[MIPS] Add Loongson 3A1000 proccessor support.
[deliverable/binutils-gdb.git] / gas / config / tc-mips.c
1 /* tc-mips.c -- assemble code for a MIPS chip.
2 Copyright (C) 1993-2018 Free Software Foundation, Inc.
3 Contributed by the OSF and Ralph Campbell.
4 Written by Keith Knowles and Ralph Campbell, working independently.
5 Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
6 Support.
7
8 This file is part of GAS.
9
10 GAS is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3, or (at your option)
13 any later version.
14
15 GAS is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GAS; see the file COPYING. If not, write to the Free
22 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
23 02110-1301, USA. */
24
25 #include "as.h"
26 #include "config.h"
27 #include "subsegs.h"
28 #include "safe-ctype.h"
29
30 #include "opcode/mips.h"
31 #include "itbl-ops.h"
32 #include "dwarf2dbg.h"
33 #include "dw2gencfi.h"
34
35 /* Check assumptions made in this file. */
36 typedef char static_assert1[sizeof (offsetT) < 8 ? -1 : 1];
37 typedef char static_assert2[sizeof (valueT) < 8 ? -1 : 1];
38
39 #ifdef DEBUG
40 #define DBG(x) printf x
41 #else
42 #define DBG(x)
43 #endif
44
45 #define streq(a, b) (strcmp (a, b) == 0)
46
47 #define SKIP_SPACE_TABS(S) \
48 do { while (*(S) == ' ' || *(S) == '\t') ++(S); } while (0)
49
50 /* Clean up namespace so we can include obj-elf.h too. */
51 static int mips_output_flavor (void);
52 static int mips_output_flavor (void) { return OUTPUT_FLAVOR; }
53 #undef OBJ_PROCESS_STAB
54 #undef OUTPUT_FLAVOR
55 #undef S_GET_ALIGN
56 #undef S_GET_SIZE
57 #undef S_SET_ALIGN
58 #undef S_SET_SIZE
59 #undef obj_frob_file
60 #undef obj_frob_file_after_relocs
61 #undef obj_frob_symbol
62 #undef obj_pop_insert
63 #undef obj_sec_sym_ok_for_reloc
64 #undef OBJ_COPY_SYMBOL_ATTRIBUTES
65
66 #include "obj-elf.h"
67 /* Fix any of them that we actually care about. */
68 #undef OUTPUT_FLAVOR
69 #define OUTPUT_FLAVOR mips_output_flavor()
70
71 #include "elf/mips.h"
72
73 #ifndef ECOFF_DEBUGGING
74 #define NO_ECOFF_DEBUGGING
75 #define ECOFF_DEBUGGING 0
76 #endif
77
78 int mips_flag_mdebug = -1;
79
80 /* Control generation of .pdr sections. Off by default on IRIX: the native
81 linker doesn't know about and discards them, but relocations against them
82 remain, leading to rld crashes. */
83 #ifdef TE_IRIX
84 int mips_flag_pdr = FALSE;
85 #else
86 int mips_flag_pdr = TRUE;
87 #endif
88
89 #include "ecoff.h"
90
91 static char *mips_regmask_frag;
92 static char *mips_flags_frag;
93
94 #define ZERO 0
95 #define ATREG 1
96 #define S0 16
97 #define S7 23
98 #define TREG 24
99 #define PIC_CALL_REG 25
100 #define KT0 26
101 #define KT1 27
102 #define GP 28
103 #define SP 29
104 #define FP 30
105 #define RA 31
106
107 #define ILLEGAL_REG (32)
108
109 #define AT mips_opts.at
110
111 extern int target_big_endian;
112
113 /* The name of the readonly data section. */
114 #define RDATA_SECTION_NAME ".rodata"
115
116 /* Ways in which an instruction can be "appended" to the output. */
117 enum append_method {
118 /* Just add it normally. */
119 APPEND_ADD,
120
121 /* Add it normally and then add a nop. */
122 APPEND_ADD_WITH_NOP,
123
124 /* Turn an instruction with a delay slot into a "compact" version. */
125 APPEND_ADD_COMPACT,
126
127 /* Insert the instruction before the last one. */
128 APPEND_SWAP
129 };
130
131 /* Information about an instruction, including its format, operands
132 and fixups. */
133 struct mips_cl_insn
134 {
135 /* The opcode's entry in mips_opcodes or mips16_opcodes. */
136 const struct mips_opcode *insn_mo;
137
138 /* The 16-bit or 32-bit bitstring of the instruction itself. This is
139 a copy of INSN_MO->match with the operands filled in. If we have
140 decided to use an extended MIPS16 instruction, this includes the
141 extension. */
142 unsigned long insn_opcode;
143
144 /* The frag that contains the instruction. */
145 struct frag *frag;
146
147 /* The offset into FRAG of the first instruction byte. */
148 long where;
149
150 /* The relocs associated with the instruction, if any. */
151 fixS *fixp[3];
152
153 /* True if this entry cannot be moved from its current position. */
154 unsigned int fixed_p : 1;
155
156 /* True if this instruction occurred in a .set noreorder block. */
157 unsigned int noreorder_p : 1;
158
159 /* True for mips16 instructions that jump to an absolute address. */
160 unsigned int mips16_absolute_jump_p : 1;
161
162 /* True if this instruction is complete. */
163 unsigned int complete_p : 1;
164
165 /* True if this instruction is cleared from history by unconditional
166 branch. */
167 unsigned int cleared_p : 1;
168 };
169
170 /* The ABI to use. */
171 enum mips_abi_level
172 {
173 NO_ABI = 0,
174 O32_ABI,
175 O64_ABI,
176 N32_ABI,
177 N64_ABI,
178 EABI_ABI
179 };
180
181 /* MIPS ABI we are using for this output file. */
182 static enum mips_abi_level mips_abi = NO_ABI;
183
184 /* Whether or not we have code that can call pic code. */
185 int mips_abicalls = FALSE;
186
187 /* Whether or not we have code which can be put into a shared
188 library. */
189 static bfd_boolean mips_in_shared = TRUE;
190
191 /* This is the set of options which may be modified by the .set
192 pseudo-op. We use a struct so that .set push and .set pop are more
193 reliable. */
194
195 struct mips_set_options
196 {
197 /* MIPS ISA (Instruction Set Architecture) level. This is set to -1
198 if it has not been initialized. Changed by `.set mipsN', and the
199 -mipsN command line option, and the default CPU. */
200 int isa;
201 /* Enabled Application Specific Extensions (ASEs). Changed by `.set
202 <asename>', by command line options, and based on the default
203 architecture. */
204 int ase;
205 /* Whether we are assembling for the mips16 processor. 0 if we are
206 not, 1 if we are, and -1 if the value has not been initialized.
207 Changed by `.set mips16' and `.set nomips16', and the -mips16 and
208 -nomips16 command line options, and the default CPU. */
209 int mips16;
210 /* Whether we are assembling for the mipsMIPS ASE. 0 if we are not,
211 1 if we are, and -1 if the value has not been initialized. Changed
212 by `.set micromips' and `.set nomicromips', and the -mmicromips
213 and -mno-micromips command line options, and the default CPU. */
214 int micromips;
215 /* Non-zero if we should not reorder instructions. Changed by `.set
216 reorder' and `.set noreorder'. */
217 int noreorder;
218 /* Non-zero if we should not permit the register designated "assembler
219 temporary" to be used in instructions. The value is the register
220 number, normally $at ($1). Changed by `.set at=REG', `.set noat'
221 (same as `.set at=$0') and `.set at' (same as `.set at=$1'). */
222 unsigned int at;
223 /* Non-zero if we should warn when a macro instruction expands into
224 more than one machine instruction. Changed by `.set nomacro' and
225 `.set macro'. */
226 int warn_about_macros;
227 /* Non-zero if we should not move instructions. Changed by `.set
228 move', `.set volatile', `.set nomove', and `.set novolatile'. */
229 int nomove;
230 /* Non-zero if we should not optimize branches by moving the target
231 of the branch into the delay slot. Actually, we don't perform
232 this optimization anyhow. Changed by `.set bopt' and `.set
233 nobopt'. */
234 int nobopt;
235 /* Non-zero if we should not autoextend mips16 instructions.
236 Changed by `.set autoextend' and `.set noautoextend'. */
237 int noautoextend;
238 /* True if we should only emit 32-bit microMIPS instructions.
239 Changed by `.set insn32' and `.set noinsn32', and the -minsn32
240 and -mno-insn32 command line options. */
241 bfd_boolean insn32;
242 /* Restrict general purpose registers and floating point registers
243 to 32 bit. This is initially determined when -mgp32 or -mfp32
244 is passed but can changed if the assembler code uses .set mipsN. */
245 int gp;
246 int fp;
247 /* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
248 command line option, and the default CPU. */
249 int arch;
250 /* True if ".set sym32" is in effect. */
251 bfd_boolean sym32;
252 /* True if floating-point operations are not allowed. Changed by .set
253 softfloat or .set hardfloat, by command line options -msoft-float or
254 -mhard-float. The default is false. */
255 bfd_boolean soft_float;
256
257 /* True if only single-precision floating-point operations are allowed.
258 Changed by .set singlefloat or .set doublefloat, command-line options
259 -msingle-float or -mdouble-float. The default is false. */
260 bfd_boolean single_float;
261
262 /* 1 if single-precision operations on odd-numbered registers are
263 allowed. */
264 int oddspreg;
265 };
266
267 /* Specifies whether module level options have been checked yet. */
268 static bfd_boolean file_mips_opts_checked = FALSE;
269
270 /* Do we support nan2008? 0 if we don't, 1 if we do, and -1 if the
271 value has not been initialized. Changed by `.nan legacy' and
272 `.nan 2008', and the -mnan=legacy and -mnan=2008 command line
273 options, and the default CPU. */
274 static int mips_nan2008 = -1;
275
276 /* This is the struct we use to hold the module level set of options.
277 Note that we must set the isa field to ISA_UNKNOWN and the ASE, gp and
278 fp fields to -1 to indicate that they have not been initialized. */
279
280 static struct mips_set_options file_mips_opts =
281 {
282 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
283 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
284 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
285 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
286 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
287 };
288
289 /* This is similar to file_mips_opts, but for the current set of options. */
290
291 static struct mips_set_options mips_opts =
292 {
293 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
294 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
295 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
296 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
297 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
298 };
299
300 /* Which bits of file_ase were explicitly set or cleared by ASE options. */
301 static unsigned int file_ase_explicit;
302
303 /* These variables are filled in with the masks of registers used.
304 The object format code reads them and puts them in the appropriate
305 place. */
306 unsigned long mips_gprmask;
307 unsigned long mips_cprmask[4];
308
309 /* True if any MIPS16 code was produced. */
310 static int file_ase_mips16;
311
312 #define ISA_SUPPORTS_MIPS16E (mips_opts.isa == ISA_MIPS32 \
313 || mips_opts.isa == ISA_MIPS32R2 \
314 || mips_opts.isa == ISA_MIPS32R3 \
315 || mips_opts.isa == ISA_MIPS32R5 \
316 || mips_opts.isa == ISA_MIPS64 \
317 || mips_opts.isa == ISA_MIPS64R2 \
318 || mips_opts.isa == ISA_MIPS64R3 \
319 || mips_opts.isa == ISA_MIPS64R5)
320
321 /* True if any microMIPS code was produced. */
322 static int file_ase_micromips;
323
324 /* True if we want to create R_MIPS_JALR for jalr $25. */
325 #ifdef TE_IRIX
326 #define MIPS_JALR_HINT_P(EXPR) HAVE_NEWABI
327 #else
328 /* As a GNU extension, we use R_MIPS_JALR for o32 too. However,
329 because there's no place for any addend, the only acceptable
330 expression is a bare symbol. */
331 #define MIPS_JALR_HINT_P(EXPR) \
332 (!HAVE_IN_PLACE_ADDENDS \
333 || ((EXPR)->X_op == O_symbol && (EXPR)->X_add_number == 0))
334 #endif
335
336 /* The argument of the -march= flag. The architecture we are assembling. */
337 static const char *mips_arch_string;
338
339 /* The argument of the -mtune= flag. The architecture for which we
340 are optimizing. */
341 static int mips_tune = CPU_UNKNOWN;
342 static const char *mips_tune_string;
343
344 /* True when generating 32-bit code for a 64-bit processor. */
345 static int mips_32bitmode = 0;
346
347 /* True if the given ABI requires 32-bit registers. */
348 #define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
349
350 /* Likewise 64-bit registers. */
351 #define ABI_NEEDS_64BIT_REGS(ABI) \
352 ((ABI) == N32_ABI \
353 || (ABI) == N64_ABI \
354 || (ABI) == O64_ABI)
355
356 #define ISA_IS_R6(ISA) \
357 ((ISA) == ISA_MIPS32R6 \
358 || (ISA) == ISA_MIPS64R6)
359
360 /* Return true if ISA supports 64 bit wide gp registers. */
361 #define ISA_HAS_64BIT_REGS(ISA) \
362 ((ISA) == ISA_MIPS3 \
363 || (ISA) == ISA_MIPS4 \
364 || (ISA) == ISA_MIPS5 \
365 || (ISA) == ISA_MIPS64 \
366 || (ISA) == ISA_MIPS64R2 \
367 || (ISA) == ISA_MIPS64R3 \
368 || (ISA) == ISA_MIPS64R5 \
369 || (ISA) == ISA_MIPS64R6)
370
371 /* Return true if ISA supports 64 bit wide float registers. */
372 #define ISA_HAS_64BIT_FPRS(ISA) \
373 ((ISA) == ISA_MIPS3 \
374 || (ISA) == ISA_MIPS4 \
375 || (ISA) == ISA_MIPS5 \
376 || (ISA) == ISA_MIPS32R2 \
377 || (ISA) == ISA_MIPS32R3 \
378 || (ISA) == ISA_MIPS32R5 \
379 || (ISA) == ISA_MIPS32R6 \
380 || (ISA) == ISA_MIPS64 \
381 || (ISA) == ISA_MIPS64R2 \
382 || (ISA) == ISA_MIPS64R3 \
383 || (ISA) == ISA_MIPS64R5 \
384 || (ISA) == ISA_MIPS64R6)
385
386 /* Return true if ISA supports 64-bit right rotate (dror et al.)
387 instructions. */
388 #define ISA_HAS_DROR(ISA) \
389 ((ISA) == ISA_MIPS64R2 \
390 || (ISA) == ISA_MIPS64R3 \
391 || (ISA) == ISA_MIPS64R5 \
392 || (ISA) == ISA_MIPS64R6 \
393 || (mips_opts.micromips \
394 && ISA_HAS_64BIT_REGS (ISA)) \
395 )
396
397 /* Return true if ISA supports 32-bit right rotate (ror et al.)
398 instructions. */
399 #define ISA_HAS_ROR(ISA) \
400 ((ISA) == ISA_MIPS32R2 \
401 || (ISA) == ISA_MIPS32R3 \
402 || (ISA) == ISA_MIPS32R5 \
403 || (ISA) == ISA_MIPS32R6 \
404 || (ISA) == ISA_MIPS64R2 \
405 || (ISA) == ISA_MIPS64R3 \
406 || (ISA) == ISA_MIPS64R5 \
407 || (ISA) == ISA_MIPS64R6 \
408 || (mips_opts.ase & ASE_SMARTMIPS) \
409 || mips_opts.micromips \
410 )
411
412 /* Return true if ISA supports single-precision floats in odd registers. */
413 #define ISA_HAS_ODD_SINGLE_FPR(ISA, CPU)\
414 (((ISA) == ISA_MIPS32 \
415 || (ISA) == ISA_MIPS32R2 \
416 || (ISA) == ISA_MIPS32R3 \
417 || (ISA) == ISA_MIPS32R5 \
418 || (ISA) == ISA_MIPS32R6 \
419 || (ISA) == ISA_MIPS64 \
420 || (ISA) == ISA_MIPS64R2 \
421 || (ISA) == ISA_MIPS64R3 \
422 || (ISA) == ISA_MIPS64R5 \
423 || (ISA) == ISA_MIPS64R6 \
424 || (CPU) == CPU_R5900) \
425 && (CPU) != CPU_GS464)
426
427 /* Return true if ISA supports move to/from high part of a 64-bit
428 floating-point register. */
429 #define ISA_HAS_MXHC1(ISA) \
430 ((ISA) == ISA_MIPS32R2 \
431 || (ISA) == ISA_MIPS32R3 \
432 || (ISA) == ISA_MIPS32R5 \
433 || (ISA) == ISA_MIPS32R6 \
434 || (ISA) == ISA_MIPS64R2 \
435 || (ISA) == ISA_MIPS64R3 \
436 || (ISA) == ISA_MIPS64R5 \
437 || (ISA) == ISA_MIPS64R6)
438
439 /* Return true if ISA supports legacy NAN. */
440 #define ISA_HAS_LEGACY_NAN(ISA) \
441 ((ISA) == ISA_MIPS1 \
442 || (ISA) == ISA_MIPS2 \
443 || (ISA) == ISA_MIPS3 \
444 || (ISA) == ISA_MIPS4 \
445 || (ISA) == ISA_MIPS5 \
446 || (ISA) == ISA_MIPS32 \
447 || (ISA) == ISA_MIPS32R2 \
448 || (ISA) == ISA_MIPS32R3 \
449 || (ISA) == ISA_MIPS32R5 \
450 || (ISA) == ISA_MIPS64 \
451 || (ISA) == ISA_MIPS64R2 \
452 || (ISA) == ISA_MIPS64R3 \
453 || (ISA) == ISA_MIPS64R5)
454
455 #define GPR_SIZE \
456 (mips_opts.gp == 64 && !ISA_HAS_64BIT_REGS (mips_opts.isa) \
457 ? 32 \
458 : mips_opts.gp)
459
460 #define FPR_SIZE \
461 (mips_opts.fp == 64 && !ISA_HAS_64BIT_FPRS (mips_opts.isa) \
462 ? 32 \
463 : mips_opts.fp)
464
465 #define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
466
467 #define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
468
469 /* True if relocations are stored in-place. */
470 #define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI)
471
472 /* The ABI-derived address size. */
473 #define HAVE_64BIT_ADDRESSES \
474 (GPR_SIZE == 64 && (mips_abi == EABI_ABI || mips_abi == N64_ABI))
475 #define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES)
476
477 /* The size of symbolic constants (i.e., expressions of the form
478 "SYMBOL" or "SYMBOL + OFFSET"). */
479 #define HAVE_32BIT_SYMBOLS \
480 (HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32)
481 #define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS)
482
483 /* Addresses are loaded in different ways, depending on the address size
484 in use. The n32 ABI Documentation also mandates the use of additions
485 with overflow checking, but existing implementations don't follow it. */
486 #define ADDRESS_ADD_INSN \
487 (HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
488
489 #define ADDRESS_ADDI_INSN \
490 (HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
491
492 #define ADDRESS_LOAD_INSN \
493 (HAVE_32BIT_ADDRESSES ? "lw" : "ld")
494
495 #define ADDRESS_STORE_INSN \
496 (HAVE_32BIT_ADDRESSES ? "sw" : "sd")
497
498 /* Return true if the given CPU supports the MIPS16 ASE. */
499 #define CPU_HAS_MIPS16(cpu) \
500 (strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0 \
501 || strncmp (TARGET_CANONICAL, "mips-lsi-elf", sizeof ("mips-lsi-elf") - 1) == 0)
502
503 /* Return true if the given CPU supports the microMIPS ASE. */
504 #define CPU_HAS_MICROMIPS(cpu) 0
505
506 /* True if CPU has a dror instruction. */
507 #define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
508
509 /* True if CPU has a ror instruction. */
510 #define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU)
511
512 /* True if CPU is in the Octeon family */
513 #define CPU_IS_OCTEON(CPU) ((CPU) == CPU_OCTEON || (CPU) == CPU_OCTEONP \
514 || (CPU) == CPU_OCTEON2 || (CPU) == CPU_OCTEON3)
515
516 /* True if CPU has seq/sne and seqi/snei instructions. */
517 #define CPU_HAS_SEQ(CPU) (CPU_IS_OCTEON (CPU))
518
519 /* True, if CPU has support for ldc1 and sdc1. */
520 #define CPU_HAS_LDC1_SDC1(CPU) \
521 ((mips_opts.isa != ISA_MIPS1) && ((CPU) != CPU_R5900))
522
523 /* True if mflo and mfhi can be immediately followed by instructions
524 which write to the HI and LO registers.
525
526 According to MIPS specifications, MIPS ISAs I, II, and III need
527 (at least) two instructions between the reads of HI/LO and
528 instructions which write them, and later ISAs do not. Contradicting
529 the MIPS specifications, some MIPS IV processor user manuals (e.g.
530 the UM for the NEC Vr5000) document needing the instructions between
531 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
532 MIPS64 and later ISAs to have the interlocks, plus any specific
533 earlier-ISA CPUs for which CPU documentation declares that the
534 instructions are really interlocked. */
535 #define hilo_interlocks \
536 (mips_opts.isa == ISA_MIPS32 \
537 || mips_opts.isa == ISA_MIPS32R2 \
538 || mips_opts.isa == ISA_MIPS32R3 \
539 || mips_opts.isa == ISA_MIPS32R5 \
540 || mips_opts.isa == ISA_MIPS32R6 \
541 || mips_opts.isa == ISA_MIPS64 \
542 || mips_opts.isa == ISA_MIPS64R2 \
543 || mips_opts.isa == ISA_MIPS64R3 \
544 || mips_opts.isa == ISA_MIPS64R5 \
545 || mips_opts.isa == ISA_MIPS64R6 \
546 || mips_opts.arch == CPU_R4010 \
547 || mips_opts.arch == CPU_R5900 \
548 || mips_opts.arch == CPU_R10000 \
549 || mips_opts.arch == CPU_R12000 \
550 || mips_opts.arch == CPU_R14000 \
551 || mips_opts.arch == CPU_R16000 \
552 || mips_opts.arch == CPU_RM7000 \
553 || mips_opts.arch == CPU_VR5500 \
554 || mips_opts.micromips \
555 )
556
557 /* Whether the processor uses hardware interlocks to protect reads
558 from the GPRs after they are loaded from memory, and thus does not
559 require nops to be inserted. This applies to instructions marked
560 INSN_LOAD_MEMORY. These nops are only required at MIPS ISA
561 level I and microMIPS mode instructions are always interlocked. */
562 #define gpr_interlocks \
563 (mips_opts.isa != ISA_MIPS1 \
564 || mips_opts.arch == CPU_R3900 \
565 || mips_opts.arch == CPU_R5900 \
566 || mips_opts.micromips \
567 )
568
569 /* Whether the processor uses hardware interlocks to avoid delays
570 required by coprocessor instructions, and thus does not require
571 nops to be inserted. This applies to instructions marked
572 INSN_LOAD_COPROC, INSN_COPROC_MOVE, and to delays between
573 instructions marked INSN_WRITE_COND_CODE and ones marked
574 INSN_READ_COND_CODE. These nops are only required at MIPS ISA
575 levels I, II, and III and microMIPS mode instructions are always
576 interlocked. */
577 /* Itbl support may require additional care here. */
578 #define cop_interlocks \
579 ((mips_opts.isa != ISA_MIPS1 \
580 && mips_opts.isa != ISA_MIPS2 \
581 && mips_opts.isa != ISA_MIPS3) \
582 || mips_opts.arch == CPU_R4300 \
583 || mips_opts.micromips \
584 )
585
586 /* Whether the processor uses hardware interlocks to protect reads
587 from coprocessor registers after they are loaded from memory, and
588 thus does not require nops to be inserted. This applies to
589 instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
590 requires at MIPS ISA level I and microMIPS mode instructions are
591 always interlocked. */
592 #define cop_mem_interlocks \
593 (mips_opts.isa != ISA_MIPS1 \
594 || mips_opts.micromips \
595 )
596
597 /* Is this a mfhi or mflo instruction? */
598 #define MF_HILO_INSN(PINFO) \
599 ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
600
601 /* Whether code compression (either of the MIPS16 or the microMIPS ASEs)
602 has been selected. This implies, in particular, that addresses of text
603 labels have their LSB set. */
604 #define HAVE_CODE_COMPRESSION \
605 ((mips_opts.mips16 | mips_opts.micromips) != 0)
606
607 /* The minimum and maximum signed values that can be stored in a GPR. */
608 #define GPR_SMAX ((offsetT) (((valueT) 1 << (GPR_SIZE - 1)) - 1))
609 #define GPR_SMIN (-GPR_SMAX - 1)
610
611 /* MIPS PIC level. */
612
613 enum mips_pic_level mips_pic;
614
615 /* 1 if we should generate 32 bit offsets from the $gp register in
616 SVR4_PIC mode. Currently has no meaning in other modes. */
617 static int mips_big_got = 0;
618
619 /* 1 if trap instructions should used for overflow rather than break
620 instructions. */
621 static int mips_trap = 0;
622
623 /* 1 if double width floating point constants should not be constructed
624 by assembling two single width halves into two single width floating
625 point registers which just happen to alias the double width destination
626 register. On some architectures this aliasing can be disabled by a bit
627 in the status register, and the setting of this bit cannot be determined
628 automatically at assemble time. */
629 static int mips_disable_float_construction;
630
631 /* Non-zero if any .set noreorder directives were used. */
632
633 static int mips_any_noreorder;
634
635 /* Non-zero if nops should be inserted when the register referenced in
636 an mfhi/mflo instruction is read in the next two instructions. */
637 static int mips_7000_hilo_fix;
638
639 /* The size of objects in the small data section. */
640 static unsigned int g_switch_value = 8;
641 /* Whether the -G option was used. */
642 static int g_switch_seen = 0;
643
644 #define N_RMASK 0xc4
645 #define N_VFP 0xd4
646
647 /* If we can determine in advance that GP optimization won't be
648 possible, we can skip the relaxation stuff that tries to produce
649 GP-relative references. This makes delay slot optimization work
650 better.
651
652 This function can only provide a guess, but it seems to work for
653 gcc output. It needs to guess right for gcc, otherwise gcc
654 will put what it thinks is a GP-relative instruction in a branch
655 delay slot.
656
657 I don't know if a fix is needed for the SVR4_PIC mode. I've only
658 fixed it for the non-PIC mode. KR 95/04/07 */
659 static int nopic_need_relax (symbolS *, int);
660
661 /* handle of the OPCODE hash table */
662 static struct hash_control *op_hash = NULL;
663
664 /* The opcode hash table we use for the mips16. */
665 static struct hash_control *mips16_op_hash = NULL;
666
667 /* The opcode hash table we use for the microMIPS ASE. */
668 static struct hash_control *micromips_op_hash = NULL;
669
670 /* This array holds the chars that always start a comment. If the
671 pre-processor is disabled, these aren't very useful */
672 const char comment_chars[] = "#";
673
674 /* This array holds the chars that only start a comment at the beginning of
675 a line. If the line seems to have the form '# 123 filename'
676 .line and .file directives will appear in the pre-processed output */
677 /* Note that input_file.c hand checks for '#' at the beginning of the
678 first line of the input file. This is because the compiler outputs
679 #NO_APP at the beginning of its output. */
680 /* Also note that C style comments are always supported. */
681 const char line_comment_chars[] = "#";
682
683 /* This array holds machine specific line separator characters. */
684 const char line_separator_chars[] = ";";
685
686 /* Chars that can be used to separate mant from exp in floating point nums */
687 const char EXP_CHARS[] = "eE";
688
689 /* Chars that mean this number is a floating point constant */
690 /* As in 0f12.456 */
691 /* or 0d1.2345e12 */
692 const char FLT_CHARS[] = "rRsSfFdDxXpP";
693
694 /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
695 changed in read.c . Ideally it shouldn't have to know about it at all,
696 but nothing is ideal around here.
697 */
698
699 /* Types of printf format used for instruction-related error messages.
700 "I" means int ("%d") and "S" means string ("%s"). */
701 enum mips_insn_error_format {
702 ERR_FMT_PLAIN,
703 ERR_FMT_I,
704 ERR_FMT_SS,
705 };
706
707 /* Information about an error that was found while assembling the current
708 instruction. */
709 struct mips_insn_error {
710 /* We sometimes need to match an instruction against more than one
711 opcode table entry. Errors found during this matching are reported
712 against a particular syntactic argument rather than against the
713 instruction as a whole. We grade these messages so that errors
714 against argument N have a greater priority than an error against
715 any argument < N, since the former implies that arguments up to N
716 were acceptable and that the opcode entry was therefore a closer match.
717 If several matches report an error against the same argument,
718 we only use that error if it is the same in all cases.
719
720 min_argnum is the minimum argument number for which an error message
721 should be accepted. It is 0 if MSG is against the instruction as
722 a whole. */
723 int min_argnum;
724
725 /* The printf()-style message, including its format and arguments. */
726 enum mips_insn_error_format format;
727 const char *msg;
728 union {
729 int i;
730 const char *ss[2];
731 } u;
732 };
733
734 /* The error that should be reported for the current instruction. */
735 static struct mips_insn_error insn_error;
736
737 static int auto_align = 1;
738
739 /* When outputting SVR4 PIC code, the assembler needs to know the
740 offset in the stack frame from which to restore the $gp register.
741 This is set by the .cprestore pseudo-op, and saved in this
742 variable. */
743 static offsetT mips_cprestore_offset = -1;
744
745 /* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
746 more optimizations, it can use a register value instead of a memory-saved
747 offset and even an other register than $gp as global pointer. */
748 static offsetT mips_cpreturn_offset = -1;
749 static int mips_cpreturn_register = -1;
750 static int mips_gp_register = GP;
751 static int mips_gprel_offset = 0;
752
753 /* Whether mips_cprestore_offset has been set in the current function
754 (or whether it has already been warned about, if not). */
755 static int mips_cprestore_valid = 0;
756
757 /* This is the register which holds the stack frame, as set by the
758 .frame pseudo-op. This is needed to implement .cprestore. */
759 static int mips_frame_reg = SP;
760
761 /* Whether mips_frame_reg has been set in the current function
762 (or whether it has already been warned about, if not). */
763 static int mips_frame_reg_valid = 0;
764
765 /* To output NOP instructions correctly, we need to keep information
766 about the previous two instructions. */
767
768 /* Whether we are optimizing. The default value of 2 means to remove
769 unneeded NOPs and swap branch instructions when possible. A value
770 of 1 means to not swap branches. A value of 0 means to always
771 insert NOPs. */
772 static int mips_optimize = 2;
773
774 /* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
775 equivalent to seeing no -g option at all. */
776 static int mips_debug = 0;
777
778 /* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */
779 #define MAX_VR4130_NOPS 4
780
781 /* The maximum number of NOPs needed to fill delay slots. */
782 #define MAX_DELAY_NOPS 2
783
784 /* The maximum number of NOPs needed for any purpose. */
785 #define MAX_NOPS 4
786
787 /* A list of previous instructions, with index 0 being the most recent.
788 We need to look back MAX_NOPS instructions when filling delay slots
789 or working around processor errata. We need to look back one
790 instruction further if we're thinking about using history[0] to
791 fill a branch delay slot. */
792 static struct mips_cl_insn history[1 + MAX_NOPS];
793
794 /* Arrays of operands for each instruction. */
795 #define MAX_OPERANDS 6
796 struct mips_operand_array {
797 const struct mips_operand *operand[MAX_OPERANDS];
798 };
799 static struct mips_operand_array *mips_operands;
800 static struct mips_operand_array *mips16_operands;
801 static struct mips_operand_array *micromips_operands;
802
803 /* Nop instructions used by emit_nop. */
804 static struct mips_cl_insn nop_insn;
805 static struct mips_cl_insn mips16_nop_insn;
806 static struct mips_cl_insn micromips_nop16_insn;
807 static struct mips_cl_insn micromips_nop32_insn;
808
809 /* The appropriate nop for the current mode. */
810 #define NOP_INSN (mips_opts.mips16 \
811 ? &mips16_nop_insn \
812 : (mips_opts.micromips \
813 ? (mips_opts.insn32 \
814 ? &micromips_nop32_insn \
815 : &micromips_nop16_insn) \
816 : &nop_insn))
817
818 /* The size of NOP_INSN in bytes. */
819 #define NOP_INSN_SIZE ((mips_opts.mips16 \
820 || (mips_opts.micromips && !mips_opts.insn32)) \
821 ? 2 : 4)
822
823 /* If this is set, it points to a frag holding nop instructions which
824 were inserted before the start of a noreorder section. If those
825 nops turn out to be unnecessary, the size of the frag can be
826 decreased. */
827 static fragS *prev_nop_frag;
828
829 /* The number of nop instructions we created in prev_nop_frag. */
830 static int prev_nop_frag_holds;
831
832 /* The number of nop instructions that we know we need in
833 prev_nop_frag. */
834 static int prev_nop_frag_required;
835
836 /* The number of instructions we've seen since prev_nop_frag. */
837 static int prev_nop_frag_since;
838
839 /* Relocations against symbols are sometimes done in two parts, with a HI
840 relocation and a LO relocation. Each relocation has only 16 bits of
841 space to store an addend. This means that in order for the linker to
842 handle carries correctly, it must be able to locate both the HI and
843 the LO relocation. This means that the relocations must appear in
844 order in the relocation table.
845
846 In order to implement this, we keep track of each unmatched HI
847 relocation. We then sort them so that they immediately precede the
848 corresponding LO relocation. */
849
850 struct mips_hi_fixup
851 {
852 /* Next HI fixup. */
853 struct mips_hi_fixup *next;
854 /* This fixup. */
855 fixS *fixp;
856 /* The section this fixup is in. */
857 segT seg;
858 };
859
860 /* The list of unmatched HI relocs. */
861
862 static struct mips_hi_fixup *mips_hi_fixup_list;
863
864 /* The frag containing the last explicit relocation operator.
865 Null if explicit relocations have not been used. */
866
867 static fragS *prev_reloc_op_frag;
868
869 /* Map mips16 register numbers to normal MIPS register numbers. */
870
871 static const unsigned int mips16_to_32_reg_map[] =
872 {
873 16, 17, 2, 3, 4, 5, 6, 7
874 };
875
876 /* Map microMIPS register numbers to normal MIPS register numbers. */
877
878 #define micromips_to_32_reg_d_map mips16_to_32_reg_map
879
880 /* The microMIPS registers with type h. */
881 static const unsigned int micromips_to_32_reg_h_map1[] =
882 {
883 5, 5, 6, 4, 4, 4, 4, 4
884 };
885 static const unsigned int micromips_to_32_reg_h_map2[] =
886 {
887 6, 7, 7, 21, 22, 5, 6, 7
888 };
889
890 /* The microMIPS registers with type m. */
891 static const unsigned int micromips_to_32_reg_m_map[] =
892 {
893 0, 17, 2, 3, 16, 18, 19, 20
894 };
895
896 #define micromips_to_32_reg_n_map micromips_to_32_reg_m_map
897
898 /* Classifies the kind of instructions we're interested in when
899 implementing -mfix-vr4120. */
900 enum fix_vr4120_class
901 {
902 FIX_VR4120_MACC,
903 FIX_VR4120_DMACC,
904 FIX_VR4120_MULT,
905 FIX_VR4120_DMULT,
906 FIX_VR4120_DIV,
907 FIX_VR4120_MTHILO,
908 NUM_FIX_VR4120_CLASSES
909 };
910
911 /* ...likewise -mfix-loongson2f-jump. */
912 static bfd_boolean mips_fix_loongson2f_jump;
913
914 /* ...likewise -mfix-loongson2f-nop. */
915 static bfd_boolean mips_fix_loongson2f_nop;
916
917 /* True if -mfix-loongson2f-nop or -mfix-loongson2f-jump passed. */
918 static bfd_boolean mips_fix_loongson2f;
919
920 /* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if
921 there must be at least one other instruction between an instruction
922 of type X and an instruction of type Y. */
923 static unsigned int vr4120_conflicts[NUM_FIX_VR4120_CLASSES];
924
925 /* True if -mfix-vr4120 is in force. */
926 static int mips_fix_vr4120;
927
928 /* ...likewise -mfix-vr4130. */
929 static int mips_fix_vr4130;
930
931 /* ...likewise -mfix-24k. */
932 static int mips_fix_24k;
933
934 /* ...likewise -mfix-rm7000 */
935 static int mips_fix_rm7000;
936
937 /* ...likewise -mfix-cn63xxp1 */
938 static bfd_boolean mips_fix_cn63xxp1;
939
940 /* We don't relax branches by default, since this causes us to expand
941 `la .l2 - .l1' if there's a branch between .l1 and .l2, because we
942 fail to compute the offset before expanding the macro to the most
943 efficient expansion. */
944
945 static int mips_relax_branch;
946
947 /* TRUE if checks are suppressed for invalid branches between ISA modes.
948 Needed for broken assembly produced by some GCC versions and some
949 sloppy code out there, where branches to data labels are present. */
950 static bfd_boolean mips_ignore_branch_isa;
951 \f
952 /* The expansion of many macros depends on the type of symbol that
953 they refer to. For example, when generating position-dependent code,
954 a macro that refers to a symbol may have two different expansions,
955 one which uses GP-relative addresses and one which uses absolute
956 addresses. When generating SVR4-style PIC, a macro may have
957 different expansions for local and global symbols.
958
959 We handle these situations by generating both sequences and putting
960 them in variant frags. In position-dependent code, the first sequence
961 will be the GP-relative one and the second sequence will be the
962 absolute one. In SVR4 PIC, the first sequence will be for global
963 symbols and the second will be for local symbols.
964
965 The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
966 SECOND are the lengths of the two sequences in bytes. These fields
967 can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
968 the subtype has the following flags:
969
970 RELAX_PIC
971 Set if generating PIC code.
972
973 RELAX_USE_SECOND
974 Set if it has been decided that we should use the second
975 sequence instead of the first.
976
977 RELAX_SECOND_LONGER
978 Set in the first variant frag if the macro's second implementation
979 is longer than its first. This refers to the macro as a whole,
980 not an individual relaxation.
981
982 RELAX_NOMACRO
983 Set in the first variant frag if the macro appeared in a .set nomacro
984 block and if one alternative requires a warning but the other does not.
985
986 RELAX_DELAY_SLOT
987 Like RELAX_NOMACRO, but indicates that the macro appears in a branch
988 delay slot.
989
990 RELAX_DELAY_SLOT_16BIT
991 Like RELAX_DELAY_SLOT, but indicates that the delay slot requires a
992 16-bit instruction.
993
994 RELAX_DELAY_SLOT_SIZE_FIRST
995 Like RELAX_DELAY_SLOT, but indicates that the first implementation of
996 the macro is of the wrong size for the branch delay slot.
997
998 RELAX_DELAY_SLOT_SIZE_SECOND
999 Like RELAX_DELAY_SLOT, but indicates that the second implementation of
1000 the macro is of the wrong size for the branch delay slot.
1001
1002 The frag's "opcode" points to the first fixup for relaxable code.
1003
1004 Relaxable macros are generated using a sequence such as:
1005
1006 relax_start (SYMBOL);
1007 ... generate first expansion ...
1008 relax_switch ();
1009 ... generate second expansion ...
1010 relax_end ();
1011
1012 The code and fixups for the unwanted alternative are discarded
1013 by md_convert_frag. */
1014 #define RELAX_ENCODE(FIRST, SECOND, PIC) \
1015 (((FIRST) << 8) | (SECOND) | ((PIC) ? 0x10000 : 0))
1016
1017 #define RELAX_FIRST(X) (((X) >> 8) & 0xff)
1018 #define RELAX_SECOND(X) ((X) & 0xff)
1019 #define RELAX_PIC(X) (((X) & 0x10000) != 0)
1020 #define RELAX_USE_SECOND 0x20000
1021 #define RELAX_SECOND_LONGER 0x40000
1022 #define RELAX_NOMACRO 0x80000
1023 #define RELAX_DELAY_SLOT 0x100000
1024 #define RELAX_DELAY_SLOT_16BIT 0x200000
1025 #define RELAX_DELAY_SLOT_SIZE_FIRST 0x400000
1026 #define RELAX_DELAY_SLOT_SIZE_SECOND 0x800000
1027
1028 /* Branch without likely bit. If label is out of range, we turn:
1029
1030 beq reg1, reg2, label
1031 delay slot
1032
1033 into
1034
1035 bne reg1, reg2, 0f
1036 nop
1037 j label
1038 0: delay slot
1039
1040 with the following opcode replacements:
1041
1042 beq <-> bne
1043 blez <-> bgtz
1044 bltz <-> bgez
1045 bc1f <-> bc1t
1046
1047 bltzal <-> bgezal (with jal label instead of j label)
1048
1049 Even though keeping the delay slot instruction in the delay slot of
1050 the branch would be more efficient, it would be very tricky to do
1051 correctly, because we'd have to introduce a variable frag *after*
1052 the delay slot instruction, and expand that instead. Let's do it
1053 the easy way for now, even if the branch-not-taken case now costs
1054 one additional instruction. Out-of-range branches are not supposed
1055 to be common, anyway.
1056
1057 Branch likely. If label is out of range, we turn:
1058
1059 beql reg1, reg2, label
1060 delay slot (annulled if branch not taken)
1061
1062 into
1063
1064 beql reg1, reg2, 1f
1065 nop
1066 beql $0, $0, 2f
1067 nop
1068 1: j[al] label
1069 delay slot (executed only if branch taken)
1070 2:
1071
1072 It would be possible to generate a shorter sequence by losing the
1073 likely bit, generating something like:
1074
1075 bne reg1, reg2, 0f
1076 nop
1077 j[al] label
1078 delay slot (executed only if branch taken)
1079 0:
1080
1081 beql -> bne
1082 bnel -> beq
1083 blezl -> bgtz
1084 bgtzl -> blez
1085 bltzl -> bgez
1086 bgezl -> bltz
1087 bc1fl -> bc1t
1088 bc1tl -> bc1f
1089
1090 bltzall -> bgezal (with jal label instead of j label)
1091 bgezall -> bltzal (ditto)
1092
1093
1094 but it's not clear that it would actually improve performance. */
1095 #define RELAX_BRANCH_ENCODE(at, pic, \
1096 uncond, likely, link, toofar) \
1097 ((relax_substateT) \
1098 (0xc0000000 \
1099 | ((at) & 0x1f) \
1100 | ((pic) ? 0x20 : 0) \
1101 | ((toofar) ? 0x40 : 0) \
1102 | ((link) ? 0x80 : 0) \
1103 | ((likely) ? 0x100 : 0) \
1104 | ((uncond) ? 0x200 : 0)))
1105 #define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
1106 #define RELAX_BRANCH_UNCOND(i) (((i) & 0x200) != 0)
1107 #define RELAX_BRANCH_LIKELY(i) (((i) & 0x100) != 0)
1108 #define RELAX_BRANCH_LINK(i) (((i) & 0x80) != 0)
1109 #define RELAX_BRANCH_TOOFAR(i) (((i) & 0x40) != 0)
1110 #define RELAX_BRANCH_PIC(i) (((i) & 0x20) != 0)
1111 #define RELAX_BRANCH_AT(i) ((i) & 0x1f)
1112
1113 /* For mips16 code, we use an entirely different form of relaxation.
1114 mips16 supports two versions of most instructions which take
1115 immediate values: a small one which takes some small value, and a
1116 larger one which takes a 16 bit value. Since branches also follow
1117 this pattern, relaxing these values is required.
1118
1119 We can assemble both mips16 and normal MIPS code in a single
1120 object. Therefore, we need to support this type of relaxation at
1121 the same time that we support the relaxation described above. We
1122 use the high bit of the subtype field to distinguish these cases.
1123
1124 The information we store for this type of relaxation is the
1125 argument code found in the opcode file for this relocation, whether
1126 the user explicitly requested a small or extended form, and whether
1127 the relocation is in a jump or jal delay slot. That tells us the
1128 size of the value, and how it should be stored. We also store
1129 whether the fragment is considered to be extended or not. We also
1130 store whether this is known to be a branch to a different section,
1131 whether we have tried to relax this frag yet, and whether we have
1132 ever extended a PC relative fragment because of a shift count. */
1133 #define RELAX_MIPS16_ENCODE(type, e2, pic, sym32, nomacro, \
1134 small, ext, \
1135 dslot, jal_dslot) \
1136 (0x80000000 \
1137 | ((type) & 0xff) \
1138 | ((e2) ? 0x100 : 0) \
1139 | ((pic) ? 0x200 : 0) \
1140 | ((sym32) ? 0x400 : 0) \
1141 | ((nomacro) ? 0x800 : 0) \
1142 | ((small) ? 0x1000 : 0) \
1143 | ((ext) ? 0x2000 : 0) \
1144 | ((dslot) ? 0x4000 : 0) \
1145 | ((jal_dslot) ? 0x8000 : 0))
1146
1147 #define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
1148 #define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
1149 #define RELAX_MIPS16_E2(i) (((i) & 0x100) != 0)
1150 #define RELAX_MIPS16_PIC(i) (((i) & 0x200) != 0)
1151 #define RELAX_MIPS16_SYM32(i) (((i) & 0x400) != 0)
1152 #define RELAX_MIPS16_NOMACRO(i) (((i) & 0x800) != 0)
1153 #define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x1000) != 0)
1154 #define RELAX_MIPS16_USER_EXT(i) (((i) & 0x2000) != 0)
1155 #define RELAX_MIPS16_DSLOT(i) (((i) & 0x4000) != 0)
1156 #define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x8000) != 0)
1157
1158 #define RELAX_MIPS16_EXTENDED(i) (((i) & 0x10000) != 0)
1159 #define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x10000)
1160 #define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) & ~0x10000)
1161 #define RELAX_MIPS16_ALWAYS_EXTENDED(i) (((i) & 0x20000) != 0)
1162 #define RELAX_MIPS16_MARK_ALWAYS_EXTENDED(i) ((i) | 0x20000)
1163 #define RELAX_MIPS16_CLEAR_ALWAYS_EXTENDED(i) ((i) & ~0x20000)
1164 #define RELAX_MIPS16_MACRO(i) (((i) & 0x40000) != 0)
1165 #define RELAX_MIPS16_MARK_MACRO(i) ((i) | 0x40000)
1166 #define RELAX_MIPS16_CLEAR_MACRO(i) ((i) & ~0x40000)
1167
1168 /* For microMIPS code, we use relaxation similar to one we use for
1169 MIPS16 code. Some instructions that take immediate values support
1170 two encodings: a small one which takes some small value, and a
1171 larger one which takes a 16 bit value. As some branches also follow
1172 this pattern, relaxing these values is required.
1173
1174 We can assemble both microMIPS and normal MIPS code in a single
1175 object. Therefore, we need to support this type of relaxation at
1176 the same time that we support the relaxation described above. We
1177 use one of the high bits of the subtype field to distinguish these
1178 cases.
1179
1180 The information we store for this type of relaxation is the argument
1181 code found in the opcode file for this relocation, the register
1182 selected as the assembler temporary, whether in the 32-bit
1183 instruction mode, whether the branch is unconditional, whether it is
1184 compact, whether there is no delay-slot instruction available to fill
1185 in, whether it stores the link address implicitly in $ra, whether
1186 relaxation of out-of-range 32-bit branches to a sequence of
1187 instructions is enabled, and whether the displacement of a branch is
1188 too large to fit as an immediate argument of a 16-bit and a 32-bit
1189 branch, respectively. */
1190 #define RELAX_MICROMIPS_ENCODE(type, at, insn32, pic, \
1191 uncond, compact, link, nods, \
1192 relax32, toofar16, toofar32) \
1193 (0x40000000 \
1194 | ((type) & 0xff) \
1195 | (((at) & 0x1f) << 8) \
1196 | ((insn32) ? 0x2000 : 0) \
1197 | ((pic) ? 0x4000 : 0) \
1198 | ((uncond) ? 0x8000 : 0) \
1199 | ((compact) ? 0x10000 : 0) \
1200 | ((link) ? 0x20000 : 0) \
1201 | ((nods) ? 0x40000 : 0) \
1202 | ((relax32) ? 0x80000 : 0) \
1203 | ((toofar16) ? 0x100000 : 0) \
1204 | ((toofar32) ? 0x200000 : 0))
1205 #define RELAX_MICROMIPS_P(i) (((i) & 0xc0000000) == 0x40000000)
1206 #define RELAX_MICROMIPS_TYPE(i) ((i) & 0xff)
1207 #define RELAX_MICROMIPS_AT(i) (((i) >> 8) & 0x1f)
1208 #define RELAX_MICROMIPS_INSN32(i) (((i) & 0x2000) != 0)
1209 #define RELAX_MICROMIPS_PIC(i) (((i) & 0x4000) != 0)
1210 #define RELAX_MICROMIPS_UNCOND(i) (((i) & 0x8000) != 0)
1211 #define RELAX_MICROMIPS_COMPACT(i) (((i) & 0x10000) != 0)
1212 #define RELAX_MICROMIPS_LINK(i) (((i) & 0x20000) != 0)
1213 #define RELAX_MICROMIPS_NODS(i) (((i) & 0x40000) != 0)
1214 #define RELAX_MICROMIPS_RELAX32(i) (((i) & 0x80000) != 0)
1215
1216 #define RELAX_MICROMIPS_TOOFAR16(i) (((i) & 0x100000) != 0)
1217 #define RELAX_MICROMIPS_MARK_TOOFAR16(i) ((i) | 0x100000)
1218 #define RELAX_MICROMIPS_CLEAR_TOOFAR16(i) ((i) & ~0x100000)
1219 #define RELAX_MICROMIPS_TOOFAR32(i) (((i) & 0x200000) != 0)
1220 #define RELAX_MICROMIPS_MARK_TOOFAR32(i) ((i) | 0x200000)
1221 #define RELAX_MICROMIPS_CLEAR_TOOFAR32(i) ((i) & ~0x200000)
1222
1223 /* Sign-extend 16-bit value X. */
1224 #define SEXT_16BIT(X) ((((X) + 0x8000) & 0xffff) - 0x8000)
1225
1226 /* Is the given value a sign-extended 32-bit value? */
1227 #define IS_SEXT_32BIT_NUM(x) \
1228 (((x) &~ (offsetT) 0x7fffffff) == 0 \
1229 || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
1230
1231 /* Is the given value a sign-extended 16-bit value? */
1232 #define IS_SEXT_16BIT_NUM(x) \
1233 (((x) &~ (offsetT) 0x7fff) == 0 \
1234 || (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
1235
1236 /* Is the given value a sign-extended 12-bit value? */
1237 #define IS_SEXT_12BIT_NUM(x) \
1238 (((((x) & 0xfff) ^ 0x800LL) - 0x800LL) == (x))
1239
1240 /* Is the given value a sign-extended 9-bit value? */
1241 #define IS_SEXT_9BIT_NUM(x) \
1242 (((((x) & 0x1ff) ^ 0x100LL) - 0x100LL) == (x))
1243
1244 /* Is the given value a zero-extended 32-bit value? Or a negated one? */
1245 #define IS_ZEXT_32BIT_NUM(x) \
1246 (((x) &~ (offsetT) 0xffffffff) == 0 \
1247 || (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))
1248
1249 /* Extract bits MASK << SHIFT from STRUCT and shift them right
1250 SHIFT places. */
1251 #define EXTRACT_BITS(STRUCT, MASK, SHIFT) \
1252 (((STRUCT) >> (SHIFT)) & (MASK))
1253
1254 /* Extract the operand given by FIELD from mips_cl_insn INSN. */
1255 #define EXTRACT_OPERAND(MICROMIPS, FIELD, INSN) \
1256 (!(MICROMIPS) \
1257 ? EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD) \
1258 : EXTRACT_BITS ((INSN).insn_opcode, \
1259 MICROMIPSOP_MASK_##FIELD, MICROMIPSOP_SH_##FIELD))
1260 #define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \
1261 EXTRACT_BITS ((INSN).insn_opcode, \
1262 MIPS16OP_MASK_##FIELD, \
1263 MIPS16OP_SH_##FIELD)
1264
1265 /* The MIPS16 EXTEND opcode, shifted left 16 places. */
1266 #define MIPS16_EXTEND (0xf000U << 16)
1267 \f
1268 /* Whether or not we are emitting a branch-likely macro. */
1269 static bfd_boolean emit_branch_likely_macro = FALSE;
1270
1271 /* Global variables used when generating relaxable macros. See the
1272 comment above RELAX_ENCODE for more details about how relaxation
1273 is used. */
1274 static struct {
1275 /* 0 if we're not emitting a relaxable macro.
1276 1 if we're emitting the first of the two relaxation alternatives.
1277 2 if we're emitting the second alternative. */
1278 int sequence;
1279
1280 /* The first relaxable fixup in the current frag. (In other words,
1281 the first fixup that refers to relaxable code.) */
1282 fixS *first_fixup;
1283
1284 /* sizes[0] says how many bytes of the first alternative are stored in
1285 the current frag. Likewise sizes[1] for the second alternative. */
1286 unsigned int sizes[2];
1287
1288 /* The symbol on which the choice of sequence depends. */
1289 symbolS *symbol;
1290 } mips_relax;
1291 \f
1292 /* Global variables used to decide whether a macro needs a warning. */
1293 static struct {
1294 /* True if the macro is in a branch delay slot. */
1295 bfd_boolean delay_slot_p;
1296
1297 /* Set to the length in bytes required if the macro is in a delay slot
1298 that requires a specific length of instruction, otherwise zero. */
1299 unsigned int delay_slot_length;
1300
1301 /* For relaxable macros, sizes[0] is the length of the first alternative
1302 in bytes and sizes[1] is the length of the second alternative.
1303 For non-relaxable macros, both elements give the length of the
1304 macro in bytes. */
1305 unsigned int sizes[2];
1306
1307 /* For relaxable macros, first_insn_sizes[0] is the length of the first
1308 instruction of the first alternative in bytes and first_insn_sizes[1]
1309 is the length of the first instruction of the second alternative.
1310 For non-relaxable macros, both elements give the length of the first
1311 instruction in bytes.
1312
1313 Set to zero if we haven't yet seen the first instruction. */
1314 unsigned int first_insn_sizes[2];
1315
1316 /* For relaxable macros, insns[0] is the number of instructions for the
1317 first alternative and insns[1] is the number of instructions for the
1318 second alternative.
1319
1320 For non-relaxable macros, both elements give the number of
1321 instructions for the macro. */
1322 unsigned int insns[2];
1323
1324 /* The first variant frag for this macro. */
1325 fragS *first_frag;
1326 } mips_macro_warning;
1327 \f
1328 /* Prototypes for static functions. */
1329
1330 enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
1331
1332 static void append_insn
1333 (struct mips_cl_insn *, expressionS *, bfd_reloc_code_real_type *,
1334 bfd_boolean expansionp);
1335 static void mips_no_prev_insn (void);
1336 static void macro_build (expressionS *, const char *, const char *, ...);
1337 static void mips16_macro_build
1338 (expressionS *, const char *, const char *, va_list *);
1339 static void load_register (int, expressionS *, int);
1340 static void macro_start (void);
1341 static void macro_end (void);
1342 static void macro (struct mips_cl_insn *ip, char *str);
1343 static void mips16_macro (struct mips_cl_insn * ip);
1344 static void mips_ip (char *str, struct mips_cl_insn * ip);
1345 static void mips16_ip (char *str, struct mips_cl_insn * ip);
1346 static unsigned long mips16_immed_extend (offsetT, unsigned int);
1347 static void mips16_immed
1348 (const char *, unsigned int, int, bfd_reloc_code_real_type, offsetT,
1349 unsigned int, unsigned long *);
1350 static size_t my_getSmallExpression
1351 (expressionS *, bfd_reloc_code_real_type *, char *);
1352 static void my_getExpression (expressionS *, char *);
1353 static void s_align (int);
1354 static void s_change_sec (int);
1355 static void s_change_section (int);
1356 static void s_cons (int);
1357 static void s_float_cons (int);
1358 static void s_mips_globl (int);
1359 static void s_option (int);
1360 static void s_mipsset (int);
1361 static void s_abicalls (int);
1362 static void s_cpload (int);
1363 static void s_cpsetup (int);
1364 static void s_cplocal (int);
1365 static void s_cprestore (int);
1366 static void s_cpreturn (int);
1367 static void s_dtprelword (int);
1368 static void s_dtpreldword (int);
1369 static void s_tprelword (int);
1370 static void s_tpreldword (int);
1371 static void s_gpvalue (int);
1372 static void s_gpword (int);
1373 static void s_gpdword (int);
1374 static void s_ehword (int);
1375 static void s_cpadd (int);
1376 static void s_insn (int);
1377 static void s_nan (int);
1378 static void s_module (int);
1379 static void s_mips_ent (int);
1380 static void s_mips_end (int);
1381 static void s_mips_frame (int);
1382 static void s_mips_mask (int reg_type);
1383 static void s_mips_stab (int);
1384 static void s_mips_weakext (int);
1385 static void s_mips_file (int);
1386 static void s_mips_loc (int);
1387 static bfd_boolean pic_need_relax (symbolS *);
1388 static int relaxed_branch_length (fragS *, asection *, int);
1389 static int relaxed_micromips_16bit_branch_length (fragS *, asection *, int);
1390 static int relaxed_micromips_32bit_branch_length (fragS *, asection *, int);
1391 static void file_mips_check_options (void);
1392
1393 /* Table and functions used to map between CPU/ISA names, and
1394 ISA levels, and CPU numbers. */
1395
1396 struct mips_cpu_info
1397 {
1398 const char *name; /* CPU or ISA name. */
1399 int flags; /* MIPS_CPU_* flags. */
1400 int ase; /* Set of ASEs implemented by the CPU. */
1401 int isa; /* ISA level. */
1402 int cpu; /* CPU number (default CPU if ISA). */
1403 };
1404
1405 #define MIPS_CPU_IS_ISA 0x0001 /* Is this an ISA? (If 0, a CPU.) */
1406
1407 static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *);
1408 static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
1409 static const struct mips_cpu_info *mips_cpu_info_from_arch (int);
1410 \f
1411 /* Command-line options. */
1412 const char *md_shortopts = "O::g::G:";
1413
1414 enum options
1415 {
1416 OPTION_MARCH = OPTION_MD_BASE,
1417 OPTION_MTUNE,
1418 OPTION_MIPS1,
1419 OPTION_MIPS2,
1420 OPTION_MIPS3,
1421 OPTION_MIPS4,
1422 OPTION_MIPS5,
1423 OPTION_MIPS32,
1424 OPTION_MIPS64,
1425 OPTION_MIPS32R2,
1426 OPTION_MIPS32R3,
1427 OPTION_MIPS32R5,
1428 OPTION_MIPS32R6,
1429 OPTION_MIPS64R2,
1430 OPTION_MIPS64R3,
1431 OPTION_MIPS64R5,
1432 OPTION_MIPS64R6,
1433 OPTION_MIPS16,
1434 OPTION_NO_MIPS16,
1435 OPTION_MIPS3D,
1436 OPTION_NO_MIPS3D,
1437 OPTION_MDMX,
1438 OPTION_NO_MDMX,
1439 OPTION_DSP,
1440 OPTION_NO_DSP,
1441 OPTION_MT,
1442 OPTION_NO_MT,
1443 OPTION_VIRT,
1444 OPTION_NO_VIRT,
1445 OPTION_MSA,
1446 OPTION_NO_MSA,
1447 OPTION_SMARTMIPS,
1448 OPTION_NO_SMARTMIPS,
1449 OPTION_DSPR2,
1450 OPTION_NO_DSPR2,
1451 OPTION_DSPR3,
1452 OPTION_NO_DSPR3,
1453 OPTION_EVA,
1454 OPTION_NO_EVA,
1455 OPTION_XPA,
1456 OPTION_NO_XPA,
1457 OPTION_MICROMIPS,
1458 OPTION_NO_MICROMIPS,
1459 OPTION_MCU,
1460 OPTION_NO_MCU,
1461 OPTION_MIPS16E2,
1462 OPTION_NO_MIPS16E2,
1463 OPTION_CRC,
1464 OPTION_NO_CRC,
1465 OPTION_M4650,
1466 OPTION_NO_M4650,
1467 OPTION_M4010,
1468 OPTION_NO_M4010,
1469 OPTION_M4100,
1470 OPTION_NO_M4100,
1471 OPTION_M3900,
1472 OPTION_NO_M3900,
1473 OPTION_M7000_HILO_FIX,
1474 OPTION_MNO_7000_HILO_FIX,
1475 OPTION_FIX_24K,
1476 OPTION_NO_FIX_24K,
1477 OPTION_FIX_RM7000,
1478 OPTION_NO_FIX_RM7000,
1479 OPTION_FIX_LOONGSON2F_JUMP,
1480 OPTION_NO_FIX_LOONGSON2F_JUMP,
1481 OPTION_FIX_LOONGSON2F_NOP,
1482 OPTION_NO_FIX_LOONGSON2F_NOP,
1483 OPTION_FIX_VR4120,
1484 OPTION_NO_FIX_VR4120,
1485 OPTION_FIX_VR4130,
1486 OPTION_NO_FIX_VR4130,
1487 OPTION_FIX_CN63XXP1,
1488 OPTION_NO_FIX_CN63XXP1,
1489 OPTION_TRAP,
1490 OPTION_BREAK,
1491 OPTION_EB,
1492 OPTION_EL,
1493 OPTION_FP32,
1494 OPTION_GP32,
1495 OPTION_CONSTRUCT_FLOATS,
1496 OPTION_NO_CONSTRUCT_FLOATS,
1497 OPTION_FP64,
1498 OPTION_FPXX,
1499 OPTION_GP64,
1500 OPTION_RELAX_BRANCH,
1501 OPTION_NO_RELAX_BRANCH,
1502 OPTION_IGNORE_BRANCH_ISA,
1503 OPTION_NO_IGNORE_BRANCH_ISA,
1504 OPTION_INSN32,
1505 OPTION_NO_INSN32,
1506 OPTION_MSHARED,
1507 OPTION_MNO_SHARED,
1508 OPTION_MSYM32,
1509 OPTION_MNO_SYM32,
1510 OPTION_SOFT_FLOAT,
1511 OPTION_HARD_FLOAT,
1512 OPTION_SINGLE_FLOAT,
1513 OPTION_DOUBLE_FLOAT,
1514 OPTION_32,
1515 OPTION_CALL_SHARED,
1516 OPTION_CALL_NONPIC,
1517 OPTION_NON_SHARED,
1518 OPTION_XGOT,
1519 OPTION_MABI,
1520 OPTION_N32,
1521 OPTION_64,
1522 OPTION_MDEBUG,
1523 OPTION_NO_MDEBUG,
1524 OPTION_PDR,
1525 OPTION_NO_PDR,
1526 OPTION_MVXWORKS_PIC,
1527 OPTION_NAN,
1528 OPTION_ODD_SPREG,
1529 OPTION_NO_ODD_SPREG,
1530 OPTION_GINV,
1531 OPTION_NO_GINV,
1532 OPTION_LOONGSON_MMI,
1533 OPTION_NO_LOONGSON_MMI,
1534 OPTION_LOONGSON_CAM,
1535 OPTION_NO_LOONGSON_CAM,
1536 OPTION_LOONGSON_EXT,
1537 OPTION_NO_LOONGSON_EXT,
1538 OPTION_LOONGSON_EXT2,
1539 OPTION_NO_LOONGSON_EXT2,
1540 OPTION_END_OF_ENUM
1541 };
1542
1543 struct option md_longopts[] =
1544 {
1545 /* Options which specify architecture. */
1546 {"march", required_argument, NULL, OPTION_MARCH},
1547 {"mtune", required_argument, NULL, OPTION_MTUNE},
1548 {"mips0", no_argument, NULL, OPTION_MIPS1},
1549 {"mips1", no_argument, NULL, OPTION_MIPS1},
1550 {"mips2", no_argument, NULL, OPTION_MIPS2},
1551 {"mips3", no_argument, NULL, OPTION_MIPS3},
1552 {"mips4", no_argument, NULL, OPTION_MIPS4},
1553 {"mips5", no_argument, NULL, OPTION_MIPS5},
1554 {"mips32", no_argument, NULL, OPTION_MIPS32},
1555 {"mips64", no_argument, NULL, OPTION_MIPS64},
1556 {"mips32r2", no_argument, NULL, OPTION_MIPS32R2},
1557 {"mips32r3", no_argument, NULL, OPTION_MIPS32R3},
1558 {"mips32r5", no_argument, NULL, OPTION_MIPS32R5},
1559 {"mips32r6", no_argument, NULL, OPTION_MIPS32R6},
1560 {"mips64r2", no_argument, NULL, OPTION_MIPS64R2},
1561 {"mips64r3", no_argument, NULL, OPTION_MIPS64R3},
1562 {"mips64r5", no_argument, NULL, OPTION_MIPS64R5},
1563 {"mips64r6", no_argument, NULL, OPTION_MIPS64R6},
1564
1565 /* Options which specify Application Specific Extensions (ASEs). */
1566 {"mips16", no_argument, NULL, OPTION_MIPS16},
1567 {"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
1568 {"mips3d", no_argument, NULL, OPTION_MIPS3D},
1569 {"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
1570 {"mdmx", no_argument, NULL, OPTION_MDMX},
1571 {"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
1572 {"mdsp", no_argument, NULL, OPTION_DSP},
1573 {"mno-dsp", no_argument, NULL, OPTION_NO_DSP},
1574 {"mmt", no_argument, NULL, OPTION_MT},
1575 {"mno-mt", no_argument, NULL, OPTION_NO_MT},
1576 {"msmartmips", no_argument, NULL, OPTION_SMARTMIPS},
1577 {"mno-smartmips", no_argument, NULL, OPTION_NO_SMARTMIPS},
1578 {"mdspr2", no_argument, NULL, OPTION_DSPR2},
1579 {"mno-dspr2", no_argument, NULL, OPTION_NO_DSPR2},
1580 {"mdspr3", no_argument, NULL, OPTION_DSPR3},
1581 {"mno-dspr3", no_argument, NULL, OPTION_NO_DSPR3},
1582 {"meva", no_argument, NULL, OPTION_EVA},
1583 {"mno-eva", no_argument, NULL, OPTION_NO_EVA},
1584 {"mmicromips", no_argument, NULL, OPTION_MICROMIPS},
1585 {"mno-micromips", no_argument, NULL, OPTION_NO_MICROMIPS},
1586 {"mmcu", no_argument, NULL, OPTION_MCU},
1587 {"mno-mcu", no_argument, NULL, OPTION_NO_MCU},
1588 {"mvirt", no_argument, NULL, OPTION_VIRT},
1589 {"mno-virt", no_argument, NULL, OPTION_NO_VIRT},
1590 {"mmsa", no_argument, NULL, OPTION_MSA},
1591 {"mno-msa", no_argument, NULL, OPTION_NO_MSA},
1592 {"mxpa", no_argument, NULL, OPTION_XPA},
1593 {"mno-xpa", no_argument, NULL, OPTION_NO_XPA},
1594 {"mmips16e2", no_argument, NULL, OPTION_MIPS16E2},
1595 {"mno-mips16e2", no_argument, NULL, OPTION_NO_MIPS16E2},
1596 {"mcrc", no_argument, NULL, OPTION_CRC},
1597 {"mno-crc", no_argument, NULL, OPTION_NO_CRC},
1598 {"mginv", no_argument, NULL, OPTION_GINV},
1599 {"mno-ginv", no_argument, NULL, OPTION_NO_GINV},
1600 {"mloongson-mmi", no_argument, NULL, OPTION_LOONGSON_MMI},
1601 {"mno-loongson-mmi", no_argument, NULL, OPTION_NO_LOONGSON_MMI},
1602 {"mloongson-cam", no_argument, NULL, OPTION_LOONGSON_CAM},
1603 {"mno-loongson-cam", no_argument, NULL, OPTION_NO_LOONGSON_CAM},
1604 {"mloongson-ext", no_argument, NULL, OPTION_LOONGSON_EXT},
1605 {"mno-loongson-ext", no_argument, NULL, OPTION_NO_LOONGSON_EXT},
1606 {"mloongson-ext2", no_argument, NULL, OPTION_LOONGSON_EXT2},
1607 {"mno-loongson-ext2", no_argument, NULL, OPTION_NO_LOONGSON_EXT2},
1608
1609 /* Old-style architecture options. Don't add more of these. */
1610 {"m4650", no_argument, NULL, OPTION_M4650},
1611 {"no-m4650", no_argument, NULL, OPTION_NO_M4650},
1612 {"m4010", no_argument, NULL, OPTION_M4010},
1613 {"no-m4010", no_argument, NULL, OPTION_NO_M4010},
1614 {"m4100", no_argument, NULL, OPTION_M4100},
1615 {"no-m4100", no_argument, NULL, OPTION_NO_M4100},
1616 {"m3900", no_argument, NULL, OPTION_M3900},
1617 {"no-m3900", no_argument, NULL, OPTION_NO_M3900},
1618
1619 /* Options which enable bug fixes. */
1620 {"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
1621 {"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1622 {"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1623 {"mfix-loongson2f-jump", no_argument, NULL, OPTION_FIX_LOONGSON2F_JUMP},
1624 {"mno-fix-loongson2f-jump", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_JUMP},
1625 {"mfix-loongson2f-nop", no_argument, NULL, OPTION_FIX_LOONGSON2F_NOP},
1626 {"mno-fix-loongson2f-nop", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_NOP},
1627 {"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120},
1628 {"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120},
1629 {"mfix-vr4130", no_argument, NULL, OPTION_FIX_VR4130},
1630 {"mno-fix-vr4130", no_argument, NULL, OPTION_NO_FIX_VR4130},
1631 {"mfix-24k", no_argument, NULL, OPTION_FIX_24K},
1632 {"mno-fix-24k", no_argument, NULL, OPTION_NO_FIX_24K},
1633 {"mfix-rm7000", no_argument, NULL, OPTION_FIX_RM7000},
1634 {"mno-fix-rm7000", no_argument, NULL, OPTION_NO_FIX_RM7000},
1635 {"mfix-cn63xxp1", no_argument, NULL, OPTION_FIX_CN63XXP1},
1636 {"mno-fix-cn63xxp1", no_argument, NULL, OPTION_NO_FIX_CN63XXP1},
1637
1638 /* Miscellaneous options. */
1639 {"trap", no_argument, NULL, OPTION_TRAP},
1640 {"no-break", no_argument, NULL, OPTION_TRAP},
1641 {"break", no_argument, NULL, OPTION_BREAK},
1642 {"no-trap", no_argument, NULL, OPTION_BREAK},
1643 {"EB", no_argument, NULL, OPTION_EB},
1644 {"EL", no_argument, NULL, OPTION_EL},
1645 {"mfp32", no_argument, NULL, OPTION_FP32},
1646 {"mgp32", no_argument, NULL, OPTION_GP32},
1647 {"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
1648 {"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
1649 {"mfp64", no_argument, NULL, OPTION_FP64},
1650 {"mfpxx", no_argument, NULL, OPTION_FPXX},
1651 {"mgp64", no_argument, NULL, OPTION_GP64},
1652 {"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH},
1653 {"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH},
1654 {"mignore-branch-isa", no_argument, NULL, OPTION_IGNORE_BRANCH_ISA},
1655 {"mno-ignore-branch-isa", no_argument, NULL, OPTION_NO_IGNORE_BRANCH_ISA},
1656 {"minsn32", no_argument, NULL, OPTION_INSN32},
1657 {"mno-insn32", no_argument, NULL, OPTION_NO_INSN32},
1658 {"mshared", no_argument, NULL, OPTION_MSHARED},
1659 {"mno-shared", no_argument, NULL, OPTION_MNO_SHARED},
1660 {"msym32", no_argument, NULL, OPTION_MSYM32},
1661 {"mno-sym32", no_argument, NULL, OPTION_MNO_SYM32},
1662 {"msoft-float", no_argument, NULL, OPTION_SOFT_FLOAT},
1663 {"mhard-float", no_argument, NULL, OPTION_HARD_FLOAT},
1664 {"msingle-float", no_argument, NULL, OPTION_SINGLE_FLOAT},
1665 {"mdouble-float", no_argument, NULL, OPTION_DOUBLE_FLOAT},
1666 {"modd-spreg", no_argument, NULL, OPTION_ODD_SPREG},
1667 {"mno-odd-spreg", no_argument, NULL, OPTION_NO_ODD_SPREG},
1668
1669 /* Strictly speaking this next option is ELF specific,
1670 but we allow it for other ports as well in order to
1671 make testing easier. */
1672 {"32", no_argument, NULL, OPTION_32},
1673
1674 /* ELF-specific options. */
1675 {"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
1676 {"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
1677 {"call_nonpic", no_argument, NULL, OPTION_CALL_NONPIC},
1678 {"non_shared", no_argument, NULL, OPTION_NON_SHARED},
1679 {"xgot", no_argument, NULL, OPTION_XGOT},
1680 {"mabi", required_argument, NULL, OPTION_MABI},
1681 {"n32", no_argument, NULL, OPTION_N32},
1682 {"64", no_argument, NULL, OPTION_64},
1683 {"mdebug", no_argument, NULL, OPTION_MDEBUG},
1684 {"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
1685 {"mpdr", no_argument, NULL, OPTION_PDR},
1686 {"mno-pdr", no_argument, NULL, OPTION_NO_PDR},
1687 {"mvxworks-pic", no_argument, NULL, OPTION_MVXWORKS_PIC},
1688 {"mnan", required_argument, NULL, OPTION_NAN},
1689
1690 {NULL, no_argument, NULL, 0}
1691 };
1692 size_t md_longopts_size = sizeof (md_longopts);
1693 \f
1694 /* Information about either an Application Specific Extension or an
1695 optional architecture feature that, for simplicity, we treat in the
1696 same way as an ASE. */
1697 struct mips_ase
1698 {
1699 /* The name of the ASE, used in both the command-line and .set options. */
1700 const char *name;
1701
1702 /* The associated ASE_* flags. If the ASE is available on both 32-bit
1703 and 64-bit architectures, the flags here refer to the subset that
1704 is available on both. */
1705 unsigned int flags;
1706
1707 /* The ASE_* flag used for instructions that are available on 64-bit
1708 architectures but that are not included in FLAGS. */
1709 unsigned int flags64;
1710
1711 /* The command-line options that turn the ASE on and off. */
1712 int option_on;
1713 int option_off;
1714
1715 /* The minimum required architecture revisions for MIPS32, MIPS64,
1716 microMIPS32 and microMIPS64, or -1 if the extension isn't supported. */
1717 int mips32_rev;
1718 int mips64_rev;
1719 int micromips32_rev;
1720 int micromips64_rev;
1721
1722 /* The architecture where the ASE was removed or -1 if the extension has not
1723 been removed. */
1724 int rem_rev;
1725 };
1726
1727 /* A table of all supported ASEs. */
1728 static const struct mips_ase mips_ases[] = {
1729 { "dsp", ASE_DSP, ASE_DSP64,
1730 OPTION_DSP, OPTION_NO_DSP,
1731 2, 2, 2, 2,
1732 -1 },
1733
1734 { "dspr2", ASE_DSP | ASE_DSPR2, 0,
1735 OPTION_DSPR2, OPTION_NO_DSPR2,
1736 2, 2, 2, 2,
1737 -1 },
1738
1739 { "dspr3", ASE_DSP | ASE_DSPR2 | ASE_DSPR3, 0,
1740 OPTION_DSPR3, OPTION_NO_DSPR3,
1741 6, 6, -1, -1,
1742 -1 },
1743
1744 { "eva", ASE_EVA, 0,
1745 OPTION_EVA, OPTION_NO_EVA,
1746 2, 2, 2, 2,
1747 -1 },
1748
1749 { "mcu", ASE_MCU, 0,
1750 OPTION_MCU, OPTION_NO_MCU,
1751 2, 2, 2, 2,
1752 -1 },
1753
1754 /* Deprecated in MIPS64r5, but we don't implement that yet. */
1755 { "mdmx", ASE_MDMX, 0,
1756 OPTION_MDMX, OPTION_NO_MDMX,
1757 -1, 1, -1, -1,
1758 6 },
1759
1760 /* Requires 64-bit FPRs, so the minimum MIPS32 revision is 2. */
1761 { "mips3d", ASE_MIPS3D, 0,
1762 OPTION_MIPS3D, OPTION_NO_MIPS3D,
1763 2, 1, -1, -1,
1764 6 },
1765
1766 { "mt", ASE_MT, 0,
1767 OPTION_MT, OPTION_NO_MT,
1768 2, 2, -1, -1,
1769 -1 },
1770
1771 { "smartmips", ASE_SMARTMIPS, 0,
1772 OPTION_SMARTMIPS, OPTION_NO_SMARTMIPS,
1773 1, -1, -1, -1,
1774 6 },
1775
1776 { "virt", ASE_VIRT, ASE_VIRT64,
1777 OPTION_VIRT, OPTION_NO_VIRT,
1778 2, 2, 2, 2,
1779 -1 },
1780
1781 { "msa", ASE_MSA, ASE_MSA64,
1782 OPTION_MSA, OPTION_NO_MSA,
1783 2, 2, 2, 2,
1784 -1 },
1785
1786 { "xpa", ASE_XPA, 0,
1787 OPTION_XPA, OPTION_NO_XPA,
1788 2, 2, 2, 2,
1789 -1 },
1790
1791 { "mips16e2", ASE_MIPS16E2, 0,
1792 OPTION_MIPS16E2, OPTION_NO_MIPS16E2,
1793 2, 2, -1, -1,
1794 6 },
1795
1796 { "crc", ASE_CRC, ASE_CRC64,
1797 OPTION_CRC, OPTION_NO_CRC,
1798 6, 6, -1, -1,
1799 -1 },
1800
1801 { "ginv", ASE_GINV, 0,
1802 OPTION_GINV, OPTION_NO_GINV,
1803 6, 6, 6, 6,
1804 -1 },
1805
1806 { "loongson-mmi", ASE_LOONGSON_MMI, 0,
1807 OPTION_LOONGSON_MMI, OPTION_NO_LOONGSON_MMI,
1808 0, 0, -1, -1,
1809 -1 },
1810
1811 { "loongson-cam", ASE_LOONGSON_CAM, 0,
1812 OPTION_LOONGSON_CAM, OPTION_NO_LOONGSON_CAM,
1813 0, 0, -1, -1,
1814 -1 },
1815
1816 { "loongson-ext", ASE_LOONGSON_EXT, 0,
1817 OPTION_LOONGSON_EXT, OPTION_NO_LOONGSON_EXT,
1818 0, 0, -1, -1,
1819 -1 },
1820
1821 { "loongson-ext2", ASE_LOONGSON_EXT | ASE_LOONGSON_EXT2, 0,
1822 OPTION_LOONGSON_EXT2, OPTION_NO_LOONGSON_EXT2,
1823 0, 0, -1, -1,
1824 -1 },
1825 };
1826
1827 /* The set of ASEs that require -mfp64. */
1828 #define FP64_ASES (ASE_MIPS3D | ASE_MDMX | ASE_MSA)
1829
1830 /* Groups of ASE_* flags that represent different revisions of an ASE. */
1831 static const unsigned int mips_ase_groups[] = {
1832 ASE_DSP | ASE_DSPR2 | ASE_DSPR3,
1833 ASE_LOONGSON_EXT | ASE_LOONGSON_EXT2
1834 };
1835 \f
1836 /* Pseudo-op table.
1837
1838 The following pseudo-ops from the Kane and Heinrich MIPS book
1839 should be defined here, but are currently unsupported: .alias,
1840 .galive, .gjaldef, .gjrlive, .livereg, .noalias.
1841
1842 The following pseudo-ops from the Kane and Heinrich MIPS book are
1843 specific to the type of debugging information being generated, and
1844 should be defined by the object format: .aent, .begin, .bend,
1845 .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
1846 .vreg.
1847
1848 The following pseudo-ops from the Kane and Heinrich MIPS book are
1849 not MIPS CPU specific, but are also not specific to the object file
1850 format. This file is probably the best place to define them, but
1851 they are not currently supported: .asm0, .endr, .lab, .struct. */
1852
1853 static const pseudo_typeS mips_pseudo_table[] =
1854 {
1855 /* MIPS specific pseudo-ops. */
1856 {"option", s_option, 0},
1857 {"set", s_mipsset, 0},
1858 {"rdata", s_change_sec, 'r'},
1859 {"sdata", s_change_sec, 's'},
1860 {"livereg", s_ignore, 0},
1861 {"abicalls", s_abicalls, 0},
1862 {"cpload", s_cpload, 0},
1863 {"cpsetup", s_cpsetup, 0},
1864 {"cplocal", s_cplocal, 0},
1865 {"cprestore", s_cprestore, 0},
1866 {"cpreturn", s_cpreturn, 0},
1867 {"dtprelword", s_dtprelword, 0},
1868 {"dtpreldword", s_dtpreldword, 0},
1869 {"tprelword", s_tprelword, 0},
1870 {"tpreldword", s_tpreldword, 0},
1871 {"gpvalue", s_gpvalue, 0},
1872 {"gpword", s_gpword, 0},
1873 {"gpdword", s_gpdword, 0},
1874 {"ehword", s_ehword, 0},
1875 {"cpadd", s_cpadd, 0},
1876 {"insn", s_insn, 0},
1877 {"nan", s_nan, 0},
1878 {"module", s_module, 0},
1879
1880 /* Relatively generic pseudo-ops that happen to be used on MIPS
1881 chips. */
1882 {"asciiz", stringer, 8 + 1},
1883 {"bss", s_change_sec, 'b'},
1884 {"err", s_err, 0},
1885 {"half", s_cons, 1},
1886 {"dword", s_cons, 3},
1887 {"weakext", s_mips_weakext, 0},
1888 {"origin", s_org, 0},
1889 {"repeat", s_rept, 0},
1890
1891 /* For MIPS this is non-standard, but we define it for consistency. */
1892 {"sbss", s_change_sec, 'B'},
1893
1894 /* These pseudo-ops are defined in read.c, but must be overridden
1895 here for one reason or another. */
1896 {"align", s_align, 0},
1897 {"byte", s_cons, 0},
1898 {"data", s_change_sec, 'd'},
1899 {"double", s_float_cons, 'd'},
1900 {"float", s_float_cons, 'f'},
1901 {"globl", s_mips_globl, 0},
1902 {"global", s_mips_globl, 0},
1903 {"hword", s_cons, 1},
1904 {"int", s_cons, 2},
1905 {"long", s_cons, 2},
1906 {"octa", s_cons, 4},
1907 {"quad", s_cons, 3},
1908 {"section", s_change_section, 0},
1909 {"short", s_cons, 1},
1910 {"single", s_float_cons, 'f'},
1911 {"stabd", s_mips_stab, 'd'},
1912 {"stabn", s_mips_stab, 'n'},
1913 {"stabs", s_mips_stab, 's'},
1914 {"text", s_change_sec, 't'},
1915 {"word", s_cons, 2},
1916
1917 { "extern", ecoff_directive_extern, 0},
1918
1919 { NULL, NULL, 0 },
1920 };
1921
1922 static const pseudo_typeS mips_nonecoff_pseudo_table[] =
1923 {
1924 /* These pseudo-ops should be defined by the object file format.
1925 However, a.out doesn't support them, so we have versions here. */
1926 {"aent", s_mips_ent, 1},
1927 {"bgnb", s_ignore, 0},
1928 {"end", s_mips_end, 0},
1929 {"endb", s_ignore, 0},
1930 {"ent", s_mips_ent, 0},
1931 {"file", s_mips_file, 0},
1932 {"fmask", s_mips_mask, 'F'},
1933 {"frame", s_mips_frame, 0},
1934 {"loc", s_mips_loc, 0},
1935 {"mask", s_mips_mask, 'R'},
1936 {"verstamp", s_ignore, 0},
1937 { NULL, NULL, 0 },
1938 };
1939
1940 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
1941 purpose of the `.dc.a' internal pseudo-op. */
1942
1943 int
1944 mips_address_bytes (void)
1945 {
1946 file_mips_check_options ();
1947 return HAVE_64BIT_ADDRESSES ? 8 : 4;
1948 }
1949
1950 extern void pop_insert (const pseudo_typeS *);
1951
1952 void
1953 mips_pop_insert (void)
1954 {
1955 pop_insert (mips_pseudo_table);
1956 if (! ECOFF_DEBUGGING)
1957 pop_insert (mips_nonecoff_pseudo_table);
1958 }
1959 \f
1960 /* Symbols labelling the current insn. */
1961
1962 struct insn_label_list
1963 {
1964 struct insn_label_list *next;
1965 symbolS *label;
1966 };
1967
1968 static struct insn_label_list *free_insn_labels;
1969 #define label_list tc_segment_info_data.labels
1970
1971 static void mips_clear_insn_labels (void);
1972 static void mips_mark_labels (void);
1973 static void mips_compressed_mark_labels (void);
1974
1975 static inline void
1976 mips_clear_insn_labels (void)
1977 {
1978 struct insn_label_list **pl;
1979 segment_info_type *si;
1980
1981 if (now_seg)
1982 {
1983 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
1984 ;
1985
1986 si = seg_info (now_seg);
1987 *pl = si->label_list;
1988 si->label_list = NULL;
1989 }
1990 }
1991
1992 /* Mark instruction labels in MIPS16/microMIPS mode. */
1993
1994 static inline void
1995 mips_mark_labels (void)
1996 {
1997 if (HAVE_CODE_COMPRESSION)
1998 mips_compressed_mark_labels ();
1999 }
2000 \f
2001 static char *expr_end;
2002
2003 /* An expression in a macro instruction. This is set by mips_ip and
2004 mips16_ip and when populated is always an O_constant. */
2005
2006 static expressionS imm_expr;
2007
2008 /* The relocatable field in an instruction and the relocs associated
2009 with it. These variables are used for instructions like LUI and
2010 JAL as well as true offsets. They are also used for address
2011 operands in macros. */
2012
2013 static expressionS offset_expr;
2014 static bfd_reloc_code_real_type offset_reloc[3]
2015 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
2016
2017 /* This is set to the resulting size of the instruction to be produced
2018 by mips16_ip if an explicit extension is used or by mips_ip if an
2019 explicit size is supplied. */
2020
2021 static unsigned int forced_insn_length;
2022
2023 /* True if we are assembling an instruction. All dot symbols defined during
2024 this time should be treated as code labels. */
2025
2026 static bfd_boolean mips_assembling_insn;
2027
2028 /* The pdr segment for per procedure frame/regmask info. Not used for
2029 ECOFF debugging. */
2030
2031 static segT pdr_seg;
2032
2033 /* The default target format to use. */
2034
2035 #if defined (TE_FreeBSD)
2036 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips-freebsd"
2037 #elif defined (TE_TMIPS)
2038 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips"
2039 #else
2040 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX ENDIAN "mips"
2041 #endif
2042
2043 const char *
2044 mips_target_format (void)
2045 {
2046 switch (OUTPUT_FLAVOR)
2047 {
2048 case bfd_target_elf_flavour:
2049 #ifdef TE_VXWORKS
2050 if (!HAVE_64BIT_OBJECTS && !HAVE_NEWABI)
2051 return (target_big_endian
2052 ? "elf32-bigmips-vxworks"
2053 : "elf32-littlemips-vxworks");
2054 #endif
2055 return (target_big_endian
2056 ? (HAVE_64BIT_OBJECTS
2057 ? ELF_TARGET ("elf64-", "big")
2058 : (HAVE_NEWABI
2059 ? ELF_TARGET ("elf32-n", "big")
2060 : ELF_TARGET ("elf32-", "big")))
2061 : (HAVE_64BIT_OBJECTS
2062 ? ELF_TARGET ("elf64-", "little")
2063 : (HAVE_NEWABI
2064 ? ELF_TARGET ("elf32-n", "little")
2065 : ELF_TARGET ("elf32-", "little"))));
2066 default:
2067 abort ();
2068 return NULL;
2069 }
2070 }
2071
2072 /* Return the ISA revision that is currently in use, or 0 if we are
2073 generating code for MIPS V or below. */
2074
2075 static int
2076 mips_isa_rev (void)
2077 {
2078 if (mips_opts.isa == ISA_MIPS32R2 || mips_opts.isa == ISA_MIPS64R2)
2079 return 2;
2080
2081 if (mips_opts.isa == ISA_MIPS32R3 || mips_opts.isa == ISA_MIPS64R3)
2082 return 3;
2083
2084 if (mips_opts.isa == ISA_MIPS32R5 || mips_opts.isa == ISA_MIPS64R5)
2085 return 5;
2086
2087 if (mips_opts.isa == ISA_MIPS32R6 || mips_opts.isa == ISA_MIPS64R6)
2088 return 6;
2089
2090 /* microMIPS implies revision 2 or above. */
2091 if (mips_opts.micromips)
2092 return 2;
2093
2094 if (mips_opts.isa == ISA_MIPS32 || mips_opts.isa == ISA_MIPS64)
2095 return 1;
2096
2097 return 0;
2098 }
2099
2100 /* Return the mask of all ASEs that are revisions of those in FLAGS. */
2101
2102 static unsigned int
2103 mips_ase_mask (unsigned int flags)
2104 {
2105 unsigned int i;
2106
2107 for (i = 0; i < ARRAY_SIZE (mips_ase_groups); i++)
2108 if (flags & mips_ase_groups[i])
2109 flags |= mips_ase_groups[i];
2110 return flags;
2111 }
2112
2113 /* Check whether the current ISA supports ASE. Issue a warning if
2114 appropriate. */
2115
2116 static void
2117 mips_check_isa_supports_ase (const struct mips_ase *ase)
2118 {
2119 const char *base;
2120 int min_rev, size;
2121 static unsigned int warned_isa;
2122 static unsigned int warned_fp32;
2123
2124 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
2125 min_rev = mips_opts.micromips ? ase->micromips64_rev : ase->mips64_rev;
2126 else
2127 min_rev = mips_opts.micromips ? ase->micromips32_rev : ase->mips32_rev;
2128 if ((min_rev < 0 || mips_isa_rev () < min_rev)
2129 && (warned_isa & ase->flags) != ase->flags)
2130 {
2131 warned_isa |= ase->flags;
2132 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2133 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2134 if (min_rev < 0)
2135 as_warn (_("the %d-bit %s architecture does not support the"
2136 " `%s' extension"), size, base, ase->name);
2137 else
2138 as_warn (_("the `%s' extension requires %s%d revision %d or greater"),
2139 ase->name, base, size, min_rev);
2140 }
2141 else if ((ase->rem_rev > 0 && mips_isa_rev () >= ase->rem_rev)
2142 && (warned_isa & ase->flags) != ase->flags)
2143 {
2144 warned_isa |= ase->flags;
2145 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2146 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2147 as_warn (_("the `%s' extension was removed in %s%d revision %d"),
2148 ase->name, base, size, ase->rem_rev);
2149 }
2150
2151 if ((ase->flags & FP64_ASES)
2152 && mips_opts.fp != 64
2153 && (warned_fp32 & ase->flags) != ase->flags)
2154 {
2155 warned_fp32 |= ase->flags;
2156 as_warn (_("the `%s' extension requires 64-bit FPRs"), ase->name);
2157 }
2158 }
2159
2160 /* Check all enabled ASEs to see whether they are supported by the
2161 chosen architecture. */
2162
2163 static void
2164 mips_check_isa_supports_ases (void)
2165 {
2166 unsigned int i, mask;
2167
2168 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2169 {
2170 mask = mips_ase_mask (mips_ases[i].flags);
2171 if ((mips_opts.ase & mask) == mips_ases[i].flags)
2172 mips_check_isa_supports_ase (&mips_ases[i]);
2173 }
2174 }
2175
2176 /* Set the state of ASE to ENABLED_P. Return the mask of ASE_* flags
2177 that were affected. */
2178
2179 static unsigned int
2180 mips_set_ase (const struct mips_ase *ase, struct mips_set_options *opts,
2181 bfd_boolean enabled_p)
2182 {
2183 unsigned int mask;
2184
2185 mask = mips_ase_mask (ase->flags);
2186 opts->ase &= ~mask;
2187
2188 /* Clear combination ASE flags, which need to be recalculated based on
2189 updated regular ASE settings. */
2190 opts->ase &= ~(ASE_MIPS16E2_MT | ASE_XPA_VIRT);
2191
2192 if (enabled_p)
2193 opts->ase |= ase->flags;
2194
2195 /* The Virtualization ASE has eXtended Physical Addressing (XPA)
2196 instructions which are only valid when both ASEs are enabled.
2197 This sets the ASE_XPA_VIRT flag when both ASEs are present. */
2198 if ((opts->ase & (ASE_XPA | ASE_VIRT)) == (ASE_XPA | ASE_VIRT))
2199 {
2200 opts->ase |= ASE_XPA_VIRT;
2201 mask |= ASE_XPA_VIRT;
2202 }
2203 if ((opts->ase & (ASE_MIPS16E2 | ASE_MT)) == (ASE_MIPS16E2 | ASE_MT))
2204 {
2205 opts->ase |= ASE_MIPS16E2_MT;
2206 mask |= ASE_MIPS16E2_MT;
2207 }
2208
2209 return mask;
2210 }
2211
2212 /* Return the ASE called NAME, or null if none. */
2213
2214 static const struct mips_ase *
2215 mips_lookup_ase (const char *name)
2216 {
2217 unsigned int i;
2218
2219 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2220 if (strcmp (name, mips_ases[i].name) == 0)
2221 return &mips_ases[i];
2222 return NULL;
2223 }
2224
2225 /* Return the length of a microMIPS instruction in bytes. If bits of
2226 the mask beyond the low 16 are 0, then it is a 16-bit instruction,
2227 otherwise it is a 32-bit instruction. */
2228
2229 static inline unsigned int
2230 micromips_insn_length (const struct mips_opcode *mo)
2231 {
2232 return mips_opcode_32bit_p (mo) ? 4 : 2;
2233 }
2234
2235 /* Return the length of MIPS16 instruction OPCODE. */
2236
2237 static inline unsigned int
2238 mips16_opcode_length (unsigned long opcode)
2239 {
2240 return (opcode >> 16) == 0 ? 2 : 4;
2241 }
2242
2243 /* Return the length of instruction INSN. */
2244
2245 static inline unsigned int
2246 insn_length (const struct mips_cl_insn *insn)
2247 {
2248 if (mips_opts.micromips)
2249 return micromips_insn_length (insn->insn_mo);
2250 else if (mips_opts.mips16)
2251 return mips16_opcode_length (insn->insn_opcode);
2252 else
2253 return 4;
2254 }
2255
2256 /* Initialise INSN from opcode entry MO. Leave its position unspecified. */
2257
2258 static void
2259 create_insn (struct mips_cl_insn *insn, const struct mips_opcode *mo)
2260 {
2261 size_t i;
2262
2263 insn->insn_mo = mo;
2264 insn->insn_opcode = mo->match;
2265 insn->frag = NULL;
2266 insn->where = 0;
2267 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2268 insn->fixp[i] = NULL;
2269 insn->fixed_p = (mips_opts.noreorder > 0);
2270 insn->noreorder_p = (mips_opts.noreorder > 0);
2271 insn->mips16_absolute_jump_p = 0;
2272 insn->complete_p = 0;
2273 insn->cleared_p = 0;
2274 }
2275
2276 /* Get a list of all the operands in INSN. */
2277
2278 static const struct mips_operand_array *
2279 insn_operands (const struct mips_cl_insn *insn)
2280 {
2281 if (insn->insn_mo >= &mips_opcodes[0]
2282 && insn->insn_mo < &mips_opcodes[NUMOPCODES])
2283 return &mips_operands[insn->insn_mo - &mips_opcodes[0]];
2284
2285 if (insn->insn_mo >= &mips16_opcodes[0]
2286 && insn->insn_mo < &mips16_opcodes[bfd_mips16_num_opcodes])
2287 return &mips16_operands[insn->insn_mo - &mips16_opcodes[0]];
2288
2289 if (insn->insn_mo >= &micromips_opcodes[0]
2290 && insn->insn_mo < &micromips_opcodes[bfd_micromips_num_opcodes])
2291 return &micromips_operands[insn->insn_mo - &micromips_opcodes[0]];
2292
2293 abort ();
2294 }
2295
2296 /* Get a description of operand OPNO of INSN. */
2297
2298 static const struct mips_operand *
2299 insn_opno (const struct mips_cl_insn *insn, unsigned opno)
2300 {
2301 const struct mips_operand_array *operands;
2302
2303 operands = insn_operands (insn);
2304 if (opno >= MAX_OPERANDS || !operands->operand[opno])
2305 abort ();
2306 return operands->operand[opno];
2307 }
2308
2309 /* Install UVAL as the value of OPERAND in INSN. */
2310
2311 static inline void
2312 insn_insert_operand (struct mips_cl_insn *insn,
2313 const struct mips_operand *operand, unsigned int uval)
2314 {
2315 if (mips_opts.mips16
2316 && operand->type == OP_INT && operand->lsb == 0
2317 && mips_opcode_32bit_p (insn->insn_mo))
2318 insn->insn_opcode |= mips16_immed_extend (uval, operand->size);
2319 else
2320 insn->insn_opcode = mips_insert_operand (operand, insn->insn_opcode, uval);
2321 }
2322
2323 /* Extract the value of OPERAND from INSN. */
2324
2325 static inline unsigned
2326 insn_extract_operand (const struct mips_cl_insn *insn,
2327 const struct mips_operand *operand)
2328 {
2329 return mips_extract_operand (operand, insn->insn_opcode);
2330 }
2331
2332 /* Record the current MIPS16/microMIPS mode in now_seg. */
2333
2334 static void
2335 mips_record_compressed_mode (void)
2336 {
2337 segment_info_type *si;
2338
2339 si = seg_info (now_seg);
2340 if (si->tc_segment_info_data.mips16 != mips_opts.mips16)
2341 si->tc_segment_info_data.mips16 = mips_opts.mips16;
2342 if (si->tc_segment_info_data.micromips != mips_opts.micromips)
2343 si->tc_segment_info_data.micromips = mips_opts.micromips;
2344 }
2345
2346 /* Read a standard MIPS instruction from BUF. */
2347
2348 static unsigned long
2349 read_insn (char *buf)
2350 {
2351 if (target_big_endian)
2352 return bfd_getb32 ((bfd_byte *) buf);
2353 else
2354 return bfd_getl32 ((bfd_byte *) buf);
2355 }
2356
2357 /* Write standard MIPS instruction INSN to BUF. Return a pointer to
2358 the next byte. */
2359
2360 static char *
2361 write_insn (char *buf, unsigned int insn)
2362 {
2363 md_number_to_chars (buf, insn, 4);
2364 return buf + 4;
2365 }
2366
2367 /* Read a microMIPS or MIPS16 opcode from BUF, given that it
2368 has length LENGTH. */
2369
2370 static unsigned long
2371 read_compressed_insn (char *buf, unsigned int length)
2372 {
2373 unsigned long insn;
2374 unsigned int i;
2375
2376 insn = 0;
2377 for (i = 0; i < length; i += 2)
2378 {
2379 insn <<= 16;
2380 if (target_big_endian)
2381 insn |= bfd_getb16 ((char *) buf);
2382 else
2383 insn |= bfd_getl16 ((char *) buf);
2384 buf += 2;
2385 }
2386 return insn;
2387 }
2388
2389 /* Write microMIPS or MIPS16 instruction INSN to BUF, given that the
2390 instruction is LENGTH bytes long. Return a pointer to the next byte. */
2391
2392 static char *
2393 write_compressed_insn (char *buf, unsigned int insn, unsigned int length)
2394 {
2395 unsigned int i;
2396
2397 for (i = 0; i < length; i += 2)
2398 md_number_to_chars (buf + i, insn >> ((length - i - 2) * 8), 2);
2399 return buf + length;
2400 }
2401
2402 /* Install INSN at the location specified by its "frag" and "where" fields. */
2403
2404 static void
2405 install_insn (const struct mips_cl_insn *insn)
2406 {
2407 char *f = insn->frag->fr_literal + insn->where;
2408 if (HAVE_CODE_COMPRESSION)
2409 write_compressed_insn (f, insn->insn_opcode, insn_length (insn));
2410 else
2411 write_insn (f, insn->insn_opcode);
2412 mips_record_compressed_mode ();
2413 }
2414
2415 /* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly
2416 and install the opcode in the new location. */
2417
2418 static void
2419 move_insn (struct mips_cl_insn *insn, fragS *frag, long where)
2420 {
2421 size_t i;
2422
2423 insn->frag = frag;
2424 insn->where = where;
2425 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2426 if (insn->fixp[i] != NULL)
2427 {
2428 insn->fixp[i]->fx_frag = frag;
2429 insn->fixp[i]->fx_where = where;
2430 }
2431 install_insn (insn);
2432 }
2433
2434 /* Add INSN to the end of the output. */
2435
2436 static void
2437 add_fixed_insn (struct mips_cl_insn *insn)
2438 {
2439 char *f = frag_more (insn_length (insn));
2440 move_insn (insn, frag_now, f - frag_now->fr_literal);
2441 }
2442
2443 /* Start a variant frag and move INSN to the start of the variant part,
2444 marking it as fixed. The other arguments are as for frag_var. */
2445
2446 static void
2447 add_relaxed_insn (struct mips_cl_insn *insn, int max_chars, int var,
2448 relax_substateT subtype, symbolS *symbol, offsetT offset)
2449 {
2450 frag_grow (max_chars);
2451 move_insn (insn, frag_now, frag_more (0) - frag_now->fr_literal);
2452 insn->fixed_p = 1;
2453 frag_var (rs_machine_dependent, max_chars, var,
2454 subtype, symbol, offset, NULL);
2455 }
2456
2457 /* Insert N copies of INSN into the history buffer, starting at
2458 position FIRST. Neither FIRST nor N need to be clipped. */
2459
2460 static void
2461 insert_into_history (unsigned int first, unsigned int n,
2462 const struct mips_cl_insn *insn)
2463 {
2464 if (mips_relax.sequence != 2)
2465 {
2466 unsigned int i;
2467
2468 for (i = ARRAY_SIZE (history); i-- > first;)
2469 if (i >= first + n)
2470 history[i] = history[i - n];
2471 else
2472 history[i] = *insn;
2473 }
2474 }
2475
2476 /* Clear the error in insn_error. */
2477
2478 static void
2479 clear_insn_error (void)
2480 {
2481 memset (&insn_error, 0, sizeof (insn_error));
2482 }
2483
2484 /* Possibly record error message MSG for the current instruction.
2485 If the error is about a particular argument, ARGNUM is the 1-based
2486 number of that argument, otherwise it is 0. FORMAT is the format
2487 of MSG. Return true if MSG was used, false if the current message
2488 was kept. */
2489
2490 static bfd_boolean
2491 set_insn_error_format (int argnum, enum mips_insn_error_format format,
2492 const char *msg)
2493 {
2494 if (argnum == 0)
2495 {
2496 /* Give priority to errors against specific arguments, and to
2497 the first whole-instruction message. */
2498 if (insn_error.msg)
2499 return FALSE;
2500 }
2501 else
2502 {
2503 /* Keep insn_error if it is against a later argument. */
2504 if (argnum < insn_error.min_argnum)
2505 return FALSE;
2506
2507 /* If both errors are against the same argument but are different,
2508 give up on reporting a specific error for this argument.
2509 See the comment about mips_insn_error for details. */
2510 if (argnum == insn_error.min_argnum
2511 && insn_error.msg
2512 && strcmp (insn_error.msg, msg) != 0)
2513 {
2514 insn_error.msg = 0;
2515 insn_error.min_argnum += 1;
2516 return FALSE;
2517 }
2518 }
2519 insn_error.min_argnum = argnum;
2520 insn_error.format = format;
2521 insn_error.msg = msg;
2522 return TRUE;
2523 }
2524
2525 /* Record an instruction error with no % format fields. ARGNUM and MSG are
2526 as for set_insn_error_format. */
2527
2528 static void
2529 set_insn_error (int argnum, const char *msg)
2530 {
2531 set_insn_error_format (argnum, ERR_FMT_PLAIN, msg);
2532 }
2533
2534 /* Record an instruction error with one %d field I. ARGNUM and MSG are
2535 as for set_insn_error_format. */
2536
2537 static void
2538 set_insn_error_i (int argnum, const char *msg, int i)
2539 {
2540 if (set_insn_error_format (argnum, ERR_FMT_I, msg))
2541 insn_error.u.i = i;
2542 }
2543
2544 /* Record an instruction error with two %s fields S1 and S2. ARGNUM and MSG
2545 are as for set_insn_error_format. */
2546
2547 static void
2548 set_insn_error_ss (int argnum, const char *msg, const char *s1, const char *s2)
2549 {
2550 if (set_insn_error_format (argnum, ERR_FMT_SS, msg))
2551 {
2552 insn_error.u.ss[0] = s1;
2553 insn_error.u.ss[1] = s2;
2554 }
2555 }
2556
2557 /* Report the error in insn_error, which is against assembly code STR. */
2558
2559 static void
2560 report_insn_error (const char *str)
2561 {
2562 const char *msg = concat (insn_error.msg, " `%s'", NULL);
2563
2564 switch (insn_error.format)
2565 {
2566 case ERR_FMT_PLAIN:
2567 as_bad (msg, str);
2568 break;
2569
2570 case ERR_FMT_I:
2571 as_bad (msg, insn_error.u.i, str);
2572 break;
2573
2574 case ERR_FMT_SS:
2575 as_bad (msg, insn_error.u.ss[0], insn_error.u.ss[1], str);
2576 break;
2577 }
2578
2579 free ((char *) msg);
2580 }
2581
2582 /* Initialize vr4120_conflicts. There is a bit of duplication here:
2583 the idea is to make it obvious at a glance that each errata is
2584 included. */
2585
2586 static void
2587 init_vr4120_conflicts (void)
2588 {
2589 #define CONFLICT(FIRST, SECOND) \
2590 vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND
2591
2592 /* Errata 21 - [D]DIV[U] after [D]MACC */
2593 CONFLICT (MACC, DIV);
2594 CONFLICT (DMACC, DIV);
2595
2596 /* Errata 23 - Continuous DMULT[U]/DMACC instructions. */
2597 CONFLICT (DMULT, DMULT);
2598 CONFLICT (DMULT, DMACC);
2599 CONFLICT (DMACC, DMULT);
2600 CONFLICT (DMACC, DMACC);
2601
2602 /* Errata 24 - MT{LO,HI} after [D]MACC */
2603 CONFLICT (MACC, MTHILO);
2604 CONFLICT (DMACC, MTHILO);
2605
2606 /* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU
2607 instruction is executed immediately after a MACC or DMACC
2608 instruction, the result of [either instruction] is incorrect." */
2609 CONFLICT (MACC, MULT);
2610 CONFLICT (MACC, DMULT);
2611 CONFLICT (DMACC, MULT);
2612 CONFLICT (DMACC, DMULT);
2613
2614 /* VR4181A errata MD(4): "If a MACC or DMACC instruction is
2615 executed immediately after a DMULT, DMULTU, DIV, DIVU,
2616 DDIV or DDIVU instruction, the result of the MACC or
2617 DMACC instruction is incorrect.". */
2618 CONFLICT (DMULT, MACC);
2619 CONFLICT (DMULT, DMACC);
2620 CONFLICT (DIV, MACC);
2621 CONFLICT (DIV, DMACC);
2622
2623 #undef CONFLICT
2624 }
2625
2626 struct regname {
2627 const char *name;
2628 unsigned int num;
2629 };
2630
2631 #define RNUM_MASK 0x00000ff
2632 #define RTYPE_MASK 0x0ffff00
2633 #define RTYPE_NUM 0x0000100
2634 #define RTYPE_FPU 0x0000200
2635 #define RTYPE_FCC 0x0000400
2636 #define RTYPE_VEC 0x0000800
2637 #define RTYPE_GP 0x0001000
2638 #define RTYPE_CP0 0x0002000
2639 #define RTYPE_PC 0x0004000
2640 #define RTYPE_ACC 0x0008000
2641 #define RTYPE_CCC 0x0010000
2642 #define RTYPE_VI 0x0020000
2643 #define RTYPE_VF 0x0040000
2644 #define RTYPE_R5900_I 0x0080000
2645 #define RTYPE_R5900_Q 0x0100000
2646 #define RTYPE_R5900_R 0x0200000
2647 #define RTYPE_R5900_ACC 0x0400000
2648 #define RTYPE_MSA 0x0800000
2649 #define RWARN 0x8000000
2650
2651 #define GENERIC_REGISTER_NUMBERS \
2652 {"$0", RTYPE_NUM | 0}, \
2653 {"$1", RTYPE_NUM | 1}, \
2654 {"$2", RTYPE_NUM | 2}, \
2655 {"$3", RTYPE_NUM | 3}, \
2656 {"$4", RTYPE_NUM | 4}, \
2657 {"$5", RTYPE_NUM | 5}, \
2658 {"$6", RTYPE_NUM | 6}, \
2659 {"$7", RTYPE_NUM | 7}, \
2660 {"$8", RTYPE_NUM | 8}, \
2661 {"$9", RTYPE_NUM | 9}, \
2662 {"$10", RTYPE_NUM | 10}, \
2663 {"$11", RTYPE_NUM | 11}, \
2664 {"$12", RTYPE_NUM | 12}, \
2665 {"$13", RTYPE_NUM | 13}, \
2666 {"$14", RTYPE_NUM | 14}, \
2667 {"$15", RTYPE_NUM | 15}, \
2668 {"$16", RTYPE_NUM | 16}, \
2669 {"$17", RTYPE_NUM | 17}, \
2670 {"$18", RTYPE_NUM | 18}, \
2671 {"$19", RTYPE_NUM | 19}, \
2672 {"$20", RTYPE_NUM | 20}, \
2673 {"$21", RTYPE_NUM | 21}, \
2674 {"$22", RTYPE_NUM | 22}, \
2675 {"$23", RTYPE_NUM | 23}, \
2676 {"$24", RTYPE_NUM | 24}, \
2677 {"$25", RTYPE_NUM | 25}, \
2678 {"$26", RTYPE_NUM | 26}, \
2679 {"$27", RTYPE_NUM | 27}, \
2680 {"$28", RTYPE_NUM | 28}, \
2681 {"$29", RTYPE_NUM | 29}, \
2682 {"$30", RTYPE_NUM | 30}, \
2683 {"$31", RTYPE_NUM | 31}
2684
2685 #define FPU_REGISTER_NAMES \
2686 {"$f0", RTYPE_FPU | 0}, \
2687 {"$f1", RTYPE_FPU | 1}, \
2688 {"$f2", RTYPE_FPU | 2}, \
2689 {"$f3", RTYPE_FPU | 3}, \
2690 {"$f4", RTYPE_FPU | 4}, \
2691 {"$f5", RTYPE_FPU | 5}, \
2692 {"$f6", RTYPE_FPU | 6}, \
2693 {"$f7", RTYPE_FPU | 7}, \
2694 {"$f8", RTYPE_FPU | 8}, \
2695 {"$f9", RTYPE_FPU | 9}, \
2696 {"$f10", RTYPE_FPU | 10}, \
2697 {"$f11", RTYPE_FPU | 11}, \
2698 {"$f12", RTYPE_FPU | 12}, \
2699 {"$f13", RTYPE_FPU | 13}, \
2700 {"$f14", RTYPE_FPU | 14}, \
2701 {"$f15", RTYPE_FPU | 15}, \
2702 {"$f16", RTYPE_FPU | 16}, \
2703 {"$f17", RTYPE_FPU | 17}, \
2704 {"$f18", RTYPE_FPU | 18}, \
2705 {"$f19", RTYPE_FPU | 19}, \
2706 {"$f20", RTYPE_FPU | 20}, \
2707 {"$f21", RTYPE_FPU | 21}, \
2708 {"$f22", RTYPE_FPU | 22}, \
2709 {"$f23", RTYPE_FPU | 23}, \
2710 {"$f24", RTYPE_FPU | 24}, \
2711 {"$f25", RTYPE_FPU | 25}, \
2712 {"$f26", RTYPE_FPU | 26}, \
2713 {"$f27", RTYPE_FPU | 27}, \
2714 {"$f28", RTYPE_FPU | 28}, \
2715 {"$f29", RTYPE_FPU | 29}, \
2716 {"$f30", RTYPE_FPU | 30}, \
2717 {"$f31", RTYPE_FPU | 31}
2718
2719 #define FPU_CONDITION_CODE_NAMES \
2720 {"$fcc0", RTYPE_FCC | 0}, \
2721 {"$fcc1", RTYPE_FCC | 1}, \
2722 {"$fcc2", RTYPE_FCC | 2}, \
2723 {"$fcc3", RTYPE_FCC | 3}, \
2724 {"$fcc4", RTYPE_FCC | 4}, \
2725 {"$fcc5", RTYPE_FCC | 5}, \
2726 {"$fcc6", RTYPE_FCC | 6}, \
2727 {"$fcc7", RTYPE_FCC | 7}
2728
2729 #define COPROC_CONDITION_CODE_NAMES \
2730 {"$cc0", RTYPE_FCC | RTYPE_CCC | 0}, \
2731 {"$cc1", RTYPE_FCC | RTYPE_CCC | 1}, \
2732 {"$cc2", RTYPE_FCC | RTYPE_CCC | 2}, \
2733 {"$cc3", RTYPE_FCC | RTYPE_CCC | 3}, \
2734 {"$cc4", RTYPE_FCC | RTYPE_CCC | 4}, \
2735 {"$cc5", RTYPE_FCC | RTYPE_CCC | 5}, \
2736 {"$cc6", RTYPE_FCC | RTYPE_CCC | 6}, \
2737 {"$cc7", RTYPE_FCC | RTYPE_CCC | 7}
2738
2739 #define N32N64_SYMBOLIC_REGISTER_NAMES \
2740 {"$a4", RTYPE_GP | 8}, \
2741 {"$a5", RTYPE_GP | 9}, \
2742 {"$a6", RTYPE_GP | 10}, \
2743 {"$a7", RTYPE_GP | 11}, \
2744 {"$ta0", RTYPE_GP | 8}, /* alias for $a4 */ \
2745 {"$ta1", RTYPE_GP | 9}, /* alias for $a5 */ \
2746 {"$ta2", RTYPE_GP | 10}, /* alias for $a6 */ \
2747 {"$ta3", RTYPE_GP | 11}, /* alias for $a7 */ \
2748 {"$t0", RTYPE_GP | 12}, \
2749 {"$t1", RTYPE_GP | 13}, \
2750 {"$t2", RTYPE_GP | 14}, \
2751 {"$t3", RTYPE_GP | 15}
2752
2753 #define O32_SYMBOLIC_REGISTER_NAMES \
2754 {"$t0", RTYPE_GP | 8}, \
2755 {"$t1", RTYPE_GP | 9}, \
2756 {"$t2", RTYPE_GP | 10}, \
2757 {"$t3", RTYPE_GP | 11}, \
2758 {"$t4", RTYPE_GP | 12}, \
2759 {"$t5", RTYPE_GP | 13}, \
2760 {"$t6", RTYPE_GP | 14}, \
2761 {"$t7", RTYPE_GP | 15}, \
2762 {"$ta0", RTYPE_GP | 12}, /* alias for $t4 */ \
2763 {"$ta1", RTYPE_GP | 13}, /* alias for $t5 */ \
2764 {"$ta2", RTYPE_GP | 14}, /* alias for $t6 */ \
2765 {"$ta3", RTYPE_GP | 15} /* alias for $t7 */
2766
2767 /* Remaining symbolic register names */
2768 #define SYMBOLIC_REGISTER_NAMES \
2769 {"$zero", RTYPE_GP | 0}, \
2770 {"$at", RTYPE_GP | 1}, \
2771 {"$AT", RTYPE_GP | 1}, \
2772 {"$v0", RTYPE_GP | 2}, \
2773 {"$v1", RTYPE_GP | 3}, \
2774 {"$a0", RTYPE_GP | 4}, \
2775 {"$a1", RTYPE_GP | 5}, \
2776 {"$a2", RTYPE_GP | 6}, \
2777 {"$a3", RTYPE_GP | 7}, \
2778 {"$s0", RTYPE_GP | 16}, \
2779 {"$s1", RTYPE_GP | 17}, \
2780 {"$s2", RTYPE_GP | 18}, \
2781 {"$s3", RTYPE_GP | 19}, \
2782 {"$s4", RTYPE_GP | 20}, \
2783 {"$s5", RTYPE_GP | 21}, \
2784 {"$s6", RTYPE_GP | 22}, \
2785 {"$s7", RTYPE_GP | 23}, \
2786 {"$t8", RTYPE_GP | 24}, \
2787 {"$t9", RTYPE_GP | 25}, \
2788 {"$k0", RTYPE_GP | 26}, \
2789 {"$kt0", RTYPE_GP | 26}, \
2790 {"$k1", RTYPE_GP | 27}, \
2791 {"$kt1", RTYPE_GP | 27}, \
2792 {"$gp", RTYPE_GP | 28}, \
2793 {"$sp", RTYPE_GP | 29}, \
2794 {"$s8", RTYPE_GP | 30}, \
2795 {"$fp", RTYPE_GP | 30}, \
2796 {"$ra", RTYPE_GP | 31}
2797
2798 #define MIPS16_SPECIAL_REGISTER_NAMES \
2799 {"$pc", RTYPE_PC | 0}
2800
2801 #define MDMX_VECTOR_REGISTER_NAMES \
2802 /* {"$v0", RTYPE_VEC | 0}, clash with REG 2 above */ \
2803 /* {"$v1", RTYPE_VEC | 1}, clash with REG 3 above */ \
2804 {"$v2", RTYPE_VEC | 2}, \
2805 {"$v3", RTYPE_VEC | 3}, \
2806 {"$v4", RTYPE_VEC | 4}, \
2807 {"$v5", RTYPE_VEC | 5}, \
2808 {"$v6", RTYPE_VEC | 6}, \
2809 {"$v7", RTYPE_VEC | 7}, \
2810 {"$v8", RTYPE_VEC | 8}, \
2811 {"$v9", RTYPE_VEC | 9}, \
2812 {"$v10", RTYPE_VEC | 10}, \
2813 {"$v11", RTYPE_VEC | 11}, \
2814 {"$v12", RTYPE_VEC | 12}, \
2815 {"$v13", RTYPE_VEC | 13}, \
2816 {"$v14", RTYPE_VEC | 14}, \
2817 {"$v15", RTYPE_VEC | 15}, \
2818 {"$v16", RTYPE_VEC | 16}, \
2819 {"$v17", RTYPE_VEC | 17}, \
2820 {"$v18", RTYPE_VEC | 18}, \
2821 {"$v19", RTYPE_VEC | 19}, \
2822 {"$v20", RTYPE_VEC | 20}, \
2823 {"$v21", RTYPE_VEC | 21}, \
2824 {"$v22", RTYPE_VEC | 22}, \
2825 {"$v23", RTYPE_VEC | 23}, \
2826 {"$v24", RTYPE_VEC | 24}, \
2827 {"$v25", RTYPE_VEC | 25}, \
2828 {"$v26", RTYPE_VEC | 26}, \
2829 {"$v27", RTYPE_VEC | 27}, \
2830 {"$v28", RTYPE_VEC | 28}, \
2831 {"$v29", RTYPE_VEC | 29}, \
2832 {"$v30", RTYPE_VEC | 30}, \
2833 {"$v31", RTYPE_VEC | 31}
2834
2835 #define R5900_I_NAMES \
2836 {"$I", RTYPE_R5900_I | 0}
2837
2838 #define R5900_Q_NAMES \
2839 {"$Q", RTYPE_R5900_Q | 0}
2840
2841 #define R5900_R_NAMES \
2842 {"$R", RTYPE_R5900_R | 0}
2843
2844 #define R5900_ACC_NAMES \
2845 {"$ACC", RTYPE_R5900_ACC | 0 }
2846
2847 #define MIPS_DSP_ACCUMULATOR_NAMES \
2848 {"$ac0", RTYPE_ACC | 0}, \
2849 {"$ac1", RTYPE_ACC | 1}, \
2850 {"$ac2", RTYPE_ACC | 2}, \
2851 {"$ac3", RTYPE_ACC | 3}
2852
2853 static const struct regname reg_names[] = {
2854 GENERIC_REGISTER_NUMBERS,
2855 FPU_REGISTER_NAMES,
2856 FPU_CONDITION_CODE_NAMES,
2857 COPROC_CONDITION_CODE_NAMES,
2858
2859 /* The $txx registers depends on the abi,
2860 these will be added later into the symbol table from
2861 one of the tables below once mips_abi is set after
2862 parsing of arguments from the command line. */
2863 SYMBOLIC_REGISTER_NAMES,
2864
2865 MIPS16_SPECIAL_REGISTER_NAMES,
2866 MDMX_VECTOR_REGISTER_NAMES,
2867 R5900_I_NAMES,
2868 R5900_Q_NAMES,
2869 R5900_R_NAMES,
2870 R5900_ACC_NAMES,
2871 MIPS_DSP_ACCUMULATOR_NAMES,
2872 {0, 0}
2873 };
2874
2875 static const struct regname reg_names_o32[] = {
2876 O32_SYMBOLIC_REGISTER_NAMES,
2877 {0, 0}
2878 };
2879
2880 static const struct regname reg_names_n32n64[] = {
2881 N32N64_SYMBOLIC_REGISTER_NAMES,
2882 {0, 0}
2883 };
2884
2885 /* Register symbols $v0 and $v1 map to GPRs 2 and 3, but they can also be
2886 interpreted as vector registers 0 and 1. If SYMVAL is the value of one
2887 of these register symbols, return the associated vector register,
2888 otherwise return SYMVAL itself. */
2889
2890 static unsigned int
2891 mips_prefer_vec_regno (unsigned int symval)
2892 {
2893 if ((symval & -2) == (RTYPE_GP | 2))
2894 return RTYPE_VEC | (symval & 1);
2895 return symval;
2896 }
2897
2898 /* Return true if string [S, E) is a valid register name, storing its
2899 symbol value in *SYMVAL_PTR if so. */
2900
2901 static bfd_boolean
2902 mips_parse_register_1 (char *s, char *e, unsigned int *symval_ptr)
2903 {
2904 char save_c;
2905 symbolS *symbol;
2906
2907 /* Terminate name. */
2908 save_c = *e;
2909 *e = '\0';
2910
2911 /* Look up the name. */
2912 symbol = symbol_find (s);
2913 *e = save_c;
2914
2915 if (!symbol || S_GET_SEGMENT (symbol) != reg_section)
2916 return FALSE;
2917
2918 *symval_ptr = S_GET_VALUE (symbol);
2919 return TRUE;
2920 }
2921
2922 /* Return true if the string at *SPTR is a valid register name. Allow it
2923 to have a VU0-style channel suffix of the form x?y?z?w? if CHANNELS_PTR
2924 is nonnull.
2925
2926 When returning true, move *SPTR past the register, store the
2927 register's symbol value in *SYMVAL_PTR and the channel mask in
2928 *CHANNELS_PTR (if nonnull). The symbol value includes the register
2929 number (RNUM_MASK) and register type (RTYPE_MASK). The channel mask
2930 is a 4-bit value of the form XYZW and is 0 if no suffix was given. */
2931
2932 static bfd_boolean
2933 mips_parse_register (char **sptr, unsigned int *symval_ptr,
2934 unsigned int *channels_ptr)
2935 {
2936 char *s, *e, *m;
2937 const char *q;
2938 unsigned int channels, symval, bit;
2939
2940 /* Find end of name. */
2941 s = e = *sptr;
2942 if (is_name_beginner (*e))
2943 ++e;
2944 while (is_part_of_name (*e))
2945 ++e;
2946
2947 channels = 0;
2948 if (!mips_parse_register_1 (s, e, &symval))
2949 {
2950 if (!channels_ptr)
2951 return FALSE;
2952
2953 /* Eat characters from the end of the string that are valid
2954 channel suffixes. The preceding register must be $ACC or
2955 end with a digit, so there is no ambiguity. */
2956 bit = 1;
2957 m = e;
2958 for (q = "wzyx"; *q; q++, bit <<= 1)
2959 if (m > s && m[-1] == *q)
2960 {
2961 --m;
2962 channels |= bit;
2963 }
2964
2965 if (channels == 0
2966 || !mips_parse_register_1 (s, m, &symval)
2967 || (symval & (RTYPE_VI | RTYPE_VF | RTYPE_R5900_ACC)) == 0)
2968 return FALSE;
2969 }
2970
2971 *sptr = e;
2972 *symval_ptr = symval;
2973 if (channels_ptr)
2974 *channels_ptr = channels;
2975 return TRUE;
2976 }
2977
2978 /* Check if SPTR points at a valid register specifier according to TYPES.
2979 If so, then return 1, advance S to consume the specifier and store
2980 the register's number in REGNOP, otherwise return 0. */
2981
2982 static int
2983 reg_lookup (char **s, unsigned int types, unsigned int *regnop)
2984 {
2985 unsigned int regno;
2986
2987 if (mips_parse_register (s, &regno, NULL))
2988 {
2989 if (types & RTYPE_VEC)
2990 regno = mips_prefer_vec_regno (regno);
2991 if (regno & types)
2992 regno &= RNUM_MASK;
2993 else
2994 regno = ~0;
2995 }
2996 else
2997 {
2998 if (types & RWARN)
2999 as_warn (_("unrecognized register name `%s'"), *s);
3000 regno = ~0;
3001 }
3002 if (regnop)
3003 *regnop = regno;
3004 return regno <= RNUM_MASK;
3005 }
3006
3007 /* Parse a VU0 "x?y?z?w?" channel mask at S and store the associated
3008 mask in *CHANNELS. Return a pointer to the first unconsumed character. */
3009
3010 static char *
3011 mips_parse_vu0_channels (char *s, unsigned int *channels)
3012 {
3013 unsigned int i;
3014
3015 *channels = 0;
3016 for (i = 0; i < 4; i++)
3017 if (*s == "xyzw"[i])
3018 {
3019 *channels |= 1 << (3 - i);
3020 ++s;
3021 }
3022 return s;
3023 }
3024
3025 /* Token types for parsed operand lists. */
3026 enum mips_operand_token_type {
3027 /* A plain register, e.g. $f2. */
3028 OT_REG,
3029
3030 /* A 4-bit XYZW channel mask. */
3031 OT_CHANNELS,
3032
3033 /* A constant vector index, e.g. [1]. */
3034 OT_INTEGER_INDEX,
3035
3036 /* A register vector index, e.g. [$2]. */
3037 OT_REG_INDEX,
3038
3039 /* A continuous range of registers, e.g. $s0-$s4. */
3040 OT_REG_RANGE,
3041
3042 /* A (possibly relocated) expression. */
3043 OT_INTEGER,
3044
3045 /* A floating-point value. */
3046 OT_FLOAT,
3047
3048 /* A single character. This can be '(', ')' or ',', but '(' only appears
3049 before OT_REGs. */
3050 OT_CHAR,
3051
3052 /* A doubled character, either "--" or "++". */
3053 OT_DOUBLE_CHAR,
3054
3055 /* The end of the operand list. */
3056 OT_END
3057 };
3058
3059 /* A parsed operand token. */
3060 struct mips_operand_token
3061 {
3062 /* The type of token. */
3063 enum mips_operand_token_type type;
3064 union
3065 {
3066 /* The register symbol value for an OT_REG or OT_REG_INDEX. */
3067 unsigned int regno;
3068
3069 /* The 4-bit channel mask for an OT_CHANNEL_SUFFIX. */
3070 unsigned int channels;
3071
3072 /* The integer value of an OT_INTEGER_INDEX. */
3073 addressT index;
3074
3075 /* The two register symbol values involved in an OT_REG_RANGE. */
3076 struct {
3077 unsigned int regno1;
3078 unsigned int regno2;
3079 } reg_range;
3080
3081 /* The value of an OT_INTEGER. The value is represented as an
3082 expression and the relocation operators that were applied to
3083 that expression. The reloc entries are BFD_RELOC_UNUSED if no
3084 relocation operators were used. */
3085 struct {
3086 expressionS value;
3087 bfd_reloc_code_real_type relocs[3];
3088 } integer;
3089
3090 /* The binary data for an OT_FLOAT constant, and the number of bytes
3091 in the constant. */
3092 struct {
3093 unsigned char data[8];
3094 int length;
3095 } flt;
3096
3097 /* The character represented by an OT_CHAR or OT_DOUBLE_CHAR. */
3098 char ch;
3099 } u;
3100 };
3101
3102 /* An obstack used to construct lists of mips_operand_tokens. */
3103 static struct obstack mips_operand_tokens;
3104
3105 /* Give TOKEN type TYPE and add it to mips_operand_tokens. */
3106
3107 static void
3108 mips_add_token (struct mips_operand_token *token,
3109 enum mips_operand_token_type type)
3110 {
3111 token->type = type;
3112 obstack_grow (&mips_operand_tokens, token, sizeof (*token));
3113 }
3114
3115 /* Check whether S is '(' followed by a register name. Add OT_CHAR
3116 and OT_REG tokens for them if so, and return a pointer to the first
3117 unconsumed character. Return null otherwise. */
3118
3119 static char *
3120 mips_parse_base_start (char *s)
3121 {
3122 struct mips_operand_token token;
3123 unsigned int regno, channels;
3124 bfd_boolean decrement_p;
3125
3126 if (*s != '(')
3127 return 0;
3128
3129 ++s;
3130 SKIP_SPACE_TABS (s);
3131
3132 /* Only match "--" as part of a base expression. In other contexts "--X"
3133 is a double negative. */
3134 decrement_p = (s[0] == '-' && s[1] == '-');
3135 if (decrement_p)
3136 {
3137 s += 2;
3138 SKIP_SPACE_TABS (s);
3139 }
3140
3141 /* Allow a channel specifier because that leads to better error messages
3142 than treating something like "$vf0x++" as an expression. */
3143 if (!mips_parse_register (&s, &regno, &channels))
3144 return 0;
3145
3146 token.u.ch = '(';
3147 mips_add_token (&token, OT_CHAR);
3148
3149 if (decrement_p)
3150 {
3151 token.u.ch = '-';
3152 mips_add_token (&token, OT_DOUBLE_CHAR);
3153 }
3154
3155 token.u.regno = regno;
3156 mips_add_token (&token, OT_REG);
3157
3158 if (channels)
3159 {
3160 token.u.channels = channels;
3161 mips_add_token (&token, OT_CHANNELS);
3162 }
3163
3164 /* For consistency, only match "++" as part of base expressions too. */
3165 SKIP_SPACE_TABS (s);
3166 if (s[0] == '+' && s[1] == '+')
3167 {
3168 s += 2;
3169 token.u.ch = '+';
3170 mips_add_token (&token, OT_DOUBLE_CHAR);
3171 }
3172
3173 return s;
3174 }
3175
3176 /* Parse one or more tokens from S. Return a pointer to the first
3177 unconsumed character on success. Return null if an error was found
3178 and store the error text in insn_error. FLOAT_FORMAT is as for
3179 mips_parse_arguments. */
3180
3181 static char *
3182 mips_parse_argument_token (char *s, char float_format)
3183 {
3184 char *end, *save_in;
3185 const char *err;
3186 unsigned int regno1, regno2, channels;
3187 struct mips_operand_token token;
3188
3189 /* First look for "($reg", since we want to treat that as an
3190 OT_CHAR and OT_REG rather than an expression. */
3191 end = mips_parse_base_start (s);
3192 if (end)
3193 return end;
3194
3195 /* Handle other characters that end up as OT_CHARs. */
3196 if (*s == ')' || *s == ',')
3197 {
3198 token.u.ch = *s;
3199 mips_add_token (&token, OT_CHAR);
3200 ++s;
3201 return s;
3202 }
3203
3204 /* Handle tokens that start with a register. */
3205 if (mips_parse_register (&s, &regno1, &channels))
3206 {
3207 if (channels)
3208 {
3209 /* A register and a VU0 channel suffix. */
3210 token.u.regno = regno1;
3211 mips_add_token (&token, OT_REG);
3212
3213 token.u.channels = channels;
3214 mips_add_token (&token, OT_CHANNELS);
3215 return s;
3216 }
3217
3218 SKIP_SPACE_TABS (s);
3219 if (*s == '-')
3220 {
3221 /* A register range. */
3222 ++s;
3223 SKIP_SPACE_TABS (s);
3224 if (!mips_parse_register (&s, &regno2, NULL))
3225 {
3226 set_insn_error (0, _("invalid register range"));
3227 return 0;
3228 }
3229
3230 token.u.reg_range.regno1 = regno1;
3231 token.u.reg_range.regno2 = regno2;
3232 mips_add_token (&token, OT_REG_RANGE);
3233 return s;
3234 }
3235
3236 /* Add the register itself. */
3237 token.u.regno = regno1;
3238 mips_add_token (&token, OT_REG);
3239
3240 /* Check for a vector index. */
3241 if (*s == '[')
3242 {
3243 ++s;
3244 SKIP_SPACE_TABS (s);
3245 if (mips_parse_register (&s, &token.u.regno, NULL))
3246 mips_add_token (&token, OT_REG_INDEX);
3247 else
3248 {
3249 expressionS element;
3250
3251 my_getExpression (&element, s);
3252 if (element.X_op != O_constant)
3253 {
3254 set_insn_error (0, _("vector element must be constant"));
3255 return 0;
3256 }
3257 s = expr_end;
3258 token.u.index = element.X_add_number;
3259 mips_add_token (&token, OT_INTEGER_INDEX);
3260 }
3261 SKIP_SPACE_TABS (s);
3262 if (*s != ']')
3263 {
3264 set_insn_error (0, _("missing `]'"));
3265 return 0;
3266 }
3267 ++s;
3268 }
3269 return s;
3270 }
3271
3272 if (float_format)
3273 {
3274 /* First try to treat expressions as floats. */
3275 save_in = input_line_pointer;
3276 input_line_pointer = s;
3277 err = md_atof (float_format, (char *) token.u.flt.data,
3278 &token.u.flt.length);
3279 end = input_line_pointer;
3280 input_line_pointer = save_in;
3281 if (err && *err)
3282 {
3283 set_insn_error (0, err);
3284 return 0;
3285 }
3286 if (s != end)
3287 {
3288 mips_add_token (&token, OT_FLOAT);
3289 return end;
3290 }
3291 }
3292
3293 /* Treat everything else as an integer expression. */
3294 token.u.integer.relocs[0] = BFD_RELOC_UNUSED;
3295 token.u.integer.relocs[1] = BFD_RELOC_UNUSED;
3296 token.u.integer.relocs[2] = BFD_RELOC_UNUSED;
3297 my_getSmallExpression (&token.u.integer.value, token.u.integer.relocs, s);
3298 s = expr_end;
3299 mips_add_token (&token, OT_INTEGER);
3300 return s;
3301 }
3302
3303 /* S points to the operand list for an instruction. FLOAT_FORMAT is 'f'
3304 if expressions should be treated as 32-bit floating-point constants,
3305 'd' if they should be treated as 64-bit floating-point constants,
3306 or 0 if they should be treated as integer expressions (the usual case).
3307
3308 Return a list of tokens on success, otherwise return 0. The caller
3309 must obstack_free the list after use. */
3310
3311 static struct mips_operand_token *
3312 mips_parse_arguments (char *s, char float_format)
3313 {
3314 struct mips_operand_token token;
3315
3316 SKIP_SPACE_TABS (s);
3317 while (*s)
3318 {
3319 s = mips_parse_argument_token (s, float_format);
3320 if (!s)
3321 {
3322 obstack_free (&mips_operand_tokens,
3323 obstack_finish (&mips_operand_tokens));
3324 return 0;
3325 }
3326 SKIP_SPACE_TABS (s);
3327 }
3328 mips_add_token (&token, OT_END);
3329 return (struct mips_operand_token *) obstack_finish (&mips_operand_tokens);
3330 }
3331
3332 /* Return TRUE if opcode MO is valid on the currently selected ISA, ASE
3333 and architecture. Use is_opcode_valid_16 for MIPS16 opcodes. */
3334
3335 static bfd_boolean
3336 is_opcode_valid (const struct mips_opcode *mo)
3337 {
3338 int isa = mips_opts.isa;
3339 int ase = mips_opts.ase;
3340 int fp_s, fp_d;
3341 unsigned int i;
3342
3343 if (ISA_HAS_64BIT_REGS (isa))
3344 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
3345 if ((ase & mips_ases[i].flags) == mips_ases[i].flags)
3346 ase |= mips_ases[i].flags64;
3347
3348 if (!opcode_is_member (mo, isa, ase, mips_opts.arch))
3349 return FALSE;
3350
3351 /* Check whether the instruction or macro requires single-precision or
3352 double-precision floating-point support. Note that this information is
3353 stored differently in the opcode table for insns and macros. */
3354 if (mo->pinfo == INSN_MACRO)
3355 {
3356 fp_s = mo->pinfo2 & INSN2_M_FP_S;
3357 fp_d = mo->pinfo2 & INSN2_M_FP_D;
3358 }
3359 else
3360 {
3361 fp_s = mo->pinfo & FP_S;
3362 fp_d = mo->pinfo & FP_D;
3363 }
3364
3365 if (fp_d && (mips_opts.soft_float || mips_opts.single_float))
3366 return FALSE;
3367
3368 if (fp_s && mips_opts.soft_float)
3369 return FALSE;
3370
3371 return TRUE;
3372 }
3373
3374 /* Return TRUE if the MIPS16 opcode MO is valid on the currently
3375 selected ISA and architecture. */
3376
3377 static bfd_boolean
3378 is_opcode_valid_16 (const struct mips_opcode *mo)
3379 {
3380 int isa = mips_opts.isa;
3381 int ase = mips_opts.ase;
3382 unsigned int i;
3383
3384 if (ISA_HAS_64BIT_REGS (isa))
3385 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
3386 if ((ase & mips_ases[i].flags) == mips_ases[i].flags)
3387 ase |= mips_ases[i].flags64;
3388
3389 return opcode_is_member (mo, isa, ase, mips_opts.arch);
3390 }
3391
3392 /* Return TRUE if the size of the microMIPS opcode MO matches one
3393 explicitly requested. Always TRUE in the standard MIPS mode.
3394 Use is_size_valid_16 for MIPS16 opcodes. */
3395
3396 static bfd_boolean
3397 is_size_valid (const struct mips_opcode *mo)
3398 {
3399 if (!mips_opts.micromips)
3400 return TRUE;
3401
3402 if (mips_opts.insn32)
3403 {
3404 if (mo->pinfo != INSN_MACRO && micromips_insn_length (mo) != 4)
3405 return FALSE;
3406 if ((mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0)
3407 return FALSE;
3408 }
3409 if (!forced_insn_length)
3410 return TRUE;
3411 if (mo->pinfo == INSN_MACRO)
3412 return FALSE;
3413 return forced_insn_length == micromips_insn_length (mo);
3414 }
3415
3416 /* Return TRUE if the size of the MIPS16 opcode MO matches one
3417 explicitly requested. */
3418
3419 static bfd_boolean
3420 is_size_valid_16 (const struct mips_opcode *mo)
3421 {
3422 if (!forced_insn_length)
3423 return TRUE;
3424 if (mo->pinfo == INSN_MACRO)
3425 return FALSE;
3426 if (forced_insn_length == 2 && mips_opcode_32bit_p (mo))
3427 return FALSE;
3428 if (forced_insn_length == 4 && (mo->pinfo2 & INSN2_SHORT_ONLY))
3429 return FALSE;
3430 return TRUE;
3431 }
3432
3433 /* Return TRUE if the microMIPS opcode MO is valid for the delay slot
3434 of the preceding instruction. Always TRUE in the standard MIPS mode.
3435
3436 We don't accept macros in 16-bit delay slots to avoid a case where
3437 a macro expansion fails because it relies on a preceding 32-bit real
3438 instruction to have matched and does not handle the operands correctly.
3439 The only macros that may expand to 16-bit instructions are JAL that
3440 cannot be placed in a delay slot anyway, and corner cases of BALIGN
3441 and BGT (that likewise cannot be placed in a delay slot) that decay to
3442 a NOP. In all these cases the macros precede any corresponding real
3443 instruction definitions in the opcode table, so they will match in the
3444 second pass where the size of the delay slot is ignored and therefore
3445 produce correct code. */
3446
3447 static bfd_boolean
3448 is_delay_slot_valid (const struct mips_opcode *mo)
3449 {
3450 if (!mips_opts.micromips)
3451 return TRUE;
3452
3453 if (mo->pinfo == INSN_MACRO)
3454 return (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) == 0;
3455 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
3456 && micromips_insn_length (mo) != 4)
3457 return FALSE;
3458 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
3459 && micromips_insn_length (mo) != 2)
3460 return FALSE;
3461
3462 return TRUE;
3463 }
3464
3465 /* For consistency checking, verify that all bits of OPCODE are specified
3466 either by the match/mask part of the instruction definition, or by the
3467 operand list. Also build up a list of operands in OPERANDS.
3468
3469 INSN_BITS says which bits of the instruction are significant.
3470 If OPCODE is a standard or microMIPS instruction, DECODE_OPERAND
3471 provides the mips_operand description of each operand. DECODE_OPERAND
3472 is null for MIPS16 instructions. */
3473
3474 static int
3475 validate_mips_insn (const struct mips_opcode *opcode,
3476 unsigned long insn_bits,
3477 const struct mips_operand *(*decode_operand) (const char *),
3478 struct mips_operand_array *operands)
3479 {
3480 const char *s;
3481 unsigned long used_bits, doubled, undefined, opno, mask;
3482 const struct mips_operand *operand;
3483
3484 mask = (opcode->pinfo == INSN_MACRO ? 0 : opcode->mask);
3485 if ((mask & opcode->match) != opcode->match)
3486 {
3487 as_bad (_("internal: bad mips opcode (mask error): %s %s"),
3488 opcode->name, opcode->args);
3489 return 0;
3490 }
3491 used_bits = 0;
3492 opno = 0;
3493 if (opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX)
3494 used_bits = mips_insert_operand (&mips_vu0_channel_mask, used_bits, -1);
3495 for (s = opcode->args; *s; ++s)
3496 switch (*s)
3497 {
3498 case ',':
3499 case '(':
3500 case ')':
3501 break;
3502
3503 case '#':
3504 s++;
3505 break;
3506
3507 default:
3508 if (!decode_operand)
3509 operand = decode_mips16_operand (*s, mips_opcode_32bit_p (opcode));
3510 else
3511 operand = decode_operand (s);
3512 if (!operand && opcode->pinfo != INSN_MACRO)
3513 {
3514 as_bad (_("internal: unknown operand type: %s %s"),
3515 opcode->name, opcode->args);
3516 return 0;
3517 }
3518 gas_assert (opno < MAX_OPERANDS);
3519 operands->operand[opno] = operand;
3520 if (!decode_operand && operand
3521 && operand->type == OP_INT && operand->lsb == 0
3522 && mips_opcode_32bit_p (opcode))
3523 used_bits |= mips16_immed_extend (-1, operand->size);
3524 else if (operand && operand->type != OP_VU0_MATCH_SUFFIX)
3525 {
3526 used_bits = mips_insert_operand (operand, used_bits, -1);
3527 if (operand->type == OP_MDMX_IMM_REG)
3528 /* Bit 5 is the format selector (OB vs QH). The opcode table
3529 has separate entries for each format. */
3530 used_bits &= ~(1 << (operand->lsb + 5));
3531 if (operand->type == OP_ENTRY_EXIT_LIST)
3532 used_bits &= ~(mask & 0x700);
3533 /* interAptiv MR2 SAVE/RESTORE instructions have a discontiguous
3534 operand field that cannot be fully described with LSB/SIZE. */
3535 if (operand->type == OP_SAVE_RESTORE_LIST && operand->lsb == 6)
3536 used_bits &= ~0x6000;
3537 }
3538 /* Skip prefix characters. */
3539 if (decode_operand && (*s == '+' || *s == 'm' || *s == '-'))
3540 ++s;
3541 opno += 1;
3542 break;
3543 }
3544 doubled = used_bits & mask & insn_bits;
3545 if (doubled)
3546 {
3547 as_bad (_("internal: bad mips opcode (bits 0x%08lx doubly defined):"
3548 " %s %s"), doubled, opcode->name, opcode->args);
3549 return 0;
3550 }
3551 used_bits |= mask;
3552 undefined = ~used_bits & insn_bits;
3553 if (opcode->pinfo != INSN_MACRO && undefined)
3554 {
3555 as_bad (_("internal: bad mips opcode (bits 0x%08lx undefined): %s %s"),
3556 undefined, opcode->name, opcode->args);
3557 return 0;
3558 }
3559 used_bits &= ~insn_bits;
3560 if (used_bits)
3561 {
3562 as_bad (_("internal: bad mips opcode (bits 0x%08lx defined): %s %s"),
3563 used_bits, opcode->name, opcode->args);
3564 return 0;
3565 }
3566 return 1;
3567 }
3568
3569 /* The MIPS16 version of validate_mips_insn. */
3570
3571 static int
3572 validate_mips16_insn (const struct mips_opcode *opcode,
3573 struct mips_operand_array *operands)
3574 {
3575 unsigned long insn_bits = mips_opcode_32bit_p (opcode) ? 0xffffffff : 0xffff;
3576
3577 return validate_mips_insn (opcode, insn_bits, 0, operands);
3578 }
3579
3580 /* The microMIPS version of validate_mips_insn. */
3581
3582 static int
3583 validate_micromips_insn (const struct mips_opcode *opc,
3584 struct mips_operand_array *operands)
3585 {
3586 unsigned long insn_bits;
3587 unsigned long major;
3588 unsigned int length;
3589
3590 if (opc->pinfo == INSN_MACRO)
3591 return validate_mips_insn (opc, 0xffffffff, decode_micromips_operand,
3592 operands);
3593
3594 length = micromips_insn_length (opc);
3595 if (length != 2 && length != 4)
3596 {
3597 as_bad (_("internal error: bad microMIPS opcode (incorrect length: %u): "
3598 "%s %s"), length, opc->name, opc->args);
3599 return 0;
3600 }
3601 major = opc->match >> (10 + 8 * (length - 2));
3602 if ((length == 2 && (major & 7) != 1 && (major & 6) != 2)
3603 || (length == 4 && (major & 7) != 0 && (major & 4) != 4))
3604 {
3605 as_bad (_("internal error: bad microMIPS opcode "
3606 "(opcode/length mismatch): %s %s"), opc->name, opc->args);
3607 return 0;
3608 }
3609
3610 /* Shift piecewise to avoid an overflow where unsigned long is 32-bit. */
3611 insn_bits = 1 << 4 * length;
3612 insn_bits <<= 4 * length;
3613 insn_bits -= 1;
3614 return validate_mips_insn (opc, insn_bits, decode_micromips_operand,
3615 operands);
3616 }
3617
3618 /* This function is called once, at assembler startup time. It should set up
3619 all the tables, etc. that the MD part of the assembler will need. */
3620
3621 void
3622 md_begin (void)
3623 {
3624 const char *retval = NULL;
3625 int i = 0;
3626 int broken = 0;
3627
3628 if (mips_pic != NO_PIC)
3629 {
3630 if (g_switch_seen && g_switch_value != 0)
3631 as_bad (_("-G may not be used in position-independent code"));
3632 g_switch_value = 0;
3633 }
3634 else if (mips_abicalls)
3635 {
3636 if (g_switch_seen && g_switch_value != 0)
3637 as_bad (_("-G may not be used with abicalls"));
3638 g_switch_value = 0;
3639 }
3640
3641 if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
3642 as_warn (_("could not set architecture and machine"));
3643
3644 op_hash = hash_new ();
3645
3646 mips_operands = XCNEWVEC (struct mips_operand_array, NUMOPCODES);
3647 for (i = 0; i < NUMOPCODES;)
3648 {
3649 const char *name = mips_opcodes[i].name;
3650
3651 retval = hash_insert (op_hash, name, (void *) &mips_opcodes[i]);
3652 if (retval != NULL)
3653 {
3654 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
3655 mips_opcodes[i].name, retval);
3656 /* Probably a memory allocation problem? Give up now. */
3657 as_fatal (_("broken assembler, no assembly attempted"));
3658 }
3659 do
3660 {
3661 if (!validate_mips_insn (&mips_opcodes[i], 0xffffffff,
3662 decode_mips_operand, &mips_operands[i]))
3663 broken = 1;
3664 if (nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3665 {
3666 create_insn (&nop_insn, mips_opcodes + i);
3667 if (mips_fix_loongson2f_nop)
3668 nop_insn.insn_opcode = LOONGSON2F_NOP_INSN;
3669 nop_insn.fixed_p = 1;
3670 }
3671 ++i;
3672 }
3673 while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
3674 }
3675
3676 mips16_op_hash = hash_new ();
3677 mips16_operands = XCNEWVEC (struct mips_operand_array,
3678 bfd_mips16_num_opcodes);
3679
3680 i = 0;
3681 while (i < bfd_mips16_num_opcodes)
3682 {
3683 const char *name = mips16_opcodes[i].name;
3684
3685 retval = hash_insert (mips16_op_hash, name, (void *) &mips16_opcodes[i]);
3686 if (retval != NULL)
3687 as_fatal (_("internal: can't hash `%s': %s"),
3688 mips16_opcodes[i].name, retval);
3689 do
3690 {
3691 if (!validate_mips16_insn (&mips16_opcodes[i], &mips16_operands[i]))
3692 broken = 1;
3693 if (mips16_nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3694 {
3695 create_insn (&mips16_nop_insn, mips16_opcodes + i);
3696 mips16_nop_insn.fixed_p = 1;
3697 }
3698 ++i;
3699 }
3700 while (i < bfd_mips16_num_opcodes
3701 && strcmp (mips16_opcodes[i].name, name) == 0);
3702 }
3703
3704 micromips_op_hash = hash_new ();
3705 micromips_operands = XCNEWVEC (struct mips_operand_array,
3706 bfd_micromips_num_opcodes);
3707
3708 i = 0;
3709 while (i < bfd_micromips_num_opcodes)
3710 {
3711 const char *name = micromips_opcodes[i].name;
3712
3713 retval = hash_insert (micromips_op_hash, name,
3714 (void *) &micromips_opcodes[i]);
3715 if (retval != NULL)
3716 as_fatal (_("internal: can't hash `%s': %s"),
3717 micromips_opcodes[i].name, retval);
3718 do
3719 {
3720 struct mips_cl_insn *micromips_nop_insn;
3721
3722 if (!validate_micromips_insn (&micromips_opcodes[i],
3723 &micromips_operands[i]))
3724 broken = 1;
3725
3726 if (micromips_opcodes[i].pinfo != INSN_MACRO)
3727 {
3728 if (micromips_insn_length (micromips_opcodes + i) == 2)
3729 micromips_nop_insn = &micromips_nop16_insn;
3730 else if (micromips_insn_length (micromips_opcodes + i) == 4)
3731 micromips_nop_insn = &micromips_nop32_insn;
3732 else
3733 continue;
3734
3735 if (micromips_nop_insn->insn_mo == NULL
3736 && strcmp (name, "nop") == 0)
3737 {
3738 create_insn (micromips_nop_insn, micromips_opcodes + i);
3739 micromips_nop_insn->fixed_p = 1;
3740 }
3741 }
3742 }
3743 while (++i < bfd_micromips_num_opcodes
3744 && strcmp (micromips_opcodes[i].name, name) == 0);
3745 }
3746
3747 if (broken)
3748 as_fatal (_("broken assembler, no assembly attempted"));
3749
3750 /* We add all the general register names to the symbol table. This
3751 helps us detect invalid uses of them. */
3752 for (i = 0; reg_names[i].name; i++)
3753 symbol_table_insert (symbol_new (reg_names[i].name, reg_section,
3754 reg_names[i].num, /* & RNUM_MASK, */
3755 &zero_address_frag));
3756 if (HAVE_NEWABI)
3757 for (i = 0; reg_names_n32n64[i].name; i++)
3758 symbol_table_insert (symbol_new (reg_names_n32n64[i].name, reg_section,
3759 reg_names_n32n64[i].num, /* & RNUM_MASK, */
3760 &zero_address_frag));
3761 else
3762 for (i = 0; reg_names_o32[i].name; i++)
3763 symbol_table_insert (symbol_new (reg_names_o32[i].name, reg_section,
3764 reg_names_o32[i].num, /* & RNUM_MASK, */
3765 &zero_address_frag));
3766
3767 for (i = 0; i < 32; i++)
3768 {
3769 char regname[6];
3770
3771 /* R5900 VU0 floating-point register. */
3772 sprintf (regname, "$vf%d", i);
3773 symbol_table_insert (symbol_new (regname, reg_section,
3774 RTYPE_VF | i, &zero_address_frag));
3775
3776 /* R5900 VU0 integer register. */
3777 sprintf (regname, "$vi%d", i);
3778 symbol_table_insert (symbol_new (regname, reg_section,
3779 RTYPE_VI | i, &zero_address_frag));
3780
3781 /* MSA register. */
3782 sprintf (regname, "$w%d", i);
3783 symbol_table_insert (symbol_new (regname, reg_section,
3784 RTYPE_MSA | i, &zero_address_frag));
3785 }
3786
3787 obstack_init (&mips_operand_tokens);
3788
3789 mips_no_prev_insn ();
3790
3791 mips_gprmask = 0;
3792 mips_cprmask[0] = 0;
3793 mips_cprmask[1] = 0;
3794 mips_cprmask[2] = 0;
3795 mips_cprmask[3] = 0;
3796
3797 /* set the default alignment for the text section (2**2) */
3798 record_alignment (text_section, 2);
3799
3800 bfd_set_gp_size (stdoutput, g_switch_value);
3801
3802 /* On a native system other than VxWorks, sections must be aligned
3803 to 16 byte boundaries. When configured for an embedded ELF
3804 target, we don't bother. */
3805 if (strncmp (TARGET_OS, "elf", 3) != 0
3806 && strncmp (TARGET_OS, "vxworks", 7) != 0)
3807 {
3808 (void) bfd_set_section_alignment (stdoutput, text_section, 4);
3809 (void) bfd_set_section_alignment (stdoutput, data_section, 4);
3810 (void) bfd_set_section_alignment (stdoutput, bss_section, 4);
3811 }
3812
3813 /* Create a .reginfo section for register masks and a .mdebug
3814 section for debugging information. */
3815 {
3816 segT seg;
3817 subsegT subseg;
3818 flagword flags;
3819 segT sec;
3820
3821 seg = now_seg;
3822 subseg = now_subseg;
3823
3824 /* The ABI says this section should be loaded so that the
3825 running program can access it. However, we don't load it
3826 if we are configured for an embedded target */
3827 flags = SEC_READONLY | SEC_DATA;
3828 if (strncmp (TARGET_OS, "elf", 3) != 0)
3829 flags |= SEC_ALLOC | SEC_LOAD;
3830
3831 if (mips_abi != N64_ABI)
3832 {
3833 sec = subseg_new (".reginfo", (subsegT) 0);
3834
3835 bfd_set_section_flags (stdoutput, sec, flags);
3836 bfd_set_section_alignment (stdoutput, sec, HAVE_NEWABI ? 3 : 2);
3837
3838 mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
3839 }
3840 else
3841 {
3842 /* The 64-bit ABI uses a .MIPS.options section rather than
3843 .reginfo section. */
3844 sec = subseg_new (".MIPS.options", (subsegT) 0);
3845 bfd_set_section_flags (stdoutput, sec, flags);
3846 bfd_set_section_alignment (stdoutput, sec, 3);
3847
3848 /* Set up the option header. */
3849 {
3850 Elf_Internal_Options opthdr;
3851 char *f;
3852
3853 opthdr.kind = ODK_REGINFO;
3854 opthdr.size = (sizeof (Elf_External_Options)
3855 + sizeof (Elf64_External_RegInfo));
3856 opthdr.section = 0;
3857 opthdr.info = 0;
3858 f = frag_more (sizeof (Elf_External_Options));
3859 bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
3860 (Elf_External_Options *) f);
3861
3862 mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
3863 }
3864 }
3865
3866 sec = subseg_new (".MIPS.abiflags", (subsegT) 0);
3867 bfd_set_section_flags (stdoutput, sec,
3868 SEC_READONLY | SEC_DATA | SEC_ALLOC | SEC_LOAD);
3869 bfd_set_section_alignment (stdoutput, sec, 3);
3870 mips_flags_frag = frag_more (sizeof (Elf_External_ABIFlags_v0));
3871
3872 if (ECOFF_DEBUGGING)
3873 {
3874 sec = subseg_new (".mdebug", (subsegT) 0);
3875 (void) bfd_set_section_flags (stdoutput, sec,
3876 SEC_HAS_CONTENTS | SEC_READONLY);
3877 (void) bfd_set_section_alignment (stdoutput, sec, 2);
3878 }
3879 else if (mips_flag_pdr)
3880 {
3881 pdr_seg = subseg_new (".pdr", (subsegT) 0);
3882 (void) bfd_set_section_flags (stdoutput, pdr_seg,
3883 SEC_READONLY | SEC_RELOC
3884 | SEC_DEBUGGING);
3885 (void) bfd_set_section_alignment (stdoutput, pdr_seg, 2);
3886 }
3887
3888 subseg_set (seg, subseg);
3889 }
3890
3891 if (mips_fix_vr4120)
3892 init_vr4120_conflicts ();
3893 }
3894
3895 static inline void
3896 fpabi_incompatible_with (int fpabi, const char *what)
3897 {
3898 as_warn (_(".gnu_attribute %d,%d is incompatible with `%s'"),
3899 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3900 }
3901
3902 static inline void
3903 fpabi_requires (int fpabi, const char *what)
3904 {
3905 as_warn (_(".gnu_attribute %d,%d requires `%s'"),
3906 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3907 }
3908
3909 /* Check -mabi and register sizes against the specified FP ABI. */
3910 static void
3911 check_fpabi (int fpabi)
3912 {
3913 switch (fpabi)
3914 {
3915 case Val_GNU_MIPS_ABI_FP_DOUBLE:
3916 if (file_mips_opts.soft_float)
3917 fpabi_incompatible_with (fpabi, "softfloat");
3918 else if (file_mips_opts.single_float)
3919 fpabi_incompatible_with (fpabi, "singlefloat");
3920 if (file_mips_opts.gp == 64 && file_mips_opts.fp == 32)
3921 fpabi_incompatible_with (fpabi, "gp=64 fp=32");
3922 else if (file_mips_opts.gp == 32 && file_mips_opts.fp == 64)
3923 fpabi_incompatible_with (fpabi, "gp=32 fp=64");
3924 break;
3925
3926 case Val_GNU_MIPS_ABI_FP_XX:
3927 if (mips_abi != O32_ABI)
3928 fpabi_requires (fpabi, "-mabi=32");
3929 else if (file_mips_opts.soft_float)
3930 fpabi_incompatible_with (fpabi, "softfloat");
3931 else if (file_mips_opts.single_float)
3932 fpabi_incompatible_with (fpabi, "singlefloat");
3933 else if (file_mips_opts.fp != 0)
3934 fpabi_requires (fpabi, "fp=xx");
3935 break;
3936
3937 case Val_GNU_MIPS_ABI_FP_64A:
3938 case Val_GNU_MIPS_ABI_FP_64:
3939 if (mips_abi != O32_ABI)
3940 fpabi_requires (fpabi, "-mabi=32");
3941 else if (file_mips_opts.soft_float)
3942 fpabi_incompatible_with (fpabi, "softfloat");
3943 else if (file_mips_opts.single_float)
3944 fpabi_incompatible_with (fpabi, "singlefloat");
3945 else if (file_mips_opts.fp != 64)
3946 fpabi_requires (fpabi, "fp=64");
3947 else if (fpabi == Val_GNU_MIPS_ABI_FP_64 && !file_mips_opts.oddspreg)
3948 fpabi_incompatible_with (fpabi, "nooddspreg");
3949 else if (fpabi == Val_GNU_MIPS_ABI_FP_64A && file_mips_opts.oddspreg)
3950 fpabi_requires (fpabi, "nooddspreg");
3951 break;
3952
3953 case Val_GNU_MIPS_ABI_FP_SINGLE:
3954 if (file_mips_opts.soft_float)
3955 fpabi_incompatible_with (fpabi, "softfloat");
3956 else if (!file_mips_opts.single_float)
3957 fpabi_requires (fpabi, "singlefloat");
3958 break;
3959
3960 case Val_GNU_MIPS_ABI_FP_SOFT:
3961 if (!file_mips_opts.soft_float)
3962 fpabi_requires (fpabi, "softfloat");
3963 break;
3964
3965 case Val_GNU_MIPS_ABI_FP_OLD_64:
3966 as_warn (_(".gnu_attribute %d,%d is no longer supported"),
3967 Tag_GNU_MIPS_ABI_FP, fpabi);
3968 break;
3969
3970 case Val_GNU_MIPS_ABI_FP_NAN2008:
3971 /* Silently ignore compatibility value. */
3972 break;
3973
3974 default:
3975 as_warn (_(".gnu_attribute %d,%d is not a recognized"
3976 " floating-point ABI"), Tag_GNU_MIPS_ABI_FP, fpabi);
3977 break;
3978 }
3979 }
3980
3981 /* Perform consistency checks on the current options. */
3982
3983 static void
3984 mips_check_options (struct mips_set_options *opts, bfd_boolean abi_checks)
3985 {
3986 /* Check the size of integer registers agrees with the ABI and ISA. */
3987 if (opts->gp == 64 && !ISA_HAS_64BIT_REGS (opts->isa))
3988 as_bad (_("`gp=64' used with a 32-bit processor"));
3989 else if (abi_checks
3990 && opts->gp == 32 && ABI_NEEDS_64BIT_REGS (mips_abi))
3991 as_bad (_("`gp=32' used with a 64-bit ABI"));
3992 else if (abi_checks
3993 && opts->gp == 64 && ABI_NEEDS_32BIT_REGS (mips_abi))
3994 as_bad (_("`gp=64' used with a 32-bit ABI"));
3995
3996 /* Check the size of the float registers agrees with the ABI and ISA. */
3997 switch (opts->fp)
3998 {
3999 case 0:
4000 if (!CPU_HAS_LDC1_SDC1 (opts->arch))
4001 as_bad (_("`fp=xx' used with a cpu lacking ldc1/sdc1 instructions"));
4002 else if (opts->single_float == 1)
4003 as_bad (_("`fp=xx' cannot be used with `singlefloat'"));
4004 break;
4005 case 64:
4006 if (!ISA_HAS_64BIT_FPRS (opts->isa))
4007 as_bad (_("`fp=64' used with a 32-bit fpu"));
4008 else if (abi_checks
4009 && ABI_NEEDS_32BIT_REGS (mips_abi)
4010 && !ISA_HAS_MXHC1 (opts->isa))
4011 as_warn (_("`fp=64' used with a 32-bit ABI"));
4012 break;
4013 case 32:
4014 if (abi_checks
4015 && ABI_NEEDS_64BIT_REGS (mips_abi))
4016 as_warn (_("`fp=32' used with a 64-bit ABI"));
4017 if (ISA_IS_R6 (opts->isa) && opts->single_float == 0)
4018 as_bad (_("`fp=32' used with a MIPS R6 cpu"));
4019 break;
4020 default:
4021 as_bad (_("Unknown size of floating point registers"));
4022 break;
4023 }
4024
4025 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !opts->oddspreg)
4026 as_bad (_("`nooddspreg` cannot be used with a 64-bit ABI"));
4027
4028 if (opts->micromips == 1 && opts->mips16 == 1)
4029 as_bad (_("`%s' cannot be used with `%s'"), "mips16", "micromips");
4030 else if (ISA_IS_R6 (opts->isa)
4031 && (opts->micromips == 1
4032 || opts->mips16 == 1))
4033 as_fatal (_("`%s' cannot be used with `%s'"),
4034 opts->micromips ? "micromips" : "mips16",
4035 mips_cpu_info_from_isa (opts->isa)->name);
4036
4037 if (ISA_IS_R6 (opts->isa) && mips_relax_branch)
4038 as_fatal (_("branch relaxation is not supported in `%s'"),
4039 mips_cpu_info_from_isa (opts->isa)->name);
4040 }
4041
4042 /* Perform consistency checks on the module level options exactly once.
4043 This is a deferred check that happens:
4044 at the first .set directive
4045 or, at the first pseudo op that generates code (inc .dc.a)
4046 or, at the first instruction
4047 or, at the end. */
4048
4049 static void
4050 file_mips_check_options (void)
4051 {
4052 const struct mips_cpu_info *arch_info = 0;
4053
4054 if (file_mips_opts_checked)
4055 return;
4056
4057 /* The following code determines the register size.
4058 Similar code was added to GCC 3.3 (see override_options() in
4059 config/mips/mips.c). The GAS and GCC code should be kept in sync
4060 as much as possible. */
4061
4062 if (file_mips_opts.gp < 0)
4063 {
4064 /* Infer the integer register size from the ABI and processor.
4065 Restrict ourselves to 32-bit registers if that's all the
4066 processor has, or if the ABI cannot handle 64-bit registers. */
4067 file_mips_opts.gp = (ABI_NEEDS_32BIT_REGS (mips_abi)
4068 || !ISA_HAS_64BIT_REGS (file_mips_opts.isa))
4069 ? 32 : 64;
4070 }
4071
4072 if (file_mips_opts.fp < 0)
4073 {
4074 /* No user specified float register size.
4075 ??? GAS treats single-float processors as though they had 64-bit
4076 float registers (although it complains when double-precision
4077 instructions are used). As things stand, saying they have 32-bit
4078 registers would lead to spurious "register must be even" messages.
4079 So here we assume float registers are never smaller than the
4080 integer ones. */
4081 if (file_mips_opts.gp == 64)
4082 /* 64-bit integer registers implies 64-bit float registers. */
4083 file_mips_opts.fp = 64;
4084 else if ((file_mips_opts.ase & FP64_ASES)
4085 && ISA_HAS_64BIT_FPRS (file_mips_opts.isa))
4086 /* Handle ASEs that require 64-bit float registers, if possible. */
4087 file_mips_opts.fp = 64;
4088 else if (ISA_IS_R6 (mips_opts.isa))
4089 /* R6 implies 64-bit float registers. */
4090 file_mips_opts.fp = 64;
4091 else
4092 /* 32-bit float registers. */
4093 file_mips_opts.fp = 32;
4094 }
4095
4096 arch_info = mips_cpu_info_from_arch (file_mips_opts.arch);
4097
4098 /* Disable operations on odd-numbered floating-point registers by default
4099 when using the FPXX ABI. */
4100 if (file_mips_opts.oddspreg < 0)
4101 {
4102 if (file_mips_opts.fp == 0)
4103 file_mips_opts.oddspreg = 0;
4104 else
4105 file_mips_opts.oddspreg = 1;
4106 }
4107
4108 /* End of GCC-shared inference code. */
4109
4110 /* This flag is set when we have a 64-bit capable CPU but use only
4111 32-bit wide registers. Note that EABI does not use it. */
4112 if (ISA_HAS_64BIT_REGS (file_mips_opts.isa)
4113 && ((mips_abi == NO_ABI && file_mips_opts.gp == 32)
4114 || mips_abi == O32_ABI))
4115 mips_32bitmode = 1;
4116
4117 if (file_mips_opts.isa == ISA_MIPS1 && mips_trap)
4118 as_bad (_("trap exception not supported at ISA 1"));
4119
4120 /* If the selected architecture includes support for ASEs, enable
4121 generation of code for them. */
4122 if (file_mips_opts.mips16 == -1)
4123 file_mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_opts.arch)) ? 1 : 0;
4124 if (file_mips_opts.micromips == -1)
4125 file_mips_opts.micromips = (CPU_HAS_MICROMIPS (file_mips_opts.arch))
4126 ? 1 : 0;
4127
4128 if (mips_nan2008 == -1)
4129 mips_nan2008 = (ISA_HAS_LEGACY_NAN (file_mips_opts.isa)) ? 0 : 1;
4130 else if (!ISA_HAS_LEGACY_NAN (file_mips_opts.isa) && mips_nan2008 == 0)
4131 as_fatal (_("`%s' does not support legacy NaN"),
4132 mips_cpu_info_from_arch (file_mips_opts.arch)->name);
4133
4134 /* Some ASEs require 64-bit FPRs, so -mfp32 should stop those ASEs from
4135 being selected implicitly. */
4136 if (file_mips_opts.fp != 64)
4137 file_ase_explicit |= ASE_MIPS3D | ASE_MDMX | ASE_MSA;
4138
4139 /* If the user didn't explicitly select or deselect a particular ASE,
4140 use the default setting for the CPU. */
4141 file_mips_opts.ase |= (arch_info->ase & ~file_ase_explicit);
4142
4143 /* Set up the current options. These may change throughout assembly. */
4144 mips_opts = file_mips_opts;
4145
4146 mips_check_isa_supports_ases ();
4147 mips_check_options (&file_mips_opts, TRUE);
4148 file_mips_opts_checked = TRUE;
4149
4150 if (!bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
4151 as_warn (_("could not set architecture and machine"));
4152 }
4153
4154 void
4155 md_assemble (char *str)
4156 {
4157 struct mips_cl_insn insn;
4158 bfd_reloc_code_real_type unused_reloc[3]
4159 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
4160
4161 file_mips_check_options ();
4162
4163 imm_expr.X_op = O_absent;
4164 offset_expr.X_op = O_absent;
4165 offset_reloc[0] = BFD_RELOC_UNUSED;
4166 offset_reloc[1] = BFD_RELOC_UNUSED;
4167 offset_reloc[2] = BFD_RELOC_UNUSED;
4168
4169 mips_mark_labels ();
4170 mips_assembling_insn = TRUE;
4171 clear_insn_error ();
4172
4173 if (mips_opts.mips16)
4174 mips16_ip (str, &insn);
4175 else
4176 {
4177 mips_ip (str, &insn);
4178 DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
4179 str, insn.insn_opcode));
4180 }
4181
4182 if (insn_error.msg)
4183 report_insn_error (str);
4184 else if (insn.insn_mo->pinfo == INSN_MACRO)
4185 {
4186 macro_start ();
4187 if (mips_opts.mips16)
4188 mips16_macro (&insn);
4189 else
4190 macro (&insn, str);
4191 macro_end ();
4192 }
4193 else
4194 {
4195 if (offset_expr.X_op != O_absent)
4196 append_insn (&insn, &offset_expr, offset_reloc, FALSE);
4197 else
4198 append_insn (&insn, NULL, unused_reloc, FALSE);
4199 }
4200
4201 mips_assembling_insn = FALSE;
4202 }
4203
4204 /* Convenience functions for abstracting away the differences between
4205 MIPS16 and non-MIPS16 relocations. */
4206
4207 static inline bfd_boolean
4208 mips16_reloc_p (bfd_reloc_code_real_type reloc)
4209 {
4210 switch (reloc)
4211 {
4212 case BFD_RELOC_MIPS16_JMP:
4213 case BFD_RELOC_MIPS16_GPREL:
4214 case BFD_RELOC_MIPS16_GOT16:
4215 case BFD_RELOC_MIPS16_CALL16:
4216 case BFD_RELOC_MIPS16_HI16_S:
4217 case BFD_RELOC_MIPS16_HI16:
4218 case BFD_RELOC_MIPS16_LO16:
4219 case BFD_RELOC_MIPS16_16_PCREL_S1:
4220 return TRUE;
4221
4222 default:
4223 return FALSE;
4224 }
4225 }
4226
4227 static inline bfd_boolean
4228 micromips_reloc_p (bfd_reloc_code_real_type reloc)
4229 {
4230 switch (reloc)
4231 {
4232 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4233 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4234 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
4235 case BFD_RELOC_MICROMIPS_GPREL16:
4236 case BFD_RELOC_MICROMIPS_JMP:
4237 case BFD_RELOC_MICROMIPS_HI16:
4238 case BFD_RELOC_MICROMIPS_HI16_S:
4239 case BFD_RELOC_MICROMIPS_LO16:
4240 case BFD_RELOC_MICROMIPS_LITERAL:
4241 case BFD_RELOC_MICROMIPS_GOT16:
4242 case BFD_RELOC_MICROMIPS_CALL16:
4243 case BFD_RELOC_MICROMIPS_GOT_HI16:
4244 case BFD_RELOC_MICROMIPS_GOT_LO16:
4245 case BFD_RELOC_MICROMIPS_CALL_HI16:
4246 case BFD_RELOC_MICROMIPS_CALL_LO16:
4247 case BFD_RELOC_MICROMIPS_SUB:
4248 case BFD_RELOC_MICROMIPS_GOT_PAGE:
4249 case BFD_RELOC_MICROMIPS_GOT_OFST:
4250 case BFD_RELOC_MICROMIPS_GOT_DISP:
4251 case BFD_RELOC_MICROMIPS_HIGHEST:
4252 case BFD_RELOC_MICROMIPS_HIGHER:
4253 case BFD_RELOC_MICROMIPS_SCN_DISP:
4254 case BFD_RELOC_MICROMIPS_JALR:
4255 return TRUE;
4256
4257 default:
4258 return FALSE;
4259 }
4260 }
4261
4262 static inline bfd_boolean
4263 jmp_reloc_p (bfd_reloc_code_real_type reloc)
4264 {
4265 return reloc == BFD_RELOC_MIPS_JMP || reloc == BFD_RELOC_MICROMIPS_JMP;
4266 }
4267
4268 static inline bfd_boolean
4269 b_reloc_p (bfd_reloc_code_real_type reloc)
4270 {
4271 return (reloc == BFD_RELOC_MIPS_26_PCREL_S2
4272 || reloc == BFD_RELOC_MIPS_21_PCREL_S2
4273 || reloc == BFD_RELOC_16_PCREL_S2
4274 || reloc == BFD_RELOC_MIPS16_16_PCREL_S1
4275 || reloc == BFD_RELOC_MICROMIPS_16_PCREL_S1
4276 || reloc == BFD_RELOC_MICROMIPS_10_PCREL_S1
4277 || reloc == BFD_RELOC_MICROMIPS_7_PCREL_S1);
4278 }
4279
4280 static inline bfd_boolean
4281 got16_reloc_p (bfd_reloc_code_real_type reloc)
4282 {
4283 return (reloc == BFD_RELOC_MIPS_GOT16 || reloc == BFD_RELOC_MIPS16_GOT16
4284 || reloc == BFD_RELOC_MICROMIPS_GOT16);
4285 }
4286
4287 static inline bfd_boolean
4288 hi16_reloc_p (bfd_reloc_code_real_type reloc)
4289 {
4290 return (reloc == BFD_RELOC_HI16_S || reloc == BFD_RELOC_MIPS16_HI16_S
4291 || reloc == BFD_RELOC_MICROMIPS_HI16_S);
4292 }
4293
4294 static inline bfd_boolean
4295 lo16_reloc_p (bfd_reloc_code_real_type reloc)
4296 {
4297 return (reloc == BFD_RELOC_LO16 || reloc == BFD_RELOC_MIPS16_LO16
4298 || reloc == BFD_RELOC_MICROMIPS_LO16);
4299 }
4300
4301 static inline bfd_boolean
4302 jalr_reloc_p (bfd_reloc_code_real_type reloc)
4303 {
4304 return reloc == BFD_RELOC_MIPS_JALR || reloc == BFD_RELOC_MICROMIPS_JALR;
4305 }
4306
4307 static inline bfd_boolean
4308 gprel16_reloc_p (bfd_reloc_code_real_type reloc)
4309 {
4310 return (reloc == BFD_RELOC_GPREL16 || reloc == BFD_RELOC_MIPS16_GPREL
4311 || reloc == BFD_RELOC_MICROMIPS_GPREL16);
4312 }
4313
4314 /* Return true if RELOC is a PC-relative relocation that does not have
4315 full address range. */
4316
4317 static inline bfd_boolean
4318 limited_pcrel_reloc_p (bfd_reloc_code_real_type reloc)
4319 {
4320 switch (reloc)
4321 {
4322 case BFD_RELOC_16_PCREL_S2:
4323 case BFD_RELOC_MIPS16_16_PCREL_S1:
4324 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4325 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4326 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
4327 case BFD_RELOC_MIPS_21_PCREL_S2:
4328 case BFD_RELOC_MIPS_26_PCREL_S2:
4329 case BFD_RELOC_MIPS_18_PCREL_S3:
4330 case BFD_RELOC_MIPS_19_PCREL_S2:
4331 return TRUE;
4332
4333 case BFD_RELOC_32_PCREL:
4334 case BFD_RELOC_HI16_S_PCREL:
4335 case BFD_RELOC_LO16_PCREL:
4336 return HAVE_64BIT_ADDRESSES;
4337
4338 default:
4339 return FALSE;
4340 }
4341 }
4342
4343 /* Return true if the given relocation might need a matching %lo().
4344 This is only "might" because SVR4 R_MIPS_GOT16 relocations only
4345 need a matching %lo() when applied to local symbols. */
4346
4347 static inline bfd_boolean
4348 reloc_needs_lo_p (bfd_reloc_code_real_type reloc)
4349 {
4350 return (HAVE_IN_PLACE_ADDENDS
4351 && (hi16_reloc_p (reloc)
4352 /* VxWorks R_MIPS_GOT16 relocs never need a matching %lo();
4353 all GOT16 relocations evaluate to "G". */
4354 || (got16_reloc_p (reloc) && mips_pic != VXWORKS_PIC)));
4355 }
4356
4357 /* Return the type of %lo() reloc needed by RELOC, given that
4358 reloc_needs_lo_p. */
4359
4360 static inline bfd_reloc_code_real_type
4361 matching_lo_reloc (bfd_reloc_code_real_type reloc)
4362 {
4363 return (mips16_reloc_p (reloc) ? BFD_RELOC_MIPS16_LO16
4364 : (micromips_reloc_p (reloc) ? BFD_RELOC_MICROMIPS_LO16
4365 : BFD_RELOC_LO16));
4366 }
4367
4368 /* Return true if the given fixup is followed by a matching R_MIPS_LO16
4369 relocation. */
4370
4371 static inline bfd_boolean
4372 fixup_has_matching_lo_p (fixS *fixp)
4373 {
4374 return (fixp->fx_next != NULL
4375 && fixp->fx_next->fx_r_type == matching_lo_reloc (fixp->fx_r_type)
4376 && fixp->fx_addsy == fixp->fx_next->fx_addsy
4377 && fixp->fx_offset == fixp->fx_next->fx_offset);
4378 }
4379
4380 /* Move all labels in LABELS to the current insertion point. TEXT_P
4381 says whether the labels refer to text or data. */
4382
4383 static void
4384 mips_move_labels (struct insn_label_list *labels, bfd_boolean text_p)
4385 {
4386 struct insn_label_list *l;
4387 valueT val;
4388
4389 for (l = labels; l != NULL; l = l->next)
4390 {
4391 gas_assert (S_GET_SEGMENT (l->label) == now_seg);
4392 symbol_set_frag (l->label, frag_now);
4393 val = (valueT) frag_now_fix ();
4394 /* MIPS16/microMIPS text labels are stored as odd. */
4395 if (text_p && HAVE_CODE_COMPRESSION)
4396 ++val;
4397 S_SET_VALUE (l->label, val);
4398 }
4399 }
4400
4401 /* Move all labels in insn_labels to the current insertion point
4402 and treat them as text labels. */
4403
4404 static void
4405 mips_move_text_labels (void)
4406 {
4407 mips_move_labels (seg_info (now_seg)->label_list, TRUE);
4408 }
4409
4410 /* Duplicate the test for LINK_ONCE sections as in `adjust_reloc_syms'. */
4411
4412 static bfd_boolean
4413 s_is_linkonce (symbolS *sym, segT from_seg)
4414 {
4415 bfd_boolean linkonce = FALSE;
4416 segT symseg = S_GET_SEGMENT (sym);
4417
4418 if (symseg != from_seg && !S_IS_LOCAL (sym))
4419 {
4420 if ((bfd_get_section_flags (stdoutput, symseg) & SEC_LINK_ONCE))
4421 linkonce = TRUE;
4422 /* The GNU toolchain uses an extension for ELF: a section
4423 beginning with the magic string .gnu.linkonce is a
4424 linkonce section. */
4425 if (strncmp (segment_name (symseg), ".gnu.linkonce",
4426 sizeof ".gnu.linkonce" - 1) == 0)
4427 linkonce = TRUE;
4428 }
4429 return linkonce;
4430 }
4431
4432 /* Mark MIPS16 or microMIPS instruction label LABEL. This permits the
4433 linker to handle them specially, such as generating jalx instructions
4434 when needed. We also make them odd for the duration of the assembly,
4435 in order to generate the right sort of code. We will make them even
4436 in the adjust_symtab routine, while leaving them marked. This is
4437 convenient for the debugger and the disassembler. The linker knows
4438 to make them odd again. */
4439
4440 static void
4441 mips_compressed_mark_label (symbolS *label)
4442 {
4443 gas_assert (HAVE_CODE_COMPRESSION);
4444
4445 if (mips_opts.mips16)
4446 S_SET_OTHER (label, ELF_ST_SET_MIPS16 (S_GET_OTHER (label)));
4447 else
4448 S_SET_OTHER (label, ELF_ST_SET_MICROMIPS (S_GET_OTHER (label)));
4449 if ((S_GET_VALUE (label) & 1) == 0
4450 /* Don't adjust the address if the label is global or weak, or
4451 in a link-once section, since we'll be emitting symbol reloc
4452 references to it which will be patched up by the linker, and
4453 the final value of the symbol may or may not be MIPS16/microMIPS. */
4454 && !S_IS_WEAK (label)
4455 && !S_IS_EXTERNAL (label)
4456 && !s_is_linkonce (label, now_seg))
4457 S_SET_VALUE (label, S_GET_VALUE (label) | 1);
4458 }
4459
4460 /* Mark preceding MIPS16 or microMIPS instruction labels. */
4461
4462 static void
4463 mips_compressed_mark_labels (void)
4464 {
4465 struct insn_label_list *l;
4466
4467 for (l = seg_info (now_seg)->label_list; l != NULL; l = l->next)
4468 mips_compressed_mark_label (l->label);
4469 }
4470
4471 /* End the current frag. Make it a variant frag and record the
4472 relaxation info. */
4473
4474 static void
4475 relax_close_frag (void)
4476 {
4477 mips_macro_warning.first_frag = frag_now;
4478 frag_var (rs_machine_dependent, 0, 0,
4479 RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1],
4480 mips_pic != NO_PIC),
4481 mips_relax.symbol, 0, (char *) mips_relax.first_fixup);
4482
4483 memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes));
4484 mips_relax.first_fixup = 0;
4485 }
4486
4487 /* Start a new relaxation sequence whose expansion depends on SYMBOL.
4488 See the comment above RELAX_ENCODE for more details. */
4489
4490 static void
4491 relax_start (symbolS *symbol)
4492 {
4493 gas_assert (mips_relax.sequence == 0);
4494 mips_relax.sequence = 1;
4495 mips_relax.symbol = symbol;
4496 }
4497
4498 /* Start generating the second version of a relaxable sequence.
4499 See the comment above RELAX_ENCODE for more details. */
4500
4501 static void
4502 relax_switch (void)
4503 {
4504 gas_assert (mips_relax.sequence == 1);
4505 mips_relax.sequence = 2;
4506 }
4507
4508 /* End the current relaxable sequence. */
4509
4510 static void
4511 relax_end (void)
4512 {
4513 gas_assert (mips_relax.sequence == 2);
4514 relax_close_frag ();
4515 mips_relax.sequence = 0;
4516 }
4517
4518 /* Return true if IP is a delayed branch or jump. */
4519
4520 static inline bfd_boolean
4521 delayed_branch_p (const struct mips_cl_insn *ip)
4522 {
4523 return (ip->insn_mo->pinfo & (INSN_UNCOND_BRANCH_DELAY
4524 | INSN_COND_BRANCH_DELAY
4525 | INSN_COND_BRANCH_LIKELY)) != 0;
4526 }
4527
4528 /* Return true if IP is a compact branch or jump. */
4529
4530 static inline bfd_boolean
4531 compact_branch_p (const struct mips_cl_insn *ip)
4532 {
4533 return (ip->insn_mo->pinfo2 & (INSN2_UNCOND_BRANCH
4534 | INSN2_COND_BRANCH)) != 0;
4535 }
4536
4537 /* Return true if IP is an unconditional branch or jump. */
4538
4539 static inline bfd_boolean
4540 uncond_branch_p (const struct mips_cl_insn *ip)
4541 {
4542 return ((ip->insn_mo->pinfo & INSN_UNCOND_BRANCH_DELAY) != 0
4543 || (ip->insn_mo->pinfo2 & INSN2_UNCOND_BRANCH) != 0);
4544 }
4545
4546 /* Return true if IP is a branch-likely instruction. */
4547
4548 static inline bfd_boolean
4549 branch_likely_p (const struct mips_cl_insn *ip)
4550 {
4551 return (ip->insn_mo->pinfo & INSN_COND_BRANCH_LIKELY) != 0;
4552 }
4553
4554 /* Return the type of nop that should be used to fill the delay slot
4555 of delayed branch IP. */
4556
4557 static struct mips_cl_insn *
4558 get_delay_slot_nop (const struct mips_cl_insn *ip)
4559 {
4560 if (mips_opts.micromips
4561 && (ip->insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
4562 return &micromips_nop32_insn;
4563 return NOP_INSN;
4564 }
4565
4566 /* Return a mask that has bit N set if OPCODE reads the register(s)
4567 in operand N. */
4568
4569 static unsigned int
4570 insn_read_mask (const struct mips_opcode *opcode)
4571 {
4572 return (opcode->pinfo & INSN_READ_ALL) >> INSN_READ_SHIFT;
4573 }
4574
4575 /* Return a mask that has bit N set if OPCODE writes to the register(s)
4576 in operand N. */
4577
4578 static unsigned int
4579 insn_write_mask (const struct mips_opcode *opcode)
4580 {
4581 return (opcode->pinfo & INSN_WRITE_ALL) >> INSN_WRITE_SHIFT;
4582 }
4583
4584 /* Return a mask of the registers specified by operand OPERAND of INSN.
4585 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4586 is set. */
4587
4588 static unsigned int
4589 operand_reg_mask (const struct mips_cl_insn *insn,
4590 const struct mips_operand *operand,
4591 unsigned int type_mask)
4592 {
4593 unsigned int uval, vsel;
4594
4595 switch (operand->type)
4596 {
4597 case OP_INT:
4598 case OP_MAPPED_INT:
4599 case OP_MSB:
4600 case OP_PCREL:
4601 case OP_PERF_REG:
4602 case OP_ADDIUSP_INT:
4603 case OP_ENTRY_EXIT_LIST:
4604 case OP_REPEAT_DEST_REG:
4605 case OP_REPEAT_PREV_REG:
4606 case OP_PC:
4607 case OP_VU0_SUFFIX:
4608 case OP_VU0_MATCH_SUFFIX:
4609 case OP_IMM_INDEX:
4610 abort ();
4611
4612 case OP_REG28:
4613 return 1 << 28;
4614
4615 case OP_REG:
4616 case OP_OPTIONAL_REG:
4617 {
4618 const struct mips_reg_operand *reg_op;
4619
4620 reg_op = (const struct mips_reg_operand *) operand;
4621 if (!(type_mask & (1 << reg_op->reg_type)))
4622 return 0;
4623 uval = insn_extract_operand (insn, operand);
4624 return 1 << mips_decode_reg_operand (reg_op, uval);
4625 }
4626
4627 case OP_REG_PAIR:
4628 {
4629 const struct mips_reg_pair_operand *pair_op;
4630
4631 pair_op = (const struct mips_reg_pair_operand *) operand;
4632 if (!(type_mask & (1 << pair_op->reg_type)))
4633 return 0;
4634 uval = insn_extract_operand (insn, operand);
4635 return (1 << pair_op->reg1_map[uval]) | (1 << pair_op->reg2_map[uval]);
4636 }
4637
4638 case OP_CLO_CLZ_DEST:
4639 if (!(type_mask & (1 << OP_REG_GP)))
4640 return 0;
4641 uval = insn_extract_operand (insn, operand);
4642 return (1 << (uval & 31)) | (1 << (uval >> 5));
4643
4644 case OP_SAME_RS_RT:
4645 if (!(type_mask & (1 << OP_REG_GP)))
4646 return 0;
4647 uval = insn_extract_operand (insn, operand);
4648 gas_assert ((uval & 31) == (uval >> 5));
4649 return 1 << (uval & 31);
4650
4651 case OP_CHECK_PREV:
4652 case OP_NON_ZERO_REG:
4653 if (!(type_mask & (1 << OP_REG_GP)))
4654 return 0;
4655 uval = insn_extract_operand (insn, operand);
4656 return 1 << (uval & 31);
4657
4658 case OP_LWM_SWM_LIST:
4659 abort ();
4660
4661 case OP_SAVE_RESTORE_LIST:
4662 abort ();
4663
4664 case OP_MDMX_IMM_REG:
4665 if (!(type_mask & (1 << OP_REG_VEC)))
4666 return 0;
4667 uval = insn_extract_operand (insn, operand);
4668 vsel = uval >> 5;
4669 if ((vsel & 0x18) == 0x18)
4670 return 0;
4671 return 1 << (uval & 31);
4672
4673 case OP_REG_INDEX:
4674 if (!(type_mask & (1 << OP_REG_GP)))
4675 return 0;
4676 return 1 << insn_extract_operand (insn, operand);
4677 }
4678 abort ();
4679 }
4680
4681 /* Return a mask of the registers specified by operands OPNO_MASK of INSN,
4682 where bit N of OPNO_MASK is set if operand N should be included.
4683 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4684 is set. */
4685
4686 static unsigned int
4687 insn_reg_mask (const struct mips_cl_insn *insn,
4688 unsigned int type_mask, unsigned int opno_mask)
4689 {
4690 unsigned int opno, reg_mask;
4691
4692 opno = 0;
4693 reg_mask = 0;
4694 while (opno_mask != 0)
4695 {
4696 if (opno_mask & 1)
4697 reg_mask |= operand_reg_mask (insn, insn_opno (insn, opno), type_mask);
4698 opno_mask >>= 1;
4699 opno += 1;
4700 }
4701 return reg_mask;
4702 }
4703
4704 /* Return the mask of core registers that IP reads. */
4705
4706 static unsigned int
4707 gpr_read_mask (const struct mips_cl_insn *ip)
4708 {
4709 unsigned long pinfo, pinfo2;
4710 unsigned int mask;
4711
4712 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_read_mask (ip->insn_mo));
4713 pinfo = ip->insn_mo->pinfo;
4714 pinfo2 = ip->insn_mo->pinfo2;
4715 if (pinfo & INSN_UDI)
4716 {
4717 /* UDI instructions have traditionally been assumed to read RS
4718 and RT. */
4719 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RT, *ip);
4720 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RS, *ip);
4721 }
4722 if (pinfo & INSN_READ_GPR_24)
4723 mask |= 1 << 24;
4724 if (pinfo2 & INSN2_READ_GPR_16)
4725 mask |= 1 << 16;
4726 if (pinfo2 & INSN2_READ_SP)
4727 mask |= 1 << SP;
4728 if (pinfo2 & INSN2_READ_GPR_31)
4729 mask |= 1 << 31;
4730 /* Don't include register 0. */
4731 return mask & ~1;
4732 }
4733
4734 /* Return the mask of core registers that IP writes. */
4735
4736 static unsigned int
4737 gpr_write_mask (const struct mips_cl_insn *ip)
4738 {
4739 unsigned long pinfo, pinfo2;
4740 unsigned int mask;
4741
4742 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_write_mask (ip->insn_mo));
4743 pinfo = ip->insn_mo->pinfo;
4744 pinfo2 = ip->insn_mo->pinfo2;
4745 if (pinfo & INSN_WRITE_GPR_24)
4746 mask |= 1 << 24;
4747 if (pinfo & INSN_WRITE_GPR_31)
4748 mask |= 1 << 31;
4749 if (pinfo & INSN_UDI)
4750 /* UDI instructions have traditionally been assumed to write to RD. */
4751 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RD, *ip);
4752 if (pinfo2 & INSN2_WRITE_SP)
4753 mask |= 1 << SP;
4754 /* Don't include register 0. */
4755 return mask & ~1;
4756 }
4757
4758 /* Return the mask of floating-point registers that IP reads. */
4759
4760 static unsigned int
4761 fpr_read_mask (const struct mips_cl_insn *ip)
4762 {
4763 unsigned long pinfo;
4764 unsigned int mask;
4765
4766 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4767 | (1 << OP_REG_MSA)),
4768 insn_read_mask (ip->insn_mo));
4769 pinfo = ip->insn_mo->pinfo;
4770 /* Conservatively treat all operands to an FP_D instruction are doubles.
4771 (This is overly pessimistic for things like cvt.d.s.) */
4772 if (FPR_SIZE != 64 && (pinfo & FP_D))
4773 mask |= mask << 1;
4774 return mask;
4775 }
4776
4777 /* Return the mask of floating-point registers that IP writes. */
4778
4779 static unsigned int
4780 fpr_write_mask (const struct mips_cl_insn *ip)
4781 {
4782 unsigned long pinfo;
4783 unsigned int mask;
4784
4785 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4786 | (1 << OP_REG_MSA)),
4787 insn_write_mask (ip->insn_mo));
4788 pinfo = ip->insn_mo->pinfo;
4789 /* Conservatively treat all operands to an FP_D instruction are doubles.
4790 (This is overly pessimistic for things like cvt.s.d.) */
4791 if (FPR_SIZE != 64 && (pinfo & FP_D))
4792 mask |= mask << 1;
4793 return mask;
4794 }
4795
4796 /* Operand OPNUM of INSN is an odd-numbered floating-point register.
4797 Check whether that is allowed. */
4798
4799 static bfd_boolean
4800 mips_oddfpreg_ok (const struct mips_opcode *insn, int opnum)
4801 {
4802 const char *s = insn->name;
4803 bfd_boolean oddspreg = (ISA_HAS_ODD_SINGLE_FPR (mips_opts.isa, mips_opts.arch)
4804 || FPR_SIZE == 64)
4805 && mips_opts.oddspreg;
4806
4807 if (insn->pinfo == INSN_MACRO)
4808 /* Let a macro pass, we'll catch it later when it is expanded. */
4809 return TRUE;
4810
4811 /* Single-precision coprocessor loads and moves are OK for 32-bit registers,
4812 otherwise it depends on oddspreg. */
4813 if ((insn->pinfo & FP_S)
4814 && (insn->pinfo & (INSN_LOAD_MEMORY | INSN_STORE_MEMORY
4815 | INSN_LOAD_COPROC | INSN_COPROC_MOVE)))
4816 return FPR_SIZE == 32 || oddspreg;
4817
4818 /* Allow odd registers for single-precision ops and double-precision if the
4819 floating-point registers are 64-bit wide. */
4820 switch (insn->pinfo & (FP_S | FP_D))
4821 {
4822 case FP_S:
4823 case 0:
4824 return oddspreg;
4825 case FP_D:
4826 return FPR_SIZE == 64;
4827 default:
4828 break;
4829 }
4830
4831 /* Cvt.w.x and cvt.x.w allow an odd register for a 'w' or 's' operand. */
4832 s = strchr (insn->name, '.');
4833 if (s != NULL && opnum == 2)
4834 s = strchr (s + 1, '.');
4835 if (s != NULL && (s[1] == 'w' || s[1] == 's'))
4836 return oddspreg;
4837
4838 return FPR_SIZE == 64;
4839 }
4840
4841 /* Information about an instruction argument that we're trying to match. */
4842 struct mips_arg_info
4843 {
4844 /* The instruction so far. */
4845 struct mips_cl_insn *insn;
4846
4847 /* The first unconsumed operand token. */
4848 struct mips_operand_token *token;
4849
4850 /* The 1-based operand number, in terms of insn->insn_mo->args. */
4851 int opnum;
4852
4853 /* The 1-based argument number, for error reporting. This does not
4854 count elided optional registers, etc.. */
4855 int argnum;
4856
4857 /* The last OP_REG operand seen, or ILLEGAL_REG if none. */
4858 unsigned int last_regno;
4859
4860 /* If the first operand was an OP_REG, this is the register that it
4861 specified, otherwise it is ILLEGAL_REG. */
4862 unsigned int dest_regno;
4863
4864 /* The value of the last OP_INT operand. Only used for OP_MSB,
4865 where it gives the lsb position. */
4866 unsigned int last_op_int;
4867
4868 /* If true, match routines should assume that no later instruction
4869 alternative matches and should therefore be as accommodating as
4870 possible. Match routines should not report errors if something
4871 is only invalid for !LAX_MATCH. */
4872 bfd_boolean lax_match;
4873
4874 /* True if a reference to the current AT register was seen. */
4875 bfd_boolean seen_at;
4876 };
4877
4878 /* Record that the argument is out of range. */
4879
4880 static void
4881 match_out_of_range (struct mips_arg_info *arg)
4882 {
4883 set_insn_error_i (arg->argnum, _("operand %d out of range"), arg->argnum);
4884 }
4885
4886 /* Record that the argument isn't constant but needs to be. */
4887
4888 static void
4889 match_not_constant (struct mips_arg_info *arg)
4890 {
4891 set_insn_error_i (arg->argnum, _("operand %d must be constant"),
4892 arg->argnum);
4893 }
4894
4895 /* Try to match an OT_CHAR token for character CH. Consume the token
4896 and return true on success, otherwise return false. */
4897
4898 static bfd_boolean
4899 match_char (struct mips_arg_info *arg, char ch)
4900 {
4901 if (arg->token->type == OT_CHAR && arg->token->u.ch == ch)
4902 {
4903 ++arg->token;
4904 if (ch == ',')
4905 arg->argnum += 1;
4906 return TRUE;
4907 }
4908 return FALSE;
4909 }
4910
4911 /* Try to get an expression from the next tokens in ARG. Consume the
4912 tokens and return true on success, storing the expression value in
4913 VALUE and relocation types in R. */
4914
4915 static bfd_boolean
4916 match_expression (struct mips_arg_info *arg, expressionS *value,
4917 bfd_reloc_code_real_type *r)
4918 {
4919 /* If the next token is a '(' that was parsed as being part of a base
4920 expression, assume we have an elided offset. The later match will fail
4921 if this turns out to be wrong. */
4922 if (arg->token->type == OT_CHAR && arg->token->u.ch == '(')
4923 {
4924 value->X_op = O_constant;
4925 value->X_add_number = 0;
4926 r[0] = r[1] = r[2] = BFD_RELOC_UNUSED;
4927 return TRUE;
4928 }
4929
4930 /* Reject register-based expressions such as "0+$2" and "(($2))".
4931 For plain registers the default error seems more appropriate. */
4932 if (arg->token->type == OT_INTEGER
4933 && arg->token->u.integer.value.X_op == O_register)
4934 {
4935 set_insn_error (arg->argnum, _("register value used as expression"));
4936 return FALSE;
4937 }
4938
4939 if (arg->token->type == OT_INTEGER)
4940 {
4941 *value = arg->token->u.integer.value;
4942 memcpy (r, arg->token->u.integer.relocs, 3 * sizeof (*r));
4943 ++arg->token;
4944 return TRUE;
4945 }
4946
4947 set_insn_error_i
4948 (arg->argnum, _("operand %d must be an immediate expression"),
4949 arg->argnum);
4950 return FALSE;
4951 }
4952
4953 /* Try to get a constant expression from the next tokens in ARG. Consume
4954 the tokens and return true on success, storing the constant value
4955 in *VALUE. */
4956
4957 static bfd_boolean
4958 match_const_int (struct mips_arg_info *arg, offsetT *value)
4959 {
4960 expressionS ex;
4961 bfd_reloc_code_real_type r[3];
4962
4963 if (!match_expression (arg, &ex, r))
4964 return FALSE;
4965
4966 if (r[0] == BFD_RELOC_UNUSED && ex.X_op == O_constant)
4967 *value = ex.X_add_number;
4968 else
4969 {
4970 if (r[0] == BFD_RELOC_UNUSED && ex.X_op == O_big)
4971 match_out_of_range (arg);
4972 else
4973 match_not_constant (arg);
4974 return FALSE;
4975 }
4976 return TRUE;
4977 }
4978
4979 /* Return the RTYPE_* flags for a register operand of type TYPE that
4980 appears in instruction OPCODE. */
4981
4982 static unsigned int
4983 convert_reg_type (const struct mips_opcode *opcode,
4984 enum mips_reg_operand_type type)
4985 {
4986 switch (type)
4987 {
4988 case OP_REG_GP:
4989 return RTYPE_NUM | RTYPE_GP;
4990
4991 case OP_REG_FP:
4992 /* Allow vector register names for MDMX if the instruction is a 64-bit
4993 FPR load, store or move (including moves to and from GPRs). */
4994 if ((mips_opts.ase & ASE_MDMX)
4995 && (opcode->pinfo & FP_D)
4996 && (opcode->pinfo & (INSN_COPROC_MOVE
4997 | INSN_COPROC_MEMORY_DELAY
4998 | INSN_LOAD_COPROC
4999 | INSN_LOAD_MEMORY
5000 | INSN_STORE_MEMORY)))
5001 return RTYPE_FPU | RTYPE_VEC;
5002 return RTYPE_FPU;
5003
5004 case OP_REG_CCC:
5005 if (opcode->pinfo & (FP_D | FP_S))
5006 return RTYPE_CCC | RTYPE_FCC;
5007 return RTYPE_CCC;
5008
5009 case OP_REG_VEC:
5010 if (opcode->membership & INSN_5400)
5011 return RTYPE_FPU;
5012 return RTYPE_FPU | RTYPE_VEC;
5013
5014 case OP_REG_ACC:
5015 return RTYPE_ACC;
5016
5017 case OP_REG_COPRO:
5018 if (opcode->name[strlen (opcode->name) - 1] == '0')
5019 return RTYPE_NUM | RTYPE_CP0;
5020 return RTYPE_NUM;
5021
5022 case OP_REG_HW:
5023 return RTYPE_NUM;
5024
5025 case OP_REG_VI:
5026 return RTYPE_NUM | RTYPE_VI;
5027
5028 case OP_REG_VF:
5029 return RTYPE_NUM | RTYPE_VF;
5030
5031 case OP_REG_R5900_I:
5032 return RTYPE_R5900_I;
5033
5034 case OP_REG_R5900_Q:
5035 return RTYPE_R5900_Q;
5036
5037 case OP_REG_R5900_R:
5038 return RTYPE_R5900_R;
5039
5040 case OP_REG_R5900_ACC:
5041 return RTYPE_R5900_ACC;
5042
5043 case OP_REG_MSA:
5044 return RTYPE_MSA;
5045
5046 case OP_REG_MSA_CTRL:
5047 return RTYPE_NUM;
5048 }
5049 abort ();
5050 }
5051
5052 /* ARG is register REGNO, of type TYPE. Warn about any dubious registers. */
5053
5054 static void
5055 check_regno (struct mips_arg_info *arg,
5056 enum mips_reg_operand_type type, unsigned int regno)
5057 {
5058 if (AT && type == OP_REG_GP && regno == AT)
5059 arg->seen_at = TRUE;
5060
5061 if (type == OP_REG_FP
5062 && (regno & 1) != 0
5063 && !mips_oddfpreg_ok (arg->insn->insn_mo, arg->opnum))
5064 {
5065 /* This was a warning prior to introducing O32 FPXX and FP64 support
5066 so maintain a warning for FP32 but raise an error for the new
5067 cases. */
5068 if (FPR_SIZE == 32)
5069 as_warn (_("float register should be even, was %d"), regno);
5070 else
5071 as_bad (_("float register should be even, was %d"), regno);
5072 }
5073
5074 if (type == OP_REG_CCC)
5075 {
5076 const char *name;
5077 size_t length;
5078
5079 name = arg->insn->insn_mo->name;
5080 length = strlen (name);
5081 if ((regno & 1) != 0
5082 && ((length >= 3 && strcmp (name + length - 3, ".ps") == 0)
5083 || (length >= 5 && strncmp (name + length - 5, "any2", 4) == 0)))
5084 as_warn (_("condition code register should be even for %s, was %d"),
5085 name, regno);
5086
5087 if ((regno & 3) != 0
5088 && (length >= 5 && strncmp (name + length - 5, "any4", 4) == 0))
5089 as_warn (_("condition code register should be 0 or 4 for %s, was %d"),
5090 name, regno);
5091 }
5092 }
5093
5094 /* ARG is a register with symbol value SYMVAL. Try to interpret it as
5095 a register of type TYPE. Return true on success, storing the register
5096 number in *REGNO and warning about any dubious uses. */
5097
5098 static bfd_boolean
5099 match_regno (struct mips_arg_info *arg, enum mips_reg_operand_type type,
5100 unsigned int symval, unsigned int *regno)
5101 {
5102 if (type == OP_REG_VEC)
5103 symval = mips_prefer_vec_regno (symval);
5104 if (!(symval & convert_reg_type (arg->insn->insn_mo, type)))
5105 return FALSE;
5106
5107 *regno = symval & RNUM_MASK;
5108 check_regno (arg, type, *regno);
5109 return TRUE;
5110 }
5111
5112 /* Try to interpret the next token in ARG as a register of type TYPE.
5113 Consume the token and return true on success, storing the register
5114 number in *REGNO. Return false on failure. */
5115
5116 static bfd_boolean
5117 match_reg (struct mips_arg_info *arg, enum mips_reg_operand_type type,
5118 unsigned int *regno)
5119 {
5120 if (arg->token->type == OT_REG
5121 && match_regno (arg, type, arg->token->u.regno, regno))
5122 {
5123 ++arg->token;
5124 return TRUE;
5125 }
5126 return FALSE;
5127 }
5128
5129 /* Try to interpret the next token in ARG as a range of registers of type TYPE.
5130 Consume the token and return true on success, storing the register numbers
5131 in *REGNO1 and *REGNO2. Return false on failure. */
5132
5133 static bfd_boolean
5134 match_reg_range (struct mips_arg_info *arg, enum mips_reg_operand_type type,
5135 unsigned int *regno1, unsigned int *regno2)
5136 {
5137 if (match_reg (arg, type, regno1))
5138 {
5139 *regno2 = *regno1;
5140 return TRUE;
5141 }
5142 if (arg->token->type == OT_REG_RANGE
5143 && match_regno (arg, type, arg->token->u.reg_range.regno1, regno1)
5144 && match_regno (arg, type, arg->token->u.reg_range.regno2, regno2)
5145 && *regno1 <= *regno2)
5146 {
5147 ++arg->token;
5148 return TRUE;
5149 }
5150 return FALSE;
5151 }
5152
5153 /* OP_INT matcher. */
5154
5155 static bfd_boolean
5156 match_int_operand (struct mips_arg_info *arg,
5157 const struct mips_operand *operand_base)
5158 {
5159 const struct mips_int_operand *operand;
5160 unsigned int uval;
5161 int min_val, max_val, factor;
5162 offsetT sval;
5163
5164 operand = (const struct mips_int_operand *) operand_base;
5165 factor = 1 << operand->shift;
5166 min_val = mips_int_operand_min (operand);
5167 max_val = mips_int_operand_max (operand);
5168
5169 if (operand_base->lsb == 0
5170 && operand_base->size == 16
5171 && operand->shift == 0
5172 && operand->bias == 0
5173 && (operand->max_val == 32767 || operand->max_val == 65535))
5174 {
5175 /* The operand can be relocated. */
5176 if (!match_expression (arg, &offset_expr, offset_reloc))
5177 return FALSE;
5178
5179 if (offset_expr.X_op == O_big)
5180 {
5181 match_out_of_range (arg);
5182 return FALSE;
5183 }
5184
5185 if (offset_reloc[0] != BFD_RELOC_UNUSED)
5186 /* Relocation operators were used. Accept the argument and
5187 leave the relocation value in offset_expr and offset_relocs
5188 for the caller to process. */
5189 return TRUE;
5190
5191 if (offset_expr.X_op != O_constant)
5192 {
5193 /* Accept non-constant operands if no later alternative matches,
5194 leaving it for the caller to process. */
5195 if (!arg->lax_match)
5196 {
5197 match_not_constant (arg);
5198 return FALSE;
5199 }
5200 offset_reloc[0] = BFD_RELOC_LO16;
5201 return TRUE;
5202 }
5203
5204 /* Clear the global state; we're going to install the operand
5205 ourselves. */
5206 sval = offset_expr.X_add_number;
5207 offset_expr.X_op = O_absent;
5208
5209 /* For compatibility with older assemblers, we accept
5210 0x8000-0xffff as signed 16-bit numbers when only
5211 signed numbers are allowed. */
5212 if (sval > max_val)
5213 {
5214 max_val = ((1 << operand_base->size) - 1) << operand->shift;
5215 if (!arg->lax_match && sval <= max_val)
5216 {
5217 match_out_of_range (arg);
5218 return FALSE;
5219 }
5220 }
5221 }
5222 else
5223 {
5224 if (!match_const_int (arg, &sval))
5225 return FALSE;
5226 }
5227
5228 arg->last_op_int = sval;
5229
5230 if (sval < min_val || sval > max_val || sval % factor)
5231 {
5232 match_out_of_range (arg);
5233 return FALSE;
5234 }
5235
5236 uval = (unsigned int) sval >> operand->shift;
5237 uval -= operand->bias;
5238
5239 /* Handle -mfix-cn63xxp1. */
5240 if (arg->opnum == 1
5241 && mips_fix_cn63xxp1
5242 && !mips_opts.micromips
5243 && strcmp ("pref", arg->insn->insn_mo->name) == 0)
5244 switch (uval)
5245 {
5246 case 5:
5247 case 25:
5248 case 26:
5249 case 27:
5250 case 28:
5251 case 29:
5252 case 30:
5253 case 31:
5254 /* These are ok. */
5255 break;
5256
5257 default:
5258 /* The rest must be changed to 28. */
5259 uval = 28;
5260 break;
5261 }
5262
5263 insn_insert_operand (arg->insn, operand_base, uval);
5264 return TRUE;
5265 }
5266
5267 /* OP_MAPPED_INT matcher. */
5268
5269 static bfd_boolean
5270 match_mapped_int_operand (struct mips_arg_info *arg,
5271 const struct mips_operand *operand_base)
5272 {
5273 const struct mips_mapped_int_operand *operand;
5274 unsigned int uval, num_vals;
5275 offsetT sval;
5276
5277 operand = (const struct mips_mapped_int_operand *) operand_base;
5278 if (!match_const_int (arg, &sval))
5279 return FALSE;
5280
5281 num_vals = 1 << operand_base->size;
5282 for (uval = 0; uval < num_vals; uval++)
5283 if (operand->int_map[uval] == sval)
5284 break;
5285 if (uval == num_vals)
5286 {
5287 match_out_of_range (arg);
5288 return FALSE;
5289 }
5290
5291 insn_insert_operand (arg->insn, operand_base, uval);
5292 return TRUE;
5293 }
5294
5295 /* OP_MSB matcher. */
5296
5297 static bfd_boolean
5298 match_msb_operand (struct mips_arg_info *arg,
5299 const struct mips_operand *operand_base)
5300 {
5301 const struct mips_msb_operand *operand;
5302 int min_val, max_val, max_high;
5303 offsetT size, sval, high;
5304
5305 operand = (const struct mips_msb_operand *) operand_base;
5306 min_val = operand->bias;
5307 max_val = min_val + (1 << operand_base->size) - 1;
5308 max_high = operand->opsize;
5309
5310 if (!match_const_int (arg, &size))
5311 return FALSE;
5312
5313 high = size + arg->last_op_int;
5314 sval = operand->add_lsb ? high : size;
5315
5316 if (size < 0 || high > max_high || sval < min_val || sval > max_val)
5317 {
5318 match_out_of_range (arg);
5319 return FALSE;
5320 }
5321 insn_insert_operand (arg->insn, operand_base, sval - min_val);
5322 return TRUE;
5323 }
5324
5325 /* OP_REG matcher. */
5326
5327 static bfd_boolean
5328 match_reg_operand (struct mips_arg_info *arg,
5329 const struct mips_operand *operand_base)
5330 {
5331 const struct mips_reg_operand *operand;
5332 unsigned int regno, uval, num_vals;
5333
5334 operand = (const struct mips_reg_operand *) operand_base;
5335 if (!match_reg (arg, operand->reg_type, &regno))
5336 return FALSE;
5337
5338 if (operand->reg_map)
5339 {
5340 num_vals = 1 << operand->root.size;
5341 for (uval = 0; uval < num_vals; uval++)
5342 if (operand->reg_map[uval] == regno)
5343 break;
5344 if (num_vals == uval)
5345 return FALSE;
5346 }
5347 else
5348 uval = regno;
5349
5350 arg->last_regno = regno;
5351 if (arg->opnum == 1)
5352 arg->dest_regno = regno;
5353 insn_insert_operand (arg->insn, operand_base, uval);
5354 return TRUE;
5355 }
5356
5357 /* OP_REG_PAIR matcher. */
5358
5359 static bfd_boolean
5360 match_reg_pair_operand (struct mips_arg_info *arg,
5361 const struct mips_operand *operand_base)
5362 {
5363 const struct mips_reg_pair_operand *operand;
5364 unsigned int regno1, regno2, uval, num_vals;
5365
5366 operand = (const struct mips_reg_pair_operand *) operand_base;
5367 if (!match_reg (arg, operand->reg_type, &regno1)
5368 || !match_char (arg, ',')
5369 || !match_reg (arg, operand->reg_type, &regno2))
5370 return FALSE;
5371
5372 num_vals = 1 << operand_base->size;
5373 for (uval = 0; uval < num_vals; uval++)
5374 if (operand->reg1_map[uval] == regno1 && operand->reg2_map[uval] == regno2)
5375 break;
5376 if (uval == num_vals)
5377 return FALSE;
5378
5379 insn_insert_operand (arg->insn, operand_base, uval);
5380 return TRUE;
5381 }
5382
5383 /* OP_PCREL matcher. The caller chooses the relocation type. */
5384
5385 static bfd_boolean
5386 match_pcrel_operand (struct mips_arg_info *arg)
5387 {
5388 bfd_reloc_code_real_type r[3];
5389
5390 return match_expression (arg, &offset_expr, r) && r[0] == BFD_RELOC_UNUSED;
5391 }
5392
5393 /* OP_PERF_REG matcher. */
5394
5395 static bfd_boolean
5396 match_perf_reg_operand (struct mips_arg_info *arg,
5397 const struct mips_operand *operand)
5398 {
5399 offsetT sval;
5400
5401 if (!match_const_int (arg, &sval))
5402 return FALSE;
5403
5404 if (sval != 0
5405 && (sval != 1
5406 || (mips_opts.arch == CPU_R5900
5407 && (strcmp (arg->insn->insn_mo->name, "mfps") == 0
5408 || strcmp (arg->insn->insn_mo->name, "mtps") == 0))))
5409 {
5410 set_insn_error (arg->argnum, _("invalid performance register"));
5411 return FALSE;
5412 }
5413
5414 insn_insert_operand (arg->insn, operand, sval);
5415 return TRUE;
5416 }
5417
5418 /* OP_ADDIUSP matcher. */
5419
5420 static bfd_boolean
5421 match_addiusp_operand (struct mips_arg_info *arg,
5422 const struct mips_operand *operand)
5423 {
5424 offsetT sval;
5425 unsigned int uval;
5426
5427 if (!match_const_int (arg, &sval))
5428 return FALSE;
5429
5430 if (sval % 4)
5431 {
5432 match_out_of_range (arg);
5433 return FALSE;
5434 }
5435
5436 sval /= 4;
5437 if (!(sval >= -258 && sval <= 257) || (sval >= -2 && sval <= 1))
5438 {
5439 match_out_of_range (arg);
5440 return FALSE;
5441 }
5442
5443 uval = (unsigned int) sval;
5444 uval = ((uval >> 1) & ~0xff) | (uval & 0xff);
5445 insn_insert_operand (arg->insn, operand, uval);
5446 return TRUE;
5447 }
5448
5449 /* OP_CLO_CLZ_DEST matcher. */
5450
5451 static bfd_boolean
5452 match_clo_clz_dest_operand (struct mips_arg_info *arg,
5453 const struct mips_operand *operand)
5454 {
5455 unsigned int regno;
5456
5457 if (!match_reg (arg, OP_REG_GP, &regno))
5458 return FALSE;
5459
5460 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
5461 return TRUE;
5462 }
5463
5464 /* OP_CHECK_PREV matcher. */
5465
5466 static bfd_boolean
5467 match_check_prev_operand (struct mips_arg_info *arg,
5468 const struct mips_operand *operand_base)
5469 {
5470 const struct mips_check_prev_operand *operand;
5471 unsigned int regno;
5472
5473 operand = (const struct mips_check_prev_operand *) operand_base;
5474
5475 if (!match_reg (arg, OP_REG_GP, &regno))
5476 return FALSE;
5477
5478 if (!operand->zero_ok && regno == 0)
5479 return FALSE;
5480
5481 if ((operand->less_than_ok && regno < arg->last_regno)
5482 || (operand->greater_than_ok && regno > arg->last_regno)
5483 || (operand->equal_ok && regno == arg->last_regno))
5484 {
5485 arg->last_regno = regno;
5486 insn_insert_operand (arg->insn, operand_base, regno);
5487 return TRUE;
5488 }
5489
5490 return FALSE;
5491 }
5492
5493 /* OP_SAME_RS_RT matcher. */
5494
5495 static bfd_boolean
5496 match_same_rs_rt_operand (struct mips_arg_info *arg,
5497 const struct mips_operand *operand)
5498 {
5499 unsigned int regno;
5500
5501 if (!match_reg (arg, OP_REG_GP, &regno))
5502 return FALSE;
5503
5504 if (regno == 0)
5505 {
5506 set_insn_error (arg->argnum, _("the source register must not be $0"));
5507 return FALSE;
5508 }
5509
5510 arg->last_regno = regno;
5511
5512 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
5513 return TRUE;
5514 }
5515
5516 /* OP_LWM_SWM_LIST matcher. */
5517
5518 static bfd_boolean
5519 match_lwm_swm_list_operand (struct mips_arg_info *arg,
5520 const struct mips_operand *operand)
5521 {
5522 unsigned int reglist, sregs, ra, regno1, regno2;
5523 struct mips_arg_info reset;
5524
5525 reglist = 0;
5526 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5527 return FALSE;
5528 do
5529 {
5530 if (regno2 == FP && regno1 >= S0 && regno1 <= S7)
5531 {
5532 reglist |= 1 << FP;
5533 regno2 = S7;
5534 }
5535 reglist |= ((1U << regno2 << 1) - 1) & -(1U << regno1);
5536 reset = *arg;
5537 }
5538 while (match_char (arg, ',')
5539 && match_reg_range (arg, OP_REG_GP, &regno1, &regno2));
5540 *arg = reset;
5541
5542 if (operand->size == 2)
5543 {
5544 /* The list must include both ra and s0-sN, for 0 <= N <= 3. E.g.:
5545
5546 s0, ra
5547 s0, s1, ra, s2, s3
5548 s0-s2, ra
5549
5550 and any permutations of these. */
5551 if ((reglist & 0xfff1ffff) != 0x80010000)
5552 return FALSE;
5553
5554 sregs = (reglist >> 17) & 7;
5555 ra = 0;
5556 }
5557 else
5558 {
5559 /* The list must include at least one of ra and s0-sN,
5560 for 0 <= N <= 8. (Note that there is a gap between s7 and s8,
5561 which are $23 and $30 respectively.) E.g.:
5562
5563 ra
5564 s0
5565 ra, s0, s1, s2
5566 s0-s8
5567 s0-s5, ra
5568
5569 and any permutations of these. */
5570 if ((reglist & 0x3f00ffff) != 0)
5571 return FALSE;
5572
5573 ra = (reglist >> 27) & 0x10;
5574 sregs = ((reglist >> 22) & 0x100) | ((reglist >> 16) & 0xff);
5575 }
5576 sregs += 1;
5577 if ((sregs & -sregs) != sregs)
5578 return FALSE;
5579
5580 insn_insert_operand (arg->insn, operand, (ffs (sregs) - 1) | ra);
5581 return TRUE;
5582 }
5583
5584 /* OP_ENTRY_EXIT_LIST matcher. */
5585
5586 static unsigned int
5587 match_entry_exit_operand (struct mips_arg_info *arg,
5588 const struct mips_operand *operand)
5589 {
5590 unsigned int mask;
5591 bfd_boolean is_exit;
5592
5593 /* The format is the same for both ENTRY and EXIT, but the constraints
5594 are different. */
5595 is_exit = strcmp (arg->insn->insn_mo->name, "exit") == 0;
5596 mask = (is_exit ? 7 << 3 : 0);
5597 do
5598 {
5599 unsigned int regno1, regno2;
5600 bfd_boolean is_freg;
5601
5602 if (match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5603 is_freg = FALSE;
5604 else if (match_reg_range (arg, OP_REG_FP, &regno1, &regno2))
5605 is_freg = TRUE;
5606 else
5607 return FALSE;
5608
5609 if (is_exit && is_freg && regno1 == 0 && regno2 < 2)
5610 {
5611 mask &= ~(7 << 3);
5612 mask |= (5 + regno2) << 3;
5613 }
5614 else if (!is_exit && regno1 == 4 && regno2 >= 4 && regno2 <= 7)
5615 mask |= (regno2 - 3) << 3;
5616 else if (regno1 == 16 && regno2 >= 16 && regno2 <= 17)
5617 mask |= (regno2 - 15) << 1;
5618 else if (regno1 == RA && regno2 == RA)
5619 mask |= 1;
5620 else
5621 return FALSE;
5622 }
5623 while (match_char (arg, ','));
5624
5625 insn_insert_operand (arg->insn, operand, mask);
5626 return TRUE;
5627 }
5628
5629 /* Encode regular MIPS SAVE/RESTORE instruction operands according to
5630 the argument register mask AMASK, the number of static registers
5631 saved NSREG, the $ra, $s0 and $s1 register specifiers RA, S0 and S1
5632 respectively, and the frame size FRAME_SIZE. */
5633
5634 static unsigned int
5635 mips_encode_save_restore (unsigned int amask, unsigned int nsreg,
5636 unsigned int ra, unsigned int s0, unsigned int s1,
5637 unsigned int frame_size)
5638 {
5639 return ((nsreg << 23) | ((frame_size & 0xf0) << 15) | (amask << 15)
5640 | (ra << 12) | (s0 << 11) | (s1 << 10) | ((frame_size & 0xf) << 6));
5641 }
5642
5643 /* Encode MIPS16 SAVE/RESTORE instruction operands according to the
5644 argument register mask AMASK, the number of static registers saved
5645 NSREG, the $ra, $s0 and $s1 register specifiers RA, S0 and S1
5646 respectively, and the frame size FRAME_SIZE. */
5647
5648 static unsigned int
5649 mips16_encode_save_restore (unsigned int amask, unsigned int nsreg,
5650 unsigned int ra, unsigned int s0, unsigned int s1,
5651 unsigned int frame_size)
5652 {
5653 unsigned int args;
5654
5655 args = (ra << 6) | (s0 << 5) | (s1 << 4) | (frame_size & 0xf);
5656 if (nsreg || amask || frame_size == 0 || frame_size > 16)
5657 args |= (MIPS16_EXTEND | (nsreg << 24) | (amask << 16)
5658 | ((frame_size & 0xf0) << 16));
5659 return args;
5660 }
5661
5662 /* OP_SAVE_RESTORE_LIST matcher. */
5663
5664 static bfd_boolean
5665 match_save_restore_list_operand (struct mips_arg_info *arg)
5666 {
5667 unsigned int opcode, args, statics, sregs;
5668 unsigned int num_frame_sizes, num_args, num_statics, num_sregs;
5669 unsigned int arg_mask, ra, s0, s1;
5670 offsetT frame_size;
5671
5672 opcode = arg->insn->insn_opcode;
5673 frame_size = 0;
5674 num_frame_sizes = 0;
5675 args = 0;
5676 statics = 0;
5677 sregs = 0;
5678 ra = 0;
5679 s0 = 0;
5680 s1 = 0;
5681 do
5682 {
5683 unsigned int regno1, regno2;
5684
5685 if (arg->token->type == OT_INTEGER)
5686 {
5687 /* Handle the frame size. */
5688 if (!match_const_int (arg, &frame_size))
5689 return FALSE;
5690 num_frame_sizes += 1;
5691 }
5692 else
5693 {
5694 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5695 return FALSE;
5696
5697 while (regno1 <= regno2)
5698 {
5699 if (regno1 >= 4 && regno1 <= 7)
5700 {
5701 if (num_frame_sizes == 0)
5702 /* args $a0-$a3 */
5703 args |= 1 << (regno1 - 4);
5704 else
5705 /* statics $a0-$a3 */
5706 statics |= 1 << (regno1 - 4);
5707 }
5708 else if (regno1 >= 16 && regno1 <= 23)
5709 /* $s0-$s7 */
5710 sregs |= 1 << (regno1 - 16);
5711 else if (regno1 == 30)
5712 /* $s8 */
5713 sregs |= 1 << 8;
5714 else if (regno1 == 31)
5715 /* Add $ra to insn. */
5716 ra = 1;
5717 else
5718 return FALSE;
5719 regno1 += 1;
5720 if (regno1 == 24)
5721 regno1 = 30;
5722 }
5723 }
5724 }
5725 while (match_char (arg, ','));
5726
5727 /* Encode args/statics combination. */
5728 if (args & statics)
5729 return FALSE;
5730 else if (args == 0xf)
5731 /* All $a0-$a3 are args. */
5732 arg_mask = MIPS_SVRS_ALL_ARGS;
5733 else if (statics == 0xf)
5734 /* All $a0-$a3 are statics. */
5735 arg_mask = MIPS_SVRS_ALL_STATICS;
5736 else
5737 {
5738 /* Count arg registers. */
5739 num_args = 0;
5740 while (args & 0x1)
5741 {
5742 args >>= 1;
5743 num_args += 1;
5744 }
5745 if (args != 0)
5746 return FALSE;
5747
5748 /* Count static registers. */
5749 num_statics = 0;
5750 while (statics & 0x8)
5751 {
5752 statics = (statics << 1) & 0xf;
5753 num_statics += 1;
5754 }
5755 if (statics != 0)
5756 return FALSE;
5757
5758 /* Encode args/statics. */
5759 arg_mask = (num_args << 2) | num_statics;
5760 }
5761
5762 /* Encode $s0/$s1. */
5763 if (sregs & (1 << 0)) /* $s0 */
5764 s0 = 1;
5765 if (sregs & (1 << 1)) /* $s1 */
5766 s1 = 1;
5767 sregs >>= 2;
5768
5769 /* Encode $s2-$s8. */
5770 num_sregs = 0;
5771 while (sregs & 1)
5772 {
5773 sregs >>= 1;
5774 num_sregs += 1;
5775 }
5776 if (sregs != 0)
5777 return FALSE;
5778
5779 /* Encode frame size. */
5780 if (num_frame_sizes == 0)
5781 {
5782 set_insn_error (arg->argnum, _("missing frame size"));
5783 return FALSE;
5784 }
5785 if (num_frame_sizes > 1)
5786 {
5787 set_insn_error (arg->argnum, _("frame size specified twice"));
5788 return FALSE;
5789 }
5790 if ((frame_size & 7) != 0 || frame_size < 0 || frame_size > 0xff * 8)
5791 {
5792 set_insn_error (arg->argnum, _("invalid frame size"));
5793 return FALSE;
5794 }
5795 frame_size /= 8;
5796
5797 /* Finally build the instruction. */
5798 if (mips_opts.mips16)
5799 opcode |= mips16_encode_save_restore (arg_mask, num_sregs, ra, s0, s1,
5800 frame_size);
5801 else if (!mips_opts.micromips)
5802 opcode |= mips_encode_save_restore (arg_mask, num_sregs, ra, s0, s1,
5803 frame_size);
5804 else
5805 abort ();
5806
5807 arg->insn->insn_opcode = opcode;
5808 return TRUE;
5809 }
5810
5811 /* OP_MDMX_IMM_REG matcher. */
5812
5813 static bfd_boolean
5814 match_mdmx_imm_reg_operand (struct mips_arg_info *arg,
5815 const struct mips_operand *operand)
5816 {
5817 unsigned int regno, uval;
5818 bfd_boolean is_qh;
5819 const struct mips_opcode *opcode;
5820
5821 /* The mips_opcode records whether this is an octobyte or quadhalf
5822 instruction. Start out with that bit in place. */
5823 opcode = arg->insn->insn_mo;
5824 uval = mips_extract_operand (operand, opcode->match);
5825 is_qh = (uval != 0);
5826
5827 if (arg->token->type == OT_REG)
5828 {
5829 if ((opcode->membership & INSN_5400)
5830 && strcmp (opcode->name, "rzu.ob") == 0)
5831 {
5832 set_insn_error_i (arg->argnum, _("operand %d must be an immediate"),
5833 arg->argnum);
5834 return FALSE;
5835 }
5836
5837 if (!match_regno (arg, OP_REG_VEC, arg->token->u.regno, &regno))
5838 return FALSE;
5839 ++arg->token;
5840
5841 /* Check whether this is a vector register or a broadcast of
5842 a single element. */
5843 if (arg->token->type == OT_INTEGER_INDEX)
5844 {
5845 if (arg->token->u.index > (is_qh ? 3 : 7))
5846 {
5847 set_insn_error (arg->argnum, _("invalid element selector"));
5848 return FALSE;
5849 }
5850 uval |= arg->token->u.index << (is_qh ? 2 : 1) << 5;
5851 ++arg->token;
5852 }
5853 else
5854 {
5855 /* A full vector. */
5856 if ((opcode->membership & INSN_5400)
5857 && (strcmp (opcode->name, "sll.ob") == 0
5858 || strcmp (opcode->name, "srl.ob") == 0))
5859 {
5860 set_insn_error_i (arg->argnum, _("operand %d must be scalar"),
5861 arg->argnum);
5862 return FALSE;
5863 }
5864
5865 if (is_qh)
5866 uval |= MDMX_FMTSEL_VEC_QH << 5;
5867 else
5868 uval |= MDMX_FMTSEL_VEC_OB << 5;
5869 }
5870 uval |= regno;
5871 }
5872 else
5873 {
5874 offsetT sval;
5875
5876 if (!match_const_int (arg, &sval))
5877 return FALSE;
5878 if (sval < 0 || sval > 31)
5879 {
5880 match_out_of_range (arg);
5881 return FALSE;
5882 }
5883 uval |= (sval & 31);
5884 if (is_qh)
5885 uval |= MDMX_FMTSEL_IMM_QH << 5;
5886 else
5887 uval |= MDMX_FMTSEL_IMM_OB << 5;
5888 }
5889 insn_insert_operand (arg->insn, operand, uval);
5890 return TRUE;
5891 }
5892
5893 /* OP_IMM_INDEX matcher. */
5894
5895 static bfd_boolean
5896 match_imm_index_operand (struct mips_arg_info *arg,
5897 const struct mips_operand *operand)
5898 {
5899 unsigned int max_val;
5900
5901 if (arg->token->type != OT_INTEGER_INDEX)
5902 return FALSE;
5903
5904 max_val = (1 << operand->size) - 1;
5905 if (arg->token->u.index > max_val)
5906 {
5907 match_out_of_range (arg);
5908 return FALSE;
5909 }
5910 insn_insert_operand (arg->insn, operand, arg->token->u.index);
5911 ++arg->token;
5912 return TRUE;
5913 }
5914
5915 /* OP_REG_INDEX matcher. */
5916
5917 static bfd_boolean
5918 match_reg_index_operand (struct mips_arg_info *arg,
5919 const struct mips_operand *operand)
5920 {
5921 unsigned int regno;
5922
5923 if (arg->token->type != OT_REG_INDEX)
5924 return FALSE;
5925
5926 if (!match_regno (arg, OP_REG_GP, arg->token->u.regno, &regno))
5927 return FALSE;
5928
5929 insn_insert_operand (arg->insn, operand, regno);
5930 ++arg->token;
5931 return TRUE;
5932 }
5933
5934 /* OP_PC matcher. */
5935
5936 static bfd_boolean
5937 match_pc_operand (struct mips_arg_info *arg)
5938 {
5939 if (arg->token->type == OT_REG && (arg->token->u.regno & RTYPE_PC))
5940 {
5941 ++arg->token;
5942 return TRUE;
5943 }
5944 return FALSE;
5945 }
5946
5947 /* OP_REG28 matcher. */
5948
5949 static bfd_boolean
5950 match_reg28_operand (struct mips_arg_info *arg)
5951 {
5952 unsigned int regno;
5953
5954 if (arg->token->type == OT_REG
5955 && match_regno (arg, OP_REG_GP, arg->token->u.regno, &regno)
5956 && regno == GP)
5957 {
5958 ++arg->token;
5959 return TRUE;
5960 }
5961 return FALSE;
5962 }
5963
5964 /* OP_NON_ZERO_REG matcher. */
5965
5966 static bfd_boolean
5967 match_non_zero_reg_operand (struct mips_arg_info *arg,
5968 const struct mips_operand *operand)
5969 {
5970 unsigned int regno;
5971
5972 if (!match_reg (arg, OP_REG_GP, &regno))
5973 return FALSE;
5974
5975 if (regno == 0)
5976 return FALSE;
5977
5978 arg->last_regno = regno;
5979 insn_insert_operand (arg->insn, operand, regno);
5980 return TRUE;
5981 }
5982
5983 /* OP_REPEAT_DEST_REG and OP_REPEAT_PREV_REG matcher. OTHER_REGNO is the
5984 register that we need to match. */
5985
5986 static bfd_boolean
5987 match_tied_reg_operand (struct mips_arg_info *arg, unsigned int other_regno)
5988 {
5989 unsigned int regno;
5990
5991 return match_reg (arg, OP_REG_GP, &regno) && regno == other_regno;
5992 }
5993
5994 /* Try to match a floating-point constant from ARG for LI.S or LI.D.
5995 LENGTH is the length of the value in bytes (4 for float, 8 for double)
5996 and USING_GPRS says whether the destination is a GPR rather than an FPR.
5997
5998 Return the constant in IMM and OFFSET as follows:
5999
6000 - If the constant should be loaded via memory, set IMM to O_absent and
6001 OFFSET to the memory address.
6002
6003 - Otherwise, if the constant should be loaded into two 32-bit registers,
6004 set IMM to the O_constant to load into the high register and OFFSET
6005 to the corresponding value for the low register.
6006
6007 - Otherwise, set IMM to the full O_constant and set OFFSET to O_absent.
6008
6009 These constants only appear as the last operand in an instruction,
6010 and every instruction that accepts them in any variant accepts them
6011 in all variants. This means we don't have to worry about backing out
6012 any changes if the instruction does not match. We just match
6013 unconditionally and report an error if the constant is invalid. */
6014
6015 static bfd_boolean
6016 match_float_constant (struct mips_arg_info *arg, expressionS *imm,
6017 expressionS *offset, int length, bfd_boolean using_gprs)
6018 {
6019 char *p;
6020 segT seg, new_seg;
6021 subsegT subseg;
6022 const char *newname;
6023 unsigned char *data;
6024
6025 /* Where the constant is placed is based on how the MIPS assembler
6026 does things:
6027
6028 length == 4 && using_gprs -- immediate value only
6029 length == 8 && using_gprs -- .rdata or immediate value
6030 length == 4 && !using_gprs -- .lit4 or immediate value
6031 length == 8 && !using_gprs -- .lit8 or immediate value
6032
6033 The .lit4 and .lit8 sections are only used if permitted by the
6034 -G argument. */
6035 if (arg->token->type != OT_FLOAT)
6036 {
6037 set_insn_error (arg->argnum, _("floating-point expression required"));
6038 return FALSE;
6039 }
6040
6041 gas_assert (arg->token->u.flt.length == length);
6042 data = arg->token->u.flt.data;
6043 ++arg->token;
6044
6045 /* Handle 32-bit constants for which an immediate value is best. */
6046 if (length == 4
6047 && (using_gprs
6048 || g_switch_value < 4
6049 || (data[0] == 0 && data[1] == 0)
6050 || (data[2] == 0 && data[3] == 0)))
6051 {
6052 imm->X_op = O_constant;
6053 if (!target_big_endian)
6054 imm->X_add_number = bfd_getl32 (data);
6055 else
6056 imm->X_add_number = bfd_getb32 (data);
6057 offset->X_op = O_absent;
6058 return TRUE;
6059 }
6060
6061 /* Handle 64-bit constants for which an immediate value is best. */
6062 if (length == 8
6063 && !mips_disable_float_construction
6064 /* Constants can only be constructed in GPRs and copied to FPRs if the
6065 GPRs are at least as wide as the FPRs or MTHC1 is available.
6066 Unlike most tests for 32-bit floating-point registers this check
6067 specifically looks for GPR_SIZE == 32 as the FPXX ABI does not
6068 permit 64-bit moves without MXHC1.
6069 Force the constant into memory otherwise. */
6070 && (using_gprs
6071 || GPR_SIZE == 64
6072 || ISA_HAS_MXHC1 (mips_opts.isa)
6073 || FPR_SIZE == 32)
6074 && ((data[0] == 0 && data[1] == 0)
6075 || (data[2] == 0 && data[3] == 0))
6076 && ((data[4] == 0 && data[5] == 0)
6077 || (data[6] == 0 && data[7] == 0)))
6078 {
6079 /* The value is simple enough to load with a couple of instructions.
6080 If using 32-bit registers, set IMM to the high order 32 bits and
6081 OFFSET to the low order 32 bits. Otherwise, set IMM to the entire
6082 64 bit constant. */
6083 if (GPR_SIZE == 32 || (!using_gprs && FPR_SIZE != 64))
6084 {
6085 imm->X_op = O_constant;
6086 offset->X_op = O_constant;
6087 if (!target_big_endian)
6088 {
6089 imm->X_add_number = bfd_getl32 (data + 4);
6090 offset->X_add_number = bfd_getl32 (data);
6091 }
6092 else
6093 {
6094 imm->X_add_number = bfd_getb32 (data);
6095 offset->X_add_number = bfd_getb32 (data + 4);
6096 }
6097 if (offset->X_add_number == 0)
6098 offset->X_op = O_absent;
6099 }
6100 else
6101 {
6102 imm->X_op = O_constant;
6103 if (!target_big_endian)
6104 imm->X_add_number = bfd_getl64 (data);
6105 else
6106 imm->X_add_number = bfd_getb64 (data);
6107 offset->X_op = O_absent;
6108 }
6109 return TRUE;
6110 }
6111
6112 /* Switch to the right section. */
6113 seg = now_seg;
6114 subseg = now_subseg;
6115 if (length == 4)
6116 {
6117 gas_assert (!using_gprs && g_switch_value >= 4);
6118 newname = ".lit4";
6119 }
6120 else
6121 {
6122 if (using_gprs || g_switch_value < 8)
6123 newname = RDATA_SECTION_NAME;
6124 else
6125 newname = ".lit8";
6126 }
6127
6128 new_seg = subseg_new (newname, (subsegT) 0);
6129 bfd_set_section_flags (stdoutput, new_seg,
6130 SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_DATA);
6131 frag_align (length == 4 ? 2 : 3, 0, 0);
6132 if (strncmp (TARGET_OS, "elf", 3) != 0)
6133 record_alignment (new_seg, 4);
6134 else
6135 record_alignment (new_seg, length == 4 ? 2 : 3);
6136 if (seg == now_seg)
6137 as_bad (_("cannot use `%s' in this section"), arg->insn->insn_mo->name);
6138
6139 /* Set the argument to the current address in the section. */
6140 imm->X_op = O_absent;
6141 offset->X_op = O_symbol;
6142 offset->X_add_symbol = symbol_temp_new_now ();
6143 offset->X_add_number = 0;
6144
6145 /* Put the floating point number into the section. */
6146 p = frag_more (length);
6147 memcpy (p, data, length);
6148
6149 /* Switch back to the original section. */
6150 subseg_set (seg, subseg);
6151 return TRUE;
6152 }
6153
6154 /* OP_VU0_SUFFIX and OP_VU0_MATCH_SUFFIX matcher; MATCH_P selects between
6155 them. */
6156
6157 static bfd_boolean
6158 match_vu0_suffix_operand (struct mips_arg_info *arg,
6159 const struct mips_operand *operand,
6160 bfd_boolean match_p)
6161 {
6162 unsigned int uval;
6163
6164 /* The operand can be an XYZW mask or a single 2-bit channel index
6165 (with X being 0). */
6166 gas_assert (operand->size == 2 || operand->size == 4);
6167
6168 /* The suffix can be omitted when it is already part of the opcode. */
6169 if (arg->token->type != OT_CHANNELS)
6170 return match_p;
6171
6172 uval = arg->token->u.channels;
6173 if (operand->size == 2)
6174 {
6175 /* Check that a single bit is set and convert it into a 2-bit index. */
6176 if ((uval & -uval) != uval)
6177 return FALSE;
6178 uval = 4 - ffs (uval);
6179 }
6180
6181 if (match_p && insn_extract_operand (arg->insn, operand) != uval)
6182 return FALSE;
6183
6184 ++arg->token;
6185 if (!match_p)
6186 insn_insert_operand (arg->insn, operand, uval);
6187 return TRUE;
6188 }
6189
6190 /* Try to match a token from ARG against OPERAND. Consume the token
6191 and return true on success, otherwise return false. */
6192
6193 static bfd_boolean
6194 match_operand (struct mips_arg_info *arg,
6195 const struct mips_operand *operand)
6196 {
6197 switch (operand->type)
6198 {
6199 case OP_INT:
6200 return match_int_operand (arg, operand);
6201
6202 case OP_MAPPED_INT:
6203 return match_mapped_int_operand (arg, operand);
6204
6205 case OP_MSB:
6206 return match_msb_operand (arg, operand);
6207
6208 case OP_REG:
6209 case OP_OPTIONAL_REG:
6210 return match_reg_operand (arg, operand);
6211
6212 case OP_REG_PAIR:
6213 return match_reg_pair_operand (arg, operand);
6214
6215 case OP_PCREL:
6216 return match_pcrel_operand (arg);
6217
6218 case OP_PERF_REG:
6219 return match_perf_reg_operand (arg, operand);
6220
6221 case OP_ADDIUSP_INT:
6222 return match_addiusp_operand (arg, operand);
6223
6224 case OP_CLO_CLZ_DEST:
6225 return match_clo_clz_dest_operand (arg, operand);
6226
6227 case OP_LWM_SWM_LIST:
6228 return match_lwm_swm_list_operand (arg, operand);
6229
6230 case OP_ENTRY_EXIT_LIST:
6231 return match_entry_exit_operand (arg, operand);
6232
6233 case OP_SAVE_RESTORE_LIST:
6234 return match_save_restore_list_operand (arg);
6235
6236 case OP_MDMX_IMM_REG:
6237 return match_mdmx_imm_reg_operand (arg, operand);
6238
6239 case OP_REPEAT_DEST_REG:
6240 return match_tied_reg_operand (arg, arg->dest_regno);
6241
6242 case OP_REPEAT_PREV_REG:
6243 return match_tied_reg_operand (arg, arg->last_regno);
6244
6245 case OP_PC:
6246 return match_pc_operand (arg);
6247
6248 case OP_REG28:
6249 return match_reg28_operand (arg);
6250
6251 case OP_VU0_SUFFIX:
6252 return match_vu0_suffix_operand (arg, operand, FALSE);
6253
6254 case OP_VU0_MATCH_SUFFIX:
6255 return match_vu0_suffix_operand (arg, operand, TRUE);
6256
6257 case OP_IMM_INDEX:
6258 return match_imm_index_operand (arg, operand);
6259
6260 case OP_REG_INDEX:
6261 return match_reg_index_operand (arg, operand);
6262
6263 case OP_SAME_RS_RT:
6264 return match_same_rs_rt_operand (arg, operand);
6265
6266 case OP_CHECK_PREV:
6267 return match_check_prev_operand (arg, operand);
6268
6269 case OP_NON_ZERO_REG:
6270 return match_non_zero_reg_operand (arg, operand);
6271 }
6272 abort ();
6273 }
6274
6275 /* ARG is the state after successfully matching an instruction.
6276 Issue any queued-up warnings. */
6277
6278 static void
6279 check_completed_insn (struct mips_arg_info *arg)
6280 {
6281 if (arg->seen_at)
6282 {
6283 if (AT == ATREG)
6284 as_warn (_("used $at without \".set noat\""));
6285 else
6286 as_warn (_("used $%u with \".set at=$%u\""), AT, AT);
6287 }
6288 }
6289
6290 /* Return true if modifying general-purpose register REG needs a delay. */
6291
6292 static bfd_boolean
6293 reg_needs_delay (unsigned int reg)
6294 {
6295 unsigned long prev_pinfo;
6296
6297 prev_pinfo = history[0].insn_mo->pinfo;
6298 if (!mips_opts.noreorder
6299 && (((prev_pinfo & INSN_LOAD_MEMORY) && !gpr_interlocks)
6300 || ((prev_pinfo & INSN_LOAD_COPROC) && !cop_interlocks))
6301 && (gpr_write_mask (&history[0]) & (1 << reg)))
6302 return TRUE;
6303
6304 return FALSE;
6305 }
6306
6307 /* Classify an instruction according to the FIX_VR4120_* enumeration.
6308 Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected
6309 by VR4120 errata. */
6310
6311 static unsigned int
6312 classify_vr4120_insn (const char *name)
6313 {
6314 if (strncmp (name, "macc", 4) == 0)
6315 return FIX_VR4120_MACC;
6316 if (strncmp (name, "dmacc", 5) == 0)
6317 return FIX_VR4120_DMACC;
6318 if (strncmp (name, "mult", 4) == 0)
6319 return FIX_VR4120_MULT;
6320 if (strncmp (name, "dmult", 5) == 0)
6321 return FIX_VR4120_DMULT;
6322 if (strstr (name, "div"))
6323 return FIX_VR4120_DIV;
6324 if (strcmp (name, "mtlo") == 0 || strcmp (name, "mthi") == 0)
6325 return FIX_VR4120_MTHILO;
6326 return NUM_FIX_VR4120_CLASSES;
6327 }
6328
6329 #define INSN_ERET 0x42000018
6330 #define INSN_DERET 0x4200001f
6331 #define INSN_DMULT 0x1c
6332 #define INSN_DMULTU 0x1d
6333
6334 /* Return the number of instructions that must separate INSN1 and INSN2,
6335 where INSN1 is the earlier instruction. Return the worst-case value
6336 for any INSN2 if INSN2 is null. */
6337
6338 static unsigned int
6339 insns_between (const struct mips_cl_insn *insn1,
6340 const struct mips_cl_insn *insn2)
6341 {
6342 unsigned long pinfo1, pinfo2;
6343 unsigned int mask;
6344
6345 /* If INFO2 is null, pessimistically assume that all flags are set for
6346 the second instruction. */
6347 pinfo1 = insn1->insn_mo->pinfo;
6348 pinfo2 = insn2 ? insn2->insn_mo->pinfo : ~0U;
6349
6350 /* For most targets, write-after-read dependencies on the HI and LO
6351 registers must be separated by at least two instructions. */
6352 if (!hilo_interlocks)
6353 {
6354 if ((pinfo1 & INSN_READ_LO) && (pinfo2 & INSN_WRITE_LO))
6355 return 2;
6356 if ((pinfo1 & INSN_READ_HI) && (pinfo2 & INSN_WRITE_HI))
6357 return 2;
6358 }
6359
6360 /* If we're working around r7000 errata, there must be two instructions
6361 between an mfhi or mflo and any instruction that uses the result. */
6362 if (mips_7000_hilo_fix
6363 && !mips_opts.micromips
6364 && MF_HILO_INSN (pinfo1)
6365 && (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1))))
6366 return 2;
6367
6368 /* If we're working around 24K errata, one instruction is required
6369 if an ERET or DERET is followed by a branch instruction. */
6370 if (mips_fix_24k && !mips_opts.micromips)
6371 {
6372 if (insn1->insn_opcode == INSN_ERET
6373 || insn1->insn_opcode == INSN_DERET)
6374 {
6375 if (insn2 == NULL
6376 || insn2->insn_opcode == INSN_ERET
6377 || insn2->insn_opcode == INSN_DERET
6378 || delayed_branch_p (insn2))
6379 return 1;
6380 }
6381 }
6382
6383 /* If we're working around PMC RM7000 errata, there must be three
6384 nops between a dmult and a load instruction. */
6385 if (mips_fix_rm7000 && !mips_opts.micromips)
6386 {
6387 if ((insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULT
6388 || (insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULTU)
6389 {
6390 if (pinfo2 & INSN_LOAD_MEMORY)
6391 return 3;
6392 }
6393 }
6394
6395 /* If working around VR4120 errata, check for combinations that need
6396 a single intervening instruction. */
6397 if (mips_fix_vr4120 && !mips_opts.micromips)
6398 {
6399 unsigned int class1, class2;
6400
6401 class1 = classify_vr4120_insn (insn1->insn_mo->name);
6402 if (class1 != NUM_FIX_VR4120_CLASSES && vr4120_conflicts[class1] != 0)
6403 {
6404 if (insn2 == NULL)
6405 return 1;
6406 class2 = classify_vr4120_insn (insn2->insn_mo->name);
6407 if (vr4120_conflicts[class1] & (1 << class2))
6408 return 1;
6409 }
6410 }
6411
6412 if (!HAVE_CODE_COMPRESSION)
6413 {
6414 /* Check for GPR or coprocessor load delays. All such delays
6415 are on the RT register. */
6416 /* Itbl support may require additional care here. */
6417 if ((!gpr_interlocks && (pinfo1 & INSN_LOAD_MEMORY))
6418 || (!cop_interlocks && (pinfo1 & INSN_LOAD_COPROC)))
6419 {
6420 if (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1)))
6421 return 1;
6422 }
6423
6424 /* Check for generic coprocessor hazards.
6425
6426 This case is not handled very well. There is no special
6427 knowledge of CP0 handling, and the coprocessors other than
6428 the floating point unit are not distinguished at all. */
6429 /* Itbl support may require additional care here. FIXME!
6430 Need to modify this to include knowledge about
6431 user specified delays! */
6432 else if ((!cop_interlocks && (pinfo1 & INSN_COPROC_MOVE))
6433 || (!cop_mem_interlocks && (pinfo1 & INSN_COPROC_MEMORY_DELAY)))
6434 {
6435 /* Handle cases where INSN1 writes to a known general coprocessor
6436 register. There must be a one instruction delay before INSN2
6437 if INSN2 reads that register, otherwise no delay is needed. */
6438 mask = fpr_write_mask (insn1);
6439 if (mask != 0)
6440 {
6441 if (!insn2 || (mask & fpr_read_mask (insn2)) != 0)
6442 return 1;
6443 }
6444 else
6445 {
6446 /* Read-after-write dependencies on the control registers
6447 require a two-instruction gap. */
6448 if ((pinfo1 & INSN_WRITE_COND_CODE)
6449 && (pinfo2 & INSN_READ_COND_CODE))
6450 return 2;
6451
6452 /* We don't know exactly what INSN1 does. If INSN2 is
6453 also a coprocessor instruction, assume there must be
6454 a one instruction gap. */
6455 if (pinfo2 & INSN_COP)
6456 return 1;
6457 }
6458 }
6459
6460 /* Check for read-after-write dependencies on the coprocessor
6461 control registers in cases where INSN1 does not need a general
6462 coprocessor delay. This means that INSN1 is a floating point
6463 comparison instruction. */
6464 /* Itbl support may require additional care here. */
6465 else if (!cop_interlocks
6466 && (pinfo1 & INSN_WRITE_COND_CODE)
6467 && (pinfo2 & INSN_READ_COND_CODE))
6468 return 1;
6469 }
6470
6471 /* Forbidden slots can not contain Control Transfer Instructions (CTIs)
6472 CTIs include all branches and jumps, nal, eret, eretnc, deret, wait
6473 and pause. */
6474 if ((insn1->insn_mo->pinfo2 & INSN2_FORBIDDEN_SLOT)
6475 && ((pinfo2 & INSN_NO_DELAY_SLOT)
6476 || (insn2 && delayed_branch_p (insn2))))
6477 return 1;
6478
6479 return 0;
6480 }
6481
6482 /* Return the number of nops that would be needed to work around the
6483 VR4130 mflo/mfhi errata if instruction INSN immediately followed
6484 the MAX_VR4130_NOPS instructions described by HIST. Ignore hazards
6485 that are contained within the first IGNORE instructions of HIST. */
6486
6487 static int
6488 nops_for_vr4130 (int ignore, const struct mips_cl_insn *hist,
6489 const struct mips_cl_insn *insn)
6490 {
6491 int i, j;
6492 unsigned int mask;
6493
6494 /* Check if the instruction writes to HI or LO. MTHI and MTLO
6495 are not affected by the errata. */
6496 if (insn != 0
6497 && ((insn->insn_mo->pinfo & (INSN_WRITE_HI | INSN_WRITE_LO)) == 0
6498 || strcmp (insn->insn_mo->name, "mtlo") == 0
6499 || strcmp (insn->insn_mo->name, "mthi") == 0))
6500 return 0;
6501
6502 /* Search for the first MFLO or MFHI. */
6503 for (i = 0; i < MAX_VR4130_NOPS; i++)
6504 if (MF_HILO_INSN (hist[i].insn_mo->pinfo))
6505 {
6506 /* Extract the destination register. */
6507 mask = gpr_write_mask (&hist[i]);
6508
6509 /* No nops are needed if INSN reads that register. */
6510 if (insn != NULL && (gpr_read_mask (insn) & mask) != 0)
6511 return 0;
6512
6513 /* ...or if any of the intervening instructions do. */
6514 for (j = 0; j < i; j++)
6515 if (gpr_read_mask (&hist[j]) & mask)
6516 return 0;
6517
6518 if (i >= ignore)
6519 return MAX_VR4130_NOPS - i;
6520 }
6521 return 0;
6522 }
6523
6524 #define BASE_REG_EQ(INSN1, INSN2) \
6525 ((((INSN1) >> OP_SH_RS) & OP_MASK_RS) \
6526 == (((INSN2) >> OP_SH_RS) & OP_MASK_RS))
6527
6528 /* Return the minimum alignment for this store instruction. */
6529
6530 static int
6531 fix_24k_align_to (const struct mips_opcode *mo)
6532 {
6533 if (strcmp (mo->name, "sh") == 0)
6534 return 2;
6535
6536 if (strcmp (mo->name, "swc1") == 0
6537 || strcmp (mo->name, "swc2") == 0
6538 || strcmp (mo->name, "sw") == 0
6539 || strcmp (mo->name, "sc") == 0
6540 || strcmp (mo->name, "s.s") == 0)
6541 return 4;
6542
6543 if (strcmp (mo->name, "sdc1") == 0
6544 || strcmp (mo->name, "sdc2") == 0
6545 || strcmp (mo->name, "s.d") == 0)
6546 return 8;
6547
6548 /* sb, swl, swr */
6549 return 1;
6550 }
6551
6552 struct fix_24k_store_info
6553 {
6554 /* Immediate offset, if any, for this store instruction. */
6555 short off;
6556 /* Alignment required by this store instruction. */
6557 int align_to;
6558 /* True for register offsets. */
6559 int register_offset;
6560 };
6561
6562 /* Comparison function used by qsort. */
6563
6564 static int
6565 fix_24k_sort (const void *a, const void *b)
6566 {
6567 const struct fix_24k_store_info *pos1 = a;
6568 const struct fix_24k_store_info *pos2 = b;
6569
6570 return (pos1->off - pos2->off);
6571 }
6572
6573 /* INSN is a store instruction. Try to record the store information
6574 in STINFO. Return false if the information isn't known. */
6575
6576 static bfd_boolean
6577 fix_24k_record_store_info (struct fix_24k_store_info *stinfo,
6578 const struct mips_cl_insn *insn)
6579 {
6580 /* The instruction must have a known offset. */
6581 if (!insn->complete_p || !strstr (insn->insn_mo->args, "o("))
6582 return FALSE;
6583
6584 stinfo->off = (insn->insn_opcode >> OP_SH_IMMEDIATE) & OP_MASK_IMMEDIATE;
6585 stinfo->align_to = fix_24k_align_to (insn->insn_mo);
6586 return TRUE;
6587 }
6588
6589 /* Return the number of nops that would be needed to work around the 24k
6590 "lost data on stores during refill" errata if instruction INSN
6591 immediately followed the 2 instructions described by HIST.
6592 Ignore hazards that are contained within the first IGNORE
6593 instructions of HIST.
6594
6595 Problem: The FSB (fetch store buffer) acts as an intermediate buffer
6596 for the data cache refills and store data. The following describes
6597 the scenario where the store data could be lost.
6598
6599 * A data cache miss, due to either a load or a store, causing fill
6600 data to be supplied by the memory subsystem
6601 * The first three doublewords of fill data are returned and written
6602 into the cache
6603 * A sequence of four stores occurs in consecutive cycles around the
6604 final doubleword of the fill:
6605 * Store A
6606 * Store B
6607 * Store C
6608 * Zero, One or more instructions
6609 * Store D
6610
6611 The four stores A-D must be to different doublewords of the line that
6612 is being filled. The fourth instruction in the sequence above permits
6613 the fill of the final doubleword to be transferred from the FSB into
6614 the cache. In the sequence above, the stores may be either integer
6615 (sb, sh, sw, swr, swl, sc) or coprocessor (swc1/swc2, sdc1/sdc2,
6616 swxc1, sdxc1, suxc1) stores, as long as the four stores are to
6617 different doublewords on the line. If the floating point unit is
6618 running in 1:2 mode, it is not possible to create the sequence above
6619 using only floating point store instructions.
6620
6621 In this case, the cache line being filled is incorrectly marked
6622 invalid, thereby losing the data from any store to the line that
6623 occurs between the original miss and the completion of the five
6624 cycle sequence shown above.
6625
6626 The workarounds are:
6627
6628 * Run the data cache in write-through mode.
6629 * Insert a non-store instruction between
6630 Store A and Store B or Store B and Store C. */
6631
6632 static int
6633 nops_for_24k (int ignore, const struct mips_cl_insn *hist,
6634 const struct mips_cl_insn *insn)
6635 {
6636 struct fix_24k_store_info pos[3];
6637 int align, i, base_offset;
6638
6639 if (ignore >= 2)
6640 return 0;
6641
6642 /* If the previous instruction wasn't a store, there's nothing to
6643 worry about. */
6644 if ((hist[0].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
6645 return 0;
6646
6647 /* If the instructions after the previous one are unknown, we have
6648 to assume the worst. */
6649 if (!insn)
6650 return 1;
6651
6652 /* Check whether we are dealing with three consecutive stores. */
6653 if ((insn->insn_mo->pinfo & INSN_STORE_MEMORY) == 0
6654 || (hist[1].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
6655 return 0;
6656
6657 /* If we don't know the relationship between the store addresses,
6658 assume the worst. */
6659 if (!BASE_REG_EQ (insn->insn_opcode, hist[0].insn_opcode)
6660 || !BASE_REG_EQ (insn->insn_opcode, hist[1].insn_opcode))
6661 return 1;
6662
6663 if (!fix_24k_record_store_info (&pos[0], insn)
6664 || !fix_24k_record_store_info (&pos[1], &hist[0])
6665 || !fix_24k_record_store_info (&pos[2], &hist[1]))
6666 return 1;
6667
6668 qsort (&pos, 3, sizeof (struct fix_24k_store_info), fix_24k_sort);
6669
6670 /* Pick a value of ALIGN and X such that all offsets are adjusted by
6671 X bytes and such that the base register + X is known to be aligned
6672 to align bytes. */
6673
6674 if (((insn->insn_opcode >> OP_SH_RS) & OP_MASK_RS) == SP)
6675 align = 8;
6676 else
6677 {
6678 align = pos[0].align_to;
6679 base_offset = pos[0].off;
6680 for (i = 1; i < 3; i++)
6681 if (align < pos[i].align_to)
6682 {
6683 align = pos[i].align_to;
6684 base_offset = pos[i].off;
6685 }
6686 for (i = 0; i < 3; i++)
6687 pos[i].off -= base_offset;
6688 }
6689
6690 pos[0].off &= ~align + 1;
6691 pos[1].off &= ~align + 1;
6692 pos[2].off &= ~align + 1;
6693
6694 /* If any two stores write to the same chunk, they also write to the
6695 same doubleword. The offsets are still sorted at this point. */
6696 if (pos[0].off == pos[1].off || pos[1].off == pos[2].off)
6697 return 0;
6698
6699 /* A range of at least 9 bytes is needed for the stores to be in
6700 non-overlapping doublewords. */
6701 if (pos[2].off - pos[0].off <= 8)
6702 return 0;
6703
6704 if (pos[2].off - pos[1].off >= 24
6705 || pos[1].off - pos[0].off >= 24
6706 || pos[2].off - pos[0].off >= 32)
6707 return 0;
6708
6709 return 1;
6710 }
6711
6712 /* Return the number of nops that would be needed if instruction INSN
6713 immediately followed the MAX_NOPS instructions given by HIST,
6714 where HIST[0] is the most recent instruction. Ignore hazards
6715 between INSN and the first IGNORE instructions in HIST.
6716
6717 If INSN is null, return the worse-case number of nops for any
6718 instruction. */
6719
6720 static int
6721 nops_for_insn (int ignore, const struct mips_cl_insn *hist,
6722 const struct mips_cl_insn *insn)
6723 {
6724 int i, nops, tmp_nops;
6725
6726 nops = 0;
6727 for (i = ignore; i < MAX_DELAY_NOPS; i++)
6728 {
6729 tmp_nops = insns_between (hist + i, insn) - i;
6730 if (tmp_nops > nops)
6731 nops = tmp_nops;
6732 }
6733
6734 if (mips_fix_vr4130 && !mips_opts.micromips)
6735 {
6736 tmp_nops = nops_for_vr4130 (ignore, hist, insn);
6737 if (tmp_nops > nops)
6738 nops = tmp_nops;
6739 }
6740
6741 if (mips_fix_24k && !mips_opts.micromips)
6742 {
6743 tmp_nops = nops_for_24k (ignore, hist, insn);
6744 if (tmp_nops > nops)
6745 nops = tmp_nops;
6746 }
6747
6748 return nops;
6749 }
6750
6751 /* The variable arguments provide NUM_INSNS extra instructions that
6752 might be added to HIST. Return the largest number of nops that
6753 would be needed after the extended sequence, ignoring hazards
6754 in the first IGNORE instructions. */
6755
6756 static int
6757 nops_for_sequence (int num_insns, int ignore,
6758 const struct mips_cl_insn *hist, ...)
6759 {
6760 va_list args;
6761 struct mips_cl_insn buffer[MAX_NOPS];
6762 struct mips_cl_insn *cursor;
6763 int nops;
6764
6765 va_start (args, hist);
6766 cursor = buffer + num_insns;
6767 memcpy (cursor, hist, (MAX_NOPS - num_insns) * sizeof (*cursor));
6768 while (cursor > buffer)
6769 *--cursor = *va_arg (args, const struct mips_cl_insn *);
6770
6771 nops = nops_for_insn (ignore, buffer, NULL);
6772 va_end (args);
6773 return nops;
6774 }
6775
6776 /* Like nops_for_insn, but if INSN is a branch, take into account the
6777 worst-case delay for the branch target. */
6778
6779 static int
6780 nops_for_insn_or_target (int ignore, const struct mips_cl_insn *hist,
6781 const struct mips_cl_insn *insn)
6782 {
6783 int nops, tmp_nops;
6784
6785 nops = nops_for_insn (ignore, hist, insn);
6786 if (delayed_branch_p (insn))
6787 {
6788 tmp_nops = nops_for_sequence (2, ignore ? ignore + 2 : 0,
6789 hist, insn, get_delay_slot_nop (insn));
6790 if (tmp_nops > nops)
6791 nops = tmp_nops;
6792 }
6793 else if (compact_branch_p (insn))
6794 {
6795 tmp_nops = nops_for_sequence (1, ignore ? ignore + 1 : 0, hist, insn);
6796 if (tmp_nops > nops)
6797 nops = tmp_nops;
6798 }
6799 return nops;
6800 }
6801
6802 /* Fix NOP issue: Replace nops by "or at,at,zero". */
6803
6804 static void
6805 fix_loongson2f_nop (struct mips_cl_insn * ip)
6806 {
6807 gas_assert (!HAVE_CODE_COMPRESSION);
6808 if (strcmp (ip->insn_mo->name, "nop") == 0)
6809 ip->insn_opcode = LOONGSON2F_NOP_INSN;
6810 }
6811
6812 /* Fix Jump Issue: Eliminate instruction fetch from outside 256M region
6813 jr target pc &= 'hffff_ffff_cfff_ffff. */
6814
6815 static void
6816 fix_loongson2f_jump (struct mips_cl_insn * ip)
6817 {
6818 gas_assert (!HAVE_CODE_COMPRESSION);
6819 if (strcmp (ip->insn_mo->name, "j") == 0
6820 || strcmp (ip->insn_mo->name, "jr") == 0
6821 || strcmp (ip->insn_mo->name, "jalr") == 0)
6822 {
6823 int sreg;
6824 expressionS ep;
6825
6826 if (! mips_opts.at)
6827 return;
6828
6829 sreg = EXTRACT_OPERAND (0, RS, *ip);
6830 if (sreg == ZERO || sreg == KT0 || sreg == KT1 || sreg == ATREG)
6831 return;
6832
6833 ep.X_op = O_constant;
6834 ep.X_add_number = 0xcfff0000;
6835 macro_build (&ep, "lui", "t,u", ATREG, BFD_RELOC_HI16);
6836 ep.X_add_number = 0xffff;
6837 macro_build (&ep, "ori", "t,r,i", ATREG, ATREG, BFD_RELOC_LO16);
6838 macro_build (NULL, "and", "d,v,t", sreg, sreg, ATREG);
6839 }
6840 }
6841
6842 static void
6843 fix_loongson2f (struct mips_cl_insn * ip)
6844 {
6845 if (mips_fix_loongson2f_nop)
6846 fix_loongson2f_nop (ip);
6847
6848 if (mips_fix_loongson2f_jump)
6849 fix_loongson2f_jump (ip);
6850 }
6851
6852 /* IP is a branch that has a delay slot, and we need to fill it
6853 automatically. Return true if we can do that by swapping IP
6854 with the previous instruction.
6855 ADDRESS_EXPR is an operand of the instruction to be used with
6856 RELOC_TYPE. */
6857
6858 static bfd_boolean
6859 can_swap_branch_p (struct mips_cl_insn *ip, expressionS *address_expr,
6860 bfd_reloc_code_real_type *reloc_type)
6861 {
6862 unsigned long pinfo, pinfo2, prev_pinfo, prev_pinfo2;
6863 unsigned int gpr_read, gpr_write, prev_gpr_read, prev_gpr_write;
6864 unsigned int fpr_read, prev_fpr_write;
6865
6866 /* -O2 and above is required for this optimization. */
6867 if (mips_optimize < 2)
6868 return FALSE;
6869
6870 /* If we have seen .set volatile or .set nomove, don't optimize. */
6871 if (mips_opts.nomove)
6872 return FALSE;
6873
6874 /* We can't swap if the previous instruction's position is fixed. */
6875 if (history[0].fixed_p)
6876 return FALSE;
6877
6878 /* If the previous previous insn was in a .set noreorder, we can't
6879 swap. Actually, the MIPS assembler will swap in this situation.
6880 However, gcc configured -with-gnu-as will generate code like
6881
6882 .set noreorder
6883 lw $4,XXX
6884 .set reorder
6885 INSN
6886 bne $4,$0,foo
6887
6888 in which we can not swap the bne and INSN. If gcc is not configured
6889 -with-gnu-as, it does not output the .set pseudo-ops. */
6890 if (history[1].noreorder_p)
6891 return FALSE;
6892
6893 /* If the previous instruction had a fixup in mips16 mode, we can not swap.
6894 This means that the previous instruction was a 4-byte one anyhow. */
6895 if (mips_opts.mips16 && history[0].fixp[0])
6896 return FALSE;
6897
6898 /* If the branch is itself the target of a branch, we can not swap.
6899 We cheat on this; all we check for is whether there is a label on
6900 this instruction. If there are any branches to anything other than
6901 a label, users must use .set noreorder. */
6902 if (seg_info (now_seg)->label_list)
6903 return FALSE;
6904
6905 /* If the previous instruction is in a variant frag other than this
6906 branch's one, we cannot do the swap. This does not apply to
6907 MIPS16 code, which uses variant frags for different purposes. */
6908 if (!mips_opts.mips16
6909 && history[0].frag
6910 && history[0].frag->fr_type == rs_machine_dependent)
6911 return FALSE;
6912
6913 /* We do not swap with instructions that cannot architecturally
6914 be placed in a branch delay slot, such as SYNC or ERET. We
6915 also refrain from swapping with a trap instruction, since it
6916 complicates trap handlers to have the trap instruction be in
6917 a delay slot. */
6918 prev_pinfo = history[0].insn_mo->pinfo;
6919 if (prev_pinfo & INSN_NO_DELAY_SLOT)
6920 return FALSE;
6921
6922 /* Check for conflicts between the branch and the instructions
6923 before the candidate delay slot. */
6924 if (nops_for_insn (0, history + 1, ip) > 0)
6925 return FALSE;
6926
6927 /* Check for conflicts between the swapped sequence and the
6928 target of the branch. */
6929 if (nops_for_sequence (2, 0, history + 1, ip, history) > 0)
6930 return FALSE;
6931
6932 /* If the branch reads a register that the previous
6933 instruction sets, we can not swap. */
6934 gpr_read = gpr_read_mask (ip);
6935 prev_gpr_write = gpr_write_mask (&history[0]);
6936 if (gpr_read & prev_gpr_write)
6937 return FALSE;
6938
6939 fpr_read = fpr_read_mask (ip);
6940 prev_fpr_write = fpr_write_mask (&history[0]);
6941 if (fpr_read & prev_fpr_write)
6942 return FALSE;
6943
6944 /* If the branch writes a register that the previous
6945 instruction sets, we can not swap. */
6946 gpr_write = gpr_write_mask (ip);
6947 if (gpr_write & prev_gpr_write)
6948 return FALSE;
6949
6950 /* If the branch writes a register that the previous
6951 instruction reads, we can not swap. */
6952 prev_gpr_read = gpr_read_mask (&history[0]);
6953 if (gpr_write & prev_gpr_read)
6954 return FALSE;
6955
6956 /* If one instruction sets a condition code and the
6957 other one uses a condition code, we can not swap. */
6958 pinfo = ip->insn_mo->pinfo;
6959 if ((pinfo & INSN_READ_COND_CODE)
6960 && (prev_pinfo & INSN_WRITE_COND_CODE))
6961 return FALSE;
6962 if ((pinfo & INSN_WRITE_COND_CODE)
6963 && (prev_pinfo & INSN_READ_COND_CODE))
6964 return FALSE;
6965
6966 /* If the previous instruction uses the PC, we can not swap. */
6967 prev_pinfo2 = history[0].insn_mo->pinfo2;
6968 if (prev_pinfo2 & INSN2_READ_PC)
6969 return FALSE;
6970
6971 /* If the previous instruction has an incorrect size for a fixed
6972 branch delay slot in microMIPS mode, we cannot swap. */
6973 pinfo2 = ip->insn_mo->pinfo2;
6974 if (mips_opts.micromips
6975 && (pinfo2 & INSN2_BRANCH_DELAY_16BIT)
6976 && insn_length (history) != 2)
6977 return FALSE;
6978 if (mips_opts.micromips
6979 && (pinfo2 & INSN2_BRANCH_DELAY_32BIT)
6980 && insn_length (history) != 4)
6981 return FALSE;
6982
6983 /* On R5900 short loops need to be fixed by inserting a nop in
6984 the branch delay slots.
6985 A short loop can be terminated too early. */
6986 if (mips_opts.arch == CPU_R5900
6987 /* Check if instruction has a parameter, ignore "j $31". */
6988 && (address_expr != NULL)
6989 /* Parameter must be 16 bit. */
6990 && (*reloc_type == BFD_RELOC_16_PCREL_S2)
6991 /* Branch to same segment. */
6992 && (S_GET_SEGMENT (address_expr->X_add_symbol) == now_seg)
6993 /* Branch to same code fragment. */
6994 && (symbol_get_frag (address_expr->X_add_symbol) == frag_now)
6995 /* Can only calculate branch offset if value is known. */
6996 && symbol_constant_p (address_expr->X_add_symbol)
6997 /* Check if branch is really conditional. */
6998 && !((ip->insn_opcode & 0xffff0000) == 0x10000000 /* beq $0,$0 */
6999 || (ip->insn_opcode & 0xffff0000) == 0x04010000 /* bgez $0 */
7000 || (ip->insn_opcode & 0xffff0000) == 0x04110000)) /* bgezal $0 */
7001 {
7002 int distance;
7003 /* Check if loop is shorter than 6 instructions including
7004 branch and delay slot. */
7005 distance = frag_now_fix () - S_GET_VALUE (address_expr->X_add_symbol);
7006 if (distance <= 20)
7007 {
7008 int i;
7009 int rv;
7010
7011 rv = FALSE;
7012 /* When the loop includes branches or jumps,
7013 it is not a short loop. */
7014 for (i = 0; i < (distance / 4); i++)
7015 {
7016 if ((history[i].cleared_p)
7017 || delayed_branch_p (&history[i]))
7018 {
7019 rv = TRUE;
7020 break;
7021 }
7022 }
7023 if (!rv)
7024 {
7025 /* Insert nop after branch to fix short loop. */
7026 return FALSE;
7027 }
7028 }
7029 }
7030
7031 return TRUE;
7032 }
7033
7034 /* Decide how we should add IP to the instruction stream.
7035 ADDRESS_EXPR is an operand of the instruction to be used with
7036 RELOC_TYPE. */
7037
7038 static enum append_method
7039 get_append_method (struct mips_cl_insn *ip, expressionS *address_expr,
7040 bfd_reloc_code_real_type *reloc_type)
7041 {
7042 /* The relaxed version of a macro sequence must be inherently
7043 hazard-free. */
7044 if (mips_relax.sequence == 2)
7045 return APPEND_ADD;
7046
7047 /* We must not dabble with instructions in a ".set noreorder" block. */
7048 if (mips_opts.noreorder)
7049 return APPEND_ADD;
7050
7051 /* Otherwise, it's our responsibility to fill branch delay slots. */
7052 if (delayed_branch_p (ip))
7053 {
7054 if (!branch_likely_p (ip)
7055 && can_swap_branch_p (ip, address_expr, reloc_type))
7056 return APPEND_SWAP;
7057
7058 if (mips_opts.mips16
7059 && ISA_SUPPORTS_MIPS16E
7060 && gpr_read_mask (ip) != 0)
7061 return APPEND_ADD_COMPACT;
7062
7063 if (mips_opts.micromips
7064 && ((ip->insn_opcode & 0xffe0) == 0x4580
7065 || (!forced_insn_length
7066 && ((ip->insn_opcode & 0xfc00) == 0xcc00
7067 || (ip->insn_opcode & 0xdc00) == 0x8c00))
7068 || (ip->insn_opcode & 0xdfe00000) == 0x94000000
7069 || (ip->insn_opcode & 0xdc1f0000) == 0x94000000))
7070 return APPEND_ADD_COMPACT;
7071
7072 return APPEND_ADD_WITH_NOP;
7073 }
7074
7075 return APPEND_ADD;
7076 }
7077
7078 /* IP is an instruction whose opcode we have just changed, END points
7079 to the end of the opcode table processed. Point IP->insn_mo to the
7080 new opcode's definition. */
7081
7082 static void
7083 find_altered_opcode (struct mips_cl_insn *ip, const struct mips_opcode *end)
7084 {
7085 const struct mips_opcode *mo;
7086
7087 for (mo = ip->insn_mo; mo < end; mo++)
7088 if (mo->pinfo != INSN_MACRO
7089 && (ip->insn_opcode & mo->mask) == mo->match)
7090 {
7091 ip->insn_mo = mo;
7092 return;
7093 }
7094 abort ();
7095 }
7096
7097 /* IP is a MIPS16 instruction whose opcode we have just changed.
7098 Point IP->insn_mo to the new opcode's definition. */
7099
7100 static void
7101 find_altered_mips16_opcode (struct mips_cl_insn *ip)
7102 {
7103 find_altered_opcode (ip, &mips16_opcodes[bfd_mips16_num_opcodes]);
7104 }
7105
7106 /* IP is a microMIPS instruction whose opcode we have just changed.
7107 Point IP->insn_mo to the new opcode's definition. */
7108
7109 static void
7110 find_altered_micromips_opcode (struct mips_cl_insn *ip)
7111 {
7112 find_altered_opcode (ip, &micromips_opcodes[bfd_micromips_num_opcodes]);
7113 }
7114
7115 /* For microMIPS macros, we need to generate a local number label
7116 as the target of branches. */
7117 #define MICROMIPS_LABEL_CHAR '\037'
7118 static unsigned long micromips_target_label;
7119 static char micromips_target_name[32];
7120
7121 static char *
7122 micromips_label_name (void)
7123 {
7124 char *p = micromips_target_name;
7125 char symbol_name_temporary[24];
7126 unsigned long l;
7127 int i;
7128
7129 if (*p)
7130 return p;
7131
7132 i = 0;
7133 l = micromips_target_label;
7134 #ifdef LOCAL_LABEL_PREFIX
7135 *p++ = LOCAL_LABEL_PREFIX;
7136 #endif
7137 *p++ = 'L';
7138 *p++ = MICROMIPS_LABEL_CHAR;
7139 do
7140 {
7141 symbol_name_temporary[i++] = l % 10 + '0';
7142 l /= 10;
7143 }
7144 while (l != 0);
7145 while (i > 0)
7146 *p++ = symbol_name_temporary[--i];
7147 *p = '\0';
7148
7149 return micromips_target_name;
7150 }
7151
7152 static void
7153 micromips_label_expr (expressionS *label_expr)
7154 {
7155 label_expr->X_op = O_symbol;
7156 label_expr->X_add_symbol = symbol_find_or_make (micromips_label_name ());
7157 label_expr->X_add_number = 0;
7158 }
7159
7160 static void
7161 micromips_label_inc (void)
7162 {
7163 micromips_target_label++;
7164 *micromips_target_name = '\0';
7165 }
7166
7167 static void
7168 micromips_add_label (void)
7169 {
7170 symbolS *s;
7171
7172 s = colon (micromips_label_name ());
7173 micromips_label_inc ();
7174 S_SET_OTHER (s, ELF_ST_SET_MICROMIPS (S_GET_OTHER (s)));
7175 }
7176
7177 /* If assembling microMIPS code, then return the microMIPS reloc
7178 corresponding to the requested one if any. Otherwise return
7179 the reloc unchanged. */
7180
7181 static bfd_reloc_code_real_type
7182 micromips_map_reloc (bfd_reloc_code_real_type reloc)
7183 {
7184 static const bfd_reloc_code_real_type relocs[][2] =
7185 {
7186 /* Keep sorted incrementally by the left-hand key. */
7187 { BFD_RELOC_16_PCREL_S2, BFD_RELOC_MICROMIPS_16_PCREL_S1 },
7188 { BFD_RELOC_GPREL16, BFD_RELOC_MICROMIPS_GPREL16 },
7189 { BFD_RELOC_MIPS_JMP, BFD_RELOC_MICROMIPS_JMP },
7190 { BFD_RELOC_HI16, BFD_RELOC_MICROMIPS_HI16 },
7191 { BFD_RELOC_HI16_S, BFD_RELOC_MICROMIPS_HI16_S },
7192 { BFD_RELOC_LO16, BFD_RELOC_MICROMIPS_LO16 },
7193 { BFD_RELOC_MIPS_LITERAL, BFD_RELOC_MICROMIPS_LITERAL },
7194 { BFD_RELOC_MIPS_GOT16, BFD_RELOC_MICROMIPS_GOT16 },
7195 { BFD_RELOC_MIPS_CALL16, BFD_RELOC_MICROMIPS_CALL16 },
7196 { BFD_RELOC_MIPS_GOT_HI16, BFD_RELOC_MICROMIPS_GOT_HI16 },
7197 { BFD_RELOC_MIPS_GOT_LO16, BFD_RELOC_MICROMIPS_GOT_LO16 },
7198 { BFD_RELOC_MIPS_CALL_HI16, BFD_RELOC_MICROMIPS_CALL_HI16 },
7199 { BFD_RELOC_MIPS_CALL_LO16, BFD_RELOC_MICROMIPS_CALL_LO16 },
7200 { BFD_RELOC_MIPS_SUB, BFD_RELOC_MICROMIPS_SUB },
7201 { BFD_RELOC_MIPS_GOT_PAGE, BFD_RELOC_MICROMIPS_GOT_PAGE },
7202 { BFD_RELOC_MIPS_GOT_OFST, BFD_RELOC_MICROMIPS_GOT_OFST },
7203 { BFD_RELOC_MIPS_GOT_DISP, BFD_RELOC_MICROMIPS_GOT_DISP },
7204 { BFD_RELOC_MIPS_HIGHEST, BFD_RELOC_MICROMIPS_HIGHEST },
7205 { BFD_RELOC_MIPS_HIGHER, BFD_RELOC_MICROMIPS_HIGHER },
7206 { BFD_RELOC_MIPS_SCN_DISP, BFD_RELOC_MICROMIPS_SCN_DISP },
7207 { BFD_RELOC_MIPS_TLS_GD, BFD_RELOC_MICROMIPS_TLS_GD },
7208 { BFD_RELOC_MIPS_TLS_LDM, BFD_RELOC_MICROMIPS_TLS_LDM },
7209 { BFD_RELOC_MIPS_TLS_DTPREL_HI16, BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16 },
7210 { BFD_RELOC_MIPS_TLS_DTPREL_LO16, BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16 },
7211 { BFD_RELOC_MIPS_TLS_GOTTPREL, BFD_RELOC_MICROMIPS_TLS_GOTTPREL },
7212 { BFD_RELOC_MIPS_TLS_TPREL_HI16, BFD_RELOC_MICROMIPS_TLS_TPREL_HI16 },
7213 { BFD_RELOC_MIPS_TLS_TPREL_LO16, BFD_RELOC_MICROMIPS_TLS_TPREL_LO16 }
7214 };
7215 bfd_reloc_code_real_type r;
7216 size_t i;
7217
7218 if (!mips_opts.micromips)
7219 return reloc;
7220 for (i = 0; i < ARRAY_SIZE (relocs); i++)
7221 {
7222 r = relocs[i][0];
7223 if (r > reloc)
7224 return reloc;
7225 if (r == reloc)
7226 return relocs[i][1];
7227 }
7228 return reloc;
7229 }
7230
7231 /* Try to resolve relocation RELOC against constant OPERAND at assembly time.
7232 Return true on success, storing the resolved value in RESULT. */
7233
7234 static bfd_boolean
7235 calculate_reloc (bfd_reloc_code_real_type reloc, offsetT operand,
7236 offsetT *result)
7237 {
7238 switch (reloc)
7239 {
7240 case BFD_RELOC_MIPS_HIGHEST:
7241 case BFD_RELOC_MICROMIPS_HIGHEST:
7242 *result = ((operand + 0x800080008000ull) >> 48) & 0xffff;
7243 return TRUE;
7244
7245 case BFD_RELOC_MIPS_HIGHER:
7246 case BFD_RELOC_MICROMIPS_HIGHER:
7247 *result = ((operand + 0x80008000ull) >> 32) & 0xffff;
7248 return TRUE;
7249
7250 case BFD_RELOC_HI16_S:
7251 case BFD_RELOC_HI16_S_PCREL:
7252 case BFD_RELOC_MICROMIPS_HI16_S:
7253 case BFD_RELOC_MIPS16_HI16_S:
7254 *result = ((operand + 0x8000) >> 16) & 0xffff;
7255 return TRUE;
7256
7257 case BFD_RELOC_HI16:
7258 case BFD_RELOC_MICROMIPS_HI16:
7259 case BFD_RELOC_MIPS16_HI16:
7260 *result = (operand >> 16) & 0xffff;
7261 return TRUE;
7262
7263 case BFD_RELOC_LO16:
7264 case BFD_RELOC_LO16_PCREL:
7265 case BFD_RELOC_MICROMIPS_LO16:
7266 case BFD_RELOC_MIPS16_LO16:
7267 *result = operand & 0xffff;
7268 return TRUE;
7269
7270 case BFD_RELOC_UNUSED:
7271 *result = operand;
7272 return TRUE;
7273
7274 default:
7275 return FALSE;
7276 }
7277 }
7278
7279 /* Output an instruction. IP is the instruction information.
7280 ADDRESS_EXPR is an operand of the instruction to be used with
7281 RELOC_TYPE. EXPANSIONP is true if the instruction is part of
7282 a macro expansion. */
7283
7284 static void
7285 append_insn (struct mips_cl_insn *ip, expressionS *address_expr,
7286 bfd_reloc_code_real_type *reloc_type, bfd_boolean expansionp)
7287 {
7288 unsigned long prev_pinfo2, pinfo;
7289 bfd_boolean relaxed_branch = FALSE;
7290 enum append_method method;
7291 bfd_boolean relax32;
7292 int branch_disp;
7293
7294 if (mips_fix_loongson2f && !HAVE_CODE_COMPRESSION)
7295 fix_loongson2f (ip);
7296
7297 file_ase_mips16 |= mips_opts.mips16;
7298 file_ase_micromips |= mips_opts.micromips;
7299
7300 prev_pinfo2 = history[0].insn_mo->pinfo2;
7301 pinfo = ip->insn_mo->pinfo;
7302
7303 /* Don't raise alarm about `nods' frags as they'll fill in the right
7304 kind of nop in relaxation if required. */
7305 if (mips_opts.micromips
7306 && !expansionp
7307 && !(history[0].frag
7308 && history[0].frag->fr_type == rs_machine_dependent
7309 && RELAX_MICROMIPS_P (history[0].frag->fr_subtype)
7310 && RELAX_MICROMIPS_NODS (history[0].frag->fr_subtype))
7311 && (((prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
7312 && micromips_insn_length (ip->insn_mo) != 2)
7313 || ((prev_pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
7314 && micromips_insn_length (ip->insn_mo) != 4)))
7315 as_warn (_("wrong size instruction in a %u-bit branch delay slot"),
7316 (prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0 ? 16 : 32);
7317
7318 if (address_expr == NULL)
7319 ip->complete_p = 1;
7320 else if (reloc_type[0] <= BFD_RELOC_UNUSED
7321 && reloc_type[1] == BFD_RELOC_UNUSED
7322 && reloc_type[2] == BFD_RELOC_UNUSED
7323 && address_expr->X_op == O_constant)
7324 {
7325 switch (*reloc_type)
7326 {
7327 case BFD_RELOC_MIPS_JMP:
7328 {
7329 int shift;
7330
7331 /* Shift is 2, unusually, for microMIPS JALX. */
7332 shift = (mips_opts.micromips
7333 && strcmp (ip->insn_mo->name, "jalx") != 0) ? 1 : 2;
7334 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7335 as_bad (_("jump to misaligned address (0x%lx)"),
7336 (unsigned long) address_expr->X_add_number);
7337 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7338 & 0x3ffffff);
7339 ip->complete_p = 1;
7340 }
7341 break;
7342
7343 case BFD_RELOC_MIPS16_JMP:
7344 if ((address_expr->X_add_number & 3) != 0)
7345 as_bad (_("jump to misaligned address (0x%lx)"),
7346 (unsigned long) address_expr->X_add_number);
7347 ip->insn_opcode |=
7348 (((address_expr->X_add_number & 0x7c0000) << 3)
7349 | ((address_expr->X_add_number & 0xf800000) >> 7)
7350 | ((address_expr->X_add_number & 0x3fffc) >> 2));
7351 ip->complete_p = 1;
7352 break;
7353
7354 case BFD_RELOC_16_PCREL_S2:
7355 {
7356 int shift;
7357
7358 shift = mips_opts.micromips ? 1 : 2;
7359 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7360 as_bad (_("branch to misaligned address (0x%lx)"),
7361 (unsigned long) address_expr->X_add_number);
7362 if (!mips_relax_branch)
7363 {
7364 if ((address_expr->X_add_number + (1 << (shift + 15)))
7365 & ~((1 << (shift + 16)) - 1))
7366 as_bad (_("branch address range overflow (0x%lx)"),
7367 (unsigned long) address_expr->X_add_number);
7368 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7369 & 0xffff);
7370 }
7371 }
7372 break;
7373
7374 case BFD_RELOC_MIPS_21_PCREL_S2:
7375 {
7376 int shift;
7377
7378 shift = 2;
7379 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7380 as_bad (_("branch to misaligned address (0x%lx)"),
7381 (unsigned long) address_expr->X_add_number);
7382 if ((address_expr->X_add_number + (1 << (shift + 20)))
7383 & ~((1 << (shift + 21)) - 1))
7384 as_bad (_("branch address range overflow (0x%lx)"),
7385 (unsigned long) address_expr->X_add_number);
7386 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7387 & 0x1fffff);
7388 }
7389 break;
7390
7391 case BFD_RELOC_MIPS_26_PCREL_S2:
7392 {
7393 int shift;
7394
7395 shift = 2;
7396 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7397 as_bad (_("branch to misaligned address (0x%lx)"),
7398 (unsigned long) address_expr->X_add_number);
7399 if ((address_expr->X_add_number + (1 << (shift + 25)))
7400 & ~((1 << (shift + 26)) - 1))
7401 as_bad (_("branch address range overflow (0x%lx)"),
7402 (unsigned long) address_expr->X_add_number);
7403 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7404 & 0x3ffffff);
7405 }
7406 break;
7407
7408 default:
7409 {
7410 offsetT value;
7411
7412 if (calculate_reloc (*reloc_type, address_expr->X_add_number,
7413 &value))
7414 {
7415 ip->insn_opcode |= value & 0xffff;
7416 ip->complete_p = 1;
7417 }
7418 }
7419 break;
7420 }
7421 }
7422
7423 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
7424 {
7425 /* There are a lot of optimizations we could do that we don't.
7426 In particular, we do not, in general, reorder instructions.
7427 If you use gcc with optimization, it will reorder
7428 instructions and generally do much more optimization then we
7429 do here; repeating all that work in the assembler would only
7430 benefit hand written assembly code, and does not seem worth
7431 it. */
7432 int nops = (mips_optimize == 0
7433 ? nops_for_insn (0, history, NULL)
7434 : nops_for_insn_or_target (0, history, ip));
7435 if (nops > 0)
7436 {
7437 fragS *old_frag;
7438 unsigned long old_frag_offset;
7439 int i;
7440
7441 old_frag = frag_now;
7442 old_frag_offset = frag_now_fix ();
7443
7444 for (i = 0; i < nops; i++)
7445 add_fixed_insn (NOP_INSN);
7446 insert_into_history (0, nops, NOP_INSN);
7447
7448 if (listing)
7449 {
7450 listing_prev_line ();
7451 /* We may be at the start of a variant frag. In case we
7452 are, make sure there is enough space for the frag
7453 after the frags created by listing_prev_line. The
7454 argument to frag_grow here must be at least as large
7455 as the argument to all other calls to frag_grow in
7456 this file. We don't have to worry about being in the
7457 middle of a variant frag, because the variants insert
7458 all needed nop instructions themselves. */
7459 frag_grow (40);
7460 }
7461
7462 mips_move_text_labels ();
7463
7464 #ifndef NO_ECOFF_DEBUGGING
7465 if (ECOFF_DEBUGGING)
7466 ecoff_fix_loc (old_frag, old_frag_offset);
7467 #endif
7468 }
7469 }
7470 else if (mips_relax.sequence != 2 && prev_nop_frag != NULL)
7471 {
7472 int nops;
7473
7474 /* Work out how many nops in prev_nop_frag are needed by IP,
7475 ignoring hazards generated by the first prev_nop_frag_since
7476 instructions. */
7477 nops = nops_for_insn_or_target (prev_nop_frag_since, history, ip);
7478 gas_assert (nops <= prev_nop_frag_holds);
7479
7480 /* Enforce NOPS as a minimum. */
7481 if (nops > prev_nop_frag_required)
7482 prev_nop_frag_required = nops;
7483
7484 if (prev_nop_frag_holds == prev_nop_frag_required)
7485 {
7486 /* Settle for the current number of nops. Update the history
7487 accordingly (for the benefit of any future .set reorder code). */
7488 prev_nop_frag = NULL;
7489 insert_into_history (prev_nop_frag_since,
7490 prev_nop_frag_holds, NOP_INSN);
7491 }
7492 else
7493 {
7494 /* Allow this instruction to replace one of the nops that was
7495 tentatively added to prev_nop_frag. */
7496 prev_nop_frag->fr_fix -= NOP_INSN_SIZE;
7497 prev_nop_frag_holds--;
7498 prev_nop_frag_since++;
7499 }
7500 }
7501
7502 method = get_append_method (ip, address_expr, reloc_type);
7503 branch_disp = method == APPEND_SWAP ? insn_length (history) : 0;
7504
7505 dwarf2_emit_insn (0);
7506 /* We want MIPS16 and microMIPS debug info to use ISA-encoded addresses,
7507 so "move" the instruction address accordingly.
7508
7509 Also, it doesn't seem appropriate for the assembler to reorder .loc
7510 entries. If this instruction is a branch that we are going to swap
7511 with the previous instruction, the two instructions should be
7512 treated as a unit, and the debug information for both instructions
7513 should refer to the start of the branch sequence. Using the
7514 current position is certainly wrong when swapping a 32-bit branch
7515 and a 16-bit delay slot, since the current position would then be
7516 in the middle of a branch. */
7517 dwarf2_move_insn ((HAVE_CODE_COMPRESSION ? 1 : 0) - branch_disp);
7518
7519 relax32 = (mips_relax_branch
7520 /* Don't try branch relaxation within .set nomacro, or within
7521 .set noat if we use $at for PIC computations. If it turns
7522 out that the branch was out-of-range, we'll get an error. */
7523 && !mips_opts.warn_about_macros
7524 && (mips_opts.at || mips_pic == NO_PIC)
7525 /* Don't relax BPOSGE32/64 or BC1ANY2T/F and BC1ANY4T/F
7526 as they have no complementing branches. */
7527 && !(ip->insn_mo->ase & (ASE_MIPS3D | ASE_DSP64 | ASE_DSP)));
7528
7529 if (!HAVE_CODE_COMPRESSION
7530 && address_expr
7531 && relax32
7532 && *reloc_type == BFD_RELOC_16_PCREL_S2
7533 && delayed_branch_p (ip))
7534 {
7535 relaxed_branch = TRUE;
7536 add_relaxed_insn (ip, (relaxed_branch_length
7537 (NULL, NULL,
7538 uncond_branch_p (ip) ? -1
7539 : branch_likely_p (ip) ? 1
7540 : 0)), 4,
7541 RELAX_BRANCH_ENCODE
7542 (AT, mips_pic != NO_PIC,
7543 uncond_branch_p (ip),
7544 branch_likely_p (ip),
7545 pinfo & INSN_WRITE_GPR_31,
7546 0),
7547 address_expr->X_add_symbol,
7548 address_expr->X_add_number);
7549 *reloc_type = BFD_RELOC_UNUSED;
7550 }
7551 else if (mips_opts.micromips
7552 && address_expr
7553 && ((relax32 && *reloc_type == BFD_RELOC_16_PCREL_S2)
7554 || *reloc_type > BFD_RELOC_UNUSED)
7555 && (delayed_branch_p (ip) || compact_branch_p (ip))
7556 /* Don't try branch relaxation when users specify
7557 16-bit/32-bit instructions. */
7558 && !forced_insn_length)
7559 {
7560 bfd_boolean relax16 = (method != APPEND_ADD_COMPACT
7561 && *reloc_type > BFD_RELOC_UNUSED);
7562 int type = relax16 ? *reloc_type - BFD_RELOC_UNUSED : 0;
7563 int uncond = uncond_branch_p (ip) ? -1 : 0;
7564 int compact = compact_branch_p (ip) || method == APPEND_ADD_COMPACT;
7565 int nods = method == APPEND_ADD_WITH_NOP;
7566 int al = pinfo & INSN_WRITE_GPR_31;
7567 int length32 = nods ? 8 : 4;
7568
7569 gas_assert (address_expr != NULL);
7570 gas_assert (!mips_relax.sequence);
7571
7572 relaxed_branch = TRUE;
7573 if (nods)
7574 method = APPEND_ADD;
7575 if (relax32)
7576 length32 = relaxed_micromips_32bit_branch_length (NULL, NULL, uncond);
7577 add_relaxed_insn (ip, length32, relax16 ? 2 : 4,
7578 RELAX_MICROMIPS_ENCODE (type, AT, mips_opts.insn32,
7579 mips_pic != NO_PIC,
7580 uncond, compact, al, nods,
7581 relax32, 0, 0),
7582 address_expr->X_add_symbol,
7583 address_expr->X_add_number);
7584 *reloc_type = BFD_RELOC_UNUSED;
7585 }
7586 else if (mips_opts.mips16 && *reloc_type > BFD_RELOC_UNUSED)
7587 {
7588 bfd_boolean require_unextended;
7589 bfd_boolean require_extended;
7590 symbolS *symbol;
7591 offsetT offset;
7592
7593 if (forced_insn_length != 0)
7594 {
7595 require_unextended = forced_insn_length == 2;
7596 require_extended = forced_insn_length == 4;
7597 }
7598 else
7599 {
7600 require_unextended = (mips_opts.noautoextend
7601 && !mips_opcode_32bit_p (ip->insn_mo));
7602 require_extended = 0;
7603 }
7604
7605 /* We need to set up a variant frag. */
7606 gas_assert (address_expr != NULL);
7607 /* Pass any `O_symbol' expression unchanged as an `expr_section'
7608 symbol created by `make_expr_symbol' may not get a necessary
7609 external relocation produced. */
7610 if (address_expr->X_op == O_symbol)
7611 {
7612 symbol = address_expr->X_add_symbol;
7613 offset = address_expr->X_add_number;
7614 }
7615 else
7616 {
7617 symbol = make_expr_symbol (address_expr);
7618 symbol_append (symbol, symbol_lastP, &symbol_rootP, &symbol_lastP);
7619 offset = 0;
7620 }
7621 add_relaxed_insn (ip, 12, 0,
7622 RELAX_MIPS16_ENCODE
7623 (*reloc_type - BFD_RELOC_UNUSED,
7624 mips_opts.ase & ASE_MIPS16E2,
7625 mips_pic != NO_PIC,
7626 HAVE_32BIT_SYMBOLS,
7627 mips_opts.warn_about_macros,
7628 require_unextended, require_extended,
7629 delayed_branch_p (&history[0]),
7630 history[0].mips16_absolute_jump_p),
7631 symbol, offset);
7632 }
7633 else if (mips_opts.mips16 && insn_length (ip) == 2)
7634 {
7635 if (!delayed_branch_p (ip))
7636 /* Make sure there is enough room to swap this instruction with
7637 a following jump instruction. */
7638 frag_grow (6);
7639 add_fixed_insn (ip);
7640 }
7641 else
7642 {
7643 if (mips_opts.mips16
7644 && mips_opts.noreorder
7645 && delayed_branch_p (&history[0]))
7646 as_warn (_("extended instruction in delay slot"));
7647
7648 if (mips_relax.sequence)
7649 {
7650 /* If we've reached the end of this frag, turn it into a variant
7651 frag and record the information for the instructions we've
7652 written so far. */
7653 if (frag_room () < 4)
7654 relax_close_frag ();
7655 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (ip);
7656 }
7657
7658 if (mips_relax.sequence != 2)
7659 {
7660 if (mips_macro_warning.first_insn_sizes[0] == 0)
7661 mips_macro_warning.first_insn_sizes[0] = insn_length (ip);
7662 mips_macro_warning.sizes[0] += insn_length (ip);
7663 mips_macro_warning.insns[0]++;
7664 }
7665 if (mips_relax.sequence != 1)
7666 {
7667 if (mips_macro_warning.first_insn_sizes[1] == 0)
7668 mips_macro_warning.first_insn_sizes[1] = insn_length (ip);
7669 mips_macro_warning.sizes[1] += insn_length (ip);
7670 mips_macro_warning.insns[1]++;
7671 }
7672
7673 if (mips_opts.mips16)
7674 {
7675 ip->fixed_p = 1;
7676 ip->mips16_absolute_jump_p = (*reloc_type == BFD_RELOC_MIPS16_JMP);
7677 }
7678 add_fixed_insn (ip);
7679 }
7680
7681 if (!ip->complete_p && *reloc_type < BFD_RELOC_UNUSED)
7682 {
7683 bfd_reloc_code_real_type final_type[3];
7684 reloc_howto_type *howto0;
7685 reloc_howto_type *howto;
7686 int i;
7687
7688 /* Perform any necessary conversion to microMIPS relocations
7689 and find out how many relocations there actually are. */
7690 for (i = 0; i < 3 && reloc_type[i] != BFD_RELOC_UNUSED; i++)
7691 final_type[i] = micromips_map_reloc (reloc_type[i]);
7692
7693 /* In a compound relocation, it is the final (outermost)
7694 operator that determines the relocated field. */
7695 howto = howto0 = bfd_reloc_type_lookup (stdoutput, final_type[i - 1]);
7696 if (!howto)
7697 abort ();
7698
7699 if (i > 1)
7700 howto0 = bfd_reloc_type_lookup (stdoutput, final_type[0]);
7701 ip->fixp[0] = fix_new_exp (ip->frag, ip->where,
7702 bfd_get_reloc_size (howto),
7703 address_expr,
7704 howto0 && howto0->pc_relative,
7705 final_type[0]);
7706 /* Record non-PIC mode in `fx_tcbit2' for `md_apply_fix'. */
7707 ip->fixp[0]->fx_tcbit2 = mips_pic == NO_PIC;
7708
7709 /* Tag symbols that have a R_MIPS16_26 relocation against them. */
7710 if (final_type[0] == BFD_RELOC_MIPS16_JMP && ip->fixp[0]->fx_addsy)
7711 *symbol_get_tc (ip->fixp[0]->fx_addsy) = 1;
7712
7713 /* These relocations can have an addend that won't fit in
7714 4 octets for 64bit assembly. */
7715 if (GPR_SIZE == 64
7716 && ! howto->partial_inplace
7717 && (reloc_type[0] == BFD_RELOC_16
7718 || reloc_type[0] == BFD_RELOC_32
7719 || reloc_type[0] == BFD_RELOC_MIPS_JMP
7720 || reloc_type[0] == BFD_RELOC_GPREL16
7721 || reloc_type[0] == BFD_RELOC_MIPS_LITERAL
7722 || reloc_type[0] == BFD_RELOC_GPREL32
7723 || reloc_type[0] == BFD_RELOC_64
7724 || reloc_type[0] == BFD_RELOC_CTOR
7725 || reloc_type[0] == BFD_RELOC_MIPS_SUB
7726 || reloc_type[0] == BFD_RELOC_MIPS_HIGHEST
7727 || reloc_type[0] == BFD_RELOC_MIPS_HIGHER
7728 || reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP
7729 || reloc_type[0] == BFD_RELOC_MIPS_REL16
7730 || reloc_type[0] == BFD_RELOC_MIPS_RELGOT
7731 || reloc_type[0] == BFD_RELOC_MIPS16_GPREL
7732 || hi16_reloc_p (reloc_type[0])
7733 || lo16_reloc_p (reloc_type[0])))
7734 ip->fixp[0]->fx_no_overflow = 1;
7735
7736 /* These relocations can have an addend that won't fit in 2 octets. */
7737 if (reloc_type[0] == BFD_RELOC_MICROMIPS_7_PCREL_S1
7738 || reloc_type[0] == BFD_RELOC_MICROMIPS_10_PCREL_S1)
7739 ip->fixp[0]->fx_no_overflow = 1;
7740
7741 if (mips_relax.sequence)
7742 {
7743 if (mips_relax.first_fixup == 0)
7744 mips_relax.first_fixup = ip->fixp[0];
7745 }
7746 else if (reloc_needs_lo_p (*reloc_type))
7747 {
7748 struct mips_hi_fixup *hi_fixup;
7749
7750 /* Reuse the last entry if it already has a matching %lo. */
7751 hi_fixup = mips_hi_fixup_list;
7752 if (hi_fixup == 0
7753 || !fixup_has_matching_lo_p (hi_fixup->fixp))
7754 {
7755 hi_fixup = XNEW (struct mips_hi_fixup);
7756 hi_fixup->next = mips_hi_fixup_list;
7757 mips_hi_fixup_list = hi_fixup;
7758 }
7759 hi_fixup->fixp = ip->fixp[0];
7760 hi_fixup->seg = now_seg;
7761 }
7762
7763 /* Add fixups for the second and third relocations, if given.
7764 Note that the ABI allows the second relocation to be
7765 against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
7766 moment we only use RSS_UNDEF, but we could add support
7767 for the others if it ever becomes necessary. */
7768 for (i = 1; i < 3; i++)
7769 if (reloc_type[i] != BFD_RELOC_UNUSED)
7770 {
7771 ip->fixp[i] = fix_new (ip->frag, ip->where,
7772 ip->fixp[0]->fx_size, NULL, 0,
7773 FALSE, final_type[i]);
7774
7775 /* Use fx_tcbit to mark compound relocs. */
7776 ip->fixp[0]->fx_tcbit = 1;
7777 ip->fixp[i]->fx_tcbit = 1;
7778 }
7779 }
7780
7781 /* Update the register mask information. */
7782 mips_gprmask |= gpr_read_mask (ip) | gpr_write_mask (ip);
7783 mips_cprmask[1] |= fpr_read_mask (ip) | fpr_write_mask (ip);
7784
7785 switch (method)
7786 {
7787 case APPEND_ADD:
7788 insert_into_history (0, 1, ip);
7789 break;
7790
7791 case APPEND_ADD_WITH_NOP:
7792 {
7793 struct mips_cl_insn *nop;
7794
7795 insert_into_history (0, 1, ip);
7796 nop = get_delay_slot_nop (ip);
7797 add_fixed_insn (nop);
7798 insert_into_history (0, 1, nop);
7799 if (mips_relax.sequence)
7800 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (nop);
7801 }
7802 break;
7803
7804 case APPEND_ADD_COMPACT:
7805 /* Convert MIPS16 jr/jalr into a "compact" jump. */
7806 if (mips_opts.mips16)
7807 {
7808 ip->insn_opcode |= 0x0080;
7809 find_altered_mips16_opcode (ip);
7810 }
7811 /* Convert microMIPS instructions. */
7812 else if (mips_opts.micromips)
7813 {
7814 /* jr16->jrc */
7815 if ((ip->insn_opcode & 0xffe0) == 0x4580)
7816 ip->insn_opcode |= 0x0020;
7817 /* b16->bc */
7818 else if ((ip->insn_opcode & 0xfc00) == 0xcc00)
7819 ip->insn_opcode = 0x40e00000;
7820 /* beqz16->beqzc, bnez16->bnezc */
7821 else if ((ip->insn_opcode & 0xdc00) == 0x8c00)
7822 {
7823 unsigned long regno;
7824
7825 regno = ip->insn_opcode >> MICROMIPSOP_SH_MD;
7826 regno &= MICROMIPSOP_MASK_MD;
7827 regno = micromips_to_32_reg_d_map[regno];
7828 ip->insn_opcode = (((ip->insn_opcode << 9) & 0x00400000)
7829 | (regno << MICROMIPSOP_SH_RS)
7830 | 0x40a00000) ^ 0x00400000;
7831 }
7832 /* beqz->beqzc, bnez->bnezc */
7833 else if ((ip->insn_opcode & 0xdfe00000) == 0x94000000)
7834 ip->insn_opcode = ((ip->insn_opcode & 0x001f0000)
7835 | ((ip->insn_opcode >> 7) & 0x00400000)
7836 | 0x40a00000) ^ 0x00400000;
7837 /* beq $0->beqzc, bne $0->bnezc */
7838 else if ((ip->insn_opcode & 0xdc1f0000) == 0x94000000)
7839 ip->insn_opcode = (((ip->insn_opcode >>
7840 (MICROMIPSOP_SH_RT - MICROMIPSOP_SH_RS))
7841 & (MICROMIPSOP_MASK_RS << MICROMIPSOP_SH_RS))
7842 | ((ip->insn_opcode >> 7) & 0x00400000)
7843 | 0x40a00000) ^ 0x00400000;
7844 else
7845 abort ();
7846 find_altered_micromips_opcode (ip);
7847 }
7848 else
7849 abort ();
7850 install_insn (ip);
7851 insert_into_history (0, 1, ip);
7852 break;
7853
7854 case APPEND_SWAP:
7855 {
7856 struct mips_cl_insn delay = history[0];
7857
7858 if (relaxed_branch || delay.frag != ip->frag)
7859 {
7860 /* Add the delay slot instruction to the end of the
7861 current frag and shrink the fixed part of the
7862 original frag. If the branch occupies the tail of
7863 the latter, move it backwards to cover the gap. */
7864 delay.frag->fr_fix -= branch_disp;
7865 if (delay.frag == ip->frag)
7866 move_insn (ip, ip->frag, ip->where - branch_disp);
7867 add_fixed_insn (&delay);
7868 }
7869 else
7870 {
7871 /* If this is not a relaxed branch and we are in the
7872 same frag, then just swap the instructions. */
7873 move_insn (ip, delay.frag, delay.where);
7874 move_insn (&delay, ip->frag, ip->where + insn_length (ip));
7875 }
7876 history[0] = *ip;
7877 delay.fixed_p = 1;
7878 insert_into_history (0, 1, &delay);
7879 }
7880 break;
7881 }
7882
7883 /* If we have just completed an unconditional branch, clear the history. */
7884 if ((delayed_branch_p (&history[1]) && uncond_branch_p (&history[1]))
7885 || (compact_branch_p (&history[0]) && uncond_branch_p (&history[0])))
7886 {
7887 unsigned int i;
7888
7889 mips_no_prev_insn ();
7890
7891 for (i = 0; i < ARRAY_SIZE (history); i++)
7892 history[i].cleared_p = 1;
7893 }
7894
7895 /* We need to emit a label at the end of branch-likely macros. */
7896 if (emit_branch_likely_macro)
7897 {
7898 emit_branch_likely_macro = FALSE;
7899 micromips_add_label ();
7900 }
7901
7902 /* We just output an insn, so the next one doesn't have a label. */
7903 mips_clear_insn_labels ();
7904 }
7905
7906 /* Forget that there was any previous instruction or label.
7907 When BRANCH is true, the branch history is also flushed. */
7908
7909 static void
7910 mips_no_prev_insn (void)
7911 {
7912 prev_nop_frag = NULL;
7913 insert_into_history (0, ARRAY_SIZE (history), NOP_INSN);
7914 mips_clear_insn_labels ();
7915 }
7916
7917 /* This function must be called before we emit something other than
7918 instructions. It is like mips_no_prev_insn except that it inserts
7919 any NOPS that might be needed by previous instructions. */
7920
7921 void
7922 mips_emit_delays (void)
7923 {
7924 if (! mips_opts.noreorder)
7925 {
7926 int nops = nops_for_insn (0, history, NULL);
7927 if (nops > 0)
7928 {
7929 while (nops-- > 0)
7930 add_fixed_insn (NOP_INSN);
7931 mips_move_text_labels ();
7932 }
7933 }
7934 mips_no_prev_insn ();
7935 }
7936
7937 /* Start a (possibly nested) noreorder block. */
7938
7939 static void
7940 start_noreorder (void)
7941 {
7942 if (mips_opts.noreorder == 0)
7943 {
7944 unsigned int i;
7945 int nops;
7946
7947 /* None of the instructions before the .set noreorder can be moved. */
7948 for (i = 0; i < ARRAY_SIZE (history); i++)
7949 history[i].fixed_p = 1;
7950
7951 /* Insert any nops that might be needed between the .set noreorder
7952 block and the previous instructions. We will later remove any
7953 nops that turn out not to be needed. */
7954 nops = nops_for_insn (0, history, NULL);
7955 if (nops > 0)
7956 {
7957 if (mips_optimize != 0)
7958 {
7959 /* Record the frag which holds the nop instructions, so
7960 that we can remove them if we don't need them. */
7961 frag_grow (nops * NOP_INSN_SIZE);
7962 prev_nop_frag = frag_now;
7963 prev_nop_frag_holds = nops;
7964 prev_nop_frag_required = 0;
7965 prev_nop_frag_since = 0;
7966 }
7967
7968 for (; nops > 0; --nops)
7969 add_fixed_insn (NOP_INSN);
7970
7971 /* Move on to a new frag, so that it is safe to simply
7972 decrease the size of prev_nop_frag. */
7973 frag_wane (frag_now);
7974 frag_new (0);
7975 mips_move_text_labels ();
7976 }
7977 mips_mark_labels ();
7978 mips_clear_insn_labels ();
7979 }
7980 mips_opts.noreorder++;
7981 mips_any_noreorder = 1;
7982 }
7983
7984 /* End a nested noreorder block. */
7985
7986 static void
7987 end_noreorder (void)
7988 {
7989 mips_opts.noreorder--;
7990 if (mips_opts.noreorder == 0 && prev_nop_frag != NULL)
7991 {
7992 /* Commit to inserting prev_nop_frag_required nops and go back to
7993 handling nop insertion the .set reorder way. */
7994 prev_nop_frag->fr_fix -= ((prev_nop_frag_holds - prev_nop_frag_required)
7995 * NOP_INSN_SIZE);
7996 insert_into_history (prev_nop_frag_since,
7997 prev_nop_frag_required, NOP_INSN);
7998 prev_nop_frag = NULL;
7999 }
8000 }
8001
8002 /* Sign-extend 32-bit mode constants that have bit 31 set and all
8003 higher bits unset. */
8004
8005 static void
8006 normalize_constant_expr (expressionS *ex)
8007 {
8008 if (ex->X_op == O_constant
8009 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
8010 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
8011 - 0x80000000);
8012 }
8013
8014 /* Sign-extend 32-bit mode address offsets that have bit 31 set and
8015 all higher bits unset. */
8016
8017 static void
8018 normalize_address_expr (expressionS *ex)
8019 {
8020 if (((ex->X_op == O_constant && HAVE_32BIT_ADDRESSES)
8021 || (ex->X_op == O_symbol && HAVE_32BIT_SYMBOLS))
8022 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
8023 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
8024 - 0x80000000);
8025 }
8026
8027 /* Try to match TOKENS against OPCODE, storing the result in INSN.
8028 Return true if the match was successful.
8029
8030 OPCODE_EXTRA is a value that should be ORed into the opcode
8031 (used for VU0 channel suffixes, etc.). MORE_ALTS is true if
8032 there are more alternatives after OPCODE and SOFT_MATCH is
8033 as for mips_arg_info. */
8034
8035 static bfd_boolean
8036 match_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
8037 struct mips_operand_token *tokens, unsigned int opcode_extra,
8038 bfd_boolean lax_match, bfd_boolean complete_p)
8039 {
8040 const char *args;
8041 struct mips_arg_info arg;
8042 const struct mips_operand *operand;
8043 char c;
8044
8045 imm_expr.X_op = O_absent;
8046 offset_expr.X_op = O_absent;
8047 offset_reloc[0] = BFD_RELOC_UNUSED;
8048 offset_reloc[1] = BFD_RELOC_UNUSED;
8049 offset_reloc[2] = BFD_RELOC_UNUSED;
8050
8051 create_insn (insn, opcode);
8052 /* When no opcode suffix is specified, assume ".xyzw". */
8053 if ((opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0 && opcode_extra == 0)
8054 insn->insn_opcode |= 0xf << mips_vu0_channel_mask.lsb;
8055 else
8056 insn->insn_opcode |= opcode_extra;
8057 memset (&arg, 0, sizeof (arg));
8058 arg.insn = insn;
8059 arg.token = tokens;
8060 arg.argnum = 1;
8061 arg.last_regno = ILLEGAL_REG;
8062 arg.dest_regno = ILLEGAL_REG;
8063 arg.lax_match = lax_match;
8064 for (args = opcode->args;; ++args)
8065 {
8066 if (arg.token->type == OT_END)
8067 {
8068 /* Handle unary instructions in which only one operand is given.
8069 The source is then the same as the destination. */
8070 if (arg.opnum == 1 && *args == ',')
8071 {
8072 operand = (mips_opts.micromips
8073 ? decode_micromips_operand (args + 1)
8074 : decode_mips_operand (args + 1));
8075 if (operand && mips_optional_operand_p (operand))
8076 {
8077 arg.token = tokens;
8078 arg.argnum = 1;
8079 continue;
8080 }
8081 }
8082
8083 /* Treat elided base registers as $0. */
8084 if (strcmp (args, "(b)") == 0)
8085 args += 3;
8086
8087 if (args[0] == '+')
8088 switch (args[1])
8089 {
8090 case 'K':
8091 case 'N':
8092 /* The register suffix is optional. */
8093 args += 2;
8094 break;
8095 }
8096
8097 /* Fail the match if there were too few operands. */
8098 if (*args)
8099 return FALSE;
8100
8101 /* Successful match. */
8102 if (!complete_p)
8103 return TRUE;
8104 clear_insn_error ();
8105 if (arg.dest_regno == arg.last_regno
8106 && strncmp (insn->insn_mo->name, "jalr", 4) == 0)
8107 {
8108 if (arg.opnum == 2)
8109 set_insn_error
8110 (0, _("source and destination must be different"));
8111 else if (arg.last_regno == 31)
8112 set_insn_error
8113 (0, _("a destination register must be supplied"));
8114 }
8115 else if (arg.last_regno == 31
8116 && (strncmp (insn->insn_mo->name, "bltzal", 6) == 0
8117 || strncmp (insn->insn_mo->name, "bgezal", 6) == 0))
8118 set_insn_error (0, _("the source register must not be $31"));
8119 check_completed_insn (&arg);
8120 return TRUE;
8121 }
8122
8123 /* Fail the match if the line has too many operands. */
8124 if (*args == 0)
8125 return FALSE;
8126
8127 /* Handle characters that need to match exactly. */
8128 if (*args == '(' || *args == ')' || *args == ',')
8129 {
8130 if (match_char (&arg, *args))
8131 continue;
8132 return FALSE;
8133 }
8134 if (*args == '#')
8135 {
8136 ++args;
8137 if (arg.token->type == OT_DOUBLE_CHAR
8138 && arg.token->u.ch == *args)
8139 {
8140 ++arg.token;
8141 continue;
8142 }
8143 return FALSE;
8144 }
8145
8146 /* Handle special macro operands. Work out the properties of
8147 other operands. */
8148 arg.opnum += 1;
8149 switch (*args)
8150 {
8151 case '-':
8152 switch (args[1])
8153 {
8154 case 'A':
8155 *offset_reloc = BFD_RELOC_MIPS_19_PCREL_S2;
8156 break;
8157
8158 case 'B':
8159 *offset_reloc = BFD_RELOC_MIPS_18_PCREL_S3;
8160 break;
8161 }
8162 break;
8163
8164 case '+':
8165 switch (args[1])
8166 {
8167 case 'i':
8168 *offset_reloc = BFD_RELOC_MIPS_JMP;
8169 break;
8170
8171 case '\'':
8172 *offset_reloc = BFD_RELOC_MIPS_26_PCREL_S2;
8173 break;
8174
8175 case '\"':
8176 *offset_reloc = BFD_RELOC_MIPS_21_PCREL_S2;
8177 break;
8178 }
8179 break;
8180
8181 case 'I':
8182 if (!match_const_int (&arg, &imm_expr.X_add_number))
8183 return FALSE;
8184 imm_expr.X_op = O_constant;
8185 if (GPR_SIZE == 32)
8186 normalize_constant_expr (&imm_expr);
8187 continue;
8188
8189 case 'A':
8190 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
8191 {
8192 /* Assume that the offset has been elided and that what
8193 we saw was a base register. The match will fail later
8194 if that assumption turns out to be wrong. */
8195 offset_expr.X_op = O_constant;
8196 offset_expr.X_add_number = 0;
8197 }
8198 else
8199 {
8200 if (!match_expression (&arg, &offset_expr, offset_reloc))
8201 return FALSE;
8202 normalize_address_expr (&offset_expr);
8203 }
8204 continue;
8205
8206 case 'F':
8207 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
8208 8, TRUE))
8209 return FALSE;
8210 continue;
8211
8212 case 'L':
8213 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
8214 8, FALSE))
8215 return FALSE;
8216 continue;
8217
8218 case 'f':
8219 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
8220 4, TRUE))
8221 return FALSE;
8222 continue;
8223
8224 case 'l':
8225 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
8226 4, FALSE))
8227 return FALSE;
8228 continue;
8229
8230 case 'p':
8231 *offset_reloc = BFD_RELOC_16_PCREL_S2;
8232 break;
8233
8234 case 'a':
8235 *offset_reloc = BFD_RELOC_MIPS_JMP;
8236 break;
8237
8238 case 'm':
8239 gas_assert (mips_opts.micromips);
8240 c = args[1];
8241 switch (c)
8242 {
8243 case 'D':
8244 case 'E':
8245 if (!forced_insn_length)
8246 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
8247 else if (c == 'D')
8248 *offset_reloc = BFD_RELOC_MICROMIPS_10_PCREL_S1;
8249 else
8250 *offset_reloc = BFD_RELOC_MICROMIPS_7_PCREL_S1;
8251 break;
8252 }
8253 break;
8254 }
8255
8256 operand = (mips_opts.micromips
8257 ? decode_micromips_operand (args)
8258 : decode_mips_operand (args));
8259 if (!operand)
8260 abort ();
8261
8262 /* Skip prefixes. */
8263 if (*args == '+' || *args == 'm' || *args == '-')
8264 args++;
8265
8266 if (mips_optional_operand_p (operand)
8267 && args[1] == ','
8268 && (arg.token[0].type != OT_REG
8269 || arg.token[1].type == OT_END))
8270 {
8271 /* Assume that the register has been elided and is the
8272 same as the first operand. */
8273 arg.token = tokens;
8274 arg.argnum = 1;
8275 }
8276
8277 if (!match_operand (&arg, operand))
8278 return FALSE;
8279 }
8280 }
8281
8282 /* Like match_insn, but for MIPS16. */
8283
8284 static bfd_boolean
8285 match_mips16_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
8286 struct mips_operand_token *tokens)
8287 {
8288 const char *args;
8289 const struct mips_operand *operand;
8290 const struct mips_operand *ext_operand;
8291 bfd_boolean pcrel = FALSE;
8292 int required_insn_length;
8293 struct mips_arg_info arg;
8294 int relax_char;
8295
8296 if (forced_insn_length)
8297 required_insn_length = forced_insn_length;
8298 else if (mips_opts.noautoextend && !mips_opcode_32bit_p (opcode))
8299 required_insn_length = 2;
8300 else
8301 required_insn_length = 0;
8302
8303 create_insn (insn, opcode);
8304 imm_expr.X_op = O_absent;
8305 offset_expr.X_op = O_absent;
8306 offset_reloc[0] = BFD_RELOC_UNUSED;
8307 offset_reloc[1] = BFD_RELOC_UNUSED;
8308 offset_reloc[2] = BFD_RELOC_UNUSED;
8309 relax_char = 0;
8310
8311 memset (&arg, 0, sizeof (arg));
8312 arg.insn = insn;
8313 arg.token = tokens;
8314 arg.argnum = 1;
8315 arg.last_regno = ILLEGAL_REG;
8316 arg.dest_regno = ILLEGAL_REG;
8317 relax_char = 0;
8318 for (args = opcode->args;; ++args)
8319 {
8320 int c;
8321
8322 if (arg.token->type == OT_END)
8323 {
8324 offsetT value;
8325
8326 /* Handle unary instructions in which only one operand is given.
8327 The source is then the same as the destination. */
8328 if (arg.opnum == 1 && *args == ',')
8329 {
8330 operand = decode_mips16_operand (args[1], FALSE);
8331 if (operand && mips_optional_operand_p (operand))
8332 {
8333 arg.token = tokens;
8334 arg.argnum = 1;
8335 continue;
8336 }
8337 }
8338
8339 /* Fail the match if there were too few operands. */
8340 if (*args)
8341 return FALSE;
8342
8343 /* Successful match. Stuff the immediate value in now, if
8344 we can. */
8345 clear_insn_error ();
8346 if (opcode->pinfo == INSN_MACRO)
8347 {
8348 gas_assert (relax_char == 0 || relax_char == 'p');
8349 gas_assert (*offset_reloc == BFD_RELOC_UNUSED);
8350 }
8351 else if (relax_char
8352 && offset_expr.X_op == O_constant
8353 && !pcrel
8354 && calculate_reloc (*offset_reloc,
8355 offset_expr.X_add_number,
8356 &value))
8357 {
8358 mips16_immed (NULL, 0, relax_char, *offset_reloc, value,
8359 required_insn_length, &insn->insn_opcode);
8360 offset_expr.X_op = O_absent;
8361 *offset_reloc = BFD_RELOC_UNUSED;
8362 }
8363 else if (relax_char && *offset_reloc != BFD_RELOC_UNUSED)
8364 {
8365 if (required_insn_length == 2)
8366 set_insn_error (0, _("invalid unextended operand value"));
8367 else if (!mips_opcode_32bit_p (opcode))
8368 {
8369 forced_insn_length = 4;
8370 insn->insn_opcode |= MIPS16_EXTEND;
8371 }
8372 }
8373 else if (relax_char)
8374 *offset_reloc = (int) BFD_RELOC_UNUSED + relax_char;
8375
8376 check_completed_insn (&arg);
8377 return TRUE;
8378 }
8379
8380 /* Fail the match if the line has too many operands. */
8381 if (*args == 0)
8382 return FALSE;
8383
8384 /* Handle characters that need to match exactly. */
8385 if (*args == '(' || *args == ')' || *args == ',')
8386 {
8387 if (match_char (&arg, *args))
8388 continue;
8389 return FALSE;
8390 }
8391
8392 arg.opnum += 1;
8393 c = *args;
8394 switch (c)
8395 {
8396 case 'p':
8397 case 'q':
8398 case 'A':
8399 case 'B':
8400 case 'E':
8401 case 'V':
8402 case 'u':
8403 relax_char = c;
8404 break;
8405
8406 case 'I':
8407 if (!match_const_int (&arg, &imm_expr.X_add_number))
8408 return FALSE;
8409 imm_expr.X_op = O_constant;
8410 if (GPR_SIZE == 32)
8411 normalize_constant_expr (&imm_expr);
8412 continue;
8413
8414 case 'a':
8415 case 'i':
8416 *offset_reloc = BFD_RELOC_MIPS16_JMP;
8417 break;
8418 }
8419
8420 operand = decode_mips16_operand (c, mips_opcode_32bit_p (opcode));
8421 if (!operand)
8422 abort ();
8423
8424 if (operand->type == OP_PCREL)
8425 pcrel = TRUE;
8426 else
8427 {
8428 ext_operand = decode_mips16_operand (c, TRUE);
8429 if (operand != ext_operand)
8430 {
8431 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
8432 {
8433 offset_expr.X_op = O_constant;
8434 offset_expr.X_add_number = 0;
8435 relax_char = c;
8436 continue;
8437 }
8438
8439 if (!match_expression (&arg, &offset_expr, offset_reloc))
8440 return FALSE;
8441
8442 /* '8' is used for SLTI(U) and has traditionally not
8443 been allowed to take relocation operators. */
8444 if (offset_reloc[0] != BFD_RELOC_UNUSED
8445 && (ext_operand->size != 16 || c == '8'))
8446 {
8447 match_not_constant (&arg);
8448 return FALSE;
8449 }
8450
8451 if (offset_expr.X_op == O_big)
8452 {
8453 match_out_of_range (&arg);
8454 return FALSE;
8455 }
8456
8457 relax_char = c;
8458 continue;
8459 }
8460 }
8461
8462 if (mips_optional_operand_p (operand)
8463 && args[1] == ','
8464 && (arg.token[0].type != OT_REG
8465 || arg.token[1].type == OT_END))
8466 {
8467 /* Assume that the register has been elided and is the
8468 same as the first operand. */
8469 arg.token = tokens;
8470 arg.argnum = 1;
8471 }
8472
8473 if (!match_operand (&arg, operand))
8474 return FALSE;
8475 }
8476 }
8477
8478 /* Record that the current instruction is invalid for the current ISA. */
8479
8480 static void
8481 match_invalid_for_isa (void)
8482 {
8483 set_insn_error_ss
8484 (0, _("opcode not supported on this processor: %s (%s)"),
8485 mips_cpu_info_from_arch (mips_opts.arch)->name,
8486 mips_cpu_info_from_isa (mips_opts.isa)->name);
8487 }
8488
8489 /* Try to match TOKENS against a series of opcode entries, starting at FIRST.
8490 Return true if a definite match or failure was found, storing any match
8491 in INSN. OPCODE_EXTRA is a value that should be ORed into the opcode
8492 (to handle things like VU0 suffixes). LAX_MATCH is true if we have already
8493 tried and failed to match under normal conditions and now want to try a
8494 more relaxed match. */
8495
8496 static bfd_boolean
8497 match_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8498 const struct mips_opcode *past, struct mips_operand_token *tokens,
8499 int opcode_extra, bfd_boolean lax_match)
8500 {
8501 const struct mips_opcode *opcode;
8502 const struct mips_opcode *invalid_delay_slot;
8503 bfd_boolean seen_valid_for_isa, seen_valid_for_size;
8504
8505 /* Search for a match, ignoring alternatives that don't satisfy the
8506 current ISA or forced_length. */
8507 invalid_delay_slot = 0;
8508 seen_valid_for_isa = FALSE;
8509 seen_valid_for_size = FALSE;
8510 opcode = first;
8511 do
8512 {
8513 gas_assert (strcmp (opcode->name, first->name) == 0);
8514 if (is_opcode_valid (opcode))
8515 {
8516 seen_valid_for_isa = TRUE;
8517 if (is_size_valid (opcode))
8518 {
8519 bfd_boolean delay_slot_ok;
8520
8521 seen_valid_for_size = TRUE;
8522 delay_slot_ok = is_delay_slot_valid (opcode);
8523 if (match_insn (insn, opcode, tokens, opcode_extra,
8524 lax_match, delay_slot_ok))
8525 {
8526 if (!delay_slot_ok)
8527 {
8528 if (!invalid_delay_slot)
8529 invalid_delay_slot = opcode;
8530 }
8531 else
8532 return TRUE;
8533 }
8534 }
8535 }
8536 ++opcode;
8537 }
8538 while (opcode < past && strcmp (opcode->name, first->name) == 0);
8539
8540 /* If the only matches we found had the wrong length for the delay slot,
8541 pick the first such match. We'll issue an appropriate warning later. */
8542 if (invalid_delay_slot)
8543 {
8544 if (match_insn (insn, invalid_delay_slot, tokens, opcode_extra,
8545 lax_match, TRUE))
8546 return TRUE;
8547 abort ();
8548 }
8549
8550 /* Handle the case where we didn't try to match an instruction because
8551 all the alternatives were incompatible with the current ISA. */
8552 if (!seen_valid_for_isa)
8553 {
8554 match_invalid_for_isa ();
8555 return TRUE;
8556 }
8557
8558 /* Handle the case where we didn't try to match an instruction because
8559 all the alternatives were of the wrong size. */
8560 if (!seen_valid_for_size)
8561 {
8562 if (mips_opts.insn32)
8563 set_insn_error (0, _("opcode not supported in the `insn32' mode"));
8564 else
8565 set_insn_error_i
8566 (0, _("unrecognized %d-bit version of microMIPS opcode"),
8567 8 * forced_insn_length);
8568 return TRUE;
8569 }
8570
8571 return FALSE;
8572 }
8573
8574 /* Like match_insns, but for MIPS16. */
8575
8576 static bfd_boolean
8577 match_mips16_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8578 struct mips_operand_token *tokens)
8579 {
8580 const struct mips_opcode *opcode;
8581 bfd_boolean seen_valid_for_isa;
8582 bfd_boolean seen_valid_for_size;
8583
8584 /* Search for a match, ignoring alternatives that don't satisfy the
8585 current ISA. There are no separate entries for extended forms so
8586 we deal with forced_length later. */
8587 seen_valid_for_isa = FALSE;
8588 seen_valid_for_size = FALSE;
8589 opcode = first;
8590 do
8591 {
8592 gas_assert (strcmp (opcode->name, first->name) == 0);
8593 if (is_opcode_valid_16 (opcode))
8594 {
8595 seen_valid_for_isa = TRUE;
8596 if (is_size_valid_16 (opcode))
8597 {
8598 seen_valid_for_size = TRUE;
8599 if (match_mips16_insn (insn, opcode, tokens))
8600 return TRUE;
8601 }
8602 }
8603 ++opcode;
8604 }
8605 while (opcode < &mips16_opcodes[bfd_mips16_num_opcodes]
8606 && strcmp (opcode->name, first->name) == 0);
8607
8608 /* Handle the case where we didn't try to match an instruction because
8609 all the alternatives were incompatible with the current ISA. */
8610 if (!seen_valid_for_isa)
8611 {
8612 match_invalid_for_isa ();
8613 return TRUE;
8614 }
8615
8616 /* Handle the case where we didn't try to match an instruction because
8617 all the alternatives were of the wrong size. */
8618 if (!seen_valid_for_size)
8619 {
8620 if (forced_insn_length == 2)
8621 set_insn_error
8622 (0, _("unrecognized unextended version of MIPS16 opcode"));
8623 else
8624 set_insn_error
8625 (0, _("unrecognized extended version of MIPS16 opcode"));
8626 return TRUE;
8627 }
8628
8629 return FALSE;
8630 }
8631
8632 /* Set up global variables for the start of a new macro. */
8633
8634 static void
8635 macro_start (void)
8636 {
8637 memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes));
8638 memset (&mips_macro_warning.first_insn_sizes, 0,
8639 sizeof (mips_macro_warning.first_insn_sizes));
8640 memset (&mips_macro_warning.insns, 0, sizeof (mips_macro_warning.insns));
8641 mips_macro_warning.delay_slot_p = (mips_opts.noreorder
8642 && delayed_branch_p (&history[0]));
8643 if (history[0].frag
8644 && history[0].frag->fr_type == rs_machine_dependent
8645 && RELAX_MICROMIPS_P (history[0].frag->fr_subtype)
8646 && RELAX_MICROMIPS_NODS (history[0].frag->fr_subtype))
8647 mips_macro_warning.delay_slot_length = 0;
8648 else
8649 switch (history[0].insn_mo->pinfo2
8650 & (INSN2_BRANCH_DELAY_32BIT | INSN2_BRANCH_DELAY_16BIT))
8651 {
8652 case INSN2_BRANCH_DELAY_32BIT:
8653 mips_macro_warning.delay_slot_length = 4;
8654 break;
8655 case INSN2_BRANCH_DELAY_16BIT:
8656 mips_macro_warning.delay_slot_length = 2;
8657 break;
8658 default:
8659 mips_macro_warning.delay_slot_length = 0;
8660 break;
8661 }
8662 mips_macro_warning.first_frag = NULL;
8663 }
8664
8665 /* Given that a macro is longer than one instruction or of the wrong size,
8666 return the appropriate warning for it. Return null if no warning is
8667 needed. SUBTYPE is a bitmask of RELAX_DELAY_SLOT, RELAX_DELAY_SLOT_16BIT,
8668 RELAX_DELAY_SLOT_SIZE_FIRST, RELAX_DELAY_SLOT_SIZE_SECOND,
8669 and RELAX_NOMACRO. */
8670
8671 static const char *
8672 macro_warning (relax_substateT subtype)
8673 {
8674 if (subtype & RELAX_DELAY_SLOT)
8675 return _("macro instruction expanded into multiple instructions"
8676 " in a branch delay slot");
8677 else if (subtype & RELAX_NOMACRO)
8678 return _("macro instruction expanded into multiple instructions");
8679 else if (subtype & (RELAX_DELAY_SLOT_SIZE_FIRST
8680 | RELAX_DELAY_SLOT_SIZE_SECOND))
8681 return ((subtype & RELAX_DELAY_SLOT_16BIT)
8682 ? _("macro instruction expanded into a wrong size instruction"
8683 " in a 16-bit branch delay slot")
8684 : _("macro instruction expanded into a wrong size instruction"
8685 " in a 32-bit branch delay slot"));
8686 else
8687 return 0;
8688 }
8689
8690 /* Finish up a macro. Emit warnings as appropriate. */
8691
8692 static void
8693 macro_end (void)
8694 {
8695 /* Relaxation warning flags. */
8696 relax_substateT subtype = 0;
8697
8698 /* Check delay slot size requirements. */
8699 if (mips_macro_warning.delay_slot_length == 2)
8700 subtype |= RELAX_DELAY_SLOT_16BIT;
8701 if (mips_macro_warning.delay_slot_length != 0)
8702 {
8703 if (mips_macro_warning.delay_slot_length
8704 != mips_macro_warning.first_insn_sizes[0])
8705 subtype |= RELAX_DELAY_SLOT_SIZE_FIRST;
8706 if (mips_macro_warning.delay_slot_length
8707 != mips_macro_warning.first_insn_sizes[1])
8708 subtype |= RELAX_DELAY_SLOT_SIZE_SECOND;
8709 }
8710
8711 /* Check instruction count requirements. */
8712 if (mips_macro_warning.insns[0] > 1 || mips_macro_warning.insns[1] > 1)
8713 {
8714 if (mips_macro_warning.insns[1] > mips_macro_warning.insns[0])
8715 subtype |= RELAX_SECOND_LONGER;
8716 if (mips_opts.warn_about_macros)
8717 subtype |= RELAX_NOMACRO;
8718 if (mips_macro_warning.delay_slot_p)
8719 subtype |= RELAX_DELAY_SLOT;
8720 }
8721
8722 /* If both alternatives fail to fill a delay slot correctly,
8723 emit the warning now. */
8724 if ((subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0
8725 && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0)
8726 {
8727 relax_substateT s;
8728 const char *msg;
8729
8730 s = subtype & (RELAX_DELAY_SLOT_16BIT
8731 | RELAX_DELAY_SLOT_SIZE_FIRST
8732 | RELAX_DELAY_SLOT_SIZE_SECOND);
8733 msg = macro_warning (s);
8734 if (msg != NULL)
8735 as_warn ("%s", msg);
8736 subtype &= ~s;
8737 }
8738
8739 /* If both implementations are longer than 1 instruction, then emit the
8740 warning now. */
8741 if (mips_macro_warning.insns[0] > 1 && mips_macro_warning.insns[1] > 1)
8742 {
8743 relax_substateT s;
8744 const char *msg;
8745
8746 s = subtype & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT);
8747 msg = macro_warning (s);
8748 if (msg != NULL)
8749 as_warn ("%s", msg);
8750 subtype &= ~s;
8751 }
8752
8753 /* If any flags still set, then one implementation might need a warning
8754 and the other either will need one of a different kind or none at all.
8755 Pass any remaining flags over to relaxation. */
8756 if (mips_macro_warning.first_frag != NULL)
8757 mips_macro_warning.first_frag->fr_subtype |= subtype;
8758 }
8759
8760 /* Instruction operand formats used in macros that vary between
8761 standard MIPS and microMIPS code. */
8762
8763 static const char * const brk_fmt[2][2] = { { "c", "c" }, { "mF", "c" } };
8764 static const char * const cop12_fmt[2] = { "E,o(b)", "E,~(b)" };
8765 static const char * const jalr_fmt[2] = { "d,s", "t,s" };
8766 static const char * const lui_fmt[2] = { "t,u", "s,u" };
8767 static const char * const mem12_fmt[2] = { "t,o(b)", "t,~(b)" };
8768 static const char * const mfhl_fmt[2][2] = { { "d", "d" }, { "mj", "s" } };
8769 static const char * const shft_fmt[2] = { "d,w,<", "t,r,<" };
8770 static const char * const trap_fmt[2] = { "s,t,q", "s,t,|" };
8771
8772 #define BRK_FMT (brk_fmt[mips_opts.micromips][mips_opts.insn32])
8773 #define COP12_FMT (ISA_IS_R6 (mips_opts.isa) ? "E,+:(d)" \
8774 : cop12_fmt[mips_opts.micromips])
8775 #define JALR_FMT (jalr_fmt[mips_opts.micromips])
8776 #define LUI_FMT (lui_fmt[mips_opts.micromips])
8777 #define MEM12_FMT (mem12_fmt[mips_opts.micromips])
8778 #define LL_SC_FMT (ISA_IS_R6 (mips_opts.isa) ? "t,+j(b)" \
8779 : mem12_fmt[mips_opts.micromips])
8780 #define MFHL_FMT (mfhl_fmt[mips_opts.micromips][mips_opts.insn32])
8781 #define SHFT_FMT (shft_fmt[mips_opts.micromips])
8782 #define TRAP_FMT (trap_fmt[mips_opts.micromips])
8783
8784 /* Read a macro's relocation codes from *ARGS and store them in *R.
8785 The first argument in *ARGS will be either the code for a single
8786 relocation or -1 followed by the three codes that make up a
8787 composite relocation. */
8788
8789 static void
8790 macro_read_relocs (va_list *args, bfd_reloc_code_real_type *r)
8791 {
8792 int i, next;
8793
8794 next = va_arg (*args, int);
8795 if (next >= 0)
8796 r[0] = (bfd_reloc_code_real_type) next;
8797 else
8798 {
8799 for (i = 0; i < 3; i++)
8800 r[i] = (bfd_reloc_code_real_type) va_arg (*args, int);
8801 /* This function is only used for 16-bit relocation fields.
8802 To make the macro code simpler, treat an unrelocated value
8803 in the same way as BFD_RELOC_LO16. */
8804 if (r[0] == BFD_RELOC_UNUSED)
8805 r[0] = BFD_RELOC_LO16;
8806 }
8807 }
8808
8809 /* Build an instruction created by a macro expansion. This is passed
8810 a pointer to the count of instructions created so far, an
8811 expression, the name of the instruction to build, an operand format
8812 string, and corresponding arguments. */
8813
8814 static void
8815 macro_build (expressionS *ep, const char *name, const char *fmt, ...)
8816 {
8817 const struct mips_opcode *mo = NULL;
8818 bfd_reloc_code_real_type r[3];
8819 const struct mips_opcode *amo;
8820 const struct mips_operand *operand;
8821 struct hash_control *hash;
8822 struct mips_cl_insn insn;
8823 va_list args;
8824 unsigned int uval;
8825
8826 va_start (args, fmt);
8827
8828 if (mips_opts.mips16)
8829 {
8830 mips16_macro_build (ep, name, fmt, &args);
8831 va_end (args);
8832 return;
8833 }
8834
8835 r[0] = BFD_RELOC_UNUSED;
8836 r[1] = BFD_RELOC_UNUSED;
8837 r[2] = BFD_RELOC_UNUSED;
8838 hash = mips_opts.micromips ? micromips_op_hash : op_hash;
8839 amo = (struct mips_opcode *) hash_find (hash, name);
8840 gas_assert (amo);
8841 gas_assert (strcmp (name, amo->name) == 0);
8842
8843 do
8844 {
8845 /* Search until we get a match for NAME. It is assumed here that
8846 macros will never generate MDMX, MIPS-3D, or MT instructions.
8847 We try to match an instruction that fulfills the branch delay
8848 slot instruction length requirement (if any) of the previous
8849 instruction. While doing this we record the first instruction
8850 seen that matches all the other conditions and use it anyway
8851 if the requirement cannot be met; we will issue an appropriate
8852 warning later on. */
8853 if (strcmp (fmt, amo->args) == 0
8854 && amo->pinfo != INSN_MACRO
8855 && is_opcode_valid (amo)
8856 && is_size_valid (amo))
8857 {
8858 if (is_delay_slot_valid (amo))
8859 {
8860 mo = amo;
8861 break;
8862 }
8863 else if (!mo)
8864 mo = amo;
8865 }
8866
8867 ++amo;
8868 gas_assert (amo->name);
8869 }
8870 while (strcmp (name, amo->name) == 0);
8871
8872 gas_assert (mo);
8873 create_insn (&insn, mo);
8874 for (; *fmt; ++fmt)
8875 {
8876 switch (*fmt)
8877 {
8878 case ',':
8879 case '(':
8880 case ')':
8881 case 'z':
8882 break;
8883
8884 case 'i':
8885 case 'j':
8886 macro_read_relocs (&args, r);
8887 gas_assert (*r == BFD_RELOC_GPREL16
8888 || *r == BFD_RELOC_MIPS_HIGHER
8889 || *r == BFD_RELOC_HI16_S
8890 || *r == BFD_RELOC_LO16
8891 || *r == BFD_RELOC_MIPS_GOT_OFST
8892 || (mips_opts.micromips
8893 && (*r == BFD_RELOC_16
8894 || *r == BFD_RELOC_MIPS_GOT16
8895 || *r == BFD_RELOC_MIPS_CALL16
8896 || *r == BFD_RELOC_MIPS_GOT_HI16
8897 || *r == BFD_RELOC_MIPS_GOT_LO16
8898 || *r == BFD_RELOC_MIPS_CALL_HI16
8899 || *r == BFD_RELOC_MIPS_CALL_LO16
8900 || *r == BFD_RELOC_MIPS_SUB
8901 || *r == BFD_RELOC_MIPS_GOT_PAGE
8902 || *r == BFD_RELOC_MIPS_HIGHEST
8903 || *r == BFD_RELOC_MIPS_GOT_DISP
8904 || *r == BFD_RELOC_MIPS_TLS_GD
8905 || *r == BFD_RELOC_MIPS_TLS_LDM
8906 || *r == BFD_RELOC_MIPS_TLS_DTPREL_HI16
8907 || *r == BFD_RELOC_MIPS_TLS_DTPREL_LO16
8908 || *r == BFD_RELOC_MIPS_TLS_GOTTPREL
8909 || *r == BFD_RELOC_MIPS_TLS_TPREL_HI16
8910 || *r == BFD_RELOC_MIPS_TLS_TPREL_LO16)));
8911 break;
8912
8913 case 'o':
8914 macro_read_relocs (&args, r);
8915 break;
8916
8917 case 'u':
8918 macro_read_relocs (&args, r);
8919 gas_assert (ep != NULL
8920 && (ep->X_op == O_constant
8921 || (ep->X_op == O_symbol
8922 && (*r == BFD_RELOC_MIPS_HIGHEST
8923 || *r == BFD_RELOC_HI16_S
8924 || *r == BFD_RELOC_HI16
8925 || *r == BFD_RELOC_GPREL16
8926 || *r == BFD_RELOC_MIPS_GOT_HI16
8927 || *r == BFD_RELOC_MIPS_CALL_HI16))));
8928 break;
8929
8930 case 'p':
8931 gas_assert (ep != NULL);
8932
8933 /*
8934 * This allows macro() to pass an immediate expression for
8935 * creating short branches without creating a symbol.
8936 *
8937 * We don't allow branch relaxation for these branches, as
8938 * they should only appear in ".set nomacro" anyway.
8939 */
8940 if (ep->X_op == O_constant)
8941 {
8942 /* For microMIPS we always use relocations for branches.
8943 So we should not resolve immediate values. */
8944 gas_assert (!mips_opts.micromips);
8945
8946 if ((ep->X_add_number & 3) != 0)
8947 as_bad (_("branch to misaligned address (0x%lx)"),
8948 (unsigned long) ep->X_add_number);
8949 if ((ep->X_add_number + 0x20000) & ~0x3ffff)
8950 as_bad (_("branch address range overflow (0x%lx)"),
8951 (unsigned long) ep->X_add_number);
8952 insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
8953 ep = NULL;
8954 }
8955 else
8956 *r = BFD_RELOC_16_PCREL_S2;
8957 break;
8958
8959 case 'a':
8960 gas_assert (ep != NULL);
8961 *r = BFD_RELOC_MIPS_JMP;
8962 break;
8963
8964 default:
8965 operand = (mips_opts.micromips
8966 ? decode_micromips_operand (fmt)
8967 : decode_mips_operand (fmt));
8968 if (!operand)
8969 abort ();
8970
8971 uval = va_arg (args, int);
8972 if (operand->type == OP_CLO_CLZ_DEST)
8973 uval |= (uval << 5);
8974 insn_insert_operand (&insn, operand, uval);
8975
8976 if (*fmt == '+' || *fmt == 'm' || *fmt == '-')
8977 ++fmt;
8978 break;
8979 }
8980 }
8981 va_end (args);
8982 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
8983
8984 append_insn (&insn, ep, r, TRUE);
8985 }
8986
8987 static void
8988 mips16_macro_build (expressionS *ep, const char *name, const char *fmt,
8989 va_list *args)
8990 {
8991 struct mips_opcode *mo;
8992 struct mips_cl_insn insn;
8993 const struct mips_operand *operand;
8994 bfd_reloc_code_real_type r[3]
8995 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
8996
8997 mo = (struct mips_opcode *) hash_find (mips16_op_hash, name);
8998 gas_assert (mo);
8999 gas_assert (strcmp (name, mo->name) == 0);
9000
9001 while (strcmp (fmt, mo->args) != 0 || mo->pinfo == INSN_MACRO)
9002 {
9003 ++mo;
9004 gas_assert (mo->name);
9005 gas_assert (strcmp (name, mo->name) == 0);
9006 }
9007
9008 create_insn (&insn, mo);
9009 for (; *fmt; ++fmt)
9010 {
9011 int c;
9012
9013 c = *fmt;
9014 switch (c)
9015 {
9016 case ',':
9017 case '(':
9018 case ')':
9019 break;
9020
9021 case '.':
9022 case 'S':
9023 case 'P':
9024 case 'R':
9025 break;
9026
9027 case '<':
9028 case '5':
9029 case 'F':
9030 case 'H':
9031 case 'W':
9032 case 'D':
9033 case 'j':
9034 case '8':
9035 case 'V':
9036 case 'C':
9037 case 'U':
9038 case 'k':
9039 case 'K':
9040 case 'p':
9041 case 'q':
9042 {
9043 offsetT value;
9044
9045 gas_assert (ep != NULL);
9046
9047 if (ep->X_op != O_constant)
9048 *r = (int) BFD_RELOC_UNUSED + c;
9049 else if (calculate_reloc (*r, ep->X_add_number, &value))
9050 {
9051 mips16_immed (NULL, 0, c, *r, value, 0, &insn.insn_opcode);
9052 ep = NULL;
9053 *r = BFD_RELOC_UNUSED;
9054 }
9055 }
9056 break;
9057
9058 default:
9059 operand = decode_mips16_operand (c, FALSE);
9060 if (!operand)
9061 abort ();
9062
9063 insn_insert_operand (&insn, operand, va_arg (*args, int));
9064 break;
9065 }
9066 }
9067
9068 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
9069
9070 append_insn (&insn, ep, r, TRUE);
9071 }
9072
9073 /*
9074 * Generate a "jalr" instruction with a relocation hint to the called
9075 * function. This occurs in NewABI PIC code.
9076 */
9077 static void
9078 macro_build_jalr (expressionS *ep, int cprestore)
9079 {
9080 static const bfd_reloc_code_real_type jalr_relocs[2]
9081 = { BFD_RELOC_MIPS_JALR, BFD_RELOC_MICROMIPS_JALR };
9082 bfd_reloc_code_real_type jalr_reloc = jalr_relocs[mips_opts.micromips];
9083 const char *jalr;
9084 char *f = NULL;
9085
9086 if (MIPS_JALR_HINT_P (ep))
9087 {
9088 frag_grow (8);
9089 f = frag_more (0);
9090 }
9091 if (mips_opts.micromips)
9092 {
9093 jalr = ((mips_opts.noreorder && !cprestore) || mips_opts.insn32
9094 ? "jalr" : "jalrs");
9095 if (MIPS_JALR_HINT_P (ep)
9096 || mips_opts.insn32
9097 || (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
9098 macro_build (NULL, jalr, "t,s", RA, PIC_CALL_REG);
9099 else
9100 macro_build (NULL, jalr, "mj", PIC_CALL_REG);
9101 }
9102 else
9103 macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG);
9104 if (MIPS_JALR_HINT_P (ep))
9105 fix_new_exp (frag_now, f - frag_now->fr_literal, 4, ep, FALSE, jalr_reloc);
9106 }
9107
9108 /*
9109 * Generate a "lui" instruction.
9110 */
9111 static void
9112 macro_build_lui (expressionS *ep, int regnum)
9113 {
9114 gas_assert (! mips_opts.mips16);
9115
9116 if (ep->X_op != O_constant)
9117 {
9118 gas_assert (ep->X_op == O_symbol);
9119 /* _gp_disp is a special case, used from s_cpload.
9120 __gnu_local_gp is used if mips_no_shared. */
9121 gas_assert (mips_pic == NO_PIC
9122 || (! HAVE_NEWABI
9123 && strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0)
9124 || (! mips_in_shared
9125 && strcmp (S_GET_NAME (ep->X_add_symbol),
9126 "__gnu_local_gp") == 0));
9127 }
9128
9129 macro_build (ep, "lui", LUI_FMT, regnum, BFD_RELOC_HI16_S);
9130 }
9131
9132 /* Generate a sequence of instructions to do a load or store from a constant
9133 offset off of a base register (breg) into/from a target register (treg),
9134 using AT if necessary. */
9135 static void
9136 macro_build_ldst_constoffset (expressionS *ep, const char *op,
9137 int treg, int breg, int dbl)
9138 {
9139 gas_assert (ep->X_op == O_constant);
9140
9141 /* Sign-extending 32-bit constants makes their handling easier. */
9142 if (!dbl)
9143 normalize_constant_expr (ep);
9144
9145 /* Right now, this routine can only handle signed 32-bit constants. */
9146 if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000))
9147 as_warn (_("operand overflow"));
9148
9149 if (IS_SEXT_16BIT_NUM(ep->X_add_number))
9150 {
9151 /* Signed 16-bit offset will fit in the op. Easy! */
9152 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg);
9153 }
9154 else
9155 {
9156 /* 32-bit offset, need multiple instructions and AT, like:
9157 lui $tempreg,const_hi (BFD_RELOC_HI16_S)
9158 addu $tempreg,$tempreg,$breg
9159 <op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
9160 to handle the complete offset. */
9161 macro_build_lui (ep, AT);
9162 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
9163 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT);
9164
9165 if (!mips_opts.at)
9166 as_bad (_("macro used $at after \".set noat\""));
9167 }
9168 }
9169
9170 /* set_at()
9171 * Generates code to set the $at register to true (one)
9172 * if reg is less than the immediate expression.
9173 */
9174 static void
9175 set_at (int reg, int unsignedp)
9176 {
9177 if (imm_expr.X_add_number >= -0x8000
9178 && imm_expr.X_add_number < 0x8000)
9179 macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j",
9180 AT, reg, BFD_RELOC_LO16);
9181 else
9182 {
9183 load_register (AT, &imm_expr, GPR_SIZE == 64);
9184 macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT);
9185 }
9186 }
9187
9188 /* Count the leading zeroes by performing a binary chop. This is a
9189 bulky bit of source, but performance is a LOT better for the
9190 majority of values than a simple loop to count the bits:
9191 for (lcnt = 0; (lcnt < 32); lcnt++)
9192 if ((v) & (1 << (31 - lcnt)))
9193 break;
9194 However it is not code size friendly, and the gain will drop a bit
9195 on certain cached systems.
9196 */
9197 #define COUNT_TOP_ZEROES(v) \
9198 (((v) & ~0xffff) == 0 \
9199 ? ((v) & ~0xff) == 0 \
9200 ? ((v) & ~0xf) == 0 \
9201 ? ((v) & ~0x3) == 0 \
9202 ? ((v) & ~0x1) == 0 \
9203 ? !(v) \
9204 ? 32 \
9205 : 31 \
9206 : 30 \
9207 : ((v) & ~0x7) == 0 \
9208 ? 29 \
9209 : 28 \
9210 : ((v) & ~0x3f) == 0 \
9211 ? ((v) & ~0x1f) == 0 \
9212 ? 27 \
9213 : 26 \
9214 : ((v) & ~0x7f) == 0 \
9215 ? 25 \
9216 : 24 \
9217 : ((v) & ~0xfff) == 0 \
9218 ? ((v) & ~0x3ff) == 0 \
9219 ? ((v) & ~0x1ff) == 0 \
9220 ? 23 \
9221 : 22 \
9222 : ((v) & ~0x7ff) == 0 \
9223 ? 21 \
9224 : 20 \
9225 : ((v) & ~0x3fff) == 0 \
9226 ? ((v) & ~0x1fff) == 0 \
9227 ? 19 \
9228 : 18 \
9229 : ((v) & ~0x7fff) == 0 \
9230 ? 17 \
9231 : 16 \
9232 : ((v) & ~0xffffff) == 0 \
9233 ? ((v) & ~0xfffff) == 0 \
9234 ? ((v) & ~0x3ffff) == 0 \
9235 ? ((v) & ~0x1ffff) == 0 \
9236 ? 15 \
9237 : 14 \
9238 : ((v) & ~0x7ffff) == 0 \
9239 ? 13 \
9240 : 12 \
9241 : ((v) & ~0x3fffff) == 0 \
9242 ? ((v) & ~0x1fffff) == 0 \
9243 ? 11 \
9244 : 10 \
9245 : ((v) & ~0x7fffff) == 0 \
9246 ? 9 \
9247 : 8 \
9248 : ((v) & ~0xfffffff) == 0 \
9249 ? ((v) & ~0x3ffffff) == 0 \
9250 ? ((v) & ~0x1ffffff) == 0 \
9251 ? 7 \
9252 : 6 \
9253 : ((v) & ~0x7ffffff) == 0 \
9254 ? 5 \
9255 : 4 \
9256 : ((v) & ~0x3fffffff) == 0 \
9257 ? ((v) & ~0x1fffffff) == 0 \
9258 ? 3 \
9259 : 2 \
9260 : ((v) & ~0x7fffffff) == 0 \
9261 ? 1 \
9262 : 0)
9263
9264 /* load_register()
9265 * This routine generates the least number of instructions necessary to load
9266 * an absolute expression value into a register.
9267 */
9268 static void
9269 load_register (int reg, expressionS *ep, int dbl)
9270 {
9271 int freg;
9272 expressionS hi32, lo32;
9273
9274 if (ep->X_op != O_big)
9275 {
9276 gas_assert (ep->X_op == O_constant);
9277
9278 /* Sign-extending 32-bit constants makes their handling easier. */
9279 if (!dbl)
9280 normalize_constant_expr (ep);
9281
9282 if (IS_SEXT_16BIT_NUM (ep->X_add_number))
9283 {
9284 /* We can handle 16 bit signed values with an addiu to
9285 $zero. No need to ever use daddiu here, since $zero and
9286 the result are always correct in 32 bit mode. */
9287 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
9288 return;
9289 }
9290 else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
9291 {
9292 /* We can handle 16 bit unsigned values with an ori to
9293 $zero. */
9294 macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
9295 return;
9296 }
9297 else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)))
9298 {
9299 /* 32 bit values require an lui. */
9300 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
9301 if ((ep->X_add_number & 0xffff) != 0)
9302 macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
9303 return;
9304 }
9305 }
9306
9307 /* The value is larger than 32 bits. */
9308
9309 if (!dbl || GPR_SIZE == 32)
9310 {
9311 char value[32];
9312
9313 sprintf_vma (value, ep->X_add_number);
9314 as_bad (_("number (0x%s) larger than 32 bits"), value);
9315 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
9316 return;
9317 }
9318
9319 if (ep->X_op != O_big)
9320 {
9321 hi32 = *ep;
9322 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
9323 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
9324 hi32.X_add_number &= 0xffffffff;
9325 lo32 = *ep;
9326 lo32.X_add_number &= 0xffffffff;
9327 }
9328 else
9329 {
9330 gas_assert (ep->X_add_number > 2);
9331 if (ep->X_add_number == 3)
9332 generic_bignum[3] = 0;
9333 else if (ep->X_add_number > 4)
9334 as_bad (_("number larger than 64 bits"));
9335 lo32.X_op = O_constant;
9336 lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
9337 hi32.X_op = O_constant;
9338 hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
9339 }
9340
9341 if (hi32.X_add_number == 0)
9342 freg = 0;
9343 else
9344 {
9345 int shift, bit;
9346 unsigned long hi, lo;
9347
9348 if (hi32.X_add_number == (offsetT) 0xffffffff)
9349 {
9350 if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
9351 {
9352 macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
9353 return;
9354 }
9355 if (lo32.X_add_number & 0x80000000)
9356 {
9357 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
9358 if (lo32.X_add_number & 0xffff)
9359 macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
9360 return;
9361 }
9362 }
9363
9364 /* Check for 16bit shifted constant. We know that hi32 is
9365 non-zero, so start the mask on the first bit of the hi32
9366 value. */
9367 shift = 17;
9368 do
9369 {
9370 unsigned long himask, lomask;
9371
9372 if (shift < 32)
9373 {
9374 himask = 0xffff >> (32 - shift);
9375 lomask = (0xffff << shift) & 0xffffffff;
9376 }
9377 else
9378 {
9379 himask = 0xffff << (shift - 32);
9380 lomask = 0;
9381 }
9382 if ((hi32.X_add_number & ~(offsetT) himask) == 0
9383 && (lo32.X_add_number & ~(offsetT) lomask) == 0)
9384 {
9385 expressionS tmp;
9386
9387 tmp.X_op = O_constant;
9388 if (shift < 32)
9389 tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
9390 | (lo32.X_add_number >> shift));
9391 else
9392 tmp.X_add_number = hi32.X_add_number >> (shift - 32);
9393 macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
9394 macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", SHFT_FMT,
9395 reg, reg, (shift >= 32) ? shift - 32 : shift);
9396 return;
9397 }
9398 ++shift;
9399 }
9400 while (shift <= (64 - 16));
9401
9402 /* Find the bit number of the lowest one bit, and store the
9403 shifted value in hi/lo. */
9404 hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
9405 lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
9406 if (lo != 0)
9407 {
9408 bit = 0;
9409 while ((lo & 1) == 0)
9410 {
9411 lo >>= 1;
9412 ++bit;
9413 }
9414 lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit);
9415 hi >>= bit;
9416 }
9417 else
9418 {
9419 bit = 32;
9420 while ((hi & 1) == 0)
9421 {
9422 hi >>= 1;
9423 ++bit;
9424 }
9425 lo = hi;
9426 hi = 0;
9427 }
9428
9429 /* Optimize if the shifted value is a (power of 2) - 1. */
9430 if ((hi == 0 && ((lo + 1) & lo) == 0)
9431 || (lo == 0xffffffff && ((hi + 1) & hi) == 0))
9432 {
9433 shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
9434 if (shift != 0)
9435 {
9436 expressionS tmp;
9437
9438 /* This instruction will set the register to be all
9439 ones. */
9440 tmp.X_op = O_constant;
9441 tmp.X_add_number = (offsetT) -1;
9442 macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
9443 if (bit != 0)
9444 {
9445 bit += shift;
9446 macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", SHFT_FMT,
9447 reg, reg, (bit >= 32) ? bit - 32 : bit);
9448 }
9449 macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", SHFT_FMT,
9450 reg, reg, (shift >= 32) ? shift - 32 : shift);
9451 return;
9452 }
9453 }
9454
9455 /* Sign extend hi32 before calling load_register, because we can
9456 generally get better code when we load a sign extended value. */
9457 if ((hi32.X_add_number & 0x80000000) != 0)
9458 hi32.X_add_number |= ~(offsetT) 0xffffffff;
9459 load_register (reg, &hi32, 0);
9460 freg = reg;
9461 }
9462 if ((lo32.X_add_number & 0xffff0000) == 0)
9463 {
9464 if (freg != 0)
9465 {
9466 macro_build (NULL, "dsll32", SHFT_FMT, reg, freg, 0);
9467 freg = reg;
9468 }
9469 }
9470 else
9471 {
9472 expressionS mid16;
9473
9474 if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
9475 {
9476 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
9477 macro_build (NULL, "dsrl32", SHFT_FMT, reg, reg, 0);
9478 return;
9479 }
9480
9481 if (freg != 0)
9482 {
9483 macro_build (NULL, "dsll", SHFT_FMT, reg, freg, 16);
9484 freg = reg;
9485 }
9486 mid16 = lo32;
9487 mid16.X_add_number >>= 16;
9488 macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
9489 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9490 freg = reg;
9491 }
9492 if ((lo32.X_add_number & 0xffff) != 0)
9493 macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
9494 }
9495
9496 static inline void
9497 load_delay_nop (void)
9498 {
9499 if (!gpr_interlocks)
9500 macro_build (NULL, "nop", "");
9501 }
9502
9503 /* Load an address into a register. */
9504
9505 static void
9506 load_address (int reg, expressionS *ep, int *used_at)
9507 {
9508 if (ep->X_op != O_constant
9509 && ep->X_op != O_symbol)
9510 {
9511 as_bad (_("expression too complex"));
9512 ep->X_op = O_constant;
9513 }
9514
9515 if (ep->X_op == O_constant)
9516 {
9517 load_register (reg, ep, HAVE_64BIT_ADDRESSES);
9518 return;
9519 }
9520
9521 if (mips_pic == NO_PIC)
9522 {
9523 /* If this is a reference to a GP relative symbol, we want
9524 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
9525 Otherwise we want
9526 lui $reg,<sym> (BFD_RELOC_HI16_S)
9527 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9528 If we have an addend, we always use the latter form.
9529
9530 With 64bit address space and a usable $at we want
9531 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9532 lui $at,<sym> (BFD_RELOC_HI16_S)
9533 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9534 daddiu $at,<sym> (BFD_RELOC_LO16)
9535 dsll32 $reg,0
9536 daddu $reg,$reg,$at
9537
9538 If $at is already in use, we use a path which is suboptimal
9539 on superscalar processors.
9540 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9541 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9542 dsll $reg,16
9543 daddiu $reg,<sym> (BFD_RELOC_HI16_S)
9544 dsll $reg,16
9545 daddiu $reg,<sym> (BFD_RELOC_LO16)
9546
9547 For GP relative symbols in 64bit address space we can use
9548 the same sequence as in 32bit address space. */
9549 if (HAVE_64BIT_SYMBOLS)
9550 {
9551 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
9552 && !nopic_need_relax (ep->X_add_symbol, 1))
9553 {
9554 relax_start (ep->X_add_symbol);
9555 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
9556 mips_gp_register, BFD_RELOC_GPREL16);
9557 relax_switch ();
9558 }
9559
9560 if (*used_at == 0 && mips_opts.at)
9561 {
9562 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
9563 macro_build (ep, "lui", LUI_FMT, AT, BFD_RELOC_HI16_S);
9564 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9565 BFD_RELOC_MIPS_HIGHER);
9566 macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16);
9567 macro_build (NULL, "dsll32", SHFT_FMT, reg, reg, 0);
9568 macro_build (NULL, "daddu", "d,v,t", reg, reg, AT);
9569 *used_at = 1;
9570 }
9571 else
9572 {
9573 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
9574 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9575 BFD_RELOC_MIPS_HIGHER);
9576 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9577 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S);
9578 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9579 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16);
9580 }
9581
9582 if (mips_relax.sequence)
9583 relax_end ();
9584 }
9585 else
9586 {
9587 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
9588 && !nopic_need_relax (ep->X_add_symbol, 1))
9589 {
9590 relax_start (ep->X_add_symbol);
9591 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
9592 mips_gp_register, BFD_RELOC_GPREL16);
9593 relax_switch ();
9594 }
9595 macro_build_lui (ep, reg);
9596 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
9597 reg, reg, BFD_RELOC_LO16);
9598 if (mips_relax.sequence)
9599 relax_end ();
9600 }
9601 }
9602 else if (!mips_big_got)
9603 {
9604 expressionS ex;
9605
9606 /* If this is a reference to an external symbol, we want
9607 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9608 Otherwise we want
9609 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9610 nop
9611 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9612 If there is a constant, it must be added in after.
9613
9614 If we have NewABI, we want
9615 lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
9616 unless we're referencing a global symbol with a non-zero
9617 offset, in which case cst must be added separately. */
9618 if (HAVE_NEWABI)
9619 {
9620 if (ep->X_add_number)
9621 {
9622 ex.X_add_number = ep->X_add_number;
9623 ep->X_add_number = 0;
9624 relax_start (ep->X_add_symbol);
9625 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9626 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
9627 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9628 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9629 ex.X_op = O_constant;
9630 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
9631 reg, reg, BFD_RELOC_LO16);
9632 ep->X_add_number = ex.X_add_number;
9633 relax_switch ();
9634 }
9635 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9636 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
9637 if (mips_relax.sequence)
9638 relax_end ();
9639 }
9640 else
9641 {
9642 ex.X_add_number = ep->X_add_number;
9643 ep->X_add_number = 0;
9644 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9645 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9646 load_delay_nop ();
9647 relax_start (ep->X_add_symbol);
9648 relax_switch ();
9649 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9650 BFD_RELOC_LO16);
9651 relax_end ();
9652
9653 if (ex.X_add_number != 0)
9654 {
9655 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9656 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9657 ex.X_op = O_constant;
9658 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
9659 reg, reg, BFD_RELOC_LO16);
9660 }
9661 }
9662 }
9663 else if (mips_big_got)
9664 {
9665 expressionS ex;
9666
9667 /* This is the large GOT case. If this is a reference to an
9668 external symbol, we want
9669 lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
9670 addu $reg,$reg,$gp
9671 lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
9672
9673 Otherwise, for a reference to a local symbol in old ABI, we want
9674 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9675 nop
9676 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9677 If there is a constant, it must be added in after.
9678
9679 In the NewABI, for local symbols, with or without offsets, we want:
9680 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
9681 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
9682 */
9683 if (HAVE_NEWABI)
9684 {
9685 ex.X_add_number = ep->X_add_number;
9686 ep->X_add_number = 0;
9687 relax_start (ep->X_add_symbol);
9688 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
9689 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9690 reg, reg, mips_gp_register);
9691 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9692 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
9693 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9694 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9695 else if (ex.X_add_number)
9696 {
9697 ex.X_op = O_constant;
9698 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9699 BFD_RELOC_LO16);
9700 }
9701
9702 ep->X_add_number = ex.X_add_number;
9703 relax_switch ();
9704 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9705 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
9706 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9707 BFD_RELOC_MIPS_GOT_OFST);
9708 relax_end ();
9709 }
9710 else
9711 {
9712 ex.X_add_number = ep->X_add_number;
9713 ep->X_add_number = 0;
9714 relax_start (ep->X_add_symbol);
9715 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
9716 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9717 reg, reg, mips_gp_register);
9718 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9719 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
9720 relax_switch ();
9721 if (reg_needs_delay (mips_gp_register))
9722 {
9723 /* We need a nop before loading from $gp. This special
9724 check is required because the lui which starts the main
9725 instruction stream does not refer to $gp, and so will not
9726 insert the nop which may be required. */
9727 macro_build (NULL, "nop", "");
9728 }
9729 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9730 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9731 load_delay_nop ();
9732 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9733 BFD_RELOC_LO16);
9734 relax_end ();
9735
9736 if (ex.X_add_number != 0)
9737 {
9738 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9739 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9740 ex.X_op = O_constant;
9741 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9742 BFD_RELOC_LO16);
9743 }
9744 }
9745 }
9746 else
9747 abort ();
9748
9749 if (!mips_opts.at && *used_at == 1)
9750 as_bad (_("macro used $at after \".set noat\""));
9751 }
9752
9753 /* Move the contents of register SOURCE into register DEST. */
9754
9755 static void
9756 move_register (int dest, int source)
9757 {
9758 /* Prefer to use a 16-bit microMIPS instruction unless the previous
9759 instruction specifically requires a 32-bit one. */
9760 if (mips_opts.micromips
9761 && !mips_opts.insn32
9762 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
9763 macro_build (NULL, "move", "mp,mj", dest, source);
9764 else
9765 macro_build (NULL, "or", "d,v,t", dest, source, 0);
9766 }
9767
9768 /* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
9769 LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
9770 The two alternatives are:
9771
9772 Global symbol Local symbol
9773 ------------- ------------
9774 lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
9775 ... ...
9776 addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
9777
9778 load_got_offset emits the first instruction and add_got_offset
9779 emits the second for a 16-bit offset or add_got_offset_hilo emits
9780 a sequence to add a 32-bit offset using a scratch register. */
9781
9782 static void
9783 load_got_offset (int dest, expressionS *local)
9784 {
9785 expressionS global;
9786
9787 global = *local;
9788 global.X_add_number = 0;
9789
9790 relax_start (local->X_add_symbol);
9791 macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9792 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9793 relax_switch ();
9794 macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9795 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9796 relax_end ();
9797 }
9798
9799 static void
9800 add_got_offset (int dest, expressionS *local)
9801 {
9802 expressionS global;
9803
9804 global.X_op = O_constant;
9805 global.X_op_symbol = NULL;
9806 global.X_add_symbol = NULL;
9807 global.X_add_number = local->X_add_number;
9808
9809 relax_start (local->X_add_symbol);
9810 macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j",
9811 dest, dest, BFD_RELOC_LO16);
9812 relax_switch ();
9813 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16);
9814 relax_end ();
9815 }
9816
9817 static void
9818 add_got_offset_hilo (int dest, expressionS *local, int tmp)
9819 {
9820 expressionS global;
9821 int hold_mips_optimize;
9822
9823 global.X_op = O_constant;
9824 global.X_op_symbol = NULL;
9825 global.X_add_symbol = NULL;
9826 global.X_add_number = local->X_add_number;
9827
9828 relax_start (local->X_add_symbol);
9829 load_register (tmp, &global, HAVE_64BIT_ADDRESSES);
9830 relax_switch ();
9831 /* Set mips_optimize around the lui instruction to avoid
9832 inserting an unnecessary nop after the lw. */
9833 hold_mips_optimize = mips_optimize;
9834 mips_optimize = 2;
9835 macro_build_lui (&global, tmp);
9836 mips_optimize = hold_mips_optimize;
9837 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16);
9838 relax_end ();
9839
9840 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp);
9841 }
9842
9843 /* Emit a sequence of instructions to emulate a branch likely operation.
9844 BR is an ordinary branch corresponding to one to be emulated. BRNEG
9845 is its complementing branch with the original condition negated.
9846 CALL is set if the original branch specified the link operation.
9847 EP, FMT, SREG and TREG specify the usual macro_build() parameters.
9848
9849 Code like this is produced in the noreorder mode:
9850
9851 BRNEG <args>, 1f
9852 nop
9853 b <sym>
9854 delay slot (executed only if branch taken)
9855 1:
9856
9857 or, if CALL is set:
9858
9859 BRNEG <args>, 1f
9860 nop
9861 bal <sym>
9862 delay slot (executed only if branch taken)
9863 1:
9864
9865 In the reorder mode the delay slot would be filled with a nop anyway,
9866 so code produced is simply:
9867
9868 BR <args>, <sym>
9869 nop
9870
9871 This function is used when producing code for the microMIPS ASE that
9872 does not implement branch likely instructions in hardware. */
9873
9874 static void
9875 macro_build_branch_likely (const char *br, const char *brneg,
9876 int call, expressionS *ep, const char *fmt,
9877 unsigned int sreg, unsigned int treg)
9878 {
9879 int noreorder = mips_opts.noreorder;
9880 expressionS expr1;
9881
9882 gas_assert (mips_opts.micromips);
9883 start_noreorder ();
9884 if (noreorder)
9885 {
9886 micromips_label_expr (&expr1);
9887 macro_build (&expr1, brneg, fmt, sreg, treg);
9888 macro_build (NULL, "nop", "");
9889 macro_build (ep, call ? "bal" : "b", "p");
9890
9891 /* Set to true so that append_insn adds a label. */
9892 emit_branch_likely_macro = TRUE;
9893 }
9894 else
9895 {
9896 macro_build (ep, br, fmt, sreg, treg);
9897 macro_build (NULL, "nop", "");
9898 }
9899 end_noreorder ();
9900 }
9901
9902 /* Emit a coprocessor branch-likely macro specified by TYPE, using CC as
9903 the condition code tested. EP specifies the branch target. */
9904
9905 static void
9906 macro_build_branch_ccl (int type, expressionS *ep, unsigned int cc)
9907 {
9908 const int call = 0;
9909 const char *brneg;
9910 const char *br;
9911
9912 switch (type)
9913 {
9914 case M_BC1FL:
9915 br = "bc1f";
9916 brneg = "bc1t";
9917 break;
9918 case M_BC1TL:
9919 br = "bc1t";
9920 brneg = "bc1f";
9921 break;
9922 case M_BC2FL:
9923 br = "bc2f";
9924 brneg = "bc2t";
9925 break;
9926 case M_BC2TL:
9927 br = "bc2t";
9928 brneg = "bc2f";
9929 break;
9930 default:
9931 abort ();
9932 }
9933 macro_build_branch_likely (br, brneg, call, ep, "N,p", cc, ZERO);
9934 }
9935
9936 /* Emit a two-argument branch macro specified by TYPE, using SREG as
9937 the register tested. EP specifies the branch target. */
9938
9939 static void
9940 macro_build_branch_rs (int type, expressionS *ep, unsigned int sreg)
9941 {
9942 const char *brneg = NULL;
9943 const char *br;
9944 int call = 0;
9945
9946 switch (type)
9947 {
9948 case M_BGEZ:
9949 br = "bgez";
9950 break;
9951 case M_BGEZL:
9952 br = mips_opts.micromips ? "bgez" : "bgezl";
9953 brneg = "bltz";
9954 break;
9955 case M_BGEZALL:
9956 gas_assert (mips_opts.micromips);
9957 br = mips_opts.insn32 ? "bgezal" : "bgezals";
9958 brneg = "bltz";
9959 call = 1;
9960 break;
9961 case M_BGTZ:
9962 br = "bgtz";
9963 break;
9964 case M_BGTZL:
9965 br = mips_opts.micromips ? "bgtz" : "bgtzl";
9966 brneg = "blez";
9967 break;
9968 case M_BLEZ:
9969 br = "blez";
9970 break;
9971 case M_BLEZL:
9972 br = mips_opts.micromips ? "blez" : "blezl";
9973 brneg = "bgtz";
9974 break;
9975 case M_BLTZ:
9976 br = "bltz";
9977 break;
9978 case M_BLTZL:
9979 br = mips_opts.micromips ? "bltz" : "bltzl";
9980 brneg = "bgez";
9981 break;
9982 case M_BLTZALL:
9983 gas_assert (mips_opts.micromips);
9984 br = mips_opts.insn32 ? "bltzal" : "bltzals";
9985 brneg = "bgez";
9986 call = 1;
9987 break;
9988 default:
9989 abort ();
9990 }
9991 if (mips_opts.micromips && brneg)
9992 macro_build_branch_likely (br, brneg, call, ep, "s,p", sreg, ZERO);
9993 else
9994 macro_build (ep, br, "s,p", sreg);
9995 }
9996
9997 /* Emit a three-argument branch macro specified by TYPE, using SREG and
9998 TREG as the registers tested. EP specifies the branch target. */
9999
10000 static void
10001 macro_build_branch_rsrt (int type, expressionS *ep,
10002 unsigned int sreg, unsigned int treg)
10003 {
10004 const char *brneg = NULL;
10005 const int call = 0;
10006 const char *br;
10007
10008 switch (type)
10009 {
10010 case M_BEQ:
10011 case M_BEQ_I:
10012 br = "beq";
10013 break;
10014 case M_BEQL:
10015 case M_BEQL_I:
10016 br = mips_opts.micromips ? "beq" : "beql";
10017 brneg = "bne";
10018 break;
10019 case M_BNE:
10020 case M_BNE_I:
10021 br = "bne";
10022 break;
10023 case M_BNEL:
10024 case M_BNEL_I:
10025 br = mips_opts.micromips ? "bne" : "bnel";
10026 brneg = "beq";
10027 break;
10028 default:
10029 abort ();
10030 }
10031 if (mips_opts.micromips && brneg)
10032 macro_build_branch_likely (br, brneg, call, ep, "s,t,p", sreg, treg);
10033 else
10034 macro_build (ep, br, "s,t,p", sreg, treg);
10035 }
10036
10037 /* Return the high part that should be loaded in order to make the low
10038 part of VALUE accessible using an offset of OFFBITS bits. */
10039
10040 static offsetT
10041 offset_high_part (offsetT value, unsigned int offbits)
10042 {
10043 offsetT bias;
10044 addressT low_mask;
10045
10046 if (offbits == 0)
10047 return value;
10048 bias = 1 << (offbits - 1);
10049 low_mask = bias * 2 - 1;
10050 return (value + bias) & ~low_mask;
10051 }
10052
10053 /* Return true if the value stored in offset_expr and offset_reloc
10054 fits into a signed offset of OFFBITS bits. RANGE is the maximum
10055 amount that the caller wants to add without inducing overflow
10056 and ALIGN is the known alignment of the value in bytes. */
10057
10058 static bfd_boolean
10059 small_offset_p (unsigned int range, unsigned int align, unsigned int offbits)
10060 {
10061 if (offbits == 16)
10062 {
10063 /* Accept any relocation operator if overflow isn't a concern. */
10064 if (range < align && *offset_reloc != BFD_RELOC_UNUSED)
10065 return TRUE;
10066
10067 /* These relocations are guaranteed not to overflow in correct links. */
10068 if (*offset_reloc == BFD_RELOC_MIPS_LITERAL
10069 || gprel16_reloc_p (*offset_reloc))
10070 return TRUE;
10071 }
10072 if (offset_expr.X_op == O_constant
10073 && offset_high_part (offset_expr.X_add_number, offbits) == 0
10074 && offset_high_part (offset_expr.X_add_number + range, offbits) == 0)
10075 return TRUE;
10076 return FALSE;
10077 }
10078
10079 /*
10080 * Build macros
10081 * This routine implements the seemingly endless macro or synthesized
10082 * instructions and addressing modes in the mips assembly language. Many
10083 * of these macros are simple and are similar to each other. These could
10084 * probably be handled by some kind of table or grammar approach instead of
10085 * this verbose method. Others are not simple macros but are more like
10086 * optimizing code generation.
10087 * One interesting optimization is when several store macros appear
10088 * consecutively that would load AT with the upper half of the same address.
10089 * The ensuing load upper instructions are omitted. This implies some kind
10090 * of global optimization. We currently only optimize within a single macro.
10091 * For many of the load and store macros if the address is specified as a
10092 * constant expression in the first 64k of memory (ie ld $2,0x4000c) we
10093 * first load register 'at' with zero and use it as the base register. The
10094 * mips assembler simply uses register $zero. Just one tiny optimization
10095 * we're missing.
10096 */
10097 static void
10098 macro (struct mips_cl_insn *ip, char *str)
10099 {
10100 const struct mips_operand_array *operands;
10101 unsigned int breg, i;
10102 unsigned int tempreg;
10103 int mask;
10104 int used_at = 0;
10105 expressionS label_expr;
10106 expressionS expr1;
10107 expressionS *ep;
10108 const char *s;
10109 const char *s2;
10110 const char *fmt;
10111 int likely = 0;
10112 int coproc = 0;
10113 int offbits = 16;
10114 int call = 0;
10115 int jals = 0;
10116 int dbl = 0;
10117 int imm = 0;
10118 int ust = 0;
10119 int lp = 0;
10120 bfd_boolean large_offset;
10121 int off;
10122 int hold_mips_optimize;
10123 unsigned int align;
10124 unsigned int op[MAX_OPERANDS];
10125
10126 gas_assert (! mips_opts.mips16);
10127
10128 operands = insn_operands (ip);
10129 for (i = 0; i < MAX_OPERANDS; i++)
10130 if (operands->operand[i])
10131 op[i] = insn_extract_operand (ip, operands->operand[i]);
10132 else
10133 op[i] = -1;
10134
10135 mask = ip->insn_mo->mask;
10136
10137 label_expr.X_op = O_constant;
10138 label_expr.X_op_symbol = NULL;
10139 label_expr.X_add_symbol = NULL;
10140 label_expr.X_add_number = 0;
10141
10142 expr1.X_op = O_constant;
10143 expr1.X_op_symbol = NULL;
10144 expr1.X_add_symbol = NULL;
10145 expr1.X_add_number = 1;
10146 align = 1;
10147
10148 switch (mask)
10149 {
10150 case M_DABS:
10151 dbl = 1;
10152 /* Fall through. */
10153 case M_ABS:
10154 /* bgez $a0,1f
10155 move v0,$a0
10156 sub v0,$zero,$a0
10157 1:
10158 */
10159
10160 start_noreorder ();
10161
10162 if (mips_opts.micromips)
10163 micromips_label_expr (&label_expr);
10164 else
10165 label_expr.X_add_number = 8;
10166 macro_build (&label_expr, "bgez", "s,p", op[1]);
10167 if (op[0] == op[1])
10168 macro_build (NULL, "nop", "");
10169 else
10170 move_register (op[0], op[1]);
10171 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", op[0], 0, op[1]);
10172 if (mips_opts.micromips)
10173 micromips_add_label ();
10174
10175 end_noreorder ();
10176 break;
10177
10178 case M_ADD_I:
10179 s = "addi";
10180 s2 = "add";
10181 goto do_addi;
10182 case M_ADDU_I:
10183 s = "addiu";
10184 s2 = "addu";
10185 goto do_addi;
10186 case M_DADD_I:
10187 dbl = 1;
10188 s = "daddi";
10189 s2 = "dadd";
10190 if (!mips_opts.micromips)
10191 goto do_addi;
10192 if (imm_expr.X_add_number >= -0x200
10193 && imm_expr.X_add_number < 0x200)
10194 {
10195 macro_build (NULL, s, "t,r,.", op[0], op[1],
10196 (int) imm_expr.X_add_number);
10197 break;
10198 }
10199 goto do_addi_i;
10200 case M_DADDU_I:
10201 dbl = 1;
10202 s = "daddiu";
10203 s2 = "daddu";
10204 do_addi:
10205 if (imm_expr.X_add_number >= -0x8000
10206 && imm_expr.X_add_number < 0x8000)
10207 {
10208 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
10209 break;
10210 }
10211 do_addi_i:
10212 used_at = 1;
10213 load_register (AT, &imm_expr, dbl);
10214 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
10215 break;
10216
10217 case M_AND_I:
10218 s = "andi";
10219 s2 = "and";
10220 goto do_bit;
10221 case M_OR_I:
10222 s = "ori";
10223 s2 = "or";
10224 goto do_bit;
10225 case M_NOR_I:
10226 s = "";
10227 s2 = "nor";
10228 goto do_bit;
10229 case M_XOR_I:
10230 s = "xori";
10231 s2 = "xor";
10232 do_bit:
10233 if (imm_expr.X_add_number >= 0
10234 && imm_expr.X_add_number < 0x10000)
10235 {
10236 if (mask != M_NOR_I)
10237 macro_build (&imm_expr, s, "t,r,i", op[0], op[1], BFD_RELOC_LO16);
10238 else
10239 {
10240 macro_build (&imm_expr, "ori", "t,r,i",
10241 op[0], op[1], BFD_RELOC_LO16);
10242 macro_build (NULL, "nor", "d,v,t", op[0], op[0], 0);
10243 }
10244 break;
10245 }
10246
10247 used_at = 1;
10248 load_register (AT, &imm_expr, GPR_SIZE == 64);
10249 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
10250 break;
10251
10252 case M_BALIGN:
10253 switch (imm_expr.X_add_number)
10254 {
10255 case 0:
10256 macro_build (NULL, "nop", "");
10257 break;
10258 case 2:
10259 macro_build (NULL, "packrl.ph", "d,s,t", op[0], op[0], op[1]);
10260 break;
10261 case 1:
10262 case 3:
10263 macro_build (NULL, "balign", "t,s,2", op[0], op[1],
10264 (int) imm_expr.X_add_number);
10265 break;
10266 default:
10267 as_bad (_("BALIGN immediate not 0, 1, 2 or 3 (%lu)"),
10268 (unsigned long) imm_expr.X_add_number);
10269 break;
10270 }
10271 break;
10272
10273 case M_BC1FL:
10274 case M_BC1TL:
10275 case M_BC2FL:
10276 case M_BC2TL:
10277 gas_assert (mips_opts.micromips);
10278 macro_build_branch_ccl (mask, &offset_expr,
10279 EXTRACT_OPERAND (1, BCC, *ip));
10280 break;
10281
10282 case M_BEQ_I:
10283 case M_BEQL_I:
10284 case M_BNE_I:
10285 case M_BNEL_I:
10286 if (imm_expr.X_add_number == 0)
10287 op[1] = 0;
10288 else
10289 {
10290 op[1] = AT;
10291 used_at = 1;
10292 load_register (op[1], &imm_expr, GPR_SIZE == 64);
10293 }
10294 /* Fall through. */
10295 case M_BEQL:
10296 case M_BNEL:
10297 macro_build_branch_rsrt (mask, &offset_expr, op[0], op[1]);
10298 break;
10299
10300 case M_BGEL:
10301 likely = 1;
10302 /* Fall through. */
10303 case M_BGE:
10304 if (op[1] == 0)
10305 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[0]);
10306 else if (op[0] == 0)
10307 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[1]);
10308 else
10309 {
10310 used_at = 1;
10311 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
10312 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10313 &offset_expr, AT, ZERO);
10314 }
10315 break;
10316
10317 case M_BGEZL:
10318 case M_BGEZALL:
10319 case M_BGTZL:
10320 case M_BLEZL:
10321 case M_BLTZL:
10322 case M_BLTZALL:
10323 macro_build_branch_rs (mask, &offset_expr, op[0]);
10324 break;
10325
10326 case M_BGTL_I:
10327 likely = 1;
10328 /* Fall through. */
10329 case M_BGT_I:
10330 /* Check for > max integer. */
10331 if (imm_expr.X_add_number >= GPR_SMAX)
10332 {
10333 do_false:
10334 /* Result is always false. */
10335 if (! likely)
10336 macro_build (NULL, "nop", "");
10337 else
10338 macro_build_branch_rsrt (M_BNEL, &offset_expr, ZERO, ZERO);
10339 break;
10340 }
10341 ++imm_expr.X_add_number;
10342 /* FALLTHROUGH */
10343 case M_BGE_I:
10344 case M_BGEL_I:
10345 if (mask == M_BGEL_I)
10346 likely = 1;
10347 if (imm_expr.X_add_number == 0)
10348 {
10349 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ,
10350 &offset_expr, op[0]);
10351 break;
10352 }
10353 if (imm_expr.X_add_number == 1)
10354 {
10355 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ,
10356 &offset_expr, op[0]);
10357 break;
10358 }
10359 if (imm_expr.X_add_number <= GPR_SMIN)
10360 {
10361 do_true:
10362 /* result is always true */
10363 as_warn (_("branch %s is always true"), ip->insn_mo->name);
10364 macro_build (&offset_expr, "b", "p");
10365 break;
10366 }
10367 used_at = 1;
10368 set_at (op[0], 0);
10369 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10370 &offset_expr, AT, ZERO);
10371 break;
10372
10373 case M_BGEUL:
10374 likely = 1;
10375 /* Fall through. */
10376 case M_BGEU:
10377 if (op[1] == 0)
10378 goto do_true;
10379 else if (op[0] == 0)
10380 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10381 &offset_expr, ZERO, op[1]);
10382 else
10383 {
10384 used_at = 1;
10385 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
10386 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10387 &offset_expr, AT, ZERO);
10388 }
10389 break;
10390
10391 case M_BGTUL_I:
10392 likely = 1;
10393 /* Fall through. */
10394 case M_BGTU_I:
10395 if (op[0] == 0
10396 || (GPR_SIZE == 32
10397 && imm_expr.X_add_number == -1))
10398 goto do_false;
10399 ++imm_expr.X_add_number;
10400 /* FALLTHROUGH */
10401 case M_BGEU_I:
10402 case M_BGEUL_I:
10403 if (mask == M_BGEUL_I)
10404 likely = 1;
10405 if (imm_expr.X_add_number == 0)
10406 goto do_true;
10407 else if (imm_expr.X_add_number == 1)
10408 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10409 &offset_expr, op[0], ZERO);
10410 else
10411 {
10412 used_at = 1;
10413 set_at (op[0], 1);
10414 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10415 &offset_expr, AT, ZERO);
10416 }
10417 break;
10418
10419 case M_BGTL:
10420 likely = 1;
10421 /* Fall through. */
10422 case M_BGT:
10423 if (op[1] == 0)
10424 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[0]);
10425 else if (op[0] == 0)
10426 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[1]);
10427 else
10428 {
10429 used_at = 1;
10430 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
10431 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10432 &offset_expr, AT, ZERO);
10433 }
10434 break;
10435
10436 case M_BGTUL:
10437 likely = 1;
10438 /* Fall through. */
10439 case M_BGTU:
10440 if (op[1] == 0)
10441 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10442 &offset_expr, op[0], ZERO);
10443 else if (op[0] == 0)
10444 goto do_false;
10445 else
10446 {
10447 used_at = 1;
10448 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
10449 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10450 &offset_expr, AT, ZERO);
10451 }
10452 break;
10453
10454 case M_BLEL:
10455 likely = 1;
10456 /* Fall through. */
10457 case M_BLE:
10458 if (op[1] == 0)
10459 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
10460 else if (op[0] == 0)
10461 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[1]);
10462 else
10463 {
10464 used_at = 1;
10465 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
10466 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10467 &offset_expr, AT, ZERO);
10468 }
10469 break;
10470
10471 case M_BLEL_I:
10472 likely = 1;
10473 /* Fall through. */
10474 case M_BLE_I:
10475 if (imm_expr.X_add_number >= GPR_SMAX)
10476 goto do_true;
10477 ++imm_expr.X_add_number;
10478 /* FALLTHROUGH */
10479 case M_BLT_I:
10480 case M_BLTL_I:
10481 if (mask == M_BLTL_I)
10482 likely = 1;
10483 if (imm_expr.X_add_number == 0)
10484 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
10485 else if (imm_expr.X_add_number == 1)
10486 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
10487 else
10488 {
10489 used_at = 1;
10490 set_at (op[0], 0);
10491 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10492 &offset_expr, AT, ZERO);
10493 }
10494 break;
10495
10496 case M_BLEUL:
10497 likely = 1;
10498 /* Fall through. */
10499 case M_BLEU:
10500 if (op[1] == 0)
10501 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10502 &offset_expr, op[0], ZERO);
10503 else if (op[0] == 0)
10504 goto do_true;
10505 else
10506 {
10507 used_at = 1;
10508 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
10509 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10510 &offset_expr, AT, ZERO);
10511 }
10512 break;
10513
10514 case M_BLEUL_I:
10515 likely = 1;
10516 /* Fall through. */
10517 case M_BLEU_I:
10518 if (op[0] == 0
10519 || (GPR_SIZE == 32
10520 && imm_expr.X_add_number == -1))
10521 goto do_true;
10522 ++imm_expr.X_add_number;
10523 /* FALLTHROUGH */
10524 case M_BLTU_I:
10525 case M_BLTUL_I:
10526 if (mask == M_BLTUL_I)
10527 likely = 1;
10528 if (imm_expr.X_add_number == 0)
10529 goto do_false;
10530 else if (imm_expr.X_add_number == 1)
10531 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10532 &offset_expr, op[0], ZERO);
10533 else
10534 {
10535 used_at = 1;
10536 set_at (op[0], 1);
10537 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10538 &offset_expr, AT, ZERO);
10539 }
10540 break;
10541
10542 case M_BLTL:
10543 likely = 1;
10544 /* Fall through. */
10545 case M_BLT:
10546 if (op[1] == 0)
10547 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
10548 else if (op[0] == 0)
10549 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[1]);
10550 else
10551 {
10552 used_at = 1;
10553 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
10554 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10555 &offset_expr, AT, ZERO);
10556 }
10557 break;
10558
10559 case M_BLTUL:
10560 likely = 1;
10561 /* Fall through. */
10562 case M_BLTU:
10563 if (op[1] == 0)
10564 goto do_false;
10565 else if (op[0] == 0)
10566 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10567 &offset_expr, ZERO, op[1]);
10568 else
10569 {
10570 used_at = 1;
10571 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
10572 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10573 &offset_expr, AT, ZERO);
10574 }
10575 break;
10576
10577 case M_DDIV_3:
10578 dbl = 1;
10579 /* Fall through. */
10580 case M_DIV_3:
10581 s = "mflo";
10582 goto do_div3;
10583 case M_DREM_3:
10584 dbl = 1;
10585 /* Fall through. */
10586 case M_REM_3:
10587 s = "mfhi";
10588 do_div3:
10589 if (op[2] == 0)
10590 {
10591 as_warn (_("divide by zero"));
10592 if (mips_trap)
10593 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
10594 else
10595 macro_build (NULL, "break", BRK_FMT, 7);
10596 break;
10597 }
10598
10599 start_noreorder ();
10600 if (mips_trap)
10601 {
10602 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10603 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
10604 }
10605 else
10606 {
10607 if (mips_opts.micromips)
10608 micromips_label_expr (&label_expr);
10609 else
10610 label_expr.X_add_number = 8;
10611 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10612 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
10613 macro_build (NULL, "break", BRK_FMT, 7);
10614 if (mips_opts.micromips)
10615 micromips_add_label ();
10616 }
10617 expr1.X_add_number = -1;
10618 used_at = 1;
10619 load_register (AT, &expr1, dbl);
10620 if (mips_opts.micromips)
10621 micromips_label_expr (&label_expr);
10622 else
10623 label_expr.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
10624 macro_build (&label_expr, "bne", "s,t,p", op[2], AT);
10625 if (dbl)
10626 {
10627 expr1.X_add_number = 1;
10628 load_register (AT, &expr1, dbl);
10629 macro_build (NULL, "dsll32", SHFT_FMT, AT, AT, 31);
10630 }
10631 else
10632 {
10633 expr1.X_add_number = 0x80000000;
10634 macro_build (&expr1, "lui", LUI_FMT, AT, BFD_RELOC_HI16);
10635 }
10636 if (mips_trap)
10637 {
10638 macro_build (NULL, "teq", TRAP_FMT, op[1], AT, 6);
10639 /* We want to close the noreorder block as soon as possible, so
10640 that later insns are available for delay slot filling. */
10641 end_noreorder ();
10642 }
10643 else
10644 {
10645 if (mips_opts.micromips)
10646 micromips_label_expr (&label_expr);
10647 else
10648 label_expr.X_add_number = 8;
10649 macro_build (&label_expr, "bne", "s,t,p", op[1], AT);
10650 macro_build (NULL, "nop", "");
10651
10652 /* We want to close the noreorder block as soon as possible, so
10653 that later insns are available for delay slot filling. */
10654 end_noreorder ();
10655
10656 macro_build (NULL, "break", BRK_FMT, 6);
10657 }
10658 if (mips_opts.micromips)
10659 micromips_add_label ();
10660 macro_build (NULL, s, MFHL_FMT, op[0]);
10661 break;
10662
10663 case M_DIV_3I:
10664 s = "div";
10665 s2 = "mflo";
10666 goto do_divi;
10667 case M_DIVU_3I:
10668 s = "divu";
10669 s2 = "mflo";
10670 goto do_divi;
10671 case M_REM_3I:
10672 s = "div";
10673 s2 = "mfhi";
10674 goto do_divi;
10675 case M_REMU_3I:
10676 s = "divu";
10677 s2 = "mfhi";
10678 goto do_divi;
10679 case M_DDIV_3I:
10680 dbl = 1;
10681 s = "ddiv";
10682 s2 = "mflo";
10683 goto do_divi;
10684 case M_DDIVU_3I:
10685 dbl = 1;
10686 s = "ddivu";
10687 s2 = "mflo";
10688 goto do_divi;
10689 case M_DREM_3I:
10690 dbl = 1;
10691 s = "ddiv";
10692 s2 = "mfhi";
10693 goto do_divi;
10694 case M_DREMU_3I:
10695 dbl = 1;
10696 s = "ddivu";
10697 s2 = "mfhi";
10698 do_divi:
10699 if (imm_expr.X_add_number == 0)
10700 {
10701 as_warn (_("divide by zero"));
10702 if (mips_trap)
10703 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
10704 else
10705 macro_build (NULL, "break", BRK_FMT, 7);
10706 break;
10707 }
10708 if (imm_expr.X_add_number == 1)
10709 {
10710 if (strcmp (s2, "mflo") == 0)
10711 move_register (op[0], op[1]);
10712 else
10713 move_register (op[0], ZERO);
10714 break;
10715 }
10716 if (imm_expr.X_add_number == -1 && s[strlen (s) - 1] != 'u')
10717 {
10718 if (strcmp (s2, "mflo") == 0)
10719 macro_build (NULL, dbl ? "dneg" : "neg", "d,w", op[0], op[1]);
10720 else
10721 move_register (op[0], ZERO);
10722 break;
10723 }
10724
10725 used_at = 1;
10726 load_register (AT, &imm_expr, dbl);
10727 macro_build (NULL, s, "z,s,t", op[1], AT);
10728 macro_build (NULL, s2, MFHL_FMT, op[0]);
10729 break;
10730
10731 case M_DIVU_3:
10732 s = "divu";
10733 s2 = "mflo";
10734 goto do_divu3;
10735 case M_REMU_3:
10736 s = "divu";
10737 s2 = "mfhi";
10738 goto do_divu3;
10739 case M_DDIVU_3:
10740 s = "ddivu";
10741 s2 = "mflo";
10742 goto do_divu3;
10743 case M_DREMU_3:
10744 s = "ddivu";
10745 s2 = "mfhi";
10746 do_divu3:
10747 start_noreorder ();
10748 if (mips_trap)
10749 {
10750 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10751 macro_build (NULL, s, "z,s,t", op[1], op[2]);
10752 /* We want to close the noreorder block as soon as possible, so
10753 that later insns are available for delay slot filling. */
10754 end_noreorder ();
10755 }
10756 else
10757 {
10758 if (mips_opts.micromips)
10759 micromips_label_expr (&label_expr);
10760 else
10761 label_expr.X_add_number = 8;
10762 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10763 macro_build (NULL, s, "z,s,t", op[1], op[2]);
10764
10765 /* We want to close the noreorder block as soon as possible, so
10766 that later insns are available for delay slot filling. */
10767 end_noreorder ();
10768 macro_build (NULL, "break", BRK_FMT, 7);
10769 if (mips_opts.micromips)
10770 micromips_add_label ();
10771 }
10772 macro_build (NULL, s2, MFHL_FMT, op[0]);
10773 break;
10774
10775 case M_DLCA_AB:
10776 dbl = 1;
10777 /* Fall through. */
10778 case M_LCA_AB:
10779 call = 1;
10780 goto do_la;
10781 case M_DLA_AB:
10782 dbl = 1;
10783 /* Fall through. */
10784 case M_LA_AB:
10785 do_la:
10786 /* Load the address of a symbol into a register. If breg is not
10787 zero, we then add a base register to it. */
10788
10789 breg = op[2];
10790 if (dbl && GPR_SIZE == 32)
10791 as_warn (_("dla used to load 32-bit register; recommend using la "
10792 "instead"));
10793
10794 if (!dbl && HAVE_64BIT_OBJECTS)
10795 as_warn (_("la used to load 64-bit address; recommend using dla "
10796 "instead"));
10797
10798 if (small_offset_p (0, align, 16))
10799 {
10800 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", op[0], breg,
10801 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2]);
10802 break;
10803 }
10804
10805 if (mips_opts.at && (op[0] == breg))
10806 {
10807 tempreg = AT;
10808 used_at = 1;
10809 }
10810 else
10811 tempreg = op[0];
10812
10813 if (offset_expr.X_op != O_symbol
10814 && offset_expr.X_op != O_constant)
10815 {
10816 as_bad (_("expression too complex"));
10817 offset_expr.X_op = O_constant;
10818 }
10819
10820 if (offset_expr.X_op == O_constant)
10821 load_register (tempreg, &offset_expr, HAVE_64BIT_ADDRESSES);
10822 else if (mips_pic == NO_PIC)
10823 {
10824 /* If this is a reference to a GP relative symbol, we want
10825 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
10826 Otherwise we want
10827 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
10828 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10829 If we have a constant, we need two instructions anyhow,
10830 so we may as well always use the latter form.
10831
10832 With 64bit address space and a usable $at we want
10833 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10834 lui $at,<sym> (BFD_RELOC_HI16_S)
10835 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10836 daddiu $at,<sym> (BFD_RELOC_LO16)
10837 dsll32 $tempreg,0
10838 daddu $tempreg,$tempreg,$at
10839
10840 If $at is already in use, we use a path which is suboptimal
10841 on superscalar processors.
10842 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10843 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10844 dsll $tempreg,16
10845 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
10846 dsll $tempreg,16
10847 daddiu $tempreg,<sym> (BFD_RELOC_LO16)
10848
10849 For GP relative symbols in 64bit address space we can use
10850 the same sequence as in 32bit address space. */
10851 if (HAVE_64BIT_SYMBOLS)
10852 {
10853 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
10854 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
10855 {
10856 relax_start (offset_expr.X_add_symbol);
10857 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10858 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
10859 relax_switch ();
10860 }
10861
10862 if (used_at == 0 && mips_opts.at)
10863 {
10864 macro_build (&offset_expr, "lui", LUI_FMT,
10865 tempreg, BFD_RELOC_MIPS_HIGHEST);
10866 macro_build (&offset_expr, "lui", LUI_FMT,
10867 AT, BFD_RELOC_HI16_S);
10868 macro_build (&offset_expr, "daddiu", "t,r,j",
10869 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
10870 macro_build (&offset_expr, "daddiu", "t,r,j",
10871 AT, AT, BFD_RELOC_LO16);
10872 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
10873 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
10874 used_at = 1;
10875 }
10876 else
10877 {
10878 macro_build (&offset_expr, "lui", LUI_FMT,
10879 tempreg, BFD_RELOC_MIPS_HIGHEST);
10880 macro_build (&offset_expr, "daddiu", "t,r,j",
10881 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
10882 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
10883 macro_build (&offset_expr, "daddiu", "t,r,j",
10884 tempreg, tempreg, BFD_RELOC_HI16_S);
10885 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
10886 macro_build (&offset_expr, "daddiu", "t,r,j",
10887 tempreg, tempreg, BFD_RELOC_LO16);
10888 }
10889
10890 if (mips_relax.sequence)
10891 relax_end ();
10892 }
10893 else
10894 {
10895 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
10896 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
10897 {
10898 relax_start (offset_expr.X_add_symbol);
10899 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10900 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
10901 relax_switch ();
10902 }
10903 if (!IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
10904 as_bad (_("offset too large"));
10905 macro_build_lui (&offset_expr, tempreg);
10906 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10907 tempreg, tempreg, BFD_RELOC_LO16);
10908 if (mips_relax.sequence)
10909 relax_end ();
10910 }
10911 }
10912 else if (!mips_big_got && !HAVE_NEWABI)
10913 {
10914 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
10915
10916 /* If this is a reference to an external symbol, and there
10917 is no constant, we want
10918 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10919 or for lca or if tempreg is PIC_CALL_REG
10920 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
10921 For a local symbol, we want
10922 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10923 nop
10924 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10925
10926 If we have a small constant, and this is a reference to
10927 an external symbol, we want
10928 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10929 nop
10930 addiu $tempreg,$tempreg,<constant>
10931 For a local symbol, we want the same instruction
10932 sequence, but we output a BFD_RELOC_LO16 reloc on the
10933 addiu instruction.
10934
10935 If we have a large constant, and this is a reference to
10936 an external symbol, we want
10937 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10938 lui $at,<hiconstant>
10939 addiu $at,$at,<loconstant>
10940 addu $tempreg,$tempreg,$at
10941 For a local symbol, we want the same instruction
10942 sequence, but we output a BFD_RELOC_LO16 reloc on the
10943 addiu instruction.
10944 */
10945
10946 if (offset_expr.X_add_number == 0)
10947 {
10948 if (mips_pic == SVR4_PIC
10949 && breg == 0
10950 && (call || tempreg == PIC_CALL_REG))
10951 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
10952
10953 relax_start (offset_expr.X_add_symbol);
10954 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10955 lw_reloc_type, mips_gp_register);
10956 if (breg != 0)
10957 {
10958 /* We're going to put in an addu instruction using
10959 tempreg, so we may as well insert the nop right
10960 now. */
10961 load_delay_nop ();
10962 }
10963 relax_switch ();
10964 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10965 tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register);
10966 load_delay_nop ();
10967 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10968 tempreg, tempreg, BFD_RELOC_LO16);
10969 relax_end ();
10970 /* FIXME: If breg == 0, and the next instruction uses
10971 $tempreg, then if this variant case is used an extra
10972 nop will be generated. */
10973 }
10974 else if (offset_expr.X_add_number >= -0x8000
10975 && offset_expr.X_add_number < 0x8000)
10976 {
10977 load_got_offset (tempreg, &offset_expr);
10978 load_delay_nop ();
10979 add_got_offset (tempreg, &offset_expr);
10980 }
10981 else
10982 {
10983 expr1.X_add_number = offset_expr.X_add_number;
10984 offset_expr.X_add_number =
10985 SEXT_16BIT (offset_expr.X_add_number);
10986 load_got_offset (tempreg, &offset_expr);
10987 offset_expr.X_add_number = expr1.X_add_number;
10988 /* If we are going to add in a base register, and the
10989 target register and the base register are the same,
10990 then we are using AT as a temporary register. Since
10991 we want to load the constant into AT, we add our
10992 current AT (from the global offset table) and the
10993 register into the register now, and pretend we were
10994 not using a base register. */
10995 if (breg == op[0])
10996 {
10997 load_delay_nop ();
10998 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10999 op[0], AT, breg);
11000 breg = 0;
11001 tempreg = op[0];
11002 }
11003 add_got_offset_hilo (tempreg, &offset_expr, AT);
11004 used_at = 1;
11005 }
11006 }
11007 else if (!mips_big_got && HAVE_NEWABI)
11008 {
11009 int add_breg_early = 0;
11010
11011 /* If this is a reference to an external, and there is no
11012 constant, or local symbol (*), with or without a
11013 constant, we want
11014 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
11015 or for lca or if tempreg is PIC_CALL_REG
11016 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
11017
11018 If we have a small constant, and this is a reference to
11019 an external symbol, we want
11020 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
11021 addiu $tempreg,$tempreg,<constant>
11022
11023 If we have a large constant, and this is a reference to
11024 an external symbol, we want
11025 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
11026 lui $at,<hiconstant>
11027 addiu $at,$at,<loconstant>
11028 addu $tempreg,$tempreg,$at
11029
11030 (*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
11031 local symbols, even though it introduces an additional
11032 instruction. */
11033
11034 if (offset_expr.X_add_number)
11035 {
11036 expr1.X_add_number = offset_expr.X_add_number;
11037 offset_expr.X_add_number = 0;
11038
11039 relax_start (offset_expr.X_add_symbol);
11040 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11041 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
11042
11043 if (expr1.X_add_number >= -0x8000
11044 && expr1.X_add_number < 0x8000)
11045 {
11046 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
11047 tempreg, tempreg, BFD_RELOC_LO16);
11048 }
11049 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
11050 {
11051 unsigned int dreg;
11052
11053 /* If we are going to add in a base register, and the
11054 target register and the base register are the same,
11055 then we are using AT as a temporary register. Since
11056 we want to load the constant into AT, we add our
11057 current AT (from the global offset table) and the
11058 register into the register now, and pretend we were
11059 not using a base register. */
11060 if (breg != op[0])
11061 dreg = tempreg;
11062 else
11063 {
11064 gas_assert (tempreg == AT);
11065 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11066 op[0], AT, breg);
11067 dreg = op[0];
11068 add_breg_early = 1;
11069 }
11070
11071 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
11072 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11073 dreg, dreg, AT);
11074
11075 used_at = 1;
11076 }
11077 else
11078 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
11079
11080 relax_switch ();
11081 offset_expr.X_add_number = expr1.X_add_number;
11082
11083 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11084 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
11085 if (add_breg_early)
11086 {
11087 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11088 op[0], tempreg, breg);
11089 breg = 0;
11090 tempreg = op[0];
11091 }
11092 relax_end ();
11093 }
11094 else if (breg == 0 && (call || tempreg == PIC_CALL_REG))
11095 {
11096 relax_start (offset_expr.X_add_symbol);
11097 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11098 BFD_RELOC_MIPS_CALL16, mips_gp_register);
11099 relax_switch ();
11100 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11101 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
11102 relax_end ();
11103 }
11104 else
11105 {
11106 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11107 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
11108 }
11109 }
11110 else if (mips_big_got && !HAVE_NEWABI)
11111 {
11112 int gpdelay;
11113 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
11114 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
11115 int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
11116
11117 /* This is the large GOT case. If this is a reference to an
11118 external symbol, and there is no constant, we want
11119 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11120 addu $tempreg,$tempreg,$gp
11121 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11122 or for lca or if tempreg is PIC_CALL_REG
11123 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
11124 addu $tempreg,$tempreg,$gp
11125 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
11126 For a local symbol, we want
11127 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11128 nop
11129 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
11130
11131 If we have a small constant, and this is a reference to
11132 an external symbol, we want
11133 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11134 addu $tempreg,$tempreg,$gp
11135 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11136 nop
11137 addiu $tempreg,$tempreg,<constant>
11138 For a local symbol, we want
11139 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11140 nop
11141 addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
11142
11143 If we have a large constant, and this is a reference to
11144 an external symbol, we want
11145 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11146 addu $tempreg,$tempreg,$gp
11147 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11148 lui $at,<hiconstant>
11149 addiu $at,$at,<loconstant>
11150 addu $tempreg,$tempreg,$at
11151 For a local symbol, we want
11152 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11153 lui $at,<hiconstant>
11154 addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
11155 addu $tempreg,$tempreg,$at
11156 */
11157
11158 expr1.X_add_number = offset_expr.X_add_number;
11159 offset_expr.X_add_number = 0;
11160 relax_start (offset_expr.X_add_symbol);
11161 gpdelay = reg_needs_delay (mips_gp_register);
11162 if (expr1.X_add_number == 0 && breg == 0
11163 && (call || tempreg == PIC_CALL_REG))
11164 {
11165 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
11166 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
11167 }
11168 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
11169 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11170 tempreg, tempreg, mips_gp_register);
11171 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11172 tempreg, lw_reloc_type, tempreg);
11173 if (expr1.X_add_number == 0)
11174 {
11175 if (breg != 0)
11176 {
11177 /* We're going to put in an addu instruction using
11178 tempreg, so we may as well insert the nop right
11179 now. */
11180 load_delay_nop ();
11181 }
11182 }
11183 else if (expr1.X_add_number >= -0x8000
11184 && expr1.X_add_number < 0x8000)
11185 {
11186 load_delay_nop ();
11187 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
11188 tempreg, tempreg, BFD_RELOC_LO16);
11189 }
11190 else
11191 {
11192 unsigned int dreg;
11193
11194 /* If we are going to add in a base register, and the
11195 target register and the base register are the same,
11196 then we are using AT as a temporary register. Since
11197 we want to load the constant into AT, we add our
11198 current AT (from the global offset table) and the
11199 register into the register now, and pretend we were
11200 not using a base register. */
11201 if (breg != op[0])
11202 dreg = tempreg;
11203 else
11204 {
11205 gas_assert (tempreg == AT);
11206 load_delay_nop ();
11207 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11208 op[0], AT, breg);
11209 dreg = op[0];
11210 }
11211
11212 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
11213 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
11214
11215 used_at = 1;
11216 }
11217 offset_expr.X_add_number = SEXT_16BIT (expr1.X_add_number);
11218 relax_switch ();
11219
11220 if (gpdelay)
11221 {
11222 /* This is needed because this instruction uses $gp, but
11223 the first instruction on the main stream does not. */
11224 macro_build (NULL, "nop", "");
11225 }
11226
11227 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11228 local_reloc_type, mips_gp_register);
11229 if (expr1.X_add_number >= -0x8000
11230 && expr1.X_add_number < 0x8000)
11231 {
11232 load_delay_nop ();
11233 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11234 tempreg, tempreg, BFD_RELOC_LO16);
11235 /* FIXME: If add_number is 0, and there was no base
11236 register, the external symbol case ended with a load,
11237 so if the symbol turns out to not be external, and
11238 the next instruction uses tempreg, an unnecessary nop
11239 will be inserted. */
11240 }
11241 else
11242 {
11243 if (breg == op[0])
11244 {
11245 /* We must add in the base register now, as in the
11246 external symbol case. */
11247 gas_assert (tempreg == AT);
11248 load_delay_nop ();
11249 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11250 op[0], AT, breg);
11251 tempreg = op[0];
11252 /* We set breg to 0 because we have arranged to add
11253 it in in both cases. */
11254 breg = 0;
11255 }
11256
11257 macro_build_lui (&expr1, AT);
11258 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11259 AT, AT, BFD_RELOC_LO16);
11260 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11261 tempreg, tempreg, AT);
11262 used_at = 1;
11263 }
11264 relax_end ();
11265 }
11266 else if (mips_big_got && HAVE_NEWABI)
11267 {
11268 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
11269 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
11270 int add_breg_early = 0;
11271
11272 /* This is the large GOT case. If this is a reference to an
11273 external symbol, and there is no constant, we want
11274 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11275 add $tempreg,$tempreg,$gp
11276 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11277 or for lca or if tempreg is PIC_CALL_REG
11278 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
11279 add $tempreg,$tempreg,$gp
11280 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
11281
11282 If we have a small constant, and this is a reference to
11283 an external symbol, we want
11284 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11285 add $tempreg,$tempreg,$gp
11286 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11287 addi $tempreg,$tempreg,<constant>
11288
11289 If we have a large constant, and this is a reference to
11290 an external symbol, we want
11291 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11292 addu $tempreg,$tempreg,$gp
11293 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11294 lui $at,<hiconstant>
11295 addi $at,$at,<loconstant>
11296 add $tempreg,$tempreg,$at
11297
11298 If we have NewABI, and we know it's a local symbol, we want
11299 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
11300 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
11301 otherwise we have to resort to GOT_HI16/GOT_LO16. */
11302
11303 relax_start (offset_expr.X_add_symbol);
11304
11305 expr1.X_add_number = offset_expr.X_add_number;
11306 offset_expr.X_add_number = 0;
11307
11308 if (expr1.X_add_number == 0 && breg == 0
11309 && (call || tempreg == PIC_CALL_REG))
11310 {
11311 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
11312 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
11313 }
11314 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
11315 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11316 tempreg, tempreg, mips_gp_register);
11317 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11318 tempreg, lw_reloc_type, tempreg);
11319
11320 if (expr1.X_add_number == 0)
11321 ;
11322 else if (expr1.X_add_number >= -0x8000
11323 && expr1.X_add_number < 0x8000)
11324 {
11325 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
11326 tempreg, tempreg, BFD_RELOC_LO16);
11327 }
11328 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
11329 {
11330 unsigned int dreg;
11331
11332 /* If we are going to add in a base register, and the
11333 target register and the base register are the same,
11334 then we are using AT as a temporary register. Since
11335 we want to load the constant into AT, we add our
11336 current AT (from the global offset table) and the
11337 register into the register now, and pretend we were
11338 not using a base register. */
11339 if (breg != op[0])
11340 dreg = tempreg;
11341 else
11342 {
11343 gas_assert (tempreg == AT);
11344 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11345 op[0], AT, breg);
11346 dreg = op[0];
11347 add_breg_early = 1;
11348 }
11349
11350 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
11351 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
11352
11353 used_at = 1;
11354 }
11355 else
11356 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
11357
11358 relax_switch ();
11359 offset_expr.X_add_number = expr1.X_add_number;
11360 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11361 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
11362 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
11363 tempreg, BFD_RELOC_MIPS_GOT_OFST);
11364 if (add_breg_early)
11365 {
11366 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11367 op[0], tempreg, breg);
11368 breg = 0;
11369 tempreg = op[0];
11370 }
11371 relax_end ();
11372 }
11373 else
11374 abort ();
11375
11376 if (breg != 0)
11377 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", op[0], tempreg, breg);
11378 break;
11379
11380 case M_MSGSND:
11381 gas_assert (!mips_opts.micromips);
11382 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x01);
11383 break;
11384
11385 case M_MSGLD:
11386 gas_assert (!mips_opts.micromips);
11387 macro_build (NULL, "c2", "C", 0x02);
11388 break;
11389
11390 case M_MSGLD_T:
11391 gas_assert (!mips_opts.micromips);
11392 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x02);
11393 break;
11394
11395 case M_MSGWAIT:
11396 gas_assert (!mips_opts.micromips);
11397 macro_build (NULL, "c2", "C", 3);
11398 break;
11399
11400 case M_MSGWAIT_T:
11401 gas_assert (!mips_opts.micromips);
11402 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x03);
11403 break;
11404
11405 case M_J_A:
11406 /* The j instruction may not be used in PIC code, since it
11407 requires an absolute address. We convert it to a b
11408 instruction. */
11409 if (mips_pic == NO_PIC)
11410 macro_build (&offset_expr, "j", "a");
11411 else
11412 macro_build (&offset_expr, "b", "p");
11413 break;
11414
11415 /* The jal instructions must be handled as macros because when
11416 generating PIC code they expand to multi-instruction
11417 sequences. Normally they are simple instructions. */
11418 case M_JALS_1:
11419 op[1] = op[0];
11420 op[0] = RA;
11421 /* Fall through. */
11422 case M_JALS_2:
11423 gas_assert (mips_opts.micromips);
11424 if (mips_opts.insn32)
11425 {
11426 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
11427 break;
11428 }
11429 jals = 1;
11430 goto jal;
11431 case M_JAL_1:
11432 op[1] = op[0];
11433 op[0] = RA;
11434 /* Fall through. */
11435 case M_JAL_2:
11436 jal:
11437 if (mips_pic == NO_PIC)
11438 {
11439 s = jals ? "jalrs" : "jalr";
11440 if (mips_opts.micromips
11441 && !mips_opts.insn32
11442 && op[0] == RA
11443 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
11444 macro_build (NULL, s, "mj", op[1]);
11445 else
11446 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
11447 }
11448 else
11449 {
11450 int cprestore = (mips_pic == SVR4_PIC && !HAVE_NEWABI
11451 && mips_cprestore_offset >= 0);
11452
11453 if (op[1] != PIC_CALL_REG)
11454 as_warn (_("MIPS PIC call to register other than $25"));
11455
11456 s = ((mips_opts.micromips
11457 && !mips_opts.insn32
11458 && (!mips_opts.noreorder || cprestore))
11459 ? "jalrs" : "jalr");
11460 if (mips_opts.micromips
11461 && !mips_opts.insn32
11462 && op[0] == RA
11463 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
11464 macro_build (NULL, s, "mj", op[1]);
11465 else
11466 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
11467 if (mips_pic == SVR4_PIC && !HAVE_NEWABI)
11468 {
11469 if (mips_cprestore_offset < 0)
11470 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11471 else
11472 {
11473 if (!mips_frame_reg_valid)
11474 {
11475 as_warn (_("no .frame pseudo-op used in PIC code"));
11476 /* Quiet this warning. */
11477 mips_frame_reg_valid = 1;
11478 }
11479 if (!mips_cprestore_valid)
11480 {
11481 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11482 /* Quiet this warning. */
11483 mips_cprestore_valid = 1;
11484 }
11485 if (mips_opts.noreorder)
11486 macro_build (NULL, "nop", "");
11487 expr1.X_add_number = mips_cprestore_offset;
11488 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
11489 mips_gp_register,
11490 mips_frame_reg,
11491 HAVE_64BIT_ADDRESSES);
11492 }
11493 }
11494 }
11495
11496 break;
11497
11498 case M_JALS_A:
11499 gas_assert (mips_opts.micromips);
11500 if (mips_opts.insn32)
11501 {
11502 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
11503 break;
11504 }
11505 jals = 1;
11506 /* Fall through. */
11507 case M_JAL_A:
11508 if (mips_pic == NO_PIC)
11509 macro_build (&offset_expr, jals ? "jals" : "jal", "a");
11510 else if (mips_pic == SVR4_PIC)
11511 {
11512 /* If this is a reference to an external symbol, and we are
11513 using a small GOT, we want
11514 lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
11515 nop
11516 jalr $ra,$25
11517 nop
11518 lw $gp,cprestore($sp)
11519 The cprestore value is set using the .cprestore
11520 pseudo-op. If we are using a big GOT, we want
11521 lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
11522 addu $25,$25,$gp
11523 lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
11524 nop
11525 jalr $ra,$25
11526 nop
11527 lw $gp,cprestore($sp)
11528 If the symbol is not external, we want
11529 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11530 nop
11531 addiu $25,$25,<sym> (BFD_RELOC_LO16)
11532 jalr $ra,$25
11533 nop
11534 lw $gp,cprestore($sp)
11535
11536 For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
11537 sequences above, minus nops, unless the symbol is local,
11538 which enables us to use GOT_PAGE/GOT_OFST (big got) or
11539 GOT_DISP. */
11540 if (HAVE_NEWABI)
11541 {
11542 if (!mips_big_got)
11543 {
11544 relax_start (offset_expr.X_add_symbol);
11545 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11546 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
11547 mips_gp_register);
11548 relax_switch ();
11549 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11550 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP,
11551 mips_gp_register);
11552 relax_end ();
11553 }
11554 else
11555 {
11556 relax_start (offset_expr.X_add_symbol);
11557 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
11558 BFD_RELOC_MIPS_CALL_HI16);
11559 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11560 PIC_CALL_REG, mips_gp_register);
11561 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11562 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11563 PIC_CALL_REG);
11564 relax_switch ();
11565 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11566 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE,
11567 mips_gp_register);
11568 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11569 PIC_CALL_REG, PIC_CALL_REG,
11570 BFD_RELOC_MIPS_GOT_OFST);
11571 relax_end ();
11572 }
11573
11574 macro_build_jalr (&offset_expr, 0);
11575 }
11576 else
11577 {
11578 relax_start (offset_expr.X_add_symbol);
11579 if (!mips_big_got)
11580 {
11581 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11582 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
11583 mips_gp_register);
11584 load_delay_nop ();
11585 relax_switch ();
11586 }
11587 else
11588 {
11589 int gpdelay;
11590
11591 gpdelay = reg_needs_delay (mips_gp_register);
11592 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
11593 BFD_RELOC_MIPS_CALL_HI16);
11594 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11595 PIC_CALL_REG, mips_gp_register);
11596 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11597 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11598 PIC_CALL_REG);
11599 load_delay_nop ();
11600 relax_switch ();
11601 if (gpdelay)
11602 macro_build (NULL, "nop", "");
11603 }
11604 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11605 PIC_CALL_REG, BFD_RELOC_MIPS_GOT16,
11606 mips_gp_register);
11607 load_delay_nop ();
11608 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11609 PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16);
11610 relax_end ();
11611 macro_build_jalr (&offset_expr, mips_cprestore_offset >= 0);
11612
11613 if (mips_cprestore_offset < 0)
11614 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11615 else
11616 {
11617 if (!mips_frame_reg_valid)
11618 {
11619 as_warn (_("no .frame pseudo-op used in PIC code"));
11620 /* Quiet this warning. */
11621 mips_frame_reg_valid = 1;
11622 }
11623 if (!mips_cprestore_valid)
11624 {
11625 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11626 /* Quiet this warning. */
11627 mips_cprestore_valid = 1;
11628 }
11629 if (mips_opts.noreorder)
11630 macro_build (NULL, "nop", "");
11631 expr1.X_add_number = mips_cprestore_offset;
11632 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
11633 mips_gp_register,
11634 mips_frame_reg,
11635 HAVE_64BIT_ADDRESSES);
11636 }
11637 }
11638 }
11639 else if (mips_pic == VXWORKS_PIC)
11640 as_bad (_("non-PIC jump used in PIC library"));
11641 else
11642 abort ();
11643
11644 break;
11645
11646 case M_LBUE_AB:
11647 s = "lbue";
11648 fmt = "t,+j(b)";
11649 offbits = 9;
11650 goto ld_st;
11651 case M_LHUE_AB:
11652 s = "lhue";
11653 fmt = "t,+j(b)";
11654 offbits = 9;
11655 goto ld_st;
11656 case M_LBE_AB:
11657 s = "lbe";
11658 fmt = "t,+j(b)";
11659 offbits = 9;
11660 goto ld_st;
11661 case M_LHE_AB:
11662 s = "lhe";
11663 fmt = "t,+j(b)";
11664 offbits = 9;
11665 goto ld_st;
11666 case M_LLE_AB:
11667 s = "lle";
11668 fmt = "t,+j(b)";
11669 offbits = 9;
11670 goto ld_st;
11671 case M_LWE_AB:
11672 s = "lwe";
11673 fmt = "t,+j(b)";
11674 offbits = 9;
11675 goto ld_st;
11676 case M_LWLE_AB:
11677 s = "lwle";
11678 fmt = "t,+j(b)";
11679 offbits = 9;
11680 goto ld_st;
11681 case M_LWRE_AB:
11682 s = "lwre";
11683 fmt = "t,+j(b)";
11684 offbits = 9;
11685 goto ld_st;
11686 case M_SBE_AB:
11687 s = "sbe";
11688 fmt = "t,+j(b)";
11689 offbits = 9;
11690 goto ld_st;
11691 case M_SCE_AB:
11692 s = "sce";
11693 fmt = "t,+j(b)";
11694 offbits = 9;
11695 goto ld_st;
11696 case M_SHE_AB:
11697 s = "she";
11698 fmt = "t,+j(b)";
11699 offbits = 9;
11700 goto ld_st;
11701 case M_SWE_AB:
11702 s = "swe";
11703 fmt = "t,+j(b)";
11704 offbits = 9;
11705 goto ld_st;
11706 case M_SWLE_AB:
11707 s = "swle";
11708 fmt = "t,+j(b)";
11709 offbits = 9;
11710 goto ld_st;
11711 case M_SWRE_AB:
11712 s = "swre";
11713 fmt = "t,+j(b)";
11714 offbits = 9;
11715 goto ld_st;
11716 case M_ACLR_AB:
11717 s = "aclr";
11718 fmt = "\\,~(b)";
11719 offbits = 12;
11720 goto ld_st;
11721 case M_ASET_AB:
11722 s = "aset";
11723 fmt = "\\,~(b)";
11724 offbits = 12;
11725 goto ld_st;
11726 case M_LB_AB:
11727 s = "lb";
11728 fmt = "t,o(b)";
11729 goto ld;
11730 case M_LBU_AB:
11731 s = "lbu";
11732 fmt = "t,o(b)";
11733 goto ld;
11734 case M_LH_AB:
11735 s = "lh";
11736 fmt = "t,o(b)";
11737 goto ld;
11738 case M_LHU_AB:
11739 s = "lhu";
11740 fmt = "t,o(b)";
11741 goto ld;
11742 case M_LW_AB:
11743 s = "lw";
11744 fmt = "t,o(b)";
11745 goto ld;
11746 case M_LWC0_AB:
11747 gas_assert (!mips_opts.micromips);
11748 s = "lwc0";
11749 fmt = "E,o(b)";
11750 /* Itbl support may require additional care here. */
11751 coproc = 1;
11752 goto ld_st;
11753 case M_LWC1_AB:
11754 s = "lwc1";
11755 fmt = "T,o(b)";
11756 /* Itbl support may require additional care here. */
11757 coproc = 1;
11758 goto ld_st;
11759 case M_LWC2_AB:
11760 s = "lwc2";
11761 fmt = COP12_FMT;
11762 offbits = (mips_opts.micromips ? 12
11763 : ISA_IS_R6 (mips_opts.isa) ? 11
11764 : 16);
11765 /* Itbl support may require additional care here. */
11766 coproc = 1;
11767 goto ld_st;
11768 case M_LWC3_AB:
11769 gas_assert (!mips_opts.micromips);
11770 s = "lwc3";
11771 fmt = "E,o(b)";
11772 /* Itbl support may require additional care here. */
11773 coproc = 1;
11774 goto ld_st;
11775 case M_LWL_AB:
11776 s = "lwl";
11777 fmt = MEM12_FMT;
11778 offbits = (mips_opts.micromips ? 12 : 16);
11779 goto ld_st;
11780 case M_LWR_AB:
11781 s = "lwr";
11782 fmt = MEM12_FMT;
11783 offbits = (mips_opts.micromips ? 12 : 16);
11784 goto ld_st;
11785 case M_LDC1_AB:
11786 s = "ldc1";
11787 fmt = "T,o(b)";
11788 /* Itbl support may require additional care here. */
11789 coproc = 1;
11790 goto ld_st;
11791 case M_LDC2_AB:
11792 s = "ldc2";
11793 fmt = COP12_FMT;
11794 offbits = (mips_opts.micromips ? 12
11795 : ISA_IS_R6 (mips_opts.isa) ? 11
11796 : 16);
11797 /* Itbl support may require additional care here. */
11798 coproc = 1;
11799 goto ld_st;
11800 case M_LQC2_AB:
11801 s = "lqc2";
11802 fmt = "+7,o(b)";
11803 /* Itbl support may require additional care here. */
11804 coproc = 1;
11805 goto ld_st;
11806 case M_LDC3_AB:
11807 s = "ldc3";
11808 fmt = "E,o(b)";
11809 /* Itbl support may require additional care here. */
11810 coproc = 1;
11811 goto ld_st;
11812 case M_LDL_AB:
11813 s = "ldl";
11814 fmt = MEM12_FMT;
11815 offbits = (mips_opts.micromips ? 12 : 16);
11816 goto ld_st;
11817 case M_LDR_AB:
11818 s = "ldr";
11819 fmt = MEM12_FMT;
11820 offbits = (mips_opts.micromips ? 12 : 16);
11821 goto ld_st;
11822 case M_LL_AB:
11823 s = "ll";
11824 fmt = LL_SC_FMT;
11825 offbits = (mips_opts.micromips ? 12
11826 : ISA_IS_R6 (mips_opts.isa) ? 9
11827 : 16);
11828 goto ld;
11829 case M_LLD_AB:
11830 s = "lld";
11831 fmt = LL_SC_FMT;
11832 offbits = (mips_opts.micromips ? 12
11833 : ISA_IS_R6 (mips_opts.isa) ? 9
11834 : 16);
11835 goto ld;
11836 case M_LWU_AB:
11837 s = "lwu";
11838 fmt = MEM12_FMT;
11839 offbits = (mips_opts.micromips ? 12 : 16);
11840 goto ld;
11841 case M_LWP_AB:
11842 gas_assert (mips_opts.micromips);
11843 s = "lwp";
11844 fmt = "t,~(b)";
11845 offbits = 12;
11846 lp = 1;
11847 goto ld;
11848 case M_LDP_AB:
11849 gas_assert (mips_opts.micromips);
11850 s = "ldp";
11851 fmt = "t,~(b)";
11852 offbits = 12;
11853 lp = 1;
11854 goto ld;
11855 case M_LWM_AB:
11856 gas_assert (mips_opts.micromips);
11857 s = "lwm";
11858 fmt = "n,~(b)";
11859 offbits = 12;
11860 goto ld_st;
11861 case M_LDM_AB:
11862 gas_assert (mips_opts.micromips);
11863 s = "ldm";
11864 fmt = "n,~(b)";
11865 offbits = 12;
11866 goto ld_st;
11867
11868 ld:
11869 /* We don't want to use $0 as tempreg. */
11870 if (op[2] == op[0] + lp || op[0] + lp == ZERO)
11871 goto ld_st;
11872 else
11873 tempreg = op[0] + lp;
11874 goto ld_noat;
11875
11876 case M_SB_AB:
11877 s = "sb";
11878 fmt = "t,o(b)";
11879 goto ld_st;
11880 case M_SH_AB:
11881 s = "sh";
11882 fmt = "t,o(b)";
11883 goto ld_st;
11884 case M_SW_AB:
11885 s = "sw";
11886 fmt = "t,o(b)";
11887 goto ld_st;
11888 case M_SWC0_AB:
11889 gas_assert (!mips_opts.micromips);
11890 s = "swc0";
11891 fmt = "E,o(b)";
11892 /* Itbl support may require additional care here. */
11893 coproc = 1;
11894 goto ld_st;
11895 case M_SWC1_AB:
11896 s = "swc1";
11897 fmt = "T,o(b)";
11898 /* Itbl support may require additional care here. */
11899 coproc = 1;
11900 goto ld_st;
11901 case M_SWC2_AB:
11902 s = "swc2";
11903 fmt = COP12_FMT;
11904 offbits = (mips_opts.micromips ? 12
11905 : ISA_IS_R6 (mips_opts.isa) ? 11
11906 : 16);
11907 /* Itbl support may require additional care here. */
11908 coproc = 1;
11909 goto ld_st;
11910 case M_SWC3_AB:
11911 gas_assert (!mips_opts.micromips);
11912 s = "swc3";
11913 fmt = "E,o(b)";
11914 /* Itbl support may require additional care here. */
11915 coproc = 1;
11916 goto ld_st;
11917 case M_SWL_AB:
11918 s = "swl";
11919 fmt = MEM12_FMT;
11920 offbits = (mips_opts.micromips ? 12 : 16);
11921 goto ld_st;
11922 case M_SWR_AB:
11923 s = "swr";
11924 fmt = MEM12_FMT;
11925 offbits = (mips_opts.micromips ? 12 : 16);
11926 goto ld_st;
11927 case M_SC_AB:
11928 s = "sc";
11929 fmt = LL_SC_FMT;
11930 offbits = (mips_opts.micromips ? 12
11931 : ISA_IS_R6 (mips_opts.isa) ? 9
11932 : 16);
11933 goto ld_st;
11934 case M_SCD_AB:
11935 s = "scd";
11936 fmt = LL_SC_FMT;
11937 offbits = (mips_opts.micromips ? 12
11938 : ISA_IS_R6 (mips_opts.isa) ? 9
11939 : 16);
11940 goto ld_st;
11941 case M_CACHE_AB:
11942 s = "cache";
11943 fmt = (mips_opts.micromips ? "k,~(b)"
11944 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11945 : "k,o(b)");
11946 offbits = (mips_opts.micromips ? 12
11947 : ISA_IS_R6 (mips_opts.isa) ? 9
11948 : 16);
11949 goto ld_st;
11950 case M_CACHEE_AB:
11951 s = "cachee";
11952 fmt = "k,+j(b)";
11953 offbits = 9;
11954 goto ld_st;
11955 case M_PREF_AB:
11956 s = "pref";
11957 fmt = (mips_opts.micromips ? "k,~(b)"
11958 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11959 : "k,o(b)");
11960 offbits = (mips_opts.micromips ? 12
11961 : ISA_IS_R6 (mips_opts.isa) ? 9
11962 : 16);
11963 goto ld_st;
11964 case M_PREFE_AB:
11965 s = "prefe";
11966 fmt = "k,+j(b)";
11967 offbits = 9;
11968 goto ld_st;
11969 case M_SDC1_AB:
11970 s = "sdc1";
11971 fmt = "T,o(b)";
11972 coproc = 1;
11973 /* Itbl support may require additional care here. */
11974 goto ld_st;
11975 case M_SDC2_AB:
11976 s = "sdc2";
11977 fmt = COP12_FMT;
11978 offbits = (mips_opts.micromips ? 12
11979 : ISA_IS_R6 (mips_opts.isa) ? 11
11980 : 16);
11981 /* Itbl support may require additional care here. */
11982 coproc = 1;
11983 goto ld_st;
11984 case M_SQC2_AB:
11985 s = "sqc2";
11986 fmt = "+7,o(b)";
11987 /* Itbl support may require additional care here. */
11988 coproc = 1;
11989 goto ld_st;
11990 case M_SDC3_AB:
11991 gas_assert (!mips_opts.micromips);
11992 s = "sdc3";
11993 fmt = "E,o(b)";
11994 /* Itbl support may require additional care here. */
11995 coproc = 1;
11996 goto ld_st;
11997 case M_SDL_AB:
11998 s = "sdl";
11999 fmt = MEM12_FMT;
12000 offbits = (mips_opts.micromips ? 12 : 16);
12001 goto ld_st;
12002 case M_SDR_AB:
12003 s = "sdr";
12004 fmt = MEM12_FMT;
12005 offbits = (mips_opts.micromips ? 12 : 16);
12006 goto ld_st;
12007 case M_SWP_AB:
12008 gas_assert (mips_opts.micromips);
12009 s = "swp";
12010 fmt = "t,~(b)";
12011 offbits = 12;
12012 goto ld_st;
12013 case M_SDP_AB:
12014 gas_assert (mips_opts.micromips);
12015 s = "sdp";
12016 fmt = "t,~(b)";
12017 offbits = 12;
12018 goto ld_st;
12019 case M_SWM_AB:
12020 gas_assert (mips_opts.micromips);
12021 s = "swm";
12022 fmt = "n,~(b)";
12023 offbits = 12;
12024 goto ld_st;
12025 case M_SDM_AB:
12026 gas_assert (mips_opts.micromips);
12027 s = "sdm";
12028 fmt = "n,~(b)";
12029 offbits = 12;
12030
12031 ld_st:
12032 tempreg = AT;
12033 ld_noat:
12034 breg = op[2];
12035 if (small_offset_p (0, align, 16))
12036 {
12037 /* The first case exists for M_LD_AB and M_SD_AB, which are
12038 macros for o32 but which should act like normal instructions
12039 otherwise. */
12040 if (offbits == 16)
12041 macro_build (&offset_expr, s, fmt, op[0], -1, offset_reloc[0],
12042 offset_reloc[1], offset_reloc[2], breg);
12043 else if (small_offset_p (0, align, offbits))
12044 {
12045 if (offbits == 0)
12046 macro_build (NULL, s, fmt, op[0], breg);
12047 else
12048 macro_build (NULL, s, fmt, op[0],
12049 (int) offset_expr.X_add_number, breg);
12050 }
12051 else
12052 {
12053 if (tempreg == AT)
12054 used_at = 1;
12055 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
12056 tempreg, breg, -1, offset_reloc[0],
12057 offset_reloc[1], offset_reloc[2]);
12058 if (offbits == 0)
12059 macro_build (NULL, s, fmt, op[0], tempreg);
12060 else
12061 macro_build (NULL, s, fmt, op[0], 0, tempreg);
12062 }
12063 break;
12064 }
12065
12066 if (tempreg == AT)
12067 used_at = 1;
12068
12069 if (offset_expr.X_op != O_constant
12070 && offset_expr.X_op != O_symbol)
12071 {
12072 as_bad (_("expression too complex"));
12073 offset_expr.X_op = O_constant;
12074 }
12075
12076 if (HAVE_32BIT_ADDRESSES
12077 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
12078 {
12079 char value [32];
12080
12081 sprintf_vma (value, offset_expr.X_add_number);
12082 as_bad (_("number (0x%s) larger than 32 bits"), value);
12083 }
12084
12085 /* A constant expression in PIC code can be handled just as it
12086 is in non PIC code. */
12087 if (offset_expr.X_op == O_constant)
12088 {
12089 expr1.X_add_number = offset_high_part (offset_expr.X_add_number,
12090 offbits == 0 ? 16 : offbits);
12091 offset_expr.X_add_number -= expr1.X_add_number;
12092
12093 load_register (tempreg, &expr1, HAVE_64BIT_ADDRESSES);
12094 if (breg != 0)
12095 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12096 tempreg, tempreg, breg);
12097 if (offbits == 0)
12098 {
12099 if (offset_expr.X_add_number != 0)
12100 macro_build (&offset_expr, ADDRESS_ADDI_INSN,
12101 "t,r,j", tempreg, tempreg, BFD_RELOC_LO16);
12102 macro_build (NULL, s, fmt, op[0], tempreg);
12103 }
12104 else if (offbits == 16)
12105 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
12106 else
12107 macro_build (NULL, s, fmt, op[0],
12108 (int) offset_expr.X_add_number, tempreg);
12109 }
12110 else if (offbits != 16)
12111 {
12112 /* The offset field is too narrow to be used for a low-part
12113 relocation, so load the whole address into the auxiliary
12114 register. */
12115 load_address (tempreg, &offset_expr, &used_at);
12116 if (breg != 0)
12117 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12118 tempreg, tempreg, breg);
12119 if (offbits == 0)
12120 macro_build (NULL, s, fmt, op[0], tempreg);
12121 else
12122 macro_build (NULL, s, fmt, op[0], 0, tempreg);
12123 }
12124 else if (mips_pic == NO_PIC)
12125 {
12126 /* If this is a reference to a GP relative symbol, and there
12127 is no base register, we want
12128 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
12129 Otherwise, if there is no base register, we want
12130 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
12131 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
12132 If we have a constant, we need two instructions anyhow,
12133 so we always use the latter form.
12134
12135 If we have a base register, and this is a reference to a
12136 GP relative symbol, we want
12137 addu $tempreg,$breg,$gp
12138 <op> op[0],<sym>($tempreg) (BFD_RELOC_GPREL16)
12139 Otherwise we want
12140 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
12141 addu $tempreg,$tempreg,$breg
12142 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
12143 With a constant we always use the latter case.
12144
12145 With 64bit address space and no base register and $at usable,
12146 we want
12147 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
12148 lui $at,<sym> (BFD_RELOC_HI16_S)
12149 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
12150 dsll32 $tempreg,0
12151 daddu $tempreg,$at
12152 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
12153 If we have a base register, we want
12154 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
12155 lui $at,<sym> (BFD_RELOC_HI16_S)
12156 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
12157 daddu $at,$breg
12158 dsll32 $tempreg,0
12159 daddu $tempreg,$at
12160 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
12161
12162 Without $at we can't generate the optimal path for superscalar
12163 processors here since this would require two temporary registers.
12164 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
12165 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
12166 dsll $tempreg,16
12167 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
12168 dsll $tempreg,16
12169 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
12170 If we have a base register, we want
12171 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
12172 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
12173 dsll $tempreg,16
12174 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
12175 dsll $tempreg,16
12176 daddu $tempreg,$tempreg,$breg
12177 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
12178
12179 For GP relative symbols in 64bit address space we can use
12180 the same sequence as in 32bit address space. */
12181 if (HAVE_64BIT_SYMBOLS)
12182 {
12183 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
12184 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
12185 {
12186 relax_start (offset_expr.X_add_symbol);
12187 if (breg == 0)
12188 {
12189 macro_build (&offset_expr, s, fmt, op[0],
12190 BFD_RELOC_GPREL16, mips_gp_register);
12191 }
12192 else
12193 {
12194 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12195 tempreg, breg, mips_gp_register);
12196 macro_build (&offset_expr, s, fmt, op[0],
12197 BFD_RELOC_GPREL16, tempreg);
12198 }
12199 relax_switch ();
12200 }
12201
12202 if (used_at == 0 && mips_opts.at)
12203 {
12204 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
12205 BFD_RELOC_MIPS_HIGHEST);
12206 macro_build (&offset_expr, "lui", LUI_FMT, AT,
12207 BFD_RELOC_HI16_S);
12208 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
12209 tempreg, BFD_RELOC_MIPS_HIGHER);
12210 if (breg != 0)
12211 macro_build (NULL, "daddu", "d,v,t", AT, AT, breg);
12212 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
12213 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
12214 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16,
12215 tempreg);
12216 used_at = 1;
12217 }
12218 else
12219 {
12220 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
12221 BFD_RELOC_MIPS_HIGHEST);
12222 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
12223 tempreg, BFD_RELOC_MIPS_HIGHER);
12224 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
12225 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
12226 tempreg, BFD_RELOC_HI16_S);
12227 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
12228 if (breg != 0)
12229 macro_build (NULL, "daddu", "d,v,t",
12230 tempreg, tempreg, breg);
12231 macro_build (&offset_expr, s, fmt, op[0],
12232 BFD_RELOC_LO16, tempreg);
12233 }
12234
12235 if (mips_relax.sequence)
12236 relax_end ();
12237 break;
12238 }
12239
12240 if (breg == 0)
12241 {
12242 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
12243 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
12244 {
12245 relax_start (offset_expr.X_add_symbol);
12246 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_GPREL16,
12247 mips_gp_register);
12248 relax_switch ();
12249 }
12250 macro_build_lui (&offset_expr, tempreg);
12251 macro_build (&offset_expr, s, fmt, op[0],
12252 BFD_RELOC_LO16, tempreg);
12253 if (mips_relax.sequence)
12254 relax_end ();
12255 }
12256 else
12257 {
12258 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
12259 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
12260 {
12261 relax_start (offset_expr.X_add_symbol);
12262 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12263 tempreg, breg, mips_gp_register);
12264 macro_build (&offset_expr, s, fmt, op[0],
12265 BFD_RELOC_GPREL16, tempreg);
12266 relax_switch ();
12267 }
12268 macro_build_lui (&offset_expr, tempreg);
12269 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12270 tempreg, tempreg, breg);
12271 macro_build (&offset_expr, s, fmt, op[0],
12272 BFD_RELOC_LO16, tempreg);
12273 if (mips_relax.sequence)
12274 relax_end ();
12275 }
12276 }
12277 else if (!mips_big_got)
12278 {
12279 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
12280
12281 /* If this is a reference to an external symbol, we want
12282 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12283 nop
12284 <op> op[0],0($tempreg)
12285 Otherwise we want
12286 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12287 nop
12288 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
12289 <op> op[0],0($tempreg)
12290
12291 For NewABI, we want
12292 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
12293 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
12294
12295 If there is a base register, we add it to $tempreg before
12296 the <op>. If there is a constant, we stick it in the
12297 <op> instruction. We don't handle constants larger than
12298 16 bits, because we have no way to load the upper 16 bits
12299 (actually, we could handle them for the subset of cases
12300 in which we are not using $at). */
12301 gas_assert (offset_expr.X_op == O_symbol);
12302 if (HAVE_NEWABI)
12303 {
12304 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12305 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
12306 if (breg != 0)
12307 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12308 tempreg, tempreg, breg);
12309 macro_build (&offset_expr, s, fmt, op[0],
12310 BFD_RELOC_MIPS_GOT_OFST, tempreg);
12311 break;
12312 }
12313 expr1.X_add_number = offset_expr.X_add_number;
12314 offset_expr.X_add_number = 0;
12315 if (expr1.X_add_number < -0x8000
12316 || expr1.X_add_number >= 0x8000)
12317 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12318 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12319 lw_reloc_type, mips_gp_register);
12320 load_delay_nop ();
12321 relax_start (offset_expr.X_add_symbol);
12322 relax_switch ();
12323 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
12324 tempreg, BFD_RELOC_LO16);
12325 relax_end ();
12326 if (breg != 0)
12327 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12328 tempreg, tempreg, breg);
12329 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
12330 }
12331 else if (mips_big_got && !HAVE_NEWABI)
12332 {
12333 int gpdelay;
12334
12335 /* If this is a reference to an external symbol, we want
12336 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12337 addu $tempreg,$tempreg,$gp
12338 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
12339 <op> op[0],0($tempreg)
12340 Otherwise we want
12341 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12342 nop
12343 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
12344 <op> op[0],0($tempreg)
12345 If there is a base register, we add it to $tempreg before
12346 the <op>. If there is a constant, we stick it in the
12347 <op> instruction. We don't handle constants larger than
12348 16 bits, because we have no way to load the upper 16 bits
12349 (actually, we could handle them for the subset of cases
12350 in which we are not using $at). */
12351 gas_assert (offset_expr.X_op == O_symbol);
12352 expr1.X_add_number = offset_expr.X_add_number;
12353 offset_expr.X_add_number = 0;
12354 if (expr1.X_add_number < -0x8000
12355 || expr1.X_add_number >= 0x8000)
12356 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12357 gpdelay = reg_needs_delay (mips_gp_register);
12358 relax_start (offset_expr.X_add_symbol);
12359 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
12360 BFD_RELOC_MIPS_GOT_HI16);
12361 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
12362 mips_gp_register);
12363 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12364 BFD_RELOC_MIPS_GOT_LO16, tempreg);
12365 relax_switch ();
12366 if (gpdelay)
12367 macro_build (NULL, "nop", "");
12368 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12369 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12370 load_delay_nop ();
12371 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
12372 tempreg, BFD_RELOC_LO16);
12373 relax_end ();
12374
12375 if (breg != 0)
12376 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12377 tempreg, tempreg, breg);
12378 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
12379 }
12380 else if (mips_big_got && HAVE_NEWABI)
12381 {
12382 /* If this is a reference to an external symbol, we want
12383 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12384 add $tempreg,$tempreg,$gp
12385 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
12386 <op> op[0],<ofst>($tempreg)
12387 Otherwise, for local symbols, we want:
12388 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
12389 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
12390 gas_assert (offset_expr.X_op == O_symbol);
12391 expr1.X_add_number = offset_expr.X_add_number;
12392 offset_expr.X_add_number = 0;
12393 if (expr1.X_add_number < -0x8000
12394 || expr1.X_add_number >= 0x8000)
12395 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12396 relax_start (offset_expr.X_add_symbol);
12397 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
12398 BFD_RELOC_MIPS_GOT_HI16);
12399 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
12400 mips_gp_register);
12401 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12402 BFD_RELOC_MIPS_GOT_LO16, tempreg);
12403 if (breg != 0)
12404 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12405 tempreg, tempreg, breg);
12406 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
12407
12408 relax_switch ();
12409 offset_expr.X_add_number = expr1.X_add_number;
12410 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12411 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
12412 if (breg != 0)
12413 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12414 tempreg, tempreg, breg);
12415 macro_build (&offset_expr, s, fmt, op[0],
12416 BFD_RELOC_MIPS_GOT_OFST, tempreg);
12417 relax_end ();
12418 }
12419 else
12420 abort ();
12421
12422 break;
12423
12424 case M_JRADDIUSP:
12425 gas_assert (mips_opts.micromips);
12426 gas_assert (mips_opts.insn32);
12427 start_noreorder ();
12428 macro_build (NULL, "jr", "s", RA);
12429 expr1.X_add_number = op[0] << 2;
12430 macro_build (&expr1, "addiu", "t,r,j", SP, SP, BFD_RELOC_LO16);
12431 end_noreorder ();
12432 break;
12433
12434 case M_JRC:
12435 gas_assert (mips_opts.micromips);
12436 gas_assert (mips_opts.insn32);
12437 macro_build (NULL, "jr", "s", op[0]);
12438 if (mips_opts.noreorder)
12439 macro_build (NULL, "nop", "");
12440 break;
12441
12442 case M_LI:
12443 case M_LI_S:
12444 load_register (op[0], &imm_expr, 0);
12445 break;
12446
12447 case M_DLI:
12448 load_register (op[0], &imm_expr, 1);
12449 break;
12450
12451 case M_LI_SS:
12452 if (imm_expr.X_op == O_constant)
12453 {
12454 used_at = 1;
12455 load_register (AT, &imm_expr, 0);
12456 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
12457 break;
12458 }
12459 else
12460 {
12461 gas_assert (imm_expr.X_op == O_absent
12462 && offset_expr.X_op == O_symbol
12463 && strcmp (segment_name (S_GET_SEGMENT
12464 (offset_expr.X_add_symbol)),
12465 ".lit4") == 0
12466 && offset_expr.X_add_number == 0);
12467 macro_build (&offset_expr, "lwc1", "T,o(b)", op[0],
12468 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
12469 break;
12470 }
12471
12472 case M_LI_D:
12473 /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
12474 wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
12475 order 32 bits of the value and the low order 32 bits are either
12476 zero or in OFFSET_EXPR. */
12477 if (imm_expr.X_op == O_constant)
12478 {
12479 if (GPR_SIZE == 64)
12480 load_register (op[0], &imm_expr, 1);
12481 else
12482 {
12483 int hreg, lreg;
12484
12485 if (target_big_endian)
12486 {
12487 hreg = op[0];
12488 lreg = op[0] + 1;
12489 }
12490 else
12491 {
12492 hreg = op[0] + 1;
12493 lreg = op[0];
12494 }
12495
12496 if (hreg <= 31)
12497 load_register (hreg, &imm_expr, 0);
12498 if (lreg <= 31)
12499 {
12500 if (offset_expr.X_op == O_absent)
12501 move_register (lreg, 0);
12502 else
12503 {
12504 gas_assert (offset_expr.X_op == O_constant);
12505 load_register (lreg, &offset_expr, 0);
12506 }
12507 }
12508 }
12509 break;
12510 }
12511 gas_assert (imm_expr.X_op == O_absent);
12512
12513 /* We know that sym is in the .rdata section. First we get the
12514 upper 16 bits of the address. */
12515 if (mips_pic == NO_PIC)
12516 {
12517 macro_build_lui (&offset_expr, AT);
12518 used_at = 1;
12519 }
12520 else
12521 {
12522 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12523 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12524 used_at = 1;
12525 }
12526
12527 /* Now we load the register(s). */
12528 if (GPR_SIZE == 64)
12529 {
12530 used_at = 1;
12531 macro_build (&offset_expr, "ld", "t,o(b)", op[0],
12532 BFD_RELOC_LO16, AT);
12533 }
12534 else
12535 {
12536 used_at = 1;
12537 macro_build (&offset_expr, "lw", "t,o(b)", op[0],
12538 BFD_RELOC_LO16, AT);
12539 if (op[0] != RA)
12540 {
12541 /* FIXME: How in the world do we deal with the possible
12542 overflow here? */
12543 offset_expr.X_add_number += 4;
12544 macro_build (&offset_expr, "lw", "t,o(b)",
12545 op[0] + 1, BFD_RELOC_LO16, AT);
12546 }
12547 }
12548 break;
12549
12550 case M_LI_DD:
12551 /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
12552 wide, IMM_EXPR is the entire value and the GPRs are known to be 64
12553 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
12554 the value and the low order 32 bits are either zero or in
12555 OFFSET_EXPR. */
12556 if (imm_expr.X_op == O_constant)
12557 {
12558 used_at = 1;
12559 load_register (AT, &imm_expr, FPR_SIZE == 64);
12560 if (FPR_SIZE == 64 && GPR_SIZE == 64)
12561 macro_build (NULL, "dmtc1", "t,S", AT, op[0]);
12562 else
12563 {
12564 if (ISA_HAS_MXHC1 (mips_opts.isa))
12565 macro_build (NULL, "mthc1", "t,G", AT, op[0]);
12566 else if (FPR_SIZE != 32)
12567 as_bad (_("Unable to generate `%s' compliant code "
12568 "without mthc1"),
12569 (FPR_SIZE == 64) ? "fp64" : "fpxx");
12570 else
12571 macro_build (NULL, "mtc1", "t,G", AT, op[0] + 1);
12572 if (offset_expr.X_op == O_absent)
12573 macro_build (NULL, "mtc1", "t,G", 0, op[0]);
12574 else
12575 {
12576 gas_assert (offset_expr.X_op == O_constant);
12577 load_register (AT, &offset_expr, 0);
12578 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
12579 }
12580 }
12581 break;
12582 }
12583
12584 gas_assert (imm_expr.X_op == O_absent
12585 && offset_expr.X_op == O_symbol
12586 && offset_expr.X_add_number == 0);
12587 s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
12588 if (strcmp (s, ".lit8") == 0)
12589 {
12590 op[2] = mips_gp_register;
12591 offset_reloc[0] = BFD_RELOC_MIPS_LITERAL;
12592 offset_reloc[1] = BFD_RELOC_UNUSED;
12593 offset_reloc[2] = BFD_RELOC_UNUSED;
12594 }
12595 else
12596 {
12597 gas_assert (strcmp (s, RDATA_SECTION_NAME) == 0);
12598 used_at = 1;
12599 if (mips_pic != NO_PIC)
12600 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12601 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12602 else
12603 {
12604 /* FIXME: This won't work for a 64 bit address. */
12605 macro_build_lui (&offset_expr, AT);
12606 }
12607
12608 op[2] = AT;
12609 offset_reloc[0] = BFD_RELOC_LO16;
12610 offset_reloc[1] = BFD_RELOC_UNUSED;
12611 offset_reloc[2] = BFD_RELOC_UNUSED;
12612 }
12613 align = 8;
12614 /* Fall through */
12615
12616 case M_L_DAB:
12617 /*
12618 * The MIPS assembler seems to check for X_add_number not
12619 * being double aligned and generating:
12620 * lui at,%hi(foo+1)
12621 * addu at,at,v1
12622 * addiu at,at,%lo(foo+1)
12623 * lwc1 f2,0(at)
12624 * lwc1 f3,4(at)
12625 * But, the resulting address is the same after relocation so why
12626 * generate the extra instruction?
12627 */
12628 /* Itbl support may require additional care here. */
12629 coproc = 1;
12630 fmt = "T,o(b)";
12631 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
12632 {
12633 s = "ldc1";
12634 goto ld_st;
12635 }
12636 s = "lwc1";
12637 goto ldd_std;
12638
12639 case M_S_DAB:
12640 gas_assert (!mips_opts.micromips);
12641 /* Itbl support may require additional care here. */
12642 coproc = 1;
12643 fmt = "T,o(b)";
12644 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
12645 {
12646 s = "sdc1";
12647 goto ld_st;
12648 }
12649 s = "swc1";
12650 goto ldd_std;
12651
12652 case M_LQ_AB:
12653 fmt = "t,o(b)";
12654 s = "lq";
12655 goto ld;
12656
12657 case M_SQ_AB:
12658 fmt = "t,o(b)";
12659 s = "sq";
12660 goto ld_st;
12661
12662 case M_LD_AB:
12663 fmt = "t,o(b)";
12664 if (GPR_SIZE == 64)
12665 {
12666 s = "ld";
12667 goto ld;
12668 }
12669 s = "lw";
12670 goto ldd_std;
12671
12672 case M_SD_AB:
12673 fmt = "t,o(b)";
12674 if (GPR_SIZE == 64)
12675 {
12676 s = "sd";
12677 goto ld_st;
12678 }
12679 s = "sw";
12680
12681 ldd_std:
12682 /* Even on a big endian machine $fn comes before $fn+1. We have
12683 to adjust when loading from memory. We set coproc if we must
12684 load $fn+1 first. */
12685 /* Itbl support may require additional care here. */
12686 if (!target_big_endian)
12687 coproc = 0;
12688
12689 breg = op[2];
12690 if (small_offset_p (0, align, 16))
12691 {
12692 ep = &offset_expr;
12693 if (!small_offset_p (4, align, 16))
12694 {
12695 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", AT, breg,
12696 -1, offset_reloc[0], offset_reloc[1],
12697 offset_reloc[2]);
12698 expr1.X_add_number = 0;
12699 ep = &expr1;
12700 breg = AT;
12701 used_at = 1;
12702 offset_reloc[0] = BFD_RELOC_LO16;
12703 offset_reloc[1] = BFD_RELOC_UNUSED;
12704 offset_reloc[2] = BFD_RELOC_UNUSED;
12705 }
12706 if (strcmp (s, "lw") == 0 && op[0] == breg)
12707 {
12708 ep->X_add_number += 4;
12709 macro_build (ep, s, fmt, op[0] + 1, -1, offset_reloc[0],
12710 offset_reloc[1], offset_reloc[2], breg);
12711 ep->X_add_number -= 4;
12712 macro_build (ep, s, fmt, op[0], -1, offset_reloc[0],
12713 offset_reloc[1], offset_reloc[2], breg);
12714 }
12715 else
12716 {
12717 macro_build (ep, s, fmt, coproc ? op[0] + 1 : op[0], -1,
12718 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12719 breg);
12720 ep->X_add_number += 4;
12721 macro_build (ep, s, fmt, coproc ? op[0] : op[0] + 1, -1,
12722 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12723 breg);
12724 }
12725 break;
12726 }
12727
12728 if (offset_expr.X_op != O_symbol
12729 && offset_expr.X_op != O_constant)
12730 {
12731 as_bad (_("expression too complex"));
12732 offset_expr.X_op = O_constant;
12733 }
12734
12735 if (HAVE_32BIT_ADDRESSES
12736 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
12737 {
12738 char value [32];
12739
12740 sprintf_vma (value, offset_expr.X_add_number);
12741 as_bad (_("number (0x%s) larger than 32 bits"), value);
12742 }
12743
12744 if (mips_pic == NO_PIC || offset_expr.X_op == O_constant)
12745 {
12746 /* If this is a reference to a GP relative symbol, we want
12747 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
12748 <op> op[0]+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
12749 If we have a base register, we use this
12750 addu $at,$breg,$gp
12751 <op> op[0],<sym>($at) (BFD_RELOC_GPREL16)
12752 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_GPREL16)
12753 If this is not a GP relative symbol, we want
12754 lui $at,<sym> (BFD_RELOC_HI16_S)
12755 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12756 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12757 If there is a base register, we add it to $at after the
12758 lui instruction. If there is a constant, we always use
12759 the last case. */
12760 if (offset_expr.X_op == O_symbol
12761 && (valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
12762 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
12763 {
12764 relax_start (offset_expr.X_add_symbol);
12765 if (breg == 0)
12766 {
12767 tempreg = mips_gp_register;
12768 }
12769 else
12770 {
12771 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12772 AT, breg, mips_gp_register);
12773 tempreg = AT;
12774 used_at = 1;
12775 }
12776
12777 /* Itbl support may require additional care here. */
12778 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12779 BFD_RELOC_GPREL16, tempreg);
12780 offset_expr.X_add_number += 4;
12781
12782 /* Set mips_optimize to 2 to avoid inserting an
12783 undesired nop. */
12784 hold_mips_optimize = mips_optimize;
12785 mips_optimize = 2;
12786 /* Itbl support may require additional care here. */
12787 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12788 BFD_RELOC_GPREL16, tempreg);
12789 mips_optimize = hold_mips_optimize;
12790
12791 relax_switch ();
12792
12793 offset_expr.X_add_number -= 4;
12794 }
12795 used_at = 1;
12796 if (offset_high_part (offset_expr.X_add_number, 16)
12797 != offset_high_part (offset_expr.X_add_number + 4, 16))
12798 {
12799 load_address (AT, &offset_expr, &used_at);
12800 offset_expr.X_op = O_constant;
12801 offset_expr.X_add_number = 0;
12802 }
12803 else
12804 macro_build_lui (&offset_expr, AT);
12805 if (breg != 0)
12806 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12807 /* Itbl support may require additional care here. */
12808 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12809 BFD_RELOC_LO16, AT);
12810 /* FIXME: How do we handle overflow here? */
12811 offset_expr.X_add_number += 4;
12812 /* Itbl support may require additional care here. */
12813 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12814 BFD_RELOC_LO16, AT);
12815 if (mips_relax.sequence)
12816 relax_end ();
12817 }
12818 else if (!mips_big_got)
12819 {
12820 /* If this is a reference to an external symbol, we want
12821 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12822 nop
12823 <op> op[0],0($at)
12824 <op> op[0]+1,4($at)
12825 Otherwise we want
12826 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12827 nop
12828 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12829 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12830 If there is a base register we add it to $at before the
12831 lwc1 instructions. If there is a constant we include it
12832 in the lwc1 instructions. */
12833 used_at = 1;
12834 expr1.X_add_number = offset_expr.X_add_number;
12835 if (expr1.X_add_number < -0x8000
12836 || expr1.X_add_number >= 0x8000 - 4)
12837 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12838 load_got_offset (AT, &offset_expr);
12839 load_delay_nop ();
12840 if (breg != 0)
12841 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12842
12843 /* Set mips_optimize to 2 to avoid inserting an undesired
12844 nop. */
12845 hold_mips_optimize = mips_optimize;
12846 mips_optimize = 2;
12847
12848 /* Itbl support may require additional care here. */
12849 relax_start (offset_expr.X_add_symbol);
12850 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
12851 BFD_RELOC_LO16, AT);
12852 expr1.X_add_number += 4;
12853 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
12854 BFD_RELOC_LO16, AT);
12855 relax_switch ();
12856 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12857 BFD_RELOC_LO16, AT);
12858 offset_expr.X_add_number += 4;
12859 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12860 BFD_RELOC_LO16, AT);
12861 relax_end ();
12862
12863 mips_optimize = hold_mips_optimize;
12864 }
12865 else if (mips_big_got)
12866 {
12867 int gpdelay;
12868
12869 /* If this is a reference to an external symbol, we want
12870 lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12871 addu $at,$at,$gp
12872 lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
12873 nop
12874 <op> op[0],0($at)
12875 <op> op[0]+1,4($at)
12876 Otherwise we want
12877 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12878 nop
12879 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12880 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12881 If there is a base register we add it to $at before the
12882 lwc1 instructions. If there is a constant we include it
12883 in the lwc1 instructions. */
12884 used_at = 1;
12885 expr1.X_add_number = offset_expr.X_add_number;
12886 offset_expr.X_add_number = 0;
12887 if (expr1.X_add_number < -0x8000
12888 || expr1.X_add_number >= 0x8000 - 4)
12889 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12890 gpdelay = reg_needs_delay (mips_gp_register);
12891 relax_start (offset_expr.X_add_symbol);
12892 macro_build (&offset_expr, "lui", LUI_FMT,
12893 AT, BFD_RELOC_MIPS_GOT_HI16);
12894 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12895 AT, AT, mips_gp_register);
12896 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
12897 AT, BFD_RELOC_MIPS_GOT_LO16, AT);
12898 load_delay_nop ();
12899 if (breg != 0)
12900 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12901 /* Itbl support may require additional care here. */
12902 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
12903 BFD_RELOC_LO16, AT);
12904 expr1.X_add_number += 4;
12905
12906 /* Set mips_optimize to 2 to avoid inserting an undesired
12907 nop. */
12908 hold_mips_optimize = mips_optimize;
12909 mips_optimize = 2;
12910 /* Itbl support may require additional care here. */
12911 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
12912 BFD_RELOC_LO16, AT);
12913 mips_optimize = hold_mips_optimize;
12914 expr1.X_add_number -= 4;
12915
12916 relax_switch ();
12917 offset_expr.X_add_number = expr1.X_add_number;
12918 if (gpdelay)
12919 macro_build (NULL, "nop", "");
12920 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12921 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12922 load_delay_nop ();
12923 if (breg != 0)
12924 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12925 /* Itbl support may require additional care here. */
12926 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12927 BFD_RELOC_LO16, AT);
12928 offset_expr.X_add_number += 4;
12929
12930 /* Set mips_optimize to 2 to avoid inserting an undesired
12931 nop. */
12932 hold_mips_optimize = mips_optimize;
12933 mips_optimize = 2;
12934 /* Itbl support may require additional care here. */
12935 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12936 BFD_RELOC_LO16, AT);
12937 mips_optimize = hold_mips_optimize;
12938 relax_end ();
12939 }
12940 else
12941 abort ();
12942
12943 break;
12944
12945 case M_SAA_AB:
12946 s = "saa";
12947 goto saa_saad;
12948 case M_SAAD_AB:
12949 s = "saad";
12950 saa_saad:
12951 gas_assert (!mips_opts.micromips);
12952 offbits = 0;
12953 fmt = "t,(b)";
12954 goto ld_st;
12955
12956 /* New code added to support COPZ instructions.
12957 This code builds table entries out of the macros in mip_opcodes.
12958 R4000 uses interlocks to handle coproc delays.
12959 Other chips (like the R3000) require nops to be inserted for delays.
12960
12961 FIXME: Currently, we require that the user handle delays.
12962 In order to fill delay slots for non-interlocked chips,
12963 we must have a way to specify delays based on the coprocessor.
12964 Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
12965 What are the side-effects of the cop instruction?
12966 What cache support might we have and what are its effects?
12967 Both coprocessor & memory require delays. how long???
12968 What registers are read/set/modified?
12969
12970 If an itbl is provided to interpret cop instructions,
12971 this knowledge can be encoded in the itbl spec. */
12972
12973 case M_COP0:
12974 s = "c0";
12975 goto copz;
12976 case M_COP1:
12977 s = "c1";
12978 goto copz;
12979 case M_COP2:
12980 s = "c2";
12981 goto copz;
12982 case M_COP3:
12983 s = "c3";
12984 copz:
12985 gas_assert (!mips_opts.micromips);
12986 /* For now we just do C (same as Cz). The parameter will be
12987 stored in insn_opcode by mips_ip. */
12988 macro_build (NULL, s, "C", (int) ip->insn_opcode);
12989 break;
12990
12991 case M_MOVE:
12992 move_register (op[0], op[1]);
12993 break;
12994
12995 case M_MOVEP:
12996 gas_assert (mips_opts.micromips);
12997 gas_assert (mips_opts.insn32);
12998 move_register (micromips_to_32_reg_h_map1[op[0]],
12999 micromips_to_32_reg_m_map[op[1]]);
13000 move_register (micromips_to_32_reg_h_map2[op[0]],
13001 micromips_to_32_reg_n_map[op[2]]);
13002 break;
13003
13004 case M_DMUL:
13005 dbl = 1;
13006 /* Fall through. */
13007 case M_MUL:
13008 if (mips_opts.arch == CPU_R5900)
13009 macro_build (NULL, dbl ? "dmultu" : "multu", "d,s,t", op[0], op[1],
13010 op[2]);
13011 else
13012 {
13013 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", op[1], op[2]);
13014 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
13015 }
13016 break;
13017
13018 case M_DMUL_I:
13019 dbl = 1;
13020 /* Fall through. */
13021 case M_MUL_I:
13022 /* The MIPS assembler some times generates shifts and adds. I'm
13023 not trying to be that fancy. GCC should do this for us
13024 anyway. */
13025 used_at = 1;
13026 load_register (AT, &imm_expr, dbl);
13027 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", op[1], AT);
13028 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
13029 break;
13030
13031 case M_DMULO_I:
13032 dbl = 1;
13033 /* Fall through. */
13034 case M_MULO_I:
13035 imm = 1;
13036 goto do_mulo;
13037
13038 case M_DMULO:
13039 dbl = 1;
13040 /* Fall through. */
13041 case M_MULO:
13042 do_mulo:
13043 start_noreorder ();
13044 used_at = 1;
13045 if (imm)
13046 load_register (AT, &imm_expr, dbl);
13047 macro_build (NULL, dbl ? "dmult" : "mult", "s,t",
13048 op[1], imm ? AT : op[2]);
13049 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
13050 macro_build (NULL, dbl ? "dsra32" : "sra", SHFT_FMT, op[0], op[0], 31);
13051 macro_build (NULL, "mfhi", MFHL_FMT, AT);
13052 if (mips_trap)
13053 macro_build (NULL, "tne", TRAP_FMT, op[0], AT, 6);
13054 else
13055 {
13056 if (mips_opts.micromips)
13057 micromips_label_expr (&label_expr);
13058 else
13059 label_expr.X_add_number = 8;
13060 macro_build (&label_expr, "beq", "s,t,p", op[0], AT);
13061 macro_build (NULL, "nop", "");
13062 macro_build (NULL, "break", BRK_FMT, 6);
13063 if (mips_opts.micromips)
13064 micromips_add_label ();
13065 }
13066 end_noreorder ();
13067 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
13068 break;
13069
13070 case M_DMULOU_I:
13071 dbl = 1;
13072 /* Fall through. */
13073 case M_MULOU_I:
13074 imm = 1;
13075 goto do_mulou;
13076
13077 case M_DMULOU:
13078 dbl = 1;
13079 /* Fall through. */
13080 case M_MULOU:
13081 do_mulou:
13082 start_noreorder ();
13083 used_at = 1;
13084 if (imm)
13085 load_register (AT, &imm_expr, dbl);
13086 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t",
13087 op[1], imm ? AT : op[2]);
13088 macro_build (NULL, "mfhi", MFHL_FMT, AT);
13089 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
13090 if (mips_trap)
13091 macro_build (NULL, "tne", TRAP_FMT, AT, ZERO, 6);
13092 else
13093 {
13094 if (mips_opts.micromips)
13095 micromips_label_expr (&label_expr);
13096 else
13097 label_expr.X_add_number = 8;
13098 macro_build (&label_expr, "beq", "s,t,p", AT, ZERO);
13099 macro_build (NULL, "nop", "");
13100 macro_build (NULL, "break", BRK_FMT, 6);
13101 if (mips_opts.micromips)
13102 micromips_add_label ();
13103 }
13104 end_noreorder ();
13105 break;
13106
13107 case M_DROL:
13108 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
13109 {
13110 if (op[0] == op[1])
13111 {
13112 tempreg = AT;
13113 used_at = 1;
13114 }
13115 else
13116 tempreg = op[0];
13117 macro_build (NULL, "dnegu", "d,w", tempreg, op[2]);
13118 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], tempreg);
13119 break;
13120 }
13121 used_at = 1;
13122 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
13123 macro_build (NULL, "dsrlv", "d,t,s", AT, op[1], AT);
13124 macro_build (NULL, "dsllv", "d,t,s", op[0], op[1], op[2]);
13125 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13126 break;
13127
13128 case M_ROL:
13129 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
13130 {
13131 if (op[0] == op[1])
13132 {
13133 tempreg = AT;
13134 used_at = 1;
13135 }
13136 else
13137 tempreg = op[0];
13138 macro_build (NULL, "negu", "d,w", tempreg, op[2]);
13139 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], tempreg);
13140 break;
13141 }
13142 used_at = 1;
13143 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
13144 macro_build (NULL, "srlv", "d,t,s", AT, op[1], AT);
13145 macro_build (NULL, "sllv", "d,t,s", op[0], op[1], op[2]);
13146 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13147 break;
13148
13149 case M_DROL_I:
13150 {
13151 unsigned int rot;
13152 const char *l;
13153 const char *rr;
13154
13155 rot = imm_expr.X_add_number & 0x3f;
13156 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
13157 {
13158 rot = (64 - rot) & 0x3f;
13159 if (rot >= 32)
13160 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
13161 else
13162 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
13163 break;
13164 }
13165 if (rot == 0)
13166 {
13167 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
13168 break;
13169 }
13170 l = (rot < 0x20) ? "dsll" : "dsll32";
13171 rr = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
13172 rot &= 0x1f;
13173 used_at = 1;
13174 macro_build (NULL, l, SHFT_FMT, AT, op[1], rot);
13175 macro_build (NULL, rr, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
13176 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13177 }
13178 break;
13179
13180 case M_ROL_I:
13181 {
13182 unsigned int rot;
13183
13184 rot = imm_expr.X_add_number & 0x1f;
13185 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
13186 {
13187 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1],
13188 (32 - rot) & 0x1f);
13189 break;
13190 }
13191 if (rot == 0)
13192 {
13193 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
13194 break;
13195 }
13196 used_at = 1;
13197 macro_build (NULL, "sll", SHFT_FMT, AT, op[1], rot);
13198 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
13199 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13200 }
13201 break;
13202
13203 case M_DROR:
13204 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
13205 {
13206 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], op[2]);
13207 break;
13208 }
13209 used_at = 1;
13210 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
13211 macro_build (NULL, "dsllv", "d,t,s", AT, op[1], AT);
13212 macro_build (NULL, "dsrlv", "d,t,s", op[0], op[1], op[2]);
13213 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13214 break;
13215
13216 case M_ROR:
13217 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
13218 {
13219 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], op[2]);
13220 break;
13221 }
13222 used_at = 1;
13223 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
13224 macro_build (NULL, "sllv", "d,t,s", AT, op[1], AT);
13225 macro_build (NULL, "srlv", "d,t,s", op[0], op[1], op[2]);
13226 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13227 break;
13228
13229 case M_DROR_I:
13230 {
13231 unsigned int rot;
13232 const char *l;
13233 const char *rr;
13234
13235 rot = imm_expr.X_add_number & 0x3f;
13236 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
13237 {
13238 if (rot >= 32)
13239 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
13240 else
13241 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
13242 break;
13243 }
13244 if (rot == 0)
13245 {
13246 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
13247 break;
13248 }
13249 rr = (rot < 0x20) ? "dsrl" : "dsrl32";
13250 l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
13251 rot &= 0x1f;
13252 used_at = 1;
13253 macro_build (NULL, rr, SHFT_FMT, AT, op[1], rot);
13254 macro_build (NULL, l, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
13255 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13256 }
13257 break;
13258
13259 case M_ROR_I:
13260 {
13261 unsigned int rot;
13262
13263 rot = imm_expr.X_add_number & 0x1f;
13264 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
13265 {
13266 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1], rot);
13267 break;
13268 }
13269 if (rot == 0)
13270 {
13271 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
13272 break;
13273 }
13274 used_at = 1;
13275 macro_build (NULL, "srl", SHFT_FMT, AT, op[1], rot);
13276 macro_build (NULL, "sll", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
13277 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13278 }
13279 break;
13280
13281 case M_SEQ:
13282 if (op[1] == 0)
13283 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[2], BFD_RELOC_LO16);
13284 else if (op[2] == 0)
13285 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13286 else
13287 {
13288 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
13289 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
13290 }
13291 break;
13292
13293 case M_SEQ_I:
13294 if (imm_expr.X_add_number == 0)
13295 {
13296 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13297 break;
13298 }
13299 if (op[1] == 0)
13300 {
13301 as_warn (_("instruction %s: result is always false"),
13302 ip->insn_mo->name);
13303 move_register (op[0], 0);
13304 break;
13305 }
13306 if (CPU_HAS_SEQ (mips_opts.arch)
13307 && -512 <= imm_expr.X_add_number
13308 && imm_expr.X_add_number < 512)
13309 {
13310 macro_build (NULL, "seqi", "t,r,+Q", op[0], op[1],
13311 (int) imm_expr.X_add_number);
13312 break;
13313 }
13314 if (imm_expr.X_add_number >= 0
13315 && imm_expr.X_add_number < 0x10000)
13316 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1], BFD_RELOC_LO16);
13317 else if (imm_expr.X_add_number > -0x8000
13318 && imm_expr.X_add_number < 0)
13319 {
13320 imm_expr.X_add_number = -imm_expr.X_add_number;
13321 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
13322 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13323 }
13324 else if (CPU_HAS_SEQ (mips_opts.arch))
13325 {
13326 used_at = 1;
13327 load_register (AT, &imm_expr, GPR_SIZE == 64);
13328 macro_build (NULL, "seq", "d,v,t", op[0], op[1], AT);
13329 break;
13330 }
13331 else
13332 {
13333 load_register (AT, &imm_expr, GPR_SIZE == 64);
13334 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
13335 used_at = 1;
13336 }
13337 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
13338 break;
13339
13340 case M_SGE: /* X >= Y <==> not (X < Y) */
13341 s = "slt";
13342 goto sge;
13343 case M_SGEU:
13344 s = "sltu";
13345 sge:
13346 macro_build (NULL, s, "d,v,t", op[0], op[1], op[2]);
13347 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
13348 break;
13349
13350 case M_SGE_I: /* X >= I <==> not (X < I) */
13351 case M_SGEU_I:
13352 if (imm_expr.X_add_number >= -0x8000
13353 && imm_expr.X_add_number < 0x8000)
13354 macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j",
13355 op[0], op[1], BFD_RELOC_LO16);
13356 else
13357 {
13358 load_register (AT, &imm_expr, GPR_SIZE == 64);
13359 macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t",
13360 op[0], op[1], AT);
13361 used_at = 1;
13362 }
13363 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
13364 break;
13365
13366 case M_SGT: /* X > Y <==> Y < X */
13367 s = "slt";
13368 goto sgt;
13369 case M_SGTU:
13370 s = "sltu";
13371 sgt:
13372 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
13373 break;
13374
13375 case M_SGT_I: /* X > I <==> I < X */
13376 s = "slt";
13377 goto sgti;
13378 case M_SGTU_I:
13379 s = "sltu";
13380 sgti:
13381 used_at = 1;
13382 load_register (AT, &imm_expr, GPR_SIZE == 64);
13383 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
13384 break;
13385
13386 case M_SLE: /* X <= Y <==> Y >= X <==> not (Y < X) */
13387 s = "slt";
13388 goto sle;
13389 case M_SLEU:
13390 s = "sltu";
13391 sle:
13392 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
13393 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
13394 break;
13395
13396 case M_SLE_I: /* X <= I <==> I >= X <==> not (I < X) */
13397 s = "slt";
13398 goto slei;
13399 case M_SLEU_I:
13400 s = "sltu";
13401 slei:
13402 used_at = 1;
13403 load_register (AT, &imm_expr, GPR_SIZE == 64);
13404 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
13405 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
13406 break;
13407
13408 case M_SLT_I:
13409 if (imm_expr.X_add_number >= -0x8000
13410 && imm_expr.X_add_number < 0x8000)
13411 {
13412 macro_build (&imm_expr, "slti", "t,r,j", op[0], op[1],
13413 BFD_RELOC_LO16);
13414 break;
13415 }
13416 used_at = 1;
13417 load_register (AT, &imm_expr, GPR_SIZE == 64);
13418 macro_build (NULL, "slt", "d,v,t", op[0], op[1], AT);
13419 break;
13420
13421 case M_SLTU_I:
13422 if (imm_expr.X_add_number >= -0x8000
13423 && imm_expr.X_add_number < 0x8000)
13424 {
13425 macro_build (&imm_expr, "sltiu", "t,r,j", op[0], op[1],
13426 BFD_RELOC_LO16);
13427 break;
13428 }
13429 used_at = 1;
13430 load_register (AT, &imm_expr, GPR_SIZE == 64);
13431 macro_build (NULL, "sltu", "d,v,t", op[0], op[1], AT);
13432 break;
13433
13434 case M_SNE:
13435 if (op[1] == 0)
13436 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[2]);
13437 else if (op[2] == 0)
13438 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
13439 else
13440 {
13441 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
13442 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
13443 }
13444 break;
13445
13446 case M_SNE_I:
13447 if (imm_expr.X_add_number == 0)
13448 {
13449 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
13450 break;
13451 }
13452 if (op[1] == 0)
13453 {
13454 as_warn (_("instruction %s: result is always true"),
13455 ip->insn_mo->name);
13456 macro_build (&expr1, GPR_SIZE == 32 ? "addiu" : "daddiu", "t,r,j",
13457 op[0], 0, BFD_RELOC_LO16);
13458 break;
13459 }
13460 if (CPU_HAS_SEQ (mips_opts.arch)
13461 && -512 <= imm_expr.X_add_number
13462 && imm_expr.X_add_number < 512)
13463 {
13464 macro_build (NULL, "snei", "t,r,+Q", op[0], op[1],
13465 (int) imm_expr.X_add_number);
13466 break;
13467 }
13468 if (imm_expr.X_add_number >= 0
13469 && imm_expr.X_add_number < 0x10000)
13470 {
13471 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1],
13472 BFD_RELOC_LO16);
13473 }
13474 else if (imm_expr.X_add_number > -0x8000
13475 && imm_expr.X_add_number < 0)
13476 {
13477 imm_expr.X_add_number = -imm_expr.X_add_number;
13478 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
13479 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13480 }
13481 else if (CPU_HAS_SEQ (mips_opts.arch))
13482 {
13483 used_at = 1;
13484 load_register (AT, &imm_expr, GPR_SIZE == 64);
13485 macro_build (NULL, "sne", "d,v,t", op[0], op[1], AT);
13486 break;
13487 }
13488 else
13489 {
13490 load_register (AT, &imm_expr, GPR_SIZE == 64);
13491 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
13492 used_at = 1;
13493 }
13494 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
13495 break;
13496
13497 case M_SUB_I:
13498 s = "addi";
13499 s2 = "sub";
13500 goto do_subi;
13501 case M_SUBU_I:
13502 s = "addiu";
13503 s2 = "subu";
13504 goto do_subi;
13505 case M_DSUB_I:
13506 dbl = 1;
13507 s = "daddi";
13508 s2 = "dsub";
13509 if (!mips_opts.micromips)
13510 goto do_subi;
13511 if (imm_expr.X_add_number > -0x200
13512 && imm_expr.X_add_number <= 0x200)
13513 {
13514 macro_build (NULL, s, "t,r,.", op[0], op[1],
13515 (int) -imm_expr.X_add_number);
13516 break;
13517 }
13518 goto do_subi_i;
13519 case M_DSUBU_I:
13520 dbl = 1;
13521 s = "daddiu";
13522 s2 = "dsubu";
13523 do_subi:
13524 if (imm_expr.X_add_number > -0x8000
13525 && imm_expr.X_add_number <= 0x8000)
13526 {
13527 imm_expr.X_add_number = -imm_expr.X_add_number;
13528 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13529 break;
13530 }
13531 do_subi_i:
13532 used_at = 1;
13533 load_register (AT, &imm_expr, dbl);
13534 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
13535 break;
13536
13537 case M_TEQ_I:
13538 s = "teq";
13539 goto trap;
13540 case M_TGE_I:
13541 s = "tge";
13542 goto trap;
13543 case M_TGEU_I:
13544 s = "tgeu";
13545 goto trap;
13546 case M_TLT_I:
13547 s = "tlt";
13548 goto trap;
13549 case M_TLTU_I:
13550 s = "tltu";
13551 goto trap;
13552 case M_TNE_I:
13553 s = "tne";
13554 trap:
13555 used_at = 1;
13556 load_register (AT, &imm_expr, GPR_SIZE == 64);
13557 macro_build (NULL, s, "s,t", op[0], AT);
13558 break;
13559
13560 case M_TRUNCWS:
13561 case M_TRUNCWD:
13562 gas_assert (!mips_opts.micromips);
13563 gas_assert (mips_opts.isa == ISA_MIPS1);
13564 used_at = 1;
13565
13566 /*
13567 * Is the double cfc1 instruction a bug in the mips assembler;
13568 * or is there a reason for it?
13569 */
13570 start_noreorder ();
13571 macro_build (NULL, "cfc1", "t,G", op[2], RA);
13572 macro_build (NULL, "cfc1", "t,G", op[2], RA);
13573 macro_build (NULL, "nop", "");
13574 expr1.X_add_number = 3;
13575 macro_build (&expr1, "ori", "t,r,i", AT, op[2], BFD_RELOC_LO16);
13576 expr1.X_add_number = 2;
13577 macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16);
13578 macro_build (NULL, "ctc1", "t,G", AT, RA);
13579 macro_build (NULL, "nop", "");
13580 macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S",
13581 op[0], op[1]);
13582 macro_build (NULL, "ctc1", "t,G", op[2], RA);
13583 macro_build (NULL, "nop", "");
13584 end_noreorder ();
13585 break;
13586
13587 case M_ULH_AB:
13588 s = "lb";
13589 s2 = "lbu";
13590 off = 1;
13591 goto uld_st;
13592 case M_ULHU_AB:
13593 s = "lbu";
13594 s2 = "lbu";
13595 off = 1;
13596 goto uld_st;
13597 case M_ULW_AB:
13598 s = "lwl";
13599 s2 = "lwr";
13600 offbits = (mips_opts.micromips ? 12 : 16);
13601 off = 3;
13602 goto uld_st;
13603 case M_ULD_AB:
13604 s = "ldl";
13605 s2 = "ldr";
13606 offbits = (mips_opts.micromips ? 12 : 16);
13607 off = 7;
13608 goto uld_st;
13609 case M_USH_AB:
13610 s = "sb";
13611 s2 = "sb";
13612 off = 1;
13613 ust = 1;
13614 goto uld_st;
13615 case M_USW_AB:
13616 s = "swl";
13617 s2 = "swr";
13618 offbits = (mips_opts.micromips ? 12 : 16);
13619 off = 3;
13620 ust = 1;
13621 goto uld_st;
13622 case M_USD_AB:
13623 s = "sdl";
13624 s2 = "sdr";
13625 offbits = (mips_opts.micromips ? 12 : 16);
13626 off = 7;
13627 ust = 1;
13628
13629 uld_st:
13630 breg = op[2];
13631 large_offset = !small_offset_p (off, align, offbits);
13632 ep = &offset_expr;
13633 expr1.X_add_number = 0;
13634 if (large_offset)
13635 {
13636 used_at = 1;
13637 tempreg = AT;
13638 if (small_offset_p (0, align, 16))
13639 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", tempreg, breg, -1,
13640 offset_reloc[0], offset_reloc[1], offset_reloc[2]);
13641 else
13642 {
13643 load_address (tempreg, ep, &used_at);
13644 if (breg != 0)
13645 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
13646 tempreg, tempreg, breg);
13647 }
13648 offset_reloc[0] = BFD_RELOC_LO16;
13649 offset_reloc[1] = BFD_RELOC_UNUSED;
13650 offset_reloc[2] = BFD_RELOC_UNUSED;
13651 breg = tempreg;
13652 tempreg = op[0];
13653 ep = &expr1;
13654 }
13655 else if (!ust && op[0] == breg)
13656 {
13657 used_at = 1;
13658 tempreg = AT;
13659 }
13660 else
13661 tempreg = op[0];
13662
13663 if (off == 1)
13664 goto ulh_sh;
13665
13666 if (!target_big_endian)
13667 ep->X_add_number += off;
13668 if (offbits == 12)
13669 macro_build (NULL, s, "t,~(b)", tempreg, (int) ep->X_add_number, breg);
13670 else
13671 macro_build (ep, s, "t,o(b)", tempreg, -1,
13672 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13673
13674 if (!target_big_endian)
13675 ep->X_add_number -= off;
13676 else
13677 ep->X_add_number += off;
13678 if (offbits == 12)
13679 macro_build (NULL, s2, "t,~(b)",
13680 tempreg, (int) ep->X_add_number, breg);
13681 else
13682 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13683 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13684
13685 /* If necessary, move the result in tempreg to the final destination. */
13686 if (!ust && op[0] != tempreg)
13687 {
13688 /* Protect second load's delay slot. */
13689 load_delay_nop ();
13690 move_register (op[0], tempreg);
13691 }
13692 break;
13693
13694 ulh_sh:
13695 used_at = 1;
13696 if (target_big_endian == ust)
13697 ep->X_add_number += off;
13698 tempreg = ust || large_offset ? op[0] : AT;
13699 macro_build (ep, s, "t,o(b)", tempreg, -1,
13700 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13701
13702 /* For halfword transfers we need a temporary register to shuffle
13703 bytes. Unfortunately for M_USH_A we have none available before
13704 the next store as AT holds the base address. We deal with this
13705 case by clobbering TREG and then restoring it as with ULH. */
13706 tempreg = ust == large_offset ? op[0] : AT;
13707 if (ust)
13708 macro_build (NULL, "srl", SHFT_FMT, tempreg, op[0], 8);
13709
13710 if (target_big_endian == ust)
13711 ep->X_add_number -= off;
13712 else
13713 ep->X_add_number += off;
13714 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13715 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13716
13717 /* For M_USH_A re-retrieve the LSB. */
13718 if (ust && large_offset)
13719 {
13720 if (target_big_endian)
13721 ep->X_add_number += off;
13722 else
13723 ep->X_add_number -= off;
13724 macro_build (&expr1, "lbu", "t,o(b)", AT, -1,
13725 offset_reloc[0], offset_reloc[1], offset_reloc[2], AT);
13726 }
13727 /* For ULH and M_USH_A OR the LSB in. */
13728 if (!ust || large_offset)
13729 {
13730 tempreg = !large_offset ? AT : op[0];
13731 macro_build (NULL, "sll", SHFT_FMT, tempreg, tempreg, 8);
13732 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13733 }
13734 break;
13735
13736 default:
13737 /* FIXME: Check if this is one of the itbl macros, since they
13738 are added dynamically. */
13739 as_bad (_("macro %s not implemented yet"), ip->insn_mo->name);
13740 break;
13741 }
13742 if (!mips_opts.at && used_at)
13743 as_bad (_("macro used $at after \".set noat\""));
13744 }
13745
13746 /* Implement macros in mips16 mode. */
13747
13748 static void
13749 mips16_macro (struct mips_cl_insn *ip)
13750 {
13751 const struct mips_operand_array *operands;
13752 int mask;
13753 int tmp;
13754 expressionS expr1;
13755 int dbl;
13756 const char *s, *s2, *s3;
13757 unsigned int op[MAX_OPERANDS];
13758 unsigned int i;
13759
13760 mask = ip->insn_mo->mask;
13761
13762 operands = insn_operands (ip);
13763 for (i = 0; i < MAX_OPERANDS; i++)
13764 if (operands->operand[i])
13765 op[i] = insn_extract_operand (ip, operands->operand[i]);
13766 else
13767 op[i] = -1;
13768
13769 expr1.X_op = O_constant;
13770 expr1.X_op_symbol = NULL;
13771 expr1.X_add_symbol = NULL;
13772 expr1.X_add_number = 1;
13773
13774 dbl = 0;
13775
13776 switch (mask)
13777 {
13778 default:
13779 abort ();
13780
13781 case M_DDIV_3:
13782 dbl = 1;
13783 /* Fall through. */
13784 case M_DIV_3:
13785 s = "mflo";
13786 goto do_div3;
13787 case M_DREM_3:
13788 dbl = 1;
13789 /* Fall through. */
13790 case M_REM_3:
13791 s = "mfhi";
13792 do_div3:
13793 start_noreorder ();
13794 macro_build (NULL, dbl ? "ddiv" : "div", ".,x,y", op[1], op[2]);
13795 expr1.X_add_number = 2;
13796 macro_build (&expr1, "bnez", "x,p", op[2]);
13797 macro_build (NULL, "break", "6", 7);
13798
13799 /* FIXME: The normal code checks for of -1 / -0x80000000 here,
13800 since that causes an overflow. We should do that as well,
13801 but I don't see how to do the comparisons without a temporary
13802 register. */
13803 end_noreorder ();
13804 macro_build (NULL, s, "x", op[0]);
13805 break;
13806
13807 case M_DIVU_3:
13808 s = "divu";
13809 s2 = "mflo";
13810 goto do_divu3;
13811 case M_REMU_3:
13812 s = "divu";
13813 s2 = "mfhi";
13814 goto do_divu3;
13815 case M_DDIVU_3:
13816 s = "ddivu";
13817 s2 = "mflo";
13818 goto do_divu3;
13819 case M_DREMU_3:
13820 s = "ddivu";
13821 s2 = "mfhi";
13822 do_divu3:
13823 start_noreorder ();
13824 macro_build (NULL, s, ".,x,y", op[1], op[2]);
13825 expr1.X_add_number = 2;
13826 macro_build (&expr1, "bnez", "x,p", op[2]);
13827 macro_build (NULL, "break", "6", 7);
13828 end_noreorder ();
13829 macro_build (NULL, s2, "x", op[0]);
13830 break;
13831
13832 case M_DMUL:
13833 dbl = 1;
13834 /* Fall through. */
13835 case M_MUL:
13836 macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", op[1], op[2]);
13837 macro_build (NULL, "mflo", "x", op[0]);
13838 break;
13839
13840 case M_DSUBU_I:
13841 dbl = 1;
13842 goto do_subu;
13843 case M_SUBU_I:
13844 do_subu:
13845 imm_expr.X_add_number = -imm_expr.X_add_number;
13846 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,F", op[0], op[1]);
13847 break;
13848
13849 case M_SUBU_I_2:
13850 imm_expr.X_add_number = -imm_expr.X_add_number;
13851 macro_build (&imm_expr, "addiu", "x,k", op[0]);
13852 break;
13853
13854 case M_DSUBU_I_2:
13855 imm_expr.X_add_number = -imm_expr.X_add_number;
13856 macro_build (&imm_expr, "daddiu", "y,j", op[0]);
13857 break;
13858
13859 case M_BEQ:
13860 s = "cmp";
13861 s2 = "bteqz";
13862 goto do_branch;
13863 case M_BNE:
13864 s = "cmp";
13865 s2 = "btnez";
13866 goto do_branch;
13867 case M_BLT:
13868 s = "slt";
13869 s2 = "btnez";
13870 goto do_branch;
13871 case M_BLTU:
13872 s = "sltu";
13873 s2 = "btnez";
13874 goto do_branch;
13875 case M_BLE:
13876 s = "slt";
13877 s2 = "bteqz";
13878 goto do_reverse_branch;
13879 case M_BLEU:
13880 s = "sltu";
13881 s2 = "bteqz";
13882 goto do_reverse_branch;
13883 case M_BGE:
13884 s = "slt";
13885 s2 = "bteqz";
13886 goto do_branch;
13887 case M_BGEU:
13888 s = "sltu";
13889 s2 = "bteqz";
13890 goto do_branch;
13891 case M_BGT:
13892 s = "slt";
13893 s2 = "btnez";
13894 goto do_reverse_branch;
13895 case M_BGTU:
13896 s = "sltu";
13897 s2 = "btnez";
13898
13899 do_reverse_branch:
13900 tmp = op[1];
13901 op[1] = op[0];
13902 op[0] = tmp;
13903
13904 do_branch:
13905 macro_build (NULL, s, "x,y", op[0], op[1]);
13906 macro_build (&offset_expr, s2, "p");
13907 break;
13908
13909 case M_BEQ_I:
13910 s = "cmpi";
13911 s2 = "bteqz";
13912 s3 = "x,U";
13913 goto do_branch_i;
13914 case M_BNE_I:
13915 s = "cmpi";
13916 s2 = "btnez";
13917 s3 = "x,U";
13918 goto do_branch_i;
13919 case M_BLT_I:
13920 s = "slti";
13921 s2 = "btnez";
13922 s3 = "x,8";
13923 goto do_branch_i;
13924 case M_BLTU_I:
13925 s = "sltiu";
13926 s2 = "btnez";
13927 s3 = "x,8";
13928 goto do_branch_i;
13929 case M_BLE_I:
13930 s = "slti";
13931 s2 = "btnez";
13932 s3 = "x,8";
13933 goto do_addone_branch_i;
13934 case M_BLEU_I:
13935 s = "sltiu";
13936 s2 = "btnez";
13937 s3 = "x,8";
13938 goto do_addone_branch_i;
13939 case M_BGE_I:
13940 s = "slti";
13941 s2 = "bteqz";
13942 s3 = "x,8";
13943 goto do_branch_i;
13944 case M_BGEU_I:
13945 s = "sltiu";
13946 s2 = "bteqz";
13947 s3 = "x,8";
13948 goto do_branch_i;
13949 case M_BGT_I:
13950 s = "slti";
13951 s2 = "bteqz";
13952 s3 = "x,8";
13953 goto do_addone_branch_i;
13954 case M_BGTU_I:
13955 s = "sltiu";
13956 s2 = "bteqz";
13957 s3 = "x,8";
13958
13959 do_addone_branch_i:
13960 ++imm_expr.X_add_number;
13961
13962 do_branch_i:
13963 macro_build (&imm_expr, s, s3, op[0]);
13964 macro_build (&offset_expr, s2, "p");
13965 break;
13966
13967 case M_ABS:
13968 expr1.X_add_number = 0;
13969 macro_build (&expr1, "slti", "x,8", op[1]);
13970 if (op[0] != op[1])
13971 macro_build (NULL, "move", "y,X", op[0], mips16_to_32_reg_map[op[1]]);
13972 expr1.X_add_number = 2;
13973 macro_build (&expr1, "bteqz", "p");
13974 macro_build (NULL, "neg", "x,w", op[0], op[0]);
13975 break;
13976 }
13977 }
13978
13979 /* Look up instruction [START, START + LENGTH) in HASH. Record any extra
13980 opcode bits in *OPCODE_EXTRA. */
13981
13982 static struct mips_opcode *
13983 mips_lookup_insn (struct hash_control *hash, const char *start,
13984 ssize_t length, unsigned int *opcode_extra)
13985 {
13986 char *name, *dot, *p;
13987 unsigned int mask, suffix;
13988 ssize_t opend;
13989 struct mips_opcode *insn;
13990
13991 /* Make a copy of the instruction so that we can fiddle with it. */
13992 name = xstrndup (start, length);
13993
13994 /* Look up the instruction as-is. */
13995 insn = (struct mips_opcode *) hash_find (hash, name);
13996 if (insn)
13997 goto end;
13998
13999 dot = strchr (name, '.');
14000 if (dot && dot[1])
14001 {
14002 /* Try to interpret the text after the dot as a VU0 channel suffix. */
14003 p = mips_parse_vu0_channels (dot + 1, &mask);
14004 if (*p == 0 && mask != 0)
14005 {
14006 *dot = 0;
14007 insn = (struct mips_opcode *) hash_find (hash, name);
14008 *dot = '.';
14009 if (insn && (insn->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0)
14010 {
14011 *opcode_extra |= mask << mips_vu0_channel_mask.lsb;
14012 goto end;
14013 }
14014 }
14015 }
14016
14017 if (mips_opts.micromips)
14018 {
14019 /* See if there's an instruction size override suffix,
14020 either `16' or `32', at the end of the mnemonic proper,
14021 that defines the operation, i.e. before the first `.'
14022 character if any. Strip it and retry. */
14023 opend = dot != NULL ? dot - name : length;
14024 if (opend >= 3 && name[opend - 2] == '1' && name[opend - 1] == '6')
14025 suffix = 2;
14026 else if (name[opend - 2] == '3' && name[opend - 1] == '2')
14027 suffix = 4;
14028 else
14029 suffix = 0;
14030 if (suffix)
14031 {
14032 memmove (name + opend - 2, name + opend, length - opend + 1);
14033 insn = (struct mips_opcode *) hash_find (hash, name);
14034 if (insn)
14035 {
14036 forced_insn_length = suffix;
14037 goto end;
14038 }
14039 }
14040 }
14041
14042 insn = NULL;
14043 end:
14044 free (name);
14045 return insn;
14046 }
14047
14048 /* Assemble an instruction into its binary format. If the instruction
14049 is a macro, set imm_expr and offset_expr to the values associated
14050 with "I" and "A" operands respectively. Otherwise store the value
14051 of the relocatable field (if any) in offset_expr. In both cases
14052 set offset_reloc to the relocation operators applied to offset_expr. */
14053
14054 static void
14055 mips_ip (char *str, struct mips_cl_insn *insn)
14056 {
14057 const struct mips_opcode *first, *past;
14058 struct hash_control *hash;
14059 char format;
14060 size_t end;
14061 struct mips_operand_token *tokens;
14062 unsigned int opcode_extra;
14063
14064 if (mips_opts.micromips)
14065 {
14066 hash = micromips_op_hash;
14067 past = &micromips_opcodes[bfd_micromips_num_opcodes];
14068 }
14069 else
14070 {
14071 hash = op_hash;
14072 past = &mips_opcodes[NUMOPCODES];
14073 }
14074 forced_insn_length = 0;
14075 opcode_extra = 0;
14076
14077 /* We first try to match an instruction up to a space or to the end. */
14078 for (end = 0; str[end] != '\0' && !ISSPACE (str[end]); end++)
14079 continue;
14080
14081 first = mips_lookup_insn (hash, str, end, &opcode_extra);
14082 if (first == NULL)
14083 {
14084 set_insn_error (0, _("unrecognized opcode"));
14085 return;
14086 }
14087
14088 if (strcmp (first->name, "li.s") == 0)
14089 format = 'f';
14090 else if (strcmp (first->name, "li.d") == 0)
14091 format = 'd';
14092 else
14093 format = 0;
14094 tokens = mips_parse_arguments (str + end, format);
14095 if (!tokens)
14096 return;
14097
14098 if (!match_insns (insn, first, past, tokens, opcode_extra, FALSE)
14099 && !match_insns (insn, first, past, tokens, opcode_extra, TRUE))
14100 set_insn_error (0, _("invalid operands"));
14101
14102 obstack_free (&mips_operand_tokens, tokens);
14103 }
14104
14105 /* As for mips_ip, but used when assembling MIPS16 code.
14106 Also set forced_insn_length to the resulting instruction size in
14107 bytes if the user explicitly requested a small or extended instruction. */
14108
14109 static void
14110 mips16_ip (char *str, struct mips_cl_insn *insn)
14111 {
14112 char *end, *s, c;
14113 struct mips_opcode *first;
14114 struct mips_operand_token *tokens;
14115 unsigned int l;
14116
14117 for (s = str; *s != '\0' && *s != '.' && *s != ' '; ++s)
14118 ;
14119 end = s;
14120 c = *end;
14121
14122 l = 0;
14123 switch (c)
14124 {
14125 case '\0':
14126 break;
14127
14128 case ' ':
14129 s++;
14130 break;
14131
14132 case '.':
14133 s++;
14134 if (*s == 't')
14135 {
14136 l = 2;
14137 s++;
14138 }
14139 else if (*s == 'e')
14140 {
14141 l = 4;
14142 s++;
14143 }
14144 if (*s == '\0')
14145 break;
14146 else if (*s++ == ' ')
14147 break;
14148 set_insn_error (0, _("unrecognized opcode"));
14149 return;
14150 }
14151 forced_insn_length = l;
14152
14153 *end = 0;
14154 first = (struct mips_opcode *) hash_find (mips16_op_hash, str);
14155 *end = c;
14156
14157 if (!first)
14158 {
14159 set_insn_error (0, _("unrecognized opcode"));
14160 return;
14161 }
14162
14163 tokens = mips_parse_arguments (s, 0);
14164 if (!tokens)
14165 return;
14166
14167 if (!match_mips16_insns (insn, first, tokens))
14168 set_insn_error (0, _("invalid operands"));
14169
14170 obstack_free (&mips_operand_tokens, tokens);
14171 }
14172
14173 /* Marshal immediate value VAL for an extended MIPS16 instruction.
14174 NBITS is the number of significant bits in VAL. */
14175
14176 static unsigned long
14177 mips16_immed_extend (offsetT val, unsigned int nbits)
14178 {
14179 int extval;
14180
14181 extval = 0;
14182 val &= (1U << nbits) - 1;
14183 if (nbits == 16 || nbits == 9)
14184 {
14185 extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
14186 val &= 0x1f;
14187 }
14188 else if (nbits == 15)
14189 {
14190 extval = ((val >> 11) & 0xf) | (val & 0x7f0);
14191 val &= 0xf;
14192 }
14193 else if (nbits == 6)
14194 {
14195 extval = ((val & 0x1f) << 6) | (val & 0x20);
14196 val = 0;
14197 }
14198 return (extval << 16) | val;
14199 }
14200
14201 /* Like decode_mips16_operand, but require the operand to be defined and
14202 require it to be an integer. */
14203
14204 static const struct mips_int_operand *
14205 mips16_immed_operand (int type, bfd_boolean extended_p)
14206 {
14207 const struct mips_operand *operand;
14208
14209 operand = decode_mips16_operand (type, extended_p);
14210 if (!operand || (operand->type != OP_INT && operand->type != OP_PCREL))
14211 abort ();
14212 return (const struct mips_int_operand *) operand;
14213 }
14214
14215 /* Return true if SVAL fits OPERAND. RELOC is as for mips16_immed. */
14216
14217 static bfd_boolean
14218 mips16_immed_in_range_p (const struct mips_int_operand *operand,
14219 bfd_reloc_code_real_type reloc, offsetT sval)
14220 {
14221 int min_val, max_val;
14222
14223 min_val = mips_int_operand_min (operand);
14224 max_val = mips_int_operand_max (operand);
14225 if (reloc != BFD_RELOC_UNUSED)
14226 {
14227 if (min_val < 0)
14228 sval = SEXT_16BIT (sval);
14229 else
14230 sval &= 0xffff;
14231 }
14232
14233 return (sval >= min_val
14234 && sval <= max_val
14235 && (sval & ((1 << operand->shift) - 1)) == 0);
14236 }
14237
14238 /* Install immediate value VAL into MIPS16 instruction *INSN,
14239 extending it if necessary. The instruction in *INSN may
14240 already be extended.
14241
14242 RELOC is the relocation that produced VAL, or BFD_RELOC_UNUSED
14243 if none. In the former case, VAL is a 16-bit number with no
14244 defined signedness.
14245
14246 TYPE is the type of the immediate field. USER_INSN_LENGTH
14247 is the length that the user requested, or 0 if none. */
14248
14249 static void
14250 mips16_immed (const char *file, unsigned int line, int type,
14251 bfd_reloc_code_real_type reloc, offsetT val,
14252 unsigned int user_insn_length, unsigned long *insn)
14253 {
14254 const struct mips_int_operand *operand;
14255 unsigned int uval, length;
14256
14257 operand = mips16_immed_operand (type, FALSE);
14258 if (!mips16_immed_in_range_p (operand, reloc, val))
14259 {
14260 /* We need an extended instruction. */
14261 if (user_insn_length == 2)
14262 as_bad_where (file, line, _("invalid unextended operand value"));
14263 else
14264 *insn |= MIPS16_EXTEND;
14265 }
14266 else if (user_insn_length == 4)
14267 {
14268 /* The operand doesn't force an unextended instruction to be extended.
14269 Warn if the user wanted an extended instruction anyway. */
14270 *insn |= MIPS16_EXTEND;
14271 as_warn_where (file, line,
14272 _("extended operand requested but not required"));
14273 }
14274
14275 length = mips16_opcode_length (*insn);
14276 if (length == 4)
14277 {
14278 operand = mips16_immed_operand (type, TRUE);
14279 if (!mips16_immed_in_range_p (operand, reloc, val))
14280 as_bad_where (file, line,
14281 _("operand value out of range for instruction"));
14282 }
14283 uval = ((unsigned int) val >> operand->shift) - operand->bias;
14284 if (length == 2 || operand->root.lsb != 0)
14285 *insn = mips_insert_operand (&operand->root, *insn, uval);
14286 else
14287 *insn |= mips16_immed_extend (uval, operand->root.size);
14288 }
14289 \f
14290 struct percent_op_match
14291 {
14292 const char *str;
14293 bfd_reloc_code_real_type reloc;
14294 };
14295
14296 static const struct percent_op_match mips_percent_op[] =
14297 {
14298 {"%lo", BFD_RELOC_LO16},
14299 {"%call_hi", BFD_RELOC_MIPS_CALL_HI16},
14300 {"%call_lo", BFD_RELOC_MIPS_CALL_LO16},
14301 {"%call16", BFD_RELOC_MIPS_CALL16},
14302 {"%got_disp", BFD_RELOC_MIPS_GOT_DISP},
14303 {"%got_page", BFD_RELOC_MIPS_GOT_PAGE},
14304 {"%got_ofst", BFD_RELOC_MIPS_GOT_OFST},
14305 {"%got_hi", BFD_RELOC_MIPS_GOT_HI16},
14306 {"%got_lo", BFD_RELOC_MIPS_GOT_LO16},
14307 {"%got", BFD_RELOC_MIPS_GOT16},
14308 {"%gp_rel", BFD_RELOC_GPREL16},
14309 {"%gprel", BFD_RELOC_GPREL16},
14310 {"%half", BFD_RELOC_16},
14311 {"%highest", BFD_RELOC_MIPS_HIGHEST},
14312 {"%higher", BFD_RELOC_MIPS_HIGHER},
14313 {"%neg", BFD_RELOC_MIPS_SUB},
14314 {"%tlsgd", BFD_RELOC_MIPS_TLS_GD},
14315 {"%tlsldm", BFD_RELOC_MIPS_TLS_LDM},
14316 {"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16},
14317 {"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16},
14318 {"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16},
14319 {"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16},
14320 {"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL},
14321 {"%hi", BFD_RELOC_HI16_S},
14322 {"%pcrel_hi", BFD_RELOC_HI16_S_PCREL},
14323 {"%pcrel_lo", BFD_RELOC_LO16_PCREL}
14324 };
14325
14326 static const struct percent_op_match mips16_percent_op[] =
14327 {
14328 {"%lo", BFD_RELOC_MIPS16_LO16},
14329 {"%gp_rel", BFD_RELOC_MIPS16_GPREL},
14330 {"%gprel", BFD_RELOC_MIPS16_GPREL},
14331 {"%got", BFD_RELOC_MIPS16_GOT16},
14332 {"%call16", BFD_RELOC_MIPS16_CALL16},
14333 {"%hi", BFD_RELOC_MIPS16_HI16_S},
14334 {"%tlsgd", BFD_RELOC_MIPS16_TLS_GD},
14335 {"%tlsldm", BFD_RELOC_MIPS16_TLS_LDM},
14336 {"%dtprel_hi", BFD_RELOC_MIPS16_TLS_DTPREL_HI16},
14337 {"%dtprel_lo", BFD_RELOC_MIPS16_TLS_DTPREL_LO16},
14338 {"%tprel_hi", BFD_RELOC_MIPS16_TLS_TPREL_HI16},
14339 {"%tprel_lo", BFD_RELOC_MIPS16_TLS_TPREL_LO16},
14340 {"%gottprel", BFD_RELOC_MIPS16_TLS_GOTTPREL}
14341 };
14342
14343
14344 /* Return true if *STR points to a relocation operator. When returning true,
14345 move *STR over the operator and store its relocation code in *RELOC.
14346 Leave both *STR and *RELOC alone when returning false. */
14347
14348 static bfd_boolean
14349 parse_relocation (char **str, bfd_reloc_code_real_type *reloc)
14350 {
14351 const struct percent_op_match *percent_op;
14352 size_t limit, i;
14353
14354 if (mips_opts.mips16)
14355 {
14356 percent_op = mips16_percent_op;
14357 limit = ARRAY_SIZE (mips16_percent_op);
14358 }
14359 else
14360 {
14361 percent_op = mips_percent_op;
14362 limit = ARRAY_SIZE (mips_percent_op);
14363 }
14364
14365 for (i = 0; i < limit; i++)
14366 if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0)
14367 {
14368 int len = strlen (percent_op[i].str);
14369
14370 if (!ISSPACE ((*str)[len]) && (*str)[len] != '(')
14371 continue;
14372
14373 *str += strlen (percent_op[i].str);
14374 *reloc = percent_op[i].reloc;
14375
14376 /* Check whether the output BFD supports this relocation.
14377 If not, issue an error and fall back on something safe. */
14378 if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc))
14379 {
14380 as_bad (_("relocation %s isn't supported by the current ABI"),
14381 percent_op[i].str);
14382 *reloc = BFD_RELOC_UNUSED;
14383 }
14384 return TRUE;
14385 }
14386 return FALSE;
14387 }
14388
14389
14390 /* Parse string STR as a 16-bit relocatable operand. Store the
14391 expression in *EP and the relocations in the array starting
14392 at RELOC. Return the number of relocation operators used.
14393
14394 On exit, EXPR_END points to the first character after the expression. */
14395
14396 static size_t
14397 my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
14398 char *str)
14399 {
14400 bfd_reloc_code_real_type reversed_reloc[3];
14401 size_t reloc_index, i;
14402 int crux_depth, str_depth;
14403 char *crux;
14404
14405 /* Search for the start of the main expression, recoding relocations
14406 in REVERSED_RELOC. End the loop with CRUX pointing to the start
14407 of the main expression and with CRUX_DEPTH containing the number
14408 of open brackets at that point. */
14409 reloc_index = -1;
14410 str_depth = 0;
14411 do
14412 {
14413 reloc_index++;
14414 crux = str;
14415 crux_depth = str_depth;
14416
14417 /* Skip over whitespace and brackets, keeping count of the number
14418 of brackets. */
14419 while (*str == ' ' || *str == '\t' || *str == '(')
14420 if (*str++ == '(')
14421 str_depth++;
14422 }
14423 while (*str == '%'
14424 && reloc_index < (HAVE_NEWABI ? 3 : 1)
14425 && parse_relocation (&str, &reversed_reloc[reloc_index]));
14426
14427 my_getExpression (ep, crux);
14428 str = expr_end;
14429
14430 /* Match every open bracket. */
14431 while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
14432 if (*str++ == ')')
14433 crux_depth--;
14434
14435 if (crux_depth > 0)
14436 as_bad (_("unclosed '('"));
14437
14438 expr_end = str;
14439
14440 if (reloc_index != 0)
14441 {
14442 prev_reloc_op_frag = frag_now;
14443 for (i = 0; i < reloc_index; i++)
14444 reloc[i] = reversed_reloc[reloc_index - 1 - i];
14445 }
14446
14447 return reloc_index;
14448 }
14449
14450 static void
14451 my_getExpression (expressionS *ep, char *str)
14452 {
14453 char *save_in;
14454
14455 save_in = input_line_pointer;
14456 input_line_pointer = str;
14457 expression (ep);
14458 expr_end = input_line_pointer;
14459 input_line_pointer = save_in;
14460 }
14461
14462 const char *
14463 md_atof (int type, char *litP, int *sizeP)
14464 {
14465 return ieee_md_atof (type, litP, sizeP, target_big_endian);
14466 }
14467
14468 void
14469 md_number_to_chars (char *buf, valueT val, int n)
14470 {
14471 if (target_big_endian)
14472 number_to_chars_bigendian (buf, val, n);
14473 else
14474 number_to_chars_littleendian (buf, val, n);
14475 }
14476 \f
14477 static int support_64bit_objects(void)
14478 {
14479 const char **list, **l;
14480 int yes;
14481
14482 list = bfd_target_list ();
14483 for (l = list; *l != NULL; l++)
14484 if (strcmp (*l, ELF_TARGET ("elf64-", "big")) == 0
14485 || strcmp (*l, ELF_TARGET ("elf64-", "little")) == 0)
14486 break;
14487 yes = (*l != NULL);
14488 free (list);
14489 return yes;
14490 }
14491
14492 /* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
14493 NEW_VALUE. Warn if another value was already specified. Note:
14494 we have to defer parsing the -march and -mtune arguments in order
14495 to handle 'from-abi' correctly, since the ABI might be specified
14496 in a later argument. */
14497
14498 static void
14499 mips_set_option_string (const char **string_ptr, const char *new_value)
14500 {
14501 if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
14502 as_warn (_("a different %s was already specified, is now %s"),
14503 string_ptr == &mips_arch_string ? "-march" : "-mtune",
14504 new_value);
14505
14506 *string_ptr = new_value;
14507 }
14508
14509 int
14510 md_parse_option (int c, const char *arg)
14511 {
14512 unsigned int i;
14513
14514 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
14515 if (c == mips_ases[i].option_on || c == mips_ases[i].option_off)
14516 {
14517 file_ase_explicit |= mips_set_ase (&mips_ases[i], &file_mips_opts,
14518 c == mips_ases[i].option_on);
14519 return 1;
14520 }
14521
14522 switch (c)
14523 {
14524 case OPTION_CONSTRUCT_FLOATS:
14525 mips_disable_float_construction = 0;
14526 break;
14527
14528 case OPTION_NO_CONSTRUCT_FLOATS:
14529 mips_disable_float_construction = 1;
14530 break;
14531
14532 case OPTION_TRAP:
14533 mips_trap = 1;
14534 break;
14535
14536 case OPTION_BREAK:
14537 mips_trap = 0;
14538 break;
14539
14540 case OPTION_EB:
14541 target_big_endian = 1;
14542 break;
14543
14544 case OPTION_EL:
14545 target_big_endian = 0;
14546 break;
14547
14548 case 'O':
14549 if (arg == NULL)
14550 mips_optimize = 1;
14551 else if (arg[0] == '0')
14552 mips_optimize = 0;
14553 else if (arg[0] == '1')
14554 mips_optimize = 1;
14555 else
14556 mips_optimize = 2;
14557 break;
14558
14559 case 'g':
14560 if (arg == NULL)
14561 mips_debug = 2;
14562 else
14563 mips_debug = atoi (arg);
14564 break;
14565
14566 case OPTION_MIPS1:
14567 file_mips_opts.isa = ISA_MIPS1;
14568 break;
14569
14570 case OPTION_MIPS2:
14571 file_mips_opts.isa = ISA_MIPS2;
14572 break;
14573
14574 case OPTION_MIPS3:
14575 file_mips_opts.isa = ISA_MIPS3;
14576 break;
14577
14578 case OPTION_MIPS4:
14579 file_mips_opts.isa = ISA_MIPS4;
14580 break;
14581
14582 case OPTION_MIPS5:
14583 file_mips_opts.isa = ISA_MIPS5;
14584 break;
14585
14586 case OPTION_MIPS32:
14587 file_mips_opts.isa = ISA_MIPS32;
14588 break;
14589
14590 case OPTION_MIPS32R2:
14591 file_mips_opts.isa = ISA_MIPS32R2;
14592 break;
14593
14594 case OPTION_MIPS32R3:
14595 file_mips_opts.isa = ISA_MIPS32R3;
14596 break;
14597
14598 case OPTION_MIPS32R5:
14599 file_mips_opts.isa = ISA_MIPS32R5;
14600 break;
14601
14602 case OPTION_MIPS32R6:
14603 file_mips_opts.isa = ISA_MIPS32R6;
14604 break;
14605
14606 case OPTION_MIPS64R2:
14607 file_mips_opts.isa = ISA_MIPS64R2;
14608 break;
14609
14610 case OPTION_MIPS64R3:
14611 file_mips_opts.isa = ISA_MIPS64R3;
14612 break;
14613
14614 case OPTION_MIPS64R5:
14615 file_mips_opts.isa = ISA_MIPS64R5;
14616 break;
14617
14618 case OPTION_MIPS64R6:
14619 file_mips_opts.isa = ISA_MIPS64R6;
14620 break;
14621
14622 case OPTION_MIPS64:
14623 file_mips_opts.isa = ISA_MIPS64;
14624 break;
14625
14626 case OPTION_MTUNE:
14627 mips_set_option_string (&mips_tune_string, arg);
14628 break;
14629
14630 case OPTION_MARCH:
14631 mips_set_option_string (&mips_arch_string, arg);
14632 break;
14633
14634 case OPTION_M4650:
14635 mips_set_option_string (&mips_arch_string, "4650");
14636 mips_set_option_string (&mips_tune_string, "4650");
14637 break;
14638
14639 case OPTION_NO_M4650:
14640 break;
14641
14642 case OPTION_M4010:
14643 mips_set_option_string (&mips_arch_string, "4010");
14644 mips_set_option_string (&mips_tune_string, "4010");
14645 break;
14646
14647 case OPTION_NO_M4010:
14648 break;
14649
14650 case OPTION_M4100:
14651 mips_set_option_string (&mips_arch_string, "4100");
14652 mips_set_option_string (&mips_tune_string, "4100");
14653 break;
14654
14655 case OPTION_NO_M4100:
14656 break;
14657
14658 case OPTION_M3900:
14659 mips_set_option_string (&mips_arch_string, "3900");
14660 mips_set_option_string (&mips_tune_string, "3900");
14661 break;
14662
14663 case OPTION_NO_M3900:
14664 break;
14665
14666 case OPTION_MICROMIPS:
14667 if (file_mips_opts.mips16 == 1)
14668 {
14669 as_bad (_("-mmicromips cannot be used with -mips16"));
14670 return 0;
14671 }
14672 file_mips_opts.micromips = 1;
14673 mips_no_prev_insn ();
14674 break;
14675
14676 case OPTION_NO_MICROMIPS:
14677 file_mips_opts.micromips = 0;
14678 mips_no_prev_insn ();
14679 break;
14680
14681 case OPTION_MIPS16:
14682 if (file_mips_opts.micromips == 1)
14683 {
14684 as_bad (_("-mips16 cannot be used with -micromips"));
14685 return 0;
14686 }
14687 file_mips_opts.mips16 = 1;
14688 mips_no_prev_insn ();
14689 break;
14690
14691 case OPTION_NO_MIPS16:
14692 file_mips_opts.mips16 = 0;
14693 mips_no_prev_insn ();
14694 break;
14695
14696 case OPTION_FIX_24K:
14697 mips_fix_24k = 1;
14698 break;
14699
14700 case OPTION_NO_FIX_24K:
14701 mips_fix_24k = 0;
14702 break;
14703
14704 case OPTION_FIX_RM7000:
14705 mips_fix_rm7000 = 1;
14706 break;
14707
14708 case OPTION_NO_FIX_RM7000:
14709 mips_fix_rm7000 = 0;
14710 break;
14711
14712 case OPTION_FIX_LOONGSON2F_JUMP:
14713 mips_fix_loongson2f_jump = TRUE;
14714 break;
14715
14716 case OPTION_NO_FIX_LOONGSON2F_JUMP:
14717 mips_fix_loongson2f_jump = FALSE;
14718 break;
14719
14720 case OPTION_FIX_LOONGSON2F_NOP:
14721 mips_fix_loongson2f_nop = TRUE;
14722 break;
14723
14724 case OPTION_NO_FIX_LOONGSON2F_NOP:
14725 mips_fix_loongson2f_nop = FALSE;
14726 break;
14727
14728 case OPTION_FIX_VR4120:
14729 mips_fix_vr4120 = 1;
14730 break;
14731
14732 case OPTION_NO_FIX_VR4120:
14733 mips_fix_vr4120 = 0;
14734 break;
14735
14736 case OPTION_FIX_VR4130:
14737 mips_fix_vr4130 = 1;
14738 break;
14739
14740 case OPTION_NO_FIX_VR4130:
14741 mips_fix_vr4130 = 0;
14742 break;
14743
14744 case OPTION_FIX_CN63XXP1:
14745 mips_fix_cn63xxp1 = TRUE;
14746 break;
14747
14748 case OPTION_NO_FIX_CN63XXP1:
14749 mips_fix_cn63xxp1 = FALSE;
14750 break;
14751
14752 case OPTION_RELAX_BRANCH:
14753 mips_relax_branch = 1;
14754 break;
14755
14756 case OPTION_NO_RELAX_BRANCH:
14757 mips_relax_branch = 0;
14758 break;
14759
14760 case OPTION_IGNORE_BRANCH_ISA:
14761 mips_ignore_branch_isa = TRUE;
14762 break;
14763
14764 case OPTION_NO_IGNORE_BRANCH_ISA:
14765 mips_ignore_branch_isa = FALSE;
14766 break;
14767
14768 case OPTION_INSN32:
14769 file_mips_opts.insn32 = TRUE;
14770 break;
14771
14772 case OPTION_NO_INSN32:
14773 file_mips_opts.insn32 = FALSE;
14774 break;
14775
14776 case OPTION_MSHARED:
14777 mips_in_shared = TRUE;
14778 break;
14779
14780 case OPTION_MNO_SHARED:
14781 mips_in_shared = FALSE;
14782 break;
14783
14784 case OPTION_MSYM32:
14785 file_mips_opts.sym32 = TRUE;
14786 break;
14787
14788 case OPTION_MNO_SYM32:
14789 file_mips_opts.sym32 = FALSE;
14790 break;
14791
14792 /* When generating ELF code, we permit -KPIC and -call_shared to
14793 select SVR4_PIC, and -non_shared to select no PIC. This is
14794 intended to be compatible with Irix 5. */
14795 case OPTION_CALL_SHARED:
14796 mips_pic = SVR4_PIC;
14797 mips_abicalls = TRUE;
14798 break;
14799
14800 case OPTION_CALL_NONPIC:
14801 mips_pic = NO_PIC;
14802 mips_abicalls = TRUE;
14803 break;
14804
14805 case OPTION_NON_SHARED:
14806 mips_pic = NO_PIC;
14807 mips_abicalls = FALSE;
14808 break;
14809
14810 /* The -xgot option tells the assembler to use 32 bit offsets
14811 when accessing the got in SVR4_PIC mode. It is for Irix
14812 compatibility. */
14813 case OPTION_XGOT:
14814 mips_big_got = 1;
14815 break;
14816
14817 case 'G':
14818 g_switch_value = atoi (arg);
14819 g_switch_seen = 1;
14820 break;
14821
14822 /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
14823 and -mabi=64. */
14824 case OPTION_32:
14825 mips_abi = O32_ABI;
14826 break;
14827
14828 case OPTION_N32:
14829 mips_abi = N32_ABI;
14830 break;
14831
14832 case OPTION_64:
14833 mips_abi = N64_ABI;
14834 if (!support_64bit_objects())
14835 as_fatal (_("no compiled in support for 64 bit object file format"));
14836 break;
14837
14838 case OPTION_GP32:
14839 file_mips_opts.gp = 32;
14840 break;
14841
14842 case OPTION_GP64:
14843 file_mips_opts.gp = 64;
14844 break;
14845
14846 case OPTION_FP32:
14847 file_mips_opts.fp = 32;
14848 break;
14849
14850 case OPTION_FPXX:
14851 file_mips_opts.fp = 0;
14852 break;
14853
14854 case OPTION_FP64:
14855 file_mips_opts.fp = 64;
14856 break;
14857
14858 case OPTION_ODD_SPREG:
14859 file_mips_opts.oddspreg = 1;
14860 break;
14861
14862 case OPTION_NO_ODD_SPREG:
14863 file_mips_opts.oddspreg = 0;
14864 break;
14865
14866 case OPTION_SINGLE_FLOAT:
14867 file_mips_opts.single_float = 1;
14868 break;
14869
14870 case OPTION_DOUBLE_FLOAT:
14871 file_mips_opts.single_float = 0;
14872 break;
14873
14874 case OPTION_SOFT_FLOAT:
14875 file_mips_opts.soft_float = 1;
14876 break;
14877
14878 case OPTION_HARD_FLOAT:
14879 file_mips_opts.soft_float = 0;
14880 break;
14881
14882 case OPTION_MABI:
14883 if (strcmp (arg, "32") == 0)
14884 mips_abi = O32_ABI;
14885 else if (strcmp (arg, "o64") == 0)
14886 mips_abi = O64_ABI;
14887 else if (strcmp (arg, "n32") == 0)
14888 mips_abi = N32_ABI;
14889 else if (strcmp (arg, "64") == 0)
14890 {
14891 mips_abi = N64_ABI;
14892 if (! support_64bit_objects())
14893 as_fatal (_("no compiled in support for 64 bit object file "
14894 "format"));
14895 }
14896 else if (strcmp (arg, "eabi") == 0)
14897 mips_abi = EABI_ABI;
14898 else
14899 {
14900 as_fatal (_("invalid abi -mabi=%s"), arg);
14901 return 0;
14902 }
14903 break;
14904
14905 case OPTION_M7000_HILO_FIX:
14906 mips_7000_hilo_fix = TRUE;
14907 break;
14908
14909 case OPTION_MNO_7000_HILO_FIX:
14910 mips_7000_hilo_fix = FALSE;
14911 break;
14912
14913 case OPTION_MDEBUG:
14914 mips_flag_mdebug = TRUE;
14915 break;
14916
14917 case OPTION_NO_MDEBUG:
14918 mips_flag_mdebug = FALSE;
14919 break;
14920
14921 case OPTION_PDR:
14922 mips_flag_pdr = TRUE;
14923 break;
14924
14925 case OPTION_NO_PDR:
14926 mips_flag_pdr = FALSE;
14927 break;
14928
14929 case OPTION_MVXWORKS_PIC:
14930 mips_pic = VXWORKS_PIC;
14931 break;
14932
14933 case OPTION_NAN:
14934 if (strcmp (arg, "2008") == 0)
14935 mips_nan2008 = 1;
14936 else if (strcmp (arg, "legacy") == 0)
14937 mips_nan2008 = 0;
14938 else
14939 {
14940 as_fatal (_("invalid NaN setting -mnan=%s"), arg);
14941 return 0;
14942 }
14943 break;
14944
14945 default:
14946 return 0;
14947 }
14948
14949 mips_fix_loongson2f = mips_fix_loongson2f_nop || mips_fix_loongson2f_jump;
14950
14951 return 1;
14952 }
14953 \f
14954 /* Set up globals to tune for the ISA or processor described by INFO. */
14955
14956 static void
14957 mips_set_tune (const struct mips_cpu_info *info)
14958 {
14959 if (info != 0)
14960 mips_tune = info->cpu;
14961 }
14962
14963
14964 void
14965 mips_after_parse_args (void)
14966 {
14967 const struct mips_cpu_info *arch_info = 0;
14968 const struct mips_cpu_info *tune_info = 0;
14969
14970 /* GP relative stuff not working for PE */
14971 if (strncmp (TARGET_OS, "pe", 2) == 0)
14972 {
14973 if (g_switch_seen && g_switch_value != 0)
14974 as_bad (_("-G not supported in this configuration"));
14975 g_switch_value = 0;
14976 }
14977
14978 if (mips_abi == NO_ABI)
14979 mips_abi = MIPS_DEFAULT_ABI;
14980
14981 /* The following code determines the architecture.
14982 Similar code was added to GCC 3.3 (see override_options() in
14983 config/mips/mips.c). The GAS and GCC code should be kept in sync
14984 as much as possible. */
14985
14986 if (mips_arch_string != 0)
14987 arch_info = mips_parse_cpu ("-march", mips_arch_string);
14988
14989 if (file_mips_opts.isa != ISA_UNKNOWN)
14990 {
14991 /* Handle -mipsN. At this point, file_mips_opts.isa contains the
14992 ISA level specified by -mipsN, while arch_info->isa contains
14993 the -march selection (if any). */
14994 if (arch_info != 0)
14995 {
14996 /* -march takes precedence over -mipsN, since it is more descriptive.
14997 There's no harm in specifying both as long as the ISA levels
14998 are the same. */
14999 if (file_mips_opts.isa != arch_info->isa)
15000 as_bad (_("-%s conflicts with the other architecture options,"
15001 " which imply -%s"),
15002 mips_cpu_info_from_isa (file_mips_opts.isa)->name,
15003 mips_cpu_info_from_isa (arch_info->isa)->name);
15004 }
15005 else
15006 arch_info = mips_cpu_info_from_isa (file_mips_opts.isa);
15007 }
15008
15009 if (arch_info == 0)
15010 {
15011 arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT);
15012 gas_assert (arch_info);
15013 }
15014
15015 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa))
15016 as_bad (_("-march=%s is not compatible with the selected ABI"),
15017 arch_info->name);
15018
15019 file_mips_opts.arch = arch_info->cpu;
15020 file_mips_opts.isa = arch_info->isa;
15021
15022 /* Set up initial mips_opts state. */
15023 mips_opts = file_mips_opts;
15024
15025 /* The register size inference code is now placed in
15026 file_mips_check_options. */
15027
15028 /* Optimize for file_mips_opts.arch, unless -mtune selects a different
15029 processor. */
15030 if (mips_tune_string != 0)
15031 tune_info = mips_parse_cpu ("-mtune", mips_tune_string);
15032
15033 if (tune_info == 0)
15034 mips_set_tune (arch_info);
15035 else
15036 mips_set_tune (tune_info);
15037
15038 if (mips_flag_mdebug < 0)
15039 mips_flag_mdebug = 0;
15040 }
15041 \f
15042 void
15043 mips_init_after_args (void)
15044 {
15045 /* initialize opcodes */
15046 bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes;
15047 mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes;
15048 }
15049
15050 long
15051 md_pcrel_from (fixS *fixP)
15052 {
15053 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
15054 switch (fixP->fx_r_type)
15055 {
15056 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15057 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15058 /* Return the address of the delay slot. */
15059 return addr + 2;
15060
15061 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15062 case BFD_RELOC_MICROMIPS_JMP:
15063 case BFD_RELOC_MIPS16_16_PCREL_S1:
15064 case BFD_RELOC_16_PCREL_S2:
15065 case BFD_RELOC_MIPS_21_PCREL_S2:
15066 case BFD_RELOC_MIPS_26_PCREL_S2:
15067 case BFD_RELOC_MIPS_JMP:
15068 /* Return the address of the delay slot. */
15069 return addr + 4;
15070
15071 case BFD_RELOC_MIPS_18_PCREL_S3:
15072 /* Return the aligned address of the doubleword containing
15073 the instruction. */
15074 return addr & ~7;
15075
15076 default:
15077 return addr;
15078 }
15079 }
15080
15081 /* This is called before the symbol table is processed. In order to
15082 work with gcc when using mips-tfile, we must keep all local labels.
15083 However, in other cases, we want to discard them. If we were
15084 called with -g, but we didn't see any debugging information, it may
15085 mean that gcc is smuggling debugging information through to
15086 mips-tfile, in which case we must generate all local labels. */
15087
15088 void
15089 mips_frob_file_before_adjust (void)
15090 {
15091 #ifndef NO_ECOFF_DEBUGGING
15092 if (ECOFF_DEBUGGING
15093 && mips_debug != 0
15094 && ! ecoff_debugging_seen)
15095 flag_keep_locals = 1;
15096 #endif
15097 }
15098
15099 /* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede
15100 the corresponding LO16 reloc. This is called before md_apply_fix and
15101 tc_gen_reloc. Unmatched relocs can only be generated by use of explicit
15102 relocation operators.
15103
15104 For our purposes, a %lo() expression matches a %got() or %hi()
15105 expression if:
15106
15107 (a) it refers to the same symbol; and
15108 (b) the offset applied in the %lo() expression is no lower than
15109 the offset applied in the %got() or %hi().
15110
15111 (b) allows us to cope with code like:
15112
15113 lui $4,%hi(foo)
15114 lh $4,%lo(foo+2)($4)
15115
15116 ...which is legal on RELA targets, and has a well-defined behaviour
15117 if the user knows that adding 2 to "foo" will not induce a carry to
15118 the high 16 bits.
15119
15120 When several %lo()s match a particular %got() or %hi(), we use the
15121 following rules to distinguish them:
15122
15123 (1) %lo()s with smaller offsets are a better match than %lo()s with
15124 higher offsets.
15125
15126 (2) %lo()s with no matching %got() or %hi() are better than those
15127 that already have a matching %got() or %hi().
15128
15129 (3) later %lo()s are better than earlier %lo()s.
15130
15131 These rules are applied in order.
15132
15133 (1) means, among other things, that %lo()s with identical offsets are
15134 chosen if they exist.
15135
15136 (2) means that we won't associate several high-part relocations with
15137 the same low-part relocation unless there's no alternative. Having
15138 several high parts for the same low part is a GNU extension; this rule
15139 allows careful users to avoid it.
15140
15141 (3) is purely cosmetic. mips_hi_fixup_list is is in reverse order,
15142 with the last high-part relocation being at the front of the list.
15143 It therefore makes sense to choose the last matching low-part
15144 relocation, all other things being equal. It's also easier
15145 to code that way. */
15146
15147 void
15148 mips_frob_file (void)
15149 {
15150 struct mips_hi_fixup *l;
15151 bfd_reloc_code_real_type looking_for_rtype = BFD_RELOC_UNUSED;
15152
15153 for (l = mips_hi_fixup_list; l != NULL; l = l->next)
15154 {
15155 segment_info_type *seginfo;
15156 bfd_boolean matched_lo_p;
15157 fixS **hi_pos, **lo_pos, **pos;
15158
15159 gas_assert (reloc_needs_lo_p (l->fixp->fx_r_type));
15160
15161 /* If a GOT16 relocation turns out to be against a global symbol,
15162 there isn't supposed to be a matching LO. Ignore %gots against
15163 constants; we'll report an error for those later. */
15164 if (got16_reloc_p (l->fixp->fx_r_type)
15165 && !(l->fixp->fx_addsy
15166 && pic_need_relax (l->fixp->fx_addsy)))
15167 continue;
15168
15169 /* Check quickly whether the next fixup happens to be a matching %lo. */
15170 if (fixup_has_matching_lo_p (l->fixp))
15171 continue;
15172
15173 seginfo = seg_info (l->seg);
15174
15175 /* Set HI_POS to the position of this relocation in the chain.
15176 Set LO_POS to the position of the chosen low-part relocation.
15177 MATCHED_LO_P is true on entry to the loop if *POS is a low-part
15178 relocation that matches an immediately-preceding high-part
15179 relocation. */
15180 hi_pos = NULL;
15181 lo_pos = NULL;
15182 matched_lo_p = FALSE;
15183 looking_for_rtype = matching_lo_reloc (l->fixp->fx_r_type);
15184
15185 for (pos = &seginfo->fix_root; *pos != NULL; pos = &(*pos)->fx_next)
15186 {
15187 if (*pos == l->fixp)
15188 hi_pos = pos;
15189
15190 if ((*pos)->fx_r_type == looking_for_rtype
15191 && symbol_same_p ((*pos)->fx_addsy, l->fixp->fx_addsy)
15192 && (*pos)->fx_offset >= l->fixp->fx_offset
15193 && (lo_pos == NULL
15194 || (*pos)->fx_offset < (*lo_pos)->fx_offset
15195 || (!matched_lo_p
15196 && (*pos)->fx_offset == (*lo_pos)->fx_offset)))
15197 lo_pos = pos;
15198
15199 matched_lo_p = (reloc_needs_lo_p ((*pos)->fx_r_type)
15200 && fixup_has_matching_lo_p (*pos));
15201 }
15202
15203 /* If we found a match, remove the high-part relocation from its
15204 current position and insert it before the low-part relocation.
15205 Make the offsets match so that fixup_has_matching_lo_p()
15206 will return true.
15207
15208 We don't warn about unmatched high-part relocations since some
15209 versions of gcc have been known to emit dead "lui ...%hi(...)"
15210 instructions. */
15211 if (lo_pos != NULL)
15212 {
15213 l->fixp->fx_offset = (*lo_pos)->fx_offset;
15214 if (l->fixp->fx_next != *lo_pos)
15215 {
15216 *hi_pos = l->fixp->fx_next;
15217 l->fixp->fx_next = *lo_pos;
15218 *lo_pos = l->fixp;
15219 }
15220 }
15221 }
15222 }
15223
15224 int
15225 mips_force_relocation (fixS *fixp)
15226 {
15227 if (generic_force_reloc (fixp))
15228 return 1;
15229
15230 /* We want to keep BFD_RELOC_MICROMIPS_*_PCREL_S1 relocation,
15231 so that the linker relaxation can update targets. */
15232 if (fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
15233 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
15234 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1)
15235 return 1;
15236
15237 /* We want to keep BFD_RELOC_16_PCREL_S2 BFD_RELOC_MIPS_21_PCREL_S2
15238 and BFD_RELOC_MIPS_26_PCREL_S2 relocations against MIPS16 and
15239 microMIPS symbols so that we can do cross-mode branch diagnostics
15240 and BAL to JALX conversion by the linker. */
15241 if ((fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
15242 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
15243 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2)
15244 && fixp->fx_addsy
15245 && ELF_ST_IS_COMPRESSED (S_GET_OTHER (fixp->fx_addsy)))
15246 return 1;
15247
15248 /* We want all PC-relative relocations to be kept for R6 relaxation. */
15249 if (ISA_IS_R6 (file_mips_opts.isa)
15250 && (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
15251 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
15252 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
15253 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
15254 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
15255 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
15256 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL))
15257 return 1;
15258
15259 return 0;
15260 }
15261
15262 /* Implement TC_FORCE_RELOCATION_ABS. */
15263
15264 bfd_boolean
15265 mips_force_relocation_abs (fixS *fixp)
15266 {
15267 if (generic_force_reloc (fixp))
15268 return TRUE;
15269
15270 /* These relocations do not have enough bits in the in-place addend
15271 to hold an arbitrary absolute section's offset. */
15272 if (HAVE_IN_PLACE_ADDENDS && limited_pcrel_reloc_p (fixp->fx_r_type))
15273 return TRUE;
15274
15275 return FALSE;
15276 }
15277
15278 /* Read the instruction associated with RELOC from BUF. */
15279
15280 static unsigned int
15281 read_reloc_insn (char *buf, bfd_reloc_code_real_type reloc)
15282 {
15283 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
15284 return read_compressed_insn (buf, 4);
15285 else
15286 return read_insn (buf);
15287 }
15288
15289 /* Write instruction INSN to BUF, given that it has been relocated
15290 by RELOC. */
15291
15292 static void
15293 write_reloc_insn (char *buf, bfd_reloc_code_real_type reloc,
15294 unsigned long insn)
15295 {
15296 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
15297 write_compressed_insn (buf, insn, 4);
15298 else
15299 write_insn (buf, insn);
15300 }
15301
15302 /* Return TRUE if the instruction pointed to by FIXP is an invalid jump
15303 to a symbol in another ISA mode, which cannot be converted to JALX. */
15304
15305 static bfd_boolean
15306 fix_bad_cross_mode_jump_p (fixS *fixP)
15307 {
15308 unsigned long opcode;
15309 int other;
15310 char *buf;
15311
15312 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15313 return FALSE;
15314
15315 other = S_GET_OTHER (fixP->fx_addsy);
15316 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15317 opcode = read_reloc_insn (buf, fixP->fx_r_type) >> 26;
15318 switch (fixP->fx_r_type)
15319 {
15320 case BFD_RELOC_MIPS_JMP:
15321 return opcode != 0x1d && opcode != 0x03 && ELF_ST_IS_COMPRESSED (other);
15322 case BFD_RELOC_MICROMIPS_JMP:
15323 return opcode != 0x3c && opcode != 0x3d && !ELF_ST_IS_MICROMIPS (other);
15324 default:
15325 return FALSE;
15326 }
15327 }
15328
15329 /* Return TRUE if the instruction pointed to by FIXP is an invalid JALX
15330 jump to a symbol in the same ISA mode. */
15331
15332 static bfd_boolean
15333 fix_bad_same_mode_jalx_p (fixS *fixP)
15334 {
15335 unsigned long opcode;
15336 int other;
15337 char *buf;
15338
15339 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15340 return FALSE;
15341
15342 other = S_GET_OTHER (fixP->fx_addsy);
15343 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15344 opcode = read_reloc_insn (buf, fixP->fx_r_type) >> 26;
15345 switch (fixP->fx_r_type)
15346 {
15347 case BFD_RELOC_MIPS_JMP:
15348 return opcode == 0x1d && !ELF_ST_IS_COMPRESSED (other);
15349 case BFD_RELOC_MIPS16_JMP:
15350 return opcode == 0x07 && ELF_ST_IS_COMPRESSED (other);
15351 case BFD_RELOC_MICROMIPS_JMP:
15352 return opcode == 0x3c && ELF_ST_IS_COMPRESSED (other);
15353 default:
15354 return FALSE;
15355 }
15356 }
15357
15358 /* Return TRUE if the instruction pointed to by FIXP is an invalid jump
15359 to a symbol whose value plus addend is not aligned according to the
15360 ultimate (after linker relaxation) jump instruction's immediate field
15361 requirement, either to (1 << SHIFT), or, for jumps from microMIPS to
15362 regular MIPS code, to (1 << 2). */
15363
15364 static bfd_boolean
15365 fix_bad_misaligned_jump_p (fixS *fixP, int shift)
15366 {
15367 bfd_boolean micro_to_mips_p;
15368 valueT val;
15369 int other;
15370
15371 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15372 return FALSE;
15373
15374 other = S_GET_OTHER (fixP->fx_addsy);
15375 val = S_GET_VALUE (fixP->fx_addsy) | ELF_ST_IS_COMPRESSED (other);
15376 val += fixP->fx_offset;
15377 micro_to_mips_p = (fixP->fx_r_type == BFD_RELOC_MICROMIPS_JMP
15378 && !ELF_ST_IS_MICROMIPS (other));
15379 return ((val & ((1 << (micro_to_mips_p ? 2 : shift)) - 1))
15380 != ELF_ST_IS_COMPRESSED (other));
15381 }
15382
15383 /* Return TRUE if the instruction pointed to by FIXP is an invalid branch
15384 to a symbol whose annotation indicates another ISA mode. For absolute
15385 symbols check the ISA bit instead.
15386
15387 We accept BFD_RELOC_16_PCREL_S2 relocations against MIPS16 and microMIPS
15388 symbols or BFD_RELOC_MICROMIPS_16_PCREL_S1 relocations against regular
15389 MIPS symbols and associated with BAL instructions as these instructions
15390 may be converted to JALX by the linker. */
15391
15392 static bfd_boolean
15393 fix_bad_cross_mode_branch_p (fixS *fixP)
15394 {
15395 bfd_boolean absolute_p;
15396 unsigned long opcode;
15397 asection *symsec;
15398 valueT val;
15399 int other;
15400 char *buf;
15401
15402 if (mips_ignore_branch_isa)
15403 return FALSE;
15404
15405 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15406 return FALSE;
15407
15408 symsec = S_GET_SEGMENT (fixP->fx_addsy);
15409 absolute_p = bfd_is_abs_section (symsec);
15410
15411 val = S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset;
15412 other = S_GET_OTHER (fixP->fx_addsy);
15413
15414 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15415 opcode = read_reloc_insn (buf, fixP->fx_r_type) >> 16;
15416 switch (fixP->fx_r_type)
15417 {
15418 case BFD_RELOC_16_PCREL_S2:
15419 return ((absolute_p ? val & 1 : ELF_ST_IS_COMPRESSED (other))
15420 && opcode != 0x0411);
15421 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15422 return ((absolute_p ? !(val & 1) : !ELF_ST_IS_MICROMIPS (other))
15423 && opcode != 0x4060);
15424 case BFD_RELOC_MIPS_21_PCREL_S2:
15425 case BFD_RELOC_MIPS_26_PCREL_S2:
15426 return absolute_p ? val & 1 : ELF_ST_IS_COMPRESSED (other);
15427 case BFD_RELOC_MIPS16_16_PCREL_S1:
15428 return absolute_p ? !(val & 1) : !ELF_ST_IS_MIPS16 (other);
15429 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15430 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15431 return absolute_p ? !(val & 1) : !ELF_ST_IS_MICROMIPS (other);
15432 default:
15433 abort ();
15434 }
15435 }
15436
15437 /* Return TRUE if the symbol plus addend associated with a regular MIPS
15438 branch instruction pointed to by FIXP is not aligned according to the
15439 branch instruction's immediate field requirement. We need the addend
15440 to preserve the ISA bit and also the sum must not have bit 2 set. We
15441 must explicitly OR in the ISA bit from symbol annotation as the bit
15442 won't be set in the symbol's value then. */
15443
15444 static bfd_boolean
15445 fix_bad_misaligned_branch_p (fixS *fixP)
15446 {
15447 bfd_boolean absolute_p;
15448 asection *symsec;
15449 valueT isa_bit;
15450 valueT val;
15451 valueT off;
15452 int other;
15453
15454 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15455 return FALSE;
15456
15457 symsec = S_GET_SEGMENT (fixP->fx_addsy);
15458 absolute_p = bfd_is_abs_section (symsec);
15459
15460 val = S_GET_VALUE (fixP->fx_addsy);
15461 other = S_GET_OTHER (fixP->fx_addsy);
15462 off = fixP->fx_offset;
15463
15464 isa_bit = absolute_p ? (val + off) & 1 : ELF_ST_IS_COMPRESSED (other);
15465 val |= ELF_ST_IS_COMPRESSED (other);
15466 val += off;
15467 return (val & 0x3) != isa_bit;
15468 }
15469
15470 /* Make the necessary checks on a regular MIPS branch pointed to by FIXP
15471 and its calculated value VAL. */
15472
15473 static void
15474 fix_validate_branch (fixS *fixP, valueT val)
15475 {
15476 if (fixP->fx_done && (val & 0x3) != 0)
15477 as_bad_where (fixP->fx_file, fixP->fx_line,
15478 _("branch to misaligned address (0x%lx)"),
15479 (long) (val + md_pcrel_from (fixP)));
15480 else if (fix_bad_cross_mode_branch_p (fixP))
15481 as_bad_where (fixP->fx_file, fixP->fx_line,
15482 _("branch to a symbol in another ISA mode"));
15483 else if (fix_bad_misaligned_branch_p (fixP))
15484 as_bad_where (fixP->fx_file, fixP->fx_line,
15485 _("branch to misaligned address (0x%lx)"),
15486 (long) (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset));
15487 else if (HAVE_IN_PLACE_ADDENDS && (fixP->fx_offset & 0x3) != 0)
15488 as_bad_where (fixP->fx_file, fixP->fx_line,
15489 _("cannot encode misaligned addend "
15490 "in the relocatable field (0x%lx)"),
15491 (long) fixP->fx_offset);
15492 }
15493
15494 /* Apply a fixup to the object file. */
15495
15496 void
15497 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
15498 {
15499 char *buf;
15500 unsigned long insn;
15501 reloc_howto_type *howto;
15502
15503 if (fixP->fx_pcrel)
15504 switch (fixP->fx_r_type)
15505 {
15506 case BFD_RELOC_16_PCREL_S2:
15507 case BFD_RELOC_MIPS16_16_PCREL_S1:
15508 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15509 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15510 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15511 case BFD_RELOC_32_PCREL:
15512 case BFD_RELOC_MIPS_21_PCREL_S2:
15513 case BFD_RELOC_MIPS_26_PCREL_S2:
15514 case BFD_RELOC_MIPS_18_PCREL_S3:
15515 case BFD_RELOC_MIPS_19_PCREL_S2:
15516 case BFD_RELOC_HI16_S_PCREL:
15517 case BFD_RELOC_LO16_PCREL:
15518 break;
15519
15520 case BFD_RELOC_32:
15521 fixP->fx_r_type = BFD_RELOC_32_PCREL;
15522 break;
15523
15524 default:
15525 as_bad_where (fixP->fx_file, fixP->fx_line,
15526 _("PC-relative reference to a different section"));
15527 break;
15528 }
15529
15530 /* Handle BFD_RELOC_8, since it's easy. Punt on other bfd relocations
15531 that have no MIPS ELF equivalent. */
15532 if (fixP->fx_r_type != BFD_RELOC_8)
15533 {
15534 howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
15535 if (!howto)
15536 return;
15537 }
15538
15539 gas_assert (fixP->fx_size == 2
15540 || fixP->fx_size == 4
15541 || fixP->fx_r_type == BFD_RELOC_8
15542 || fixP->fx_r_type == BFD_RELOC_16
15543 || fixP->fx_r_type == BFD_RELOC_64
15544 || fixP->fx_r_type == BFD_RELOC_CTOR
15545 || fixP->fx_r_type == BFD_RELOC_MIPS_SUB
15546 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_SUB
15547 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
15548 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY
15549 || fixP->fx_r_type == BFD_RELOC_MIPS_TLS_DTPREL64
15550 || fixP->fx_r_type == BFD_RELOC_NONE);
15551
15552 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15553
15554 /* Don't treat parts of a composite relocation as done. There are two
15555 reasons for this:
15556
15557 (1) The second and third parts will be against 0 (RSS_UNDEF) but
15558 should nevertheless be emitted if the first part is.
15559
15560 (2) In normal usage, composite relocations are never assembly-time
15561 constants. The easiest way of dealing with the pathological
15562 exceptions is to generate a relocation against STN_UNDEF and
15563 leave everything up to the linker. */
15564 if (fixP->fx_addsy == NULL && !fixP->fx_pcrel && fixP->fx_tcbit == 0)
15565 fixP->fx_done = 1;
15566
15567 switch (fixP->fx_r_type)
15568 {
15569 case BFD_RELOC_MIPS_TLS_GD:
15570 case BFD_RELOC_MIPS_TLS_LDM:
15571 case BFD_RELOC_MIPS_TLS_DTPREL32:
15572 case BFD_RELOC_MIPS_TLS_DTPREL64:
15573 case BFD_RELOC_MIPS_TLS_DTPREL_HI16:
15574 case BFD_RELOC_MIPS_TLS_DTPREL_LO16:
15575 case BFD_RELOC_MIPS_TLS_GOTTPREL:
15576 case BFD_RELOC_MIPS_TLS_TPREL32:
15577 case BFD_RELOC_MIPS_TLS_TPREL64:
15578 case BFD_RELOC_MIPS_TLS_TPREL_HI16:
15579 case BFD_RELOC_MIPS_TLS_TPREL_LO16:
15580 case BFD_RELOC_MICROMIPS_TLS_GD:
15581 case BFD_RELOC_MICROMIPS_TLS_LDM:
15582 case BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16:
15583 case BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16:
15584 case BFD_RELOC_MICROMIPS_TLS_GOTTPREL:
15585 case BFD_RELOC_MICROMIPS_TLS_TPREL_HI16:
15586 case BFD_RELOC_MICROMIPS_TLS_TPREL_LO16:
15587 case BFD_RELOC_MIPS16_TLS_GD:
15588 case BFD_RELOC_MIPS16_TLS_LDM:
15589 case BFD_RELOC_MIPS16_TLS_DTPREL_HI16:
15590 case BFD_RELOC_MIPS16_TLS_DTPREL_LO16:
15591 case BFD_RELOC_MIPS16_TLS_GOTTPREL:
15592 case BFD_RELOC_MIPS16_TLS_TPREL_HI16:
15593 case BFD_RELOC_MIPS16_TLS_TPREL_LO16:
15594 if (fixP->fx_addsy)
15595 S_SET_THREAD_LOCAL (fixP->fx_addsy);
15596 else
15597 as_bad_where (fixP->fx_file, fixP->fx_line,
15598 _("TLS relocation against a constant"));
15599 break;
15600
15601 case BFD_RELOC_MIPS_JMP:
15602 case BFD_RELOC_MIPS16_JMP:
15603 case BFD_RELOC_MICROMIPS_JMP:
15604 {
15605 int shift;
15606
15607 gas_assert (!fixP->fx_done);
15608
15609 /* Shift is 2, unusually, for microMIPS JALX. */
15610 if (fixP->fx_r_type == BFD_RELOC_MICROMIPS_JMP
15611 && (read_compressed_insn (buf, 4) >> 26) != 0x3c)
15612 shift = 1;
15613 else
15614 shift = 2;
15615
15616 if (fix_bad_cross_mode_jump_p (fixP))
15617 as_bad_where (fixP->fx_file, fixP->fx_line,
15618 _("jump to a symbol in another ISA mode"));
15619 else if (fix_bad_same_mode_jalx_p (fixP))
15620 as_bad_where (fixP->fx_file, fixP->fx_line,
15621 _("JALX to a symbol in the same ISA mode"));
15622 else if (fix_bad_misaligned_jump_p (fixP, shift))
15623 as_bad_where (fixP->fx_file, fixP->fx_line,
15624 _("jump to misaligned address (0x%lx)"),
15625 (long) (S_GET_VALUE (fixP->fx_addsy)
15626 + fixP->fx_offset));
15627 else if (HAVE_IN_PLACE_ADDENDS
15628 && (fixP->fx_offset & ((1 << shift) - 1)) != 0)
15629 as_bad_where (fixP->fx_file, fixP->fx_line,
15630 _("cannot encode misaligned addend "
15631 "in the relocatable field (0x%lx)"),
15632 (long) fixP->fx_offset);
15633 }
15634 /* Fall through. */
15635
15636 case BFD_RELOC_MIPS_SHIFT5:
15637 case BFD_RELOC_MIPS_SHIFT6:
15638 case BFD_RELOC_MIPS_GOT_DISP:
15639 case BFD_RELOC_MIPS_GOT_PAGE:
15640 case BFD_RELOC_MIPS_GOT_OFST:
15641 case BFD_RELOC_MIPS_SUB:
15642 case BFD_RELOC_MIPS_INSERT_A:
15643 case BFD_RELOC_MIPS_INSERT_B:
15644 case BFD_RELOC_MIPS_DELETE:
15645 case BFD_RELOC_MIPS_HIGHEST:
15646 case BFD_RELOC_MIPS_HIGHER:
15647 case BFD_RELOC_MIPS_SCN_DISP:
15648 case BFD_RELOC_MIPS_REL16:
15649 case BFD_RELOC_MIPS_RELGOT:
15650 case BFD_RELOC_MIPS_JALR:
15651 case BFD_RELOC_HI16:
15652 case BFD_RELOC_HI16_S:
15653 case BFD_RELOC_LO16:
15654 case BFD_RELOC_GPREL16:
15655 case BFD_RELOC_MIPS_LITERAL:
15656 case BFD_RELOC_MIPS_CALL16:
15657 case BFD_RELOC_MIPS_GOT16:
15658 case BFD_RELOC_GPREL32:
15659 case BFD_RELOC_MIPS_GOT_HI16:
15660 case BFD_RELOC_MIPS_GOT_LO16:
15661 case BFD_RELOC_MIPS_CALL_HI16:
15662 case BFD_RELOC_MIPS_CALL_LO16:
15663 case BFD_RELOC_HI16_S_PCREL:
15664 case BFD_RELOC_LO16_PCREL:
15665 case BFD_RELOC_MIPS16_GPREL:
15666 case BFD_RELOC_MIPS16_GOT16:
15667 case BFD_RELOC_MIPS16_CALL16:
15668 case BFD_RELOC_MIPS16_HI16:
15669 case BFD_RELOC_MIPS16_HI16_S:
15670 case BFD_RELOC_MIPS16_LO16:
15671 case BFD_RELOC_MICROMIPS_GOT_DISP:
15672 case BFD_RELOC_MICROMIPS_GOT_PAGE:
15673 case BFD_RELOC_MICROMIPS_GOT_OFST:
15674 case BFD_RELOC_MICROMIPS_SUB:
15675 case BFD_RELOC_MICROMIPS_HIGHEST:
15676 case BFD_RELOC_MICROMIPS_HIGHER:
15677 case BFD_RELOC_MICROMIPS_SCN_DISP:
15678 case BFD_RELOC_MICROMIPS_JALR:
15679 case BFD_RELOC_MICROMIPS_HI16:
15680 case BFD_RELOC_MICROMIPS_HI16_S:
15681 case BFD_RELOC_MICROMIPS_LO16:
15682 case BFD_RELOC_MICROMIPS_GPREL16:
15683 case BFD_RELOC_MICROMIPS_LITERAL:
15684 case BFD_RELOC_MICROMIPS_CALL16:
15685 case BFD_RELOC_MICROMIPS_GOT16:
15686 case BFD_RELOC_MICROMIPS_GOT_HI16:
15687 case BFD_RELOC_MICROMIPS_GOT_LO16:
15688 case BFD_RELOC_MICROMIPS_CALL_HI16:
15689 case BFD_RELOC_MICROMIPS_CALL_LO16:
15690 case BFD_RELOC_MIPS_EH:
15691 if (fixP->fx_done)
15692 {
15693 offsetT value;
15694
15695 if (calculate_reloc (fixP->fx_r_type, *valP, &value))
15696 {
15697 insn = read_reloc_insn (buf, fixP->fx_r_type);
15698 if (mips16_reloc_p (fixP->fx_r_type))
15699 insn |= mips16_immed_extend (value, 16);
15700 else
15701 insn |= (value & 0xffff);
15702 write_reloc_insn (buf, fixP->fx_r_type, insn);
15703 }
15704 else
15705 as_bad_where (fixP->fx_file, fixP->fx_line,
15706 _("unsupported constant in relocation"));
15707 }
15708 break;
15709
15710 case BFD_RELOC_64:
15711 /* This is handled like BFD_RELOC_32, but we output a sign
15712 extended value if we are only 32 bits. */
15713 if (fixP->fx_done)
15714 {
15715 if (8 <= sizeof (valueT))
15716 md_number_to_chars (buf, *valP, 8);
15717 else
15718 {
15719 valueT hiv;
15720
15721 if ((*valP & 0x80000000) != 0)
15722 hiv = 0xffffffff;
15723 else
15724 hiv = 0;
15725 md_number_to_chars (buf + (target_big_endian ? 4 : 0), *valP, 4);
15726 md_number_to_chars (buf + (target_big_endian ? 0 : 4), hiv, 4);
15727 }
15728 }
15729 break;
15730
15731 case BFD_RELOC_RVA:
15732 case BFD_RELOC_32:
15733 case BFD_RELOC_32_PCREL:
15734 case BFD_RELOC_16:
15735 case BFD_RELOC_8:
15736 /* If we are deleting this reloc entry, we must fill in the
15737 value now. This can happen if we have a .word which is not
15738 resolved when it appears but is later defined. */
15739 if (fixP->fx_done)
15740 md_number_to_chars (buf, *valP, fixP->fx_size);
15741 break;
15742
15743 case BFD_RELOC_MIPS_21_PCREL_S2:
15744 fix_validate_branch (fixP, *valP);
15745 if (!fixP->fx_done)
15746 break;
15747
15748 if (*valP + 0x400000 <= 0x7fffff)
15749 {
15750 insn = read_insn (buf);
15751 insn |= (*valP >> 2) & 0x1fffff;
15752 write_insn (buf, insn);
15753 }
15754 else
15755 as_bad_where (fixP->fx_file, fixP->fx_line,
15756 _("branch out of range"));
15757 break;
15758
15759 case BFD_RELOC_MIPS_26_PCREL_S2:
15760 fix_validate_branch (fixP, *valP);
15761 if (!fixP->fx_done)
15762 break;
15763
15764 if (*valP + 0x8000000 <= 0xfffffff)
15765 {
15766 insn = read_insn (buf);
15767 insn |= (*valP >> 2) & 0x3ffffff;
15768 write_insn (buf, insn);
15769 }
15770 else
15771 as_bad_where (fixP->fx_file, fixP->fx_line,
15772 _("branch out of range"));
15773 break;
15774
15775 case BFD_RELOC_MIPS_18_PCREL_S3:
15776 if (fixP->fx_addsy && (S_GET_VALUE (fixP->fx_addsy) & 0x7) != 0)
15777 as_bad_where (fixP->fx_file, fixP->fx_line,
15778 _("PC-relative access using misaligned symbol (%lx)"),
15779 (long) S_GET_VALUE (fixP->fx_addsy));
15780 if ((fixP->fx_offset & 0x7) != 0)
15781 as_bad_where (fixP->fx_file, fixP->fx_line,
15782 _("PC-relative access using misaligned offset (%lx)"),
15783 (long) fixP->fx_offset);
15784 if (!fixP->fx_done)
15785 break;
15786
15787 if (*valP + 0x100000 <= 0x1fffff)
15788 {
15789 insn = read_insn (buf);
15790 insn |= (*valP >> 3) & 0x3ffff;
15791 write_insn (buf, insn);
15792 }
15793 else
15794 as_bad_where (fixP->fx_file, fixP->fx_line,
15795 _("PC-relative access out of range"));
15796 break;
15797
15798 case BFD_RELOC_MIPS_19_PCREL_S2:
15799 if ((*valP & 0x3) != 0)
15800 as_bad_where (fixP->fx_file, fixP->fx_line,
15801 _("PC-relative access to misaligned address (%lx)"),
15802 (long) *valP);
15803 if (!fixP->fx_done)
15804 break;
15805
15806 if (*valP + 0x100000 <= 0x1fffff)
15807 {
15808 insn = read_insn (buf);
15809 insn |= (*valP >> 2) & 0x7ffff;
15810 write_insn (buf, insn);
15811 }
15812 else
15813 as_bad_where (fixP->fx_file, fixP->fx_line,
15814 _("PC-relative access out of range"));
15815 break;
15816
15817 case BFD_RELOC_16_PCREL_S2:
15818 fix_validate_branch (fixP, *valP);
15819
15820 /* We need to save the bits in the instruction since fixup_segment()
15821 might be deleting the relocation entry (i.e., a branch within
15822 the current segment). */
15823 if (! fixP->fx_done)
15824 break;
15825
15826 /* Update old instruction data. */
15827 insn = read_insn (buf);
15828
15829 if (*valP + 0x20000 <= 0x3ffff)
15830 {
15831 insn |= (*valP >> 2) & 0xffff;
15832 write_insn (buf, insn);
15833 }
15834 else if (fixP->fx_tcbit2
15835 && fixP->fx_done
15836 && fixP->fx_frag->fr_address >= text_section->vma
15837 && (fixP->fx_frag->fr_address
15838 < text_section->vma + bfd_get_section_size (text_section))
15839 && ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
15840 || (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
15841 || (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
15842 {
15843 /* The branch offset is too large. If this is an
15844 unconditional branch, and we are not generating PIC code,
15845 we can convert it to an absolute jump instruction. */
15846 if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
15847 insn = 0x0c000000; /* jal */
15848 else
15849 insn = 0x08000000; /* j */
15850 fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
15851 fixP->fx_done = 0;
15852 fixP->fx_addsy = section_symbol (text_section);
15853 *valP += md_pcrel_from (fixP);
15854 write_insn (buf, insn);
15855 }
15856 else
15857 {
15858 /* If we got here, we have branch-relaxation disabled,
15859 and there's nothing we can do to fix this instruction
15860 without turning it into a longer sequence. */
15861 as_bad_where (fixP->fx_file, fixP->fx_line,
15862 _("branch out of range"));
15863 }
15864 break;
15865
15866 case BFD_RELOC_MIPS16_16_PCREL_S1:
15867 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15868 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15869 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15870 gas_assert (!fixP->fx_done);
15871 if (fix_bad_cross_mode_branch_p (fixP))
15872 as_bad_where (fixP->fx_file, fixP->fx_line,
15873 _("branch to a symbol in another ISA mode"));
15874 else if (fixP->fx_addsy
15875 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
15876 && !bfd_is_abs_section (S_GET_SEGMENT (fixP->fx_addsy))
15877 && (fixP->fx_offset & 0x1) != 0)
15878 as_bad_where (fixP->fx_file, fixP->fx_line,
15879 _("branch to misaligned address (0x%lx)"),
15880 (long) (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset));
15881 else if (HAVE_IN_PLACE_ADDENDS && (fixP->fx_offset & 0x1) != 0)
15882 as_bad_where (fixP->fx_file, fixP->fx_line,
15883 _("cannot encode misaligned addend "
15884 "in the relocatable field (0x%lx)"),
15885 (long) fixP->fx_offset);
15886 break;
15887
15888 case BFD_RELOC_VTABLE_INHERIT:
15889 fixP->fx_done = 0;
15890 if (fixP->fx_addsy
15891 && !S_IS_DEFINED (fixP->fx_addsy)
15892 && !S_IS_WEAK (fixP->fx_addsy))
15893 S_SET_WEAK (fixP->fx_addsy);
15894 break;
15895
15896 case BFD_RELOC_NONE:
15897 case BFD_RELOC_VTABLE_ENTRY:
15898 fixP->fx_done = 0;
15899 break;
15900
15901 default:
15902 abort ();
15903 }
15904
15905 /* Remember value for tc_gen_reloc. */
15906 fixP->fx_addnumber = *valP;
15907 }
15908
15909 static symbolS *
15910 get_symbol (void)
15911 {
15912 int c;
15913 char *name;
15914 symbolS *p;
15915
15916 c = get_symbol_name (&name);
15917 p = (symbolS *) symbol_find_or_make (name);
15918 (void) restore_line_pointer (c);
15919 return p;
15920 }
15921
15922 /* Align the current frag to a given power of two. If a particular
15923 fill byte should be used, FILL points to an integer that contains
15924 that byte, otherwise FILL is null.
15925
15926 This function used to have the comment:
15927
15928 The MIPS assembler also automatically adjusts any preceding label.
15929
15930 The implementation therefore applied the adjustment to a maximum of
15931 one label. However, other label adjustments are applied to batches
15932 of labels, and adjusting just one caused problems when new labels
15933 were added for the sake of debugging or unwind information.
15934 We therefore adjust all preceding labels (given as LABELS) instead. */
15935
15936 static void
15937 mips_align (int to, int *fill, struct insn_label_list *labels)
15938 {
15939 mips_emit_delays ();
15940 mips_record_compressed_mode ();
15941 if (fill == NULL && subseg_text_p (now_seg))
15942 frag_align_code (to, 0);
15943 else
15944 frag_align (to, fill ? *fill : 0, 0);
15945 record_alignment (now_seg, to);
15946 mips_move_labels (labels, FALSE);
15947 }
15948
15949 /* Align to a given power of two. .align 0 turns off the automatic
15950 alignment used by the data creating pseudo-ops. */
15951
15952 static void
15953 s_align (int x ATTRIBUTE_UNUSED)
15954 {
15955 int temp, fill_value, *fill_ptr;
15956 long max_alignment = 28;
15957
15958 /* o Note that the assembler pulls down any immediately preceding label
15959 to the aligned address.
15960 o It's not documented but auto alignment is reinstated by
15961 a .align pseudo instruction.
15962 o Note also that after auto alignment is turned off the mips assembler
15963 issues an error on attempt to assemble an improperly aligned data item.
15964 We don't. */
15965
15966 temp = get_absolute_expression ();
15967 if (temp > max_alignment)
15968 as_bad (_("alignment too large, %d assumed"), temp = max_alignment);
15969 else if (temp < 0)
15970 {
15971 as_warn (_("alignment negative, 0 assumed"));
15972 temp = 0;
15973 }
15974 if (*input_line_pointer == ',')
15975 {
15976 ++input_line_pointer;
15977 fill_value = get_absolute_expression ();
15978 fill_ptr = &fill_value;
15979 }
15980 else
15981 fill_ptr = 0;
15982 if (temp)
15983 {
15984 segment_info_type *si = seg_info (now_seg);
15985 struct insn_label_list *l = si->label_list;
15986 /* Auto alignment should be switched on by next section change. */
15987 auto_align = 1;
15988 mips_align (temp, fill_ptr, l);
15989 }
15990 else
15991 {
15992 auto_align = 0;
15993 }
15994
15995 demand_empty_rest_of_line ();
15996 }
15997
15998 static void
15999 s_change_sec (int sec)
16000 {
16001 segT seg;
16002
16003 /* The ELF backend needs to know that we are changing sections, so
16004 that .previous works correctly. We could do something like check
16005 for an obj_section_change_hook macro, but that might be confusing
16006 as it would not be appropriate to use it in the section changing
16007 functions in read.c, since obj-elf.c intercepts those. FIXME:
16008 This should be cleaner, somehow. */
16009 obj_elf_section_change_hook ();
16010
16011 mips_emit_delays ();
16012
16013 switch (sec)
16014 {
16015 case 't':
16016 s_text (0);
16017 break;
16018 case 'd':
16019 s_data (0);
16020 break;
16021 case 'b':
16022 subseg_set (bss_section, (subsegT) get_absolute_expression ());
16023 demand_empty_rest_of_line ();
16024 break;
16025
16026 case 'r':
16027 seg = subseg_new (RDATA_SECTION_NAME,
16028 (subsegT) get_absolute_expression ());
16029 bfd_set_section_flags (stdoutput, seg, (SEC_ALLOC | SEC_LOAD
16030 | SEC_READONLY | SEC_RELOC
16031 | SEC_DATA));
16032 if (strncmp (TARGET_OS, "elf", 3) != 0)
16033 record_alignment (seg, 4);
16034 demand_empty_rest_of_line ();
16035 break;
16036
16037 case 's':
16038 seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
16039 bfd_set_section_flags (stdoutput, seg,
16040 SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA);
16041 if (strncmp (TARGET_OS, "elf", 3) != 0)
16042 record_alignment (seg, 4);
16043 demand_empty_rest_of_line ();
16044 break;
16045
16046 case 'B':
16047 seg = subseg_new (".sbss", (subsegT) get_absolute_expression ());
16048 bfd_set_section_flags (stdoutput, seg, SEC_ALLOC);
16049 if (strncmp (TARGET_OS, "elf", 3) != 0)
16050 record_alignment (seg, 4);
16051 demand_empty_rest_of_line ();
16052 break;
16053 }
16054
16055 auto_align = 1;
16056 }
16057
16058 void
16059 s_change_section (int ignore ATTRIBUTE_UNUSED)
16060 {
16061 char *saved_ilp;
16062 char *section_name;
16063 char c, endc;
16064 char next_c = 0;
16065 int section_type;
16066 int section_flag;
16067 int section_entry_size;
16068 int section_alignment;
16069
16070 saved_ilp = input_line_pointer;
16071 endc = get_symbol_name (&section_name);
16072 c = (endc == '"' ? input_line_pointer[1] : endc);
16073 if (c)
16074 next_c = input_line_pointer [(endc == '"' ? 2 : 1)];
16075
16076 /* Do we have .section Name<,"flags">? */
16077 if (c != ',' || (c == ',' && next_c == '"'))
16078 {
16079 /* Just after name is now '\0'. */
16080 (void) restore_line_pointer (endc);
16081 input_line_pointer = saved_ilp;
16082 obj_elf_section (ignore);
16083 return;
16084 }
16085
16086 section_name = xstrdup (section_name);
16087 c = restore_line_pointer (endc);
16088
16089 input_line_pointer++;
16090
16091 /* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
16092 if (c == ',')
16093 section_type = get_absolute_expression ();
16094 else
16095 section_type = 0;
16096
16097 if (*input_line_pointer++ == ',')
16098 section_flag = get_absolute_expression ();
16099 else
16100 section_flag = 0;
16101
16102 if (*input_line_pointer++ == ',')
16103 section_entry_size = get_absolute_expression ();
16104 else
16105 section_entry_size = 0;
16106
16107 if (*input_line_pointer++ == ',')
16108 section_alignment = get_absolute_expression ();
16109 else
16110 section_alignment = 0;
16111
16112 /* FIXME: really ignore? */
16113 (void) section_alignment;
16114
16115 /* When using the generic form of .section (as implemented by obj-elf.c),
16116 there's no way to set the section type to SHT_MIPS_DWARF. Users have
16117 traditionally had to fall back on the more common @progbits instead.
16118
16119 There's nothing really harmful in this, since bfd will correct
16120 SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
16121 means that, for backwards compatibility, the special_section entries
16122 for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
16123
16124 Even so, we shouldn't force users of the MIPS .section syntax to
16125 incorrectly label the sections as SHT_PROGBITS. The best compromise
16126 seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
16127 generic type-checking code. */
16128 if (section_type == SHT_MIPS_DWARF)
16129 section_type = SHT_PROGBITS;
16130
16131 obj_elf_change_section (section_name, section_type, 0, section_flag,
16132 section_entry_size, 0, 0, 0);
16133
16134 if (now_seg->name != section_name)
16135 free (section_name);
16136 }
16137
16138 void
16139 mips_enable_auto_align (void)
16140 {
16141 auto_align = 1;
16142 }
16143
16144 static void
16145 s_cons (int log_size)
16146 {
16147 segment_info_type *si = seg_info (now_seg);
16148 struct insn_label_list *l = si->label_list;
16149
16150 mips_emit_delays ();
16151 if (log_size > 0 && auto_align)
16152 mips_align (log_size, 0, l);
16153 cons (1 << log_size);
16154 mips_clear_insn_labels ();
16155 }
16156
16157 static void
16158 s_float_cons (int type)
16159 {
16160 segment_info_type *si = seg_info (now_seg);
16161 struct insn_label_list *l = si->label_list;
16162
16163 mips_emit_delays ();
16164
16165 if (auto_align)
16166 {
16167 if (type == 'd')
16168 mips_align (3, 0, l);
16169 else
16170 mips_align (2, 0, l);
16171 }
16172
16173 float_cons (type);
16174 mips_clear_insn_labels ();
16175 }
16176
16177 /* Handle .globl. We need to override it because on Irix 5 you are
16178 permitted to say
16179 .globl foo .text
16180 where foo is an undefined symbol, to mean that foo should be
16181 considered to be the address of a function. */
16182
16183 static void
16184 s_mips_globl (int x ATTRIBUTE_UNUSED)
16185 {
16186 char *name;
16187 int c;
16188 symbolS *symbolP;
16189 flagword flag;
16190
16191 do
16192 {
16193 c = get_symbol_name (&name);
16194 symbolP = symbol_find_or_make (name);
16195 S_SET_EXTERNAL (symbolP);
16196
16197 *input_line_pointer = c;
16198 SKIP_WHITESPACE_AFTER_NAME ();
16199
16200 /* On Irix 5, every global symbol that is not explicitly labelled as
16201 being a function is apparently labelled as being an object. */
16202 flag = BSF_OBJECT;
16203
16204 if (!is_end_of_line[(unsigned char) *input_line_pointer]
16205 && (*input_line_pointer != ','))
16206 {
16207 char *secname;
16208 asection *sec;
16209
16210 c = get_symbol_name (&secname);
16211 sec = bfd_get_section_by_name (stdoutput, secname);
16212 if (sec == NULL)
16213 as_bad (_("%s: no such section"), secname);
16214 (void) restore_line_pointer (c);
16215
16216 if (sec != NULL && (sec->flags & SEC_CODE) != 0)
16217 flag = BSF_FUNCTION;
16218 }
16219
16220 symbol_get_bfdsym (symbolP)->flags |= flag;
16221
16222 c = *input_line_pointer;
16223 if (c == ',')
16224 {
16225 input_line_pointer++;
16226 SKIP_WHITESPACE ();
16227 if (is_end_of_line[(unsigned char) *input_line_pointer])
16228 c = '\n';
16229 }
16230 }
16231 while (c == ',');
16232
16233 demand_empty_rest_of_line ();
16234 }
16235
16236 static void
16237 s_option (int x ATTRIBUTE_UNUSED)
16238 {
16239 char *opt;
16240 char c;
16241
16242 c = get_symbol_name (&opt);
16243
16244 if (*opt == 'O')
16245 {
16246 /* FIXME: What does this mean? */
16247 }
16248 else if (strncmp (opt, "pic", 3) == 0 && ISDIGIT (opt[3]) && opt[4] == '\0')
16249 {
16250 int i;
16251
16252 i = atoi (opt + 3);
16253 if (i != 0 && i != 2)
16254 as_bad (_(".option pic%d not supported"), i);
16255 else if (mips_pic == VXWORKS_PIC)
16256 as_bad (_(".option pic%d not supported in VxWorks PIC mode"), i);
16257 else if (i == 0)
16258 mips_pic = NO_PIC;
16259 else if (i == 2)
16260 {
16261 mips_pic = SVR4_PIC;
16262 mips_abicalls = TRUE;
16263 }
16264
16265 if (mips_pic == SVR4_PIC)
16266 {
16267 if (g_switch_seen && g_switch_value != 0)
16268 as_warn (_("-G may not be used with SVR4 PIC code"));
16269 g_switch_value = 0;
16270 bfd_set_gp_size (stdoutput, 0);
16271 }
16272 }
16273 else
16274 as_warn (_("unrecognized option \"%s\""), opt);
16275
16276 (void) restore_line_pointer (c);
16277 demand_empty_rest_of_line ();
16278 }
16279
16280 /* This structure is used to hold a stack of .set values. */
16281
16282 struct mips_option_stack
16283 {
16284 struct mips_option_stack *next;
16285 struct mips_set_options options;
16286 };
16287
16288 static struct mips_option_stack *mips_opts_stack;
16289
16290 /* Return status for .set/.module option handling. */
16291
16292 enum code_option_type
16293 {
16294 /* Unrecognized option. */
16295 OPTION_TYPE_BAD = -1,
16296
16297 /* Ordinary option. */
16298 OPTION_TYPE_NORMAL,
16299
16300 /* ISA changing option. */
16301 OPTION_TYPE_ISA
16302 };
16303
16304 /* Handle common .set/.module options. Return status indicating option
16305 type. */
16306
16307 static enum code_option_type
16308 parse_code_option (char * name)
16309 {
16310 bfd_boolean isa_set = FALSE;
16311 const struct mips_ase *ase;
16312
16313 if (strncmp (name, "at=", 3) == 0)
16314 {
16315 char *s = name + 3;
16316
16317 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &mips_opts.at))
16318 as_bad (_("unrecognized register name `%s'"), s);
16319 }
16320 else if (strcmp (name, "at") == 0)
16321 mips_opts.at = ATREG;
16322 else if (strcmp (name, "noat") == 0)
16323 mips_opts.at = ZERO;
16324 else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
16325 mips_opts.nomove = 0;
16326 else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
16327 mips_opts.nomove = 1;
16328 else if (strcmp (name, "bopt") == 0)
16329 mips_opts.nobopt = 0;
16330 else if (strcmp (name, "nobopt") == 0)
16331 mips_opts.nobopt = 1;
16332 else if (strcmp (name, "gp=32") == 0)
16333 mips_opts.gp = 32;
16334 else if (strcmp (name, "gp=64") == 0)
16335 mips_opts.gp = 64;
16336 else if (strcmp (name, "fp=32") == 0)
16337 mips_opts.fp = 32;
16338 else if (strcmp (name, "fp=xx") == 0)
16339 mips_opts.fp = 0;
16340 else if (strcmp (name, "fp=64") == 0)
16341 mips_opts.fp = 64;
16342 else if (strcmp (name, "softfloat") == 0)
16343 mips_opts.soft_float = 1;
16344 else if (strcmp (name, "hardfloat") == 0)
16345 mips_opts.soft_float = 0;
16346 else if (strcmp (name, "singlefloat") == 0)
16347 mips_opts.single_float = 1;
16348 else if (strcmp (name, "doublefloat") == 0)
16349 mips_opts.single_float = 0;
16350 else if (strcmp (name, "nooddspreg") == 0)
16351 mips_opts.oddspreg = 0;
16352 else if (strcmp (name, "oddspreg") == 0)
16353 mips_opts.oddspreg = 1;
16354 else if (strcmp (name, "mips16") == 0
16355 || strcmp (name, "MIPS-16") == 0)
16356 mips_opts.mips16 = 1;
16357 else if (strcmp (name, "nomips16") == 0
16358 || strcmp (name, "noMIPS-16") == 0)
16359 mips_opts.mips16 = 0;
16360 else if (strcmp (name, "micromips") == 0)
16361 mips_opts.micromips = 1;
16362 else if (strcmp (name, "nomicromips") == 0)
16363 mips_opts.micromips = 0;
16364 else if (name[0] == 'n'
16365 && name[1] == 'o'
16366 && (ase = mips_lookup_ase (name + 2)))
16367 mips_set_ase (ase, &mips_opts, FALSE);
16368 else if ((ase = mips_lookup_ase (name)))
16369 mips_set_ase (ase, &mips_opts, TRUE);
16370 else if (strncmp (name, "mips", 4) == 0 || strncmp (name, "arch=", 5) == 0)
16371 {
16372 /* Permit the user to change the ISA and architecture on the fly.
16373 Needless to say, misuse can cause serious problems. */
16374 if (strncmp (name, "arch=", 5) == 0)
16375 {
16376 const struct mips_cpu_info *p;
16377
16378 p = mips_parse_cpu ("internal use", name + 5);
16379 if (!p)
16380 as_bad (_("unknown architecture %s"), name + 5);
16381 else
16382 {
16383 mips_opts.arch = p->cpu;
16384 mips_opts.isa = p->isa;
16385 isa_set = TRUE;
16386 }
16387 }
16388 else if (strncmp (name, "mips", 4) == 0)
16389 {
16390 const struct mips_cpu_info *p;
16391
16392 p = mips_parse_cpu ("internal use", name);
16393 if (!p)
16394 as_bad (_("unknown ISA level %s"), name + 4);
16395 else
16396 {
16397 mips_opts.arch = p->cpu;
16398 mips_opts.isa = p->isa;
16399 isa_set = TRUE;
16400 }
16401 }
16402 else
16403 as_bad (_("unknown ISA or architecture %s"), name);
16404 }
16405 else if (strcmp (name, "autoextend") == 0)
16406 mips_opts.noautoextend = 0;
16407 else if (strcmp (name, "noautoextend") == 0)
16408 mips_opts.noautoextend = 1;
16409 else if (strcmp (name, "insn32") == 0)
16410 mips_opts.insn32 = TRUE;
16411 else if (strcmp (name, "noinsn32") == 0)
16412 mips_opts.insn32 = FALSE;
16413 else if (strcmp (name, "sym32") == 0)
16414 mips_opts.sym32 = TRUE;
16415 else if (strcmp (name, "nosym32") == 0)
16416 mips_opts.sym32 = FALSE;
16417 else
16418 return OPTION_TYPE_BAD;
16419
16420 return isa_set ? OPTION_TYPE_ISA : OPTION_TYPE_NORMAL;
16421 }
16422
16423 /* Handle the .set pseudo-op. */
16424
16425 static void
16426 s_mipsset (int x ATTRIBUTE_UNUSED)
16427 {
16428 enum code_option_type type = OPTION_TYPE_NORMAL;
16429 char *name = input_line_pointer, ch;
16430
16431 file_mips_check_options ();
16432
16433 while (!is_end_of_line[(unsigned char) *input_line_pointer])
16434 ++input_line_pointer;
16435 ch = *input_line_pointer;
16436 *input_line_pointer = '\0';
16437
16438 if (strchr (name, ','))
16439 {
16440 /* Generic ".set" directive; use the generic handler. */
16441 *input_line_pointer = ch;
16442 input_line_pointer = name;
16443 s_set (0);
16444 return;
16445 }
16446
16447 if (strcmp (name, "reorder") == 0)
16448 {
16449 if (mips_opts.noreorder)
16450 end_noreorder ();
16451 }
16452 else if (strcmp (name, "noreorder") == 0)
16453 {
16454 if (!mips_opts.noreorder)
16455 start_noreorder ();
16456 }
16457 else if (strcmp (name, "macro") == 0)
16458 mips_opts.warn_about_macros = 0;
16459 else if (strcmp (name, "nomacro") == 0)
16460 {
16461 if (mips_opts.noreorder == 0)
16462 as_bad (_("`noreorder' must be set before `nomacro'"));
16463 mips_opts.warn_about_macros = 1;
16464 }
16465 else if (strcmp (name, "gp=default") == 0)
16466 mips_opts.gp = file_mips_opts.gp;
16467 else if (strcmp (name, "fp=default") == 0)
16468 mips_opts.fp = file_mips_opts.fp;
16469 else if (strcmp (name, "mips0") == 0 || strcmp (name, "arch=default") == 0)
16470 {
16471 mips_opts.isa = file_mips_opts.isa;
16472 mips_opts.arch = file_mips_opts.arch;
16473 mips_opts.gp = file_mips_opts.gp;
16474 mips_opts.fp = file_mips_opts.fp;
16475 }
16476 else if (strcmp (name, "push") == 0)
16477 {
16478 struct mips_option_stack *s;
16479
16480 s = XNEW (struct mips_option_stack);
16481 s->next = mips_opts_stack;
16482 s->options = mips_opts;
16483 mips_opts_stack = s;
16484 }
16485 else if (strcmp (name, "pop") == 0)
16486 {
16487 struct mips_option_stack *s;
16488
16489 s = mips_opts_stack;
16490 if (s == NULL)
16491 as_bad (_(".set pop with no .set push"));
16492 else
16493 {
16494 /* If we're changing the reorder mode we need to handle
16495 delay slots correctly. */
16496 if (s->options.noreorder && ! mips_opts.noreorder)
16497 start_noreorder ();
16498 else if (! s->options.noreorder && mips_opts.noreorder)
16499 end_noreorder ();
16500
16501 mips_opts = s->options;
16502 mips_opts_stack = s->next;
16503 free (s);
16504 }
16505 }
16506 else
16507 {
16508 type = parse_code_option (name);
16509 if (type == OPTION_TYPE_BAD)
16510 as_warn (_("tried to set unrecognized symbol: %s\n"), name);
16511 }
16512
16513 /* The use of .set [arch|cpu]= historically 'fixes' the width of gp and fp
16514 registers based on what is supported by the arch/cpu. */
16515 if (type == OPTION_TYPE_ISA)
16516 {
16517 switch (mips_opts.isa)
16518 {
16519 case 0:
16520 break;
16521 case ISA_MIPS1:
16522 /* MIPS I cannot support FPXX. */
16523 mips_opts.fp = 32;
16524 /* fall-through. */
16525 case ISA_MIPS2:
16526 case ISA_MIPS32:
16527 case ISA_MIPS32R2:
16528 case ISA_MIPS32R3:
16529 case ISA_MIPS32R5:
16530 mips_opts.gp = 32;
16531 if (mips_opts.fp != 0)
16532 mips_opts.fp = 32;
16533 break;
16534 case ISA_MIPS32R6:
16535 mips_opts.gp = 32;
16536 mips_opts.fp = 64;
16537 break;
16538 case ISA_MIPS3:
16539 case ISA_MIPS4:
16540 case ISA_MIPS5:
16541 case ISA_MIPS64:
16542 case ISA_MIPS64R2:
16543 case ISA_MIPS64R3:
16544 case ISA_MIPS64R5:
16545 case ISA_MIPS64R6:
16546 mips_opts.gp = 64;
16547 if (mips_opts.fp != 0)
16548 {
16549 if (mips_opts.arch == CPU_R5900)
16550 mips_opts.fp = 32;
16551 else
16552 mips_opts.fp = 64;
16553 }
16554 break;
16555 default:
16556 as_bad (_("unknown ISA level %s"), name + 4);
16557 break;
16558 }
16559 }
16560
16561 mips_check_options (&mips_opts, FALSE);
16562
16563 mips_check_isa_supports_ases ();
16564 *input_line_pointer = ch;
16565 demand_empty_rest_of_line ();
16566 }
16567
16568 /* Handle the .module pseudo-op. */
16569
16570 static void
16571 s_module (int ignore ATTRIBUTE_UNUSED)
16572 {
16573 char *name = input_line_pointer, ch;
16574
16575 while (!is_end_of_line[(unsigned char) *input_line_pointer])
16576 ++input_line_pointer;
16577 ch = *input_line_pointer;
16578 *input_line_pointer = '\0';
16579
16580 if (!file_mips_opts_checked)
16581 {
16582 if (parse_code_option (name) == OPTION_TYPE_BAD)
16583 as_bad (_(".module used with unrecognized symbol: %s\n"), name);
16584
16585 /* Update module level settings from mips_opts. */
16586 file_mips_opts = mips_opts;
16587 }
16588 else
16589 as_bad (_(".module is not permitted after generating code"));
16590
16591 *input_line_pointer = ch;
16592 demand_empty_rest_of_line ();
16593 }
16594
16595 /* Handle the .abicalls pseudo-op. I believe this is equivalent to
16596 .option pic2. It means to generate SVR4 PIC calls. */
16597
16598 static void
16599 s_abicalls (int ignore ATTRIBUTE_UNUSED)
16600 {
16601 mips_pic = SVR4_PIC;
16602 mips_abicalls = TRUE;
16603
16604 if (g_switch_seen && g_switch_value != 0)
16605 as_warn (_("-G may not be used with SVR4 PIC code"));
16606 g_switch_value = 0;
16607
16608 bfd_set_gp_size (stdoutput, 0);
16609 demand_empty_rest_of_line ();
16610 }
16611
16612 /* Handle the .cpload pseudo-op. This is used when generating SVR4
16613 PIC code. It sets the $gp register for the function based on the
16614 function address, which is in the register named in the argument.
16615 This uses a relocation against _gp_disp, which is handled specially
16616 by the linker. The result is:
16617 lui $gp,%hi(_gp_disp)
16618 addiu $gp,$gp,%lo(_gp_disp)
16619 addu $gp,$gp,.cpload argument
16620 The .cpload argument is normally $25 == $t9.
16621
16622 The -mno-shared option changes this to:
16623 lui $gp,%hi(__gnu_local_gp)
16624 addiu $gp,$gp,%lo(__gnu_local_gp)
16625 and the argument is ignored. This saves an instruction, but the
16626 resulting code is not position independent; it uses an absolute
16627 address for __gnu_local_gp. Thus code assembled with -mno-shared
16628 can go into an ordinary executable, but not into a shared library. */
16629
16630 static void
16631 s_cpload (int ignore ATTRIBUTE_UNUSED)
16632 {
16633 expressionS ex;
16634 int reg;
16635 int in_shared;
16636
16637 file_mips_check_options ();
16638
16639 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
16640 .cpload is ignored. */
16641 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
16642 {
16643 s_ignore (0);
16644 return;
16645 }
16646
16647 if (mips_opts.mips16)
16648 {
16649 as_bad (_("%s not supported in MIPS16 mode"), ".cpload");
16650 ignore_rest_of_line ();
16651 return;
16652 }
16653
16654 /* .cpload should be in a .set noreorder section. */
16655 if (mips_opts.noreorder == 0)
16656 as_warn (_(".cpload not in noreorder section"));
16657
16658 reg = tc_get_register (0);
16659
16660 /* If we need to produce a 64-bit address, we are better off using
16661 the default instruction sequence. */
16662 in_shared = mips_in_shared || HAVE_64BIT_SYMBOLS;
16663
16664 ex.X_op = O_symbol;
16665 ex.X_add_symbol = symbol_find_or_make (in_shared ? "_gp_disp" :
16666 "__gnu_local_gp");
16667 ex.X_op_symbol = NULL;
16668 ex.X_add_number = 0;
16669
16670 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
16671 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
16672
16673 mips_mark_labels ();
16674 mips_assembling_insn = TRUE;
16675
16676 macro_start ();
16677 macro_build_lui (&ex, mips_gp_register);
16678 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
16679 mips_gp_register, BFD_RELOC_LO16);
16680 if (in_shared)
16681 macro_build (NULL, "addu", "d,v,t", mips_gp_register,
16682 mips_gp_register, reg);
16683 macro_end ();
16684
16685 mips_assembling_insn = FALSE;
16686 demand_empty_rest_of_line ();
16687 }
16688
16689 /* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
16690 .cpsetup $reg1, offset|$reg2, label
16691
16692 If offset is given, this results in:
16693 sd $gp, offset($sp)
16694 lui $gp, %hi(%neg(%gp_rel(label)))
16695 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
16696 daddu $gp, $gp, $reg1
16697
16698 If $reg2 is given, this results in:
16699 or $reg2, $gp, $0
16700 lui $gp, %hi(%neg(%gp_rel(label)))
16701 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
16702 daddu $gp, $gp, $reg1
16703 $reg1 is normally $25 == $t9.
16704
16705 The -mno-shared option replaces the last three instructions with
16706 lui $gp,%hi(_gp)
16707 addiu $gp,$gp,%lo(_gp) */
16708
16709 static void
16710 s_cpsetup (int ignore ATTRIBUTE_UNUSED)
16711 {
16712 expressionS ex_off;
16713 expressionS ex_sym;
16714 int reg1;
16715
16716 file_mips_check_options ();
16717
16718 /* If we are not generating SVR4 PIC code, .cpsetup is ignored.
16719 We also need NewABI support. */
16720 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16721 {
16722 s_ignore (0);
16723 return;
16724 }
16725
16726 if (mips_opts.mips16)
16727 {
16728 as_bad (_("%s not supported in MIPS16 mode"), ".cpsetup");
16729 ignore_rest_of_line ();
16730 return;
16731 }
16732
16733 reg1 = tc_get_register (0);
16734 SKIP_WHITESPACE ();
16735 if (*input_line_pointer != ',')
16736 {
16737 as_bad (_("missing argument separator ',' for .cpsetup"));
16738 return;
16739 }
16740 else
16741 ++input_line_pointer;
16742 SKIP_WHITESPACE ();
16743 if (*input_line_pointer == '$')
16744 {
16745 mips_cpreturn_register = tc_get_register (0);
16746 mips_cpreturn_offset = -1;
16747 }
16748 else
16749 {
16750 mips_cpreturn_offset = get_absolute_expression ();
16751 mips_cpreturn_register = -1;
16752 }
16753 SKIP_WHITESPACE ();
16754 if (*input_line_pointer != ',')
16755 {
16756 as_bad (_("missing argument separator ',' for .cpsetup"));
16757 return;
16758 }
16759 else
16760 ++input_line_pointer;
16761 SKIP_WHITESPACE ();
16762 expression (&ex_sym);
16763
16764 mips_mark_labels ();
16765 mips_assembling_insn = TRUE;
16766
16767 macro_start ();
16768 if (mips_cpreturn_register == -1)
16769 {
16770 ex_off.X_op = O_constant;
16771 ex_off.X_add_symbol = NULL;
16772 ex_off.X_op_symbol = NULL;
16773 ex_off.X_add_number = mips_cpreturn_offset;
16774
16775 macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register,
16776 BFD_RELOC_LO16, SP);
16777 }
16778 else
16779 move_register (mips_cpreturn_register, mips_gp_register);
16780
16781 if (mips_in_shared || HAVE_64BIT_SYMBOLS)
16782 {
16783 macro_build (&ex_sym, "lui", LUI_FMT, mips_gp_register,
16784 -1, BFD_RELOC_GPREL16, BFD_RELOC_MIPS_SUB,
16785 BFD_RELOC_HI16_S);
16786
16787 macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register,
16788 mips_gp_register, -1, BFD_RELOC_GPREL16,
16789 BFD_RELOC_MIPS_SUB, BFD_RELOC_LO16);
16790
16791 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register,
16792 mips_gp_register, reg1);
16793 }
16794 else
16795 {
16796 expressionS ex;
16797
16798 ex.X_op = O_symbol;
16799 ex.X_add_symbol = symbol_find_or_make ("__gnu_local_gp");
16800 ex.X_op_symbol = NULL;
16801 ex.X_add_number = 0;
16802
16803 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
16804 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
16805
16806 macro_build_lui (&ex, mips_gp_register);
16807 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
16808 mips_gp_register, BFD_RELOC_LO16);
16809 }
16810
16811 macro_end ();
16812
16813 mips_assembling_insn = FALSE;
16814 demand_empty_rest_of_line ();
16815 }
16816
16817 static void
16818 s_cplocal (int ignore ATTRIBUTE_UNUSED)
16819 {
16820 file_mips_check_options ();
16821
16822 /* If we are not generating SVR4 PIC code, or if this is not NewABI code,
16823 .cplocal is ignored. */
16824 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16825 {
16826 s_ignore (0);
16827 return;
16828 }
16829
16830 if (mips_opts.mips16)
16831 {
16832 as_bad (_("%s not supported in MIPS16 mode"), ".cplocal");
16833 ignore_rest_of_line ();
16834 return;
16835 }
16836
16837 mips_gp_register = tc_get_register (0);
16838 demand_empty_rest_of_line ();
16839 }
16840
16841 /* Handle the .cprestore pseudo-op. This stores $gp into a given
16842 offset from $sp. The offset is remembered, and after making a PIC
16843 call $gp is restored from that location. */
16844
16845 static void
16846 s_cprestore (int ignore ATTRIBUTE_UNUSED)
16847 {
16848 expressionS ex;
16849
16850 file_mips_check_options ();
16851
16852 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
16853 .cprestore is ignored. */
16854 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
16855 {
16856 s_ignore (0);
16857 return;
16858 }
16859
16860 if (mips_opts.mips16)
16861 {
16862 as_bad (_("%s not supported in MIPS16 mode"), ".cprestore");
16863 ignore_rest_of_line ();
16864 return;
16865 }
16866
16867 mips_cprestore_offset = get_absolute_expression ();
16868 mips_cprestore_valid = 1;
16869
16870 ex.X_op = O_constant;
16871 ex.X_add_symbol = NULL;
16872 ex.X_op_symbol = NULL;
16873 ex.X_add_number = mips_cprestore_offset;
16874
16875 mips_mark_labels ();
16876 mips_assembling_insn = TRUE;
16877
16878 macro_start ();
16879 macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register,
16880 SP, HAVE_64BIT_ADDRESSES);
16881 macro_end ();
16882
16883 mips_assembling_insn = FALSE;
16884 demand_empty_rest_of_line ();
16885 }
16886
16887 /* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
16888 was given in the preceding .cpsetup, it results in:
16889 ld $gp, offset($sp)
16890
16891 If a register $reg2 was given there, it results in:
16892 or $gp, $reg2, $0 */
16893
16894 static void
16895 s_cpreturn (int ignore ATTRIBUTE_UNUSED)
16896 {
16897 expressionS ex;
16898
16899 file_mips_check_options ();
16900
16901 /* If we are not generating SVR4 PIC code, .cpreturn is ignored.
16902 We also need NewABI support. */
16903 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16904 {
16905 s_ignore (0);
16906 return;
16907 }
16908
16909 if (mips_opts.mips16)
16910 {
16911 as_bad (_("%s not supported in MIPS16 mode"), ".cpreturn");
16912 ignore_rest_of_line ();
16913 return;
16914 }
16915
16916 mips_mark_labels ();
16917 mips_assembling_insn = TRUE;
16918
16919 macro_start ();
16920 if (mips_cpreturn_register == -1)
16921 {
16922 ex.X_op = O_constant;
16923 ex.X_add_symbol = NULL;
16924 ex.X_op_symbol = NULL;
16925 ex.X_add_number = mips_cpreturn_offset;
16926
16927 macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP);
16928 }
16929 else
16930 move_register (mips_gp_register, mips_cpreturn_register);
16931
16932 macro_end ();
16933
16934 mips_assembling_insn = FALSE;
16935 demand_empty_rest_of_line ();
16936 }
16937
16938 /* Handle a .dtprelword, .dtpreldword, .tprelword, or .tpreldword
16939 pseudo-op; DIRSTR says which. The pseudo-op generates a BYTES-size
16940 DTP- or TP-relative relocation of type RTYPE, for use in either DWARF
16941 debug information or MIPS16 TLS. */
16942
16943 static void
16944 s_tls_rel_directive (const size_t bytes, const char *dirstr,
16945 bfd_reloc_code_real_type rtype)
16946 {
16947 expressionS ex;
16948 char *p;
16949
16950 expression (&ex);
16951
16952 if (ex.X_op != O_symbol)
16953 {
16954 as_bad (_("unsupported use of %s"), dirstr);
16955 ignore_rest_of_line ();
16956 }
16957
16958 p = frag_more (bytes);
16959 md_number_to_chars (p, 0, bytes);
16960 fix_new_exp (frag_now, p - frag_now->fr_literal, bytes, &ex, FALSE, rtype);
16961 demand_empty_rest_of_line ();
16962 mips_clear_insn_labels ();
16963 }
16964
16965 /* Handle .dtprelword. */
16966
16967 static void
16968 s_dtprelword (int ignore ATTRIBUTE_UNUSED)
16969 {
16970 s_tls_rel_directive (4, ".dtprelword", BFD_RELOC_MIPS_TLS_DTPREL32);
16971 }
16972
16973 /* Handle .dtpreldword. */
16974
16975 static void
16976 s_dtpreldword (int ignore ATTRIBUTE_UNUSED)
16977 {
16978 s_tls_rel_directive (8, ".dtpreldword", BFD_RELOC_MIPS_TLS_DTPREL64);
16979 }
16980
16981 /* Handle .tprelword. */
16982
16983 static void
16984 s_tprelword (int ignore ATTRIBUTE_UNUSED)
16985 {
16986 s_tls_rel_directive (4, ".tprelword", BFD_RELOC_MIPS_TLS_TPREL32);
16987 }
16988
16989 /* Handle .tpreldword. */
16990
16991 static void
16992 s_tpreldword (int ignore ATTRIBUTE_UNUSED)
16993 {
16994 s_tls_rel_directive (8, ".tpreldword", BFD_RELOC_MIPS_TLS_TPREL64);
16995 }
16996
16997 /* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
16998 code. It sets the offset to use in gp_rel relocations. */
16999
17000 static void
17001 s_gpvalue (int ignore ATTRIBUTE_UNUSED)
17002 {
17003 /* If we are not generating SVR4 PIC code, .gpvalue is ignored.
17004 We also need NewABI support. */
17005 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
17006 {
17007 s_ignore (0);
17008 return;
17009 }
17010
17011 mips_gprel_offset = get_absolute_expression ();
17012
17013 demand_empty_rest_of_line ();
17014 }
17015
17016 /* Handle the .gpword pseudo-op. This is used when generating PIC
17017 code. It generates a 32 bit GP relative reloc. */
17018
17019 static void
17020 s_gpword (int ignore ATTRIBUTE_UNUSED)
17021 {
17022 segment_info_type *si;
17023 struct insn_label_list *l;
17024 expressionS ex;
17025 char *p;
17026
17027 /* When not generating PIC code, this is treated as .word. */
17028 if (mips_pic != SVR4_PIC)
17029 {
17030 s_cons (2);
17031 return;
17032 }
17033
17034 si = seg_info (now_seg);
17035 l = si->label_list;
17036 mips_emit_delays ();
17037 if (auto_align)
17038 mips_align (2, 0, l);
17039
17040 expression (&ex);
17041 mips_clear_insn_labels ();
17042
17043 if (ex.X_op != O_symbol || ex.X_add_number != 0)
17044 {
17045 as_bad (_("unsupported use of .gpword"));
17046 ignore_rest_of_line ();
17047 }
17048
17049 p = frag_more (4);
17050 md_number_to_chars (p, 0, 4);
17051 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
17052 BFD_RELOC_GPREL32);
17053
17054 demand_empty_rest_of_line ();
17055 }
17056
17057 static void
17058 s_gpdword (int ignore ATTRIBUTE_UNUSED)
17059 {
17060 segment_info_type *si;
17061 struct insn_label_list *l;
17062 expressionS ex;
17063 char *p;
17064
17065 /* When not generating PIC code, this is treated as .dword. */
17066 if (mips_pic != SVR4_PIC)
17067 {
17068 s_cons (3);
17069 return;
17070 }
17071
17072 si = seg_info (now_seg);
17073 l = si->label_list;
17074 mips_emit_delays ();
17075 if (auto_align)
17076 mips_align (3, 0, l);
17077
17078 expression (&ex);
17079 mips_clear_insn_labels ();
17080
17081 if (ex.X_op != O_symbol || ex.X_add_number != 0)
17082 {
17083 as_bad (_("unsupported use of .gpdword"));
17084 ignore_rest_of_line ();
17085 }
17086
17087 p = frag_more (8);
17088 md_number_to_chars (p, 0, 8);
17089 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
17090 BFD_RELOC_GPREL32)->fx_tcbit = 1;
17091
17092 /* GPREL32 composed with 64 gives a 64-bit GP offset. */
17093 fix_new (frag_now, p - frag_now->fr_literal, 8, NULL, 0,
17094 FALSE, BFD_RELOC_64)->fx_tcbit = 1;
17095
17096 demand_empty_rest_of_line ();
17097 }
17098
17099 /* Handle the .ehword pseudo-op. This is used when generating unwinding
17100 tables. It generates a R_MIPS_EH reloc. */
17101
17102 static void
17103 s_ehword (int ignore ATTRIBUTE_UNUSED)
17104 {
17105 expressionS ex;
17106 char *p;
17107
17108 mips_emit_delays ();
17109
17110 expression (&ex);
17111 mips_clear_insn_labels ();
17112
17113 if (ex.X_op != O_symbol || ex.X_add_number != 0)
17114 {
17115 as_bad (_("unsupported use of .ehword"));
17116 ignore_rest_of_line ();
17117 }
17118
17119 p = frag_more (4);
17120 md_number_to_chars (p, 0, 4);
17121 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
17122 BFD_RELOC_32_PCREL);
17123
17124 demand_empty_rest_of_line ();
17125 }
17126
17127 /* Handle the .cpadd pseudo-op. This is used when dealing with switch
17128 tables in SVR4 PIC code. */
17129
17130 static void
17131 s_cpadd (int ignore ATTRIBUTE_UNUSED)
17132 {
17133 int reg;
17134
17135 file_mips_check_options ();
17136
17137 /* This is ignored when not generating SVR4 PIC code. */
17138 if (mips_pic != SVR4_PIC)
17139 {
17140 s_ignore (0);
17141 return;
17142 }
17143
17144 mips_mark_labels ();
17145 mips_assembling_insn = TRUE;
17146
17147 /* Add $gp to the register named as an argument. */
17148 macro_start ();
17149 reg = tc_get_register (0);
17150 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register);
17151 macro_end ();
17152
17153 mips_assembling_insn = FALSE;
17154 demand_empty_rest_of_line ();
17155 }
17156
17157 /* Handle the .insn pseudo-op. This marks instruction labels in
17158 mips16/micromips mode. This permits the linker to handle them specially,
17159 such as generating jalx instructions when needed. We also make
17160 them odd for the duration of the assembly, in order to generate the
17161 right sort of code. We will make them even in the adjust_symtab
17162 routine, while leaving them marked. This is convenient for the
17163 debugger and the disassembler. The linker knows to make them odd
17164 again. */
17165
17166 static void
17167 s_insn (int ignore ATTRIBUTE_UNUSED)
17168 {
17169 file_mips_check_options ();
17170 file_ase_mips16 |= mips_opts.mips16;
17171 file_ase_micromips |= mips_opts.micromips;
17172
17173 mips_mark_labels ();
17174
17175 demand_empty_rest_of_line ();
17176 }
17177
17178 /* Handle the .nan pseudo-op. */
17179
17180 static void
17181 s_nan (int ignore ATTRIBUTE_UNUSED)
17182 {
17183 static const char str_legacy[] = "legacy";
17184 static const char str_2008[] = "2008";
17185 size_t i;
17186
17187 for (i = 0; !is_end_of_line[(unsigned char) input_line_pointer[i]]; i++);
17188
17189 if (i == sizeof (str_2008) - 1
17190 && memcmp (input_line_pointer, str_2008, i) == 0)
17191 mips_nan2008 = 1;
17192 else if (i == sizeof (str_legacy) - 1
17193 && memcmp (input_line_pointer, str_legacy, i) == 0)
17194 {
17195 if (ISA_HAS_LEGACY_NAN (file_mips_opts.isa))
17196 mips_nan2008 = 0;
17197 else
17198 as_bad (_("`%s' does not support legacy NaN"),
17199 mips_cpu_info_from_isa (file_mips_opts.isa)->name);
17200 }
17201 else
17202 as_bad (_("bad .nan directive"));
17203
17204 input_line_pointer += i;
17205 demand_empty_rest_of_line ();
17206 }
17207
17208 /* Handle a .stab[snd] directive. Ideally these directives would be
17209 implemented in a transparent way, so that removing them would not
17210 have any effect on the generated instructions. However, s_stab
17211 internally changes the section, so in practice we need to decide
17212 now whether the preceding label marks compressed code. We do not
17213 support changing the compression mode of a label after a .stab*
17214 directive, such as in:
17215
17216 foo:
17217 .stabs ...
17218 .set mips16
17219
17220 so the current mode wins. */
17221
17222 static void
17223 s_mips_stab (int type)
17224 {
17225 file_mips_check_options ();
17226 mips_mark_labels ();
17227 s_stab (type);
17228 }
17229
17230 /* Handle the .weakext pseudo-op as defined in Kane and Heinrich. */
17231
17232 static void
17233 s_mips_weakext (int ignore ATTRIBUTE_UNUSED)
17234 {
17235 char *name;
17236 int c;
17237 symbolS *symbolP;
17238 expressionS exp;
17239
17240 c = get_symbol_name (&name);
17241 symbolP = symbol_find_or_make (name);
17242 S_SET_WEAK (symbolP);
17243 *input_line_pointer = c;
17244
17245 SKIP_WHITESPACE_AFTER_NAME ();
17246
17247 if (! is_end_of_line[(unsigned char) *input_line_pointer])
17248 {
17249 if (S_IS_DEFINED (symbolP))
17250 {
17251 as_bad (_("ignoring attempt to redefine symbol %s"),
17252 S_GET_NAME (symbolP));
17253 ignore_rest_of_line ();
17254 return;
17255 }
17256
17257 if (*input_line_pointer == ',')
17258 {
17259 ++input_line_pointer;
17260 SKIP_WHITESPACE ();
17261 }
17262
17263 expression (&exp);
17264 if (exp.X_op != O_symbol)
17265 {
17266 as_bad (_("bad .weakext directive"));
17267 ignore_rest_of_line ();
17268 return;
17269 }
17270 symbol_set_value_expression (symbolP, &exp);
17271 }
17272
17273 demand_empty_rest_of_line ();
17274 }
17275
17276 /* Parse a register string into a number. Called from the ECOFF code
17277 to parse .frame. The argument is non-zero if this is the frame
17278 register, so that we can record it in mips_frame_reg. */
17279
17280 int
17281 tc_get_register (int frame)
17282 {
17283 unsigned int reg;
17284
17285 SKIP_WHITESPACE ();
17286 if (! reg_lookup (&input_line_pointer, RWARN | RTYPE_NUM | RTYPE_GP, &reg))
17287 reg = 0;
17288 if (frame)
17289 {
17290 mips_frame_reg = reg != 0 ? reg : SP;
17291 mips_frame_reg_valid = 1;
17292 mips_cprestore_valid = 0;
17293 }
17294 return reg;
17295 }
17296
17297 valueT
17298 md_section_align (asection *seg, valueT addr)
17299 {
17300 int align = bfd_get_section_alignment (stdoutput, seg);
17301
17302 /* We don't need to align ELF sections to the full alignment.
17303 However, Irix 5 may prefer that we align them at least to a 16
17304 byte boundary. We don't bother to align the sections if we
17305 are targeted for an embedded system. */
17306 if (strncmp (TARGET_OS, "elf", 3) == 0)
17307 return addr;
17308 if (align > 4)
17309 align = 4;
17310
17311 return ((addr + (1 << align) - 1) & -(1 << align));
17312 }
17313
17314 /* Utility routine, called from above as well. If called while the
17315 input file is still being read, it's only an approximation. (For
17316 example, a symbol may later become defined which appeared to be
17317 undefined earlier.) */
17318
17319 static int
17320 nopic_need_relax (symbolS *sym, int before_relaxing)
17321 {
17322 if (sym == 0)
17323 return 0;
17324
17325 if (g_switch_value > 0)
17326 {
17327 const char *symname;
17328 int change;
17329
17330 /* Find out whether this symbol can be referenced off the $gp
17331 register. It can be if it is smaller than the -G size or if
17332 it is in the .sdata or .sbss section. Certain symbols can
17333 not be referenced off the $gp, although it appears as though
17334 they can. */
17335 symname = S_GET_NAME (sym);
17336 if (symname != (const char *) NULL
17337 && (strcmp (symname, "eprol") == 0
17338 || strcmp (symname, "etext") == 0
17339 || strcmp (symname, "_gp") == 0
17340 || strcmp (symname, "edata") == 0
17341 || strcmp (symname, "_fbss") == 0
17342 || strcmp (symname, "_fdata") == 0
17343 || strcmp (symname, "_ftext") == 0
17344 || strcmp (symname, "end") == 0
17345 || strcmp (symname, "_gp_disp") == 0))
17346 change = 1;
17347 else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym))
17348 && (0
17349 #ifndef NO_ECOFF_DEBUGGING
17350 || (symbol_get_obj (sym)->ecoff_extern_size != 0
17351 && (symbol_get_obj (sym)->ecoff_extern_size
17352 <= g_switch_value))
17353 #endif
17354 /* We must defer this decision until after the whole
17355 file has been read, since there might be a .extern
17356 after the first use of this symbol. */
17357 || (before_relaxing
17358 #ifndef NO_ECOFF_DEBUGGING
17359 && symbol_get_obj (sym)->ecoff_extern_size == 0
17360 #endif
17361 && S_GET_VALUE (sym) == 0)
17362 || (S_GET_VALUE (sym) != 0
17363 && S_GET_VALUE (sym) <= g_switch_value)))
17364 change = 0;
17365 else
17366 {
17367 const char *segname;
17368
17369 segname = segment_name (S_GET_SEGMENT (sym));
17370 gas_assert (strcmp (segname, ".lit8") != 0
17371 && strcmp (segname, ".lit4") != 0);
17372 change = (strcmp (segname, ".sdata") != 0
17373 && strcmp (segname, ".sbss") != 0
17374 && strncmp (segname, ".sdata.", 7) != 0
17375 && strncmp (segname, ".sbss.", 6) != 0
17376 && strncmp (segname, ".gnu.linkonce.sb.", 17) != 0
17377 && strncmp (segname, ".gnu.linkonce.s.", 16) != 0);
17378 }
17379 return change;
17380 }
17381 else
17382 /* We are not optimizing for the $gp register. */
17383 return 1;
17384 }
17385
17386
17387 /* Return true if the given symbol should be considered local for SVR4 PIC. */
17388
17389 static bfd_boolean
17390 pic_need_relax (symbolS *sym)
17391 {
17392 asection *symsec;
17393
17394 /* Handle the case of a symbol equated to another symbol. */
17395 while (symbol_equated_reloc_p (sym))
17396 {
17397 symbolS *n;
17398
17399 /* It's possible to get a loop here in a badly written program. */
17400 n = symbol_get_value_expression (sym)->X_add_symbol;
17401 if (n == sym)
17402 break;
17403 sym = n;
17404 }
17405
17406 if (symbol_section_p (sym))
17407 return TRUE;
17408
17409 symsec = S_GET_SEGMENT (sym);
17410
17411 /* This must duplicate the test in adjust_reloc_syms. */
17412 return (!bfd_is_und_section (symsec)
17413 && !bfd_is_abs_section (symsec)
17414 && !bfd_is_com_section (symsec)
17415 /* A global or weak symbol is treated as external. */
17416 && (!S_IS_WEAK (sym) && !S_IS_EXTERNAL (sym)));
17417 }
17418 \f
17419 /* Given a MIPS16 variant frag FRAGP and PC-relative operand PCREL_OP
17420 convert a section-relative value VAL to the equivalent PC-relative
17421 value. */
17422
17423 static offsetT
17424 mips16_pcrel_val (fragS *fragp, const struct mips_pcrel_operand *pcrel_op,
17425 offsetT val, long stretch)
17426 {
17427 fragS *sym_frag;
17428 addressT addr;
17429
17430 gas_assert (pcrel_op->root.root.type == OP_PCREL);
17431
17432 sym_frag = symbol_get_frag (fragp->fr_symbol);
17433
17434 /* If the relax_marker of the symbol fragment differs from the
17435 relax_marker of this fragment, we have not yet adjusted the
17436 symbol fragment fr_address. We want to add in STRETCH in
17437 order to get a better estimate of the address. This
17438 particularly matters because of the shift bits. */
17439 if (stretch != 0 && sym_frag->relax_marker != fragp->relax_marker)
17440 {
17441 fragS *f;
17442
17443 /* Adjust stretch for any alignment frag. Note that if have
17444 been expanding the earlier code, the symbol may be
17445 defined in what appears to be an earlier frag. FIXME:
17446 This doesn't handle the fr_subtype field, which specifies
17447 a maximum number of bytes to skip when doing an
17448 alignment. */
17449 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
17450 {
17451 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
17452 {
17453 if (stretch < 0)
17454 stretch = -(-stretch & ~((1 << (int) f->fr_offset) - 1));
17455 else
17456 stretch &= ~((1 << (int) f->fr_offset) - 1);
17457 if (stretch == 0)
17458 break;
17459 }
17460 }
17461 if (f != NULL)
17462 val += stretch;
17463 }
17464
17465 addr = fragp->fr_address + fragp->fr_fix;
17466
17467 /* The base address rules are complicated. The base address of
17468 a branch is the following instruction. The base address of a
17469 PC relative load or add is the instruction itself, but if it
17470 is in a delay slot (in which case it can not be extended) use
17471 the address of the instruction whose delay slot it is in. */
17472 if (pcrel_op->include_isa_bit)
17473 {
17474 addr += 2;
17475
17476 /* If we are currently assuming that this frag should be
17477 extended, then the current address is two bytes higher. */
17478 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17479 addr += 2;
17480
17481 /* Ignore the low bit in the target, since it will be set
17482 for a text label. */
17483 val &= -2;
17484 }
17485 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
17486 addr -= 4;
17487 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
17488 addr -= 2;
17489
17490 val -= addr & -(1 << pcrel_op->align_log2);
17491
17492 return val;
17493 }
17494
17495 /* Given a mips16 variant frag FRAGP, return non-zero if it needs an
17496 extended opcode. SEC is the section the frag is in. */
17497
17498 static int
17499 mips16_extended_frag (fragS *fragp, asection *sec, long stretch)
17500 {
17501 const struct mips_int_operand *operand;
17502 offsetT val;
17503 segT symsec;
17504 int type;
17505
17506 if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
17507 return 0;
17508 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
17509 return 1;
17510
17511 symsec = S_GET_SEGMENT (fragp->fr_symbol);
17512 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
17513 operand = mips16_immed_operand (type, FALSE);
17514 if (S_FORCE_RELOC (fragp->fr_symbol, TRUE)
17515 || (operand->root.type == OP_PCREL
17516 ? sec != symsec
17517 : !bfd_is_abs_section (symsec)))
17518 return 1;
17519
17520 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17521
17522 if (operand->root.type == OP_PCREL)
17523 {
17524 const struct mips_pcrel_operand *pcrel_op;
17525 offsetT maxtiny;
17526
17527 if (RELAX_MIPS16_ALWAYS_EXTENDED (fragp->fr_subtype))
17528 return 1;
17529
17530 pcrel_op = (const struct mips_pcrel_operand *) operand;
17531 val = mips16_pcrel_val (fragp, pcrel_op, val, stretch);
17532
17533 /* If any of the shifted bits are set, we must use an extended
17534 opcode. If the address depends on the size of this
17535 instruction, this can lead to a loop, so we arrange to always
17536 use an extended opcode. */
17537 if ((val & ((1 << operand->shift) - 1)) != 0)
17538 {
17539 fragp->fr_subtype =
17540 RELAX_MIPS16_MARK_ALWAYS_EXTENDED (fragp->fr_subtype);
17541 return 1;
17542 }
17543
17544 /* If we are about to mark a frag as extended because the value
17545 is precisely the next value above maxtiny, then there is a
17546 chance of an infinite loop as in the following code:
17547 la $4,foo
17548 .skip 1020
17549 .align 2
17550 foo:
17551 In this case when the la is extended, foo is 0x3fc bytes
17552 away, so the la can be shrunk, but then foo is 0x400 away, so
17553 the la must be extended. To avoid this loop, we mark the
17554 frag as extended if it was small, and is about to become
17555 extended with the next value above maxtiny. */
17556 maxtiny = mips_int_operand_max (operand);
17557 if (val == maxtiny + (1 << operand->shift)
17558 && ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17559 {
17560 fragp->fr_subtype =
17561 RELAX_MIPS16_MARK_ALWAYS_EXTENDED (fragp->fr_subtype);
17562 return 1;
17563 }
17564 }
17565
17566 return !mips16_immed_in_range_p (operand, BFD_RELOC_UNUSED, val);
17567 }
17568
17569 /* Given a MIPS16 variant frag FRAGP, return non-zero if it needs
17570 macro expansion. SEC is the section the frag is in. We only
17571 support PC-relative instructions (LA, DLA, LW, LD) here, in
17572 non-PIC code using 32-bit addressing. */
17573
17574 static int
17575 mips16_macro_frag (fragS *fragp, asection *sec, long stretch)
17576 {
17577 const struct mips_pcrel_operand *pcrel_op;
17578 const struct mips_int_operand *operand;
17579 offsetT val;
17580 segT symsec;
17581 int type;
17582
17583 gas_assert (!RELAX_MIPS16_USER_SMALL (fragp->fr_subtype));
17584
17585 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
17586 return 0;
17587 if (!RELAX_MIPS16_SYM32 (fragp->fr_subtype))
17588 return 0;
17589
17590 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
17591 switch (type)
17592 {
17593 case 'A':
17594 case 'B':
17595 case 'E':
17596 symsec = S_GET_SEGMENT (fragp->fr_symbol);
17597 if (bfd_is_abs_section (symsec))
17598 return 1;
17599 if (RELAX_MIPS16_PIC (fragp->fr_subtype))
17600 return 0;
17601 if (S_FORCE_RELOC (fragp->fr_symbol, TRUE) || sec != symsec)
17602 return 1;
17603
17604 operand = mips16_immed_operand (type, TRUE);
17605 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17606 pcrel_op = (const struct mips_pcrel_operand *) operand;
17607 val = mips16_pcrel_val (fragp, pcrel_op, val, stretch);
17608
17609 return !mips16_immed_in_range_p (operand, BFD_RELOC_UNUSED, val);
17610
17611 default:
17612 return 0;
17613 }
17614 }
17615
17616 /* Compute the length of a branch sequence, and adjust the
17617 RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
17618 worst-case length is computed, with UPDATE being used to indicate
17619 whether an unconditional (-1), branch-likely (+1) or regular (0)
17620 branch is to be computed. */
17621 static int
17622 relaxed_branch_length (fragS *fragp, asection *sec, int update)
17623 {
17624 bfd_boolean toofar;
17625 int length;
17626
17627 if (fragp
17628 && S_IS_DEFINED (fragp->fr_symbol)
17629 && !S_IS_WEAK (fragp->fr_symbol)
17630 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17631 {
17632 addressT addr;
17633 offsetT val;
17634
17635 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17636
17637 addr = fragp->fr_address + fragp->fr_fix + 4;
17638
17639 val -= addr;
17640
17641 toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2);
17642 }
17643 else
17644 /* If the symbol is not defined or it's in a different segment,
17645 we emit the long sequence. */
17646 toofar = TRUE;
17647
17648 if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
17649 fragp->fr_subtype
17650 = RELAX_BRANCH_ENCODE (RELAX_BRANCH_AT (fragp->fr_subtype),
17651 RELAX_BRANCH_PIC (fragp->fr_subtype),
17652 RELAX_BRANCH_UNCOND (fragp->fr_subtype),
17653 RELAX_BRANCH_LIKELY (fragp->fr_subtype),
17654 RELAX_BRANCH_LINK (fragp->fr_subtype),
17655 toofar);
17656
17657 length = 4;
17658 if (toofar)
17659 {
17660 if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0))
17661 length += 8;
17662
17663 if (!fragp || RELAX_BRANCH_PIC (fragp->fr_subtype))
17664 {
17665 /* Additional space for PIC loading of target address. */
17666 length += 8;
17667 if (mips_opts.isa == ISA_MIPS1)
17668 /* Additional space for $at-stabilizing nop. */
17669 length += 4;
17670 }
17671
17672 /* If branch is conditional. */
17673 if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0))
17674 length += 8;
17675 }
17676
17677 return length;
17678 }
17679
17680 /* Get a FRAG's branch instruction delay slot size, either from the
17681 short-delay-slot bit of a branch-and-link instruction if AL is TRUE,
17682 or SHORT_INSN_SIZE otherwise. */
17683
17684 static int
17685 frag_branch_delay_slot_size (fragS *fragp, bfd_boolean al, int short_insn_size)
17686 {
17687 char *buf = fragp->fr_literal + fragp->fr_fix;
17688
17689 if (al)
17690 return (read_compressed_insn (buf, 4) & 0x02000000) ? 2 : 4;
17691 else
17692 return short_insn_size;
17693 }
17694
17695 /* Compute the length of a branch sequence, and adjust the
17696 RELAX_MICROMIPS_TOOFAR32 bit accordingly. If FRAGP is NULL, the
17697 worst-case length is computed, with UPDATE being used to indicate
17698 whether an unconditional (-1), or regular (0) branch is to be
17699 computed. */
17700
17701 static int
17702 relaxed_micromips_32bit_branch_length (fragS *fragp, asection *sec, int update)
17703 {
17704 bfd_boolean insn32 = TRUE;
17705 bfd_boolean nods = TRUE;
17706 bfd_boolean pic = TRUE;
17707 bfd_boolean al = TRUE;
17708 int short_insn_size;
17709 bfd_boolean toofar;
17710 int length;
17711
17712 if (fragp)
17713 {
17714 insn32 = RELAX_MICROMIPS_INSN32 (fragp->fr_subtype);
17715 nods = RELAX_MICROMIPS_NODS (fragp->fr_subtype);
17716 pic = RELAX_MICROMIPS_PIC (fragp->fr_subtype);
17717 al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
17718 }
17719 short_insn_size = insn32 ? 4 : 2;
17720
17721 if (fragp
17722 && S_IS_DEFINED (fragp->fr_symbol)
17723 && !S_IS_WEAK (fragp->fr_symbol)
17724 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17725 {
17726 addressT addr;
17727 offsetT val;
17728
17729 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17730 /* Ignore the low bit in the target, since it will be set
17731 for a text label. */
17732 if ((val & 1) != 0)
17733 --val;
17734
17735 addr = fragp->fr_address + fragp->fr_fix + 4;
17736
17737 val -= addr;
17738
17739 toofar = val < - (0x8000 << 1) || val >= (0x8000 << 1);
17740 }
17741 else
17742 /* If the symbol is not defined or it's in a different segment,
17743 we emit the long sequence. */
17744 toofar = TRUE;
17745
17746 if (fragp && update
17747 && toofar != RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
17748 fragp->fr_subtype = (toofar
17749 ? RELAX_MICROMIPS_MARK_TOOFAR32 (fragp->fr_subtype)
17750 : RELAX_MICROMIPS_CLEAR_TOOFAR32 (fragp->fr_subtype));
17751
17752 length = 4;
17753 if (toofar)
17754 {
17755 bfd_boolean compact_known = fragp != NULL;
17756 bfd_boolean compact = FALSE;
17757 bfd_boolean uncond;
17758
17759 if (fragp)
17760 {
17761 compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
17762 uncond = RELAX_MICROMIPS_UNCOND (fragp->fr_subtype);
17763 }
17764 else
17765 uncond = update < 0;
17766
17767 /* If label is out of range, we turn branch <br>:
17768
17769 <br> label # 4 bytes
17770 0:
17771
17772 into:
17773
17774 j label # 4 bytes
17775 nop # 2/4 bytes if
17776 # compact && (!PIC || insn32)
17777 0:
17778 */
17779 if ((!pic || insn32) && (!compact_known || compact))
17780 length += short_insn_size;
17781
17782 /* If assembling PIC code, we further turn:
17783
17784 j label # 4 bytes
17785
17786 into:
17787
17788 lw/ld at, %got(label)(gp) # 4 bytes
17789 d/addiu at, %lo(label) # 4 bytes
17790 jr/c at # 2/4 bytes
17791 */
17792 if (pic)
17793 length += 4 + short_insn_size;
17794
17795 /* Add an extra nop if the jump has no compact form and we need
17796 to fill the delay slot. */
17797 if ((!pic || al) && nods)
17798 length += (fragp
17799 ? frag_branch_delay_slot_size (fragp, al, short_insn_size)
17800 : short_insn_size);
17801
17802 /* If branch <br> is conditional, we prepend negated branch <brneg>:
17803
17804 <brneg> 0f # 4 bytes
17805 nop # 2/4 bytes if !compact
17806 */
17807 if (!uncond)
17808 length += (compact_known && compact) ? 4 : 4 + short_insn_size;
17809 }
17810 else if (nods)
17811 {
17812 /* Add an extra nop to fill the delay slot. */
17813 gas_assert (fragp);
17814 length += frag_branch_delay_slot_size (fragp, al, short_insn_size);
17815 }
17816
17817 return length;
17818 }
17819
17820 /* Compute the length of a branch, and adjust the RELAX_MICROMIPS_TOOFAR16
17821 bit accordingly. */
17822
17823 static int
17824 relaxed_micromips_16bit_branch_length (fragS *fragp, asection *sec, int update)
17825 {
17826 bfd_boolean toofar;
17827
17828 if (fragp
17829 && S_IS_DEFINED (fragp->fr_symbol)
17830 && !S_IS_WEAK (fragp->fr_symbol)
17831 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17832 {
17833 addressT addr;
17834 offsetT val;
17835 int type;
17836
17837 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17838 /* Ignore the low bit in the target, since it will be set
17839 for a text label. */
17840 if ((val & 1) != 0)
17841 --val;
17842
17843 /* Assume this is a 2-byte branch. */
17844 addr = fragp->fr_address + fragp->fr_fix + 2;
17845
17846 /* We try to avoid the infinite loop by not adding 2 more bytes for
17847 long branches. */
17848
17849 val -= addr;
17850
17851 type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
17852 if (type == 'D')
17853 toofar = val < - (0x200 << 1) || val >= (0x200 << 1);
17854 else if (type == 'E')
17855 toofar = val < - (0x40 << 1) || val >= (0x40 << 1);
17856 else
17857 abort ();
17858 }
17859 else
17860 /* If the symbol is not defined or it's in a different segment,
17861 we emit a normal 32-bit branch. */
17862 toofar = TRUE;
17863
17864 if (fragp && update
17865 && toofar != RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
17866 fragp->fr_subtype
17867 = toofar ? RELAX_MICROMIPS_MARK_TOOFAR16 (fragp->fr_subtype)
17868 : RELAX_MICROMIPS_CLEAR_TOOFAR16 (fragp->fr_subtype);
17869
17870 if (toofar)
17871 return 4;
17872
17873 return 2;
17874 }
17875
17876 /* Estimate the size of a frag before relaxing. Unless this is the
17877 mips16, we are not really relaxing here, and the final size is
17878 encoded in the subtype information. For the mips16, we have to
17879 decide whether we are using an extended opcode or not. */
17880
17881 int
17882 md_estimate_size_before_relax (fragS *fragp, asection *segtype)
17883 {
17884 int change;
17885
17886 if (RELAX_BRANCH_P (fragp->fr_subtype))
17887 {
17888
17889 fragp->fr_var = relaxed_branch_length (fragp, segtype, FALSE);
17890
17891 return fragp->fr_var;
17892 }
17893
17894 if (RELAX_MIPS16_P (fragp->fr_subtype))
17895 {
17896 /* We don't want to modify the EXTENDED bit here; it might get us
17897 into infinite loops. We change it only in mips_relax_frag(). */
17898 if (RELAX_MIPS16_MACRO (fragp->fr_subtype))
17899 return RELAX_MIPS16_E2 (fragp->fr_subtype) ? 8 : 12;
17900 else
17901 return RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2;
17902 }
17903
17904 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17905 {
17906 int length = 4;
17907
17908 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17909 length = relaxed_micromips_16bit_branch_length (fragp, segtype, FALSE);
17910 if (length == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17911 length = relaxed_micromips_32bit_branch_length (fragp, segtype, FALSE);
17912 fragp->fr_var = length;
17913
17914 return length;
17915 }
17916
17917 if (mips_pic == VXWORKS_PIC)
17918 /* For vxworks, GOT16 relocations never have a corresponding LO16. */
17919 change = 0;
17920 else if (RELAX_PIC (fragp->fr_subtype))
17921 change = pic_need_relax (fragp->fr_symbol);
17922 else
17923 change = nopic_need_relax (fragp->fr_symbol, 0);
17924
17925 if (change)
17926 {
17927 fragp->fr_subtype |= RELAX_USE_SECOND;
17928 return -RELAX_FIRST (fragp->fr_subtype);
17929 }
17930 else
17931 return -RELAX_SECOND (fragp->fr_subtype);
17932 }
17933
17934 /* This is called to see whether a reloc against a defined symbol
17935 should be converted into a reloc against a section. */
17936
17937 int
17938 mips_fix_adjustable (fixS *fixp)
17939 {
17940 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
17941 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
17942 return 0;
17943
17944 if (fixp->fx_addsy == NULL)
17945 return 1;
17946
17947 /* Allow relocs used for EH tables. */
17948 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
17949 return 1;
17950
17951 /* If symbol SYM is in a mergeable section, relocations of the form
17952 SYM + 0 can usually be made section-relative. The mergeable data
17953 is then identified by the section offset rather than by the symbol.
17954
17955 However, if we're generating REL LO16 relocations, the offset is split
17956 between the LO16 and partnering high part relocation. The linker will
17957 need to recalculate the complete offset in order to correctly identify
17958 the merge data.
17959
17960 The linker has traditionally not looked for the partnering high part
17961 relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be
17962 placed anywhere. Rather than break backwards compatibility by changing
17963 this, it seems better not to force the issue, and instead keep the
17964 original symbol. This will work with either linker behavior. */
17965 if ((lo16_reloc_p (fixp->fx_r_type)
17966 || reloc_needs_lo_p (fixp->fx_r_type))
17967 && HAVE_IN_PLACE_ADDENDS
17968 && (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE) != 0)
17969 return 0;
17970
17971 /* There is no place to store an in-place offset for JALR relocations. */
17972 if (jalr_reloc_p (fixp->fx_r_type) && HAVE_IN_PLACE_ADDENDS)
17973 return 0;
17974
17975 /* Likewise an in-range offset of limited PC-relative relocations may
17976 overflow the in-place relocatable field if recalculated against the
17977 start address of the symbol's containing section.
17978
17979 Also, PC relative relocations for MIPS R6 need to be symbol rather than
17980 section relative to allow linker relaxations to be performed later on. */
17981 if (limited_pcrel_reloc_p (fixp->fx_r_type)
17982 && (HAVE_IN_PLACE_ADDENDS || ISA_IS_R6 (file_mips_opts.isa)))
17983 return 0;
17984
17985 /* R_MIPS16_26 relocations against non-MIPS16 functions might resolve
17986 to a floating-point stub. The same is true for non-R_MIPS16_26
17987 relocations against MIPS16 functions; in this case, the stub becomes
17988 the function's canonical address.
17989
17990 Floating-point stubs are stored in unique .mips16.call.* or
17991 .mips16.fn.* sections. If a stub T for function F is in section S,
17992 the first relocation in section S must be against F; this is how the
17993 linker determines the target function. All relocations that might
17994 resolve to T must also be against F. We therefore have the following
17995 restrictions, which are given in an intentionally-redundant way:
17996
17997 1. We cannot reduce R_MIPS16_26 relocations against non-MIPS16
17998 symbols.
17999
18000 2. We cannot reduce a stub's relocations against non-MIPS16 symbols
18001 if that stub might be used.
18002
18003 3. We cannot reduce non-R_MIPS16_26 relocations against MIPS16
18004 symbols.
18005
18006 4. We cannot reduce a stub's relocations against MIPS16 symbols if
18007 that stub might be used.
18008
18009 There is a further restriction:
18010
18011 5. We cannot reduce jump relocations (R_MIPS_26, R_MIPS16_26 or
18012 R_MICROMIPS_26_S1) or branch relocations (R_MIPS_PC26_S2,
18013 R_MIPS_PC21_S2, R_MIPS_PC16, R_MIPS16_PC16_S1,
18014 R_MICROMIPS_PC16_S1, R_MICROMIPS_PC10_S1 or R_MICROMIPS_PC7_S1)
18015 against MIPS16 or microMIPS symbols because we need to keep the
18016 MIPS16 or microMIPS symbol for the purpose of mode mismatch
18017 detection and JAL or BAL to JALX instruction conversion in the
18018 linker.
18019
18020 For simplicity, we deal with (3)-(4) by not reducing _any_ relocation
18021 against a MIPS16 symbol. We deal with (5) by additionally leaving
18022 alone any jump and branch relocations against a microMIPS symbol.
18023
18024 We deal with (1)-(2) by saying that, if there's a R_MIPS16_26
18025 relocation against some symbol R, no relocation against R may be
18026 reduced. (Note that this deals with (2) as well as (1) because
18027 relocations against global symbols will never be reduced on ELF
18028 targets.) This approach is a little simpler than trying to detect
18029 stub sections, and gives the "all or nothing" per-symbol consistency
18030 that we have for MIPS16 symbols. */
18031 if (fixp->fx_subsy == NULL
18032 && (ELF_ST_IS_MIPS16 (S_GET_OTHER (fixp->fx_addsy))
18033 || (ELF_ST_IS_MICROMIPS (S_GET_OTHER (fixp->fx_addsy))
18034 && (jmp_reloc_p (fixp->fx_r_type)
18035 || b_reloc_p (fixp->fx_r_type)))
18036 || *symbol_get_tc (fixp->fx_addsy)))
18037 return 0;
18038
18039 return 1;
18040 }
18041
18042 /* Translate internal representation of relocation info to BFD target
18043 format. */
18044
18045 arelent **
18046 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
18047 {
18048 static arelent *retval[4];
18049 arelent *reloc;
18050 bfd_reloc_code_real_type code;
18051
18052 memset (retval, 0, sizeof(retval));
18053 reloc = retval[0] = XCNEW (arelent);
18054 reloc->sym_ptr_ptr = XNEW (asymbol *);
18055 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
18056 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
18057
18058 if (fixp->fx_pcrel)
18059 {
18060 gas_assert (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
18061 || fixp->fx_r_type == BFD_RELOC_MIPS16_16_PCREL_S1
18062 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
18063 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
18064 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1
18065 || fixp->fx_r_type == BFD_RELOC_32_PCREL
18066 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
18067 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
18068 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
18069 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
18070 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
18071 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL);
18072
18073 /* At this point, fx_addnumber is "symbol offset - pcrel address".
18074 Relocations want only the symbol offset. */
18075 switch (fixp->fx_r_type)
18076 {
18077 case BFD_RELOC_MIPS_18_PCREL_S3:
18078 reloc->addend = fixp->fx_addnumber + (reloc->address & ~7);
18079 break;
18080 default:
18081 reloc->addend = fixp->fx_addnumber + reloc->address;
18082 break;
18083 }
18084 }
18085 else if (HAVE_IN_PLACE_ADDENDS
18086 && fixp->fx_r_type == BFD_RELOC_MICROMIPS_JMP
18087 && (read_compressed_insn (fixp->fx_frag->fr_literal
18088 + fixp->fx_where, 4) >> 26) == 0x3c)
18089 {
18090 /* Shift is 2, unusually, for microMIPS JALX. Adjust the in-place
18091 addend accordingly. */
18092 reloc->addend = fixp->fx_addnumber >> 1;
18093 }
18094 else
18095 reloc->addend = fixp->fx_addnumber;
18096
18097 /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
18098 entry to be used in the relocation's section offset. */
18099 if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
18100 {
18101 reloc->address = reloc->addend;
18102 reloc->addend = 0;
18103 }
18104
18105 code = fixp->fx_r_type;
18106
18107 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
18108 if (reloc->howto == NULL)
18109 {
18110 as_bad_where (fixp->fx_file, fixp->fx_line,
18111 _("cannot represent %s relocation in this object file"
18112 " format"),
18113 bfd_get_reloc_code_name (code));
18114 retval[0] = NULL;
18115 }
18116
18117 return retval;
18118 }
18119
18120 /* Relax a machine dependent frag. This returns the amount by which
18121 the current size of the frag should change. */
18122
18123 int
18124 mips_relax_frag (asection *sec, fragS *fragp, long stretch)
18125 {
18126 if (RELAX_BRANCH_P (fragp->fr_subtype))
18127 {
18128 offsetT old_var = fragp->fr_var;
18129
18130 fragp->fr_var = relaxed_branch_length (fragp, sec, TRUE);
18131
18132 return fragp->fr_var - old_var;
18133 }
18134
18135 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
18136 {
18137 offsetT old_var = fragp->fr_var;
18138 offsetT new_var = 4;
18139
18140 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
18141 new_var = relaxed_micromips_16bit_branch_length (fragp, sec, TRUE);
18142 if (new_var == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
18143 new_var = relaxed_micromips_32bit_branch_length (fragp, sec, TRUE);
18144 fragp->fr_var = new_var;
18145
18146 return new_var - old_var;
18147 }
18148
18149 if (! RELAX_MIPS16_P (fragp->fr_subtype))
18150 return 0;
18151
18152 if (!mips16_extended_frag (fragp, sec, stretch))
18153 {
18154 if (RELAX_MIPS16_MACRO (fragp->fr_subtype))
18155 {
18156 fragp->fr_subtype = RELAX_MIPS16_CLEAR_MACRO (fragp->fr_subtype);
18157 return RELAX_MIPS16_E2 (fragp->fr_subtype) ? -6 : -10;
18158 }
18159 else if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
18160 {
18161 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
18162 return -2;
18163 }
18164 else
18165 return 0;
18166 }
18167 else if (!mips16_macro_frag (fragp, sec, stretch))
18168 {
18169 if (RELAX_MIPS16_MACRO (fragp->fr_subtype))
18170 {
18171 fragp->fr_subtype = RELAX_MIPS16_CLEAR_MACRO (fragp->fr_subtype);
18172 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
18173 return RELAX_MIPS16_E2 (fragp->fr_subtype) ? -4 : -8;
18174 }
18175 else if (!RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
18176 {
18177 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
18178 return 2;
18179 }
18180 else
18181 return 0;
18182 }
18183 else
18184 {
18185 if (RELAX_MIPS16_MACRO (fragp->fr_subtype))
18186 return 0;
18187 else if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
18188 {
18189 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
18190 fragp->fr_subtype = RELAX_MIPS16_MARK_MACRO (fragp->fr_subtype);
18191 return RELAX_MIPS16_E2 (fragp->fr_subtype) ? 4 : 8;
18192 }
18193 else
18194 {
18195 fragp->fr_subtype = RELAX_MIPS16_MARK_MACRO (fragp->fr_subtype);
18196 return RELAX_MIPS16_E2 (fragp->fr_subtype) ? 6 : 10;
18197 }
18198 }
18199
18200 return 0;
18201 }
18202
18203 /* Convert a machine dependent frag. */
18204
18205 void
18206 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp)
18207 {
18208 if (RELAX_BRANCH_P (fragp->fr_subtype))
18209 {
18210 char *buf;
18211 unsigned long insn;
18212 fixS *fixp;
18213
18214 buf = fragp->fr_literal + fragp->fr_fix;
18215 insn = read_insn (buf);
18216
18217 if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
18218 {
18219 /* We generate a fixup instead of applying it right now
18220 because, if there are linker relaxations, we're going to
18221 need the relocations. */
18222 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18223 fragp->fr_symbol, fragp->fr_offset,
18224 TRUE, BFD_RELOC_16_PCREL_S2);
18225 fixp->fx_file = fragp->fr_file;
18226 fixp->fx_line = fragp->fr_line;
18227
18228 buf = write_insn (buf, insn);
18229 }
18230 else
18231 {
18232 int i;
18233
18234 as_warn_where (fragp->fr_file, fragp->fr_line,
18235 _("relaxed out-of-range branch into a jump"));
18236
18237 if (RELAX_BRANCH_UNCOND (fragp->fr_subtype))
18238 goto uncond;
18239
18240 if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype))
18241 {
18242 /* Reverse the branch. */
18243 switch ((insn >> 28) & 0xf)
18244 {
18245 case 4:
18246 if ((insn & 0xff000000) == 0x47000000
18247 || (insn & 0xff600000) == 0x45600000)
18248 {
18249 /* BZ.df/BNZ.df, BZ.V/BNZ.V can have the condition
18250 reversed by tweaking bit 23. */
18251 insn ^= 0x00800000;
18252 }
18253 else
18254 {
18255 /* bc[0-3][tf]l? instructions can have the condition
18256 reversed by tweaking a single TF bit, and their
18257 opcodes all have 0x4???????. */
18258 gas_assert ((insn & 0xf3e00000) == 0x41000000);
18259 insn ^= 0x00010000;
18260 }
18261 break;
18262
18263 case 0:
18264 /* bltz 0x04000000 bgez 0x04010000
18265 bltzal 0x04100000 bgezal 0x04110000 */
18266 gas_assert ((insn & 0xfc0e0000) == 0x04000000);
18267 insn ^= 0x00010000;
18268 break;
18269
18270 case 1:
18271 /* beq 0x10000000 bne 0x14000000
18272 blez 0x18000000 bgtz 0x1c000000 */
18273 insn ^= 0x04000000;
18274 break;
18275
18276 default:
18277 abort ();
18278 }
18279 }
18280
18281 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
18282 {
18283 /* Clear the and-link bit. */
18284 gas_assert ((insn & 0xfc1c0000) == 0x04100000);
18285
18286 /* bltzal 0x04100000 bgezal 0x04110000
18287 bltzall 0x04120000 bgezall 0x04130000 */
18288 insn &= ~0x00100000;
18289 }
18290
18291 /* Branch over the branch (if the branch was likely) or the
18292 full jump (not likely case). Compute the offset from the
18293 current instruction to branch to. */
18294 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
18295 i = 16;
18296 else
18297 {
18298 /* How many bytes in instructions we've already emitted? */
18299 i = buf - fragp->fr_literal - fragp->fr_fix;
18300 /* How many bytes in instructions from here to the end? */
18301 i = fragp->fr_var - i;
18302 }
18303 /* Convert to instruction count. */
18304 i >>= 2;
18305 /* Branch counts from the next instruction. */
18306 i--;
18307 insn |= i;
18308 /* Branch over the jump. */
18309 buf = write_insn (buf, insn);
18310
18311 /* nop */
18312 buf = write_insn (buf, 0);
18313
18314 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
18315 {
18316 /* beql $0, $0, 2f */
18317 insn = 0x50000000;
18318 /* Compute the PC offset from the current instruction to
18319 the end of the variable frag. */
18320 /* How many bytes in instructions we've already emitted? */
18321 i = buf - fragp->fr_literal - fragp->fr_fix;
18322 /* How many bytes in instructions from here to the end? */
18323 i = fragp->fr_var - i;
18324 /* Convert to instruction count. */
18325 i >>= 2;
18326 /* Don't decrement i, because we want to branch over the
18327 delay slot. */
18328 insn |= i;
18329
18330 buf = write_insn (buf, insn);
18331 buf = write_insn (buf, 0);
18332 }
18333
18334 uncond:
18335 if (!RELAX_BRANCH_PIC (fragp->fr_subtype))
18336 {
18337 /* j or jal. */
18338 insn = (RELAX_BRANCH_LINK (fragp->fr_subtype)
18339 ? 0x0c000000 : 0x08000000);
18340
18341 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18342 fragp->fr_symbol, fragp->fr_offset,
18343 FALSE, BFD_RELOC_MIPS_JMP);
18344 fixp->fx_file = fragp->fr_file;
18345 fixp->fx_line = fragp->fr_line;
18346
18347 buf = write_insn (buf, insn);
18348 }
18349 else
18350 {
18351 unsigned long at = RELAX_BRANCH_AT (fragp->fr_subtype);
18352
18353 /* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
18354 insn = HAVE_64BIT_ADDRESSES ? 0xdf800000 : 0x8f800000;
18355 insn |= at << OP_SH_RT;
18356
18357 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18358 fragp->fr_symbol, fragp->fr_offset,
18359 FALSE, BFD_RELOC_MIPS_GOT16);
18360 fixp->fx_file = fragp->fr_file;
18361 fixp->fx_line = fragp->fr_line;
18362
18363 buf = write_insn (buf, insn);
18364
18365 if (mips_opts.isa == ISA_MIPS1)
18366 /* nop */
18367 buf = write_insn (buf, 0);
18368
18369 /* d/addiu $at, $at, <sym> R_MIPS_LO16 */
18370 insn = HAVE_64BIT_ADDRESSES ? 0x64000000 : 0x24000000;
18371 insn |= at << OP_SH_RS | at << OP_SH_RT;
18372
18373 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18374 fragp->fr_symbol, fragp->fr_offset,
18375 FALSE, BFD_RELOC_LO16);
18376 fixp->fx_file = fragp->fr_file;
18377 fixp->fx_line = fragp->fr_line;
18378
18379 buf = write_insn (buf, insn);
18380
18381 /* j(al)r $at. */
18382 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
18383 insn = 0x0000f809;
18384 else
18385 insn = 0x00000008;
18386 insn |= at << OP_SH_RS;
18387
18388 buf = write_insn (buf, insn);
18389 }
18390 }
18391
18392 fragp->fr_fix += fragp->fr_var;
18393 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18394 return;
18395 }
18396
18397 /* Relax microMIPS branches. */
18398 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
18399 {
18400 char *buf = fragp->fr_literal + fragp->fr_fix;
18401 bfd_boolean compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
18402 bfd_boolean insn32 = RELAX_MICROMIPS_INSN32 (fragp->fr_subtype);
18403 bfd_boolean nods = RELAX_MICROMIPS_NODS (fragp->fr_subtype);
18404 bfd_boolean pic = RELAX_MICROMIPS_PIC (fragp->fr_subtype);
18405 bfd_boolean al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
18406 int type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
18407 bfd_boolean short_ds;
18408 unsigned long insn;
18409 fixS *fixp;
18410
18411 fragp->fr_fix += fragp->fr_var;
18412
18413 /* Handle 16-bit branches that fit or are forced to fit. */
18414 if (type != 0 && !RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
18415 {
18416 /* We generate a fixup instead of applying it right now,
18417 because if there is linker relaxation, we're going to
18418 need the relocations. */
18419 switch (type)
18420 {
18421 case 'D':
18422 fixp = fix_new (fragp, buf - fragp->fr_literal, 2,
18423 fragp->fr_symbol, fragp->fr_offset,
18424 TRUE, BFD_RELOC_MICROMIPS_10_PCREL_S1);
18425 break;
18426 case 'E':
18427 fixp = fix_new (fragp, buf - fragp->fr_literal, 2,
18428 fragp->fr_symbol, fragp->fr_offset,
18429 TRUE, BFD_RELOC_MICROMIPS_7_PCREL_S1);
18430 break;
18431 default:
18432 abort ();
18433 }
18434
18435 fixp->fx_file = fragp->fr_file;
18436 fixp->fx_line = fragp->fr_line;
18437
18438 /* These relocations can have an addend that won't fit in
18439 2 octets. */
18440 fixp->fx_no_overflow = 1;
18441
18442 return;
18443 }
18444
18445 /* Handle 32-bit branches that fit or are forced to fit. */
18446 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
18447 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
18448 {
18449 /* We generate a fixup instead of applying it right now,
18450 because if there is linker relaxation, we're going to
18451 need the relocations. */
18452 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18453 fragp->fr_symbol, fragp->fr_offset,
18454 TRUE, BFD_RELOC_MICROMIPS_16_PCREL_S1);
18455 fixp->fx_file = fragp->fr_file;
18456 fixp->fx_line = fragp->fr_line;
18457
18458 if (type == 0)
18459 {
18460 insn = read_compressed_insn (buf, 4);
18461 buf += 4;
18462
18463 if (nods)
18464 {
18465 /* Check the short-delay-slot bit. */
18466 if (!al || (insn & 0x02000000) != 0)
18467 buf = write_compressed_insn (buf, 0x0c00, 2);
18468 else
18469 buf = write_compressed_insn (buf, 0x00000000, 4);
18470 }
18471
18472 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18473 return;
18474 }
18475 }
18476
18477 /* Relax 16-bit branches to 32-bit branches. */
18478 if (type != 0)
18479 {
18480 insn = read_compressed_insn (buf, 2);
18481
18482 if ((insn & 0xfc00) == 0xcc00) /* b16 */
18483 insn = 0x94000000; /* beq */
18484 else if ((insn & 0xdc00) == 0x8c00) /* beqz16/bnez16 */
18485 {
18486 unsigned long regno;
18487
18488 regno = (insn >> MICROMIPSOP_SH_MD) & MICROMIPSOP_MASK_MD;
18489 regno = micromips_to_32_reg_d_map [regno];
18490 insn = ((insn & 0x2000) << 16) | 0x94000000; /* beq/bne */
18491 insn |= regno << MICROMIPSOP_SH_RS;
18492 }
18493 else
18494 abort ();
18495
18496 /* Nothing else to do, just write it out. */
18497 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
18498 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
18499 {
18500 buf = write_compressed_insn (buf, insn, 4);
18501 if (nods)
18502 buf = write_compressed_insn (buf, 0x0c00, 2);
18503 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18504 return;
18505 }
18506 }
18507 else
18508 insn = read_compressed_insn (buf, 4);
18509
18510 /* Relax 32-bit branches to a sequence of instructions. */
18511 as_warn_where (fragp->fr_file, fragp->fr_line,
18512 _("relaxed out-of-range branch into a jump"));
18513
18514 /* Set the short-delay-slot bit. */
18515 short_ds = !al || (insn & 0x02000000) != 0;
18516
18517 if (!RELAX_MICROMIPS_UNCOND (fragp->fr_subtype))
18518 {
18519 symbolS *l;
18520
18521 /* Reverse the branch. */
18522 if ((insn & 0xfc000000) == 0x94000000 /* beq */
18523 || (insn & 0xfc000000) == 0xb4000000) /* bne */
18524 insn ^= 0x20000000;
18525 else if ((insn & 0xffe00000) == 0x40000000 /* bltz */
18526 || (insn & 0xffe00000) == 0x40400000 /* bgez */
18527 || (insn & 0xffe00000) == 0x40800000 /* blez */
18528 || (insn & 0xffe00000) == 0x40c00000 /* bgtz */
18529 || (insn & 0xffe00000) == 0x40a00000 /* bnezc */
18530 || (insn & 0xffe00000) == 0x40e00000 /* beqzc */
18531 || (insn & 0xffe00000) == 0x40200000 /* bltzal */
18532 || (insn & 0xffe00000) == 0x40600000 /* bgezal */
18533 || (insn & 0xffe00000) == 0x42200000 /* bltzals */
18534 || (insn & 0xffe00000) == 0x42600000) /* bgezals */
18535 insn ^= 0x00400000;
18536 else if ((insn & 0xffe30000) == 0x43800000 /* bc1f */
18537 || (insn & 0xffe30000) == 0x43a00000 /* bc1t */
18538 || (insn & 0xffe30000) == 0x42800000 /* bc2f */
18539 || (insn & 0xffe30000) == 0x42a00000) /* bc2t */
18540 insn ^= 0x00200000;
18541 else if ((insn & 0xff000000) == 0x83000000 /* BZ.df
18542 BNZ.df */
18543 || (insn & 0xff600000) == 0x81600000) /* BZ.V
18544 BNZ.V */
18545 insn ^= 0x00800000;
18546 else
18547 abort ();
18548
18549 if (al)
18550 {
18551 /* Clear the and-link and short-delay-slot bits. */
18552 gas_assert ((insn & 0xfda00000) == 0x40200000);
18553
18554 /* bltzal 0x40200000 bgezal 0x40600000 */
18555 /* bltzals 0x42200000 bgezals 0x42600000 */
18556 insn &= ~0x02200000;
18557 }
18558
18559 /* Make a label at the end for use with the branch. */
18560 l = symbol_new (micromips_label_name (), asec, fragp->fr_fix, fragp);
18561 micromips_label_inc ();
18562 S_SET_OTHER (l, ELF_ST_SET_MICROMIPS (S_GET_OTHER (l)));
18563
18564 /* Refer to it. */
18565 fixp = fix_new (fragp, buf - fragp->fr_literal, 4, l, 0, TRUE,
18566 BFD_RELOC_MICROMIPS_16_PCREL_S1);
18567 fixp->fx_file = fragp->fr_file;
18568 fixp->fx_line = fragp->fr_line;
18569
18570 /* Branch over the jump. */
18571 buf = write_compressed_insn (buf, insn, 4);
18572
18573 if (!compact)
18574 {
18575 /* nop */
18576 if (insn32)
18577 buf = write_compressed_insn (buf, 0x00000000, 4);
18578 else
18579 buf = write_compressed_insn (buf, 0x0c00, 2);
18580 }
18581 }
18582
18583 if (!pic)
18584 {
18585 unsigned long jal = (short_ds || nods
18586 ? 0x74000000 : 0xf4000000); /* jal/s */
18587
18588 /* j/jal/jals <sym> R_MICROMIPS_26_S1 */
18589 insn = al ? jal : 0xd4000000;
18590
18591 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18592 fragp->fr_symbol, fragp->fr_offset,
18593 FALSE, BFD_RELOC_MICROMIPS_JMP);
18594 fixp->fx_file = fragp->fr_file;
18595 fixp->fx_line = fragp->fr_line;
18596
18597 buf = write_compressed_insn (buf, insn, 4);
18598
18599 if (compact || nods)
18600 {
18601 /* nop */
18602 if (insn32)
18603 buf = write_compressed_insn (buf, 0x00000000, 4);
18604 else
18605 buf = write_compressed_insn (buf, 0x0c00, 2);
18606 }
18607 }
18608 else
18609 {
18610 unsigned long at = RELAX_MICROMIPS_AT (fragp->fr_subtype);
18611
18612 /* lw/ld $at, <sym>($gp) R_MICROMIPS_GOT16 */
18613 insn = HAVE_64BIT_ADDRESSES ? 0xdc1c0000 : 0xfc1c0000;
18614 insn |= at << MICROMIPSOP_SH_RT;
18615
18616 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18617 fragp->fr_symbol, fragp->fr_offset,
18618 FALSE, BFD_RELOC_MICROMIPS_GOT16);
18619 fixp->fx_file = fragp->fr_file;
18620 fixp->fx_line = fragp->fr_line;
18621
18622 buf = write_compressed_insn (buf, insn, 4);
18623
18624 /* d/addiu $at, $at, <sym> R_MICROMIPS_LO16 */
18625 insn = HAVE_64BIT_ADDRESSES ? 0x5c000000 : 0x30000000;
18626 insn |= at << MICROMIPSOP_SH_RT | at << MICROMIPSOP_SH_RS;
18627
18628 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18629 fragp->fr_symbol, fragp->fr_offset,
18630 FALSE, BFD_RELOC_MICROMIPS_LO16);
18631 fixp->fx_file = fragp->fr_file;
18632 fixp->fx_line = fragp->fr_line;
18633
18634 buf = write_compressed_insn (buf, insn, 4);
18635
18636 if (insn32)
18637 {
18638 /* jr/jalr $at */
18639 insn = 0x00000f3c | (al ? RA : ZERO) << MICROMIPSOP_SH_RT;
18640 insn |= at << MICROMIPSOP_SH_RS;
18641
18642 buf = write_compressed_insn (buf, insn, 4);
18643
18644 if (compact || nods)
18645 /* nop */
18646 buf = write_compressed_insn (buf, 0x00000000, 4);
18647 }
18648 else
18649 {
18650 /* jr/jrc/jalr/jalrs $at */
18651 unsigned long jalr = short_ds ? 0x45e0 : 0x45c0; /* jalr/s */
18652 unsigned long jr = compact || nods ? 0x45a0 : 0x4580; /* jr/c */
18653
18654 insn = al ? jalr : jr;
18655 insn |= at << MICROMIPSOP_SH_MJ;
18656
18657 buf = write_compressed_insn (buf, insn, 2);
18658 if (al && nods)
18659 {
18660 /* nop */
18661 if (short_ds)
18662 buf = write_compressed_insn (buf, 0x0c00, 2);
18663 else
18664 buf = write_compressed_insn (buf, 0x00000000, 4);
18665 }
18666 }
18667 }
18668
18669 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18670 return;
18671 }
18672
18673 if (RELAX_MIPS16_P (fragp->fr_subtype))
18674 {
18675 int type;
18676 const struct mips_int_operand *operand;
18677 offsetT val;
18678 char *buf;
18679 unsigned int user_length;
18680 bfd_boolean need_reloc;
18681 unsigned long insn;
18682 bfd_boolean mac;
18683 bfd_boolean ext;
18684 segT symsec;
18685
18686 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
18687 operand = mips16_immed_operand (type, FALSE);
18688
18689 mac = RELAX_MIPS16_MACRO (fragp->fr_subtype);
18690 ext = RELAX_MIPS16_EXTENDED (fragp->fr_subtype);
18691 val = resolve_symbol_value (fragp->fr_symbol) + fragp->fr_offset;
18692
18693 symsec = S_GET_SEGMENT (fragp->fr_symbol);
18694 need_reloc = (S_FORCE_RELOC (fragp->fr_symbol, TRUE)
18695 || (operand->root.type == OP_PCREL && !mac
18696 ? asec != symsec
18697 : !bfd_is_abs_section (symsec)));
18698
18699 if (operand->root.type == OP_PCREL && !mac)
18700 {
18701 const struct mips_pcrel_operand *pcrel_op;
18702
18703 pcrel_op = (const struct mips_pcrel_operand *) operand;
18704
18705 if (pcrel_op->include_isa_bit && !need_reloc)
18706 {
18707 if (!mips_ignore_branch_isa
18708 && !ELF_ST_IS_MIPS16 (S_GET_OTHER (fragp->fr_symbol)))
18709 as_bad_where (fragp->fr_file, fragp->fr_line,
18710 _("branch to a symbol in another ISA mode"));
18711 else if ((fragp->fr_offset & 0x1) != 0)
18712 as_bad_where (fragp->fr_file, fragp->fr_line,
18713 _("branch to misaligned address (0x%lx)"),
18714 (long) val);
18715 }
18716
18717 val = mips16_pcrel_val (fragp, pcrel_op, val, 0);
18718
18719 /* Make sure the section winds up with the alignment we have
18720 assumed. */
18721 if (operand->shift > 0)
18722 record_alignment (asec, operand->shift);
18723 }
18724
18725 if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)
18726 || RELAX_MIPS16_DSLOT (fragp->fr_subtype))
18727 {
18728 if (mac)
18729 as_warn_where (fragp->fr_file, fragp->fr_line,
18730 _("macro instruction expanded into multiple "
18731 "instructions in a branch delay slot"));
18732 else if (ext)
18733 as_warn_where (fragp->fr_file, fragp->fr_line,
18734 _("extended instruction in a branch delay slot"));
18735 }
18736 else if (RELAX_MIPS16_NOMACRO (fragp->fr_subtype) && mac)
18737 as_warn_where (fragp->fr_file, fragp->fr_line,
18738 _("macro instruction expanded into multiple "
18739 "instructions"));
18740
18741 buf = fragp->fr_literal + fragp->fr_fix;
18742
18743 insn = read_compressed_insn (buf, 2);
18744 if (ext)
18745 insn |= MIPS16_EXTEND;
18746
18747 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
18748 user_length = 4;
18749 else if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
18750 user_length = 2;
18751 else
18752 user_length = 0;
18753
18754 if (mac)
18755 {
18756 unsigned long reg;
18757 unsigned long new;
18758 unsigned long op;
18759 bfd_boolean e2;
18760
18761 gas_assert (type == 'A' || type == 'B' || type == 'E');
18762 gas_assert (RELAX_MIPS16_SYM32 (fragp->fr_subtype));
18763
18764 e2 = RELAX_MIPS16_E2 (fragp->fr_subtype);
18765
18766 if (need_reloc)
18767 {
18768 fixS *fixp;
18769
18770 gas_assert (!RELAX_MIPS16_PIC (fragp->fr_subtype));
18771
18772 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18773 fragp->fr_symbol, fragp->fr_offset,
18774 FALSE, BFD_RELOC_MIPS16_HI16_S);
18775 fixp->fx_file = fragp->fr_file;
18776 fixp->fx_line = fragp->fr_line;
18777
18778 fixp = fix_new (fragp, buf - fragp->fr_literal + (e2 ? 4 : 8), 4,
18779 fragp->fr_symbol, fragp->fr_offset,
18780 FALSE, BFD_RELOC_MIPS16_LO16);
18781 fixp->fx_file = fragp->fr_file;
18782 fixp->fx_line = fragp->fr_line;
18783
18784 val = 0;
18785 }
18786
18787 switch (insn & 0xf800)
18788 {
18789 case 0x0800: /* ADDIU */
18790 reg = (insn >> 8) & 0x7;
18791 op = 0xf0004800 | (reg << 8);
18792 break;
18793 case 0xb000: /* LW */
18794 reg = (insn >> 8) & 0x7;
18795 op = 0xf0009800 | (reg << 8) | (reg << 5);
18796 break;
18797 case 0xf800: /* I64 */
18798 reg = (insn >> 5) & 0x7;
18799 switch (insn & 0x0700)
18800 {
18801 case 0x0400: /* LD */
18802 op = 0xf0003800 | (reg << 8) | (reg << 5);
18803 break;
18804 case 0x0600: /* DADDIU */
18805 op = 0xf000fd00 | (reg << 5);
18806 break;
18807 default:
18808 abort ();
18809 }
18810 break;
18811 default:
18812 abort ();
18813 }
18814
18815 new = (e2 ? 0xf0006820 : 0xf0006800) | (reg << 8); /* LUI/LI */
18816 new |= mips16_immed_extend ((val + 0x8000) >> 16, 16);
18817 buf = write_compressed_insn (buf, new, 4);
18818 if (!e2)
18819 {
18820 new = 0xf4003000 | (reg << 8) | (reg << 5); /* SLL */
18821 buf = write_compressed_insn (buf, new, 4);
18822 }
18823 op |= mips16_immed_extend (val, 16);
18824 buf = write_compressed_insn (buf, op, 4);
18825
18826 fragp->fr_fix += e2 ? 8 : 12;
18827 }
18828 else
18829 {
18830 unsigned int length = ext ? 4 : 2;
18831
18832 if (need_reloc)
18833 {
18834 bfd_reloc_code_real_type reloc = BFD_RELOC_NONE;
18835 fixS *fixp;
18836
18837 switch (type)
18838 {
18839 case 'p':
18840 case 'q':
18841 reloc = BFD_RELOC_MIPS16_16_PCREL_S1;
18842 break;
18843 default:
18844 break;
18845 }
18846 if (mac || reloc == BFD_RELOC_NONE)
18847 as_bad_where (fragp->fr_file, fragp->fr_line,
18848 _("unsupported relocation"));
18849 else if (ext)
18850 {
18851 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18852 fragp->fr_symbol, fragp->fr_offset,
18853 TRUE, reloc);
18854 fixp->fx_file = fragp->fr_file;
18855 fixp->fx_line = fragp->fr_line;
18856 }
18857 else
18858 as_bad_where (fragp->fr_file, fragp->fr_line,
18859 _("invalid unextended operand value"));
18860 }
18861 else
18862 mips16_immed (fragp->fr_file, fragp->fr_line, type,
18863 BFD_RELOC_UNUSED, val, user_length, &insn);
18864
18865 gas_assert (mips16_opcode_length (insn) == length);
18866 write_compressed_insn (buf, insn, length);
18867 fragp->fr_fix += length;
18868 }
18869 }
18870 else
18871 {
18872 relax_substateT subtype = fragp->fr_subtype;
18873 bfd_boolean second_longer = (subtype & RELAX_SECOND_LONGER) != 0;
18874 bfd_boolean use_second = (subtype & RELAX_USE_SECOND) != 0;
18875 int first, second;
18876 fixS *fixp;
18877
18878 first = RELAX_FIRST (subtype);
18879 second = RELAX_SECOND (subtype);
18880 fixp = (fixS *) fragp->fr_opcode;
18881
18882 /* If the delay slot chosen does not match the size of the instruction,
18883 then emit a warning. */
18884 if ((!use_second && (subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0)
18885 || (use_second && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0))
18886 {
18887 relax_substateT s;
18888 const char *msg;
18889
18890 s = subtype & (RELAX_DELAY_SLOT_16BIT
18891 | RELAX_DELAY_SLOT_SIZE_FIRST
18892 | RELAX_DELAY_SLOT_SIZE_SECOND);
18893 msg = macro_warning (s);
18894 if (msg != NULL)
18895 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
18896 subtype &= ~s;
18897 }
18898
18899 /* Possibly emit a warning if we've chosen the longer option. */
18900 if (use_second == second_longer)
18901 {
18902 relax_substateT s;
18903 const char *msg;
18904
18905 s = (subtype
18906 & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT));
18907 msg = macro_warning (s);
18908 if (msg != NULL)
18909 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
18910 subtype &= ~s;
18911 }
18912
18913 /* Go through all the fixups for the first sequence. Disable them
18914 (by marking them as done) if we're going to use the second
18915 sequence instead. */
18916 while (fixp
18917 && fixp->fx_frag == fragp
18918 && fixp->fx_where < fragp->fr_fix - second)
18919 {
18920 if (subtype & RELAX_USE_SECOND)
18921 fixp->fx_done = 1;
18922 fixp = fixp->fx_next;
18923 }
18924
18925 /* Go through the fixups for the second sequence. Disable them if
18926 we're going to use the first sequence, otherwise adjust their
18927 addresses to account for the relaxation. */
18928 while (fixp && fixp->fx_frag == fragp)
18929 {
18930 if (subtype & RELAX_USE_SECOND)
18931 fixp->fx_where -= first;
18932 else
18933 fixp->fx_done = 1;
18934 fixp = fixp->fx_next;
18935 }
18936
18937 /* Now modify the frag contents. */
18938 if (subtype & RELAX_USE_SECOND)
18939 {
18940 char *start;
18941
18942 start = fragp->fr_literal + fragp->fr_fix - first - second;
18943 memmove (start, start + first, second);
18944 fragp->fr_fix -= first;
18945 }
18946 else
18947 fragp->fr_fix -= second;
18948 }
18949 }
18950
18951 /* This function is called after the relocs have been generated.
18952 We've been storing mips16 text labels as odd. Here we convert them
18953 back to even for the convenience of the debugger. */
18954
18955 void
18956 mips_frob_file_after_relocs (void)
18957 {
18958 asymbol **syms;
18959 unsigned int count, i;
18960
18961 syms = bfd_get_outsymbols (stdoutput);
18962 count = bfd_get_symcount (stdoutput);
18963 for (i = 0; i < count; i++, syms++)
18964 if (ELF_ST_IS_COMPRESSED (elf_symbol (*syms)->internal_elf_sym.st_other)
18965 && ((*syms)->value & 1) != 0)
18966 {
18967 (*syms)->value &= ~1;
18968 /* If the symbol has an odd size, it was probably computed
18969 incorrectly, so adjust that as well. */
18970 if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0)
18971 ++elf_symbol (*syms)->internal_elf_sym.st_size;
18972 }
18973 }
18974
18975 /* This function is called whenever a label is defined, including fake
18976 labels instantiated off the dot special symbol. It is used when
18977 handling branch delays; if a branch has a label, we assume we cannot
18978 move it. This also bumps the value of the symbol by 1 in compressed
18979 code. */
18980
18981 static void
18982 mips_record_label (symbolS *sym)
18983 {
18984 segment_info_type *si = seg_info (now_seg);
18985 struct insn_label_list *l;
18986
18987 if (free_insn_labels == NULL)
18988 l = XNEW (struct insn_label_list);
18989 else
18990 {
18991 l = free_insn_labels;
18992 free_insn_labels = l->next;
18993 }
18994
18995 l->label = sym;
18996 l->next = si->label_list;
18997 si->label_list = l;
18998 }
18999
19000 /* This function is called as tc_frob_label() whenever a label is defined
19001 and adds a DWARF-2 record we only want for true labels. */
19002
19003 void
19004 mips_define_label (symbolS *sym)
19005 {
19006 mips_record_label (sym);
19007 dwarf2_emit_label (sym);
19008 }
19009
19010 /* This function is called by tc_new_dot_label whenever a new dot symbol
19011 is defined. */
19012
19013 void
19014 mips_add_dot_label (symbolS *sym)
19015 {
19016 mips_record_label (sym);
19017 if (mips_assembling_insn && HAVE_CODE_COMPRESSION)
19018 mips_compressed_mark_label (sym);
19019 }
19020 \f
19021 /* Converting ASE flags from internal to .MIPS.abiflags values. */
19022 static unsigned int
19023 mips_convert_ase_flags (int ase)
19024 {
19025 unsigned int ext_ases = 0;
19026
19027 if (ase & ASE_DSP)
19028 ext_ases |= AFL_ASE_DSP;
19029 if (ase & ASE_DSPR2)
19030 ext_ases |= AFL_ASE_DSPR2;
19031 if (ase & ASE_DSPR3)
19032 ext_ases |= AFL_ASE_DSPR3;
19033 if (ase & ASE_EVA)
19034 ext_ases |= AFL_ASE_EVA;
19035 if (ase & ASE_MCU)
19036 ext_ases |= AFL_ASE_MCU;
19037 if (ase & ASE_MDMX)
19038 ext_ases |= AFL_ASE_MDMX;
19039 if (ase & ASE_MIPS3D)
19040 ext_ases |= AFL_ASE_MIPS3D;
19041 if (ase & ASE_MT)
19042 ext_ases |= AFL_ASE_MT;
19043 if (ase & ASE_SMARTMIPS)
19044 ext_ases |= AFL_ASE_SMARTMIPS;
19045 if (ase & ASE_VIRT)
19046 ext_ases |= AFL_ASE_VIRT;
19047 if (ase & ASE_MSA)
19048 ext_ases |= AFL_ASE_MSA;
19049 if (ase & ASE_XPA)
19050 ext_ases |= AFL_ASE_XPA;
19051 if (ase & ASE_MIPS16E2)
19052 ext_ases |= file_ase_mips16 ? AFL_ASE_MIPS16E2 : 0;
19053 if (ase & ASE_CRC)
19054 ext_ases |= AFL_ASE_CRC;
19055 if (ase & ASE_GINV)
19056 ext_ases |= AFL_ASE_GINV;
19057 if (ase & ASE_LOONGSON_MMI)
19058 ext_ases |= AFL_ASE_LOONGSON_MMI;
19059 if (ase & ASE_LOONGSON_CAM)
19060 ext_ases |= AFL_ASE_LOONGSON_CAM;
19061 if (ase & ASE_LOONGSON_EXT)
19062 ext_ases |= AFL_ASE_LOONGSON_EXT;
19063 if (ase & ASE_LOONGSON_EXT2)
19064 ext_ases |= AFL_ASE_LOONGSON_EXT2;
19065
19066 return ext_ases;
19067 }
19068 /* Some special processing for a MIPS ELF file. */
19069
19070 void
19071 mips_elf_final_processing (void)
19072 {
19073 int fpabi;
19074 Elf_Internal_ABIFlags_v0 flags;
19075
19076 flags.version = 0;
19077 flags.isa_rev = 0;
19078 switch (file_mips_opts.isa)
19079 {
19080 case INSN_ISA1:
19081 flags.isa_level = 1;
19082 break;
19083 case INSN_ISA2:
19084 flags.isa_level = 2;
19085 break;
19086 case INSN_ISA3:
19087 flags.isa_level = 3;
19088 break;
19089 case INSN_ISA4:
19090 flags.isa_level = 4;
19091 break;
19092 case INSN_ISA5:
19093 flags.isa_level = 5;
19094 break;
19095 case INSN_ISA32:
19096 flags.isa_level = 32;
19097 flags.isa_rev = 1;
19098 break;
19099 case INSN_ISA32R2:
19100 flags.isa_level = 32;
19101 flags.isa_rev = 2;
19102 break;
19103 case INSN_ISA32R3:
19104 flags.isa_level = 32;
19105 flags.isa_rev = 3;
19106 break;
19107 case INSN_ISA32R5:
19108 flags.isa_level = 32;
19109 flags.isa_rev = 5;
19110 break;
19111 case INSN_ISA32R6:
19112 flags.isa_level = 32;
19113 flags.isa_rev = 6;
19114 break;
19115 case INSN_ISA64:
19116 flags.isa_level = 64;
19117 flags.isa_rev = 1;
19118 break;
19119 case INSN_ISA64R2:
19120 flags.isa_level = 64;
19121 flags.isa_rev = 2;
19122 break;
19123 case INSN_ISA64R3:
19124 flags.isa_level = 64;
19125 flags.isa_rev = 3;
19126 break;
19127 case INSN_ISA64R5:
19128 flags.isa_level = 64;
19129 flags.isa_rev = 5;
19130 break;
19131 case INSN_ISA64R6:
19132 flags.isa_level = 64;
19133 flags.isa_rev = 6;
19134 break;
19135 }
19136
19137 flags.gpr_size = file_mips_opts.gp == 32 ? AFL_REG_32 : AFL_REG_64;
19138 flags.cpr1_size = file_mips_opts.soft_float ? AFL_REG_NONE
19139 : (file_mips_opts.ase & ASE_MSA) ? AFL_REG_128
19140 : (file_mips_opts.fp == 64) ? AFL_REG_64
19141 : AFL_REG_32;
19142 flags.cpr2_size = AFL_REG_NONE;
19143 flags.fp_abi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19144 Tag_GNU_MIPS_ABI_FP);
19145 flags.isa_ext = bfd_mips_isa_ext (stdoutput);
19146 flags.ases = mips_convert_ase_flags (file_mips_opts.ase);
19147 if (file_ase_mips16)
19148 flags.ases |= AFL_ASE_MIPS16;
19149 if (file_ase_micromips)
19150 flags.ases |= AFL_ASE_MICROMIPS;
19151 flags.flags1 = 0;
19152 if ((ISA_HAS_ODD_SINGLE_FPR (file_mips_opts.isa, file_mips_opts.arch)
19153 || file_mips_opts.fp == 64)
19154 && file_mips_opts.oddspreg)
19155 flags.flags1 |= AFL_FLAGS1_ODDSPREG;
19156 flags.flags2 = 0;
19157
19158 bfd_mips_elf_swap_abiflags_v0_out (stdoutput, &flags,
19159 ((Elf_External_ABIFlags_v0 *)
19160 mips_flags_frag));
19161
19162 /* Write out the register information. */
19163 if (mips_abi != N64_ABI)
19164 {
19165 Elf32_RegInfo s;
19166
19167 s.ri_gprmask = mips_gprmask;
19168 s.ri_cprmask[0] = mips_cprmask[0];
19169 s.ri_cprmask[1] = mips_cprmask[1];
19170 s.ri_cprmask[2] = mips_cprmask[2];
19171 s.ri_cprmask[3] = mips_cprmask[3];
19172 /* The gp_value field is set by the MIPS ELF backend. */
19173
19174 bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
19175 ((Elf32_External_RegInfo *)
19176 mips_regmask_frag));
19177 }
19178 else
19179 {
19180 Elf64_Internal_RegInfo s;
19181
19182 s.ri_gprmask = mips_gprmask;
19183 s.ri_pad = 0;
19184 s.ri_cprmask[0] = mips_cprmask[0];
19185 s.ri_cprmask[1] = mips_cprmask[1];
19186 s.ri_cprmask[2] = mips_cprmask[2];
19187 s.ri_cprmask[3] = mips_cprmask[3];
19188 /* The gp_value field is set by the MIPS ELF backend. */
19189
19190 bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
19191 ((Elf64_External_RegInfo *)
19192 mips_regmask_frag));
19193 }
19194
19195 /* Set the MIPS ELF flag bits. FIXME: There should probably be some
19196 sort of BFD interface for this. */
19197 if (mips_any_noreorder)
19198 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
19199 if (mips_pic != NO_PIC)
19200 {
19201 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
19202 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
19203 }
19204 if (mips_abicalls)
19205 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
19206
19207 /* Set MIPS ELF flags for ASEs. Note that not all ASEs have flags
19208 defined at present; this might need to change in future. */
19209 if (file_ase_mips16)
19210 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16;
19211 if (file_ase_micromips)
19212 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MICROMIPS;
19213 if (file_mips_opts.ase & ASE_MDMX)
19214 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX;
19215
19216 /* Set the MIPS ELF ABI flags. */
19217 if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32)
19218 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32;
19219 else if (mips_abi == O64_ABI)
19220 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64;
19221 else if (mips_abi == EABI_ABI)
19222 {
19223 if (file_mips_opts.gp == 64)
19224 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64;
19225 else
19226 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32;
19227 }
19228
19229 /* Nothing to do for N32_ABI or N64_ABI. */
19230
19231 if (mips_32bitmode)
19232 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE;
19233
19234 if (mips_nan2008 == 1)
19235 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NAN2008;
19236
19237 /* 32 bit code with 64 bit FP registers. */
19238 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19239 Tag_GNU_MIPS_ABI_FP);
19240 if (fpabi == Val_GNU_MIPS_ABI_FP_OLD_64)
19241 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_FP64;
19242 }
19243 \f
19244 typedef struct proc {
19245 symbolS *func_sym;
19246 symbolS *func_end_sym;
19247 unsigned long reg_mask;
19248 unsigned long reg_offset;
19249 unsigned long fpreg_mask;
19250 unsigned long fpreg_offset;
19251 unsigned long frame_offset;
19252 unsigned long frame_reg;
19253 unsigned long pc_reg;
19254 } procS;
19255
19256 static procS cur_proc;
19257 static procS *cur_proc_ptr;
19258 static int numprocs;
19259
19260 /* Implement NOP_OPCODE. We encode a MIPS16 nop as "1", a microMIPS nop
19261 as "2", and a normal nop as "0". */
19262
19263 #define NOP_OPCODE_MIPS 0
19264 #define NOP_OPCODE_MIPS16 1
19265 #define NOP_OPCODE_MICROMIPS 2
19266
19267 char
19268 mips_nop_opcode (void)
19269 {
19270 if (seg_info (now_seg)->tc_segment_info_data.micromips)
19271 return NOP_OPCODE_MICROMIPS;
19272 else if (seg_info (now_seg)->tc_segment_info_data.mips16)
19273 return NOP_OPCODE_MIPS16;
19274 else
19275 return NOP_OPCODE_MIPS;
19276 }
19277
19278 /* Fill in an rs_align_code fragment. Unlike elsewhere we want to use
19279 32-bit microMIPS NOPs here (if applicable). */
19280
19281 void
19282 mips_handle_align (fragS *fragp)
19283 {
19284 char nop_opcode;
19285 char *p;
19286 int bytes, size, excess;
19287 valueT opcode;
19288
19289 if (fragp->fr_type != rs_align_code)
19290 return;
19291
19292 p = fragp->fr_literal + fragp->fr_fix;
19293 nop_opcode = *p;
19294 switch (nop_opcode)
19295 {
19296 case NOP_OPCODE_MICROMIPS:
19297 opcode = micromips_nop32_insn.insn_opcode;
19298 size = 4;
19299 break;
19300 case NOP_OPCODE_MIPS16:
19301 opcode = mips16_nop_insn.insn_opcode;
19302 size = 2;
19303 break;
19304 case NOP_OPCODE_MIPS:
19305 default:
19306 opcode = nop_insn.insn_opcode;
19307 size = 4;
19308 break;
19309 }
19310
19311 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
19312 excess = bytes % size;
19313
19314 /* Handle the leading part if we're not inserting a whole number of
19315 instructions, and make it the end of the fixed part of the frag.
19316 Try to fit in a short microMIPS NOP if applicable and possible,
19317 and use zeroes otherwise. */
19318 gas_assert (excess < 4);
19319 fragp->fr_fix += excess;
19320 switch (excess)
19321 {
19322 case 3:
19323 *p++ = '\0';
19324 /* Fall through. */
19325 case 2:
19326 if (nop_opcode == NOP_OPCODE_MICROMIPS && !mips_opts.insn32)
19327 {
19328 p = write_compressed_insn (p, micromips_nop16_insn.insn_opcode, 2);
19329 break;
19330 }
19331 *p++ = '\0';
19332 /* Fall through. */
19333 case 1:
19334 *p++ = '\0';
19335 /* Fall through. */
19336 case 0:
19337 break;
19338 }
19339
19340 md_number_to_chars (p, opcode, size);
19341 fragp->fr_var = size;
19342 }
19343
19344 static long
19345 get_number (void)
19346 {
19347 int negative = 0;
19348 long val = 0;
19349
19350 if (*input_line_pointer == '-')
19351 {
19352 ++input_line_pointer;
19353 negative = 1;
19354 }
19355 if (!ISDIGIT (*input_line_pointer))
19356 as_bad (_("expected simple number"));
19357 if (input_line_pointer[0] == '0')
19358 {
19359 if (input_line_pointer[1] == 'x')
19360 {
19361 input_line_pointer += 2;
19362 while (ISXDIGIT (*input_line_pointer))
19363 {
19364 val <<= 4;
19365 val |= hex_value (*input_line_pointer++);
19366 }
19367 return negative ? -val : val;
19368 }
19369 else
19370 {
19371 ++input_line_pointer;
19372 while (ISDIGIT (*input_line_pointer))
19373 {
19374 val <<= 3;
19375 val |= *input_line_pointer++ - '0';
19376 }
19377 return negative ? -val : val;
19378 }
19379 }
19380 if (!ISDIGIT (*input_line_pointer))
19381 {
19382 printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
19383 *input_line_pointer, *input_line_pointer);
19384 as_warn (_("invalid number"));
19385 return -1;
19386 }
19387 while (ISDIGIT (*input_line_pointer))
19388 {
19389 val *= 10;
19390 val += *input_line_pointer++ - '0';
19391 }
19392 return negative ? -val : val;
19393 }
19394
19395 /* The .file directive; just like the usual .file directive, but there
19396 is an initial number which is the ECOFF file index. In the non-ECOFF
19397 case .file implies DWARF-2. */
19398
19399 static void
19400 s_mips_file (int x ATTRIBUTE_UNUSED)
19401 {
19402 static int first_file_directive = 0;
19403
19404 if (ECOFF_DEBUGGING)
19405 {
19406 get_number ();
19407 s_app_file (0);
19408 }
19409 else
19410 {
19411 char *filename;
19412
19413 filename = dwarf2_directive_filename ();
19414
19415 /* Versions of GCC up to 3.1 start files with a ".file"
19416 directive even for stabs output. Make sure that this
19417 ".file" is handled. Note that you need a version of GCC
19418 after 3.1 in order to support DWARF-2 on MIPS. */
19419 if (filename != NULL && ! first_file_directive)
19420 {
19421 (void) new_logical_line (filename, -1);
19422 s_app_file_string (filename, 0);
19423 }
19424 first_file_directive = 1;
19425 }
19426 }
19427
19428 /* The .loc directive, implying DWARF-2. */
19429
19430 static void
19431 s_mips_loc (int x ATTRIBUTE_UNUSED)
19432 {
19433 if (!ECOFF_DEBUGGING)
19434 dwarf2_directive_loc (0);
19435 }
19436
19437 /* The .end directive. */
19438
19439 static void
19440 s_mips_end (int x ATTRIBUTE_UNUSED)
19441 {
19442 symbolS *p;
19443
19444 /* Following functions need their own .frame and .cprestore directives. */
19445 mips_frame_reg_valid = 0;
19446 mips_cprestore_valid = 0;
19447
19448 if (!is_end_of_line[(unsigned char) *input_line_pointer])
19449 {
19450 p = get_symbol ();
19451 demand_empty_rest_of_line ();
19452 }
19453 else
19454 p = NULL;
19455
19456 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
19457 as_warn (_(".end not in text section"));
19458
19459 if (!cur_proc_ptr)
19460 {
19461 as_warn (_(".end directive without a preceding .ent directive"));
19462 demand_empty_rest_of_line ();
19463 return;
19464 }
19465
19466 if (p != NULL)
19467 {
19468 gas_assert (S_GET_NAME (p));
19469 if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->func_sym)))
19470 as_warn (_(".end symbol does not match .ent symbol"));
19471
19472 if (debug_type == DEBUG_STABS)
19473 stabs_generate_asm_endfunc (S_GET_NAME (p),
19474 S_GET_NAME (p));
19475 }
19476 else
19477 as_warn (_(".end directive missing or unknown symbol"));
19478
19479 /* Create an expression to calculate the size of the function. */
19480 if (p && cur_proc_ptr)
19481 {
19482 OBJ_SYMFIELD_TYPE *obj = symbol_get_obj (p);
19483 expressionS *exp = XNEW (expressionS);
19484
19485 obj->size = exp;
19486 exp->X_op = O_subtract;
19487 exp->X_add_symbol = symbol_temp_new_now ();
19488 exp->X_op_symbol = p;
19489 exp->X_add_number = 0;
19490
19491 cur_proc_ptr->func_end_sym = exp->X_add_symbol;
19492 }
19493
19494 #ifdef md_flush_pending_output
19495 md_flush_pending_output ();
19496 #endif
19497
19498 /* Generate a .pdr section. */
19499 if (!ECOFF_DEBUGGING && mips_flag_pdr)
19500 {
19501 segT saved_seg = now_seg;
19502 subsegT saved_subseg = now_subseg;
19503 expressionS exp;
19504 char *fragp;
19505
19506 gas_assert (pdr_seg);
19507 subseg_set (pdr_seg, 0);
19508
19509 /* Write the symbol. */
19510 exp.X_op = O_symbol;
19511 exp.X_add_symbol = p;
19512 exp.X_add_number = 0;
19513 emit_expr (&exp, 4);
19514
19515 fragp = frag_more (7 * 4);
19516
19517 md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4);
19518 md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4);
19519 md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4);
19520 md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4);
19521 md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4);
19522 md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4);
19523 md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4);
19524
19525 subseg_set (saved_seg, saved_subseg);
19526 }
19527
19528 cur_proc_ptr = NULL;
19529 }
19530
19531 /* The .aent and .ent directives. */
19532
19533 static void
19534 s_mips_ent (int aent)
19535 {
19536 symbolS *symbolP;
19537
19538 symbolP = get_symbol ();
19539 if (*input_line_pointer == ',')
19540 ++input_line_pointer;
19541 SKIP_WHITESPACE ();
19542 if (ISDIGIT (*input_line_pointer)
19543 || *input_line_pointer == '-')
19544 get_number ();
19545
19546 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
19547 as_warn (_(".ent or .aent not in text section"));
19548
19549 if (!aent && cur_proc_ptr)
19550 as_warn (_("missing .end"));
19551
19552 if (!aent)
19553 {
19554 /* This function needs its own .frame and .cprestore directives. */
19555 mips_frame_reg_valid = 0;
19556 mips_cprestore_valid = 0;
19557
19558 cur_proc_ptr = &cur_proc;
19559 memset (cur_proc_ptr, '\0', sizeof (procS));
19560
19561 cur_proc_ptr->func_sym = symbolP;
19562
19563 ++numprocs;
19564
19565 if (debug_type == DEBUG_STABS)
19566 stabs_generate_asm_func (S_GET_NAME (symbolP),
19567 S_GET_NAME (symbolP));
19568 }
19569
19570 symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
19571
19572 demand_empty_rest_of_line ();
19573 }
19574
19575 /* The .frame directive. If the mdebug section is present (IRIX 5 native)
19576 then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
19577 s_mips_frame is used so that we can set the PDR information correctly.
19578 We can't use the ecoff routines because they make reference to the ecoff
19579 symbol table (in the mdebug section). */
19580
19581 static void
19582 s_mips_frame (int ignore ATTRIBUTE_UNUSED)
19583 {
19584 if (ECOFF_DEBUGGING)
19585 s_ignore (ignore);
19586 else
19587 {
19588 long val;
19589
19590 if (cur_proc_ptr == (procS *) NULL)
19591 {
19592 as_warn (_(".frame outside of .ent"));
19593 demand_empty_rest_of_line ();
19594 return;
19595 }
19596
19597 cur_proc_ptr->frame_reg = tc_get_register (1);
19598
19599 SKIP_WHITESPACE ();
19600 if (*input_line_pointer++ != ','
19601 || get_absolute_expression_and_terminator (&val) != ',')
19602 {
19603 as_warn (_("bad .frame directive"));
19604 --input_line_pointer;
19605 demand_empty_rest_of_line ();
19606 return;
19607 }
19608
19609 cur_proc_ptr->frame_offset = val;
19610 cur_proc_ptr->pc_reg = tc_get_register (0);
19611
19612 demand_empty_rest_of_line ();
19613 }
19614 }
19615
19616 /* The .fmask and .mask directives. If the mdebug section is present
19617 (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
19618 embedded targets, s_mips_mask is used so that we can set the PDR
19619 information correctly. We can't use the ecoff routines because they
19620 make reference to the ecoff symbol table (in the mdebug section). */
19621
19622 static void
19623 s_mips_mask (int reg_type)
19624 {
19625 if (ECOFF_DEBUGGING)
19626 s_ignore (reg_type);
19627 else
19628 {
19629 long mask, off;
19630
19631 if (cur_proc_ptr == (procS *) NULL)
19632 {
19633 as_warn (_(".mask/.fmask outside of .ent"));
19634 demand_empty_rest_of_line ();
19635 return;
19636 }
19637
19638 if (get_absolute_expression_and_terminator (&mask) != ',')
19639 {
19640 as_warn (_("bad .mask/.fmask directive"));
19641 --input_line_pointer;
19642 demand_empty_rest_of_line ();
19643 return;
19644 }
19645
19646 off = get_absolute_expression ();
19647
19648 if (reg_type == 'F')
19649 {
19650 cur_proc_ptr->fpreg_mask = mask;
19651 cur_proc_ptr->fpreg_offset = off;
19652 }
19653 else
19654 {
19655 cur_proc_ptr->reg_mask = mask;
19656 cur_proc_ptr->reg_offset = off;
19657 }
19658
19659 demand_empty_rest_of_line ();
19660 }
19661 }
19662
19663 /* A table describing all the processors gas knows about. Names are
19664 matched in the order listed.
19665
19666 To ease comparison, please keep this table in the same order as
19667 gcc's mips_cpu_info_table[]. */
19668 static const struct mips_cpu_info mips_cpu_info_table[] =
19669 {
19670 /* Entries for generic ISAs */
19671 { "mips1", MIPS_CPU_IS_ISA, 0, ISA_MIPS1, CPU_R3000 },
19672 { "mips2", MIPS_CPU_IS_ISA, 0, ISA_MIPS2, CPU_R6000 },
19673 { "mips3", MIPS_CPU_IS_ISA, 0, ISA_MIPS3, CPU_R4000 },
19674 { "mips4", MIPS_CPU_IS_ISA, 0, ISA_MIPS4, CPU_R8000 },
19675 { "mips5", MIPS_CPU_IS_ISA, 0, ISA_MIPS5, CPU_MIPS5 },
19676 { "mips32", MIPS_CPU_IS_ISA, 0, ISA_MIPS32, CPU_MIPS32 },
19677 { "mips32r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19678 { "mips32r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R3, CPU_MIPS32R3 },
19679 { "mips32r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R5, CPU_MIPS32R5 },
19680 { "mips32r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R6, CPU_MIPS32R6 },
19681 { "mips64", MIPS_CPU_IS_ISA, 0, ISA_MIPS64, CPU_MIPS64 },
19682 { "mips64r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R2, CPU_MIPS64R2 },
19683 { "mips64r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R3, CPU_MIPS64R3 },
19684 { "mips64r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R5, CPU_MIPS64R5 },
19685 { "mips64r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R6, CPU_MIPS64R6 },
19686
19687 /* MIPS I */
19688 { "r3000", 0, 0, ISA_MIPS1, CPU_R3000 },
19689 { "r2000", 0, 0, ISA_MIPS1, CPU_R3000 },
19690 { "r3900", 0, 0, ISA_MIPS1, CPU_R3900 },
19691
19692 /* MIPS II */
19693 { "r6000", 0, 0, ISA_MIPS2, CPU_R6000 },
19694
19695 /* MIPS III */
19696 { "r4000", 0, 0, ISA_MIPS3, CPU_R4000 },
19697 { "r4010", 0, 0, ISA_MIPS2, CPU_R4010 },
19698 { "vr4100", 0, 0, ISA_MIPS3, CPU_VR4100 },
19699 { "vr4111", 0, 0, ISA_MIPS3, CPU_R4111 },
19700 { "vr4120", 0, 0, ISA_MIPS3, CPU_VR4120 },
19701 { "vr4130", 0, 0, ISA_MIPS3, CPU_VR4120 },
19702 { "vr4181", 0, 0, ISA_MIPS3, CPU_R4111 },
19703 { "vr4300", 0, 0, ISA_MIPS3, CPU_R4300 },
19704 { "r4400", 0, 0, ISA_MIPS3, CPU_R4400 },
19705 { "r4600", 0, 0, ISA_MIPS3, CPU_R4600 },
19706 { "orion", 0, 0, ISA_MIPS3, CPU_R4600 },
19707 { "r4650", 0, 0, ISA_MIPS3, CPU_R4650 },
19708 { "r5900", 0, 0, ISA_MIPS3, CPU_R5900 },
19709 /* ST Microelectronics Loongson 2E and 2F cores */
19710 { "loongson2e", 0, 0, ISA_MIPS3, CPU_LOONGSON_2E },
19711 { "loongson2f", 0, ASE_LOONGSON_MMI, ISA_MIPS3, CPU_LOONGSON_2F },
19712
19713 /* MIPS IV */
19714 { "r8000", 0, 0, ISA_MIPS4, CPU_R8000 },
19715 { "r10000", 0, 0, ISA_MIPS4, CPU_R10000 },
19716 { "r12000", 0, 0, ISA_MIPS4, CPU_R12000 },
19717 { "r14000", 0, 0, ISA_MIPS4, CPU_R14000 },
19718 { "r16000", 0, 0, ISA_MIPS4, CPU_R16000 },
19719 { "vr5000", 0, 0, ISA_MIPS4, CPU_R5000 },
19720 { "vr5400", 0, 0, ISA_MIPS4, CPU_VR5400 },
19721 { "vr5500", 0, 0, ISA_MIPS4, CPU_VR5500 },
19722 { "rm5200", 0, 0, ISA_MIPS4, CPU_R5000 },
19723 { "rm5230", 0, 0, ISA_MIPS4, CPU_R5000 },
19724 { "rm5231", 0, 0, ISA_MIPS4, CPU_R5000 },
19725 { "rm5261", 0, 0, ISA_MIPS4, CPU_R5000 },
19726 { "rm5721", 0, 0, ISA_MIPS4, CPU_R5000 },
19727 { "rm7000", 0, 0, ISA_MIPS4, CPU_RM7000 },
19728 { "rm9000", 0, 0, ISA_MIPS4, CPU_RM9000 },
19729
19730 /* MIPS 32 */
19731 { "4kc", 0, 0, ISA_MIPS32, CPU_MIPS32 },
19732 { "4km", 0, 0, ISA_MIPS32, CPU_MIPS32 },
19733 { "4kp", 0, 0, ISA_MIPS32, CPU_MIPS32 },
19734 { "4ksc", 0, ASE_SMARTMIPS, ISA_MIPS32, CPU_MIPS32 },
19735
19736 /* MIPS 32 Release 2 */
19737 { "4kec", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19738 { "4kem", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19739 { "4kep", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19740 { "4ksd", 0, ASE_SMARTMIPS, ISA_MIPS32R2, CPU_MIPS32R2 },
19741 { "m4k", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19742 { "m4kp", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19743 { "m14k", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
19744 { "m14kc", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
19745 { "m14ke", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
19746 ISA_MIPS32R2, CPU_MIPS32R2 },
19747 { "m14kec", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
19748 ISA_MIPS32R2, CPU_MIPS32R2 },
19749 { "24kc", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19750 { "24kf2_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19751 { "24kf", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19752 { "24kf1_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19753 /* Deprecated forms of the above. */
19754 { "24kfx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19755 { "24kx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19756 /* 24KE is a 24K with DSP ASE, other ASEs are optional. */
19757 { "24kec", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19758 { "24kef2_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19759 { "24kef", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19760 { "24kef1_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19761 /* Deprecated forms of the above. */
19762 { "24kefx", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19763 { "24kex", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19764 /* 34K is a 24K with DSP and MT ASE, other ASEs are optional. */
19765 { "34kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19766 { "34kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19767 { "34kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19768 { "34kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19769 /* Deprecated forms of the above. */
19770 { "34kfx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19771 { "34kx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19772 /* 34Kn is a 34kc without DSP. */
19773 { "34kn", 0, ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19774 /* 74K with DSP and DSPR2 ASE, other ASEs are optional. */
19775 { "74kc", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19776 { "74kf2_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19777 { "74kf", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19778 { "74kf1_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19779 { "74kf3_2", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19780 /* Deprecated forms of the above. */
19781 { "74kfx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19782 { "74kx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19783 /* 1004K cores are multiprocessor versions of the 34K. */
19784 { "1004kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19785 { "1004kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19786 { "1004kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19787 { "1004kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19788 /* interaptiv is the new name for 1004kf */
19789 { "interaptiv", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19790 { "interaptiv-mr2", 0,
19791 ASE_DSP | ASE_EVA | ASE_MT | ASE_MIPS16E2 | ASE_MIPS16E2_MT,
19792 ISA_MIPS32R3, CPU_INTERAPTIV_MR2 },
19793 /* M5100 family */
19794 { "m5100", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
19795 { "m5101", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
19796 /* P5600 with EVA and Virtualization ASEs, other ASEs are optional. */
19797 { "p5600", 0, ASE_VIRT | ASE_EVA | ASE_XPA, ISA_MIPS32R5, CPU_MIPS32R5 },
19798
19799 /* MIPS 64 */
19800 { "5kc", 0, 0, ISA_MIPS64, CPU_MIPS64 },
19801 { "5kf", 0, 0, ISA_MIPS64, CPU_MIPS64 },
19802 { "20kc", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
19803 { "25kf", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
19804
19805 /* Broadcom SB-1 CPU core */
19806 { "sb1", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
19807 /* Broadcom SB-1A CPU core */
19808 { "sb1a", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
19809
19810 /* MIPS 64 Release 2 */
19811 /* Loongson CPU core */
19812 /* -march=loongson3a is an alias of -march=gs464 for compatibility */
19813 { "loongson3a", 0, ASE_LOONGSON_MMI | ASE_LOONGSON_CAM | ASE_LOONGSON_EXT,
19814 ISA_MIPS64R2, CPU_GS464 },
19815 { "gs464", 0, ASE_LOONGSON_MMI | ASE_LOONGSON_CAM | ASE_LOONGSON_EXT,
19816 ISA_MIPS64R2, CPU_GS464 },
19817
19818 /* Cavium Networks Octeon CPU core */
19819 { "octeon", 0, 0, ISA_MIPS64R2, CPU_OCTEON },
19820 { "octeon+", 0, 0, ISA_MIPS64R2, CPU_OCTEONP },
19821 { "octeon2", 0, 0, ISA_MIPS64R2, CPU_OCTEON2 },
19822 { "octeon3", 0, ASE_VIRT | ASE_VIRT64, ISA_MIPS64R5, CPU_OCTEON3 },
19823
19824 /* RMI Xlr */
19825 { "xlr", 0, 0, ISA_MIPS64, CPU_XLR },
19826
19827 /* Broadcom XLP.
19828 XLP is mostly like XLR, with the prominent exception that it is
19829 MIPS64R2 rather than MIPS64. */
19830 { "xlp", 0, 0, ISA_MIPS64R2, CPU_XLR },
19831
19832 /* MIPS 64 Release 6 */
19833 { "i6400", 0, ASE_MSA, ISA_MIPS64R6, CPU_MIPS64R6},
19834 { "p6600", 0, ASE_VIRT | ASE_MSA, ISA_MIPS64R6, CPU_MIPS64R6},
19835
19836 /* End marker */
19837 { NULL, 0, 0, 0, 0 }
19838 };
19839
19840
19841 /* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
19842 with a final "000" replaced by "k". Ignore case.
19843
19844 Note: this function is shared between GCC and GAS. */
19845
19846 static bfd_boolean
19847 mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
19848 {
19849 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
19850 given++, canonical++;
19851
19852 return ((*given == 0 && *canonical == 0)
19853 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
19854 }
19855
19856
19857 /* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
19858 CPU name. We've traditionally allowed a lot of variation here.
19859
19860 Note: this function is shared between GCC and GAS. */
19861
19862 static bfd_boolean
19863 mips_matching_cpu_name_p (const char *canonical, const char *given)
19864 {
19865 /* First see if the name matches exactly, or with a final "000"
19866 turned into "k". */
19867 if (mips_strict_matching_cpu_name_p (canonical, given))
19868 return TRUE;
19869
19870 /* If not, try comparing based on numerical designation alone.
19871 See if GIVEN is an unadorned number, or 'r' followed by a number. */
19872 if (TOLOWER (*given) == 'r')
19873 given++;
19874 if (!ISDIGIT (*given))
19875 return FALSE;
19876
19877 /* Skip over some well-known prefixes in the canonical name,
19878 hoping to find a number there too. */
19879 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
19880 canonical += 2;
19881 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
19882 canonical += 2;
19883 else if (TOLOWER (canonical[0]) == 'r')
19884 canonical += 1;
19885
19886 return mips_strict_matching_cpu_name_p (canonical, given);
19887 }
19888
19889
19890 /* Parse an option that takes the name of a processor as its argument.
19891 OPTION is the name of the option and CPU_STRING is the argument.
19892 Return the corresponding processor enumeration if the CPU_STRING is
19893 recognized, otherwise report an error and return null.
19894
19895 A similar function exists in GCC. */
19896
19897 static const struct mips_cpu_info *
19898 mips_parse_cpu (const char *option, const char *cpu_string)
19899 {
19900 const struct mips_cpu_info *p;
19901
19902 /* 'from-abi' selects the most compatible architecture for the given
19903 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
19904 EABIs, we have to decide whether we're using the 32-bit or 64-bit
19905 version. Look first at the -mgp options, if given, otherwise base
19906 the choice on MIPS_DEFAULT_64BIT.
19907
19908 Treat NO_ABI like the EABIs. One reason to do this is that the
19909 plain 'mips' and 'mips64' configs have 'from-abi' as their default
19910 architecture. This code picks MIPS I for 'mips' and MIPS III for
19911 'mips64', just as we did in the days before 'from-abi'. */
19912 if (strcasecmp (cpu_string, "from-abi") == 0)
19913 {
19914 if (ABI_NEEDS_32BIT_REGS (mips_abi))
19915 return mips_cpu_info_from_isa (ISA_MIPS1);
19916
19917 if (ABI_NEEDS_64BIT_REGS (mips_abi))
19918 return mips_cpu_info_from_isa (ISA_MIPS3);
19919
19920 if (file_mips_opts.gp >= 0)
19921 return mips_cpu_info_from_isa (file_mips_opts.gp == 32
19922 ? ISA_MIPS1 : ISA_MIPS3);
19923
19924 return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
19925 ? ISA_MIPS3
19926 : ISA_MIPS1);
19927 }
19928
19929 /* 'default' has traditionally been a no-op. Probably not very useful. */
19930 if (strcasecmp (cpu_string, "default") == 0)
19931 return 0;
19932
19933 for (p = mips_cpu_info_table; p->name != 0; p++)
19934 if (mips_matching_cpu_name_p (p->name, cpu_string))
19935 return p;
19936
19937 as_bad (_("bad value (%s) for %s"), cpu_string, option);
19938 return 0;
19939 }
19940
19941 /* Return the canonical processor information for ISA (a member of the
19942 ISA_MIPS* enumeration). */
19943
19944 static const struct mips_cpu_info *
19945 mips_cpu_info_from_isa (int isa)
19946 {
19947 int i;
19948
19949 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
19950 if ((mips_cpu_info_table[i].flags & MIPS_CPU_IS_ISA)
19951 && isa == mips_cpu_info_table[i].isa)
19952 return (&mips_cpu_info_table[i]);
19953
19954 return NULL;
19955 }
19956
19957 static const struct mips_cpu_info *
19958 mips_cpu_info_from_arch (int arch)
19959 {
19960 int i;
19961
19962 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
19963 if (arch == mips_cpu_info_table[i].cpu)
19964 return (&mips_cpu_info_table[i]);
19965
19966 return NULL;
19967 }
19968 \f
19969 static void
19970 show (FILE *stream, const char *string, int *col_p, int *first_p)
19971 {
19972 if (*first_p)
19973 {
19974 fprintf (stream, "%24s", "");
19975 *col_p = 24;
19976 }
19977 else
19978 {
19979 fprintf (stream, ", ");
19980 *col_p += 2;
19981 }
19982
19983 if (*col_p + strlen (string) > 72)
19984 {
19985 fprintf (stream, "\n%24s", "");
19986 *col_p = 24;
19987 }
19988
19989 fprintf (stream, "%s", string);
19990 *col_p += strlen (string);
19991
19992 *first_p = 0;
19993 }
19994
19995 void
19996 md_show_usage (FILE *stream)
19997 {
19998 int column, first;
19999 size_t i;
20000
20001 fprintf (stream, _("\
20002 MIPS options:\n\
20003 -EB generate big endian output\n\
20004 -EL generate little endian output\n\
20005 -g, -g2 do not remove unneeded NOPs or swap branches\n\
20006 -G NUM allow referencing objects up to NUM bytes\n\
20007 implicitly with the gp register [default 8]\n"));
20008 fprintf (stream, _("\
20009 -mips1 generate MIPS ISA I instructions\n\
20010 -mips2 generate MIPS ISA II instructions\n\
20011 -mips3 generate MIPS ISA III instructions\n\
20012 -mips4 generate MIPS ISA IV instructions\n\
20013 -mips5 generate MIPS ISA V instructions\n\
20014 -mips32 generate MIPS32 ISA instructions\n\
20015 -mips32r2 generate MIPS32 release 2 ISA instructions\n\
20016 -mips32r3 generate MIPS32 release 3 ISA instructions\n\
20017 -mips32r5 generate MIPS32 release 5 ISA instructions\n\
20018 -mips32r6 generate MIPS32 release 6 ISA instructions\n\
20019 -mips64 generate MIPS64 ISA instructions\n\
20020 -mips64r2 generate MIPS64 release 2 ISA instructions\n\
20021 -mips64r3 generate MIPS64 release 3 ISA instructions\n\
20022 -mips64r5 generate MIPS64 release 5 ISA instructions\n\
20023 -mips64r6 generate MIPS64 release 6 ISA instructions\n\
20024 -march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
20025
20026 first = 1;
20027
20028 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
20029 show (stream, mips_cpu_info_table[i].name, &column, &first);
20030 show (stream, "from-abi", &column, &first);
20031 fputc ('\n', stream);
20032
20033 fprintf (stream, _("\
20034 -mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
20035 -no-mCPU don't generate code specific to CPU.\n\
20036 For -mCPU and -no-mCPU, CPU must be one of:\n"));
20037
20038 first = 1;
20039
20040 show (stream, "3900", &column, &first);
20041 show (stream, "4010", &column, &first);
20042 show (stream, "4100", &column, &first);
20043 show (stream, "4650", &column, &first);
20044 fputc ('\n', stream);
20045
20046 fprintf (stream, _("\
20047 -mips16 generate mips16 instructions\n\
20048 -no-mips16 do not generate mips16 instructions\n"));
20049 fprintf (stream, _("\
20050 -mmips16e2 generate MIPS16e2 instructions\n\
20051 -mno-mips16e2 do not generate MIPS16e2 instructions\n"));
20052 fprintf (stream, _("\
20053 -mmicromips generate microMIPS instructions\n\
20054 -mno-micromips do not generate microMIPS instructions\n"));
20055 fprintf (stream, _("\
20056 -msmartmips generate smartmips instructions\n\
20057 -mno-smartmips do not generate smartmips instructions\n"));
20058 fprintf (stream, _("\
20059 -mdsp generate DSP instructions\n\
20060 -mno-dsp do not generate DSP instructions\n"));
20061 fprintf (stream, _("\
20062 -mdspr2 generate DSP R2 instructions\n\
20063 -mno-dspr2 do not generate DSP R2 instructions\n"));
20064 fprintf (stream, _("\
20065 -mdspr3 generate DSP R3 instructions\n\
20066 -mno-dspr3 do not generate DSP R3 instructions\n"));
20067 fprintf (stream, _("\
20068 -mmt generate MT instructions\n\
20069 -mno-mt do not generate MT instructions\n"));
20070 fprintf (stream, _("\
20071 -mmcu generate MCU instructions\n\
20072 -mno-mcu do not generate MCU instructions\n"));
20073 fprintf (stream, _("\
20074 -mmsa generate MSA instructions\n\
20075 -mno-msa do not generate MSA instructions\n"));
20076 fprintf (stream, _("\
20077 -mxpa generate eXtended Physical Address (XPA) instructions\n\
20078 -mno-xpa do not generate eXtended Physical Address (XPA) instructions\n"));
20079 fprintf (stream, _("\
20080 -mvirt generate Virtualization instructions\n\
20081 -mno-virt do not generate Virtualization instructions\n"));
20082 fprintf (stream, _("\
20083 -mcrc generate CRC instructions\n\
20084 -mno-crc do not generate CRC instructions\n"));
20085 fprintf (stream, _("\
20086 -mginv generate Global INValidate (GINV) instructions\n\
20087 -mno-ginv do not generate Global INValidate instructions\n"));
20088 fprintf (stream, _("\
20089 -mloongson-mmi generate Loongson MultiMedia extensions Instructions (MMI) instructions\n\
20090 -mno-loongson-mmi do not generate Loongson MultiMedia extensions Instructions\n"));
20091 fprintf (stream, _("\
20092 -mloongson-cam generate Loongson Content Address Memory (CAM) instructions\n\
20093 -mno-loongson-cam do not generate Loongson Content Address Memory Instructions\n"));
20094 fprintf (stream, _("\
20095 -mloongson-ext generate Loongson EXTensions (EXT) instructions\n\
20096 -mno-loongson-ext do not generate Loongson EXTensions Instructions\n"));
20097 fprintf (stream, _("\
20098 -mloongson-ext2 generate Loongson EXTensions R2 (EXT2) instructions\n\
20099 -mno-loongson-ext2 do not generate Loongson EXTensions R2 Instructions\n"));
20100 fprintf (stream, _("\
20101 -minsn32 only generate 32-bit microMIPS instructions\n\
20102 -mno-insn32 generate all microMIPS instructions\n"));
20103 fprintf (stream, _("\
20104 -mfix-loongson2f-jump work around Loongson2F JUMP instructions\n\
20105 -mfix-loongson2f-nop work around Loongson2F NOP errata\n\
20106 -mfix-vr4120 work around certain VR4120 errata\n\
20107 -mfix-vr4130 work around VR4130 mflo/mfhi errata\n\
20108 -mfix-24k insert a nop after ERET and DERET instructions\n\
20109 -mfix-cn63xxp1 work around CN63XXP1 PREF errata\n\
20110 -mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
20111 -mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
20112 -msym32 assume all symbols have 32-bit values\n\
20113 -O0 do not remove unneeded NOPs, do not swap branches\n\
20114 -O, -O1 remove unneeded NOPs, do not swap branches\n\
20115 -O2 remove unneeded NOPs and swap branches\n\
20116 --trap, --no-break trap exception on div by 0 and mult overflow\n\
20117 --break, --no-trap break exception on div by 0 and mult overflow\n"));
20118 fprintf (stream, _("\
20119 -mhard-float allow floating-point instructions\n\
20120 -msoft-float do not allow floating-point instructions\n\
20121 -msingle-float only allow 32-bit floating-point operations\n\
20122 -mdouble-float allow 32-bit and 64-bit floating-point operations\n\
20123 --[no-]construct-floats [dis]allow floating point values to be constructed\n\
20124 --[no-]relax-branch [dis]allow out-of-range branches to be relaxed\n\
20125 -mignore-branch-isa accept invalid branches requiring an ISA mode switch\n\
20126 -mno-ignore-branch-isa reject invalid branches requiring an ISA mode switch\n\
20127 -mnan=ENCODING select an IEEE 754 NaN encoding convention, either of:\n"));
20128
20129 first = 1;
20130
20131 show (stream, "legacy", &column, &first);
20132 show (stream, "2008", &column, &first);
20133
20134 fputc ('\n', stream);
20135
20136 fprintf (stream, _("\
20137 -KPIC, -call_shared generate SVR4 position independent code\n\
20138 -call_nonpic generate non-PIC code that can operate with DSOs\n\
20139 -mvxworks-pic generate VxWorks position independent code\n\
20140 -non_shared do not generate code that can operate with DSOs\n\
20141 -xgot assume a 32 bit GOT\n\
20142 -mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
20143 -mshared, -mno-shared disable/enable .cpload optimization for\n\
20144 position dependent (non shared) code\n\
20145 -mabi=ABI create ABI conformant object file for:\n"));
20146
20147 first = 1;
20148
20149 show (stream, "32", &column, &first);
20150 show (stream, "o64", &column, &first);
20151 show (stream, "n32", &column, &first);
20152 show (stream, "64", &column, &first);
20153 show (stream, "eabi", &column, &first);
20154
20155 fputc ('\n', stream);
20156
20157 fprintf (stream, _("\
20158 -32 create o32 ABI object file%s\n"),
20159 MIPS_DEFAULT_ABI == O32_ABI ? _(" (default)") : "");
20160 fprintf (stream, _("\
20161 -n32 create n32 ABI object file%s\n"),
20162 MIPS_DEFAULT_ABI == N32_ABI ? _(" (default)") : "");
20163 fprintf (stream, _("\
20164 -64 create 64 ABI object file%s\n"),
20165 MIPS_DEFAULT_ABI == N64_ABI ? _(" (default)") : "");
20166 }
20167
20168 #ifdef TE_IRIX
20169 enum dwarf2_format
20170 mips_dwarf2_format (asection *sec ATTRIBUTE_UNUSED)
20171 {
20172 if (HAVE_64BIT_SYMBOLS)
20173 return dwarf2_format_64bit_irix;
20174 else
20175 return dwarf2_format_32bit;
20176 }
20177 #endif
20178
20179 int
20180 mips_dwarf2_addr_size (void)
20181 {
20182 if (HAVE_64BIT_OBJECTS)
20183 return 8;
20184 else
20185 return 4;
20186 }
20187
20188 /* Standard calling conventions leave the CFA at SP on entry. */
20189 void
20190 mips_cfi_frame_initial_instructions (void)
20191 {
20192 cfi_add_CFA_def_cfa_register (SP);
20193 }
20194
20195 int
20196 tc_mips_regname_to_dw2regnum (char *regname)
20197 {
20198 unsigned int regnum = -1;
20199 unsigned int reg;
20200
20201 if (reg_lookup (&regname, RTYPE_GP | RTYPE_NUM, &reg))
20202 regnum = reg;
20203
20204 return regnum;
20205 }
20206
20207 /* Implement CONVERT_SYMBOLIC_ATTRIBUTE.
20208 Given a symbolic attribute NAME, return the proper integer value.
20209 Returns -1 if the attribute is not known. */
20210
20211 int
20212 mips_convert_symbolic_attribute (const char *name)
20213 {
20214 static const struct
20215 {
20216 const char * name;
20217 const int tag;
20218 }
20219 attribute_table[] =
20220 {
20221 #define T(tag) {#tag, tag}
20222 T (Tag_GNU_MIPS_ABI_FP),
20223 T (Tag_GNU_MIPS_ABI_MSA),
20224 #undef T
20225 };
20226 unsigned int i;
20227
20228 if (name == NULL)
20229 return -1;
20230
20231 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
20232 if (streq (name, attribute_table[i].name))
20233 return attribute_table[i].tag;
20234
20235 return -1;
20236 }
20237
20238 void
20239 md_mips_end (void)
20240 {
20241 int fpabi = Val_GNU_MIPS_ABI_FP_ANY;
20242
20243 mips_emit_delays ();
20244 if (cur_proc_ptr)
20245 as_warn (_("missing .end at end of assembly"));
20246
20247 /* Just in case no code was emitted, do the consistency check. */
20248 file_mips_check_options ();
20249
20250 /* Set a floating-point ABI if the user did not. */
20251 if (obj_elf_seen_attribute (OBJ_ATTR_GNU, Tag_GNU_MIPS_ABI_FP))
20252 {
20253 /* Perform consistency checks on the floating-point ABI. */
20254 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
20255 Tag_GNU_MIPS_ABI_FP);
20256 if (fpabi != Val_GNU_MIPS_ABI_FP_ANY)
20257 check_fpabi (fpabi);
20258 }
20259 else
20260 {
20261 /* Soft-float gets precedence over single-float, the two options should
20262 not be used together so this should not matter. */
20263 if (file_mips_opts.soft_float == 1)
20264 fpabi = Val_GNU_MIPS_ABI_FP_SOFT;
20265 /* Single-float gets precedence over all double_float cases. */
20266 else if (file_mips_opts.single_float == 1)
20267 fpabi = Val_GNU_MIPS_ABI_FP_SINGLE;
20268 else
20269 {
20270 switch (file_mips_opts.fp)
20271 {
20272 case 32:
20273 if (file_mips_opts.gp == 32)
20274 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
20275 break;
20276 case 0:
20277 fpabi = Val_GNU_MIPS_ABI_FP_XX;
20278 break;
20279 case 64:
20280 if (file_mips_opts.gp == 32 && !file_mips_opts.oddspreg)
20281 fpabi = Val_GNU_MIPS_ABI_FP_64A;
20282 else if (file_mips_opts.gp == 32)
20283 fpabi = Val_GNU_MIPS_ABI_FP_64;
20284 else
20285 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
20286 break;
20287 }
20288 }
20289
20290 bfd_elf_add_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
20291 Tag_GNU_MIPS_ABI_FP, fpabi);
20292 }
20293 }
20294
20295 /* Returns the relocation type required for a particular CFI encoding. */
20296
20297 bfd_reloc_code_real_type
20298 mips_cfi_reloc_for_encoding (int encoding)
20299 {
20300 if (encoding == (DW_EH_PE_sdata4 | DW_EH_PE_pcrel))
20301 return BFD_RELOC_32_PCREL;
20302 else return BFD_RELOC_NONE;
20303 }
This page took 0.420886 seconds and 5 git commands to generate.