[binutils][aarch64] New SVE_SHLIMM_UNPRED_22 operand.
[deliverable/binutils-gdb.git] / gas / doc / c-arm.texi
1 @c Copyright (C) 1996-2019 Free Software Foundation, Inc.
2 @c This is part of the GAS manual.
3 @c For copying conditions, see the file as.texinfo.
4
5 @ifset GENERIC
6 @page
7 @node ARM-Dependent
8 @chapter ARM Dependent Features
9 @end ifset
10
11 @ifclear GENERIC
12 @node Machine Dependencies
13 @chapter ARM Dependent Features
14 @end ifclear
15
16 @cindex ARM support
17 @cindex Thumb support
18 @menu
19 * ARM Options:: Options
20 * ARM Syntax:: Syntax
21 * ARM Floating Point:: Floating Point
22 * ARM Directives:: ARM Machine Directives
23 * ARM Opcodes:: Opcodes
24 * ARM Mapping Symbols:: Mapping Symbols
25 * ARM Unwinding Tutorial:: Unwinding
26 @end menu
27
28 @node ARM Options
29 @section Options
30 @cindex ARM options (none)
31 @cindex options for ARM (none)
32
33 @table @code
34
35 @cindex @code{-mcpu=} command-line option, ARM
36 @item -mcpu=@var{processor}[+@var{extension}@dots{}]
37 This option specifies the target processor. The assembler will issue an
38 error message if an attempt is made to assemble an instruction which
39 will not execute on the target processor. The following processor names are
40 recognized:
41 @code{arm1},
42 @code{arm2},
43 @code{arm250},
44 @code{arm3},
45 @code{arm6},
46 @code{arm60},
47 @code{arm600},
48 @code{arm610},
49 @code{arm620},
50 @code{arm7},
51 @code{arm7m},
52 @code{arm7d},
53 @code{arm7dm},
54 @code{arm7di},
55 @code{arm7dmi},
56 @code{arm70},
57 @code{arm700},
58 @code{arm700i},
59 @code{arm710},
60 @code{arm710t},
61 @code{arm720},
62 @code{arm720t},
63 @code{arm740t},
64 @code{arm710c},
65 @code{arm7100},
66 @code{arm7500},
67 @code{arm7500fe},
68 @code{arm7t},
69 @code{arm7tdmi},
70 @code{arm7tdmi-s},
71 @code{arm8},
72 @code{arm810},
73 @code{strongarm},
74 @code{strongarm1},
75 @code{strongarm110},
76 @code{strongarm1100},
77 @code{strongarm1110},
78 @code{arm9},
79 @code{arm920},
80 @code{arm920t},
81 @code{arm922t},
82 @code{arm940t},
83 @code{arm9tdmi},
84 @code{fa526} (Faraday FA526 processor),
85 @code{fa626} (Faraday FA626 processor),
86 @code{arm9e},
87 @code{arm926e},
88 @code{arm926ej-s},
89 @code{arm946e-r0},
90 @code{arm946e},
91 @code{arm946e-s},
92 @code{arm966e-r0},
93 @code{arm966e},
94 @code{arm966e-s},
95 @code{arm968e-s},
96 @code{arm10t},
97 @code{arm10tdmi},
98 @code{arm10e},
99 @code{arm1020},
100 @code{arm1020t},
101 @code{arm1020e},
102 @code{arm1022e},
103 @code{arm1026ej-s},
104 @code{fa606te} (Faraday FA606TE processor),
105 @code{fa616te} (Faraday FA616TE processor),
106 @code{fa626te} (Faraday FA626TE processor),
107 @code{fmp626} (Faraday FMP626 processor),
108 @code{fa726te} (Faraday FA726TE processor),
109 @code{arm1136j-s},
110 @code{arm1136jf-s},
111 @code{arm1156t2-s},
112 @code{arm1156t2f-s},
113 @code{arm1176jz-s},
114 @code{arm1176jzf-s},
115 @code{mpcore},
116 @code{mpcorenovfp},
117 @code{cortex-a5},
118 @code{cortex-a7},
119 @code{cortex-a8},
120 @code{cortex-a9},
121 @code{cortex-a15},
122 @code{cortex-a17},
123 @code{cortex-a32},
124 @code{cortex-a35},
125 @code{cortex-a53},
126 @code{cortex-a55},
127 @code{cortex-a57},
128 @code{cortex-a72},
129 @code{cortex-a73},
130 @code{cortex-a75},
131 @code{cortex-a76},
132 @code{ares},
133 @code{cortex-r4},
134 @code{cortex-r4f},
135 @code{cortex-r5},
136 @code{cortex-r7},
137 @code{cortex-r8},
138 @code{cortex-r52},
139 @code{cortex-m33},
140 @code{cortex-m23},
141 @code{cortex-m7},
142 @code{cortex-m4},
143 @code{cortex-m3},
144 @code{cortex-m1},
145 @code{cortex-m0},
146 @code{cortex-m0plus},
147 @code{exynos-m1},
148 @code{marvell-pj4},
149 @code{marvell-whitney},
150 @code{neoverse-n1},
151 @code{xgene1},
152 @code{xgene2},
153 @code{ep9312} (ARM920 with Cirrus Maverick coprocessor),
154 @code{i80200} (Intel XScale processor)
155 @code{iwmmxt} (Intel(r) XScale processor with Wireless MMX(tm) technology coprocessor)
156 and
157 @code{xscale}.
158 The special name @code{all} may be used to allow the
159 assembler to accept instructions valid for any ARM processor.
160
161 In addition to the basic instruction set, the assembler can be told to
162 accept various extension mnemonics that extend the processor using the
163 co-processor instruction space. For example, @code{-mcpu=arm920+maverick}
164 is equivalent to specifying @code{-mcpu=ep9312}.
165
166 Multiple extensions may be specified, separated by a @code{+}. The
167 extensions should be specified in ascending alphabetical order.
168
169 Some extensions may be restricted to particular architectures; this is
170 documented in the list of extensions below.
171
172 Extension mnemonics may also be removed from those the assembler accepts.
173 This is done be prepending @code{no} to the option that adds the extension.
174 Extensions that are removed should be listed after all extensions which have
175 been added, again in ascending alphabetical order. For example,
176 @code{-mcpu=ep9312+nomaverick} is equivalent to specifying @code{-mcpu=arm920}.
177
178
179 The following extensions are currently supported:
180 @code{crc}
181 @code{crypto} (Cryptography Extensions for v8-A architecture, implies @code{fp+simd}),
182 @code{dotprod} (Dot Product Extensions for v8.2-A architecture, implies @code{fp+simd}),
183 @code{fp} (Floating Point Extensions for v8-A architecture),
184 @code{fp16} (FP16 Extensions for v8.2-A architecture, implies @code{fp}),
185 @code{fp16fml} (FP16 Floating Point Multiplication Variant Extensions for v8.2-A architecture, implies @code{fp16}),
186 @code{idiv} (Integer Divide Extensions for v7-A and v7-R architectures),
187 @code{iwmmxt},
188 @code{iwmmxt2},
189 @code{xscale},
190 @code{maverick},
191 @code{mp} (Multiprocessing Extensions for v7-A and v7-R
192 architectures),
193 @code{os} (Operating System for v6M architecture),
194 @code{predres} (Execution and Data Prediction Restriction Instruction for
195 v8-A architectures, added by default from v8.5-A),
196 @code{sb} (Speculation Barrier Instruction for v8-A architectures, added by
197 default from v8.5-A),
198 @code{sec} (Security Extensions for v6K and v7-A architectures),
199 @code{simd} (Advanced SIMD Extensions for v8-A architecture, implies @code{fp}),
200 @code{virt} (Virtualization Extensions for v7-A architecture, implies
201 @code{idiv}),
202 @code{pan} (Privileged Access Never Extensions for v8-A architecture),
203 @code{ras} (Reliability, Availability and Serviceability extensions
204 for v8-A architecture),
205 @code{rdma} (ARMv8.1 Advanced SIMD extensions for v8-A architecture, implies
206 @code{simd})
207 and
208 @code{xscale}.
209
210 @cindex @code{-march=} command-line option, ARM
211 @item -march=@var{architecture}[+@var{extension}@dots{}]
212 This option specifies the target architecture. The assembler will issue
213 an error message if an attempt is made to assemble an instruction which
214 will not execute on the target architecture. The following architecture
215 names are recognized:
216 @code{armv1},
217 @code{armv2},
218 @code{armv2a},
219 @code{armv2s},
220 @code{armv3},
221 @code{armv3m},
222 @code{armv4},
223 @code{armv4xm},
224 @code{armv4t},
225 @code{armv4txm},
226 @code{armv5},
227 @code{armv5t},
228 @code{armv5txm},
229 @code{armv5te},
230 @code{armv5texp},
231 @code{armv6},
232 @code{armv6j},
233 @code{armv6k},
234 @code{armv6z},
235 @code{armv6kz},
236 @code{armv6-m},
237 @code{armv6s-m},
238 @code{armv7},
239 @code{armv7-a},
240 @code{armv7ve},
241 @code{armv7-r},
242 @code{armv7-m},
243 @code{armv7e-m},
244 @code{armv8-a},
245 @code{armv8.1-a},
246 @code{armv8.2-a},
247 @code{armv8.3-a},
248 @code{armv8-r},
249 @code{armv8.4-a},
250 @code{armv8.5-a},
251 @code{armv8-m.base},
252 @code{armv8-m.main},
253 @code{armv8.1-m.main},
254 @code{iwmmxt},
255 @code{iwmmxt2}
256 and
257 @code{xscale}.
258 If both @code{-mcpu} and
259 @code{-march} are specified, the assembler will use
260 the setting for @code{-mcpu}.
261
262 The architecture option can be extended with a set extension options. These
263 extensions are context sensitive, i.e. the same extension may mean different
264 things when used with different architectures. When used together with a
265 @code{-mfpu} option, the union of both feature enablement is taken.
266 See their availability and meaning below:
267
268 For @code{armv5te}, @code{armv5texp}, @code{armv5tej}, @code{armv6}, @code{armv6j}, @code{armv6k}, @code{armv6z}, @code{armv6kz}, @code{armv6zk}, @code{armv6t2}, @code{armv6kt2} and @code{armv6zt2}:
269
270 @code{+fp}: Enables VFPv2 instructions.
271 @code{+nofp}: Disables all FPU instrunctions.
272
273 For @code{armv7}:
274
275 @code{+fp}: Enables VFPv3 instructions with 16 double-word registers.
276 @code{+nofp}: Disables all FPU instructions.
277
278 For @code{armv7-a}:
279
280 @code{+fp}: Enables VFPv3 instructions with 16 double-word registers.
281 @code{+vfpv3-d16}: Alias for @code{+fp}.
282 @code{+vfpv3}: Enables VFPv3 instructions with 32 double-word registers.
283 @code{+vfpv3-d16-fp16}: Enables VFPv3 with half precision floating-point
284 conversion instructions and 16 double-word registers.
285 @code{+vfpv3-fp16}: Enables VFPv3 with half precision floating-point conversion
286 instructions and 32 double-word registers.
287 @code{+vfpv4-d16}: Enables VFPv4 instructions with 16 double-word registers.
288 @code{+vfpv4}: Enables VFPv4 instructions with 32 double-word registers.
289 @code{+simd}: Enables VFPv3 and NEONv1 instructions with 32 double-word
290 registers.
291 @code{+neon}: Alias for @code{+simd}.
292 @code{+neon-vfpv3}: Alias for @code{+simd}.
293 @code{+neon-fp16}: Enables VFPv3, half precision floating-point conversion and
294 NEONv1 instructions with 32 double-word registers.
295 @code{+neon-vfpv4}: Enables VFPv4 and NEONv1 with Fused-MAC instructions and 32
296 double-word registers.
297 @code{+mp}: Enables Multiprocessing Extensions.
298 @code{+sec}: Enables Security Extensions.
299 @code{+nofp}: Disables all FPU and NEON instructions.
300 @code{+nosimd}: Disables all NEON instructions.
301
302 For @code{armv7ve}:
303
304 @code{+fp}: Enables VFPv4 instructions with 16 double-word registers.
305 @code{+vfpv4-d16}: Alias for @code{+fp}.
306 @code{+vfpv3-d16}: Enables VFPv3 instructions with 16 double-word registers.
307 @code{+vfpv3}: Enables VFPv3 instructions with 32 double-word registers.
308 @code{+vfpv3-d16-fp16}: Enables VFPv3 with half precision floating-point
309 conversion instructions and 16 double-word registers.
310 @code{+vfpv3-fp16}: Enables VFPv3 with half precision floating-point conversion
311 instructions and 32 double-word registers.
312 @code{+vfpv4}: Enables VFPv4 instructions with 32 double-word registers.
313 @code{+simd}: Enables VFPv4 and NEONv1 with Fused-MAC instructions and 32
314 double-word registers.
315 @code{+neon-vfpv4}: Alias for @code{+simd}.
316 @code{+neon}: Enables VFPv3 and NEONv1 instructions with 32 double-word
317 registers.
318 @code{+neon-vfpv3}: Alias for @code{+neon}.
319 @code{+neon-fp16}: Enables VFPv3, half precision floating-point conversion and
320 NEONv1 instructions with 32 double-word registers.
321 double-word registers.
322 @code{+nofp}: Disables all FPU and NEON instructions.
323 @code{+nosimd}: Disables all NEON instructions.
324
325 For @code{armv7-r}:
326
327 @code{+fp.sp}: Enables single-precision only VFPv3 instructions with 16
328 double-word registers.
329 @code{+vfpv3xd}: Alias for @code{+fp.sp}.
330 @code{+fp}: Enables VFPv3 instructions with 16 double-word registers.
331 @code{+vfpv3-d16}: Alias for @code{+fp}.
332 @code{+vfpv3xd-fp16}: Enables single-precision only VFPv3 and half
333 floating-point conversion instructions with 16 double-word registers.
334 @code{+vfpv3-d16-fp16}: Enables VFPv3 and half precision floating-point
335 conversion instructions with 16 double-word registers.
336 @code{+idiv}: Enables integer division instructions in ARM mode.
337 @code{+nofp}: Disables all FPU instructions.
338
339 For @code{armv7e-m}:
340
341 @code{+fp}: Enables single-precision only VFPv4 instructions with 16
342 double-word registers.
343 @code{+vfpvf4-sp-d16}: Alias for @code{+fp}.
344 @code{+fpv5}: Enables single-precision only VFPv5 instructions with 16
345 double-word registers.
346 @code{+fp.dp}: Enables VFPv5 instructions with 16 double-word registers.
347 @code{+fpv5-d16"}: Alias for @code{+fp.dp}.
348 @code{+nofp}: Disables all FPU instructions.
349
350 For @code{armv8-m.main}:
351
352 @code{+dsp}: Enables DSP Extension.
353 @code{+fp}: Enables single-precision only VFPv5 instructions with 16
354 double-word registers.
355 @code{+fp.dp}: Enables VFPv5 instructions with 16 double-word registers.
356 @code{+nofp}: Disables all FPU instructions.
357 @code{+nodsp}: Disables DSP Extension.
358
359 For @code{armv8.1-m.main}:
360
361 @code{+dsp}: Enables DSP Extension.
362 @code{+fp}: Enables single and half precision scalar Floating Point Extensions
363 for Armv8.1-M Mainline with 16 double-word registers.
364 @code{+fp.dp}: Enables double precision scalar Floating Point Extensions for
365 Armv8.1-M Mainline, implies @code{+fp}.
366 @code{+nofp}: Disables all FPU instructions.
367 @code{+nodsp}: Disables DSP Extension.
368
369 For @code{armv8-a}:
370
371 @code{+crc}: Enables CRC32 Extension.
372 @code{+simd}: Enables VFP and NEON for Armv8-A.
373 @code{+crypto}: Enables Cryptography Extensions for Armv8-A, implies
374 @code{+simd}.
375 @code{+sb}: Enables Speculation Barrier Instruction for Armv8-A.
376 @code{+predres}: Enables Execution and Data Prediction Restriction Instruction
377 for Armv8-A.
378 @code{+nofp}: Disables all FPU, NEON and Cryptography Extensions.
379 @code{+nocrypto}: Disables Cryptography Extensions.
380
381 For @code{armv8.1-a}:
382
383 @code{+simd}: Enables VFP and NEON for Armv8.1-A.
384 @code{+crypto}: Enables Cryptography Extensions for Armv8-A, implies
385 @code{+simd}.
386 @code{+sb}: Enables Speculation Barrier Instruction for Armv8-A.
387 @code{+predres}: Enables Execution and Data Prediction Restriction Instruction
388 for Armv8-A.
389 @code{+nofp}: Disables all FPU, NEON and Cryptography Extensions.
390 @code{+nocrypto}: Disables Cryptography Extensions.
391
392 For @code{armv8.2-a} and @code{armv8.3-a}:
393
394 @code{+simd}: Enables VFP and NEON for Armv8.1-A.
395 @code{+fp16}: Enables FP16 Extension for Armv8.2-A, implies @code{+simd}.
396 @code{+fp16fml}: Enables FP16 Floating Point Multiplication Variant Extensions
397 for Armv8.2-A, implies @code{+fp16}.
398 @code{+crypto}: Enables Cryptography Extensions for Armv8-A, implies
399 @code{+simd}.
400 @code{+dotprod}: Enables Dot Product Extensions for Armv8.2-A, implies
401 @code{+simd}.
402 @code{+sb}: Enables Speculation Barrier Instruction for Armv8-A.
403 @code{+predres}: Enables Execution and Data Prediction Restriction Instruction
404 for Armv8-A.
405 @code{+nofp}: Disables all FPU, NEON, Cryptography and Dot Product Extensions.
406 @code{+nocrypto}: Disables Cryptography Extensions.
407
408 For @code{armv8.4-a}:
409
410 @code{+simd}: Enables VFP and NEON for Armv8.1-A and Dot Product Extensions for
411 Armv8.2-A.
412 @code{+fp16}: Enables FP16 Floating Point and Floating Point Multiplication
413 Variant Extensions for Armv8.2-A, implies @code{+simd}.
414 @code{+crypto}: Enables Cryptography Extensions for Armv8-A, implies
415 @code{+simd}.
416 @code{+sb}: Enables Speculation Barrier Instruction for Armv8-A.
417 @code{+predres}: Enables Execution and Data Prediction Restriction Instruction
418 for Armv8-A.
419 @code{+nofp}: Disables all FPU, NEON, Cryptography and Dot Product Extensions.
420 @code{+nocryptp}: Disables Cryptography Extensions.
421
422 For @code{armv8.5-a}:
423
424 @code{+simd}: Enables VFP and NEON for Armv8.1-A and Dot Product Extensions for
425 Armv8.2-A.
426 @code{+fp16}: Enables FP16 Floating Point and Floating Point Multiplication
427 Variant Extensions for Armv8.2-A, implies @code{+simd}.
428 @code{+crypto}: Enables Cryptography Extensions for Armv8-A, implies
429 @code{+simd}.
430 @code{+nofp}: Disables all FPU, NEON, Cryptography and Dot Product Extensions.
431 @code{+nocryptp}: Disables Cryptography Extensions.
432
433
434 @cindex @code{-mfpu=} command-line option, ARM
435 @item -mfpu=@var{floating-point-format}
436
437 This option specifies the floating point format to assemble for. The
438 assembler will issue an error message if an attempt is made to assemble
439 an instruction which will not execute on the target floating point unit.
440 The following format options are recognized:
441 @code{softfpa},
442 @code{fpe},
443 @code{fpe2},
444 @code{fpe3},
445 @code{fpa},
446 @code{fpa10},
447 @code{fpa11},
448 @code{arm7500fe},
449 @code{softvfp},
450 @code{softvfp+vfp},
451 @code{vfp},
452 @code{vfp10},
453 @code{vfp10-r0},
454 @code{vfp9},
455 @code{vfpxd},
456 @code{vfpv2},
457 @code{vfpv3},
458 @code{vfpv3-fp16},
459 @code{vfpv3-d16},
460 @code{vfpv3-d16-fp16},
461 @code{vfpv3xd},
462 @code{vfpv3xd-d16},
463 @code{vfpv4},
464 @code{vfpv4-d16},
465 @code{fpv4-sp-d16},
466 @code{fpv5-sp-d16},
467 @code{fpv5-d16},
468 @code{fp-armv8},
469 @code{arm1020t},
470 @code{arm1020e},
471 @code{arm1136jf-s},
472 @code{maverick},
473 @code{neon},
474 @code{neon-vfpv3},
475 @code{neon-fp16},
476 @code{neon-vfpv4},
477 @code{neon-fp-armv8},
478 @code{crypto-neon-fp-armv8},
479 @code{neon-fp-armv8.1}
480 and
481 @code{crypto-neon-fp-armv8.1}.
482
483 In addition to determining which instructions are assembled, this option
484 also affects the way in which the @code{.double} assembler directive behaves
485 when assembling little-endian code.
486
487 The default is dependent on the processor selected. For Architecture 5 or
488 later, the default is to assemble for VFP instructions; for earlier
489 architectures the default is to assemble for FPA instructions.
490
491 @cindex @code{-mthumb} command-line option, ARM
492 @item -mthumb
493 This option specifies that the assembler should start assembling Thumb
494 instructions; that is, it should behave as though the file starts with a
495 @code{.code 16} directive.
496
497 @cindex @code{-mthumb-interwork} command-line option, ARM
498 @item -mthumb-interwork
499 This option specifies that the output generated by the assembler should
500 be marked as supporting interworking. It also affects the behaviour
501 of the @code{ADR} and @code{ADRL} pseudo opcodes.
502
503 @cindex @code{-mimplicit-it} command-line option, ARM
504 @item -mimplicit-it=never
505 @itemx -mimplicit-it=always
506 @itemx -mimplicit-it=arm
507 @itemx -mimplicit-it=thumb
508 The @code{-mimplicit-it} option controls the behavior of the assembler when
509 conditional instructions are not enclosed in IT blocks.
510 There are four possible behaviors.
511 If @code{never} is specified, such constructs cause a warning in ARM
512 code and an error in Thumb-2 code.
513 If @code{always} is specified, such constructs are accepted in both
514 ARM and Thumb-2 code, where the IT instruction is added implicitly.
515 If @code{arm} is specified, such constructs are accepted in ARM code
516 and cause an error in Thumb-2 code.
517 If @code{thumb} is specified, such constructs cause a warning in ARM
518 code and are accepted in Thumb-2 code. If you omit this option, the
519 behavior is equivalent to @code{-mimplicit-it=arm}.
520
521 @cindex @code{-mapcs-26} command-line option, ARM
522 @cindex @code{-mapcs-32} command-line option, ARM
523 @item -mapcs-26
524 @itemx -mapcs-32
525 These options specify that the output generated by the assembler should
526 be marked as supporting the indicated version of the Arm Procedure.
527 Calling Standard.
528
529 @cindex @code{-matpcs} command-line option, ARM
530 @item -matpcs
531 This option specifies that the output generated by the assembler should
532 be marked as supporting the Arm/Thumb Procedure Calling Standard. If
533 enabled this option will cause the assembler to create an empty
534 debugging section in the object file called .arm.atpcs. Debuggers can
535 use this to determine the ABI being used by.
536
537 @cindex @code{-mapcs-float} command-line option, ARM
538 @item -mapcs-float
539 This indicates the floating point variant of the APCS should be
540 used. In this variant floating point arguments are passed in FP
541 registers rather than integer registers.
542
543 @cindex @code{-mapcs-reentrant} command-line option, ARM
544 @item -mapcs-reentrant
545 This indicates that the reentrant variant of the APCS should be used.
546 This variant supports position independent code.
547
548 @cindex @code{-mfloat-abi=} command-line option, ARM
549 @item -mfloat-abi=@var{abi}
550 This option specifies that the output generated by the assembler should be
551 marked as using specified floating point ABI.
552 The following values are recognized:
553 @code{soft},
554 @code{softfp}
555 and
556 @code{hard}.
557
558 @cindex @code{-eabi=} command-line option, ARM
559 @item -meabi=@var{ver}
560 This option specifies which EABI version the produced object files should
561 conform to.
562 The following values are recognized:
563 @code{gnu},
564 @code{4}
565 and
566 @code{5}.
567
568 @cindex @code{-EB} command-line option, ARM
569 @item -EB
570 This option specifies that the output generated by the assembler should
571 be marked as being encoded for a big-endian processor.
572
573 Note: If a program is being built for a system with big-endian data
574 and little-endian instructions then it should be assembled with the
575 @option{-EB} option, (all of it, code and data) and then linked with
576 the @option{--be8} option. This will reverse the endianness of the
577 instructions back to little-endian, but leave the data as big-endian.
578
579 @cindex @code{-EL} command-line option, ARM
580 @item -EL
581 This option specifies that the output generated by the assembler should
582 be marked as being encoded for a little-endian processor.
583
584 @cindex @code{-k} command-line option, ARM
585 @cindex PIC code generation for ARM
586 @item -k
587 This option specifies that the output of the assembler should be marked
588 as position-independent code (PIC).
589
590 @cindex @code{--fix-v4bx} command-line option, ARM
591 @item --fix-v4bx
592 Allow @code{BX} instructions in ARMv4 code. This is intended for use with
593 the linker option of the same name.
594
595 @cindex @code{-mwarn-deprecated} command-line option, ARM
596 @item -mwarn-deprecated
597 @itemx -mno-warn-deprecated
598 Enable or disable warnings about using deprecated options or
599 features. The default is to warn.
600
601 @cindex @code{-mccs} command-line option, ARM
602 @item -mccs
603 Turns on CodeComposer Studio assembly syntax compatibility mode.
604
605 @cindex @code{-mwarn-syms} command-line option, ARM
606 @item -mwarn-syms
607 @itemx -mno-warn-syms
608 Enable or disable warnings about symbols that match the names of ARM
609 instructions. The default is to warn.
610
611 @end table
612
613
614 @node ARM Syntax
615 @section Syntax
616 @menu
617 * ARM-Instruction-Set:: Instruction Set
618 * ARM-Chars:: Special Characters
619 * ARM-Regs:: Register Names
620 * ARM-Relocations:: Relocations
621 * ARM-Neon-Alignment:: NEON Alignment Specifiers
622 @end menu
623
624 @node ARM-Instruction-Set
625 @subsection Instruction Set Syntax
626 Two slightly different syntaxes are support for ARM and THUMB
627 instructions. The default, @code{divided}, uses the old style where
628 ARM and THUMB instructions had their own, separate syntaxes. The new,
629 @code{unified} syntax, which can be selected via the @code{.syntax}
630 directive, and has the following main features:
631
632 @itemize @bullet
633 @item
634 Immediate operands do not require a @code{#} prefix.
635
636 @item
637 The @code{IT} instruction may appear, and if it does it is validated
638 against subsequent conditional affixes. In ARM mode it does not
639 generate machine code, in THUMB mode it does.
640
641 @item
642 For ARM instructions the conditional affixes always appear at the end
643 of the instruction. For THUMB instructions conditional affixes can be
644 used, but only inside the scope of an @code{IT} instruction.
645
646 @item
647 All of the instructions new to the V6T2 architecture (and later) are
648 available. (Only a few such instructions can be written in the
649 @code{divided} syntax).
650
651 @item
652 The @code{.N} and @code{.W} suffixes are recognized and honored.
653
654 @item
655 All instructions set the flags if and only if they have an @code{s}
656 affix.
657 @end itemize
658
659 @node ARM-Chars
660 @subsection Special Characters
661
662 @cindex line comment character, ARM
663 @cindex ARM line comment character
664 The presence of a @samp{@@} anywhere on a line indicates the start of
665 a comment that extends to the end of that line.
666
667 If a @samp{#} appears as the first character of a line then the whole
668 line is treated as a comment, but in this case the line could also be
669 a logical line number directive (@pxref{Comments}) or a preprocessor
670 control command (@pxref{Preprocessing}).
671
672 @cindex line separator, ARM
673 @cindex statement separator, ARM
674 @cindex ARM line separator
675 The @samp{;} character can be used instead of a newline to separate
676 statements.
677
678 @cindex immediate character, ARM
679 @cindex ARM immediate character
680 Either @samp{#} or @samp{$} can be used to indicate immediate operands.
681
682 @cindex identifiers, ARM
683 @cindex ARM identifiers
684 *TODO* Explain about /data modifier on symbols.
685
686 @node ARM-Regs
687 @subsection Register Names
688
689 @cindex ARM register names
690 @cindex register names, ARM
691 *TODO* Explain about ARM register naming, and the predefined names.
692
693 @node ARM-Relocations
694 @subsection ARM relocation generation
695
696 @cindex data relocations, ARM
697 @cindex ARM data relocations
698 Specific data relocations can be generated by putting the relocation name
699 in parentheses after the symbol name. For example:
700
701 @smallexample
702 .word foo(TARGET1)
703 @end smallexample
704
705 This will generate an @samp{R_ARM_TARGET1} relocation against the symbol
706 @var{foo}.
707 The following relocations are supported:
708 @code{GOT},
709 @code{GOTOFF},
710 @code{TARGET1},
711 @code{TARGET2},
712 @code{SBREL},
713 @code{TLSGD},
714 @code{TLSLDM},
715 @code{TLSLDO},
716 @code{TLSDESC},
717 @code{TLSCALL},
718 @code{GOTTPOFF},
719 @code{GOT_PREL}
720 and
721 @code{TPOFF}.
722
723 For compatibility with older toolchains the assembler also accepts
724 @code{(PLT)} after branch targets. On legacy targets this will
725 generate the deprecated @samp{R_ARM_PLT32} relocation. On EABI
726 targets it will encode either the @samp{R_ARM_CALL} or
727 @samp{R_ARM_JUMP24} relocation, as appropriate.
728
729 @cindex MOVW and MOVT relocations, ARM
730 Relocations for @samp{MOVW} and @samp{MOVT} instructions can be generated
731 by prefixing the value with @samp{#:lower16:} and @samp{#:upper16}
732 respectively. For example to load the 32-bit address of foo into r0:
733
734 @smallexample
735 MOVW r0, #:lower16:foo
736 MOVT r0, #:upper16:foo
737 @end smallexample
738
739 Relocations @samp{R_ARM_THM_ALU_ABS_G0_NC}, @samp{R_ARM_THM_ALU_ABS_G1_NC},
740 @samp{R_ARM_THM_ALU_ABS_G2_NC} and @samp{R_ARM_THM_ALU_ABS_G3_NC} can be
741 generated by prefixing the value with @samp{#:lower0_7:#},
742 @samp{#:lower8_15:#}, @samp{#:upper0_7:#} and @samp{#:upper8_15:#}
743 respectively. For example to load the 32-bit address of foo into r0:
744
745 @smallexample
746 MOVS r0, #:upper8_15:#foo
747 LSLS r0, r0, #8
748 ADDS r0, #:upper0_7:#foo
749 LSLS r0, r0, #8
750 ADDS r0, #:lower8_15:#foo
751 LSLS r0, r0, #8
752 ADDS r0, #:lower0_7:#foo
753 @end smallexample
754
755 @node ARM-Neon-Alignment
756 @subsection NEON Alignment Specifiers
757
758 @cindex alignment for NEON instructions
759 Some NEON load/store instructions allow an optional address
760 alignment qualifier.
761 The ARM documentation specifies that this is indicated by
762 @samp{@@ @var{align}}. However GAS already interprets
763 the @samp{@@} character as a "line comment" start,
764 so @samp{: @var{align}} is used instead. For example:
765
766 @smallexample
767 vld1.8 @{q0@}, [r0, :128]
768 @end smallexample
769
770 @node ARM Floating Point
771 @section Floating Point
772
773 @cindex floating point, ARM (@sc{ieee})
774 @cindex ARM floating point (@sc{ieee})
775 The ARM family uses @sc{ieee} floating-point numbers.
776
777 @node ARM Directives
778 @section ARM Machine Directives
779
780 @cindex machine directives, ARM
781 @cindex ARM machine directives
782 @table @code
783
784 @c AAAAAAAAAAAAAAAAAAAAAAAAA
785
786 @ifclear ELF
787 @cindex @code{.2byte} directive, ARM
788 @cindex @code{.4byte} directive, ARM
789 @cindex @code{.8byte} directive, ARM
790 @item .2byte @var{expression} [, @var{expression}]*
791 @itemx .4byte @var{expression} [, @var{expression}]*
792 @itemx .8byte @var{expression} [, @var{expression}]*
793 These directives write 2, 4 or 8 byte values to the output section.
794 @end ifclear
795
796 @cindex @code{.align} directive, ARM
797 @item .align @var{expression} [, @var{expression}]
798 This is the generic @var{.align} directive. For the ARM however if the
799 first argument is zero (ie no alignment is needed) the assembler will
800 behave as if the argument had been 2 (ie pad to the next four byte
801 boundary). This is for compatibility with ARM's own assembler.
802
803 @cindex @code{.arch} directive, ARM
804 @item .arch @var{name}
805 Select the target architecture. Valid values for @var{name} are the same as
806 for the @option{-march} command-line option without the instruction set
807 extension.
808
809 Specifying @code{.arch} clears any previously selected architecture
810 extensions.
811
812 @cindex @code{.arch_extension} directive, ARM
813 @item .arch_extension @var{name}
814 Add or remove an architecture extension to the target architecture. Valid
815 values for @var{name} are the same as those accepted as architectural
816 extensions by the @option{-mcpu} and @option{-march} command-line options.
817
818 @code{.arch_extension} may be used multiple times to add or remove extensions
819 incrementally to the architecture being compiled for.
820
821 @cindex @code{.arm} directive, ARM
822 @item .arm
823 This performs the same action as @var{.code 32}.
824
825 @c BBBBBBBBBBBBBBBBBBBBBBBBBB
826
827 @cindex @code{.bss} directive, ARM
828 @item .bss
829 This directive switches to the @code{.bss} section.
830
831 @c CCCCCCCCCCCCCCCCCCCCCCCCCC
832
833 @cindex @code{.cantunwind} directive, ARM
834 @item .cantunwind
835 Prevents unwinding through the current function. No personality routine
836 or exception table data is required or permitted.
837
838 @cindex @code{.code} directive, ARM
839 @item .code @code{[16|32]}
840 This directive selects the instruction set being generated. The value 16
841 selects Thumb, with the value 32 selecting ARM.
842
843 @cindex @code{.cpu} directive, ARM
844 @item .cpu @var{name}
845 Select the target processor. Valid values for @var{name} are the same as
846 for the @option{-mcpu} command-line option without the instruction set
847 extension.
848
849 Specifying @code{.cpu} clears any previously selected architecture
850 extensions.
851
852 @c DDDDDDDDDDDDDDDDDDDDDDDDDD
853
854 @cindex @code{.dn} and @code{.qn} directives, ARM
855 @item @var{name} .dn @var{register name} [@var{.type}] [[@var{index}]]
856 @itemx @var{name} .qn @var{register name} [@var{.type}] [[@var{index}]]
857
858 The @code{dn} and @code{qn} directives are used to create typed
859 and/or indexed register aliases for use in Advanced SIMD Extension
860 (Neon) instructions. The former should be used to create aliases
861 of double-precision registers, and the latter to create aliases of
862 quad-precision registers.
863
864 If these directives are used to create typed aliases, those aliases can
865 be used in Neon instructions instead of writing types after the mnemonic
866 or after each operand. For example:
867
868 @smallexample
869 x .dn d2.f32
870 y .dn d3.f32
871 z .dn d4.f32[1]
872 vmul x,y,z
873 @end smallexample
874
875 This is equivalent to writing the following:
876
877 @smallexample
878 vmul.f32 d2,d3,d4[1]
879 @end smallexample
880
881 Aliases created using @code{dn} or @code{qn} can be destroyed using
882 @code{unreq}.
883
884 @c EEEEEEEEEEEEEEEEEEEEEEEEEE
885
886 @cindex @code{.eabi_attribute} directive, ARM
887 @item .eabi_attribute @var{tag}, @var{value}
888 Set the EABI object attribute @var{tag} to @var{value}.
889
890 The @var{tag} is either an attribute number, or one of the following:
891 @code{Tag_CPU_raw_name}, @code{Tag_CPU_name}, @code{Tag_CPU_arch},
892 @code{Tag_CPU_arch_profile}, @code{Tag_ARM_ISA_use},
893 @code{Tag_THUMB_ISA_use}, @code{Tag_FP_arch}, @code{Tag_WMMX_arch},
894 @code{Tag_Advanced_SIMD_arch}, @code{Tag_PCS_config},
895 @code{Tag_ABI_PCS_R9_use}, @code{Tag_ABI_PCS_RW_data},
896 @code{Tag_ABI_PCS_RO_data}, @code{Tag_ABI_PCS_GOT_use},
897 @code{Tag_ABI_PCS_wchar_t}, @code{Tag_ABI_FP_rounding},
898 @code{Tag_ABI_FP_denormal}, @code{Tag_ABI_FP_exceptions},
899 @code{Tag_ABI_FP_user_exceptions}, @code{Tag_ABI_FP_number_model},
900 @code{Tag_ABI_align_needed}, @code{Tag_ABI_align_preserved},
901 @code{Tag_ABI_enum_size}, @code{Tag_ABI_HardFP_use},
902 @code{Tag_ABI_VFP_args}, @code{Tag_ABI_WMMX_args},
903 @code{Tag_ABI_optimization_goals}, @code{Tag_ABI_FP_optimization_goals},
904 @code{Tag_compatibility}, @code{Tag_CPU_unaligned_access},
905 @code{Tag_FP_HP_extension}, @code{Tag_ABI_FP_16bit_format},
906 @code{Tag_MPextension_use}, @code{Tag_DIV_use},
907 @code{Tag_nodefaults}, @code{Tag_also_compatible_with},
908 @code{Tag_conformance}, @code{Tag_T2EE_use},
909 @code{Tag_Virtualization_use}
910
911 The @var{value} is either a @code{number}, @code{"string"}, or
912 @code{number, "string"} depending on the tag.
913
914 Note - the following legacy values are also accepted by @var{tag}:
915 @code{Tag_VFP_arch}, @code{Tag_ABI_align8_needed},
916 @code{Tag_ABI_align8_preserved}, @code{Tag_VFP_HP_extension},
917
918 @cindex @code{.even} directive, ARM
919 @item .even
920 This directive aligns to an even-numbered address.
921
922 @cindex @code{.extend} directive, ARM
923 @cindex @code{.ldouble} directive, ARM
924 @item .extend @var{expression} [, @var{expression}]*
925 @itemx .ldouble @var{expression} [, @var{expression}]*
926 These directives write 12byte long double floating-point values to the
927 output section. These are not compatible with current ARM processors
928 or ABIs.
929
930 @c FFFFFFFFFFFFFFFFFFFFFFFFFF
931
932 @anchor{arm_fnend}
933 @cindex @code{.fnend} directive, ARM
934 @item .fnend
935 Marks the end of a function with an unwind table entry. The unwind index
936 table entry is created when this directive is processed.
937
938 If no personality routine has been specified then standard personality
939 routine 0 or 1 will be used, depending on the number of unwind opcodes
940 required.
941
942 @anchor{arm_fnstart}
943 @cindex @code{.fnstart} directive, ARM
944 @item .fnstart
945 Marks the start of a function with an unwind table entry.
946
947 @cindex @code{.force_thumb} directive, ARM
948 @item .force_thumb
949 This directive forces the selection of Thumb instructions, even if the
950 target processor does not support those instructions
951
952 @cindex @code{.fpu} directive, ARM
953 @item .fpu @var{name}
954 Select the floating-point unit to assemble for. Valid values for @var{name}
955 are the same as for the @option{-mfpu} command-line option.
956
957 @c GGGGGGGGGGGGGGGGGGGGGGGGGG
958 @c HHHHHHHHHHHHHHHHHHHHHHHHHH
959
960 @cindex @code{.handlerdata} directive, ARM
961 @item .handlerdata
962 Marks the end of the current function, and the start of the exception table
963 entry for that function. Anything between this directive and the
964 @code{.fnend} directive will be added to the exception table entry.
965
966 Must be preceded by a @code{.personality} or @code{.personalityindex}
967 directive.
968
969 @c IIIIIIIIIIIIIIIIIIIIIIIIII
970
971 @cindex @code{.inst} directive, ARM
972 @item .inst @var{opcode} [ , @dots{} ]
973 @itemx .inst.n @var{opcode} [ , @dots{} ]
974 @itemx .inst.w @var{opcode} [ , @dots{} ]
975 Generates the instruction corresponding to the numerical value @var{opcode}.
976 @code{.inst.n} and @code{.inst.w} allow the Thumb instruction size to be
977 specified explicitly, overriding the normal encoding rules.
978
979 @c JJJJJJJJJJJJJJJJJJJJJJJJJJ
980 @c KKKKKKKKKKKKKKKKKKKKKKKKKK
981 @c LLLLLLLLLLLLLLLLLLLLLLLLLL
982
983 @item .ldouble @var{expression} [, @var{expression}]*
984 See @code{.extend}.
985
986 @cindex @code{.ltorg} directive, ARM
987 @item .ltorg
988 This directive causes the current contents of the literal pool to be
989 dumped into the current section (which is assumed to be the .text
990 section) at the current location (aligned to a word boundary).
991 @code{GAS} maintains a separate literal pool for each section and each
992 sub-section. The @code{.ltorg} directive will only affect the literal
993 pool of the current section and sub-section. At the end of assembly
994 all remaining, un-empty literal pools will automatically be dumped.
995
996 Note - older versions of @code{GAS} would dump the current literal
997 pool any time a section change occurred. This is no longer done, since
998 it prevents accurate control of the placement of literal pools.
999
1000 @c MMMMMMMMMMMMMMMMMMMMMMMMMM
1001
1002 @cindex @code{.movsp} directive, ARM
1003 @item .movsp @var{reg} [, #@var{offset}]
1004 Tell the unwinder that @var{reg} contains an offset from the current
1005 stack pointer. If @var{offset} is not specified then it is assumed to be
1006 zero.
1007
1008 @c NNNNNNNNNNNNNNNNNNNNNNNNNN
1009 @c OOOOOOOOOOOOOOOOOOOOOOOOOO
1010
1011 @cindex @code{.object_arch} directive, ARM
1012 @item .object_arch @var{name}
1013 Override the architecture recorded in the EABI object attribute section.
1014 Valid values for @var{name} are the same as for the @code{.arch} directive.
1015 Typically this is useful when code uses runtime detection of CPU features.
1016
1017 @c PPPPPPPPPPPPPPPPPPPPPPPPPP
1018
1019 @cindex @code{.packed} directive, ARM
1020 @item .packed @var{expression} [, @var{expression}]*
1021 This directive writes 12-byte packed floating-point values to the
1022 output section. These are not compatible with current ARM processors
1023 or ABIs.
1024
1025 @anchor{arm_pad}
1026 @cindex @code{.pad} directive, ARM
1027 @item .pad #@var{count}
1028 Generate unwinder annotations for a stack adjustment of @var{count} bytes.
1029 A positive value indicates the function prologue allocated stack space by
1030 decrementing the stack pointer.
1031
1032 @cindex @code{.personality} directive, ARM
1033 @item .personality @var{name}
1034 Sets the personality routine for the current function to @var{name}.
1035
1036 @cindex @code{.personalityindex} directive, ARM
1037 @item .personalityindex @var{index}
1038 Sets the personality routine for the current function to the EABI standard
1039 routine number @var{index}
1040
1041 @cindex @code{.pool} directive, ARM
1042 @item .pool
1043 This is a synonym for .ltorg.
1044
1045 @c QQQQQQQQQQQQQQQQQQQQQQQQQQ
1046 @c RRRRRRRRRRRRRRRRRRRRRRRRRR
1047
1048 @cindex @code{.req} directive, ARM
1049 @item @var{name} .req @var{register name}
1050 This creates an alias for @var{register name} called @var{name}. For
1051 example:
1052
1053 @smallexample
1054 foo .req r0
1055 @end smallexample
1056
1057 @c SSSSSSSSSSSSSSSSSSSSSSSSSS
1058
1059 @anchor{arm_save}
1060 @cindex @code{.save} directive, ARM
1061 @item .save @var{reglist}
1062 Generate unwinder annotations to restore the registers in @var{reglist}.
1063 The format of @var{reglist} is the same as the corresponding store-multiple
1064 instruction.
1065
1066 @smallexample
1067 @exdent @emph{core registers}
1068 .save @{r4, r5, r6, lr@}
1069 stmfd sp!, @{r4, r5, r6, lr@}
1070 @exdent @emph{FPA registers}
1071 .save f4, 2
1072 sfmfd f4, 2, [sp]!
1073 @exdent @emph{VFP registers}
1074 .save @{d8, d9, d10@}
1075 fstmdx sp!, @{d8, d9, d10@}
1076 @exdent @emph{iWMMXt registers}
1077 .save @{wr10, wr11@}
1078 wstrd wr11, [sp, #-8]!
1079 wstrd wr10, [sp, #-8]!
1080 or
1081 .save wr11
1082 wstrd wr11, [sp, #-8]!
1083 .save wr10
1084 wstrd wr10, [sp, #-8]!
1085 @end smallexample
1086
1087 @anchor{arm_setfp}
1088 @cindex @code{.setfp} directive, ARM
1089 @item .setfp @var{fpreg}, @var{spreg} [, #@var{offset}]
1090 Make all unwinder annotations relative to a frame pointer. Without this
1091 the unwinder will use offsets from the stack pointer.
1092
1093 The syntax of this directive is the same as the @code{add} or @code{mov}
1094 instruction used to set the frame pointer. @var{spreg} must be either
1095 @code{sp} or mentioned in a previous @code{.movsp} directive.
1096
1097 @smallexample
1098 .movsp ip
1099 mov ip, sp
1100 @dots{}
1101 .setfp fp, ip, #4
1102 add fp, ip, #4
1103 @end smallexample
1104
1105 @cindex @code{.secrel32} directive, ARM
1106 @item .secrel32 @var{expression} [, @var{expression}]*
1107 This directive emits relocations that evaluate to the section-relative
1108 offset of each expression's symbol. This directive is only supported
1109 for PE targets.
1110
1111 @cindex @code{.syntax} directive, ARM
1112 @item .syntax [@code{unified} | @code{divided}]
1113 This directive sets the Instruction Set Syntax as described in the
1114 @ref{ARM-Instruction-Set} section.
1115
1116 @c TTTTTTTTTTTTTTTTTTTTTTTTTT
1117
1118 @cindex @code{.thumb} directive, ARM
1119 @item .thumb
1120 This performs the same action as @var{.code 16}.
1121
1122 @cindex @code{.thumb_func} directive, ARM
1123 @item .thumb_func
1124 This directive specifies that the following symbol is the name of a
1125 Thumb encoded function. This information is necessary in order to allow
1126 the assembler and linker to generate correct code for interworking
1127 between Arm and Thumb instructions and should be used even if
1128 interworking is not going to be performed. The presence of this
1129 directive also implies @code{.thumb}
1130
1131 This directive is not necessary when generating EABI objects. On these
1132 targets the encoding is implicit when generating Thumb code.
1133
1134 @cindex @code{.thumb_set} directive, ARM
1135 @item .thumb_set
1136 This performs the equivalent of a @code{.set} directive in that it
1137 creates a symbol which is an alias for another symbol (possibly not yet
1138 defined). This directive also has the added property in that it marks
1139 the aliased symbol as being a thumb function entry point, in the same
1140 way that the @code{.thumb_func} directive does.
1141
1142 @cindex @code{.tlsdescseq} directive, ARM
1143 @item .tlsdescseq @var{tls-variable}
1144 This directive is used to annotate parts of an inlined TLS descriptor
1145 trampoline. Normally the trampoline is provided by the linker, and
1146 this directive is not needed.
1147
1148 @c UUUUUUUUUUUUUUUUUUUUUUUUUU
1149
1150 @cindex @code{.unreq} directive, ARM
1151 @item .unreq @var{alias-name}
1152 This undefines a register alias which was previously defined using the
1153 @code{req}, @code{dn} or @code{qn} directives. For example:
1154
1155 @smallexample
1156 foo .req r0
1157 .unreq foo
1158 @end smallexample
1159
1160 An error occurs if the name is undefined. Note - this pseudo op can
1161 be used to delete builtin in register name aliases (eg 'r0'). This
1162 should only be done if it is really necessary.
1163
1164 @cindex @code{.unwind_raw} directive, ARM
1165 @item .unwind_raw @var{offset}, @var{byte1}, @dots{}
1166 Insert one of more arbitrary unwind opcode bytes, which are known to adjust
1167 the stack pointer by @var{offset} bytes.
1168
1169 For example @code{.unwind_raw 4, 0xb1, 0x01} is equivalent to
1170 @code{.save @{r0@}}
1171
1172 @c VVVVVVVVVVVVVVVVVVVVVVVVVV
1173
1174 @cindex @code{.vsave} directive, ARM
1175 @item .vsave @var{vfp-reglist}
1176 Generate unwinder annotations to restore the VFP registers in @var{vfp-reglist}
1177 using FLDMD. Also works for VFPv3 registers
1178 that are to be restored using VLDM.
1179 The format of @var{vfp-reglist} is the same as the corresponding store-multiple
1180 instruction.
1181
1182 @smallexample
1183 @exdent @emph{VFP registers}
1184 .vsave @{d8, d9, d10@}
1185 fstmdd sp!, @{d8, d9, d10@}
1186 @exdent @emph{VFPv3 registers}
1187 .vsave @{d15, d16, d17@}
1188 vstm sp!, @{d15, d16, d17@}
1189 @end smallexample
1190
1191 Since FLDMX and FSTMX are now deprecated, this directive should be
1192 used in favour of @code{.save} for saving VFP registers for ARMv6 and above.
1193
1194 @c WWWWWWWWWWWWWWWWWWWWWWWWWW
1195 @c XXXXXXXXXXXXXXXXXXXXXXXXXX
1196 @c YYYYYYYYYYYYYYYYYYYYYYYYYY
1197 @c ZZZZZZZZZZZZZZZZZZZZZZZZZZ
1198
1199 @end table
1200
1201 @node ARM Opcodes
1202 @section Opcodes
1203
1204 @cindex ARM opcodes
1205 @cindex opcodes for ARM
1206 @code{@value{AS}} implements all the standard ARM opcodes. It also
1207 implements several pseudo opcodes, including several synthetic load
1208 instructions.
1209
1210 @table @code
1211
1212 @cindex @code{NOP} pseudo op, ARM
1213 @item NOP
1214 @smallexample
1215 nop
1216 @end smallexample
1217
1218 This pseudo op will always evaluate to a legal ARM instruction that does
1219 nothing. Currently it will evaluate to MOV r0, r0.
1220
1221 @cindex @code{LDR reg,=<label>} pseudo op, ARM
1222 @item LDR
1223 @smallexample
1224 ldr <register> , = <expression>
1225 @end smallexample
1226
1227 If expression evaluates to a numeric constant then a MOV or MVN
1228 instruction will be used in place of the LDR instruction, if the
1229 constant can be generated by either of these instructions. Otherwise
1230 the constant will be placed into the nearest literal pool (if it not
1231 already there) and a PC relative LDR instruction will be generated.
1232
1233 @cindex @code{ADR reg,<label>} pseudo op, ARM
1234 @item ADR
1235 @smallexample
1236 adr <register> <label>
1237 @end smallexample
1238
1239 This instruction will load the address of @var{label} into the indicated
1240 register. The instruction will evaluate to a PC relative ADD or SUB
1241 instruction depending upon where the label is located. If the label is
1242 out of range, or if it is not defined in the same file (and section) as
1243 the ADR instruction, then an error will be generated. This instruction
1244 will not make use of the literal pool.
1245
1246 If @var{label} is a thumb function symbol, and thumb interworking has
1247 been enabled via the @option{-mthumb-interwork} option then the bottom
1248 bit of the value stored into @var{register} will be set. This allows
1249 the following sequence to work as expected:
1250
1251 @smallexample
1252 adr r0, thumb_function
1253 blx r0
1254 @end smallexample
1255
1256 @cindex @code{ADRL reg,<label>} pseudo op, ARM
1257 @item ADRL
1258 @smallexample
1259 adrl <register> <label>
1260 @end smallexample
1261
1262 This instruction will load the address of @var{label} into the indicated
1263 register. The instruction will evaluate to one or two PC relative ADD
1264 or SUB instructions depending upon where the label is located. If a
1265 second instruction is not needed a NOP instruction will be generated in
1266 its place, so that this instruction is always 8 bytes long.
1267
1268 If the label is out of range, or if it is not defined in the same file
1269 (and section) as the ADRL instruction, then an error will be generated.
1270 This instruction will not make use of the literal pool.
1271
1272 If @var{label} is a thumb function symbol, and thumb interworking has
1273 been enabled via the @option{-mthumb-interwork} option then the bottom
1274 bit of the value stored into @var{register} will be set.
1275
1276 @end table
1277
1278 For information on the ARM or Thumb instruction sets, see @cite{ARM
1279 Software Development Toolkit Reference Manual}, Advanced RISC Machines
1280 Ltd.
1281
1282 @node ARM Mapping Symbols
1283 @section Mapping Symbols
1284
1285 The ARM ELF specification requires that special symbols be inserted
1286 into object files to mark certain features:
1287
1288 @table @code
1289
1290 @cindex @code{$a}
1291 @item $a
1292 At the start of a region of code containing ARM instructions.
1293
1294 @cindex @code{$t}
1295 @item $t
1296 At the start of a region of code containing THUMB instructions.
1297
1298 @cindex @code{$d}
1299 @item $d
1300 At the start of a region of data.
1301
1302 @end table
1303
1304 The assembler will automatically insert these symbols for you - there
1305 is no need to code them yourself. Support for tagging symbols ($b,
1306 $f, $p and $m) which is also mentioned in the current ARM ELF
1307 specification is not implemented. This is because they have been
1308 dropped from the new EABI and so tools cannot rely upon their
1309 presence.
1310
1311 @node ARM Unwinding Tutorial
1312 @section Unwinding
1313
1314 The ABI for the ARM Architecture specifies a standard format for
1315 exception unwind information. This information is used when an
1316 exception is thrown to determine where control should be transferred.
1317 In particular, the unwind information is used to determine which
1318 function called the function that threw the exception, and which
1319 function called that one, and so forth. This information is also used
1320 to restore the values of callee-saved registers in the function
1321 catching the exception.
1322
1323 If you are writing functions in assembly code, and those functions
1324 call other functions that throw exceptions, you must use assembly
1325 pseudo ops to ensure that appropriate exception unwind information is
1326 generated. Otherwise, if one of the functions called by your assembly
1327 code throws an exception, the run-time library will be unable to
1328 unwind the stack through your assembly code and your program will not
1329 behave correctly.
1330
1331 To illustrate the use of these pseudo ops, we will examine the code
1332 that G++ generates for the following C++ input:
1333
1334 @verbatim
1335 void callee (int *);
1336
1337 int
1338 caller ()
1339 {
1340 int i;
1341 callee (&i);
1342 return i;
1343 }
1344 @end verbatim
1345
1346 This example does not show how to throw or catch an exception from
1347 assembly code. That is a much more complex operation and should
1348 always be done in a high-level language, such as C++, that directly
1349 supports exceptions.
1350
1351 The code generated by one particular version of G++ when compiling the
1352 example above is:
1353
1354 @verbatim
1355 _Z6callerv:
1356 .fnstart
1357 .LFB2:
1358 @ Function supports interworking.
1359 @ args = 0, pretend = 0, frame = 8
1360 @ frame_needed = 1, uses_anonymous_args = 0
1361 stmfd sp!, {fp, lr}
1362 .save {fp, lr}
1363 .LCFI0:
1364 .setfp fp, sp, #4
1365 add fp, sp, #4
1366 .LCFI1:
1367 .pad #8
1368 sub sp, sp, #8
1369 .LCFI2:
1370 sub r3, fp, #8
1371 mov r0, r3
1372 bl _Z6calleePi
1373 ldr r3, [fp, #-8]
1374 mov r0, r3
1375 sub sp, fp, #4
1376 ldmfd sp!, {fp, lr}
1377 bx lr
1378 .LFE2:
1379 .fnend
1380 @end verbatim
1381
1382 Of course, the sequence of instructions varies based on the options
1383 you pass to GCC and on the version of GCC in use. The exact
1384 instructions are not important since we are focusing on the pseudo ops
1385 that are used to generate unwind information.
1386
1387 An important assumption made by the unwinder is that the stack frame
1388 does not change during the body of the function. In particular, since
1389 we assume that the assembly code does not itself throw an exception,
1390 the only point where an exception can be thrown is from a call, such
1391 as the @code{bl} instruction above. At each call site, the same saved
1392 registers (including @code{lr}, which indicates the return address)
1393 must be located in the same locations relative to the frame pointer.
1394
1395 The @code{.fnstart} (@pxref{arm_fnstart,,.fnstart pseudo op}) pseudo
1396 op appears immediately before the first instruction of the function
1397 while the @code{.fnend} (@pxref{arm_fnend,,.fnend pseudo op}) pseudo
1398 op appears immediately after the last instruction of the function.
1399 These pseudo ops specify the range of the function.
1400
1401 Only the order of the other pseudos ops (e.g., @code{.setfp} or
1402 @code{.pad}) matters; their exact locations are irrelevant. In the
1403 example above, the compiler emits the pseudo ops with particular
1404 instructions. That makes it easier to understand the code, but it is
1405 not required for correctness. It would work just as well to emit all
1406 of the pseudo ops other than @code{.fnend} in the same order, but
1407 immediately after @code{.fnstart}.
1408
1409 The @code{.save} (@pxref{arm_save,,.save pseudo op}) pseudo op
1410 indicates registers that have been saved to the stack so that they can
1411 be restored before the function returns. The argument to the
1412 @code{.save} pseudo op is a list of registers to save. If a register
1413 is ``callee-saved'' (as specified by the ABI) and is modified by the
1414 function you are writing, then your code must save the value before it
1415 is modified and restore the original value before the function
1416 returns. If an exception is thrown, the run-time library restores the
1417 values of these registers from their locations on the stack before
1418 returning control to the exception handler. (Of course, if an
1419 exception is not thrown, the function that contains the @code{.save}
1420 pseudo op restores these registers in the function epilogue, as is
1421 done with the @code{ldmfd} instruction above.)
1422
1423 You do not have to save callee-saved registers at the very beginning
1424 of the function and you do not need to use the @code{.save} pseudo op
1425 immediately following the point at which the registers are saved.
1426 However, if you modify a callee-saved register, you must save it on
1427 the stack before modifying it and before calling any functions which
1428 might throw an exception. And, you must use the @code{.save} pseudo
1429 op to indicate that you have done so.
1430
1431 The @code{.pad} (@pxref{arm_pad,,.pad}) pseudo op indicates a
1432 modification of the stack pointer that does not save any registers.
1433 The argument is the number of bytes (in decimal) that are subtracted
1434 from the stack pointer. (On ARM CPUs, the stack grows downwards, so
1435 subtracting from the stack pointer increases the size of the stack.)
1436
1437 The @code{.setfp} (@pxref{arm_setfp,,.setfp pseudo op}) pseudo op
1438 indicates the register that contains the frame pointer. The first
1439 argument is the register that is set, which is typically @code{fp}.
1440 The second argument indicates the register from which the frame
1441 pointer takes its value. The third argument, if present, is the value
1442 (in decimal) added to the register specified by the second argument to
1443 compute the value of the frame pointer. You should not modify the
1444 frame pointer in the body of the function.
1445
1446 If you do not use a frame pointer, then you should not use the
1447 @code{.setfp} pseudo op. If you do not use a frame pointer, then you
1448 should avoid modifying the stack pointer outside of the function
1449 prologue. Otherwise, the run-time library will be unable to find
1450 saved registers when it is unwinding the stack.
1451
1452 The pseudo ops described above are sufficient for writing assembly
1453 code that calls functions which may throw exceptions. If you need to
1454 know more about the object-file format used to represent unwind
1455 information, you may consult the @cite{Exception Handling ABI for the
1456 ARM Architecture} available from @uref{http://infocenter.arm.com}.
1457
This page took 0.059161 seconds and 4 git commands to generate.