gas/
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
1 @c Copyright 1991, 1992, 1993, 1994, 1995, 1997, 1998, 1999, 2000,
2 @c 2001, 2003, 2004
3 @c Free Software Foundation, Inc.
4 @c This is part of the GAS manual.
5 @c For copying conditions, see the file as.texinfo.
6 @ifset GENERIC
7 @page
8 @node i386-Dependent
9 @chapter 80386 Dependent Features
10 @end ifset
11 @ifclear GENERIC
12 @node Machine Dependencies
13 @chapter 80386 Dependent Features
14 @end ifclear
15
16 @cindex i386 support
17 @cindex i80306 support
18 @cindex x86-64 support
19
20 The i386 version @code{@value{AS}} supports both the original Intel 386
21 architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22 extending the Intel architecture to 64-bits.
23
24 @menu
25 * i386-Options:: Options
26 * i386-Syntax:: AT&T Syntax versus Intel Syntax
27 * i386-Mnemonics:: Instruction Naming
28 * i386-Regs:: Register Naming
29 * i386-Prefixes:: Instruction Prefixes
30 * i386-Memory:: Memory References
31 * i386-Jumps:: Handling of Jump Instructions
32 * i386-Float:: Floating Point
33 * i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
34 * i386-16bit:: Writing 16-bit Code
35 * i386-Arch:: Specifying an x86 CPU architecture
36 * i386-Bugs:: AT&T Syntax bugs
37 * i386-Notes:: Notes
38 @end menu
39
40 @node i386-Options
41 @section Options
42
43 @cindex options for i386
44 @cindex options for x86-64
45 @cindex i386 options
46 @cindex x86-64 options
47
48 The i386 version of @code{@value{AS}} has a few machine
49 dependent options:
50
51 @table @code
52 @cindex @samp{--32} option, i386
53 @cindex @samp{--32} option, x86-64
54 @cindex @samp{--64} option, i386
55 @cindex @samp{--64} option, x86-64
56 @item --32 | --64
57 Select the word size, either 32 bits or 64 bits. Selecting 32-bit
58 implies Intel i386 architecture, while 64-bit implies AMD x86-64
59 architecture.
60
61 These options are only available with the ELF object file format, and
62 require that the necessary BFD support has been included (on a 32-bit
63 platform you have to add --enable-64-bit-bfd to configure enable 64-bit
64 usage and use x86-64 as target platform).
65
66 @item -n
67 By default, x86 GAS replaces multiple nop instructions used for
68 alignment within code sections with multi-byte nop instructions such
69 as leal 0(%esi,1),%esi. This switch disables the optimization.
70
71 @cindex @samp{--divide} option, i386
72 @item --divide
73 On SVR4-derived platforms, the character @samp{/} is treated as a comment
74 character, which means that it cannot be used in expressions. The
75 @samp{--divide} option turns @samp{/} into a normal character. This does
76 not disable @samp{/} at the beginning of a line starting a comment, or
77 affect using @samp{#} for starting a comment.
78
79 @cindex @samp{-march=} option, i386
80 @cindex @samp{-march=} option, x86-64
81 @item -march=@var{CPU}
82 This option specifies an instruction set architecture for generating
83 instructions. The following architectures are recognized:
84 @code{i8086},
85 @code{i186},
86 @code{i286},
87 @code{i386},
88 @code{i486},
89 @code{i586},
90 @code{i686},
91 @code{pentium},
92 @code{pentiumpro},
93 @code{pentiumii},
94 @code{pentiumiii},
95 @code{pentium4},
96 @code{prescott},
97 @code{nocona},
98 @code{core},
99 @code{core2},
100 @code{k6},
101 @code{k6_2},
102 @code{athlon},
103 @code{sledgehammer},
104 @code{opteron},
105 @code{k8},
106 @code{generic32} and
107 @code{generic64}.
108
109 This option only affects instructions generated by the assembler. The
110 @code{.arch} directive will take precedent.
111
112 @cindex @samp{-mtune=} option, i386
113 @cindex @samp{-mtune=} option, x86-64
114 @item -mtune=@var{CPU}
115 This option specifies a processor to optimize for. When used in
116 conjunction with the @option{-march} option, only instructions
117 of the processor specified by the @option{-march} option will be
118 generated.
119
120 Valid @var{CPU} values are identical to @option{-march=@var{CPU}}.
121
122 @cindex @samp{-mmnemonic=} option, i386
123 @cindex @samp{-mmnemonic=} option, x86-64
124 @item -mmnemonic=@var{att}
125 @item -mmnemonic=@var{intel}
126 This option specifies instruction mnemonic for matching instructions.
127 The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
128 take precedent.
129
130 @cindex @samp{-msyntax=} option, i386
131 @cindex @samp{-msyntax=} option, x86-64
132 @item -msyntax=@var{att}
133 @item -msyntax=@var{intel}
134 This option specifies instruction syntax when processing instructions.
135 The @code{.att_syntax} and @code{.intel_syntax} directives will
136 take precedent.
137
138 @cindex @samp{-mnaked-reg} option, i386
139 @cindex @samp{-mnaked-reg} option, x86-64
140 @item -mnaked-reg
141 This opetion specifies that registers don't require a @samp{%} prefix.
142 The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
143
144 @end table
145
146 @node i386-Syntax
147 @section AT&T Syntax versus Intel Syntax
148
149 @cindex i386 intel_syntax pseudo op
150 @cindex intel_syntax pseudo op, i386
151 @cindex i386 att_syntax pseudo op
152 @cindex att_syntax pseudo op, i386
153 @cindex i386 syntax compatibility
154 @cindex syntax compatibility, i386
155 @cindex x86-64 intel_syntax pseudo op
156 @cindex intel_syntax pseudo op, x86-64
157 @cindex x86-64 att_syntax pseudo op
158 @cindex att_syntax pseudo op, x86-64
159 @cindex x86-64 syntax compatibility
160 @cindex syntax compatibility, x86-64
161
162 @code{@value{AS}} now supports assembly using Intel assembler syntax.
163 @code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
164 back to the usual AT&T mode for compatibility with the output of
165 @code{@value{GCC}}. Either of these directives may have an optional
166 argument, @code{prefix}, or @code{noprefix} specifying whether registers
167 require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
168 different from Intel syntax. We mention these differences because
169 almost all 80386 documents use Intel syntax. Notable differences
170 between the two syntaxes are:
171
172 @cindex immediate operands, i386
173 @cindex i386 immediate operands
174 @cindex register operands, i386
175 @cindex i386 register operands
176 @cindex jump/call operands, i386
177 @cindex i386 jump/call operands
178 @cindex operand delimiters, i386
179
180 @cindex immediate operands, x86-64
181 @cindex x86-64 immediate operands
182 @cindex register operands, x86-64
183 @cindex x86-64 register operands
184 @cindex jump/call operands, x86-64
185 @cindex x86-64 jump/call operands
186 @cindex operand delimiters, x86-64
187 @itemize @bullet
188 @item
189 AT&T immediate operands are preceded by @samp{$}; Intel immediate
190 operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
191 AT&T register operands are preceded by @samp{%}; Intel register operands
192 are undelimited. AT&T absolute (as opposed to PC relative) jump/call
193 operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
194
195 @cindex i386 source, destination operands
196 @cindex source, destination operands; i386
197 @cindex x86-64 source, destination operands
198 @cindex source, destination operands; x86-64
199 @item
200 AT&T and Intel syntax use the opposite order for source and destination
201 operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
202 @samp{source, dest} convention is maintained for compatibility with
203 previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
204 instructions with 2 immediate operands, such as the @samp{enter}
205 instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
206
207 @cindex mnemonic suffixes, i386
208 @cindex sizes operands, i386
209 @cindex i386 size suffixes
210 @cindex mnemonic suffixes, x86-64
211 @cindex sizes operands, x86-64
212 @cindex x86-64 size suffixes
213 @item
214 In AT&T syntax the size of memory operands is determined from the last
215 character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
216 @samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
217 (32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
218 this by prefixing memory operands (@emph{not} the instruction mnemonics) with
219 @samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
220 Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
221 syntax.
222
223 @cindex return instructions, i386
224 @cindex i386 jump, call, return
225 @cindex return instructions, x86-64
226 @cindex x86-64 jump, call, return
227 @item
228 Immediate form long jumps and calls are
229 @samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
230 Intel syntax is
231 @samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
232 instruction
233 is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
234 @samp{ret far @var{stack-adjust}}.
235
236 @cindex sections, i386
237 @cindex i386 sections
238 @cindex sections, x86-64
239 @cindex x86-64 sections
240 @item
241 The AT&T assembler does not provide support for multiple section
242 programs. Unix style systems expect all programs to be single sections.
243 @end itemize
244
245 @node i386-Mnemonics
246 @section Instruction Naming
247
248 @cindex i386 instruction naming
249 @cindex instruction naming, i386
250 @cindex x86-64 instruction naming
251 @cindex instruction naming, x86-64
252
253 Instruction mnemonics are suffixed with one character modifiers which
254 specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
255 and @samp{q} specify byte, word, long and quadruple word operands. If
256 no suffix is specified by an instruction then @code{@value{AS}} tries to
257 fill in the missing suffix based on the destination register operand
258 (the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
259 to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
260 @samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
261 assembler which assumes that a missing mnemonic suffix implies long
262 operand size. (This incompatibility does not affect compiler output
263 since compilers always explicitly specify the mnemonic suffix.)
264
265 Almost all instructions have the same names in AT&T and Intel format.
266 There are a few exceptions. The sign extend and zero extend
267 instructions need two sizes to specify them. They need a size to
268 sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
269 is accomplished by using two instruction mnemonic suffixes in AT&T
270 syntax. Base names for sign extend and zero extend are
271 @samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
272 and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
273 are tacked on to this base name, the @emph{from} suffix before the
274 @emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
275 ``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
276 thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
277 @samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
278 @samp{wq} (from word to quadruple word), and @samp{lq} (from long to
279 quadruple word).
280
281 @cindex conversion instructions, i386
282 @cindex i386 conversion instructions
283 @cindex conversion instructions, x86-64
284 @cindex x86-64 conversion instructions
285 The Intel-syntax conversion instructions
286
287 @itemize @bullet
288 @item
289 @samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
290
291 @item
292 @samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
293
294 @item
295 @samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
296
297 @item
298 @samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
299
300 @item
301 @samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
302 (x86-64 only),
303
304 @item
305 @samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
306 @samp{%rdx:%rax} (x86-64 only),
307 @end itemize
308
309 @noindent
310 are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
311 @samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
312 instructions.
313
314 @cindex jump instructions, i386
315 @cindex call instructions, i386
316 @cindex jump instructions, x86-64
317 @cindex call instructions, x86-64
318 Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
319 AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
320 convention.
321
322 @section AT&T Mnemonic versus Intel Mnemonic
323
324 @cindex i386 mnemonic compatibility
325 @cindex mnemonic compatibility, i386
326
327 @code{@value{AS}} supports assembly using Intel mnemonic.
328 @code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
329 @code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
330 syntax for compatibility with the output of @code{@value{GCC}}.
331 Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
332 @samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
333 @samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
334 assembler with different mnemonics from those in Intel IA32 specification.
335 @code{@value{GCC}} generates those instructions with AT&T mnemonic.
336
337 @node i386-Regs
338 @section Register Naming
339
340 @cindex i386 registers
341 @cindex registers, i386
342 @cindex x86-64 registers
343 @cindex registers, x86-64
344 Register operands are always prefixed with @samp{%}. The 80386 registers
345 consist of
346
347 @itemize @bullet
348 @item
349 the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
350 @samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
351 frame pointer), and @samp{%esp} (the stack pointer).
352
353 @item
354 the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
355 @samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
356
357 @item
358 the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
359 @samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
360 are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
361 @samp{%cx}, and @samp{%dx})
362
363 @item
364 the 6 section registers @samp{%cs} (code section), @samp{%ds}
365 (data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
366 and @samp{%gs}.
367
368 @item
369 the 3 processor control registers @samp{%cr0}, @samp{%cr2}, and
370 @samp{%cr3}.
371
372 @item
373 the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
374 @samp{%db3}, @samp{%db6}, and @samp{%db7}.
375
376 @item
377 the 2 test registers @samp{%tr6} and @samp{%tr7}.
378
379 @item
380 the 8 floating point register stack @samp{%st} or equivalently
381 @samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
382 @samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
383 These registers are overloaded by 8 MMX registers @samp{%mm0},
384 @samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
385 @samp{%mm6} and @samp{%mm7}.
386
387 @item
388 the 8 SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
389 @samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
390 @end itemize
391
392 The AMD x86-64 architecture extends the register set by:
393
394 @itemize @bullet
395 @item
396 enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
397 accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
398 @samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
399 pointer)
400
401 @item
402 the 8 extended registers @samp{%r8}--@samp{%r15}.
403
404 @item
405 the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}
406
407 @item
408 the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}
409
410 @item
411 the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}
412
413 @item
414 the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
415
416 @item
417 the 8 debug registers: @samp{%db8}--@samp{%db15}.
418
419 @item
420 the 8 SSE registers: @samp{%xmm8}--@samp{%xmm15}.
421 @end itemize
422
423 @node i386-Prefixes
424 @section Instruction Prefixes
425
426 @cindex i386 instruction prefixes
427 @cindex instruction prefixes, i386
428 @cindex prefixes, i386
429 Instruction prefixes are used to modify the following instruction. They
430 are used to repeat string instructions, to provide section overrides, to
431 perform bus lock operations, and to change operand and address sizes.
432 (Most instructions that normally operate on 32-bit operands will use
433 16-bit operands if the instruction has an ``operand size'' prefix.)
434 Instruction prefixes are best written on the same line as the instruction
435 they act upon. For example, the @samp{scas} (scan string) instruction is
436 repeated with:
437
438 @smallexample
439 repne scas %es:(%edi),%al
440 @end smallexample
441
442 You may also place prefixes on the lines immediately preceding the
443 instruction, but this circumvents checks that @code{@value{AS}} does
444 with prefixes, and will not work with all prefixes.
445
446 Here is a list of instruction prefixes:
447
448 @cindex section override prefixes, i386
449 @itemize @bullet
450 @item
451 Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
452 @samp{fs}, @samp{gs}. These are automatically added by specifying
453 using the @var{section}:@var{memory-operand} form for memory references.
454
455 @cindex size prefixes, i386
456 @item
457 Operand/Address size prefixes @samp{data16} and @samp{addr16}
458 change 32-bit operands/addresses into 16-bit operands/addresses,
459 while @samp{data32} and @samp{addr32} change 16-bit ones (in a
460 @code{.code16} section) into 32-bit operands/addresses. These prefixes
461 @emph{must} appear on the same line of code as the instruction they
462 modify. For example, in a 16-bit @code{.code16} section, you might
463 write:
464
465 @smallexample
466 addr32 jmpl *(%ebx)
467 @end smallexample
468
469 @cindex bus lock prefixes, i386
470 @cindex inhibiting interrupts, i386
471 @item
472 The bus lock prefix @samp{lock} inhibits interrupts during execution of
473 the instruction it precedes. (This is only valid with certain
474 instructions; see a 80386 manual for details).
475
476 @cindex coprocessor wait, i386
477 @item
478 The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
479 complete the current instruction. This should never be needed for the
480 80386/80387 combination.
481
482 @cindex repeat prefixes, i386
483 @item
484 The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
485 to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
486 times if the current address size is 16-bits).
487 @cindex REX prefixes, i386
488 @item
489 The @samp{rex} family of prefixes is used by x86-64 to encode
490 extensions to i386 instruction set. The @samp{rex} prefix has four
491 bits --- an operand size overwrite (@code{64}) used to change operand size
492 from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
493 register set.
494
495 You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
496 instruction emits @samp{rex} prefix with all the bits set. By omitting
497 the @code{64}, @code{x}, @code{y} or @code{z} you may write other
498 prefixes as well. Normally, there is no need to write the prefixes
499 explicitly, since gas will automatically generate them based on the
500 instruction operands.
501 @end itemize
502
503 @node i386-Memory
504 @section Memory References
505
506 @cindex i386 memory references
507 @cindex memory references, i386
508 @cindex x86-64 memory references
509 @cindex memory references, x86-64
510 An Intel syntax indirect memory reference of the form
511
512 @smallexample
513 @var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
514 @end smallexample
515
516 @noindent
517 is translated into the AT&T syntax
518
519 @smallexample
520 @var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
521 @end smallexample
522
523 @noindent
524 where @var{base} and @var{index} are the optional 32-bit base and
525 index registers, @var{disp} is the optional displacement, and
526 @var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
527 to calculate the address of the operand. If no @var{scale} is
528 specified, @var{scale} is taken to be 1. @var{section} specifies the
529 optional section register for the memory operand, and may override the
530 default section register (see a 80386 manual for section register
531 defaults). Note that section overrides in AT&T syntax @emph{must}
532 be preceded by a @samp{%}. If you specify a section override which
533 coincides with the default section register, @code{@value{AS}} does @emph{not}
534 output any section register override prefixes to assemble the given
535 instruction. Thus, section overrides can be specified to emphasize which
536 section register is used for a given memory operand.
537
538 Here are some examples of Intel and AT&T style memory references:
539
540 @table @asis
541 @item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
542 @var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
543 missing, and the default section is used (@samp{%ss} for addressing with
544 @samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
545
546 @item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
547 @var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
548 @samp{foo}. All other fields are missing. The section register here
549 defaults to @samp{%ds}.
550
551 @item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
552 This uses the value pointed to by @samp{foo} as a memory operand.
553 Note that @var{base} and @var{index} are both missing, but there is only
554 @emph{one} @samp{,}. This is a syntactic exception.
555
556 @item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
557 This selects the contents of the variable @samp{foo} with section
558 register @var{section} being @samp{%gs}.
559 @end table
560
561 Absolute (as opposed to PC relative) call and jump operands must be
562 prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
563 always chooses PC relative addressing for jump/call labels.
564
565 Any instruction that has a memory operand, but no register operand,
566 @emph{must} specify its size (byte, word, long, or quadruple) with an
567 instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
568 respectively).
569
570 The x86-64 architecture adds an RIP (instruction pointer relative)
571 addressing. This addressing mode is specified by using @samp{rip} as a
572 base register. Only constant offsets are valid. For example:
573
574 @table @asis
575 @item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
576 Points to the address 1234 bytes past the end of the current
577 instruction.
578
579 @item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
580 Points to the @code{symbol} in RIP relative way, this is shorter than
581 the default absolute addressing.
582 @end table
583
584 Other addressing modes remain unchanged in x86-64 architecture, except
585 registers used are 64-bit instead of 32-bit.
586
587 @node i386-Jumps
588 @section Handling of Jump Instructions
589
590 @cindex jump optimization, i386
591 @cindex i386 jump optimization
592 @cindex jump optimization, x86-64
593 @cindex x86-64 jump optimization
594 Jump instructions are always optimized to use the smallest possible
595 displacements. This is accomplished by using byte (8-bit) displacement
596 jumps whenever the target is sufficiently close. If a byte displacement
597 is insufficient a long displacement is used. We do not support
598 word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
599 instruction with the @samp{data16} instruction prefix), since the 80386
600 insists upon masking @samp{%eip} to 16 bits after the word displacement
601 is added. (See also @pxref{i386-Arch})
602
603 Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
604 @samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
605 displacements, so that if you use these instructions (@code{@value{GCC}} does
606 not use them) you may get an error message (and incorrect code). The AT&T
607 80386 assembler tries to get around this problem by expanding @samp{jcxz foo}
608 to
609
610 @smallexample
611 jcxz cx_zero
612 jmp cx_nonzero
613 cx_zero: jmp foo
614 cx_nonzero:
615 @end smallexample
616
617 @node i386-Float
618 @section Floating Point
619
620 @cindex i386 floating point
621 @cindex floating point, i386
622 @cindex x86-64 floating point
623 @cindex floating point, x86-64
624 All 80387 floating point types except packed BCD are supported.
625 (BCD support may be added without much difficulty). These data
626 types are 16-, 32-, and 64- bit integers, and single (32-bit),
627 double (64-bit), and extended (80-bit) precision floating point.
628 Each supported type has an instruction mnemonic suffix and a constructor
629 associated with it. Instruction mnemonic suffixes specify the operand's
630 data type. Constructors build these data types into memory.
631
632 @cindex @code{float} directive, i386
633 @cindex @code{single} directive, i386
634 @cindex @code{double} directive, i386
635 @cindex @code{tfloat} directive, i386
636 @cindex @code{float} directive, x86-64
637 @cindex @code{single} directive, x86-64
638 @cindex @code{double} directive, x86-64
639 @cindex @code{tfloat} directive, x86-64
640 @itemize @bullet
641 @item
642 Floating point constructors are @samp{.float} or @samp{.single},
643 @samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
644 These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
645 and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
646 only supports this format via the @samp{fldt} (load 80-bit real to stack
647 top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
648
649 @cindex @code{word} directive, i386
650 @cindex @code{long} directive, i386
651 @cindex @code{int} directive, i386
652 @cindex @code{quad} directive, i386
653 @cindex @code{word} directive, x86-64
654 @cindex @code{long} directive, x86-64
655 @cindex @code{int} directive, x86-64
656 @cindex @code{quad} directive, x86-64
657 @item
658 Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
659 @samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
660 corresponding instruction mnemonic suffixes are @samp{s} (single),
661 @samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
662 the 64-bit @samp{q} format is only present in the @samp{fildq} (load
663 quad integer to stack top) and @samp{fistpq} (store quad integer and pop
664 stack) instructions.
665 @end itemize
666
667 Register to register operations should not use instruction mnemonic suffixes.
668 @samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
669 wrote @samp{fst %st, %st(1)}, since all register to register operations
670 use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
671 which converts @samp{%st} from 80-bit to 64-bit floating point format,
672 then stores the result in the 4 byte location @samp{mem})
673
674 @node i386-SIMD
675 @section Intel's MMX and AMD's 3DNow! SIMD Operations
676
677 @cindex MMX, i386
678 @cindex 3DNow!, i386
679 @cindex SIMD, i386
680 @cindex MMX, x86-64
681 @cindex 3DNow!, x86-64
682 @cindex SIMD, x86-64
683
684 @code{@value{AS}} supports Intel's MMX instruction set (SIMD
685 instructions for integer data), available on Intel's Pentium MMX
686 processors and Pentium II processors, AMD's K6 and K6-2 processors,
687 Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
688 instruction set (SIMD instructions for 32-bit floating point data)
689 available on AMD's K6-2 processor and possibly others in the future.
690
691 Currently, @code{@value{AS}} does not support Intel's floating point
692 SIMD, Katmai (KNI).
693
694 The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
695 @samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
696 16-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
697 floating point values. The MMX registers cannot be used at the same time
698 as the floating point stack.
699
700 See Intel and AMD documentation, keeping in mind that the operand order in
701 instructions is reversed from the Intel syntax.
702
703 @node i386-16bit
704 @section Writing 16-bit Code
705
706 @cindex i386 16-bit code
707 @cindex 16-bit code, i386
708 @cindex real-mode code, i386
709 @cindex @code{code16gcc} directive, i386
710 @cindex @code{code16} directive, i386
711 @cindex @code{code32} directive, i386
712 @cindex @code{code64} directive, i386
713 @cindex @code{code64} directive, x86-64
714 While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
715 or 64-bit x86-64 code depending on the default configuration,
716 it also supports writing code to run in real mode or in 16-bit protected
717 mode code segments. To do this, put a @samp{.code16} or
718 @samp{.code16gcc} directive before the assembly language instructions to
719 be run in 16-bit mode. You can switch @code{@value{AS}} back to writing
720 normal 32-bit code with the @samp{.code32} directive.
721
722 @samp{.code16gcc} provides experimental support for generating 16-bit
723 code from gcc, and differs from @samp{.code16} in that @samp{call},
724 @samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
725 @samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
726 default to 32-bit size. This is so that the stack pointer is
727 manipulated in the same way over function calls, allowing access to
728 function parameters at the same stack offsets as in 32-bit mode.
729 @samp{.code16gcc} also automatically adds address size prefixes where
730 necessary to use the 32-bit addressing modes that gcc generates.
731
732 The code which @code{@value{AS}} generates in 16-bit mode will not
733 necessarily run on a 16-bit pre-80386 processor. To write code that
734 runs on such a processor, you must refrain from using @emph{any} 32-bit
735 constructs which require @code{@value{AS}} to output address or operand
736 size prefixes.
737
738 Note that writing 16-bit code instructions by explicitly specifying a
739 prefix or an instruction mnemonic suffix within a 32-bit code section
740 generates different machine instructions than those generated for a
741 16-bit code segment. In a 32-bit code section, the following code
742 generates the machine opcode bytes @samp{66 6a 04}, which pushes the
743 value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
744
745 @smallexample
746 pushw $4
747 @end smallexample
748
749 The same code in a 16-bit code section would generate the machine
750 opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
751 is correct since the processor default operand size is assumed to be 16
752 bits in a 16-bit code section.
753
754 @node i386-Bugs
755 @section AT&T Syntax bugs
756
757 The UnixWare assembler, and probably other AT&T derived ix86 Unix
758 assemblers, generate floating point instructions with reversed source
759 and destination registers in certain cases. Unfortunately, gcc and
760 possibly many other programs use this reversed syntax, so we're stuck
761 with it.
762
763 For example
764
765 @smallexample
766 fsub %st,%st(3)
767 @end smallexample
768 @noindent
769 results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
770 than the expected @samp{%st(3) - %st}. This happens with all the
771 non-commutative arithmetic floating point operations with two register
772 operands where the source register is @samp{%st} and the destination
773 register is @samp{%st(i)}.
774
775 @node i386-Arch
776 @section Specifying CPU Architecture
777
778 @cindex arch directive, i386
779 @cindex i386 arch directive
780 @cindex arch directive, x86-64
781 @cindex x86-64 arch directive
782
783 @code{@value{AS}} may be told to assemble for a particular CPU
784 (sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
785 directive enables a warning when gas detects an instruction that is not
786 supported on the CPU specified. The choices for @var{cpu_type} are:
787
788 @multitable @columnfractions .20 .20 .20 .20
789 @item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
790 @item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
791 @item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
792 @item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
793 @item @samp{amdfam10}
794 @item @samp{k6} @tab @samp{athlon} @tab @samp{sledgehammer} @tab @samp{k8}
795 @item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
796 @item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
797 @item @samp{.sse4a} @tab @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.padlock}
798 @item @samp{.pacifica} @tab @samp{.svme} @tab @samp{.abm}
799 @end multitable
800
801 Apart from the warning, there are only two other effects on
802 @code{@value{AS}} operation; Firstly, if you specify a CPU other than
803 @samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
804 will automatically use a two byte opcode sequence. The larger three
805 byte opcode sequence is used on the 486 (and when no architecture is
806 specified) because it executes faster on the 486. Note that you can
807 explicitly request the two byte opcode by writing @samp{sarl %eax}.
808 Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
809 @emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
810 conditional jumps will be promoted when necessary to a two instruction
811 sequence consisting of a conditional jump of the opposite sense around
812 an unconditional jump to the target.
813
814 Following the CPU architecture (but not a sub-architecture, which are those
815 starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
816 control automatic promotion of conditional jumps. @samp{jumps} is the
817 default, and enables jump promotion; All external jumps will be of the long
818 variety, and file-local jumps will be promoted as necessary.
819 (@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
820 byte offset jumps, and warns about file-local conditional jumps that
821 @code{@value{AS}} promotes.
822 Unconditional jumps are treated as for @samp{jumps}.
823
824 For example
825
826 @smallexample
827 .arch i8086,nojumps
828 @end smallexample
829
830 @node i386-Notes
831 @section Notes
832
833 @cindex i386 @code{mul}, @code{imul} instructions
834 @cindex @code{mul} instruction, i386
835 @cindex @code{imul} instruction, i386
836 @cindex @code{mul} instruction, x86-64
837 @cindex @code{imul} instruction, x86-64
838 There is some trickery concerning the @samp{mul} and @samp{imul}
839 instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
840 multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
841 for @samp{imul}) can be output only in the one operand form. Thus,
842 @samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
843 the expanding multiply would clobber the @samp{%edx} register, and this
844 would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
845 64-bit product in @samp{%edx:%eax}.
846
847 We have added a two operand form of @samp{imul} when the first operand
848 is an immediate mode expression and the second operand is a register.
849 This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
850 example, can be done with @samp{imul $69, %eax} rather than @samp{imul
851 $69, %eax, %eax}.
852
This page took 0.080888 seconds and 4 git commands to generate.