Add -mrelax-relocations= to x86 assembler
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
1 @c Copyright (C) 1991-2016 Free Software Foundation, Inc.
2 @c This is part of the GAS manual.
3 @c For copying conditions, see the file as.texinfo.
4 @c man end
5
6 @ifset GENERIC
7 @page
8 @node i386-Dependent
9 @chapter 80386 Dependent Features
10 @end ifset
11 @ifclear GENERIC
12 @node Machine Dependencies
13 @chapter 80386 Dependent Features
14 @end ifclear
15
16 @cindex i386 support
17 @cindex i80386 support
18 @cindex x86-64 support
19
20 The i386 version @code{@value{AS}} supports both the original Intel 386
21 architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22 extending the Intel architecture to 64-bits.
23
24 @menu
25 * i386-Options:: Options
26 * i386-Directives:: X86 specific directives
27 * i386-Syntax:: Syntactical considerations
28 * i386-Mnemonics:: Instruction Naming
29 * i386-Regs:: Register Naming
30 * i386-Prefixes:: Instruction Prefixes
31 * i386-Memory:: Memory References
32 * i386-Jumps:: Handling of Jump Instructions
33 * i386-Float:: Floating Point
34 * i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
35 * i386-LWP:: AMD's Lightweight Profiling Instructions
36 * i386-BMI:: Bit Manipulation Instruction
37 * i386-TBM:: AMD's Trailing Bit Manipulation Instructions
38 * i386-16bit:: Writing 16-bit Code
39 * i386-Arch:: Specifying an x86 CPU architecture
40 * i386-Bugs:: AT&T Syntax bugs
41 * i386-Notes:: Notes
42 @end menu
43
44 @node i386-Options
45 @section Options
46
47 @cindex options for i386
48 @cindex options for x86-64
49 @cindex i386 options
50 @cindex x86-64 options
51
52 The i386 version of @code{@value{AS}} has a few machine
53 dependent options:
54
55 @c man begin OPTIONS
56 @table @gcctabopt
57 @cindex @samp{--32} option, i386
58 @cindex @samp{--32} option, x86-64
59 @cindex @samp{--x32} option, i386
60 @cindex @samp{--x32} option, x86-64
61 @cindex @samp{--64} option, i386
62 @cindex @samp{--64} option, x86-64
63 @item --32 | --x32 | --64
64 Select the word size, either 32 bits or 64 bits. @samp{--32}
65 implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
66 imply AMD x86-64 architecture with 32-bit or 64-bit word-size
67 respectively.
68
69 These options are only available with the ELF object file format, and
70 require that the necessary BFD support has been included (on a 32-bit
71 platform you have to add --enable-64-bit-bfd to configure enable 64-bit
72 usage and use x86-64 as target platform).
73
74 @item -n
75 By default, x86 GAS replaces multiple nop instructions used for
76 alignment within code sections with multi-byte nop instructions such
77 as leal 0(%esi,1),%esi. This switch disables the optimization.
78
79 @cindex @samp{--divide} option, i386
80 @item --divide
81 On SVR4-derived platforms, the character @samp{/} is treated as a comment
82 character, which means that it cannot be used in expressions. The
83 @samp{--divide} option turns @samp{/} into a normal character. This does
84 not disable @samp{/} at the beginning of a line starting a comment, or
85 affect using @samp{#} for starting a comment.
86
87 @cindex @samp{-march=} option, i386
88 @cindex @samp{-march=} option, x86-64
89 @item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
90 This option specifies the target processor. The assembler will
91 issue an error message if an attempt is made to assemble an instruction
92 which will not execute on the target processor. The following
93 processor names are recognized:
94 @code{i8086},
95 @code{i186},
96 @code{i286},
97 @code{i386},
98 @code{i486},
99 @code{i586},
100 @code{i686},
101 @code{pentium},
102 @code{pentiumpro},
103 @code{pentiumii},
104 @code{pentiumiii},
105 @code{pentium4},
106 @code{prescott},
107 @code{nocona},
108 @code{core},
109 @code{core2},
110 @code{corei7},
111 @code{l1om},
112 @code{k1om},
113 @code{iamcu},
114 @code{k6},
115 @code{k6_2},
116 @code{athlon},
117 @code{opteron},
118 @code{k8},
119 @code{amdfam10},
120 @code{bdver1},
121 @code{bdver2},
122 @code{bdver3},
123 @code{bdver4},
124 @code{znver1},
125 @code{btver1},
126 @code{btver2},
127 @code{generic32} and
128 @code{generic64}.
129
130 In addition to the basic instruction set, the assembler can be told to
131 accept various extension mnemonics. For example,
132 @code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
133 @var{vmx}. The following extensions are currently supported:
134 @code{8087},
135 @code{287},
136 @code{387},
137 @code{no87},
138 @code{mmx},
139 @code{nommx},
140 @code{sse},
141 @code{sse2},
142 @code{sse3},
143 @code{ssse3},
144 @code{sse4.1},
145 @code{sse4.2},
146 @code{sse4},
147 @code{nosse},
148 @code{avx},
149 @code{avx2},
150 @code{adx},
151 @code{rdseed},
152 @code{prfchw},
153 @code{smap},
154 @code{mpx},
155 @code{sha},
156 @code{prefetchwt1},
157 @code{clflushopt},
158 @code{se1},
159 @code{clwb},
160 @code{pcommit},
161 @code{avx512f},
162 @code{avx512cd},
163 @code{avx512er},
164 @code{avx512pf},
165 @code{avx512vl},
166 @code{avx512bw},
167 @code{avx512dq},
168 @code{avx512ifma},
169 @code{avx512vbmi},
170 @code{noavx},
171 @code{vmx},
172 @code{vmfunc},
173 @code{smx},
174 @code{xsave},
175 @code{xsaveopt},
176 @code{xsavec},
177 @code{xsaves},
178 @code{aes},
179 @code{pclmul},
180 @code{fsgsbase},
181 @code{rdrnd},
182 @code{f16c},
183 @code{bmi2},
184 @code{fma},
185 @code{movbe},
186 @code{ept},
187 @code{lzcnt},
188 @code{hle},
189 @code{rtm},
190 @code{invpcid},
191 @code{clflush},
192 @code{mwaitx},
193 @code{clzero},
194 @code{lwp},
195 @code{fma4},
196 @code{xop},
197 @code{cx16},
198 @code{syscall},
199 @code{rdtscp},
200 @code{3dnow},
201 @code{3dnowa},
202 @code{sse4a},
203 @code{sse5},
204 @code{svme},
205 @code{abm} and
206 @code{padlock}.
207 Note that rather than extending a basic instruction set, the extension
208 mnemonics starting with @code{no} revoke the respective functionality.
209
210 When the @code{.arch} directive is used with @option{-march}, the
211 @code{.arch} directive will take precedent.
212
213 @cindex @samp{-mtune=} option, i386
214 @cindex @samp{-mtune=} option, x86-64
215 @item -mtune=@var{CPU}
216 This option specifies a processor to optimize for. When used in
217 conjunction with the @option{-march} option, only instructions
218 of the processor specified by the @option{-march} option will be
219 generated.
220
221 Valid @var{CPU} values are identical to the processor list of
222 @option{-march=@var{CPU}}.
223
224 @cindex @samp{-msse2avx} option, i386
225 @cindex @samp{-msse2avx} option, x86-64
226 @item -msse2avx
227 This option specifies that the assembler should encode SSE instructions
228 with VEX prefix.
229
230 @cindex @samp{-msse-check=} option, i386
231 @cindex @samp{-msse-check=} option, x86-64
232 @item -msse-check=@var{none}
233 @itemx -msse-check=@var{warning}
234 @itemx -msse-check=@var{error}
235 These options control if the assembler should check SSE instructions.
236 @option{-msse-check=@var{none}} will make the assembler not to check SSE
237 instructions, which is the default. @option{-msse-check=@var{warning}}
238 will make the assembler issue a warning for any SSE instruction.
239 @option{-msse-check=@var{error}} will make the assembler issue an error
240 for any SSE instruction.
241
242 @cindex @samp{-mavxscalar=} option, i386
243 @cindex @samp{-mavxscalar=} option, x86-64
244 @item -mavxscalar=@var{128}
245 @itemx -mavxscalar=@var{256}
246 These options control how the assembler should encode scalar AVX
247 instructions. @option{-mavxscalar=@var{128}} will encode scalar
248 AVX instructions with 128bit vector length, which is the default.
249 @option{-mavxscalar=@var{256}} will encode scalar AVX instructions
250 with 256bit vector length.
251
252 @cindex @samp{-mevexlig=} option, i386
253 @cindex @samp{-mevexlig=} option, x86-64
254 @item -mevexlig=@var{128}
255 @itemx -mevexlig=@var{256}
256 @itemx -mevexlig=@var{512}
257 These options control how the assembler should encode length-ignored
258 (LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
259 EVEX instructions with 128bit vector length, which is the default.
260 @option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
261 encode LIG EVEX instructions with 256bit and 512bit vector length,
262 respectively.
263
264 @cindex @samp{-mevexwig=} option, i386
265 @cindex @samp{-mevexwig=} option, x86-64
266 @item -mevexwig=@var{0}
267 @itemx -mevexwig=@var{1}
268 These options control how the assembler should encode w-ignored (WIG)
269 EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
270 EVEX instructions with evex.w = 0, which is the default.
271 @option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
272 evex.w = 1.
273
274 @cindex @samp{-mmnemonic=} option, i386
275 @cindex @samp{-mmnemonic=} option, x86-64
276 @item -mmnemonic=@var{att}
277 @itemx -mmnemonic=@var{intel}
278 This option specifies instruction mnemonic for matching instructions.
279 The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
280 take precedent.
281
282 @cindex @samp{-msyntax=} option, i386
283 @cindex @samp{-msyntax=} option, x86-64
284 @item -msyntax=@var{att}
285 @itemx -msyntax=@var{intel}
286 This option specifies instruction syntax when processing instructions.
287 The @code{.att_syntax} and @code{.intel_syntax} directives will
288 take precedent.
289
290 @cindex @samp{-mnaked-reg} option, i386
291 @cindex @samp{-mnaked-reg} option, x86-64
292 @item -mnaked-reg
293 This opetion specifies that registers don't require a @samp{%} prefix.
294 The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
295
296 @cindex @samp{-madd-bnd-prefix} option, i386
297 @cindex @samp{-madd-bnd-prefix} option, x86-64
298 @item -madd-bnd-prefix
299 This option forces the assembler to add BND prefix to all branches, even
300 if such prefix was not explicitly specified in the source code.
301
302 @cindex @samp{-mshared} option, i386
303 @cindex @samp{-mshared} option, x86-64
304 @item -mno-shared
305 On ELF target, the assembler normally optimizes out non-PLT relocations
306 against defined non-weak global branch targets with default visibility.
307 The @samp{-mshared} option tells the assembler to generate code which
308 may go into a shared library where all non-weak global branch targets
309 with default visibility can be preempted. The resulting code is
310 slightly bigger. This option only affects the handling of branch
311 instructions.
312
313 @cindex @samp{-mbig-obj} option, x86-64
314 @item -mbig-obj
315 On x86-64 PE/COFF target this option forces the use of big object file
316 format, which allows more than 32768 sections.
317
318 @cindex @samp{-momit-lock-prefix=} option, i386
319 @cindex @samp{-momit-lock-prefix=} option, x86-64
320 @item -momit-lock-prefix=@var{no}
321 @itemx -momit-lock-prefix=@var{yes}
322 These options control how the assembler should encode lock prefix.
323 This option is intended as a workaround for processors, that fail on
324 lock prefix. This option can only be safely used with single-core,
325 single-thread computers
326 @option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
327 @option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
328 which is the default.
329
330 @cindex @samp{-mfence-as-lock-add=} option, i386
331 @cindex @samp{-mfence-as-lock-add=} option, x86-64
332 @item -mfence-as-lock-add=@var{no}
333 @itemx -mfence-as-lock-add=@var{yes}
334 These options control how the assembler should encode lfence, mfence and
335 sfence.
336 @option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and
337 sfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and
338 @samp{lock addl $0x0, (%esp)} in 32-bit mode.
339 @option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and
340 sfence as usual, which is the default.
341
342 @cindex @samp{-mrelax-relocations=} option, i386
343 @cindex @samp{-mrelax-relocations=} option, x86-64
344 @item -mrelax-relocations=@var{no}
345 @itemx -mrelax-relocations=@var{yes}
346 These options control whether the assembler should generate relax
347 relocations, R_386_GOT32X, in 32-bit mode, or R_X86_64_GOTPCRELX and
348 R_X86_64_REX_GOTPCRELX, in 64-bit mode.
349 @option{-mrelax-relocations=@var{yes}} will generate relax relocations.
350 @option{-mrelax-relocations=@var{no}} will not generate relax
351 relocations. The default can be controlled by a configure option
352 @option{--enable-x86-relax-relocations}.
353
354 @cindex @samp{-mevexrcig=} option, i386
355 @cindex @samp{-mevexrcig=} option, x86-64
356 @item -mevexrcig=@var{rne}
357 @itemx -mevexrcig=@var{rd}
358 @itemx -mevexrcig=@var{ru}
359 @itemx -mevexrcig=@var{rz}
360 These options control how the assembler should encode SAE-only
361 EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
362 of EVEX instruction with 00, which is the default.
363 @option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
364 and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
365 with 01, 10 and 11 RC bits, respectively.
366
367 @cindex @samp{-mamd64} option, x86-64
368 @cindex @samp{-mintel64} option, x86-64
369 @item -mamd64
370 @itemx -mintel64
371 This option specifies that the assembler should accept only AMD64 or
372 Intel64 ISA in 64-bit mode. The default is to accept both.
373
374 @end table
375 @c man end
376
377 @node i386-Directives
378 @section x86 specific Directives
379
380 @cindex machine directives, x86
381 @cindex x86 machine directives
382 @table @code
383
384 @cindex @code{lcomm} directive, COFF
385 @item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
386 Reserve @var{length} (an absolute expression) bytes for a local common
387 denoted by @var{symbol}. The section and value of @var{symbol} are
388 those of the new local common. The addresses are allocated in the bss
389 section, so that at run-time the bytes start off zeroed. Since
390 @var{symbol} is not declared global, it is normally not visible to
391 @code{@value{LD}}. The optional third parameter, @var{alignment},
392 specifies the desired alignment of the symbol in the bss section.
393
394 This directive is only available for COFF based x86 targets.
395
396 @c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
397 @c .largecomm
398
399 @end table
400
401 @node i386-Syntax
402 @section i386 Syntactical Considerations
403 @menu
404 * i386-Variations:: AT&T Syntax versus Intel Syntax
405 * i386-Chars:: Special Characters
406 @end menu
407
408 @node i386-Variations
409 @subsection AT&T Syntax versus Intel Syntax
410
411 @cindex i386 intel_syntax pseudo op
412 @cindex intel_syntax pseudo op, i386
413 @cindex i386 att_syntax pseudo op
414 @cindex att_syntax pseudo op, i386
415 @cindex i386 syntax compatibility
416 @cindex syntax compatibility, i386
417 @cindex x86-64 intel_syntax pseudo op
418 @cindex intel_syntax pseudo op, x86-64
419 @cindex x86-64 att_syntax pseudo op
420 @cindex att_syntax pseudo op, x86-64
421 @cindex x86-64 syntax compatibility
422 @cindex syntax compatibility, x86-64
423
424 @code{@value{AS}} now supports assembly using Intel assembler syntax.
425 @code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
426 back to the usual AT&T mode for compatibility with the output of
427 @code{@value{GCC}}. Either of these directives may have an optional
428 argument, @code{prefix}, or @code{noprefix} specifying whether registers
429 require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
430 different from Intel syntax. We mention these differences because
431 almost all 80386 documents use Intel syntax. Notable differences
432 between the two syntaxes are:
433
434 @cindex immediate operands, i386
435 @cindex i386 immediate operands
436 @cindex register operands, i386
437 @cindex i386 register operands
438 @cindex jump/call operands, i386
439 @cindex i386 jump/call operands
440 @cindex operand delimiters, i386
441
442 @cindex immediate operands, x86-64
443 @cindex x86-64 immediate operands
444 @cindex register operands, x86-64
445 @cindex x86-64 register operands
446 @cindex jump/call operands, x86-64
447 @cindex x86-64 jump/call operands
448 @cindex operand delimiters, x86-64
449 @itemize @bullet
450 @item
451 AT&T immediate operands are preceded by @samp{$}; Intel immediate
452 operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
453 AT&T register operands are preceded by @samp{%}; Intel register operands
454 are undelimited. AT&T absolute (as opposed to PC relative) jump/call
455 operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
456
457 @cindex i386 source, destination operands
458 @cindex source, destination operands; i386
459 @cindex x86-64 source, destination operands
460 @cindex source, destination operands; x86-64
461 @item
462 AT&T and Intel syntax use the opposite order for source and destination
463 operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
464 @samp{source, dest} convention is maintained for compatibility with
465 previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
466 instructions with 2 immediate operands, such as the @samp{enter}
467 instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
468
469 @cindex mnemonic suffixes, i386
470 @cindex sizes operands, i386
471 @cindex i386 size suffixes
472 @cindex mnemonic suffixes, x86-64
473 @cindex sizes operands, x86-64
474 @cindex x86-64 size suffixes
475 @item
476 In AT&T syntax the size of memory operands is determined from the last
477 character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
478 @samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
479 (32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
480 this by prefixing memory operands (@emph{not} the instruction mnemonics) with
481 @samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
482 Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
483 syntax.
484
485 In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
486 instruction with the 64-bit displacement or immediate operand.
487
488 @cindex return instructions, i386
489 @cindex i386 jump, call, return
490 @cindex return instructions, x86-64
491 @cindex x86-64 jump, call, return
492 @item
493 Immediate form long jumps and calls are
494 @samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
495 Intel syntax is
496 @samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
497 instruction
498 is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
499 @samp{ret far @var{stack-adjust}}.
500
501 @cindex sections, i386
502 @cindex i386 sections
503 @cindex sections, x86-64
504 @cindex x86-64 sections
505 @item
506 The AT&T assembler does not provide support for multiple section
507 programs. Unix style systems expect all programs to be single sections.
508 @end itemize
509
510 @node i386-Chars
511 @subsection Special Characters
512
513 @cindex line comment character, i386
514 @cindex i386 line comment character
515 The presence of a @samp{#} appearing anywhere on a line indicates the
516 start of a comment that extends to the end of that line.
517
518 If a @samp{#} appears as the first character of a line then the whole
519 line is treated as a comment, but in this case the line can also be a
520 logical line number directive (@pxref{Comments}) or a preprocessor
521 control command (@pxref{Preprocessing}).
522
523 If the @option{--divide} command line option has not been specified
524 then the @samp{/} character appearing anywhere on a line also
525 introduces a line comment.
526
527 @cindex line separator, i386
528 @cindex statement separator, i386
529 @cindex i386 line separator
530 The @samp{;} character can be used to separate statements on the same
531 line.
532
533 @node i386-Mnemonics
534 @section i386-Mnemonics
535 @subsection Instruction Naming
536
537 @cindex i386 instruction naming
538 @cindex instruction naming, i386
539 @cindex x86-64 instruction naming
540 @cindex instruction naming, x86-64
541
542 Instruction mnemonics are suffixed with one character modifiers which
543 specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
544 and @samp{q} specify byte, word, long and quadruple word operands. If
545 no suffix is specified by an instruction then @code{@value{AS}} tries to
546 fill in the missing suffix based on the destination register operand
547 (the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
548 to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
549 @samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
550 assembler which assumes that a missing mnemonic suffix implies long
551 operand size. (This incompatibility does not affect compiler output
552 since compilers always explicitly specify the mnemonic suffix.)
553
554 Almost all instructions have the same names in AT&T and Intel format.
555 There are a few exceptions. The sign extend and zero extend
556 instructions need two sizes to specify them. They need a size to
557 sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
558 is accomplished by using two instruction mnemonic suffixes in AT&T
559 syntax. Base names for sign extend and zero extend are
560 @samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
561 and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
562 are tacked on to this base name, the @emph{from} suffix before the
563 @emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
564 ``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
565 thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
566 @samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
567 @samp{wq} (from word to quadruple word), and @samp{lq} (from long to
568 quadruple word).
569
570 @cindex encoding options, i386
571 @cindex encoding options, x86-64
572
573 Different encoding options can be specified via optional mnemonic
574 suffix. @samp{.s} suffix swaps 2 register operands in encoding when
575 moving from one register to another. @samp{.d8} or @samp{.d32} suffix
576 prefers 8bit or 32bit displacement in encoding.
577
578 @cindex conversion instructions, i386
579 @cindex i386 conversion instructions
580 @cindex conversion instructions, x86-64
581 @cindex x86-64 conversion instructions
582 The Intel-syntax conversion instructions
583
584 @itemize @bullet
585 @item
586 @samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
587
588 @item
589 @samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
590
591 @item
592 @samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
593
594 @item
595 @samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
596
597 @item
598 @samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
599 (x86-64 only),
600
601 @item
602 @samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
603 @samp{%rdx:%rax} (x86-64 only),
604 @end itemize
605
606 @noindent
607 are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
608 @samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
609 instructions.
610
611 @cindex jump instructions, i386
612 @cindex call instructions, i386
613 @cindex jump instructions, x86-64
614 @cindex call instructions, x86-64
615 Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
616 AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
617 convention.
618
619 @subsection AT&T Mnemonic versus Intel Mnemonic
620
621 @cindex i386 mnemonic compatibility
622 @cindex mnemonic compatibility, i386
623
624 @code{@value{AS}} supports assembly using Intel mnemonic.
625 @code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
626 @code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
627 syntax for compatibility with the output of @code{@value{GCC}}.
628 Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
629 @samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
630 @samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
631 assembler with different mnemonics from those in Intel IA32 specification.
632 @code{@value{GCC}} generates those instructions with AT&T mnemonic.
633
634 @node i386-Regs
635 @section Register Naming
636
637 @cindex i386 registers
638 @cindex registers, i386
639 @cindex x86-64 registers
640 @cindex registers, x86-64
641 Register operands are always prefixed with @samp{%}. The 80386 registers
642 consist of
643
644 @itemize @bullet
645 @item
646 the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
647 @samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
648 frame pointer), and @samp{%esp} (the stack pointer).
649
650 @item
651 the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
652 @samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
653
654 @item
655 the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
656 @samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
657 are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
658 @samp{%cx}, and @samp{%dx})
659
660 @item
661 the 6 section registers @samp{%cs} (code section), @samp{%ds}
662 (data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
663 and @samp{%gs}.
664
665 @item
666 the 3 processor control registers @samp{%cr0}, @samp{%cr2}, and
667 @samp{%cr3}.
668
669 @item
670 the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
671 @samp{%db3}, @samp{%db6}, and @samp{%db7}.
672
673 @item
674 the 2 test registers @samp{%tr6} and @samp{%tr7}.
675
676 @item
677 the 8 floating point register stack @samp{%st} or equivalently
678 @samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
679 @samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
680 These registers are overloaded by 8 MMX registers @samp{%mm0},
681 @samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
682 @samp{%mm6} and @samp{%mm7}.
683
684 @item
685 the 8 SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
686 @samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
687 @end itemize
688
689 The AMD x86-64 architecture extends the register set by:
690
691 @itemize @bullet
692 @item
693 enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
694 accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
695 @samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
696 pointer)
697
698 @item
699 the 8 extended registers @samp{%r8}--@samp{%r15}.
700
701 @item
702 the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}
703
704 @item
705 the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}
706
707 @item
708 the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}
709
710 @item
711 the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
712
713 @item
714 the 8 debug registers: @samp{%db8}--@samp{%db15}.
715
716 @item
717 the 8 SSE registers: @samp{%xmm8}--@samp{%xmm15}.
718 @end itemize
719
720 @node i386-Prefixes
721 @section Instruction Prefixes
722
723 @cindex i386 instruction prefixes
724 @cindex instruction prefixes, i386
725 @cindex prefixes, i386
726 Instruction prefixes are used to modify the following instruction. They
727 are used to repeat string instructions, to provide section overrides, to
728 perform bus lock operations, and to change operand and address sizes.
729 (Most instructions that normally operate on 32-bit operands will use
730 16-bit operands if the instruction has an ``operand size'' prefix.)
731 Instruction prefixes are best written on the same line as the instruction
732 they act upon. For example, the @samp{scas} (scan string) instruction is
733 repeated with:
734
735 @smallexample
736 repne scas %es:(%edi),%al
737 @end smallexample
738
739 You may also place prefixes on the lines immediately preceding the
740 instruction, but this circumvents checks that @code{@value{AS}} does
741 with prefixes, and will not work with all prefixes.
742
743 Here is a list of instruction prefixes:
744
745 @cindex section override prefixes, i386
746 @itemize @bullet
747 @item
748 Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
749 @samp{fs}, @samp{gs}. These are automatically added by specifying
750 using the @var{section}:@var{memory-operand} form for memory references.
751
752 @cindex size prefixes, i386
753 @item
754 Operand/Address size prefixes @samp{data16} and @samp{addr16}
755 change 32-bit operands/addresses into 16-bit operands/addresses,
756 while @samp{data32} and @samp{addr32} change 16-bit ones (in a
757 @code{.code16} section) into 32-bit operands/addresses. These prefixes
758 @emph{must} appear on the same line of code as the instruction they
759 modify. For example, in a 16-bit @code{.code16} section, you might
760 write:
761
762 @smallexample
763 addr32 jmpl *(%ebx)
764 @end smallexample
765
766 @cindex bus lock prefixes, i386
767 @cindex inhibiting interrupts, i386
768 @item
769 The bus lock prefix @samp{lock} inhibits interrupts during execution of
770 the instruction it precedes. (This is only valid with certain
771 instructions; see a 80386 manual for details).
772
773 @cindex coprocessor wait, i386
774 @item
775 The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
776 complete the current instruction. This should never be needed for the
777 80386/80387 combination.
778
779 @cindex repeat prefixes, i386
780 @item
781 The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
782 to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
783 times if the current address size is 16-bits).
784 @cindex REX prefixes, i386
785 @item
786 The @samp{rex} family of prefixes is used by x86-64 to encode
787 extensions to i386 instruction set. The @samp{rex} prefix has four
788 bits --- an operand size overwrite (@code{64}) used to change operand size
789 from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
790 register set.
791
792 You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
793 instruction emits @samp{rex} prefix with all the bits set. By omitting
794 the @code{64}, @code{x}, @code{y} or @code{z} you may write other
795 prefixes as well. Normally, there is no need to write the prefixes
796 explicitly, since gas will automatically generate them based on the
797 instruction operands.
798 @end itemize
799
800 @node i386-Memory
801 @section Memory References
802
803 @cindex i386 memory references
804 @cindex memory references, i386
805 @cindex x86-64 memory references
806 @cindex memory references, x86-64
807 An Intel syntax indirect memory reference of the form
808
809 @smallexample
810 @var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
811 @end smallexample
812
813 @noindent
814 is translated into the AT&T syntax
815
816 @smallexample
817 @var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
818 @end smallexample
819
820 @noindent
821 where @var{base} and @var{index} are the optional 32-bit base and
822 index registers, @var{disp} is the optional displacement, and
823 @var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
824 to calculate the address of the operand. If no @var{scale} is
825 specified, @var{scale} is taken to be 1. @var{section} specifies the
826 optional section register for the memory operand, and may override the
827 default section register (see a 80386 manual for section register
828 defaults). Note that section overrides in AT&T syntax @emph{must}
829 be preceded by a @samp{%}. If you specify a section override which
830 coincides with the default section register, @code{@value{AS}} does @emph{not}
831 output any section register override prefixes to assemble the given
832 instruction. Thus, section overrides can be specified to emphasize which
833 section register is used for a given memory operand.
834
835 Here are some examples of Intel and AT&T style memory references:
836
837 @table @asis
838 @item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
839 @var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
840 missing, and the default section is used (@samp{%ss} for addressing with
841 @samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
842
843 @item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
844 @var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
845 @samp{foo}. All other fields are missing. The section register here
846 defaults to @samp{%ds}.
847
848 @item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
849 This uses the value pointed to by @samp{foo} as a memory operand.
850 Note that @var{base} and @var{index} are both missing, but there is only
851 @emph{one} @samp{,}. This is a syntactic exception.
852
853 @item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
854 This selects the contents of the variable @samp{foo} with section
855 register @var{section} being @samp{%gs}.
856 @end table
857
858 Absolute (as opposed to PC relative) call and jump operands must be
859 prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
860 always chooses PC relative addressing for jump/call labels.
861
862 Any instruction that has a memory operand, but no register operand,
863 @emph{must} specify its size (byte, word, long, or quadruple) with an
864 instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
865 respectively).
866
867 The x86-64 architecture adds an RIP (instruction pointer relative)
868 addressing. This addressing mode is specified by using @samp{rip} as a
869 base register. Only constant offsets are valid. For example:
870
871 @table @asis
872 @item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
873 Points to the address 1234 bytes past the end of the current
874 instruction.
875
876 @item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
877 Points to the @code{symbol} in RIP relative way, this is shorter than
878 the default absolute addressing.
879 @end table
880
881 Other addressing modes remain unchanged in x86-64 architecture, except
882 registers used are 64-bit instead of 32-bit.
883
884 @node i386-Jumps
885 @section Handling of Jump Instructions
886
887 @cindex jump optimization, i386
888 @cindex i386 jump optimization
889 @cindex jump optimization, x86-64
890 @cindex x86-64 jump optimization
891 Jump instructions are always optimized to use the smallest possible
892 displacements. This is accomplished by using byte (8-bit) displacement
893 jumps whenever the target is sufficiently close. If a byte displacement
894 is insufficient a long displacement is used. We do not support
895 word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
896 instruction with the @samp{data16} instruction prefix), since the 80386
897 insists upon masking @samp{%eip} to 16 bits after the word displacement
898 is added. (See also @pxref{i386-Arch})
899
900 Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
901 @samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
902 displacements, so that if you use these instructions (@code{@value{GCC}} does
903 not use them) you may get an error message (and incorrect code). The AT&T
904 80386 assembler tries to get around this problem by expanding @samp{jcxz foo}
905 to
906
907 @smallexample
908 jcxz cx_zero
909 jmp cx_nonzero
910 cx_zero: jmp foo
911 cx_nonzero:
912 @end smallexample
913
914 @node i386-Float
915 @section Floating Point
916
917 @cindex i386 floating point
918 @cindex floating point, i386
919 @cindex x86-64 floating point
920 @cindex floating point, x86-64
921 All 80387 floating point types except packed BCD are supported.
922 (BCD support may be added without much difficulty). These data
923 types are 16-, 32-, and 64- bit integers, and single (32-bit),
924 double (64-bit), and extended (80-bit) precision floating point.
925 Each supported type has an instruction mnemonic suffix and a constructor
926 associated with it. Instruction mnemonic suffixes specify the operand's
927 data type. Constructors build these data types into memory.
928
929 @cindex @code{float} directive, i386
930 @cindex @code{single} directive, i386
931 @cindex @code{double} directive, i386
932 @cindex @code{tfloat} directive, i386
933 @cindex @code{float} directive, x86-64
934 @cindex @code{single} directive, x86-64
935 @cindex @code{double} directive, x86-64
936 @cindex @code{tfloat} directive, x86-64
937 @itemize @bullet
938 @item
939 Floating point constructors are @samp{.float} or @samp{.single},
940 @samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
941 These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
942 and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
943 only supports this format via the @samp{fldt} (load 80-bit real to stack
944 top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
945
946 @cindex @code{word} directive, i386
947 @cindex @code{long} directive, i386
948 @cindex @code{int} directive, i386
949 @cindex @code{quad} directive, i386
950 @cindex @code{word} directive, x86-64
951 @cindex @code{long} directive, x86-64
952 @cindex @code{int} directive, x86-64
953 @cindex @code{quad} directive, x86-64
954 @item
955 Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
956 @samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
957 corresponding instruction mnemonic suffixes are @samp{s} (single),
958 @samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
959 the 64-bit @samp{q} format is only present in the @samp{fildq} (load
960 quad integer to stack top) and @samp{fistpq} (store quad integer and pop
961 stack) instructions.
962 @end itemize
963
964 Register to register operations should not use instruction mnemonic suffixes.
965 @samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
966 wrote @samp{fst %st, %st(1)}, since all register to register operations
967 use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
968 which converts @samp{%st} from 80-bit to 64-bit floating point format,
969 then stores the result in the 4 byte location @samp{mem})
970
971 @node i386-SIMD
972 @section Intel's MMX and AMD's 3DNow! SIMD Operations
973
974 @cindex MMX, i386
975 @cindex 3DNow!, i386
976 @cindex SIMD, i386
977 @cindex MMX, x86-64
978 @cindex 3DNow!, x86-64
979 @cindex SIMD, x86-64
980
981 @code{@value{AS}} supports Intel's MMX instruction set (SIMD
982 instructions for integer data), available on Intel's Pentium MMX
983 processors and Pentium II processors, AMD's K6 and K6-2 processors,
984 Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
985 instruction set (SIMD instructions for 32-bit floating point data)
986 available on AMD's K6-2 processor and possibly others in the future.
987
988 Currently, @code{@value{AS}} does not support Intel's floating point
989 SIMD, Katmai (KNI).
990
991 The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
992 @samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
993 16-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
994 floating point values. The MMX registers cannot be used at the same time
995 as the floating point stack.
996
997 See Intel and AMD documentation, keeping in mind that the operand order in
998 instructions is reversed from the Intel syntax.
999
1000 @node i386-LWP
1001 @section AMD's Lightweight Profiling Instructions
1002
1003 @cindex LWP, i386
1004 @cindex LWP, x86-64
1005
1006 @code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
1007 instruction set, available on AMD's Family 15h (Orochi) processors.
1008
1009 LWP enables applications to collect and manage performance data, and
1010 react to performance events. The collection of performance data
1011 requires no context switches. LWP runs in the context of a thread and
1012 so several counters can be used independently across multiple threads.
1013 LWP can be used in both 64-bit and legacy 32-bit modes.
1014
1015 For detailed information on the LWP instruction set, see the
1016 @cite{AMD Lightweight Profiling Specification} available at
1017 @uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
1018
1019 @node i386-BMI
1020 @section Bit Manipulation Instructions
1021
1022 @cindex BMI, i386
1023 @cindex BMI, x86-64
1024
1025 @code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1026
1027 BMI instructions provide several instructions implementing individual
1028 bit manipulation operations such as isolation, masking, setting, or
1029 resetting.
1030
1031 @c Need to add a specification citation here when available.
1032
1033 @node i386-TBM
1034 @section AMD's Trailing Bit Manipulation Instructions
1035
1036 @cindex TBM, i386
1037 @cindex TBM, x86-64
1038
1039 @code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1040 instruction set, available on AMD's BDVER2 processors (Trinity and
1041 Viperfish).
1042
1043 TBM instructions provide instructions implementing individual bit
1044 manipulation operations such as isolating, masking, setting, resetting,
1045 complementing, and operations on trailing zeros and ones.
1046
1047 @c Need to add a specification citation here when available.
1048
1049 @node i386-16bit
1050 @section Writing 16-bit Code
1051
1052 @cindex i386 16-bit code
1053 @cindex 16-bit code, i386
1054 @cindex real-mode code, i386
1055 @cindex @code{code16gcc} directive, i386
1056 @cindex @code{code16} directive, i386
1057 @cindex @code{code32} directive, i386
1058 @cindex @code{code64} directive, i386
1059 @cindex @code{code64} directive, x86-64
1060 While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1061 or 64-bit x86-64 code depending on the default configuration,
1062 it also supports writing code to run in real mode or in 16-bit protected
1063 mode code segments. To do this, put a @samp{.code16} or
1064 @samp{.code16gcc} directive before the assembly language instructions to
1065 be run in 16-bit mode. You can switch @code{@value{AS}} to writing
1066 32-bit code with the @samp{.code32} directive or 64-bit code with the
1067 @samp{.code64} directive.
1068
1069 @samp{.code16gcc} provides experimental support for generating 16-bit
1070 code from gcc, and differs from @samp{.code16} in that @samp{call},
1071 @samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1072 @samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1073 default to 32-bit size. This is so that the stack pointer is
1074 manipulated in the same way over function calls, allowing access to
1075 function parameters at the same stack offsets as in 32-bit mode.
1076 @samp{.code16gcc} also automatically adds address size prefixes where
1077 necessary to use the 32-bit addressing modes that gcc generates.
1078
1079 The code which @code{@value{AS}} generates in 16-bit mode will not
1080 necessarily run on a 16-bit pre-80386 processor. To write code that
1081 runs on such a processor, you must refrain from using @emph{any} 32-bit
1082 constructs which require @code{@value{AS}} to output address or operand
1083 size prefixes.
1084
1085 Note that writing 16-bit code instructions by explicitly specifying a
1086 prefix or an instruction mnemonic suffix within a 32-bit code section
1087 generates different machine instructions than those generated for a
1088 16-bit code segment. In a 32-bit code section, the following code
1089 generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1090 value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1091
1092 @smallexample
1093 pushw $4
1094 @end smallexample
1095
1096 The same code in a 16-bit code section would generate the machine
1097 opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
1098 is correct since the processor default operand size is assumed to be 16
1099 bits in a 16-bit code section.
1100
1101 @node i386-Arch
1102 @section Specifying CPU Architecture
1103
1104 @cindex arch directive, i386
1105 @cindex i386 arch directive
1106 @cindex arch directive, x86-64
1107 @cindex x86-64 arch directive
1108
1109 @code{@value{AS}} may be told to assemble for a particular CPU
1110 (sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
1111 directive enables a warning when gas detects an instruction that is not
1112 supported on the CPU specified. The choices for @var{cpu_type} are:
1113
1114 @multitable @columnfractions .20 .20 .20 .20
1115 @item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1116 @item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
1117 @item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
1118 @item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
1119 @item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @samp{iamcu}
1120 @item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
1121 @item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
1122 @item @samp{bdver4} @tab @samp{znver1} @tab @samp{btver1} @tab @samp{btver2}
1123 @item @samp{generic32} @tab @samp{generic64}
1124 @item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
1125 @item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
1126 @item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1127 @item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1128 @item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
1129 @item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
1130 @item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
1131 @item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1132 @item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1133 @item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1134 @item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
1135 @item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
1136 @item @samp{.avx512vbmi} @tab @samp{.clwb} @tab @samp{.pcommit}
1137 @item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
1138 @item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
1139 @item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
1140 @item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx}
1141 @end multitable
1142
1143 Apart from the warning, there are only two other effects on
1144 @code{@value{AS}} operation; Firstly, if you specify a CPU other than
1145 @samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1146 will automatically use a two byte opcode sequence. The larger three
1147 byte opcode sequence is used on the 486 (and when no architecture is
1148 specified) because it executes faster on the 486. Note that you can
1149 explicitly request the two byte opcode by writing @samp{sarl %eax}.
1150 Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1151 @emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1152 conditional jumps will be promoted when necessary to a two instruction
1153 sequence consisting of a conditional jump of the opposite sense around
1154 an unconditional jump to the target.
1155
1156 Following the CPU architecture (but not a sub-architecture, which are those
1157 starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1158 control automatic promotion of conditional jumps. @samp{jumps} is the
1159 default, and enables jump promotion; All external jumps will be of the long
1160 variety, and file-local jumps will be promoted as necessary.
1161 (@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1162 byte offset jumps, and warns about file-local conditional jumps that
1163 @code{@value{AS}} promotes.
1164 Unconditional jumps are treated as for @samp{jumps}.
1165
1166 For example
1167
1168 @smallexample
1169 .arch i8086,nojumps
1170 @end smallexample
1171
1172 @node i386-Bugs
1173 @section AT&T Syntax bugs
1174
1175 The UnixWare assembler, and probably other AT&T derived ix86 Unix
1176 assemblers, generate floating point instructions with reversed source
1177 and destination registers in certain cases. Unfortunately, gcc and
1178 possibly many other programs use this reversed syntax, so we're stuck
1179 with it.
1180
1181 For example
1182
1183 @smallexample
1184 fsub %st,%st(3)
1185 @end smallexample
1186 @noindent
1187 results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1188 than the expected @samp{%st(3) - %st}. This happens with all the
1189 non-commutative arithmetic floating point operations with two register
1190 operands where the source register is @samp{%st} and the destination
1191 register is @samp{%st(i)}.
1192
1193 @node i386-Notes
1194 @section Notes
1195
1196 @cindex i386 @code{mul}, @code{imul} instructions
1197 @cindex @code{mul} instruction, i386
1198 @cindex @code{imul} instruction, i386
1199 @cindex @code{mul} instruction, x86-64
1200 @cindex @code{imul} instruction, x86-64
1201 There is some trickery concerning the @samp{mul} and @samp{imul}
1202 instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
1203 multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1204 for @samp{imul}) can be output only in the one operand form. Thus,
1205 @samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1206 the expanding multiply would clobber the @samp{%edx} register, and this
1207 would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
1208 64-bit product in @samp{%edx:%eax}.
1209
1210 We have added a two operand form of @samp{imul} when the first operand
1211 is an immediate mode expression and the second operand is a register.
1212 This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1213 example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1214 $69, %eax, %eax}.
1215
This page took 0.054465 seconds and 5 git commands to generate.