30b48c73ce630b3768fa7eb12f8517ca56e13408
[deliverable/binutils-gdb.git] / gas / config / xtensa-relax.c
1 /* Table of relaxations for Xtensa assembly.
2 Copyright 2003, 2004, 2005 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to
18 the Free Software Foundation, 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 /* This file contains the code for generating runtime data structures
22 for relaxation pattern matching from statically specified strings.
23 Each action contains an instruction pattern to match and
24 preconditions for the match as well as an expansion if the pattern
25 matches. The preconditions can specify that two operands are the
26 same or an operand is a specific constant or register. The expansion
27 uses the bound variables from the pattern to specify that specific
28 operands from the pattern should be used in the result.
29
30 The code determines whether the condition applies to a constant or
31 a register depending on the type of the operand. You may get
32 unexpected results if you don't match the rule against the operand
33 type correctly.
34
35 The patterns match a language like:
36
37 INSN_PATTERN ::= INSN_TEMPL ( '|' PRECOND )* ( '?' OPTIONPRED )*
38 INSN_TEMPL ::= OPCODE ' ' [ OPERAND (',' OPERAND)* ]
39 OPCODE ::= id
40 OPERAND ::= CONSTANT | VARIABLE | SPECIALFN '(' VARIABLE ')'
41 SPECIALFN ::= 'HI24S' | 'F32MINUS' | 'LOW8'
42 | 'HI16' | 'LOW16'
43 VARIABLE ::= '%' id
44 PRECOND ::= OPERAND CMPOP OPERAND
45 CMPOP ::= '==' | '!='
46 OPTIONPRED ::= OPTIONNAME ('+' OPTIONNAME)
47 OPTIONNAME ::= '"' id '"'
48
49 The replacement language
50 INSN_REPL ::= INSN_LABEL_LIT ( ';' INSN_LABEL_LIT )*
51 INSN_LABEL_LIT ::= INSN_TEMPL
52 | 'LABEL' num
53 | 'LITERAL' num ' ' VARIABLE
54
55 The operands in a PRECOND must be constants or variables bound by
56 the INSN_PATTERN.
57
58 The configuration options define a predicate on the availability of
59 options which must be TRUE for this rule to be valid. Examples are
60 requiring "density" for replacements with density instructions,
61 requiring "const16" for replacements that require const16
62 instructions, etc. The names are interpreted by the assembler to a
63 truth value for a particular frag.
64
65 The operands in the INSN_REPL must be constants, variables bound in
66 the associated INSN_PATTERN, special variables that are bound in
67 the INSN_REPL by LABEL or LITERAL definitions, or special value
68 manipulation functions.
69
70 A simple example of a replacement pattern:
71 {"movi.n %as,%imm", "movi %as,%imm"} would convert the narrow
72 movi.n instruction to the wide movi instruction.
73
74 A more complex example of a branch around:
75 {"beqz %as,%label", "bnez %as,%LABEL0;j %label;LABEL0"}
76 would convert a branch to a negated branch to the following instruction
77 with a jump to the original label.
78
79 An Xtensa-specific example that generates a literal:
80 {"movi %at,%imm", "LITERAL0 %imm; l32r %at,%LITERAL0"}
81 will convert a movi instruction to an l32r of a literal
82 literal defined in the literal pool.
83
84 Even more complex is a conversion of a load with immediate offset
85 to a load of a freshly generated literal, an explicit add and
86 a load with 0 offset. This transformation is only valid, though
87 when the first and second operands are not the same as specified
88 by the "| %at!=%as" precondition clause.
89 {"l32i %at,%as,%imm | %at!=%as",
90 "LITERAL0 %imm; l32r %at,%LITERAL0; add %at,%at,%as; l32i %at,%at,0"}
91
92 There is special case for loop instructions here, but because we do
93 not currently have the ability to represent the difference of two
94 symbols, the conversion requires special code in the assembler to
95 write the operands of the addi/addmi pair representing the
96 difference of the old and new loop end label. */
97
98 #include "as.h"
99 #include "xtensa-isa.h"
100 #include "xtensa-relax.h"
101 #include <stddef.h>
102 #include "xtensa-config.h"
103
104 #ifndef XCHAL_HAVE_WIDE_BRANCHES
105 #define XCHAL_HAVE_WIDE_BRANCHES 0
106 #endif
107
108 /* Imported from bfd. */
109 extern xtensa_isa xtensa_default_isa;
110
111 /* The opname_list is a small list of names that we use for opcode and
112 operand variable names to simplify ownership of these commonly used
113 strings. Strings entered in the table can be compared by pointer
114 equality. */
115
116 typedef struct opname_list_struct opname_list;
117 typedef opname_list opname_e;
118
119 struct opname_list_struct
120 {
121 char *opname;
122 opname_list *next;
123 };
124
125 static opname_list *local_opnames = NULL;
126
127
128 /* The "opname_map" and its element structure "opname_map_e" are used
129 for binding an operand number to a name or a constant. */
130
131 typedef struct opname_map_e_struct opname_map_e;
132 typedef struct opname_map_struct opname_map;
133
134 struct opname_map_e_struct
135 {
136 const char *operand_name; /* If null, then use constant_value. */
137 int operand_num;
138 unsigned constant_value;
139 opname_map_e *next;
140 };
141
142 struct opname_map_struct
143 {
144 opname_map_e *head;
145 opname_map_e **tail;
146 };
147
148 /* The "precond_list" and its element structure "precond_e" represents
149 explicit preconditions comparing operand variables and constants.
150 In the "precond_e" structure, a variable is identified by the name
151 in the "opname" field. If that field is NULL, then the operand
152 is the constant in field "opval". */
153
154 typedef struct precond_e_struct precond_e;
155 typedef struct precond_list_struct precond_list;
156
157 struct precond_e_struct
158 {
159 const char *opname1;
160 unsigned opval1;
161 CmpOp cmpop;
162 const char *opname2;
163 unsigned opval2;
164 precond_e *next;
165 };
166
167 struct precond_list_struct
168 {
169 precond_e *head;
170 precond_e **tail;
171 };
172
173
174 /* The insn_templ represents the INSN_TEMPL instruction template. It
175 is an opcode name with a list of operands. These are used for
176 instruction patterns and replacement patterns. */
177
178 typedef struct insn_templ_struct insn_templ;
179 struct insn_templ_struct
180 {
181 const char *opcode_name;
182 opname_map operand_map;
183 };
184
185
186 /* The insn_pattern represents an INSN_PATTERN instruction pattern.
187 It is an instruction template with preconditions that specify when
188 it actually matches a given instruction. */
189
190 typedef struct insn_pattern_struct insn_pattern;
191 struct insn_pattern_struct
192 {
193 insn_templ t;
194 precond_list preconds;
195 ReqOptionList *options;
196 };
197
198
199 /* The "insn_repl" and associated element structure "insn_repl_e"
200 instruction replacement list is a list of
201 instructions/LITERALS/LABELS with constant operands or operands
202 with names bound to the operand names in the associated pattern. */
203
204 typedef struct insn_repl_e_struct insn_repl_e;
205 struct insn_repl_e_struct
206 {
207 insn_templ t;
208 insn_repl_e *next;
209 };
210
211 typedef struct insn_repl_struct insn_repl;
212 struct insn_repl_struct
213 {
214 insn_repl_e *head;
215 insn_repl_e **tail;
216 };
217
218
219 /* The split_rec is a vector of allocated char * pointers. */
220
221 typedef struct split_rec_struct split_rec;
222 struct split_rec_struct
223 {
224 char **vec;
225 int count;
226 };
227
228 /* The "string_pattern_pair" is a set of pairs containing instruction
229 patterns and replacement strings. */
230
231 typedef struct string_pattern_pair_struct string_pattern_pair;
232 struct string_pattern_pair_struct
233 {
234 const char *pattern;
235 const char *replacement;
236 };
237
238 \f
239 /* The widen_spec_list is a list of valid substitutions that generate
240 wider representations. These are generally used to specify
241 replacements for instructions whose immediates do not fit their
242 encodings. A valid transition may require multiple steps of
243 one-to-one instruction replacements with a final multiple
244 instruction replacement. As an example, here are the transitions
245 required to replace an 'addi.n' with an 'addi', 'addmi'.
246
247 addi.n a4, 0x1010
248 => addi a4, 0x1010
249 => addmi a4, 0x1010
250 => addmi a4, 0x1000, addi a4, 0x10. */
251
252 static string_pattern_pair widen_spec_list[] =
253 {
254 {"add.n %ar,%as,%at ? IsaUseDensityInstruction", "add %ar,%as,%at"},
255 {"addi.n %ar,%as,%imm ? IsaUseDensityInstruction", "addi %ar,%as,%imm"},
256 {"beqz.n %as,%label ? IsaUseDensityInstruction", "beqz %as,%label"},
257 {"bnez.n %as,%label ? IsaUseDensityInstruction", "bnez %as,%label"},
258 {"l32i.n %at,%as,%imm ? IsaUseDensityInstruction", "l32i %at,%as,%imm"},
259 {"mov.n %at,%as ? IsaUseDensityInstruction", "or %at,%as,%as"},
260 {"movi.n %as,%imm ? IsaUseDensityInstruction", "movi %as,%imm"},
261 {"nop.n ? IsaUseDensityInstruction ? realnop", "nop"},
262 {"nop.n ? IsaUseDensityInstruction ? no-realnop", "or 1,1,1"},
263 {"ret.n %as ? IsaUseDensityInstruction", "ret %as"},
264 {"retw.n %as ? IsaUseDensityInstruction", "retw %as"},
265 {"s32i.n %at,%as,%imm ? IsaUseDensityInstruction", "s32i %at,%as,%imm"},
266 {"srli %at,%as,%imm", "extui %at,%as,%imm,F32MINUS(%imm)"},
267 {"slli %ar,%as,0", "or %ar,%as,%as"},
268
269 /* Widening with literals or const16. */
270 {"movi %at,%imm ? IsaUseL32R ",
271 "LITERAL0 %imm; l32r %at,%LITERAL0"},
272 {"movi %at,%imm ? IsaUseConst16",
273 "const16 %at,HI16U(%imm); const16 %at,LOW16U(%imm)"},
274
275 {"addi %ar,%as,%imm", "addmi %ar,%as,%imm"},
276 /* LOW8 is the low 8 bits of the Immed
277 MID8S is the middle 8 bits of the Immed */
278 {"addmi %ar,%as,%imm", "addmi %ar,%as,HI24S(%imm); addi %ar,%ar,LOW8(%imm)"},
279
280 /* In the end convert to either an l32r or const16. */
281 {"addmi %ar,%as,%imm | %ar!=%as ? IsaUseL32R",
282 "LITERAL0 %imm; l32r %ar,%LITERAL0; add %ar,%as,%ar"},
283 {"addmi %ar,%as,%imm | %ar!=%as ? IsaUseConst16",
284 "const16 %ar,HI16U(%imm); const16 %ar,LOW16U(%imm); add %ar,%as,%ar"},
285
286 /* Widening the load instructions with too-large immediates */
287 {"l8ui %at,%as,%imm | %at!=%as ? IsaUseL32R",
288 "LITERAL0 %imm; l32r %at,%LITERAL0; add %at,%at,%as; l8ui %at,%at,0"},
289 {"l16si %at,%as,%imm | %at!=%as ? IsaUseL32R",
290 "LITERAL0 %imm; l32r %at,%LITERAL0; add %at,%at,%as; l16si %at,%at,0"},
291 {"l16ui %at,%as,%imm | %at!=%as ? IsaUseL32R",
292 "LITERAL0 %imm; l32r %at,%LITERAL0; add %at,%at,%as; l16ui %at,%at,0"},
293 {"l32i %at,%as,%imm | %at!=%as ? IsaUseL32R",
294 "LITERAL0 %imm; l32r %at,%LITERAL0; add %at,%at,%as; l32i %at,%at,0"},
295
296 /* Widening load instructions with const16s. */
297 {"l8ui %at,%as,%imm | %at!=%as ? IsaUseConst16",
298 "const16 %at,HI16U(%imm); const16 %at,LOW16U(%imm); add %at,%at,%as; l8ui %at,%at,0"},
299 {"l16si %at,%as,%imm | %at!=%as ? IsaUseConst16",
300 "const16 %at,HI16U(%imm); const16 %at,LOW16U(%imm); add %at,%at,%as; l16si %at,%at,0"},
301 {"l16ui %at,%as,%imm | %at!=%as ? IsaUseConst16",
302 "const16 %at,HI16U(%imm); const16 %at,LOW16U(%imm); add %at,%at,%as; l16ui %at,%at,0"},
303 {"l32i %at,%as,%imm | %at!=%as ? IsaUseConst16",
304 "const16 %at,HI16U(%imm); const16 %at,LOW16U(%imm); add %at,%at,%as; l32i %at,%at,0"},
305
306 /* This is only PART of the loop instruction. In addition,
307 hardcoded into its use is a modification of the final operand in
308 the instruction in bytes 9 and 12. */
309 {"loop %as,%label | %as!=1 ? IsaUseLoops",
310 "loop %as,%LABEL0;"
311 "rsr.lend %as;" /* LEND */
312 "wsr.lbeg %as;" /* LBEG */
313 "addi %as, %as, 0;" /* lo8(%label-%LABEL1) */
314 "addmi %as, %as, 0;" /* mid8(%label-%LABEL1) */
315 "wsr.lend %as;"
316 "isync;"
317 "rsr.lcount %as;" /* LCOUNT */
318 "addi %as, %as, 1;" /* density -> addi.n %as, %as, 1 */
319 "LABEL0"},
320 {"loopgtz %as,%label | %as!=1 ? IsaUseLoops",
321 "beqz %as,%label;"
322 "bltz %as,%label;"
323 "loopgtz %as,%LABEL0;"
324 "rsr.lend %as;" /* LEND */
325 "wsr.lbeg %as;" /* LBEG */
326 "addi %as, %as, 0;" /* lo8(%label-%LABEL1) */
327 "addmi %as, %as, 0;" /* mid8(%label-%LABEL1) */
328 "wsr.lend %as;"
329 "isync;"
330 "rsr.lcount %as;" /* LCOUNT */
331 "addi %as, %as, 1;" /* density -> addi.n %as, %as, 1 */
332 "LABEL0"},
333 {"loopnez %as,%label | %as!=1 ? IsaUseLoops",
334 "beqz %as,%label;"
335 "loopnez %as,%LABEL0;"
336 "rsr.lend %as;" /* LEND */
337 "wsr.lbeg %as;" /* LBEG */
338 "addi %as, %as, 0;" /* lo8(%label-%LABEL1) */
339 "addmi %as, %as, 0;" /* mid8(%label-%LABEL1) */
340 "wsr.lend %as;"
341 "isync;"
342 "rsr.lcount %as;" /* LCOUNT */
343 "addi %as, %as, 1;" /* density -> addi.n %as, %as, 1 */
344 "LABEL0"},
345
346 /* Relaxing to wide branches. Order is important here. With wide
347 branches, there is more than one correct relaxation for an
348 out-of-range branch. Put the wide branch relaxations first in the
349 table since they are more efficient than the branch-around
350 relaxations. */
351
352 {"beqz %as,%label ? IsaUseWideBranches", "beqz.w18 %as,%label"},
353 {"bnez %as,%label ? IsaUseWideBranches", "bnez.w18 %as,%label"},
354 {"bgez %as,%label ? IsaUseWideBranches", "bgez.w18 %as,%label"},
355 {"bltz %as,%label ? IsaUseWideBranches", "bltz.w18 %as,%label"},
356 {"beqi %as,%imm,%label ? IsaUseWideBranches", "beqi.w18 %as,%imm,%label"},
357 {"bnei %as,%imm,%label ? IsaUseWideBranches", "bnei.w18 %as,%imm,%label"},
358 {"bgei %as,%imm,%label ? IsaUseWideBranches", "bgei.w18 %as,%imm,%label"},
359 {"blti %as,%imm,%label ? IsaUseWideBranches", "blti.w18 %as,%imm,%label"},
360 {"bgeui %as,%imm,%label ? IsaUseWideBranches", "bgeui.w18 %as,%imm,%label"},
361 {"bltui %as,%imm,%label ? IsaUseWideBranches", "bltui.w18 %as,%imm,%label"},
362 {"bbci %as,%imm,%label ? IsaUseWideBranches", "bbci.w18 %as,%imm,%label"},
363 {"bbsi %as,%imm,%label ? IsaUseWideBranches", "bbsi.w18 %as,%imm,%label"},
364 {"beq %as,%at,%label ? IsaUseWideBranches", "beq.w18 %as,%at,%label"},
365 {"bne %as,%at,%label ? IsaUseWideBranches", "bne.w18 %as,%at,%label"},
366 {"bge %as,%at,%label ? IsaUseWideBranches", "bge.w18 %as,%at,%label"},
367 {"blt %as,%at,%label ? IsaUseWideBranches", "blt.w18 %as,%at,%label"},
368 {"bgeu %as,%at,%label ? IsaUseWideBranches", "bgeu.w18 %as,%at,%label"},
369 {"bltu %as,%at,%label ? IsaUseWideBranches", "bltu.w18 %as,%at,%label"},
370 {"bany %as,%at,%label ? IsaUseWideBranches", "bany.w18 %as,%at,%label"},
371 {"bnone %as,%at,%label ? IsaUseWideBranches", "bnone.w18 %as,%at,%label"},
372 {"ball %as,%at,%label ? IsaUseWideBranches", "ball.w18 %as,%at,%label"},
373 {"bnall %as,%at,%label ? IsaUseWideBranches", "bnall.w18 %as,%at,%label"},
374 {"bbc %as,%at,%label ? IsaUseWideBranches", "bbc.w18 %as,%at,%label"},
375 {"bbs %as,%at,%label ? IsaUseWideBranches", "bbs.w18 %as,%at,%label"},
376
377 /* Widening branch comparisons eq/ne to zero. Prefer relaxing to narrow
378 branches if the density option is available. */
379 {"beqz %as,%label ? IsaUseDensityInstruction", "bnez.n %as,%LABEL0;j %label;LABEL0"},
380 {"bnez %as,%label ? IsaUseDensityInstruction", "beqz.n %as,%LABEL0;j %label;LABEL0"},
381 {"beqz %as,%label", "bnez %as,%LABEL0;j %label;LABEL0"},
382 {"bnez %as,%label", "beqz %as,%LABEL0;j %label;LABEL0"},
383
384 /* Widening expect-taken branches. */
385 {"beqzt %as,%label ? IsaUsePredictedBranches", "bnez %as,%LABEL0;j %label;LABEL0"},
386 {"bnezt %as,%label ? IsaUsePredictedBranches", "beqz %as,%LABEL0;j %label;LABEL0"},
387 {"beqt %as,%at,%label ? IsaUsePredictedBranches", "bne %as,%at,%LABEL0;j %label;LABEL0"},
388 {"bnet %as,%at,%label ? IsaUsePredictedBranches", "beq %as,%at,%LABEL0;j %label;LABEL0"},
389
390 /* Widening branches from the Xtensa boolean option. */
391 {"bt %bs,%label ? IsaUseBooleans", "bf %bs,%LABEL0;j %label;LABEL0"},
392 {"bf %bs,%label ? IsaUseBooleans", "bt %bs,%LABEL0;j %label;LABEL0"},
393
394 /* Other branch-around-jump widenings. */
395 {"bgez %as,%label", "bltz %as,%LABEL0;j %label;LABEL0"},
396 {"bltz %as,%label", "bgez %as,%LABEL0;j %label;LABEL0"},
397 {"beqi %as,%imm,%label", "bnei %as,%imm,%LABEL0;j %label;LABEL0"},
398 {"bnei %as,%imm,%label", "beqi %as,%imm,%LABEL0;j %label;LABEL0"},
399 {"bgei %as,%imm,%label", "blti %as,%imm,%LABEL0;j %label;LABEL0"},
400 {"blti %as,%imm,%label", "bgei %as,%imm,%LABEL0;j %label;LABEL0"},
401 {"bgeui %as,%imm,%label", "bltui %as,%imm,%LABEL0;j %label;LABEL0"},
402 {"bltui %as,%imm,%label", "bgeui %as,%imm,%LABEL0;j %label;LABEL0"},
403 {"bbci %as,%imm,%label", "bbsi %as,%imm,%LABEL0;j %label;LABEL0"},
404 {"bbsi %as,%imm,%label", "bbci %as,%imm,%LABEL0;j %label;LABEL0"},
405 {"beq %as,%at,%label", "bne %as,%at,%LABEL0;j %label;LABEL0"},
406 {"bne %as,%at,%label", "beq %as,%at,%LABEL0;j %label;LABEL0"},
407 {"bge %as,%at,%label", "blt %as,%at,%LABEL0;j %label;LABEL0"},
408 {"blt %as,%at,%label", "bge %as,%at,%LABEL0;j %label;LABEL0"},
409 {"bgeu %as,%at,%label", "bltu %as,%at,%LABEL0;j %label;LABEL0"},
410 {"bltu %as,%at,%label", "bgeu %as,%at,%LABEL0;j %label;LABEL0"},
411 {"bany %as,%at,%label", "bnone %as,%at,%LABEL0;j %label;LABEL0"},
412 {"bnone %as,%at,%label", "bany %as,%at,%LABEL0;j %label;LABEL0"},
413 {"ball %as,%at,%label", "bnall %as,%at,%LABEL0;j %label;LABEL0"},
414 {"bnall %as,%at,%label", "ball %as,%at,%LABEL0;j %label;LABEL0"},
415 {"bbc %as,%at,%label", "bbs %as,%at,%LABEL0;j %label;LABEL0"},
416 {"bbs %as,%at,%label", "bbc %as,%at,%LABEL0;j %label;LABEL0"},
417
418 /* Expanding calls with literals. */
419 {"call0 %label,%ar0 ? IsaUseL32R",
420 "LITERAL0 %label; l32r a0,%LITERAL0; callx0 a0,%ar0"},
421 {"call4 %label,%ar4 ? IsaUseL32R",
422 "LITERAL0 %label; l32r a4,%LITERAL0; callx4 a4,%ar4"},
423 {"call8 %label,%ar8 ? IsaUseL32R",
424 "LITERAL0 %label; l32r a8,%LITERAL0; callx8 a8,%ar8"},
425 {"call12 %label,%ar12 ? IsaUseL32R",
426 "LITERAL0 %label; l32r a12,%LITERAL0; callx12 a12,%ar12"},
427
428 /* Expanding calls with const16. */
429 {"call0 %label,%ar0 ? IsaUseConst16",
430 "const16 a0,HI16U(%label); const16 a0,LOW16U(%label); callx0 a0,%ar0"},
431 {"call4 %label,%ar4 ? IsaUseConst16",
432 "const16 a4,HI16U(%label); const16 a4,LOW16U(%label); callx4 a4,%ar4"},
433 {"call8 %label,%ar8 ? IsaUseConst16",
434 "const16 a8,HI16U(%label); const16 a8,LOW16U(%label); callx8 a8,%ar8"},
435 {"call12 %label,%ar12 ? IsaUseConst16",
436 "const16 a12,HI16U(%label); const16 a12,LOW16U(%label); callx12 a12,%ar12"}
437 };
438
439 #define WIDEN_COUNT (sizeof (widen_spec_list) / sizeof (string_pattern_pair))
440
441
442 /* The simplify_spec_list specifies simplifying transformations that
443 will reduce the instruction width or otherwise simplify an
444 instruction. These are usually applied before relaxation in the
445 assembler. It is always legal to simplify. Even for "addi as, 0",
446 the "addi.n as, 0" will eventually be widened back to an "addi 0"
447 after the widening table is applied. Note: The usage of this table
448 has changed somewhat so that it is entirely specific to "narrowing"
449 instructions to use the density option. This table is not used at
450 all when the density option is not available. */
451
452 string_pattern_pair simplify_spec_list[] =
453 {
454 {"add %ar,%as,%at ? IsaUseDensityInstruction", "add.n %ar,%as,%at"},
455 {"addi.n %ar,%as,0 ? IsaUseDensityInstruction", "mov.n %ar,%as"},
456 {"addi %ar,%as,0 ? IsaUseDensityInstruction", "mov.n %ar,%as"},
457 {"addi %ar,%as,%imm ? IsaUseDensityInstruction", "addi.n %ar,%as,%imm"},
458 {"addmi %ar,%as,%imm ? IsaUseDensityInstruction", "addi.n %ar,%as,%imm"},
459 {"beqz %as,%label ? IsaUseDensityInstruction", "beqz.n %as,%label"},
460 {"bnez %as,%label ? IsaUseDensityInstruction", "bnez.n %as,%label"},
461 {"l32i %at,%as,%imm ? IsaUseDensityInstruction", "l32i.n %at,%as,%imm"},
462 {"movi %as,%imm ? IsaUseDensityInstruction", "movi.n %as,%imm"},
463 {"nop ? realnop ? IsaUseDensityInstruction", "nop.n"},
464 {"or %ar,%as,%at | %ar==%as | %as==%at ? IsaUseDensityInstruction", "nop.n"},
465 {"or %ar,%as,%at | %ar!=%as | %as==%at ? IsaUseDensityInstruction", "mov.n %ar,%as"},
466 {"ret %as ? IsaUseDensityInstruction", "ret.n %as"},
467 {"retw %as ? IsaUseDensityInstruction", "retw.n %as"},
468 {"s32i %at,%as,%imm ? IsaUseDensityInstruction", "s32i.n %at,%as,%imm"},
469 {"slli %ar,%as,0 ? IsaUseDensityInstruction", "mov.n %ar,%as"}
470 };
471
472 #define SIMPLIFY_COUNT \
473 (sizeof (simplify_spec_list) / sizeof (string_pattern_pair))
474
475 \f
476 /* Externally visible functions. */
477
478 extern bfd_boolean xg_has_userdef_op_fn (OpType);
479 extern long xg_apply_userdef_op_fn (OpType, long);
480
481
482 static void
483 append_transition (TransitionTable *tt,
484 xtensa_opcode opcode,
485 TransitionRule *t,
486 transition_cmp_fn cmp)
487 {
488 TransitionList *tl = (TransitionList *) xmalloc (sizeof (TransitionList));
489 TransitionList *prev;
490 TransitionList **t_p;
491 assert (tt != NULL);
492 assert (opcode < tt->num_opcodes);
493
494 prev = tt->table[opcode];
495 tl->rule = t;
496 tl->next = NULL;
497 if (prev == NULL)
498 {
499 tt->table[opcode] = tl;
500 return;
501 }
502
503 for (t_p = &tt->table[opcode]; (*t_p) != NULL; t_p = &(*t_p)->next)
504 {
505 if (cmp && cmp (t, (*t_p)->rule) < 0)
506 {
507 /* Insert it here. */
508 tl->next = *t_p;
509 *t_p = tl;
510 return;
511 }
512 }
513 (*t_p) = tl;
514 }
515
516
517 static void
518 append_condition (TransitionRule *tr, Precondition *cond)
519 {
520 PreconditionList *pl =
521 (PreconditionList *) xmalloc (sizeof (PreconditionList));
522 PreconditionList *prev = tr->conditions;
523 PreconditionList *nxt;
524
525 pl->precond = cond;
526 pl->next = NULL;
527 if (prev == NULL)
528 {
529 tr->conditions = pl;
530 return;
531 }
532 nxt = prev->next;
533 while (nxt != NULL)
534 {
535 prev = nxt;
536 nxt = nxt->next;
537 }
538 prev->next = pl;
539 }
540
541
542 static void
543 append_value_condition (TransitionRule *tr,
544 CmpOp cmp,
545 unsigned op1,
546 unsigned op2)
547 {
548 Precondition *cond = (Precondition *) xmalloc (sizeof (Precondition));
549
550 cond->cmp = cmp;
551 cond->op_num = op1;
552 cond->typ = OP_OPERAND;
553 cond->op_data = op2;
554 append_condition (tr, cond);
555 }
556
557
558 static void
559 append_constant_value_condition (TransitionRule *tr,
560 CmpOp cmp,
561 unsigned op1,
562 unsigned cnst)
563 {
564 Precondition *cond = (Precondition *) xmalloc (sizeof (Precondition));
565
566 cond->cmp = cmp;
567 cond->op_num = op1;
568 cond->typ = OP_CONSTANT;
569 cond->op_data = cnst;
570 append_condition (tr, cond);
571 }
572
573
574 static void
575 append_build_insn (TransitionRule *tr, BuildInstr *bi)
576 {
577 BuildInstr *prev = tr->to_instr;
578 BuildInstr *nxt;
579
580 bi->next = NULL;
581 if (prev == NULL)
582 {
583 tr->to_instr = bi;
584 return;
585 }
586 nxt = prev->next;
587 while (nxt != 0)
588 {
589 prev = nxt;
590 nxt = prev->next;
591 }
592 prev->next = bi;
593 }
594
595
596 static void
597 append_op (BuildInstr *bi, BuildOp *b_op)
598 {
599 BuildOp *prev = bi->ops;
600 BuildOp *nxt;
601
602 if (prev == NULL)
603 {
604 bi->ops = b_op;
605 return;
606 }
607 nxt = prev->next;
608 while (nxt != NULL)
609 {
610 prev = nxt;
611 nxt = nxt->next;
612 }
613 prev->next = b_op;
614 }
615
616
617 static void
618 append_literal_op (BuildInstr *bi, unsigned op1, unsigned litnum)
619 {
620 BuildOp *b_op = (BuildOp *) xmalloc (sizeof (BuildOp));
621
622 b_op->op_num = op1;
623 b_op->typ = OP_LITERAL;
624 b_op->op_data = litnum;
625 b_op->next = NULL;
626 append_op (bi, b_op);
627 }
628
629
630 static void
631 append_label_op (BuildInstr *bi, unsigned op1, unsigned labnum)
632 {
633 BuildOp *b_op = (BuildOp *) xmalloc (sizeof (BuildOp));
634
635 b_op->op_num = op1;
636 b_op->typ = OP_LABEL;
637 b_op->op_data = labnum;
638 b_op->next = NULL;
639 append_op (bi, b_op);
640 }
641
642
643 static void
644 append_constant_op (BuildInstr *bi, unsigned op1, unsigned cnst)
645 {
646 BuildOp *b_op = (BuildOp *) xmalloc (sizeof (BuildOp));
647
648 b_op->op_num = op1;
649 b_op->typ = OP_CONSTANT;
650 b_op->op_data = cnst;
651 b_op->next = NULL;
652 append_op (bi, b_op);
653 }
654
655
656 static void
657 append_field_op (BuildInstr *bi, unsigned op1, unsigned src_op)
658 {
659 BuildOp *b_op = (BuildOp *) xmalloc (sizeof (BuildOp));
660
661 b_op->op_num = op1;
662 b_op->typ = OP_OPERAND;
663 b_op->op_data = src_op;
664 b_op->next = NULL;
665 append_op (bi, b_op);
666 }
667
668
669 /* These could be generated but are not currently. */
670
671 static void
672 append_user_fn_field_op (BuildInstr *bi,
673 unsigned op1,
674 OpType typ,
675 unsigned src_op)
676 {
677 BuildOp *b_op = (BuildOp *) xmalloc (sizeof (BuildOp));
678
679 b_op->op_num = op1;
680 b_op->typ = typ;
681 b_op->op_data = src_op;
682 b_op->next = NULL;
683 append_op (bi, b_op);
684 }
685
686
687 /* These operand functions are the semantics of user-defined
688 operand functions. */
689
690 static long
691 operand_function_HI24S (long a)
692 {
693 if (a & 0x80)
694 return (a & (~0xff)) + 0x100;
695 else
696 return (a & (~0xff));
697 }
698
699
700 static long
701 operand_function_F32MINUS (long a)
702 {
703 return (32 - a);
704 }
705
706
707 static long
708 operand_function_LOW8 (long a)
709 {
710 if (a & 0x80)
711 return (a & 0xff) | ~0xff;
712 else
713 return (a & 0xff);
714 }
715
716
717 static long
718 operand_function_LOW16U (long a)
719 {
720 return (a & 0xffff);
721 }
722
723
724 static long
725 operand_function_HI16U (long a)
726 {
727 unsigned long b = a & 0xffff0000;
728 return (long) (b >> 16);
729 }
730
731
732 bfd_boolean
733 xg_has_userdef_op_fn (OpType op)
734 {
735 switch (op)
736 {
737 case OP_OPERAND_F32MINUS:
738 case OP_OPERAND_LOW8:
739 case OP_OPERAND_HI24S:
740 case OP_OPERAND_LOW16U:
741 case OP_OPERAND_HI16U:
742 return TRUE;
743 default:
744 break;
745 }
746 return FALSE;
747 }
748
749
750 long
751 xg_apply_userdef_op_fn (OpType op, long a)
752 {
753 switch (op)
754 {
755 case OP_OPERAND_F32MINUS:
756 return operand_function_F32MINUS (a);
757 case OP_OPERAND_LOW8:
758 return operand_function_LOW8 (a);
759 case OP_OPERAND_HI24S:
760 return operand_function_HI24S (a);
761 case OP_OPERAND_LOW16U:
762 return operand_function_LOW16U (a);
763 case OP_OPERAND_HI16U:
764 return operand_function_HI16U (a);
765 default:
766 break;
767 }
768 return FALSE;
769 }
770
771
772 /* Generate a transition table. */
773
774 static const char *
775 enter_opname_n (const char *name, int len)
776 {
777 opname_e *op;
778
779 for (op = local_opnames; op != NULL; op = op->next)
780 {
781 if (strlen (op->opname) == (unsigned) len
782 && strncmp (op->opname, name, len) == 0)
783 return op->opname;
784 }
785 op = (opname_e *) xmalloc (sizeof (opname_e));
786 op->opname = (char *) xmalloc (len + 1);
787 strncpy (op->opname, name, len);
788 op->opname[len] = '\0';
789 return op->opname;
790 }
791
792
793 static const char *
794 enter_opname (const char *name)
795 {
796 opname_e *op;
797
798 for (op = local_opnames; op != NULL; op = op->next)
799 {
800 if (strcmp (op->opname, name) == 0)
801 return op->opname;
802 }
803 op = (opname_e *) xmalloc (sizeof (opname_e));
804 op->opname = xstrdup (name);
805 return op->opname;
806 }
807
808
809 static void
810 init_opname_map (opname_map *m)
811 {
812 m->head = NULL;
813 m->tail = &m->head;
814 }
815
816
817 static void
818 clear_opname_map (opname_map *m)
819 {
820 opname_map_e *e;
821
822 while (m->head != NULL)
823 {
824 e = m->head;
825 m->head = e->next;
826 free (e);
827 }
828 m->tail = &m->head;
829 }
830
831
832 static bfd_boolean
833 same_operand_name (const opname_map_e *m1, const opname_map_e *m2)
834 {
835 if (m1->operand_name == NULL || m1->operand_name == NULL)
836 return FALSE;
837 return (m1->operand_name == m2->operand_name);
838 }
839
840
841 static opname_map_e *
842 get_opmatch (opname_map *map, const char *operand_name)
843 {
844 opname_map_e *m;
845
846 for (m = map->head; m != NULL; m = m->next)
847 {
848 if (strcmp (m->operand_name, operand_name) == 0)
849 return m;
850 }
851 return NULL;
852 }
853
854
855 static bfd_boolean
856 op_is_constant (const opname_map_e *m1)
857 {
858 return (m1->operand_name == NULL);
859 }
860
861
862 static unsigned
863 op_get_constant (const opname_map_e *m1)
864 {
865 assert (m1->operand_name == NULL);
866 return m1->constant_value;
867 }
868
869
870 static void
871 init_precond_list (precond_list *l)
872 {
873 l->head = NULL;
874 l->tail = &l->head;
875 }
876
877
878 static void
879 clear_precond_list (precond_list *l)
880 {
881 precond_e *e;
882
883 while (l->head != NULL)
884 {
885 e = l->head;
886 l->head = e->next;
887 free (e);
888 }
889 l->tail = &l->head;
890 }
891
892
893 static void
894 init_insn_templ (insn_templ *t)
895 {
896 t->opcode_name = NULL;
897 init_opname_map (&t->operand_map);
898 }
899
900
901 static void
902 clear_insn_templ (insn_templ *t)
903 {
904 clear_opname_map (&t->operand_map);
905 }
906
907
908 static void
909 init_insn_pattern (insn_pattern *p)
910 {
911 init_insn_templ (&p->t);
912 init_precond_list (&p->preconds);
913 p->options = NULL;
914 }
915
916
917 static void
918 clear_insn_pattern (insn_pattern *p)
919 {
920 clear_insn_templ (&p->t);
921 clear_precond_list (&p->preconds);
922 }
923
924
925 static void
926 init_insn_repl (insn_repl *r)
927 {
928 r->head = NULL;
929 r->tail = &r->head;
930 }
931
932
933 static void
934 clear_insn_repl (insn_repl *r)
935 {
936 insn_repl_e *e;
937
938 while (r->head != NULL)
939 {
940 e = r->head;
941 r->head = e->next;
942 clear_insn_templ (&e->t);
943 }
944 r->tail = &r->head;
945 }
946
947
948 static int
949 insn_templ_operand_count (const insn_templ *t)
950 {
951 int i = 0;
952 const opname_map_e *op;
953
954 for (op = t->operand_map.head; op != NULL; op = op->next, i++)
955 ;
956 return i;
957 }
958
959
960 /* Convert a string to a number. E.G.: parse_constant("10", &num) */
961
962 static bfd_boolean
963 parse_constant (const char *in, unsigned *val_p)
964 {
965 unsigned val = 0;
966 const char *p;
967
968 if (in == NULL)
969 return FALSE;
970 p = in;
971
972 while (*p != '\0')
973 {
974 if (*p >= '0' && *p <= '9')
975 val = val * 10 + (*p - '0');
976 else
977 return FALSE;
978 ++p;
979 }
980 *val_p = val;
981 return TRUE;
982 }
983
984
985 /* Match a pattern like "foo1" with
986 parse_id_constant("foo1", "foo", &num).
987 This may also be used to just match a number. */
988
989 static bfd_boolean
990 parse_id_constant (const char *in, const char *name, unsigned *val_p)
991 {
992 unsigned namelen = 0;
993 const char *p;
994
995 if (in == NULL)
996 return FALSE;
997
998 if (name != NULL)
999 namelen = strlen (name);
1000
1001 if (name != NULL && strncmp (in, name, namelen) != 0)
1002 return FALSE;
1003
1004 p = &in[namelen];
1005 return parse_constant (p, val_p);
1006 }
1007
1008
1009 static bfd_boolean
1010 parse_special_fn (const char *name,
1011 const char **fn_name_p,
1012 const char **arg_name_p)
1013 {
1014 char *p_start;
1015 const char *p_end;
1016
1017 p_start = strchr (name, '(');
1018 if (p_start == NULL)
1019 return FALSE;
1020
1021 p_end = strchr (p_start, ')');
1022
1023 if (p_end == NULL)
1024 return FALSE;
1025
1026 if (p_end[1] != '\0')
1027 return FALSE;
1028
1029 *fn_name_p = enter_opname_n (name, p_start - name);
1030 *arg_name_p = enter_opname_n (p_start + 1, p_end - p_start - 1);
1031 return TRUE;
1032 }
1033
1034
1035 static const char *
1036 skip_white (const char *p)
1037 {
1038 if (p == NULL)
1039 return p;
1040 while (*p == ' ')
1041 ++p;
1042 return p;
1043 }
1044
1045
1046 static void
1047 trim_whitespace (char *in)
1048 {
1049 char *last_white = NULL;
1050 char *p = in;
1051
1052 while (p && *p != '\0')
1053 {
1054 while (*p == ' ')
1055 {
1056 if (last_white == NULL)
1057 last_white = p;
1058 p++;
1059 }
1060 if (*p != '\0')
1061 {
1062 last_white = NULL;
1063 p++;
1064 }
1065 }
1066 if (last_white)
1067 *last_white = '\0';
1068 }
1069
1070
1071 /* Split a string into component strings where "c" is the
1072 delimiter. Place the result in the split_rec. */
1073
1074 static void
1075 split_string (split_rec *rec,
1076 const char *in,
1077 char c,
1078 bfd_boolean elide_whitespace)
1079 {
1080 int cnt = 0;
1081 int i;
1082 const char *p = in;
1083
1084 while (p != NULL && *p != '\0')
1085 {
1086 cnt++;
1087 p = strchr (p, c);
1088 if (p)
1089 p++;
1090 }
1091 rec->count = cnt;
1092 rec->vec = NULL;
1093
1094 if (rec->count == 0)
1095 return;
1096
1097 rec->vec = (char **) xmalloc (sizeof (char *) * cnt);
1098 for (i = 0; i < cnt; i++)
1099 rec->vec[i] = 0;
1100
1101 p = in;
1102 for (i = 0; i < cnt; i++)
1103 {
1104 const char *q;
1105 int len;
1106
1107 q = p;
1108 if (elide_whitespace)
1109 q = skip_white (q);
1110
1111 p = strchr (q, c);
1112 if (p == NULL)
1113 rec->vec[i] = xstrdup (q);
1114 else
1115 {
1116 len = p - q;
1117 rec->vec[i] = (char *) xmalloc (sizeof (char) * (len + 1));
1118 strncpy (rec->vec[i], q, len);
1119 rec->vec[i][len] = '\0';
1120 p++;
1121 }
1122
1123 if (elide_whitespace)
1124 trim_whitespace (rec->vec[i]);
1125 }
1126 }
1127
1128
1129 static void
1130 clear_split_rec (split_rec *rec)
1131 {
1132 int i;
1133
1134 for (i = 0; i < rec->count; i++)
1135 free (rec->vec[i]);
1136
1137 if (rec->count > 0)
1138 free (rec->vec);
1139 }
1140
1141
1142 /* Initialize a split record. The split record must be initialized
1143 before split_string is called. */
1144
1145 static void
1146 init_split_rec (split_rec *rec)
1147 {
1148 rec->vec = NULL;
1149 rec->count = 0;
1150 }
1151
1152
1153 /* Parse an instruction template like "insn op1, op2, op3". */
1154
1155 static bfd_boolean
1156 parse_insn_templ (const char *s, insn_templ *t)
1157 {
1158 const char *p = s;
1159 int insn_name_len;
1160 split_rec oprec;
1161 int i;
1162
1163 /* First find the first whitespace. */
1164
1165 init_split_rec (&oprec);
1166
1167 p = skip_white (p);
1168 insn_name_len = strcspn (s, " ");
1169 if (insn_name_len == 0)
1170 return FALSE;
1171
1172 init_insn_templ (t);
1173 t->opcode_name = enter_opname_n (p, insn_name_len);
1174
1175 p = p + insn_name_len;
1176
1177 /* Split by ',' and skip beginning and trailing whitespace. */
1178 split_string (&oprec, p, ',', TRUE);
1179
1180 for (i = 0; i < oprec.count; i++)
1181 {
1182 const char *opname = oprec.vec[i];
1183 opname_map_e *e = (opname_map_e *) xmalloc (sizeof (opname_map_e));
1184 e->next = NULL;
1185 e->operand_name = NULL;
1186 e->constant_value = 0;
1187 e->operand_num = i;
1188
1189 /* If it begins with a number, assume that it is a number. */
1190 if (opname && opname[0] >= '0' && opname[0] <= '9')
1191 {
1192 unsigned val;
1193
1194 if (parse_constant (opname, &val))
1195 e->constant_value = val;
1196 else
1197 {
1198 free (e);
1199 clear_split_rec (&oprec);
1200 clear_insn_templ (t);
1201 return FALSE;
1202 }
1203 }
1204 else
1205 e->operand_name = enter_opname (oprec.vec[i]);
1206
1207 *t->operand_map.tail = e;
1208 t->operand_map.tail = &e->next;
1209 }
1210 clear_split_rec (&oprec);
1211 return TRUE;
1212 }
1213
1214
1215 static bfd_boolean
1216 parse_precond (const char *s, precond_e *precond)
1217 {
1218 /* All preconditions are currently of the form:
1219 a == b or a != b or a == k (where k is a constant).
1220 Later we may use some special functions like DENSITY == 1
1221 to identify when density is available. */
1222
1223 const char *p = s;
1224 int len;
1225 precond->opname1 = NULL;
1226 precond->opval1 = 0;
1227 precond->cmpop = OP_EQUAL;
1228 precond->opname2 = NULL;
1229 precond->opval2 = 0;
1230 precond->next = NULL;
1231
1232 p = skip_white (p);
1233
1234 len = strcspn (p, " !=");
1235
1236 if (len == 0)
1237 return FALSE;
1238
1239 precond->opname1 = enter_opname_n (p, len);
1240 p = p + len;
1241 p = skip_white (p);
1242
1243 /* Check for "==" and "!=". */
1244 if (strncmp (p, "==", 2) == 0)
1245 precond->cmpop = OP_EQUAL;
1246 else if (strncmp (p, "!=", 2) == 0)
1247 precond->cmpop = OP_NOTEQUAL;
1248 else
1249 return FALSE;
1250
1251 p = p + 2;
1252 p = skip_white (p);
1253
1254 /* No trailing whitespace from earlier parsing. */
1255 if (p[0] >= '0' && p[0] <= '9')
1256 {
1257 unsigned val;
1258 if (parse_constant (p, &val))
1259 precond->opval2 = val;
1260 else
1261 return FALSE;
1262 }
1263 else
1264 precond->opname2 = enter_opname (p);
1265 return TRUE;
1266 }
1267
1268
1269 static void
1270 clear_req_or_option_list (ReqOrOption **r_p)
1271 {
1272 if (*r_p == NULL)
1273 return;
1274
1275 free ((*r_p)->option_name);
1276 clear_req_or_option_list (&(*r_p)->next);
1277 *r_p = NULL;
1278 }
1279
1280
1281 static void
1282 clear_req_option_list (ReqOption **r_p)
1283 {
1284 if (*r_p == NULL)
1285 return;
1286
1287 clear_req_or_option_list (&(*r_p)->or_option_terms);
1288 clear_req_option_list (&(*r_p)->next);
1289 *r_p = NULL;
1290 }
1291
1292
1293 static ReqOrOption *
1294 clone_req_or_option_list (ReqOrOption *req_or_option)
1295 {
1296 ReqOrOption *new_req_or_option;
1297
1298 if (req_or_option == NULL)
1299 return NULL;
1300
1301 new_req_or_option = (ReqOrOption *) xmalloc (sizeof (ReqOrOption));
1302 new_req_or_option->option_name = xstrdup (req_or_option->option_name);
1303 new_req_or_option->is_true = req_or_option->is_true;
1304 new_req_or_option->next = NULL;
1305 new_req_or_option->next = clone_req_or_option_list (req_or_option->next);
1306 return new_req_or_option;
1307 }
1308
1309
1310 static ReqOption *
1311 clone_req_option_list (ReqOption *req_option)
1312 {
1313 ReqOption *new_req_option;
1314
1315 if (req_option == NULL)
1316 return NULL;
1317
1318 new_req_option = (ReqOption *) xmalloc (sizeof (ReqOption));
1319 new_req_option->or_option_terms = NULL;
1320 new_req_option->next = NULL;
1321 new_req_option->or_option_terms =
1322 clone_req_or_option_list (req_option->or_option_terms);
1323 new_req_option->next = clone_req_option_list (req_option->next);
1324 return new_req_option;
1325 }
1326
1327
1328 static bfd_boolean
1329 parse_option_cond (const char *s, ReqOption *option)
1330 {
1331 int i;
1332 split_rec option_term_rec;
1333
1334 /* All option or conditions are of the form:
1335 optionA + no-optionB + ...
1336 "Ands" are divided by "?". */
1337
1338 init_split_rec (&option_term_rec);
1339 split_string (&option_term_rec, s, '+', TRUE);
1340
1341 if (option_term_rec.count == 0)
1342 {
1343 clear_split_rec (&option_term_rec);
1344 return FALSE;
1345 }
1346
1347 for (i = 0; i < option_term_rec.count; i++)
1348 {
1349 char *option_name = option_term_rec.vec[i];
1350 bfd_boolean is_true = TRUE;
1351 ReqOrOption *req;
1352 ReqOrOption **r_p;
1353
1354 if (strncmp (option_name, "no-", 3) == 0)
1355 {
1356 option_name = xstrdup (&option_name[3]);
1357 is_true = FALSE;
1358 }
1359 else
1360 option_name = xstrdup (option_name);
1361
1362 req = (ReqOrOption *) xmalloc (sizeof (ReqOrOption));
1363 req->option_name = option_name;
1364 req->is_true = is_true;
1365 req->next = NULL;
1366
1367 /* Append to list. */
1368 for (r_p = &option->or_option_terms; (*r_p) != NULL;
1369 r_p = &(*r_p)->next)
1370 ;
1371 (*r_p) = req;
1372 }
1373 return TRUE;
1374 }
1375
1376
1377 /* Parse a string like:
1378 "insn op1, op2, op3, op4 | op1 != op2 | op2 == op3 | op4 == 1".
1379 I.E., instruction "insn" with 4 operands where operand 1 and 2 are not
1380 the same and operand 2 and 3 are the same and operand 4 is 1.
1381
1382 or:
1383
1384 "insn op1 | op1 == 1 / density + boolean / no-useroption".
1385 i.e. instruction "insn" with 1 operands where operand 1 is 1
1386 when "density" or "boolean" options are available and
1387 "useroption" is not available.
1388
1389 Because the current implementation of this parsing scheme uses
1390 split_string, it requires that '|' and '?' are only used as
1391 delimiters for predicates and required options. */
1392
1393 static bfd_boolean
1394 parse_insn_pattern (const char *in, insn_pattern *insn)
1395 {
1396 split_rec rec;
1397 split_rec optionrec;
1398 int i;
1399
1400 init_insn_pattern (insn);
1401
1402 init_split_rec (&optionrec);
1403 split_string (&optionrec, in, '?', TRUE);
1404 if (optionrec.count == 0)
1405 {
1406 clear_split_rec (&optionrec);
1407 return FALSE;
1408 }
1409
1410 init_split_rec (&rec);
1411
1412 split_string (&rec, optionrec.vec[0], '|', TRUE);
1413
1414 if (rec.count == 0)
1415 {
1416 clear_split_rec (&rec);
1417 clear_split_rec (&optionrec);
1418 return FALSE;
1419 }
1420
1421 if (!parse_insn_templ (rec.vec[0], &insn->t))
1422 {
1423 clear_split_rec (&rec);
1424 clear_split_rec (&optionrec);
1425 return FALSE;
1426 }
1427
1428 for (i = 1; i < rec.count; i++)
1429 {
1430 precond_e *cond = (precond_e *) xmalloc (sizeof (precond_e));
1431
1432 if (!parse_precond (rec.vec[i], cond))
1433 {
1434 clear_split_rec (&rec);
1435 clear_split_rec (&optionrec);
1436 clear_insn_pattern (insn);
1437 return FALSE;
1438 }
1439
1440 /* Append the condition. */
1441 *insn->preconds.tail = cond;
1442 insn->preconds.tail = &cond->next;
1443 }
1444
1445 for (i = 1; i < optionrec.count; i++)
1446 {
1447 /* Handle the option conditions. */
1448 ReqOption **r_p;
1449 ReqOption *req_option = (ReqOption *) xmalloc (sizeof (ReqOption));
1450 req_option->or_option_terms = NULL;
1451 req_option->next = NULL;
1452
1453 if (!parse_option_cond (optionrec.vec[i], req_option))
1454 {
1455 clear_split_rec (&rec);
1456 clear_split_rec (&optionrec);
1457 clear_insn_pattern (insn);
1458 clear_req_option_list (&req_option);
1459 return FALSE;
1460 }
1461
1462 /* Append the condition. */
1463 for (r_p = &insn->options; (*r_p) != NULL; r_p = &(*r_p)->next)
1464 ;
1465
1466 (*r_p) = req_option;
1467 }
1468
1469 clear_split_rec (&rec);
1470 clear_split_rec (&optionrec);
1471 return TRUE;
1472 }
1473
1474
1475 static bfd_boolean
1476 parse_insn_repl (const char *in, insn_repl *r_p)
1477 {
1478 /* This is a list of instruction templates separated by ';'. */
1479 split_rec rec;
1480 int i;
1481
1482 split_string (&rec, in, ';', TRUE);
1483
1484 for (i = 0; i < rec.count; i++)
1485 {
1486 insn_repl_e *e = (insn_repl_e *) xmalloc (sizeof (insn_repl_e));
1487
1488 e->next = NULL;
1489
1490 if (!parse_insn_templ (rec.vec[i], &e->t))
1491 {
1492 free (e);
1493 clear_insn_repl (r_p);
1494 return FALSE;
1495 }
1496 *r_p->tail = e;
1497 r_p->tail = &e->next;
1498 }
1499 return TRUE;
1500 }
1501
1502
1503 static bfd_boolean
1504 transition_applies (insn_pattern *initial_insn,
1505 const char *from_string ATTRIBUTE_UNUSED,
1506 const char *to_string ATTRIBUTE_UNUSED)
1507 {
1508 ReqOption *req_option;
1509
1510 for (req_option = initial_insn->options;
1511 req_option != NULL;
1512 req_option = req_option->next)
1513 {
1514 ReqOrOption *req_or_option = req_option->or_option_terms;
1515
1516 if (req_or_option == NULL
1517 || req_or_option->next != NULL)
1518 continue;
1519
1520 if (strncmp (req_or_option->option_name, "IsaUse", 6) == 0)
1521 {
1522 bfd_boolean option_available = FALSE;
1523 char *option_name = req_or_option->option_name + 6;
1524 if (!strcmp (option_name, "DensityInstruction"))
1525 option_available = (XCHAL_HAVE_DENSITY == 1);
1526 else if (!strcmp (option_name, "L32R"))
1527 option_available = (XCHAL_HAVE_L32R == 1);
1528 else if (!strcmp (option_name, "Const16"))
1529 option_available = (XCHAL_HAVE_CONST16 == 1);
1530 else if (!strcmp (option_name, "Loops"))
1531 option_available = (XCHAL_HAVE_LOOPS == 1);
1532 else if (!strcmp (option_name, "WideBranches"))
1533 option_available = (XCHAL_HAVE_WIDE_BRANCHES == 1);
1534 else if (!strcmp (option_name, "PredictedBranches"))
1535 option_available = (XCHAL_HAVE_PREDICTED_BRANCHES == 1);
1536 else if (!strcmp (option_name, "Booleans"))
1537 option_available = (XCHAL_HAVE_BOOLEANS == 1);
1538 else
1539 as_warn (_("invalid configuration option '%s' in transition rule '%s'"),
1540 req_or_option->option_name, from_string);
1541 if ((option_available ^ req_or_option->is_true) != 0)
1542 return FALSE;
1543 }
1544 else if (strcmp (req_or_option->option_name, "realnop") == 0)
1545 {
1546 bfd_boolean nop_available =
1547 (xtensa_opcode_lookup (xtensa_default_isa, "nop")
1548 != XTENSA_UNDEFINED);
1549 if ((nop_available ^ req_or_option->is_true) != 0)
1550 return FALSE;
1551 }
1552 }
1553 return TRUE;
1554 }
1555
1556
1557 static TransitionRule *
1558 build_transition (insn_pattern *initial_insn,
1559 insn_repl *replace_insns,
1560 const char *from_string,
1561 const char *to_string)
1562 {
1563 TransitionRule *tr = NULL;
1564 xtensa_opcode opcode;
1565 xtensa_isa isa = xtensa_default_isa;
1566
1567 opname_map_e *op1;
1568 opname_map_e *op2;
1569
1570 precond_e *precond;
1571 insn_repl_e *r;
1572 unsigned label_count = 0;
1573 unsigned max_label_count = 0;
1574 bfd_boolean has_label = FALSE;
1575 unsigned literal_count = 0;
1576
1577 opcode = xtensa_opcode_lookup (isa, initial_insn->t.opcode_name);
1578 if (opcode == XTENSA_UNDEFINED)
1579 {
1580 /* It is OK to not be able to translate some of these opcodes. */
1581 return NULL;
1582 }
1583
1584
1585 if (xtensa_opcode_num_operands (isa, opcode)
1586 != insn_templ_operand_count (&initial_insn->t))
1587 {
1588 /* This is also OK because there are opcodes that
1589 have different numbers of operands on different
1590 architecture variations. */
1591 return NULL;
1592 }
1593
1594 tr = (TransitionRule *) xmalloc (sizeof (TransitionRule));
1595 tr->opcode = opcode;
1596 tr->conditions = NULL;
1597 tr->to_instr = NULL;
1598
1599 /* Build the conditions. First, equivalent operand condition.... */
1600 for (op1 = initial_insn->t.operand_map.head; op1 != NULL; op1 = op1->next)
1601 {
1602 for (op2 = op1->next; op2 != NULL; op2 = op2->next)
1603 {
1604 if (same_operand_name (op1, op2))
1605 {
1606 append_value_condition (tr, OP_EQUAL,
1607 op1->operand_num, op2->operand_num);
1608 }
1609 }
1610 }
1611
1612 /* Now the condition that an operand value must be a constant.... */
1613 for (op1 = initial_insn->t.operand_map.head; op1 != NULL; op1 = op1->next)
1614 {
1615 if (op_is_constant (op1))
1616 {
1617 append_constant_value_condition (tr,
1618 OP_EQUAL,
1619 op1->operand_num,
1620 op_get_constant (op1));
1621 }
1622 }
1623
1624
1625 /* Now add the explicit preconditions listed after the "|" in the spec.
1626 These are currently very limited, so we do a special case
1627 parse for them. We expect spaces, opname != opname. */
1628 for (precond = initial_insn->preconds.head;
1629 precond != NULL;
1630 precond = precond->next)
1631 {
1632 op1 = NULL;
1633 op2 = NULL;
1634
1635 if (precond->opname1)
1636 {
1637 op1 = get_opmatch (&initial_insn->t.operand_map, precond->opname1);
1638 if (op1 == NULL)
1639 {
1640 as_fatal (_("opcode '%s': no bound opname '%s' "
1641 "for precondition in '%s'"),
1642 xtensa_opcode_name (isa, opcode),
1643 precond->opname1, from_string);
1644 return NULL;
1645 }
1646 }
1647
1648 if (precond->opname2)
1649 {
1650 op2 = get_opmatch (&initial_insn->t.operand_map, precond->opname2);
1651 if (op2 == NULL)
1652 {
1653 as_fatal (_("opcode '%s': no bound opname '%s' "
1654 "for precondition in %s"),
1655 xtensa_opcode_name (isa, opcode),
1656 precond->opname2, from_string);
1657 return NULL;
1658 }
1659 }
1660
1661 if (op1 == NULL && op2 == NULL)
1662 {
1663 as_fatal (_("opcode '%s': precondition only contains "
1664 "constants in '%s'"),
1665 xtensa_opcode_name (isa, opcode), from_string);
1666 return NULL;
1667 }
1668 else if (op1 != NULL && op2 != NULL)
1669 append_value_condition (tr, precond->cmpop,
1670 op1->operand_num, op2->operand_num);
1671 else if (op2 == NULL)
1672 append_constant_value_condition (tr, precond->cmpop,
1673 op1->operand_num, precond->opval2);
1674 else
1675 append_constant_value_condition (tr, precond->cmpop,
1676 op2->operand_num, precond->opval1);
1677 }
1678
1679 tr->options = clone_req_option_list (initial_insn->options);
1680
1681 /* Generate the replacement instructions. Some of these
1682 "instructions" are actually labels and literals. The literals
1683 must be defined in order 0..n and a literal must be defined
1684 (e.g., "LITERAL0 %imm") before use (e.g., "%LITERAL0"). The
1685 labels must be defined in order, but they can be used before they
1686 are defined. Also there are a number of special operands (e.g.,
1687 HI24S). */
1688
1689 for (r = replace_insns->head; r != NULL; r = r->next)
1690 {
1691 BuildInstr *bi;
1692 const char *opcode_name;
1693 int operand_count;
1694 opname_map_e *op;
1695 unsigned idnum = 0;
1696 const char *fn_name;
1697 const char *operand_arg_name;
1698
1699 bi = (BuildInstr *) xmalloc (sizeof (BuildInstr));
1700 append_build_insn (tr, bi);
1701
1702 bi->id = 0;
1703 bi->opcode = XTENSA_UNDEFINED;
1704 bi->ops = NULL;
1705 bi->next = NULL;
1706
1707 opcode_name = r->t.opcode_name;
1708 operand_count = insn_templ_operand_count (&r->t);
1709
1710 if (parse_id_constant (opcode_name, "LITERAL", &idnum))
1711 {
1712 bi->typ = INSTR_LITERAL_DEF;
1713 bi->id = idnum;
1714 if (idnum != literal_count)
1715 as_fatal (_("generated literals must be numbered consecutively"));
1716 ++literal_count;
1717 if (operand_count != 1)
1718 as_fatal (_("expected one operand for generated literal"));
1719
1720 }
1721 else if (parse_id_constant (opcode_name, "LABEL", &idnum))
1722 {
1723 bi->typ = INSTR_LABEL_DEF;
1724 bi->id = idnum;
1725 if (idnum != label_count)
1726 as_fatal (_("generated labels must be numbered consecutively"));
1727 ++label_count;
1728 if (operand_count != 0)
1729 as_fatal (_("expected 0 operands for generated label"));
1730 }
1731 else
1732 {
1733 bi->typ = INSTR_INSTR;
1734 bi->opcode = xtensa_opcode_lookup (isa, r->t.opcode_name);
1735 if (bi->opcode == XTENSA_UNDEFINED)
1736 {
1737 as_warn (_("invalid opcode '%s' in transition rule '%s'"),
1738 r->t.opcode_name, to_string);
1739 return NULL;
1740 }
1741 /* Check for the right number of ops. */
1742 if (xtensa_opcode_num_operands (isa, bi->opcode)
1743 != (int) operand_count)
1744 as_fatal (_("opcode '%s': replacement does not have %d ops"),
1745 opcode_name,
1746 xtensa_opcode_num_operands (isa, bi->opcode));
1747 }
1748
1749 for (op = r->t.operand_map.head; op != NULL; op = op->next)
1750 {
1751 unsigned idnum;
1752
1753 if (op_is_constant (op))
1754 append_constant_op (bi, op->operand_num, op_get_constant (op));
1755 else if (parse_id_constant (op->operand_name, "%LITERAL", &idnum))
1756 {
1757 if (idnum >= literal_count)
1758 as_fatal (_("opcode %s: replacement "
1759 "literal %d >= literal_count(%d)"),
1760 opcode_name, idnum, literal_count);
1761 append_literal_op (bi, op->operand_num, idnum);
1762 }
1763 else if (parse_id_constant (op->operand_name, "%LABEL", &idnum))
1764 {
1765 has_label = TRUE;
1766 if (idnum > max_label_count)
1767 max_label_count = idnum;
1768 append_label_op (bi, op->operand_num, idnum);
1769 }
1770 else if (parse_id_constant (op->operand_name, "a", &idnum))
1771 append_constant_op (bi, op->operand_num, idnum);
1772 else if (op->operand_name[0] == '%')
1773 {
1774 opname_map_e *orig_op;
1775 orig_op = get_opmatch (&initial_insn->t.operand_map,
1776 op->operand_name);
1777 if (orig_op == NULL)
1778 {
1779 as_fatal (_("opcode %s: unidentified operand '%s' in '%s'"),
1780 opcode_name, op->operand_name, to_string);
1781
1782 append_constant_op (bi, op->operand_num, 0);
1783 }
1784 else
1785 append_field_op (bi, op->operand_num, orig_op->operand_num);
1786 }
1787 else if (parse_special_fn (op->operand_name,
1788 &fn_name, &operand_arg_name))
1789 {
1790 opname_map_e *orig_op;
1791 OpType typ = OP_CONSTANT;
1792
1793 if (strcmp (fn_name, "LOW8") == 0)
1794 typ = OP_OPERAND_LOW8;
1795 else if (strcmp (fn_name, "HI24S") == 0)
1796 typ = OP_OPERAND_HI24S;
1797 else if (strcmp (fn_name, "F32MINUS") == 0)
1798 typ = OP_OPERAND_F32MINUS;
1799 else if (strcmp (fn_name, "LOW16U") == 0)
1800 typ = OP_OPERAND_LOW16U;
1801 else if (strcmp (fn_name, "HI16U") == 0)
1802 typ = OP_OPERAND_HI16U;
1803 else
1804 as_fatal (_("unknown user-defined function %s"), fn_name);
1805
1806 orig_op = get_opmatch (&initial_insn->t.operand_map,
1807 operand_arg_name);
1808 if (orig_op == NULL)
1809 {
1810 as_fatal (_("opcode %s: unidentified operand '%s' in '%s'"),
1811 opcode_name, op->operand_name, to_string);
1812 append_constant_op (bi, op->operand_num, 0);
1813 }
1814 else
1815 append_user_fn_field_op (bi, op->operand_num,
1816 typ, orig_op->operand_num);
1817 }
1818 else
1819 {
1820 as_fatal (_("opcode %s: could not parse operand '%s' in '%s'"),
1821 opcode_name, op->operand_name, to_string);
1822 append_constant_op (bi, op->operand_num, 0);
1823 }
1824 }
1825 }
1826 if (has_label && max_label_count >= label_count)
1827 {
1828 as_fatal (_("opcode %s: replacement label %d >= label_count(%d)"),
1829 xtensa_opcode_name (isa, opcode),
1830 max_label_count, label_count);
1831 return NULL;
1832 }
1833
1834 return tr;
1835 }
1836
1837
1838 static TransitionTable *
1839 build_transition_table (const string_pattern_pair *transitions,
1840 int transition_count,
1841 transition_cmp_fn cmp)
1842 {
1843 TransitionTable *table = NULL;
1844 int num_opcodes = xtensa_isa_num_opcodes (xtensa_default_isa);
1845 int i, tnum;
1846
1847 if (table != NULL)
1848 return table;
1849
1850 /* Otherwise, build it now. */
1851 table = (TransitionTable *) xmalloc (sizeof (TransitionTable));
1852 table->num_opcodes = num_opcodes;
1853 table->table =
1854 (TransitionList **) xmalloc (sizeof (TransitionTable *) * num_opcodes);
1855
1856 for (i = 0; i < num_opcodes; i++)
1857 table->table[i] = NULL;
1858
1859 for (tnum = 0; tnum < transition_count; tnum++)
1860 {
1861 const char *from_string = transitions[tnum].pattern;
1862 const char *to_string = transitions[tnum].replacement;
1863
1864 insn_pattern initial_insn;
1865 insn_repl replace_insns;
1866 TransitionRule *tr;
1867
1868 init_insn_pattern (&initial_insn);
1869 if (!parse_insn_pattern (from_string, &initial_insn))
1870 {
1871 as_fatal (_("could not parse INSN_PATTERN '%s'"), from_string);
1872 clear_insn_pattern (&initial_insn);
1873 continue;
1874 }
1875
1876 init_insn_repl (&replace_insns);
1877 if (!parse_insn_repl (to_string, &replace_insns))
1878 {
1879 as_fatal (_("could not parse INSN_REPL '%s'"), to_string);
1880 clear_insn_pattern (&initial_insn);
1881 clear_insn_repl (&replace_insns);
1882 continue;
1883 }
1884
1885 if (transition_applies (&initial_insn, from_string, to_string))
1886 {
1887 tr = build_transition (&initial_insn, &replace_insns,
1888 from_string, to_string);
1889 if (tr)
1890 append_transition (table, tr->opcode, tr, cmp);
1891 else
1892 {
1893 #if TENSILICA_DEBUG
1894 as_warn (_("could not build transition for %s => %s"),
1895 from_string, to_string);
1896 #endif
1897 }
1898 }
1899
1900 clear_insn_repl (&replace_insns);
1901 clear_insn_pattern (&initial_insn);
1902 }
1903 return table;
1904 }
1905
1906 \f
1907 extern TransitionTable *
1908 xg_build_widen_table (transition_cmp_fn cmp)
1909 {
1910 static TransitionTable *table = NULL;
1911 if (table == NULL)
1912 table = build_transition_table (widen_spec_list, WIDEN_COUNT, cmp);
1913 return table;
1914 }
1915
1916
1917 extern TransitionTable *
1918 xg_build_simplify_table (transition_cmp_fn cmp)
1919 {
1920 static TransitionTable *table = NULL;
1921 if (table == NULL)
1922 table = build_transition_table (simplify_spec_list, SIMPLIFY_COUNT, cmp);
1923 return table;
1924 }
This page took 0.090839 seconds and 3 git commands to generate.