bfd/ChangeLog:
[deliverable/binutils-gdb.git] / gas / config / tc-xtensa.c
1 /* tc-xtensa.c -- Assemble Xtensa instructions.
2 Copyright 2003 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330, Boston,
19 MA 02111-1307, USA. */
20
21 #include <string.h>
22 #include "as.h"
23 #include "sb.h"
24 #include "safe-ctype.h"
25 #include "tc-xtensa.h"
26 #include "frags.h"
27 #include "subsegs.h"
28 #include "xtensa-relax.h"
29 #include "xtensa-istack.h"
30 #include "dwarf2dbg.h"
31 #include "struc-symbol.h"
32 #include "xtensa-config.h"
33
34 #ifndef uint32
35 #define uint32 unsigned int
36 #endif
37 #ifndef int32
38 #define int32 signed int
39 #endif
40
41 /* Notes:
42
43 There are 3 forms for instructions,
44 1) the MEMORY format -- this is the encoding 2 or 3 byte instruction
45 2) the TInsn -- handles instructions/labels and literals;
46 all operands are assumed to be expressions
47 3) the IStack -- a stack of TInsn. this allows us to
48 reason about the generated expansion instructions
49
50 Naming conventions (used somewhat inconsistently):
51 The xtensa_ functions are exported
52 The xg_ functions are internal
53
54 We also have a couple of different extensibility mechanisms.
55 1) The idiom replacement:
56 This is used when a line is first parsed to
57 replace an instruction pattern with another instruction
58 It is currently limited to replacements of instructions
59 with constant operands.
60 2) The xtensa-relax.c mechanism that has stronger instruction
61 replacement patterns. When an instruction's immediate field
62 does not fit the next instruction sequence is attempted.
63 In addition, "narrow" opcodes are supported this way. */
64
65
66 /* Define characters with special meanings to GAS. */
67 const char comment_chars[] = "#";
68 const char line_comment_chars[] = "#";
69 const char line_separator_chars[] = ";";
70 const char EXP_CHARS[] = "eE";
71 const char FLT_CHARS[] = "rRsSfFdDxXpP";
72
73
74 /* Flag to indicate whether the hardware supports the density option.
75 If not, enabling density instructions (via directives or --density flag)
76 is illegal. */
77
78 #if STATIC_LIBISA
79 bfd_boolean density_supported = XCHAL_HAVE_DENSITY;
80 #else
81 bfd_boolean density_supported = TRUE;
82 #endif
83
84 #define XTENSA_FETCH_WIDTH 4
85
86 /* Flags for properties of the last instruction in a segment. */
87 #define FLAG_IS_A0_WRITER 0x1
88 #define FLAG_IS_BAD_LOOPEND 0x2
89
90
91 /* We define a special segment names ".literal" to place literals
92 into. The .fini and .init sections are special because they
93 contain code that is moved together by the linker. We give them
94 their own special .fini.literal and .init.literal sections. */
95
96 #define LITERAL_SECTION_NAME xtensa_section_rename (".literal")
97 #define FINI_SECTION_NAME xtensa_section_rename (".fini")
98 #define INIT_SECTION_NAME xtensa_section_rename (".init")
99 #define FINI_LITERAL_SECTION_NAME xtensa_section_rename (".fini.literal")
100 #define INIT_LITERAL_SECTION_NAME xtensa_section_rename (".init.literal")
101
102
103 /* This type is used for the directive_stack to keep track of the
104 state of the literal collection pools. */
105
106 typedef struct lit_state_struct
107 {
108 const char *lit_seg_name;
109 const char *init_lit_seg_name;
110 const char *fini_lit_seg_name;
111 segT lit_seg;
112 segT init_lit_seg;
113 segT fini_lit_seg;
114 } lit_state;
115
116 static lit_state default_lit_sections;
117
118
119 /* We keep lists of literal segments. The seg_list type is the node
120 for such a list. The *_literal_head locals are the heads of the
121 various lists. All of these lists have a dummy node at the start. */
122
123 typedef struct seg_list_struct
124 {
125 struct seg_list_struct *next;
126 segT seg;
127 } seg_list;
128
129 static seg_list literal_head_h;
130 static seg_list *literal_head = &literal_head_h;
131 static seg_list init_literal_head_h;
132 static seg_list *init_literal_head = &init_literal_head_h;
133 static seg_list fini_literal_head_h;
134 static seg_list *fini_literal_head = &fini_literal_head_h;
135
136
137 /* Lists of symbols. We keep a list of symbols that label the current
138 instruction, so that we can adjust the symbols when inserting alignment
139 for various instructions. We also keep a list of all the symbols on
140 literals, so that we can fix up those symbols when the literals are
141 later moved into the text sections. */
142
143 typedef struct sym_list_struct
144 {
145 struct sym_list_struct *next;
146 symbolS *sym;
147 } sym_list;
148
149 static sym_list *insn_labels = NULL;
150 static sym_list *free_insn_labels = NULL;
151 static sym_list *saved_insn_labels = NULL;
152
153 static sym_list *literal_syms;
154
155
156 /* Global flag to indicate when we are emitting literals. */
157 int generating_literals = 0;
158
159
160 /* Structure for saving the current state before emitting literals. */
161 typedef struct emit_state_struct
162 {
163 const char *name;
164 segT now_seg;
165 subsegT now_subseg;
166 int generating_literals;
167 } emit_state;
168
169
170 /* Directives. */
171
172 typedef enum
173 {
174 directive_none = 0,
175 directive_literal,
176 directive_density,
177 directive_generics,
178 directive_relax,
179 directive_freeregs,
180 directive_longcalls,
181 directive_literal_prefix
182 } directiveE;
183
184 typedef struct
185 {
186 const char *name;
187 bfd_boolean can_be_negated;
188 } directive_infoS;
189
190 const directive_infoS directive_info[] =
191 {
192 {"none", FALSE},
193 {"literal", FALSE},
194 {"density", TRUE},
195 {"generics", TRUE},
196 {"relax", TRUE},
197 {"freeregs", FALSE},
198 {"longcalls", TRUE},
199 {"literal_prefix", FALSE}
200 };
201
202 bfd_boolean directive_state[] =
203 {
204 FALSE, /* none */
205 FALSE, /* literal */
206 #if STATIC_LIBISA && !XCHAL_HAVE_DENSITY
207 FALSE, /* density */
208 #else
209 TRUE, /* density */
210 #endif
211 TRUE, /* generics */
212 TRUE, /* relax */
213 FALSE, /* freeregs */
214 FALSE, /* longcalls */
215 FALSE /* literal_prefix */
216 };
217
218
219 enum xtensa_relax_statesE
220 {
221 RELAX_ALIGN_NEXT_OPCODE,
222 /* Use the first opcode of the next fragment to determine the
223 alignment requirements. This is ONLY used for LOOPS
224 currently. */
225
226 RELAX_DESIRE_ALIGN_IF_TARGET,
227 /* These are placed in front of labels. They will all be converted
228 to RELAX_DESIRE_ALIGN / RELAX_LOOP_END or rs_fill of 0 before
229 relaxation begins. */
230
231 RELAX_ADD_NOP_IF_A0_B_RETW,
232 /* These are placed in front of conditional branches. It will be
233 turned into a NOP (using a1) if the branch is immediately
234 followed by a RETW or RETW.N. Otherwise it will be turned into
235 an rs_fill of 0 before relaxation begins. */
236
237 RELAX_ADD_NOP_IF_PRE_LOOP_END,
238 /* These are placed after JX instructions. It will be turned into a
239 NOP if there is one instruction before a loop end label.
240 Otherwise it will be turned into an rs_fill of 0 before
241 relaxation begins. This is used to avoid a hardware TIE
242 interlock issue prior to T1040. */
243
244 RELAX_ADD_NOP_IF_SHORT_LOOP,
245 /* These are placed after LOOP instructions. It will be turned into
246 a NOP when: (1) there are less than 3 instructions in the loop;
247 we place 2 of these in a row to add up to 2 NOPS in short loops;
248 or (2) The instructions in the loop do not include a branch or
249 jump. Otherwise it will be turned into an rs_fill of 0 before
250 relaxation begins. This is used to avoid hardware bug
251 PR3830. */
252
253 RELAX_ADD_NOP_IF_CLOSE_LOOP_END,
254 /* These are placed after LOOP instructions. It will be turned into
255 a NOP if there are less than 12 bytes to the end of some other
256 loop's end. Otherwise it will be turned into an rs_fill of 0
257 before relaxation begins. This is used to avoid hardware bug
258 PR3830. */
259
260 RELAX_DESIRE_ALIGN,
261 /* The next fragment like its first instruction to NOT cross a
262 4-byte boundary. */
263
264 RELAX_LOOP_END,
265 /* This will be turned into a NOP or NOP.N if the previous
266 instruction is expanded to negate a loop. */
267
268 RELAX_LOOP_END_ADD_NOP,
269 /* When the code density option is available, this will generate a
270 NOP.N marked RELAX_NARROW. Otherwise, it will create an rs_fill
271 fragment with a NOP in it. */
272
273 RELAX_LITERAL,
274 /* Another fragment could generate an expansion here but has not yet. */
275
276 RELAX_LITERAL_NR,
277 /* Expansion has been generated by an instruction that generates a
278 literal. However, the stretch has NOT been reported yet in this
279 fragment. */
280
281 RELAX_LITERAL_FINAL,
282 /* Expansion has been generated by an instruction that generates a
283 literal. */
284
285 RELAX_LITERAL_POOL_BEGIN,
286 RELAX_LITERAL_POOL_END,
287 /* Technically these are not relaxations at all, but mark a location
288 to store literals later. Note that fr_var stores the frchain for
289 BEGIN frags and fr_var stores now_seg for END frags. */
290
291 RELAX_NARROW,
292 /* The last instruction in this fragment (at->fr_opcode) can be
293 freely replaced with a single wider instruction if a future
294 alignment desires or needs it. */
295
296 RELAX_IMMED,
297 /* The last instruction in this fragment (at->fr_opcode) contains
298 the value defined by fr_symbol (fr_offset = 0). If the value
299 does not fit, use the specified expansion. This is similar to
300 "NARROW", except that these may not be expanded in order to align
301 code. */
302
303 RELAX_IMMED_STEP1,
304 /* The last instruction in this fragment (at->fr_opcode) contains a
305 literal. It has already been expanded at least 1 step. */
306
307 RELAX_IMMED_STEP2
308 /* The last instruction in this fragment (at->fr_opcode) contains a
309 literal. It has already been expanded at least 2 steps. */
310 };
311
312 /* This is used as a stopper to bound the number of steps that
313 can be taken. */
314 #define RELAX_IMMED_MAXSTEPS (RELAX_IMMED_STEP2 - RELAX_IMMED)
315
316
317 typedef bfd_boolean (*frag_predicate) (const fragS *);
318
319
320 /* Directive functions. */
321
322 static bfd_boolean use_generics
323 PARAMS ((void));
324 static bfd_boolean use_longcalls
325 PARAMS ((void));
326 static bfd_boolean code_density_available
327 PARAMS ((void));
328 static bfd_boolean can_relax
329 PARAMS ((void));
330 static void directive_push
331 PARAMS ((directiveE, bfd_boolean, const void *));
332 static void directive_pop
333 PARAMS ((directiveE *, bfd_boolean *, const char **,
334 unsigned int *, const void **));
335 static void directive_balance
336 PARAMS ((void));
337 static bfd_boolean inside_directive
338 PARAMS ((directiveE));
339 static void get_directive
340 PARAMS ((directiveE *, bfd_boolean *));
341 static void xtensa_begin_directive
342 PARAMS ((int));
343 static void xtensa_end_directive
344 PARAMS ((int));
345 static void xtensa_literal_prefix
346 PARAMS ((char const *, int));
347 static void xtensa_literal_position
348 PARAMS ((int));
349 static void xtensa_literal_pseudo
350 PARAMS ((int));
351
352 /* Parsing and Idiom Translation Functions. */
353
354 static const char *expression_end
355 PARAMS ((const char *));
356 static unsigned tc_get_register
357 PARAMS ((const char *));
358 static void expression_maybe_register
359 PARAMS ((xtensa_operand, expressionS *));
360 static int tokenize_arguments
361 PARAMS ((char **, char *));
362 static bfd_boolean parse_arguments
363 PARAMS ((TInsn *, int, char **));
364 static int xg_translate_idioms
365 PARAMS ((char **, int *, char **));
366 static int xg_translate_sysreg_op
367 PARAMS ((char **, int *, char **));
368 static void xg_reverse_shift_count
369 PARAMS ((char **));
370 static int xg_arg_is_constant
371 PARAMS ((char *, offsetT *));
372 static void xg_replace_opname
373 PARAMS ((char **, char *));
374 static int xg_check_num_args
375 PARAMS ((int *, int, char *, char **));
376
377 /* Functions for dealing with the Xtensa ISA. */
378
379 static bfd_boolean operand_is_immed
380 PARAMS ((xtensa_operand));
381 static bfd_boolean operand_is_pcrel_label
382 PARAMS ((xtensa_operand));
383 static int get_relaxable_immed
384 PARAMS ((xtensa_opcode));
385 static xtensa_opcode get_opcode_from_buf
386 PARAMS ((const char *));
387 static bfd_boolean is_direct_call_opcode
388 PARAMS ((xtensa_opcode));
389 static bfd_boolean is_call_opcode
390 PARAMS ((xtensa_opcode));
391 static bfd_boolean is_entry_opcode
392 PARAMS ((xtensa_opcode));
393 static bfd_boolean is_loop_opcode
394 PARAMS ((xtensa_opcode));
395 static bfd_boolean is_the_loop_opcode
396 PARAMS ((xtensa_opcode));
397 static bfd_boolean is_jx_opcode
398 PARAMS ((xtensa_opcode));
399 static bfd_boolean is_windowed_return_opcode
400 PARAMS ((xtensa_opcode));
401 static bfd_boolean is_conditional_branch_opcode
402 PARAMS ((xtensa_opcode));
403 static bfd_boolean is_branch_or_jump_opcode
404 PARAMS ((xtensa_opcode));
405 static bfd_reloc_code_real_type opnum_to_reloc
406 PARAMS ((int));
407 static int reloc_to_opnum
408 PARAMS ((bfd_reloc_code_real_type));
409 static void xtensa_insnbuf_set_operand
410 PARAMS ((xtensa_insnbuf, xtensa_opcode, xtensa_operand, int32,
411 const char *, unsigned int));
412 static uint32 xtensa_insnbuf_get_operand
413 PARAMS ((xtensa_insnbuf, xtensa_opcode, int));
414 static void xtensa_insnbuf_set_immediate_field
415 PARAMS ((xtensa_opcode, xtensa_insnbuf, int32, const char *,
416 unsigned int));
417 static bfd_boolean is_negatable_branch
418 PARAMS ((TInsn *));
419
420 /* Various Other Internal Functions. */
421
422 static bfd_boolean is_unique_insn_expansion
423 PARAMS ((TransitionRule *));
424 static int xg_get_insn_size
425 PARAMS ((TInsn *));
426 static int xg_get_build_instr_size
427 PARAMS ((BuildInstr *));
428 static bfd_boolean xg_is_narrow_insn
429 PARAMS ((TInsn *));
430 static bfd_boolean xg_is_single_relaxable_insn
431 PARAMS ((TInsn *));
432 static int xg_get_max_narrow_insn_size
433 PARAMS ((xtensa_opcode));
434 static int xg_get_max_insn_widen_size
435 PARAMS ((xtensa_opcode));
436 static int xg_get_max_insn_widen_literal_size
437 PARAMS ((xtensa_opcode));
438 static bfd_boolean xg_is_relaxable_insn
439 PARAMS ((TInsn *, int));
440 static symbolS *get_special_literal_symbol
441 PARAMS ((void));
442 static symbolS *get_special_label_symbol
443 PARAMS ((void));
444 static bfd_boolean xg_build_to_insn
445 PARAMS ((TInsn *, TInsn *, BuildInstr *));
446 static bfd_boolean xg_build_to_stack
447 PARAMS ((IStack *, TInsn *, BuildInstr *));
448 static bfd_boolean xg_expand_to_stack
449 PARAMS ((IStack *, TInsn *, int));
450 static bfd_boolean xg_expand_narrow
451 PARAMS ((TInsn *, TInsn *));
452 static bfd_boolean xg_immeds_fit
453 PARAMS ((const TInsn *));
454 static bfd_boolean xg_symbolic_immeds_fit
455 PARAMS ((const TInsn *, segT, fragS *, offsetT, long));
456 static bfd_boolean xg_check_operand
457 PARAMS ((int32, xtensa_operand));
458 static int is_dnrange
459 PARAMS ((fragS *, symbolS *, long));
460 static int xg_assembly_relax
461 PARAMS ((IStack *, TInsn *, segT, fragS *, offsetT, int, long));
462 static void xg_force_frag_space
463 PARAMS ((int));
464 static void xg_finish_frag
465 PARAMS ((char *, enum xtensa_relax_statesE, int, bfd_boolean));
466 static bfd_boolean is_branch_jmp_to_next
467 PARAMS ((TInsn *, fragS *));
468 static void xg_add_branch_and_loop_targets
469 PARAMS ((TInsn *));
470 static bfd_boolean xg_instruction_matches_rule
471 PARAMS ((TInsn *, TransitionRule *));
472 static TransitionRule *xg_instruction_match
473 PARAMS ((TInsn *));
474 static bfd_boolean xg_build_token_insn
475 PARAMS ((BuildInstr *, TInsn *, TInsn *));
476 static bfd_boolean xg_simplify_insn
477 PARAMS ((TInsn *, TInsn *));
478 static bfd_boolean xg_expand_assembly_insn
479 PARAMS ((IStack *, TInsn *));
480 static symbolS *xg_assemble_literal
481 PARAMS ((TInsn *));
482 static void xg_assemble_literal_space
483 PARAMS ((int));
484 static symbolS *xtensa_create_literal_symbol
485 PARAMS ((segT, fragS *));
486 static void xtensa_add_literal_sym
487 PARAMS ((symbolS *));
488 static void xtensa_add_insn_label
489 PARAMS ((symbolS *));
490 static void xtensa_clear_insn_labels
491 PARAMS ((void));
492 static bfd_boolean get_is_linkonce_section
493 PARAMS ((bfd *, segT));
494 static bfd_boolean xg_emit_insn
495 PARAMS ((TInsn *, bfd_boolean));
496 static bfd_boolean xg_emit_insn_to_buf
497 PARAMS ((TInsn *, char *, fragS *, offsetT, bfd_boolean));
498 static bfd_boolean xg_add_opcode_fix
499 PARAMS ((xtensa_opcode, int, expressionS *, fragS *, offsetT));
500 static void xg_resolve_literals
501 PARAMS ((TInsn *, symbolS *));
502 static void xg_resolve_labels
503 PARAMS ((TInsn *, symbolS *));
504 static void xg_assemble_tokens
505 PARAMS ((TInsn *));
506 static bfd_boolean is_register_writer
507 PARAMS ((const TInsn *, const char *, int));
508 static bfd_boolean is_bad_loopend_opcode
509 PARAMS ((const TInsn *));
510 static bfd_boolean is_unaligned_label
511 PARAMS ((symbolS *));
512 static fragS *next_non_empty_frag
513 PARAMS ((const fragS *));
514 static xtensa_opcode next_frag_opcode
515 PARAMS ((const fragS *));
516 static void update_next_frag_nop_state
517 PARAMS ((fragS *));
518 static bfd_boolean next_frag_is_branch_target
519 PARAMS ((const fragS *));
520 static bfd_boolean next_frag_is_loop_target
521 PARAMS ((const fragS *));
522 static addressT next_frag_pre_opcode_bytes
523 PARAMS ((const fragS *));
524 static bfd_boolean is_next_frag_target
525 PARAMS ((const fragS *, const fragS *));
526 static void xtensa_mark_literal_pool_location
527 PARAMS ((void));
528 static void xtensa_move_labels
529 PARAMS ((fragS *, valueT, bfd_boolean));
530 static void assemble_nop
531 PARAMS ((size_t, char *));
532 static addressT get_expanded_loop_offset
533 PARAMS ((xtensa_opcode));
534 static fragS *get_literal_pool_location
535 PARAMS ((segT));
536 static void set_literal_pool_location
537 PARAMS ((segT, fragS *));
538
539 /* Helpers for xtensa_end(). */
540
541 static void xtensa_cleanup_align_frags
542 PARAMS ((void));
543 static void xtensa_fix_target_frags
544 PARAMS ((void));
545 static bfd_boolean frag_can_negate_branch
546 PARAMS ((fragS *));
547 static void xtensa_fix_a0_b_retw_frags
548 PARAMS ((void));
549 static bfd_boolean next_instrs_are_b_retw
550 PARAMS ((fragS *));
551 static void xtensa_fix_b_j_loop_end_frags
552 PARAMS ((void));
553 static bfd_boolean next_instr_is_loop_end
554 PARAMS ((fragS *));
555 static void xtensa_fix_close_loop_end_frags
556 PARAMS ((void));
557 static size_t min_bytes_to_other_loop_end
558 PARAMS ((fragS *, fragS *, offsetT, size_t));
559 static size_t unrelaxed_frag_min_size
560 PARAMS ((fragS *));
561 static void xtensa_fix_short_loop_frags
562 PARAMS ((void));
563 static size_t count_insns_to_loop_end
564 PARAMS ((fragS *, bfd_boolean, size_t));
565 static size_t unrelaxed_frag_min_insn_count
566 PARAMS ((fragS *));
567 static bfd_boolean branch_before_loop_end
568 PARAMS ((fragS *));
569 static bfd_boolean unrelaxed_frag_has_b_j
570 PARAMS ((fragS *));
571 static void xtensa_sanity_check
572 PARAMS ((void));
573 static bfd_boolean is_empty_loop
574 PARAMS ((const TInsn *, fragS *));
575 static bfd_boolean is_local_forward_loop
576 PARAMS ((const TInsn *, fragS *));
577
578 /* Alignment Functions. */
579
580 static size_t get_text_align_power
581 PARAMS ((int));
582 static addressT get_text_align_max_fill_size
583 PARAMS ((int, bfd_boolean, bfd_boolean));
584 static addressT get_text_align_fill_size
585 PARAMS ((addressT, int, int, bfd_boolean, bfd_boolean));
586 static size_t get_text_align_nop_count
587 PARAMS ((size_t, bfd_boolean));
588 static size_t get_text_align_nth_nop_size
589 PARAMS ((size_t, size_t, bfd_boolean));
590 static addressT get_noop_aligned_address
591 PARAMS ((fragS *, addressT));
592 static addressT get_widen_aligned_address
593 PARAMS ((fragS *, addressT));
594
595 /* Helpers for xtensa_relax_frag(). */
596
597 static long relax_frag_text_align
598 PARAMS ((fragS *, long));
599 static long relax_frag_add_nop
600 PARAMS ((fragS *));
601 static long relax_frag_narrow
602 PARAMS ((fragS *, long));
603 static bfd_boolean future_alignment_required
604 PARAMS ((fragS *, long));
605 static long relax_frag_immed
606 PARAMS ((segT, fragS *, long, int, int *));
607
608 /* Helpers for md_convert_frag(). */
609
610 static void convert_frag_align_next_opcode
611 PARAMS ((fragS *));
612 static void convert_frag_narrow
613 PARAMS ((fragS *));
614 static void convert_frag_immed
615 PARAMS ((segT, fragS *, int));
616 static fixS *fix_new_exp_in_seg
617 PARAMS ((segT, subsegT, fragS *, int, int, expressionS *, int,
618 bfd_reloc_code_real_type));
619 static void convert_frag_immed_finish_loop
620 PARAMS ((segT, fragS *, TInsn *));
621 static offsetT get_expression_value
622 PARAMS ((segT, expressionS *));
623
624 /* Flags for the Last Instruction in Each Subsegment. */
625
626 static unsigned get_last_insn_flags
627 PARAMS ((segT, subsegT));
628 static void set_last_insn_flags
629 PARAMS ((segT, subsegT, unsigned, bfd_boolean));
630
631 /* Segment list functions. */
632
633 static void xtensa_remove_section
634 PARAMS ((segT));
635 static void xtensa_insert_section
636 PARAMS ((segT, segT));
637 static void xtensa_move_seg_list_to_beginning
638 PARAMS ((seg_list *));
639 static void xtensa_move_literals
640 PARAMS ((void));
641 static void mark_literal_frags
642 PARAMS ((seg_list *));
643 static void xtensa_reorder_seg_list
644 PARAMS ((seg_list *, segT));
645 static void xtensa_reorder_segments
646 PARAMS ((void));
647 static segT get_last_sec
648 PARAMS ((void));
649 static void xtensa_switch_to_literal_fragment
650 PARAMS ((emit_state *));
651 static void xtensa_switch_section_emit_state
652 PARAMS ((emit_state *, segT, subsegT));
653 static void xtensa_restore_emit_state
654 PARAMS ((emit_state *));
655 static void cache_literal_section
656 PARAMS ((seg_list *, const char *, segT *));
657 static segT retrieve_literal_seg
658 PARAMS ((seg_list *, const char *));
659 static segT seg_present
660 PARAMS ((const char *));
661 static void add_seg_list
662 PARAMS ((seg_list *, segT));
663
664 /* Property Table (e.g., ".xt.insn" and ".xt.lit") Functions. */
665
666 static void xtensa_create_property_segments
667 PARAMS ((frag_predicate, const char *, xt_section_type));
668 static segment_info_type *retrieve_segment_info
669 PARAMS ((segT));
670 static segT retrieve_xtensa_section
671 PARAMS ((char *));
672 static bfd_boolean section_has_property
673 PARAMS ((segT sec, frag_predicate));
674 static void add_xt_block_frags
675 PARAMS ((segT, segT, xtensa_block_info **, frag_predicate));
676 static bfd_boolean get_frag_is_literal
677 PARAMS ((const fragS *));
678 static bfd_boolean get_frag_is_insn
679 PARAMS ((const fragS *));
680
681 /* Import from elf32-xtensa.c in BFD library. */
682 extern char *xtensa_get_property_section_name
683 PARAMS ((asection *, const char *));
684
685 /* TInsn and IStack functions. */
686 static bfd_boolean tinsn_has_symbolic_operands
687 PARAMS ((const TInsn *));
688 static bfd_boolean tinsn_has_invalid_symbolic_operands
689 PARAMS ((const TInsn *));
690 static bfd_boolean tinsn_has_complex_operands
691 PARAMS ((const TInsn *));
692 static bfd_boolean tinsn_to_insnbuf
693 PARAMS ((TInsn *, xtensa_insnbuf));
694 static bfd_boolean tinsn_check_arguments
695 PARAMS ((const TInsn *));
696 static void tinsn_from_chars
697 PARAMS ((TInsn *, char *));
698 static void tinsn_immed_from_frag
699 PARAMS ((TInsn *, fragS *));
700 static int get_num_stack_text_bytes
701 PARAMS ((IStack *));
702 static int get_num_stack_literal_bytes
703 PARAMS ((IStack *));
704
705 /* Expression Utilities. */
706 bfd_boolean expr_is_const
707 PARAMS ((const expressionS *));
708 offsetT get_expr_const
709 PARAMS ((const expressionS *));
710 void set_expr_const
711 PARAMS ((expressionS *, offsetT));
712 void set_expr_symbol_offset
713 PARAMS ((expressionS *, symbolS *, offsetT));
714 bfd_boolean expr_is_equal
715 PARAMS ((expressionS *, expressionS *));
716 static void copy_expr
717 PARAMS ((expressionS *, const expressionS *));
718
719 #ifdef XTENSA_SECTION_RENAME
720 static void build_section_rename
721 PARAMS ((const char *));
722 static void add_section_rename
723 PARAMS ((char *, char *));
724 #endif
725
726
727 /* ISA imported from bfd. */
728 extern xtensa_isa xtensa_default_isa;
729
730 extern int target_big_endian;
731
732 static xtensa_opcode xtensa_addi_opcode;
733 static xtensa_opcode xtensa_addmi_opcode;
734 static xtensa_opcode xtensa_call0_opcode;
735 static xtensa_opcode xtensa_call4_opcode;
736 static xtensa_opcode xtensa_call8_opcode;
737 static xtensa_opcode xtensa_call12_opcode;
738 static xtensa_opcode xtensa_callx0_opcode;
739 static xtensa_opcode xtensa_callx4_opcode;
740 static xtensa_opcode xtensa_callx8_opcode;
741 static xtensa_opcode xtensa_callx12_opcode;
742 static xtensa_opcode xtensa_entry_opcode;
743 static xtensa_opcode xtensa_isync_opcode;
744 static xtensa_opcode xtensa_j_opcode;
745 static xtensa_opcode xtensa_jx_opcode;
746 static xtensa_opcode xtensa_loop_opcode;
747 static xtensa_opcode xtensa_loopnez_opcode;
748 static xtensa_opcode xtensa_loopgtz_opcode;
749 static xtensa_opcode xtensa_nop_n_opcode;
750 static xtensa_opcode xtensa_or_opcode;
751 static xtensa_opcode xtensa_ret_opcode;
752 static xtensa_opcode xtensa_ret_n_opcode;
753 static xtensa_opcode xtensa_retw_opcode;
754 static xtensa_opcode xtensa_retw_n_opcode;
755 static xtensa_opcode xtensa_rsr_opcode;
756 static xtensa_opcode xtensa_waiti_opcode;
757
758 \f
759 /* Command-line Options. */
760
761 bfd_boolean use_literal_section = TRUE;
762 static bfd_boolean align_targets = TRUE;
763 static bfd_boolean align_only_targets = FALSE;
764 static bfd_boolean software_a0_b_retw_interlock = TRUE;
765 static bfd_boolean has_a0_b_retw = FALSE;
766 static bfd_boolean workaround_a0_b_retw = TRUE;
767
768 static bfd_boolean software_avoid_b_j_loop_end = TRUE;
769 static bfd_boolean workaround_b_j_loop_end = TRUE;
770 static bfd_boolean maybe_has_b_j_loop_end = FALSE;
771
772 static bfd_boolean software_avoid_short_loop = TRUE;
773 static bfd_boolean workaround_short_loop = TRUE;
774 static bfd_boolean maybe_has_short_loop = FALSE;
775
776 static bfd_boolean software_avoid_close_loop_end = TRUE;
777 static bfd_boolean workaround_close_loop_end = TRUE;
778 static bfd_boolean maybe_has_close_loop_end = FALSE;
779
780 /* When avoid_short_loops is true, all loops with early exits must
781 have at least 3 instructions. avoid_all_short_loops is a modifier
782 to the avoid_short_loop flag. In addition to the avoid_short_loop
783 actions, all straightline loopgtz and loopnez must have at least 3
784 instructions. */
785
786 static bfd_boolean software_avoid_all_short_loops = TRUE;
787 static bfd_boolean workaround_all_short_loops = TRUE;
788
789 /* This is on a per-instruction basis. */
790 static bfd_boolean specific_opcode = FALSE;
791
792 enum
793 {
794 option_density = OPTION_MD_BASE,
795 option_no_density,
796
797 option_relax,
798 option_no_relax,
799
800 option_generics,
801 option_no_generics,
802
803 option_text_section_literals,
804 option_no_text_section_literals,
805
806 option_align_targets,
807 option_no_align_targets,
808
809 option_align_only_targets,
810 option_no_align_only_targets,
811
812 option_longcalls,
813 option_no_longcalls,
814
815 option_workaround_a0_b_retw,
816 option_no_workaround_a0_b_retw,
817
818 option_workaround_b_j_loop_end,
819 option_no_workaround_b_j_loop_end,
820
821 option_workaround_short_loop,
822 option_no_workaround_short_loop,
823
824 option_workaround_all_short_loops,
825 option_no_workaround_all_short_loops,
826
827 option_workaround_close_loop_end,
828 option_no_workaround_close_loop_end,
829
830 option_no_workarounds,
831
832 #ifdef XTENSA_SECTION_RENAME
833 option_literal_section_name,
834 option_text_section_name,
835 option_data_section_name,
836 option_bss_section_name,
837 option_rename_section_name,
838 #endif
839
840 option_eb,
841 option_el
842 };
843
844 const char *md_shortopts = "";
845
846 struct option md_longopts[] =
847 {
848 {"density", no_argument, NULL, option_density},
849 {"no-density", no_argument, NULL, option_no_density},
850 /* At least as early as alameda, --[no-]relax didn't work as
851 documented, so as of albany, --[no-]relax is equivalent to
852 --[no-]generics. Both of these will be deprecated in
853 BearValley. */
854 {"relax", no_argument, NULL, option_generics},
855 {"no-relax", no_argument, NULL, option_no_generics},
856 {"generics", no_argument, NULL, option_generics},
857 {"no-generics", no_argument, NULL, option_no_generics},
858 {"text-section-literals", no_argument, NULL, option_text_section_literals},
859 {"no-text-section-literals", no_argument, NULL,
860 option_no_text_section_literals},
861 /* This option was changed from -align-target to -target-align
862 because it conflicted with the "-al" option. */
863 {"target-align", no_argument, NULL, option_align_targets},
864 {"no-target-align", no_argument, NULL,
865 option_no_align_targets},
866 #if 0
867 /* This option should do a better job aligning targets because
868 it will only attempt to align targets that are the target of a
869 branch. */
870 { "target-align-only", no_argument, NULL, option_align_only_targets },
871 { "no-target-align-only", no_argument, NULL, option_no_align_only_targets },
872 #endif /* 0 */
873 {"longcalls", no_argument, NULL, option_longcalls},
874 {"no-longcalls", no_argument, NULL, option_no_longcalls},
875
876 {"no-workaround-a0-b-retw", no_argument, NULL,
877 option_no_workaround_a0_b_retw},
878 {"workaround-a0-b-retw", no_argument, NULL, option_workaround_a0_b_retw},
879
880 {"no-workaround-b-j-loop-end", no_argument, NULL,
881 option_no_workaround_b_j_loop_end},
882 {"workaround-b-j-loop-end", no_argument, NULL,
883 option_workaround_b_j_loop_end},
884
885 {"no-workaround-short-loops", no_argument, NULL,
886 option_no_workaround_short_loop},
887 {"workaround-short-loops", no_argument, NULL, option_workaround_short_loop},
888
889 {"no-workaround-all-short-loops", no_argument, NULL,
890 option_no_workaround_all_short_loops},
891 {"workaround-all-short-loop", no_argument, NULL,
892 option_workaround_all_short_loops},
893
894 {"no-workaround-close-loop-end", no_argument, NULL,
895 option_no_workaround_close_loop_end},
896 {"workaround-close-loop-end", no_argument, NULL,
897 option_workaround_close_loop_end},
898
899 {"no-workarounds", no_argument, NULL, option_no_workarounds},
900
901 #ifdef XTENSA_SECTION_RENAME
902 {"literal-section-name", required_argument, NULL,
903 option_literal_section_name},
904 {"text-section-name", required_argument, NULL,
905 option_text_section_name},
906 {"data-section-name", required_argument, NULL,
907 option_data_section_name},
908 {"rename-section", required_argument, NULL,
909 option_rename_section_name},
910 {"bss-section-name", required_argument, NULL,
911 option_bss_section_name},
912 #endif /* XTENSA_SECTION_RENAME */
913
914 {NULL, no_argument, NULL, 0}
915 };
916
917 size_t md_longopts_size = sizeof md_longopts;
918
919
920 int
921 md_parse_option (c, arg)
922 int c;
923 char *arg;
924 {
925 switch (c)
926 {
927 case option_density:
928 if (!density_supported)
929 {
930 as_bad (_("'--density' option not supported in this Xtensa "
931 "configuration"));
932 return 0;
933 }
934 directive_state[directive_density] = TRUE;
935 return 1;
936 case option_no_density:
937 directive_state[directive_density] = FALSE;
938 return 1;
939 case option_generics:
940 directive_state[directive_generics] = TRUE;
941 return 1;
942 case option_no_generics:
943 directive_state[directive_generics] = FALSE;
944 return 1;
945 case option_longcalls:
946 directive_state[directive_longcalls] = TRUE;
947 return 1;
948 case option_no_longcalls:
949 directive_state[directive_longcalls] = FALSE;
950 return 1;
951 case option_text_section_literals:
952 use_literal_section = FALSE;
953 return 1;
954 case option_no_text_section_literals:
955 use_literal_section = TRUE;
956 return 1;
957 case option_workaround_a0_b_retw:
958 workaround_a0_b_retw = TRUE;
959 software_a0_b_retw_interlock = TRUE;
960 return 1;
961 case option_no_workaround_a0_b_retw:
962 workaround_a0_b_retw = FALSE;
963 software_a0_b_retw_interlock = FALSE;
964 return 1;
965 case option_workaround_b_j_loop_end:
966 workaround_b_j_loop_end = TRUE;
967 software_avoid_b_j_loop_end = TRUE;
968 return 1;
969 case option_no_workaround_b_j_loop_end:
970 workaround_b_j_loop_end = FALSE;
971 software_avoid_b_j_loop_end = FALSE;
972 return 1;
973
974 case option_workaround_short_loop:
975 workaround_short_loop = TRUE;
976 software_avoid_short_loop = TRUE;
977 return 1;
978 case option_no_workaround_short_loop:
979 workaround_short_loop = FALSE;
980 software_avoid_short_loop = FALSE;
981 return 1;
982
983 case option_workaround_all_short_loops:
984 workaround_all_short_loops = TRUE;
985 software_avoid_all_short_loops = TRUE;
986 return 1;
987 case option_no_workaround_all_short_loops:
988 workaround_all_short_loops = FALSE;
989 software_avoid_all_short_loops = FALSE;
990 return 1;
991
992 case option_workaround_close_loop_end:
993 workaround_close_loop_end = TRUE;
994 software_avoid_close_loop_end = TRUE;
995 return 1;
996 case option_no_workaround_close_loop_end:
997 workaround_close_loop_end = FALSE;
998 software_avoid_close_loop_end = FALSE;
999 return 1;
1000
1001 case option_no_workarounds:
1002 workaround_a0_b_retw = FALSE;
1003 software_a0_b_retw_interlock = FALSE;
1004 workaround_b_j_loop_end = FALSE;
1005 software_avoid_b_j_loop_end = FALSE;
1006 workaround_short_loop = FALSE;
1007 software_avoid_short_loop = FALSE;
1008 workaround_all_short_loops = FALSE;
1009 software_avoid_all_short_loops = FALSE;
1010 workaround_close_loop_end = FALSE;
1011 software_avoid_close_loop_end = FALSE;
1012 return 1;
1013
1014 case option_align_targets:
1015 align_targets = TRUE;
1016 return 1;
1017 case option_no_align_targets:
1018 align_targets = FALSE;
1019 return 1;
1020
1021 case option_align_only_targets:
1022 align_only_targets = TRUE;
1023 return 1;
1024 case option_no_align_only_targets:
1025 align_only_targets = FALSE;
1026 return 1;
1027
1028 #ifdef XTENSA_SECTION_RENAME
1029 case option_literal_section_name:
1030 add_section_rename (".literal", arg);
1031 as_warn (_("'--literal-section-name' is deprecated; "
1032 "use '--rename-section .literal=NEWNAME'"));
1033 return 1;
1034
1035 case option_text_section_name:
1036 add_section_rename (".text", arg);
1037 as_warn (_("'--text-section-name' is deprecated; "
1038 "use '--rename-section .text=NEWNAME'"));
1039 return 1;
1040
1041 case option_data_section_name:
1042 add_section_rename (".data", arg);
1043 as_warn (_("'--data-section-name' is deprecated; "
1044 "use '--rename-section .data=NEWNAME'"));
1045 return 1;
1046
1047 case option_bss_section_name:
1048 add_section_rename (".bss", arg);
1049 as_warn (_("'--bss-section-name' is deprecated; "
1050 "use '--rename-section .bss=NEWNAME'"));
1051 return 1;
1052
1053 case option_rename_section_name:
1054 build_section_rename (arg);
1055 return 1;
1056 #endif /* XTENSA_SECTION_RENAME */
1057
1058 case 'Q':
1059 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
1060 should be emitted or not. FIXME: Not implemented. */
1061 return 1;
1062
1063 default:
1064 return 0;
1065 }
1066 }
1067
1068
1069 void
1070 md_show_usage (stream)
1071 FILE *stream;
1072 {
1073 fputs ("\nXtensa options:\n"
1074 "--[no-]density [Do not] emit density instructions\n"
1075 "--[no-]relax [Do not] perform branch relaxation\n"
1076 "--[no-]generics [Do not] transform instructions\n"
1077 "--[no-]longcalls [Do not] emit 32-bit call sequences\n"
1078 "--[no-]target-align [Do not] try to align branch targets\n"
1079 "--[no-]text-section-literals\n"
1080 " [Do not] put literals in the text section\n"
1081 "--no-workarounds Do not use any Xtensa workarounds\n"
1082 #ifdef XTENSA_SECTION_RENAME
1083 "--rename-section old=new(:old1=new1)*\n"
1084 " Rename section 'old' to 'new'\n"
1085 "\nThe following Xtensa options are deprecated\n"
1086 "--literal-section-name Name of literal section (default .literal)\n"
1087 "--text-section-name Name of text section (default .text)\n"
1088 "--data-section-name Name of data section (default .data)\n"
1089 "--bss-section-name Name of bss section (default .bss)\n"
1090 #endif
1091 , stream);
1092 }
1093
1094 \f
1095 /* Directive data and functions. */
1096
1097 typedef struct state_stackS_struct
1098 {
1099 directiveE directive;
1100 bfd_boolean negated;
1101 bfd_boolean old_state;
1102 const char *file;
1103 unsigned int line;
1104 const void *datum;
1105 struct state_stackS_struct *prev;
1106 } state_stackS;
1107
1108 state_stackS *directive_state_stack;
1109
1110 const pseudo_typeS md_pseudo_table[] =
1111 {
1112 {"align", s_align_bytes, 0}, /* Defaulting is invalid (0) */
1113 {"literal_position", xtensa_literal_position, 0},
1114 {"frame", s_ignore, 0}, /* formerly used for STABS debugging */
1115 {"word", cons, 4},
1116 {"begin", xtensa_begin_directive, 0},
1117 {"end", xtensa_end_directive, 0},
1118 {"literal", xtensa_literal_pseudo, 0},
1119 {NULL, 0, 0},
1120 };
1121
1122
1123 bfd_boolean
1124 use_generics ()
1125 {
1126 return directive_state[directive_generics];
1127 }
1128
1129
1130 bfd_boolean
1131 use_longcalls ()
1132 {
1133 return directive_state[directive_longcalls];
1134 }
1135
1136
1137 bfd_boolean
1138 code_density_available ()
1139 {
1140 return directive_state[directive_density];
1141 }
1142
1143
1144 bfd_boolean
1145 can_relax ()
1146 {
1147 return use_generics ();
1148 }
1149
1150
1151 static void
1152 directive_push (directive, negated, datum)
1153 directiveE directive;
1154 bfd_boolean negated;
1155 const void *datum;
1156 {
1157 char *file;
1158 unsigned int line;
1159 state_stackS *stack = (state_stackS *) xmalloc (sizeof (state_stackS));
1160
1161 as_where (&file, &line);
1162
1163 stack->directive = directive;
1164 stack->negated = negated;
1165 stack->old_state = directive_state[directive];
1166 stack->file = file;
1167 stack->line = line;
1168 stack->datum = datum;
1169 stack->prev = directive_state_stack;
1170 directive_state_stack = stack;
1171
1172 directive_state[directive] = !negated;
1173 }
1174
1175 static void
1176 directive_pop (directive, negated, file, line, datum)
1177 directiveE *directive;
1178 bfd_boolean *negated;
1179 const char **file;
1180 unsigned int *line;
1181 const void **datum;
1182 {
1183 state_stackS *top = directive_state_stack;
1184
1185 if (!directive_state_stack)
1186 {
1187 as_bad (_("unmatched end directive"));
1188 *directive = directive_none;
1189 return;
1190 }
1191
1192 directive_state[directive_state_stack->directive] = top->old_state;
1193 *directive = top->directive;
1194 *negated = top->negated;
1195 *file = top->file;
1196 *line = top->line;
1197 *datum = top->datum;
1198 directive_state_stack = top->prev;
1199 free (top);
1200 }
1201
1202
1203 static void
1204 directive_balance ()
1205 {
1206 while (directive_state_stack)
1207 {
1208 directiveE directive;
1209 bfd_boolean negated;
1210 const char *file;
1211 unsigned int line;
1212 const void *datum;
1213
1214 directive_pop (&directive, &negated, &file, &line, &datum);
1215 as_warn_where ((char *) file, line,
1216 _(".begin directive with no matching .end directive"));
1217 }
1218 }
1219
1220
1221 static bfd_boolean
1222 inside_directive (dir)
1223 directiveE dir;
1224 {
1225 state_stackS *top = directive_state_stack;
1226
1227 while (top && top->directive != dir)
1228 top = top->prev;
1229
1230 return (top != NULL);
1231 }
1232
1233
1234 static void
1235 get_directive (directive, negated)
1236 directiveE *directive;
1237 bfd_boolean *negated;
1238 {
1239 int len;
1240 unsigned i;
1241
1242 if (strncmp (input_line_pointer, "no-", 3) != 0)
1243 *negated = FALSE;
1244 else
1245 {
1246 *negated = TRUE;
1247 input_line_pointer += 3;
1248 }
1249
1250 len = strspn (input_line_pointer,
1251 "abcdefghijklmnopqrstuvwxyz_/0123456789.");
1252
1253 for (i = 0; i < sizeof (directive_info) / sizeof (*directive_info); ++i)
1254 {
1255 if (strncmp (input_line_pointer, directive_info[i].name, len) == 0)
1256 {
1257 input_line_pointer += len;
1258 *directive = (directiveE) i;
1259 if (*negated && !directive_info[i].can_be_negated)
1260 as_bad (_("directive %s can't be negated"),
1261 directive_info[i].name);
1262 return;
1263 }
1264 }
1265
1266 as_bad (_("unknown directive"));
1267 *directive = (directiveE) XTENSA_UNDEFINED;
1268 }
1269
1270
1271 static void
1272 xtensa_begin_directive (ignore)
1273 int ignore ATTRIBUTE_UNUSED;
1274 {
1275 directiveE directive;
1276 bfd_boolean negated;
1277 emit_state *state;
1278 int len;
1279 lit_state *ls;
1280
1281 md_flush_pending_output ();
1282
1283 get_directive (&directive, &negated);
1284 if (directive == (directiveE) XTENSA_UNDEFINED)
1285 {
1286 discard_rest_of_line ();
1287 return;
1288 }
1289
1290 switch (directive)
1291 {
1292 case directive_literal:
1293 if (!inside_directive (directive_literal))
1294 {
1295 /* Previous labels go with whatever follows this directive, not with
1296 the literal, so save them now. */
1297 saved_insn_labels = insn_labels;
1298 insn_labels = NULL;
1299 }
1300 state = (emit_state *) xmalloc (sizeof (emit_state));
1301 xtensa_switch_to_literal_fragment (state);
1302 directive_push (directive_literal, negated, state);
1303 break;
1304
1305 case directive_literal_prefix:
1306 /* Check to see if the current fragment is a literal
1307 fragment. If it is, then this operation is not allowed. */
1308 if (frag_now->tc_frag_data.is_literal)
1309 {
1310 as_bad (_("cannot set literal_prefix inside literal fragment"));
1311 return;
1312 }
1313
1314 /* Allocate the literal state for this section and push
1315 onto the directive stack. */
1316 ls = xmalloc (sizeof (lit_state));
1317 assert (ls);
1318
1319 *ls = default_lit_sections;
1320
1321 directive_push (directive_literal_prefix, negated, ls);
1322
1323 /* Parse the new prefix from the input_line_pointer. */
1324 SKIP_WHITESPACE ();
1325 len = strspn (input_line_pointer,
1326 "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
1327 "abcdefghijklmnopqrstuvwxyz_/0123456789.$");
1328
1329 /* Process the new prefix. */
1330 xtensa_literal_prefix (input_line_pointer, len);
1331
1332 /* Skip the name in the input line. */
1333 input_line_pointer += len;
1334 break;
1335
1336 case directive_freeregs:
1337 /* This information is currently unused, but we'll accept the statement
1338 and just discard the rest of the line. This won't check the syntax,
1339 but it will accept every correct freeregs directive. */
1340 input_line_pointer += strcspn (input_line_pointer, "\n");
1341 directive_push (directive_freeregs, negated, 0);
1342 break;
1343
1344 case directive_density:
1345 if (!density_supported && !negated)
1346 {
1347 as_warn (_("Xtensa density option not supported; ignored"));
1348 break;
1349 }
1350 /* fall through */
1351
1352 default:
1353 directive_push (directive, negated, 0);
1354 break;
1355 }
1356
1357 demand_empty_rest_of_line ();
1358 }
1359
1360
1361 static void
1362 xtensa_end_directive (ignore)
1363 int ignore ATTRIBUTE_UNUSED;
1364 {
1365 directiveE begin_directive, end_directive;
1366 bfd_boolean begin_negated, end_negated;
1367 const char *file;
1368 unsigned int line;
1369 emit_state *state;
1370 lit_state *s;
1371
1372 md_flush_pending_output ();
1373
1374 get_directive (&end_directive, &end_negated);
1375 if (end_directive == (directiveE) XTENSA_UNDEFINED)
1376 {
1377 discard_rest_of_line ();
1378 return;
1379 }
1380
1381 if (end_directive == directive_density && !density_supported && !end_negated)
1382 {
1383 as_warn (_("Xtensa density option not supported; ignored"));
1384 demand_empty_rest_of_line ();
1385 return;
1386 }
1387
1388 directive_pop (&begin_directive, &begin_negated, &file, &line,
1389 (const void **) &state);
1390
1391 if (begin_directive != directive_none)
1392 {
1393 if (begin_directive != end_directive || begin_negated != end_negated)
1394 {
1395 as_bad (_("does not match begin %s%s at %s:%d"),
1396 begin_negated ? "no-" : "",
1397 directive_info[begin_directive].name, file, line);
1398 }
1399 else
1400 {
1401 switch (end_directive)
1402 {
1403 case directive_literal:
1404 frag_var (rs_fill, 0, 0, 0, NULL, 0, NULL);
1405 xtensa_restore_emit_state (state);
1406 free (state);
1407 if (!inside_directive (directive_literal))
1408 {
1409 /* Restore the list of current labels. */
1410 xtensa_clear_insn_labels ();
1411 insn_labels = saved_insn_labels;
1412 }
1413 break;
1414
1415 case directive_freeregs:
1416 break;
1417
1418 case directive_literal_prefix:
1419 /* Restore the default collection sections from saved state. */
1420 s = (lit_state *) state;
1421 assert (s);
1422
1423 if (use_literal_section)
1424 default_lit_sections = *s;
1425
1426 /* free the state storage */
1427 free (s);
1428 break;
1429
1430 default:
1431 break;
1432 }
1433 }
1434 }
1435
1436 demand_empty_rest_of_line ();
1437 }
1438
1439
1440 /* Place an aligned literal fragment at the current location. */
1441
1442 static void
1443 xtensa_literal_position (ignore)
1444 int ignore ATTRIBUTE_UNUSED;
1445 {
1446 if (inside_directive (directive_literal))
1447 as_warn (_(".literal_position inside literal directive; ignoring"));
1448 else if (!use_literal_section)
1449 xtensa_mark_literal_pool_location ();
1450
1451 demand_empty_rest_of_line ();
1452 xtensa_clear_insn_labels ();
1453 }
1454
1455
1456 /* Support .literal label, value@plt + offset. */
1457
1458 static void
1459 xtensa_literal_pseudo (ignored)
1460 int ignored ATTRIBUTE_UNUSED;
1461 {
1462 emit_state state;
1463 char *p, *base_name;
1464 char c;
1465 expressionS expP;
1466 segT dest_seg;
1467
1468 if (inside_directive (directive_literal))
1469 {
1470 as_bad (_(".literal not allowed inside .begin literal region"));
1471 ignore_rest_of_line ();
1472 return;
1473 }
1474
1475 /* Previous labels go with whatever follows this directive, not with
1476 the literal, so save them now. */
1477 saved_insn_labels = insn_labels;
1478 insn_labels = NULL;
1479
1480 /* If we are using text-section literals, then this is the right value... */
1481 dest_seg = now_seg;
1482
1483 base_name = input_line_pointer;
1484
1485 xtensa_switch_to_literal_fragment (&state);
1486
1487 /* ...but if we aren't using text-section-literals, then we
1488 need to put them in the section we just switched to. */
1489 if (use_literal_section)
1490 dest_seg = now_seg;
1491
1492 /* All literals are aligned to four-byte boundaries
1493 which is handled by switch to literal fragment. */
1494 /* frag_align (2, 0, 0); */
1495
1496 c = get_symbol_end ();
1497 /* Just after name is now '\0'. */
1498 p = input_line_pointer;
1499 *p = c;
1500 SKIP_WHITESPACE ();
1501
1502 if (*input_line_pointer != ',' && *input_line_pointer != ':')
1503 {
1504 as_bad (_("expected comma or colon after symbol name; "
1505 "rest of line ignored"));
1506 ignore_rest_of_line ();
1507 xtensa_restore_emit_state (&state);
1508 return;
1509 }
1510 *p = 0;
1511
1512 colon (base_name);
1513
1514 do
1515 {
1516 input_line_pointer++; /* skip ',' or ':' */
1517
1518 expr (0, &expP);
1519
1520 /* We only support 4-byte literals with .literal. */
1521 emit_expr (&expP, 4);
1522 }
1523 while (*input_line_pointer == ',');
1524
1525 *p = c;
1526
1527 demand_empty_rest_of_line ();
1528
1529 xtensa_restore_emit_state (&state);
1530
1531 /* Restore the list of current labels. */
1532 xtensa_clear_insn_labels ();
1533 insn_labels = saved_insn_labels;
1534 }
1535
1536
1537 static void
1538 xtensa_literal_prefix (start, len)
1539 char const *start;
1540 int len;
1541 {
1542 segT s_now; /* Storage for the current seg and subseg. */
1543 subsegT ss_now;
1544 char *name; /* Pointer to the name itself. */
1545 char *newname;
1546
1547 if (!use_literal_section)
1548 return;
1549
1550 /* Store away the current section and subsection. */
1551 s_now = now_seg;
1552 ss_now = now_subseg;
1553
1554 /* Get a null-terminated copy of the name. */
1555 name = xmalloc (len + 1);
1556 assert (name);
1557
1558 strncpy (name, start, len);
1559 name[len] = 0;
1560
1561 /* Allocate the sections (interesting note: the memory pointing to
1562 the name is actually used for the name by the new section). */
1563 newname = xmalloc (len + strlen (".literal") + 1);
1564 strcpy (newname, name);
1565 strcpy (newname + len, ".literal");
1566
1567 /* Note that retrieve_literal_seg does not create a segment if
1568 it already exists. */
1569 default_lit_sections.lit_seg = NULL; /* retrieved on demand */
1570
1571 /* Canonicalizing section names allows renaming literal
1572 sections to occur correctly. */
1573 default_lit_sections.lit_seg_name =
1574 tc_canonicalize_symbol_name (newname);
1575
1576 free (name);
1577
1578 /* Restore the current section and subsection and set the
1579 generation into the old segment. */
1580 subseg_set (s_now, ss_now);
1581 }
1582
1583 \f
1584 /* Parsing and Idiom Translation. */
1585
1586 static const char *
1587 expression_end (name)
1588 const char *name;
1589 {
1590 while (1)
1591 {
1592 switch (*name)
1593 {
1594 case ';':
1595 case '\0':
1596 case ',':
1597 return name;
1598 case ' ':
1599 case '\t':
1600 ++name;
1601 continue;
1602 default:
1603 return 0;
1604 }
1605 }
1606 }
1607
1608
1609 #define ERROR_REG_NUM ((unsigned) -1)
1610
1611 static unsigned
1612 tc_get_register (prefix)
1613 const char *prefix;
1614 {
1615 unsigned reg;
1616 const char *next_expr;
1617 const char *old_line_pointer;
1618
1619 SKIP_WHITESPACE ();
1620 old_line_pointer = input_line_pointer;
1621
1622 if (*input_line_pointer == '$')
1623 ++input_line_pointer;
1624
1625 /* Accept "sp" as a synonym for "a1". */
1626 if (input_line_pointer[0] == 's' && input_line_pointer[1] == 'p'
1627 && expression_end (input_line_pointer + 2))
1628 {
1629 input_line_pointer += 2;
1630 return 1; /* AR[1] */
1631 }
1632
1633 while (*input_line_pointer++ == *prefix++)
1634 ;
1635 --input_line_pointer;
1636 --prefix;
1637
1638 if (*prefix)
1639 {
1640 as_bad (_("bad register name: %s"), old_line_pointer);
1641 return ERROR_REG_NUM;
1642 }
1643
1644 if (!ISDIGIT ((unsigned char) *input_line_pointer))
1645 {
1646 as_bad (_("bad register number: %s"), input_line_pointer);
1647 return ERROR_REG_NUM;
1648 }
1649
1650 reg = 0;
1651
1652 while (ISDIGIT ((int) *input_line_pointer))
1653 reg = reg * 10 + *input_line_pointer++ - '0';
1654
1655 if (!(next_expr = expression_end (input_line_pointer)))
1656 {
1657 as_bad (_("bad register name: %s"), old_line_pointer);
1658 return ERROR_REG_NUM;
1659 }
1660
1661 input_line_pointer = (char *) next_expr;
1662
1663 return reg;
1664 }
1665
1666
1667 #define PLT_SUFFIX "@PLT"
1668 #define plt_suffix "@plt"
1669
1670 static void
1671 expression_maybe_register (opnd, tok)
1672 xtensa_operand opnd;
1673 expressionS *tok;
1674 {
1675 char *kind = xtensa_operand_kind (opnd);
1676
1677 if ((strlen (kind) == 1)
1678 && (*kind == 'l' || *kind == 'L' || *kind == 'i' || *kind == 'r'))
1679 {
1680 segT t = expression (tok);
1681 if (t == absolute_section && operand_is_pcrel_label (opnd))
1682 {
1683 assert (tok->X_op == O_constant);
1684 tok->X_op = O_symbol;
1685 tok->X_add_symbol = &abs_symbol;
1686 }
1687 if (tok->X_op == O_symbol
1688 && (!strncmp (input_line_pointer, PLT_SUFFIX,
1689 strlen (PLT_SUFFIX) - 1)
1690 || !strncmp (input_line_pointer, plt_suffix,
1691 strlen (plt_suffix) - 1)))
1692 {
1693 symbol_get_tc (tok->X_add_symbol)->plt = 1;
1694 input_line_pointer += strlen (plt_suffix);
1695 }
1696 }
1697 else
1698 {
1699 unsigned reg = tc_get_register (kind);
1700
1701 if (reg != ERROR_REG_NUM) /* Already errored */
1702 {
1703 uint32 buf = reg;
1704 if ((xtensa_operand_encode (opnd, &buf) != xtensa_encode_result_ok)
1705 || (reg != xtensa_operand_decode (opnd, buf)))
1706 as_bad (_("register number out of range"));
1707 }
1708
1709 tok->X_op = O_register;
1710 tok->X_add_symbol = 0;
1711 tok->X_add_number = reg;
1712 }
1713 }
1714
1715
1716 /* Split up the arguments for an opcode or pseudo-op. */
1717
1718 static int
1719 tokenize_arguments (args, str)
1720 char **args;
1721 char *str;
1722 {
1723 char *old_input_line_pointer;
1724 bfd_boolean saw_comma = FALSE;
1725 bfd_boolean saw_arg = FALSE;
1726 int num_args = 0;
1727 char *arg_end, *arg;
1728 int arg_len;
1729
1730 /* Save and restore input_line_pointer around this function. */
1731 old_input_line_pointer = input_line_pointer;
1732 input_line_pointer = str;
1733
1734 while (*input_line_pointer)
1735 {
1736 SKIP_WHITESPACE ();
1737 switch (*input_line_pointer)
1738 {
1739 case '\0':
1740 goto fini;
1741
1742 case ',':
1743 input_line_pointer++;
1744 if (saw_comma || !saw_arg)
1745 goto err;
1746 saw_comma = TRUE;
1747 break;
1748
1749 default:
1750 if (!saw_comma && saw_arg)
1751 goto err;
1752
1753 arg_end = input_line_pointer + 1;
1754 while (!expression_end (arg_end))
1755 arg_end += 1;
1756
1757 arg_len = arg_end - input_line_pointer;
1758 arg = (char *) xmalloc (arg_len + 1);
1759 args[num_args] = arg;
1760
1761 strncpy (arg, input_line_pointer, arg_len);
1762 arg[arg_len] = '\0';
1763
1764 input_line_pointer = arg_end;
1765 num_args += 1;
1766 saw_comma = FALSE;
1767 saw_arg = TRUE;
1768 break;
1769 }
1770 }
1771
1772 fini:
1773 if (saw_comma)
1774 goto err;
1775 input_line_pointer = old_input_line_pointer;
1776 return num_args;
1777
1778 err:
1779 input_line_pointer = old_input_line_pointer;
1780 return -1;
1781 }
1782
1783
1784 /* Parse the arguments to an opcode. Return true on error. */
1785
1786 static bfd_boolean
1787 parse_arguments (insn, num_args, arg_strings)
1788 TInsn *insn;
1789 int num_args;
1790 char **arg_strings;
1791 {
1792 expressionS *tok = insn->tok;
1793 xtensa_opcode opcode = insn->opcode;
1794 bfd_boolean had_error = TRUE;
1795 xtensa_isa isa = xtensa_default_isa;
1796 int n;
1797 int opcode_operand_count;
1798 int actual_operand_count = 0;
1799 xtensa_operand opnd = NULL;
1800 char *old_input_line_pointer;
1801
1802 if (insn->insn_type == ITYPE_LITERAL)
1803 opcode_operand_count = 1;
1804 else
1805 opcode_operand_count = xtensa_num_operands (isa, opcode);
1806
1807 memset (tok, 0, sizeof (*tok) * MAX_INSN_ARGS);
1808
1809 /* Save and restore input_line_pointer around this function. */
1810 old_input_line_pointer = input_line_pointer;
1811
1812 for (n = 0; n < num_args; n++)
1813 {
1814 input_line_pointer = arg_strings[n];
1815
1816 if (actual_operand_count >= opcode_operand_count)
1817 {
1818 as_warn (_("too many arguments"));
1819 goto err;
1820 }
1821 assert (actual_operand_count < MAX_INSN_ARGS);
1822
1823 opnd = xtensa_get_operand (isa, opcode, actual_operand_count);
1824 expression_maybe_register (opnd, tok);
1825
1826 if (tok->X_op == O_illegal || tok->X_op == O_absent)
1827 goto err;
1828 actual_operand_count++;
1829 tok++;
1830 }
1831
1832 insn->ntok = tok - insn->tok;
1833 had_error = FALSE;
1834
1835 err:
1836 input_line_pointer = old_input_line_pointer;
1837 return had_error;
1838 }
1839
1840
1841 static void
1842 xg_reverse_shift_count (cnt_argp)
1843 char **cnt_argp;
1844 {
1845 char *cnt_arg, *new_arg;
1846 cnt_arg = *cnt_argp;
1847
1848 /* replace the argument with "31-(argument)" */
1849 new_arg = (char *) xmalloc (strlen (cnt_arg) + 6);
1850 sprintf (new_arg, "31-(%s)", cnt_arg);
1851
1852 free (cnt_arg);
1853 *cnt_argp = new_arg;
1854 }
1855
1856
1857 /* If "arg" is a constant expression, return non-zero with the value
1858 in *valp. */
1859
1860 static int
1861 xg_arg_is_constant (arg, valp)
1862 char *arg;
1863 offsetT *valp;
1864 {
1865 expressionS exp;
1866 char *save_ptr = input_line_pointer;
1867
1868 input_line_pointer = arg;
1869 expression (&exp);
1870 input_line_pointer = save_ptr;
1871
1872 if (exp.X_op == O_constant)
1873 {
1874 *valp = exp.X_add_number;
1875 return 1;
1876 }
1877
1878 return 0;
1879 }
1880
1881
1882 static void
1883 xg_replace_opname (popname, newop)
1884 char **popname;
1885 char *newop;
1886 {
1887 free (*popname);
1888 *popname = (char *) xmalloc (strlen (newop) + 1);
1889 strcpy (*popname, newop);
1890 }
1891
1892
1893 static int
1894 xg_check_num_args (pnum_args, expected_num, opname, arg_strings)
1895 int *pnum_args;
1896 int expected_num;
1897 char *opname;
1898 char **arg_strings;
1899 {
1900 int num_args = *pnum_args;
1901
1902 if (num_args < expected_num)
1903 {
1904 as_bad (_("not enough operands (%d) for '%s'; expected %d"),
1905 num_args, opname, expected_num);
1906 return -1;
1907 }
1908
1909 if (num_args > expected_num)
1910 {
1911 as_warn (_("too many operands (%d) for '%s'; expected %d"),
1912 num_args, opname, expected_num);
1913 while (num_args-- > expected_num)
1914 {
1915 free (arg_strings[num_args]);
1916 arg_strings[num_args] = 0;
1917 }
1918 *pnum_args = expected_num;
1919 return -1;
1920 }
1921
1922 return 0;
1923 }
1924
1925
1926 static int
1927 xg_translate_sysreg_op (popname, pnum_args, arg_strings)
1928 char **popname;
1929 int *pnum_args;
1930 char **arg_strings;
1931 {
1932 char *opname, *new_opname;
1933 offsetT val;
1934 bfd_boolean has_underbar = FALSE;
1935
1936 opname = *popname;
1937 if (*opname == '_')
1938 {
1939 has_underbar = TRUE;
1940 opname += 1;
1941 }
1942
1943 /* Opname == [rw]ur... */
1944
1945 if (opname[3] == '\0')
1946 {
1947 /* If the register is not specified as part of the opcode,
1948 then get it from the operand and move it to the opcode. */
1949
1950 if (xg_check_num_args (pnum_args, 2, opname, arg_strings))
1951 return -1;
1952
1953 if (!xg_arg_is_constant (arg_strings[1], &val))
1954 {
1955 as_bad (_("register number for `%s' is not a constant"), opname);
1956 return -1;
1957 }
1958 if ((unsigned) val > 255)
1959 {
1960 as_bad (_("register number (%ld) for `%s' is out of range"),
1961 val, opname);
1962 return -1;
1963 }
1964
1965 /* Remove the last argument, which is now part of the opcode. */
1966 free (arg_strings[1]);
1967 arg_strings[1] = 0;
1968 *pnum_args = 1;
1969
1970 /* Translate the opcode. */
1971 new_opname = (char *) xmalloc (8);
1972 sprintf (new_opname, "%s%cur%u", (has_underbar ? "_" : ""),
1973 opname[0], (unsigned) val);
1974 free (*popname);
1975 *popname = new_opname;
1976 }
1977
1978 return 0;
1979 }
1980
1981
1982 /* If the instruction is an idiom (i.e., a built-in macro), translate it.
1983 Returns non-zero if an error was found. */
1984
1985 static int
1986 xg_translate_idioms (popname, pnum_args, arg_strings)
1987 char **popname;
1988 int *pnum_args;
1989 char **arg_strings;
1990 {
1991 char *opname = *popname;
1992 bfd_boolean has_underbar = FALSE;
1993
1994 if (*opname == '_')
1995 {
1996 has_underbar = TRUE;
1997 opname += 1;
1998 }
1999
2000 if (strcmp (opname, "mov") == 0)
2001 {
2002 if (!has_underbar && code_density_available ())
2003 xg_replace_opname (popname, "mov.n");
2004 else
2005 {
2006 if (xg_check_num_args (pnum_args, 2, opname, arg_strings))
2007 return -1;
2008 xg_replace_opname (popname, (has_underbar ? "_or" : "or"));
2009 arg_strings[2] = (char *) xmalloc (strlen (arg_strings[1]) + 1);
2010 strcpy (arg_strings[2], arg_strings[1]);
2011 *pnum_args = 3;
2012 }
2013 return 0;
2014 }
2015
2016 if (strcmp (opname, "bbsi.l") == 0)
2017 {
2018 if (xg_check_num_args (pnum_args, 3, opname, arg_strings))
2019 return -1;
2020 xg_replace_opname (popname, (has_underbar ? "_bbsi" : "bbsi"));
2021 if (target_big_endian)
2022 xg_reverse_shift_count (&arg_strings[1]);
2023 return 0;
2024 }
2025
2026 if (strcmp (opname, "bbci.l") == 0)
2027 {
2028 if (xg_check_num_args (pnum_args, 3, opname, arg_strings))
2029 return -1;
2030 xg_replace_opname (popname, (has_underbar ? "_bbci" : "bbci"));
2031 if (target_big_endian)
2032 xg_reverse_shift_count (&arg_strings[1]);
2033 return 0;
2034 }
2035
2036 if (strcmp (opname, "nop") == 0)
2037 {
2038 if (!has_underbar && code_density_available ())
2039 xg_replace_opname (popname, "nop.n");
2040 else
2041 {
2042 if (xg_check_num_args (pnum_args, 0, opname, arg_strings))
2043 return -1;
2044 xg_replace_opname (popname, (has_underbar ? "_or" : "or"));
2045 arg_strings[0] = (char *) xmalloc (3);
2046 arg_strings[1] = (char *) xmalloc (3);
2047 arg_strings[2] = (char *) xmalloc (3);
2048 strcpy (arg_strings[0], "a1");
2049 strcpy (arg_strings[1], "a1");
2050 strcpy (arg_strings[2], "a1");
2051 *pnum_args = 3;
2052 }
2053 return 0;
2054 }
2055
2056 if ((opname[0] == 'r' || opname[0] == 'w')
2057 && opname[1] == 'u'
2058 && opname[2] == 'r')
2059 return xg_translate_sysreg_op (popname, pnum_args, arg_strings);
2060
2061
2062 /* WIDENING DENSITY OPCODES
2063
2064 questionable relaxations (widening) from old "tai" idioms:
2065
2066 ADD.N --> ADD
2067 BEQZ.N --> BEQZ
2068 RET.N --> RET
2069 RETW.N --> RETW
2070 MOVI.N --> MOVI
2071 MOV.N --> MOV
2072 NOP.N --> NOP
2073
2074 Note: this incomplete list was imported to match the "tai"
2075 behavior; other density opcodes are not handled.
2076
2077 The xtensa-relax code may know how to do these but it doesn't do
2078 anything when these density opcodes appear inside a no-density
2079 region. Somehow GAS should either print an error when that happens
2080 or do the widening. The old "tai" behavior was to do the widening.
2081 For now, I'll make it widen but print a warning.
2082
2083 FIXME: GAS needs to detect density opcodes inside no-density
2084 regions and treat them as errors. This code should be removed
2085 when that is done. */
2086
2087 if (use_generics ()
2088 && !has_underbar
2089 && density_supported
2090 && !code_density_available ())
2091 {
2092 if (strcmp (opname, "add.n") == 0)
2093 xg_replace_opname (popname, "add");
2094
2095 else if (strcmp (opname, "beqz.n") == 0)
2096 xg_replace_opname (popname, "beqz");
2097
2098 else if (strcmp (opname, "ret.n") == 0)
2099 xg_replace_opname (popname, "ret");
2100
2101 else if (strcmp (opname, "retw.n") == 0)
2102 xg_replace_opname (popname, "retw");
2103
2104 else if (strcmp (opname, "movi.n") == 0)
2105 xg_replace_opname (popname, "movi");
2106
2107 else if (strcmp (opname, "mov.n") == 0)
2108 {
2109 if (xg_check_num_args (pnum_args, 2, opname, arg_strings))
2110 return -1;
2111 xg_replace_opname (popname, "or");
2112 arg_strings[2] = (char *) xmalloc (strlen (arg_strings[1]) + 1);
2113 strcpy (arg_strings[2], arg_strings[1]);
2114 *pnum_args = 3;
2115 }
2116
2117 else if (strcmp (opname, "nop.n") == 0)
2118 {
2119 if (xg_check_num_args (pnum_args, 0, opname, arg_strings))
2120 return -1;
2121 xg_replace_opname (popname, "or");
2122 arg_strings[0] = (char *) xmalloc (3);
2123 arg_strings[1] = (char *) xmalloc (3);
2124 arg_strings[2] = (char *) xmalloc (3);
2125 strcpy (arg_strings[0], "a1");
2126 strcpy (arg_strings[1], "a1");
2127 strcpy (arg_strings[2], "a1");
2128 *pnum_args = 3;
2129 }
2130 }
2131
2132 return 0;
2133 }
2134
2135 \f
2136 /* Functions for dealing with the Xtensa ISA. */
2137
2138 /* Return true if the given operand is an immed or target instruction,
2139 i.e., has a reloc associated with it. Currently, this is only true
2140 if the operand kind is "i, "l" or "L". */
2141
2142 static bfd_boolean
2143 operand_is_immed (opnd)
2144 xtensa_operand opnd;
2145 {
2146 const char *opkind = xtensa_operand_kind (opnd);
2147 if (opkind[0] == '\0' || opkind[1] != '\0')
2148 return FALSE;
2149 switch (opkind[0])
2150 {
2151 case 'i':
2152 case 'l':
2153 case 'L':
2154 return TRUE;
2155 }
2156 return FALSE;
2157 }
2158
2159
2160 /* Return true if the given operand is a pc-relative label. This is
2161 true for "l", "L", and "r" operand kinds. */
2162
2163 bfd_boolean
2164 operand_is_pcrel_label (opnd)
2165 xtensa_operand opnd;
2166 {
2167 const char *opkind = xtensa_operand_kind (opnd);
2168 if (opkind[0] == '\0' || opkind[1] != '\0')
2169 return FALSE;
2170 switch (opkind[0])
2171 {
2172 case 'r':
2173 case 'l':
2174 case 'L':
2175 return TRUE;
2176 }
2177 return FALSE;
2178 }
2179
2180
2181 /* Currently the assembler only allows us to use a single target per
2182 fragment. Because of this, only one operand for a given
2183 instruction may be symbolic. If there is an operand of kind "lrL",
2184 the last one is chosen. Otherwise, the result is the number of the
2185 last operand of type "i", and if there are none of those, we fail
2186 and return -1. */
2187
2188 int
2189 get_relaxable_immed (opcode)
2190 xtensa_opcode opcode;
2191 {
2192 int last_immed = -1;
2193 int noperands, opi;
2194 xtensa_operand operand;
2195
2196 if (opcode == XTENSA_UNDEFINED)
2197 return -1;
2198
2199 noperands = xtensa_num_operands (xtensa_default_isa, opcode);
2200 for (opi = noperands - 1; opi >= 0; opi--)
2201 {
2202 operand = xtensa_get_operand (xtensa_default_isa, opcode, opi);
2203 if (operand_is_pcrel_label (operand))
2204 return opi;
2205 if (last_immed == -1 && operand_is_immed (operand))
2206 last_immed = opi;
2207 }
2208 return last_immed;
2209 }
2210
2211
2212 xtensa_opcode
2213 get_opcode_from_buf (buf)
2214 const char *buf;
2215 {
2216 static xtensa_insnbuf insnbuf = NULL;
2217 xtensa_opcode opcode;
2218 xtensa_isa isa = xtensa_default_isa;
2219 if (!insnbuf)
2220 insnbuf = xtensa_insnbuf_alloc (isa);
2221
2222 xtensa_insnbuf_from_chars (isa, insnbuf, buf);
2223 opcode = xtensa_decode_insn (isa, insnbuf);
2224 return opcode;
2225 }
2226
2227
2228 static bfd_boolean
2229 is_direct_call_opcode (opcode)
2230 xtensa_opcode opcode;
2231 {
2232 if (opcode == XTENSA_UNDEFINED)
2233 return FALSE;
2234
2235 return (opcode == xtensa_call0_opcode
2236 || opcode == xtensa_call4_opcode
2237 || opcode == xtensa_call8_opcode
2238 || opcode == xtensa_call12_opcode);
2239 }
2240
2241
2242 static bfd_boolean
2243 is_call_opcode (opcode)
2244 xtensa_opcode opcode;
2245 {
2246 if (is_direct_call_opcode (opcode))
2247 return TRUE;
2248
2249 if (opcode == XTENSA_UNDEFINED)
2250 return FALSE;
2251
2252 return (opcode == xtensa_callx0_opcode
2253 || opcode == xtensa_callx4_opcode
2254 || opcode == xtensa_callx8_opcode
2255 || opcode == xtensa_callx12_opcode);
2256 }
2257
2258
2259 /* Return true if the opcode is an entry opcode. This is used because
2260 "entry" adds an implicit ".align 4" and also the entry instruction
2261 has an extra check for an operand value. */
2262
2263 static bfd_boolean
2264 is_entry_opcode (opcode)
2265 xtensa_opcode opcode;
2266 {
2267 if (opcode == XTENSA_UNDEFINED)
2268 return FALSE;
2269
2270 return (opcode == xtensa_entry_opcode);
2271 }
2272
2273
2274 /* Return true if it is one of the loop opcodes. Loops are special
2275 because they need automatic alignment and they have a relaxation so
2276 complex that we hard-coded it. */
2277
2278 static bfd_boolean
2279 is_loop_opcode (opcode)
2280 xtensa_opcode opcode;
2281 {
2282 if (opcode == XTENSA_UNDEFINED)
2283 return FALSE;
2284
2285 return (opcode == xtensa_loop_opcode
2286 || opcode == xtensa_loopnez_opcode
2287 || opcode == xtensa_loopgtz_opcode);
2288 }
2289
2290
2291 static bfd_boolean
2292 is_the_loop_opcode (opcode)
2293 xtensa_opcode opcode;
2294 {
2295 if (opcode == XTENSA_UNDEFINED)
2296 return FALSE;
2297
2298 return (opcode == xtensa_loop_opcode);
2299 }
2300
2301
2302 static bfd_boolean
2303 is_jx_opcode (opcode)
2304 xtensa_opcode opcode;
2305 {
2306 if (opcode == XTENSA_UNDEFINED)
2307 return FALSE;
2308
2309 return (opcode == xtensa_jx_opcode);
2310 }
2311
2312
2313 /* Return true if the opcode is a retw or retw.n.
2314 Needed to add nops to avoid a hardware interlock issue. */
2315
2316 static bfd_boolean
2317 is_windowed_return_opcode (opcode)
2318 xtensa_opcode opcode;
2319 {
2320 if (opcode == XTENSA_UNDEFINED)
2321 return FALSE;
2322
2323 return (opcode == xtensa_retw_opcode || opcode == xtensa_retw_n_opcode);
2324 }
2325
2326
2327 /* Return true if the opcode type is "l" and the opcode is NOT a jump. */
2328
2329 static bfd_boolean
2330 is_conditional_branch_opcode (opcode)
2331 xtensa_opcode opcode;
2332 {
2333 xtensa_isa isa = xtensa_default_isa;
2334 int num_ops, i;
2335
2336 if (opcode == xtensa_j_opcode && opcode != XTENSA_UNDEFINED)
2337 return FALSE;
2338
2339 num_ops = xtensa_num_operands (isa, opcode);
2340 for (i = 0; i < num_ops; i++)
2341 {
2342 xtensa_operand operand = xtensa_get_operand (isa, opcode, i);
2343 if (strcmp (xtensa_operand_kind (operand), "l") == 0)
2344 return TRUE;
2345 }
2346 return FALSE;
2347 }
2348
2349
2350 /* Return true if the given opcode is a conditional branch
2351 instruction, i.e., currently this is true if the instruction
2352 is a jx or has an operand with 'l' type and is not a loop. */
2353
2354 bfd_boolean
2355 is_branch_or_jump_opcode (opcode)
2356 xtensa_opcode opcode;
2357 {
2358 int opn, op_count;
2359
2360 if (opcode == XTENSA_UNDEFINED)
2361 return FALSE;
2362
2363 if (is_loop_opcode (opcode))
2364 return FALSE;
2365
2366 if (is_jx_opcode (opcode))
2367 return TRUE;
2368
2369 op_count = xtensa_num_operands (xtensa_default_isa, opcode);
2370 for (opn = 0; opn < op_count; opn++)
2371 {
2372 xtensa_operand opnd =
2373 xtensa_get_operand (xtensa_default_isa, opcode, opn);
2374 const char *opkind = xtensa_operand_kind (opnd);
2375 if (opkind && opkind[0] == 'l' && opkind[1] == '\0')
2376 return TRUE;
2377 }
2378 return FALSE;
2379 }
2380
2381
2382 /* Convert from operand numbers to BFD relocation type code.
2383 Return BFD_RELOC_NONE on failure. */
2384
2385 bfd_reloc_code_real_type
2386 opnum_to_reloc (opnum)
2387 int opnum;
2388 {
2389 switch (opnum)
2390 {
2391 case 0:
2392 return BFD_RELOC_XTENSA_OP0;
2393 case 1:
2394 return BFD_RELOC_XTENSA_OP1;
2395 case 2:
2396 return BFD_RELOC_XTENSA_OP2;
2397 default:
2398 break;
2399 }
2400 return BFD_RELOC_NONE;
2401 }
2402
2403
2404 /* Convert from BFD relocation type code to operand number.
2405 Return -1 on failure. */
2406
2407 int
2408 reloc_to_opnum (reloc)
2409 bfd_reloc_code_real_type reloc;
2410 {
2411 switch (reloc)
2412 {
2413 case BFD_RELOC_XTENSA_OP0:
2414 return 0;
2415 case BFD_RELOC_XTENSA_OP1:
2416 return 1;
2417 case BFD_RELOC_XTENSA_OP2:
2418 return 2;
2419 default:
2420 break;
2421 }
2422 return -1;
2423 }
2424
2425
2426 static void
2427 xtensa_insnbuf_set_operand (insnbuf, opcode, operand, value, file, line)
2428 xtensa_insnbuf insnbuf;
2429 xtensa_opcode opcode;
2430 xtensa_operand operand;
2431 int32 value;
2432 const char *file;
2433 unsigned int line;
2434 {
2435 xtensa_encode_result encode_result;
2436 uint32 valbuf = value;
2437
2438 encode_result = xtensa_operand_encode (operand, &valbuf);
2439
2440 switch (encode_result)
2441 {
2442 case xtensa_encode_result_ok:
2443 break;
2444 case xtensa_encode_result_align:
2445 as_bad_where ((char *) file, line,
2446 _("operand %d not properly aligned for '%s'"),
2447 value, xtensa_opcode_name (xtensa_default_isa, opcode));
2448 break;
2449 case xtensa_encode_result_not_in_table:
2450 as_bad_where ((char *) file, line,
2451 _("operand %d not in immediate table for '%s'"),
2452 value, xtensa_opcode_name (xtensa_default_isa, opcode));
2453 break;
2454 case xtensa_encode_result_too_high:
2455 as_bad_where ((char *) file, line,
2456 _("operand %d too large for '%s'"), value,
2457 xtensa_opcode_name (xtensa_default_isa, opcode));
2458 break;
2459 case xtensa_encode_result_too_low:
2460 as_bad_where ((char *) file, line,
2461 _("operand %d too small for '%s'"), value,
2462 xtensa_opcode_name (xtensa_default_isa, opcode));
2463 break;
2464 case xtensa_encode_result_not_ok:
2465 as_bad_where ((char *) file, line,
2466 _("operand %d is invalid for '%s'"), value,
2467 xtensa_opcode_name (xtensa_default_isa, opcode));
2468 break;
2469 default:
2470 abort ();
2471 }
2472
2473 xtensa_operand_set_field (operand, insnbuf, valbuf);
2474 }
2475
2476
2477 static uint32
2478 xtensa_insnbuf_get_operand (insnbuf, opcode, opnum)
2479 xtensa_insnbuf insnbuf;
2480 xtensa_opcode opcode;
2481 int opnum;
2482 {
2483 xtensa_operand op = xtensa_get_operand (xtensa_default_isa, opcode, opnum);
2484 return xtensa_operand_decode (op, xtensa_operand_get_field (op, insnbuf));
2485 }
2486
2487
2488 static void
2489 xtensa_insnbuf_set_immediate_field (opcode, insnbuf, value, file, line)
2490 xtensa_opcode opcode;
2491 xtensa_insnbuf insnbuf;
2492 int32 value;
2493 const char *file;
2494 unsigned int line;
2495 {
2496 xtensa_isa isa = xtensa_default_isa;
2497 int last_opnd = xtensa_num_operands (isa, opcode) - 1;
2498 xtensa_operand operand = xtensa_get_operand (isa, opcode, last_opnd);
2499 xtensa_insnbuf_set_operand (insnbuf, opcode, operand, value, file, line);
2500 }
2501
2502
2503 static bfd_boolean
2504 is_negatable_branch (insn)
2505 TInsn *insn;
2506 {
2507 xtensa_isa isa = xtensa_default_isa;
2508 int i;
2509 int num_ops = xtensa_num_operands (isa, insn->opcode);
2510
2511 for (i = 0; i < num_ops; i++)
2512 {
2513 xtensa_operand opnd = xtensa_get_operand (isa, insn->opcode, i);
2514 char *kind = xtensa_operand_kind (opnd);
2515 if (strlen (kind) == 1 && *kind == 'l')
2516 return TRUE;
2517 }
2518 return FALSE;
2519 }
2520
2521 \f
2522 /* Various Other Internal Functions. */
2523
2524 static bfd_boolean
2525 is_unique_insn_expansion (r)
2526 TransitionRule *r;
2527 {
2528 if (!r->to_instr || r->to_instr->next != NULL)
2529 return FALSE;
2530 if (r->to_instr->typ != INSTR_INSTR)
2531 return FALSE;
2532 return TRUE;
2533 }
2534
2535
2536 static int
2537 xg_get_insn_size (insn)
2538 TInsn *insn;
2539 {
2540 assert (insn->insn_type == ITYPE_INSN);
2541 return xtensa_insn_length (xtensa_default_isa, insn->opcode);
2542 }
2543
2544
2545 static int
2546 xg_get_build_instr_size (insn)
2547 BuildInstr *insn;
2548 {
2549 assert (insn->typ == INSTR_INSTR);
2550 return xtensa_insn_length (xtensa_default_isa, insn->opcode);
2551 }
2552
2553
2554 bfd_boolean
2555 xg_is_narrow_insn (insn)
2556 TInsn *insn;
2557 {
2558 TransitionTable *table = xg_build_widen_table ();
2559 TransitionList *l;
2560 int num_match = 0;
2561 assert (insn->insn_type == ITYPE_INSN);
2562 assert (insn->opcode < table->num_opcodes);
2563
2564 for (l = table->table[insn->opcode]; l != NULL; l = l->next)
2565 {
2566 TransitionRule *rule = l->rule;
2567
2568 if (xg_instruction_matches_rule (insn, rule)
2569 && is_unique_insn_expansion (rule))
2570 {
2571 /* It only generates one instruction... */
2572 assert (insn->insn_type == ITYPE_INSN);
2573 /* ...and it is a larger instruction. */
2574 if (xg_get_insn_size (insn)
2575 < xg_get_build_instr_size (rule->to_instr))
2576 {
2577 num_match++;
2578 if (num_match > 1)
2579 return FALSE;
2580 }
2581 }
2582 }
2583 return (num_match == 1);
2584 }
2585
2586
2587 bfd_boolean
2588 xg_is_single_relaxable_insn (insn)
2589 TInsn *insn;
2590 {
2591 TransitionTable *table = xg_build_widen_table ();
2592 TransitionList *l;
2593 int num_match = 0;
2594 assert (insn->insn_type == ITYPE_INSN);
2595 assert (insn->opcode < table->num_opcodes);
2596
2597 for (l = table->table[insn->opcode]; l != NULL; l = l->next)
2598 {
2599 TransitionRule *rule = l->rule;
2600
2601 if (xg_instruction_matches_rule (insn, rule)
2602 && is_unique_insn_expansion (rule))
2603 {
2604 assert (insn->insn_type == ITYPE_INSN);
2605 /* ... and it is a larger instruction. */
2606 if (xg_get_insn_size (insn)
2607 <= xg_get_build_instr_size (rule->to_instr))
2608 {
2609 num_match++;
2610 if (num_match > 1)
2611 return FALSE;
2612 }
2613 }
2614 }
2615 return (num_match == 1);
2616 }
2617
2618
2619 /* Return the largest size instruction that this instruction can
2620 expand to. Currently, in all cases, this is 3 bytes. Of course we
2621 could just calculate this once and generate a table. */
2622
2623 int
2624 xg_get_max_narrow_insn_size (opcode)
2625 xtensa_opcode opcode;
2626 {
2627 /* Go ahead and compute it, but it better be 3. */
2628 TransitionTable *table = xg_build_widen_table ();
2629 TransitionList *l;
2630 int old_size = xtensa_insn_length (xtensa_default_isa, opcode);
2631 assert (opcode < table->num_opcodes);
2632
2633 /* Actually we can do better. Check to see of Only one applies. */
2634 for (l = table->table[opcode]; l != NULL; l = l->next)
2635 {
2636 TransitionRule *rule = l->rule;
2637
2638 /* If it only generates one instruction. */
2639 if (is_unique_insn_expansion (rule))
2640 {
2641 int new_size = xtensa_insn_length (xtensa_default_isa,
2642 rule->to_instr->opcode);
2643 if (new_size > old_size)
2644 {
2645 assert (new_size == 3);
2646 return 3;
2647 }
2648 }
2649 }
2650 return old_size;
2651 }
2652
2653
2654 /* Return the maximum number of bytes this opcode can expand to. */
2655
2656 int
2657 xg_get_max_insn_widen_size (opcode)
2658 xtensa_opcode opcode;
2659 {
2660 TransitionTable *table = xg_build_widen_table ();
2661 TransitionList *l;
2662 int max_size = xtensa_insn_length (xtensa_default_isa, opcode);
2663
2664 assert (opcode < table->num_opcodes);
2665
2666 for (l = table->table[opcode]; l != NULL; l = l->next)
2667 {
2668 TransitionRule *rule = l->rule;
2669 BuildInstr *build_list;
2670 int this_size = 0;
2671
2672 if (!rule)
2673 continue;
2674 build_list = rule->to_instr;
2675 if (is_unique_insn_expansion (rule))
2676 {
2677 assert (build_list->typ == INSTR_INSTR);
2678 this_size = xg_get_max_insn_widen_size (build_list->opcode);
2679 }
2680 else
2681 for (; build_list != NULL; build_list = build_list->next)
2682 {
2683 switch (build_list->typ)
2684 {
2685 case INSTR_INSTR:
2686 this_size += xtensa_insn_length (xtensa_default_isa,
2687 build_list->opcode);
2688
2689 break;
2690 case INSTR_LITERAL_DEF:
2691 case INSTR_LABEL_DEF:
2692 default:
2693 break;
2694 }
2695 }
2696 if (this_size > max_size)
2697 max_size = this_size;
2698 }
2699 return max_size;
2700 }
2701
2702
2703 /* Return the maximum number of literal bytes this opcode can generate. */
2704
2705 int
2706 xg_get_max_insn_widen_literal_size (opcode)
2707 xtensa_opcode opcode;
2708 {
2709 TransitionTable *table = xg_build_widen_table ();
2710 TransitionList *l;
2711 int max_size = 0;
2712
2713 assert (opcode < table->num_opcodes);
2714
2715 for (l = table->table[opcode]; l != NULL; l = l->next)
2716 {
2717 TransitionRule *rule = l->rule;
2718 BuildInstr *build_list;
2719 int this_size = 0;
2720
2721 if (!rule)
2722 continue;
2723 build_list = rule->to_instr;
2724 if (is_unique_insn_expansion (rule))
2725 {
2726 assert (build_list->typ == INSTR_INSTR);
2727 this_size = xg_get_max_insn_widen_literal_size (build_list->opcode);
2728 }
2729 else
2730 for (; build_list != NULL; build_list = build_list->next)
2731 {
2732 switch (build_list->typ)
2733 {
2734 case INSTR_LITERAL_DEF:
2735 /* hard coded 4-byte literal. */
2736 this_size += 4;
2737 break;
2738 case INSTR_INSTR:
2739 case INSTR_LABEL_DEF:
2740 default:
2741 break;
2742 }
2743 }
2744 if (this_size > max_size)
2745 max_size = this_size;
2746 }
2747 return max_size;
2748 }
2749
2750
2751 bfd_boolean
2752 xg_is_relaxable_insn (insn, lateral_steps)
2753 TInsn *insn;
2754 int lateral_steps;
2755 {
2756 int steps_taken = 0;
2757 TransitionTable *table = xg_build_widen_table ();
2758 TransitionList *l;
2759
2760 assert (insn->insn_type == ITYPE_INSN);
2761 assert (insn->opcode < table->num_opcodes);
2762
2763 for (l = table->table[insn->opcode]; l != NULL; l = l->next)
2764 {
2765 TransitionRule *rule = l->rule;
2766
2767 if (xg_instruction_matches_rule (insn, rule))
2768 {
2769 if (steps_taken == lateral_steps)
2770 return TRUE;
2771 steps_taken++;
2772 }
2773 }
2774 return FALSE;
2775 }
2776
2777
2778 static symbolS *
2779 get_special_literal_symbol ()
2780 {
2781 static symbolS *sym = NULL;
2782
2783 if (sym == NULL)
2784 sym = symbol_find_or_make ("SPECIAL_LITERAL0\001");
2785 return sym;
2786 }
2787
2788
2789 static symbolS *
2790 get_special_label_symbol ()
2791 {
2792 static symbolS *sym = NULL;
2793
2794 if (sym == NULL)
2795 sym = symbol_find_or_make ("SPECIAL_LABEL0\001");
2796 return sym;
2797 }
2798
2799
2800 /* Return true on success. */
2801
2802 bfd_boolean
2803 xg_build_to_insn (targ, insn, bi)
2804 TInsn *targ;
2805 TInsn *insn;
2806 BuildInstr *bi;
2807 {
2808 BuildOp *op;
2809 symbolS *sym;
2810
2811 memset (targ, 0, sizeof (TInsn));
2812 switch (bi->typ)
2813 {
2814 case INSTR_INSTR:
2815 op = bi->ops;
2816 targ->opcode = bi->opcode;
2817 targ->insn_type = ITYPE_INSN;
2818 targ->is_specific_opcode = FALSE;
2819
2820 for (; op != NULL; op = op->next)
2821 {
2822 int op_num = op->op_num;
2823 int op_data = op->op_data;
2824
2825 assert (op->op_num < MAX_INSN_ARGS);
2826
2827 if (targ->ntok <= op_num)
2828 targ->ntok = op_num + 1;
2829
2830 switch (op->typ)
2831 {
2832 case OP_CONSTANT:
2833 set_expr_const (&targ->tok[op_num], op_data);
2834 break;
2835 case OP_OPERAND:
2836 assert (op_data < insn->ntok);
2837 copy_expr (&targ->tok[op_num], &insn->tok[op_data]);
2838 break;
2839 case OP_LITERAL:
2840 sym = get_special_literal_symbol ();
2841 set_expr_symbol_offset (&targ->tok[op_num], sym, 0);
2842 break;
2843 case OP_LABEL:
2844 sym = get_special_label_symbol ();
2845 set_expr_symbol_offset (&targ->tok[op_num], sym, 0);
2846 break;
2847 default:
2848 /* currently handles:
2849 OP_OPERAND_LOW8
2850 OP_OPERAND_HI24S
2851 OP_OPERAND_F32MINUS */
2852 if (xg_has_userdef_op_fn (op->typ))
2853 {
2854 assert (op_data < insn->ntok);
2855 if (expr_is_const (&insn->tok[op_data]))
2856 {
2857 long val;
2858 copy_expr (&targ->tok[op_num], &insn->tok[op_data]);
2859 val = xg_apply_userdef_op_fn (op->typ,
2860 targ->tok[op_num].
2861 X_add_number);
2862 targ->tok[op_num].X_add_number = val;
2863 }
2864 else
2865 return FALSE; /* We cannot use a relocation for this. */
2866 break;
2867 }
2868 assert (0);
2869 break;
2870 }
2871 }
2872 break;
2873
2874 case INSTR_LITERAL_DEF:
2875 op = bi->ops;
2876 targ->opcode = XTENSA_UNDEFINED;
2877 targ->insn_type = ITYPE_LITERAL;
2878 targ->is_specific_opcode = FALSE;
2879 for (; op != NULL; op = op->next)
2880 {
2881 int op_num = op->op_num;
2882 int op_data = op->op_data;
2883 assert (op->op_num < MAX_INSN_ARGS);
2884
2885 if (targ->ntok <= op_num)
2886 targ->ntok = op_num + 1;
2887
2888 switch (op->typ)
2889 {
2890 case OP_OPERAND:
2891 assert (op_data < insn->ntok);
2892 copy_expr (&targ->tok[op_num], &insn->tok[op_data]);
2893 break;
2894 case OP_LITERAL:
2895 case OP_CONSTANT:
2896 case OP_LABEL:
2897 default:
2898 assert (0);
2899 break;
2900 }
2901 }
2902 break;
2903
2904 case INSTR_LABEL_DEF:
2905 op = bi->ops;
2906 targ->opcode = XTENSA_UNDEFINED;
2907 targ->insn_type = ITYPE_LABEL;
2908 targ->is_specific_opcode = FALSE;
2909 /* Literal with no ops. is a label? */
2910 assert (op == NULL);
2911 break;
2912
2913 default:
2914 assert (0);
2915 }
2916
2917 return TRUE;
2918 }
2919
2920
2921 /* Return true on success. */
2922
2923 bfd_boolean
2924 xg_build_to_stack (istack, insn, bi)
2925 IStack *istack;
2926 TInsn *insn;
2927 BuildInstr *bi;
2928 {
2929 for (; bi != NULL; bi = bi->next)
2930 {
2931 TInsn *next_insn = istack_push_space (istack);
2932
2933 if (!xg_build_to_insn (next_insn, insn, bi))
2934 return FALSE;
2935 }
2936 return TRUE;
2937 }
2938
2939
2940 /* Return true on valid expansion. */
2941
2942 bfd_boolean
2943 xg_expand_to_stack (istack, insn, lateral_steps)
2944 IStack *istack;
2945 TInsn *insn;
2946 int lateral_steps;
2947 {
2948 int stack_size = istack->ninsn;
2949 int steps_taken = 0;
2950 TransitionTable *table = xg_build_widen_table ();
2951 TransitionList *l;
2952
2953 assert (insn->insn_type == ITYPE_INSN);
2954 assert (insn->opcode < table->num_opcodes);
2955
2956 for (l = table->table[insn->opcode]; l != NULL; l = l->next)
2957 {
2958 TransitionRule *rule = l->rule;
2959
2960 if (xg_instruction_matches_rule (insn, rule))
2961 {
2962 if (lateral_steps == steps_taken)
2963 {
2964 int i;
2965
2966 /* This is it. Expand the rule to the stack. */
2967 if (!xg_build_to_stack (istack, insn, rule->to_instr))
2968 return FALSE;
2969
2970 /* Check to see if it fits. */
2971 for (i = stack_size; i < istack->ninsn; i++)
2972 {
2973 TInsn *insn = &istack->insn[i];
2974
2975 if (insn->insn_type == ITYPE_INSN
2976 && !tinsn_has_symbolic_operands (insn)
2977 && !xg_immeds_fit (insn))
2978 {
2979 istack->ninsn = stack_size;
2980 return FALSE;
2981 }
2982 }
2983 return TRUE;
2984 }
2985 steps_taken++;
2986 }
2987 }
2988 return FALSE;
2989 }
2990
2991
2992 bfd_boolean
2993 xg_expand_narrow (targ, insn)
2994 TInsn *targ;
2995 TInsn *insn;
2996 {
2997 TransitionTable *table = xg_build_widen_table ();
2998 TransitionList *l;
2999
3000 assert (insn->insn_type == ITYPE_INSN);
3001 assert (insn->opcode < table->num_opcodes);
3002
3003 for (l = table->table[insn->opcode]; l != NULL; l = l->next)
3004 {
3005 TransitionRule *rule = l->rule;
3006 if (xg_instruction_matches_rule (insn, rule)
3007 && is_unique_insn_expansion (rule))
3008 {
3009 /* Is it a larger instruction? */
3010 if (xg_get_insn_size (insn)
3011 <= xg_get_build_instr_size (rule->to_instr))
3012 {
3013 xg_build_to_insn (targ, insn, rule->to_instr);
3014 return FALSE;
3015 }
3016 }
3017 }
3018 return TRUE;
3019 }
3020
3021
3022 /* Assumes: All immeds are constants. Check that all constants fit
3023 into their immeds; return false if not. */
3024
3025 static bfd_boolean
3026 xg_immeds_fit (insn)
3027 const TInsn *insn;
3028 {
3029 int i;
3030
3031 int n = insn->ntok;
3032 assert (insn->insn_type == ITYPE_INSN);
3033 for (i = 0; i < n; ++i)
3034 {
3035 const expressionS *expr = &insn->tok[i];
3036 xtensa_operand opnd = xtensa_get_operand (xtensa_default_isa,
3037 insn->opcode, i);
3038 if (!operand_is_immed (opnd))
3039 continue;
3040
3041 switch (expr->X_op)
3042 {
3043 case O_register:
3044 case O_constant:
3045 {
3046 if (xg_check_operand (expr->X_add_number, opnd))
3047 return FALSE;
3048 }
3049 break;
3050 default:
3051 /* The symbol should have a fixup associated with it. */
3052 assert (FALSE);
3053 break;
3054 }
3055 }
3056 return TRUE;
3057 }
3058
3059
3060 /* This should only be called after we have an initial
3061 estimate of the addresses. */
3062
3063 static bfd_boolean
3064 xg_symbolic_immeds_fit (insn, pc_seg, pc_frag, pc_offset, stretch)
3065 const TInsn *insn;
3066 segT pc_seg;
3067 fragS *pc_frag;
3068 offsetT pc_offset;
3069 long stretch;
3070 {
3071 symbolS *symbolP;
3072 offsetT target, pc, new_offset;
3073 int i;
3074 int n = insn->ntok;
3075
3076 assert (insn->insn_type == ITYPE_INSN);
3077
3078 for (i = 0; i < n; ++i)
3079 {
3080 const expressionS *expr = &insn->tok[i];
3081 xtensa_operand opnd = xtensa_get_operand (xtensa_default_isa,
3082 insn->opcode, i);
3083 if (!operand_is_immed (opnd))
3084 continue;
3085
3086 switch (expr->X_op)
3087 {
3088 case O_register:
3089 case O_constant:
3090 if (xg_check_operand (expr->X_add_number, opnd))
3091 return FALSE;
3092 break;
3093
3094 case O_symbol:
3095 /* We only allow symbols for pc-relative stuff.
3096 If pc_frag == 0, then we don't have frag locations yet. */
3097 if (pc_frag == 0)
3098 return FALSE;
3099
3100 /* If it is PC-relative and the symbol is in the same segment as
3101 the PC.... */
3102 if (!xtensa_operand_isPCRelative (opnd)
3103 || S_GET_SEGMENT (expr->X_add_symbol) != pc_seg)
3104 return FALSE;
3105
3106 symbolP = expr->X_add_symbol;
3107 target = S_GET_VALUE (symbolP) + expr->X_add_number;
3108 pc = pc_frag->fr_address + pc_offset;
3109
3110 /* If frag has yet to be reached on this pass, assume it
3111 will move by STRETCH just as we did. If this is not so,
3112 it will be because some frag between grows, and that will
3113 force another pass. Beware zero-length frags. There
3114 should be a faster way to do this. */
3115
3116 if (stretch && is_dnrange (pc_frag, symbolP, stretch))
3117 target += stretch;
3118
3119 new_offset = xtensa_operand_do_reloc (opnd, target, pc);
3120 if (xg_check_operand (new_offset, opnd))
3121 return FALSE;
3122 break;
3123
3124 default:
3125 /* The symbol should have a fixup associated with it. */
3126 return FALSE;
3127 }
3128 }
3129
3130 return TRUE;
3131 }
3132
3133
3134 /* This will check to see if the value can be converted into the
3135 operand type. It will return true if it does not fit. */
3136
3137 static bfd_boolean
3138 xg_check_operand (value, operand)
3139 int32 value;
3140 xtensa_operand operand;
3141 {
3142 uint32 valbuf = value;
3143 return (xtensa_operand_encode (operand, &valbuf) != xtensa_encode_result_ok);
3144 }
3145
3146
3147 /* Check if a symbol is pointing to somewhere after
3148 the start frag, given that the segment has stretched
3149 by stretch during relaxation.
3150
3151 This is more complicated than it might appear at first blush
3152 because of the stretching that goes on. Here is how the check
3153 works:
3154
3155 If the symbol and the frag are in the same segment, then
3156 the symbol could be down range. Note that this function
3157 assumes that start_frag is in now_seg.
3158
3159 If the symbol is pointing to a frag with an address greater than
3160 than the start_frag's address, then it _could_ be down range.
3161
3162 The problem comes because target_frag may or may not have had
3163 stretch bytes added to its address already, depending on if it is
3164 before or after start frag. (And if we knew that, then we wouldn't
3165 need this function.) start_frag has definitely already had stretch
3166 bytes added to its address.
3167
3168 If target_frag's address hasn't been adjusted yet, then to
3169 determine if it comes after start_frag, we need to subtract
3170 stretch from start_frag's address.
3171
3172 If target_frag's address has been adjusted, then it might have
3173 been adjusted such that it comes after start_frag's address minus
3174 stretch bytes.
3175
3176 So, in that case, we scan for it down stream to within
3177 stretch bytes. We could search to the end of the fr_chain, but
3178 that ends up taking too much time (over a minute on some gnu
3179 tests). */
3180
3181 int
3182 is_dnrange (start_frag, sym, stretch)
3183 fragS *start_frag;
3184 symbolS *sym;
3185 long stretch;
3186 {
3187 if (S_GET_SEGMENT (sym) == now_seg)
3188 {
3189 fragS *cur_frag = symbol_get_frag (sym);
3190
3191 if (cur_frag->fr_address >= start_frag->fr_address - stretch)
3192 {
3193 int distance = stretch;
3194
3195 while (cur_frag && distance >= 0)
3196 {
3197 distance -= cur_frag->fr_fix;
3198 if (cur_frag == start_frag)
3199 return 0;
3200 cur_frag = cur_frag->fr_next;
3201 }
3202 return 1;
3203 }
3204 }
3205 return 0;
3206 }
3207
3208 \f
3209 /* Relax the assembly instruction at least "min_steps".
3210 Return the number of steps taken. */
3211
3212 int
3213 xg_assembly_relax (istack, insn, pc_seg, pc_frag, pc_offset, min_steps,
3214 stretch)
3215 IStack *istack;
3216 TInsn *insn;
3217 segT pc_seg;
3218 fragS *pc_frag; /* If pc_frag == 0, then no pc-relative. */
3219 offsetT pc_offset; /* Offset in fragment. */
3220 int min_steps; /* Minimum number of conversion steps. */
3221 long stretch; /* Number of bytes stretched so far. */
3222 {
3223 int steps_taken = 0;
3224
3225 /* assert (has no symbolic operands)
3226 Some of its immeds don't fit.
3227 Try to build a relaxed version.
3228 This may go through a couple of stages
3229 of single instruction transformations before
3230 we get there. */
3231
3232 TInsn single_target;
3233 TInsn current_insn;
3234 int lateral_steps = 0;
3235 int istack_size = istack->ninsn;
3236
3237 if (xg_symbolic_immeds_fit (insn, pc_seg, pc_frag, pc_offset, stretch)
3238 && steps_taken >= min_steps)
3239 {
3240 istack_push (istack, insn);
3241 return steps_taken;
3242 }
3243 tinsn_copy (&current_insn, insn);
3244
3245 /* Walk through all of the single instruction expansions. */
3246 while (xg_is_single_relaxable_insn (&current_insn))
3247 {
3248 int error_val = xg_expand_narrow (&single_target, &current_insn);
3249
3250 assert (!error_val);
3251
3252 if (xg_symbolic_immeds_fit (&single_target, pc_seg, pc_frag, pc_offset,
3253 stretch))
3254 {
3255 steps_taken++;
3256 if (steps_taken >= min_steps)
3257 {
3258 istack_push (istack, &single_target);
3259 return steps_taken;
3260 }
3261 }
3262 tinsn_copy (&current_insn, &single_target);
3263 }
3264
3265 /* Now check for a multi-instruction expansion. */
3266 while (xg_is_relaxable_insn (&current_insn, lateral_steps))
3267 {
3268 if (xg_symbolic_immeds_fit (&current_insn, pc_seg, pc_frag, pc_offset,
3269 stretch))
3270 {
3271 if (steps_taken >= min_steps)
3272 {
3273 istack_push (istack, &current_insn);
3274 return steps_taken;
3275 }
3276 }
3277 steps_taken++;
3278 if (xg_expand_to_stack (istack, &current_insn, lateral_steps))
3279 {
3280 if (steps_taken >= min_steps)
3281 return steps_taken;
3282 }
3283 lateral_steps++;
3284 istack->ninsn = istack_size;
3285 }
3286
3287 /* It's not going to work -- use the original. */
3288 istack_push (istack, insn);
3289 return steps_taken;
3290 }
3291
3292
3293 static void
3294 xg_force_frag_space (size)
3295 int size;
3296 {
3297 /* This may have the side effect of creating a new fragment for the
3298 space to go into. I just do not like the name of the "frag"
3299 functions. */
3300 frag_grow (size);
3301 }
3302
3303
3304 void
3305 xg_finish_frag (last_insn, state, max_growth, is_insn)
3306 char *last_insn;
3307 enum xtensa_relax_statesE state;
3308 int max_growth;
3309 bfd_boolean is_insn;
3310 {
3311 /* Finish off this fragment so that it has at LEAST the desired
3312 max_growth. If it doesn't fit in this fragment, close this one
3313 and start a new one. In either case, return a pointer to the
3314 beginning of the growth area. */
3315
3316 fragS *old_frag;
3317 xg_force_frag_space (max_growth);
3318
3319 old_frag = frag_now;
3320
3321 frag_now->fr_opcode = last_insn;
3322 if (is_insn)
3323 frag_now->tc_frag_data.is_insn = TRUE;
3324
3325 frag_var (rs_machine_dependent, max_growth, max_growth,
3326 state, frag_now->fr_symbol, frag_now->fr_offset, last_insn);
3327
3328 /* Just to make sure that we did not split it up. */
3329 assert (old_frag->fr_next == frag_now);
3330 }
3331
3332
3333 static bfd_boolean
3334 is_branch_jmp_to_next (insn, fragP)
3335 TInsn *insn;
3336 fragS *fragP;
3337 {
3338 xtensa_isa isa = xtensa_default_isa;
3339 int i;
3340 int num_ops = xtensa_num_operands (isa, insn->opcode);
3341 int target_op = -1;
3342 symbolS *sym;
3343 fragS *target_frag;
3344
3345 if (is_loop_opcode (insn->opcode))
3346 return FALSE;
3347
3348 for (i = 0; i < num_ops; i++)
3349 {
3350 xtensa_operand opnd = xtensa_get_operand (isa, insn->opcode, i);
3351 char *kind = xtensa_operand_kind (opnd);
3352 if (strlen (kind) == 1 && *kind == 'l')
3353 {
3354 target_op = i;
3355 break;
3356 }
3357 }
3358 if (target_op == -1)
3359 return FALSE;
3360
3361 if (insn->ntok <= target_op)
3362 return FALSE;
3363
3364 if (insn->tok[target_op].X_op != O_symbol)
3365 return FALSE;
3366
3367 sym = insn->tok[target_op].X_add_symbol;
3368 if (sym == NULL)
3369 return FALSE;
3370
3371 if (insn->tok[target_op].X_add_number != 0)
3372 return FALSE;
3373
3374 target_frag = symbol_get_frag (sym);
3375 if (target_frag == NULL)
3376 return FALSE;
3377
3378 if (is_next_frag_target (fragP->fr_next, target_frag)
3379 && S_GET_VALUE (sym) == target_frag->fr_address)
3380 return TRUE;
3381
3382 return FALSE;
3383 }
3384
3385
3386 static void
3387 xg_add_branch_and_loop_targets (insn)
3388 TInsn *insn;
3389 {
3390 xtensa_isa isa = xtensa_default_isa;
3391 int num_ops = xtensa_num_operands (isa, insn->opcode);
3392
3393 if (is_loop_opcode (insn->opcode))
3394 {
3395 int i = 1;
3396 xtensa_operand opnd = xtensa_get_operand (isa, insn->opcode, i);
3397 char *kind = xtensa_operand_kind (opnd);
3398 if (strlen (kind) == 1 && *kind == 'l')
3399 if (insn->tok[i].X_op == O_symbol)
3400 symbol_get_tc (insn->tok[i].X_add_symbol)->is_loop_target = TRUE;
3401 return;
3402 }
3403
3404 /* Currently, we do not add branch targets. This is an optimization
3405 for later that tries to align only branch targets, not just any
3406 label in a text section. */
3407
3408 if (align_only_targets)
3409 {
3410 int i;
3411
3412 for (i = 0; i < insn->ntok && i < num_ops; i++)
3413 {
3414 xtensa_operand opnd = xtensa_get_operand (isa, insn->opcode, i);
3415 char *kind = xtensa_operand_kind (opnd);
3416 if (strlen (kind) == 1 && *kind == 'l'
3417 && insn->tok[i].X_op == O_symbol)
3418 {
3419 symbolS *sym = insn->tok[i].X_add_symbol;
3420 symbol_get_tc (sym)->is_branch_target = TRUE;
3421 if (S_IS_DEFINED (sym))
3422 symbol_get_frag (sym)->tc_frag_data.is_branch_target = TRUE;
3423 }
3424 }
3425 }
3426 }
3427
3428
3429 /* Return the transition rule that matches or NULL if none matches. */
3430
3431 bfd_boolean
3432 xg_instruction_matches_rule (insn, rule)
3433 TInsn *insn;
3434 TransitionRule *rule;
3435 {
3436 PreconditionList *condition_l;
3437
3438 if (rule->opcode != insn->opcode)
3439 return FALSE;
3440
3441 for (condition_l = rule->conditions;
3442 condition_l != NULL;
3443 condition_l = condition_l->next)
3444 {
3445 expressionS *exp1;
3446 expressionS *exp2;
3447 Precondition *cond = condition_l->precond;
3448
3449 switch (cond->typ)
3450 {
3451 case OP_CONSTANT:
3452 /* The expression must be the constant. */
3453 assert (cond->op_num < insn->ntok);
3454 exp1 = &insn->tok[cond->op_num];
3455 if (!expr_is_const (exp1))
3456 return FALSE;
3457 switch (cond->cmp)
3458 {
3459 case OP_EQUAL:
3460 if (get_expr_const (exp1) != cond->op_data)
3461 return FALSE;
3462 break;
3463 case OP_NOTEQUAL:
3464 if (get_expr_const (exp1) == cond->op_data)
3465 return FALSE;
3466 break;
3467 }
3468 break;
3469
3470 case OP_OPERAND:
3471 assert (cond->op_num < insn->ntok);
3472 assert (cond->op_data < insn->ntok);
3473 exp1 = &insn->tok[cond->op_num];
3474 exp2 = &insn->tok[cond->op_data];
3475
3476 switch (cond->cmp)
3477 {
3478 case OP_EQUAL:
3479 if (!expr_is_equal (exp1, exp2))
3480 return FALSE;
3481 break;
3482 case OP_NOTEQUAL:
3483 if (expr_is_equal (exp1, exp2))
3484 return FALSE;
3485 break;
3486 }
3487 break;
3488
3489 case OP_LITERAL:
3490 case OP_LABEL:
3491 default:
3492 return FALSE;
3493 }
3494 }
3495 return TRUE;
3496 }
3497
3498
3499 TransitionRule *
3500 xg_instruction_match (insn)
3501 TInsn *insn;
3502 {
3503 TransitionTable *table = xg_build_simplify_table ();
3504 TransitionList *l;
3505 assert (insn->opcode < table->num_opcodes);
3506
3507 /* Walk through all of the possible transitions. */
3508 for (l = table->table[insn->opcode]; l != NULL; l = l->next)
3509 {
3510 TransitionRule *rule = l->rule;
3511 if (xg_instruction_matches_rule (insn, rule))
3512 return rule;
3513 }
3514 return NULL;
3515 }
3516
3517
3518 /* Return false if no error. */
3519
3520 bfd_boolean
3521 xg_build_token_insn (instr_spec, old_insn, new_insn)
3522 BuildInstr *instr_spec;
3523 TInsn *old_insn;
3524 TInsn *new_insn;
3525 {
3526 int num_ops = 0;
3527 BuildOp *b_op;
3528
3529 switch (instr_spec->typ)
3530 {
3531 case INSTR_INSTR:
3532 new_insn->insn_type = ITYPE_INSN;
3533 new_insn->opcode = instr_spec->opcode;
3534 new_insn->is_specific_opcode = FALSE;
3535 break;
3536 case INSTR_LITERAL_DEF:
3537 new_insn->insn_type = ITYPE_LITERAL;
3538 new_insn->opcode = XTENSA_UNDEFINED;
3539 new_insn->is_specific_opcode = FALSE;
3540 break;
3541 case INSTR_LABEL_DEF:
3542 as_bad (_("INSTR_LABEL_DEF not supported yet"));
3543 break;
3544 }
3545
3546 for (b_op = instr_spec->ops; b_op != NULL; b_op = b_op->next)
3547 {
3548 expressionS *exp;
3549 const expressionS *src_exp;
3550
3551 num_ops++;
3552 switch (b_op->typ)
3553 {
3554 case OP_CONSTANT:
3555 /* The expression must be the constant. */
3556 assert (b_op->op_num < MAX_INSN_ARGS);
3557 exp = &new_insn->tok[b_op->op_num];
3558 set_expr_const (exp, b_op->op_data);
3559 break;
3560
3561 case OP_OPERAND:
3562 assert (b_op->op_num < MAX_INSN_ARGS);
3563 assert (b_op->op_data < (unsigned) old_insn->ntok);
3564 src_exp = &old_insn->tok[b_op->op_data];
3565 exp = &new_insn->tok[b_op->op_num];
3566 copy_expr (exp, src_exp);
3567 break;
3568
3569 case OP_LITERAL:
3570 case OP_LABEL:
3571 as_bad (_("can't handle generation of literal/labels yet"));
3572 assert (0);
3573
3574 default:
3575 as_bad (_("can't handle undefined OP TYPE"));
3576 assert (0);
3577 }
3578 }
3579
3580 new_insn->ntok = num_ops;
3581 return FALSE;
3582 }
3583
3584
3585 /* Return true if it was simplified. */
3586
3587 bfd_boolean
3588 xg_simplify_insn (old_insn, new_insn)
3589 TInsn *old_insn;
3590 TInsn *new_insn;
3591 {
3592 TransitionRule *rule = xg_instruction_match (old_insn);
3593 BuildInstr *insn_spec;
3594 if (rule == NULL)
3595 return FALSE;
3596
3597 insn_spec = rule->to_instr;
3598 /* There should only be one. */
3599 assert (insn_spec != NULL);
3600 assert (insn_spec->next == NULL);
3601 if (insn_spec->next != NULL)
3602 return FALSE;
3603
3604 xg_build_token_insn (insn_spec, old_insn, new_insn);
3605
3606 return TRUE;
3607 }
3608
3609
3610 /* xg_expand_assembly_insn: (1) Simplify the instruction, i.e., l32i ->
3611 l32i.n. (2) Check the number of operands. (3) Place the instruction
3612 tokens into the stack or if we can relax it at assembly time, place
3613 multiple instructions/literals onto the stack. Return false if no
3614 error. */
3615
3616 static bfd_boolean
3617 xg_expand_assembly_insn (istack, orig_insn)
3618 IStack *istack;
3619 TInsn *orig_insn;
3620 {
3621 int noperands;
3622 TInsn new_insn;
3623 memset (&new_insn, 0, sizeof (TInsn));
3624
3625 /* On return, we will be using the "use_tokens" with "use_ntok".
3626 This will reduce things like addi to addi.n. */
3627 if (code_density_available () && !orig_insn->is_specific_opcode)
3628 {
3629 if (xg_simplify_insn (orig_insn, &new_insn))
3630 orig_insn = &new_insn;
3631 }
3632
3633 noperands = xtensa_num_operands (xtensa_default_isa, orig_insn->opcode);
3634 if (orig_insn->ntok < noperands)
3635 {
3636 as_bad (_("found %d operands for '%s': Expected %d"),
3637 orig_insn->ntok,
3638 xtensa_opcode_name (xtensa_default_isa, orig_insn->opcode),
3639 noperands);
3640 return TRUE;
3641 }
3642 if (orig_insn->ntok > noperands)
3643 as_warn (_("found too many (%d) operands for '%s': Expected %d"),
3644 orig_insn->ntok,
3645 xtensa_opcode_name (xtensa_default_isa, orig_insn->opcode),
3646 noperands);
3647
3648 /* If there are not enough operands, we will assert above. If there
3649 are too many, just cut out the extras here. */
3650
3651 orig_insn->ntok = noperands;
3652
3653 /* Cases:
3654
3655 Instructions with all constant immeds:
3656 Assemble them and relax the instruction if possible.
3657 Give error if not possible; no fixup needed.
3658
3659 Instructions with symbolic immeds:
3660 Assemble them with a Fix up (that may cause instruction expansion).
3661 Also close out the fragment if the fixup may cause instruction expansion.
3662
3663 There are some other special cases where we need alignment.
3664 1) before certain instructions with required alignment (OPCODE_ALIGN)
3665 2) before labels that have jumps (LABEL_ALIGN)
3666 3) after call instructions (RETURN_ALIGN)
3667 Multiple of these may be possible on the same fragment.
3668 If so, make sure to satisfy the required alignment.
3669 Then try to get the desired alignment. */
3670
3671 if (tinsn_has_invalid_symbolic_operands (orig_insn))
3672 return TRUE;
3673
3674 if (orig_insn->is_specific_opcode || !can_relax ())
3675 {
3676 istack_push (istack, orig_insn);
3677 return FALSE;
3678 }
3679
3680 if (tinsn_has_symbolic_operands (orig_insn))
3681 {
3682 if (tinsn_has_complex_operands (orig_insn))
3683 xg_assembly_relax (istack, orig_insn, 0, 0, 0, 0, 0);
3684 else
3685 istack_push (istack, orig_insn);
3686 }
3687 else
3688 {
3689 if (xg_immeds_fit (orig_insn))
3690 istack_push (istack, orig_insn);
3691 else
3692 xg_assembly_relax (istack, orig_insn, 0, 0, 0, 0, 0);
3693 }
3694
3695 #if 0
3696 for (i = 0; i < istack->ninsn; i++)
3697 {
3698 if (xg_simplify_insn (&new_insn, &istack->insn[i]))
3699 istack->insn[i] = new_insn;
3700 }
3701 #endif
3702
3703 return FALSE;
3704 }
3705
3706
3707 /* Currently all literals that are generated here are 32-bit L32R targets. */
3708
3709 symbolS *
3710 xg_assemble_literal (insn)
3711 /* const */ TInsn *insn;
3712 {
3713 emit_state state;
3714 symbolS *lit_sym = NULL;
3715
3716 /* size = 4 for L32R. It could easily be larger when we move to
3717 larger constants. Add a parameter later. */
3718 offsetT litsize = 4;
3719 offsetT litalign = 2; /* 2^2 = 4 */
3720 expressionS saved_loc;
3721 set_expr_symbol_offset (&saved_loc, frag_now->fr_symbol, frag_now_fix ());
3722
3723 assert (insn->insn_type == ITYPE_LITERAL);
3724 assert (insn->ntok = 1); /* must be only one token here */
3725
3726 xtensa_switch_to_literal_fragment (&state);
3727
3728 /* Force a 4-byte align here. Note that this opens a new frag, so all
3729 literals done with this function have a frag to themselves. That's
3730 important for the way text section literals work. */
3731 frag_align (litalign, 0, 0);
3732
3733 emit_expr (&insn->tok[0], litsize);
3734
3735 assert (frag_now->tc_frag_data.literal_frag == NULL);
3736 frag_now->tc_frag_data.literal_frag = get_literal_pool_location (now_seg);
3737 frag_now->fr_symbol = xtensa_create_literal_symbol (now_seg, frag_now);
3738 lit_sym = frag_now->fr_symbol;
3739 frag_now->tc_frag_data.is_literal = TRUE;
3740
3741 /* Go back. */
3742 xtensa_restore_emit_state (&state);
3743 return lit_sym;
3744 }
3745
3746
3747 static void
3748 xg_assemble_literal_space (size)
3749 /* const */ int size;
3750 {
3751 emit_state state;
3752 /* We might have to do something about this alignment. It only
3753 takes effect if something is placed here. */
3754 offsetT litalign = 2; /* 2^2 = 4 */
3755 fragS *lit_saved_frag;
3756
3757 expressionS saved_loc;
3758
3759 assert (size % 4 == 0);
3760 set_expr_symbol_offset (&saved_loc, frag_now->fr_symbol, frag_now_fix ());
3761
3762 xtensa_switch_to_literal_fragment (&state);
3763
3764 /* Force a 4-byte align here. */
3765 frag_align (litalign, 0, 0);
3766
3767 xg_force_frag_space (size);
3768
3769 lit_saved_frag = frag_now;
3770 frag_now->tc_frag_data.literal_frag = get_literal_pool_location (now_seg);
3771 frag_now->tc_frag_data.is_literal = TRUE;
3772 frag_now->fr_symbol = xtensa_create_literal_symbol (now_seg, frag_now);
3773 xg_finish_frag (0, RELAX_LITERAL, size, FALSE);
3774
3775 /* Go back. */
3776 xtensa_restore_emit_state (&state);
3777 frag_now->tc_frag_data.literal_frag = lit_saved_frag;
3778 }
3779
3780
3781 symbolS *
3782 xtensa_create_literal_symbol (sec, frag)
3783 segT sec;
3784 fragS *frag;
3785 {
3786 static int lit_num = 0;
3787 static char name[256];
3788 symbolS *symbolP;
3789
3790 sprintf (name, ".L_lit_sym%d", lit_num);
3791
3792 /* Create a local symbol. If it is in a linkonce section, we have to
3793 be careful to make sure that if it is used in a relocation that the
3794 symbol will be in the output file. */
3795 if (get_is_linkonce_section (stdoutput, sec))
3796 {
3797 symbolP = symbol_new (name, sec, 0, frag);
3798 S_CLEAR_EXTERNAL (symbolP);
3799 /* symbolP->local = 1; */
3800 }
3801 else
3802 symbolP = symbol_new (name, sec, 0, frag);
3803
3804 xtensa_add_literal_sym (symbolP);
3805
3806 frag->tc_frag_data.is_literal = TRUE;
3807 lit_num++;
3808 return symbolP;
3809 }
3810
3811
3812 static void
3813 xtensa_add_literal_sym (sym)
3814 symbolS *sym;
3815 {
3816 sym_list *l;
3817
3818 l = (sym_list *) xmalloc (sizeof (sym_list));
3819 l->sym = sym;
3820 l->next = literal_syms;
3821 literal_syms = l;
3822 }
3823
3824
3825 static void
3826 xtensa_add_insn_label (sym)
3827 symbolS *sym;
3828 {
3829 sym_list *l;
3830
3831 if (!free_insn_labels)
3832 l = (sym_list *) xmalloc (sizeof (sym_list));
3833 else
3834 {
3835 l = free_insn_labels;
3836 free_insn_labels = l->next;
3837 }
3838
3839 l->sym = sym;
3840 l->next = insn_labels;
3841 insn_labels = l;
3842 }
3843
3844
3845 static void
3846 xtensa_clear_insn_labels (void)
3847 {
3848 sym_list **pl;
3849
3850 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
3851 ;
3852 *pl = insn_labels;
3853 insn_labels = NULL;
3854 }
3855
3856
3857 /* Return true if the section flags are marked linkonce
3858 or the name is .gnu.linkonce*. */
3859
3860 bfd_boolean
3861 get_is_linkonce_section (abfd, sec)
3862 bfd *abfd ATTRIBUTE_UNUSED;
3863 segT sec;
3864 {
3865 flagword flags, link_once_flags;
3866
3867 flags = bfd_get_section_flags (abfd, sec);
3868 link_once_flags = (flags & SEC_LINK_ONCE);
3869
3870 /* Flags might not be set yet. */
3871 if (!link_once_flags)
3872 {
3873 static size_t len = sizeof ".gnu.linkonce.t.";
3874
3875 if (strncmp (segment_name (sec), ".gnu.linkonce.t.", len - 1) == 0)
3876 link_once_flags = SEC_LINK_ONCE;
3877 }
3878 return (link_once_flags != 0);
3879 }
3880
3881
3882 /* Emit an instruction to the current fragment. If record_fix is true,
3883 then this instruction will not change and we can go ahead and record
3884 the fixup. If record_fix is false, then the instruction may change
3885 and we are going to close out this fragment. Go ahead and set the
3886 fr_symbol and fr_offset instead of adding a fixup. */
3887
3888 static bfd_boolean
3889 xg_emit_insn (t_insn, record_fix)
3890 TInsn *t_insn;
3891 bfd_boolean record_fix;
3892 {
3893 bfd_boolean ok = TRUE;
3894 xtensa_isa isa = xtensa_default_isa;
3895 xtensa_opcode opcode = t_insn->opcode;
3896 bfd_boolean has_fixup = FALSE;
3897 int noperands;
3898 int i, byte_count;
3899 fragS *oldfrag;
3900 size_t old_size;
3901 char *f;
3902 static xtensa_insnbuf insnbuf = NULL;
3903
3904 /* Use a static pointer to the insn buffer so we don't have to call
3905 malloc each time through. */
3906 if (!insnbuf)
3907 insnbuf = xtensa_insnbuf_alloc (xtensa_default_isa);
3908
3909 has_fixup = tinsn_to_insnbuf (t_insn, insnbuf);
3910
3911 noperands = xtensa_num_operands (isa, opcode);
3912 assert (noperands == t_insn->ntok);
3913
3914 byte_count = xtensa_insn_length (isa, opcode);
3915 oldfrag = frag_now;
3916 /* This should NEVER cause us to jump into a new frag;
3917 we've already reserved space. */
3918 old_size = frag_now_fix ();
3919 f = frag_more (byte_count);
3920 assert (oldfrag == frag_now);
3921
3922 /* This needs to generate a record that lists the parts that are
3923 instructions. */
3924 if (!frag_now->tc_frag_data.is_insn)
3925 {
3926 /* If we are at the beginning of a fragment, switch this
3927 fragment to an instruction fragment. */
3928 if (now_seg != absolute_section && old_size != 0)
3929 as_warn (_("instruction fragment may contain data"));
3930 frag_now->tc_frag_data.is_insn = TRUE;
3931 }
3932
3933 xtensa_insnbuf_to_chars (isa, insnbuf, f);
3934
3935 dwarf2_emit_insn (byte_count);
3936
3937 /* Now spit out the opcode fixup.... */
3938 if (!has_fixup)
3939 return !ok;
3940
3941 for (i = 0; i < noperands; ++i)
3942 {
3943 expressionS *expr = &t_insn->tok[i];
3944 switch (expr->X_op)
3945 {
3946 case O_symbol:
3947 if (get_relaxable_immed (opcode) == i)
3948 {
3949 if (record_fix)
3950 {
3951 if (!xg_add_opcode_fix (opcode, i, expr, frag_now,
3952 f - frag_now->fr_literal))
3953 ok = FALSE;
3954 }
3955 else
3956 {
3957 /* Write it to the fr_offset, fr_symbol. */
3958 frag_now->fr_symbol = expr->X_add_symbol;
3959 frag_now->fr_offset = expr->X_add_number;
3960 }
3961 }
3962 else
3963 {
3964 as_bad (_("invalid operand %d on '%s'"),
3965 i, xtensa_opcode_name (isa, opcode));
3966 ok = FALSE;
3967 }
3968 break;
3969
3970 case O_constant:
3971 case O_register:
3972 break;
3973
3974 default:
3975 as_bad (_("invalid expression for operand %d on '%s'"),
3976 i, xtensa_opcode_name (isa, opcode));
3977 ok = FALSE;
3978 break;
3979 }
3980 }
3981
3982 return !ok;
3983 }
3984
3985
3986 static bfd_boolean
3987 xg_emit_insn_to_buf (t_insn, buf, fragP, offset, build_fix)
3988 TInsn *t_insn;
3989 char *buf;
3990 fragS *fragP;
3991 offsetT offset;
3992 bfd_boolean build_fix;
3993 {
3994 static xtensa_insnbuf insnbuf = NULL;
3995 bfd_boolean has_symbolic_immed = FALSE;
3996 bfd_boolean ok = TRUE;
3997 if (!insnbuf)
3998 insnbuf = xtensa_insnbuf_alloc (xtensa_default_isa);
3999
4000 has_symbolic_immed = tinsn_to_insnbuf (t_insn, insnbuf);
4001 if (has_symbolic_immed && build_fix)
4002 {
4003 /* Add a fixup. */
4004 int opnum = get_relaxable_immed (t_insn->opcode);
4005 expressionS *exp = &t_insn->tok[opnum];
4006
4007 if (!xg_add_opcode_fix (t_insn->opcode,
4008 opnum, exp, fragP, offset))
4009 ok = FALSE;
4010 }
4011 fragP->tc_frag_data.is_insn = TRUE;
4012 xtensa_insnbuf_to_chars (xtensa_default_isa, insnbuf, buf);
4013 return ok;
4014 }
4015
4016
4017 /* Put in a fixup record based on the opcode.
4018 Return true on success. */
4019
4020 bfd_boolean
4021 xg_add_opcode_fix (opcode, opnum, expr, fragP, offset)
4022 xtensa_opcode opcode;
4023 int opnum;
4024 expressionS *expr;
4025 fragS *fragP;
4026 offsetT offset;
4027 {
4028 bfd_reloc_code_real_type reloc;
4029 reloc_howto_type *howto;
4030 int insn_length;
4031 fixS *the_fix;
4032
4033 reloc = opnum_to_reloc (opnum);
4034 if (reloc == BFD_RELOC_NONE)
4035 {
4036 as_bad (_("invalid relocation operand %i on '%s'"),
4037 opnum, xtensa_opcode_name (xtensa_default_isa, opcode));
4038 return FALSE;
4039 }
4040
4041 howto = bfd_reloc_type_lookup (stdoutput, reloc);
4042
4043 if (!howto)
4044 {
4045 as_bad (_("undefined symbol for opcode \"%s\"."),
4046 xtensa_opcode_name (xtensa_default_isa, opcode));
4047 return FALSE;
4048 }
4049
4050 insn_length = xtensa_insn_length (xtensa_default_isa, opcode);
4051 the_fix = fix_new_exp (fragP, offset, insn_length, expr,
4052 howto->pc_relative, reloc);
4053
4054 if (expr->X_add_symbol &&
4055 (S_IS_EXTERNAL (expr->X_add_symbol) || S_IS_WEAK (expr->X_add_symbol)))
4056 the_fix->fx_plt = TRUE;
4057
4058 return TRUE;
4059 }
4060
4061
4062 void
4063 xg_resolve_literals (insn, lit_sym)
4064 TInsn *insn;
4065 symbolS *lit_sym;
4066 {
4067 symbolS *sym = get_special_literal_symbol ();
4068 int i;
4069 if (lit_sym == 0)
4070 return;
4071 assert (insn->insn_type == ITYPE_INSN);
4072 for (i = 0; i < insn->ntok; i++)
4073 if (insn->tok[i].X_add_symbol == sym)
4074 insn->tok[i].X_add_symbol = lit_sym;
4075
4076 }
4077
4078
4079 void
4080 xg_resolve_labels (insn, label_sym)
4081 TInsn *insn;
4082 symbolS *label_sym;
4083 {
4084 symbolS *sym = get_special_label_symbol ();
4085 int i;
4086 /* assert(!insn->is_literal); */
4087 for (i = 0; i < insn->ntok; i++)
4088 if (insn->tok[i].X_add_symbol == sym)
4089 insn->tok[i].X_add_symbol = label_sym;
4090
4091 }
4092
4093
4094 static void
4095 xg_assemble_tokens (insn)
4096 /*const */ TInsn *insn;
4097 {
4098 /* By the time we get here, there's not too much left to do.
4099 1) Check our assumptions.
4100 2) Check if the current instruction is "narrow".
4101 If so, then finish the frag, create another one.
4102 We could also go back to change some previous
4103 "narrow" frags into no-change ones if we have more than
4104 MAX_NARROW_ALIGNMENT of them without alignment restrictions
4105 between them.
4106
4107 Cases:
4108 1) It has constant operands and doesn't fit.
4109 Go ahead and assemble it so it will fail.
4110 2) It has constant operands that fit.
4111 If narrow and !is_specific_opcode,
4112 assemble it and put in a relocation
4113 else
4114 assemble it.
4115 3) It has a symbolic immediate operand
4116 a) Find the worst-case relaxation required
4117 b) Find the worst-case literal pool space required.
4118 Insert appropriate alignment & space in the literal.
4119 Assemble it.
4120 Add the relocation. */
4121
4122 assert (insn->insn_type == ITYPE_INSN);
4123
4124 if (!tinsn_has_symbolic_operands (insn))
4125 {
4126 if (xg_is_narrow_insn (insn) && !insn->is_specific_opcode)
4127 {
4128 /* assemble it but add max required space */
4129 int max_size = xg_get_max_narrow_insn_size (insn->opcode);
4130 int min_size = xg_get_insn_size (insn);
4131 char *last_insn;
4132 assert (max_size == 3);
4133 /* make sure we have enough space to widen it */
4134 xg_force_frag_space (max_size);
4135 /* Output the instruction. It may cause an error if some
4136 operands do not fit. */
4137 last_insn = frag_more (0);
4138 if (xg_emit_insn (insn, TRUE))
4139 as_warn (_("instruction with constant operands does not fit"));
4140 xg_finish_frag (last_insn, RELAX_NARROW, max_size - min_size, TRUE);
4141 }
4142 else
4143 {
4144 /* Assemble it. No relocation needed. */
4145 int max_size = xg_get_insn_size (insn);
4146 xg_force_frag_space (max_size);
4147 if (xg_emit_insn (insn, FALSE))
4148 as_warn (_("instruction with constant operands does not "
4149 "fit without widening"));
4150 /* frag_more (max_size); */
4151
4152 /* Special case for jx. If the jx is the next to last
4153 instruction in a loop, we will add a NOP after it. This
4154 avoids a hardware issue that could occur if the jx jumped
4155 to the next instruction. */
4156 if (software_avoid_b_j_loop_end
4157 && is_jx_opcode (insn->opcode))
4158 {
4159 maybe_has_b_j_loop_end = TRUE;
4160 /* add 2 of these */
4161 frag_now->tc_frag_data.is_insn = TRUE;
4162 frag_var (rs_machine_dependent, 4, 4,
4163 RELAX_ADD_NOP_IF_PRE_LOOP_END,
4164 frag_now->fr_symbol, frag_now->fr_offset, NULL);
4165 }
4166 }
4167 }
4168 else
4169 {
4170 /* Need to assemble it with space for the relocation. */
4171 if (!insn->is_specific_opcode)
4172 {
4173 /* Assemble it but add max required space. */
4174 char *last_insn;
4175 int min_size = xg_get_insn_size (insn);
4176 int max_size = xg_get_max_insn_widen_size (insn->opcode);
4177 int max_literal_size =
4178 xg_get_max_insn_widen_literal_size (insn->opcode);
4179
4180 #if 0
4181 symbolS *immed_sym = xg_get_insn_immed_symbol (insn);
4182 set_frag_segment (frag_now, now_seg);
4183 #endif /* 0 */
4184
4185 /* Make sure we have enough space to widen the instruction.
4186 This may open a new fragment. */
4187 xg_force_frag_space (max_size);
4188 if (max_literal_size != 0)
4189 xg_assemble_literal_space (max_literal_size);
4190
4191 /* Output the instruction. It may cause an error if some
4192 operands do not fit. Emit the incomplete instruction. */
4193 last_insn = frag_more (0);
4194 xg_emit_insn (insn, FALSE);
4195
4196 xg_finish_frag (last_insn, RELAX_IMMED, max_size - min_size, TRUE);
4197
4198 /* Special cases for loops:
4199 close_loop_end should be inserted AFTER short_loop.
4200 Make sure that CLOSE loops are processed BEFORE short_loops
4201 when converting them. */
4202
4203 /* "short_loop": add a NOP if the loop is < 4 bytes. */
4204 if (software_avoid_short_loop
4205 && is_loop_opcode (insn->opcode))
4206 {
4207 maybe_has_short_loop = TRUE;
4208 frag_now->tc_frag_data.is_insn = TRUE;
4209 frag_var (rs_machine_dependent, 4, 4,
4210 RELAX_ADD_NOP_IF_SHORT_LOOP,
4211 frag_now->fr_symbol, frag_now->fr_offset, NULL);
4212 frag_now->tc_frag_data.is_insn = TRUE;
4213 frag_var (rs_machine_dependent, 4, 4,
4214 RELAX_ADD_NOP_IF_SHORT_LOOP,
4215 frag_now->fr_symbol, frag_now->fr_offset, NULL);
4216 }
4217
4218 /* "close_loop_end": Add up to 12 bytes of NOPs to keep a
4219 loop at least 12 bytes away from another loop's loop
4220 end. */
4221 if (software_avoid_close_loop_end
4222 && is_loop_opcode (insn->opcode))
4223 {
4224 maybe_has_close_loop_end = TRUE;
4225 frag_now->tc_frag_data.is_insn = TRUE;
4226 frag_var (rs_machine_dependent, 12, 12,
4227 RELAX_ADD_NOP_IF_CLOSE_LOOP_END,
4228 frag_now->fr_symbol, frag_now->fr_offset, NULL);
4229 }
4230 }
4231 else
4232 {
4233 /* Assemble it in place. No expansion will be required,
4234 but we'll still need a relocation record. */
4235 int max_size = xg_get_insn_size (insn);
4236 xg_force_frag_space (max_size);
4237 if (xg_emit_insn (insn, TRUE))
4238 as_warn (_("instruction's constant operands do not fit"));
4239 }
4240 }
4241 }
4242
4243
4244 /* Return true if the instruction can write to the specified
4245 integer register. */
4246
4247 static bfd_boolean
4248 is_register_writer (insn, regset, regnum)
4249 const TInsn *insn;
4250 const char *regset;
4251 int regnum;
4252 {
4253 int i;
4254 int num_ops;
4255 xtensa_isa isa = xtensa_default_isa;
4256
4257 num_ops = xtensa_num_operands (isa, insn->opcode);
4258
4259 for (i = 0; i < num_ops; i++)
4260 {
4261 xtensa_operand operand = xtensa_get_operand (isa, insn->opcode, i);
4262 char inout = xtensa_operand_inout (operand);
4263
4264 if (inout == '>' || inout == '=')
4265 {
4266 if (strcmp (xtensa_operand_kind (operand), regset) == 0)
4267 {
4268 if ((insn->tok[i].X_op == O_register)
4269 && (insn->tok[i].X_add_number == regnum))
4270 return TRUE;
4271 }
4272 }
4273 }
4274 return FALSE;
4275 }
4276
4277
4278 static bfd_boolean
4279 is_bad_loopend_opcode (tinsn)
4280 const TInsn * tinsn;
4281 {
4282 xtensa_opcode opcode = tinsn->opcode;
4283
4284 if (opcode == XTENSA_UNDEFINED)
4285 return FALSE;
4286
4287 if (opcode == xtensa_call0_opcode
4288 || opcode == xtensa_callx0_opcode
4289 || opcode == xtensa_call4_opcode
4290 || opcode == xtensa_callx4_opcode
4291 || opcode == xtensa_call8_opcode
4292 || opcode == xtensa_callx8_opcode
4293 || opcode == xtensa_call12_opcode
4294 || opcode == xtensa_callx12_opcode
4295 || opcode == xtensa_isync_opcode
4296 || opcode == xtensa_ret_opcode
4297 || opcode == xtensa_ret_n_opcode
4298 || opcode == xtensa_retw_opcode
4299 || opcode == xtensa_retw_n_opcode
4300 || opcode == xtensa_waiti_opcode)
4301 return TRUE;
4302
4303 /* An RSR of LCOUNT is illegal as the last opcode in a loop. */
4304 if (opcode == xtensa_rsr_opcode
4305 && tinsn->ntok >= 2
4306 && tinsn->tok[1].X_op == O_constant
4307 && tinsn->tok[1].X_add_number == 2)
4308 return TRUE;
4309
4310 return FALSE;
4311 }
4312
4313
4314 /* Labels that begin with ".Ln" or ".LM" are unaligned.
4315 This allows the debugger to add unaligned labels.
4316 Also, the assembler generates stabs labels that need
4317 not be aligned: FAKE_LABEL_NAME . {"F", "L", "endfunc"}. */
4318
4319 bfd_boolean
4320 is_unaligned_label (sym)
4321 symbolS *sym;
4322 {
4323 const char *name = S_GET_NAME (sym);
4324 static size_t fake_size = 0;
4325
4326 if (name
4327 && name[0] == '.'
4328 && name[1] == 'L' && (name[2] == 'n' || name[2] == 'M'))
4329 return TRUE;
4330
4331 /* FAKE_LABEL_NAME followed by "F", "L" or "endfunc" */
4332 if (fake_size == 0)
4333 fake_size = strlen (FAKE_LABEL_NAME);
4334
4335 if (name
4336 && strncmp (FAKE_LABEL_NAME, name, fake_size) == 0
4337 && (name[fake_size] == 'F'
4338 || name[fake_size] == 'L'
4339 || (name[fake_size] == 'e'
4340 && strncmp ("endfunc", name+fake_size, 7) == 0)))
4341 return TRUE;
4342
4343 return FALSE;
4344 }
4345
4346
4347 fragS *
4348 next_non_empty_frag (fragP)
4349 const fragS *fragP;
4350 {
4351 fragS *next_fragP = fragP->fr_next;
4352
4353 /* Sometimes an empty will end up here due storage allocation issues.
4354 So we have to skip until we find something legit. */
4355 while (next_fragP && next_fragP->fr_fix == 0)
4356 next_fragP = next_fragP->fr_next;
4357
4358 if (next_fragP == NULL || next_fragP->fr_fix == 0)
4359 return NULL;
4360
4361 return next_fragP;
4362 }
4363
4364
4365 xtensa_opcode
4366 next_frag_opcode (fragP)
4367 const fragS * fragP;
4368 {
4369 const fragS *next_fragP = next_non_empty_frag (fragP);
4370 static xtensa_insnbuf insnbuf = NULL;
4371 xtensa_isa isa = xtensa_default_isa;
4372
4373 if (!insnbuf)
4374 insnbuf = xtensa_insnbuf_alloc (isa);
4375
4376 if (next_fragP == NULL)
4377 return XTENSA_UNDEFINED;
4378
4379 xtensa_insnbuf_from_chars (isa, insnbuf, next_fragP->fr_literal);
4380 return xtensa_decode_insn (isa, insnbuf);
4381 }
4382
4383
4384 /* Return true if the target frag is one of the next non-empty frags. */
4385
4386 bfd_boolean
4387 is_next_frag_target (fragP, target)
4388 const fragS *fragP;
4389 const fragS *target;
4390 {
4391 if (fragP == NULL)
4392 return FALSE;
4393
4394 for (; fragP; fragP = fragP->fr_next)
4395 {
4396 if (fragP == target)
4397 return TRUE;
4398 if (fragP->fr_fix != 0)
4399 return FALSE;
4400 if (fragP->fr_type == rs_fill && fragP->fr_offset != 0)
4401 return FALSE;
4402 if ((fragP->fr_type == rs_align || fragP->fr_type == rs_align_code)
4403 && ((fragP->fr_address % (1 << fragP->fr_offset)) != 0))
4404 return FALSE;
4405 if (fragP->fr_type == rs_space)
4406 return FALSE;
4407 }
4408 return FALSE;
4409 }
4410
4411
4412 /* If the next legit fragment is an end-of-loop marker,
4413 switch its state so it will instantiate a NOP. */
4414
4415 static void
4416 update_next_frag_nop_state (fragP)
4417 fragS *fragP;
4418 {
4419 fragS *next_fragP = fragP->fr_next;
4420
4421 while (next_fragP && next_fragP->fr_fix == 0)
4422 {
4423 if (next_fragP->fr_type == rs_machine_dependent
4424 && next_fragP->fr_subtype == RELAX_LOOP_END)
4425 {
4426 next_fragP->fr_subtype = RELAX_LOOP_END_ADD_NOP;
4427 return;
4428 }
4429 next_fragP = next_fragP->fr_next;
4430 }
4431 }
4432
4433
4434 static bfd_boolean
4435 next_frag_is_branch_target (fragP)
4436 const fragS *fragP;
4437 {
4438 /* Sometimes an empty will end up here due storage allocation issues,
4439 so we have to skip until we find something legit. */
4440 for (fragP = fragP->fr_next; fragP; fragP = fragP->fr_next)
4441 {
4442 if (fragP->tc_frag_data.is_branch_target)
4443 return TRUE;
4444 if (fragP->fr_fix != 0)
4445 break;
4446 }
4447 return FALSE;
4448 }
4449
4450
4451 static bfd_boolean
4452 next_frag_is_loop_target (fragP)
4453 const fragS *fragP;
4454 {
4455 /* Sometimes an empty will end up here due storage allocation issues.
4456 So we have to skip until we find something legit. */
4457 for (fragP = fragP->fr_next; fragP; fragP = fragP->fr_next)
4458 {
4459 if (fragP->tc_frag_data.is_loop_target)
4460 return TRUE;
4461 if (fragP->fr_fix != 0)
4462 break;
4463 }
4464 return FALSE;
4465 }
4466
4467
4468 static addressT
4469 next_frag_pre_opcode_bytes (fragp)
4470 const fragS *fragp;
4471 {
4472 const fragS *next_fragp = fragp->fr_next;
4473
4474 xtensa_opcode next_opcode = next_frag_opcode (fragp);
4475 if (!is_loop_opcode (next_opcode))
4476 return 0;
4477
4478 /* Sometimes an empty will end up here due storage allocation issues.
4479 So we have to skip until we find something legit. */
4480 while (next_fragp->fr_fix == 0)
4481 next_fragp = next_fragp->fr_next;
4482
4483 if (next_fragp->fr_type != rs_machine_dependent)
4484 return 0;
4485
4486 /* There is some implicit knowledge encoded in here.
4487 The LOOP instructions that are NOT RELAX_IMMED have
4488 been relaxed. */
4489 if (next_fragp->fr_subtype > RELAX_IMMED)
4490 return get_expanded_loop_offset (next_opcode);
4491
4492 return 0;
4493 }
4494
4495
4496 /* Mark a location where we can later insert literal frags. Update
4497 the section's literal_pool_loc, so subsequent literals can be
4498 placed nearest to their use. */
4499
4500 static void
4501 xtensa_mark_literal_pool_location ()
4502 {
4503 /* Any labels pointing to the current location need
4504 to be adjusted to after the literal pool. */
4505 emit_state s;
4506 fragS *pool_location;
4507
4508 frag_align (2, 0, 0);
4509
4510 /* We stash info in the fr_var of these frags
4511 so we can later move the literal's fixes into this
4512 frchain's fix list. We can use fr_var because fr_var's
4513 interpretation depends solely on the fr_type and subtype. */
4514 pool_location = frag_now;
4515 frag_variant (rs_machine_dependent, 0, (int) frchain_now,
4516 RELAX_LITERAL_POOL_BEGIN, NULL, 0, NULL);
4517 frag_variant (rs_machine_dependent, 0, (int) now_seg,
4518 RELAX_LITERAL_POOL_END, NULL, 0, NULL);
4519
4520 /* Now put a frag into the literal pool that points to this location. */
4521 set_literal_pool_location (now_seg, pool_location);
4522 xtensa_switch_to_literal_fragment (&s);
4523
4524 /* Close whatever frag is there. */
4525 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
4526 frag_now->tc_frag_data.literal_frag = pool_location;
4527 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
4528 xtensa_restore_emit_state (&s);
4529 }
4530
4531
4532 /* The "loops_ok" argument is provided to allow ignoring labels that
4533 define loop ends. This fixes a bug where the NOPs to align a
4534 loop opcode were included in a previous zero-cost loop:
4535
4536 loop a0, loopend
4537 <loop1 body>
4538 loopend:
4539
4540 loop a2, loopend2
4541 <loop2 body>
4542
4543 would become:
4544
4545 loop a0, loopend
4546 <loop1 body>
4547 nop.n <===== bad!
4548 loopend:
4549
4550 loop a2, loopend2
4551 <loop2 body>
4552
4553 This argument is used to prevent moving the NOP to before the
4554 loop-end label, which is what you want in this special case. */
4555
4556 static void
4557 xtensa_move_labels (new_frag, new_offset, loops_ok)
4558 fragS *new_frag;
4559 valueT new_offset;
4560 bfd_boolean loops_ok;
4561 {
4562 sym_list *lit;
4563
4564 for (lit = insn_labels; lit; lit = lit->next)
4565 {
4566 symbolS *lit_sym = lit->sym;
4567 if (loops_ok || symbol_get_tc (lit_sym)->is_loop_target == 0)
4568 {
4569 S_SET_VALUE (lit_sym, new_offset);
4570 symbol_set_frag (lit_sym, new_frag);
4571 }
4572 }
4573 }
4574
4575
4576 /* Assemble a NOP of the requested size in the buffer. User must have
4577 allocated "buf" with at least "size" bytes. */
4578
4579 void
4580 assemble_nop (size, buf)
4581 size_t size;
4582 char *buf;
4583 {
4584 static xtensa_insnbuf insnbuf = NULL;
4585 TInsn t_insn;
4586 if (!insnbuf)
4587 insnbuf = xtensa_insnbuf_alloc (xtensa_default_isa);
4588
4589 tinsn_init (&t_insn);
4590 switch (size)
4591 {
4592 case 2:
4593 t_insn.opcode = xtensa_nop_n_opcode;
4594 t_insn.ntok = 0;
4595 if (t_insn.opcode == XTENSA_UNDEFINED)
4596 as_fatal (_("opcode 'NOP.N' unavailable in this configuration"));
4597 tinsn_to_insnbuf (&t_insn, insnbuf);
4598 xtensa_insnbuf_to_chars (xtensa_default_isa, insnbuf, buf);
4599 break;
4600
4601 case 3:
4602 t_insn.opcode = xtensa_or_opcode;
4603 assert (t_insn.opcode != XTENSA_UNDEFINED);
4604 if (t_insn.opcode == XTENSA_UNDEFINED)
4605 as_fatal (_("opcode 'OR' unavailable in this configuration"));
4606 set_expr_const (&t_insn.tok[0], 1);
4607 set_expr_const (&t_insn.tok[1], 1);
4608 set_expr_const (&t_insn.tok[2], 1);
4609 t_insn.ntok = 3;
4610 tinsn_to_insnbuf (&t_insn, insnbuf);
4611 xtensa_insnbuf_to_chars (xtensa_default_isa, insnbuf, buf);
4612 break;
4613
4614 default:
4615 as_fatal (_("invalid %d-byte NOP requested"), size);
4616 }
4617 }
4618
4619
4620 /* Return the number of bytes for the offset of the expanded loop
4621 instruction. This should be incorporated into the relaxation
4622 specification but is hard-coded here. This is used to auto-align
4623 the loop instruction. It is invalid to call this function if the
4624 configuration does not have loops or if the opcode is not a loop
4625 opcode. */
4626
4627 static addressT
4628 get_expanded_loop_offset (opcode)
4629 xtensa_opcode opcode;
4630 {
4631 /* This is the OFFSET of the loop instruction in the expanded loop.
4632 This MUST correspond directly to the specification of the loop
4633 expansion. It will be validated on fragment conversion. */
4634 if (opcode == XTENSA_UNDEFINED)
4635 as_fatal (_("get_expanded_loop_offset: undefined opcode"));
4636 if (opcode == xtensa_loop_opcode)
4637 return 0;
4638 if (opcode == xtensa_loopnez_opcode)
4639 return 3;
4640 if (opcode == xtensa_loopgtz_opcode)
4641 return 6;
4642 as_fatal (_("get_expanded_loop_offset: invalid opcode"));
4643 return 0;
4644 }
4645
4646
4647 fragS *
4648 get_literal_pool_location (seg)
4649 segT seg;
4650 {
4651 return seg_info (seg)->tc_segment_info_data.literal_pool_loc;
4652 }
4653
4654
4655 static void
4656 set_literal_pool_location (seg, literal_pool_loc)
4657 segT seg;
4658 fragS *literal_pool_loc;
4659 {
4660 seg_info (seg)->tc_segment_info_data.literal_pool_loc = literal_pool_loc;
4661 }
4662
4663 \f
4664 /* External Functions and Other GAS Hooks. */
4665
4666 const char *
4667 xtensa_target_format ()
4668 {
4669 return (target_big_endian ? "elf32-xtensa-be" : "elf32-xtensa-le");
4670 }
4671
4672
4673 void
4674 xtensa_file_arch_init (abfd)
4675 bfd *abfd;
4676 {
4677 bfd_set_private_flags (abfd, 0x100 | 0x200);
4678 }
4679
4680
4681 void
4682 md_number_to_chars (buf, val, n)
4683 char *buf;
4684 valueT val;
4685 int n;
4686 {
4687 if (target_big_endian)
4688 number_to_chars_bigendian (buf, val, n);
4689 else
4690 number_to_chars_littleendian (buf, val, n);
4691 }
4692
4693
4694 /* This function is called once, at assembler startup time. It should
4695 set up all the tables, etc. that the MD part of the assembler will
4696 need. */
4697
4698 void
4699 md_begin ()
4700 {
4701 segT current_section = now_seg;
4702 int current_subsec = now_subseg;
4703 xtensa_isa isa;
4704
4705 #if STATIC_LIBISA
4706 isa = xtensa_isa_init ();
4707 #else
4708 /* ISA was already initialized by xtensa_init(). */
4709 isa = xtensa_default_isa;
4710 #endif
4711
4712 /* Set up the .literal, .fini.literal and .init.literal sections. */
4713 memset (&default_lit_sections, 0, sizeof (default_lit_sections));
4714 default_lit_sections.init_lit_seg_name = INIT_LITERAL_SECTION_NAME;
4715 default_lit_sections.fini_lit_seg_name = FINI_LITERAL_SECTION_NAME;
4716 default_lit_sections.lit_seg_name = LITERAL_SECTION_NAME;
4717
4718 subseg_set (current_section, current_subsec);
4719
4720 xtensa_addi_opcode = xtensa_opcode_lookup (isa, "addi");
4721 xtensa_addmi_opcode = xtensa_opcode_lookup (isa, "addmi");
4722 xtensa_call0_opcode = xtensa_opcode_lookup (isa, "call0");
4723 xtensa_call4_opcode = xtensa_opcode_lookup (isa, "call4");
4724 xtensa_call8_opcode = xtensa_opcode_lookup (isa, "call8");
4725 xtensa_call12_opcode = xtensa_opcode_lookup (isa, "call12");
4726 xtensa_callx0_opcode = xtensa_opcode_lookup (isa, "callx0");
4727 xtensa_callx4_opcode = xtensa_opcode_lookup (isa, "callx4");
4728 xtensa_callx8_opcode = xtensa_opcode_lookup (isa, "callx8");
4729 xtensa_callx12_opcode = xtensa_opcode_lookup (isa, "callx12");
4730 xtensa_entry_opcode = xtensa_opcode_lookup (isa, "entry");
4731 xtensa_isync_opcode = xtensa_opcode_lookup (isa, "isync");
4732 xtensa_j_opcode = xtensa_opcode_lookup (isa, "j");
4733 xtensa_jx_opcode = xtensa_opcode_lookup (isa, "jx");
4734 xtensa_loop_opcode = xtensa_opcode_lookup (isa, "loop");
4735 xtensa_loopnez_opcode = xtensa_opcode_lookup (isa, "loopnez");
4736 xtensa_loopgtz_opcode = xtensa_opcode_lookup (isa, "loopgtz");
4737 xtensa_nop_n_opcode = xtensa_opcode_lookup (isa, "nop.n");
4738 xtensa_or_opcode = xtensa_opcode_lookup (isa, "or");
4739 xtensa_ret_opcode = xtensa_opcode_lookup (isa, "ret");
4740 xtensa_ret_n_opcode = xtensa_opcode_lookup (isa, "ret.n");
4741 xtensa_retw_opcode = xtensa_opcode_lookup (isa, "retw");
4742 xtensa_retw_n_opcode = xtensa_opcode_lookup (isa, "retw.n");
4743 xtensa_rsr_opcode = xtensa_opcode_lookup (isa, "rsr");
4744 xtensa_waiti_opcode = xtensa_opcode_lookup (isa, "waiti");
4745 }
4746
4747
4748 /* tc_frob_label hook */
4749
4750 void
4751 xtensa_frob_label (sym)
4752 symbolS *sym;
4753 {
4754 if (generating_literals)
4755 xtensa_add_literal_sym (sym);
4756 else
4757 xtensa_add_insn_label (sym);
4758
4759 if (symbol_get_tc (sym)->is_loop_target
4760 && (get_last_insn_flags (now_seg, now_subseg)
4761 & FLAG_IS_BAD_LOOPEND) != 0)
4762 as_bad (_("invalid last instruction for a zero-overhead loop"));
4763
4764 /* No target aligning in the absolute section. */
4765 if (now_seg != absolute_section
4766 && align_targets
4767 && !is_unaligned_label (sym)
4768 && !frag_now->tc_frag_data.is_literal)
4769 {
4770 /* frag_now->tc_frag_data.is_insn = TRUE; */
4771 frag_var (rs_machine_dependent, 4, 4,
4772 RELAX_DESIRE_ALIGN_IF_TARGET,
4773 frag_now->fr_symbol, frag_now->fr_offset, NULL);
4774 xtensa_move_labels (frag_now, 0, TRUE);
4775
4776 /* If the label is already known to be a branch target, i.e., a
4777 forward branch, mark the frag accordingly. Backward branches
4778 are handled by xg_add_branch_and_loop_targets. */
4779 if (symbol_get_tc (sym)->is_branch_target)
4780 symbol_get_frag (sym)->tc_frag_data.is_branch_target = TRUE;
4781
4782 /* Loops only go forward, so they can be identified here. */
4783 if (symbol_get_tc (sym)->is_loop_target)
4784 symbol_get_frag (sym)->tc_frag_data.is_loop_target = TRUE;
4785 }
4786 }
4787
4788
4789 /* md_flush_pending_output hook */
4790
4791 void
4792 xtensa_flush_pending_output ()
4793 {
4794 /* If there is a non-zero instruction fragment, close it. */
4795 if (frag_now_fix () != 0 && frag_now->tc_frag_data.is_insn)
4796 {
4797 frag_wane (frag_now);
4798 frag_new (0);
4799 }
4800 frag_now->tc_frag_data.is_insn = FALSE;
4801
4802 xtensa_clear_insn_labels ();
4803 }
4804
4805
4806 void
4807 md_assemble (str)
4808 char *str;
4809 {
4810 xtensa_isa isa = xtensa_default_isa;
4811 char *opname;
4812 unsigned opnamelen;
4813 bfd_boolean has_underbar = FALSE;
4814 char *arg_strings[MAX_INSN_ARGS];
4815 int num_args;
4816 IStack istack; /* Put instructions into here. */
4817 TInsn orig_insn; /* Original instruction from the input. */
4818 int i;
4819 symbolS *lit_sym = NULL;
4820
4821 if (frag_now->tc_frag_data.is_literal)
4822 {
4823 static bfd_boolean reported = 0;
4824 if (reported < 4)
4825 as_bad (_("cannot assemble '%s' into a literal fragment"), str);
4826 if (reported == 3)
4827 as_bad (_("..."));
4828 reported++;
4829 return;
4830 }
4831
4832 istack_init (&istack);
4833 tinsn_init (&orig_insn);
4834
4835 /* Split off the opcode. */
4836 opnamelen = strspn (str, "abcdefghijklmnopqrstuvwxyz_/0123456789.");
4837 opname = xmalloc (opnamelen + 1);
4838 memcpy (opname, str, opnamelen);
4839 opname[opnamelen] = '\0';
4840
4841 num_args = tokenize_arguments (arg_strings, str + opnamelen);
4842 if (num_args == -1)
4843 {
4844 as_bad (_("syntax error"));
4845 return;
4846 }
4847
4848 if (xg_translate_idioms (&opname, &num_args, arg_strings))
4849 return;
4850
4851 /* Check for an underbar prefix. */
4852 if (*opname == '_')
4853 {
4854 has_underbar = TRUE;
4855 opname += 1;
4856 }
4857
4858 orig_insn.insn_type = ITYPE_INSN;
4859 orig_insn.ntok = 0;
4860 orig_insn.is_specific_opcode = (has_underbar || !use_generics ());
4861 specific_opcode = orig_insn.is_specific_opcode;
4862
4863 orig_insn.opcode = xtensa_opcode_lookup (isa, opname);
4864 if (orig_insn.opcode == XTENSA_UNDEFINED)
4865 {
4866 as_bad (_("unknown opcode %s"), opname);
4867 return;
4868 }
4869
4870 if (frag_now_fix () != 0 && !frag_now->tc_frag_data.is_insn)
4871 {
4872 frag_wane (frag_now);
4873 frag_new (0);
4874 }
4875
4876 if (software_a0_b_retw_interlock)
4877 {
4878 if ((get_last_insn_flags (now_seg, now_subseg) & FLAG_IS_A0_WRITER) != 0
4879 && is_conditional_branch_opcode (orig_insn.opcode))
4880 {
4881 has_a0_b_retw = TRUE;
4882
4883 /* Mark this fragment with the special RELAX_ADD_NOP_IF_A0_B_RETW.
4884 After the first assembly pass we will check all of them and
4885 add a nop if needed. */
4886 frag_now->tc_frag_data.is_insn = TRUE;
4887 frag_var (rs_machine_dependent, 4, 4,
4888 RELAX_ADD_NOP_IF_A0_B_RETW,
4889 frag_now->fr_symbol, frag_now->fr_offset, NULL);
4890 frag_now->tc_frag_data.is_insn = TRUE;
4891 frag_var (rs_machine_dependent, 4, 4,
4892 RELAX_ADD_NOP_IF_A0_B_RETW,
4893 frag_now->fr_symbol, frag_now->fr_offset, NULL);
4894 }
4895 }
4896
4897 /* Special case: The call instructions should be marked "specific opcode"
4898 to keep them from expanding. */
4899 if (!use_longcalls () && is_direct_call_opcode (orig_insn.opcode))
4900 orig_insn.is_specific_opcode = TRUE;
4901
4902 /* Parse the arguments. */
4903 if (parse_arguments (&orig_insn, num_args, arg_strings))
4904 {
4905 as_bad (_("syntax error"));
4906 return;
4907 }
4908
4909 /* Free the opcode and argument strings, now that they've been parsed. */
4910 free (has_underbar ? opname - 1 : opname);
4911 opname = 0;
4912 while (num_args-- > 0)
4913 free (arg_strings[num_args]);
4914
4915 /* Check for the right number and type of arguments. */
4916 if (tinsn_check_arguments (&orig_insn))
4917 return;
4918
4919 /* See if the instruction implies an aligned section. */
4920 if (is_entry_opcode (orig_insn.opcode) || is_loop_opcode (orig_insn.opcode))
4921 record_alignment (now_seg, 2);
4922
4923 xg_add_branch_and_loop_targets (&orig_insn);
4924
4925 /* Special cases for instructions that force an alignment... */
4926 if (!orig_insn.is_specific_opcode && is_loop_opcode (orig_insn.opcode))
4927 {
4928 size_t max_fill;
4929
4930 frag_now->tc_frag_data.is_insn = TRUE;
4931 frag_now->tc_frag_data.is_no_density = !code_density_available ();
4932 max_fill = get_text_align_max_fill_size
4933 (get_text_align_power (XTENSA_FETCH_WIDTH),
4934 TRUE, frag_now->tc_frag_data.is_no_density);
4935 frag_var (rs_machine_dependent, max_fill, max_fill,
4936 RELAX_ALIGN_NEXT_OPCODE, frag_now->fr_symbol,
4937 frag_now->fr_offset, NULL);
4938
4939 xtensa_move_labels (frag_now, 0, FALSE);
4940 }
4941
4942 /* Special-case for "entry" instruction. */
4943 if (is_entry_opcode (orig_insn.opcode))
4944 {
4945 /* Check that the second opcode (#1) is >= 16. */
4946 if (orig_insn.ntok >= 2)
4947 {
4948 expressionS *exp = &orig_insn.tok[1];
4949 switch (exp->X_op)
4950 {
4951 case O_constant:
4952 if (exp->X_add_number < 16)
4953 as_warn (_("entry instruction with stack decrement < 16"));
4954 break;
4955
4956 default:
4957 as_warn (_("entry instruction with non-constant decrement"));
4958 }
4959 }
4960
4961 if (!orig_insn.is_specific_opcode)
4962 {
4963 xtensa_mark_literal_pool_location ();
4964
4965 /* Automatically align ENTRY instructions. */
4966 xtensa_move_labels (frag_now, 0, TRUE);
4967 frag_align (2, 0, 0);
4968 }
4969 }
4970
4971 /* Any extra alignment frags have been inserted now, and we're about to
4972 emit a new instruction so clear the list of labels. */
4973 xtensa_clear_insn_labels ();
4974
4975 if (software_a0_b_retw_interlock)
4976 set_last_insn_flags (now_seg, now_subseg, FLAG_IS_A0_WRITER,
4977 is_register_writer (&orig_insn, "a", 0));
4978
4979 set_last_insn_flags (now_seg, now_subseg, FLAG_IS_BAD_LOOPEND,
4980 is_bad_loopend_opcode (&orig_insn));
4981
4982 /* Finish it off:
4983 assemble_tokens (opcode, tok, ntok);
4984 expand the tokens from the orig_insn into the
4985 stack of instructions that will not expand
4986 unless required at relaxation time. */
4987 if (xg_expand_assembly_insn (&istack, &orig_insn))
4988 return;
4989
4990 for (i = 0; i < istack.ninsn; i++)
4991 {
4992 TInsn *insn = &istack.insn[i];
4993 if (insn->insn_type == ITYPE_LITERAL)
4994 {
4995 assert (lit_sym == NULL);
4996 lit_sym = xg_assemble_literal (insn);
4997 }
4998 else
4999 {
5000 if (lit_sym)
5001 xg_resolve_literals (insn, lit_sym);
5002 xg_assemble_tokens (insn);
5003 }
5004 }
5005
5006 /* Now, if the original opcode was a call... */
5007 if (align_targets && is_call_opcode (orig_insn.opcode))
5008 {
5009 frag_now->tc_frag_data.is_insn = TRUE;
5010 frag_var (rs_machine_dependent, 4, 4,
5011 RELAX_DESIRE_ALIGN,
5012 frag_now->fr_symbol,
5013 frag_now->fr_offset,
5014 NULL);
5015 }
5016 }
5017
5018
5019 /* TC_CONS_FIX_NEW hook: Check for "@PLT" suffix on symbol references.
5020 If found, use an XTENSA_PLT reloc for 4-byte values. Otherwise, this
5021 is the same as the standard code in read.c. */
5022
5023 void
5024 xtensa_cons_fix_new (frag, where, size, exp)
5025 fragS *frag;
5026 int where;
5027 int size;
5028 expressionS *exp;
5029 {
5030 bfd_reloc_code_real_type r;
5031 bfd_boolean plt = FALSE;
5032
5033 if (*input_line_pointer == '@')
5034 {
5035 if (!strncmp (input_line_pointer, PLT_SUFFIX, strlen (PLT_SUFFIX) - 1)
5036 && !strncmp (input_line_pointer, plt_suffix,
5037 strlen (plt_suffix) - 1))
5038 {
5039 as_bad (_("undefined @ suffix '%s', expected '%s'"),
5040 input_line_pointer, plt_suffix);
5041 ignore_rest_of_line ();
5042 return;
5043 }
5044
5045 input_line_pointer += strlen (plt_suffix);
5046 plt = TRUE;
5047 }
5048
5049 switch (size)
5050 {
5051 case 1:
5052 r = BFD_RELOC_8;
5053 break;
5054 case 2:
5055 r = BFD_RELOC_16;
5056 break;
5057 case 4:
5058 r = plt ? BFD_RELOC_XTENSA_PLT : BFD_RELOC_32;
5059 break;
5060 case 8:
5061 r = BFD_RELOC_64;
5062 break;
5063 default:
5064 as_bad (_("unsupported BFD relocation size %u"), size);
5065 r = BFD_RELOC_32;
5066 break;
5067 }
5068 fix_new_exp (frag, where, size, exp, 0, r);
5069 }
5070
5071
5072 /* TC_FRAG_INIT hook */
5073
5074 void
5075 xtensa_frag_init (frag)
5076 fragS *frag;
5077 {
5078 frag->tc_frag_data.is_no_density = !code_density_available ();
5079 }
5080
5081
5082 symbolS *
5083 md_undefined_symbol (name)
5084 char *name ATTRIBUTE_UNUSED;
5085 {
5086 return NULL;
5087 }
5088
5089
5090 /* Round up a section size to the appropriate boundary. */
5091
5092 valueT
5093 md_section_align (segment, size)
5094 segT segment ATTRIBUTE_UNUSED;
5095 valueT size;
5096 {
5097 return size; /* Byte alignment is fine. */
5098 }
5099
5100
5101 long
5102 md_pcrel_from (fixP)
5103 fixS *fixP;
5104 {
5105 char *insn_p;
5106 static xtensa_insnbuf insnbuf = NULL;
5107 int opnum;
5108 xtensa_operand operand;
5109 xtensa_opcode opcode;
5110 xtensa_isa isa = xtensa_default_isa;
5111 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
5112
5113 if (fixP->fx_done)
5114 return addr;
5115
5116 if (fixP->fx_r_type == BFD_RELOC_XTENSA_ASM_EXPAND)
5117 return addr;
5118
5119 if (!insnbuf)
5120 insnbuf = xtensa_insnbuf_alloc (isa);
5121
5122 insn_p = &fixP->fx_frag->fr_literal[fixP->fx_where];
5123 xtensa_insnbuf_from_chars (isa, insnbuf, insn_p);
5124 opcode = xtensa_decode_insn (isa, insnbuf);
5125
5126 opnum = reloc_to_opnum (fixP->fx_r_type);
5127
5128 if (opnum < 0)
5129 as_fatal (_("invalid operand relocation for '%s' instruction"),
5130 xtensa_opcode_name (isa, opcode));
5131 if (opnum >= xtensa_num_operands (isa, opcode))
5132 as_fatal (_("invalid relocation for operand %d in '%s' instruction"),
5133 opnum, xtensa_opcode_name (isa, opcode));
5134 operand = xtensa_get_operand (isa, opcode, opnum);
5135 if (!operand)
5136 {
5137 as_warn_where (fixP->fx_file,
5138 fixP->fx_line,
5139 _("invalid relocation type %d for %s instruction"),
5140 fixP->fx_r_type, xtensa_opcode_name (isa, opcode));
5141 return addr;
5142 }
5143
5144 if (!operand_is_pcrel_label (operand))
5145 {
5146 as_bad_where (fixP->fx_file,
5147 fixP->fx_line,
5148 _("invalid relocation for operand %d of '%s'"),
5149 opnum, xtensa_opcode_name (isa, opcode));
5150 return addr;
5151 }
5152 if (!xtensa_operand_isPCRelative (operand))
5153 {
5154 as_warn_where (fixP->fx_file,
5155 fixP->fx_line,
5156 _("non-PCREL relocation operand %d for '%s': %s"),
5157 opnum, xtensa_opcode_name (isa, opcode),
5158 bfd_get_reloc_code_name (fixP->fx_r_type));
5159 return addr;
5160 }
5161
5162 return 0 - xtensa_operand_do_reloc (operand, 0, addr);
5163 }
5164
5165
5166 /* tc_symbol_new_hook */
5167
5168 void
5169 xtensa_symbol_new_hook (symbolP)
5170 symbolS *symbolP;
5171 {
5172 symbol_get_tc (symbolP)->plt = 0;
5173 }
5174
5175
5176 /* tc_fix_adjustable hook */
5177
5178 bfd_boolean
5179 xtensa_fix_adjustable (fixP)
5180 fixS *fixP;
5181 {
5182 /* We need the symbol name for the VTABLE entries. */
5183 if (fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
5184 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
5185 return 0;
5186
5187 return 1;
5188 }
5189
5190
5191 void
5192 md_apply_fix3 (fixP, valP, seg)
5193 fixS *fixP;
5194 valueT *valP;
5195 segT seg ATTRIBUTE_UNUSED;
5196 {
5197 if (fixP->fx_pcrel == 0 && fixP->fx_addsy == 0)
5198 {
5199 /* This happens when the relocation is within the current section.
5200 It seems this implies a PCREL operation. We'll catch it and error
5201 if not. */
5202
5203 char *const fixpos = fixP->fx_frag->fr_literal + fixP->fx_where;
5204 static xtensa_insnbuf insnbuf = NULL;
5205 xtensa_opcode opcode;
5206 xtensa_isa isa;
5207
5208 switch (fixP->fx_r_type)
5209 {
5210 case BFD_RELOC_XTENSA_ASM_EXPAND:
5211 fixP->fx_done = 1;
5212 break;
5213
5214 case BFD_RELOC_XTENSA_ASM_SIMPLIFY:
5215 as_bad (_("unhandled local relocation fix %s"),
5216 bfd_get_reloc_code_name (fixP->fx_r_type));
5217 break;
5218
5219 case BFD_RELOC_32:
5220 case BFD_RELOC_16:
5221 case BFD_RELOC_8:
5222 /* The only one we support that isn't an instruction field. */
5223 md_number_to_chars (fixpos, *valP, fixP->fx_size);
5224 fixP->fx_done = 1;
5225 break;
5226
5227 case BFD_RELOC_XTENSA_OP0:
5228 case BFD_RELOC_XTENSA_OP1:
5229 case BFD_RELOC_XTENSA_OP2:
5230 isa = xtensa_default_isa;
5231 if (!insnbuf)
5232 insnbuf = xtensa_insnbuf_alloc (isa);
5233
5234 xtensa_insnbuf_from_chars (isa, insnbuf, fixpos);
5235 opcode = xtensa_decode_insn (isa, insnbuf);
5236 if (opcode == XTENSA_UNDEFINED)
5237 as_fatal (_("undecodable FIX"));
5238
5239 xtensa_insnbuf_set_immediate_field (opcode, insnbuf, *valP,
5240 fixP->fx_file, fixP->fx_line);
5241
5242 fixP->fx_frag->tc_frag_data.is_insn = TRUE;
5243 xtensa_insnbuf_to_chars (isa, insnbuf, fixpos);
5244 fixP->fx_done = 1;
5245 break;
5246
5247 case BFD_RELOC_VTABLE_INHERIT:
5248 case BFD_RELOC_VTABLE_ENTRY:
5249 fixP->fx_done = 0;
5250 break;
5251
5252 default:
5253 as_bad (_("unhandled local relocation fix %s"),
5254 bfd_get_reloc_code_name (fixP->fx_r_type));
5255 }
5256 }
5257 }
5258
5259
5260 char *
5261 md_atof (type, litP, sizeP)
5262 int type;
5263 char *litP;
5264 int *sizeP;
5265 {
5266 int prec;
5267 LITTLENUM_TYPE words[4];
5268 char *t;
5269 int i;
5270
5271 switch (type)
5272 {
5273 case 'f':
5274 prec = 2;
5275 break;
5276
5277 case 'd':
5278 prec = 4;
5279 break;
5280
5281 default:
5282 *sizeP = 0;
5283 return "bad call to md_atof";
5284 }
5285
5286 t = atof_ieee (input_line_pointer, type, words);
5287 if (t)
5288 input_line_pointer = t;
5289
5290 *sizeP = prec * 2;
5291
5292 for (i = prec - 1; i >= 0; i--)
5293 {
5294 int idx = i;
5295 if (target_big_endian)
5296 idx = (prec - 1 - i);
5297
5298 md_number_to_chars (litP, (valueT) words[idx], 2);
5299 litP += 2;
5300 }
5301
5302 return NULL;
5303 }
5304
5305
5306 int
5307 md_estimate_size_before_relax (fragP, seg)
5308 fragS *fragP;
5309 segT seg ATTRIBUTE_UNUSED;
5310 {
5311 return fragP->tc_frag_data.text_expansion;
5312 }
5313
5314
5315 /* Translate internal representation of relocation info to BFD target
5316 format. */
5317
5318 arelent *
5319 tc_gen_reloc (section, fixp)
5320 asection *section ATTRIBUTE_UNUSED;
5321 fixS *fixp;
5322 {
5323 arelent *reloc;
5324
5325 reloc = (arelent *) xmalloc (sizeof (arelent));
5326 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
5327 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
5328 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
5329
5330 /* Make sure none of our internal relocations make it this far.
5331 They'd better have been fully resolved by this point. */
5332 assert ((int) fixp->fx_r_type > 0);
5333
5334 reloc->howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type);
5335 if (reloc->howto == NULL)
5336 {
5337 as_bad_where (fixp->fx_file, fixp->fx_line,
5338 _("cannot represent `%s' relocation in object file"),
5339 bfd_get_reloc_code_name (fixp->fx_r_type));
5340 return NULL;
5341 }
5342
5343 if (!fixp->fx_pcrel != !reloc->howto->pc_relative)
5344 {
5345 as_fatal (_("internal error? cannot generate `%s' relocation"),
5346 bfd_get_reloc_code_name (fixp->fx_r_type));
5347 }
5348 assert (!fixp->fx_pcrel == !reloc->howto->pc_relative);
5349
5350 reloc->addend = fixp->fx_offset;
5351
5352 switch (fixp->fx_r_type)
5353 {
5354 case BFD_RELOC_XTENSA_OP0:
5355 case BFD_RELOC_XTENSA_OP1:
5356 case BFD_RELOC_XTENSA_OP2:
5357 case BFD_RELOC_XTENSA_ASM_EXPAND:
5358 case BFD_RELOC_32:
5359 case BFD_RELOC_XTENSA_PLT:
5360 case BFD_RELOC_VTABLE_INHERIT:
5361 case BFD_RELOC_VTABLE_ENTRY:
5362 break;
5363
5364 case BFD_RELOC_XTENSA_ASM_SIMPLIFY:
5365 as_warn (_("emitting simplification relocation"));
5366 break;
5367
5368 default:
5369 as_warn (_("emitting unknown relocation"));
5370 }
5371
5372 return reloc;
5373 }
5374
5375 \f
5376 void
5377 xtensa_end ()
5378 {
5379 directive_balance ();
5380 xtensa_move_literals ();
5381
5382 xtensa_reorder_segments ();
5383 xtensa_cleanup_align_frags ();
5384 xtensa_fix_target_frags ();
5385 if (software_a0_b_retw_interlock && has_a0_b_retw)
5386 xtensa_fix_a0_b_retw_frags ();
5387 if (software_avoid_b_j_loop_end && maybe_has_b_j_loop_end)
5388 xtensa_fix_b_j_loop_end_frags ();
5389
5390 /* "close_loop_end" should be processed BEFORE "short_loop". */
5391 if (software_avoid_close_loop_end && maybe_has_close_loop_end)
5392 xtensa_fix_close_loop_end_frags ();
5393
5394 if (software_avoid_short_loop && maybe_has_short_loop)
5395 xtensa_fix_short_loop_frags ();
5396
5397 xtensa_sanity_check ();
5398 }
5399
5400
5401 static void
5402 xtensa_cleanup_align_frags ()
5403 {
5404 frchainS *frchP;
5405
5406 for (frchP = frchain_root; frchP; frchP = frchP->frch_next)
5407 {
5408 fragS *fragP;
5409
5410 /* Walk over all of the fragments in a subsection. */
5411 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
5412 {
5413 if ((fragP->fr_type == rs_align
5414 || fragP->fr_type == rs_align_code
5415 || (fragP->fr_type == rs_machine_dependent
5416 && (fragP->fr_subtype == RELAX_DESIRE_ALIGN
5417 || fragP->fr_subtype == RELAX_DESIRE_ALIGN_IF_TARGET)))
5418 && fragP->fr_fix == 0)
5419 {
5420 fragS * next = fragP->fr_next;
5421
5422 while (next
5423 && next->fr_type == rs_machine_dependent
5424 && next->fr_subtype == RELAX_DESIRE_ALIGN_IF_TARGET)
5425 {
5426 frag_wane (next);
5427 next = next->fr_next;
5428 }
5429 }
5430 }
5431 }
5432 }
5433
5434
5435 /* Re-process all of the fragments looking to convert all of the
5436 RELAX_DESIRE_ALIGN_IF_TARGET fragments. If there is a branch
5437 target in the next fragment, convert this to RELAX_DESIRE_ALIGN.
5438 If the next fragment starts with a loop target, AND the previous
5439 fragment can be expanded to negate the branch, convert this to a
5440 RELAX_LOOP_END. Otherwise, convert to a .fill 0. */
5441
5442 static void
5443 xtensa_fix_target_frags ()
5444 {
5445 frchainS *frchP;
5446
5447 /* When this routine is called, all of the subsections are still intact
5448 so we walk over subsections instead of sections. */
5449 for (frchP = frchain_root; frchP; frchP = frchP->frch_next)
5450 {
5451 bfd_boolean prev_frag_can_negate_branch = FALSE;
5452 fragS *fragP;
5453
5454 /* Walk over all of the fragments in a subsection. */
5455 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
5456 {
5457 if (fragP->fr_type == rs_machine_dependent
5458 && fragP->fr_subtype == RELAX_DESIRE_ALIGN_IF_TARGET)
5459 {
5460 if (next_frag_is_loop_target (fragP))
5461 {
5462 if (prev_frag_can_negate_branch)
5463 fragP->fr_subtype = RELAX_LOOP_END;
5464 else
5465 {
5466 if (!align_only_targets ||
5467 next_frag_is_branch_target (fragP))
5468 fragP->fr_subtype = RELAX_DESIRE_ALIGN;
5469 else
5470 frag_wane (fragP);
5471 }
5472 }
5473 else if (!align_only_targets
5474 || next_frag_is_branch_target (fragP))
5475 fragP->fr_subtype = RELAX_DESIRE_ALIGN;
5476 else
5477 frag_wane (fragP);
5478 }
5479 if (fragP->fr_fix != 0)
5480 prev_frag_can_negate_branch = FALSE;
5481 if (frag_can_negate_branch (fragP))
5482 prev_frag_can_negate_branch = TRUE;
5483 }
5484 }
5485 }
5486
5487
5488 static bfd_boolean
5489 frag_can_negate_branch (fragP)
5490 fragS *fragP;
5491 {
5492 if (fragP->fr_type == rs_machine_dependent
5493 && fragP->fr_subtype == RELAX_IMMED)
5494 {
5495 TInsn t_insn;
5496 tinsn_from_chars (&t_insn, fragP->fr_opcode);
5497 if (is_negatable_branch (&t_insn))
5498 return TRUE;
5499 }
5500 return FALSE;
5501 }
5502
5503
5504 /* Re-process all of the fragments looking to convert all of the
5505 RELAX_ADD_NOP_IF_A0_B_RETW. If the next instruction is a
5506 conditional branch or a retw/retw.n, convert this frag to one that
5507 will generate a NOP. In any case close it off with a .fill 0. */
5508
5509 static void
5510 xtensa_fix_a0_b_retw_frags ()
5511 {
5512 frchainS *frchP;
5513
5514 /* When this routine is called, all of the subsections are still intact
5515 so we walk over subsections instead of sections. */
5516 for (frchP = frchain_root; frchP; frchP = frchP->frch_next)
5517 {
5518 fragS *fragP;
5519
5520 /* Walk over all of the fragments in a subsection. */
5521 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
5522 {
5523 if (fragP->fr_type == rs_machine_dependent
5524 && fragP->fr_subtype == RELAX_ADD_NOP_IF_A0_B_RETW)
5525 {
5526 if (next_instrs_are_b_retw (fragP))
5527 relax_frag_add_nop (fragP);
5528 else
5529 frag_wane (fragP);
5530 }
5531 }
5532 }
5533 }
5534
5535
5536 bfd_boolean
5537 next_instrs_are_b_retw (fragP)
5538 fragS * fragP;
5539 {
5540 xtensa_opcode opcode;
5541 const fragS *next_fragP = next_non_empty_frag (fragP);
5542 static xtensa_insnbuf insnbuf = NULL;
5543 xtensa_isa isa = xtensa_default_isa;
5544 int offset = 0;
5545
5546 if (!insnbuf)
5547 insnbuf = xtensa_insnbuf_alloc (isa);
5548
5549 if (next_fragP == NULL)
5550 return FALSE;
5551
5552 /* Check for the conditional branch. */
5553 xtensa_insnbuf_from_chars (isa, insnbuf, &next_fragP->fr_literal[offset]);
5554 opcode = xtensa_decode_insn (isa, insnbuf);
5555
5556 if (!is_conditional_branch_opcode (opcode))
5557 return FALSE;
5558
5559 offset += xtensa_insn_length (isa, opcode);
5560 if (offset == next_fragP->fr_fix)
5561 {
5562 next_fragP = next_non_empty_frag (next_fragP);
5563 offset = 0;
5564 }
5565 if (next_fragP == NULL)
5566 return FALSE;
5567
5568 /* Check for the retw/retw.n. */
5569 xtensa_insnbuf_from_chars (isa, insnbuf, &next_fragP->fr_literal[offset]);
5570 opcode = xtensa_decode_insn (isa, insnbuf);
5571
5572 if (is_windowed_return_opcode (opcode))
5573 return TRUE;
5574 return FALSE;
5575 }
5576
5577
5578 /* Re-process all of the fragments looking to convert all of the
5579 RELAX_ADD_NOP_IF_PRE_LOOP_END. If there is one instruction and a
5580 loop end label, convert this frag to one that will generate a NOP.
5581 In any case close it off with a .fill 0. */
5582
5583 static void
5584 xtensa_fix_b_j_loop_end_frags ()
5585 {
5586 frchainS *frchP;
5587
5588 /* When this routine is called, all of the subsections are still intact
5589 so we walk over subsections instead of sections. */
5590 for (frchP = frchain_root; frchP; frchP = frchP->frch_next)
5591 {
5592 fragS *fragP;
5593
5594 /* Walk over all of the fragments in a subsection. */
5595 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
5596 {
5597 if (fragP->fr_type == rs_machine_dependent
5598 && fragP->fr_subtype == RELAX_ADD_NOP_IF_PRE_LOOP_END)
5599 {
5600 if (next_instr_is_loop_end (fragP))
5601 relax_frag_add_nop (fragP);
5602 else
5603 frag_wane (fragP);
5604 }
5605 }
5606 }
5607 }
5608
5609
5610 bfd_boolean
5611 next_instr_is_loop_end (fragP)
5612 fragS * fragP;
5613 {
5614 const fragS *next_fragP;
5615
5616 if (next_frag_is_loop_target (fragP))
5617 return FALSE;
5618
5619 next_fragP = next_non_empty_frag (fragP);
5620 if (next_fragP == NULL)
5621 return FALSE;
5622
5623 if (!next_frag_is_loop_target (next_fragP))
5624 return FALSE;
5625
5626 /* If the size is >= 3 then there is more than one instruction here.
5627 The hardware bug will not fire. */
5628 if (next_fragP->fr_fix > 3)
5629 return FALSE;
5630
5631 return TRUE;
5632 }
5633
5634
5635 /* Re-process all of the fragments looking to convert all of the
5636 RELAX_ADD_NOP_IF_CLOSE_LOOP_END. If there is an loop end that is
5637 not MY loop's loop end within 12 bytes, add enough nops here to
5638 make it at least 12 bytes away. In any case close it off with a
5639 .fill 0. */
5640
5641 static void
5642 xtensa_fix_close_loop_end_frags ()
5643 {
5644 frchainS *frchP;
5645
5646 /* When this routine is called, all of the subsections are still intact
5647 so we walk over subsections instead of sections. */
5648 for (frchP = frchain_root; frchP; frchP = frchP->frch_next)
5649 {
5650 fragS *fragP;
5651
5652 fragS *current_target = NULL;
5653 offsetT current_offset = 0;
5654
5655 /* Walk over all of the fragments in a subsection. */
5656 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
5657 {
5658 if (fragP->fr_type == rs_machine_dependent
5659 && fragP->fr_subtype == RELAX_IMMED)
5660 {
5661 /* Read it. If the instruction is a loop, get the target. */
5662 xtensa_opcode opcode = get_opcode_from_buf (fragP->fr_opcode);
5663 if (is_loop_opcode (opcode))
5664 {
5665 TInsn t_insn;
5666
5667 tinsn_from_chars (&t_insn, fragP->fr_opcode);
5668 tinsn_immed_from_frag (&t_insn, fragP);
5669
5670 /* Get the current fragment target. */
5671 if (fragP->fr_symbol)
5672 {
5673 current_target = symbol_get_frag (fragP->fr_symbol);
5674 current_offset = fragP->fr_offset;
5675 }
5676 }
5677 }
5678
5679 if (current_target
5680 && fragP->fr_type == rs_machine_dependent
5681 && fragP->fr_subtype == RELAX_ADD_NOP_IF_CLOSE_LOOP_END)
5682 {
5683 size_t min_bytes;
5684 size_t bytes_added = 0;
5685
5686 #define REQUIRED_LOOP_DIVIDING_BYTES 12
5687 /* Max out at 12. */
5688 min_bytes = min_bytes_to_other_loop_end
5689 (fragP->fr_next, current_target, current_offset,
5690 REQUIRED_LOOP_DIVIDING_BYTES);
5691
5692 if (min_bytes < REQUIRED_LOOP_DIVIDING_BYTES)
5693 {
5694 while (min_bytes + bytes_added
5695 < REQUIRED_LOOP_DIVIDING_BYTES)
5696 {
5697 int length = 3;
5698
5699 if (fragP->fr_var < length)
5700 as_warn (_("fr_var %lu < length %d; ignoring"),
5701 fragP->fr_var, length);
5702 else
5703 {
5704 assemble_nop (length,
5705 fragP->fr_literal + fragP->fr_fix);
5706 fragP->fr_fix += length;
5707 fragP->fr_var -= length;
5708 }
5709 bytes_added += length;
5710 }
5711 }
5712 frag_wane (fragP);
5713 }
5714 }
5715 }
5716 }
5717
5718
5719 size_t
5720 min_bytes_to_other_loop_end (fragP, current_target, current_offset, max_size)
5721 fragS *fragP;
5722 fragS *current_target;
5723 offsetT current_offset;
5724 size_t max_size;
5725 {
5726 size_t offset = 0;
5727 fragS *current_fragP;
5728
5729 for (current_fragP = fragP;
5730 current_fragP;
5731 current_fragP = current_fragP->fr_next)
5732 {
5733 if (current_fragP->tc_frag_data.is_loop_target
5734 && current_fragP != current_target)
5735 return offset + current_offset;
5736
5737 offset += unrelaxed_frag_min_size (current_fragP);
5738
5739 if (offset + current_offset >= max_size)
5740 return max_size;
5741 }
5742 return max_size;
5743 }
5744
5745
5746 size_t
5747 unrelaxed_frag_min_size (fragP)
5748 fragS * fragP;
5749 {
5750 size_t size = fragP->fr_fix;
5751
5752 /* add fill size */
5753 if (fragP->fr_type == rs_fill)
5754 size += fragP->fr_offset;
5755
5756 return size;
5757 }
5758
5759
5760 /* Re-process all of the fragments looking to convert all
5761 of the RELAX_ADD_NOP_IF_SHORT_LOOP. If:
5762
5763 A)
5764 1) the instruction size count to the loop end label
5765 is too short (<= 2 instructions),
5766 2) loop has a jump or branch in it
5767
5768 or B)
5769 1) software_avoid_all_short_loops is true
5770 2) The generating loop was a 'loopgtz' or 'loopnez'
5771 3) the instruction size count to the loop end label is too short
5772 (<= 2 instructions)
5773 then convert this frag (and maybe the next one) to generate a NOP.
5774 In any case close it off with a .fill 0. */
5775
5776 static void
5777 xtensa_fix_short_loop_frags ()
5778 {
5779 frchainS *frchP;
5780
5781 /* When this routine is called, all of the subsections are still intact
5782 so we walk over subsections instead of sections. */
5783 for (frchP = frchain_root; frchP; frchP = frchP->frch_next)
5784 {
5785 fragS *fragP;
5786 fragS *current_target = NULL;
5787 offsetT current_offset = 0;
5788 xtensa_opcode current_opcode = XTENSA_UNDEFINED;
5789
5790 /* Walk over all of the fragments in a subsection. */
5791 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
5792 {
5793 /* check on the current loop */
5794 if (fragP->fr_type == rs_machine_dependent
5795 && fragP->fr_subtype == RELAX_IMMED)
5796 {
5797 /* Read it. If the instruction is a loop, get the target. */
5798 xtensa_opcode opcode = get_opcode_from_buf (fragP->fr_opcode);
5799 if (is_loop_opcode (opcode))
5800 {
5801 TInsn t_insn;
5802
5803 tinsn_from_chars (&t_insn, fragP->fr_opcode);
5804 tinsn_immed_from_frag (&t_insn, fragP);
5805
5806 /* Get the current fragment target. */
5807 if (fragP->fr_symbol)
5808 {
5809 current_target = symbol_get_frag (fragP->fr_symbol);
5810 current_offset = fragP->fr_offset;
5811 current_opcode = opcode;
5812 }
5813 }
5814 }
5815
5816 if (fragP->fr_type == rs_machine_dependent
5817 && fragP->fr_subtype == RELAX_ADD_NOP_IF_SHORT_LOOP)
5818 {
5819 size_t insn_count =
5820 count_insns_to_loop_end (fragP->fr_next, TRUE, 3);
5821 if (insn_count < 3
5822 && (branch_before_loop_end (fragP->fr_next)
5823 || (software_avoid_all_short_loops
5824 && current_opcode != XTENSA_UNDEFINED
5825 && !is_the_loop_opcode (current_opcode))))
5826 relax_frag_add_nop (fragP);
5827 else
5828 frag_wane (fragP);
5829 }
5830 }
5831 }
5832 }
5833
5834
5835 size_t
5836 count_insns_to_loop_end (base_fragP, count_relax_add, max_count)
5837 fragS *base_fragP;
5838 bfd_boolean count_relax_add;
5839 size_t max_count;
5840 {
5841 fragS *fragP = NULL;
5842 size_t insn_count = 0;
5843
5844 fragP = base_fragP;
5845
5846 for (; fragP && !fragP->tc_frag_data.is_loop_target; fragP = fragP->fr_next)
5847 {
5848 insn_count += unrelaxed_frag_min_insn_count (fragP);
5849 if (insn_count >= max_count)
5850 return max_count;
5851
5852 if (count_relax_add)
5853 {
5854 if (fragP->fr_type == rs_machine_dependent
5855 && fragP->fr_subtype == RELAX_ADD_NOP_IF_SHORT_LOOP)
5856 {
5857 /* In order to add the appropriate number of
5858 NOPs, we count an instruction for downstream
5859 occurrences. */
5860 insn_count++;
5861 if (insn_count >= max_count)
5862 return max_count;
5863 }
5864 }
5865 }
5866 return insn_count;
5867 }
5868
5869
5870 size_t
5871 unrelaxed_frag_min_insn_count (fragP)
5872 fragS *fragP;
5873 {
5874 size_t insn_count = 0;
5875 int offset = 0;
5876
5877 if (!fragP->tc_frag_data.is_insn)
5878 return insn_count;
5879
5880 /* Decode the fixed instructions. */
5881 while (offset < fragP->fr_fix)
5882 {
5883 xtensa_opcode opcode = get_opcode_from_buf (fragP->fr_literal + offset);
5884 if (opcode == XTENSA_UNDEFINED)
5885 {
5886 as_fatal (_("undecodable instruction in instruction frag"));
5887 return insn_count;
5888 }
5889 offset += xtensa_insn_length (xtensa_default_isa, opcode);
5890 insn_count++;
5891 }
5892
5893 return insn_count;
5894 }
5895
5896
5897 bfd_boolean
5898 branch_before_loop_end (base_fragP)
5899 fragS *base_fragP;
5900 {
5901 fragS *fragP;
5902
5903 for (fragP = base_fragP;
5904 fragP && !fragP->tc_frag_data.is_loop_target;
5905 fragP = fragP->fr_next)
5906 {
5907 if (unrelaxed_frag_has_b_j (fragP))
5908 return TRUE;
5909 }
5910 return FALSE;
5911 }
5912
5913
5914 bfd_boolean
5915 unrelaxed_frag_has_b_j (fragP)
5916 fragS *fragP;
5917 {
5918 size_t insn_count = 0;
5919 int offset = 0;
5920
5921 if (!fragP->tc_frag_data.is_insn)
5922 return FALSE;
5923
5924 /* Decode the fixed instructions. */
5925 while (offset < fragP->fr_fix)
5926 {
5927 xtensa_opcode opcode = get_opcode_from_buf (fragP->fr_literal + offset);
5928 if (opcode == XTENSA_UNDEFINED)
5929 {
5930 as_fatal (_("undecodable instruction in instruction frag"));
5931 return insn_count;
5932 }
5933 if (is_branch_or_jump_opcode (opcode))
5934 return TRUE;
5935 offset += xtensa_insn_length (xtensa_default_isa, opcode);
5936 }
5937 return FALSE;
5938 }
5939
5940
5941 /* Checks to be made after initial assembly but before relaxation. */
5942
5943 static void
5944 xtensa_sanity_check ()
5945 {
5946 char *file_name;
5947 int line;
5948
5949 frchainS *frchP;
5950
5951 as_where (&file_name, &line);
5952 for (frchP = frchain_root; frchP; frchP = frchP->frch_next)
5953 {
5954 fragS *fragP;
5955
5956 /* Walk over all of the fragments in a subsection. */
5957 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
5958 {
5959 /* Currently we only check for empty loops here. */
5960 if (fragP->fr_type == rs_machine_dependent
5961 && fragP->fr_subtype == RELAX_IMMED)
5962 {
5963 static xtensa_insnbuf insnbuf = NULL;
5964 TInsn t_insn;
5965
5966 if (fragP->fr_opcode != NULL)
5967 {
5968 if (!insnbuf)
5969 insnbuf = xtensa_insnbuf_alloc (xtensa_default_isa);
5970 tinsn_from_chars (&t_insn, fragP->fr_opcode);
5971 tinsn_immed_from_frag (&t_insn, fragP);
5972
5973 if (is_loop_opcode (t_insn.opcode))
5974 {
5975 if (is_empty_loop (&t_insn, fragP))
5976 {
5977 new_logical_line (fragP->fr_file, fragP->fr_line);
5978 as_bad (_("invalid empty loop"));
5979 }
5980 if (!is_local_forward_loop (&t_insn, fragP))
5981 {
5982 new_logical_line (fragP->fr_file, fragP->fr_line);
5983 as_bad (_("loop target does not follow "
5984 "loop instruction in section"));
5985 }
5986 }
5987 }
5988 }
5989 }
5990 }
5991 new_logical_line (file_name, line);
5992 }
5993
5994
5995 #define LOOP_IMMED_OPN 1
5996
5997 /* Return true if the loop target is the next non-zero fragment. */
5998
5999 bfd_boolean
6000 is_empty_loop (insn, fragP)
6001 const TInsn *insn;
6002 fragS *fragP;
6003 {
6004 const expressionS *expr;
6005 symbolS *symbolP;
6006 fragS *next_fragP;
6007
6008 if (insn->insn_type != ITYPE_INSN)
6009 return FALSE;
6010
6011 if (!is_loop_opcode (insn->opcode))
6012 return FALSE;
6013
6014 if (insn->ntok <= LOOP_IMMED_OPN)
6015 return FALSE;
6016
6017 expr = &insn->tok[LOOP_IMMED_OPN];
6018
6019 if (expr->X_op != O_symbol)
6020 return FALSE;
6021
6022 symbolP = expr->X_add_symbol;
6023 if (!symbolP)
6024 return FALSE;
6025
6026 if (symbol_get_frag (symbolP) == NULL)
6027 return FALSE;
6028
6029 if (S_GET_VALUE (symbolP) != 0)
6030 return FALSE;
6031
6032 /* Walk through the zero-size fragments from this one. If we find
6033 the target fragment, then this is a zero-size loop. */
6034 for (next_fragP = fragP->fr_next;
6035 next_fragP != NULL;
6036 next_fragP = next_fragP->fr_next)
6037 {
6038 if (next_fragP == symbol_get_frag (symbolP))
6039 return TRUE;
6040 if (next_fragP->fr_fix != 0)
6041 return FALSE;
6042 }
6043 return FALSE;
6044 }
6045
6046
6047 bfd_boolean
6048 is_local_forward_loop (insn, fragP)
6049 const TInsn *insn;
6050 fragS *fragP;
6051 {
6052 const expressionS *expr;
6053 symbolS *symbolP;
6054 fragS *next_fragP;
6055
6056 if (insn->insn_type != ITYPE_INSN)
6057 return FALSE;
6058
6059 if (!is_loop_opcode (insn->opcode))
6060 return FALSE;
6061
6062 if (insn->ntok <= LOOP_IMMED_OPN)
6063 return FALSE;
6064
6065 expr = &insn->tok[LOOP_IMMED_OPN];
6066
6067 if (expr->X_op != O_symbol)
6068 return FALSE;
6069
6070 symbolP = expr->X_add_symbol;
6071 if (!symbolP)
6072 return FALSE;
6073
6074 if (symbol_get_frag (symbolP) == NULL)
6075 return FALSE;
6076
6077 /* Walk through fragments until we find the target.
6078 If we do not find the target, then this is an invalid loop. */
6079 for (next_fragP = fragP->fr_next;
6080 next_fragP != NULL;
6081 next_fragP = next_fragP->fr_next)
6082 if (next_fragP == symbol_get_frag (symbolP))
6083 return TRUE;
6084
6085 return FALSE;
6086 }
6087
6088 \f
6089 /* Alignment Functions. */
6090
6091 size_t
6092 get_text_align_power (target_size)
6093 int target_size;
6094 {
6095 size_t i = 0;
6096 for (i = 0; i < sizeof (size_t); i++)
6097 {
6098 if (target_size <= (1 << i))
6099 return i;
6100 }
6101 as_fatal (_("get_text_align_power: argument too large"));
6102 return 0;
6103 }
6104
6105
6106 addressT
6107 get_text_align_max_fill_size (align_pow, use_nops, use_no_density)
6108 int align_pow;
6109 bfd_boolean use_nops;
6110 bfd_boolean use_no_density;
6111 {
6112 if (!use_nops)
6113 return (1 << align_pow);
6114 if (use_no_density)
6115 return 3 * (1 << align_pow);
6116
6117 return 1 + (1 << align_pow);
6118 }
6119
6120
6121 /* get_text_align_fill_size ()
6122
6123 Desired alignments:
6124 give the address
6125 target_size = size of next instruction
6126 align_pow = get_text_align_power (target_size).
6127 use_nops = 0
6128 use_no_density = 0;
6129 Loop alignments:
6130 address = current address + loop instruction size;
6131 target_size = 3 (for 2 or 3 byte target)
6132 = 8 (for 8 byte target)
6133 align_pow = get_text_align_power (target_size);
6134 use_nops = 1
6135 use_no_density = set appropriately
6136 Text alignments:
6137 address = current address + loop instruction size;
6138 target_size = 0
6139 align_pow = get_text_align_power (target_size);
6140 use_nops = 0
6141 use_no_density = 0. */
6142
6143 addressT
6144 get_text_align_fill_size (address, align_pow, target_size,
6145 use_nops, use_no_density)
6146 addressT address;
6147 int align_pow;
6148 int target_size;
6149 bfd_boolean use_nops;
6150 bfd_boolean use_no_density;
6151 {
6152 /* Input arguments:
6153
6154 align_pow: log2 (required alignment).
6155
6156 target_size: alignment must allow the new_address and
6157 new_address+target_size-1.
6158
6159 use_nops: if true, then we can only use 2 or 3 byte nops.
6160
6161 use_no_density: if use_nops and use_no_density, we can only use
6162 3-byte nops.
6163
6164 Usually, for non-zero target_size, the align_pow is the power of 2
6165 that is greater than or equal to the target_size. This handles the
6166 2-byte, 3-byte and 8-byte instructions. */
6167
6168 size_t alignment = (1 << align_pow);
6169 if (!use_nops)
6170 {
6171 /* This is the easy case. */
6172 size_t mod;
6173 mod = address % alignment;
6174 if (mod != 0)
6175 mod = alignment - mod;
6176 assert ((address + mod) % alignment == 0);
6177 return mod;
6178 }
6179
6180 /* This is the slightly harder case. */
6181 assert ((int) alignment >= target_size);
6182 assert (target_size > 0);
6183 if (!use_no_density)
6184 {
6185 size_t i;
6186 for (i = 0; i < alignment * 2; i++)
6187 {
6188 if (i == 1)
6189 continue;
6190 if ((address + i) >> align_pow ==
6191 (address + i + target_size - 1) >> align_pow)
6192 return i;
6193 }
6194 }
6195 else
6196 {
6197 size_t i;
6198
6199 /* Can only fill multiples of 3. */
6200 for (i = 0; i <= alignment * 3; i += 3)
6201 {
6202 if ((address + i) >> align_pow ==
6203 (address + i + target_size - 1) >> align_pow)
6204 return i;
6205 }
6206 }
6207 assert (0);
6208 return 0;
6209 }
6210
6211
6212 /* This will assert if it is not possible. */
6213
6214 size_t
6215 get_text_align_nop_count (fill_size, use_no_density)
6216 size_t fill_size;
6217 bfd_boolean use_no_density;
6218 {
6219 size_t count = 0;
6220 if (use_no_density)
6221 {
6222 assert (fill_size % 3 == 0);
6223 return (fill_size / 3);
6224 }
6225
6226 assert (fill_size != 1); /* Bad argument. */
6227
6228 while (fill_size > 1)
6229 {
6230 size_t insn_size = 3;
6231 if (fill_size == 2 || fill_size == 4)
6232 insn_size = 2;
6233 fill_size -= insn_size;
6234 count++;
6235 }
6236 assert (fill_size != 1); /* Bad algorithm. */
6237 return count;
6238 }
6239
6240
6241 size_t
6242 get_text_align_nth_nop_size (fill_size, n, use_no_density)
6243 size_t fill_size;
6244 size_t n;
6245 bfd_boolean use_no_density;
6246 {
6247 size_t count = 0;
6248
6249 assert (get_text_align_nop_count (fill_size, use_no_density) > n);
6250
6251 if (use_no_density)
6252 return 3;
6253
6254 while (fill_size > 1)
6255 {
6256 size_t insn_size = 3;
6257 if (fill_size == 2 || fill_size == 4)
6258 insn_size = 2;
6259 fill_size -= insn_size;
6260 count++;
6261 if (n + 1 == count)
6262 return insn_size;
6263 }
6264 assert (0);
6265 return 0;
6266 }
6267
6268
6269 /* For the given fragment, find the appropriate address
6270 for it to begin at if we are using NOPs to align it. */
6271
6272 static addressT
6273 get_noop_aligned_address (fragP, address)
6274 fragS *fragP;
6275 addressT address;
6276 {
6277 static xtensa_insnbuf insnbuf = NULL;
6278 size_t fill_size = 0;
6279
6280 if (!insnbuf)
6281 insnbuf = xtensa_insnbuf_alloc (xtensa_default_isa);
6282
6283 switch (fragP->fr_type)
6284 {
6285 case rs_machine_dependent:
6286 if (fragP->fr_subtype == RELAX_ALIGN_NEXT_OPCODE)
6287 {
6288 /* The rule is: get next fragment's FIRST instruction. Find
6289 the smallest number of bytes that need to be added to
6290 ensure that the next fragment's FIRST instruction will fit
6291 in a single word.
6292
6293 E.G., 2 bytes : 0, 1, 2 mod 4
6294 3 bytes: 0, 1 mod 4
6295
6296 If the FIRST instruction MIGHT be relaxed,
6297 assume that it will become a 3 byte instruction. */
6298
6299 int target_insn_size;
6300 xtensa_opcode opcode = next_frag_opcode (fragP);
6301 addressT pre_opcode_bytes;
6302
6303 if (opcode == XTENSA_UNDEFINED)
6304 {
6305 as_bad_where (fragP->fr_file, fragP->fr_line,
6306 _("invalid opcode for RELAX_ALIGN_NEXT_OPCODE"));
6307 as_fatal (_("cannot continue"));
6308 }
6309
6310 target_insn_size = xtensa_insn_length (xtensa_default_isa, opcode);
6311
6312 pre_opcode_bytes = next_frag_pre_opcode_bytes (fragP);
6313
6314 if (is_loop_opcode (opcode))
6315 {
6316 /* next_fragP should be the loop. */
6317 const fragS *next_fragP = next_non_empty_frag (fragP);
6318 xtensa_opcode next_opcode = next_frag_opcode (next_fragP);
6319 size_t alignment;
6320
6321 pre_opcode_bytes += target_insn_size;
6322
6323 /* For loops, the alignment depends on the size of the
6324 instruction following the loop, not the loop instruction. */
6325 if (next_opcode == XTENSA_UNDEFINED)
6326 target_insn_size = 3;
6327 else
6328 {
6329 target_insn_size =
6330 xtensa_insn_length (xtensa_default_isa, next_opcode);
6331
6332 if (target_insn_size == 2)
6333 target_insn_size = 3; /* ISA specifies this. */
6334 }
6335
6336 /* If it was 8, then we'll need a larger alignment
6337 for the section. */
6338 alignment = get_text_align_power (target_insn_size);
6339
6340 /* Is Now_seg valid */
6341 record_alignment (now_seg, alignment);
6342 }
6343 else
6344 as_fatal (_("expected loop opcode in relax align next target"));
6345
6346 fill_size = get_text_align_fill_size
6347 (address + pre_opcode_bytes,
6348 get_text_align_power (target_insn_size),
6349 target_insn_size, TRUE, fragP->tc_frag_data.is_no_density);
6350 }
6351 break;
6352 #if 0
6353 case rs_align:
6354 case rs_align_code:
6355 fill_size = get_text_align_fill_size
6356 (address, fragP->fr_offset, 1, TRUE,
6357 fragP->tc_frag_data.is_no_density);
6358 break;
6359 #endif
6360 default:
6361 as_fatal (_("expected align_code or RELAX_ALIGN_NEXT_OPCODE"));
6362 }
6363
6364 return address + fill_size;
6365 }
6366
6367
6368 /* 3 mechanisms for relaxing an alignment:
6369
6370 Align to a power of 2.
6371 Align so the next fragment's instruction does not cross a word boundary.
6372 Align the current instruction so that if the next instruction
6373 were 3 bytes, it would not cross a word boundary.
6374
6375 We can align with:
6376
6377 zeros - This is easy; always insert zeros.
6378 nops - 3 and 2 byte instructions
6379 2 - 2 byte nop
6380 3 - 3 byte nop
6381 4 - 2, 2-byte nops
6382 >=5 : 3 byte instruction + fn(n-3)
6383 widening - widen previous instructions. */
6384
6385 static addressT
6386 get_widen_aligned_address (fragP, address)
6387 fragS *fragP;
6388 addressT address;
6389 {
6390 addressT align_pow, new_address, loop_insn_offset;
6391 fragS *next_frag;
6392 int insn_size;
6393 xtensa_opcode opcode, next_opcode;
6394 static xtensa_insnbuf insnbuf = NULL;
6395
6396 if (!insnbuf)
6397 insnbuf = xtensa_insnbuf_alloc (xtensa_default_isa);
6398
6399 if (fragP->fr_type == rs_align || fragP->fr_type == rs_align_code)
6400 {
6401 align_pow = fragP->fr_offset;
6402 new_address = ((address + ((1 << align_pow) - 1))
6403 << align_pow) >> align_pow;
6404 return new_address;
6405 }
6406
6407 if (fragP->fr_type == rs_machine_dependent)
6408 {
6409 switch (fragP->fr_subtype)
6410 {
6411 case RELAX_DESIRE_ALIGN:
6412
6413 /* The rule is: get the next fragment's FIRST instruction.
6414 Find the smallest number of bytes needed to be added
6415 in order to ensure that the next fragment is FIRST
6416 instruction will fit in a single word.
6417 i.e. 2 bytes : 0, 1, 2. mod 4
6418 3 bytes: 0, 1 mod 4
6419 If the FIRST instruction MIGHT be relaxed,
6420 assume that it will become a 3-byte instruction. */
6421
6422 insn_size = 3;
6423 /* Check to see if it might be 2 bytes. */
6424 next_opcode = next_frag_opcode (fragP);
6425 if (next_opcode != XTENSA_UNDEFINED
6426 && xtensa_insn_length (xtensa_default_isa, next_opcode) == 2)
6427 insn_size = 2;
6428
6429 assert (insn_size <= 4);
6430 for (new_address = address; new_address < address + 4; new_address++)
6431 {
6432 if (new_address >> 2 == (new_address + insn_size - 1) >> 2)
6433 return new_address;
6434 }
6435 as_bad (_("internal error aligning"));
6436 return address;
6437
6438 case RELAX_ALIGN_NEXT_OPCODE:
6439 /* The rule is: get next fragment's FIRST instruction.
6440 Find the smallest number of bytes needed to be added
6441 in order to ensure that the next fragment's FIRST
6442 instruction will fit in a single word.
6443 i.e. 2 bytes : 0, 1, 2. mod 4
6444 3 bytes: 0, 1 mod 4
6445 If the FIRST instruction MIGHT be relaxed,
6446 assume that it will become a 3 byte instruction. */
6447
6448 opcode = next_frag_opcode (fragP);
6449 if (opcode == XTENSA_UNDEFINED)
6450 {
6451 as_bad_where (fragP->fr_file, fragP->fr_line,
6452 _("invalid opcode for RELAX_ALIGN_NEXT_OPCODE"));
6453 as_fatal (_("cannot continue"));
6454 }
6455 insn_size = xtensa_insn_length (xtensa_default_isa, opcode);
6456 assert (insn_size <= 4);
6457 assert (is_loop_opcode (opcode));
6458
6459 loop_insn_offset = 0;
6460 next_frag = next_non_empty_frag (fragP);
6461
6462 /* If the loop has been expanded then the loop
6463 instruction could be at an offset from this fragment. */
6464 if (next_frag->fr_subtype != RELAX_IMMED)
6465 loop_insn_offset = get_expanded_loop_offset (opcode);
6466
6467 for (new_address = address; new_address < address + 4; new_address++)
6468 {
6469 if ((new_address + loop_insn_offset + insn_size) >> 2 ==
6470 (new_address + loop_insn_offset + insn_size + 2) >> 2)
6471 return new_address;
6472 }
6473 as_bad (_("internal error aligning"));
6474 return address;
6475
6476 default:
6477 as_bad (_("internal error aligning"));
6478 return address;
6479 }
6480 }
6481 as_bad (_("internal error aligning"));
6482 return address;
6483 }
6484
6485 \f
6486 /* md_relax_frag Hook and Helper Functions. */
6487
6488 /* Return the number of bytes added to this fragment, given that the
6489 input has been stretched already by "stretch". */
6490
6491 long
6492 xtensa_relax_frag (fragP, stretch, stretched_p)
6493 fragS *fragP;
6494 long stretch;
6495 int *stretched_p;
6496 {
6497 int unreported = fragP->tc_frag_data.unreported_expansion;
6498 long new_stretch = 0;
6499 char *file_name;
6500 int line, lit_size;
6501
6502 as_where (&file_name, &line);
6503 new_logical_line (fragP->fr_file, fragP->fr_line);
6504
6505 fragP->tc_frag_data.unreported_expansion = 0;
6506
6507 switch (fragP->fr_subtype)
6508 {
6509 case RELAX_ALIGN_NEXT_OPCODE:
6510 /* Always convert. */
6511 new_stretch = relax_frag_text_align (fragP, stretch);
6512 break;
6513
6514 case RELAX_LOOP_END:
6515 /* Do nothing. */
6516 break;
6517
6518 case RELAX_LOOP_END_ADD_NOP:
6519 /* Add a NOP and switch to .fill 0. */
6520 new_stretch = relax_frag_add_nop (fragP);
6521 break;
6522
6523 case RELAX_DESIRE_ALIGN:
6524 /* We REALLY want to change the relaxation order here. This
6525 should do NOTHING. The narrowing before it will either align
6526 it or not. */
6527 break;
6528
6529 case RELAX_LITERAL:
6530 case RELAX_LITERAL_FINAL:
6531 return 0;
6532
6533 case RELAX_LITERAL_NR:
6534 lit_size = 4;
6535 fragP->fr_subtype = RELAX_LITERAL_FINAL;
6536 assert (unreported == lit_size);
6537 memset (&fragP->fr_literal[fragP->fr_fix], 0, 4);
6538 fragP->fr_var -= lit_size;
6539 fragP->fr_fix += lit_size;
6540 new_stretch = 4;
6541 break;
6542
6543 case RELAX_NARROW:
6544 new_stretch = relax_frag_narrow (fragP, stretch);
6545 break;
6546
6547 case RELAX_IMMED:
6548 case RELAX_IMMED_STEP1:
6549 case RELAX_IMMED_STEP2:
6550 /* Place the immediate. */
6551 new_stretch = relax_frag_immed (now_seg, fragP, stretch,
6552 fragP->fr_subtype - RELAX_IMMED,
6553 stretched_p);
6554 break;
6555
6556 case RELAX_LITERAL_POOL_BEGIN:
6557 case RELAX_LITERAL_POOL_END:
6558 /* No relaxation required. */
6559 break;
6560
6561 default:
6562 as_bad (_("bad relaxation state"));
6563 }
6564
6565 new_logical_line (file_name, line);
6566 return new_stretch;
6567 }
6568
6569
6570 static long
6571 relax_frag_text_align (fragP, stretch)
6572 fragS *fragP;
6573 long stretch;
6574 {
6575 addressT old_address, old_next_address, old_size;
6576 addressT new_address, new_next_address, new_size;
6577 addressT growth;
6578
6579 /* Overview of the relaxation procedure for alignment
6580 inside an executable section:
6581
6582 The old size is stored in the tc_frag_data.text_expansion field.
6583
6584 Calculate the new address, fix up the text_expansion and
6585 return the growth. */
6586
6587 /* Calculate the old address of this fragment and the next fragment. */
6588 old_address = fragP->fr_address - stretch;
6589 old_next_address = (fragP->fr_address - stretch + fragP->fr_fix +
6590 fragP->tc_frag_data.text_expansion);
6591 old_size = old_next_address - old_address;
6592
6593 /* Calculate the new address of this fragment and the next fragment. */
6594 new_address = fragP->fr_address;
6595 new_next_address =
6596 get_noop_aligned_address (fragP, fragP->fr_address + fragP->fr_fix);
6597 new_size = new_next_address - new_address;
6598
6599 growth = new_size - old_size;
6600
6601 /* Fix up the text_expansion field and return the new growth. */
6602 fragP->tc_frag_data.text_expansion += growth;
6603 return growth;
6604 }
6605
6606
6607 /* Add a NOP (i.e., "or a1, a1, a1"). Use the 3-byte one because we
6608 don't know about the availability of density yet. TODO: When the
6609 flags are stored per fragment, use NOP.N when possible. */
6610
6611 static long
6612 relax_frag_add_nop (fragP)
6613 fragS *fragP;
6614 {
6615 static xtensa_insnbuf insnbuf = NULL;
6616 TInsn t_insn;
6617 char *nop_buf = fragP->fr_literal + fragP->fr_fix;
6618 int length;
6619 if (!insnbuf)
6620 insnbuf = xtensa_insnbuf_alloc (xtensa_default_isa);
6621
6622 tinsn_init (&t_insn);
6623 t_insn.opcode = xtensa_or_opcode;
6624 assert (t_insn.opcode != XTENSA_UNDEFINED);
6625
6626 t_insn.ntok = 3;
6627 set_expr_const (&t_insn.tok[0], 1);
6628 set_expr_const (&t_insn.tok[1], 1);
6629 set_expr_const (&t_insn.tok[2], 1);
6630
6631 tinsn_to_insnbuf (&t_insn, insnbuf);
6632 fragP->tc_frag_data.is_insn = TRUE;
6633 xtensa_insnbuf_to_chars (xtensa_default_isa, insnbuf, nop_buf);
6634
6635 length = xtensa_insn_length (xtensa_default_isa, t_insn.opcode);
6636 if (fragP->fr_var < length)
6637 {
6638 as_warn (_("fr_var (%ld) < length (%d); ignoring"),
6639 fragP->fr_var, length);
6640 frag_wane (fragP);
6641 return 0;
6642 }
6643
6644 fragP->fr_fix += length;
6645 fragP->fr_var -= length;
6646 frag_wane (fragP);
6647 return length;
6648 }
6649
6650
6651 static long
6652 relax_frag_narrow (fragP, stretch)
6653 fragS *fragP;
6654 long stretch;
6655 {
6656 /* Overview of the relaxation procedure for alignment inside an
6657 executable section: Find the number of widenings required and the
6658 number of nop bytes required. Store the number of bytes ALREADY
6659 widened. If there are enough instructions to widen (must go back
6660 ONLY through NARROW fragments), mark each of the fragments as TO BE
6661 widened, recalculate the fragment addresses. */
6662
6663 assert (fragP->fr_type == rs_machine_dependent
6664 && fragP->fr_subtype == RELAX_NARROW);
6665
6666 if (!future_alignment_required (fragP, 0))
6667 {
6668 /* If already expanded but no longer needed because of a prior
6669 stretch, it is SAFE to unexpand because the next fragment will
6670 NEVER start at an address > the previous time through the
6671 relaxation. */
6672 if (fragP->tc_frag_data.text_expansion)
6673 {
6674 if (stretch > 0)
6675 {
6676 fragP->tc_frag_data.text_expansion = 0;
6677 return -1;
6678 }
6679 /* Otherwise we have to live with this bad choice. */
6680 return 0;
6681 }
6682 return 0;
6683 }
6684
6685 if (fragP->tc_frag_data.text_expansion == 0)
6686 {
6687 fragP->tc_frag_data.text_expansion = 1;
6688 return 1;
6689 }
6690
6691 return 0;
6692 }
6693
6694
6695 static bfd_boolean
6696 future_alignment_required (fragP, stretch)
6697 fragS *fragP;
6698 long stretch;
6699 {
6700 long address = fragP->fr_address + stretch;
6701 int num_widens = 0;
6702 addressT aligned_address;
6703 offsetT desired_diff;
6704
6705 while (fragP)
6706 {
6707 /* Limit this to a small search. */
6708 if (num_widens > 8)
6709 return FALSE;
6710 address += fragP->fr_fix;
6711
6712 switch (fragP->fr_type)
6713 {
6714 case rs_fill:
6715 address += fragP->fr_offset * fragP->fr_var;
6716 break;
6717
6718 case rs_machine_dependent:
6719 switch (fragP->fr_subtype)
6720 {
6721 case RELAX_NARROW:
6722 /* address += fragP->fr_fix; */
6723 num_widens++;
6724 break;
6725
6726 case RELAX_IMMED:
6727 address += (/* fragP->fr_fix + */
6728 fragP->tc_frag_data.text_expansion);
6729 break;
6730
6731 case RELAX_ALIGN_NEXT_OPCODE:
6732 case RELAX_DESIRE_ALIGN:
6733 /* address += fragP->fr_fix; */
6734 aligned_address = get_widen_aligned_address (fragP, address);
6735 desired_diff = aligned_address - address;
6736 assert (desired_diff >= 0);
6737 /* If there are enough wideners in between do it. */
6738 /* return (num_widens == desired_diff); */
6739 if (num_widens == desired_diff)
6740 return TRUE;
6741 if (fragP->fr_subtype == RELAX_ALIGN_NEXT_OPCODE)
6742 return FALSE;
6743 break;
6744
6745 default:
6746 return FALSE;
6747 }
6748 break;
6749
6750 default:
6751 return FALSE;
6752 }
6753 fragP = fragP->fr_next;
6754 }
6755
6756 return FALSE;
6757 }
6758
6759
6760 static long
6761 relax_frag_immed (segP, fragP, stretch, min_steps, stretched_p)
6762 segT segP;
6763 fragS *fragP;
6764 long stretch;
6765 int min_steps;
6766 int *stretched_p;
6767 {
6768 static xtensa_insnbuf insnbuf = NULL;
6769 TInsn t_insn;
6770 int old_size;
6771 bfd_boolean negatable_branch = FALSE;
6772 bfd_boolean branch_jmp_to_next = FALSE;
6773 IStack istack;
6774 offsetT frag_offset;
6775 int num_steps;
6776 fragS *lit_fragP;
6777 int num_text_bytes, num_literal_bytes;
6778 int literal_diff, text_diff;
6779
6780 assert (fragP->fr_opcode != NULL);
6781
6782 if (!insnbuf)
6783 insnbuf = xtensa_insnbuf_alloc (xtensa_default_isa);
6784
6785 tinsn_from_chars (&t_insn, fragP->fr_opcode);
6786 tinsn_immed_from_frag (&t_insn, fragP);
6787
6788 negatable_branch = is_negatable_branch (&t_insn);
6789
6790 old_size = xtensa_insn_length (xtensa_default_isa, t_insn.opcode);
6791
6792 if (software_avoid_b_j_loop_end)
6793 branch_jmp_to_next = is_branch_jmp_to_next (&t_insn, fragP);
6794
6795 /* Special case: replace a branch to the next instruction with a NOP.
6796 This is required to work around a hardware bug in T1040.0 and also
6797 serves as an optimization. */
6798
6799 if (branch_jmp_to_next
6800 && ((old_size == 2) || (old_size == 3))
6801 && !next_frag_is_loop_target (fragP))
6802 return 0;
6803
6804 /* Here is the fun stuff: Get the immediate field from this
6805 instruction. If it fits, we are done. If not, find the next
6806 instruction sequence that fits. */
6807
6808 frag_offset = fragP->fr_opcode - fragP->fr_literal;
6809 istack_init (&istack);
6810 num_steps = xg_assembly_relax (&istack, &t_insn, segP, fragP, frag_offset,
6811 min_steps, stretch);
6812 if (num_steps < min_steps)
6813 {
6814 as_fatal (_("internal error: relaxation failed"));
6815 return 0;
6816 }
6817
6818 if (num_steps > RELAX_IMMED_MAXSTEPS)
6819 {
6820 as_fatal (_("internal error: relaxation requires too many steps"));
6821 return 0;
6822 }
6823
6824 fragP->fr_subtype = (int) RELAX_IMMED + num_steps;
6825
6826 /* Figure out the number of bytes needed. */
6827 lit_fragP = 0;
6828 num_text_bytes = get_num_stack_text_bytes (&istack) - old_size;
6829 num_literal_bytes = get_num_stack_literal_bytes (&istack);
6830 literal_diff = num_literal_bytes - fragP->tc_frag_data.literal_expansion;
6831 text_diff = num_text_bytes - fragP->tc_frag_data.text_expansion;
6832
6833 /* It MUST get larger. If not, we could get an infinite loop. */
6834 know (num_text_bytes >= 0);
6835 know (literal_diff >= 0 && text_diff >= 0);
6836
6837 fragP->tc_frag_data.text_expansion = num_text_bytes;
6838 fragP->tc_frag_data.literal_expansion = num_literal_bytes;
6839
6840 /* Find the associated expandable literal for this. */
6841 if (literal_diff != 0)
6842 {
6843 lit_fragP = fragP->tc_frag_data.literal_frag;
6844 if (lit_fragP)
6845 {
6846 assert (literal_diff == 4);
6847 lit_fragP->tc_frag_data.unreported_expansion += literal_diff;
6848
6849 /* We expect that the literal section state has NOT been
6850 modified yet. */
6851 assert (lit_fragP->fr_type == rs_machine_dependent
6852 && lit_fragP->fr_subtype == RELAX_LITERAL);
6853 lit_fragP->fr_subtype = RELAX_LITERAL_NR;
6854
6855 /* We need to mark this section for another iteration
6856 of relaxation. */
6857 (*stretched_p)++;
6858 }
6859 }
6860
6861 /* This implicitly uses the assumption that a branch is negated
6862 when the size of the output increases by at least 2 bytes. */
6863
6864 if (negatable_branch && num_text_bytes >= 2)
6865 {
6866 /* If next frag is a loop end, then switch it to add a NOP. */
6867 update_next_frag_nop_state (fragP);
6868 }
6869
6870 return text_diff;
6871 }
6872
6873 \f
6874 /* md_convert_frag Hook and Helper Functions. */
6875
6876 void
6877 md_convert_frag (abfd, sec, fragp)
6878 bfd *abfd ATTRIBUTE_UNUSED;
6879 segT sec;
6880 fragS *fragp;
6881 {
6882 char *file_name;
6883 int line;
6884
6885 as_where (&file_name, &line);
6886 new_logical_line (fragp->fr_file, fragp->fr_line);
6887
6888 switch (fragp->fr_subtype)
6889 {
6890 case RELAX_ALIGN_NEXT_OPCODE:
6891 /* Always convert. */
6892 convert_frag_align_next_opcode (fragp);
6893 break;
6894
6895 case RELAX_DESIRE_ALIGN:
6896 /* Do nothing. If not aligned already, too bad. */
6897 break;
6898
6899 case RELAX_LITERAL:
6900 case RELAX_LITERAL_FINAL:
6901 break;
6902
6903 case RELAX_NARROW:
6904 /* No conversion. */
6905 convert_frag_narrow (fragp);
6906 break;
6907
6908 case RELAX_IMMED:
6909 case RELAX_IMMED_STEP1:
6910 case RELAX_IMMED_STEP2:
6911 /* Place the immediate. */
6912 convert_frag_immed (sec, fragp, fragp->fr_subtype - RELAX_IMMED);
6913 break;
6914
6915 case RELAX_LITERAL_NR:
6916 if (use_literal_section)
6917 {
6918 /* This should have been handled during relaxation. When
6919 relaxing a code segment, literals sometimes need to be
6920 added to the corresponding literal segment. If that
6921 literal segment has already been relaxed, then we end up
6922 in this situation. Marking the literal segments as data
6923 would make this happen less often (since GAS always relaxes
6924 code before data), but we could still get into trouble if
6925 there are instructions in a segment that is not marked as
6926 containing code. Until we can implement a better solution,
6927 cheat and adjust the addresses of all the following frags.
6928 This could break subsequent alignments, but the linker's
6929 literal coalescing will do that anyway. */
6930
6931 fragS *f;
6932 fragp->fr_subtype = RELAX_LITERAL_FINAL;
6933 assert (fragp->tc_frag_data.unreported_expansion == 4);
6934 memset (&fragp->fr_literal[fragp->fr_fix], 0, 4);
6935 fragp->fr_var -= 4;
6936 fragp->fr_fix += 4;
6937 for (f = fragp->fr_next; f; f = f->fr_next)
6938 f->fr_address += 4;
6939 }
6940 else
6941 as_bad (_("invalid relaxation fragment result"));
6942 break;
6943 }
6944
6945 fragp->fr_var = 0;
6946 new_logical_line (file_name, line);
6947 }
6948
6949
6950 void
6951 convert_frag_align_next_opcode (fragp)
6952 fragS *fragp;
6953 {
6954 char *nop_buf; /* Location for Writing. */
6955 size_t i;
6956
6957 bfd_boolean use_no_density = fragp->tc_frag_data.is_no_density;
6958 addressT aligned_address;
6959 size_t fill_size, nop_count;
6960
6961 aligned_address = get_noop_aligned_address (fragp, fragp->fr_address +
6962 fragp->fr_fix);
6963 fill_size = aligned_address - (fragp->fr_address + fragp->fr_fix);
6964 nop_count = get_text_align_nop_count (fill_size, use_no_density);
6965 nop_buf = fragp->fr_literal + fragp->fr_fix;
6966
6967 for (i = 0; i < nop_count; i++)
6968 {
6969 size_t nop_size;
6970 nop_size = get_text_align_nth_nop_size (fill_size, i, use_no_density);
6971
6972 assemble_nop (nop_size, nop_buf);
6973 nop_buf += nop_size;
6974 }
6975
6976 fragp->fr_fix += fill_size;
6977 fragp->fr_var -= fill_size;
6978 }
6979
6980
6981 static void
6982 convert_frag_narrow (fragP)
6983 fragS *fragP;
6984 {
6985 static xtensa_insnbuf insnbuf = NULL;
6986 TInsn t_insn, single_target;
6987 int size, old_size, diff, error_val;
6988 offsetT frag_offset;
6989
6990 if (fragP->tc_frag_data.text_expansion == 0)
6991 {
6992 /* No conversion. */
6993 fragP->fr_var = 0;
6994 return;
6995 }
6996
6997 assert (fragP->fr_opcode != NULL);
6998
6999 if (!insnbuf)
7000 insnbuf = xtensa_insnbuf_alloc (xtensa_default_isa);
7001
7002 tinsn_from_chars (&t_insn, fragP->fr_opcode);
7003 tinsn_immed_from_frag (&t_insn, fragP);
7004
7005 /* Just convert it to a wide form.... */
7006 size = 0;
7007 old_size = xtensa_insn_length (xtensa_default_isa, t_insn.opcode);
7008
7009 tinsn_init (&single_target);
7010 frag_offset = fragP->fr_opcode - fragP->fr_literal;
7011
7012 error_val = xg_expand_narrow (&single_target, &t_insn);
7013 if (error_val)
7014 as_bad (_("unable to widen instruction"));
7015
7016 size = xtensa_insn_length (xtensa_default_isa, single_target.opcode);
7017 xg_emit_insn_to_buf (&single_target, fragP->fr_opcode,
7018 fragP, frag_offset, TRUE);
7019
7020 diff = size - old_size;
7021 assert (diff >= 0);
7022 assert (diff <= fragP->fr_var);
7023 fragP->fr_var -= diff;
7024 fragP->fr_fix += diff;
7025
7026 /* clean it up */
7027 fragP->fr_var = 0;
7028 }
7029
7030
7031 static void
7032 convert_frag_immed (segP, fragP, min_steps)
7033 segT segP;
7034 fragS *fragP;
7035 int min_steps;
7036 {
7037 char *immed_instr = fragP->fr_opcode;
7038 static xtensa_insnbuf insnbuf = NULL;
7039 TInsn orig_t_insn;
7040 bfd_boolean expanded = FALSE;
7041 char *fr_opcode = fragP->fr_opcode;
7042 bfd_boolean branch_jmp_to_next = FALSE;
7043 int size;
7044
7045 assert (fragP->fr_opcode != NULL);
7046
7047 if (!insnbuf)
7048 insnbuf = xtensa_insnbuf_alloc (xtensa_default_isa);
7049
7050 tinsn_from_chars (&orig_t_insn, fragP->fr_opcode);
7051 tinsn_immed_from_frag (&orig_t_insn, fragP);
7052
7053 /* Here is the fun stuff: Get the immediate field from this
7054 instruction. If it fits, we're done. If not, find the next
7055 instruction sequence that fits. */
7056
7057 if (software_avoid_b_j_loop_end)
7058 branch_jmp_to_next = is_branch_jmp_to_next (&orig_t_insn, fragP);
7059
7060 if (branch_jmp_to_next && !next_frag_is_loop_target (fragP))
7061 {
7062 /* Conversion just inserts a NOP and marks the fix as completed. */
7063 size = xtensa_insn_length (xtensa_default_isa, orig_t_insn.opcode);
7064 assemble_nop (size, fragP->fr_opcode);
7065 fragP->fr_var = 0;
7066 }
7067 else
7068 {
7069 IStack istack;
7070 int i;
7071 symbolS *lit_sym = NULL;
7072 int total_size = 0;
7073 int old_size;
7074 int diff;
7075 symbolS *gen_label = NULL;
7076 offsetT frag_offset;
7077
7078 /* It does not fit. Find something that does and
7079 convert immediately. */
7080 frag_offset = fragP->fr_opcode - fragP->fr_literal;
7081 istack_init (&istack);
7082 xg_assembly_relax (&istack, &orig_t_insn,
7083 segP, fragP, frag_offset, min_steps, 0);
7084
7085 old_size = xtensa_insn_length (xtensa_default_isa, orig_t_insn.opcode);
7086
7087 /* Assemble this right inline. */
7088
7089 /* First, create the mapping from a label name to the REAL label. */
7090 total_size = 0;
7091 for (i = 0; i < istack.ninsn; i++)
7092 {
7093 TInsn *t_insn = &istack.insn[i];
7094 int size = 0;
7095 fragS *lit_frag;
7096
7097 switch (t_insn->insn_type)
7098 {
7099 case ITYPE_LITERAL:
7100 if (lit_sym != NULL)
7101 as_bad (_("multiple literals in expansion"));
7102 /* First find the appropriate space in the literal pool. */
7103 lit_frag = fragP->tc_frag_data.literal_frag;
7104 if (lit_frag == NULL)
7105 as_bad (_("no registered fragment for literal"));
7106 if (t_insn->ntok != 1)
7107 as_bad (_("number of literal tokens != 1"));
7108
7109 /* Set the literal symbol and add a fixup. */
7110 lit_sym = lit_frag->fr_symbol;
7111 break;
7112
7113 case ITYPE_LABEL:
7114 assert (gen_label == NULL);
7115 gen_label = symbol_new (FAKE_LABEL_NAME, now_seg,
7116 fragP->fr_opcode - fragP->fr_literal +
7117 total_size, fragP);
7118 break;
7119
7120 case ITYPE_INSN:
7121 size = xtensa_insn_length (xtensa_default_isa, t_insn->opcode);
7122 total_size += size;
7123 break;
7124 }
7125 }
7126
7127 total_size = 0;
7128 for (i = 0; i < istack.ninsn; i++)
7129 {
7130 TInsn *t_insn = &istack.insn[i];
7131 fragS *lit_frag;
7132 int size;
7133 segT target_seg;
7134
7135 switch (t_insn->insn_type)
7136 {
7137 case ITYPE_LITERAL:
7138 lit_frag = fragP->tc_frag_data.literal_frag;
7139 /* already checked */
7140 assert (lit_frag != NULL);
7141 assert (lit_sym != NULL);
7142 assert (t_insn->ntok == 1);
7143 /* add a fixup */
7144 target_seg = S_GET_SEGMENT (lit_sym);
7145 assert (target_seg);
7146 fix_new_exp_in_seg (target_seg, 0, lit_frag, 0, 4,
7147 &t_insn->tok[0], FALSE, BFD_RELOC_32);
7148 break;
7149
7150 case ITYPE_LABEL:
7151 break;
7152
7153 case ITYPE_INSN:
7154 xg_resolve_labels (t_insn, gen_label);
7155 xg_resolve_literals (t_insn, lit_sym);
7156 size = xtensa_insn_length (xtensa_default_isa, t_insn->opcode);
7157 total_size += size;
7158 xg_emit_insn_to_buf (t_insn, immed_instr, fragP,
7159 immed_instr - fragP->fr_literal, TRUE);
7160 immed_instr += size;
7161 break;
7162 }
7163 }
7164
7165 diff = total_size - old_size;
7166 assert (diff >= 0);
7167 if (diff != 0)
7168 expanded = TRUE;
7169 assert (diff <= fragP->fr_var);
7170 fragP->fr_var -= diff;
7171 fragP->fr_fix += diff;
7172 }
7173
7174 /* Clean it up. */
7175 fragP->fr_var = 0;
7176
7177 /* Check for undefined immediates in LOOP instructions. */
7178 if (is_loop_opcode (orig_t_insn.opcode))
7179 {
7180 symbolS *sym;
7181 sym = orig_t_insn.tok[1].X_add_symbol;
7182 if (sym != NULL && !S_IS_DEFINED (sym))
7183 {
7184 as_bad (_("unresolved loop target symbol: %s"), S_GET_NAME (sym));
7185 return;
7186 }
7187 sym = orig_t_insn.tok[1].X_op_symbol;
7188 if (sym != NULL && !S_IS_DEFINED (sym))
7189 {
7190 as_bad (_("unresolved loop target symbol: %s"), S_GET_NAME (sym));
7191 return;
7192 }
7193 }
7194
7195 if (expanded && is_loop_opcode (orig_t_insn.opcode))
7196 convert_frag_immed_finish_loop (segP, fragP, &orig_t_insn);
7197
7198 if (expanded && is_direct_call_opcode (orig_t_insn.opcode))
7199 {
7200 /* Add an expansion note on the expanded instruction. */
7201 fix_new_exp_in_seg (now_seg, 0, fragP, fr_opcode - fragP->fr_literal, 4,
7202 &orig_t_insn.tok[0], TRUE,
7203 BFD_RELOC_XTENSA_ASM_EXPAND);
7204
7205 }
7206 }
7207
7208
7209 /* Add a new fix expression into the desired segment. We have to
7210 switch to that segment to do this. */
7211
7212 static fixS *
7213 fix_new_exp_in_seg (new_seg, new_subseg,
7214 frag, where, size, exp, pcrel, r_type)
7215 segT new_seg;
7216 subsegT new_subseg;
7217 fragS *frag;
7218 int where;
7219 int size;
7220 expressionS *exp;
7221 int pcrel;
7222 bfd_reloc_code_real_type r_type;
7223 {
7224 fixS *new_fix;
7225 segT seg = now_seg;
7226 subsegT subseg = now_subseg;
7227 assert (new_seg != 0);
7228 subseg_set (new_seg, new_subseg);
7229
7230 if (r_type == BFD_RELOC_32
7231 && exp->X_add_symbol
7232 && symbol_get_tc (exp->X_add_symbol)->plt == 1)
7233 {
7234 r_type = BFD_RELOC_XTENSA_PLT;
7235 }
7236
7237 new_fix = fix_new_exp (frag, where, size, exp, pcrel, r_type);
7238 subseg_set (seg, subseg);
7239 return new_fix;
7240 }
7241
7242
7243 /* Relax a loop instruction so that it can span loop >256 bytes. */
7244 /*
7245 loop as, .L1
7246 .L0:
7247 rsr as, LEND
7248 wsr as, LBEG
7249 addi as, as, lo8(label-.L1)
7250 addmi as, as, mid8(label-.L1)
7251 wsr as, LEND
7252 isync
7253 rsr as, LCOUNT
7254 addi as, as, 1
7255 .L1:
7256 <<body>>
7257 label: */
7258
7259 static void
7260 convert_frag_immed_finish_loop (segP, fragP, t_insn)
7261 segT segP;
7262 fragS *fragP;
7263 TInsn *t_insn;
7264 {
7265 TInsn loop_insn;
7266 TInsn addi_insn;
7267 TInsn addmi_insn;
7268 unsigned long target;
7269 static xtensa_insnbuf insnbuf = NULL;
7270 unsigned int loop_length, loop_length_hi, loop_length_lo;
7271 xtensa_isa isa = xtensa_default_isa;
7272 addressT loop_offset;
7273 addressT addi_offset = 9;
7274 addressT addmi_offset = 12;
7275
7276 if (!insnbuf)
7277 insnbuf = xtensa_insnbuf_alloc (isa);
7278
7279 /* Get the loop offset. */
7280 loop_offset = get_expanded_loop_offset (t_insn->opcode);
7281 /* Validate that there really is a LOOP at the loop_offset. */
7282 tinsn_from_chars (&loop_insn, fragP->fr_opcode + loop_offset);
7283
7284 if (!is_loop_opcode (loop_insn.opcode))
7285 {
7286 as_bad_where (fragP->fr_file, fragP->fr_line,
7287 _("loop relaxation specification does not correspond"));
7288 assert (0);
7289 }
7290 addi_offset += loop_offset;
7291 addmi_offset += loop_offset;
7292
7293 assert (t_insn->ntok == 2);
7294 target = get_expression_value (segP, &t_insn->tok[1]);
7295
7296 know (symbolP);
7297 know (symbolP->sy_frag);
7298 know (!(S_GET_SEGMENT (symbolP) == absolute_section)
7299 || symbol_get_frag (symbolP) == &zero_address_frag);
7300
7301 loop_length = target - (fragP->fr_address + fragP->fr_fix);
7302 loop_length_hi = loop_length & ~0x0ff;
7303 loop_length_lo = loop_length & 0x0ff;
7304 if (loop_length_lo >= 128)
7305 {
7306 loop_length_lo -= 256;
7307 loop_length_hi += 256;
7308 }
7309
7310 /* Because addmi sign-extends the immediate, 'loop_length_hi' can be at most
7311 32512. If the loop is larger than that, then we just fail. */
7312 if (loop_length_hi > 32512)
7313 as_bad_where (fragP->fr_file, fragP->fr_line,
7314 _("loop too long for LOOP instruction"));
7315
7316 tinsn_from_chars (&addi_insn, fragP->fr_opcode + addi_offset);
7317 assert (addi_insn.opcode == xtensa_addi_opcode);
7318
7319 tinsn_from_chars (&addmi_insn, fragP->fr_opcode + addmi_offset);
7320 assert (addmi_insn.opcode == xtensa_addmi_opcode);
7321
7322 set_expr_const (&addi_insn.tok[2], loop_length_lo);
7323 tinsn_to_insnbuf (&addi_insn, insnbuf);
7324
7325 fragP->tc_frag_data.is_insn = TRUE;
7326 xtensa_insnbuf_to_chars (isa, insnbuf, fragP->fr_opcode + addi_offset);
7327
7328 set_expr_const (&addmi_insn.tok[2], loop_length_hi);
7329 tinsn_to_insnbuf (&addmi_insn, insnbuf);
7330 xtensa_insnbuf_to_chars (isa, insnbuf, fragP->fr_opcode + addmi_offset);
7331 }
7332
7333
7334 static offsetT
7335 get_expression_value (segP, exp)
7336 segT segP;
7337 expressionS *exp;
7338 {
7339 if (exp->X_op == O_constant)
7340 return exp->X_add_number;
7341 if (exp->X_op == O_symbol)
7342 {
7343 /* Find the fragment. */
7344 symbolS *sym = exp->X_add_symbol;
7345
7346 assert (S_GET_SEGMENT (sym) == segP
7347 || S_GET_SEGMENT (sym) == absolute_section);
7348
7349 return (S_GET_VALUE (sym) + exp->X_add_number);
7350 }
7351 as_bad (_("invalid expression evaluation type %d"), exp->X_op);
7352 return 0;
7353 }
7354
7355 \f
7356 /* A map that keeps information on a per-subsegment basis. This is
7357 maintained during initial assembly, but is invalid once the
7358 subsegments are smashed together. I.E., it cannot be used during
7359 the relaxation. */
7360
7361 typedef struct subseg_map_struct
7362 {
7363 /* the key */
7364 segT seg;
7365 subsegT subseg;
7366
7367 /* the data */
7368 unsigned flags;
7369
7370 struct subseg_map_struct *next;
7371 } subseg_map;
7372
7373 static subseg_map *sseg_map = NULL;
7374
7375
7376 static unsigned
7377 get_last_insn_flags (seg, subseg)
7378 segT seg;
7379 subsegT subseg;
7380 {
7381 subseg_map *subseg_e;
7382
7383 for (subseg_e = sseg_map; subseg_e != NULL; subseg_e = subseg_e->next)
7384 if (seg == subseg_e->seg && subseg == subseg_e->subseg)
7385 return subseg_e->flags;
7386
7387 return 0;
7388 }
7389
7390
7391 static void
7392 set_last_insn_flags (seg, subseg, fl, val)
7393 segT seg;
7394 subsegT subseg;
7395 unsigned fl;
7396 bfd_boolean val;
7397 {
7398 subseg_map *subseg_e;
7399
7400 for (subseg_e = sseg_map; subseg_e; subseg_e = subseg_e->next)
7401 if (seg == subseg_e->seg && subseg == subseg_e->subseg)
7402 break;
7403
7404 if (!subseg_e)
7405 {
7406 subseg_e = (subseg_map *) xmalloc (sizeof (subseg_map));
7407 memset (subseg_e, 0, sizeof (subseg_map));
7408 subseg_e->seg = seg;
7409 subseg_e->subseg = subseg;
7410 subseg_e->flags = 0;
7411 subseg_e->next = sseg_map;
7412 sseg_map = subseg_e;
7413 }
7414
7415 if (val)
7416 subseg_e->flags |= fl;
7417 else
7418 subseg_e->flags &= ~fl;
7419 }
7420
7421 \f
7422 /* Segment Lists and emit_state Stuff. */
7423
7424 /* Remove the segment from the global sections list. */
7425
7426 static void
7427 xtensa_remove_section (sec)
7428 segT sec;
7429 {
7430 /* Handle brain-dead bfd_section_list_remove macro, which
7431 expect the address of the prior section's "next" field, not
7432 just the address of the section to remove. */
7433
7434 segT *ps_next_ptr = &stdoutput->sections;
7435 while (*ps_next_ptr != sec && *ps_next_ptr != NULL)
7436 ps_next_ptr = &(*ps_next_ptr)->next;
7437
7438 assert (*ps_next_ptr != NULL);
7439
7440 bfd_section_list_remove (stdoutput, ps_next_ptr);
7441 }
7442
7443
7444 static void
7445 xtensa_insert_section (after_sec, sec)
7446 segT after_sec;
7447 segT sec;
7448 {
7449 segT *after_sec_next;
7450 if (after_sec == NULL)
7451 after_sec_next = &stdoutput->sections;
7452 else
7453 after_sec_next = &after_sec->next;
7454
7455 bfd_section_list_insert (stdoutput, after_sec_next, sec);
7456 }
7457
7458
7459 static void
7460 xtensa_move_seg_list_to_beginning (head)
7461 seg_list *head;
7462 {
7463 head = head->next;
7464 while (head)
7465 {
7466 segT literal_section = head->seg;
7467
7468 /* Move the literal section to the front of the section list. */
7469 assert (literal_section);
7470 xtensa_remove_section (literal_section);
7471 xtensa_insert_section (NULL, literal_section);
7472
7473 head = head->next;
7474 }
7475 }
7476
7477
7478 void
7479 xtensa_move_literals ()
7480 {
7481 seg_list *segment;
7482 frchainS *frchain_from, *frchain_to;
7483 fragS *search_frag, *next_frag, *last_frag, *literal_pool, *insert_after;
7484 fragS **frag_splice;
7485 emit_state state;
7486 segT dest_seg;
7487 fixS *fix, *next_fix, **fix_splice;
7488 sym_list *lit;
7489
7490 mark_literal_frags (literal_head->next);
7491 mark_literal_frags (init_literal_head->next);
7492 mark_literal_frags (fini_literal_head->next);
7493
7494 if (use_literal_section)
7495 return;
7496
7497 segment = literal_head->next;
7498 while (segment)
7499 {
7500 frchain_from = seg_info (segment->seg)->frchainP;
7501 search_frag = frchain_from->frch_root;
7502 literal_pool = NULL;
7503 frchain_to = NULL;
7504 frag_splice = &(frchain_from->frch_root);
7505
7506 while (!search_frag->tc_frag_data.literal_frag)
7507 {
7508 assert (search_frag->fr_fix == 0
7509 || search_frag->fr_type == rs_align);
7510 search_frag = search_frag->fr_next;
7511 }
7512
7513 assert (search_frag->tc_frag_data.literal_frag->fr_subtype
7514 == RELAX_LITERAL_POOL_BEGIN);
7515 xtensa_switch_section_emit_state (&state, segment->seg, 0);
7516
7517 /* Make sure that all the frags in this series are closed, and
7518 that there is at least one left over of zero-size. This
7519 prevents us from making a segment with an frchain without any
7520 frags in it. */
7521 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
7522 last_frag = frag_now;
7523 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
7524
7525 while (search_frag != frag_now)
7526 {
7527 next_frag = search_frag->fr_next;
7528
7529 /* First, move the frag out of the literal section and
7530 to the appropriate place. */
7531 if (search_frag->tc_frag_data.literal_frag)
7532 {
7533 literal_pool = search_frag->tc_frag_data.literal_frag;
7534 assert (literal_pool->fr_subtype == RELAX_LITERAL_POOL_BEGIN);
7535 /* Note that we set this fr_var to be a fix
7536 chain when we created the literal pool location
7537 as RELAX_LITERAL_POOL_BEGIN. */
7538 frchain_to = (frchainS *) literal_pool->fr_var;
7539 }
7540 insert_after = literal_pool;
7541
7542 while (insert_after->fr_next->fr_subtype != RELAX_LITERAL_POOL_END)
7543 insert_after = insert_after->fr_next;
7544
7545 dest_seg = (segT) insert_after->fr_next->fr_var;
7546
7547 *frag_splice = next_frag;
7548 search_frag->fr_next = insert_after->fr_next;
7549 insert_after->fr_next = search_frag;
7550 search_frag->tc_frag_data.lit_seg = dest_seg;
7551
7552 /* Now move any fixups associated with this frag to the
7553 right section. */
7554 fix = frchain_from->fix_root;
7555 fix_splice = &(frchain_from->fix_root);
7556 while (fix)
7557 {
7558 next_fix = fix->fx_next;
7559 if (fix->fx_frag == search_frag)
7560 {
7561 *fix_splice = next_fix;
7562 fix->fx_next = frchain_to->fix_root;
7563 frchain_to->fix_root = fix;
7564 if (frchain_to->fix_tail == NULL)
7565 frchain_to->fix_tail = fix;
7566 }
7567 else
7568 fix_splice = &(fix->fx_next);
7569 fix = next_fix;
7570 }
7571 search_frag = next_frag;
7572 }
7573
7574 if (frchain_from->fix_root != NULL)
7575 {
7576 frchain_from = seg_info (segment->seg)->frchainP;
7577 as_warn (_("fixes not all moved from %s"), segment->seg->name);
7578
7579 assert (frchain_from->fix_root == NULL);
7580 }
7581 frchain_from->fix_tail = NULL;
7582 xtensa_restore_emit_state (&state);
7583 segment = segment->next;
7584 }
7585
7586 /* Now fix up the SEGMENT value for all the literal symbols. */
7587 for (lit = literal_syms; lit; lit = lit->next)
7588 {
7589 symbolS *lit_sym = lit->sym;
7590 segT dest_seg = symbol_get_frag (lit_sym)->tc_frag_data.lit_seg;
7591 S_SET_SEGMENT (lit_sym, dest_seg);
7592 }
7593 }
7594
7595
7596 /* Walk over all the frags for segments in a list and mark them as
7597 containing literals. As clunky as this is, we can't rely on frag_var
7598 and frag_variant to get called in all situations. */
7599
7600 static void
7601 mark_literal_frags (segment)
7602 seg_list *segment;
7603 {
7604 frchainS *frchain_from;
7605 fragS *search_frag;
7606
7607 while (segment)
7608 {
7609 frchain_from = seg_info (segment->seg)->frchainP;
7610 search_frag = frchain_from->frch_root;
7611 while (search_frag)
7612 {
7613 search_frag->tc_frag_data.is_literal = TRUE;
7614 search_frag = search_frag->fr_next;
7615 }
7616 segment = segment->next;
7617 }
7618 }
7619
7620
7621 static void
7622 xtensa_reorder_seg_list (head, after)
7623 seg_list *head;
7624 segT after;
7625 {
7626 /* Move all of the sections in the section list to come
7627 after "after" in the gnu segment list. */
7628
7629 head = head->next;
7630 while (head)
7631 {
7632 segT literal_section = head->seg;
7633
7634 /* Move the literal section after "after". */
7635 assert (literal_section);
7636 if (literal_section != after)
7637 {
7638 xtensa_remove_section (literal_section);
7639 xtensa_insert_section (after, literal_section);
7640 }
7641
7642 head = head->next;
7643 }
7644 }
7645
7646
7647 /* Push all the literal segments to the end of the gnu list. */
7648
7649 void
7650 xtensa_reorder_segments ()
7651 {
7652 segT sec;
7653 segT last_sec;
7654 int old_count = 0;
7655 int new_count = 0;
7656
7657 for (sec = stdoutput->sections; sec != NULL; sec = sec->next)
7658 old_count++;
7659
7660 /* Now that we have the last section, push all the literal
7661 sections to the end. */
7662 last_sec = get_last_sec ();
7663 xtensa_reorder_seg_list (literal_head, last_sec);
7664 xtensa_reorder_seg_list (init_literal_head, last_sec);
7665 xtensa_reorder_seg_list (fini_literal_head, last_sec);
7666
7667 /* Now perform the final error check. */
7668 for (sec = stdoutput->sections; sec != NULL; sec = sec->next)
7669 new_count++;
7670 assert (new_count == old_count);
7671 }
7672
7673
7674 segT
7675 get_last_sec ()
7676 {
7677 segT last_sec = stdoutput->sections;
7678 while (last_sec->next != NULL)
7679 last_sec = last_sec->next;
7680
7681 return last_sec;
7682 }
7683
7684
7685 /* Change the emit state (seg, subseg, and frag related stuff) to the
7686 correct location. Return a emit_state which can be passed to
7687 xtensa_restore_emit_state to return to current fragment. */
7688
7689 void
7690 xtensa_switch_to_literal_fragment (result)
7691 emit_state *result;
7692 {
7693 /* When we mark a literal pool location, we want to put a frag in
7694 the literal pool that points to it. But to do that, we want to
7695 switch_to_literal_fragment. But literal sections don't have
7696 literal pools, so their location is always null, so we would
7697 recurse forever. This is kind of hacky, but it works. */
7698
7699 static bfd_boolean recursive = FALSE;
7700 fragS *pool_location = get_literal_pool_location (now_seg);
7701 bfd_boolean is_init =
7702 (now_seg && !strcmp (segment_name (now_seg), INIT_SECTION_NAME));
7703
7704 bfd_boolean is_fini =
7705 (now_seg && !strcmp (segment_name (now_seg), FINI_SECTION_NAME));
7706
7707
7708 if (pool_location == NULL
7709 && !use_literal_section
7710 && !recursive
7711 && !is_init && ! is_fini)
7712 {
7713 as_warn (_("inlining literal pool; "
7714 "specify location with .literal_position."));
7715 recursive = TRUE;
7716 xtensa_mark_literal_pool_location ();
7717 recursive = FALSE;
7718 }
7719
7720 /* Special case: If we are in the ".fini" or ".init" section, then
7721 we will ALWAYS be generating to the ".fini.literal" and
7722 ".init.literal" sections. */
7723
7724 if (is_init)
7725 {
7726 cache_literal_section (init_literal_head,
7727 default_lit_sections.init_lit_seg_name,
7728 &default_lit_sections.init_lit_seg);
7729 xtensa_switch_section_emit_state (result,
7730 default_lit_sections.init_lit_seg, 0);
7731 }
7732 else if (is_fini)
7733 {
7734 cache_literal_section (fini_literal_head,
7735 default_lit_sections.fini_lit_seg_name,
7736 &default_lit_sections.fini_lit_seg);
7737 xtensa_switch_section_emit_state (result,
7738 default_lit_sections.fini_lit_seg, 0);
7739 }
7740 else
7741 {
7742 cache_literal_section (literal_head,
7743 default_lit_sections.lit_seg_name,
7744 &default_lit_sections.lit_seg);
7745 xtensa_switch_section_emit_state (result,
7746 default_lit_sections.lit_seg, 0);
7747 }
7748
7749 if (!use_literal_section &&
7750 !is_init && !is_fini &&
7751 get_literal_pool_location (now_seg) != pool_location)
7752 {
7753 /* Close whatever frag is there. */
7754 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
7755 frag_now->tc_frag_data.literal_frag = pool_location;
7756 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
7757 }
7758
7759 /* Do a 4 byte align here. */
7760 frag_align (2, 0, 0);
7761 }
7762
7763
7764 /* Call this function before emitting data into the literal section.
7765 This is a helper function for xtensa_switch_to_literal_fragment.
7766 This is similar to a .section new_now_seg subseg. */
7767
7768 void
7769 xtensa_switch_section_emit_state (state, new_now_seg, new_now_subseg)
7770 emit_state *state;
7771 segT new_now_seg;
7772 subsegT new_now_subseg;
7773 {
7774 state->name = now_seg->name;
7775 state->now_seg = now_seg;
7776 state->now_subseg = now_subseg;
7777 state->generating_literals = generating_literals;
7778 generating_literals++;
7779 subseg_new (segment_name (new_now_seg), new_now_subseg);
7780 }
7781
7782
7783 /* Use to restore the emitting into the normal place. */
7784
7785 void
7786 xtensa_restore_emit_state (state)
7787 emit_state *state;
7788 {
7789 generating_literals = state->generating_literals;
7790 subseg_new (state->name, state->now_subseg);
7791 }
7792
7793
7794 /* Get a segment of a given name. If the segment is already
7795 present, return it; otherwise, create a new one. */
7796
7797 static void
7798 cache_literal_section (head, name, seg)
7799 seg_list *head;
7800 const char *name;
7801 segT *seg;
7802 {
7803 segT current_section = now_seg;
7804 int current_subsec = now_subseg;
7805
7806 if (*seg != 0)
7807 return;
7808 *seg = retrieve_literal_seg (head, name);
7809 subseg_set (current_section, current_subsec);
7810 }
7811
7812
7813 /* Get a segment of a given name. If the segment is already
7814 present, return it; otherwise, create a new one. */
7815
7816 static segT
7817 retrieve_literal_seg (head, name)
7818 seg_list *head;
7819 const char *name;
7820 {
7821 segT ret = 0;
7822
7823 assert (head);
7824
7825 ret = seg_present (name);
7826 if (!ret)
7827 {
7828 ret = subseg_new (name, (subsegT) 0);
7829 add_seg_list (head, ret);
7830 bfd_set_section_flags (stdoutput, ret, SEC_HAS_CONTENTS |
7831 SEC_READONLY | SEC_ALLOC | SEC_LOAD | SEC_CODE);
7832 bfd_set_section_alignment (stdoutput, ret, 2);
7833 }
7834
7835 return ret;
7836 }
7837
7838
7839 /* Return a segment of a given name if it is present. */
7840
7841 static segT
7842 seg_present (name)
7843 const char *name;
7844 {
7845 segT seg;
7846 seg = stdoutput->sections;
7847
7848 while (seg)
7849 {
7850 if (!strcmp (segment_name (seg), name))
7851 return seg;
7852 seg = seg->next;
7853 }
7854
7855 return 0;
7856 }
7857
7858
7859 /* Add a segment to a segment list. */
7860
7861 static void
7862 add_seg_list (head, seg)
7863 seg_list *head;
7864 segT seg;
7865 {
7866 seg_list *n;
7867 n = (seg_list *) xmalloc (sizeof (seg_list));
7868 assert (n);
7869
7870 n->seg = seg;
7871 n->next = head->next;
7872 head->next = n;
7873 }
7874
7875 \f
7876 /* Set up Property Tables after Relaxation. */
7877
7878 #define XTENSA_INSN_SEC_NAME ".xt.insn"
7879 #define XTENSA_LIT_SEC_NAME ".xt.lit"
7880
7881 void
7882 xtensa_post_relax_hook ()
7883 {
7884 xtensa_move_seg_list_to_beginning (literal_head);
7885 xtensa_move_seg_list_to_beginning (init_literal_head);
7886 xtensa_move_seg_list_to_beginning (fini_literal_head);
7887
7888 xtensa_create_property_segments (get_frag_is_insn,
7889 XTENSA_INSN_SEC_NAME,
7890 xt_insn_sec);
7891 xtensa_create_property_segments (get_frag_is_literal,
7892 XTENSA_LIT_SEC_NAME,
7893 xt_literal_sec);
7894 }
7895
7896
7897 static bfd_boolean
7898 get_frag_is_literal (fragP)
7899 const fragS *fragP;
7900 {
7901 assert (fragP != NULL);
7902 return (fragP->tc_frag_data.is_literal);
7903 }
7904
7905
7906 static bfd_boolean
7907 get_frag_is_insn (fragP)
7908 const fragS *fragP;
7909 {
7910 assert (fragP != NULL);
7911 return (fragP->tc_frag_data.is_insn);
7912 }
7913
7914
7915 static void
7916 xtensa_create_property_segments (property_function, section_name_base,
7917 sec_type)
7918 frag_predicate property_function;
7919 const char * section_name_base;
7920 xt_section_type sec_type;
7921 {
7922 segT *seclist;
7923
7924 /* Walk over all of the current segments.
7925 Walk over each fragment
7926 For each fragment that has instructions
7927 Build an instruction record (append where possible). */
7928
7929 for (seclist = &stdoutput->sections;
7930 seclist && *seclist;
7931 seclist = &(*seclist)->next)
7932 {
7933 segT sec = *seclist;
7934 if (section_has_property (sec, property_function))
7935 {
7936 char *property_section_name =
7937 xtensa_get_property_section_name (sec, section_name_base);
7938 segT insn_sec = retrieve_xtensa_section (property_section_name);
7939 segment_info_type *xt_seg_info = retrieve_segment_info (insn_sec);
7940 xtensa_block_info **xt_blocks =
7941 &xt_seg_info->tc_segment_info_data.blocks[sec_type];
7942 /* Walk over all of the frchains here and add new sections. */
7943 add_xt_block_frags (sec, insn_sec, xt_blocks, property_function);
7944 }
7945 }
7946
7947 /* Now we fill them out.... */
7948
7949 for (seclist = &stdoutput->sections;
7950 seclist && *seclist;
7951 seclist = &(*seclist)->next)
7952 {
7953 segment_info_type *seginfo;
7954 xtensa_block_info *block;
7955 segT sec = *seclist;
7956 seginfo = seg_info (sec);
7957 block = seginfo->tc_segment_info_data.blocks[sec_type];
7958
7959 if (block)
7960 {
7961 xtensa_block_info *cur_block;
7962 /* This is a section with some data. */
7963 size_t num_recs = 0;
7964 size_t rec_size;
7965
7966 for (cur_block = block; cur_block; cur_block = cur_block->next)
7967 num_recs++;
7968
7969 rec_size = num_recs * 8;
7970 bfd_set_section_size (stdoutput, sec, rec_size);
7971
7972 /* In order to make this work with the assembler, we have to
7973 build some frags and then build the "fixups" for it. It
7974 would be easier to just set the contents then set the
7975 arlents. */
7976
7977 if (num_recs)
7978 {
7979 /* Allocate a fragment and leak it. */
7980 fragS *fragP;
7981 size_t frag_size;
7982 fixS *fixes;
7983 frchainS *frchainP;
7984 size_t i;
7985 char *frag_data;
7986
7987 frag_size = sizeof (fragS) + rec_size;
7988 fragP = (fragS *) xmalloc (frag_size);
7989
7990 memset (fragP, 0, frag_size);
7991 fragP->fr_address = 0;
7992 fragP->fr_next = NULL;
7993 fragP->fr_fix = rec_size;
7994 fragP->fr_var = 0;
7995 fragP->fr_type = rs_fill;
7996 /* the rest are zeros */
7997
7998 frchainP = seginfo->frchainP;
7999 frchainP->frch_root = fragP;
8000 frchainP->frch_last = fragP;
8001
8002 fixes = (fixS *) xmalloc (sizeof (fixS) * num_recs);
8003 memset (fixes, 0, sizeof (fixS) * num_recs);
8004
8005 seginfo->fix_root = fixes;
8006 seginfo->fix_tail = &fixes[num_recs - 1];
8007 cur_block = block;
8008 frag_data = &fragP->fr_literal[0];
8009 for (i = 0; i < num_recs; i++)
8010 {
8011 fixS *fix = &fixes[i];
8012 assert (cur_block);
8013
8014 /* Write the fixup. */
8015 if (i != num_recs - 1)
8016 fix->fx_next = &fixes[i + 1];
8017 else
8018 fix->fx_next = NULL;
8019 fix->fx_size = 4;
8020 fix->fx_done = 0;
8021 fix->fx_frag = fragP;
8022 fix->fx_where = i * 8;
8023 fix->fx_addsy = section_symbol (cur_block->sec);
8024 fix->fx_offset = cur_block->offset;
8025 fix->fx_r_type = BFD_RELOC_32;
8026 fix->fx_file = "Internal Assembly";
8027 fix->fx_line = 0;
8028
8029 /* Write the length. */
8030 md_number_to_chars (&frag_data[4 + 8 * i],
8031 cur_block->size, 4);
8032 cur_block = cur_block->next;
8033 }
8034 }
8035 }
8036 }
8037 }
8038
8039
8040 segment_info_type *
8041 retrieve_segment_info (seg)
8042 segT seg;
8043 {
8044 segment_info_type *seginfo;
8045 seginfo = (segment_info_type *) bfd_get_section_userdata (stdoutput, seg);
8046 if (!seginfo)
8047 {
8048 frchainS *frchainP;
8049
8050 seginfo = (segment_info_type *) xmalloc (sizeof (*seginfo));
8051 memset ((PTR) seginfo, 0, sizeof (*seginfo));
8052 seginfo->fix_root = NULL;
8053 seginfo->fix_tail = NULL;
8054 seginfo->bfd_section = seg;
8055 seginfo->sym = 0;
8056 /* We will not be dealing with these, only our special ones. */
8057 #if 0
8058 if (seg == bfd_abs_section_ptr)
8059 abs_seg_info = seginfo;
8060 else if (seg == bfd_und_section_ptr)
8061 und_seg_info = seginfo;
8062 else
8063 #endif
8064 bfd_set_section_userdata (stdoutput, seg, (PTR) seginfo);
8065 #if 0
8066 seg_fix_rootP = &segment_info[seg].fix_root;
8067 seg_fix_tailP = &segment_info[seg].fix_tail;
8068 #endif
8069
8070 frchainP = (frchainS *) xmalloc (sizeof (frchainS));
8071 frchainP->frch_root = NULL;
8072 frchainP->frch_last = NULL;
8073 frchainP->frch_next = NULL;
8074 frchainP->frch_seg = seg;
8075 frchainP->frch_subseg = 0;
8076 frchainP->fix_root = NULL;
8077 frchainP->fix_tail = NULL;
8078 /* Do not init the objstack. */
8079 /* obstack_begin (&frchainP->frch_obstack, chunksize); */
8080 /* frchainP->frch_frag_now = fragP; */
8081 frchainP->frch_frag_now = NULL;
8082
8083 seginfo->frchainP = frchainP;
8084 }
8085
8086 return seginfo;
8087 }
8088
8089
8090 segT
8091 retrieve_xtensa_section (sec_name)
8092 char *sec_name;
8093 {
8094 bfd *abfd = stdoutput;
8095 flagword flags, out_flags, link_once_flags;
8096 segT s;
8097
8098 flags = bfd_get_section_flags (abfd, now_seg);
8099 link_once_flags = (flags & SEC_LINK_ONCE);
8100 if (link_once_flags)
8101 link_once_flags |= (flags & SEC_LINK_DUPLICATES);
8102 out_flags = (SEC_RELOC | SEC_HAS_CONTENTS | SEC_READONLY | link_once_flags);
8103
8104 s = bfd_make_section_old_way (abfd, sec_name);
8105 if (s == NULL)
8106 as_bad (_("could not create section %s"), sec_name);
8107 if (!bfd_set_section_flags (abfd, s, out_flags))
8108 as_bad (_("invalid flag combination on section %s"), sec_name);
8109
8110 return s;
8111 }
8112
8113
8114 bfd_boolean
8115 section_has_property (sec, property_function)
8116 segT sec;
8117 frag_predicate property_function;
8118 {
8119 segment_info_type *seginfo = seg_info (sec);
8120 fragS *fragP;
8121
8122 if (seginfo && seginfo->frchainP)
8123 {
8124 for (fragP = seginfo->frchainP->frch_root; fragP; fragP = fragP->fr_next)
8125 {
8126 if (property_function (fragP)
8127 && (fragP->fr_type != rs_fill || fragP->fr_fix != 0))
8128 return TRUE;
8129 }
8130 }
8131 return FALSE;
8132 }
8133
8134
8135 /* Two types of block sections exist right now: literal and insns. */
8136
8137 void
8138 add_xt_block_frags (sec, xt_block_sec, xt_block, property_function)
8139 segT sec;
8140 segT xt_block_sec;
8141 xtensa_block_info **xt_block;
8142 frag_predicate property_function;
8143 {
8144 segment_info_type *seg_info;
8145 segment_info_type *xt_seg_info;
8146 bfd_vma seg_offset;
8147 fragS *fragP;
8148
8149 xt_seg_info = retrieve_segment_info (xt_block_sec);
8150 seg_info = retrieve_segment_info (sec);
8151
8152 /* Build it if needed. */
8153 while (*xt_block != NULL)
8154 xt_block = &(*xt_block)->next;
8155 /* We are either at NULL at the beginning or at the end. */
8156
8157 /* Walk through the frags. */
8158 seg_offset = 0;
8159
8160 if (seg_info->frchainP)
8161 {
8162 for (fragP = seg_info->frchainP->frch_root;
8163 fragP;
8164 fragP = fragP->fr_next)
8165 {
8166 if (property_function (fragP)
8167 && (fragP->fr_type != rs_fill || fragP->fr_fix != 0))
8168 {
8169 if (*xt_block != NULL)
8170 {
8171 if ((*xt_block)->offset + (*xt_block)->size
8172 == fragP->fr_address)
8173 (*xt_block)->size += fragP->fr_fix;
8174 else
8175 xt_block = &((*xt_block)->next);
8176 }
8177 if (*xt_block == NULL)
8178 {
8179 xtensa_block_info *new_block = (xtensa_block_info *)
8180 xmalloc (sizeof (xtensa_block_info));
8181 new_block->sec = sec;
8182 new_block->offset = fragP->fr_address;
8183 new_block->size = fragP->fr_fix;
8184 new_block->next = NULL;
8185 *xt_block = new_block;
8186 }
8187 }
8188 }
8189 }
8190 }
8191
8192 \f
8193 /* Instruction Stack Functions (from "xtensa-istack.h"). */
8194
8195 void
8196 istack_init (stack)
8197 IStack *stack;
8198 {
8199 memset (stack, 0, sizeof (IStack));
8200 stack->ninsn = 0;
8201 }
8202
8203
8204 bfd_boolean
8205 istack_empty (stack)
8206 IStack *stack;
8207 {
8208 return (stack->ninsn == 0);
8209 }
8210
8211
8212 bfd_boolean
8213 istack_full (stack)
8214 IStack *stack;
8215 {
8216 return (stack->ninsn == MAX_ISTACK);
8217 }
8218
8219
8220 /* Return a pointer to the top IStack entry.
8221 It is an error to call this if istack_empty () is true. */
8222
8223 TInsn *
8224 istack_top (stack)
8225 IStack *stack;
8226 {
8227 int rec = stack->ninsn - 1;
8228 assert (!istack_empty (stack));
8229 return &stack->insn[rec];
8230 }
8231
8232
8233 /* Add a new TInsn to an IStack.
8234 It is an error to call this if istack_full () is true. */
8235
8236 void
8237 istack_push (stack, insn)
8238 IStack *stack;
8239 TInsn *insn;
8240 {
8241 int rec = stack->ninsn;
8242 assert (!istack_full (stack));
8243 tinsn_copy (&stack->insn[rec], insn);
8244 stack->ninsn++;
8245 }
8246
8247
8248 /* Clear space for the next TInsn on the IStack and return a pointer
8249 to it. It is an error to call this if istack_full () is true. */
8250
8251 TInsn *
8252 istack_push_space (stack)
8253 IStack *stack;
8254 {
8255 int rec = stack->ninsn;
8256 TInsn *insn;
8257 assert (!istack_full (stack));
8258 insn = &stack->insn[rec];
8259 memset (insn, 0, sizeof (TInsn));
8260 stack->ninsn++;
8261 return insn;
8262 }
8263
8264
8265 /* Remove the last pushed instruction. It is an error to call this if
8266 istack_empty () returns true. */
8267
8268 void
8269 istack_pop (stack)
8270 IStack *stack;
8271 {
8272 int rec = stack->ninsn - 1;
8273 assert (!istack_empty (stack));
8274 stack->ninsn--;
8275 memset (&stack->insn[rec], 0, sizeof (TInsn));
8276 }
8277
8278 \f
8279 /* TInsn functions. */
8280
8281 void
8282 tinsn_init (dst)
8283 TInsn *dst;
8284 {
8285 memset (dst, 0, sizeof (TInsn));
8286 }
8287
8288
8289 void
8290 tinsn_copy (dst, src)
8291 TInsn *dst;
8292 const TInsn *src;
8293 {
8294 tinsn_init (dst);
8295 memcpy (dst, src, sizeof (TInsn));
8296 }
8297
8298
8299 /* Get the ``num''th token of the TInsn.
8300 It is illegal to call this if num > insn->ntoks. */
8301
8302 expressionS *
8303 tinsn_get_tok (insn, num)
8304 TInsn *insn;
8305 int num;
8306 {
8307 assert (num < insn->ntok);
8308 return &insn->tok[num];
8309 }
8310
8311
8312 /* Return true if ANY of the operands in the insn are symbolic. */
8313
8314 static bfd_boolean
8315 tinsn_has_symbolic_operands (insn)
8316 const TInsn *insn;
8317 {
8318 int i;
8319 int n = insn->ntok;
8320
8321 assert (insn->insn_type == ITYPE_INSN);
8322
8323 for (i = 0; i < n; ++i)
8324 {
8325 switch (insn->tok[i].X_op)
8326 {
8327 case O_register:
8328 case O_constant:
8329 break;
8330 default:
8331 return TRUE;
8332 }
8333 }
8334 return FALSE;
8335 }
8336
8337
8338 bfd_boolean
8339 tinsn_has_invalid_symbolic_operands (insn)
8340 const TInsn *insn;
8341 {
8342 int i;
8343 int n = insn->ntok;
8344
8345 assert (insn->insn_type == ITYPE_INSN);
8346
8347 for (i = 0; i < n; ++i)
8348 {
8349 switch (insn->tok[i].X_op)
8350 {
8351 case O_register:
8352 case O_constant:
8353 break;
8354 default:
8355 if (i == get_relaxable_immed (insn->opcode))
8356 break;
8357 as_bad (_("invalid symbolic operand %d on '%s'"),
8358 i, xtensa_opcode_name (xtensa_default_isa, insn->opcode));
8359 return TRUE;
8360 }
8361 }
8362 return FALSE;
8363 }
8364
8365
8366 /* For assembly code with complex expressions (e.g. subtraction),
8367 we have to build them in the literal pool so that
8368 their results are calculated correctly after relaxation.
8369 The relaxation only handles expressions that
8370 boil down to SYMBOL + OFFSET. */
8371
8372 static bfd_boolean
8373 tinsn_has_complex_operands (insn)
8374 const TInsn *insn;
8375 {
8376 int i;
8377 int n = insn->ntok;
8378 assert (insn->insn_type == ITYPE_INSN);
8379 for (i = 0; i < n; ++i)
8380 {
8381 switch (insn->tok[i].X_op)
8382 {
8383 case O_register:
8384 case O_constant:
8385 case O_symbol:
8386 break;
8387 default:
8388 return TRUE;
8389 }
8390 }
8391 return FALSE;
8392 }
8393
8394
8395 /* Convert the constant operands in the t_insn to insnbuf.
8396 Return true if there is a symbol in the immediate field.
8397
8398 Before this is called,
8399 1) the number of operands are correct
8400 2) the t_insn is a ITYPE_INSN
8401 3) ONLY the relaxable_ is built
8402 4) All operands are O_constant, O_symbol. All constants fit
8403 The return value tells whether there are any remaining O_symbols. */
8404
8405 static bfd_boolean
8406 tinsn_to_insnbuf (t_insn, insnbuf)
8407 TInsn *t_insn;
8408 xtensa_insnbuf insnbuf;
8409 {
8410 xtensa_isa isa = xtensa_default_isa;
8411 xtensa_opcode opcode = t_insn->opcode;
8412 bfd_boolean has_fixup = FALSE;
8413 int noperands = xtensa_num_operands (isa, opcode);
8414 int i;
8415 uint32 opnd_value;
8416 char *file_name;
8417 int line;
8418
8419 assert (t_insn->insn_type == ITYPE_INSN);
8420 if (noperands != t_insn->ntok)
8421 as_fatal (_("operand number mismatch"));
8422
8423 xtensa_encode_insn (isa, opcode, insnbuf);
8424
8425 for (i = 0; i < noperands; ++i)
8426 {
8427 expressionS *expr = &t_insn->tok[i];
8428 xtensa_operand operand = xtensa_get_operand (isa, opcode, i);
8429 switch (expr->X_op)
8430 {
8431 case O_register:
8432 /* The register number has already been checked in
8433 expression_maybe_register, so we don't need to check here. */
8434 opnd_value = expr->X_add_number;
8435 (void) xtensa_operand_encode (operand, &opnd_value);
8436 xtensa_operand_set_field (operand, insnbuf, opnd_value);
8437 break;
8438
8439 case O_constant:
8440 as_where (&file_name, &line);
8441 /* It is a constant and we called this function,
8442 then we have to try to fit it. */
8443 xtensa_insnbuf_set_operand (insnbuf, opcode, operand,
8444 expr->X_add_number, file_name, line);
8445 break;
8446
8447 case O_symbol:
8448 default:
8449 has_fixup = TRUE;
8450 break;
8451 }
8452 }
8453 return has_fixup;
8454 }
8455
8456
8457 /* Check the instruction arguments. Return true on failure. */
8458
8459 bfd_boolean
8460 tinsn_check_arguments (insn)
8461 const TInsn *insn;
8462 {
8463 xtensa_isa isa = xtensa_default_isa;
8464 xtensa_opcode opcode = insn->opcode;
8465
8466 if (opcode == XTENSA_UNDEFINED)
8467 {
8468 as_bad (_("invalid opcode"));
8469 return TRUE;
8470 }
8471
8472 if (xtensa_num_operands (isa, opcode) > insn->ntok)
8473 {
8474 as_bad (_("too few operands"));
8475 return TRUE;
8476 }
8477
8478 if (xtensa_num_operands (isa, opcode) < insn->ntok)
8479 {
8480 as_bad (_("too many operands"));
8481 return TRUE;
8482 }
8483 return FALSE;
8484 }
8485
8486
8487 /* Load an instruction from its encoded form. */
8488
8489 static void
8490 tinsn_from_chars (t_insn, f)
8491 TInsn *t_insn;
8492 char *f;
8493 {
8494 static xtensa_insnbuf insnbuf = NULL;
8495 int i;
8496 xtensa_opcode opcode;
8497 xtensa_isa isa = xtensa_default_isa;
8498
8499 if (!insnbuf)
8500 insnbuf = xtensa_insnbuf_alloc (isa);
8501
8502 xtensa_insnbuf_from_chars (isa, insnbuf, f);
8503 opcode = xtensa_decode_insn (isa, insnbuf);
8504
8505 /* Find the immed. */
8506 tinsn_init (t_insn);
8507 t_insn->insn_type = ITYPE_INSN;
8508 t_insn->is_specific_opcode = FALSE; /* Must not be specific. */
8509 t_insn->opcode = opcode;
8510 t_insn->ntok = xtensa_num_operands (isa, opcode);
8511 for (i = 0; i < t_insn->ntok; i++)
8512 {
8513 set_expr_const (&t_insn->tok[i],
8514 xtensa_insnbuf_get_operand (insnbuf, opcode, i));
8515 }
8516 }
8517
8518
8519 /* Read the value of the relaxable immed from the fr_symbol and fr_offset. */
8520
8521 static void
8522 tinsn_immed_from_frag (t_insn, fragP)
8523 TInsn *t_insn;
8524 fragS *fragP;
8525 {
8526 xtensa_opcode opcode = t_insn->opcode;
8527 int opnum;
8528
8529 if (fragP->fr_symbol)
8530 {
8531 opnum = get_relaxable_immed (opcode);
8532 set_expr_symbol_offset (&t_insn->tok[opnum],
8533 fragP->fr_symbol, fragP->fr_offset);
8534 }
8535 }
8536
8537
8538 static int
8539 get_num_stack_text_bytes (istack)
8540 IStack *istack;
8541 {
8542 int i;
8543 int text_bytes = 0;
8544
8545 for (i = 0; i < istack->ninsn; i++)
8546 {
8547 TInsn *t_insn = &istack->insn[i];
8548 if (t_insn->insn_type == ITYPE_INSN)
8549 text_bytes += xg_get_insn_size (t_insn);
8550 }
8551 return text_bytes;
8552 }
8553
8554
8555 static int
8556 get_num_stack_literal_bytes (istack)
8557 IStack *istack;
8558 {
8559 int i;
8560 int lit_bytes = 0;
8561
8562 for (i = 0; i < istack->ninsn; i++)
8563 {
8564 TInsn *t_insn = &istack->insn[i];
8565
8566 if (t_insn->insn_type == ITYPE_LITERAL && t_insn->ntok == 1)
8567 lit_bytes += 4;
8568 }
8569 return lit_bytes;
8570 }
8571
8572 \f
8573 /* Expression utilities. */
8574
8575 /* Return true if the expression is an integer constant. */
8576
8577 bfd_boolean
8578 expr_is_const (s)
8579 const expressionS *s;
8580 {
8581 return (s->X_op == O_constant);
8582 }
8583
8584
8585 /* Get the expression constant.
8586 Calling this is illegal if expr_is_const () returns true. */
8587
8588 offsetT
8589 get_expr_const (s)
8590 const expressionS *s;
8591 {
8592 assert (expr_is_const (s));
8593 return s->X_add_number;
8594 }
8595
8596
8597 /* Set the expression to a constant value. */
8598
8599 void
8600 set_expr_const (s, val)
8601 expressionS *s;
8602 offsetT val;
8603 {
8604 s->X_op = O_constant;
8605 s->X_add_number = val;
8606 s->X_add_symbol = NULL;
8607 s->X_op_symbol = NULL;
8608 }
8609
8610
8611 /* Set the expression to a symbol + constant offset. */
8612
8613 void
8614 set_expr_symbol_offset (s, sym, offset)
8615 expressionS *s;
8616 symbolS *sym;
8617 offsetT offset;
8618 {
8619 s->X_op = O_symbol;
8620 s->X_add_symbol = sym;
8621 s->X_op_symbol = NULL; /* unused */
8622 s->X_add_number = offset;
8623 }
8624
8625
8626 bfd_boolean
8627 expr_is_equal (s1, s2)
8628 expressionS *s1;
8629 expressionS *s2;
8630 {
8631 if (s1->X_op != s2->X_op)
8632 return FALSE;
8633 if (s1->X_add_symbol != s2->X_add_symbol)
8634 return FALSE;
8635 if (s1->X_op_symbol != s2->X_op_symbol)
8636 return FALSE;
8637 if (s1->X_add_number != s2->X_add_number)
8638 return FALSE;
8639 return TRUE;
8640 }
8641
8642
8643 static void
8644 copy_expr (dst, src)
8645 expressionS *dst;
8646 const expressionS *src;
8647 {
8648 memcpy (dst, src, sizeof (expressionS));
8649 }
8650
8651 \f
8652 /* Support for Tensilica's "--rename-section" option. */
8653
8654 #ifdef XTENSA_SECTION_RENAME
8655
8656 struct rename_section_struct
8657 {
8658 char *old_name;
8659 char *new_name;
8660 struct rename_section_struct *next;
8661 };
8662
8663 static struct rename_section_struct *section_rename;
8664
8665
8666 /* Parse the string oldname=new_name:oldname2=new_name2
8667 and call add_section_rename. */
8668
8669 void
8670 build_section_rename (arg)
8671 const char *arg;
8672 {
8673 char *this_arg = NULL;
8674 char *next_arg = NULL;
8675
8676 for (this_arg = strdup (arg); this_arg != NULL; this_arg = next_arg)
8677 {
8678 if (this_arg)
8679 {
8680 next_arg = strchr (this_arg, ':');
8681 if (next_arg)
8682 {
8683 *next_arg = '\0';
8684 next_arg++;
8685 }
8686 }
8687 {
8688 char *old_name = this_arg;
8689 char *new_name = strchr (this_arg, '=');
8690
8691 if (*old_name == '\0')
8692 {
8693 as_warn (_("ignoring extra '-rename-section' delimiter ':'"));
8694 continue;
8695 }
8696 if (!new_name || new_name[1] == '\0')
8697 {
8698 as_warn (_("ignoring invalid '-rename-section' "
8699 "specification: '%s'"), old_name);
8700 continue;
8701 }
8702 *new_name = '\0';
8703 new_name++;
8704 add_section_rename (old_name, new_name);
8705 }
8706 }
8707 }
8708
8709
8710 static void
8711 add_section_rename (old_name, new_name)
8712 char *old_name;
8713 char *new_name;
8714 {
8715 struct rename_section_struct *r = section_rename;
8716
8717 /* Check for invalid section renaming. */
8718 for (r = section_rename; r != NULL; r = r->next)
8719 {
8720 if (strcmp (r->old_name, old_name) == 0)
8721 as_bad (_("section %s renamed multiple times"), old_name);
8722 if (strcmp (r->new_name, new_name) == 0)
8723 as_bad (_("multiple sections remapped to output section %s"),
8724 new_name);
8725 }
8726
8727 /* Now add it. */
8728 r = (struct rename_section_struct *)
8729 xmalloc (sizeof (struct rename_section_struct));
8730 r->old_name = strdup (old_name);
8731 r->new_name = strdup (new_name);
8732 r->next = section_rename;
8733 section_rename = r;
8734 }
8735
8736
8737 const char *
8738 xtensa_section_rename (name)
8739 const char *name;
8740 {
8741 struct rename_section_struct *r = section_rename;
8742
8743 for (r = section_rename; r != NULL; r = r->next)
8744 if (strcmp (r->old_name, name) == 0)
8745 return r->new_name;
8746
8747 return name;
8748 }
8749
8750 #endif /* XTENSA_SECTION_RENAME */
This page took 0.211244 seconds and 5 git commands to generate.