opcodes,gas: associate SPARC ASIs with an architecture level.
[deliverable/binutils-gdb.git] / gas / config / tc-sparc.c
1 /* tc-sparc.c -- Assemble for the SPARC
2 Copyright (C) 1989-2017 Free Software Foundation, Inc.
3 This file is part of GAS, the GNU Assembler.
4
5 GAS is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 3, or (at your option)
8 any later version.
9
10 GAS is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public
16 License along with GAS; see the file COPYING. If not, write
17 to the Free Software Foundation, 51 Franklin Street - Fifth Floor,
18 Boston, MA 02110-1301, USA. */
19
20 #include "as.h"
21 #include "safe-ctype.h"
22 #include "subsegs.h"
23
24 #include "opcode/sparc.h"
25 #include "dw2gencfi.h"
26
27 #ifdef OBJ_ELF
28 #include "elf/sparc.h"
29 #include "dwarf2dbg.h"
30 #endif
31
32 /* Some ancient Sun C compilers would not take such hex constants as
33 unsigned, and would end up sign-extending them to form an offsetT,
34 so use these constants instead. */
35 #define U0xffffffff ((((unsigned long) 1 << 16) << 16) - 1)
36 #define U0x80000000 ((((unsigned long) 1 << 16) << 15))
37
38 static int sparc_ip (char *, const struct sparc_opcode **);
39 static int parse_sparc_asi (char **, const sparc_asi **);
40 static int parse_keyword_arg (int (*) (const char *), char **, int *);
41 static int parse_const_expr_arg (char **, int *);
42 static int get_expression (char *);
43
44 /* Default architecture. */
45 /* ??? The default value should be V8, but sparclite support was added
46 by making it the default. GCC now passes -Asparclite, so maybe sometime in
47 the future we can set this to V8. */
48 #ifndef DEFAULT_ARCH
49 #define DEFAULT_ARCH "sparclite"
50 #endif
51 static const char *default_arch = DEFAULT_ARCH;
52
53 /* Non-zero if the initial values of `max_architecture' and `sparc_arch_size'
54 have been set. */
55 static int default_init_p;
56
57 /* Current architecture. We don't bump up unless necessary. */
58 static enum sparc_opcode_arch_val current_architecture = SPARC_OPCODE_ARCH_V6;
59
60 /* The maximum architecture level we can bump up to.
61 In a 32 bit environment, don't allow bumping up to v9 by default.
62 The native assembler works this way. The user is required to pass
63 an explicit argument before we'll create v9 object files. However, if
64 we don't see any v9 insns, a v8plus object file is not created. */
65 static enum sparc_opcode_arch_val max_architecture;
66
67 /* Either 32 or 64, selects file format. */
68 static int sparc_arch_size;
69 /* Initial (default) value, recorded separately in case a user option
70 changes the value before md_show_usage is called. */
71 static int default_arch_size;
72
73 #ifdef OBJ_ELF
74 /* The currently selected v9 memory model. Currently only used for
75 ELF. */
76 static enum { MM_TSO, MM_PSO, MM_RMO } sparc_memory_model = MM_RMO;
77
78 #ifndef TE_SOLARIS
79 /* Bitmask of instruction types seen so far, used to populate the
80 GNU attributes section with hwcap information. */
81 static bfd_uint64_t hwcap_seen;
82 #endif
83 #endif
84
85 static bfd_uint64_t hwcap_allowed;
86
87 static int architecture_requested;
88 static int warn_on_bump;
89
90 /* If warn_on_bump and the needed architecture is higher than this
91 architecture, issue a warning. */
92 static enum sparc_opcode_arch_val warn_after_architecture;
93
94 /* Non-zero if the assembler should generate error if an undeclared
95 g[23] register has been used in -64. */
96 static int no_undeclared_regs;
97
98 /* Non-zero if the assembler should generate a warning if an
99 unpredictable DCTI (delayed control transfer instruction) couple is
100 found. */
101 static int dcti_couples_detect;
102
103 /* Non-zero if we should try to relax jumps and calls. */
104 static int sparc_relax;
105
106 /* Non-zero if we are generating PIC code. */
107 int sparc_pic_code;
108
109 /* Non-zero if we should give an error when misaligned data is seen. */
110 static int enforce_aligned_data;
111
112 extern int target_big_endian;
113
114 static int target_little_endian_data;
115
116 /* Symbols for global registers on v9. */
117 static symbolS *globals[8];
118
119 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
120 int sparc_cie_data_alignment;
121
122 /* V9 and 86x have big and little endian data, but instructions are always big
123 endian. The sparclet has bi-endian support but both data and insns have
124 the same endianness. Global `target_big_endian' is used for data.
125 The following macro is used for instructions. */
126 #ifndef INSN_BIG_ENDIAN
127 #define INSN_BIG_ENDIAN (target_big_endian \
128 || default_arch_type == sparc86x \
129 || SPARC_OPCODE_ARCH_V9_P (max_architecture))
130 #endif
131
132 /* Handle of the OPCODE hash table. */
133 static struct hash_control *op_hash;
134
135 static void s_data1 (void);
136 static void s_seg (int);
137 static void s_proc (int);
138 static void s_reserve (int);
139 static void s_common (int);
140 static void s_empty (int);
141 static void s_uacons (int);
142 static void s_ncons (int);
143 #ifdef OBJ_ELF
144 static void s_register (int);
145 #endif
146
147 const pseudo_typeS md_pseudo_table[] =
148 {
149 {"align", s_align_bytes, 0}, /* Defaulting is invalid (0). */
150 {"common", s_common, 0},
151 {"empty", s_empty, 0},
152 {"global", s_globl, 0},
153 {"half", cons, 2},
154 {"nword", s_ncons, 0},
155 {"optim", s_ignore, 0},
156 {"proc", s_proc, 0},
157 {"reserve", s_reserve, 0},
158 {"seg", s_seg, 0},
159 {"skip", s_space, 0},
160 {"word", cons, 4},
161 {"xword", cons, 8},
162 {"uahalf", s_uacons, 2},
163 {"uaword", s_uacons, 4},
164 {"uaxword", s_uacons, 8},
165 #ifdef OBJ_ELF
166 /* These are specific to sparc/svr4. */
167 {"2byte", s_uacons, 2},
168 {"4byte", s_uacons, 4},
169 {"8byte", s_uacons, 8},
170 {"register", s_register, 0},
171 #endif
172 {NULL, 0, 0},
173 };
174
175 /* This array holds the chars that always start a comment. If the
176 pre-processor is disabled, these aren't very useful. */
177 const char comment_chars[] = "!"; /* JF removed '|' from
178 comment_chars. */
179
180 /* This array holds the chars that only start a comment at the beginning of
181 a line. If the line seems to have the form '# 123 filename'
182 .line and .file directives will appear in the pre-processed output. */
183 /* Note that input_file.c hand checks for '#' at the beginning of the
184 first line of the input file. This is because the compiler outputs
185 #NO_APP at the beginning of its output. */
186 /* Also note that comments started like this one will always
187 work if '/' isn't otherwise defined. */
188 const char line_comment_chars[] = "#";
189
190 const char line_separator_chars[] = ";";
191
192 /* Chars that can be used to separate mant from exp in floating point
193 nums. */
194 const char EXP_CHARS[] = "eE";
195
196 /* Chars that mean this number is a floating point constant.
197 As in 0f12.456
198 or 0d1.2345e12 */
199 const char FLT_CHARS[] = "rRsSfFdDxXpP";
200
201 /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
202 changed in read.c. Ideally it shouldn't have to know about it at all,
203 but nothing is ideal around here. */
204
205 #define isoctal(c) ((unsigned) ((c) - '0') < 8)
206
207 struct sparc_it
208 {
209 const char *error;
210 unsigned long opcode;
211 struct nlist *nlistp;
212 expressionS exp;
213 expressionS exp2;
214 int pcrel;
215 bfd_reloc_code_real_type reloc;
216 };
217
218 struct sparc_it the_insn, set_insn;
219
220 static void output_insn (const struct sparc_opcode *, struct sparc_it *);
221 \f
222 /* Table of arguments to -A.
223 The sparc_opcode_arch table in sparc-opc.c is insufficient and incorrect
224 for this use. That table is for opcodes only. This table is for opcodes
225 and file formats. */
226
227 enum sparc_arch_types {v6, v7, v8, leon, sparclet, sparclite, sparc86x, v8plus,
228 v8plusa, v9, v9a, v9b, v9_64};
229
230 static struct sparc_arch {
231 const char *name;
232 const char *opcode_arch;
233 enum sparc_arch_types arch_type;
234 /* Default word size, as specified during configuration.
235 A value of zero means can't be used to specify default architecture. */
236 int default_arch_size;
237 /* Allowable arg to -A? */
238 int user_option_p;
239 /* Extra hardware capabilities allowed. These are added to the
240 hardware capabilities associated with the opcode
241 architecture. */
242 int hwcap_allowed;
243 int hwcap2_allowed;
244 } sparc_arch_table[] = {
245 { "v6", "v6", v6, 0, 1, 0, 0 },
246 { "v7", "v7", v7, 0, 1, 0, 0 },
247 { "v8", "v8", v8, 32, 1, 0, 0 },
248 { "v8a", "v8", v8, 32, 1, 0, 0 },
249 { "sparc", "v9", v9, 0, 1, HWCAP_V8PLUS, 0 },
250 { "sparcvis", "v9a", v9, 0, 1, 0, 0 },
251 { "sparcvis2", "v9b", v9, 0, 1, 0, 0 },
252 { "sparcfmaf", "v9b", v9, 0, 1, HWCAP_FMAF, 0 },
253 { "sparcima", "v9b", v9, 0, 1, HWCAP_FMAF|HWCAP_IMA, 0 },
254 { "sparcvis3", "v9b", v9, 0, 1, HWCAP_FMAF|HWCAP_VIS3|HWCAP_HPC, 0 },
255 { "sparcvis3r", "v9b", v9, 0, 1, HWCAP_FMAF|HWCAP_VIS3|HWCAP_HPC|HWCAP_FJFMAU, 0 },
256
257 { "sparc4", "v9v", v9, 0, 1, 0, 0 },
258 { "sparc5", "v9m", v9, 0, 1, 0, 0 },
259
260 { "leon", "leon", leon, 32, 1, 0, 0 },
261 { "sparclet", "sparclet", sparclet, 32, 1, 0, 0 },
262 { "sparclite", "sparclite", sparclite, 32, 1, 0, 0 },
263 { "sparc86x", "sparclite", sparc86x, 32, 1, 0, 0 },
264
265 { "v8plus", "v9", v9, 0, 1, HWCAP_V8PLUS, 0 },
266 { "v8plusa", "v9a", v9, 0, 1, HWCAP_V8PLUS, 0 },
267 { "v8plusb", "v9b", v9, 0, 1, HWCAP_V8PLUS, 0 },
268 { "v8plusc", "v9c", v9, 0, 1, HWCAP_V8PLUS, 0 },
269 { "v8plusd", "v9d", v9, 0, 1, HWCAP_V8PLUS, 0 },
270 { "v8pluse", "v9e", v9, 0, 1, HWCAP_V8PLUS, 0 },
271 { "v8plusv", "v9v", v9, 0, 1, HWCAP_V8PLUS, 0 },
272 { "v8plusm", "v9m", v9, 0, 1, HWCAP_V8PLUS, 0 },
273
274 { "v9", "v9", v9, 0, 1, 0, 0 },
275 { "v9a", "v9a", v9, 0, 1, 0, 0 },
276 { "v9b", "v9b", v9, 0, 1, 0, 0 },
277 { "v9c", "v9c", v9, 0, 1, 0, 0 },
278 { "v9d", "v9d", v9, 0, 1, 0, 0 },
279 { "v9e", "v9e", v9, 0, 1, 0, 0 },
280 { "v9v", "v9v", v9, 0, 1, 0, 0 },
281 { "v9m", "v9m", v9, 0, 1, 0, 0 },
282
283 /* This exists to allow configure.tgt to pass one
284 value to specify both the default machine and default word size. */
285 { "v9-64", "v9", v9, 64, 0, 0, 0 },
286 { NULL, NULL, v8, 0, 0, 0, 0 }
287 };
288
289 /* Variant of default_arch */
290 static enum sparc_arch_types default_arch_type;
291
292 static struct sparc_arch *
293 lookup_arch (const char *name)
294 {
295 struct sparc_arch *sa;
296
297 for (sa = &sparc_arch_table[0]; sa->name != NULL; sa++)
298 if (strcmp (sa->name, name) == 0)
299 break;
300 if (sa->name == NULL)
301 return NULL;
302 return sa;
303 }
304
305 /* Initialize the default opcode arch and word size from the default
306 architecture name. */
307
308 static void
309 init_default_arch (void)
310 {
311 struct sparc_arch *sa = lookup_arch (default_arch);
312
313 if (sa == NULL
314 || sa->default_arch_size == 0)
315 as_fatal (_("Invalid default architecture, broken assembler."));
316
317 max_architecture = sparc_opcode_lookup_arch (sa->opcode_arch);
318 if (max_architecture == SPARC_OPCODE_ARCH_BAD)
319 as_fatal (_("Bad opcode table, broken assembler."));
320 default_arch_size = sparc_arch_size = sa->default_arch_size;
321 default_init_p = 1;
322 default_arch_type = sa->arch_type;
323 }
324
325 /* Called by TARGET_FORMAT. */
326
327 const char *
328 sparc_target_format (void)
329 {
330 /* We don't get a chance to initialize anything before we're called,
331 so handle that now. */
332 if (! default_init_p)
333 init_default_arch ();
334
335 #ifdef OBJ_AOUT
336 #ifdef TE_NetBSD
337 return "a.out-sparc-netbsd";
338 #else
339 #ifdef TE_SPARCAOUT
340 if (target_big_endian)
341 return "a.out-sunos-big";
342 else if (default_arch_type == sparc86x && target_little_endian_data)
343 return "a.out-sunos-big";
344 else
345 return "a.out-sparc-little";
346 #else
347 return "a.out-sunos-big";
348 #endif
349 #endif
350 #endif
351
352 #ifdef OBJ_BOUT
353 return "b.out.big";
354 #endif
355
356 #ifdef OBJ_COFF
357 #ifdef TE_LYNX
358 return "coff-sparc-lynx";
359 #else
360 return "coff-sparc";
361 #endif
362 #endif
363
364 #ifdef TE_VXWORKS
365 return "elf32-sparc-vxworks";
366 #endif
367
368 #ifdef OBJ_ELF
369 return sparc_arch_size == 64 ? ELF64_TARGET_FORMAT : ELF_TARGET_FORMAT;
370 #endif
371
372 abort ();
373 }
374 \f
375 /* md_parse_option
376 * Invocation line includes a switch not recognized by the base assembler.
377 * See if it's a processor-specific option. These are:
378 *
379 * -bump
380 * Warn on architecture bumps. See also -A.
381 *
382 * -Av6, -Av7, -Av8, -Aleon, -Asparclite, -Asparclet
383 * Standard 32 bit architectures.
384 * -Av9, -Av9a, -Av9b
385 * Sparc64 in either a 32 or 64 bit world (-32/-64 says which).
386 * This used to only mean 64 bits, but properly specifying it
387 * complicated gcc's ASM_SPECs, so now opcode selection is
388 * specified orthogonally to word size (except when specifying
389 * the default, but that is an internal implementation detail).
390 * -Av8plus, -Av8plusa, -Av8plusb
391 * Same as -Av9{,a,b}.
392 * -xarch=v8plus, -xarch=v8plusa, -xarch=v8plusb
393 * Same as -Av8plus{,a,b} -32, for compatibility with Sun's
394 * assembler.
395 * -xarch=v9, -xarch=v9a, -xarch=v9b
396 * Same as -Av9{,a,b} -64, for compatibility with Sun's
397 * assembler.
398 *
399 * Select the architecture and possibly the file format.
400 * Instructions or features not supported by the selected
401 * architecture cause fatal errors.
402 *
403 * The default is to start at v6, and bump the architecture up
404 * whenever an instruction is seen at a higher level. In 32 bit
405 * environments, v9 is not bumped up to, the user must pass
406 * -Av8plus{,a,b}.
407 *
408 * If -bump is specified, a warning is printing when bumping to
409 * higher levels.
410 *
411 * If an architecture is specified, all instructions must match
412 * that architecture. Any higher level instructions are flagged
413 * as errors. Note that in the 32 bit environment specifying
414 * -Av8plus does not automatically create a v8plus object file, a
415 * v9 insn must be seen.
416 *
417 * If both an architecture and -bump are specified, the
418 * architecture starts at the specified level, but bumps are
419 * warnings. Note that we can't set `current_architecture' to
420 * the requested level in this case: in the 32 bit environment,
421 * we still must avoid creating v8plus object files unless v9
422 * insns are seen.
423 *
424 * Note:
425 * Bumping between incompatible architectures is always an
426 * error. For example, from sparclite to v9.
427 */
428
429 #ifdef OBJ_ELF
430 const char *md_shortopts = "A:K:VQ:sq";
431 #else
432 #ifdef OBJ_AOUT
433 const char *md_shortopts = "A:k";
434 #else
435 const char *md_shortopts = "A:";
436 #endif
437 #endif
438 struct option md_longopts[] = {
439 #define OPTION_BUMP (OPTION_MD_BASE)
440 {"bump", no_argument, NULL, OPTION_BUMP},
441 #define OPTION_SPARC (OPTION_MD_BASE + 1)
442 {"sparc", no_argument, NULL, OPTION_SPARC},
443 #define OPTION_XARCH (OPTION_MD_BASE + 2)
444 {"xarch", required_argument, NULL, OPTION_XARCH},
445 #ifdef OBJ_ELF
446 #define OPTION_32 (OPTION_MD_BASE + 3)
447 {"32", no_argument, NULL, OPTION_32},
448 #define OPTION_64 (OPTION_MD_BASE + 4)
449 {"64", no_argument, NULL, OPTION_64},
450 #define OPTION_TSO (OPTION_MD_BASE + 5)
451 {"TSO", no_argument, NULL, OPTION_TSO},
452 #define OPTION_PSO (OPTION_MD_BASE + 6)
453 {"PSO", no_argument, NULL, OPTION_PSO},
454 #define OPTION_RMO (OPTION_MD_BASE + 7)
455 {"RMO", no_argument, NULL, OPTION_RMO},
456 #endif
457 #ifdef SPARC_BIENDIAN
458 #define OPTION_LITTLE_ENDIAN (OPTION_MD_BASE + 8)
459 {"EL", no_argument, NULL, OPTION_LITTLE_ENDIAN},
460 #define OPTION_BIG_ENDIAN (OPTION_MD_BASE + 9)
461 {"EB", no_argument, NULL, OPTION_BIG_ENDIAN},
462 #endif
463 #define OPTION_ENFORCE_ALIGNED_DATA (OPTION_MD_BASE + 10)
464 {"enforce-aligned-data", no_argument, NULL, OPTION_ENFORCE_ALIGNED_DATA},
465 #define OPTION_LITTLE_ENDIAN_DATA (OPTION_MD_BASE + 11)
466 {"little-endian-data", no_argument, NULL, OPTION_LITTLE_ENDIAN_DATA},
467 #ifdef OBJ_ELF
468 #define OPTION_NO_UNDECLARED_REGS (OPTION_MD_BASE + 12)
469 {"no-undeclared-regs", no_argument, NULL, OPTION_NO_UNDECLARED_REGS},
470 #define OPTION_UNDECLARED_REGS (OPTION_MD_BASE + 13)
471 {"undeclared-regs", no_argument, NULL, OPTION_UNDECLARED_REGS},
472 #endif
473 #define OPTION_RELAX (OPTION_MD_BASE + 14)
474 {"relax", no_argument, NULL, OPTION_RELAX},
475 #define OPTION_NO_RELAX (OPTION_MD_BASE + 15)
476 {"no-relax", no_argument, NULL, OPTION_NO_RELAX},
477 #define OPTION_DCTI_COUPLES_DETECT (OPTION_MD_BASE + 16)
478 {"dcti-couples-detect", no_argument, NULL, OPTION_DCTI_COUPLES_DETECT},
479 {NULL, no_argument, NULL, 0}
480 };
481
482 size_t md_longopts_size = sizeof (md_longopts);
483
484 int
485 md_parse_option (int c, const char *arg)
486 {
487 /* We don't get a chance to initialize anything before we're called,
488 so handle that now. */
489 if (! default_init_p)
490 init_default_arch ();
491
492 switch (c)
493 {
494 case OPTION_BUMP:
495 warn_on_bump = 1;
496 warn_after_architecture = SPARC_OPCODE_ARCH_V6;
497 break;
498
499 case OPTION_XARCH:
500 #ifdef OBJ_ELF
501 if (!strncmp (arg, "v9", 2))
502 md_parse_option (OPTION_64, NULL);
503 else
504 {
505 if (!strncmp (arg, "v8", 2)
506 || !strncmp (arg, "v7", 2)
507 || !strncmp (arg, "v6", 2)
508 || !strcmp (arg, "sparclet")
509 || !strcmp (arg, "sparclite")
510 || !strcmp (arg, "sparc86x"))
511 md_parse_option (OPTION_32, NULL);
512 }
513 #endif
514 /* Fall through. */
515
516 case 'A':
517 {
518 struct sparc_arch *sa;
519 enum sparc_opcode_arch_val opcode_arch;
520
521 sa = lookup_arch (arg);
522 if (sa == NULL
523 || ! sa->user_option_p)
524 {
525 if (c == OPTION_XARCH)
526 as_bad (_("invalid architecture -xarch=%s"), arg);
527 else
528 as_bad (_("invalid architecture -A%s"), arg);
529 return 0;
530 }
531
532 opcode_arch = sparc_opcode_lookup_arch (sa->opcode_arch);
533 if (opcode_arch == SPARC_OPCODE_ARCH_BAD)
534 as_fatal (_("Bad opcode table, broken assembler."));
535
536 if (!architecture_requested
537 || opcode_arch > max_architecture)
538 max_architecture = opcode_arch;
539
540 /* The allowed hardware capabilities are the implied by the
541 opcodes arch plus any extra capabilities defined in the GAS
542 arch. */
543 hwcap_allowed
544 = (hwcap_allowed
545 | (((bfd_uint64_t) sparc_opcode_archs[opcode_arch].hwcaps2) << 32)
546 | (((bfd_uint64_t) sa->hwcap2_allowed) << 32)
547 | sparc_opcode_archs[opcode_arch].hwcaps
548 | sa->hwcap_allowed);
549 architecture_requested = 1;
550 }
551 break;
552
553 case OPTION_SPARC:
554 /* Ignore -sparc, used by SunOS make default .s.o rule. */
555 break;
556
557 case OPTION_ENFORCE_ALIGNED_DATA:
558 enforce_aligned_data = 1;
559 break;
560
561 #ifdef SPARC_BIENDIAN
562 case OPTION_LITTLE_ENDIAN:
563 target_big_endian = 0;
564 if (default_arch_type != sparclet)
565 as_fatal ("This target does not support -EL");
566 break;
567 case OPTION_LITTLE_ENDIAN_DATA:
568 target_little_endian_data = 1;
569 target_big_endian = 0;
570 if (default_arch_type != sparc86x
571 && default_arch_type != v9)
572 as_fatal ("This target does not support --little-endian-data");
573 break;
574 case OPTION_BIG_ENDIAN:
575 target_big_endian = 1;
576 break;
577 #endif
578
579 #ifdef OBJ_AOUT
580 case 'k':
581 sparc_pic_code = 1;
582 break;
583 #endif
584
585 #ifdef OBJ_ELF
586 case OPTION_32:
587 case OPTION_64:
588 {
589 const char **list, **l;
590
591 sparc_arch_size = c == OPTION_32 ? 32 : 64;
592 list = bfd_target_list ();
593 for (l = list; *l != NULL; l++)
594 {
595 if (sparc_arch_size == 32)
596 {
597 if (CONST_STRNEQ (*l, "elf32-sparc"))
598 break;
599 }
600 else
601 {
602 if (CONST_STRNEQ (*l, "elf64-sparc"))
603 break;
604 }
605 }
606 if (*l == NULL)
607 as_fatal (_("No compiled in support for %d bit object file format"),
608 sparc_arch_size);
609 free (list);
610
611 if (sparc_arch_size == 64
612 && max_architecture < SPARC_OPCODE_ARCH_V9)
613 max_architecture = SPARC_OPCODE_ARCH_V9;
614 }
615 break;
616
617 case OPTION_TSO:
618 sparc_memory_model = MM_TSO;
619 break;
620
621 case OPTION_PSO:
622 sparc_memory_model = MM_PSO;
623 break;
624
625 case OPTION_RMO:
626 sparc_memory_model = MM_RMO;
627 break;
628
629 case 'V':
630 print_version_id ();
631 break;
632
633 case 'Q':
634 /* Qy - do emit .comment
635 Qn - do not emit .comment. */
636 break;
637
638 case 's':
639 /* Use .stab instead of .stab.excl. */
640 break;
641
642 case 'q':
643 /* quick -- Native assembler does fewer checks. */
644 break;
645
646 case 'K':
647 if (strcmp (arg, "PIC") != 0)
648 as_warn (_("Unrecognized option following -K"));
649 else
650 sparc_pic_code = 1;
651 break;
652
653 case OPTION_NO_UNDECLARED_REGS:
654 no_undeclared_regs = 1;
655 break;
656
657 case OPTION_UNDECLARED_REGS:
658 no_undeclared_regs = 0;
659 break;
660 #endif
661
662 case OPTION_RELAX:
663 sparc_relax = 1;
664 break;
665
666 case OPTION_NO_RELAX:
667 sparc_relax = 0;
668 break;
669
670 case OPTION_DCTI_COUPLES_DETECT:
671 dcti_couples_detect = 1;
672 break;
673
674 default:
675 return 0;
676 }
677
678 return 1;
679 }
680
681 void
682 md_show_usage (FILE *stream)
683 {
684 const struct sparc_arch *arch;
685 int column;
686
687 /* We don't get a chance to initialize anything before we're called,
688 so handle that now. */
689 if (! default_init_p)
690 init_default_arch ();
691
692 fprintf (stream, _("SPARC options:\n"));
693 column = 0;
694 for (arch = &sparc_arch_table[0]; arch->name; arch++)
695 {
696 if (!arch->user_option_p)
697 continue;
698 if (arch != &sparc_arch_table[0])
699 fprintf (stream, " | ");
700 if (column + strlen (arch->name) > 70)
701 {
702 column = 0;
703 fputc ('\n', stream);
704 }
705 column += 5 + 2 + strlen (arch->name);
706 fprintf (stream, "-A%s", arch->name);
707 }
708 for (arch = &sparc_arch_table[0]; arch->name; arch++)
709 {
710 if (!arch->user_option_p)
711 continue;
712 fprintf (stream, " | ");
713 if (column + strlen (arch->name) > 65)
714 {
715 column = 0;
716 fputc ('\n', stream);
717 }
718 column += 5 + 7 + strlen (arch->name);
719 fprintf (stream, "-xarch=%s", arch->name);
720 }
721 fprintf (stream, _("\n\
722 specify variant of SPARC architecture\n\
723 -bump warn when assembler switches architectures\n\
724 -sparc ignored\n\
725 --enforce-aligned-data force .long, etc., to be aligned correctly\n\
726 -relax relax jumps and branches (default)\n\
727 -no-relax avoid changing any jumps and branches\n"));
728 #ifdef OBJ_AOUT
729 fprintf (stream, _("\
730 -k generate PIC\n"));
731 #endif
732 #ifdef OBJ_ELF
733 fprintf (stream, _("\
734 -32 create 32 bit object file\n\
735 -64 create 64 bit object file\n"));
736 fprintf (stream, _("\
737 [default is %d]\n"), default_arch_size);
738 fprintf (stream, _("\
739 -TSO use Total Store Ordering\n\
740 -PSO use Partial Store Ordering\n\
741 -RMO use Relaxed Memory Ordering\n"));
742 fprintf (stream, _("\
743 [default is %s]\n"), (default_arch_size == 64) ? "RMO" : "TSO");
744 fprintf (stream, _("\
745 -KPIC generate PIC\n\
746 -V print assembler version number\n\
747 -undeclared-regs ignore application global register usage without\n\
748 appropriate .register directive (default)\n\
749 -no-undeclared-regs force error on application global register usage\n\
750 without appropriate .register directive\n\
751 --dcti-couples-detect warn when an unpredictable DCTI couple is found\n\
752 -q ignored\n\
753 -Qy, -Qn ignored\n\
754 -s ignored\n"));
755 #endif
756 #ifdef SPARC_BIENDIAN
757 fprintf (stream, _("\
758 -EL generate code for a little endian machine\n\
759 -EB generate code for a big endian machine\n\
760 --little-endian-data generate code for a machine having big endian\n\
761 instructions and little endian data.\n"));
762 #endif
763 }
764 \f
765 /* Native operand size opcode translation. */
766 static struct
767 {
768 const char *name;
769 const char *name32;
770 const char *name64;
771 } native_op_table[] =
772 {
773 {"ldn", "ld", "ldx"},
774 {"ldna", "lda", "ldxa"},
775 {"stn", "st", "stx"},
776 {"stna", "sta", "stxa"},
777 {"slln", "sll", "sllx"},
778 {"srln", "srl", "srlx"},
779 {"sran", "sra", "srax"},
780 {"casn", "cas", "casx"},
781 {"casna", "casa", "casxa"},
782 {"clrn", "clr", "clrx"},
783 {NULL, NULL, NULL},
784 };
785 \f
786 /* sparc64 privileged and hyperprivileged registers. */
787
788 struct priv_reg_entry
789 {
790 const char *name;
791 int regnum;
792 };
793
794 struct priv_reg_entry priv_reg_table[] =
795 {
796 {"tpc", 0},
797 {"tnpc", 1},
798 {"tstate", 2},
799 {"tt", 3},
800 {"tick", 4},
801 {"tba", 5},
802 {"pstate", 6},
803 {"tl", 7},
804 {"pil", 8},
805 {"cwp", 9},
806 {"cansave", 10},
807 {"canrestore", 11},
808 {"cleanwin", 12},
809 {"otherwin", 13},
810 {"wstate", 14},
811 {"fq", 15},
812 {"gl", 16},
813 {"pmcdper", 23},
814 {"ver", 31},
815 {NULL, -1}, /* End marker. */
816 };
817
818 struct priv_reg_entry hpriv_reg_table[] =
819 {
820 {"hpstate", 0},
821 {"htstate", 1},
822 {"hintp", 3},
823 {"htba", 5},
824 {"hver", 6},
825 {"hmcdper", 23},
826 {"hmcddfr", 24},
827 {"hva_mask_nz", 27},
828 {"hstick_offset", 28},
829 {"hstick_enable", 29},
830 {"hstick_cmpr", 31},
831 {NULL, -1}, /* End marker. */
832 };
833
834 /* v9a or later specific ancillary state registers. */
835
836 struct priv_reg_entry v9a_asr_table[] =
837 {
838 {"tick_cmpr", 23},
839 {"sys_tick_cmpr", 25},
840 {"sys_tick", 24},
841 {"stick_cmpr", 25},
842 {"stick", 24},
843 {"softint_clear", 21},
844 {"softint_set", 20},
845 {"softint", 22},
846 {"set_softint", 20},
847 {"pause", 27},
848 {"pic", 17},
849 {"pcr", 16},
850 {"mwait", 28},
851 {"gsr", 19},
852 {"dcr", 18},
853 {"cfr", 26},
854 {"clear_softint", 21},
855 {NULL, -1}, /* End marker. */
856 };
857
858 static int
859 cmp_reg_entry (const void *parg, const void *qarg)
860 {
861 const struct priv_reg_entry *p = (const struct priv_reg_entry *) parg;
862 const struct priv_reg_entry *q = (const struct priv_reg_entry *) qarg;
863
864 if (p->name == q->name)
865 return 0;
866 else if (p->name == NULL)
867 return 1;
868 else if (q->name == NULL)
869 return -1;
870 else
871 return strcmp (q->name, p->name);
872 }
873 \f
874 /* sparc %-pseudo-operations. */
875
876
877 #define F_POP_V9 0x1 /* The pseudo-op is for v9 only. */
878 #define F_POP_PCREL 0x2 /* The pseudo-op can be used in pc-relative
879 contexts. */
880 #define F_POP_TLS_CALL 0x4 /* The pseudo-op marks a tls call. */
881 #define F_POP_POSTFIX 0x8 /* The pseudo-op should appear after the
882 last operand of an
883 instruction. (Generally they can appear
884 anywhere an immediate operand is
885 expected. */
886 struct pop_entry
887 {
888 /* The name as it appears in assembler. */
889 const char *name;
890 /* The reloc this pseudo-op translates to. */
891 bfd_reloc_code_real_type reloc;
892 /* Flags. See F_POP_* above. */
893 int flags;
894 };
895
896 struct pop_entry pop_table[] =
897 {
898 { "hix", BFD_RELOC_SPARC_HIX22, F_POP_V9 },
899 { "lox", BFD_RELOC_SPARC_LOX10, F_POP_V9 },
900 { "hi", BFD_RELOC_HI22, F_POP_PCREL },
901 { "lo", BFD_RELOC_LO10, F_POP_PCREL },
902 { "pc22", BFD_RELOC_SPARC_PC22, F_POP_PCREL },
903 { "pc10", BFD_RELOC_SPARC_PC10, F_POP_PCREL },
904 { "hh", BFD_RELOC_SPARC_HH22, F_POP_V9|F_POP_PCREL },
905 { "hm", BFD_RELOC_SPARC_HM10, F_POP_V9|F_POP_PCREL },
906 { "lm", BFD_RELOC_SPARC_LM22, F_POP_V9|F_POP_PCREL },
907 { "h34", BFD_RELOC_SPARC_H34, F_POP_V9 },
908 { "l34", BFD_RELOC_SPARC_L44, F_POP_V9 },
909 { "h44", BFD_RELOC_SPARC_H44, F_POP_V9 },
910 { "m44", BFD_RELOC_SPARC_M44, F_POP_V9 },
911 { "l44", BFD_RELOC_SPARC_L44, F_POP_V9 },
912 { "uhi", BFD_RELOC_SPARC_HH22, F_POP_V9 },
913 { "ulo", BFD_RELOC_SPARC_HM10, F_POP_V9 },
914 { "tgd_hi22", BFD_RELOC_SPARC_TLS_GD_HI22, 0 },
915 { "tgd_lo10", BFD_RELOC_SPARC_TLS_GD_LO10, 0 },
916 { "tldm_hi22", BFD_RELOC_SPARC_TLS_LDM_HI22, 0 },
917 { "tldm_lo10", BFD_RELOC_SPARC_TLS_LDM_LO10, 0 },
918 { "tldo_hix22", BFD_RELOC_SPARC_TLS_LDO_HIX22, 0 },
919 { "tldo_lox10", BFD_RELOC_SPARC_TLS_LDO_LOX10, 0 },
920 { "tie_hi22", BFD_RELOC_SPARC_TLS_IE_HI22, 0 },
921 { "tie_lo10", BFD_RELOC_SPARC_TLS_IE_LO10, 0 },
922 { "tle_hix22", BFD_RELOC_SPARC_TLS_LE_HIX22, 0 },
923 { "tle_lox10", BFD_RELOC_SPARC_TLS_LE_LOX10, 0 },
924 { "gdop_hix22", BFD_RELOC_SPARC_GOTDATA_OP_HIX22, 0 },
925 { "gdop_lox10", BFD_RELOC_SPARC_GOTDATA_OP_LOX10, 0 },
926 { "tgd_add", BFD_RELOC_SPARC_TLS_GD_ADD, F_POP_POSTFIX },
927 { "tgd_call", BFD_RELOC_SPARC_TLS_GD_CALL, F_POP_POSTFIX|F_POP_TLS_CALL },
928 { "tldm_add", BFD_RELOC_SPARC_TLS_LDM_ADD, F_POP_POSTFIX },
929 { "tldm_call", BFD_RELOC_SPARC_TLS_LDM_CALL, F_POP_POSTFIX|F_POP_TLS_CALL },
930 { "tldo_add", BFD_RELOC_SPARC_TLS_LDO_ADD, F_POP_POSTFIX },
931 { "tie_ldx", BFD_RELOC_SPARC_TLS_IE_LDX, F_POP_POSTFIX },
932 { "tie_ld", BFD_RELOC_SPARC_TLS_IE_LD, F_POP_POSTFIX },
933 { "tie_add", BFD_RELOC_SPARC_TLS_IE_ADD, F_POP_POSTFIX },
934 { "gdop", BFD_RELOC_SPARC_GOTDATA_OP, F_POP_POSTFIX }
935 };
936 \f
937 /* Table of %-names that can appear in a sparc assembly program. This
938 table is initialized in md_begin and contains entries for each
939 privileged/hyperprivileged/alternate register and %-pseudo-op. */
940
941 enum perc_entry_type
942 {
943 perc_entry_none = 0,
944 perc_entry_reg,
945 perc_entry_post_pop,
946 perc_entry_imm_pop
947 };
948
949 struct perc_entry
950 {
951 /* Entry type. */
952 enum perc_entry_type type;
953 /* Name of the %-entity. */
954 const char *name;
955 /* strlen (name). */
956 int len;
957 /* Value. Either a pop or a reg depending on type.*/
958 union
959 {
960 struct pop_entry *pop;
961 struct priv_reg_entry *reg;
962 };
963 };
964
965 #define NUM_PERC_ENTRIES \
966 (((sizeof (priv_reg_table) / sizeof (priv_reg_table[0])) - 1) \
967 + ((sizeof (hpriv_reg_table) / sizeof (hpriv_reg_table[0])) - 1) \
968 + ((sizeof (v9a_asr_table) / sizeof (v9a_asr_table[0])) - 1) \
969 + ARRAY_SIZE (pop_table) \
970 + 1)
971
972 struct perc_entry perc_table[NUM_PERC_ENTRIES];
973
974 static int
975 cmp_perc_entry (const void *parg, const void *qarg)
976 {
977 const struct perc_entry *p = (const struct perc_entry *) parg;
978 const struct perc_entry *q = (const struct perc_entry *) qarg;
979
980 if (p->name == q->name)
981 return 0;
982 else if (p->name == NULL)
983 return 1;
984 else if (q->name == NULL)
985 return -1;
986 else
987 return strcmp (q->name, p->name);
988 }
989 \f
990 /* This function is called once, at assembler startup time. It should
991 set up all the tables, etc. that the MD part of the assembler will
992 need. */
993
994 void
995 md_begin (void)
996 {
997 const char *retval = NULL;
998 int lose = 0;
999 unsigned int i = 0;
1000
1001 /* We don't get a chance to initialize anything before md_parse_option
1002 is called, and it may not be called, so handle default initialization
1003 now if not already done. */
1004 if (! default_init_p)
1005 init_default_arch ();
1006
1007 sparc_cie_data_alignment = sparc_arch_size == 64 ? -8 : -4;
1008 op_hash = hash_new ();
1009
1010 while (i < (unsigned int) sparc_num_opcodes)
1011 {
1012 const char *name = sparc_opcodes[i].name;
1013 retval = hash_insert (op_hash, name, (void *) &sparc_opcodes[i]);
1014 if (retval != NULL)
1015 {
1016 as_bad (_("Internal error: can't hash `%s': %s\n"),
1017 sparc_opcodes[i].name, retval);
1018 lose = 1;
1019 }
1020 do
1021 {
1022 if (sparc_opcodes[i].match & sparc_opcodes[i].lose)
1023 {
1024 as_bad (_("Internal error: losing opcode: `%s' \"%s\"\n"),
1025 sparc_opcodes[i].name, sparc_opcodes[i].args);
1026 lose = 1;
1027 }
1028 ++i;
1029 }
1030 while (i < (unsigned int) sparc_num_opcodes
1031 && !strcmp (sparc_opcodes[i].name, name));
1032 }
1033
1034 for (i = 0; native_op_table[i].name; i++)
1035 {
1036 const struct sparc_opcode *insn;
1037 const char *name = ((sparc_arch_size == 32)
1038 ? native_op_table[i].name32
1039 : native_op_table[i].name64);
1040 insn = (struct sparc_opcode *) hash_find (op_hash, name);
1041 if (insn == NULL)
1042 {
1043 as_bad (_("Internal error: can't find opcode `%s' for `%s'\n"),
1044 name, native_op_table[i].name);
1045 lose = 1;
1046 }
1047 else
1048 {
1049 retval = hash_insert (op_hash, native_op_table[i].name,
1050 (void *) insn);
1051 if (retval != NULL)
1052 {
1053 as_bad (_("Internal error: can't hash `%s': %s\n"),
1054 sparc_opcodes[i].name, retval);
1055 lose = 1;
1056 }
1057 }
1058 }
1059
1060 if (lose)
1061 as_fatal (_("Broken assembler. No assembly attempted."));
1062
1063 qsort (priv_reg_table, sizeof (priv_reg_table) / sizeof (priv_reg_table[0]),
1064 sizeof (priv_reg_table[0]), cmp_reg_entry);
1065 qsort (hpriv_reg_table, sizeof (hpriv_reg_table) / sizeof (hpriv_reg_table[0]),
1066 sizeof (hpriv_reg_table[0]), cmp_reg_entry);
1067 qsort (v9a_asr_table, sizeof (v9a_asr_table) / sizeof (v9a_asr_table[0]),
1068 sizeof (v9a_asr_table[0]), cmp_reg_entry);
1069
1070 /* If -bump, record the architecture level at which we start issuing
1071 warnings. The behaviour is different depending upon whether an
1072 architecture was explicitly specified. If it wasn't, we issue warnings
1073 for all upwards bumps. If it was, we don't start issuing warnings until
1074 we need to bump beyond the requested architecture or when we bump between
1075 conflicting architectures. */
1076
1077 if (warn_on_bump
1078 && architecture_requested)
1079 {
1080 /* `max_architecture' records the requested architecture.
1081 Issue warnings if we go above it. */
1082 warn_after_architecture = max_architecture;
1083 }
1084
1085 /* Find the highest architecture level that doesn't conflict with
1086 the requested one. */
1087
1088 if (warn_on_bump
1089 || !architecture_requested)
1090 {
1091 enum sparc_opcode_arch_val current_max_architecture
1092 = max_architecture;
1093
1094 for (max_architecture = SPARC_OPCODE_ARCH_MAX;
1095 max_architecture > warn_after_architecture;
1096 --max_architecture)
1097 if (! SPARC_OPCODE_CONFLICT_P (max_architecture,
1098 current_max_architecture))
1099 break;
1100 }
1101
1102 /* Prepare the tables of %-pseudo-ops. */
1103 {
1104 struct priv_reg_entry *reg_tables[]
1105 = {priv_reg_table, hpriv_reg_table, v9a_asr_table, NULL};
1106 struct priv_reg_entry **reg_table;
1107 int entry = 0;
1108
1109 /* Add registers. */
1110 for (reg_table = reg_tables; reg_table[0]; reg_table++)
1111 {
1112 struct priv_reg_entry *reg;
1113 for (reg = *reg_table; reg->name; reg++)
1114 {
1115 struct perc_entry *p = &perc_table[entry++];
1116 p->type = perc_entry_reg;
1117 p->name = reg->name;
1118 p->len = strlen (reg->name);
1119 p->reg = reg;
1120 }
1121 }
1122
1123 /* Add %-pseudo-ops. */
1124 for (i = 0; i < ARRAY_SIZE (pop_table); i++)
1125 {
1126 struct perc_entry *p = &perc_table[entry++];
1127 p->type = (pop_table[i].flags & F_POP_POSTFIX
1128 ? perc_entry_post_pop : perc_entry_imm_pop);
1129 p->name = pop_table[i].name;
1130 p->len = strlen (pop_table[i].name);
1131 p->pop = &pop_table[i];
1132 }
1133
1134 /* Last entry is the sentinel. */
1135 perc_table[entry].type = perc_entry_none;
1136
1137 qsort (perc_table, sizeof (perc_table) / sizeof (perc_table[0]),
1138 sizeof (perc_table[0]), cmp_perc_entry);
1139
1140 }
1141 }
1142
1143 /* Called after all assembly has been done. */
1144
1145 void
1146 sparc_md_end (void)
1147 {
1148 unsigned long mach = bfd_mach_sparc;
1149 #if defined(OBJ_ELF) && !defined(TE_SOLARIS)
1150 int hwcaps, hwcaps2;
1151 #endif
1152
1153 if (sparc_arch_size == 64)
1154 switch (current_architecture)
1155 {
1156 case SPARC_OPCODE_ARCH_V9A: mach = bfd_mach_sparc_v9a; break;
1157 case SPARC_OPCODE_ARCH_V9B: mach = bfd_mach_sparc_v9b; break;
1158 case SPARC_OPCODE_ARCH_V9C: mach = bfd_mach_sparc_v9c; break;
1159 case SPARC_OPCODE_ARCH_V9D: mach = bfd_mach_sparc_v9d; break;
1160 case SPARC_OPCODE_ARCH_V9E: mach = bfd_mach_sparc_v9e; break;
1161 case SPARC_OPCODE_ARCH_V9V: mach = bfd_mach_sparc_v9v; break;
1162 case SPARC_OPCODE_ARCH_V9M: mach = bfd_mach_sparc_v9m; break;
1163 default: mach = bfd_mach_sparc_v9; break;
1164 }
1165 else
1166 switch (current_architecture)
1167 {
1168 case SPARC_OPCODE_ARCH_SPARCLET: mach = bfd_mach_sparc_sparclet; break;
1169 case SPARC_OPCODE_ARCH_V9: mach = bfd_mach_sparc_v8plus; break;
1170 case SPARC_OPCODE_ARCH_V9A: mach = bfd_mach_sparc_v8plusa; break;
1171 case SPARC_OPCODE_ARCH_V9B: mach = bfd_mach_sparc_v8plusb; break;
1172 case SPARC_OPCODE_ARCH_V9C: mach = bfd_mach_sparc_v8plusc; break;
1173 case SPARC_OPCODE_ARCH_V9D: mach = bfd_mach_sparc_v8plusd; break;
1174 case SPARC_OPCODE_ARCH_V9E: mach = bfd_mach_sparc_v8pluse; break;
1175 case SPARC_OPCODE_ARCH_V9V: mach = bfd_mach_sparc_v8plusv; break;
1176 case SPARC_OPCODE_ARCH_V9M: mach = bfd_mach_sparc_v8plusm; break;
1177 /* The sparclite is treated like a normal sparc. Perhaps it shouldn't
1178 be but for now it is (since that's the way it's always been
1179 treated). */
1180 default: break;
1181 }
1182 bfd_set_arch_mach (stdoutput, bfd_arch_sparc, mach);
1183
1184 #if defined(OBJ_ELF) && !defined(TE_SOLARIS)
1185 hwcaps = hwcap_seen & U0xffffffff;
1186 hwcaps2 = hwcap_seen >> 32;
1187
1188 if (hwcaps)
1189 bfd_elf_add_obj_attr_int (stdoutput, OBJ_ATTR_GNU, Tag_GNU_Sparc_HWCAPS, hwcaps);
1190 if (hwcaps2)
1191 bfd_elf_add_obj_attr_int (stdoutput, OBJ_ATTR_GNU, Tag_GNU_Sparc_HWCAPS2, hwcaps2);
1192 #endif
1193 }
1194 \f
1195 /* Return non-zero if VAL is in the range -(MAX+1) to MAX. */
1196
1197 static inline int
1198 in_signed_range (bfd_signed_vma val, bfd_signed_vma max)
1199 {
1200 if (max <= 0)
1201 abort ();
1202 /* Sign-extend the value from the architecture word size, so that
1203 0xffffffff is always considered -1 on sparc32. */
1204 if (sparc_arch_size == 32)
1205 {
1206 bfd_signed_vma sign = (bfd_signed_vma) 1 << 31;
1207 val = ((val & U0xffffffff) ^ sign) - sign;
1208 }
1209 if (val > max)
1210 return 0;
1211 if (val < ~max)
1212 return 0;
1213 return 1;
1214 }
1215
1216 /* Return non-zero if VAL is in the range 0 to MAX. */
1217
1218 static inline int
1219 in_unsigned_range (bfd_vma val, bfd_vma max)
1220 {
1221 if (val > max)
1222 return 0;
1223 return 1;
1224 }
1225
1226 /* Return non-zero if VAL is in the range -(MAX/2+1) to MAX.
1227 (e.g. -15 to +31). */
1228
1229 static inline int
1230 in_bitfield_range (bfd_signed_vma val, bfd_signed_vma max)
1231 {
1232 if (max <= 0)
1233 abort ();
1234 if (val > max)
1235 return 0;
1236 if (val < ~(max >> 1))
1237 return 0;
1238 return 1;
1239 }
1240
1241 static int
1242 sparc_ffs (unsigned int mask)
1243 {
1244 int i;
1245
1246 if (mask == 0)
1247 return -1;
1248
1249 for (i = 0; (mask & 1) == 0; ++i)
1250 mask >>= 1;
1251 return i;
1252 }
1253
1254 /* Implement big shift right. */
1255 static bfd_vma
1256 BSR (bfd_vma val, int amount)
1257 {
1258 if (sizeof (bfd_vma) <= 4 && amount >= 32)
1259 as_fatal (_("Support for 64-bit arithmetic not compiled in."));
1260 return val >> amount;
1261 }
1262 \f
1263 /* For communication between sparc_ip and get_expression. */
1264 static char *expr_end;
1265
1266 /* Values for `special_case'.
1267 Instructions that require weird handling because they're longer than
1268 4 bytes. */
1269 #define SPECIAL_CASE_NONE 0
1270 #define SPECIAL_CASE_SET 1
1271 #define SPECIAL_CASE_SETSW 2
1272 #define SPECIAL_CASE_SETX 3
1273 /* FIXME: sparc-opc.c doesn't have necessary "S" trigger to enable this. */
1274 #define SPECIAL_CASE_FDIV 4
1275
1276 /* Bit masks of various insns. */
1277 #define NOP_INSN 0x01000000
1278 #define OR_INSN 0x80100000
1279 #define XOR_INSN 0x80180000
1280 #define FMOVS_INSN 0x81A00020
1281 #define SETHI_INSN 0x01000000
1282 #define SLLX_INSN 0x81281000
1283 #define SRA_INSN 0x81380000
1284
1285 /* The last instruction to be assembled. */
1286 static const struct sparc_opcode *last_insn;
1287 /* The assembled opcode of `last_insn'. */
1288 static unsigned long last_opcode;
1289 \f
1290 /* Handle the set and setuw synthetic instructions. */
1291
1292 static void
1293 synthetize_setuw (const struct sparc_opcode *insn)
1294 {
1295 int need_hi22_p = 0;
1296 int rd = (the_insn.opcode & RD (~0)) >> 25;
1297
1298 if (the_insn.exp.X_op == O_constant)
1299 {
1300 if (SPARC_OPCODE_ARCH_V9_P (max_architecture))
1301 {
1302 if (sizeof (offsetT) > 4
1303 && (the_insn.exp.X_add_number < 0
1304 || the_insn.exp.X_add_number > (offsetT) U0xffffffff))
1305 as_warn (_("set: number not in 0..4294967295 range"));
1306 }
1307 else
1308 {
1309 if (sizeof (offsetT) > 4
1310 && (the_insn.exp.X_add_number < -(offsetT) U0x80000000
1311 || the_insn.exp.X_add_number > (offsetT) U0xffffffff))
1312 as_warn (_("set: number not in -2147483648..4294967295 range"));
1313 the_insn.exp.X_add_number = (int) the_insn.exp.X_add_number;
1314 }
1315 }
1316
1317 /* See if operand is absolute and small; skip sethi if so. */
1318 if (the_insn.exp.X_op != O_constant
1319 || the_insn.exp.X_add_number >= (1 << 12)
1320 || the_insn.exp.X_add_number < -(1 << 12))
1321 {
1322 the_insn.opcode = (SETHI_INSN | RD (rd)
1323 | ((the_insn.exp.X_add_number >> 10)
1324 & (the_insn.exp.X_op == O_constant
1325 ? 0x3fffff : 0)));
1326 the_insn.reloc = (the_insn.exp.X_op != O_constant
1327 ? BFD_RELOC_HI22 : BFD_RELOC_NONE);
1328 output_insn (insn, &the_insn);
1329 need_hi22_p = 1;
1330 }
1331
1332 /* See if operand has no low-order bits; skip OR if so. */
1333 if (the_insn.exp.X_op != O_constant
1334 || (need_hi22_p && (the_insn.exp.X_add_number & 0x3FF) != 0)
1335 || ! need_hi22_p)
1336 {
1337 the_insn.opcode = (OR_INSN | (need_hi22_p ? RS1 (rd) : 0)
1338 | RD (rd) | IMMED
1339 | (the_insn.exp.X_add_number
1340 & (the_insn.exp.X_op != O_constant
1341 ? 0 : need_hi22_p ? 0x3ff : 0x1fff)));
1342 the_insn.reloc = (the_insn.exp.X_op != O_constant
1343 ? BFD_RELOC_LO10 : BFD_RELOC_NONE);
1344 output_insn (insn, &the_insn);
1345 }
1346 }
1347
1348 /* Handle the setsw synthetic instruction. */
1349
1350 static void
1351 synthetize_setsw (const struct sparc_opcode *insn)
1352 {
1353 int low32, rd, opc;
1354
1355 rd = (the_insn.opcode & RD (~0)) >> 25;
1356
1357 if (the_insn.exp.X_op != O_constant)
1358 {
1359 synthetize_setuw (insn);
1360
1361 /* Need to sign extend it. */
1362 the_insn.opcode = (SRA_INSN | RS1 (rd) | RD (rd));
1363 the_insn.reloc = BFD_RELOC_NONE;
1364 output_insn (insn, &the_insn);
1365 return;
1366 }
1367
1368 if (sizeof (offsetT) > 4
1369 && (the_insn.exp.X_add_number < -(offsetT) U0x80000000
1370 || the_insn.exp.X_add_number > (offsetT) U0xffffffff))
1371 as_warn (_("setsw: number not in -2147483648..4294967295 range"));
1372
1373 low32 = the_insn.exp.X_add_number;
1374
1375 if (low32 >= 0)
1376 {
1377 synthetize_setuw (insn);
1378 return;
1379 }
1380
1381 opc = OR_INSN;
1382
1383 the_insn.reloc = BFD_RELOC_NONE;
1384 /* See if operand is absolute and small; skip sethi if so. */
1385 if (low32 < -(1 << 12))
1386 {
1387 the_insn.opcode = (SETHI_INSN | RD (rd)
1388 | (((~the_insn.exp.X_add_number) >> 10) & 0x3fffff));
1389 output_insn (insn, &the_insn);
1390 low32 = 0x1c00 | (low32 & 0x3ff);
1391 opc = RS1 (rd) | XOR_INSN;
1392 }
1393
1394 the_insn.opcode = (opc | RD (rd) | IMMED
1395 | (low32 & 0x1fff));
1396 output_insn (insn, &the_insn);
1397 }
1398
1399 /* Handle the setx synthetic instruction. */
1400
1401 static void
1402 synthetize_setx (const struct sparc_opcode *insn)
1403 {
1404 int upper32, lower32;
1405 int tmpreg = (the_insn.opcode & RS1 (~0)) >> 14;
1406 int dstreg = (the_insn.opcode & RD (~0)) >> 25;
1407 int upper_dstreg;
1408 int need_hh22_p = 0, need_hm10_p = 0, need_hi22_p = 0, need_lo10_p = 0;
1409 int need_xor10_p = 0;
1410
1411 #define SIGNEXT32(x) ((((x) & U0xffffffff) ^ U0x80000000) - U0x80000000)
1412 lower32 = SIGNEXT32 (the_insn.exp.X_add_number);
1413 upper32 = SIGNEXT32 (BSR (the_insn.exp.X_add_number, 32));
1414 #undef SIGNEXT32
1415
1416 upper_dstreg = tmpreg;
1417 /* The tmp reg should not be the dst reg. */
1418 if (tmpreg == dstreg)
1419 as_warn (_("setx: temporary register same as destination register"));
1420
1421 /* ??? Obviously there are other optimizations we can do
1422 (e.g. sethi+shift for 0x1f0000000) and perhaps we shouldn't be
1423 doing some of these. Later. If you do change things, try to
1424 change all of this to be table driven as well. */
1425 /* What to output depends on the number if it's constant.
1426 Compute that first, then output what we've decided upon. */
1427 if (the_insn.exp.X_op != O_constant)
1428 {
1429 if (sparc_arch_size == 32)
1430 {
1431 /* When arch size is 32, we want setx to be equivalent
1432 to setuw for anything but constants. */
1433 the_insn.exp.X_add_number &= 0xffffffff;
1434 synthetize_setuw (insn);
1435 return;
1436 }
1437 need_hh22_p = need_hm10_p = need_hi22_p = need_lo10_p = 1;
1438 lower32 = 0;
1439 upper32 = 0;
1440 }
1441 else
1442 {
1443 /* Reset X_add_number, we've extracted it as upper32/lower32.
1444 Otherwise fixup_segment will complain about not being able to
1445 write an 8 byte number in a 4 byte field. */
1446 the_insn.exp.X_add_number = 0;
1447
1448 /* Only need hh22 if `or' insn can't handle constant. */
1449 if (upper32 < -(1 << 12) || upper32 >= (1 << 12))
1450 need_hh22_p = 1;
1451
1452 /* Does bottom part (after sethi) have bits? */
1453 if ((need_hh22_p && (upper32 & 0x3ff) != 0)
1454 /* No hh22, but does upper32 still have bits we can't set
1455 from lower32? */
1456 || (! need_hh22_p && upper32 != 0 && upper32 != -1))
1457 need_hm10_p = 1;
1458
1459 /* If the lower half is all zero, we build the upper half directly
1460 into the dst reg. */
1461 if (lower32 != 0
1462 /* Need lower half if number is zero or 0xffffffff00000000. */
1463 || (! need_hh22_p && ! need_hm10_p))
1464 {
1465 /* No need for sethi if `or' insn can handle constant. */
1466 if (lower32 < -(1 << 12) || lower32 >= (1 << 12)
1467 /* Note that we can't use a negative constant in the `or'
1468 insn unless the upper 32 bits are all ones. */
1469 || (lower32 < 0 && upper32 != -1)
1470 || (lower32 >= 0 && upper32 == -1))
1471 need_hi22_p = 1;
1472
1473 if (need_hi22_p && upper32 == -1)
1474 need_xor10_p = 1;
1475
1476 /* Does bottom part (after sethi) have bits? */
1477 else if ((need_hi22_p && (lower32 & 0x3ff) != 0)
1478 /* No sethi. */
1479 || (! need_hi22_p && (lower32 & 0x1fff) != 0)
1480 /* Need `or' if we didn't set anything else. */
1481 || (! need_hi22_p && ! need_hh22_p && ! need_hm10_p))
1482 need_lo10_p = 1;
1483 }
1484 else
1485 /* Output directly to dst reg if lower 32 bits are all zero. */
1486 upper_dstreg = dstreg;
1487 }
1488
1489 if (!upper_dstreg && dstreg)
1490 as_warn (_("setx: illegal temporary register g0"));
1491
1492 if (need_hh22_p)
1493 {
1494 the_insn.opcode = (SETHI_INSN | RD (upper_dstreg)
1495 | ((upper32 >> 10) & 0x3fffff));
1496 the_insn.reloc = (the_insn.exp.X_op != O_constant
1497 ? BFD_RELOC_SPARC_HH22 : BFD_RELOC_NONE);
1498 output_insn (insn, &the_insn);
1499 }
1500
1501 if (need_hi22_p)
1502 {
1503 the_insn.opcode = (SETHI_INSN | RD (dstreg)
1504 | (((need_xor10_p ? ~lower32 : lower32)
1505 >> 10) & 0x3fffff));
1506 the_insn.reloc = (the_insn.exp.X_op != O_constant
1507 ? BFD_RELOC_SPARC_LM22 : BFD_RELOC_NONE);
1508 output_insn (insn, &the_insn);
1509 }
1510
1511 if (need_hm10_p)
1512 {
1513 the_insn.opcode = (OR_INSN
1514 | (need_hh22_p ? RS1 (upper_dstreg) : 0)
1515 | RD (upper_dstreg)
1516 | IMMED
1517 | (upper32 & (need_hh22_p ? 0x3ff : 0x1fff)));
1518 the_insn.reloc = (the_insn.exp.X_op != O_constant
1519 ? BFD_RELOC_SPARC_HM10 : BFD_RELOC_NONE);
1520 output_insn (insn, &the_insn);
1521 }
1522
1523 if (need_lo10_p)
1524 {
1525 /* FIXME: One nice optimization to do here is to OR the low part
1526 with the highpart if hi22 isn't needed and the low part is
1527 positive. */
1528 the_insn.opcode = (OR_INSN | (need_hi22_p ? RS1 (dstreg) : 0)
1529 | RD (dstreg)
1530 | IMMED
1531 | (lower32 & (need_hi22_p ? 0x3ff : 0x1fff)));
1532 the_insn.reloc = (the_insn.exp.X_op != O_constant
1533 ? BFD_RELOC_LO10 : BFD_RELOC_NONE);
1534 output_insn (insn, &the_insn);
1535 }
1536
1537 /* If we needed to build the upper part, shift it into place. */
1538 if (need_hh22_p || need_hm10_p)
1539 {
1540 the_insn.opcode = (SLLX_INSN | RS1 (upper_dstreg) | RD (upper_dstreg)
1541 | IMMED | 32);
1542 the_insn.reloc = BFD_RELOC_NONE;
1543 output_insn (insn, &the_insn);
1544 }
1545
1546 /* To get -1 in upper32, we do sethi %hi(~x), r; xor r, -0x400 | x, r. */
1547 if (need_xor10_p)
1548 {
1549 the_insn.opcode = (XOR_INSN | RS1 (dstreg) | RD (dstreg) | IMMED
1550 | 0x1c00 | (lower32 & 0x3ff));
1551 the_insn.reloc = BFD_RELOC_NONE;
1552 output_insn (insn, &the_insn);
1553 }
1554
1555 /* If we needed to build both upper and lower parts, OR them together. */
1556 else if ((need_hh22_p || need_hm10_p) && (need_hi22_p || need_lo10_p))
1557 {
1558 the_insn.opcode = (OR_INSN | RS1 (dstreg) | RS2 (upper_dstreg)
1559 | RD (dstreg));
1560 the_insn.reloc = BFD_RELOC_NONE;
1561 output_insn (insn, &the_insn);
1562 }
1563 }
1564 \f
1565 /* Main entry point to assemble one instruction. */
1566
1567 void
1568 md_assemble (char *str)
1569 {
1570 const struct sparc_opcode *insn;
1571 int special_case;
1572
1573 know (str);
1574 special_case = sparc_ip (str, &insn);
1575 if (insn == NULL)
1576 return;
1577
1578 /* Certain instructions may not appear on delay slots. Check for
1579 these situations. */
1580 if (last_insn != NULL
1581 && (last_insn->flags & F_DELAYED) != 0)
1582 {
1583 /* Before SPARC V9 the effect of having a delayed branch
1584 instruction in the delay slot of a conditional delayed branch
1585 was undefined.
1586
1587 In SPARC V9 DCTI couples are well defined.
1588
1589 However, starting with the UltraSPARC Architecture 2005, DCTI
1590 couples (of all kind) are deprecated and should not be used,
1591 as they may be slow or behave differently to what the
1592 programmer expects. */
1593 if (dcti_couples_detect
1594 && (insn->flags & F_DELAYED) != 0
1595 && ((max_architecture < SPARC_OPCODE_ARCH_V9
1596 && (last_insn->flags & F_CONDBR) != 0)
1597 || max_architecture >= SPARC_OPCODE_ARCH_V9C))
1598 as_warn (_("unpredictable DCTI couple"));
1599
1600
1601 /* We warn about attempts to put a floating point branch in a
1602 delay slot, unless the delay slot has been annulled. */
1603 if ((insn->flags & F_FBR) != 0
1604 /* ??? This test isn't completely accurate. We assume anything with
1605 F_{UNBR,CONDBR,FBR} set is annullable. */
1606 && ((last_insn->flags & (F_UNBR | F_CONDBR | F_FBR)) == 0
1607 || (last_opcode & ANNUL) == 0))
1608 as_warn (_("FP branch in delay slot"));
1609 }
1610
1611 /* SPARC before v9 requires a nop instruction between a floating
1612 point instruction and a floating point branch. We insert one
1613 automatically, with a warning. */
1614 if (max_architecture < SPARC_OPCODE_ARCH_V9
1615 && last_insn != NULL
1616 && (insn->flags & F_FBR) != 0
1617 && (last_insn->flags & F_FLOAT) != 0)
1618 {
1619 struct sparc_it nop_insn;
1620
1621 nop_insn.opcode = NOP_INSN;
1622 nop_insn.reloc = BFD_RELOC_NONE;
1623 output_insn (insn, &nop_insn);
1624 as_warn (_("FP branch preceded by FP instruction; NOP inserted"));
1625 }
1626
1627 switch (special_case)
1628 {
1629 case SPECIAL_CASE_NONE:
1630 /* Normal insn. */
1631 output_insn (insn, &the_insn);
1632 break;
1633
1634 case SPECIAL_CASE_SETSW:
1635 synthetize_setsw (insn);
1636 break;
1637
1638 case SPECIAL_CASE_SET:
1639 synthetize_setuw (insn);
1640 break;
1641
1642 case SPECIAL_CASE_SETX:
1643 synthetize_setx (insn);
1644 break;
1645
1646 case SPECIAL_CASE_FDIV:
1647 {
1648 int rd = (the_insn.opcode >> 25) & 0x1f;
1649
1650 output_insn (insn, &the_insn);
1651
1652 /* According to information leaked from Sun, the "fdiv" instructions
1653 on early SPARC machines would produce incorrect results sometimes.
1654 The workaround is to add an fmovs of the destination register to
1655 itself just after the instruction. This was true on machines
1656 with Weitek 1165 float chips, such as the Sun-4/260 and /280. */
1657 gas_assert (the_insn.reloc == BFD_RELOC_NONE);
1658 the_insn.opcode = FMOVS_INSN | rd | RD (rd);
1659 output_insn (insn, &the_insn);
1660 return;
1661 }
1662
1663 default:
1664 as_fatal (_("failed special case insn sanity check"));
1665 }
1666 }
1667
1668 static const char *
1669 get_hwcap_name (bfd_uint64_t mask)
1670 {
1671 if (mask & HWCAP_MUL32)
1672 return "mul32";
1673 if (mask & HWCAP_DIV32)
1674 return "div32";
1675 if (mask & HWCAP_FSMULD)
1676 return "fsmuld";
1677 if (mask & HWCAP_V8PLUS)
1678 return "v8plus";
1679 if (mask & HWCAP_POPC)
1680 return "popc";
1681 if (mask & HWCAP_VIS)
1682 return "vis";
1683 if (mask & HWCAP_VIS2)
1684 return "vis2";
1685 if (mask & HWCAP_ASI_BLK_INIT)
1686 return "ASIBlkInit";
1687 if (mask & HWCAP_FMAF)
1688 return "fmaf";
1689 if (mask & HWCAP_VIS3)
1690 return "vis3";
1691 if (mask & HWCAP_HPC)
1692 return "hpc";
1693 if (mask & HWCAP_RANDOM)
1694 return "random";
1695 if (mask & HWCAP_TRANS)
1696 return "trans";
1697 if (mask & HWCAP_FJFMAU)
1698 return "fjfmau";
1699 if (mask & HWCAP_IMA)
1700 return "ima";
1701 if (mask & HWCAP_ASI_CACHE_SPARING)
1702 return "cspare";
1703 if (mask & HWCAP_AES)
1704 return "aes";
1705 if (mask & HWCAP_DES)
1706 return "des";
1707 if (mask & HWCAP_KASUMI)
1708 return "kasumi";
1709 if (mask & HWCAP_CAMELLIA)
1710 return "camellia";
1711 if (mask & HWCAP_MD5)
1712 return "md5";
1713 if (mask & HWCAP_SHA1)
1714 return "sha1";
1715 if (mask & HWCAP_SHA256)
1716 return "sha256";
1717 if (mask & HWCAP_SHA512)
1718 return "sha512";
1719 if (mask & HWCAP_MPMUL)
1720 return "mpmul";
1721 if (mask & HWCAP_MONT)
1722 return "mont";
1723 if (mask & HWCAP_PAUSE)
1724 return "pause";
1725 if (mask & HWCAP_CBCOND)
1726 return "cbcond";
1727 if (mask & HWCAP_CRC32C)
1728 return "crc32c";
1729
1730 mask = mask >> 32;
1731 if (mask & HWCAP2_FJATHPLUS)
1732 return "fjathplus";
1733 if (mask & HWCAP2_VIS3B)
1734 return "vis3b";
1735 if (mask & HWCAP2_ADP)
1736 return "adp";
1737 if (mask & HWCAP2_SPARC5)
1738 return "sparc5";
1739 if (mask & HWCAP2_MWAIT)
1740 return "mwait";
1741 if (mask & HWCAP2_XMPMUL)
1742 return "xmpmul";
1743 if (mask & HWCAP2_XMONT)
1744 return "xmont";
1745 if (mask & HWCAP2_NSEC)
1746 return "nsec";
1747
1748 return "UNKNOWN";
1749 }
1750
1751 /* Subroutine of md_assemble to do the actual parsing. */
1752
1753 static int
1754 sparc_ip (char *str, const struct sparc_opcode **pinsn)
1755 {
1756 const char *error_message = "";
1757 char *s;
1758 const char *args;
1759 char c;
1760 const struct sparc_opcode *insn;
1761 char *argsStart;
1762 unsigned long opcode;
1763 unsigned int mask = 0;
1764 int match = 0;
1765 int comma = 0;
1766 int v9_arg_p;
1767 int special_case = SPECIAL_CASE_NONE;
1768 const sparc_asi *sasi = NULL;
1769
1770 s = str;
1771 if (ISLOWER (*s))
1772 {
1773 do
1774 ++s;
1775 while (ISLOWER (*s) || ISDIGIT (*s) || *s == '_');
1776 }
1777
1778 switch (*s)
1779 {
1780 case '\0':
1781 break;
1782
1783 case ',':
1784 comma = 1;
1785 /* Fall through. */
1786
1787 case ' ':
1788 *s++ = '\0';
1789 break;
1790
1791 default:
1792 as_bad (_("Unknown opcode: `%s'"), str);
1793 *pinsn = NULL;
1794 return special_case;
1795 }
1796 insn = (struct sparc_opcode *) hash_find (op_hash, str);
1797 *pinsn = insn;
1798 if (insn == NULL)
1799 {
1800 as_bad (_("Unknown opcode: `%s'"), str);
1801 return special_case;
1802 }
1803 if (comma)
1804 {
1805 *--s = ',';
1806 }
1807
1808 argsStart = s;
1809 for (;;)
1810 {
1811 opcode = insn->match;
1812 memset (&the_insn, '\0', sizeof (the_insn));
1813 the_insn.reloc = BFD_RELOC_NONE;
1814 v9_arg_p = 0;
1815
1816 /* Build the opcode, checking as we go to make sure that the
1817 operands match. */
1818 for (args = insn->args;; ++args)
1819 {
1820 switch (*args)
1821 {
1822 case 'K':
1823 {
1824 int kmask = 0;
1825
1826 /* Parse a series of masks. */
1827 if (*s == '#')
1828 {
1829 while (*s == '#')
1830 {
1831 int jmask;
1832
1833 if (! parse_keyword_arg (sparc_encode_membar, &s,
1834 &jmask))
1835 {
1836 error_message = _(": invalid membar mask name");
1837 goto error;
1838 }
1839 kmask |= jmask;
1840 while (*s == ' ')
1841 ++s;
1842 if (*s == '|' || *s == '+')
1843 ++s;
1844 while (*s == ' ')
1845 ++s;
1846 }
1847 }
1848 else
1849 {
1850 if (! parse_const_expr_arg (&s, &kmask))
1851 {
1852 error_message = _(": invalid membar mask expression");
1853 goto error;
1854 }
1855 if (kmask < 0 || kmask > 127)
1856 {
1857 error_message = _(": invalid membar mask number");
1858 goto error;
1859 }
1860 }
1861
1862 opcode |= MEMBAR (kmask);
1863 continue;
1864 }
1865
1866 case '3':
1867 {
1868 int smask = 0;
1869
1870 if (! parse_const_expr_arg (&s, &smask))
1871 {
1872 error_message = _(": invalid siam mode expression");
1873 goto error;
1874 }
1875 if (smask < 0 || smask > 7)
1876 {
1877 error_message = _(": invalid siam mode number");
1878 goto error;
1879 }
1880 opcode |= smask;
1881 continue;
1882 }
1883
1884 case '*':
1885 {
1886 int fcn = 0;
1887
1888 /* Parse a prefetch function. */
1889 if (*s == '#')
1890 {
1891 if (! parse_keyword_arg (sparc_encode_prefetch, &s, &fcn))
1892 {
1893 error_message = _(": invalid prefetch function name");
1894 goto error;
1895 }
1896 }
1897 else
1898 {
1899 if (! parse_const_expr_arg (&s, &fcn))
1900 {
1901 error_message = _(": invalid prefetch function expression");
1902 goto error;
1903 }
1904 if (fcn < 0 || fcn > 31)
1905 {
1906 error_message = _(": invalid prefetch function number");
1907 goto error;
1908 }
1909 }
1910 opcode |= RD (fcn);
1911 continue;
1912 }
1913
1914 case '!':
1915 case '?':
1916 /* Parse a sparc64 privileged register. */
1917 if (*s == '%')
1918 {
1919 struct priv_reg_entry *p;
1920 unsigned int len = 9999999; /* Init to make gcc happy. */
1921
1922 s += 1;
1923 for (p = priv_reg_table; p->name; p++)
1924 if (p->name[0] == s[0])
1925 {
1926 len = strlen (p->name);
1927 if (strncmp (p->name, s, len) == 0)
1928 break;
1929 }
1930
1931 if (!p->name)
1932 {
1933 error_message = _(": unrecognizable privileged register");
1934 goto error;
1935 }
1936
1937 if (((opcode >> (*args == '?' ? 14 : 25)) & 0x1f) != (unsigned) p->regnum)
1938 {
1939 error_message = _(": unrecognizable privileged register");
1940 goto error;
1941 }
1942
1943 s += len;
1944 continue;
1945 }
1946 else
1947 {
1948 error_message = _(": unrecognizable privileged register");
1949 goto error;
1950 }
1951
1952 case '$':
1953 case '%':
1954 /* Parse a sparc64 hyperprivileged register. */
1955 if (*s == '%')
1956 {
1957 struct priv_reg_entry *p;
1958 unsigned int len = 9999999; /* Init to make gcc happy. */
1959
1960 s += 1;
1961 for (p = hpriv_reg_table; p->name; p++)
1962 if (p->name[0] == s[0])
1963 {
1964 len = strlen (p->name);
1965 if (strncmp (p->name, s, len) == 0)
1966 break;
1967 }
1968
1969 if (!p->name)
1970 {
1971 error_message = _(": unrecognizable hyperprivileged register");
1972 goto error;
1973 }
1974
1975 if (((opcode >> (*args == '$' ? 14 : 25)) & 0x1f) != (unsigned) p->regnum)
1976 {
1977 error_message = _(": unrecognizable hyperprivileged register");
1978 goto error;
1979 }
1980
1981 s += len;
1982 continue;
1983 }
1984 else
1985 {
1986 error_message = _(": unrecognizable hyperprivileged register");
1987 goto error;
1988 }
1989
1990 case '_':
1991 case '/':
1992 /* Parse a v9a or later ancillary state register. */
1993 if (*s == '%')
1994 {
1995 struct priv_reg_entry *p;
1996 unsigned int len = 9999999; /* Init to make gcc happy. */
1997
1998 s += 1;
1999 for (p = v9a_asr_table; p->name; p++)
2000 if (p->name[0] == s[0])
2001 {
2002 len = strlen (p->name);
2003 if (strncmp (p->name, s, len) == 0)
2004 break;
2005 }
2006
2007 if (!p->name)
2008 {
2009 error_message = _(": unrecognizable ancillary state register");
2010 goto error;
2011 }
2012
2013 if (((opcode >> (*args == '/' ? 14 : 25)) & 0x1f) != (unsigned) p->regnum)
2014 {
2015 error_message = _(": unrecognizable ancillary state register");
2016 goto error;
2017 }
2018
2019 s += len;
2020 continue;
2021 }
2022 else
2023 {
2024 error_message = _(": unrecognizable ancillary state register");
2025 goto error;
2026 }
2027
2028 case 'M':
2029 case 'm':
2030 if (strncmp (s, "%asr", 4) == 0)
2031 {
2032 s += 4;
2033
2034 if (ISDIGIT (*s))
2035 {
2036 long num = 0;
2037
2038 while (ISDIGIT (*s))
2039 {
2040 num = num * 10 + *s - '0';
2041 ++s;
2042 }
2043
2044 /* We used to check here for the asr number to
2045 be between 16 and 31 in V9 and later, as
2046 mandated by the section C.1.1 "Register
2047 Names" in the SPARC spec. However, we
2048 decided to remove this restriction as a) it
2049 introduces problems when new V9 asr registers
2050 are introduced, b) the Solaris assembler
2051 doesn't implement this restriction and c) the
2052 restriction will go away in future revisions
2053 of the Oracle SPARC Architecture. */
2054
2055 if (num < 0 || 31 < num)
2056 {
2057 error_message = _(": asr number must be between 0 and 31");
2058 goto error;
2059 }
2060
2061 opcode |= (*args == 'M' ? RS1 (num) : RD (num));
2062 continue;
2063 }
2064 else
2065 {
2066 error_message = _(": expecting %asrN");
2067 goto error;
2068 }
2069 } /* if %asr */
2070 break;
2071
2072 case 'I':
2073 the_insn.reloc = BFD_RELOC_SPARC_11;
2074 goto immediate;
2075
2076 case 'j':
2077 the_insn.reloc = BFD_RELOC_SPARC_10;
2078 goto immediate;
2079
2080 case ')':
2081 if (*s == ' ')
2082 s++;
2083 if ((s[0] == '0' && s[1] == 'x' && ISXDIGIT (s[2]))
2084 || ISDIGIT (*s))
2085 {
2086 long num = 0;
2087
2088 if (s[0] == '0' && s[1] == 'x')
2089 {
2090 s += 2;
2091 while (ISXDIGIT (*s))
2092 {
2093 num <<= 4;
2094 num |= hex_value (*s);
2095 ++s;
2096 }
2097 }
2098 else
2099 {
2100 while (ISDIGIT (*s))
2101 {
2102 num = num * 10 + *s - '0';
2103 ++s;
2104 }
2105 }
2106 if (num < 0 || num > 31)
2107 {
2108 error_message = _(": crypto immediate must be between 0 and 31");
2109 goto error;
2110 }
2111
2112 opcode |= RS3 (num);
2113 continue;
2114 }
2115 else
2116 {
2117 error_message = _(": expecting crypto immediate");
2118 goto error;
2119 }
2120
2121 case 'X':
2122 /* V8 systems don't understand BFD_RELOC_SPARC_5. */
2123 if (SPARC_OPCODE_ARCH_V9_P (max_architecture))
2124 the_insn.reloc = BFD_RELOC_SPARC_5;
2125 else
2126 the_insn.reloc = BFD_RELOC_SPARC13;
2127 /* These fields are unsigned, but for upward compatibility,
2128 allow negative values as well. */
2129 goto immediate;
2130
2131 case 'Y':
2132 /* V8 systems don't understand BFD_RELOC_SPARC_6. */
2133 if (SPARC_OPCODE_ARCH_V9_P (max_architecture))
2134 the_insn.reloc = BFD_RELOC_SPARC_6;
2135 else
2136 the_insn.reloc = BFD_RELOC_SPARC13;
2137 /* These fields are unsigned, but for upward compatibility,
2138 allow negative values as well. */
2139 goto immediate;
2140
2141 case 'k':
2142 the_insn.reloc = /* RELOC_WDISP2_14 */ BFD_RELOC_SPARC_WDISP16;
2143 the_insn.pcrel = 1;
2144 goto immediate;
2145
2146 case '=':
2147 the_insn.reloc = /* RELOC_WDISP2_8 */ BFD_RELOC_SPARC_WDISP10;
2148 the_insn.pcrel = 1;
2149 goto immediate;
2150
2151 case 'G':
2152 the_insn.reloc = BFD_RELOC_SPARC_WDISP19;
2153 the_insn.pcrel = 1;
2154 goto immediate;
2155
2156 case 'N':
2157 if (*s == 'p' && s[1] == 'n')
2158 {
2159 s += 2;
2160 continue;
2161 }
2162 break;
2163
2164 case 'T':
2165 if (*s == 'p' && s[1] == 't')
2166 {
2167 s += 2;
2168 continue;
2169 }
2170 break;
2171
2172 case 'z':
2173 if (*s == ' ')
2174 {
2175 ++s;
2176 }
2177 if ((strncmp (s, "%icc", 4) == 0)
2178 || (sparc_arch_size == 32 && strncmp (s, "%ncc", 4) == 0))
2179 {
2180 s += 4;
2181 continue;
2182 }
2183 break;
2184
2185 case 'Z':
2186 if (*s == ' ')
2187 {
2188 ++s;
2189 }
2190 if ((strncmp (s, "%xcc", 4) == 0)
2191 || (sparc_arch_size == 64 && strncmp (s, "%ncc", 4) == 0))
2192 {
2193 s += 4;
2194 continue;
2195 }
2196 break;
2197
2198 case '6':
2199 if (*s == ' ')
2200 {
2201 ++s;
2202 }
2203 if (strncmp (s, "%fcc0", 5) == 0)
2204 {
2205 s += 5;
2206 continue;
2207 }
2208 break;
2209
2210 case '7':
2211 if (*s == ' ')
2212 {
2213 ++s;
2214 }
2215 if (strncmp (s, "%fcc1", 5) == 0)
2216 {
2217 s += 5;
2218 continue;
2219 }
2220 break;
2221
2222 case '8':
2223 if (*s == ' ')
2224 {
2225 ++s;
2226 }
2227 if (strncmp (s, "%fcc2", 5) == 0)
2228 {
2229 s += 5;
2230 continue;
2231 }
2232 break;
2233
2234 case '9':
2235 if (*s == ' ')
2236 {
2237 ++s;
2238 }
2239 if (strncmp (s, "%fcc3", 5) == 0)
2240 {
2241 s += 5;
2242 continue;
2243 }
2244 break;
2245
2246 case 'P':
2247 if (strncmp (s, "%pc", 3) == 0)
2248 {
2249 s += 3;
2250 continue;
2251 }
2252 break;
2253
2254 case 'W':
2255 if (strncmp (s, "%tick", 5) == 0)
2256 {
2257 s += 5;
2258 continue;
2259 }
2260 break;
2261
2262 case '\0': /* End of args. */
2263 if (s[0] == ',' && s[1] == '%')
2264 {
2265 char *s1;
2266 int npar = 0;
2267 const struct perc_entry *p;
2268
2269 for (p = perc_table; p->type != perc_entry_none; p++)
2270 if ((p->type == perc_entry_post_pop || p->type == perc_entry_reg)
2271 && strncmp (s + 2, p->name, p->len) == 0)
2272 break;
2273 if (p->type == perc_entry_none || p->type == perc_entry_reg)
2274 break;
2275
2276 if (s[p->len + 2] != '(')
2277 {
2278 as_bad (_("Illegal operands: %%%s requires arguments in ()"), p->name);
2279 return special_case;
2280 }
2281
2282 if (! (p->pop->flags & F_POP_TLS_CALL)
2283 && the_insn.reloc != BFD_RELOC_NONE)
2284 {
2285 as_bad (_("Illegal operands: %%%s cannot be used together with other relocs in the insn ()"),
2286 p->name);
2287 return special_case;
2288 }
2289
2290 if ((p->pop->flags & F_POP_TLS_CALL)
2291 && (the_insn.reloc != BFD_RELOC_32_PCREL_S2
2292 || the_insn.exp.X_add_number != 0
2293 || the_insn.exp.X_add_symbol
2294 != symbol_find_or_make ("__tls_get_addr")))
2295 {
2296 as_bad (_("Illegal operands: %%%s can be only used with call __tls_get_addr"),
2297 p->name);
2298 return special_case;
2299 }
2300
2301 the_insn.reloc = p->pop->reloc;
2302 memset (&the_insn.exp, 0, sizeof (the_insn.exp));
2303 s += p->len + 3;
2304
2305 for (s1 = s; *s1 && *s1 != ',' && *s1 != ']'; s1++)
2306 if (*s1 == '(')
2307 npar++;
2308 else if (*s1 == ')')
2309 {
2310 if (!npar)
2311 break;
2312 npar--;
2313 }
2314
2315 if (*s1 != ')')
2316 {
2317 as_bad (_("Illegal operands: %%%s requires arguments in ()"), p->name);
2318 return special_case;
2319 }
2320
2321 *s1 = '\0';
2322 (void) get_expression (s);
2323 *s1 = ')';
2324 s = s1 + 1;
2325 }
2326 if (*s == '\0')
2327 match = 1;
2328 break;
2329
2330 case '+':
2331 if (*s == '+')
2332 {
2333 ++s;
2334 continue;
2335 }
2336 if (*s == '-')
2337 {
2338 continue;
2339 }
2340 break;
2341
2342 case '[': /* These must match exactly. */
2343 case ']':
2344 case ',':
2345 case ' ':
2346 if (*s++ == *args)
2347 continue;
2348 break;
2349
2350 case '#': /* Must be at least one digit. */
2351 if (ISDIGIT (*s++))
2352 {
2353 while (ISDIGIT (*s))
2354 {
2355 ++s;
2356 }
2357 continue;
2358 }
2359 break;
2360
2361 case 'C': /* Coprocessor state register. */
2362 if (strncmp (s, "%csr", 4) == 0)
2363 {
2364 s += 4;
2365 continue;
2366 }
2367 break;
2368
2369 case 'b': /* Next operand is a coprocessor register. */
2370 case 'c':
2371 case 'D':
2372 if (*s++ == '%' && *s++ == 'c' && ISDIGIT (*s))
2373 {
2374 mask = *s++;
2375 if (ISDIGIT (*s))
2376 {
2377 mask = 10 * (mask - '0') + (*s++ - '0');
2378 if (mask >= 32)
2379 {
2380 break;
2381 }
2382 }
2383 else
2384 {
2385 mask -= '0';
2386 }
2387 switch (*args)
2388 {
2389
2390 case 'b':
2391 opcode |= mask << 14;
2392 continue;
2393
2394 case 'c':
2395 opcode |= mask;
2396 continue;
2397
2398 case 'D':
2399 opcode |= mask << 25;
2400 continue;
2401 }
2402 }
2403 break;
2404
2405 case 'r': /* next operand must be a register */
2406 case 'O':
2407 case '1':
2408 case '2':
2409 case 'd':
2410 if (*s++ == '%')
2411 {
2412 switch (c = *s++)
2413 {
2414
2415 case 'f': /* frame pointer */
2416 if (*s++ == 'p')
2417 {
2418 mask = 0x1e;
2419 break;
2420 }
2421 goto error;
2422
2423 case 'g': /* global register */
2424 c = *s++;
2425 if (isoctal (c))
2426 {
2427 mask = c - '0';
2428 break;
2429 }
2430 goto error;
2431
2432 case 'i': /* in register */
2433 c = *s++;
2434 if (isoctal (c))
2435 {
2436 mask = c - '0' + 24;
2437 break;
2438 }
2439 goto error;
2440
2441 case 'l': /* local register */
2442 c = *s++;
2443 if (isoctal (c))
2444 {
2445 mask = (c - '0' + 16);
2446 break;
2447 }
2448 goto error;
2449
2450 case 'o': /* out register */
2451 c = *s++;
2452 if (isoctal (c))
2453 {
2454 mask = (c - '0' + 8);
2455 break;
2456 }
2457 goto error;
2458
2459 case 's': /* stack pointer */
2460 if (*s++ == 'p')
2461 {
2462 mask = 0xe;
2463 break;
2464 }
2465 goto error;
2466
2467 case 'r': /* any register */
2468 if (!ISDIGIT ((c = *s++)))
2469 {
2470 goto error;
2471 }
2472 /* FALLTHROUGH */
2473 case '0':
2474 case '1':
2475 case '2':
2476 case '3':
2477 case '4':
2478 case '5':
2479 case '6':
2480 case '7':
2481 case '8':
2482 case '9':
2483 if (ISDIGIT (*s))
2484 {
2485 if ((c = 10 * (c - '0') + (*s++ - '0')) >= 32)
2486 {
2487 goto error;
2488 }
2489 }
2490 else
2491 {
2492 c -= '0';
2493 }
2494 mask = c;
2495 break;
2496
2497 default:
2498 goto error;
2499 }
2500
2501 if ((mask & ~1) == 2 && sparc_arch_size == 64
2502 && no_undeclared_regs && ! globals[mask])
2503 as_bad (_("detected global register use not covered by .register pseudo-op"));
2504
2505 /* Got the register, now figure out where
2506 it goes in the opcode. */
2507 switch (*args)
2508 {
2509 case '1':
2510 opcode |= mask << 14;
2511 continue;
2512
2513 case '2':
2514 opcode |= mask;
2515 continue;
2516
2517 case 'd':
2518 opcode |= mask << 25;
2519 continue;
2520
2521 case 'r':
2522 opcode |= (mask << 25) | (mask << 14);
2523 continue;
2524
2525 case 'O':
2526 opcode |= (mask << 25) | (mask << 0);
2527 continue;
2528 }
2529 }
2530 break;
2531
2532 case 'e': /* next operand is a floating point register */
2533 case 'v':
2534 case 'V':
2535
2536 case 'f':
2537 case 'B':
2538 case 'R':
2539
2540 case '4':
2541 case '5':
2542
2543 case 'g':
2544 case 'H':
2545 case 'J':
2546 case '}':
2547 {
2548 char format;
2549
2550 if (*s++ == '%'
2551 && ((format = *s) == 'f'
2552 || format == 'd'
2553 || format == 'q')
2554 && ISDIGIT (*++s))
2555 {
2556 for (mask = 0; ISDIGIT (*s); ++s)
2557 {
2558 mask = 10 * mask + (*s - '0');
2559 } /* read the number */
2560
2561 if ((*args == 'v'
2562 || *args == 'B'
2563 || *args == '5'
2564 || *args == 'H'
2565 || format == 'd')
2566 && (mask & 1))
2567 {
2568 /* register must be even numbered */
2569 break;
2570 }
2571
2572 if ((*args == 'V'
2573 || *args == 'R'
2574 || *args == 'J'
2575 || format == 'q')
2576 && (mask & 3))
2577 {
2578 /* register must be multiple of 4 */
2579 break;
2580 }
2581
2582 if (mask >= 64)
2583 {
2584 if (SPARC_OPCODE_ARCH_V9_P (max_architecture))
2585 error_message = _(": There are only 64 f registers; [0-63]");
2586 else
2587 error_message = _(": There are only 32 f registers; [0-31]");
2588 goto error;
2589 } /* on error */
2590 else if (mask >= 32)
2591 {
2592 if (SPARC_OPCODE_ARCH_V9_P (max_architecture))
2593 {
2594 if (*args == 'e' || *args == 'f' || *args == 'g')
2595 {
2596 error_message
2597 = _(": There are only 32 single precision f registers; [0-31]");
2598 goto error;
2599 }
2600 v9_arg_p = 1;
2601 mask -= 31; /* wrap high bit */
2602 }
2603 else
2604 {
2605 error_message = _(": There are only 32 f registers; [0-31]");
2606 goto error;
2607 }
2608 }
2609 }
2610 else
2611 {
2612 break;
2613 } /* if not an 'f' register. */
2614
2615 if (*args == '}' && mask != RS2 (opcode))
2616 {
2617 error_message
2618 = _(": Instruction requires frs2 and frsd must be the same register");
2619 goto error;
2620 }
2621
2622 switch (*args)
2623 {
2624 case 'v':
2625 case 'V':
2626 case 'e':
2627 opcode |= RS1 (mask);
2628 continue;
2629
2630 case 'f':
2631 case 'B':
2632 case 'R':
2633 opcode |= RS2 (mask);
2634 continue;
2635
2636 case '4':
2637 case '5':
2638 opcode |= RS3 (mask);
2639 continue;
2640
2641 case 'g':
2642 case 'H':
2643 case 'J':
2644 case '}':
2645 opcode |= RD (mask);
2646 continue;
2647 } /* Pack it in. */
2648
2649 know (0);
2650 break;
2651 } /* float arg */
2652
2653 case 'F':
2654 if (strncmp (s, "%fsr", 4) == 0)
2655 {
2656 s += 4;
2657 continue;
2658 }
2659 break;
2660
2661 case '(':
2662 if (strncmp (s, "%efsr", 5) == 0)
2663 {
2664 s += 5;
2665 continue;
2666 }
2667 break;
2668
2669 case '0': /* 64 bit immediate (set, setsw, setx insn) */
2670 the_insn.reloc = BFD_RELOC_NONE; /* reloc handled elsewhere */
2671 goto immediate;
2672
2673 case 'l': /* 22 bit PC relative immediate */
2674 the_insn.reloc = BFD_RELOC_SPARC_WDISP22;
2675 the_insn.pcrel = 1;
2676 goto immediate;
2677
2678 case 'L': /* 30 bit immediate */
2679 the_insn.reloc = BFD_RELOC_32_PCREL_S2;
2680 the_insn.pcrel = 1;
2681 goto immediate;
2682
2683 case 'h':
2684 case 'n': /* 22 bit immediate */
2685 the_insn.reloc = BFD_RELOC_SPARC22;
2686 goto immediate;
2687
2688 case 'i': /* 13 bit immediate */
2689 the_insn.reloc = BFD_RELOC_SPARC13;
2690
2691 /* fallthrough */
2692
2693 immediate:
2694 if (*s == ' ')
2695 s++;
2696
2697 {
2698 char *s1;
2699 const char *op_arg = NULL;
2700 static expressionS op_exp;
2701 bfd_reloc_code_real_type old_reloc = the_insn.reloc;
2702
2703 /* Check for %hi, etc. */
2704 if (*s == '%')
2705 {
2706 const struct perc_entry *p;
2707
2708 for (p = perc_table; p->type != perc_entry_none; p++)
2709 if ((p->type == perc_entry_imm_pop || p->type == perc_entry_reg)
2710 && strncmp (s + 1, p->name, p->len) == 0)
2711 break;
2712 if (p->type == perc_entry_none || p->type == perc_entry_reg)
2713 break;
2714
2715 if (s[p->len + 1] != '(')
2716 {
2717 as_bad (_("Illegal operands: %%%s requires arguments in ()"), p->name);
2718 return special_case;
2719 }
2720
2721 op_arg = p->name;
2722 the_insn.reloc = p->pop->reloc;
2723 s += p->len + 2;
2724 v9_arg_p = p->pop->flags & F_POP_V9;
2725 }
2726
2727 /* Note that if the get_expression() fails, we will still
2728 have created U entries in the symbol table for the
2729 'symbols' in the input string. Try not to create U
2730 symbols for registers, etc. */
2731
2732 /* This stuff checks to see if the expression ends in
2733 +%reg. If it does, it removes the register from
2734 the expression, and re-sets 's' to point to the
2735 right place. */
2736
2737 if (op_arg)
2738 {
2739 int npar = 0;
2740
2741 for (s1 = s; *s1 && *s1 != ',' && *s1 != ']'; s1++)
2742 if (*s1 == '(')
2743 npar++;
2744 else if (*s1 == ')')
2745 {
2746 if (!npar)
2747 break;
2748 npar--;
2749 }
2750
2751 if (*s1 != ')')
2752 {
2753 as_bad (_("Illegal operands: %%%s requires arguments in ()"), op_arg);
2754 return special_case;
2755 }
2756
2757 *s1 = '\0';
2758 (void) get_expression (s);
2759 *s1 = ')';
2760 if (expr_end != s1)
2761 {
2762 as_bad (_("Expression inside %%%s could not be parsed"), op_arg);
2763 return special_case;
2764 }
2765 s = s1 + 1;
2766 if (*s == ',' || *s == ']' || !*s)
2767 continue;
2768 if (*s != '+' && *s != '-')
2769 {
2770 as_bad (_("Illegal operands: Can't do arithmetics other than + and - involving %%%s()"), op_arg);
2771 return special_case;
2772 }
2773 *s1 = '0';
2774 s = s1;
2775 op_exp = the_insn.exp;
2776 memset (&the_insn.exp, 0, sizeof (the_insn.exp));
2777 }
2778
2779 for (s1 = s; *s1 && *s1 != ',' && *s1 != ']'; s1++)
2780 ;
2781
2782 if (s1 != s && ISDIGIT (s1[-1]))
2783 {
2784 if (s1[-2] == '%' && s1[-3] == '+')
2785 s1 -= 3;
2786 else if (strchr ("golir0123456789", s1[-2]) && s1[-3] == '%' && s1[-4] == '+')
2787 s1 -= 4;
2788 else if (s1[-3] == 'r' && s1[-4] == '%' && s1[-5] == '+')
2789 s1 -= 5;
2790 else
2791 s1 = NULL;
2792 if (s1)
2793 {
2794 *s1 = '\0';
2795 if (op_arg && s1 == s + 1)
2796 the_insn.exp.X_op = O_absent;
2797 else
2798 (void) get_expression (s);
2799 *s1 = '+';
2800 if (op_arg)
2801 *s = ')';
2802 s = s1;
2803 }
2804 }
2805 else
2806 s1 = NULL;
2807
2808 if (!s1)
2809 {
2810 (void) get_expression (s);
2811 if (op_arg)
2812 *s = ')';
2813 s = expr_end;
2814 }
2815
2816 if (op_arg)
2817 {
2818 the_insn.exp2 = the_insn.exp;
2819 the_insn.exp = op_exp;
2820 if (the_insn.exp2.X_op == O_absent)
2821 the_insn.exp2.X_op = O_illegal;
2822 else if (the_insn.exp.X_op == O_absent)
2823 {
2824 the_insn.exp = the_insn.exp2;
2825 the_insn.exp2.X_op = O_illegal;
2826 }
2827 else if (the_insn.exp.X_op == O_constant)
2828 {
2829 valueT val = the_insn.exp.X_add_number;
2830 switch (the_insn.reloc)
2831 {
2832 default:
2833 break;
2834
2835 case BFD_RELOC_SPARC_HH22:
2836 val = BSR (val, 32);
2837 /* Fall through. */
2838
2839 case BFD_RELOC_SPARC_LM22:
2840 case BFD_RELOC_HI22:
2841 val = (val >> 10) & 0x3fffff;
2842 break;
2843
2844 case BFD_RELOC_SPARC_HM10:
2845 val = BSR (val, 32);
2846 /* Fall through. */
2847
2848 case BFD_RELOC_LO10:
2849 val &= 0x3ff;
2850 break;
2851
2852 case BFD_RELOC_SPARC_H34:
2853 val >>= 12;
2854 val &= 0x3fffff;
2855 break;
2856
2857 case BFD_RELOC_SPARC_H44:
2858 val >>= 22;
2859 val &= 0x3fffff;
2860 break;
2861
2862 case BFD_RELOC_SPARC_M44:
2863 val >>= 12;
2864 val &= 0x3ff;
2865 break;
2866
2867 case BFD_RELOC_SPARC_L44:
2868 val &= 0xfff;
2869 break;
2870
2871 case BFD_RELOC_SPARC_HIX22:
2872 val = ~val;
2873 val = (val >> 10) & 0x3fffff;
2874 break;
2875
2876 case BFD_RELOC_SPARC_LOX10:
2877 val = (val & 0x3ff) | 0x1c00;
2878 break;
2879 }
2880 the_insn.exp = the_insn.exp2;
2881 the_insn.exp.X_add_number += val;
2882 the_insn.exp2.X_op = O_illegal;
2883 the_insn.reloc = old_reloc;
2884 }
2885 else if (the_insn.exp2.X_op != O_constant)
2886 {
2887 as_bad (_("Illegal operands: Can't add non-constant expression to %%%s()"), op_arg);
2888 return special_case;
2889 }
2890 else
2891 {
2892 if (old_reloc != BFD_RELOC_SPARC13
2893 || the_insn.reloc != BFD_RELOC_LO10
2894 || sparc_arch_size != 64
2895 || sparc_pic_code)
2896 {
2897 as_bad (_("Illegal operands: Can't do arithmetics involving %%%s() of a relocatable symbol"), op_arg);
2898 return special_case;
2899 }
2900 the_insn.reloc = BFD_RELOC_SPARC_OLO10;
2901 }
2902 }
2903 }
2904 /* Check for constants that don't require emitting a reloc. */
2905 if (the_insn.exp.X_op == O_constant
2906 && the_insn.exp.X_add_symbol == 0
2907 && the_insn.exp.X_op_symbol == 0)
2908 {
2909 /* For pc-relative call instructions, we reject
2910 constants to get better code. */
2911 if (the_insn.pcrel
2912 && the_insn.reloc == BFD_RELOC_32_PCREL_S2
2913 && in_signed_range (the_insn.exp.X_add_number, 0x3fff))
2914 {
2915 error_message = _(": PC-relative operand can't be a constant");
2916 goto error;
2917 }
2918
2919 if (the_insn.reloc >= BFD_RELOC_SPARC_TLS_GD_HI22
2920 && the_insn.reloc <= BFD_RELOC_SPARC_TLS_TPOFF64)
2921 {
2922 error_message = _(": TLS operand can't be a constant");
2923 goto error;
2924 }
2925
2926 /* Constants that won't fit are checked in md_apply_fix
2927 and bfd_install_relocation.
2928 ??? It would be preferable to install the constants
2929 into the insn here and save having to create a fixS
2930 for each one. There already exists code to handle
2931 all the various cases (e.g. in md_apply_fix and
2932 bfd_install_relocation) so duplicating all that code
2933 here isn't right. */
2934
2935 /* This is a special case to handle cbcond instructions
2936 properly, which can need two relocations. The first
2937 one is for the 5-bit immediate field and the latter
2938 is going to be for the WDISP10 branch part. We
2939 handle the R_SPARC_5 immediate directly here so that
2940 we don't need to add support for multiple relocations
2941 in one instruction just yet. */
2942 if (the_insn.reloc == BFD_RELOC_SPARC_5
2943 && ((insn->match & OP(0x3)) == 0))
2944 {
2945 valueT val = the_insn.exp.X_add_number;
2946
2947 the_insn.reloc = BFD_RELOC_NONE;
2948 if (! in_bitfield_range (val, 0x1f))
2949 {
2950 error_message = _(": Immediate value in cbcond is out of range.");
2951 goto error;
2952 }
2953 opcode |= val & 0x1f;
2954 }
2955 }
2956
2957 continue;
2958
2959 case 'a':
2960 if (*s++ == 'a')
2961 {
2962 opcode |= ANNUL;
2963 continue;
2964 }
2965 break;
2966
2967 case 'A':
2968 {
2969 int asi = 0;
2970
2971 /* Parse an asi. */
2972 if (*s == '#')
2973 {
2974 if (! parse_sparc_asi (&s, &sasi))
2975 {
2976 error_message = _(": invalid ASI name");
2977 goto error;
2978 }
2979 asi = sasi->value;
2980 }
2981 else
2982 {
2983 if (! parse_const_expr_arg (&s, &asi))
2984 {
2985 error_message = _(": invalid ASI expression");
2986 goto error;
2987 }
2988 if (asi < 0 || asi > 255)
2989 {
2990 error_message = _(": invalid ASI number");
2991 goto error;
2992 }
2993 }
2994 opcode |= ASI (asi);
2995 continue;
2996 } /* Alternate space. */
2997
2998 case 'p':
2999 if (strncmp (s, "%psr", 4) == 0)
3000 {
3001 s += 4;
3002 continue;
3003 }
3004 break;
3005
3006 case 'q': /* Floating point queue. */
3007 if (strncmp (s, "%fq", 3) == 0)
3008 {
3009 s += 3;
3010 continue;
3011 }
3012 break;
3013
3014 case 'Q': /* Coprocessor queue. */
3015 if (strncmp (s, "%cq", 3) == 0)
3016 {
3017 s += 3;
3018 continue;
3019 }
3020 break;
3021
3022 case 'S':
3023 if (strcmp (str, "set") == 0
3024 || strcmp (str, "setuw") == 0)
3025 {
3026 special_case = SPECIAL_CASE_SET;
3027 continue;
3028 }
3029 else if (strcmp (str, "setsw") == 0)
3030 {
3031 special_case = SPECIAL_CASE_SETSW;
3032 continue;
3033 }
3034 else if (strcmp (str, "setx") == 0)
3035 {
3036 special_case = SPECIAL_CASE_SETX;
3037 continue;
3038 }
3039 else if (strncmp (str, "fdiv", 4) == 0)
3040 {
3041 special_case = SPECIAL_CASE_FDIV;
3042 continue;
3043 }
3044 break;
3045
3046 case 'o':
3047 if (strncmp (s, "%asi", 4) != 0)
3048 break;
3049 s += 4;
3050 continue;
3051
3052 case 's':
3053 if (strncmp (s, "%fprs", 5) != 0)
3054 break;
3055 s += 5;
3056 continue;
3057
3058 case '{':
3059 if (strncmp (s, "%mcdper",7) != 0)
3060 break;
3061 s += 7;
3062 continue;
3063
3064 case 'E':
3065 if (strncmp (s, "%ccr", 4) != 0)
3066 break;
3067 s += 4;
3068 continue;
3069
3070 case 't':
3071 if (strncmp (s, "%tbr", 4) != 0)
3072 break;
3073 s += 4;
3074 continue;
3075
3076 case 'w':
3077 if (strncmp (s, "%wim", 4) != 0)
3078 break;
3079 s += 4;
3080 continue;
3081
3082 case 'x':
3083 {
3084 char *push = input_line_pointer;
3085 expressionS e;
3086
3087 input_line_pointer = s;
3088 expression (&e);
3089 if (e.X_op == O_constant)
3090 {
3091 int n = e.X_add_number;
3092 if (n != e.X_add_number || (n & ~0x1ff) != 0)
3093 as_bad (_("OPF immediate operand out of range (0-0x1ff)"));
3094 else
3095 opcode |= e.X_add_number << 5;
3096 }
3097 else
3098 as_bad (_("non-immediate OPF operand, ignored"));
3099 s = input_line_pointer;
3100 input_line_pointer = push;
3101 continue;
3102 }
3103
3104 case 'y':
3105 if (strncmp (s, "%y", 2) != 0)
3106 break;
3107 s += 2;
3108 continue;
3109
3110 case 'u':
3111 case 'U':
3112 {
3113 /* Parse a sparclet cpreg. */
3114 int cpreg;
3115 if (! parse_keyword_arg (sparc_encode_sparclet_cpreg, &s, &cpreg))
3116 {
3117 error_message = _(": invalid cpreg name");
3118 goto error;
3119 }
3120 opcode |= (*args == 'U' ? RS1 (cpreg) : RD (cpreg));
3121 continue;
3122 }
3123
3124 default:
3125 as_fatal (_("failed sanity check."));
3126 } /* switch on arg code. */
3127
3128 /* Break out of for() loop. */
3129 break;
3130 } /* For each arg that we expect. */
3131
3132 error:
3133 if (match == 0)
3134 {
3135 /* Args don't match. */
3136 if (&insn[1] - sparc_opcodes < sparc_num_opcodes
3137 && (insn->name == insn[1].name
3138 || !strcmp (insn->name, insn[1].name)))
3139 {
3140 ++insn;
3141 s = argsStart;
3142 continue;
3143 }
3144 else
3145 {
3146 as_bad (_("Illegal operands%s"), error_message);
3147 return special_case;
3148 }
3149 }
3150 else
3151 {
3152 /* We have a match. Now see if the architecture is OK. */
3153 /* String to use in case of architecture warning. */
3154 const char *msg_str = str;
3155 int needed_arch_mask = insn->architecture;
3156
3157 /* Include the ASI architecture needed as well */
3158 if (sasi && needed_arch_mask > sasi->architecture)
3159 {
3160 needed_arch_mask = sasi->architecture;
3161 msg_str = sasi->name;
3162 }
3163
3164 bfd_uint64_t hwcaps
3165 = (((bfd_uint64_t) insn->hwcaps2) << 32) | insn->hwcaps;
3166
3167 #if defined(OBJ_ELF) && !defined(TE_SOLARIS)
3168 if (hwcaps)
3169 hwcap_seen |= hwcaps;
3170 #endif
3171 if (v9_arg_p)
3172 {
3173 needed_arch_mask &=
3174 ~(SPARC_OPCODE_ARCH_MASK (SPARC_OPCODE_ARCH_V9) - 1);
3175 if (! needed_arch_mask)
3176 needed_arch_mask =
3177 SPARC_OPCODE_ARCH_MASK (SPARC_OPCODE_ARCH_V9);
3178 }
3179
3180 if (needed_arch_mask
3181 & SPARC_OPCODE_SUPPORTED (current_architecture))
3182 /* OK. */
3183 ;
3184 /* Can we bump up the architecture? */
3185 else if (needed_arch_mask
3186 & SPARC_OPCODE_SUPPORTED (max_architecture))
3187 {
3188 enum sparc_opcode_arch_val needed_architecture =
3189 sparc_ffs (SPARC_OPCODE_SUPPORTED (max_architecture)
3190 & needed_arch_mask);
3191
3192 gas_assert (needed_architecture <= SPARC_OPCODE_ARCH_MAX);
3193 if (warn_on_bump
3194 && needed_architecture > warn_after_architecture)
3195 {
3196 as_warn (_("architecture bumped from \"%s\" to \"%s\" on \"%s\""),
3197 sparc_opcode_archs[current_architecture].name,
3198 sparc_opcode_archs[needed_architecture].name,
3199 msg_str);
3200 warn_after_architecture = needed_architecture;
3201 }
3202 current_architecture = needed_architecture;
3203 hwcap_allowed
3204 = (hwcap_allowed
3205 | hwcaps
3206 | (((bfd_uint64_t) sparc_opcode_archs[current_architecture].hwcaps2) << 32)
3207 | sparc_opcode_archs[current_architecture].hwcaps);
3208 }
3209 /* Conflict. */
3210 /* ??? This seems to be a bit fragile. What if the next entry in
3211 the opcode table is the one we want and it is supported?
3212 It is possible to arrange the table today so that this can't
3213 happen but what about tomorrow? */
3214 else
3215 {
3216 int arch, printed_one_p = 0;
3217 char *p;
3218 char required_archs[SPARC_OPCODE_ARCH_MAX * 16];
3219
3220 /* Create a list of the architectures that support the insn. */
3221 needed_arch_mask &= ~SPARC_OPCODE_SUPPORTED (max_architecture);
3222 p = required_archs;
3223 arch = sparc_ffs (needed_arch_mask);
3224 while ((1 << arch) <= needed_arch_mask)
3225 {
3226 if ((1 << arch) & needed_arch_mask)
3227 {
3228 if (printed_one_p)
3229 *p++ = '|';
3230 strcpy (p, sparc_opcode_archs[arch].name);
3231 p += strlen (p);
3232 printed_one_p = 1;
3233 }
3234 ++arch;
3235 }
3236
3237 as_bad (_("Architecture mismatch on \"%s %s\"."), str, argsStart);
3238 as_tsktsk (_("(Requires %s; requested architecture is %s.)"),
3239 required_archs,
3240 sparc_opcode_archs[max_architecture].name);
3241 return special_case;
3242 }
3243
3244 /* Make sure the hwcaps used by the instruction are
3245 currently enabled. */
3246 if (hwcaps & ~hwcap_allowed)
3247 {
3248 const char *hwcap_name = get_hwcap_name(hwcaps & ~hwcap_allowed);
3249
3250 as_bad (_("Hardware capability \"%s\" not enabled for \"%s\"."),
3251 hwcap_name, str);
3252 return special_case;
3253 }
3254 } /* If no match. */
3255
3256 break;
3257 } /* Forever looking for a match. */
3258
3259 the_insn.opcode = opcode;
3260 return special_case;
3261 }
3262
3263 static char *
3264 skip_over_keyword (char *q)
3265 {
3266 for (q = q + (*q == '#' || *q == '%');
3267 ISALNUM (*q) || *q == '_';
3268 ++q)
3269 continue;
3270 return q;
3271 }
3272
3273 static int
3274 parse_sparc_asi (char **input_pointer_p, const sparc_asi **value_p)
3275 {
3276 const sparc_asi *value;
3277 char c, *p, *q;
3278
3279 p = *input_pointer_p;
3280 q = skip_over_keyword(p);
3281 c = *q;
3282 *q = 0;
3283 value = sparc_encode_asi (p);
3284 *q = c;
3285 if (value == NULL)
3286 return 0;
3287 *value_p = value;
3288 *input_pointer_p = q;
3289 return 1;
3290 }
3291
3292 /* Parse an argument that can be expressed as a keyword.
3293 (eg: #StoreStore or %ccfr).
3294 The result is a boolean indicating success.
3295 If successful, INPUT_POINTER is updated. */
3296
3297 static int
3298 parse_keyword_arg (int (*lookup_fn) (const char *),
3299 char **input_pointerP,
3300 int *valueP)
3301 {
3302 int value;
3303 char c, *p, *q;
3304
3305 p = *input_pointerP;
3306 q = skip_over_keyword(p);
3307 c = *q;
3308 *q = 0;
3309 value = (*lookup_fn) (p);
3310 *q = c;
3311 if (value == -1)
3312 return 0;
3313 *valueP = value;
3314 *input_pointerP = q;
3315 return 1;
3316 }
3317
3318 /* Parse an argument that is a constant expression.
3319 The result is a boolean indicating success. */
3320
3321 static int
3322 parse_const_expr_arg (char **input_pointerP, int *valueP)
3323 {
3324 char *save = input_line_pointer;
3325 expressionS exp;
3326
3327 input_line_pointer = *input_pointerP;
3328 /* The next expression may be something other than a constant
3329 (say if we're not processing the right variant of the insn).
3330 Don't call expression unless we're sure it will succeed as it will
3331 signal an error (which we want to defer until later). */
3332 /* FIXME: It might be better to define md_operand and have it recognize
3333 things like %asi, etc. but continuing that route through to the end
3334 is a lot of work. */
3335 if (*input_line_pointer == '%')
3336 {
3337 input_line_pointer = save;
3338 return 0;
3339 }
3340 expression (&exp);
3341 *input_pointerP = input_line_pointer;
3342 input_line_pointer = save;
3343 if (exp.X_op != O_constant)
3344 return 0;
3345 *valueP = exp.X_add_number;
3346 return 1;
3347 }
3348
3349 /* Subroutine of sparc_ip to parse an expression. */
3350
3351 static int
3352 get_expression (char *str)
3353 {
3354 char *save_in;
3355 segT seg;
3356
3357 save_in = input_line_pointer;
3358 input_line_pointer = str;
3359 seg = expression (&the_insn.exp);
3360 if (seg != absolute_section
3361 && seg != text_section
3362 && seg != data_section
3363 && seg != bss_section
3364 && seg != undefined_section)
3365 {
3366 the_insn.error = _("bad segment");
3367 expr_end = input_line_pointer;
3368 input_line_pointer = save_in;
3369 return 1;
3370 }
3371 expr_end = input_line_pointer;
3372 input_line_pointer = save_in;
3373 return 0;
3374 }
3375
3376 /* Subroutine of md_assemble to output one insn. */
3377
3378 static void
3379 output_insn (const struct sparc_opcode *insn, struct sparc_it *theinsn)
3380 {
3381 char *toP = frag_more (4);
3382
3383 /* Put out the opcode. */
3384 if (INSN_BIG_ENDIAN)
3385 number_to_chars_bigendian (toP, (valueT) theinsn->opcode, 4);
3386 else
3387 number_to_chars_littleendian (toP, (valueT) theinsn->opcode, 4);
3388
3389 /* Put out the symbol-dependent stuff. */
3390 if (theinsn->reloc != BFD_RELOC_NONE)
3391 {
3392 fixS *fixP = fix_new_exp (frag_now, /* Which frag. */
3393 (toP - frag_now->fr_literal), /* Where. */
3394 4, /* Size. */
3395 &theinsn->exp,
3396 theinsn->pcrel,
3397 theinsn->reloc);
3398 /* Turn off overflow checking in fixup_segment. We'll do our
3399 own overflow checking in md_apply_fix. This is necessary because
3400 the insn size is 4 and fixup_segment will signal an overflow for
3401 large 8 byte quantities. */
3402 fixP->fx_no_overflow = 1;
3403 if (theinsn->reloc == BFD_RELOC_SPARC_OLO10)
3404 fixP->tc_fix_data = theinsn->exp2.X_add_number;
3405 }
3406
3407 last_insn = insn;
3408 last_opcode = theinsn->opcode;
3409
3410 #ifdef OBJ_ELF
3411 dwarf2_emit_insn (4);
3412 #endif
3413 }
3414 \f
3415 const char *
3416 md_atof (int type, char *litP, int *sizeP)
3417 {
3418 return ieee_md_atof (type, litP, sizeP, target_big_endian);
3419 }
3420
3421 /* Write a value out to the object file, using the appropriate
3422 endianness. */
3423
3424 void
3425 md_number_to_chars (char *buf, valueT val, int n)
3426 {
3427 if (target_big_endian)
3428 number_to_chars_bigendian (buf, val, n);
3429 else if (target_little_endian_data
3430 && ((n == 4 || n == 2) && ~now_seg->flags & SEC_ALLOC))
3431 /* Output debug words, which are not in allocated sections, as big
3432 endian. */
3433 number_to_chars_bigendian (buf, val, n);
3434 else if (target_little_endian_data || ! target_big_endian)
3435 number_to_chars_littleendian (buf, val, n);
3436 }
3437 \f
3438 /* Apply a fixS to the frags, now that we know the value it ought to
3439 hold. */
3440
3441 void
3442 md_apply_fix (fixS *fixP, valueT *valP, segT segment ATTRIBUTE_UNUSED)
3443 {
3444 char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
3445 offsetT val = * (offsetT *) valP;
3446 long insn;
3447
3448 gas_assert (fixP->fx_r_type < BFD_RELOC_UNUSED);
3449
3450 fixP->fx_addnumber = val; /* Remember value for emit_reloc. */
3451
3452 #ifdef OBJ_ELF
3453 /* SPARC ELF relocations don't use an addend in the data field. */
3454 if (fixP->fx_addsy != NULL)
3455 {
3456 switch (fixP->fx_r_type)
3457 {
3458 case BFD_RELOC_SPARC_TLS_GD_HI22:
3459 case BFD_RELOC_SPARC_TLS_GD_LO10:
3460 case BFD_RELOC_SPARC_TLS_GD_ADD:
3461 case BFD_RELOC_SPARC_TLS_GD_CALL:
3462 case BFD_RELOC_SPARC_TLS_LDM_HI22:
3463 case BFD_RELOC_SPARC_TLS_LDM_LO10:
3464 case BFD_RELOC_SPARC_TLS_LDM_ADD:
3465 case BFD_RELOC_SPARC_TLS_LDM_CALL:
3466 case BFD_RELOC_SPARC_TLS_LDO_HIX22:
3467 case BFD_RELOC_SPARC_TLS_LDO_LOX10:
3468 case BFD_RELOC_SPARC_TLS_LDO_ADD:
3469 case BFD_RELOC_SPARC_TLS_IE_HI22:
3470 case BFD_RELOC_SPARC_TLS_IE_LO10:
3471 case BFD_RELOC_SPARC_TLS_IE_LD:
3472 case BFD_RELOC_SPARC_TLS_IE_LDX:
3473 case BFD_RELOC_SPARC_TLS_IE_ADD:
3474 case BFD_RELOC_SPARC_TLS_LE_HIX22:
3475 case BFD_RELOC_SPARC_TLS_LE_LOX10:
3476 case BFD_RELOC_SPARC_TLS_DTPMOD32:
3477 case BFD_RELOC_SPARC_TLS_DTPMOD64:
3478 case BFD_RELOC_SPARC_TLS_DTPOFF32:
3479 case BFD_RELOC_SPARC_TLS_DTPOFF64:
3480 case BFD_RELOC_SPARC_TLS_TPOFF32:
3481 case BFD_RELOC_SPARC_TLS_TPOFF64:
3482 S_SET_THREAD_LOCAL (fixP->fx_addsy);
3483
3484 default:
3485 break;
3486 }
3487
3488 return;
3489 }
3490 #endif
3491
3492 /* This is a hack. There should be a better way to
3493 handle this. Probably in terms of howto fields, once
3494 we can look at these fixups in terms of howtos. */
3495 if (fixP->fx_r_type == BFD_RELOC_32_PCREL_S2 && fixP->fx_addsy)
3496 val += fixP->fx_where + fixP->fx_frag->fr_address;
3497
3498 #ifdef OBJ_AOUT
3499 /* FIXME: More ridiculous gas reloc hacking. If we are going to
3500 generate a reloc, then we just want to let the reloc addend set
3501 the value. We do not want to also stuff the addend into the
3502 object file. Including the addend in the object file works when
3503 doing a static link, because the linker will ignore the object
3504 file contents. However, the dynamic linker does not ignore the
3505 object file contents. */
3506 if (fixP->fx_addsy != NULL
3507 && fixP->fx_r_type != BFD_RELOC_32_PCREL_S2)
3508 val = 0;
3509
3510 /* When generating PIC code, we do not want an addend for a reloc
3511 against a local symbol. We adjust fx_addnumber to cancel out the
3512 value already included in val, and to also cancel out the
3513 adjustment which bfd_install_relocation will create. */
3514 if (sparc_pic_code
3515 && fixP->fx_r_type != BFD_RELOC_32_PCREL_S2
3516 && fixP->fx_addsy != NULL
3517 && ! S_IS_COMMON (fixP->fx_addsy)
3518 && symbol_section_p (fixP->fx_addsy))
3519 fixP->fx_addnumber -= 2 * S_GET_VALUE (fixP->fx_addsy);
3520
3521 /* When generating PIC code, we need to fiddle to get
3522 bfd_install_relocation to do the right thing for a PC relative
3523 reloc against a local symbol which we are going to keep. */
3524 if (sparc_pic_code
3525 && fixP->fx_r_type == BFD_RELOC_32_PCREL_S2
3526 && fixP->fx_addsy != NULL
3527 && (S_IS_EXTERNAL (fixP->fx_addsy)
3528 || S_IS_WEAK (fixP->fx_addsy))
3529 && S_IS_DEFINED (fixP->fx_addsy)
3530 && ! S_IS_COMMON (fixP->fx_addsy))
3531 {
3532 val = 0;
3533 fixP->fx_addnumber -= 2 * S_GET_VALUE (fixP->fx_addsy);
3534 }
3535 #endif
3536
3537 /* If this is a data relocation, just output VAL. */
3538
3539 if (fixP->fx_r_type == BFD_RELOC_8)
3540 {
3541 md_number_to_chars (buf, val, 1);
3542 }
3543 else if (fixP->fx_r_type == BFD_RELOC_16
3544 || fixP->fx_r_type == BFD_RELOC_SPARC_UA16)
3545 {
3546 md_number_to_chars (buf, val, 2);
3547 }
3548 else if (fixP->fx_r_type == BFD_RELOC_32
3549 || fixP->fx_r_type == BFD_RELOC_SPARC_UA32
3550 || fixP->fx_r_type == BFD_RELOC_SPARC_REV32)
3551 {
3552 md_number_to_chars (buf, val, 4);
3553 }
3554 else if (fixP->fx_r_type == BFD_RELOC_64
3555 || fixP->fx_r_type == BFD_RELOC_SPARC_UA64)
3556 {
3557 md_number_to_chars (buf, val, 8);
3558 }
3559 else if (fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3560 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3561 {
3562 fixP->fx_done = 0;
3563 return;
3564 }
3565 else
3566 {
3567 /* It's a relocation against an instruction. */
3568
3569 if (INSN_BIG_ENDIAN)
3570 insn = bfd_getb32 ((unsigned char *) buf);
3571 else
3572 insn = bfd_getl32 ((unsigned char *) buf);
3573
3574 switch (fixP->fx_r_type)
3575 {
3576 case BFD_RELOC_32_PCREL_S2:
3577 val = val >> 2;
3578 /* FIXME: This increment-by-one deserves a comment of why it's
3579 being done! */
3580 if (! sparc_pic_code
3581 || fixP->fx_addsy == NULL
3582 || symbol_section_p (fixP->fx_addsy))
3583 ++val;
3584
3585 insn |= val & 0x3fffffff;
3586
3587 /* See if we have a delay slot. */
3588 if (sparc_relax && fixP->fx_where + 8 <= fixP->fx_frag->fr_fix)
3589 {
3590 #define G0 0
3591 #define O7 15
3592 #define XCC (2 << 20)
3593 #define COND(x) (((x)&0xf)<<25)
3594 #define CONDA COND(0x8)
3595 #define INSN_BPA (F2(0,1) | CONDA | BPRED | XCC)
3596 #define INSN_BA (F2(0,2) | CONDA)
3597 #define INSN_OR F3(2, 0x2, 0)
3598 #define INSN_NOP F2(0,4)
3599
3600 long delay;
3601
3602 /* If the instruction is a call with either:
3603 restore
3604 arithmetic instruction with rd == %o7
3605 where rs1 != %o7 and rs2 if it is register != %o7
3606 then we can optimize if the call destination is near
3607 by changing the call into a branch always. */
3608 if (INSN_BIG_ENDIAN)
3609 delay = bfd_getb32 ((unsigned char *) buf + 4);
3610 else
3611 delay = bfd_getl32 ((unsigned char *) buf + 4);
3612 if ((insn & OP (~0)) != OP (1) || (delay & OP (~0)) != OP (2))
3613 break;
3614 if ((delay & OP3 (~0)) != OP3 (0x3d) /* Restore. */
3615 && ((delay & OP3 (0x28)) != 0 /* Arithmetic. */
3616 || ((delay & RD (~0)) != RD (O7))))
3617 break;
3618 if ((delay & RS1 (~0)) == RS1 (O7)
3619 || ((delay & F3I (~0)) == 0
3620 && (delay & RS2 (~0)) == RS2 (O7)))
3621 break;
3622 /* Ensure the branch will fit into simm22. */
3623 if ((val & 0x3fe00000)
3624 && (val & 0x3fe00000) != 0x3fe00000)
3625 break;
3626 /* Check if the arch is v9 and branch will fit
3627 into simm19. */
3628 if (((val & 0x3c0000) == 0
3629 || (val & 0x3c0000) == 0x3c0000)
3630 && (sparc_arch_size == 64
3631 || current_architecture >= SPARC_OPCODE_ARCH_V9))
3632 /* ba,pt %xcc */
3633 insn = INSN_BPA | (val & 0x7ffff);
3634 else
3635 /* ba */
3636 insn = INSN_BA | (val & 0x3fffff);
3637 if (fixP->fx_where >= 4
3638 && ((delay & (0xffffffff ^ RS1 (~0)))
3639 == (INSN_OR | RD (O7) | RS2 (G0))))
3640 {
3641 long setter;
3642 int reg;
3643
3644 if (INSN_BIG_ENDIAN)
3645 setter = bfd_getb32 ((unsigned char *) buf - 4);
3646 else
3647 setter = bfd_getl32 ((unsigned char *) buf - 4);
3648 if ((setter & (0xffffffff ^ RD (~0)))
3649 != (INSN_OR | RS1 (O7) | RS2 (G0)))
3650 break;
3651 /* The sequence was
3652 or %o7, %g0, %rN
3653 call foo
3654 or %rN, %g0, %o7
3655
3656 If call foo was replaced with ba, replace
3657 or %rN, %g0, %o7 with nop. */
3658 reg = (delay & RS1 (~0)) >> 14;
3659 if (reg != ((setter & RD (~0)) >> 25)
3660 || reg == G0 || reg == O7)
3661 break;
3662
3663 if (INSN_BIG_ENDIAN)
3664 bfd_putb32 (INSN_NOP, (unsigned char *) buf + 4);
3665 else
3666 bfd_putl32 (INSN_NOP, (unsigned char *) buf + 4);
3667 }
3668 }
3669 break;
3670
3671 case BFD_RELOC_SPARC_11:
3672 if (! in_signed_range (val, 0x7ff))
3673 as_bad_where (fixP->fx_file, fixP->fx_line,
3674 _("relocation overflow"));
3675 insn |= val & 0x7ff;
3676 break;
3677
3678 case BFD_RELOC_SPARC_10:
3679 if (! in_signed_range (val, 0x3ff))
3680 as_bad_where (fixP->fx_file, fixP->fx_line,
3681 _("relocation overflow"));
3682 insn |= val & 0x3ff;
3683 break;
3684
3685 case BFD_RELOC_SPARC_7:
3686 if (! in_bitfield_range (val, 0x7f))
3687 as_bad_where (fixP->fx_file, fixP->fx_line,
3688 _("relocation overflow"));
3689 insn |= val & 0x7f;
3690 break;
3691
3692 case BFD_RELOC_SPARC_6:
3693 if (! in_bitfield_range (val, 0x3f))
3694 as_bad_where (fixP->fx_file, fixP->fx_line,
3695 _("relocation overflow"));
3696 insn |= val & 0x3f;
3697 break;
3698
3699 case BFD_RELOC_SPARC_5:
3700 if (! in_bitfield_range (val, 0x1f))
3701 as_bad_where (fixP->fx_file, fixP->fx_line,
3702 _("relocation overflow"));
3703 insn |= val & 0x1f;
3704 break;
3705
3706 case BFD_RELOC_SPARC_WDISP10:
3707 if ((val & 3)
3708 || val >= 0x007fc
3709 || val <= -(offsetT) 0x808)
3710 as_bad_where (fixP->fx_file, fixP->fx_line,
3711 _("relocation overflow"));
3712 /* FIXME: The +1 deserves a comment. */
3713 val = (val >> 2) + 1;
3714 insn |= ((val & 0x300) << 11)
3715 | ((val & 0xff) << 5);
3716 break;
3717
3718 case BFD_RELOC_SPARC_WDISP16:
3719 if ((val & 3)
3720 || val >= 0x1fffc
3721 || val <= -(offsetT) 0x20008)
3722 as_bad_where (fixP->fx_file, fixP->fx_line,
3723 _("relocation overflow"));
3724 /* FIXME: The +1 deserves a comment. */
3725 val = (val >> 2) + 1;
3726 insn |= ((val & 0xc000) << 6) | (val & 0x3fff);
3727 break;
3728
3729 case BFD_RELOC_SPARC_WDISP19:
3730 if ((val & 3)
3731 || val >= 0xffffc
3732 || val <= -(offsetT) 0x100008)
3733 as_bad_where (fixP->fx_file, fixP->fx_line,
3734 _("relocation overflow"));
3735 /* FIXME: The +1 deserves a comment. */
3736 val = (val >> 2) + 1;
3737 insn |= val & 0x7ffff;
3738 break;
3739
3740 case BFD_RELOC_SPARC_HH22:
3741 val = BSR (val, 32);
3742 /* Fall through. */
3743
3744 case BFD_RELOC_SPARC_LM22:
3745 case BFD_RELOC_HI22:
3746 if (!fixP->fx_addsy)
3747 insn |= (val >> 10) & 0x3fffff;
3748 else
3749 /* FIXME: Need comment explaining why we do this. */
3750 insn &= ~0xffff;
3751 break;
3752
3753 case BFD_RELOC_SPARC22:
3754 if (val & ~0x003fffff)
3755 as_bad_where (fixP->fx_file, fixP->fx_line,
3756 _("relocation overflow"));
3757 insn |= (val & 0x3fffff);
3758 break;
3759
3760 case BFD_RELOC_SPARC_HM10:
3761 val = BSR (val, 32);
3762 /* Fall through. */
3763
3764 case BFD_RELOC_LO10:
3765 if (!fixP->fx_addsy)
3766 insn |= val & 0x3ff;
3767 else
3768 /* FIXME: Need comment explaining why we do this. */
3769 insn &= ~0xff;
3770 break;
3771
3772 case BFD_RELOC_SPARC_OLO10:
3773 val &= 0x3ff;
3774 val += fixP->tc_fix_data;
3775 /* Fall through. */
3776
3777 case BFD_RELOC_SPARC13:
3778 if (! in_signed_range (val, 0x1fff))
3779 as_bad_where (fixP->fx_file, fixP->fx_line,
3780 _("relocation overflow"));
3781 insn |= val & 0x1fff;
3782 break;
3783
3784 case BFD_RELOC_SPARC_WDISP22:
3785 val = (val >> 2) + 1;
3786 /* Fall through. */
3787 case BFD_RELOC_SPARC_BASE22:
3788 insn |= val & 0x3fffff;
3789 break;
3790
3791 case BFD_RELOC_SPARC_H34:
3792 if (!fixP->fx_addsy)
3793 {
3794 bfd_vma tval = val;
3795 tval >>= 12;
3796 insn |= tval & 0x3fffff;
3797 }
3798 break;
3799
3800 case BFD_RELOC_SPARC_H44:
3801 if (!fixP->fx_addsy)
3802 {
3803 bfd_vma tval = val;
3804 tval >>= 22;
3805 insn |= tval & 0x3fffff;
3806 }
3807 break;
3808
3809 case BFD_RELOC_SPARC_M44:
3810 if (!fixP->fx_addsy)
3811 insn |= (val >> 12) & 0x3ff;
3812 break;
3813
3814 case BFD_RELOC_SPARC_L44:
3815 if (!fixP->fx_addsy)
3816 insn |= val & 0xfff;
3817 break;
3818
3819 case BFD_RELOC_SPARC_HIX22:
3820 if (!fixP->fx_addsy)
3821 {
3822 val ^= ~(offsetT) 0;
3823 insn |= (val >> 10) & 0x3fffff;
3824 }
3825 break;
3826
3827 case BFD_RELOC_SPARC_LOX10:
3828 if (!fixP->fx_addsy)
3829 insn |= 0x1c00 | (val & 0x3ff);
3830 break;
3831
3832 case BFD_RELOC_NONE:
3833 default:
3834 as_bad_where (fixP->fx_file, fixP->fx_line,
3835 _("bad or unhandled relocation type: 0x%02x"),
3836 fixP->fx_r_type);
3837 break;
3838 }
3839
3840 if (INSN_BIG_ENDIAN)
3841 bfd_putb32 (insn, (unsigned char *) buf);
3842 else
3843 bfd_putl32 (insn, (unsigned char *) buf);
3844 }
3845
3846 /* Are we finished with this relocation now? */
3847 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
3848 fixP->fx_done = 1;
3849 }
3850
3851 /* Translate internal representation of relocation info to BFD target
3852 format. */
3853
3854 arelent **
3855 tc_gen_reloc (asection *section, fixS *fixp)
3856 {
3857 static arelent *relocs[3];
3858 arelent *reloc;
3859 bfd_reloc_code_real_type code;
3860
3861 relocs[0] = reloc = XNEW (arelent);
3862 relocs[1] = NULL;
3863
3864 reloc->sym_ptr_ptr = XNEW (asymbol *);
3865 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
3866 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
3867
3868 switch (fixp->fx_r_type)
3869 {
3870 case BFD_RELOC_16:
3871 case BFD_RELOC_32:
3872 case BFD_RELOC_HI22:
3873 case BFD_RELOC_LO10:
3874 case BFD_RELOC_32_PCREL_S2:
3875 case BFD_RELOC_SPARC13:
3876 case BFD_RELOC_SPARC22:
3877 case BFD_RELOC_SPARC_PC22:
3878 case BFD_RELOC_SPARC_PC10:
3879 case BFD_RELOC_SPARC_BASE13:
3880 case BFD_RELOC_SPARC_WDISP10:
3881 case BFD_RELOC_SPARC_WDISP16:
3882 case BFD_RELOC_SPARC_WDISP19:
3883 case BFD_RELOC_SPARC_WDISP22:
3884 case BFD_RELOC_64:
3885 case BFD_RELOC_SPARC_5:
3886 case BFD_RELOC_SPARC_6:
3887 case BFD_RELOC_SPARC_7:
3888 case BFD_RELOC_SPARC_10:
3889 case BFD_RELOC_SPARC_11:
3890 case BFD_RELOC_SPARC_HH22:
3891 case BFD_RELOC_SPARC_HM10:
3892 case BFD_RELOC_SPARC_LM22:
3893 case BFD_RELOC_SPARC_PC_HH22:
3894 case BFD_RELOC_SPARC_PC_HM10:
3895 case BFD_RELOC_SPARC_PC_LM22:
3896 case BFD_RELOC_SPARC_H34:
3897 case BFD_RELOC_SPARC_H44:
3898 case BFD_RELOC_SPARC_M44:
3899 case BFD_RELOC_SPARC_L44:
3900 case BFD_RELOC_SPARC_HIX22:
3901 case BFD_RELOC_SPARC_LOX10:
3902 case BFD_RELOC_SPARC_REV32:
3903 case BFD_RELOC_SPARC_OLO10:
3904 case BFD_RELOC_SPARC_UA16:
3905 case BFD_RELOC_SPARC_UA32:
3906 case BFD_RELOC_SPARC_UA64:
3907 case BFD_RELOC_8_PCREL:
3908 case BFD_RELOC_16_PCREL:
3909 case BFD_RELOC_32_PCREL:
3910 case BFD_RELOC_64_PCREL:
3911 case BFD_RELOC_SPARC_PLT32:
3912 case BFD_RELOC_SPARC_PLT64:
3913 case BFD_RELOC_VTABLE_ENTRY:
3914 case BFD_RELOC_VTABLE_INHERIT:
3915 case BFD_RELOC_SPARC_TLS_GD_HI22:
3916 case BFD_RELOC_SPARC_TLS_GD_LO10:
3917 case BFD_RELOC_SPARC_TLS_GD_ADD:
3918 case BFD_RELOC_SPARC_TLS_GD_CALL:
3919 case BFD_RELOC_SPARC_TLS_LDM_HI22:
3920 case BFD_RELOC_SPARC_TLS_LDM_LO10:
3921 case BFD_RELOC_SPARC_TLS_LDM_ADD:
3922 case BFD_RELOC_SPARC_TLS_LDM_CALL:
3923 case BFD_RELOC_SPARC_TLS_LDO_HIX22:
3924 case BFD_RELOC_SPARC_TLS_LDO_LOX10:
3925 case BFD_RELOC_SPARC_TLS_LDO_ADD:
3926 case BFD_RELOC_SPARC_TLS_IE_HI22:
3927 case BFD_RELOC_SPARC_TLS_IE_LO10:
3928 case BFD_RELOC_SPARC_TLS_IE_LD:
3929 case BFD_RELOC_SPARC_TLS_IE_LDX:
3930 case BFD_RELOC_SPARC_TLS_IE_ADD:
3931 case BFD_RELOC_SPARC_TLS_LE_HIX22:
3932 case BFD_RELOC_SPARC_TLS_LE_LOX10:
3933 case BFD_RELOC_SPARC_TLS_DTPOFF32:
3934 case BFD_RELOC_SPARC_TLS_DTPOFF64:
3935 case BFD_RELOC_SPARC_GOTDATA_OP_HIX22:
3936 case BFD_RELOC_SPARC_GOTDATA_OP_LOX10:
3937 case BFD_RELOC_SPARC_GOTDATA_OP:
3938 code = fixp->fx_r_type;
3939 break;
3940 default:
3941 abort ();
3942 return NULL;
3943 }
3944
3945 #if defined (OBJ_ELF) || defined (OBJ_AOUT)
3946 /* If we are generating PIC code, we need to generate a different
3947 set of relocs. */
3948
3949 #ifdef OBJ_ELF
3950 #define GOT_NAME "_GLOBAL_OFFSET_TABLE_"
3951 #else
3952 #define GOT_NAME "__GLOBAL_OFFSET_TABLE_"
3953 #endif
3954 #ifdef TE_VXWORKS
3955 #define GOTT_BASE "__GOTT_BASE__"
3956 #define GOTT_INDEX "__GOTT_INDEX__"
3957 #endif
3958
3959 /* This code must be parallel to the OBJ_ELF tc_fix_adjustable. */
3960
3961 if (sparc_pic_code)
3962 {
3963 switch (code)
3964 {
3965 case BFD_RELOC_32_PCREL_S2:
3966 if (generic_force_reloc (fixp))
3967 code = BFD_RELOC_SPARC_WPLT30;
3968 break;
3969 case BFD_RELOC_HI22:
3970 code = BFD_RELOC_SPARC_GOT22;
3971 if (fixp->fx_addsy != NULL)
3972 {
3973 if (strcmp (S_GET_NAME (fixp->fx_addsy), GOT_NAME) == 0)
3974 code = BFD_RELOC_SPARC_PC22;
3975 #ifdef TE_VXWORKS
3976 if (strcmp (S_GET_NAME (fixp->fx_addsy), GOTT_BASE) == 0
3977 || strcmp (S_GET_NAME (fixp->fx_addsy), GOTT_INDEX) == 0)
3978 code = BFD_RELOC_HI22; /* Unchanged. */
3979 #endif
3980 }
3981 break;
3982 case BFD_RELOC_LO10:
3983 code = BFD_RELOC_SPARC_GOT10;
3984 if (fixp->fx_addsy != NULL)
3985 {
3986 if (strcmp (S_GET_NAME (fixp->fx_addsy), GOT_NAME) == 0)
3987 code = BFD_RELOC_SPARC_PC10;
3988 #ifdef TE_VXWORKS
3989 if (strcmp (S_GET_NAME (fixp->fx_addsy), GOTT_BASE) == 0
3990 || strcmp (S_GET_NAME (fixp->fx_addsy), GOTT_INDEX) == 0)
3991 code = BFD_RELOC_LO10; /* Unchanged. */
3992 #endif
3993 }
3994 break;
3995 case BFD_RELOC_SPARC13:
3996 code = BFD_RELOC_SPARC_GOT13;
3997 break;
3998 default:
3999 break;
4000 }
4001 }
4002 #endif /* defined (OBJ_ELF) || defined (OBJ_AOUT) */
4003
4004 /* Nothing is aligned in DWARF debugging sections. */
4005 if (bfd_get_section_flags (stdoutput, section) & SEC_DEBUGGING)
4006 switch (code)
4007 {
4008 case BFD_RELOC_16: code = BFD_RELOC_SPARC_UA16; break;
4009 case BFD_RELOC_32: code = BFD_RELOC_SPARC_UA32; break;
4010 case BFD_RELOC_64: code = BFD_RELOC_SPARC_UA64; break;
4011 default: break;
4012 }
4013
4014 if (code == BFD_RELOC_SPARC_OLO10)
4015 reloc->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_LO10);
4016 else
4017 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
4018 if (reloc->howto == 0)
4019 {
4020 as_bad_where (fixp->fx_file, fixp->fx_line,
4021 _("internal error: can't export reloc type %d (`%s')"),
4022 fixp->fx_r_type, bfd_get_reloc_code_name (code));
4023 xfree (reloc);
4024 relocs[0] = NULL;
4025 return relocs;
4026 }
4027
4028 /* @@ Why fx_addnumber sometimes and fx_offset other times? */
4029 #ifdef OBJ_AOUT
4030
4031 if (reloc->howto->pc_relative == 0
4032 || code == BFD_RELOC_SPARC_PC10
4033 || code == BFD_RELOC_SPARC_PC22)
4034 reloc->addend = fixp->fx_addnumber;
4035 else if (sparc_pic_code
4036 && fixp->fx_r_type == BFD_RELOC_32_PCREL_S2
4037 && fixp->fx_addsy != NULL
4038 && (S_IS_EXTERNAL (fixp->fx_addsy)
4039 || S_IS_WEAK (fixp->fx_addsy))
4040 && S_IS_DEFINED (fixp->fx_addsy)
4041 && ! S_IS_COMMON (fixp->fx_addsy))
4042 reloc->addend = fixp->fx_addnumber;
4043 else
4044 reloc->addend = fixp->fx_offset - reloc->address;
4045
4046 #else /* elf or coff */
4047
4048 if (code != BFD_RELOC_32_PCREL_S2
4049 && code != BFD_RELOC_SPARC_WDISP22
4050 && code != BFD_RELOC_SPARC_WDISP16
4051 && code != BFD_RELOC_SPARC_WDISP19
4052 && code != BFD_RELOC_SPARC_WDISP10
4053 && code != BFD_RELOC_SPARC_WPLT30
4054 && code != BFD_RELOC_SPARC_TLS_GD_CALL
4055 && code != BFD_RELOC_SPARC_TLS_LDM_CALL)
4056 reloc->addend = fixp->fx_addnumber;
4057 else if (symbol_section_p (fixp->fx_addsy))
4058 reloc->addend = (section->vma
4059 + fixp->fx_addnumber
4060 + md_pcrel_from (fixp));
4061 else
4062 reloc->addend = fixp->fx_offset;
4063 #endif
4064
4065 /* We expand R_SPARC_OLO10 to R_SPARC_LO10 and R_SPARC_13
4066 on the same location. */
4067 if (code == BFD_RELOC_SPARC_OLO10)
4068 {
4069 relocs[1] = reloc = XNEW (arelent);
4070 relocs[2] = NULL;
4071
4072 reloc->sym_ptr_ptr = XNEW (asymbol *);
4073 *reloc->sym_ptr_ptr
4074 = symbol_get_bfdsym (section_symbol (absolute_section));
4075 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
4076 reloc->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_SPARC13);
4077 reloc->addend = fixp->tc_fix_data;
4078 }
4079
4080 return relocs;
4081 }
4082 \f
4083 /* We have no need to default values of symbols. */
4084
4085 symbolS *
4086 md_undefined_symbol (char *name ATTRIBUTE_UNUSED)
4087 {
4088 return 0;
4089 }
4090
4091 /* Round up a section size to the appropriate boundary. */
4092
4093 valueT
4094 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
4095 {
4096 #ifndef OBJ_ELF
4097 /* This is not right for ELF; a.out wants it, and COFF will force
4098 the alignment anyways. */
4099 valueT align = ((valueT) 1
4100 << (valueT) bfd_get_section_alignment (stdoutput, segment));
4101 valueT newsize;
4102
4103 /* Turn alignment value into a mask. */
4104 align--;
4105 newsize = (size + align) & ~align;
4106 return newsize;
4107 #else
4108 return size;
4109 #endif
4110 }
4111
4112 /* Exactly what point is a PC-relative offset relative TO?
4113 On the sparc, they're relative to the address of the offset, plus
4114 its size. This gets us to the following instruction.
4115 (??? Is this right? FIXME-SOON) */
4116 long
4117 md_pcrel_from (fixS *fixP)
4118 {
4119 long ret;
4120
4121 ret = fixP->fx_where + fixP->fx_frag->fr_address;
4122 if (! sparc_pic_code
4123 || fixP->fx_addsy == NULL
4124 || symbol_section_p (fixP->fx_addsy))
4125 ret += fixP->fx_size;
4126 return ret;
4127 }
4128 \f
4129 /* Return log2 (VALUE), or -1 if VALUE is not an exact positive power
4130 of two. */
4131
4132 static int
4133 mylog2 (int value)
4134 {
4135 int shift;
4136
4137 if (value <= 0)
4138 return -1;
4139
4140 for (shift = 0; (value & 1) == 0; value >>= 1)
4141 ++shift;
4142
4143 return (value == 1) ? shift : -1;
4144 }
4145
4146 /* Sort of like s_lcomm. */
4147
4148 #ifndef OBJ_ELF
4149 static int max_alignment = 15;
4150 #endif
4151
4152 static void
4153 s_reserve (int ignore ATTRIBUTE_UNUSED)
4154 {
4155 char *name;
4156 char *p;
4157 char c;
4158 int align;
4159 int size;
4160 int temp;
4161 symbolS *symbolP;
4162
4163 c = get_symbol_name (&name);
4164 p = input_line_pointer;
4165 *p = c;
4166 SKIP_WHITESPACE_AFTER_NAME ();
4167
4168 if (*input_line_pointer != ',')
4169 {
4170 as_bad (_("Expected comma after name"));
4171 ignore_rest_of_line ();
4172 return;
4173 }
4174
4175 ++input_line_pointer;
4176
4177 if ((size = get_absolute_expression ()) < 0)
4178 {
4179 as_bad (_("BSS length (%d.) <0! Ignored."), size);
4180 ignore_rest_of_line ();
4181 return;
4182 } /* Bad length. */
4183
4184 *p = 0;
4185 symbolP = symbol_find_or_make (name);
4186 *p = c;
4187
4188 if (strncmp (input_line_pointer, ",\"bss\"", 6) != 0
4189 && strncmp (input_line_pointer, ",\".bss\"", 7) != 0)
4190 {
4191 as_bad (_("bad .reserve segment -- expected BSS segment"));
4192 return;
4193 }
4194
4195 if (input_line_pointer[2] == '.')
4196 input_line_pointer += 7;
4197 else
4198 input_line_pointer += 6;
4199 SKIP_WHITESPACE ();
4200
4201 if (*input_line_pointer == ',')
4202 {
4203 ++input_line_pointer;
4204
4205 SKIP_WHITESPACE ();
4206 if (*input_line_pointer == '\n')
4207 {
4208 as_bad (_("missing alignment"));
4209 ignore_rest_of_line ();
4210 return;
4211 }
4212
4213 align = (int) get_absolute_expression ();
4214
4215 #ifndef OBJ_ELF
4216 if (align > max_alignment)
4217 {
4218 align = max_alignment;
4219 as_warn (_("alignment too large; assuming %d"), align);
4220 }
4221 #endif
4222
4223 if (align < 0)
4224 {
4225 as_bad (_("negative alignment"));
4226 ignore_rest_of_line ();
4227 return;
4228 }
4229
4230 if (align != 0)
4231 {
4232 temp = mylog2 (align);
4233 if (temp < 0)
4234 {
4235 as_bad (_("alignment not a power of 2"));
4236 ignore_rest_of_line ();
4237 return;
4238 }
4239
4240 align = temp;
4241 }
4242
4243 record_alignment (bss_section, align);
4244 }
4245 else
4246 align = 0;
4247
4248 if (!S_IS_DEFINED (symbolP)
4249 #ifdef OBJ_AOUT
4250 && S_GET_OTHER (symbolP) == 0
4251 && S_GET_DESC (symbolP) == 0
4252 #endif
4253 )
4254 {
4255 if (! need_pass_2)
4256 {
4257 char *pfrag;
4258 segT current_seg = now_seg;
4259 subsegT current_subseg = now_subseg;
4260
4261 /* Switch to bss. */
4262 subseg_set (bss_section, 1);
4263
4264 if (align)
4265 /* Do alignment. */
4266 frag_align (align, 0, 0);
4267
4268 /* Detach from old frag. */
4269 if (S_GET_SEGMENT (symbolP) == bss_section)
4270 symbol_get_frag (symbolP)->fr_symbol = NULL;
4271
4272 symbol_set_frag (symbolP, frag_now);
4273 pfrag = frag_var (rs_org, 1, 1, (relax_substateT) 0, symbolP,
4274 (offsetT) size, (char *) 0);
4275 *pfrag = 0;
4276
4277 S_SET_SEGMENT (symbolP, bss_section);
4278
4279 subseg_set (current_seg, current_subseg);
4280
4281 #ifdef OBJ_ELF
4282 S_SET_SIZE (symbolP, size);
4283 #endif
4284 }
4285 }
4286 else
4287 {
4288 as_warn (_("Ignoring attempt to re-define symbol %s"),
4289 S_GET_NAME (symbolP));
4290 }
4291
4292 demand_empty_rest_of_line ();
4293 }
4294
4295 static void
4296 s_common (int ignore ATTRIBUTE_UNUSED)
4297 {
4298 char *name;
4299 char c;
4300 char *p;
4301 offsetT temp, size;
4302 symbolS *symbolP;
4303
4304 c = get_symbol_name (&name);
4305 /* Just after name is now '\0'. */
4306 p = input_line_pointer;
4307 *p = c;
4308 SKIP_WHITESPACE_AFTER_NAME ();
4309 if (*input_line_pointer != ',')
4310 {
4311 as_bad (_("Expected comma after symbol-name"));
4312 ignore_rest_of_line ();
4313 return;
4314 }
4315
4316 /* Skip ','. */
4317 input_line_pointer++;
4318
4319 if ((temp = get_absolute_expression ()) < 0)
4320 {
4321 as_bad (_(".COMMon length (%lu) out of range ignored"),
4322 (unsigned long) temp);
4323 ignore_rest_of_line ();
4324 return;
4325 }
4326 size = temp;
4327 *p = 0;
4328 symbolP = symbol_find_or_make (name);
4329 *p = c;
4330 if (S_IS_DEFINED (symbolP) && ! S_IS_COMMON (symbolP))
4331 {
4332 as_bad (_("Ignoring attempt to re-define symbol"));
4333 ignore_rest_of_line ();
4334 return;
4335 }
4336 if (S_GET_VALUE (symbolP) != 0)
4337 {
4338 if (S_GET_VALUE (symbolP) != (valueT) size)
4339 {
4340 as_warn (_("Length of .comm \"%s\" is already %ld. Not changed to %ld."),
4341 S_GET_NAME (symbolP), (long) S_GET_VALUE (symbolP), (long) size);
4342 }
4343 }
4344 else
4345 {
4346 #ifndef OBJ_ELF
4347 S_SET_VALUE (symbolP, (valueT) size);
4348 S_SET_EXTERNAL (symbolP);
4349 #endif
4350 }
4351 know (symbol_get_frag (symbolP) == &zero_address_frag);
4352 if (*input_line_pointer != ',')
4353 {
4354 as_bad (_("Expected comma after common length"));
4355 ignore_rest_of_line ();
4356 return;
4357 }
4358 input_line_pointer++;
4359 SKIP_WHITESPACE ();
4360 if (*input_line_pointer != '"')
4361 {
4362 temp = get_absolute_expression ();
4363
4364 #ifndef OBJ_ELF
4365 if (temp > max_alignment)
4366 {
4367 temp = max_alignment;
4368 as_warn (_("alignment too large; assuming %ld"), (long) temp);
4369 }
4370 #endif
4371
4372 if (temp < 0)
4373 {
4374 as_bad (_("negative alignment"));
4375 ignore_rest_of_line ();
4376 return;
4377 }
4378
4379 #ifdef OBJ_ELF
4380 if (symbol_get_obj (symbolP)->local)
4381 {
4382 segT old_sec;
4383 int old_subsec;
4384 int align;
4385
4386 old_sec = now_seg;
4387 old_subsec = now_subseg;
4388
4389 if (temp == 0)
4390 align = 0;
4391 else
4392 align = mylog2 (temp);
4393
4394 if (align < 0)
4395 {
4396 as_bad (_("alignment not a power of 2"));
4397 ignore_rest_of_line ();
4398 return;
4399 }
4400
4401 record_alignment (bss_section, align);
4402 subseg_set (bss_section, 0);
4403 if (align)
4404 frag_align (align, 0, 0);
4405 if (S_GET_SEGMENT (symbolP) == bss_section)
4406 symbol_get_frag (symbolP)->fr_symbol = 0;
4407 symbol_set_frag (symbolP, frag_now);
4408 p = frag_var (rs_org, 1, 1, (relax_substateT) 0, symbolP,
4409 (offsetT) size, (char *) 0);
4410 *p = 0;
4411 S_SET_SEGMENT (symbolP, bss_section);
4412 S_CLEAR_EXTERNAL (symbolP);
4413 S_SET_SIZE (symbolP, size);
4414 subseg_set (old_sec, old_subsec);
4415 }
4416 else
4417 #endif /* OBJ_ELF */
4418 {
4419 allocate_common:
4420 S_SET_VALUE (symbolP, (valueT) size);
4421 #ifdef OBJ_ELF
4422 S_SET_ALIGN (symbolP, temp);
4423 S_SET_SIZE (symbolP, size);
4424 #endif
4425 S_SET_EXTERNAL (symbolP);
4426 S_SET_SEGMENT (symbolP, bfd_com_section_ptr);
4427 }
4428 }
4429 else
4430 {
4431 input_line_pointer++;
4432 /* @@ Some use the dot, some don't. Can we get some consistency?? */
4433 if (*input_line_pointer == '.')
4434 input_line_pointer++;
4435 /* @@ Some say data, some say bss. */
4436 if (strncmp (input_line_pointer, "bss\"", 4)
4437 && strncmp (input_line_pointer, "data\"", 5))
4438 {
4439 while (*--input_line_pointer != '"')
4440 ;
4441 input_line_pointer--;
4442 goto bad_common_segment;
4443 }
4444 while (*input_line_pointer++ != '"')
4445 ;
4446 goto allocate_common;
4447 }
4448
4449 symbol_get_bfdsym (symbolP)->flags |= BSF_OBJECT;
4450
4451 demand_empty_rest_of_line ();
4452 return;
4453
4454 {
4455 bad_common_segment:
4456 p = input_line_pointer;
4457 while (*p && *p != '\n')
4458 p++;
4459 c = *p;
4460 *p = '\0';
4461 as_bad (_("bad .common segment %s"), input_line_pointer + 1);
4462 *p = c;
4463 input_line_pointer = p;
4464 ignore_rest_of_line ();
4465 return;
4466 }
4467 }
4468
4469 /* Handle the .empty pseudo-op. This suppresses the warnings about
4470 invalid delay slot usage. */
4471
4472 static void
4473 s_empty (int ignore ATTRIBUTE_UNUSED)
4474 {
4475 /* The easy way to implement is to just forget about the last
4476 instruction. */
4477 last_insn = NULL;
4478 }
4479
4480 static void
4481 s_seg (int ignore ATTRIBUTE_UNUSED)
4482 {
4483
4484 if (strncmp (input_line_pointer, "\"text\"", 6) == 0)
4485 {
4486 input_line_pointer += 6;
4487 s_text (0);
4488 return;
4489 }
4490 if (strncmp (input_line_pointer, "\"data\"", 6) == 0)
4491 {
4492 input_line_pointer += 6;
4493 s_data (0);
4494 return;
4495 }
4496 if (strncmp (input_line_pointer, "\"data1\"", 7) == 0)
4497 {
4498 input_line_pointer += 7;
4499 s_data1 ();
4500 return;
4501 }
4502 if (strncmp (input_line_pointer, "\"bss\"", 5) == 0)
4503 {
4504 input_line_pointer += 5;
4505 /* We only support 2 segments -- text and data -- for now, so
4506 things in the "bss segment" will have to go into data for now.
4507 You can still allocate SEG_BSS stuff with .lcomm or .reserve. */
4508 subseg_set (data_section, 255); /* FIXME-SOMEDAY. */
4509 return;
4510 }
4511 as_bad (_("Unknown segment type"));
4512 demand_empty_rest_of_line ();
4513 }
4514
4515 static void
4516 s_data1 (void)
4517 {
4518 subseg_set (data_section, 1);
4519 demand_empty_rest_of_line ();
4520 }
4521
4522 static void
4523 s_proc (int ignore ATTRIBUTE_UNUSED)
4524 {
4525 while (!is_end_of_line[(unsigned char) *input_line_pointer])
4526 {
4527 ++input_line_pointer;
4528 }
4529 ++input_line_pointer;
4530 }
4531
4532 /* This static variable is set by s_uacons to tell sparc_cons_align
4533 that the expression does not need to be aligned. */
4534
4535 static int sparc_no_align_cons = 0;
4536
4537 /* This handles the unaligned space allocation pseudo-ops, such as
4538 .uaword. .uaword is just like .word, but the value does not need
4539 to be aligned. */
4540
4541 static void
4542 s_uacons (int bytes)
4543 {
4544 /* Tell sparc_cons_align not to align this value. */
4545 sparc_no_align_cons = 1;
4546 cons (bytes);
4547 sparc_no_align_cons = 0;
4548 }
4549
4550 /* This handles the native word allocation pseudo-op .nword.
4551 For sparc_arch_size 32 it is equivalent to .word, for
4552 sparc_arch_size 64 it is equivalent to .xword. */
4553
4554 static void
4555 s_ncons (int bytes ATTRIBUTE_UNUSED)
4556 {
4557 cons (sparc_arch_size == 32 ? 4 : 8);
4558 }
4559
4560 #ifdef OBJ_ELF
4561 /* Handle the SPARC ELF .register pseudo-op. This sets the binding of a
4562 global register.
4563 The syntax is:
4564
4565 .register %g[2367],{#scratch|symbolname|#ignore}
4566 */
4567
4568 static void
4569 s_register (int ignore ATTRIBUTE_UNUSED)
4570 {
4571 char c;
4572 int reg;
4573 int flags;
4574 char *regname;
4575
4576 if (input_line_pointer[0] != '%'
4577 || input_line_pointer[1] != 'g'
4578 || ((input_line_pointer[2] & ~1) != '2'
4579 && (input_line_pointer[2] & ~1) != '6')
4580 || input_line_pointer[3] != ',')
4581 as_bad (_("register syntax is .register %%g[2367],{#scratch|symbolname|#ignore}"));
4582 reg = input_line_pointer[2] - '0';
4583 input_line_pointer += 4;
4584
4585 if (*input_line_pointer == '#')
4586 {
4587 ++input_line_pointer;
4588 c = get_symbol_name (&regname);
4589 if (strcmp (regname, "scratch") && strcmp (regname, "ignore"))
4590 as_bad (_("register syntax is .register %%g[2367],{#scratch|symbolname|#ignore}"));
4591 if (regname[0] == 'i')
4592 regname = NULL;
4593 else
4594 regname = (char *) "";
4595 }
4596 else
4597 {
4598 c = get_symbol_name (&regname);
4599 }
4600
4601 if (sparc_arch_size == 64)
4602 {
4603 if (globals[reg])
4604 {
4605 if ((regname && globals[reg] != (symbolS *) 1
4606 && strcmp (S_GET_NAME (globals[reg]), regname))
4607 || ((regname != NULL) ^ (globals[reg] != (symbolS *) 1)))
4608 as_bad (_("redefinition of global register"));
4609 }
4610 else
4611 {
4612 if (regname == NULL)
4613 globals[reg] = (symbolS *) 1;
4614 else
4615 {
4616 if (*regname)
4617 {
4618 if (symbol_find (regname))
4619 as_bad (_("Register symbol %s already defined."),
4620 regname);
4621 }
4622 globals[reg] = symbol_make (regname);
4623 flags = symbol_get_bfdsym (globals[reg])->flags;
4624 if (! *regname)
4625 flags = flags & ~(BSF_GLOBAL|BSF_LOCAL|BSF_WEAK);
4626 if (! (flags & (BSF_GLOBAL|BSF_LOCAL|BSF_WEAK)))
4627 flags |= BSF_GLOBAL;
4628 symbol_get_bfdsym (globals[reg])->flags = flags;
4629 S_SET_VALUE (globals[reg], (valueT) reg);
4630 S_SET_ALIGN (globals[reg], reg);
4631 S_SET_SIZE (globals[reg], 0);
4632 /* Although we actually want undefined_section here,
4633 we have to use absolute_section, because otherwise
4634 generic as code will make it a COM section.
4635 We fix this up in sparc_adjust_symtab. */
4636 S_SET_SEGMENT (globals[reg], absolute_section);
4637 S_SET_OTHER (globals[reg], 0);
4638 elf_symbol (symbol_get_bfdsym (globals[reg]))
4639 ->internal_elf_sym.st_info =
4640 ELF_ST_INFO(STB_GLOBAL, STT_REGISTER);
4641 elf_symbol (symbol_get_bfdsym (globals[reg]))
4642 ->internal_elf_sym.st_shndx = SHN_UNDEF;
4643 }
4644 }
4645 }
4646
4647 (void) restore_line_pointer (c);
4648
4649 demand_empty_rest_of_line ();
4650 }
4651
4652 /* Adjust the symbol table. We set undefined sections for STT_REGISTER
4653 symbols which need it. */
4654
4655 void
4656 sparc_adjust_symtab (void)
4657 {
4658 symbolS *sym;
4659
4660 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
4661 {
4662 if (ELF_ST_TYPE (elf_symbol (symbol_get_bfdsym (sym))
4663 ->internal_elf_sym.st_info) != STT_REGISTER)
4664 continue;
4665
4666 if (ELF_ST_TYPE (elf_symbol (symbol_get_bfdsym (sym))
4667 ->internal_elf_sym.st_shndx != SHN_UNDEF))
4668 continue;
4669
4670 S_SET_SEGMENT (sym, undefined_section);
4671 }
4672 }
4673 #endif
4674
4675 /* If the --enforce-aligned-data option is used, we require .word,
4676 et. al., to be aligned correctly. We do it by setting up an
4677 rs_align_code frag, and checking in HANDLE_ALIGN to make sure that
4678 no unexpected alignment was introduced.
4679
4680 The SunOS and Solaris native assemblers enforce aligned data by
4681 default. We don't want to do that, because gcc can deliberately
4682 generate misaligned data if the packed attribute is used. Instead,
4683 we permit misaligned data by default, and permit the user to set an
4684 option to check for it. */
4685
4686 void
4687 sparc_cons_align (int nbytes)
4688 {
4689 int nalign;
4690
4691 /* Only do this if we are enforcing aligned data. */
4692 if (! enforce_aligned_data)
4693 return;
4694
4695 /* Don't align if this is an unaligned pseudo-op. */
4696 if (sparc_no_align_cons)
4697 return;
4698
4699 nalign = mylog2 (nbytes);
4700 if (nalign == 0)
4701 return;
4702
4703 gas_assert (nalign > 0);
4704
4705 if (now_seg == absolute_section)
4706 {
4707 if ((abs_section_offset & ((1 << nalign) - 1)) != 0)
4708 as_bad (_("misaligned data"));
4709 return;
4710 }
4711
4712 frag_var (rs_align_test, 1, 1, (relax_substateT) 0,
4713 (symbolS *) NULL, (offsetT) nalign, (char *) NULL);
4714
4715 record_alignment (now_seg, nalign);
4716 }
4717
4718 /* This is called from HANDLE_ALIGN in tc-sparc.h. */
4719
4720 void
4721 sparc_handle_align (fragS *fragp)
4722 {
4723 int count, fix;
4724 char *p;
4725
4726 count = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
4727
4728 switch (fragp->fr_type)
4729 {
4730 case rs_align_test:
4731 if (count != 0)
4732 as_bad_where (fragp->fr_file, fragp->fr_line, _("misaligned data"));
4733 break;
4734
4735 case rs_align_code:
4736 p = fragp->fr_literal + fragp->fr_fix;
4737 fix = 0;
4738
4739 if (count & 3)
4740 {
4741 fix = count & 3;
4742 memset (p, 0, fix);
4743 p += fix;
4744 count -= fix;
4745 }
4746
4747 if (SPARC_OPCODE_ARCH_V9_P (max_architecture) && count > 8)
4748 {
4749 unsigned wval = (0x30680000 | count >> 2); /* ba,a,pt %xcc, 1f */
4750 if (INSN_BIG_ENDIAN)
4751 number_to_chars_bigendian (p, wval, 4);
4752 else
4753 number_to_chars_littleendian (p, wval, 4);
4754 p += 4;
4755 count -= 4;
4756 fix += 4;
4757 }
4758
4759 if (INSN_BIG_ENDIAN)
4760 number_to_chars_bigendian (p, 0x01000000, 4);
4761 else
4762 number_to_chars_littleendian (p, 0x01000000, 4);
4763
4764 fragp->fr_fix += fix;
4765 fragp->fr_var = 4;
4766 break;
4767
4768 default:
4769 break;
4770 }
4771 }
4772
4773 #ifdef OBJ_ELF
4774 /* Some special processing for a Sparc ELF file. */
4775
4776 void
4777 sparc_elf_final_processing (void)
4778 {
4779 /* Set the Sparc ELF flag bits. FIXME: There should probably be some
4780 sort of BFD interface for this. */
4781 if (sparc_arch_size == 64)
4782 {
4783 switch (sparc_memory_model)
4784 {
4785 case MM_RMO:
4786 elf_elfheader (stdoutput)->e_flags |= EF_SPARCV9_RMO;
4787 break;
4788 case MM_PSO:
4789 elf_elfheader (stdoutput)->e_flags |= EF_SPARCV9_PSO;
4790 break;
4791 default:
4792 break;
4793 }
4794 }
4795 else if (current_architecture >= SPARC_OPCODE_ARCH_V9)
4796 elf_elfheader (stdoutput)->e_flags |= EF_SPARC_32PLUS;
4797 if (current_architecture == SPARC_OPCODE_ARCH_V9A)
4798 elf_elfheader (stdoutput)->e_flags |= EF_SPARC_SUN_US1;
4799 else if (current_architecture == SPARC_OPCODE_ARCH_V9B)
4800 elf_elfheader (stdoutput)->e_flags |= EF_SPARC_SUN_US1|EF_SPARC_SUN_US3;
4801 }
4802
4803 const char *
4804 sparc_cons (expressionS *exp, int size)
4805 {
4806 char *save;
4807 const char *sparc_cons_special_reloc = NULL;
4808
4809 SKIP_WHITESPACE ();
4810 save = input_line_pointer;
4811 if (input_line_pointer[0] == '%'
4812 && input_line_pointer[1] == 'r'
4813 && input_line_pointer[2] == '_')
4814 {
4815 if (strncmp (input_line_pointer + 3, "disp", 4) == 0)
4816 {
4817 input_line_pointer += 7;
4818 sparc_cons_special_reloc = "disp";
4819 }
4820 else if (strncmp (input_line_pointer + 3, "plt", 3) == 0)
4821 {
4822 if (size != 4 && size != 8)
4823 as_bad (_("Illegal operands: %%r_plt in %d-byte data field"), size);
4824 else
4825 {
4826 input_line_pointer += 6;
4827 sparc_cons_special_reloc = "plt";
4828 }
4829 }
4830 else if (strncmp (input_line_pointer + 3, "tls_dtpoff", 10) == 0)
4831 {
4832 if (size != 4 && size != 8)
4833 as_bad (_("Illegal operands: %%r_tls_dtpoff in %d-byte data field"), size);
4834 else
4835 {
4836 input_line_pointer += 13;
4837 sparc_cons_special_reloc = "tls_dtpoff";
4838 }
4839 }
4840 if (sparc_cons_special_reloc)
4841 {
4842 int bad = 0;
4843
4844 switch (size)
4845 {
4846 case 1:
4847 if (*input_line_pointer != '8')
4848 bad = 1;
4849 input_line_pointer--;
4850 break;
4851 case 2:
4852 if (input_line_pointer[0] != '1' || input_line_pointer[1] != '6')
4853 bad = 1;
4854 break;
4855 case 4:
4856 if (input_line_pointer[0] != '3' || input_line_pointer[1] != '2')
4857 bad = 1;
4858 break;
4859 case 8:
4860 if (input_line_pointer[0] != '6' || input_line_pointer[1] != '4')
4861 bad = 1;
4862 break;
4863 default:
4864 bad = 1;
4865 break;
4866 }
4867
4868 if (bad)
4869 {
4870 as_bad (_("Illegal operands: Only %%r_%s%d allowed in %d-byte data fields"),
4871 sparc_cons_special_reloc, size * 8, size);
4872 }
4873 else
4874 {
4875 input_line_pointer += 2;
4876 if (*input_line_pointer != '(')
4877 {
4878 as_bad (_("Illegal operands: %%r_%s%d requires arguments in ()"),
4879 sparc_cons_special_reloc, size * 8);
4880 bad = 1;
4881 }
4882 }
4883
4884 if (bad)
4885 {
4886 input_line_pointer = save;
4887 sparc_cons_special_reloc = NULL;
4888 }
4889 else
4890 {
4891 int c;
4892 char *end = ++input_line_pointer;
4893 int npar = 0;
4894
4895 while (! is_end_of_line[(c = *end)])
4896 {
4897 if (c == '(')
4898 npar++;
4899 else if (c == ')')
4900 {
4901 if (!npar)
4902 break;
4903 npar--;
4904 }
4905 end++;
4906 }
4907
4908 if (c != ')')
4909 as_bad (_("Illegal operands: %%r_%s%d requires arguments in ()"),
4910 sparc_cons_special_reloc, size * 8);
4911 else
4912 {
4913 *end = '\0';
4914 expression (exp);
4915 *end = c;
4916 if (input_line_pointer != end)
4917 {
4918 as_bad (_("Illegal operands: %%r_%s%d requires arguments in ()"),
4919 sparc_cons_special_reloc, size * 8);
4920 }
4921 else
4922 {
4923 input_line_pointer++;
4924 SKIP_WHITESPACE ();
4925 c = *input_line_pointer;
4926 if (! is_end_of_line[c] && c != ',')
4927 as_bad (_("Illegal operands: garbage after %%r_%s%d()"),
4928 sparc_cons_special_reloc, size * 8);
4929 }
4930 }
4931 }
4932 }
4933 }
4934 if (sparc_cons_special_reloc == NULL)
4935 expression (exp);
4936 return sparc_cons_special_reloc;
4937 }
4938
4939 #endif
4940
4941 /* This is called by emit_expr via TC_CONS_FIX_NEW when creating a
4942 reloc for a cons. We could use the definition there, except that
4943 we want to handle little endian relocs specially. */
4944
4945 void
4946 cons_fix_new_sparc (fragS *frag,
4947 int where,
4948 unsigned int nbytes,
4949 expressionS *exp,
4950 const char *sparc_cons_special_reloc)
4951 {
4952 bfd_reloc_code_real_type r;
4953
4954 r = (nbytes == 1 ? BFD_RELOC_8 :
4955 (nbytes == 2 ? BFD_RELOC_16 :
4956 (nbytes == 4 ? BFD_RELOC_32 : BFD_RELOC_64)));
4957
4958 if (target_little_endian_data
4959 && nbytes == 4
4960 && now_seg->flags & SEC_ALLOC)
4961 r = BFD_RELOC_SPARC_REV32;
4962
4963 #ifdef TE_SOLARIS
4964 /* The Solaris linker does not allow R_SPARC_UA64
4965 relocations for 32-bit executables. */
4966 if (!target_little_endian_data
4967 && sparc_arch_size != 64
4968 && r == BFD_RELOC_64)
4969 r = BFD_RELOC_32;
4970 #endif
4971
4972 if (sparc_cons_special_reloc)
4973 {
4974 if (*sparc_cons_special_reloc == 'd')
4975 switch (nbytes)
4976 {
4977 case 1: r = BFD_RELOC_8_PCREL; break;
4978 case 2: r = BFD_RELOC_16_PCREL; break;
4979 case 4: r = BFD_RELOC_32_PCREL; break;
4980 case 8: r = BFD_RELOC_64_PCREL; break;
4981 default: abort ();
4982 }
4983 else if (*sparc_cons_special_reloc == 'p')
4984 switch (nbytes)
4985 {
4986 case 4: r = BFD_RELOC_SPARC_PLT32; break;
4987 case 8: r = BFD_RELOC_SPARC_PLT64; break;
4988 }
4989 else
4990 switch (nbytes)
4991 {
4992 case 4: r = BFD_RELOC_SPARC_TLS_DTPOFF32; break;
4993 case 8: r = BFD_RELOC_SPARC_TLS_DTPOFF64; break;
4994 }
4995 }
4996 else if (sparc_no_align_cons
4997 || /* PR 20803 - relocs in the .eh_frame section
4998 need to support unaligned access. */
4999 strcmp (now_seg->name, ".eh_frame") == 0)
5000 {
5001 switch (nbytes)
5002 {
5003 case 2: r = BFD_RELOC_SPARC_UA16; break;
5004 case 4: r = BFD_RELOC_SPARC_UA32; break;
5005 #ifdef TE_SOLARIS
5006 /* The Solaris linker does not allow R_SPARC_UA64
5007 relocations for 32-bit executables. */
5008 case 8: r = sparc_arch_size == 64 ?
5009 BFD_RELOC_SPARC_UA64 : BFD_RELOC_SPARC_UA32; break;
5010 #else
5011 case 8: r = BFD_RELOC_SPARC_UA64; break;
5012 #endif
5013 default: abort ();
5014 }
5015 }
5016
5017 fix_new_exp (frag, where, (int) nbytes, exp, 0, r);
5018 }
5019
5020 void
5021 sparc_cfi_frame_initial_instructions (void)
5022 {
5023 cfi_add_CFA_def_cfa (14, sparc_arch_size == 64 ? 0x7ff : 0);
5024 }
5025
5026 int
5027 sparc_regname_to_dw2regnum (char *regname)
5028 {
5029 char *q;
5030 int i;
5031
5032 if (!regname[0])
5033 return -1;
5034
5035 switch (regname[0])
5036 {
5037 case 'g': i = 0; break;
5038 case 'o': i = 1; break;
5039 case 'l': i = 2; break;
5040 case 'i': i = 3; break;
5041 default: i = -1; break;
5042 }
5043 if (i != -1)
5044 {
5045 if (regname[1] < '0' || regname[1] > '8' || regname[2])
5046 return -1;
5047 return i * 8 + regname[1] - '0';
5048 }
5049 if (regname[0] == 's' && regname[1] == 'p' && !regname[2])
5050 return 14;
5051 if (regname[0] == 'f' && regname[1] == 'p' && !regname[2])
5052 return 30;
5053 if (regname[0] == 'f' || regname[0] == 'r')
5054 {
5055 unsigned int regnum;
5056
5057 regnum = strtoul (regname + 1, &q, 10);
5058 if (q == NULL || *q)
5059 return -1;
5060 if (regnum >= ((regname[0] == 'f'
5061 && SPARC_OPCODE_ARCH_V9_P (max_architecture))
5062 ? 64 : 32))
5063 return -1;
5064 if (regname[0] == 'f')
5065 {
5066 regnum += 32;
5067 if (regnum >= 64 && (regnum & 1))
5068 return -1;
5069 }
5070 return regnum;
5071 }
5072 return -1;
5073 }
5074
5075 void
5076 sparc_cfi_emit_pcrel_expr (expressionS *exp, unsigned int nbytes)
5077 {
5078 sparc_no_align_cons = 1;
5079 emit_expr_with_reloc (exp, nbytes, "disp");
5080 sparc_no_align_cons = 0;
5081 }
This page took 0.13522 seconds and 5 git commands to generate.