White space and comments only. The devo tree prior to this delta is
[deliverable/binutils-gdb.git] / gas / config / tc-vax.c
1 /* vax.c - vax-specific -
2 Copyright (C) 1987, 1991 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 /* $Id$ */
21
22 /* JF I moved almost all the vax specific stuff into this one file 'cuz RMS
23 seems to think its a good idea. I hope I managed to get all the VAX-isms */
24
25
26 #include "as.h"
27
28 #include "read.h"
29 #include "flonum.h"
30 #include "vax-inst.h"
31 #include "obstack.h" /* For FRAG_APPEND_1_CHAR macro in "frags.h" */
32 #include "frags.h"
33 #include "expr.h"
34 #include "symbols.h"
35
36 /* These chars start a comment anywhere in a source file (except inside
37 another comment */
38 const char comment_chars[] = "#";
39
40 /* These chars only start a comment at the beginning of a line. */
41 /* Note that for the VAX the are the same as comment_chars above. */
42 const char line_comment_chars[] = "#";
43
44 /* Chars that can be used to separate mant from exp in floating point nums */
45 const char EXP_CHARS[] = "eE";
46
47 /* Chars that mean this number is a floating point constant */
48 /* as in 0f123.456 */
49 /* or 0H1.234E-12 (see exp chars above) */
50 const char FLT_CHARS[] = "dDfFgGhH";
51
52 /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
53 changed in read.c . Ideally it shouldn't have to know about it at all,
54 but nothing is ideal around here.
55 */
56
57 static expressionS /* Hold details of an operand expression */
58 exp_of_operand[VIT_MAX_OPERANDS];
59
60 static struct vit
61 v; /* A vax instruction after decoding. */
62
63 LITTLENUM_TYPE big_operand_bits[VIT_MAX_OPERANDS][SIZE_OF_LARGE_NUMBER];
64 /* Hold details of big operands. */
65 FLONUM_TYPE float_operand[VIT_MAX_OPERANDS];
66 /* Above is made to point into */
67 /* big_operand_bits by md_begin(). */
68 \f
69 /*
70 * For VAX, relative addresses of "just the right length" are easy.
71 * The branch displacement is always the last operand, even in
72 * synthetic instructions.
73 * For VAX, we encode the relax_substateTs (in e.g. fr_substate) as:
74 *
75 * 4 3 2 1 0 bit number
76 * ---/ /--+-------+-------+-------+-------+-------+
77 * | what state ? | how long ? |
78 * ---/ /--+-------+-------+-------+-------+-------+
79 *
80 * The "how long" bits are 00=byte, 01=word, 10=long.
81 * This is a Un*x convention.
82 * Not all lengths are legit for a given value of (what state).
83 * The "how long" refers merely to the displacement length.
84 * The address usually has some constant bytes in it as well.
85 *
86
87 groups for VAX address relaxing.
88
89 1. "foo" pc-relative.
90 length of byte, word, long
91
92 2a. J<cond> where <cond> is a simple flag test.
93 length of byte, word, long.
94 VAX opcodes are: (Hex)
95 bneq/bnequ 12
96 beql/beqlu 13
97 bgtr 14
98 bleq 15
99 bgeq 18
100 blss 19
101 bgtru 1a
102 blequ 1b
103 bvc 1c
104 bvs 1d
105 bgequ/bcc 1e
106 blssu/bcs 1f
107 Always, you complement 0th bit to reverse condition.
108 Always, 1-byte opcode, then 1-byte displacement.
109
110 2b. J<cond> where cond tests a memory bit.
111 length of byte, word, long.
112 Vax opcodes are: (Hex)
113 bbs e0
114 bbc e1
115 bbss e2
116 bbcs e3
117 bbsc e4
118 bbcc e5
119 bbssi e6
120 bbcci e7
121 Always, you complement 0th bit to reverse condition.
122 Always, 1-byte opcde, longword-address, byte-address, 1-byte-displacement
123
124 2c. J<cond> where cond tests low-order memory bit
125 length of byte,word,long.
126 Vax opcodes are: (Hex)
127 blbs e8
128 blbc e9
129 Always, you complement 0th bit to reverse condition.
130 Always, 1-byte opcode, longword-address, 1-byte displacement.
131
132 3. Jbs/Jbr.
133 length of byte,word,long.
134 Vax opcodes are: (Hex)
135 bsbb 10
136 brb 11
137 These are like (2) but there is no condition to reverse.
138 Always, 1 byte opcode, then displacement/absolute.
139
140 4a. JacbX
141 length of word, long.
142 Vax opcodes are: (Hex)
143 acbw 3d
144 acbf 4f
145 acbd 6f
146 abcb 9d
147 acbl f1
148 acbg 4ffd
149 acbh 6ffd
150 Always, we cannot reverse the sense of the branch; we have a word
151 displacement.
152 The double-byte op-codes don't hurt: we never want to modify the
153 opcode, so we don't care how many bytes are between the opcode and
154 the operand.
155
156 4b. JXobXXX
157 length of long, long, byte.
158 Vax opcodes are: (Hex)
159 aoblss f2
160 aobleq f3
161 sobgeq f4
162 sobgtr f5
163 Always, we cannot reverse the sense of the branch; we have a byte
164 displacement.
165
166 The only time we need to modify the opcode is for class 2 instructions.
167 After relax() we may complement the lowest order bit of such instruction
168 to reverse sense of branch.
169
170 For class 2 instructions, we store context of "where is the opcode literal".
171 We can change an opcode's lowest order bit without breaking anything else.
172
173 We sometimes store context in the operand literal. This way we can figure out
174 after relax() what the original addressing mode was.
175 */
176 \f
177 /* These displacements are relative to */
178 /* the start address of the displacement. */
179 /* The first letter is Byte, Word. */
180 /* 2nd letter is Forward, Backward. */
181 #define BF (1+ 127)
182 #define BB (1+-128)
183 #define WF (2+ 32767)
184 #define WB (2+-32768)
185 /* Dont need LF, LB because they always */
186 /* reach. [They are coded as 0.] */
187
188
189 #define C(a,b) ENCODE_RELAX(a,b)
190 /* This macro has no side-effects. */
191 #define ENCODE_RELAX(what,length) (((what) << 2) + (length))
192
193 const relax_typeS
194 md_relax_table[] =
195 {
196 {
197 1, 1, 0, 0
198 }, /* error sentinel 0,0 */
199 {
200 1, 1, 0, 0
201 }, /* unused 0,1 */
202 {
203 1, 1, 0, 0
204 }, /* unused 0,2 */
205 {
206 1, 1, 0, 0
207 }, /* unused 0,3 */
208 {
209 BF + 1, BB + 1, 2, C (1, 1)
210 }, /* B^"foo" 1,0 */
211 {
212 WF + 1, WB + 1, 3, C (1, 2)
213 }, /* W^"foo" 1,1 */
214 {
215 0, 0, 5, 0
216 }, /* L^"foo" 1,2 */
217 {
218 1, 1, 0, 0
219 }, /* unused 1,3 */
220 {
221 BF, BB, 1, C (2, 1)
222 }, /* b<cond> B^"foo" 2,0 */
223 {
224 WF + 2, WB + 2, 4, C (2, 2)
225 }, /* br.+? brw X 2,1 */
226 {
227 0, 0, 7, 0
228 }, /* br.+? jmp X 2,2 */
229 {
230 1, 1, 0, 0
231 }, /* unused 2,3 */
232 {
233 BF, BB, 1, C (3, 1)
234 }, /* brb B^foo 3,0 */
235 {
236 WF, WB, 2, C (3, 2)
237 }, /* brw W^foo 3,1 */
238 {
239 0, 0, 5, 0
240 }, /* Jmp L^foo 3,2 */
241 {
242 1, 1, 0, 0
243 }, /* unused 3,3 */
244 {
245 1, 1, 0, 0
246 }, /* unused 4,0 */
247 {
248 WF, WB, 2, C (4, 2)
249 }, /* acb_ ^Wfoo 4,1 */
250 {
251 0, 0, 10, 0
252 }, /* acb_,br,jmp L^foo4,2 */
253 {
254 1, 1, 0, 0
255 }, /* unused 4,3 */
256 {
257 BF, BB, 1, C (5, 1)
258 }, /* Xob___,,foo 5,0 */
259 {
260 WF + 4, WB + 4, 6, C (5, 2)
261 }, /* Xob.+2,brb.+3,brw5,1 */
262 {
263 0, 0, 9, 0
264 }, /* Xob.+2,brb.+6,jmp5,2 */
265 };
266
267 #undef C
268 #undef BF
269 #undef BB
270 #undef WF
271 #undef WB
272
273 void float_cons ();
274
275 const pseudo_typeS md_pseudo_table[] =
276 {
277 {"dfloat", float_cons, 'd'},
278 {"ffloat", float_cons, 'f'},
279 {"gfloat", float_cons, 'g'},
280 {"hfloat", float_cons, 'h'},
281 {0}
282 };
283
284 #define STATE_PC_RELATIVE (1)
285 #define STATE_CONDITIONAL_BRANCH (2)
286 #define STATE_ALWAYS_BRANCH (3) /* includes BSB... */
287 #define STATE_COMPLEX_BRANCH (4)
288 #define STATE_COMPLEX_HOP (5)
289
290 #define STATE_BYTE (0)
291 #define STATE_WORD (1)
292 #define STATE_LONG (2)
293 #define STATE_UNDF (3) /* Symbol undefined in pass1 */
294
295
296 #define min(a, b) ((a) < (b) ? (a) : (b))
297 \f
298
299 void
300 md_begin ()
301 {
302 char *vip_begin ();
303 char *errtxt;
304 FLONUM_TYPE *fP;
305 int i;
306
307 if (*(errtxt = vip_begin (TRUE, "$", "*", "`")))
308 {
309 as_fatal("VIP_BEGIN error:%s", errtxt);
310 }
311
312 for (i = 0, fP = float_operand;
313 fP < float_operand + VIT_MAX_OPERANDS;
314 i++, fP++)
315 {
316 fP->low = &big_operand_bits[i][0];
317 fP->high = &big_operand_bits[i][SIZE_OF_LARGE_NUMBER - 1];
318 }
319 }
320
321 void
322 md_end ()
323 {
324 vip_end ();
325 }
326 \f
327 void /* Knows about order of bytes in address. */
328 md_number_to_chars (con, value, nbytes)
329 char con[]; /* Return 'nbytes' of chars here. */
330 long value; /* The value of the bits. */
331 int nbytes; /* Number of bytes in the output. */
332 {
333 int n;
334 long v;
335
336 n = nbytes;
337 v = value;
338 while (nbytes--)
339 {
340 *con++ = value; /* Lint wants & MASK_CHAR. */
341 value >>= BITS_PER_CHAR;
342 }
343 /* XXX line number probably botched for this warning message. */
344 if (value != 0 && value != -1)
345 as_bad("Displacement (%ld) long for instruction field length (%d).", v, n);
346 }
347
348 /* Fix up some data or instructions after we find out the value of a symbol
349 that they reference. */
350
351 void /* Knows about order of bytes in address. */
352 md_apply_fix(fixP, value)
353 fixS *fixP; /* Fixup struct pointer */
354 long value; /* The value of the bits. */
355 {
356 char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
357 int nbytes; /* Number of bytes in the output. */
358
359 nbytes = fixP->fx_size;
360 while (nbytes--)
361 {
362 *buf++ = value; /* Lint wants & MASK_CHAR. */
363 value >>= BITS_PER_CHAR;
364 }
365 }
366
367 long /* Knows about the byte order in a word. */
368 md_chars_to_number (con, nbytes)
369 unsigned char con[]; /* Low order byte 1st. */
370 int nbytes; /* Number of bytes in the input. */
371 {
372 long retval;
373 for (retval = 0, con += nbytes - 1; nbytes--; con--)
374 {
375 retval <<= BITS_PER_CHAR;
376 retval |= *con;
377 }
378 return retval;
379 }
380 \f
381 /* vax:md_assemble() emit frags for 1 instruction */
382
383 void
384 md_assemble (instruction_string)
385 char *instruction_string; /* A string: assemble 1 instruction. */
386 {
387 char *p;
388 register struct vop *operandP;/* An operand. Scans all operands. */
389 char *save_input_line_pointer;
390 char c_save; /* What used to live after an expression. */
391 struct frag *fragP; /* Fragment of code we just made. */
392 register int goofed; /* TRUE: instruction_string bad for all passes. */
393 register struct vop *end_operandP; /* -> slot just after last operand */
394 /* Limit of the for (each operand). */
395 register expressionS *expP; /* -> expression values for this operand */
396
397 /* These refer to an instruction operand expression. */
398 segT to_seg; /* Target segment of the address. */
399 register valueT this_add_number;
400 register struct symbol *this_add_symbol; /* +ve (minuend) symbol. */
401 register struct symbol *this_subtract_symbol; /* -ve(subtrahend) symbol. */
402
403 long opcode_as_number; /* As a number. */
404 char *opcode_as_chars; /* Least significant byte 1st. */
405 /* As an array of characters. */
406 char *opcode_low_byteP; /* Least significant byte 1st */
407 struct details *detP; /* The details of an ADxxx frag. */
408 int length; /* length (bytes) meant by vop_short. */
409 int at; /* 0, or 1 if '@' is in addressing mode. */
410 int nbytes; /* From vop_nbytes: vax_operand_width (in bytes) */
411 FLONUM_TYPE *floatP;
412 char *vip ();
413 LITTLENUM_TYPE literal_float[8];
414 /* Big enough for any floating point literal. */
415
416 if (*(p = vip (&v, instruction_string)))
417 {
418 as_fatal("vax_assemble\"%s\" in=\"%s\"", p, instruction_string);
419 }
420 /*
421 * Now we try to find as many as_warn()s as we can. If we do any as_warn()s
422 * then goofed=TRUE. Notice that we don't make any frags yet.
423 * Should goofed be TRUE, then this instruction will wedge in any pass,
424 * and we can safely flush it, without causing interpass symbol phase
425 * errors. That is, without changing label values in different passes.
426 */
427 if (goofed = (*v.vit_error))
428 {
429 as_warn ("Ignoring statement due to \"%s\"", v.vit_error);
430 }
431 /*
432 * We need to use expression() and friends, which require us to diddle
433 * input_line_pointer. So we save it and restore it later.
434 */
435 save_input_line_pointer = input_line_pointer;
436 for (operandP = v.vit_operand,
437 expP = exp_of_operand,
438 floatP = float_operand,
439 end_operandP = v.vit_operand + v.vit_operands;
440
441 operandP < end_operandP;
442
443 operandP++,
444 expP++,
445 floatP++
446 ) /* for each operand */
447 {
448 if (*(operandP->vop_error))
449 {
450 as_warn ("Ignoring statement because \"%s\"", (operandP->vop_error));
451 goofed = TRUE;
452 }
453 else
454 { /* statement has no syntax goofs: lets sniff the expression */
455 int can_be_short; /* TRUE if a bignum can be reduced to a short literal. */
456
457 input_line_pointer = operandP->vop_expr_begin;
458 c_save = operandP->vop_expr_end[1];
459 operandP->vop_expr_end[1] = '\0';
460 /* If to_seg == SEG_PASS1, expression() will have set need_pass_2 = TRUE. */
461 switch (to_seg = expression (expP))
462 {
463 case SEG_ABSENT:
464 /* for BSD4.2 compatibility, missing expression is absolute 0 */
465 to_seg = expP->X_seg = SEG_ABSOLUTE;
466 expP->X_add_number = 0;
467 /* for SEG_ABSOLUTE, we shouldnt need to set X_subtract_symbol, X_add_symbol to any particular value. */
468 /* But, we will program defensively. Since this situation occurs */
469 /* rarely so it costs us little to do, and stops Dean */
470 /* worrying about the origin of random bits in expressionS's. */
471 expP->X_add_symbol = NULL;
472 expP->X_subtract_symbol = NULL;
473 case SEG_TEXT:
474 case SEG_DATA:
475 case SEG_BSS:
476 case SEG_ABSOLUTE:
477 case SEG_UNKNOWN:
478 break;
479
480 case SEG_DIFFERENCE:
481 case SEG_PASS1:
482 /*
483 * Major bug. We can't handle the case of a
484 * SEG_DIFFERENCE expression in a VIT_OPCODE_SYNTHETIC
485 * variable-length instruction.
486 * We don't have a frag type that is smart enough to
487 * relax a SEG_DIFFERENCE, and so we just force all
488 * SEG_DIFFERENCEs to behave like SEG_PASS1s.
489 * Clearly, if there is a demand we can invent a new or
490 * modified frag type and then coding up a frag for this
491 * case will be easy. SEG_DIFFERENCE was invented for the
492 * .words after a CASE opcode, and was never intended for
493 * instruction operands.
494 */
495 need_pass_2 = TRUE;
496 as_warn("Can't relocate expression");
497 break;
498
499 case SEG_BIG:
500 /* Preserve the bits. */
501 if (expP->X_add_number > 0)
502 {
503 bignum_copy (generic_bignum, expP->X_add_number,
504 floatP->low, SIZE_OF_LARGE_NUMBER);
505 }
506 else
507 {
508 know (expP->X_add_number < 0);
509 flonum_copy (&generic_floating_point_number,
510 floatP);
511 if (strchr ("s i", operandP->vop_short))
512 { /* Could possibly become S^# */
513 flonum_gen2vax (-expP->X_add_number, floatP, literal_float);
514 switch (-expP->X_add_number)
515 {
516 case 'f':
517 can_be_short =
518 (literal_float[0] & 0xFC0F) == 0x4000
519 && literal_float[1] == 0;
520 break;
521
522 case 'd':
523 can_be_short =
524 (literal_float[0] & 0xFC0F) == 0x4000
525 && literal_float[1] == 0
526 && literal_float[2] == 0
527 && literal_float[3] == 0;
528 break;
529
530 case 'g':
531 can_be_short =
532 (literal_float[0] & 0xFF81) == 0x4000
533 && literal_float[1] == 0
534 && literal_float[2] == 0
535 && literal_float[3] == 0;
536 break;
537
538 case 'h':
539 can_be_short =
540 (literal_float[0] & 0xFFF8) == 0x4000
541 && (literal_float[1] & 0xE000) == 0
542 && literal_float[2] == 0
543 && literal_float[3] == 0
544 && literal_float[4] == 0
545 && literal_float[5] == 0
546 && literal_float[6] == 0
547 && literal_float[7] == 0;
548 break;
549
550 default:
551 BAD_CASE (-expP->X_add_number);
552 break;
553 } /* switch (float type) */
554 } /* if (could want to become S^#...) */
555 } /* bignum or flonum ? */
556
557 if (operandP->vop_short == 's'
558 || operandP->vop_short == 'i'
559 || (operandP->vop_short == ' '
560 && operandP->vop_reg == 0xF
561 && (operandP->vop_mode & 0xE) == 0x8))
562 {
563 /* Saw a '#'. */
564 if (operandP->vop_short == ' ')
565 { /* We must chose S^ or I^. */
566 if (expP->X_add_number > 0)
567 { /* Bignum: Short literal impossible. */
568 operandP->vop_short = 'i';
569 operandP->vop_mode = 8;
570 operandP->vop_reg = 0xF; /* VAX PC. */
571 }
572 else
573 { /* Flonum: Try to do it. */
574 if (can_be_short)
575 {
576 operandP->vop_short = 's';
577 operandP->vop_mode = 0;
578 operandP->vop_ndx = -1;
579 operandP->vop_reg = -1;
580 /* JF hope this is the right thing */
581 expP->X_seg = SEG_ABSOLUTE;
582 }
583 else
584 {
585 operandP->vop_short = 'i';
586 operandP->vop_mode = 8;
587 operandP->vop_reg = 0xF; /* VAX PC */
588 }
589 } /* bignum or flonum ? */
590 } /* if #, but no S^ or I^ seen. */
591 /* No more ' ' case: either 's' or 'i'. */
592 if (operandP->vop_short == 's')
593 {
594 /* Wants to be a short literal. */
595 if (expP->X_add_number > 0)
596 {
597 as_warn ("Bignum not permitted in short literal. Immediate mode assumed.");
598 operandP->vop_short = 'i';
599 operandP->vop_mode = 8;
600 operandP->vop_reg = 0xF; /* VAX PC. */
601 }
602 else
603 {
604 if (!can_be_short)
605 {
606 as_warn ("Can't do flonum short literal: immediate mode used.");
607 operandP->vop_short = 'i';
608 operandP->vop_mode = 8;
609 operandP->vop_reg = 0xF; /* VAX PC. */
610 }
611 else
612 { /* Encode short literal now. */
613 register int temp;
614
615 switch (-expP->X_add_number)
616 {
617 case 'f':
618 case 'd':
619 temp = literal_float[0] >> 4;
620 break;
621
622 case 'g':
623 temp = literal_float[0] >> 1;
624 break;
625
626 case 'h':
627 temp = ((literal_float[0] << 3) & 070)
628 | ((literal_float[1] >> 13) & 07);
629 break;
630
631 default:
632 BAD_CASE (-expP->X_add_number);
633 break;
634 }
635
636 floatP->low[0] = temp & 077;
637 floatP->low[1] = 0;
638 } /* if can be short literal float */
639 } /* flonum or bignum ? */
640 }
641 else
642 { /* I^# seen: set it up if float. */
643 if (expP->X_add_number < 0)
644 {
645 bcopy (literal_float, floatP->low, sizeof (literal_float));
646 }
647 } /* if S^# seen. */
648 }
649 else
650 {
651 as_warn ("A bignum/flonum may not be a displacement: 0x%x used",
652 expP->X_add_number = 0x80000000);
653 /* Chosen so luser gets the most offset bits to patch later. */
654 }
655 expP->X_add_number = floatP->low[0]
656 | ((LITTLENUM_MASK & (floatP->low[1])) << LITTLENUM_NUMBER_OF_BITS);
657 /*
658 * For the SEG_BIG case we have:
659 * If vop_short == 's' then a short floating literal is in the
660 * lowest 6 bits of floatP -> low [0], which is
661 * big_operand_bits [---] [0].
662 * If vop_short == 'i' then the appropriate number of elements
663 * of big_operand_bits [---] [...] are set up with the correct
664 * bits.
665 * Also, just in case width is byte word or long, we copy the lowest
666 * 32 bits of the number to X_add_number.
667 */
668 break;
669
670 default:
671 BAD_CASE (to_seg);
672 break;
673 }
674 if (input_line_pointer != operandP->vop_expr_end + 1)
675 {
676 as_warn ("Junk at end of expression \"%s\"", input_line_pointer);
677 goofed = TRUE;
678 }
679 operandP->vop_expr_end[1] = c_save;
680 }
681 } /* for(each operand) */
682 input_line_pointer = save_input_line_pointer;
683
684 if (!need_pass_2 && !goofed)
685 {
686 /* We saw no errors in any operands - try to make frag(s) */
687 int is_undefined; /* True if operand expression's */
688 /* segment not known yet. */
689 int length_code;
690
691 /* Emit op-code. */
692 /* Remember where it is, in case we want to modify the op-code later. */
693 opcode_low_byteP = frag_more (v.vit_opcode_nbytes);
694 bcopy (v.vit_opcode, opcode_low_byteP, v.vit_opcode_nbytes);
695 opcode_as_number = md_chars_to_number (opcode_as_chars = v.vit_opcode, 4);
696 for (operandP = v.vit_operand,
697 expP = exp_of_operand,
698 floatP = float_operand,
699 end_operandP = v.vit_operand + v.vit_operands;
700
701 operandP < end_operandP;
702
703 operandP++,
704 floatP++,
705 expP++
706 ) /* for each operand */
707 {
708 if (operandP->vop_ndx >= 0)
709 {
710 /* indexed addressing byte */
711 /* Legality of indexed mode already checked: it is OK */
712 FRAG_APPEND_1_CHAR (0x40 + operandP->vop_ndx);
713 } /* if(vop_ndx>=0) */
714
715 /* Here to make main operand frag(s). */
716 this_add_number = expP->X_add_number;
717 this_add_symbol = expP->X_add_symbol;
718 this_subtract_symbol = expP->X_subtract_symbol;
719 to_seg = expP->X_seg;
720 is_undefined = (to_seg == SEG_UNKNOWN);
721 know (to_seg == SEG_UNKNOWN
722 ||to_seg == SEG_ABSOLUTE
723 ||to_seg == SEG_DATA
724 ||to_seg == SEG_TEXT
725 ||to_seg == SEG_BSS
726 ||to_seg == SEG_BIG
727 );
728 at = operandP->vop_mode & 1;
729 length = operandP->vop_short == 'b' ? 1 : operandP->vop_short == 'w' ? 2 : operandP->vop_short == 'l' ? 4 : 0;
730 nbytes = operandP->vop_nbytes;
731 if (operandP->vop_access == 'b')
732 {
733 if (to_seg == now_seg || is_undefined)
734 { /* If is_undefined, then it might BECOME now_seg. */
735 if (nbytes)
736 {
737 p = frag_more (nbytes);
738 fix_new (frag_now, p - frag_now->fr_literal, nbytes,
739 this_add_symbol, 0, this_add_number, 1);
740 }
741 else
742 { /* to_seg==now_seg || to_seg == SEG_UNKNOWN */
743 /* nbytes==0 */
744 length_code = is_undefined ? STATE_UNDF : STATE_BYTE;
745 if (opcode_as_number & VIT_OPCODE_SPECIAL)
746 {
747 if (operandP->vop_width == VAX_WIDTH_UNCONDITIONAL_JUMP)
748 {
749 /* br or jsb */
750 frag_var (rs_machine_dependent, 5, 1,
751 ENCODE_RELAX (STATE_ALWAYS_BRANCH, length_code),
752 this_add_symbol, this_add_number,
753 opcode_low_byteP);
754 }
755 else
756 {
757 if (operandP->vop_width == VAX_WIDTH_WORD_JUMP)
758 {
759 length_code = STATE_WORD; /* JF: There is no state_byte for this one! */
760 frag_var (rs_machine_dependent, 10, 2,
761 ENCODE_RELAX (STATE_COMPLEX_BRANCH, length_code),
762 this_add_symbol, this_add_number,
763 opcode_low_byteP);
764 }
765 else
766 {
767 know (operandP->vop_width == VAX_WIDTH_BYTE_JUMP);
768 frag_var (rs_machine_dependent, 9, 1,
769 ENCODE_RELAX (STATE_COMPLEX_HOP, length_code),
770 this_add_symbol, this_add_number,
771 opcode_low_byteP);
772 }
773 }
774 }
775 else
776 {
777 know (operandP->vop_width == VAX_WIDTH_CONDITIONAL_JUMP);
778 frag_var (rs_machine_dependent, 7, 1,
779 ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, length_code),
780 this_add_symbol, this_add_number,
781 opcode_low_byteP);
782 }
783 }
784 }
785 else
786 { /* to_seg != now_seg && to_seg != SEG_UNKNOWN */
787 /*
788 * --- SEG FLOAT MAY APPEAR HERE ----
789 */
790 if (to_seg == SEG_ABSOLUTE)
791 {
792 if (nbytes)
793 {
794 know (!(opcode_as_number & VIT_OPCODE_SYNTHETIC));
795 p = frag_more (nbytes);
796 /* Conventional relocation. */
797 fix_new (frag_now, p - frag_now->fr_literal,
798 nbytes, &abs_symbol, 0, this_add_number, 1);
799 }
800 else
801 {
802 know (opcode_as_number & VIT_OPCODE_SYNTHETIC);
803 if (opcode_as_number & VIT_OPCODE_SPECIAL)
804 {
805 if (operandP->vop_width == VAX_WIDTH_UNCONDITIONAL_JUMP)
806 {
807 /* br or jsb */
808 *opcode_low_byteP = opcode_as_chars[0] + VAX_WIDEN_LONG;
809 know (opcode_as_chars[1] == 0);
810 p = frag_more (5);
811 p[0] = VAX_ABSOLUTE_MODE; /* @#... */
812 md_number_to_chars (p + 1, this_add_number, 4);
813 /* Now (eg) JMP @#foo or JSB @#foo. */
814 }
815 else
816 {
817 if (operandP->vop_width == VAX_WIDTH_WORD_JUMP)
818 {
819 p = frag_more (10);
820 p[0] = 2;
821 p[1] = 0;
822 p[2] = VAX_BRB;
823 p[3] = 6;
824 p[4] = VAX_JMP;
825 p[5] = VAX_ABSOLUTE_MODE; /* @#... */
826 md_number_to_chars (p + 6, this_add_number, 4);
827 /*
828 * Now (eg) ACBx 1f
829 * BRB 2f
830 * 1: JMP @#foo
831 * 2:
832 */
833 }
834 else
835 {
836 know (operandP->vop_width == VAX_WIDTH_BYTE_JUMP);
837 p = frag_more (9);
838 p[0] = 2;
839 p[1] = VAX_BRB;
840 p[2] = 6;
841 p[3] = VAX_JMP;
842 p[4] = VAX_PC_RELATIVE_MODE + 1; /* @#... */
843 md_number_to_chars (p + 5, this_add_number, 4);
844 /*
845 * Now (eg) xOBxxx 1f
846 * BRB 2f
847 * 1: JMP @#foo
848 * 2:
849 */
850 }
851 }
852 }
853 else
854 {
855 /* b<cond> */
856 *opcode_low_byteP ^= 1; /* To reverse the condition in a VAX branch, complement the lowest order bit. */
857 p = frag_more (7);
858 p[0] = 6;
859 p[1] = VAX_JMP;
860 p[2] = VAX_ABSOLUTE_MODE; /* @#... */
861 md_number_to_chars (p + 3, this_add_number, 4);
862 /*
863 * Now (eg) BLEQ 1f
864 * JMP @#foo
865 * 1:
866 */
867 }
868 }
869 }
870 else
871 { /* to_seg != now_seg && to_seg != SEG_UNKNOWN && to_Seg != SEG_ABSOLUTE */
872 if (nbytes > 0)
873 {
874 /* Pc-relative. Conventional relocation. */
875 know (!(opcode_as_number & VIT_OPCODE_SYNTHETIC));
876 p = frag_more (nbytes);
877 fix_new (frag_now, p - frag_now->fr_literal,
878 nbytes, &abs_symbol, 0, this_add_number, 1);
879 }
880 else
881 {
882 know (opcode_as_number & VIT_OPCODE_SYNTHETIC);
883 if (opcode_as_number & VIT_OPCODE_SPECIAL)
884 {
885 if (operandP->vop_width == VAX_WIDTH_UNCONDITIONAL_JUMP)
886 {
887 /* br or jsb */
888 know (opcode_as_chars[1] == 0);
889 *opcode_low_byteP = opcode_as_chars[0] + VAX_WIDEN_LONG;
890 p = frag_more (5);
891 p[0] = VAX_PC_RELATIVE_MODE;
892 fix_new (frag_now,
893 p + 1 - frag_now->fr_literal, 4,
894 this_add_symbol, 0,
895 this_add_number, 1);
896 /* Now eg JMP foo or JSB foo. */
897 }
898 else
899 {
900 if (operandP->vop_width == VAX_WIDTH_WORD_JUMP)
901 {
902 p = frag_more (10);
903 p[0] = 0;
904 p[1] = 2;
905 p[2] = VAX_BRB;
906 p[3] = 6;
907 p[4] = VAX_JMP;
908 p[5] = VAX_PC_RELATIVE_MODE;
909 fix_new (frag_now,
910 p + 6 - frag_now->fr_literal, 4,
911 this_add_symbol, 0,
912 this_add_number, 1);
913 /*
914 * Now (eg) ACBx 1f
915 * BRB 2f
916 * 1: JMP foo
917 * 2:
918 */
919 }
920 else
921 {
922 know (operandP->vop_width == VAX_WIDTH_BYTE_JUMP);
923 p = frag_more (10);
924 p[0] = 2;
925 p[1] = VAX_BRB;
926 p[2] = 6;
927 p[3] = VAX_JMP;
928 p[4] = VAX_PC_RELATIVE_MODE;
929 fix_new (frag_now,
930 p + 5 - frag_now->fr_literal,
931 4, this_add_symbol, 0,
932 this_add_number, 1);
933 /*
934 * Now (eg) xOBxxx 1f
935 * BRB 2f
936 * 1: JMP foo
937 * 2:
938 */
939 }
940 }
941 }
942 else
943 {
944 know (operandP->vop_width == VAX_WIDTH_CONDITIONAL_JUMP);
945 *opcode_low_byteP ^= 1; /* Reverse branch condition. */
946 p = frag_more (7);
947 p[0] = 6;
948 p[1] = VAX_JMP;
949 p[2] = VAX_PC_RELATIVE_MODE;
950 fix_new (frag_now, p + 3 - frag_now->fr_literal,
951 4, this_add_symbol, 0,
952 this_add_number, 1);
953 }
954 }
955 }
956 }
957 }
958 else
959 {
960 know (operandP->vop_access != 'b'); /* So it is ordinary operand. */
961 know (operandP->vop_access != ' '); /* ' ' target-independent: elsewhere. */
962 know (operandP->vop_access == 'a' || operandP->vop_access == 'm' || operandP->vop_access == 'r' || operandP->vop_access == 'v' || operandP->vop_access == 'w');
963 if (operandP->vop_short == 's')
964 {
965 if (to_seg == SEG_ABSOLUTE)
966 {
967 if (this_add_number < 0 || this_add_number >= 64)
968 {
969 as_warn ("Short literal overflow(%d.), immediate mode assumed.", this_add_number);
970 operandP->vop_short = 'i';
971 operandP->vop_mode = 8;
972 operandP->vop_reg = 0xF;
973 }
974 }
975 else
976 {
977 as_warn ("Forced short literal to immediate mode. now_seg=%s to_seg=%s", segment_name(now_seg), segment_name(to_seg));
978 operandP->vop_short = 'i';
979 operandP->vop_mode = 8;
980 operandP->vop_reg = 0xF;
981 }
982 }
983 if (operandP->vop_reg >= 0 && (operandP->vop_mode < 8 || (operandP->vop_reg != 0xF && operandP->vop_mode < 10)))
984 { /* One byte operand. */
985 know (operandP->vop_mode > 3);
986 FRAG_APPEND_1_CHAR (operandP->vop_mode << 4 | operandP->vop_reg);
987 /* All 1-bytes except S^# happen here. */
988 }
989 else
990 { /* {@}{q^}foo{(Rn)} or S^#foo */
991 if (operandP->vop_reg == -1 && operandP->vop_short != 's')
992 { /* "{@}{q^}foo" */
993 if (to_seg == now_seg)
994 {
995 if (length == 0)
996 {
997 know (operandP->vop_short == ' ');
998 p = frag_var (rs_machine_dependent, 10, 2,
999 ENCODE_RELAX (STATE_PC_RELATIVE, STATE_BYTE),
1000 this_add_symbol, this_add_number,
1001 opcode_low_byteP);
1002 know (operandP->vop_mode == 10 + at);
1003 *p = at << 4;
1004 /* At is the only context we need to carry to */
1005 /* other side of relax() process. */
1006 /* Must be in the correct bit position of VAX */
1007 /* operand spec. byte. */
1008 }
1009 else
1010 {
1011 know (length);
1012 know (operandP->vop_short != ' ');
1013 p = frag_more (length + 1);
1014 /* JF is this array stuff really going to work? */
1015 p[0] = 0xF | ((at + "?\12\14?\16"[length]) << 4);
1016 fix_new (frag_now, p + 1 - frag_now->fr_literal,
1017 length, this_add_symbol, 0,
1018 this_add_number, 1);
1019 }
1020 }
1021 else
1022 { /* to_seg != now_seg */
1023 if (this_add_symbol == NULL)
1024 {
1025 know (to_seg == SEG_ABSOLUTE);
1026 /* Do @#foo: simpler relocation than foo-.(pc) anyway. */
1027 p = frag_more (5);
1028 p[0] = VAX_ABSOLUTE_MODE; /* @#... */
1029 md_number_to_chars (p + 1, this_add_number, 4);
1030 if (length && length != 4)
1031 {
1032 as_warn ("Length specification ignored. Address mode 9F used");
1033 }
1034 }
1035 else
1036 {
1037 /* {@}{q^}other_seg */
1038 know ((length == 0 && operandP->vop_short == ' ')
1039 ||(length > 0 && operandP->vop_short != ' '));
1040 if (is_undefined)
1041 {
1042 /*
1043 * We have a SEG_UNKNOWN symbol. It might
1044 * turn out to be in the same segment as
1045 * the instruction, permitting relaxation.
1046 */
1047 p = frag_var (rs_machine_dependent, 5, 2,
1048 ENCODE_RELAX (STATE_PC_RELATIVE, STATE_UNDF),
1049 this_add_symbol, this_add_number,
1050 0);
1051 p[0] = at << 4;
1052 }
1053 else
1054 {
1055 if (length == 0)
1056 {
1057 know (operandP->vop_short == ' ');
1058 length = 4; /* Longest possible. */
1059 }
1060 p = frag_more (length + 1);
1061 p[0] = 0xF | ((at + "?\12\14?\16"[length]) << 4);
1062 md_number_to_chars (p + 1, this_add_number, length);
1063 fix_new (frag_now,
1064 p + 1 - frag_now->fr_literal,
1065 length, this_add_symbol, 0,
1066 this_add_number, 1);
1067 }
1068 }
1069 }
1070 }
1071 else
1072 { /* {@}{q^}foo(Rn) or S^# or I^# or # */
1073 if (operandP->vop_mode < 0xA)
1074 { /* # or S^# or I^# */
1075 /* know( (length == 0 && operandP->vop_short == ' ')
1076 || (length > 0 && operandP->vop_short != ' ')); */
1077 if (length == 0
1078 && to_seg == SEG_ABSOLUTE
1079 && operandP->vop_mode == 8 /* No '@'. */
1080 && this_add_number < 64
1081 && this_add_number >= 0)
1082 {
1083 operandP->vop_short = 's';
1084 }
1085 if (operandP->vop_short == 's')
1086 {
1087 FRAG_APPEND_1_CHAR (this_add_number);
1088 }
1089 else
1090 { /* I^#... */
1091 know (nbytes);
1092 p = frag_more (nbytes + 1);
1093 know (operandP->vop_reg == 0xF);
1094 p[0] = (operandP->vop_mode << 4) | 0xF;
1095 if (to_seg == SEG_ABSOLUTE)
1096 {
1097 /*
1098 * If nbytes > 4, then we are scrod. We don't know if the
1099 * high order bytes are to be 0xFF or 0x00.
1100 * BSD4.2 & RMS say use 0x00. OK --- but this
1101 * assembler needs ANOTHER rewrite to
1102 * cope properly with this bug.
1103 */
1104 md_number_to_chars (p + 1, this_add_number, min (4, nbytes));
1105 if (nbytes > 4)
1106 {
1107 bzero (p + 5, nbytes - 4);
1108 }
1109 }
1110 else
1111 {
1112 if (to_seg == SEG_BIG)
1113 {
1114 /*
1115 * Problem here is to get the bytes in the right order.
1116 * We stored our constant as LITTLENUMs, not bytes.
1117 */
1118 LITTLENUM_TYPE *lP;
1119
1120 lP = floatP->low;
1121 if (nbytes & 1)
1122 {
1123 know (nbytes == 1);
1124 p[1] = *lP;
1125 }
1126 else
1127 {
1128 for (p++; nbytes; nbytes -= 2, p += 2, lP++)
1129 {
1130 md_number_to_chars (p, *lP, 2);
1131 }
1132 }
1133 }
1134 else
1135 {
1136 fix_new (frag_now, p + 1 - frag_now->fr_literal,
1137 nbytes, this_add_symbol, 0,
1138 this_add_number, 0);
1139 }
1140 }
1141 }
1142 }
1143 else
1144 { /* {@}{q^}foo(Rn) */
1145 know ((length == 0 && operandP->vop_short == ' ')
1146 ||(length > 0 && operandP->vop_short != ' '));
1147 if (length == 0)
1148 {
1149 if (to_seg == SEG_ABSOLUTE)
1150 {
1151 register long test;
1152
1153 test = this_add_number;
1154
1155 if (test < 0)
1156 test = ~test;
1157
1158 length = test & 0xffff8000 ? 4
1159 : test & 0xffffff80 ? 2
1160 : 1;
1161 }
1162 else
1163 {
1164 length = 4;
1165 }
1166 }
1167 p = frag_more (1 + length);
1168 know (operandP->vop_reg >= 0);
1169 p[0] = operandP->vop_reg
1170 | ((at | "?\12\14?\16"[length]) << 4);
1171 if (to_seg == SEG_ABSOLUTE)
1172 {
1173 md_number_to_chars (p + 1, this_add_number, length);
1174 }
1175 else
1176 {
1177 fix_new (frag_now, p + 1 - frag_now->fr_literal,
1178 length, this_add_symbol, 0,
1179 this_add_number, 0);
1180 }
1181 }
1182 }
1183 } /* if(single-byte-operand) */
1184 }
1185 } /* for(operandP) */
1186 } /* if(!need_pass_2&&!goofed) */
1187 } /* vax_assemble() */
1188 \f
1189 /*
1190 * md_estimate_size_before_relax()
1191 *
1192 * Called just before relax().
1193 * Any symbol that is now undefined will not become defined.
1194 * Return the correct fr_subtype in the frag.
1195 * Return the initial "guess for fr_var" to caller.
1196 * The guess for fr_var is ACTUALLY the growth beyond fr_fix.
1197 * Whatever we do to grow fr_fix or fr_var contributes to our returned value.
1198 * Although it may not be explicit in the frag, pretend fr_var starts with a
1199 * 0 value.
1200 */
1201 int
1202 md_estimate_size_before_relax (fragP, segment)
1203 register fragS *fragP;
1204 register segT segment;
1205 {
1206 register char *p;
1207 register int old_fr_fix;
1208
1209 old_fr_fix = fragP->fr_fix;
1210 switch (fragP->fr_subtype)
1211 {
1212 case ENCODE_RELAX (STATE_PC_RELATIVE, STATE_UNDF):
1213 if (S_GET_SEGMENT(fragP->fr_symbol) == segment)
1214 { /* A relaxable case. */
1215 fragP->fr_subtype = ENCODE_RELAX (STATE_PC_RELATIVE, STATE_BYTE);
1216 }
1217 else
1218 {
1219 p = fragP->fr_literal + old_fr_fix;
1220 p[0] |= VAX_PC_RELATIVE_MODE; /* Preserve @ bit. */
1221 fragP->fr_fix += 1 + 4;
1222 fix_new (fragP, old_fr_fix + 1, 4, fragP->fr_symbol, 0,
1223 fragP->fr_offset, 1);
1224 frag_wane (fragP);
1225 }
1226 break;
1227
1228 case ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, STATE_UNDF):
1229 if (S_GET_SEGMENT(fragP->fr_symbol) == segment)
1230 {
1231 fragP->fr_subtype = ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, STATE_BYTE);
1232 }
1233 else
1234 {
1235 p = fragP->fr_literal + old_fr_fix;
1236 *fragP->fr_opcode ^= 1; /* Reverse sense of branch. */
1237 p[0] = 6;
1238 p[1] = VAX_JMP;
1239 p[2] = VAX_PC_RELATIVE_MODE; /* ...(PC) */
1240 fragP->fr_fix += 1 + 1 + 1 + 4;
1241 fix_new (fragP, old_fr_fix + 3, 4, fragP->fr_symbol, 0,
1242 fragP->fr_offset, 1);
1243 frag_wane (fragP);
1244 }
1245 break;
1246
1247 case ENCODE_RELAX (STATE_COMPLEX_BRANCH, STATE_UNDF):
1248 if (S_GET_SEGMENT(fragP->fr_symbol) == segment)
1249 {
1250 fragP->fr_subtype = ENCODE_RELAX (STATE_COMPLEX_BRANCH, STATE_WORD);
1251 }
1252 else
1253 {
1254 p = fragP->fr_literal + old_fr_fix;
1255 p[0] = 2;
1256 p[1] = 0;
1257 p[2] = VAX_BRB;
1258 p[3] = 6;
1259 p[4] = VAX_JMP;
1260 p[5] = VAX_PC_RELATIVE_MODE; /* ...(pc) */
1261 fragP->fr_fix += 2 + 2 + 1 + 1 + 4;
1262 fix_new (fragP, old_fr_fix + 6, 4, fragP->fr_symbol, 0,
1263 fragP->fr_offset, 1);
1264 frag_wane (fragP);
1265 }
1266 break;
1267
1268 case ENCODE_RELAX (STATE_COMPLEX_HOP, STATE_UNDF):
1269 if (S_GET_SEGMENT(fragP->fr_symbol) == segment)
1270 {
1271 fragP->fr_subtype = ENCODE_RELAX (STATE_COMPLEX_HOP, STATE_BYTE);
1272 }
1273 else
1274 {
1275 p = fragP->fr_literal + old_fr_fix;
1276 p[0] = 2;
1277 p[1] = VAX_BRB;
1278 p[2] = 6;
1279 p[3] = VAX_JMP;
1280 p[4] = VAX_PC_RELATIVE_MODE; /* ...(pc) */
1281 fragP->fr_fix += 1 + 2 + 1 + 1 + 4;
1282 fix_new (fragP, old_fr_fix + 5, 4, fragP->fr_symbol, 0,
1283 fragP->fr_offset, 1);
1284 frag_wane (fragP);
1285 }
1286 break;
1287
1288 case ENCODE_RELAX (STATE_ALWAYS_BRANCH, STATE_UNDF):
1289 if (S_GET_SEGMENT(fragP->fr_symbol) == segment)
1290 {
1291 fragP->fr_subtype = ENCODE_RELAX (STATE_ALWAYS_BRANCH, STATE_BYTE);
1292 }
1293 else
1294 {
1295 p = fragP->fr_literal + old_fr_fix;
1296 *fragP->fr_opcode += VAX_WIDEN_LONG;
1297 p[0] = VAX_PC_RELATIVE_MODE; /* ...(PC) */
1298 fragP->fr_fix += 1 + 4;
1299 fix_new (fragP, old_fr_fix + 1, 4, fragP->fr_symbol, 0,
1300 fragP->fr_offset, 1);
1301 frag_wane (fragP);
1302 }
1303 break;
1304
1305 default:
1306 break;
1307 }
1308 return (fragP->fr_var + fragP->fr_fix - old_fr_fix);
1309 } /* md_estimate_size_before_relax() */
1310 \f
1311 /*
1312 * md_convert_frag();
1313 *
1314 * Called after relax() is finished.
1315 * In: Address of frag.
1316 * fr_type == rs_machine_dependent.
1317 * fr_subtype is what the address relaxed to.
1318 *
1319 * Out: Any fixSs and constants are set up.
1320 * Caller will turn frag into a ".space 0".
1321 */
1322 void
1323 md_convert_frag (headers, fragP)
1324 object_headers *headers;
1325 register fragS *fragP;
1326 {
1327 register char *addressP; /* -> _var to change. */
1328 register char *opcodeP; /* -> opcode char(s) to change. */
1329 register short int length_code; /* 2=long 1=word 0=byte */
1330 register short int extension; /* Size of relaxed address. */
1331 /* Added to fr_fix: incl. ALL var chars. */
1332 register symbolS *symbolP;
1333 register long where;
1334 register long address_of_var;
1335 /* Where, in file space, is _var of *fragP? */
1336 register long target_address;
1337 /* Where, in file space, does addr point? */
1338
1339 know (fragP->fr_type == rs_machine_dependent);
1340 length_code = fragP->fr_subtype & 3; /* depends on ENCODE_RELAX() */
1341 know (length_code >= 0 && length_code < 3);
1342 where = fragP->fr_fix;
1343 addressP = fragP->fr_literal + where;
1344 opcodeP = fragP->fr_opcode;
1345 symbolP = fragP->fr_symbol;
1346 know (symbolP);
1347 target_address = symbolP->sy_value + fragP->fr_offset;
1348 address_of_var = fragP->fr_address + where;
1349 switch (fragP->fr_subtype)
1350 {
1351 case ENCODE_RELAX (STATE_PC_RELATIVE, STATE_BYTE):
1352 know (*addressP == 0 || *addressP == 0x10); /* '@' bit. */
1353 addressP[0] |= 0xAF; /* Byte displacement. */
1354 addressP[1] = target_address - (address_of_var + 2);
1355 extension = 2;
1356 break;
1357
1358 case ENCODE_RELAX (STATE_PC_RELATIVE, STATE_WORD):
1359 know (*addressP == 0 || *addressP == 0x10); /* '@' bit. */
1360 addressP[0] |= 0xCF; /* Word displacement. */
1361 md_number_to_chars (addressP + 1, target_address - (address_of_var + 3), 2);
1362 extension = 3;
1363 break;
1364
1365 case ENCODE_RELAX (STATE_PC_RELATIVE, STATE_LONG):
1366 know (*addressP == 0 || *addressP == 0x10); /* '@' bit. */
1367 addressP[0] |= 0xEF; /* Long word displacement. */
1368 md_number_to_chars (addressP + 1, target_address - (address_of_var + 5), 4);
1369 extension = 5;
1370 break;
1371
1372 case ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, STATE_BYTE):
1373 addressP[0] = target_address - (address_of_var + 1);
1374 extension = 1;
1375 break;
1376
1377 case ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, STATE_WORD):
1378 opcodeP[0] ^= 1; /* Reverse sense of test. */
1379 addressP[0] = 3;
1380 addressP[1] = VAX_BRB + VAX_WIDEN_WORD;
1381 md_number_to_chars (addressP + 2, target_address - (address_of_var + 4), 2);
1382 extension = 4;
1383 break;
1384
1385 case ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, STATE_LONG):
1386 opcodeP[0] ^= 1; /* Reverse sense of test. */
1387 addressP[0] = 6;
1388 addressP[1] = VAX_JMP;
1389 addressP[2] = VAX_PC_RELATIVE_MODE;
1390 md_number_to_chars (addressP + 3, target_address, 4);
1391 extension = 7;
1392 break;
1393
1394 case ENCODE_RELAX (STATE_ALWAYS_BRANCH, STATE_BYTE):
1395 addressP[0] = target_address - (address_of_var + 1);
1396 extension = 1;
1397 break;
1398
1399 case ENCODE_RELAX (STATE_ALWAYS_BRANCH, STATE_WORD):
1400 opcodeP[0] += VAX_WIDEN_WORD; /* brb -> brw, bsbb -> bsbw */
1401 md_number_to_chars (addressP, target_address - (address_of_var + 2), 2);
1402 extension = 2;
1403 break;
1404
1405 case ENCODE_RELAX (STATE_ALWAYS_BRANCH, STATE_LONG):
1406 opcodeP[0] += VAX_WIDEN_LONG; /* brb -> jmp, bsbb -> jsb */
1407 addressP[0] = VAX_PC_RELATIVE_MODE;
1408 md_number_to_chars (addressP + 1, target_address - (address_of_var + 5), 4);
1409 extension = 5;
1410 break;
1411
1412 case ENCODE_RELAX (STATE_COMPLEX_BRANCH, STATE_WORD):
1413 md_number_to_chars (addressP, target_address - (address_of_var + 2), 2);
1414 extension = 2;
1415 break;
1416
1417 case ENCODE_RELAX (STATE_COMPLEX_BRANCH, STATE_LONG):
1418 addressP[0] = 2;
1419 addressP[1] = 0;
1420 addressP[2] = VAX_BRB;
1421 addressP[3] = 6;
1422 addressP[4] = VAX_JMP;
1423 addressP[5] = VAX_PC_RELATIVE_MODE;
1424 md_number_to_chars (addressP + 6, target_address, 4);
1425 extension = 10;
1426 break;
1427
1428 case ENCODE_RELAX (STATE_COMPLEX_HOP, STATE_BYTE):
1429 addressP[0] = target_address - (address_of_var + 1);
1430 extension = 1;
1431 break;
1432
1433 case ENCODE_RELAX (STATE_COMPLEX_HOP, STATE_WORD):
1434 addressP[0] = 2;
1435 addressP[1] = VAX_BRB;
1436 addressP[2] = 3;
1437 addressP[3] = VAX_BRW;
1438 md_number_to_chars (addressP + 4, target_address - (address_of_var + 6), 2);
1439 extension = 6;
1440 break;
1441
1442 case ENCODE_RELAX (STATE_COMPLEX_HOP, STATE_LONG):
1443 addressP[0] = 2;
1444 addressP[1] = VAX_BRB;
1445 addressP[2] = 6;
1446 addressP[3] = VAX_JMP;
1447 addressP[4] = VAX_PC_RELATIVE_MODE;
1448 md_number_to_chars (addressP + 5, target_address, 4);
1449 extension = 9;
1450 break;
1451
1452 default:
1453 BAD_CASE (fragP->fr_subtype);
1454 break;
1455 }
1456 fragP->fr_fix += extension;
1457 }
1458
1459 /* Translate internal format of relocation info into target format.
1460
1461 On vax: first 4 bytes are normal unsigned long, next three bytes
1462 are symbolnum, least sig. byte first. Last byte is broken up with
1463 the upper nibble as nuthin, bit 3 as extern, bits 2 & 1 as length, and
1464 bit 0 as pcrel. */
1465 void
1466 md_ri_to_chars (the_bytes, ri)
1467 char *the_bytes;
1468 struct reloc_info_generic ri;
1469 {
1470 /* this is easy */
1471 md_number_to_chars (the_bytes, ri.r_address, sizeof (ri.r_address));
1472 /* now the fun stuff */
1473 the_bytes[6] = (ri.r_symbolnum >> 16) & 0x0ff;
1474 the_bytes[5] = (ri.r_symbolnum >> 8) & 0x0ff;
1475 the_bytes[4] = ri.r_symbolnum & 0x0ff;
1476 the_bytes[7] = (((ri.r_extern << 3) & 0x08) | ((ri.r_length << 1) & 0x06) |
1477 ((ri.r_pcrel << 0) & 0x01)) & 0x0F;
1478 }
1479 \f
1480 /*
1481 * BUGS, GRIPES, APOLOGIA, etc.
1482 *
1483 * The opcode table 'votstrs' needs to be sorted on opcode frequency.
1484 * That is, AFTER we hash it with hash_...(), we want most-used opcodes
1485 * to come out of the hash table faster.
1486 *
1487 * I am sorry to inflict
1488 * yet another VAX assembler on the world, but RMS says we must
1489 * do everything from scratch, to prevent pin-heads restricting
1490 * this software.
1491 */
1492
1493 /*
1494 * This is a vaguely modular set of routines in C to parse VAX
1495 * assembly code using DEC mnemonics. It is NOT un*x specific.
1496 *
1497 * The idea here is that the assembler has taken care of all:
1498 * labels
1499 * macros
1500 * listing
1501 * pseudo-ops
1502 * line continuation
1503 * comments
1504 * condensing any whitespace down to exactly one space
1505 * and all we have to do is parse 1 line into a vax instruction
1506 * partially formed. We will accept a line, and deliver:
1507 * an error message (hopefully empty)
1508 * a skeleton VAX instruction (tree structure)
1509 * textual pointers to all the operand expressions
1510 * a warning message that notes a silly operand (hopefully empty)
1511 */
1512 \f
1513 /*
1514 * E D I T H I S T O R Y
1515 *
1516 * 17may86 Dean Elsner. Bug if line ends immediately after opcode.
1517 * 30apr86 Dean Elsner. New vip_op() uses arg block so change call.
1518 * 6jan86 Dean Elsner. Crock vip_begin() to call vip_op_defaults().
1519 * 2jan86 Dean Elsner. Invent synthetic opcodes.
1520 * Widen vax_opcodeT to 32 bits. Use a bit for VIT_OPCODE_SYNTHETIC,
1521 * which means this is not a real opcode, it is like a macro; it will
1522 * be relax()ed into 1 or more instructions.
1523 * Use another bit for VIT_OPCODE_SPECIAL if the op-code is not optimised
1524 * like a regular branch instruction. Option added to vip_begin():
1525 * exclude synthetic opcodes. Invent synthetic_votstrs[].
1526 * 31dec85 Dean Elsner. Invent vit_opcode_nbytes.
1527 * Also make vit_opcode into a char[]. We now have n-byte vax opcodes,
1528 * so caller's don't have to know the difference between a 1-byte & a
1529 * 2-byte op-code. Still need vax_opcodeT concept, so we know how
1530 * big an object must be to hold an op.code.
1531 * 30dec85 Dean Elsner. Widen typedef vax_opcodeT in "vax-inst.h"
1532 * because vax opcodes may be 16 bits. Our crufty C compiler was
1533 * happily initialising 8-bit vot_codes with 16-bit numbers!
1534 * (Wouldn't the 'phone company like to compress data so easily!)
1535 * 29dec85 Dean Elsner. New static table vax_operand_width_size[].
1536 * Invented so we know hw many bytes a "I^#42" needs in its immediate
1537 * operand. Revised struct vop in "vax-inst.h": explicitly include
1538 * byte length of each operand, and it's letter-code datum type.
1539 * 17nov85 Dean Elsner. Name Change.
1540 * Due to ar(1) truncating names, we learned the hard way that
1541 * "vax-inst-parse.c" -> "vax-inst-parse." dropping the "o" off
1542 * the archived object name. SO... we shortened the name of this
1543 * source file, and changed the makefile.
1544 */
1545
1546 static char *op_hash = NULL; /* handle of the OPCODE hash table */
1547 /* NULL means any use before vip_begin() */
1548 /* will crash */
1549
1550 /*
1551 * In: 1 character, from "bdfghloqpw" being the data-type of an operand
1552 * of a vax instruction.
1553 *
1554 * Out: the length of an operand of that type, in bytes.
1555 * Special branch operands types "-?!" have length 0.
1556 */
1557
1558 static const short int vax_operand_width_size[256] =
1559 {
1560
1561 #define _ 0
1562 _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _,
1563 _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _,
1564 _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _,
1565 _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _,
1566 _, _, 1, _, 8, _, 4, 8, 16, _, _, _, 4, _, _, 16, /* ..b.d.fgh...l..o */
1567 _, 8, _, _, _, _, _, 2, _, _, _, _, _, _, _, _, /* .q.....w........ */
1568 _, _, 1, _, 8, _, 4, 8, 16, _, _, _, 4, _, _, 16, /* ..b.d.fgh...l..o */
1569 _, 8, _, _, _, _, _, 2, _, _, _, _, _, _, _, _, /* .q.....w........ */
1570 _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _,
1571 _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _,
1572 _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _,
1573 _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _,
1574 _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _,
1575 _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _,
1576 _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _,
1577 _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _};
1578 #undef _
1579 \f
1580 /*
1581 * This perversion encodes all the vax opcodes as a bunch of strings.
1582 * RMS says we should build our hash-table at run-time. Hmm.
1583 * Please would someone arrange these in decreasing frequency of opcode?
1584 * Because of the way hash_...() works, the most frequently used opcode
1585 * should be textually first and so on.
1586 *
1587 * Input for this table was 'vax.opcodes', awk(1)ed by 'vax.opcodes.c.awk' .
1588 * So change 'vax.opcodes', then re-generate this table.
1589 */
1590
1591 #include "opcode/vax.h"
1592 \f
1593 /*
1594 * This is a table of optional op-codes. All of them represent
1595 * 'synthetic' instructions that seem popular.
1596 *
1597 * Here we make some pseudo op-codes. Every code has a bit set to say
1598 * it is synthetic. This lets you catch them if you want to
1599 * ban these opcodes. They are mnemonics for "elastic" instructions
1600 * that are supposed to assemble into the fewest bytes needed to do a
1601 * branch, or to do a conditional branch, or whatever.
1602 *
1603 * The opcode is in the usual place [low-order n*8 bits]. This means
1604 * that if you mask off the bucky bits, the usual rules apply about
1605 * how long the opcode is.
1606 *
1607 * All VAX branch displacements come at the end of the instruction.
1608 * For simple branches (1-byte opcode + 1-byte displacement) the last
1609 * operand is coded 'b?' where the "data type" '?' is a clue that we
1610 * may reverse the sense of the branch (complement lowest order bit)
1611 * and branch around a jump. This is by far the most common case.
1612 * That is why the VIT_OPCODE_SYNTHETIC bit is set: it says this is
1613 * a 0-byte op-code followed by 2 or more bytes of operand address.
1614 *
1615 * If the op-code has VIT_OPCODE_SPECIAL set, then we have a more unusual
1616 * case.
1617 *
1618 * For JBSB & JBR the treatment is the similar, except (1) we have a 'bw'
1619 * option before (2) we can directly JSB/JMP because there is no condition.
1620 * These operands have 'b-' as their access/data type.
1621 *
1622 * That leaves a bunch of random opcodes: JACBx, JxOBxxx. In these
1623 * cases, we do the same idea. JACBxxx are all marked with a 'b!'
1624 * JAOBxxx & JSOBxxx are marked with a 'b:'.
1625 *
1626 */
1627 #if (VIT_OPCODE_SYNTHETIC != 0x80000000)
1628 You have just broken the encoding below, which assumes the sign bit
1629 means 'I am an imaginary instruction'.
1630 #endif
1631
1632 #if (VIT_OPCODE_SPECIAL != 0x40000000)
1633 You have just broken the encoding below, which assumes the 0x40 M bit means
1634 'I am not to be "optimised" the way normal branches are'.
1635 #endif
1636
1637 static const struct vot
1638 synthetic_votstrs[] =
1639 {
1640 {"jbsb",
1641 {"b-", 0xC0000010}}, /* BSD 4.2 */
1642 /* jsb used already */
1643 {"jbr",
1644 {"b-", 0xC0000011}}, /* BSD 4.2 */
1645 {"jr",
1646 {"b-", 0xC0000011}}, /* consistent */
1647 {"jneq",
1648 {"b?", 0x80000012}},
1649 {"jnequ",
1650 {"b?", 0x80000012}},
1651 {"jeql",
1652 {"b?", 0x80000013}},
1653 {"jeqlu",
1654 {"b?", 0x80000013}},
1655 {"jgtr",
1656 {"b?", 0x80000014}},
1657 {"jleq",
1658 {"b?", 0x80000015}},
1659 /* un-used opcodes here */
1660 {"jgeq",
1661 {"b?", 0x80000018}},
1662 {"jlss",
1663 {"b?", 0x80000019}},
1664 {"jgtru",
1665 {"b?", 0x8000001a}},
1666 {"jlequ",
1667 {"b?", 0x8000001b}},
1668 {"jvc",
1669 {"b?", 0x8000001c}},
1670 {"jvs",
1671 {"b?", 0x8000001d}},
1672 {"jgequ",
1673 {"b?", 0x8000001e}},
1674 {"jcc",
1675 {"b?", 0x8000001e}},
1676 {"jlssu",
1677 {"b?", 0x8000001f}},
1678 {"jcs",
1679 {"b?", 0x8000001f}},
1680
1681 {"jacbw",
1682 {"rwrwmwb!", 0xC000003d}},
1683 {"jacbf",
1684 {"rfrfmfb!", 0xC000004f}},
1685 {"jacbd",
1686 {"rdrdmdb!", 0xC000006f}},
1687 {"jacbb",
1688 {"rbrbmbb!", 0xC000009d}},
1689 {"jacbl",
1690 {"rlrlmlb!", 0xC00000f1}},
1691 {"jacbg",
1692 {"rgrgmgb!", 0xC0004ffd}},
1693 {"jacbh",
1694 {"rhrhmhb!", 0xC0006ffd}},
1695
1696 {"jbs",
1697 {"rlvbb?", 0x800000e0}},
1698 {"jbc",
1699 {"rlvbb?", 0x800000e1}},
1700 {"jbss",
1701 {"rlvbb?", 0x800000e2}},
1702 {"jbcs",
1703 {"rlvbb?", 0x800000e3}},
1704 {"jbsc",
1705 {"rlvbb?", 0x800000e4}},
1706 {"jbcc",
1707 {"rlvbb?", 0x800000e5}},
1708 {"jbssi",
1709 {"rlvbb?", 0x800000e6}},
1710 {"jbcci",
1711 {"rlvbb?", 0x800000e7}},
1712 {"jlbs",
1713 {"rlb?", 0x800000e8}}, /* JF changed from rlvbb? */
1714 {"jlbc",
1715 {"rlb?", 0x800000e9}}, /* JF changed from rlvbb? */
1716
1717 {"jaoblss",
1718 {"rlmlb:", 0xC00000f2}},
1719 {"jaobleq",
1720 {"rlmlb:", 0xC00000f3}},
1721 {"jsobgeq",
1722 {"mlb:", 0xC00000f4}}, /* JF was rlmlb: */
1723 {"jsobgtr",
1724 {"mlb:", 0xC00000f5}}, /* JF was rlmlb: */
1725
1726 /* CASEx has no branch addresses in our conception of it. */
1727 /* You should use ".word ..." statements after the "case ...". */
1728
1729 {"", ""} /* empty is end sentinel */
1730
1731 }; /* synthetic_votstrs */
1732 \f
1733 /*
1734 * v i p _ b e g i n ( )
1735 *
1736 * Call me once before you decode any lines.
1737 * I decode votstrs into a hash table at op_hash (which I create).
1738 * I return an error text: hopefully "".
1739 * If you want, I will include the 'synthetic' jXXX instructions in the
1740 * instruction table.
1741 * You must nominate metacharacters for eg DEC's "#", "@", "^".
1742 */
1743
1744 char *
1745 vip_begin (synthetic_too, immediate, indirect, displen)
1746 int synthetic_too; /* TRUE means include jXXX op-codes. */
1747 char *immediate, *indirect, *displen;
1748 {
1749 register const struct vot *vP; /* scan votstrs */
1750 register char *retval; /* error text */
1751
1752 char *hash_insert (); /* */
1753 char *hash_new (); /* lies */
1754
1755 if ((op_hash = hash_new ()))
1756 {
1757 retval = ""; /* OK so far */
1758 for (vP = votstrs; *vP->vot_name && !*retval; vP++)
1759 {
1760 retval = hash_insert (op_hash, vP->vot_name, &vP->vot_detail);
1761 }
1762 if (synthetic_too)
1763 {
1764 for (vP = synthetic_votstrs; *vP->vot_name && !*retval; vP++)
1765 {
1766 retval = hash_insert (op_hash, vP->vot_name, &vP->vot_detail);
1767 }
1768 }
1769 }
1770 else
1771 {
1772 retval = "virtual memory exceeded";
1773 }
1774 #ifndef CONST_TABLE
1775 vip_op_defaults (immediate, indirect, displen);
1776 #endif
1777
1778 return (retval);
1779 }
1780
1781
1782 /*
1783 * v i p _ e n d ( )
1784 *
1785 * Call me once after you have decoded all lines.
1786 * I do any cleaning-up needed.
1787 *
1788 * We don't have to do any cleanup ourselves: all of our operand
1789 * symbol table is static, and free()ing it is naughty.
1790 */
1791 vip_end ()
1792 {
1793 }
1794 \f
1795 /*
1796 * v i p ( )
1797 *
1798 * This converts a string into a vax instruction.
1799 * The string must be a bare single instruction in dec-vax (with BSD4 frobs)
1800 * format.
1801 * It provides some error messages: at most one fatal error message (which
1802 * stops the scan) and at most one warning message for each operand.
1803 * The vax instruction is returned in exploded form, since we have no
1804 * knowledge of how you parse (or evaluate) your expressions.
1805 * We do however strip off and decode addressing modes and operation
1806 * mnemonic.
1807 *
1808 * The exploded instruction is returned to a struct vit of your choice.
1809 * #include "vax-inst.h" to know what a struct vit is.
1810 *
1811 * This function's value is a string. If it is not "" then an internal
1812 * logic error was found: read this code to assign meaning to the string.
1813 * No argument string should generate such an error string:
1814 * it means a bug in our code, not in the user's text.
1815 *
1816 * You MUST have called vip_begin() once and vip_end() never before using
1817 * this function.
1818 */
1819
1820 char * /* "" or bug string */
1821 vip (vitP, instring)
1822 struct vit *vitP; /* We build an exploded instruction here. */
1823 char *instring; /* Text of a vax instruction: we modify. */
1824 {
1825 register struct vot_wot *vwP; /* How to bit-encode this opcode. */
1826 register char *p; /* 1/skip whitespace.2/scan vot_how */
1827 register char *q; /* */
1828 register char *bug; /* "" or program logic error */
1829 register unsigned char count; /* counts number of operands seen */
1830 register struct vop *operandp;/* scan operands in struct vit */
1831 register char *alloperr; /* error over all operands */
1832 register char c; /* Remember char, (we clobber it */
1833 /* with '\0' temporarily). */
1834 register vax_opcodeT oc; /* Op-code of this instruction. */
1835
1836 struct vot_wot *hash_find ();
1837 char *vip_op ();
1838
1839 bug = "";
1840 if (*instring == ' ')
1841 ++instring; /* Skip leading whitespace. */
1842 for (p = instring; *p && *p != ' '; p++)
1843 ; /* MUST end in end-of-string or exactly 1 space. */
1844 /* Scanned up to end of operation-code. */
1845 /* Operation-code is ended with whitespace. */
1846 if (p - instring == 0)
1847 {
1848 vitP->vit_error = "No operator";
1849 count = 0;
1850 bzero (vitP->vit_opcode, sizeof (vitP->vit_opcode));
1851 }
1852 else
1853 {
1854 c = *p;
1855 *p = '\0';
1856 /*
1857 * Here with instring pointing to what better be an op-name, and p
1858 * pointing to character just past that.
1859 * We trust instring points to an op-name, with no whitespace.
1860 */
1861 vwP = hash_find (op_hash, instring);
1862 *p = c; /* Restore char after op-code. */
1863 if (vwP == 0)
1864 {
1865 vitP->vit_error = "Unknown operator";
1866 count = 0;
1867 bzero (vitP->vit_opcode, sizeof (vitP->vit_opcode));
1868 }
1869 else
1870 {
1871 /*
1872 * We found a match! So lets pick up as many operands as the
1873 * instruction wants, and even gripe if there are too many.
1874 * We expect comma to seperate each operand.
1875 * We let instring track the text, while p tracks a part of the
1876 * struct vot.
1877 */
1878 /*
1879 * The lines below know about 2-byte opcodes starting FD,FE or FF.
1880 * They also understand synthetic opcodes. Note:
1881 * we return 32 bits of opcode, including bucky bits, BUT
1882 * an opcode length is either 8 or 16 bits for vit_opcode_nbytes.
1883 */
1884 oc = vwP->vot_code; /* The op-code. */
1885 vitP->vit_opcode_nbytes = (oc & 0xFF) >= 0xFD ? 2 : 1;
1886 md_number_to_chars (vitP->vit_opcode, oc, 4);
1887 count = 0; /* no operands seen yet */
1888 instring = p; /* point just past operation code */
1889 alloperr = "";
1890 for (p = vwP->vot_how, operandp = vitP->vit_operand;
1891 !*alloperr && !*bug && *p;
1892 operandp++, p += 2
1893 )
1894 {
1895 /*
1896 * Here to parse one operand. Leave instring pointing just
1897 * past any one ',' that marks the end of this operand.
1898 */
1899 if (!p[1])
1900 bug = "p"; /* ODD(!!) number of bytes in vot_how?? */
1901 else if (*instring)
1902 {
1903 for (q = instring; (c = *q) && c != ','; q++)
1904 ;
1905 /*
1906 * Q points to ',' or '\0' that ends argument. C is that
1907 * character.
1908 */
1909 *q = 0;
1910 operandp->vop_width = p[1];
1911 operandp->vop_nbytes = vax_operand_width_size[p[1]];
1912 operandp->vop_access = p[0];
1913 bug = vip_op (instring, operandp);
1914 *q = c; /* Restore input text. */
1915 if (*(operandp->vop_error))
1916 alloperr = "Bad operand";
1917 instring = q + (c ? 1 : 0); /* next operand (if any) */
1918 count++; /* won another argument, may have an operr */
1919 }
1920 else
1921 alloperr = "Not enough operands";
1922 }
1923 if (!*alloperr)
1924 {
1925 if (*instring == ' ')
1926 instring++; /* Skip whitespace. */
1927 if (*instring)
1928 alloperr = "Too many operands";
1929 }
1930 vitP->vit_error = alloperr;
1931 }
1932 }
1933 vitP->vit_operands = count;
1934 return (bug);
1935 }
1936 \f
1937 #ifdef test
1938
1939 /*
1940 * Test program for above.
1941 */
1942
1943 struct vit myvit; /* build an exploded vax instruction here */
1944 char answer[100]; /* human types a line of vax assembler here */
1945 char *mybug; /* "" or an internal logic diagnostic */
1946 int mycount; /* number of operands */
1947 struct vop *myvop; /* scan operands from myvit */
1948 int mysynth; /* TRUE means want synthetic opcodes. */
1949 char my_immediate[200];
1950 char my_indirect[200];
1951 char my_displen[200];
1952
1953 char *vip ();
1954
1955 main ()
1956 {
1957 char *p;
1958 char *vip_begin ();
1959
1960 printf ("0 means no synthetic instructions. ");
1961 printf ("Value for vip_begin? ");
1962 gets (answer);
1963 sscanf (answer, "%d", &mysynth);
1964 printf ("Synthetic opcodes %s be included.\n", mysynth ? "will" : "will not");
1965 printf ("enter immediate symbols eg enter # ");
1966 gets (my_immediate);
1967 printf ("enter indirect symbols eg enter @ ");
1968 gets (my_indirect);
1969 printf ("enter displen symbols eg enter ^ ");
1970 gets (my_displen);
1971 if (*(p = vip_begin (mysynth, my_immediate, my_indirect, my_displen)))
1972 {
1973 error ("vip_begin=%s", p);
1974 }
1975 printf ("An empty input line will quit you from the vax instruction parser\n");
1976 for (;;)
1977 {
1978 printf ("vax instruction: ");
1979 fflush (stdout);
1980 gets (answer);
1981 if (!*answer)
1982 {
1983 break; /* out of for each input text loop */
1984 }
1985 mybug = vip (&myvit, answer);
1986 if (*mybug)
1987 {
1988 printf ("BUG:\"%s\"\n", mybug);
1989 }
1990 if (*myvit.vit_error)
1991 {
1992 printf ("ERR:\"%s\"\n", myvit.vit_error);
1993 }
1994 printf ("opcode=");
1995 for (mycount = myvit.vit_opcode_nbytes, p = myvit.vit_opcode;
1996 mycount;
1997 mycount--, p++
1998 )
1999 {
2000 printf ("%02x ", *p & 0xFF);
2001 }
2002 printf (" operand count=%d.\n", mycount = myvit.vit_operands);
2003 for (myvop = myvit.vit_operand; mycount; mycount--, myvop++)
2004 {
2005 printf ("mode=%xx reg=%xx ndx=%xx len='%c'=%c%c%d. expr=\"",
2006 myvop->vop_mode, myvop->vop_reg, myvop->vop_ndx,
2007 myvop->vop_short, myvop->vop_access, myvop->vop_width,
2008 myvop->vop_nbytes);
2009 for (p = myvop->vop_expr_begin; p <= myvop->vop_expr_end; p++)
2010 {
2011 putchar (*p);
2012 }
2013 printf ("\"\n");
2014 if (*myvop->vop_error)
2015 {
2016 printf (" err:\"%s\"\n", myvop->vop_error);
2017 }
2018 if (*myvop->vop_warn)
2019 {
2020 printf (" wrn:\"%s\"\n", myvop->vop_warn);
2021 }
2022 }
2023 }
2024 vip_end ();
2025 exit ();
2026 }
2027
2028 #endif /* #ifdef test */
2029
2030 /* end of vax_ins_parse.c */
2031
2032 /* JF this used to be a separate file also */
2033 /* vax_reg_parse.c - convert a VAX register name to a number */
2034
2035 /* Copyright (C) 1987 Free Software Foundation, Inc. A part of GNU. */
2036
2037 /*
2038 * v a x _ r e g _ p a r s e ( )
2039 *
2040 * Take 3 char.s, the last of which may be `\0` (non-existent)
2041 * and return the VAX register number that they represent.
2042 *
2043 * Return -1 if they don't form a register name. Good names return
2044 * a number from 0:15 inclusive.
2045 *
2046 * Case is not important in a name.
2047 *
2048 * Register names understood are:
2049 *
2050 * R0
2051 * R1
2052 * R2
2053 * R3
2054 * R4
2055 * R5
2056 * R6
2057 * R7
2058 * R8
2059 * R9
2060 * R10
2061 * R11
2062 * R12 AP
2063 * R13 FP
2064 * R14 SP
2065 * R15 PC
2066 *
2067 */
2068
2069 #include <ctype.h>
2070 #define AP (12)
2071 #define FP (13)
2072 #define SP (14)
2073 #define PC (15)
2074 \f
2075 int /* return -1 or 0:15 */
2076 vax_reg_parse (c1, c2, c3) /* 3 chars of register name */
2077 char c1, c2, c3; /* c3 == 0 if 2-character reg name */
2078 {
2079 register int retval; /* return -1:15 */
2080
2081 retval = -1;
2082
2083 if (isupper (c1))
2084 c1 = tolower (c1);
2085 if (isupper (c2))
2086 c2 = tolower (c2);
2087 if (isdigit (c2) && c1 == 'r')
2088 {
2089 retval = c2 - '0';
2090 if (isdigit (c3))
2091 {
2092 retval = retval * 10 + c3 - '0';
2093 retval = (retval > 15) ? -1 : retval;
2094 /* clamp the register value to 1 hex digit */
2095 }
2096 else if (c3)
2097 retval = -1; /* c3 must be '\0' or a digit */
2098 }
2099 else if (c3) /* There are no three letter regs */
2100 retval = -1;
2101 else if (c2 == 'p')
2102 {
2103 switch (c1)
2104 {
2105 case 's':
2106 retval = SP;
2107 break;
2108 case 'f':
2109 retval = FP;
2110 break;
2111 case 'a':
2112 retval = AP;
2113 break;
2114 default:
2115 retval = -1;
2116 }
2117 }
2118 else if (c1 == 'p' && c2 == 'c')
2119 retval = PC;
2120 else
2121 retval = -1;
2122 return (retval);
2123 }
2124
2125 /*
2126 * v i p _ o p ( )
2127 *
2128 * Parse a vax operand in DEC assembler notation.
2129 * For speed, expect a string of whitespace to be reduced to a single ' '.
2130 * This is the case for GNU AS, and is easy for other DEC-compatible
2131 * assemblers.
2132 *
2133 * Knowledge about DEC VAX assembler operand notation lives here.
2134 * This doesn't even know what a register name is, except it believes
2135 * all register names are 2 or 3 characters, and lets vax_reg_parse() say
2136 * what number each name represents.
2137 * It does, however, know that PC, SP etc are special registers so it can
2138 * detect addressing modes that are silly for those registers.
2139 *
2140 * Where possible, it delivers 1 fatal or 1 warning message if the operand
2141 * is suspect. Exactly what we test for is still evolving.
2142 */
2143
2144 /*
2145 * B u g s
2146 *
2147 * Arg block.
2148 *
2149 * There were a number of 'mismatched argument type' bugs to vip_op.
2150 * The most general solution is to typedef each (of many) arguments.
2151 * We used instead a typedef'd argument block. This is less modular
2152 * than using seperate return pointers for each result, but runs faster
2153 * on most engines, and seems to keep programmers happy. It will have
2154 * to be done properly if we ever want to use vip_op as a general-purpose
2155 * module (it was designed to be).
2156 *
2157 * G^
2158 *
2159 * Doesn't support DEC "G^" format operands. These always take 5 bytes
2160 * to express, and code as modes 8F or 9F. Reason: "G^" deprives you of
2161 * optimising to (say) a "B^" if you are lucky in the way you link.
2162 * When someone builds a linker smart enough to convert "G^" to "B^", "W^"
2163 * whenever possible, then we should implement it.
2164 * If there is some other use for "G^", feel free to code it in!
2165 *
2166 *
2167 * speed
2168 *
2169 * If I nested if()s more, I could avoid testing (*err) which would save
2170 * time, space and page faults. I didn't nest all those if()s for clarity
2171 * and because I think the mode testing can be re-arranged 1st to test the
2172 * commoner constructs 1st. Does anybody have statistics on this?
2173 *
2174 *
2175 *
2176 * error messages
2177 *
2178 * In future, we should be able to 'compose' error messages in a scratch area
2179 * and give the user MUCH more informative error messages. Although this takes
2180 * a little more code at run-time, it will make this module much more self-
2181 * documenting. As an example of what sucks now: most error messages have
2182 * hardwired into them the DEC VAX metacharacters "#^@" which are nothing like
2183 * the Un*x characters "$`*", that most users will expect from this AS.
2184 */
2185 \f
2186 /*
2187 * The input is a string, ending with '\0'.
2188 *
2189 * We also require a 'hint' of what kind of operand is expected: so
2190 * we can remind caller not to write into literals for instance.
2191 *
2192 * The output is a skeletal instruction.
2193 *
2194 * The algorithm has two parts.
2195 * 1. extract the syntactic features (parse off all the @^#-()+[] mode crud);
2196 * 2. express the @^#-()+[] as some parameters suited to further analysis.
2197 *
2198 * 2nd step is where we detect the googles of possible invalid combinations
2199 * a human (or compiler) might write. Note that if we do a half-way
2200 * decent assembler, we don't know how long to make (eg) displacement
2201 * fields when we first meet them (because they may not have defined values).
2202 * So we must wait until we know how many bits are needed for each address,
2203 * then we can know both length and opcodes of instructions.
2204 * For reason(s) above, we will pass to our caller a 'broken' instruction
2205 * of these major components, from which our caller can generate instructions:
2206 * - displacement length I^ S^ L^ B^ W^ unspecified
2207 * - mode (many)
2208 * - register R0-R15 or absent
2209 * - index register R0-R15 or absent
2210 * - expression text what we don't parse
2211 * - error text(s) why we couldn't understand the operand
2212 */
2213
2214 /*
2215 * To decode output of this, test errtxt. If errtxt[0] == '\0', then
2216 * we had no errors that prevented parsing. Also, if we ever report
2217 * an internal bug, errtxt[0] is set non-zero. So one test tells you
2218 * if the other outputs are to be taken seriously.
2219 */
2220
2221
2222 /* vax registers we need to know */
2223 /* JF #define SP (14)
2224 /* JF for one big happy file #define PC (15) */
2225
2226 /* useful ideas */
2227 /* #define TRUE (1) */
2228 /* #define FALSE (0) */
2229 \f
2230 /*
2231 * Because this module is useful for both VMS and UN*X style assemblers
2232 * and because of the variety of UN*X assemblers we must recognise
2233 * the different conventions for assembler operand notation. For example
2234 * VMS says "#42" for immediate mode, while most UN*X say "$42".
2235 * We permit arbitrary sets of (single) characters to represent the
2236 * 3 concepts that DEC writes '#', '@', '^'.
2237 */
2238
2239 /* character tests */
2240 #define VIP_IMMEDIATE 01 /* Character is like DEC # */
2241 #define VIP_INDIRECT 02 /* Char is like DEC @ */
2242 #define VIP_DISPLEN 04 /* Char is like DEC ^ */
2243
2244 #define IMMEDIATEP(c) (vip_metacharacters [(c)&0xff]&VIP_IMMEDIATE)
2245 #define INDIRECTP(c) (vip_metacharacters [(c)&0xff]&VIP_INDIRECT)
2246 #define DISPLENP(c) (vip_metacharacters [(c)&0xff]&VIP_DISPLEN)
2247
2248 /* We assume 8 bits per byte. Use vip_op_defaults() to set these up BEFORE we
2249 * are ever called.
2250 */
2251
2252 #if defined(CONST_TABLE)
2253 #define _ 0,
2254 #define I VIP_IMMEDIATE,
2255 #define S VIP_INDIRECT,
2256 #define D VIP_DISPLEN,
2257 static const char
2258 vip_metacharacters[256] = {
2259 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _/*^@ ^A ^B ^C ^D ^E ^F ^G ^H ^I ^J ^K ^L ^M ^N ^O*/
2260 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _/*^P ^Q ^R ^S ^T ^U ^V ^W ^X ^Y ^Z ^[ ^\ ^] ^^ ^_*/
2261 _ _ _ _ I _ _ _ _ _ S _ _ _ _ _/*sp ! " # $ % & ' ( ) * + , - . /*/
2262 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _/*0 1 2 3 4 5 6 7 8 9 : ; < = > ?*/
2263 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _/*@ A B C D E F G H I J K L M N O*/
2264 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _/*P Q R S T U V W X Y Z [ \ ] ^ _*/
2265 D _ _ _ _ _ _ _ _ _ _ _ _ _ _ _/*` a b c d e f g h i j k l m n o*/
2266 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _/*p q r s t u v w x y z { | } ~ ^?*/
2267
2268 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
2269 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
2270 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
2271 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
2272 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
2273 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
2274 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
2275 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
2276 };
2277 #undef _
2278 #undef I
2279 #undef S
2280 #undef D
2281 #else
2282 static char vip_metacharacters[256];
2283
2284 /* Macro is faster under GCC; The constant table is faster yet, but only works with ASCII */
2285 #if 0
2286 static
2287 #ifdef __GNUC__
2288 inline
2289 #endif
2290 static void
2291 vip_op_1(bit,syms)
2292 int bit;
2293 char *syms;
2294 {
2295 unsigned char t;
2296
2297 while(t= *syms++)
2298 vip_metacharacters[t]|=bit;
2299 }
2300 #else
2301 #define vip_op_1(bit,syms) { \
2302 unsigned char t; \
2303 char *table=vip_metacharacters; \
2304 while(t= *syms++) \
2305 table[t]|=bit; \
2306 }
2307 #endif
2308
2309 vip_op_defaults (immediate, indirect, displen) /* can be called any time */
2310 char *immediate, /* Strings of characters for each job. */
2311 *indirect, *displen; /* more arguments may appear in future! */
2312 {
2313 vip_op_1 (VIP_IMMEDIATE, immediate);
2314 vip_op_1 (VIP_INDIRECT, indirect);
2315 vip_op_1 (VIP_DISPLEN, displen);
2316 }
2317 #endif
2318
2319 \f
2320 /*
2321 * Dec defines the semantics of address modes (and values)
2322 * by a two-letter code, explained here.
2323 *
2324 * letter 1: access type
2325 *
2326 * a address calculation - no data access, registers forbidden
2327 * b branch displacement
2328 * m read - let go of bus - write back "modify"
2329 * r read
2330 * v bit field address: like 'a' but registers are OK
2331 * w write
2332 * space no operator (eg ".long foo") [our convention]
2333 *
2334 * letter 2: data type (i.e. width, alignment)
2335 *
2336 * b byte
2337 * d double precision floating point (D format)
2338 * f single precision floating point (F format)
2339 * g G format floating
2340 * h H format floating
2341 * l longword
2342 * o octaword
2343 * q quadword
2344 * w word
2345 * ? simple synthetic branch operand
2346 * - unconditional synthetic JSB/JSR operand
2347 * ! complex synthetic branch operand
2348 *
2349 * The '-?!' letter 2's are not for external consumption. They are used
2350 * for various assemblers. Generally, all unknown widths are assumed 0.
2351 * We don't limit your choice of width character.
2352 *
2353 * DEC operands are hard work to parse. For example, '@' as the first
2354 * character means indirect (deferred) mode but elswhere it is a shift
2355 * operator.
2356 * The long-winded explanation of how this is supposed to work is
2357 * cancelled. Read a DEC vax manual.
2358 * We try hard not to parse anything that MIGHT be part of the expression
2359 * buried in that syntax. For example if we see @...(Rn) we don't check
2360 * for '-' before the '(' because mode @-(Rn) does not exist.
2361 *
2362 * After parsing we have:
2363 *
2364 * at TRUE if leading '@' (or Un*x '*')
2365 * len takes one value from " bilsw". eg B^ -> 'b'.
2366 * hash TRUE if leading '#' (or Un*x '$')
2367 * expr_begin, expr_end the expression we did not parse
2368 * even though we don't interpret it, we make use
2369 * of its presence or absence.
2370 * sign -1: -(Rn) 0: absent +1: (Rn)+
2371 * paren TRUE if () are around register
2372 * reg major register number 0:15 -1 means absent
2373 * ndx index register number 0:15 -1 means absent
2374 *
2375 * Again, I dare not explain it: just trace ALL the code!
2376 */
2377 \f
2378 char * /* (code here) bug message, "" = OK */
2379 /* our code bug, NOT bad assembly language */
2380 vip_op (optext, vopP)
2381 char *optext; /* user's input string e.g.: */
2382 /* "@B^foo@bar(AP)[FP]:" */
2383 struct vop *vopP; /* In: vop_access, vop_width. */
2384 /* Out: _ndx, _reg, _mode, _short, _warn, */
2385 /* _error _expr_begin, _expr_end, _nbytes. */
2386 /* vop_nbytes : number of bytes in a datum. */
2387 {
2388 char *p; /* track operand text forward */
2389 char *q; /* track operand text backward */
2390 int at; /* TRUE if leading '@' ('*') seen */
2391 char len; /* one of " bilsw" */
2392 int hash; /* TRUE if leading '#' ('$') seen */
2393 int sign; /* -1, 0 or +1 */
2394 int paren; /* TRUE if () surround register */
2395 int reg; /* register number, -1:absent */
2396 int ndx; /* index register number -1:absent */
2397 char *bug; /* report any logic error in here, ""==OK */
2398 char *err; /* report illegal operand, ""==OK */
2399 /* " " is a FAKE error: means we won */
2400 /* ANY err that begins with ' ' is a fake. */
2401 /* " " is converted to "" before return */
2402 char *wrn; /* warn about weird modes pf address */
2403 char *oldq; /* preserve q in case we backup */
2404 int mode; /* build up 4-bit operand mode here */
2405 /* note: index mode is in ndx, this is */
2406 /* the major mode of operand address */
2407 /*
2408 * Notice how we move wrong-arg-type bugs INSIDE this module: if we
2409 * get the types wrong below, we lose at compile time rather than at
2410 * lint or run time.
2411 */
2412 char access; /* vop_access. */
2413 char width; /* vop_width. */
2414
2415 int vax_reg_parse (); /* returns 0:15 or -1 if not a register */
2416
2417 access = vopP->vop_access;
2418 width = vopP->vop_width;
2419 bug = /* none of our code bugs (yet) */
2420 err = /* no user text errors */
2421 wrn = ""; /* no warnings even */
2422
2423 p = optext;
2424
2425 if (*p == ' ') /* Expect all whitespace reduced to ' '. */
2426 p++; /* skip over whitespace */
2427
2428 if (at = INDIRECTP (*p))
2429 { /* TRUE if *p=='@'(or '*' for Un*x) */
2430 p++; /* at is determined */
2431 if (*p == ' ') /* Expect all whitespace reduced to ' '. */
2432 p++; /* skip over whitespace */
2433 }
2434
2435 /*
2436 * This code is subtle. It tries to detect all legal (letter)'^'
2437 * but it doesn't waste time explicitly testing for premature '\0' because
2438 * this case is rejected as a mismatch against either (letter) or '^'.
2439 */
2440 {
2441 register char c;
2442
2443 c = *p;
2444 if (isupper (c))
2445 c = tolower (c);
2446 if (DISPLENP (p[1]) && strchr ("bilws", len = c))
2447 p += 2; /* skip (letter) '^' */
2448 else /* no (letter) '^' seen */
2449 len = ' '; /* len is determined */
2450 }
2451
2452 if (*p == ' ') /* Expect all whitespace reduced to ' '. */
2453 p++; /* skip over whitespace */
2454
2455 if (hash = IMMEDIATEP (*p)) /* TRUE if *p=='#' ('$' for Un*x) */
2456 p++; /* hash is determined */
2457
2458 /*
2459 * p points to what may be the beginning of an expression.
2460 * We have peeled off the front all that is peelable.
2461 * We know at, len, hash.
2462 *
2463 * Lets point q at the end of the text and parse that (backwards).
2464 */
2465
2466 for (q = p; *q; q++)
2467 ;
2468 q--; /* now q points at last char of text */
2469 \f
2470 if (*q == ' ' && q >= p) /* Expect all whitespace reduced to ' '. */
2471 q--;
2472 /* reverse over whitespace, but don't */
2473 /* run back over *p */
2474
2475 /*
2476 * As a matter of policy here, we look for [Rn], although both Rn and S^#
2477 * forbid [Rn]. This is because it is easy, and because only a sick
2478 * cyborg would have [...] trailing an expression in a VAX-like assembler.
2479 * A meticulous parser would first check for Rn followed by '(' or '['
2480 * and not parse a trailing ']' if it found another. We just ban expressions
2481 * ending in ']'.
2482 */
2483 if (*q == ']')
2484 {
2485 while (q >= p && *q != '[')
2486 q--;
2487 /* either q<p or we got matching '[' */
2488 if (q < p)
2489 err = "no '[' to match ']'";
2490 else
2491 {
2492 /*
2493 * Confusers like "[]" will eventually lose with a bad register
2494 * name error. So again we don't need to check for early '\0'.
2495 */
2496 if (q[3] == ']')
2497 ndx = vax_reg_parse (q[1], q[2], 0);
2498 else if (q[4] == ']')
2499 ndx = vax_reg_parse (q[1], q[2], q[3]);
2500 else
2501 ndx = -1;
2502 /*
2503 * Since we saw a ']' we will demand a register name in the [].
2504 * If luser hasn't given us one: be rude.
2505 */
2506 if (ndx < 0)
2507 err = "bad register in []";
2508 else if (ndx == PC)
2509 err = "[PC] index banned";
2510 else
2511 q--; /* point q just before "[...]" */
2512 }
2513 }
2514 else
2515 ndx = -1; /* no ']', so no iNDeX register */
2516
2517 /*
2518 * If err = "..." then we lost: run away.
2519 * Otherwise ndx == -1 if there was no "[...]".
2520 * Otherwise, ndx is index register number, and q points before "[...]".
2521 */
2522 \f
2523 if (*q == ' ' && q >= p) /* Expect all whitespace reduced to ' '. */
2524 q--;
2525 /* reverse over whitespace, but don't */
2526 /* run back over *p */
2527 if (!*err)
2528 {
2529 sign = 0; /* no ()+ or -() seen yet */
2530
2531 if (q > p + 3 && *q == '+' && q[-1] == ')')
2532 {
2533 sign = 1; /* we saw a ")+" */
2534 q--; /* q points to ')' */
2535 }
2536
2537 if (*q == ')' && q > p + 2)
2538 {
2539 paren = TRUE; /* assume we have "(...)" */
2540 while (q >= p && *q != '(')
2541 q--;
2542 /* either q<p or we got matching '(' */
2543 if (q < p)
2544 err = "no '(' to match ')'";
2545 else
2546 {
2547 /*
2548 * Confusers like "()" will eventually lose with a bad register
2549 * name error. So again we don't need to check for early '\0'.
2550 */
2551 if (q[3] == ')')
2552 reg = vax_reg_parse (q[1], q[2], 0);
2553 else if (q[4] == ')')
2554 reg = vax_reg_parse (q[1], q[2], q[3]);
2555 else
2556 reg = -1;
2557 /*
2558 * Since we saw a ')' we will demand a register name in the ')'.
2559 * This is nasty: why can't our hypothetical assembler permit
2560 * parenthesised expressions? BECAUSE I AM LAZY! That is why.
2561 * Abuse luser if we didn't spy a register name.
2562 */
2563 if (reg < 0)
2564 {
2565 /* JF allow parenthasized expressions. I hope this works */
2566 paren = FALSE;
2567 while (*q != ')')
2568 q++;
2569 /* err = "unknown register in ()"; */
2570 }
2571 else
2572 q--; /* point just before '(' of "(...)" */
2573 /*
2574 * If err == "..." then we lost. Run away.
2575 * Otherwise if reg >= 0 then we saw (Rn).
2576 */
2577 }
2578 /*
2579 * If err == "..." then we lost.
2580 * Otherwise paren==TRUE and reg = register in "()".
2581 */
2582 }
2583 else
2584 paren = FALSE;
2585 /*
2586 * If err == "..." then we lost.
2587 * Otherwise, q points just before "(Rn)", if any.
2588 * If there was a "(...)" then paren==TRUE, and reg is the register.
2589 */
2590 \f
2591 /*
2592 * We should only seek '-' of "-(...)" if:
2593 * we saw "(...)" paren == TRUE
2594 * we have no errors so far ! *err
2595 * we did not see '+' of "(...)+" sign < 1
2596 * We don't check len. We want a specific error message later if
2597 * user tries "x^...-(Rn)". This is a feature not a bug.
2598 */
2599 if (!*err)
2600 {
2601 if (paren && sign < 1)/* !sign is adequate test */
2602 {
2603 if (*q == '-')
2604 {
2605 sign = -1;
2606 q--;
2607 }
2608 }
2609 /*
2610 * We have back-tracked over most
2611 * of the crud at the end of an operand.
2612 * Unless err, we know: sign, paren. If paren, we know reg.
2613 * The last case is of an expression "Rn".
2614 * This is worth hunting for if !err, !paren.
2615 * We wouldn't be here if err.
2616 * We remember to save q, in case we didn't want "Rn" anyway.
2617 */
2618 if (!paren)
2619 {
2620 if (*q == ' ' && q >= p) /* Expect all whitespace reduced to ' '. */
2621 q--;
2622 /* reverse over whitespace, but don't */
2623 /* run back over *p */
2624 if (q > p && q < p + 3) /* room for Rn or Rnn exactly? */
2625 reg = vax_reg_parse (p[0], p[1], q < p + 2 ? 0 : p[2]);
2626 else
2627 reg = -1; /* always comes here if no register at all */
2628 /*
2629 * Here with a definitive reg value.
2630 */
2631 if (reg >= 0)
2632 {
2633 oldq = q;
2634 q = p - 1;
2635 }
2636 }
2637 }
2638 }
2639 /*
2640 * have reg. -1:absent; else 0:15
2641 */
2642
2643 /*
2644 * We have: err, at, len, hash, ndx, sign, paren, reg.
2645 * Also, any remaining expression is from *p through *q inclusive.
2646 * Should there be no expression, q==p-1. So expression length = q-p+1.
2647 * This completes the first part: parsing the operand text.
2648 */
2649 \f
2650 /*
2651 * We now want to boil the data down, checking consistency on the way.
2652 * We want: len, mode, reg, ndx, err, p, q, wrn, bug.
2653 * We will deliver a 4-bit reg, and a 4-bit mode.
2654 */
2655
2656 /*
2657 * Case of branch operand. Different. No L^B^W^I^S^ allowed for instance.
2658 *
2659 * in: at ?
2660 * len ?
2661 * hash ?
2662 * p:q ?
2663 * sign ?
2664 * paren ?
2665 * reg ?
2666 * ndx ?
2667 *
2668 * out: mode 0
2669 * reg -1
2670 * len ' '
2671 * p:q whatever was input
2672 * ndx -1
2673 * err " " or error message, and other outputs trashed
2674 */
2675 /* branch operands have restricted forms */
2676 if (!*err && access == 'b')
2677 {
2678 if (at || hash || sign || paren || ndx >= 0 || reg >= 0 || len != ' ')
2679 err = "invalid branch operand";
2680 else
2681 err = " ";
2682 }
2683 \f
2684 /* Since nobody seems to use it: comment this 'feature'(?) out for now. */
2685 #ifdef NEVER
2686 /*
2687 * Case of stand-alone operand. e.g. ".long foo"
2688 *
2689 * in: at ?
2690 * len ?
2691 * hash ?
2692 * p:q ?
2693 * sign ?
2694 * paren ?
2695 * reg ?
2696 * ndx ?
2697 *
2698 * out: mode 0
2699 * reg -1
2700 * len ' '
2701 * p:q whatever was input
2702 * ndx -1
2703 * err " " or error message, and other outputs trashed
2704 */
2705 if (!*err)
2706 {
2707 if (access == ' ')
2708 { /* addresses have restricted forms */
2709 if (at)
2710 err = "address prohibits @";
2711 else
2712 {
2713 if (hash)
2714 err = "address prohibits #";
2715 else
2716 {
2717 if (sign)
2718 {
2719 if (sign < 0)
2720 err = "address prohibits -()";
2721 else
2722 err = "address prohibits ()+";
2723 }
2724 else
2725 {
2726 if (paren)
2727 err = "address prohibits ()";
2728 else
2729 {
2730 if (ndx >= 0)
2731 err = "address prohibits []";
2732 else
2733 {
2734 if (reg >= 0)
2735 err = "address prohibits register";
2736 else
2737 {
2738 if (len != ' ')
2739 err = "address prohibits displacement length specifier";
2740 else
2741 {
2742 err = " "; /* succeed */
2743 mode = 0;
2744 }
2745 }
2746 }
2747 }
2748 }
2749 }
2750 }
2751 }
2752 }
2753 #endif /*#Ifdef NEVER*/
2754 \f
2755 /*
2756 * Case of S^#.
2757 *
2758 * in: at FALSE
2759 * len 's' definition
2760 * hash TRUE demand
2761 * p:q demand not empty
2762 * sign 0 by paren==FALSE
2763 * paren FALSE by "()" scan logic because "S^" seen
2764 * reg -1 or nn by mistake
2765 * ndx -1
2766 *
2767 * out: mode 0
2768 * reg -1
2769 * len 's'
2770 * exp
2771 * ndx -1
2772 */
2773 if (!*err && len == 's')
2774 {
2775 if (!hash || paren || at || ndx >= 0)
2776 err = "invalid operand of S^#";
2777 else
2778 {
2779 if (reg >= 0)
2780 {
2781 /*
2782 * SHIT! we saw S^#Rnn ! put the Rnn back in
2783 * expression. KLUDGE! Use oldq so we don't
2784 * need to know exact length of reg name.
2785 */
2786 q = oldq;
2787 reg = 0;
2788 }
2789 /*
2790 * We have all the expression we will ever get.
2791 */
2792 if (p > q)
2793 err = "S^# needs expression";
2794 else if (access == 'r')
2795 {
2796 err = " "; /* WIN! */
2797 mode = 0;
2798 }
2799 else
2800 err = "S^# may only read-access";
2801 }
2802 }
2803 \f
2804 /*
2805 * Case of -(Rn), which is weird case.
2806 *
2807 * in: at FALSE
2808 * len '
2809 * hash FALSE
2810 * p:q q<p
2811 * sign -1 by definition
2812 * paren TRUE by definition
2813 * reg present by definition
2814 * ndx optional
2815 *
2816 * out: mode 7
2817 * reg present
2818 * len ' '
2819 * exp "" enforce empty expression
2820 * ndx optional warn if same as reg
2821 */
2822 if (!*err && sign < 0)
2823 {
2824 if (len != ' ' || hash || at || p <= q)
2825 err = "invalid operand of -()";
2826 else
2827 {
2828 err = " "; /* win */
2829 mode = 7;
2830 if (reg == PC)
2831 wrn = "-(PC) unpredictable";
2832 else if (reg == ndx)
2833 wrn = "[]index same as -()register: unpredictable";
2834 }
2835 }
2836 \f
2837 /*
2838 * We convert "(Rn)" to "@Rn" for our convenience.
2839 * (I hope this is convenient: has someone got a better way to parse this?)
2840 * A side-effect of this is that "@Rn" is a valid operand.
2841 */
2842 if (paren && !sign && !hash && !at && len == ' ' && p > q)
2843 {
2844 at = TRUE;
2845 paren = FALSE;
2846 }
2847
2848 /*
2849 * Case of (Rn)+, which is slightly different.
2850 *
2851 * in: at
2852 * len ' '
2853 * hash FALSE
2854 * p:q q<p
2855 * sign +1 by definition
2856 * paren TRUE by definition
2857 * reg present by definition
2858 * ndx optional
2859 *
2860 * out: mode 8+@
2861 * reg present
2862 * len ' '
2863 * exp "" enforce empty expression
2864 * ndx optional warn if same as reg
2865 */
2866 if (!*err && sign > 0)
2867 {
2868 if (len != ' ' || hash || p <= q)
2869 err = "invalid operand of ()+";
2870 else
2871 {
2872 err = " "; /* win */
2873 mode = 8 + (at ? 1 : 0);
2874 if (reg == PC)
2875 wrn = "(PC)+ unpredictable";
2876 else if (reg == ndx)
2877 wrn = "[]index same as ()+register: unpredictable";
2878 }
2879 }
2880 \f
2881 /*
2882 * Case of #, without S^.
2883 *
2884 * in: at
2885 * len ' ' or 'i'
2886 * hash TRUE by definition
2887 * p:q
2888 * sign 0
2889 * paren FALSE
2890 * reg absent
2891 * ndx optional
2892 *
2893 * out: mode 8+@
2894 * reg PC
2895 * len ' ' or 'i'
2896 * exp
2897 * ndx optional
2898 */
2899 if (!*err && hash)
2900 {
2901 if (len != 'i' && len != ' ')
2902 err = "# conflicts length";
2903 else if (paren)
2904 err = "# bars register";
2905 else
2906 {
2907 if (reg >= 0)
2908 {
2909 /*
2910 * SHIT! we saw #Rnn! Put the Rnn back into the expression.
2911 * By using oldq, we don't need to know how long Rnn was.
2912 * KLUDGE!
2913 */
2914 q = oldq;
2915 reg = -1; /* no register any more */
2916 }
2917 err = " "; /* win */
2918
2919 /* JF a bugfix, I think! */
2920 if(at && access=='a')
2921 vopP->vop_nbytes=4;
2922
2923 mode = (at ? 9 : 8);
2924 reg = PC;
2925 if ((access == 'm' || access == 'w') && !at)
2926 wrn = "writing or modifying # is unpredictable";
2927 }
2928 }
2929 /*
2930 * If !*err, then sign == 0
2931 * hash == FALSE
2932 */
2933 \f
2934 /*
2935 * Case of Rn. We seperate this one because it has a few special
2936 * errors the remaining modes lack.
2937 *
2938 * in: at optional
2939 * len ' '
2940 * hash FALSE by program logic
2941 * p:q empty
2942 * sign 0 by program logic
2943 * paren FALSE by definition
2944 * reg present by definition
2945 * ndx optional
2946 *
2947 * out: mode 5+@
2948 * reg present
2949 * len ' ' enforce no length
2950 * exp "" enforce empty expression
2951 * ndx optional warn if same as reg
2952 */
2953 if (!*err && !paren && reg >= 0)
2954 {
2955 if (len != ' ')
2956 err = "length not needed";
2957 else if (at)
2958 {
2959 err = " "; /* win */
2960 mode = 6; /* @Rn */
2961 }
2962 else if (ndx >= 0)
2963 err = "can't []index a register, because it has no address";
2964 else if (access == 'a')
2965 err = "a register has no address";
2966 else
2967 {
2968 /*
2969 * Idea here is to detect from length of datum
2970 * and from register number if we will touch PC.
2971 * Warn if we do.
2972 * vop_nbytes is number of bytes in operand.
2973 * Compute highest byte affected, compare to PC0.
2974 */
2975 if ((vopP->vop_nbytes + reg * 4) > 60)
2976 wrn = "PC part of operand unpredictable";
2977 err = " "; /* win */
2978 mode = 5; /* Rn */
2979 }
2980 }
2981 /*
2982 * If !*err, sign == 0
2983 * hash == FALSE
2984 * paren == TRUE OR reg==-1
2985 */
2986 \f
2987 /*
2988 * Rest of cases fit into one bunch.
2989 *
2990 * in: at optional
2991 * len ' ' or 'b' or 'w' or 'l'
2992 * hash FALSE by program logic
2993 * p:q expected (empty is not an error)
2994 * sign 0 by program logic
2995 * paren optional
2996 * reg optional
2997 * ndx optional
2998 *
2999 * out: mode 10 + @ + len
3000 * reg optional
3001 * len ' ' or 'b' or 'w' or 'l'
3002 * exp maybe empty
3003 * ndx optional warn if same as reg
3004 */
3005 if (!*err)
3006 {
3007 err = " "; /* win (always) */
3008 mode = 10 + (at ? 1 : 0);
3009 switch (len)
3010 {
3011 case 'l':
3012 mode += 2;
3013 case 'w':
3014 mode += 2;
3015 case ' ': /* assumed B^ until our caller changes it */
3016 case 'b':
3017 break;
3018 }
3019 }
3020
3021 /*
3022 * here with completely specified mode
3023 * len
3024 * reg
3025 * expression p,q
3026 * ndx
3027 */
3028
3029 if (*err == ' ')
3030 err = ""; /* " " is no longer an error */
3031
3032 vopP->vop_mode = mode;
3033 vopP->vop_reg = reg;
3034 vopP->vop_short = len;
3035 vopP->vop_expr_begin = p;
3036 vopP->vop_expr_end = q;
3037 vopP->vop_ndx = ndx;
3038 vopP->vop_error = err;
3039 vopP->vop_warn = wrn;
3040 return (bug);
3041
3042 } /* vip_op() */
3043 \f
3044 /*
3045
3046 Summary of vip_op outputs.
3047
3048 mode reg len ndx
3049 (Rn) => @Rn
3050 {@}Rn 5+@ n ' ' optional
3051 branch operand 0 -1 ' ' -1
3052 S^#foo 0 -1 's' -1
3053 -(Rn) 7 n ' ' optional
3054 {@}(Rn)+ 8+@ n ' ' optional
3055 {@}#foo, no S^ 8+@ PC " i" optional
3056 {@}{q^}{(Rn)} 10+@+q option " bwl" optional
3057
3058 */
3059 \f
3060 #ifdef TEST /* #Define to use this testbed. */
3061
3062 /*
3063 * Follows a test program for this function.
3064 * We declare arrays non-local in case some of our tiny-minded machines
3065 * default to small stacks. Also, helps with some debuggers.
3066 */
3067
3068 #include <stdio.h>
3069
3070 char answer[100]; /* human types into here */
3071 char *p; /* */
3072 char *myerr;
3073 char *mywrn;
3074 char *mybug;
3075 char myaccess;
3076 char mywidth;
3077 char mymode;
3078 char myreg;
3079 char mylen;
3080 char *myleft;
3081 char *myright;
3082 char myndx;
3083 int my_operand_length;
3084 char my_immediate[200];
3085 char my_indirect[200];
3086 char my_displen[200];
3087
3088 main ()
3089 {
3090 char *vip_op (); /* make cc happy */
3091
3092 printf ("enter immediate symbols eg enter # ");
3093 gets (my_immediate);
3094 printf ("enter indirect symbols eg enter @ ");
3095 gets (my_indirect);
3096 printf ("enter displen symbols eg enter ^ ");
3097 gets (my_displen);
3098 vip_op_defaults (my_immediate, my_indirect, my_displen);
3099 for (;;)
3100 {
3101 printf ("access,width (eg 'ab' or 'wh') [empty line to quit] : ");
3102 fflush (stdout);
3103 gets (answer);
3104 if (!answer[0])
3105 exit (0);
3106 myaccess = answer[0];
3107 mywidth = answer[1];
3108 switch (mywidth)
3109 {
3110 case 'b':
3111 my_operand_length = 1;
3112 break;
3113 case 'd':
3114 my_operand_length = 8;
3115 break;
3116 case 'f':
3117 my_operand_length = 4;
3118 break;
3119 case 'g':
3120 my_operand_length = 16;
3121 break;
3122 case 'h':
3123 my_operand_length = 32;
3124 break;
3125 case 'l':
3126 my_operand_length = 4;
3127 break;
3128 case 'o':
3129 my_operand_length = 16;
3130 break;
3131 case 'q':
3132 my_operand_length = 8;
3133 break;
3134 case 'w':
3135 my_operand_length = 2;
3136 break;
3137 case '!':
3138 case '?':
3139 case '-':
3140 my_operand_length = 0;
3141 break;
3142
3143 default:
3144 my_operand_length = 2;
3145 printf ("I dn't understand access width %c\n", mywidth);
3146 break;
3147 }
3148 printf ("VAX assembler instruction operand: ");
3149 fflush (stdout);
3150 gets (answer);
3151 mybug = vip_op (answer, myaccess, mywidth, my_operand_length,
3152 &mymode, &myreg, &mylen, &myleft, &myright, &myndx,
3153 &myerr, &mywrn);
3154 if (*myerr)
3155 {
3156 printf ("error: \"%s\"\n", myerr);
3157 if (*mybug)
3158 printf (" bug: \"%s\"\n", mybug);
3159 }
3160 else
3161 {
3162 if (*mywrn)
3163 printf ("warning: \"%s\"\n", mywrn);
3164 mumble ("mode", mymode);
3165 mumble ("register", myreg);
3166 mumble ("index", myndx);
3167 printf ("width:'%c' ", mylen);
3168 printf ("expression: \"");
3169 while (myleft <= myright)
3170 putchar (*myleft++);
3171 printf ("\"\n");
3172 }
3173 }
3174 }
3175
3176 mumble (text, value)
3177 char *text;
3178 int value;
3179 {
3180 printf ("%s:", text);
3181 if (value >= 0)
3182 printf ("%xx", value);
3183 else
3184 printf ("ABSENT");
3185 printf (" ");
3186 }
3187
3188 #endif /* ifdef TEST */
3189
3190 /* end: vip_op.c */
3191
3192 const int md_short_jump_size = 3;
3193 const int md_long_jump_size = 6;
3194 const int md_reloc_size = 8; /* Size of relocation record */
3195
3196 void
3197 md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
3198 char *ptr;
3199 long from_addr, to_addr;
3200 fragS *frag;
3201 symbolS *to_symbol;
3202 {
3203 long offset;
3204
3205 offset = to_addr - (from_addr + 1);
3206 *ptr++ = 0x31;
3207 md_number_to_chars (ptr, offset, 2);
3208 }
3209
3210 void
3211 md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
3212 char *ptr;
3213 long from_addr, to_addr;
3214 fragS *frag;
3215 symbolS *to_symbol;
3216 {
3217 long offset;
3218
3219 offset = to_addr - to_symbol->sy_value;
3220 *ptr++ = 0x17;
3221 *ptr++ = 0x9F;
3222 md_number_to_chars (ptr, offset, 4);
3223 fix_new (frag, ptr - frag->fr_literal, 4, to_symbol, (symbolS *) 0, (long) 0, 0);
3224 }
3225
3226 int
3227 md_parse_option (argP, cntP, vecP)
3228 char **argP;
3229 int *cntP;
3230 char ***vecP;
3231 {
3232 char *temp_name; /* name for -t or -d options */
3233 char opt;
3234
3235 switch (**argP)
3236 {
3237 case 'J':
3238 /* as_warn ("I can do better than -J!"); */
3239 break;
3240
3241 case 'S':
3242 as_warn ("SYMBOL TABLE not implemented");
3243 break; /* SYMBOL TABLE not implemented */
3244
3245 case 'T':
3246 as_warn ("TOKEN TRACE not implemented");
3247 break; /* TOKEN TRACE not implemented */
3248
3249 case 'd':
3250 case 't':
3251 opt= **argP;
3252 if (**argP)
3253 { /* Rest of argument is filename. */
3254 temp_name = *argP;
3255 while (**argP)
3256 (*argP)++;
3257 }
3258 else if (*cntP)
3259 {
3260 while (**argP)
3261 (*argP)++;
3262 --(*cntP);
3263 temp_name = *++(*vecP);
3264 **vecP = NULL; /* Remember this is not a file-name. */
3265 }
3266 else
3267 {
3268 as_warn ("I expected a filename after -%c.",opt);
3269 temp_name = "{absent}";
3270 }
3271
3272 if(opt=='d')
3273 as_warn ("Displacement length %s ignored!", temp_name);
3274 else
3275 as_warn ("I don't need or use temp. file \"%s\".", temp_name);
3276 break;
3277
3278 case 'V':
3279 as_warn ("I don't use an interpass file! -V ignored");
3280 break;
3281
3282 #ifdef VMS
3283 case '+': /* For g++ */
3284 break;
3285
3286 case 'h': /* No hashing of mixed-case names */
3287 break;
3288
3289 case 'H': /* Show new symbol after hash truncation */
3290 break;
3291 #endif
3292
3293 default:
3294 return 0;
3295
3296 }
3297 return 1;
3298 }
3299
3300 /* We have no need to default values of symbols. */
3301
3302 /* ARGSUSED */
3303 symbolS *
3304 md_undefined_symbol (name)
3305 char *name;
3306 {
3307 return 0;
3308 }
3309
3310 /* Parse an operand that is machine-specific.
3311 We just return without modifying the expression if we have nothing
3312 to do. */
3313
3314 /* ARGSUSED */
3315 void
3316 md_operand (expressionP)
3317 expressionS *expressionP;
3318 {
3319 }
3320
3321 /* Round up a section size to the appropriate boundary. */
3322 long
3323 md_section_align (segment, size)
3324 segT segment;
3325 long size;
3326 {
3327 return size; /* Byte alignment is fine */
3328 }
3329
3330 /* Exactly what point is a PC-relative offset relative TO?
3331 On the vax, they're relative to the address of the offset, plus
3332 its size. (??? Is this right? FIXME-SOON) */
3333 long
3334 md_pcrel_from (fixP)
3335 fixS *fixP;
3336 {
3337 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
3338 }
This page took 0.100366 seconds and 5 git commands to generate.