* tc-arm.c (all error messages): Normalize capitalization of messages.
[deliverable/binutils-gdb.git] / gas / config / tc-mn10300.c
1 /* tc-mn10300.c -- Assembler code for the Matsushita 10300
2 Copyright 1996, 1997, 1998, 1999, 2000, 2001
3 Free Software Foundation, Inc.
4
5 This file is part of GAS, the GNU Assembler.
6
7 GAS is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GAS is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GAS; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include <stdio.h>
23 #include "as.h"
24 #include "safe-ctype.h"
25 #include "subsegs.h"
26 #include "opcode/mn10300.h"
27 #include "dwarf2dbg.h"
28 \f
29 /* Structure to hold information about predefined registers. */
30 struct reg_name
31 {
32 const char *name;
33 int value;
34 };
35
36 /* Generic assembler global variables which must be defined by all
37 targets. */
38
39 /* Characters which always start a comment. */
40 const char comment_chars[] = "#";
41
42 /* Characters which start a comment at the beginning of a line. */
43 const char line_comment_chars[] = ";#";
44
45 /* Characters which may be used to separate multiple commands on a
46 single line. */
47 const char line_separator_chars[] = ";";
48
49 /* Characters which are used to indicate an exponent in a floating
50 point number. */
51 const char EXP_CHARS[] = "eE";
52
53 /* Characters which mean that a number is a floating point constant,
54 as in 0d1.0. */
55 const char FLT_CHARS[] = "dD";
56 \f
57 const relax_typeS md_relax_table[] = {
58 /* bCC relaxing */
59 {0x7f, -0x80, 2, 1},
60 {0x7fff, -0x8000, 5, 2},
61 {0x7fffffff, -0x80000000, 7, 0},
62
63 /* bCC relaxing (uncommon cases) */
64 {0x7f, -0x80, 3, 4},
65 {0x7fff, -0x8000, 6, 5},
66 {0x7fffffff, -0x80000000, 8, 0},
67
68 /* call relaxing */
69 {0x7fff, -0x8000, 5, 7},
70 {0x7fffffff, -0x80000000, 7, 0},
71
72 /* calls relaxing */
73 {0x7fff, -0x8000, 4, 9},
74 {0x7fffffff, -0x80000000, 6, 0},
75
76 /* jmp relaxing */
77 {0x7f, -0x80, 2, 11},
78 {0x7fff, -0x8000, 3, 12},
79 {0x7fffffff, -0x80000000, 5, 0},
80
81 };
82
83 /* Local functions. */
84 static void mn10300_insert_operand PARAMS ((unsigned long *, unsigned long *,
85 const struct mn10300_operand *,
86 offsetT, char *, unsigned,
87 unsigned));
88 static unsigned long check_operand PARAMS ((unsigned long,
89 const struct mn10300_operand *,
90 offsetT));
91 static int reg_name_search PARAMS ((const struct reg_name *, int, const char *));
92 static boolean data_register_name PARAMS ((expressionS *expressionP));
93 static boolean address_register_name PARAMS ((expressionS *expressionP));
94 static boolean other_register_name PARAMS ((expressionS *expressionP));
95 static void set_arch_mach PARAMS ((unsigned int));
96
97 /* Set linkrelax here to avoid fixups in most sections. */
98 int linkrelax = 1;
99
100 static int current_machine;
101
102 /* Fixups. */
103 #define MAX_INSN_FIXUPS (5)
104 struct mn10300_fixup
105 {
106 expressionS exp;
107 int opindex;
108 bfd_reloc_code_real_type reloc;
109 };
110 struct mn10300_fixup fixups[MAX_INSN_FIXUPS];
111 static int fc;
112
113 /* We must store the value of each register operand so that we can
114 verify that certain registers do not match. */
115 int mn10300_reg_operands[MN10300_MAX_OPERANDS];
116 \f
117 const char *md_shortopts = "";
118 struct option md_longopts[] = {
119 {NULL, no_argument, NULL, 0}
120 };
121 size_t md_longopts_size = sizeof (md_longopts);
122
123 /* The target specific pseudo-ops which we support. */
124 const pseudo_typeS md_pseudo_table[] =
125 {
126 { "file", dwarf2_directive_file, 0 },
127 { "loc", dwarf2_directive_loc, 0 },
128 { "am30", set_arch_mach, AM30 },
129 { "am33", set_arch_mach, AM33 },
130 { "mn10300", set_arch_mach, MN103 },
131 {NULL, 0, 0}
132 };
133
134 #define HAVE_AM33 (current_machine == AM33)
135 #define HAVE_AM30 (current_machine == AM30)
136
137 /* Opcode hash table. */
138 static struct hash_control *mn10300_hash;
139
140 /* This table is sorted. Suitable for searching by a binary search. */
141 static const struct reg_name data_registers[] =
142 {
143 { "d0", 0 },
144 { "d1", 1 },
145 { "d2", 2 },
146 { "d3", 3 },
147 };
148 #define DATA_REG_NAME_CNT \
149 (sizeof (data_registers) / sizeof (struct reg_name))
150
151 static const struct reg_name address_registers[] =
152 {
153 { "a0", 0 },
154 { "a1", 1 },
155 { "a2", 2 },
156 { "a3", 3 },
157 };
158
159 #define ADDRESS_REG_NAME_CNT \
160 (sizeof (address_registers) / sizeof (struct reg_name))
161
162 static const struct reg_name r_registers[] =
163 {
164 { "a0", 8 },
165 { "a1", 9 },
166 { "a2", 10 },
167 { "a3", 11 },
168 { "d0", 12 },
169 { "d1", 13 },
170 { "d2", 14 },
171 { "d3", 15 },
172 { "e0", 0 },
173 { "e1", 1 },
174 { "e10", 10 },
175 { "e11", 11 },
176 { "e12", 12 },
177 { "e13", 13 },
178 { "e14", 14 },
179 { "e15", 15 },
180 { "e2", 2 },
181 { "e3", 3 },
182 { "e4", 4 },
183 { "e5", 5 },
184 { "e6", 6 },
185 { "e7", 7 },
186 { "e8", 8 },
187 { "e9", 9 },
188 { "r0", 0 },
189 { "r1", 1 },
190 { "r10", 10 },
191 { "r11", 11 },
192 { "r12", 12 },
193 { "r13", 13 },
194 { "r14", 14 },
195 { "r15", 15 },
196 { "r2", 2 },
197 { "r3", 3 },
198 { "r4", 4 },
199 { "r5", 5 },
200 { "r6", 6 },
201 { "r7", 7 },
202 { "r8", 8 },
203 { "r9", 9 },
204 };
205
206 #define R_REG_NAME_CNT \
207 (sizeof (r_registers) / sizeof (struct reg_name))
208
209 static const struct reg_name xr_registers[] =
210 {
211 { "mcrh", 2 },
212 { "mcrl", 3 },
213 { "mcvf", 4 },
214 { "mdrq", 1 },
215 { "pc", 0 },
216 { "sp", 0 },
217 { "xr0", 0 },
218 { "xr1", 1 },
219 { "xr10", 10 },
220 { "xr11", 11 },
221 { "xr12", 12 },
222 { "xr13", 13 },
223 { "xr14", 14 },
224 { "xr15", 15 },
225 { "xr2", 2 },
226 { "xr3", 3 },
227 { "xr4", 4 },
228 { "xr5", 5 },
229 { "xr6", 6 },
230 { "xr7", 7 },
231 { "xr8", 8 },
232 { "xr9", 9 },
233 };
234
235 #define XR_REG_NAME_CNT \
236 (sizeof (xr_registers) / sizeof (struct reg_name))
237
238 static const struct reg_name other_registers[] =
239 {
240 { "mdr", 0 },
241 { "psw", 0 },
242 { "sp", 0 },
243 };
244
245 #define OTHER_REG_NAME_CNT \
246 (sizeof (other_registers) / sizeof (struct reg_name))
247
248 /* reg_name_search does a binary search of the given register table
249 to see if "name" is a valid regiter name. Returns the register
250 number from the array on success, or -1 on failure. */
251
252 static int
253 reg_name_search (regs, regcount, name)
254 const struct reg_name *regs;
255 int regcount;
256 const char *name;
257 {
258 int middle, low, high;
259 int cmp;
260
261 low = 0;
262 high = regcount - 1;
263
264 do
265 {
266 middle = (low + high) / 2;
267 cmp = strcasecmp (name, regs[middle].name);
268 if (cmp < 0)
269 high = middle - 1;
270 else if (cmp > 0)
271 low = middle + 1;
272 else
273 return regs[middle].value;
274 }
275 while (low <= high);
276 return -1;
277 }
278
279 /* Summary of register_name().
280 *
281 * in: Input_line_pointer points to 1st char of operand.
282 *
283 * out: An expressionS.
284 * The operand may have been a register: in this case, X_op == O_register,
285 * X_add_number is set to the register number, and truth is returned.
286 * Input_line_pointer->(next non-blank) char after operand, or is in
287 * its original state.
288 */
289
290 static boolean
291 r_register_name (expressionP)
292 expressionS *expressionP;
293 {
294 int reg_number;
295 char *name;
296 char *start;
297 char c;
298
299 /* Find the spelling of the operand. */
300 start = name = input_line_pointer;
301
302 c = get_symbol_end ();
303 reg_number = reg_name_search (r_registers, R_REG_NAME_CNT, name);
304
305 /* Put back the delimiting char. */
306 *input_line_pointer = c;
307
308 /* Look to see if it's in the register table. */
309 if (reg_number >= 0)
310 {
311 expressionP->X_op = O_register;
312 expressionP->X_add_number = reg_number;
313
314 /* Make the rest nice. */
315 expressionP->X_add_symbol = NULL;
316 expressionP->X_op_symbol = NULL;
317
318 return true;
319 }
320
321 /* Reset the line as if we had not done anything. */
322 input_line_pointer = start;
323 return false;
324 }
325
326 /* Summary of register_name().
327 *
328 * in: Input_line_pointer points to 1st char of operand.
329 *
330 * out: An expressionS.
331 * The operand may have been a register: in this case, X_op == O_register,
332 * X_add_number is set to the register number, and truth is returned.
333 * Input_line_pointer->(next non-blank) char after operand, or is in
334 * its original state.
335 */
336
337 static boolean
338 xr_register_name (expressionP)
339 expressionS *expressionP;
340 {
341 int reg_number;
342 char *name;
343 char *start;
344 char c;
345
346 /* Find the spelling of the operand. */
347 start = name = input_line_pointer;
348
349 c = get_symbol_end ();
350 reg_number = reg_name_search (xr_registers, XR_REG_NAME_CNT, name);
351
352 /* Put back the delimiting char. */
353 *input_line_pointer = c;
354
355 /* Look to see if it's in the register table. */
356 if (reg_number >= 0)
357 {
358 expressionP->X_op = O_register;
359 expressionP->X_add_number = reg_number;
360
361 /* Make the rest nice. */
362 expressionP->X_add_symbol = NULL;
363 expressionP->X_op_symbol = NULL;
364
365 return true;
366 }
367
368 /* Reset the line as if we had not done anything. */
369 input_line_pointer = start;
370 return false;
371 }
372
373 /* Summary of register_name().
374 *
375 * in: Input_line_pointer points to 1st char of operand.
376 *
377 * out: An expressionS.
378 * The operand may have been a register: in this case, X_op == O_register,
379 * X_add_number is set to the register number, and truth is returned.
380 * Input_line_pointer->(next non-blank) char after operand, or is in
381 * its original state.
382 */
383
384 static boolean
385 data_register_name (expressionP)
386 expressionS *expressionP;
387 {
388 int reg_number;
389 char *name;
390 char *start;
391 char c;
392
393 /* Find the spelling of the operand. */
394 start = name = input_line_pointer;
395
396 c = get_symbol_end ();
397 reg_number = reg_name_search (data_registers, DATA_REG_NAME_CNT, name);
398
399 /* Put back the delimiting char. */
400 *input_line_pointer = c;
401
402 /* Look to see if it's in the register table. */
403 if (reg_number >= 0)
404 {
405 expressionP->X_op = O_register;
406 expressionP->X_add_number = reg_number;
407
408 /* Make the rest nice. */
409 expressionP->X_add_symbol = NULL;
410 expressionP->X_op_symbol = NULL;
411
412 return true;
413 }
414
415 /* Reset the line as if we had not done anything. */
416 input_line_pointer = start;
417 return false;
418 }
419
420 /* Summary of register_name().
421 *
422 * in: Input_line_pointer points to 1st char of operand.
423 *
424 * out: An expressionS.
425 * The operand may have been a register: in this case, X_op == O_register,
426 * X_add_number is set to the register number, and truth is returned.
427 * Input_line_pointer->(next non-blank) char after operand, or is in
428 * its original state.
429 */
430
431 static boolean
432 address_register_name (expressionP)
433 expressionS *expressionP;
434 {
435 int reg_number;
436 char *name;
437 char *start;
438 char c;
439
440 /* Find the spelling of the operand. */
441 start = name = input_line_pointer;
442
443 c = get_symbol_end ();
444 reg_number = reg_name_search (address_registers, ADDRESS_REG_NAME_CNT, name);
445
446 /* Put back the delimiting char. */
447 *input_line_pointer = c;
448
449 /* Look to see if it's in the register table. */
450 if (reg_number >= 0)
451 {
452 expressionP->X_op = O_register;
453 expressionP->X_add_number = reg_number;
454
455 /* Make the rest nice. */
456 expressionP->X_add_symbol = NULL;
457 expressionP->X_op_symbol = NULL;
458
459 return true;
460 }
461
462 /* Reset the line as if we had not done anything. */
463 input_line_pointer = start;
464 return false;
465 }
466
467 /* Summary of register_name().
468 *
469 * in: Input_line_pointer points to 1st char of operand.
470 *
471 * out: An expressionS.
472 * The operand may have been a register: in this case, X_op == O_register,
473 * X_add_number is set to the register number, and truth is returned.
474 * Input_line_pointer->(next non-blank) char after operand, or is in
475 * its original state.
476 */
477
478 static boolean
479 other_register_name (expressionP)
480 expressionS *expressionP;
481 {
482 int reg_number;
483 char *name;
484 char *start;
485 char c;
486
487 /* Find the spelling of the operand. */
488 start = name = input_line_pointer;
489
490 c = get_symbol_end ();
491 reg_number = reg_name_search (other_registers, OTHER_REG_NAME_CNT, name);
492
493 /* Put back the delimiting char. */
494 *input_line_pointer = c;
495
496 /* Look to see if it's in the register table. */
497 if (reg_number >= 0)
498 {
499 expressionP->X_op = O_register;
500 expressionP->X_add_number = reg_number;
501
502 /* Make the rest nice. */
503 expressionP->X_add_symbol = NULL;
504 expressionP->X_op_symbol = NULL;
505
506 return true;
507 }
508
509 /* Reset the line as if we had not done anything. */
510 input_line_pointer = start;
511 return false;
512 }
513
514 void
515 md_show_usage (stream)
516 FILE *stream;
517 {
518 fprintf (stream, _("MN10300 options:\n\
519 none yet\n"));
520 }
521
522 int
523 md_parse_option (c, arg)
524 int c ATTRIBUTE_UNUSED;
525 char *arg ATTRIBUTE_UNUSED;
526 {
527 return 0;
528 }
529
530 symbolS *
531 md_undefined_symbol (name)
532 char *name ATTRIBUTE_UNUSED;
533 {
534 return 0;
535 }
536
537 char *
538 md_atof (type, litp, sizep)
539 int type;
540 char *litp;
541 int *sizep;
542 {
543 int prec;
544 LITTLENUM_TYPE words[4];
545 char *t;
546 int i;
547
548 switch (type)
549 {
550 case 'f':
551 prec = 2;
552 break;
553
554 case 'd':
555 prec = 4;
556 break;
557
558 default:
559 *sizep = 0;
560 return "bad call to md_atof";
561 }
562
563 t = atof_ieee (input_line_pointer, type, words);
564 if (t)
565 input_line_pointer = t;
566
567 *sizep = prec * 2;
568
569 for (i = prec - 1; i >= 0; i--)
570 {
571 md_number_to_chars (litp, (valueT) words[i], 2);
572 litp += 2;
573 }
574
575 return NULL;
576 }
577
578 void
579 md_convert_frag (abfd, sec, fragP)
580 bfd *abfd ATTRIBUTE_UNUSED;
581 asection *sec;
582 fragS *fragP;
583 {
584 static unsigned long label_count = 0;
585 char buf[40];
586
587 subseg_change (sec, 0);
588 if (fragP->fr_subtype == 0)
589 {
590 fix_new (fragP, fragP->fr_fix + 1, 1, fragP->fr_symbol,
591 fragP->fr_offset + 1, 1, BFD_RELOC_8_PCREL);
592 fragP->fr_var = 0;
593 fragP->fr_fix += 2;
594 }
595 else if (fragP->fr_subtype == 1)
596 {
597 /* Reverse the condition of the first branch. */
598 int offset = fragP->fr_fix;
599 int opcode = fragP->fr_literal[offset] & 0xff;
600
601 switch (opcode)
602 {
603 case 0xc8:
604 opcode = 0xc9;
605 break;
606 case 0xc9:
607 opcode = 0xc8;
608 break;
609 case 0xc0:
610 opcode = 0xc2;
611 break;
612 case 0xc2:
613 opcode = 0xc0;
614 break;
615 case 0xc3:
616 opcode = 0xc1;
617 break;
618 case 0xc1:
619 opcode = 0xc3;
620 break;
621 case 0xc4:
622 opcode = 0xc6;
623 break;
624 case 0xc6:
625 opcode = 0xc4;
626 break;
627 case 0xc7:
628 opcode = 0xc5;
629 break;
630 case 0xc5:
631 opcode = 0xc7;
632 break;
633 default:
634 abort ();
635 }
636 fragP->fr_literal[offset] = opcode;
637
638 /* Create a fixup for the reversed conditional branch. */
639 sprintf (buf, ".%s_%ld", FAKE_LABEL_NAME, label_count++);
640 fix_new (fragP, fragP->fr_fix + 1, 1,
641 symbol_new (buf, sec, 0, fragP->fr_next),
642 fragP->fr_offset + 1, 1, BFD_RELOC_8_PCREL);
643
644 /* Now create the unconditional branch + fixup to the
645 final target. */
646 fragP->fr_literal[offset + 2] = 0xcc;
647 fix_new (fragP, fragP->fr_fix + 3, 2, fragP->fr_symbol,
648 fragP->fr_offset + 1, 1, BFD_RELOC_16_PCREL);
649 fragP->fr_var = 0;
650 fragP->fr_fix += 5;
651 }
652 else if (fragP->fr_subtype == 2)
653 {
654 /* Reverse the condition of the first branch. */
655 int offset = fragP->fr_fix;
656 int opcode = fragP->fr_literal[offset] & 0xff;
657
658 switch (opcode)
659 {
660 case 0xc8:
661 opcode = 0xc9;
662 break;
663 case 0xc9:
664 opcode = 0xc8;
665 break;
666 case 0xc0:
667 opcode = 0xc2;
668 break;
669 case 0xc2:
670 opcode = 0xc0;
671 break;
672 case 0xc3:
673 opcode = 0xc1;
674 break;
675 case 0xc1:
676 opcode = 0xc3;
677 break;
678 case 0xc4:
679 opcode = 0xc6;
680 break;
681 case 0xc6:
682 opcode = 0xc4;
683 break;
684 case 0xc7:
685 opcode = 0xc5;
686 break;
687 case 0xc5:
688 opcode = 0xc7;
689 break;
690 default:
691 abort ();
692 }
693 fragP->fr_literal[offset] = opcode;
694
695 /* Create a fixup for the reversed conditional branch. */
696 sprintf (buf, ".%s_%ld", FAKE_LABEL_NAME, label_count++);
697 fix_new (fragP, fragP->fr_fix + 1, 1,
698 symbol_new (buf, sec, 0, fragP->fr_next),
699 fragP->fr_offset + 1, 1, BFD_RELOC_8_PCREL);
700
701 /* Now create the unconditional branch + fixup to the
702 final target. */
703 fragP->fr_literal[offset + 2] = 0xdc;
704 fix_new (fragP, fragP->fr_fix + 3, 4, fragP->fr_symbol,
705 fragP->fr_offset + 1, 1, BFD_RELOC_32_PCREL);
706 fragP->fr_var = 0;
707 fragP->fr_fix += 7;
708 }
709 else if (fragP->fr_subtype == 3)
710 {
711 fix_new (fragP, fragP->fr_fix + 2, 1, fragP->fr_symbol,
712 fragP->fr_offset + 2, 1, BFD_RELOC_8_PCREL);
713 fragP->fr_var = 0;
714 fragP->fr_fix += 3;
715 }
716 else if (fragP->fr_subtype == 4)
717 {
718 /* Reverse the condition of the first branch. */
719 int offset = fragP->fr_fix;
720 int opcode = fragP->fr_literal[offset + 1] & 0xff;
721
722 switch (opcode)
723 {
724 case 0xe8:
725 opcode = 0xe9;
726 break;
727 case 0xe9:
728 opcode = 0xe8;
729 break;
730 case 0xea:
731 opcode = 0xeb;
732 break;
733 case 0xeb:
734 opcode = 0xea;
735 break;
736 default:
737 abort ();
738 }
739 fragP->fr_literal[offset + 1] = opcode;
740
741 /* Create a fixup for the reversed conditional branch. */
742 sprintf (buf, ".%s_%ld", FAKE_LABEL_NAME, label_count++);
743 fix_new (fragP, fragP->fr_fix + 2, 1,
744 symbol_new (buf, sec, 0, fragP->fr_next),
745 fragP->fr_offset + 2, 1, BFD_RELOC_8_PCREL);
746
747 /* Now create the unconditional branch + fixup to the
748 final target. */
749 fragP->fr_literal[offset + 3] = 0xcc;
750 fix_new (fragP, fragP->fr_fix + 4, 2, fragP->fr_symbol,
751 fragP->fr_offset + 1, 1, BFD_RELOC_16_PCREL);
752 fragP->fr_var = 0;
753 fragP->fr_fix += 6;
754 }
755 else if (fragP->fr_subtype == 5)
756 {
757 /* Reverse the condition of the first branch. */
758 int offset = fragP->fr_fix;
759 int opcode = fragP->fr_literal[offset + 1] & 0xff;
760
761 switch (opcode)
762 {
763 case 0xe8:
764 opcode = 0xe9;
765 break;
766 case 0xea:
767 opcode = 0xeb;
768 break;
769 case 0xeb:
770 opcode = 0xea;
771 break;
772 default:
773 abort ();
774 }
775 fragP->fr_literal[offset + 1] = opcode;
776
777 /* Create a fixup for the reversed conditional branch. */
778 sprintf (buf, ".%s_%ld", FAKE_LABEL_NAME, label_count++);
779 fix_new (fragP, fragP->fr_fix + 2, 1,
780 symbol_new (buf, sec, 0, fragP->fr_next),
781 fragP->fr_offset + 2, 1, BFD_RELOC_8_PCREL);
782
783 /* Now create the unconditional branch + fixup to the
784 final target. */
785 fragP->fr_literal[offset + 3] = 0xdc;
786 fix_new (fragP, fragP->fr_fix + 4, 4, fragP->fr_symbol,
787 fragP->fr_offset + 1, 1, BFD_RELOC_32_PCREL);
788 fragP->fr_var = 0;
789 fragP->fr_fix += 8;
790 }
791 else if (fragP->fr_subtype == 6)
792 {
793 int offset = fragP->fr_fix;
794 fragP->fr_literal[offset] = 0xcd;
795 fix_new (fragP, fragP->fr_fix + 1, 2, fragP->fr_symbol,
796 fragP->fr_offset + 1, 1, BFD_RELOC_16_PCREL);
797 fragP->fr_var = 0;
798 fragP->fr_fix += 5;
799 }
800 else if (fragP->fr_subtype == 7)
801 {
802 int offset = fragP->fr_fix;
803 fragP->fr_literal[offset] = 0xdd;
804 fragP->fr_literal[offset + 5] = fragP->fr_literal[offset + 3];
805 fragP->fr_literal[offset + 6] = fragP->fr_literal[offset + 4];
806
807 fix_new (fragP, fragP->fr_fix + 1, 4, fragP->fr_symbol,
808 fragP->fr_offset + 1, 1, BFD_RELOC_32_PCREL);
809 fragP->fr_var = 0;
810 fragP->fr_fix += 7;
811 }
812 else if (fragP->fr_subtype == 8)
813 {
814 int offset = fragP->fr_fix;
815 fragP->fr_literal[offset] = 0xfa;
816 fragP->fr_literal[offset + 1] = 0xff;
817 fix_new (fragP, fragP->fr_fix + 2, 2, fragP->fr_symbol,
818 fragP->fr_offset + 2, 1, BFD_RELOC_16_PCREL);
819 fragP->fr_var = 0;
820 fragP->fr_fix += 4;
821 }
822 else if (fragP->fr_subtype == 9)
823 {
824 int offset = fragP->fr_fix;
825 fragP->fr_literal[offset] = 0xfc;
826 fragP->fr_literal[offset + 1] = 0xff;
827
828 fix_new (fragP, fragP->fr_fix + 2, 4, fragP->fr_symbol,
829 fragP->fr_offset + 2, 1, BFD_RELOC_32_PCREL);
830 fragP->fr_var = 0;
831 fragP->fr_fix += 6;
832 }
833 else if (fragP->fr_subtype == 10)
834 {
835 fragP->fr_literal[fragP->fr_fix] = 0xca;
836 fix_new (fragP, fragP->fr_fix + 1, 1, fragP->fr_symbol,
837 fragP->fr_offset + 1, 1, BFD_RELOC_8_PCREL);
838 fragP->fr_var = 0;
839 fragP->fr_fix += 2;
840 }
841 else if (fragP->fr_subtype == 11)
842 {
843 int offset = fragP->fr_fix;
844 fragP->fr_literal[offset] = 0xcc;
845
846 fix_new (fragP, fragP->fr_fix + 1, 4, fragP->fr_symbol,
847 fragP->fr_offset + 1, 1, BFD_RELOC_16_PCREL);
848 fragP->fr_var = 0;
849 fragP->fr_fix += 3;
850 }
851 else if (fragP->fr_subtype == 12)
852 {
853 int offset = fragP->fr_fix;
854 fragP->fr_literal[offset] = 0xdc;
855
856 fix_new (fragP, fragP->fr_fix + 1, 4, fragP->fr_symbol,
857 fragP->fr_offset + 1, 1, BFD_RELOC_32_PCREL);
858 fragP->fr_var = 0;
859 fragP->fr_fix += 5;
860 }
861 else
862 abort ();
863 }
864
865 valueT
866 md_section_align (seg, addr)
867 asection *seg;
868 valueT addr;
869 {
870 int align = bfd_get_section_alignment (stdoutput, seg);
871 return ((addr + (1 << align) - 1) & (-1 << align));
872 }
873
874 void
875 md_begin ()
876 {
877 char *prev_name = "";
878 register const struct mn10300_opcode *op;
879
880 mn10300_hash = hash_new ();
881
882 /* Insert unique names into hash table. The MN10300 instruction set
883 has many identical opcode names that have different opcodes based
884 on the operands. This hash table then provides a quick index to
885 the first opcode with a particular name in the opcode table. */
886
887 op = mn10300_opcodes;
888 while (op->name)
889 {
890 if (strcmp (prev_name, op->name))
891 {
892 prev_name = (char *) op->name;
893 hash_insert (mn10300_hash, op->name, (char *) op);
894 }
895 op++;
896 }
897
898 /* Set the default machine type. */
899 if (!bfd_set_arch_mach (stdoutput, bfd_arch_mn10300, MN103))
900 as_warn (_("could not set architecture and machine"));
901
902 current_machine = MN103;
903 }
904
905 void
906 md_assemble (str)
907 char *str;
908 {
909 char *s;
910 struct mn10300_opcode *opcode;
911 struct mn10300_opcode *next_opcode;
912 const unsigned char *opindex_ptr;
913 int next_opindex, relaxable;
914 unsigned long insn, extension, size = 0;
915 char *f;
916 int i;
917 int match;
918
919 /* Get the opcode. */
920 for (s = str; *s != '\0' && !ISSPACE (*s); s++)
921 ;
922 if (*s != '\0')
923 *s++ = '\0';
924
925 /* Find the first opcode with the proper name. */
926 opcode = (struct mn10300_opcode *) hash_find (mn10300_hash, str);
927 if (opcode == NULL)
928 {
929 as_bad (_("Unrecognized opcode: `%s'"), str);
930 return;
931 }
932
933 str = s;
934 while (ISSPACE (*str))
935 ++str;
936
937 input_line_pointer = str;
938
939 for (;;)
940 {
941 const char *errmsg;
942 int op_idx;
943 char *hold;
944 int extra_shift = 0;
945
946 errmsg = _("Invalid opcode/operands");
947
948 /* Reset the array of register operands. */
949 memset (mn10300_reg_operands, -1, sizeof (mn10300_reg_operands));
950
951 relaxable = 0;
952 fc = 0;
953 match = 0;
954 next_opindex = 0;
955 insn = opcode->opcode;
956 extension = 0;
957
958 /* If the instruction is not available on the current machine
959 then it can not possibly match. */
960 if (opcode->machine
961 && !(opcode->machine == AM33 && HAVE_AM33)
962 && !(opcode->machine == AM30 && HAVE_AM30))
963 goto error;
964
965 for (op_idx = 1, opindex_ptr = opcode->operands;
966 *opindex_ptr != 0;
967 opindex_ptr++, op_idx++)
968 {
969 const struct mn10300_operand *operand;
970 expressionS ex;
971
972 if (next_opindex == 0)
973 {
974 operand = &mn10300_operands[*opindex_ptr];
975 }
976 else
977 {
978 operand = &mn10300_operands[next_opindex];
979 next_opindex = 0;
980 }
981
982 while (*str == ' ' || *str == ',')
983 ++str;
984
985 if (operand->flags & MN10300_OPERAND_RELAX)
986 relaxable = 1;
987
988 /* Gather the operand. */
989 hold = input_line_pointer;
990 input_line_pointer = str;
991
992 if (operand->flags & MN10300_OPERAND_PAREN)
993 {
994 if (*input_line_pointer != ')' && *input_line_pointer != '(')
995 {
996 input_line_pointer = hold;
997 str = hold;
998 goto error;
999 }
1000 input_line_pointer++;
1001 goto keep_going;
1002 }
1003 /* See if we can match the operands. */
1004 else if (operand->flags & MN10300_OPERAND_DREG)
1005 {
1006 if (!data_register_name (&ex))
1007 {
1008 input_line_pointer = hold;
1009 str = hold;
1010 goto error;
1011 }
1012 }
1013 else if (operand->flags & MN10300_OPERAND_AREG)
1014 {
1015 if (!address_register_name (&ex))
1016 {
1017 input_line_pointer = hold;
1018 str = hold;
1019 goto error;
1020 }
1021 }
1022 else if (operand->flags & MN10300_OPERAND_SP)
1023 {
1024 char *start = input_line_pointer;
1025 char c = get_symbol_end ();
1026
1027 if (strcasecmp (start, "sp") != 0)
1028 {
1029 *input_line_pointer = c;
1030 input_line_pointer = hold;
1031 str = hold;
1032 goto error;
1033 }
1034 *input_line_pointer = c;
1035 goto keep_going;
1036 }
1037 else if (operand->flags & MN10300_OPERAND_RREG)
1038 {
1039 if (!r_register_name (&ex))
1040 {
1041 input_line_pointer = hold;
1042 str = hold;
1043 goto error;
1044 }
1045 }
1046 else if (operand->flags & MN10300_OPERAND_XRREG)
1047 {
1048 if (!xr_register_name (&ex))
1049 {
1050 input_line_pointer = hold;
1051 str = hold;
1052 goto error;
1053 }
1054 }
1055 else if (operand->flags & MN10300_OPERAND_USP)
1056 {
1057 char *start = input_line_pointer;
1058 char c = get_symbol_end ();
1059
1060 if (strcasecmp (start, "usp") != 0)
1061 {
1062 *input_line_pointer = c;
1063 input_line_pointer = hold;
1064 str = hold;
1065 goto error;
1066 }
1067 *input_line_pointer = c;
1068 goto keep_going;
1069 }
1070 else if (operand->flags & MN10300_OPERAND_SSP)
1071 {
1072 char *start = input_line_pointer;
1073 char c = get_symbol_end ();
1074
1075 if (strcasecmp (start, "ssp") != 0)
1076 {
1077 *input_line_pointer = c;
1078 input_line_pointer = hold;
1079 str = hold;
1080 goto error;
1081 }
1082 *input_line_pointer = c;
1083 goto keep_going;
1084 }
1085 else if (operand->flags & MN10300_OPERAND_MSP)
1086 {
1087 char *start = input_line_pointer;
1088 char c = get_symbol_end ();
1089
1090 if (strcasecmp (start, "msp") != 0)
1091 {
1092 *input_line_pointer = c;
1093 input_line_pointer = hold;
1094 str = hold;
1095 goto error;
1096 }
1097 *input_line_pointer = c;
1098 goto keep_going;
1099 }
1100 else if (operand->flags & MN10300_OPERAND_PC)
1101 {
1102 char *start = input_line_pointer;
1103 char c = get_symbol_end ();
1104
1105 if (strcasecmp (start, "pc") != 0)
1106 {
1107 *input_line_pointer = c;
1108 input_line_pointer = hold;
1109 str = hold;
1110 goto error;
1111 }
1112 *input_line_pointer = c;
1113 goto keep_going;
1114 }
1115 else if (operand->flags & MN10300_OPERAND_EPSW)
1116 {
1117 char *start = input_line_pointer;
1118 char c = get_symbol_end ();
1119
1120 if (strcasecmp (start, "epsw") != 0)
1121 {
1122 *input_line_pointer = c;
1123 input_line_pointer = hold;
1124 str = hold;
1125 goto error;
1126 }
1127 *input_line_pointer = c;
1128 goto keep_going;
1129 }
1130 else if (operand->flags & MN10300_OPERAND_PLUS)
1131 {
1132 if (*input_line_pointer != '+')
1133 {
1134 input_line_pointer = hold;
1135 str = hold;
1136 goto error;
1137 }
1138 input_line_pointer++;
1139 goto keep_going;
1140 }
1141 else if (operand->flags & MN10300_OPERAND_PSW)
1142 {
1143 char *start = input_line_pointer;
1144 char c = get_symbol_end ();
1145
1146 if (strcasecmp (start, "psw") != 0)
1147 {
1148 *input_line_pointer = c;
1149 input_line_pointer = hold;
1150 str = hold;
1151 goto error;
1152 }
1153 *input_line_pointer = c;
1154 goto keep_going;
1155 }
1156 else if (operand->flags & MN10300_OPERAND_MDR)
1157 {
1158 char *start = input_line_pointer;
1159 char c = get_symbol_end ();
1160
1161 if (strcasecmp (start, "mdr") != 0)
1162 {
1163 *input_line_pointer = c;
1164 input_line_pointer = hold;
1165 str = hold;
1166 goto error;
1167 }
1168 *input_line_pointer = c;
1169 goto keep_going;
1170 }
1171 else if (operand->flags & MN10300_OPERAND_REG_LIST)
1172 {
1173 unsigned int value = 0;
1174 if (*input_line_pointer != '[')
1175 {
1176 input_line_pointer = hold;
1177 str = hold;
1178 goto error;
1179 }
1180
1181 /* Eat the '['. */
1182 input_line_pointer++;
1183
1184 /* We used to reject a null register list here; however,
1185 we accept it now so the compiler can emit "call"
1186 instructions for all calls to named functions.
1187
1188 The linker can then fill in the appropriate bits for the
1189 register list and stack size or change the instruction
1190 into a "calls" if using "call" is not profitable. */
1191 while (*input_line_pointer != ']')
1192 {
1193 char *start;
1194 char c;
1195
1196 if (*input_line_pointer == ',')
1197 input_line_pointer++;
1198
1199 start = input_line_pointer;
1200 c = get_symbol_end ();
1201
1202 if (strcasecmp (start, "d2") == 0)
1203 {
1204 value |= 0x80;
1205 *input_line_pointer = c;
1206 }
1207 else if (strcasecmp (start, "d3") == 0)
1208 {
1209 value |= 0x40;
1210 *input_line_pointer = c;
1211 }
1212 else if (strcasecmp (start, "a2") == 0)
1213 {
1214 value |= 0x20;
1215 *input_line_pointer = c;
1216 }
1217 else if (strcasecmp (start, "a3") == 0)
1218 {
1219 value |= 0x10;
1220 *input_line_pointer = c;
1221 }
1222 else if (strcasecmp (start, "other") == 0)
1223 {
1224 value |= 0x08;
1225 *input_line_pointer = c;
1226 }
1227 else if (HAVE_AM33
1228 && strcasecmp (start, "exreg0") == 0)
1229 {
1230 value |= 0x04;
1231 *input_line_pointer = c;
1232 }
1233 else if (HAVE_AM33
1234 && strcasecmp (start, "exreg1") == 0)
1235 {
1236 value |= 0x02;
1237 *input_line_pointer = c;
1238 }
1239 else if (HAVE_AM33
1240 && strcasecmp (start, "exother") == 0)
1241 {
1242 value |= 0x01;
1243 *input_line_pointer = c;
1244 }
1245 else if (HAVE_AM33
1246 && strcasecmp (start, "all") == 0)
1247 {
1248 value |= 0xff;
1249 *input_line_pointer = c;
1250 }
1251 else
1252 {
1253 input_line_pointer = hold;
1254 str = hold;
1255 goto error;
1256 }
1257 }
1258 input_line_pointer++;
1259 mn10300_insert_operand (&insn, &extension, operand,
1260 value, (char *) NULL, 0, 0);
1261 goto keep_going;
1262
1263 }
1264 else if (data_register_name (&ex))
1265 {
1266 input_line_pointer = hold;
1267 str = hold;
1268 goto error;
1269 }
1270 else if (address_register_name (&ex))
1271 {
1272 input_line_pointer = hold;
1273 str = hold;
1274 goto error;
1275 }
1276 else if (other_register_name (&ex))
1277 {
1278 input_line_pointer = hold;
1279 str = hold;
1280 goto error;
1281 }
1282 else if (HAVE_AM33 && r_register_name (&ex))
1283 {
1284 input_line_pointer = hold;
1285 str = hold;
1286 goto error;
1287 }
1288 else if (HAVE_AM33 && xr_register_name (&ex))
1289 {
1290 input_line_pointer = hold;
1291 str = hold;
1292 goto error;
1293 }
1294 else if (*str == ')' || *str == '(')
1295 {
1296 input_line_pointer = hold;
1297 str = hold;
1298 goto error;
1299 }
1300 else
1301 {
1302 expression (&ex);
1303 }
1304
1305 switch (ex.X_op)
1306 {
1307 case O_illegal:
1308 errmsg = _("illegal operand");
1309 goto error;
1310 case O_absent:
1311 errmsg = _("missing operand");
1312 goto error;
1313 case O_register:
1314 {
1315 int mask;
1316
1317 mask = MN10300_OPERAND_DREG | MN10300_OPERAND_AREG;
1318 if (HAVE_AM33)
1319 mask |= MN10300_OPERAND_RREG | MN10300_OPERAND_XRREG;
1320 if ((operand->flags & mask) == 0)
1321 {
1322 input_line_pointer = hold;
1323 str = hold;
1324 goto error;
1325 }
1326
1327 if (opcode->format == FMT_D1 || opcode->format == FMT_S1)
1328 extra_shift = 8;
1329 else if (opcode->format == FMT_D2
1330 || opcode->format == FMT_D4
1331 || opcode->format == FMT_S2
1332 || opcode->format == FMT_S4
1333 || opcode->format == FMT_S6
1334 || opcode->format == FMT_D5)
1335 extra_shift = 16;
1336 else if (opcode->format == FMT_D7)
1337 extra_shift = 8;
1338 else if (opcode->format == FMT_D8 || opcode->format == FMT_D9)
1339 extra_shift = 8;
1340 else
1341 extra_shift = 0;
1342
1343 mn10300_insert_operand (&insn, &extension, operand,
1344 ex.X_add_number, (char *) NULL,
1345 0, extra_shift);
1346
1347 /* And note the register number in the register array. */
1348 mn10300_reg_operands[op_idx - 1] = ex.X_add_number;
1349 break;
1350 }
1351
1352 case O_constant:
1353 /* If this operand can be promoted, and it doesn't
1354 fit into the allocated bitfield for this insn,
1355 then promote it (ie this opcode does not match). */
1356 if (operand->flags
1357 & (MN10300_OPERAND_PROMOTE | MN10300_OPERAND_RELAX)
1358 && !check_operand (insn, operand, ex.X_add_number))
1359 {
1360 input_line_pointer = hold;
1361 str = hold;
1362 goto error;
1363 }
1364
1365 mn10300_insert_operand (&insn, &extension, operand,
1366 ex.X_add_number, (char *) NULL,
1367 0, 0);
1368 break;
1369
1370 default:
1371 /* If this operand can be promoted, then this opcode didn't
1372 match since we can't know if it needed promotion! */
1373 if (operand->flags & MN10300_OPERAND_PROMOTE)
1374 {
1375 input_line_pointer = hold;
1376 str = hold;
1377 goto error;
1378 }
1379
1380 /* We need to generate a fixup for this expression. */
1381 if (fc >= MAX_INSN_FIXUPS)
1382 as_fatal (_("too many fixups"));
1383 fixups[fc].exp = ex;
1384 fixups[fc].opindex = *opindex_ptr;
1385 fixups[fc].reloc = BFD_RELOC_UNUSED;
1386 ++fc;
1387 break;
1388 }
1389
1390 keep_going:
1391 str = input_line_pointer;
1392 input_line_pointer = hold;
1393
1394 while (*str == ' ' || *str == ',')
1395 ++str;
1396
1397 }
1398
1399 /* Make sure we used all the operands! */
1400 if (*str != ',')
1401 match = 1;
1402
1403 /* If this instruction has registers that must not match, verify
1404 that they do indeed not match. */
1405 if (opcode->no_match_operands)
1406 {
1407 int i;
1408
1409 /* Look at each operand to see if it's marked. */
1410 for (i = 0; i < MN10300_MAX_OPERANDS; i++)
1411 {
1412 if ((1 << i) & opcode->no_match_operands)
1413 {
1414 int j;
1415
1416 /* operand I is marked. Check that it does not match any
1417 operands > I which are marked. */
1418 for (j = i + 1; j < MN10300_MAX_OPERANDS; j++)
1419 {
1420 if (((1 << j) & opcode->no_match_operands)
1421 && mn10300_reg_operands[i] == mn10300_reg_operands[j])
1422 {
1423 errmsg = _("Invalid register specification.");
1424 match = 0;
1425 goto error;
1426 }
1427 }
1428 }
1429 }
1430 }
1431
1432 error:
1433 if (match == 0)
1434 {
1435 next_opcode = opcode + 1;
1436 if (!strcmp (next_opcode->name, opcode->name))
1437 {
1438 opcode = next_opcode;
1439 continue;
1440 }
1441
1442 as_bad ("%s", errmsg);
1443 return;
1444 }
1445 break;
1446 }
1447
1448 while (ISSPACE (*str))
1449 ++str;
1450
1451 if (*str != '\0')
1452 as_bad (_("junk at end of line: `%s'"), str);
1453
1454 input_line_pointer = str;
1455
1456 /* Determine the size of the instruction. */
1457 if (opcode->format == FMT_S0)
1458 size = 1;
1459
1460 if (opcode->format == FMT_S1 || opcode->format == FMT_D0)
1461 size = 2;
1462
1463 if (opcode->format == FMT_S2 || opcode->format == FMT_D1)
1464 size = 3;
1465
1466 if (opcode->format == FMT_D6)
1467 size = 3;
1468
1469 if (opcode->format == FMT_D7 || opcode->format == FMT_D10)
1470 size = 4;
1471
1472 if (opcode->format == FMT_D8)
1473 size = 6;
1474
1475 if (opcode->format == FMT_D9)
1476 size = 7;
1477
1478 if (opcode->format == FMT_S4)
1479 size = 5;
1480
1481 if (opcode->format == FMT_S6 || opcode->format == FMT_D5)
1482 size = 7;
1483
1484 if (opcode->format == FMT_D2)
1485 size = 4;
1486
1487 if (opcode->format == FMT_D4)
1488 size = 6;
1489
1490 if (relaxable && fc > 0)
1491 {
1492 int type;
1493
1494 /* We want to anchor the line info to the previous frag (if
1495 there isn't one, create it), so that, when the insn is
1496 resized, we still get the right address for the beginning of
1497 the region. */
1498 f = frag_more (0);
1499 dwarf2_emit_insn (0);
1500
1501 /* bCC */
1502 if (size == 2)
1503 {
1504 /* Handle bra specially. Basically treat it like jmp so
1505 that we automatically handle 8, 16 and 32 bit offsets
1506 correctly as well as jumps to an undefined address.
1507
1508 It is also important to not treat it like other bCC
1509 instructions since the long forms of bra is different
1510 from other bCC instructions. */
1511 if (opcode->opcode == 0xca00)
1512 type = 10;
1513 else
1514 type = 0;
1515 }
1516 /* call */
1517 else if (size == 5)
1518 type = 6;
1519 /* calls */
1520 else if (size == 4)
1521 type = 8;
1522 /* jmp */
1523 else if (size == 3 && opcode->opcode == 0xcc0000)
1524 type = 10;
1525 /* bCC (uncommon cases) */
1526 else
1527 type = 3;
1528
1529 f = frag_var (rs_machine_dependent, 8, 8 - size, type,
1530 fixups[0].exp.X_add_symbol,
1531 fixups[0].exp.X_add_number,
1532 (char *)fixups[0].opindex);
1533
1534 /* This is pretty hokey. We basically just care about the
1535 opcode, so we have to write out the first word big endian.
1536
1537 The exception is "call", which has two operands that we
1538 care about.
1539
1540 The first operand (the register list) happens to be in the
1541 first instruction word, and will be in the right place if
1542 we output the first word in big endian mode.
1543
1544 The second operand (stack size) is in the extension word,
1545 and we want it to appear as the first character in the extension
1546 word (as it appears in memory). Luckily, writing the extension
1547 word in big endian format will do what we want. */
1548 number_to_chars_bigendian (f, insn, size > 4 ? 4 : size);
1549 if (size > 8)
1550 {
1551 number_to_chars_bigendian (f + 4, extension, 4);
1552 number_to_chars_bigendian (f + 8, 0, size - 8);
1553 }
1554 else if (size > 4)
1555 number_to_chars_bigendian (f + 4, extension, size - 4);
1556 }
1557 else
1558 {
1559 /* Allocate space for the instruction. */
1560 f = frag_more (size);
1561
1562 /* Fill in bytes for the instruction. Note that opcode fields
1563 are written big-endian, 16 & 32bit immediates are written
1564 little endian. Egad. */
1565 if (opcode->format == FMT_S0
1566 || opcode->format == FMT_S1
1567 || opcode->format == FMT_D0
1568 || opcode->format == FMT_D6
1569 || opcode->format == FMT_D7
1570 || opcode->format == FMT_D10
1571 || opcode->format == FMT_D1)
1572 {
1573 number_to_chars_bigendian (f, insn, size);
1574 }
1575 else if (opcode->format == FMT_S2
1576 && opcode->opcode != 0xdf0000
1577 && opcode->opcode != 0xde0000)
1578 {
1579 /* A format S2 instruction that is _not_ "ret" and "retf". */
1580 number_to_chars_bigendian (f, (insn >> 16) & 0xff, 1);
1581 number_to_chars_littleendian (f + 1, insn & 0xffff, 2);
1582 }
1583 else if (opcode->format == FMT_S2)
1584 {
1585 /* This must be a ret or retf, which is written entirely in
1586 big-endian format. */
1587 number_to_chars_bigendian (f, insn, 3);
1588 }
1589 else if (opcode->format == FMT_S4
1590 && opcode->opcode != 0xdc000000)
1591 {
1592 /* This must be a format S4 "call" instruction. What a pain. */
1593 unsigned long temp = (insn >> 8) & 0xffff;
1594 number_to_chars_bigendian (f, (insn >> 24) & 0xff, 1);
1595 number_to_chars_littleendian (f + 1, temp, 2);
1596 number_to_chars_bigendian (f + 3, insn & 0xff, 1);
1597 number_to_chars_bigendian (f + 4, extension & 0xff, 1);
1598 }
1599 else if (opcode->format == FMT_S4)
1600 {
1601 /* This must be a format S4 "jmp" instruction. */
1602 unsigned long temp = ((insn & 0xffffff) << 8) | (extension & 0xff);
1603 number_to_chars_bigendian (f, (insn >> 24) & 0xff, 1);
1604 number_to_chars_littleendian (f + 1, temp, 4);
1605 }
1606 else if (opcode->format == FMT_S6)
1607 {
1608 unsigned long temp = ((insn & 0xffffff) << 8)
1609 | ((extension >> 16) & 0xff);
1610 number_to_chars_bigendian (f, (insn >> 24) & 0xff, 1);
1611 number_to_chars_littleendian (f + 1, temp, 4);
1612 number_to_chars_bigendian (f + 5, (extension >> 8) & 0xff, 1);
1613 number_to_chars_bigendian (f + 6, extension & 0xff, 1);
1614 }
1615 else if (opcode->format == FMT_D2
1616 && opcode->opcode != 0xfaf80000
1617 && opcode->opcode != 0xfaf00000
1618 && opcode->opcode != 0xfaf40000)
1619 {
1620 /* A format D2 instruction where the 16bit immediate is
1621 really a single 16bit value, not two 8bit values. */
1622 number_to_chars_bigendian (f, (insn >> 16) & 0xffff, 2);
1623 number_to_chars_littleendian (f + 2, insn & 0xffff, 2);
1624 }
1625 else if (opcode->format == FMT_D2)
1626 {
1627 /* A format D2 instruction where the 16bit immediate
1628 is really two 8bit immediates. */
1629 number_to_chars_bigendian (f, insn, 4);
1630 }
1631 else if (opcode->format == FMT_D4)
1632 {
1633 unsigned long temp = ((insn & 0xffff) << 16) | (extension & 0xffff);
1634
1635 number_to_chars_bigendian (f, (insn >> 16) & 0xffff, 2);
1636 number_to_chars_littleendian (f + 2, temp, 4);
1637 }
1638 else if (opcode->format == FMT_D5)
1639 {
1640 unsigned long temp = (((insn & 0xffff) << 16)
1641 | ((extension >> 8) & 0xffff));
1642
1643 number_to_chars_bigendian (f, (insn >> 16) & 0xffff, 2);
1644 number_to_chars_littleendian (f + 2, temp, 4);
1645 number_to_chars_bigendian (f + 6, extension & 0xff, 1);
1646 }
1647 else if (opcode->format == FMT_D8)
1648 {
1649 unsigned long temp = ((insn & 0xff) << 16) | (extension & 0xffff);
1650
1651 number_to_chars_bigendian (f, (insn >> 8) & 0xffffff, 3);
1652 number_to_chars_bigendian (f + 3, (temp & 0xff), 1);
1653 number_to_chars_littleendian (f + 4, temp >> 8, 2);
1654 }
1655 else if (opcode->format == FMT_D9)
1656 {
1657 unsigned long temp = ((insn & 0xff) << 24) | (extension & 0xffffff);
1658
1659 number_to_chars_bigendian (f, (insn >> 8) & 0xffffff, 3);
1660 number_to_chars_littleendian (f + 3, temp, 4);
1661 }
1662
1663 /* Create any fixups. */
1664 for (i = 0; i < fc; i++)
1665 {
1666 const struct mn10300_operand *operand;
1667
1668 operand = &mn10300_operands[fixups[i].opindex];
1669 if (fixups[i].reloc != BFD_RELOC_UNUSED)
1670 {
1671 reloc_howto_type *reloc_howto;
1672 int size;
1673 int offset;
1674 fixS *fixP;
1675
1676 reloc_howto = bfd_reloc_type_lookup (stdoutput,
1677 fixups[i].reloc);
1678
1679 if (!reloc_howto)
1680 abort ();
1681
1682 size = bfd_get_reloc_size (reloc_howto);
1683
1684 if (size < 1 || size > 4)
1685 abort ();
1686
1687 offset = 4 - size;
1688 fixP = fix_new_exp (frag_now, f - frag_now->fr_literal + offset,
1689 size, &fixups[i].exp,
1690 reloc_howto->pc_relative,
1691 fixups[i].reloc);
1692 }
1693 else
1694 {
1695 int reloc, pcrel, reloc_size, offset;
1696 fixS *fixP;
1697
1698 reloc = BFD_RELOC_NONE;
1699 /* How big is the reloc? Remember SPLIT relocs are
1700 implicitly 32bits. */
1701 if ((operand->flags & MN10300_OPERAND_SPLIT) != 0)
1702 reloc_size = 32;
1703 else if ((operand->flags & MN10300_OPERAND_24BIT) != 0)
1704 reloc_size = 24;
1705 else
1706 reloc_size = operand->bits;
1707
1708 /* Is the reloc pc-relative? */
1709 pcrel = (operand->flags & MN10300_OPERAND_PCREL) != 0;
1710
1711 offset = size - (reloc_size + operand->shift) / 8;
1712
1713 /* Choose a proper BFD relocation type. */
1714 if (pcrel)
1715 {
1716 if (reloc_size == 32)
1717 reloc = BFD_RELOC_32_PCREL;
1718 else if (reloc_size == 16)
1719 reloc = BFD_RELOC_16_PCREL;
1720 else if (reloc_size == 8)
1721 reloc = BFD_RELOC_8_PCREL;
1722 else
1723 abort ();
1724 }
1725 else
1726 {
1727 if (reloc_size == 32)
1728 reloc = BFD_RELOC_32;
1729 else if (reloc_size == 16)
1730 reloc = BFD_RELOC_16;
1731 else if (reloc_size == 8)
1732 reloc = BFD_RELOC_8;
1733 else
1734 abort ();
1735 }
1736
1737 /* Convert the size of the reloc into what fix_new_exp wants. */
1738 reloc_size = reloc_size / 8;
1739 if (reloc_size == 8)
1740 reloc_size = 0;
1741 else if (reloc_size == 16)
1742 reloc_size = 1;
1743 else if (reloc_size == 32)
1744 reloc_size = 2;
1745
1746 fixP = fix_new_exp (frag_now, f - frag_now->fr_literal + offset,
1747 reloc_size, &fixups[i].exp, pcrel,
1748 ((bfd_reloc_code_real_type) reloc));
1749
1750 if (pcrel)
1751 fixP->fx_offset += offset;
1752 }
1753 }
1754
1755 dwarf2_emit_insn (size);
1756 }
1757 }
1758
1759 /* If while processing a fixup, a reloc really needs to be created
1760 then it is done here. */
1761
1762 arelent *
1763 tc_gen_reloc (seg, fixp)
1764 asection *seg ATTRIBUTE_UNUSED;
1765 fixS *fixp;
1766 {
1767 arelent *reloc;
1768 reloc = (arelent *) xmalloc (sizeof (arelent));
1769
1770 reloc->howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type);
1771 if (reloc->howto == (reloc_howto_type *) NULL)
1772 {
1773 as_bad_where (fixp->fx_file, fixp->fx_line,
1774 _("reloc %d not supported by object file format"),
1775 (int) fixp->fx_r_type);
1776 return NULL;
1777 }
1778 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
1779
1780 if (fixp->fx_addsy && fixp->fx_subsy)
1781 {
1782 reloc->sym_ptr_ptr = NULL;
1783
1784 /* If we got a difference between two symbols, and the
1785 subtracted symbol is in the current section, use a
1786 PC-relative relocation. If both symbols are in the same
1787 section, the difference would have already been simplified
1788 to a constant. */
1789 if (S_GET_SEGMENT (fixp->fx_subsy) == seg)
1790 {
1791 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
1792 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
1793 reloc->addend = (reloc->address - S_GET_VALUE (fixp->fx_subsy)
1794 + fixp->fx_offset);
1795
1796 switch (fixp->fx_r_type)
1797 {
1798 case BFD_RELOC_8:
1799 reloc->howto = bfd_reloc_type_lookup (stdoutput,
1800 BFD_RELOC_8_PCREL);
1801 return reloc;
1802
1803 case BFD_RELOC_16:
1804 reloc->howto = bfd_reloc_type_lookup (stdoutput,
1805 BFD_RELOC_16_PCREL);
1806 return reloc;
1807
1808 case BFD_RELOC_24:
1809 reloc->howto = bfd_reloc_type_lookup (stdoutput,
1810 BFD_RELOC_24_PCREL);
1811 return reloc;
1812
1813 case BFD_RELOC_32:
1814 reloc->howto = bfd_reloc_type_lookup (stdoutput,
1815 BFD_RELOC_32_PCREL);
1816 return reloc;
1817
1818 default:
1819 /* Try to compute the absolute value below. */
1820 break;
1821 }
1822 }
1823
1824 if ((S_GET_SEGMENT (fixp->fx_addsy) != S_GET_SEGMENT (fixp->fx_subsy))
1825 || S_GET_SEGMENT (fixp->fx_addsy) == undefined_section)
1826 {
1827 as_bad_where (fixp->fx_file, fixp->fx_line,
1828 "Difference of symbols in different sections is not supported");
1829 }
1830 else
1831 {
1832 char *fixpos = fixp->fx_where + fixp->fx_frag->fr_literal;
1833
1834 reloc->addend = (S_GET_VALUE (fixp->fx_addsy)
1835 - S_GET_VALUE (fixp->fx_subsy) + fixp->fx_offset);
1836
1837 switch (fixp->fx_r_type)
1838 {
1839 case BFD_RELOC_8:
1840 md_number_to_chars (fixpos, reloc->addend, 1);
1841 break;
1842
1843 case BFD_RELOC_16:
1844 md_number_to_chars (fixpos, reloc->addend, 2);
1845 break;
1846
1847 case BFD_RELOC_24:
1848 md_number_to_chars (fixpos, reloc->addend, 3);
1849 break;
1850
1851 case BFD_RELOC_32:
1852 md_number_to_chars (fixpos, reloc->addend, 4);
1853 break;
1854
1855 default:
1856 reloc->sym_ptr_ptr = (asymbol **) &bfd_abs_symbol;
1857 return reloc;
1858 }
1859 }
1860
1861 if (reloc->sym_ptr_ptr)
1862 free (reloc->sym_ptr_ptr);
1863 free (reloc);
1864 return NULL;
1865 }
1866 else
1867 {
1868 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
1869 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
1870 reloc->addend = fixp->fx_offset;
1871 }
1872 return reloc;
1873 }
1874
1875 int
1876 md_estimate_size_before_relax (fragp, seg)
1877 fragS *fragp;
1878 asection *seg;
1879 {
1880 if (fragp->fr_subtype == 6
1881 && (!S_IS_DEFINED (fragp->fr_symbol)
1882 || seg != S_GET_SEGMENT (fragp->fr_symbol)))
1883 fragp->fr_subtype = 7;
1884 else if (fragp->fr_subtype == 8
1885 && (!S_IS_DEFINED (fragp->fr_symbol)
1886 || seg != S_GET_SEGMENT (fragp->fr_symbol)))
1887 fragp->fr_subtype = 9;
1888 else if (fragp->fr_subtype == 10
1889 && (!S_IS_DEFINED (fragp->fr_symbol)
1890 || seg != S_GET_SEGMENT (fragp->fr_symbol)))
1891 fragp->fr_subtype = 12;
1892
1893 if (fragp->fr_subtype >= sizeof (md_relax_table) / sizeof (md_relax_table[0]))
1894 abort ();
1895
1896 return md_relax_table[fragp->fr_subtype].rlx_length;
1897 }
1898
1899 long
1900 md_pcrel_from (fixp)
1901 fixS *fixp;
1902 {
1903 if (fixp->fx_addsy != (symbolS *) NULL && !S_IS_DEFINED (fixp->fx_addsy))
1904 {
1905 /* The symbol is undefined. Let the linker figure it out. */
1906 return 0;
1907 }
1908 return fixp->fx_frag->fr_address + fixp->fx_where;
1909 }
1910
1911 void
1912 md_apply_fix3 (fixP, valP, seg)
1913 fixS * fixP;
1914 valueT * valP;
1915 segT seg;
1916 {
1917 char * fixpos = fixP->fx_where + fixP->fx_frag->fr_literal;
1918 int size = 0;
1919 int value = (int) * valP;
1920
1921 assert (fixP->fx_r_type < BFD_RELOC_UNUSED);
1922
1923 /* This should never happen. */
1924 if (seg->flags & SEC_ALLOC)
1925 abort ();
1926
1927 /* The value we are passed in *valuep includes the symbol values.
1928 Since we are using BFD_ASSEMBLER, if we are doing this relocation
1929 the code in write.c is going to call bfd_install_relocation, which
1930 is also going to use the symbol value. That means that if the
1931 reloc is fully resolved we want to use *valuep since
1932 bfd_install_relocation is not being used.
1933
1934 However, if the reloc is not fully resolved we do not want to use
1935 *valuep, and must use fx_offset instead. However, if the reloc
1936 is PC relative, we do want to use *valuep since it includes the
1937 result of md_pcrel_from. */
1938 if (fixP->fx_addsy != (symbolS *) NULL && ! fixP->fx_pcrel)
1939 value = fixP->fx_offset;
1940
1941 /* If the fix is relative to a symbol which is not defined, or not
1942 in the same segment as the fix, we cannot resolve it here. */
1943 if (fixP->fx_addsy != NULL
1944 && (! S_IS_DEFINED (fixP->fx_addsy)
1945 || (S_GET_SEGMENT (fixP->fx_addsy) != seg)))
1946 {
1947 fixP->fx_done = 0;
1948 return;
1949 }
1950
1951 switch (fixP->fx_r_type)
1952 {
1953 case BFD_RELOC_8:
1954 case BFD_RELOC_8_PCREL:
1955 size = 1;
1956 break;
1957
1958 case BFD_RELOC_16:
1959 case BFD_RELOC_16_PCREL:
1960 size = 2;
1961 break;
1962
1963 case BFD_RELOC_32:
1964 case BFD_RELOC_32_PCREL:
1965 size = 4;
1966 break;
1967
1968 case BFD_RELOC_VTABLE_INHERIT:
1969 case BFD_RELOC_VTABLE_ENTRY:
1970 fixP->fx_done = 0;
1971 return;
1972
1973 case BFD_RELOC_NONE:
1974 default:
1975 as_bad_where (fixP->fx_file, fixP->fx_line,
1976 _("Bad relocation fixup type (%d)"), fixP->fx_r_type);
1977 }
1978
1979 md_number_to_chars (fixpos, value, size);
1980
1981 /* If a symbol remains, pass the fixup, as a reloc, onto the linker. */
1982 if (fixP->fx_addsy == NULL)
1983 fixP->fx_done = 1;
1984 }
1985
1986 /* Return nonzero if the fixup in FIXP will require a relocation,
1987 even it if appears that the fixup could be completely handled
1988 within GAS. */
1989
1990 int
1991 mn10300_force_relocation (fixp)
1992 struct fix *fixp;
1993 {
1994 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
1995 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
1996 return 1;
1997
1998 /* Do not adjust relocations involving symbols in code sections,
1999 because it breaks linker relaxations. This could be fixed in the
2000 linker, but this fix is simpler, and it pretty much only affects
2001 object size a little bit. */
2002 if ((S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_CODE)
2003 && fixp->fx_subsy
2004 && S_GET_SEGMENT (fixp->fx_addsy) == S_GET_SEGMENT (fixp->fx_subsy))
2005 return 1;
2006
2007 return 0;
2008 }
2009
2010 /* Return zero if the fixup in fixp should be left alone and not
2011 adjusted. */
2012
2013 boolean
2014 mn10300_fix_adjustable (fixp)
2015 struct fix *fixp;
2016 {
2017 /* Prevent all adjustments to global symbols. */
2018 if (S_IS_EXTERN (fixp->fx_addsy) || S_IS_WEAK (fixp->fx_addsy))
2019 return 0;
2020
2021 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
2022 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
2023 return 0;
2024
2025 /* Do not adjust relocations involving symbols in code sections,
2026 because it breaks linker relaxations. This could be fixed in the
2027 linker, but this fix is simpler, and it pretty much only affects
2028 object size a little bit. */
2029 if (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_CODE)
2030 return 0;
2031
2032 return 1;
2033 }
2034
2035 /* Insert an operand value into an instruction. */
2036
2037 static void
2038 mn10300_insert_operand (insnp, extensionp, operand, val, file, line, shift)
2039 unsigned long *insnp;
2040 unsigned long *extensionp;
2041 const struct mn10300_operand *operand;
2042 offsetT val;
2043 char *file;
2044 unsigned int line;
2045 unsigned int shift;
2046 {
2047 /* No need to check 32bit operands for a bit. Note that
2048 MN10300_OPERAND_SPLIT is an implicit 32bit operand. */
2049 if (operand->bits != 32
2050 && (operand->flags & MN10300_OPERAND_SPLIT) == 0)
2051 {
2052 long min, max;
2053 offsetT test;
2054 int bits;
2055
2056 bits = operand->bits;
2057 if (operand->flags & MN10300_OPERAND_24BIT)
2058 bits = 24;
2059
2060 if ((operand->flags & MN10300_OPERAND_SIGNED) != 0)
2061 {
2062 max = (1 << (bits - 1)) - 1;
2063 min = - (1 << (bits - 1));
2064 }
2065 else
2066 {
2067 max = (1 << bits) - 1;
2068 min = 0;
2069 }
2070
2071 test = val;
2072
2073 if (test < (offsetT) min || test > (offsetT) max)
2074 {
2075 const char *err =
2076 _("operand out of range (%s not between %ld and %ld)");
2077 char buf[100];
2078
2079 sprint_value (buf, test);
2080 if (file == (char *) NULL)
2081 as_warn (err, buf, min, max);
2082 else
2083 as_warn_where (file, line, err, buf, min, max);
2084 }
2085 }
2086
2087 if ((operand->flags & MN10300_OPERAND_SPLIT) != 0)
2088 {
2089 *insnp |= (val >> (32 - operand->bits)) & ((1 << operand->bits) - 1);
2090 *extensionp |= ((val & ((1 << (32 - operand->bits)) - 1))
2091 << operand->shift);
2092 }
2093 else if ((operand->flags & MN10300_OPERAND_24BIT) != 0)
2094 {
2095 *insnp |= (val >> (24 - operand->bits)) & ((1 << operand->bits) - 1);
2096 *extensionp |= ((val & ((1 << (24 - operand->bits)) - 1))
2097 << operand->shift);
2098 }
2099 else if ((operand->flags & MN10300_OPERAND_EXTENDED) == 0)
2100 {
2101 *insnp |= (((long) val & ((1 << operand->bits) - 1))
2102 << (operand->shift + shift));
2103
2104 if ((operand->flags & MN10300_OPERAND_REPEATED) != 0)
2105 *insnp |= (((long) val & ((1 << operand->bits) - 1))
2106 << (operand->shift + shift + operand->bits));
2107 }
2108 else
2109 {
2110 *extensionp |= (((long) val & ((1 << operand->bits) - 1))
2111 << (operand->shift + shift));
2112
2113 if ((operand->flags & MN10300_OPERAND_REPEATED) != 0)
2114 *extensionp |= (((long) val & ((1 << operand->bits) - 1))
2115 << (operand->shift + shift + operand->bits));
2116 }
2117 }
2118
2119 static unsigned long
2120 check_operand (insn, operand, val)
2121 unsigned long insn ATTRIBUTE_UNUSED;
2122 const struct mn10300_operand *operand;
2123 offsetT val;
2124 {
2125 /* No need to check 32bit operands for a bit. Note that
2126 MN10300_OPERAND_SPLIT is an implicit 32bit operand. */
2127 if (operand->bits != 32
2128 && (operand->flags & MN10300_OPERAND_SPLIT) == 0)
2129 {
2130 long min, max;
2131 offsetT test;
2132 int bits;
2133
2134 bits = operand->bits;
2135 if (operand->flags & MN10300_OPERAND_24BIT)
2136 bits = 24;
2137
2138 if ((operand->flags & MN10300_OPERAND_SIGNED) != 0)
2139 {
2140 max = (1 << (bits - 1)) - 1;
2141 min = - (1 << (bits - 1));
2142 }
2143 else
2144 {
2145 max = (1 << bits) - 1;
2146 min = 0;
2147 }
2148
2149 test = val;
2150
2151 if (test < (offsetT) min || test > (offsetT) max)
2152 return 0;
2153 else
2154 return 1;
2155 }
2156 return 1;
2157 }
2158
2159 static void
2160 set_arch_mach (mach)
2161 unsigned int mach;
2162 {
2163 if (!bfd_set_arch_mach (stdoutput, bfd_arch_mn10300, mach))
2164 as_warn (_("could not set architecture and machine"));
2165
2166 current_machine = mach;
2167 }
This page took 0.074377 seconds and 4 git commands to generate.