* config/tc-mn10300.c (md_assemble): Don't use any MN10300 specific
[deliverable/binutils-gdb.git] / gas / config / tc-mn10300.c
1 /* tc-mn10300.c -- Assembler code for the Matsushita 10300
2
3 Copyright (C) 1996 Free Software Foundation.
4
5 This file is part of GAS, the GNU Assembler.
6
7 GAS is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GAS is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GAS; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include <stdio.h>
23 #include <ctype.h>
24 #include "as.h"
25 #include "subsegs.h"
26 #include "opcode/mn10300.h"
27 \f
28 /* Structure to hold information about predefined registers. */
29 struct reg_name
30 {
31 const char *name;
32 int value;
33 };
34
35 /* Generic assembler global variables which must be defined by all targets. */
36
37 /* Characters which always start a comment. */
38 const char comment_chars[] = "#";
39
40 /* Characters which start a comment at the beginning of a line. */
41 const char line_comment_chars[] = ";#";
42
43 /* Characters which may be used to separate multiple commands on a
44 single line. */
45 const char line_separator_chars[] = ";";
46
47 /* Characters which are used to indicate an exponent in a floating
48 point number. */
49 const char EXP_CHARS[] = "eE";
50
51 /* Characters which mean that a number is a floating point constant,
52 as in 0d1.0. */
53 const char FLT_CHARS[] = "dD";
54 \f
55
56 /* local functions */
57 static void mn10300_insert_operand PARAMS ((unsigned long *, unsigned long *,
58 const struct mn10300_operand *,
59 offsetT, char *, unsigned,
60 unsigned));
61 static unsigned long check_operand PARAMS ((unsigned long,
62 const struct mn10300_operand *,
63 offsetT));
64 static int reg_name_search PARAMS ((const struct reg_name *, int, const char *));
65 static boolean data_register_name PARAMS ((expressionS *expressionP));
66 static boolean address_register_name PARAMS ((expressionS *expressionP));
67 static boolean other_register_name PARAMS ((expressionS *expressionP));
68
69
70 /* fixups */
71 #define MAX_INSN_FIXUPS (5)
72 struct mn10300_fixup
73 {
74 expressionS exp;
75 int opindex;
76 bfd_reloc_code_real_type reloc;
77 };
78 struct mn10300_fixup fixups[MAX_INSN_FIXUPS];
79 static int fc;
80 \f
81 const char *md_shortopts = "";
82 struct option md_longopts[] = {
83 {NULL, no_argument, NULL, 0}
84 };
85 size_t md_longopts_size = sizeof(md_longopts);
86
87 /* The target specific pseudo-ops which we support. */
88 const pseudo_typeS md_pseudo_table[] =
89 {
90 { NULL, NULL, 0 }
91 };
92
93 /* Opcode hash table. */
94 static struct hash_control *mn10300_hash;
95
96 /* This table is sorted. Suitable for searching by a binary search. */
97 static const struct reg_name data_registers[] =
98 {
99 { "d0", 0 },
100 { "d1", 1 },
101 { "d2", 2 },
102 { "d3", 3 },
103 };
104 #define DATA_REG_NAME_CNT (sizeof(data_registers) / sizeof(struct reg_name))
105
106 static const struct reg_name address_registers[] =
107 {
108 { "a0", 0 },
109 { "a1", 1 },
110 { "a2", 2 },
111 { "a3", 3 },
112 };
113 #define ADDRESS_REG_NAME_CNT (sizeof(address_registers) / sizeof(struct reg_name))
114
115 static const struct reg_name other_registers[] =
116 {
117 { "mdr", 0 },
118 { "psw", 0 },
119 { "sp", 0 },
120 };
121 #define OTHER_REG_NAME_CNT (sizeof(other_registers) / sizeof(struct reg_name))
122
123 /* reg_name_search does a binary search of the given register table
124 to see if "name" is a valid regiter name. Returns the register
125 number from the array on success, or -1 on failure. */
126
127 static int
128 reg_name_search (regs, regcount, name)
129 const struct reg_name *regs;
130 int regcount;
131 const char *name;
132 {
133 int middle, low, high;
134 int cmp;
135
136 low = 0;
137 high = regcount - 1;
138
139 do
140 {
141 middle = (low + high) / 2;
142 cmp = strcasecmp (name, regs[middle].name);
143 if (cmp < 0)
144 high = middle - 1;
145 else if (cmp > 0)
146 low = middle + 1;
147 else
148 return regs[middle].value;
149 }
150 while (low <= high);
151 return -1;
152 }
153
154
155 /* Summary of register_name().
156 *
157 * in: Input_line_pointer points to 1st char of operand.
158 *
159 * out: A expressionS.
160 * The operand may have been a register: in this case, X_op == O_register,
161 * X_add_number is set to the register number, and truth is returned.
162 * Input_line_pointer->(next non-blank) char after operand, or is in
163 * its original state.
164 */
165 static boolean
166 data_register_name (expressionP)
167 expressionS *expressionP;
168 {
169 int reg_number;
170 char *name;
171 char *start;
172 char c;
173
174 /* Find the spelling of the operand */
175 start = name = input_line_pointer;
176
177 c = get_symbol_end ();
178 reg_number = reg_name_search (data_registers, DATA_REG_NAME_CNT, name);
179
180 /* look to see if it's in the register table */
181 if (reg_number >= 0)
182 {
183 expressionP->X_op = O_register;
184 expressionP->X_add_number = reg_number;
185
186 /* make the rest nice */
187 expressionP->X_add_symbol = NULL;
188 expressionP->X_op_symbol = NULL;
189 *input_line_pointer = c; /* put back the delimiting char */
190 return true;
191 }
192 else
193 {
194 /* reset the line as if we had not done anything */
195 *input_line_pointer = c; /* put back the delimiting char */
196 input_line_pointer = start; /* reset input_line pointer */
197 return false;
198 }
199 }
200
201 /* Summary of register_name().
202 *
203 * in: Input_line_pointer points to 1st char of operand.
204 *
205 * out: A expressionS.
206 * The operand may have been a register: in this case, X_op == O_register,
207 * X_add_number is set to the register number, and truth is returned.
208 * Input_line_pointer->(next non-blank) char after operand, or is in
209 * its original state.
210 */
211 static boolean
212 address_register_name (expressionP)
213 expressionS *expressionP;
214 {
215 int reg_number;
216 char *name;
217 char *start;
218 char c;
219
220 /* Find the spelling of the operand */
221 start = name = input_line_pointer;
222
223 c = get_symbol_end ();
224 reg_number = reg_name_search (address_registers, ADDRESS_REG_NAME_CNT, name);
225
226 /* look to see if it's in the register table */
227 if (reg_number >= 0)
228 {
229 expressionP->X_op = O_register;
230 expressionP->X_add_number = reg_number;
231
232 /* make the rest nice */
233 expressionP->X_add_symbol = NULL;
234 expressionP->X_op_symbol = NULL;
235 *input_line_pointer = c; /* put back the delimiting char */
236 return true;
237 }
238 else
239 {
240 /* reset the line as if we had not done anything */
241 *input_line_pointer = c; /* put back the delimiting char */
242 input_line_pointer = start; /* reset input_line pointer */
243 return false;
244 }
245 }
246
247 /* Summary of register_name().
248 *
249 * in: Input_line_pointer points to 1st char of operand.
250 *
251 * out: A expressionS.
252 * The operand may have been a register: in this case, X_op == O_register,
253 * X_add_number is set to the register number, and truth is returned.
254 * Input_line_pointer->(next non-blank) char after operand, or is in
255 * its original state.
256 */
257 static boolean
258 other_register_name (expressionP)
259 expressionS *expressionP;
260 {
261 int reg_number;
262 char *name;
263 char *start;
264 char c;
265
266 /* Find the spelling of the operand */
267 start = name = input_line_pointer;
268
269 c = get_symbol_end ();
270 reg_number = reg_name_search (other_registers, OTHER_REG_NAME_CNT, name);
271
272 /* look to see if it's in the register table */
273 if (reg_number >= 0)
274 {
275 expressionP->X_op = O_register;
276 expressionP->X_add_number = reg_number;
277
278 /* make the rest nice */
279 expressionP->X_add_symbol = NULL;
280 expressionP->X_op_symbol = NULL;
281 *input_line_pointer = c; /* put back the delimiting char */
282 return true;
283 }
284 else
285 {
286 /* reset the line as if we had not done anything */
287 *input_line_pointer = c; /* put back the delimiting char */
288 input_line_pointer = start; /* reset input_line pointer */
289 return false;
290 }
291 }
292
293 void
294 md_show_usage (stream)
295 FILE *stream;
296 {
297 fprintf(stream, "MN10300 options:\n\
298 none yet\n");
299 }
300
301 int
302 md_parse_option (c, arg)
303 int c;
304 char *arg;
305 {
306 return 0;
307 }
308
309 symbolS *
310 md_undefined_symbol (name)
311 char *name;
312 {
313 return 0;
314 }
315
316 char *
317 md_atof (type, litp, sizep)
318 int type;
319 char *litp;
320 int *sizep;
321 {
322 int prec;
323 LITTLENUM_TYPE words[4];
324 char *t;
325 int i;
326
327 switch (type)
328 {
329 case 'f':
330 prec = 2;
331 break;
332
333 case 'd':
334 prec = 4;
335 break;
336
337 default:
338 *sizep = 0;
339 return "bad call to md_atof";
340 }
341
342 t = atof_ieee (input_line_pointer, type, words);
343 if (t)
344 input_line_pointer = t;
345
346 *sizep = prec * 2;
347
348 for (i = prec - 1; i >= 0; i--)
349 {
350 md_number_to_chars (litp, (valueT) words[i], 2);
351 litp += 2;
352 }
353
354 return NULL;
355 }
356
357
358 void
359 md_convert_frag (abfd, sec, fragP)
360 bfd *abfd;
361 asection *sec;
362 fragS *fragP;
363 {
364 /* printf ("call to md_convert_frag \n"); */
365 abort ();
366 }
367
368 valueT
369 md_section_align (seg, addr)
370 asection *seg;
371 valueT addr;
372 {
373 int align = bfd_get_section_alignment (stdoutput, seg);
374 return ((addr + (1 << align) - 1) & (-1 << align));
375 }
376
377 void
378 md_begin ()
379 {
380 char *prev_name = "";
381 register const struct mn10300_opcode *op;
382
383 mn10300_hash = hash_new();
384
385 /* Insert unique names into hash table. The MN10300 instruction set
386 has many identical opcode names that have different opcodes based
387 on the operands. This hash table then provides a quick index to
388 the first opcode with a particular name in the opcode table. */
389
390 op = mn10300_opcodes;
391 while (op->name)
392 {
393 if (strcmp (prev_name, op->name))
394 {
395 prev_name = (char *) op->name;
396 hash_insert (mn10300_hash, op->name, (char *) op);
397 }
398 op++;
399 }
400
401 /* This is both a simplification (we don't have to write md_apply_fix)
402 and support for future optimizations (branch shortening and similar
403 stuff in the linker. */
404 linkrelax = 1;
405 }
406
407 void
408 md_assemble (str)
409 char *str;
410 {
411 char *s;
412 struct mn10300_opcode *opcode;
413 struct mn10300_opcode *next_opcode;
414 const unsigned char *opindex_ptr;
415 int next_opindex;
416 unsigned long insn, extension, size = 0;
417 char *f;
418 int i;
419 int match;
420
421 /* Get the opcode. */
422 for (s = str; *s != '\0' && ! isspace (*s); s++)
423 ;
424 if (*s != '\0')
425 *s++ = '\0';
426
427 /* find the first opcode with the proper name */
428 opcode = (struct mn10300_opcode *)hash_find (mn10300_hash, str);
429 if (opcode == NULL)
430 {
431 as_bad ("Unrecognized opcode: `%s'", str);
432 return;
433 }
434
435 str = s;
436 while (isspace (*str))
437 ++str;
438
439 input_line_pointer = str;
440
441 for(;;)
442 {
443 const char *errmsg = NULL;
444 int op_idx;
445 char *hold;
446 int extra_shift = 0;
447
448 fc = 0;
449 match = 0;
450 next_opindex = 0;
451 insn = opcode->opcode;
452 extension = 0;
453 for (op_idx = 1, opindex_ptr = opcode->operands;
454 *opindex_ptr != 0;
455 opindex_ptr++, op_idx++)
456 {
457 const struct mn10300_operand *operand;
458 expressionS ex;
459
460 if (next_opindex == 0)
461 {
462 operand = &mn10300_operands[*opindex_ptr];
463 }
464 else
465 {
466 operand = &mn10300_operands[next_opindex];
467 next_opindex = 0;
468 }
469
470 errmsg = NULL;
471
472 while (*str == ' ' || *str == ',')
473 ++str;
474
475 /* Gather the operand. */
476 hold = input_line_pointer;
477 input_line_pointer = str;
478
479 if (operand->flags & MN10300_OPERAND_PAREN)
480 {
481 if (*input_line_pointer != ')' && *input_line_pointer != '(')
482 {
483 input_line_pointer = hold;
484 str = hold;
485 goto error;
486 }
487 input_line_pointer++;
488 goto keep_going;
489 }
490 /* See if we can match the operands. */
491 else if (operand->flags & MN10300_OPERAND_DREG)
492 {
493 if (!data_register_name (&ex))
494 {
495 input_line_pointer = hold;
496 str = hold;
497 goto error;
498 }
499 }
500 else if (operand->flags & MN10300_OPERAND_AREG)
501 {
502 if (!address_register_name (&ex))
503 {
504 input_line_pointer = hold;
505 str = hold;
506 goto error;
507 }
508 }
509 else if (operand->flags & MN10300_OPERAND_SP)
510 {
511 char *start = input_line_pointer;
512 char c = get_symbol_end ();
513
514 if (strcmp (start, "sp") != 0)
515 {
516 *input_line_pointer = c;
517 input_line_pointer = hold;
518 str = hold;
519 goto error;
520 }
521 *input_line_pointer = c;
522 goto keep_going;
523 }
524 else if (operand->flags & MN10300_OPERAND_PSW)
525 {
526 char *start = input_line_pointer;
527 char c = get_symbol_end ();
528
529 if (strcmp (start, "psw") != 0)
530 {
531 *input_line_pointer = c;
532 input_line_pointer = hold;
533 str = hold;
534 goto error;
535 }
536 *input_line_pointer = c;
537 goto keep_going;
538 }
539 else if (operand->flags & MN10300_OPERAND_MDR)
540 {
541 char *start = input_line_pointer;
542 char c = get_symbol_end ();
543
544 if (strcmp (start, "mdr") != 0)
545 {
546 *input_line_pointer = c;
547 input_line_pointer = hold;
548 str = hold;
549 goto error;
550 }
551 *input_line_pointer = c;
552 goto keep_going;
553 }
554 else if (operand->flags & MN10300_OPERAND_REG_LIST)
555 {
556 unsigned int value = 0;
557 if (*input_line_pointer != '[')
558 {
559 input_line_pointer = hold;
560 str = hold;
561 goto error;
562 }
563
564 /* Eat the '['. */
565 input_line_pointer++;
566
567 /* A null register list can not be specified. */
568 if (*input_line_pointer == ']')
569 {
570 input_line_pointer = hold;
571 str = hold;
572 goto error;
573 }
574
575 while (*input_line_pointer != ']')
576 {
577 char *start;
578 char c;
579
580 if (*input_line_pointer == ',')
581 input_line_pointer++;
582
583 start = input_line_pointer;
584 c = get_symbol_end ();
585
586 if (strcmp (start, "d2") == 0)
587 {
588 value |= 0x80;
589 *input_line_pointer = c;
590 }
591 else if (strcmp (start, "d3") == 0)
592 {
593 value |= 0x40;
594 *input_line_pointer = c;
595 }
596 else if (strcmp (start, "a2") == 0)
597 {
598 value |= 0x20;
599 *input_line_pointer = c;
600 }
601 else if (strcmp (start, "a3") == 0)
602 {
603 value |= 0x10;
604 *input_line_pointer = c;
605 }
606 else if (strcmp (start, "other") == 0)
607 {
608 value |= 0x08;
609 *input_line_pointer = c;
610 }
611 else
612 {
613 input_line_pointer = hold;
614 str = hold;
615 goto error;
616 }
617 }
618 input_line_pointer++;
619 mn10300_insert_operand (&insn, &extension, operand,
620 value, (char *) NULL, 0, 0);
621 goto keep_going;
622
623 }
624 else if (data_register_name (&ex))
625 {
626 input_line_pointer = hold;
627 str = hold;
628 goto error;
629 }
630 else if (address_register_name (&ex))
631 {
632 input_line_pointer = hold;
633 str = hold;
634 goto error;
635 }
636 else if (other_register_name (&ex))
637 {
638 input_line_pointer = hold;
639 str = hold;
640 goto error;
641 }
642 else if (*str == ')' || *str == '(')
643 {
644 input_line_pointer = hold;
645 str = hold;
646 goto error;
647 }
648 else
649 {
650 expression (&ex);
651 }
652
653 switch (ex.X_op)
654 {
655 case O_illegal:
656 errmsg = "illegal operand";
657 goto error;
658 case O_absent:
659 errmsg = "missing operand";
660 goto error;
661 case O_register:
662 if ((operand->flags
663 & (MN10300_OPERAND_DREG | MN10300_OPERAND_AREG)) == 0)
664 {
665 input_line_pointer = hold;
666 str = hold;
667 goto error;
668 }
669
670 if (opcode->format == FMT_D1 || opcode->format == FMT_S1)
671 extra_shift = 8;
672 else if (opcode->format == FMT_D2 || opcode->format == FMT_D4
673 || opcode->format == FMT_S2 || opcode->format == FMT_S4
674 || opcode->format == FMT_S6 || opcode->format == FMT_D5)
675 extra_shift = 16;
676 else
677 extra_shift = 0;
678
679 mn10300_insert_operand (&insn, &extension, operand,
680 ex.X_add_number, (char *) NULL,
681 0, extra_shift);
682
683 break;
684
685 case O_constant:
686 /* If this operand can be promoted, and it doesn't
687 fit into the allocated bitfield for this insn,
688 then promote it (ie this opcode does not match). */
689 if (operand->flags & MN10300_OPERAND_PROMOTE
690 && ! check_operand (insn, operand, ex.X_add_number))
691 {
692 input_line_pointer = hold;
693 str = hold;
694 goto error;
695 }
696
697 mn10300_insert_operand (&insn, &extension, operand,
698 ex.X_add_number, (char *) NULL,
699 0, 0);
700 break;
701
702 default:
703 /* If this operand can be promoted, then this opcode didn't
704 match since we can't know if it needed promotion! */
705 if (operand->flags & MN10300_OPERAND_PROMOTE)
706 {
707 input_line_pointer = hold;
708 str = hold;
709 goto error;
710 }
711
712 /* We need to generate a fixup for this expression. */
713 if (fc >= MAX_INSN_FIXUPS)
714 as_fatal ("too many fixups");
715 fixups[fc].exp = ex;
716 fixups[fc].opindex = *opindex_ptr;
717 fixups[fc].reloc = BFD_RELOC_UNUSED;
718 ++fc;
719 break;
720 }
721
722 keep_going:
723 str = input_line_pointer;
724 input_line_pointer = hold;
725
726 while (*str == ' ' || *str == ',')
727 ++str;
728
729 }
730
731 /* Make sure we used all the operands! */
732 if (*str != ',')
733 match = 1;
734
735 error:
736 if (match == 0)
737 {
738 next_opcode = opcode + 1;
739 if (!strcmp(next_opcode->name, opcode->name))
740 {
741 opcode = next_opcode;
742 continue;
743 }
744
745 as_bad ("%s", errmsg);
746 return;
747 }
748 break;
749 }
750
751 while (isspace (*str))
752 ++str;
753
754 if (*str != '\0')
755 as_bad ("junk at end of line: `%s'", str);
756
757 input_line_pointer = str;
758
759 /* Determine the size of the instruction. */
760 if (opcode->format == FMT_S0)
761 size = 1;
762
763 if (opcode->format == FMT_S1 || opcode->format == FMT_D0)
764 size = 2;
765
766 if (opcode->format == FMT_S2 || opcode->format == FMT_D1)
767 size = 3;
768
769 if (opcode->format == FMT_S4)
770 size = 5;
771
772 if (opcode->format == FMT_S6 || opcode->format == FMT_D5)
773 size = 7;
774
775 if (opcode->format == FMT_D2)
776 size = 4;
777
778 if (opcode->format == FMT_D4)
779 size = 6;
780
781 /* Allocate space for the instruction. */
782 f = frag_more (size);
783
784 /* Fill in bytes for the instruction. Note that opcode fields
785 are written big-endian, 16 & 32bit immediates are written
786 little endian. Egad. */
787 if (opcode->format == FMT_S0
788 || opcode->format == FMT_S1
789 || opcode->format == FMT_D0
790 || opcode->format == FMT_D1)
791 {
792 number_to_chars_bigendian (f, insn, size);
793 }
794 else if (opcode->format == FMT_S2
795 && opcode->opcode != 0xdf0000
796 && opcode->opcode != 0xde0000)
797 {
798 /* A format S2 instruction that is _not_ "ret" and "retf". */
799 number_to_chars_bigendian (f, (insn >> 16) & 0xff, 1);
800 number_to_chars_littleendian (f + 1, insn & 0xffff, 2);
801 }
802 else if (opcode->format == FMT_S2)
803 {
804 /* This must be a ret or retf, which is written entirely in big-endian
805 format. */
806 number_to_chars_bigendian (f, insn, 3);
807 }
808 else if (opcode->format == FMT_S4
809 && opcode->opcode != 0xdc000000)
810 {
811 /* This must be a format S4 "call" instruction. What a pain. */
812 unsigned long temp = (insn >> 8) & 0xffff;
813 number_to_chars_bigendian (f, (insn >> 24) & 0xff, 1);
814 number_to_chars_littleendian (f + 1, temp, 2);
815 number_to_chars_bigendian (f + 3, insn & 0xff, 1);
816 number_to_chars_bigendian (f + 4, extension & 0xff, 1);
817 }
818 else if (opcode->format == FMT_S4)
819 {
820 /* This must be a format S4 "jmp" instruction. */
821 unsigned long temp = ((insn & 0xffffff) << 8) | (extension & 0xff);
822 number_to_chars_bigendian (f, (insn >> 24) & 0xff, 1);
823 number_to_chars_littleendian (f + 1, temp, 4);
824 }
825 else if (opcode->format == FMT_S6)
826 {
827 unsigned long temp = ((insn & 0xffffff) << 8)
828 | ((extension >> 16) & 0xff);
829 number_to_chars_bigendian (f, (insn >> 24) & 0xff, 1);
830 number_to_chars_littleendian (f + 1, temp, 4);
831 number_to_chars_bigendian (f + 5, (extension >> 8) & 0xff, 1);
832 number_to_chars_bigendian (f + 6, extension & 0xff, 1);
833 }
834 else if (opcode->format == FMT_D2
835 && opcode->opcode != 0xfaf80000
836 && opcode->opcode != 0xfaf00000
837 && opcode->opcode != 0xfaf40000)
838 {
839 /* A format D2 instruction where the 16bit immediate is
840 really a single 16bit value, not two 8bit values. */
841 number_to_chars_bigendian (f, (insn >> 16) & 0xffff, 2);
842 number_to_chars_littleendian (f + 2, insn & 0xffff, 2);
843 }
844 else if (opcode->format == FMT_D2)
845 {
846 /* A format D2 instruction where the 16bit immediate
847 is really two 8bit immediates. */
848 number_to_chars_bigendian (f, insn, 4);
849 }
850 else if (opcode->format == FMT_D4)
851 {
852 unsigned long temp = ((insn & 0xffff) << 16) | (extension & 0xffff);
853 number_to_chars_bigendian (f, (insn >> 16) & 0xffff, 2);
854 number_to_chars_littleendian (f + 2, temp, 4);
855 }
856 else if (opcode->format == FMT_D5)
857 {
858 unsigned long temp = ((insn & 0xffff) << 16) | ((extension >> 8) & 0xffff);
859 number_to_chars_bigendian (f, (insn >> 16) & 0xffff, 2);
860 number_to_chars_littleendian (f + 2, temp, 4);
861 number_to_chars_bigendian (f + 6, extension & 0xff, 1);
862 }
863
864 /* Create any fixups. */
865 for (i = 0; i < fc; i++)
866 {
867 const struct mn10300_operand *operand;
868
869 operand = &mn10300_operands[fixups[i].opindex];
870 if (fixups[i].reloc != BFD_RELOC_UNUSED)
871 {
872 reloc_howto_type *reloc_howto;
873 int size;
874 int offset;
875 fixS *fixP;
876
877 reloc_howto = bfd_reloc_type_lookup (stdoutput, fixups[i].reloc);
878
879 if (!reloc_howto)
880 abort();
881
882 size = bfd_get_reloc_size (reloc_howto);
883
884 if (size < 1 || size > 4)
885 abort();
886
887 offset = 4 - size;
888 fixP = fix_new_exp (frag_now, f - frag_now->fr_literal + offset, size,
889 &fixups[i].exp,
890 reloc_howto->pc_relative,
891 fixups[i].reloc);
892 }
893 else
894 {
895 int reloc, pcrel, reloc_size, offset;
896 fixS *fixP;
897
898 reloc = BFD_RELOC_NONE;
899 /* How big is the reloc? Remember SPLIT relocs are
900 implicitly 32bits. */
901 if ((operand->flags & MN10300_OPERAND_SPLIT) != 0)
902 reloc_size = 32;
903 else
904 reloc_size = operand->bits;
905
906 /* Is the reloc pc-relative? */
907 pcrel = (operand->flags & MN10300_OPERAND_PCREL) != 0;
908
909 /* Gross. This disgusting hack is to make sure we
910 get the right offset for the 16/32 bit reloc in
911 "call" instructions. Basically they're a pain
912 because the reloc isn't at the end of the instruction. */
913 if ((size == 5 || size == 7)
914 && (((insn >> 24) & 0xff) == 0xcd
915 || ((insn >> 24) & 0xff) == 0xdd))
916 size -= 2;
917
918 /* Similarly for certain bit instructions which don't
919 hav their 32bit reloc at the tail of the instruction. */
920 if (size == 7
921 && (((insn >> 16) & 0xffff) == 0xfe00
922 || ((insn >> 16) & 0xffff) == 0xfe01
923 || ((insn >> 16) & 0xffff) == 0xfe02))
924 size -= 1;
925
926 offset = size - reloc_size / 8;
927
928 /* Choose a proper BFD relocation type. */
929 if (pcrel)
930 {
931 if (reloc_size == 32)
932 reloc = BFD_RELOC_32_PCREL;
933 else if (reloc_size == 16)
934 reloc = BFD_RELOC_16_PCREL;
935 else if (reloc_size == 8)
936 reloc = BFD_RELOC_8_PCREL;
937 else
938 abort ();
939 }
940 else
941 {
942 if (reloc_size == 32)
943 reloc = BFD_RELOC_32;
944 else if (reloc_size == 16)
945 reloc = BFD_RELOC_16;
946 else if (reloc_size == 8)
947 reloc = BFD_RELOC_8;
948 else
949 abort ();
950 }
951
952 /* Convert the size of the reloc into what fix_new_exp wants. */
953 reloc_size = reloc_size / 8;
954 if (reloc_size == 8)
955 reloc_size = 0;
956 else if (reloc_size == 16)
957 reloc_size = 1;
958 else if (reloc_size == 32)
959 reloc_size = 2;
960
961 fixP = fix_new_exp (frag_now, f - frag_now->fr_literal + offset,
962 reloc_size, &fixups[i].exp, pcrel,
963 ((bfd_reloc_code_real_type) reloc));
964
965 if (pcrel)
966 fixP->fx_offset += offset;
967 }
968 }
969 }
970
971
972 /* if while processing a fixup, a reloc really needs to be created */
973 /* then it is done here */
974
975 arelent *
976 tc_gen_reloc (seg, fixp)
977 asection *seg;
978 fixS *fixp;
979 {
980 arelent *reloc;
981 reloc = (arelent *) bfd_alloc_by_size_t (stdoutput, sizeof (arelent));
982
983 reloc->howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type);
984 if (reloc->howto == (reloc_howto_type *) NULL)
985 {
986 as_bad_where (fixp->fx_file, fixp->fx_line,
987 "reloc %d not supported by object file format",
988 (int)fixp->fx_r_type);
989 return NULL;
990 }
991 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
992
993 if (fixp->fx_addsy && fixp->fx_subsy)
994 {
995 reloc->sym_ptr_ptr = &bfd_abs_symbol;
996 reloc->addend = (S_GET_VALUE (fixp->fx_addsy)
997 - S_GET_VALUE (fixp->fx_subsy) + fixp->fx_offset);
998 }
999 else
1000 {
1001 reloc->sym_ptr_ptr = &fixp->fx_addsy->bsym;
1002 reloc->addend = fixp->fx_offset;
1003 }
1004 return reloc;
1005 }
1006
1007 int
1008 md_estimate_size_before_relax (fragp, seg)
1009 fragS *fragp;
1010 asection *seg;
1011 {
1012 return 0;
1013 }
1014
1015 long
1016 md_pcrel_from (fixp)
1017 fixS *fixp;
1018 {
1019 return fixp->fx_frag->fr_address;
1020 #if 0
1021 if (fixp->fx_addsy != (symbolS *) NULL && ! S_IS_DEFINED (fixp->fx_addsy))
1022 {
1023 /* The symbol is undefined. Let the linker figure it out. */
1024 return 0;
1025 }
1026 return fixp->fx_frag->fr_address + fixp->fx_where;
1027 #endif
1028 }
1029
1030 int
1031 md_apply_fix3 (fixp, valuep, seg)
1032 fixS *fixp;
1033 valueT *valuep;
1034 segT seg;
1035 {
1036 /* We shouldn't ever get here because linkrelax is nonzero. */
1037 abort ();
1038 fixp->fx_done = 1;
1039 return 0;
1040 }
1041
1042 /* Insert an operand value into an instruction. */
1043
1044 static void
1045 mn10300_insert_operand (insnp, extensionp, operand, val, file, line, shift)
1046 unsigned long *insnp;
1047 unsigned long *extensionp;
1048 const struct mn10300_operand *operand;
1049 offsetT val;
1050 char *file;
1051 unsigned int line;
1052 unsigned int shift;
1053 {
1054 /* No need to check 32bit operands for a bit. Note that
1055 MN10300_OPERAND_SPLIT is an implicit 32bit operand. */
1056 if (operand->bits != 32
1057 && (operand->flags & MN10300_OPERAND_SPLIT) == 0)
1058 {
1059 long min, max;
1060 offsetT test;
1061
1062 if ((operand->flags & MN10300_OPERAND_SIGNED) != 0)
1063 {
1064 max = (1 << (operand->bits - 1)) - 1;
1065 min = - (1 << (operand->bits - 1));
1066 }
1067 else
1068 {
1069 max = (1 << operand->bits) - 1;
1070 min = 0;
1071 }
1072
1073 test = val;
1074
1075
1076 if (test < (offsetT) min || test > (offsetT) max)
1077 {
1078 const char *err =
1079 "operand out of range (%s not between %ld and %ld)";
1080 char buf[100];
1081
1082 sprint_value (buf, test);
1083 if (file == (char *) NULL)
1084 as_warn (err, buf, min, max);
1085 else
1086 as_warn_where (file, line, err, buf, min, max);
1087 }
1088 }
1089
1090 if ((operand->flags & MN10300_OPERAND_SPLIT) != 0)
1091 {
1092 *insnp |= (val >> (32 - operand->bits)) & ((1 << operand->bits) - 1);
1093 *extensionp |= ((val & ((1 << (32 - operand->bits)) - 1))
1094 << operand->shift);
1095 }
1096 else if ((operand->flags & MN10300_OPERAND_EXTENDED) == 0)
1097 {
1098 *insnp |= (((long) val & ((1 << operand->bits) - 1))
1099 << (operand->shift + shift));
1100
1101 if ((operand->flags & MN10300_OPERAND_REPEATED) != 0)
1102 *insnp |= (((long) val & ((1 << operand->bits) - 1))
1103 << (operand->shift + shift + 2));
1104 }
1105 else
1106 {
1107 *extensionp |= (((long) val & ((1 << operand->bits) - 1))
1108 << (operand->shift + shift));
1109
1110 if ((operand->flags & MN10300_OPERAND_REPEATED) != 0)
1111 *extensionp |= (((long) val & ((1 << operand->bits) - 1))
1112 << (operand->shift + shift + 2));
1113 }
1114 }
1115
1116 static unsigned long
1117 check_operand (insn, operand, val)
1118 unsigned long insn;
1119 const struct mn10300_operand *operand;
1120 offsetT val;
1121 {
1122 /* No need to check 32bit operands for a bit. Note that
1123 MN10300_OPERAND_SPLIT is an implicit 32bit operand. */
1124 if (operand->bits != 32
1125 && (operand->flags & MN10300_OPERAND_SPLIT) == 0)
1126 {
1127 long min, max;
1128 offsetT test;
1129
1130 if ((operand->flags & MN10300_OPERAND_SIGNED) != 0)
1131 {
1132 max = (1 << (operand->bits - 1)) - 1;
1133 min = - (1 << (operand->bits - 1));
1134 }
1135 else
1136 {
1137 max = (1 << operand->bits) - 1;
1138 min = 0;
1139 }
1140
1141 test = val;
1142
1143
1144 if (test < (offsetT) min || test > (offsetT) max)
1145 return 0;
1146 else
1147 return 1;
1148 }
1149 return 1;
1150 }
This page took 0.053301 seconds and 5 git commands to generate.