gas/
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
1 @c Copyright 1991, 1992, 1993, 1994, 1995, 1997, 1998, 1999, 2000,
2 @c 2001, 2003, 2004
3 @c Free Software Foundation, Inc.
4 @c This is part of the GAS manual.
5 @c For copying conditions, see the file as.texinfo.
6 @ifset GENERIC
7 @page
8 @node i386-Dependent
9 @chapter 80386 Dependent Features
10 @end ifset
11 @ifclear GENERIC
12 @node Machine Dependencies
13 @chapter 80386 Dependent Features
14 @end ifclear
15
16 @cindex i386 support
17 @cindex i80386 support
18 @cindex x86-64 support
19
20 The i386 version @code{@value{AS}} supports both the original Intel 386
21 architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22 extending the Intel architecture to 64-bits.
23
24 @menu
25 * i386-Options:: Options
26 * i386-Directives:: X86 specific directives
27 * i386-Syntax:: AT&T Syntax versus Intel Syntax
28 * i386-Mnemonics:: Instruction Naming
29 * i386-Regs:: Register Naming
30 * i386-Prefixes:: Instruction Prefixes
31 * i386-Memory:: Memory References
32 * i386-Jumps:: Handling of Jump Instructions
33 * i386-Float:: Floating Point
34 * i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
35 * i386-16bit:: Writing 16-bit Code
36 * i386-Arch:: Specifying an x86 CPU architecture
37 * i386-Bugs:: AT&T Syntax bugs
38 * i386-Notes:: Notes
39 @end menu
40
41 @node i386-Options
42 @section Options
43
44 @cindex options for i386
45 @cindex options for x86-64
46 @cindex i386 options
47 @cindex x86-64 options
48
49 The i386 version of @code{@value{AS}} has a few machine
50 dependent options:
51
52 @table @code
53 @cindex @samp{--32} option, i386
54 @cindex @samp{--32} option, x86-64
55 @cindex @samp{--64} option, i386
56 @cindex @samp{--64} option, x86-64
57 @item --32 | --64
58 Select the word size, either 32 bits or 64 bits. Selecting 32-bit
59 implies Intel i386 architecture, while 64-bit implies AMD x86-64
60 architecture.
61
62 These options are only available with the ELF object file format, and
63 require that the necessary BFD support has been included (on a 32-bit
64 platform you have to add --enable-64-bit-bfd to configure enable 64-bit
65 usage and use x86-64 as target platform).
66
67 @item -n
68 By default, x86 GAS replaces multiple nop instructions used for
69 alignment within code sections with multi-byte nop instructions such
70 as leal 0(%esi,1),%esi. This switch disables the optimization.
71
72 @cindex @samp{--divide} option, i386
73 @item --divide
74 On SVR4-derived platforms, the character @samp{/} is treated as a comment
75 character, which means that it cannot be used in expressions. The
76 @samp{--divide} option turns @samp{/} into a normal character. This does
77 not disable @samp{/} at the beginning of a line starting a comment, or
78 affect using @samp{#} for starting a comment.
79
80 @cindex @samp{-march=} option, i386
81 @cindex @samp{-march=} option, x86-64
82 @item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
83 This option specifies the target processor. The assembler will
84 issue an error message if an attempt is made to assemble an instruction
85 which will not execute on the target processor. The following
86 processor names are recognized:
87 @code{i8086},
88 @code{i186},
89 @code{i286},
90 @code{i386},
91 @code{i486},
92 @code{i586},
93 @code{i686},
94 @code{pentium},
95 @code{pentiumpro},
96 @code{pentiumii},
97 @code{pentiumiii},
98 @code{pentium4},
99 @code{prescott},
100 @code{nocona},
101 @code{core},
102 @code{core2},
103 @code{k6},
104 @code{k6_2},
105 @code{athlon},
106 @code{opteron},
107 @code{k8},
108 @code{amdfam10},
109 @code{generic32} and
110 @code{generic64}.
111
112 In addition to the basic instruction set, the assembler can be told to
113 accept various extension mnemonics. For example,
114 @code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
115 @var{vmx}. The following extensions are currently supported:
116 @code{mmx},
117 @code{sse},
118 @code{sse2},
119 @code{sse3},
120 @code{ssse3},
121 @code{sse4.1},
122 @code{sse4.2},
123 @code{sse4},
124 @code{avx},
125 @code{vmx},
126 @code{smx},
127 @code{xsave},
128 @code{aes},
129 @code{pclmul},
130 @code{fma},
131 @code{movbe},
132 @code{ept},
133 @code{3dnow},
134 @code{3dnowa},
135 @code{sse4a},
136 @code{sse5},
137 @code{svme},
138 @code{abm} and
139 @code{padlock}.
140
141 When the @code{.arch} directive is used with @option{-march}, the
142 @code{.arch} directive will take precedent.
143
144 @cindex @samp{-mtune=} option, i386
145 @cindex @samp{-mtune=} option, x86-64
146 @item -mtune=@var{CPU}
147 This option specifies a processor to optimize for. When used in
148 conjunction with the @option{-march} option, only instructions
149 of the processor specified by the @option{-march} option will be
150 generated.
151
152 Valid @var{CPU} values are identical to the processor list of
153 @option{-march=@var{CPU}}.
154
155 @cindex @samp{-msse2avx} option, i386
156 @cindex @samp{-msse2avx} option, x86-64
157 @item -msse2avx
158 This option specifies that the assembler should encode SSE instructions
159 with VEX prefix.
160
161 @cindex @samp{-msse-check=} option, i386
162 @cindex @samp{-msse-check=} option, x86-64
163 @item -msse-check=@var{none}
164 @item -msse-check=@var{warning}
165 @item -msse-check=@var{error}
166 These options control if the assembler should check SSE intructions.
167 @option{-msse-check=@var{none}} will make the assembler not to check SSE
168 instructions, which is the default. @option{-msse-check=@var{warning}}
169 will make the assembler issue a warning for any SSE intruction.
170 @option{-msse-check=@var{error}} will make the assembler issue an error
171 for any SSE intruction.
172
173 @cindex @samp{-mmnemonic=} option, i386
174 @cindex @samp{-mmnemonic=} option, x86-64
175 @item -mmnemonic=@var{att}
176 @item -mmnemonic=@var{intel}
177 This option specifies instruction mnemonic for matching instructions.
178 The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
179 take precedent.
180
181 @cindex @samp{-msyntax=} option, i386
182 @cindex @samp{-msyntax=} option, x86-64
183 @item -msyntax=@var{att}
184 @item -msyntax=@var{intel}
185 This option specifies instruction syntax when processing instructions.
186 The @code{.att_syntax} and @code{.intel_syntax} directives will
187 take precedent.
188
189 @cindex @samp{-mnaked-reg} option, i386
190 @cindex @samp{-mnaked-reg} option, x86-64
191 @item -mnaked-reg
192 This opetion specifies that registers don't require a @samp{%} prefix.
193 The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
194
195 @end table
196
197 @node i386-Directives
198 @section x86 specific Directives
199
200 @cindex machine directives, x86
201 @cindex x86 machine directives
202 @table @code
203
204 @cindex @code{lcomm} directive, COFF
205 @item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
206 Reserve @var{length} (an absolute expression) bytes for a local common
207 denoted by @var{symbol}. The section and value of @var{symbol} are
208 those of the new local common. The addresses are allocated in the bss
209 section, so that at run-time the bytes start off zeroed. Since
210 @var{symbol} is not declared global, it is normally not visible to
211 @code{@value{LD}}. The optional third parameter, @var{alignment},
212 specifies the desired alignment of the symbol in the bss section.
213
214 This directive is only available for COFF based x86 targets.
215
216 @c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
217 @c .largecomm
218
219 @end table
220
221 @node i386-Syntax
222 @section AT&T Syntax versus Intel Syntax
223
224 @cindex i386 intel_syntax pseudo op
225 @cindex intel_syntax pseudo op, i386
226 @cindex i386 att_syntax pseudo op
227 @cindex att_syntax pseudo op, i386
228 @cindex i386 syntax compatibility
229 @cindex syntax compatibility, i386
230 @cindex x86-64 intel_syntax pseudo op
231 @cindex intel_syntax pseudo op, x86-64
232 @cindex x86-64 att_syntax pseudo op
233 @cindex att_syntax pseudo op, x86-64
234 @cindex x86-64 syntax compatibility
235 @cindex syntax compatibility, x86-64
236
237 @code{@value{AS}} now supports assembly using Intel assembler syntax.
238 @code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
239 back to the usual AT&T mode for compatibility with the output of
240 @code{@value{GCC}}. Either of these directives may have an optional
241 argument, @code{prefix}, or @code{noprefix} specifying whether registers
242 require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
243 different from Intel syntax. We mention these differences because
244 almost all 80386 documents use Intel syntax. Notable differences
245 between the two syntaxes are:
246
247 @cindex immediate operands, i386
248 @cindex i386 immediate operands
249 @cindex register operands, i386
250 @cindex i386 register operands
251 @cindex jump/call operands, i386
252 @cindex i386 jump/call operands
253 @cindex operand delimiters, i386
254
255 @cindex immediate operands, x86-64
256 @cindex x86-64 immediate operands
257 @cindex register operands, x86-64
258 @cindex x86-64 register operands
259 @cindex jump/call operands, x86-64
260 @cindex x86-64 jump/call operands
261 @cindex operand delimiters, x86-64
262 @itemize @bullet
263 @item
264 AT&T immediate operands are preceded by @samp{$}; Intel immediate
265 operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
266 AT&T register operands are preceded by @samp{%}; Intel register operands
267 are undelimited. AT&T absolute (as opposed to PC relative) jump/call
268 operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
269
270 @cindex i386 source, destination operands
271 @cindex source, destination operands; i386
272 @cindex x86-64 source, destination operands
273 @cindex source, destination operands; x86-64
274 @item
275 AT&T and Intel syntax use the opposite order for source and destination
276 operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
277 @samp{source, dest} convention is maintained for compatibility with
278 previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
279 instructions with 2 immediate operands, such as the @samp{enter}
280 instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
281
282 @cindex mnemonic suffixes, i386
283 @cindex sizes operands, i386
284 @cindex i386 size suffixes
285 @cindex mnemonic suffixes, x86-64
286 @cindex sizes operands, x86-64
287 @cindex x86-64 size suffixes
288 @item
289 In AT&T syntax the size of memory operands is determined from the last
290 character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
291 @samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
292 (32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
293 this by prefixing memory operands (@emph{not} the instruction mnemonics) with
294 @samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
295 Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
296 syntax.
297
298 @cindex return instructions, i386
299 @cindex i386 jump, call, return
300 @cindex return instructions, x86-64
301 @cindex x86-64 jump, call, return
302 @item
303 Immediate form long jumps and calls are
304 @samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
305 Intel syntax is
306 @samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
307 instruction
308 is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
309 @samp{ret far @var{stack-adjust}}.
310
311 @cindex sections, i386
312 @cindex i386 sections
313 @cindex sections, x86-64
314 @cindex x86-64 sections
315 @item
316 The AT&T assembler does not provide support for multiple section
317 programs. Unix style systems expect all programs to be single sections.
318 @end itemize
319
320 @node i386-Mnemonics
321 @section Instruction Naming
322
323 @cindex i386 instruction naming
324 @cindex instruction naming, i386
325 @cindex x86-64 instruction naming
326 @cindex instruction naming, x86-64
327
328 Instruction mnemonics are suffixed with one character modifiers which
329 specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
330 and @samp{q} specify byte, word, long and quadruple word operands. If
331 no suffix is specified by an instruction then @code{@value{AS}} tries to
332 fill in the missing suffix based on the destination register operand
333 (the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
334 to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
335 @samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
336 assembler which assumes that a missing mnemonic suffix implies long
337 operand size. (This incompatibility does not affect compiler output
338 since compilers always explicitly specify the mnemonic suffix.)
339
340 Almost all instructions have the same names in AT&T and Intel format.
341 There are a few exceptions. The sign extend and zero extend
342 instructions need two sizes to specify them. They need a size to
343 sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
344 is accomplished by using two instruction mnemonic suffixes in AT&T
345 syntax. Base names for sign extend and zero extend are
346 @samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
347 and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
348 are tacked on to this base name, the @emph{from} suffix before the
349 @emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
350 ``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
351 thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
352 @samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
353 @samp{wq} (from word to quadruple word), and @samp{lq} (from long to
354 quadruple word).
355
356 @cindex encoding options, i386
357 @cindex encoding options, x86-64
358
359 Different encoding options can be specified via optional mnemonic
360 suffix. @samp{.s} suffix swaps 2 register operands in encoding when
361 moving from one register to another.
362
363 @cindex conversion instructions, i386
364 @cindex i386 conversion instructions
365 @cindex conversion instructions, x86-64
366 @cindex x86-64 conversion instructions
367 The Intel-syntax conversion instructions
368
369 @itemize @bullet
370 @item
371 @samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
372
373 @item
374 @samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
375
376 @item
377 @samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
378
379 @item
380 @samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
381
382 @item
383 @samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
384 (x86-64 only),
385
386 @item
387 @samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
388 @samp{%rdx:%rax} (x86-64 only),
389 @end itemize
390
391 @noindent
392 are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
393 @samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
394 instructions.
395
396 @cindex jump instructions, i386
397 @cindex call instructions, i386
398 @cindex jump instructions, x86-64
399 @cindex call instructions, x86-64
400 Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
401 AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
402 convention.
403
404 @section AT&T Mnemonic versus Intel Mnemonic
405
406 @cindex i386 mnemonic compatibility
407 @cindex mnemonic compatibility, i386
408
409 @code{@value{AS}} supports assembly using Intel mnemonic.
410 @code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
411 @code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
412 syntax for compatibility with the output of @code{@value{GCC}}.
413 Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
414 @samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
415 @samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
416 assembler with different mnemonics from those in Intel IA32 specification.
417 @code{@value{GCC}} generates those instructions with AT&T mnemonic.
418
419 @node i386-Regs
420 @section Register Naming
421
422 @cindex i386 registers
423 @cindex registers, i386
424 @cindex x86-64 registers
425 @cindex registers, x86-64
426 Register operands are always prefixed with @samp{%}. The 80386 registers
427 consist of
428
429 @itemize @bullet
430 @item
431 the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
432 @samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
433 frame pointer), and @samp{%esp} (the stack pointer).
434
435 @item
436 the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
437 @samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
438
439 @item
440 the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
441 @samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
442 are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
443 @samp{%cx}, and @samp{%dx})
444
445 @item
446 the 6 section registers @samp{%cs} (code section), @samp{%ds}
447 (data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
448 and @samp{%gs}.
449
450 @item
451 the 3 processor control registers @samp{%cr0}, @samp{%cr2}, and
452 @samp{%cr3}.
453
454 @item
455 the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
456 @samp{%db3}, @samp{%db6}, and @samp{%db7}.
457
458 @item
459 the 2 test registers @samp{%tr6} and @samp{%tr7}.
460
461 @item
462 the 8 floating point register stack @samp{%st} or equivalently
463 @samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
464 @samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
465 These registers are overloaded by 8 MMX registers @samp{%mm0},
466 @samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
467 @samp{%mm6} and @samp{%mm7}.
468
469 @item
470 the 8 SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
471 @samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
472 @end itemize
473
474 The AMD x86-64 architecture extends the register set by:
475
476 @itemize @bullet
477 @item
478 enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
479 accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
480 @samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
481 pointer)
482
483 @item
484 the 8 extended registers @samp{%r8}--@samp{%r15}.
485
486 @item
487 the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}
488
489 @item
490 the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}
491
492 @item
493 the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}
494
495 @item
496 the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
497
498 @item
499 the 8 debug registers: @samp{%db8}--@samp{%db15}.
500
501 @item
502 the 8 SSE registers: @samp{%xmm8}--@samp{%xmm15}.
503 @end itemize
504
505 @node i386-Prefixes
506 @section Instruction Prefixes
507
508 @cindex i386 instruction prefixes
509 @cindex instruction prefixes, i386
510 @cindex prefixes, i386
511 Instruction prefixes are used to modify the following instruction. They
512 are used to repeat string instructions, to provide section overrides, to
513 perform bus lock operations, and to change operand and address sizes.
514 (Most instructions that normally operate on 32-bit operands will use
515 16-bit operands if the instruction has an ``operand size'' prefix.)
516 Instruction prefixes are best written on the same line as the instruction
517 they act upon. For example, the @samp{scas} (scan string) instruction is
518 repeated with:
519
520 @smallexample
521 repne scas %es:(%edi),%al
522 @end smallexample
523
524 You may also place prefixes on the lines immediately preceding the
525 instruction, but this circumvents checks that @code{@value{AS}} does
526 with prefixes, and will not work with all prefixes.
527
528 Here is a list of instruction prefixes:
529
530 @cindex section override prefixes, i386
531 @itemize @bullet
532 @item
533 Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
534 @samp{fs}, @samp{gs}. These are automatically added by specifying
535 using the @var{section}:@var{memory-operand} form for memory references.
536
537 @cindex size prefixes, i386
538 @item
539 Operand/Address size prefixes @samp{data16} and @samp{addr16}
540 change 32-bit operands/addresses into 16-bit operands/addresses,
541 while @samp{data32} and @samp{addr32} change 16-bit ones (in a
542 @code{.code16} section) into 32-bit operands/addresses. These prefixes
543 @emph{must} appear on the same line of code as the instruction they
544 modify. For example, in a 16-bit @code{.code16} section, you might
545 write:
546
547 @smallexample
548 addr32 jmpl *(%ebx)
549 @end smallexample
550
551 @cindex bus lock prefixes, i386
552 @cindex inhibiting interrupts, i386
553 @item
554 The bus lock prefix @samp{lock} inhibits interrupts during execution of
555 the instruction it precedes. (This is only valid with certain
556 instructions; see a 80386 manual for details).
557
558 @cindex coprocessor wait, i386
559 @item
560 The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
561 complete the current instruction. This should never be needed for the
562 80386/80387 combination.
563
564 @cindex repeat prefixes, i386
565 @item
566 The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
567 to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
568 times if the current address size is 16-bits).
569 @cindex REX prefixes, i386
570 @item
571 The @samp{rex} family of prefixes is used by x86-64 to encode
572 extensions to i386 instruction set. The @samp{rex} prefix has four
573 bits --- an operand size overwrite (@code{64}) used to change operand size
574 from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
575 register set.
576
577 You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
578 instruction emits @samp{rex} prefix with all the bits set. By omitting
579 the @code{64}, @code{x}, @code{y} or @code{z} you may write other
580 prefixes as well. Normally, there is no need to write the prefixes
581 explicitly, since gas will automatically generate them based on the
582 instruction operands.
583 @end itemize
584
585 @node i386-Memory
586 @section Memory References
587
588 @cindex i386 memory references
589 @cindex memory references, i386
590 @cindex x86-64 memory references
591 @cindex memory references, x86-64
592 An Intel syntax indirect memory reference of the form
593
594 @smallexample
595 @var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
596 @end smallexample
597
598 @noindent
599 is translated into the AT&T syntax
600
601 @smallexample
602 @var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
603 @end smallexample
604
605 @noindent
606 where @var{base} and @var{index} are the optional 32-bit base and
607 index registers, @var{disp} is the optional displacement, and
608 @var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
609 to calculate the address of the operand. If no @var{scale} is
610 specified, @var{scale} is taken to be 1. @var{section} specifies the
611 optional section register for the memory operand, and may override the
612 default section register (see a 80386 manual for section register
613 defaults). Note that section overrides in AT&T syntax @emph{must}
614 be preceded by a @samp{%}. If you specify a section override which
615 coincides with the default section register, @code{@value{AS}} does @emph{not}
616 output any section register override prefixes to assemble the given
617 instruction. Thus, section overrides can be specified to emphasize which
618 section register is used for a given memory operand.
619
620 Here are some examples of Intel and AT&T style memory references:
621
622 @table @asis
623 @item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
624 @var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
625 missing, and the default section is used (@samp{%ss} for addressing with
626 @samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
627
628 @item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
629 @var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
630 @samp{foo}. All other fields are missing. The section register here
631 defaults to @samp{%ds}.
632
633 @item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
634 This uses the value pointed to by @samp{foo} as a memory operand.
635 Note that @var{base} and @var{index} are both missing, but there is only
636 @emph{one} @samp{,}. This is a syntactic exception.
637
638 @item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
639 This selects the contents of the variable @samp{foo} with section
640 register @var{section} being @samp{%gs}.
641 @end table
642
643 Absolute (as opposed to PC relative) call and jump operands must be
644 prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
645 always chooses PC relative addressing for jump/call labels.
646
647 Any instruction that has a memory operand, but no register operand,
648 @emph{must} specify its size (byte, word, long, or quadruple) with an
649 instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
650 respectively).
651
652 The x86-64 architecture adds an RIP (instruction pointer relative)
653 addressing. This addressing mode is specified by using @samp{rip} as a
654 base register. Only constant offsets are valid. For example:
655
656 @table @asis
657 @item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
658 Points to the address 1234 bytes past the end of the current
659 instruction.
660
661 @item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
662 Points to the @code{symbol} in RIP relative way, this is shorter than
663 the default absolute addressing.
664 @end table
665
666 Other addressing modes remain unchanged in x86-64 architecture, except
667 registers used are 64-bit instead of 32-bit.
668
669 @node i386-Jumps
670 @section Handling of Jump Instructions
671
672 @cindex jump optimization, i386
673 @cindex i386 jump optimization
674 @cindex jump optimization, x86-64
675 @cindex x86-64 jump optimization
676 Jump instructions are always optimized to use the smallest possible
677 displacements. This is accomplished by using byte (8-bit) displacement
678 jumps whenever the target is sufficiently close. If a byte displacement
679 is insufficient a long displacement is used. We do not support
680 word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
681 instruction with the @samp{data16} instruction prefix), since the 80386
682 insists upon masking @samp{%eip} to 16 bits after the word displacement
683 is added. (See also @pxref{i386-Arch})
684
685 Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
686 @samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
687 displacements, so that if you use these instructions (@code{@value{GCC}} does
688 not use them) you may get an error message (and incorrect code). The AT&T
689 80386 assembler tries to get around this problem by expanding @samp{jcxz foo}
690 to
691
692 @smallexample
693 jcxz cx_zero
694 jmp cx_nonzero
695 cx_zero: jmp foo
696 cx_nonzero:
697 @end smallexample
698
699 @node i386-Float
700 @section Floating Point
701
702 @cindex i386 floating point
703 @cindex floating point, i386
704 @cindex x86-64 floating point
705 @cindex floating point, x86-64
706 All 80387 floating point types except packed BCD are supported.
707 (BCD support may be added without much difficulty). These data
708 types are 16-, 32-, and 64- bit integers, and single (32-bit),
709 double (64-bit), and extended (80-bit) precision floating point.
710 Each supported type has an instruction mnemonic suffix and a constructor
711 associated with it. Instruction mnemonic suffixes specify the operand's
712 data type. Constructors build these data types into memory.
713
714 @cindex @code{float} directive, i386
715 @cindex @code{single} directive, i386
716 @cindex @code{double} directive, i386
717 @cindex @code{tfloat} directive, i386
718 @cindex @code{float} directive, x86-64
719 @cindex @code{single} directive, x86-64
720 @cindex @code{double} directive, x86-64
721 @cindex @code{tfloat} directive, x86-64
722 @itemize @bullet
723 @item
724 Floating point constructors are @samp{.float} or @samp{.single},
725 @samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
726 These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
727 and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
728 only supports this format via the @samp{fldt} (load 80-bit real to stack
729 top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
730
731 @cindex @code{word} directive, i386
732 @cindex @code{long} directive, i386
733 @cindex @code{int} directive, i386
734 @cindex @code{quad} directive, i386
735 @cindex @code{word} directive, x86-64
736 @cindex @code{long} directive, x86-64
737 @cindex @code{int} directive, x86-64
738 @cindex @code{quad} directive, x86-64
739 @item
740 Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
741 @samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
742 corresponding instruction mnemonic suffixes are @samp{s} (single),
743 @samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
744 the 64-bit @samp{q} format is only present in the @samp{fildq} (load
745 quad integer to stack top) and @samp{fistpq} (store quad integer and pop
746 stack) instructions.
747 @end itemize
748
749 Register to register operations should not use instruction mnemonic suffixes.
750 @samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
751 wrote @samp{fst %st, %st(1)}, since all register to register operations
752 use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
753 which converts @samp{%st} from 80-bit to 64-bit floating point format,
754 then stores the result in the 4 byte location @samp{mem})
755
756 @node i386-SIMD
757 @section Intel's MMX and AMD's 3DNow! SIMD Operations
758
759 @cindex MMX, i386
760 @cindex 3DNow!, i386
761 @cindex SIMD, i386
762 @cindex MMX, x86-64
763 @cindex 3DNow!, x86-64
764 @cindex SIMD, x86-64
765
766 @code{@value{AS}} supports Intel's MMX instruction set (SIMD
767 instructions for integer data), available on Intel's Pentium MMX
768 processors and Pentium II processors, AMD's K6 and K6-2 processors,
769 Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
770 instruction set (SIMD instructions for 32-bit floating point data)
771 available on AMD's K6-2 processor and possibly others in the future.
772
773 Currently, @code{@value{AS}} does not support Intel's floating point
774 SIMD, Katmai (KNI).
775
776 The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
777 @samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
778 16-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
779 floating point values. The MMX registers cannot be used at the same time
780 as the floating point stack.
781
782 See Intel and AMD documentation, keeping in mind that the operand order in
783 instructions is reversed from the Intel syntax.
784
785 @node i386-16bit
786 @section Writing 16-bit Code
787
788 @cindex i386 16-bit code
789 @cindex 16-bit code, i386
790 @cindex real-mode code, i386
791 @cindex @code{code16gcc} directive, i386
792 @cindex @code{code16} directive, i386
793 @cindex @code{code32} directive, i386
794 @cindex @code{code64} directive, i386
795 @cindex @code{code64} directive, x86-64
796 While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
797 or 64-bit x86-64 code depending on the default configuration,
798 it also supports writing code to run in real mode or in 16-bit protected
799 mode code segments. To do this, put a @samp{.code16} or
800 @samp{.code16gcc} directive before the assembly language instructions to
801 be run in 16-bit mode. You can switch @code{@value{AS}} back to writing
802 normal 32-bit code with the @samp{.code32} directive.
803
804 @samp{.code16gcc} provides experimental support for generating 16-bit
805 code from gcc, and differs from @samp{.code16} in that @samp{call},
806 @samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
807 @samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
808 default to 32-bit size. This is so that the stack pointer is
809 manipulated in the same way over function calls, allowing access to
810 function parameters at the same stack offsets as in 32-bit mode.
811 @samp{.code16gcc} also automatically adds address size prefixes where
812 necessary to use the 32-bit addressing modes that gcc generates.
813
814 The code which @code{@value{AS}} generates in 16-bit mode will not
815 necessarily run on a 16-bit pre-80386 processor. To write code that
816 runs on such a processor, you must refrain from using @emph{any} 32-bit
817 constructs which require @code{@value{AS}} to output address or operand
818 size prefixes.
819
820 Note that writing 16-bit code instructions by explicitly specifying a
821 prefix or an instruction mnemonic suffix within a 32-bit code section
822 generates different machine instructions than those generated for a
823 16-bit code segment. In a 32-bit code section, the following code
824 generates the machine opcode bytes @samp{66 6a 04}, which pushes the
825 value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
826
827 @smallexample
828 pushw $4
829 @end smallexample
830
831 The same code in a 16-bit code section would generate the machine
832 opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
833 is correct since the processor default operand size is assumed to be 16
834 bits in a 16-bit code section.
835
836 @node i386-Bugs
837 @section AT&T Syntax bugs
838
839 The UnixWare assembler, and probably other AT&T derived ix86 Unix
840 assemblers, generate floating point instructions with reversed source
841 and destination registers in certain cases. Unfortunately, gcc and
842 possibly many other programs use this reversed syntax, so we're stuck
843 with it.
844
845 For example
846
847 @smallexample
848 fsub %st,%st(3)
849 @end smallexample
850 @noindent
851 results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
852 than the expected @samp{%st(3) - %st}. This happens with all the
853 non-commutative arithmetic floating point operations with two register
854 operands where the source register is @samp{%st} and the destination
855 register is @samp{%st(i)}.
856
857 @node i386-Arch
858 @section Specifying CPU Architecture
859
860 @cindex arch directive, i386
861 @cindex i386 arch directive
862 @cindex arch directive, x86-64
863 @cindex x86-64 arch directive
864
865 @code{@value{AS}} may be told to assemble for a particular CPU
866 (sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
867 directive enables a warning when gas detects an instruction that is not
868 supported on the CPU specified. The choices for @var{cpu_type} are:
869
870 @multitable @columnfractions .20 .20 .20 .20
871 @item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
872 @item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
873 @item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
874 @item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
875 @item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
876 @item @samp{amdfam10}
877 @item @samp{generic32} @tab @samp{generic64}
878 @item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
879 @item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
880 @item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.xsave}
881 @item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.movbe}
882 @item @samp{.ept}
883 @item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
884 @item @samp{.svme} @tab @samp{.abm}
885 @item @samp{.padlock}
886 @end multitable
887
888 Apart from the warning, there are only two other effects on
889 @code{@value{AS}} operation; Firstly, if you specify a CPU other than
890 @samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
891 will automatically use a two byte opcode sequence. The larger three
892 byte opcode sequence is used on the 486 (and when no architecture is
893 specified) because it executes faster on the 486. Note that you can
894 explicitly request the two byte opcode by writing @samp{sarl %eax}.
895 Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
896 @emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
897 conditional jumps will be promoted when necessary to a two instruction
898 sequence consisting of a conditional jump of the opposite sense around
899 an unconditional jump to the target.
900
901 Following the CPU architecture (but not a sub-architecture, which are those
902 starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
903 control automatic promotion of conditional jumps. @samp{jumps} is the
904 default, and enables jump promotion; All external jumps will be of the long
905 variety, and file-local jumps will be promoted as necessary.
906 (@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
907 byte offset jumps, and warns about file-local conditional jumps that
908 @code{@value{AS}} promotes.
909 Unconditional jumps are treated as for @samp{jumps}.
910
911 For example
912
913 @smallexample
914 .arch i8086,nojumps
915 @end smallexample
916
917 @node i386-Notes
918 @section Notes
919
920 @cindex i386 @code{mul}, @code{imul} instructions
921 @cindex @code{mul} instruction, i386
922 @cindex @code{imul} instruction, i386
923 @cindex @code{mul} instruction, x86-64
924 @cindex @code{imul} instruction, x86-64
925 There is some trickery concerning the @samp{mul} and @samp{imul}
926 instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
927 multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
928 for @samp{imul}) can be output only in the one operand form. Thus,
929 @samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
930 the expanding multiply would clobber the @samp{%edx} register, and this
931 would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
932 64-bit product in @samp{%edx:%eax}.
933
934 We have added a two operand form of @samp{imul} when the first operand
935 is an immediate mode expression and the second operand is a register.
936 This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
937 example, can be done with @samp{imul $69, %eax} rather than @samp{imul
938 $69, %eax, %eax}.
939
This page took 0.053497 seconds and 4 git commands to generate.