* as.h: Replace flagseen with separate variables.
[deliverable/binutils-gdb.git] / gas / config / tc-vax.c
1 /* tc-vax.c - vax-specific -
2 Copyright (C) 1987, 1991, 1992 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 #include "as.h"
21
22 #include "vax-inst.h"
23 #include "obstack.h" /* For FRAG_APPEND_1_CHAR macro in "frags.h" */
24
25 /* These chars start a comment anywhere in a source file (except inside
26 another comment */
27 const char comment_chars[] = "#";
28
29 /* These chars only start a comment at the beginning of a line. */
30 /* Note that for the VAX the are the same as comment_chars above. */
31 const char line_comment_chars[] = "#";
32
33 const char line_separator_chars[] = "";
34
35 /* Chars that can be used to separate mant from exp in floating point nums */
36 const char EXP_CHARS[] = "eE";
37
38 /* Chars that mean this number is a floating point constant */
39 /* as in 0f123.456 */
40 /* or 0H1.234E-12 (see exp chars above) */
41 const char FLT_CHARS[] = "dDfFgGhH";
42
43 /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
44 changed in read.c . Ideally it shouldn't have to know about it at all,
45 but nothing is ideal around here. */
46
47 /* Hold details of an operand expression */
48 static expressionS exp_of_operand[VIT_MAX_OPERANDS];
49 static segT seg_of_operand[VIT_MAX_OPERANDS];
50
51 /* A vax instruction after decoding. */
52 static struct vit v;
53
54 /* Hold details of big operands. */
55 LITTLENUM_TYPE big_operand_bits[VIT_MAX_OPERANDS][SIZE_OF_LARGE_NUMBER];
56 FLONUM_TYPE float_operand[VIT_MAX_OPERANDS];
57 /* Above is made to point into big_operand_bits by md_begin(). */
58
59 int flag_hash_long_names; /* -+ */
60 int flag_one; /* -1 */
61 int flag_show_after_trunc; /* -H */
62 int flag_no_hash_mixed_case; /* -h NUM */
63 \f
64 /*
65 * For VAX, relative addresses of "just the right length" are easy.
66 * The branch displacement is always the last operand, even in
67 * synthetic instructions.
68 * For VAX, we encode the relax_substateTs (in e.g. fr_substate) as:
69 *
70 * 4 3 2 1 0 bit number
71 * ---/ /--+-------+-------+-------+-------+-------+
72 * | what state ? | how long ? |
73 * ---/ /--+-------+-------+-------+-------+-------+
74 *
75 * The "how long" bits are 00=byte, 01=word, 10=long.
76 * This is a Un*x convention.
77 * Not all lengths are legit for a given value of (what state).
78 * The "how long" refers merely to the displacement length.
79 * The address usually has some constant bytes in it as well.
80 *
81
82 groups for VAX address relaxing.
83
84 1. "foo" pc-relative.
85 length of byte, word, long
86
87 2a. J<cond> where <cond> is a simple flag test.
88 length of byte, word, long.
89 VAX opcodes are: (Hex)
90 bneq/bnequ 12
91 beql/beqlu 13
92 bgtr 14
93 bleq 15
94 bgeq 18
95 blss 19
96 bgtru 1a
97 blequ 1b
98 bvc 1c
99 bvs 1d
100 bgequ/bcc 1e
101 blssu/bcs 1f
102 Always, you complement 0th bit to reverse condition.
103 Always, 1-byte opcode, then 1-byte displacement.
104
105 2b. J<cond> where cond tests a memory bit.
106 length of byte, word, long.
107 Vax opcodes are: (Hex)
108 bbs e0
109 bbc e1
110 bbss e2
111 bbcs e3
112 bbsc e4
113 bbcc e5
114 bbssi e6
115 bbcci e7
116 Always, you complement 0th bit to reverse condition.
117 Always, 1-byte opcde, longword-address, byte-address, 1-byte-displacement
118
119 2c. J<cond> where cond tests low-order memory bit
120 length of byte,word,long.
121 Vax opcodes are: (Hex)
122 blbs e8
123 blbc e9
124 Always, you complement 0th bit to reverse condition.
125 Always, 1-byte opcode, longword-address, 1-byte displacement.
126
127 3. Jbs/Jbr.
128 length of byte,word,long.
129 Vax opcodes are: (Hex)
130 bsbb 10
131 brb 11
132 These are like (2) but there is no condition to reverse.
133 Always, 1 byte opcode, then displacement/absolute.
134
135 4a. JacbX
136 length of word, long.
137 Vax opcodes are: (Hex)
138 acbw 3d
139 acbf 4f
140 acbd 6f
141 abcb 9d
142 acbl f1
143 acbg 4ffd
144 acbh 6ffd
145 Always, we cannot reverse the sense of the branch; we have a word
146 displacement.
147 The double-byte op-codes don't hurt: we never want to modify the
148 opcode, so we don't care how many bytes are between the opcode and
149 the operand.
150
151 4b. JXobXXX
152 length of long, long, byte.
153 Vax opcodes are: (Hex)
154 aoblss f2
155 aobleq f3
156 sobgeq f4
157 sobgtr f5
158 Always, we cannot reverse the sense of the branch; we have a byte
159 displacement.
160
161 The only time we need to modify the opcode is for class 2 instructions.
162 After relax() we may complement the lowest order bit of such instruction
163 to reverse sense of branch.
164
165 For class 2 instructions, we store context of "where is the opcode literal".
166 We can change an opcode's lowest order bit without breaking anything else.
167
168 We sometimes store context in the operand literal. This way we can figure out
169 after relax() what the original addressing mode was.
170 */
171 \f
172 /* These displacements are relative to the start address of the
173 displacement. The first letter is Byte, Word. 2nd letter is
174 Forward, Backward. */
175 #define BF (1+ 127)
176 #define BB (1+-128)
177 #define WF (2+ 32767)
178 #define WB (2+-32768)
179 /* Dont need LF, LB because they always reach. [They are coded as 0.] */
180
181
182 #define C(a,b) ENCODE_RELAX(a,b)
183 /* This macro has no side-effects. */
184 #define ENCODE_RELAX(what,length) (((what) << 2) + (length))
185
186 const relax_typeS
187 md_relax_table[] =
188 {
189 {1, 1, 0, 0}, /* error sentinel 0,0 */
190 {1, 1, 0, 0}, /* unused 0,1 */
191 {1, 1, 0, 0}, /* unused 0,2 */
192 {1, 1, 0, 0}, /* unused 0,3 */
193 {BF + 1, BB + 1, 2, C (1, 1)},/* B^"foo" 1,0 */
194 {WF + 1, WB + 1, 3, C (1, 2)},/* W^"foo" 1,1 */
195 {0, 0, 5, 0}, /* L^"foo" 1,2 */
196 {1, 1, 0, 0}, /* unused 1,3 */
197 {BF, BB, 1, C (2, 1)}, /* b<cond> B^"foo" 2,0 */
198 {WF + 2, WB + 2, 4, C (2, 2)},/* br.+? brw X 2,1 */
199 {0, 0, 7, 0}, /* br.+? jmp X 2,2 */
200 {1, 1, 0, 0}, /* unused 2,3 */
201 {BF, BB, 1, C (3, 1)}, /* brb B^foo 3,0 */
202 {WF, WB, 2, C (3, 2)}, /* brw W^foo 3,1 */
203 {0, 0, 5, 0}, /* Jmp L^foo 3,2 */
204 {1, 1, 0, 0}, /* unused 3,3 */
205 {1, 1, 0, 0}, /* unused 4,0 */
206 {WF, WB, 2, C (4, 2)}, /* acb_ ^Wfoo 4,1 */
207 {0, 0, 10, 0}, /* acb_,br,jmp L^foo4,2 */
208 {1, 1, 0, 0}, /* unused 4,3 */
209 {BF, BB, 1, C (5, 1)}, /* Xob___,,foo 5,0 */
210 {WF + 4, WB + 4, 6, C (5, 2)},/* Xob.+2,brb.+3,brw5,1 */
211 {0, 0, 9, 0}, /* Xob.+2,brb.+6,jmp5,2 */
212 };
213
214 #undef C
215 #undef BF
216 #undef BB
217 #undef WF
218 #undef WB
219
220 void float_cons ();
221
222 const pseudo_typeS md_pseudo_table[] =
223 {
224 {"dfloat", float_cons, 'd'},
225 {"ffloat", float_cons, 'f'},
226 {"gfloat", float_cons, 'g'},
227 {"hfloat", float_cons, 'h'},
228 {0},
229 };
230
231 #define STATE_PC_RELATIVE (1)
232 #define STATE_CONDITIONAL_BRANCH (2)
233 #define STATE_ALWAYS_BRANCH (3) /* includes BSB... */
234 #define STATE_COMPLEX_BRANCH (4)
235 #define STATE_COMPLEX_HOP (5)
236
237 #define STATE_BYTE (0)
238 #define STATE_WORD (1)
239 #define STATE_LONG (2)
240 #define STATE_UNDF (3) /* Symbol undefined in pass1 */
241
242
243 #define min(a, b) ((a) < (b) ? (a) : (b))
244
245 int flonum_gen2vax PARAMS ((char format_letter, FLONUM_TYPE * f,
246 LITTLENUM_TYPE * words));
247 static const char *vip_begin PARAMS ((int, char *, char *, char *));
248 static void vip_op_defaults PARAMS ((char *immediate, char *indirect,
249 char *displen));
250 static void vip_op PARAMS ((char *, struct vop *));
251 static void vip PARAMS ((struct vit *, char *));
252
253 void
254 md_begin ()
255 {
256 const char *errtxt;
257 FLONUM_TYPE *fP;
258 int i;
259
260 if (errtxt = vip_begin (1, "$", "*", "`"))
261 {
262 as_fatal ("VIP_BEGIN error:%s", errtxt);
263 }
264
265 for (i = 0, fP = float_operand;
266 fP < float_operand + VIT_MAX_OPERANDS;
267 i++, fP++)
268 {
269 fP->low = &big_operand_bits[i][0];
270 fP->high = &big_operand_bits[i][SIZE_OF_LARGE_NUMBER - 1];
271 }
272 }
273 \f
274 void
275 md_number_to_chars (con, value, nbytes)
276 char con[];
277 valueT value;
278 int nbytes;
279 {
280 number_to_chars_littleendian (con, value, nbytes);
281 }
282
283 /* Fix up some data or instructions after we find out the value of a symbol
284 that they reference. */
285
286 void /* Knows about order of bytes in address. */
287 md_apply_fix (fixP, value)
288 fixS *fixP;
289 long value;
290 {
291 number_to_chars_littleendian (fixP->fx_where + fixP->fx_frag->fr_literal,
292 (valueT) value, fixP->fx_size);
293 }
294
295 long
296 md_chars_to_number (con, nbytes)
297 unsigned char con[]; /* Low order byte 1st. */
298 int nbytes; /* Number of bytes in the input. */
299 {
300 long retval;
301 for (retval = 0, con += nbytes - 1; nbytes--; con--)
302 {
303 retval <<= BITS_PER_CHAR;
304 retval |= *con;
305 }
306 return retval;
307 }
308 \f
309 /* vax:md_assemble() emit frags for 1 instruction */
310
311 void
312 md_assemble (instruction_string)
313 char *instruction_string; /* A string: assemble 1 instruction. */
314 {
315 /* Non-zero if operand expression's segment is not known yet. */
316 int is_undefined;
317
318 int length_code;
319 char *p;
320 /* An operand. Scans all operands. */
321 struct vop *operandP;
322 char *save_input_line_pointer;
323 /* What used to live after an expression. */
324 char c_save;
325 /* 1: instruction_string bad for all passes. */
326 int goofed;
327 /* Points to slot just after last operand. */
328 struct vop *end_operandP;
329 /* Points to expression values for this operand. */
330 expressionS *expP;
331 segT *segP;
332
333 /* These refer to an instruction operand expression. */
334 /* Target segment of the address. */
335 segT to_seg;
336 valueT this_add_number;
337 /* Positive (minuend) symbol. */
338 struct symbol *this_add_symbol;
339 /* As a number. */
340 long opcode_as_number;
341 /* Least significant byte 1st. */
342 char *opcode_as_chars;
343 /* As an array of characters. */
344 /* Least significant byte 1st */
345 char *opcode_low_byteP;
346 /* length (bytes) meant by vop_short. */
347 int length;
348 /* 0, or 1 if '@' is in addressing mode. */
349 int at;
350 /* From vop_nbytes: vax_operand_width (in bytes) */
351 int nbytes;
352 FLONUM_TYPE *floatP;
353 LITTLENUM_TYPE literal_float[8];
354 /* Big enough for any floating point literal. */
355
356 vip (&v, instruction_string);
357
358 /*
359 * Now we try to find as many as_warn()s as we can. If we do any as_warn()s
360 * then goofed=1. Notice that we don't make any frags yet.
361 * Should goofed be 1, then this instruction will wedge in any pass,
362 * and we can safely flush it, without causing interpass symbol phase
363 * errors. That is, without changing label values in different passes.
364 */
365 if (goofed = (*v.vit_error))
366 {
367 as_warn ("Ignoring statement due to \"%s\"", v.vit_error);
368 }
369 /*
370 * We need to use expression() and friends, which require us to diddle
371 * input_line_pointer. So we save it and restore it later.
372 */
373 save_input_line_pointer = input_line_pointer;
374 for (operandP = v.vit_operand,
375 expP = exp_of_operand,
376 segP = seg_of_operand,
377 floatP = float_operand,
378 end_operandP = v.vit_operand + v.vit_operands;
379
380 operandP < end_operandP;
381
382 operandP++, expP++, segP++, floatP++)
383 { /* for each operand */
384 if (operandP->vop_error)
385 {
386 as_warn ("Ignoring statement because \"%s\"", operandP->vop_error);
387 goofed = 1;
388 }
389 else
390 {
391 /* statement has no syntax goofs: lets sniff the expression */
392 int can_be_short = 0; /* 1 if a bignum can be reduced to a short literal. */
393
394 input_line_pointer = operandP->vop_expr_begin;
395 c_save = operandP->vop_expr_end[1];
396 operandP->vop_expr_end[1] = '\0';
397 /* If to_seg == SEG_PASS1, expression() will have set need_pass_2 = 1. */
398 *segP = expression (expP);
399 switch (expP->X_op)
400 {
401 case O_absent:
402 /* for BSD4.2 compatibility, missing expression is absolute 0 */
403 expP->X_op = O_constant;
404 expP->X_add_number = 0;
405 /* For SEG_ABSOLUTE, we shouldn't need to set X_op_symbol,
406 X_add_symbol to any particular value. But, we will program
407 defensively. Since this situation occurs rarely so it costs
408 us little to do, and stops Dean worrying about the origin of
409 random bits in expressionS's. */
410 expP->X_add_symbol = NULL;
411 expP->X_op_symbol = NULL;
412 break;
413
414 case O_symbol:
415 case O_constant:
416 break;
417
418 default:
419 /*
420 * Major bug. We can't handle the case of a
421 * SEG_OP expression in a VIT_OPCODE_SYNTHETIC
422 * variable-length instruction.
423 * We don't have a frag type that is smart enough to
424 * relax a SEG_OP, and so we just force all
425 * SEG_OPs to behave like SEG_PASS1s.
426 * Clearly, if there is a demand we can invent a new or
427 * modified frag type and then coding up a frag for this
428 * case will be easy. SEG_OP was invented for the
429 * .words after a CASE opcode, and was never intended for
430 * instruction operands.
431 */
432 need_pass_2 = 1;
433 as_warn ("Can't relocate expression");
434 break;
435
436 case O_big:
437 /* Preserve the bits. */
438 if (expP->X_add_number > 0)
439 {
440 bignum_copy (generic_bignum, expP->X_add_number,
441 floatP->low, SIZE_OF_LARGE_NUMBER);
442 }
443 else
444 {
445 know (expP->X_add_number < 0);
446 flonum_copy (&generic_floating_point_number,
447 floatP);
448 if (strchr ("s i", operandP->vop_short))
449 {
450 /* Could possibly become S^# */
451 flonum_gen2vax (-expP->X_add_number, floatP, literal_float);
452 switch (-expP->X_add_number)
453 {
454 case 'f':
455 can_be_short =
456 (literal_float[0] & 0xFC0F) == 0x4000
457 && literal_float[1] == 0;
458 break;
459
460 case 'd':
461 can_be_short =
462 (literal_float[0] & 0xFC0F) == 0x4000
463 && literal_float[1] == 0
464 && literal_float[2] == 0
465 && literal_float[3] == 0;
466 break;
467
468 case 'g':
469 can_be_short =
470 (literal_float[0] & 0xFF81) == 0x4000
471 && literal_float[1] == 0
472 && literal_float[2] == 0
473 && literal_float[3] == 0;
474 break;
475
476 case 'h':
477 can_be_short = ((literal_float[0] & 0xFFF8) == 0x4000
478 && (literal_float[1] & 0xE000) == 0
479 && literal_float[2] == 0
480 && literal_float[3] == 0
481 && literal_float[4] == 0
482 && literal_float[5] == 0
483 && literal_float[6] == 0
484 && literal_float[7] == 0);
485 break;
486
487 default:
488 BAD_CASE (-expP->X_add_number);
489 break;
490 } /* switch (float type) */
491 } /* if (could want to become S^#...) */
492 } /* bignum or flonum ? */
493
494 if (operandP->vop_short == 's'
495 || operandP->vop_short == 'i'
496 || (operandP->vop_short == ' '
497 && operandP->vop_reg == 0xF
498 && (operandP->vop_mode & 0xE) == 0x8))
499 {
500 /* Saw a '#'. */
501 if (operandP->vop_short == ' ')
502 {
503 /* We must chose S^ or I^. */
504 if (expP->X_add_number > 0)
505 {
506 /* Bignum: Short literal impossible. */
507 operandP->vop_short = 'i';
508 operandP->vop_mode = 8;
509 operandP->vop_reg = 0xF; /* VAX PC. */
510 }
511 else
512 {
513 /* Flonum: Try to do it. */
514 if (can_be_short)
515 {
516 operandP->vop_short = 's';
517 operandP->vop_mode = 0;
518 operandP->vop_ndx = -1;
519 operandP->vop_reg = -1;
520 expP->X_op = O_constant;
521 }
522 else
523 {
524 operandP->vop_short = 'i';
525 operandP->vop_mode = 8;
526 operandP->vop_reg = 0xF; /* VAX PC */
527 }
528 } /* bignum or flonum ? */
529 } /* if #, but no S^ or I^ seen. */
530 /* No more ' ' case: either 's' or 'i'. */
531 if (operandP->vop_short == 's')
532 {
533 /* Wants to be a short literal. */
534 if (expP->X_add_number > 0)
535 {
536 as_warn ("Bignum not permitted in short literal. Immediate mode assumed.");
537 operandP->vop_short = 'i';
538 operandP->vop_mode = 8;
539 operandP->vop_reg = 0xF; /* VAX PC. */
540 }
541 else
542 {
543 if (!can_be_short)
544 {
545 as_warn ("Can't do flonum short literal: immediate mode used.");
546 operandP->vop_short = 'i';
547 operandP->vop_mode = 8;
548 operandP->vop_reg = 0xF; /* VAX PC. */
549 }
550 else
551 { /* Encode short literal now. */
552 int temp = 0;
553
554 switch (-expP->X_add_number)
555 {
556 case 'f':
557 case 'd':
558 temp = literal_float[0] >> 4;
559 break;
560
561 case 'g':
562 temp = literal_float[0] >> 1;
563 break;
564
565 case 'h':
566 temp = ((literal_float[0] << 3) & 070)
567 | ((literal_float[1] >> 13) & 07);
568 break;
569
570 default:
571 BAD_CASE (-expP->X_add_number);
572 break;
573 }
574
575 floatP->low[0] = temp & 077;
576 floatP->low[1] = 0;
577 } /* if can be short literal float */
578 } /* flonum or bignum ? */
579 }
580 else
581 { /* I^# seen: set it up if float. */
582 if (expP->X_add_number < 0)
583 {
584 memcpy (floatP->low, literal_float, sizeof (literal_float));
585 }
586 } /* if S^# seen. */
587 }
588 else
589 {
590 as_warn ("A bignum/flonum may not be a displacement: 0x%x used",
591 expP->X_add_number = 0x80000000);
592 /* Chosen so luser gets the most offset bits to patch later. */
593 }
594 expP->X_add_number = floatP->low[0]
595 | ((LITTLENUM_MASK & (floatP->low[1])) << LITTLENUM_NUMBER_OF_BITS);
596 /*
597 * For the SEG_BIG case we have:
598 * If vop_short == 's' then a short floating literal is in the
599 * lowest 6 bits of floatP -> low [0], which is
600 * big_operand_bits [---] [0].
601 * If vop_short == 'i' then the appropriate number of elements
602 * of big_operand_bits [---] [...] are set up with the correct
603 * bits.
604 * Also, just in case width is byte word or long, we copy the lowest
605 * 32 bits of the number to X_add_number.
606 */
607 break;
608 }
609 if (input_line_pointer != operandP->vop_expr_end + 1)
610 {
611 as_warn ("Junk at end of expression \"%s\"", input_line_pointer);
612 goofed = 1;
613 }
614 operandP->vop_expr_end[1] = c_save;
615 }
616 } /* for(each operand) */
617
618 input_line_pointer = save_input_line_pointer;
619
620 if (need_pass_2 || goofed)
621 {
622 return;
623 }
624
625
626 /* Emit op-code. */
627 /* Remember where it is, in case we want to modify the op-code later. */
628 opcode_low_byteP = frag_more (v.vit_opcode_nbytes);
629 memcpy (opcode_low_byteP, v.vit_opcode, v.vit_opcode_nbytes);
630 opcode_as_number = md_chars_to_number (opcode_as_chars = v.vit_opcode, 4);
631 for (operandP = v.vit_operand,
632 expP = exp_of_operand,
633 segP = seg_of_operand,
634 floatP = float_operand,
635 end_operandP = v.vit_operand + v.vit_operands;
636
637 operandP < end_operandP;
638
639 operandP++,
640 floatP++,
641 segP++,
642 expP++)
643 {
644 if (operandP->vop_ndx >= 0)
645 {
646 /* indexed addressing byte */
647 /* Legality of indexed mode already checked: it is OK */
648 FRAG_APPEND_1_CHAR (0x40 + operandP->vop_ndx);
649 } /* if(vop_ndx>=0) */
650
651 /* Here to make main operand frag(s). */
652 this_add_number = expP->X_add_number;
653 this_add_symbol = expP->X_add_symbol;
654 to_seg = *segP;
655 is_undefined = (to_seg == SEG_UNKNOWN);
656 know (to_seg == SEG_UNKNOWN
657 || to_seg == SEG_ABSOLUTE
658 || to_seg == SEG_DATA
659 || to_seg == SEG_TEXT
660 || to_seg == SEG_BSS
661 || to_seg == SEG_BIG);
662 at = operandP->vop_mode & 1;
663 length = (operandP->vop_short == 'b'
664 ? 1 : (operandP->vop_short == 'w'
665 ? 2 : (operandP->vop_short == 'l'
666 ? 4 : 0)));
667 nbytes = operandP->vop_nbytes;
668 if (operandP->vop_access == 'b')
669 {
670 if (to_seg == now_seg || is_undefined)
671 {
672 /* If is_undefined, then it might BECOME now_seg. */
673 if (nbytes)
674 {
675 p = frag_more (nbytes);
676 fix_new (frag_now, p - frag_now->fr_literal, nbytes,
677 this_add_symbol, this_add_number, 1, NO_RELOC);
678 }
679 else
680 { /* to_seg==now_seg || to_seg == SEG_UNKNOWN */
681 /* nbytes==0 */
682 length_code = is_undefined ? STATE_UNDF : STATE_BYTE;
683 if (opcode_as_number & VIT_OPCODE_SPECIAL)
684 {
685 if (operandP->vop_width == VAX_WIDTH_UNCONDITIONAL_JUMP)
686 {
687 /* br or jsb */
688 frag_var (rs_machine_dependent, 5, 1,
689 ENCODE_RELAX (STATE_ALWAYS_BRANCH, length_code),
690 this_add_symbol, this_add_number,
691 opcode_low_byteP);
692 }
693 else
694 {
695 if (operandP->vop_width == VAX_WIDTH_WORD_JUMP)
696 {
697 length_code = STATE_WORD;
698 /* JF: There is no state_byte for this one! */
699 frag_var (rs_machine_dependent, 10, 2,
700 ENCODE_RELAX (STATE_COMPLEX_BRANCH, length_code),
701 this_add_symbol, this_add_number,
702 opcode_low_byteP);
703 }
704 else
705 {
706 know (operandP->vop_width == VAX_WIDTH_BYTE_JUMP);
707 frag_var (rs_machine_dependent, 9, 1,
708 ENCODE_RELAX (STATE_COMPLEX_HOP, length_code),
709 this_add_symbol, this_add_number,
710 opcode_low_byteP);
711 }
712 }
713 }
714 else
715 {
716 know (operandP->vop_width == VAX_WIDTH_CONDITIONAL_JUMP);
717 frag_var (rs_machine_dependent, 7, 1,
718 ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, length_code),
719 this_add_symbol, this_add_number,
720 opcode_low_byteP);
721 }
722 }
723 }
724 else
725 {
726 /* to_seg != now_seg && to_seg != SEG_UNKNOWN */
727 /*
728 * --- SEG FLOAT MAY APPEAR HERE ----
729 */
730 if (to_seg == SEG_ABSOLUTE)
731 {
732 if (nbytes)
733 {
734 know (!(opcode_as_number & VIT_OPCODE_SYNTHETIC));
735 p = frag_more (nbytes);
736 /* Conventional relocation. */
737 fix_new (frag_now, p - frag_now->fr_literal,
738 nbytes, &abs_symbol, this_add_number,
739 1, NO_RELOC);
740 }
741 else
742 {
743 know (opcode_as_number & VIT_OPCODE_SYNTHETIC);
744 if (opcode_as_number & VIT_OPCODE_SPECIAL)
745 {
746 if (operandP->vop_width == VAX_WIDTH_UNCONDITIONAL_JUMP)
747 {
748 /* br or jsb */
749 *opcode_low_byteP = opcode_as_chars[0] + VAX_WIDEN_LONG;
750 know (opcode_as_chars[1] == 0);
751 p = frag_more (5);
752 p[0] = VAX_ABSOLUTE_MODE; /* @#... */
753 md_number_to_chars (p + 1, this_add_number, 4);
754 /* Now (eg) JMP @#foo or JSB @#foo. */
755 }
756 else
757 {
758 if (operandP->vop_width == VAX_WIDTH_WORD_JUMP)
759 {
760 p = frag_more (10);
761 p[0] = 2;
762 p[1] = 0;
763 p[2] = VAX_BRB;
764 p[3] = 6;
765 p[4] = VAX_JMP;
766 p[5] = VAX_ABSOLUTE_MODE; /* @#... */
767 md_number_to_chars (p + 6, this_add_number, 4);
768 /*
769 * Now (eg) ACBx 1f
770 * BRB 2f
771 * 1: JMP @#foo
772 * 2:
773 */
774 }
775 else
776 {
777 know (operandP->vop_width == VAX_WIDTH_BYTE_JUMP);
778 p = frag_more (9);
779 p[0] = 2;
780 p[1] = VAX_BRB;
781 p[2] = 6;
782 p[3] = VAX_JMP;
783 p[4] = VAX_PC_RELATIVE_MODE + 1; /* @#... */
784 md_number_to_chars (p + 5, this_add_number, 4);
785 /*
786 * Now (eg) xOBxxx 1f
787 * BRB 2f
788 * 1: JMP @#foo
789 * 2:
790 */
791 }
792 }
793 }
794 else
795 {
796 /* b<cond> */
797 *opcode_low_byteP ^= 1;
798 /* To reverse the condition in a VAX branch,
799 complement the lowest order bit. */
800 p = frag_more (7);
801 p[0] = 6;
802 p[1] = VAX_JMP;
803 p[2] = VAX_ABSOLUTE_MODE; /* @#... */
804 md_number_to_chars (p + 3, this_add_number, 4);
805 /*
806 * Now (eg) BLEQ 1f
807 * JMP @#foo
808 * 1:
809 */
810 }
811 }
812 }
813 else
814 {
815 /* to_seg != now_seg && to_seg != SEG_UNKNOWN && to_Seg != SEG_ABSOLUTE */
816 if (nbytes > 0)
817 {
818 /* Pc-relative. Conventional relocation. */
819 know (!(opcode_as_number & VIT_OPCODE_SYNTHETIC));
820 p = frag_more (nbytes);
821 fix_new (frag_now, p - frag_now->fr_literal,
822 nbytes, &abs_symbol, this_add_number,
823 1, NO_RELOC);
824 }
825 else
826 {
827 know (opcode_as_number & VIT_OPCODE_SYNTHETIC);
828 if (opcode_as_number & VIT_OPCODE_SPECIAL)
829 {
830 if (operandP->vop_width == VAX_WIDTH_UNCONDITIONAL_JUMP)
831 {
832 /* br or jsb */
833 know (opcode_as_chars[1] == 0);
834 *opcode_low_byteP = opcode_as_chars[0] + VAX_WIDEN_LONG;
835 p = frag_more (5);
836 p[0] = VAX_PC_RELATIVE_MODE;
837 fix_new (frag_now,
838 p + 1 - frag_now->fr_literal, 4,
839 this_add_symbol,
840 this_add_number, 1, NO_RELOC);
841 /* Now eg JMP foo or JSB foo. */
842 }
843 else
844 {
845 if (operandP->vop_width == VAX_WIDTH_WORD_JUMP)
846 {
847 p = frag_more (10);
848 p[0] = 0;
849 p[1] = 2;
850 p[2] = VAX_BRB;
851 p[3] = 6;
852 p[4] = VAX_JMP;
853 p[5] = VAX_PC_RELATIVE_MODE;
854 fix_new (frag_now,
855 p + 6 - frag_now->fr_literal, 4,
856 this_add_symbol,
857 this_add_number, 1, NO_RELOC);
858 /*
859 * Now (eg) ACBx 1f
860 * BRB 2f
861 * 1: JMP foo
862 * 2:
863 */
864 }
865 else
866 {
867 know (operandP->vop_width == VAX_WIDTH_BYTE_JUMP);
868 p = frag_more (10);
869 p[0] = 2;
870 p[1] = VAX_BRB;
871 p[2] = 6;
872 p[3] = VAX_JMP;
873 p[4] = VAX_PC_RELATIVE_MODE;
874 fix_new (frag_now,
875 p + 5 - frag_now->fr_literal,
876 4, this_add_symbol,
877 this_add_number, 1, NO_RELOC);
878 /*
879 * Now (eg) xOBxxx 1f
880 * BRB 2f
881 * 1: JMP foo
882 * 2:
883 */
884 }
885 }
886 }
887 else
888 {
889 know (operandP->vop_width == VAX_WIDTH_CONDITIONAL_JUMP);
890 *opcode_low_byteP ^= 1; /* Reverse branch condition. */
891 p = frag_more (7);
892 p[0] = 6;
893 p[1] = VAX_JMP;
894 p[2] = VAX_PC_RELATIVE_MODE;
895 fix_new (frag_now, p + 3 - frag_now->fr_literal,
896 4, this_add_symbol,
897 this_add_number, 1, NO_RELOC);
898 }
899 }
900 }
901 }
902 }
903 else
904 {
905 know (operandP->vop_access != 'b'); /* So it is ordinary operand. */
906 know (operandP->vop_access != ' '); /* ' ' target-independent: elsewhere. */
907 know (operandP->vop_access == 'a'
908 || operandP->vop_access == 'm'
909 || operandP->vop_access == 'r'
910 || operandP->vop_access == 'v'
911 || operandP->vop_access == 'w');
912 if (operandP->vop_short == 's')
913 {
914 if (to_seg == SEG_ABSOLUTE)
915 {
916 if (this_add_number < 0 || this_add_number >= 64)
917 {
918 as_warn ("Short literal overflow(%d.), immediate mode assumed.", this_add_number);
919 operandP->vop_short = 'i';
920 operandP->vop_mode = 8;
921 operandP->vop_reg = 0xF;
922 }
923 }
924 else
925 {
926 as_warn ("Forced short literal to immediate mode. now_seg=%s to_seg=%s",
927 segment_name (now_seg), segment_name (to_seg));
928 operandP->vop_short = 'i';
929 operandP->vop_mode = 8;
930 operandP->vop_reg = 0xF;
931 }
932 }
933 if (operandP->vop_reg >= 0 && (operandP->vop_mode < 8
934 || (operandP->vop_reg != 0xF && operandP->vop_mode < 10)))
935 {
936 /* One byte operand. */
937 know (operandP->vop_mode > 3);
938 FRAG_APPEND_1_CHAR (operandP->vop_mode << 4 | operandP->vop_reg);
939 /* All 1-bytes except S^# happen here. */
940 }
941 else
942 {
943 /* {@}{q^}foo{(Rn)} or S^#foo */
944 if (operandP->vop_reg == -1 && operandP->vop_short != 's')
945 {
946 /* "{@}{q^}foo" */
947 if (to_seg == now_seg)
948 {
949 if (length == 0)
950 {
951 know (operandP->vop_short == ' ');
952 p = frag_var (rs_machine_dependent, 10, 2,
953 ENCODE_RELAX (STATE_PC_RELATIVE, STATE_BYTE),
954 this_add_symbol, this_add_number,
955 opcode_low_byteP);
956 know (operandP->vop_mode == 10 + at);
957 *p = at << 4;
958 /* At is the only context we need to carry
959 to other side of relax() process. Must
960 be in the correct bit position of VAX
961 operand spec. byte. */
962 }
963 else
964 {
965 know (length);
966 know (operandP->vop_short != ' ');
967 p = frag_more (length + 1);
968 p[0] = 0xF | ((at + "?\12\14?\16"[length]) << 4);
969 fix_new (frag_now, p + 1 - frag_now->fr_literal,
970 length, this_add_symbol,
971 this_add_number, 1, NO_RELOC);
972 }
973 }
974 else
975 { /* to_seg != now_seg */
976 if (this_add_symbol == NULL)
977 {
978 know (to_seg == SEG_ABSOLUTE);
979 /* Do @#foo: simpler relocation than foo-.(pc) anyway. */
980 p = frag_more (5);
981 p[0] = VAX_ABSOLUTE_MODE; /* @#... */
982 md_number_to_chars (p + 1, this_add_number, 4);
983 if (length && length != 4)
984 {
985 as_warn ("Length specification ignored. Address mode 9F used");
986 }
987 }
988 else
989 {
990 /* {@}{q^}other_seg */
991 know ((length == 0 && operandP->vop_short == ' ')
992 || (length > 0 && operandP->vop_short != ' '));
993 if (is_undefined)
994 {
995 /*
996 * We have a SEG_UNKNOWN symbol. It might
997 * turn out to be in the same segment as
998 * the instruction, permitting relaxation.
999 */
1000 p = frag_var (rs_machine_dependent, 5, 2,
1001 ENCODE_RELAX (STATE_PC_RELATIVE, STATE_UNDF),
1002 this_add_symbol, this_add_number,
1003 0);
1004 p[0] = at << 4;
1005 }
1006 else
1007 {
1008 if (length == 0)
1009 {
1010 know (operandP->vop_short == ' ');
1011 length = 4; /* Longest possible. */
1012 }
1013 p = frag_more (length + 1);
1014 p[0] = 0xF | ((at + "?\12\14?\16"[length]) << 4);
1015 md_number_to_chars (p + 1, this_add_number, length);
1016 fix_new (frag_now,
1017 p + 1 - frag_now->fr_literal,
1018 length, this_add_symbol,
1019 this_add_number, 1, NO_RELOC);
1020 }
1021 }
1022 }
1023 }
1024 else
1025 {
1026 /* {@}{q^}foo(Rn) or S^# or I^# or # */
1027 if (operandP->vop_mode < 0xA)
1028 {
1029 /* # or S^# or I^# */
1030 if (length == 0
1031 && to_seg == SEG_ABSOLUTE
1032 && operandP->vop_mode == 8 /* No '@'. */
1033 && this_add_number < 64
1034 && this_add_number >= 0)
1035 {
1036 operandP->vop_short = 's';
1037 }
1038 if (operandP->vop_short == 's')
1039 {
1040 FRAG_APPEND_1_CHAR (this_add_number);
1041 }
1042 else
1043 {
1044 /* I^#... */
1045 know (nbytes);
1046 p = frag_more (nbytes + 1);
1047 know (operandP->vop_reg == 0xF);
1048 p[0] = (operandP->vop_mode << 4) | 0xF;
1049 if (to_seg == SEG_ABSOLUTE)
1050 {
1051 /*
1052 * If nbytes > 4, then we are scrod. We
1053 * don't know if the high order bytes
1054 * are to be 0xFF or 0x00. BSD4.2 & RMS
1055 * say use 0x00. OK --- but this
1056 * assembler needs ANOTHER rewrite to
1057 * cope properly with this bug. */
1058 md_number_to_chars (p + 1, this_add_number, min (4, nbytes));
1059 if (nbytes > 4)
1060 {
1061 memset (p + 5, '\0', nbytes - 4);
1062 }
1063 }
1064 else
1065 {
1066 if (expP->X_op == O_big)
1067 {
1068 /*
1069 * Problem here is to get the bytes
1070 * in the right order. We stored
1071 * our constant as LITTLENUMs, not
1072 * bytes. */
1073 LITTLENUM_TYPE *lP;
1074
1075 lP = floatP->low;
1076 if (nbytes & 1)
1077 {
1078 know (nbytes == 1);
1079 p[1] = *lP;
1080 }
1081 else
1082 {
1083 for (p++; nbytes; nbytes -= 2, p += 2, lP++)
1084 {
1085 md_number_to_chars (p, *lP, 2);
1086 }
1087 }
1088 }
1089 else
1090 {
1091 fix_new (frag_now, p + 1 - frag_now->fr_literal,
1092 nbytes, this_add_symbol,
1093 this_add_number, 0, NO_RELOC);
1094 }
1095 }
1096 }
1097 }
1098 else
1099 { /* {@}{q^}foo(Rn) */
1100 know ((length == 0 && operandP->vop_short == ' ')
1101 || (length > 0 && operandP->vop_short != ' '));
1102 if (length == 0)
1103 {
1104 if (to_seg == SEG_ABSOLUTE)
1105 {
1106 long test;
1107
1108 test = this_add_number;
1109
1110 if (test < 0)
1111 test = ~test;
1112
1113 length = test & 0xffff8000 ? 4
1114 : test & 0xffffff80 ? 2
1115 : 1;
1116 }
1117 else
1118 {
1119 length = 4;
1120 }
1121 }
1122 p = frag_more (1 + length);
1123 know (operandP->vop_reg >= 0);
1124 p[0] = operandP->vop_reg
1125 | ((at | "?\12\14?\16"[length]) << 4);
1126 if (to_seg == SEG_ABSOLUTE)
1127 {
1128 md_number_to_chars (p + 1, this_add_number, length);
1129 }
1130 else
1131 {
1132 fix_new (frag_now, p + 1 - frag_now->fr_literal,
1133 length, this_add_symbol,
1134 this_add_number, 0, NO_RELOC);
1135 }
1136 }
1137 }
1138 } /* if(single-byte-operand) */
1139 }
1140 } /* for(operandP) */
1141 } /* vax_assemble() */
1142 \f
1143 /*
1144 * md_estimate_size_before_relax()
1145 *
1146 * Called just before relax().
1147 * Any symbol that is now undefined will not become defined.
1148 * Return the correct fr_subtype in the frag.
1149 * Return the initial "guess for fr_var" to caller.
1150 * The guess for fr_var is ACTUALLY the growth beyond fr_fix.
1151 * Whatever we do to grow fr_fix or fr_var contributes to our returned value.
1152 * Although it may not be explicit in the frag, pretend fr_var starts with a
1153 * 0 value.
1154 */
1155 int
1156 md_estimate_size_before_relax (fragP, segment)
1157 fragS *fragP;
1158 segT segment;
1159 {
1160 char *p;
1161 int old_fr_fix;
1162
1163 old_fr_fix = fragP->fr_fix;
1164 switch (fragP->fr_subtype)
1165 {
1166 case ENCODE_RELAX (STATE_PC_RELATIVE, STATE_UNDF):
1167 if (S_GET_SEGMENT (fragP->fr_symbol) == segment)
1168 { /* A relaxable case. */
1169 fragP->fr_subtype = ENCODE_RELAX (STATE_PC_RELATIVE, STATE_BYTE);
1170 }
1171 else
1172 {
1173 p = fragP->fr_literal + old_fr_fix;
1174 p[0] |= VAX_PC_RELATIVE_MODE; /* Preserve @ bit. */
1175 fragP->fr_fix += 1 + 4;
1176 fix_new (fragP, old_fr_fix + 1, 4, fragP->fr_symbol,
1177 fragP->fr_offset, 1, NO_RELOC);
1178 frag_wane (fragP);
1179 }
1180 break;
1181
1182 case ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, STATE_UNDF):
1183 if (S_GET_SEGMENT (fragP->fr_symbol) == segment)
1184 {
1185 fragP->fr_subtype = ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, STATE_BYTE);
1186 }
1187 else
1188 {
1189 p = fragP->fr_literal + old_fr_fix;
1190 *fragP->fr_opcode ^= 1; /* Reverse sense of branch. */
1191 p[0] = 6;
1192 p[1] = VAX_JMP;
1193 p[2] = VAX_PC_RELATIVE_MODE; /* ...(PC) */
1194 fragP->fr_fix += 1 + 1 + 1 + 4;
1195 fix_new (fragP, old_fr_fix + 3, 4, fragP->fr_symbol,
1196 fragP->fr_offset, 1, NO_RELOC);
1197 frag_wane (fragP);
1198 }
1199 break;
1200
1201 case ENCODE_RELAX (STATE_COMPLEX_BRANCH, STATE_UNDF):
1202 if (S_GET_SEGMENT (fragP->fr_symbol) == segment)
1203 {
1204 fragP->fr_subtype = ENCODE_RELAX (STATE_COMPLEX_BRANCH, STATE_WORD);
1205 }
1206 else
1207 {
1208 p = fragP->fr_literal + old_fr_fix;
1209 p[0] = 2;
1210 p[1] = 0;
1211 p[2] = VAX_BRB;
1212 p[3] = 6;
1213 p[4] = VAX_JMP;
1214 p[5] = VAX_PC_RELATIVE_MODE; /* ...(pc) */
1215 fragP->fr_fix += 2 + 2 + 1 + 1 + 4;
1216 fix_new (fragP, old_fr_fix + 6, 4, fragP->fr_symbol,
1217 fragP->fr_offset, 1, NO_RELOC);
1218 frag_wane (fragP);
1219 }
1220 break;
1221
1222 case ENCODE_RELAX (STATE_COMPLEX_HOP, STATE_UNDF):
1223 if (S_GET_SEGMENT (fragP->fr_symbol) == segment)
1224 {
1225 fragP->fr_subtype = ENCODE_RELAX (STATE_COMPLEX_HOP, STATE_BYTE);
1226 }
1227 else
1228 {
1229 p = fragP->fr_literal + old_fr_fix;
1230 p[0] = 2;
1231 p[1] = VAX_BRB;
1232 p[2] = 6;
1233 p[3] = VAX_JMP;
1234 p[4] = VAX_PC_RELATIVE_MODE; /* ...(pc) */
1235 fragP->fr_fix += 1 + 2 + 1 + 1 + 4;
1236 fix_new (fragP, old_fr_fix + 5, 4, fragP->fr_symbol,
1237 fragP->fr_offset, 1, NO_RELOC);
1238 frag_wane (fragP);
1239 }
1240 break;
1241
1242 case ENCODE_RELAX (STATE_ALWAYS_BRANCH, STATE_UNDF):
1243 if (S_GET_SEGMENT (fragP->fr_symbol) == segment)
1244 {
1245 fragP->fr_subtype = ENCODE_RELAX (STATE_ALWAYS_BRANCH, STATE_BYTE);
1246 }
1247 else
1248 {
1249 p = fragP->fr_literal + old_fr_fix;
1250 *fragP->fr_opcode += VAX_WIDEN_LONG;
1251 p[0] = VAX_PC_RELATIVE_MODE; /* ...(PC) */
1252 fragP->fr_fix += 1 + 4;
1253 fix_new (fragP, old_fr_fix + 1, 4, fragP->fr_symbol,
1254 fragP->fr_offset, 1, NO_RELOC);
1255 frag_wane (fragP);
1256 }
1257 break;
1258
1259 default:
1260 break;
1261 }
1262 return (fragP->fr_var + fragP->fr_fix - old_fr_fix);
1263 } /* md_estimate_size_before_relax() */
1264 \f
1265 /*
1266 * md_convert_frag();
1267 *
1268 * Called after relax() is finished.
1269 * In: Address of frag.
1270 * fr_type == rs_machine_dependent.
1271 * fr_subtype is what the address relaxed to.
1272 *
1273 * Out: Any fixSs and constants are set up.
1274 * Caller will turn frag into a ".space 0".
1275 */
1276 void
1277 md_convert_frag (headers, fragP)
1278 object_headers *headers;
1279 fragS *fragP;
1280 {
1281 char *addressP; /* -> _var to change. */
1282 char *opcodeP; /* -> opcode char(s) to change. */
1283 short int length_code; /* 2=long 1=word 0=byte */
1284 short int extension = 0; /* Size of relaxed address. */
1285 /* Added to fr_fix: incl. ALL var chars. */
1286 symbolS *symbolP;
1287 long where;
1288 long address_of_var;
1289 /* Where, in file space, is _var of *fragP? */
1290 long target_address = 0;
1291 /* Where, in file space, does addr point? */
1292
1293 know (fragP->fr_type == rs_machine_dependent);
1294 length_code = fragP->fr_subtype & 3; /* depends on ENCODE_RELAX() */
1295 know (length_code >= 0 && length_code < 3);
1296 where = fragP->fr_fix;
1297 addressP = fragP->fr_literal + where;
1298 opcodeP = fragP->fr_opcode;
1299 symbolP = fragP->fr_symbol;
1300 know (symbolP);
1301 target_address = S_GET_VALUE (symbolP) + fragP->fr_offset;
1302 address_of_var = fragP->fr_address + where;
1303
1304 switch (fragP->fr_subtype)
1305 {
1306
1307 case ENCODE_RELAX (STATE_PC_RELATIVE, STATE_BYTE):
1308 know (*addressP == 0 || *addressP == 0x10); /* '@' bit. */
1309 addressP[0] |= 0xAF; /* Byte displacement. */
1310 addressP[1] = target_address - (address_of_var + 2);
1311 extension = 2;
1312 break;
1313
1314 case ENCODE_RELAX (STATE_PC_RELATIVE, STATE_WORD):
1315 know (*addressP == 0 || *addressP == 0x10); /* '@' bit. */
1316 addressP[0] |= 0xCF; /* Word displacement. */
1317 md_number_to_chars (addressP + 1, target_address - (address_of_var + 3), 2);
1318 extension = 3;
1319 break;
1320
1321 case ENCODE_RELAX (STATE_PC_RELATIVE, STATE_LONG):
1322 know (*addressP == 0 || *addressP == 0x10); /* '@' bit. */
1323 addressP[0] |= 0xEF; /* Long word displacement. */
1324 md_number_to_chars (addressP + 1, target_address - (address_of_var + 5), 4);
1325 extension = 5;
1326 break;
1327
1328 case ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, STATE_BYTE):
1329 addressP[0] = target_address - (address_of_var + 1);
1330 extension = 1;
1331 break;
1332
1333 case ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, STATE_WORD):
1334 opcodeP[0] ^= 1; /* Reverse sense of test. */
1335 addressP[0] = 3;
1336 addressP[1] = VAX_BRB + VAX_WIDEN_WORD;
1337 md_number_to_chars (addressP + 2, target_address - (address_of_var + 4), 2);
1338 extension = 4;
1339 break;
1340
1341 case ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, STATE_LONG):
1342 opcodeP[0] ^= 1; /* Reverse sense of test. */
1343 addressP[0] = 6;
1344 addressP[1] = VAX_JMP;
1345 addressP[2] = VAX_PC_RELATIVE_MODE;
1346 md_number_to_chars (addressP + 3, target_address, 4);
1347 extension = 7;
1348 break;
1349
1350 case ENCODE_RELAX (STATE_ALWAYS_BRANCH, STATE_BYTE):
1351 addressP[0] = target_address - (address_of_var + 1);
1352 extension = 1;
1353 break;
1354
1355 case ENCODE_RELAX (STATE_ALWAYS_BRANCH, STATE_WORD):
1356 opcodeP[0] += VAX_WIDEN_WORD; /* brb -> brw, bsbb -> bsbw */
1357 md_number_to_chars (addressP, target_address - (address_of_var + 2), 2);
1358 extension = 2;
1359 break;
1360
1361 case ENCODE_RELAX (STATE_ALWAYS_BRANCH, STATE_LONG):
1362 opcodeP[0] += VAX_WIDEN_LONG; /* brb -> jmp, bsbb -> jsb */
1363 addressP[0] = VAX_PC_RELATIVE_MODE;
1364 md_number_to_chars (addressP + 1, target_address - (address_of_var + 5), 4);
1365 extension = 5;
1366 break;
1367
1368 case ENCODE_RELAX (STATE_COMPLEX_BRANCH, STATE_WORD):
1369 md_number_to_chars (addressP, target_address - (address_of_var + 2), 2);
1370 extension = 2;
1371 break;
1372
1373 case ENCODE_RELAX (STATE_COMPLEX_BRANCH, STATE_LONG):
1374 addressP[0] = 2;
1375 addressP[1] = 0;
1376 addressP[2] = VAX_BRB;
1377 addressP[3] = 6;
1378 addressP[4] = VAX_JMP;
1379 addressP[5] = VAX_PC_RELATIVE_MODE;
1380 md_number_to_chars (addressP + 6, target_address, 4);
1381 extension = 10;
1382 break;
1383
1384 case ENCODE_RELAX (STATE_COMPLEX_HOP, STATE_BYTE):
1385 addressP[0] = target_address - (address_of_var + 1);
1386 extension = 1;
1387 break;
1388
1389 case ENCODE_RELAX (STATE_COMPLEX_HOP, STATE_WORD):
1390 addressP[0] = 2;
1391 addressP[1] = VAX_BRB;
1392 addressP[2] = 3;
1393 addressP[3] = VAX_BRW;
1394 md_number_to_chars (addressP + 4, target_address - (address_of_var + 6), 2);
1395 extension = 6;
1396 break;
1397
1398 case ENCODE_RELAX (STATE_COMPLEX_HOP, STATE_LONG):
1399 addressP[0] = 2;
1400 addressP[1] = VAX_BRB;
1401 addressP[2] = 6;
1402 addressP[3] = VAX_JMP;
1403 addressP[4] = VAX_PC_RELATIVE_MODE;
1404 md_number_to_chars (addressP + 5, target_address, 4);
1405 extension = 9;
1406 break;
1407
1408 default:
1409 BAD_CASE (fragP->fr_subtype);
1410 break;
1411 }
1412 fragP->fr_fix += extension;
1413 } /* md_convert_frag() */
1414
1415 /* Translate internal format of relocation info into target format.
1416
1417 On vax: first 4 bytes are normal unsigned long, next three bytes
1418 are symbolnum, least sig. byte first. Last byte is broken up with
1419 the upper nibble as nuthin, bit 3 as extern, bits 2 & 1 as length, and
1420 bit 0 as pcrel. */
1421 #ifdef comment
1422 void
1423 md_ri_to_chars (the_bytes, ri)
1424 char *the_bytes;
1425 struct reloc_info_generic ri;
1426 {
1427 /* this is easy */
1428 md_number_to_chars (the_bytes, ri.r_address, sizeof (ri.r_address));
1429 /* now the fun stuff */
1430 the_bytes[6] = (ri.r_symbolnum >> 16) & 0x0ff;
1431 the_bytes[5] = (ri.r_symbolnum >> 8) & 0x0ff;
1432 the_bytes[4] = ri.r_symbolnum & 0x0ff;
1433 the_bytes[7] = (((ri.r_extern << 3) & 0x08) | ((ri.r_length << 1) & 0x06) |
1434 ((ri.r_pcrel << 0) & 0x01)) & 0x0F;
1435 }
1436
1437 #endif /* comment */
1438
1439 void
1440 tc_aout_fix_to_chars (where, fixP, segment_address_in_file)
1441 char *where;
1442 fixS *fixP;
1443 relax_addressT segment_address_in_file;
1444 {
1445 /*
1446 * In: length of relocation (or of address) in chars: 1, 2 or 4.
1447 * Out: GNU LD relocation length code: 0, 1, or 2.
1448 */
1449
1450 static const unsigned char nbytes_r_length[] = {42, 0, 1, 42, 2};
1451 long r_symbolnum;
1452
1453 know (fixP->fx_addsy != NULL);
1454
1455 md_number_to_chars (where,
1456 fixP->fx_frag->fr_address + fixP->fx_where - segment_address_in_file,
1457 4);
1458
1459 r_symbolnum = (S_IS_DEFINED (fixP->fx_addsy)
1460 ? S_GET_TYPE (fixP->fx_addsy)
1461 : fixP->fx_addsy->sy_number);
1462
1463 where[6] = (r_symbolnum >> 16) & 0x0ff;
1464 where[5] = (r_symbolnum >> 8) & 0x0ff;
1465 where[4] = r_symbolnum & 0x0ff;
1466 where[7] = ((((!S_IS_DEFINED (fixP->fx_addsy)) << 3) & 0x08)
1467 | ((nbytes_r_length[fixP->fx_size] << 1) & 0x06)
1468 | (((fixP->fx_pcrel << 0) & 0x01) & 0x0f));
1469 }
1470
1471 /*
1472 * BUGS, GRIPES, APOLOGIA, etc.
1473 *
1474 * The opcode table 'votstrs' needs to be sorted on opcode frequency.
1475 * That is, AFTER we hash it with hash_...(), we want most-used opcodes
1476 * to come out of the hash table faster.
1477 *
1478 * I am sorry to inflict yet another VAX assembler on the world, but
1479 * RMS says we must do everything from scratch, to prevent pin-heads
1480 * restricting this software.
1481 */
1482
1483 /*
1484 * This is a vaguely modular set of routines in C to parse VAX
1485 * assembly code using DEC mnemonics. It is NOT un*x specific.
1486 *
1487 * The idea here is that the assembler has taken care of all:
1488 * labels
1489 * macros
1490 * listing
1491 * pseudo-ops
1492 * line continuation
1493 * comments
1494 * condensing any whitespace down to exactly one space
1495 * and all we have to do is parse 1 line into a vax instruction
1496 * partially formed. We will accept a line, and deliver:
1497 * an error message (hopefully empty)
1498 * a skeleton VAX instruction (tree structure)
1499 * textual pointers to all the operand expressions
1500 * a warning message that notes a silly operand (hopefully empty)
1501 */
1502 \f
1503 /*
1504 * E D I T H I S T O R Y
1505 *
1506 * 17may86 Dean Elsner. Bug if line ends immediately after opcode.
1507 * 30apr86 Dean Elsner. New vip_op() uses arg block so change call.
1508 * 6jan86 Dean Elsner. Crock vip_begin() to call vip_op_defaults().
1509 * 2jan86 Dean Elsner. Invent synthetic opcodes.
1510 * Widen vax_opcodeT to 32 bits. Use a bit for VIT_OPCODE_SYNTHETIC,
1511 * which means this is not a real opcode, it is like a macro; it will
1512 * be relax()ed into 1 or more instructions.
1513 * Use another bit for VIT_OPCODE_SPECIAL if the op-code is not optimised
1514 * like a regular branch instruction. Option added to vip_begin():
1515 * exclude synthetic opcodes. Invent synthetic_votstrs[].
1516 * 31dec85 Dean Elsner. Invent vit_opcode_nbytes.
1517 * Also make vit_opcode into a char[]. We now have n-byte vax opcodes,
1518 * so caller's don't have to know the difference between a 1-byte & a
1519 * 2-byte op-code. Still need vax_opcodeT concept, so we know how
1520 * big an object must be to hold an op.code.
1521 * 30dec85 Dean Elsner. Widen typedef vax_opcodeT in "vax-inst.h"
1522 * because vax opcodes may be 16 bits. Our crufty C compiler was
1523 * happily initialising 8-bit vot_codes with 16-bit numbers!
1524 * (Wouldn't the 'phone company like to compress data so easily!)
1525 * 29dec85 Dean Elsner. New static table vax_operand_width_size[].
1526 * Invented so we know hw many bytes a "I^#42" needs in its immediate
1527 * operand. Revised struct vop in "vax-inst.h": explicitly include
1528 * byte length of each operand, and it's letter-code datum type.
1529 * 17nov85 Dean Elsner. Name Change.
1530 * Due to ar(1) truncating names, we learned the hard way that
1531 * "vax-inst-parse.c" -> "vax-inst-parse." dropping the "o" off
1532 * the archived object name. SO... we shortened the name of this
1533 * source file, and changed the makefile.
1534 */
1535
1536 /* handle of the OPCODE hash table */
1537 static struct hash_control *op_hash;
1538
1539 /*
1540 * In: 1 character, from "bdfghloqpw" being the data-type of an operand
1541 * of a vax instruction.
1542 *
1543 * Out: the length of an operand of that type, in bytes.
1544 * Special branch operands types "-?!" have length 0.
1545 */
1546
1547 static const short int vax_operand_width_size[256] =
1548 {
1549
1550 #define _ 0
1551 _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _,
1552 _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _,
1553 _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _,
1554 _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _,
1555 _, _, 1, _, 8, _, 4, 8, 16, _, _, _, 4, _, _, 16, /* ..b.d.fgh...l..o */
1556 _, 8, _, _, _, _, _, 2, _, _, _, _, _, _, _, _, /* .q.....w........ */
1557 _, _, 1, _, 8, _, 4, 8, 16, _, _, _, 4, _, _, 16, /* ..b.d.fgh...l..o */
1558 _, 8, _, _, _, _, _, 2, _, _, _, _, _, _, _, _, /* .q.....w........ */
1559 _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _,
1560 _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _,
1561 _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _,
1562 _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _,
1563 _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _,
1564 _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _,
1565 _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _,
1566 _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _};
1567 #undef _
1568 \f
1569 /*
1570 * This perversion encodes all the vax opcodes as a bunch of strings.
1571 * RMS says we should build our hash-table at run-time. Hmm.
1572 * Please would someone arrange these in decreasing frequency of opcode?
1573 * Because of the way hash_...() works, the most frequently used opcode
1574 * should be textually first and so on.
1575 *
1576 * Input for this table was 'vax.opcodes', awk(1)ed by 'vax.opcodes.c.awk' .
1577 * So change 'vax.opcodes', then re-generate this table.
1578 */
1579
1580 #include "opcode/vax.h"
1581 \f
1582 /*
1583 * This is a table of optional op-codes. All of them represent
1584 * 'synthetic' instructions that seem popular.
1585 *
1586 * Here we make some pseudo op-codes. Every code has a bit set to say
1587 * it is synthetic. This lets you catch them if you want to
1588 * ban these opcodes. They are mnemonics for "elastic" instructions
1589 * that are supposed to assemble into the fewest bytes needed to do a
1590 * branch, or to do a conditional branch, or whatever.
1591 *
1592 * The opcode is in the usual place [low-order n*8 bits]. This means
1593 * that if you mask off the bucky bits, the usual rules apply about
1594 * how long the opcode is.
1595 *
1596 * All VAX branch displacements come at the end of the instruction.
1597 * For simple branches (1-byte opcode + 1-byte displacement) the last
1598 * operand is coded 'b?' where the "data type" '?' is a clue that we
1599 * may reverse the sense of the branch (complement lowest order bit)
1600 * and branch around a jump. This is by far the most common case.
1601 * That is why the VIT_OPCODE_SYNTHETIC bit is set: it says this is
1602 * a 0-byte op-code followed by 2 or more bytes of operand address.
1603 *
1604 * If the op-code has VIT_OPCODE_SPECIAL set, then we have a more unusual
1605 * case.
1606 *
1607 * For JBSB & JBR the treatment is the similar, except (1) we have a 'bw'
1608 * option before (2) we can directly JSB/JMP because there is no condition.
1609 * These operands have 'b-' as their access/data type.
1610 *
1611 * That leaves a bunch of random opcodes: JACBx, JxOBxxx. In these
1612 * cases, we do the same idea. JACBxxx are all marked with a 'b!'
1613 * JAOBxxx & JSOBxxx are marked with a 'b:'.
1614 *
1615 */
1616 #if (VIT_OPCODE_SYNTHETIC != 0x80000000)
1617 You have just broken the encoding below, which assumes the sign bit
1618 means 'I am an imaginary instruction'.
1619 #endif
1620
1621 #if (VIT_OPCODE_SPECIAL != 0x40000000)
1622 You have just broken the encoding below, which assumes the 0x40 M bit means
1623 'I am not to be "optimised" the way normal branches are'.
1624 #endif
1625
1626 static const struct vot
1627 synthetic_votstrs[] =
1628 {
1629 {"jbsb", {"b-", 0xC0000010}}, /* BSD 4.2 */
1630 /* jsb used already */
1631 {"jbr", {"b-", 0xC0000011}}, /* BSD 4.2 */
1632 {"jr", {"b-", 0xC0000011}}, /* consistent */
1633 {"jneq", {"b?", 0x80000012}},
1634 {"jnequ", {"b?", 0x80000012}},
1635 {"jeql", {"b?", 0x80000013}},
1636 {"jeqlu", {"b?", 0x80000013}},
1637 {"jgtr", {"b?", 0x80000014}},
1638 {"jleq", {"b?", 0x80000015}},
1639 /* un-used opcodes here */
1640 {"jgeq", {"b?", 0x80000018}},
1641 {"jlss", {"b?", 0x80000019}},
1642 {"jgtru", {"b?", 0x8000001a}},
1643 {"jlequ", {"b?", 0x8000001b}},
1644 {"jvc", {"b?", 0x8000001c}},
1645 {"jvs", {"b?", 0x8000001d}},
1646 {"jgequ", {"b?", 0x8000001e}},
1647 {"jcc", {"b?", 0x8000001e}},
1648 {"jlssu", {"b?", 0x8000001f}},
1649 {"jcs", {"b?", 0x8000001f}},
1650
1651 {"jacbw", {"rwrwmwb!", 0xC000003d}},
1652 {"jacbf", {"rfrfmfb!", 0xC000004f}},
1653 {"jacbd", {"rdrdmdb!", 0xC000006f}},
1654 {"jacbb", {"rbrbmbb!", 0xC000009d}},
1655 {"jacbl", {"rlrlmlb!", 0xC00000f1}},
1656 {"jacbg", {"rgrgmgb!", 0xC0004ffd}},
1657 {"jacbh", {"rhrhmhb!", 0xC0006ffd}},
1658
1659 {"jbs", {"rlvbb?", 0x800000e0}},
1660 {"jbc", {"rlvbb?", 0x800000e1}},
1661 {"jbss", {"rlvbb?", 0x800000e2}},
1662 {"jbcs", {"rlvbb?", 0x800000e3}},
1663 {"jbsc", {"rlvbb?", 0x800000e4}},
1664 {"jbcc", {"rlvbb?", 0x800000e5}},
1665 {"jbssi", {"rlvbb?", 0x800000e6}},
1666 {"jbcci", {"rlvbb?", 0x800000e7}},
1667 {"jlbs", {"rlb?", 0x800000e8}},
1668 {"jlbc", {"rlb?", 0x800000e9}},
1669
1670 {"jaoblss", {"rlmlb:", 0xC00000f2}},
1671 {"jaobleq", {"rlmlb:", 0xC00000f3}},
1672 {"jsobgeq", {"mlb:", 0xC00000f4}},
1673 {"jsobgtr", {"mlb:", 0xC00000f5}},
1674
1675 /* CASEx has no branch addresses in our conception of it. */
1676 /* You should use ".word ..." statements after the "case ...". */
1677
1678 {"", ""} /* empty is end sentinel */
1679
1680 }; /* synthetic_votstrs */
1681 \f
1682 /*
1683 * v i p _ b e g i n ( )
1684 *
1685 * Call me once before you decode any lines.
1686 * I decode votstrs into a hash table at op_hash (which I create).
1687 * I return an error text or null.
1688 * If you want, I will include the 'synthetic' jXXX instructions in the
1689 * instruction table.
1690 * You must nominate metacharacters for eg DEC's "#", "@", "^".
1691 */
1692
1693 static const char *
1694 vip_begin (synthetic_too, immediate, indirect, displen)
1695 int synthetic_too; /* 1 means include jXXX op-codes. */
1696 char *immediate, *indirect, *displen;
1697 {
1698 const struct vot *vP; /* scan votstrs */
1699 const char *retval = 0; /* error text */
1700
1701 op_hash = hash_new ();
1702
1703 for (vP = votstrs; *vP->vot_name && !retval; vP++)
1704 retval = hash_insert (op_hash, vP->vot_name, (PTR) &vP->vot_detail);
1705
1706 if (synthetic_too)
1707 for (vP = synthetic_votstrs; *vP->vot_name && !retval; vP++)
1708 retval = hash_insert (op_hash, vP->vot_name, (PTR) &vP->vot_detail);
1709
1710 #ifndef CONST_TABLE
1711 vip_op_defaults (immediate, indirect, displen);
1712 #endif
1713
1714 return retval;
1715 }
1716
1717
1718 /*
1719 * v i p ( )
1720 *
1721 * This converts a string into a vax instruction.
1722 * The string must be a bare single instruction in dec-vax (with BSD4 frobs)
1723 * format.
1724 * It provides some error messages: at most one fatal error message (which
1725 * stops the scan) and at most one warning message for each operand.
1726 * The vax instruction is returned in exploded form, since we have no
1727 * knowledge of how you parse (or evaluate) your expressions.
1728 * We do however strip off and decode addressing modes and operation
1729 * mnemonic.
1730 *
1731 * The exploded instruction is returned to a struct vit of your choice.
1732 * #include "vax-inst.h" to know what a struct vit is.
1733 *
1734 * This function's value is a string. If it is not "" then an internal
1735 * logic error was found: read this code to assign meaning to the string.
1736 * No argument string should generate such an error string:
1737 * it means a bug in our code, not in the user's text.
1738 *
1739 * You MUST have called vip_begin() once before using this function.
1740 */
1741
1742 static void
1743 vip (vitP, instring)
1744 struct vit *vitP; /* We build an exploded instruction here. */
1745 char *instring; /* Text of a vax instruction: we modify. */
1746 {
1747 /* How to bit-encode this opcode. */
1748 struct vot_wot *vwP;
1749 /* 1/skip whitespace.2/scan vot_how */
1750 char *p;
1751 char *q;
1752 /* counts number of operands seen */
1753 unsigned char count;
1754 /* scan operands in struct vit */
1755 struct vop *operandp;
1756 /* error over all operands */
1757 char *alloperr;
1758 /* Remember char, (we clobber it with '\0' temporarily). */
1759 char c;
1760 /* Op-code of this instruction. */
1761 vax_opcodeT oc;
1762
1763 if (*instring == ' ')
1764 ++instring; /* Skip leading whitespace. */
1765 for (p = instring; *p && *p != ' '; p++);; /* MUST end in end-of-string or exactly 1 space. */
1766 /* Scanned up to end of operation-code. */
1767 /* Operation-code is ended with whitespace. */
1768 if (p - instring == 0)
1769 {
1770 vitP->vit_error = "No operator";
1771 count = 0;
1772 memset (vitP->vit_opcode, '\0', sizeof (vitP->vit_opcode));
1773 }
1774 else
1775 {
1776 c = *p;
1777 *p = '\0';
1778 /*
1779 * Here with instring pointing to what better be an op-name, and p
1780 * pointing to character just past that.
1781 * We trust instring points to an op-name, with no whitespace.
1782 */
1783 vwP = (struct vot_wot *) hash_find (op_hash, instring);
1784 *p = c; /* Restore char after op-code. */
1785 if (vwP == 0)
1786 {
1787 vitP->vit_error = "Unknown operator";
1788 count = 0;
1789 memset (vitP->vit_opcode, '\0', sizeof (vitP->vit_opcode));
1790 }
1791 else
1792 {
1793 /*
1794 * We found a match! So lets pick up as many operands as the
1795 * instruction wants, and even gripe if there are too many.
1796 * We expect comma to seperate each operand.
1797 * We let instring track the text, while p tracks a part of the
1798 * struct vot.
1799 */
1800 /*
1801 * The lines below know about 2-byte opcodes starting FD,FE or FF.
1802 * They also understand synthetic opcodes. Note:
1803 * we return 32 bits of opcode, including bucky bits, BUT
1804 * an opcode length is either 8 or 16 bits for vit_opcode_nbytes.
1805 */
1806 oc = vwP->vot_code; /* The op-code. */
1807 vitP->vit_opcode_nbytes = (oc & 0xFF) >= 0xFD ? 2 : 1;
1808 md_number_to_chars (vitP->vit_opcode, oc, 4);
1809 count = 0; /* no operands seen yet */
1810 instring = p; /* point just past operation code */
1811 alloperr = "";
1812 for (p = vwP->vot_how, operandp = vitP->vit_operand;
1813 !(alloperr && *alloperr) && *p;
1814 operandp++, p += 2)
1815 {
1816 /*
1817 * Here to parse one operand. Leave instring pointing just
1818 * past any one ',' that marks the end of this operand.
1819 */
1820 if (!p[1])
1821 as_fatal ("odd number of bytes in operand description");
1822 else if (*instring)
1823 {
1824 for (q = instring; (c = *q) && c != ','; q++)
1825 ;
1826 /*
1827 * Q points to ',' or '\0' that ends argument. C is that
1828 * character.
1829 */
1830 *q = 0;
1831 operandp->vop_width = p[1];
1832 operandp->vop_nbytes = vax_operand_width_size[p[1]];
1833 operandp->vop_access = p[0];
1834 vip_op (instring, operandp);
1835 *q = c; /* Restore input text. */
1836 if (operandp->vop_error)
1837 alloperr = "Bad operand";
1838 instring = q + (c ? 1 : 0); /* next operand (if any) */
1839 count++; /* won another argument, may have an operr */
1840 }
1841 else
1842 alloperr = "Not enough operands";
1843 }
1844 if (!*alloperr)
1845 {
1846 if (*instring == ' ')
1847 instring++; /* Skip whitespace. */
1848 if (*instring)
1849 alloperr = "Too many operands";
1850 }
1851 vitP->vit_error = alloperr;
1852 }
1853 }
1854 vitP->vit_operands = count;
1855 }
1856 \f
1857 #ifdef test
1858
1859 /*
1860 * Test program for above.
1861 */
1862
1863 struct vit myvit; /* build an exploded vax instruction here */
1864 char answer[100]; /* human types a line of vax assembler here */
1865 char *mybug; /* "" or an internal logic diagnostic */
1866 int mycount; /* number of operands */
1867 struct vop *myvop; /* scan operands from myvit */
1868 int mysynth; /* 1 means want synthetic opcodes. */
1869 char my_immediate[200];
1870 char my_indirect[200];
1871 char my_displen[200];
1872
1873 main ()
1874 {
1875 char *p;
1876
1877 printf ("0 means no synthetic instructions. ");
1878 printf ("Value for vip_begin? ");
1879 gets (answer);
1880 sscanf (answer, "%d", &mysynth);
1881 printf ("Synthetic opcodes %s be included.\n", mysynth ? "will" : "will not");
1882 printf ("enter immediate symbols eg enter # ");
1883 gets (my_immediate);
1884 printf ("enter indirect symbols eg enter @ ");
1885 gets (my_indirect);
1886 printf ("enter displen symbols eg enter ^ ");
1887 gets (my_displen);
1888 if (p = vip_begin (mysynth, my_immediate, my_indirect, my_displen))
1889 {
1890 error ("vip_begin=%s", p);
1891 }
1892 printf ("An empty input line will quit you from the vax instruction parser\n");
1893 for (;;)
1894 {
1895 printf ("vax instruction: ");
1896 fflush (stdout);
1897 gets (answer);
1898 if (!*answer)
1899 {
1900 break; /* out of for each input text loop */
1901 }
1902 vip (&myvit, answer);
1903 if (*myvit.vit_error)
1904 {
1905 printf ("ERR:\"%s\"\n", myvit.vit_error);
1906 }
1907 printf ("opcode=");
1908 for (mycount = myvit.vit_opcode_nbytes, p = myvit.vit_opcode;
1909 mycount;
1910 mycount--, p++
1911 )
1912 {
1913 printf ("%02x ", *p & 0xFF);
1914 }
1915 printf (" operand count=%d.\n", mycount = myvit.vit_operands);
1916 for (myvop = myvit.vit_operand; mycount; mycount--, myvop++)
1917 {
1918 printf ("mode=%xx reg=%xx ndx=%xx len='%c'=%c%c%d. expr=\"",
1919 myvop->vop_mode, myvop->vop_reg, myvop->vop_ndx,
1920 myvop->vop_short, myvop->vop_access, myvop->vop_width,
1921 myvop->vop_nbytes);
1922 for (p = myvop->vop_expr_begin; p <= myvop->vop_expr_end; p++)
1923 {
1924 putchar (*p);
1925 }
1926 printf ("\"\n");
1927 if (myvop->vop_error)
1928 {
1929 printf (" err:\"%s\"\n", myvop->vop_error);
1930 }
1931 if (myvop->vop_warn)
1932 {
1933 printf (" wrn:\"%s\"\n", myvop->vop_warn);
1934 }
1935 }
1936 }
1937 vip_end ();
1938 exit ();
1939 }
1940
1941 #endif /* #ifdef test */
1942
1943 /* end of vax_ins_parse.c */
1944
1945 /* vax_reg_parse.c - convert a VAX register name to a number */
1946
1947 /* Copyright (C) 1987 Free Software Foundation, Inc. A part of GNU. */
1948
1949 /*
1950 * v a x _ r e g _ p a r s e ( )
1951 *
1952 * Take 3 char.s, the last of which may be `\0` (non-existent)
1953 * and return the VAX register number that they represent.
1954 *
1955 * Return -1 if they don't form a register name. Good names return
1956 * a number from 0:15 inclusive.
1957 *
1958 * Case is not important in a name.
1959 *
1960 * Register names understood are:
1961 *
1962 * R0
1963 * R1
1964 * R2
1965 * R3
1966 * R4
1967 * R5
1968 * R6
1969 * R7
1970 * R8
1971 * R9
1972 * R10
1973 * R11
1974 * R12 AP
1975 * R13 FP
1976 * R14 SP
1977 * R15 PC
1978 *
1979 */
1980
1981 #include <ctype.h>
1982 #define AP (12)
1983 #define FP (13)
1984 #define SP (14)
1985 #define PC (15)
1986 \f
1987 int /* return -1 or 0:15 */
1988 vax_reg_parse (c1, c2, c3) /* 3 chars of register name */
1989 char c1, c2, c3; /* c3 == 0 if 2-character reg name */
1990 {
1991 int retval; /* return -1:15 */
1992
1993 retval = -1;
1994
1995 if (isupper (c1))
1996 c1 = tolower (c1);
1997 if (isupper (c2))
1998 c2 = tolower (c2);
1999 if (isdigit (c2) && c1 == 'r')
2000 {
2001 retval = c2 - '0';
2002 if (isdigit (c3))
2003 {
2004 retval = retval * 10 + c3 - '0';
2005 retval = (retval > 15) ? -1 : retval;
2006 /* clamp the register value to 1 hex digit */
2007 }
2008 else if (c3)
2009 retval = -1; /* c3 must be '\0' or a digit */
2010 }
2011 else if (c3) /* There are no three letter regs */
2012 retval = -1;
2013 else if (c2 == 'p')
2014 {
2015 switch (c1)
2016 {
2017 case 's':
2018 retval = SP;
2019 break;
2020 case 'f':
2021 retval = FP;
2022 break;
2023 case 'a':
2024 retval = AP;
2025 break;
2026 default:
2027 retval = -1;
2028 }
2029 }
2030 else if (c1 == 'p' && c2 == 'c')
2031 retval = PC;
2032 else
2033 retval = -1;
2034 return (retval);
2035 }
2036
2037 /*
2038 * v i p _ o p ( )
2039 *
2040 * Parse a vax operand in DEC assembler notation.
2041 * For speed, expect a string of whitespace to be reduced to a single ' '.
2042 * This is the case for GNU AS, and is easy for other DEC-compatible
2043 * assemblers.
2044 *
2045 * Knowledge about DEC VAX assembler operand notation lives here.
2046 * This doesn't even know what a register name is, except it believes
2047 * all register names are 2 or 3 characters, and lets vax_reg_parse() say
2048 * what number each name represents.
2049 * It does, however, know that PC, SP etc are special registers so it can
2050 * detect addressing modes that are silly for those registers.
2051 *
2052 * Where possible, it delivers 1 fatal or 1 warning message if the operand
2053 * is suspect. Exactly what we test for is still evolving.
2054 */
2055
2056 /*
2057 * B u g s
2058 *
2059 * Arg block.
2060 *
2061 * There were a number of 'mismatched argument type' bugs to vip_op.
2062 * The most general solution is to typedef each (of many) arguments.
2063 * We used instead a typedef'd argument block. This is less modular
2064 * than using seperate return pointers for each result, but runs faster
2065 * on most engines, and seems to keep programmers happy. It will have
2066 * to be done properly if we ever want to use vip_op as a general-purpose
2067 * module (it was designed to be).
2068 *
2069 * G^
2070 *
2071 * Doesn't support DEC "G^" format operands. These always take 5 bytes
2072 * to express, and code as modes 8F or 9F. Reason: "G^" deprives you of
2073 * optimising to (say) a "B^" if you are lucky in the way you link.
2074 * When someone builds a linker smart enough to convert "G^" to "B^", "W^"
2075 * whenever possible, then we should implement it.
2076 * If there is some other use for "G^", feel free to code it in!
2077 *
2078 *
2079 * speed
2080 *
2081 * If I nested if()s more, I could avoid testing (*err) which would save
2082 * time, space and page faults. I didn't nest all those if()s for clarity
2083 * and because I think the mode testing can be re-arranged 1st to test the
2084 * commoner constructs 1st. Does anybody have statistics on this?
2085 *
2086 *
2087 *
2088 * error messages
2089 *
2090 * In future, we should be able to 'compose' error messages in a scratch area
2091 * and give the user MUCH more informative error messages. Although this takes
2092 * a little more code at run-time, it will make this module much more self-
2093 * documenting. As an example of what sucks now: most error messages have
2094 * hardwired into them the DEC VAX metacharacters "#^@" which are nothing like
2095 * the Un*x characters "$`*", that most users will expect from this AS.
2096 */
2097 \f
2098 /*
2099 * The input is a string, ending with '\0'.
2100 *
2101 * We also require a 'hint' of what kind of operand is expected: so
2102 * we can remind caller not to write into literals for instance.
2103 *
2104 * The output is a skeletal instruction.
2105 *
2106 * The algorithm has two parts.
2107 * 1. extract the syntactic features (parse off all the @^#-()+[] mode crud);
2108 * 2. express the @^#-()+[] as some parameters suited to further analysis.
2109 *
2110 * 2nd step is where we detect the googles of possible invalid combinations
2111 * a human (or compiler) might write. Note that if we do a half-way
2112 * decent assembler, we don't know how long to make (eg) displacement
2113 * fields when we first meet them (because they may not have defined values).
2114 * So we must wait until we know how many bits are needed for each address,
2115 * then we can know both length and opcodes of instructions.
2116 * For reason(s) above, we will pass to our caller a 'broken' instruction
2117 * of these major components, from which our caller can generate instructions:
2118 * - displacement length I^ S^ L^ B^ W^ unspecified
2119 * - mode (many)
2120 * - register R0-R15 or absent
2121 * - index register R0-R15 or absent
2122 * - expression text what we don't parse
2123 * - error text(s) why we couldn't understand the operand
2124 */
2125
2126 /*
2127 * To decode output of this, test errtxt. If errtxt[0] == '\0', then
2128 * we had no errors that prevented parsing. Also, if we ever report
2129 * an internal bug, errtxt[0] is set non-zero. So one test tells you
2130 * if the other outputs are to be taken seriously.
2131 */
2132
2133
2134 /*
2135 * Because this module is useful for both VMS and UN*X style assemblers
2136 * and because of the variety of UN*X assemblers we must recognise
2137 * the different conventions for assembler operand notation. For example
2138 * VMS says "#42" for immediate mode, while most UN*X say "$42".
2139 * We permit arbitrary sets of (single) characters to represent the
2140 * 3 concepts that DEC writes '#', '@', '^'.
2141 */
2142
2143 /* character tests */
2144 #define VIP_IMMEDIATE 01 /* Character is like DEC # */
2145 #define VIP_INDIRECT 02 /* Char is like DEC @ */
2146 #define VIP_DISPLEN 04 /* Char is like DEC ^ */
2147
2148 #define IMMEDIATEP(c) (vip_metacharacters [(c)&0xff]&VIP_IMMEDIATE)
2149 #define INDIRECTP(c) (vip_metacharacters [(c)&0xff]&VIP_INDIRECT)
2150 #define DISPLENP(c) (vip_metacharacters [(c)&0xff]&VIP_DISPLEN)
2151
2152 /* We assume 8 bits per byte. Use vip_op_defaults() to set these up BEFORE we
2153 * are ever called.
2154 */
2155
2156 #if defined(CONST_TABLE)
2157 #define _ 0,
2158 #define I VIP_IMMEDIATE,
2159 #define S VIP_INDIRECT,
2160 #define D VIP_DISPLEN,
2161 static const char
2162 vip_metacharacters[256] =
2163 {
2164 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ /* ^@ ^A ^B ^C ^D ^E ^F ^G ^H ^I ^J ^K ^L ^M ^N ^O*/
2165 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ /* ^P ^Q ^R ^S ^T ^U ^V ^W ^X ^Y ^Z ^[ ^\ ^] ^^ ^_ */
2166 _ _ _ _ I _ _ _ _ _ S _ _ _ _ _ /* sp ! " # $ % & ' ( ) * + , - . / */
2167 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ /*0 1 2 3 4 5 6 7 8 9 : ; < = > ?*/
2168 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ /*@ A B C D E F G H I J K L M N O*/
2169 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ /*P Q R S T U V W X Y Z [ \ ] ^ _*/
2170 D _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ /*` a b c d e f g h i j k l m n o*/
2171 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ /*p q r s t u v w x y z { | } ~ ^?*/
2172
2173 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
2174 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
2175 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
2176 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
2177 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
2178 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
2179 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
2180 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
2181 };
2182 #undef _
2183 #undef I
2184 #undef S
2185 #undef D
2186 #else
2187 static char vip_metacharacters[256];
2188
2189 static void
2190 vip_op_1 (bit, syms)
2191 int bit;
2192 char *syms;
2193 {
2194 unsigned char t;
2195
2196 while (t = *syms++)
2197 vip_metacharacters[t] |= bit;
2198 }
2199
2200 /* Can be called any time. More arguments may appear in future. */
2201 static void
2202 vip_op_defaults (immediate, indirect, displen)
2203 char *immediate;
2204 char *indirect;
2205 char *displen;
2206 {
2207 vip_op_1 (VIP_IMMEDIATE, immediate);
2208 vip_op_1 (VIP_INDIRECT, indirect);
2209 vip_op_1 (VIP_DISPLEN, displen);
2210 }
2211
2212 #endif
2213 \f
2214
2215 /*
2216 * Dec defines the semantics of address modes (and values)
2217 * by a two-letter code, explained here.
2218 *
2219 * letter 1: access type
2220 *
2221 * a address calculation - no data access, registers forbidden
2222 * b branch displacement
2223 * m read - let go of bus - write back "modify"
2224 * r read
2225 * v bit field address: like 'a' but registers are OK
2226 * w write
2227 * space no operator (eg ".long foo") [our convention]
2228 *
2229 * letter 2: data type (i.e. width, alignment)
2230 *
2231 * b byte
2232 * d double precision floating point (D format)
2233 * f single precision floating point (F format)
2234 * g G format floating
2235 * h H format floating
2236 * l longword
2237 * o octaword
2238 * q quadword
2239 * w word
2240 * ? simple synthetic branch operand
2241 * - unconditional synthetic JSB/JSR operand
2242 * ! complex synthetic branch operand
2243 *
2244 * The '-?!' letter 2's are not for external consumption. They are used
2245 * for various assemblers. Generally, all unknown widths are assumed 0.
2246 * We don't limit your choice of width character.
2247 *
2248 * DEC operands are hard work to parse. For example, '@' as the first
2249 * character means indirect (deferred) mode but elswhere it is a shift
2250 * operator.
2251 * The long-winded explanation of how this is supposed to work is
2252 * cancelled. Read a DEC vax manual.
2253 * We try hard not to parse anything that MIGHT be part of the expression
2254 * buried in that syntax. For example if we see @...(Rn) we don't check
2255 * for '-' before the '(' because mode @-(Rn) does not exist.
2256 *
2257 * After parsing we have:
2258 *
2259 * at 1 if leading '@' (or Un*x '*')
2260 * len takes one value from " bilsw". eg B^ -> 'b'.
2261 * hash 1 if leading '#' (or Un*x '$')
2262 * expr_begin, expr_end the expression we did not parse
2263 * even though we don't interpret it, we make use
2264 * of its presence or absence.
2265 * sign -1: -(Rn) 0: absent +1: (Rn)+
2266 * paren 1 if () are around register
2267 * reg major register number 0:15 -1 means absent
2268 * ndx index register number 0:15 -1 means absent
2269 *
2270 * Again, I dare not explain it: just trace ALL the code!
2271 */
2272 \f
2273 static void
2274 vip_op (optext, vopP)
2275 /* user's input string e.g.: "@B^foo@bar(AP)[FP]:" */
2276 char *optext;
2277 /* Input fields: vop_access, vop_width.
2278 Output fields: _ndx, _reg, _mode, _short, _warn,
2279 _error _expr_begin, _expr_end, _nbytes.
2280 vop_nbytes : number of bytes in a datum. */
2281 struct vop *vopP;
2282 {
2283 /* track operand text forward */
2284 char *p;
2285 /* track operand text backward */
2286 char *q;
2287 /* 1 if leading '@' ('*') seen */
2288 int at;
2289 /* one of " bilsw" */
2290 char len;
2291 /* 1 if leading '#' ('$') seen */
2292 int hash;
2293 /* -1, 0 or +1 */
2294 int sign = 0;
2295 /* 1 if () surround register */
2296 int paren = 0;
2297 /* register number, -1:absent */
2298 int reg = 0;
2299 /* index register number -1:absent */
2300 int ndx = 0;
2301 /* report illegal operand, ""==OK */
2302 /* " " is a FAKE error: means we won */
2303 /* ANY err that begins with ' ' is a fake. */
2304 /* " " is converted to "" before return */
2305 char *err;
2306 /* warn about weird modes pf address */
2307 char *wrn;
2308 /* preserve q in case we backup */
2309 char *oldq = NULL;
2310 /* build up 4-bit operand mode here */
2311 /* note: index mode is in ndx, this is */
2312 /* the major mode of operand address */
2313 int mode = 0;
2314 /*
2315 * Notice how we move wrong-arg-type bugs INSIDE this module: if we
2316 * get the types wrong below, we lose at compile time rather than at
2317 * lint or run time.
2318 */
2319 char access; /* vop_access. */
2320 char width; /* vop_width. */
2321
2322 access = vopP->vop_access;
2323 width = vopP->vop_width;
2324 /* None of our code bugs (yet), no user text errors, no warnings
2325 even. */
2326 err = wrn = 0;
2327
2328 p = optext;
2329
2330 if (*p == ' ') /* Expect all whitespace reduced to ' '. */
2331 p++; /* skip over whitespace */
2332
2333 if (at = INDIRECTP (*p))
2334 { /* 1 if *p=='@'(or '*' for Un*x) */
2335 p++; /* at is determined */
2336 if (*p == ' ') /* Expect all whitespace reduced to ' '. */
2337 p++; /* skip over whitespace */
2338 }
2339
2340 /*
2341 * This code is subtle. It tries to detect all legal (letter)'^'
2342 * but it doesn't waste time explicitly testing for premature '\0' because
2343 * this case is rejected as a mismatch against either (letter) or '^'.
2344 */
2345 {
2346 char c;
2347
2348 c = *p;
2349 if (isupper (c))
2350 c = tolower (c);
2351 if (DISPLENP (p[1]) && strchr ("bilws", len = c))
2352 p += 2; /* skip (letter) '^' */
2353 else /* no (letter) '^' seen */
2354 len = ' '; /* len is determined */
2355 }
2356
2357 if (*p == ' ') /* Expect all whitespace reduced to ' '. */
2358 p++; /* skip over whitespace */
2359
2360 if (hash = IMMEDIATEP (*p)) /* 1 if *p=='#' ('$' for Un*x) */
2361 p++; /* hash is determined */
2362
2363 /*
2364 * p points to what may be the beginning of an expression.
2365 * We have peeled off the front all that is peelable.
2366 * We know at, len, hash.
2367 *
2368 * Lets point q at the end of the text and parse that (backwards).
2369 */
2370
2371 for (q = p; *q; q++)
2372 ;
2373 q--; /* now q points at last char of text */
2374 \f
2375 if (*q == ' ' && q >= p) /* Expect all whitespace reduced to ' '. */
2376 q--;
2377 /* reverse over whitespace, but don't */
2378 /* run back over *p */
2379
2380 /*
2381 * As a matter of policy here, we look for [Rn], although both Rn and S^#
2382 * forbid [Rn]. This is because it is easy, and because only a sick
2383 * cyborg would have [...] trailing an expression in a VAX-like assembler.
2384 * A meticulous parser would first check for Rn followed by '(' or '['
2385 * and not parse a trailing ']' if it found another. We just ban expressions
2386 * ending in ']'.
2387 */
2388 if (*q == ']')
2389 {
2390 while (q >= p && *q != '[')
2391 q--;
2392 /* either q<p or we got matching '[' */
2393 if (q < p)
2394 err = "no '[' to match ']'";
2395 else
2396 {
2397 /*
2398 * Confusers like "[]" will eventually lose with a bad register
2399 * name error. So again we don't need to check for early '\0'.
2400 */
2401 if (q[3] == ']')
2402 ndx = vax_reg_parse (q[1], q[2], 0);
2403 else if (q[4] == ']')
2404 ndx = vax_reg_parse (q[1], q[2], q[3]);
2405 else
2406 ndx = -1;
2407 /*
2408 * Since we saw a ']' we will demand a register name in the [].
2409 * If luser hasn't given us one: be rude.
2410 */
2411 if (ndx < 0)
2412 err = "bad register in []";
2413 else if (ndx == PC)
2414 err = "[PC] index banned";
2415 else
2416 q--; /* point q just before "[...]" */
2417 }
2418 }
2419 else
2420 ndx = -1; /* no ']', so no iNDeX register */
2421
2422 /*
2423 * If err = "..." then we lost: run away.
2424 * Otherwise ndx == -1 if there was no "[...]".
2425 * Otherwise, ndx is index register number, and q points before "[...]".
2426 */
2427 \f
2428 if (*q == ' ' && q >= p) /* Expect all whitespace reduced to ' '. */
2429 q--;
2430 /* reverse over whitespace, but don't */
2431 /* run back over *p */
2432 if (!err || !*err)
2433 {
2434 sign = 0; /* no ()+ or -() seen yet */
2435
2436 if (q > p + 3 && *q == '+' && q[-1] == ')')
2437 {
2438 sign = 1; /* we saw a ")+" */
2439 q--; /* q points to ')' */
2440 }
2441
2442 if (*q == ')' && q > p + 2)
2443 {
2444 paren = 1; /* assume we have "(...)" */
2445 while (q >= p && *q != '(')
2446 q--;
2447 /* either q<p or we got matching '(' */
2448 if (q < p)
2449 err = "no '(' to match ')'";
2450 else
2451 {
2452 /*
2453 * Confusers like "()" will eventually lose with a bad register
2454 * name error. So again we don't need to check for early '\0'.
2455 */
2456 if (q[3] == ')')
2457 reg = vax_reg_parse (q[1], q[2], 0);
2458 else if (q[4] == ')')
2459 reg = vax_reg_parse (q[1], q[2], q[3]);
2460 else
2461 reg = -1;
2462 /*
2463 * Since we saw a ')' we will demand a register name in the ')'.
2464 * This is nasty: why can't our hypothetical assembler permit
2465 * parenthesised expressions? BECAUSE I AM LAZY! That is why.
2466 * Abuse luser if we didn't spy a register name.
2467 */
2468 if (reg < 0)
2469 {
2470 /* JF allow parenthasized expressions. I hope this works */
2471 paren = 0;
2472 while (*q != ')')
2473 q++;
2474 /* err = "unknown register in ()"; */
2475 }
2476 else
2477 q--; /* point just before '(' of "(...)" */
2478 /*
2479 * If err == "..." then we lost. Run away.
2480 * Otherwise if reg >= 0 then we saw (Rn).
2481 */
2482 }
2483 /*
2484 * If err == "..." then we lost.
2485 * Otherwise paren==1 and reg = register in "()".
2486 */
2487 }
2488 else
2489 paren = 0;
2490 /*
2491 * If err == "..." then we lost.
2492 * Otherwise, q points just before "(Rn)", if any.
2493 * If there was a "(...)" then paren==1, and reg is the register.
2494 */
2495 \f
2496 /*
2497 * We should only seek '-' of "-(...)" if:
2498 * we saw "(...)" paren == 1
2499 * we have no errors so far ! *err
2500 * we did not see '+' of "(...)+" sign < 1
2501 * We don't check len. We want a specific error message later if
2502 * user tries "x^...-(Rn)". This is a feature not a bug.
2503 */
2504 if (!err || !*err)
2505 {
2506 if (paren && sign < 1)/* !sign is adequate test */
2507 {
2508 if (*q == '-')
2509 {
2510 sign = -1;
2511 q--;
2512 }
2513 }
2514 /*
2515 * We have back-tracked over most
2516 * of the crud at the end of an operand.
2517 * Unless err, we know: sign, paren. If paren, we know reg.
2518 * The last case is of an expression "Rn".
2519 * This is worth hunting for if !err, !paren.
2520 * We wouldn't be here if err.
2521 * We remember to save q, in case we didn't want "Rn" anyway.
2522 */
2523 if (!paren)
2524 {
2525 if (*q == ' ' && q >= p) /* Expect all whitespace reduced to ' '. */
2526 q--;
2527 /* reverse over whitespace, but don't */
2528 /* run back over *p */
2529 if (q > p && q < p + 3) /* room for Rn or Rnn exactly? */
2530 reg = vax_reg_parse (p[0], p[1], q < p + 2 ? 0 : p[2]);
2531 else
2532 reg = -1; /* always comes here if no register at all */
2533 /*
2534 * Here with a definitive reg value.
2535 */
2536 if (reg >= 0)
2537 {
2538 oldq = q;
2539 q = p - 1;
2540 }
2541 }
2542 }
2543 }
2544 /*
2545 * have reg. -1:absent; else 0:15
2546 */
2547
2548 /*
2549 * We have: err, at, len, hash, ndx, sign, paren, reg.
2550 * Also, any remaining expression is from *p through *q inclusive.
2551 * Should there be no expression, q==p-1. So expression length = q-p+1.
2552 * This completes the first part: parsing the operand text.
2553 */
2554 \f
2555 /*
2556 * We now want to boil the data down, checking consistency on the way.
2557 * We want: len, mode, reg, ndx, err, p, q, wrn, bug.
2558 * We will deliver a 4-bit reg, and a 4-bit mode.
2559 */
2560
2561 /*
2562 * Case of branch operand. Different. No L^B^W^I^S^ allowed for instance.
2563 *
2564 * in: at ?
2565 * len ?
2566 * hash ?
2567 * p:q ?
2568 * sign ?
2569 * paren ?
2570 * reg ?
2571 * ndx ?
2572 *
2573 * out: mode 0
2574 * reg -1
2575 * len ' '
2576 * p:q whatever was input
2577 * ndx -1
2578 * err " " or error message, and other outputs trashed
2579 */
2580 /* branch operands have restricted forms */
2581 if ((!err || !*err) && access == 'b')
2582 {
2583 if (at || hash || sign || paren || ndx >= 0 || reg >= 0 || len != ' ')
2584 err = "invalid branch operand";
2585 else
2586 err = " ";
2587 }
2588 \f
2589 /* Since nobody seems to use it: comment this 'feature'(?) out for now. */
2590 #ifdef NEVER
2591 /*
2592 * Case of stand-alone operand. e.g. ".long foo"
2593 *
2594 * in: at ?
2595 * len ?
2596 * hash ?
2597 * p:q ?
2598 * sign ?
2599 * paren ?
2600 * reg ?
2601 * ndx ?
2602 *
2603 * out: mode 0
2604 * reg -1
2605 * len ' '
2606 * p:q whatever was input
2607 * ndx -1
2608 * err " " or error message, and other outputs trashed
2609 */
2610 if ((!err || !*err) && access == ' ')
2611 {
2612 if (at)
2613 err = "address prohibits @";
2614 else if (hash)
2615 err = "address prohibits #";
2616 else if (sign)
2617 {
2618 if (sign < 0)
2619 err = "address prohibits -()";
2620 else
2621 err = "address prohibits ()+";
2622 }
2623 else if (paren)
2624 err = "address prohibits ()";
2625 else if (ndx >= 0)
2626 err = "address prohibits []";
2627 else if (reg >= 0)
2628 err = "address prohibits register";
2629 else if (len != ' ')
2630 err = "address prohibits displacement length specifier";
2631 else
2632 {
2633 err = " "; /* succeed */
2634 mode = 0;
2635 }
2636 }
2637 #endif /*#Ifdef NEVER*/
2638 \f
2639 /*
2640 * Case of S^#.
2641 *
2642 * in: at 0
2643 * len 's' definition
2644 * hash 1 demand
2645 * p:q demand not empty
2646 * sign 0 by paren==0
2647 * paren 0 by "()" scan logic because "S^" seen
2648 * reg -1 or nn by mistake
2649 * ndx -1
2650 *
2651 * out: mode 0
2652 * reg -1
2653 * len 's'
2654 * exp
2655 * ndx -1
2656 */
2657 if ((!err || !*err) && len == 's')
2658 {
2659 if (!hash || paren || at || ndx >= 0)
2660 err = "invalid operand of S^#";
2661 else
2662 {
2663 if (reg >= 0)
2664 {
2665 /*
2666 * SHIT! we saw S^#Rnn ! put the Rnn back in
2667 * expression. KLUDGE! Use oldq so we don't
2668 * need to know exact length of reg name.
2669 */
2670 q = oldq;
2671 reg = 0;
2672 }
2673 /*
2674 * We have all the expression we will ever get.
2675 */
2676 if (p > q)
2677 err = "S^# needs expression";
2678 else if (access == 'r')
2679 {
2680 err = " "; /* WIN! */
2681 mode = 0;
2682 }
2683 else
2684 err = "S^# may only read-access";
2685 }
2686 }
2687 \f
2688 /*
2689 * Case of -(Rn), which is weird case.
2690 *
2691 * in: at 0
2692 * len '
2693 * hash 0
2694 * p:q q<p
2695 * sign -1 by definition
2696 * paren 1 by definition
2697 * reg present by definition
2698 * ndx optional
2699 *
2700 * out: mode 7
2701 * reg present
2702 * len ' '
2703 * exp "" enforce empty expression
2704 * ndx optional warn if same as reg
2705 */
2706 if ((!err || !*err) && sign < 0)
2707 {
2708 if (len != ' ' || hash || at || p <= q)
2709 err = "invalid operand of -()";
2710 else
2711 {
2712 err = " "; /* win */
2713 mode = 7;
2714 if (reg == PC)
2715 wrn = "-(PC) unpredictable";
2716 else if (reg == ndx)
2717 wrn = "[]index same as -()register: unpredictable";
2718 }
2719 }
2720 \f
2721 /*
2722 * We convert "(Rn)" to "@Rn" for our convenience.
2723 * (I hope this is convenient: has someone got a better way to parse this?)
2724 * A side-effect of this is that "@Rn" is a valid operand.
2725 */
2726 if (paren && !sign && !hash && !at && len == ' ' && p > q)
2727 {
2728 at = 1;
2729 paren = 0;
2730 }
2731
2732 /*
2733 * Case of (Rn)+, which is slightly different.
2734 *
2735 * in: at
2736 * len ' '
2737 * hash 0
2738 * p:q q<p
2739 * sign +1 by definition
2740 * paren 1 by definition
2741 * reg present by definition
2742 * ndx optional
2743 *
2744 * out: mode 8+@
2745 * reg present
2746 * len ' '
2747 * exp "" enforce empty expression
2748 * ndx optional warn if same as reg
2749 */
2750 if ((!err || !*err) && sign > 0)
2751 {
2752 if (len != ' ' || hash || p <= q)
2753 err = "invalid operand of ()+";
2754 else
2755 {
2756 err = " "; /* win */
2757 mode = 8 + (at ? 1 : 0);
2758 if (reg == PC)
2759 wrn = "(PC)+ unpredictable";
2760 else if (reg == ndx)
2761 wrn = "[]index same as ()+register: unpredictable";
2762 }
2763 }
2764 \f
2765 /*
2766 * Case of #, without S^.
2767 *
2768 * in: at
2769 * len ' ' or 'i'
2770 * hash 1 by definition
2771 * p:q
2772 * sign 0
2773 * paren 0
2774 * reg absent
2775 * ndx optional
2776 *
2777 * out: mode 8+@
2778 * reg PC
2779 * len ' ' or 'i'
2780 * exp
2781 * ndx optional
2782 */
2783 if ((!err || !*err) && hash)
2784 {
2785 if (len != 'i' && len != ' ')
2786 err = "# conflicts length";
2787 else if (paren)
2788 err = "# bars register";
2789 else
2790 {
2791 if (reg >= 0)
2792 {
2793 /*
2794 * SHIT! we saw #Rnn! Put the Rnn back into the expression.
2795 * By using oldq, we don't need to know how long Rnn was.
2796 * KLUDGE!
2797 */
2798 q = oldq;
2799 reg = -1; /* no register any more */
2800 }
2801 err = " "; /* win */
2802
2803 /* JF a bugfix, I think! */
2804 if (at && access == 'a')
2805 vopP->vop_nbytes = 4;
2806
2807 mode = (at ? 9 : 8);
2808 reg = PC;
2809 if ((access == 'm' || access == 'w') && !at)
2810 wrn = "writing or modifying # is unpredictable";
2811 }
2812 }
2813 /*
2814 * If !*err, then sign == 0
2815 * hash == 0
2816 */
2817 \f
2818 /*
2819 * Case of Rn. We seperate this one because it has a few special
2820 * errors the remaining modes lack.
2821 *
2822 * in: at optional
2823 * len ' '
2824 * hash 0 by program logic
2825 * p:q empty
2826 * sign 0 by program logic
2827 * paren 0 by definition
2828 * reg present by definition
2829 * ndx optional
2830 *
2831 * out: mode 5+@
2832 * reg present
2833 * len ' ' enforce no length
2834 * exp "" enforce empty expression
2835 * ndx optional warn if same as reg
2836 */
2837 if ((!err || !*err) && !paren && reg >= 0)
2838 {
2839 if (len != ' ')
2840 err = "length not needed";
2841 else if (at)
2842 {
2843 err = " "; /* win */
2844 mode = 6; /* @Rn */
2845 }
2846 else if (ndx >= 0)
2847 err = "can't []index a register, because it has no address";
2848 else if (access == 'a')
2849 err = "a register has no address";
2850 else
2851 {
2852 /*
2853 * Idea here is to detect from length of datum
2854 * and from register number if we will touch PC.
2855 * Warn if we do.
2856 * vop_nbytes is number of bytes in operand.
2857 * Compute highest byte affected, compare to PC0.
2858 */
2859 if ((vopP->vop_nbytes + reg * 4) > 60)
2860 wrn = "PC part of operand unpredictable";
2861 err = " "; /* win */
2862 mode = 5; /* Rn */
2863 }
2864 }
2865 /*
2866 * If !*err, sign == 0
2867 * hash == 0
2868 * paren == 1 OR reg==-1
2869 */
2870 \f
2871 /*
2872 * Rest of cases fit into one bunch.
2873 *
2874 * in: at optional
2875 * len ' ' or 'b' or 'w' or 'l'
2876 * hash 0 by program logic
2877 * p:q expected (empty is not an error)
2878 * sign 0 by program logic
2879 * paren optional
2880 * reg optional
2881 * ndx optional
2882 *
2883 * out: mode 10 + @ + len
2884 * reg optional
2885 * len ' ' or 'b' or 'w' or 'l'
2886 * exp maybe empty
2887 * ndx optional warn if same as reg
2888 */
2889 if (!err || !*err)
2890 {
2891 err = " "; /* win (always) */
2892 mode = 10 + (at ? 1 : 0);
2893 switch (len)
2894 {
2895 case 'l':
2896 mode += 2;
2897 case 'w':
2898 mode += 2;
2899 case ' ': /* assumed B^ until our caller changes it */
2900 case 'b':
2901 break;
2902 }
2903 }
2904
2905 /*
2906 * here with completely specified mode
2907 * len
2908 * reg
2909 * expression p,q
2910 * ndx
2911 */
2912
2913 if (*err == ' ')
2914 err = 0; /* " " is no longer an error */
2915
2916 vopP->vop_mode = mode;
2917 vopP->vop_reg = reg;
2918 vopP->vop_short = len;
2919 vopP->vop_expr_begin = p;
2920 vopP->vop_expr_end = q;
2921 vopP->vop_ndx = ndx;
2922 vopP->vop_error = err;
2923 vopP->vop_warn = wrn;
2924 }
2925 \f
2926 /*
2927
2928 Summary of vip_op outputs.
2929
2930 mode reg len ndx
2931 (Rn) => @Rn
2932 {@}Rn 5+@ n ' ' optional
2933 branch operand 0 -1 ' ' -1
2934 S^#foo 0 -1 's' -1
2935 -(Rn) 7 n ' ' optional
2936 {@}(Rn)+ 8+@ n ' ' optional
2937 {@}#foo, no S^ 8+@ PC " i" optional
2938 {@}{q^}{(Rn)} 10+@+q option " bwl" optional
2939
2940 */
2941 \f
2942 #ifdef TEST /* #Define to use this testbed. */
2943
2944 /*
2945 * Follows a test program for this function.
2946 * We declare arrays non-local in case some of our tiny-minded machines
2947 * default to small stacks. Also, helps with some debuggers.
2948 */
2949
2950 #include <stdio.h>
2951
2952 char answer[100]; /* human types into here */
2953 char *p; /* */
2954 char *myerr;
2955 char *mywrn;
2956 char *mybug;
2957 char myaccess;
2958 char mywidth;
2959 char mymode;
2960 char myreg;
2961 char mylen;
2962 char *myleft;
2963 char *myright;
2964 char myndx;
2965 int my_operand_length;
2966 char my_immediate[200];
2967 char my_indirect[200];
2968 char my_displen[200];
2969
2970 main ()
2971 {
2972 printf ("enter immediate symbols eg enter # ");
2973 gets (my_immediate);
2974 printf ("enter indirect symbols eg enter @ ");
2975 gets (my_indirect);
2976 printf ("enter displen symbols eg enter ^ ");
2977 gets (my_displen);
2978 vip_op_defaults (my_immediate, my_indirect, my_displen);
2979 for (;;)
2980 {
2981 printf ("access,width (eg 'ab' or 'wh') [empty line to quit] : ");
2982 fflush (stdout);
2983 gets (answer);
2984 if (!answer[0])
2985 exit (0);
2986 myaccess = answer[0];
2987 mywidth = answer[1];
2988 switch (mywidth)
2989 {
2990 case 'b':
2991 my_operand_length = 1;
2992 break;
2993 case 'd':
2994 my_operand_length = 8;
2995 break;
2996 case 'f':
2997 my_operand_length = 4;
2998 break;
2999 case 'g':
3000 my_operand_length = 16;
3001 break;
3002 case 'h':
3003 my_operand_length = 32;
3004 break;
3005 case 'l':
3006 my_operand_length = 4;
3007 break;
3008 case 'o':
3009 my_operand_length = 16;
3010 break;
3011 case 'q':
3012 my_operand_length = 8;
3013 break;
3014 case 'w':
3015 my_operand_length = 2;
3016 break;
3017 case '!':
3018 case '?':
3019 case '-':
3020 my_operand_length = 0;
3021 break;
3022
3023 default:
3024 my_operand_length = 2;
3025 printf ("I dn't understand access width %c\n", mywidth);
3026 break;
3027 }
3028 printf ("VAX assembler instruction operand: ");
3029 fflush (stdout);
3030 gets (answer);
3031 mybug = vip_op (answer, myaccess, mywidth, my_operand_length,
3032 &mymode, &myreg, &mylen, &myleft, &myright, &myndx,
3033 &myerr, &mywrn);
3034 if (*myerr)
3035 {
3036 printf ("error: \"%s\"\n", myerr);
3037 if (*mybug)
3038 printf (" bug: \"%s\"\n", mybug);
3039 }
3040 else
3041 {
3042 if (*mywrn)
3043 printf ("warning: \"%s\"\n", mywrn);
3044 mumble ("mode", mymode);
3045 mumble ("register", myreg);
3046 mumble ("index", myndx);
3047 printf ("width:'%c' ", mylen);
3048 printf ("expression: \"");
3049 while (myleft <= myright)
3050 putchar (*myleft++);
3051 printf ("\"\n");
3052 }
3053 }
3054 }
3055
3056 mumble (text, value)
3057 char *text;
3058 int value;
3059 {
3060 printf ("%s:", text);
3061 if (value >= 0)
3062 printf ("%xx", value);
3063 else
3064 printf ("ABSENT");
3065 printf (" ");
3066 }
3067
3068 #endif /* ifdef TEST */
3069
3070 /* end: vip_op.c */
3071
3072 const int md_short_jump_size = 3;
3073 const int md_long_jump_size = 6;
3074 const int md_reloc_size = 8; /* Size of relocation record */
3075
3076 void
3077 md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
3078 char *ptr;
3079 addressT from_addr, to_addr;
3080 fragS *frag;
3081 symbolS *to_symbol;
3082 {
3083 valueT offset;
3084
3085 offset = to_addr - (from_addr + 1);
3086 *ptr++ = 0x31;
3087 md_number_to_chars (ptr, offset, 2);
3088 }
3089
3090 void
3091 md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
3092 char *ptr;
3093 addressT from_addr, to_addr;
3094 fragS *frag;
3095 symbolS *to_symbol;
3096 {
3097 valueT offset;
3098
3099 offset = to_addr - S_GET_VALUE (to_symbol);
3100 *ptr++ = 0x17;
3101 *ptr++ = 0x9F;
3102 md_number_to_chars (ptr, offset, 4);
3103 fix_new (frag, ptr - frag->fr_literal, 4, to_symbol, (long) 0, 0, NO_RELOC);
3104 }
3105 \f
3106 #ifdef OBJ_VMS
3107 CONST char *md_shortopts = "d:STt:V+1h:Hv:";
3108 #else
3109 CONST char *md_shortopts = "d:STt:V";
3110 #endif
3111 struct option md_longopts[] = {
3112 {NULL, no_argument, NULL, 0}
3113 };
3114 size_t md_longopts_size = sizeof(md_longopts);
3115
3116 int
3117 md_parse_option (c, arg)
3118 int c;
3119 char *arg;
3120 {
3121 switch (c)
3122 {
3123 case 'S':
3124 as_warn ("SYMBOL TABLE not implemented");
3125 break;
3126
3127 case 'T':
3128 as_warn ("TOKEN TRACE not implemented");
3129 break;
3130
3131 case 'd':
3132 as_warn ("Displacement length %s ignored!", arg);
3133 break;
3134
3135 case 't':
3136 as_warn ("I don't need or use temp. file \"%s\".", arg);
3137 break;
3138
3139 case 'V':
3140 as_warn ("I don't use an interpass file! -V ignored");
3141 break;
3142
3143 #ifdef OBJ_VMS
3144 case '+': /* For g++. Hash any name > 31 chars long. */
3145 flag_hash_long_names = 1;
3146 break;
3147
3148 case '1': /* For backward compatibility */
3149 flag_one = 1;
3150 break;
3151
3152 case 'H': /* Show new symbol after hash truncation */
3153 flag_show_after_trunc = 1;
3154 break;
3155
3156 case 'h': /* No hashing of mixed-case names */
3157 {
3158 extern char vms_name_mapping;
3159 vms_name_mapping = atoi (arg);
3160 flag_no_hash_mixed_case = 1;
3161 }
3162 break;
3163
3164 case 'v':
3165 {
3166 extern char *compiler_version_string;
3167 compiler_version_string = arg;
3168 }
3169 break;
3170 #endif
3171
3172 default:
3173 return 0;
3174 }
3175
3176 return 1;
3177 }
3178
3179 void
3180 md_show_usage (stream)
3181 FILE *stream;
3182 {
3183 fprintf(stream, "\
3184 VAX options:\n\
3185 -d LENGTH ignored\n\
3186 -J ignored\n\
3187 -S ignored\n\
3188 -t FILE ignored\n\
3189 -T ignored\n\
3190 -V ignored\n");
3191 #ifdef OBJ_VMS
3192 fprintf (stream, "\
3193 -+ hash names longer than 31 characters\n\
3194 -1 ?\n\
3195 -H show new symbol after hash truncation\n\
3196 -h do not hash mixed-case names\n\
3197 -vVERSION compiler version is VERSION\n");
3198 #endif
3199 }
3200 \f
3201 /* We have no need to default values of symbols. */
3202
3203 /* ARGSUSED */
3204 symbolS *
3205 md_undefined_symbol (name)
3206 char *name;
3207 {
3208 return 0;
3209 }
3210
3211 /* Parse an operand that is machine-specific.
3212 We just return without modifying the expression if we have nothing
3213 to do. */
3214
3215 /* ARGSUSED */
3216 void
3217 md_operand (expressionP)
3218 expressionS *expressionP;
3219 {
3220 }
3221
3222 /* Round up a section size to the appropriate boundary. */
3223 valueT
3224 md_section_align (segment, size)
3225 segT segment;
3226 valueT size;
3227 {
3228 return size; /* Byte alignment is fine */
3229 }
3230
3231 /* Exactly what point is a PC-relative offset relative TO?
3232 On the vax, they're relative to the address of the offset, plus
3233 its size. (??? Is this right? FIXME-SOON) */
3234 long
3235 md_pcrel_from (fixP)
3236 fixS *fixP;
3237 {
3238 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
3239 }
3240
3241 /* end of tc-vax.c */
This page took 0.094294 seconds and 5 git commands to generate.