* config/tc-mips.c (macro)
[deliverable/binutils-gdb.git] / gas / config / tc-mips.c
1 /* tc-mips.c -- assemble code for a MIPS chip.
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5 Contributed by the OSF and Ralph Campbell.
6 Written by Keith Knowles and Ralph Campbell, working independently.
7 Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
8 Support.
9
10 This file is part of GAS.
11
12 GAS is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 3, or (at your option)
15 any later version.
16
17 GAS is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with GAS; see the file COPYING. If not, write to the Free
24 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
25 02110-1301, USA. */
26
27 #include "as.h"
28 #include "config.h"
29 #include "subsegs.h"
30 #include "safe-ctype.h"
31
32 #include "opcode/mips.h"
33 #include "itbl-ops.h"
34 #include "dwarf2dbg.h"
35 #include "dw2gencfi.h"
36
37 #ifdef DEBUG
38 #define DBG(x) printf x
39 #else
40 #define DBG(x)
41 #endif
42
43 #ifdef OBJ_MAYBE_ELF
44 /* Clean up namespace so we can include obj-elf.h too. */
45 static int mips_output_flavor (void);
46 static int mips_output_flavor (void) { return OUTPUT_FLAVOR; }
47 #undef OBJ_PROCESS_STAB
48 #undef OUTPUT_FLAVOR
49 #undef S_GET_ALIGN
50 #undef S_GET_SIZE
51 #undef S_SET_ALIGN
52 #undef S_SET_SIZE
53 #undef obj_frob_file
54 #undef obj_frob_file_after_relocs
55 #undef obj_frob_symbol
56 #undef obj_pop_insert
57 #undef obj_sec_sym_ok_for_reloc
58 #undef OBJ_COPY_SYMBOL_ATTRIBUTES
59
60 #include "obj-elf.h"
61 /* Fix any of them that we actually care about. */
62 #undef OUTPUT_FLAVOR
63 #define OUTPUT_FLAVOR mips_output_flavor()
64 #endif
65
66 #if defined (OBJ_ELF)
67 #include "elf/mips.h"
68 #endif
69
70 #ifndef ECOFF_DEBUGGING
71 #define NO_ECOFF_DEBUGGING
72 #define ECOFF_DEBUGGING 0
73 #endif
74
75 int mips_flag_mdebug = -1;
76
77 /* Control generation of .pdr sections. Off by default on IRIX: the native
78 linker doesn't know about and discards them, but relocations against them
79 remain, leading to rld crashes. */
80 #ifdef TE_IRIX
81 int mips_flag_pdr = FALSE;
82 #else
83 int mips_flag_pdr = TRUE;
84 #endif
85
86 #include "ecoff.h"
87
88 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
89 static char *mips_regmask_frag;
90 #endif
91
92 #define ZERO 0
93 #define ATREG 1
94 #define TREG 24
95 #define PIC_CALL_REG 25
96 #define KT0 26
97 #define KT1 27
98 #define GP 28
99 #define SP 29
100 #define FP 30
101 #define RA 31
102
103 #define ILLEGAL_REG (32)
104
105 #define AT mips_opts.at
106
107 /* Allow override of standard little-endian ECOFF format. */
108
109 #ifndef ECOFF_LITTLE_FORMAT
110 #define ECOFF_LITTLE_FORMAT "ecoff-littlemips"
111 #endif
112
113 extern int target_big_endian;
114
115 /* The name of the readonly data section. */
116 #define RDATA_SECTION_NAME (OUTPUT_FLAVOR == bfd_target_ecoff_flavour \
117 ? ".rdata" \
118 : OUTPUT_FLAVOR == bfd_target_coff_flavour \
119 ? ".rdata" \
120 : OUTPUT_FLAVOR == bfd_target_elf_flavour \
121 ? ".rodata" \
122 : (abort (), ""))
123
124 /* Information about an instruction, including its format, operands
125 and fixups. */
126 struct mips_cl_insn
127 {
128 /* The opcode's entry in mips_opcodes or mips16_opcodes. */
129 const struct mips_opcode *insn_mo;
130
131 /* True if this is a mips16 instruction and if we want the extended
132 form of INSN_MO. */
133 bfd_boolean use_extend;
134
135 /* The 16-bit extension instruction to use when USE_EXTEND is true. */
136 unsigned short extend;
137
138 /* The 16-bit or 32-bit bitstring of the instruction itself. This is
139 a copy of INSN_MO->match with the operands filled in. */
140 unsigned long insn_opcode;
141
142 /* The frag that contains the instruction. */
143 struct frag *frag;
144
145 /* The offset into FRAG of the first instruction byte. */
146 long where;
147
148 /* The relocs associated with the instruction, if any. */
149 fixS *fixp[3];
150
151 /* True if this entry cannot be moved from its current position. */
152 unsigned int fixed_p : 1;
153
154 /* True if this instruction occurred in a .set noreorder block. */
155 unsigned int noreorder_p : 1;
156
157 /* True for mips16 instructions that jump to an absolute address. */
158 unsigned int mips16_absolute_jump_p : 1;
159 };
160
161 /* The ABI to use. */
162 enum mips_abi_level
163 {
164 NO_ABI = 0,
165 O32_ABI,
166 O64_ABI,
167 N32_ABI,
168 N64_ABI,
169 EABI_ABI
170 };
171
172 /* MIPS ABI we are using for this output file. */
173 static enum mips_abi_level mips_abi = NO_ABI;
174
175 /* Whether or not we have code that can call pic code. */
176 int mips_abicalls = FALSE;
177
178 /* Whether or not we have code which can be put into a shared
179 library. */
180 static bfd_boolean mips_in_shared = TRUE;
181
182 /* This is the set of options which may be modified by the .set
183 pseudo-op. We use a struct so that .set push and .set pop are more
184 reliable. */
185
186 struct mips_set_options
187 {
188 /* MIPS ISA (Instruction Set Architecture) level. This is set to -1
189 if it has not been initialized. Changed by `.set mipsN', and the
190 -mipsN command line option, and the default CPU. */
191 int isa;
192 /* Enabled Application Specific Extensions (ASEs). These are set to -1
193 if they have not been initialized. Changed by `.set <asename>', by
194 command line options, and based on the default architecture. */
195 int ase_mips3d;
196 int ase_mdmx;
197 int ase_smartmips;
198 int ase_dsp;
199 int ase_dspr2;
200 int ase_mt;
201 /* Whether we are assembling for the mips16 processor. 0 if we are
202 not, 1 if we are, and -1 if the value has not been initialized.
203 Changed by `.set mips16' and `.set nomips16', and the -mips16 and
204 -nomips16 command line options, and the default CPU. */
205 int mips16;
206 /* Non-zero if we should not reorder instructions. Changed by `.set
207 reorder' and `.set noreorder'. */
208 int noreorder;
209 /* Non-zero if we should not permit the register designated "assembler
210 temporary" to be used in instructions. The value is the register
211 number, normally $at ($1). Changed by `.set at=REG', `.set noat'
212 (same as `.set at=$0') and `.set at' (same as `.set at=$1'). */
213 unsigned int at;
214 /* Non-zero if we should warn when a macro instruction expands into
215 more than one machine instruction. Changed by `.set nomacro' and
216 `.set macro'. */
217 int warn_about_macros;
218 /* Non-zero if we should not move instructions. Changed by `.set
219 move', `.set volatile', `.set nomove', and `.set novolatile'. */
220 int nomove;
221 /* Non-zero if we should not optimize branches by moving the target
222 of the branch into the delay slot. Actually, we don't perform
223 this optimization anyhow. Changed by `.set bopt' and `.set
224 nobopt'. */
225 int nobopt;
226 /* Non-zero if we should not autoextend mips16 instructions.
227 Changed by `.set autoextend' and `.set noautoextend'. */
228 int noautoextend;
229 /* Restrict general purpose registers and floating point registers
230 to 32 bit. This is initially determined when -mgp32 or -mfp32
231 is passed but can changed if the assembler code uses .set mipsN. */
232 int gp32;
233 int fp32;
234 /* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
235 command line option, and the default CPU. */
236 int arch;
237 /* True if ".set sym32" is in effect. */
238 bfd_boolean sym32;
239 /* True if floating-point operations are not allowed. Changed by .set
240 softfloat or .set hardfloat, by command line options -msoft-float or
241 -mhard-float. The default is false. */
242 bfd_boolean soft_float;
243
244 /* True if only single-precision floating-point operations are allowed.
245 Changed by .set singlefloat or .set doublefloat, command-line options
246 -msingle-float or -mdouble-float. The default is false. */
247 bfd_boolean single_float;
248 };
249
250 /* This is the struct we use to hold the current set of options. Note
251 that we must set the isa field to ISA_UNKNOWN and the ASE fields to
252 -1 to indicate that they have not been initialized. */
253
254 /* True if -mgp32 was passed. */
255 static int file_mips_gp32 = -1;
256
257 /* True if -mfp32 was passed. */
258 static int file_mips_fp32 = -1;
259
260 /* 1 if -msoft-float, 0 if -mhard-float. The default is 0. */
261 static int file_mips_soft_float = 0;
262
263 /* 1 if -msingle-float, 0 if -mdouble-float. The default is 0. */
264 static int file_mips_single_float = 0;
265
266 static struct mips_set_options mips_opts =
267 {
268 /* isa */ ISA_UNKNOWN, /* ase_mips3d */ -1, /* ase_mdmx */ -1,
269 /* ase_smartmips */ 0, /* ase_dsp */ -1, /* ase_dspr2 */ -1, /* ase_mt */ -1,
270 /* mips16 */ -1, /* noreorder */ 0, /* at */ ATREG,
271 /* warn_about_macros */ 0, /* nomove */ 0, /* nobopt */ 0,
272 /* noautoextend */ 0, /* gp32 */ 0, /* fp32 */ 0, /* arch */ CPU_UNKNOWN,
273 /* sym32 */ FALSE, /* soft_float */ FALSE, /* single_float */ FALSE
274 };
275
276 /* These variables are filled in with the masks of registers used.
277 The object format code reads them and puts them in the appropriate
278 place. */
279 unsigned long mips_gprmask;
280 unsigned long mips_cprmask[4];
281
282 /* MIPS ISA we are using for this output file. */
283 static int file_mips_isa = ISA_UNKNOWN;
284
285 /* True if -mips16 was passed or implied by arguments passed on the
286 command line (e.g., by -march). */
287 static int file_ase_mips16;
288
289 #define ISA_SUPPORTS_MIPS16E (mips_opts.isa == ISA_MIPS32 \
290 || mips_opts.isa == ISA_MIPS32R2 \
291 || mips_opts.isa == ISA_MIPS64 \
292 || mips_opts.isa == ISA_MIPS64R2)
293
294 /* True if we want to create R_MIPS_JALR for jalr $25. */
295 #ifdef TE_IRIX
296 #define MIPS_JALR_HINT_P(EXPR) HAVE_NEWABI
297 #else
298 /* As a GNU extension, we use R_MIPS_JALR for o32 too. However,
299 because there's no place for any addend, the only acceptable
300 expression is a bare symbol. */
301 #define MIPS_JALR_HINT_P(EXPR) \
302 (!HAVE_IN_PLACE_ADDENDS \
303 || ((EXPR)->X_op == O_symbol && (EXPR)->X_add_number == 0))
304 #endif
305
306 /* True if -mips3d was passed or implied by arguments passed on the
307 command line (e.g., by -march). */
308 static int file_ase_mips3d;
309
310 /* True if -mdmx was passed or implied by arguments passed on the
311 command line (e.g., by -march). */
312 static int file_ase_mdmx;
313
314 /* True if -msmartmips was passed or implied by arguments passed on the
315 command line (e.g., by -march). */
316 static int file_ase_smartmips;
317
318 #define ISA_SUPPORTS_SMARTMIPS (mips_opts.isa == ISA_MIPS32 \
319 || mips_opts.isa == ISA_MIPS32R2)
320
321 /* True if -mdsp was passed or implied by arguments passed on the
322 command line (e.g., by -march). */
323 static int file_ase_dsp;
324
325 #define ISA_SUPPORTS_DSP_ASE (mips_opts.isa == ISA_MIPS32R2 \
326 || mips_opts.isa == ISA_MIPS64R2)
327
328 #define ISA_SUPPORTS_DSP64_ASE (mips_opts.isa == ISA_MIPS64R2)
329
330 /* True if -mdspr2 was passed or implied by arguments passed on the
331 command line (e.g., by -march). */
332 static int file_ase_dspr2;
333
334 #define ISA_SUPPORTS_DSPR2_ASE (mips_opts.isa == ISA_MIPS32R2 \
335 || mips_opts.isa == ISA_MIPS64R2)
336
337 /* True if -mmt was passed or implied by arguments passed on the
338 command line (e.g., by -march). */
339 static int file_ase_mt;
340
341 #define ISA_SUPPORTS_MT_ASE (mips_opts.isa == ISA_MIPS32R2 \
342 || mips_opts.isa == ISA_MIPS64R2)
343
344 /* The argument of the -march= flag. The architecture we are assembling. */
345 static int file_mips_arch = CPU_UNKNOWN;
346 static const char *mips_arch_string;
347
348 /* The argument of the -mtune= flag. The architecture for which we
349 are optimizing. */
350 static int mips_tune = CPU_UNKNOWN;
351 static const char *mips_tune_string;
352
353 /* True when generating 32-bit code for a 64-bit processor. */
354 static int mips_32bitmode = 0;
355
356 /* True if the given ABI requires 32-bit registers. */
357 #define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
358
359 /* Likewise 64-bit registers. */
360 #define ABI_NEEDS_64BIT_REGS(ABI) \
361 ((ABI) == N32_ABI \
362 || (ABI) == N64_ABI \
363 || (ABI) == O64_ABI)
364
365 /* Return true if ISA supports 64 bit wide gp registers. */
366 #define ISA_HAS_64BIT_REGS(ISA) \
367 ((ISA) == ISA_MIPS3 \
368 || (ISA) == ISA_MIPS4 \
369 || (ISA) == ISA_MIPS5 \
370 || (ISA) == ISA_MIPS64 \
371 || (ISA) == ISA_MIPS64R2)
372
373 /* Return true if ISA supports 64 bit wide float registers. */
374 #define ISA_HAS_64BIT_FPRS(ISA) \
375 ((ISA) == ISA_MIPS3 \
376 || (ISA) == ISA_MIPS4 \
377 || (ISA) == ISA_MIPS5 \
378 || (ISA) == ISA_MIPS32R2 \
379 || (ISA) == ISA_MIPS64 \
380 || (ISA) == ISA_MIPS64R2)
381
382 /* Return true if ISA supports 64-bit right rotate (dror et al.)
383 instructions. */
384 #define ISA_HAS_DROR(ISA) \
385 ((ISA) == ISA_MIPS64R2)
386
387 /* Return true if ISA supports 32-bit right rotate (ror et al.)
388 instructions. */
389 #define ISA_HAS_ROR(ISA) \
390 ((ISA) == ISA_MIPS32R2 \
391 || (ISA) == ISA_MIPS64R2 \
392 || mips_opts.ase_smartmips)
393
394 /* Return true if ISA supports single-precision floats in odd registers. */
395 #define ISA_HAS_ODD_SINGLE_FPR(ISA) \
396 ((ISA) == ISA_MIPS32 \
397 || (ISA) == ISA_MIPS32R2 \
398 || (ISA) == ISA_MIPS64 \
399 || (ISA) == ISA_MIPS64R2)
400
401 /* Return true if ISA supports move to/from high part of a 64-bit
402 floating-point register. */
403 #define ISA_HAS_MXHC1(ISA) \
404 ((ISA) == ISA_MIPS32R2 \
405 || (ISA) == ISA_MIPS64R2)
406
407 #define HAVE_32BIT_GPRS \
408 (mips_opts.gp32 || !ISA_HAS_64BIT_REGS (mips_opts.isa))
409
410 #define HAVE_32BIT_FPRS \
411 (mips_opts.fp32 || !ISA_HAS_64BIT_FPRS (mips_opts.isa))
412
413 #define HAVE_64BIT_GPRS (!HAVE_32BIT_GPRS)
414 #define HAVE_64BIT_FPRS (!HAVE_32BIT_FPRS)
415
416 #define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
417
418 #define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
419
420 /* True if relocations are stored in-place. */
421 #define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI)
422
423 /* The ABI-derived address size. */
424 #define HAVE_64BIT_ADDRESSES \
425 (HAVE_64BIT_GPRS && (mips_abi == EABI_ABI || mips_abi == N64_ABI))
426 #define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES)
427
428 /* The size of symbolic constants (i.e., expressions of the form
429 "SYMBOL" or "SYMBOL + OFFSET"). */
430 #define HAVE_32BIT_SYMBOLS \
431 (HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32)
432 #define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS)
433
434 /* Addresses are loaded in different ways, depending on the address size
435 in use. The n32 ABI Documentation also mandates the use of additions
436 with overflow checking, but existing implementations don't follow it. */
437 #define ADDRESS_ADD_INSN \
438 (HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
439
440 #define ADDRESS_ADDI_INSN \
441 (HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
442
443 #define ADDRESS_LOAD_INSN \
444 (HAVE_32BIT_ADDRESSES ? "lw" : "ld")
445
446 #define ADDRESS_STORE_INSN \
447 (HAVE_32BIT_ADDRESSES ? "sw" : "sd")
448
449 /* Return true if the given CPU supports the MIPS16 ASE. */
450 #define CPU_HAS_MIPS16(cpu) \
451 (strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0 \
452 || strncmp (TARGET_CANONICAL, "mips-lsi-elf", sizeof ("mips-lsi-elf") - 1) == 0)
453
454 /* True if CPU has a dror instruction. */
455 #define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
456
457 /* True if CPU has a ror instruction. */
458 #define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU)
459
460 /* True if CPU has seq/sne and seqi/snei instructions. */
461 #define CPU_HAS_SEQ(CPU) ((CPU) == CPU_OCTEON)
462
463 /* True if CPU does not implement the all the coprocessor insns. For these
464 CPUs only those COP insns are accepted that are explicitly marked to be
465 available on the CPU. ISA membership for COP insns is ignored. */
466 #define NO_ISA_COP(CPU) ((CPU) == CPU_OCTEON)
467
468 /* True if mflo and mfhi can be immediately followed by instructions
469 which write to the HI and LO registers.
470
471 According to MIPS specifications, MIPS ISAs I, II, and III need
472 (at least) two instructions between the reads of HI/LO and
473 instructions which write them, and later ISAs do not. Contradicting
474 the MIPS specifications, some MIPS IV processor user manuals (e.g.
475 the UM for the NEC Vr5000) document needing the instructions between
476 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
477 MIPS64 and later ISAs to have the interlocks, plus any specific
478 earlier-ISA CPUs for which CPU documentation declares that the
479 instructions are really interlocked. */
480 #define hilo_interlocks \
481 (mips_opts.isa == ISA_MIPS32 \
482 || mips_opts.isa == ISA_MIPS32R2 \
483 || mips_opts.isa == ISA_MIPS64 \
484 || mips_opts.isa == ISA_MIPS64R2 \
485 || mips_opts.arch == CPU_R4010 \
486 || mips_opts.arch == CPU_R10000 \
487 || mips_opts.arch == CPU_R12000 \
488 || mips_opts.arch == CPU_R14000 \
489 || mips_opts.arch == CPU_R16000 \
490 || mips_opts.arch == CPU_RM7000 \
491 || mips_opts.arch == CPU_VR5500 \
492 )
493
494 /* Whether the processor uses hardware interlocks to protect reads
495 from the GPRs after they are loaded from memory, and thus does not
496 require nops to be inserted. This applies to instructions marked
497 INSN_LOAD_MEMORY_DELAY. These nops are only required at MIPS ISA
498 level I. */
499 #define gpr_interlocks \
500 (mips_opts.isa != ISA_MIPS1 \
501 || mips_opts.arch == CPU_R3900)
502
503 /* Whether the processor uses hardware interlocks to avoid delays
504 required by coprocessor instructions, and thus does not require
505 nops to be inserted. This applies to instructions marked
506 INSN_LOAD_COPROC_DELAY, INSN_COPROC_MOVE_DELAY, and to delays
507 between instructions marked INSN_WRITE_COND_CODE and ones marked
508 INSN_READ_COND_CODE. These nops are only required at MIPS ISA
509 levels I, II, and III. */
510 /* Itbl support may require additional care here. */
511 #define cop_interlocks \
512 ((mips_opts.isa != ISA_MIPS1 \
513 && mips_opts.isa != ISA_MIPS2 \
514 && mips_opts.isa != ISA_MIPS3) \
515 || mips_opts.arch == CPU_R4300 \
516 )
517
518 /* Whether the processor uses hardware interlocks to protect reads
519 from coprocessor registers after they are loaded from memory, and
520 thus does not require nops to be inserted. This applies to
521 instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
522 requires at MIPS ISA level I. */
523 #define cop_mem_interlocks (mips_opts.isa != ISA_MIPS1)
524
525 /* Is this a mfhi or mflo instruction? */
526 #define MF_HILO_INSN(PINFO) \
527 ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
528
529 /* Returns true for a (non floating-point) coprocessor instruction. Reading
530 or writing the condition code is only possible on the coprocessors and
531 these insns are not marked with INSN_COP. Thus for these insns use the
532 condition-code flags. */
533 #define COP_INSN(PINFO) \
534 (PINFO != INSN_MACRO \
535 && ((PINFO) & (FP_S | FP_D)) == 0 \
536 && ((PINFO) & (INSN_COP | INSN_READ_COND_CODE | INSN_WRITE_COND_CODE)))
537
538 /* MIPS PIC level. */
539
540 enum mips_pic_level mips_pic;
541
542 /* 1 if we should generate 32 bit offsets from the $gp register in
543 SVR4_PIC mode. Currently has no meaning in other modes. */
544 static int mips_big_got = 0;
545
546 /* 1 if trap instructions should used for overflow rather than break
547 instructions. */
548 static int mips_trap = 0;
549
550 /* 1 if double width floating point constants should not be constructed
551 by assembling two single width halves into two single width floating
552 point registers which just happen to alias the double width destination
553 register. On some architectures this aliasing can be disabled by a bit
554 in the status register, and the setting of this bit cannot be determined
555 automatically at assemble time. */
556 static int mips_disable_float_construction;
557
558 /* Non-zero if any .set noreorder directives were used. */
559
560 static int mips_any_noreorder;
561
562 /* Non-zero if nops should be inserted when the register referenced in
563 an mfhi/mflo instruction is read in the next two instructions. */
564 static int mips_7000_hilo_fix;
565
566 /* The size of objects in the small data section. */
567 static unsigned int g_switch_value = 8;
568 /* Whether the -G option was used. */
569 static int g_switch_seen = 0;
570
571 #define N_RMASK 0xc4
572 #define N_VFP 0xd4
573
574 /* If we can determine in advance that GP optimization won't be
575 possible, we can skip the relaxation stuff that tries to produce
576 GP-relative references. This makes delay slot optimization work
577 better.
578
579 This function can only provide a guess, but it seems to work for
580 gcc output. It needs to guess right for gcc, otherwise gcc
581 will put what it thinks is a GP-relative instruction in a branch
582 delay slot.
583
584 I don't know if a fix is needed for the SVR4_PIC mode. I've only
585 fixed it for the non-PIC mode. KR 95/04/07 */
586 static int nopic_need_relax (symbolS *, int);
587
588 /* handle of the OPCODE hash table */
589 static struct hash_control *op_hash = NULL;
590
591 /* The opcode hash table we use for the mips16. */
592 static struct hash_control *mips16_op_hash = NULL;
593
594 /* This array holds the chars that always start a comment. If the
595 pre-processor is disabled, these aren't very useful */
596 const char comment_chars[] = "#";
597
598 /* This array holds the chars that only start a comment at the beginning of
599 a line. If the line seems to have the form '# 123 filename'
600 .line and .file directives will appear in the pre-processed output */
601 /* Note that input_file.c hand checks for '#' at the beginning of the
602 first line of the input file. This is because the compiler outputs
603 #NO_APP at the beginning of its output. */
604 /* Also note that C style comments are always supported. */
605 const char line_comment_chars[] = "#";
606
607 /* This array holds machine specific line separator characters. */
608 const char line_separator_chars[] = ";";
609
610 /* Chars that can be used to separate mant from exp in floating point nums */
611 const char EXP_CHARS[] = "eE";
612
613 /* Chars that mean this number is a floating point constant */
614 /* As in 0f12.456 */
615 /* or 0d1.2345e12 */
616 const char FLT_CHARS[] = "rRsSfFdDxXpP";
617
618 /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
619 changed in read.c . Ideally it shouldn't have to know about it at all,
620 but nothing is ideal around here.
621 */
622
623 static char *insn_error;
624
625 static int auto_align = 1;
626
627 /* When outputting SVR4 PIC code, the assembler needs to know the
628 offset in the stack frame from which to restore the $gp register.
629 This is set by the .cprestore pseudo-op, and saved in this
630 variable. */
631 static offsetT mips_cprestore_offset = -1;
632
633 /* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
634 more optimizations, it can use a register value instead of a memory-saved
635 offset and even an other register than $gp as global pointer. */
636 static offsetT mips_cpreturn_offset = -1;
637 static int mips_cpreturn_register = -1;
638 static int mips_gp_register = GP;
639 static int mips_gprel_offset = 0;
640
641 /* Whether mips_cprestore_offset has been set in the current function
642 (or whether it has already been warned about, if not). */
643 static int mips_cprestore_valid = 0;
644
645 /* This is the register which holds the stack frame, as set by the
646 .frame pseudo-op. This is needed to implement .cprestore. */
647 static int mips_frame_reg = SP;
648
649 /* Whether mips_frame_reg has been set in the current function
650 (or whether it has already been warned about, if not). */
651 static int mips_frame_reg_valid = 0;
652
653 /* To output NOP instructions correctly, we need to keep information
654 about the previous two instructions. */
655
656 /* Whether we are optimizing. The default value of 2 means to remove
657 unneeded NOPs and swap branch instructions when possible. A value
658 of 1 means to not swap branches. A value of 0 means to always
659 insert NOPs. */
660 static int mips_optimize = 2;
661
662 /* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
663 equivalent to seeing no -g option at all. */
664 static int mips_debug = 0;
665
666 /* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */
667 #define MAX_VR4130_NOPS 4
668
669 /* The maximum number of NOPs needed to fill delay slots. */
670 #define MAX_DELAY_NOPS 2
671
672 /* The maximum number of NOPs needed for any purpose. */
673 #define MAX_NOPS 4
674
675 /* A list of previous instructions, with index 0 being the most recent.
676 We need to look back MAX_NOPS instructions when filling delay slots
677 or working around processor errata. We need to look back one
678 instruction further if we're thinking about using history[0] to
679 fill a branch delay slot. */
680 static struct mips_cl_insn history[1 + MAX_NOPS];
681
682 /* Nop instructions used by emit_nop. */
683 static struct mips_cl_insn nop_insn, mips16_nop_insn;
684
685 /* The appropriate nop for the current mode. */
686 #define NOP_INSN (mips_opts.mips16 ? &mips16_nop_insn : &nop_insn)
687
688 /* If this is set, it points to a frag holding nop instructions which
689 were inserted before the start of a noreorder section. If those
690 nops turn out to be unnecessary, the size of the frag can be
691 decreased. */
692 static fragS *prev_nop_frag;
693
694 /* The number of nop instructions we created in prev_nop_frag. */
695 static int prev_nop_frag_holds;
696
697 /* The number of nop instructions that we know we need in
698 prev_nop_frag. */
699 static int prev_nop_frag_required;
700
701 /* The number of instructions we've seen since prev_nop_frag. */
702 static int prev_nop_frag_since;
703
704 /* For ECOFF and ELF, relocations against symbols are done in two
705 parts, with a HI relocation and a LO relocation. Each relocation
706 has only 16 bits of space to store an addend. This means that in
707 order for the linker to handle carries correctly, it must be able
708 to locate both the HI and the LO relocation. This means that the
709 relocations must appear in order in the relocation table.
710
711 In order to implement this, we keep track of each unmatched HI
712 relocation. We then sort them so that they immediately precede the
713 corresponding LO relocation. */
714
715 struct mips_hi_fixup
716 {
717 /* Next HI fixup. */
718 struct mips_hi_fixup *next;
719 /* This fixup. */
720 fixS *fixp;
721 /* The section this fixup is in. */
722 segT seg;
723 };
724
725 /* The list of unmatched HI relocs. */
726
727 static struct mips_hi_fixup *mips_hi_fixup_list;
728
729 /* The frag containing the last explicit relocation operator.
730 Null if explicit relocations have not been used. */
731
732 static fragS *prev_reloc_op_frag;
733
734 /* Map normal MIPS register numbers to mips16 register numbers. */
735
736 #define X ILLEGAL_REG
737 static const int mips32_to_16_reg_map[] =
738 {
739 X, X, 2, 3, 4, 5, 6, 7,
740 X, X, X, X, X, X, X, X,
741 0, 1, X, X, X, X, X, X,
742 X, X, X, X, X, X, X, X
743 };
744 #undef X
745
746 /* Map mips16 register numbers to normal MIPS register numbers. */
747
748 static const unsigned int mips16_to_32_reg_map[] =
749 {
750 16, 17, 2, 3, 4, 5, 6, 7
751 };
752
753 /* Classifies the kind of instructions we're interested in when
754 implementing -mfix-vr4120. */
755 enum fix_vr4120_class
756 {
757 FIX_VR4120_MACC,
758 FIX_VR4120_DMACC,
759 FIX_VR4120_MULT,
760 FIX_VR4120_DMULT,
761 FIX_VR4120_DIV,
762 FIX_VR4120_MTHILO,
763 NUM_FIX_VR4120_CLASSES
764 };
765
766 /* ...likewise -mfix-loongson2f-jump. */
767 static bfd_boolean mips_fix_loongson2f_jump;
768
769 /* ...likewise -mfix-loongson2f-nop. */
770 static bfd_boolean mips_fix_loongson2f_nop;
771
772 /* True if -mfix-loongson2f-nop or -mfix-loongson2f-jump passed. */
773 static bfd_boolean mips_fix_loongson2f;
774
775 /* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if
776 there must be at least one other instruction between an instruction
777 of type X and an instruction of type Y. */
778 static unsigned int vr4120_conflicts[NUM_FIX_VR4120_CLASSES];
779
780 /* True if -mfix-vr4120 is in force. */
781 static int mips_fix_vr4120;
782
783 /* ...likewise -mfix-vr4130. */
784 static int mips_fix_vr4130;
785
786 /* ...likewise -mfix-24k. */
787 static int mips_fix_24k;
788
789 /* ...likewise -mfix-cn63xxp1 */
790 static bfd_boolean mips_fix_cn63xxp1;
791
792 /* We don't relax branches by default, since this causes us to expand
793 `la .l2 - .l1' if there's a branch between .l1 and .l2, because we
794 fail to compute the offset before expanding the macro to the most
795 efficient expansion. */
796
797 static int mips_relax_branch;
798 \f
799 /* The expansion of many macros depends on the type of symbol that
800 they refer to. For example, when generating position-dependent code,
801 a macro that refers to a symbol may have two different expansions,
802 one which uses GP-relative addresses and one which uses absolute
803 addresses. When generating SVR4-style PIC, a macro may have
804 different expansions for local and global symbols.
805
806 We handle these situations by generating both sequences and putting
807 them in variant frags. In position-dependent code, the first sequence
808 will be the GP-relative one and the second sequence will be the
809 absolute one. In SVR4 PIC, the first sequence will be for global
810 symbols and the second will be for local symbols.
811
812 The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
813 SECOND are the lengths of the two sequences in bytes. These fields
814 can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
815 the subtype has the following flags:
816
817 RELAX_USE_SECOND
818 Set if it has been decided that we should use the second
819 sequence instead of the first.
820
821 RELAX_SECOND_LONGER
822 Set in the first variant frag if the macro's second implementation
823 is longer than its first. This refers to the macro as a whole,
824 not an individual relaxation.
825
826 RELAX_NOMACRO
827 Set in the first variant frag if the macro appeared in a .set nomacro
828 block and if one alternative requires a warning but the other does not.
829
830 RELAX_DELAY_SLOT
831 Like RELAX_NOMACRO, but indicates that the macro appears in a branch
832 delay slot.
833
834 The frag's "opcode" points to the first fixup for relaxable code.
835
836 Relaxable macros are generated using a sequence such as:
837
838 relax_start (SYMBOL);
839 ... generate first expansion ...
840 relax_switch ();
841 ... generate second expansion ...
842 relax_end ();
843
844 The code and fixups for the unwanted alternative are discarded
845 by md_convert_frag. */
846 #define RELAX_ENCODE(FIRST, SECOND) (((FIRST) << 8) | (SECOND))
847
848 #define RELAX_FIRST(X) (((X) >> 8) & 0xff)
849 #define RELAX_SECOND(X) ((X) & 0xff)
850 #define RELAX_USE_SECOND 0x10000
851 #define RELAX_SECOND_LONGER 0x20000
852 #define RELAX_NOMACRO 0x40000
853 #define RELAX_DELAY_SLOT 0x80000
854
855 /* Branch without likely bit. If label is out of range, we turn:
856
857 beq reg1, reg2, label
858 delay slot
859
860 into
861
862 bne reg1, reg2, 0f
863 nop
864 j label
865 0: delay slot
866
867 with the following opcode replacements:
868
869 beq <-> bne
870 blez <-> bgtz
871 bltz <-> bgez
872 bc1f <-> bc1t
873
874 bltzal <-> bgezal (with jal label instead of j label)
875
876 Even though keeping the delay slot instruction in the delay slot of
877 the branch would be more efficient, it would be very tricky to do
878 correctly, because we'd have to introduce a variable frag *after*
879 the delay slot instruction, and expand that instead. Let's do it
880 the easy way for now, even if the branch-not-taken case now costs
881 one additional instruction. Out-of-range branches are not supposed
882 to be common, anyway.
883
884 Branch likely. If label is out of range, we turn:
885
886 beql reg1, reg2, label
887 delay slot (annulled if branch not taken)
888
889 into
890
891 beql reg1, reg2, 1f
892 nop
893 beql $0, $0, 2f
894 nop
895 1: j[al] label
896 delay slot (executed only if branch taken)
897 2:
898
899 It would be possible to generate a shorter sequence by losing the
900 likely bit, generating something like:
901
902 bne reg1, reg2, 0f
903 nop
904 j[al] label
905 delay slot (executed only if branch taken)
906 0:
907
908 beql -> bne
909 bnel -> beq
910 blezl -> bgtz
911 bgtzl -> blez
912 bltzl -> bgez
913 bgezl -> bltz
914 bc1fl -> bc1t
915 bc1tl -> bc1f
916
917 bltzall -> bgezal (with jal label instead of j label)
918 bgezall -> bltzal (ditto)
919
920
921 but it's not clear that it would actually improve performance. */
922 #define RELAX_BRANCH_ENCODE(uncond, likely, link, toofar) \
923 ((relax_substateT) \
924 (0xc0000000 \
925 | ((toofar) ? 1 : 0) \
926 | ((link) ? 2 : 0) \
927 | ((likely) ? 4 : 0) \
928 | ((uncond) ? 8 : 0)))
929 #define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
930 #define RELAX_BRANCH_UNCOND(i) (((i) & 8) != 0)
931 #define RELAX_BRANCH_LIKELY(i) (((i) & 4) != 0)
932 #define RELAX_BRANCH_LINK(i) (((i) & 2) != 0)
933 #define RELAX_BRANCH_TOOFAR(i) (((i) & 1) != 0)
934
935 /* For mips16 code, we use an entirely different form of relaxation.
936 mips16 supports two versions of most instructions which take
937 immediate values: a small one which takes some small value, and a
938 larger one which takes a 16 bit value. Since branches also follow
939 this pattern, relaxing these values is required.
940
941 We can assemble both mips16 and normal MIPS code in a single
942 object. Therefore, we need to support this type of relaxation at
943 the same time that we support the relaxation described above. We
944 use the high bit of the subtype field to distinguish these cases.
945
946 The information we store for this type of relaxation is the
947 argument code found in the opcode file for this relocation, whether
948 the user explicitly requested a small or extended form, and whether
949 the relocation is in a jump or jal delay slot. That tells us the
950 size of the value, and how it should be stored. We also store
951 whether the fragment is considered to be extended or not. We also
952 store whether this is known to be a branch to a different section,
953 whether we have tried to relax this frag yet, and whether we have
954 ever extended a PC relative fragment because of a shift count. */
955 #define RELAX_MIPS16_ENCODE(type, small, ext, dslot, jal_dslot) \
956 (0x80000000 \
957 | ((type) & 0xff) \
958 | ((small) ? 0x100 : 0) \
959 | ((ext) ? 0x200 : 0) \
960 | ((dslot) ? 0x400 : 0) \
961 | ((jal_dslot) ? 0x800 : 0))
962 #define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
963 #define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
964 #define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x100) != 0)
965 #define RELAX_MIPS16_USER_EXT(i) (((i) & 0x200) != 0)
966 #define RELAX_MIPS16_DSLOT(i) (((i) & 0x400) != 0)
967 #define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x800) != 0)
968 #define RELAX_MIPS16_EXTENDED(i) (((i) & 0x1000) != 0)
969 #define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x1000)
970 #define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) &~ 0x1000)
971 #define RELAX_MIPS16_LONG_BRANCH(i) (((i) & 0x2000) != 0)
972 #define RELAX_MIPS16_MARK_LONG_BRANCH(i) ((i) | 0x2000)
973 #define RELAX_MIPS16_CLEAR_LONG_BRANCH(i) ((i) &~ 0x2000)
974
975 /* Is the given value a sign-extended 32-bit value? */
976 #define IS_SEXT_32BIT_NUM(x) \
977 (((x) &~ (offsetT) 0x7fffffff) == 0 \
978 || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
979
980 /* Is the given value a sign-extended 16-bit value? */
981 #define IS_SEXT_16BIT_NUM(x) \
982 (((x) &~ (offsetT) 0x7fff) == 0 \
983 || (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
984
985 /* Is the given value a zero-extended 32-bit value? Or a negated one? */
986 #define IS_ZEXT_32BIT_NUM(x) \
987 (((x) &~ (offsetT) 0xffffffff) == 0 \
988 || (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))
989
990 /* Replace bits MASK << SHIFT of STRUCT with the equivalent bits in
991 VALUE << SHIFT. VALUE is evaluated exactly once. */
992 #define INSERT_BITS(STRUCT, VALUE, MASK, SHIFT) \
993 (STRUCT) = (((STRUCT) & ~((MASK) << (SHIFT))) \
994 | (((VALUE) & (MASK)) << (SHIFT)))
995
996 /* Extract bits MASK << SHIFT from STRUCT and shift them right
997 SHIFT places. */
998 #define EXTRACT_BITS(STRUCT, MASK, SHIFT) \
999 (((STRUCT) >> (SHIFT)) & (MASK))
1000
1001 /* Change INSN's opcode so that the operand given by FIELD has value VALUE.
1002 INSN is a mips_cl_insn structure and VALUE is evaluated exactly once.
1003
1004 include/opcode/mips.h specifies operand fields using the macros
1005 OP_MASK_<FIELD> and OP_SH_<FIELD>. The MIPS16 equivalents start
1006 with "MIPS16OP" instead of "OP". */
1007 #define INSERT_OPERAND(FIELD, INSN, VALUE) \
1008 INSERT_BITS ((INSN).insn_opcode, VALUE, OP_MASK_##FIELD, OP_SH_##FIELD)
1009 #define MIPS16_INSERT_OPERAND(FIELD, INSN, VALUE) \
1010 INSERT_BITS ((INSN).insn_opcode, VALUE, \
1011 MIPS16OP_MASK_##FIELD, MIPS16OP_SH_##FIELD)
1012
1013 /* Extract the operand given by FIELD from mips_cl_insn INSN. */
1014 #define EXTRACT_OPERAND(FIELD, INSN) \
1015 EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD)
1016 #define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \
1017 EXTRACT_BITS ((INSN).insn_opcode, \
1018 MIPS16OP_MASK_##FIELD, \
1019 MIPS16OP_SH_##FIELD)
1020 \f
1021 /* Global variables used when generating relaxable macros. See the
1022 comment above RELAX_ENCODE for more details about how relaxation
1023 is used. */
1024 static struct {
1025 /* 0 if we're not emitting a relaxable macro.
1026 1 if we're emitting the first of the two relaxation alternatives.
1027 2 if we're emitting the second alternative. */
1028 int sequence;
1029
1030 /* The first relaxable fixup in the current frag. (In other words,
1031 the first fixup that refers to relaxable code.) */
1032 fixS *first_fixup;
1033
1034 /* sizes[0] says how many bytes of the first alternative are stored in
1035 the current frag. Likewise sizes[1] for the second alternative. */
1036 unsigned int sizes[2];
1037
1038 /* The symbol on which the choice of sequence depends. */
1039 symbolS *symbol;
1040 } mips_relax;
1041 \f
1042 /* Global variables used to decide whether a macro needs a warning. */
1043 static struct {
1044 /* True if the macro is in a branch delay slot. */
1045 bfd_boolean delay_slot_p;
1046
1047 /* For relaxable macros, sizes[0] is the length of the first alternative
1048 in bytes and sizes[1] is the length of the second alternative.
1049 For non-relaxable macros, both elements give the length of the
1050 macro in bytes. */
1051 unsigned int sizes[2];
1052
1053 /* The first variant frag for this macro. */
1054 fragS *first_frag;
1055 } mips_macro_warning;
1056 \f
1057 /* Prototypes for static functions. */
1058
1059 #define internalError() \
1060 as_fatal (_("internal Error, line %d, %s"), __LINE__, __FILE__)
1061
1062 enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
1063
1064 static void append_insn
1065 (struct mips_cl_insn *, expressionS *, bfd_reloc_code_real_type *);
1066 static void mips_no_prev_insn (void);
1067 static void macro_build (expressionS *, const char *, const char *, ...);
1068 static void mips16_macro_build
1069 (expressionS *, const char *, const char *, va_list *);
1070 static void load_register (int, expressionS *, int);
1071 static void macro_start (void);
1072 static void macro_end (void);
1073 static void macro (struct mips_cl_insn * ip);
1074 static void mips16_macro (struct mips_cl_insn * ip);
1075 static void mips_ip (char *str, struct mips_cl_insn * ip);
1076 static void mips16_ip (char *str, struct mips_cl_insn * ip);
1077 static void mips16_immed
1078 (char *, unsigned int, int, offsetT, bfd_boolean, bfd_boolean, bfd_boolean,
1079 unsigned long *, bfd_boolean *, unsigned short *);
1080 static size_t my_getSmallExpression
1081 (expressionS *, bfd_reloc_code_real_type *, char *);
1082 static void my_getExpression (expressionS *, char *);
1083 static void s_align (int);
1084 static void s_change_sec (int);
1085 static void s_change_section (int);
1086 static void s_cons (int);
1087 static void s_float_cons (int);
1088 static void s_mips_globl (int);
1089 static void s_option (int);
1090 static void s_mipsset (int);
1091 static void s_abicalls (int);
1092 static void s_cpload (int);
1093 static void s_cpsetup (int);
1094 static void s_cplocal (int);
1095 static void s_cprestore (int);
1096 static void s_cpreturn (int);
1097 static void s_dtprelword (int);
1098 static void s_dtpreldword (int);
1099 static void s_gpvalue (int);
1100 static void s_gpword (int);
1101 static void s_gpdword (int);
1102 static void s_cpadd (int);
1103 static void s_insn (int);
1104 static void md_obj_begin (void);
1105 static void md_obj_end (void);
1106 static void s_mips_ent (int);
1107 static void s_mips_end (int);
1108 static void s_mips_frame (int);
1109 static void s_mips_mask (int reg_type);
1110 static void s_mips_stab (int);
1111 static void s_mips_weakext (int);
1112 static void s_mips_file (int);
1113 static void s_mips_loc (int);
1114 static bfd_boolean pic_need_relax (symbolS *, asection *);
1115 static int relaxed_branch_length (fragS *, asection *, int);
1116 static int validate_mips_insn (const struct mips_opcode *);
1117
1118 /* Table and functions used to map between CPU/ISA names, and
1119 ISA levels, and CPU numbers. */
1120
1121 struct mips_cpu_info
1122 {
1123 const char *name; /* CPU or ISA name. */
1124 int flags; /* ASEs available, or ISA flag. */
1125 int isa; /* ISA level. */
1126 int cpu; /* CPU number (default CPU if ISA). */
1127 };
1128
1129 #define MIPS_CPU_IS_ISA 0x0001 /* Is this an ISA? (If 0, a CPU.) */
1130 #define MIPS_CPU_ASE_SMARTMIPS 0x0002 /* CPU implements SmartMIPS ASE */
1131 #define MIPS_CPU_ASE_DSP 0x0004 /* CPU implements DSP ASE */
1132 #define MIPS_CPU_ASE_MT 0x0008 /* CPU implements MT ASE */
1133 #define MIPS_CPU_ASE_MIPS3D 0x0010 /* CPU implements MIPS-3D ASE */
1134 #define MIPS_CPU_ASE_MDMX 0x0020 /* CPU implements MDMX ASE */
1135 #define MIPS_CPU_ASE_DSPR2 0x0040 /* CPU implements DSP R2 ASE */
1136
1137 static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *);
1138 static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
1139 static const struct mips_cpu_info *mips_cpu_info_from_arch (int);
1140 \f
1141 /* Pseudo-op table.
1142
1143 The following pseudo-ops from the Kane and Heinrich MIPS book
1144 should be defined here, but are currently unsupported: .alias,
1145 .galive, .gjaldef, .gjrlive, .livereg, .noalias.
1146
1147 The following pseudo-ops from the Kane and Heinrich MIPS book are
1148 specific to the type of debugging information being generated, and
1149 should be defined by the object format: .aent, .begin, .bend,
1150 .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
1151 .vreg.
1152
1153 The following pseudo-ops from the Kane and Heinrich MIPS book are
1154 not MIPS CPU specific, but are also not specific to the object file
1155 format. This file is probably the best place to define them, but
1156 they are not currently supported: .asm0, .endr, .lab, .struct. */
1157
1158 static const pseudo_typeS mips_pseudo_table[] =
1159 {
1160 /* MIPS specific pseudo-ops. */
1161 {"option", s_option, 0},
1162 {"set", s_mipsset, 0},
1163 {"rdata", s_change_sec, 'r'},
1164 {"sdata", s_change_sec, 's'},
1165 {"livereg", s_ignore, 0},
1166 {"abicalls", s_abicalls, 0},
1167 {"cpload", s_cpload, 0},
1168 {"cpsetup", s_cpsetup, 0},
1169 {"cplocal", s_cplocal, 0},
1170 {"cprestore", s_cprestore, 0},
1171 {"cpreturn", s_cpreturn, 0},
1172 {"dtprelword", s_dtprelword, 0},
1173 {"dtpreldword", s_dtpreldword, 0},
1174 {"gpvalue", s_gpvalue, 0},
1175 {"gpword", s_gpword, 0},
1176 {"gpdword", s_gpdword, 0},
1177 {"cpadd", s_cpadd, 0},
1178 {"insn", s_insn, 0},
1179
1180 /* Relatively generic pseudo-ops that happen to be used on MIPS
1181 chips. */
1182 {"asciiz", stringer, 8 + 1},
1183 {"bss", s_change_sec, 'b'},
1184 {"err", s_err, 0},
1185 {"half", s_cons, 1},
1186 {"dword", s_cons, 3},
1187 {"weakext", s_mips_weakext, 0},
1188 {"origin", s_org, 0},
1189 {"repeat", s_rept, 0},
1190
1191 /* For MIPS this is non-standard, but we define it for consistency. */
1192 {"sbss", s_change_sec, 'B'},
1193
1194 /* These pseudo-ops are defined in read.c, but must be overridden
1195 here for one reason or another. */
1196 {"align", s_align, 0},
1197 {"byte", s_cons, 0},
1198 {"data", s_change_sec, 'd'},
1199 {"double", s_float_cons, 'd'},
1200 {"float", s_float_cons, 'f'},
1201 {"globl", s_mips_globl, 0},
1202 {"global", s_mips_globl, 0},
1203 {"hword", s_cons, 1},
1204 {"int", s_cons, 2},
1205 {"long", s_cons, 2},
1206 {"octa", s_cons, 4},
1207 {"quad", s_cons, 3},
1208 {"section", s_change_section, 0},
1209 {"short", s_cons, 1},
1210 {"single", s_float_cons, 'f'},
1211 {"stabn", s_mips_stab, 'n'},
1212 {"text", s_change_sec, 't'},
1213 {"word", s_cons, 2},
1214
1215 { "extern", ecoff_directive_extern, 0},
1216
1217 { NULL, NULL, 0 },
1218 };
1219
1220 static const pseudo_typeS mips_nonecoff_pseudo_table[] =
1221 {
1222 /* These pseudo-ops should be defined by the object file format.
1223 However, a.out doesn't support them, so we have versions here. */
1224 {"aent", s_mips_ent, 1},
1225 {"bgnb", s_ignore, 0},
1226 {"end", s_mips_end, 0},
1227 {"endb", s_ignore, 0},
1228 {"ent", s_mips_ent, 0},
1229 {"file", s_mips_file, 0},
1230 {"fmask", s_mips_mask, 'F'},
1231 {"frame", s_mips_frame, 0},
1232 {"loc", s_mips_loc, 0},
1233 {"mask", s_mips_mask, 'R'},
1234 {"verstamp", s_ignore, 0},
1235 { NULL, NULL, 0 },
1236 };
1237
1238 extern void pop_insert (const pseudo_typeS *);
1239
1240 void
1241 mips_pop_insert (void)
1242 {
1243 pop_insert (mips_pseudo_table);
1244 if (! ECOFF_DEBUGGING)
1245 pop_insert (mips_nonecoff_pseudo_table);
1246 }
1247 \f
1248 /* Symbols labelling the current insn. */
1249
1250 struct insn_label_list
1251 {
1252 struct insn_label_list *next;
1253 symbolS *label;
1254 };
1255
1256 static struct insn_label_list *free_insn_labels;
1257 #define label_list tc_segment_info_data.labels
1258
1259 static void mips_clear_insn_labels (void);
1260
1261 static inline void
1262 mips_clear_insn_labels (void)
1263 {
1264 register struct insn_label_list **pl;
1265 segment_info_type *si;
1266
1267 if (now_seg)
1268 {
1269 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
1270 ;
1271
1272 si = seg_info (now_seg);
1273 *pl = si->label_list;
1274 si->label_list = NULL;
1275 }
1276 }
1277
1278 \f
1279 static char *expr_end;
1280
1281 /* Expressions which appear in instructions. These are set by
1282 mips_ip. */
1283
1284 static expressionS imm_expr;
1285 static expressionS imm2_expr;
1286 static expressionS offset_expr;
1287
1288 /* Relocs associated with imm_expr and offset_expr. */
1289
1290 static bfd_reloc_code_real_type imm_reloc[3]
1291 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1292 static bfd_reloc_code_real_type offset_reloc[3]
1293 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1294
1295 /* These are set by mips16_ip if an explicit extension is used. */
1296
1297 static bfd_boolean mips16_small, mips16_ext;
1298
1299 #ifdef OBJ_ELF
1300 /* The pdr segment for per procedure frame/regmask info. Not used for
1301 ECOFF debugging. */
1302
1303 static segT pdr_seg;
1304 #endif
1305
1306 /* The default target format to use. */
1307
1308 const char *
1309 mips_target_format (void)
1310 {
1311 switch (OUTPUT_FLAVOR)
1312 {
1313 case bfd_target_ecoff_flavour:
1314 return target_big_endian ? "ecoff-bigmips" : ECOFF_LITTLE_FORMAT;
1315 case bfd_target_coff_flavour:
1316 return "pe-mips";
1317 case bfd_target_elf_flavour:
1318 #ifdef TE_VXWORKS
1319 if (!HAVE_64BIT_OBJECTS && !HAVE_NEWABI)
1320 return (target_big_endian
1321 ? "elf32-bigmips-vxworks"
1322 : "elf32-littlemips-vxworks");
1323 #endif
1324 #ifdef TE_TMIPS
1325 /* This is traditional mips. */
1326 return (target_big_endian
1327 ? (HAVE_64BIT_OBJECTS
1328 ? "elf64-tradbigmips"
1329 : (HAVE_NEWABI
1330 ? "elf32-ntradbigmips" : "elf32-tradbigmips"))
1331 : (HAVE_64BIT_OBJECTS
1332 ? "elf64-tradlittlemips"
1333 : (HAVE_NEWABI
1334 ? "elf32-ntradlittlemips" : "elf32-tradlittlemips")));
1335 #else
1336 return (target_big_endian
1337 ? (HAVE_64BIT_OBJECTS
1338 ? "elf64-bigmips"
1339 : (HAVE_NEWABI
1340 ? "elf32-nbigmips" : "elf32-bigmips"))
1341 : (HAVE_64BIT_OBJECTS
1342 ? "elf64-littlemips"
1343 : (HAVE_NEWABI
1344 ? "elf32-nlittlemips" : "elf32-littlemips")));
1345 #endif
1346 default:
1347 abort ();
1348 return NULL;
1349 }
1350 }
1351
1352 /* Return the length of instruction INSN. */
1353
1354 static inline unsigned int
1355 insn_length (const struct mips_cl_insn *insn)
1356 {
1357 if (!mips_opts.mips16)
1358 return 4;
1359 return insn->mips16_absolute_jump_p || insn->use_extend ? 4 : 2;
1360 }
1361
1362 /* Initialise INSN from opcode entry MO. Leave its position unspecified. */
1363
1364 static void
1365 create_insn (struct mips_cl_insn *insn, const struct mips_opcode *mo)
1366 {
1367 size_t i;
1368
1369 insn->insn_mo = mo;
1370 insn->use_extend = FALSE;
1371 insn->extend = 0;
1372 insn->insn_opcode = mo->match;
1373 insn->frag = NULL;
1374 insn->where = 0;
1375 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
1376 insn->fixp[i] = NULL;
1377 insn->fixed_p = (mips_opts.noreorder > 0);
1378 insn->noreorder_p = (mips_opts.noreorder > 0);
1379 insn->mips16_absolute_jump_p = 0;
1380 }
1381
1382 /* Record the current MIPS16 mode in now_seg. */
1383
1384 static void
1385 mips_record_mips16_mode (void)
1386 {
1387 segment_info_type *si;
1388
1389 si = seg_info (now_seg);
1390 if (si->tc_segment_info_data.mips16 != mips_opts.mips16)
1391 si->tc_segment_info_data.mips16 = mips_opts.mips16;
1392 }
1393
1394 /* Install INSN at the location specified by its "frag" and "where" fields. */
1395
1396 static void
1397 install_insn (const struct mips_cl_insn *insn)
1398 {
1399 char *f = insn->frag->fr_literal + insn->where;
1400 if (!mips_opts.mips16)
1401 md_number_to_chars (f, insn->insn_opcode, 4);
1402 else if (insn->mips16_absolute_jump_p)
1403 {
1404 md_number_to_chars (f, insn->insn_opcode >> 16, 2);
1405 md_number_to_chars (f + 2, insn->insn_opcode & 0xffff, 2);
1406 }
1407 else
1408 {
1409 if (insn->use_extend)
1410 {
1411 md_number_to_chars (f, 0xf000 | insn->extend, 2);
1412 f += 2;
1413 }
1414 md_number_to_chars (f, insn->insn_opcode, 2);
1415 }
1416 mips_record_mips16_mode ();
1417 }
1418
1419 /* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly
1420 and install the opcode in the new location. */
1421
1422 static void
1423 move_insn (struct mips_cl_insn *insn, fragS *frag, long where)
1424 {
1425 size_t i;
1426
1427 insn->frag = frag;
1428 insn->where = where;
1429 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
1430 if (insn->fixp[i] != NULL)
1431 {
1432 insn->fixp[i]->fx_frag = frag;
1433 insn->fixp[i]->fx_where = where;
1434 }
1435 install_insn (insn);
1436 }
1437
1438 /* Add INSN to the end of the output. */
1439
1440 static void
1441 add_fixed_insn (struct mips_cl_insn *insn)
1442 {
1443 char *f = frag_more (insn_length (insn));
1444 move_insn (insn, frag_now, f - frag_now->fr_literal);
1445 }
1446
1447 /* Start a variant frag and move INSN to the start of the variant part,
1448 marking it as fixed. The other arguments are as for frag_var. */
1449
1450 static void
1451 add_relaxed_insn (struct mips_cl_insn *insn, int max_chars, int var,
1452 relax_substateT subtype, symbolS *symbol, offsetT offset)
1453 {
1454 frag_grow (max_chars);
1455 move_insn (insn, frag_now, frag_more (0) - frag_now->fr_literal);
1456 insn->fixed_p = 1;
1457 frag_var (rs_machine_dependent, max_chars, var,
1458 subtype, symbol, offset, NULL);
1459 }
1460
1461 /* Insert N copies of INSN into the history buffer, starting at
1462 position FIRST. Neither FIRST nor N need to be clipped. */
1463
1464 static void
1465 insert_into_history (unsigned int first, unsigned int n,
1466 const struct mips_cl_insn *insn)
1467 {
1468 if (mips_relax.sequence != 2)
1469 {
1470 unsigned int i;
1471
1472 for (i = ARRAY_SIZE (history); i-- > first;)
1473 if (i >= first + n)
1474 history[i] = history[i - n];
1475 else
1476 history[i] = *insn;
1477 }
1478 }
1479
1480 /* Emit a nop instruction, recording it in the history buffer. */
1481
1482 static void
1483 emit_nop (void)
1484 {
1485 add_fixed_insn (NOP_INSN);
1486 insert_into_history (0, 1, NOP_INSN);
1487 }
1488
1489 /* Initialize vr4120_conflicts. There is a bit of duplication here:
1490 the idea is to make it obvious at a glance that each errata is
1491 included. */
1492
1493 static void
1494 init_vr4120_conflicts (void)
1495 {
1496 #define CONFLICT(FIRST, SECOND) \
1497 vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND
1498
1499 /* Errata 21 - [D]DIV[U] after [D]MACC */
1500 CONFLICT (MACC, DIV);
1501 CONFLICT (DMACC, DIV);
1502
1503 /* Errata 23 - Continuous DMULT[U]/DMACC instructions. */
1504 CONFLICT (DMULT, DMULT);
1505 CONFLICT (DMULT, DMACC);
1506 CONFLICT (DMACC, DMULT);
1507 CONFLICT (DMACC, DMACC);
1508
1509 /* Errata 24 - MT{LO,HI} after [D]MACC */
1510 CONFLICT (MACC, MTHILO);
1511 CONFLICT (DMACC, MTHILO);
1512
1513 /* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU
1514 instruction is executed immediately after a MACC or DMACC
1515 instruction, the result of [either instruction] is incorrect." */
1516 CONFLICT (MACC, MULT);
1517 CONFLICT (MACC, DMULT);
1518 CONFLICT (DMACC, MULT);
1519 CONFLICT (DMACC, DMULT);
1520
1521 /* VR4181A errata MD(4): "If a MACC or DMACC instruction is
1522 executed immediately after a DMULT, DMULTU, DIV, DIVU,
1523 DDIV or DDIVU instruction, the result of the MACC or
1524 DMACC instruction is incorrect.". */
1525 CONFLICT (DMULT, MACC);
1526 CONFLICT (DMULT, DMACC);
1527 CONFLICT (DIV, MACC);
1528 CONFLICT (DIV, DMACC);
1529
1530 #undef CONFLICT
1531 }
1532
1533 struct regname {
1534 const char *name;
1535 unsigned int num;
1536 };
1537
1538 #define RTYPE_MASK 0x1ff00
1539 #define RTYPE_NUM 0x00100
1540 #define RTYPE_FPU 0x00200
1541 #define RTYPE_FCC 0x00400
1542 #define RTYPE_VEC 0x00800
1543 #define RTYPE_GP 0x01000
1544 #define RTYPE_CP0 0x02000
1545 #define RTYPE_PC 0x04000
1546 #define RTYPE_ACC 0x08000
1547 #define RTYPE_CCC 0x10000
1548 #define RNUM_MASK 0x000ff
1549 #define RWARN 0x80000
1550
1551 #define GENERIC_REGISTER_NUMBERS \
1552 {"$0", RTYPE_NUM | 0}, \
1553 {"$1", RTYPE_NUM | 1}, \
1554 {"$2", RTYPE_NUM | 2}, \
1555 {"$3", RTYPE_NUM | 3}, \
1556 {"$4", RTYPE_NUM | 4}, \
1557 {"$5", RTYPE_NUM | 5}, \
1558 {"$6", RTYPE_NUM | 6}, \
1559 {"$7", RTYPE_NUM | 7}, \
1560 {"$8", RTYPE_NUM | 8}, \
1561 {"$9", RTYPE_NUM | 9}, \
1562 {"$10", RTYPE_NUM | 10}, \
1563 {"$11", RTYPE_NUM | 11}, \
1564 {"$12", RTYPE_NUM | 12}, \
1565 {"$13", RTYPE_NUM | 13}, \
1566 {"$14", RTYPE_NUM | 14}, \
1567 {"$15", RTYPE_NUM | 15}, \
1568 {"$16", RTYPE_NUM | 16}, \
1569 {"$17", RTYPE_NUM | 17}, \
1570 {"$18", RTYPE_NUM | 18}, \
1571 {"$19", RTYPE_NUM | 19}, \
1572 {"$20", RTYPE_NUM | 20}, \
1573 {"$21", RTYPE_NUM | 21}, \
1574 {"$22", RTYPE_NUM | 22}, \
1575 {"$23", RTYPE_NUM | 23}, \
1576 {"$24", RTYPE_NUM | 24}, \
1577 {"$25", RTYPE_NUM | 25}, \
1578 {"$26", RTYPE_NUM | 26}, \
1579 {"$27", RTYPE_NUM | 27}, \
1580 {"$28", RTYPE_NUM | 28}, \
1581 {"$29", RTYPE_NUM | 29}, \
1582 {"$30", RTYPE_NUM | 30}, \
1583 {"$31", RTYPE_NUM | 31}
1584
1585 #define FPU_REGISTER_NAMES \
1586 {"$f0", RTYPE_FPU | 0}, \
1587 {"$f1", RTYPE_FPU | 1}, \
1588 {"$f2", RTYPE_FPU | 2}, \
1589 {"$f3", RTYPE_FPU | 3}, \
1590 {"$f4", RTYPE_FPU | 4}, \
1591 {"$f5", RTYPE_FPU | 5}, \
1592 {"$f6", RTYPE_FPU | 6}, \
1593 {"$f7", RTYPE_FPU | 7}, \
1594 {"$f8", RTYPE_FPU | 8}, \
1595 {"$f9", RTYPE_FPU | 9}, \
1596 {"$f10", RTYPE_FPU | 10}, \
1597 {"$f11", RTYPE_FPU | 11}, \
1598 {"$f12", RTYPE_FPU | 12}, \
1599 {"$f13", RTYPE_FPU | 13}, \
1600 {"$f14", RTYPE_FPU | 14}, \
1601 {"$f15", RTYPE_FPU | 15}, \
1602 {"$f16", RTYPE_FPU | 16}, \
1603 {"$f17", RTYPE_FPU | 17}, \
1604 {"$f18", RTYPE_FPU | 18}, \
1605 {"$f19", RTYPE_FPU | 19}, \
1606 {"$f20", RTYPE_FPU | 20}, \
1607 {"$f21", RTYPE_FPU | 21}, \
1608 {"$f22", RTYPE_FPU | 22}, \
1609 {"$f23", RTYPE_FPU | 23}, \
1610 {"$f24", RTYPE_FPU | 24}, \
1611 {"$f25", RTYPE_FPU | 25}, \
1612 {"$f26", RTYPE_FPU | 26}, \
1613 {"$f27", RTYPE_FPU | 27}, \
1614 {"$f28", RTYPE_FPU | 28}, \
1615 {"$f29", RTYPE_FPU | 29}, \
1616 {"$f30", RTYPE_FPU | 30}, \
1617 {"$f31", RTYPE_FPU | 31}
1618
1619 #define FPU_CONDITION_CODE_NAMES \
1620 {"$fcc0", RTYPE_FCC | 0}, \
1621 {"$fcc1", RTYPE_FCC | 1}, \
1622 {"$fcc2", RTYPE_FCC | 2}, \
1623 {"$fcc3", RTYPE_FCC | 3}, \
1624 {"$fcc4", RTYPE_FCC | 4}, \
1625 {"$fcc5", RTYPE_FCC | 5}, \
1626 {"$fcc6", RTYPE_FCC | 6}, \
1627 {"$fcc7", RTYPE_FCC | 7}
1628
1629 #define COPROC_CONDITION_CODE_NAMES \
1630 {"$cc0", RTYPE_FCC | RTYPE_CCC | 0}, \
1631 {"$cc1", RTYPE_FCC | RTYPE_CCC | 1}, \
1632 {"$cc2", RTYPE_FCC | RTYPE_CCC | 2}, \
1633 {"$cc3", RTYPE_FCC | RTYPE_CCC | 3}, \
1634 {"$cc4", RTYPE_FCC | RTYPE_CCC | 4}, \
1635 {"$cc5", RTYPE_FCC | RTYPE_CCC | 5}, \
1636 {"$cc6", RTYPE_FCC | RTYPE_CCC | 6}, \
1637 {"$cc7", RTYPE_FCC | RTYPE_CCC | 7}
1638
1639 #define N32N64_SYMBOLIC_REGISTER_NAMES \
1640 {"$a4", RTYPE_GP | 8}, \
1641 {"$a5", RTYPE_GP | 9}, \
1642 {"$a6", RTYPE_GP | 10}, \
1643 {"$a7", RTYPE_GP | 11}, \
1644 {"$ta0", RTYPE_GP | 8}, /* alias for $a4 */ \
1645 {"$ta1", RTYPE_GP | 9}, /* alias for $a5 */ \
1646 {"$ta2", RTYPE_GP | 10}, /* alias for $a6 */ \
1647 {"$ta3", RTYPE_GP | 11}, /* alias for $a7 */ \
1648 {"$t0", RTYPE_GP | 12}, \
1649 {"$t1", RTYPE_GP | 13}, \
1650 {"$t2", RTYPE_GP | 14}, \
1651 {"$t3", RTYPE_GP | 15}
1652
1653 #define O32_SYMBOLIC_REGISTER_NAMES \
1654 {"$t0", RTYPE_GP | 8}, \
1655 {"$t1", RTYPE_GP | 9}, \
1656 {"$t2", RTYPE_GP | 10}, \
1657 {"$t3", RTYPE_GP | 11}, \
1658 {"$t4", RTYPE_GP | 12}, \
1659 {"$t5", RTYPE_GP | 13}, \
1660 {"$t6", RTYPE_GP | 14}, \
1661 {"$t7", RTYPE_GP | 15}, \
1662 {"$ta0", RTYPE_GP | 12}, /* alias for $t4 */ \
1663 {"$ta1", RTYPE_GP | 13}, /* alias for $t5 */ \
1664 {"$ta2", RTYPE_GP | 14}, /* alias for $t6 */ \
1665 {"$ta3", RTYPE_GP | 15} /* alias for $t7 */
1666
1667 /* Remaining symbolic register names */
1668 #define SYMBOLIC_REGISTER_NAMES \
1669 {"$zero", RTYPE_GP | 0}, \
1670 {"$at", RTYPE_GP | 1}, \
1671 {"$AT", RTYPE_GP | 1}, \
1672 {"$v0", RTYPE_GP | 2}, \
1673 {"$v1", RTYPE_GP | 3}, \
1674 {"$a0", RTYPE_GP | 4}, \
1675 {"$a1", RTYPE_GP | 5}, \
1676 {"$a2", RTYPE_GP | 6}, \
1677 {"$a3", RTYPE_GP | 7}, \
1678 {"$s0", RTYPE_GP | 16}, \
1679 {"$s1", RTYPE_GP | 17}, \
1680 {"$s2", RTYPE_GP | 18}, \
1681 {"$s3", RTYPE_GP | 19}, \
1682 {"$s4", RTYPE_GP | 20}, \
1683 {"$s5", RTYPE_GP | 21}, \
1684 {"$s6", RTYPE_GP | 22}, \
1685 {"$s7", RTYPE_GP | 23}, \
1686 {"$t8", RTYPE_GP | 24}, \
1687 {"$t9", RTYPE_GP | 25}, \
1688 {"$k0", RTYPE_GP | 26}, \
1689 {"$kt0", RTYPE_GP | 26}, \
1690 {"$k1", RTYPE_GP | 27}, \
1691 {"$kt1", RTYPE_GP | 27}, \
1692 {"$gp", RTYPE_GP | 28}, \
1693 {"$sp", RTYPE_GP | 29}, \
1694 {"$s8", RTYPE_GP | 30}, \
1695 {"$fp", RTYPE_GP | 30}, \
1696 {"$ra", RTYPE_GP | 31}
1697
1698 #define MIPS16_SPECIAL_REGISTER_NAMES \
1699 {"$pc", RTYPE_PC | 0}
1700
1701 #define MDMX_VECTOR_REGISTER_NAMES \
1702 /* {"$v0", RTYPE_VEC | 0}, clash with REG 2 above */ \
1703 /* {"$v1", RTYPE_VEC | 1}, clash with REG 3 above */ \
1704 {"$v2", RTYPE_VEC | 2}, \
1705 {"$v3", RTYPE_VEC | 3}, \
1706 {"$v4", RTYPE_VEC | 4}, \
1707 {"$v5", RTYPE_VEC | 5}, \
1708 {"$v6", RTYPE_VEC | 6}, \
1709 {"$v7", RTYPE_VEC | 7}, \
1710 {"$v8", RTYPE_VEC | 8}, \
1711 {"$v9", RTYPE_VEC | 9}, \
1712 {"$v10", RTYPE_VEC | 10}, \
1713 {"$v11", RTYPE_VEC | 11}, \
1714 {"$v12", RTYPE_VEC | 12}, \
1715 {"$v13", RTYPE_VEC | 13}, \
1716 {"$v14", RTYPE_VEC | 14}, \
1717 {"$v15", RTYPE_VEC | 15}, \
1718 {"$v16", RTYPE_VEC | 16}, \
1719 {"$v17", RTYPE_VEC | 17}, \
1720 {"$v18", RTYPE_VEC | 18}, \
1721 {"$v19", RTYPE_VEC | 19}, \
1722 {"$v20", RTYPE_VEC | 20}, \
1723 {"$v21", RTYPE_VEC | 21}, \
1724 {"$v22", RTYPE_VEC | 22}, \
1725 {"$v23", RTYPE_VEC | 23}, \
1726 {"$v24", RTYPE_VEC | 24}, \
1727 {"$v25", RTYPE_VEC | 25}, \
1728 {"$v26", RTYPE_VEC | 26}, \
1729 {"$v27", RTYPE_VEC | 27}, \
1730 {"$v28", RTYPE_VEC | 28}, \
1731 {"$v29", RTYPE_VEC | 29}, \
1732 {"$v30", RTYPE_VEC | 30}, \
1733 {"$v31", RTYPE_VEC | 31}
1734
1735 #define MIPS_DSP_ACCUMULATOR_NAMES \
1736 {"$ac0", RTYPE_ACC | 0}, \
1737 {"$ac1", RTYPE_ACC | 1}, \
1738 {"$ac2", RTYPE_ACC | 2}, \
1739 {"$ac3", RTYPE_ACC | 3}
1740
1741 static const struct regname reg_names[] = {
1742 GENERIC_REGISTER_NUMBERS,
1743 FPU_REGISTER_NAMES,
1744 FPU_CONDITION_CODE_NAMES,
1745 COPROC_CONDITION_CODE_NAMES,
1746
1747 /* The $txx registers depends on the abi,
1748 these will be added later into the symbol table from
1749 one of the tables below once mips_abi is set after
1750 parsing of arguments from the command line. */
1751 SYMBOLIC_REGISTER_NAMES,
1752
1753 MIPS16_SPECIAL_REGISTER_NAMES,
1754 MDMX_VECTOR_REGISTER_NAMES,
1755 MIPS_DSP_ACCUMULATOR_NAMES,
1756 {0, 0}
1757 };
1758
1759 static const struct regname reg_names_o32[] = {
1760 O32_SYMBOLIC_REGISTER_NAMES,
1761 {0, 0}
1762 };
1763
1764 static const struct regname reg_names_n32n64[] = {
1765 N32N64_SYMBOLIC_REGISTER_NAMES,
1766 {0, 0}
1767 };
1768
1769 static int
1770 reg_lookup (char **s, unsigned int types, unsigned int *regnop)
1771 {
1772 symbolS *symbolP;
1773 char *e;
1774 char save_c;
1775 int reg = -1;
1776
1777 /* Find end of name. */
1778 e = *s;
1779 if (is_name_beginner (*e))
1780 ++e;
1781 while (is_part_of_name (*e))
1782 ++e;
1783
1784 /* Terminate name. */
1785 save_c = *e;
1786 *e = '\0';
1787
1788 /* Look for a register symbol. */
1789 if ((symbolP = symbol_find (*s)) && S_GET_SEGMENT (symbolP) == reg_section)
1790 {
1791 int r = S_GET_VALUE (symbolP);
1792 if (r & types)
1793 reg = r & RNUM_MASK;
1794 else if ((types & RTYPE_VEC) && (r & ~1) == (RTYPE_GP | 2))
1795 /* Convert GP reg $v0/1 to MDMX reg $v0/1! */
1796 reg = (r & RNUM_MASK) - 2;
1797 }
1798 /* Else see if this is a register defined in an itbl entry. */
1799 else if ((types & RTYPE_GP) && itbl_have_entries)
1800 {
1801 char *n = *s;
1802 unsigned long r;
1803
1804 if (*n == '$')
1805 ++n;
1806 if (itbl_get_reg_val (n, &r))
1807 reg = r & RNUM_MASK;
1808 }
1809
1810 /* Advance to next token if a register was recognised. */
1811 if (reg >= 0)
1812 *s = e;
1813 else if (types & RWARN)
1814 as_warn (_("Unrecognized register name `%s'"), *s);
1815
1816 *e = save_c;
1817 if (regnop)
1818 *regnop = reg;
1819 return reg >= 0;
1820 }
1821
1822 /* Return TRUE if opcode MO is valid on the currently selected ISA and
1823 architecture. Use is_opcode_valid_16 for MIPS16 opcodes. */
1824
1825 static bfd_boolean
1826 is_opcode_valid (const struct mips_opcode *mo)
1827 {
1828 int isa = mips_opts.isa;
1829 int fp_s, fp_d;
1830
1831 if (mips_opts.ase_mdmx)
1832 isa |= INSN_MDMX;
1833 if (mips_opts.ase_dsp)
1834 isa |= INSN_DSP;
1835 if (mips_opts.ase_dsp && ISA_SUPPORTS_DSP64_ASE)
1836 isa |= INSN_DSP64;
1837 if (mips_opts.ase_dspr2)
1838 isa |= INSN_DSPR2;
1839 if (mips_opts.ase_mt)
1840 isa |= INSN_MT;
1841 if (mips_opts.ase_mips3d)
1842 isa |= INSN_MIPS3D;
1843 if (mips_opts.ase_smartmips)
1844 isa |= INSN_SMARTMIPS;
1845
1846 /* Don't accept instructions based on the ISA if the CPU does not implement
1847 all the coprocessor insns. */
1848 if (NO_ISA_COP (mips_opts.arch)
1849 && COP_INSN (mo->pinfo))
1850 isa = 0;
1851
1852 if (!OPCODE_IS_MEMBER (mo, isa, mips_opts.arch))
1853 return FALSE;
1854
1855 /* Check whether the instruction or macro requires single-precision or
1856 double-precision floating-point support. Note that this information is
1857 stored differently in the opcode table for insns and macros. */
1858 if (mo->pinfo == INSN_MACRO)
1859 {
1860 fp_s = mo->pinfo2 & INSN2_M_FP_S;
1861 fp_d = mo->pinfo2 & INSN2_M_FP_D;
1862 }
1863 else
1864 {
1865 fp_s = mo->pinfo & FP_S;
1866 fp_d = mo->pinfo & FP_D;
1867 }
1868
1869 if (fp_d && (mips_opts.soft_float || mips_opts.single_float))
1870 return FALSE;
1871
1872 if (fp_s && mips_opts.soft_float)
1873 return FALSE;
1874
1875 return TRUE;
1876 }
1877
1878 /* Return TRUE if the MIPS16 opcode MO is valid on the currently
1879 selected ISA and architecture. */
1880
1881 static bfd_boolean
1882 is_opcode_valid_16 (const struct mips_opcode *mo)
1883 {
1884 return OPCODE_IS_MEMBER (mo, mips_opts.isa, mips_opts.arch) ? TRUE : FALSE;
1885 }
1886
1887 /* This function is called once, at assembler startup time. It should set up
1888 all the tables, etc. that the MD part of the assembler will need. */
1889
1890 void
1891 md_begin (void)
1892 {
1893 const char *retval = NULL;
1894 int i = 0;
1895 int broken = 0;
1896
1897 if (mips_pic != NO_PIC)
1898 {
1899 if (g_switch_seen && g_switch_value != 0)
1900 as_bad (_("-G may not be used in position-independent code"));
1901 g_switch_value = 0;
1902 }
1903
1904 if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_arch))
1905 as_warn (_("Could not set architecture and machine"));
1906
1907 op_hash = hash_new ();
1908
1909 for (i = 0; i < NUMOPCODES;)
1910 {
1911 const char *name = mips_opcodes[i].name;
1912
1913 retval = hash_insert (op_hash, name, (void *) &mips_opcodes[i]);
1914 if (retval != NULL)
1915 {
1916 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
1917 mips_opcodes[i].name, retval);
1918 /* Probably a memory allocation problem? Give up now. */
1919 as_fatal (_("Broken assembler. No assembly attempted."));
1920 }
1921 do
1922 {
1923 if (mips_opcodes[i].pinfo != INSN_MACRO)
1924 {
1925 if (!validate_mips_insn (&mips_opcodes[i]))
1926 broken = 1;
1927 if (nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
1928 {
1929 create_insn (&nop_insn, mips_opcodes + i);
1930 if (mips_fix_loongson2f_nop)
1931 nop_insn.insn_opcode = LOONGSON2F_NOP_INSN;
1932 nop_insn.fixed_p = 1;
1933 }
1934 }
1935 ++i;
1936 }
1937 while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
1938 }
1939
1940 mips16_op_hash = hash_new ();
1941
1942 i = 0;
1943 while (i < bfd_mips16_num_opcodes)
1944 {
1945 const char *name = mips16_opcodes[i].name;
1946
1947 retval = hash_insert (mips16_op_hash, name, (void *) &mips16_opcodes[i]);
1948 if (retval != NULL)
1949 as_fatal (_("internal: can't hash `%s': %s"),
1950 mips16_opcodes[i].name, retval);
1951 do
1952 {
1953 if (mips16_opcodes[i].pinfo != INSN_MACRO
1954 && ((mips16_opcodes[i].match & mips16_opcodes[i].mask)
1955 != mips16_opcodes[i].match))
1956 {
1957 fprintf (stderr, _("internal error: bad mips16 opcode: %s %s\n"),
1958 mips16_opcodes[i].name, mips16_opcodes[i].args);
1959 broken = 1;
1960 }
1961 if (mips16_nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
1962 {
1963 create_insn (&mips16_nop_insn, mips16_opcodes + i);
1964 mips16_nop_insn.fixed_p = 1;
1965 }
1966 ++i;
1967 }
1968 while (i < bfd_mips16_num_opcodes
1969 && strcmp (mips16_opcodes[i].name, name) == 0);
1970 }
1971
1972 if (broken)
1973 as_fatal (_("Broken assembler. No assembly attempted."));
1974
1975 /* We add all the general register names to the symbol table. This
1976 helps us detect invalid uses of them. */
1977 for (i = 0; reg_names[i].name; i++)
1978 symbol_table_insert (symbol_new (reg_names[i].name, reg_section,
1979 reg_names[i].num, /* & RNUM_MASK, */
1980 &zero_address_frag));
1981 if (HAVE_NEWABI)
1982 for (i = 0; reg_names_n32n64[i].name; i++)
1983 symbol_table_insert (symbol_new (reg_names_n32n64[i].name, reg_section,
1984 reg_names_n32n64[i].num, /* & RNUM_MASK, */
1985 &zero_address_frag));
1986 else
1987 for (i = 0; reg_names_o32[i].name; i++)
1988 symbol_table_insert (symbol_new (reg_names_o32[i].name, reg_section,
1989 reg_names_o32[i].num, /* & RNUM_MASK, */
1990 &zero_address_frag));
1991
1992 mips_no_prev_insn ();
1993
1994 mips_gprmask = 0;
1995 mips_cprmask[0] = 0;
1996 mips_cprmask[1] = 0;
1997 mips_cprmask[2] = 0;
1998 mips_cprmask[3] = 0;
1999
2000 /* set the default alignment for the text section (2**2) */
2001 record_alignment (text_section, 2);
2002
2003 bfd_set_gp_size (stdoutput, g_switch_value);
2004
2005 #ifdef OBJ_ELF
2006 if (IS_ELF)
2007 {
2008 /* On a native system other than VxWorks, sections must be aligned
2009 to 16 byte boundaries. When configured for an embedded ELF
2010 target, we don't bother. */
2011 if (strncmp (TARGET_OS, "elf", 3) != 0
2012 && strncmp (TARGET_OS, "vxworks", 7) != 0)
2013 {
2014 (void) bfd_set_section_alignment (stdoutput, text_section, 4);
2015 (void) bfd_set_section_alignment (stdoutput, data_section, 4);
2016 (void) bfd_set_section_alignment (stdoutput, bss_section, 4);
2017 }
2018
2019 /* Create a .reginfo section for register masks and a .mdebug
2020 section for debugging information. */
2021 {
2022 segT seg;
2023 subsegT subseg;
2024 flagword flags;
2025 segT sec;
2026
2027 seg = now_seg;
2028 subseg = now_subseg;
2029
2030 /* The ABI says this section should be loaded so that the
2031 running program can access it. However, we don't load it
2032 if we are configured for an embedded target */
2033 flags = SEC_READONLY | SEC_DATA;
2034 if (strncmp (TARGET_OS, "elf", 3) != 0)
2035 flags |= SEC_ALLOC | SEC_LOAD;
2036
2037 if (mips_abi != N64_ABI)
2038 {
2039 sec = subseg_new (".reginfo", (subsegT) 0);
2040
2041 bfd_set_section_flags (stdoutput, sec, flags);
2042 bfd_set_section_alignment (stdoutput, sec, HAVE_NEWABI ? 3 : 2);
2043
2044 mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
2045 }
2046 else
2047 {
2048 /* The 64-bit ABI uses a .MIPS.options section rather than
2049 .reginfo section. */
2050 sec = subseg_new (".MIPS.options", (subsegT) 0);
2051 bfd_set_section_flags (stdoutput, sec, flags);
2052 bfd_set_section_alignment (stdoutput, sec, 3);
2053
2054 /* Set up the option header. */
2055 {
2056 Elf_Internal_Options opthdr;
2057 char *f;
2058
2059 opthdr.kind = ODK_REGINFO;
2060 opthdr.size = (sizeof (Elf_External_Options)
2061 + sizeof (Elf64_External_RegInfo));
2062 opthdr.section = 0;
2063 opthdr.info = 0;
2064 f = frag_more (sizeof (Elf_External_Options));
2065 bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
2066 (Elf_External_Options *) f);
2067
2068 mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
2069 }
2070 }
2071
2072 if (ECOFF_DEBUGGING)
2073 {
2074 sec = subseg_new (".mdebug", (subsegT) 0);
2075 (void) bfd_set_section_flags (stdoutput, sec,
2076 SEC_HAS_CONTENTS | SEC_READONLY);
2077 (void) bfd_set_section_alignment (stdoutput, sec, 2);
2078 }
2079 else if (mips_flag_pdr)
2080 {
2081 pdr_seg = subseg_new (".pdr", (subsegT) 0);
2082 (void) bfd_set_section_flags (stdoutput, pdr_seg,
2083 SEC_READONLY | SEC_RELOC
2084 | SEC_DEBUGGING);
2085 (void) bfd_set_section_alignment (stdoutput, pdr_seg, 2);
2086 }
2087
2088 subseg_set (seg, subseg);
2089 }
2090 }
2091 #endif /* OBJ_ELF */
2092
2093 if (! ECOFF_DEBUGGING)
2094 md_obj_begin ();
2095
2096 if (mips_fix_vr4120)
2097 init_vr4120_conflicts ();
2098 }
2099
2100 void
2101 md_mips_end (void)
2102 {
2103 if (! ECOFF_DEBUGGING)
2104 md_obj_end ();
2105 }
2106
2107 void
2108 md_assemble (char *str)
2109 {
2110 struct mips_cl_insn insn;
2111 bfd_reloc_code_real_type unused_reloc[3]
2112 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
2113
2114 imm_expr.X_op = O_absent;
2115 imm2_expr.X_op = O_absent;
2116 offset_expr.X_op = O_absent;
2117 imm_reloc[0] = BFD_RELOC_UNUSED;
2118 imm_reloc[1] = BFD_RELOC_UNUSED;
2119 imm_reloc[2] = BFD_RELOC_UNUSED;
2120 offset_reloc[0] = BFD_RELOC_UNUSED;
2121 offset_reloc[1] = BFD_RELOC_UNUSED;
2122 offset_reloc[2] = BFD_RELOC_UNUSED;
2123
2124 if (mips_opts.mips16)
2125 mips16_ip (str, &insn);
2126 else
2127 {
2128 mips_ip (str, &insn);
2129 DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
2130 str, insn.insn_opcode));
2131 }
2132
2133 if (insn_error)
2134 {
2135 as_bad ("%s `%s'", insn_error, str);
2136 return;
2137 }
2138
2139 if (insn.insn_mo->pinfo == INSN_MACRO)
2140 {
2141 macro_start ();
2142 if (mips_opts.mips16)
2143 mips16_macro (&insn);
2144 else
2145 macro (&insn);
2146 macro_end ();
2147 }
2148 else
2149 {
2150 if (imm_expr.X_op != O_absent)
2151 append_insn (&insn, &imm_expr, imm_reloc);
2152 else if (offset_expr.X_op != O_absent)
2153 append_insn (&insn, &offset_expr, offset_reloc);
2154 else
2155 append_insn (&insn, NULL, unused_reloc);
2156 }
2157 }
2158
2159 /* Convenience functions for abstracting away the differences between
2160 MIPS16 and non-MIPS16 relocations. */
2161
2162 static inline bfd_boolean
2163 mips16_reloc_p (bfd_reloc_code_real_type reloc)
2164 {
2165 switch (reloc)
2166 {
2167 case BFD_RELOC_MIPS16_JMP:
2168 case BFD_RELOC_MIPS16_GPREL:
2169 case BFD_RELOC_MIPS16_GOT16:
2170 case BFD_RELOC_MIPS16_CALL16:
2171 case BFD_RELOC_MIPS16_HI16_S:
2172 case BFD_RELOC_MIPS16_HI16:
2173 case BFD_RELOC_MIPS16_LO16:
2174 return TRUE;
2175
2176 default:
2177 return FALSE;
2178 }
2179 }
2180
2181 static inline bfd_boolean
2182 got16_reloc_p (bfd_reloc_code_real_type reloc)
2183 {
2184 return reloc == BFD_RELOC_MIPS_GOT16 || reloc == BFD_RELOC_MIPS16_GOT16;
2185 }
2186
2187 static inline bfd_boolean
2188 hi16_reloc_p (bfd_reloc_code_real_type reloc)
2189 {
2190 return reloc == BFD_RELOC_HI16_S || reloc == BFD_RELOC_MIPS16_HI16_S;
2191 }
2192
2193 static inline bfd_boolean
2194 lo16_reloc_p (bfd_reloc_code_real_type reloc)
2195 {
2196 return reloc == BFD_RELOC_LO16 || reloc == BFD_RELOC_MIPS16_LO16;
2197 }
2198
2199 /* Return true if the given relocation might need a matching %lo().
2200 This is only "might" because SVR4 R_MIPS_GOT16 relocations only
2201 need a matching %lo() when applied to local symbols. */
2202
2203 static inline bfd_boolean
2204 reloc_needs_lo_p (bfd_reloc_code_real_type reloc)
2205 {
2206 return (HAVE_IN_PLACE_ADDENDS
2207 && (hi16_reloc_p (reloc)
2208 /* VxWorks R_MIPS_GOT16 relocs never need a matching %lo();
2209 all GOT16 relocations evaluate to "G". */
2210 || (got16_reloc_p (reloc) && mips_pic != VXWORKS_PIC)));
2211 }
2212
2213 /* Return the type of %lo() reloc needed by RELOC, given that
2214 reloc_needs_lo_p. */
2215
2216 static inline bfd_reloc_code_real_type
2217 matching_lo_reloc (bfd_reloc_code_real_type reloc)
2218 {
2219 return mips16_reloc_p (reloc) ? BFD_RELOC_MIPS16_LO16 : BFD_RELOC_LO16;
2220 }
2221
2222 /* Return true if the given fixup is followed by a matching R_MIPS_LO16
2223 relocation. */
2224
2225 static inline bfd_boolean
2226 fixup_has_matching_lo_p (fixS *fixp)
2227 {
2228 return (fixp->fx_next != NULL
2229 && fixp->fx_next->fx_r_type == matching_lo_reloc (fixp->fx_r_type)
2230 && fixp->fx_addsy == fixp->fx_next->fx_addsy
2231 && fixp->fx_offset == fixp->fx_next->fx_offset);
2232 }
2233
2234 /* See whether instruction IP reads register REG. CLASS is the type
2235 of register. */
2236
2237 static int
2238 insn_uses_reg (const struct mips_cl_insn *ip, unsigned int reg,
2239 enum mips_regclass regclass)
2240 {
2241 if (regclass == MIPS16_REG)
2242 {
2243 gas_assert (mips_opts.mips16);
2244 reg = mips16_to_32_reg_map[reg];
2245 regclass = MIPS_GR_REG;
2246 }
2247
2248 /* Don't report on general register ZERO, since it never changes. */
2249 if (regclass == MIPS_GR_REG && reg == ZERO)
2250 return 0;
2251
2252 if (regclass == MIPS_FP_REG)
2253 {
2254 gas_assert (! mips_opts.mips16);
2255 /* If we are called with either $f0 or $f1, we must check $f0.
2256 This is not optimal, because it will introduce an unnecessary
2257 NOP between "lwc1 $f0" and "swc1 $f1". To fix this we would
2258 need to distinguish reading both $f0 and $f1 or just one of
2259 them. Note that we don't have to check the other way,
2260 because there is no instruction that sets both $f0 and $f1
2261 and requires a delay. */
2262 if ((ip->insn_mo->pinfo & INSN_READ_FPR_S)
2263 && ((EXTRACT_OPERAND (FS, *ip) & ~(unsigned) 1)
2264 == (reg &~ (unsigned) 1)))
2265 return 1;
2266 if ((ip->insn_mo->pinfo & INSN_READ_FPR_T)
2267 && ((EXTRACT_OPERAND (FT, *ip) & ~(unsigned) 1)
2268 == (reg &~ (unsigned) 1)))
2269 return 1;
2270 }
2271 else if (! mips_opts.mips16)
2272 {
2273 if ((ip->insn_mo->pinfo & INSN_READ_GPR_S)
2274 && EXTRACT_OPERAND (RS, *ip) == reg)
2275 return 1;
2276 if ((ip->insn_mo->pinfo & INSN_READ_GPR_T)
2277 && EXTRACT_OPERAND (RT, *ip) == reg)
2278 return 1;
2279 }
2280 else
2281 {
2282 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_X)
2283 && mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RX, *ip)] == reg)
2284 return 1;
2285 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_Y)
2286 && mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RY, *ip)] == reg)
2287 return 1;
2288 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_Z)
2289 && (mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (MOVE32Z, *ip)]
2290 == reg))
2291 return 1;
2292 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_T) && reg == TREG)
2293 return 1;
2294 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_SP) && reg == SP)
2295 return 1;
2296 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_31) && reg == RA)
2297 return 1;
2298 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_GPR_X)
2299 && MIPS16_EXTRACT_OPERAND (REGR32, *ip) == reg)
2300 return 1;
2301 }
2302
2303 return 0;
2304 }
2305
2306 /* This function returns true if modifying a register requires a
2307 delay. */
2308
2309 static int
2310 reg_needs_delay (unsigned int reg)
2311 {
2312 unsigned long prev_pinfo;
2313
2314 prev_pinfo = history[0].insn_mo->pinfo;
2315 if (! mips_opts.noreorder
2316 && (((prev_pinfo & INSN_LOAD_MEMORY_DELAY)
2317 && ! gpr_interlocks)
2318 || ((prev_pinfo & INSN_LOAD_COPROC_DELAY)
2319 && ! cop_interlocks)))
2320 {
2321 /* A load from a coprocessor or from memory. All load delays
2322 delay the use of general register rt for one instruction. */
2323 /* Itbl support may require additional care here. */
2324 know (prev_pinfo & INSN_WRITE_GPR_T);
2325 if (reg == EXTRACT_OPERAND (RT, history[0]))
2326 return 1;
2327 }
2328
2329 return 0;
2330 }
2331
2332 /* Move all labels in insn_labels to the current insertion point. */
2333
2334 static void
2335 mips_move_labels (void)
2336 {
2337 segment_info_type *si = seg_info (now_seg);
2338 struct insn_label_list *l;
2339 valueT val;
2340
2341 for (l = si->label_list; l != NULL; l = l->next)
2342 {
2343 gas_assert (S_GET_SEGMENT (l->label) == now_seg);
2344 symbol_set_frag (l->label, frag_now);
2345 val = (valueT) frag_now_fix ();
2346 /* mips16 text labels are stored as odd. */
2347 if (mips_opts.mips16)
2348 ++val;
2349 S_SET_VALUE (l->label, val);
2350 }
2351 }
2352
2353 static bfd_boolean
2354 s_is_linkonce (symbolS *sym, segT from_seg)
2355 {
2356 bfd_boolean linkonce = FALSE;
2357 segT symseg = S_GET_SEGMENT (sym);
2358
2359 if (symseg != from_seg && !S_IS_LOCAL (sym))
2360 {
2361 if ((bfd_get_section_flags (stdoutput, symseg) & SEC_LINK_ONCE))
2362 linkonce = TRUE;
2363 #ifdef OBJ_ELF
2364 /* The GNU toolchain uses an extension for ELF: a section
2365 beginning with the magic string .gnu.linkonce is a
2366 linkonce section. */
2367 if (strncmp (segment_name (symseg), ".gnu.linkonce",
2368 sizeof ".gnu.linkonce" - 1) == 0)
2369 linkonce = TRUE;
2370 #endif
2371 }
2372 return linkonce;
2373 }
2374
2375 /* Mark instruction labels in mips16 mode. This permits the linker to
2376 handle them specially, such as generating jalx instructions when
2377 needed. We also make them odd for the duration of the assembly, in
2378 order to generate the right sort of code. We will make them even
2379 in the adjust_symtab routine, while leaving them marked. This is
2380 convenient for the debugger and the disassembler. The linker knows
2381 to make them odd again. */
2382
2383 static void
2384 mips16_mark_labels (void)
2385 {
2386 segment_info_type *si = seg_info (now_seg);
2387 struct insn_label_list *l;
2388
2389 if (!mips_opts.mips16)
2390 return;
2391
2392 for (l = si->label_list; l != NULL; l = l->next)
2393 {
2394 symbolS *label = l->label;
2395
2396 #if defined(OBJ_ELF) || defined(OBJ_MAYBE_ELF)
2397 if (IS_ELF)
2398 S_SET_OTHER (label, ELF_ST_SET_MIPS16 (S_GET_OTHER (label)));
2399 #endif
2400 if ((S_GET_VALUE (label) & 1) == 0
2401 /* Don't adjust the address if the label is global or weak, or
2402 in a link-once section, since we'll be emitting symbol reloc
2403 references to it which will be patched up by the linker, and
2404 the final value of the symbol may or may not be MIPS16. */
2405 && ! S_IS_WEAK (label)
2406 && ! S_IS_EXTERNAL (label)
2407 && ! s_is_linkonce (label, now_seg))
2408 S_SET_VALUE (label, S_GET_VALUE (label) | 1);
2409 }
2410 }
2411
2412 /* End the current frag. Make it a variant frag and record the
2413 relaxation info. */
2414
2415 static void
2416 relax_close_frag (void)
2417 {
2418 mips_macro_warning.first_frag = frag_now;
2419 frag_var (rs_machine_dependent, 0, 0,
2420 RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1]),
2421 mips_relax.symbol, 0, (char *) mips_relax.first_fixup);
2422
2423 memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes));
2424 mips_relax.first_fixup = 0;
2425 }
2426
2427 /* Start a new relaxation sequence whose expansion depends on SYMBOL.
2428 See the comment above RELAX_ENCODE for more details. */
2429
2430 static void
2431 relax_start (symbolS *symbol)
2432 {
2433 gas_assert (mips_relax.sequence == 0);
2434 mips_relax.sequence = 1;
2435 mips_relax.symbol = symbol;
2436 }
2437
2438 /* Start generating the second version of a relaxable sequence.
2439 See the comment above RELAX_ENCODE for more details. */
2440
2441 static void
2442 relax_switch (void)
2443 {
2444 gas_assert (mips_relax.sequence == 1);
2445 mips_relax.sequence = 2;
2446 }
2447
2448 /* End the current relaxable sequence. */
2449
2450 static void
2451 relax_end (void)
2452 {
2453 gas_assert (mips_relax.sequence == 2);
2454 relax_close_frag ();
2455 mips_relax.sequence = 0;
2456 }
2457
2458 /* Classify an instruction according to the FIX_VR4120_* enumeration.
2459 Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected
2460 by VR4120 errata. */
2461
2462 static unsigned int
2463 classify_vr4120_insn (const char *name)
2464 {
2465 if (strncmp (name, "macc", 4) == 0)
2466 return FIX_VR4120_MACC;
2467 if (strncmp (name, "dmacc", 5) == 0)
2468 return FIX_VR4120_DMACC;
2469 if (strncmp (name, "mult", 4) == 0)
2470 return FIX_VR4120_MULT;
2471 if (strncmp (name, "dmult", 5) == 0)
2472 return FIX_VR4120_DMULT;
2473 if (strstr (name, "div"))
2474 return FIX_VR4120_DIV;
2475 if (strcmp (name, "mtlo") == 0 || strcmp (name, "mthi") == 0)
2476 return FIX_VR4120_MTHILO;
2477 return NUM_FIX_VR4120_CLASSES;
2478 }
2479
2480 #define INSN_ERET 0x42000018
2481 #define INSN_DERET 0x4200001f
2482
2483 /* Return the number of instructions that must separate INSN1 and INSN2,
2484 where INSN1 is the earlier instruction. Return the worst-case value
2485 for any INSN2 if INSN2 is null. */
2486
2487 static unsigned int
2488 insns_between (const struct mips_cl_insn *insn1,
2489 const struct mips_cl_insn *insn2)
2490 {
2491 unsigned long pinfo1, pinfo2;
2492
2493 /* This function needs to know which pinfo flags are set for INSN2
2494 and which registers INSN2 uses. The former is stored in PINFO2 and
2495 the latter is tested via INSN2_USES_REG. If INSN2 is null, PINFO2
2496 will have every flag set and INSN2_USES_REG will always return true. */
2497 pinfo1 = insn1->insn_mo->pinfo;
2498 pinfo2 = insn2 ? insn2->insn_mo->pinfo : ~0U;
2499
2500 #define INSN2_USES_REG(REG, CLASS) \
2501 (insn2 == NULL || insn_uses_reg (insn2, REG, CLASS))
2502
2503 /* For most targets, write-after-read dependencies on the HI and LO
2504 registers must be separated by at least two instructions. */
2505 if (!hilo_interlocks)
2506 {
2507 if ((pinfo1 & INSN_READ_LO) && (pinfo2 & INSN_WRITE_LO))
2508 return 2;
2509 if ((pinfo1 & INSN_READ_HI) && (pinfo2 & INSN_WRITE_HI))
2510 return 2;
2511 }
2512
2513 /* If we're working around r7000 errata, there must be two instructions
2514 between an mfhi or mflo and any instruction that uses the result. */
2515 if (mips_7000_hilo_fix
2516 && MF_HILO_INSN (pinfo1)
2517 && INSN2_USES_REG (EXTRACT_OPERAND (RD, *insn1), MIPS_GR_REG))
2518 return 2;
2519
2520 /* If we're working around 24K errata, one instruction is required
2521 if an ERET or DERET is followed by a branch instruction. */
2522 if (mips_fix_24k)
2523 {
2524 if (insn1->insn_opcode == INSN_ERET
2525 || insn1->insn_opcode == INSN_DERET)
2526 {
2527 if (insn2 == NULL
2528 || insn2->insn_opcode == INSN_ERET
2529 || insn2->insn_opcode == INSN_DERET
2530 || (insn2->insn_mo->pinfo
2531 & (INSN_UNCOND_BRANCH_DELAY
2532 | INSN_COND_BRANCH_DELAY
2533 | INSN_COND_BRANCH_LIKELY)) != 0)
2534 return 1;
2535 }
2536 }
2537
2538 /* If working around VR4120 errata, check for combinations that need
2539 a single intervening instruction. */
2540 if (mips_fix_vr4120)
2541 {
2542 unsigned int class1, class2;
2543
2544 class1 = classify_vr4120_insn (insn1->insn_mo->name);
2545 if (class1 != NUM_FIX_VR4120_CLASSES && vr4120_conflicts[class1] != 0)
2546 {
2547 if (insn2 == NULL)
2548 return 1;
2549 class2 = classify_vr4120_insn (insn2->insn_mo->name);
2550 if (vr4120_conflicts[class1] & (1 << class2))
2551 return 1;
2552 }
2553 }
2554
2555 if (!mips_opts.mips16)
2556 {
2557 /* Check for GPR or coprocessor load delays. All such delays
2558 are on the RT register. */
2559 /* Itbl support may require additional care here. */
2560 if ((!gpr_interlocks && (pinfo1 & INSN_LOAD_MEMORY_DELAY))
2561 || (!cop_interlocks && (pinfo1 & INSN_LOAD_COPROC_DELAY)))
2562 {
2563 know (pinfo1 & INSN_WRITE_GPR_T);
2564 if (INSN2_USES_REG (EXTRACT_OPERAND (RT, *insn1), MIPS_GR_REG))
2565 return 1;
2566 }
2567
2568 /* Check for generic coprocessor hazards.
2569
2570 This case is not handled very well. There is no special
2571 knowledge of CP0 handling, and the coprocessors other than
2572 the floating point unit are not distinguished at all. */
2573 /* Itbl support may require additional care here. FIXME!
2574 Need to modify this to include knowledge about
2575 user specified delays! */
2576 else if ((!cop_interlocks && (pinfo1 & INSN_COPROC_MOVE_DELAY))
2577 || (!cop_mem_interlocks && (pinfo1 & INSN_COPROC_MEMORY_DELAY)))
2578 {
2579 /* Handle cases where INSN1 writes to a known general coprocessor
2580 register. There must be a one instruction delay before INSN2
2581 if INSN2 reads that register, otherwise no delay is needed. */
2582 if (pinfo1 & INSN_WRITE_FPR_T)
2583 {
2584 if (INSN2_USES_REG (EXTRACT_OPERAND (FT, *insn1), MIPS_FP_REG))
2585 return 1;
2586 }
2587 else if (pinfo1 & INSN_WRITE_FPR_S)
2588 {
2589 if (INSN2_USES_REG (EXTRACT_OPERAND (FS, *insn1), MIPS_FP_REG))
2590 return 1;
2591 }
2592 else
2593 {
2594 /* Read-after-write dependencies on the control registers
2595 require a two-instruction gap. */
2596 if ((pinfo1 & INSN_WRITE_COND_CODE)
2597 && (pinfo2 & INSN_READ_COND_CODE))
2598 return 2;
2599
2600 /* We don't know exactly what INSN1 does. If INSN2 is
2601 also a coprocessor instruction, assume there must be
2602 a one instruction gap. */
2603 if (pinfo2 & INSN_COP)
2604 return 1;
2605 }
2606 }
2607
2608 /* Check for read-after-write dependencies on the coprocessor
2609 control registers in cases where INSN1 does not need a general
2610 coprocessor delay. This means that INSN1 is a floating point
2611 comparison instruction. */
2612 /* Itbl support may require additional care here. */
2613 else if (!cop_interlocks
2614 && (pinfo1 & INSN_WRITE_COND_CODE)
2615 && (pinfo2 & INSN_READ_COND_CODE))
2616 return 1;
2617 }
2618
2619 #undef INSN2_USES_REG
2620
2621 return 0;
2622 }
2623
2624 /* Return the number of nops that would be needed to work around the
2625 VR4130 mflo/mfhi errata if instruction INSN immediately followed
2626 the MAX_VR4130_NOPS instructions described by HIST. */
2627
2628 static int
2629 nops_for_vr4130 (const struct mips_cl_insn *hist,
2630 const struct mips_cl_insn *insn)
2631 {
2632 int i, j, reg;
2633
2634 /* Check if the instruction writes to HI or LO. MTHI and MTLO
2635 are not affected by the errata. */
2636 if (insn != 0
2637 && ((insn->insn_mo->pinfo & (INSN_WRITE_HI | INSN_WRITE_LO)) == 0
2638 || strcmp (insn->insn_mo->name, "mtlo") == 0
2639 || strcmp (insn->insn_mo->name, "mthi") == 0))
2640 return 0;
2641
2642 /* Search for the first MFLO or MFHI. */
2643 for (i = 0; i < MAX_VR4130_NOPS; i++)
2644 if (MF_HILO_INSN (hist[i].insn_mo->pinfo))
2645 {
2646 /* Extract the destination register. */
2647 if (mips_opts.mips16)
2648 reg = mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RX, hist[i])];
2649 else
2650 reg = EXTRACT_OPERAND (RD, hist[i]);
2651
2652 /* No nops are needed if INSN reads that register. */
2653 if (insn != NULL && insn_uses_reg (insn, reg, MIPS_GR_REG))
2654 return 0;
2655
2656 /* ...or if any of the intervening instructions do. */
2657 for (j = 0; j < i; j++)
2658 if (insn_uses_reg (&hist[j], reg, MIPS_GR_REG))
2659 return 0;
2660
2661 return MAX_VR4130_NOPS - i;
2662 }
2663 return 0;
2664 }
2665
2666 /* Return the number of nops that would be needed if instruction INSN
2667 immediately followed the MAX_NOPS instructions given by HIST,
2668 where HIST[0] is the most recent instruction. If INSN is null,
2669 return the worse-case number of nops for any instruction. */
2670
2671 static int
2672 nops_for_insn (const struct mips_cl_insn *hist,
2673 const struct mips_cl_insn *insn)
2674 {
2675 int i, nops, tmp_nops;
2676
2677 nops = 0;
2678 for (i = 0; i < MAX_DELAY_NOPS; i++)
2679 {
2680 tmp_nops = insns_between (hist + i, insn) - i;
2681 if (tmp_nops > nops)
2682 nops = tmp_nops;
2683 }
2684
2685 if (mips_fix_vr4130)
2686 {
2687 tmp_nops = nops_for_vr4130 (hist, insn);
2688 if (tmp_nops > nops)
2689 nops = tmp_nops;
2690 }
2691
2692 return nops;
2693 }
2694
2695 /* The variable arguments provide NUM_INSNS extra instructions that
2696 might be added to HIST. Return the largest number of nops that
2697 would be needed after the extended sequence. */
2698
2699 static int
2700 nops_for_sequence (int num_insns, const struct mips_cl_insn *hist, ...)
2701 {
2702 va_list args;
2703 struct mips_cl_insn buffer[MAX_NOPS];
2704 struct mips_cl_insn *cursor;
2705 int nops;
2706
2707 va_start (args, hist);
2708 cursor = buffer + num_insns;
2709 memcpy (cursor, hist, (MAX_NOPS - num_insns) * sizeof (*cursor));
2710 while (cursor > buffer)
2711 *--cursor = *va_arg (args, const struct mips_cl_insn *);
2712
2713 nops = nops_for_insn (buffer, NULL);
2714 va_end (args);
2715 return nops;
2716 }
2717
2718 /* Like nops_for_insn, but if INSN is a branch, take into account the
2719 worst-case delay for the branch target. */
2720
2721 static int
2722 nops_for_insn_or_target (const struct mips_cl_insn *hist,
2723 const struct mips_cl_insn *insn)
2724 {
2725 int nops, tmp_nops;
2726
2727 nops = nops_for_insn (hist, insn);
2728 if (insn->insn_mo->pinfo & (INSN_UNCOND_BRANCH_DELAY
2729 | INSN_COND_BRANCH_DELAY
2730 | INSN_COND_BRANCH_LIKELY))
2731 {
2732 tmp_nops = nops_for_sequence (2, hist, insn, NOP_INSN);
2733 if (tmp_nops > nops)
2734 nops = tmp_nops;
2735 }
2736 else if (mips_opts.mips16
2737 && (insn->insn_mo->pinfo & (MIPS16_INSN_UNCOND_BRANCH
2738 | MIPS16_INSN_COND_BRANCH)))
2739 {
2740 tmp_nops = nops_for_sequence (1, hist, insn);
2741 if (tmp_nops > nops)
2742 nops = tmp_nops;
2743 }
2744 return nops;
2745 }
2746
2747 /* Fix NOP issue: Replace nops by "or at,at,zero". */
2748
2749 static void
2750 fix_loongson2f_nop (struct mips_cl_insn * ip)
2751 {
2752 if (strcmp (ip->insn_mo->name, "nop") == 0)
2753 ip->insn_opcode = LOONGSON2F_NOP_INSN;
2754 }
2755
2756 /* Fix Jump Issue: Eliminate instruction fetch from outside 256M region
2757 jr target pc &= 'hffff_ffff_cfff_ffff. */
2758
2759 static void
2760 fix_loongson2f_jump (struct mips_cl_insn * ip)
2761 {
2762 if (strcmp (ip->insn_mo->name, "j") == 0
2763 || strcmp (ip->insn_mo->name, "jr") == 0
2764 || strcmp (ip->insn_mo->name, "jalr") == 0)
2765 {
2766 int sreg;
2767 expressionS ep;
2768
2769 if (! mips_opts.at)
2770 return;
2771
2772 sreg = EXTRACT_OPERAND (RS, *ip);
2773 if (sreg == ZERO || sreg == KT0 || sreg == KT1 || sreg == ATREG)
2774 return;
2775
2776 ep.X_op = O_constant;
2777 ep.X_add_number = 0xcfff0000;
2778 macro_build (&ep, "lui", "t,u", ATREG, BFD_RELOC_HI16);
2779 ep.X_add_number = 0xffff;
2780 macro_build (&ep, "ori", "t,r,i", ATREG, ATREG, BFD_RELOC_LO16);
2781 macro_build (NULL, "and", "d,v,t", sreg, sreg, ATREG);
2782 }
2783 }
2784
2785 static void
2786 fix_loongson2f (struct mips_cl_insn * ip)
2787 {
2788 if (mips_fix_loongson2f_nop)
2789 fix_loongson2f_nop (ip);
2790
2791 if (mips_fix_loongson2f_jump)
2792 fix_loongson2f_jump (ip);
2793 }
2794
2795 /* Output an instruction. IP is the instruction information.
2796 ADDRESS_EXPR is an operand of the instruction to be used with
2797 RELOC_TYPE. */
2798
2799 static void
2800 append_insn (struct mips_cl_insn *ip, expressionS *address_expr,
2801 bfd_reloc_code_real_type *reloc_type)
2802 {
2803 unsigned long prev_pinfo, pinfo;
2804 relax_stateT prev_insn_frag_type = 0;
2805 bfd_boolean relaxed_branch = FALSE;
2806 segment_info_type *si = seg_info (now_seg);
2807
2808 if (mips_fix_loongson2f)
2809 fix_loongson2f (ip);
2810
2811 /* Mark instruction labels in mips16 mode. */
2812 mips16_mark_labels ();
2813
2814 prev_pinfo = history[0].insn_mo->pinfo;
2815 pinfo = ip->insn_mo->pinfo;
2816
2817 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
2818 {
2819 /* There are a lot of optimizations we could do that we don't.
2820 In particular, we do not, in general, reorder instructions.
2821 If you use gcc with optimization, it will reorder
2822 instructions and generally do much more optimization then we
2823 do here; repeating all that work in the assembler would only
2824 benefit hand written assembly code, and does not seem worth
2825 it. */
2826 int nops = (mips_optimize == 0
2827 ? nops_for_insn (history, NULL)
2828 : nops_for_insn_or_target (history, ip));
2829 if (nops > 0)
2830 {
2831 fragS *old_frag;
2832 unsigned long old_frag_offset;
2833 int i;
2834
2835 old_frag = frag_now;
2836 old_frag_offset = frag_now_fix ();
2837
2838 for (i = 0; i < nops; i++)
2839 emit_nop ();
2840
2841 if (listing)
2842 {
2843 listing_prev_line ();
2844 /* We may be at the start of a variant frag. In case we
2845 are, make sure there is enough space for the frag
2846 after the frags created by listing_prev_line. The
2847 argument to frag_grow here must be at least as large
2848 as the argument to all other calls to frag_grow in
2849 this file. We don't have to worry about being in the
2850 middle of a variant frag, because the variants insert
2851 all needed nop instructions themselves. */
2852 frag_grow (40);
2853 }
2854
2855 mips_move_labels ();
2856
2857 #ifndef NO_ECOFF_DEBUGGING
2858 if (ECOFF_DEBUGGING)
2859 ecoff_fix_loc (old_frag, old_frag_offset);
2860 #endif
2861 }
2862 }
2863 else if (mips_relax.sequence != 2 && prev_nop_frag != NULL)
2864 {
2865 /* Work out how many nops in prev_nop_frag are needed by IP. */
2866 int nops = nops_for_insn_or_target (history, ip);
2867 gas_assert (nops <= prev_nop_frag_holds);
2868
2869 /* Enforce NOPS as a minimum. */
2870 if (nops > prev_nop_frag_required)
2871 prev_nop_frag_required = nops;
2872
2873 if (prev_nop_frag_holds == prev_nop_frag_required)
2874 {
2875 /* Settle for the current number of nops. Update the history
2876 accordingly (for the benefit of any future .set reorder code). */
2877 prev_nop_frag = NULL;
2878 insert_into_history (prev_nop_frag_since,
2879 prev_nop_frag_holds, NOP_INSN);
2880 }
2881 else
2882 {
2883 /* Allow this instruction to replace one of the nops that was
2884 tentatively added to prev_nop_frag. */
2885 prev_nop_frag->fr_fix -= mips_opts.mips16 ? 2 : 4;
2886 prev_nop_frag_holds--;
2887 prev_nop_frag_since++;
2888 }
2889 }
2890
2891 #ifdef OBJ_ELF
2892 /* The value passed to dwarf2_emit_insn is the distance between
2893 the beginning of the current instruction and the address that
2894 should be recorded in the debug tables. For MIPS16 debug info
2895 we want to use ISA-encoded addresses, so we pass -1 for an
2896 address higher by one than the current. */
2897 dwarf2_emit_insn (mips_opts.mips16 ? -1 : 0);
2898 #endif
2899
2900 /* Record the frag type before frag_var. */
2901 if (history[0].frag)
2902 prev_insn_frag_type = history[0].frag->fr_type;
2903
2904 if (address_expr
2905 && *reloc_type == BFD_RELOC_16_PCREL_S2
2906 && (pinfo & INSN_UNCOND_BRANCH_DELAY || pinfo & INSN_COND_BRANCH_DELAY
2907 || pinfo & INSN_COND_BRANCH_LIKELY)
2908 && mips_relax_branch
2909 /* Don't try branch relaxation within .set nomacro, or within
2910 .set noat if we use $at for PIC computations. If it turns
2911 out that the branch was out-of-range, we'll get an error. */
2912 && !mips_opts.warn_about_macros
2913 && (mips_opts.at || mips_pic == NO_PIC)
2914 && !mips_opts.mips16)
2915 {
2916 relaxed_branch = TRUE;
2917 add_relaxed_insn (ip, (relaxed_branch_length
2918 (NULL, NULL,
2919 (pinfo & INSN_UNCOND_BRANCH_DELAY) ? -1
2920 : (pinfo & INSN_COND_BRANCH_LIKELY) ? 1
2921 : 0)), 4,
2922 RELAX_BRANCH_ENCODE
2923 (pinfo & INSN_UNCOND_BRANCH_DELAY,
2924 pinfo & INSN_COND_BRANCH_LIKELY,
2925 pinfo & INSN_WRITE_GPR_31,
2926 0),
2927 address_expr->X_add_symbol,
2928 address_expr->X_add_number);
2929 *reloc_type = BFD_RELOC_UNUSED;
2930 }
2931 else if (*reloc_type > BFD_RELOC_UNUSED)
2932 {
2933 /* We need to set up a variant frag. */
2934 gas_assert (mips_opts.mips16 && address_expr != NULL);
2935 add_relaxed_insn (ip, 4, 0,
2936 RELAX_MIPS16_ENCODE
2937 (*reloc_type - BFD_RELOC_UNUSED,
2938 mips16_small, mips16_ext,
2939 prev_pinfo & INSN_UNCOND_BRANCH_DELAY,
2940 history[0].mips16_absolute_jump_p),
2941 make_expr_symbol (address_expr), 0);
2942 }
2943 else if (mips_opts.mips16
2944 && ! ip->use_extend
2945 && *reloc_type != BFD_RELOC_MIPS16_JMP)
2946 {
2947 if ((pinfo & INSN_UNCOND_BRANCH_DELAY) == 0)
2948 /* Make sure there is enough room to swap this instruction with
2949 a following jump instruction. */
2950 frag_grow (6);
2951 add_fixed_insn (ip);
2952 }
2953 else
2954 {
2955 if (mips_opts.mips16
2956 && mips_opts.noreorder
2957 && (prev_pinfo & INSN_UNCOND_BRANCH_DELAY) != 0)
2958 as_warn (_("extended instruction in delay slot"));
2959
2960 if (mips_relax.sequence)
2961 {
2962 /* If we've reached the end of this frag, turn it into a variant
2963 frag and record the information for the instructions we've
2964 written so far. */
2965 if (frag_room () < 4)
2966 relax_close_frag ();
2967 mips_relax.sizes[mips_relax.sequence - 1] += 4;
2968 }
2969
2970 if (mips_relax.sequence != 2)
2971 mips_macro_warning.sizes[0] += 4;
2972 if (mips_relax.sequence != 1)
2973 mips_macro_warning.sizes[1] += 4;
2974
2975 if (mips_opts.mips16)
2976 {
2977 ip->fixed_p = 1;
2978 ip->mips16_absolute_jump_p = (*reloc_type == BFD_RELOC_MIPS16_JMP);
2979 }
2980 add_fixed_insn (ip);
2981 }
2982
2983 if (address_expr != NULL && *reloc_type <= BFD_RELOC_UNUSED)
2984 {
2985 if (address_expr->X_op == O_constant)
2986 {
2987 unsigned int tmp;
2988
2989 switch (*reloc_type)
2990 {
2991 case BFD_RELOC_32:
2992 ip->insn_opcode |= address_expr->X_add_number;
2993 break;
2994
2995 case BFD_RELOC_MIPS_HIGHEST:
2996 tmp = (address_expr->X_add_number + 0x800080008000ull) >> 48;
2997 ip->insn_opcode |= tmp & 0xffff;
2998 break;
2999
3000 case BFD_RELOC_MIPS_HIGHER:
3001 tmp = (address_expr->X_add_number + 0x80008000ull) >> 32;
3002 ip->insn_opcode |= tmp & 0xffff;
3003 break;
3004
3005 case BFD_RELOC_HI16_S:
3006 tmp = (address_expr->X_add_number + 0x8000) >> 16;
3007 ip->insn_opcode |= tmp & 0xffff;
3008 break;
3009
3010 case BFD_RELOC_HI16:
3011 ip->insn_opcode |= (address_expr->X_add_number >> 16) & 0xffff;
3012 break;
3013
3014 case BFD_RELOC_UNUSED:
3015 case BFD_RELOC_LO16:
3016 case BFD_RELOC_MIPS_GOT_DISP:
3017 ip->insn_opcode |= address_expr->X_add_number & 0xffff;
3018 break;
3019
3020 case BFD_RELOC_MIPS_JMP:
3021 if ((address_expr->X_add_number & 3) != 0)
3022 as_bad (_("jump to misaligned address (0x%lx)"),
3023 (unsigned long) address_expr->X_add_number);
3024 ip->insn_opcode |= (address_expr->X_add_number >> 2) & 0x3ffffff;
3025 break;
3026
3027 case BFD_RELOC_MIPS16_JMP:
3028 if ((address_expr->X_add_number & 3) != 0)
3029 as_bad (_("jump to misaligned address (0x%lx)"),
3030 (unsigned long) address_expr->X_add_number);
3031 ip->insn_opcode |=
3032 (((address_expr->X_add_number & 0x7c0000) << 3)
3033 | ((address_expr->X_add_number & 0xf800000) >> 7)
3034 | ((address_expr->X_add_number & 0x3fffc) >> 2));
3035 break;
3036
3037 case BFD_RELOC_16_PCREL_S2:
3038 if ((address_expr->X_add_number & 3) != 0)
3039 as_bad (_("branch to misaligned address (0x%lx)"),
3040 (unsigned long) address_expr->X_add_number);
3041 if (mips_relax_branch)
3042 goto need_reloc;
3043 if ((address_expr->X_add_number + 0x20000) & ~0x3ffff)
3044 as_bad (_("branch address range overflow (0x%lx)"),
3045 (unsigned long) address_expr->X_add_number);
3046 ip->insn_opcode |= (address_expr->X_add_number >> 2) & 0xffff;
3047 break;
3048
3049 default:
3050 internalError ();
3051 }
3052 }
3053 else if (*reloc_type < BFD_RELOC_UNUSED)
3054 need_reloc:
3055 {
3056 reloc_howto_type *howto;
3057 int i;
3058
3059 /* In a compound relocation, it is the final (outermost)
3060 operator that determines the relocated field. */
3061 for (i = 1; i < 3; i++)
3062 if (reloc_type[i] == BFD_RELOC_UNUSED)
3063 break;
3064
3065 howto = bfd_reloc_type_lookup (stdoutput, reloc_type[i - 1]);
3066 if (howto == NULL)
3067 {
3068 /* To reproduce this failure try assembling gas/testsuites/
3069 gas/mips/mips16-intermix.s with a mips-ecoff targeted
3070 assembler. */
3071 as_bad (_("Unsupported MIPS relocation number %d"), reloc_type[i - 1]);
3072 howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_16);
3073 }
3074
3075 ip->fixp[0] = fix_new_exp (ip->frag, ip->where,
3076 bfd_get_reloc_size (howto),
3077 address_expr,
3078 reloc_type[0] == BFD_RELOC_16_PCREL_S2,
3079 reloc_type[0]);
3080
3081 /* Tag symbols that have a R_MIPS16_26 relocation against them. */
3082 if (reloc_type[0] == BFD_RELOC_MIPS16_JMP
3083 && ip->fixp[0]->fx_addsy)
3084 *symbol_get_tc (ip->fixp[0]->fx_addsy) = 1;
3085
3086 /* These relocations can have an addend that won't fit in
3087 4 octets for 64bit assembly. */
3088 if (HAVE_64BIT_GPRS
3089 && ! howto->partial_inplace
3090 && (reloc_type[0] == BFD_RELOC_16
3091 || reloc_type[0] == BFD_RELOC_32
3092 || reloc_type[0] == BFD_RELOC_MIPS_JMP
3093 || reloc_type[0] == BFD_RELOC_GPREL16
3094 || reloc_type[0] == BFD_RELOC_MIPS_LITERAL
3095 || reloc_type[0] == BFD_RELOC_GPREL32
3096 || reloc_type[0] == BFD_RELOC_64
3097 || reloc_type[0] == BFD_RELOC_CTOR
3098 || reloc_type[0] == BFD_RELOC_MIPS_SUB
3099 || reloc_type[0] == BFD_RELOC_MIPS_HIGHEST
3100 || reloc_type[0] == BFD_RELOC_MIPS_HIGHER
3101 || reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP
3102 || reloc_type[0] == BFD_RELOC_MIPS_REL16
3103 || reloc_type[0] == BFD_RELOC_MIPS_RELGOT
3104 || reloc_type[0] == BFD_RELOC_MIPS16_GPREL
3105 || hi16_reloc_p (reloc_type[0])
3106 || lo16_reloc_p (reloc_type[0])))
3107 ip->fixp[0]->fx_no_overflow = 1;
3108
3109 if (mips_relax.sequence)
3110 {
3111 if (mips_relax.first_fixup == 0)
3112 mips_relax.first_fixup = ip->fixp[0];
3113 }
3114 else if (reloc_needs_lo_p (*reloc_type))
3115 {
3116 struct mips_hi_fixup *hi_fixup;
3117
3118 /* Reuse the last entry if it already has a matching %lo. */
3119 hi_fixup = mips_hi_fixup_list;
3120 if (hi_fixup == 0
3121 || !fixup_has_matching_lo_p (hi_fixup->fixp))
3122 {
3123 hi_fixup = ((struct mips_hi_fixup *)
3124 xmalloc (sizeof (struct mips_hi_fixup)));
3125 hi_fixup->next = mips_hi_fixup_list;
3126 mips_hi_fixup_list = hi_fixup;
3127 }
3128 hi_fixup->fixp = ip->fixp[0];
3129 hi_fixup->seg = now_seg;
3130 }
3131
3132 /* Add fixups for the second and third relocations, if given.
3133 Note that the ABI allows the second relocation to be
3134 against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
3135 moment we only use RSS_UNDEF, but we could add support
3136 for the others if it ever becomes necessary. */
3137 for (i = 1; i < 3; i++)
3138 if (reloc_type[i] != BFD_RELOC_UNUSED)
3139 {
3140 ip->fixp[i] = fix_new (ip->frag, ip->where,
3141 ip->fixp[0]->fx_size, NULL, 0,
3142 FALSE, reloc_type[i]);
3143
3144 /* Use fx_tcbit to mark compound relocs. */
3145 ip->fixp[0]->fx_tcbit = 1;
3146 ip->fixp[i]->fx_tcbit = 1;
3147 }
3148 }
3149 }
3150 install_insn (ip);
3151
3152 /* Update the register mask information. */
3153 if (! mips_opts.mips16)
3154 {
3155 if (pinfo & INSN_WRITE_GPR_D)
3156 mips_gprmask |= 1 << EXTRACT_OPERAND (RD, *ip);
3157 if ((pinfo & (INSN_WRITE_GPR_T | INSN_READ_GPR_T)) != 0)
3158 mips_gprmask |= 1 << EXTRACT_OPERAND (RT, *ip);
3159 if (pinfo & INSN_READ_GPR_S)
3160 mips_gprmask |= 1 << EXTRACT_OPERAND (RS, *ip);
3161 if (pinfo & INSN_WRITE_GPR_31)
3162 mips_gprmask |= 1 << RA;
3163 if (pinfo & INSN_WRITE_FPR_D)
3164 mips_cprmask[1] |= 1 << EXTRACT_OPERAND (FD, *ip);
3165 if ((pinfo & (INSN_WRITE_FPR_S | INSN_READ_FPR_S)) != 0)
3166 mips_cprmask[1] |= 1 << EXTRACT_OPERAND (FS, *ip);
3167 if ((pinfo & (INSN_WRITE_FPR_T | INSN_READ_FPR_T)) != 0)
3168 mips_cprmask[1] |= 1 << EXTRACT_OPERAND (FT, *ip);
3169 if ((pinfo & INSN_READ_FPR_R) != 0)
3170 mips_cprmask[1] |= 1 << EXTRACT_OPERAND (FR, *ip);
3171 if (pinfo & INSN_COP)
3172 {
3173 /* We don't keep enough information to sort these cases out.
3174 The itbl support does keep this information however, although
3175 we currently don't support itbl fprmats as part of the cop
3176 instruction. May want to add this support in the future. */
3177 }
3178 /* Never set the bit for $0, which is always zero. */
3179 mips_gprmask &= ~1 << 0;
3180 }
3181 else
3182 {
3183 if (pinfo & (MIPS16_INSN_WRITE_X | MIPS16_INSN_READ_X))
3184 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (RX, *ip);
3185 if (pinfo & (MIPS16_INSN_WRITE_Y | MIPS16_INSN_READ_Y))
3186 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (RY, *ip);
3187 if (pinfo & MIPS16_INSN_WRITE_Z)
3188 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (RZ, *ip);
3189 if (pinfo & (MIPS16_INSN_WRITE_T | MIPS16_INSN_READ_T))
3190 mips_gprmask |= 1 << TREG;
3191 if (pinfo & (MIPS16_INSN_WRITE_SP | MIPS16_INSN_READ_SP))
3192 mips_gprmask |= 1 << SP;
3193 if (pinfo & (MIPS16_INSN_WRITE_31 | MIPS16_INSN_READ_31))
3194 mips_gprmask |= 1 << RA;
3195 if (pinfo & MIPS16_INSN_WRITE_GPR_Y)
3196 mips_gprmask |= 1 << MIPS16OP_EXTRACT_REG32R (ip->insn_opcode);
3197 if (pinfo & MIPS16_INSN_READ_Z)
3198 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (MOVE32Z, *ip);
3199 if (pinfo & MIPS16_INSN_READ_GPR_X)
3200 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (REGR32, *ip);
3201 }
3202
3203 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
3204 {
3205 /* Filling the branch delay slot is more complex. We try to
3206 switch the branch with the previous instruction, which we can
3207 do if the previous instruction does not set up a condition
3208 that the branch tests and if the branch is not itself the
3209 target of any branch. */
3210 if ((pinfo & INSN_UNCOND_BRANCH_DELAY)
3211 || (pinfo & INSN_COND_BRANCH_DELAY))
3212 {
3213 if (mips_optimize < 2
3214 /* If we have seen .set volatile or .set nomove, don't
3215 optimize. */
3216 || mips_opts.nomove != 0
3217 /* We can't swap if the previous instruction's position
3218 is fixed. */
3219 || history[0].fixed_p
3220 /* If the previous previous insn was in a .set
3221 noreorder, we can't swap. Actually, the MIPS
3222 assembler will swap in this situation. However, gcc
3223 configured -with-gnu-as will generate code like
3224 .set noreorder
3225 lw $4,XXX
3226 .set reorder
3227 INSN
3228 bne $4,$0,foo
3229 in which we can not swap the bne and INSN. If gcc is
3230 not configured -with-gnu-as, it does not output the
3231 .set pseudo-ops. */
3232 || history[1].noreorder_p
3233 /* If the branch is itself the target of a branch, we
3234 can not swap. We cheat on this; all we check for is
3235 whether there is a label on this instruction. If
3236 there are any branches to anything other than a
3237 label, users must use .set noreorder. */
3238 || si->label_list != NULL
3239 /* If the previous instruction is in a variant frag
3240 other than this branch's one, we cannot do the swap.
3241 This does not apply to the mips16, which uses variant
3242 frags for different purposes. */
3243 || (! mips_opts.mips16
3244 && prev_insn_frag_type == rs_machine_dependent)
3245 /* Check for conflicts between the branch and the instructions
3246 before the candidate delay slot. */
3247 || nops_for_insn (history + 1, ip) > 0
3248 /* Check for conflicts between the swapped sequence and the
3249 target of the branch. */
3250 || nops_for_sequence (2, history + 1, ip, history) > 0
3251 /* We do not swap with a trap instruction, since it
3252 complicates trap handlers to have the trap
3253 instruction be in a delay slot. */
3254 || (prev_pinfo & INSN_TRAP)
3255 /* If the branch reads a register that the previous
3256 instruction sets, we can not swap. */
3257 || (! mips_opts.mips16
3258 && (prev_pinfo & INSN_WRITE_GPR_T)
3259 && insn_uses_reg (ip, EXTRACT_OPERAND (RT, history[0]),
3260 MIPS_GR_REG))
3261 || (! mips_opts.mips16
3262 && (prev_pinfo & INSN_WRITE_GPR_D)
3263 && insn_uses_reg (ip, EXTRACT_OPERAND (RD, history[0]),
3264 MIPS_GR_REG))
3265 || (mips_opts.mips16
3266 && (((prev_pinfo & MIPS16_INSN_WRITE_X)
3267 && (insn_uses_reg
3268 (ip, MIPS16_EXTRACT_OPERAND (RX, history[0]),
3269 MIPS16_REG)))
3270 || ((prev_pinfo & MIPS16_INSN_WRITE_Y)
3271 && (insn_uses_reg
3272 (ip, MIPS16_EXTRACT_OPERAND (RY, history[0]),
3273 MIPS16_REG)))
3274 || ((prev_pinfo & MIPS16_INSN_WRITE_Z)
3275 && (insn_uses_reg
3276 (ip, MIPS16_EXTRACT_OPERAND (RZ, history[0]),
3277 MIPS16_REG)))
3278 || ((prev_pinfo & MIPS16_INSN_WRITE_T)
3279 && insn_uses_reg (ip, TREG, MIPS_GR_REG))
3280 || ((prev_pinfo & MIPS16_INSN_WRITE_31)
3281 && insn_uses_reg (ip, RA, MIPS_GR_REG))
3282 || ((prev_pinfo & MIPS16_INSN_WRITE_GPR_Y)
3283 && insn_uses_reg (ip,
3284 MIPS16OP_EXTRACT_REG32R
3285 (history[0].insn_opcode),
3286 MIPS_GR_REG))))
3287 /* If the branch writes a register that the previous
3288 instruction sets, we can not swap (we know that
3289 branches write only to RD or to $31). */
3290 || (! mips_opts.mips16
3291 && (prev_pinfo & INSN_WRITE_GPR_T)
3292 && (((pinfo & INSN_WRITE_GPR_D)
3293 && (EXTRACT_OPERAND (RT, history[0])
3294 == EXTRACT_OPERAND (RD, *ip)))
3295 || ((pinfo & INSN_WRITE_GPR_31)
3296 && EXTRACT_OPERAND (RT, history[0]) == RA)))
3297 || (! mips_opts.mips16
3298 && (prev_pinfo & INSN_WRITE_GPR_D)
3299 && (((pinfo & INSN_WRITE_GPR_D)
3300 && (EXTRACT_OPERAND (RD, history[0])
3301 == EXTRACT_OPERAND (RD, *ip)))
3302 || ((pinfo & INSN_WRITE_GPR_31)
3303 && EXTRACT_OPERAND (RD, history[0]) == RA)))
3304 || (mips_opts.mips16
3305 && (pinfo & MIPS16_INSN_WRITE_31)
3306 && ((prev_pinfo & MIPS16_INSN_WRITE_31)
3307 || ((prev_pinfo & MIPS16_INSN_WRITE_GPR_Y)
3308 && (MIPS16OP_EXTRACT_REG32R (history[0].insn_opcode)
3309 == RA))))
3310 /* If the branch writes a register that the previous
3311 instruction reads, we can not swap (we know that
3312 branches only write to RD or to $31). */
3313 || (! mips_opts.mips16
3314 && (pinfo & INSN_WRITE_GPR_D)
3315 && insn_uses_reg (&history[0],
3316 EXTRACT_OPERAND (RD, *ip),
3317 MIPS_GR_REG))
3318 || (! mips_opts.mips16
3319 && (pinfo & INSN_WRITE_GPR_31)
3320 && insn_uses_reg (&history[0], RA, MIPS_GR_REG))
3321 || (mips_opts.mips16
3322 && (pinfo & MIPS16_INSN_WRITE_31)
3323 && insn_uses_reg (&history[0], RA, MIPS_GR_REG))
3324 /* If one instruction sets a condition code and the
3325 other one uses a condition code, we can not swap. */
3326 || ((pinfo & INSN_READ_COND_CODE)
3327 && (prev_pinfo & INSN_WRITE_COND_CODE))
3328 || ((pinfo & INSN_WRITE_COND_CODE)
3329 && (prev_pinfo & INSN_READ_COND_CODE))
3330 /* If the previous instruction uses the PC, we can not
3331 swap. */
3332 || (mips_opts.mips16
3333 && (prev_pinfo & MIPS16_INSN_READ_PC))
3334 /* If the previous instruction had a fixup in mips16
3335 mode, we can not swap. This normally means that the
3336 previous instruction was a 4 byte branch anyhow. */
3337 || (mips_opts.mips16 && history[0].fixp[0])
3338 /* If the previous instruction is a sync, sync.l, or
3339 sync.p, we can not swap. */
3340 || (prev_pinfo & INSN_SYNC)
3341 /* If the previous instruction is an ERET or
3342 DERET, avoid the swap. */
3343 || (history[0].insn_opcode == INSN_ERET)
3344 || (history[0].insn_opcode == INSN_DERET))
3345 {
3346 if (mips_opts.mips16
3347 && (pinfo & INSN_UNCOND_BRANCH_DELAY)
3348 && (pinfo & (MIPS16_INSN_READ_X | MIPS16_INSN_READ_31))
3349 && ISA_SUPPORTS_MIPS16E)
3350 {
3351 /* Convert MIPS16 jr/jalr into a "compact" jump. */
3352 ip->insn_opcode |= 0x0080;
3353 install_insn (ip);
3354 insert_into_history (0, 1, ip);
3355 }
3356 else
3357 {
3358 /* We could do even better for unconditional branches to
3359 portions of this object file; we could pick up the
3360 instruction at the destination, put it in the delay
3361 slot, and bump the destination address. */
3362 insert_into_history (0, 1, ip);
3363 emit_nop ();
3364 }
3365
3366 if (mips_relax.sequence)
3367 mips_relax.sizes[mips_relax.sequence - 1] += 4;
3368 }
3369 else
3370 {
3371 /* It looks like we can actually do the swap. */
3372 struct mips_cl_insn delay = history[0];
3373 if (mips_opts.mips16)
3374 {
3375 know (delay.frag == ip->frag);
3376 move_insn (ip, delay.frag, delay.where);
3377 move_insn (&delay, ip->frag, ip->where + insn_length (ip));
3378 }
3379 else if (relaxed_branch)
3380 {
3381 /* Add the delay slot instruction to the end of the
3382 current frag and shrink the fixed part of the
3383 original frag. If the branch occupies the tail of
3384 the latter, move it backwards to cover the gap. */
3385 delay.frag->fr_fix -= 4;
3386 if (delay.frag == ip->frag)
3387 move_insn (ip, ip->frag, ip->where - 4);
3388 add_fixed_insn (&delay);
3389 }
3390 else
3391 {
3392 move_insn (&delay, ip->frag, ip->where);
3393 move_insn (ip, history[0].frag, history[0].where);
3394 }
3395 history[0] = *ip;
3396 delay.fixed_p = 1;
3397 insert_into_history (0, 1, &delay);
3398 }
3399
3400 /* If that was an unconditional branch, forget the previous
3401 insn information. */
3402 if (pinfo & INSN_UNCOND_BRANCH_DELAY)
3403 {
3404 mips_no_prev_insn ();
3405 }
3406 }
3407 else if (pinfo & INSN_COND_BRANCH_LIKELY)
3408 {
3409 /* We don't yet optimize a branch likely. What we should do
3410 is look at the target, copy the instruction found there
3411 into the delay slot, and increment the branch to jump to
3412 the next instruction. */
3413 insert_into_history (0, 1, ip);
3414 emit_nop ();
3415 }
3416 else
3417 insert_into_history (0, 1, ip);
3418 }
3419 else
3420 insert_into_history (0, 1, ip);
3421
3422 /* We just output an insn, so the next one doesn't have a label. */
3423 mips_clear_insn_labels ();
3424 }
3425
3426 /* Forget that there was any previous instruction or label. */
3427
3428 static void
3429 mips_no_prev_insn (void)
3430 {
3431 prev_nop_frag = NULL;
3432 insert_into_history (0, ARRAY_SIZE (history), NOP_INSN);
3433 mips_clear_insn_labels ();
3434 }
3435
3436 /* This function must be called before we emit something other than
3437 instructions. It is like mips_no_prev_insn except that it inserts
3438 any NOPS that might be needed by previous instructions. */
3439
3440 void
3441 mips_emit_delays (void)
3442 {
3443 if (! mips_opts.noreorder)
3444 {
3445 int nops = nops_for_insn (history, NULL);
3446 if (nops > 0)
3447 {
3448 while (nops-- > 0)
3449 add_fixed_insn (NOP_INSN);
3450 mips_move_labels ();
3451 }
3452 }
3453 mips_no_prev_insn ();
3454 }
3455
3456 /* Start a (possibly nested) noreorder block. */
3457
3458 static void
3459 start_noreorder (void)
3460 {
3461 if (mips_opts.noreorder == 0)
3462 {
3463 unsigned int i;
3464 int nops;
3465
3466 /* None of the instructions before the .set noreorder can be moved. */
3467 for (i = 0; i < ARRAY_SIZE (history); i++)
3468 history[i].fixed_p = 1;
3469
3470 /* Insert any nops that might be needed between the .set noreorder
3471 block and the previous instructions. We will later remove any
3472 nops that turn out not to be needed. */
3473 nops = nops_for_insn (history, NULL);
3474 if (nops > 0)
3475 {
3476 if (mips_optimize != 0)
3477 {
3478 /* Record the frag which holds the nop instructions, so
3479 that we can remove them if we don't need them. */
3480 frag_grow (mips_opts.mips16 ? nops * 2 : nops * 4);
3481 prev_nop_frag = frag_now;
3482 prev_nop_frag_holds = nops;
3483 prev_nop_frag_required = 0;
3484 prev_nop_frag_since = 0;
3485 }
3486
3487 for (; nops > 0; --nops)
3488 add_fixed_insn (NOP_INSN);
3489
3490 /* Move on to a new frag, so that it is safe to simply
3491 decrease the size of prev_nop_frag. */
3492 frag_wane (frag_now);
3493 frag_new (0);
3494 mips_move_labels ();
3495 }
3496 mips16_mark_labels ();
3497 mips_clear_insn_labels ();
3498 }
3499 mips_opts.noreorder++;
3500 mips_any_noreorder = 1;
3501 }
3502
3503 /* End a nested noreorder block. */
3504
3505 static void
3506 end_noreorder (void)
3507 {
3508
3509 mips_opts.noreorder--;
3510 if (mips_opts.noreorder == 0 && prev_nop_frag != NULL)
3511 {
3512 /* Commit to inserting prev_nop_frag_required nops and go back to
3513 handling nop insertion the .set reorder way. */
3514 prev_nop_frag->fr_fix -= ((prev_nop_frag_holds - prev_nop_frag_required)
3515 * (mips_opts.mips16 ? 2 : 4));
3516 insert_into_history (prev_nop_frag_since,
3517 prev_nop_frag_required, NOP_INSN);
3518 prev_nop_frag = NULL;
3519 }
3520 }
3521
3522 /* Set up global variables for the start of a new macro. */
3523
3524 static void
3525 macro_start (void)
3526 {
3527 memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes));
3528 mips_macro_warning.delay_slot_p = (mips_opts.noreorder
3529 && (history[0].insn_mo->pinfo
3530 & (INSN_UNCOND_BRANCH_DELAY
3531 | INSN_COND_BRANCH_DELAY
3532 | INSN_COND_BRANCH_LIKELY)) != 0);
3533 }
3534
3535 /* Given that a macro is longer than 4 bytes, return the appropriate warning
3536 for it. Return null if no warning is needed. SUBTYPE is a bitmask of
3537 RELAX_DELAY_SLOT and RELAX_NOMACRO. */
3538
3539 static const char *
3540 macro_warning (relax_substateT subtype)
3541 {
3542 if (subtype & RELAX_DELAY_SLOT)
3543 return _("Macro instruction expanded into multiple instructions"
3544 " in a branch delay slot");
3545 else if (subtype & RELAX_NOMACRO)
3546 return _("Macro instruction expanded into multiple instructions");
3547 else
3548 return 0;
3549 }
3550
3551 /* Finish up a macro. Emit warnings as appropriate. */
3552
3553 static void
3554 macro_end (void)
3555 {
3556 if (mips_macro_warning.sizes[0] > 4 || mips_macro_warning.sizes[1] > 4)
3557 {
3558 relax_substateT subtype;
3559
3560 /* Set up the relaxation warning flags. */
3561 subtype = 0;
3562 if (mips_macro_warning.sizes[1] > mips_macro_warning.sizes[0])
3563 subtype |= RELAX_SECOND_LONGER;
3564 if (mips_opts.warn_about_macros)
3565 subtype |= RELAX_NOMACRO;
3566 if (mips_macro_warning.delay_slot_p)
3567 subtype |= RELAX_DELAY_SLOT;
3568
3569 if (mips_macro_warning.sizes[0] > 4 && mips_macro_warning.sizes[1] > 4)
3570 {
3571 /* Either the macro has a single implementation or both
3572 implementations are longer than 4 bytes. Emit the
3573 warning now. */
3574 const char *msg = macro_warning (subtype);
3575 if (msg != 0)
3576 as_warn ("%s", msg);
3577 }
3578 else
3579 {
3580 /* One implementation might need a warning but the other
3581 definitely doesn't. */
3582 mips_macro_warning.first_frag->fr_subtype |= subtype;
3583 }
3584 }
3585 }
3586
3587 /* Read a macro's relocation codes from *ARGS and store them in *R.
3588 The first argument in *ARGS will be either the code for a single
3589 relocation or -1 followed by the three codes that make up a
3590 composite relocation. */
3591
3592 static void
3593 macro_read_relocs (va_list *args, bfd_reloc_code_real_type *r)
3594 {
3595 int i, next;
3596
3597 next = va_arg (*args, int);
3598 if (next >= 0)
3599 r[0] = (bfd_reloc_code_real_type) next;
3600 else
3601 for (i = 0; i < 3; i++)
3602 r[i] = (bfd_reloc_code_real_type) va_arg (*args, int);
3603 }
3604
3605 /* Build an instruction created by a macro expansion. This is passed
3606 a pointer to the count of instructions created so far, an
3607 expression, the name of the instruction to build, an operand format
3608 string, and corresponding arguments. */
3609
3610 static void
3611 macro_build (expressionS *ep, const char *name, const char *fmt, ...)
3612 {
3613 const struct mips_opcode *mo;
3614 struct mips_cl_insn insn;
3615 bfd_reloc_code_real_type r[3];
3616 va_list args;
3617
3618 va_start (args, fmt);
3619
3620 if (mips_opts.mips16)
3621 {
3622 mips16_macro_build (ep, name, fmt, &args);
3623 va_end (args);
3624 return;
3625 }
3626
3627 r[0] = BFD_RELOC_UNUSED;
3628 r[1] = BFD_RELOC_UNUSED;
3629 r[2] = BFD_RELOC_UNUSED;
3630 mo = (struct mips_opcode *) hash_find (op_hash, name);
3631 gas_assert (mo);
3632 gas_assert (strcmp (name, mo->name) == 0);
3633
3634 while (1)
3635 {
3636 /* Search until we get a match for NAME. It is assumed here that
3637 macros will never generate MDMX, MIPS-3D, or MT instructions. */
3638 if (strcmp (fmt, mo->args) == 0
3639 && mo->pinfo != INSN_MACRO
3640 && is_opcode_valid (mo))
3641 break;
3642
3643 ++mo;
3644 gas_assert (mo->name);
3645 gas_assert (strcmp (name, mo->name) == 0);
3646 }
3647
3648 create_insn (&insn, mo);
3649 for (;;)
3650 {
3651 switch (*fmt++)
3652 {
3653 case '\0':
3654 break;
3655
3656 case ',':
3657 case '(':
3658 case ')':
3659 continue;
3660
3661 case '+':
3662 switch (*fmt++)
3663 {
3664 case 'A':
3665 case 'E':
3666 INSERT_OPERAND (SHAMT, insn, va_arg (args, int));
3667 continue;
3668
3669 case 'B':
3670 case 'F':
3671 /* Note that in the macro case, these arguments are already
3672 in MSB form. (When handling the instruction in the
3673 non-macro case, these arguments are sizes from which
3674 MSB values must be calculated.) */
3675 INSERT_OPERAND (INSMSB, insn, va_arg (args, int));
3676 continue;
3677
3678 case 'C':
3679 case 'G':
3680 case 'H':
3681 /* Note that in the macro case, these arguments are already
3682 in MSBD form. (When handling the instruction in the
3683 non-macro case, these arguments are sizes from which
3684 MSBD values must be calculated.) */
3685 INSERT_OPERAND (EXTMSBD, insn, va_arg (args, int));
3686 continue;
3687
3688 case 'Q':
3689 INSERT_OPERAND (SEQI, insn, va_arg (args, int));
3690 continue;
3691
3692 default:
3693 internalError ();
3694 }
3695 continue;
3696
3697 case '2':
3698 INSERT_OPERAND (BP, insn, va_arg (args, int));
3699 continue;
3700
3701 case 't':
3702 case 'w':
3703 case 'E':
3704 INSERT_OPERAND (RT, insn, va_arg (args, int));
3705 continue;
3706
3707 case 'c':
3708 INSERT_OPERAND (CODE, insn, va_arg (args, int));
3709 continue;
3710
3711 case 'T':
3712 case 'W':
3713 INSERT_OPERAND (FT, insn, va_arg (args, int));
3714 continue;
3715
3716 case 'd':
3717 case 'G':
3718 case 'K':
3719 INSERT_OPERAND (RD, insn, va_arg (args, int));
3720 continue;
3721
3722 case 'U':
3723 {
3724 int tmp = va_arg (args, int);
3725
3726 INSERT_OPERAND (RT, insn, tmp);
3727 INSERT_OPERAND (RD, insn, tmp);
3728 continue;
3729 }
3730
3731 case 'V':
3732 case 'S':
3733 INSERT_OPERAND (FS, insn, va_arg (args, int));
3734 continue;
3735
3736 case 'z':
3737 continue;
3738
3739 case '<':
3740 INSERT_OPERAND (SHAMT, insn, va_arg (args, int));
3741 continue;
3742
3743 case 'D':
3744 INSERT_OPERAND (FD, insn, va_arg (args, int));
3745 continue;
3746
3747 case 'B':
3748 INSERT_OPERAND (CODE20, insn, va_arg (args, int));
3749 continue;
3750
3751 case 'J':
3752 INSERT_OPERAND (CODE19, insn, va_arg (args, int));
3753 continue;
3754
3755 case 'q':
3756 INSERT_OPERAND (CODE2, insn, va_arg (args, int));
3757 continue;
3758
3759 case 'b':
3760 case 's':
3761 case 'r':
3762 case 'v':
3763 INSERT_OPERAND (RS, insn, va_arg (args, int));
3764 continue;
3765
3766 case 'i':
3767 case 'j':
3768 macro_read_relocs (&args, r);
3769 gas_assert (*r == BFD_RELOC_GPREL16
3770 || *r == BFD_RELOC_MIPS_HIGHER
3771 || *r == BFD_RELOC_HI16_S
3772 || *r == BFD_RELOC_LO16
3773 || *r == BFD_RELOC_MIPS_GOT_OFST);
3774 continue;
3775
3776 case 'o':
3777 macro_read_relocs (&args, r);
3778 continue;
3779
3780 case 'u':
3781 macro_read_relocs (&args, r);
3782 gas_assert (ep != NULL
3783 && (ep->X_op == O_constant
3784 || (ep->X_op == O_symbol
3785 && (*r == BFD_RELOC_MIPS_HIGHEST
3786 || *r == BFD_RELOC_HI16_S
3787 || *r == BFD_RELOC_HI16
3788 || *r == BFD_RELOC_GPREL16
3789 || *r == BFD_RELOC_MIPS_GOT_HI16
3790 || *r == BFD_RELOC_MIPS_CALL_HI16))));
3791 continue;
3792
3793 case 'p':
3794 gas_assert (ep != NULL);
3795
3796 /*
3797 * This allows macro() to pass an immediate expression for
3798 * creating short branches without creating a symbol.
3799 *
3800 * We don't allow branch relaxation for these branches, as
3801 * they should only appear in ".set nomacro" anyway.
3802 */
3803 if (ep->X_op == O_constant)
3804 {
3805 if ((ep->X_add_number & 3) != 0)
3806 as_bad (_("branch to misaligned address (0x%lx)"),
3807 (unsigned long) ep->X_add_number);
3808 if ((ep->X_add_number + 0x20000) & ~0x3ffff)
3809 as_bad (_("branch address range overflow (0x%lx)"),
3810 (unsigned long) ep->X_add_number);
3811 insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
3812 ep = NULL;
3813 }
3814 else
3815 *r = BFD_RELOC_16_PCREL_S2;
3816 continue;
3817
3818 case 'a':
3819 gas_assert (ep != NULL);
3820 *r = BFD_RELOC_MIPS_JMP;
3821 continue;
3822
3823 case 'C':
3824 INSERT_OPERAND (COPZ, insn, va_arg (args, unsigned long));
3825 continue;
3826
3827 case 'k':
3828 INSERT_OPERAND (CACHE, insn, va_arg (args, unsigned long));
3829 continue;
3830
3831 default:
3832 internalError ();
3833 }
3834 break;
3835 }
3836 va_end (args);
3837 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
3838
3839 append_insn (&insn, ep, r);
3840 }
3841
3842 static void
3843 mips16_macro_build (expressionS *ep, const char *name, const char *fmt,
3844 va_list *args)
3845 {
3846 struct mips_opcode *mo;
3847 struct mips_cl_insn insn;
3848 bfd_reloc_code_real_type r[3]
3849 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
3850
3851 mo = (struct mips_opcode *) hash_find (mips16_op_hash, name);
3852 gas_assert (mo);
3853 gas_assert (strcmp (name, mo->name) == 0);
3854
3855 while (strcmp (fmt, mo->args) != 0 || mo->pinfo == INSN_MACRO)
3856 {
3857 ++mo;
3858 gas_assert (mo->name);
3859 gas_assert (strcmp (name, mo->name) == 0);
3860 }
3861
3862 create_insn (&insn, mo);
3863 for (;;)
3864 {
3865 int c;
3866
3867 c = *fmt++;
3868 switch (c)
3869 {
3870 case '\0':
3871 break;
3872
3873 case ',':
3874 case '(':
3875 case ')':
3876 continue;
3877
3878 case 'y':
3879 case 'w':
3880 MIPS16_INSERT_OPERAND (RY, insn, va_arg (*args, int));
3881 continue;
3882
3883 case 'x':
3884 case 'v':
3885 MIPS16_INSERT_OPERAND (RX, insn, va_arg (*args, int));
3886 continue;
3887
3888 case 'z':
3889 MIPS16_INSERT_OPERAND (RZ, insn, va_arg (*args, int));
3890 continue;
3891
3892 case 'Z':
3893 MIPS16_INSERT_OPERAND (MOVE32Z, insn, va_arg (*args, int));
3894 continue;
3895
3896 case '0':
3897 case 'S':
3898 case 'P':
3899 case 'R':
3900 continue;
3901
3902 case 'X':
3903 MIPS16_INSERT_OPERAND (REGR32, insn, va_arg (*args, int));
3904 continue;
3905
3906 case 'Y':
3907 {
3908 int regno;
3909
3910 regno = va_arg (*args, int);
3911 regno = ((regno & 7) << 2) | ((regno & 0x18) >> 3);
3912 MIPS16_INSERT_OPERAND (REG32R, insn, regno);
3913 }
3914 continue;
3915
3916 case '<':
3917 case '>':
3918 case '4':
3919 case '5':
3920 case 'H':
3921 case 'W':
3922 case 'D':
3923 case 'j':
3924 case '8':
3925 case 'V':
3926 case 'C':
3927 case 'U':
3928 case 'k':
3929 case 'K':
3930 case 'p':
3931 case 'q':
3932 {
3933 gas_assert (ep != NULL);
3934
3935 if (ep->X_op != O_constant)
3936 *r = (int) BFD_RELOC_UNUSED + c;
3937 else
3938 {
3939 mips16_immed (NULL, 0, c, ep->X_add_number, FALSE, FALSE,
3940 FALSE, &insn.insn_opcode, &insn.use_extend,
3941 &insn.extend);
3942 ep = NULL;
3943 *r = BFD_RELOC_UNUSED;
3944 }
3945 }
3946 continue;
3947
3948 case '6':
3949 MIPS16_INSERT_OPERAND (IMM6, insn, va_arg (*args, int));
3950 continue;
3951 }
3952
3953 break;
3954 }
3955
3956 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
3957
3958 append_insn (&insn, ep, r);
3959 }
3960
3961 /*
3962 * Sign-extend 32-bit mode constants that have bit 31 set and all
3963 * higher bits unset.
3964 */
3965 static void
3966 normalize_constant_expr (expressionS *ex)
3967 {
3968 if (ex->X_op == O_constant
3969 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
3970 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
3971 - 0x80000000);
3972 }
3973
3974 /*
3975 * Sign-extend 32-bit mode address offsets that have bit 31 set and
3976 * all higher bits unset.
3977 */
3978 static void
3979 normalize_address_expr (expressionS *ex)
3980 {
3981 if (((ex->X_op == O_constant && HAVE_32BIT_ADDRESSES)
3982 || (ex->X_op == O_symbol && HAVE_32BIT_SYMBOLS))
3983 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
3984 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
3985 - 0x80000000);
3986 }
3987
3988 /*
3989 * Generate a "jalr" instruction with a relocation hint to the called
3990 * function. This occurs in NewABI PIC code.
3991 */
3992 static void
3993 macro_build_jalr (expressionS *ep)
3994 {
3995 char *f = NULL;
3996
3997 if (MIPS_JALR_HINT_P (ep))
3998 {
3999 frag_grow (8);
4000 f = frag_more (0);
4001 }
4002 macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG);
4003 if (MIPS_JALR_HINT_P (ep))
4004 fix_new_exp (frag_now, f - frag_now->fr_literal,
4005 4, ep, FALSE, BFD_RELOC_MIPS_JALR);
4006 }
4007
4008 /*
4009 * Generate a "lui" instruction.
4010 */
4011 static void
4012 macro_build_lui (expressionS *ep, int regnum)
4013 {
4014 expressionS high_expr;
4015 const struct mips_opcode *mo;
4016 struct mips_cl_insn insn;
4017 bfd_reloc_code_real_type r[3]
4018 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
4019 const char *name = "lui";
4020 const char *fmt = "t,u";
4021
4022 gas_assert (! mips_opts.mips16);
4023
4024 high_expr = *ep;
4025
4026 if (high_expr.X_op == O_constant)
4027 {
4028 /* We can compute the instruction now without a relocation entry. */
4029 high_expr.X_add_number = ((high_expr.X_add_number + 0x8000)
4030 >> 16) & 0xffff;
4031 *r = BFD_RELOC_UNUSED;
4032 }
4033 else
4034 {
4035 gas_assert (ep->X_op == O_symbol);
4036 /* _gp_disp is a special case, used from s_cpload.
4037 __gnu_local_gp is used if mips_no_shared. */
4038 gas_assert (mips_pic == NO_PIC
4039 || (! HAVE_NEWABI
4040 && strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0)
4041 || (! mips_in_shared
4042 && strcmp (S_GET_NAME (ep->X_add_symbol),
4043 "__gnu_local_gp") == 0));
4044 *r = BFD_RELOC_HI16_S;
4045 }
4046
4047 mo = hash_find (op_hash, name);
4048 gas_assert (strcmp (name, mo->name) == 0);
4049 gas_assert (strcmp (fmt, mo->args) == 0);
4050 create_insn (&insn, mo);
4051
4052 insn.insn_opcode = insn.insn_mo->match;
4053 INSERT_OPERAND (RT, insn, regnum);
4054 if (*r == BFD_RELOC_UNUSED)
4055 {
4056 insn.insn_opcode |= high_expr.X_add_number;
4057 append_insn (&insn, NULL, r);
4058 }
4059 else
4060 append_insn (&insn, &high_expr, r);
4061 }
4062
4063 /* Generate a sequence of instructions to do a load or store from a constant
4064 offset off of a base register (breg) into/from a target register (treg),
4065 using AT if necessary. */
4066 static void
4067 macro_build_ldst_constoffset (expressionS *ep, const char *op,
4068 int treg, int breg, int dbl)
4069 {
4070 gas_assert (ep->X_op == O_constant);
4071
4072 /* Sign-extending 32-bit constants makes their handling easier. */
4073 if (!dbl)
4074 normalize_constant_expr (ep);
4075
4076 /* Right now, this routine can only handle signed 32-bit constants. */
4077 if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000))
4078 as_warn (_("operand overflow"));
4079
4080 if (IS_SEXT_16BIT_NUM(ep->X_add_number))
4081 {
4082 /* Signed 16-bit offset will fit in the op. Easy! */
4083 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg);
4084 }
4085 else
4086 {
4087 /* 32-bit offset, need multiple instructions and AT, like:
4088 lui $tempreg,const_hi (BFD_RELOC_HI16_S)
4089 addu $tempreg,$tempreg,$breg
4090 <op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
4091 to handle the complete offset. */
4092 macro_build_lui (ep, AT);
4093 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
4094 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT);
4095
4096 if (!mips_opts.at)
4097 as_bad (_("Macro used $at after \".set noat\""));
4098 }
4099 }
4100
4101 /* set_at()
4102 * Generates code to set the $at register to true (one)
4103 * if reg is less than the immediate expression.
4104 */
4105 static void
4106 set_at (int reg, int unsignedp)
4107 {
4108 if (imm_expr.X_op == O_constant
4109 && imm_expr.X_add_number >= -0x8000
4110 && imm_expr.X_add_number < 0x8000)
4111 macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j",
4112 AT, reg, BFD_RELOC_LO16);
4113 else
4114 {
4115 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
4116 macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT);
4117 }
4118 }
4119
4120 /* Warn if an expression is not a constant. */
4121
4122 static void
4123 check_absolute_expr (struct mips_cl_insn *ip, expressionS *ex)
4124 {
4125 if (ex->X_op == O_big)
4126 as_bad (_("unsupported large constant"));
4127 else if (ex->X_op != O_constant)
4128 as_bad (_("Instruction %s requires absolute expression"),
4129 ip->insn_mo->name);
4130
4131 if (HAVE_32BIT_GPRS)
4132 normalize_constant_expr (ex);
4133 }
4134
4135 /* Count the leading zeroes by performing a binary chop. This is a
4136 bulky bit of source, but performance is a LOT better for the
4137 majority of values than a simple loop to count the bits:
4138 for (lcnt = 0; (lcnt < 32); lcnt++)
4139 if ((v) & (1 << (31 - lcnt)))
4140 break;
4141 However it is not code size friendly, and the gain will drop a bit
4142 on certain cached systems.
4143 */
4144 #define COUNT_TOP_ZEROES(v) \
4145 (((v) & ~0xffff) == 0 \
4146 ? ((v) & ~0xff) == 0 \
4147 ? ((v) & ~0xf) == 0 \
4148 ? ((v) & ~0x3) == 0 \
4149 ? ((v) & ~0x1) == 0 \
4150 ? !(v) \
4151 ? 32 \
4152 : 31 \
4153 : 30 \
4154 : ((v) & ~0x7) == 0 \
4155 ? 29 \
4156 : 28 \
4157 : ((v) & ~0x3f) == 0 \
4158 ? ((v) & ~0x1f) == 0 \
4159 ? 27 \
4160 : 26 \
4161 : ((v) & ~0x7f) == 0 \
4162 ? 25 \
4163 : 24 \
4164 : ((v) & ~0xfff) == 0 \
4165 ? ((v) & ~0x3ff) == 0 \
4166 ? ((v) & ~0x1ff) == 0 \
4167 ? 23 \
4168 : 22 \
4169 : ((v) & ~0x7ff) == 0 \
4170 ? 21 \
4171 : 20 \
4172 : ((v) & ~0x3fff) == 0 \
4173 ? ((v) & ~0x1fff) == 0 \
4174 ? 19 \
4175 : 18 \
4176 : ((v) & ~0x7fff) == 0 \
4177 ? 17 \
4178 : 16 \
4179 : ((v) & ~0xffffff) == 0 \
4180 ? ((v) & ~0xfffff) == 0 \
4181 ? ((v) & ~0x3ffff) == 0 \
4182 ? ((v) & ~0x1ffff) == 0 \
4183 ? 15 \
4184 : 14 \
4185 : ((v) & ~0x7ffff) == 0 \
4186 ? 13 \
4187 : 12 \
4188 : ((v) & ~0x3fffff) == 0 \
4189 ? ((v) & ~0x1fffff) == 0 \
4190 ? 11 \
4191 : 10 \
4192 : ((v) & ~0x7fffff) == 0 \
4193 ? 9 \
4194 : 8 \
4195 : ((v) & ~0xfffffff) == 0 \
4196 ? ((v) & ~0x3ffffff) == 0 \
4197 ? ((v) & ~0x1ffffff) == 0 \
4198 ? 7 \
4199 : 6 \
4200 : ((v) & ~0x7ffffff) == 0 \
4201 ? 5 \
4202 : 4 \
4203 : ((v) & ~0x3fffffff) == 0 \
4204 ? ((v) & ~0x1fffffff) == 0 \
4205 ? 3 \
4206 : 2 \
4207 : ((v) & ~0x7fffffff) == 0 \
4208 ? 1 \
4209 : 0)
4210
4211 /* load_register()
4212 * This routine generates the least number of instructions necessary to load
4213 * an absolute expression value into a register.
4214 */
4215 static void
4216 load_register (int reg, expressionS *ep, int dbl)
4217 {
4218 int freg;
4219 expressionS hi32, lo32;
4220
4221 if (ep->X_op != O_big)
4222 {
4223 gas_assert (ep->X_op == O_constant);
4224
4225 /* Sign-extending 32-bit constants makes their handling easier. */
4226 if (!dbl)
4227 normalize_constant_expr (ep);
4228
4229 if (IS_SEXT_16BIT_NUM (ep->X_add_number))
4230 {
4231 /* We can handle 16 bit signed values with an addiu to
4232 $zero. No need to ever use daddiu here, since $zero and
4233 the result are always correct in 32 bit mode. */
4234 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
4235 return;
4236 }
4237 else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
4238 {
4239 /* We can handle 16 bit unsigned values with an ori to
4240 $zero. */
4241 macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
4242 return;
4243 }
4244 else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)))
4245 {
4246 /* 32 bit values require an lui. */
4247 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_HI16);
4248 if ((ep->X_add_number & 0xffff) != 0)
4249 macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
4250 return;
4251 }
4252 }
4253
4254 /* The value is larger than 32 bits. */
4255
4256 if (!dbl || HAVE_32BIT_GPRS)
4257 {
4258 char value[32];
4259
4260 sprintf_vma (value, ep->X_add_number);
4261 as_bad (_("Number (0x%s) larger than 32 bits"), value);
4262 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
4263 return;
4264 }
4265
4266 if (ep->X_op != O_big)
4267 {
4268 hi32 = *ep;
4269 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
4270 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
4271 hi32.X_add_number &= 0xffffffff;
4272 lo32 = *ep;
4273 lo32.X_add_number &= 0xffffffff;
4274 }
4275 else
4276 {
4277 gas_assert (ep->X_add_number > 2);
4278 if (ep->X_add_number == 3)
4279 generic_bignum[3] = 0;
4280 else if (ep->X_add_number > 4)
4281 as_bad (_("Number larger than 64 bits"));
4282 lo32.X_op = O_constant;
4283 lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
4284 hi32.X_op = O_constant;
4285 hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
4286 }
4287
4288 if (hi32.X_add_number == 0)
4289 freg = 0;
4290 else
4291 {
4292 int shift, bit;
4293 unsigned long hi, lo;
4294
4295 if (hi32.X_add_number == (offsetT) 0xffffffff)
4296 {
4297 if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
4298 {
4299 macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
4300 return;
4301 }
4302 if (lo32.X_add_number & 0x80000000)
4303 {
4304 macro_build (&lo32, "lui", "t,u", reg, BFD_RELOC_HI16);
4305 if (lo32.X_add_number & 0xffff)
4306 macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
4307 return;
4308 }
4309 }
4310
4311 /* Check for 16bit shifted constant. We know that hi32 is
4312 non-zero, so start the mask on the first bit of the hi32
4313 value. */
4314 shift = 17;
4315 do
4316 {
4317 unsigned long himask, lomask;
4318
4319 if (shift < 32)
4320 {
4321 himask = 0xffff >> (32 - shift);
4322 lomask = (0xffff << shift) & 0xffffffff;
4323 }
4324 else
4325 {
4326 himask = 0xffff << (shift - 32);
4327 lomask = 0;
4328 }
4329 if ((hi32.X_add_number & ~(offsetT) himask) == 0
4330 && (lo32.X_add_number & ~(offsetT) lomask) == 0)
4331 {
4332 expressionS tmp;
4333
4334 tmp.X_op = O_constant;
4335 if (shift < 32)
4336 tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
4337 | (lo32.X_add_number >> shift));
4338 else
4339 tmp.X_add_number = hi32.X_add_number >> (shift - 32);
4340 macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
4341 macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", "d,w,<",
4342 reg, reg, (shift >= 32) ? shift - 32 : shift);
4343 return;
4344 }
4345 ++shift;
4346 }
4347 while (shift <= (64 - 16));
4348
4349 /* Find the bit number of the lowest one bit, and store the
4350 shifted value in hi/lo. */
4351 hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
4352 lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
4353 if (lo != 0)
4354 {
4355 bit = 0;
4356 while ((lo & 1) == 0)
4357 {
4358 lo >>= 1;
4359 ++bit;
4360 }
4361 lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit);
4362 hi >>= bit;
4363 }
4364 else
4365 {
4366 bit = 32;
4367 while ((hi & 1) == 0)
4368 {
4369 hi >>= 1;
4370 ++bit;
4371 }
4372 lo = hi;
4373 hi = 0;
4374 }
4375
4376 /* Optimize if the shifted value is a (power of 2) - 1. */
4377 if ((hi == 0 && ((lo + 1) & lo) == 0)
4378 || (lo == 0xffffffff && ((hi + 1) & hi) == 0))
4379 {
4380 shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
4381 if (shift != 0)
4382 {
4383 expressionS tmp;
4384
4385 /* This instruction will set the register to be all
4386 ones. */
4387 tmp.X_op = O_constant;
4388 tmp.X_add_number = (offsetT) -1;
4389 macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
4390 if (bit != 0)
4391 {
4392 bit += shift;
4393 macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", "d,w,<",
4394 reg, reg, (bit >= 32) ? bit - 32 : bit);
4395 }
4396 macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", "d,w,<",
4397 reg, reg, (shift >= 32) ? shift - 32 : shift);
4398 return;
4399 }
4400 }
4401
4402 /* Sign extend hi32 before calling load_register, because we can
4403 generally get better code when we load a sign extended value. */
4404 if ((hi32.X_add_number & 0x80000000) != 0)
4405 hi32.X_add_number |= ~(offsetT) 0xffffffff;
4406 load_register (reg, &hi32, 0);
4407 freg = reg;
4408 }
4409 if ((lo32.X_add_number & 0xffff0000) == 0)
4410 {
4411 if (freg != 0)
4412 {
4413 macro_build (NULL, "dsll32", "d,w,<", reg, freg, 0);
4414 freg = reg;
4415 }
4416 }
4417 else
4418 {
4419 expressionS mid16;
4420
4421 if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
4422 {
4423 macro_build (&lo32, "lui", "t,u", reg, BFD_RELOC_HI16);
4424 macro_build (NULL, "dsrl32", "d,w,<", reg, reg, 0);
4425 return;
4426 }
4427
4428 if (freg != 0)
4429 {
4430 macro_build (NULL, "dsll", "d,w,<", reg, freg, 16);
4431 freg = reg;
4432 }
4433 mid16 = lo32;
4434 mid16.X_add_number >>= 16;
4435 macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
4436 macro_build (NULL, "dsll", "d,w,<", reg, reg, 16);
4437 freg = reg;
4438 }
4439 if ((lo32.X_add_number & 0xffff) != 0)
4440 macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
4441 }
4442
4443 static inline void
4444 load_delay_nop (void)
4445 {
4446 if (!gpr_interlocks)
4447 macro_build (NULL, "nop", "");
4448 }
4449
4450 /* Load an address into a register. */
4451
4452 static void
4453 load_address (int reg, expressionS *ep, int *used_at)
4454 {
4455 if (ep->X_op != O_constant
4456 && ep->X_op != O_symbol)
4457 {
4458 as_bad (_("expression too complex"));
4459 ep->X_op = O_constant;
4460 }
4461
4462 if (ep->X_op == O_constant)
4463 {
4464 load_register (reg, ep, HAVE_64BIT_ADDRESSES);
4465 return;
4466 }
4467
4468 if (mips_pic == NO_PIC)
4469 {
4470 /* If this is a reference to a GP relative symbol, we want
4471 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
4472 Otherwise we want
4473 lui $reg,<sym> (BFD_RELOC_HI16_S)
4474 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
4475 If we have an addend, we always use the latter form.
4476
4477 With 64bit address space and a usable $at we want
4478 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
4479 lui $at,<sym> (BFD_RELOC_HI16_S)
4480 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
4481 daddiu $at,<sym> (BFD_RELOC_LO16)
4482 dsll32 $reg,0
4483 daddu $reg,$reg,$at
4484
4485 If $at is already in use, we use a path which is suboptimal
4486 on superscalar processors.
4487 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
4488 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
4489 dsll $reg,16
4490 daddiu $reg,<sym> (BFD_RELOC_HI16_S)
4491 dsll $reg,16
4492 daddiu $reg,<sym> (BFD_RELOC_LO16)
4493
4494 For GP relative symbols in 64bit address space we can use
4495 the same sequence as in 32bit address space. */
4496 if (HAVE_64BIT_SYMBOLS)
4497 {
4498 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
4499 && !nopic_need_relax (ep->X_add_symbol, 1))
4500 {
4501 relax_start (ep->X_add_symbol);
4502 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
4503 mips_gp_register, BFD_RELOC_GPREL16);
4504 relax_switch ();
4505 }
4506
4507 if (*used_at == 0 && mips_opts.at)
4508 {
4509 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_HIGHEST);
4510 macro_build (ep, "lui", "t,u", AT, BFD_RELOC_HI16_S);
4511 macro_build (ep, "daddiu", "t,r,j", reg, reg,
4512 BFD_RELOC_MIPS_HIGHER);
4513 macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16);
4514 macro_build (NULL, "dsll32", "d,w,<", reg, reg, 0);
4515 macro_build (NULL, "daddu", "d,v,t", reg, reg, AT);
4516 *used_at = 1;
4517 }
4518 else
4519 {
4520 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_HIGHEST);
4521 macro_build (ep, "daddiu", "t,r,j", reg, reg,
4522 BFD_RELOC_MIPS_HIGHER);
4523 macro_build (NULL, "dsll", "d,w,<", reg, reg, 16);
4524 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S);
4525 macro_build (NULL, "dsll", "d,w,<", reg, reg, 16);
4526 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16);
4527 }
4528
4529 if (mips_relax.sequence)
4530 relax_end ();
4531 }
4532 else
4533 {
4534 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
4535 && !nopic_need_relax (ep->X_add_symbol, 1))
4536 {
4537 relax_start (ep->X_add_symbol);
4538 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
4539 mips_gp_register, BFD_RELOC_GPREL16);
4540 relax_switch ();
4541 }
4542 macro_build_lui (ep, reg);
4543 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
4544 reg, reg, BFD_RELOC_LO16);
4545 if (mips_relax.sequence)
4546 relax_end ();
4547 }
4548 }
4549 else if (!mips_big_got)
4550 {
4551 expressionS ex;
4552
4553 /* If this is a reference to an external symbol, we want
4554 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
4555 Otherwise we want
4556 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
4557 nop
4558 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
4559 If there is a constant, it must be added in after.
4560
4561 If we have NewABI, we want
4562 lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
4563 unless we're referencing a global symbol with a non-zero
4564 offset, in which case cst must be added separately. */
4565 if (HAVE_NEWABI)
4566 {
4567 if (ep->X_add_number)
4568 {
4569 ex.X_add_number = ep->X_add_number;
4570 ep->X_add_number = 0;
4571 relax_start (ep->X_add_symbol);
4572 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4573 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
4574 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
4575 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4576 ex.X_op = O_constant;
4577 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
4578 reg, reg, BFD_RELOC_LO16);
4579 ep->X_add_number = ex.X_add_number;
4580 relax_switch ();
4581 }
4582 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4583 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
4584 if (mips_relax.sequence)
4585 relax_end ();
4586 }
4587 else
4588 {
4589 ex.X_add_number = ep->X_add_number;
4590 ep->X_add_number = 0;
4591 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4592 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4593 load_delay_nop ();
4594 relax_start (ep->X_add_symbol);
4595 relax_switch ();
4596 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4597 BFD_RELOC_LO16);
4598 relax_end ();
4599
4600 if (ex.X_add_number != 0)
4601 {
4602 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
4603 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4604 ex.X_op = O_constant;
4605 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
4606 reg, reg, BFD_RELOC_LO16);
4607 }
4608 }
4609 }
4610 else if (mips_big_got)
4611 {
4612 expressionS ex;
4613
4614 /* This is the large GOT case. If this is a reference to an
4615 external symbol, we want
4616 lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
4617 addu $reg,$reg,$gp
4618 lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
4619
4620 Otherwise, for a reference to a local symbol in old ABI, we want
4621 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
4622 nop
4623 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
4624 If there is a constant, it must be added in after.
4625
4626 In the NewABI, for local symbols, with or without offsets, we want:
4627 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
4628 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
4629 */
4630 if (HAVE_NEWABI)
4631 {
4632 ex.X_add_number = ep->X_add_number;
4633 ep->X_add_number = 0;
4634 relax_start (ep->X_add_symbol);
4635 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_GOT_HI16);
4636 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
4637 reg, reg, mips_gp_register);
4638 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
4639 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
4640 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
4641 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4642 else if (ex.X_add_number)
4643 {
4644 ex.X_op = O_constant;
4645 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4646 BFD_RELOC_LO16);
4647 }
4648
4649 ep->X_add_number = ex.X_add_number;
4650 relax_switch ();
4651 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4652 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
4653 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4654 BFD_RELOC_MIPS_GOT_OFST);
4655 relax_end ();
4656 }
4657 else
4658 {
4659 ex.X_add_number = ep->X_add_number;
4660 ep->X_add_number = 0;
4661 relax_start (ep->X_add_symbol);
4662 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_GOT_HI16);
4663 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
4664 reg, reg, mips_gp_register);
4665 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
4666 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
4667 relax_switch ();
4668 if (reg_needs_delay (mips_gp_register))
4669 {
4670 /* We need a nop before loading from $gp. This special
4671 check is required because the lui which starts the main
4672 instruction stream does not refer to $gp, and so will not
4673 insert the nop which may be required. */
4674 macro_build (NULL, "nop", "");
4675 }
4676 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4677 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4678 load_delay_nop ();
4679 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4680 BFD_RELOC_LO16);
4681 relax_end ();
4682
4683 if (ex.X_add_number != 0)
4684 {
4685 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
4686 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4687 ex.X_op = O_constant;
4688 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4689 BFD_RELOC_LO16);
4690 }
4691 }
4692 }
4693 else
4694 abort ();
4695
4696 if (!mips_opts.at && *used_at == 1)
4697 as_bad (_("Macro used $at after \".set noat\""));
4698 }
4699
4700 /* Move the contents of register SOURCE into register DEST. */
4701
4702 static void
4703 move_register (int dest, int source)
4704 {
4705 macro_build (NULL, HAVE_32BIT_GPRS ? "addu" : "daddu", "d,v,t",
4706 dest, source, 0);
4707 }
4708
4709 /* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
4710 LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
4711 The two alternatives are:
4712
4713 Global symbol Local sybmol
4714 ------------- ------------
4715 lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
4716 ... ...
4717 addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
4718
4719 load_got_offset emits the first instruction and add_got_offset
4720 emits the second for a 16-bit offset or add_got_offset_hilo emits
4721 a sequence to add a 32-bit offset using a scratch register. */
4722
4723 static void
4724 load_got_offset (int dest, expressionS *local)
4725 {
4726 expressionS global;
4727
4728 global = *local;
4729 global.X_add_number = 0;
4730
4731 relax_start (local->X_add_symbol);
4732 macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest,
4733 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4734 relax_switch ();
4735 macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest,
4736 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4737 relax_end ();
4738 }
4739
4740 static void
4741 add_got_offset (int dest, expressionS *local)
4742 {
4743 expressionS global;
4744
4745 global.X_op = O_constant;
4746 global.X_op_symbol = NULL;
4747 global.X_add_symbol = NULL;
4748 global.X_add_number = local->X_add_number;
4749
4750 relax_start (local->X_add_symbol);
4751 macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j",
4752 dest, dest, BFD_RELOC_LO16);
4753 relax_switch ();
4754 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16);
4755 relax_end ();
4756 }
4757
4758 static void
4759 add_got_offset_hilo (int dest, expressionS *local, int tmp)
4760 {
4761 expressionS global;
4762 int hold_mips_optimize;
4763
4764 global.X_op = O_constant;
4765 global.X_op_symbol = NULL;
4766 global.X_add_symbol = NULL;
4767 global.X_add_number = local->X_add_number;
4768
4769 relax_start (local->X_add_symbol);
4770 load_register (tmp, &global, HAVE_64BIT_ADDRESSES);
4771 relax_switch ();
4772 /* Set mips_optimize around the lui instruction to avoid
4773 inserting an unnecessary nop after the lw. */
4774 hold_mips_optimize = mips_optimize;
4775 mips_optimize = 2;
4776 macro_build_lui (&global, tmp);
4777 mips_optimize = hold_mips_optimize;
4778 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16);
4779 relax_end ();
4780
4781 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp);
4782 }
4783
4784 /*
4785 * Build macros
4786 * This routine implements the seemingly endless macro or synthesized
4787 * instructions and addressing modes in the mips assembly language. Many
4788 * of these macros are simple and are similar to each other. These could
4789 * probably be handled by some kind of table or grammar approach instead of
4790 * this verbose method. Others are not simple macros but are more like
4791 * optimizing code generation.
4792 * One interesting optimization is when several store macros appear
4793 * consecutively that would load AT with the upper half of the same address.
4794 * The ensuing load upper instructions are ommited. This implies some kind
4795 * of global optimization. We currently only optimize within a single macro.
4796 * For many of the load and store macros if the address is specified as a
4797 * constant expression in the first 64k of memory (ie ld $2,0x4000c) we
4798 * first load register 'at' with zero and use it as the base register. The
4799 * mips assembler simply uses register $zero. Just one tiny optimization
4800 * we're missing.
4801 */
4802 static void
4803 macro (struct mips_cl_insn *ip)
4804 {
4805 unsigned int treg, sreg, dreg, breg;
4806 unsigned int tempreg;
4807 int mask;
4808 int used_at = 0;
4809 expressionS expr1;
4810 const char *s;
4811 const char *s2;
4812 const char *fmt;
4813 int likely = 0;
4814 int dbl = 0;
4815 int coproc = 0;
4816 int lr = 0;
4817 int imm = 0;
4818 int call = 0;
4819 int off;
4820 offsetT maxnum;
4821 bfd_reloc_code_real_type r;
4822 int hold_mips_optimize;
4823
4824 gas_assert (! mips_opts.mips16);
4825
4826 treg = EXTRACT_OPERAND (RT, *ip);
4827 dreg = EXTRACT_OPERAND (RD, *ip);
4828 sreg = breg = EXTRACT_OPERAND (RS, *ip);
4829 mask = ip->insn_mo->mask;
4830
4831 expr1.X_op = O_constant;
4832 expr1.X_op_symbol = NULL;
4833 expr1.X_add_symbol = NULL;
4834 expr1.X_add_number = 1;
4835
4836 switch (mask)
4837 {
4838 case M_DABS:
4839 dbl = 1;
4840 case M_ABS:
4841 /* bgez $a0,.+12
4842 move v0,$a0
4843 sub v0,$zero,$a0
4844 */
4845
4846 start_noreorder ();
4847
4848 expr1.X_add_number = 8;
4849 macro_build (&expr1, "bgez", "s,p", sreg);
4850 if (dreg == sreg)
4851 macro_build (NULL, "nop", "");
4852 else
4853 move_register (dreg, sreg);
4854 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", dreg, 0, sreg);
4855
4856 end_noreorder ();
4857 break;
4858
4859 case M_ADD_I:
4860 s = "addi";
4861 s2 = "add";
4862 goto do_addi;
4863 case M_ADDU_I:
4864 s = "addiu";
4865 s2 = "addu";
4866 goto do_addi;
4867 case M_DADD_I:
4868 dbl = 1;
4869 s = "daddi";
4870 s2 = "dadd";
4871 goto do_addi;
4872 case M_DADDU_I:
4873 dbl = 1;
4874 s = "daddiu";
4875 s2 = "daddu";
4876 do_addi:
4877 if (imm_expr.X_op == O_constant
4878 && imm_expr.X_add_number >= -0x8000
4879 && imm_expr.X_add_number < 0x8000)
4880 {
4881 macro_build (&imm_expr, s, "t,r,j", treg, sreg, BFD_RELOC_LO16);
4882 break;
4883 }
4884 used_at = 1;
4885 load_register (AT, &imm_expr, dbl);
4886 macro_build (NULL, s2, "d,v,t", treg, sreg, AT);
4887 break;
4888
4889 case M_AND_I:
4890 s = "andi";
4891 s2 = "and";
4892 goto do_bit;
4893 case M_OR_I:
4894 s = "ori";
4895 s2 = "or";
4896 goto do_bit;
4897 case M_NOR_I:
4898 s = "";
4899 s2 = "nor";
4900 goto do_bit;
4901 case M_XOR_I:
4902 s = "xori";
4903 s2 = "xor";
4904 do_bit:
4905 if (imm_expr.X_op == O_constant
4906 && imm_expr.X_add_number >= 0
4907 && imm_expr.X_add_number < 0x10000)
4908 {
4909 if (mask != M_NOR_I)
4910 macro_build (&imm_expr, s, "t,r,i", treg, sreg, BFD_RELOC_LO16);
4911 else
4912 {
4913 macro_build (&imm_expr, "ori", "t,r,i",
4914 treg, sreg, BFD_RELOC_LO16);
4915 macro_build (NULL, "nor", "d,v,t", treg, treg, 0);
4916 }
4917 break;
4918 }
4919
4920 used_at = 1;
4921 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
4922 macro_build (NULL, s2, "d,v,t", treg, sreg, AT);
4923 break;
4924
4925 case M_BALIGN:
4926 switch (imm_expr.X_add_number)
4927 {
4928 case 0:
4929 macro_build (NULL, "nop", "");
4930 break;
4931 case 2:
4932 macro_build (NULL, "packrl.ph", "d,s,t", treg, treg, sreg);
4933 break;
4934 default:
4935 macro_build (NULL, "balign", "t,s,2", treg, sreg,
4936 (int) imm_expr.X_add_number);
4937 break;
4938 }
4939 break;
4940
4941 case M_BEQ_I:
4942 s = "beq";
4943 goto beq_i;
4944 case M_BEQL_I:
4945 s = "beql";
4946 likely = 1;
4947 goto beq_i;
4948 case M_BNE_I:
4949 s = "bne";
4950 goto beq_i;
4951 case M_BNEL_I:
4952 s = "bnel";
4953 likely = 1;
4954 beq_i:
4955 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
4956 {
4957 macro_build (&offset_expr, s, "s,t,p", sreg, ZERO);
4958 break;
4959 }
4960 used_at = 1;
4961 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
4962 macro_build (&offset_expr, s, "s,t,p", sreg, AT);
4963 break;
4964
4965 case M_BGEL:
4966 likely = 1;
4967 case M_BGE:
4968 if (treg == 0)
4969 {
4970 macro_build (&offset_expr, likely ? "bgezl" : "bgez", "s,p", sreg);
4971 break;
4972 }
4973 if (sreg == 0)
4974 {
4975 macro_build (&offset_expr, likely ? "blezl" : "blez", "s,p", treg);
4976 break;
4977 }
4978 used_at = 1;
4979 macro_build (NULL, "slt", "d,v,t", AT, sreg, treg);
4980 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, ZERO);
4981 break;
4982
4983 case M_BGTL_I:
4984 likely = 1;
4985 case M_BGT_I:
4986 /* Check for > max integer. */
4987 maxnum = 0x7fffffff;
4988 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4)
4989 {
4990 maxnum <<= 16;
4991 maxnum |= 0xffff;
4992 maxnum <<= 16;
4993 maxnum |= 0xffff;
4994 }
4995 if (imm_expr.X_op == O_constant
4996 && imm_expr.X_add_number >= maxnum
4997 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4))
4998 {
4999 do_false:
5000 /* Result is always false. */
5001 if (! likely)
5002 macro_build (NULL, "nop", "");
5003 else
5004 macro_build (&offset_expr, "bnel", "s,t,p", ZERO, ZERO);
5005 break;
5006 }
5007 if (imm_expr.X_op != O_constant)
5008 as_bad (_("Unsupported large constant"));
5009 ++imm_expr.X_add_number;
5010 /* FALLTHROUGH */
5011 case M_BGE_I:
5012 case M_BGEL_I:
5013 if (mask == M_BGEL_I)
5014 likely = 1;
5015 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
5016 {
5017 macro_build (&offset_expr, likely ? "bgezl" : "bgez", "s,p", sreg);
5018 break;
5019 }
5020 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
5021 {
5022 macro_build (&offset_expr, likely ? "bgtzl" : "bgtz", "s,p", sreg);
5023 break;
5024 }
5025 maxnum = 0x7fffffff;
5026 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4)
5027 {
5028 maxnum <<= 16;
5029 maxnum |= 0xffff;
5030 maxnum <<= 16;
5031 maxnum |= 0xffff;
5032 }
5033 maxnum = - maxnum - 1;
5034 if (imm_expr.X_op == O_constant
5035 && imm_expr.X_add_number <= maxnum
5036 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4))
5037 {
5038 do_true:
5039 /* result is always true */
5040 as_warn (_("Branch %s is always true"), ip->insn_mo->name);
5041 macro_build (&offset_expr, "b", "p");
5042 break;
5043 }
5044 used_at = 1;
5045 set_at (sreg, 0);
5046 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, ZERO);
5047 break;
5048
5049 case M_BGEUL:
5050 likely = 1;
5051 case M_BGEU:
5052 if (treg == 0)
5053 goto do_true;
5054 if (sreg == 0)
5055 {
5056 macro_build (&offset_expr, likely ? "beql" : "beq",
5057 "s,t,p", ZERO, treg);
5058 break;
5059 }
5060 used_at = 1;
5061 macro_build (NULL, "sltu", "d,v,t", AT, sreg, treg);
5062 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, ZERO);
5063 break;
5064
5065 case M_BGTUL_I:
5066 likely = 1;
5067 case M_BGTU_I:
5068 if (sreg == 0
5069 || (HAVE_32BIT_GPRS
5070 && imm_expr.X_op == O_constant
5071 && imm_expr.X_add_number == -1))
5072 goto do_false;
5073 if (imm_expr.X_op != O_constant)
5074 as_bad (_("Unsupported large constant"));
5075 ++imm_expr.X_add_number;
5076 /* FALLTHROUGH */
5077 case M_BGEU_I:
5078 case M_BGEUL_I:
5079 if (mask == M_BGEUL_I)
5080 likely = 1;
5081 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
5082 goto do_true;
5083 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
5084 {
5085 macro_build (&offset_expr, likely ? "bnel" : "bne",
5086 "s,t,p", sreg, ZERO);
5087 break;
5088 }
5089 used_at = 1;
5090 set_at (sreg, 1);
5091 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, ZERO);
5092 break;
5093
5094 case M_BGTL:
5095 likely = 1;
5096 case M_BGT:
5097 if (treg == 0)
5098 {
5099 macro_build (&offset_expr, likely ? "bgtzl" : "bgtz", "s,p", sreg);
5100 break;
5101 }
5102 if (sreg == 0)
5103 {
5104 macro_build (&offset_expr, likely ? "bltzl" : "bltz", "s,p", treg);
5105 break;
5106 }
5107 used_at = 1;
5108 macro_build (NULL, "slt", "d,v,t", AT, treg, sreg);
5109 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, ZERO);
5110 break;
5111
5112 case M_BGTUL:
5113 likely = 1;
5114 case M_BGTU:
5115 if (treg == 0)
5116 {
5117 macro_build (&offset_expr, likely ? "bnel" : "bne",
5118 "s,t,p", sreg, ZERO);
5119 break;
5120 }
5121 if (sreg == 0)
5122 goto do_false;
5123 used_at = 1;
5124 macro_build (NULL, "sltu", "d,v,t", AT, treg, sreg);
5125 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, ZERO);
5126 break;
5127
5128 case M_BLEL:
5129 likely = 1;
5130 case M_BLE:
5131 if (treg == 0)
5132 {
5133 macro_build (&offset_expr, likely ? "blezl" : "blez", "s,p", sreg);
5134 break;
5135 }
5136 if (sreg == 0)
5137 {
5138 macro_build (&offset_expr, likely ? "bgezl" : "bgez", "s,p", treg);
5139 break;
5140 }
5141 used_at = 1;
5142 macro_build (NULL, "slt", "d,v,t", AT, treg, sreg);
5143 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, ZERO);
5144 break;
5145
5146 case M_BLEL_I:
5147 likely = 1;
5148 case M_BLE_I:
5149 maxnum = 0x7fffffff;
5150 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4)
5151 {
5152 maxnum <<= 16;
5153 maxnum |= 0xffff;
5154 maxnum <<= 16;
5155 maxnum |= 0xffff;
5156 }
5157 if (imm_expr.X_op == O_constant
5158 && imm_expr.X_add_number >= maxnum
5159 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4))
5160 goto do_true;
5161 if (imm_expr.X_op != O_constant)
5162 as_bad (_("Unsupported large constant"));
5163 ++imm_expr.X_add_number;
5164 /* FALLTHROUGH */
5165 case M_BLT_I:
5166 case M_BLTL_I:
5167 if (mask == M_BLTL_I)
5168 likely = 1;
5169 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
5170 {
5171 macro_build (&offset_expr, likely ? "bltzl" : "bltz", "s,p", sreg);
5172 break;
5173 }
5174 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
5175 {
5176 macro_build (&offset_expr, likely ? "blezl" : "blez", "s,p", sreg);
5177 break;
5178 }
5179 used_at = 1;
5180 set_at (sreg, 0);
5181 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, ZERO);
5182 break;
5183
5184 case M_BLEUL:
5185 likely = 1;
5186 case M_BLEU:
5187 if (treg == 0)
5188 {
5189 macro_build (&offset_expr, likely ? "beql" : "beq",
5190 "s,t,p", sreg, ZERO);
5191 break;
5192 }
5193 if (sreg == 0)
5194 goto do_true;
5195 used_at = 1;
5196 macro_build (NULL, "sltu", "d,v,t", AT, treg, sreg);
5197 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, ZERO);
5198 break;
5199
5200 case M_BLEUL_I:
5201 likely = 1;
5202 case M_BLEU_I:
5203 if (sreg == 0
5204 || (HAVE_32BIT_GPRS
5205 && imm_expr.X_op == O_constant
5206 && imm_expr.X_add_number == -1))
5207 goto do_true;
5208 if (imm_expr.X_op != O_constant)
5209 as_bad (_("Unsupported large constant"));
5210 ++imm_expr.X_add_number;
5211 /* FALLTHROUGH */
5212 case M_BLTU_I:
5213 case M_BLTUL_I:
5214 if (mask == M_BLTUL_I)
5215 likely = 1;
5216 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
5217 goto do_false;
5218 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
5219 {
5220 macro_build (&offset_expr, likely ? "beql" : "beq",
5221 "s,t,p", sreg, ZERO);
5222 break;
5223 }
5224 used_at = 1;
5225 set_at (sreg, 1);
5226 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, ZERO);
5227 break;
5228
5229 case M_BLTL:
5230 likely = 1;
5231 case M_BLT:
5232 if (treg == 0)
5233 {
5234 macro_build (&offset_expr, likely ? "bltzl" : "bltz", "s,p", sreg);
5235 break;
5236 }
5237 if (sreg == 0)
5238 {
5239 macro_build (&offset_expr, likely ? "bgtzl" : "bgtz", "s,p", treg);
5240 break;
5241 }
5242 used_at = 1;
5243 macro_build (NULL, "slt", "d,v,t", AT, sreg, treg);
5244 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, ZERO);
5245 break;
5246
5247 case M_BLTUL:
5248 likely = 1;
5249 case M_BLTU:
5250 if (treg == 0)
5251 goto do_false;
5252 if (sreg == 0)
5253 {
5254 macro_build (&offset_expr, likely ? "bnel" : "bne",
5255 "s,t,p", ZERO, treg);
5256 break;
5257 }
5258 used_at = 1;
5259 macro_build (NULL, "sltu", "d,v,t", AT, sreg, treg);
5260 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, ZERO);
5261 break;
5262
5263 case M_DEXT:
5264 {
5265 unsigned long pos;
5266 unsigned long size;
5267
5268 if (imm_expr.X_op != O_constant || imm2_expr.X_op != O_constant)
5269 {
5270 as_bad (_("Unsupported large constant"));
5271 pos = size = 1;
5272 }
5273 else
5274 {
5275 pos = (unsigned long) imm_expr.X_add_number;
5276 size = (unsigned long) imm2_expr.X_add_number;
5277 }
5278
5279 if (pos > 63)
5280 {
5281 as_bad (_("Improper position (%lu)"), pos);
5282 pos = 1;
5283 }
5284 if (size == 0 || size > 64 || (pos + size - 1) > 63)
5285 {
5286 as_bad (_("Improper extract size (%lu, position %lu)"),
5287 size, pos);
5288 size = 1;
5289 }
5290
5291 if (size <= 32 && pos < 32)
5292 {
5293 s = "dext";
5294 fmt = "t,r,+A,+C";
5295 }
5296 else if (size <= 32)
5297 {
5298 s = "dextu";
5299 fmt = "t,r,+E,+H";
5300 }
5301 else
5302 {
5303 s = "dextm";
5304 fmt = "t,r,+A,+G";
5305 }
5306 macro_build ((expressionS *) NULL, s, fmt, treg, sreg, pos, size - 1);
5307 }
5308 break;
5309
5310 case M_DINS:
5311 {
5312 unsigned long pos;
5313 unsigned long size;
5314
5315 if (imm_expr.X_op != O_constant || imm2_expr.X_op != O_constant)
5316 {
5317 as_bad (_("Unsupported large constant"));
5318 pos = size = 1;
5319 }
5320 else
5321 {
5322 pos = (unsigned long) imm_expr.X_add_number;
5323 size = (unsigned long) imm2_expr.X_add_number;
5324 }
5325
5326 if (pos > 63)
5327 {
5328 as_bad (_("Improper position (%lu)"), pos);
5329 pos = 1;
5330 }
5331 if (size == 0 || size > 64 || (pos + size - 1) > 63)
5332 {
5333 as_bad (_("Improper insert size (%lu, position %lu)"),
5334 size, pos);
5335 size = 1;
5336 }
5337
5338 if (pos < 32 && (pos + size - 1) < 32)
5339 {
5340 s = "dins";
5341 fmt = "t,r,+A,+B";
5342 }
5343 else if (pos >= 32)
5344 {
5345 s = "dinsu";
5346 fmt = "t,r,+E,+F";
5347 }
5348 else
5349 {
5350 s = "dinsm";
5351 fmt = "t,r,+A,+F";
5352 }
5353 macro_build ((expressionS *) NULL, s, fmt, treg, sreg, (int) pos,
5354 (int) (pos + size - 1));
5355 }
5356 break;
5357
5358 case M_DDIV_3:
5359 dbl = 1;
5360 case M_DIV_3:
5361 s = "mflo";
5362 goto do_div3;
5363 case M_DREM_3:
5364 dbl = 1;
5365 case M_REM_3:
5366 s = "mfhi";
5367 do_div3:
5368 if (treg == 0)
5369 {
5370 as_warn (_("Divide by zero."));
5371 if (mips_trap)
5372 macro_build (NULL, "teq", "s,t,q", ZERO, ZERO, 7);
5373 else
5374 macro_build (NULL, "break", "c", 7);
5375 break;
5376 }
5377
5378 start_noreorder ();
5379 if (mips_trap)
5380 {
5381 macro_build (NULL, "teq", "s,t,q", treg, ZERO, 7);
5382 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", sreg, treg);
5383 }
5384 else
5385 {
5386 expr1.X_add_number = 8;
5387 macro_build (&expr1, "bne", "s,t,p", treg, ZERO);
5388 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", sreg, treg);
5389 macro_build (NULL, "break", "c", 7);
5390 }
5391 expr1.X_add_number = -1;
5392 used_at = 1;
5393 load_register (AT, &expr1, dbl);
5394 expr1.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
5395 macro_build (&expr1, "bne", "s,t,p", treg, AT);
5396 if (dbl)
5397 {
5398 expr1.X_add_number = 1;
5399 load_register (AT, &expr1, dbl);
5400 macro_build (NULL, "dsll32", "d,w,<", AT, AT, 31);
5401 }
5402 else
5403 {
5404 expr1.X_add_number = 0x80000000;
5405 macro_build (&expr1, "lui", "t,u", AT, BFD_RELOC_HI16);
5406 }
5407 if (mips_trap)
5408 {
5409 macro_build (NULL, "teq", "s,t,q", sreg, AT, 6);
5410 /* We want to close the noreorder block as soon as possible, so
5411 that later insns are available for delay slot filling. */
5412 end_noreorder ();
5413 }
5414 else
5415 {
5416 expr1.X_add_number = 8;
5417 macro_build (&expr1, "bne", "s,t,p", sreg, AT);
5418 macro_build (NULL, "nop", "");
5419
5420 /* We want to close the noreorder block as soon as possible, so
5421 that later insns are available for delay slot filling. */
5422 end_noreorder ();
5423
5424 macro_build (NULL, "break", "c", 6);
5425 }
5426 macro_build (NULL, s, "d", dreg);
5427 break;
5428
5429 case M_DIV_3I:
5430 s = "div";
5431 s2 = "mflo";
5432 goto do_divi;
5433 case M_DIVU_3I:
5434 s = "divu";
5435 s2 = "mflo";
5436 goto do_divi;
5437 case M_REM_3I:
5438 s = "div";
5439 s2 = "mfhi";
5440 goto do_divi;
5441 case M_REMU_3I:
5442 s = "divu";
5443 s2 = "mfhi";
5444 goto do_divi;
5445 case M_DDIV_3I:
5446 dbl = 1;
5447 s = "ddiv";
5448 s2 = "mflo";
5449 goto do_divi;
5450 case M_DDIVU_3I:
5451 dbl = 1;
5452 s = "ddivu";
5453 s2 = "mflo";
5454 goto do_divi;
5455 case M_DREM_3I:
5456 dbl = 1;
5457 s = "ddiv";
5458 s2 = "mfhi";
5459 goto do_divi;
5460 case M_DREMU_3I:
5461 dbl = 1;
5462 s = "ddivu";
5463 s2 = "mfhi";
5464 do_divi:
5465 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
5466 {
5467 as_warn (_("Divide by zero."));
5468 if (mips_trap)
5469 macro_build (NULL, "teq", "s,t,q", ZERO, ZERO, 7);
5470 else
5471 macro_build (NULL, "break", "c", 7);
5472 break;
5473 }
5474 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
5475 {
5476 if (strcmp (s2, "mflo") == 0)
5477 move_register (dreg, sreg);
5478 else
5479 move_register (dreg, ZERO);
5480 break;
5481 }
5482 if (imm_expr.X_op == O_constant
5483 && imm_expr.X_add_number == -1
5484 && s[strlen (s) - 1] != 'u')
5485 {
5486 if (strcmp (s2, "mflo") == 0)
5487 {
5488 macro_build (NULL, dbl ? "dneg" : "neg", "d,w", dreg, sreg);
5489 }
5490 else
5491 move_register (dreg, ZERO);
5492 break;
5493 }
5494
5495 used_at = 1;
5496 load_register (AT, &imm_expr, dbl);
5497 macro_build (NULL, s, "z,s,t", sreg, AT);
5498 macro_build (NULL, s2, "d", dreg);
5499 break;
5500
5501 case M_DIVU_3:
5502 s = "divu";
5503 s2 = "mflo";
5504 goto do_divu3;
5505 case M_REMU_3:
5506 s = "divu";
5507 s2 = "mfhi";
5508 goto do_divu3;
5509 case M_DDIVU_3:
5510 s = "ddivu";
5511 s2 = "mflo";
5512 goto do_divu3;
5513 case M_DREMU_3:
5514 s = "ddivu";
5515 s2 = "mfhi";
5516 do_divu3:
5517 start_noreorder ();
5518 if (mips_trap)
5519 {
5520 macro_build (NULL, "teq", "s,t,q", treg, ZERO, 7);
5521 macro_build (NULL, s, "z,s,t", sreg, treg);
5522 /* We want to close the noreorder block as soon as possible, so
5523 that later insns are available for delay slot filling. */
5524 end_noreorder ();
5525 }
5526 else
5527 {
5528 expr1.X_add_number = 8;
5529 macro_build (&expr1, "bne", "s,t,p", treg, ZERO);
5530 macro_build (NULL, s, "z,s,t", sreg, treg);
5531
5532 /* We want to close the noreorder block as soon as possible, so
5533 that later insns are available for delay slot filling. */
5534 end_noreorder ();
5535 macro_build (NULL, "break", "c", 7);
5536 }
5537 macro_build (NULL, s2, "d", dreg);
5538 break;
5539
5540 case M_DLCA_AB:
5541 dbl = 1;
5542 case M_LCA_AB:
5543 call = 1;
5544 goto do_la;
5545 case M_DLA_AB:
5546 dbl = 1;
5547 case M_LA_AB:
5548 do_la:
5549 /* Load the address of a symbol into a register. If breg is not
5550 zero, we then add a base register to it. */
5551
5552 if (dbl && HAVE_32BIT_GPRS)
5553 as_warn (_("dla used to load 32-bit register"));
5554
5555 if (!dbl && HAVE_64BIT_OBJECTS)
5556 as_warn (_("la used to load 64-bit address"));
5557
5558 if (offset_expr.X_op == O_constant
5559 && offset_expr.X_add_number >= -0x8000
5560 && offset_expr.X_add_number < 0x8000)
5561 {
5562 macro_build (&offset_expr, ADDRESS_ADDI_INSN,
5563 "t,r,j", treg, sreg, BFD_RELOC_LO16);
5564 break;
5565 }
5566
5567 if (mips_opts.at && (treg == breg))
5568 {
5569 tempreg = AT;
5570 used_at = 1;
5571 }
5572 else
5573 {
5574 tempreg = treg;
5575 }
5576
5577 if (offset_expr.X_op != O_symbol
5578 && offset_expr.X_op != O_constant)
5579 {
5580 as_bad (_("Expression too complex"));
5581 offset_expr.X_op = O_constant;
5582 }
5583
5584 if (offset_expr.X_op == O_constant)
5585 load_register (tempreg, &offset_expr, HAVE_64BIT_ADDRESSES);
5586 else if (mips_pic == NO_PIC)
5587 {
5588 /* If this is a reference to a GP relative symbol, we want
5589 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
5590 Otherwise we want
5591 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
5592 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
5593 If we have a constant, we need two instructions anyhow,
5594 so we may as well always use the latter form.
5595
5596 With 64bit address space and a usable $at we want
5597 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
5598 lui $at,<sym> (BFD_RELOC_HI16_S)
5599 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
5600 daddiu $at,<sym> (BFD_RELOC_LO16)
5601 dsll32 $tempreg,0
5602 daddu $tempreg,$tempreg,$at
5603
5604 If $at is already in use, we use a path which is suboptimal
5605 on superscalar processors.
5606 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
5607 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
5608 dsll $tempreg,16
5609 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
5610 dsll $tempreg,16
5611 daddiu $tempreg,<sym> (BFD_RELOC_LO16)
5612
5613 For GP relative symbols in 64bit address space we can use
5614 the same sequence as in 32bit address space. */
5615 if (HAVE_64BIT_SYMBOLS)
5616 {
5617 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
5618 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
5619 {
5620 relax_start (offset_expr.X_add_symbol);
5621 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5622 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
5623 relax_switch ();
5624 }
5625
5626 if (used_at == 0 && mips_opts.at)
5627 {
5628 macro_build (&offset_expr, "lui", "t,u",
5629 tempreg, BFD_RELOC_MIPS_HIGHEST);
5630 macro_build (&offset_expr, "lui", "t,u",
5631 AT, BFD_RELOC_HI16_S);
5632 macro_build (&offset_expr, "daddiu", "t,r,j",
5633 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
5634 macro_build (&offset_expr, "daddiu", "t,r,j",
5635 AT, AT, BFD_RELOC_LO16);
5636 macro_build (NULL, "dsll32", "d,w,<", tempreg, tempreg, 0);
5637 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
5638 used_at = 1;
5639 }
5640 else
5641 {
5642 macro_build (&offset_expr, "lui", "t,u",
5643 tempreg, BFD_RELOC_MIPS_HIGHEST);
5644 macro_build (&offset_expr, "daddiu", "t,r,j",
5645 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
5646 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16);
5647 macro_build (&offset_expr, "daddiu", "t,r,j",
5648 tempreg, tempreg, BFD_RELOC_HI16_S);
5649 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16);
5650 macro_build (&offset_expr, "daddiu", "t,r,j",
5651 tempreg, tempreg, BFD_RELOC_LO16);
5652 }
5653
5654 if (mips_relax.sequence)
5655 relax_end ();
5656 }
5657 else
5658 {
5659 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
5660 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
5661 {
5662 relax_start (offset_expr.X_add_symbol);
5663 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5664 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
5665 relax_switch ();
5666 }
5667 if (!IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
5668 as_bad (_("Offset too large"));
5669 macro_build_lui (&offset_expr, tempreg);
5670 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5671 tempreg, tempreg, BFD_RELOC_LO16);
5672 if (mips_relax.sequence)
5673 relax_end ();
5674 }
5675 }
5676 else if (!mips_big_got && !HAVE_NEWABI)
5677 {
5678 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
5679
5680 /* If this is a reference to an external symbol, and there
5681 is no constant, we want
5682 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5683 or for lca or if tempreg is PIC_CALL_REG
5684 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
5685 For a local symbol, we want
5686 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5687 nop
5688 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
5689
5690 If we have a small constant, and this is a reference to
5691 an external symbol, we want
5692 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5693 nop
5694 addiu $tempreg,$tempreg,<constant>
5695 For a local symbol, we want the same instruction
5696 sequence, but we output a BFD_RELOC_LO16 reloc on the
5697 addiu instruction.
5698
5699 If we have a large constant, and this is a reference to
5700 an external symbol, we want
5701 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5702 lui $at,<hiconstant>
5703 addiu $at,$at,<loconstant>
5704 addu $tempreg,$tempreg,$at
5705 For a local symbol, we want the same instruction
5706 sequence, but we output a BFD_RELOC_LO16 reloc on the
5707 addiu instruction.
5708 */
5709
5710 if (offset_expr.X_add_number == 0)
5711 {
5712 if (mips_pic == SVR4_PIC
5713 && breg == 0
5714 && (call || tempreg == PIC_CALL_REG))
5715 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
5716
5717 relax_start (offset_expr.X_add_symbol);
5718 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5719 lw_reloc_type, mips_gp_register);
5720 if (breg != 0)
5721 {
5722 /* We're going to put in an addu instruction using
5723 tempreg, so we may as well insert the nop right
5724 now. */
5725 load_delay_nop ();
5726 }
5727 relax_switch ();
5728 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
5729 tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register);
5730 load_delay_nop ();
5731 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5732 tempreg, tempreg, BFD_RELOC_LO16);
5733 relax_end ();
5734 /* FIXME: If breg == 0, and the next instruction uses
5735 $tempreg, then if this variant case is used an extra
5736 nop will be generated. */
5737 }
5738 else if (offset_expr.X_add_number >= -0x8000
5739 && offset_expr.X_add_number < 0x8000)
5740 {
5741 load_got_offset (tempreg, &offset_expr);
5742 load_delay_nop ();
5743 add_got_offset (tempreg, &offset_expr);
5744 }
5745 else
5746 {
5747 expr1.X_add_number = offset_expr.X_add_number;
5748 offset_expr.X_add_number =
5749 ((offset_expr.X_add_number + 0x8000) & 0xffff) - 0x8000;
5750 load_got_offset (tempreg, &offset_expr);
5751 offset_expr.X_add_number = expr1.X_add_number;
5752 /* If we are going to add in a base register, and the
5753 target register and the base register are the same,
5754 then we are using AT as a temporary register. Since
5755 we want to load the constant into AT, we add our
5756 current AT (from the global offset table) and the
5757 register into the register now, and pretend we were
5758 not using a base register. */
5759 if (breg == treg)
5760 {
5761 load_delay_nop ();
5762 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5763 treg, AT, breg);
5764 breg = 0;
5765 tempreg = treg;
5766 }
5767 add_got_offset_hilo (tempreg, &offset_expr, AT);
5768 used_at = 1;
5769 }
5770 }
5771 else if (!mips_big_got && HAVE_NEWABI)
5772 {
5773 int add_breg_early = 0;
5774
5775 /* If this is a reference to an external, and there is no
5776 constant, or local symbol (*), with or without a
5777 constant, we want
5778 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
5779 or for lca or if tempreg is PIC_CALL_REG
5780 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
5781
5782 If we have a small constant, and this is a reference to
5783 an external symbol, we want
5784 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
5785 addiu $tempreg,$tempreg,<constant>
5786
5787 If we have a large constant, and this is a reference to
5788 an external symbol, we want
5789 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
5790 lui $at,<hiconstant>
5791 addiu $at,$at,<loconstant>
5792 addu $tempreg,$tempreg,$at
5793
5794 (*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
5795 local symbols, even though it introduces an additional
5796 instruction. */
5797
5798 if (offset_expr.X_add_number)
5799 {
5800 expr1.X_add_number = offset_expr.X_add_number;
5801 offset_expr.X_add_number = 0;
5802
5803 relax_start (offset_expr.X_add_symbol);
5804 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5805 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5806
5807 if (expr1.X_add_number >= -0x8000
5808 && expr1.X_add_number < 0x8000)
5809 {
5810 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
5811 tempreg, tempreg, BFD_RELOC_LO16);
5812 }
5813 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
5814 {
5815 /* If we are going to add in a base register, and the
5816 target register and the base register are the same,
5817 then we are using AT as a temporary register. Since
5818 we want to load the constant into AT, we add our
5819 current AT (from the global offset table) and the
5820 register into the register now, and pretend we were
5821 not using a base register. */
5822 if (breg != treg)
5823 dreg = tempreg;
5824 else
5825 {
5826 gas_assert (tempreg == AT);
5827 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5828 treg, AT, breg);
5829 dreg = treg;
5830 add_breg_early = 1;
5831 }
5832
5833 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
5834 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5835 dreg, dreg, AT);
5836
5837 used_at = 1;
5838 }
5839 else
5840 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
5841
5842 relax_switch ();
5843 offset_expr.X_add_number = expr1.X_add_number;
5844
5845 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5846 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5847 if (add_breg_early)
5848 {
5849 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5850 treg, tempreg, breg);
5851 breg = 0;
5852 tempreg = treg;
5853 }
5854 relax_end ();
5855 }
5856 else if (breg == 0 && (call || tempreg == PIC_CALL_REG))
5857 {
5858 relax_start (offset_expr.X_add_symbol);
5859 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5860 BFD_RELOC_MIPS_CALL16, mips_gp_register);
5861 relax_switch ();
5862 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5863 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5864 relax_end ();
5865 }
5866 else
5867 {
5868 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5869 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5870 }
5871 }
5872 else if (mips_big_got && !HAVE_NEWABI)
5873 {
5874 int gpdelay;
5875 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
5876 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
5877 int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
5878
5879 /* This is the large GOT case. If this is a reference to an
5880 external symbol, and there is no constant, we want
5881 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5882 addu $tempreg,$tempreg,$gp
5883 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5884 or for lca or if tempreg is PIC_CALL_REG
5885 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
5886 addu $tempreg,$tempreg,$gp
5887 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
5888 For a local symbol, we want
5889 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5890 nop
5891 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
5892
5893 If we have a small constant, and this is a reference to
5894 an external symbol, we want
5895 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5896 addu $tempreg,$tempreg,$gp
5897 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5898 nop
5899 addiu $tempreg,$tempreg,<constant>
5900 For a local symbol, we want
5901 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5902 nop
5903 addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
5904
5905 If we have a large constant, and this is a reference to
5906 an external symbol, we want
5907 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5908 addu $tempreg,$tempreg,$gp
5909 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5910 lui $at,<hiconstant>
5911 addiu $at,$at,<loconstant>
5912 addu $tempreg,$tempreg,$at
5913 For a local symbol, we want
5914 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5915 lui $at,<hiconstant>
5916 addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
5917 addu $tempreg,$tempreg,$at
5918 */
5919
5920 expr1.X_add_number = offset_expr.X_add_number;
5921 offset_expr.X_add_number = 0;
5922 relax_start (offset_expr.X_add_symbol);
5923 gpdelay = reg_needs_delay (mips_gp_register);
5924 if (expr1.X_add_number == 0 && breg == 0
5925 && (call || tempreg == PIC_CALL_REG))
5926 {
5927 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
5928 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
5929 }
5930 macro_build (&offset_expr, "lui", "t,u", tempreg, lui_reloc_type);
5931 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5932 tempreg, tempreg, mips_gp_register);
5933 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
5934 tempreg, lw_reloc_type, tempreg);
5935 if (expr1.X_add_number == 0)
5936 {
5937 if (breg != 0)
5938 {
5939 /* We're going to put in an addu instruction using
5940 tempreg, so we may as well insert the nop right
5941 now. */
5942 load_delay_nop ();
5943 }
5944 }
5945 else if (expr1.X_add_number >= -0x8000
5946 && expr1.X_add_number < 0x8000)
5947 {
5948 load_delay_nop ();
5949 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
5950 tempreg, tempreg, BFD_RELOC_LO16);
5951 }
5952 else
5953 {
5954 /* If we are going to add in a base register, and the
5955 target register and the base register are the same,
5956 then we are using AT as a temporary register. Since
5957 we want to load the constant into AT, we add our
5958 current AT (from the global offset table) and the
5959 register into the register now, and pretend we were
5960 not using a base register. */
5961 if (breg != treg)
5962 dreg = tempreg;
5963 else
5964 {
5965 gas_assert (tempreg == AT);
5966 load_delay_nop ();
5967 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5968 treg, AT, breg);
5969 dreg = treg;
5970 }
5971
5972 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
5973 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
5974
5975 used_at = 1;
5976 }
5977 offset_expr.X_add_number =
5978 ((expr1.X_add_number + 0x8000) & 0xffff) - 0x8000;
5979 relax_switch ();
5980
5981 if (gpdelay)
5982 {
5983 /* This is needed because this instruction uses $gp, but
5984 the first instruction on the main stream does not. */
5985 macro_build (NULL, "nop", "");
5986 }
5987
5988 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5989 local_reloc_type, mips_gp_register);
5990 if (expr1.X_add_number >= -0x8000
5991 && expr1.X_add_number < 0x8000)
5992 {
5993 load_delay_nop ();
5994 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5995 tempreg, tempreg, BFD_RELOC_LO16);
5996 /* FIXME: If add_number is 0, and there was no base
5997 register, the external symbol case ended with a load,
5998 so if the symbol turns out to not be external, and
5999 the next instruction uses tempreg, an unnecessary nop
6000 will be inserted. */
6001 }
6002 else
6003 {
6004 if (breg == treg)
6005 {
6006 /* We must add in the base register now, as in the
6007 external symbol case. */
6008 gas_assert (tempreg == AT);
6009 load_delay_nop ();
6010 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6011 treg, AT, breg);
6012 tempreg = treg;
6013 /* We set breg to 0 because we have arranged to add
6014 it in in both cases. */
6015 breg = 0;
6016 }
6017
6018 macro_build_lui (&expr1, AT);
6019 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
6020 AT, AT, BFD_RELOC_LO16);
6021 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6022 tempreg, tempreg, AT);
6023 used_at = 1;
6024 }
6025 relax_end ();
6026 }
6027 else if (mips_big_got && HAVE_NEWABI)
6028 {
6029 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
6030 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
6031 int add_breg_early = 0;
6032
6033 /* This is the large GOT case. If this is a reference to an
6034 external symbol, and there is no constant, we want
6035 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6036 add $tempreg,$tempreg,$gp
6037 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
6038 or for lca or if tempreg is PIC_CALL_REG
6039 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
6040 add $tempreg,$tempreg,$gp
6041 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
6042
6043 If we have a small constant, and this is a reference to
6044 an external symbol, we want
6045 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6046 add $tempreg,$tempreg,$gp
6047 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
6048 addi $tempreg,$tempreg,<constant>
6049
6050 If we have a large constant, and this is a reference to
6051 an external symbol, we want
6052 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6053 addu $tempreg,$tempreg,$gp
6054 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
6055 lui $at,<hiconstant>
6056 addi $at,$at,<loconstant>
6057 add $tempreg,$tempreg,$at
6058
6059 If we have NewABI, and we know it's a local symbol, we want
6060 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
6061 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
6062 otherwise we have to resort to GOT_HI16/GOT_LO16. */
6063
6064 relax_start (offset_expr.X_add_symbol);
6065
6066 expr1.X_add_number = offset_expr.X_add_number;
6067 offset_expr.X_add_number = 0;
6068
6069 if (expr1.X_add_number == 0 && breg == 0
6070 && (call || tempreg == PIC_CALL_REG))
6071 {
6072 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
6073 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
6074 }
6075 macro_build (&offset_expr, "lui", "t,u", tempreg, lui_reloc_type);
6076 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6077 tempreg, tempreg, mips_gp_register);
6078 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6079 tempreg, lw_reloc_type, tempreg);
6080
6081 if (expr1.X_add_number == 0)
6082 ;
6083 else if (expr1.X_add_number >= -0x8000
6084 && expr1.X_add_number < 0x8000)
6085 {
6086 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
6087 tempreg, tempreg, BFD_RELOC_LO16);
6088 }
6089 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
6090 {
6091 /* If we are going to add in a base register, and the
6092 target register and the base register are the same,
6093 then we are using AT as a temporary register. Since
6094 we want to load the constant into AT, we add our
6095 current AT (from the global offset table) and the
6096 register into the register now, and pretend we were
6097 not using a base register. */
6098 if (breg != treg)
6099 dreg = tempreg;
6100 else
6101 {
6102 gas_assert (tempreg == AT);
6103 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6104 treg, AT, breg);
6105 dreg = treg;
6106 add_breg_early = 1;
6107 }
6108
6109 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
6110 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
6111
6112 used_at = 1;
6113 }
6114 else
6115 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
6116
6117 relax_switch ();
6118 offset_expr.X_add_number = expr1.X_add_number;
6119 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6120 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
6121 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
6122 tempreg, BFD_RELOC_MIPS_GOT_OFST);
6123 if (add_breg_early)
6124 {
6125 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6126 treg, tempreg, breg);
6127 breg = 0;
6128 tempreg = treg;
6129 }
6130 relax_end ();
6131 }
6132 else
6133 abort ();
6134
6135 if (breg != 0)
6136 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", treg, tempreg, breg);
6137 break;
6138
6139 case M_MSGSND:
6140 {
6141 unsigned long temp = (treg << 16) | (0x01);
6142 macro_build (NULL, "c2", "C", temp);
6143 }
6144 /* AT is not used, just return */
6145 return;
6146
6147 case M_MSGLD:
6148 {
6149 unsigned long temp = (0x02);
6150 macro_build (NULL, "c2", "C", temp);
6151 }
6152 /* AT is not used, just return */
6153 return;
6154
6155 case M_MSGLD_T:
6156 {
6157 unsigned long temp = (treg << 16) | (0x02);
6158 macro_build (NULL, "c2", "C", temp);
6159 }
6160 /* AT is not used, just return */
6161 return;
6162
6163 case M_MSGWAIT:
6164 macro_build (NULL, "c2", "C", 3);
6165 /* AT is not used, just return */
6166 return;
6167
6168 case M_MSGWAIT_T:
6169 {
6170 unsigned long temp = (treg << 16) | 0x03;
6171 macro_build (NULL, "c2", "C", temp);
6172 }
6173 /* AT is not used, just return */
6174 return;
6175
6176 case M_J_A:
6177 /* The j instruction may not be used in PIC code, since it
6178 requires an absolute address. We convert it to a b
6179 instruction. */
6180 if (mips_pic == NO_PIC)
6181 macro_build (&offset_expr, "j", "a");
6182 else
6183 macro_build (&offset_expr, "b", "p");
6184 break;
6185
6186 /* The jal instructions must be handled as macros because when
6187 generating PIC code they expand to multi-instruction
6188 sequences. Normally they are simple instructions. */
6189 case M_JAL_1:
6190 dreg = RA;
6191 /* Fall through. */
6192 case M_JAL_2:
6193 if (mips_pic == NO_PIC)
6194 macro_build (NULL, "jalr", "d,s", dreg, sreg);
6195 else
6196 {
6197 if (sreg != PIC_CALL_REG)
6198 as_warn (_("MIPS PIC call to register other than $25"));
6199
6200 macro_build (NULL, "jalr", "d,s", dreg, sreg);
6201 if (mips_pic == SVR4_PIC && !HAVE_NEWABI)
6202 {
6203 if (mips_cprestore_offset < 0)
6204 as_warn (_("No .cprestore pseudo-op used in PIC code"));
6205 else
6206 {
6207 if (!mips_frame_reg_valid)
6208 {
6209 as_warn (_("No .frame pseudo-op used in PIC code"));
6210 /* Quiet this warning. */
6211 mips_frame_reg_valid = 1;
6212 }
6213 if (!mips_cprestore_valid)
6214 {
6215 as_warn (_("No .cprestore pseudo-op used in PIC code"));
6216 /* Quiet this warning. */
6217 mips_cprestore_valid = 1;
6218 }
6219 if (mips_opts.noreorder)
6220 macro_build (NULL, "nop", "");
6221 expr1.X_add_number = mips_cprestore_offset;
6222 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
6223 mips_gp_register,
6224 mips_frame_reg,
6225 HAVE_64BIT_ADDRESSES);
6226 }
6227 }
6228 }
6229
6230 break;
6231
6232 case M_JAL_A:
6233 if (mips_pic == NO_PIC)
6234 macro_build (&offset_expr, "jal", "a");
6235 else if (mips_pic == SVR4_PIC)
6236 {
6237 /* If this is a reference to an external symbol, and we are
6238 using a small GOT, we want
6239 lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
6240 nop
6241 jalr $ra,$25
6242 nop
6243 lw $gp,cprestore($sp)
6244 The cprestore value is set using the .cprestore
6245 pseudo-op. If we are using a big GOT, we want
6246 lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
6247 addu $25,$25,$gp
6248 lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
6249 nop
6250 jalr $ra,$25
6251 nop
6252 lw $gp,cprestore($sp)
6253 If the symbol is not external, we want
6254 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6255 nop
6256 addiu $25,$25,<sym> (BFD_RELOC_LO16)
6257 jalr $ra,$25
6258 nop
6259 lw $gp,cprestore($sp)
6260
6261 For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
6262 sequences above, minus nops, unless the symbol is local,
6263 which enables us to use GOT_PAGE/GOT_OFST (big got) or
6264 GOT_DISP. */
6265 if (HAVE_NEWABI)
6266 {
6267 if (!mips_big_got)
6268 {
6269 relax_start (offset_expr.X_add_symbol);
6270 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6271 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
6272 mips_gp_register);
6273 relax_switch ();
6274 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6275 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP,
6276 mips_gp_register);
6277 relax_end ();
6278 }
6279 else
6280 {
6281 relax_start (offset_expr.X_add_symbol);
6282 macro_build (&offset_expr, "lui", "t,u", PIC_CALL_REG,
6283 BFD_RELOC_MIPS_CALL_HI16);
6284 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
6285 PIC_CALL_REG, mips_gp_register);
6286 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6287 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
6288 PIC_CALL_REG);
6289 relax_switch ();
6290 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6291 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE,
6292 mips_gp_register);
6293 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
6294 PIC_CALL_REG, PIC_CALL_REG,
6295 BFD_RELOC_MIPS_GOT_OFST);
6296 relax_end ();
6297 }
6298
6299 macro_build_jalr (&offset_expr);
6300 }
6301 else
6302 {
6303 relax_start (offset_expr.X_add_symbol);
6304 if (!mips_big_got)
6305 {
6306 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6307 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
6308 mips_gp_register);
6309 load_delay_nop ();
6310 relax_switch ();
6311 }
6312 else
6313 {
6314 int gpdelay;
6315
6316 gpdelay = reg_needs_delay (mips_gp_register);
6317 macro_build (&offset_expr, "lui", "t,u", PIC_CALL_REG,
6318 BFD_RELOC_MIPS_CALL_HI16);
6319 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
6320 PIC_CALL_REG, mips_gp_register);
6321 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6322 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
6323 PIC_CALL_REG);
6324 load_delay_nop ();
6325 relax_switch ();
6326 if (gpdelay)
6327 macro_build (NULL, "nop", "");
6328 }
6329 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6330 PIC_CALL_REG, BFD_RELOC_MIPS_GOT16,
6331 mips_gp_register);
6332 load_delay_nop ();
6333 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
6334 PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16);
6335 relax_end ();
6336 macro_build_jalr (&offset_expr);
6337
6338 if (mips_cprestore_offset < 0)
6339 as_warn (_("No .cprestore pseudo-op used in PIC code"));
6340 else
6341 {
6342 if (!mips_frame_reg_valid)
6343 {
6344 as_warn (_("No .frame pseudo-op used in PIC code"));
6345 /* Quiet this warning. */
6346 mips_frame_reg_valid = 1;
6347 }
6348 if (!mips_cprestore_valid)
6349 {
6350 as_warn (_("No .cprestore pseudo-op used in PIC code"));
6351 /* Quiet this warning. */
6352 mips_cprestore_valid = 1;
6353 }
6354 if (mips_opts.noreorder)
6355 macro_build (NULL, "nop", "");
6356 expr1.X_add_number = mips_cprestore_offset;
6357 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
6358 mips_gp_register,
6359 mips_frame_reg,
6360 HAVE_64BIT_ADDRESSES);
6361 }
6362 }
6363 }
6364 else if (mips_pic == VXWORKS_PIC)
6365 as_bad (_("Non-PIC jump used in PIC library"));
6366 else
6367 abort ();
6368
6369 break;
6370
6371 case M_LB_AB:
6372 s = "lb";
6373 goto ld;
6374 case M_LBU_AB:
6375 s = "lbu";
6376 goto ld;
6377 case M_LH_AB:
6378 s = "lh";
6379 goto ld;
6380 case M_LHU_AB:
6381 s = "lhu";
6382 goto ld;
6383 case M_LW_AB:
6384 s = "lw";
6385 goto ld;
6386 case M_LWC0_AB:
6387 s = "lwc0";
6388 /* Itbl support may require additional care here. */
6389 coproc = 1;
6390 goto ld;
6391 case M_LWC1_AB:
6392 s = "lwc1";
6393 /* Itbl support may require additional care here. */
6394 coproc = 1;
6395 goto ld;
6396 case M_LWC2_AB:
6397 s = "lwc2";
6398 /* Itbl support may require additional care here. */
6399 coproc = 1;
6400 goto ld;
6401 case M_LWC3_AB:
6402 s = "lwc3";
6403 /* Itbl support may require additional care here. */
6404 coproc = 1;
6405 goto ld;
6406 case M_LWL_AB:
6407 s = "lwl";
6408 lr = 1;
6409 goto ld;
6410 case M_LWR_AB:
6411 s = "lwr";
6412 lr = 1;
6413 goto ld;
6414 case M_LDC1_AB:
6415 s = "ldc1";
6416 /* Itbl support may require additional care here. */
6417 coproc = 1;
6418 goto ld;
6419 case M_LDC2_AB:
6420 s = "ldc2";
6421 /* Itbl support may require additional care here. */
6422 coproc = 1;
6423 goto ld;
6424 case M_LDC3_AB:
6425 s = "ldc3";
6426 /* Itbl support may require additional care here. */
6427 coproc = 1;
6428 goto ld;
6429 case M_LDL_AB:
6430 s = "ldl";
6431 lr = 1;
6432 goto ld;
6433 case M_LDR_AB:
6434 s = "ldr";
6435 lr = 1;
6436 goto ld;
6437 case M_LL_AB:
6438 s = "ll";
6439 goto ld;
6440 case M_LLD_AB:
6441 s = "lld";
6442 goto ld;
6443 case M_LWU_AB:
6444 s = "lwu";
6445 ld:
6446 if (breg == treg || coproc || lr)
6447 {
6448 tempreg = AT;
6449 used_at = 1;
6450 }
6451 else
6452 {
6453 tempreg = treg;
6454 }
6455 goto ld_st;
6456 case M_SB_AB:
6457 s = "sb";
6458 goto st;
6459 case M_SH_AB:
6460 s = "sh";
6461 goto st;
6462 case M_SW_AB:
6463 s = "sw";
6464 goto st;
6465 case M_SWC0_AB:
6466 s = "swc0";
6467 /* Itbl support may require additional care here. */
6468 coproc = 1;
6469 goto st;
6470 case M_SWC1_AB:
6471 s = "swc1";
6472 /* Itbl support may require additional care here. */
6473 coproc = 1;
6474 goto st;
6475 case M_SWC2_AB:
6476 s = "swc2";
6477 /* Itbl support may require additional care here. */
6478 coproc = 1;
6479 goto st;
6480 case M_SWC3_AB:
6481 s = "swc3";
6482 /* Itbl support may require additional care here. */
6483 coproc = 1;
6484 goto st;
6485 case M_SWL_AB:
6486 s = "swl";
6487 goto st;
6488 case M_SWR_AB:
6489 s = "swr";
6490 goto st;
6491 case M_SC_AB:
6492 s = "sc";
6493 goto st;
6494 case M_SCD_AB:
6495 s = "scd";
6496 goto st;
6497 case M_CACHE_AB:
6498 s = "cache";
6499 goto st;
6500 case M_SDC1_AB:
6501 s = "sdc1";
6502 coproc = 1;
6503 /* Itbl support may require additional care here. */
6504 goto st;
6505 case M_SDC2_AB:
6506 s = "sdc2";
6507 /* Itbl support may require additional care here. */
6508 coproc = 1;
6509 goto st;
6510 case M_SDC3_AB:
6511 s = "sdc3";
6512 /* Itbl support may require additional care here. */
6513 coproc = 1;
6514 goto st;
6515 case M_SDL_AB:
6516 s = "sdl";
6517 goto st;
6518 case M_SDR_AB:
6519 s = "sdr";
6520 st:
6521 tempreg = AT;
6522 used_at = 1;
6523 ld_st:
6524 if (coproc
6525 && NO_ISA_COP (mips_opts.arch)
6526 && (ip->insn_mo->pinfo2 & (INSN2_M_FP_S | INSN2_M_FP_D)) == 0)
6527 {
6528 as_bad (_("Opcode not supported on this processor: %s"),
6529 mips_cpu_info_from_arch (mips_opts.arch)->name);
6530 break;
6531 }
6532
6533 /* Itbl support may require additional care here. */
6534 if (mask == M_LWC1_AB
6535 || mask == M_SWC1_AB
6536 || mask == M_LDC1_AB
6537 || mask == M_SDC1_AB
6538 || mask == M_L_DAB
6539 || mask == M_S_DAB)
6540 fmt = "T,o(b)";
6541 else if (mask == M_CACHE_AB)
6542 fmt = "k,o(b)";
6543 else if (coproc)
6544 fmt = "E,o(b)";
6545 else
6546 fmt = "t,o(b)";
6547
6548 if (offset_expr.X_op != O_constant
6549 && offset_expr.X_op != O_symbol)
6550 {
6551 as_bad (_("Expression too complex"));
6552 offset_expr.X_op = O_constant;
6553 }
6554
6555 if (HAVE_32BIT_ADDRESSES
6556 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
6557 {
6558 char value [32];
6559
6560 sprintf_vma (value, offset_expr.X_add_number);
6561 as_bad (_("Number (0x%s) larger than 32 bits"), value);
6562 }
6563
6564 /* A constant expression in PIC code can be handled just as it
6565 is in non PIC code. */
6566 if (offset_expr.X_op == O_constant)
6567 {
6568 expr1.X_add_number = ((offset_expr.X_add_number + 0x8000)
6569 & ~(bfd_vma) 0xffff);
6570 normalize_address_expr (&expr1);
6571 load_register (tempreg, &expr1, HAVE_64BIT_ADDRESSES);
6572 if (breg != 0)
6573 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6574 tempreg, tempreg, breg);
6575 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_LO16, tempreg);
6576 }
6577 else if (mips_pic == NO_PIC)
6578 {
6579 /* If this is a reference to a GP relative symbol, and there
6580 is no base register, we want
6581 <op> $treg,<sym>($gp) (BFD_RELOC_GPREL16)
6582 Otherwise, if there is no base register, we want
6583 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
6584 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6585 If we have a constant, we need two instructions anyhow,
6586 so we always use the latter form.
6587
6588 If we have a base register, and this is a reference to a
6589 GP relative symbol, we want
6590 addu $tempreg,$breg,$gp
6591 <op> $treg,<sym>($tempreg) (BFD_RELOC_GPREL16)
6592 Otherwise we want
6593 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
6594 addu $tempreg,$tempreg,$breg
6595 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6596 With a constant we always use the latter case.
6597
6598 With 64bit address space and no base register and $at usable,
6599 we want
6600 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
6601 lui $at,<sym> (BFD_RELOC_HI16_S)
6602 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
6603 dsll32 $tempreg,0
6604 daddu $tempreg,$at
6605 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6606 If we have a base register, we want
6607 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
6608 lui $at,<sym> (BFD_RELOC_HI16_S)
6609 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
6610 daddu $at,$breg
6611 dsll32 $tempreg,0
6612 daddu $tempreg,$at
6613 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6614
6615 Without $at we can't generate the optimal path for superscalar
6616 processors here since this would require two temporary registers.
6617 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
6618 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
6619 dsll $tempreg,16
6620 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
6621 dsll $tempreg,16
6622 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6623 If we have a base register, we want
6624 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
6625 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
6626 dsll $tempreg,16
6627 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
6628 dsll $tempreg,16
6629 daddu $tempreg,$tempreg,$breg
6630 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6631
6632 For GP relative symbols in 64bit address space we can use
6633 the same sequence as in 32bit address space. */
6634 if (HAVE_64BIT_SYMBOLS)
6635 {
6636 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6637 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
6638 {
6639 relax_start (offset_expr.X_add_symbol);
6640 if (breg == 0)
6641 {
6642 macro_build (&offset_expr, s, fmt, treg,
6643 BFD_RELOC_GPREL16, mips_gp_register);
6644 }
6645 else
6646 {
6647 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6648 tempreg, breg, mips_gp_register);
6649 macro_build (&offset_expr, s, fmt, treg,
6650 BFD_RELOC_GPREL16, tempreg);
6651 }
6652 relax_switch ();
6653 }
6654
6655 if (used_at == 0 && mips_opts.at)
6656 {
6657 macro_build (&offset_expr, "lui", "t,u", tempreg,
6658 BFD_RELOC_MIPS_HIGHEST);
6659 macro_build (&offset_expr, "lui", "t,u", AT,
6660 BFD_RELOC_HI16_S);
6661 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
6662 tempreg, BFD_RELOC_MIPS_HIGHER);
6663 if (breg != 0)
6664 macro_build (NULL, "daddu", "d,v,t", AT, AT, breg);
6665 macro_build (NULL, "dsll32", "d,w,<", tempreg, tempreg, 0);
6666 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
6667 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_LO16,
6668 tempreg);
6669 used_at = 1;
6670 }
6671 else
6672 {
6673 macro_build (&offset_expr, "lui", "t,u", tempreg,
6674 BFD_RELOC_MIPS_HIGHEST);
6675 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
6676 tempreg, BFD_RELOC_MIPS_HIGHER);
6677 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16);
6678 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
6679 tempreg, BFD_RELOC_HI16_S);
6680 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16);
6681 if (breg != 0)
6682 macro_build (NULL, "daddu", "d,v,t",
6683 tempreg, tempreg, breg);
6684 macro_build (&offset_expr, s, fmt, treg,
6685 BFD_RELOC_LO16, tempreg);
6686 }
6687
6688 if (mips_relax.sequence)
6689 relax_end ();
6690 break;
6691 }
6692
6693 if (breg == 0)
6694 {
6695 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6696 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
6697 {
6698 relax_start (offset_expr.X_add_symbol);
6699 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_GPREL16,
6700 mips_gp_register);
6701 relax_switch ();
6702 }
6703 macro_build_lui (&offset_expr, tempreg);
6704 macro_build (&offset_expr, s, fmt, treg,
6705 BFD_RELOC_LO16, tempreg);
6706 if (mips_relax.sequence)
6707 relax_end ();
6708 }
6709 else
6710 {
6711 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6712 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
6713 {
6714 relax_start (offset_expr.X_add_symbol);
6715 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6716 tempreg, breg, mips_gp_register);
6717 macro_build (&offset_expr, s, fmt, treg,
6718 BFD_RELOC_GPREL16, tempreg);
6719 relax_switch ();
6720 }
6721 macro_build_lui (&offset_expr, tempreg);
6722 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6723 tempreg, tempreg, breg);
6724 macro_build (&offset_expr, s, fmt, treg,
6725 BFD_RELOC_LO16, tempreg);
6726 if (mips_relax.sequence)
6727 relax_end ();
6728 }
6729 }
6730 else if (!mips_big_got)
6731 {
6732 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
6733
6734 /* If this is a reference to an external symbol, we want
6735 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6736 nop
6737 <op> $treg,0($tempreg)
6738 Otherwise we want
6739 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6740 nop
6741 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
6742 <op> $treg,0($tempreg)
6743
6744 For NewABI, we want
6745 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
6746 <op> $treg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
6747
6748 If there is a base register, we add it to $tempreg before
6749 the <op>. If there is a constant, we stick it in the
6750 <op> instruction. We don't handle constants larger than
6751 16 bits, because we have no way to load the upper 16 bits
6752 (actually, we could handle them for the subset of cases
6753 in which we are not using $at). */
6754 gas_assert (offset_expr.X_op == O_symbol);
6755 if (HAVE_NEWABI)
6756 {
6757 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6758 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
6759 if (breg != 0)
6760 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6761 tempreg, tempreg, breg);
6762 macro_build (&offset_expr, s, fmt, treg,
6763 BFD_RELOC_MIPS_GOT_OFST, tempreg);
6764 break;
6765 }
6766 expr1.X_add_number = offset_expr.X_add_number;
6767 offset_expr.X_add_number = 0;
6768 if (expr1.X_add_number < -0x8000
6769 || expr1.X_add_number >= 0x8000)
6770 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6771 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6772 lw_reloc_type, mips_gp_register);
6773 load_delay_nop ();
6774 relax_start (offset_expr.X_add_symbol);
6775 relax_switch ();
6776 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
6777 tempreg, BFD_RELOC_LO16);
6778 relax_end ();
6779 if (breg != 0)
6780 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6781 tempreg, tempreg, breg);
6782 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
6783 }
6784 else if (mips_big_got && !HAVE_NEWABI)
6785 {
6786 int gpdelay;
6787
6788 /* If this is a reference to an external symbol, we want
6789 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6790 addu $tempreg,$tempreg,$gp
6791 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
6792 <op> $treg,0($tempreg)
6793 Otherwise we want
6794 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6795 nop
6796 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
6797 <op> $treg,0($tempreg)
6798 If there is a base register, we add it to $tempreg before
6799 the <op>. If there is a constant, we stick it in the
6800 <op> instruction. We don't handle constants larger than
6801 16 bits, because we have no way to load the upper 16 bits
6802 (actually, we could handle them for the subset of cases
6803 in which we are not using $at). */
6804 gas_assert (offset_expr.X_op == O_symbol);
6805 expr1.X_add_number = offset_expr.X_add_number;
6806 offset_expr.X_add_number = 0;
6807 if (expr1.X_add_number < -0x8000
6808 || expr1.X_add_number >= 0x8000)
6809 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6810 gpdelay = reg_needs_delay (mips_gp_register);
6811 relax_start (offset_expr.X_add_symbol);
6812 macro_build (&offset_expr, "lui", "t,u", tempreg,
6813 BFD_RELOC_MIPS_GOT_HI16);
6814 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
6815 mips_gp_register);
6816 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6817 BFD_RELOC_MIPS_GOT_LO16, tempreg);
6818 relax_switch ();
6819 if (gpdelay)
6820 macro_build (NULL, "nop", "");
6821 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6822 BFD_RELOC_MIPS_GOT16, mips_gp_register);
6823 load_delay_nop ();
6824 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
6825 tempreg, BFD_RELOC_LO16);
6826 relax_end ();
6827
6828 if (breg != 0)
6829 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6830 tempreg, tempreg, breg);
6831 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
6832 }
6833 else if (mips_big_got && HAVE_NEWABI)
6834 {
6835 /* If this is a reference to an external symbol, we want
6836 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6837 add $tempreg,$tempreg,$gp
6838 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
6839 <op> $treg,<ofst>($tempreg)
6840 Otherwise, for local symbols, we want:
6841 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
6842 <op> $treg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
6843 gas_assert (offset_expr.X_op == O_symbol);
6844 expr1.X_add_number = offset_expr.X_add_number;
6845 offset_expr.X_add_number = 0;
6846 if (expr1.X_add_number < -0x8000
6847 || expr1.X_add_number >= 0x8000)
6848 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6849 relax_start (offset_expr.X_add_symbol);
6850 macro_build (&offset_expr, "lui", "t,u", tempreg,
6851 BFD_RELOC_MIPS_GOT_HI16);
6852 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
6853 mips_gp_register);
6854 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6855 BFD_RELOC_MIPS_GOT_LO16, tempreg);
6856 if (breg != 0)
6857 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6858 tempreg, tempreg, breg);
6859 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
6860
6861 relax_switch ();
6862 offset_expr.X_add_number = expr1.X_add_number;
6863 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6864 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
6865 if (breg != 0)
6866 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6867 tempreg, tempreg, breg);
6868 macro_build (&offset_expr, s, fmt, treg,
6869 BFD_RELOC_MIPS_GOT_OFST, tempreg);
6870 relax_end ();
6871 }
6872 else
6873 abort ();
6874
6875 break;
6876
6877 case M_LI:
6878 case M_LI_S:
6879 load_register (treg, &imm_expr, 0);
6880 break;
6881
6882 case M_DLI:
6883 load_register (treg, &imm_expr, 1);
6884 break;
6885
6886 case M_LI_SS:
6887 if (imm_expr.X_op == O_constant)
6888 {
6889 used_at = 1;
6890 load_register (AT, &imm_expr, 0);
6891 macro_build (NULL, "mtc1", "t,G", AT, treg);
6892 break;
6893 }
6894 else
6895 {
6896 gas_assert (offset_expr.X_op == O_symbol
6897 && strcmp (segment_name (S_GET_SEGMENT
6898 (offset_expr.X_add_symbol)),
6899 ".lit4") == 0
6900 && offset_expr.X_add_number == 0);
6901 macro_build (&offset_expr, "lwc1", "T,o(b)", treg,
6902 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
6903 break;
6904 }
6905
6906 case M_LI_D:
6907 /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
6908 wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
6909 order 32 bits of the value and the low order 32 bits are either
6910 zero or in OFFSET_EXPR. */
6911 if (imm_expr.X_op == O_constant || imm_expr.X_op == O_big)
6912 {
6913 if (HAVE_64BIT_GPRS)
6914 load_register (treg, &imm_expr, 1);
6915 else
6916 {
6917 int hreg, lreg;
6918
6919 if (target_big_endian)
6920 {
6921 hreg = treg;
6922 lreg = treg + 1;
6923 }
6924 else
6925 {
6926 hreg = treg + 1;
6927 lreg = treg;
6928 }
6929
6930 if (hreg <= 31)
6931 load_register (hreg, &imm_expr, 0);
6932 if (lreg <= 31)
6933 {
6934 if (offset_expr.X_op == O_absent)
6935 move_register (lreg, 0);
6936 else
6937 {
6938 gas_assert (offset_expr.X_op == O_constant);
6939 load_register (lreg, &offset_expr, 0);
6940 }
6941 }
6942 }
6943 break;
6944 }
6945
6946 /* We know that sym is in the .rdata section. First we get the
6947 upper 16 bits of the address. */
6948 if (mips_pic == NO_PIC)
6949 {
6950 macro_build_lui (&offset_expr, AT);
6951 used_at = 1;
6952 }
6953 else
6954 {
6955 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
6956 BFD_RELOC_MIPS_GOT16, mips_gp_register);
6957 used_at = 1;
6958 }
6959
6960 /* Now we load the register(s). */
6961 if (HAVE_64BIT_GPRS)
6962 {
6963 used_at = 1;
6964 macro_build (&offset_expr, "ld", "t,o(b)", treg, BFD_RELOC_LO16, AT);
6965 }
6966 else
6967 {
6968 used_at = 1;
6969 macro_build (&offset_expr, "lw", "t,o(b)", treg, BFD_RELOC_LO16, AT);
6970 if (treg != RA)
6971 {
6972 /* FIXME: How in the world do we deal with the possible
6973 overflow here? */
6974 offset_expr.X_add_number += 4;
6975 macro_build (&offset_expr, "lw", "t,o(b)",
6976 treg + 1, BFD_RELOC_LO16, AT);
6977 }
6978 }
6979 break;
6980
6981 case M_LI_DD:
6982 /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
6983 wide, IMM_EXPR is the entire value and the GPRs are known to be 64
6984 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
6985 the value and the low order 32 bits are either zero or in
6986 OFFSET_EXPR. */
6987 if (imm_expr.X_op == O_constant || imm_expr.X_op == O_big)
6988 {
6989 used_at = 1;
6990 load_register (AT, &imm_expr, HAVE_64BIT_FPRS);
6991 if (HAVE_64BIT_FPRS)
6992 {
6993 gas_assert (HAVE_64BIT_GPRS);
6994 macro_build (NULL, "dmtc1", "t,S", AT, treg);
6995 }
6996 else
6997 {
6998 macro_build (NULL, "mtc1", "t,G", AT, treg + 1);
6999 if (offset_expr.X_op == O_absent)
7000 macro_build (NULL, "mtc1", "t,G", 0, treg);
7001 else
7002 {
7003 gas_assert (offset_expr.X_op == O_constant);
7004 load_register (AT, &offset_expr, 0);
7005 macro_build (NULL, "mtc1", "t,G", AT, treg);
7006 }
7007 }
7008 break;
7009 }
7010
7011 gas_assert (offset_expr.X_op == O_symbol
7012 && offset_expr.X_add_number == 0);
7013 s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
7014 if (strcmp (s, ".lit8") == 0)
7015 {
7016 if (mips_opts.isa != ISA_MIPS1)
7017 {
7018 macro_build (&offset_expr, "ldc1", "T,o(b)", treg,
7019 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
7020 break;
7021 }
7022 breg = mips_gp_register;
7023 r = BFD_RELOC_MIPS_LITERAL;
7024 goto dob;
7025 }
7026 else
7027 {
7028 gas_assert (strcmp (s, RDATA_SECTION_NAME) == 0);
7029 used_at = 1;
7030 if (mips_pic != NO_PIC)
7031 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
7032 BFD_RELOC_MIPS_GOT16, mips_gp_register);
7033 else
7034 {
7035 /* FIXME: This won't work for a 64 bit address. */
7036 macro_build_lui (&offset_expr, AT);
7037 }
7038
7039 if (mips_opts.isa != ISA_MIPS1)
7040 {
7041 macro_build (&offset_expr, "ldc1", "T,o(b)",
7042 treg, BFD_RELOC_LO16, AT);
7043 break;
7044 }
7045 breg = AT;
7046 r = BFD_RELOC_LO16;
7047 goto dob;
7048 }
7049
7050 case M_L_DOB:
7051 /* Even on a big endian machine $fn comes before $fn+1. We have
7052 to adjust when loading from memory. */
7053 r = BFD_RELOC_LO16;
7054 dob:
7055 gas_assert (mips_opts.isa == ISA_MIPS1);
7056 macro_build (&offset_expr, "lwc1", "T,o(b)",
7057 target_big_endian ? treg + 1 : treg, r, breg);
7058 /* FIXME: A possible overflow which I don't know how to deal
7059 with. */
7060 offset_expr.X_add_number += 4;
7061 macro_build (&offset_expr, "lwc1", "T,o(b)",
7062 target_big_endian ? treg : treg + 1, r, breg);
7063 break;
7064
7065 case M_L_DAB:
7066 /*
7067 * The MIPS assembler seems to check for X_add_number not
7068 * being double aligned and generating:
7069 * lui at,%hi(foo+1)
7070 * addu at,at,v1
7071 * addiu at,at,%lo(foo+1)
7072 * lwc1 f2,0(at)
7073 * lwc1 f3,4(at)
7074 * But, the resulting address is the same after relocation so why
7075 * generate the extra instruction?
7076 */
7077 /* Itbl support may require additional care here. */
7078 coproc = 1;
7079 if (mips_opts.isa != ISA_MIPS1)
7080 {
7081 s = "ldc1";
7082 goto ld;
7083 }
7084
7085 s = "lwc1";
7086 fmt = "T,o(b)";
7087 goto ldd_std;
7088
7089 case M_S_DAB:
7090 if (mips_opts.isa != ISA_MIPS1)
7091 {
7092 s = "sdc1";
7093 goto st;
7094 }
7095
7096 s = "swc1";
7097 fmt = "T,o(b)";
7098 /* Itbl support may require additional care here. */
7099 coproc = 1;
7100 goto ldd_std;
7101
7102 case M_LD_AB:
7103 if (HAVE_64BIT_GPRS)
7104 {
7105 s = "ld";
7106 goto ld;
7107 }
7108
7109 s = "lw";
7110 fmt = "t,o(b)";
7111 goto ldd_std;
7112
7113 case M_SD_AB:
7114 if (HAVE_64BIT_GPRS)
7115 {
7116 s = "sd";
7117 goto st;
7118 }
7119
7120 s = "sw";
7121 fmt = "t,o(b)";
7122
7123 ldd_std:
7124 if (offset_expr.X_op != O_symbol
7125 && offset_expr.X_op != O_constant)
7126 {
7127 as_bad (_("Expression too complex"));
7128 offset_expr.X_op = O_constant;
7129 }
7130
7131 if (HAVE_32BIT_ADDRESSES
7132 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
7133 {
7134 char value [32];
7135
7136 sprintf_vma (value, offset_expr.X_add_number);
7137 as_bad (_("Number (0x%s) larger than 32 bits"), value);
7138 }
7139
7140 /* Even on a big endian machine $fn comes before $fn+1. We have
7141 to adjust when loading from memory. We set coproc if we must
7142 load $fn+1 first. */
7143 /* Itbl support may require additional care here. */
7144 if (!target_big_endian)
7145 coproc = 0;
7146
7147 if (mips_pic == NO_PIC || offset_expr.X_op == O_constant)
7148 {
7149 /* If this is a reference to a GP relative symbol, we want
7150 <op> $treg,<sym>($gp) (BFD_RELOC_GPREL16)
7151 <op> $treg+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
7152 If we have a base register, we use this
7153 addu $at,$breg,$gp
7154 <op> $treg,<sym>($at) (BFD_RELOC_GPREL16)
7155 <op> $treg+1,<sym>+4($at) (BFD_RELOC_GPREL16)
7156 If this is not a GP relative symbol, we want
7157 lui $at,<sym> (BFD_RELOC_HI16_S)
7158 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
7159 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
7160 If there is a base register, we add it to $at after the
7161 lui instruction. If there is a constant, we always use
7162 the last case. */
7163 if (offset_expr.X_op == O_symbol
7164 && (valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
7165 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
7166 {
7167 relax_start (offset_expr.X_add_symbol);
7168 if (breg == 0)
7169 {
7170 tempreg = mips_gp_register;
7171 }
7172 else
7173 {
7174 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7175 AT, breg, mips_gp_register);
7176 tempreg = AT;
7177 used_at = 1;
7178 }
7179
7180 /* Itbl support may require additional care here. */
7181 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
7182 BFD_RELOC_GPREL16, tempreg);
7183 offset_expr.X_add_number += 4;
7184
7185 /* Set mips_optimize to 2 to avoid inserting an
7186 undesired nop. */
7187 hold_mips_optimize = mips_optimize;
7188 mips_optimize = 2;
7189 /* Itbl support may require additional care here. */
7190 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
7191 BFD_RELOC_GPREL16, tempreg);
7192 mips_optimize = hold_mips_optimize;
7193
7194 relax_switch ();
7195
7196 offset_expr.X_add_number -= 4;
7197 }
7198 used_at = 1;
7199 macro_build_lui (&offset_expr, AT);
7200 if (breg != 0)
7201 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
7202 /* Itbl support may require additional care here. */
7203 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
7204 BFD_RELOC_LO16, AT);
7205 /* FIXME: How do we handle overflow here? */
7206 offset_expr.X_add_number += 4;
7207 /* Itbl support may require additional care here. */
7208 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
7209 BFD_RELOC_LO16, AT);
7210 if (mips_relax.sequence)
7211 relax_end ();
7212 }
7213 else if (!mips_big_got)
7214 {
7215 /* If this is a reference to an external symbol, we want
7216 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7217 nop
7218 <op> $treg,0($at)
7219 <op> $treg+1,4($at)
7220 Otherwise we want
7221 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7222 nop
7223 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
7224 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
7225 If there is a base register we add it to $at before the
7226 lwc1 instructions. If there is a constant we include it
7227 in the lwc1 instructions. */
7228 used_at = 1;
7229 expr1.X_add_number = offset_expr.X_add_number;
7230 if (expr1.X_add_number < -0x8000
7231 || expr1.X_add_number >= 0x8000 - 4)
7232 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
7233 load_got_offset (AT, &offset_expr);
7234 load_delay_nop ();
7235 if (breg != 0)
7236 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
7237
7238 /* Set mips_optimize to 2 to avoid inserting an undesired
7239 nop. */
7240 hold_mips_optimize = mips_optimize;
7241 mips_optimize = 2;
7242
7243 /* Itbl support may require additional care here. */
7244 relax_start (offset_expr.X_add_symbol);
7245 macro_build (&expr1, s, fmt, coproc ? treg + 1 : treg,
7246 BFD_RELOC_LO16, AT);
7247 expr1.X_add_number += 4;
7248 macro_build (&expr1, s, fmt, coproc ? treg : treg + 1,
7249 BFD_RELOC_LO16, AT);
7250 relax_switch ();
7251 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
7252 BFD_RELOC_LO16, AT);
7253 offset_expr.X_add_number += 4;
7254 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
7255 BFD_RELOC_LO16, AT);
7256 relax_end ();
7257
7258 mips_optimize = hold_mips_optimize;
7259 }
7260 else if (mips_big_got)
7261 {
7262 int gpdelay;
7263
7264 /* If this is a reference to an external symbol, we want
7265 lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
7266 addu $at,$at,$gp
7267 lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
7268 nop
7269 <op> $treg,0($at)
7270 <op> $treg+1,4($at)
7271 Otherwise we want
7272 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7273 nop
7274 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
7275 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
7276 If there is a base register we add it to $at before the
7277 lwc1 instructions. If there is a constant we include it
7278 in the lwc1 instructions. */
7279 used_at = 1;
7280 expr1.X_add_number = offset_expr.X_add_number;
7281 offset_expr.X_add_number = 0;
7282 if (expr1.X_add_number < -0x8000
7283 || expr1.X_add_number >= 0x8000 - 4)
7284 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
7285 gpdelay = reg_needs_delay (mips_gp_register);
7286 relax_start (offset_expr.X_add_symbol);
7287 macro_build (&offset_expr, "lui", "t,u",
7288 AT, BFD_RELOC_MIPS_GOT_HI16);
7289 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7290 AT, AT, mips_gp_register);
7291 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
7292 AT, BFD_RELOC_MIPS_GOT_LO16, AT);
7293 load_delay_nop ();
7294 if (breg != 0)
7295 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
7296 /* Itbl support may require additional care here. */
7297 macro_build (&expr1, s, fmt, coproc ? treg + 1 : treg,
7298 BFD_RELOC_LO16, AT);
7299 expr1.X_add_number += 4;
7300
7301 /* Set mips_optimize to 2 to avoid inserting an undesired
7302 nop. */
7303 hold_mips_optimize = mips_optimize;
7304 mips_optimize = 2;
7305 /* Itbl support may require additional care here. */
7306 macro_build (&expr1, s, fmt, coproc ? treg : treg + 1,
7307 BFD_RELOC_LO16, AT);
7308 mips_optimize = hold_mips_optimize;
7309 expr1.X_add_number -= 4;
7310
7311 relax_switch ();
7312 offset_expr.X_add_number = expr1.X_add_number;
7313 if (gpdelay)
7314 macro_build (NULL, "nop", "");
7315 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
7316 BFD_RELOC_MIPS_GOT16, mips_gp_register);
7317 load_delay_nop ();
7318 if (breg != 0)
7319 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
7320 /* Itbl support may require additional care here. */
7321 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
7322 BFD_RELOC_LO16, AT);
7323 offset_expr.X_add_number += 4;
7324
7325 /* Set mips_optimize to 2 to avoid inserting an undesired
7326 nop. */
7327 hold_mips_optimize = mips_optimize;
7328 mips_optimize = 2;
7329 /* Itbl support may require additional care here. */
7330 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
7331 BFD_RELOC_LO16, AT);
7332 mips_optimize = hold_mips_optimize;
7333 relax_end ();
7334 }
7335 else
7336 abort ();
7337
7338 break;
7339
7340 case M_LD_OB:
7341 s = HAVE_64BIT_GPRS ? "ld" : "lw";
7342 goto sd_ob;
7343 case M_SD_OB:
7344 s = HAVE_64BIT_GPRS ? "sd" : "sw";
7345 sd_ob:
7346 macro_build (&offset_expr, s, "t,o(b)", treg,
7347 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2],
7348 breg);
7349 if (!HAVE_64BIT_GPRS)
7350 {
7351 offset_expr.X_add_number += 4;
7352 macro_build (&offset_expr, s, "t,o(b)", treg + 1,
7353 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2],
7354 breg);
7355 }
7356 break;
7357
7358 /* New code added to support COPZ instructions.
7359 This code builds table entries out of the macros in mip_opcodes.
7360 R4000 uses interlocks to handle coproc delays.
7361 Other chips (like the R3000) require nops to be inserted for delays.
7362
7363 FIXME: Currently, we require that the user handle delays.
7364 In order to fill delay slots for non-interlocked chips,
7365 we must have a way to specify delays based on the coprocessor.
7366 Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
7367 What are the side-effects of the cop instruction?
7368 What cache support might we have and what are its effects?
7369 Both coprocessor & memory require delays. how long???
7370 What registers are read/set/modified?
7371
7372 If an itbl is provided to interpret cop instructions,
7373 this knowledge can be encoded in the itbl spec. */
7374
7375 case M_COP0:
7376 s = "c0";
7377 goto copz;
7378 case M_COP1:
7379 s = "c1";
7380 goto copz;
7381 case M_COP2:
7382 s = "c2";
7383 goto copz;
7384 case M_COP3:
7385 s = "c3";
7386 copz:
7387 if (NO_ISA_COP (mips_opts.arch)
7388 && (ip->insn_mo->pinfo2 & INSN2_M_FP_S) == 0)
7389 {
7390 as_bad (_("opcode not supported on this processor: %s"),
7391 mips_cpu_info_from_arch (mips_opts.arch)->name);
7392 break;
7393 }
7394
7395 /* For now we just do C (same as Cz). The parameter will be
7396 stored in insn_opcode by mips_ip. */
7397 macro_build (NULL, s, "C", ip->insn_opcode);
7398 break;
7399
7400 case M_MOVE:
7401 move_register (dreg, sreg);
7402 break;
7403
7404 case M_DMUL:
7405 dbl = 1;
7406 case M_MUL:
7407 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", sreg, treg);
7408 macro_build (NULL, "mflo", "d", dreg);
7409 break;
7410
7411 case M_DMUL_I:
7412 dbl = 1;
7413 case M_MUL_I:
7414 /* The MIPS assembler some times generates shifts and adds. I'm
7415 not trying to be that fancy. GCC should do this for us
7416 anyway. */
7417 used_at = 1;
7418 load_register (AT, &imm_expr, dbl);
7419 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", sreg, AT);
7420 macro_build (NULL, "mflo", "d", dreg);
7421 break;
7422
7423 case M_DMULO_I:
7424 dbl = 1;
7425 case M_MULO_I:
7426 imm = 1;
7427 goto do_mulo;
7428
7429 case M_DMULO:
7430 dbl = 1;
7431 case M_MULO:
7432 do_mulo:
7433 start_noreorder ();
7434 used_at = 1;
7435 if (imm)
7436 load_register (AT, &imm_expr, dbl);
7437 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", sreg, imm ? AT : treg);
7438 macro_build (NULL, "mflo", "d", dreg);
7439 macro_build (NULL, dbl ? "dsra32" : "sra", "d,w,<", dreg, dreg, RA);
7440 macro_build (NULL, "mfhi", "d", AT);
7441 if (mips_trap)
7442 macro_build (NULL, "tne", "s,t,q", dreg, AT, 6);
7443 else
7444 {
7445 expr1.X_add_number = 8;
7446 macro_build (&expr1, "beq", "s,t,p", dreg, AT);
7447 macro_build (NULL, "nop", "");
7448 macro_build (NULL, "break", "c", 6);
7449 }
7450 end_noreorder ();
7451 macro_build (NULL, "mflo", "d", dreg);
7452 break;
7453
7454 case M_DMULOU_I:
7455 dbl = 1;
7456 case M_MULOU_I:
7457 imm = 1;
7458 goto do_mulou;
7459
7460 case M_DMULOU:
7461 dbl = 1;
7462 case M_MULOU:
7463 do_mulou:
7464 start_noreorder ();
7465 used_at = 1;
7466 if (imm)
7467 load_register (AT, &imm_expr, dbl);
7468 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t",
7469 sreg, imm ? AT : treg);
7470 macro_build (NULL, "mfhi", "d", AT);
7471 macro_build (NULL, "mflo", "d", dreg);
7472 if (mips_trap)
7473 macro_build (NULL, "tne", "s,t,q", AT, ZERO, 6);
7474 else
7475 {
7476 expr1.X_add_number = 8;
7477 macro_build (&expr1, "beq", "s,t,p", AT, ZERO);
7478 macro_build (NULL, "nop", "");
7479 macro_build (NULL, "break", "c", 6);
7480 }
7481 end_noreorder ();
7482 break;
7483
7484 case M_DROL:
7485 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
7486 {
7487 if (dreg == sreg)
7488 {
7489 tempreg = AT;
7490 used_at = 1;
7491 }
7492 else
7493 {
7494 tempreg = dreg;
7495 }
7496 macro_build (NULL, "dnegu", "d,w", tempreg, treg);
7497 macro_build (NULL, "drorv", "d,t,s", dreg, sreg, tempreg);
7498 break;
7499 }
7500 used_at = 1;
7501 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, treg);
7502 macro_build (NULL, "dsrlv", "d,t,s", AT, sreg, AT);
7503 macro_build (NULL, "dsllv", "d,t,s", dreg, sreg, treg);
7504 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7505 break;
7506
7507 case M_ROL:
7508 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
7509 {
7510 if (dreg == sreg)
7511 {
7512 tempreg = AT;
7513 used_at = 1;
7514 }
7515 else
7516 {
7517 tempreg = dreg;
7518 }
7519 macro_build (NULL, "negu", "d,w", tempreg, treg);
7520 macro_build (NULL, "rorv", "d,t,s", dreg, sreg, tempreg);
7521 break;
7522 }
7523 used_at = 1;
7524 macro_build (NULL, "subu", "d,v,t", AT, ZERO, treg);
7525 macro_build (NULL, "srlv", "d,t,s", AT, sreg, AT);
7526 macro_build (NULL, "sllv", "d,t,s", dreg, sreg, treg);
7527 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7528 break;
7529
7530 case M_DROL_I:
7531 {
7532 unsigned int rot;
7533 char *l;
7534 char *rr;
7535
7536 if (imm_expr.X_op != O_constant)
7537 as_bad (_("Improper rotate count"));
7538 rot = imm_expr.X_add_number & 0x3f;
7539 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
7540 {
7541 rot = (64 - rot) & 0x3f;
7542 if (rot >= 32)
7543 macro_build (NULL, "dror32", "d,w,<", dreg, sreg, rot - 32);
7544 else
7545 macro_build (NULL, "dror", "d,w,<", dreg, sreg, rot);
7546 break;
7547 }
7548 if (rot == 0)
7549 {
7550 macro_build (NULL, "dsrl", "d,w,<", dreg, sreg, 0);
7551 break;
7552 }
7553 l = (rot < 0x20) ? "dsll" : "dsll32";
7554 rr = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
7555 rot &= 0x1f;
7556 used_at = 1;
7557 macro_build (NULL, l, "d,w,<", AT, sreg, rot);
7558 macro_build (NULL, rr, "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
7559 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7560 }
7561 break;
7562
7563 case M_ROL_I:
7564 {
7565 unsigned int rot;
7566
7567 if (imm_expr.X_op != O_constant)
7568 as_bad (_("Improper rotate count"));
7569 rot = imm_expr.X_add_number & 0x1f;
7570 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
7571 {
7572 macro_build (NULL, "ror", "d,w,<", dreg, sreg, (32 - rot) & 0x1f);
7573 break;
7574 }
7575 if (rot == 0)
7576 {
7577 macro_build (NULL, "srl", "d,w,<", dreg, sreg, 0);
7578 break;
7579 }
7580 used_at = 1;
7581 macro_build (NULL, "sll", "d,w,<", AT, sreg, rot);
7582 macro_build (NULL, "srl", "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
7583 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7584 }
7585 break;
7586
7587 case M_DROR:
7588 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
7589 {
7590 macro_build (NULL, "drorv", "d,t,s", dreg, sreg, treg);
7591 break;
7592 }
7593 used_at = 1;
7594 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, treg);
7595 macro_build (NULL, "dsllv", "d,t,s", AT, sreg, AT);
7596 macro_build (NULL, "dsrlv", "d,t,s", dreg, sreg, treg);
7597 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7598 break;
7599
7600 case M_ROR:
7601 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
7602 {
7603 macro_build (NULL, "rorv", "d,t,s", dreg, sreg, treg);
7604 break;
7605 }
7606 used_at = 1;
7607 macro_build (NULL, "subu", "d,v,t", AT, ZERO, treg);
7608 macro_build (NULL, "sllv", "d,t,s", AT, sreg, AT);
7609 macro_build (NULL, "srlv", "d,t,s", dreg, sreg, treg);
7610 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7611 break;
7612
7613 case M_DROR_I:
7614 {
7615 unsigned int rot;
7616 char *l;
7617 char *rr;
7618
7619 if (imm_expr.X_op != O_constant)
7620 as_bad (_("Improper rotate count"));
7621 rot = imm_expr.X_add_number & 0x3f;
7622 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
7623 {
7624 if (rot >= 32)
7625 macro_build (NULL, "dror32", "d,w,<", dreg, sreg, rot - 32);
7626 else
7627 macro_build (NULL, "dror", "d,w,<", dreg, sreg, rot);
7628 break;
7629 }
7630 if (rot == 0)
7631 {
7632 macro_build (NULL, "dsrl", "d,w,<", dreg, sreg, 0);
7633 break;
7634 }
7635 rr = (rot < 0x20) ? "dsrl" : "dsrl32";
7636 l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
7637 rot &= 0x1f;
7638 used_at = 1;
7639 macro_build (NULL, rr, "d,w,<", AT, sreg, rot);
7640 macro_build (NULL, l, "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
7641 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7642 }
7643 break;
7644
7645 case M_ROR_I:
7646 {
7647 unsigned int rot;
7648
7649 if (imm_expr.X_op != O_constant)
7650 as_bad (_("Improper rotate count"));
7651 rot = imm_expr.X_add_number & 0x1f;
7652 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
7653 {
7654 macro_build (NULL, "ror", "d,w,<", dreg, sreg, rot);
7655 break;
7656 }
7657 if (rot == 0)
7658 {
7659 macro_build (NULL, "srl", "d,w,<", dreg, sreg, 0);
7660 break;
7661 }
7662 used_at = 1;
7663 macro_build (NULL, "srl", "d,w,<", AT, sreg, rot);
7664 macro_build (NULL, "sll", "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
7665 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7666 }
7667 break;
7668
7669 case M_S_DOB:
7670 gas_assert (mips_opts.isa == ISA_MIPS1);
7671 /* Even on a big endian machine $fn comes before $fn+1. We have
7672 to adjust when storing to memory. */
7673 macro_build (&offset_expr, "swc1", "T,o(b)",
7674 target_big_endian ? treg + 1 : treg, BFD_RELOC_LO16, breg);
7675 offset_expr.X_add_number += 4;
7676 macro_build (&offset_expr, "swc1", "T,o(b)",
7677 target_big_endian ? treg : treg + 1, BFD_RELOC_LO16, breg);
7678 break;
7679
7680 case M_SEQ:
7681 if (sreg == 0)
7682 macro_build (&expr1, "sltiu", "t,r,j", dreg, treg, BFD_RELOC_LO16);
7683 else if (treg == 0)
7684 macro_build (&expr1, "sltiu", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7685 else
7686 {
7687 macro_build (NULL, "xor", "d,v,t", dreg, sreg, treg);
7688 macro_build (&expr1, "sltiu", "t,r,j", dreg, dreg, BFD_RELOC_LO16);
7689 }
7690 break;
7691
7692 case M_SEQ_I:
7693 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
7694 {
7695 macro_build (&expr1, "sltiu", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7696 break;
7697 }
7698 if (sreg == 0)
7699 {
7700 as_warn (_("Instruction %s: result is always false"),
7701 ip->insn_mo->name);
7702 move_register (dreg, 0);
7703 break;
7704 }
7705 if (CPU_HAS_SEQ (mips_opts.arch)
7706 && -512 <= imm_expr.X_add_number
7707 && imm_expr.X_add_number < 512)
7708 {
7709 macro_build (NULL, "seqi", "t,r,+Q", dreg, sreg,
7710 (int) imm_expr.X_add_number);
7711 break;
7712 }
7713 if (imm_expr.X_op == O_constant
7714 && imm_expr.X_add_number >= 0
7715 && imm_expr.X_add_number < 0x10000)
7716 {
7717 macro_build (&imm_expr, "xori", "t,r,i", dreg, sreg, BFD_RELOC_LO16);
7718 }
7719 else if (imm_expr.X_op == O_constant
7720 && imm_expr.X_add_number > -0x8000
7721 && imm_expr.X_add_number < 0)
7722 {
7723 imm_expr.X_add_number = -imm_expr.X_add_number;
7724 macro_build (&imm_expr, HAVE_32BIT_GPRS ? "addiu" : "daddiu",
7725 "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7726 }
7727 else if (CPU_HAS_SEQ (mips_opts.arch))
7728 {
7729 used_at = 1;
7730 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7731 macro_build (NULL, "seq", "d,v,t", dreg, sreg, AT);
7732 break;
7733 }
7734 else
7735 {
7736 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7737 macro_build (NULL, "xor", "d,v,t", dreg, sreg, AT);
7738 used_at = 1;
7739 }
7740 macro_build (&expr1, "sltiu", "t,r,j", dreg, dreg, BFD_RELOC_LO16);
7741 break;
7742
7743 case M_SGE: /* sreg >= treg <==> not (sreg < treg) */
7744 s = "slt";
7745 goto sge;
7746 case M_SGEU:
7747 s = "sltu";
7748 sge:
7749 macro_build (NULL, s, "d,v,t", dreg, sreg, treg);
7750 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
7751 break;
7752
7753 case M_SGE_I: /* sreg >= I <==> not (sreg < I) */
7754 case M_SGEU_I:
7755 if (imm_expr.X_op == O_constant
7756 && imm_expr.X_add_number >= -0x8000
7757 && imm_expr.X_add_number < 0x8000)
7758 {
7759 macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j",
7760 dreg, sreg, BFD_RELOC_LO16);
7761 }
7762 else
7763 {
7764 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7765 macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t",
7766 dreg, sreg, AT);
7767 used_at = 1;
7768 }
7769 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
7770 break;
7771
7772 case M_SGT: /* sreg > treg <==> treg < sreg */
7773 s = "slt";
7774 goto sgt;
7775 case M_SGTU:
7776 s = "sltu";
7777 sgt:
7778 macro_build (NULL, s, "d,v,t", dreg, treg, sreg);
7779 break;
7780
7781 case M_SGT_I: /* sreg > I <==> I < sreg */
7782 s = "slt";
7783 goto sgti;
7784 case M_SGTU_I:
7785 s = "sltu";
7786 sgti:
7787 used_at = 1;
7788 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7789 macro_build (NULL, s, "d,v,t", dreg, AT, sreg);
7790 break;
7791
7792 case M_SLE: /* sreg <= treg <==> treg >= sreg <==> not (treg < sreg) */
7793 s = "slt";
7794 goto sle;
7795 case M_SLEU:
7796 s = "sltu";
7797 sle:
7798 macro_build (NULL, s, "d,v,t", dreg, treg, sreg);
7799 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
7800 break;
7801
7802 case M_SLE_I: /* sreg <= I <==> I >= sreg <==> not (I < sreg) */
7803 s = "slt";
7804 goto slei;
7805 case M_SLEU_I:
7806 s = "sltu";
7807 slei:
7808 used_at = 1;
7809 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7810 macro_build (NULL, s, "d,v,t", dreg, AT, sreg);
7811 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
7812 break;
7813
7814 case M_SLT_I:
7815 if (imm_expr.X_op == O_constant
7816 && imm_expr.X_add_number >= -0x8000
7817 && imm_expr.X_add_number < 0x8000)
7818 {
7819 macro_build (&imm_expr, "slti", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7820 break;
7821 }
7822 used_at = 1;
7823 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7824 macro_build (NULL, "slt", "d,v,t", dreg, sreg, AT);
7825 break;
7826
7827 case M_SLTU_I:
7828 if (imm_expr.X_op == O_constant
7829 && imm_expr.X_add_number >= -0x8000
7830 && imm_expr.X_add_number < 0x8000)
7831 {
7832 macro_build (&imm_expr, "sltiu", "t,r,j", dreg, sreg,
7833 BFD_RELOC_LO16);
7834 break;
7835 }
7836 used_at = 1;
7837 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7838 macro_build (NULL, "sltu", "d,v,t", dreg, sreg, AT);
7839 break;
7840
7841 case M_SNE:
7842 if (sreg == 0)
7843 macro_build (NULL, "sltu", "d,v,t", dreg, 0, treg);
7844 else if (treg == 0)
7845 macro_build (NULL, "sltu", "d,v,t", dreg, 0, sreg);
7846 else
7847 {
7848 macro_build (NULL, "xor", "d,v,t", dreg, sreg, treg);
7849 macro_build (NULL, "sltu", "d,v,t", dreg, 0, dreg);
7850 }
7851 break;
7852
7853 case M_SNE_I:
7854 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
7855 {
7856 macro_build (NULL, "sltu", "d,v,t", dreg, 0, sreg);
7857 break;
7858 }
7859 if (sreg == 0)
7860 {
7861 as_warn (_("Instruction %s: result is always true"),
7862 ip->insn_mo->name);
7863 macro_build (&expr1, HAVE_32BIT_GPRS ? "addiu" : "daddiu", "t,r,j",
7864 dreg, 0, BFD_RELOC_LO16);
7865 break;
7866 }
7867 if (CPU_HAS_SEQ (mips_opts.arch)
7868 && -512 <= imm_expr.X_add_number
7869 && imm_expr.X_add_number < 512)
7870 {
7871 macro_build (NULL, "snei", "t,r,+Q", dreg, sreg,
7872 (int) imm_expr.X_add_number);
7873 break;
7874 }
7875 if (imm_expr.X_op == O_constant
7876 && imm_expr.X_add_number >= 0
7877 && imm_expr.X_add_number < 0x10000)
7878 {
7879 macro_build (&imm_expr, "xori", "t,r,i", dreg, sreg, BFD_RELOC_LO16);
7880 }
7881 else if (imm_expr.X_op == O_constant
7882 && imm_expr.X_add_number > -0x8000
7883 && imm_expr.X_add_number < 0)
7884 {
7885 imm_expr.X_add_number = -imm_expr.X_add_number;
7886 macro_build (&imm_expr, HAVE_32BIT_GPRS ? "addiu" : "daddiu",
7887 "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7888 }
7889 else if (CPU_HAS_SEQ (mips_opts.arch))
7890 {
7891 used_at = 1;
7892 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7893 macro_build (NULL, "sne", "d,v,t", dreg, sreg, AT);
7894 break;
7895 }
7896 else
7897 {
7898 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7899 macro_build (NULL, "xor", "d,v,t", dreg, sreg, AT);
7900 used_at = 1;
7901 }
7902 macro_build (NULL, "sltu", "d,v,t", dreg, 0, dreg);
7903 break;
7904
7905 case M_DSUB_I:
7906 dbl = 1;
7907 case M_SUB_I:
7908 if (imm_expr.X_op == O_constant
7909 && imm_expr.X_add_number > -0x8000
7910 && imm_expr.X_add_number <= 0x8000)
7911 {
7912 imm_expr.X_add_number = -imm_expr.X_add_number;
7913 macro_build (&imm_expr, dbl ? "daddi" : "addi", "t,r,j",
7914 dreg, sreg, BFD_RELOC_LO16);
7915 break;
7916 }
7917 used_at = 1;
7918 load_register (AT, &imm_expr, dbl);
7919 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", dreg, sreg, AT);
7920 break;
7921
7922 case M_DSUBU_I:
7923 dbl = 1;
7924 case M_SUBU_I:
7925 if (imm_expr.X_op == O_constant
7926 && imm_expr.X_add_number > -0x8000
7927 && imm_expr.X_add_number <= 0x8000)
7928 {
7929 imm_expr.X_add_number = -imm_expr.X_add_number;
7930 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "t,r,j",
7931 dreg, sreg, BFD_RELOC_LO16);
7932 break;
7933 }
7934 used_at = 1;
7935 load_register (AT, &imm_expr, dbl);
7936 macro_build (NULL, dbl ? "dsubu" : "subu", "d,v,t", dreg, sreg, AT);
7937 break;
7938
7939 case M_TEQ_I:
7940 s = "teq";
7941 goto trap;
7942 case M_TGE_I:
7943 s = "tge";
7944 goto trap;
7945 case M_TGEU_I:
7946 s = "tgeu";
7947 goto trap;
7948 case M_TLT_I:
7949 s = "tlt";
7950 goto trap;
7951 case M_TLTU_I:
7952 s = "tltu";
7953 goto trap;
7954 case M_TNE_I:
7955 s = "tne";
7956 trap:
7957 used_at = 1;
7958 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7959 macro_build (NULL, s, "s,t", sreg, AT);
7960 break;
7961
7962 case M_TRUNCWS:
7963 case M_TRUNCWD:
7964 gas_assert (mips_opts.isa == ISA_MIPS1);
7965 used_at = 1;
7966 sreg = (ip->insn_opcode >> 11) & 0x1f; /* floating reg */
7967 dreg = (ip->insn_opcode >> 06) & 0x1f; /* floating reg */
7968
7969 /*
7970 * Is the double cfc1 instruction a bug in the mips assembler;
7971 * or is there a reason for it?
7972 */
7973 start_noreorder ();
7974 macro_build (NULL, "cfc1", "t,G", treg, RA);
7975 macro_build (NULL, "cfc1", "t,G", treg, RA);
7976 macro_build (NULL, "nop", "");
7977 expr1.X_add_number = 3;
7978 macro_build (&expr1, "ori", "t,r,i", AT, treg, BFD_RELOC_LO16);
7979 expr1.X_add_number = 2;
7980 macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16);
7981 macro_build (NULL, "ctc1", "t,G", AT, RA);
7982 macro_build (NULL, "nop", "");
7983 macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S",
7984 dreg, sreg);
7985 macro_build (NULL, "ctc1", "t,G", treg, RA);
7986 macro_build (NULL, "nop", "");
7987 end_noreorder ();
7988 break;
7989
7990 case M_ULH:
7991 s = "lb";
7992 goto ulh;
7993 case M_ULHU:
7994 s = "lbu";
7995 ulh:
7996 used_at = 1;
7997 if (offset_expr.X_add_number >= 0x7fff)
7998 as_bad (_("Operand overflow"));
7999 if (!target_big_endian)
8000 ++offset_expr.X_add_number;
8001 macro_build (&offset_expr, s, "t,o(b)", AT, BFD_RELOC_LO16, breg);
8002 if (!target_big_endian)
8003 --offset_expr.X_add_number;
8004 else
8005 ++offset_expr.X_add_number;
8006 macro_build (&offset_expr, "lbu", "t,o(b)", treg, BFD_RELOC_LO16, breg);
8007 macro_build (NULL, "sll", "d,w,<", AT, AT, 8);
8008 macro_build (NULL, "or", "d,v,t", treg, treg, AT);
8009 break;
8010
8011 case M_ULD:
8012 s = "ldl";
8013 s2 = "ldr";
8014 off = 7;
8015 goto ulw;
8016 case M_ULW:
8017 s = "lwl";
8018 s2 = "lwr";
8019 off = 3;
8020 ulw:
8021 if (offset_expr.X_add_number >= 0x8000 - off)
8022 as_bad (_("Operand overflow"));
8023 if (treg != breg)
8024 tempreg = treg;
8025 else
8026 {
8027 used_at = 1;
8028 tempreg = AT;
8029 }
8030 if (!target_big_endian)
8031 offset_expr.X_add_number += off;
8032 macro_build (&offset_expr, s, "t,o(b)", tempreg, BFD_RELOC_LO16, breg);
8033 if (!target_big_endian)
8034 offset_expr.X_add_number -= off;
8035 else
8036 offset_expr.X_add_number += off;
8037 macro_build (&offset_expr, s2, "t,o(b)", tempreg, BFD_RELOC_LO16, breg);
8038
8039 /* If necessary, move the result in tempreg to the final destination. */
8040 if (treg == tempreg)
8041 break;
8042 /* Protect second load's delay slot. */
8043 load_delay_nop ();
8044 move_register (treg, tempreg);
8045 break;
8046
8047 case M_ULD_A:
8048 s = "ldl";
8049 s2 = "ldr";
8050 off = 7;
8051 goto ulwa;
8052 case M_ULW_A:
8053 s = "lwl";
8054 s2 = "lwr";
8055 off = 3;
8056 ulwa:
8057 used_at = 1;
8058 load_address (AT, &offset_expr, &used_at);
8059 if (breg != 0)
8060 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8061 if (!target_big_endian)
8062 expr1.X_add_number = off;
8063 else
8064 expr1.X_add_number = 0;
8065 macro_build (&expr1, s, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8066 if (!target_big_endian)
8067 expr1.X_add_number = 0;
8068 else
8069 expr1.X_add_number = off;
8070 macro_build (&expr1, s2, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8071 break;
8072
8073 case M_ULH_A:
8074 case M_ULHU_A:
8075 used_at = 1;
8076 load_address (AT, &offset_expr, &used_at);
8077 if (breg != 0)
8078 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8079 if (target_big_endian)
8080 expr1.X_add_number = 0;
8081 macro_build (&expr1, mask == M_ULH_A ? "lb" : "lbu", "t,o(b)",
8082 treg, BFD_RELOC_LO16, AT);
8083 if (target_big_endian)
8084 expr1.X_add_number = 1;
8085 else
8086 expr1.X_add_number = 0;
8087 macro_build (&expr1, "lbu", "t,o(b)", AT, BFD_RELOC_LO16, AT);
8088 macro_build (NULL, "sll", "d,w,<", treg, treg, 8);
8089 macro_build (NULL, "or", "d,v,t", treg, treg, AT);
8090 break;
8091
8092 case M_USH:
8093 used_at = 1;
8094 if (offset_expr.X_add_number >= 0x7fff)
8095 as_bad (_("Operand overflow"));
8096 if (target_big_endian)
8097 ++offset_expr.X_add_number;
8098 macro_build (&offset_expr, "sb", "t,o(b)", treg, BFD_RELOC_LO16, breg);
8099 macro_build (NULL, "srl", "d,w,<", AT, treg, 8);
8100 if (target_big_endian)
8101 --offset_expr.X_add_number;
8102 else
8103 ++offset_expr.X_add_number;
8104 macro_build (&offset_expr, "sb", "t,o(b)", AT, BFD_RELOC_LO16, breg);
8105 break;
8106
8107 case M_USD:
8108 s = "sdl";
8109 s2 = "sdr";
8110 off = 7;
8111 goto usw;
8112 case M_USW:
8113 s = "swl";
8114 s2 = "swr";
8115 off = 3;
8116 usw:
8117 if (offset_expr.X_add_number >= 0x8000 - off)
8118 as_bad (_("Operand overflow"));
8119 if (!target_big_endian)
8120 offset_expr.X_add_number += off;
8121 macro_build (&offset_expr, s, "t,o(b)", treg, BFD_RELOC_LO16, breg);
8122 if (!target_big_endian)
8123 offset_expr.X_add_number -= off;
8124 else
8125 offset_expr.X_add_number += off;
8126 macro_build (&offset_expr, s2, "t,o(b)", treg, BFD_RELOC_LO16, breg);
8127 break;
8128
8129 case M_USD_A:
8130 s = "sdl";
8131 s2 = "sdr";
8132 off = 7;
8133 goto uswa;
8134 case M_USW_A:
8135 s = "swl";
8136 s2 = "swr";
8137 off = 3;
8138 uswa:
8139 used_at = 1;
8140 load_address (AT, &offset_expr, &used_at);
8141 if (breg != 0)
8142 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8143 if (!target_big_endian)
8144 expr1.X_add_number = off;
8145 else
8146 expr1.X_add_number = 0;
8147 macro_build (&expr1, s, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8148 if (!target_big_endian)
8149 expr1.X_add_number = 0;
8150 else
8151 expr1.X_add_number = off;
8152 macro_build (&expr1, s2, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8153 break;
8154
8155 case M_USH_A:
8156 used_at = 1;
8157 load_address (AT, &offset_expr, &used_at);
8158 if (breg != 0)
8159 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8160 if (!target_big_endian)
8161 expr1.X_add_number = 0;
8162 macro_build (&expr1, "sb", "t,o(b)", treg, BFD_RELOC_LO16, AT);
8163 macro_build (NULL, "srl", "d,w,<", treg, treg, 8);
8164 if (!target_big_endian)
8165 expr1.X_add_number = 1;
8166 else
8167 expr1.X_add_number = 0;
8168 macro_build (&expr1, "sb", "t,o(b)", treg, BFD_RELOC_LO16, AT);
8169 if (!target_big_endian)
8170 expr1.X_add_number = 0;
8171 else
8172 expr1.X_add_number = 1;
8173 macro_build (&expr1, "lbu", "t,o(b)", AT, BFD_RELOC_LO16, AT);
8174 macro_build (NULL, "sll", "d,w,<", treg, treg, 8);
8175 macro_build (NULL, "or", "d,v,t", treg, treg, AT);
8176 break;
8177
8178 default:
8179 /* FIXME: Check if this is one of the itbl macros, since they
8180 are added dynamically. */
8181 as_bad (_("Macro %s not implemented yet"), ip->insn_mo->name);
8182 break;
8183 }
8184 if (!mips_opts.at && used_at)
8185 as_bad (_("Macro used $at after \".set noat\""));
8186 }
8187
8188 /* Implement macros in mips16 mode. */
8189
8190 static void
8191 mips16_macro (struct mips_cl_insn *ip)
8192 {
8193 int mask;
8194 int xreg, yreg, zreg, tmp;
8195 expressionS expr1;
8196 int dbl;
8197 const char *s, *s2, *s3;
8198
8199 mask = ip->insn_mo->mask;
8200
8201 xreg = MIPS16_EXTRACT_OPERAND (RX, *ip);
8202 yreg = MIPS16_EXTRACT_OPERAND (RY, *ip);
8203 zreg = MIPS16_EXTRACT_OPERAND (RZ, *ip);
8204
8205 expr1.X_op = O_constant;
8206 expr1.X_op_symbol = NULL;
8207 expr1.X_add_symbol = NULL;
8208 expr1.X_add_number = 1;
8209
8210 dbl = 0;
8211
8212 switch (mask)
8213 {
8214 default:
8215 internalError ();
8216
8217 case M_DDIV_3:
8218 dbl = 1;
8219 case M_DIV_3:
8220 s = "mflo";
8221 goto do_div3;
8222 case M_DREM_3:
8223 dbl = 1;
8224 case M_REM_3:
8225 s = "mfhi";
8226 do_div3:
8227 start_noreorder ();
8228 macro_build (NULL, dbl ? "ddiv" : "div", "0,x,y", xreg, yreg);
8229 expr1.X_add_number = 2;
8230 macro_build (&expr1, "bnez", "x,p", yreg);
8231 macro_build (NULL, "break", "6", 7);
8232
8233 /* FIXME: The normal code checks for of -1 / -0x80000000 here,
8234 since that causes an overflow. We should do that as well,
8235 but I don't see how to do the comparisons without a temporary
8236 register. */
8237 end_noreorder ();
8238 macro_build (NULL, s, "x", zreg);
8239 break;
8240
8241 case M_DIVU_3:
8242 s = "divu";
8243 s2 = "mflo";
8244 goto do_divu3;
8245 case M_REMU_3:
8246 s = "divu";
8247 s2 = "mfhi";
8248 goto do_divu3;
8249 case M_DDIVU_3:
8250 s = "ddivu";
8251 s2 = "mflo";
8252 goto do_divu3;
8253 case M_DREMU_3:
8254 s = "ddivu";
8255 s2 = "mfhi";
8256 do_divu3:
8257 start_noreorder ();
8258 macro_build (NULL, s, "0,x,y", xreg, yreg);
8259 expr1.X_add_number = 2;
8260 macro_build (&expr1, "bnez", "x,p", yreg);
8261 macro_build (NULL, "break", "6", 7);
8262 end_noreorder ();
8263 macro_build (NULL, s2, "x", zreg);
8264 break;
8265
8266 case M_DMUL:
8267 dbl = 1;
8268 case M_MUL:
8269 macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", xreg, yreg);
8270 macro_build (NULL, "mflo", "x", zreg);
8271 break;
8272
8273 case M_DSUBU_I:
8274 dbl = 1;
8275 goto do_subu;
8276 case M_SUBU_I:
8277 do_subu:
8278 if (imm_expr.X_op != O_constant)
8279 as_bad (_("Unsupported large constant"));
8280 imm_expr.X_add_number = -imm_expr.X_add_number;
8281 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,4", yreg, xreg);
8282 break;
8283
8284 case M_SUBU_I_2:
8285 if (imm_expr.X_op != O_constant)
8286 as_bad (_("Unsupported large constant"));
8287 imm_expr.X_add_number = -imm_expr.X_add_number;
8288 macro_build (&imm_expr, "addiu", "x,k", xreg);
8289 break;
8290
8291 case M_DSUBU_I_2:
8292 if (imm_expr.X_op != O_constant)
8293 as_bad (_("Unsupported large constant"));
8294 imm_expr.X_add_number = -imm_expr.X_add_number;
8295 macro_build (&imm_expr, "daddiu", "y,j", yreg);
8296 break;
8297
8298 case M_BEQ:
8299 s = "cmp";
8300 s2 = "bteqz";
8301 goto do_branch;
8302 case M_BNE:
8303 s = "cmp";
8304 s2 = "btnez";
8305 goto do_branch;
8306 case M_BLT:
8307 s = "slt";
8308 s2 = "btnez";
8309 goto do_branch;
8310 case M_BLTU:
8311 s = "sltu";
8312 s2 = "btnez";
8313 goto do_branch;
8314 case M_BLE:
8315 s = "slt";
8316 s2 = "bteqz";
8317 goto do_reverse_branch;
8318 case M_BLEU:
8319 s = "sltu";
8320 s2 = "bteqz";
8321 goto do_reverse_branch;
8322 case M_BGE:
8323 s = "slt";
8324 s2 = "bteqz";
8325 goto do_branch;
8326 case M_BGEU:
8327 s = "sltu";
8328 s2 = "bteqz";
8329 goto do_branch;
8330 case M_BGT:
8331 s = "slt";
8332 s2 = "btnez";
8333 goto do_reverse_branch;
8334 case M_BGTU:
8335 s = "sltu";
8336 s2 = "btnez";
8337
8338 do_reverse_branch:
8339 tmp = xreg;
8340 xreg = yreg;
8341 yreg = tmp;
8342
8343 do_branch:
8344 macro_build (NULL, s, "x,y", xreg, yreg);
8345 macro_build (&offset_expr, s2, "p");
8346 break;
8347
8348 case M_BEQ_I:
8349 s = "cmpi";
8350 s2 = "bteqz";
8351 s3 = "x,U";
8352 goto do_branch_i;
8353 case M_BNE_I:
8354 s = "cmpi";
8355 s2 = "btnez";
8356 s3 = "x,U";
8357 goto do_branch_i;
8358 case M_BLT_I:
8359 s = "slti";
8360 s2 = "btnez";
8361 s3 = "x,8";
8362 goto do_branch_i;
8363 case M_BLTU_I:
8364 s = "sltiu";
8365 s2 = "btnez";
8366 s3 = "x,8";
8367 goto do_branch_i;
8368 case M_BLE_I:
8369 s = "slti";
8370 s2 = "btnez";
8371 s3 = "x,8";
8372 goto do_addone_branch_i;
8373 case M_BLEU_I:
8374 s = "sltiu";
8375 s2 = "btnez";
8376 s3 = "x,8";
8377 goto do_addone_branch_i;
8378 case M_BGE_I:
8379 s = "slti";
8380 s2 = "bteqz";
8381 s3 = "x,8";
8382 goto do_branch_i;
8383 case M_BGEU_I:
8384 s = "sltiu";
8385 s2 = "bteqz";
8386 s3 = "x,8";
8387 goto do_branch_i;
8388 case M_BGT_I:
8389 s = "slti";
8390 s2 = "bteqz";
8391 s3 = "x,8";
8392 goto do_addone_branch_i;
8393 case M_BGTU_I:
8394 s = "sltiu";
8395 s2 = "bteqz";
8396 s3 = "x,8";
8397
8398 do_addone_branch_i:
8399 if (imm_expr.X_op != O_constant)
8400 as_bad (_("Unsupported large constant"));
8401 ++imm_expr.X_add_number;
8402
8403 do_branch_i:
8404 macro_build (&imm_expr, s, s3, xreg);
8405 macro_build (&offset_expr, s2, "p");
8406 break;
8407
8408 case M_ABS:
8409 expr1.X_add_number = 0;
8410 macro_build (&expr1, "slti", "x,8", yreg);
8411 if (xreg != yreg)
8412 move_register (xreg, yreg);
8413 expr1.X_add_number = 2;
8414 macro_build (&expr1, "bteqz", "p");
8415 macro_build (NULL, "neg", "x,w", xreg, xreg);
8416 }
8417 }
8418
8419 /* For consistency checking, verify that all bits are specified either
8420 by the match/mask part of the instruction definition, or by the
8421 operand list. */
8422 static int
8423 validate_mips_insn (const struct mips_opcode *opc)
8424 {
8425 const char *p = opc->args;
8426 char c;
8427 unsigned long used_bits = opc->mask;
8428
8429 if ((used_bits & opc->match) != opc->match)
8430 {
8431 as_bad (_("internal: bad mips opcode (mask error): %s %s"),
8432 opc->name, opc->args);
8433 return 0;
8434 }
8435 #define USE_BITS(mask,shift) (used_bits |= ((mask) << (shift)))
8436 while (*p)
8437 switch (c = *p++)
8438 {
8439 case ',': break;
8440 case '(': break;
8441 case ')': break;
8442 case '+':
8443 switch (c = *p++)
8444 {
8445 case '1': USE_BITS (OP_MASK_UDI1, OP_SH_UDI1); break;
8446 case '2': USE_BITS (OP_MASK_UDI2, OP_SH_UDI2); break;
8447 case '3': USE_BITS (OP_MASK_UDI3, OP_SH_UDI3); break;
8448 case '4': USE_BITS (OP_MASK_UDI4, OP_SH_UDI4); break;
8449 case 'A': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
8450 case 'B': USE_BITS (OP_MASK_INSMSB, OP_SH_INSMSB); break;
8451 case 'C': USE_BITS (OP_MASK_EXTMSBD, OP_SH_EXTMSBD); break;
8452 case 'D': USE_BITS (OP_MASK_RD, OP_SH_RD);
8453 USE_BITS (OP_MASK_SEL, OP_SH_SEL); break;
8454 case 'E': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
8455 case 'F': USE_BITS (OP_MASK_INSMSB, OP_SH_INSMSB); break;
8456 case 'G': USE_BITS (OP_MASK_EXTMSBD, OP_SH_EXTMSBD); break;
8457 case 'H': USE_BITS (OP_MASK_EXTMSBD, OP_SH_EXTMSBD); break;
8458 case 'I': break;
8459 case 't': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8460 case 'T': USE_BITS (OP_MASK_RT, OP_SH_RT);
8461 USE_BITS (OP_MASK_SEL, OP_SH_SEL); break;
8462 case 'x': USE_BITS (OP_MASK_BBITIND, OP_SH_BBITIND); break;
8463 case 'X': USE_BITS (OP_MASK_BBITIND, OP_SH_BBITIND); break;
8464 case 'p': USE_BITS (OP_MASK_CINSPOS, OP_SH_CINSPOS); break;
8465 case 'P': USE_BITS (OP_MASK_CINSPOS, OP_SH_CINSPOS); break;
8466 case 'Q': USE_BITS (OP_MASK_SEQI, OP_SH_SEQI); break;
8467 case 's': USE_BITS (OP_MASK_CINSLM1, OP_SH_CINSLM1); break;
8468 case 'S': USE_BITS (OP_MASK_CINSLM1, OP_SH_CINSLM1); break;
8469
8470 default:
8471 as_bad (_("internal: bad mips opcode (unknown extension operand type `+%c'): %s %s"),
8472 c, opc->name, opc->args);
8473 return 0;
8474 }
8475 break;
8476 case '<': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
8477 case '>': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
8478 case 'A': break;
8479 case 'B': USE_BITS (OP_MASK_CODE20, OP_SH_CODE20); break;
8480 case 'C': USE_BITS (OP_MASK_COPZ, OP_SH_COPZ); break;
8481 case 'D': USE_BITS (OP_MASK_FD, OP_SH_FD); break;
8482 case 'E': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8483 case 'F': break;
8484 case 'G': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
8485 case 'H': USE_BITS (OP_MASK_SEL, OP_SH_SEL); break;
8486 case 'I': break;
8487 case 'J': USE_BITS (OP_MASK_CODE19, OP_SH_CODE19); break;
8488 case 'K': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
8489 case 'L': break;
8490 case 'M': USE_BITS (OP_MASK_CCC, OP_SH_CCC); break;
8491 case 'N': USE_BITS (OP_MASK_BCC, OP_SH_BCC); break;
8492 case 'O': USE_BITS (OP_MASK_ALN, OP_SH_ALN); break;
8493 case 'Q': USE_BITS (OP_MASK_VSEL, OP_SH_VSEL);
8494 USE_BITS (OP_MASK_FT, OP_SH_FT); break;
8495 case 'R': USE_BITS (OP_MASK_FR, OP_SH_FR); break;
8496 case 'S': USE_BITS (OP_MASK_FS, OP_SH_FS); break;
8497 case 'T': USE_BITS (OP_MASK_FT, OP_SH_FT); break;
8498 case 'V': USE_BITS (OP_MASK_FS, OP_SH_FS); break;
8499 case 'W': USE_BITS (OP_MASK_FT, OP_SH_FT); break;
8500 case 'X': USE_BITS (OP_MASK_FD, OP_SH_FD); break;
8501 case 'Y': USE_BITS (OP_MASK_FS, OP_SH_FS); break;
8502 case 'Z': USE_BITS (OP_MASK_FT, OP_SH_FT); break;
8503 case 'a': USE_BITS (OP_MASK_TARGET, OP_SH_TARGET); break;
8504 case 'b': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8505 case 'c': USE_BITS (OP_MASK_CODE, OP_SH_CODE); break;
8506 case 'd': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
8507 case 'f': break;
8508 case 'h': USE_BITS (OP_MASK_PREFX, OP_SH_PREFX); break;
8509 case 'i': USE_BITS (OP_MASK_IMMEDIATE, OP_SH_IMMEDIATE); break;
8510 case 'j': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break;
8511 case 'k': USE_BITS (OP_MASK_CACHE, OP_SH_CACHE); break;
8512 case 'l': break;
8513 case 'o': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break;
8514 case 'p': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break;
8515 case 'q': USE_BITS (OP_MASK_CODE2, OP_SH_CODE2); break;
8516 case 'r': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8517 case 's': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8518 case 't': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8519 case 'u': USE_BITS (OP_MASK_IMMEDIATE, OP_SH_IMMEDIATE); break;
8520 case 'v': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8521 case 'w': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8522 case 'x': break;
8523 case 'z': break;
8524 case 'P': USE_BITS (OP_MASK_PERFREG, OP_SH_PERFREG); break;
8525 case 'U': USE_BITS (OP_MASK_RD, OP_SH_RD);
8526 USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8527 case 'e': USE_BITS (OP_MASK_VECBYTE, OP_SH_VECBYTE); break;
8528 case '%': USE_BITS (OP_MASK_VECALIGN, OP_SH_VECALIGN); break;
8529 case '[': break;
8530 case ']': break;
8531 case '1': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
8532 case '2': USE_BITS (OP_MASK_BP, OP_SH_BP); break;
8533 case '3': USE_BITS (OP_MASK_SA3, OP_SH_SA3); break;
8534 case '4': USE_BITS (OP_MASK_SA4, OP_SH_SA4); break;
8535 case '5': USE_BITS (OP_MASK_IMM8, OP_SH_IMM8); break;
8536 case '6': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8537 case '7': USE_BITS (OP_MASK_DSPACC, OP_SH_DSPACC); break;
8538 case '8': USE_BITS (OP_MASK_WRDSP, OP_SH_WRDSP); break;
8539 case '9': USE_BITS (OP_MASK_DSPACC_S, OP_SH_DSPACC_S);break;
8540 case '0': USE_BITS (OP_MASK_DSPSFT, OP_SH_DSPSFT); break;
8541 case '\'': USE_BITS (OP_MASK_RDDSP, OP_SH_RDDSP); break;
8542 case ':': USE_BITS (OP_MASK_DSPSFT_7, OP_SH_DSPSFT_7);break;
8543 case '@': USE_BITS (OP_MASK_IMM10, OP_SH_IMM10); break;
8544 case '!': USE_BITS (OP_MASK_MT_U, OP_SH_MT_U); break;
8545 case '$': USE_BITS (OP_MASK_MT_H, OP_SH_MT_H); break;
8546 case '*': USE_BITS (OP_MASK_MTACC_T, OP_SH_MTACC_T); break;
8547 case '&': USE_BITS (OP_MASK_MTACC_D, OP_SH_MTACC_D); break;
8548 case 'g': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
8549 default:
8550 as_bad (_("internal: bad mips opcode (unknown operand type `%c'): %s %s"),
8551 c, opc->name, opc->args);
8552 return 0;
8553 }
8554 #undef USE_BITS
8555 if (used_bits != 0xffffffff)
8556 {
8557 as_bad (_("internal: bad mips opcode (bits 0x%lx undefined): %s %s"),
8558 ~used_bits & 0xffffffff, opc->name, opc->args);
8559 return 0;
8560 }
8561 return 1;
8562 }
8563
8564 /* UDI immediates. */
8565 struct mips_immed {
8566 char type;
8567 unsigned int shift;
8568 unsigned long mask;
8569 const char * desc;
8570 };
8571
8572 static const struct mips_immed mips_immed[] = {
8573 { '1', OP_SH_UDI1, OP_MASK_UDI1, 0},
8574 { '2', OP_SH_UDI2, OP_MASK_UDI2, 0},
8575 { '3', OP_SH_UDI3, OP_MASK_UDI3, 0},
8576 { '4', OP_SH_UDI4, OP_MASK_UDI4, 0},
8577 { 0,0,0,0 }
8578 };
8579
8580 /* Check whether an odd floating-point register is allowed. */
8581 static int
8582 mips_oddfpreg_ok (const struct mips_opcode *insn, int argnum)
8583 {
8584 const char *s = insn->name;
8585
8586 if (insn->pinfo == INSN_MACRO)
8587 /* Let a macro pass, we'll catch it later when it is expanded. */
8588 return 1;
8589
8590 if (ISA_HAS_ODD_SINGLE_FPR (mips_opts.isa))
8591 {
8592 /* Allow odd registers for single-precision ops. */
8593 switch (insn->pinfo & (FP_S | FP_D))
8594 {
8595 case FP_S:
8596 case 0:
8597 return 1; /* both single precision - ok */
8598 case FP_D:
8599 return 0; /* both double precision - fail */
8600 default:
8601 break;
8602 }
8603
8604 /* Cvt.w.x and cvt.x.w allow an odd register for a 'w' or 's' operand. */
8605 s = strchr (insn->name, '.');
8606 if (argnum == 2)
8607 s = s != NULL ? strchr (s + 1, '.') : NULL;
8608 return (s != NULL && (s[1] == 'w' || s[1] == 's'));
8609 }
8610
8611 /* Single-precision coprocessor loads and moves are OK too. */
8612 if ((insn->pinfo & FP_S)
8613 && (insn->pinfo & (INSN_COPROC_MEMORY_DELAY | INSN_STORE_MEMORY
8614 | INSN_LOAD_COPROC_DELAY | INSN_COPROC_MOVE_DELAY)))
8615 return 1;
8616
8617 return 0;
8618 }
8619
8620 /* This routine assembles an instruction into its binary format. As a
8621 side effect, it sets one of the global variables imm_reloc or
8622 offset_reloc to the type of relocation to do if one of the operands
8623 is an address expression. */
8624
8625 static void
8626 mips_ip (char *str, struct mips_cl_insn *ip)
8627 {
8628 char *s;
8629 const char *args;
8630 char c = 0;
8631 struct mips_opcode *insn;
8632 char *argsStart;
8633 unsigned int regno;
8634 unsigned int lastregno = 0;
8635 unsigned int lastpos = 0;
8636 unsigned int limlo, limhi;
8637 char *s_reset;
8638 char save_c = 0;
8639 offsetT min_range, max_range;
8640 int argnum;
8641 unsigned int rtype;
8642
8643 insn_error = NULL;
8644
8645 /* If the instruction contains a '.', we first try to match an instruction
8646 including the '.'. Then we try again without the '.'. */
8647 insn = NULL;
8648 for (s = str; *s != '\0' && !ISSPACE (*s); ++s)
8649 continue;
8650
8651 /* If we stopped on whitespace, then replace the whitespace with null for
8652 the call to hash_find. Save the character we replaced just in case we
8653 have to re-parse the instruction. */
8654 if (ISSPACE (*s))
8655 {
8656 save_c = *s;
8657 *s++ = '\0';
8658 }
8659
8660 insn = (struct mips_opcode *) hash_find (op_hash, str);
8661
8662 /* If we didn't find the instruction in the opcode table, try again, but
8663 this time with just the instruction up to, but not including the
8664 first '.'. */
8665 if (insn == NULL)
8666 {
8667 /* Restore the character we overwrite above (if any). */
8668 if (save_c)
8669 *(--s) = save_c;
8670
8671 /* Scan up to the first '.' or whitespace. */
8672 for (s = str;
8673 *s != '\0' && *s != '.' && !ISSPACE (*s);
8674 ++s)
8675 continue;
8676
8677 /* If we did not find a '.', then we can quit now. */
8678 if (*s != '.')
8679 {
8680 insn_error = _("Unrecognized opcode");
8681 return;
8682 }
8683
8684 /* Lookup the instruction in the hash table. */
8685 *s++ = '\0';
8686 if ((insn = (struct mips_opcode *) hash_find (op_hash, str)) == NULL)
8687 {
8688 insn_error = _("Unrecognized opcode");
8689 return;
8690 }
8691 }
8692
8693 argsStart = s;
8694 for (;;)
8695 {
8696 bfd_boolean ok;
8697
8698 gas_assert (strcmp (insn->name, str) == 0);
8699
8700 ok = is_opcode_valid (insn);
8701 if (! ok)
8702 {
8703 if (insn + 1 < &mips_opcodes[NUMOPCODES]
8704 && strcmp (insn->name, insn[1].name) == 0)
8705 {
8706 ++insn;
8707 continue;
8708 }
8709 else
8710 {
8711 if (!insn_error)
8712 {
8713 static char buf[100];
8714 sprintf (buf,
8715 _("opcode not supported on this processor: %s (%s)"),
8716 mips_cpu_info_from_arch (mips_opts.arch)->name,
8717 mips_cpu_info_from_isa (mips_opts.isa)->name);
8718 insn_error = buf;
8719 }
8720 if (save_c)
8721 *(--s) = save_c;
8722 return;
8723 }
8724 }
8725
8726 create_insn (ip, insn);
8727 insn_error = NULL;
8728 argnum = 1;
8729 lastregno = 0xffffffff;
8730 for (args = insn->args;; ++args)
8731 {
8732 int is_mdmx;
8733
8734 s += strspn (s, " \t");
8735 is_mdmx = 0;
8736 switch (*args)
8737 {
8738 case '\0': /* end of args */
8739 if (*s == '\0')
8740 return;
8741 break;
8742
8743 case '2': /* DSP 2-bit unsigned immediate in bit 11. */
8744 my_getExpression (&imm_expr, s);
8745 check_absolute_expr (ip, &imm_expr);
8746 if ((unsigned long) imm_expr.X_add_number != 1
8747 && (unsigned long) imm_expr.X_add_number != 3)
8748 {
8749 as_bad (_("BALIGN immediate not 1 or 3 (%lu)"),
8750 (unsigned long) imm_expr.X_add_number);
8751 }
8752 INSERT_OPERAND (BP, *ip, imm_expr.X_add_number);
8753 imm_expr.X_op = O_absent;
8754 s = expr_end;
8755 continue;
8756
8757 case '3': /* DSP 3-bit unsigned immediate in bit 21. */
8758 my_getExpression (&imm_expr, s);
8759 check_absolute_expr (ip, &imm_expr);
8760 if (imm_expr.X_add_number & ~OP_MASK_SA3)
8761 {
8762 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8763 OP_MASK_SA3, (unsigned long) imm_expr.X_add_number);
8764 }
8765 INSERT_OPERAND (SA3, *ip, imm_expr.X_add_number);
8766 imm_expr.X_op = O_absent;
8767 s = expr_end;
8768 continue;
8769
8770 case '4': /* DSP 4-bit unsigned immediate in bit 21. */
8771 my_getExpression (&imm_expr, s);
8772 check_absolute_expr (ip, &imm_expr);
8773 if (imm_expr.X_add_number & ~OP_MASK_SA4)
8774 {
8775 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8776 OP_MASK_SA4, (unsigned long) imm_expr.X_add_number);
8777 }
8778 INSERT_OPERAND (SA4, *ip, imm_expr.X_add_number);
8779 imm_expr.X_op = O_absent;
8780 s = expr_end;
8781 continue;
8782
8783 case '5': /* DSP 8-bit unsigned immediate in bit 16. */
8784 my_getExpression (&imm_expr, s);
8785 check_absolute_expr (ip, &imm_expr);
8786 if (imm_expr.X_add_number & ~OP_MASK_IMM8)
8787 {
8788 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8789 OP_MASK_IMM8, (unsigned long) imm_expr.X_add_number);
8790 }
8791 INSERT_OPERAND (IMM8, *ip, imm_expr.X_add_number);
8792 imm_expr.X_op = O_absent;
8793 s = expr_end;
8794 continue;
8795
8796 case '6': /* DSP 5-bit unsigned immediate in bit 21. */
8797 my_getExpression (&imm_expr, s);
8798 check_absolute_expr (ip, &imm_expr);
8799 if (imm_expr.X_add_number & ~OP_MASK_RS)
8800 {
8801 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8802 OP_MASK_RS, (unsigned long) imm_expr.X_add_number);
8803 }
8804 INSERT_OPERAND (RS, *ip, imm_expr.X_add_number);
8805 imm_expr.X_op = O_absent;
8806 s = expr_end;
8807 continue;
8808
8809 case '7': /* Four DSP accumulators in bits 11,12. */
8810 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
8811 s[3] >= '0' && s[3] <= '3')
8812 {
8813 regno = s[3] - '0';
8814 s += 4;
8815 INSERT_OPERAND (DSPACC, *ip, regno);
8816 continue;
8817 }
8818 else
8819 as_bad (_("Invalid dsp acc register"));
8820 break;
8821
8822 case '8': /* DSP 6-bit unsigned immediate in bit 11. */
8823 my_getExpression (&imm_expr, s);
8824 check_absolute_expr (ip, &imm_expr);
8825 if (imm_expr.X_add_number & ~OP_MASK_WRDSP)
8826 {
8827 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8828 OP_MASK_WRDSP,
8829 (unsigned long) imm_expr.X_add_number);
8830 }
8831 INSERT_OPERAND (WRDSP, *ip, imm_expr.X_add_number);
8832 imm_expr.X_op = O_absent;
8833 s = expr_end;
8834 continue;
8835
8836 case '9': /* Four DSP accumulators in bits 21,22. */
8837 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
8838 s[3] >= '0' && s[3] <= '3')
8839 {
8840 regno = s[3] - '0';
8841 s += 4;
8842 INSERT_OPERAND (DSPACC_S, *ip, regno);
8843 continue;
8844 }
8845 else
8846 as_bad (_("Invalid dsp acc register"));
8847 break;
8848
8849 case '0': /* DSP 6-bit signed immediate in bit 20. */
8850 my_getExpression (&imm_expr, s);
8851 check_absolute_expr (ip, &imm_expr);
8852 min_range = -((OP_MASK_DSPSFT + 1) >> 1);
8853 max_range = ((OP_MASK_DSPSFT + 1) >> 1) - 1;
8854 if (imm_expr.X_add_number < min_range ||
8855 imm_expr.X_add_number > max_range)
8856 {
8857 as_bad (_("DSP immediate not in range %ld..%ld (%ld)"),
8858 (long) min_range, (long) max_range,
8859 (long) imm_expr.X_add_number);
8860 }
8861 INSERT_OPERAND (DSPSFT, *ip, imm_expr.X_add_number);
8862 imm_expr.X_op = O_absent;
8863 s = expr_end;
8864 continue;
8865
8866 case '\'': /* DSP 6-bit unsigned immediate in bit 16. */
8867 my_getExpression (&imm_expr, s);
8868 check_absolute_expr (ip, &imm_expr);
8869 if (imm_expr.X_add_number & ~OP_MASK_RDDSP)
8870 {
8871 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8872 OP_MASK_RDDSP,
8873 (unsigned long) imm_expr.X_add_number);
8874 }
8875 INSERT_OPERAND (RDDSP, *ip, imm_expr.X_add_number);
8876 imm_expr.X_op = O_absent;
8877 s = expr_end;
8878 continue;
8879
8880 case ':': /* DSP 7-bit signed immediate in bit 19. */
8881 my_getExpression (&imm_expr, s);
8882 check_absolute_expr (ip, &imm_expr);
8883 min_range = -((OP_MASK_DSPSFT_7 + 1) >> 1);
8884 max_range = ((OP_MASK_DSPSFT_7 + 1) >> 1) - 1;
8885 if (imm_expr.X_add_number < min_range ||
8886 imm_expr.X_add_number > max_range)
8887 {
8888 as_bad (_("DSP immediate not in range %ld..%ld (%ld)"),
8889 (long) min_range, (long) max_range,
8890 (long) imm_expr.X_add_number);
8891 }
8892 INSERT_OPERAND (DSPSFT_7, *ip, imm_expr.X_add_number);
8893 imm_expr.X_op = O_absent;
8894 s = expr_end;
8895 continue;
8896
8897 case '@': /* DSP 10-bit signed immediate in bit 16. */
8898 my_getExpression (&imm_expr, s);
8899 check_absolute_expr (ip, &imm_expr);
8900 min_range = -((OP_MASK_IMM10 + 1) >> 1);
8901 max_range = ((OP_MASK_IMM10 + 1) >> 1) - 1;
8902 if (imm_expr.X_add_number < min_range ||
8903 imm_expr.X_add_number > max_range)
8904 {
8905 as_bad (_("DSP immediate not in range %ld..%ld (%ld)"),
8906 (long) min_range, (long) max_range,
8907 (long) imm_expr.X_add_number);
8908 }
8909 INSERT_OPERAND (IMM10, *ip, imm_expr.X_add_number);
8910 imm_expr.X_op = O_absent;
8911 s = expr_end;
8912 continue;
8913
8914 case '!': /* MT usermode flag bit. */
8915 my_getExpression (&imm_expr, s);
8916 check_absolute_expr (ip, &imm_expr);
8917 if (imm_expr.X_add_number & ~OP_MASK_MT_U)
8918 as_bad (_("MT usermode bit not 0 or 1 (%lu)"),
8919 (unsigned long) imm_expr.X_add_number);
8920 INSERT_OPERAND (MT_U, *ip, imm_expr.X_add_number);
8921 imm_expr.X_op = O_absent;
8922 s = expr_end;
8923 continue;
8924
8925 case '$': /* MT load high flag bit. */
8926 my_getExpression (&imm_expr, s);
8927 check_absolute_expr (ip, &imm_expr);
8928 if (imm_expr.X_add_number & ~OP_MASK_MT_H)
8929 as_bad (_("MT load high bit not 0 or 1 (%lu)"),
8930 (unsigned long) imm_expr.X_add_number);
8931 INSERT_OPERAND (MT_H, *ip, imm_expr.X_add_number);
8932 imm_expr.X_op = O_absent;
8933 s = expr_end;
8934 continue;
8935
8936 case '*': /* Four DSP accumulators in bits 18,19. */
8937 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
8938 s[3] >= '0' && s[3] <= '3')
8939 {
8940 regno = s[3] - '0';
8941 s += 4;
8942 INSERT_OPERAND (MTACC_T, *ip, regno);
8943 continue;
8944 }
8945 else
8946 as_bad (_("Invalid dsp/smartmips acc register"));
8947 break;
8948
8949 case '&': /* Four DSP accumulators in bits 13,14. */
8950 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
8951 s[3] >= '0' && s[3] <= '3')
8952 {
8953 regno = s[3] - '0';
8954 s += 4;
8955 INSERT_OPERAND (MTACC_D, *ip, regno);
8956 continue;
8957 }
8958 else
8959 as_bad (_("Invalid dsp/smartmips acc register"));
8960 break;
8961
8962 case ',':
8963 ++argnum;
8964 if (*s++ == *args)
8965 continue;
8966 s--;
8967 switch (*++args)
8968 {
8969 case 'r':
8970 case 'v':
8971 INSERT_OPERAND (RS, *ip, lastregno);
8972 continue;
8973
8974 case 'w':
8975 INSERT_OPERAND (RT, *ip, lastregno);
8976 continue;
8977
8978 case 'W':
8979 INSERT_OPERAND (FT, *ip, lastregno);
8980 continue;
8981
8982 case 'V':
8983 INSERT_OPERAND (FS, *ip, lastregno);
8984 continue;
8985 }
8986 break;
8987
8988 case '(':
8989 /* Handle optional base register.
8990 Either the base register is omitted or
8991 we must have a left paren. */
8992 /* This is dependent on the next operand specifier
8993 is a base register specification. */
8994 gas_assert (args[1] == 'b' || args[1] == '5'
8995 || args[1] == '-' || args[1] == '4');
8996 if (*s == '\0')
8997 return;
8998
8999 case ')': /* These must match exactly. */
9000 case '[':
9001 case ']':
9002 if (*s++ == *args)
9003 continue;
9004 break;
9005
9006 case '+': /* Opcode extension character. */
9007 switch (*++args)
9008 {
9009 case '1': /* UDI immediates. */
9010 case '2':
9011 case '3':
9012 case '4':
9013 {
9014 const struct mips_immed *imm = mips_immed;
9015
9016 while (imm->type && imm->type != *args)
9017 ++imm;
9018 if (! imm->type)
9019 internalError ();
9020 my_getExpression (&imm_expr, s);
9021 check_absolute_expr (ip, &imm_expr);
9022 if ((unsigned long) imm_expr.X_add_number & ~imm->mask)
9023 {
9024 as_warn (_("Illegal %s number (%lu, 0x%lx)"),
9025 imm->desc ? imm->desc : ip->insn_mo->name,
9026 (unsigned long) imm_expr.X_add_number,
9027 (unsigned long) imm_expr.X_add_number);
9028 imm_expr.X_add_number &= imm->mask;
9029 }
9030 ip->insn_opcode |= ((unsigned long) imm_expr.X_add_number
9031 << imm->shift);
9032 imm_expr.X_op = O_absent;
9033 s = expr_end;
9034 }
9035 continue;
9036
9037 case 'A': /* ins/ext position, becomes LSB. */
9038 limlo = 0;
9039 limhi = 31;
9040 goto do_lsb;
9041 case 'E':
9042 limlo = 32;
9043 limhi = 63;
9044 goto do_lsb;
9045 do_lsb:
9046 my_getExpression (&imm_expr, s);
9047 check_absolute_expr (ip, &imm_expr);
9048 if ((unsigned long) imm_expr.X_add_number < limlo
9049 || (unsigned long) imm_expr.X_add_number > limhi)
9050 {
9051 as_bad (_("Improper position (%lu)"),
9052 (unsigned long) imm_expr.X_add_number);
9053 imm_expr.X_add_number = limlo;
9054 }
9055 lastpos = imm_expr.X_add_number;
9056 INSERT_OPERAND (SHAMT, *ip, imm_expr.X_add_number);
9057 imm_expr.X_op = O_absent;
9058 s = expr_end;
9059 continue;
9060
9061 case 'B': /* ins size, becomes MSB. */
9062 limlo = 1;
9063 limhi = 32;
9064 goto do_msb;
9065 case 'F':
9066 limlo = 33;
9067 limhi = 64;
9068 goto do_msb;
9069 do_msb:
9070 my_getExpression (&imm_expr, s);
9071 check_absolute_expr (ip, &imm_expr);
9072 /* Check for negative input so that small negative numbers
9073 will not succeed incorrectly. The checks against
9074 (pos+size) transitively check "size" itself,
9075 assuming that "pos" is reasonable. */
9076 if ((long) imm_expr.X_add_number < 0
9077 || ((unsigned long) imm_expr.X_add_number
9078 + lastpos) < limlo
9079 || ((unsigned long) imm_expr.X_add_number
9080 + lastpos) > limhi)
9081 {
9082 as_bad (_("Improper insert size (%lu, position %lu)"),
9083 (unsigned long) imm_expr.X_add_number,
9084 (unsigned long) lastpos);
9085 imm_expr.X_add_number = limlo - lastpos;
9086 }
9087 INSERT_OPERAND (INSMSB, *ip,
9088 lastpos + imm_expr.X_add_number - 1);
9089 imm_expr.X_op = O_absent;
9090 s = expr_end;
9091 continue;
9092
9093 case 'C': /* ext size, becomes MSBD. */
9094 limlo = 1;
9095 limhi = 32;
9096 goto do_msbd;
9097 case 'G':
9098 limlo = 33;
9099 limhi = 64;
9100 goto do_msbd;
9101 case 'H':
9102 limlo = 33;
9103 limhi = 64;
9104 goto do_msbd;
9105 do_msbd:
9106 my_getExpression (&imm_expr, s);
9107 check_absolute_expr (ip, &imm_expr);
9108 /* Check for negative input so that small negative numbers
9109 will not succeed incorrectly. The checks against
9110 (pos+size) transitively check "size" itself,
9111 assuming that "pos" is reasonable. */
9112 if ((long) imm_expr.X_add_number < 0
9113 || ((unsigned long) imm_expr.X_add_number
9114 + lastpos) < limlo
9115 || ((unsigned long) imm_expr.X_add_number
9116 + lastpos) > limhi)
9117 {
9118 as_bad (_("Improper extract size (%lu, position %lu)"),
9119 (unsigned long) imm_expr.X_add_number,
9120 (unsigned long) lastpos);
9121 imm_expr.X_add_number = limlo - lastpos;
9122 }
9123 INSERT_OPERAND (EXTMSBD, *ip, imm_expr.X_add_number - 1);
9124 imm_expr.X_op = O_absent;
9125 s = expr_end;
9126 continue;
9127
9128 case 'D':
9129 /* +D is for disassembly only; never match. */
9130 break;
9131
9132 case 'I':
9133 /* "+I" is like "I", except that imm2_expr is used. */
9134 my_getExpression (&imm2_expr, s);
9135 if (imm2_expr.X_op != O_big
9136 && imm2_expr.X_op != O_constant)
9137 insn_error = _("absolute expression required");
9138 if (HAVE_32BIT_GPRS)
9139 normalize_constant_expr (&imm2_expr);
9140 s = expr_end;
9141 continue;
9142
9143 case 'T': /* Coprocessor register. */
9144 /* +T is for disassembly only; never match. */
9145 break;
9146
9147 case 't': /* Coprocessor register number. */
9148 if (s[0] == '$' && ISDIGIT (s[1]))
9149 {
9150 ++s;
9151 regno = 0;
9152 do
9153 {
9154 regno *= 10;
9155 regno += *s - '0';
9156 ++s;
9157 }
9158 while (ISDIGIT (*s));
9159 if (regno > 31)
9160 as_bad (_("Invalid register number (%d)"), regno);
9161 else
9162 {
9163 INSERT_OPERAND (RT, *ip, regno);
9164 continue;
9165 }
9166 }
9167 else
9168 as_bad (_("Invalid coprocessor 0 register number"));
9169 break;
9170
9171 case 'x':
9172 /* bbit[01] and bbit[01]32 bit index. Give error if index
9173 is not in the valid range. */
9174 my_getExpression (&imm_expr, s);
9175 check_absolute_expr (ip, &imm_expr);
9176 if ((unsigned) imm_expr.X_add_number > 31)
9177 {
9178 as_bad (_("Improper bit index (%lu)"),
9179 (unsigned long) imm_expr.X_add_number);
9180 imm_expr.X_add_number = 0;
9181 }
9182 INSERT_OPERAND (BBITIND, *ip, imm_expr.X_add_number);
9183 imm_expr.X_op = O_absent;
9184 s = expr_end;
9185 continue;
9186
9187 case 'X':
9188 /* bbit[01] bit index when bbit is used but we generate
9189 bbit[01]32 because the index is over 32. Move to the
9190 next candidate if index is not in the valid range. */
9191 my_getExpression (&imm_expr, s);
9192 check_absolute_expr (ip, &imm_expr);
9193 if ((unsigned) imm_expr.X_add_number < 32
9194 || (unsigned) imm_expr.X_add_number > 63)
9195 break;
9196 INSERT_OPERAND (BBITIND, *ip, imm_expr.X_add_number - 32);
9197 imm_expr.X_op = O_absent;
9198 s = expr_end;
9199 continue;
9200
9201 case 'p':
9202 /* cins, cins32, exts and exts32 position field. Give error
9203 if it's not in the valid range. */
9204 my_getExpression (&imm_expr, s);
9205 check_absolute_expr (ip, &imm_expr);
9206 if ((unsigned) imm_expr.X_add_number > 31)
9207 {
9208 as_bad (_("Improper position (%lu)"),
9209 (unsigned long) imm_expr.X_add_number);
9210 imm_expr.X_add_number = 0;
9211 }
9212 /* Make the pos explicit to simplify +S. */
9213 lastpos = imm_expr.X_add_number + 32;
9214 INSERT_OPERAND (CINSPOS, *ip, imm_expr.X_add_number);
9215 imm_expr.X_op = O_absent;
9216 s = expr_end;
9217 continue;
9218
9219 case 'P':
9220 /* cins, cins32, exts and exts32 position field. Move to
9221 the next candidate if it's not in the valid range. */
9222 my_getExpression (&imm_expr, s);
9223 check_absolute_expr (ip, &imm_expr);
9224 if ((unsigned) imm_expr.X_add_number < 32
9225 || (unsigned) imm_expr.X_add_number > 63)
9226 break;
9227 lastpos = imm_expr.X_add_number;
9228 INSERT_OPERAND (CINSPOS, *ip, imm_expr.X_add_number - 32);
9229 imm_expr.X_op = O_absent;
9230 s = expr_end;
9231 continue;
9232
9233 case 's':
9234 /* cins and exts length-minus-one field. */
9235 my_getExpression (&imm_expr, s);
9236 check_absolute_expr (ip, &imm_expr);
9237 if ((unsigned long) imm_expr.X_add_number > 31)
9238 {
9239 as_bad (_("Improper size (%lu)"),
9240 (unsigned long) imm_expr.X_add_number);
9241 imm_expr.X_add_number = 0;
9242 }
9243 INSERT_OPERAND (CINSLM1, *ip, imm_expr.X_add_number);
9244 imm_expr.X_op = O_absent;
9245 s = expr_end;
9246 continue;
9247
9248 case 'S':
9249 /* cins32/exts32 and cins/exts aliasing cint32/exts32
9250 length-minus-one field. */
9251 my_getExpression (&imm_expr, s);
9252 check_absolute_expr (ip, &imm_expr);
9253 if ((long) imm_expr.X_add_number < 0
9254 || (unsigned long) imm_expr.X_add_number + lastpos > 63)
9255 {
9256 as_bad (_("Improper size (%lu)"),
9257 (unsigned long) imm_expr.X_add_number);
9258 imm_expr.X_add_number = 0;
9259 }
9260 INSERT_OPERAND (CINSLM1, *ip, imm_expr.X_add_number);
9261 imm_expr.X_op = O_absent;
9262 s = expr_end;
9263 continue;
9264
9265 case 'Q':
9266 /* seqi/snei immediate field. */
9267 my_getExpression (&imm_expr, s);
9268 check_absolute_expr (ip, &imm_expr);
9269 if ((long) imm_expr.X_add_number < -512
9270 || (long) imm_expr.X_add_number >= 512)
9271 {
9272 as_bad (_("Improper immediate (%ld)"),
9273 (long) imm_expr.X_add_number);
9274 imm_expr.X_add_number = 0;
9275 }
9276 INSERT_OPERAND (SEQI, *ip, imm_expr.X_add_number);
9277 imm_expr.X_op = O_absent;
9278 s = expr_end;
9279 continue;
9280
9281 default:
9282 as_bad (_("Internal error: bad mips opcode "
9283 "(unknown extension operand type `+%c'): %s %s"),
9284 *args, insn->name, insn->args);
9285 /* Further processing is fruitless. */
9286 return;
9287 }
9288 break;
9289
9290 case '<': /* must be at least one digit */
9291 /*
9292 * According to the manual, if the shift amount is greater
9293 * than 31 or less than 0, then the shift amount should be
9294 * mod 32. In reality the mips assembler issues an error.
9295 * We issue a warning and mask out all but the low 5 bits.
9296 */
9297 my_getExpression (&imm_expr, s);
9298 check_absolute_expr (ip, &imm_expr);
9299 if ((unsigned long) imm_expr.X_add_number > 31)
9300 as_warn (_("Improper shift amount (%lu)"),
9301 (unsigned long) imm_expr.X_add_number);
9302 INSERT_OPERAND (SHAMT, *ip, imm_expr.X_add_number);
9303 imm_expr.X_op = O_absent;
9304 s = expr_end;
9305 continue;
9306
9307 case '>': /* shift amount minus 32 */
9308 my_getExpression (&imm_expr, s);
9309 check_absolute_expr (ip, &imm_expr);
9310 if ((unsigned long) imm_expr.X_add_number < 32
9311 || (unsigned long) imm_expr.X_add_number > 63)
9312 break;
9313 INSERT_OPERAND (SHAMT, *ip, imm_expr.X_add_number - 32);
9314 imm_expr.X_op = O_absent;
9315 s = expr_end;
9316 continue;
9317
9318 case 'k': /* CACHE code. */
9319 case 'h': /* PREFX code. */
9320 case '1': /* SYNC type. */
9321 my_getExpression (&imm_expr, s);
9322 check_absolute_expr (ip, &imm_expr);
9323 if ((unsigned long) imm_expr.X_add_number > 31)
9324 as_warn (_("Invalid value for `%s' (%lu)"),
9325 ip->insn_mo->name,
9326 (unsigned long) imm_expr.X_add_number);
9327 if (*args == 'k')
9328 {
9329 if (mips_fix_cn63xxp1 && strcmp ("pref", insn->name) == 0)
9330 switch (imm_expr.X_add_number)
9331 {
9332 case 5:
9333 case 25:
9334 case 26:
9335 case 27:
9336 case 28:
9337 case 29:
9338 case 30:
9339 case 31: /* These are ok. */
9340 break;
9341
9342 default: /* The rest must be changed to 28. */
9343 imm_expr.X_add_number = 28;
9344 break;
9345 }
9346 INSERT_OPERAND (CACHE, *ip, imm_expr.X_add_number);
9347 }
9348 else if (*args == 'h')
9349 INSERT_OPERAND (PREFX, *ip, imm_expr.X_add_number);
9350 else
9351 INSERT_OPERAND (SHAMT, *ip, imm_expr.X_add_number);
9352 imm_expr.X_op = O_absent;
9353 s = expr_end;
9354 continue;
9355
9356 case 'c': /* BREAK code. */
9357 my_getExpression (&imm_expr, s);
9358 check_absolute_expr (ip, &imm_expr);
9359 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE)
9360 as_warn (_("Code for %s not in range 0..1023 (%lu)"),
9361 ip->insn_mo->name,
9362 (unsigned long) imm_expr.X_add_number);
9363 INSERT_OPERAND (CODE, *ip, imm_expr.X_add_number);
9364 imm_expr.X_op = O_absent;
9365 s = expr_end;
9366 continue;
9367
9368 case 'q': /* Lower BREAK code. */
9369 my_getExpression (&imm_expr, s);
9370 check_absolute_expr (ip, &imm_expr);
9371 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE2)
9372 as_warn (_("Lower code for %s not in range 0..1023 (%lu)"),
9373 ip->insn_mo->name,
9374 (unsigned long) imm_expr.X_add_number);
9375 INSERT_OPERAND (CODE2, *ip, imm_expr.X_add_number);
9376 imm_expr.X_op = O_absent;
9377 s = expr_end;
9378 continue;
9379
9380 case 'B': /* 20-bit SYSCALL/BREAK code. */
9381 my_getExpression (&imm_expr, s);
9382 check_absolute_expr (ip, &imm_expr);
9383 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE20)
9384 as_warn (_("Code for %s not in range 0..1048575 (%lu)"),
9385 ip->insn_mo->name,
9386 (unsigned long) imm_expr.X_add_number);
9387 INSERT_OPERAND (CODE20, *ip, imm_expr.X_add_number);
9388 imm_expr.X_op = O_absent;
9389 s = expr_end;
9390 continue;
9391
9392 case 'C': /* Coprocessor code. */
9393 my_getExpression (&imm_expr, s);
9394 check_absolute_expr (ip, &imm_expr);
9395 if ((unsigned long) imm_expr.X_add_number > OP_MASK_COPZ)
9396 {
9397 as_warn (_("Coproccesor code > 25 bits (%lu)"),
9398 (unsigned long) imm_expr.X_add_number);
9399 imm_expr.X_add_number &= OP_MASK_COPZ;
9400 }
9401 INSERT_OPERAND (COPZ, *ip, imm_expr.X_add_number);
9402 imm_expr.X_op = O_absent;
9403 s = expr_end;
9404 continue;
9405
9406 case 'J': /* 19-bit WAIT code. */
9407 my_getExpression (&imm_expr, s);
9408 check_absolute_expr (ip, &imm_expr);
9409 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE19)
9410 {
9411 as_warn (_("Illegal 19-bit code (%lu)"),
9412 (unsigned long) imm_expr.X_add_number);
9413 imm_expr.X_add_number &= OP_MASK_CODE19;
9414 }
9415 INSERT_OPERAND (CODE19, *ip, imm_expr.X_add_number);
9416 imm_expr.X_op = O_absent;
9417 s = expr_end;
9418 continue;
9419
9420 case 'P': /* Performance register. */
9421 my_getExpression (&imm_expr, s);
9422 check_absolute_expr (ip, &imm_expr);
9423 if (imm_expr.X_add_number != 0 && imm_expr.X_add_number != 1)
9424 as_warn (_("Invalid performance register (%lu)"),
9425 (unsigned long) imm_expr.X_add_number);
9426 INSERT_OPERAND (PERFREG, *ip, imm_expr.X_add_number);
9427 imm_expr.X_op = O_absent;
9428 s = expr_end;
9429 continue;
9430
9431 case 'G': /* Coprocessor destination register. */
9432 if (((ip->insn_opcode >> OP_SH_OP) & OP_MASK_OP) == OP_OP_COP0)
9433 ok = reg_lookup (&s, RTYPE_NUM | RTYPE_CP0, &regno);
9434 else
9435 ok = reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &regno);
9436 INSERT_OPERAND (RD, *ip, regno);
9437 if (ok)
9438 {
9439 lastregno = regno;
9440 continue;
9441 }
9442 else
9443 break;
9444
9445 case 'b': /* Base register. */
9446 case 'd': /* Destination register. */
9447 case 's': /* Source register. */
9448 case 't': /* Target register. */
9449 case 'r': /* Both target and source. */
9450 case 'v': /* Both dest and source. */
9451 case 'w': /* Both dest and target. */
9452 case 'E': /* Coprocessor target register. */
9453 case 'K': /* RDHWR destination register. */
9454 case 'x': /* Ignore register name. */
9455 case 'z': /* Must be zero register. */
9456 case 'U': /* Destination register (CLO/CLZ). */
9457 case 'g': /* Coprocessor destination register. */
9458 s_reset = s;
9459 if (*args == 'E' || *args == 'K')
9460 ok = reg_lookup (&s, RTYPE_NUM, &regno);
9461 else
9462 {
9463 ok = reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &regno);
9464 if (regno == AT && mips_opts.at)
9465 {
9466 if (mips_opts.at == ATREG)
9467 as_warn (_("Used $at without \".set noat\""));
9468 else
9469 as_warn (_("Used $%u with \".set at=$%u\""),
9470 regno, mips_opts.at);
9471 }
9472 }
9473 if (ok)
9474 {
9475 c = *args;
9476 if (*s == ' ')
9477 ++s;
9478 if (args[1] != *s)
9479 {
9480 if (c == 'r' || c == 'v' || c == 'w')
9481 {
9482 regno = lastregno;
9483 s = s_reset;
9484 ++args;
9485 }
9486 }
9487 /* 'z' only matches $0. */
9488 if (c == 'z' && regno != 0)
9489 break;
9490
9491 if (c == 's' && !strncmp (ip->insn_mo->name, "jalr", 4))
9492 {
9493 if (regno == lastregno)
9494 {
9495 insn_error
9496 = _("Source and destination must be different");
9497 continue;
9498 }
9499 if (regno == 31 && lastregno == 0xffffffff)
9500 {
9501 insn_error
9502 = _("A destination register must be supplied");
9503 continue;
9504 }
9505 }
9506 /* Now that we have assembled one operand, we use the args
9507 string to figure out where it goes in the instruction. */
9508 switch (c)
9509 {
9510 case 'r':
9511 case 's':
9512 case 'v':
9513 case 'b':
9514 INSERT_OPERAND (RS, *ip, regno);
9515 break;
9516 case 'd':
9517 case 'G':
9518 case 'K':
9519 case 'g':
9520 INSERT_OPERAND (RD, *ip, regno);
9521 break;
9522 case 'U':
9523 INSERT_OPERAND (RD, *ip, regno);
9524 INSERT_OPERAND (RT, *ip, regno);
9525 break;
9526 case 'w':
9527 case 't':
9528 case 'E':
9529 INSERT_OPERAND (RT, *ip, regno);
9530 break;
9531 case 'x':
9532 /* This case exists because on the r3000 trunc
9533 expands into a macro which requires a gp
9534 register. On the r6000 or r4000 it is
9535 assembled into a single instruction which
9536 ignores the register. Thus the insn version
9537 is MIPS_ISA2 and uses 'x', and the macro
9538 version is MIPS_ISA1 and uses 't'. */
9539 break;
9540 case 'z':
9541 /* This case is for the div instruction, which
9542 acts differently if the destination argument
9543 is $0. This only matches $0, and is checked
9544 outside the switch. */
9545 break;
9546 case 'D':
9547 /* Itbl operand; not yet implemented. FIXME ?? */
9548 break;
9549 /* What about all other operands like 'i', which
9550 can be specified in the opcode table? */
9551 }
9552 lastregno = regno;
9553 continue;
9554 }
9555 switch (*args++)
9556 {
9557 case 'r':
9558 case 'v':
9559 INSERT_OPERAND (RS, *ip, lastregno);
9560 continue;
9561 case 'w':
9562 INSERT_OPERAND (RT, *ip, lastregno);
9563 continue;
9564 }
9565 break;
9566
9567 case 'O': /* MDMX alignment immediate constant. */
9568 my_getExpression (&imm_expr, s);
9569 check_absolute_expr (ip, &imm_expr);
9570 if ((unsigned long) imm_expr.X_add_number > OP_MASK_ALN)
9571 as_warn (_("Improper align amount (%ld), using low bits"),
9572 (long) imm_expr.X_add_number);
9573 INSERT_OPERAND (ALN, *ip, imm_expr.X_add_number);
9574 imm_expr.X_op = O_absent;
9575 s = expr_end;
9576 continue;
9577
9578 case 'Q': /* MDMX vector, element sel, or const. */
9579 if (s[0] != '$')
9580 {
9581 /* MDMX Immediate. */
9582 my_getExpression (&imm_expr, s);
9583 check_absolute_expr (ip, &imm_expr);
9584 if ((unsigned long) imm_expr.X_add_number > OP_MASK_FT)
9585 as_warn (_("Invalid MDMX Immediate (%ld)"),
9586 (long) imm_expr.X_add_number);
9587 INSERT_OPERAND (FT, *ip, imm_expr.X_add_number);
9588 if (ip->insn_opcode & (OP_MASK_VSEL << OP_SH_VSEL))
9589 ip->insn_opcode |= MDMX_FMTSEL_IMM_QH << OP_SH_VSEL;
9590 else
9591 ip->insn_opcode |= MDMX_FMTSEL_IMM_OB << OP_SH_VSEL;
9592 imm_expr.X_op = O_absent;
9593 s = expr_end;
9594 continue;
9595 }
9596 /* Not MDMX Immediate. Fall through. */
9597 case 'X': /* MDMX destination register. */
9598 case 'Y': /* MDMX source register. */
9599 case 'Z': /* MDMX target register. */
9600 is_mdmx = 1;
9601 case 'D': /* Floating point destination register. */
9602 case 'S': /* Floating point source register. */
9603 case 'T': /* Floating point target register. */
9604 case 'R': /* Floating point source register. */
9605 case 'V':
9606 case 'W':
9607 rtype = RTYPE_FPU;
9608 if (is_mdmx
9609 || (mips_opts.ase_mdmx
9610 && (ip->insn_mo->pinfo & FP_D)
9611 && (ip->insn_mo->pinfo & (INSN_COPROC_MOVE_DELAY
9612 | INSN_COPROC_MEMORY_DELAY
9613 | INSN_LOAD_COPROC_DELAY
9614 | INSN_LOAD_MEMORY_DELAY
9615 | INSN_STORE_MEMORY))))
9616 rtype |= RTYPE_VEC;
9617 s_reset = s;
9618 if (reg_lookup (&s, rtype, &regno))
9619 {
9620 if ((regno & 1) != 0
9621 && HAVE_32BIT_FPRS
9622 && !mips_oddfpreg_ok (ip->insn_mo, argnum))
9623 as_warn (_("Float register should be even, was %d"),
9624 regno);
9625
9626 c = *args;
9627 if (*s == ' ')
9628 ++s;
9629 if (args[1] != *s)
9630 {
9631 if (c == 'V' || c == 'W')
9632 {
9633 regno = lastregno;
9634 s = s_reset;
9635 ++args;
9636 }
9637 }
9638 switch (c)
9639 {
9640 case 'D':
9641 case 'X':
9642 INSERT_OPERAND (FD, *ip, regno);
9643 break;
9644 case 'V':
9645 case 'S':
9646 case 'Y':
9647 INSERT_OPERAND (FS, *ip, regno);
9648 break;
9649 case 'Q':
9650 /* This is like 'Z', but also needs to fix the MDMX
9651 vector/scalar select bits. Note that the
9652 scalar immediate case is handled above. */
9653 if (*s == '[')
9654 {
9655 int is_qh = (ip->insn_opcode & (1 << OP_SH_VSEL));
9656 int max_el = (is_qh ? 3 : 7);
9657 s++;
9658 my_getExpression(&imm_expr, s);
9659 check_absolute_expr (ip, &imm_expr);
9660 s = expr_end;
9661 if (imm_expr.X_add_number > max_el)
9662 as_bad (_("Bad element selector %ld"),
9663 (long) imm_expr.X_add_number);
9664 imm_expr.X_add_number &= max_el;
9665 ip->insn_opcode |= (imm_expr.X_add_number
9666 << (OP_SH_VSEL +
9667 (is_qh ? 2 : 1)));
9668 imm_expr.X_op = O_absent;
9669 if (*s != ']')
9670 as_warn (_("Expecting ']' found '%s'"), s);
9671 else
9672 s++;
9673 }
9674 else
9675 {
9676 if (ip->insn_opcode & (OP_MASK_VSEL << OP_SH_VSEL))
9677 ip->insn_opcode |= (MDMX_FMTSEL_VEC_QH
9678 << OP_SH_VSEL);
9679 else
9680 ip->insn_opcode |= (MDMX_FMTSEL_VEC_OB <<
9681 OP_SH_VSEL);
9682 }
9683 /* Fall through. */
9684 case 'W':
9685 case 'T':
9686 case 'Z':
9687 INSERT_OPERAND (FT, *ip, regno);
9688 break;
9689 case 'R':
9690 INSERT_OPERAND (FR, *ip, regno);
9691 break;
9692 }
9693 lastregno = regno;
9694 continue;
9695 }
9696
9697 switch (*args++)
9698 {
9699 case 'V':
9700 INSERT_OPERAND (FS, *ip, lastregno);
9701 continue;
9702 case 'W':
9703 INSERT_OPERAND (FT, *ip, lastregno);
9704 continue;
9705 }
9706 break;
9707
9708 case 'I':
9709 my_getExpression (&imm_expr, s);
9710 if (imm_expr.X_op != O_big
9711 && imm_expr.X_op != O_constant)
9712 insn_error = _("absolute expression required");
9713 if (HAVE_32BIT_GPRS)
9714 normalize_constant_expr (&imm_expr);
9715 s = expr_end;
9716 continue;
9717
9718 case 'A':
9719 my_getExpression (&offset_expr, s);
9720 normalize_address_expr (&offset_expr);
9721 *imm_reloc = BFD_RELOC_32;
9722 s = expr_end;
9723 continue;
9724
9725 case 'F':
9726 case 'L':
9727 case 'f':
9728 case 'l':
9729 {
9730 int f64;
9731 int using_gprs;
9732 char *save_in;
9733 char *err;
9734 unsigned char temp[8];
9735 int len;
9736 unsigned int length;
9737 segT seg;
9738 subsegT subseg;
9739 char *p;
9740
9741 /* These only appear as the last operand in an
9742 instruction, and every instruction that accepts
9743 them in any variant accepts them in all variants.
9744 This means we don't have to worry about backing out
9745 any changes if the instruction does not match.
9746
9747 The difference between them is the size of the
9748 floating point constant and where it goes. For 'F'
9749 and 'L' the constant is 64 bits; for 'f' and 'l' it
9750 is 32 bits. Where the constant is placed is based
9751 on how the MIPS assembler does things:
9752 F -- .rdata
9753 L -- .lit8
9754 f -- immediate value
9755 l -- .lit4
9756
9757 The .lit4 and .lit8 sections are only used if
9758 permitted by the -G argument.
9759
9760 The code below needs to know whether the target register
9761 is 32 or 64 bits wide. It relies on the fact 'f' and
9762 'F' are used with GPR-based instructions and 'l' and
9763 'L' are used with FPR-based instructions. */
9764
9765 f64 = *args == 'F' || *args == 'L';
9766 using_gprs = *args == 'F' || *args == 'f';
9767
9768 save_in = input_line_pointer;
9769 input_line_pointer = s;
9770 err = md_atof (f64 ? 'd' : 'f', (char *) temp, &len);
9771 length = len;
9772 s = input_line_pointer;
9773 input_line_pointer = save_in;
9774 if (err != NULL && *err != '\0')
9775 {
9776 as_bad (_("Bad floating point constant: %s"), err);
9777 memset (temp, '\0', sizeof temp);
9778 length = f64 ? 8 : 4;
9779 }
9780
9781 gas_assert (length == (unsigned) (f64 ? 8 : 4));
9782
9783 if (*args == 'f'
9784 || (*args == 'l'
9785 && (g_switch_value < 4
9786 || (temp[0] == 0 && temp[1] == 0)
9787 || (temp[2] == 0 && temp[3] == 0))))
9788 {
9789 imm_expr.X_op = O_constant;
9790 if (!target_big_endian)
9791 imm_expr.X_add_number = bfd_getl32 (temp);
9792 else
9793 imm_expr.X_add_number = bfd_getb32 (temp);
9794 }
9795 else if (length > 4
9796 && !mips_disable_float_construction
9797 /* Constants can only be constructed in GPRs and
9798 copied to FPRs if the GPRs are at least as wide
9799 as the FPRs. Force the constant into memory if
9800 we are using 64-bit FPRs but the GPRs are only
9801 32 bits wide. */
9802 && (using_gprs
9803 || !(HAVE_64BIT_FPRS && HAVE_32BIT_GPRS))
9804 && ((temp[0] == 0 && temp[1] == 0)
9805 || (temp[2] == 0 && temp[3] == 0))
9806 && ((temp[4] == 0 && temp[5] == 0)
9807 || (temp[6] == 0 && temp[7] == 0)))
9808 {
9809 /* The value is simple enough to load with a couple of
9810 instructions. If using 32-bit registers, set
9811 imm_expr to the high order 32 bits and offset_expr to
9812 the low order 32 bits. Otherwise, set imm_expr to
9813 the entire 64 bit constant. */
9814 if (using_gprs ? HAVE_32BIT_GPRS : HAVE_32BIT_FPRS)
9815 {
9816 imm_expr.X_op = O_constant;
9817 offset_expr.X_op = O_constant;
9818 if (!target_big_endian)
9819 {
9820 imm_expr.X_add_number = bfd_getl32 (temp + 4);
9821 offset_expr.X_add_number = bfd_getl32 (temp);
9822 }
9823 else
9824 {
9825 imm_expr.X_add_number = bfd_getb32 (temp);
9826 offset_expr.X_add_number = bfd_getb32 (temp + 4);
9827 }
9828 if (offset_expr.X_add_number == 0)
9829 offset_expr.X_op = O_absent;
9830 }
9831 else if (sizeof (imm_expr.X_add_number) > 4)
9832 {
9833 imm_expr.X_op = O_constant;
9834 if (!target_big_endian)
9835 imm_expr.X_add_number = bfd_getl64 (temp);
9836 else
9837 imm_expr.X_add_number = bfd_getb64 (temp);
9838 }
9839 else
9840 {
9841 imm_expr.X_op = O_big;
9842 imm_expr.X_add_number = 4;
9843 if (!target_big_endian)
9844 {
9845 generic_bignum[0] = bfd_getl16 (temp);
9846 generic_bignum[1] = bfd_getl16 (temp + 2);
9847 generic_bignum[2] = bfd_getl16 (temp + 4);
9848 generic_bignum[3] = bfd_getl16 (temp + 6);
9849 }
9850 else
9851 {
9852 generic_bignum[0] = bfd_getb16 (temp + 6);
9853 generic_bignum[1] = bfd_getb16 (temp + 4);
9854 generic_bignum[2] = bfd_getb16 (temp + 2);
9855 generic_bignum[3] = bfd_getb16 (temp);
9856 }
9857 }
9858 }
9859 else
9860 {
9861 const char *newname;
9862 segT new_seg;
9863
9864 /* Switch to the right section. */
9865 seg = now_seg;
9866 subseg = now_subseg;
9867 switch (*args)
9868 {
9869 default: /* unused default case avoids warnings. */
9870 case 'L':
9871 newname = RDATA_SECTION_NAME;
9872 if (g_switch_value >= 8)
9873 newname = ".lit8";
9874 break;
9875 case 'F':
9876 newname = RDATA_SECTION_NAME;
9877 break;
9878 case 'l':
9879 gas_assert (g_switch_value >= 4);
9880 newname = ".lit4";
9881 break;
9882 }
9883 new_seg = subseg_new (newname, (subsegT) 0);
9884 if (IS_ELF)
9885 bfd_set_section_flags (stdoutput, new_seg,
9886 (SEC_ALLOC
9887 | SEC_LOAD
9888 | SEC_READONLY
9889 | SEC_DATA));
9890 frag_align (*args == 'l' ? 2 : 3, 0, 0);
9891 if (IS_ELF && strncmp (TARGET_OS, "elf", 3) != 0)
9892 record_alignment (new_seg, 4);
9893 else
9894 record_alignment (new_seg, *args == 'l' ? 2 : 3);
9895 if (seg == now_seg)
9896 as_bad (_("Can't use floating point insn in this section"));
9897
9898 /* Set the argument to the current address in the
9899 section. */
9900 offset_expr.X_op = O_symbol;
9901 offset_expr.X_add_symbol = symbol_temp_new_now ();
9902 offset_expr.X_add_number = 0;
9903
9904 /* Put the floating point number into the section. */
9905 p = frag_more ((int) length);
9906 memcpy (p, temp, length);
9907
9908 /* Switch back to the original section. */
9909 subseg_set (seg, subseg);
9910 }
9911 }
9912 continue;
9913
9914 case 'i': /* 16-bit unsigned immediate. */
9915 case 'j': /* 16-bit signed immediate. */
9916 *imm_reloc = BFD_RELOC_LO16;
9917 if (my_getSmallExpression (&imm_expr, imm_reloc, s) == 0)
9918 {
9919 int more;
9920 offsetT minval, maxval;
9921
9922 more = (insn + 1 < &mips_opcodes[NUMOPCODES]
9923 && strcmp (insn->name, insn[1].name) == 0);
9924
9925 /* If the expression was written as an unsigned number,
9926 only treat it as signed if there are no more
9927 alternatives. */
9928 if (more
9929 && *args == 'j'
9930 && sizeof (imm_expr.X_add_number) <= 4
9931 && imm_expr.X_op == O_constant
9932 && imm_expr.X_add_number < 0
9933 && imm_expr.X_unsigned
9934 && HAVE_64BIT_GPRS)
9935 break;
9936
9937 /* For compatibility with older assemblers, we accept
9938 0x8000-0xffff as signed 16-bit numbers when only
9939 signed numbers are allowed. */
9940 if (*args == 'i')
9941 minval = 0, maxval = 0xffff;
9942 else if (more)
9943 minval = -0x8000, maxval = 0x7fff;
9944 else
9945 minval = -0x8000, maxval = 0xffff;
9946
9947 if (imm_expr.X_op != O_constant
9948 || imm_expr.X_add_number < minval
9949 || imm_expr.X_add_number > maxval)
9950 {
9951 if (more)
9952 break;
9953 if (imm_expr.X_op == O_constant
9954 || imm_expr.X_op == O_big)
9955 as_bad (_("Expression out of range"));
9956 }
9957 }
9958 s = expr_end;
9959 continue;
9960
9961 case 'o': /* 16-bit offset. */
9962 offset_reloc[0] = BFD_RELOC_LO16;
9963 offset_reloc[1] = BFD_RELOC_UNUSED;
9964 offset_reloc[2] = BFD_RELOC_UNUSED;
9965
9966 /* Check whether there is only a single bracketed expression
9967 left. If so, it must be the base register and the
9968 constant must be zero. */
9969 offset_reloc[0] = BFD_RELOC_LO16;
9970 offset_reloc[1] = BFD_RELOC_UNUSED;
9971 offset_reloc[2] = BFD_RELOC_UNUSED;
9972 if (*s == '(' && strchr (s + 1, '(') == 0)
9973 {
9974 offset_expr.X_op = O_constant;
9975 offset_expr.X_add_number = 0;
9976 continue;
9977 }
9978
9979 /* If this value won't fit into a 16 bit offset, then go
9980 find a macro that will generate the 32 bit offset
9981 code pattern. */
9982 if (my_getSmallExpression (&offset_expr, offset_reloc, s) == 0
9983 && (offset_expr.X_op != O_constant
9984 || offset_expr.X_add_number >= 0x8000
9985 || offset_expr.X_add_number < -0x8000))
9986 break;
9987
9988 s = expr_end;
9989 continue;
9990
9991 case 'p': /* PC-relative offset. */
9992 *offset_reloc = BFD_RELOC_16_PCREL_S2;
9993 my_getExpression (&offset_expr, s);
9994 s = expr_end;
9995 continue;
9996
9997 case 'u': /* Upper 16 bits. */
9998 if (my_getSmallExpression (&imm_expr, imm_reloc, s) == 0
9999 && imm_expr.X_op == O_constant
10000 && (imm_expr.X_add_number < 0
10001 || imm_expr.X_add_number >= 0x10000))
10002 as_bad (_("lui expression not in range 0..65535"));
10003 s = expr_end;
10004 continue;
10005
10006 case 'a': /* 26-bit address. */
10007 my_getExpression (&offset_expr, s);
10008 s = expr_end;
10009 *offset_reloc = BFD_RELOC_MIPS_JMP;
10010 continue;
10011
10012 case 'N': /* 3-bit branch condition code. */
10013 case 'M': /* 3-bit compare condition code. */
10014 rtype = RTYPE_CCC;
10015 if (ip->insn_mo->pinfo & (FP_D | FP_S))
10016 rtype |= RTYPE_FCC;
10017 if (!reg_lookup (&s, rtype, &regno))
10018 break;
10019 if ((strcmp (str + strlen (str) - 3, ".ps") == 0
10020 || strcmp (str + strlen (str) - 5, "any2f") == 0
10021 || strcmp (str + strlen (str) - 5, "any2t") == 0)
10022 && (regno & 1) != 0)
10023 as_warn (_("Condition code register should be even for %s, "
10024 "was %d"),
10025 str, regno);
10026 if ((strcmp (str + strlen (str) - 5, "any4f") == 0
10027 || strcmp (str + strlen (str) - 5, "any4t") == 0)
10028 && (regno & 3) != 0)
10029 as_warn (_("Condition code register should be 0 or 4 for %s, "
10030 "was %d"),
10031 str, regno);
10032 if (*args == 'N')
10033 INSERT_OPERAND (BCC, *ip, regno);
10034 else
10035 INSERT_OPERAND (CCC, *ip, regno);
10036 continue;
10037
10038 case 'H':
10039 if (s[0] == '0' && (s[1] == 'x' || s[1] == 'X'))
10040 s += 2;
10041 if (ISDIGIT (*s))
10042 {
10043 c = 0;
10044 do
10045 {
10046 c *= 10;
10047 c += *s - '0';
10048 ++s;
10049 }
10050 while (ISDIGIT (*s));
10051 }
10052 else
10053 c = 8; /* Invalid sel value. */
10054
10055 if (c > 7)
10056 as_bad (_("Invalid coprocessor sub-selection value (0-7)"));
10057 ip->insn_opcode |= c;
10058 continue;
10059
10060 case 'e':
10061 /* Must be at least one digit. */
10062 my_getExpression (&imm_expr, s);
10063 check_absolute_expr (ip, &imm_expr);
10064
10065 if ((unsigned long) imm_expr.X_add_number
10066 > (unsigned long) OP_MASK_VECBYTE)
10067 {
10068 as_bad (_("bad byte vector index (%ld)"),
10069 (long) imm_expr.X_add_number);
10070 imm_expr.X_add_number = 0;
10071 }
10072
10073 INSERT_OPERAND (VECBYTE, *ip, imm_expr.X_add_number);
10074 imm_expr.X_op = O_absent;
10075 s = expr_end;
10076 continue;
10077
10078 case '%':
10079 my_getExpression (&imm_expr, s);
10080 check_absolute_expr (ip, &imm_expr);
10081
10082 if ((unsigned long) imm_expr.X_add_number
10083 > (unsigned long) OP_MASK_VECALIGN)
10084 {
10085 as_bad (_("bad byte vector index (%ld)"),
10086 (long) imm_expr.X_add_number);
10087 imm_expr.X_add_number = 0;
10088 }
10089
10090 INSERT_OPERAND (VECALIGN, *ip, imm_expr.X_add_number);
10091 imm_expr.X_op = O_absent;
10092 s = expr_end;
10093 continue;
10094
10095 default:
10096 as_bad (_("Bad char = '%c'\n"), *args);
10097 internalError ();
10098 }
10099 break;
10100 }
10101 /* Args don't match. */
10102 if (insn + 1 < &mips_opcodes[NUMOPCODES] &&
10103 !strcmp (insn->name, insn[1].name))
10104 {
10105 ++insn;
10106 s = argsStart;
10107 insn_error = _("Illegal operands");
10108 continue;
10109 }
10110 if (save_c)
10111 *(--argsStart) = save_c;
10112 insn_error = _("Illegal operands");
10113 return;
10114 }
10115 }
10116
10117 #define SKIP_SPACE_TABS(S) { while (*(S) == ' ' || *(S) == '\t') ++(S); }
10118
10119 /* This routine assembles an instruction into its binary format when
10120 assembling for the mips16. As a side effect, it sets one of the
10121 global variables imm_reloc or offset_reloc to the type of
10122 relocation to do if one of the operands is an address expression.
10123 It also sets mips16_small and mips16_ext if the user explicitly
10124 requested a small or extended instruction. */
10125
10126 static void
10127 mips16_ip (char *str, struct mips_cl_insn *ip)
10128 {
10129 char *s;
10130 const char *args;
10131 struct mips_opcode *insn;
10132 char *argsstart;
10133 unsigned int regno;
10134 unsigned int lastregno = 0;
10135 char *s_reset;
10136 size_t i;
10137
10138 insn_error = NULL;
10139
10140 mips16_small = FALSE;
10141 mips16_ext = FALSE;
10142
10143 for (s = str; ISLOWER (*s); ++s)
10144 ;
10145 switch (*s)
10146 {
10147 case '\0':
10148 break;
10149
10150 case ' ':
10151 *s++ = '\0';
10152 break;
10153
10154 case '.':
10155 if (s[1] == 't' && s[2] == ' ')
10156 {
10157 *s = '\0';
10158 mips16_small = TRUE;
10159 s += 3;
10160 break;
10161 }
10162 else if (s[1] == 'e' && s[2] == ' ')
10163 {
10164 *s = '\0';
10165 mips16_ext = TRUE;
10166 s += 3;
10167 break;
10168 }
10169 /* Fall through. */
10170 default:
10171 insn_error = _("unknown opcode");
10172 return;
10173 }
10174
10175 if (mips_opts.noautoextend && ! mips16_ext)
10176 mips16_small = TRUE;
10177
10178 if ((insn = (struct mips_opcode *) hash_find (mips16_op_hash, str)) == NULL)
10179 {
10180 insn_error = _("unrecognized opcode");
10181 return;
10182 }
10183
10184 argsstart = s;
10185 for (;;)
10186 {
10187 bfd_boolean ok;
10188
10189 gas_assert (strcmp (insn->name, str) == 0);
10190
10191 ok = is_opcode_valid_16 (insn);
10192 if (! ok)
10193 {
10194 if (insn + 1 < &mips16_opcodes[bfd_mips16_num_opcodes]
10195 && strcmp (insn->name, insn[1].name) == 0)
10196 {
10197 ++insn;
10198 continue;
10199 }
10200 else
10201 {
10202 if (!insn_error)
10203 {
10204 static char buf[100];
10205 sprintf (buf,
10206 _("opcode not supported on this processor: %s (%s)"),
10207 mips_cpu_info_from_arch (mips_opts.arch)->name,
10208 mips_cpu_info_from_isa (mips_opts.isa)->name);
10209 insn_error = buf;
10210 }
10211 return;
10212 }
10213 }
10214
10215 create_insn (ip, insn);
10216 imm_expr.X_op = O_absent;
10217 imm_reloc[0] = BFD_RELOC_UNUSED;
10218 imm_reloc[1] = BFD_RELOC_UNUSED;
10219 imm_reloc[2] = BFD_RELOC_UNUSED;
10220 imm2_expr.X_op = O_absent;
10221 offset_expr.X_op = O_absent;
10222 offset_reloc[0] = BFD_RELOC_UNUSED;
10223 offset_reloc[1] = BFD_RELOC_UNUSED;
10224 offset_reloc[2] = BFD_RELOC_UNUSED;
10225 for (args = insn->args; 1; ++args)
10226 {
10227 int c;
10228
10229 if (*s == ' ')
10230 ++s;
10231
10232 /* In this switch statement we call break if we did not find
10233 a match, continue if we did find a match, or return if we
10234 are done. */
10235
10236 c = *args;
10237 switch (c)
10238 {
10239 case '\0':
10240 if (*s == '\0')
10241 {
10242 /* Stuff the immediate value in now, if we can. */
10243 if (imm_expr.X_op == O_constant
10244 && *imm_reloc > BFD_RELOC_UNUSED
10245 && *imm_reloc != BFD_RELOC_MIPS16_GOT16
10246 && *imm_reloc != BFD_RELOC_MIPS16_CALL16
10247 && insn->pinfo != INSN_MACRO)
10248 {
10249 valueT tmp;
10250
10251 switch (*offset_reloc)
10252 {
10253 case BFD_RELOC_MIPS16_HI16_S:
10254 tmp = (imm_expr.X_add_number + 0x8000) >> 16;
10255 break;
10256
10257 case BFD_RELOC_MIPS16_HI16:
10258 tmp = imm_expr.X_add_number >> 16;
10259 break;
10260
10261 case BFD_RELOC_MIPS16_LO16:
10262 tmp = ((imm_expr.X_add_number + 0x8000) & 0xffff)
10263 - 0x8000;
10264 break;
10265
10266 case BFD_RELOC_UNUSED:
10267 tmp = imm_expr.X_add_number;
10268 break;
10269
10270 default:
10271 internalError ();
10272 }
10273 *offset_reloc = BFD_RELOC_UNUSED;
10274
10275 mips16_immed (NULL, 0, *imm_reloc - BFD_RELOC_UNUSED,
10276 tmp, TRUE, mips16_small,
10277 mips16_ext, &ip->insn_opcode,
10278 &ip->use_extend, &ip->extend);
10279 imm_expr.X_op = O_absent;
10280 *imm_reloc = BFD_RELOC_UNUSED;
10281 }
10282
10283 return;
10284 }
10285 break;
10286
10287 case ',':
10288 if (*s++ == c)
10289 continue;
10290 s--;
10291 switch (*++args)
10292 {
10293 case 'v':
10294 MIPS16_INSERT_OPERAND (RX, *ip, lastregno);
10295 continue;
10296 case 'w':
10297 MIPS16_INSERT_OPERAND (RY, *ip, lastregno);
10298 continue;
10299 }
10300 break;
10301
10302 case '(':
10303 case ')':
10304 if (*s++ == c)
10305 continue;
10306 break;
10307
10308 case 'v':
10309 case 'w':
10310 if (s[0] != '$')
10311 {
10312 if (c == 'v')
10313 MIPS16_INSERT_OPERAND (RX, *ip, lastregno);
10314 else
10315 MIPS16_INSERT_OPERAND (RY, *ip, lastregno);
10316 ++args;
10317 continue;
10318 }
10319 /* Fall through. */
10320 case 'x':
10321 case 'y':
10322 case 'z':
10323 case 'Z':
10324 case '0':
10325 case 'S':
10326 case 'R':
10327 case 'X':
10328 case 'Y':
10329 s_reset = s;
10330 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &regno))
10331 {
10332 if (c == 'v' || c == 'w')
10333 {
10334 if (c == 'v')
10335 MIPS16_INSERT_OPERAND (RX, *ip, lastregno);
10336 else
10337 MIPS16_INSERT_OPERAND (RY, *ip, lastregno);
10338 ++args;
10339 continue;
10340 }
10341 break;
10342 }
10343
10344 if (*s == ' ')
10345 ++s;
10346 if (args[1] != *s)
10347 {
10348 if (c == 'v' || c == 'w')
10349 {
10350 regno = mips16_to_32_reg_map[lastregno];
10351 s = s_reset;
10352 ++args;
10353 }
10354 }
10355
10356 switch (c)
10357 {
10358 case 'x':
10359 case 'y':
10360 case 'z':
10361 case 'v':
10362 case 'w':
10363 case 'Z':
10364 regno = mips32_to_16_reg_map[regno];
10365 break;
10366
10367 case '0':
10368 if (regno != 0)
10369 regno = ILLEGAL_REG;
10370 break;
10371
10372 case 'S':
10373 if (regno != SP)
10374 regno = ILLEGAL_REG;
10375 break;
10376
10377 case 'R':
10378 if (regno != RA)
10379 regno = ILLEGAL_REG;
10380 break;
10381
10382 case 'X':
10383 case 'Y':
10384 if (regno == AT && mips_opts.at)
10385 {
10386 if (mips_opts.at == ATREG)
10387 as_warn (_("used $at without \".set noat\""));
10388 else
10389 as_warn (_("used $%u with \".set at=$%u\""),
10390 regno, mips_opts.at);
10391 }
10392 break;
10393
10394 default:
10395 internalError ();
10396 }
10397
10398 if (regno == ILLEGAL_REG)
10399 break;
10400
10401 switch (c)
10402 {
10403 case 'x':
10404 case 'v':
10405 MIPS16_INSERT_OPERAND (RX, *ip, regno);
10406 break;
10407 case 'y':
10408 case 'w':
10409 MIPS16_INSERT_OPERAND (RY, *ip, regno);
10410 break;
10411 case 'z':
10412 MIPS16_INSERT_OPERAND (RZ, *ip, regno);
10413 break;
10414 case 'Z':
10415 MIPS16_INSERT_OPERAND (MOVE32Z, *ip, regno);
10416 case '0':
10417 case 'S':
10418 case 'R':
10419 break;
10420 case 'X':
10421 MIPS16_INSERT_OPERAND (REGR32, *ip, regno);
10422 break;
10423 case 'Y':
10424 regno = ((regno & 7) << 2) | ((regno & 0x18) >> 3);
10425 MIPS16_INSERT_OPERAND (REG32R, *ip, regno);
10426 break;
10427 default:
10428 internalError ();
10429 }
10430
10431 lastregno = regno;
10432 continue;
10433
10434 case 'P':
10435 if (strncmp (s, "$pc", 3) == 0)
10436 {
10437 s += 3;
10438 continue;
10439 }
10440 break;
10441
10442 case '5':
10443 case 'H':
10444 case 'W':
10445 case 'D':
10446 case 'j':
10447 case 'V':
10448 case 'C':
10449 case 'U':
10450 case 'k':
10451 case 'K':
10452 i = my_getSmallExpression (&imm_expr, imm_reloc, s);
10453 if (i > 0)
10454 {
10455 if (imm_expr.X_op != O_constant)
10456 {
10457 mips16_ext = TRUE;
10458 ip->use_extend = TRUE;
10459 ip->extend = 0;
10460 }
10461 else
10462 {
10463 /* We need to relax this instruction. */
10464 *offset_reloc = *imm_reloc;
10465 *imm_reloc = (int) BFD_RELOC_UNUSED + c;
10466 }
10467 s = expr_end;
10468 continue;
10469 }
10470 *imm_reloc = BFD_RELOC_UNUSED;
10471 /* Fall through. */
10472 case '<':
10473 case '>':
10474 case '[':
10475 case ']':
10476 case '4':
10477 case '8':
10478 my_getExpression (&imm_expr, s);
10479 if (imm_expr.X_op == O_register)
10480 {
10481 /* What we thought was an expression turned out to
10482 be a register. */
10483
10484 if (s[0] == '(' && args[1] == '(')
10485 {
10486 /* It looks like the expression was omitted
10487 before a register indirection, which means
10488 that the expression is implicitly zero. We
10489 still set up imm_expr, so that we handle
10490 explicit extensions correctly. */
10491 imm_expr.X_op = O_constant;
10492 imm_expr.X_add_number = 0;
10493 *imm_reloc = (int) BFD_RELOC_UNUSED + c;
10494 continue;
10495 }
10496
10497 break;
10498 }
10499
10500 /* We need to relax this instruction. */
10501 *imm_reloc = (int) BFD_RELOC_UNUSED + c;
10502 s = expr_end;
10503 continue;
10504
10505 case 'p':
10506 case 'q':
10507 case 'A':
10508 case 'B':
10509 case 'E':
10510 /* We use offset_reloc rather than imm_reloc for the PC
10511 relative operands. This lets macros with both
10512 immediate and address operands work correctly. */
10513 my_getExpression (&offset_expr, s);
10514
10515 if (offset_expr.X_op == O_register)
10516 break;
10517
10518 /* We need to relax this instruction. */
10519 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
10520 s = expr_end;
10521 continue;
10522
10523 case '6': /* break code */
10524 my_getExpression (&imm_expr, s);
10525 check_absolute_expr (ip, &imm_expr);
10526 if ((unsigned long) imm_expr.X_add_number > 63)
10527 as_warn (_("Invalid value for `%s' (%lu)"),
10528 ip->insn_mo->name,
10529 (unsigned long) imm_expr.X_add_number);
10530 MIPS16_INSERT_OPERAND (IMM6, *ip, imm_expr.X_add_number);
10531 imm_expr.X_op = O_absent;
10532 s = expr_end;
10533 continue;
10534
10535 case 'a': /* 26 bit address */
10536 my_getExpression (&offset_expr, s);
10537 s = expr_end;
10538 *offset_reloc = BFD_RELOC_MIPS16_JMP;
10539 ip->insn_opcode <<= 16;
10540 continue;
10541
10542 case 'l': /* register list for entry macro */
10543 case 'L': /* register list for exit macro */
10544 {
10545 int mask;
10546
10547 if (c == 'l')
10548 mask = 0;
10549 else
10550 mask = 7 << 3;
10551 while (*s != '\0')
10552 {
10553 unsigned int freg, reg1, reg2;
10554
10555 while (*s == ' ' || *s == ',')
10556 ++s;
10557 if (reg_lookup (&s, RTYPE_GP | RTYPE_NUM, &reg1))
10558 freg = 0;
10559 else if (reg_lookup (&s, RTYPE_FPU, &reg1))
10560 freg = 1;
10561 else
10562 {
10563 as_bad (_("can't parse register list"));
10564 break;
10565 }
10566 if (*s == ' ')
10567 ++s;
10568 if (*s != '-')
10569 reg2 = reg1;
10570 else
10571 {
10572 ++s;
10573 if (!reg_lookup (&s, freg ? RTYPE_FPU
10574 : (RTYPE_GP | RTYPE_NUM), &reg2))
10575 {
10576 as_bad (_("invalid register list"));
10577 break;
10578 }
10579 }
10580 if (freg && reg1 == 0 && reg2 == 0 && c == 'L')
10581 {
10582 mask &= ~ (7 << 3);
10583 mask |= 5 << 3;
10584 }
10585 else if (freg && reg1 == 0 && reg2 == 1 && c == 'L')
10586 {
10587 mask &= ~ (7 << 3);
10588 mask |= 6 << 3;
10589 }
10590 else if (reg1 == 4 && reg2 >= 4 && reg2 <= 7 && c != 'L')
10591 mask |= (reg2 - 3) << 3;
10592 else if (reg1 == 16 && reg2 >= 16 && reg2 <= 17)
10593 mask |= (reg2 - 15) << 1;
10594 else if (reg1 == RA && reg2 == RA)
10595 mask |= 1;
10596 else
10597 {
10598 as_bad (_("invalid register list"));
10599 break;
10600 }
10601 }
10602 /* The mask is filled in in the opcode table for the
10603 benefit of the disassembler. We remove it before
10604 applying the actual mask. */
10605 ip->insn_opcode &= ~ ((7 << 3) << MIPS16OP_SH_IMM6);
10606 ip->insn_opcode |= mask << MIPS16OP_SH_IMM6;
10607 }
10608 continue;
10609
10610 case 'm': /* Register list for save insn. */
10611 case 'M': /* Register list for restore insn. */
10612 {
10613 int opcode = 0;
10614 int framesz = 0, seen_framesz = 0;
10615 int nargs = 0, statics = 0, sregs = 0;
10616
10617 while (*s != '\0')
10618 {
10619 unsigned int reg1, reg2;
10620
10621 SKIP_SPACE_TABS (s);
10622 while (*s == ',')
10623 ++s;
10624 SKIP_SPACE_TABS (s);
10625
10626 my_getExpression (&imm_expr, s);
10627 if (imm_expr.X_op == O_constant)
10628 {
10629 /* Handle the frame size. */
10630 if (seen_framesz)
10631 {
10632 as_bad (_("more than one frame size in list"));
10633 break;
10634 }
10635 seen_framesz = 1;
10636 framesz = imm_expr.X_add_number;
10637 imm_expr.X_op = O_absent;
10638 s = expr_end;
10639 continue;
10640 }
10641
10642 if (! reg_lookup (&s, RTYPE_GP | RTYPE_NUM, &reg1))
10643 {
10644 as_bad (_("can't parse register list"));
10645 break;
10646 }
10647
10648 while (*s == ' ')
10649 ++s;
10650
10651 if (*s != '-')
10652 reg2 = reg1;
10653 else
10654 {
10655 ++s;
10656 if (! reg_lookup (&s, RTYPE_GP | RTYPE_NUM, &reg2)
10657 || reg2 < reg1)
10658 {
10659 as_bad (_("can't parse register list"));
10660 break;
10661 }
10662 }
10663
10664 while (reg1 <= reg2)
10665 {
10666 if (reg1 >= 4 && reg1 <= 7)
10667 {
10668 if (!seen_framesz)
10669 /* args $a0-$a3 */
10670 nargs |= 1 << (reg1 - 4);
10671 else
10672 /* statics $a0-$a3 */
10673 statics |= 1 << (reg1 - 4);
10674 }
10675 else if ((reg1 >= 16 && reg1 <= 23) || reg1 == 30)
10676 {
10677 /* $s0-$s8 */
10678 sregs |= 1 << ((reg1 == 30) ? 8 : (reg1 - 16));
10679 }
10680 else if (reg1 == 31)
10681 {
10682 /* Add $ra to insn. */
10683 opcode |= 0x40;
10684 }
10685 else
10686 {
10687 as_bad (_("unexpected register in list"));
10688 break;
10689 }
10690 if (++reg1 == 24)
10691 reg1 = 30;
10692 }
10693 }
10694
10695 /* Encode args/statics combination. */
10696 if (nargs & statics)
10697 as_bad (_("arg/static registers overlap"));
10698 else if (nargs == 0xf)
10699 /* All $a0-$a3 are args. */
10700 opcode |= MIPS16_ALL_ARGS << 16;
10701 else if (statics == 0xf)
10702 /* All $a0-$a3 are statics. */
10703 opcode |= MIPS16_ALL_STATICS << 16;
10704 else
10705 {
10706 int narg = 0, nstat = 0;
10707
10708 /* Count arg registers. */
10709 while (nargs & 0x1)
10710 {
10711 nargs >>= 1;
10712 narg++;
10713 }
10714 if (nargs != 0)
10715 as_bad (_("invalid arg register list"));
10716
10717 /* Count static registers. */
10718 while (statics & 0x8)
10719 {
10720 statics = (statics << 1) & 0xf;
10721 nstat++;
10722 }
10723 if (statics != 0)
10724 as_bad (_("invalid static register list"));
10725
10726 /* Encode args/statics. */
10727 opcode |= ((narg << 2) | nstat) << 16;
10728 }
10729
10730 /* Encode $s0/$s1. */
10731 if (sregs & (1 << 0)) /* $s0 */
10732 opcode |= 0x20;
10733 if (sregs & (1 << 1)) /* $s1 */
10734 opcode |= 0x10;
10735 sregs >>= 2;
10736
10737 if (sregs != 0)
10738 {
10739 /* Count regs $s2-$s8. */
10740 int nsreg = 0;
10741 while (sregs & 1)
10742 {
10743 sregs >>= 1;
10744 nsreg++;
10745 }
10746 if (sregs != 0)
10747 as_bad (_("invalid static register list"));
10748 /* Encode $s2-$s8. */
10749 opcode |= nsreg << 24;
10750 }
10751
10752 /* Encode frame size. */
10753 if (!seen_framesz)
10754 as_bad (_("missing frame size"));
10755 else if ((framesz & 7) != 0 || framesz < 0
10756 || framesz > 0xff * 8)
10757 as_bad (_("invalid frame size"));
10758 else if (framesz != 128 || (opcode >> 16) != 0)
10759 {
10760 framesz /= 8;
10761 opcode |= (((framesz & 0xf0) << 16)
10762 | (framesz & 0x0f));
10763 }
10764
10765 /* Finally build the instruction. */
10766 if ((opcode >> 16) != 0 || framesz == 0)
10767 {
10768 ip->use_extend = TRUE;
10769 ip->extend = opcode >> 16;
10770 }
10771 ip->insn_opcode |= opcode & 0x7f;
10772 }
10773 continue;
10774
10775 case 'e': /* extend code */
10776 my_getExpression (&imm_expr, s);
10777 check_absolute_expr (ip, &imm_expr);
10778 if ((unsigned long) imm_expr.X_add_number > 0x7ff)
10779 {
10780 as_warn (_("Invalid value for `%s' (%lu)"),
10781 ip->insn_mo->name,
10782 (unsigned long) imm_expr.X_add_number);
10783 imm_expr.X_add_number &= 0x7ff;
10784 }
10785 ip->insn_opcode |= imm_expr.X_add_number;
10786 imm_expr.X_op = O_absent;
10787 s = expr_end;
10788 continue;
10789
10790 default:
10791 internalError ();
10792 }
10793 break;
10794 }
10795
10796 /* Args don't match. */
10797 if (insn + 1 < &mips16_opcodes[bfd_mips16_num_opcodes] &&
10798 strcmp (insn->name, insn[1].name) == 0)
10799 {
10800 ++insn;
10801 s = argsstart;
10802 continue;
10803 }
10804
10805 insn_error = _("illegal operands");
10806
10807 return;
10808 }
10809 }
10810
10811 /* This structure holds information we know about a mips16 immediate
10812 argument type. */
10813
10814 struct mips16_immed_operand
10815 {
10816 /* The type code used in the argument string in the opcode table. */
10817 int type;
10818 /* The number of bits in the short form of the opcode. */
10819 int nbits;
10820 /* The number of bits in the extended form of the opcode. */
10821 int extbits;
10822 /* The amount by which the short form is shifted when it is used;
10823 for example, the sw instruction has a shift count of 2. */
10824 int shift;
10825 /* The amount by which the short form is shifted when it is stored
10826 into the instruction code. */
10827 int op_shift;
10828 /* Non-zero if the short form is unsigned. */
10829 int unsp;
10830 /* Non-zero if the extended form is unsigned. */
10831 int extu;
10832 /* Non-zero if the value is PC relative. */
10833 int pcrel;
10834 };
10835
10836 /* The mips16 immediate operand types. */
10837
10838 static const struct mips16_immed_operand mips16_immed_operands[] =
10839 {
10840 { '<', 3, 5, 0, MIPS16OP_SH_RZ, 1, 1, 0 },
10841 { '>', 3, 5, 0, MIPS16OP_SH_RX, 1, 1, 0 },
10842 { '[', 3, 6, 0, MIPS16OP_SH_RZ, 1, 1, 0 },
10843 { ']', 3, 6, 0, MIPS16OP_SH_RX, 1, 1, 0 },
10844 { '4', 4, 15, 0, MIPS16OP_SH_IMM4, 0, 0, 0 },
10845 { '5', 5, 16, 0, MIPS16OP_SH_IMM5, 1, 0, 0 },
10846 { 'H', 5, 16, 1, MIPS16OP_SH_IMM5, 1, 0, 0 },
10847 { 'W', 5, 16, 2, MIPS16OP_SH_IMM5, 1, 0, 0 },
10848 { 'D', 5, 16, 3, MIPS16OP_SH_IMM5, 1, 0, 0 },
10849 { 'j', 5, 16, 0, MIPS16OP_SH_IMM5, 0, 0, 0 },
10850 { '8', 8, 16, 0, MIPS16OP_SH_IMM8, 1, 0, 0 },
10851 { 'V', 8, 16, 2, MIPS16OP_SH_IMM8, 1, 0, 0 },
10852 { 'C', 8, 16, 3, MIPS16OP_SH_IMM8, 1, 0, 0 },
10853 { 'U', 8, 16, 0, MIPS16OP_SH_IMM8, 1, 1, 0 },
10854 { 'k', 8, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 0 },
10855 { 'K', 8, 16, 3, MIPS16OP_SH_IMM8, 0, 0, 0 },
10856 { 'p', 8, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 1 },
10857 { 'q', 11, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 1 },
10858 { 'A', 8, 16, 2, MIPS16OP_SH_IMM8, 1, 0, 1 },
10859 { 'B', 5, 16, 3, MIPS16OP_SH_IMM5, 1, 0, 1 },
10860 { 'E', 5, 16, 2, MIPS16OP_SH_IMM5, 1, 0, 1 }
10861 };
10862
10863 #define MIPS16_NUM_IMMED \
10864 (sizeof mips16_immed_operands / sizeof mips16_immed_operands[0])
10865
10866 /* Handle a mips16 instruction with an immediate value. This or's the
10867 small immediate value into *INSN. It sets *USE_EXTEND to indicate
10868 whether an extended value is needed; if one is needed, it sets
10869 *EXTEND to the value. The argument type is TYPE. The value is VAL.
10870 If SMALL is true, an unextended opcode was explicitly requested.
10871 If EXT is true, an extended opcode was explicitly requested. If
10872 WARN is true, warn if EXT does not match reality. */
10873
10874 static void
10875 mips16_immed (char *file, unsigned int line, int type, offsetT val,
10876 bfd_boolean warn, bfd_boolean small, bfd_boolean ext,
10877 unsigned long *insn, bfd_boolean *use_extend,
10878 unsigned short *extend)
10879 {
10880 const struct mips16_immed_operand *op;
10881 int mintiny, maxtiny;
10882 bfd_boolean needext;
10883
10884 op = mips16_immed_operands;
10885 while (op->type != type)
10886 {
10887 ++op;
10888 gas_assert (op < mips16_immed_operands + MIPS16_NUM_IMMED);
10889 }
10890
10891 if (op->unsp)
10892 {
10893 if (type == '<' || type == '>' || type == '[' || type == ']')
10894 {
10895 mintiny = 1;
10896 maxtiny = 1 << op->nbits;
10897 }
10898 else
10899 {
10900 mintiny = 0;
10901 maxtiny = (1 << op->nbits) - 1;
10902 }
10903 }
10904 else
10905 {
10906 mintiny = - (1 << (op->nbits - 1));
10907 maxtiny = (1 << (op->nbits - 1)) - 1;
10908 }
10909
10910 /* Branch offsets have an implicit 0 in the lowest bit. */
10911 if (type == 'p' || type == 'q')
10912 val /= 2;
10913
10914 if ((val & ((1 << op->shift) - 1)) != 0
10915 || val < (mintiny << op->shift)
10916 || val > (maxtiny << op->shift))
10917 needext = TRUE;
10918 else
10919 needext = FALSE;
10920
10921 if (warn && ext && ! needext)
10922 as_warn_where (file, line,
10923 _("extended operand requested but not required"));
10924 if (small && needext)
10925 as_bad_where (file, line, _("invalid unextended operand value"));
10926
10927 if (small || (! ext && ! needext))
10928 {
10929 int insnval;
10930
10931 *use_extend = FALSE;
10932 insnval = ((val >> op->shift) & ((1 << op->nbits) - 1));
10933 insnval <<= op->op_shift;
10934 *insn |= insnval;
10935 }
10936 else
10937 {
10938 long minext, maxext;
10939 int extval;
10940
10941 if (op->extu)
10942 {
10943 minext = 0;
10944 maxext = (1 << op->extbits) - 1;
10945 }
10946 else
10947 {
10948 minext = - (1 << (op->extbits - 1));
10949 maxext = (1 << (op->extbits - 1)) - 1;
10950 }
10951 if (val < minext || val > maxext)
10952 as_bad_where (file, line,
10953 _("operand value out of range for instruction"));
10954
10955 *use_extend = TRUE;
10956 if (op->extbits == 16)
10957 {
10958 extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
10959 val &= 0x1f;
10960 }
10961 else if (op->extbits == 15)
10962 {
10963 extval = ((val >> 11) & 0xf) | (val & 0x7f0);
10964 val &= 0xf;
10965 }
10966 else
10967 {
10968 extval = ((val & 0x1f) << 6) | (val & 0x20);
10969 val = 0;
10970 }
10971
10972 *extend = (unsigned short) extval;
10973 *insn |= val;
10974 }
10975 }
10976 \f
10977 struct percent_op_match
10978 {
10979 const char *str;
10980 bfd_reloc_code_real_type reloc;
10981 };
10982
10983 static const struct percent_op_match mips_percent_op[] =
10984 {
10985 {"%lo", BFD_RELOC_LO16},
10986 #ifdef OBJ_ELF
10987 {"%call_hi", BFD_RELOC_MIPS_CALL_HI16},
10988 {"%call_lo", BFD_RELOC_MIPS_CALL_LO16},
10989 {"%call16", BFD_RELOC_MIPS_CALL16},
10990 {"%got_disp", BFD_RELOC_MIPS_GOT_DISP},
10991 {"%got_page", BFD_RELOC_MIPS_GOT_PAGE},
10992 {"%got_ofst", BFD_RELOC_MIPS_GOT_OFST},
10993 {"%got_hi", BFD_RELOC_MIPS_GOT_HI16},
10994 {"%got_lo", BFD_RELOC_MIPS_GOT_LO16},
10995 {"%got", BFD_RELOC_MIPS_GOT16},
10996 {"%gp_rel", BFD_RELOC_GPREL16},
10997 {"%half", BFD_RELOC_16},
10998 {"%highest", BFD_RELOC_MIPS_HIGHEST},
10999 {"%higher", BFD_RELOC_MIPS_HIGHER},
11000 {"%neg", BFD_RELOC_MIPS_SUB},
11001 {"%tlsgd", BFD_RELOC_MIPS_TLS_GD},
11002 {"%tlsldm", BFD_RELOC_MIPS_TLS_LDM},
11003 {"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16},
11004 {"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16},
11005 {"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16},
11006 {"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16},
11007 {"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL},
11008 #endif
11009 {"%hi", BFD_RELOC_HI16_S}
11010 };
11011
11012 static const struct percent_op_match mips16_percent_op[] =
11013 {
11014 {"%lo", BFD_RELOC_MIPS16_LO16},
11015 {"%gprel", BFD_RELOC_MIPS16_GPREL},
11016 {"%got", BFD_RELOC_MIPS16_GOT16},
11017 {"%call16", BFD_RELOC_MIPS16_CALL16},
11018 {"%hi", BFD_RELOC_MIPS16_HI16_S}
11019 };
11020
11021
11022 /* Return true if *STR points to a relocation operator. When returning true,
11023 move *STR over the operator and store its relocation code in *RELOC.
11024 Leave both *STR and *RELOC alone when returning false. */
11025
11026 static bfd_boolean
11027 parse_relocation (char **str, bfd_reloc_code_real_type *reloc)
11028 {
11029 const struct percent_op_match *percent_op;
11030 size_t limit, i;
11031
11032 if (mips_opts.mips16)
11033 {
11034 percent_op = mips16_percent_op;
11035 limit = ARRAY_SIZE (mips16_percent_op);
11036 }
11037 else
11038 {
11039 percent_op = mips_percent_op;
11040 limit = ARRAY_SIZE (mips_percent_op);
11041 }
11042
11043 for (i = 0; i < limit; i++)
11044 if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0)
11045 {
11046 int len = strlen (percent_op[i].str);
11047
11048 if (!ISSPACE ((*str)[len]) && (*str)[len] != '(')
11049 continue;
11050
11051 *str += strlen (percent_op[i].str);
11052 *reloc = percent_op[i].reloc;
11053
11054 /* Check whether the output BFD supports this relocation.
11055 If not, issue an error and fall back on something safe. */
11056 if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc))
11057 {
11058 as_bad (_("relocation %s isn't supported by the current ABI"),
11059 percent_op[i].str);
11060 *reloc = BFD_RELOC_UNUSED;
11061 }
11062 return TRUE;
11063 }
11064 return FALSE;
11065 }
11066
11067
11068 /* Parse string STR as a 16-bit relocatable operand. Store the
11069 expression in *EP and the relocations in the array starting
11070 at RELOC. Return the number of relocation operators used.
11071
11072 On exit, EXPR_END points to the first character after the expression. */
11073
11074 static size_t
11075 my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
11076 char *str)
11077 {
11078 bfd_reloc_code_real_type reversed_reloc[3];
11079 size_t reloc_index, i;
11080 int crux_depth, str_depth;
11081 char *crux;
11082
11083 /* Search for the start of the main expression, recoding relocations
11084 in REVERSED_RELOC. End the loop with CRUX pointing to the start
11085 of the main expression and with CRUX_DEPTH containing the number
11086 of open brackets at that point. */
11087 reloc_index = -1;
11088 str_depth = 0;
11089 do
11090 {
11091 reloc_index++;
11092 crux = str;
11093 crux_depth = str_depth;
11094
11095 /* Skip over whitespace and brackets, keeping count of the number
11096 of brackets. */
11097 while (*str == ' ' || *str == '\t' || *str == '(')
11098 if (*str++ == '(')
11099 str_depth++;
11100 }
11101 while (*str == '%'
11102 && reloc_index < (HAVE_NEWABI ? 3 : 1)
11103 && parse_relocation (&str, &reversed_reloc[reloc_index]));
11104
11105 my_getExpression (ep, crux);
11106 str = expr_end;
11107
11108 /* Match every open bracket. */
11109 while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
11110 if (*str++ == ')')
11111 crux_depth--;
11112
11113 if (crux_depth > 0)
11114 as_bad (_("unclosed '('"));
11115
11116 expr_end = str;
11117
11118 if (reloc_index != 0)
11119 {
11120 prev_reloc_op_frag = frag_now;
11121 for (i = 0; i < reloc_index; i++)
11122 reloc[i] = reversed_reloc[reloc_index - 1 - i];
11123 }
11124
11125 return reloc_index;
11126 }
11127
11128 static void
11129 my_getExpression (expressionS *ep, char *str)
11130 {
11131 char *save_in;
11132 valueT val;
11133
11134 save_in = input_line_pointer;
11135 input_line_pointer = str;
11136 expression (ep);
11137 expr_end = input_line_pointer;
11138 input_line_pointer = save_in;
11139
11140 /* If we are in mips16 mode, and this is an expression based on `.',
11141 then we bump the value of the symbol by 1 since that is how other
11142 text symbols are handled. We don't bother to handle complex
11143 expressions, just `.' plus or minus a constant. */
11144 if (mips_opts.mips16
11145 && ep->X_op == O_symbol
11146 && strcmp (S_GET_NAME (ep->X_add_symbol), FAKE_LABEL_NAME) == 0
11147 && S_GET_SEGMENT (ep->X_add_symbol) == now_seg
11148 && symbol_get_frag (ep->X_add_symbol) == frag_now
11149 && symbol_constant_p (ep->X_add_symbol)
11150 && (val = S_GET_VALUE (ep->X_add_symbol)) == frag_now_fix ())
11151 S_SET_VALUE (ep->X_add_symbol, val + 1);
11152 }
11153
11154 char *
11155 md_atof (int type, char *litP, int *sizeP)
11156 {
11157 return ieee_md_atof (type, litP, sizeP, target_big_endian);
11158 }
11159
11160 void
11161 md_number_to_chars (char *buf, valueT val, int n)
11162 {
11163 if (target_big_endian)
11164 number_to_chars_bigendian (buf, val, n);
11165 else
11166 number_to_chars_littleendian (buf, val, n);
11167 }
11168 \f
11169 #ifdef OBJ_ELF
11170 static int support_64bit_objects(void)
11171 {
11172 const char **list, **l;
11173 int yes;
11174
11175 list = bfd_target_list ();
11176 for (l = list; *l != NULL; l++)
11177 #ifdef TE_TMIPS
11178 /* This is traditional mips */
11179 if (strcmp (*l, "elf64-tradbigmips") == 0
11180 || strcmp (*l, "elf64-tradlittlemips") == 0)
11181 #else
11182 if (strcmp (*l, "elf64-bigmips") == 0
11183 || strcmp (*l, "elf64-littlemips") == 0)
11184 #endif
11185 break;
11186 yes = (*l != NULL);
11187 free (list);
11188 return yes;
11189 }
11190 #endif /* OBJ_ELF */
11191
11192 const char *md_shortopts = "O::g::G:";
11193
11194 enum options
11195 {
11196 OPTION_MARCH = OPTION_MD_BASE,
11197 OPTION_MTUNE,
11198 OPTION_MIPS1,
11199 OPTION_MIPS2,
11200 OPTION_MIPS3,
11201 OPTION_MIPS4,
11202 OPTION_MIPS5,
11203 OPTION_MIPS32,
11204 OPTION_MIPS64,
11205 OPTION_MIPS32R2,
11206 OPTION_MIPS64R2,
11207 OPTION_MIPS16,
11208 OPTION_NO_MIPS16,
11209 OPTION_MIPS3D,
11210 OPTION_NO_MIPS3D,
11211 OPTION_MDMX,
11212 OPTION_NO_MDMX,
11213 OPTION_DSP,
11214 OPTION_NO_DSP,
11215 OPTION_MT,
11216 OPTION_NO_MT,
11217 OPTION_SMARTMIPS,
11218 OPTION_NO_SMARTMIPS,
11219 OPTION_DSPR2,
11220 OPTION_NO_DSPR2,
11221 OPTION_COMPAT_ARCH_BASE,
11222 OPTION_M4650,
11223 OPTION_NO_M4650,
11224 OPTION_M4010,
11225 OPTION_NO_M4010,
11226 OPTION_M4100,
11227 OPTION_NO_M4100,
11228 OPTION_M3900,
11229 OPTION_NO_M3900,
11230 OPTION_M7000_HILO_FIX,
11231 OPTION_MNO_7000_HILO_FIX,
11232 OPTION_FIX_24K,
11233 OPTION_NO_FIX_24K,
11234 OPTION_FIX_LOONGSON2F_JUMP,
11235 OPTION_NO_FIX_LOONGSON2F_JUMP,
11236 OPTION_FIX_LOONGSON2F_NOP,
11237 OPTION_NO_FIX_LOONGSON2F_NOP,
11238 OPTION_FIX_VR4120,
11239 OPTION_NO_FIX_VR4120,
11240 OPTION_FIX_VR4130,
11241 OPTION_NO_FIX_VR4130,
11242 OPTION_FIX_CN63XXP1,
11243 OPTION_NO_FIX_CN63XXP1,
11244 OPTION_TRAP,
11245 OPTION_BREAK,
11246 OPTION_EB,
11247 OPTION_EL,
11248 OPTION_FP32,
11249 OPTION_GP32,
11250 OPTION_CONSTRUCT_FLOATS,
11251 OPTION_NO_CONSTRUCT_FLOATS,
11252 OPTION_FP64,
11253 OPTION_GP64,
11254 OPTION_RELAX_BRANCH,
11255 OPTION_NO_RELAX_BRANCH,
11256 OPTION_MSHARED,
11257 OPTION_MNO_SHARED,
11258 OPTION_MSYM32,
11259 OPTION_MNO_SYM32,
11260 OPTION_SOFT_FLOAT,
11261 OPTION_HARD_FLOAT,
11262 OPTION_SINGLE_FLOAT,
11263 OPTION_DOUBLE_FLOAT,
11264 OPTION_32,
11265 #ifdef OBJ_ELF
11266 OPTION_CALL_SHARED,
11267 OPTION_CALL_NONPIC,
11268 OPTION_NON_SHARED,
11269 OPTION_XGOT,
11270 OPTION_MABI,
11271 OPTION_N32,
11272 OPTION_64,
11273 OPTION_MDEBUG,
11274 OPTION_NO_MDEBUG,
11275 OPTION_PDR,
11276 OPTION_NO_PDR,
11277 OPTION_MVXWORKS_PIC,
11278 #endif /* OBJ_ELF */
11279 OPTION_END_OF_ENUM
11280 };
11281
11282 struct option md_longopts[] =
11283 {
11284 /* Options which specify architecture. */
11285 {"march", required_argument, NULL, OPTION_MARCH},
11286 {"mtune", required_argument, NULL, OPTION_MTUNE},
11287 {"mips0", no_argument, NULL, OPTION_MIPS1},
11288 {"mips1", no_argument, NULL, OPTION_MIPS1},
11289 {"mips2", no_argument, NULL, OPTION_MIPS2},
11290 {"mips3", no_argument, NULL, OPTION_MIPS3},
11291 {"mips4", no_argument, NULL, OPTION_MIPS4},
11292 {"mips5", no_argument, NULL, OPTION_MIPS5},
11293 {"mips32", no_argument, NULL, OPTION_MIPS32},
11294 {"mips64", no_argument, NULL, OPTION_MIPS64},
11295 {"mips32r2", no_argument, NULL, OPTION_MIPS32R2},
11296 {"mips64r2", no_argument, NULL, OPTION_MIPS64R2},
11297
11298 /* Options which specify Application Specific Extensions (ASEs). */
11299 {"mips16", no_argument, NULL, OPTION_MIPS16},
11300 {"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
11301 {"mips3d", no_argument, NULL, OPTION_MIPS3D},
11302 {"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
11303 {"mdmx", no_argument, NULL, OPTION_MDMX},
11304 {"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
11305 {"mdsp", no_argument, NULL, OPTION_DSP},
11306 {"mno-dsp", no_argument, NULL, OPTION_NO_DSP},
11307 {"mmt", no_argument, NULL, OPTION_MT},
11308 {"mno-mt", no_argument, NULL, OPTION_NO_MT},
11309 {"msmartmips", no_argument, NULL, OPTION_SMARTMIPS},
11310 {"mno-smartmips", no_argument, NULL, OPTION_NO_SMARTMIPS},
11311 {"mdspr2", no_argument, NULL, OPTION_DSPR2},
11312 {"mno-dspr2", no_argument, NULL, OPTION_NO_DSPR2},
11313
11314 /* Old-style architecture options. Don't add more of these. */
11315 {"m4650", no_argument, NULL, OPTION_M4650},
11316 {"no-m4650", no_argument, NULL, OPTION_NO_M4650},
11317 {"m4010", no_argument, NULL, OPTION_M4010},
11318 {"no-m4010", no_argument, NULL, OPTION_NO_M4010},
11319 {"m4100", no_argument, NULL, OPTION_M4100},
11320 {"no-m4100", no_argument, NULL, OPTION_NO_M4100},
11321 {"m3900", no_argument, NULL, OPTION_M3900},
11322 {"no-m3900", no_argument, NULL, OPTION_NO_M3900},
11323
11324 /* Options which enable bug fixes. */
11325 {"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
11326 {"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
11327 {"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
11328 {"mfix-loongson2f-jump", no_argument, NULL, OPTION_FIX_LOONGSON2F_JUMP},
11329 {"mno-fix-loongson2f-jump", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_JUMP},
11330 {"mfix-loongson2f-nop", no_argument, NULL, OPTION_FIX_LOONGSON2F_NOP},
11331 {"mno-fix-loongson2f-nop", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_NOP},
11332 {"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120},
11333 {"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120},
11334 {"mfix-vr4130", no_argument, NULL, OPTION_FIX_VR4130},
11335 {"mno-fix-vr4130", no_argument, NULL, OPTION_NO_FIX_VR4130},
11336 {"mfix-24k", no_argument, NULL, OPTION_FIX_24K},
11337 {"mno-fix-24k", no_argument, NULL, OPTION_NO_FIX_24K},
11338 {"mfix-cn63xxp1", no_argument, NULL, OPTION_FIX_CN63XXP1},
11339 {"mno-fix-cn63xxp1", no_argument, NULL, OPTION_NO_FIX_CN63XXP1},
11340
11341 /* Miscellaneous options. */
11342 {"trap", no_argument, NULL, OPTION_TRAP},
11343 {"no-break", no_argument, NULL, OPTION_TRAP},
11344 {"break", no_argument, NULL, OPTION_BREAK},
11345 {"no-trap", no_argument, NULL, OPTION_BREAK},
11346 {"EB", no_argument, NULL, OPTION_EB},
11347 {"EL", no_argument, NULL, OPTION_EL},
11348 {"mfp32", no_argument, NULL, OPTION_FP32},
11349 {"mgp32", no_argument, NULL, OPTION_GP32},
11350 {"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
11351 {"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
11352 {"mfp64", no_argument, NULL, OPTION_FP64},
11353 {"mgp64", no_argument, NULL, OPTION_GP64},
11354 {"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH},
11355 {"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH},
11356 {"mshared", no_argument, NULL, OPTION_MSHARED},
11357 {"mno-shared", no_argument, NULL, OPTION_MNO_SHARED},
11358 {"msym32", no_argument, NULL, OPTION_MSYM32},
11359 {"mno-sym32", no_argument, NULL, OPTION_MNO_SYM32},
11360 {"msoft-float", no_argument, NULL, OPTION_SOFT_FLOAT},
11361 {"mhard-float", no_argument, NULL, OPTION_HARD_FLOAT},
11362 {"msingle-float", no_argument, NULL, OPTION_SINGLE_FLOAT},
11363 {"mdouble-float", no_argument, NULL, OPTION_DOUBLE_FLOAT},
11364
11365 /* Strictly speaking this next option is ELF specific,
11366 but we allow it for other ports as well in order to
11367 make testing easier. */
11368 {"32", no_argument, NULL, OPTION_32},
11369
11370 /* ELF-specific options. */
11371 #ifdef OBJ_ELF
11372 {"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
11373 {"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
11374 {"call_nonpic", no_argument, NULL, OPTION_CALL_NONPIC},
11375 {"non_shared", no_argument, NULL, OPTION_NON_SHARED},
11376 {"xgot", no_argument, NULL, OPTION_XGOT},
11377 {"mabi", required_argument, NULL, OPTION_MABI},
11378 {"n32", no_argument, NULL, OPTION_N32},
11379 {"64", no_argument, NULL, OPTION_64},
11380 {"mdebug", no_argument, NULL, OPTION_MDEBUG},
11381 {"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
11382 {"mpdr", no_argument, NULL, OPTION_PDR},
11383 {"mno-pdr", no_argument, NULL, OPTION_NO_PDR},
11384 {"mvxworks-pic", no_argument, NULL, OPTION_MVXWORKS_PIC},
11385 #endif /* OBJ_ELF */
11386
11387 {NULL, no_argument, NULL, 0}
11388 };
11389 size_t md_longopts_size = sizeof (md_longopts);
11390
11391 /* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
11392 NEW_VALUE. Warn if another value was already specified. Note:
11393 we have to defer parsing the -march and -mtune arguments in order
11394 to handle 'from-abi' correctly, since the ABI might be specified
11395 in a later argument. */
11396
11397 static void
11398 mips_set_option_string (const char **string_ptr, const char *new_value)
11399 {
11400 if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
11401 as_warn (_("A different %s was already specified, is now %s"),
11402 string_ptr == &mips_arch_string ? "-march" : "-mtune",
11403 new_value);
11404
11405 *string_ptr = new_value;
11406 }
11407
11408 int
11409 md_parse_option (int c, char *arg)
11410 {
11411 switch (c)
11412 {
11413 case OPTION_CONSTRUCT_FLOATS:
11414 mips_disable_float_construction = 0;
11415 break;
11416
11417 case OPTION_NO_CONSTRUCT_FLOATS:
11418 mips_disable_float_construction = 1;
11419 break;
11420
11421 case OPTION_TRAP:
11422 mips_trap = 1;
11423 break;
11424
11425 case OPTION_BREAK:
11426 mips_trap = 0;
11427 break;
11428
11429 case OPTION_EB:
11430 target_big_endian = 1;
11431 break;
11432
11433 case OPTION_EL:
11434 target_big_endian = 0;
11435 break;
11436
11437 case 'O':
11438 if (arg == NULL)
11439 mips_optimize = 1;
11440 else if (arg[0] == '0')
11441 mips_optimize = 0;
11442 else if (arg[0] == '1')
11443 mips_optimize = 1;
11444 else
11445 mips_optimize = 2;
11446 break;
11447
11448 case 'g':
11449 if (arg == NULL)
11450 mips_debug = 2;
11451 else
11452 mips_debug = atoi (arg);
11453 break;
11454
11455 case OPTION_MIPS1:
11456 file_mips_isa = ISA_MIPS1;
11457 break;
11458
11459 case OPTION_MIPS2:
11460 file_mips_isa = ISA_MIPS2;
11461 break;
11462
11463 case OPTION_MIPS3:
11464 file_mips_isa = ISA_MIPS3;
11465 break;
11466
11467 case OPTION_MIPS4:
11468 file_mips_isa = ISA_MIPS4;
11469 break;
11470
11471 case OPTION_MIPS5:
11472 file_mips_isa = ISA_MIPS5;
11473 break;
11474
11475 case OPTION_MIPS32:
11476 file_mips_isa = ISA_MIPS32;
11477 break;
11478
11479 case OPTION_MIPS32R2:
11480 file_mips_isa = ISA_MIPS32R2;
11481 break;
11482
11483 case OPTION_MIPS64R2:
11484 file_mips_isa = ISA_MIPS64R2;
11485 break;
11486
11487 case OPTION_MIPS64:
11488 file_mips_isa = ISA_MIPS64;
11489 break;
11490
11491 case OPTION_MTUNE:
11492 mips_set_option_string (&mips_tune_string, arg);
11493 break;
11494
11495 case OPTION_MARCH:
11496 mips_set_option_string (&mips_arch_string, arg);
11497 break;
11498
11499 case OPTION_M4650:
11500 mips_set_option_string (&mips_arch_string, "4650");
11501 mips_set_option_string (&mips_tune_string, "4650");
11502 break;
11503
11504 case OPTION_NO_M4650:
11505 break;
11506
11507 case OPTION_M4010:
11508 mips_set_option_string (&mips_arch_string, "4010");
11509 mips_set_option_string (&mips_tune_string, "4010");
11510 break;
11511
11512 case OPTION_NO_M4010:
11513 break;
11514
11515 case OPTION_M4100:
11516 mips_set_option_string (&mips_arch_string, "4100");
11517 mips_set_option_string (&mips_tune_string, "4100");
11518 break;
11519
11520 case OPTION_NO_M4100:
11521 break;
11522
11523 case OPTION_M3900:
11524 mips_set_option_string (&mips_arch_string, "3900");
11525 mips_set_option_string (&mips_tune_string, "3900");
11526 break;
11527
11528 case OPTION_NO_M3900:
11529 break;
11530
11531 case OPTION_MDMX:
11532 mips_opts.ase_mdmx = 1;
11533 break;
11534
11535 case OPTION_NO_MDMX:
11536 mips_opts.ase_mdmx = 0;
11537 break;
11538
11539 case OPTION_DSP:
11540 mips_opts.ase_dsp = 1;
11541 mips_opts.ase_dspr2 = 0;
11542 break;
11543
11544 case OPTION_NO_DSP:
11545 mips_opts.ase_dsp = 0;
11546 mips_opts.ase_dspr2 = 0;
11547 break;
11548
11549 case OPTION_DSPR2:
11550 mips_opts.ase_dspr2 = 1;
11551 mips_opts.ase_dsp = 1;
11552 break;
11553
11554 case OPTION_NO_DSPR2:
11555 mips_opts.ase_dspr2 = 0;
11556 mips_opts.ase_dsp = 0;
11557 break;
11558
11559 case OPTION_MT:
11560 mips_opts.ase_mt = 1;
11561 break;
11562
11563 case OPTION_NO_MT:
11564 mips_opts.ase_mt = 0;
11565 break;
11566
11567 case OPTION_MIPS16:
11568 mips_opts.mips16 = 1;
11569 mips_no_prev_insn ();
11570 break;
11571
11572 case OPTION_NO_MIPS16:
11573 mips_opts.mips16 = 0;
11574 mips_no_prev_insn ();
11575 break;
11576
11577 case OPTION_MIPS3D:
11578 mips_opts.ase_mips3d = 1;
11579 break;
11580
11581 case OPTION_NO_MIPS3D:
11582 mips_opts.ase_mips3d = 0;
11583 break;
11584
11585 case OPTION_SMARTMIPS:
11586 mips_opts.ase_smartmips = 1;
11587 break;
11588
11589 case OPTION_NO_SMARTMIPS:
11590 mips_opts.ase_smartmips = 0;
11591 break;
11592
11593 case OPTION_FIX_24K:
11594 mips_fix_24k = 1;
11595 break;
11596
11597 case OPTION_NO_FIX_24K:
11598 mips_fix_24k = 0;
11599 break;
11600
11601 case OPTION_FIX_LOONGSON2F_JUMP:
11602 mips_fix_loongson2f_jump = TRUE;
11603 break;
11604
11605 case OPTION_NO_FIX_LOONGSON2F_JUMP:
11606 mips_fix_loongson2f_jump = FALSE;
11607 break;
11608
11609 case OPTION_FIX_LOONGSON2F_NOP:
11610 mips_fix_loongson2f_nop = TRUE;
11611 break;
11612
11613 case OPTION_NO_FIX_LOONGSON2F_NOP:
11614 mips_fix_loongson2f_nop = FALSE;
11615 break;
11616
11617 case OPTION_FIX_VR4120:
11618 mips_fix_vr4120 = 1;
11619 break;
11620
11621 case OPTION_NO_FIX_VR4120:
11622 mips_fix_vr4120 = 0;
11623 break;
11624
11625 case OPTION_FIX_VR4130:
11626 mips_fix_vr4130 = 1;
11627 break;
11628
11629 case OPTION_NO_FIX_VR4130:
11630 mips_fix_vr4130 = 0;
11631 break;
11632
11633 case OPTION_FIX_CN63XXP1:
11634 mips_fix_cn63xxp1 = TRUE;
11635 break;
11636
11637 case OPTION_NO_FIX_CN63XXP1:
11638 mips_fix_cn63xxp1 = FALSE;
11639 break;
11640
11641 case OPTION_RELAX_BRANCH:
11642 mips_relax_branch = 1;
11643 break;
11644
11645 case OPTION_NO_RELAX_BRANCH:
11646 mips_relax_branch = 0;
11647 break;
11648
11649 case OPTION_MSHARED:
11650 mips_in_shared = TRUE;
11651 break;
11652
11653 case OPTION_MNO_SHARED:
11654 mips_in_shared = FALSE;
11655 break;
11656
11657 case OPTION_MSYM32:
11658 mips_opts.sym32 = TRUE;
11659 break;
11660
11661 case OPTION_MNO_SYM32:
11662 mips_opts.sym32 = FALSE;
11663 break;
11664
11665 #ifdef OBJ_ELF
11666 /* When generating ELF code, we permit -KPIC and -call_shared to
11667 select SVR4_PIC, and -non_shared to select no PIC. This is
11668 intended to be compatible with Irix 5. */
11669 case OPTION_CALL_SHARED:
11670 if (!IS_ELF)
11671 {
11672 as_bad (_("-call_shared is supported only for ELF format"));
11673 return 0;
11674 }
11675 mips_pic = SVR4_PIC;
11676 mips_abicalls = TRUE;
11677 break;
11678
11679 case OPTION_CALL_NONPIC:
11680 if (!IS_ELF)
11681 {
11682 as_bad (_("-call_nonpic is supported only for ELF format"));
11683 return 0;
11684 }
11685 mips_pic = NO_PIC;
11686 mips_abicalls = TRUE;
11687 break;
11688
11689 case OPTION_NON_SHARED:
11690 if (!IS_ELF)
11691 {
11692 as_bad (_("-non_shared is supported only for ELF format"));
11693 return 0;
11694 }
11695 mips_pic = NO_PIC;
11696 mips_abicalls = FALSE;
11697 break;
11698
11699 /* The -xgot option tells the assembler to use 32 bit offsets
11700 when accessing the got in SVR4_PIC mode. It is for Irix
11701 compatibility. */
11702 case OPTION_XGOT:
11703 mips_big_got = 1;
11704 break;
11705 #endif /* OBJ_ELF */
11706
11707 case 'G':
11708 g_switch_value = atoi (arg);
11709 g_switch_seen = 1;
11710 break;
11711
11712 /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
11713 and -mabi=64. */
11714 case OPTION_32:
11715 if (IS_ELF)
11716 mips_abi = O32_ABI;
11717 /* We silently ignore -32 for non-ELF targets. This greatly
11718 simplifies the construction of the MIPS GAS test cases. */
11719 break;
11720
11721 #ifdef OBJ_ELF
11722 case OPTION_N32:
11723 if (!IS_ELF)
11724 {
11725 as_bad (_("-n32 is supported for ELF format only"));
11726 return 0;
11727 }
11728 mips_abi = N32_ABI;
11729 break;
11730
11731 case OPTION_64:
11732 if (!IS_ELF)
11733 {
11734 as_bad (_("-64 is supported for ELF format only"));
11735 return 0;
11736 }
11737 mips_abi = N64_ABI;
11738 if (!support_64bit_objects())
11739 as_fatal (_("No compiled in support for 64 bit object file format"));
11740 break;
11741 #endif /* OBJ_ELF */
11742
11743 case OPTION_GP32:
11744 file_mips_gp32 = 1;
11745 break;
11746
11747 case OPTION_GP64:
11748 file_mips_gp32 = 0;
11749 break;
11750
11751 case OPTION_FP32:
11752 file_mips_fp32 = 1;
11753 break;
11754
11755 case OPTION_FP64:
11756 file_mips_fp32 = 0;
11757 break;
11758
11759 case OPTION_SINGLE_FLOAT:
11760 file_mips_single_float = 1;
11761 break;
11762
11763 case OPTION_DOUBLE_FLOAT:
11764 file_mips_single_float = 0;
11765 break;
11766
11767 case OPTION_SOFT_FLOAT:
11768 file_mips_soft_float = 1;
11769 break;
11770
11771 case OPTION_HARD_FLOAT:
11772 file_mips_soft_float = 0;
11773 break;
11774
11775 #ifdef OBJ_ELF
11776 case OPTION_MABI:
11777 if (!IS_ELF)
11778 {
11779 as_bad (_("-mabi is supported for ELF format only"));
11780 return 0;
11781 }
11782 if (strcmp (arg, "32") == 0)
11783 mips_abi = O32_ABI;
11784 else if (strcmp (arg, "o64") == 0)
11785 mips_abi = O64_ABI;
11786 else if (strcmp (arg, "n32") == 0)
11787 mips_abi = N32_ABI;
11788 else if (strcmp (arg, "64") == 0)
11789 {
11790 mips_abi = N64_ABI;
11791 if (! support_64bit_objects())
11792 as_fatal (_("No compiled in support for 64 bit object file "
11793 "format"));
11794 }
11795 else if (strcmp (arg, "eabi") == 0)
11796 mips_abi = EABI_ABI;
11797 else
11798 {
11799 as_fatal (_("invalid abi -mabi=%s"), arg);
11800 return 0;
11801 }
11802 break;
11803 #endif /* OBJ_ELF */
11804
11805 case OPTION_M7000_HILO_FIX:
11806 mips_7000_hilo_fix = TRUE;
11807 break;
11808
11809 case OPTION_MNO_7000_HILO_FIX:
11810 mips_7000_hilo_fix = FALSE;
11811 break;
11812
11813 #ifdef OBJ_ELF
11814 case OPTION_MDEBUG:
11815 mips_flag_mdebug = TRUE;
11816 break;
11817
11818 case OPTION_NO_MDEBUG:
11819 mips_flag_mdebug = FALSE;
11820 break;
11821
11822 case OPTION_PDR:
11823 mips_flag_pdr = TRUE;
11824 break;
11825
11826 case OPTION_NO_PDR:
11827 mips_flag_pdr = FALSE;
11828 break;
11829
11830 case OPTION_MVXWORKS_PIC:
11831 mips_pic = VXWORKS_PIC;
11832 break;
11833 #endif /* OBJ_ELF */
11834
11835 default:
11836 return 0;
11837 }
11838
11839 mips_fix_loongson2f = mips_fix_loongson2f_nop || mips_fix_loongson2f_jump;
11840
11841 return 1;
11842 }
11843 \f
11844 /* Set up globals to generate code for the ISA or processor
11845 described by INFO. */
11846
11847 static void
11848 mips_set_architecture (const struct mips_cpu_info *info)
11849 {
11850 if (info != 0)
11851 {
11852 file_mips_arch = info->cpu;
11853 mips_opts.arch = info->cpu;
11854 mips_opts.isa = info->isa;
11855 }
11856 }
11857
11858
11859 /* Likewise for tuning. */
11860
11861 static void
11862 mips_set_tune (const struct mips_cpu_info *info)
11863 {
11864 if (info != 0)
11865 mips_tune = info->cpu;
11866 }
11867
11868
11869 void
11870 mips_after_parse_args (void)
11871 {
11872 const struct mips_cpu_info *arch_info = 0;
11873 const struct mips_cpu_info *tune_info = 0;
11874
11875 /* GP relative stuff not working for PE */
11876 if (strncmp (TARGET_OS, "pe", 2) == 0)
11877 {
11878 if (g_switch_seen && g_switch_value != 0)
11879 as_bad (_("-G not supported in this configuration."));
11880 g_switch_value = 0;
11881 }
11882
11883 if (mips_abi == NO_ABI)
11884 mips_abi = MIPS_DEFAULT_ABI;
11885
11886 /* The following code determines the architecture and register size.
11887 Similar code was added to GCC 3.3 (see override_options() in
11888 config/mips/mips.c). The GAS and GCC code should be kept in sync
11889 as much as possible. */
11890
11891 if (mips_arch_string != 0)
11892 arch_info = mips_parse_cpu ("-march", mips_arch_string);
11893
11894 if (file_mips_isa != ISA_UNKNOWN)
11895 {
11896 /* Handle -mipsN. At this point, file_mips_isa contains the
11897 ISA level specified by -mipsN, while arch_info->isa contains
11898 the -march selection (if any). */
11899 if (arch_info != 0)
11900 {
11901 /* -march takes precedence over -mipsN, since it is more descriptive.
11902 There's no harm in specifying both as long as the ISA levels
11903 are the same. */
11904 if (file_mips_isa != arch_info->isa)
11905 as_bad (_("-%s conflicts with the other architecture options, which imply -%s"),
11906 mips_cpu_info_from_isa (file_mips_isa)->name,
11907 mips_cpu_info_from_isa (arch_info->isa)->name);
11908 }
11909 else
11910 arch_info = mips_cpu_info_from_isa (file_mips_isa);
11911 }
11912
11913 if (arch_info == 0)
11914 arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT);
11915
11916 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa))
11917 as_bad (_("-march=%s is not compatible with the selected ABI"),
11918 arch_info->name);
11919
11920 mips_set_architecture (arch_info);
11921
11922 /* Optimize for file_mips_arch, unless -mtune selects a different processor. */
11923 if (mips_tune_string != 0)
11924 tune_info = mips_parse_cpu ("-mtune", mips_tune_string);
11925
11926 if (tune_info == 0)
11927 mips_set_tune (arch_info);
11928 else
11929 mips_set_tune (tune_info);
11930
11931 if (file_mips_gp32 >= 0)
11932 {
11933 /* The user specified the size of the integer registers. Make sure
11934 it agrees with the ABI and ISA. */
11935 if (file_mips_gp32 == 0 && !ISA_HAS_64BIT_REGS (mips_opts.isa))
11936 as_bad (_("-mgp64 used with a 32-bit processor"));
11937 else if (file_mips_gp32 == 1 && ABI_NEEDS_64BIT_REGS (mips_abi))
11938 as_bad (_("-mgp32 used with a 64-bit ABI"));
11939 else if (file_mips_gp32 == 0 && ABI_NEEDS_32BIT_REGS (mips_abi))
11940 as_bad (_("-mgp64 used with a 32-bit ABI"));
11941 }
11942 else
11943 {
11944 /* Infer the integer register size from the ABI and processor.
11945 Restrict ourselves to 32-bit registers if that's all the
11946 processor has, or if the ABI cannot handle 64-bit registers. */
11947 file_mips_gp32 = (ABI_NEEDS_32BIT_REGS (mips_abi)
11948 || !ISA_HAS_64BIT_REGS (mips_opts.isa));
11949 }
11950
11951 switch (file_mips_fp32)
11952 {
11953 default:
11954 case -1:
11955 /* No user specified float register size.
11956 ??? GAS treats single-float processors as though they had 64-bit
11957 float registers (although it complains when double-precision
11958 instructions are used). As things stand, saying they have 32-bit
11959 registers would lead to spurious "register must be even" messages.
11960 So here we assume float registers are never smaller than the
11961 integer ones. */
11962 if (file_mips_gp32 == 0)
11963 /* 64-bit integer registers implies 64-bit float registers. */
11964 file_mips_fp32 = 0;
11965 else if ((mips_opts.ase_mips3d > 0 || mips_opts.ase_mdmx > 0)
11966 && ISA_HAS_64BIT_FPRS (mips_opts.isa))
11967 /* -mips3d and -mdmx imply 64-bit float registers, if possible. */
11968 file_mips_fp32 = 0;
11969 else
11970 /* 32-bit float registers. */
11971 file_mips_fp32 = 1;
11972 break;
11973
11974 /* The user specified the size of the float registers. Check if it
11975 agrees with the ABI and ISA. */
11976 case 0:
11977 if (!ISA_HAS_64BIT_FPRS (mips_opts.isa))
11978 as_bad (_("-mfp64 used with a 32-bit fpu"));
11979 else if (ABI_NEEDS_32BIT_REGS (mips_abi)
11980 && !ISA_HAS_MXHC1 (mips_opts.isa))
11981 as_warn (_("-mfp64 used with a 32-bit ABI"));
11982 break;
11983 case 1:
11984 if (ABI_NEEDS_64BIT_REGS (mips_abi))
11985 as_warn (_("-mfp32 used with a 64-bit ABI"));
11986 break;
11987 }
11988
11989 /* End of GCC-shared inference code. */
11990
11991 /* This flag is set when we have a 64-bit capable CPU but use only
11992 32-bit wide registers. Note that EABI does not use it. */
11993 if (ISA_HAS_64BIT_REGS (mips_opts.isa)
11994 && ((mips_abi == NO_ABI && file_mips_gp32 == 1)
11995 || mips_abi == O32_ABI))
11996 mips_32bitmode = 1;
11997
11998 if (mips_opts.isa == ISA_MIPS1 && mips_trap)
11999 as_bad (_("trap exception not supported at ISA 1"));
12000
12001 /* If the selected architecture includes support for ASEs, enable
12002 generation of code for them. */
12003 if (mips_opts.mips16 == -1)
12004 mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_arch)) ? 1 : 0;
12005 if (mips_opts.ase_mips3d == -1)
12006 mips_opts.ase_mips3d = ((arch_info->flags & MIPS_CPU_ASE_MIPS3D)
12007 && file_mips_fp32 == 0) ? 1 : 0;
12008 if (mips_opts.ase_mips3d && file_mips_fp32 == 1)
12009 as_bad (_("-mfp32 used with -mips3d"));
12010
12011 if (mips_opts.ase_mdmx == -1)
12012 mips_opts.ase_mdmx = ((arch_info->flags & MIPS_CPU_ASE_MDMX)
12013 && file_mips_fp32 == 0) ? 1 : 0;
12014 if (mips_opts.ase_mdmx && file_mips_fp32 == 1)
12015 as_bad (_("-mfp32 used with -mdmx"));
12016
12017 if (mips_opts.ase_smartmips == -1)
12018 mips_opts.ase_smartmips = (arch_info->flags & MIPS_CPU_ASE_SMARTMIPS) ? 1 : 0;
12019 if (mips_opts.ase_smartmips && !ISA_SUPPORTS_SMARTMIPS)
12020 as_warn (_("%s ISA does not support SmartMIPS"),
12021 mips_cpu_info_from_isa (mips_opts.isa)->name);
12022
12023 if (mips_opts.ase_dsp == -1)
12024 mips_opts.ase_dsp = (arch_info->flags & MIPS_CPU_ASE_DSP) ? 1 : 0;
12025 if (mips_opts.ase_dsp && !ISA_SUPPORTS_DSP_ASE)
12026 as_warn (_("%s ISA does not support DSP ASE"),
12027 mips_cpu_info_from_isa (mips_opts.isa)->name);
12028
12029 if (mips_opts.ase_dspr2 == -1)
12030 {
12031 mips_opts.ase_dspr2 = (arch_info->flags & MIPS_CPU_ASE_DSPR2) ? 1 : 0;
12032 mips_opts.ase_dsp = (arch_info->flags & MIPS_CPU_ASE_DSP) ? 1 : 0;
12033 }
12034 if (mips_opts.ase_dspr2 && !ISA_SUPPORTS_DSPR2_ASE)
12035 as_warn (_("%s ISA does not support DSP R2 ASE"),
12036 mips_cpu_info_from_isa (mips_opts.isa)->name);
12037
12038 if (mips_opts.ase_mt == -1)
12039 mips_opts.ase_mt = (arch_info->flags & MIPS_CPU_ASE_MT) ? 1 : 0;
12040 if (mips_opts.ase_mt && !ISA_SUPPORTS_MT_ASE)
12041 as_warn (_("%s ISA does not support MT ASE"),
12042 mips_cpu_info_from_isa (mips_opts.isa)->name);
12043
12044 file_mips_isa = mips_opts.isa;
12045 file_ase_mips16 = mips_opts.mips16;
12046 file_ase_mips3d = mips_opts.ase_mips3d;
12047 file_ase_mdmx = mips_opts.ase_mdmx;
12048 file_ase_smartmips = mips_opts.ase_smartmips;
12049 file_ase_dsp = mips_opts.ase_dsp;
12050 file_ase_dspr2 = mips_opts.ase_dspr2;
12051 file_ase_mt = mips_opts.ase_mt;
12052 mips_opts.gp32 = file_mips_gp32;
12053 mips_opts.fp32 = file_mips_fp32;
12054 mips_opts.soft_float = file_mips_soft_float;
12055 mips_opts.single_float = file_mips_single_float;
12056
12057 if (mips_flag_mdebug < 0)
12058 {
12059 #ifdef OBJ_MAYBE_ECOFF
12060 if (OUTPUT_FLAVOR == bfd_target_ecoff_flavour)
12061 mips_flag_mdebug = 1;
12062 else
12063 #endif /* OBJ_MAYBE_ECOFF */
12064 mips_flag_mdebug = 0;
12065 }
12066 }
12067 \f
12068 void
12069 mips_init_after_args (void)
12070 {
12071 /* initialize opcodes */
12072 bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes;
12073 mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes;
12074 }
12075
12076 long
12077 md_pcrel_from (fixS *fixP)
12078 {
12079 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
12080 switch (fixP->fx_r_type)
12081 {
12082 case BFD_RELOC_16_PCREL_S2:
12083 case BFD_RELOC_MIPS_JMP:
12084 /* Return the address of the delay slot. */
12085 return addr + 4;
12086 default:
12087 /* We have no relocation type for PC relative MIPS16 instructions. */
12088 if (fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != now_seg)
12089 as_bad_where (fixP->fx_file, fixP->fx_line,
12090 _("PC relative MIPS16 instruction references a different section"));
12091 return addr;
12092 }
12093 }
12094
12095 /* This is called before the symbol table is processed. In order to
12096 work with gcc when using mips-tfile, we must keep all local labels.
12097 However, in other cases, we want to discard them. If we were
12098 called with -g, but we didn't see any debugging information, it may
12099 mean that gcc is smuggling debugging information through to
12100 mips-tfile, in which case we must generate all local labels. */
12101
12102 void
12103 mips_frob_file_before_adjust (void)
12104 {
12105 #ifndef NO_ECOFF_DEBUGGING
12106 if (ECOFF_DEBUGGING
12107 && mips_debug != 0
12108 && ! ecoff_debugging_seen)
12109 flag_keep_locals = 1;
12110 #endif
12111 }
12112
12113 /* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede
12114 the corresponding LO16 reloc. This is called before md_apply_fix and
12115 tc_gen_reloc. Unmatched relocs can only be generated by use of explicit
12116 relocation operators.
12117
12118 For our purposes, a %lo() expression matches a %got() or %hi()
12119 expression if:
12120
12121 (a) it refers to the same symbol; and
12122 (b) the offset applied in the %lo() expression is no lower than
12123 the offset applied in the %got() or %hi().
12124
12125 (b) allows us to cope with code like:
12126
12127 lui $4,%hi(foo)
12128 lh $4,%lo(foo+2)($4)
12129
12130 ...which is legal on RELA targets, and has a well-defined behaviour
12131 if the user knows that adding 2 to "foo" will not induce a carry to
12132 the high 16 bits.
12133
12134 When several %lo()s match a particular %got() or %hi(), we use the
12135 following rules to distinguish them:
12136
12137 (1) %lo()s with smaller offsets are a better match than %lo()s with
12138 higher offsets.
12139
12140 (2) %lo()s with no matching %got() or %hi() are better than those
12141 that already have a matching %got() or %hi().
12142
12143 (3) later %lo()s are better than earlier %lo()s.
12144
12145 These rules are applied in order.
12146
12147 (1) means, among other things, that %lo()s with identical offsets are
12148 chosen if they exist.
12149
12150 (2) means that we won't associate several high-part relocations with
12151 the same low-part relocation unless there's no alternative. Having
12152 several high parts for the same low part is a GNU extension; this rule
12153 allows careful users to avoid it.
12154
12155 (3) is purely cosmetic. mips_hi_fixup_list is is in reverse order,
12156 with the last high-part relocation being at the front of the list.
12157 It therefore makes sense to choose the last matching low-part
12158 relocation, all other things being equal. It's also easier
12159 to code that way. */
12160
12161 void
12162 mips_frob_file (void)
12163 {
12164 struct mips_hi_fixup *l;
12165 bfd_reloc_code_real_type looking_for_rtype = BFD_RELOC_UNUSED;
12166
12167 for (l = mips_hi_fixup_list; l != NULL; l = l->next)
12168 {
12169 segment_info_type *seginfo;
12170 bfd_boolean matched_lo_p;
12171 fixS **hi_pos, **lo_pos, **pos;
12172
12173 gas_assert (reloc_needs_lo_p (l->fixp->fx_r_type));
12174
12175 /* If a GOT16 relocation turns out to be against a global symbol,
12176 there isn't supposed to be a matching LO. */
12177 if (got16_reloc_p (l->fixp->fx_r_type)
12178 && !pic_need_relax (l->fixp->fx_addsy, l->seg))
12179 continue;
12180
12181 /* Check quickly whether the next fixup happens to be a matching %lo. */
12182 if (fixup_has_matching_lo_p (l->fixp))
12183 continue;
12184
12185 seginfo = seg_info (l->seg);
12186
12187 /* Set HI_POS to the position of this relocation in the chain.
12188 Set LO_POS to the position of the chosen low-part relocation.
12189 MATCHED_LO_P is true on entry to the loop if *POS is a low-part
12190 relocation that matches an immediately-preceding high-part
12191 relocation. */
12192 hi_pos = NULL;
12193 lo_pos = NULL;
12194 matched_lo_p = FALSE;
12195 looking_for_rtype = matching_lo_reloc (l->fixp->fx_r_type);
12196
12197 for (pos = &seginfo->fix_root; *pos != NULL; pos = &(*pos)->fx_next)
12198 {
12199 if (*pos == l->fixp)
12200 hi_pos = pos;
12201
12202 if ((*pos)->fx_r_type == looking_for_rtype
12203 && symbol_same_p ((*pos)->fx_addsy, l->fixp->fx_addsy)
12204 && (*pos)->fx_offset >= l->fixp->fx_offset
12205 && (lo_pos == NULL
12206 || (*pos)->fx_offset < (*lo_pos)->fx_offset
12207 || (!matched_lo_p
12208 && (*pos)->fx_offset == (*lo_pos)->fx_offset)))
12209 lo_pos = pos;
12210
12211 matched_lo_p = (reloc_needs_lo_p ((*pos)->fx_r_type)
12212 && fixup_has_matching_lo_p (*pos));
12213 }
12214
12215 /* If we found a match, remove the high-part relocation from its
12216 current position and insert it before the low-part relocation.
12217 Make the offsets match so that fixup_has_matching_lo_p()
12218 will return true.
12219
12220 We don't warn about unmatched high-part relocations since some
12221 versions of gcc have been known to emit dead "lui ...%hi(...)"
12222 instructions. */
12223 if (lo_pos != NULL)
12224 {
12225 l->fixp->fx_offset = (*lo_pos)->fx_offset;
12226 if (l->fixp->fx_next != *lo_pos)
12227 {
12228 *hi_pos = l->fixp->fx_next;
12229 l->fixp->fx_next = *lo_pos;
12230 *lo_pos = l->fixp;
12231 }
12232 }
12233 }
12234 }
12235
12236 /* We may have combined relocations without symbols in the N32/N64 ABI.
12237 We have to prevent gas from dropping them. */
12238
12239 int
12240 mips_force_relocation (fixS *fixp)
12241 {
12242 if (generic_force_reloc (fixp))
12243 return 1;
12244
12245 if (HAVE_NEWABI
12246 && S_GET_SEGMENT (fixp->fx_addsy) == bfd_abs_section_ptr
12247 && (fixp->fx_r_type == BFD_RELOC_MIPS_SUB
12248 || hi16_reloc_p (fixp->fx_r_type)
12249 || lo16_reloc_p (fixp->fx_r_type)))
12250 return 1;
12251
12252 return 0;
12253 }
12254
12255 /* Apply a fixup to the object file. */
12256
12257 void
12258 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
12259 {
12260 bfd_byte *buf;
12261 long insn;
12262 reloc_howto_type *howto;
12263
12264 /* We ignore generic BFD relocations we don't know about. */
12265 howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
12266 if (! howto)
12267 return;
12268
12269 gas_assert (fixP->fx_size == 4
12270 || fixP->fx_r_type == BFD_RELOC_16
12271 || fixP->fx_r_type == BFD_RELOC_64
12272 || fixP->fx_r_type == BFD_RELOC_CTOR
12273 || fixP->fx_r_type == BFD_RELOC_MIPS_SUB
12274 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
12275 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY
12276 || fixP->fx_r_type == BFD_RELOC_MIPS_TLS_DTPREL64);
12277
12278 buf = (bfd_byte *) (fixP->fx_frag->fr_literal + fixP->fx_where);
12279
12280 gas_assert (!fixP->fx_pcrel || fixP->fx_r_type == BFD_RELOC_16_PCREL_S2);
12281
12282 /* Don't treat parts of a composite relocation as done. There are two
12283 reasons for this:
12284
12285 (1) The second and third parts will be against 0 (RSS_UNDEF) but
12286 should nevertheless be emitted if the first part is.
12287
12288 (2) In normal usage, composite relocations are never assembly-time
12289 constants. The easiest way of dealing with the pathological
12290 exceptions is to generate a relocation against STN_UNDEF and
12291 leave everything up to the linker. */
12292 if (fixP->fx_addsy == NULL && !fixP->fx_pcrel && fixP->fx_tcbit == 0)
12293 fixP->fx_done = 1;
12294
12295 switch (fixP->fx_r_type)
12296 {
12297 case BFD_RELOC_MIPS_TLS_GD:
12298 case BFD_RELOC_MIPS_TLS_LDM:
12299 case BFD_RELOC_MIPS_TLS_DTPREL32:
12300 case BFD_RELOC_MIPS_TLS_DTPREL64:
12301 case BFD_RELOC_MIPS_TLS_DTPREL_HI16:
12302 case BFD_RELOC_MIPS_TLS_DTPREL_LO16:
12303 case BFD_RELOC_MIPS_TLS_GOTTPREL:
12304 case BFD_RELOC_MIPS_TLS_TPREL_HI16:
12305 case BFD_RELOC_MIPS_TLS_TPREL_LO16:
12306 S_SET_THREAD_LOCAL (fixP->fx_addsy);
12307 /* fall through */
12308
12309 case BFD_RELOC_MIPS_JMP:
12310 case BFD_RELOC_MIPS_SHIFT5:
12311 case BFD_RELOC_MIPS_SHIFT6:
12312 case BFD_RELOC_MIPS_GOT_DISP:
12313 case BFD_RELOC_MIPS_GOT_PAGE:
12314 case BFD_RELOC_MIPS_GOT_OFST:
12315 case BFD_RELOC_MIPS_SUB:
12316 case BFD_RELOC_MIPS_INSERT_A:
12317 case BFD_RELOC_MIPS_INSERT_B:
12318 case BFD_RELOC_MIPS_DELETE:
12319 case BFD_RELOC_MIPS_HIGHEST:
12320 case BFD_RELOC_MIPS_HIGHER:
12321 case BFD_RELOC_MIPS_SCN_DISP:
12322 case BFD_RELOC_MIPS_REL16:
12323 case BFD_RELOC_MIPS_RELGOT:
12324 case BFD_RELOC_MIPS_JALR:
12325 case BFD_RELOC_HI16:
12326 case BFD_RELOC_HI16_S:
12327 case BFD_RELOC_GPREL16:
12328 case BFD_RELOC_MIPS_LITERAL:
12329 case BFD_RELOC_MIPS_CALL16:
12330 case BFD_RELOC_MIPS_GOT16:
12331 case BFD_RELOC_GPREL32:
12332 case BFD_RELOC_MIPS_GOT_HI16:
12333 case BFD_RELOC_MIPS_GOT_LO16:
12334 case BFD_RELOC_MIPS_CALL_HI16:
12335 case BFD_RELOC_MIPS_CALL_LO16:
12336 case BFD_RELOC_MIPS16_GPREL:
12337 case BFD_RELOC_MIPS16_GOT16:
12338 case BFD_RELOC_MIPS16_CALL16:
12339 case BFD_RELOC_MIPS16_HI16:
12340 case BFD_RELOC_MIPS16_HI16_S:
12341 case BFD_RELOC_MIPS16_JMP:
12342 /* Nothing needed to do. The value comes from the reloc entry. */
12343 break;
12344
12345 case BFD_RELOC_64:
12346 /* This is handled like BFD_RELOC_32, but we output a sign
12347 extended value if we are only 32 bits. */
12348 if (fixP->fx_done)
12349 {
12350 if (8 <= sizeof (valueT))
12351 md_number_to_chars ((char *) buf, *valP, 8);
12352 else
12353 {
12354 valueT hiv;
12355
12356 if ((*valP & 0x80000000) != 0)
12357 hiv = 0xffffffff;
12358 else
12359 hiv = 0;
12360 md_number_to_chars ((char *)(buf + (target_big_endian ? 4 : 0)),
12361 *valP, 4);
12362 md_number_to_chars ((char *)(buf + (target_big_endian ? 0 : 4)),
12363 hiv, 4);
12364 }
12365 }
12366 break;
12367
12368 case BFD_RELOC_RVA:
12369 case BFD_RELOC_32:
12370 case BFD_RELOC_16:
12371 /* If we are deleting this reloc entry, we must fill in the
12372 value now. This can happen if we have a .word which is not
12373 resolved when it appears but is later defined. */
12374 if (fixP->fx_done)
12375 md_number_to_chars ((char *) buf, *valP, fixP->fx_size);
12376 break;
12377
12378 case BFD_RELOC_LO16:
12379 case BFD_RELOC_MIPS16_LO16:
12380 /* FIXME: Now that embedded-PIC is gone, some of this code/comment
12381 may be safe to remove, but if so it's not obvious. */
12382 /* When handling an embedded PIC switch statement, we can wind
12383 up deleting a LO16 reloc. See the 'o' case in mips_ip. */
12384 if (fixP->fx_done)
12385 {
12386 if (*valP + 0x8000 > 0xffff)
12387 as_bad_where (fixP->fx_file, fixP->fx_line,
12388 _("relocation overflow"));
12389 if (target_big_endian)
12390 buf += 2;
12391 md_number_to_chars ((char *) buf, *valP, 2);
12392 }
12393 break;
12394
12395 case BFD_RELOC_16_PCREL_S2:
12396 if ((*valP & 0x3) != 0)
12397 as_bad_where (fixP->fx_file, fixP->fx_line,
12398 _("Branch to misaligned address (%lx)"), (long) *valP);
12399
12400 /* We need to save the bits in the instruction since fixup_segment()
12401 might be deleting the relocation entry (i.e., a branch within
12402 the current segment). */
12403 if (! fixP->fx_done)
12404 break;
12405
12406 /* Update old instruction data. */
12407 if (target_big_endian)
12408 insn = (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf[3];
12409 else
12410 insn = (buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | buf[0];
12411
12412 if (*valP + 0x20000 <= 0x3ffff)
12413 {
12414 insn |= (*valP >> 2) & 0xffff;
12415 md_number_to_chars ((char *) buf, insn, 4);
12416 }
12417 else if (mips_pic == NO_PIC
12418 && fixP->fx_done
12419 && fixP->fx_frag->fr_address >= text_section->vma
12420 && (fixP->fx_frag->fr_address
12421 < text_section->vma + bfd_get_section_size (text_section))
12422 && ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
12423 || (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
12424 || (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
12425 {
12426 /* The branch offset is too large. If this is an
12427 unconditional branch, and we are not generating PIC code,
12428 we can convert it to an absolute jump instruction. */
12429 if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
12430 insn = 0x0c000000; /* jal */
12431 else
12432 insn = 0x08000000; /* j */
12433 fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
12434 fixP->fx_done = 0;
12435 fixP->fx_addsy = section_symbol (text_section);
12436 *valP += md_pcrel_from (fixP);
12437 md_number_to_chars ((char *) buf, insn, 4);
12438 }
12439 else
12440 {
12441 /* If we got here, we have branch-relaxation disabled,
12442 and there's nothing we can do to fix this instruction
12443 without turning it into a longer sequence. */
12444 as_bad_where (fixP->fx_file, fixP->fx_line,
12445 _("Branch out of range"));
12446 }
12447 break;
12448
12449 case BFD_RELOC_VTABLE_INHERIT:
12450 fixP->fx_done = 0;
12451 if (fixP->fx_addsy
12452 && !S_IS_DEFINED (fixP->fx_addsy)
12453 && !S_IS_WEAK (fixP->fx_addsy))
12454 S_SET_WEAK (fixP->fx_addsy);
12455 break;
12456
12457 case BFD_RELOC_VTABLE_ENTRY:
12458 fixP->fx_done = 0;
12459 break;
12460
12461 default:
12462 internalError ();
12463 }
12464
12465 /* Remember value for tc_gen_reloc. */
12466 fixP->fx_addnumber = *valP;
12467 }
12468
12469 static symbolS *
12470 get_symbol (void)
12471 {
12472 int c;
12473 char *name;
12474 symbolS *p;
12475
12476 name = input_line_pointer;
12477 c = get_symbol_end ();
12478 p = (symbolS *) symbol_find_or_make (name);
12479 *input_line_pointer = c;
12480 return p;
12481 }
12482
12483 /* Align the current frag to a given power of two. If a particular
12484 fill byte should be used, FILL points to an integer that contains
12485 that byte, otherwise FILL is null.
12486
12487 The MIPS assembler also automatically adjusts any preceding
12488 label. */
12489
12490 static void
12491 mips_align (int to, int *fill, symbolS *label)
12492 {
12493 mips_emit_delays ();
12494 mips_record_mips16_mode ();
12495 if (fill == NULL && subseg_text_p (now_seg))
12496 frag_align_code (to, 0);
12497 else
12498 frag_align (to, fill ? *fill : 0, 0);
12499 record_alignment (now_seg, to);
12500 if (label != NULL)
12501 {
12502 gas_assert (S_GET_SEGMENT (label) == now_seg);
12503 symbol_set_frag (label, frag_now);
12504 S_SET_VALUE (label, (valueT) frag_now_fix ());
12505 }
12506 }
12507
12508 /* Align to a given power of two. .align 0 turns off the automatic
12509 alignment used by the data creating pseudo-ops. */
12510
12511 static void
12512 s_align (int x ATTRIBUTE_UNUSED)
12513 {
12514 int temp, fill_value, *fill_ptr;
12515 long max_alignment = 28;
12516
12517 /* o Note that the assembler pulls down any immediately preceding label
12518 to the aligned address.
12519 o It's not documented but auto alignment is reinstated by
12520 a .align pseudo instruction.
12521 o Note also that after auto alignment is turned off the mips assembler
12522 issues an error on attempt to assemble an improperly aligned data item.
12523 We don't. */
12524
12525 temp = get_absolute_expression ();
12526 if (temp > max_alignment)
12527 as_bad (_("Alignment too large: %d. assumed."), temp = max_alignment);
12528 else if (temp < 0)
12529 {
12530 as_warn (_("Alignment negative: 0 assumed."));
12531 temp = 0;
12532 }
12533 if (*input_line_pointer == ',')
12534 {
12535 ++input_line_pointer;
12536 fill_value = get_absolute_expression ();
12537 fill_ptr = &fill_value;
12538 }
12539 else
12540 fill_ptr = 0;
12541 if (temp)
12542 {
12543 segment_info_type *si = seg_info (now_seg);
12544 struct insn_label_list *l = si->label_list;
12545 /* Auto alignment should be switched on by next section change. */
12546 auto_align = 1;
12547 mips_align (temp, fill_ptr, l != NULL ? l->label : NULL);
12548 }
12549 else
12550 {
12551 auto_align = 0;
12552 }
12553
12554 demand_empty_rest_of_line ();
12555 }
12556
12557 static void
12558 s_change_sec (int sec)
12559 {
12560 segT seg;
12561
12562 #ifdef OBJ_ELF
12563 /* The ELF backend needs to know that we are changing sections, so
12564 that .previous works correctly. We could do something like check
12565 for an obj_section_change_hook macro, but that might be confusing
12566 as it would not be appropriate to use it in the section changing
12567 functions in read.c, since obj-elf.c intercepts those. FIXME:
12568 This should be cleaner, somehow. */
12569 if (IS_ELF)
12570 obj_elf_section_change_hook ();
12571 #endif
12572
12573 mips_emit_delays ();
12574
12575 switch (sec)
12576 {
12577 case 't':
12578 s_text (0);
12579 break;
12580 case 'd':
12581 s_data (0);
12582 break;
12583 case 'b':
12584 subseg_set (bss_section, (subsegT) get_absolute_expression ());
12585 demand_empty_rest_of_line ();
12586 break;
12587
12588 case 'r':
12589 seg = subseg_new (RDATA_SECTION_NAME,
12590 (subsegT) get_absolute_expression ());
12591 if (IS_ELF)
12592 {
12593 bfd_set_section_flags (stdoutput, seg, (SEC_ALLOC | SEC_LOAD
12594 | SEC_READONLY | SEC_RELOC
12595 | SEC_DATA));
12596 if (strncmp (TARGET_OS, "elf", 3) != 0)
12597 record_alignment (seg, 4);
12598 }
12599 demand_empty_rest_of_line ();
12600 break;
12601
12602 case 's':
12603 seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
12604 if (IS_ELF)
12605 {
12606 bfd_set_section_flags (stdoutput, seg,
12607 SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA);
12608 if (strncmp (TARGET_OS, "elf", 3) != 0)
12609 record_alignment (seg, 4);
12610 }
12611 demand_empty_rest_of_line ();
12612 break;
12613
12614 case 'B':
12615 seg = subseg_new (".sbss", (subsegT) get_absolute_expression ());
12616 if (IS_ELF)
12617 {
12618 bfd_set_section_flags (stdoutput, seg, SEC_ALLOC);
12619 if (strncmp (TARGET_OS, "elf", 3) != 0)
12620 record_alignment (seg, 4);
12621 }
12622 demand_empty_rest_of_line ();
12623 break;
12624 }
12625
12626 auto_align = 1;
12627 }
12628
12629 void
12630 s_change_section (int ignore ATTRIBUTE_UNUSED)
12631 {
12632 #ifdef OBJ_ELF
12633 char *section_name;
12634 char c;
12635 char next_c = 0;
12636 int section_type;
12637 int section_flag;
12638 int section_entry_size;
12639 int section_alignment;
12640
12641 if (!IS_ELF)
12642 return;
12643
12644 section_name = input_line_pointer;
12645 c = get_symbol_end ();
12646 if (c)
12647 next_c = *(input_line_pointer + 1);
12648
12649 /* Do we have .section Name<,"flags">? */
12650 if (c != ',' || (c == ',' && next_c == '"'))
12651 {
12652 /* just after name is now '\0'. */
12653 *input_line_pointer = c;
12654 input_line_pointer = section_name;
12655 obj_elf_section (ignore);
12656 return;
12657 }
12658 input_line_pointer++;
12659
12660 /* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
12661 if (c == ',')
12662 section_type = get_absolute_expression ();
12663 else
12664 section_type = 0;
12665 if (*input_line_pointer++ == ',')
12666 section_flag = get_absolute_expression ();
12667 else
12668 section_flag = 0;
12669 if (*input_line_pointer++ == ',')
12670 section_entry_size = get_absolute_expression ();
12671 else
12672 section_entry_size = 0;
12673 if (*input_line_pointer++ == ',')
12674 section_alignment = get_absolute_expression ();
12675 else
12676 section_alignment = 0;
12677 /* FIXME: really ignore? */
12678 (void) section_alignment;
12679
12680 section_name = xstrdup (section_name);
12681
12682 /* When using the generic form of .section (as implemented by obj-elf.c),
12683 there's no way to set the section type to SHT_MIPS_DWARF. Users have
12684 traditionally had to fall back on the more common @progbits instead.
12685
12686 There's nothing really harmful in this, since bfd will correct
12687 SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
12688 means that, for backwards compatibility, the special_section entries
12689 for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
12690
12691 Even so, we shouldn't force users of the MIPS .section syntax to
12692 incorrectly label the sections as SHT_PROGBITS. The best compromise
12693 seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
12694 generic type-checking code. */
12695 if (section_type == SHT_MIPS_DWARF)
12696 section_type = SHT_PROGBITS;
12697
12698 obj_elf_change_section (section_name, section_type, section_flag,
12699 section_entry_size, 0, 0, 0);
12700
12701 if (now_seg->name != section_name)
12702 free (section_name);
12703 #endif /* OBJ_ELF */
12704 }
12705
12706 void
12707 mips_enable_auto_align (void)
12708 {
12709 auto_align = 1;
12710 }
12711
12712 static void
12713 s_cons (int log_size)
12714 {
12715 segment_info_type *si = seg_info (now_seg);
12716 struct insn_label_list *l = si->label_list;
12717 symbolS *label;
12718
12719 label = l != NULL ? l->label : NULL;
12720 mips_emit_delays ();
12721 if (log_size > 0 && auto_align)
12722 mips_align (log_size, 0, label);
12723 mips_clear_insn_labels ();
12724 cons (1 << log_size);
12725 }
12726
12727 static void
12728 s_float_cons (int type)
12729 {
12730 segment_info_type *si = seg_info (now_seg);
12731 struct insn_label_list *l = si->label_list;
12732 symbolS *label;
12733
12734 label = l != NULL ? l->label : NULL;
12735
12736 mips_emit_delays ();
12737
12738 if (auto_align)
12739 {
12740 if (type == 'd')
12741 mips_align (3, 0, label);
12742 else
12743 mips_align (2, 0, label);
12744 }
12745
12746 mips_clear_insn_labels ();
12747
12748 float_cons (type);
12749 }
12750
12751 /* Handle .globl. We need to override it because on Irix 5 you are
12752 permitted to say
12753 .globl foo .text
12754 where foo is an undefined symbol, to mean that foo should be
12755 considered to be the address of a function. */
12756
12757 static void
12758 s_mips_globl (int x ATTRIBUTE_UNUSED)
12759 {
12760 char *name;
12761 int c;
12762 symbolS *symbolP;
12763 flagword flag;
12764
12765 do
12766 {
12767 name = input_line_pointer;
12768 c = get_symbol_end ();
12769 symbolP = symbol_find_or_make (name);
12770 S_SET_EXTERNAL (symbolP);
12771
12772 *input_line_pointer = c;
12773 SKIP_WHITESPACE ();
12774
12775 /* On Irix 5, every global symbol that is not explicitly labelled as
12776 being a function is apparently labelled as being an object. */
12777 flag = BSF_OBJECT;
12778
12779 if (!is_end_of_line[(unsigned char) *input_line_pointer]
12780 && (*input_line_pointer != ','))
12781 {
12782 char *secname;
12783 asection *sec;
12784
12785 secname = input_line_pointer;
12786 c = get_symbol_end ();
12787 sec = bfd_get_section_by_name (stdoutput, secname);
12788 if (sec == NULL)
12789 as_bad (_("%s: no such section"), secname);
12790 *input_line_pointer = c;
12791
12792 if (sec != NULL && (sec->flags & SEC_CODE) != 0)
12793 flag = BSF_FUNCTION;
12794 }
12795
12796 symbol_get_bfdsym (symbolP)->flags |= flag;
12797
12798 c = *input_line_pointer;
12799 if (c == ',')
12800 {
12801 input_line_pointer++;
12802 SKIP_WHITESPACE ();
12803 if (is_end_of_line[(unsigned char) *input_line_pointer])
12804 c = '\n';
12805 }
12806 }
12807 while (c == ',');
12808
12809 demand_empty_rest_of_line ();
12810 }
12811
12812 static void
12813 s_option (int x ATTRIBUTE_UNUSED)
12814 {
12815 char *opt;
12816 char c;
12817
12818 opt = input_line_pointer;
12819 c = get_symbol_end ();
12820
12821 if (*opt == 'O')
12822 {
12823 /* FIXME: What does this mean? */
12824 }
12825 else if (strncmp (opt, "pic", 3) == 0)
12826 {
12827 int i;
12828
12829 i = atoi (opt + 3);
12830 if (i == 0)
12831 mips_pic = NO_PIC;
12832 else if (i == 2)
12833 {
12834 mips_pic = SVR4_PIC;
12835 mips_abicalls = TRUE;
12836 }
12837 else
12838 as_bad (_(".option pic%d not supported"), i);
12839
12840 if (mips_pic == SVR4_PIC)
12841 {
12842 if (g_switch_seen && g_switch_value != 0)
12843 as_warn (_("-G may not be used with SVR4 PIC code"));
12844 g_switch_value = 0;
12845 bfd_set_gp_size (stdoutput, 0);
12846 }
12847 }
12848 else
12849 as_warn (_("Unrecognized option \"%s\""), opt);
12850
12851 *input_line_pointer = c;
12852 demand_empty_rest_of_line ();
12853 }
12854
12855 /* This structure is used to hold a stack of .set values. */
12856
12857 struct mips_option_stack
12858 {
12859 struct mips_option_stack *next;
12860 struct mips_set_options options;
12861 };
12862
12863 static struct mips_option_stack *mips_opts_stack;
12864
12865 /* Handle the .set pseudo-op. */
12866
12867 static void
12868 s_mipsset (int x ATTRIBUTE_UNUSED)
12869 {
12870 char *name = input_line_pointer, ch;
12871
12872 while (!is_end_of_line[(unsigned char) *input_line_pointer])
12873 ++input_line_pointer;
12874 ch = *input_line_pointer;
12875 *input_line_pointer = '\0';
12876
12877 if (strcmp (name, "reorder") == 0)
12878 {
12879 if (mips_opts.noreorder)
12880 end_noreorder ();
12881 }
12882 else if (strcmp (name, "noreorder") == 0)
12883 {
12884 if (!mips_opts.noreorder)
12885 start_noreorder ();
12886 }
12887 else if (strncmp (name, "at=", 3) == 0)
12888 {
12889 char *s = name + 3;
12890
12891 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &mips_opts.at))
12892 as_bad (_("Unrecognized register name `%s'"), s);
12893 }
12894 else if (strcmp (name, "at") == 0)
12895 {
12896 mips_opts.at = ATREG;
12897 }
12898 else if (strcmp (name, "noat") == 0)
12899 {
12900 mips_opts.at = ZERO;
12901 }
12902 else if (strcmp (name, "macro") == 0)
12903 {
12904 mips_opts.warn_about_macros = 0;
12905 }
12906 else if (strcmp (name, "nomacro") == 0)
12907 {
12908 if (mips_opts.noreorder == 0)
12909 as_bad (_("`noreorder' must be set before `nomacro'"));
12910 mips_opts.warn_about_macros = 1;
12911 }
12912 else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
12913 {
12914 mips_opts.nomove = 0;
12915 }
12916 else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
12917 {
12918 mips_opts.nomove = 1;
12919 }
12920 else if (strcmp (name, "bopt") == 0)
12921 {
12922 mips_opts.nobopt = 0;
12923 }
12924 else if (strcmp (name, "nobopt") == 0)
12925 {
12926 mips_opts.nobopt = 1;
12927 }
12928 else if (strcmp (name, "gp=default") == 0)
12929 mips_opts.gp32 = file_mips_gp32;
12930 else if (strcmp (name, "gp=32") == 0)
12931 mips_opts.gp32 = 1;
12932 else if (strcmp (name, "gp=64") == 0)
12933 {
12934 if (!ISA_HAS_64BIT_REGS (mips_opts.isa))
12935 as_warn (_("%s isa does not support 64-bit registers"),
12936 mips_cpu_info_from_isa (mips_opts.isa)->name);
12937 mips_opts.gp32 = 0;
12938 }
12939 else if (strcmp (name, "fp=default") == 0)
12940 mips_opts.fp32 = file_mips_fp32;
12941 else if (strcmp (name, "fp=32") == 0)
12942 mips_opts.fp32 = 1;
12943 else if (strcmp (name, "fp=64") == 0)
12944 {
12945 if (!ISA_HAS_64BIT_FPRS (mips_opts.isa))
12946 as_warn (_("%s isa does not support 64-bit floating point registers"),
12947 mips_cpu_info_from_isa (mips_opts.isa)->name);
12948 mips_opts.fp32 = 0;
12949 }
12950 else if (strcmp (name, "softfloat") == 0)
12951 mips_opts.soft_float = 1;
12952 else if (strcmp (name, "hardfloat") == 0)
12953 mips_opts.soft_float = 0;
12954 else if (strcmp (name, "singlefloat") == 0)
12955 mips_opts.single_float = 1;
12956 else if (strcmp (name, "doublefloat") == 0)
12957 mips_opts.single_float = 0;
12958 else if (strcmp (name, "mips16") == 0
12959 || strcmp (name, "MIPS-16") == 0)
12960 mips_opts.mips16 = 1;
12961 else if (strcmp (name, "nomips16") == 0
12962 || strcmp (name, "noMIPS-16") == 0)
12963 mips_opts.mips16 = 0;
12964 else if (strcmp (name, "smartmips") == 0)
12965 {
12966 if (!ISA_SUPPORTS_SMARTMIPS)
12967 as_warn (_("%s ISA does not support SmartMIPS ASE"),
12968 mips_cpu_info_from_isa (mips_opts.isa)->name);
12969 mips_opts.ase_smartmips = 1;
12970 }
12971 else if (strcmp (name, "nosmartmips") == 0)
12972 mips_opts.ase_smartmips = 0;
12973 else if (strcmp (name, "mips3d") == 0)
12974 mips_opts.ase_mips3d = 1;
12975 else if (strcmp (name, "nomips3d") == 0)
12976 mips_opts.ase_mips3d = 0;
12977 else if (strcmp (name, "mdmx") == 0)
12978 mips_opts.ase_mdmx = 1;
12979 else if (strcmp (name, "nomdmx") == 0)
12980 mips_opts.ase_mdmx = 0;
12981 else if (strcmp (name, "dsp") == 0)
12982 {
12983 if (!ISA_SUPPORTS_DSP_ASE)
12984 as_warn (_("%s ISA does not support DSP ASE"),
12985 mips_cpu_info_from_isa (mips_opts.isa)->name);
12986 mips_opts.ase_dsp = 1;
12987 mips_opts.ase_dspr2 = 0;
12988 }
12989 else if (strcmp (name, "nodsp") == 0)
12990 {
12991 mips_opts.ase_dsp = 0;
12992 mips_opts.ase_dspr2 = 0;
12993 }
12994 else if (strcmp (name, "dspr2") == 0)
12995 {
12996 if (!ISA_SUPPORTS_DSPR2_ASE)
12997 as_warn (_("%s ISA does not support DSP R2 ASE"),
12998 mips_cpu_info_from_isa (mips_opts.isa)->name);
12999 mips_opts.ase_dspr2 = 1;
13000 mips_opts.ase_dsp = 1;
13001 }
13002 else if (strcmp (name, "nodspr2") == 0)
13003 {
13004 mips_opts.ase_dspr2 = 0;
13005 mips_opts.ase_dsp = 0;
13006 }
13007 else if (strcmp (name, "mt") == 0)
13008 {
13009 if (!ISA_SUPPORTS_MT_ASE)
13010 as_warn (_("%s ISA does not support MT ASE"),
13011 mips_cpu_info_from_isa (mips_opts.isa)->name);
13012 mips_opts.ase_mt = 1;
13013 }
13014 else if (strcmp (name, "nomt") == 0)
13015 mips_opts.ase_mt = 0;
13016 else if (strncmp (name, "mips", 4) == 0 || strncmp (name, "arch=", 5) == 0)
13017 {
13018 int reset = 0;
13019
13020 /* Permit the user to change the ISA and architecture on the fly.
13021 Needless to say, misuse can cause serious problems. */
13022 if (strcmp (name, "mips0") == 0 || strcmp (name, "arch=default") == 0)
13023 {
13024 reset = 1;
13025 mips_opts.isa = file_mips_isa;
13026 mips_opts.arch = file_mips_arch;
13027 }
13028 else if (strncmp (name, "arch=", 5) == 0)
13029 {
13030 const struct mips_cpu_info *p;
13031
13032 p = mips_parse_cpu("internal use", name + 5);
13033 if (!p)
13034 as_bad (_("unknown architecture %s"), name + 5);
13035 else
13036 {
13037 mips_opts.arch = p->cpu;
13038 mips_opts.isa = p->isa;
13039 }
13040 }
13041 else if (strncmp (name, "mips", 4) == 0)
13042 {
13043 const struct mips_cpu_info *p;
13044
13045 p = mips_parse_cpu("internal use", name);
13046 if (!p)
13047 as_bad (_("unknown ISA level %s"), name + 4);
13048 else
13049 {
13050 mips_opts.arch = p->cpu;
13051 mips_opts.isa = p->isa;
13052 }
13053 }
13054 else
13055 as_bad (_("unknown ISA or architecture %s"), name);
13056
13057 switch (mips_opts.isa)
13058 {
13059 case 0:
13060 break;
13061 case ISA_MIPS1:
13062 case ISA_MIPS2:
13063 case ISA_MIPS32:
13064 case ISA_MIPS32R2:
13065 mips_opts.gp32 = 1;
13066 mips_opts.fp32 = 1;
13067 break;
13068 case ISA_MIPS3:
13069 case ISA_MIPS4:
13070 case ISA_MIPS5:
13071 case ISA_MIPS64:
13072 case ISA_MIPS64R2:
13073 mips_opts.gp32 = 0;
13074 mips_opts.fp32 = 0;
13075 break;
13076 default:
13077 as_bad (_("unknown ISA level %s"), name + 4);
13078 break;
13079 }
13080 if (reset)
13081 {
13082 mips_opts.gp32 = file_mips_gp32;
13083 mips_opts.fp32 = file_mips_fp32;
13084 }
13085 }
13086 else if (strcmp (name, "autoextend") == 0)
13087 mips_opts.noautoextend = 0;
13088 else if (strcmp (name, "noautoextend") == 0)
13089 mips_opts.noautoextend = 1;
13090 else if (strcmp (name, "push") == 0)
13091 {
13092 struct mips_option_stack *s;
13093
13094 s = (struct mips_option_stack *) xmalloc (sizeof *s);
13095 s->next = mips_opts_stack;
13096 s->options = mips_opts;
13097 mips_opts_stack = s;
13098 }
13099 else if (strcmp (name, "pop") == 0)
13100 {
13101 struct mips_option_stack *s;
13102
13103 s = mips_opts_stack;
13104 if (s == NULL)
13105 as_bad (_(".set pop with no .set push"));
13106 else
13107 {
13108 /* If we're changing the reorder mode we need to handle
13109 delay slots correctly. */
13110 if (s->options.noreorder && ! mips_opts.noreorder)
13111 start_noreorder ();
13112 else if (! s->options.noreorder && mips_opts.noreorder)
13113 end_noreorder ();
13114
13115 mips_opts = s->options;
13116 mips_opts_stack = s->next;
13117 free (s);
13118 }
13119 }
13120 else if (strcmp (name, "sym32") == 0)
13121 mips_opts.sym32 = TRUE;
13122 else if (strcmp (name, "nosym32") == 0)
13123 mips_opts.sym32 = FALSE;
13124 else if (strchr (name, ','))
13125 {
13126 /* Generic ".set" directive; use the generic handler. */
13127 *input_line_pointer = ch;
13128 input_line_pointer = name;
13129 s_set (0);
13130 return;
13131 }
13132 else
13133 {
13134 as_warn (_("Tried to set unrecognized symbol: %s\n"), name);
13135 }
13136 *input_line_pointer = ch;
13137 demand_empty_rest_of_line ();
13138 }
13139
13140 /* Handle the .abicalls pseudo-op. I believe this is equivalent to
13141 .option pic2. It means to generate SVR4 PIC calls. */
13142
13143 static void
13144 s_abicalls (int ignore ATTRIBUTE_UNUSED)
13145 {
13146 mips_pic = SVR4_PIC;
13147 mips_abicalls = TRUE;
13148
13149 if (g_switch_seen && g_switch_value != 0)
13150 as_warn (_("-G may not be used with SVR4 PIC code"));
13151 g_switch_value = 0;
13152
13153 bfd_set_gp_size (stdoutput, 0);
13154 demand_empty_rest_of_line ();
13155 }
13156
13157 /* Handle the .cpload pseudo-op. This is used when generating SVR4
13158 PIC code. It sets the $gp register for the function based on the
13159 function address, which is in the register named in the argument.
13160 This uses a relocation against _gp_disp, which is handled specially
13161 by the linker. The result is:
13162 lui $gp,%hi(_gp_disp)
13163 addiu $gp,$gp,%lo(_gp_disp)
13164 addu $gp,$gp,.cpload argument
13165 The .cpload argument is normally $25 == $t9.
13166
13167 The -mno-shared option changes this to:
13168 lui $gp,%hi(__gnu_local_gp)
13169 addiu $gp,$gp,%lo(__gnu_local_gp)
13170 and the argument is ignored. This saves an instruction, but the
13171 resulting code is not position independent; it uses an absolute
13172 address for __gnu_local_gp. Thus code assembled with -mno-shared
13173 can go into an ordinary executable, but not into a shared library. */
13174
13175 static void
13176 s_cpload (int ignore ATTRIBUTE_UNUSED)
13177 {
13178 expressionS ex;
13179 int reg;
13180 int in_shared;
13181
13182 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
13183 .cpload is ignored. */
13184 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
13185 {
13186 s_ignore (0);
13187 return;
13188 }
13189
13190 /* .cpload should be in a .set noreorder section. */
13191 if (mips_opts.noreorder == 0)
13192 as_warn (_(".cpload not in noreorder section"));
13193
13194 reg = tc_get_register (0);
13195
13196 /* If we need to produce a 64-bit address, we are better off using
13197 the default instruction sequence. */
13198 in_shared = mips_in_shared || HAVE_64BIT_SYMBOLS;
13199
13200 ex.X_op = O_symbol;
13201 ex.X_add_symbol = symbol_find_or_make (in_shared ? "_gp_disp" :
13202 "__gnu_local_gp");
13203 ex.X_op_symbol = NULL;
13204 ex.X_add_number = 0;
13205
13206 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
13207 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
13208
13209 macro_start ();
13210 macro_build_lui (&ex, mips_gp_register);
13211 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
13212 mips_gp_register, BFD_RELOC_LO16);
13213 if (in_shared)
13214 macro_build (NULL, "addu", "d,v,t", mips_gp_register,
13215 mips_gp_register, reg);
13216 macro_end ();
13217
13218 demand_empty_rest_of_line ();
13219 }
13220
13221 /* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
13222 .cpsetup $reg1, offset|$reg2, label
13223
13224 If offset is given, this results in:
13225 sd $gp, offset($sp)
13226 lui $gp, %hi(%neg(%gp_rel(label)))
13227 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
13228 daddu $gp, $gp, $reg1
13229
13230 If $reg2 is given, this results in:
13231 daddu $reg2, $gp, $0
13232 lui $gp, %hi(%neg(%gp_rel(label)))
13233 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
13234 daddu $gp, $gp, $reg1
13235 $reg1 is normally $25 == $t9.
13236
13237 The -mno-shared option replaces the last three instructions with
13238 lui $gp,%hi(_gp)
13239 addiu $gp,$gp,%lo(_gp) */
13240
13241 static void
13242 s_cpsetup (int ignore ATTRIBUTE_UNUSED)
13243 {
13244 expressionS ex_off;
13245 expressionS ex_sym;
13246 int reg1;
13247
13248 /* If we are not generating SVR4 PIC code, .cpsetup is ignored.
13249 We also need NewABI support. */
13250 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
13251 {
13252 s_ignore (0);
13253 return;
13254 }
13255
13256 reg1 = tc_get_register (0);
13257 SKIP_WHITESPACE ();
13258 if (*input_line_pointer != ',')
13259 {
13260 as_bad (_("missing argument separator ',' for .cpsetup"));
13261 return;
13262 }
13263 else
13264 ++input_line_pointer;
13265 SKIP_WHITESPACE ();
13266 if (*input_line_pointer == '$')
13267 {
13268 mips_cpreturn_register = tc_get_register (0);
13269 mips_cpreturn_offset = -1;
13270 }
13271 else
13272 {
13273 mips_cpreturn_offset = get_absolute_expression ();
13274 mips_cpreturn_register = -1;
13275 }
13276 SKIP_WHITESPACE ();
13277 if (*input_line_pointer != ',')
13278 {
13279 as_bad (_("missing argument separator ',' for .cpsetup"));
13280 return;
13281 }
13282 else
13283 ++input_line_pointer;
13284 SKIP_WHITESPACE ();
13285 expression (&ex_sym);
13286
13287 macro_start ();
13288 if (mips_cpreturn_register == -1)
13289 {
13290 ex_off.X_op = O_constant;
13291 ex_off.X_add_symbol = NULL;
13292 ex_off.X_op_symbol = NULL;
13293 ex_off.X_add_number = mips_cpreturn_offset;
13294
13295 macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register,
13296 BFD_RELOC_LO16, SP);
13297 }
13298 else
13299 macro_build (NULL, "daddu", "d,v,t", mips_cpreturn_register,
13300 mips_gp_register, 0);
13301
13302 if (mips_in_shared || HAVE_64BIT_SYMBOLS)
13303 {
13304 macro_build (&ex_sym, "lui", "t,u", mips_gp_register,
13305 -1, BFD_RELOC_GPREL16, BFD_RELOC_MIPS_SUB,
13306 BFD_RELOC_HI16_S);
13307
13308 macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register,
13309 mips_gp_register, -1, BFD_RELOC_GPREL16,
13310 BFD_RELOC_MIPS_SUB, BFD_RELOC_LO16);
13311
13312 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register,
13313 mips_gp_register, reg1);
13314 }
13315 else
13316 {
13317 expressionS ex;
13318
13319 ex.X_op = O_symbol;
13320 ex.X_add_symbol = symbol_find_or_make ("__gnu_local_gp");
13321 ex.X_op_symbol = NULL;
13322 ex.X_add_number = 0;
13323
13324 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
13325 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
13326
13327 macro_build_lui (&ex, mips_gp_register);
13328 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
13329 mips_gp_register, BFD_RELOC_LO16);
13330 }
13331
13332 macro_end ();
13333
13334 demand_empty_rest_of_line ();
13335 }
13336
13337 static void
13338 s_cplocal (int ignore ATTRIBUTE_UNUSED)
13339 {
13340 /* If we are not generating SVR4 PIC code, or if this is not NewABI code,
13341 .cplocal is ignored. */
13342 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
13343 {
13344 s_ignore (0);
13345 return;
13346 }
13347
13348 mips_gp_register = tc_get_register (0);
13349 demand_empty_rest_of_line ();
13350 }
13351
13352 /* Handle the .cprestore pseudo-op. This stores $gp into a given
13353 offset from $sp. The offset is remembered, and after making a PIC
13354 call $gp is restored from that location. */
13355
13356 static void
13357 s_cprestore (int ignore ATTRIBUTE_UNUSED)
13358 {
13359 expressionS ex;
13360
13361 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
13362 .cprestore is ignored. */
13363 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
13364 {
13365 s_ignore (0);
13366 return;
13367 }
13368
13369 mips_cprestore_offset = get_absolute_expression ();
13370 mips_cprestore_valid = 1;
13371
13372 ex.X_op = O_constant;
13373 ex.X_add_symbol = NULL;
13374 ex.X_op_symbol = NULL;
13375 ex.X_add_number = mips_cprestore_offset;
13376
13377 macro_start ();
13378 macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register,
13379 SP, HAVE_64BIT_ADDRESSES);
13380 macro_end ();
13381
13382 demand_empty_rest_of_line ();
13383 }
13384
13385 /* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
13386 was given in the preceding .cpsetup, it results in:
13387 ld $gp, offset($sp)
13388
13389 If a register $reg2 was given there, it results in:
13390 daddu $gp, $reg2, $0 */
13391
13392 static void
13393 s_cpreturn (int ignore ATTRIBUTE_UNUSED)
13394 {
13395 expressionS ex;
13396
13397 /* If we are not generating SVR4 PIC code, .cpreturn is ignored.
13398 We also need NewABI support. */
13399 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
13400 {
13401 s_ignore (0);
13402 return;
13403 }
13404
13405 macro_start ();
13406 if (mips_cpreturn_register == -1)
13407 {
13408 ex.X_op = O_constant;
13409 ex.X_add_symbol = NULL;
13410 ex.X_op_symbol = NULL;
13411 ex.X_add_number = mips_cpreturn_offset;
13412
13413 macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP);
13414 }
13415 else
13416 macro_build (NULL, "daddu", "d,v,t", mips_gp_register,
13417 mips_cpreturn_register, 0);
13418 macro_end ();
13419
13420 demand_empty_rest_of_line ();
13421 }
13422
13423 /* Handle the .dtprelword and .dtpreldword pseudo-ops. They generate
13424 a 32-bit or 64-bit DTP-relative relocation (BYTES says which) for
13425 use in DWARF debug information. */
13426
13427 static void
13428 s_dtprel_internal (size_t bytes)
13429 {
13430 expressionS ex;
13431 char *p;
13432
13433 expression (&ex);
13434
13435 if (ex.X_op != O_symbol)
13436 {
13437 as_bad (_("Unsupported use of %s"), (bytes == 8
13438 ? ".dtpreldword"
13439 : ".dtprelword"));
13440 ignore_rest_of_line ();
13441 }
13442
13443 p = frag_more (bytes);
13444 md_number_to_chars (p, 0, bytes);
13445 fix_new_exp (frag_now, p - frag_now->fr_literal, bytes, &ex, FALSE,
13446 (bytes == 8
13447 ? BFD_RELOC_MIPS_TLS_DTPREL64
13448 : BFD_RELOC_MIPS_TLS_DTPREL32));
13449
13450 demand_empty_rest_of_line ();
13451 }
13452
13453 /* Handle .dtprelword. */
13454
13455 static void
13456 s_dtprelword (int ignore ATTRIBUTE_UNUSED)
13457 {
13458 s_dtprel_internal (4);
13459 }
13460
13461 /* Handle .dtpreldword. */
13462
13463 static void
13464 s_dtpreldword (int ignore ATTRIBUTE_UNUSED)
13465 {
13466 s_dtprel_internal (8);
13467 }
13468
13469 /* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
13470 code. It sets the offset to use in gp_rel relocations. */
13471
13472 static void
13473 s_gpvalue (int ignore ATTRIBUTE_UNUSED)
13474 {
13475 /* If we are not generating SVR4 PIC code, .gpvalue is ignored.
13476 We also need NewABI support. */
13477 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
13478 {
13479 s_ignore (0);
13480 return;
13481 }
13482
13483 mips_gprel_offset = get_absolute_expression ();
13484
13485 demand_empty_rest_of_line ();
13486 }
13487
13488 /* Handle the .gpword pseudo-op. This is used when generating PIC
13489 code. It generates a 32 bit GP relative reloc. */
13490
13491 static void
13492 s_gpword (int ignore ATTRIBUTE_UNUSED)
13493 {
13494 segment_info_type *si;
13495 struct insn_label_list *l;
13496 symbolS *label;
13497 expressionS ex;
13498 char *p;
13499
13500 /* When not generating PIC code, this is treated as .word. */
13501 if (mips_pic != SVR4_PIC)
13502 {
13503 s_cons (2);
13504 return;
13505 }
13506
13507 si = seg_info (now_seg);
13508 l = si->label_list;
13509 label = l != NULL ? l->label : NULL;
13510 mips_emit_delays ();
13511 if (auto_align)
13512 mips_align (2, 0, label);
13513 mips_clear_insn_labels ();
13514
13515 expression (&ex);
13516
13517 if (ex.X_op != O_symbol || ex.X_add_number != 0)
13518 {
13519 as_bad (_("Unsupported use of .gpword"));
13520 ignore_rest_of_line ();
13521 }
13522
13523 p = frag_more (4);
13524 md_number_to_chars (p, 0, 4);
13525 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
13526 BFD_RELOC_GPREL32);
13527
13528 demand_empty_rest_of_line ();
13529 }
13530
13531 static void
13532 s_gpdword (int ignore ATTRIBUTE_UNUSED)
13533 {
13534 segment_info_type *si;
13535 struct insn_label_list *l;
13536 symbolS *label;
13537 expressionS ex;
13538 char *p;
13539
13540 /* When not generating PIC code, this is treated as .dword. */
13541 if (mips_pic != SVR4_PIC)
13542 {
13543 s_cons (3);
13544 return;
13545 }
13546
13547 si = seg_info (now_seg);
13548 l = si->label_list;
13549 label = l != NULL ? l->label : NULL;
13550 mips_emit_delays ();
13551 if (auto_align)
13552 mips_align (3, 0, label);
13553 mips_clear_insn_labels ();
13554
13555 expression (&ex);
13556
13557 if (ex.X_op != O_symbol || ex.X_add_number != 0)
13558 {
13559 as_bad (_("Unsupported use of .gpdword"));
13560 ignore_rest_of_line ();
13561 }
13562
13563 p = frag_more (8);
13564 md_number_to_chars (p, 0, 8);
13565 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
13566 BFD_RELOC_GPREL32)->fx_tcbit = 1;
13567
13568 /* GPREL32 composed with 64 gives a 64-bit GP offset. */
13569 fix_new (frag_now, p - frag_now->fr_literal, 8, NULL, 0,
13570 FALSE, BFD_RELOC_64)->fx_tcbit = 1;
13571
13572 demand_empty_rest_of_line ();
13573 }
13574
13575 /* Handle the .cpadd pseudo-op. This is used when dealing with switch
13576 tables in SVR4 PIC code. */
13577
13578 static void
13579 s_cpadd (int ignore ATTRIBUTE_UNUSED)
13580 {
13581 int reg;
13582
13583 /* This is ignored when not generating SVR4 PIC code. */
13584 if (mips_pic != SVR4_PIC)
13585 {
13586 s_ignore (0);
13587 return;
13588 }
13589
13590 /* Add $gp to the register named as an argument. */
13591 macro_start ();
13592 reg = tc_get_register (0);
13593 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register);
13594 macro_end ();
13595
13596 demand_empty_rest_of_line ();
13597 }
13598
13599 /* Handle the .insn pseudo-op. This marks instruction labels in
13600 mips16 mode. This permits the linker to handle them specially,
13601 such as generating jalx instructions when needed. We also make
13602 them odd for the duration of the assembly, in order to generate the
13603 right sort of code. We will make them even in the adjust_symtab
13604 routine, while leaving them marked. This is convenient for the
13605 debugger and the disassembler. The linker knows to make them odd
13606 again. */
13607
13608 static void
13609 s_insn (int ignore ATTRIBUTE_UNUSED)
13610 {
13611 mips16_mark_labels ();
13612
13613 demand_empty_rest_of_line ();
13614 }
13615
13616 /* Handle a .stabn directive. We need these in order to mark a label
13617 as being a mips16 text label correctly. Sometimes the compiler
13618 will emit a label, followed by a .stabn, and then switch sections.
13619 If the label and .stabn are in mips16 mode, then the label is
13620 really a mips16 text label. */
13621
13622 static void
13623 s_mips_stab (int type)
13624 {
13625 if (type == 'n')
13626 mips16_mark_labels ();
13627
13628 s_stab (type);
13629 }
13630
13631 /* Handle the .weakext pseudo-op as defined in Kane and Heinrich. */
13632
13633 static void
13634 s_mips_weakext (int ignore ATTRIBUTE_UNUSED)
13635 {
13636 char *name;
13637 int c;
13638 symbolS *symbolP;
13639 expressionS exp;
13640
13641 name = input_line_pointer;
13642 c = get_symbol_end ();
13643 symbolP = symbol_find_or_make (name);
13644 S_SET_WEAK (symbolP);
13645 *input_line_pointer = c;
13646
13647 SKIP_WHITESPACE ();
13648
13649 if (! is_end_of_line[(unsigned char) *input_line_pointer])
13650 {
13651 if (S_IS_DEFINED (symbolP))
13652 {
13653 as_bad (_("ignoring attempt to redefine symbol %s"),
13654 S_GET_NAME (symbolP));
13655 ignore_rest_of_line ();
13656 return;
13657 }
13658
13659 if (*input_line_pointer == ',')
13660 {
13661 ++input_line_pointer;
13662 SKIP_WHITESPACE ();
13663 }
13664
13665 expression (&exp);
13666 if (exp.X_op != O_symbol)
13667 {
13668 as_bad (_("bad .weakext directive"));
13669 ignore_rest_of_line ();
13670 return;
13671 }
13672 symbol_set_value_expression (symbolP, &exp);
13673 }
13674
13675 demand_empty_rest_of_line ();
13676 }
13677
13678 /* Parse a register string into a number. Called from the ECOFF code
13679 to parse .frame. The argument is non-zero if this is the frame
13680 register, so that we can record it in mips_frame_reg. */
13681
13682 int
13683 tc_get_register (int frame)
13684 {
13685 unsigned int reg;
13686
13687 SKIP_WHITESPACE ();
13688 if (! reg_lookup (&input_line_pointer, RWARN | RTYPE_NUM | RTYPE_GP, &reg))
13689 reg = 0;
13690 if (frame)
13691 {
13692 mips_frame_reg = reg != 0 ? reg : SP;
13693 mips_frame_reg_valid = 1;
13694 mips_cprestore_valid = 0;
13695 }
13696 return reg;
13697 }
13698
13699 valueT
13700 md_section_align (asection *seg, valueT addr)
13701 {
13702 int align = bfd_get_section_alignment (stdoutput, seg);
13703
13704 if (IS_ELF)
13705 {
13706 /* We don't need to align ELF sections to the full alignment.
13707 However, Irix 5 may prefer that we align them at least to a 16
13708 byte boundary. We don't bother to align the sections if we
13709 are targeted for an embedded system. */
13710 if (strncmp (TARGET_OS, "elf", 3) == 0)
13711 return addr;
13712 if (align > 4)
13713 align = 4;
13714 }
13715
13716 return ((addr + (1 << align) - 1) & (-1 << align));
13717 }
13718
13719 /* Utility routine, called from above as well. If called while the
13720 input file is still being read, it's only an approximation. (For
13721 example, a symbol may later become defined which appeared to be
13722 undefined earlier.) */
13723
13724 static int
13725 nopic_need_relax (symbolS *sym, int before_relaxing)
13726 {
13727 if (sym == 0)
13728 return 0;
13729
13730 if (g_switch_value > 0)
13731 {
13732 const char *symname;
13733 int change;
13734
13735 /* Find out whether this symbol can be referenced off the $gp
13736 register. It can be if it is smaller than the -G size or if
13737 it is in the .sdata or .sbss section. Certain symbols can
13738 not be referenced off the $gp, although it appears as though
13739 they can. */
13740 symname = S_GET_NAME (sym);
13741 if (symname != (const char *) NULL
13742 && (strcmp (symname, "eprol") == 0
13743 || strcmp (symname, "etext") == 0
13744 || strcmp (symname, "_gp") == 0
13745 || strcmp (symname, "edata") == 0
13746 || strcmp (symname, "_fbss") == 0
13747 || strcmp (symname, "_fdata") == 0
13748 || strcmp (symname, "_ftext") == 0
13749 || strcmp (symname, "end") == 0
13750 || strcmp (symname, "_gp_disp") == 0))
13751 change = 1;
13752 else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym))
13753 && (0
13754 #ifndef NO_ECOFF_DEBUGGING
13755 || (symbol_get_obj (sym)->ecoff_extern_size != 0
13756 && (symbol_get_obj (sym)->ecoff_extern_size
13757 <= g_switch_value))
13758 #endif
13759 /* We must defer this decision until after the whole
13760 file has been read, since there might be a .extern
13761 after the first use of this symbol. */
13762 || (before_relaxing
13763 #ifndef NO_ECOFF_DEBUGGING
13764 && symbol_get_obj (sym)->ecoff_extern_size == 0
13765 #endif
13766 && S_GET_VALUE (sym) == 0)
13767 || (S_GET_VALUE (sym) != 0
13768 && S_GET_VALUE (sym) <= g_switch_value)))
13769 change = 0;
13770 else
13771 {
13772 const char *segname;
13773
13774 segname = segment_name (S_GET_SEGMENT (sym));
13775 gas_assert (strcmp (segname, ".lit8") != 0
13776 && strcmp (segname, ".lit4") != 0);
13777 change = (strcmp (segname, ".sdata") != 0
13778 && strcmp (segname, ".sbss") != 0
13779 && strncmp (segname, ".sdata.", 7) != 0
13780 && strncmp (segname, ".sbss.", 6) != 0
13781 && strncmp (segname, ".gnu.linkonce.sb.", 17) != 0
13782 && strncmp (segname, ".gnu.linkonce.s.", 16) != 0);
13783 }
13784 return change;
13785 }
13786 else
13787 /* We are not optimizing for the $gp register. */
13788 return 1;
13789 }
13790
13791
13792 /* Return true if the given symbol should be considered local for SVR4 PIC. */
13793
13794 static bfd_boolean
13795 pic_need_relax (symbolS *sym, asection *segtype)
13796 {
13797 asection *symsec;
13798
13799 /* Handle the case of a symbol equated to another symbol. */
13800 while (symbol_equated_reloc_p (sym))
13801 {
13802 symbolS *n;
13803
13804 /* It's possible to get a loop here in a badly written program. */
13805 n = symbol_get_value_expression (sym)->X_add_symbol;
13806 if (n == sym)
13807 break;
13808 sym = n;
13809 }
13810
13811 if (symbol_section_p (sym))
13812 return TRUE;
13813
13814 symsec = S_GET_SEGMENT (sym);
13815
13816 /* This must duplicate the test in adjust_reloc_syms. */
13817 return (symsec != &bfd_und_section
13818 && symsec != &bfd_abs_section
13819 && !bfd_is_com_section (symsec)
13820 && !s_is_linkonce (sym, segtype)
13821 #ifdef OBJ_ELF
13822 /* A global or weak symbol is treated as external. */
13823 && (!IS_ELF || (! S_IS_WEAK (sym) && ! S_IS_EXTERNAL (sym)))
13824 #endif
13825 );
13826 }
13827
13828
13829 /* Given a mips16 variant frag FRAGP, return non-zero if it needs an
13830 extended opcode. SEC is the section the frag is in. */
13831
13832 static int
13833 mips16_extended_frag (fragS *fragp, asection *sec, long stretch)
13834 {
13835 int type;
13836 const struct mips16_immed_operand *op;
13837 offsetT val;
13838 int mintiny, maxtiny;
13839 segT symsec;
13840 fragS *sym_frag;
13841
13842 if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
13843 return 0;
13844 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
13845 return 1;
13846
13847 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
13848 op = mips16_immed_operands;
13849 while (op->type != type)
13850 {
13851 ++op;
13852 gas_assert (op < mips16_immed_operands + MIPS16_NUM_IMMED);
13853 }
13854
13855 if (op->unsp)
13856 {
13857 if (type == '<' || type == '>' || type == '[' || type == ']')
13858 {
13859 mintiny = 1;
13860 maxtiny = 1 << op->nbits;
13861 }
13862 else
13863 {
13864 mintiny = 0;
13865 maxtiny = (1 << op->nbits) - 1;
13866 }
13867 }
13868 else
13869 {
13870 mintiny = - (1 << (op->nbits - 1));
13871 maxtiny = (1 << (op->nbits - 1)) - 1;
13872 }
13873
13874 sym_frag = symbol_get_frag (fragp->fr_symbol);
13875 val = S_GET_VALUE (fragp->fr_symbol);
13876 symsec = S_GET_SEGMENT (fragp->fr_symbol);
13877
13878 if (op->pcrel)
13879 {
13880 addressT addr;
13881
13882 /* We won't have the section when we are called from
13883 mips_relax_frag. However, we will always have been called
13884 from md_estimate_size_before_relax first. If this is a
13885 branch to a different section, we mark it as such. If SEC is
13886 NULL, and the frag is not marked, then it must be a branch to
13887 the same section. */
13888 if (sec == NULL)
13889 {
13890 if (RELAX_MIPS16_LONG_BRANCH (fragp->fr_subtype))
13891 return 1;
13892 }
13893 else
13894 {
13895 /* Must have been called from md_estimate_size_before_relax. */
13896 if (symsec != sec)
13897 {
13898 fragp->fr_subtype =
13899 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
13900
13901 /* FIXME: We should support this, and let the linker
13902 catch branches and loads that are out of range. */
13903 as_bad_where (fragp->fr_file, fragp->fr_line,
13904 _("unsupported PC relative reference to different section"));
13905
13906 return 1;
13907 }
13908 if (fragp != sym_frag && sym_frag->fr_address == 0)
13909 /* Assume non-extended on the first relaxation pass.
13910 The address we have calculated will be bogus if this is
13911 a forward branch to another frag, as the forward frag
13912 will have fr_address == 0. */
13913 return 0;
13914 }
13915
13916 /* In this case, we know for sure that the symbol fragment is in
13917 the same section. If the relax_marker of the symbol fragment
13918 differs from the relax_marker of this fragment, we have not
13919 yet adjusted the symbol fragment fr_address. We want to add
13920 in STRETCH in order to get a better estimate of the address.
13921 This particularly matters because of the shift bits. */
13922 if (stretch != 0
13923 && sym_frag->relax_marker != fragp->relax_marker)
13924 {
13925 fragS *f;
13926
13927 /* Adjust stretch for any alignment frag. Note that if have
13928 been expanding the earlier code, the symbol may be
13929 defined in what appears to be an earlier frag. FIXME:
13930 This doesn't handle the fr_subtype field, which specifies
13931 a maximum number of bytes to skip when doing an
13932 alignment. */
13933 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
13934 {
13935 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
13936 {
13937 if (stretch < 0)
13938 stretch = - ((- stretch)
13939 & ~ ((1 << (int) f->fr_offset) - 1));
13940 else
13941 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
13942 if (stretch == 0)
13943 break;
13944 }
13945 }
13946 if (f != NULL)
13947 val += stretch;
13948 }
13949
13950 addr = fragp->fr_address + fragp->fr_fix;
13951
13952 /* The base address rules are complicated. The base address of
13953 a branch is the following instruction. The base address of a
13954 PC relative load or add is the instruction itself, but if it
13955 is in a delay slot (in which case it can not be extended) use
13956 the address of the instruction whose delay slot it is in. */
13957 if (type == 'p' || type == 'q')
13958 {
13959 addr += 2;
13960
13961 /* If we are currently assuming that this frag should be
13962 extended, then, the current address is two bytes
13963 higher. */
13964 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
13965 addr += 2;
13966
13967 /* Ignore the low bit in the target, since it will be set
13968 for a text label. */
13969 if ((val & 1) != 0)
13970 --val;
13971 }
13972 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
13973 addr -= 4;
13974 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
13975 addr -= 2;
13976
13977 val -= addr & ~ ((1 << op->shift) - 1);
13978
13979 /* Branch offsets have an implicit 0 in the lowest bit. */
13980 if (type == 'p' || type == 'q')
13981 val /= 2;
13982
13983 /* If any of the shifted bits are set, we must use an extended
13984 opcode. If the address depends on the size of this
13985 instruction, this can lead to a loop, so we arrange to always
13986 use an extended opcode. We only check this when we are in
13987 the main relaxation loop, when SEC is NULL. */
13988 if ((val & ((1 << op->shift) - 1)) != 0 && sec == NULL)
13989 {
13990 fragp->fr_subtype =
13991 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
13992 return 1;
13993 }
13994
13995 /* If we are about to mark a frag as extended because the value
13996 is precisely maxtiny + 1, then there is a chance of an
13997 infinite loop as in the following code:
13998 la $4,foo
13999 .skip 1020
14000 .align 2
14001 foo:
14002 In this case when the la is extended, foo is 0x3fc bytes
14003 away, so the la can be shrunk, but then foo is 0x400 away, so
14004 the la must be extended. To avoid this loop, we mark the
14005 frag as extended if it was small, and is about to become
14006 extended with a value of maxtiny + 1. */
14007 if (val == ((maxtiny + 1) << op->shift)
14008 && ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype)
14009 && sec == NULL)
14010 {
14011 fragp->fr_subtype =
14012 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
14013 return 1;
14014 }
14015 }
14016 else if (symsec != absolute_section && sec != NULL)
14017 as_bad_where (fragp->fr_file, fragp->fr_line, _("unsupported relocation"));
14018
14019 if ((val & ((1 << op->shift) - 1)) != 0
14020 || val < (mintiny << op->shift)
14021 || val > (maxtiny << op->shift))
14022 return 1;
14023 else
14024 return 0;
14025 }
14026
14027 /* Compute the length of a branch sequence, and adjust the
14028 RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
14029 worst-case length is computed, with UPDATE being used to indicate
14030 whether an unconditional (-1), branch-likely (+1) or regular (0)
14031 branch is to be computed. */
14032 static int
14033 relaxed_branch_length (fragS *fragp, asection *sec, int update)
14034 {
14035 bfd_boolean toofar;
14036 int length;
14037
14038 if (fragp
14039 && S_IS_DEFINED (fragp->fr_symbol)
14040 && sec == S_GET_SEGMENT (fragp->fr_symbol))
14041 {
14042 addressT addr;
14043 offsetT val;
14044
14045 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
14046
14047 addr = fragp->fr_address + fragp->fr_fix + 4;
14048
14049 val -= addr;
14050
14051 toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2);
14052 }
14053 else if (fragp)
14054 /* If the symbol is not defined or it's in a different segment,
14055 assume the user knows what's going on and emit a short
14056 branch. */
14057 toofar = FALSE;
14058 else
14059 toofar = TRUE;
14060
14061 if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
14062 fragp->fr_subtype
14063 = RELAX_BRANCH_ENCODE (RELAX_BRANCH_UNCOND (fragp->fr_subtype),
14064 RELAX_BRANCH_LIKELY (fragp->fr_subtype),
14065 RELAX_BRANCH_LINK (fragp->fr_subtype),
14066 toofar);
14067
14068 length = 4;
14069 if (toofar)
14070 {
14071 if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0))
14072 length += 8;
14073
14074 if (mips_pic != NO_PIC)
14075 {
14076 /* Additional space for PIC loading of target address. */
14077 length += 8;
14078 if (mips_opts.isa == ISA_MIPS1)
14079 /* Additional space for $at-stabilizing nop. */
14080 length += 4;
14081 }
14082
14083 /* If branch is conditional. */
14084 if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0))
14085 length += 8;
14086 }
14087
14088 return length;
14089 }
14090
14091 /* Estimate the size of a frag before relaxing. Unless this is the
14092 mips16, we are not really relaxing here, and the final size is
14093 encoded in the subtype information. For the mips16, we have to
14094 decide whether we are using an extended opcode or not. */
14095
14096 int
14097 md_estimate_size_before_relax (fragS *fragp, asection *segtype)
14098 {
14099 int change;
14100
14101 if (RELAX_BRANCH_P (fragp->fr_subtype))
14102 {
14103
14104 fragp->fr_var = relaxed_branch_length (fragp, segtype, FALSE);
14105
14106 return fragp->fr_var;
14107 }
14108
14109 if (RELAX_MIPS16_P (fragp->fr_subtype))
14110 /* We don't want to modify the EXTENDED bit here; it might get us
14111 into infinite loops. We change it only in mips_relax_frag(). */
14112 return (RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2);
14113
14114 if (mips_pic == NO_PIC)
14115 change = nopic_need_relax (fragp->fr_symbol, 0);
14116 else if (mips_pic == SVR4_PIC)
14117 change = pic_need_relax (fragp->fr_symbol, segtype);
14118 else if (mips_pic == VXWORKS_PIC)
14119 /* For vxworks, GOT16 relocations never have a corresponding LO16. */
14120 change = 0;
14121 else
14122 abort ();
14123
14124 if (change)
14125 {
14126 fragp->fr_subtype |= RELAX_USE_SECOND;
14127 return -RELAX_FIRST (fragp->fr_subtype);
14128 }
14129 else
14130 return -RELAX_SECOND (fragp->fr_subtype);
14131 }
14132
14133 /* This is called to see whether a reloc against a defined symbol
14134 should be converted into a reloc against a section. */
14135
14136 int
14137 mips_fix_adjustable (fixS *fixp)
14138 {
14139 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
14140 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
14141 return 0;
14142
14143 if (fixp->fx_addsy == NULL)
14144 return 1;
14145
14146 /* If symbol SYM is in a mergeable section, relocations of the form
14147 SYM + 0 can usually be made section-relative. The mergeable data
14148 is then identified by the section offset rather than by the symbol.
14149
14150 However, if we're generating REL LO16 relocations, the offset is split
14151 between the LO16 and parterning high part relocation. The linker will
14152 need to recalculate the complete offset in order to correctly identify
14153 the merge data.
14154
14155 The linker has traditionally not looked for the parterning high part
14156 relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be
14157 placed anywhere. Rather than break backwards compatibility by changing
14158 this, it seems better not to force the issue, and instead keep the
14159 original symbol. This will work with either linker behavior. */
14160 if ((lo16_reloc_p (fixp->fx_r_type)
14161 || reloc_needs_lo_p (fixp->fx_r_type))
14162 && HAVE_IN_PLACE_ADDENDS
14163 && (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE) != 0)
14164 return 0;
14165
14166 /* There is no place to store an in-place offset for JALR relocations. */
14167 if (fixp->fx_r_type == BFD_RELOC_MIPS_JALR && HAVE_IN_PLACE_ADDENDS)
14168 return 0;
14169
14170 #ifdef OBJ_ELF
14171 /* R_MIPS16_26 relocations against non-MIPS16 functions might resolve
14172 to a floating-point stub. The same is true for non-R_MIPS16_26
14173 relocations against MIPS16 functions; in this case, the stub becomes
14174 the function's canonical address.
14175
14176 Floating-point stubs are stored in unique .mips16.call.* or
14177 .mips16.fn.* sections. If a stub T for function F is in section S,
14178 the first relocation in section S must be against F; this is how the
14179 linker determines the target function. All relocations that might
14180 resolve to T must also be against F. We therefore have the following
14181 restrictions, which are given in an intentionally-redundant way:
14182
14183 1. We cannot reduce R_MIPS16_26 relocations against non-MIPS16
14184 symbols.
14185
14186 2. We cannot reduce a stub's relocations against non-MIPS16 symbols
14187 if that stub might be used.
14188
14189 3. We cannot reduce non-R_MIPS16_26 relocations against MIPS16
14190 symbols.
14191
14192 4. We cannot reduce a stub's relocations against MIPS16 symbols if
14193 that stub might be used.
14194
14195 There is a further restriction:
14196
14197 5. We cannot reduce R_MIPS16_26 relocations against MIPS16 symbols
14198 on targets with in-place addends; the relocation field cannot
14199 encode the low bit.
14200
14201 For simplicity, we deal with (3)-(5) by not reducing _any_ relocation
14202 against a MIPS16 symbol.
14203
14204 We deal with (1)-(2) by saying that, if there's a R_MIPS16_26
14205 relocation against some symbol R, no relocation against R may be
14206 reduced. (Note that this deals with (2) as well as (1) because
14207 relocations against global symbols will never be reduced on ELF
14208 targets.) This approach is a little simpler than trying to detect
14209 stub sections, and gives the "all or nothing" per-symbol consistency
14210 that we have for MIPS16 symbols. */
14211 if (IS_ELF
14212 && fixp->fx_subsy == NULL
14213 && (ELF_ST_IS_MIPS16 (S_GET_OTHER (fixp->fx_addsy))
14214 || *symbol_get_tc (fixp->fx_addsy)))
14215 return 0;
14216 #endif
14217
14218 return 1;
14219 }
14220
14221 /* Translate internal representation of relocation info to BFD target
14222 format. */
14223
14224 arelent **
14225 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
14226 {
14227 static arelent *retval[4];
14228 arelent *reloc;
14229 bfd_reloc_code_real_type code;
14230
14231 memset (retval, 0, sizeof(retval));
14232 reloc = retval[0] = (arelent *) xcalloc (1, sizeof (arelent));
14233 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
14234 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
14235 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
14236
14237 if (fixp->fx_pcrel)
14238 {
14239 gas_assert (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2);
14240
14241 /* At this point, fx_addnumber is "symbol offset - pcrel address".
14242 Relocations want only the symbol offset. */
14243 reloc->addend = fixp->fx_addnumber + reloc->address;
14244 if (!IS_ELF)
14245 {
14246 /* A gruesome hack which is a result of the gruesome gas
14247 reloc handling. What's worse, for COFF (as opposed to
14248 ECOFF), we might need yet another copy of reloc->address.
14249 See bfd_install_relocation. */
14250 reloc->addend += reloc->address;
14251 }
14252 }
14253 else
14254 reloc->addend = fixp->fx_addnumber;
14255
14256 /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
14257 entry to be used in the relocation's section offset. */
14258 if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
14259 {
14260 reloc->address = reloc->addend;
14261 reloc->addend = 0;
14262 }
14263
14264 code = fixp->fx_r_type;
14265
14266 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
14267 if (reloc->howto == NULL)
14268 {
14269 as_bad_where (fixp->fx_file, fixp->fx_line,
14270 _("Can not represent %s relocation in this object file format"),
14271 bfd_get_reloc_code_name (code));
14272 retval[0] = NULL;
14273 }
14274
14275 return retval;
14276 }
14277
14278 /* Relax a machine dependent frag. This returns the amount by which
14279 the current size of the frag should change. */
14280
14281 int
14282 mips_relax_frag (asection *sec, fragS *fragp, long stretch)
14283 {
14284 if (RELAX_BRANCH_P (fragp->fr_subtype))
14285 {
14286 offsetT old_var = fragp->fr_var;
14287
14288 fragp->fr_var = relaxed_branch_length (fragp, sec, TRUE);
14289
14290 return fragp->fr_var - old_var;
14291 }
14292
14293 if (! RELAX_MIPS16_P (fragp->fr_subtype))
14294 return 0;
14295
14296 if (mips16_extended_frag (fragp, NULL, stretch))
14297 {
14298 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
14299 return 0;
14300 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
14301 return 2;
14302 }
14303 else
14304 {
14305 if (! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
14306 return 0;
14307 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
14308 return -2;
14309 }
14310
14311 return 0;
14312 }
14313
14314 /* Convert a machine dependent frag. */
14315
14316 void
14317 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp)
14318 {
14319 if (RELAX_BRANCH_P (fragp->fr_subtype))
14320 {
14321 bfd_byte *buf;
14322 unsigned long insn;
14323 expressionS exp;
14324 fixS *fixp;
14325
14326 buf = (bfd_byte *)fragp->fr_literal + fragp->fr_fix;
14327
14328 if (target_big_endian)
14329 insn = bfd_getb32 (buf);
14330 else
14331 insn = bfd_getl32 (buf);
14332
14333 if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
14334 {
14335 /* We generate a fixup instead of applying it right now
14336 because, if there are linker relaxations, we're going to
14337 need the relocations. */
14338 exp.X_op = O_symbol;
14339 exp.X_add_symbol = fragp->fr_symbol;
14340 exp.X_add_number = fragp->fr_offset;
14341
14342 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
14343 4, &exp, TRUE, BFD_RELOC_16_PCREL_S2);
14344 fixp->fx_file = fragp->fr_file;
14345 fixp->fx_line = fragp->fr_line;
14346
14347 md_number_to_chars ((char *) buf, insn, 4);
14348 buf += 4;
14349 }
14350 else
14351 {
14352 int i;
14353
14354 as_warn_where (fragp->fr_file, fragp->fr_line,
14355 _("relaxed out-of-range branch into a jump"));
14356
14357 if (RELAX_BRANCH_UNCOND (fragp->fr_subtype))
14358 goto uncond;
14359
14360 if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype))
14361 {
14362 /* Reverse the branch. */
14363 switch ((insn >> 28) & 0xf)
14364 {
14365 case 4:
14366 /* bc[0-3][tf]l? and bc1any[24][ft] instructions can
14367 have the condition reversed by tweaking a single
14368 bit, and their opcodes all have 0x4???????. */
14369 gas_assert ((insn & 0xf1000000) == 0x41000000);
14370 insn ^= 0x00010000;
14371 break;
14372
14373 case 0:
14374 /* bltz 0x04000000 bgez 0x04010000
14375 bltzal 0x04100000 bgezal 0x04110000 */
14376 gas_assert ((insn & 0xfc0e0000) == 0x04000000);
14377 insn ^= 0x00010000;
14378 break;
14379
14380 case 1:
14381 /* beq 0x10000000 bne 0x14000000
14382 blez 0x18000000 bgtz 0x1c000000 */
14383 insn ^= 0x04000000;
14384 break;
14385
14386 default:
14387 abort ();
14388 }
14389 }
14390
14391 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
14392 {
14393 /* Clear the and-link bit. */
14394 gas_assert ((insn & 0xfc1c0000) == 0x04100000);
14395
14396 /* bltzal 0x04100000 bgezal 0x04110000
14397 bltzall 0x04120000 bgezall 0x04130000 */
14398 insn &= ~0x00100000;
14399 }
14400
14401 /* Branch over the branch (if the branch was likely) or the
14402 full jump (not likely case). Compute the offset from the
14403 current instruction to branch to. */
14404 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
14405 i = 16;
14406 else
14407 {
14408 /* How many bytes in instructions we've already emitted? */
14409 i = buf - (bfd_byte *)fragp->fr_literal - fragp->fr_fix;
14410 /* How many bytes in instructions from here to the end? */
14411 i = fragp->fr_var - i;
14412 }
14413 /* Convert to instruction count. */
14414 i >>= 2;
14415 /* Branch counts from the next instruction. */
14416 i--;
14417 insn |= i;
14418 /* Branch over the jump. */
14419 md_number_to_chars ((char *) buf, insn, 4);
14420 buf += 4;
14421
14422 /* nop */
14423 md_number_to_chars ((char *) buf, 0, 4);
14424 buf += 4;
14425
14426 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
14427 {
14428 /* beql $0, $0, 2f */
14429 insn = 0x50000000;
14430 /* Compute the PC offset from the current instruction to
14431 the end of the variable frag. */
14432 /* How many bytes in instructions we've already emitted? */
14433 i = buf - (bfd_byte *)fragp->fr_literal - fragp->fr_fix;
14434 /* How many bytes in instructions from here to the end? */
14435 i = fragp->fr_var - i;
14436 /* Convert to instruction count. */
14437 i >>= 2;
14438 /* Don't decrement i, because we want to branch over the
14439 delay slot. */
14440
14441 insn |= i;
14442 md_number_to_chars ((char *) buf, insn, 4);
14443 buf += 4;
14444
14445 md_number_to_chars ((char *) buf, 0, 4);
14446 buf += 4;
14447 }
14448
14449 uncond:
14450 if (mips_pic == NO_PIC)
14451 {
14452 /* j or jal. */
14453 insn = (RELAX_BRANCH_LINK (fragp->fr_subtype)
14454 ? 0x0c000000 : 0x08000000);
14455 exp.X_op = O_symbol;
14456 exp.X_add_symbol = fragp->fr_symbol;
14457 exp.X_add_number = fragp->fr_offset;
14458
14459 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
14460 4, &exp, FALSE, BFD_RELOC_MIPS_JMP);
14461 fixp->fx_file = fragp->fr_file;
14462 fixp->fx_line = fragp->fr_line;
14463
14464 md_number_to_chars ((char *) buf, insn, 4);
14465 buf += 4;
14466 }
14467 else
14468 {
14469 /* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
14470 insn = HAVE_64BIT_ADDRESSES ? 0xdf810000 : 0x8f810000;
14471 exp.X_op = O_symbol;
14472 exp.X_add_symbol = fragp->fr_symbol;
14473 exp.X_add_number = fragp->fr_offset;
14474
14475 if (fragp->fr_offset)
14476 {
14477 exp.X_add_symbol = make_expr_symbol (&exp);
14478 exp.X_add_number = 0;
14479 }
14480
14481 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
14482 4, &exp, FALSE, BFD_RELOC_MIPS_GOT16);
14483 fixp->fx_file = fragp->fr_file;
14484 fixp->fx_line = fragp->fr_line;
14485
14486 md_number_to_chars ((char *) buf, insn, 4);
14487 buf += 4;
14488
14489 if (mips_opts.isa == ISA_MIPS1)
14490 {
14491 /* nop */
14492 md_number_to_chars ((char *) buf, 0, 4);
14493 buf += 4;
14494 }
14495
14496 /* d/addiu $at, $at, <sym> R_MIPS_LO16 */
14497 insn = HAVE_64BIT_ADDRESSES ? 0x64210000 : 0x24210000;
14498
14499 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
14500 4, &exp, FALSE, BFD_RELOC_LO16);
14501 fixp->fx_file = fragp->fr_file;
14502 fixp->fx_line = fragp->fr_line;
14503
14504 md_number_to_chars ((char *) buf, insn, 4);
14505 buf += 4;
14506
14507 /* j(al)r $at. */
14508 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
14509 insn = 0x0020f809;
14510 else
14511 insn = 0x00200008;
14512
14513 md_number_to_chars ((char *) buf, insn, 4);
14514 buf += 4;
14515 }
14516 }
14517
14518 gas_assert (buf == (bfd_byte *)fragp->fr_literal
14519 + fragp->fr_fix + fragp->fr_var);
14520
14521 fragp->fr_fix += fragp->fr_var;
14522
14523 return;
14524 }
14525
14526 if (RELAX_MIPS16_P (fragp->fr_subtype))
14527 {
14528 int type;
14529 const struct mips16_immed_operand *op;
14530 bfd_boolean small, ext;
14531 offsetT val;
14532 bfd_byte *buf;
14533 unsigned long insn;
14534 bfd_boolean use_extend;
14535 unsigned short extend;
14536
14537 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
14538 op = mips16_immed_operands;
14539 while (op->type != type)
14540 ++op;
14541
14542 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
14543 {
14544 small = FALSE;
14545 ext = TRUE;
14546 }
14547 else
14548 {
14549 small = TRUE;
14550 ext = FALSE;
14551 }
14552
14553 val = resolve_symbol_value (fragp->fr_symbol);
14554 if (op->pcrel)
14555 {
14556 addressT addr;
14557
14558 addr = fragp->fr_address + fragp->fr_fix;
14559
14560 /* The rules for the base address of a PC relative reloc are
14561 complicated; see mips16_extended_frag. */
14562 if (type == 'p' || type == 'q')
14563 {
14564 addr += 2;
14565 if (ext)
14566 addr += 2;
14567 /* Ignore the low bit in the target, since it will be
14568 set for a text label. */
14569 if ((val & 1) != 0)
14570 --val;
14571 }
14572 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
14573 addr -= 4;
14574 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
14575 addr -= 2;
14576
14577 addr &= ~ (addressT) ((1 << op->shift) - 1);
14578 val -= addr;
14579
14580 /* Make sure the section winds up with the alignment we have
14581 assumed. */
14582 if (op->shift > 0)
14583 record_alignment (asec, op->shift);
14584 }
14585
14586 if (ext
14587 && (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)
14588 || RELAX_MIPS16_DSLOT (fragp->fr_subtype)))
14589 as_warn_where (fragp->fr_file, fragp->fr_line,
14590 _("extended instruction in delay slot"));
14591
14592 buf = (bfd_byte *) (fragp->fr_literal + fragp->fr_fix);
14593
14594 if (target_big_endian)
14595 insn = bfd_getb16 (buf);
14596 else
14597 insn = bfd_getl16 (buf);
14598
14599 mips16_immed (fragp->fr_file, fragp->fr_line, type, val,
14600 RELAX_MIPS16_USER_EXT (fragp->fr_subtype),
14601 small, ext, &insn, &use_extend, &extend);
14602
14603 if (use_extend)
14604 {
14605 md_number_to_chars ((char *) buf, 0xf000 | extend, 2);
14606 fragp->fr_fix += 2;
14607 buf += 2;
14608 }
14609
14610 md_number_to_chars ((char *) buf, insn, 2);
14611 fragp->fr_fix += 2;
14612 buf += 2;
14613 }
14614 else
14615 {
14616 int first, second;
14617 fixS *fixp;
14618
14619 first = RELAX_FIRST (fragp->fr_subtype);
14620 second = RELAX_SECOND (fragp->fr_subtype);
14621 fixp = (fixS *) fragp->fr_opcode;
14622
14623 /* Possibly emit a warning if we've chosen the longer option. */
14624 if (((fragp->fr_subtype & RELAX_USE_SECOND) != 0)
14625 == ((fragp->fr_subtype & RELAX_SECOND_LONGER) != 0))
14626 {
14627 const char *msg = macro_warning (fragp->fr_subtype);
14628 if (msg != 0)
14629 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
14630 }
14631
14632 /* Go through all the fixups for the first sequence. Disable them
14633 (by marking them as done) if we're going to use the second
14634 sequence instead. */
14635 while (fixp
14636 && fixp->fx_frag == fragp
14637 && fixp->fx_where < fragp->fr_fix - second)
14638 {
14639 if (fragp->fr_subtype & RELAX_USE_SECOND)
14640 fixp->fx_done = 1;
14641 fixp = fixp->fx_next;
14642 }
14643
14644 /* Go through the fixups for the second sequence. Disable them if
14645 we're going to use the first sequence, otherwise adjust their
14646 addresses to account for the relaxation. */
14647 while (fixp && fixp->fx_frag == fragp)
14648 {
14649 if (fragp->fr_subtype & RELAX_USE_SECOND)
14650 fixp->fx_where -= first;
14651 else
14652 fixp->fx_done = 1;
14653 fixp = fixp->fx_next;
14654 }
14655
14656 /* Now modify the frag contents. */
14657 if (fragp->fr_subtype & RELAX_USE_SECOND)
14658 {
14659 char *start;
14660
14661 start = fragp->fr_literal + fragp->fr_fix - first - second;
14662 memmove (start, start + first, second);
14663 fragp->fr_fix -= first;
14664 }
14665 else
14666 fragp->fr_fix -= second;
14667 }
14668 }
14669
14670 #ifdef OBJ_ELF
14671
14672 /* This function is called after the relocs have been generated.
14673 We've been storing mips16 text labels as odd. Here we convert them
14674 back to even for the convenience of the debugger. */
14675
14676 void
14677 mips_frob_file_after_relocs (void)
14678 {
14679 asymbol **syms;
14680 unsigned int count, i;
14681
14682 if (!IS_ELF)
14683 return;
14684
14685 syms = bfd_get_outsymbols (stdoutput);
14686 count = bfd_get_symcount (stdoutput);
14687 for (i = 0; i < count; i++, syms++)
14688 {
14689 if (ELF_ST_IS_MIPS16 (elf_symbol (*syms)->internal_elf_sym.st_other)
14690 && ((*syms)->value & 1) != 0)
14691 {
14692 (*syms)->value &= ~1;
14693 /* If the symbol has an odd size, it was probably computed
14694 incorrectly, so adjust that as well. */
14695 if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0)
14696 ++elf_symbol (*syms)->internal_elf_sym.st_size;
14697 }
14698 }
14699 }
14700
14701 #endif
14702
14703 /* This function is called whenever a label is defined. It is used
14704 when handling branch delays; if a branch has a label, we assume we
14705 can not move it. */
14706
14707 void
14708 mips_define_label (symbolS *sym)
14709 {
14710 segment_info_type *si = seg_info (now_seg);
14711 struct insn_label_list *l;
14712
14713 if (free_insn_labels == NULL)
14714 l = (struct insn_label_list *) xmalloc (sizeof *l);
14715 else
14716 {
14717 l = free_insn_labels;
14718 free_insn_labels = l->next;
14719 }
14720
14721 l->label = sym;
14722 l->next = si->label_list;
14723 si->label_list = l;
14724
14725 #ifdef OBJ_ELF
14726 dwarf2_emit_label (sym);
14727 #endif
14728 }
14729 \f
14730 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
14731
14732 /* Some special processing for a MIPS ELF file. */
14733
14734 void
14735 mips_elf_final_processing (void)
14736 {
14737 /* Write out the register information. */
14738 if (mips_abi != N64_ABI)
14739 {
14740 Elf32_RegInfo s;
14741
14742 s.ri_gprmask = mips_gprmask;
14743 s.ri_cprmask[0] = mips_cprmask[0];
14744 s.ri_cprmask[1] = mips_cprmask[1];
14745 s.ri_cprmask[2] = mips_cprmask[2];
14746 s.ri_cprmask[3] = mips_cprmask[3];
14747 /* The gp_value field is set by the MIPS ELF backend. */
14748
14749 bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
14750 ((Elf32_External_RegInfo *)
14751 mips_regmask_frag));
14752 }
14753 else
14754 {
14755 Elf64_Internal_RegInfo s;
14756
14757 s.ri_gprmask = mips_gprmask;
14758 s.ri_pad = 0;
14759 s.ri_cprmask[0] = mips_cprmask[0];
14760 s.ri_cprmask[1] = mips_cprmask[1];
14761 s.ri_cprmask[2] = mips_cprmask[2];
14762 s.ri_cprmask[3] = mips_cprmask[3];
14763 /* The gp_value field is set by the MIPS ELF backend. */
14764
14765 bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
14766 ((Elf64_External_RegInfo *)
14767 mips_regmask_frag));
14768 }
14769
14770 /* Set the MIPS ELF flag bits. FIXME: There should probably be some
14771 sort of BFD interface for this. */
14772 if (mips_any_noreorder)
14773 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
14774 if (mips_pic != NO_PIC)
14775 {
14776 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
14777 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
14778 }
14779 if (mips_abicalls)
14780 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
14781
14782 /* Set MIPS ELF flags for ASEs. */
14783 /* We may need to define a new flag for DSP ASE, and set this flag when
14784 file_ase_dsp is true. */
14785 /* Same for DSP R2. */
14786 /* We may need to define a new flag for MT ASE, and set this flag when
14787 file_ase_mt is true. */
14788 if (file_ase_mips16)
14789 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16;
14790 #if 0 /* XXX FIXME */
14791 if (file_ase_mips3d)
14792 elf_elfheader (stdoutput)->e_flags |= ???;
14793 #endif
14794 if (file_ase_mdmx)
14795 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX;
14796
14797 /* Set the MIPS ELF ABI flags. */
14798 if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32)
14799 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32;
14800 else if (mips_abi == O64_ABI)
14801 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64;
14802 else if (mips_abi == EABI_ABI)
14803 {
14804 if (!file_mips_gp32)
14805 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64;
14806 else
14807 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32;
14808 }
14809 else if (mips_abi == N32_ABI)
14810 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ABI2;
14811
14812 /* Nothing to do for N64_ABI. */
14813
14814 if (mips_32bitmode)
14815 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE;
14816
14817 #if 0 /* XXX FIXME */
14818 /* 32 bit code with 64 bit FP registers. */
14819 if (!file_mips_fp32 && ABI_NEEDS_32BIT_REGS (mips_abi))
14820 elf_elfheader (stdoutput)->e_flags |= ???;
14821 #endif
14822 }
14823
14824 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
14825 \f
14826 typedef struct proc {
14827 symbolS *func_sym;
14828 symbolS *func_end_sym;
14829 unsigned long reg_mask;
14830 unsigned long reg_offset;
14831 unsigned long fpreg_mask;
14832 unsigned long fpreg_offset;
14833 unsigned long frame_offset;
14834 unsigned long frame_reg;
14835 unsigned long pc_reg;
14836 } procS;
14837
14838 static procS cur_proc;
14839 static procS *cur_proc_ptr;
14840 static int numprocs;
14841
14842 /* Implement NOP_OPCODE. We encode a MIPS16 nop as "1" and a normal
14843 nop as "0". */
14844
14845 char
14846 mips_nop_opcode (void)
14847 {
14848 return seg_info (now_seg)->tc_segment_info_data.mips16;
14849 }
14850
14851 /* Fill in an rs_align_code fragment. This only needs to do something
14852 for MIPS16 code, where 0 is not a nop. */
14853
14854 void
14855 mips_handle_align (fragS *fragp)
14856 {
14857 char *p;
14858 int bytes, size, excess;
14859 valueT opcode;
14860
14861 if (fragp->fr_type != rs_align_code)
14862 return;
14863
14864 p = fragp->fr_literal + fragp->fr_fix;
14865 if (*p)
14866 {
14867 opcode = mips16_nop_insn.insn_opcode;
14868 size = 2;
14869 }
14870 else
14871 {
14872 opcode = nop_insn.insn_opcode;
14873 size = 4;
14874 }
14875
14876 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
14877 excess = bytes % size;
14878 if (excess != 0)
14879 {
14880 /* If we're not inserting a whole number of instructions,
14881 pad the end of the fixed part of the frag with zeros. */
14882 memset (p, 0, excess);
14883 p += excess;
14884 fragp->fr_fix += excess;
14885 }
14886
14887 md_number_to_chars (p, opcode, size);
14888 fragp->fr_var = size;
14889 }
14890
14891 static void
14892 md_obj_begin (void)
14893 {
14894 }
14895
14896 static void
14897 md_obj_end (void)
14898 {
14899 /* Check for premature end, nesting errors, etc. */
14900 if (cur_proc_ptr)
14901 as_warn (_("missing .end at end of assembly"));
14902 }
14903
14904 static long
14905 get_number (void)
14906 {
14907 int negative = 0;
14908 long val = 0;
14909
14910 if (*input_line_pointer == '-')
14911 {
14912 ++input_line_pointer;
14913 negative = 1;
14914 }
14915 if (!ISDIGIT (*input_line_pointer))
14916 as_bad (_("expected simple number"));
14917 if (input_line_pointer[0] == '0')
14918 {
14919 if (input_line_pointer[1] == 'x')
14920 {
14921 input_line_pointer += 2;
14922 while (ISXDIGIT (*input_line_pointer))
14923 {
14924 val <<= 4;
14925 val |= hex_value (*input_line_pointer++);
14926 }
14927 return negative ? -val : val;
14928 }
14929 else
14930 {
14931 ++input_line_pointer;
14932 while (ISDIGIT (*input_line_pointer))
14933 {
14934 val <<= 3;
14935 val |= *input_line_pointer++ - '0';
14936 }
14937 return negative ? -val : val;
14938 }
14939 }
14940 if (!ISDIGIT (*input_line_pointer))
14941 {
14942 printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
14943 *input_line_pointer, *input_line_pointer);
14944 as_warn (_("invalid number"));
14945 return -1;
14946 }
14947 while (ISDIGIT (*input_line_pointer))
14948 {
14949 val *= 10;
14950 val += *input_line_pointer++ - '0';
14951 }
14952 return negative ? -val : val;
14953 }
14954
14955 /* The .file directive; just like the usual .file directive, but there
14956 is an initial number which is the ECOFF file index. In the non-ECOFF
14957 case .file implies DWARF-2. */
14958
14959 static void
14960 s_mips_file (int x ATTRIBUTE_UNUSED)
14961 {
14962 static int first_file_directive = 0;
14963
14964 if (ECOFF_DEBUGGING)
14965 {
14966 get_number ();
14967 s_app_file (0);
14968 }
14969 else
14970 {
14971 char *filename;
14972
14973 filename = dwarf2_directive_file (0);
14974
14975 /* Versions of GCC up to 3.1 start files with a ".file"
14976 directive even for stabs output. Make sure that this
14977 ".file" is handled. Note that you need a version of GCC
14978 after 3.1 in order to support DWARF-2 on MIPS. */
14979 if (filename != NULL && ! first_file_directive)
14980 {
14981 (void) new_logical_line (filename, -1);
14982 s_app_file_string (filename, 0);
14983 }
14984 first_file_directive = 1;
14985 }
14986 }
14987
14988 /* The .loc directive, implying DWARF-2. */
14989
14990 static void
14991 s_mips_loc (int x ATTRIBUTE_UNUSED)
14992 {
14993 if (!ECOFF_DEBUGGING)
14994 dwarf2_directive_loc (0);
14995 }
14996
14997 /* The .end directive. */
14998
14999 static void
15000 s_mips_end (int x ATTRIBUTE_UNUSED)
15001 {
15002 symbolS *p;
15003
15004 /* Following functions need their own .frame and .cprestore directives. */
15005 mips_frame_reg_valid = 0;
15006 mips_cprestore_valid = 0;
15007
15008 if (!is_end_of_line[(unsigned char) *input_line_pointer])
15009 {
15010 p = get_symbol ();
15011 demand_empty_rest_of_line ();
15012 }
15013 else
15014 p = NULL;
15015
15016 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
15017 as_warn (_(".end not in text section"));
15018
15019 if (!cur_proc_ptr)
15020 {
15021 as_warn (_(".end directive without a preceding .ent directive."));
15022 demand_empty_rest_of_line ();
15023 return;
15024 }
15025
15026 if (p != NULL)
15027 {
15028 gas_assert (S_GET_NAME (p));
15029 if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->func_sym)))
15030 as_warn (_(".end symbol does not match .ent symbol."));
15031
15032 if (debug_type == DEBUG_STABS)
15033 stabs_generate_asm_endfunc (S_GET_NAME (p),
15034 S_GET_NAME (p));
15035 }
15036 else
15037 as_warn (_(".end directive missing or unknown symbol"));
15038
15039 #ifdef OBJ_ELF
15040 /* Create an expression to calculate the size of the function. */
15041 if (p && cur_proc_ptr)
15042 {
15043 OBJ_SYMFIELD_TYPE *obj = symbol_get_obj (p);
15044 expressionS *exp = xmalloc (sizeof (expressionS));
15045
15046 obj->size = exp;
15047 exp->X_op = O_subtract;
15048 exp->X_add_symbol = symbol_temp_new_now ();
15049 exp->X_op_symbol = p;
15050 exp->X_add_number = 0;
15051
15052 cur_proc_ptr->func_end_sym = exp->X_add_symbol;
15053 }
15054
15055 /* Generate a .pdr section. */
15056 if (IS_ELF && !ECOFF_DEBUGGING && mips_flag_pdr)
15057 {
15058 segT saved_seg = now_seg;
15059 subsegT saved_subseg = now_subseg;
15060 expressionS exp;
15061 char *fragp;
15062
15063 #ifdef md_flush_pending_output
15064 md_flush_pending_output ();
15065 #endif
15066
15067 gas_assert (pdr_seg);
15068 subseg_set (pdr_seg, 0);
15069
15070 /* Write the symbol. */
15071 exp.X_op = O_symbol;
15072 exp.X_add_symbol = p;
15073 exp.X_add_number = 0;
15074 emit_expr (&exp, 4);
15075
15076 fragp = frag_more (7 * 4);
15077
15078 md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4);
15079 md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4);
15080 md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4);
15081 md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4);
15082 md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4);
15083 md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4);
15084 md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4);
15085
15086 subseg_set (saved_seg, saved_subseg);
15087 }
15088 #endif /* OBJ_ELF */
15089
15090 cur_proc_ptr = NULL;
15091 }
15092
15093 /* The .aent and .ent directives. */
15094
15095 static void
15096 s_mips_ent (int aent)
15097 {
15098 symbolS *symbolP;
15099
15100 symbolP = get_symbol ();
15101 if (*input_line_pointer == ',')
15102 ++input_line_pointer;
15103 SKIP_WHITESPACE ();
15104 if (ISDIGIT (*input_line_pointer)
15105 || *input_line_pointer == '-')
15106 get_number ();
15107
15108 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
15109 as_warn (_(".ent or .aent not in text section."));
15110
15111 if (!aent && cur_proc_ptr)
15112 as_warn (_("missing .end"));
15113
15114 if (!aent)
15115 {
15116 /* This function needs its own .frame and .cprestore directives. */
15117 mips_frame_reg_valid = 0;
15118 mips_cprestore_valid = 0;
15119
15120 cur_proc_ptr = &cur_proc;
15121 memset (cur_proc_ptr, '\0', sizeof (procS));
15122
15123 cur_proc_ptr->func_sym = symbolP;
15124
15125 ++numprocs;
15126
15127 if (debug_type == DEBUG_STABS)
15128 stabs_generate_asm_func (S_GET_NAME (symbolP),
15129 S_GET_NAME (symbolP));
15130 }
15131
15132 symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
15133
15134 demand_empty_rest_of_line ();
15135 }
15136
15137 /* The .frame directive. If the mdebug section is present (IRIX 5 native)
15138 then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
15139 s_mips_frame is used so that we can set the PDR information correctly.
15140 We can't use the ecoff routines because they make reference to the ecoff
15141 symbol table (in the mdebug section). */
15142
15143 static void
15144 s_mips_frame (int ignore ATTRIBUTE_UNUSED)
15145 {
15146 #ifdef OBJ_ELF
15147 if (IS_ELF && !ECOFF_DEBUGGING)
15148 {
15149 long val;
15150
15151 if (cur_proc_ptr == (procS *) NULL)
15152 {
15153 as_warn (_(".frame outside of .ent"));
15154 demand_empty_rest_of_line ();
15155 return;
15156 }
15157
15158 cur_proc_ptr->frame_reg = tc_get_register (1);
15159
15160 SKIP_WHITESPACE ();
15161 if (*input_line_pointer++ != ','
15162 || get_absolute_expression_and_terminator (&val) != ',')
15163 {
15164 as_warn (_("Bad .frame directive"));
15165 --input_line_pointer;
15166 demand_empty_rest_of_line ();
15167 return;
15168 }
15169
15170 cur_proc_ptr->frame_offset = val;
15171 cur_proc_ptr->pc_reg = tc_get_register (0);
15172
15173 demand_empty_rest_of_line ();
15174 }
15175 else
15176 #endif /* OBJ_ELF */
15177 s_ignore (ignore);
15178 }
15179
15180 /* The .fmask and .mask directives. If the mdebug section is present
15181 (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
15182 embedded targets, s_mips_mask is used so that we can set the PDR
15183 information correctly. We can't use the ecoff routines because they
15184 make reference to the ecoff symbol table (in the mdebug section). */
15185
15186 static void
15187 s_mips_mask (int reg_type)
15188 {
15189 #ifdef OBJ_ELF
15190 if (IS_ELF && !ECOFF_DEBUGGING)
15191 {
15192 long mask, off;
15193
15194 if (cur_proc_ptr == (procS *) NULL)
15195 {
15196 as_warn (_(".mask/.fmask outside of .ent"));
15197 demand_empty_rest_of_line ();
15198 return;
15199 }
15200
15201 if (get_absolute_expression_and_terminator (&mask) != ',')
15202 {
15203 as_warn (_("Bad .mask/.fmask directive"));
15204 --input_line_pointer;
15205 demand_empty_rest_of_line ();
15206 return;
15207 }
15208
15209 off = get_absolute_expression ();
15210
15211 if (reg_type == 'F')
15212 {
15213 cur_proc_ptr->fpreg_mask = mask;
15214 cur_proc_ptr->fpreg_offset = off;
15215 }
15216 else
15217 {
15218 cur_proc_ptr->reg_mask = mask;
15219 cur_proc_ptr->reg_offset = off;
15220 }
15221
15222 demand_empty_rest_of_line ();
15223 }
15224 else
15225 #endif /* OBJ_ELF */
15226 s_ignore (reg_type);
15227 }
15228
15229 /* A table describing all the processors gas knows about. Names are
15230 matched in the order listed.
15231
15232 To ease comparison, please keep this table in the same order as
15233 gcc's mips_cpu_info_table[]. */
15234 static const struct mips_cpu_info mips_cpu_info_table[] =
15235 {
15236 /* Entries for generic ISAs */
15237 { "mips1", MIPS_CPU_IS_ISA, ISA_MIPS1, CPU_R3000 },
15238 { "mips2", MIPS_CPU_IS_ISA, ISA_MIPS2, CPU_R6000 },
15239 { "mips3", MIPS_CPU_IS_ISA, ISA_MIPS3, CPU_R4000 },
15240 { "mips4", MIPS_CPU_IS_ISA, ISA_MIPS4, CPU_R8000 },
15241 { "mips5", MIPS_CPU_IS_ISA, ISA_MIPS5, CPU_MIPS5 },
15242 { "mips32", MIPS_CPU_IS_ISA, ISA_MIPS32, CPU_MIPS32 },
15243 { "mips32r2", MIPS_CPU_IS_ISA, ISA_MIPS32R2, CPU_MIPS32R2 },
15244 { "mips64", MIPS_CPU_IS_ISA, ISA_MIPS64, CPU_MIPS64 },
15245 { "mips64r2", MIPS_CPU_IS_ISA, ISA_MIPS64R2, CPU_MIPS64R2 },
15246
15247 /* MIPS I */
15248 { "r3000", 0, ISA_MIPS1, CPU_R3000 },
15249 { "r2000", 0, ISA_MIPS1, CPU_R3000 },
15250 { "r3900", 0, ISA_MIPS1, CPU_R3900 },
15251
15252 /* MIPS II */
15253 { "r6000", 0, ISA_MIPS2, CPU_R6000 },
15254
15255 /* MIPS III */
15256 { "r4000", 0, ISA_MIPS3, CPU_R4000 },
15257 { "r4010", 0, ISA_MIPS2, CPU_R4010 },
15258 { "vr4100", 0, ISA_MIPS3, CPU_VR4100 },
15259 { "vr4111", 0, ISA_MIPS3, CPU_R4111 },
15260 { "vr4120", 0, ISA_MIPS3, CPU_VR4120 },
15261 { "vr4130", 0, ISA_MIPS3, CPU_VR4120 },
15262 { "vr4181", 0, ISA_MIPS3, CPU_R4111 },
15263 { "vr4300", 0, ISA_MIPS3, CPU_R4300 },
15264 { "r4400", 0, ISA_MIPS3, CPU_R4400 },
15265 { "r4600", 0, ISA_MIPS3, CPU_R4600 },
15266 { "orion", 0, ISA_MIPS3, CPU_R4600 },
15267 { "r4650", 0, ISA_MIPS3, CPU_R4650 },
15268 /* ST Microelectronics Loongson 2E and 2F cores */
15269 { "loongson2e", 0, ISA_MIPS3, CPU_LOONGSON_2E },
15270 { "loongson2f", 0, ISA_MIPS3, CPU_LOONGSON_2F },
15271
15272 /* MIPS IV */
15273 { "r8000", 0, ISA_MIPS4, CPU_R8000 },
15274 { "r10000", 0, ISA_MIPS4, CPU_R10000 },
15275 { "r12000", 0, ISA_MIPS4, CPU_R12000 },
15276 { "r14000", 0, ISA_MIPS4, CPU_R14000 },
15277 { "r16000", 0, ISA_MIPS4, CPU_R16000 },
15278 { "vr5000", 0, ISA_MIPS4, CPU_R5000 },
15279 { "vr5400", 0, ISA_MIPS4, CPU_VR5400 },
15280 { "vr5500", 0, ISA_MIPS4, CPU_VR5500 },
15281 { "rm5200", 0, ISA_MIPS4, CPU_R5000 },
15282 { "rm5230", 0, ISA_MIPS4, CPU_R5000 },
15283 { "rm5231", 0, ISA_MIPS4, CPU_R5000 },
15284 { "rm5261", 0, ISA_MIPS4, CPU_R5000 },
15285 { "rm5721", 0, ISA_MIPS4, CPU_R5000 },
15286 { "rm7000", 0, ISA_MIPS4, CPU_RM7000 },
15287 { "rm9000", 0, ISA_MIPS4, CPU_RM9000 },
15288
15289 /* MIPS 32 */
15290 { "4kc", 0, ISA_MIPS32, CPU_MIPS32 },
15291 { "4km", 0, ISA_MIPS32, CPU_MIPS32 },
15292 { "4kp", 0, ISA_MIPS32, CPU_MIPS32 },
15293 { "4ksc", MIPS_CPU_ASE_SMARTMIPS, ISA_MIPS32, CPU_MIPS32 },
15294
15295 /* MIPS 32 Release 2 */
15296 { "4kec", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15297 { "4kem", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15298 { "4kep", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15299 { "4ksd", MIPS_CPU_ASE_SMARTMIPS, ISA_MIPS32R2, CPU_MIPS32R2 },
15300 { "m4k", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15301 { "m4kp", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15302 { "24kc", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15303 { "24kf2_1", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15304 { "24kf", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15305 { "24kf1_1", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15306 /* Deprecated forms of the above. */
15307 { "24kfx", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15308 { "24kx", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15309 /* 24KE is a 24K with DSP ASE, other ASEs are optional. */
15310 { "24kec", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15311 { "24kef2_1", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15312 { "24kef", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15313 { "24kef1_1", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15314 /* Deprecated forms of the above. */
15315 { "24kefx", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15316 { "24kex", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15317 /* 34K is a 24K with DSP and MT ASE, other ASEs are optional. */
15318 { "34kc", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15319 ISA_MIPS32R2, CPU_MIPS32R2 },
15320 { "34kf2_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15321 ISA_MIPS32R2, CPU_MIPS32R2 },
15322 { "34kf", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15323 ISA_MIPS32R2, CPU_MIPS32R2 },
15324 { "34kf1_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15325 ISA_MIPS32R2, CPU_MIPS32R2 },
15326 /* Deprecated forms of the above. */
15327 { "34kfx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15328 ISA_MIPS32R2, CPU_MIPS32R2 },
15329 { "34kx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15330 ISA_MIPS32R2, CPU_MIPS32R2 },
15331 /* 74K with DSP and DSPR2 ASE, other ASEs are optional. */
15332 { "74kc", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15333 ISA_MIPS32R2, CPU_MIPS32R2 },
15334 { "74kf2_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15335 ISA_MIPS32R2, CPU_MIPS32R2 },
15336 { "74kf", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15337 ISA_MIPS32R2, CPU_MIPS32R2 },
15338 { "74kf1_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15339 ISA_MIPS32R2, CPU_MIPS32R2 },
15340 { "74kf3_2", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15341 ISA_MIPS32R2, CPU_MIPS32R2 },
15342 /* Deprecated forms of the above. */
15343 { "74kfx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15344 ISA_MIPS32R2, CPU_MIPS32R2 },
15345 { "74kx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15346 ISA_MIPS32R2, CPU_MIPS32R2 },
15347 /* 1004K cores are multiprocessor versions of the 34K. */
15348 { "1004kc", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15349 ISA_MIPS32R2, CPU_MIPS32R2 },
15350 { "1004kf2_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15351 ISA_MIPS32R2, CPU_MIPS32R2 },
15352 { "1004kf", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15353 ISA_MIPS32R2, CPU_MIPS32R2 },
15354 { "1004kf1_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15355 ISA_MIPS32R2, CPU_MIPS32R2 },
15356
15357 /* MIPS 64 */
15358 { "5kc", 0, ISA_MIPS64, CPU_MIPS64 },
15359 { "5kf", 0, ISA_MIPS64, CPU_MIPS64 },
15360 { "20kc", MIPS_CPU_ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
15361 { "25kf", MIPS_CPU_ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
15362
15363 /* Broadcom SB-1 CPU core */
15364 { "sb1", MIPS_CPU_ASE_MIPS3D | MIPS_CPU_ASE_MDMX,
15365 ISA_MIPS64, CPU_SB1 },
15366 /* Broadcom SB-1A CPU core */
15367 { "sb1a", MIPS_CPU_ASE_MIPS3D | MIPS_CPU_ASE_MDMX,
15368 ISA_MIPS64, CPU_SB1 },
15369
15370 { "loongson3a", 0, ISA_MIPS64, CPU_LOONGSON_3A },
15371
15372 /* MIPS 64 Release 2 */
15373
15374 /* Cavium Networks Octeon CPU core */
15375 { "octeon", 0, ISA_MIPS64R2, CPU_OCTEON },
15376
15377 /* RMI Xlr */
15378 { "xlr", 0, ISA_MIPS64, CPU_XLR },
15379
15380 /* End marker */
15381 { NULL, 0, 0, 0 }
15382 };
15383
15384
15385 /* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
15386 with a final "000" replaced by "k". Ignore case.
15387
15388 Note: this function is shared between GCC and GAS. */
15389
15390 static bfd_boolean
15391 mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
15392 {
15393 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
15394 given++, canonical++;
15395
15396 return ((*given == 0 && *canonical == 0)
15397 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
15398 }
15399
15400
15401 /* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
15402 CPU name. We've traditionally allowed a lot of variation here.
15403
15404 Note: this function is shared between GCC and GAS. */
15405
15406 static bfd_boolean
15407 mips_matching_cpu_name_p (const char *canonical, const char *given)
15408 {
15409 /* First see if the name matches exactly, or with a final "000"
15410 turned into "k". */
15411 if (mips_strict_matching_cpu_name_p (canonical, given))
15412 return TRUE;
15413
15414 /* If not, try comparing based on numerical designation alone.
15415 See if GIVEN is an unadorned number, or 'r' followed by a number. */
15416 if (TOLOWER (*given) == 'r')
15417 given++;
15418 if (!ISDIGIT (*given))
15419 return FALSE;
15420
15421 /* Skip over some well-known prefixes in the canonical name,
15422 hoping to find a number there too. */
15423 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
15424 canonical += 2;
15425 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
15426 canonical += 2;
15427 else if (TOLOWER (canonical[0]) == 'r')
15428 canonical += 1;
15429
15430 return mips_strict_matching_cpu_name_p (canonical, given);
15431 }
15432
15433
15434 /* Parse an option that takes the name of a processor as its argument.
15435 OPTION is the name of the option and CPU_STRING is the argument.
15436 Return the corresponding processor enumeration if the CPU_STRING is
15437 recognized, otherwise report an error and return null.
15438
15439 A similar function exists in GCC. */
15440
15441 static const struct mips_cpu_info *
15442 mips_parse_cpu (const char *option, const char *cpu_string)
15443 {
15444 const struct mips_cpu_info *p;
15445
15446 /* 'from-abi' selects the most compatible architecture for the given
15447 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
15448 EABIs, we have to decide whether we're using the 32-bit or 64-bit
15449 version. Look first at the -mgp options, if given, otherwise base
15450 the choice on MIPS_DEFAULT_64BIT.
15451
15452 Treat NO_ABI like the EABIs. One reason to do this is that the
15453 plain 'mips' and 'mips64' configs have 'from-abi' as their default
15454 architecture. This code picks MIPS I for 'mips' and MIPS III for
15455 'mips64', just as we did in the days before 'from-abi'. */
15456 if (strcasecmp (cpu_string, "from-abi") == 0)
15457 {
15458 if (ABI_NEEDS_32BIT_REGS (mips_abi))
15459 return mips_cpu_info_from_isa (ISA_MIPS1);
15460
15461 if (ABI_NEEDS_64BIT_REGS (mips_abi))
15462 return mips_cpu_info_from_isa (ISA_MIPS3);
15463
15464 if (file_mips_gp32 >= 0)
15465 return mips_cpu_info_from_isa (file_mips_gp32 ? ISA_MIPS1 : ISA_MIPS3);
15466
15467 return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
15468 ? ISA_MIPS3
15469 : ISA_MIPS1);
15470 }
15471
15472 /* 'default' has traditionally been a no-op. Probably not very useful. */
15473 if (strcasecmp (cpu_string, "default") == 0)
15474 return 0;
15475
15476 for (p = mips_cpu_info_table; p->name != 0; p++)
15477 if (mips_matching_cpu_name_p (p->name, cpu_string))
15478 return p;
15479
15480 as_bad (_("Bad value (%s) for %s"), cpu_string, option);
15481 return 0;
15482 }
15483
15484 /* Return the canonical processor information for ISA (a member of the
15485 ISA_MIPS* enumeration). */
15486
15487 static const struct mips_cpu_info *
15488 mips_cpu_info_from_isa (int isa)
15489 {
15490 int i;
15491
15492 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
15493 if ((mips_cpu_info_table[i].flags & MIPS_CPU_IS_ISA)
15494 && isa == mips_cpu_info_table[i].isa)
15495 return (&mips_cpu_info_table[i]);
15496
15497 return NULL;
15498 }
15499
15500 static const struct mips_cpu_info *
15501 mips_cpu_info_from_arch (int arch)
15502 {
15503 int i;
15504
15505 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
15506 if (arch == mips_cpu_info_table[i].cpu)
15507 return (&mips_cpu_info_table[i]);
15508
15509 return NULL;
15510 }
15511 \f
15512 static void
15513 show (FILE *stream, const char *string, int *col_p, int *first_p)
15514 {
15515 if (*first_p)
15516 {
15517 fprintf (stream, "%24s", "");
15518 *col_p = 24;
15519 }
15520 else
15521 {
15522 fprintf (stream, ", ");
15523 *col_p += 2;
15524 }
15525
15526 if (*col_p + strlen (string) > 72)
15527 {
15528 fprintf (stream, "\n%24s", "");
15529 *col_p = 24;
15530 }
15531
15532 fprintf (stream, "%s", string);
15533 *col_p += strlen (string);
15534
15535 *first_p = 0;
15536 }
15537
15538 void
15539 md_show_usage (FILE *stream)
15540 {
15541 int column, first;
15542 size_t i;
15543
15544 fprintf (stream, _("\
15545 MIPS options:\n\
15546 -EB generate big endian output\n\
15547 -EL generate little endian output\n\
15548 -g, -g2 do not remove unneeded NOPs or swap branches\n\
15549 -G NUM allow referencing objects up to NUM bytes\n\
15550 implicitly with the gp register [default 8]\n"));
15551 fprintf (stream, _("\
15552 -mips1 generate MIPS ISA I instructions\n\
15553 -mips2 generate MIPS ISA II instructions\n\
15554 -mips3 generate MIPS ISA III instructions\n\
15555 -mips4 generate MIPS ISA IV instructions\n\
15556 -mips5 generate MIPS ISA V instructions\n\
15557 -mips32 generate MIPS32 ISA instructions\n\
15558 -mips32r2 generate MIPS32 release 2 ISA instructions\n\
15559 -mips64 generate MIPS64 ISA instructions\n\
15560 -mips64r2 generate MIPS64 release 2 ISA instructions\n\
15561 -march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
15562
15563 first = 1;
15564
15565 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
15566 show (stream, mips_cpu_info_table[i].name, &column, &first);
15567 show (stream, "from-abi", &column, &first);
15568 fputc ('\n', stream);
15569
15570 fprintf (stream, _("\
15571 -mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
15572 -no-mCPU don't generate code specific to CPU.\n\
15573 For -mCPU and -no-mCPU, CPU must be one of:\n"));
15574
15575 first = 1;
15576
15577 show (stream, "3900", &column, &first);
15578 show (stream, "4010", &column, &first);
15579 show (stream, "4100", &column, &first);
15580 show (stream, "4650", &column, &first);
15581 fputc ('\n', stream);
15582
15583 fprintf (stream, _("\
15584 -mips16 generate mips16 instructions\n\
15585 -no-mips16 do not generate mips16 instructions\n"));
15586 fprintf (stream, _("\
15587 -msmartmips generate smartmips instructions\n\
15588 -mno-smartmips do not generate smartmips instructions\n"));
15589 fprintf (stream, _("\
15590 -mdsp generate DSP instructions\n\
15591 -mno-dsp do not generate DSP instructions\n"));
15592 fprintf (stream, _("\
15593 -mdspr2 generate DSP R2 instructions\n\
15594 -mno-dspr2 do not generate DSP R2 instructions\n"));
15595 fprintf (stream, _("\
15596 -mmt generate MT instructions\n\
15597 -mno-mt do not generate MT instructions\n"));
15598 fprintf (stream, _("\
15599 -mfix-loongson2f-jump work around Loongson2F JUMP instructions\n\
15600 -mfix-loongson2f-nop work around Loongson2F NOP errata\n\
15601 -mfix-vr4120 work around certain VR4120 errata\n\
15602 -mfix-vr4130 work around VR4130 mflo/mfhi errata\n\
15603 -mfix-24k insert a nop after ERET and DERET instructions\n\
15604 -mfix-cn63xxp1 work around CN63XXP1 PREF errata\n\
15605 -mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
15606 -mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
15607 -msym32 assume all symbols have 32-bit values\n\
15608 -O0 remove unneeded NOPs, do not swap branches\n\
15609 -O remove unneeded NOPs and swap branches\n\
15610 --trap, --no-break trap exception on div by 0 and mult overflow\n\
15611 --break, --no-trap break exception on div by 0 and mult overflow\n"));
15612 fprintf (stream, _("\
15613 -mhard-float allow floating-point instructions\n\
15614 -msoft-float do not allow floating-point instructions\n\
15615 -msingle-float only allow 32-bit floating-point operations\n\
15616 -mdouble-float allow 32-bit and 64-bit floating-point operations\n\
15617 --[no-]construct-floats [dis]allow floating point values to be constructed\n"
15618 ));
15619 #ifdef OBJ_ELF
15620 fprintf (stream, _("\
15621 -KPIC, -call_shared generate SVR4 position independent code\n\
15622 -call_nonpic generate non-PIC code that can operate with DSOs\n\
15623 -mvxworks-pic generate VxWorks position independent code\n\
15624 -non_shared do not generate code that can operate with DSOs\n\
15625 -xgot assume a 32 bit GOT\n\
15626 -mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
15627 -mshared, -mno-shared disable/enable .cpload optimization for\n\
15628 position dependent (non shared) code\n\
15629 -mabi=ABI create ABI conformant object file for:\n"));
15630
15631 first = 1;
15632
15633 show (stream, "32", &column, &first);
15634 show (stream, "o64", &column, &first);
15635 show (stream, "n32", &column, &first);
15636 show (stream, "64", &column, &first);
15637 show (stream, "eabi", &column, &first);
15638
15639 fputc ('\n', stream);
15640
15641 fprintf (stream, _("\
15642 -32 create o32 ABI object file (default)\n\
15643 -n32 create n32 ABI object file\n\
15644 -64 create 64 ABI object file\n"));
15645 #endif
15646 }
15647
15648 #ifdef TE_IRIX
15649 enum dwarf2_format
15650 mips_dwarf2_format (asection *sec ATTRIBUTE_UNUSED)
15651 {
15652 if (HAVE_64BIT_SYMBOLS)
15653 return dwarf2_format_64bit_irix;
15654 else
15655 return dwarf2_format_32bit;
15656 }
15657 #endif
15658
15659 int
15660 mips_dwarf2_addr_size (void)
15661 {
15662 if (HAVE_64BIT_OBJECTS)
15663 return 8;
15664 else
15665 return 4;
15666 }
15667
15668 /* Standard calling conventions leave the CFA at SP on entry. */
15669 void
15670 mips_cfi_frame_initial_instructions (void)
15671 {
15672 cfi_add_CFA_def_cfa_register (SP);
15673 }
15674
15675 int
15676 tc_mips_regname_to_dw2regnum (char *regname)
15677 {
15678 unsigned int regnum = -1;
15679 unsigned int reg;
15680
15681 if (reg_lookup (&regname, RTYPE_GP | RTYPE_NUM, &reg))
15682 regnum = reg;
15683
15684 return regnum;
15685 }
This page took 0.340055 seconds and 5 git commands to generate.