Rename 'arch' by 'gdbarch' in m32c_gdbarch_init
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
1 @c Copyright (C) 1991-2016 Free Software Foundation, Inc.
2 @c This is part of the GAS manual.
3 @c For copying conditions, see the file as.texinfo.
4 @c man end
5
6 @ifset GENERIC
7 @page
8 @node i386-Dependent
9 @chapter 80386 Dependent Features
10 @end ifset
11 @ifclear GENERIC
12 @node Machine Dependencies
13 @chapter 80386 Dependent Features
14 @end ifclear
15
16 @cindex i386 support
17 @cindex i80386 support
18 @cindex x86-64 support
19
20 The i386 version @code{@value{AS}} supports both the original Intel 386
21 architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22 extending the Intel architecture to 64-bits.
23
24 @menu
25 * i386-Options:: Options
26 * i386-Directives:: X86 specific directives
27 * i386-Syntax:: Syntactical considerations
28 * i386-Mnemonics:: Instruction Naming
29 * i386-Regs:: Register Naming
30 * i386-Prefixes:: Instruction Prefixes
31 * i386-Memory:: Memory References
32 * i386-Jumps:: Handling of Jump Instructions
33 * i386-Float:: Floating Point
34 * i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
35 * i386-LWP:: AMD's Lightweight Profiling Instructions
36 * i386-BMI:: Bit Manipulation Instruction
37 * i386-TBM:: AMD's Trailing Bit Manipulation Instructions
38 * i386-16bit:: Writing 16-bit Code
39 * i386-Arch:: Specifying an x86 CPU architecture
40 * i386-Bugs:: AT&T Syntax bugs
41 * i386-Notes:: Notes
42 @end menu
43
44 @node i386-Options
45 @section Options
46
47 @cindex options for i386
48 @cindex options for x86-64
49 @cindex i386 options
50 @cindex x86-64 options
51
52 The i386 version of @code{@value{AS}} has a few machine
53 dependent options:
54
55 @c man begin OPTIONS
56 @table @gcctabopt
57 @cindex @samp{--32} option, i386
58 @cindex @samp{--32} option, x86-64
59 @cindex @samp{--x32} option, i386
60 @cindex @samp{--x32} option, x86-64
61 @cindex @samp{--64} option, i386
62 @cindex @samp{--64} option, x86-64
63 @item --32 | --x32 | --64
64 Select the word size, either 32 bits or 64 bits. @samp{--32}
65 implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
66 imply AMD x86-64 architecture with 32-bit or 64-bit word-size
67 respectively.
68
69 These options are only available with the ELF object file format, and
70 require that the necessary BFD support has been included (on a 32-bit
71 platform you have to add --enable-64-bit-bfd to configure enable 64-bit
72 usage and use x86-64 as target platform).
73
74 @item -n
75 By default, x86 GAS replaces multiple nop instructions used for
76 alignment within code sections with multi-byte nop instructions such
77 as leal 0(%esi,1),%esi. This switch disables the optimization.
78
79 @cindex @samp{--divide} option, i386
80 @item --divide
81 On SVR4-derived platforms, the character @samp{/} is treated as a comment
82 character, which means that it cannot be used in expressions. The
83 @samp{--divide} option turns @samp{/} into a normal character. This does
84 not disable @samp{/} at the beginning of a line starting a comment, or
85 affect using @samp{#} for starting a comment.
86
87 @cindex @samp{-march=} option, i386
88 @cindex @samp{-march=} option, x86-64
89 @item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
90 This option specifies the target processor. The assembler will
91 issue an error message if an attempt is made to assemble an instruction
92 which will not execute on the target processor. The following
93 processor names are recognized:
94 @code{i8086},
95 @code{i186},
96 @code{i286},
97 @code{i386},
98 @code{i486},
99 @code{i586},
100 @code{i686},
101 @code{pentium},
102 @code{pentiumpro},
103 @code{pentiumii},
104 @code{pentiumiii},
105 @code{pentium4},
106 @code{prescott},
107 @code{nocona},
108 @code{core},
109 @code{core2},
110 @code{corei7},
111 @code{l1om},
112 @code{k1om},
113 @code{iamcu},
114 @code{k6},
115 @code{k6_2},
116 @code{athlon},
117 @code{opteron},
118 @code{k8},
119 @code{amdfam10},
120 @code{bdver1},
121 @code{bdver2},
122 @code{bdver3},
123 @code{bdver4},
124 @code{znver1},
125 @code{btver1},
126 @code{btver2},
127 @code{generic32} and
128 @code{generic64}.
129
130 In addition to the basic instruction set, the assembler can be told to
131 accept various extension mnemonics. For example,
132 @code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
133 @var{vmx}. The following extensions are currently supported:
134 @code{8087},
135 @code{287},
136 @code{387},
137 @code{687},
138 @code{no87},
139 @code{no287},
140 @code{no387},
141 @code{no687},
142 @code{mmx},
143 @code{nommx},
144 @code{sse},
145 @code{sse2},
146 @code{sse3},
147 @code{ssse3},
148 @code{sse4.1},
149 @code{sse4.2},
150 @code{sse4},
151 @code{nosse},
152 @code{nosse2},
153 @code{nosse3},
154 @code{nossse3},
155 @code{nosse4.1},
156 @code{nosse4.2},
157 @code{nosse4},
158 @code{avx},
159 @code{avx2},
160 @code{noavx},
161 @code{noavx2},
162 @code{adx},
163 @code{rdseed},
164 @code{prfchw},
165 @code{smap},
166 @code{mpx},
167 @code{sha},
168 @code{rdpid},
169 @code{ptwrite},
170 @code{prefetchwt1},
171 @code{clflushopt},
172 @code{se1},
173 @code{clwb},
174 @code{pcommit},
175 @code{avx512f},
176 @code{avx512cd},
177 @code{avx512er},
178 @code{avx512pf},
179 @code{avx512vl},
180 @code{avx512bw},
181 @code{avx512dq},
182 @code{avx512ifma},
183 @code{avx512vbmi},
184 @code{noavx512f},
185 @code{noavx512cd},
186 @code{noavx512er},
187 @code{noavx512pf},
188 @code{noavx512vl},
189 @code{noavx512bw},
190 @code{noavx512dq},
191 @code{noavx512ifma},
192 @code{noavx512vbmi},
193 @code{vmx},
194 @code{vmfunc},
195 @code{smx},
196 @code{xsave},
197 @code{xsaveopt},
198 @code{xsavec},
199 @code{xsaves},
200 @code{aes},
201 @code{pclmul},
202 @code{fsgsbase},
203 @code{rdrnd},
204 @code{f16c},
205 @code{bmi2},
206 @code{fma},
207 @code{movbe},
208 @code{ept},
209 @code{lzcnt},
210 @code{hle},
211 @code{rtm},
212 @code{invpcid},
213 @code{clflush},
214 @code{mwaitx},
215 @code{clzero},
216 @code{lwp},
217 @code{fma4},
218 @code{xop},
219 @code{cx16},
220 @code{syscall},
221 @code{rdtscp},
222 @code{3dnow},
223 @code{3dnowa},
224 @code{sse4a},
225 @code{sse5},
226 @code{svme},
227 @code{abm} and
228 @code{padlock}.
229 Note that rather than extending a basic instruction set, the extension
230 mnemonics starting with @code{no} revoke the respective functionality.
231
232 When the @code{.arch} directive is used with @option{-march}, the
233 @code{.arch} directive will take precedent.
234
235 @cindex @samp{-mtune=} option, i386
236 @cindex @samp{-mtune=} option, x86-64
237 @item -mtune=@var{CPU}
238 This option specifies a processor to optimize for. When used in
239 conjunction with the @option{-march} option, only instructions
240 of the processor specified by the @option{-march} option will be
241 generated.
242
243 Valid @var{CPU} values are identical to the processor list of
244 @option{-march=@var{CPU}}.
245
246 @cindex @samp{-msse2avx} option, i386
247 @cindex @samp{-msse2avx} option, x86-64
248 @item -msse2avx
249 This option specifies that the assembler should encode SSE instructions
250 with VEX prefix.
251
252 @cindex @samp{-msse-check=} option, i386
253 @cindex @samp{-msse-check=} option, x86-64
254 @item -msse-check=@var{none}
255 @itemx -msse-check=@var{warning}
256 @itemx -msse-check=@var{error}
257 These options control if the assembler should check SSE instructions.
258 @option{-msse-check=@var{none}} will make the assembler not to check SSE
259 instructions, which is the default. @option{-msse-check=@var{warning}}
260 will make the assembler issue a warning for any SSE instruction.
261 @option{-msse-check=@var{error}} will make the assembler issue an error
262 for any SSE instruction.
263
264 @cindex @samp{-mavxscalar=} option, i386
265 @cindex @samp{-mavxscalar=} option, x86-64
266 @item -mavxscalar=@var{128}
267 @itemx -mavxscalar=@var{256}
268 These options control how the assembler should encode scalar AVX
269 instructions. @option{-mavxscalar=@var{128}} will encode scalar
270 AVX instructions with 128bit vector length, which is the default.
271 @option{-mavxscalar=@var{256}} will encode scalar AVX instructions
272 with 256bit vector length.
273
274 @cindex @samp{-mevexlig=} option, i386
275 @cindex @samp{-mevexlig=} option, x86-64
276 @item -mevexlig=@var{128}
277 @itemx -mevexlig=@var{256}
278 @itemx -mevexlig=@var{512}
279 These options control how the assembler should encode length-ignored
280 (LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
281 EVEX instructions with 128bit vector length, which is the default.
282 @option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
283 encode LIG EVEX instructions with 256bit and 512bit vector length,
284 respectively.
285
286 @cindex @samp{-mevexwig=} option, i386
287 @cindex @samp{-mevexwig=} option, x86-64
288 @item -mevexwig=@var{0}
289 @itemx -mevexwig=@var{1}
290 These options control how the assembler should encode w-ignored (WIG)
291 EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
292 EVEX instructions with evex.w = 0, which is the default.
293 @option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
294 evex.w = 1.
295
296 @cindex @samp{-mmnemonic=} option, i386
297 @cindex @samp{-mmnemonic=} option, x86-64
298 @item -mmnemonic=@var{att}
299 @itemx -mmnemonic=@var{intel}
300 This option specifies instruction mnemonic for matching instructions.
301 The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
302 take precedent.
303
304 @cindex @samp{-msyntax=} option, i386
305 @cindex @samp{-msyntax=} option, x86-64
306 @item -msyntax=@var{att}
307 @itemx -msyntax=@var{intel}
308 This option specifies instruction syntax when processing instructions.
309 The @code{.att_syntax} and @code{.intel_syntax} directives will
310 take precedent.
311
312 @cindex @samp{-mnaked-reg} option, i386
313 @cindex @samp{-mnaked-reg} option, x86-64
314 @item -mnaked-reg
315 This opetion specifies that registers don't require a @samp{%} prefix.
316 The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
317
318 @cindex @samp{-madd-bnd-prefix} option, i386
319 @cindex @samp{-madd-bnd-prefix} option, x86-64
320 @item -madd-bnd-prefix
321 This option forces the assembler to add BND prefix to all branches, even
322 if such prefix was not explicitly specified in the source code.
323
324 @cindex @samp{-mshared} option, i386
325 @cindex @samp{-mshared} option, x86-64
326 @item -mno-shared
327 On ELF target, the assembler normally optimizes out non-PLT relocations
328 against defined non-weak global branch targets with default visibility.
329 The @samp{-mshared} option tells the assembler to generate code which
330 may go into a shared library where all non-weak global branch targets
331 with default visibility can be preempted. The resulting code is
332 slightly bigger. This option only affects the handling of branch
333 instructions.
334
335 @cindex @samp{-mbig-obj} option, x86-64
336 @item -mbig-obj
337 On x86-64 PE/COFF target this option forces the use of big object file
338 format, which allows more than 32768 sections.
339
340 @cindex @samp{-momit-lock-prefix=} option, i386
341 @cindex @samp{-momit-lock-prefix=} option, x86-64
342 @item -momit-lock-prefix=@var{no}
343 @itemx -momit-lock-prefix=@var{yes}
344 These options control how the assembler should encode lock prefix.
345 This option is intended as a workaround for processors, that fail on
346 lock prefix. This option can only be safely used with single-core,
347 single-thread computers
348 @option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
349 @option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
350 which is the default.
351
352 @cindex @samp{-mfence-as-lock-add=} option, i386
353 @cindex @samp{-mfence-as-lock-add=} option, x86-64
354 @item -mfence-as-lock-add=@var{no}
355 @itemx -mfence-as-lock-add=@var{yes}
356 These options control how the assembler should encode lfence, mfence and
357 sfence.
358 @option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and
359 sfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and
360 @samp{lock addl $0x0, (%esp)} in 32-bit mode.
361 @option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and
362 sfence as usual, which is the default.
363
364 @cindex @samp{-mrelax-relocations=} option, i386
365 @cindex @samp{-mrelax-relocations=} option, x86-64
366 @item -mrelax-relocations=@var{no}
367 @itemx -mrelax-relocations=@var{yes}
368 These options control whether the assembler should generate relax
369 relocations, R_386_GOT32X, in 32-bit mode, or R_X86_64_GOTPCRELX and
370 R_X86_64_REX_GOTPCRELX, in 64-bit mode.
371 @option{-mrelax-relocations=@var{yes}} will generate relax relocations.
372 @option{-mrelax-relocations=@var{no}} will not generate relax
373 relocations. The default can be controlled by a configure option
374 @option{--enable-x86-relax-relocations}.
375
376 @cindex @samp{-mevexrcig=} option, i386
377 @cindex @samp{-mevexrcig=} option, x86-64
378 @item -mevexrcig=@var{rne}
379 @itemx -mevexrcig=@var{rd}
380 @itemx -mevexrcig=@var{ru}
381 @itemx -mevexrcig=@var{rz}
382 These options control how the assembler should encode SAE-only
383 EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
384 of EVEX instruction with 00, which is the default.
385 @option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
386 and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
387 with 01, 10 and 11 RC bits, respectively.
388
389 @cindex @samp{-mamd64} option, x86-64
390 @cindex @samp{-mintel64} option, x86-64
391 @item -mamd64
392 @itemx -mintel64
393 This option specifies that the assembler should accept only AMD64 or
394 Intel64 ISA in 64-bit mode. The default is to accept both.
395
396 @end table
397 @c man end
398
399 @node i386-Directives
400 @section x86 specific Directives
401
402 @cindex machine directives, x86
403 @cindex x86 machine directives
404 @table @code
405
406 @cindex @code{lcomm} directive, COFF
407 @item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
408 Reserve @var{length} (an absolute expression) bytes for a local common
409 denoted by @var{symbol}. The section and value of @var{symbol} are
410 those of the new local common. The addresses are allocated in the bss
411 section, so that at run-time the bytes start off zeroed. Since
412 @var{symbol} is not declared global, it is normally not visible to
413 @code{@value{LD}}. The optional third parameter, @var{alignment},
414 specifies the desired alignment of the symbol in the bss section.
415
416 This directive is only available for COFF based x86 targets.
417
418 @c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
419 @c .largecomm
420
421 @end table
422
423 @node i386-Syntax
424 @section i386 Syntactical Considerations
425 @menu
426 * i386-Variations:: AT&T Syntax versus Intel Syntax
427 * i386-Chars:: Special Characters
428 @end menu
429
430 @node i386-Variations
431 @subsection AT&T Syntax versus Intel Syntax
432
433 @cindex i386 intel_syntax pseudo op
434 @cindex intel_syntax pseudo op, i386
435 @cindex i386 att_syntax pseudo op
436 @cindex att_syntax pseudo op, i386
437 @cindex i386 syntax compatibility
438 @cindex syntax compatibility, i386
439 @cindex x86-64 intel_syntax pseudo op
440 @cindex intel_syntax pseudo op, x86-64
441 @cindex x86-64 att_syntax pseudo op
442 @cindex att_syntax pseudo op, x86-64
443 @cindex x86-64 syntax compatibility
444 @cindex syntax compatibility, x86-64
445
446 @code{@value{AS}} now supports assembly using Intel assembler syntax.
447 @code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
448 back to the usual AT&T mode for compatibility with the output of
449 @code{@value{GCC}}. Either of these directives may have an optional
450 argument, @code{prefix}, or @code{noprefix} specifying whether registers
451 require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
452 different from Intel syntax. We mention these differences because
453 almost all 80386 documents use Intel syntax. Notable differences
454 between the two syntaxes are:
455
456 @cindex immediate operands, i386
457 @cindex i386 immediate operands
458 @cindex register operands, i386
459 @cindex i386 register operands
460 @cindex jump/call operands, i386
461 @cindex i386 jump/call operands
462 @cindex operand delimiters, i386
463
464 @cindex immediate operands, x86-64
465 @cindex x86-64 immediate operands
466 @cindex register operands, x86-64
467 @cindex x86-64 register operands
468 @cindex jump/call operands, x86-64
469 @cindex x86-64 jump/call operands
470 @cindex operand delimiters, x86-64
471 @itemize @bullet
472 @item
473 AT&T immediate operands are preceded by @samp{$}; Intel immediate
474 operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
475 AT&T register operands are preceded by @samp{%}; Intel register operands
476 are undelimited. AT&T absolute (as opposed to PC relative) jump/call
477 operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
478
479 @cindex i386 source, destination operands
480 @cindex source, destination operands; i386
481 @cindex x86-64 source, destination operands
482 @cindex source, destination operands; x86-64
483 @item
484 AT&T and Intel syntax use the opposite order for source and destination
485 operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
486 @samp{source, dest} convention is maintained for compatibility with
487 previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
488 instructions with 2 immediate operands, such as the @samp{enter}
489 instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
490
491 @cindex mnemonic suffixes, i386
492 @cindex sizes operands, i386
493 @cindex i386 size suffixes
494 @cindex mnemonic suffixes, x86-64
495 @cindex sizes operands, x86-64
496 @cindex x86-64 size suffixes
497 @item
498 In AT&T syntax the size of memory operands is determined from the last
499 character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
500 @samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
501 (32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
502 this by prefixing memory operands (@emph{not} the instruction mnemonics) with
503 @samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
504 Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
505 syntax.
506
507 In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
508 instruction with the 64-bit displacement or immediate operand.
509
510 @cindex return instructions, i386
511 @cindex i386 jump, call, return
512 @cindex return instructions, x86-64
513 @cindex x86-64 jump, call, return
514 @item
515 Immediate form long jumps and calls are
516 @samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
517 Intel syntax is
518 @samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
519 instruction
520 is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
521 @samp{ret far @var{stack-adjust}}.
522
523 @cindex sections, i386
524 @cindex i386 sections
525 @cindex sections, x86-64
526 @cindex x86-64 sections
527 @item
528 The AT&T assembler does not provide support for multiple section
529 programs. Unix style systems expect all programs to be single sections.
530 @end itemize
531
532 @node i386-Chars
533 @subsection Special Characters
534
535 @cindex line comment character, i386
536 @cindex i386 line comment character
537 The presence of a @samp{#} appearing anywhere on a line indicates the
538 start of a comment that extends to the end of that line.
539
540 If a @samp{#} appears as the first character of a line then the whole
541 line is treated as a comment, but in this case the line can also be a
542 logical line number directive (@pxref{Comments}) or a preprocessor
543 control command (@pxref{Preprocessing}).
544
545 If the @option{--divide} command line option has not been specified
546 then the @samp{/} character appearing anywhere on a line also
547 introduces a line comment.
548
549 @cindex line separator, i386
550 @cindex statement separator, i386
551 @cindex i386 line separator
552 The @samp{;} character can be used to separate statements on the same
553 line.
554
555 @node i386-Mnemonics
556 @section i386-Mnemonics
557 @subsection Instruction Naming
558
559 @cindex i386 instruction naming
560 @cindex instruction naming, i386
561 @cindex x86-64 instruction naming
562 @cindex instruction naming, x86-64
563
564 Instruction mnemonics are suffixed with one character modifiers which
565 specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
566 and @samp{q} specify byte, word, long and quadruple word operands. If
567 no suffix is specified by an instruction then @code{@value{AS}} tries to
568 fill in the missing suffix based on the destination register operand
569 (the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
570 to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
571 @samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
572 assembler which assumes that a missing mnemonic suffix implies long
573 operand size. (This incompatibility does not affect compiler output
574 since compilers always explicitly specify the mnemonic suffix.)
575
576 Almost all instructions have the same names in AT&T and Intel format.
577 There are a few exceptions. The sign extend and zero extend
578 instructions need two sizes to specify them. They need a size to
579 sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
580 is accomplished by using two instruction mnemonic suffixes in AT&T
581 syntax. Base names for sign extend and zero extend are
582 @samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
583 and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
584 are tacked on to this base name, the @emph{from} suffix before the
585 @emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
586 ``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
587 thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
588 @samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
589 @samp{wq} (from word to quadruple word), and @samp{lq} (from long to
590 quadruple word).
591
592 @cindex encoding options, i386
593 @cindex encoding options, x86-64
594
595 Different encoding options can be specified via optional mnemonic
596 suffix. @samp{.s} suffix swaps 2 register operands in encoding when
597 moving from one register to another. @samp{.d8} or @samp{.d32} suffix
598 prefers 8bit or 32bit displacement in encoding.
599
600 @cindex conversion instructions, i386
601 @cindex i386 conversion instructions
602 @cindex conversion instructions, x86-64
603 @cindex x86-64 conversion instructions
604 The Intel-syntax conversion instructions
605
606 @itemize @bullet
607 @item
608 @samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
609
610 @item
611 @samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
612
613 @item
614 @samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
615
616 @item
617 @samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
618
619 @item
620 @samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
621 (x86-64 only),
622
623 @item
624 @samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
625 @samp{%rdx:%rax} (x86-64 only),
626 @end itemize
627
628 @noindent
629 are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
630 @samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
631 instructions.
632
633 @cindex jump instructions, i386
634 @cindex call instructions, i386
635 @cindex jump instructions, x86-64
636 @cindex call instructions, x86-64
637 Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
638 AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
639 convention.
640
641 @subsection AT&T Mnemonic versus Intel Mnemonic
642
643 @cindex i386 mnemonic compatibility
644 @cindex mnemonic compatibility, i386
645
646 @code{@value{AS}} supports assembly using Intel mnemonic.
647 @code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
648 @code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
649 syntax for compatibility with the output of @code{@value{GCC}}.
650 Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
651 @samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
652 @samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
653 assembler with different mnemonics from those in Intel IA32 specification.
654 @code{@value{GCC}} generates those instructions with AT&T mnemonic.
655
656 @node i386-Regs
657 @section Register Naming
658
659 @cindex i386 registers
660 @cindex registers, i386
661 @cindex x86-64 registers
662 @cindex registers, x86-64
663 Register operands are always prefixed with @samp{%}. The 80386 registers
664 consist of
665
666 @itemize @bullet
667 @item
668 the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
669 @samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
670 frame pointer), and @samp{%esp} (the stack pointer).
671
672 @item
673 the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
674 @samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
675
676 @item
677 the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
678 @samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
679 are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
680 @samp{%cx}, and @samp{%dx})
681
682 @item
683 the 6 section registers @samp{%cs} (code section), @samp{%ds}
684 (data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
685 and @samp{%gs}.
686
687 @item
688 the 5 processor control registers @samp{%cr0}, @samp{%cr2},
689 @samp{%cr3}, @samp{%cr4}, and @samp{%cr8}.
690
691 @item
692 the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
693 @samp{%db3}, @samp{%db6}, and @samp{%db7}.
694
695 @item
696 the 2 test registers @samp{%tr6} and @samp{%tr7}.
697
698 @item
699 the 8 floating point register stack @samp{%st} or equivalently
700 @samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
701 @samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
702 These registers are overloaded by 8 MMX registers @samp{%mm0},
703 @samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
704 @samp{%mm6} and @samp{%mm7}.
705
706 @item
707 the 8 128-bit SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
708 @samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
709 @end itemize
710
711 The AMD x86-64 architecture extends the register set by:
712
713 @itemize @bullet
714 @item
715 enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
716 accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
717 @samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
718 pointer)
719
720 @item
721 the 8 extended registers @samp{%r8}--@samp{%r15}.
722
723 @item
724 the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}.
725
726 @item
727 the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}.
728
729 @item
730 the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}.
731
732 @item
733 the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
734
735 @item
736 the 8 debug registers: @samp{%db8}--@samp{%db15}.
737
738 @item
739 the 8 128-bit SSE registers: @samp{%xmm8}--@samp{%xmm15}.
740 @end itemize
741
742 With the AVX extensions more registers were made available:
743
744 @itemize @bullet
745
746 @item
747 the 16 256-bit SSE @samp{%ymm0}--@samp{%ymm15} (only the first 8
748 available in 32-bit mode). The bottom 128 bits are overlaid with the
749 @samp{xmm0}--@samp{xmm15} registers.
750
751 @end itemize
752
753 The AVX2 extensions made in 64-bit mode more registers available:
754
755 @itemize @bullet
756
757 @item
758 the 16 128-bit registers @samp{%xmm16}--@samp{%xmm31} and the 16 256-bit
759 registers @samp{%ymm16}--@samp{%ymm31}.
760
761 @end itemize
762
763 The AVX512 extensions added the following registers:
764
765 @itemize @bullet
766
767 @item
768 the 32 512-bit registers @samp{%zmm0}--@samp{%zmm31} (only the first 8
769 available in 32-bit mode). The bottom 128 bits are overlaid with the
770 @samp{%xmm0}--@samp{%xmm31} registers and the first 256 bits are
771 overlaid with the @samp{%ymm0}--@samp{%ymm31} registers.
772
773 @item
774 the 8 mask registers @samp{%k0}--@samp{%k7}.
775
776 @end itemize
777
778 @node i386-Prefixes
779 @section Instruction Prefixes
780
781 @cindex i386 instruction prefixes
782 @cindex instruction prefixes, i386
783 @cindex prefixes, i386
784 Instruction prefixes are used to modify the following instruction. They
785 are used to repeat string instructions, to provide section overrides, to
786 perform bus lock operations, and to change operand and address sizes.
787 (Most instructions that normally operate on 32-bit operands will use
788 16-bit operands if the instruction has an ``operand size'' prefix.)
789 Instruction prefixes are best written on the same line as the instruction
790 they act upon. For example, the @samp{scas} (scan string) instruction is
791 repeated with:
792
793 @smallexample
794 repne scas %es:(%edi),%al
795 @end smallexample
796
797 You may also place prefixes on the lines immediately preceding the
798 instruction, but this circumvents checks that @code{@value{AS}} does
799 with prefixes, and will not work with all prefixes.
800
801 Here is a list of instruction prefixes:
802
803 @cindex section override prefixes, i386
804 @itemize @bullet
805 @item
806 Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
807 @samp{fs}, @samp{gs}. These are automatically added by specifying
808 using the @var{section}:@var{memory-operand} form for memory references.
809
810 @cindex size prefixes, i386
811 @item
812 Operand/Address size prefixes @samp{data16} and @samp{addr16}
813 change 32-bit operands/addresses into 16-bit operands/addresses,
814 while @samp{data32} and @samp{addr32} change 16-bit ones (in a
815 @code{.code16} section) into 32-bit operands/addresses. These prefixes
816 @emph{must} appear on the same line of code as the instruction they
817 modify. For example, in a 16-bit @code{.code16} section, you might
818 write:
819
820 @smallexample
821 addr32 jmpl *(%ebx)
822 @end smallexample
823
824 @cindex bus lock prefixes, i386
825 @cindex inhibiting interrupts, i386
826 @item
827 The bus lock prefix @samp{lock} inhibits interrupts during execution of
828 the instruction it precedes. (This is only valid with certain
829 instructions; see a 80386 manual for details).
830
831 @cindex coprocessor wait, i386
832 @item
833 The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
834 complete the current instruction. This should never be needed for the
835 80386/80387 combination.
836
837 @cindex repeat prefixes, i386
838 @item
839 The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
840 to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
841 times if the current address size is 16-bits).
842 @cindex REX prefixes, i386
843 @item
844 The @samp{rex} family of prefixes is used by x86-64 to encode
845 extensions to i386 instruction set. The @samp{rex} prefix has four
846 bits --- an operand size overwrite (@code{64}) used to change operand size
847 from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
848 register set.
849
850 You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
851 instruction emits @samp{rex} prefix with all the bits set. By omitting
852 the @code{64}, @code{x}, @code{y} or @code{z} you may write other
853 prefixes as well. Normally, there is no need to write the prefixes
854 explicitly, since gas will automatically generate them based on the
855 instruction operands.
856 @end itemize
857
858 @node i386-Memory
859 @section Memory References
860
861 @cindex i386 memory references
862 @cindex memory references, i386
863 @cindex x86-64 memory references
864 @cindex memory references, x86-64
865 An Intel syntax indirect memory reference of the form
866
867 @smallexample
868 @var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
869 @end smallexample
870
871 @noindent
872 is translated into the AT&T syntax
873
874 @smallexample
875 @var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
876 @end smallexample
877
878 @noindent
879 where @var{base} and @var{index} are the optional 32-bit base and
880 index registers, @var{disp} is the optional displacement, and
881 @var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
882 to calculate the address of the operand. If no @var{scale} is
883 specified, @var{scale} is taken to be 1. @var{section} specifies the
884 optional section register for the memory operand, and may override the
885 default section register (see a 80386 manual for section register
886 defaults). Note that section overrides in AT&T syntax @emph{must}
887 be preceded by a @samp{%}. If you specify a section override which
888 coincides with the default section register, @code{@value{AS}} does @emph{not}
889 output any section register override prefixes to assemble the given
890 instruction. Thus, section overrides can be specified to emphasize which
891 section register is used for a given memory operand.
892
893 Here are some examples of Intel and AT&T style memory references:
894
895 @table @asis
896 @item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
897 @var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
898 missing, and the default section is used (@samp{%ss} for addressing with
899 @samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
900
901 @item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
902 @var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
903 @samp{foo}. All other fields are missing. The section register here
904 defaults to @samp{%ds}.
905
906 @item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
907 This uses the value pointed to by @samp{foo} as a memory operand.
908 Note that @var{base} and @var{index} are both missing, but there is only
909 @emph{one} @samp{,}. This is a syntactic exception.
910
911 @item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
912 This selects the contents of the variable @samp{foo} with section
913 register @var{section} being @samp{%gs}.
914 @end table
915
916 Absolute (as opposed to PC relative) call and jump operands must be
917 prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
918 always chooses PC relative addressing for jump/call labels.
919
920 Any instruction that has a memory operand, but no register operand,
921 @emph{must} specify its size (byte, word, long, or quadruple) with an
922 instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
923 respectively).
924
925 The x86-64 architecture adds an RIP (instruction pointer relative)
926 addressing. This addressing mode is specified by using @samp{rip} as a
927 base register. Only constant offsets are valid. For example:
928
929 @table @asis
930 @item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
931 Points to the address 1234 bytes past the end of the current
932 instruction.
933
934 @item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
935 Points to the @code{symbol} in RIP relative way, this is shorter than
936 the default absolute addressing.
937 @end table
938
939 Other addressing modes remain unchanged in x86-64 architecture, except
940 registers used are 64-bit instead of 32-bit.
941
942 @node i386-Jumps
943 @section Handling of Jump Instructions
944
945 @cindex jump optimization, i386
946 @cindex i386 jump optimization
947 @cindex jump optimization, x86-64
948 @cindex x86-64 jump optimization
949 Jump instructions are always optimized to use the smallest possible
950 displacements. This is accomplished by using byte (8-bit) displacement
951 jumps whenever the target is sufficiently close. If a byte displacement
952 is insufficient a long displacement is used. We do not support
953 word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
954 instruction with the @samp{data16} instruction prefix), since the 80386
955 insists upon masking @samp{%eip} to 16 bits after the word displacement
956 is added. (See also @pxref{i386-Arch})
957
958 Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
959 @samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
960 displacements, so that if you use these instructions (@code{@value{GCC}} does
961 not use them) you may get an error message (and incorrect code). The AT&T
962 80386 assembler tries to get around this problem by expanding @samp{jcxz foo}
963 to
964
965 @smallexample
966 jcxz cx_zero
967 jmp cx_nonzero
968 cx_zero: jmp foo
969 cx_nonzero:
970 @end smallexample
971
972 @node i386-Float
973 @section Floating Point
974
975 @cindex i386 floating point
976 @cindex floating point, i386
977 @cindex x86-64 floating point
978 @cindex floating point, x86-64
979 All 80387 floating point types except packed BCD are supported.
980 (BCD support may be added without much difficulty). These data
981 types are 16-, 32-, and 64- bit integers, and single (32-bit),
982 double (64-bit), and extended (80-bit) precision floating point.
983 Each supported type has an instruction mnemonic suffix and a constructor
984 associated with it. Instruction mnemonic suffixes specify the operand's
985 data type. Constructors build these data types into memory.
986
987 @cindex @code{float} directive, i386
988 @cindex @code{single} directive, i386
989 @cindex @code{double} directive, i386
990 @cindex @code{tfloat} directive, i386
991 @cindex @code{float} directive, x86-64
992 @cindex @code{single} directive, x86-64
993 @cindex @code{double} directive, x86-64
994 @cindex @code{tfloat} directive, x86-64
995 @itemize @bullet
996 @item
997 Floating point constructors are @samp{.float} or @samp{.single},
998 @samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
999 These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
1000 and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
1001 only supports this format via the @samp{fldt} (load 80-bit real to stack
1002 top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
1003
1004 @cindex @code{word} directive, i386
1005 @cindex @code{long} directive, i386
1006 @cindex @code{int} directive, i386
1007 @cindex @code{quad} directive, i386
1008 @cindex @code{word} directive, x86-64
1009 @cindex @code{long} directive, x86-64
1010 @cindex @code{int} directive, x86-64
1011 @cindex @code{quad} directive, x86-64
1012 @item
1013 Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
1014 @samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
1015 corresponding instruction mnemonic suffixes are @samp{s} (single),
1016 @samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
1017 the 64-bit @samp{q} format is only present in the @samp{fildq} (load
1018 quad integer to stack top) and @samp{fistpq} (store quad integer and pop
1019 stack) instructions.
1020 @end itemize
1021
1022 Register to register operations should not use instruction mnemonic suffixes.
1023 @samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
1024 wrote @samp{fst %st, %st(1)}, since all register to register operations
1025 use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
1026 which converts @samp{%st} from 80-bit to 64-bit floating point format,
1027 then stores the result in the 4 byte location @samp{mem})
1028
1029 @node i386-SIMD
1030 @section Intel's MMX and AMD's 3DNow! SIMD Operations
1031
1032 @cindex MMX, i386
1033 @cindex 3DNow!, i386
1034 @cindex SIMD, i386
1035 @cindex MMX, x86-64
1036 @cindex 3DNow!, x86-64
1037 @cindex SIMD, x86-64
1038
1039 @code{@value{AS}} supports Intel's MMX instruction set (SIMD
1040 instructions for integer data), available on Intel's Pentium MMX
1041 processors and Pentium II processors, AMD's K6 and K6-2 processors,
1042 Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
1043 instruction set (SIMD instructions for 32-bit floating point data)
1044 available on AMD's K6-2 processor and possibly others in the future.
1045
1046 Currently, @code{@value{AS}} does not support Intel's floating point
1047 SIMD, Katmai (KNI).
1048
1049 The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
1050 @samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
1051 16-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
1052 floating point values. The MMX registers cannot be used at the same time
1053 as the floating point stack.
1054
1055 See Intel and AMD documentation, keeping in mind that the operand order in
1056 instructions is reversed from the Intel syntax.
1057
1058 @node i386-LWP
1059 @section AMD's Lightweight Profiling Instructions
1060
1061 @cindex LWP, i386
1062 @cindex LWP, x86-64
1063
1064 @code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
1065 instruction set, available on AMD's Family 15h (Orochi) processors.
1066
1067 LWP enables applications to collect and manage performance data, and
1068 react to performance events. The collection of performance data
1069 requires no context switches. LWP runs in the context of a thread and
1070 so several counters can be used independently across multiple threads.
1071 LWP can be used in both 64-bit and legacy 32-bit modes.
1072
1073 For detailed information on the LWP instruction set, see the
1074 @cite{AMD Lightweight Profiling Specification} available at
1075 @uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
1076
1077 @node i386-BMI
1078 @section Bit Manipulation Instructions
1079
1080 @cindex BMI, i386
1081 @cindex BMI, x86-64
1082
1083 @code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1084
1085 BMI instructions provide several instructions implementing individual
1086 bit manipulation operations such as isolation, masking, setting, or
1087 resetting.
1088
1089 @c Need to add a specification citation here when available.
1090
1091 @node i386-TBM
1092 @section AMD's Trailing Bit Manipulation Instructions
1093
1094 @cindex TBM, i386
1095 @cindex TBM, x86-64
1096
1097 @code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1098 instruction set, available on AMD's BDVER2 processors (Trinity and
1099 Viperfish).
1100
1101 TBM instructions provide instructions implementing individual bit
1102 manipulation operations such as isolating, masking, setting, resetting,
1103 complementing, and operations on trailing zeros and ones.
1104
1105 @c Need to add a specification citation here when available.
1106
1107 @node i386-16bit
1108 @section Writing 16-bit Code
1109
1110 @cindex i386 16-bit code
1111 @cindex 16-bit code, i386
1112 @cindex real-mode code, i386
1113 @cindex @code{code16gcc} directive, i386
1114 @cindex @code{code16} directive, i386
1115 @cindex @code{code32} directive, i386
1116 @cindex @code{code64} directive, i386
1117 @cindex @code{code64} directive, x86-64
1118 While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1119 or 64-bit x86-64 code depending on the default configuration,
1120 it also supports writing code to run in real mode or in 16-bit protected
1121 mode code segments. To do this, put a @samp{.code16} or
1122 @samp{.code16gcc} directive before the assembly language instructions to
1123 be run in 16-bit mode. You can switch @code{@value{AS}} to writing
1124 32-bit code with the @samp{.code32} directive or 64-bit code with the
1125 @samp{.code64} directive.
1126
1127 @samp{.code16gcc} provides experimental support for generating 16-bit
1128 code from gcc, and differs from @samp{.code16} in that @samp{call},
1129 @samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1130 @samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1131 default to 32-bit size. This is so that the stack pointer is
1132 manipulated in the same way over function calls, allowing access to
1133 function parameters at the same stack offsets as in 32-bit mode.
1134 @samp{.code16gcc} also automatically adds address size prefixes where
1135 necessary to use the 32-bit addressing modes that gcc generates.
1136
1137 The code which @code{@value{AS}} generates in 16-bit mode will not
1138 necessarily run on a 16-bit pre-80386 processor. To write code that
1139 runs on such a processor, you must refrain from using @emph{any} 32-bit
1140 constructs which require @code{@value{AS}} to output address or operand
1141 size prefixes.
1142
1143 Note that writing 16-bit code instructions by explicitly specifying a
1144 prefix or an instruction mnemonic suffix within a 32-bit code section
1145 generates different machine instructions than those generated for a
1146 16-bit code segment. In a 32-bit code section, the following code
1147 generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1148 value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1149
1150 @smallexample
1151 pushw $4
1152 @end smallexample
1153
1154 The same code in a 16-bit code section would generate the machine
1155 opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
1156 is correct since the processor default operand size is assumed to be 16
1157 bits in a 16-bit code section.
1158
1159 @node i386-Arch
1160 @section Specifying CPU Architecture
1161
1162 @cindex arch directive, i386
1163 @cindex i386 arch directive
1164 @cindex arch directive, x86-64
1165 @cindex x86-64 arch directive
1166
1167 @code{@value{AS}} may be told to assemble for a particular CPU
1168 (sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
1169 directive enables a warning when gas detects an instruction that is not
1170 supported on the CPU specified. The choices for @var{cpu_type} are:
1171
1172 @multitable @columnfractions .20 .20 .20 .20
1173 @item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1174 @item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
1175 @item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
1176 @item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
1177 @item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @samp{iamcu}
1178 @item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
1179 @item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
1180 @item @samp{bdver4} @tab @samp{znver1} @tab @samp{btver1} @tab @samp{btver2}
1181 @item @samp{generic32} @tab @samp{generic64}
1182 @item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
1183 @item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
1184 @item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1185 @item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1186 @item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
1187 @item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
1188 @item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
1189 @item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1190 @item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1191 @item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1192 @item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
1193 @item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
1194 @item @samp{.avx512vbmi} @tab @samp{.clwb} @tab @samp{.pcommit}
1195 @item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
1196 @item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
1197 @item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
1198 @item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx} @tab @samp{.rdpid}
1199 @item @samp{.ptwrite}
1200 @end multitable
1201
1202 Apart from the warning, there are only two other effects on
1203 @code{@value{AS}} operation; Firstly, if you specify a CPU other than
1204 @samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1205 will automatically use a two byte opcode sequence. The larger three
1206 byte opcode sequence is used on the 486 (and when no architecture is
1207 specified) because it executes faster on the 486. Note that you can
1208 explicitly request the two byte opcode by writing @samp{sarl %eax}.
1209 Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1210 @emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1211 conditional jumps will be promoted when necessary to a two instruction
1212 sequence consisting of a conditional jump of the opposite sense around
1213 an unconditional jump to the target.
1214
1215 Following the CPU architecture (but not a sub-architecture, which are those
1216 starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1217 control automatic promotion of conditional jumps. @samp{jumps} is the
1218 default, and enables jump promotion; All external jumps will be of the long
1219 variety, and file-local jumps will be promoted as necessary.
1220 (@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1221 byte offset jumps, and warns about file-local conditional jumps that
1222 @code{@value{AS}} promotes.
1223 Unconditional jumps are treated as for @samp{jumps}.
1224
1225 For example
1226
1227 @smallexample
1228 .arch i8086,nojumps
1229 @end smallexample
1230
1231 @node i386-Bugs
1232 @section AT&T Syntax bugs
1233
1234 The UnixWare assembler, and probably other AT&T derived ix86 Unix
1235 assemblers, generate floating point instructions with reversed source
1236 and destination registers in certain cases. Unfortunately, gcc and
1237 possibly many other programs use this reversed syntax, so we're stuck
1238 with it.
1239
1240 For example
1241
1242 @smallexample
1243 fsub %st,%st(3)
1244 @end smallexample
1245 @noindent
1246 results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1247 than the expected @samp{%st(3) - %st}. This happens with all the
1248 non-commutative arithmetic floating point operations with two register
1249 operands where the source register is @samp{%st} and the destination
1250 register is @samp{%st(i)}.
1251
1252 @node i386-Notes
1253 @section Notes
1254
1255 @cindex i386 @code{mul}, @code{imul} instructions
1256 @cindex @code{mul} instruction, i386
1257 @cindex @code{imul} instruction, i386
1258 @cindex @code{mul} instruction, x86-64
1259 @cindex @code{imul} instruction, x86-64
1260 There is some trickery concerning the @samp{mul} and @samp{imul}
1261 instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
1262 multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1263 for @samp{imul}) can be output only in the one operand form. Thus,
1264 @samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1265 the expanding multiply would clobber the @samp{%edx} register, and this
1266 would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
1267 64-bit product in @samp{%edx:%eax}.
1268
1269 We have added a two operand form of @samp{imul} when the first operand
1270 is an immediate mode expression and the second operand is a register.
1271 This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1272 example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1273 $69, %eax, %eax}.
1274
This page took 0.054782 seconds and 4 git commands to generate.