1 @c Copyright (C) 1991-2018 Free Software Foundation, Inc.
2 @c This is part of the GAS manual.
3 @c For copying conditions, see the file as.texinfo.
9 @chapter 80386 Dependent Features
12 @node Machine Dependencies
13 @chapter 80386 Dependent Features
17 @cindex i80386 support
18 @cindex x86-64 support
20 The i386 version @code{@value{AS}} supports both the original Intel 386
21 architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22 extending the Intel architecture to 64-bits.
25 * i386-Options:: Options
26 * i386-Directives:: X86 specific directives
27 * i386-Syntax:: Syntactical considerations
28 * i386-Mnemonics:: Instruction Naming
29 * i386-Regs:: Register Naming
30 * i386-Prefixes:: Instruction Prefixes
31 * i386-Memory:: Memory References
32 * i386-Jumps:: Handling of Jump Instructions
33 * i386-Float:: Floating Point
34 * i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
35 * i386-LWP:: AMD's Lightweight Profiling Instructions
36 * i386-BMI:: Bit Manipulation Instruction
37 * i386-TBM:: AMD's Trailing Bit Manipulation Instructions
38 * i386-16bit:: Writing 16-bit Code
39 * i386-Arch:: Specifying an x86 CPU architecture
40 * i386-Bugs:: AT&T Syntax bugs
47 @cindex options for i386
48 @cindex options for x86-64
50 @cindex x86-64 options
52 The i386 version of @code{@value{AS}} has a few machine
57 @cindex @samp{--32} option, i386
58 @cindex @samp{--32} option, x86-64
59 @cindex @samp{--x32} option, i386
60 @cindex @samp{--x32} option, x86-64
61 @cindex @samp{--64} option, i386
62 @cindex @samp{--64} option, x86-64
63 @item --32 | --x32 | --64
64 Select the word size, either 32 bits or 64 bits. @samp{--32}
65 implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
66 imply AMD x86-64 architecture with 32-bit or 64-bit word-size
69 These options are only available with the ELF object file format, and
70 require that the necessary BFD support has been included (on a 32-bit
71 platform you have to add --enable-64-bit-bfd to configure enable 64-bit
72 usage and use x86-64 as target platform).
75 By default, x86 GAS replaces multiple nop instructions used for
76 alignment within code sections with multi-byte nop instructions such
77 as leal 0(%esi,1),%esi. This switch disables the optimization if a single
78 byte nop (0x90) is explicitly specified as the fill byte for alignment.
80 @cindex @samp{--divide} option, i386
82 On SVR4-derived platforms, the character @samp{/} is treated as a comment
83 character, which means that it cannot be used in expressions. The
84 @samp{--divide} option turns @samp{/} into a normal character. This does
85 not disable @samp{/} at the beginning of a line starting a comment, or
86 affect using @samp{#} for starting a comment.
88 @cindex @samp{-march=} option, i386
89 @cindex @samp{-march=} option, x86-64
90 @item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
91 This option specifies the target processor. The assembler will
92 issue an error message if an attempt is made to assemble an instruction
93 which will not execute on the target processor. The following
94 processor names are recognized:
131 In addition to the basic instruction set, the assembler can be told to
132 accept various extension mnemonics. For example,
133 @code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
134 @var{vmx}. The following extensions are currently supported:
188 @code{avx512_4fmaps},
189 @code{avx512_4vnniw},
190 @code{avx512_vpopcntdq},
193 @code{avx512_bitalg},
203 @code{noavx512_4fmaps},
204 @code{noavx512_4vnniw},
205 @code{noavx512_vpopcntdq},
206 @code{noavx512_vbmi2},
207 @code{noavx512_vnni},
208 @code{noavx512_bitalg},
248 Note that rather than extending a basic instruction set, the extension
249 mnemonics starting with @code{no} revoke the respective functionality.
251 When the @code{.arch} directive is used with @option{-march}, the
252 @code{.arch} directive will take precedent.
254 @cindex @samp{-mtune=} option, i386
255 @cindex @samp{-mtune=} option, x86-64
256 @item -mtune=@var{CPU}
257 This option specifies a processor to optimize for. When used in
258 conjunction with the @option{-march} option, only instructions
259 of the processor specified by the @option{-march} option will be
262 Valid @var{CPU} values are identical to the processor list of
263 @option{-march=@var{CPU}}.
265 @cindex @samp{-msse2avx} option, i386
266 @cindex @samp{-msse2avx} option, x86-64
268 This option specifies that the assembler should encode SSE instructions
271 @cindex @samp{-msse-check=} option, i386
272 @cindex @samp{-msse-check=} option, x86-64
273 @item -msse-check=@var{none}
274 @itemx -msse-check=@var{warning}
275 @itemx -msse-check=@var{error}
276 These options control if the assembler should check SSE instructions.
277 @option{-msse-check=@var{none}} will make the assembler not to check SSE
278 instructions, which is the default. @option{-msse-check=@var{warning}}
279 will make the assembler issue a warning for any SSE instruction.
280 @option{-msse-check=@var{error}} will make the assembler issue an error
281 for any SSE instruction.
283 @cindex @samp{-mavxscalar=} option, i386
284 @cindex @samp{-mavxscalar=} option, x86-64
285 @item -mavxscalar=@var{128}
286 @itemx -mavxscalar=@var{256}
287 These options control how the assembler should encode scalar AVX
288 instructions. @option{-mavxscalar=@var{128}} will encode scalar
289 AVX instructions with 128bit vector length, which is the default.
290 @option{-mavxscalar=@var{256}} will encode scalar AVX instructions
291 with 256bit vector length.
293 @cindex @samp{-mevexlig=} option, i386
294 @cindex @samp{-mevexlig=} option, x86-64
295 @item -mevexlig=@var{128}
296 @itemx -mevexlig=@var{256}
297 @itemx -mevexlig=@var{512}
298 These options control how the assembler should encode length-ignored
299 (LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
300 EVEX instructions with 128bit vector length, which is the default.
301 @option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
302 encode LIG EVEX instructions with 256bit and 512bit vector length,
305 @cindex @samp{-mevexwig=} option, i386
306 @cindex @samp{-mevexwig=} option, x86-64
307 @item -mevexwig=@var{0}
308 @itemx -mevexwig=@var{1}
309 These options control how the assembler should encode w-ignored (WIG)
310 EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
311 EVEX instructions with evex.w = 0, which is the default.
312 @option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
315 @cindex @samp{-mmnemonic=} option, i386
316 @cindex @samp{-mmnemonic=} option, x86-64
317 @item -mmnemonic=@var{att}
318 @itemx -mmnemonic=@var{intel}
319 This option specifies instruction mnemonic for matching instructions.
320 The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
323 @cindex @samp{-msyntax=} option, i386
324 @cindex @samp{-msyntax=} option, x86-64
325 @item -msyntax=@var{att}
326 @itemx -msyntax=@var{intel}
327 This option specifies instruction syntax when processing instructions.
328 The @code{.att_syntax} and @code{.intel_syntax} directives will
331 @cindex @samp{-mnaked-reg} option, i386
332 @cindex @samp{-mnaked-reg} option, x86-64
334 This option specifies that registers don't require a @samp{%} prefix.
335 The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
337 @cindex @samp{-madd-bnd-prefix} option, i386
338 @cindex @samp{-madd-bnd-prefix} option, x86-64
339 @item -madd-bnd-prefix
340 This option forces the assembler to add BND prefix to all branches, even
341 if such prefix was not explicitly specified in the source code.
343 @cindex @samp{-mshared} option, i386
344 @cindex @samp{-mshared} option, x86-64
346 On ELF target, the assembler normally optimizes out non-PLT relocations
347 against defined non-weak global branch targets with default visibility.
348 The @samp{-mshared} option tells the assembler to generate code which
349 may go into a shared library where all non-weak global branch targets
350 with default visibility can be preempted. The resulting code is
351 slightly bigger. This option only affects the handling of branch
354 @cindex @samp{-mbig-obj} option, x86-64
356 On x86-64 PE/COFF target this option forces the use of big object file
357 format, which allows more than 32768 sections.
359 @cindex @samp{-momit-lock-prefix=} option, i386
360 @cindex @samp{-momit-lock-prefix=} option, x86-64
361 @item -momit-lock-prefix=@var{no}
362 @itemx -momit-lock-prefix=@var{yes}
363 These options control how the assembler should encode lock prefix.
364 This option is intended as a workaround for processors, that fail on
365 lock prefix. This option can only be safely used with single-core,
366 single-thread computers
367 @option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
368 @option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
369 which is the default.
371 @cindex @samp{-mfence-as-lock-add=} option, i386
372 @cindex @samp{-mfence-as-lock-add=} option, x86-64
373 @item -mfence-as-lock-add=@var{no}
374 @itemx -mfence-as-lock-add=@var{yes}
375 These options control how the assembler should encode lfence, mfence and
377 @option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and
378 sfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and
379 @samp{lock addl $0x0, (%esp)} in 32-bit mode.
380 @option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and
381 sfence as usual, which is the default.
383 @cindex @samp{-mrelax-relocations=} option, i386
384 @cindex @samp{-mrelax-relocations=} option, x86-64
385 @item -mrelax-relocations=@var{no}
386 @itemx -mrelax-relocations=@var{yes}
387 These options control whether the assembler should generate relax
388 relocations, R_386_GOT32X, in 32-bit mode, or R_X86_64_GOTPCRELX and
389 R_X86_64_REX_GOTPCRELX, in 64-bit mode.
390 @option{-mrelax-relocations=@var{yes}} will generate relax relocations.
391 @option{-mrelax-relocations=@var{no}} will not generate relax
392 relocations. The default can be controlled by a configure option
393 @option{--enable-x86-relax-relocations}.
395 @cindex @samp{-mevexrcig=} option, i386
396 @cindex @samp{-mevexrcig=} option, x86-64
397 @item -mevexrcig=@var{rne}
398 @itemx -mevexrcig=@var{rd}
399 @itemx -mevexrcig=@var{ru}
400 @itemx -mevexrcig=@var{rz}
401 These options control how the assembler should encode SAE-only
402 EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
403 of EVEX instruction with 00, which is the default.
404 @option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
405 and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
406 with 01, 10 and 11 RC bits, respectively.
408 @cindex @samp{-mamd64} option, x86-64
409 @cindex @samp{-mintel64} option, x86-64
412 This option specifies that the assembler should accept only AMD64 or
413 Intel64 ISA in 64-bit mode. The default is to accept both.
415 @cindex @samp{-O0} option, i386
416 @cindex @samp{-O0} option, x86-64
417 @cindex @samp{-O} option, i386
418 @cindex @samp{-O} option, x86-64
419 @cindex @samp{-O1} option, i386
420 @cindex @samp{-O1} option, x86-64
421 @cindex @samp{-O2} option, i386
422 @cindex @samp{-O2} option, x86-64
423 @cindex @samp{-Os} option, i386
424 @cindex @samp{-Os} option, x86-64
425 @item -O0 | -O | -O1 | -O2 | -Os
426 Optimize instruction encoding with smaller instruction size. @samp{-O}
427 and @samp{-O1} encode 64-bit register load instructions with 64-bit
428 immediate as 32-bit register load instructions with 31-bit or 32-bits
429 immediates and encode 64-bit register clearing instructions with 32-bit
430 register clearing instructions. @samp{-O2} includes @samp{-O1}
431 optimization plus encodes 256-bit and 512-bit vector register clearing
432 instructions with 128-bit vector register clearing instructions.
433 @samp{-Os} includes @samp{-O2} optimization plus encodes 16-bit, 32-bit
434 and 64-bit register tests with immediate as 8-bit register test with
435 immediate. @samp{-O0} turns off this optimization.
440 @node i386-Directives
441 @section x86 specific Directives
443 @cindex machine directives, x86
444 @cindex x86 machine directives
447 @cindex @code{lcomm} directive, COFF
448 @item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
449 Reserve @var{length} (an absolute expression) bytes for a local common
450 denoted by @var{symbol}. The section and value of @var{symbol} are
451 those of the new local common. The addresses are allocated in the bss
452 section, so that at run-time the bytes start off zeroed. Since
453 @var{symbol} is not declared global, it is normally not visible to
454 @code{@value{LD}}. The optional third parameter, @var{alignment},
455 specifies the desired alignment of the symbol in the bss section.
457 This directive is only available for COFF based x86 targets.
459 @cindex @code{largecomm} directive, ELF
460 @item .largecomm @var{symbol} , @var{length}[, @var{alignment}]
461 This directive behaves in the same way as the @code{comm} directive
462 except that the data is placed into the @var{.lbss} section instead of
463 the @var{.bss} section @ref{Comm}.
465 The directive is intended to be used for data which requires a large
466 amount of space, and it is only available for ELF based x86_64
469 @c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
474 @section i386 Syntactical Considerations
476 * i386-Variations:: AT&T Syntax versus Intel Syntax
477 * i386-Chars:: Special Characters
480 @node i386-Variations
481 @subsection AT&T Syntax versus Intel Syntax
483 @cindex i386 intel_syntax pseudo op
484 @cindex intel_syntax pseudo op, i386
485 @cindex i386 att_syntax pseudo op
486 @cindex att_syntax pseudo op, i386
487 @cindex i386 syntax compatibility
488 @cindex syntax compatibility, i386
489 @cindex x86-64 intel_syntax pseudo op
490 @cindex intel_syntax pseudo op, x86-64
491 @cindex x86-64 att_syntax pseudo op
492 @cindex att_syntax pseudo op, x86-64
493 @cindex x86-64 syntax compatibility
494 @cindex syntax compatibility, x86-64
496 @code{@value{AS}} now supports assembly using Intel assembler syntax.
497 @code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
498 back to the usual AT&T mode for compatibility with the output of
499 @code{@value{GCC}}. Either of these directives may have an optional
500 argument, @code{prefix}, or @code{noprefix} specifying whether registers
501 require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
502 different from Intel syntax. We mention these differences because
503 almost all 80386 documents use Intel syntax. Notable differences
504 between the two syntaxes are:
506 @cindex immediate operands, i386
507 @cindex i386 immediate operands
508 @cindex register operands, i386
509 @cindex i386 register operands
510 @cindex jump/call operands, i386
511 @cindex i386 jump/call operands
512 @cindex operand delimiters, i386
514 @cindex immediate operands, x86-64
515 @cindex x86-64 immediate operands
516 @cindex register operands, x86-64
517 @cindex x86-64 register operands
518 @cindex jump/call operands, x86-64
519 @cindex x86-64 jump/call operands
520 @cindex operand delimiters, x86-64
523 AT&T immediate operands are preceded by @samp{$}; Intel immediate
524 operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
525 AT&T register operands are preceded by @samp{%}; Intel register operands
526 are undelimited. AT&T absolute (as opposed to PC relative) jump/call
527 operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
529 @cindex i386 source, destination operands
530 @cindex source, destination operands; i386
531 @cindex x86-64 source, destination operands
532 @cindex source, destination operands; x86-64
534 AT&T and Intel syntax use the opposite order for source and destination
535 operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
536 @samp{source, dest} convention is maintained for compatibility with
537 previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
538 instructions with 2 immediate operands, such as the @samp{enter}
539 instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
541 @cindex mnemonic suffixes, i386
542 @cindex sizes operands, i386
543 @cindex i386 size suffixes
544 @cindex mnemonic suffixes, x86-64
545 @cindex sizes operands, x86-64
546 @cindex x86-64 size suffixes
548 In AT&T syntax the size of memory operands is determined from the last
549 character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
550 @samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
551 (32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
552 this by prefixing memory operands (@emph{not} the instruction mnemonics) with
553 @samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
554 Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
557 In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
558 instruction with the 64-bit displacement or immediate operand.
560 @cindex return instructions, i386
561 @cindex i386 jump, call, return
562 @cindex return instructions, x86-64
563 @cindex x86-64 jump, call, return
565 Immediate form long jumps and calls are
566 @samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
568 @samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
570 is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
571 @samp{ret far @var{stack-adjust}}.
573 @cindex sections, i386
574 @cindex i386 sections
575 @cindex sections, x86-64
576 @cindex x86-64 sections
578 The AT&T assembler does not provide support for multiple section
579 programs. Unix style systems expect all programs to be single sections.
583 @subsection Special Characters
585 @cindex line comment character, i386
586 @cindex i386 line comment character
587 The presence of a @samp{#} appearing anywhere on a line indicates the
588 start of a comment that extends to the end of that line.
590 If a @samp{#} appears as the first character of a line then the whole
591 line is treated as a comment, but in this case the line can also be a
592 logical line number directive (@pxref{Comments}) or a preprocessor
593 control command (@pxref{Preprocessing}).
595 If the @option{--divide} command line option has not been specified
596 then the @samp{/} character appearing anywhere on a line also
597 introduces a line comment.
599 @cindex line separator, i386
600 @cindex statement separator, i386
601 @cindex i386 line separator
602 The @samp{;} character can be used to separate statements on the same
606 @section i386-Mnemonics
607 @subsection Instruction Naming
609 @cindex i386 instruction naming
610 @cindex instruction naming, i386
611 @cindex x86-64 instruction naming
612 @cindex instruction naming, x86-64
614 Instruction mnemonics are suffixed with one character modifiers which
615 specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
616 and @samp{q} specify byte, word, long and quadruple word operands. If
617 no suffix is specified by an instruction then @code{@value{AS}} tries to
618 fill in the missing suffix based on the destination register operand
619 (the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
620 to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
621 @samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
622 assembler which assumes that a missing mnemonic suffix implies long
623 operand size. (This incompatibility does not affect compiler output
624 since compilers always explicitly specify the mnemonic suffix.)
626 Almost all instructions have the same names in AT&T and Intel format.
627 There are a few exceptions. The sign extend and zero extend
628 instructions need two sizes to specify them. They need a size to
629 sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
630 is accomplished by using two instruction mnemonic suffixes in AT&T
631 syntax. Base names for sign extend and zero extend are
632 @samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
633 and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
634 are tacked on to this base name, the @emph{from} suffix before the
635 @emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
636 ``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
637 thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
638 @samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
639 @samp{wq} (from word to quadruple word), and @samp{lq} (from long to
642 @cindex encoding options, i386
643 @cindex encoding options, x86-64
645 Different encoding options can be specified via pseudo prefixes:
649 @samp{@{disp8@}} -- prefer 8-bit displacement.
652 @samp{@{disp32@}} -- prefer 32-bit displacement.
655 @samp{@{load@}} -- prefer load-form instruction.
658 @samp{@{store@}} -- prefer store-form instruction.
661 @samp{@{vex2@}} -- prefer 2-byte VEX prefix for VEX instruction.
664 @samp{@{vex3@}} -- prefer 3-byte VEX prefix for VEX instruction.
667 @samp{@{evex@}} -- encode with EVEX prefix.
670 @samp{@{rex@}} -- prefer REX prefix for integer and legacy vector
671 instructions (x86-64 only). Note that this differs from the @samp{rex}
672 prefix which generates REX prefix unconditionally.
675 @samp{@{nooptimize@}} -- disable instruction size optimization.
678 @cindex conversion instructions, i386
679 @cindex i386 conversion instructions
680 @cindex conversion instructions, x86-64
681 @cindex x86-64 conversion instructions
682 The Intel-syntax conversion instructions
686 @samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
689 @samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
692 @samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
695 @samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
698 @samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
702 @samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
703 @samp{%rdx:%rax} (x86-64 only),
707 are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
708 @samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
711 @cindex jump instructions, i386
712 @cindex call instructions, i386
713 @cindex jump instructions, x86-64
714 @cindex call instructions, x86-64
715 Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
716 AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
719 @subsection AT&T Mnemonic versus Intel Mnemonic
721 @cindex i386 mnemonic compatibility
722 @cindex mnemonic compatibility, i386
724 @code{@value{AS}} supports assembly using Intel mnemonic.
725 @code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
726 @code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
727 syntax for compatibility with the output of @code{@value{GCC}}.
728 Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
729 @samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
730 @samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
731 assembler with different mnemonics from those in Intel IA32 specification.
732 @code{@value{GCC}} generates those instructions with AT&T mnemonic.
735 @section Register Naming
737 @cindex i386 registers
738 @cindex registers, i386
739 @cindex x86-64 registers
740 @cindex registers, x86-64
741 Register operands are always prefixed with @samp{%}. The 80386 registers
746 the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
747 @samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
748 frame pointer), and @samp{%esp} (the stack pointer).
751 the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
752 @samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
755 the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
756 @samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
757 are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
758 @samp{%cx}, and @samp{%dx})
761 the 6 section registers @samp{%cs} (code section), @samp{%ds}
762 (data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
766 the 5 processor control registers @samp{%cr0}, @samp{%cr2},
767 @samp{%cr3}, @samp{%cr4}, and @samp{%cr8}.
770 the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
771 @samp{%db3}, @samp{%db6}, and @samp{%db7}.
774 the 2 test registers @samp{%tr6} and @samp{%tr7}.
777 the 8 floating point register stack @samp{%st} or equivalently
778 @samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
779 @samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
780 These registers are overloaded by 8 MMX registers @samp{%mm0},
781 @samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
782 @samp{%mm6} and @samp{%mm7}.
785 the 8 128-bit SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
786 @samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
789 The AMD x86-64 architecture extends the register set by:
793 enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
794 accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
795 @samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
799 the 8 extended registers @samp{%r8}--@samp{%r15}.
802 the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}.
805 the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}.
808 the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}.
811 the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
814 the 8 debug registers: @samp{%db8}--@samp{%db15}.
817 the 8 128-bit SSE registers: @samp{%xmm8}--@samp{%xmm15}.
820 With the AVX extensions more registers were made available:
825 the 16 256-bit SSE @samp{%ymm0}--@samp{%ymm15} (only the first 8
826 available in 32-bit mode). The bottom 128 bits are overlaid with the
827 @samp{xmm0}--@samp{xmm15} registers.
831 The AVX2 extensions made in 64-bit mode more registers available:
836 the 16 128-bit registers @samp{%xmm16}--@samp{%xmm31} and the 16 256-bit
837 registers @samp{%ymm16}--@samp{%ymm31}.
841 The AVX512 extensions added the following registers:
846 the 32 512-bit registers @samp{%zmm0}--@samp{%zmm31} (only the first 8
847 available in 32-bit mode). The bottom 128 bits are overlaid with the
848 @samp{%xmm0}--@samp{%xmm31} registers and the first 256 bits are
849 overlaid with the @samp{%ymm0}--@samp{%ymm31} registers.
852 the 8 mask registers @samp{%k0}--@samp{%k7}.
857 @section Instruction Prefixes
859 @cindex i386 instruction prefixes
860 @cindex instruction prefixes, i386
861 @cindex prefixes, i386
862 Instruction prefixes are used to modify the following instruction. They
863 are used to repeat string instructions, to provide section overrides, to
864 perform bus lock operations, and to change operand and address sizes.
865 (Most instructions that normally operate on 32-bit operands will use
866 16-bit operands if the instruction has an ``operand size'' prefix.)
867 Instruction prefixes are best written on the same line as the instruction
868 they act upon. For example, the @samp{scas} (scan string) instruction is
872 repne scas %es:(%edi),%al
875 You may also place prefixes on the lines immediately preceding the
876 instruction, but this circumvents checks that @code{@value{AS}} does
877 with prefixes, and will not work with all prefixes.
879 Here is a list of instruction prefixes:
881 @cindex section override prefixes, i386
884 Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
885 @samp{fs}, @samp{gs}. These are automatically added by specifying
886 using the @var{section}:@var{memory-operand} form for memory references.
888 @cindex size prefixes, i386
890 Operand/Address size prefixes @samp{data16} and @samp{addr16}
891 change 32-bit operands/addresses into 16-bit operands/addresses,
892 while @samp{data32} and @samp{addr32} change 16-bit ones (in a
893 @code{.code16} section) into 32-bit operands/addresses. These prefixes
894 @emph{must} appear on the same line of code as the instruction they
895 modify. For example, in a 16-bit @code{.code16} section, you might
902 @cindex bus lock prefixes, i386
903 @cindex inhibiting interrupts, i386
905 The bus lock prefix @samp{lock} inhibits interrupts during execution of
906 the instruction it precedes. (This is only valid with certain
907 instructions; see a 80386 manual for details).
909 @cindex coprocessor wait, i386
911 The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
912 complete the current instruction. This should never be needed for the
913 80386/80387 combination.
915 @cindex repeat prefixes, i386
917 The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
918 to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
919 times if the current address size is 16-bits).
920 @cindex REX prefixes, i386
922 The @samp{rex} family of prefixes is used by x86-64 to encode
923 extensions to i386 instruction set. The @samp{rex} prefix has four
924 bits --- an operand size overwrite (@code{64}) used to change operand size
925 from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
928 You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
929 instruction emits @samp{rex} prefix with all the bits set. By omitting
930 the @code{64}, @code{x}, @code{y} or @code{z} you may write other
931 prefixes as well. Normally, there is no need to write the prefixes
932 explicitly, since gas will automatically generate them based on the
933 instruction operands.
937 @section Memory References
939 @cindex i386 memory references
940 @cindex memory references, i386
941 @cindex x86-64 memory references
942 @cindex memory references, x86-64
943 An Intel syntax indirect memory reference of the form
946 @var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
950 is translated into the AT&T syntax
953 @var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
957 where @var{base} and @var{index} are the optional 32-bit base and
958 index registers, @var{disp} is the optional displacement, and
959 @var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
960 to calculate the address of the operand. If no @var{scale} is
961 specified, @var{scale} is taken to be 1. @var{section} specifies the
962 optional section register for the memory operand, and may override the
963 default section register (see a 80386 manual for section register
964 defaults). Note that section overrides in AT&T syntax @emph{must}
965 be preceded by a @samp{%}. If you specify a section override which
966 coincides with the default section register, @code{@value{AS}} does @emph{not}
967 output any section register override prefixes to assemble the given
968 instruction. Thus, section overrides can be specified to emphasize which
969 section register is used for a given memory operand.
971 Here are some examples of Intel and AT&T style memory references:
974 @item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
975 @var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
976 missing, and the default section is used (@samp{%ss} for addressing with
977 @samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
979 @item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
980 @var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
981 @samp{foo}. All other fields are missing. The section register here
982 defaults to @samp{%ds}.
984 @item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
985 This uses the value pointed to by @samp{foo} as a memory operand.
986 Note that @var{base} and @var{index} are both missing, but there is only
987 @emph{one} @samp{,}. This is a syntactic exception.
989 @item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
990 This selects the contents of the variable @samp{foo} with section
991 register @var{section} being @samp{%gs}.
994 Absolute (as opposed to PC relative) call and jump operands must be
995 prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
996 always chooses PC relative addressing for jump/call labels.
998 Any instruction that has a memory operand, but no register operand,
999 @emph{must} specify its size (byte, word, long, or quadruple) with an
1000 instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
1003 The x86-64 architecture adds an RIP (instruction pointer relative)
1004 addressing. This addressing mode is specified by using @samp{rip} as a
1005 base register. Only constant offsets are valid. For example:
1008 @item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
1009 Points to the address 1234 bytes past the end of the current
1012 @item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
1013 Points to the @code{symbol} in RIP relative way, this is shorter than
1014 the default absolute addressing.
1017 Other addressing modes remain unchanged in x86-64 architecture, except
1018 registers used are 64-bit instead of 32-bit.
1021 @section Handling of Jump Instructions
1023 @cindex jump optimization, i386
1024 @cindex i386 jump optimization
1025 @cindex jump optimization, x86-64
1026 @cindex x86-64 jump optimization
1027 Jump instructions are always optimized to use the smallest possible
1028 displacements. This is accomplished by using byte (8-bit) displacement
1029 jumps whenever the target is sufficiently close. If a byte displacement
1030 is insufficient a long displacement is used. We do not support
1031 word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
1032 instruction with the @samp{data16} instruction prefix), since the 80386
1033 insists upon masking @samp{%eip} to 16 bits after the word displacement
1034 is added. (See also @pxref{i386-Arch})
1036 Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
1037 @samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
1038 displacements, so that if you use these instructions (@code{@value{GCC}} does
1039 not use them) you may get an error message (and incorrect code). The AT&T
1040 80386 assembler tries to get around this problem by expanding @samp{jcxz foo}
1051 @section Floating Point
1053 @cindex i386 floating point
1054 @cindex floating point, i386
1055 @cindex x86-64 floating point
1056 @cindex floating point, x86-64
1057 All 80387 floating point types except packed BCD are supported.
1058 (BCD support may be added without much difficulty). These data
1059 types are 16-, 32-, and 64- bit integers, and single (32-bit),
1060 double (64-bit), and extended (80-bit) precision floating point.
1061 Each supported type has an instruction mnemonic suffix and a constructor
1062 associated with it. Instruction mnemonic suffixes specify the operand's
1063 data type. Constructors build these data types into memory.
1065 @cindex @code{float} directive, i386
1066 @cindex @code{single} directive, i386
1067 @cindex @code{double} directive, i386
1068 @cindex @code{tfloat} directive, i386
1069 @cindex @code{float} directive, x86-64
1070 @cindex @code{single} directive, x86-64
1071 @cindex @code{double} directive, x86-64
1072 @cindex @code{tfloat} directive, x86-64
1075 Floating point constructors are @samp{.float} or @samp{.single},
1076 @samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
1077 These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
1078 and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
1079 only supports this format via the @samp{fldt} (load 80-bit real to stack
1080 top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
1082 @cindex @code{word} directive, i386
1083 @cindex @code{long} directive, i386
1084 @cindex @code{int} directive, i386
1085 @cindex @code{quad} directive, i386
1086 @cindex @code{word} directive, x86-64
1087 @cindex @code{long} directive, x86-64
1088 @cindex @code{int} directive, x86-64
1089 @cindex @code{quad} directive, x86-64
1091 Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
1092 @samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
1093 corresponding instruction mnemonic suffixes are @samp{s} (single),
1094 @samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
1095 the 64-bit @samp{q} format is only present in the @samp{fildq} (load
1096 quad integer to stack top) and @samp{fistpq} (store quad integer and pop
1097 stack) instructions.
1100 Register to register operations should not use instruction mnemonic suffixes.
1101 @samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
1102 wrote @samp{fst %st, %st(1)}, since all register to register operations
1103 use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
1104 which converts @samp{%st} from 80-bit to 64-bit floating point format,
1105 then stores the result in the 4 byte location @samp{mem})
1108 @section Intel's MMX and AMD's 3DNow! SIMD Operations
1111 @cindex 3DNow!, i386
1114 @cindex 3DNow!, x86-64
1115 @cindex SIMD, x86-64
1117 @code{@value{AS}} supports Intel's MMX instruction set (SIMD
1118 instructions for integer data), available on Intel's Pentium MMX
1119 processors and Pentium II processors, AMD's K6 and K6-2 processors,
1120 Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
1121 instruction set (SIMD instructions for 32-bit floating point data)
1122 available on AMD's K6-2 processor and possibly others in the future.
1124 Currently, @code{@value{AS}} does not support Intel's floating point
1127 The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
1128 @samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
1129 16-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
1130 floating point values. The MMX registers cannot be used at the same time
1131 as the floating point stack.
1133 See Intel and AMD documentation, keeping in mind that the operand order in
1134 instructions is reversed from the Intel syntax.
1137 @section AMD's Lightweight Profiling Instructions
1142 @code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
1143 instruction set, available on AMD's Family 15h (Orochi) processors.
1145 LWP enables applications to collect and manage performance data, and
1146 react to performance events. The collection of performance data
1147 requires no context switches. LWP runs in the context of a thread and
1148 so several counters can be used independently across multiple threads.
1149 LWP can be used in both 64-bit and legacy 32-bit modes.
1151 For detailed information on the LWP instruction set, see the
1152 @cite{AMD Lightweight Profiling Specification} available at
1153 @uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
1156 @section Bit Manipulation Instructions
1161 @code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1163 BMI instructions provide several instructions implementing individual
1164 bit manipulation operations such as isolation, masking, setting, or
1167 @c Need to add a specification citation here when available.
1170 @section AMD's Trailing Bit Manipulation Instructions
1175 @code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1176 instruction set, available on AMD's BDVER2 processors (Trinity and
1179 TBM instructions provide instructions implementing individual bit
1180 manipulation operations such as isolating, masking, setting, resetting,
1181 complementing, and operations on trailing zeros and ones.
1183 @c Need to add a specification citation here when available.
1186 @section Writing 16-bit Code
1188 @cindex i386 16-bit code
1189 @cindex 16-bit code, i386
1190 @cindex real-mode code, i386
1191 @cindex @code{code16gcc} directive, i386
1192 @cindex @code{code16} directive, i386
1193 @cindex @code{code32} directive, i386
1194 @cindex @code{code64} directive, i386
1195 @cindex @code{code64} directive, x86-64
1196 While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1197 or 64-bit x86-64 code depending on the default configuration,
1198 it also supports writing code to run in real mode or in 16-bit protected
1199 mode code segments. To do this, put a @samp{.code16} or
1200 @samp{.code16gcc} directive before the assembly language instructions to
1201 be run in 16-bit mode. You can switch @code{@value{AS}} to writing
1202 32-bit code with the @samp{.code32} directive or 64-bit code with the
1203 @samp{.code64} directive.
1205 @samp{.code16gcc} provides experimental support for generating 16-bit
1206 code from gcc, and differs from @samp{.code16} in that @samp{call},
1207 @samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1208 @samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1209 default to 32-bit size. This is so that the stack pointer is
1210 manipulated in the same way over function calls, allowing access to
1211 function parameters at the same stack offsets as in 32-bit mode.
1212 @samp{.code16gcc} also automatically adds address size prefixes where
1213 necessary to use the 32-bit addressing modes that gcc generates.
1215 The code which @code{@value{AS}} generates in 16-bit mode will not
1216 necessarily run on a 16-bit pre-80386 processor. To write code that
1217 runs on such a processor, you must refrain from using @emph{any} 32-bit
1218 constructs which require @code{@value{AS}} to output address or operand
1221 Note that writing 16-bit code instructions by explicitly specifying a
1222 prefix or an instruction mnemonic suffix within a 32-bit code section
1223 generates different machine instructions than those generated for a
1224 16-bit code segment. In a 32-bit code section, the following code
1225 generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1226 value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1232 The same code in a 16-bit code section would generate the machine
1233 opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
1234 is correct since the processor default operand size is assumed to be 16
1235 bits in a 16-bit code section.
1238 @section Specifying CPU Architecture
1240 @cindex arch directive, i386
1241 @cindex i386 arch directive
1242 @cindex arch directive, x86-64
1243 @cindex x86-64 arch directive
1245 @code{@value{AS}} may be told to assemble for a particular CPU
1246 (sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
1247 directive enables a warning when gas detects an instruction that is not
1248 supported on the CPU specified. The choices for @var{cpu_type} are:
1250 @multitable @columnfractions .20 .20 .20 .20
1251 @item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1252 @item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
1253 @item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
1254 @item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
1255 @item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @samp{iamcu}
1256 @item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
1257 @item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
1258 @item @samp{bdver4} @tab @samp{znver1} @tab @samp{btver1} @tab @samp{btver2}
1259 @item @samp{generic32} @tab @samp{generic64}
1260 @item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
1261 @item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
1262 @item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1263 @item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1264 @item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
1265 @item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
1266 @item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
1267 @item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1268 @item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1269 @item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1270 @item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
1271 @item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
1272 @item @samp{.avx512vbmi} @tab @samp{.avx512_4fmaps} @tab @samp{.avx512_4vnniw}
1273 @item @samp{.avx512_vpopcntdq} @tab @samp{.avx512_vbmi2} @tab @samp{.avx512_vnni}
1274 @item @samp{.avx512_bitalg}
1275 @item @samp{.clwb} @tab @samp{.rdpid} @tab @samp{.ptwrite} @tab @item @samp{.ibt}
1276 @item @samp{.wbnoinvd} @tab @samp{.pconfig} @tab @samp{.waitpkg}
1277 @item @samp{.shstk} @tab @samp{.gfni} @tab @samp{.vaes} @tab @samp{.vpclmulqdq}
1278 @item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
1279 @item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
1280 @item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
1281 @item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx}
1284 Apart from the warning, there are only two other effects on
1285 @code{@value{AS}} operation; Firstly, if you specify a CPU other than
1286 @samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1287 will automatically use a two byte opcode sequence. The larger three
1288 byte opcode sequence is used on the 486 (and when no architecture is
1289 specified) because it executes faster on the 486. Note that you can
1290 explicitly request the two byte opcode by writing @samp{sarl %eax}.
1291 Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1292 @emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1293 conditional jumps will be promoted when necessary to a two instruction
1294 sequence consisting of a conditional jump of the opposite sense around
1295 an unconditional jump to the target.
1297 Following the CPU architecture (but not a sub-architecture, which are those
1298 starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1299 control automatic promotion of conditional jumps. @samp{jumps} is the
1300 default, and enables jump promotion; All external jumps will be of the long
1301 variety, and file-local jumps will be promoted as necessary.
1302 (@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1303 byte offset jumps, and warns about file-local conditional jumps that
1304 @code{@value{AS}} promotes.
1305 Unconditional jumps are treated as for @samp{jumps}.
1314 @section AT&T Syntax bugs
1316 The UnixWare assembler, and probably other AT&T derived ix86 Unix
1317 assemblers, generate floating point instructions with reversed source
1318 and destination registers in certain cases. Unfortunately, gcc and
1319 possibly many other programs use this reversed syntax, so we're stuck
1328 results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1329 than the expected @samp{%st(3) - %st}. This happens with all the
1330 non-commutative arithmetic floating point operations with two register
1331 operands where the source register is @samp{%st} and the destination
1332 register is @samp{%st(i)}.
1337 @cindex i386 @code{mul}, @code{imul} instructions
1338 @cindex @code{mul} instruction, i386
1339 @cindex @code{imul} instruction, i386
1340 @cindex @code{mul} instruction, x86-64
1341 @cindex @code{imul} instruction, x86-64
1342 There is some trickery concerning the @samp{mul} and @samp{imul}
1343 instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
1344 multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1345 for @samp{imul}) can be output only in the one operand form. Thus,
1346 @samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1347 the expanding multiply would clobber the @samp{%edx} register, and this
1348 would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
1349 64-bit product in @samp{%edx:%eax}.
1351 We have added a two operand form of @samp{imul} when the first operand
1352 is an immediate mode expression and the second operand is a register.
1353 This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1354 example, can be done with @samp{imul $69, %eax} rather than @samp{imul