gas/
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
1 @c Copyright 1991, 1992, 1993, 1994, 1995, 1997, 1998, 1999, 2000,
2 @c 2001, 2003, 2004
3 @c Free Software Foundation, Inc.
4 @c This is part of the GAS manual.
5 @c For copying conditions, see the file as.texinfo.
6 @ifset GENERIC
7 @page
8 @node i386-Dependent
9 @chapter 80386 Dependent Features
10 @end ifset
11 @ifclear GENERIC
12 @node Machine Dependencies
13 @chapter 80386 Dependent Features
14 @end ifclear
15
16 @cindex i386 support
17 @cindex i80306 support
18 @cindex x86-64 support
19
20 The i386 version @code{@value{AS}} supports both the original Intel 386
21 architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22 extending the Intel architecture to 64-bits.
23
24 @menu
25 * i386-Options:: Options
26 * i386-Syntax:: AT&T Syntax versus Intel Syntax
27 * i386-Mnemonics:: Instruction Naming
28 * i386-Regs:: Register Naming
29 * i386-Prefixes:: Instruction Prefixes
30 * i386-Memory:: Memory References
31 * i386-Jumps:: Handling of Jump Instructions
32 * i386-Float:: Floating Point
33 * i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
34 * i386-16bit:: Writing 16-bit Code
35 * i386-Arch:: Specifying an x86 CPU architecture
36 * i386-Bugs:: AT&T Syntax bugs
37 * i386-Notes:: Notes
38 @end menu
39
40 @node i386-Options
41 @section Options
42
43 @cindex options for i386
44 @cindex options for x86-64
45 @cindex i386 options
46 @cindex x86-64 options
47
48 The i386 version of @code{@value{AS}} has a few machine
49 dependent options:
50
51 @table @code
52 @cindex @samp{--32} option, i386
53 @cindex @samp{--32} option, x86-64
54 @cindex @samp{--64} option, i386
55 @cindex @samp{--64} option, x86-64
56 @item --32 | --64
57 Select the word size, either 32 bits or 64 bits. Selecting 32-bit
58 implies Intel i386 architecture, while 64-bit implies AMD x86-64
59 architecture.
60
61 These options are only available with the ELF object file format, and
62 require that the necessary BFD support has been included (on a 32-bit
63 platform you have to add --enable-64-bit-bfd to configure enable 64-bit
64 usage and use x86-64 as target platform).
65
66 @item -n
67 By default, x86 GAS replaces multiple nop instructions used for
68 alignment within code sections with multi-byte nop instructions such
69 as leal 0(%esi,1),%esi. This switch disables the optimization.
70
71 @cindex @samp{--divide} option, i386
72 @item --divide
73 On SVR4-derived platforms, the character @samp{/} is treated as a comment
74 character, which means that it cannot be used in expressions. The
75 @samp{--divide} option turns @samp{/} into a normal character. This does
76 not disable @samp{/} at the beginning of a line starting a comment, or
77 affect using @samp{#} for starting a comment.
78
79 @cindex @samp{-march=} option, i386
80 @cindex @samp{-march=} option, x86-64
81 @item -march=@var{CPU}
82 This option specifies an instruction set architecture for generating
83 instructions. The following architectures are recognized:
84 @code{i8086},
85 @code{i186},
86 @code{i286},
87 @code{i386},
88 @code{i486},
89 @code{i586},
90 @code{i686},
91 @code{pentium},
92 @code{pentiumpro},
93 @code{pentiumii},
94 @code{pentiumiii},
95 @code{pentium4},
96 @code{prescott},
97 @code{nocona},
98 @code{core},
99 @code{core2},
100 @code{k6},
101 @code{k6_2},
102 @code{athlon},
103 @code{sledgehammer},
104 @code{opteron},
105 @code{k8},
106 @code{generic32} and
107 @code{generic64}.
108
109 This option only affects instructions generated by the assembler. The
110 @code{.arch} directive will take precedent.
111
112 @cindex @samp{-mtune=} option, i386
113 @cindex @samp{-mtune=} option, x86-64
114 @item -mtune=@var{CPU}
115 This option specifies a processor to optimize for. When used in
116 conjunction with the @option{-march} option, only instructions
117 of the processor specified by the @option{-march} option will be
118 generated.
119
120 Valid @var{CPU} values are identical to @option{-march=@var{CPU}}.
121
122 @cindex @samp{-mmnemonic=} option, i386
123 @cindex @samp{-mmnemonic=} option, x86-64
124 @item -mmnemonic=@var{att}
125 @item -mmnemonic=@var{intel}
126 This option specifies instruction mnemonic for matching instructions.
127 The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
128 take precedent.
129
130 @cindex @samp{-msyntax=} option, i386
131 @cindex @samp{-msyntax=} option, x86-64
132 @item -msyntax=@var{att}
133 @item -msyntax=@var{intel}
134 This option specifies instruction syntax when processing instructions.
135 The @code{.att_syntax} and @code{.intel_syntax} directives will
136 take precedent.
137
138 @cindex @samp{-mnaked-reg} option, i386
139 @cindex @samp{-mnaked-reg} option, x86-64
140 @item -mnaked-reg
141 This opetion specifies that registers don't require a @samp{%} prefix.
142 The @code{.att_mnemonic}, @code{.intel_mnemonic}, @code{.att_syntax} and
143 @code{.intel_syntax} directives will take precedent.
144
145 @end table
146
147 @node i386-Syntax
148 @section AT&T Syntax versus Intel Syntax
149
150 @cindex i386 intel_syntax pseudo op
151 @cindex intel_syntax pseudo op, i386
152 @cindex i386 att_syntax pseudo op
153 @cindex att_syntax pseudo op, i386
154 @cindex i386 syntax compatibility
155 @cindex syntax compatibility, i386
156 @cindex x86-64 intel_syntax pseudo op
157 @cindex intel_syntax pseudo op, x86-64
158 @cindex x86-64 att_syntax pseudo op
159 @cindex att_syntax pseudo op, x86-64
160 @cindex x86-64 syntax compatibility
161 @cindex syntax compatibility, x86-64
162
163 @code{@value{AS}} now supports assembly using Intel assembler syntax.
164 @code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
165 back to the usual AT&T mode for compatibility with the output of
166 @code{@value{GCC}}. Either of these directives may have an optional
167 argument, @code{prefix}, or @code{noprefix} specifying whether registers
168 require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
169 different from Intel syntax. We mention these differences because
170 almost all 80386 documents use Intel syntax. Notable differences
171 between the two syntaxes are:
172
173 @cindex immediate operands, i386
174 @cindex i386 immediate operands
175 @cindex register operands, i386
176 @cindex i386 register operands
177 @cindex jump/call operands, i386
178 @cindex i386 jump/call operands
179 @cindex operand delimiters, i386
180
181 @cindex immediate operands, x86-64
182 @cindex x86-64 immediate operands
183 @cindex register operands, x86-64
184 @cindex x86-64 register operands
185 @cindex jump/call operands, x86-64
186 @cindex x86-64 jump/call operands
187 @cindex operand delimiters, x86-64
188 @itemize @bullet
189 @item
190 AT&T immediate operands are preceded by @samp{$}; Intel immediate
191 operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
192 AT&T register operands are preceded by @samp{%}; Intel register operands
193 are undelimited. AT&T absolute (as opposed to PC relative) jump/call
194 operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
195
196 @cindex i386 source, destination operands
197 @cindex source, destination operands; i386
198 @cindex x86-64 source, destination operands
199 @cindex source, destination operands; x86-64
200 @item
201 AT&T and Intel syntax use the opposite order for source and destination
202 operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
203 @samp{source, dest} convention is maintained for compatibility with
204 previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
205 instructions with 2 immediate operands, such as the @samp{enter}
206 instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
207
208 @cindex mnemonic suffixes, i386
209 @cindex sizes operands, i386
210 @cindex i386 size suffixes
211 @cindex mnemonic suffixes, x86-64
212 @cindex sizes operands, x86-64
213 @cindex x86-64 size suffixes
214 @item
215 In AT&T syntax the size of memory operands is determined from the last
216 character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
217 @samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
218 (32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
219 this by prefixing memory operands (@emph{not} the instruction mnemonics) with
220 @samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
221 Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
222 syntax.
223
224 @cindex return instructions, i386
225 @cindex i386 jump, call, return
226 @cindex return instructions, x86-64
227 @cindex x86-64 jump, call, return
228 @item
229 Immediate form long jumps and calls are
230 @samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
231 Intel syntax is
232 @samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
233 instruction
234 is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
235 @samp{ret far @var{stack-adjust}}.
236
237 @cindex sections, i386
238 @cindex i386 sections
239 @cindex sections, x86-64
240 @cindex x86-64 sections
241 @item
242 The AT&T assembler does not provide support for multiple section
243 programs. Unix style systems expect all programs to be single sections.
244 @end itemize
245
246 @node i386-Mnemonics
247 @section Instruction Naming
248
249 @cindex i386 instruction naming
250 @cindex instruction naming, i386
251 @cindex x86-64 instruction naming
252 @cindex instruction naming, x86-64
253
254 Instruction mnemonics are suffixed with one character modifiers which
255 specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
256 and @samp{q} specify byte, word, long and quadruple word operands. If
257 no suffix is specified by an instruction then @code{@value{AS}} tries to
258 fill in the missing suffix based on the destination register operand
259 (the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
260 to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
261 @samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
262 assembler which assumes that a missing mnemonic suffix implies long
263 operand size. (This incompatibility does not affect compiler output
264 since compilers always explicitly specify the mnemonic suffix.)
265
266 Almost all instructions have the same names in AT&T and Intel format.
267 There are a few exceptions. The sign extend and zero extend
268 instructions need two sizes to specify them. They need a size to
269 sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
270 is accomplished by using two instruction mnemonic suffixes in AT&T
271 syntax. Base names for sign extend and zero extend are
272 @samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
273 and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
274 are tacked on to this base name, the @emph{from} suffix before the
275 @emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
276 ``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
277 thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
278 @samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
279 @samp{wq} (from word to quadruple word), and @samp{lq} (from long to
280 quadruple word).
281
282 @cindex conversion instructions, i386
283 @cindex i386 conversion instructions
284 @cindex conversion instructions, x86-64
285 @cindex x86-64 conversion instructions
286 The Intel-syntax conversion instructions
287
288 @itemize @bullet
289 @item
290 @samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
291
292 @item
293 @samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
294
295 @item
296 @samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
297
298 @item
299 @samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
300
301 @item
302 @samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
303 (x86-64 only),
304
305 @item
306 @samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
307 @samp{%rdx:%rax} (x86-64 only),
308 @end itemize
309
310 @noindent
311 are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
312 @samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
313 instructions.
314
315 @cindex jump instructions, i386
316 @cindex call instructions, i386
317 @cindex jump instructions, x86-64
318 @cindex call instructions, x86-64
319 Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
320 AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
321 convention.
322
323 @section AT&T Mnemonic versus Intel Mnemonic
324
325 @cindex i386 mnemonic compatibility
326 @cindex mnemonic compatibility, i386
327
328 @code{@value{AS}} supports assembly using Intel mnemonic.
329 @code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
330 @code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
331 syntax for compatibility with the output of @code{@value{GCC}}.
332 Either of these directives may have an optional argument, @code{prefix},
333 or @code{noprefix} specifying whether registers require a @samp{%} prefix.
334 Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
335 @samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
336 @samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
337 assembler with different mnemonics from those in Intel IA32 specification.
338 @code{@value{GCC}} generates those instructions with AT&T mnemonic.
339
340 @node i386-Regs
341 @section Register Naming
342
343 @cindex i386 registers
344 @cindex registers, i386
345 @cindex x86-64 registers
346 @cindex registers, x86-64
347 Register operands are always prefixed with @samp{%}. The 80386 registers
348 consist of
349
350 @itemize @bullet
351 @item
352 the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
353 @samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
354 frame pointer), and @samp{%esp} (the stack pointer).
355
356 @item
357 the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
358 @samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
359
360 @item
361 the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
362 @samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
363 are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
364 @samp{%cx}, and @samp{%dx})
365
366 @item
367 the 6 section registers @samp{%cs} (code section), @samp{%ds}
368 (data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
369 and @samp{%gs}.
370
371 @item
372 the 3 processor control registers @samp{%cr0}, @samp{%cr2}, and
373 @samp{%cr3}.
374
375 @item
376 the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
377 @samp{%db3}, @samp{%db6}, and @samp{%db7}.
378
379 @item
380 the 2 test registers @samp{%tr6} and @samp{%tr7}.
381
382 @item
383 the 8 floating point register stack @samp{%st} or equivalently
384 @samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
385 @samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
386 These registers are overloaded by 8 MMX registers @samp{%mm0},
387 @samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
388 @samp{%mm6} and @samp{%mm7}.
389
390 @item
391 the 8 SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
392 @samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
393 @end itemize
394
395 The AMD x86-64 architecture extends the register set by:
396
397 @itemize @bullet
398 @item
399 enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
400 accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
401 @samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
402 pointer)
403
404 @item
405 the 8 extended registers @samp{%r8}--@samp{%r15}.
406
407 @item
408 the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}
409
410 @item
411 the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}
412
413 @item
414 the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}
415
416 @item
417 the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
418
419 @item
420 the 8 debug registers: @samp{%db8}--@samp{%db15}.
421
422 @item
423 the 8 SSE registers: @samp{%xmm8}--@samp{%xmm15}.
424 @end itemize
425
426 @node i386-Prefixes
427 @section Instruction Prefixes
428
429 @cindex i386 instruction prefixes
430 @cindex instruction prefixes, i386
431 @cindex prefixes, i386
432 Instruction prefixes are used to modify the following instruction. They
433 are used to repeat string instructions, to provide section overrides, to
434 perform bus lock operations, and to change operand and address sizes.
435 (Most instructions that normally operate on 32-bit operands will use
436 16-bit operands if the instruction has an ``operand size'' prefix.)
437 Instruction prefixes are best written on the same line as the instruction
438 they act upon. For example, the @samp{scas} (scan string) instruction is
439 repeated with:
440
441 @smallexample
442 repne scas %es:(%edi),%al
443 @end smallexample
444
445 You may also place prefixes on the lines immediately preceding the
446 instruction, but this circumvents checks that @code{@value{AS}} does
447 with prefixes, and will not work with all prefixes.
448
449 Here is a list of instruction prefixes:
450
451 @cindex section override prefixes, i386
452 @itemize @bullet
453 @item
454 Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
455 @samp{fs}, @samp{gs}. These are automatically added by specifying
456 using the @var{section}:@var{memory-operand} form for memory references.
457
458 @cindex size prefixes, i386
459 @item
460 Operand/Address size prefixes @samp{data16} and @samp{addr16}
461 change 32-bit operands/addresses into 16-bit operands/addresses,
462 while @samp{data32} and @samp{addr32} change 16-bit ones (in a
463 @code{.code16} section) into 32-bit operands/addresses. These prefixes
464 @emph{must} appear on the same line of code as the instruction they
465 modify. For example, in a 16-bit @code{.code16} section, you might
466 write:
467
468 @smallexample
469 addr32 jmpl *(%ebx)
470 @end smallexample
471
472 @cindex bus lock prefixes, i386
473 @cindex inhibiting interrupts, i386
474 @item
475 The bus lock prefix @samp{lock} inhibits interrupts during execution of
476 the instruction it precedes. (This is only valid with certain
477 instructions; see a 80386 manual for details).
478
479 @cindex coprocessor wait, i386
480 @item
481 The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
482 complete the current instruction. This should never be needed for the
483 80386/80387 combination.
484
485 @cindex repeat prefixes, i386
486 @item
487 The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
488 to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
489 times if the current address size is 16-bits).
490 @cindex REX prefixes, i386
491 @item
492 The @samp{rex} family of prefixes is used by x86-64 to encode
493 extensions to i386 instruction set. The @samp{rex} prefix has four
494 bits --- an operand size overwrite (@code{64}) used to change operand size
495 from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
496 register set.
497
498 You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
499 instruction emits @samp{rex} prefix with all the bits set. By omitting
500 the @code{64}, @code{x}, @code{y} or @code{z} you may write other
501 prefixes as well. Normally, there is no need to write the prefixes
502 explicitly, since gas will automatically generate them based on the
503 instruction operands.
504 @end itemize
505
506 @node i386-Memory
507 @section Memory References
508
509 @cindex i386 memory references
510 @cindex memory references, i386
511 @cindex x86-64 memory references
512 @cindex memory references, x86-64
513 An Intel syntax indirect memory reference of the form
514
515 @smallexample
516 @var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
517 @end smallexample
518
519 @noindent
520 is translated into the AT&T syntax
521
522 @smallexample
523 @var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
524 @end smallexample
525
526 @noindent
527 where @var{base} and @var{index} are the optional 32-bit base and
528 index registers, @var{disp} is the optional displacement, and
529 @var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
530 to calculate the address of the operand. If no @var{scale} is
531 specified, @var{scale} is taken to be 1. @var{section} specifies the
532 optional section register for the memory operand, and may override the
533 default section register (see a 80386 manual for section register
534 defaults). Note that section overrides in AT&T syntax @emph{must}
535 be preceded by a @samp{%}. If you specify a section override which
536 coincides with the default section register, @code{@value{AS}} does @emph{not}
537 output any section register override prefixes to assemble the given
538 instruction. Thus, section overrides can be specified to emphasize which
539 section register is used for a given memory operand.
540
541 Here are some examples of Intel and AT&T style memory references:
542
543 @table @asis
544 @item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
545 @var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
546 missing, and the default section is used (@samp{%ss} for addressing with
547 @samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
548
549 @item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
550 @var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
551 @samp{foo}. All other fields are missing. The section register here
552 defaults to @samp{%ds}.
553
554 @item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
555 This uses the value pointed to by @samp{foo} as a memory operand.
556 Note that @var{base} and @var{index} are both missing, but there is only
557 @emph{one} @samp{,}. This is a syntactic exception.
558
559 @item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
560 This selects the contents of the variable @samp{foo} with section
561 register @var{section} being @samp{%gs}.
562 @end table
563
564 Absolute (as opposed to PC relative) call and jump operands must be
565 prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
566 always chooses PC relative addressing for jump/call labels.
567
568 Any instruction that has a memory operand, but no register operand,
569 @emph{must} specify its size (byte, word, long, or quadruple) with an
570 instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
571 respectively).
572
573 The x86-64 architecture adds an RIP (instruction pointer relative)
574 addressing. This addressing mode is specified by using @samp{rip} as a
575 base register. Only constant offsets are valid. For example:
576
577 @table @asis
578 @item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
579 Points to the address 1234 bytes past the end of the current
580 instruction.
581
582 @item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
583 Points to the @code{symbol} in RIP relative way, this is shorter than
584 the default absolute addressing.
585 @end table
586
587 Other addressing modes remain unchanged in x86-64 architecture, except
588 registers used are 64-bit instead of 32-bit.
589
590 @node i386-Jumps
591 @section Handling of Jump Instructions
592
593 @cindex jump optimization, i386
594 @cindex i386 jump optimization
595 @cindex jump optimization, x86-64
596 @cindex x86-64 jump optimization
597 Jump instructions are always optimized to use the smallest possible
598 displacements. This is accomplished by using byte (8-bit) displacement
599 jumps whenever the target is sufficiently close. If a byte displacement
600 is insufficient a long displacement is used. We do not support
601 word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
602 instruction with the @samp{data16} instruction prefix), since the 80386
603 insists upon masking @samp{%eip} to 16 bits after the word displacement
604 is added. (See also @pxref{i386-Arch})
605
606 Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
607 @samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
608 displacements, so that if you use these instructions (@code{@value{GCC}} does
609 not use them) you may get an error message (and incorrect code). The AT&T
610 80386 assembler tries to get around this problem by expanding @samp{jcxz foo}
611 to
612
613 @smallexample
614 jcxz cx_zero
615 jmp cx_nonzero
616 cx_zero: jmp foo
617 cx_nonzero:
618 @end smallexample
619
620 @node i386-Float
621 @section Floating Point
622
623 @cindex i386 floating point
624 @cindex floating point, i386
625 @cindex x86-64 floating point
626 @cindex floating point, x86-64
627 All 80387 floating point types except packed BCD are supported.
628 (BCD support may be added without much difficulty). These data
629 types are 16-, 32-, and 64- bit integers, and single (32-bit),
630 double (64-bit), and extended (80-bit) precision floating point.
631 Each supported type has an instruction mnemonic suffix and a constructor
632 associated with it. Instruction mnemonic suffixes specify the operand's
633 data type. Constructors build these data types into memory.
634
635 @cindex @code{float} directive, i386
636 @cindex @code{single} directive, i386
637 @cindex @code{double} directive, i386
638 @cindex @code{tfloat} directive, i386
639 @cindex @code{float} directive, x86-64
640 @cindex @code{single} directive, x86-64
641 @cindex @code{double} directive, x86-64
642 @cindex @code{tfloat} directive, x86-64
643 @itemize @bullet
644 @item
645 Floating point constructors are @samp{.float} or @samp{.single},
646 @samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
647 These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
648 and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
649 only supports this format via the @samp{fldt} (load 80-bit real to stack
650 top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
651
652 @cindex @code{word} directive, i386
653 @cindex @code{long} directive, i386
654 @cindex @code{int} directive, i386
655 @cindex @code{quad} directive, i386
656 @cindex @code{word} directive, x86-64
657 @cindex @code{long} directive, x86-64
658 @cindex @code{int} directive, x86-64
659 @cindex @code{quad} directive, x86-64
660 @item
661 Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
662 @samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
663 corresponding instruction mnemonic suffixes are @samp{s} (single),
664 @samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
665 the 64-bit @samp{q} format is only present in the @samp{fildq} (load
666 quad integer to stack top) and @samp{fistpq} (store quad integer and pop
667 stack) instructions.
668 @end itemize
669
670 Register to register operations should not use instruction mnemonic suffixes.
671 @samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
672 wrote @samp{fst %st, %st(1)}, since all register to register operations
673 use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
674 which converts @samp{%st} from 80-bit to 64-bit floating point format,
675 then stores the result in the 4 byte location @samp{mem})
676
677 @node i386-SIMD
678 @section Intel's MMX and AMD's 3DNow! SIMD Operations
679
680 @cindex MMX, i386
681 @cindex 3DNow!, i386
682 @cindex SIMD, i386
683 @cindex MMX, x86-64
684 @cindex 3DNow!, x86-64
685 @cindex SIMD, x86-64
686
687 @code{@value{AS}} supports Intel's MMX instruction set (SIMD
688 instructions for integer data), available on Intel's Pentium MMX
689 processors and Pentium II processors, AMD's K6 and K6-2 processors,
690 Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
691 instruction set (SIMD instructions for 32-bit floating point data)
692 available on AMD's K6-2 processor and possibly others in the future.
693
694 Currently, @code{@value{AS}} does not support Intel's floating point
695 SIMD, Katmai (KNI).
696
697 The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
698 @samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
699 16-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
700 floating point values. The MMX registers cannot be used at the same time
701 as the floating point stack.
702
703 See Intel and AMD documentation, keeping in mind that the operand order in
704 instructions is reversed from the Intel syntax.
705
706 @node i386-16bit
707 @section Writing 16-bit Code
708
709 @cindex i386 16-bit code
710 @cindex 16-bit code, i386
711 @cindex real-mode code, i386
712 @cindex @code{code16gcc} directive, i386
713 @cindex @code{code16} directive, i386
714 @cindex @code{code32} directive, i386
715 @cindex @code{code64} directive, i386
716 @cindex @code{code64} directive, x86-64
717 While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
718 or 64-bit x86-64 code depending on the default configuration,
719 it also supports writing code to run in real mode or in 16-bit protected
720 mode code segments. To do this, put a @samp{.code16} or
721 @samp{.code16gcc} directive before the assembly language instructions to
722 be run in 16-bit mode. You can switch @code{@value{AS}} back to writing
723 normal 32-bit code with the @samp{.code32} directive.
724
725 @samp{.code16gcc} provides experimental support for generating 16-bit
726 code from gcc, and differs from @samp{.code16} in that @samp{call},
727 @samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
728 @samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
729 default to 32-bit size. This is so that the stack pointer is
730 manipulated in the same way over function calls, allowing access to
731 function parameters at the same stack offsets as in 32-bit mode.
732 @samp{.code16gcc} also automatically adds address size prefixes where
733 necessary to use the 32-bit addressing modes that gcc generates.
734
735 The code which @code{@value{AS}} generates in 16-bit mode will not
736 necessarily run on a 16-bit pre-80386 processor. To write code that
737 runs on such a processor, you must refrain from using @emph{any} 32-bit
738 constructs which require @code{@value{AS}} to output address or operand
739 size prefixes.
740
741 Note that writing 16-bit code instructions by explicitly specifying a
742 prefix or an instruction mnemonic suffix within a 32-bit code section
743 generates different machine instructions than those generated for a
744 16-bit code segment. In a 32-bit code section, the following code
745 generates the machine opcode bytes @samp{66 6a 04}, which pushes the
746 value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
747
748 @smallexample
749 pushw $4
750 @end smallexample
751
752 The same code in a 16-bit code section would generate the machine
753 opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
754 is correct since the processor default operand size is assumed to be 16
755 bits in a 16-bit code section.
756
757 @node i386-Bugs
758 @section AT&T Syntax bugs
759
760 The UnixWare assembler, and probably other AT&T derived ix86 Unix
761 assemblers, generate floating point instructions with reversed source
762 and destination registers in certain cases. Unfortunately, gcc and
763 possibly many other programs use this reversed syntax, so we're stuck
764 with it.
765
766 For example
767
768 @smallexample
769 fsub %st,%st(3)
770 @end smallexample
771 @noindent
772 results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
773 than the expected @samp{%st(3) - %st}. This happens with all the
774 non-commutative arithmetic floating point operations with two register
775 operands where the source register is @samp{%st} and the destination
776 register is @samp{%st(i)}.
777
778 @node i386-Arch
779 @section Specifying CPU Architecture
780
781 @cindex arch directive, i386
782 @cindex i386 arch directive
783 @cindex arch directive, x86-64
784 @cindex x86-64 arch directive
785
786 @code{@value{AS}} may be told to assemble for a particular CPU
787 (sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
788 directive enables a warning when gas detects an instruction that is not
789 supported on the CPU specified. The choices for @var{cpu_type} are:
790
791 @multitable @columnfractions .20 .20 .20 .20
792 @item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
793 @item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
794 @item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
795 @item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
796 @item @samp{amdfam10}
797 @item @samp{k6} @tab @samp{athlon} @tab @samp{sledgehammer} @tab @samp{k8}
798 @item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
799 @item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
800 @item @samp{.sse4a} @tab @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.padlock}
801 @item @samp{.pacifica} @tab @samp{.svme} @tab @samp{.abm}
802 @end multitable
803
804 Apart from the warning, there are only two other effects on
805 @code{@value{AS}} operation; Firstly, if you specify a CPU other than
806 @samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
807 will automatically use a two byte opcode sequence. The larger three
808 byte opcode sequence is used on the 486 (and when no architecture is
809 specified) because it executes faster on the 486. Note that you can
810 explicitly request the two byte opcode by writing @samp{sarl %eax}.
811 Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
812 @emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
813 conditional jumps will be promoted when necessary to a two instruction
814 sequence consisting of a conditional jump of the opposite sense around
815 an unconditional jump to the target.
816
817 Following the CPU architecture (but not a sub-architecture, which are those
818 starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
819 control automatic promotion of conditional jumps. @samp{jumps} is the
820 default, and enables jump promotion; All external jumps will be of the long
821 variety, and file-local jumps will be promoted as necessary.
822 (@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
823 byte offset jumps, and warns about file-local conditional jumps that
824 @code{@value{AS}} promotes.
825 Unconditional jumps are treated as for @samp{jumps}.
826
827 For example
828
829 @smallexample
830 .arch i8086,nojumps
831 @end smallexample
832
833 @node i386-Notes
834 @section Notes
835
836 @cindex i386 @code{mul}, @code{imul} instructions
837 @cindex @code{mul} instruction, i386
838 @cindex @code{imul} instruction, i386
839 @cindex @code{mul} instruction, x86-64
840 @cindex @code{imul} instruction, x86-64
841 There is some trickery concerning the @samp{mul} and @samp{imul}
842 instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
843 multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
844 for @samp{imul}) can be output only in the one operand form. Thus,
845 @samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
846 the expanding multiply would clobber the @samp{%edx} register, and this
847 would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
848 64-bit product in @samp{%edx:%eax}.
849
850 We have added a two operand form of @samp{imul} when the first operand
851 is an immediate mode expression and the second operand is a register.
852 This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
853 example, can be done with @samp{imul $69, %eax} rather than @samp{imul
854 $69, %eax, %eax}.
855
This page took 0.050468 seconds and 5 git commands to generate.