f2e8f4ee4d0be9bd88b296fc36f783e3dbc205da
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
1 @c Copyright (C) 1991-2017 Free Software Foundation, Inc.
2 @c This is part of the GAS manual.
3 @c For copying conditions, see the file as.texinfo.
4 @c man end
5
6 @ifset GENERIC
7 @page
8 @node i386-Dependent
9 @chapter 80386 Dependent Features
10 @end ifset
11 @ifclear GENERIC
12 @node Machine Dependencies
13 @chapter 80386 Dependent Features
14 @end ifclear
15
16 @cindex i386 support
17 @cindex i80386 support
18 @cindex x86-64 support
19
20 The i386 version @code{@value{AS}} supports both the original Intel 386
21 architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22 extending the Intel architecture to 64-bits.
23
24 @menu
25 * i386-Options:: Options
26 * i386-Directives:: X86 specific directives
27 * i386-Syntax:: Syntactical considerations
28 * i386-Mnemonics:: Instruction Naming
29 * i386-Regs:: Register Naming
30 * i386-Prefixes:: Instruction Prefixes
31 * i386-Memory:: Memory References
32 * i386-Jumps:: Handling of Jump Instructions
33 * i386-Float:: Floating Point
34 * i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
35 * i386-LWP:: AMD's Lightweight Profiling Instructions
36 * i386-BMI:: Bit Manipulation Instruction
37 * i386-TBM:: AMD's Trailing Bit Manipulation Instructions
38 * i386-16bit:: Writing 16-bit Code
39 * i386-Arch:: Specifying an x86 CPU architecture
40 * i386-Bugs:: AT&T Syntax bugs
41 * i386-Notes:: Notes
42 @end menu
43
44 @node i386-Options
45 @section Options
46
47 @cindex options for i386
48 @cindex options for x86-64
49 @cindex i386 options
50 @cindex x86-64 options
51
52 The i386 version of @code{@value{AS}} has a few machine
53 dependent options:
54
55 @c man begin OPTIONS
56 @table @gcctabopt
57 @cindex @samp{--32} option, i386
58 @cindex @samp{--32} option, x86-64
59 @cindex @samp{--x32} option, i386
60 @cindex @samp{--x32} option, x86-64
61 @cindex @samp{--64} option, i386
62 @cindex @samp{--64} option, x86-64
63 @item --32 | --x32 | --64
64 Select the word size, either 32 bits or 64 bits. @samp{--32}
65 implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
66 imply AMD x86-64 architecture with 32-bit or 64-bit word-size
67 respectively.
68
69 These options are only available with the ELF object file format, and
70 require that the necessary BFD support has been included (on a 32-bit
71 platform you have to add --enable-64-bit-bfd to configure enable 64-bit
72 usage and use x86-64 as target platform).
73
74 @item -n
75 By default, x86 GAS replaces multiple nop instructions used for
76 alignment within code sections with multi-byte nop instructions such
77 as leal 0(%esi,1),%esi. This switch disables the optimization.
78
79 @cindex @samp{--divide} option, i386
80 @item --divide
81 On SVR4-derived platforms, the character @samp{/} is treated as a comment
82 character, which means that it cannot be used in expressions. The
83 @samp{--divide} option turns @samp{/} into a normal character. This does
84 not disable @samp{/} at the beginning of a line starting a comment, or
85 affect using @samp{#} for starting a comment.
86
87 @cindex @samp{-march=} option, i386
88 @cindex @samp{-march=} option, x86-64
89 @item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
90 This option specifies the target processor. The assembler will
91 issue an error message if an attempt is made to assemble an instruction
92 which will not execute on the target processor. The following
93 processor names are recognized:
94 @code{i8086},
95 @code{i186},
96 @code{i286},
97 @code{i386},
98 @code{i486},
99 @code{i586},
100 @code{i686},
101 @code{pentium},
102 @code{pentiumpro},
103 @code{pentiumii},
104 @code{pentiumiii},
105 @code{pentium4},
106 @code{prescott},
107 @code{nocona},
108 @code{core},
109 @code{core2},
110 @code{corei7},
111 @code{l1om},
112 @code{k1om},
113 @code{iamcu},
114 @code{k6},
115 @code{k6_2},
116 @code{athlon},
117 @code{opteron},
118 @code{k8},
119 @code{amdfam10},
120 @code{bdver1},
121 @code{bdver2},
122 @code{bdver3},
123 @code{bdver4},
124 @code{znver1},
125 @code{btver1},
126 @code{btver2},
127 @code{generic32} and
128 @code{generic64}.
129
130 In addition to the basic instruction set, the assembler can be told to
131 accept various extension mnemonics. For example,
132 @code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
133 @var{vmx}. The following extensions are currently supported:
134 @code{8087},
135 @code{287},
136 @code{387},
137 @code{687},
138 @code{no87},
139 @code{no287},
140 @code{no387},
141 @code{no687},
142 @code{mmx},
143 @code{nommx},
144 @code{sse},
145 @code{sse2},
146 @code{sse3},
147 @code{ssse3},
148 @code{sse4.1},
149 @code{sse4.2},
150 @code{sse4},
151 @code{nosse},
152 @code{nosse2},
153 @code{nosse3},
154 @code{nossse3},
155 @code{nosse4.1},
156 @code{nosse4.2},
157 @code{nosse4},
158 @code{avx},
159 @code{avx2},
160 @code{noavx},
161 @code{noavx2},
162 @code{adx},
163 @code{rdseed},
164 @code{prfchw},
165 @code{smap},
166 @code{mpx},
167 @code{sha},
168 @code{rdpid},
169 @code{ptwrite},
170 @code{cet},
171 @code{gfni},
172 @code{vaes},
173 @code{vpclmulqdq},
174 @code{prefetchwt1},
175 @code{clflushopt},
176 @code{se1},
177 @code{clwb},
178 @code{avx512f},
179 @code{avx512cd},
180 @code{avx512er},
181 @code{avx512pf},
182 @code{avx512vl},
183 @code{avx512bw},
184 @code{avx512dq},
185 @code{avx512ifma},
186 @code{avx512vbmi},
187 @code{avx512_4fmaps},
188 @code{avx512_4vnniw},
189 @code{avx512_vpopcntdq},
190 @code{avx512_vbmi2},
191 @code{avx512_vnni},
192 @code{noavx512f},
193 @code{noavx512cd},
194 @code{noavx512er},
195 @code{noavx512pf},
196 @code{noavx512vl},
197 @code{noavx512bw},
198 @code{noavx512dq},
199 @code{noavx512ifma},
200 @code{noavx512vbmi},
201 @code{noavx512_4fmaps},
202 @code{noavx512_4vnniw},
203 @code{noavx512_vpopcntdq},
204 @code{noavx512_vbmi2},
205 @code{noavx512_vnni},
206 @code{vmx},
207 @code{vmfunc},
208 @code{smx},
209 @code{xsave},
210 @code{xsaveopt},
211 @code{xsavec},
212 @code{xsaves},
213 @code{aes},
214 @code{pclmul},
215 @code{fsgsbase},
216 @code{rdrnd},
217 @code{f16c},
218 @code{bmi2},
219 @code{fma},
220 @code{movbe},
221 @code{ept},
222 @code{lzcnt},
223 @code{hle},
224 @code{rtm},
225 @code{invpcid},
226 @code{clflush},
227 @code{mwaitx},
228 @code{clzero},
229 @code{lwp},
230 @code{fma4},
231 @code{xop},
232 @code{cx16},
233 @code{syscall},
234 @code{rdtscp},
235 @code{3dnow},
236 @code{3dnowa},
237 @code{sse4a},
238 @code{sse5},
239 @code{svme},
240 @code{abm} and
241 @code{padlock}.
242 Note that rather than extending a basic instruction set, the extension
243 mnemonics starting with @code{no} revoke the respective functionality.
244
245 When the @code{.arch} directive is used with @option{-march}, the
246 @code{.arch} directive will take precedent.
247
248 @cindex @samp{-mtune=} option, i386
249 @cindex @samp{-mtune=} option, x86-64
250 @item -mtune=@var{CPU}
251 This option specifies a processor to optimize for. When used in
252 conjunction with the @option{-march} option, only instructions
253 of the processor specified by the @option{-march} option will be
254 generated.
255
256 Valid @var{CPU} values are identical to the processor list of
257 @option{-march=@var{CPU}}.
258
259 @cindex @samp{-msse2avx} option, i386
260 @cindex @samp{-msse2avx} option, x86-64
261 @item -msse2avx
262 This option specifies that the assembler should encode SSE instructions
263 with VEX prefix.
264
265 @cindex @samp{-msse-check=} option, i386
266 @cindex @samp{-msse-check=} option, x86-64
267 @item -msse-check=@var{none}
268 @itemx -msse-check=@var{warning}
269 @itemx -msse-check=@var{error}
270 These options control if the assembler should check SSE instructions.
271 @option{-msse-check=@var{none}} will make the assembler not to check SSE
272 instructions, which is the default. @option{-msse-check=@var{warning}}
273 will make the assembler issue a warning for any SSE instruction.
274 @option{-msse-check=@var{error}} will make the assembler issue an error
275 for any SSE instruction.
276
277 @cindex @samp{-mavxscalar=} option, i386
278 @cindex @samp{-mavxscalar=} option, x86-64
279 @item -mavxscalar=@var{128}
280 @itemx -mavxscalar=@var{256}
281 These options control how the assembler should encode scalar AVX
282 instructions. @option{-mavxscalar=@var{128}} will encode scalar
283 AVX instructions with 128bit vector length, which is the default.
284 @option{-mavxscalar=@var{256}} will encode scalar AVX instructions
285 with 256bit vector length.
286
287 @cindex @samp{-mevexlig=} option, i386
288 @cindex @samp{-mevexlig=} option, x86-64
289 @item -mevexlig=@var{128}
290 @itemx -mevexlig=@var{256}
291 @itemx -mevexlig=@var{512}
292 These options control how the assembler should encode length-ignored
293 (LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
294 EVEX instructions with 128bit vector length, which is the default.
295 @option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
296 encode LIG EVEX instructions with 256bit and 512bit vector length,
297 respectively.
298
299 @cindex @samp{-mevexwig=} option, i386
300 @cindex @samp{-mevexwig=} option, x86-64
301 @item -mevexwig=@var{0}
302 @itemx -mevexwig=@var{1}
303 These options control how the assembler should encode w-ignored (WIG)
304 EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
305 EVEX instructions with evex.w = 0, which is the default.
306 @option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
307 evex.w = 1.
308
309 @cindex @samp{-mmnemonic=} option, i386
310 @cindex @samp{-mmnemonic=} option, x86-64
311 @item -mmnemonic=@var{att}
312 @itemx -mmnemonic=@var{intel}
313 This option specifies instruction mnemonic for matching instructions.
314 The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
315 take precedent.
316
317 @cindex @samp{-msyntax=} option, i386
318 @cindex @samp{-msyntax=} option, x86-64
319 @item -msyntax=@var{att}
320 @itemx -msyntax=@var{intel}
321 This option specifies instruction syntax when processing instructions.
322 The @code{.att_syntax} and @code{.intel_syntax} directives will
323 take precedent.
324
325 @cindex @samp{-mnaked-reg} option, i386
326 @cindex @samp{-mnaked-reg} option, x86-64
327 @item -mnaked-reg
328 This option specifies that registers don't require a @samp{%} prefix.
329 The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
330
331 @cindex @samp{-madd-bnd-prefix} option, i386
332 @cindex @samp{-madd-bnd-prefix} option, x86-64
333 @item -madd-bnd-prefix
334 This option forces the assembler to add BND prefix to all branches, even
335 if such prefix was not explicitly specified in the source code.
336
337 @cindex @samp{-mshared} option, i386
338 @cindex @samp{-mshared} option, x86-64
339 @item -mno-shared
340 On ELF target, the assembler normally optimizes out non-PLT relocations
341 against defined non-weak global branch targets with default visibility.
342 The @samp{-mshared} option tells the assembler to generate code which
343 may go into a shared library where all non-weak global branch targets
344 with default visibility can be preempted. The resulting code is
345 slightly bigger. This option only affects the handling of branch
346 instructions.
347
348 @cindex @samp{-mbig-obj} option, x86-64
349 @item -mbig-obj
350 On x86-64 PE/COFF target this option forces the use of big object file
351 format, which allows more than 32768 sections.
352
353 @cindex @samp{-momit-lock-prefix=} option, i386
354 @cindex @samp{-momit-lock-prefix=} option, x86-64
355 @item -momit-lock-prefix=@var{no}
356 @itemx -momit-lock-prefix=@var{yes}
357 These options control how the assembler should encode lock prefix.
358 This option is intended as a workaround for processors, that fail on
359 lock prefix. This option can only be safely used with single-core,
360 single-thread computers
361 @option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
362 @option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
363 which is the default.
364
365 @cindex @samp{-mfence-as-lock-add=} option, i386
366 @cindex @samp{-mfence-as-lock-add=} option, x86-64
367 @item -mfence-as-lock-add=@var{no}
368 @itemx -mfence-as-lock-add=@var{yes}
369 These options control how the assembler should encode lfence, mfence and
370 sfence.
371 @option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and
372 sfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and
373 @samp{lock addl $0x0, (%esp)} in 32-bit mode.
374 @option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and
375 sfence as usual, which is the default.
376
377 @cindex @samp{-mrelax-relocations=} option, i386
378 @cindex @samp{-mrelax-relocations=} option, x86-64
379 @item -mrelax-relocations=@var{no}
380 @itemx -mrelax-relocations=@var{yes}
381 These options control whether the assembler should generate relax
382 relocations, R_386_GOT32X, in 32-bit mode, or R_X86_64_GOTPCRELX and
383 R_X86_64_REX_GOTPCRELX, in 64-bit mode.
384 @option{-mrelax-relocations=@var{yes}} will generate relax relocations.
385 @option{-mrelax-relocations=@var{no}} will not generate relax
386 relocations. The default can be controlled by a configure option
387 @option{--enable-x86-relax-relocations}.
388
389 @cindex @samp{-mevexrcig=} option, i386
390 @cindex @samp{-mevexrcig=} option, x86-64
391 @item -mevexrcig=@var{rne}
392 @itemx -mevexrcig=@var{rd}
393 @itemx -mevexrcig=@var{ru}
394 @itemx -mevexrcig=@var{rz}
395 These options control how the assembler should encode SAE-only
396 EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
397 of EVEX instruction with 00, which is the default.
398 @option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
399 and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
400 with 01, 10 and 11 RC bits, respectively.
401
402 @cindex @samp{-mamd64} option, x86-64
403 @cindex @samp{-mintel64} option, x86-64
404 @item -mamd64
405 @itemx -mintel64
406 This option specifies that the assembler should accept only AMD64 or
407 Intel64 ISA in 64-bit mode. The default is to accept both.
408
409 @end table
410 @c man end
411
412 @node i386-Directives
413 @section x86 specific Directives
414
415 @cindex machine directives, x86
416 @cindex x86 machine directives
417 @table @code
418
419 @cindex @code{lcomm} directive, COFF
420 @item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
421 Reserve @var{length} (an absolute expression) bytes for a local common
422 denoted by @var{symbol}. The section and value of @var{symbol} are
423 those of the new local common. The addresses are allocated in the bss
424 section, so that at run-time the bytes start off zeroed. Since
425 @var{symbol} is not declared global, it is normally not visible to
426 @code{@value{LD}}. The optional third parameter, @var{alignment},
427 specifies the desired alignment of the symbol in the bss section.
428
429 This directive is only available for COFF based x86 targets.
430
431 @c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
432 @c .largecomm
433
434 @end table
435
436 @node i386-Syntax
437 @section i386 Syntactical Considerations
438 @menu
439 * i386-Variations:: AT&T Syntax versus Intel Syntax
440 * i386-Chars:: Special Characters
441 @end menu
442
443 @node i386-Variations
444 @subsection AT&T Syntax versus Intel Syntax
445
446 @cindex i386 intel_syntax pseudo op
447 @cindex intel_syntax pseudo op, i386
448 @cindex i386 att_syntax pseudo op
449 @cindex att_syntax pseudo op, i386
450 @cindex i386 syntax compatibility
451 @cindex syntax compatibility, i386
452 @cindex x86-64 intel_syntax pseudo op
453 @cindex intel_syntax pseudo op, x86-64
454 @cindex x86-64 att_syntax pseudo op
455 @cindex att_syntax pseudo op, x86-64
456 @cindex x86-64 syntax compatibility
457 @cindex syntax compatibility, x86-64
458
459 @code{@value{AS}} now supports assembly using Intel assembler syntax.
460 @code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
461 back to the usual AT&T mode for compatibility with the output of
462 @code{@value{GCC}}. Either of these directives may have an optional
463 argument, @code{prefix}, or @code{noprefix} specifying whether registers
464 require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
465 different from Intel syntax. We mention these differences because
466 almost all 80386 documents use Intel syntax. Notable differences
467 between the two syntaxes are:
468
469 @cindex immediate operands, i386
470 @cindex i386 immediate operands
471 @cindex register operands, i386
472 @cindex i386 register operands
473 @cindex jump/call operands, i386
474 @cindex i386 jump/call operands
475 @cindex operand delimiters, i386
476
477 @cindex immediate operands, x86-64
478 @cindex x86-64 immediate operands
479 @cindex register operands, x86-64
480 @cindex x86-64 register operands
481 @cindex jump/call operands, x86-64
482 @cindex x86-64 jump/call operands
483 @cindex operand delimiters, x86-64
484 @itemize @bullet
485 @item
486 AT&T immediate operands are preceded by @samp{$}; Intel immediate
487 operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
488 AT&T register operands are preceded by @samp{%}; Intel register operands
489 are undelimited. AT&T absolute (as opposed to PC relative) jump/call
490 operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
491
492 @cindex i386 source, destination operands
493 @cindex source, destination operands; i386
494 @cindex x86-64 source, destination operands
495 @cindex source, destination operands; x86-64
496 @item
497 AT&T and Intel syntax use the opposite order for source and destination
498 operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
499 @samp{source, dest} convention is maintained for compatibility with
500 previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
501 instructions with 2 immediate operands, such as the @samp{enter}
502 instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
503
504 @cindex mnemonic suffixes, i386
505 @cindex sizes operands, i386
506 @cindex i386 size suffixes
507 @cindex mnemonic suffixes, x86-64
508 @cindex sizes operands, x86-64
509 @cindex x86-64 size suffixes
510 @item
511 In AT&T syntax the size of memory operands is determined from the last
512 character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
513 @samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
514 (32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
515 this by prefixing memory operands (@emph{not} the instruction mnemonics) with
516 @samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
517 Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
518 syntax.
519
520 In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
521 instruction with the 64-bit displacement or immediate operand.
522
523 @cindex return instructions, i386
524 @cindex i386 jump, call, return
525 @cindex return instructions, x86-64
526 @cindex x86-64 jump, call, return
527 @item
528 Immediate form long jumps and calls are
529 @samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
530 Intel syntax is
531 @samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
532 instruction
533 is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
534 @samp{ret far @var{stack-adjust}}.
535
536 @cindex sections, i386
537 @cindex i386 sections
538 @cindex sections, x86-64
539 @cindex x86-64 sections
540 @item
541 The AT&T assembler does not provide support for multiple section
542 programs. Unix style systems expect all programs to be single sections.
543 @end itemize
544
545 @node i386-Chars
546 @subsection Special Characters
547
548 @cindex line comment character, i386
549 @cindex i386 line comment character
550 The presence of a @samp{#} appearing anywhere on a line indicates the
551 start of a comment that extends to the end of that line.
552
553 If a @samp{#} appears as the first character of a line then the whole
554 line is treated as a comment, but in this case the line can also be a
555 logical line number directive (@pxref{Comments}) or a preprocessor
556 control command (@pxref{Preprocessing}).
557
558 If the @option{--divide} command line option has not been specified
559 then the @samp{/} character appearing anywhere on a line also
560 introduces a line comment.
561
562 @cindex line separator, i386
563 @cindex statement separator, i386
564 @cindex i386 line separator
565 The @samp{;} character can be used to separate statements on the same
566 line.
567
568 @node i386-Mnemonics
569 @section i386-Mnemonics
570 @subsection Instruction Naming
571
572 @cindex i386 instruction naming
573 @cindex instruction naming, i386
574 @cindex x86-64 instruction naming
575 @cindex instruction naming, x86-64
576
577 Instruction mnemonics are suffixed with one character modifiers which
578 specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
579 and @samp{q} specify byte, word, long and quadruple word operands. If
580 no suffix is specified by an instruction then @code{@value{AS}} tries to
581 fill in the missing suffix based on the destination register operand
582 (the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
583 to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
584 @samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
585 assembler which assumes that a missing mnemonic suffix implies long
586 operand size. (This incompatibility does not affect compiler output
587 since compilers always explicitly specify the mnemonic suffix.)
588
589 Almost all instructions have the same names in AT&T and Intel format.
590 There are a few exceptions. The sign extend and zero extend
591 instructions need two sizes to specify them. They need a size to
592 sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
593 is accomplished by using two instruction mnemonic suffixes in AT&T
594 syntax. Base names for sign extend and zero extend are
595 @samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
596 and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
597 are tacked on to this base name, the @emph{from} suffix before the
598 @emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
599 ``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
600 thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
601 @samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
602 @samp{wq} (from word to quadruple word), and @samp{lq} (from long to
603 quadruple word).
604
605 @cindex encoding options, i386
606 @cindex encoding options, x86-64
607
608 Different encoding options can be specified via pseudo prefixes:
609
610 @itemize @bullet
611 @item
612 @samp{@{disp8@}} -- prefer 8-bit displacement.
613
614 @item
615 @samp{@{disp32@}} -- prefer 32-bit displacement.
616
617 @item
618 @samp{@{load@}} -- prefer load-form instruction.
619
620 @item
621 @samp{@{store@}} -- prefer store-form instruction.
622
623 @item
624 @samp{@{vex2@}} -- prefer 2-byte VEX prefix for VEX instruction.
625
626 @item
627 @samp{@{vex3@}} -- prefer 3-byte VEX prefix for VEX instruction.
628
629 @item
630 @samp{@{evex@}} -- encode with EVEX prefix.
631 @end itemize
632
633 @cindex conversion instructions, i386
634 @cindex i386 conversion instructions
635 @cindex conversion instructions, x86-64
636 @cindex x86-64 conversion instructions
637 The Intel-syntax conversion instructions
638
639 @itemize @bullet
640 @item
641 @samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
642
643 @item
644 @samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
645
646 @item
647 @samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
648
649 @item
650 @samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
651
652 @item
653 @samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
654 (x86-64 only),
655
656 @item
657 @samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
658 @samp{%rdx:%rax} (x86-64 only),
659 @end itemize
660
661 @noindent
662 are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
663 @samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
664 instructions.
665
666 @cindex jump instructions, i386
667 @cindex call instructions, i386
668 @cindex jump instructions, x86-64
669 @cindex call instructions, x86-64
670 Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
671 AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
672 convention.
673
674 @subsection AT&T Mnemonic versus Intel Mnemonic
675
676 @cindex i386 mnemonic compatibility
677 @cindex mnemonic compatibility, i386
678
679 @code{@value{AS}} supports assembly using Intel mnemonic.
680 @code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
681 @code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
682 syntax for compatibility with the output of @code{@value{GCC}}.
683 Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
684 @samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
685 @samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
686 assembler with different mnemonics from those in Intel IA32 specification.
687 @code{@value{GCC}} generates those instructions with AT&T mnemonic.
688
689 @node i386-Regs
690 @section Register Naming
691
692 @cindex i386 registers
693 @cindex registers, i386
694 @cindex x86-64 registers
695 @cindex registers, x86-64
696 Register operands are always prefixed with @samp{%}. The 80386 registers
697 consist of
698
699 @itemize @bullet
700 @item
701 the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
702 @samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
703 frame pointer), and @samp{%esp} (the stack pointer).
704
705 @item
706 the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
707 @samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
708
709 @item
710 the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
711 @samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
712 are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
713 @samp{%cx}, and @samp{%dx})
714
715 @item
716 the 6 section registers @samp{%cs} (code section), @samp{%ds}
717 (data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
718 and @samp{%gs}.
719
720 @item
721 the 5 processor control registers @samp{%cr0}, @samp{%cr2},
722 @samp{%cr3}, @samp{%cr4}, and @samp{%cr8}.
723
724 @item
725 the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
726 @samp{%db3}, @samp{%db6}, and @samp{%db7}.
727
728 @item
729 the 2 test registers @samp{%tr6} and @samp{%tr7}.
730
731 @item
732 the 8 floating point register stack @samp{%st} or equivalently
733 @samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
734 @samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
735 These registers are overloaded by 8 MMX registers @samp{%mm0},
736 @samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
737 @samp{%mm6} and @samp{%mm7}.
738
739 @item
740 the 8 128-bit SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
741 @samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
742 @end itemize
743
744 The AMD x86-64 architecture extends the register set by:
745
746 @itemize @bullet
747 @item
748 enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
749 accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
750 @samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
751 pointer)
752
753 @item
754 the 8 extended registers @samp{%r8}--@samp{%r15}.
755
756 @item
757 the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}.
758
759 @item
760 the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}.
761
762 @item
763 the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}.
764
765 @item
766 the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
767
768 @item
769 the 8 debug registers: @samp{%db8}--@samp{%db15}.
770
771 @item
772 the 8 128-bit SSE registers: @samp{%xmm8}--@samp{%xmm15}.
773 @end itemize
774
775 With the AVX extensions more registers were made available:
776
777 @itemize @bullet
778
779 @item
780 the 16 256-bit SSE @samp{%ymm0}--@samp{%ymm15} (only the first 8
781 available in 32-bit mode). The bottom 128 bits are overlaid with the
782 @samp{xmm0}--@samp{xmm15} registers.
783
784 @end itemize
785
786 The AVX2 extensions made in 64-bit mode more registers available:
787
788 @itemize @bullet
789
790 @item
791 the 16 128-bit registers @samp{%xmm16}--@samp{%xmm31} and the 16 256-bit
792 registers @samp{%ymm16}--@samp{%ymm31}.
793
794 @end itemize
795
796 The AVX512 extensions added the following registers:
797
798 @itemize @bullet
799
800 @item
801 the 32 512-bit registers @samp{%zmm0}--@samp{%zmm31} (only the first 8
802 available in 32-bit mode). The bottom 128 bits are overlaid with the
803 @samp{%xmm0}--@samp{%xmm31} registers and the first 256 bits are
804 overlaid with the @samp{%ymm0}--@samp{%ymm31} registers.
805
806 @item
807 the 8 mask registers @samp{%k0}--@samp{%k7}.
808
809 @end itemize
810
811 @node i386-Prefixes
812 @section Instruction Prefixes
813
814 @cindex i386 instruction prefixes
815 @cindex instruction prefixes, i386
816 @cindex prefixes, i386
817 Instruction prefixes are used to modify the following instruction. They
818 are used to repeat string instructions, to provide section overrides, to
819 perform bus lock operations, and to change operand and address sizes.
820 (Most instructions that normally operate on 32-bit operands will use
821 16-bit operands if the instruction has an ``operand size'' prefix.)
822 Instruction prefixes are best written on the same line as the instruction
823 they act upon. For example, the @samp{scas} (scan string) instruction is
824 repeated with:
825
826 @smallexample
827 repne scas %es:(%edi),%al
828 @end smallexample
829
830 You may also place prefixes on the lines immediately preceding the
831 instruction, but this circumvents checks that @code{@value{AS}} does
832 with prefixes, and will not work with all prefixes.
833
834 Here is a list of instruction prefixes:
835
836 @cindex section override prefixes, i386
837 @itemize @bullet
838 @item
839 Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
840 @samp{fs}, @samp{gs}. These are automatically added by specifying
841 using the @var{section}:@var{memory-operand} form for memory references.
842
843 @cindex size prefixes, i386
844 @item
845 Operand/Address size prefixes @samp{data16} and @samp{addr16}
846 change 32-bit operands/addresses into 16-bit operands/addresses,
847 while @samp{data32} and @samp{addr32} change 16-bit ones (in a
848 @code{.code16} section) into 32-bit operands/addresses. These prefixes
849 @emph{must} appear on the same line of code as the instruction they
850 modify. For example, in a 16-bit @code{.code16} section, you might
851 write:
852
853 @smallexample
854 addr32 jmpl *(%ebx)
855 @end smallexample
856
857 @cindex bus lock prefixes, i386
858 @cindex inhibiting interrupts, i386
859 @item
860 The bus lock prefix @samp{lock} inhibits interrupts during execution of
861 the instruction it precedes. (This is only valid with certain
862 instructions; see a 80386 manual for details).
863
864 @cindex coprocessor wait, i386
865 @item
866 The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
867 complete the current instruction. This should never be needed for the
868 80386/80387 combination.
869
870 @cindex repeat prefixes, i386
871 @item
872 The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
873 to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
874 times if the current address size is 16-bits).
875 @cindex REX prefixes, i386
876 @item
877 The @samp{rex} family of prefixes is used by x86-64 to encode
878 extensions to i386 instruction set. The @samp{rex} prefix has four
879 bits --- an operand size overwrite (@code{64}) used to change operand size
880 from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
881 register set.
882
883 You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
884 instruction emits @samp{rex} prefix with all the bits set. By omitting
885 the @code{64}, @code{x}, @code{y} or @code{z} you may write other
886 prefixes as well. Normally, there is no need to write the prefixes
887 explicitly, since gas will automatically generate them based on the
888 instruction operands.
889 @end itemize
890
891 @node i386-Memory
892 @section Memory References
893
894 @cindex i386 memory references
895 @cindex memory references, i386
896 @cindex x86-64 memory references
897 @cindex memory references, x86-64
898 An Intel syntax indirect memory reference of the form
899
900 @smallexample
901 @var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
902 @end smallexample
903
904 @noindent
905 is translated into the AT&T syntax
906
907 @smallexample
908 @var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
909 @end smallexample
910
911 @noindent
912 where @var{base} and @var{index} are the optional 32-bit base and
913 index registers, @var{disp} is the optional displacement, and
914 @var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
915 to calculate the address of the operand. If no @var{scale} is
916 specified, @var{scale} is taken to be 1. @var{section} specifies the
917 optional section register for the memory operand, and may override the
918 default section register (see a 80386 manual for section register
919 defaults). Note that section overrides in AT&T syntax @emph{must}
920 be preceded by a @samp{%}. If you specify a section override which
921 coincides with the default section register, @code{@value{AS}} does @emph{not}
922 output any section register override prefixes to assemble the given
923 instruction. Thus, section overrides can be specified to emphasize which
924 section register is used for a given memory operand.
925
926 Here are some examples of Intel and AT&T style memory references:
927
928 @table @asis
929 @item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
930 @var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
931 missing, and the default section is used (@samp{%ss} for addressing with
932 @samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
933
934 @item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
935 @var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
936 @samp{foo}. All other fields are missing. The section register here
937 defaults to @samp{%ds}.
938
939 @item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
940 This uses the value pointed to by @samp{foo} as a memory operand.
941 Note that @var{base} and @var{index} are both missing, but there is only
942 @emph{one} @samp{,}. This is a syntactic exception.
943
944 @item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
945 This selects the contents of the variable @samp{foo} with section
946 register @var{section} being @samp{%gs}.
947 @end table
948
949 Absolute (as opposed to PC relative) call and jump operands must be
950 prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
951 always chooses PC relative addressing for jump/call labels.
952
953 Any instruction that has a memory operand, but no register operand,
954 @emph{must} specify its size (byte, word, long, or quadruple) with an
955 instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
956 respectively).
957
958 The x86-64 architecture adds an RIP (instruction pointer relative)
959 addressing. This addressing mode is specified by using @samp{rip} as a
960 base register. Only constant offsets are valid. For example:
961
962 @table @asis
963 @item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
964 Points to the address 1234 bytes past the end of the current
965 instruction.
966
967 @item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
968 Points to the @code{symbol} in RIP relative way, this is shorter than
969 the default absolute addressing.
970 @end table
971
972 Other addressing modes remain unchanged in x86-64 architecture, except
973 registers used are 64-bit instead of 32-bit.
974
975 @node i386-Jumps
976 @section Handling of Jump Instructions
977
978 @cindex jump optimization, i386
979 @cindex i386 jump optimization
980 @cindex jump optimization, x86-64
981 @cindex x86-64 jump optimization
982 Jump instructions are always optimized to use the smallest possible
983 displacements. This is accomplished by using byte (8-bit) displacement
984 jumps whenever the target is sufficiently close. If a byte displacement
985 is insufficient a long displacement is used. We do not support
986 word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
987 instruction with the @samp{data16} instruction prefix), since the 80386
988 insists upon masking @samp{%eip} to 16 bits after the word displacement
989 is added. (See also @pxref{i386-Arch})
990
991 Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
992 @samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
993 displacements, so that if you use these instructions (@code{@value{GCC}} does
994 not use them) you may get an error message (and incorrect code). The AT&T
995 80386 assembler tries to get around this problem by expanding @samp{jcxz foo}
996 to
997
998 @smallexample
999 jcxz cx_zero
1000 jmp cx_nonzero
1001 cx_zero: jmp foo
1002 cx_nonzero:
1003 @end smallexample
1004
1005 @node i386-Float
1006 @section Floating Point
1007
1008 @cindex i386 floating point
1009 @cindex floating point, i386
1010 @cindex x86-64 floating point
1011 @cindex floating point, x86-64
1012 All 80387 floating point types except packed BCD are supported.
1013 (BCD support may be added without much difficulty). These data
1014 types are 16-, 32-, and 64- bit integers, and single (32-bit),
1015 double (64-bit), and extended (80-bit) precision floating point.
1016 Each supported type has an instruction mnemonic suffix and a constructor
1017 associated with it. Instruction mnemonic suffixes specify the operand's
1018 data type. Constructors build these data types into memory.
1019
1020 @cindex @code{float} directive, i386
1021 @cindex @code{single} directive, i386
1022 @cindex @code{double} directive, i386
1023 @cindex @code{tfloat} directive, i386
1024 @cindex @code{float} directive, x86-64
1025 @cindex @code{single} directive, x86-64
1026 @cindex @code{double} directive, x86-64
1027 @cindex @code{tfloat} directive, x86-64
1028 @itemize @bullet
1029 @item
1030 Floating point constructors are @samp{.float} or @samp{.single},
1031 @samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
1032 These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
1033 and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
1034 only supports this format via the @samp{fldt} (load 80-bit real to stack
1035 top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
1036
1037 @cindex @code{word} directive, i386
1038 @cindex @code{long} directive, i386
1039 @cindex @code{int} directive, i386
1040 @cindex @code{quad} directive, i386
1041 @cindex @code{word} directive, x86-64
1042 @cindex @code{long} directive, x86-64
1043 @cindex @code{int} directive, x86-64
1044 @cindex @code{quad} directive, x86-64
1045 @item
1046 Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
1047 @samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
1048 corresponding instruction mnemonic suffixes are @samp{s} (single),
1049 @samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
1050 the 64-bit @samp{q} format is only present in the @samp{fildq} (load
1051 quad integer to stack top) and @samp{fistpq} (store quad integer and pop
1052 stack) instructions.
1053 @end itemize
1054
1055 Register to register operations should not use instruction mnemonic suffixes.
1056 @samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
1057 wrote @samp{fst %st, %st(1)}, since all register to register operations
1058 use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
1059 which converts @samp{%st} from 80-bit to 64-bit floating point format,
1060 then stores the result in the 4 byte location @samp{mem})
1061
1062 @node i386-SIMD
1063 @section Intel's MMX and AMD's 3DNow! SIMD Operations
1064
1065 @cindex MMX, i386
1066 @cindex 3DNow!, i386
1067 @cindex SIMD, i386
1068 @cindex MMX, x86-64
1069 @cindex 3DNow!, x86-64
1070 @cindex SIMD, x86-64
1071
1072 @code{@value{AS}} supports Intel's MMX instruction set (SIMD
1073 instructions for integer data), available on Intel's Pentium MMX
1074 processors and Pentium II processors, AMD's K6 and K6-2 processors,
1075 Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
1076 instruction set (SIMD instructions for 32-bit floating point data)
1077 available on AMD's K6-2 processor and possibly others in the future.
1078
1079 Currently, @code{@value{AS}} does not support Intel's floating point
1080 SIMD, Katmai (KNI).
1081
1082 The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
1083 @samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
1084 16-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
1085 floating point values. The MMX registers cannot be used at the same time
1086 as the floating point stack.
1087
1088 See Intel and AMD documentation, keeping in mind that the operand order in
1089 instructions is reversed from the Intel syntax.
1090
1091 @node i386-LWP
1092 @section AMD's Lightweight Profiling Instructions
1093
1094 @cindex LWP, i386
1095 @cindex LWP, x86-64
1096
1097 @code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
1098 instruction set, available on AMD's Family 15h (Orochi) processors.
1099
1100 LWP enables applications to collect and manage performance data, and
1101 react to performance events. The collection of performance data
1102 requires no context switches. LWP runs in the context of a thread and
1103 so several counters can be used independently across multiple threads.
1104 LWP can be used in both 64-bit and legacy 32-bit modes.
1105
1106 For detailed information on the LWP instruction set, see the
1107 @cite{AMD Lightweight Profiling Specification} available at
1108 @uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
1109
1110 @node i386-BMI
1111 @section Bit Manipulation Instructions
1112
1113 @cindex BMI, i386
1114 @cindex BMI, x86-64
1115
1116 @code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1117
1118 BMI instructions provide several instructions implementing individual
1119 bit manipulation operations such as isolation, masking, setting, or
1120 resetting.
1121
1122 @c Need to add a specification citation here when available.
1123
1124 @node i386-TBM
1125 @section AMD's Trailing Bit Manipulation Instructions
1126
1127 @cindex TBM, i386
1128 @cindex TBM, x86-64
1129
1130 @code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1131 instruction set, available on AMD's BDVER2 processors (Trinity and
1132 Viperfish).
1133
1134 TBM instructions provide instructions implementing individual bit
1135 manipulation operations such as isolating, masking, setting, resetting,
1136 complementing, and operations on trailing zeros and ones.
1137
1138 @c Need to add a specification citation here when available.
1139
1140 @node i386-16bit
1141 @section Writing 16-bit Code
1142
1143 @cindex i386 16-bit code
1144 @cindex 16-bit code, i386
1145 @cindex real-mode code, i386
1146 @cindex @code{code16gcc} directive, i386
1147 @cindex @code{code16} directive, i386
1148 @cindex @code{code32} directive, i386
1149 @cindex @code{code64} directive, i386
1150 @cindex @code{code64} directive, x86-64
1151 While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1152 or 64-bit x86-64 code depending on the default configuration,
1153 it also supports writing code to run in real mode or in 16-bit protected
1154 mode code segments. To do this, put a @samp{.code16} or
1155 @samp{.code16gcc} directive before the assembly language instructions to
1156 be run in 16-bit mode. You can switch @code{@value{AS}} to writing
1157 32-bit code with the @samp{.code32} directive or 64-bit code with the
1158 @samp{.code64} directive.
1159
1160 @samp{.code16gcc} provides experimental support for generating 16-bit
1161 code from gcc, and differs from @samp{.code16} in that @samp{call},
1162 @samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1163 @samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1164 default to 32-bit size. This is so that the stack pointer is
1165 manipulated in the same way over function calls, allowing access to
1166 function parameters at the same stack offsets as in 32-bit mode.
1167 @samp{.code16gcc} also automatically adds address size prefixes where
1168 necessary to use the 32-bit addressing modes that gcc generates.
1169
1170 The code which @code{@value{AS}} generates in 16-bit mode will not
1171 necessarily run on a 16-bit pre-80386 processor. To write code that
1172 runs on such a processor, you must refrain from using @emph{any} 32-bit
1173 constructs which require @code{@value{AS}} to output address or operand
1174 size prefixes.
1175
1176 Note that writing 16-bit code instructions by explicitly specifying a
1177 prefix or an instruction mnemonic suffix within a 32-bit code section
1178 generates different machine instructions than those generated for a
1179 16-bit code segment. In a 32-bit code section, the following code
1180 generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1181 value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1182
1183 @smallexample
1184 pushw $4
1185 @end smallexample
1186
1187 The same code in a 16-bit code section would generate the machine
1188 opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
1189 is correct since the processor default operand size is assumed to be 16
1190 bits in a 16-bit code section.
1191
1192 @node i386-Arch
1193 @section Specifying CPU Architecture
1194
1195 @cindex arch directive, i386
1196 @cindex i386 arch directive
1197 @cindex arch directive, x86-64
1198 @cindex x86-64 arch directive
1199
1200 @code{@value{AS}} may be told to assemble for a particular CPU
1201 (sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
1202 directive enables a warning when gas detects an instruction that is not
1203 supported on the CPU specified. The choices for @var{cpu_type} are:
1204
1205 @multitable @columnfractions .20 .20 .20 .20
1206 @item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1207 @item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
1208 @item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
1209 @item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
1210 @item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @samp{iamcu}
1211 @item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
1212 @item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
1213 @item @samp{bdver4} @tab @samp{znver1} @tab @samp{btver1} @tab @samp{btver2}
1214 @item @samp{generic32} @tab @samp{generic64}
1215 @item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
1216 @item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
1217 @item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1218 @item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1219 @item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
1220 @item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
1221 @item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
1222 @item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1223 @item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1224 @item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1225 @item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
1226 @item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
1227 @item @samp{.avx512vbmi} @tab @samp{.avx512_4fmaps} @tab @samp{.avx512_4vnniw}
1228 @item @samp{.avx512_vpopcntdq} @tab @samp{.avx512_vbmi2} @tab @samp{.avx512_vnni}
1229 @item @samp{.clwb} @tab @samp{.rdpid} @tab @samp{.ptwrite} @tab @item @samp{.cet}
1230 @item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
1231 @item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
1232 @item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
1233 @item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx} @tab @samp{.gfni}
1234 @item @samp{.vaes} @tab @samp{.vpclmulqdq}
1235 @end multitable
1236
1237 Apart from the warning, there are only two other effects on
1238 @code{@value{AS}} operation; Firstly, if you specify a CPU other than
1239 @samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1240 will automatically use a two byte opcode sequence. The larger three
1241 byte opcode sequence is used on the 486 (and when no architecture is
1242 specified) because it executes faster on the 486. Note that you can
1243 explicitly request the two byte opcode by writing @samp{sarl %eax}.
1244 Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1245 @emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1246 conditional jumps will be promoted when necessary to a two instruction
1247 sequence consisting of a conditional jump of the opposite sense around
1248 an unconditional jump to the target.
1249
1250 Following the CPU architecture (but not a sub-architecture, which are those
1251 starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1252 control automatic promotion of conditional jumps. @samp{jumps} is the
1253 default, and enables jump promotion; All external jumps will be of the long
1254 variety, and file-local jumps will be promoted as necessary.
1255 (@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1256 byte offset jumps, and warns about file-local conditional jumps that
1257 @code{@value{AS}} promotes.
1258 Unconditional jumps are treated as for @samp{jumps}.
1259
1260 For example
1261
1262 @smallexample
1263 .arch i8086,nojumps
1264 @end smallexample
1265
1266 @node i386-Bugs
1267 @section AT&T Syntax bugs
1268
1269 The UnixWare assembler, and probably other AT&T derived ix86 Unix
1270 assemblers, generate floating point instructions with reversed source
1271 and destination registers in certain cases. Unfortunately, gcc and
1272 possibly many other programs use this reversed syntax, so we're stuck
1273 with it.
1274
1275 For example
1276
1277 @smallexample
1278 fsub %st,%st(3)
1279 @end smallexample
1280 @noindent
1281 results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1282 than the expected @samp{%st(3) - %st}. This happens with all the
1283 non-commutative arithmetic floating point operations with two register
1284 operands where the source register is @samp{%st} and the destination
1285 register is @samp{%st(i)}.
1286
1287 @node i386-Notes
1288 @section Notes
1289
1290 @cindex i386 @code{mul}, @code{imul} instructions
1291 @cindex @code{mul} instruction, i386
1292 @cindex @code{imul} instruction, i386
1293 @cindex @code{mul} instruction, x86-64
1294 @cindex @code{imul} instruction, x86-64
1295 There is some trickery concerning the @samp{mul} and @samp{imul}
1296 instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
1297 multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1298 for @samp{imul}) can be output only in the one operand form. Thus,
1299 @samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1300 the expanding multiply would clobber the @samp{%edx} register, and this
1301 would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
1302 64-bit product in @samp{%edx:%eax}.
1303
1304 We have added a two operand form of @samp{imul} when the first operand
1305 is an immediate mode expression and the second operand is a register.
1306 This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1307 example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1308 $69, %eax, %eax}.
1309
This page took 0.060323 seconds and 3 git commands to generate.