gas: improve architecture mismatch diagnostics in sparc
[deliverable/binutils-gdb.git] / gas / config / tc-sparc.c
1 /* tc-sparc.c -- Assemble for the SPARC
2 Copyright (C) 1989-2016 Free Software Foundation, Inc.
3 This file is part of GAS, the GNU Assembler.
4
5 GAS is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 3, or (at your option)
8 any later version.
9
10 GAS is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public
16 License along with GAS; see the file COPYING. If not, write
17 to the Free Software Foundation, 51 Franklin Street - Fifth Floor,
18 Boston, MA 02110-1301, USA. */
19
20 #include "as.h"
21 #include "safe-ctype.h"
22 #include "subsegs.h"
23
24 #include "opcode/sparc.h"
25 #include "dw2gencfi.h"
26
27 #ifdef OBJ_ELF
28 #include "elf/sparc.h"
29 #include "dwarf2dbg.h"
30 #endif
31
32 /* Some ancient Sun C compilers would not take such hex constants as
33 unsigned, and would end up sign-extending them to form an offsetT,
34 so use these constants instead. */
35 #define U0xffffffff ((((unsigned long) 1 << 16) << 16) - 1)
36 #define U0x80000000 ((((unsigned long) 1 << 16) << 15))
37
38 static int sparc_ip (char *, const struct sparc_opcode **);
39 static int parse_keyword_arg (int (*) (const char *), char **, int *);
40 static int parse_const_expr_arg (char **, int *);
41 static int get_expression (char *);
42
43 /* Default architecture. */
44 /* ??? The default value should be V8, but sparclite support was added
45 by making it the default. GCC now passes -Asparclite, so maybe sometime in
46 the future we can set this to V8. */
47 #ifndef DEFAULT_ARCH
48 #define DEFAULT_ARCH "sparclite"
49 #endif
50 static const char *default_arch = DEFAULT_ARCH;
51
52 /* Non-zero if the initial values of `max_architecture' and `sparc_arch_size'
53 have been set. */
54 static int default_init_p;
55
56 /* Current architecture. We don't bump up unless necessary. */
57 static enum sparc_opcode_arch_val current_architecture = SPARC_OPCODE_ARCH_V6;
58
59 /* The maximum architecture level we can bump up to.
60 In a 32 bit environment, don't allow bumping up to v9 by default.
61 The native assembler works this way. The user is required to pass
62 an explicit argument before we'll create v9 object files. However, if
63 we don't see any v9 insns, a v8plus object file is not created. */
64 static enum sparc_opcode_arch_val max_architecture;
65
66 /* Either 32 or 64, selects file format. */
67 static int sparc_arch_size;
68 /* Initial (default) value, recorded separately in case a user option
69 changes the value before md_show_usage is called. */
70 static int default_arch_size;
71
72 #ifdef OBJ_ELF
73 /* The currently selected v9 memory model. Currently only used for
74 ELF. */
75 static enum { MM_TSO, MM_PSO, MM_RMO } sparc_memory_model = MM_RMO;
76
77 #ifndef TE_SOLARIS
78 /* Bitmask of instruction types seen so far, used to populate the
79 GNU attributes section with hwcap information. */
80 static bfd_uint64_t hwcap_seen;
81 #endif
82 #endif
83
84 static bfd_uint64_t hwcap_allowed;
85
86 static int architecture_requested;
87 static int warn_on_bump;
88
89 /* If warn_on_bump and the needed architecture is higher than this
90 architecture, issue a warning. */
91 static enum sparc_opcode_arch_val warn_after_architecture;
92
93 /* Non-zero if the assembler should generate error if an undeclared
94 g[23] register has been used in -64. */
95 static int no_undeclared_regs;
96
97 /* Non-zero if the assembler should generate a warning if an
98 unpredictable DCTI (delayed control transfer instruction) couple is
99 found. */
100 static int dcti_couples_detect;
101
102 /* Non-zero if we should try to relax jumps and calls. */
103 static int sparc_relax;
104
105 /* Non-zero if we are generating PIC code. */
106 int sparc_pic_code;
107
108 /* Non-zero if we should give an error when misaligned data is seen. */
109 static int enforce_aligned_data;
110
111 extern int target_big_endian;
112
113 static int target_little_endian_data;
114
115 /* Symbols for global registers on v9. */
116 static symbolS *globals[8];
117
118 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
119 int sparc_cie_data_alignment;
120
121 /* V9 and 86x have big and little endian data, but instructions are always big
122 endian. The sparclet has bi-endian support but both data and insns have
123 the same endianness. Global `target_big_endian' is used for data.
124 The following macro is used for instructions. */
125 #ifndef INSN_BIG_ENDIAN
126 #define INSN_BIG_ENDIAN (target_big_endian \
127 || default_arch_type == sparc86x \
128 || SPARC_OPCODE_ARCH_V9_P (max_architecture))
129 #endif
130
131 /* Handle of the OPCODE hash table. */
132 static struct hash_control *op_hash;
133
134 static void s_data1 (void);
135 static void s_seg (int);
136 static void s_proc (int);
137 static void s_reserve (int);
138 static void s_common (int);
139 static void s_empty (int);
140 static void s_uacons (int);
141 static void s_ncons (int);
142 #ifdef OBJ_ELF
143 static void s_register (int);
144 #endif
145
146 const pseudo_typeS md_pseudo_table[] =
147 {
148 {"align", s_align_bytes, 0}, /* Defaulting is invalid (0). */
149 {"common", s_common, 0},
150 {"empty", s_empty, 0},
151 {"global", s_globl, 0},
152 {"half", cons, 2},
153 {"nword", s_ncons, 0},
154 {"optim", s_ignore, 0},
155 {"proc", s_proc, 0},
156 {"reserve", s_reserve, 0},
157 {"seg", s_seg, 0},
158 {"skip", s_space, 0},
159 {"word", cons, 4},
160 {"xword", cons, 8},
161 {"uahalf", s_uacons, 2},
162 {"uaword", s_uacons, 4},
163 {"uaxword", s_uacons, 8},
164 #ifdef OBJ_ELF
165 /* These are specific to sparc/svr4. */
166 {"2byte", s_uacons, 2},
167 {"4byte", s_uacons, 4},
168 {"8byte", s_uacons, 8},
169 {"register", s_register, 0},
170 #endif
171 {NULL, 0, 0},
172 };
173
174 /* This array holds the chars that always start a comment. If the
175 pre-processor is disabled, these aren't very useful. */
176 const char comment_chars[] = "!"; /* JF removed '|' from
177 comment_chars. */
178
179 /* This array holds the chars that only start a comment at the beginning of
180 a line. If the line seems to have the form '# 123 filename'
181 .line and .file directives will appear in the pre-processed output. */
182 /* Note that input_file.c hand checks for '#' at the beginning of the
183 first line of the input file. This is because the compiler outputs
184 #NO_APP at the beginning of its output. */
185 /* Also note that comments started like this one will always
186 work if '/' isn't otherwise defined. */
187 const char line_comment_chars[] = "#";
188
189 const char line_separator_chars[] = ";";
190
191 /* Chars that can be used to separate mant from exp in floating point
192 nums. */
193 const char EXP_CHARS[] = "eE";
194
195 /* Chars that mean this number is a floating point constant.
196 As in 0f12.456
197 or 0d1.2345e12 */
198 const char FLT_CHARS[] = "rRsSfFdDxXpP";
199
200 /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
201 changed in read.c. Ideally it shouldn't have to know about it at all,
202 but nothing is ideal around here. */
203
204 #define isoctal(c) ((unsigned) ((c) - '0') < 8)
205
206 struct sparc_it
207 {
208 const char *error;
209 unsigned long opcode;
210 struct nlist *nlistp;
211 expressionS exp;
212 expressionS exp2;
213 int pcrel;
214 bfd_reloc_code_real_type reloc;
215 };
216
217 struct sparc_it the_insn, set_insn;
218
219 static void output_insn (const struct sparc_opcode *, struct sparc_it *);
220 \f
221 /* Table of arguments to -A.
222 The sparc_opcode_arch table in sparc-opc.c is insufficient and incorrect
223 for this use. That table is for opcodes only. This table is for opcodes
224 and file formats. */
225
226 enum sparc_arch_types {v6, v7, v8, leon, sparclet, sparclite, sparc86x, v8plus,
227 v8plusa, v9, v9a, v9b, v9_64};
228
229 /* Hardware capability sets, used to keep sparc_arch_table easy to
230 read. */
231 #define HWS_V8 HWCAP_MUL32 | HWCAP_DIV32 | HWCAP_FSMULD
232 #define HWS_V9 HWS_V8 | HWCAP_POPC
233 #define HWS_VA HWS_V9 | HWCAP_VIS
234 #define HWS_VB HWS_VA | HWCAP_VIS2
235 #define HWS_VC HWS_VB | HWCAP_ASI_BLK_INIT
236 #define HWS_VD HWS_VC | HWCAP_FMAF | HWCAP_VIS3 | HWCAP_HPC
237 #define HWS_VE HWS_VD \
238 | HWCAP_AES | HWCAP_DES | HWCAP_KASUMI | HWCAP_CAMELLIA \
239 | HWCAP_MD5 | HWCAP_SHA1 | HWCAP_SHA256 |HWCAP_SHA512 | HWCAP_MPMUL \
240 | HWCAP_MONT | HWCAP_CRC32C | HWCAP_CBCOND | HWCAP_PAUSE
241 #define HWS_VV HWS_VE | HWCAP_FJFMAU | HWCAP_IMA
242 #define HWS_VM HWS_VV
243
244 #define HWS2_VM \
245 HWCAP2_VIS3B | HWCAP2_ADP | HWCAP2_SPARC5 | HWCAP2_MWAIT \
246 | HWCAP2_XMPMUL | HWCAP2_XMONT
247
248 static struct sparc_arch {
249 const char *name;
250 const char *opcode_arch;
251 enum sparc_arch_types arch_type;
252 /* Default word size, as specified during configuration.
253 A value of zero means can't be used to specify default architecture. */
254 int default_arch_size;
255 /* Allowable arg to -A? */
256 int user_option_p;
257 int hwcap_allowed;
258 int hwcap2_allowed;
259 } sparc_arch_table[] = {
260 { "v6", "v6", v6, 0, 1, 0, 0 },
261 { "v7", "v7", v7, 0, 1, 0, 0 },
262 { "v8", "v8", v8, 32, 1, HWS_V8, 0 },
263 { "v8a", "v8", v8, 32, 1, HWS_V8, 0 },
264 { "sparc", "v9", v9, 0, 1, HWCAP_V8PLUS|HWS_V9, 0 },
265 { "sparcvis", "v9a", v9, 0, 1, HWS_VA, 0 },
266 { "sparcvis2", "v9b", v9, 0, 1, HWS_VB, 0 },
267 { "sparcfmaf", "v9b", v9, 0, 1, HWS_VB|HWCAP_FMAF, 0 },
268 { "sparcima", "v9b", v9, 0, 1, HWS_VB|HWCAP_FMAF|HWCAP_IMA, 0 },
269 { "sparcvis3", "v9b", v9, 0, 1, HWS_VB|HWCAP_FMAF|HWCAP_VIS3|HWCAP_HPC, 0 },
270 { "sparcvis3r", "v9b", v9, 0, 1, HWS_VB|HWCAP_FMAF|HWCAP_VIS3|HWCAP_HPC|HWCAP_FJFMAU, 0 },
271
272 { "sparc4", "v9v", v9, 0, 1, HWS_VV, 0 },
273 { "sparc5", "v9m", v9, 0, 1, HWS_VM, HWS2_VM },
274
275 { "leon", "leon", leon, 32, 1, HWS_V8, 0 },
276 { "sparclet", "sparclet", sparclet, 32, 1, HWS_V8, 0 },
277 { "sparclite", "sparclite", sparclite, 32, 1, HWS_V8, 0 },
278 { "sparc86x", "sparclite", sparc86x, 32, 1, HWS_V8, 0 },
279
280 { "v8plus", "v9", v9, 0, 1, HWCAP_V8PLUS|HWS_V9, 0 },
281 { "v8plusa", "v9a", v9, 0, 1, HWCAP_V8PLUS|HWS_VA, 0 },
282 { "v8plusb", "v9b", v9, 0, 1, HWCAP_V8PLUS|HWS_VB, 0 },
283 { "v8plusc", "v9c", v9, 0, 1, HWCAP_V8PLUS|HWS_VC, 0 },
284 { "v8plusd", "v9d", v9, 0, 1, HWCAP_V8PLUS|HWS_VD, 0 },
285 { "v8pluse", "v9e", v9, 0, 1, HWCAP_V8PLUS|HWS_VE, 0 },
286 { "v8plusv", "v9v", v9, 0, 1, HWCAP_V8PLUS|HWS_VV, 0 },
287 { "v8plusm", "v9m", v9, 0, 1, HWCAP_V8PLUS|HWS_VM, 0 },
288
289 { "v9", "v9", v9, 0, 1, HWS_V9, 0 },
290 { "v9a", "v9a", v9, 0, 1, HWS_VA, 0 },
291 { "v9b", "v9b", v9, 0, 1, HWS_VB, 0 },
292 { "v9c", "v9c", v9, 0, 1, HWS_VC, 0 },
293 { "v9d", "v9d", v9, 0, 1, HWS_VD, 0 },
294 { "v9e", "v9e", v9, 0, 1, HWS_VE, 0 },
295 { "v9v", "v9v", v9, 0, 1, HWS_VV, 0 },
296 { "v9m", "v9m", v9, 0, 1, HWS_VM, HWS2_VM },
297
298 /* This exists to allow configure.tgt to pass one
299 value to specify both the default machine and default word size. */
300 { "v9-64", "v9", v9, 64, 0, HWS_V9, 0 },
301 { NULL, NULL, v8, 0, 0, 0, 0 }
302 };
303
304 /* Variant of default_arch */
305 static enum sparc_arch_types default_arch_type;
306
307 static struct sparc_arch *
308 lookup_arch (const char *name)
309 {
310 struct sparc_arch *sa;
311
312 for (sa = &sparc_arch_table[0]; sa->name != NULL; sa++)
313 if (strcmp (sa->name, name) == 0)
314 break;
315 if (sa->name == NULL)
316 return NULL;
317 return sa;
318 }
319
320 /* Initialize the default opcode arch and word size from the default
321 architecture name. */
322
323 static void
324 init_default_arch (void)
325 {
326 struct sparc_arch *sa = lookup_arch (default_arch);
327
328 if (sa == NULL
329 || sa->default_arch_size == 0)
330 as_fatal (_("Invalid default architecture, broken assembler."));
331
332 max_architecture = sparc_opcode_lookup_arch (sa->opcode_arch);
333 if (max_architecture == SPARC_OPCODE_ARCH_BAD)
334 as_fatal (_("Bad opcode table, broken assembler."));
335 default_arch_size = sparc_arch_size = sa->default_arch_size;
336 default_init_p = 1;
337 default_arch_type = sa->arch_type;
338 }
339
340 /* Called by TARGET_FORMAT. */
341
342 const char *
343 sparc_target_format (void)
344 {
345 /* We don't get a chance to initialize anything before we're called,
346 so handle that now. */
347 if (! default_init_p)
348 init_default_arch ();
349
350 #ifdef OBJ_AOUT
351 #ifdef TE_NetBSD
352 return "a.out-sparc-netbsd";
353 #else
354 #ifdef TE_SPARCAOUT
355 if (target_big_endian)
356 return "a.out-sunos-big";
357 else if (default_arch_type == sparc86x && target_little_endian_data)
358 return "a.out-sunos-big";
359 else
360 return "a.out-sparc-little";
361 #else
362 return "a.out-sunos-big";
363 #endif
364 #endif
365 #endif
366
367 #ifdef OBJ_BOUT
368 return "b.out.big";
369 #endif
370
371 #ifdef OBJ_COFF
372 #ifdef TE_LYNX
373 return "coff-sparc-lynx";
374 #else
375 return "coff-sparc";
376 #endif
377 #endif
378
379 #ifdef TE_VXWORKS
380 return "elf32-sparc-vxworks";
381 #endif
382
383 #ifdef OBJ_ELF
384 return sparc_arch_size == 64 ? ELF64_TARGET_FORMAT : ELF_TARGET_FORMAT;
385 #endif
386
387 abort ();
388 }
389 \f
390 /* md_parse_option
391 * Invocation line includes a switch not recognized by the base assembler.
392 * See if it's a processor-specific option. These are:
393 *
394 * -bump
395 * Warn on architecture bumps. See also -A.
396 *
397 * -Av6, -Av7, -Av8, -Aleon, -Asparclite, -Asparclet
398 * Standard 32 bit architectures.
399 * -Av9, -Av9a, -Av9b
400 * Sparc64 in either a 32 or 64 bit world (-32/-64 says which).
401 * This used to only mean 64 bits, but properly specifying it
402 * complicated gcc's ASM_SPECs, so now opcode selection is
403 * specified orthogonally to word size (except when specifying
404 * the default, but that is an internal implementation detail).
405 * -Av8plus, -Av8plusa, -Av8plusb
406 * Same as -Av9{,a,b}.
407 * -xarch=v8plus, -xarch=v8plusa, -xarch=v8plusb
408 * Same as -Av8plus{,a,b} -32, for compatibility with Sun's
409 * assembler.
410 * -xarch=v9, -xarch=v9a, -xarch=v9b
411 * Same as -Av9{,a,b} -64, for compatibility with Sun's
412 * assembler.
413 *
414 * Select the architecture and possibly the file format.
415 * Instructions or features not supported by the selected
416 * architecture cause fatal errors.
417 *
418 * The default is to start at v6, and bump the architecture up
419 * whenever an instruction is seen at a higher level. In 32 bit
420 * environments, v9 is not bumped up to, the user must pass
421 * -Av8plus{,a,b}.
422 *
423 * If -bump is specified, a warning is printing when bumping to
424 * higher levels.
425 *
426 * If an architecture is specified, all instructions must match
427 * that architecture. Any higher level instructions are flagged
428 * as errors. Note that in the 32 bit environment specifying
429 * -Av8plus does not automatically create a v8plus object file, a
430 * v9 insn must be seen.
431 *
432 * If both an architecture and -bump are specified, the
433 * architecture starts at the specified level, but bumps are
434 * warnings. Note that we can't set `current_architecture' to
435 * the requested level in this case: in the 32 bit environment,
436 * we still must avoid creating v8plus object files unless v9
437 * insns are seen.
438 *
439 * Note:
440 * Bumping between incompatible architectures is always an
441 * error. For example, from sparclite to v9.
442 */
443
444 #ifdef OBJ_ELF
445 const char *md_shortopts = "A:K:VQ:sq";
446 #else
447 #ifdef OBJ_AOUT
448 const char *md_shortopts = "A:k";
449 #else
450 const char *md_shortopts = "A:";
451 #endif
452 #endif
453 struct option md_longopts[] = {
454 #define OPTION_BUMP (OPTION_MD_BASE)
455 {"bump", no_argument, NULL, OPTION_BUMP},
456 #define OPTION_SPARC (OPTION_MD_BASE + 1)
457 {"sparc", no_argument, NULL, OPTION_SPARC},
458 #define OPTION_XARCH (OPTION_MD_BASE + 2)
459 {"xarch", required_argument, NULL, OPTION_XARCH},
460 #ifdef OBJ_ELF
461 #define OPTION_32 (OPTION_MD_BASE + 3)
462 {"32", no_argument, NULL, OPTION_32},
463 #define OPTION_64 (OPTION_MD_BASE + 4)
464 {"64", no_argument, NULL, OPTION_64},
465 #define OPTION_TSO (OPTION_MD_BASE + 5)
466 {"TSO", no_argument, NULL, OPTION_TSO},
467 #define OPTION_PSO (OPTION_MD_BASE + 6)
468 {"PSO", no_argument, NULL, OPTION_PSO},
469 #define OPTION_RMO (OPTION_MD_BASE + 7)
470 {"RMO", no_argument, NULL, OPTION_RMO},
471 #endif
472 #ifdef SPARC_BIENDIAN
473 #define OPTION_LITTLE_ENDIAN (OPTION_MD_BASE + 8)
474 {"EL", no_argument, NULL, OPTION_LITTLE_ENDIAN},
475 #define OPTION_BIG_ENDIAN (OPTION_MD_BASE + 9)
476 {"EB", no_argument, NULL, OPTION_BIG_ENDIAN},
477 #endif
478 #define OPTION_ENFORCE_ALIGNED_DATA (OPTION_MD_BASE + 10)
479 {"enforce-aligned-data", no_argument, NULL, OPTION_ENFORCE_ALIGNED_DATA},
480 #define OPTION_LITTLE_ENDIAN_DATA (OPTION_MD_BASE + 11)
481 {"little-endian-data", no_argument, NULL, OPTION_LITTLE_ENDIAN_DATA},
482 #ifdef OBJ_ELF
483 #define OPTION_NO_UNDECLARED_REGS (OPTION_MD_BASE + 12)
484 {"no-undeclared-regs", no_argument, NULL, OPTION_NO_UNDECLARED_REGS},
485 #define OPTION_UNDECLARED_REGS (OPTION_MD_BASE + 13)
486 {"undeclared-regs", no_argument, NULL, OPTION_UNDECLARED_REGS},
487 #endif
488 #define OPTION_RELAX (OPTION_MD_BASE + 14)
489 {"relax", no_argument, NULL, OPTION_RELAX},
490 #define OPTION_NO_RELAX (OPTION_MD_BASE + 15)
491 {"no-relax", no_argument, NULL, OPTION_NO_RELAX},
492 #define OPTION_DCTI_COUPLES_DETECT (OPTION_MD_BASE + 16)
493 {"dcti-couples-detect", no_argument, NULL, OPTION_DCTI_COUPLES_DETECT},
494 {NULL, no_argument, NULL, 0}
495 };
496
497 size_t md_longopts_size = sizeof (md_longopts);
498
499 int
500 md_parse_option (int c, const char *arg)
501 {
502 /* We don't get a chance to initialize anything before we're called,
503 so handle that now. */
504 if (! default_init_p)
505 init_default_arch ();
506
507 switch (c)
508 {
509 case OPTION_BUMP:
510 warn_on_bump = 1;
511 warn_after_architecture = SPARC_OPCODE_ARCH_V6;
512 break;
513
514 case OPTION_XARCH:
515 #ifdef OBJ_ELF
516 if (!strncmp (arg, "v9", 2))
517 md_parse_option (OPTION_64, NULL);
518 else
519 {
520 if (!strncmp (arg, "v8", 2)
521 || !strncmp (arg, "v7", 2)
522 || !strncmp (arg, "v6", 2)
523 || !strcmp (arg, "sparclet")
524 || !strcmp (arg, "sparclite")
525 || !strcmp (arg, "sparc86x"))
526 md_parse_option (OPTION_32, NULL);
527 }
528 #endif
529 /* Fall through. */
530
531 case 'A':
532 {
533 struct sparc_arch *sa;
534 enum sparc_opcode_arch_val opcode_arch;
535
536 sa = lookup_arch (arg);
537 if (sa == NULL
538 || ! sa->user_option_p)
539 {
540 if (c == OPTION_XARCH)
541 as_bad (_("invalid architecture -xarch=%s"), arg);
542 else
543 as_bad (_("invalid architecture -A%s"), arg);
544 return 0;
545 }
546
547 opcode_arch = sparc_opcode_lookup_arch (sa->opcode_arch);
548 if (opcode_arch == SPARC_OPCODE_ARCH_BAD)
549 as_fatal (_("Bad opcode table, broken assembler."));
550
551 if (!architecture_requested
552 || opcode_arch > max_architecture)
553 max_architecture = opcode_arch;
554 hwcap_allowed
555 |= (((bfd_uint64_t) sa->hwcap2_allowed) << 32) | sa->hwcap_allowed;
556 architecture_requested = 1;
557 }
558 break;
559
560 case OPTION_SPARC:
561 /* Ignore -sparc, used by SunOS make default .s.o rule. */
562 break;
563
564 case OPTION_ENFORCE_ALIGNED_DATA:
565 enforce_aligned_data = 1;
566 break;
567
568 #ifdef SPARC_BIENDIAN
569 case OPTION_LITTLE_ENDIAN:
570 target_big_endian = 0;
571 if (default_arch_type != sparclet)
572 as_fatal ("This target does not support -EL");
573 break;
574 case OPTION_LITTLE_ENDIAN_DATA:
575 target_little_endian_data = 1;
576 target_big_endian = 0;
577 if (default_arch_type != sparc86x
578 && default_arch_type != v9)
579 as_fatal ("This target does not support --little-endian-data");
580 break;
581 case OPTION_BIG_ENDIAN:
582 target_big_endian = 1;
583 break;
584 #endif
585
586 #ifdef OBJ_AOUT
587 case 'k':
588 sparc_pic_code = 1;
589 break;
590 #endif
591
592 #ifdef OBJ_ELF
593 case OPTION_32:
594 case OPTION_64:
595 {
596 const char **list, **l;
597
598 sparc_arch_size = c == OPTION_32 ? 32 : 64;
599 list = bfd_target_list ();
600 for (l = list; *l != NULL; l++)
601 {
602 if (sparc_arch_size == 32)
603 {
604 if (CONST_STRNEQ (*l, "elf32-sparc"))
605 break;
606 }
607 else
608 {
609 if (CONST_STRNEQ (*l, "elf64-sparc"))
610 break;
611 }
612 }
613 if (*l == NULL)
614 as_fatal (_("No compiled in support for %d bit object file format"),
615 sparc_arch_size);
616 free (list);
617
618 if (sparc_arch_size == 64
619 && max_architecture < SPARC_OPCODE_ARCH_V9)
620 max_architecture = SPARC_OPCODE_ARCH_V9;
621 }
622 break;
623
624 case OPTION_TSO:
625 sparc_memory_model = MM_TSO;
626 break;
627
628 case OPTION_PSO:
629 sparc_memory_model = MM_PSO;
630 break;
631
632 case OPTION_RMO:
633 sparc_memory_model = MM_RMO;
634 break;
635
636 case 'V':
637 print_version_id ();
638 break;
639
640 case 'Q':
641 /* Qy - do emit .comment
642 Qn - do not emit .comment. */
643 break;
644
645 case 's':
646 /* Use .stab instead of .stab.excl. */
647 break;
648
649 case 'q':
650 /* quick -- Native assembler does fewer checks. */
651 break;
652
653 case 'K':
654 if (strcmp (arg, "PIC") != 0)
655 as_warn (_("Unrecognized option following -K"));
656 else
657 sparc_pic_code = 1;
658 break;
659
660 case OPTION_NO_UNDECLARED_REGS:
661 no_undeclared_regs = 1;
662 break;
663
664 case OPTION_UNDECLARED_REGS:
665 no_undeclared_regs = 0;
666 break;
667 #endif
668
669 case OPTION_RELAX:
670 sparc_relax = 1;
671 break;
672
673 case OPTION_NO_RELAX:
674 sparc_relax = 0;
675 break;
676
677 case OPTION_DCTI_COUPLES_DETECT:
678 dcti_couples_detect = 1;
679 break;
680
681 default:
682 return 0;
683 }
684
685 return 1;
686 }
687
688 void
689 md_show_usage (FILE *stream)
690 {
691 const struct sparc_arch *arch;
692 int column;
693
694 /* We don't get a chance to initialize anything before we're called,
695 so handle that now. */
696 if (! default_init_p)
697 init_default_arch ();
698
699 fprintf (stream, _("SPARC options:\n"));
700 column = 0;
701 for (arch = &sparc_arch_table[0]; arch->name; arch++)
702 {
703 if (!arch->user_option_p)
704 continue;
705 if (arch != &sparc_arch_table[0])
706 fprintf (stream, " | ");
707 if (column + strlen (arch->name) > 70)
708 {
709 column = 0;
710 fputc ('\n', stream);
711 }
712 column += 5 + 2 + strlen (arch->name);
713 fprintf (stream, "-A%s", arch->name);
714 }
715 for (arch = &sparc_arch_table[0]; arch->name; arch++)
716 {
717 if (!arch->user_option_p)
718 continue;
719 fprintf (stream, " | ");
720 if (column + strlen (arch->name) > 65)
721 {
722 column = 0;
723 fputc ('\n', stream);
724 }
725 column += 5 + 7 + strlen (arch->name);
726 fprintf (stream, "-xarch=%s", arch->name);
727 }
728 fprintf (stream, _("\n\
729 specify variant of SPARC architecture\n\
730 -bump warn when assembler switches architectures\n\
731 -sparc ignored\n\
732 --enforce-aligned-data force .long, etc., to be aligned correctly\n\
733 -relax relax jumps and branches (default)\n\
734 -no-relax avoid changing any jumps and branches\n"));
735 #ifdef OBJ_AOUT
736 fprintf (stream, _("\
737 -k generate PIC\n"));
738 #endif
739 #ifdef OBJ_ELF
740 fprintf (stream, _("\
741 -32 create 32 bit object file\n\
742 -64 create 64 bit object file\n"));
743 fprintf (stream, _("\
744 [default is %d]\n"), default_arch_size);
745 fprintf (stream, _("\
746 -TSO use Total Store Ordering\n\
747 -PSO use Partial Store Ordering\n\
748 -RMO use Relaxed Memory Ordering\n"));
749 fprintf (stream, _("\
750 [default is %s]\n"), (default_arch_size == 64) ? "RMO" : "TSO");
751 fprintf (stream, _("\
752 -KPIC generate PIC\n\
753 -V print assembler version number\n\
754 -undeclared-regs ignore application global register usage without\n\
755 appropriate .register directive (default)\n\
756 -no-undeclared-regs force error on application global register usage\n\
757 without appropriate .register directive\n\
758 --dcti-couples-detect warn when an unpredictable DCTI couple is found\n\
759 -q ignored\n\
760 -Qy, -Qn ignored\n\
761 -s ignored\n"));
762 #endif
763 #ifdef SPARC_BIENDIAN
764 fprintf (stream, _("\
765 -EL generate code for a little endian machine\n\
766 -EB generate code for a big endian machine\n\
767 --little-endian-data generate code for a machine having big endian\n\
768 instructions and little endian data.\n"));
769 #endif
770 }
771 \f
772 /* Native operand size opcode translation. */
773 static struct
774 {
775 const char *name;
776 const char *name32;
777 const char *name64;
778 } native_op_table[] =
779 {
780 {"ldn", "ld", "ldx"},
781 {"ldna", "lda", "ldxa"},
782 {"stn", "st", "stx"},
783 {"stna", "sta", "stxa"},
784 {"slln", "sll", "sllx"},
785 {"srln", "srl", "srlx"},
786 {"sran", "sra", "srax"},
787 {"casn", "cas", "casx"},
788 {"casna", "casa", "casxa"},
789 {"clrn", "clr", "clrx"},
790 {NULL, NULL, NULL},
791 };
792 \f
793 /* sparc64 privileged and hyperprivileged registers. */
794
795 struct priv_reg_entry
796 {
797 const char *name;
798 int regnum;
799 };
800
801 struct priv_reg_entry priv_reg_table[] =
802 {
803 {"tpc", 0},
804 {"tnpc", 1},
805 {"tstate", 2},
806 {"tt", 3},
807 {"tick", 4},
808 {"tba", 5},
809 {"pstate", 6},
810 {"tl", 7},
811 {"pil", 8},
812 {"cwp", 9},
813 {"cansave", 10},
814 {"canrestore", 11},
815 {"cleanwin", 12},
816 {"otherwin", 13},
817 {"wstate", 14},
818 {"fq", 15},
819 {"gl", 16},
820 {"pmcdper", 23},
821 {"ver", 31},
822 {NULL, -1}, /* End marker. */
823 };
824
825 struct priv_reg_entry hpriv_reg_table[] =
826 {
827 {"hpstate", 0},
828 {"htstate", 1},
829 {"hintp", 3},
830 {"htba", 5},
831 {"hver", 6},
832 {"hmcdper", 23},
833 {"hmcddfr", 24},
834 {"hva_mask_nz", 27},
835 {"hstick_offset", 28},
836 {"hstick_enable", 29},
837 {"hstick_cmpr", 31},
838 {NULL, -1}, /* End marker. */
839 };
840
841 /* v9a or later specific ancillary state registers. */
842
843 struct priv_reg_entry v9a_asr_table[] =
844 {
845 {"tick_cmpr", 23},
846 {"sys_tick_cmpr", 25},
847 {"sys_tick", 24},
848 {"stick_cmpr", 25},
849 {"stick", 24},
850 {"softint_clear", 21},
851 {"softint_set", 20},
852 {"softint", 22},
853 {"set_softint", 20},
854 {"pause", 27},
855 {"pic", 17},
856 {"pcr", 16},
857 {"mwait", 28},
858 {"gsr", 19},
859 {"dcr", 18},
860 {"cfr", 26},
861 {"clear_softint", 21},
862 {NULL, -1}, /* End marker. */
863 };
864
865 static int
866 cmp_reg_entry (const void *parg, const void *qarg)
867 {
868 const struct priv_reg_entry *p = (const struct priv_reg_entry *) parg;
869 const struct priv_reg_entry *q = (const struct priv_reg_entry *) qarg;
870
871 if (p->name == q->name)
872 return 0;
873 else if (p->name == NULL)
874 return 1;
875 else if (q->name == NULL)
876 return -1;
877 else
878 return strcmp (q->name, p->name);
879 }
880 \f
881 /* sparc %-pseudo-operations. */
882
883
884 #define F_POP_V9 0x1 /* The pseudo-op is for v9 only. */
885 #define F_POP_PCREL 0x2 /* The pseudo-op can be used in pc-relative
886 contexts. */
887 #define F_POP_TLS_CALL 0x4 /* The pseudo-op marks a tls call. */
888 #define F_POP_POSTFIX 0x8 /* The pseudo-op should appear after the
889 last operand of an
890 instruction. (Generally they can appear
891 anywhere an immediate operand is
892 expected. */
893 struct pop_entry
894 {
895 /* The name as it appears in assembler. */
896 const char *name;
897 /* The reloc this pseudo-op translates to. */
898 bfd_reloc_code_real_type reloc;
899 /* Flags. See F_POP_* above. */
900 int flags;
901 };
902
903 struct pop_entry pop_table[] =
904 {
905 { "hix", BFD_RELOC_SPARC_HIX22, F_POP_V9 },
906 { "lox", BFD_RELOC_SPARC_LOX10, F_POP_V9 },
907 { "hi", BFD_RELOC_HI22, F_POP_PCREL },
908 { "lo", BFD_RELOC_LO10, F_POP_PCREL },
909 { "pc22", BFD_RELOC_SPARC_PC22, F_POP_PCREL },
910 { "pc10", BFD_RELOC_SPARC_PC10, F_POP_PCREL },
911 { "hh", BFD_RELOC_SPARC_HH22, F_POP_V9|F_POP_PCREL },
912 { "hm", BFD_RELOC_SPARC_HM10, F_POP_V9|F_POP_PCREL },
913 { "lm", BFD_RELOC_SPARC_LM22, F_POP_V9|F_POP_PCREL },
914 { "h34", BFD_RELOC_SPARC_H34, F_POP_V9 },
915 { "l34", BFD_RELOC_SPARC_L44, F_POP_V9 },
916 { "h44", BFD_RELOC_SPARC_H44, F_POP_V9 },
917 { "m44", BFD_RELOC_SPARC_M44, F_POP_V9 },
918 { "l44", BFD_RELOC_SPARC_L44, F_POP_V9 },
919 { "uhi", BFD_RELOC_SPARC_HH22, F_POP_V9 },
920 { "ulo", BFD_RELOC_SPARC_HM10, F_POP_V9 },
921 { "tgd_hi22", BFD_RELOC_SPARC_TLS_GD_HI22, 0 },
922 { "tgd_lo10", BFD_RELOC_SPARC_TLS_GD_LO10, 0 },
923 { "tldm_hi22", BFD_RELOC_SPARC_TLS_LDM_HI22, 0 },
924 { "tldm_lo10", BFD_RELOC_SPARC_TLS_LDM_LO10, 0 },
925 { "tldo_hix22", BFD_RELOC_SPARC_TLS_LDO_HIX22, 0 },
926 { "tldo_lox10", BFD_RELOC_SPARC_TLS_LDO_LOX10, 0 },
927 { "tie_hi22", BFD_RELOC_SPARC_TLS_IE_HI22, 0 },
928 { "tie_lo10", BFD_RELOC_SPARC_TLS_IE_LO10, 0 },
929 { "tle_hix22", BFD_RELOC_SPARC_TLS_LE_HIX22, 0 },
930 { "tle_lox10", BFD_RELOC_SPARC_TLS_LE_LOX10, 0 },
931 { "gdop_hix22", BFD_RELOC_SPARC_GOTDATA_OP_HIX22, 0 },
932 { "gdop_lox10", BFD_RELOC_SPARC_GOTDATA_OP_LOX10, 0 },
933 { "tgd_add", BFD_RELOC_SPARC_TLS_GD_ADD, F_POP_POSTFIX },
934 { "tgd_call", BFD_RELOC_SPARC_TLS_GD_CALL, F_POP_POSTFIX|F_POP_TLS_CALL },
935 { "tldm_add", BFD_RELOC_SPARC_TLS_LDM_ADD, F_POP_POSTFIX },
936 { "tldm_call", BFD_RELOC_SPARC_TLS_LDM_CALL, F_POP_POSTFIX|F_POP_TLS_CALL },
937 { "tldo_add", BFD_RELOC_SPARC_TLS_LDO_ADD, F_POP_POSTFIX },
938 { "tie_ldx", BFD_RELOC_SPARC_TLS_IE_LDX, F_POP_POSTFIX },
939 { "tie_ld", BFD_RELOC_SPARC_TLS_IE_LD, F_POP_POSTFIX },
940 { "tie_add", BFD_RELOC_SPARC_TLS_IE_ADD, F_POP_POSTFIX },
941 { "gdop", BFD_RELOC_SPARC_GOTDATA_OP, F_POP_POSTFIX }
942 };
943 \f
944 /* Table of %-names that can appear in a sparc assembly program. This
945 table is initialized in md_begin and contains entries for each
946 privileged/hyperprivileged/alternate register and %-pseudo-op. */
947
948 enum perc_entry_type
949 {
950 perc_entry_none = 0,
951 perc_entry_reg,
952 perc_entry_post_pop,
953 perc_entry_imm_pop
954 };
955
956 struct perc_entry
957 {
958 /* Entry type. */
959 enum perc_entry_type type;
960 /* Name of the %-entity. */
961 const char *name;
962 /* strlen (name). */
963 int len;
964 /* Value. Either a pop or a reg depending on type.*/
965 union
966 {
967 struct pop_entry *pop;
968 struct priv_reg_entry *reg;
969 };
970 };
971
972 #define NUM_PERC_ENTRIES \
973 (((sizeof (priv_reg_table) / sizeof (priv_reg_table[0])) - 1) \
974 + ((sizeof (hpriv_reg_table) / sizeof (hpriv_reg_table[0])) - 1) \
975 + ((sizeof (v9a_asr_table) / sizeof (v9a_asr_table[0])) - 1) \
976 + ARRAY_SIZE (pop_table) \
977 + 1)
978
979 struct perc_entry perc_table[NUM_PERC_ENTRIES];
980
981 static int
982 cmp_perc_entry (const void *parg, const void *qarg)
983 {
984 const struct perc_entry *p = (const struct perc_entry *) parg;
985 const struct perc_entry *q = (const struct perc_entry *) qarg;
986
987 if (p->name == q->name)
988 return 0;
989 else if (p->name == NULL)
990 return 1;
991 else if (q->name == NULL)
992 return -1;
993 else
994 return strcmp (q->name, p->name);
995 }
996 \f
997 /* This function is called once, at assembler startup time. It should
998 set up all the tables, etc. that the MD part of the assembler will
999 need. */
1000
1001 void
1002 md_begin (void)
1003 {
1004 const char *retval = NULL;
1005 int lose = 0;
1006 unsigned int i = 0;
1007
1008 /* We don't get a chance to initialize anything before md_parse_option
1009 is called, and it may not be called, so handle default initialization
1010 now if not already done. */
1011 if (! default_init_p)
1012 init_default_arch ();
1013
1014 sparc_cie_data_alignment = sparc_arch_size == 64 ? -8 : -4;
1015 op_hash = hash_new ();
1016
1017 while (i < (unsigned int) sparc_num_opcodes)
1018 {
1019 const char *name = sparc_opcodes[i].name;
1020 retval = hash_insert (op_hash, name, (void *) &sparc_opcodes[i]);
1021 if (retval != NULL)
1022 {
1023 as_bad (_("Internal error: can't hash `%s': %s\n"),
1024 sparc_opcodes[i].name, retval);
1025 lose = 1;
1026 }
1027 do
1028 {
1029 if (sparc_opcodes[i].match & sparc_opcodes[i].lose)
1030 {
1031 as_bad (_("Internal error: losing opcode: `%s' \"%s\"\n"),
1032 sparc_opcodes[i].name, sparc_opcodes[i].args);
1033 lose = 1;
1034 }
1035 ++i;
1036 }
1037 while (i < (unsigned int) sparc_num_opcodes
1038 && !strcmp (sparc_opcodes[i].name, name));
1039 }
1040
1041 for (i = 0; native_op_table[i].name; i++)
1042 {
1043 const struct sparc_opcode *insn;
1044 const char *name = ((sparc_arch_size == 32)
1045 ? native_op_table[i].name32
1046 : native_op_table[i].name64);
1047 insn = (struct sparc_opcode *) hash_find (op_hash, name);
1048 if (insn == NULL)
1049 {
1050 as_bad (_("Internal error: can't find opcode `%s' for `%s'\n"),
1051 name, native_op_table[i].name);
1052 lose = 1;
1053 }
1054 else
1055 {
1056 retval = hash_insert (op_hash, native_op_table[i].name,
1057 (void *) insn);
1058 if (retval != NULL)
1059 {
1060 as_bad (_("Internal error: can't hash `%s': %s\n"),
1061 sparc_opcodes[i].name, retval);
1062 lose = 1;
1063 }
1064 }
1065 }
1066
1067 if (lose)
1068 as_fatal (_("Broken assembler. No assembly attempted."));
1069
1070 qsort (priv_reg_table, sizeof (priv_reg_table) / sizeof (priv_reg_table[0]),
1071 sizeof (priv_reg_table[0]), cmp_reg_entry);
1072 qsort (hpriv_reg_table, sizeof (hpriv_reg_table) / sizeof (hpriv_reg_table[0]),
1073 sizeof (hpriv_reg_table[0]), cmp_reg_entry);
1074 qsort (v9a_asr_table, sizeof (v9a_asr_table) / sizeof (v9a_asr_table[0]),
1075 sizeof (v9a_asr_table[0]), cmp_reg_entry);
1076
1077 /* If -bump, record the architecture level at which we start issuing
1078 warnings. The behaviour is different depending upon whether an
1079 architecture was explicitly specified. If it wasn't, we issue warnings
1080 for all upwards bumps. If it was, we don't start issuing warnings until
1081 we need to bump beyond the requested architecture or when we bump between
1082 conflicting architectures. */
1083
1084 if (warn_on_bump
1085 && architecture_requested)
1086 {
1087 /* `max_architecture' records the requested architecture.
1088 Issue warnings if we go above it. */
1089 warn_after_architecture = max_architecture;
1090 }
1091
1092 /* Find the highest architecture level that doesn't conflict with
1093 the requested one. */
1094
1095 if (warn_on_bump
1096 || !architecture_requested)
1097 {
1098 enum sparc_opcode_arch_val current_max_architecture
1099 = max_architecture;
1100
1101 for (max_architecture = SPARC_OPCODE_ARCH_MAX;
1102 max_architecture > warn_after_architecture;
1103 --max_architecture)
1104 if (! SPARC_OPCODE_CONFLICT_P (max_architecture,
1105 current_max_architecture))
1106 break;
1107 }
1108
1109 /* Prepare the tables of %-pseudo-ops. */
1110 {
1111 struct priv_reg_entry *reg_tables[]
1112 = {priv_reg_table, hpriv_reg_table, v9a_asr_table, NULL};
1113 struct priv_reg_entry **reg_table;
1114 int entry = 0;
1115
1116 /* Add registers. */
1117 for (reg_table = reg_tables; reg_table[0]; reg_table++)
1118 {
1119 struct priv_reg_entry *reg;
1120 for (reg = *reg_table; reg->name; reg++)
1121 {
1122 struct perc_entry *p = &perc_table[entry++];
1123 p->type = perc_entry_reg;
1124 p->name = reg->name;
1125 p->len = strlen (reg->name);
1126 p->reg = reg;
1127 }
1128 }
1129
1130 /* Add %-pseudo-ops. */
1131 for (i = 0; i < ARRAY_SIZE (pop_table); i++)
1132 {
1133 struct perc_entry *p = &perc_table[entry++];
1134 p->type = (pop_table[i].flags & F_POP_POSTFIX
1135 ? perc_entry_post_pop : perc_entry_imm_pop);
1136 p->name = pop_table[i].name;
1137 p->len = strlen (pop_table[i].name);
1138 p->pop = &pop_table[i];
1139 }
1140
1141 /* Last entry is the centinel. */
1142 perc_table[entry].type = perc_entry_none;
1143
1144 qsort (perc_table, sizeof (perc_table) / sizeof (perc_table[0]),
1145 sizeof (perc_table[0]), cmp_perc_entry);
1146
1147 }
1148 }
1149
1150 /* Called after all assembly has been done. */
1151
1152 void
1153 sparc_md_end (void)
1154 {
1155 unsigned long mach = bfd_mach_sparc;
1156 #if defined(OBJ_ELF) && !defined(TE_SOLARIS)
1157 int hwcaps, hwcaps2;
1158 #endif
1159
1160 if (sparc_arch_size == 64)
1161 switch (current_architecture)
1162 {
1163 case SPARC_OPCODE_ARCH_V9A: mach = bfd_mach_sparc_v9a; break;
1164 case SPARC_OPCODE_ARCH_V9B: mach = bfd_mach_sparc_v9b; break;
1165 case SPARC_OPCODE_ARCH_V9C: mach = bfd_mach_sparc_v9c; break;
1166 case SPARC_OPCODE_ARCH_V9D: mach = bfd_mach_sparc_v9d; break;
1167 case SPARC_OPCODE_ARCH_V9E: mach = bfd_mach_sparc_v9e; break;
1168 case SPARC_OPCODE_ARCH_V9V: mach = bfd_mach_sparc_v9v; break;
1169 case SPARC_OPCODE_ARCH_V9M: mach = bfd_mach_sparc_v9m; break;
1170 default: mach = bfd_mach_sparc_v9; break;
1171 }
1172 else
1173 switch (current_architecture)
1174 {
1175 case SPARC_OPCODE_ARCH_SPARCLET: mach = bfd_mach_sparc_sparclet; break;
1176 case SPARC_OPCODE_ARCH_V9: mach = bfd_mach_sparc_v8plus; break;
1177 case SPARC_OPCODE_ARCH_V9A: mach = bfd_mach_sparc_v8plusa; break;
1178 case SPARC_OPCODE_ARCH_V9B: mach = bfd_mach_sparc_v8plusb; break;
1179 case SPARC_OPCODE_ARCH_V9C: mach = bfd_mach_sparc_v8plusc; break;
1180 case SPARC_OPCODE_ARCH_V9D: mach = bfd_mach_sparc_v8plusd; break;
1181 case SPARC_OPCODE_ARCH_V9E: mach = bfd_mach_sparc_v8pluse; break;
1182 case SPARC_OPCODE_ARCH_V9V: mach = bfd_mach_sparc_v8plusv; break;
1183 case SPARC_OPCODE_ARCH_V9M: mach = bfd_mach_sparc_v8plusm; break;
1184 /* The sparclite is treated like a normal sparc. Perhaps it shouldn't
1185 be but for now it is (since that's the way it's always been
1186 treated). */
1187 default: break;
1188 }
1189 bfd_set_arch_mach (stdoutput, bfd_arch_sparc, mach);
1190
1191 #if defined(OBJ_ELF) && !defined(TE_SOLARIS)
1192 hwcaps = hwcap_seen & U0xffffffff;
1193 hwcaps2 = hwcap_seen >> 32;
1194
1195 if (hwcaps)
1196 bfd_elf_add_obj_attr_int (stdoutput, OBJ_ATTR_GNU, Tag_GNU_Sparc_HWCAPS, hwcaps);
1197 if (hwcaps2)
1198 bfd_elf_add_obj_attr_int (stdoutput, OBJ_ATTR_GNU, Tag_GNU_Sparc_HWCAPS2, hwcaps2);
1199 #endif
1200 }
1201 \f
1202 /* Return non-zero if VAL is in the range -(MAX+1) to MAX. */
1203
1204 static inline int
1205 in_signed_range (bfd_signed_vma val, bfd_signed_vma max)
1206 {
1207 if (max <= 0)
1208 abort ();
1209 /* Sign-extend the value from the architecture word size, so that
1210 0xffffffff is always considered -1 on sparc32. */
1211 if (sparc_arch_size == 32)
1212 {
1213 bfd_signed_vma sign = (bfd_signed_vma) 1 << 31;
1214 val = ((val & U0xffffffff) ^ sign) - sign;
1215 }
1216 if (val > max)
1217 return 0;
1218 if (val < ~max)
1219 return 0;
1220 return 1;
1221 }
1222
1223 /* Return non-zero if VAL is in the range 0 to MAX. */
1224
1225 static inline int
1226 in_unsigned_range (bfd_vma val, bfd_vma max)
1227 {
1228 if (val > max)
1229 return 0;
1230 return 1;
1231 }
1232
1233 /* Return non-zero if VAL is in the range -(MAX/2+1) to MAX.
1234 (e.g. -15 to +31). */
1235
1236 static inline int
1237 in_bitfield_range (bfd_signed_vma val, bfd_signed_vma max)
1238 {
1239 if (max <= 0)
1240 abort ();
1241 if (val > max)
1242 return 0;
1243 if (val < ~(max >> 1))
1244 return 0;
1245 return 1;
1246 }
1247
1248 static int
1249 sparc_ffs (unsigned int mask)
1250 {
1251 int i;
1252
1253 if (mask == 0)
1254 return -1;
1255
1256 for (i = 0; (mask & 1) == 0; ++i)
1257 mask >>= 1;
1258 return i;
1259 }
1260
1261 /* Implement big shift right. */
1262 static bfd_vma
1263 BSR (bfd_vma val, int amount)
1264 {
1265 if (sizeof (bfd_vma) <= 4 && amount >= 32)
1266 as_fatal (_("Support for 64-bit arithmetic not compiled in."));
1267 return val >> amount;
1268 }
1269 \f
1270 /* For communication between sparc_ip and get_expression. */
1271 static char *expr_end;
1272
1273 /* Values for `special_case'.
1274 Instructions that require wierd handling because they're longer than
1275 4 bytes. */
1276 #define SPECIAL_CASE_NONE 0
1277 #define SPECIAL_CASE_SET 1
1278 #define SPECIAL_CASE_SETSW 2
1279 #define SPECIAL_CASE_SETX 3
1280 /* FIXME: sparc-opc.c doesn't have necessary "S" trigger to enable this. */
1281 #define SPECIAL_CASE_FDIV 4
1282
1283 /* Bit masks of various insns. */
1284 #define NOP_INSN 0x01000000
1285 #define OR_INSN 0x80100000
1286 #define XOR_INSN 0x80180000
1287 #define FMOVS_INSN 0x81A00020
1288 #define SETHI_INSN 0x01000000
1289 #define SLLX_INSN 0x81281000
1290 #define SRA_INSN 0x81380000
1291
1292 /* The last instruction to be assembled. */
1293 static const struct sparc_opcode *last_insn;
1294 /* The assembled opcode of `last_insn'. */
1295 static unsigned long last_opcode;
1296 \f
1297 /* Handle the set and setuw synthetic instructions. */
1298
1299 static void
1300 synthetize_setuw (const struct sparc_opcode *insn)
1301 {
1302 int need_hi22_p = 0;
1303 int rd = (the_insn.opcode & RD (~0)) >> 25;
1304
1305 if (the_insn.exp.X_op == O_constant)
1306 {
1307 if (SPARC_OPCODE_ARCH_V9_P (max_architecture))
1308 {
1309 if (sizeof (offsetT) > 4
1310 && (the_insn.exp.X_add_number < 0
1311 || the_insn.exp.X_add_number > (offsetT) U0xffffffff))
1312 as_warn (_("set: number not in 0..4294967295 range"));
1313 }
1314 else
1315 {
1316 if (sizeof (offsetT) > 4
1317 && (the_insn.exp.X_add_number < -(offsetT) U0x80000000
1318 || the_insn.exp.X_add_number > (offsetT) U0xffffffff))
1319 as_warn (_("set: number not in -2147483648..4294967295 range"));
1320 the_insn.exp.X_add_number = (int) the_insn.exp.X_add_number;
1321 }
1322 }
1323
1324 /* See if operand is absolute and small; skip sethi if so. */
1325 if (the_insn.exp.X_op != O_constant
1326 || the_insn.exp.X_add_number >= (1 << 12)
1327 || the_insn.exp.X_add_number < -(1 << 12))
1328 {
1329 the_insn.opcode = (SETHI_INSN | RD (rd)
1330 | ((the_insn.exp.X_add_number >> 10)
1331 & (the_insn.exp.X_op == O_constant
1332 ? 0x3fffff : 0)));
1333 the_insn.reloc = (the_insn.exp.X_op != O_constant
1334 ? BFD_RELOC_HI22 : BFD_RELOC_NONE);
1335 output_insn (insn, &the_insn);
1336 need_hi22_p = 1;
1337 }
1338
1339 /* See if operand has no low-order bits; skip OR if so. */
1340 if (the_insn.exp.X_op != O_constant
1341 || (need_hi22_p && (the_insn.exp.X_add_number & 0x3FF) != 0)
1342 || ! need_hi22_p)
1343 {
1344 the_insn.opcode = (OR_INSN | (need_hi22_p ? RS1 (rd) : 0)
1345 | RD (rd) | IMMED
1346 | (the_insn.exp.X_add_number
1347 & (the_insn.exp.X_op != O_constant
1348 ? 0 : need_hi22_p ? 0x3ff : 0x1fff)));
1349 the_insn.reloc = (the_insn.exp.X_op != O_constant
1350 ? BFD_RELOC_LO10 : BFD_RELOC_NONE);
1351 output_insn (insn, &the_insn);
1352 }
1353 }
1354
1355 /* Handle the setsw synthetic instruction. */
1356
1357 static void
1358 synthetize_setsw (const struct sparc_opcode *insn)
1359 {
1360 int low32, rd, opc;
1361
1362 rd = (the_insn.opcode & RD (~0)) >> 25;
1363
1364 if (the_insn.exp.X_op != O_constant)
1365 {
1366 synthetize_setuw (insn);
1367
1368 /* Need to sign extend it. */
1369 the_insn.opcode = (SRA_INSN | RS1 (rd) | RD (rd));
1370 the_insn.reloc = BFD_RELOC_NONE;
1371 output_insn (insn, &the_insn);
1372 return;
1373 }
1374
1375 if (sizeof (offsetT) > 4
1376 && (the_insn.exp.X_add_number < -(offsetT) U0x80000000
1377 || the_insn.exp.X_add_number > (offsetT) U0xffffffff))
1378 as_warn (_("setsw: number not in -2147483648..4294967295 range"));
1379
1380 low32 = the_insn.exp.X_add_number;
1381
1382 if (low32 >= 0)
1383 {
1384 synthetize_setuw (insn);
1385 return;
1386 }
1387
1388 opc = OR_INSN;
1389
1390 the_insn.reloc = BFD_RELOC_NONE;
1391 /* See if operand is absolute and small; skip sethi if so. */
1392 if (low32 < -(1 << 12))
1393 {
1394 the_insn.opcode = (SETHI_INSN | RD (rd)
1395 | (((~the_insn.exp.X_add_number) >> 10) & 0x3fffff));
1396 output_insn (insn, &the_insn);
1397 low32 = 0x1c00 | (low32 & 0x3ff);
1398 opc = RS1 (rd) | XOR_INSN;
1399 }
1400
1401 the_insn.opcode = (opc | RD (rd) | IMMED
1402 | (low32 & 0x1fff));
1403 output_insn (insn, &the_insn);
1404 }
1405
1406 /* Handle the setx synthetic instruction. */
1407
1408 static void
1409 synthetize_setx (const struct sparc_opcode *insn)
1410 {
1411 int upper32, lower32;
1412 int tmpreg = (the_insn.opcode & RS1 (~0)) >> 14;
1413 int dstreg = (the_insn.opcode & RD (~0)) >> 25;
1414 int upper_dstreg;
1415 int need_hh22_p = 0, need_hm10_p = 0, need_hi22_p = 0, need_lo10_p = 0;
1416 int need_xor10_p = 0;
1417
1418 #define SIGNEXT32(x) ((((x) & U0xffffffff) ^ U0x80000000) - U0x80000000)
1419 lower32 = SIGNEXT32 (the_insn.exp.X_add_number);
1420 upper32 = SIGNEXT32 (BSR (the_insn.exp.X_add_number, 32));
1421 #undef SIGNEXT32
1422
1423 upper_dstreg = tmpreg;
1424 /* The tmp reg should not be the dst reg. */
1425 if (tmpreg == dstreg)
1426 as_warn (_("setx: temporary register same as destination register"));
1427
1428 /* ??? Obviously there are other optimizations we can do
1429 (e.g. sethi+shift for 0x1f0000000) and perhaps we shouldn't be
1430 doing some of these. Later. If you do change things, try to
1431 change all of this to be table driven as well. */
1432 /* What to output depends on the number if it's constant.
1433 Compute that first, then output what we've decided upon. */
1434 if (the_insn.exp.X_op != O_constant)
1435 {
1436 if (sparc_arch_size == 32)
1437 {
1438 /* When arch size is 32, we want setx to be equivalent
1439 to setuw for anything but constants. */
1440 the_insn.exp.X_add_number &= 0xffffffff;
1441 synthetize_setuw (insn);
1442 return;
1443 }
1444 need_hh22_p = need_hm10_p = need_hi22_p = need_lo10_p = 1;
1445 lower32 = 0;
1446 upper32 = 0;
1447 }
1448 else
1449 {
1450 /* Reset X_add_number, we've extracted it as upper32/lower32.
1451 Otherwise fixup_segment will complain about not being able to
1452 write an 8 byte number in a 4 byte field. */
1453 the_insn.exp.X_add_number = 0;
1454
1455 /* Only need hh22 if `or' insn can't handle constant. */
1456 if (upper32 < -(1 << 12) || upper32 >= (1 << 12))
1457 need_hh22_p = 1;
1458
1459 /* Does bottom part (after sethi) have bits? */
1460 if ((need_hh22_p && (upper32 & 0x3ff) != 0)
1461 /* No hh22, but does upper32 still have bits we can't set
1462 from lower32? */
1463 || (! need_hh22_p && upper32 != 0 && upper32 != -1))
1464 need_hm10_p = 1;
1465
1466 /* If the lower half is all zero, we build the upper half directly
1467 into the dst reg. */
1468 if (lower32 != 0
1469 /* Need lower half if number is zero or 0xffffffff00000000. */
1470 || (! need_hh22_p && ! need_hm10_p))
1471 {
1472 /* No need for sethi if `or' insn can handle constant. */
1473 if (lower32 < -(1 << 12) || lower32 >= (1 << 12)
1474 /* Note that we can't use a negative constant in the `or'
1475 insn unless the upper 32 bits are all ones. */
1476 || (lower32 < 0 && upper32 != -1)
1477 || (lower32 >= 0 && upper32 == -1))
1478 need_hi22_p = 1;
1479
1480 if (need_hi22_p && upper32 == -1)
1481 need_xor10_p = 1;
1482
1483 /* Does bottom part (after sethi) have bits? */
1484 else if ((need_hi22_p && (lower32 & 0x3ff) != 0)
1485 /* No sethi. */
1486 || (! need_hi22_p && (lower32 & 0x1fff) != 0)
1487 /* Need `or' if we didn't set anything else. */
1488 || (! need_hi22_p && ! need_hh22_p && ! need_hm10_p))
1489 need_lo10_p = 1;
1490 }
1491 else
1492 /* Output directly to dst reg if lower 32 bits are all zero. */
1493 upper_dstreg = dstreg;
1494 }
1495
1496 if (!upper_dstreg && dstreg)
1497 as_warn (_("setx: illegal temporary register g0"));
1498
1499 if (need_hh22_p)
1500 {
1501 the_insn.opcode = (SETHI_INSN | RD (upper_dstreg)
1502 | ((upper32 >> 10) & 0x3fffff));
1503 the_insn.reloc = (the_insn.exp.X_op != O_constant
1504 ? BFD_RELOC_SPARC_HH22 : BFD_RELOC_NONE);
1505 output_insn (insn, &the_insn);
1506 }
1507
1508 if (need_hi22_p)
1509 {
1510 the_insn.opcode = (SETHI_INSN | RD (dstreg)
1511 | (((need_xor10_p ? ~lower32 : lower32)
1512 >> 10) & 0x3fffff));
1513 the_insn.reloc = (the_insn.exp.X_op != O_constant
1514 ? BFD_RELOC_SPARC_LM22 : BFD_RELOC_NONE);
1515 output_insn (insn, &the_insn);
1516 }
1517
1518 if (need_hm10_p)
1519 {
1520 the_insn.opcode = (OR_INSN
1521 | (need_hh22_p ? RS1 (upper_dstreg) : 0)
1522 | RD (upper_dstreg)
1523 | IMMED
1524 | (upper32 & (need_hh22_p ? 0x3ff : 0x1fff)));
1525 the_insn.reloc = (the_insn.exp.X_op != O_constant
1526 ? BFD_RELOC_SPARC_HM10 : BFD_RELOC_NONE);
1527 output_insn (insn, &the_insn);
1528 }
1529
1530 if (need_lo10_p)
1531 {
1532 /* FIXME: One nice optimization to do here is to OR the low part
1533 with the highpart if hi22 isn't needed and the low part is
1534 positive. */
1535 the_insn.opcode = (OR_INSN | (need_hi22_p ? RS1 (dstreg) : 0)
1536 | RD (dstreg)
1537 | IMMED
1538 | (lower32 & (need_hi22_p ? 0x3ff : 0x1fff)));
1539 the_insn.reloc = (the_insn.exp.X_op != O_constant
1540 ? BFD_RELOC_LO10 : BFD_RELOC_NONE);
1541 output_insn (insn, &the_insn);
1542 }
1543
1544 /* If we needed to build the upper part, shift it into place. */
1545 if (need_hh22_p || need_hm10_p)
1546 {
1547 the_insn.opcode = (SLLX_INSN | RS1 (upper_dstreg) | RD (upper_dstreg)
1548 | IMMED | 32);
1549 the_insn.reloc = BFD_RELOC_NONE;
1550 output_insn (insn, &the_insn);
1551 }
1552
1553 /* To get -1 in upper32, we do sethi %hi(~x), r; xor r, -0x400 | x, r. */
1554 if (need_xor10_p)
1555 {
1556 the_insn.opcode = (XOR_INSN | RS1 (dstreg) | RD (dstreg) | IMMED
1557 | 0x1c00 | (lower32 & 0x3ff));
1558 the_insn.reloc = BFD_RELOC_NONE;
1559 output_insn (insn, &the_insn);
1560 }
1561
1562 /* If we needed to build both upper and lower parts, OR them together. */
1563 else if ((need_hh22_p || need_hm10_p) && (need_hi22_p || need_lo10_p))
1564 {
1565 the_insn.opcode = (OR_INSN | RS1 (dstreg) | RS2 (upper_dstreg)
1566 | RD (dstreg));
1567 the_insn.reloc = BFD_RELOC_NONE;
1568 output_insn (insn, &the_insn);
1569 }
1570 }
1571 \f
1572 /* Main entry point to assemble one instruction. */
1573
1574 void
1575 md_assemble (char *str)
1576 {
1577 const struct sparc_opcode *insn;
1578 int special_case;
1579
1580 know (str);
1581 special_case = sparc_ip (str, &insn);
1582 if (insn == NULL)
1583 return;
1584
1585 /* Certain instructions may not appear on delay slots. Check for
1586 these situations. */
1587 if (last_insn != NULL
1588 && (last_insn->flags & F_DELAYED) != 0)
1589 {
1590 /* Before SPARC V9 the effect of having a delayed branch
1591 instruction in the delay slot of a conditional delayed branch
1592 was undefined.
1593
1594 In SPARC V9 DCTI couples are well defined.
1595
1596 However, starting with the UltraSPARC Architecture 2005, DCTI
1597 couples (of all kind) are deprecated and should not be used,
1598 as they may be slow or behave differently to what the
1599 programmer expects. */
1600 if (dcti_couples_detect
1601 && (insn->flags & F_DELAYED) != 0
1602 && ((max_architecture < SPARC_OPCODE_ARCH_V9
1603 && (last_insn->flags & F_CONDBR) != 0)
1604 || max_architecture >= SPARC_OPCODE_ARCH_V9C))
1605 as_warn (_("unpredictable DCTI couple"));
1606
1607
1608 /* We warn about attempts to put a floating point branch in a
1609 delay slot, unless the delay slot has been annulled. */
1610 if ((insn->flags & F_FBR) != 0
1611 /* ??? This test isn't completely accurate. We assume anything with
1612 F_{UNBR,CONDBR,FBR} set is annullable. */
1613 && ((last_insn->flags & (F_UNBR | F_CONDBR | F_FBR)) == 0
1614 || (last_opcode & ANNUL) == 0))
1615 as_warn (_("FP branch in delay slot"));
1616 }
1617
1618 /* SPARC before v9 requires a nop instruction between a floating
1619 point instruction and a floating point branch. We insert one
1620 automatically, with a warning. */
1621 if (max_architecture < SPARC_OPCODE_ARCH_V9
1622 && last_insn != NULL
1623 && (insn->flags & F_FBR) != 0
1624 && (last_insn->flags & F_FLOAT) != 0)
1625 {
1626 struct sparc_it nop_insn;
1627
1628 nop_insn.opcode = NOP_INSN;
1629 nop_insn.reloc = BFD_RELOC_NONE;
1630 output_insn (insn, &nop_insn);
1631 as_warn (_("FP branch preceded by FP instruction; NOP inserted"));
1632 }
1633
1634 switch (special_case)
1635 {
1636 case SPECIAL_CASE_NONE:
1637 /* Normal insn. */
1638 output_insn (insn, &the_insn);
1639 break;
1640
1641 case SPECIAL_CASE_SETSW:
1642 synthetize_setsw (insn);
1643 break;
1644
1645 case SPECIAL_CASE_SET:
1646 synthetize_setuw (insn);
1647 break;
1648
1649 case SPECIAL_CASE_SETX:
1650 synthetize_setx (insn);
1651 break;
1652
1653 case SPECIAL_CASE_FDIV:
1654 {
1655 int rd = (the_insn.opcode >> 25) & 0x1f;
1656
1657 output_insn (insn, &the_insn);
1658
1659 /* According to information leaked from Sun, the "fdiv" instructions
1660 on early SPARC machines would produce incorrect results sometimes.
1661 The workaround is to add an fmovs of the destination register to
1662 itself just after the instruction. This was true on machines
1663 with Weitek 1165 float chips, such as the Sun-4/260 and /280. */
1664 gas_assert (the_insn.reloc == BFD_RELOC_NONE);
1665 the_insn.opcode = FMOVS_INSN | rd | RD (rd);
1666 output_insn (insn, &the_insn);
1667 return;
1668 }
1669
1670 default:
1671 as_fatal (_("failed special case insn sanity check"));
1672 }
1673 }
1674
1675 static const char *
1676 get_hwcap_name (bfd_uint64_t mask)
1677 {
1678 if (mask & HWCAP_MUL32)
1679 return "mul32";
1680 if (mask & HWCAP_DIV32)
1681 return "div32";
1682 if (mask & HWCAP_FSMULD)
1683 return "fsmuld";
1684 if (mask & HWCAP_V8PLUS)
1685 return "v8plus";
1686 if (mask & HWCAP_POPC)
1687 return "popc";
1688 if (mask & HWCAP_VIS)
1689 return "vis";
1690 if (mask & HWCAP_VIS2)
1691 return "vis2";
1692 if (mask & HWCAP_ASI_BLK_INIT)
1693 return "ASIBlkInit";
1694 if (mask & HWCAP_FMAF)
1695 return "fmaf";
1696 if (mask & HWCAP_VIS3)
1697 return "vis3";
1698 if (mask & HWCAP_HPC)
1699 return "hpc";
1700 if (mask & HWCAP_RANDOM)
1701 return "random";
1702 if (mask & HWCAP_TRANS)
1703 return "trans";
1704 if (mask & HWCAP_FJFMAU)
1705 return "fjfmau";
1706 if (mask & HWCAP_IMA)
1707 return "ima";
1708 if (mask & HWCAP_ASI_CACHE_SPARING)
1709 return "cspare";
1710 if (mask & HWCAP_AES)
1711 return "aes";
1712 if (mask & HWCAP_DES)
1713 return "des";
1714 if (mask & HWCAP_KASUMI)
1715 return "kasumi";
1716 if (mask & HWCAP_CAMELLIA)
1717 return "camellia";
1718 if (mask & HWCAP_MD5)
1719 return "md5";
1720 if (mask & HWCAP_SHA1)
1721 return "sha1";
1722 if (mask & HWCAP_SHA256)
1723 return "sha256";
1724 if (mask & HWCAP_SHA512)
1725 return "sha512";
1726 if (mask & HWCAP_MPMUL)
1727 return "mpmul";
1728 if (mask & HWCAP_MONT)
1729 return "mont";
1730 if (mask & HWCAP_PAUSE)
1731 return "pause";
1732 if (mask & HWCAP_CBCOND)
1733 return "cbcond";
1734 if (mask & HWCAP_CRC32C)
1735 return "crc32c";
1736
1737 mask = mask >> 32;
1738 if (mask & HWCAP2_FJATHPLUS)
1739 return "fjathplus";
1740 if (mask & HWCAP2_VIS3B)
1741 return "vis3b";
1742 if (mask & HWCAP2_ADP)
1743 return "adp";
1744 if (mask & HWCAP2_SPARC5)
1745 return "sparc5";
1746 if (mask & HWCAP2_MWAIT)
1747 return "mwait";
1748 if (mask & HWCAP2_XMPMUL)
1749 return "xmpmul";
1750 if (mask & HWCAP2_XMONT)
1751 return "xmont";
1752 if (mask & HWCAP2_NSEC)
1753 return "nsec";
1754
1755 return "UNKNOWN";
1756 }
1757
1758 /* Subroutine of md_assemble to do the actual parsing. */
1759
1760 static int
1761 sparc_ip (char *str, const struct sparc_opcode **pinsn)
1762 {
1763 const char *error_message = "";
1764 char *s;
1765 const char *args;
1766 char c;
1767 const struct sparc_opcode *insn;
1768 char *argsStart;
1769 unsigned long opcode;
1770 unsigned int mask = 0;
1771 int match = 0;
1772 int comma = 0;
1773 int v9_arg_p;
1774 int special_case = SPECIAL_CASE_NONE;
1775
1776 s = str;
1777 if (ISLOWER (*s))
1778 {
1779 do
1780 ++s;
1781 while (ISLOWER (*s) || ISDIGIT (*s) || *s == '_');
1782 }
1783
1784 switch (*s)
1785 {
1786 case '\0':
1787 break;
1788
1789 case ',':
1790 comma = 1;
1791 /* Fall through. */
1792
1793 case ' ':
1794 *s++ = '\0';
1795 break;
1796
1797 default:
1798 as_bad (_("Unknown opcode: `%s'"), str);
1799 *pinsn = NULL;
1800 return special_case;
1801 }
1802 insn = (struct sparc_opcode *) hash_find (op_hash, str);
1803 *pinsn = insn;
1804 if (insn == NULL)
1805 {
1806 as_bad (_("Unknown opcode: `%s'"), str);
1807 return special_case;
1808 }
1809 if (comma)
1810 {
1811 *--s = ',';
1812 }
1813
1814 argsStart = s;
1815 for (;;)
1816 {
1817 opcode = insn->match;
1818 memset (&the_insn, '\0', sizeof (the_insn));
1819 the_insn.reloc = BFD_RELOC_NONE;
1820 v9_arg_p = 0;
1821
1822 /* Build the opcode, checking as we go to make sure that the
1823 operands match. */
1824 for (args = insn->args;; ++args)
1825 {
1826 switch (*args)
1827 {
1828 case 'K':
1829 {
1830 int kmask = 0;
1831
1832 /* Parse a series of masks. */
1833 if (*s == '#')
1834 {
1835 while (*s == '#')
1836 {
1837 int jmask;
1838
1839 if (! parse_keyword_arg (sparc_encode_membar, &s,
1840 &jmask))
1841 {
1842 error_message = _(": invalid membar mask name");
1843 goto error;
1844 }
1845 kmask |= jmask;
1846 while (*s == ' ')
1847 ++s;
1848 if (*s == '|' || *s == '+')
1849 ++s;
1850 while (*s == ' ')
1851 ++s;
1852 }
1853 }
1854 else
1855 {
1856 if (! parse_const_expr_arg (&s, &kmask))
1857 {
1858 error_message = _(": invalid membar mask expression");
1859 goto error;
1860 }
1861 if (kmask < 0 || kmask > 127)
1862 {
1863 error_message = _(": invalid membar mask number");
1864 goto error;
1865 }
1866 }
1867
1868 opcode |= MEMBAR (kmask);
1869 continue;
1870 }
1871
1872 case '3':
1873 {
1874 int smask = 0;
1875
1876 if (! parse_const_expr_arg (&s, &smask))
1877 {
1878 error_message = _(": invalid siam mode expression");
1879 goto error;
1880 }
1881 if (smask < 0 || smask > 7)
1882 {
1883 error_message = _(": invalid siam mode number");
1884 goto error;
1885 }
1886 opcode |= smask;
1887 continue;
1888 }
1889
1890 case '*':
1891 {
1892 int fcn = 0;
1893
1894 /* Parse a prefetch function. */
1895 if (*s == '#')
1896 {
1897 if (! parse_keyword_arg (sparc_encode_prefetch, &s, &fcn))
1898 {
1899 error_message = _(": invalid prefetch function name");
1900 goto error;
1901 }
1902 }
1903 else
1904 {
1905 if (! parse_const_expr_arg (&s, &fcn))
1906 {
1907 error_message = _(": invalid prefetch function expression");
1908 goto error;
1909 }
1910 if (fcn < 0 || fcn > 31)
1911 {
1912 error_message = _(": invalid prefetch function number");
1913 goto error;
1914 }
1915 }
1916 opcode |= RD (fcn);
1917 continue;
1918 }
1919
1920 case '!':
1921 case '?':
1922 /* Parse a sparc64 privileged register. */
1923 if (*s == '%')
1924 {
1925 struct priv_reg_entry *p;
1926 unsigned int len = 9999999; /* Init to make gcc happy. */
1927
1928 s += 1;
1929 for (p = priv_reg_table; p->name; p++)
1930 if (p->name[0] == s[0])
1931 {
1932 len = strlen (p->name);
1933 if (strncmp (p->name, s, len) == 0)
1934 break;
1935 }
1936
1937 if (!p->name)
1938 {
1939 error_message = _(": unrecognizable privileged register");
1940 goto error;
1941 }
1942
1943 if (((opcode >> (*args == '?' ? 14 : 25)) & 0x1f) != (unsigned) p->regnum)
1944 {
1945 error_message = _(": unrecognizable privileged register");
1946 goto error;
1947 }
1948
1949 s += len;
1950 continue;
1951 }
1952 else
1953 {
1954 error_message = _(": unrecognizable privileged register");
1955 goto error;
1956 }
1957
1958 case '$':
1959 case '%':
1960 /* Parse a sparc64 hyperprivileged register. */
1961 if (*s == '%')
1962 {
1963 struct priv_reg_entry *p;
1964 unsigned int len = 9999999; /* Init to make gcc happy. */
1965
1966 s += 1;
1967 for (p = hpriv_reg_table; p->name; p++)
1968 if (p->name[0] == s[0])
1969 {
1970 len = strlen (p->name);
1971 if (strncmp (p->name, s, len) == 0)
1972 break;
1973 }
1974
1975 if (!p->name)
1976 {
1977 error_message = _(": unrecognizable hyperprivileged register");
1978 goto error;
1979 }
1980
1981 if (((opcode >> (*args == '$' ? 14 : 25)) & 0x1f) != (unsigned) p->regnum)
1982 {
1983 error_message = _(": unrecognizable hyperprivileged register");
1984 goto error;
1985 }
1986
1987 s += len;
1988 continue;
1989 }
1990 else
1991 {
1992 error_message = _(": unrecognizable hyperprivileged register");
1993 goto error;
1994 }
1995
1996 case '_':
1997 case '/':
1998 /* Parse a v9a or later ancillary state register. */
1999 if (*s == '%')
2000 {
2001 struct priv_reg_entry *p;
2002 unsigned int len = 9999999; /* Init to make gcc happy. */
2003
2004 s += 1;
2005 for (p = v9a_asr_table; p->name; p++)
2006 if (p->name[0] == s[0])
2007 {
2008 len = strlen (p->name);
2009 if (strncmp (p->name, s, len) == 0)
2010 break;
2011 }
2012
2013 if (!p->name)
2014 {
2015 error_message = _(": unrecognizable ancillary state register");
2016 goto error;
2017 }
2018
2019 if (((opcode >> (*args == '/' ? 14 : 25)) & 0x1f) != (unsigned) p->regnum)
2020 {
2021 error_message = _(": unrecognizable ancillary state register");
2022 goto error;
2023 }
2024
2025 s += len;
2026 continue;
2027 }
2028 else
2029 {
2030 error_message = _(": unrecognizable ancillary state register");
2031 goto error;
2032 }
2033
2034 case 'M':
2035 case 'm':
2036 if (strncmp (s, "%asr", 4) == 0)
2037 {
2038 s += 4;
2039
2040 if (ISDIGIT (*s))
2041 {
2042 long num = 0;
2043
2044 while (ISDIGIT (*s))
2045 {
2046 num = num * 10 + *s - '0';
2047 ++s;
2048 }
2049
2050 /* We used to check here for the asr number to
2051 be between 16 and 31 in V9 and later, as
2052 mandated by the section C.1.1 "Register
2053 Names" in the SPARC spec. However, we
2054 decided to remove this restriction as a) it
2055 introduces problems when new V9 asr registers
2056 are introduced, b) the Solaris assembler
2057 doesn't implement this restriction and c) the
2058 restriction will go away in future revisions
2059 of the Oracle SPARC Architecture. */
2060
2061 if (num < 0 || 31 < num)
2062 {
2063 error_message = _(": asr number must be between 0 and 31");
2064 goto error;
2065 }
2066
2067 opcode |= (*args == 'M' ? RS1 (num) : RD (num));
2068 continue;
2069 }
2070 else
2071 {
2072 error_message = _(": expecting %asrN");
2073 goto error;
2074 }
2075 } /* if %asr */
2076 break;
2077
2078 case 'I':
2079 the_insn.reloc = BFD_RELOC_SPARC_11;
2080 goto immediate;
2081
2082 case 'j':
2083 the_insn.reloc = BFD_RELOC_SPARC_10;
2084 goto immediate;
2085
2086 case ')':
2087 if (*s == ' ')
2088 s++;
2089 if ((s[0] == '0' && s[1] == 'x' && ISXDIGIT (s[2]))
2090 || ISDIGIT (*s))
2091 {
2092 long num = 0;
2093
2094 if (s[0] == '0' && s[1] == 'x')
2095 {
2096 s += 2;
2097 while (ISXDIGIT (*s))
2098 {
2099 num <<= 4;
2100 num |= hex_value (*s);
2101 ++s;
2102 }
2103 }
2104 else
2105 {
2106 while (ISDIGIT (*s))
2107 {
2108 num = num * 10 + *s - '0';
2109 ++s;
2110 }
2111 }
2112 if (num < 0 || num > 31)
2113 {
2114 error_message = _(": crypto immediate must be between 0 and 31");
2115 goto error;
2116 }
2117
2118 opcode |= RS3 (num);
2119 continue;
2120 }
2121 else
2122 {
2123 error_message = _(": expecting crypto immediate");
2124 goto error;
2125 }
2126
2127 case 'X':
2128 /* V8 systems don't understand BFD_RELOC_SPARC_5. */
2129 if (SPARC_OPCODE_ARCH_V9_P (max_architecture))
2130 the_insn.reloc = BFD_RELOC_SPARC_5;
2131 else
2132 the_insn.reloc = BFD_RELOC_SPARC13;
2133 /* These fields are unsigned, but for upward compatibility,
2134 allow negative values as well. */
2135 goto immediate;
2136
2137 case 'Y':
2138 /* V8 systems don't understand BFD_RELOC_SPARC_6. */
2139 if (SPARC_OPCODE_ARCH_V9_P (max_architecture))
2140 the_insn.reloc = BFD_RELOC_SPARC_6;
2141 else
2142 the_insn.reloc = BFD_RELOC_SPARC13;
2143 /* These fields are unsigned, but for upward compatibility,
2144 allow negative values as well. */
2145 goto immediate;
2146
2147 case 'k':
2148 the_insn.reloc = /* RELOC_WDISP2_14 */ BFD_RELOC_SPARC_WDISP16;
2149 the_insn.pcrel = 1;
2150 goto immediate;
2151
2152 case '=':
2153 the_insn.reloc = /* RELOC_WDISP2_8 */ BFD_RELOC_SPARC_WDISP10;
2154 the_insn.pcrel = 1;
2155 goto immediate;
2156
2157 case 'G':
2158 the_insn.reloc = BFD_RELOC_SPARC_WDISP19;
2159 the_insn.pcrel = 1;
2160 goto immediate;
2161
2162 case 'N':
2163 if (*s == 'p' && s[1] == 'n')
2164 {
2165 s += 2;
2166 continue;
2167 }
2168 break;
2169
2170 case 'T':
2171 if (*s == 'p' && s[1] == 't')
2172 {
2173 s += 2;
2174 continue;
2175 }
2176 break;
2177
2178 case 'z':
2179 if (*s == ' ')
2180 {
2181 ++s;
2182 }
2183 if ((strncmp (s, "%icc", 4) == 0)
2184 || (sparc_arch_size == 32 && strncmp (s, "%ncc", 4) == 0))
2185 {
2186 s += 4;
2187 continue;
2188 }
2189 break;
2190
2191 case 'Z':
2192 if (*s == ' ')
2193 {
2194 ++s;
2195 }
2196 if ((strncmp (s, "%xcc", 4) == 0)
2197 || (sparc_arch_size == 64 && strncmp (s, "%ncc", 4) == 0))
2198 {
2199 s += 4;
2200 continue;
2201 }
2202 break;
2203
2204 case '6':
2205 if (*s == ' ')
2206 {
2207 ++s;
2208 }
2209 if (strncmp (s, "%fcc0", 5) == 0)
2210 {
2211 s += 5;
2212 continue;
2213 }
2214 break;
2215
2216 case '7':
2217 if (*s == ' ')
2218 {
2219 ++s;
2220 }
2221 if (strncmp (s, "%fcc1", 5) == 0)
2222 {
2223 s += 5;
2224 continue;
2225 }
2226 break;
2227
2228 case '8':
2229 if (*s == ' ')
2230 {
2231 ++s;
2232 }
2233 if (strncmp (s, "%fcc2", 5) == 0)
2234 {
2235 s += 5;
2236 continue;
2237 }
2238 break;
2239
2240 case '9':
2241 if (*s == ' ')
2242 {
2243 ++s;
2244 }
2245 if (strncmp (s, "%fcc3", 5) == 0)
2246 {
2247 s += 5;
2248 continue;
2249 }
2250 break;
2251
2252 case 'P':
2253 if (strncmp (s, "%pc", 3) == 0)
2254 {
2255 s += 3;
2256 continue;
2257 }
2258 break;
2259
2260 case 'W':
2261 if (strncmp (s, "%tick", 5) == 0)
2262 {
2263 s += 5;
2264 continue;
2265 }
2266 break;
2267
2268 case '\0': /* End of args. */
2269 if (s[0] == ',' && s[1] == '%')
2270 {
2271 char *s1;
2272 int npar = 0;
2273 const struct perc_entry *p;
2274
2275 for (p = perc_table; p->type != perc_entry_none; p++)
2276 if ((p->type == perc_entry_post_pop || p->type == perc_entry_reg)
2277 && strncmp (s + 2, p->name, p->len) == 0)
2278 break;
2279 if (p->type == perc_entry_none || p->type == perc_entry_reg)
2280 break;
2281
2282 if (s[p->len + 2] != '(')
2283 {
2284 as_bad (_("Illegal operands: %%%s requires arguments in ()"), p->name);
2285 return special_case;
2286 }
2287
2288 if (! (p->pop->flags & F_POP_TLS_CALL)
2289 && the_insn.reloc != BFD_RELOC_NONE)
2290 {
2291 as_bad (_("Illegal operands: %%%s cannot be used together with other relocs in the insn ()"),
2292 p->name);
2293 return special_case;
2294 }
2295
2296 if ((p->pop->flags & F_POP_TLS_CALL)
2297 && (the_insn.reloc != BFD_RELOC_32_PCREL_S2
2298 || the_insn.exp.X_add_number != 0
2299 || the_insn.exp.X_add_symbol
2300 != symbol_find_or_make ("__tls_get_addr")))
2301 {
2302 as_bad (_("Illegal operands: %%%s can be only used with call __tls_get_addr"),
2303 p->name);
2304 return special_case;
2305 }
2306
2307 the_insn.reloc = p->pop->reloc;
2308 memset (&the_insn.exp, 0, sizeof (the_insn.exp));
2309 s += p->len + 3;
2310
2311 for (s1 = s; *s1 && *s1 != ',' && *s1 != ']'; s1++)
2312 if (*s1 == '(')
2313 npar++;
2314 else if (*s1 == ')')
2315 {
2316 if (!npar)
2317 break;
2318 npar--;
2319 }
2320
2321 if (*s1 != ')')
2322 {
2323 as_bad (_("Illegal operands: %%%s requires arguments in ()"), p->name);
2324 return special_case;
2325 }
2326
2327 *s1 = '\0';
2328 (void) get_expression (s);
2329 *s1 = ')';
2330 s = s1 + 1;
2331 }
2332 if (*s == '\0')
2333 match = 1;
2334 break;
2335
2336 case '+':
2337 if (*s == '+')
2338 {
2339 ++s;
2340 continue;
2341 }
2342 if (*s == '-')
2343 {
2344 continue;
2345 }
2346 break;
2347
2348 case '[': /* These must match exactly. */
2349 case ']':
2350 case ',':
2351 case ' ':
2352 if (*s++ == *args)
2353 continue;
2354 break;
2355
2356 case '#': /* Must be at least one digit. */
2357 if (ISDIGIT (*s++))
2358 {
2359 while (ISDIGIT (*s))
2360 {
2361 ++s;
2362 }
2363 continue;
2364 }
2365 break;
2366
2367 case 'C': /* Coprocessor state register. */
2368 if (strncmp (s, "%csr", 4) == 0)
2369 {
2370 s += 4;
2371 continue;
2372 }
2373 break;
2374
2375 case 'b': /* Next operand is a coprocessor register. */
2376 case 'c':
2377 case 'D':
2378 if (*s++ == '%' && *s++ == 'c' && ISDIGIT (*s))
2379 {
2380 mask = *s++;
2381 if (ISDIGIT (*s))
2382 {
2383 mask = 10 * (mask - '0') + (*s++ - '0');
2384 if (mask >= 32)
2385 {
2386 break;
2387 }
2388 }
2389 else
2390 {
2391 mask -= '0';
2392 }
2393 switch (*args)
2394 {
2395
2396 case 'b':
2397 opcode |= mask << 14;
2398 continue;
2399
2400 case 'c':
2401 opcode |= mask;
2402 continue;
2403
2404 case 'D':
2405 opcode |= mask << 25;
2406 continue;
2407 }
2408 }
2409 break;
2410
2411 case 'r': /* next operand must be a register */
2412 case 'O':
2413 case '1':
2414 case '2':
2415 case 'd':
2416 if (*s++ == '%')
2417 {
2418 switch (c = *s++)
2419 {
2420
2421 case 'f': /* frame pointer */
2422 if (*s++ == 'p')
2423 {
2424 mask = 0x1e;
2425 break;
2426 }
2427 goto error;
2428
2429 case 'g': /* global register */
2430 c = *s++;
2431 if (isoctal (c))
2432 {
2433 mask = c - '0';
2434 break;
2435 }
2436 goto error;
2437
2438 case 'i': /* in register */
2439 c = *s++;
2440 if (isoctal (c))
2441 {
2442 mask = c - '0' + 24;
2443 break;
2444 }
2445 goto error;
2446
2447 case 'l': /* local register */
2448 c = *s++;
2449 if (isoctal (c))
2450 {
2451 mask = (c - '0' + 16);
2452 break;
2453 }
2454 goto error;
2455
2456 case 'o': /* out register */
2457 c = *s++;
2458 if (isoctal (c))
2459 {
2460 mask = (c - '0' + 8);
2461 break;
2462 }
2463 goto error;
2464
2465 case 's': /* stack pointer */
2466 if (*s++ == 'p')
2467 {
2468 mask = 0xe;
2469 break;
2470 }
2471 goto error;
2472
2473 case 'r': /* any register */
2474 if (!ISDIGIT ((c = *s++)))
2475 {
2476 goto error;
2477 }
2478 /* FALLTHROUGH */
2479 case '0':
2480 case '1':
2481 case '2':
2482 case '3':
2483 case '4':
2484 case '5':
2485 case '6':
2486 case '7':
2487 case '8':
2488 case '9':
2489 if (ISDIGIT (*s))
2490 {
2491 if ((c = 10 * (c - '0') + (*s++ - '0')) >= 32)
2492 {
2493 goto error;
2494 }
2495 }
2496 else
2497 {
2498 c -= '0';
2499 }
2500 mask = c;
2501 break;
2502
2503 default:
2504 goto error;
2505 }
2506
2507 if ((mask & ~1) == 2 && sparc_arch_size == 64
2508 && no_undeclared_regs && ! globals[mask])
2509 as_bad (_("detected global register use not covered by .register pseudo-op"));
2510
2511 /* Got the register, now figure out where
2512 it goes in the opcode. */
2513 switch (*args)
2514 {
2515 case '1':
2516 opcode |= mask << 14;
2517 continue;
2518
2519 case '2':
2520 opcode |= mask;
2521 continue;
2522
2523 case 'd':
2524 opcode |= mask << 25;
2525 continue;
2526
2527 case 'r':
2528 opcode |= (mask << 25) | (mask << 14);
2529 continue;
2530
2531 case 'O':
2532 opcode |= (mask << 25) | (mask << 0);
2533 continue;
2534 }
2535 }
2536 break;
2537
2538 case 'e': /* next operand is a floating point register */
2539 case 'v':
2540 case 'V':
2541
2542 case 'f':
2543 case 'B':
2544 case 'R':
2545
2546 case '4':
2547 case '5':
2548
2549 case 'g':
2550 case 'H':
2551 case 'J':
2552 case '}':
2553 {
2554 char format;
2555
2556 if (*s++ == '%'
2557 && ((format = *s) == 'f'
2558 || format == 'd'
2559 || format == 'q')
2560 && ISDIGIT (*++s))
2561 {
2562 for (mask = 0; ISDIGIT (*s); ++s)
2563 {
2564 mask = 10 * mask + (*s - '0');
2565 } /* read the number */
2566
2567 if ((*args == 'v'
2568 || *args == 'B'
2569 || *args == '5'
2570 || *args == 'H'
2571 || format == 'd')
2572 && (mask & 1))
2573 {
2574 /* register must be even numbered */
2575 break;
2576 }
2577
2578 if ((*args == 'V'
2579 || *args == 'R'
2580 || *args == 'J'
2581 || format == 'q')
2582 && (mask & 3))
2583 {
2584 /* register must be multiple of 4 */
2585 break;
2586 }
2587
2588 if (mask >= 64)
2589 {
2590 if (SPARC_OPCODE_ARCH_V9_P (max_architecture))
2591 error_message = _(": There are only 64 f registers; [0-63]");
2592 else
2593 error_message = _(": There are only 32 f registers; [0-31]");
2594 goto error;
2595 } /* on error */
2596 else if (mask >= 32)
2597 {
2598 if (SPARC_OPCODE_ARCH_V9_P (max_architecture))
2599 {
2600 if (*args == 'e' || *args == 'f' || *args == 'g')
2601 {
2602 error_message
2603 = _(": There are only 32 single precision f registers; [0-31]");
2604 goto error;
2605 }
2606 v9_arg_p = 1;
2607 mask -= 31; /* wrap high bit */
2608 }
2609 else
2610 {
2611 error_message = _(": There are only 32 f registers; [0-31]");
2612 goto error;
2613 }
2614 }
2615 }
2616 else
2617 {
2618 break;
2619 } /* if not an 'f' register. */
2620
2621 if (*args == '}' && mask != RS2 (opcode))
2622 {
2623 error_message
2624 = _(": Instruction requires frs2 and frsd must be the same register");
2625 goto error;
2626 }
2627
2628 switch (*args)
2629 {
2630 case 'v':
2631 case 'V':
2632 case 'e':
2633 opcode |= RS1 (mask);
2634 continue;
2635
2636 case 'f':
2637 case 'B':
2638 case 'R':
2639 opcode |= RS2 (mask);
2640 continue;
2641
2642 case '4':
2643 case '5':
2644 opcode |= RS3 (mask);
2645 continue;
2646
2647 case 'g':
2648 case 'H':
2649 case 'J':
2650 case '}':
2651 opcode |= RD (mask);
2652 continue;
2653 } /* Pack it in. */
2654
2655 know (0);
2656 break;
2657 } /* float arg */
2658
2659 case 'F':
2660 if (strncmp (s, "%fsr", 4) == 0)
2661 {
2662 s += 4;
2663 continue;
2664 }
2665 break;
2666
2667 case '(':
2668 if (strncmp (s, "%efsr", 5) == 0)
2669 {
2670 s += 5;
2671 continue;
2672 }
2673 break;
2674
2675 case '0': /* 64 bit immediate (set, setsw, setx insn) */
2676 the_insn.reloc = BFD_RELOC_NONE; /* reloc handled elsewhere */
2677 goto immediate;
2678
2679 case 'l': /* 22 bit PC relative immediate */
2680 the_insn.reloc = BFD_RELOC_SPARC_WDISP22;
2681 the_insn.pcrel = 1;
2682 goto immediate;
2683
2684 case 'L': /* 30 bit immediate */
2685 the_insn.reloc = BFD_RELOC_32_PCREL_S2;
2686 the_insn.pcrel = 1;
2687 goto immediate;
2688
2689 case 'h':
2690 case 'n': /* 22 bit immediate */
2691 the_insn.reloc = BFD_RELOC_SPARC22;
2692 goto immediate;
2693
2694 case 'i': /* 13 bit immediate */
2695 the_insn.reloc = BFD_RELOC_SPARC13;
2696
2697 /* fallthrough */
2698
2699 immediate:
2700 if (*s == ' ')
2701 s++;
2702
2703 {
2704 char *s1;
2705 const char *op_arg = NULL;
2706 static expressionS op_exp;
2707 bfd_reloc_code_real_type old_reloc = the_insn.reloc;
2708
2709 /* Check for %hi, etc. */
2710 if (*s == '%')
2711 {
2712 const struct perc_entry *p;
2713
2714 for (p = perc_table; p->type != perc_entry_none; p++)
2715 if ((p->type == perc_entry_imm_pop || p->type == perc_entry_reg)
2716 && strncmp (s + 1, p->name, p->len) == 0)
2717 break;
2718 if (p->type == perc_entry_none || p->type == perc_entry_reg)
2719 break;
2720
2721 if (s[p->len + 1] != '(')
2722 {
2723 as_bad (_("Illegal operands: %%%s requires arguments in ()"), p->name);
2724 return special_case;
2725 }
2726
2727 op_arg = p->name;
2728 the_insn.reloc = p->pop->reloc;
2729 s += p->len + 2;
2730 v9_arg_p = p->pop->flags & F_POP_V9;
2731 }
2732
2733 /* Note that if the get_expression() fails, we will still
2734 have created U entries in the symbol table for the
2735 'symbols' in the input string. Try not to create U
2736 symbols for registers, etc. */
2737
2738 /* This stuff checks to see if the expression ends in
2739 +%reg. If it does, it removes the register from
2740 the expression, and re-sets 's' to point to the
2741 right place. */
2742
2743 if (op_arg)
2744 {
2745 int npar = 0;
2746
2747 for (s1 = s; *s1 && *s1 != ',' && *s1 != ']'; s1++)
2748 if (*s1 == '(')
2749 npar++;
2750 else if (*s1 == ')')
2751 {
2752 if (!npar)
2753 break;
2754 npar--;
2755 }
2756
2757 if (*s1 != ')')
2758 {
2759 as_bad (_("Illegal operands: %%%s requires arguments in ()"), op_arg);
2760 return special_case;
2761 }
2762
2763 *s1 = '\0';
2764 (void) get_expression (s);
2765 *s1 = ')';
2766 if (expr_end != s1)
2767 {
2768 as_bad (_("Expression inside %%%s could not be parsed"), op_arg);
2769 return special_case;
2770 }
2771 s = s1 + 1;
2772 if (*s == ',' || *s == ']' || !*s)
2773 continue;
2774 if (*s != '+' && *s != '-')
2775 {
2776 as_bad (_("Illegal operands: Can't do arithmetics other than + and - involving %%%s()"), op_arg);
2777 return special_case;
2778 }
2779 *s1 = '0';
2780 s = s1;
2781 op_exp = the_insn.exp;
2782 memset (&the_insn.exp, 0, sizeof (the_insn.exp));
2783 }
2784
2785 for (s1 = s; *s1 && *s1 != ',' && *s1 != ']'; s1++)
2786 ;
2787
2788 if (s1 != s && ISDIGIT (s1[-1]))
2789 {
2790 if (s1[-2] == '%' && s1[-3] == '+')
2791 s1 -= 3;
2792 else if (strchr ("golir0123456789", s1[-2]) && s1[-3] == '%' && s1[-4] == '+')
2793 s1 -= 4;
2794 else if (s1[-3] == 'r' && s1[-4] == '%' && s1[-5] == '+')
2795 s1 -= 5;
2796 else
2797 s1 = NULL;
2798 if (s1)
2799 {
2800 *s1 = '\0';
2801 if (op_arg && s1 == s + 1)
2802 the_insn.exp.X_op = O_absent;
2803 else
2804 (void) get_expression (s);
2805 *s1 = '+';
2806 if (op_arg)
2807 *s = ')';
2808 s = s1;
2809 }
2810 }
2811 else
2812 s1 = NULL;
2813
2814 if (!s1)
2815 {
2816 (void) get_expression (s);
2817 if (op_arg)
2818 *s = ')';
2819 s = expr_end;
2820 }
2821
2822 if (op_arg)
2823 {
2824 the_insn.exp2 = the_insn.exp;
2825 the_insn.exp = op_exp;
2826 if (the_insn.exp2.X_op == O_absent)
2827 the_insn.exp2.X_op = O_illegal;
2828 else if (the_insn.exp.X_op == O_absent)
2829 {
2830 the_insn.exp = the_insn.exp2;
2831 the_insn.exp2.X_op = O_illegal;
2832 }
2833 else if (the_insn.exp.X_op == O_constant)
2834 {
2835 valueT val = the_insn.exp.X_add_number;
2836 switch (the_insn.reloc)
2837 {
2838 default:
2839 break;
2840
2841 case BFD_RELOC_SPARC_HH22:
2842 val = BSR (val, 32);
2843 /* Fall through. */
2844
2845 case BFD_RELOC_SPARC_LM22:
2846 case BFD_RELOC_HI22:
2847 val = (val >> 10) & 0x3fffff;
2848 break;
2849
2850 case BFD_RELOC_SPARC_HM10:
2851 val = BSR (val, 32);
2852 /* Fall through. */
2853
2854 case BFD_RELOC_LO10:
2855 val &= 0x3ff;
2856 break;
2857
2858 case BFD_RELOC_SPARC_H34:
2859 val >>= 12;
2860 val &= 0x3fffff;
2861 break;
2862
2863 case BFD_RELOC_SPARC_H44:
2864 val >>= 22;
2865 val &= 0x3fffff;
2866 break;
2867
2868 case BFD_RELOC_SPARC_M44:
2869 val >>= 12;
2870 val &= 0x3ff;
2871 break;
2872
2873 case BFD_RELOC_SPARC_L44:
2874 val &= 0xfff;
2875 break;
2876
2877 case BFD_RELOC_SPARC_HIX22:
2878 val = ~val;
2879 val = (val >> 10) & 0x3fffff;
2880 break;
2881
2882 case BFD_RELOC_SPARC_LOX10:
2883 val = (val & 0x3ff) | 0x1c00;
2884 break;
2885 }
2886 the_insn.exp = the_insn.exp2;
2887 the_insn.exp.X_add_number += val;
2888 the_insn.exp2.X_op = O_illegal;
2889 the_insn.reloc = old_reloc;
2890 }
2891 else if (the_insn.exp2.X_op != O_constant)
2892 {
2893 as_bad (_("Illegal operands: Can't add non-constant expression to %%%s()"), op_arg);
2894 return special_case;
2895 }
2896 else
2897 {
2898 if (old_reloc != BFD_RELOC_SPARC13
2899 || the_insn.reloc != BFD_RELOC_LO10
2900 || sparc_arch_size != 64
2901 || sparc_pic_code)
2902 {
2903 as_bad (_("Illegal operands: Can't do arithmetics involving %%%s() of a relocatable symbol"), op_arg);
2904 return special_case;
2905 }
2906 the_insn.reloc = BFD_RELOC_SPARC_OLO10;
2907 }
2908 }
2909 }
2910 /* Check for constants that don't require emitting a reloc. */
2911 if (the_insn.exp.X_op == O_constant
2912 && the_insn.exp.X_add_symbol == 0
2913 && the_insn.exp.X_op_symbol == 0)
2914 {
2915 /* For pc-relative call instructions, we reject
2916 constants to get better code. */
2917 if (the_insn.pcrel
2918 && the_insn.reloc == BFD_RELOC_32_PCREL_S2
2919 && in_signed_range (the_insn.exp.X_add_number, 0x3fff))
2920 {
2921 error_message = _(": PC-relative operand can't be a constant");
2922 goto error;
2923 }
2924
2925 if (the_insn.reloc >= BFD_RELOC_SPARC_TLS_GD_HI22
2926 && the_insn.reloc <= BFD_RELOC_SPARC_TLS_TPOFF64)
2927 {
2928 error_message = _(": TLS operand can't be a constant");
2929 goto error;
2930 }
2931
2932 /* Constants that won't fit are checked in md_apply_fix
2933 and bfd_install_relocation.
2934 ??? It would be preferable to install the constants
2935 into the insn here and save having to create a fixS
2936 for each one. There already exists code to handle
2937 all the various cases (e.g. in md_apply_fix and
2938 bfd_install_relocation) so duplicating all that code
2939 here isn't right. */
2940
2941 /* This is a special case to handle cbcond instructions
2942 properly, which can need two relocations. The first
2943 one is for the 5-bit immediate field and the latter
2944 is going to be for the WDISP10 branch part. We
2945 handle the R_SPARC_5 immediate directly here so that
2946 we don't need to add support for multiple relocations
2947 in one instruction just yet. */
2948 if (the_insn.reloc == BFD_RELOC_SPARC_5)
2949 {
2950 valueT val = the_insn.exp.X_add_number;
2951
2952 if (! in_bitfield_range (val, 0x1f))
2953 {
2954 error_message = _(": Immediate value in cbcond is out of range.");
2955 goto error;
2956 }
2957 opcode |= val & 0x1f;
2958 the_insn.reloc = BFD_RELOC_NONE;
2959 }
2960 }
2961
2962 continue;
2963
2964 case 'a':
2965 if (*s++ == 'a')
2966 {
2967 opcode |= ANNUL;
2968 continue;
2969 }
2970 break;
2971
2972 case 'A':
2973 {
2974 int asi = 0;
2975
2976 /* Parse an asi. */
2977 if (*s == '#')
2978 {
2979 if (! parse_keyword_arg (sparc_encode_asi, &s, &asi))
2980 {
2981 error_message = _(": invalid ASI name");
2982 goto error;
2983 }
2984 }
2985 else
2986 {
2987 if (! parse_const_expr_arg (&s, &asi))
2988 {
2989 error_message = _(": invalid ASI expression");
2990 goto error;
2991 }
2992 if (asi < 0 || asi > 255)
2993 {
2994 error_message = _(": invalid ASI number");
2995 goto error;
2996 }
2997 }
2998 opcode |= ASI (asi);
2999 continue;
3000 } /* Alternate space. */
3001
3002 case 'p':
3003 if (strncmp (s, "%psr", 4) == 0)
3004 {
3005 s += 4;
3006 continue;
3007 }
3008 break;
3009
3010 case 'q': /* Floating point queue. */
3011 if (strncmp (s, "%fq", 3) == 0)
3012 {
3013 s += 3;
3014 continue;
3015 }
3016 break;
3017
3018 case 'Q': /* Coprocessor queue. */
3019 if (strncmp (s, "%cq", 3) == 0)
3020 {
3021 s += 3;
3022 continue;
3023 }
3024 break;
3025
3026 case 'S':
3027 if (strcmp (str, "set") == 0
3028 || strcmp (str, "setuw") == 0)
3029 {
3030 special_case = SPECIAL_CASE_SET;
3031 continue;
3032 }
3033 else if (strcmp (str, "setsw") == 0)
3034 {
3035 special_case = SPECIAL_CASE_SETSW;
3036 continue;
3037 }
3038 else if (strcmp (str, "setx") == 0)
3039 {
3040 special_case = SPECIAL_CASE_SETX;
3041 continue;
3042 }
3043 else if (strncmp (str, "fdiv", 4) == 0)
3044 {
3045 special_case = SPECIAL_CASE_FDIV;
3046 continue;
3047 }
3048 break;
3049
3050 case 'o':
3051 if (strncmp (s, "%asi", 4) != 0)
3052 break;
3053 s += 4;
3054 continue;
3055
3056 case 's':
3057 if (strncmp (s, "%fprs", 5) != 0)
3058 break;
3059 s += 5;
3060 continue;
3061
3062 case '{':
3063 if (strncmp (s, "%mcdper",7) != 0)
3064 break;
3065 s += 7;
3066 continue;
3067
3068 case 'E':
3069 if (strncmp (s, "%ccr", 4) != 0)
3070 break;
3071 s += 4;
3072 continue;
3073
3074 case 't':
3075 if (strncmp (s, "%tbr", 4) != 0)
3076 break;
3077 s += 4;
3078 continue;
3079
3080 case 'w':
3081 if (strncmp (s, "%wim", 4) != 0)
3082 break;
3083 s += 4;
3084 continue;
3085
3086 case 'x':
3087 {
3088 char *push = input_line_pointer;
3089 expressionS e;
3090
3091 input_line_pointer = s;
3092 expression (&e);
3093 if (e.X_op == O_constant)
3094 {
3095 int n = e.X_add_number;
3096 if (n != e.X_add_number || (n & ~0x1ff) != 0)
3097 as_bad (_("OPF immediate operand out of range (0-0x1ff)"));
3098 else
3099 opcode |= e.X_add_number << 5;
3100 }
3101 else
3102 as_bad (_("non-immediate OPF operand, ignored"));
3103 s = input_line_pointer;
3104 input_line_pointer = push;
3105 continue;
3106 }
3107
3108 case 'y':
3109 if (strncmp (s, "%y", 2) != 0)
3110 break;
3111 s += 2;
3112 continue;
3113
3114 case 'u':
3115 case 'U':
3116 {
3117 /* Parse a sparclet cpreg. */
3118 int cpreg;
3119 if (! parse_keyword_arg (sparc_encode_sparclet_cpreg, &s, &cpreg))
3120 {
3121 error_message = _(": invalid cpreg name");
3122 goto error;
3123 }
3124 opcode |= (*args == 'U' ? RS1 (cpreg) : RD (cpreg));
3125 continue;
3126 }
3127
3128 default:
3129 as_fatal (_("failed sanity check."));
3130 } /* switch on arg code. */
3131
3132 /* Break out of for() loop. */
3133 break;
3134 } /* For each arg that we expect. */
3135
3136 error:
3137 if (match == 0)
3138 {
3139 /* Args don't match. */
3140 if (&insn[1] - sparc_opcodes < sparc_num_opcodes
3141 && (insn->name == insn[1].name
3142 || !strcmp (insn->name, insn[1].name)))
3143 {
3144 ++insn;
3145 s = argsStart;
3146 continue;
3147 }
3148 else
3149 {
3150 as_bad (_("Illegal operands%s"), error_message);
3151 return special_case;
3152 }
3153 }
3154 else
3155 {
3156 /* We have a match. Now see if the architecture is OK. */
3157 int needed_arch_mask = insn->architecture;
3158 bfd_uint64_t hwcaps
3159 = (((bfd_uint64_t) insn->hwcaps2) << 32) | insn->hwcaps;
3160
3161 #if defined(OBJ_ELF) && !defined(TE_SOLARIS)
3162 if (hwcaps)
3163 hwcap_seen |= hwcaps;
3164 #endif
3165 if (v9_arg_p)
3166 {
3167 needed_arch_mask &=
3168 ~(SPARC_OPCODE_ARCH_MASK (SPARC_OPCODE_ARCH_V9) - 1);
3169 if (! needed_arch_mask)
3170 needed_arch_mask =
3171 SPARC_OPCODE_ARCH_MASK (SPARC_OPCODE_ARCH_V9);
3172 }
3173
3174 if (needed_arch_mask
3175 & SPARC_OPCODE_SUPPORTED (current_architecture))
3176 /* OK. */
3177 ;
3178 /* Can we bump up the architecture? */
3179 else if (needed_arch_mask
3180 & SPARC_OPCODE_SUPPORTED (max_architecture))
3181 {
3182 enum sparc_opcode_arch_val needed_architecture =
3183 sparc_ffs (SPARC_OPCODE_SUPPORTED (max_architecture)
3184 & needed_arch_mask);
3185
3186 gas_assert (needed_architecture <= SPARC_OPCODE_ARCH_MAX);
3187 if (warn_on_bump
3188 && needed_architecture > warn_after_architecture)
3189 {
3190 as_warn (_("architecture bumped from \"%s\" to \"%s\" on \"%s\""),
3191 sparc_opcode_archs[current_architecture].name,
3192 sparc_opcode_archs[needed_architecture].name,
3193 str);
3194 warn_after_architecture = needed_architecture;
3195 }
3196 current_architecture = needed_architecture;
3197 hwcap_allowed |= hwcaps;
3198 }
3199 /* Conflict. */
3200 /* ??? This seems to be a bit fragile. What if the next entry in
3201 the opcode table is the one we want and it is supported?
3202 It is possible to arrange the table today so that this can't
3203 happen but what about tomorrow? */
3204 else
3205 {
3206 int arch, printed_one_p = 0;
3207 char *p;
3208 char required_archs[SPARC_OPCODE_ARCH_MAX * 16];
3209
3210 /* Create a list of the architectures that support the insn. */
3211 needed_arch_mask &= ~SPARC_OPCODE_SUPPORTED (max_architecture);
3212 p = required_archs;
3213 arch = sparc_ffs (needed_arch_mask);
3214 while ((1 << arch) <= needed_arch_mask)
3215 {
3216 if ((1 << arch) & needed_arch_mask)
3217 {
3218 if (printed_one_p)
3219 *p++ = '|';
3220 strcpy (p, sparc_opcode_archs[arch].name);
3221 p += strlen (p);
3222 printed_one_p = 1;
3223 }
3224 ++arch;
3225 }
3226
3227 as_bad (_("Architecture mismatch on \"%s %s\"."), str, argsStart);
3228 as_tsktsk (_(" (Requires %s; requested architecture is %s.)"),
3229 required_archs,
3230 sparc_opcode_archs[max_architecture].name);
3231 return special_case;
3232 }
3233
3234 /* Make sure the hwcaps used by the instruction are
3235 currently enabled. */
3236 if (hwcaps & ~hwcap_allowed)
3237 {
3238 const char *hwcap_name = get_hwcap_name(hwcaps & ~hwcap_allowed);
3239
3240 as_bad (_("Hardware capability \"%s\" not enabled for \"%s\"."),
3241 hwcap_name, str);
3242 return special_case;
3243 }
3244 } /* If no match. */
3245
3246 break;
3247 } /* Forever looking for a match. */
3248
3249 the_insn.opcode = opcode;
3250 return special_case;
3251 }
3252
3253 /* Parse an argument that can be expressed as a keyword.
3254 (eg: #StoreStore or %ccfr).
3255 The result is a boolean indicating success.
3256 If successful, INPUT_POINTER is updated. */
3257
3258 static int
3259 parse_keyword_arg (int (*lookup_fn) (const char *),
3260 char **input_pointerP,
3261 int *valueP)
3262 {
3263 int value;
3264 char c, *p, *q;
3265
3266 p = *input_pointerP;
3267 for (q = p + (*p == '#' || *p == '%');
3268 ISALNUM (*q) || *q == '_';
3269 ++q)
3270 continue;
3271 c = *q;
3272 *q = 0;
3273 value = (*lookup_fn) (p);
3274 *q = c;
3275 if (value == -1)
3276 return 0;
3277 *valueP = value;
3278 *input_pointerP = q;
3279 return 1;
3280 }
3281
3282 /* Parse an argument that is a constant expression.
3283 The result is a boolean indicating success. */
3284
3285 static int
3286 parse_const_expr_arg (char **input_pointerP, int *valueP)
3287 {
3288 char *save = input_line_pointer;
3289 expressionS exp;
3290
3291 input_line_pointer = *input_pointerP;
3292 /* The next expression may be something other than a constant
3293 (say if we're not processing the right variant of the insn).
3294 Don't call expression unless we're sure it will succeed as it will
3295 signal an error (which we want to defer until later). */
3296 /* FIXME: It might be better to define md_operand and have it recognize
3297 things like %asi, etc. but continuing that route through to the end
3298 is a lot of work. */
3299 if (*input_line_pointer == '%')
3300 {
3301 input_line_pointer = save;
3302 return 0;
3303 }
3304 expression (&exp);
3305 *input_pointerP = input_line_pointer;
3306 input_line_pointer = save;
3307 if (exp.X_op != O_constant)
3308 return 0;
3309 *valueP = exp.X_add_number;
3310 return 1;
3311 }
3312
3313 /* Subroutine of sparc_ip to parse an expression. */
3314
3315 static int
3316 get_expression (char *str)
3317 {
3318 char *save_in;
3319 segT seg;
3320
3321 save_in = input_line_pointer;
3322 input_line_pointer = str;
3323 seg = expression (&the_insn.exp);
3324 if (seg != absolute_section
3325 && seg != text_section
3326 && seg != data_section
3327 && seg != bss_section
3328 && seg != undefined_section)
3329 {
3330 the_insn.error = _("bad segment");
3331 expr_end = input_line_pointer;
3332 input_line_pointer = save_in;
3333 return 1;
3334 }
3335 expr_end = input_line_pointer;
3336 input_line_pointer = save_in;
3337 return 0;
3338 }
3339
3340 /* Subroutine of md_assemble to output one insn. */
3341
3342 static void
3343 output_insn (const struct sparc_opcode *insn, struct sparc_it *theinsn)
3344 {
3345 char *toP = frag_more (4);
3346
3347 /* Put out the opcode. */
3348 if (INSN_BIG_ENDIAN)
3349 number_to_chars_bigendian (toP, (valueT) theinsn->opcode, 4);
3350 else
3351 number_to_chars_littleendian (toP, (valueT) theinsn->opcode, 4);
3352
3353 /* Put out the symbol-dependent stuff. */
3354 if (theinsn->reloc != BFD_RELOC_NONE)
3355 {
3356 fixS *fixP = fix_new_exp (frag_now, /* Which frag. */
3357 (toP - frag_now->fr_literal), /* Where. */
3358 4, /* Size. */
3359 &theinsn->exp,
3360 theinsn->pcrel,
3361 theinsn->reloc);
3362 /* Turn off overflow checking in fixup_segment. We'll do our
3363 own overflow checking in md_apply_fix. This is necessary because
3364 the insn size is 4 and fixup_segment will signal an overflow for
3365 large 8 byte quantities. */
3366 fixP->fx_no_overflow = 1;
3367 if (theinsn->reloc == BFD_RELOC_SPARC_OLO10)
3368 fixP->tc_fix_data = theinsn->exp2.X_add_number;
3369 }
3370
3371 last_insn = insn;
3372 last_opcode = theinsn->opcode;
3373
3374 #ifdef OBJ_ELF
3375 dwarf2_emit_insn (4);
3376 #endif
3377 }
3378 \f
3379 const char *
3380 md_atof (int type, char *litP, int *sizeP)
3381 {
3382 return ieee_md_atof (type, litP, sizeP, target_big_endian);
3383 }
3384
3385 /* Write a value out to the object file, using the appropriate
3386 endianness. */
3387
3388 void
3389 md_number_to_chars (char *buf, valueT val, int n)
3390 {
3391 if (target_big_endian)
3392 number_to_chars_bigendian (buf, val, n);
3393 else if (target_little_endian_data
3394 && ((n == 4 || n == 2) && ~now_seg->flags & SEC_ALLOC))
3395 /* Output debug words, which are not in allocated sections, as big
3396 endian. */
3397 number_to_chars_bigendian (buf, val, n);
3398 else if (target_little_endian_data || ! target_big_endian)
3399 number_to_chars_littleendian (buf, val, n);
3400 }
3401 \f
3402 /* Apply a fixS to the frags, now that we know the value it ought to
3403 hold. */
3404
3405 void
3406 md_apply_fix (fixS *fixP, valueT *valP, segT segment ATTRIBUTE_UNUSED)
3407 {
3408 char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
3409 offsetT val = * (offsetT *) valP;
3410 long insn;
3411
3412 gas_assert (fixP->fx_r_type < BFD_RELOC_UNUSED);
3413
3414 fixP->fx_addnumber = val; /* Remember value for emit_reloc. */
3415
3416 #ifdef OBJ_ELF
3417 /* SPARC ELF relocations don't use an addend in the data field. */
3418 if (fixP->fx_addsy != NULL)
3419 {
3420 switch (fixP->fx_r_type)
3421 {
3422 case BFD_RELOC_SPARC_TLS_GD_HI22:
3423 case BFD_RELOC_SPARC_TLS_GD_LO10:
3424 case BFD_RELOC_SPARC_TLS_GD_ADD:
3425 case BFD_RELOC_SPARC_TLS_GD_CALL:
3426 case BFD_RELOC_SPARC_TLS_LDM_HI22:
3427 case BFD_RELOC_SPARC_TLS_LDM_LO10:
3428 case BFD_RELOC_SPARC_TLS_LDM_ADD:
3429 case BFD_RELOC_SPARC_TLS_LDM_CALL:
3430 case BFD_RELOC_SPARC_TLS_LDO_HIX22:
3431 case BFD_RELOC_SPARC_TLS_LDO_LOX10:
3432 case BFD_RELOC_SPARC_TLS_LDO_ADD:
3433 case BFD_RELOC_SPARC_TLS_IE_HI22:
3434 case BFD_RELOC_SPARC_TLS_IE_LO10:
3435 case BFD_RELOC_SPARC_TLS_IE_LD:
3436 case BFD_RELOC_SPARC_TLS_IE_LDX:
3437 case BFD_RELOC_SPARC_TLS_IE_ADD:
3438 case BFD_RELOC_SPARC_TLS_LE_HIX22:
3439 case BFD_RELOC_SPARC_TLS_LE_LOX10:
3440 case BFD_RELOC_SPARC_TLS_DTPMOD32:
3441 case BFD_RELOC_SPARC_TLS_DTPMOD64:
3442 case BFD_RELOC_SPARC_TLS_DTPOFF32:
3443 case BFD_RELOC_SPARC_TLS_DTPOFF64:
3444 case BFD_RELOC_SPARC_TLS_TPOFF32:
3445 case BFD_RELOC_SPARC_TLS_TPOFF64:
3446 S_SET_THREAD_LOCAL (fixP->fx_addsy);
3447
3448 default:
3449 break;
3450 }
3451
3452 return;
3453 }
3454 #endif
3455
3456 /* This is a hack. There should be a better way to
3457 handle this. Probably in terms of howto fields, once
3458 we can look at these fixups in terms of howtos. */
3459 if (fixP->fx_r_type == BFD_RELOC_32_PCREL_S2 && fixP->fx_addsy)
3460 val += fixP->fx_where + fixP->fx_frag->fr_address;
3461
3462 #ifdef OBJ_AOUT
3463 /* FIXME: More ridiculous gas reloc hacking. If we are going to
3464 generate a reloc, then we just want to let the reloc addend set
3465 the value. We do not want to also stuff the addend into the
3466 object file. Including the addend in the object file works when
3467 doing a static link, because the linker will ignore the object
3468 file contents. However, the dynamic linker does not ignore the
3469 object file contents. */
3470 if (fixP->fx_addsy != NULL
3471 && fixP->fx_r_type != BFD_RELOC_32_PCREL_S2)
3472 val = 0;
3473
3474 /* When generating PIC code, we do not want an addend for a reloc
3475 against a local symbol. We adjust fx_addnumber to cancel out the
3476 value already included in val, and to also cancel out the
3477 adjustment which bfd_install_relocation will create. */
3478 if (sparc_pic_code
3479 && fixP->fx_r_type != BFD_RELOC_32_PCREL_S2
3480 && fixP->fx_addsy != NULL
3481 && ! S_IS_COMMON (fixP->fx_addsy)
3482 && symbol_section_p (fixP->fx_addsy))
3483 fixP->fx_addnumber -= 2 * S_GET_VALUE (fixP->fx_addsy);
3484
3485 /* When generating PIC code, we need to fiddle to get
3486 bfd_install_relocation to do the right thing for a PC relative
3487 reloc against a local symbol which we are going to keep. */
3488 if (sparc_pic_code
3489 && fixP->fx_r_type == BFD_RELOC_32_PCREL_S2
3490 && fixP->fx_addsy != NULL
3491 && (S_IS_EXTERNAL (fixP->fx_addsy)
3492 || S_IS_WEAK (fixP->fx_addsy))
3493 && S_IS_DEFINED (fixP->fx_addsy)
3494 && ! S_IS_COMMON (fixP->fx_addsy))
3495 {
3496 val = 0;
3497 fixP->fx_addnumber -= 2 * S_GET_VALUE (fixP->fx_addsy);
3498 }
3499 #endif
3500
3501 /* If this is a data relocation, just output VAL. */
3502
3503 if (fixP->fx_r_type == BFD_RELOC_8)
3504 {
3505 md_number_to_chars (buf, val, 1);
3506 }
3507 else if (fixP->fx_r_type == BFD_RELOC_16
3508 || fixP->fx_r_type == BFD_RELOC_SPARC_UA16)
3509 {
3510 md_number_to_chars (buf, val, 2);
3511 }
3512 else if (fixP->fx_r_type == BFD_RELOC_32
3513 || fixP->fx_r_type == BFD_RELOC_SPARC_UA32
3514 || fixP->fx_r_type == BFD_RELOC_SPARC_REV32)
3515 {
3516 md_number_to_chars (buf, val, 4);
3517 }
3518 else if (fixP->fx_r_type == BFD_RELOC_64
3519 || fixP->fx_r_type == BFD_RELOC_SPARC_UA64)
3520 {
3521 md_number_to_chars (buf, val, 8);
3522 }
3523 else if (fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3524 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3525 {
3526 fixP->fx_done = 0;
3527 return;
3528 }
3529 else
3530 {
3531 /* It's a relocation against an instruction. */
3532
3533 if (INSN_BIG_ENDIAN)
3534 insn = bfd_getb32 ((unsigned char *) buf);
3535 else
3536 insn = bfd_getl32 ((unsigned char *) buf);
3537
3538 switch (fixP->fx_r_type)
3539 {
3540 case BFD_RELOC_32_PCREL_S2:
3541 val = val >> 2;
3542 /* FIXME: This increment-by-one deserves a comment of why it's
3543 being done! */
3544 if (! sparc_pic_code
3545 || fixP->fx_addsy == NULL
3546 || symbol_section_p (fixP->fx_addsy))
3547 ++val;
3548
3549 insn |= val & 0x3fffffff;
3550
3551 /* See if we have a delay slot. */
3552 if (sparc_relax && fixP->fx_where + 8 <= fixP->fx_frag->fr_fix)
3553 {
3554 #define G0 0
3555 #define O7 15
3556 #define XCC (2 << 20)
3557 #define COND(x) (((x)&0xf)<<25)
3558 #define CONDA COND(0x8)
3559 #define INSN_BPA (F2(0,1) | CONDA | BPRED | XCC)
3560 #define INSN_BA (F2(0,2) | CONDA)
3561 #define INSN_OR F3(2, 0x2, 0)
3562 #define INSN_NOP F2(0,4)
3563
3564 long delay;
3565
3566 /* If the instruction is a call with either:
3567 restore
3568 arithmetic instruction with rd == %o7
3569 where rs1 != %o7 and rs2 if it is register != %o7
3570 then we can optimize if the call destination is near
3571 by changing the call into a branch always. */
3572 if (INSN_BIG_ENDIAN)
3573 delay = bfd_getb32 ((unsigned char *) buf + 4);
3574 else
3575 delay = bfd_getl32 ((unsigned char *) buf + 4);
3576 if ((insn & OP (~0)) != OP (1) || (delay & OP (~0)) != OP (2))
3577 break;
3578 if ((delay & OP3 (~0)) != OP3 (0x3d) /* Restore. */
3579 && ((delay & OP3 (0x28)) != 0 /* Arithmetic. */
3580 || ((delay & RD (~0)) != RD (O7))))
3581 break;
3582 if ((delay & RS1 (~0)) == RS1 (O7)
3583 || ((delay & F3I (~0)) == 0
3584 && (delay & RS2 (~0)) == RS2 (O7)))
3585 break;
3586 /* Ensure the branch will fit into simm22. */
3587 if ((val & 0x3fe00000)
3588 && (val & 0x3fe00000) != 0x3fe00000)
3589 break;
3590 /* Check if the arch is v9 and branch will fit
3591 into simm19. */
3592 if (((val & 0x3c0000) == 0
3593 || (val & 0x3c0000) == 0x3c0000)
3594 && (sparc_arch_size == 64
3595 || current_architecture >= SPARC_OPCODE_ARCH_V9))
3596 /* ba,pt %xcc */
3597 insn = INSN_BPA | (val & 0x7ffff);
3598 else
3599 /* ba */
3600 insn = INSN_BA | (val & 0x3fffff);
3601 if (fixP->fx_where >= 4
3602 && ((delay & (0xffffffff ^ RS1 (~0)))
3603 == (INSN_OR | RD (O7) | RS2 (G0))))
3604 {
3605 long setter;
3606 int reg;
3607
3608 if (INSN_BIG_ENDIAN)
3609 setter = bfd_getb32 ((unsigned char *) buf - 4);
3610 else
3611 setter = bfd_getl32 ((unsigned char *) buf - 4);
3612 if ((setter & (0xffffffff ^ RD (~0)))
3613 != (INSN_OR | RS1 (O7) | RS2 (G0)))
3614 break;
3615 /* The sequence was
3616 or %o7, %g0, %rN
3617 call foo
3618 or %rN, %g0, %o7
3619
3620 If call foo was replaced with ba, replace
3621 or %rN, %g0, %o7 with nop. */
3622 reg = (delay & RS1 (~0)) >> 14;
3623 if (reg != ((setter & RD (~0)) >> 25)
3624 || reg == G0 || reg == O7)
3625 break;
3626
3627 if (INSN_BIG_ENDIAN)
3628 bfd_putb32 (INSN_NOP, (unsigned char *) buf + 4);
3629 else
3630 bfd_putl32 (INSN_NOP, (unsigned char *) buf + 4);
3631 }
3632 }
3633 break;
3634
3635 case BFD_RELOC_SPARC_11:
3636 if (! in_signed_range (val, 0x7ff))
3637 as_bad_where (fixP->fx_file, fixP->fx_line,
3638 _("relocation overflow"));
3639 insn |= val & 0x7ff;
3640 break;
3641
3642 case BFD_RELOC_SPARC_10:
3643 if (! in_signed_range (val, 0x3ff))
3644 as_bad_where (fixP->fx_file, fixP->fx_line,
3645 _("relocation overflow"));
3646 insn |= val & 0x3ff;
3647 break;
3648
3649 case BFD_RELOC_SPARC_7:
3650 if (! in_bitfield_range (val, 0x7f))
3651 as_bad_where (fixP->fx_file, fixP->fx_line,
3652 _("relocation overflow"));
3653 insn |= val & 0x7f;
3654 break;
3655
3656 case BFD_RELOC_SPARC_6:
3657 if (! in_bitfield_range (val, 0x3f))
3658 as_bad_where (fixP->fx_file, fixP->fx_line,
3659 _("relocation overflow"));
3660 insn |= val & 0x3f;
3661 break;
3662
3663 case BFD_RELOC_SPARC_5:
3664 if (! in_bitfield_range (val, 0x1f))
3665 as_bad_where (fixP->fx_file, fixP->fx_line,
3666 _("relocation overflow"));
3667 insn |= val & 0x1f;
3668 break;
3669
3670 case BFD_RELOC_SPARC_WDISP10:
3671 if ((val & 3)
3672 || val >= 0x007fc
3673 || val <= -(offsetT) 0x808)
3674 as_bad_where (fixP->fx_file, fixP->fx_line,
3675 _("relocation overflow"));
3676 /* FIXME: The +1 deserves a comment. */
3677 val = (val >> 2) + 1;
3678 insn |= ((val & 0x300) << 11)
3679 | ((val & 0xff) << 5);
3680 break;
3681
3682 case BFD_RELOC_SPARC_WDISP16:
3683 if ((val & 3)
3684 || val >= 0x1fffc
3685 || val <= -(offsetT) 0x20008)
3686 as_bad_where (fixP->fx_file, fixP->fx_line,
3687 _("relocation overflow"));
3688 /* FIXME: The +1 deserves a comment. */
3689 val = (val >> 2) + 1;
3690 insn |= ((val & 0xc000) << 6) | (val & 0x3fff);
3691 break;
3692
3693 case BFD_RELOC_SPARC_WDISP19:
3694 if ((val & 3)
3695 || val >= 0xffffc
3696 || val <= -(offsetT) 0x100008)
3697 as_bad_where (fixP->fx_file, fixP->fx_line,
3698 _("relocation overflow"));
3699 /* FIXME: The +1 deserves a comment. */
3700 val = (val >> 2) + 1;
3701 insn |= val & 0x7ffff;
3702 break;
3703
3704 case BFD_RELOC_SPARC_HH22:
3705 val = BSR (val, 32);
3706 /* Fall through. */
3707
3708 case BFD_RELOC_SPARC_LM22:
3709 case BFD_RELOC_HI22:
3710 if (!fixP->fx_addsy)
3711 insn |= (val >> 10) & 0x3fffff;
3712 else
3713 /* FIXME: Need comment explaining why we do this. */
3714 insn &= ~0xffff;
3715 break;
3716
3717 case BFD_RELOC_SPARC22:
3718 if (val & ~0x003fffff)
3719 as_bad_where (fixP->fx_file, fixP->fx_line,
3720 _("relocation overflow"));
3721 insn |= (val & 0x3fffff);
3722 break;
3723
3724 case BFD_RELOC_SPARC_HM10:
3725 val = BSR (val, 32);
3726 /* Fall through. */
3727
3728 case BFD_RELOC_LO10:
3729 if (!fixP->fx_addsy)
3730 insn |= val & 0x3ff;
3731 else
3732 /* FIXME: Need comment explaining why we do this. */
3733 insn &= ~0xff;
3734 break;
3735
3736 case BFD_RELOC_SPARC_OLO10:
3737 val &= 0x3ff;
3738 val += fixP->tc_fix_data;
3739 /* Fall through. */
3740
3741 case BFD_RELOC_SPARC13:
3742 if (! in_signed_range (val, 0x1fff))
3743 as_bad_where (fixP->fx_file, fixP->fx_line,
3744 _("relocation overflow"));
3745 insn |= val & 0x1fff;
3746 break;
3747
3748 case BFD_RELOC_SPARC_WDISP22:
3749 val = (val >> 2) + 1;
3750 /* Fall through. */
3751 case BFD_RELOC_SPARC_BASE22:
3752 insn |= val & 0x3fffff;
3753 break;
3754
3755 case BFD_RELOC_SPARC_H34:
3756 if (!fixP->fx_addsy)
3757 {
3758 bfd_vma tval = val;
3759 tval >>= 12;
3760 insn |= tval & 0x3fffff;
3761 }
3762 break;
3763
3764 case BFD_RELOC_SPARC_H44:
3765 if (!fixP->fx_addsy)
3766 {
3767 bfd_vma tval = val;
3768 tval >>= 22;
3769 insn |= tval & 0x3fffff;
3770 }
3771 break;
3772
3773 case BFD_RELOC_SPARC_M44:
3774 if (!fixP->fx_addsy)
3775 insn |= (val >> 12) & 0x3ff;
3776 break;
3777
3778 case BFD_RELOC_SPARC_L44:
3779 if (!fixP->fx_addsy)
3780 insn |= val & 0xfff;
3781 break;
3782
3783 case BFD_RELOC_SPARC_HIX22:
3784 if (!fixP->fx_addsy)
3785 {
3786 val ^= ~(offsetT) 0;
3787 insn |= (val >> 10) & 0x3fffff;
3788 }
3789 break;
3790
3791 case BFD_RELOC_SPARC_LOX10:
3792 if (!fixP->fx_addsy)
3793 insn |= 0x1c00 | (val & 0x3ff);
3794 break;
3795
3796 case BFD_RELOC_NONE:
3797 default:
3798 as_bad_where (fixP->fx_file, fixP->fx_line,
3799 _("bad or unhandled relocation type: 0x%02x"),
3800 fixP->fx_r_type);
3801 break;
3802 }
3803
3804 if (INSN_BIG_ENDIAN)
3805 bfd_putb32 (insn, (unsigned char *) buf);
3806 else
3807 bfd_putl32 (insn, (unsigned char *) buf);
3808 }
3809
3810 /* Are we finished with this relocation now? */
3811 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
3812 fixP->fx_done = 1;
3813 }
3814
3815 /* Translate internal representation of relocation info to BFD target
3816 format. */
3817
3818 arelent **
3819 tc_gen_reloc (asection *section, fixS *fixp)
3820 {
3821 static arelent *relocs[3];
3822 arelent *reloc;
3823 bfd_reloc_code_real_type code;
3824
3825 relocs[0] = reloc = XNEW (arelent);
3826 relocs[1] = NULL;
3827
3828 reloc->sym_ptr_ptr = XNEW (asymbol *);
3829 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
3830 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
3831
3832 switch (fixp->fx_r_type)
3833 {
3834 case BFD_RELOC_16:
3835 case BFD_RELOC_32:
3836 case BFD_RELOC_HI22:
3837 case BFD_RELOC_LO10:
3838 case BFD_RELOC_32_PCREL_S2:
3839 case BFD_RELOC_SPARC13:
3840 case BFD_RELOC_SPARC22:
3841 case BFD_RELOC_SPARC_PC22:
3842 case BFD_RELOC_SPARC_PC10:
3843 case BFD_RELOC_SPARC_BASE13:
3844 case BFD_RELOC_SPARC_WDISP10:
3845 case BFD_RELOC_SPARC_WDISP16:
3846 case BFD_RELOC_SPARC_WDISP19:
3847 case BFD_RELOC_SPARC_WDISP22:
3848 case BFD_RELOC_64:
3849 case BFD_RELOC_SPARC_5:
3850 case BFD_RELOC_SPARC_6:
3851 case BFD_RELOC_SPARC_7:
3852 case BFD_RELOC_SPARC_10:
3853 case BFD_RELOC_SPARC_11:
3854 case BFD_RELOC_SPARC_HH22:
3855 case BFD_RELOC_SPARC_HM10:
3856 case BFD_RELOC_SPARC_LM22:
3857 case BFD_RELOC_SPARC_PC_HH22:
3858 case BFD_RELOC_SPARC_PC_HM10:
3859 case BFD_RELOC_SPARC_PC_LM22:
3860 case BFD_RELOC_SPARC_H34:
3861 case BFD_RELOC_SPARC_H44:
3862 case BFD_RELOC_SPARC_M44:
3863 case BFD_RELOC_SPARC_L44:
3864 case BFD_RELOC_SPARC_HIX22:
3865 case BFD_RELOC_SPARC_LOX10:
3866 case BFD_RELOC_SPARC_REV32:
3867 case BFD_RELOC_SPARC_OLO10:
3868 case BFD_RELOC_SPARC_UA16:
3869 case BFD_RELOC_SPARC_UA32:
3870 case BFD_RELOC_SPARC_UA64:
3871 case BFD_RELOC_8_PCREL:
3872 case BFD_RELOC_16_PCREL:
3873 case BFD_RELOC_32_PCREL:
3874 case BFD_RELOC_64_PCREL:
3875 case BFD_RELOC_SPARC_PLT32:
3876 case BFD_RELOC_SPARC_PLT64:
3877 case BFD_RELOC_VTABLE_ENTRY:
3878 case BFD_RELOC_VTABLE_INHERIT:
3879 case BFD_RELOC_SPARC_TLS_GD_HI22:
3880 case BFD_RELOC_SPARC_TLS_GD_LO10:
3881 case BFD_RELOC_SPARC_TLS_GD_ADD:
3882 case BFD_RELOC_SPARC_TLS_GD_CALL:
3883 case BFD_RELOC_SPARC_TLS_LDM_HI22:
3884 case BFD_RELOC_SPARC_TLS_LDM_LO10:
3885 case BFD_RELOC_SPARC_TLS_LDM_ADD:
3886 case BFD_RELOC_SPARC_TLS_LDM_CALL:
3887 case BFD_RELOC_SPARC_TLS_LDO_HIX22:
3888 case BFD_RELOC_SPARC_TLS_LDO_LOX10:
3889 case BFD_RELOC_SPARC_TLS_LDO_ADD:
3890 case BFD_RELOC_SPARC_TLS_IE_HI22:
3891 case BFD_RELOC_SPARC_TLS_IE_LO10:
3892 case BFD_RELOC_SPARC_TLS_IE_LD:
3893 case BFD_RELOC_SPARC_TLS_IE_LDX:
3894 case BFD_RELOC_SPARC_TLS_IE_ADD:
3895 case BFD_RELOC_SPARC_TLS_LE_HIX22:
3896 case BFD_RELOC_SPARC_TLS_LE_LOX10:
3897 case BFD_RELOC_SPARC_TLS_DTPOFF32:
3898 case BFD_RELOC_SPARC_TLS_DTPOFF64:
3899 case BFD_RELOC_SPARC_GOTDATA_OP_HIX22:
3900 case BFD_RELOC_SPARC_GOTDATA_OP_LOX10:
3901 case BFD_RELOC_SPARC_GOTDATA_OP:
3902 code = fixp->fx_r_type;
3903 break;
3904 default:
3905 abort ();
3906 return NULL;
3907 }
3908
3909 #if defined (OBJ_ELF) || defined (OBJ_AOUT)
3910 /* If we are generating PIC code, we need to generate a different
3911 set of relocs. */
3912
3913 #ifdef OBJ_ELF
3914 #define GOT_NAME "_GLOBAL_OFFSET_TABLE_"
3915 #else
3916 #define GOT_NAME "__GLOBAL_OFFSET_TABLE_"
3917 #endif
3918 #ifdef TE_VXWORKS
3919 #define GOTT_BASE "__GOTT_BASE__"
3920 #define GOTT_INDEX "__GOTT_INDEX__"
3921 #endif
3922
3923 /* This code must be parallel to the OBJ_ELF tc_fix_adjustable. */
3924
3925 if (sparc_pic_code)
3926 {
3927 switch (code)
3928 {
3929 case BFD_RELOC_32_PCREL_S2:
3930 if (generic_force_reloc (fixp))
3931 code = BFD_RELOC_SPARC_WPLT30;
3932 break;
3933 case BFD_RELOC_HI22:
3934 code = BFD_RELOC_SPARC_GOT22;
3935 if (fixp->fx_addsy != NULL)
3936 {
3937 if (strcmp (S_GET_NAME (fixp->fx_addsy), GOT_NAME) == 0)
3938 code = BFD_RELOC_SPARC_PC22;
3939 #ifdef TE_VXWORKS
3940 if (strcmp (S_GET_NAME (fixp->fx_addsy), GOTT_BASE) == 0
3941 || strcmp (S_GET_NAME (fixp->fx_addsy), GOTT_INDEX) == 0)
3942 code = BFD_RELOC_HI22; /* Unchanged. */
3943 #endif
3944 }
3945 break;
3946 case BFD_RELOC_LO10:
3947 code = BFD_RELOC_SPARC_GOT10;
3948 if (fixp->fx_addsy != NULL)
3949 {
3950 if (strcmp (S_GET_NAME (fixp->fx_addsy), GOT_NAME) == 0)
3951 code = BFD_RELOC_SPARC_PC10;
3952 #ifdef TE_VXWORKS
3953 if (strcmp (S_GET_NAME (fixp->fx_addsy), GOTT_BASE) == 0
3954 || strcmp (S_GET_NAME (fixp->fx_addsy), GOTT_INDEX) == 0)
3955 code = BFD_RELOC_LO10; /* Unchanged. */
3956 #endif
3957 }
3958 break;
3959 case BFD_RELOC_SPARC13:
3960 code = BFD_RELOC_SPARC_GOT13;
3961 break;
3962 default:
3963 break;
3964 }
3965 }
3966 #endif /* defined (OBJ_ELF) || defined (OBJ_AOUT) */
3967
3968 /* Nothing is aligned in DWARF debugging sections. */
3969 if (bfd_get_section_flags (stdoutput, section) & SEC_DEBUGGING)
3970 switch (code)
3971 {
3972 case BFD_RELOC_16: code = BFD_RELOC_SPARC_UA16; break;
3973 case BFD_RELOC_32: code = BFD_RELOC_SPARC_UA32; break;
3974 case BFD_RELOC_64: code = BFD_RELOC_SPARC_UA64; break;
3975 default: break;
3976 }
3977
3978 if (code == BFD_RELOC_SPARC_OLO10)
3979 reloc->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_LO10);
3980 else
3981 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
3982 if (reloc->howto == 0)
3983 {
3984 as_bad_where (fixp->fx_file, fixp->fx_line,
3985 _("internal error: can't export reloc type %d (`%s')"),
3986 fixp->fx_r_type, bfd_get_reloc_code_name (code));
3987 xfree (reloc);
3988 relocs[0] = NULL;
3989 return relocs;
3990 }
3991
3992 /* @@ Why fx_addnumber sometimes and fx_offset other times? */
3993 #ifdef OBJ_AOUT
3994
3995 if (reloc->howto->pc_relative == 0
3996 || code == BFD_RELOC_SPARC_PC10
3997 || code == BFD_RELOC_SPARC_PC22)
3998 reloc->addend = fixp->fx_addnumber;
3999 else if (sparc_pic_code
4000 && fixp->fx_r_type == BFD_RELOC_32_PCREL_S2
4001 && fixp->fx_addsy != NULL
4002 && (S_IS_EXTERNAL (fixp->fx_addsy)
4003 || S_IS_WEAK (fixp->fx_addsy))
4004 && S_IS_DEFINED (fixp->fx_addsy)
4005 && ! S_IS_COMMON (fixp->fx_addsy))
4006 reloc->addend = fixp->fx_addnumber;
4007 else
4008 reloc->addend = fixp->fx_offset - reloc->address;
4009
4010 #else /* elf or coff */
4011
4012 if (code != BFD_RELOC_32_PCREL_S2
4013 && code != BFD_RELOC_SPARC_WDISP22
4014 && code != BFD_RELOC_SPARC_WDISP16
4015 && code != BFD_RELOC_SPARC_WDISP19
4016 && code != BFD_RELOC_SPARC_WDISP10
4017 && code != BFD_RELOC_SPARC_WPLT30
4018 && code != BFD_RELOC_SPARC_TLS_GD_CALL
4019 && code != BFD_RELOC_SPARC_TLS_LDM_CALL)
4020 reloc->addend = fixp->fx_addnumber;
4021 else if (symbol_section_p (fixp->fx_addsy))
4022 reloc->addend = (section->vma
4023 + fixp->fx_addnumber
4024 + md_pcrel_from (fixp));
4025 else
4026 reloc->addend = fixp->fx_offset;
4027 #endif
4028
4029 /* We expand R_SPARC_OLO10 to R_SPARC_LO10 and R_SPARC_13
4030 on the same location. */
4031 if (code == BFD_RELOC_SPARC_OLO10)
4032 {
4033 relocs[1] = reloc = XNEW (arelent);
4034 relocs[2] = NULL;
4035
4036 reloc->sym_ptr_ptr = XNEW (asymbol *);
4037 *reloc->sym_ptr_ptr
4038 = symbol_get_bfdsym (section_symbol (absolute_section));
4039 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
4040 reloc->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_SPARC13);
4041 reloc->addend = fixp->tc_fix_data;
4042 }
4043
4044 return relocs;
4045 }
4046 \f
4047 /* We have no need to default values of symbols. */
4048
4049 symbolS *
4050 md_undefined_symbol (char *name ATTRIBUTE_UNUSED)
4051 {
4052 return 0;
4053 }
4054
4055 /* Round up a section size to the appropriate boundary. */
4056
4057 valueT
4058 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
4059 {
4060 #ifndef OBJ_ELF
4061 /* This is not right for ELF; a.out wants it, and COFF will force
4062 the alignment anyways. */
4063 valueT align = ((valueT) 1
4064 << (valueT) bfd_get_section_alignment (stdoutput, segment));
4065 valueT newsize;
4066
4067 /* Turn alignment value into a mask. */
4068 align--;
4069 newsize = (size + align) & ~align;
4070 return newsize;
4071 #else
4072 return size;
4073 #endif
4074 }
4075
4076 /* Exactly what point is a PC-relative offset relative TO?
4077 On the sparc, they're relative to the address of the offset, plus
4078 its size. This gets us to the following instruction.
4079 (??? Is this right? FIXME-SOON) */
4080 long
4081 md_pcrel_from (fixS *fixP)
4082 {
4083 long ret;
4084
4085 ret = fixP->fx_where + fixP->fx_frag->fr_address;
4086 if (! sparc_pic_code
4087 || fixP->fx_addsy == NULL
4088 || symbol_section_p (fixP->fx_addsy))
4089 ret += fixP->fx_size;
4090 return ret;
4091 }
4092 \f
4093 /* Return log2 (VALUE), or -1 if VALUE is not an exact positive power
4094 of two. */
4095
4096 static int
4097 mylog2 (int value)
4098 {
4099 int shift;
4100
4101 if (value <= 0)
4102 return -1;
4103
4104 for (shift = 0; (value & 1) == 0; value >>= 1)
4105 ++shift;
4106
4107 return (value == 1) ? shift : -1;
4108 }
4109
4110 /* Sort of like s_lcomm. */
4111
4112 #ifndef OBJ_ELF
4113 static int max_alignment = 15;
4114 #endif
4115
4116 static void
4117 s_reserve (int ignore ATTRIBUTE_UNUSED)
4118 {
4119 char *name;
4120 char *p;
4121 char c;
4122 int align;
4123 int size;
4124 int temp;
4125 symbolS *symbolP;
4126
4127 c = get_symbol_name (&name);
4128 p = input_line_pointer;
4129 *p = c;
4130 SKIP_WHITESPACE_AFTER_NAME ();
4131
4132 if (*input_line_pointer != ',')
4133 {
4134 as_bad (_("Expected comma after name"));
4135 ignore_rest_of_line ();
4136 return;
4137 }
4138
4139 ++input_line_pointer;
4140
4141 if ((size = get_absolute_expression ()) < 0)
4142 {
4143 as_bad (_("BSS length (%d.) <0! Ignored."), size);
4144 ignore_rest_of_line ();
4145 return;
4146 } /* Bad length. */
4147
4148 *p = 0;
4149 symbolP = symbol_find_or_make (name);
4150 *p = c;
4151
4152 if (strncmp (input_line_pointer, ",\"bss\"", 6) != 0
4153 && strncmp (input_line_pointer, ",\".bss\"", 7) != 0)
4154 {
4155 as_bad (_("bad .reserve segment -- expected BSS segment"));
4156 return;
4157 }
4158
4159 if (input_line_pointer[2] == '.')
4160 input_line_pointer += 7;
4161 else
4162 input_line_pointer += 6;
4163 SKIP_WHITESPACE ();
4164
4165 if (*input_line_pointer == ',')
4166 {
4167 ++input_line_pointer;
4168
4169 SKIP_WHITESPACE ();
4170 if (*input_line_pointer == '\n')
4171 {
4172 as_bad (_("missing alignment"));
4173 ignore_rest_of_line ();
4174 return;
4175 }
4176
4177 align = (int) get_absolute_expression ();
4178
4179 #ifndef OBJ_ELF
4180 if (align > max_alignment)
4181 {
4182 align = max_alignment;
4183 as_warn (_("alignment too large; assuming %d"), align);
4184 }
4185 #endif
4186
4187 if (align < 0)
4188 {
4189 as_bad (_("negative alignment"));
4190 ignore_rest_of_line ();
4191 return;
4192 }
4193
4194 if (align != 0)
4195 {
4196 temp = mylog2 (align);
4197 if (temp < 0)
4198 {
4199 as_bad (_("alignment not a power of 2"));
4200 ignore_rest_of_line ();
4201 return;
4202 }
4203
4204 align = temp;
4205 }
4206
4207 record_alignment (bss_section, align);
4208 }
4209 else
4210 align = 0;
4211
4212 if (!S_IS_DEFINED (symbolP)
4213 #ifdef OBJ_AOUT
4214 && S_GET_OTHER (symbolP) == 0
4215 && S_GET_DESC (symbolP) == 0
4216 #endif
4217 )
4218 {
4219 if (! need_pass_2)
4220 {
4221 char *pfrag;
4222 segT current_seg = now_seg;
4223 subsegT current_subseg = now_subseg;
4224
4225 /* Switch to bss. */
4226 subseg_set (bss_section, 1);
4227
4228 if (align)
4229 /* Do alignment. */
4230 frag_align (align, 0, 0);
4231
4232 /* Detach from old frag. */
4233 if (S_GET_SEGMENT (symbolP) == bss_section)
4234 symbol_get_frag (symbolP)->fr_symbol = NULL;
4235
4236 symbol_set_frag (symbolP, frag_now);
4237 pfrag = frag_var (rs_org, 1, 1, (relax_substateT) 0, symbolP,
4238 (offsetT) size, (char *) 0);
4239 *pfrag = 0;
4240
4241 S_SET_SEGMENT (symbolP, bss_section);
4242
4243 subseg_set (current_seg, current_subseg);
4244
4245 #ifdef OBJ_ELF
4246 S_SET_SIZE (symbolP, size);
4247 #endif
4248 }
4249 }
4250 else
4251 {
4252 as_warn (_("Ignoring attempt to re-define symbol %s"),
4253 S_GET_NAME (symbolP));
4254 }
4255
4256 demand_empty_rest_of_line ();
4257 }
4258
4259 static void
4260 s_common (int ignore ATTRIBUTE_UNUSED)
4261 {
4262 char *name;
4263 char c;
4264 char *p;
4265 offsetT temp, size;
4266 symbolS *symbolP;
4267
4268 c = get_symbol_name (&name);
4269 /* Just after name is now '\0'. */
4270 p = input_line_pointer;
4271 *p = c;
4272 SKIP_WHITESPACE_AFTER_NAME ();
4273 if (*input_line_pointer != ',')
4274 {
4275 as_bad (_("Expected comma after symbol-name"));
4276 ignore_rest_of_line ();
4277 return;
4278 }
4279
4280 /* Skip ','. */
4281 input_line_pointer++;
4282
4283 if ((temp = get_absolute_expression ()) < 0)
4284 {
4285 as_bad (_(".COMMon length (%lu) out of range ignored"),
4286 (unsigned long) temp);
4287 ignore_rest_of_line ();
4288 return;
4289 }
4290 size = temp;
4291 *p = 0;
4292 symbolP = symbol_find_or_make (name);
4293 *p = c;
4294 if (S_IS_DEFINED (symbolP) && ! S_IS_COMMON (symbolP))
4295 {
4296 as_bad (_("Ignoring attempt to re-define symbol"));
4297 ignore_rest_of_line ();
4298 return;
4299 }
4300 if (S_GET_VALUE (symbolP) != 0)
4301 {
4302 if (S_GET_VALUE (symbolP) != (valueT) size)
4303 {
4304 as_warn (_("Length of .comm \"%s\" is already %ld. Not changed to %ld."),
4305 S_GET_NAME (symbolP), (long) S_GET_VALUE (symbolP), (long) size);
4306 }
4307 }
4308 else
4309 {
4310 #ifndef OBJ_ELF
4311 S_SET_VALUE (symbolP, (valueT) size);
4312 S_SET_EXTERNAL (symbolP);
4313 #endif
4314 }
4315 know (symbol_get_frag (symbolP) == &zero_address_frag);
4316 if (*input_line_pointer != ',')
4317 {
4318 as_bad (_("Expected comma after common length"));
4319 ignore_rest_of_line ();
4320 return;
4321 }
4322 input_line_pointer++;
4323 SKIP_WHITESPACE ();
4324 if (*input_line_pointer != '"')
4325 {
4326 temp = get_absolute_expression ();
4327
4328 #ifndef OBJ_ELF
4329 if (temp > max_alignment)
4330 {
4331 temp = max_alignment;
4332 as_warn (_("alignment too large; assuming %ld"), (long) temp);
4333 }
4334 #endif
4335
4336 if (temp < 0)
4337 {
4338 as_bad (_("negative alignment"));
4339 ignore_rest_of_line ();
4340 return;
4341 }
4342
4343 #ifdef OBJ_ELF
4344 if (symbol_get_obj (symbolP)->local)
4345 {
4346 segT old_sec;
4347 int old_subsec;
4348 int align;
4349
4350 old_sec = now_seg;
4351 old_subsec = now_subseg;
4352
4353 if (temp == 0)
4354 align = 0;
4355 else
4356 align = mylog2 (temp);
4357
4358 if (align < 0)
4359 {
4360 as_bad (_("alignment not a power of 2"));
4361 ignore_rest_of_line ();
4362 return;
4363 }
4364
4365 record_alignment (bss_section, align);
4366 subseg_set (bss_section, 0);
4367 if (align)
4368 frag_align (align, 0, 0);
4369 if (S_GET_SEGMENT (symbolP) == bss_section)
4370 symbol_get_frag (symbolP)->fr_symbol = 0;
4371 symbol_set_frag (symbolP, frag_now);
4372 p = frag_var (rs_org, 1, 1, (relax_substateT) 0, symbolP,
4373 (offsetT) size, (char *) 0);
4374 *p = 0;
4375 S_SET_SEGMENT (symbolP, bss_section);
4376 S_CLEAR_EXTERNAL (symbolP);
4377 S_SET_SIZE (symbolP, size);
4378 subseg_set (old_sec, old_subsec);
4379 }
4380 else
4381 #endif /* OBJ_ELF */
4382 {
4383 allocate_common:
4384 S_SET_VALUE (symbolP, (valueT) size);
4385 #ifdef OBJ_ELF
4386 S_SET_ALIGN (symbolP, temp);
4387 S_SET_SIZE (symbolP, size);
4388 #endif
4389 S_SET_EXTERNAL (symbolP);
4390 S_SET_SEGMENT (symbolP, bfd_com_section_ptr);
4391 }
4392 }
4393 else
4394 {
4395 input_line_pointer++;
4396 /* @@ Some use the dot, some don't. Can we get some consistency?? */
4397 if (*input_line_pointer == '.')
4398 input_line_pointer++;
4399 /* @@ Some say data, some say bss. */
4400 if (strncmp (input_line_pointer, "bss\"", 4)
4401 && strncmp (input_line_pointer, "data\"", 5))
4402 {
4403 while (*--input_line_pointer != '"')
4404 ;
4405 input_line_pointer--;
4406 goto bad_common_segment;
4407 }
4408 while (*input_line_pointer++ != '"')
4409 ;
4410 goto allocate_common;
4411 }
4412
4413 symbol_get_bfdsym (symbolP)->flags |= BSF_OBJECT;
4414
4415 demand_empty_rest_of_line ();
4416 return;
4417
4418 {
4419 bad_common_segment:
4420 p = input_line_pointer;
4421 while (*p && *p != '\n')
4422 p++;
4423 c = *p;
4424 *p = '\0';
4425 as_bad (_("bad .common segment %s"), input_line_pointer + 1);
4426 *p = c;
4427 input_line_pointer = p;
4428 ignore_rest_of_line ();
4429 return;
4430 }
4431 }
4432
4433 /* Handle the .empty pseudo-op. This suppresses the warnings about
4434 invalid delay slot usage. */
4435
4436 static void
4437 s_empty (int ignore ATTRIBUTE_UNUSED)
4438 {
4439 /* The easy way to implement is to just forget about the last
4440 instruction. */
4441 last_insn = NULL;
4442 }
4443
4444 static void
4445 s_seg (int ignore ATTRIBUTE_UNUSED)
4446 {
4447
4448 if (strncmp (input_line_pointer, "\"text\"", 6) == 0)
4449 {
4450 input_line_pointer += 6;
4451 s_text (0);
4452 return;
4453 }
4454 if (strncmp (input_line_pointer, "\"data\"", 6) == 0)
4455 {
4456 input_line_pointer += 6;
4457 s_data (0);
4458 return;
4459 }
4460 if (strncmp (input_line_pointer, "\"data1\"", 7) == 0)
4461 {
4462 input_line_pointer += 7;
4463 s_data1 ();
4464 return;
4465 }
4466 if (strncmp (input_line_pointer, "\"bss\"", 5) == 0)
4467 {
4468 input_line_pointer += 5;
4469 /* We only support 2 segments -- text and data -- for now, so
4470 things in the "bss segment" will have to go into data for now.
4471 You can still allocate SEG_BSS stuff with .lcomm or .reserve. */
4472 subseg_set (data_section, 255); /* FIXME-SOMEDAY. */
4473 return;
4474 }
4475 as_bad (_("Unknown segment type"));
4476 demand_empty_rest_of_line ();
4477 }
4478
4479 static void
4480 s_data1 (void)
4481 {
4482 subseg_set (data_section, 1);
4483 demand_empty_rest_of_line ();
4484 }
4485
4486 static void
4487 s_proc (int ignore ATTRIBUTE_UNUSED)
4488 {
4489 while (!is_end_of_line[(unsigned char) *input_line_pointer])
4490 {
4491 ++input_line_pointer;
4492 }
4493 ++input_line_pointer;
4494 }
4495
4496 /* This static variable is set by s_uacons to tell sparc_cons_align
4497 that the expression does not need to be aligned. */
4498
4499 static int sparc_no_align_cons = 0;
4500
4501 /* This handles the unaligned space allocation pseudo-ops, such as
4502 .uaword. .uaword is just like .word, but the value does not need
4503 to be aligned. */
4504
4505 static void
4506 s_uacons (int bytes)
4507 {
4508 /* Tell sparc_cons_align not to align this value. */
4509 sparc_no_align_cons = 1;
4510 cons (bytes);
4511 sparc_no_align_cons = 0;
4512 }
4513
4514 /* This handles the native word allocation pseudo-op .nword.
4515 For sparc_arch_size 32 it is equivalent to .word, for
4516 sparc_arch_size 64 it is equivalent to .xword. */
4517
4518 static void
4519 s_ncons (int bytes ATTRIBUTE_UNUSED)
4520 {
4521 cons (sparc_arch_size == 32 ? 4 : 8);
4522 }
4523
4524 #ifdef OBJ_ELF
4525 /* Handle the SPARC ELF .register pseudo-op. This sets the binding of a
4526 global register.
4527 The syntax is:
4528
4529 .register %g[2367],{#scratch|symbolname|#ignore}
4530 */
4531
4532 static void
4533 s_register (int ignore ATTRIBUTE_UNUSED)
4534 {
4535 char c;
4536 int reg;
4537 int flags;
4538 char *regname;
4539
4540 if (input_line_pointer[0] != '%'
4541 || input_line_pointer[1] != 'g'
4542 || ((input_line_pointer[2] & ~1) != '2'
4543 && (input_line_pointer[2] & ~1) != '6')
4544 || input_line_pointer[3] != ',')
4545 as_bad (_("register syntax is .register %%g[2367],{#scratch|symbolname|#ignore}"));
4546 reg = input_line_pointer[2] - '0';
4547 input_line_pointer += 4;
4548
4549 if (*input_line_pointer == '#')
4550 {
4551 ++input_line_pointer;
4552 c = get_symbol_name (&regname);
4553 if (strcmp (regname, "scratch") && strcmp (regname, "ignore"))
4554 as_bad (_("register syntax is .register %%g[2367],{#scratch|symbolname|#ignore}"));
4555 if (regname[0] == 'i')
4556 regname = NULL;
4557 else
4558 regname = (char *) "";
4559 }
4560 else
4561 {
4562 c = get_symbol_name (&regname);
4563 }
4564
4565 if (sparc_arch_size == 64)
4566 {
4567 if (globals[reg])
4568 {
4569 if ((regname && globals[reg] != (symbolS *) 1
4570 && strcmp (S_GET_NAME (globals[reg]), regname))
4571 || ((regname != NULL) ^ (globals[reg] != (symbolS *) 1)))
4572 as_bad (_("redefinition of global register"));
4573 }
4574 else
4575 {
4576 if (regname == NULL)
4577 globals[reg] = (symbolS *) 1;
4578 else
4579 {
4580 if (*regname)
4581 {
4582 if (symbol_find (regname))
4583 as_bad (_("Register symbol %s already defined."),
4584 regname);
4585 }
4586 globals[reg] = symbol_make (regname);
4587 flags = symbol_get_bfdsym (globals[reg])->flags;
4588 if (! *regname)
4589 flags = flags & ~(BSF_GLOBAL|BSF_LOCAL|BSF_WEAK);
4590 if (! (flags & (BSF_GLOBAL|BSF_LOCAL|BSF_WEAK)))
4591 flags |= BSF_GLOBAL;
4592 symbol_get_bfdsym (globals[reg])->flags = flags;
4593 S_SET_VALUE (globals[reg], (valueT) reg);
4594 S_SET_ALIGN (globals[reg], reg);
4595 S_SET_SIZE (globals[reg], 0);
4596 /* Although we actually want undefined_section here,
4597 we have to use absolute_section, because otherwise
4598 generic as code will make it a COM section.
4599 We fix this up in sparc_adjust_symtab. */
4600 S_SET_SEGMENT (globals[reg], absolute_section);
4601 S_SET_OTHER (globals[reg], 0);
4602 elf_symbol (symbol_get_bfdsym (globals[reg]))
4603 ->internal_elf_sym.st_info =
4604 ELF_ST_INFO(STB_GLOBAL, STT_REGISTER);
4605 elf_symbol (symbol_get_bfdsym (globals[reg]))
4606 ->internal_elf_sym.st_shndx = SHN_UNDEF;
4607 }
4608 }
4609 }
4610
4611 (void) restore_line_pointer (c);
4612
4613 demand_empty_rest_of_line ();
4614 }
4615
4616 /* Adjust the symbol table. We set undefined sections for STT_REGISTER
4617 symbols which need it. */
4618
4619 void
4620 sparc_adjust_symtab (void)
4621 {
4622 symbolS *sym;
4623
4624 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
4625 {
4626 if (ELF_ST_TYPE (elf_symbol (symbol_get_bfdsym (sym))
4627 ->internal_elf_sym.st_info) != STT_REGISTER)
4628 continue;
4629
4630 if (ELF_ST_TYPE (elf_symbol (symbol_get_bfdsym (sym))
4631 ->internal_elf_sym.st_shndx != SHN_UNDEF))
4632 continue;
4633
4634 S_SET_SEGMENT (sym, undefined_section);
4635 }
4636 }
4637 #endif
4638
4639 /* If the --enforce-aligned-data option is used, we require .word,
4640 et. al., to be aligned correctly. We do it by setting up an
4641 rs_align_code frag, and checking in HANDLE_ALIGN to make sure that
4642 no unexpected alignment was introduced.
4643
4644 The SunOS and Solaris native assemblers enforce aligned data by
4645 default. We don't want to do that, because gcc can deliberately
4646 generate misaligned data if the packed attribute is used. Instead,
4647 we permit misaligned data by default, and permit the user to set an
4648 option to check for it. */
4649
4650 void
4651 sparc_cons_align (int nbytes)
4652 {
4653 int nalign;
4654
4655 /* Only do this if we are enforcing aligned data. */
4656 if (! enforce_aligned_data)
4657 return;
4658
4659 /* Don't align if this is an unaligned pseudo-op. */
4660 if (sparc_no_align_cons)
4661 return;
4662
4663 nalign = mylog2 (nbytes);
4664 if (nalign == 0)
4665 return;
4666
4667 gas_assert (nalign > 0);
4668
4669 if (now_seg == absolute_section)
4670 {
4671 if ((abs_section_offset & ((1 << nalign) - 1)) != 0)
4672 as_bad (_("misaligned data"));
4673 return;
4674 }
4675
4676 frag_var (rs_align_test, 1, 1, (relax_substateT) 0,
4677 (symbolS *) NULL, (offsetT) nalign, (char *) NULL);
4678
4679 record_alignment (now_seg, nalign);
4680 }
4681
4682 /* This is called from HANDLE_ALIGN in tc-sparc.h. */
4683
4684 void
4685 sparc_handle_align (fragS *fragp)
4686 {
4687 int count, fix;
4688 char *p;
4689
4690 count = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
4691
4692 switch (fragp->fr_type)
4693 {
4694 case rs_align_test:
4695 if (count != 0)
4696 as_bad_where (fragp->fr_file, fragp->fr_line, _("misaligned data"));
4697 break;
4698
4699 case rs_align_code:
4700 p = fragp->fr_literal + fragp->fr_fix;
4701 fix = 0;
4702
4703 if (count & 3)
4704 {
4705 fix = count & 3;
4706 memset (p, 0, fix);
4707 p += fix;
4708 count -= fix;
4709 }
4710
4711 if (SPARC_OPCODE_ARCH_V9_P (max_architecture) && count > 8)
4712 {
4713 unsigned wval = (0x30680000 | count >> 2); /* ba,a,pt %xcc, 1f */
4714 if (INSN_BIG_ENDIAN)
4715 number_to_chars_bigendian (p, wval, 4);
4716 else
4717 number_to_chars_littleendian (p, wval, 4);
4718 p += 4;
4719 count -= 4;
4720 fix += 4;
4721 }
4722
4723 if (INSN_BIG_ENDIAN)
4724 number_to_chars_bigendian (p, 0x01000000, 4);
4725 else
4726 number_to_chars_littleendian (p, 0x01000000, 4);
4727
4728 fragp->fr_fix += fix;
4729 fragp->fr_var = 4;
4730 break;
4731
4732 default:
4733 break;
4734 }
4735 }
4736
4737 #ifdef OBJ_ELF
4738 /* Some special processing for a Sparc ELF file. */
4739
4740 void
4741 sparc_elf_final_processing (void)
4742 {
4743 /* Set the Sparc ELF flag bits. FIXME: There should probably be some
4744 sort of BFD interface for this. */
4745 if (sparc_arch_size == 64)
4746 {
4747 switch (sparc_memory_model)
4748 {
4749 case MM_RMO:
4750 elf_elfheader (stdoutput)->e_flags |= EF_SPARCV9_RMO;
4751 break;
4752 case MM_PSO:
4753 elf_elfheader (stdoutput)->e_flags |= EF_SPARCV9_PSO;
4754 break;
4755 default:
4756 break;
4757 }
4758 }
4759 else if (current_architecture >= SPARC_OPCODE_ARCH_V9)
4760 elf_elfheader (stdoutput)->e_flags |= EF_SPARC_32PLUS;
4761 if (current_architecture == SPARC_OPCODE_ARCH_V9A)
4762 elf_elfheader (stdoutput)->e_flags |= EF_SPARC_SUN_US1;
4763 else if (current_architecture == SPARC_OPCODE_ARCH_V9B)
4764 elf_elfheader (stdoutput)->e_flags |= EF_SPARC_SUN_US1|EF_SPARC_SUN_US3;
4765 }
4766
4767 const char *
4768 sparc_cons (expressionS *exp, int size)
4769 {
4770 char *save;
4771 const char *sparc_cons_special_reloc = NULL;
4772
4773 SKIP_WHITESPACE ();
4774 save = input_line_pointer;
4775 if (input_line_pointer[0] == '%'
4776 && input_line_pointer[1] == 'r'
4777 && input_line_pointer[2] == '_')
4778 {
4779 if (strncmp (input_line_pointer + 3, "disp", 4) == 0)
4780 {
4781 input_line_pointer += 7;
4782 sparc_cons_special_reloc = "disp";
4783 }
4784 else if (strncmp (input_line_pointer + 3, "plt", 3) == 0)
4785 {
4786 if (size != 4 && size != 8)
4787 as_bad (_("Illegal operands: %%r_plt in %d-byte data field"), size);
4788 else
4789 {
4790 input_line_pointer += 6;
4791 sparc_cons_special_reloc = "plt";
4792 }
4793 }
4794 else if (strncmp (input_line_pointer + 3, "tls_dtpoff", 10) == 0)
4795 {
4796 if (size != 4 && size != 8)
4797 as_bad (_("Illegal operands: %%r_tls_dtpoff in %d-byte data field"), size);
4798 else
4799 {
4800 input_line_pointer += 13;
4801 sparc_cons_special_reloc = "tls_dtpoff";
4802 }
4803 }
4804 if (sparc_cons_special_reloc)
4805 {
4806 int bad = 0;
4807
4808 switch (size)
4809 {
4810 case 1:
4811 if (*input_line_pointer != '8')
4812 bad = 1;
4813 input_line_pointer--;
4814 break;
4815 case 2:
4816 if (input_line_pointer[0] != '1' || input_line_pointer[1] != '6')
4817 bad = 1;
4818 break;
4819 case 4:
4820 if (input_line_pointer[0] != '3' || input_line_pointer[1] != '2')
4821 bad = 1;
4822 break;
4823 case 8:
4824 if (input_line_pointer[0] != '6' || input_line_pointer[1] != '4')
4825 bad = 1;
4826 break;
4827 default:
4828 bad = 1;
4829 break;
4830 }
4831
4832 if (bad)
4833 {
4834 as_bad (_("Illegal operands: Only %%r_%s%d allowed in %d-byte data fields"),
4835 sparc_cons_special_reloc, size * 8, size);
4836 }
4837 else
4838 {
4839 input_line_pointer += 2;
4840 if (*input_line_pointer != '(')
4841 {
4842 as_bad (_("Illegal operands: %%r_%s%d requires arguments in ()"),
4843 sparc_cons_special_reloc, size * 8);
4844 bad = 1;
4845 }
4846 }
4847
4848 if (bad)
4849 {
4850 input_line_pointer = save;
4851 sparc_cons_special_reloc = NULL;
4852 }
4853 else
4854 {
4855 int c;
4856 char *end = ++input_line_pointer;
4857 int npar = 0;
4858
4859 while (! is_end_of_line[(c = *end)])
4860 {
4861 if (c == '(')
4862 npar++;
4863 else if (c == ')')
4864 {
4865 if (!npar)
4866 break;
4867 npar--;
4868 }
4869 end++;
4870 }
4871
4872 if (c != ')')
4873 as_bad (_("Illegal operands: %%r_%s%d requires arguments in ()"),
4874 sparc_cons_special_reloc, size * 8);
4875 else
4876 {
4877 *end = '\0';
4878 expression (exp);
4879 *end = c;
4880 if (input_line_pointer != end)
4881 {
4882 as_bad (_("Illegal operands: %%r_%s%d requires arguments in ()"),
4883 sparc_cons_special_reloc, size * 8);
4884 }
4885 else
4886 {
4887 input_line_pointer++;
4888 SKIP_WHITESPACE ();
4889 c = *input_line_pointer;
4890 if (! is_end_of_line[c] && c != ',')
4891 as_bad (_("Illegal operands: garbage after %%r_%s%d()"),
4892 sparc_cons_special_reloc, size * 8);
4893 }
4894 }
4895 }
4896 }
4897 }
4898 if (sparc_cons_special_reloc == NULL)
4899 expression (exp);
4900 return sparc_cons_special_reloc;
4901 }
4902
4903 #endif
4904
4905 /* This is called by emit_expr via TC_CONS_FIX_NEW when creating a
4906 reloc for a cons. We could use the definition there, except that
4907 we want to handle little endian relocs specially. */
4908
4909 void
4910 cons_fix_new_sparc (fragS *frag,
4911 int where,
4912 unsigned int nbytes,
4913 expressionS *exp,
4914 const char *sparc_cons_special_reloc)
4915 {
4916 bfd_reloc_code_real_type r;
4917
4918 r = (nbytes == 1 ? BFD_RELOC_8 :
4919 (nbytes == 2 ? BFD_RELOC_16 :
4920 (nbytes == 4 ? BFD_RELOC_32 : BFD_RELOC_64)));
4921
4922 if (target_little_endian_data
4923 && nbytes == 4
4924 && now_seg->flags & SEC_ALLOC)
4925 r = BFD_RELOC_SPARC_REV32;
4926
4927 #ifdef TE_SOLARIS
4928 /* The Solaris linker does not allow R_SPARC_UA64
4929 relocations for 32-bit executables. */
4930 if (!target_little_endian_data
4931 && sparc_arch_size != 64
4932 && r == BFD_RELOC_64)
4933 r = BFD_RELOC_32;
4934 #endif
4935
4936 if (sparc_cons_special_reloc)
4937 {
4938 if (*sparc_cons_special_reloc == 'd')
4939 switch (nbytes)
4940 {
4941 case 1: r = BFD_RELOC_8_PCREL; break;
4942 case 2: r = BFD_RELOC_16_PCREL; break;
4943 case 4: r = BFD_RELOC_32_PCREL; break;
4944 case 8: r = BFD_RELOC_64_PCREL; break;
4945 default: abort ();
4946 }
4947 else if (*sparc_cons_special_reloc == 'p')
4948 switch (nbytes)
4949 {
4950 case 4: r = BFD_RELOC_SPARC_PLT32; break;
4951 case 8: r = BFD_RELOC_SPARC_PLT64; break;
4952 }
4953 else
4954 switch (nbytes)
4955 {
4956 case 4: r = BFD_RELOC_SPARC_TLS_DTPOFF32; break;
4957 case 8: r = BFD_RELOC_SPARC_TLS_DTPOFF64; break;
4958 }
4959 }
4960 else if (sparc_no_align_cons)
4961 {
4962 switch (nbytes)
4963 {
4964 case 2: r = BFD_RELOC_SPARC_UA16; break;
4965 case 4: r = BFD_RELOC_SPARC_UA32; break;
4966 #ifdef TE_SOLARIS
4967 /* The Solaris linker does not allow R_SPARC_UA64
4968 relocations for 32-bit executables. */
4969 case 8: r = sparc_arch_size == 64 ?
4970 BFD_RELOC_SPARC_UA64 : BFD_RELOC_SPARC_UA32; break;
4971 #else
4972 case 8: r = BFD_RELOC_SPARC_UA64; break;
4973 #endif
4974 default: abort ();
4975 }
4976 }
4977
4978 fix_new_exp (frag, where, (int) nbytes, exp, 0, r);
4979 }
4980
4981 void
4982 sparc_cfi_frame_initial_instructions (void)
4983 {
4984 cfi_add_CFA_def_cfa (14, sparc_arch_size == 64 ? 0x7ff : 0);
4985 }
4986
4987 int
4988 sparc_regname_to_dw2regnum (char *regname)
4989 {
4990 char *q;
4991 int i;
4992
4993 if (!regname[0])
4994 return -1;
4995
4996 switch (regname[0])
4997 {
4998 case 'g': i = 0; break;
4999 case 'o': i = 1; break;
5000 case 'l': i = 2; break;
5001 case 'i': i = 3; break;
5002 default: i = -1; break;
5003 }
5004 if (i != -1)
5005 {
5006 if (regname[1] < '0' || regname[1] > '8' || regname[2])
5007 return -1;
5008 return i * 8 + regname[1] - '0';
5009 }
5010 if (regname[0] == 's' && regname[1] == 'p' && !regname[2])
5011 return 14;
5012 if (regname[0] == 'f' && regname[1] == 'p' && !regname[2])
5013 return 30;
5014 if (regname[0] == 'f' || regname[0] == 'r')
5015 {
5016 unsigned int regnum;
5017
5018 regnum = strtoul (regname + 1, &q, 10);
5019 if (q == NULL || *q)
5020 return -1;
5021 if (regnum >= ((regname[0] == 'f'
5022 && SPARC_OPCODE_ARCH_V9_P (max_architecture))
5023 ? 64 : 32))
5024 return -1;
5025 if (regname[0] == 'f')
5026 {
5027 regnum += 32;
5028 if (regnum >= 64 && (regnum & 1))
5029 return -1;
5030 }
5031 return regnum;
5032 }
5033 return -1;
5034 }
5035
5036 void
5037 sparc_cfi_emit_pcrel_expr (expressionS *exp, unsigned int nbytes)
5038 {
5039 sparc_no_align_cons = 1;
5040 emit_expr_with_reloc (exp, nbytes, "disp");
5041 sparc_no_align_cons = 0;
5042 }
This page took 0.135656 seconds and 5 git commands to generate.