Add Intel AVX-512 support
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
1 @c Copyright 1991, 1992, 1993, 1994, 1995, 1997, 1998, 1999, 2000,
2 @c 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2011
3 @c Free Software Foundation, Inc.
4 @c This is part of the GAS manual.
5 @c For copying conditions, see the file as.texinfo.
6 @c man end
7
8 @ifset GENERIC
9 @page
10 @node i386-Dependent
11 @chapter 80386 Dependent Features
12 @end ifset
13 @ifclear GENERIC
14 @node Machine Dependencies
15 @chapter 80386 Dependent Features
16 @end ifclear
17
18 @cindex i386 support
19 @cindex i80386 support
20 @cindex x86-64 support
21
22 The i386 version @code{@value{AS}} supports both the original Intel 386
23 architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
24 extending the Intel architecture to 64-bits.
25
26 @menu
27 * i386-Options:: Options
28 * i386-Directives:: X86 specific directives
29 * i386-Syntax:: Syntactical considerations
30 * i386-Mnemonics:: Instruction Naming
31 * i386-Regs:: Register Naming
32 * i386-Prefixes:: Instruction Prefixes
33 * i386-Memory:: Memory References
34 * i386-Jumps:: Handling of Jump Instructions
35 * i386-Float:: Floating Point
36 * i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
37 * i386-LWP:: AMD's Lightweight Profiling Instructions
38 * i386-BMI:: Bit Manipulation Instruction
39 * i386-TBM:: AMD's Trailing Bit Manipulation Instructions
40 * i386-16bit:: Writing 16-bit Code
41 * i386-Arch:: Specifying an x86 CPU architecture
42 * i386-Bugs:: AT&T Syntax bugs
43 * i386-Notes:: Notes
44 @end menu
45
46 @node i386-Options
47 @section Options
48
49 @cindex options for i386
50 @cindex options for x86-64
51 @cindex i386 options
52 @cindex x86-64 options
53
54 The i386 version of @code{@value{AS}} has a few machine
55 dependent options:
56
57 @c man begin OPTIONS
58 @table @gcctabopt
59 @cindex @samp{--32} option, i386
60 @cindex @samp{--32} option, x86-64
61 @cindex @samp{--x32} option, i386
62 @cindex @samp{--x32} option, x86-64
63 @cindex @samp{--64} option, i386
64 @cindex @samp{--64} option, x86-64
65 @item --32 | --x32 | --64
66 Select the word size, either 32 bits or 64 bits. @samp{--32}
67 implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
68 imply AMD x86-64 architecture with 32-bit or 64-bit word-size
69 respectively.
70
71 These options are only available with the ELF object file format, and
72 require that the necessary BFD support has been included (on a 32-bit
73 platform you have to add --enable-64-bit-bfd to configure enable 64-bit
74 usage and use x86-64 as target platform).
75
76 @item -n
77 By default, x86 GAS replaces multiple nop instructions used for
78 alignment within code sections with multi-byte nop instructions such
79 as leal 0(%esi,1),%esi. This switch disables the optimization.
80
81 @cindex @samp{--divide} option, i386
82 @item --divide
83 On SVR4-derived platforms, the character @samp{/} is treated as a comment
84 character, which means that it cannot be used in expressions. The
85 @samp{--divide} option turns @samp{/} into a normal character. This does
86 not disable @samp{/} at the beginning of a line starting a comment, or
87 affect using @samp{#} for starting a comment.
88
89 @cindex @samp{-march=} option, i386
90 @cindex @samp{-march=} option, x86-64
91 @item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
92 This option specifies the target processor. The assembler will
93 issue an error message if an attempt is made to assemble an instruction
94 which will not execute on the target processor. The following
95 processor names are recognized:
96 @code{i8086},
97 @code{i186},
98 @code{i286},
99 @code{i386},
100 @code{i486},
101 @code{i586},
102 @code{i686},
103 @code{pentium},
104 @code{pentiumpro},
105 @code{pentiumii},
106 @code{pentiumiii},
107 @code{pentium4},
108 @code{prescott},
109 @code{nocona},
110 @code{core},
111 @code{core2},
112 @code{corei7},
113 @code{l1om},
114 @code{k1om},
115 @code{k6},
116 @code{k6_2},
117 @code{athlon},
118 @code{opteron},
119 @code{k8},
120 @code{amdfam10},
121 @code{bdver1},
122 @code{bdver2},
123 @code{bdver3},
124 @code{btver1},
125 @code{btver2},
126 @code{generic32} and
127 @code{generic64}.
128
129 In addition to the basic instruction set, the assembler can be told to
130 accept various extension mnemonics. For example,
131 @code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
132 @var{vmx}. The following extensions are currently supported:
133 @code{8087},
134 @code{287},
135 @code{387},
136 @code{no87},
137 @code{mmx},
138 @code{nommx},
139 @code{sse},
140 @code{sse2},
141 @code{sse3},
142 @code{ssse3},
143 @code{sse4.1},
144 @code{sse4.2},
145 @code{sse4},
146 @code{nosse},
147 @code{avx},
148 @code{avx2},
149 @code{adx},
150 @code{rdseed},
151 @code{prfchw},
152 @code{smap},
153 @code{mpx},
154 @code{sha},
155 @code{avx512f},
156 @code{avx512cd},
157 @code{avx512er},
158 @code{avx512pf},
159 @code{noavx},
160 @code{vmx},
161 @code{vmfunc},
162 @code{smx},
163 @code{xsave},
164 @code{xsaveopt},
165 @code{aes},
166 @code{pclmul},
167 @code{fsgsbase},
168 @code{rdrnd},
169 @code{f16c},
170 @code{bmi2},
171 @code{fma},
172 @code{movbe},
173 @code{ept},
174 @code{lzcnt},
175 @code{hle},
176 @code{rtm},
177 @code{invpcid},
178 @code{clflush},
179 @code{lwp},
180 @code{fma4},
181 @code{xop},
182 @code{cx16},
183 @code{syscall},
184 @code{rdtscp},
185 @code{3dnow},
186 @code{3dnowa},
187 @code{sse4a},
188 @code{sse5},
189 @code{svme},
190 @code{abm} and
191 @code{padlock}.
192 Note that rather than extending a basic instruction set, the extension
193 mnemonics starting with @code{no} revoke the respective functionality.
194
195 When the @code{.arch} directive is used with @option{-march}, the
196 @code{.arch} directive will take precedent.
197
198 @cindex @samp{-mtune=} option, i386
199 @cindex @samp{-mtune=} option, x86-64
200 @item -mtune=@var{CPU}
201 This option specifies a processor to optimize for. When used in
202 conjunction with the @option{-march} option, only instructions
203 of the processor specified by the @option{-march} option will be
204 generated.
205
206 Valid @var{CPU} values are identical to the processor list of
207 @option{-march=@var{CPU}}.
208
209 @cindex @samp{-msse2avx} option, i386
210 @cindex @samp{-msse2avx} option, x86-64
211 @item -msse2avx
212 This option specifies that the assembler should encode SSE instructions
213 with VEX prefix.
214
215 @cindex @samp{-msse-check=} option, i386
216 @cindex @samp{-msse-check=} option, x86-64
217 @item -msse-check=@var{none}
218 @itemx -msse-check=@var{warning}
219 @itemx -msse-check=@var{error}
220 These options control if the assembler should check SSE intructions.
221 @option{-msse-check=@var{none}} will make the assembler not to check SSE
222 instructions, which is the default. @option{-msse-check=@var{warning}}
223 will make the assembler issue a warning for any SSE intruction.
224 @option{-msse-check=@var{error}} will make the assembler issue an error
225 for any SSE intruction.
226
227 @cindex @samp{-mavxscalar=} option, i386
228 @cindex @samp{-mavxscalar=} option, x86-64
229 @item -mavxscalar=@var{128}
230 @itemx -mavxscalar=@var{256}
231 These options control how the assembler should encode scalar AVX
232 instructions. @option{-mavxscalar=@var{128}} will encode scalar
233 AVX instructions with 128bit vector length, which is the default.
234 @option{-mavxscalar=@var{256}} will encode scalar AVX instructions
235 with 256bit vector length.
236
237 @cindex @samp{-mevexlig=} option, i386
238 @cindex @samp{-mevexlig=} option, x86-64
239 @item -mevexlig=@var{128}
240 @itemx -mevexlig=@var{256}
241 @itemx -mevexlig=@var{512}
242 These options control how the assembler should encode length-ignored
243 (LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
244 EVEX instructions with 128bit vector length, which is the default.
245 @option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
246 encode LIG EVEX instructions with 256bit and 512bit vector length,
247 respectively.
248
249 @cindex @samp{-mevexwig=} option, i386
250 @cindex @samp{-mevexwig=} option, x86-64
251 @item -mevexwig=@var{0}
252 @itemx -mevexwig=@var{1}
253 These options control how the assembler should encode w-ignored (WIG)
254 EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
255 EVEX instructions with evex.w = 0, which is the default.
256 @option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
257 evex.w = 1.
258
259 @cindex @samp{-mmnemonic=} option, i386
260 @cindex @samp{-mmnemonic=} option, x86-64
261 @item -mmnemonic=@var{att}
262 @itemx -mmnemonic=@var{intel}
263 This option specifies instruction mnemonic for matching instructions.
264 The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
265 take precedent.
266
267 @cindex @samp{-msyntax=} option, i386
268 @cindex @samp{-msyntax=} option, x86-64
269 @item -msyntax=@var{att}
270 @itemx -msyntax=@var{intel}
271 This option specifies instruction syntax when processing instructions.
272 The @code{.att_syntax} and @code{.intel_syntax} directives will
273 take precedent.
274
275 @cindex @samp{-mnaked-reg} option, i386
276 @cindex @samp{-mnaked-reg} option, x86-64
277 @item -mnaked-reg
278 This opetion specifies that registers don't require a @samp{%} prefix.
279 The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
280
281 @cindex @samp{-madd-bnd-prefix} option, i386
282 @cindex @samp{-madd-bnd-prefix} option, x86-64
283 @item -madd-bnd-prefix
284 This option forces the assembler to add BND prefix to all branches, even
285 if such prefix was not explicitly specified in the source code.
286
287 @end table
288 @c man end
289
290 @node i386-Directives
291 @section x86 specific Directives
292
293 @cindex machine directives, x86
294 @cindex x86 machine directives
295 @table @code
296
297 @cindex @code{lcomm} directive, COFF
298 @item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
299 Reserve @var{length} (an absolute expression) bytes for a local common
300 denoted by @var{symbol}. The section and value of @var{symbol} are
301 those of the new local common. The addresses are allocated in the bss
302 section, so that at run-time the bytes start off zeroed. Since
303 @var{symbol} is not declared global, it is normally not visible to
304 @code{@value{LD}}. The optional third parameter, @var{alignment},
305 specifies the desired alignment of the symbol in the bss section.
306
307 This directive is only available for COFF based x86 targets.
308
309 @c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
310 @c .largecomm
311
312 @end table
313
314 @node i386-Syntax
315 @section i386 Syntactical Considerations
316 @menu
317 * i386-Variations:: AT&T Syntax versus Intel Syntax
318 * i386-Chars:: Special Characters
319 @end menu
320
321 @node i386-Variations
322 @subsection AT&T Syntax versus Intel Syntax
323
324 @cindex i386 intel_syntax pseudo op
325 @cindex intel_syntax pseudo op, i386
326 @cindex i386 att_syntax pseudo op
327 @cindex att_syntax pseudo op, i386
328 @cindex i386 syntax compatibility
329 @cindex syntax compatibility, i386
330 @cindex x86-64 intel_syntax pseudo op
331 @cindex intel_syntax pseudo op, x86-64
332 @cindex x86-64 att_syntax pseudo op
333 @cindex att_syntax pseudo op, x86-64
334 @cindex x86-64 syntax compatibility
335 @cindex syntax compatibility, x86-64
336
337 @code{@value{AS}} now supports assembly using Intel assembler syntax.
338 @code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
339 back to the usual AT&T mode for compatibility with the output of
340 @code{@value{GCC}}. Either of these directives may have an optional
341 argument, @code{prefix}, or @code{noprefix} specifying whether registers
342 require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
343 different from Intel syntax. We mention these differences because
344 almost all 80386 documents use Intel syntax. Notable differences
345 between the two syntaxes are:
346
347 @cindex immediate operands, i386
348 @cindex i386 immediate operands
349 @cindex register operands, i386
350 @cindex i386 register operands
351 @cindex jump/call operands, i386
352 @cindex i386 jump/call operands
353 @cindex operand delimiters, i386
354
355 @cindex immediate operands, x86-64
356 @cindex x86-64 immediate operands
357 @cindex register operands, x86-64
358 @cindex x86-64 register operands
359 @cindex jump/call operands, x86-64
360 @cindex x86-64 jump/call operands
361 @cindex operand delimiters, x86-64
362 @itemize @bullet
363 @item
364 AT&T immediate operands are preceded by @samp{$}; Intel immediate
365 operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
366 AT&T register operands are preceded by @samp{%}; Intel register operands
367 are undelimited. AT&T absolute (as opposed to PC relative) jump/call
368 operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
369
370 @cindex i386 source, destination operands
371 @cindex source, destination operands; i386
372 @cindex x86-64 source, destination operands
373 @cindex source, destination operands; x86-64
374 @item
375 AT&T and Intel syntax use the opposite order for source and destination
376 operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
377 @samp{source, dest} convention is maintained for compatibility with
378 previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
379 instructions with 2 immediate operands, such as the @samp{enter}
380 instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
381
382 @cindex mnemonic suffixes, i386
383 @cindex sizes operands, i386
384 @cindex i386 size suffixes
385 @cindex mnemonic suffixes, x86-64
386 @cindex sizes operands, x86-64
387 @cindex x86-64 size suffixes
388 @item
389 In AT&T syntax the size of memory operands is determined from the last
390 character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
391 @samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
392 (32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
393 this by prefixing memory operands (@emph{not} the instruction mnemonics) with
394 @samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
395 Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
396 syntax.
397
398 In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
399 instruction with the 64-bit displacement or immediate operand.
400
401 @cindex return instructions, i386
402 @cindex i386 jump, call, return
403 @cindex return instructions, x86-64
404 @cindex x86-64 jump, call, return
405 @item
406 Immediate form long jumps and calls are
407 @samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
408 Intel syntax is
409 @samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
410 instruction
411 is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
412 @samp{ret far @var{stack-adjust}}.
413
414 @cindex sections, i386
415 @cindex i386 sections
416 @cindex sections, x86-64
417 @cindex x86-64 sections
418 @item
419 The AT&T assembler does not provide support for multiple section
420 programs. Unix style systems expect all programs to be single sections.
421 @end itemize
422
423 @node i386-Chars
424 @subsection Special Characters
425
426 @cindex line comment character, i386
427 @cindex i386 line comment character
428 The presence of a @samp{#} appearing anywhere on a line indicates the
429 start of a comment that extends to the end of that line.
430
431 If a @samp{#} appears as the first character of a line then the whole
432 line is treated as a comment, but in this case the line can also be a
433 logical line number directive (@pxref{Comments}) or a preprocessor
434 control command (@pxref{Preprocessing}).
435
436 If the @option{--divide} command line option has not been specified
437 then the @samp{/} character appearing anywhere on a line also
438 introduces a line comment.
439
440 @cindex line separator, i386
441 @cindex statement separator, i386
442 @cindex i386 line separator
443 The @samp{;} character can be used to separate statements on the same
444 line.
445
446 @node i386-Mnemonics
447 @section Instruction Naming
448
449 @cindex i386 instruction naming
450 @cindex instruction naming, i386
451 @cindex x86-64 instruction naming
452 @cindex instruction naming, x86-64
453
454 Instruction mnemonics are suffixed with one character modifiers which
455 specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
456 and @samp{q} specify byte, word, long and quadruple word operands. If
457 no suffix is specified by an instruction then @code{@value{AS}} tries to
458 fill in the missing suffix based on the destination register operand
459 (the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
460 to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
461 @samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
462 assembler which assumes that a missing mnemonic suffix implies long
463 operand size. (This incompatibility does not affect compiler output
464 since compilers always explicitly specify the mnemonic suffix.)
465
466 Almost all instructions have the same names in AT&T and Intel format.
467 There are a few exceptions. The sign extend and zero extend
468 instructions need two sizes to specify them. They need a size to
469 sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
470 is accomplished by using two instruction mnemonic suffixes in AT&T
471 syntax. Base names for sign extend and zero extend are
472 @samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
473 and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
474 are tacked on to this base name, the @emph{from} suffix before the
475 @emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
476 ``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
477 thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
478 @samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
479 @samp{wq} (from word to quadruple word), and @samp{lq} (from long to
480 quadruple word).
481
482 @cindex encoding options, i386
483 @cindex encoding options, x86-64
484
485 Different encoding options can be specified via optional mnemonic
486 suffix. @samp{.s} suffix swaps 2 register operands in encoding when
487 moving from one register to another. @samp{.d8} or @samp{.d32} suffix
488 prefers 8bit or 32bit displacement in encoding.
489
490 @cindex conversion instructions, i386
491 @cindex i386 conversion instructions
492 @cindex conversion instructions, x86-64
493 @cindex x86-64 conversion instructions
494 The Intel-syntax conversion instructions
495
496 @itemize @bullet
497 @item
498 @samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
499
500 @item
501 @samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
502
503 @item
504 @samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
505
506 @item
507 @samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
508
509 @item
510 @samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
511 (x86-64 only),
512
513 @item
514 @samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
515 @samp{%rdx:%rax} (x86-64 only),
516 @end itemize
517
518 @noindent
519 are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
520 @samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
521 instructions.
522
523 @cindex jump instructions, i386
524 @cindex call instructions, i386
525 @cindex jump instructions, x86-64
526 @cindex call instructions, x86-64
527 Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
528 AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
529 convention.
530
531 @section AT&T Mnemonic versus Intel Mnemonic
532
533 @cindex i386 mnemonic compatibility
534 @cindex mnemonic compatibility, i386
535
536 @code{@value{AS}} supports assembly using Intel mnemonic.
537 @code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
538 @code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
539 syntax for compatibility with the output of @code{@value{GCC}}.
540 Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
541 @samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
542 @samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
543 assembler with different mnemonics from those in Intel IA32 specification.
544 @code{@value{GCC}} generates those instructions with AT&T mnemonic.
545
546 @node i386-Regs
547 @section Register Naming
548
549 @cindex i386 registers
550 @cindex registers, i386
551 @cindex x86-64 registers
552 @cindex registers, x86-64
553 Register operands are always prefixed with @samp{%}. The 80386 registers
554 consist of
555
556 @itemize @bullet
557 @item
558 the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
559 @samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
560 frame pointer), and @samp{%esp} (the stack pointer).
561
562 @item
563 the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
564 @samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
565
566 @item
567 the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
568 @samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
569 are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
570 @samp{%cx}, and @samp{%dx})
571
572 @item
573 the 6 section registers @samp{%cs} (code section), @samp{%ds}
574 (data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
575 and @samp{%gs}.
576
577 @item
578 the 3 processor control registers @samp{%cr0}, @samp{%cr2}, and
579 @samp{%cr3}.
580
581 @item
582 the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
583 @samp{%db3}, @samp{%db6}, and @samp{%db7}.
584
585 @item
586 the 2 test registers @samp{%tr6} and @samp{%tr7}.
587
588 @item
589 the 8 floating point register stack @samp{%st} or equivalently
590 @samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
591 @samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
592 These registers are overloaded by 8 MMX registers @samp{%mm0},
593 @samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
594 @samp{%mm6} and @samp{%mm7}.
595
596 @item
597 the 8 SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
598 @samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
599 @end itemize
600
601 The AMD x86-64 architecture extends the register set by:
602
603 @itemize @bullet
604 @item
605 enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
606 accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
607 @samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
608 pointer)
609
610 @item
611 the 8 extended registers @samp{%r8}--@samp{%r15}.
612
613 @item
614 the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}
615
616 @item
617 the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}
618
619 @item
620 the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}
621
622 @item
623 the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
624
625 @item
626 the 8 debug registers: @samp{%db8}--@samp{%db15}.
627
628 @item
629 the 8 SSE registers: @samp{%xmm8}--@samp{%xmm15}.
630 @end itemize
631
632 @node i386-Prefixes
633 @section Instruction Prefixes
634
635 @cindex i386 instruction prefixes
636 @cindex instruction prefixes, i386
637 @cindex prefixes, i386
638 Instruction prefixes are used to modify the following instruction. They
639 are used to repeat string instructions, to provide section overrides, to
640 perform bus lock operations, and to change operand and address sizes.
641 (Most instructions that normally operate on 32-bit operands will use
642 16-bit operands if the instruction has an ``operand size'' prefix.)
643 Instruction prefixes are best written on the same line as the instruction
644 they act upon. For example, the @samp{scas} (scan string) instruction is
645 repeated with:
646
647 @smallexample
648 repne scas %es:(%edi),%al
649 @end smallexample
650
651 You may also place prefixes on the lines immediately preceding the
652 instruction, but this circumvents checks that @code{@value{AS}} does
653 with prefixes, and will not work with all prefixes.
654
655 Here is a list of instruction prefixes:
656
657 @cindex section override prefixes, i386
658 @itemize @bullet
659 @item
660 Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
661 @samp{fs}, @samp{gs}. These are automatically added by specifying
662 using the @var{section}:@var{memory-operand} form for memory references.
663
664 @cindex size prefixes, i386
665 @item
666 Operand/Address size prefixes @samp{data16} and @samp{addr16}
667 change 32-bit operands/addresses into 16-bit operands/addresses,
668 while @samp{data32} and @samp{addr32} change 16-bit ones (in a
669 @code{.code16} section) into 32-bit operands/addresses. These prefixes
670 @emph{must} appear on the same line of code as the instruction they
671 modify. For example, in a 16-bit @code{.code16} section, you might
672 write:
673
674 @smallexample
675 addr32 jmpl *(%ebx)
676 @end smallexample
677
678 @cindex bus lock prefixes, i386
679 @cindex inhibiting interrupts, i386
680 @item
681 The bus lock prefix @samp{lock} inhibits interrupts during execution of
682 the instruction it precedes. (This is only valid with certain
683 instructions; see a 80386 manual for details).
684
685 @cindex coprocessor wait, i386
686 @item
687 The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
688 complete the current instruction. This should never be needed for the
689 80386/80387 combination.
690
691 @cindex repeat prefixes, i386
692 @item
693 The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
694 to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
695 times if the current address size is 16-bits).
696 @cindex REX prefixes, i386
697 @item
698 The @samp{rex} family of prefixes is used by x86-64 to encode
699 extensions to i386 instruction set. The @samp{rex} prefix has four
700 bits --- an operand size overwrite (@code{64}) used to change operand size
701 from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
702 register set.
703
704 You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
705 instruction emits @samp{rex} prefix with all the bits set. By omitting
706 the @code{64}, @code{x}, @code{y} or @code{z} you may write other
707 prefixes as well. Normally, there is no need to write the prefixes
708 explicitly, since gas will automatically generate them based on the
709 instruction operands.
710 @end itemize
711
712 @node i386-Memory
713 @section Memory References
714
715 @cindex i386 memory references
716 @cindex memory references, i386
717 @cindex x86-64 memory references
718 @cindex memory references, x86-64
719 An Intel syntax indirect memory reference of the form
720
721 @smallexample
722 @var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
723 @end smallexample
724
725 @noindent
726 is translated into the AT&T syntax
727
728 @smallexample
729 @var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
730 @end smallexample
731
732 @noindent
733 where @var{base} and @var{index} are the optional 32-bit base and
734 index registers, @var{disp} is the optional displacement, and
735 @var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
736 to calculate the address of the operand. If no @var{scale} is
737 specified, @var{scale} is taken to be 1. @var{section} specifies the
738 optional section register for the memory operand, and may override the
739 default section register (see a 80386 manual for section register
740 defaults). Note that section overrides in AT&T syntax @emph{must}
741 be preceded by a @samp{%}. If you specify a section override which
742 coincides with the default section register, @code{@value{AS}} does @emph{not}
743 output any section register override prefixes to assemble the given
744 instruction. Thus, section overrides can be specified to emphasize which
745 section register is used for a given memory operand.
746
747 Here are some examples of Intel and AT&T style memory references:
748
749 @table @asis
750 @item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
751 @var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
752 missing, and the default section is used (@samp{%ss} for addressing with
753 @samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
754
755 @item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
756 @var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
757 @samp{foo}. All other fields are missing. The section register here
758 defaults to @samp{%ds}.
759
760 @item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
761 This uses the value pointed to by @samp{foo} as a memory operand.
762 Note that @var{base} and @var{index} are both missing, but there is only
763 @emph{one} @samp{,}. This is a syntactic exception.
764
765 @item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
766 This selects the contents of the variable @samp{foo} with section
767 register @var{section} being @samp{%gs}.
768 @end table
769
770 Absolute (as opposed to PC relative) call and jump operands must be
771 prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
772 always chooses PC relative addressing for jump/call labels.
773
774 Any instruction that has a memory operand, but no register operand,
775 @emph{must} specify its size (byte, word, long, or quadruple) with an
776 instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
777 respectively).
778
779 The x86-64 architecture adds an RIP (instruction pointer relative)
780 addressing. This addressing mode is specified by using @samp{rip} as a
781 base register. Only constant offsets are valid. For example:
782
783 @table @asis
784 @item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
785 Points to the address 1234 bytes past the end of the current
786 instruction.
787
788 @item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
789 Points to the @code{symbol} in RIP relative way, this is shorter than
790 the default absolute addressing.
791 @end table
792
793 Other addressing modes remain unchanged in x86-64 architecture, except
794 registers used are 64-bit instead of 32-bit.
795
796 @node i386-Jumps
797 @section Handling of Jump Instructions
798
799 @cindex jump optimization, i386
800 @cindex i386 jump optimization
801 @cindex jump optimization, x86-64
802 @cindex x86-64 jump optimization
803 Jump instructions are always optimized to use the smallest possible
804 displacements. This is accomplished by using byte (8-bit) displacement
805 jumps whenever the target is sufficiently close. If a byte displacement
806 is insufficient a long displacement is used. We do not support
807 word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
808 instruction with the @samp{data16} instruction prefix), since the 80386
809 insists upon masking @samp{%eip} to 16 bits after the word displacement
810 is added. (See also @pxref{i386-Arch})
811
812 Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
813 @samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
814 displacements, so that if you use these instructions (@code{@value{GCC}} does
815 not use them) you may get an error message (and incorrect code). The AT&T
816 80386 assembler tries to get around this problem by expanding @samp{jcxz foo}
817 to
818
819 @smallexample
820 jcxz cx_zero
821 jmp cx_nonzero
822 cx_zero: jmp foo
823 cx_nonzero:
824 @end smallexample
825
826 @node i386-Float
827 @section Floating Point
828
829 @cindex i386 floating point
830 @cindex floating point, i386
831 @cindex x86-64 floating point
832 @cindex floating point, x86-64
833 All 80387 floating point types except packed BCD are supported.
834 (BCD support may be added without much difficulty). These data
835 types are 16-, 32-, and 64- bit integers, and single (32-bit),
836 double (64-bit), and extended (80-bit) precision floating point.
837 Each supported type has an instruction mnemonic suffix and a constructor
838 associated with it. Instruction mnemonic suffixes specify the operand's
839 data type. Constructors build these data types into memory.
840
841 @cindex @code{float} directive, i386
842 @cindex @code{single} directive, i386
843 @cindex @code{double} directive, i386
844 @cindex @code{tfloat} directive, i386
845 @cindex @code{float} directive, x86-64
846 @cindex @code{single} directive, x86-64
847 @cindex @code{double} directive, x86-64
848 @cindex @code{tfloat} directive, x86-64
849 @itemize @bullet
850 @item
851 Floating point constructors are @samp{.float} or @samp{.single},
852 @samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
853 These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
854 and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
855 only supports this format via the @samp{fldt} (load 80-bit real to stack
856 top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
857
858 @cindex @code{word} directive, i386
859 @cindex @code{long} directive, i386
860 @cindex @code{int} directive, i386
861 @cindex @code{quad} directive, i386
862 @cindex @code{word} directive, x86-64
863 @cindex @code{long} directive, x86-64
864 @cindex @code{int} directive, x86-64
865 @cindex @code{quad} directive, x86-64
866 @item
867 Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
868 @samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
869 corresponding instruction mnemonic suffixes are @samp{s} (single),
870 @samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
871 the 64-bit @samp{q} format is only present in the @samp{fildq} (load
872 quad integer to stack top) and @samp{fistpq} (store quad integer and pop
873 stack) instructions.
874 @end itemize
875
876 Register to register operations should not use instruction mnemonic suffixes.
877 @samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
878 wrote @samp{fst %st, %st(1)}, since all register to register operations
879 use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
880 which converts @samp{%st} from 80-bit to 64-bit floating point format,
881 then stores the result in the 4 byte location @samp{mem})
882
883 @node i386-SIMD
884 @section Intel's MMX and AMD's 3DNow! SIMD Operations
885
886 @cindex MMX, i386
887 @cindex 3DNow!, i386
888 @cindex SIMD, i386
889 @cindex MMX, x86-64
890 @cindex 3DNow!, x86-64
891 @cindex SIMD, x86-64
892
893 @code{@value{AS}} supports Intel's MMX instruction set (SIMD
894 instructions for integer data), available on Intel's Pentium MMX
895 processors and Pentium II processors, AMD's K6 and K6-2 processors,
896 Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
897 instruction set (SIMD instructions for 32-bit floating point data)
898 available on AMD's K6-2 processor and possibly others in the future.
899
900 Currently, @code{@value{AS}} does not support Intel's floating point
901 SIMD, Katmai (KNI).
902
903 The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
904 @samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
905 16-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
906 floating point values. The MMX registers cannot be used at the same time
907 as the floating point stack.
908
909 See Intel and AMD documentation, keeping in mind that the operand order in
910 instructions is reversed from the Intel syntax.
911
912 @node i386-LWP
913 @section AMD's Lightweight Profiling Instructions
914
915 @cindex LWP, i386
916 @cindex LWP, x86-64
917
918 @code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
919 instruction set, available on AMD's Family 15h (Orochi) processors.
920
921 LWP enables applications to collect and manage performance data, and
922 react to performance events. The collection of performance data
923 requires no context switches. LWP runs in the context of a thread and
924 so several counters can be used independently across multiple threads.
925 LWP can be used in both 64-bit and legacy 32-bit modes.
926
927 For detailed information on the LWP instruction set, see the
928 @cite{AMD Lightweight Profiling Specification} available at
929 @uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
930
931 @node i386-BMI
932 @section Bit Manipulation Instructions
933
934 @cindex BMI, i386
935 @cindex BMI, x86-64
936
937 @code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
938
939 BMI instructions provide several instructions implementing individual
940 bit manipulation operations such as isolation, masking, setting, or
941 resetting.
942
943 @c Need to add a specification citation here when available.
944
945 @node i386-TBM
946 @section AMD's Trailing Bit Manipulation Instructions
947
948 @cindex TBM, i386
949 @cindex TBM, x86-64
950
951 @code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
952 instruction set, available on AMD's BDVER2 processors (Trinity and
953 Viperfish).
954
955 TBM instructions provide instructions implementing individual bit
956 manipulation operations such as isolating, masking, setting, resetting,
957 complementing, and operations on trailing zeros and ones.
958
959 @c Need to add a specification citation here when available.
960
961 @node i386-16bit
962 @section Writing 16-bit Code
963
964 @cindex i386 16-bit code
965 @cindex 16-bit code, i386
966 @cindex real-mode code, i386
967 @cindex @code{code16gcc} directive, i386
968 @cindex @code{code16} directive, i386
969 @cindex @code{code32} directive, i386
970 @cindex @code{code64} directive, i386
971 @cindex @code{code64} directive, x86-64
972 While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
973 or 64-bit x86-64 code depending on the default configuration,
974 it also supports writing code to run in real mode or in 16-bit protected
975 mode code segments. To do this, put a @samp{.code16} or
976 @samp{.code16gcc} directive before the assembly language instructions to
977 be run in 16-bit mode. You can switch @code{@value{AS}} to writing
978 32-bit code with the @samp{.code32} directive or 64-bit code with the
979 @samp{.code64} directive.
980
981 @samp{.code16gcc} provides experimental support for generating 16-bit
982 code from gcc, and differs from @samp{.code16} in that @samp{call},
983 @samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
984 @samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
985 default to 32-bit size. This is so that the stack pointer is
986 manipulated in the same way over function calls, allowing access to
987 function parameters at the same stack offsets as in 32-bit mode.
988 @samp{.code16gcc} also automatically adds address size prefixes where
989 necessary to use the 32-bit addressing modes that gcc generates.
990
991 The code which @code{@value{AS}} generates in 16-bit mode will not
992 necessarily run on a 16-bit pre-80386 processor. To write code that
993 runs on such a processor, you must refrain from using @emph{any} 32-bit
994 constructs which require @code{@value{AS}} to output address or operand
995 size prefixes.
996
997 Note that writing 16-bit code instructions by explicitly specifying a
998 prefix or an instruction mnemonic suffix within a 32-bit code section
999 generates different machine instructions than those generated for a
1000 16-bit code segment. In a 32-bit code section, the following code
1001 generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1002 value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1003
1004 @smallexample
1005 pushw $4
1006 @end smallexample
1007
1008 The same code in a 16-bit code section would generate the machine
1009 opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
1010 is correct since the processor default operand size is assumed to be 16
1011 bits in a 16-bit code section.
1012
1013 @node i386-Bugs
1014 @section AT&T Syntax bugs
1015
1016 The UnixWare assembler, and probably other AT&T derived ix86 Unix
1017 assemblers, generate floating point instructions with reversed source
1018 and destination registers in certain cases. Unfortunately, gcc and
1019 possibly many other programs use this reversed syntax, so we're stuck
1020 with it.
1021
1022 For example
1023
1024 @smallexample
1025 fsub %st,%st(3)
1026 @end smallexample
1027 @noindent
1028 results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1029 than the expected @samp{%st(3) - %st}. This happens with all the
1030 non-commutative arithmetic floating point operations with two register
1031 operands where the source register is @samp{%st} and the destination
1032 register is @samp{%st(i)}.
1033
1034 @node i386-Arch
1035 @section Specifying CPU Architecture
1036
1037 @cindex arch directive, i386
1038 @cindex i386 arch directive
1039 @cindex arch directive, x86-64
1040 @cindex x86-64 arch directive
1041
1042 @code{@value{AS}} may be told to assemble for a particular CPU
1043 (sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
1044 directive enables a warning when gas detects an instruction that is not
1045 supported on the CPU specified. The choices for @var{cpu_type} are:
1046
1047 @multitable @columnfractions .20 .20 .20 .20
1048 @item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1049 @item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
1050 @item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
1051 @item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
1052 @item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om}
1053 @item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
1054 @item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
1055 @item @samp{btver1} @tab @samp{btver2}
1056 @item @samp{generic32} @tab @samp{generic64}
1057 @item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
1058 @item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
1059 @item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1060 @item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1061 @item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
1062 @item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
1063 @item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
1064 @item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1065 @item @samp{.smap} @tab @samp{.mpx}
1066 @item @samp{.smap} @tab @samp{.sha}
1067 @item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
1068 @item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
1069 @item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
1070 @item @samp{.padlock}
1071 @item @samp{.smap} @tab @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er}
1072 @item @samp{.avx512pf} @tab @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a}
1073 @item @samp{.sse5} @tab @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme}
1074 @item @samp{.abm} @tab @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop}
1075 @item @samp{.cx16} @tab @samp{.padlock}
1076 @end multitable
1077
1078 Apart from the warning, there are only two other effects on
1079 @code{@value{AS}} operation; Firstly, if you specify a CPU other than
1080 @samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1081 will automatically use a two byte opcode sequence. The larger three
1082 byte opcode sequence is used on the 486 (and when no architecture is
1083 specified) because it executes faster on the 486. Note that you can
1084 explicitly request the two byte opcode by writing @samp{sarl %eax}.
1085 Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1086 @emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1087 conditional jumps will be promoted when necessary to a two instruction
1088 sequence consisting of a conditional jump of the opposite sense around
1089 an unconditional jump to the target.
1090
1091 Following the CPU architecture (but not a sub-architecture, which are those
1092 starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1093 control automatic promotion of conditional jumps. @samp{jumps} is the
1094 default, and enables jump promotion; All external jumps will be of the long
1095 variety, and file-local jumps will be promoted as necessary.
1096 (@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1097 byte offset jumps, and warns about file-local conditional jumps that
1098 @code{@value{AS}} promotes.
1099 Unconditional jumps are treated as for @samp{jumps}.
1100
1101 For example
1102
1103 @smallexample
1104 .arch i8086,nojumps
1105 @end smallexample
1106
1107 @node i386-Notes
1108 @section Notes
1109
1110 @cindex i386 @code{mul}, @code{imul} instructions
1111 @cindex @code{mul} instruction, i386
1112 @cindex @code{imul} instruction, i386
1113 @cindex @code{mul} instruction, x86-64
1114 @cindex @code{imul} instruction, x86-64
1115 There is some trickery concerning the @samp{mul} and @samp{imul}
1116 instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
1117 multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1118 for @samp{imul}) can be output only in the one operand form. Thus,
1119 @samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1120 the expanding multiply would clobber the @samp{%edx} register, and this
1121 would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
1122 64-bit product in @samp{%edx:%eax}.
1123
1124 We have added a two operand form of @samp{imul} when the first operand
1125 is an immediate mode expression and the second operand is a register.
1126 This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1127 example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1128 $69, %eax, %eax}.
1129
This page took 0.055856 seconds and 4 git commands to generate.