS_JMP:
14797 /* Return the address of the delay slot. */
14798 return addr + 4;
14799
14800 case BFD_RELOC_MIPS_18_PCREL_S3:
14801 /* Return the aligned address of the doubleword containing
14802 the instruction. */
14803 return addr & ~7;
14804
14805 default:
14806 return addr;
14807 }
14808 }
14809
14810 /* This is called before the symbol table is processed. In order to
14811 work with gcc when using mips-tfile, we must keep all local labels.
14812 However, in other cases, we want to discard them. If we were
14813 called with -g, but we didn't see any debugging information, it may
14814 mean that gcc is smuggling debugging information through to
14815 mips-tfile, in which case we must generate all local labels. */
14816
14817 void
14818 mips_frob_file_before_adjust (void)
14819 {
14820 #ifndef NO_ECOFF_DEBUGGING
14821 if (ECOFF_DEBUGGING
14822 && mips_debug != 0
14823 && ! ecoff_debugging_seen)
14824 flag_keep_locals = 1;
14825 #endif
14826 }
14827
14828 /* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede
14829 the corresponding LO16 reloc. This is called before md_apply_fix and
14830 tc_gen_reloc. Unmatched relocs can only be generated by use of explicit
14831 relocation operators.
14832
14833 For our purposes, a %lo() expression matches a %got() or %hi()
14834 expression if:
14835
14836 (a) it refers to the same symbol; and
14837 (b) the offset applied in the %lo() expression is no lower than
14838 the offset applied in the %got() or %hi().
14839
14840 (b) allows us to cope with code like:
14841
14842 lui $4,%hi(foo)
14843 lh $4,%lo(foo+2)($4)
14844
14845 ...which is legal on RELA targets, and has a well-defined behaviour
14846 if the user knows that adding 2 to "foo" will not induce a carry to
14847 the high 16 bits.
14848
14849 When several %lo()s match a particular %got() or %hi(), we use the
14850 following rules to distinguish them:
14851
14852 (1) %lo()s with smaller offsets are a better match than %lo()s with
14853 higher offsets.
14854
14855 (2) %lo()s with no matching %got() or %hi() are better than those
14856 that already have a matching %got() or %hi().
14857
14858 (3) later %lo()s are better than earlier %lo()s.
14859
14860 These rules are applied in order.
14861
14862 (1) means, among other things, that %lo()s with identical offsets are
14863 chosen if they exist.
14864
14865 (2) means that we won't associate several high-part relocations with
14866 the same low-part relocation unless there's no alternative. Having
14867 several high parts for the same low part is a GNU extension; this rule
14868 allows careful users to avoid it.
14869
14870 (3) is purely cosmetic. mips_hi_fixup_list is is in reverse order,
14871 with the last high-part relocation being at the front of the list.
14872 It therefore makes sense to choose the last matching low-part
14873 relocation, all other things being equal. It's also easier
14874 to code that way. */
14875
14876 void
14877 mips_frob_file (void)
14878 {
14879 struct mips_hi_fixup *l;
14880 bfd_reloc_code_real_type looking_for_rtype = BFD_RELOC_UNUSED;
14881
14882 for (l = mips_hi_fixup_list; l != NULL; l = l->next)
14883 {
14884 segment_info_type *seginfo;
14885 bfd_boolean matched_lo_p;
14886 fixS **hi_pos, **lo_pos, **pos;
14887
14888 gas_assert (reloc_needs_lo_p (l->fixp->fx_r_type));
14889
14890 /* If a GOT16 relocation turns out to be against a global symbol,
14891 there isn't supposed to be a matching LO. Ignore %gots against
14892 constants; we'll report an error for those later. */
14893 if (got16_reloc_p (l->fixp->fx_r_type)
14894 && !(l->fixp->fx_addsy
14895 && pic_need_relax (l->fixp->fx_addsy, l->seg)))
14896 continue;
14897
14898 /* Check quickly whether the next fixup happens to be a matching %lo. */
14899 if (fixup_has_matching_lo_p (l->fixp))
14900 continue;
14901
14902 seginfo = seg_info (l->seg);
14903
14904 /* Set HI_POS to the position of this relocation in the chain.
14905 Set LO_POS to the position of the chosen low-part relocation.
14906 MATCHED_LO_P is true on entry to the loop if *POS is a low-part
14907 relocation that matches an immediately-preceding high-part
14908 relocation. */
14909 hi_pos = NULL;
14910 lo_pos = NULL;
14911 matched_lo_p = FALSE;
14912 looking_for_rtype = matching_lo_reloc (l->fixp->fx_r_type);
14913
14914 for (pos = &seginfo->fix_root; *pos != NULL; pos = &(*pos)->fx_next)
14915 {
14916 if (*pos == l->fixp)
14917 hi_pos = pos;
14918
14919 if ((*pos)->fx_r_type == looking_for_rtype
14920 && symbol_same_p ((*pos)->fx_addsy, l->fixp->fx_addsy)
14921 && (*pos)->fx_offset >= l->fixp->fx_offset
14922 && (lo_pos == NULL
14923 || (*pos)->fx_offset < (*lo_pos)->fx_offset
14924 || (!matched_lo_p
14925 && (*pos)->fx_offset == (*lo_pos)->fx_offset)))
14926 lo_pos = pos;
14927
14928 matched_lo_p = (reloc_needs_lo_p ((*pos)->fx_r_type)
14929 && fixup_has_matching_lo_p (*pos));
14930 }
14931
14932 /* If we found a match, remove the high-part relocation from its
14933 current position and insert it before the low-part relocation.
14934 Make the offsets match so that fixup_has_matching_lo_p()
14935 will return true.
14936
14937 We don't warn about unmatched high-part relocations since some
14938 versions of gcc have been known to emit dead "lui ...%hi(...)"
14939 instructions. */
14940 if (lo_pos != NULL)
14941 {
14942 l->fixp->fx_offset = (*lo_pos)->fx_offset;
14943 if (l->fixp->fx_next != *lo_pos)
14944 {
14945 *hi_pos = l->fixp->fx_next;
14946 l->fixp->fx_next = *lo_pos;
14947 *lo_pos = l->fixp;
14948 }
14949 }
14950 }
14951 }
14952
14953 int
14954 mips_force_relocation (fixS *fixp)
14955 {
14956 if (generic_force_reloc (fixp))
14957 return 1;
14958
14959 /* We want to keep BFD_RELOC_MICROMIPS_*_PCREL_S1 relocation,
14960 so that the linker relaxation can update targets. */
14961 if (fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
14962 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
14963 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1)
14964 return 1;
14965
14966 /* We want to keep BFD_RELOC_16_PCREL_S2 BFD_RELOC_MIPS_21_PCREL_S2
14967 and BFD_RELOC_MIPS_26_PCREL_S2 relocations against MIPS16 and
14968 microMIPS symbols so that we can do cross-mode branch diagnostics
14969 and BAL to JALX conversion by the linker. */
14970 if ((fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
14971 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
14972 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2)
14973 && fixp->fx_addsy
14974 && ELF_ST_IS_COMPRESSED (S_GET_OTHER (fixp->fx_addsy)))
14975 return 1;
14976
14977 /* We want all PC-relative relocations to be kept for R6 relaxation. */
14978 if (ISA_IS_R6 (file_mips_opts.isa)
14979 && (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
14980 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
14981 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
14982 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
14983 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
14984 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
14985 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL))
14986 return 1;
14987
14988 return 0;
14989 }
14990
14991 /* Implement TC_FORCE_RELOCATION_ABS. */
14992
14993 bfd_boolean
14994 mips_force_relocation_abs (fixS *fixp)
14995 {
14996 if (generic_force_reloc (fixp))
14997 return TRUE;
14998
14999 /* These relocations do not have enough bits in the in-place addend
15000 to hold an arbitrary absolute section's offset. */
15001 if (HAVE_IN_PLACE_ADDENDS && limited_pcrel_reloc_p (fixp->fx_r_type))
15002 return TRUE;
15003
15004 return FALSE;
15005 }
15006
15007 /* Read the instruction associated with RELOC from BUF. */
15008
15009 static unsigned int
15010 read_reloc_insn (char *buf, bfd_reloc_code_real_type reloc)
15011 {
15012 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
15013 return read_compressed_insn (buf, 4);
15014 else
15015 return read_insn (buf);
15016 }
15017
15018 /* Write instruction INSN to BUF, given that it has been relocated
15019 by RELOC. */
15020
15021 static void
15022 write_reloc_insn (char *buf, bfd_reloc_code_real_type reloc,
15023 unsigned long insn)
15024 {
15025 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
15026 write_compressed_insn (buf, insn, 4);
15027 else
15028 write_insn (buf, insn);
15029 }
15030
15031 /* Return TRUE if the instruction pointed to by FIXP is an invalid jump
15032 to a symbol in another ISA mode, which cannot be converted to JALX. */
15033
15034 static bfd_boolean
15035 fix_bad_cross_mode_jump_p (fixS *fixP)
15036 {
15037 unsigned long opcode;
15038 int other;
15039 char *buf;
15040
15041 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15042 return FALSE;
15043
15044 other = S_GET_OTHER (fixP->fx_addsy);
15045 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15046 opcode = read_reloc_insn (buf, fixP->fx_r_type) >> 26;
15047 switch (fixP->fx_r_type)
15048 {
15049 case BFD_RELOC_MIPS_JMP:
15050 return opcode != 0x1d && opcode != 0x03 && ELF_ST_IS_COMPRESSED (other);
15051 case BFD_RELOC_MICROMIPS_JMP:
15052 return opcode != 0x3c && opcode != 0x3d && !ELF_ST_IS_MICROMIPS (other);
15053 default:
15054 return FALSE;
15055 }
15056 }
15057
15058 /* Return TRUE if the instruction pointed to by FIXP is an invalid JALX
15059 jump to a symbol in the same ISA mode. */
15060
15061 static bfd_boolean
15062 fix_bad_same_mode_jalx_p (fixS *fixP)
15063 {
15064 unsigned long opcode;
15065 int other;
15066 char *buf;
15067
15068 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15069 return FALSE;
15070
15071 other = S_GET_OTHER (fixP->fx_addsy);
15072 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15073 opcode = read_reloc_insn (buf, fixP->fx_r_type) >> 26;
15074 switch (fixP->fx_r_type)
15075 {
15076 case BFD_RELOC_MIPS_JMP:
15077 return opcode == 0x1d && !ELF_ST_IS_COMPRESSED (other);
15078 case BFD_RELOC_MIPS16_JMP:
15079 return opcode == 0x07 && ELF_ST_IS_COMPRESSED (other);
15080 case BFD_RELOC_MICROMIPS_JMP:
15081 return opcode == 0x3c && ELF_ST_IS_COMPRESSED (other);
15082 default:
15083 return FALSE;
15084 }
15085 }
15086
15087 /* Return TRUE if the instruction pointed to by FIXP is an invalid jump
15088 to a symbol whose value plus addend is not aligned according to the
15089 ultimate (after linker relaxation) jump instruction's immediate field
15090 requirement, either to (1 << SHIFT), or, for jumps from microMIPS to
15091 regular MIPS code, to (1 << 2). */
15092
15093 static bfd_boolean
15094 fix_bad_misaligned_jump_p (fixS *fixP, int shift)
15095 {
15096 bfd_boolean micro_to_mips_p;
15097 valueT val;
15098 int other;
15099
15100 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15101 return FALSE;
15102
15103 other = S_GET_OTHER (fixP->fx_addsy);
15104 val = S_GET_VALUE (fixP->fx_addsy) | ELF_ST_IS_COMPRESSED (other);
15105 val += fixP->fx_offset;
15106 micro_to_mips_p = (fixP->fx_r_type == BFD_RELOC_MICROMIPS_JMP
15107 && !ELF_ST_IS_MICROMIPS (other));
15108 return ((val & ((1 << (micro_to_mips_p ? 2 : shift)) - 1))
15109 != ELF_ST_IS_COMPRESSED (other));
15110 }
15111
15112 /* Return TRUE if the instruction pointed to by FIXP is an invalid branch
15113 to a symbol whose annotation indicates another ISA mode. For absolute
15114 symbols check the ISA bit instead.
15115
15116 We accept BFD_RELOC_16_PCREL_S2 relocations against MIPS16 and microMIPS
15117 symbols or BFD_RELOC_MICROMIPS_16_PCREL_S1 relocations against regular
15118 MIPS symbols and associated with BAL instructions as these instructions
15119 may be be converted to JALX by the linker. */
15120
15121 static bfd_boolean
15122 fix_bad_cross_mode_branch_p (fixS *fixP)
15123 {
15124 bfd_boolean absolute_p;
15125 unsigned long opcode;
15126 asection *symsec;
15127 valueT val;
15128 int other;
15129 char *buf;
15130
15131 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15132 return FALSE;
15133
15134 symsec = S_GET_SEGMENT (fixP->fx_addsy);
15135 absolute_p = bfd_is_abs_section (symsec);
15136
15137 val = S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset;
15138 other = S_GET_OTHER (fixP->fx_addsy);
15139
15140 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15141 opcode = read_reloc_insn (buf, fixP->fx_r_type) >> 16;
15142 switch (fixP->fx_r_type)
15143 {
15144 case BFD_RELOC_16_PCREL_S2:
15145 return ((absolute_p ? val & 1 : ELF_ST_IS_COMPRESSED (other))
15146 && opcode != 0x0411);
15147 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15148 return ((absolute_p ? !(val & 1) : !ELF_ST_IS_MICROMIPS (other))
15149 && opcode != 0x4060);
15150 case BFD_RELOC_MIPS_21_PCREL_S2:
15151 case BFD_RELOC_MIPS_26_PCREL_S2:
15152 return absolute_p ? val & 1 : ELF_ST_IS_COMPRESSED (other);
15153 case BFD_RELOC_MIPS16_16_PCREL_S1:
15154 return absolute_p ? !(val & 1) : !ELF_ST_IS_MIPS16 (other);
15155 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15156 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15157 return absolute_p ? !(val & 1) : !ELF_ST_IS_MICROMIPS (other);
15158 default:
15159 abort ();
15160 }
15161 }
15162
15163 /* Return TRUE if the symbol plus addend associated with a regular MIPS
15164 branch instruction pointed to by FIXP is not aligned according to the
15165 branch instruction's immediate field requirement. We need the addend
15166 to preserve the ISA bit and also the sum must not have bit 2 set. We
15167 must explicitly OR in the ISA bit from symbol annotation as the bit
15168 won't be set in the symbol's value then. */
15169
15170 static bfd_boolean
15171 fix_bad_misaligned_branch_p (fixS *fixP)
15172 {
15173 bfd_boolean absolute_p;
15174 asection *symsec;
15175 valueT isa_bit;
15176 valueT val;
15177 valueT off;
15178 int other;
15179
15180 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15181 return FALSE;
15182
15183 symsec = S_GET_SEGMENT (fixP->fx_addsy);
15184 absolute_p = bfd_is_abs_section (symsec);
15185
15186 val = S_GET_VALUE (fixP->fx_addsy);
15187 other = S_GET_OTHER (fixP->fx_addsy);
15188 off = fixP->fx_offset;
15189
15190 isa_bit = absolute_p ? (val + off) & 1 : ELF_ST_IS_COMPRESSED (other);
15191 val |= ELF_ST_IS_COMPRESSED (other);
15192 val += off;
15193 return (val & 0x3) != isa_bit;
15194 }
15195
15196 /* Make the necessary checks on a regular MIPS branch pointed to by FIXP
15197 and its calculated value VAL. */
15198
15199 static void
15200 fix_validate_branch (fixS *fixP, valueT val)
15201 {
15202 if (fixP->fx_done && (val & 0x3) != 0)
15203 as_bad_where (fixP->fx_file, fixP->fx_line,
15204 _("branch to misaligned address (0x%lx)"),
15205 (long) (val + md_pcrel_from (fixP)));
15206 else if (fix_bad_cross_mode_branch_p (fixP))
15207 as_bad_where (fixP->fx_file, fixP->fx_line,
15208 _("branch to a symbol in another ISA mode"));
15209 else if (fix_bad_misaligned_branch_p (fixP))
15210 as_bad_where (fixP->fx_file, fixP->fx_line,
15211 _("branch to misaligned address (0x%lx)"),
15212 (long) (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset));
15213 else if (HAVE_IN_PLACE_ADDENDS && (fixP->fx_offset & 0x3) != 0)
15214 as_bad_where (fixP->fx_file, fixP->fx_line,
15215 _("cannot encode misaligned addend "
15216 "in the relocatable field (0x%lx)"),
15217 (long) fixP->fx_offset);
15218 }
15219
15220 /* Apply a fixup to the object file. */
15221
15222 void
15223 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
15224 {
15225 char *buf;
15226 unsigned long insn;
15227 reloc_howto_type *howto;
15228
15229 if (fixP->fx_pcrel)
15230 switch (fixP->fx_r_type)
15231 {
15232 case BFD_RELOC_16_PCREL_S2:
15233 case BFD_RELOC_MIPS16_16_PCREL_S1:
15234 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15235 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15236 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15237 case BFD_RELOC_32_PCREL:
15238 case BFD_RELOC_MIPS_21_PCREL_S2:
15239 case BFD_RELOC_MIPS_26_PCREL_S2:
15240 case BFD_RELOC_MIPS_18_PCREL_S3:
15241 case BFD_RELOC_MIPS_19_PCREL_S2:
15242 case BFD_RELOC_HI16_S_PCREL:
15243 case BFD_RELOC_LO16_PCREL:
15244 break;
15245
15246 case BFD_RELOC_32:
15247 fixP->fx_r_type = BFD_RELOC_32_PCREL;
15248 break;
15249
15250 default:
15251 as_bad_where (fixP->fx_file, fixP->fx_line,
15252 _("PC-relative reference to a different section"));
15253 break;
15254 }
15255
15256 /* Handle BFD_RELOC_8, since it's easy. Punt on other bfd relocations
15257 that have no MIPS ELF equivalent. */
15258 if (fixP->fx_r_type != BFD_RELOC_8)
15259 {
15260 howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
15261 if (!howto)
15262 return;
15263 }
15264
15265 gas_assert (fixP->fx_size == 2
15266 || fixP->fx_size == 4
15267 || fixP->fx_r_type == BFD_RELOC_8
15268 || fixP->fx_r_type == BFD_RELOC_16
15269 || fixP->fx_r_type == BFD_RELOC_64
15270 || fixP->fx_r_type == BFD_RELOC_CTOR
15271 || fixP->fx_r_type == BFD_RELOC_MIPS_SUB
15272 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_SUB
15273 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
15274 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY
15275 || fixP->fx_r_type == BFD_RELOC_MIPS_TLS_DTPREL64
15276 || fixP->fx_r_type == BFD_RELOC_NONE);
15277
15278 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15279
15280 /* Don't treat parts of a composite relocation as done. There are two
15281 reasons for this:
15282
15283 (1) The second and third parts will be against 0 (RSS_UNDEF) but
15284 should nevertheless be emitted if the first part is.
15285
15286 (2) In normal usage, composite relocations are never assembly-time
15287 constants. The easiest way of dealing with the pathological
15288 exceptions is to generate a relocation against STN_UNDEF and
15289 leave everything up to the linker. */
15290 if (fixP->fx_addsy == NULL && !fixP->fx_pcrel && fixP->fx_tcbit == 0)
15291 fixP->fx_done = 1;
15292
15293 switch (fixP->fx_r_type)
15294 {
15295 case BFD_RELOC_MIPS_TLS_GD:
15296 case BFD_RELOC_MIPS_TLS_LDM:
15297 case BFD_RELOC_MIPS_TLS_DTPREL32:
15298 case BFD_RELOC_MIPS_TLS_DTPREL64:
15299 case BFD_RELOC_MIPS_TLS_DTPREL_HI16:
15300 case BFD_RELOC_MIPS_TLS_DTPREL_LO16:
15301 case BFD_RELOC_MIPS_TLS_GOTTPREL:
15302 case BFD_RELOC_MIPS_TLS_TPREL32:
15303 case BFD_RELOC_MIPS_TLS_TPREL64:
15304 case BFD_RELOC_MIPS_TLS_TPREL_HI16:
15305 case BFD_RELOC_MIPS_TLS_TPREL_LO16:
15306 case BFD_RELOC_MICROMIPS_TLS_GD:
15307 case BFD_RELOC_MICROMIPS_TLS_LDM:
15308 case BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16:
15309 case BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16:
15310 case BFD_RELOC_MICROMIPS_TLS_GOTTPREL:
15311 case BFD_RELOC_MICROMIPS_TLS_TPREL_HI16:
15312 case BFD_RELOC_MICROMIPS_TLS_TPREL_LO16:
15313 case BFD_RELOC_MIPS16_TLS_GD:
15314 case BFD_RELOC_MIPS16_TLS_LDM:
15315 case BFD_RELOC_MIPS16_TLS_DTPREL_HI16:
15316 case BFD_RELOC_MIPS16_TLS_DTPREL_LO16:
15317 case BFD_RELOC_MIPS16_TLS_GOTTPREL:
15318 case BFD_RELOC_MIPS16_TLS_TPREL_HI16:
15319 case BFD_RELOC_MIPS16_TLS_TPREL_LO16:
15320 if (fixP->fx_addsy)
15321 S_SET_THREAD_LOCAL (fixP->fx_addsy);
15322 else
15323 as_bad_where (fixP->fx_file, fixP->fx_line,
15324 _("TLS relocation against a constant"));
15325 break;
15326
15327 case BFD_RELOC_MIPS_JMP:
15328 case BFD_RELOC_MIPS16_JMP:
15329 case BFD_RELOC_MICROMIPS_JMP:
15330 {
15331 int shift;
15332
15333 gas_assert (!fixP->fx_done);
15334
15335 /* Shift is 2, unusually, for microMIPS JALX. */
15336 if (fixP->fx_r_type == BFD_RELOC_MICROMIPS_JMP
15337 && (read_compressed_insn (buf, 4) >> 26) != 0x3c)
15338 shift = 1;
15339 else
15340 shift = 2;
15341
15342 if (fix_bad_cross_mode_jump_p (fixP))
15343 as_bad_where (fixP->fx_file, fixP->fx_line,
15344 _("jump to a symbol in another ISA mode"));
15345 else if (fix_bad_same_mode_jalx_p (fixP))
15346 as_bad_where (fixP->fx_file, fixP->fx_line,
15347 _("JALX to a symbol in the same ISA mode"));
15348 else if (fix_bad_misaligned_jump_p (fixP, shift))
15349 as_bad_where (fixP->fx_file, fixP->fx_line,
15350 _("jump to misaligned address (0x%lx)"),
15351 (long) (S_GET_VALUE (fixP->fx_addsy)
15352 + fixP->fx_offset));
15353 else if (HAVE_IN_PLACE_ADDENDS
15354 && (fixP->fx_offset & ((1 << shift) - 1)) != 0)
15355 as_bad_where (fixP->fx_file, fixP->fx_line,
15356 _("cannot encode misaligned addend "
15357 "in the relocatable field (0x%lx)"),
15358 (long) fixP->fx_offset);
15359 }
15360 /* Fall through. */
15361
15362 case BFD_RELOC_MIPS_SHIFT5:
15363 case BFD_RELOC_MIPS_SHIFT6:
15364 case BFD_RELOC_MIPS_GOT_DISP:
15365 case BFD_RELOC_MIPS_GOT_PAGE:
15366 case BFD_RELOC_MIPS_GOT_OFST:
15367 case BFD_RELOC_MIPS_SUB:
15368 case BFD_RELOC_MIPS_INSERT_A:
15369 case BFD_RELOC_MIPS_INSERT_B:
15370 case BFD_RELOC_MIPS_DELETE:
15371 case BFD_RELOC_MIPS_HIGHEST:
15372 case BFD_RELOC_MIPS_HIGHER:
15373 case BFD_RELOC_MIPS_SCN_DISP:
15374 case BFD_RELOC_MIPS_REL16:
15375 case BFD_RELOC_MIPS_RELGOT:
15376 case BFD_RELOC_MIPS_JALR:
15377 case BFD_RELOC_HI16:
15378 case BFD_RELOC_HI16_S:
15379 case BFD_RELOC_LO16:
15380 case BFD_RELOC_GPREL16:
15381 case BFD_RELOC_MIPS_LITERAL:
15382 case BFD_RELOC_MIPS_CALL16:
15383 case BFD_RELOC_MIPS_GOT16:
15384 case BFD_RELOC_GPREL32:
15385 case BFD_RELOC_MIPS_GOT_HI16:
15386 case BFD_RELOC_MIPS_GOT_LO16:
15387 case BFD_RELOC_MIPS_CALL_HI16:
15388 case BFD_RELOC_MIPS_CALL_LO16:
15389 case BFD_RELOC_HI16_S_PCREL:
15390 case BFD_RELOC_LO16_PCREL:
15391 case BFD_RELOC_MIPS16_GPREL:
15392 case BFD_RELOC_MIPS16_GOT16:
15393 case BFD_RELOC_MIPS16_CALL16:
15394 case BFD_RELOC_MIPS16_HI16:
15395 case BFD_RELOC_MIPS16_HI16_S:
15396 case BFD_RELOC_MIPS16_LO16:
15397 case BFD_RELOC_MICROMIPS_GOT_DISP:
15398 case BFD_RELOC_MICROMIPS_GOT_PAGE:
15399 case BFD_RELOC_MICROMIPS_GOT_OFST:
15400 case BFD_RELOC_MICROMIPS_SUB:
15401 case BFD_RELOC_MICROMIPS_HIGHEST:
15402 case BFD_RELOC_MICROMIPS_HIGHER:
15403 case BFD_RELOC_MICROMIPS_SCN_DISP:
15404 case BFD_RELOC_MICROMIPS_JALR:
15405 case BFD_RELOC_MICROMIPS_HI16:
15406 case BFD_RELOC_MICROMIPS_HI16_S:
15407 case BFD_RELOC_MICROMIPS_LO16:
15408 case BFD_RELOC_MICROMIPS_GPREL16:
15409 case BFD_RELOC_MICROMIPS_LITERAL:
15410 case BFD_RELOC_MICROMIPS_CALL16:
15411 case BFD_RELOC_MICROMIPS_GOT16:
15412 case BFD_RELOC_MICROMIPS_GOT_HI16:
15413 case BFD_RELOC_MICROMIPS_GOT_LO16:
15414 case BFD_RELOC_MICROMIPS_CALL_HI16:
15415 case BFD_RELOC_MICROMIPS_CALL_LO16:
15416 case BFD_RELOC_MIPS_EH:
15417 if (fixP->fx_done)
15418 {
15419 offsetT value;
15420
15421 if (calculate_reloc (fixP->fx_r_type, *valP, &value))
15422 {
15423 insn = read_reloc_insn (buf, fixP->fx_r_type);
15424 if (mips16_reloc_p (fixP->fx_r_type))
15425 insn |= mips16_immed_extend (value, 16);
15426 else
15427 insn |= (value & 0xffff);
15428 write_reloc_insn (buf, fixP->fx_r_type, insn);
15429 }
15430 else
15431 as_bad_where (fixP->fx_file, fixP->fx_line,
15432 _("unsupported constant in relocation"));
15433 }
15434 break;
15435
15436 case BFD_RELOC_64:
15437 /* This is handled like BFD_RELOC_32, but we output a sign
15438 extended value if we are only 32 bits. */
15439 if (fixP->fx_done)
15440 {
15441 if (8 <= sizeof (valueT))
15442 md_number_to_chars (buf, *valP, 8);
15443 else
15444 {
15445 valueT hiv;
15446
15447 if ((*valP & 0x80000000) != 0)
15448 hiv = 0xffffffff;
15449 else
15450 hiv = 0;
15451 md_number_to_chars (buf + (target_big_endian ? 4 : 0), *valP, 4);
15452 md_number_to_chars (buf + (target_big_endian ? 0 : 4), hiv, 4);
15453 }
15454 }
15455 break;
15456
15457 case BFD_RELOC_RVA:
15458 case BFD_RELOC_32:
15459 case BFD_RELOC_32_PCREL:
15460 case BFD_RELOC_16:
15461 case BFD_RELOC_8:
15462 /* If we are deleting this reloc entry, we must fill in the
15463 value now. This can happen if we have a .word which is not
15464 resolved when it appears but is later defined. */
15465 if (fixP->fx_done)
15466 md_number_to_chars (buf, *valP, fixP->fx_size);
15467 break;
15468
15469 case BFD_RELOC_MIPS_21_PCREL_S2:
15470 fix_validate_branch (fixP, *valP);
15471 if (!fixP->fx_done)
15472 break;
15473
15474 if (*valP + 0x400000 <= 0x7fffff)
15475 {
15476 insn = read_insn (buf);
15477 insn |= (*valP >> 2) & 0x1fffff;
15478 write_insn (buf, insn);
15479 }
15480 else
15481 as_bad_where (fixP->fx_file, fixP->fx_line,
15482 _("branch out of range"));
15483 break;
15484
15485 case BFD_RELOC_MIPS_26_PCREL_S2:
15486 fix_validate_branch (fixP, *valP);
15487 if (!fixP->fx_done)
15488 break;
15489
15490 if (*valP + 0x8000000 <= 0xfffffff)
15491 {
15492 insn = read_insn (buf);
15493 insn |= (*valP >> 2) & 0x3ffffff;
15494 write_insn (buf, insn);
15495 }
15496 else
15497 as_bad_where (fixP->fx_file, fixP->fx_line,
15498 _("branch out of range"));
15499 break;
15500
15501 case BFD_RELOC_MIPS_18_PCREL_S3:
15502 if (fixP->fx_addsy && (S_GET_VALUE (fixP->fx_addsy) & 0x7) != 0)
15503 as_bad_where (fixP->fx_file, fixP->fx_line,
15504 _("PC-relative access using misaligned symbol (%lx)"),
15505 (long) S_GET_VALUE (fixP->fx_addsy));
15506 if ((fixP->fx_offset & 0x7) != 0)
15507 as_bad_where (fixP->fx_file, fixP->fx_line,
15508 _("PC-relative access using misaligned offset (%lx)"),
15509 (long) fixP->fx_offset);
15510 if (!fixP->fx_done)
15511 break;
15512
15513 if (*valP + 0x100000 <= 0x1fffff)
15514 {
15515 insn = read_insn (buf);
15516 insn |= (*valP >> 3) & 0x3ffff;
15517 write_insn (buf, insn);
15518 }
15519 else
15520 as_bad_where (fixP->fx_file, fixP->fx_line,
15521 _("PC-relative access out of range"));
15522 break;
15523
15524 case BFD_RELOC_MIPS_19_PCREL_S2:
15525 if ((*valP & 0x3) != 0)
15526 as_bad_where (fixP->fx_file, fixP->fx_line,
15527 _("PC-relative access to misaligned address (%lx)"),
15528 (long) *valP);
15529 if (!fixP->fx_done)
15530 break;
15531
15532 if (*valP + 0x100000 <= 0x1fffff)
15533 {
15534 insn = read_insn (buf);
15535 insn |= (*valP >> 2) & 0x7ffff;
15536 write_insn (buf, insn);
15537 }
15538 else
15539 as_bad_where (fixP->fx_file, fixP->fx_line,
15540 _("PC-relative access out of range"));
15541 break;
15542
15543 case BFD_RELOC_16_PCREL_S2:
15544 fix_validate_branch (fixP, *valP);
15545
15546 /* We need to save the bits in the instruction since fixup_segment()
15547 might be deleting the relocation entry (i.e., a branch within
15548 the current segment). */
15549 if (! fixP->fx_done)
15550 break;
15551
15552 /* Update old instruction data. */
15553 insn = read_insn (buf);
15554
15555 if (*valP + 0x20000 <= 0x3ffff)
15556 {
15557 insn |= (*valP >> 2) & 0xffff;
15558 write_insn (buf, insn);
15559 }
15560 else if (mips_pic == NO_PIC
15561 && fixP->fx_done
15562 && fixP->fx_frag->fr_address >= text_section->vma
15563 && (fixP->fx_frag->fr_address
15564 < text_section->vma + bfd_get_section_size (text_section))
15565 && ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
15566 || (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
15567 || (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
15568 {
15569 /* The branch offset is too large. If this is an
15570 unconditional branch, and we are not generating PIC code,
15571 we can convert it to an absolute jump instruction. */
15572 if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
15573 insn = 0x0c000000; /* jal */
15574 else
15575 insn = 0x08000000; /* j */
15576 fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
15577 fixP->fx_done = 0;
15578 fixP->fx_addsy = section_symbol (text_section);
15579 *valP += md_pcrel_from (fixP);
15580 write_insn (buf, insn);
15581 }
15582 else
15583 {
15584 /* If we got here, we have branch-relaxation disabled,
15585 and there's nothing we can do to fix this instruction
15586 without turning it into a longer sequence. */
15587 as_bad_where (fixP->fx_file, fixP->fx_line,
15588 _("branch out of range"));
15589 }
15590 break;
15591
15592 case BFD_RELOC_MIPS16_16_PCREL_S1:
15593 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15594 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15595 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15596 gas_assert (!fixP->fx_done);
15597 if (fix_bad_cross_mode_branch_p (fixP))
15598 as_bad_where (fixP->fx_file, fixP->fx_line,
15599 _("branch to a symbol in another ISA mode"));
15600 else if (fixP->fx_addsy
15601 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
15602 && !bfd_is_abs_section (S_GET_SEGMENT (fixP->fx_addsy))
15603 && (fixP->fx_offset & 0x1) != 0)
15604 as_bad_where (fixP->fx_file, fixP->fx_line,
15605 _("branch to misaligned address (0x%lx)"),
15606 (long) (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset));
15607 else if (HAVE_IN_PLACE_ADDENDS && (fixP->fx_offset & 0x1) != 0)
15608 as_bad_where (fixP->fx_file, fixP->fx_line,
15609 _("cannot encode misaligned addend "
15610 "in the relocatable field (0x%lx)"),
15611 (long) fixP->fx_offset);
15612 break;
15613
15614 case BFD_RELOC_VTABLE_INHERIT:
15615 fixP->fx_done = 0;
15616 if (fixP->fx_addsy
15617 && !S_IS_DEFINED (fixP->fx_addsy)
15618 && !S_IS_WEAK (fixP->fx_addsy))
15619 S_SET_WEAK (fixP->fx_addsy);
15620 break;
15621
15622 case BFD_RELOC_NONE:
15623 case BFD_RELOC_VTABLE_ENTRY:
15624 fixP->fx_done = 0;
15625 break;
15626
15627 default:
15628 abort ();
15629 }
15630
15631 /* Remember value for tc_gen_reloc. */
15632 fixP->fx_addnumber = *valP;
15633 }
15634
15635 static symbolS *
15636 get_symbol (void)
15637 {
15638 int c;
15639 char *name;
15640 symbolS *p;
15641
15642 c = get_symbol_name (&name);
15643 p = (symbolS *) symbol_find_or_make (name);
15644 (void) restore_line_pointer (c);
15645 return p;
15646 }
15647
15648 /* Align the current frag to a given power of two. If a particular
15649 fill byte should be used, FILL points to an integer that contains
15650 that byte, otherwise FILL is null.
15651
15652 This function used to have the comment:
15653
15654 The MIPS assembler also automatically adjusts any preceding label.
15655
15656 The implementation therefore applied the adjustment to a maximum of
15657 one label. However, other label adjustments are applied to batches
15658 of labels, and adjusting just one caused problems when new labels
15659 were added for the sake of debugging or unwind information.
15660 We therefore adjust all preceding labels (given as LABELS) instead. */
15661
15662 static void
15663 mips_align (int to, int *fill, struct insn_label_list *labels)
15664 {
15665 mips_emit_delays ();
15666 mips_record_compressed_mode ();
15667 if (fill == NULL && subseg_text_p (now_seg))
15668 frag_align_code (to, 0);
15669 else
15670 frag_align (to, fill ? *fill : 0, 0);
15671 record_alignment (now_seg, to);
15672 mips_move_labels (labels, FALSE);
15673 }
15674
15675 /* Align to a given power of two. .align 0 turns off the automatic
15676 alignment used by the data creating pseudo-ops. */
15677
15678 static void
15679 s_align (int x ATTRIBUTE_UNUSED)
15680 {
15681 int temp, fill_value, *fill_ptr;
15682 long max_alignment = 28;
15683
15684 /* o Note that the assembler pulls down any immediately preceding label
15685 to the aligned address.
15686 o It's not documented but auto alignment is reinstated by
15687 a .align pseudo instruction.
15688 o Note also that after auto alignment is turned off the mips assembler
15689 issues an error on attempt to assemble an improperly aligned data item.
15690 We don't. */
15691
15692 temp = get_absolute_expression ();
15693 if (temp > max_alignment)
15694 as_bad (_("alignment too large, %d assumed"), temp = max_alignment);
15695 else if (temp < 0)
15696 {
15697 as_warn (_("alignment negative, 0 assumed"));
15698 temp = 0;
15699 }
15700 if (*input_line_pointer == ',')
15701 {
15702 ++input_line_pointer;
15703 fill_value = get_absolute_expression ();
15704 fill_ptr = &fill_value;
15705 }
15706 else
15707 fill_ptr = 0;
15708 if (temp)
15709 {
15710 segment_info_type *si = seg_info (now_seg);
15711 struct insn_label_list *l = si->label_list;
15712 /* Auto alignment should be switched on by next section change. */
15713 auto_align = 1;
15714 mips_align (temp, fill_ptr, l);
15715 }
15716 else
15717 {
15718 auto_align = 0;
15719 }
15720
15721 demand_empty_rest_of_line ();
15722 }
15723
15724 static void
15725 s_change_sec (int sec)
15726 {
15727 segT seg;
15728
15729 /* The ELF backend needs to know that we are changing sections, so
15730 that .previous works correctly. We could do something like check
15731 for an obj_section_change_hook macro, but that might be confusing
15732 as it would not be appropriate to use it in the section changing
15733 functions in read.c, since obj-elf.c intercepts those. FIXME:
15734 This should be cleaner, somehow. */
15735 obj_elf_section_change_hook ();
15736
15737 mips_emit_delays ();
15738
15739 switch (sec)
15740 {
15741 case 't':
15742 s_text (0);
15743 break;
15744 case 'd':
15745 s_data (0);
15746 break;
15747 case 'b':
15748 subseg_set (bss_section, (subsegT) get_absolute_expression ());
15749 demand_empty_rest_of_line ();
15750 break;
15751
15752 case 'r':
15753 seg = subseg_new (RDATA_SECTION_NAME,
15754 (subsegT) get_absolute_expression ());
15755 bfd_set_section_flags (stdoutput, seg, (SEC_ALLOC | SEC_LOAD
15756 | SEC_READONLY | SEC_RELOC
15757 | SEC_DATA));
15758 if (strncmp (TARGET_OS, "elf", 3) != 0)
15759 record_alignment (seg, 4);
15760 demand_empty_rest_of_line ();
15761 break;
15762
15763 case 's':
15764 seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
15765 bfd_set_section_flags (stdoutput, seg,
15766 SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA);
15767 if (strncmp (TARGET_OS, "elf", 3) != 0)
15768 record_alignment (seg, 4);
15769 demand_empty_rest_of_line ();
15770 break;
15771
15772 case 'B':
15773 seg = subseg_new (".sbss", (subsegT) get_absolute_expression ());
15774 bfd_set_section_flags (stdoutput, seg, SEC_ALLOC);
15775 if (strncmp (TARGET_OS, "elf", 3) != 0)
15776 record_alignment (seg, 4);
15777 demand_empty_rest_of_line ();
15778 break;
15779 }
15780
15781 auto_align = 1;
15782 }
15783
15784 void
15785 s_change_section (int ignore ATTRIBUTE_UNUSED)
15786 {
15787 char *saved_ilp;
15788 char *section_name;
15789 char c, endc;
15790 char next_c = 0;
15791 int section_type;
15792 int section_flag;
15793 int section_entry_size;
15794 int section_alignment;
15795
15796 saved_ilp = input_line_pointer;
15797 endc = get_symbol_name (&section_name);
15798 c = (endc == '"' ? input_line_pointer[1] : endc);
15799 if (c)
15800 next_c = input_line_pointer [(endc == '"' ? 2 : 1)];
15801
15802 /* Do we have .section Name<,"flags">? */
15803 if (c != ',' || (c == ',' && next_c == '"'))
15804 {
15805 /* Just after name is now '\0'. */
15806 (void) restore_line_pointer (endc);
15807 input_line_pointer = saved_ilp;
15808 obj_elf_section (ignore);
15809 return;
15810 }
15811
15812 section_name = xstrdup (section_name);
15813 c = restore_line_pointer (endc);
15814
15815 input_line_pointer++;
15816
15817 /* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
15818 if (c == ',')
15819 section_type = get_absolute_expression ();
15820 else
15821 section_type = 0;
15822
15823 if (*input_line_pointer++ == ',')
15824 section_flag = get_absolute_expression ();
15825 else
15826 section_flag = 0;
15827
15828 if (*input_line_pointer++ == ',')
15829 section_entry_size = get_absolute_expression ();
15830 else
15831 section_entry_size = 0;
15832
15833 if (*input_line_pointer++ == ',')
15834 section_alignment = get_absolute_expression ();
15835 else
15836 section_alignment = 0;
15837
15838 /* FIXME: really ignore? */
15839 (void) section_alignment;
15840
15841 /* When using the generic form of .section (as implemented by obj-elf.c),
15842 there's no way to set the section type to SHT_MIPS_DWARF. Users have
15843 traditionally had to fall back on the more common @progbits instead.
15844
15845 There's nothing really harmful in this, since bfd will correct
15846 SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
15847 means that, for backwards compatibility, the special_section entries
15848 for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
15849
15850 Even so, we shouldn't force users of the MIPS .section syntax to
15851 incorrectly label the sections as SHT_PROGBITS. The best compromise
15852 seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
15853 generic type-checking code. */
15854 if (section_type == SHT_MIPS_DWARF)
15855 section_type = SHT_PROGBITS;
15856
15857 obj_elf_change_section (section_name, section_type, section_flag,
15858 section_entry_size, 0, 0, 0);
15859
15860 if (now_seg->name != section_name)
15861 free (section_name);
15862 }
15863
15864 void
15865 mips_enable_auto_align (void)
15866 {
15867 auto_align = 1;
15868 }
15869
15870 static void
15871 s_cons (int log_size)
15872 {
15873 segment_info_type *si = seg_info (now_seg);
15874 struct insn_label_list *l = si->label_list;
15875
15876 mips_emit_delays ();
15877 if (log_size > 0 && auto_align)
15878 mips_align (log_size, 0, l);
15879 cons (1 << log_size);
15880 mips_clear_insn_labels ();
15881 }
15882
15883 static void
15884 s_float_cons (int type)
15885 {
15886 segment_info_type *si = seg_info (now_seg);
15887 struct insn_label_list *l = si->label_list;
15888
15889 mips_emit_delays ();
15890
15891 if (auto_align)
15892 {
15893 if (type == 'd')
15894 mips_align (3, 0, l);
15895 else
15896 mips_align (2, 0, l);
15897 }
15898
15899 float_cons (type);
15900 mips_clear_insn_labels ();
15901 }
15902
15903 /* Handle .globl. We need to override it because on Irix 5 you are
15904 permitted to say
15905 .globl foo .text
15906 where foo is an undefined symbol, to mean that foo should be
15907 considered to be the address of a function. */
15908
15909 static void
15910 s_mips_globl (int x ATTRIBUTE_UNUSED)
15911 {
15912 char *name;
15913 int c;
15914 symbolS *symbolP;
15915 flagword flag;
15916
15917 do
15918 {
15919 c = get_symbol_name (&name);
15920 symbolP = symbol_find_or_make (name);
15921 S_SET_EXTERNAL (symbolP);
15922
15923 *input_line_pointer = c;
15924 SKIP_WHITESPACE_AFTER_NAME ();
15925
15926 /* On Irix 5, every global symbol that is not explicitly labelled as
15927 being a function is apparently labelled as being an object. */
15928 flag = BSF_OBJECT;
15929
15930 if (!is_end_of_line[(unsigned char) *input_line_pointer]
15931 && (*input_line_pointer != ','))
15932 {
15933 char *secname;
15934 asection *sec;
15935
15936 c = get_symbol_name (&secname);
15937 sec = bfd_get_section_by_name (stdoutput, secname);
15938 if (sec == NULL)
15939 as_bad (_("%s: no such section"), secname);
15940 (void) restore_line_pointer (c);
15941
15942 if (sec != NULL && (sec->flags & SEC_CODE) != 0)
15943 flag = BSF_FUNCTION;
15944 }
15945
15946 symbol_get_bfdsym (symbolP)->flags |= flag;
15947
15948 c = *input_line_pointer;
15949 if (c == ',')
15950 {
15951 input_line_pointer++;
15952 SKIP_WHITESPACE ();
15953 if (is_end_of_line[(unsigned char) *input_line_pointer])
15954 c = '\n';
15955 }
15956 }
15957 while (c == ',');
15958
15959 demand_empty_rest_of_line ();
15960 }
15961
15962 static void
15963 s_option (int x ATTRIBUTE_UNUSED)
15964 {
15965 char *opt;
15966 char c;
15967
15968 c = get_symbol_name (&opt);
15969
15970 if (*opt == 'O')
15971 {
15972 /* FIXME: What does this mean? */
15973 }
15974 else if (strncmp (opt, "pic", 3) == 0 && ISDIGIT (opt[3]) && opt[4] == '\0')
15975 {
15976 int i;
15977
15978 i = atoi (opt + 3);
15979 if (i != 0 && i != 2)
15980 as_bad (_(".option pic%d not supported"), i);
15981 else if (mips_pic == VXWORKS_PIC)
15982 as_bad (_(".option pic%d not supported in VxWorks PIC mode"), i);
15983 else if (i == 0)
15984 mips_pic = NO_PIC;
15985 else if (i == 2)
15986 {
15987 mips_pic = SVR4_PIC;
15988 mips_abicalls = TRUE;
15989 }
15990
15991 if (mips_pic == SVR4_PIC)
15992 {
15993 if (g_switch_seen && g_switch_value != 0)
15994 as_warn (_("-G may not be used with SVR4 PIC code"));
15995 g_switch_value = 0;
15996 bfd_set_gp_size (stdoutput, 0);
15997 }
15998 }
15999 else
16000 as_warn (_("unrecognized option \"%s\""), opt);
16001
16002 (void) restore_line_pointer (c);
16003 demand_empty_rest_of_line ();
16004 }
16005
16006 /* This structure is used to hold a stack of .set values. */
16007
16008 struct mips_option_stack
16009 {
16010 struct mips_option_stack *next;
16011 struct mips_set_options options;
16012 };
16013
16014 static struct mips_option_stack *mips_opts_stack;
16015
16016 /* Return status for .set/.module option handling. */
16017
16018 enum code_option_type
16019 {
16020 /* Unrecognized option. */
16021 OPTION_TYPE_BAD = -1,
16022
16023 /* Ordinary option. */
16024 OPTION_TYPE_NORMAL,
16025
16026 /* ISA changing option. */
16027 OPTION_TYPE_ISA
16028 };
16029
16030 /* Handle common .set/.module options. Return status indicating option
16031 type. */
16032
16033 static enum code_option_type
16034 parse_code_option (char * name)
16035 {
16036 bfd_boolean isa_set = FALSE;
16037 const struct mips_ase *ase;
16038
16039 if (strncmp (name, "at=", 3) == 0)
16040 {
16041 char *s = name + 3;
16042
16043 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &mips_opts.at))
16044 as_bad (_("unrecognized register name `%s'"), s);
16045 }
16046 else if (strcmp (name, "at") == 0)
16047 mips_opts.at = ATREG;
16048 else if (strcmp (name, "noat") == 0)
16049 mips_opts.at = ZERO;
16050 else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
16051 mips_opts.nomove = 0;
16052 else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
16053 mips_opts.nomove = 1;
16054 else if (strcmp (name, "bopt") == 0)
16055 mips_opts.nobopt = 0;
16056 else if (strcmp (name, "nobopt") == 0)
16057 mips_opts.nobopt = 1;
16058 else if (strcmp (name, "gp=32") == 0)
16059 mips_opts.gp = 32;
16060 else if (strcmp (name, "gp=64") == 0)
16061 mips_opts.gp = 64;
16062 else if (strcmp (name, "fp=32") == 0)
16063 mips_opts.fp = 32;
16064 else if (strcmp (name, "fp=xx") == 0)
16065 mips_opts.fp = 0;
16066 else if (strcmp (name, "fp=64") == 0)
16067 mips_opts.fp = 64;
16068 else if (strcmp (name, "softfloat") == 0)
16069 mips_opts.soft_float = 1;
16070 else if (strcmp (name, "hardfloat") == 0)
16071 mips_opts.soft_float = 0;
16072 else if (strcmp (name, "singlefloat") == 0)
16073 mips_opts.single_float = 1;
16074 else if (strcmp (name, "doublefloat") == 0)
16075 mips_opts.single_float = 0;
16076 else if (strcmp (name, "nooddspreg") == 0)
16077 mips_opts.oddspreg = 0;
16078 else if (strcmp (name, "oddspreg") == 0)
16079 mips_opts.oddspreg = 1;
16080 else if (strcmp (name, "mips16") == 0
16081 || strcmp (name, "MIPS-16") == 0)
16082 mips_opts.mips16 = 1;
16083 else if (strcmp (name, "nomips16") == 0
16084 || strcmp (name, "noMIPS-16") == 0)
16085 mips_opts.mips16 = 0;
16086 else if (strcmp (name, "micromips") == 0)
16087 mips_opts.micromips = 1;
16088 else if (strcmp (name, "nomicromips") == 0)
16089 mips_opts.micromips = 0;
16090 else if (name[0] == 'n'
16091 && name[1] == 'o'
16092 && (ase = mips_lookup_ase (name + 2)))
16093 mips_set_ase (ase, &mips_opts, FALSE);
16094 else if ((ase = mips_lookup_ase (name)))
16095 mips_set_ase (ase, &mips_opts, TRUE);
16096 else if (strncmp (name, "mips", 4) == 0 || strncmp (name, "arch=", 5) == 0)
16097 {
16098 /* Permit the user to change the ISA and architecture on the fly.
16099 Needless to say, misuse can cause serious problems. */
16100 if (strncmp (name, "arch=", 5) == 0)
16101 {
16102 const struct mips_cpu_info *p;
16103
16104 p = mips_parse_cpu ("internal use", name + 5);
16105 if (!p)
16106 as_bad (_("unknown architecture %s"), name + 5);
16107 else
16108 {
16109 mips_opts.arch = p->cpu;
16110 mips_opts.isa = p->isa;
16111 isa_set = TRUE;
16112 }
16113 }
16114 else if (strncmp (name, "mips", 4) == 0)
16115 {
16116 const struct mips_cpu_info *p;
16117
16118 p = mips_parse_cpu ("internal use", name);
16119 if (!p)
16120 as_bad (_("unknown ISA level %s"), name + 4);
16121 else
16122 {
16123 mips_opts.arch = p->cpu;
16124 mips_opts.isa = p->isa;
16125 isa_set = TRUE;
16126 }
16127 }
16128 else
16129 as_bad (_("unknown ISA or architecture %s"), name);
16130 }
16131 else if (strcmp (name, "autoextend") == 0)
16132 mips_opts.noautoextend = 0;
16133 else if (strcmp (name, "noautoextend") == 0)
16134 mips_opts.noautoextend = 1;
16135 else if (strcmp (name, "insn32") == 0)
16136 mips_opts.insn32 = TRUE;
16137 else if (strcmp (name, "noinsn32") == 0)
16138 mips_opts.insn32 = FALSE;
16139 else if (strcmp (name, "sym32") == 0)
16140 mips_opts.sym32 = TRUE;
16141 else if (strcmp (name, "nosym32") == 0)
16142 mips_opts.sym32 = FALSE;
16143 else
16144 return OPTION_TYPE_BAD;
16145
16146 return isa_set ? OPTION_TYPE_ISA : OPTION_TYPE_NORMAL;
16147 }
16148
16149 /* Handle the .set pseudo-op. */
16150
16151 static void
16152 s_mipsset (int x ATTRIBUTE_UNUSED)
16153 {
16154 enum code_option_type type = OPTION_TYPE_NORMAL;
16155 char *name = input_line_pointer, ch;
16156
16157 file_mips_check_options ();
16158
16159 while (!is_end_of_line[(unsigned char) *input_line_pointer])
16160 ++input_line_pointer;
16161 ch = *input_line_pointer;
16162 *input_line_pointer = '\0';
16163
16164 if (strchr (name, ','))
16165 {
16166 /* Generic ".set" directive; use the generic handler. */
16167 *input_line_pointer = ch;
16168 input_line_pointer = name;
16169 s_set (0);
16170 return;
16171 }
16172
16173 if (strcmp (name, "reorder") == 0)
16174 {
16175 if (mips_opts.noreorder)
16176 end_noreorder ();
16177 }
16178 else if (strcmp (name, "noreorder") == 0)
16179 {
16180 if (!mips_opts.noreorder)
16181 start_noreorder ();
16182 }
16183 else if (strcmp (name, "macro") == 0)
16184 mips_opts.warn_about_macros = 0;
16185 else if (strcmp (name, "nomacro") == 0)
16186 {
16187 if (mips_opts.noreorder == 0)
16188 as_bad (_("`noreorder' must be set before `nomacro'"));
16189 mips_opts.warn_about_macros = 1;
16190 }
16191 else if (strcmp (name, "gp=default") == 0)
16192 mips_opts.gp = file_mips_opts.gp;
16193 else if (strcmp (name, "fp=default") == 0)
16194 mips_opts.fp = file_mips_opts.fp;
16195 else if (strcmp (name, "mips0") == 0 || strcmp (name, "arch=default") == 0)
16196 {
16197 mips_opts.isa = file_mips_opts.isa;
16198 mips_opts.arch = file_mips_opts.arch;
16199 mips_opts.gp = file_mips_opts.gp;
16200 mips_opts.fp = file_mips_opts.fp;
16201 }
16202 else if (strcmp (name, "push") == 0)
16203 {
16204 struct mips_option_stack *s;
16205
16206 s = XNEW (struct mips_option_stack);
16207 s->next = mips_opts_stack;
16208 s->options = mips_opts;
16209 mips_opts_stack = s;
16210 }
16211 else if (strcmp (name, "pop") == 0)
16212 {
16213 struct mips_option_stack *s;
16214
16215 s = mips_opts_stack;
16216 if (s == NULL)
16217 as_bad (_(".set pop with no .set push"));
16218 else
16219 {
16220 /* If we're changing the reorder mode we need to handle
16221 delay slots correctly. */
16222 if (s->options.noreorder && ! mips_opts.noreorder)
16223 start_noreorder ();
16224 else if (! s->options.noreorder && mips_opts.noreorder)
16225 end_noreorder ();
16226
16227 mips_opts = s->options;
16228 mips_opts_stack = s->next;
16229 free (s);
16230 }
16231 }
16232 else
16233 {
16234 type = parse_code_option (name);
16235 if (type == OPTION_TYPE_BAD)
16236 as_warn (_("tried to set unrecognized symbol: %s\n"), name);
16237 }
16238
16239 /* The use of .set [arch|cpu]= historically 'fixes' the width of gp and fp
16240 registers based on what is supported by the arch/cpu. */
16241 if (type == OPTION_TYPE_ISA)
16242 {
16243 switch (mips_opts.isa)
16244 {
16245 case 0:
16246 break;
16247 case ISA_MIPS1:
16248 /* MIPS I cannot support FPXX. */
16249 mips_opts.fp = 32;
16250 /* fall-through. */
16251 case ISA_MIPS2:
16252 case ISA_MIPS32:
16253 case ISA_MIPS32R2:
16254 case ISA_MIPS32R3:
16255 case ISA_MIPS32R5:
16256 mips_opts.gp = 32;
16257 if (mips_opts.fp != 0)
16258 mips_opts.fp = 32;
16259 break;
16260 case ISA_MIPS32R6:
16261 mips_opts.gp = 32;
16262 mips_opts.fp = 64;
16263 break;
16264 case ISA_MIPS3:
16265 case ISA_MIPS4:
16266 case ISA_MIPS5:
16267 case ISA_MIPS64:
16268 case ISA_MIPS64R2:
16269 case ISA_MIPS64R3:
16270 case ISA_MIPS64R5:
16271 case ISA_MIPS64R6:
16272 mips_opts.gp = 64;
16273 if (mips_opts.fp != 0)
16274 {
16275 if (mips_opts.arch == CPU_R5900)
16276 mips_opts.fp = 32;
16277 else
16278 mips_opts.fp = 64;
16279 }
16280 break;
16281 default:
16282 as_bad (_("unknown ISA level %s"), name + 4);
16283 break;
16284 }
16285 }
16286
16287 mips_check_options (&mips_opts, FALSE);
16288
16289 mips_check_isa_supports_ases ();
16290 *input_line_pointer = ch;
16291 demand_empty_rest_of_line ();
16292 }
16293
16294 /* Handle the .module pseudo-op. */
16295
16296 static void
16297 s_module (int ignore ATTRIBUTE_UNUSED)
16298 {
16299 char *name = input_line_pointer, ch;
16300
16301 while (!is_end_of_line[(unsigned char) *input_line_pointer])
16302 ++input_line_pointer;
16303 ch = *input_line_pointer;
16304 *input_line_pointer = '\0';
16305
16306 if (!file_mips_opts_checked)
16307 {
16308 if (parse_code_option (name) == OPTION_TYPE_BAD)
16309 as_bad (_(".module used with unrecognized symbol: %s\n"), name);
16310
16311 /* Update module level settings from mips_opts. */
16312 file_mips_opts = mips_opts;
16313 }
16314 else
16315 as_bad (_(".module is not permitted after generating code"));
16316
16317 *input_line_pointer = ch;
16318 demand_empty_rest_of_line ();
16319 }
16320
16321 /* Handle the .abicalls pseudo-op. I believe this is equivalent to
16322 .option pic2. It means to generate SVR4 PIC calls. */
16323
16324 static void
16325 s_abicalls (int ignore ATTRIBUTE_UNUSED)
16326 {
16327 mips_pic = SVR4_PIC;
16328 mips_abicalls = TRUE;
16329
16330 if (g_switch_seen && g_switch_value != 0)
16331 as_warn (_("-G may not be used with SVR4 PIC code"));
16332 g_switch_value = 0;
16333
16334 bfd_set_gp_size (stdoutput, 0);
16335 demand_empty_rest_of_line ();
16336 }
16337
16338 /* Handle the .cpload pseudo-op. This is used when generating SVR4
16339 PIC code. It sets the $gp register for the function based on the
16340 function address, which is in the register named in the argument.
16341 This uses a relocation against _gp_disp, which is handled specially
16342 by the linker. The result is:
16343 lui $gp,%hi(_gp_disp)
16344 addiu $gp,$gp,%lo(_gp_disp)
16345 addu $gp,$gp,.cpload argument
16346 The .cpload argument is normally $25 == $t9.
16347
16348 The -mno-shared option changes this to:
16349 lui $gp,%hi(__gnu_local_gp)
16350 addiu $gp,$gp,%lo(__gnu_local_gp)
16351 and the argument is ignored. This saves an instruction, but the
16352 resulting code is not position independent; it uses an absolute
16353 address for __gnu_local_gp. Thus code assembled with -mno-shared
16354 can go into an ordinary executable, but not into a shared library. */
16355
16356 static void
16357 s_cpload (int ignore ATTRIBUTE_UNUSED)
16358 {
16359 expressionS ex;
16360 int reg;
16361 int in_shared;
16362
16363 file_mips_check_options ();
16364
16365 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
16366 .cpload is ignored. */
16367 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
16368 {
16369 s_ignore (0);
16370 return;
16371 }
16372
16373 if (mips_opts.mips16)
16374 {
16375 as_bad (_("%s not supported in MIPS16 mode"), ".cpload");
16376 ignore_rest_of_line ();
16377 return;
16378 }
16379
16380 /* .cpload should be in a .set noreorder section. */
16381 if (mips_opts.noreorder == 0)
16382 as_warn (_(".cpload not in noreorder section"));
16383
16384 reg = tc_get_register (0);
16385
16386 /* If we need to produce a 64-bit address, we are better off using
16387 the default instruction sequence. */
16388 in_shared = mips_in_shared || HAVE_64BIT_SYMBOLS;
16389
16390 ex.X_op = O_symbol;
16391 ex.X_add_symbol = symbol_find_or_make (in_shared ? "_gp_disp" :
16392 "__gnu_local_gp");
16393 ex.X_op_symbol = NULL;
16394 ex.X_add_number = 0;
16395
16396 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
16397 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
16398
16399 mips_mark_labels ();
16400 mips_assembling_insn = TRUE;
16401
16402 macro_start ();
16403 macro_build_lui (&ex, mips_gp_register);
16404 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
16405 mips_gp_register, BFD_RELOC_LO16);
16406 if (in_shared)
16407 macro_build (NULL, "addu", "d,v,t", mips_gp_register,
16408 mips_gp_register, reg);
16409 macro_end ();
16410
16411 mips_assembling_insn = FALSE;
16412 demand_empty_rest_of_line ();
16413 }
16414
16415 /* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
16416 .cpsetup $reg1, offset|$reg2, label
16417
16418 If offset is given, this results in:
16419 sd $gp, offset($sp)
16420 lui $gp, %hi(%neg(%gp_rel(label)))
16421 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
16422 daddu $gp, $gp, $reg1
16423
16424 If $reg2 is given, this results in:
16425 or $reg2, $gp, $0
16426 lui $gp, %hi(%neg(%gp_rel(label)))
16427 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
16428 daddu $gp, $gp, $reg1
16429 $reg1 is normally $25 == $t9.
16430
16431 The -mno-shared option replaces the last three instructions with
16432 lui $gp,%hi(_gp)
16433 addiu $gp,$gp,%lo(_gp) */
16434
16435 static void
16436 s_cpsetup (int ignore ATTRIBUTE_UNUSED)
16437 {
16438 expressionS ex_off;
16439 expressionS ex_sym;
16440 int reg1;
16441
16442 file_mips_check_options ();
16443
16444 /* If we are not generating SVR4 PIC code, .cpsetup is ignored.
16445 We also need NewABI support. */
16446 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16447 {
16448 s_ignore (0);
16449 return;
16450 }
16451
16452 if (mips_opts.mips16)
16453 {
16454 as_bad (_("%s not supported in MIPS16 mode"), ".cpsetup");
16455 ignore_rest_of_line ();
16456 return;
16457 }
16458
16459 reg1 = tc_get_register (0);
16460 SKIP_WHITESPACE ();
16461 if (*input_line_pointer != ',')
16462 {
16463 as_bad (_("missing argument separator ',' for .cpsetup"));
16464 return;
16465 }
16466 else
16467 ++input_line_pointer;
16468 SKIP_WHITESPACE ();
16469 if (*input_line_pointer == '$')
16470 {
16471 mips_cpreturn_register = tc_get_register (0);
16472 mips_cpreturn_offset = -1;
16473 }
16474 else
16475 {
16476 mips_cpreturn_offset = get_absolute_expression ();
16477 mips_cpreturn_register = -1;
16478 }
16479 SKIP_WHITESPACE ();
16480 if (*input_line_pointer != ',')
16481 {
16482 as_bad (_("missing argument separator ',' for .cpsetup"));
16483 return;
16484 }
16485 else
16486 ++input_line_pointer;
16487 SKIP_WHITESPACE ();
16488 expression (&ex_sym);
16489
16490 mips_mark_labels ();
16491 mips_assembling_insn = TRUE;
16492
16493 macro_start ();
16494 if (mips_cpreturn_register == -1)
16495 {
16496 ex_off.X_op = O_constant;
16497 ex_off.X_add_symbol = NULL;
16498 ex_off.X_op_symbol = NULL;
16499 ex_off.X_add_number = mips_cpreturn_offset;
16500
16501 macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register,
16502 BFD_RELOC_LO16, SP);
16503 }
16504 else
16505 move_register (mips_cpreturn_register, mips_gp_register);
16506
16507 if (mips_in_shared || HAVE_64BIT_SYMBOLS)
16508 {
16509 macro_build (&ex_sym, "lui", LUI_FMT, mips_gp_register,
16510 -1, BFD_RELOC_GPREL16, BFD_RELOC_MIPS_SUB,
16511 BFD_RELOC_HI16_S);
16512
16513 macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register,
16514 mips_gp_register, -1, BFD_RELOC_GPREL16,
16515 BFD_RELOC_MIPS_SUB, BFD_RELOC_LO16);
16516
16517 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register,
16518 mips_gp_register, reg1);
16519 }
16520 else
16521 {
16522 expressionS ex;
16523
16524 ex.X_op = O_symbol;
16525 ex.X_add_symbol = symbol_find_or_make ("__gnu_local_gp");
16526 ex.X_op_symbol = NULL;
16527 ex.X_add_number = 0;
16528
16529 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
16530 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
16531
16532 macro_build_lui (&ex, mips_gp_register);
16533 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
16534 mips_gp_register, BFD_RELOC_LO16);
16535 }
16536
16537 macro_end ();
16538
16539 mips_assembling_insn = FALSE;
16540 demand_empty_rest_of_line ();
16541 }
16542
16543 static void
16544 s_cplocal (int ignore ATTRIBUTE_UNUSED)
16545 {
16546 file_mips_check_options ();
16547
16548 /* If we are not generating SVR4 PIC code, or if this is not NewABI code,
16549 .cplocal is ignored. */
16550 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16551 {
16552 s_ignore (0);
16553 return;
16554 }
16555
16556 if (mips_opts.mips16)
16557 {
16558 as_bad (_("%s not supported in MIPS16 mode"), ".cplocal");
16559 ignore_rest_of_line ();
16560 return;
16561 }
16562
16563 mips_gp_register = tc_get_register (0);
16564 demand_empty_rest_of_line ();
16565 }
16566
16567 /* Handle the .cprestore pseudo-op. This stores $gp into a given
16568 offset from $sp. The offset is remembered, and after making a PIC
16569 call $gp is restored from that location. */
16570
16571 static void
16572 s_cprestore (int ignore ATTRIBUTE_UNUSED)
16573 {
16574 expressionS ex;
16575
16576 file_mips_check_options ();
16577
16578 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
16579 .cprestore is ignored. */
16580 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
16581 {
16582 s_ignore (0);
16583 return;
16584 }
16585
16586 if (mips_opts.mips16)
16587 {
16588 as_bad (_("%s not supported in MIPS16 mode"), ".cprestore");
16589 ignore_rest_of_line ();
16590 return;
16591 }
16592
16593 mips_cprestore_offset = get_absolute_expression ();
16594 mips_cprestore_valid = 1;
16595
16596 ex.X_op = O_constant;
16597 ex.X_add_symbol = NULL;
16598 ex.X_op_symbol = NULL;
16599 ex.X_add_number = mips_cprestore_offset;
16600
16601 mips_mark_labels ();
16602 mips_assembling_insn = TRUE;
16603
16604 macro_start ();
16605 macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register,
16606 SP, HAVE_64BIT_ADDRESSES);
16607 macro_end ();
16608
16609 mips_assembling_insn = FALSE;
16610 demand_empty_rest_of_line ();
16611 }
16612
16613 /* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
16614 was given in the preceding .cpsetup, it results in:
16615 ld $gp, offset($sp)
16616
16617 If a register $reg2 was given there, it results in:
16618 or $gp, $reg2, $0 */
16619
16620 static void
16621 s_cpreturn (int ignore ATTRIBUTE_UNUSED)
16622 {
16623 expressionS ex;
16624
16625 file_mips_check_options ();
16626
16627 /* If we are not generating SVR4 PIC code, .cpreturn is ignored.
16628 We also need NewABI support. */
16629 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16630 {
16631 s_ignore (0);
16632 return;
16633 }
16634
16635 if (mips_opts.mips16)
16636 {
16637 as_bad (_("%s not supported in MIPS16 mode"), ".cpreturn");
16638 ignore_rest_of_line ();
16639 return;
16640 }
16641
16642 mips_mark_labels ();
16643 mips_assembling_insn = TRUE;
16644
16645 macro_start ();
16646 if (mips_cpreturn_register == -1)
16647 {
16648 ex.X_op = O_constant;
16649 ex.X_add_symbol = NULL;
16650 ex.X_op_symbol = NULL;
16651 ex.X_add_number = mips_cpreturn_offset;
16652
16653 macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP);
16654 }
16655 else
16656 move_register (mips_gp_register, mips_cpreturn_register);
16657
16658 macro_end ();
16659
16660 mips_assembling_insn = FALSE;
16661 demand_empty_rest_of_line ();
16662 }
16663
16664 /* Handle a .dtprelword, .dtpreldword, .tprelword, or .tpreldword
16665 pseudo-op; DIRSTR says which. The pseudo-op generates a BYTES-size
16666 DTP- or TP-relative relocation of type RTYPE, for use in either DWARF
16667 debug information or MIPS16 TLS. */
16668
16669 static void
16670 s_tls_rel_directive (const size_t bytes, const char *dirstr,
16671 bfd_reloc_code_real_type rtype)
16672 {
16673 expressionS ex;
16674 char *p;
16675
16676 expression (&ex);
16677
16678 if (ex.X_op != O_symbol)
16679 {
16680 as_bad (_("unsupported use of %s"), dirstr);
16681 ignore_rest_of_line ();
16682 }
16683
16684 p = frag_more (bytes);
16685 md_number_to_chars (p, 0, bytes);
16686 fix_new_exp (frag_now, p - frag_now->fr_literal, bytes, &ex, FALSE, rtype);
16687 demand_empty_rest_of_line ();
16688 mips_clear_insn_labels ();
16689 }
16690
16691 /* Handle .dtprelword. */
16692
16693 static void
16694 s_dtprelword (int ignore ATTRIBUTE_UNUSED)
16695 {
16696 s_tls_rel_directive (4, ".dtprelword", BFD_RELOC_MIPS_TLS_DTPREL32);
16697 }
16698
16699 /* Handle .dtpreldword. */
16700
16701 static void
16702 s_dtpreldword (int ignore ATTRIBUTE_UNUSED)
16703 {
16704 s_tls_rel_directive (8, ".dtpreldword", BFD_RELOC_MIPS_TLS_DTPREL64);
16705 }
16706
16707 /* Handle .tprelword. */
16708
16709 static void
16710 s_tprelword (int ignore ATTRIBUTE_UNUSED)
16711 {
16712 s_tls_rel_directive (4, ".tprelword", BFD_RELOC_MIPS_TLS_TPREL32);
16713 }
16714
16715 /* Handle .tpreldword. */
16716
16717 static void
16718 s_tpreldword (int ignore ATTRIBUTE_UNUSED)
16719 {
16720 s_tls_rel_directive (8, ".tpreldword", BFD_RELOC_MIPS_TLS_TPREL64);
16721 }
16722
16723 /* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
16724 code. It sets the offset to use in gp_rel relocations. */
16725
16726 static void
16727 s_gpvalue (int ignore ATTRIBUTE_UNUSED)
16728 {
16729 /* If we are not generating SVR4 PIC code, .gpvalue is ignored.
16730 We also need NewABI support. */
16731 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16732 {
16733 s_ignore (0);
16734 return;
16735 }
16736
16737 mips_gprel_offset = get_absolute_expression ();
16738
16739 demand_empty_rest_of_line ();
16740 }
16741
16742 /* Handle the .gpword pseudo-op. This is used when generating PIC
16743 code. It generates a 32 bit GP relative reloc. */
16744
16745 static void
16746 s_gpword (int ignore ATTRIBUTE_UNUSED)
16747 {
16748 segment_info_type *si;
16749 struct insn_label_list *l;
16750 expressionS ex;
16751 char *p;
16752
16753 /* When not generating PIC code, this is treated as .word. */
16754 if (mips_pic != SVR4_PIC)
16755 {
16756 s_cons (2);
16757 return;
16758 }
16759
16760 si = seg_info (now_seg);
16761 l = si->label_list;
16762 mips_emit_delays ();
16763 if (auto_align)
16764 mips_align (2, 0, l);
16765
16766 expression (&ex);
16767 mips_clear_insn_labels ();
16768
16769 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16770 {
16771 as_bad (_("unsupported use of .gpword"));
16772 ignore_rest_of_line ();
16773 }
16774
16775 p = frag_more (4);
16776 md_number_to_chars (p, 0, 4);
16777 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
16778 BFD_RELOC_GPREL32);
16779
16780 demand_empty_rest_of_line ();
16781 }
16782
16783 static void
16784 s_gpdword (int ignore ATTRIBUTE_UNUSED)
16785 {
16786 segment_info_type *si;
16787 struct insn_label_list *l;
16788 expressionS ex;
16789 char *p;
16790
16791 /* When not generating PIC code, this is treated as .dword. */
16792 if (mips_pic != SVR4_PIC)
16793 {
16794 s_cons (3);
16795 return;
16796 }
16797
16798 si = seg_info (now_seg);
16799 l = si->label_list;
16800 mips_emit_delays ();
16801 if (auto_align)
16802 mips_align (3, 0, l);
16803
16804 expression (&ex);
16805 mips_clear_insn_labels ();
16806
16807 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16808 {
16809 as_bad (_("unsupported use of .gpdword"));
16810 ignore_rest_of_line ();
16811 }
16812
16813 p = frag_more (8);
16814 md_number_to_chars (p, 0, 8);
16815 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
16816 BFD_RELOC_GPREL32)->fx_tcbit = 1;
16817
16818 /* GPREL32 composed with 64 gives a 64-bit GP offset. */
16819 fix_new (frag_now, p - frag_now->fr_literal, 8, NULL, 0,
16820 FALSE, BFD_RELOC_64)->fx_tcbit = 1;
16821
16822 demand_empty_rest_of_line ();
16823 }
16824
16825 /* Handle the .ehword pseudo-op. This is used when generating unwinding
16826 tables. It generates a R_MIPS_EH reloc. */
16827
16828 static void
16829 s_ehword (int ignore ATTRIBUTE_UNUSED)
16830 {
16831 expressionS ex;
16832 char *p;
16833
16834 mips_emit_delays ();
16835
16836 expression (&ex);
16837 mips_clear_insn_labels ();
16838
16839 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16840 {
16841 as_bad (_("unsupported use of .ehword"));
16842 ignore_rest_of_line ();
16843 }
16844
16845 p = frag_more (4);
16846 md_number_to_chars (p, 0, 4);
16847 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
16848 BFD_RELOC_32_PCREL);
16849
16850 demand_empty_rest_of_line ();
16851 }
16852
16853 /* Handle the .cpadd pseudo-op. This is used when dealing with switch
16854 tables in SVR4 PIC code. */
16855
16856 static void
16857 s_cpadd (int ignore ATTRIBUTE_UNUSED)
16858 {
16859 int reg;
16860
16861 file_mips_check_options ();
16862
16863 /* This is ignored when not generating SVR4 PIC code. */
16864 if (mips_pic != SVR4_PIC)
16865 {
16866 s_ignore (0);
16867 return;
16868 }
16869
16870 mips_mark_labels ();
16871 mips_assembling_insn = TRUE;
16872
16873 /* Add $gp to the register named as an argument. */
16874 macro_start ();
16875 reg = tc_get_register (0);
16876 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register);
16877 macro_end ();
16878
16879 mips_assembling_insn = FALSE;
16880 demand_empty_rest_of_line ();
16881 }
16882
16883 /* Handle the .insn pseudo-op. This marks instruction labels in
16884 mips16/micromips mode. This permits the linker to handle them specially,
16885 such as generating jalx instructions when needed. We also make
16886 them odd for the duration of the assembly, in order to generate the
16887 right sort of code. We will make them even in the adjust_symtab
16888 routine, while leaving them marked. This is convenient for the
16889 debugger and the disassembler. The linker knows to make them odd
16890 again. */
16891
16892 static void
16893 s_insn (int ignore ATTRIBUTE_UNUSED)
16894 {
16895 file_mips_check_options ();
16896 file_ase_mips16 |= mips_opts.mips16;
16897 file_ase_micromips |= mips_opts.micromips;
16898
16899 mips_mark_labels ();
16900
16901 demand_empty_rest_of_line ();
16902 }
16903
16904 /* Handle the .nan pseudo-op. */
16905
16906 static void
16907 s_nan (int ignore ATTRIBUTE_UNUSED)
16908 {
16909 static const char str_legacy[] = "legacy";
16910 static const char str_2008[] = "2008";
16911 size_t i;
16912
16913 for (i = 0; !is_end_of_line[(unsigned char) input_line_pointer[i]]; i++);
16914
16915 if (i == sizeof (str_2008) - 1
16916 && memcmp (input_line_pointer, str_2008, i) == 0)
16917 mips_nan2008 = 1;
16918 else if (i == sizeof (str_legacy) - 1
16919 && memcmp (input_line_pointer, str_legacy, i) == 0)
16920 {
16921 if (ISA_HAS_LEGACY_NAN (file_mips_opts.isa))
16922 mips_nan2008 = 0;
16923 else
16924 as_bad (_("`%s' does not support legacy NaN"),
16925 mips_cpu_info_from_isa (file_mips_opts.isa)->name);
16926 }
16927 else
16928 as_bad (_("bad .nan directive"));
16929
16930 input_line_pointer += i;
16931 demand_empty_rest_of_line ();
16932 }
16933
16934 /* Handle a .stab[snd] directive. Ideally these directives would be
16935 implemented in a transparent way, so that removing them would not
16936 have any effect on the generated instructions. However, s_stab
16937 internally changes the section, so in practice we need to decide
16938 now whether the preceding label marks compressed code. We do not
16939 support changing the compression mode of a label after a .stab*
16940 directive, such as in:
16941
16942 foo:
16943 .stabs ...
16944 .set mips16
16945
16946 so the current mode wins. */
16947
16948 static void
16949 s_mips_stab (int type)
16950 {
16951 mips_mark_labels ();
16952 s_stab (type);
16953 }
16954
16955 /* Handle the .weakext pseudo-op as defined in Kane and Heinrich. */
16956
16957 static void
16958 s_mips_weakext (int ignore ATTRIBUTE_UNUSED)
16959 {
16960 char *name;
16961 int c;
16962 symbolS *symbolP;
16963 expressionS exp;
16964
16965 c = get_symbol_name (&name);
16966 symbolP = symbol_find_or_make (name);
16967 S_SET_WEAK (symbolP);
16968 *input_line_pointer = c;
16969
16970 SKIP_WHITESPACE_AFTER_NAME ();
16971
16972 if (! is_end_of_line[(unsigned char) *input_line_pointer])
16973 {
16974 if (S_IS_DEFINED (symbolP))
16975 {
16976 as_bad (_("ignoring attempt to redefine symbol %s"),
16977 S_GET_NAME (symbolP));
16978 ignore_rest_of_line ();
16979 return;
16980 }
16981
16982 if (*input_line_pointer == ',')
16983 {
16984 ++input_line_pointer;
16985 SKIP_WHITESPACE ();
16986 }
16987
16988 expression (&exp);
16989 if (exp.X_op != O_symbol)
16990 {
16991 as_bad (_("bad .weakext directive"));
16992 ignore_rest_of_line ();
16993 return;
16994 }
16995 symbol_set_value_expression (symbolP, &exp);
16996 }
16997
16998 demand_empty_rest_of_line ();
16999 }
17000
17001 /* Parse a register string into a number. Called from the ECOFF code
17002 to parse .frame. The argument is non-zero if this is the frame
17003 register, so that we can record it in mips_frame_reg. */
17004
17005 int
17006 tc_get_register (int frame)
17007 {
17008 unsigned int reg;
17009
17010 SKIP_WHITESPACE ();
17011 if (! reg_lookup (&input_line_pointer, RWARN | RTYPE_NUM | RTYPE_GP, &reg))
17012 reg = 0;
17013 if (frame)
17014 {
17015 mips_frame_reg = reg != 0 ? reg : SP;
17016 mips_frame_reg_valid = 1;
17017 mips_cprestore_valid = 0;
17018 }
17019 return reg;
17020 }
17021
17022 valueT
17023 md_section_align (asection *seg, valueT addr)
17024 {
17025 int align = bfd_get_section_alignment (stdoutput, seg);
17026
17027 /* We don't need to align ELF sections to the full alignment.
17028 However, Irix 5 may prefer that we align them at least to a 16
17029 byte boundary. We don't bother to align the sections if we
17030 are targeted for an embedded system. */
17031 if (strncmp (TARGET_OS, "elf", 3) == 0)
17032 return addr;
17033 if (align > 4)
17034 align = 4;
17035
17036 return ((addr + (1 << align) - 1) & -(1 << align));
17037 }
17038
17039 /* Utility routine, called from above as well. If called while the
17040 input file is still being read, it's only an approximation. (For
17041 example, a symbol may later become defined which appeared to be
17042 undefined earlier.) */
17043
17044 static int
17045 nopic_need_relax (symbolS *sym, int before_relaxing)
17046 {
17047 if (sym == 0)
17048 return 0;
17049
17050 if (g_switch_value > 0)
17051 {
17052 const char *symname;
17053 int change;
17054
17055 /* Find out whether this symbol can be referenced off the $gp
17056 register. It can be if it is smaller than the -G size or if
17057 it is in the .sdata or .sbss section. Certain symbols can
17058 not be referenced off the $gp, although it appears as though
17059 they can. */
17060 symname = S_GET_NAME (sym);
17061 if (symname != (const char *) NULL
17062 && (strcmp (symname, "eprol") == 0
17063 || strcmp (symname, "etext") == 0
17064 || strcmp (symname, "_gp") == 0
17065 || strcmp (symname, "edata") == 0
17066 || strcmp (symname, "_fbss") == 0
17067 || strcmp (symname, "_fdata") == 0
17068 || strcmp (symname, "_ftext") == 0
17069 || strcmp (symname, "end") == 0
17070 || strcmp (symname, "_gp_disp") == 0))
17071 change = 1;
17072 else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym))
17073 && (0
17074 #ifndef NO_ECOFF_DEBUGGING
17075 || (symbol_get_obj (sym)->ecoff_extern_size != 0
17076 && (symbol_get_obj (sym)->ecoff_extern_size
17077 <= g_switch_value))
17078 #endif
17079 /* We must defer this decision until after the whole
17080 file has been read, since there might be a .extern
17081 after the first use of this symbol. */
17082 || (before_relaxing
17083 #ifndef NO_ECOFF_DEBUGGING
17084 && symbol_get_obj (sym)->ecoff_extern_size == 0
17085 #endif
17086 && S_GET_VALUE (sym) == 0)
17087 || (S_GET_VALUE (sym) != 0
17088 && S_GET_VALUE (sym) <= g_switch_value)))
17089 change = 0;
17090 else
17091 {
17092 const char *segname;
17093
17094 segname = segment_name (S_GET_SEGMENT (sym));
17095 gas_assert (strcmp (segname, ".lit8") != 0
17096 && strcmp (segname, ".lit4") != 0);
17097 change = (strcmp (segname, ".sdata") != 0
17098 && strcmp (segname, ".sbss") != 0
17099 && strncmp (segname, ".sdata.", 7) != 0
17100 && strncmp (segname, ".sbss.", 6) != 0
17101 && strncmp (segname, ".gnu.linkonce.sb.", 17) != 0
17102 && strncmp (segname, ".gnu.linkonce.s.", 16) != 0);
17103 }
17104 return change;
17105 }
17106 else
17107 /* We are not optimizing for the $gp register. */
17108 return 1;
17109 }
17110
17111
17112 /* Return true if the given symbol should be considered local for SVR4 PIC. */
17113
17114 static bfd_boolean
17115 pic_need_relax (symbolS *sym, asection *segtype)
17116 {
17117 asection *symsec;
17118
17119 /* Handle the case of a symbol equated to another symbol. */
17120 while (symbol_equated_reloc_p (sym))
17121 {
17122 symbolS *n;
17123
17124 /* It's possible to get a loop here in a badly written program. */
17125 n = symbol_get_value_expression (sym)->X_add_symbol;
17126 if (n == sym)
17127 break;
17128 sym = n;
17129 }
17130
17131 if (symbol_section_p (sym))
17132 return TRUE;
17133
17134 symsec = S_GET_SEGMENT (sym);
17135
17136 /* This must duplicate the test in adjust_reloc_syms. */
17137 return (!bfd_is_und_section (symsec)
17138 && !bfd_is_abs_section (symsec)
17139 && !bfd_is_com_section (symsec)
17140 && !s_is_linkonce (sym, segtype)
17141 /* A global or weak symbol is treated as external. */
17142 && (!S_IS_WEAK (sym) && !S_IS_EXTERNAL (sym)));
17143 }
17144
17145
17146 /* Given a mips16 variant frag FRAGP, return non-zero if it needs an
17147 extended opcode. SEC is the section the frag is in. */
17148
17149 static int
17150 mips16_extended_frag (fragS *fragp, asection *sec, long stretch)
17151 {
17152 int type;
17153 const struct mips_int_operand *operand;
17154 offsetT val;
17155 segT symsec;
17156 fragS *sym_frag;
17157
17158 if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
17159 return 0;
17160 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
17161 return 1;
17162
17163 symsec = S_GET_SEGMENT (fragp->fr_symbol);
17164 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
17165 operand = mips16_immed_operand (type, FALSE);
17166 if (S_FORCE_RELOC (fragp->fr_symbol, TRUE)
17167 || (operand->root.type == OP_PCREL
17168 ? sec != symsec
17169 : !bfd_is_abs_section (symsec)))
17170 return 1;
17171
17172 sym_frag = symbol_get_frag (fragp->fr_symbol);
17173 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17174
17175 if (operand->root.type == OP_PCREL)
17176 {
17177 const struct mips_pcrel_operand *pcrel_op;
17178 addressT addr;
17179 offsetT maxtiny;
17180
17181 if (RELAX_MIPS16_LONG_BRANCH (fragp->fr_subtype))
17182 return 1;
17183
17184 pcrel_op = (const struct mips_pcrel_operand *) operand;
17185
17186 /* If the relax_marker of the symbol fragment differs from the
17187 relax_marker of this fragment, we have not yet adjusted the
17188 symbol fragment fr_address. We want to add in STRETCH in
17189 order to get a better estimate of the address. This
17190 particularly matters because of the shift bits. */
17191 if (stretch != 0
17192 && sym_frag->relax_marker != fragp->relax_marker)
17193 {
17194 fragS *f;
17195
17196 /* Adjust stretch for any alignment frag. Note that if have
17197 been expanding the earlier code, the symbol may be
17198 defined in what appears to be an earlier frag. FIXME:
17199 This doesn't handle the fr_subtype field, which specifies
17200 a maximum number of bytes to skip when doing an
17201 alignment. */
17202 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
17203 {
17204 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
17205 {
17206 if (stretch < 0)
17207 stretch = - ((- stretch)
17208 & ~ ((1 << (int) f->fr_offset) - 1));
17209 else
17210 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
17211 if (stretch == 0)
17212 break;
17213 }
17214 }
17215 if (f != NULL)
17216 val += stretch;
17217 }
17218
17219 addr = fragp->fr_address + fragp->fr_fix;
17220
17221 /* The base address rules are complicated. The base address of
17222 a branch is the following instruction. The base address of a
17223 PC relative load or add is the instruction itself, but if it
17224 is in a delay slot (in which case it can not be extended) use
17225 the address of the instruction whose delay slot it is in. */
17226 if (pcrel_op->include_isa_bit)
17227 {
17228 addr += 2;
17229
17230 /* If we are currently assuming that this frag should be
17231 extended, then, the current address is two bytes
17232 higher. */
17233 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17234 addr += 2;
17235
17236 /* Ignore the low bit in the target, since it will be set
17237 for a text label. */
17238 val &= -2;
17239 }
17240 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
17241 addr -= 4;
17242 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
17243 addr -= 2;
17244
17245 val -= addr & -(1 << pcrel_op->align_log2);
17246
17247 /* If any of the shifted bits are set, we must use an extended
17248 opcode. If the address depends on the size of this
17249 instruction, this can lead to a loop, so we arrange to always
17250 use an extended opcode. */
17251 if ((val & ((1 << operand->shift) - 1)) != 0)
17252 {
17253 fragp->fr_subtype =
17254 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
17255 return 1;
17256 }
17257
17258 /* If we are about to mark a frag as extended because the value
17259 is precisely the next value above maxtiny, then there is a
17260 chance of an infinite loop as in the following code:
17261 la $4,foo
17262 .skip 1020
17263 .align 2
17264 foo:
17265 In this case when the la is extended, foo is 0x3fc bytes
17266 away, so the la can be shrunk, but then foo is 0x400 away, so
17267 the la must be extended. To avoid this loop, we mark the
17268 frag as extended if it was small, and is about to become
17269 extended with the next value above maxtiny. */
17270 maxtiny = mips_int_operand_max (operand);
17271 if (val == maxtiny + (1 << operand->shift)
17272 && ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17273 {
17274 fragp->fr_subtype =
17275 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
17276 return 1;
17277 }
17278 }
17279
17280 return !mips16_immed_in_range_p (operand, BFD_RELOC_UNUSED, val);
17281 }
17282
17283 /* Compute the length of a branch sequence, and adjust the
17284 RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
17285 worst-case length is computed, with UPDATE being used to indicate
17286 whether an unconditional (-1), branch-likely (+1) or regular (0)
17287 branch is to be computed. */
17288 static int
17289 relaxed_branch_length (fragS *fragp, asection *sec, int update)
17290 {
17291 bfd_boolean toofar;
17292 int length;
17293
17294 if (fragp
17295 && S_IS_DEFINED (fragp->fr_symbol)
17296 && !S_IS_WEAK (fragp->fr_symbol)
17297 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17298 {
17299 addressT addr;
17300 offsetT val;
17301
17302 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17303
17304 addr = fragp->fr_address + fragp->fr_fix + 4;
17305
17306 val -= addr;
17307
17308 toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2);
17309 }
17310 else
17311 /* If the symbol is not defined or it's in a different segment,
17312 we emit the long sequence. */
17313 toofar = TRUE;
17314
17315 if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
17316 fragp->fr_subtype
17317 = RELAX_BRANCH_ENCODE (RELAX_BRANCH_AT (fragp->fr_subtype),
17318 RELAX_BRANCH_UNCOND (fragp->fr_subtype),
17319 RELAX_BRANCH_LIKELY (fragp->fr_subtype),
17320 RELAX_BRANCH_LINK (fragp->fr_subtype),
17321 toofar);
17322
17323 length = 4;
17324 if (toofar)
17325 {
17326 if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0))
17327 length += 8;
17328
17329 if (mips_pic != NO_PIC)
17330 {
17331 /* Additional space for PIC loading of target address. */
17332 length += 8;
17333 if (mips_opts.isa == ISA_MIPS1)
17334 /* Additional space for $at-stabilizing nop. */
17335 length += 4;
17336 }
17337
17338 /* If branch is conditional. */
17339 if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0))
17340 length += 8;
17341 }
17342
17343 return length;
17344 }
17345
17346 /* Get a FRAG's branch instruction delay slot size, either from the
17347 short-delay-slot bit of a branch-and-link instruction if AL is TRUE,
17348 or SHORT_INSN_SIZE otherwise. */
17349
17350 static int
17351 frag_branch_delay_slot_size (fragS *fragp, bfd_boolean al, int short_insn_size)
17352 {
17353 char *buf = fragp->fr_literal + fragp->fr_fix;
17354
17355 if (al)
17356 return (read_compressed_insn (buf, 4) & 0x02000000) ? 2 : 4;
17357 else
17358 return short_insn_size;
17359 }
17360
17361 /* Compute the length of a branch sequence, and adjust the
17362 RELAX_MICROMIPS_TOOFAR32 bit accordingly. If FRAGP is NULL, the
17363 worst-case length is computed, with UPDATE being used to indicate
17364 whether an unconditional (-1), or regular (0) branch is to be
17365 computed. */
17366
17367 static int
17368 relaxed_micromips_32bit_branch_length (fragS *fragp, asection *sec, int update)
17369 {
17370 bfd_boolean insn32 = TRUE;
17371 bfd_boolean nods = TRUE;
17372 bfd_boolean al = TRUE;
17373 int short_insn_size;
17374 bfd_boolean toofar;
17375 int length;
17376
17377 if (fragp)
17378 {
17379 insn32 = RELAX_MICROMIPS_INSN32 (fragp->fr_subtype);
17380 nods = RELAX_MICROMIPS_NODS (fragp->fr_subtype);
17381 al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
17382 }
17383 short_insn_size = insn32 ? 4 : 2;
17384
17385 if (fragp
17386 && S_IS_DEFINED (fragp->fr_symbol)
17387 && !S_IS_WEAK (fragp->fr_symbol)
17388 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17389 {
17390 addressT addr;
17391 offsetT val;
17392
17393 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17394 /* Ignore the low bit in the target, since it will be set
17395 for a text label. */
17396 if ((val & 1) != 0)
17397 --val;
17398
17399 addr = fragp->fr_address + fragp->fr_fix + 4;
17400
17401 val -= addr;
17402
17403 toofar = val < - (0x8000 << 1) || val >= (0x8000 << 1);
17404 }
17405 else
17406 /* If the symbol is not defined or it's in a different segment,
17407 we emit the long sequence. */
17408 toofar = TRUE;
17409
17410 if (fragp && update
17411 && toofar != RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
17412 fragp->fr_subtype = (toofar
17413 ? RELAX_MICROMIPS_MARK_TOOFAR32 (fragp->fr_subtype)
17414 : RELAX_MICROMIPS_CLEAR_TOOFAR32 (fragp->fr_subtype));
17415
17416 length = 4;
17417 if (toofar)
17418 {
17419 bfd_boolean compact_known = fragp != NULL;
17420 bfd_boolean compact = FALSE;
17421 bfd_boolean uncond;
17422
17423 if (fragp)
17424 {
17425 compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
17426 uncond = RELAX_MICROMIPS_UNCOND (fragp->fr_subtype);
17427 }
17428 else
17429 uncond = update < 0;
17430
17431 /* If label is out of range, we turn branch <br>:
17432
17433 <br> label # 4 bytes
17434 0:
17435
17436 into:
17437
17438 j label # 4 bytes
17439 nop # 2/4 bytes if
17440 # compact && (!PIC || insn32)
17441 0:
17442 */
17443 if ((mips_pic == NO_PIC || insn32) && (!compact_known || compact))
17444 length += short_insn_size;
17445
17446 /* If assembling PIC code, we further turn:
17447
17448 j label # 4 bytes
17449
17450 into:
17451
17452 lw/ld at, %got(label)(gp) # 4 bytes
17453 d/addiu at, %lo(label) # 4 bytes
17454 jr/c at # 2/4 bytes
17455 */
17456 if (mips_pic != NO_PIC)
17457 length += 4 + short_insn_size;
17458
17459 /* Add an extra nop if the jump has no compact form and we need
17460 to fill the delay slot. */
17461 if ((mips_pic == NO_PIC || al) && nods)
17462 length += (fragp
17463 ? frag_branch_delay_slot_size (fragp, al, short_insn_size)
17464 : short_insn_size);
17465
17466 /* If branch <br> is conditional, we prepend negated branch <brneg>:
17467
17468 <brneg> 0f # 4 bytes
17469 nop # 2/4 bytes if !compact
17470 */
17471 if (!uncond)
17472 length += (compact_known && compact) ? 4 : 4 + short_insn_size;
17473 }
17474 else if (nods)
17475 {
17476 /* Add an extra nop to fill the delay slot. */
17477 gas_assert (fragp);
17478 length += frag_branch_delay_slot_size (fragp, al, short_insn_size);
17479 }
17480
17481 return length;
17482 }
17483
17484 /* Compute the length of a branch, and adjust the RELAX_MICROMIPS_TOOFAR16
17485 bit accordingly. */
17486
17487 static int
17488 relaxed_micromips_16bit_branch_length (fragS *fragp, asection *sec, int update)
17489 {
17490 bfd_boolean toofar;
17491
17492 if (fragp
17493 && S_IS_DEFINED (fragp->fr_symbol)
17494 && !S_IS_WEAK (fragp->fr_symbol)
17495 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17496 {
17497 addressT addr;
17498 offsetT val;
17499 int type;
17500
17501 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17502 /* Ignore the low bit in the target, since it will be set
17503 for a text label. */
17504 if ((val & 1) != 0)
17505 --val;
17506
17507 /* Assume this is a 2-byte branch. */
17508 addr = fragp->fr_address + fragp->fr_fix + 2;
17509
17510 /* We try to avoid the infinite loop by not adding 2 more bytes for
17511 long branches. */
17512
17513 val -= addr;
17514
17515 type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
17516 if (type == 'D')
17517 toofar = val < - (0x200 << 1) || val >= (0x200 << 1);
17518 else if (type == 'E')
17519 toofar = val < - (0x40 << 1) || val >= (0x40 << 1);
17520 else
17521 abort ();
17522 }
17523 else
17524 /* If the symbol is not defined or it's in a different segment,
17525 we emit a normal 32-bit branch. */
17526 toofar = TRUE;
17527
17528 if (fragp && update
17529 && toofar != RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
17530 fragp->fr_subtype
17531 = toofar ? RELAX_MICROMIPS_MARK_TOOFAR16 (fragp->fr_subtype)
17532 : RELAX_MICROMIPS_CLEAR_TOOFAR16 (fragp->fr_subtype);
17533
17534 if (toofar)
17535 return 4;
17536
17537 return 2;
17538 }
17539
17540 /* Estimate the size of a frag before relaxing. Unless this is the
17541 mips16, we are not really relaxing here, and the final size is
17542 encoded in the subtype information. For the mips16, we have to
17543 decide whether we are using an extended opcode or not. */
17544
17545 int
17546 md_estimate_size_before_relax (fragS *fragp, asection *segtype)
17547 {
17548 int change;
17549
17550 if (RELAX_BRANCH_P (fragp->fr_subtype))
17551 {
17552
17553 fragp->fr_var = relaxed_branch_length (fragp, segtype, FALSE);
17554
17555 return fragp->fr_var;
17556 }
17557
17558 if (RELAX_MIPS16_P (fragp->fr_subtype))
17559 /* We don't want to modify the EXTENDED bit here; it might get us
17560 into infinite loops. We change it only in mips_relax_frag(). */
17561 return (RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2);
17562
17563 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17564 {
17565 int length = 4;
17566
17567 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17568 length = relaxed_micromips_16bit_branch_length (fragp, segtype, FALSE);
17569 if (length == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17570 length = relaxed_micromips_32bit_branch_length (fragp, segtype, FALSE);
17571 fragp->fr_var = length;
17572
17573 return length;
17574 }
17575
17576 if (mips_pic == NO_PIC)
17577 change = nopic_need_relax (fragp->fr_symbol, 0);
17578 else if (mips_pic == SVR4_PIC)
17579 change = pic_need_relax (fragp->fr_symbol, segtype);
17580 else if (mips_pic == VXWORKS_PIC)
17581 /* For vxworks, GOT16 relocations never have a corresponding LO16. */
17582 change = 0;
17583 else
17584 abort ();
17585
17586 if (change)
17587 {
17588 fragp->fr_subtype |= RELAX_USE_SECOND;
17589 return -RELAX_FIRST (fragp->fr_subtype);
17590 }
17591 else
17592 return -RELAX_SECOND (fragp->fr_subtype);
17593 }
17594
17595 /* This is called to see whether a reloc against a defined symbol
17596 should be converted into a reloc against a section. */
17597
17598 int
17599 mips_fix_adjustable (fixS *fixp)
17600 {
17601 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
17602 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
17603 return 0;
17604
17605 if (fixp->fx_addsy == NULL)
17606 return 1;
17607
17608 /* Allow relocs used for EH tables. */
17609 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
17610 return 1;
17611
17612 /* If symbol SYM is in a mergeable section, relocations of the form
17613 SYM + 0 can usually be made section-relative. The mergeable data
17614 is then identified by the section offset rather than by the symbol.
17615
17616 However, if we're generating REL LO16 relocations, the offset is split
17617 between the LO16 and parterning high part relocation. The linker will
17618 need to recalculate the complete offset in order to correctly identify
17619 the merge data.
17620
17621 The linker has traditionally not looked for the parterning high part
17622 relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be
17623 placed anywhere. Rather than break backwards compatibility by changing
17624 this, it seems better not to force the issue, and instead keep the
17625 original symbol. This will work with either linker behavior. */
17626 if ((lo16_reloc_p (fixp->fx_r_type)
17627 || reloc_needs_lo_p (fixp->fx_r_type))
17628 && HAVE_IN_PLACE_ADDENDS
17629 && (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE) != 0)
17630 return 0;
17631
17632 /* There is no place to store an in-place offset for JALR relocations. */
17633 if (jalr_reloc_p (fixp->fx_r_type) && HAVE_IN_PLACE_ADDENDS)
17634 return 0;
17635
17636 /* Likewise an in-range offset of limited PC-relative relocations may
17637 overflow the in-place relocatable field if recalculated against the
17638 start address of the symbol's containing section.
17639
17640 Also, PC relative relocations for MIPS R6 need to be symbol rather than
17641 section relative to allow linker relaxations to be performed later on. */
17642 if (limited_pcrel_reloc_p (fixp->fx_r_type)
17643 && (HAVE_IN_PLACE_ADDENDS || ISA_IS_R6 (file_mips_opts.isa)))
17644 return 0;
17645
17646 /* R_MIPS16_26 relocations against non-MIPS16 functions might resolve
17647 to a floating-point stub. The same is true for non-R_MIPS16_26
17648 relocations against MIPS16 functions; in this case, the stub becomes
17649 the function's canonical address.
17650
17651 Floating-point stubs are stored in unique .mips16.call.* or
17652 .mips16.fn.* sections. If a stub T for function F is in section S,
17653 the first relocation in section S must be against F; this is how the
17654 linker determines the target function. All relocations that might
17655 resolve to T must also be against F. We therefore have the following
17656 restrictions, which are given in an intentionally-redundant way:
17657
17658 1. We cannot reduce R_MIPS16_26 relocations against non-MIPS16
17659 symbols.
17660
17661 2. We cannot reduce a stub's relocations against non-MIPS16 symbols
17662 if that stub might be used.
17663
17664 3. We cannot reduce non-R_MIPS16_26 relocations against MIPS16
17665 symbols.
17666
17667 4. We cannot reduce a stub's relocations against MIPS16 symbols if
17668 that stub might be used.
17669
17670 There is a further restriction:
17671
17672 5. We cannot reduce jump relocations (R_MIPS_26, R_MIPS16_26 or
17673 R_MICROMIPS_26_S1) or branch relocations (R_MIPS_PC26_S2,
17674 R_MIPS_PC21_S2, R_MIPS_PC16, R_MIPS16_PC16_S1,
17675 R_MICROMIPS_PC16_S1, R_MICROMIPS_PC10_S1 or R_MICROMIPS_PC7_S1)
17676 against MIPS16 or microMIPS symbols because we need to keep the
17677 MIPS16 or microMIPS symbol for the purpose of mode mismatch
17678 detection and JAL or BAL to JALX instruction conversion in the
17679 linker.
17680
17681 For simplicity, we deal with (3)-(4) by not reducing _any_ relocation
17682 against a MIPS16 symbol. We deal with (5) by additionally leaving
17683 alone any jump and branch relocations against a microMIPS symbol.
17684
17685 We deal with (1)-(2) by saying that, if there's a R_MIPS16_26
17686 relocation against some symbol R, no relocation against R may be
17687 reduced. (Note that this deals with (2) as well as (1) because
17688 relocations against global symbols will never be reduced on ELF
17689 targets.) This approach is a little simpler than trying to detect
17690 stub sections, and gives the "all or nothing" per-symbol consistency
17691 that we have for MIPS16 symbols. */
17692 if (fixp->fx_subsy == NULL
17693 && (ELF_ST_IS_MIPS16 (S_GET_OTHER (fixp->fx_addsy))
17694 || (ELF_ST_IS_MICROMIPS (S_GET_OTHER (fixp->fx_addsy))
17695 && (jmp_reloc_p (fixp->fx_r_type)
17696 || b_reloc_p (fixp->fx_r_type)))
17697 || *symbol_get_tc (fixp->fx_addsy)))
17698 return 0;
17699
17700 return 1;
17701 }
17702
17703 /* Translate internal representation of relocation info to BFD target
17704 format. */
17705
17706 arelent **
17707 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
17708 {
17709 static arelent *retval[4];
17710 arelent *reloc;
17711 bfd_reloc_code_real_type code;
17712
17713 memset (retval, 0, sizeof(retval));
17714 reloc = retval[0] = XCNEW (arelent);
17715 reloc->sym_ptr_ptr = XNEW (asymbol *);
17716 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
17717 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
17718
17719 if (fixp->fx_pcrel)
17720 {
17721 gas_assert (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
17722 || fixp->fx_r_type == BFD_RELOC_MIPS16_16_PCREL_S1
17723 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
17724 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
17725 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1
17726 || fixp->fx_r_type == BFD_RELOC_32_PCREL
17727 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
17728 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
17729 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
17730 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
17731 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
17732 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL);
17733
17734 /* At this point, fx_addnumber is "symbol offset - pcrel address".
17735 Relocations want only the symbol offset. */
17736 switch (fixp->fx_r_type)
17737 {
17738 case BFD_RELOC_MIPS_18_PCREL_S3:
17739 reloc->addend = fixp->fx_addnumber + (reloc->address & ~7);
17740 break;
17741 default:
17742 reloc->addend = fixp->fx_addnumber + reloc->address;
17743 break;
17744 }
17745 }
17746 else if (HAVE_IN_PLACE_ADDENDS
17747 && fixp->fx_r_type == BFD_RELOC_MICROMIPS_JMP
17748 && (read_compressed_insn (fixp->fx_frag->fr_literal
17749 + fixp->fx_where, 4) >> 26) == 0x3c)
17750 {
17751 /* Shift is 2, unusually, for microMIPS JALX. Adjust the in-place
17752 addend accordingly. */
17753 reloc->addend = fixp->fx_addnumber >> 1;
17754 }
17755 else
17756 reloc->addend = fixp->fx_addnumber;
17757
17758 /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
17759 entry to be used in the relocation's section offset. */
17760 if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
17761 {
17762 reloc->address = reloc->addend;
17763 reloc->addend = 0;
17764 }
17765
17766 code = fixp->fx_r_type;
17767
17768 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
17769 if (reloc->howto == NULL)
17770 {
17771 as_bad_where (fixp->fx_file, fixp->fx_line,
17772 _("cannot represent %s relocation in this object file"
17773 " format"),
17774 bfd_get_reloc_code_name (code));
17775 retval[0] = NULL;
17776 }
17777
17778 return retval;
17779 }
17780
17781 /* Relax a machine dependent frag. This returns the amount by which
17782 the current size of the frag should change. */
17783
17784 int
17785 mips_relax_frag (asection *sec, fragS *fragp, long stretch)
17786 {
17787 if (RELAX_BRANCH_P (fragp->fr_subtype))
17788 {
17789 offsetT old_var = fragp->fr_var;
17790
17791 fragp->fr_var = relaxed_branch_length (fragp, sec, TRUE);
17792
17793 return fragp->fr_var - old_var;
17794 }
17795
17796 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17797 {
17798 offsetT old_var = fragp->fr_var;
17799 offsetT new_var = 4;
17800
17801 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17802 new_var = relaxed_micromips_16bit_branch_length (fragp, sec, TRUE);
17803 if (new_var == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17804 new_var = relaxed_micromips_32bit_branch_length (fragp, sec, TRUE);
17805 fragp->fr_var = new_var;
17806
17807 return new_var - old_var;
17808 }
17809
17810 if (! RELAX_MIPS16_P (fragp->fr_subtype))
17811 return 0;
17812
17813 if (mips16_extended_frag (fragp, sec, stretch))
17814 {
17815 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17816 return 0;
17817 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
17818 return 2;
17819 }
17820 else
17821 {
17822 if (! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17823 return 0;
17824 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
17825 return -2;
17826 }
17827
17828 return 0;
17829 }
17830
17831 /* Convert a machine dependent frag. */
17832
17833 void
17834 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp)
17835 {
17836 if (RELAX_BRANCH_P (fragp->fr_subtype))
17837 {
17838 char *buf;
17839 unsigned long insn;
17840 expressionS exp;
17841 fixS *fixp;
17842
17843 buf = fragp->fr_literal + fragp->fr_fix;
17844 insn = read_insn (buf);
17845
17846 if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
17847 {
17848 /* We generate a fixup instead of applying it right now
17849 because, if there are linker relaxations, we're going to
17850 need the relocations. */
17851 exp.X_op = O_symbol;
17852 exp.X_add_symbol = fragp->fr_symbol;
17853 exp.X_add_number = fragp->fr_offset;
17854
17855 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
17856 BFD_RELOC_16_PCREL_S2);
17857 fixp->fx_file = fragp->fr_file;
17858 fixp->fx_line = fragp->fr_line;
17859
17860 buf = write_insn (buf, insn);
17861 }
17862 else
17863 {
17864 int i;
17865
17866 as_warn_where (fragp->fr_file, fragp->fr_line,
17867 _("relaxed out-of-range branch into a jump"));
17868
17869 if (RELAX_BRANCH_UNCOND (fragp->fr_subtype))
17870 goto uncond;
17871
17872 if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17873 {
17874 /* Reverse the branch. */
17875 switch ((insn >> 28) & 0xf)
17876 {
17877 case 4:
17878 if ((insn & 0xff000000) == 0x47000000
17879 || (insn & 0xff600000) == 0x45600000)
17880 {
17881 /* BZ.df/BNZ.df, BZ.V/BNZ.V can have the condition
17882 reversed by tweaking bit 23. */
17883 insn ^= 0x00800000;
17884 }
17885 else
17886 {
17887 /* bc[0-3][tf]l? instructions can have the condition
17888 reversed by tweaking a single TF bit, and their
17889 opcodes all have 0x4???????. */
17890 gas_assert ((insn & 0xf3e00000) == 0x41000000);
17891 insn ^= 0x00010000;
17892 }
17893 break;
17894
17895 case 0:
17896 /* bltz 0x04000000 bgez 0x04010000
17897 bltzal 0x04100000 bgezal 0x04110000 */
17898 gas_assert ((insn & 0xfc0e0000) == 0x04000000);
17899 insn ^= 0x00010000;
17900 break;
17901
17902 case 1:
17903 /* beq 0x10000000 bne 0x14000000
17904 blez 0x18000000 bgtz 0x1c000000 */
17905 insn ^= 0x04000000;
17906 break;
17907
17908 default:
17909 abort ();
17910 }
17911 }
17912
17913 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
17914 {
17915 /* Clear the and-link bit. */
17916 gas_assert ((insn & 0xfc1c0000) == 0x04100000);
17917
17918 /* bltzal 0x04100000 bgezal 0x04110000
17919 bltzall 0x04120000 bgezall 0x04130000 */
17920 insn &= ~0x00100000;
17921 }
17922
17923 /* Branch over the branch (if the branch was likely) or the
17924 full jump (not likely case). Compute the offset from the
17925 current instruction to branch to. */
17926 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17927 i = 16;
17928 else
17929 {
17930 /* How many bytes in instructions we've already emitted? */
17931 i = buf - fragp->fr_literal - fragp->fr_fix;
17932 /* How many bytes in instructions from here to the end? */
17933 i = fragp->fr_var - i;
17934 }
17935 /* Convert to instruction count. */
17936 i >>= 2;
17937 /* Branch counts from the next instruction. */
17938 i--;
17939 insn |= i;
17940 /* Branch over the jump. */
17941 buf = write_insn (buf, insn);
17942
17943 /* nop */
17944 buf = write_insn (buf, 0);
17945
17946 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17947 {
17948 /* beql $0, $0, 2f */
17949 insn = 0x50000000;
17950 /* Compute the PC offset from the current instruction to
17951 the end of the variable frag. */
17952 /* How many bytes in instructions we've already emitted? */
17953 i = buf - fragp->fr_literal - fragp->fr_fix;
17954 /* How many bytes in instructions from here to the end? */
17955 i = fragp->fr_var - i;
17956 /* Convert to instruction count. */
17957 i >>= 2;
17958 /* Don't decrement i, because we want to branch over the
17959 delay slot. */
17960 insn |= i;
17961
17962 buf = write_insn (buf, insn);
17963 buf = write_insn (buf, 0);
17964 }
17965
17966 uncond:
17967 if (mips_pic == NO_PIC)
17968 {
17969 /* j or jal. */
17970 insn = (RELAX_BRANCH_LINK (fragp->fr_subtype)
17971 ? 0x0c000000 : 0x08000000);
17972 exp.X_op = O_symbol;
17973 exp.X_add_symbol = fragp->fr_symbol;
17974 exp.X_add_number = fragp->fr_offset;
17975
17976 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
17977 FALSE, BFD_RELOC_MIPS_JMP);
17978 fixp->fx_file = fragp->fr_file;
17979 fixp->fx_line = fragp->fr_line;
17980
17981 buf = write_insn (buf, insn);
17982 }
17983 else
17984 {
17985 unsigned long at = RELAX_BRANCH_AT (fragp->fr_subtype);
17986
17987 /* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
17988 insn = HAVE_64BIT_ADDRESSES ? 0xdf800000 : 0x8f800000;
17989 insn |= at << OP_SH_RT;
17990 exp.X_op = O_symbol;
17991 exp.X_add_symbol = fragp->fr_symbol;
17992 exp.X_add_number = fragp->fr_offset;
17993
17994 if (fragp->fr_offset)
17995 {
17996 exp.X_add_symbol = make_expr_symbol (&exp);
17997 exp.X_add_number = 0;
17998 }
17999
18000 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
18001 FALSE, BFD_RELOC_MIPS_GOT16);
18002 fixp->fx_file = fragp->fr_file;
18003 fixp->fx_line = fragp->fr_line;
18004
18005 buf = write_insn (buf, insn);
18006
18007 if (mips_opts.isa == ISA_MIPS1)
18008 /* nop */
18009 buf = write_insn (buf, 0);
18010
18011 /* d/addiu $at, $at, <sym> R_MIPS_LO16 */
18012 insn = HAVE_64BIT_ADDRESSES ? 0x64000000 : 0x24000000;
18013 insn |= at << OP_SH_RS | at << OP_SH_RT;
18014
18015 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
18016 FALSE, BFD_RELOC_LO16);
18017 fixp->fx_file = fragp->fr_file;
18018 fixp->fx_line = fragp->fr_line;
18019
18020 buf = write_insn (buf, insn);
18021
18022 /* j(al)r $at. */
18023 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
18024 insn = 0x0000f809;
18025 else
18026 insn = 0x00000008;
18027 insn |= at << OP_SH_RS;
18028
18029 buf = write_insn (buf, insn);
18030 }
18031 }
18032
18033 fragp->fr_fix += fragp->fr_var;
18034 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18035 return;
18036 }
18037
18038 /* Relax microMIPS branches. */
18039 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
18040 {
18041 char *buf = fragp->fr_literal + fragp->fr_fix;
18042 bfd_boolean compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
18043 bfd_boolean insn32 = RELAX_MICROMIPS_INSN32 (fragp->fr_subtype);
18044 bfd_boolean nods = RELAX_MICROMIPS_NODS (fragp->fr_subtype);
18045 bfd_boolean al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
18046 int type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
18047 bfd_boolean short_ds;
18048 unsigned long insn;
18049 expressionS exp;
18050 fixS *fixp;
18051
18052 exp.X_op = O_symbol;
18053 exp.X_add_symbol = fragp->fr_symbol;
18054 exp.X_add_number = fragp->fr_offset;
18055
18056 fragp->fr_fix += fragp->fr_var;
18057
18058 /* Handle 16-bit branches that fit or are forced to fit. */
18059 if (type != 0 && !RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
18060 {
18061 /* We generate a fixup instead of applying it right now,
18062 because if there is linker relaxation, we're going to
18063 need the relocations. */
18064 if (type == 'D')
18065 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
18066 BFD_RELOC_MICROMIPS_10_PCREL_S1);
18067 else if (type == 'E')
18068 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
18069 BFD_RELOC_MICROMIPS_7_PCREL_S1);
18070 else
18071 abort ();
18072
18073 fixp->fx_file = fragp->fr_file;
18074 fixp->fx_line = fragp->fr_line;
18075
18076 /* These relocations can have an addend that won't fit in
18077 2 octets. */
18078 fixp->fx_no_overflow = 1;
18079
18080 return;
18081 }
18082
18083 /* Handle 32-bit branches that fit or are forced to fit. */
18084 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
18085 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
18086 {
18087 /* We generate a fixup instead of applying it right now,
18088 because if there is linker relaxation, we're going to
18089 need the relocations. */
18090 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
18091 BFD_RELOC_MICROMIPS_16_PCREL_S1);
18092 fixp->fx_file = fragp->fr_file;
18093 fixp->fx_line = fragp->fr_line;
18094
18095 if (type == 0)
18096 {
18097 insn = read_compressed_insn (buf, 4);
18098 buf += 4;
18099
18100 if (nods)
18101 {
18102 /* Check the short-delay-slot bit. */
18103 if (!al || (insn & 0x02000000) != 0)
18104 buf = write_compressed_insn (buf, 0x0c00, 2);
18105 else
18106 buf = write_compressed_insn (buf, 0x00000000, 4);
18107 }
18108
18109 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18110 return;
18111 }
18112 }
18113
18114 /* Relax 16-bit branches to 32-bit branches. */
18115 if (type != 0)
18116 {
18117 insn = read_compressed_insn (buf, 2);
18118
18119 if ((insn & 0xfc00) == 0xcc00) /* b16 */
18120 insn = 0x94000000; /* beq */
18121 else if ((insn & 0xdc00) == 0x8c00) /* beqz16/bnez16 */
18122 {
18123 unsigned long regno;
18124
18125 regno = (insn >> MICROMIPSOP_SH_MD) & MICROMIPSOP_MASK_MD;
18126 regno = micromips_to_32_reg_d_map [regno];
18127 insn = ((insn & 0x2000) << 16) | 0x94000000; /* beq/bne */
18128 insn |= regno << MICROMIPSOP_SH_RS;
18129 }
18130 else
18131 abort ();
18132
18133 /* Nothing else to do, just write it out. */
18134 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
18135 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
18136 {
18137 buf = write_compressed_insn (buf, insn, 4);
18138 if (nods)
18139 buf = write_compressed_insn (buf, 0x0c00, 2);
18140 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18141 return;
18142 }
18143 }
18144 else
18145 insn = read_compressed_insn (buf, 4);
18146
18147 /* Relax 32-bit branches to a sequence of instructions. */
18148 as_warn_where (fragp->fr_file, fragp->fr_line,
18149 _("relaxed out-of-range branch into a jump"));
18150
18151 /* Set the short-delay-slot bit. */
18152 short_ds = !al || (insn & 0x02000000) != 0;
18153
18154 if (!RELAX_MICROMIPS_UNCOND (fragp->fr_subtype))
18155 {
18156 symbolS *l;
18157
18158 /* Reverse the branch. */
18159 if ((insn & 0xfc000000) == 0x94000000 /* beq */
18160 || (insn & 0xfc000000) == 0xb4000000) /* bne */
18161 insn ^= 0x20000000;
18162 else if ((insn & 0xffe00000) == 0x40000000 /* bltz */
18163 || (insn & 0xffe00000) == 0x40400000 /* bgez */
18164 || (insn & 0xffe00000) == 0x40800000 /* blez */
18165 || (insn & 0xffe00000) == 0x40c00000 /* bgtz */
18166 || (insn & 0xffe00000) == 0x40a00000 /* bnezc */
18167 || (insn & 0xffe00000) == 0x40e00000 /* beqzc */
18168 || (insn & 0xffe00000) == 0x40200000 /* bltzal */
18169 || (insn & 0xffe00000) == 0x40600000 /* bgezal */
18170 || (insn & 0xffe00000) == 0x42200000 /* bltzals */
18171 || (insn & 0xffe00000) == 0x42600000) /* bgezals */
18172 insn ^= 0x00400000;
18173 else if ((insn & 0xffe30000) == 0x43800000 /* bc1f */
18174 || (insn & 0xffe30000) == 0x43a00000 /* bc1t */
18175 || (insn & 0xffe30000) == 0x42800000 /* bc2f */
18176 || (insn & 0xffe30000) == 0x42a00000) /* bc2t */
18177 insn ^= 0x00200000;
18178 else if ((insn & 0xff000000) == 0x83000000 /* BZ.df
18179 BNZ.df */
18180 || (insn & 0xff600000) == 0x81600000) /* BZ.V
18181 BNZ.V */
18182 insn ^= 0x00800000;
18183 else
18184 abort ();
18185
18186 if (al)
18187 {
18188 /* Clear the and-link and short-delay-slot bits. */
18189 gas_assert ((insn & 0xfda00000) == 0x40200000);
18190
18191 /* bltzal 0x40200000 bgezal 0x40600000 */
18192 /* bltzals 0x42200000 bgezals 0x42600000 */
18193 insn &= ~0x02200000;
18194 }
18195
18196 /* Make a label at the end for use with the branch. */
18197 l = symbol_new (micromips_label_name (), asec, fragp->fr_fix, fragp);
18198 micromips_label_inc ();
18199 S_SET_OTHER (l, ELF_ST_SET_MICROMIPS (S_GET_OTHER (l)));
18200
18201 /* Refer to it. */
18202 fixp = fix_new (fragp, buf - fragp->fr_literal, 4, l, 0, TRUE,
18203 BFD_RELOC_MICROMIPS_16_PCREL_S1);
18204 fixp->fx_file = fragp->fr_file;
18205 fixp->fx_line = fragp->fr_line;
18206
18207 /* Branch over the jump. */
18208 buf = write_compressed_insn (buf, insn, 4);
18209
18210 if (!compact)
18211 {
18212 /* nop */
18213 if (insn32)
18214 buf = write_compressed_insn (buf, 0x00000000, 4);
18215 else
18216 buf = write_compressed_insn (buf, 0x0c00, 2);
18217 }
18218 }
18219
18220 if (mips_pic == NO_PIC)
18221 {
18222 unsigned long jal = (short_ds || nods
18223 ? 0x74000000 : 0xf4000000); /* jal/s */
18224
18225 /* j/jal/jals <sym> R_MICROMIPS_26_S1 */
18226 insn = al ? jal : 0xd4000000;
18227
18228 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
18229 BFD_RELOC_MICROMIPS_JMP);
18230 fixp->fx_file = fragp->fr_file;
18231 fixp->fx_line = fragp->fr_line;
18232
18233 buf = write_compressed_insn (buf, insn, 4);
18234
18235 if (compact || nods)
18236 {
18237 /* nop */
18238 if (insn32)
18239 buf = write_compressed_insn (buf, 0x00000000, 4);
18240 else
18241 buf = write_compressed_insn (buf, 0x0c00, 2);
18242 }
18243 }
18244 else
18245 {
18246 unsigned long at = RELAX_MICROMIPS_AT (fragp->fr_subtype);
18247
18248 /* lw/ld $at, <sym>($gp) R_MICROMIPS_GOT16 */
18249 insn = HAVE_64BIT_ADDRESSES ? 0xdc1c0000 : 0xfc1c0000;
18250 insn |= at << MICROMIPSOP_SH_RT;
18251
18252 if (exp.X_add_number)
18253 {
18254 exp.X_add_symbol = make_expr_symbol (&exp);
18255 exp.X_add_number = 0;
18256 }
18257
18258 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
18259 BFD_RELOC_MICROMIPS_GOT16);
18260 fixp->fx_file = fragp->fr_file;
18261 fixp->fx_line = fragp->fr_line;
18262
18263 buf = write_compressed_insn (buf, insn, 4);
18264
18265 /* d/addiu $at, $at, <sym> R_MICROMIPS_LO16 */
18266 insn = HAVE_64BIT_ADDRESSES ? 0x5c000000 : 0x30000000;
18267 insn |= at << MICROMIPSOP_SH_RT | at << MICROMIPSOP_SH_RS;
18268
18269 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
18270 BFD_RELOC_MICROMIPS_LO16);
18271 fixp->fx_file = fragp->fr_file;
18272 fixp->fx_line = fragp->fr_line;
18273
18274 buf = write_compressed_insn (buf, insn, 4);
18275
18276 if (insn32)
18277 {
18278 /* jr/jalr $at */
18279 insn = 0x00000f3c | (al ? RA : ZERO) << MICROMIPSOP_SH_RT;
18280 insn |= at << MICROMIPSOP_SH_RS;
18281
18282 buf = write_compressed_insn (buf, insn, 4);
18283
18284 if (compact || nods)
18285 /* nop */
18286 buf = write_compressed_insn (buf, 0x00000000, 4);
18287 }
18288 else
18289 {
18290 /* jr/jrc/jalr/jalrs $at */
18291 unsigned long jalr = short_ds ? 0x45e0 : 0x45c0; /* jalr/s */
18292 unsigned long jr = compact || nods ? 0x45a0 : 0x4580; /* jr/c */
18293
18294 insn = al ? jalr : jr;
18295 insn |= at << MICROMIPSOP_SH_MJ;
18296
18297 buf = write_compressed_insn (buf, insn, 2);
18298 if (al && nods)
18299 {
18300 /* nop */
18301 if (short_ds)
18302 buf = write_compressed_insn (buf, 0x0c00, 2);
18303 else
18304 buf = write_compressed_insn (buf, 0x00000000, 4);
18305 }
18306 }
18307 }
18308
18309 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18310 return;
18311 }
18312
18313 if (RELAX_MIPS16_P (fragp->fr_subtype))
18314 {
18315 int type;
18316 const struct mips_int_operand *operand;
18317 offsetT val;
18318 char *buf;
18319 unsigned int user_length, length;
18320 bfd_boolean need_reloc;
18321 unsigned long insn;
18322 bfd_boolean ext;
18323 segT symsec;
18324
18325 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
18326 operand = mips16_immed_operand (type, FALSE);
18327
18328 ext = RELAX_MIPS16_EXTENDED (fragp->fr_subtype);
18329 val = resolve_symbol_value (fragp->fr_symbol) + fragp->fr_offset;
18330
18331 symsec = S_GET_SEGMENT (fragp->fr_symbol);
18332 need_reloc = (S_FORCE_RELOC (fragp->fr_symbol, TRUE)
18333 || (operand->root.type == OP_PCREL
18334 ? asec != symsec
18335 : !bfd_is_abs_section (symsec)));
18336
18337 if (operand->root.type == OP_PCREL)
18338 {
18339 const struct mips_pcrel_operand *pcrel_op;
18340 addressT addr;
18341
18342 pcrel_op = (const struct mips_pcrel_operand *) operand;
18343 addr = fragp->fr_address + fragp->fr_fix;
18344
18345 /* The rules for the base address of a PC relative reloc are
18346 complicated; see mips16_extended_frag. */
18347 if (pcrel_op->include_isa_bit)
18348 {
18349 if (!need_reloc)
18350 {
18351 if (!ELF_ST_IS_MIPS16 (S_GET_OTHER (fragp->fr_symbol)))
18352 as_bad_where (fragp->fr_file, fragp->fr_line,
18353 _("branch to a symbol in another ISA mode"));
18354 else if ((fragp->fr_offset & 0x1) != 0)
18355 as_bad_where (fragp->fr_file, fragp->fr_line,
18356 _("branch to misaligned address (0x%lx)"),
18357 (long) val);
18358 }
18359 addr += 2;
18360 if (ext)
18361 addr += 2;
18362 /* Ignore the low bit in the target, since it will be
18363 set for a text label. */
18364 val &= -2;
18365 }
18366 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
18367 addr -= 4;
18368 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
18369 addr -= 2;
18370
18371 addr &= -(1 << pcrel_op->align_log2);
18372 val -= addr;
18373
18374 /* Make sure the section winds up with the alignment we have
18375 assumed. */
18376 if (operand->shift > 0)
18377 record_alignment (asec, operand->shift);
18378 }
18379
18380 if (ext
18381 && (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)
18382 || RELAX_MIPS16_DSLOT (fragp->fr_subtype)))
18383 as_warn_where (fragp->fr_file, fragp->fr_line,
18384 _("extended instruction in delay slot"));
18385
18386 buf = fragp->fr_literal + fragp->fr_fix;
18387
18388 insn = read_compressed_insn (buf, 2);
18389 if (ext)
18390 insn |= MIPS16_EXTEND;
18391
18392 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
18393 user_length = 4;
18394 else if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
18395 user_length = 2;
18396 else
18397 user_length = 0;
18398
18399 if (need_reloc)
18400 {
18401 bfd_reloc_code_real_type reloc = BFD_RELOC_NONE;
18402 expressionS exp;
18403 fixS *fixp;
18404
18405 switch (type)
18406 {
18407 case 'p':
18408 case 'q':
18409 reloc = BFD_RELOC_MIPS16_16_PCREL_S1;
18410 break;
18411 default:
18412 as_bad_where (fragp->fr_file, fragp->fr_line,
18413 _("unsupported relocation"));
18414 break;
18415 }
18416 if (reloc == BFD_RELOC_NONE)
18417 ;
18418 else if (ext)
18419 {
18420 exp.X_op = O_symbol;
18421 exp.X_add_symbol = fragp->fr_symbol;
18422 exp.X_add_number = fragp->fr_offset;
18423
18424 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp,
18425 TRUE, reloc);
18426
18427 fixp->fx_file = fragp->fr_file;
18428 fixp->fx_line = fragp->fr_line;
18429
18430 /* These relocations can have an addend that won't fit
18431 in 2 octets. */
18432 fixp->fx_no_overflow = 1;
18433 }
18434 else
18435 as_bad_where (fragp->fr_file, fragp->fr_line,
18436 _("invalid unextended operand value"));
18437 }
18438 else
18439 mips16_immed (fragp->fr_file, fragp->fr_line, type,
18440 BFD_RELOC_UNUSED, val, user_length, &insn);
18441
18442 length = (ext ? 4 : 2);
18443 gas_assert (mips16_opcode_length (insn) == length);
18444 write_compressed_insn (buf, insn, length);
18445 fragp->fr_fix += length;
18446 }
18447 else
18448 {
18449 relax_substateT subtype = fragp->fr_subtype;
18450 bfd_boolean second_longer = (subtype & RELAX_SECOND_LONGER) != 0;
18451 bfd_boolean use_second = (subtype & RELAX_USE_SECOND) != 0;
18452 int first, second;
18453 fixS *fixp;
18454
18455 first = RELAX_FIRST (subtype);
18456 second = RELAX_SECOND (subtype);
18457 fixp = (fixS *) fragp->fr_opcode;
18458
18459 /* If the delay slot chosen does not match the size of the instruction,
18460 then emit a warning. */
18461 if ((!use_second && (subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0)
18462 || (use_second && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0))
18463 {
18464 relax_substateT s;
18465 const char *msg;
18466
18467 s = subtype & (RELAX_DELAY_SLOT_16BIT
18468 | RELAX_DELAY_SLOT_SIZE_FIRST
18469 | RELAX_DELAY_SLOT_SIZE_SECOND);
18470 msg = macro_warning (s);
18471 if (msg != NULL)
18472 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
18473 subtype &= ~s;
18474 }
18475
18476 /* Possibly emit a warning if we've chosen the longer option. */
18477 if (use_second == second_longer)
18478 {
18479 relax_substateT s;
18480 const char *msg;
18481
18482 s = (subtype
18483 & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT));
18484 msg = macro_warning (s);
18485 if (msg != NULL)
18486 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
18487 subtype &= ~s;
18488 }
18489
18490 /* Go through all the fixups for the first sequence. Disable them
18491 (by marking them as done) if we're going to use the second
18492 sequence instead. */
18493 while (fixp
18494 && fixp->fx_frag == fragp
18495 && fixp->fx_where < fragp->fr_fix - second)
18496 {
18497 if (subtype & RELAX_USE_SECOND)
18498 fixp->fx_done = 1;
18499 fixp = fixp->fx_next;
18500 }
18501
18502 /* Go through the fixups for the second sequence. Disable them if
18503 we're going to use the first sequence, otherwise adjust their
18504 addresses to account for the relaxation. */
18505 while (fixp && fixp->fx_frag == fragp)
18506 {
18507 if (subtype & RELAX_USE_SECOND)
18508 fixp->fx_where -= first;
18509 else
18510 fixp->fx_done = 1;
18511 fixp = fixp->fx_next;
18512 }
18513
18514 /* Now modify the frag contents. */
18515 if (subtype & RELAX_USE_SECOND)
18516 {
18517 char *start;
18518
18519 start = fragp->fr_literal + fragp->fr_fix - first - second;
18520 memmove (start, start + first, second);
18521 fragp->fr_fix -= first;
18522 }
18523 else
18524 fragp->fr_fix -= second;
18525 }
18526 }
18527
18528 /* This function is called after the relocs have been generated.
18529 We've been storing mips16 text labels as odd. Here we convert them
18530 back to even for the convenience of the debugger. */
18531
18532 void
18533 mips_frob_file_after_relocs (void)
18534 {
18535 asymbol **syms;
18536 unsigned int count, i;
18537
18538 syms = bfd_get_outsymbols (stdoutput);
18539 count = bfd_get_symcount (stdoutput);
18540 for (i = 0; i < count; i++, syms++)
18541 if (ELF_ST_IS_COMPRESSED (elf_symbol (*syms)->internal_elf_sym.st_other)
18542 && ((*syms)->value & 1) != 0)
18543 {
18544 (*syms)->value &= ~1;
18545 /* If the symbol has an odd size, it was probably computed
18546 incorrectly, so adjust that as well. */
18547 if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0)
18548 ++elf_symbol (*syms)->internal_elf_sym.st_size;
18549 }
18550 }
18551
18552 /* This function is called whenever a label is defined, including fake
18553 labels instantiated off the dot special symbol. It is used when
18554 handling branch delays; if a branch has a label, we assume we cannot
18555 move it. This also bumps the value of the symbol by 1 in compressed
18556 code. */
18557
18558 static void
18559 mips_record_label (symbolS *sym)
18560 {
18561 segment_info_type *si = seg_info (now_seg);
18562 struct insn_label_list *l;
18563
18564 if (free_insn_labels == NULL)
18565 l = XNEW (struct insn_label_list);
18566 else
18567 {
18568 l = free_insn_labels;
18569 free_insn_labels = l->next;
18570 }
18571
18572 l->label = sym;
18573 l->next = si->label_list;
18574 si->label_list = l;
18575 }
18576
18577 /* This function is called as tc_frob_label() whenever a label is defined
18578 and adds a DWARF-2 record we only want for true labels. */
18579
18580 void
18581 mips_define_label (symbolS *sym)
18582 {
18583 mips_record_label (sym);
18584 dwarf2_emit_label (sym);
18585 }
18586
18587 /* This function is called by tc_new_dot_label whenever a new dot symbol
18588 is defined. */
18589
18590 void
18591 mips_add_dot_label (symbolS *sym)
18592 {
18593 mips_record_label (sym);
18594 if (mips_assembling_insn && HAVE_CODE_COMPRESSION)
18595 mips_compressed_mark_label (sym);
18596 }
18597 \f
18598 /* Converting ASE flags from internal to .MIPS.abiflags values. */
18599 static unsigned int
18600 mips_convert_ase_flags (int ase)
18601 {
18602 unsigned int ext_ases = 0;
18603
18604 if (ase & ASE_DSP)
18605 ext_ases |= AFL_ASE_DSP;
18606 if (ase & ASE_DSPR2)
18607 ext_ases |= AFL_ASE_DSPR2;
18608 if (ase & ASE_DSPR3)
18609 ext_ases |= AFL_ASE_DSPR3;
18610 if (ase & ASE_EVA)
18611 ext_ases |= AFL_ASE_EVA;
18612 if (ase & ASE_MCU)
18613 ext_ases |= AFL_ASE_MCU;
18614 if (ase & ASE_MDMX)
18615 ext_ases |= AFL_ASE_MDMX;
18616 if (ase & ASE_MIPS3D)
18617 ext_ases |= AFL_ASE_MIPS3D;
18618 if (ase & ASE_MT)
18619 ext_ases |= AFL_ASE_MT;
18620 if (ase & ASE_SMARTMIPS)
18621 ext_ases |= AFL_ASE_SMARTMIPS;
18622 if (ase & ASE_VIRT)
18623 ext_ases |= AFL_ASE_VIRT;
18624 if (ase & ASE_MSA)
18625 ext_ases |= AFL_ASE_MSA;
18626 if (ase & ASE_XPA)
18627 ext_ases |= AFL_ASE_XPA;
18628
18629 return ext_ases;
18630 }
18631 /* Some special processing for a MIPS ELF file. */
18632
18633 void
18634 mips_elf_final_processing (void)
18635 {
18636 int fpabi;
18637 Elf_Internal_ABIFlags_v0 flags;
18638
18639 flags.version = 0;
18640 flags.isa_rev = 0;
18641 switch (file_mips_opts.isa)
18642 {
18643 case INSN_ISA1:
18644 flags.isa_level = 1;
18645 break;
18646 case INSN_ISA2:
18647 flags.isa_level = 2;
18648 break;
18649 case INSN_ISA3:
18650 flags.isa_level = 3;
18651 break;
18652 case INSN_ISA4:
18653 flags.isa_level = 4;
18654 break;
18655 case INSN_ISA5:
18656 flags.isa_level = 5;
18657 break;
18658 case INSN_ISA32:
18659 flags.isa_level = 32;
18660 flags.isa_rev = 1;
18661 break;
18662 case INSN_ISA32R2:
18663 flags.isa_level = 32;
18664 flags.isa_rev = 2;
18665 break;
18666 case INSN_ISA32R3:
18667 flags.isa_level = 32;
18668 flags.isa_rev = 3;
18669 break;
18670 case INSN_ISA32R5:
18671 flags.isa_level = 32;
18672 flags.isa_rev = 5;
18673 break;
18674 case INSN_ISA32R6:
18675 flags.isa_level = 32;
18676 flags.isa_rev = 6;
18677 break;
18678 case INSN_ISA64:
18679 flags.isa_level = 64;
18680 flags.isa_rev = 1;
18681 break;
18682 case INSN_ISA64R2:
18683 flags.isa_level = 64;
18684 flags.isa_rev = 2;
18685 break;
18686 case INSN_ISA64R3:
18687 flags.isa_level = 64;
18688 flags.isa_rev = 3;
18689 break;
18690 case INSN_ISA64R5:
18691 flags.isa_level = 64;
18692 flags.isa_rev = 5;
18693 break;
18694 case INSN_ISA64R6:
18695 flags.isa_level = 64;
18696 flags.isa_rev = 6;
18697 break;
18698 }
18699
18700 flags.gpr_size = file_mips_opts.gp == 32 ? AFL_REG_32 : AFL_REG_64;
18701 flags.cpr1_size = file_mips_opts.soft_float ? AFL_REG_NONE
18702 : (file_mips_opts.ase & ASE_MSA) ? AFL_REG_128
18703 : (file_mips_opts.fp == 64) ? AFL_REG_64
18704 : AFL_REG_32;
18705 flags.cpr2_size = AFL_REG_NONE;
18706 flags.fp_abi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
18707 Tag_GNU_MIPS_ABI_FP);
18708 flags.isa_ext = bfd_mips_isa_ext (stdoutput);
18709 flags.ases = mips_convert_ase_flags (file_mips_opts.ase);
18710 if (file_ase_mips16)
18711 flags.ases |= AFL_ASE_MIPS16;
18712 if (file_ase_micromips)
18713 flags.ases |= AFL_ASE_MICROMIPS;
18714 flags.flags1 = 0;
18715 if ((ISA_HAS_ODD_SINGLE_FPR (file_mips_opts.isa, file_mips_opts.arch)
18716 || file_mips_opts.fp == 64)
18717 && file_mips_opts.oddspreg)
18718 flags.flags1 |= AFL_FLAGS1_ODDSPREG;
18719 flags.flags2 = 0;
18720
18721 bfd_mips_elf_swap_abiflags_v0_out (stdoutput, &flags,
18722 ((Elf_External_ABIFlags_v0 *)
18723 mips_flags_frag));
18724
18725 /* Write out the register information. */
18726 if (mips_abi != N64_ABI)
18727 {
18728 Elf32_RegInfo s;
18729
18730 s.ri_gprmask = mips_gprmask;
18731 s.ri_cprmask[0] = mips_cprmask[0];
18732 s.ri_cprmask[1] = mips_cprmask[1];
18733 s.ri_cprmask[2] = mips_cprmask[2];
18734 s.ri_cprmask[3] = mips_cprmask[3];
18735 /* The gp_value field is set by the MIPS ELF backend. */
18736
18737 bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
18738 ((Elf32_External_RegInfo *)
18739 mips_regmask_frag));
18740 }
18741 else
18742 {
18743 Elf64_Internal_RegInfo s;
18744
18745 s.ri_gprmask = mips_gprmask;
18746 s.ri_pad = 0;
18747 s.ri_cprmask[0] = mips_cprmask[0];
18748 s.ri_cprmask[1] = mips_cprmask[1];
18749 s.ri_cprmask[2] = mips_cprmask[2];
18750 s.ri_cprmask[3] = mips_cprmask[3];
18751 /* The gp_value field is set by the MIPS ELF backend. */
18752
18753 bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
18754 ((Elf64_External_RegInfo *)
18755 mips_regmask_frag));
18756 }
18757
18758 /* Set the MIPS ELF flag bits. FIXME: There should probably be some
18759 sort of BFD interface for this. */
18760 if (mips_any_noreorder)
18761 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
18762 if (mips_pic != NO_PIC)
18763 {
18764 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
18765 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
18766 }
18767 if (mips_abicalls)
18768 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
18769
18770 /* Set MIPS ELF flags for ASEs. Note that not all ASEs have flags
18771 defined at present; this might need to change in future. */
18772 if (file_ase_mips16)
18773 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16;
18774 if (file_ase_micromips)
18775 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MICROMIPS;
18776 if (file_mips_opts.ase & ASE_MDMX)
18777 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX;
18778
18779 /* Set the MIPS ELF ABI flags. */
18780 if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32)
18781 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32;
18782 else if (mips_abi == O64_ABI)
18783 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64;
18784 else if (mips_abi == EABI_ABI)
18785 {
18786 if (file_mips_opts.gp == 64)
18787 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64;
18788 else
18789 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32;
18790 }
18791 else if (mips_abi == N32_ABI)
18792 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ABI2;
18793
18794 /* Nothing to do for N64_ABI. */
18795
18796 if (mips_32bitmode)
18797 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE;
18798
18799 if (mips_nan2008 == 1)
18800 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NAN2008;
18801
18802 /* 32 bit code with 64 bit FP registers. */
18803 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
18804 Tag_GNU_MIPS_ABI_FP);
18805 if (fpabi == Val_GNU_MIPS_ABI_FP_OLD_64)
18806 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_FP64;
18807 }
18808 \f
18809 typedef struct proc {
18810 symbolS *func_sym;
18811 symbolS *func_end_sym;
18812 unsigned long reg_mask;
18813 unsigned long reg_offset;
18814 unsigned long fpreg_mask;
18815 unsigned long fpreg_offset;
18816 unsigned long frame_offset;
18817 unsigned long frame_reg;
18818 unsigned long pc_reg;
18819 } procS;
18820
18821 static procS cur_proc;
18822 static procS *cur_proc_ptr;
18823 static int numprocs;
18824
18825 /* Implement NOP_OPCODE. We encode a MIPS16 nop as "1", a microMIPS nop
18826 as "2", and a normal nop as "0". */
18827
18828 #define NOP_OPCODE_MIPS 0
18829 #define NOP_OPCODE_MIPS16 1
18830 #define NOP_OPCODE_MICROMIPS 2
18831
18832 char
18833 mips_nop_opcode (void)
18834 {
18835 if (seg_info (now_seg)->tc_segment_info_data.micromips)
18836 return NOP_OPCODE_MICROMIPS;
18837 else if (seg_info (now_seg)->tc_segment_info_data.mips16)
18838 return NOP_OPCODE_MIPS16;
18839 else
18840 return NOP_OPCODE_MIPS;
18841 }
18842
18843 /* Fill in an rs_align_code fragment. Unlike elsewhere we want to use
18844 32-bit microMIPS NOPs here (if applicable). */
18845
18846 void
18847 mips_handle_align (fragS *fragp)
18848 {
18849 char nop_opcode;
18850 char *p;
18851 int bytes, size, excess;
18852 valueT opcode;
18853
18854 if (fragp->fr_type != rs_align_code)
18855 return;
18856
18857 p = fragp->fr_literal + fragp->fr_fix;
18858 nop_opcode = *p;
18859 switch (nop_opcode)
18860 {
18861 case NOP_OPCODE_MICROMIPS:
18862 opcode = micromips_nop32_insn.insn_opcode;
18863 size = 4;
18864 break;
18865 case NOP_OPCODE_MIPS16:
18866 opcode = mips16_nop_insn.insn_opcode;
18867 size = 2;
18868 break;
18869 case NOP_OPCODE_MIPS:
18870 default:
18871 opcode = nop_insn.insn_opcode;
18872 size = 4;
18873 break;
18874 }
18875
18876 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
18877 excess = bytes % size;
18878
18879 /* Handle the leading part if we're not inserting a whole number of
18880 instructions, and make it the end of the fixed part of the frag.
18881 Try to fit in a short microMIPS NOP if applicable and possible,
18882 and use zeroes otherwise. */
18883 gas_assert (excess < 4);
18884 fragp->fr_fix += excess;
18885 switch (excess)
18886 {
18887 case 3:
18888 *p++ = '\0';
18889 /* Fall through. */
18890 case 2:
18891 if (nop_opcode == NOP_OPCODE_MICROMIPS && !mips_opts.insn32)
18892 {
18893 p = write_compressed_insn (p, micromips_nop16_insn.insn_opcode, 2);
18894 break;
18895 }
18896 *p++ = '\0';
18897 /* Fall through. */
18898 case 1:
18899 *p++ = '\0';
18900 /* Fall through. */
18901 case 0:
18902 break;
18903 }
18904
18905 md_number_to_chars (p, opcode, size);
18906 fragp->fr_var = size;
18907 }
18908
18909 static long
18910 get_number (void)
18911 {
18912 int negative = 0;
18913 long val = 0;
18914
18915 if (*input_line_pointer == '-')
18916 {
18917 ++input_line_pointer;
18918 negative = 1;
18919 }
18920 if (!ISDIGIT (*input_line_pointer))
18921 as_bad (_("expected simple number"));
18922 if (input_line_pointer[0] == '0')
18923 {
18924 if (input_line_pointer[1] == 'x')
18925 {
18926 input_line_pointer += 2;
18927 while (ISXDIGIT (*input_line_pointer))
18928 {
18929 val <<= 4;
18930 val |= hex_value (*input_line_pointer++);
18931 }
18932 return negative ? -val : val;
18933 }
18934 else
18935 {
18936 ++input_line_pointer;
18937 while (ISDIGIT (*input_line_pointer))
18938 {
18939 val <<= 3;
18940 val |= *input_line_pointer++ - '0';
18941 }
18942 return negative ? -val : val;
18943 }
18944 }
18945 if (!ISDIGIT (*input_line_pointer))
18946 {
18947 printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
18948 *input_line_pointer, *input_line_pointer);
18949 as_warn (_("invalid number"));
18950 return -1;
18951 }
18952 while (ISDIGIT (*input_line_pointer))
18953 {
18954 val *= 10;
18955 val += *input_line_pointer++ - '0';
18956 }
18957 return negative ? -val : val;
18958 }
18959
18960 /* The .file directive; just like the usual .file directive, but there
18961 is an initial number which is the ECOFF file index. In the non-ECOFF
18962 case .file implies DWARF-2. */
18963
18964 static void
18965 s_mips_file (int x ATTRIBUTE_UNUSED)
18966 {
18967 static int first_file_directive = 0;
18968
18969 if (ECOFF_DEBUGGING)
18970 {
18971 get_number ();
18972 s_app_file (0);
18973 }
18974 else
18975 {
18976 char *filename;
18977
18978 filename = dwarf2_directive_file (0);
18979
18980 /* Versions of GCC up to 3.1 start files with a ".file"
18981 directive even for stabs output. Make sure that this
18982 ".file" is handled. Note that you need a version of GCC
18983 after 3.1 in order to support DWARF-2 on MIPS. */
18984 if (filename != NULL && ! first_file_directive)
18985 {
18986 (void) new_logical_line (filename, -1);
18987 s_app_file_string (filename, 0);
18988 }
18989 first_file_directive = 1;
18990 }
18991 }
18992
18993 /* The .loc directive, implying DWARF-2. */
18994
18995 static void
18996 s_mips_loc (int x ATTRIBUTE_UNUSED)
18997 {
18998 if (!ECOFF_DEBUGGING)
18999 dwarf2_directive_loc (0);
19000 }
19001
19002 /* The .end directive. */
19003
19004 static void
19005 s_mips_end (int x ATTRIBUTE_UNUSED)
19006 {
19007 symbolS *p;
19008
19009 /* Following functions need their own .frame and .cprestore directives. */
19010 mips_frame_reg_valid = 0;
19011 mips_cprestore_valid = 0;
19012
19013 if (!is_end_of_line[(unsigned char) *input_line_pointer])
19014 {
19015 p = get_symbol ();
19016 demand_empty_rest_of_line ();
19017 }
19018 else
19019 p = NULL;
19020
19021 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
19022 as_warn (_(".end not in text section"));
19023
19024 if (!cur_proc_ptr)
19025 {
19026 as_warn (_(".end directive without a preceding .ent directive"));
19027 demand_empty_rest_of_line ();
19028 return;
19029 }
19030
19031 if (p != NULL)
19032 {
19033 gas_assert (S_GET_NAME (p));
19034 if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->func_sym)))
19035 as_warn (_(".end symbol does not match .ent symbol"));
19036
19037 if (debug_type == DEBUG_STABS)
19038 stabs_generate_asm_endfunc (S_GET_NAME (p),
19039 S_GET_NAME (p));
19040 }
19041 else
19042 as_warn (_(".end directive missing or unknown symbol"));
19043
19044 /* Create an expression to calculate the size of the function. */
19045 if (p && cur_proc_ptr)
19046 {
19047 OBJ_SYMFIELD_TYPE *obj = symbol_get_obj (p);
19048 expressionS *exp = XNEW (expressionS);
19049
19050 obj->size = exp;
19051 exp->X_op = O_subtract;
19052 exp->X_add_symbol = symbol_temp_new_now ();
19053 exp->X_op_symbol = p;
19054 exp->X_add_number = 0;
19055
19056 cur_proc_ptr->func_end_sym = exp->X_add_symbol;
19057 }
19058
19059 /* Generate a .pdr section. */
19060 if (!ECOFF_DEBUGGING && mips_flag_pdr)
19061 {
19062 segT saved_seg = now_seg;
19063 subsegT saved_subseg = now_subseg;
19064 expressionS exp;
19065 char *fragp;
19066
19067 #ifdef md_flush_pending_output
19068 md_flush_pending_output ();
19069 #endif
19070
19071 gas_assert (pdr_seg);
19072 subseg_set (pdr_seg, 0);
19073
19074 /* Write the symbol. */
19075 exp.X_op = O_symbol;
19076 exp.X_add_symbol = p;
19077 exp.X_add_number = 0;
19078 emit_expr (&exp, 4);
19079
19080 fragp = frag_more (7 * 4);
19081
19082 md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4);
19083 md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4);
19084 md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4);
19085 md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4);
19086 md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4);
19087 md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4);
19088 md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4);
19089
19090 subseg_set (saved_seg, saved_subseg);
19091 }
19092
19093 cur_proc_ptr = NULL;
19094 }
19095
19096 /* The .aent and .ent directives. */
19097
19098 static void
19099 s_mips_ent (int aent)
19100 {
19101 symbolS *symbolP;
19102
19103 symbolP = get_symbol ();
19104 if (*input_line_pointer == ',')
19105 ++input_line_pointer;
19106 SKIP_WHITESPACE ();
19107 if (ISDIGIT (*input_line_pointer)
19108 || *input_line_pointer == '-')
19109 get_number ();
19110
19111 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
19112 as_warn (_(".ent or .aent not in text section"));
19113
19114 if (!aent && cur_proc_ptr)
19115 as_warn (_("missing .end"));
19116
19117 if (!aent)
19118 {
19119 /* This function needs its own .frame and .cprestore directives. */
19120 mips_frame_reg_valid = 0;
19121 mips_cprestore_valid = 0;
19122
19123 cur_proc_ptr = &cur_proc;
19124 memset (cur_proc_ptr, '\0', sizeof (procS));
19125
19126 cur_proc_ptr->func_sym = symbolP;
19127
19128 ++numprocs;
19129
19130 if (debug_type == DEBUG_STABS)
19131 stabs_generate_asm_func (S_GET_NAME (symbolP),
19132 S_GET_NAME (symbolP));
19133 }
19134
19135 symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
19136
19137 demand_empty_rest_of_line ();
19138 }
19139
19140 /* The .frame directive. If the mdebug section is present (IRIX 5 native)
19141 then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
19142 s_mips_frame is used so that we can set the PDR information correctly.
19143 We can't use the ecoff routines because they make reference to the ecoff
19144 symbol table (in the mdebug section). */
19145
19146 static void
19147 s_mips_frame (int ignore ATTRIBUTE_UNUSED)
19148 {
19149 if (ECOFF_DEBUGGING)
19150 s_ignore (ignore);
19151 else
19152 {
19153 long val;
19154
19155 if (cur_proc_ptr == (procS *) NULL)
19156 {
19157 as_warn (_(".frame outside of .ent"));
19158 demand_empty_rest_of_line ();
19159 return;
19160 }
19161
19162 cur_proc_ptr->frame_reg = tc_get_register (1);
19163
19164 SKIP_WHITESPACE ();
19165 if (*input_line_pointer++ != ','
19166 || get_absolute_expression_and_terminator (&val) != ',')
19167 {
19168 as_warn (_("bad .frame directive"));
19169 --input_line_pointer;
19170 demand_empty_rest_of_line ();
19171 return;
19172 }
19173
19174 cur_proc_ptr->frame_offset = val;
19175 cur_proc_ptr->pc_reg = tc_get_register (0);
19176
19177 demand_empty_rest_of_line ();
19178 }
19179 }
19180
19181 /* The .fmask and .mask directives. If the mdebug section is present
19182 (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
19183 embedded targets, s_mips_mask is used so that we can set the PDR
19184 information correctly. We can't use the ecoff routines because they
19185 make reference to the ecoff symbol table (in the mdebug section). */
19186
19187 static void
19188 s_mips_mask (int reg_type)
19189 {
19190 if (ECOFF_DEBUGGING)
19191 s_ignore (reg_type);
19192 else
19193 {
19194 long mask, off;
19195
19196 if (cur_proc_ptr == (procS *) NULL)
19197 {
19198 as_warn (_(".mask/.fmask outside of .ent"));
19199 demand_empty_rest_of_line ();
19200 return;
19201 }
19202
19203 if (get_absolute_expression_and_terminator (&mask) != ',')
19204 {
19205 as_warn (_("bad .mask/.fmask directive"));
19206 --input_line_pointer;
19207 demand_empty_rest_of_line ();
19208 return;
19209 }
19210
19211 off = get_absolute_expression ();
19212
19213 if (reg_type == 'F')
19214 {
19215 cur_proc_ptr->fpreg_mask = mask;
19216 cur_proc_ptr->fpreg_offset = off;
19217 }
19218 else
19219 {
19220 cur_proc_ptr->reg_mask = mask;
19221 cur_proc_ptr->reg_offset = off;
19222 }
19223
19224 demand_empty_rest_of_line ();
19225 }
19226 }
19227
19228 /* A table describing all the processors gas knows about. Names are
19229 matched in the order listed.
19230
19231 To ease comparison, please keep this table in the same order as
19232 gcc's mips_cpu_info_table[]. */
19233 static const struct mips_cpu_info mips_cpu_info_table[] =
19234 {
19235 /* Entries for generic ISAs */
19236 { "mips1", MIPS_CPU_IS_ISA, 0, ISA_MIPS1, CPU_R3000 },
19237 { "mips2", MIPS_CPU_IS_ISA, 0, ISA_MIPS2, CPU_R6000 },
19238 { "mips3", MIPS_CPU_IS_ISA, 0, ISA_MIPS3, CPU_R4000 },
19239 { "mips4", MIPS_CPU_IS_ISA, 0, ISA_MIPS4, CPU_R8000 },
19240 { "mips5", MIPS_CPU_IS_ISA, 0, ISA_MIPS5, CPU_MIPS5 },
19241 { "mips32", MIPS_CPU_IS_ISA, 0, ISA_MIPS32, CPU_MIPS32 },
19242 { "mips32r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19243 { "mips32r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R3, CPU_MIPS32R3 },
19244 { "mips32r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R5, CPU_MIPS32R5 },
19245 { "mips32r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R6, CPU_MIPS32R6 },
19246 { "mips64", MIPS_CPU_IS_ISA, 0, ISA_MIPS64, CPU_MIPS64 },
19247 { "mips64r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R2, CPU_MIPS64R2 },
19248 { "mips64r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R3, CPU_MIPS64R3 },
19249 { "mips64r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R5, CPU_MIPS64R5 },
19250 { "mips64r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R6, CPU_MIPS64R6 },
19251
19252 /* MIPS I */
19253 { "r3000", 0, 0, ISA_MIPS1, CPU_R3000 },
19254 { "r2000", 0, 0, ISA_MIPS1, CPU_R3000 },
19255 { "r3900", 0, 0, ISA_MIPS1, CPU_R3900 },
19256
19257 /* MIPS II */
19258 { "r6000", 0, 0, ISA_MIPS2, CPU_R6000 },
19259
19260 /* MIPS III */
19261 { "r4000", 0, 0, ISA_MIPS3, CPU_R4000 },
19262 { "r4010", 0, 0, ISA_MIPS2, CPU_R4010 },
19263 { "vr4100", 0, 0, ISA_MIPS3, CPU_VR4100 },
19264 { "vr4111", 0, 0, ISA_MIPS3, CPU_R4111 },
19265 { "vr4120", 0, 0, ISA_MIPS3, CPU_VR4120 },
19266 { "vr4130", 0, 0, ISA_MIPS3, CPU_VR4120 },
19267 { "vr4181", 0, 0, ISA_MIPS3, CPU_R4111 },
19268 { "vr4300", 0, 0, ISA_MIPS3, CPU_R4300 },
19269 { "r4400", 0, 0, ISA_MIPS3, CPU_R4400 },
19270 { "r4600", 0, 0, ISA_MIPS3, CPU_R4600 },
19271 { "orion", 0, 0, ISA_MIPS3, CPU_R4600 },
19272 { "r4650", 0, 0, ISA_MIPS3, CPU_R4650 },
19273 { "r5900", 0, 0, ISA_MIPS3, CPU_R5900 },
19274 /* ST Microelectronics Loongson 2E and 2F cores */
19275 { "loongson2e", 0, 0, ISA_MIPS3, CPU_LOONGSON_2E },
19276 { "loongson2f", 0, 0, ISA_MIPS3, CPU_LOONGSON_2F },
19277
19278 /* MIPS IV */
19279 { "r8000", 0, 0, ISA_MIPS4, CPU_R8000 },
19280 { "r10000", 0, 0, ISA_MIPS4, CPU_R10000 },
19281 { "r12000", 0, 0, ISA_MIPS4, CPU_R12000 },
19282 { "r14000", 0, 0, ISA_MIPS4, CPU_R14000 },
19283 { "r16000", 0, 0, ISA_MIPS4, CPU_R16000 },
19284 { "vr5000", 0, 0, ISA_MIPS4, CPU_R5000 },
19285 { "vr5400", 0, 0, ISA_MIPS4, CPU_VR5400 },
19286 { "vr5500", 0, 0, ISA_MIPS4, CPU_VR5500 },
19287 { "rm5200", 0, 0, ISA_MIPS4, CPU_R5000 },
19288 { "rm5230", 0, 0, ISA_MIPS4, CPU_R5000 },
19289 { "rm5231", 0, 0, ISA_MIPS4, CPU_R5000 },
19290 { "rm5261", 0, 0, ISA_MIPS4, CPU_R5000 },
19291 { "rm5721", 0, 0, ISA_MIPS4, CPU_R5000 },
19292 { "rm7000", 0, 0, ISA_MIPS4, CPU_RM7000 },
19293 { "rm9000", 0, 0, ISA_MIPS4, CPU_RM9000 },
19294
19295 /* MIPS 32 */
19296 { "4kc", 0, 0, ISA_MIPS32, CPU_MIPS32 },
19297 { "4km", 0, 0, ISA_MIPS32, CPU_MIPS32 },
19298 { "4kp", 0, 0, ISA_MIPS32, CPU_MIPS32 },
19299 { "4ksc", 0, ASE_SMARTMIPS, ISA_MIPS32, CPU_MIPS32 },
19300
19301 /* MIPS 32 Release 2 */
19302 { "4kec", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19303 { "4kem", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19304 { "4kep", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19305 { "4ksd", 0, ASE_SMARTMIPS, ISA_MIPS32R2, CPU_MIPS32R2 },
19306 { "m4k", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19307 { "m4kp", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19308 { "m14k", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
19309 { "m14kc", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
19310 { "m14ke", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
19311 ISA_MIPS32R2, CPU_MIPS32R2 },
19312 { "m14kec", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
19313 ISA_MIPS32R2, CPU_MIPS32R2 },
19314 { "24kc", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19315 { "24kf2_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19316 { "24kf", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19317 { "24kf1_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19318 /* Deprecated forms of the above. */
19319 { "24kfx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19320 { "24kx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19321 /* 24KE is a 24K with DSP ASE, other ASEs are optional. */
19322 { "24kec", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19323 { "24kef2_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19324 { "24kef", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19325 { "24kef1_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19326 /* Deprecated forms of the above. */
19327 { "24kefx", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19328 { "24kex", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19329 /* 34K is a 24K with DSP and MT ASE, other ASEs are optional. */
19330 { "34kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19331 { "34kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19332 { "34kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19333 { "34kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19334 /* Deprecated forms of the above. */
19335 { "34kfx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19336 { "34kx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19337 /* 34Kn is a 34kc without DSP. */
19338 { "34kn", 0, ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19339 /* 74K with DSP and DSPR2 ASE, other ASEs are optional. */
19340 { "74kc", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19341 { "74kf2_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19342 { "74kf", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19343 { "74kf1_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19344 { "74kf3_2", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19345 /* Deprecated forms of the above. */
19346 { "74kfx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19347 { "74kx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19348 /* 1004K cores are multiprocessor versions of the 34K. */
19349 { "1004kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19350 { "1004kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19351 { "1004kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19352 { "1004kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19353 /* interaptiv is the new name for 1004kf */
19354 { "interaptiv", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19355 /* M5100 family */
19356 { "m5100", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
19357 { "m5101", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
19358 /* P5600 with EVA and Virtualization ASEs, other ASEs are optional. */
19359 { "p5600", 0, ASE_VIRT | ASE_EVA | ASE_XPA, ISA_MIPS32R5, CPU_MIPS32R5 },
19360
19361 /* MIPS 64 */
19362 { "5kc", 0, 0, ISA_MIPS64, CPU_MIPS64 },
19363 { "5kf", 0, 0, ISA_MIPS64, CPU_MIPS64 },
19364 { "20kc", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
19365 { "25kf", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
19366
19367 /* Broadcom SB-1 CPU core */
19368 { "sb1", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
19369 /* Broadcom SB-1A CPU core */
19370 { "sb1a", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
19371
19372 { "loongson3a", 0, 0, ISA_MIPS64R2, CPU_LOONGSON_3A },
19373
19374 /* MIPS 64 Release 2 */
19375
19376 /* Cavium Networks Octeon CPU core */
19377 { "octeon", 0, 0, ISA_MIPS64R2, CPU_OCTEON },
19378 { "octeon+", 0, 0, ISA_MIPS64R2, CPU_OCTEONP },
19379 { "octeon2", 0, 0, ISA_MIPS64R2, CPU_OCTEON2 },
19380 { "octeon3", 0, ASE_VIRT | ASE_VIRT64, ISA_MIPS64R5, CPU_OCTEON3 },
19381
19382 /* RMI Xlr */
19383 { "xlr", 0, 0, ISA_MIPS64, CPU_XLR },
19384
19385 /* Broadcom XLP.
19386 XLP is mostly like XLR, with the prominent exception that it is
19387 MIPS64R2 rather than MIPS64. */
19388 { "xlp", 0, 0, ISA_MIPS64R2, CPU_XLR },
19389
19390 /* MIPS 64 Release 6 */
19391 { "i6400", 0, ASE_MSA, ISA_MIPS64R6, CPU_MIPS64R6},
19392 { "p6600", 0, ASE_VIRT | ASE_MSA, ISA_MIPS64R6, CPU_MIPS64R6},
19393
19394 /* End marker */
19395 { NULL, 0, 0, 0, 0 }
19396 };
19397
19398
19399 /* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
19400 with a final "000" replaced by "k". Ignore case.
19401
19402 Note: this function is shared between GCC and GAS. */
19403
19404 static bfd_boolean
19405 mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
19406 {
19407 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
19408 given++, canonical++;
19409
19410 return ((*given == 0 && *canonical == 0)
19411 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
19412 }
19413
19414
19415 /* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
19416 CPU name. We've traditionally allowed a lot of variation here.
19417
19418 Note: this function is shared between GCC and GAS. */
19419
19420 static bfd_boolean
19421 mips_matching_cpu_name_p (const char *canonical, const char *given)
19422 {
19423 /* First see if the name matches exactly, or with a final "000"
19424 turned into "k". */
19425 if (mips_strict_matching_cpu_name_p (canonical, given))
19426 return TRUE;
19427
19428 /* If not, try comparing based on numerical designation alone.
19429 See if GIVEN is an unadorned number, or 'r' followed by a number. */
19430 if (TOLOWER (*given) == 'r')
19431 given++;
19432 if (!ISDIGIT (*given))
19433 return FALSE;
19434
19435 /* Skip over some well-known prefixes in the canonical name,
19436 hoping to find a number there too. */
19437 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
19438 canonical += 2;
19439 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
19440 canonical += 2;
19441 else if (TOLOWER (canonical[0]) == 'r')
19442 canonical += 1;
19443
19444 return mips_strict_matching_cpu_name_p (canonical, given);
19445 }
19446
19447
19448 /* Parse an option that takes the name of a processor as its argument.
19449 OPTION is the name of the option and CPU_STRING is the argument.
19450 Return the corresponding processor enumeration if the CPU_STRING is
19451 recognized, otherwise report an error and return null.
19452
19453 A similar function exists in GCC. */
19454
19455 static const struct mips_cpu_info *
19456 mips_parse_cpu (const char *option, const char *cpu_string)
19457 {
19458 const struct mips_cpu_info *p;
19459
19460 /* 'from-abi' selects the most compatible architecture for the given
19461 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
19462 EABIs, we have to decide whether we're using the 32-bit or 64-bit
19463 version. Look first at the -mgp options, if given, otherwise base
19464 the choice on MIPS_DEFAULT_64BIT.
19465
19466 Treat NO_ABI like the EABIs. One reason to do this is that the
19467 plain 'mips' and 'mips64' configs have 'from-abi' as their default
19468 architecture. This code picks MIPS I for 'mips' and MIPS III for
19469 'mips64', just as we did in the days before 'from-abi'. */
19470 if (strcasecmp (cpu_string, "from-abi") == 0)
19471 {
19472 if (ABI_NEEDS_32BIT_REGS (mips_abi))
19473 return mips_cpu_info_from_isa (ISA_MIPS1);
19474
19475 if (ABI_NEEDS_64BIT_REGS (mips_abi))
19476 return mips_cpu_info_from_isa (ISA_MIPS3);
19477
19478 if (file_mips_opts.gp >= 0)
19479 return mips_cpu_info_from_isa (file_mips_opts.gp == 32
19480 ? ISA_MIPS1 : ISA_MIPS3);
19481
19482 return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
19483 ? ISA_MIPS3
19484 : ISA_MIPS1);
19485 }
19486
19487 /* 'default' has traditionally been a no-op. Probably not very useful. */
19488 if (strcasecmp (cpu_string, "default") == 0)
19489 return 0;
19490
19491 for (p = mips_cpu_info_table; p->name != 0; p++)
19492 if (mips_matching_cpu_name_p (p->name, cpu_string))
19493 return p;
19494
19495 as_bad (_("bad value (%s) for %s"), cpu_string, option);
19496 return 0;
19497 }
19498
19499 /* Return the canonical processor information for ISA (a member of the
19500 ISA_MIPS* enumeration). */
19501
19502 static const struct mips_cpu_info *
19503 mips_cpu_info_from_isa (int isa)
19504 {
19505 int i;
19506
19507 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
19508 if ((mips_cpu_info_table[i].flags & MIPS_CPU_IS_ISA)
19509 && isa == mips_cpu_info_table[i].isa)
19510 return (&mips_cpu_info_table[i]);
19511
19512 return NULL;
19513 }
19514
19515 static const struct mips_cpu_info *
19516 mips_cpu_info_from_arch (int arch)
19517 {
19518 int i;
19519
19520 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
19521 if (arch == mips_cpu_info_table[i].cpu)
19522 return (&mips_cpu_info_table[i]);
19523
19524 return NULL;
19525 }
19526 \f
19527 static void
19528 show (FILE *stream, const char *string, int *col_p, int *first_p)
19529 {
19530 if (*first_p)
19531 {
19532 fprintf (stream, "%24s", "");
19533 *col_p = 24;
19534 }
19535 else
19536 {
19537 fprintf (stream, ", ");
19538 *col_p += 2;
19539 }
19540
19541 if (*col_p + strlen (string) > 72)
19542 {
19543 fprintf (stream, "\n%24s", "");
19544 *col_p = 24;
19545 }
19546
19547 fprintf (stream, "%s", string);
19548 *col_p += strlen (string);
19549
19550 *first_p = 0;
19551 }
19552
19553 void
19554 md_show_usage (FILE *stream)
19555 {
19556 int column, first;
19557 size_t i;
19558
19559 fprintf (stream, _("\
19560 MIPS options:\n\
19561 -EB generate big endian output\n\
19562 -EL generate little endian output\n\
19563 -g, -g2 do not remove unneeded NOPs or swap branches\n\
19564 -G NUM allow referencing objects up to NUM bytes\n\
19565 implicitly with the gp register [default 8]\n"));
19566 fprintf (stream, _("\
19567 -mips1 generate MIPS ISA I instructions\n\
19568 -mips2 generate MIPS ISA II instructions\n\
19569 -mips3 generate MIPS ISA III instructions\n\
19570 -mips4 generate MIPS ISA IV instructions\n\
19571 -mips5 generate MIPS ISA V instructions\n\
19572 -mips32 generate MIPS32 ISA instructions\n\
19573 -mips32r2 generate MIPS32 release 2 ISA instructions\n\
19574 -mips32r3 generate MIPS32 release 3 ISA instructions\n\
19575 -mips32r5 generate MIPS32 release 5 ISA instructions\n\
19576 -mips32r6 generate MIPS32 release 6 ISA instructions\n\
19577 -mips64 generate MIPS64 ISA instructions\n\
19578 -mips64r2 generate MIPS64 release 2 ISA instructions\n\
19579 -mips64r3 generate MIPS64 release 3 ISA instructions\n\
19580 -mips64r5 generate MIPS64 release 5 ISA instructions\n\
19581 -mips64r6 generate MIPS64 release 6 ISA instructions\n\
19582 -march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
19583
19584 first = 1;
19585
19586 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
19587 show (stream, mips_cpu_info_table[i].name, &column, &first);
19588 show (stream, "from-abi", &column, &first);
19589 fputc ('\n', stream);
19590
19591 fprintf (stream, _("\
19592 -mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
19593 -no-mCPU don't generate code specific to CPU.\n\
19594 For -mCPU and -no-mCPU, CPU must be one of:\n"));
19595
19596 first = 1;
19597
19598 show (stream, "3900", &column, &first);
19599 show (stream, "4010", &column, &first);
19600 show (stream, "4100", &column, &first);
19601 show (stream, "4650", &column, &first);
19602 fputc ('\n', stream);
19603
19604 fprintf (stream, _("\
19605 -mips16 generate mips16 instructions\n\
19606 -no-mips16 do not generate mips16 instructions\n"));
19607 fprintf (stream, _("\
19608 -mmicromips generate microMIPS instructions\n\
19609 -mno-micromips do not generate microMIPS instructions\n"));
19610 fprintf (stream, _("\
19611 -msmartmips generate smartmips instructions\n\
19612 -mno-smartmips do not generate smartmips instructions\n"));
19613 fprintf (stream, _("\
19614 -mdsp generate DSP instructions\n\
19615 -mno-dsp do not generate DSP instructions\n"));
19616 fprintf (stream, _("\
19617 -mdspr2 generate DSP R2 instructions\n\
19618 -mno-dspr2 do not generate DSP R2 instructions\n"));
19619 fprintf (stream, _("\
19620 -mdspr3 generate DSP R3 instructions\n\
19621 -mno-dspr3 do not generate DSP R3 instructions\n"));
19622 fprintf (stream, _("\
19623 -mmt generate MT instructions\n\
19624 -mno-mt do not generate MT instructions\n"));
19625 fprintf (stream, _("\
19626 -mmcu generate MCU instructions\n\
19627 -mno-mcu do not generate MCU instructions\n"));
19628 fprintf (stream, _("\
19629 -mmsa generate MSA instructions\n\
19630 -mno-msa do not generate MSA instructions\n"));
19631 fprintf (stream, _("\
19632 -mxpa generate eXtended Physical Address (XPA) instructions\n\
19633 -mno-xpa do not generate eXtended Physical Address (XPA) instructions\n"));
19634 fprintf (stream, _("\
19635 -mvirt generate Virtualization instructions\n\
19636 -mno-virt do not generate Virtualization instructions\n"));
19637 fprintf (stream, _("\
19638 -minsn32 only generate 32-bit microMIPS instructions\n\
19639 -mno-insn32 generate all microMIPS instructions\n"));
19640 fprintf (stream, _("\
19641 -mfix-loongson2f-jump work around Loongson2F JUMP instructions\n\
19642 -mfix-loongson2f-nop work around Loongson2F NOP errata\n\
19643 -mfix-vr4120 work around certain VR4120 errata\n\
19644 -mfix-vr4130 work around VR4130 mflo/mfhi errata\n\
19645 -mfix-24k insert a nop after ERET and DERET instructions\n\
19646 -mfix-cn63xxp1 work around CN63XXP1 PREF errata\n\
19647 -mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
19648 -mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
19649 -msym32 assume all symbols have 32-bit values\n\
19650 -O0 remove unneeded NOPs, do not swap branches\n\
19651 -O remove unneeded NOPs and swap branches\n\
19652 --trap, --no-break trap exception on div by 0 and mult overflow\n\
19653 --break, --no-trap break exception on div by 0 and mult overflow\n"));
19654 fprintf (stream, _("\
19655 -mhard-float allow floating-point instructions\n\
19656 -msoft-float do not allow floating-point instructions\n\
19657 -msingle-float only allow 32-bit floating-point operations\n\
19658 -mdouble-float allow 32-bit and 64-bit floating-point operations\n\
19659 --[no-]construct-floats [dis]allow floating point values to be constructed\n\
19660 --[no-]relax-branch [dis]allow out-of-range branches to be relaxed\n\
19661 -mnan=ENCODING select an IEEE 754 NaN encoding convention, either of:\n"));
19662
19663 first = 1;
19664
19665 show (stream, "legacy", &column, &first);
19666 show (stream, "2008", &column, &first);
19667
19668 fputc ('\n', stream);
19669
19670 fprintf (stream, _("\
19671 -KPIC, -call_shared generate SVR4 position independent code\n\
19672 -call_nonpic generate non-PIC code that can operate with DSOs\n\
19673 -mvxworks-pic generate VxWorks position independent code\n\
19674 -non_shared do not generate code that can operate with DSOs\n\
19675 -xgot assume a 32 bit GOT\n\
19676 -mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
19677 -mshared, -mno-shared disable/enable .cpload optimization for\n\
19678 position dependent (non shared) code\n\
19679 -mabi=ABI create ABI conformant object file for:\n"));
19680
19681 first = 1;
19682
19683 show (stream, "32", &column, &first);
19684 show (stream, "o64", &column, &first);
19685 show (stream, "n32", &column, &first);
19686 show (stream, "64", &column, &first);
19687 show (stream, "eabi", &column, &first);
19688
19689 fputc ('\n', stream);
19690
19691 fprintf (stream, _("\
19692 -32 create o32 ABI object file (default)\n\
19693 -n32 create n32 ABI object file\n\
19694 -64 create 64 ABI object file\n"));
19695 }
19696
19697 #ifdef TE_IRIX
19698 enum dwarf2_format
19699 mips_dwarf2_format (asection *sec ATTRIBUTE_UNUSED)
19700 {
19701 if (HAVE_64BIT_SYMBOLS)
19702 return dwarf2_format_64bit_irix;
19703 else
19704 return dwarf2_format_32bit;
19705 }
19706 #endif
19707
19708 int
19709 mips_dwarf2_addr_size (void)
19710 {
19711 if (HAVE_64BIT_OBJECTS)
19712 return 8;
19713 else
19714 return 4;
19715 }
19716
19717 /* Standard calling conventions leave the CFA at SP on entry. */
19718 void
19719 mips_cfi_frame_initial_instructions (void)
19720 {
19721 cfi_add_CFA_def_cfa_register (SP);
19722 }
19723
19724 int
19725 tc_mips_regname_to_dw2regnum (char *regname)
19726 {
19727 unsigned int regnum = -1;
19728 unsigned int reg;
19729
19730 if (reg_lookup (&regname, RTYPE_GP | RTYPE_NUM, &reg))
19731 regnum = reg;
19732
19733 return regnum;
19734 }
19735
19736 /* Implement CONVERT_SYMBOLIC_ATTRIBUTE.
19737 Given a symbolic attribute NAME, return the proper integer value.
19738 Returns -1 if the attribute is not known. */
19739
19740 int
19741 mips_convert_symbolic_attribute (const char *name)
19742 {
19743 static const struct
19744 {
19745 const char * name;
19746 const int tag;
19747 }
19748 attribute_table[] =
19749 {
19750 #define T(tag) {#tag, tag}
19751 T (Tag_GNU_MIPS_ABI_FP),
19752 T (Tag_GNU_MIPS_ABI_MSA),
19753 #undef T
19754 };
19755 unsigned int i;
19756
19757 if (name == NULL)
19758 return -1;
19759
19760 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
19761 if (streq (name, attribute_table[i].name))
19762 return attribute_table[i].tag;
19763
19764 return -1;
19765 }
19766
19767 void
19768 md_mips_end (void)
19769 {
19770 int fpabi = Val_GNU_MIPS_ABI_FP_ANY;
19771
19772 mips_emit_delays ();
19773 if (cur_proc_ptr)
19774 as_warn (_("missing .end at end of assembly"));
19775
19776 /* Just in case no code was emitted, do the consistency check. */
19777 file_mips_check_options ();
19778
19779 /* Set a floating-point ABI if the user did not. */
19780 if (obj_elf_seen_attribute (OBJ_ATTR_GNU, Tag_GNU_MIPS_ABI_FP))
19781 {
19782 /* Perform consistency checks on the floating-point ABI. */
19783 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19784 Tag_GNU_MIPS_ABI_FP);
19785 if (fpabi != Val_GNU_MIPS_ABI_FP_ANY)
19786 check_fpabi (fpabi);
19787 }
19788 else
19789 {
19790 /* Soft-float gets precedence over single-float, the two options should
19791 not be used together so this should not matter. */
19792 if (file_mips_opts.soft_float == 1)
19793 fpabi = Val_GNU_MIPS_ABI_FP_SOFT;
19794 /* Single-float gets precedence over all double_float cases. */
19795 else if (file_mips_opts.single_float == 1)
19796 fpabi = Val_GNU_MIPS_ABI_FP_SINGLE;
19797 else
19798 {
19799 switch (file_mips_opts.fp)
19800 {
19801 case 32:
19802 if (file_mips_opts.gp == 32)
19803 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
19804 break;
19805 case 0:
19806 fpabi = Val_GNU_MIPS_ABI_FP_XX;
19807 break;
19808 case 64:
19809 if (file_mips_opts.gp == 32 && !file_mips_opts.oddspreg)
19810 fpabi = Val_GNU_MIPS_ABI_FP_64A;
19811 else if (file_mips_opts.gp == 32)
19812 fpabi = Val_GNU_MIPS_ABI_FP_64;
19813 else
19814 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
19815 break;
19816 }
19817 }
19818
19819 bfd_elf_add_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19820 Tag_GNU_MIPS_ABI_FP, fpabi);
19821 }
19822 }
19823
19824 /* Returns the relocation type required for a particular CFI encoding. */
19825
19826 bfd_reloc_code_real_type
19827 mips_cfi_reloc_for_encoding (int encoding)
19828 {
19829 if (encoding == (DW_EH_PE_sdata4 | DW_EH_PE_pcrel))
19830 return BFD_RELOC_32_PCREL;
19831 else return BFD_RELOC_NONE;
19832 }
This page took 0.676276 seconds and 5 git commands to generate.