1c6175b9cfc02e2c100cd2b600111b4831d8c988
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
1 @c Copyright 1991, 1992, 1993, 1994, 1995, 1997, 1998, 1999, 2000,
2 @c 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009
3 @c Free Software Foundation, Inc.
4 @c This is part of the GAS manual.
5 @c For copying conditions, see the file as.texinfo.
6 @c man end
7
8 @ifset GENERIC
9 @page
10 @node i386-Dependent
11 @chapter 80386 Dependent Features
12 @end ifset
13 @ifclear GENERIC
14 @node Machine Dependencies
15 @chapter 80386 Dependent Features
16 @end ifclear
17
18 @cindex i386 support
19 @cindex i80386 support
20 @cindex x86-64 support
21
22 The i386 version @code{@value{AS}} supports both the original Intel 386
23 architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
24 extending the Intel architecture to 64-bits.
25
26 @menu
27 * i386-Options:: Options
28 * i386-Directives:: X86 specific directives
29 * i386-Syntax:: AT&T Syntax versus Intel Syntax
30 * i386-Mnemonics:: Instruction Naming
31 * i386-Regs:: Register Naming
32 * i386-Prefixes:: Instruction Prefixes
33 * i386-Memory:: Memory References
34 * i386-Jumps:: Handling of Jump Instructions
35 * i386-Float:: Floating Point
36 * i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
37 * i386-LWP:: AMD's Lightweight Profiling Instructions
38 * i386-16bit:: Writing 16-bit Code
39 * i386-Arch:: Specifying an x86 CPU architecture
40 * i386-Bugs:: AT&T Syntax bugs
41 * i386-Notes:: Notes
42 @end menu
43
44 @node i386-Options
45 @section Options
46
47 @cindex options for i386
48 @cindex options for x86-64
49 @cindex i386 options
50 @cindex x86-64 options
51
52 The i386 version of @code{@value{AS}} has a few machine
53 dependent options:
54
55 @c man begin OPTIONS
56 @table @gcctabopt
57 @cindex @samp{--32} option, i386
58 @cindex @samp{--32} option, x86-64
59 @cindex @samp{--64} option, i386
60 @cindex @samp{--64} option, x86-64
61 @item --32 | --64
62 Select the word size, either 32 bits or 64 bits. Selecting 32-bit
63 implies Intel i386 architecture, while 64-bit implies AMD x86-64
64 architecture.
65
66 These options are only available with the ELF object file format, and
67 require that the necessary BFD support has been included (on a 32-bit
68 platform you have to add --enable-64-bit-bfd to configure enable 64-bit
69 usage and use x86-64 as target platform).
70
71 @item -n
72 By default, x86 GAS replaces multiple nop instructions used for
73 alignment within code sections with multi-byte nop instructions such
74 as leal 0(%esi,1),%esi. This switch disables the optimization.
75
76 @cindex @samp{--divide} option, i386
77 @item --divide
78 On SVR4-derived platforms, the character @samp{/} is treated as a comment
79 character, which means that it cannot be used in expressions. The
80 @samp{--divide} option turns @samp{/} into a normal character. This does
81 not disable @samp{/} at the beginning of a line starting a comment, or
82 affect using @samp{#} for starting a comment.
83
84 @cindex @samp{-march=} option, i386
85 @cindex @samp{-march=} option, x86-64
86 @item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
87 This option specifies the target processor. The assembler will
88 issue an error message if an attempt is made to assemble an instruction
89 which will not execute on the target processor. The following
90 processor names are recognized:
91 @code{i8086},
92 @code{i186},
93 @code{i286},
94 @code{i386},
95 @code{i486},
96 @code{i586},
97 @code{i686},
98 @code{pentium},
99 @code{pentiumpro},
100 @code{pentiumii},
101 @code{pentiumiii},
102 @code{pentium4},
103 @code{prescott},
104 @code{nocona},
105 @code{core},
106 @code{core2},
107 @code{corei7},
108 @code{l1om},
109 @code{k6},
110 @code{k6_2},
111 @code{athlon},
112 @code{opteron},
113 @code{k8},
114 @code{amdfam10},
115 @code{bdver1},
116 @code{generic32} and
117 @code{generic64}.
118
119 In addition to the basic instruction set, the assembler can be told to
120 accept various extension mnemonics. For example,
121 @code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
122 @var{vmx}. The following extensions are currently supported:
123 @code{8087},
124 @code{287},
125 @code{387},
126 @code{no87},
127 @code{mmx},
128 @code{nommx},
129 @code{sse},
130 @code{sse2},
131 @code{sse3},
132 @code{ssse3},
133 @code{sse4.1},
134 @code{sse4.2},
135 @code{sse4},
136 @code{nosse},
137 @code{avx},
138 @code{noavx},
139 @code{vmx},
140 @code{smx},
141 @code{xsave},
142 @code{xsaveopt},
143 @code{aes},
144 @code{pclmul},
145 @code{fsgsbase},
146 @code{rdrnd},
147 @code{f16c},
148 @code{fma},
149 @code{movbe},
150 @code{ept},
151 @code{clflush},
152 @code{lwp},
153 @code{fma4},
154 @code{xop},
155 @code{syscall},
156 @code{rdtscp},
157 @code{3dnow},
158 @code{3dnowa},
159 @code{sse4a},
160 @code{sse5},
161 @code{svme},
162 @code{abm} and
163 @code{padlock}.
164 Note that rather than extending a basic instruction set, the extension
165 mnemonics starting with @code{no} revoke the respective functionality.
166
167 When the @code{.arch} directive is used with @option{-march}, the
168 @code{.arch} directive will take precedent.
169
170 @cindex @samp{-mtune=} option, i386
171 @cindex @samp{-mtune=} option, x86-64
172 @item -mtune=@var{CPU}
173 This option specifies a processor to optimize for. When used in
174 conjunction with the @option{-march} option, only instructions
175 of the processor specified by the @option{-march} option will be
176 generated.
177
178 Valid @var{CPU} values are identical to the processor list of
179 @option{-march=@var{CPU}}.
180
181 @cindex @samp{-msse2avx} option, i386
182 @cindex @samp{-msse2avx} option, x86-64
183 @item -msse2avx
184 This option specifies that the assembler should encode SSE instructions
185 with VEX prefix.
186
187 @cindex @samp{-msse-check=} option, i386
188 @cindex @samp{-msse-check=} option, x86-64
189 @item -msse-check=@var{none}
190 @itemx -msse-check=@var{warning}
191 @itemx -msse-check=@var{error}
192 These options control if the assembler should check SSE intructions.
193 @option{-msse-check=@var{none}} will make the assembler not to check SSE
194 instructions, which is the default. @option{-msse-check=@var{warning}}
195 will make the assembler issue a warning for any SSE intruction.
196 @option{-msse-check=@var{error}} will make the assembler issue an error
197 for any SSE intruction.
198
199 @cindex @samp{-mavxscalar=} option, i386
200 @cindex @samp{-mavxscalar=} option, x86-64
201 @item -mavxscalar=@var{128}
202 @itemx -mavxscalar=@var{256}
203 This options control how the assembler should encode scalar AVX
204 instructions. @option{-mavxscalar=@var{128}} will encode scalar
205 AVX instructions with 128bit vector length, which is the default.
206 @option{-mavxscalar=@var{256}} will encode scalar AVX instructions
207 with 256bit vector length.
208
209 @cindex @samp{-mmnemonic=} option, i386
210 @cindex @samp{-mmnemonic=} option, x86-64
211 @item -mmnemonic=@var{att}
212 @itemx -mmnemonic=@var{intel}
213 This option specifies instruction mnemonic for matching instructions.
214 The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
215 take precedent.
216
217 @cindex @samp{-msyntax=} option, i386
218 @cindex @samp{-msyntax=} option, x86-64
219 @item -msyntax=@var{att}
220 @itemx -msyntax=@var{intel}
221 This option specifies instruction syntax when processing instructions.
222 The @code{.att_syntax} and @code{.intel_syntax} directives will
223 take precedent.
224
225 @cindex @samp{-mnaked-reg} option, i386
226 @cindex @samp{-mnaked-reg} option, x86-64
227 @item -mnaked-reg
228 This opetion specifies that registers don't require a @samp{%} prefix.
229 The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
230
231 @end table
232 @c man end
233
234 @node i386-Directives
235 @section x86 specific Directives
236
237 @cindex machine directives, x86
238 @cindex x86 machine directives
239 @table @code
240
241 @cindex @code{lcomm} directive, COFF
242 @item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
243 Reserve @var{length} (an absolute expression) bytes for a local common
244 denoted by @var{symbol}. The section and value of @var{symbol} are
245 those of the new local common. The addresses are allocated in the bss
246 section, so that at run-time the bytes start off zeroed. Since
247 @var{symbol} is not declared global, it is normally not visible to
248 @code{@value{LD}}. The optional third parameter, @var{alignment},
249 specifies the desired alignment of the symbol in the bss section.
250
251 This directive is only available for COFF based x86 targets.
252
253 @c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
254 @c .largecomm
255
256 @end table
257
258 @node i386-Syntax
259 @section AT&T Syntax versus Intel Syntax
260
261 @cindex i386 intel_syntax pseudo op
262 @cindex intel_syntax pseudo op, i386
263 @cindex i386 att_syntax pseudo op
264 @cindex att_syntax pseudo op, i386
265 @cindex i386 syntax compatibility
266 @cindex syntax compatibility, i386
267 @cindex x86-64 intel_syntax pseudo op
268 @cindex intel_syntax pseudo op, x86-64
269 @cindex x86-64 att_syntax pseudo op
270 @cindex att_syntax pseudo op, x86-64
271 @cindex x86-64 syntax compatibility
272 @cindex syntax compatibility, x86-64
273
274 @code{@value{AS}} now supports assembly using Intel assembler syntax.
275 @code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
276 back to the usual AT&T mode for compatibility with the output of
277 @code{@value{GCC}}. Either of these directives may have an optional
278 argument, @code{prefix}, or @code{noprefix} specifying whether registers
279 require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
280 different from Intel syntax. We mention these differences because
281 almost all 80386 documents use Intel syntax. Notable differences
282 between the two syntaxes are:
283
284 @cindex immediate operands, i386
285 @cindex i386 immediate operands
286 @cindex register operands, i386
287 @cindex i386 register operands
288 @cindex jump/call operands, i386
289 @cindex i386 jump/call operands
290 @cindex operand delimiters, i386
291
292 @cindex immediate operands, x86-64
293 @cindex x86-64 immediate operands
294 @cindex register operands, x86-64
295 @cindex x86-64 register operands
296 @cindex jump/call operands, x86-64
297 @cindex x86-64 jump/call operands
298 @cindex operand delimiters, x86-64
299 @itemize @bullet
300 @item
301 AT&T immediate operands are preceded by @samp{$}; Intel immediate
302 operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
303 AT&T register operands are preceded by @samp{%}; Intel register operands
304 are undelimited. AT&T absolute (as opposed to PC relative) jump/call
305 operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
306
307 @cindex i386 source, destination operands
308 @cindex source, destination operands; i386
309 @cindex x86-64 source, destination operands
310 @cindex source, destination operands; x86-64
311 @item
312 AT&T and Intel syntax use the opposite order for source and destination
313 operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
314 @samp{source, dest} convention is maintained for compatibility with
315 previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
316 instructions with 2 immediate operands, such as the @samp{enter}
317 instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
318
319 @cindex mnemonic suffixes, i386
320 @cindex sizes operands, i386
321 @cindex i386 size suffixes
322 @cindex mnemonic suffixes, x86-64
323 @cindex sizes operands, x86-64
324 @cindex x86-64 size suffixes
325 @item
326 In AT&T syntax the size of memory operands is determined from the last
327 character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
328 @samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
329 (32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
330 this by prefixing memory operands (@emph{not} the instruction mnemonics) with
331 @samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
332 Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
333 syntax.
334
335 In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
336 instruction with the 64-bit displacement or immediate operand.
337
338 @cindex return instructions, i386
339 @cindex i386 jump, call, return
340 @cindex return instructions, x86-64
341 @cindex x86-64 jump, call, return
342 @item
343 Immediate form long jumps and calls are
344 @samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
345 Intel syntax is
346 @samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
347 instruction
348 is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
349 @samp{ret far @var{stack-adjust}}.
350
351 @cindex sections, i386
352 @cindex i386 sections
353 @cindex sections, x86-64
354 @cindex x86-64 sections
355 @item
356 The AT&T assembler does not provide support for multiple section
357 programs. Unix style systems expect all programs to be single sections.
358 @end itemize
359
360 @node i386-Mnemonics
361 @section Instruction Naming
362
363 @cindex i386 instruction naming
364 @cindex instruction naming, i386
365 @cindex x86-64 instruction naming
366 @cindex instruction naming, x86-64
367
368 Instruction mnemonics are suffixed with one character modifiers which
369 specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
370 and @samp{q} specify byte, word, long and quadruple word operands. If
371 no suffix is specified by an instruction then @code{@value{AS}} tries to
372 fill in the missing suffix based on the destination register operand
373 (the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
374 to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
375 @samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
376 assembler which assumes that a missing mnemonic suffix implies long
377 operand size. (This incompatibility does not affect compiler output
378 since compilers always explicitly specify the mnemonic suffix.)
379
380 Almost all instructions have the same names in AT&T and Intel format.
381 There are a few exceptions. The sign extend and zero extend
382 instructions need two sizes to specify them. They need a size to
383 sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
384 is accomplished by using two instruction mnemonic suffixes in AT&T
385 syntax. Base names for sign extend and zero extend are
386 @samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
387 and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
388 are tacked on to this base name, the @emph{from} suffix before the
389 @emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
390 ``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
391 thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
392 @samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
393 @samp{wq} (from word to quadruple word), and @samp{lq} (from long to
394 quadruple word).
395
396 @cindex encoding options, i386
397 @cindex encoding options, x86-64
398
399 Different encoding options can be specified via optional mnemonic
400 suffix. @samp{.s} suffix swaps 2 register operands in encoding when
401 moving from one register to another. @samp{.d32} suffix forces 32bit
402 displacement in encoding.
403
404 @cindex conversion instructions, i386
405 @cindex i386 conversion instructions
406 @cindex conversion instructions, x86-64
407 @cindex x86-64 conversion instructions
408 The Intel-syntax conversion instructions
409
410 @itemize @bullet
411 @item
412 @samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
413
414 @item
415 @samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
416
417 @item
418 @samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
419
420 @item
421 @samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
422
423 @item
424 @samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
425 (x86-64 only),
426
427 @item
428 @samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
429 @samp{%rdx:%rax} (x86-64 only),
430 @end itemize
431
432 @noindent
433 are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
434 @samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
435 instructions.
436
437 @cindex jump instructions, i386
438 @cindex call instructions, i386
439 @cindex jump instructions, x86-64
440 @cindex call instructions, x86-64
441 Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
442 AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
443 convention.
444
445 @section AT&T Mnemonic versus Intel Mnemonic
446
447 @cindex i386 mnemonic compatibility
448 @cindex mnemonic compatibility, i386
449
450 @code{@value{AS}} supports assembly using Intel mnemonic.
451 @code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
452 @code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
453 syntax for compatibility with the output of @code{@value{GCC}}.
454 Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
455 @samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
456 @samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
457 assembler with different mnemonics from those in Intel IA32 specification.
458 @code{@value{GCC}} generates those instructions with AT&T mnemonic.
459
460 @node i386-Regs
461 @section Register Naming
462
463 @cindex i386 registers
464 @cindex registers, i386
465 @cindex x86-64 registers
466 @cindex registers, x86-64
467 Register operands are always prefixed with @samp{%}. The 80386 registers
468 consist of
469
470 @itemize @bullet
471 @item
472 the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
473 @samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
474 frame pointer), and @samp{%esp} (the stack pointer).
475
476 @item
477 the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
478 @samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
479
480 @item
481 the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
482 @samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
483 are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
484 @samp{%cx}, and @samp{%dx})
485
486 @item
487 the 6 section registers @samp{%cs} (code section), @samp{%ds}
488 (data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
489 and @samp{%gs}.
490
491 @item
492 the 3 processor control registers @samp{%cr0}, @samp{%cr2}, and
493 @samp{%cr3}.
494
495 @item
496 the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
497 @samp{%db3}, @samp{%db6}, and @samp{%db7}.
498
499 @item
500 the 2 test registers @samp{%tr6} and @samp{%tr7}.
501
502 @item
503 the 8 floating point register stack @samp{%st} or equivalently
504 @samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
505 @samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
506 These registers are overloaded by 8 MMX registers @samp{%mm0},
507 @samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
508 @samp{%mm6} and @samp{%mm7}.
509
510 @item
511 the 8 SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
512 @samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
513 @end itemize
514
515 The AMD x86-64 architecture extends the register set by:
516
517 @itemize @bullet
518 @item
519 enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
520 accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
521 @samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
522 pointer)
523
524 @item
525 the 8 extended registers @samp{%r8}--@samp{%r15}.
526
527 @item
528 the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}
529
530 @item
531 the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}
532
533 @item
534 the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}
535
536 @item
537 the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
538
539 @item
540 the 8 debug registers: @samp{%db8}--@samp{%db15}.
541
542 @item
543 the 8 SSE registers: @samp{%xmm8}--@samp{%xmm15}.
544 @end itemize
545
546 @node i386-Prefixes
547 @section Instruction Prefixes
548
549 @cindex i386 instruction prefixes
550 @cindex instruction prefixes, i386
551 @cindex prefixes, i386
552 Instruction prefixes are used to modify the following instruction. They
553 are used to repeat string instructions, to provide section overrides, to
554 perform bus lock operations, and to change operand and address sizes.
555 (Most instructions that normally operate on 32-bit operands will use
556 16-bit operands if the instruction has an ``operand size'' prefix.)
557 Instruction prefixes are best written on the same line as the instruction
558 they act upon. For example, the @samp{scas} (scan string) instruction is
559 repeated with:
560
561 @smallexample
562 repne scas %es:(%edi),%al
563 @end smallexample
564
565 You may also place prefixes on the lines immediately preceding the
566 instruction, but this circumvents checks that @code{@value{AS}} does
567 with prefixes, and will not work with all prefixes.
568
569 Here is a list of instruction prefixes:
570
571 @cindex section override prefixes, i386
572 @itemize @bullet
573 @item
574 Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
575 @samp{fs}, @samp{gs}. These are automatically added by specifying
576 using the @var{section}:@var{memory-operand} form for memory references.
577
578 @cindex size prefixes, i386
579 @item
580 Operand/Address size prefixes @samp{data16} and @samp{addr16}
581 change 32-bit operands/addresses into 16-bit operands/addresses,
582 while @samp{data32} and @samp{addr32} change 16-bit ones (in a
583 @code{.code16} section) into 32-bit operands/addresses. These prefixes
584 @emph{must} appear on the same line of code as the instruction they
585 modify. For example, in a 16-bit @code{.code16} section, you might
586 write:
587
588 @smallexample
589 addr32 jmpl *(%ebx)
590 @end smallexample
591
592 @cindex bus lock prefixes, i386
593 @cindex inhibiting interrupts, i386
594 @item
595 The bus lock prefix @samp{lock} inhibits interrupts during execution of
596 the instruction it precedes. (This is only valid with certain
597 instructions; see a 80386 manual for details).
598
599 @cindex coprocessor wait, i386
600 @item
601 The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
602 complete the current instruction. This should never be needed for the
603 80386/80387 combination.
604
605 @cindex repeat prefixes, i386
606 @item
607 The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
608 to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
609 times if the current address size is 16-bits).
610 @cindex REX prefixes, i386
611 @item
612 The @samp{rex} family of prefixes is used by x86-64 to encode
613 extensions to i386 instruction set. The @samp{rex} prefix has four
614 bits --- an operand size overwrite (@code{64}) used to change operand size
615 from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
616 register set.
617
618 You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
619 instruction emits @samp{rex} prefix with all the bits set. By omitting
620 the @code{64}, @code{x}, @code{y} or @code{z} you may write other
621 prefixes as well. Normally, there is no need to write the prefixes
622 explicitly, since gas will automatically generate them based on the
623 instruction operands.
624 @end itemize
625
626 @node i386-Memory
627 @section Memory References
628
629 @cindex i386 memory references
630 @cindex memory references, i386
631 @cindex x86-64 memory references
632 @cindex memory references, x86-64
633 An Intel syntax indirect memory reference of the form
634
635 @smallexample
636 @var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
637 @end smallexample
638
639 @noindent
640 is translated into the AT&T syntax
641
642 @smallexample
643 @var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
644 @end smallexample
645
646 @noindent
647 where @var{base} and @var{index} are the optional 32-bit base and
648 index registers, @var{disp} is the optional displacement, and
649 @var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
650 to calculate the address of the operand. If no @var{scale} is
651 specified, @var{scale} is taken to be 1. @var{section} specifies the
652 optional section register for the memory operand, and may override the
653 default section register (see a 80386 manual for section register
654 defaults). Note that section overrides in AT&T syntax @emph{must}
655 be preceded by a @samp{%}. If you specify a section override which
656 coincides with the default section register, @code{@value{AS}} does @emph{not}
657 output any section register override prefixes to assemble the given
658 instruction. Thus, section overrides can be specified to emphasize which
659 section register is used for a given memory operand.
660
661 Here are some examples of Intel and AT&T style memory references:
662
663 @table @asis
664 @item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
665 @var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
666 missing, and the default section is used (@samp{%ss} for addressing with
667 @samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
668
669 @item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
670 @var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
671 @samp{foo}. All other fields are missing. The section register here
672 defaults to @samp{%ds}.
673
674 @item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
675 This uses the value pointed to by @samp{foo} as a memory operand.
676 Note that @var{base} and @var{index} are both missing, but there is only
677 @emph{one} @samp{,}. This is a syntactic exception.
678
679 @item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
680 This selects the contents of the variable @samp{foo} with section
681 register @var{section} being @samp{%gs}.
682 @end table
683
684 Absolute (as opposed to PC relative) call and jump operands must be
685 prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
686 always chooses PC relative addressing for jump/call labels.
687
688 Any instruction that has a memory operand, but no register operand,
689 @emph{must} specify its size (byte, word, long, or quadruple) with an
690 instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
691 respectively).
692
693 The x86-64 architecture adds an RIP (instruction pointer relative)
694 addressing. This addressing mode is specified by using @samp{rip} as a
695 base register. Only constant offsets are valid. For example:
696
697 @table @asis
698 @item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
699 Points to the address 1234 bytes past the end of the current
700 instruction.
701
702 @item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
703 Points to the @code{symbol} in RIP relative way, this is shorter than
704 the default absolute addressing.
705 @end table
706
707 Other addressing modes remain unchanged in x86-64 architecture, except
708 registers used are 64-bit instead of 32-bit.
709
710 @node i386-Jumps
711 @section Handling of Jump Instructions
712
713 @cindex jump optimization, i386
714 @cindex i386 jump optimization
715 @cindex jump optimization, x86-64
716 @cindex x86-64 jump optimization
717 Jump instructions are always optimized to use the smallest possible
718 displacements. This is accomplished by using byte (8-bit) displacement
719 jumps whenever the target is sufficiently close. If a byte displacement
720 is insufficient a long displacement is used. We do not support
721 word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
722 instruction with the @samp{data16} instruction prefix), since the 80386
723 insists upon masking @samp{%eip} to 16 bits after the word displacement
724 is added. (See also @pxref{i386-Arch})
725
726 Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
727 @samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
728 displacements, so that if you use these instructions (@code{@value{GCC}} does
729 not use them) you may get an error message (and incorrect code). The AT&T
730 80386 assembler tries to get around this problem by expanding @samp{jcxz foo}
731 to
732
733 @smallexample
734 jcxz cx_zero
735 jmp cx_nonzero
736 cx_zero: jmp foo
737 cx_nonzero:
738 @end smallexample
739
740 @node i386-Float
741 @section Floating Point
742
743 @cindex i386 floating point
744 @cindex floating point, i386
745 @cindex x86-64 floating point
746 @cindex floating point, x86-64
747 All 80387 floating point types except packed BCD are supported.
748 (BCD support may be added without much difficulty). These data
749 types are 16-, 32-, and 64- bit integers, and single (32-bit),
750 double (64-bit), and extended (80-bit) precision floating point.
751 Each supported type has an instruction mnemonic suffix and a constructor
752 associated with it. Instruction mnemonic suffixes specify the operand's
753 data type. Constructors build these data types into memory.
754
755 @cindex @code{float} directive, i386
756 @cindex @code{single} directive, i386
757 @cindex @code{double} directive, i386
758 @cindex @code{tfloat} directive, i386
759 @cindex @code{float} directive, x86-64
760 @cindex @code{single} directive, x86-64
761 @cindex @code{double} directive, x86-64
762 @cindex @code{tfloat} directive, x86-64
763 @itemize @bullet
764 @item
765 Floating point constructors are @samp{.float} or @samp{.single},
766 @samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
767 These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
768 and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
769 only supports this format via the @samp{fldt} (load 80-bit real to stack
770 top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
771
772 @cindex @code{word} directive, i386
773 @cindex @code{long} directive, i386
774 @cindex @code{int} directive, i386
775 @cindex @code{quad} directive, i386
776 @cindex @code{word} directive, x86-64
777 @cindex @code{long} directive, x86-64
778 @cindex @code{int} directive, x86-64
779 @cindex @code{quad} directive, x86-64
780 @item
781 Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
782 @samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
783 corresponding instruction mnemonic suffixes are @samp{s} (single),
784 @samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
785 the 64-bit @samp{q} format is only present in the @samp{fildq} (load
786 quad integer to stack top) and @samp{fistpq} (store quad integer and pop
787 stack) instructions.
788 @end itemize
789
790 Register to register operations should not use instruction mnemonic suffixes.
791 @samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
792 wrote @samp{fst %st, %st(1)}, since all register to register operations
793 use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
794 which converts @samp{%st} from 80-bit to 64-bit floating point format,
795 then stores the result in the 4 byte location @samp{mem})
796
797 @node i386-SIMD
798 @section Intel's MMX and AMD's 3DNow! SIMD Operations
799
800 @cindex MMX, i386
801 @cindex 3DNow!, i386
802 @cindex SIMD, i386
803 @cindex MMX, x86-64
804 @cindex 3DNow!, x86-64
805 @cindex SIMD, x86-64
806
807 @code{@value{AS}} supports Intel's MMX instruction set (SIMD
808 instructions for integer data), available on Intel's Pentium MMX
809 processors and Pentium II processors, AMD's K6 and K6-2 processors,
810 Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
811 instruction set (SIMD instructions for 32-bit floating point data)
812 available on AMD's K6-2 processor and possibly others in the future.
813
814 Currently, @code{@value{AS}} does not support Intel's floating point
815 SIMD, Katmai (KNI).
816
817 The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
818 @samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
819 16-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
820 floating point values. The MMX registers cannot be used at the same time
821 as the floating point stack.
822
823 See Intel and AMD documentation, keeping in mind that the operand order in
824 instructions is reversed from the Intel syntax.
825
826 @node i386-LWP
827 @section AMD's Lightweight Profiling Instructions
828
829 @cindex LWP, i386
830 @cindex LWP, x86-64
831
832 @code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
833 instruction set, available on AMD's Family 15h (Orochi) processors.
834
835 LWP enables applications to collect and manage performance data, and
836 react to performance events. The collection of performance data
837 requires no context switches. LWP runs in the context of a thread and
838 so several counters can be used independently across multiple threads.
839 LWP can be used in both 64-bit and legacy 32-bit modes.
840
841 For detailed information on the LWP instruction set, see the
842 @cite{AMD Lightweight Profiling Specification} available at
843 @uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
844
845 @node i386-16bit
846 @section Writing 16-bit Code
847
848 @cindex i386 16-bit code
849 @cindex 16-bit code, i386
850 @cindex real-mode code, i386
851 @cindex @code{code16gcc} directive, i386
852 @cindex @code{code16} directive, i386
853 @cindex @code{code32} directive, i386
854 @cindex @code{code64} directive, i386
855 @cindex @code{code64} directive, x86-64
856 While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
857 or 64-bit x86-64 code depending on the default configuration,
858 it also supports writing code to run in real mode or in 16-bit protected
859 mode code segments. To do this, put a @samp{.code16} or
860 @samp{.code16gcc} directive before the assembly language instructions to
861 be run in 16-bit mode. You can switch @code{@value{AS}} to writing
862 32-bit code with the @samp{.code32} directive or 64-bit code with the
863 @samp{.code64} directive.
864
865 @samp{.code16gcc} provides experimental support for generating 16-bit
866 code from gcc, and differs from @samp{.code16} in that @samp{call},
867 @samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
868 @samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
869 default to 32-bit size. This is so that the stack pointer is
870 manipulated in the same way over function calls, allowing access to
871 function parameters at the same stack offsets as in 32-bit mode.
872 @samp{.code16gcc} also automatically adds address size prefixes where
873 necessary to use the 32-bit addressing modes that gcc generates.
874
875 The code which @code{@value{AS}} generates in 16-bit mode will not
876 necessarily run on a 16-bit pre-80386 processor. To write code that
877 runs on such a processor, you must refrain from using @emph{any} 32-bit
878 constructs which require @code{@value{AS}} to output address or operand
879 size prefixes.
880
881 Note that writing 16-bit code instructions by explicitly specifying a
882 prefix or an instruction mnemonic suffix within a 32-bit code section
883 generates different machine instructions than those generated for a
884 16-bit code segment. In a 32-bit code section, the following code
885 generates the machine opcode bytes @samp{66 6a 04}, which pushes the
886 value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
887
888 @smallexample
889 pushw $4
890 @end smallexample
891
892 The same code in a 16-bit code section would generate the machine
893 opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
894 is correct since the processor default operand size is assumed to be 16
895 bits in a 16-bit code section.
896
897 @node i386-Bugs
898 @section AT&T Syntax bugs
899
900 The UnixWare assembler, and probably other AT&T derived ix86 Unix
901 assemblers, generate floating point instructions with reversed source
902 and destination registers in certain cases. Unfortunately, gcc and
903 possibly many other programs use this reversed syntax, so we're stuck
904 with it.
905
906 For example
907
908 @smallexample
909 fsub %st,%st(3)
910 @end smallexample
911 @noindent
912 results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
913 than the expected @samp{%st(3) - %st}. This happens with all the
914 non-commutative arithmetic floating point operations with two register
915 operands where the source register is @samp{%st} and the destination
916 register is @samp{%st(i)}.
917
918 @node i386-Arch
919 @section Specifying CPU Architecture
920
921 @cindex arch directive, i386
922 @cindex i386 arch directive
923 @cindex arch directive, x86-64
924 @cindex x86-64 arch directive
925
926 @code{@value{AS}} may be told to assemble for a particular CPU
927 (sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
928 directive enables a warning when gas detects an instruction that is not
929 supported on the CPU specified. The choices for @var{cpu_type} are:
930
931 @multitable @columnfractions .20 .20 .20 .20
932 @item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
933 @item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
934 @item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
935 @item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
936 @item @samp{corei7} @tab @samp{l1om}
937 @item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
938 @item @samp{amdfam10} @tab @samp{bdver1}
939 @item @samp{generic32} @tab @samp{generic64}
940 @item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
941 @item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
942 @item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
943 @item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
944 @item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
945 @item @samp{.rdrnd} @tab @samp{.f16c}
946 @item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
947 @item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
948 @item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop}
949 @item @samp{.padlock}
950 @end multitable
951
952 Apart from the warning, there are only two other effects on
953 @code{@value{AS}} operation; Firstly, if you specify a CPU other than
954 @samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
955 will automatically use a two byte opcode sequence. The larger three
956 byte opcode sequence is used on the 486 (and when no architecture is
957 specified) because it executes faster on the 486. Note that you can
958 explicitly request the two byte opcode by writing @samp{sarl %eax}.
959 Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
960 @emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
961 conditional jumps will be promoted when necessary to a two instruction
962 sequence consisting of a conditional jump of the opposite sense around
963 an unconditional jump to the target.
964
965 Following the CPU architecture (but not a sub-architecture, which are those
966 starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
967 control automatic promotion of conditional jumps. @samp{jumps} is the
968 default, and enables jump promotion; All external jumps will be of the long
969 variety, and file-local jumps will be promoted as necessary.
970 (@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
971 byte offset jumps, and warns about file-local conditional jumps that
972 @code{@value{AS}} promotes.
973 Unconditional jumps are treated as for @samp{jumps}.
974
975 For example
976
977 @smallexample
978 .arch i8086,nojumps
979 @end smallexample
980
981 @node i386-Notes
982 @section Notes
983
984 @cindex i386 @code{mul}, @code{imul} instructions
985 @cindex @code{mul} instruction, i386
986 @cindex @code{imul} instruction, i386
987 @cindex @code{mul} instruction, x86-64
988 @cindex @code{imul} instruction, x86-64
989 There is some trickery concerning the @samp{mul} and @samp{imul}
990 instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
991 multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
992 for @samp{imul}) can be output only in the one operand form. Thus,
993 @samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
994 the expanding multiply would clobber the @samp{%edx} register, and this
995 would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
996 64-bit product in @samp{%edx:%eax}.
997
998 We have added a two operand form of @samp{imul} when the first operand
999 is an immediate mode expression and the second operand is a register.
1000 This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1001 example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1002 $69, %eax, %eax}.
1003
This page took 0.113911 seconds and 3 git commands to generate.