Add support for intel SERIALIZE instruction
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
1 @c Copyright (C) 1991-2020 Free Software Foundation, Inc.
2 @c This is part of the GAS manual.
3 @c For copying conditions, see the file as.texinfo.
4 @c man end
5
6 @ifset GENERIC
7 @page
8 @node i386-Dependent
9 @chapter 80386 Dependent Features
10 @end ifset
11 @ifclear GENERIC
12 @node Machine Dependencies
13 @chapter 80386 Dependent Features
14 @end ifclear
15
16 @cindex i386 support
17 @cindex i80386 support
18 @cindex x86-64 support
19
20 The i386 version @code{@value{AS}} supports both the original Intel 386
21 architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22 extending the Intel architecture to 64-bits.
23
24 @menu
25 * i386-Options:: Options
26 * i386-Directives:: X86 specific directives
27 * i386-Syntax:: Syntactical considerations
28 * i386-Mnemonics:: Instruction Naming
29 * i386-Regs:: Register Naming
30 * i386-Prefixes:: Instruction Prefixes
31 * i386-Memory:: Memory References
32 * i386-Jumps:: Handling of Jump Instructions
33 * i386-Float:: Floating Point
34 * i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
35 * i386-LWP:: AMD's Lightweight Profiling Instructions
36 * i386-BMI:: Bit Manipulation Instruction
37 * i386-TBM:: AMD's Trailing Bit Manipulation Instructions
38 * i386-16bit:: Writing 16-bit Code
39 * i386-Arch:: Specifying an x86 CPU architecture
40 * i386-ISA:: AMD64 ISA vs. Intel64 ISA
41 * i386-Bugs:: AT&T Syntax bugs
42 * i386-Notes:: Notes
43 @end menu
44
45 @node i386-Options
46 @section Options
47
48 @cindex options for i386
49 @cindex options for x86-64
50 @cindex i386 options
51 @cindex x86-64 options
52
53 The i386 version of @code{@value{AS}} has a few machine
54 dependent options:
55
56 @c man begin OPTIONS
57 @table @gcctabopt
58 @cindex @samp{--32} option, i386
59 @cindex @samp{--32} option, x86-64
60 @cindex @samp{--x32} option, i386
61 @cindex @samp{--x32} option, x86-64
62 @cindex @samp{--64} option, i386
63 @cindex @samp{--64} option, x86-64
64 @item --32 | --x32 | --64
65 Select the word size, either 32 bits or 64 bits. @samp{--32}
66 implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
67 imply AMD x86-64 architecture with 32-bit or 64-bit word-size
68 respectively.
69
70 These options are only available with the ELF object file format, and
71 require that the necessary BFD support has been included (on a 32-bit
72 platform you have to add --enable-64-bit-bfd to configure enable 64-bit
73 usage and use x86-64 as target platform).
74
75 @item -n
76 By default, x86 GAS replaces multiple nop instructions used for
77 alignment within code sections with multi-byte nop instructions such
78 as leal 0(%esi,1),%esi. This switch disables the optimization if a single
79 byte nop (0x90) is explicitly specified as the fill byte for alignment.
80
81 @cindex @samp{--divide} option, i386
82 @item --divide
83 On SVR4-derived platforms, the character @samp{/} is treated as a comment
84 character, which means that it cannot be used in expressions. The
85 @samp{--divide} option turns @samp{/} into a normal character. This does
86 not disable @samp{/} at the beginning of a line starting a comment, or
87 affect using @samp{#} for starting a comment.
88
89 @cindex @samp{-march=} option, i386
90 @cindex @samp{-march=} option, x86-64
91 @item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
92 This option specifies the target processor. The assembler will
93 issue an error message if an attempt is made to assemble an instruction
94 which will not execute on the target processor. The following
95 processor names are recognized:
96 @code{i8086},
97 @code{i186},
98 @code{i286},
99 @code{i386},
100 @code{i486},
101 @code{i586},
102 @code{i686},
103 @code{pentium},
104 @code{pentiumpro},
105 @code{pentiumii},
106 @code{pentiumiii},
107 @code{pentium4},
108 @code{prescott},
109 @code{nocona},
110 @code{core},
111 @code{core2},
112 @code{corei7},
113 @code{l1om},
114 @code{k1om},
115 @code{iamcu},
116 @code{k6},
117 @code{k6_2},
118 @code{athlon},
119 @code{opteron},
120 @code{k8},
121 @code{amdfam10},
122 @code{bdver1},
123 @code{bdver2},
124 @code{bdver3},
125 @code{bdver4},
126 @code{znver1},
127 @code{znver2},
128 @code{btver1},
129 @code{btver2},
130 @code{generic32} and
131 @code{generic64}.
132
133 In addition to the basic instruction set, the assembler can be told to
134 accept various extension mnemonics. For example,
135 @code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
136 @var{vmx}. The following extensions are currently supported:
137 @code{8087},
138 @code{287},
139 @code{387},
140 @code{687},
141 @code{no87},
142 @code{no287},
143 @code{no387},
144 @code{no687},
145 @code{cmov},
146 @code{nocmov},
147 @code{fxsr},
148 @code{nofxsr},
149 @code{mmx},
150 @code{nommx},
151 @code{sse},
152 @code{sse2},
153 @code{sse3},
154 @code{sse4a},
155 @code{ssse3},
156 @code{sse4.1},
157 @code{sse4.2},
158 @code{sse4},
159 @code{nosse},
160 @code{nosse2},
161 @code{nosse3},
162 @code{nosse4a},
163 @code{nossse3},
164 @code{nosse4.1},
165 @code{nosse4.2},
166 @code{nosse4},
167 @code{avx},
168 @code{avx2},
169 @code{noavx},
170 @code{noavx2},
171 @code{adx},
172 @code{rdseed},
173 @code{prfchw},
174 @code{smap},
175 @code{mpx},
176 @code{sha},
177 @code{rdpid},
178 @code{ptwrite},
179 @code{cet},
180 @code{gfni},
181 @code{vaes},
182 @code{vpclmulqdq},
183 @code{prefetchwt1},
184 @code{clflushopt},
185 @code{se1},
186 @code{clwb},
187 @code{movdiri},
188 @code{movdir64b},
189 @code{enqcmd},
190 @code{serialize},
191 @code{avx512f},
192 @code{avx512cd},
193 @code{avx512er},
194 @code{avx512pf},
195 @code{avx512vl},
196 @code{avx512bw},
197 @code{avx512dq},
198 @code{avx512ifma},
199 @code{avx512vbmi},
200 @code{avx512_4fmaps},
201 @code{avx512_4vnniw},
202 @code{avx512_vpopcntdq},
203 @code{avx512_vbmi2},
204 @code{avx512_vnni},
205 @code{avx512_bitalg},
206 @code{avx512_bf16},
207 @code{noavx512f},
208 @code{noavx512cd},
209 @code{noavx512er},
210 @code{noavx512pf},
211 @code{noavx512vl},
212 @code{noavx512bw},
213 @code{noavx512dq},
214 @code{noavx512ifma},
215 @code{noavx512vbmi},
216 @code{noavx512_4fmaps},
217 @code{noavx512_4vnniw},
218 @code{noavx512_vpopcntdq},
219 @code{noavx512_vbmi2},
220 @code{noavx512_vnni},
221 @code{noavx512_bitalg},
222 @code{noavx512_vp2intersect},
223 @code{noavx512_bf16},
224 @code{noenqcmd},
225 @code{noserialize},
226 @code{vmx},
227 @code{vmfunc},
228 @code{smx},
229 @code{xsave},
230 @code{xsaveopt},
231 @code{xsavec},
232 @code{xsaves},
233 @code{aes},
234 @code{pclmul},
235 @code{fsgsbase},
236 @code{rdrnd},
237 @code{f16c},
238 @code{bmi2},
239 @code{fma},
240 @code{movbe},
241 @code{ept},
242 @code{lzcnt},
243 @code{popcnt},
244 @code{hle},
245 @code{rtm},
246 @code{invpcid},
247 @code{clflush},
248 @code{mwaitx},
249 @code{clzero},
250 @code{wbnoinvd},
251 @code{pconfig},
252 @code{waitpkg},
253 @code{cldemote},
254 @code{rdpru},
255 @code{mcommit},
256 @code{sev_es},
257 @code{lwp},
258 @code{fma4},
259 @code{xop},
260 @code{cx16},
261 @code{syscall},
262 @code{rdtscp},
263 @code{3dnow},
264 @code{3dnowa},
265 @code{sse4a},
266 @code{sse5},
267 @code{svme} and
268 @code{padlock}.
269 Note that rather than extending a basic instruction set, the extension
270 mnemonics starting with @code{no} revoke the respective functionality.
271
272 When the @code{.arch} directive is used with @option{-march}, the
273 @code{.arch} directive will take precedent.
274
275 @cindex @samp{-mtune=} option, i386
276 @cindex @samp{-mtune=} option, x86-64
277 @item -mtune=@var{CPU}
278 This option specifies a processor to optimize for. When used in
279 conjunction with the @option{-march} option, only instructions
280 of the processor specified by the @option{-march} option will be
281 generated.
282
283 Valid @var{CPU} values are identical to the processor list of
284 @option{-march=@var{CPU}}.
285
286 @cindex @samp{-msse2avx} option, i386
287 @cindex @samp{-msse2avx} option, x86-64
288 @item -msse2avx
289 This option specifies that the assembler should encode SSE instructions
290 with VEX prefix.
291
292 @cindex @samp{-msse-check=} option, i386
293 @cindex @samp{-msse-check=} option, x86-64
294 @item -msse-check=@var{none}
295 @itemx -msse-check=@var{warning}
296 @itemx -msse-check=@var{error}
297 These options control if the assembler should check SSE instructions.
298 @option{-msse-check=@var{none}} will make the assembler not to check SSE
299 instructions, which is the default. @option{-msse-check=@var{warning}}
300 will make the assembler issue a warning for any SSE instruction.
301 @option{-msse-check=@var{error}} will make the assembler issue an error
302 for any SSE instruction.
303
304 @cindex @samp{-mavxscalar=} option, i386
305 @cindex @samp{-mavxscalar=} option, x86-64
306 @item -mavxscalar=@var{128}
307 @itemx -mavxscalar=@var{256}
308 These options control how the assembler should encode scalar AVX
309 instructions. @option{-mavxscalar=@var{128}} will encode scalar
310 AVX instructions with 128bit vector length, which is the default.
311 @option{-mavxscalar=@var{256}} will encode scalar AVX instructions
312 with 256bit vector length.
313
314 WARNING: Don't use this for production code - due to CPU errata the
315 resulting code may not work on certain models.
316
317 @cindex @samp{-mvexwig=} option, i386
318 @cindex @samp{-mvexwig=} option, x86-64
319 @item -mvexwig=@var{0}
320 @itemx -mvexwig=@var{1}
321 These options control how the assembler should encode VEX.W-ignored (WIG)
322 VEX instructions. @option{-mvexwig=@var{0}} will encode WIG VEX
323 instructions with vex.w = 0, which is the default.
324 @option{-mvexwig=@var{1}} will encode WIG EVEX instructions with
325 vex.w = 1.
326
327 WARNING: Don't use this for production code - due to CPU errata the
328 resulting code may not work on certain models.
329
330 @cindex @samp{-mevexlig=} option, i386
331 @cindex @samp{-mevexlig=} option, x86-64
332 @item -mevexlig=@var{128}
333 @itemx -mevexlig=@var{256}
334 @itemx -mevexlig=@var{512}
335 These options control how the assembler should encode length-ignored
336 (LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
337 EVEX instructions with 128bit vector length, which is the default.
338 @option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
339 encode LIG EVEX instructions with 256bit and 512bit vector length,
340 respectively.
341
342 @cindex @samp{-mevexwig=} option, i386
343 @cindex @samp{-mevexwig=} option, x86-64
344 @item -mevexwig=@var{0}
345 @itemx -mevexwig=@var{1}
346 These options control how the assembler should encode w-ignored (WIG)
347 EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
348 EVEX instructions with evex.w = 0, which is the default.
349 @option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
350 evex.w = 1.
351
352 @cindex @samp{-mmnemonic=} option, i386
353 @cindex @samp{-mmnemonic=} option, x86-64
354 @item -mmnemonic=@var{att}
355 @itemx -mmnemonic=@var{intel}
356 This option specifies instruction mnemonic for matching instructions.
357 The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
358 take precedent.
359
360 @cindex @samp{-msyntax=} option, i386
361 @cindex @samp{-msyntax=} option, x86-64
362 @item -msyntax=@var{att}
363 @itemx -msyntax=@var{intel}
364 This option specifies instruction syntax when processing instructions.
365 The @code{.att_syntax} and @code{.intel_syntax} directives will
366 take precedent.
367
368 @cindex @samp{-mnaked-reg} option, i386
369 @cindex @samp{-mnaked-reg} option, x86-64
370 @item -mnaked-reg
371 This option specifies that registers don't require a @samp{%} prefix.
372 The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
373
374 @cindex @samp{-madd-bnd-prefix} option, i386
375 @cindex @samp{-madd-bnd-prefix} option, x86-64
376 @item -madd-bnd-prefix
377 This option forces the assembler to add BND prefix to all branches, even
378 if such prefix was not explicitly specified in the source code.
379
380 @cindex @samp{-mshared} option, i386
381 @cindex @samp{-mshared} option, x86-64
382 @item -mno-shared
383 On ELF target, the assembler normally optimizes out non-PLT relocations
384 against defined non-weak global branch targets with default visibility.
385 The @samp{-mshared} option tells the assembler to generate code which
386 may go into a shared library where all non-weak global branch targets
387 with default visibility can be preempted. The resulting code is
388 slightly bigger. This option only affects the handling of branch
389 instructions.
390
391 @cindex @samp{-mbig-obj} option, x86-64
392 @item -mbig-obj
393 On x86-64 PE/COFF target this option forces the use of big object file
394 format, which allows more than 32768 sections.
395
396 @cindex @samp{-momit-lock-prefix=} option, i386
397 @cindex @samp{-momit-lock-prefix=} option, x86-64
398 @item -momit-lock-prefix=@var{no}
399 @itemx -momit-lock-prefix=@var{yes}
400 These options control how the assembler should encode lock prefix.
401 This option is intended as a workaround for processors, that fail on
402 lock prefix. This option can only be safely used with single-core,
403 single-thread computers
404 @option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
405 @option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
406 which is the default.
407
408 @cindex @samp{-mfence-as-lock-add=} option, i386
409 @cindex @samp{-mfence-as-lock-add=} option, x86-64
410 @item -mfence-as-lock-add=@var{no}
411 @itemx -mfence-as-lock-add=@var{yes}
412 These options control how the assembler should encode lfence, mfence and
413 sfence.
414 @option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and
415 sfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and
416 @samp{lock addl $0x0, (%esp)} in 32-bit mode.
417 @option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and
418 sfence as usual, which is the default.
419
420 @cindex @samp{-mrelax-relocations=} option, i386
421 @cindex @samp{-mrelax-relocations=} option, x86-64
422 @item -mrelax-relocations=@var{no}
423 @itemx -mrelax-relocations=@var{yes}
424 These options control whether the assembler should generate relax
425 relocations, R_386_GOT32X, in 32-bit mode, or R_X86_64_GOTPCRELX and
426 R_X86_64_REX_GOTPCRELX, in 64-bit mode.
427 @option{-mrelax-relocations=@var{yes}} will generate relax relocations.
428 @option{-mrelax-relocations=@var{no}} will not generate relax
429 relocations. The default can be controlled by a configure option
430 @option{--enable-x86-relax-relocations}.
431
432 @cindex @samp{-malign-branch-boundary=} option, i386
433 @cindex @samp{-malign-branch-boundary=} option, x86-64
434 @item -malign-branch-boundary=@var{NUM}
435 This option controls how the assembler should align branches with segment
436 prefixes or NOP. @var{NUM} must be a power of 2. It should be 0 or
437 no less than 16. Branches will be aligned within @var{NUM} byte
438 boundary. @option{-malign-branch-boundary=0}, which is the default,
439 doesn't align branches.
440
441 @cindex @samp{-malign-branch=} option, i386
442 @cindex @samp{-malign-branch=} option, x86-64
443 @item -malign-branch=@var{TYPE}[+@var{TYPE}...]
444 This option specifies types of branches to align. @var{TYPE} is
445 combination of @samp{jcc}, which aligns conditional jumps,
446 @samp{fused}, which aligns fused conditional jumps, @samp{jmp},
447 which aligns unconditional jumps, @samp{call} which aligns calls,
448 @samp{ret}, which aligns rets, @samp{indirect}, which aligns indirect
449 jumps and calls. The default is @option{-malign-branch=jcc+fused+jmp}.
450
451 @cindex @samp{-malign-branch-prefix-size=} option, i386
452 @cindex @samp{-malign-branch-prefix-size=} option, x86-64
453 @item -malign-branch-prefix-size=@var{NUM}
454 This option specifies the maximum number of prefixes on an instruction
455 to align branches. @var{NUM} should be between 0 and 5. The default
456 @var{NUM} is 5.
457
458 @cindex @samp{-mbranches-within-32B-boundaries} option, i386
459 @cindex @samp{-mbranches-within-32B-boundaries} option, x86-64
460 @item -mbranches-within-32B-boundaries
461 This option aligns conditional jumps, fused conditional jumps and
462 unconditional jumps within 32 byte boundary with up to 5 segment prefixes
463 on an instruction. It is equivalent to
464 @option{-malign-branch-boundary=32}
465 @option{-malign-branch=jcc+fused+jmp}
466 @option{-malign-branch-prefix-size=5}.
467 The default doesn't align branches.
468
469 @cindex @samp{-mlfence-after-load=} option, i386
470 @cindex @samp{-mlfence-after-load=} option, x86-64
471 @item -mlfence-after-load=@var{no}
472 @itemx -mlfence-after-load=@var{yes}
473 These options control whether the assembler should generate lfence
474 after load instructions. @option{-mlfence-after-load=@var{yes}} will
475 generate lfence. @option{-mlfence-after-load=@var{no}} will not generate
476 lfence, which is the default.
477
478 @cindex @samp{-mlfence-before-indirect-branch=} option, i386
479 @cindex @samp{-mlfence-before-indirect-branch=} option, x86-64
480 @item -mlfence-before-indirect-branch=@var{none}
481 @item -mlfence-before-indirect-branch=@var{all}
482 @item -mlfence-before-indirect-branch=@var{register}
483 @itemx -mlfence-before-indirect-branch=@var{memory}
484 These options control whether the assembler should generate lfence
485 after indirect near branch instructions.
486 @option{-mlfence-before-indirect-branch=@var{all}} will generate lfence
487 after indirect near branch via register and issue a warning before
488 indirect near branch via memory.
489 @option{-mlfence-before-indirect-branch=@var{register}} will generate
490 lfence after indirect near branch via register.
491 @option{-mlfence-before-indirect-branch=@var{memory}} will issue a
492 warning before indirect near branch via memory.
493 @option{-mlfence-before-indirect-branch=@var{none}} will not generate
494 lfence nor issue warning, which is the default. Note that lfence won't
495 be generated before indirect near branch via register with
496 @option{-mlfence-after-load=@var{yes}} since lfence will be generated
497 after loading branch target register.
498
499 @cindex @samp{-mlfence-before-ret=} option, i386
500 @cindex @samp{-mlfence-before-ret=} option, x86-64
501 @item -mlfence-before-ret=@var{none}
502 @item -mlfence-before-ret=@var{or}
503 @itemx -mlfence-before-ret=@var{not}
504 These options control whether the assembler should generate lfence
505 before ret. @option{-mlfence-before-ret=@var{or}} will generate
506 generate or instruction with lfence.
507 @option{-mlfence-before-ret=@var{not}} will generate not instruction
508 with lfence.
509 @option{-mlfence-before-ret=@var{none}} will not generate lfence,
510 which is the default.
511
512 @cindex @samp{-mx86-used-note=} option, i386
513 @cindex @samp{-mx86-used-note=} option, x86-64
514 @item -mx86-used-note=@var{no}
515 @itemx -mx86-used-note=@var{yes}
516 These options control whether the assembler should generate
517 GNU_PROPERTY_X86_ISA_1_USED and GNU_PROPERTY_X86_FEATURE_2_USED
518 GNU property notes. The default can be controlled by the
519 @option{--enable-x86-used-note} configure option.
520
521 @cindex @samp{-mevexrcig=} option, i386
522 @cindex @samp{-mevexrcig=} option, x86-64
523 @item -mevexrcig=@var{rne}
524 @itemx -mevexrcig=@var{rd}
525 @itemx -mevexrcig=@var{ru}
526 @itemx -mevexrcig=@var{rz}
527 These options control how the assembler should encode SAE-only
528 EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
529 of EVEX instruction with 00, which is the default.
530 @option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
531 and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
532 with 01, 10 and 11 RC bits, respectively.
533
534 @cindex @samp{-mamd64} option, x86-64
535 @cindex @samp{-mintel64} option, x86-64
536 @item -mamd64
537 @itemx -mintel64
538 This option specifies that the assembler should accept only AMD64 or
539 Intel64 ISA in 64-bit mode. The default is to accept common, Intel64
540 only and AMD64 ISAs.
541
542 @cindex @samp{-O0} option, i386
543 @cindex @samp{-O0} option, x86-64
544 @cindex @samp{-O} option, i386
545 @cindex @samp{-O} option, x86-64
546 @cindex @samp{-O1} option, i386
547 @cindex @samp{-O1} option, x86-64
548 @cindex @samp{-O2} option, i386
549 @cindex @samp{-O2} option, x86-64
550 @cindex @samp{-Os} option, i386
551 @cindex @samp{-Os} option, x86-64
552 @item -O0 | -O | -O1 | -O2 | -Os
553 Optimize instruction encoding with smaller instruction size. @samp{-O}
554 and @samp{-O1} encode 64-bit register load instructions with 64-bit
555 immediate as 32-bit register load instructions with 31-bit or 32-bits
556 immediates, encode 64-bit register clearing instructions with 32-bit
557 register clearing instructions, encode 256-bit/512-bit VEX/EVEX vector
558 register clearing instructions with 128-bit VEX vector register
559 clearing instructions, encode 128-bit/256-bit EVEX vector
560 register load/store instructions with VEX vector register load/store
561 instructions, and encode 128-bit/256-bit EVEX packed integer logical
562 instructions with 128-bit/256-bit VEX packed integer logical.
563
564 @samp{-O2} includes @samp{-O1} optimization plus encodes
565 256-bit/512-bit EVEX vector register clearing instructions with 128-bit
566 EVEX vector register clearing instructions. In 64-bit mode VEX encoded
567 instructions with commutative source operands will also have their
568 source operands swapped if this allows using the 2-byte VEX prefix form
569 instead of the 3-byte one. Certain forms of AND as well as OR with the
570 same (register) operand specified twice will also be changed to TEST.
571
572 @samp{-Os} includes @samp{-O2} optimization plus encodes 16-bit, 32-bit
573 and 64-bit register tests with immediate as 8-bit register test with
574 immediate. @samp{-O0} turns off this optimization.
575
576 @end table
577 @c man end
578
579 @node i386-Directives
580 @section x86 specific Directives
581
582 @cindex machine directives, x86
583 @cindex x86 machine directives
584 @table @code
585
586 @cindex @code{lcomm} directive, COFF
587 @item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
588 Reserve @var{length} (an absolute expression) bytes for a local common
589 denoted by @var{symbol}. The section and value of @var{symbol} are
590 those of the new local common. The addresses are allocated in the bss
591 section, so that at run-time the bytes start off zeroed. Since
592 @var{symbol} is not declared global, it is normally not visible to
593 @code{@value{LD}}. The optional third parameter, @var{alignment},
594 specifies the desired alignment of the symbol in the bss section.
595
596 This directive is only available for COFF based x86 targets.
597
598 @cindex @code{largecomm} directive, ELF
599 @item .largecomm @var{symbol} , @var{length}[, @var{alignment}]
600 This directive behaves in the same way as the @code{comm} directive
601 except that the data is placed into the @var{.lbss} section instead of
602 the @var{.bss} section @ref{Comm}.
603
604 The directive is intended to be used for data which requires a large
605 amount of space, and it is only available for ELF based x86_64
606 targets.
607
608 @cindex @code{value} directive
609 @item .value @var{expression} [, @var{expression}]
610 This directive behaves in the same way as the @code{.short} directive,
611 taking a series of comma separated expressions and storing them as
612 two-byte wide values into the current section.
613
614 @c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
615
616 @end table
617
618 @node i386-Syntax
619 @section i386 Syntactical Considerations
620 @menu
621 * i386-Variations:: AT&T Syntax versus Intel Syntax
622 * i386-Chars:: Special Characters
623 @end menu
624
625 @node i386-Variations
626 @subsection AT&T Syntax versus Intel Syntax
627
628 @cindex i386 intel_syntax pseudo op
629 @cindex intel_syntax pseudo op, i386
630 @cindex i386 att_syntax pseudo op
631 @cindex att_syntax pseudo op, i386
632 @cindex i386 syntax compatibility
633 @cindex syntax compatibility, i386
634 @cindex x86-64 intel_syntax pseudo op
635 @cindex intel_syntax pseudo op, x86-64
636 @cindex x86-64 att_syntax pseudo op
637 @cindex att_syntax pseudo op, x86-64
638 @cindex x86-64 syntax compatibility
639 @cindex syntax compatibility, x86-64
640
641 @code{@value{AS}} now supports assembly using Intel assembler syntax.
642 @code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
643 back to the usual AT&T mode for compatibility with the output of
644 @code{@value{GCC}}. Either of these directives may have an optional
645 argument, @code{prefix}, or @code{noprefix} specifying whether registers
646 require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
647 different from Intel syntax. We mention these differences because
648 almost all 80386 documents use Intel syntax. Notable differences
649 between the two syntaxes are:
650
651 @cindex immediate operands, i386
652 @cindex i386 immediate operands
653 @cindex register operands, i386
654 @cindex i386 register operands
655 @cindex jump/call operands, i386
656 @cindex i386 jump/call operands
657 @cindex operand delimiters, i386
658
659 @cindex immediate operands, x86-64
660 @cindex x86-64 immediate operands
661 @cindex register operands, x86-64
662 @cindex x86-64 register operands
663 @cindex jump/call operands, x86-64
664 @cindex x86-64 jump/call operands
665 @cindex operand delimiters, x86-64
666 @itemize @bullet
667 @item
668 AT&T immediate operands are preceded by @samp{$}; Intel immediate
669 operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
670 AT&T register operands are preceded by @samp{%}; Intel register operands
671 are undelimited. AT&T absolute (as opposed to PC relative) jump/call
672 operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
673
674 @cindex i386 source, destination operands
675 @cindex source, destination operands; i386
676 @cindex x86-64 source, destination operands
677 @cindex source, destination operands; x86-64
678 @item
679 AT&T and Intel syntax use the opposite order for source and destination
680 operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
681 @samp{source, dest} convention is maintained for compatibility with
682 previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
683 instructions with 2 immediate operands, such as the @samp{enter}
684 instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
685
686 @cindex mnemonic suffixes, i386
687 @cindex sizes operands, i386
688 @cindex i386 size suffixes
689 @cindex mnemonic suffixes, x86-64
690 @cindex sizes operands, x86-64
691 @cindex x86-64 size suffixes
692 @item
693 In AT&T syntax the size of memory operands is determined from the last
694 character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
695 @samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
696 (32-bit) and quadruple word (64-bit) memory references. Mnemonic suffixes
697 of @samp{x}, @samp{y} and @samp{z} specify xmm (128-bit vector), ymm
698 (256-bit vector) and zmm (512-bit vector) memory references, only when there's
699 no other way to disambiguate an instruction. Intel syntax accomplishes this by
700 prefixing memory operands (@emph{not} the instruction mnemonics) with
701 @samp{byte ptr}, @samp{word ptr}, @samp{dword ptr}, @samp{qword ptr},
702 @samp{xmmword ptr}, @samp{ymmword ptr} and @samp{zmmword ptr}. Thus, Intel
703 syntax @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
704 syntax. In Intel syntax, @samp{fword ptr}, @samp{tbyte ptr} and
705 @samp{oword ptr} specify 48-bit, 80-bit and 128-bit memory references.
706
707 In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
708 instruction with the 64-bit displacement or immediate operand.
709
710 @cindex return instructions, i386
711 @cindex i386 jump, call, return
712 @cindex return instructions, x86-64
713 @cindex x86-64 jump, call, return
714 @item
715 Immediate form long jumps and calls are
716 @samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
717 Intel syntax is
718 @samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
719 instruction
720 is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
721 @samp{ret far @var{stack-adjust}}.
722
723 @cindex sections, i386
724 @cindex i386 sections
725 @cindex sections, x86-64
726 @cindex x86-64 sections
727 @item
728 The AT&T assembler does not provide support for multiple section
729 programs. Unix style systems expect all programs to be single sections.
730 @end itemize
731
732 @node i386-Chars
733 @subsection Special Characters
734
735 @cindex line comment character, i386
736 @cindex i386 line comment character
737 The presence of a @samp{#} appearing anywhere on a line indicates the
738 start of a comment that extends to the end of that line.
739
740 If a @samp{#} appears as the first character of a line then the whole
741 line is treated as a comment, but in this case the line can also be a
742 logical line number directive (@pxref{Comments}) or a preprocessor
743 control command (@pxref{Preprocessing}).
744
745 If the @option{--divide} command-line option has not been specified
746 then the @samp{/} character appearing anywhere on a line also
747 introduces a line comment.
748
749 @cindex line separator, i386
750 @cindex statement separator, i386
751 @cindex i386 line separator
752 The @samp{;} character can be used to separate statements on the same
753 line.
754
755 @node i386-Mnemonics
756 @section i386-Mnemonics
757 @subsection Instruction Naming
758
759 @cindex i386 instruction naming
760 @cindex instruction naming, i386
761 @cindex x86-64 instruction naming
762 @cindex instruction naming, x86-64
763
764 Instruction mnemonics are suffixed with one character modifiers which
765 specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
766 and @samp{q} specify byte, word, long and quadruple word operands. If
767 no suffix is specified by an instruction then @code{@value{AS}} tries to
768 fill in the missing suffix based on the destination register operand
769 (the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
770 to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
771 @samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
772 assembler which assumes that a missing mnemonic suffix implies long
773 operand size. (This incompatibility does not affect compiler output
774 since compilers always explicitly specify the mnemonic suffix.)
775
776 When there is no sizing suffix and no (suitable) register operands to
777 deduce the size of memory operands, with a few exceptions and where long
778 operand size is possible in the first place, operand size will default
779 to long in 32- and 64-bit modes. Similarly it will default to short in
780 16-bit mode. Noteworthy exceptions are
781
782 @itemize @bullet
783 @item
784 Instructions with an implicit on-stack operand as well as branches,
785 which default to quad in 64-bit mode.
786
787 @item
788 Sign- and zero-extending moves, which default to byte size source
789 operands.
790
791 @item
792 Floating point insns with integer operands, which default to short (for
793 perhaps historical reasons).
794
795 @item
796 CRC32 with a 64-bit destination, which defaults to a quad source
797 operand.
798
799 @end itemize
800
801 @cindex encoding options, i386
802 @cindex encoding options, x86-64
803
804 Different encoding options can be specified via pseudo prefixes:
805
806 @itemize @bullet
807 @item
808 @samp{@{disp8@}} -- prefer 8-bit displacement.
809
810 @item
811 @samp{@{disp32@}} -- prefer 32-bit displacement.
812
813 @item
814 @samp{@{load@}} -- prefer load-form instruction.
815
816 @item
817 @samp{@{store@}} -- prefer store-form instruction.
818
819 @item
820 @samp{@{vex@}} -- encode with VEX prefix.
821
822 @item
823 @samp{@{vex3@}} -- encode with 3-byte VEX prefix.
824
825 @item
826 @samp{@{evex@}} -- encode with EVEX prefix.
827
828 @item
829 @samp{@{rex@}} -- prefer REX prefix for integer and legacy vector
830 instructions (x86-64 only). Note that this differs from the @samp{rex}
831 prefix which generates REX prefix unconditionally.
832
833 @item
834 @samp{@{nooptimize@}} -- disable instruction size optimization.
835 @end itemize
836
837 @cindex conversion instructions, i386
838 @cindex i386 conversion instructions
839 @cindex conversion instructions, x86-64
840 @cindex x86-64 conversion instructions
841 The Intel-syntax conversion instructions
842
843 @itemize @bullet
844 @item
845 @samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
846
847 @item
848 @samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
849
850 @item
851 @samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
852
853 @item
854 @samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
855
856 @item
857 @samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
858 (x86-64 only),
859
860 @item
861 @samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
862 @samp{%rdx:%rax} (x86-64 only),
863 @end itemize
864
865 @noindent
866 are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
867 @samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
868 instructions.
869
870 @cindex extension instructions, i386
871 @cindex i386 extension instructions
872 @cindex extension instructions, x86-64
873 @cindex x86-64 extension instructions
874 The Intel-syntax extension instructions
875
876 @itemize @bullet
877 @item
878 @samp{movsx} --- sign-extend @samp{reg8/mem8} to @samp{reg16}.
879
880 @item
881 @samp{movsx} --- sign-extend @samp{reg8/mem8} to @samp{reg32}.
882
883 @item
884 @samp{movsx} --- sign-extend @samp{reg8/mem8} to @samp{reg64}
885 (x86-64 only).
886
887 @item
888 @samp{movsx} --- sign-extend @samp{reg16/mem16} to @samp{reg32}
889
890 @item
891 @samp{movsx} --- sign-extend @samp{reg16/mem16} to @samp{reg64}
892 (x86-64 only).
893
894 @item
895 @samp{movsxd} --- sign-extend @samp{reg32/mem32} to @samp{reg64}
896 (x86-64 only).
897
898 @item
899 @samp{movzx} --- zero-extend @samp{reg8/mem8} to @samp{reg16}.
900
901 @item
902 @samp{movzx} --- zero-extend @samp{reg8/mem8} to @samp{reg32}.
903
904 @item
905 @samp{movzx} --- zero-extend @samp{reg8/mem8} to @samp{reg64}
906 (x86-64 only).
907
908 @item
909 @samp{movzx} --- zero-extend @samp{reg16/mem16} to @samp{reg32}
910
911 @item
912 @samp{movzx} --- zero-extend @samp{reg16/mem16} to @samp{reg64}
913 (x86-64 only).
914 @end itemize
915
916 @noindent
917 are called @samp{movsbw/movsxb/movsx}, @samp{movsbl/movsxb/movsx},
918 @samp{movsbq/movsb/movsx}, @samp{movswl/movsxw}, @samp{movswq/movsxw},
919 @samp{movslq/movsxl}, @samp{movzbw/movzxb/movzx},
920 @samp{movzbl/movzxb/movzx}, @samp{movzbq/movzxb/movzx},
921 @samp{movzwl/movzxw} and @samp{movzwq/movzxw} in AT&T syntax.
922
923 @cindex jump instructions, i386
924 @cindex call instructions, i386
925 @cindex jump instructions, x86-64
926 @cindex call instructions, x86-64
927 Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
928 AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
929 convention.
930
931 @subsection AT&T Mnemonic versus Intel Mnemonic
932
933 @cindex i386 mnemonic compatibility
934 @cindex mnemonic compatibility, i386
935
936 @code{@value{AS}} supports assembly using Intel mnemonic.
937 @code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
938 @code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
939 syntax for compatibility with the output of @code{@value{GCC}}.
940 Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
941 @samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
942 @samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
943 assembler with different mnemonics from those in Intel IA32 specification.
944 @code{@value{GCC}} generates those instructions with AT&T mnemonic.
945
946 @itemize @bullet
947 @item @samp{movslq} with AT&T mnemonic only accepts 64-bit destination
948 register. @samp{movsxd} should be used to encode 16-bit or 32-bit
949 destination register with both AT&T and Intel mnemonics.
950 @end itemize
951
952 @node i386-Regs
953 @section Register Naming
954
955 @cindex i386 registers
956 @cindex registers, i386
957 @cindex x86-64 registers
958 @cindex registers, x86-64
959 Register operands are always prefixed with @samp{%}. The 80386 registers
960 consist of
961
962 @itemize @bullet
963 @item
964 the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
965 @samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
966 frame pointer), and @samp{%esp} (the stack pointer).
967
968 @item
969 the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
970 @samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
971
972 @item
973 the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
974 @samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
975 are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
976 @samp{%cx}, and @samp{%dx})
977
978 @item
979 the 6 section registers @samp{%cs} (code section), @samp{%ds}
980 (data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
981 and @samp{%gs}.
982
983 @item
984 the 5 processor control registers @samp{%cr0}, @samp{%cr2},
985 @samp{%cr3}, @samp{%cr4}, and @samp{%cr8}.
986
987 @item
988 the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
989 @samp{%db3}, @samp{%db6}, and @samp{%db7}.
990
991 @item
992 the 2 test registers @samp{%tr6} and @samp{%tr7}.
993
994 @item
995 the 8 floating point register stack @samp{%st} or equivalently
996 @samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
997 @samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
998 These registers are overloaded by 8 MMX registers @samp{%mm0},
999 @samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
1000 @samp{%mm6} and @samp{%mm7}.
1001
1002 @item
1003 the 8 128-bit SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
1004 @samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
1005 @end itemize
1006
1007 The AMD x86-64 architecture extends the register set by:
1008
1009 @itemize @bullet
1010 @item
1011 enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
1012 accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
1013 @samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
1014 pointer)
1015
1016 @item
1017 the 8 extended registers @samp{%r8}--@samp{%r15}.
1018
1019 @item
1020 the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}.
1021
1022 @item
1023 the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}.
1024
1025 @item
1026 the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}.
1027
1028 @item
1029 the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
1030
1031 @item
1032 the 8 debug registers: @samp{%db8}--@samp{%db15}.
1033
1034 @item
1035 the 8 128-bit SSE registers: @samp{%xmm8}--@samp{%xmm15}.
1036 @end itemize
1037
1038 With the AVX extensions more registers were made available:
1039
1040 @itemize @bullet
1041
1042 @item
1043 the 16 256-bit SSE @samp{%ymm0}--@samp{%ymm15} (only the first 8
1044 available in 32-bit mode). The bottom 128 bits are overlaid with the
1045 @samp{xmm0}--@samp{xmm15} registers.
1046
1047 @end itemize
1048
1049 The AVX2 extensions made in 64-bit mode more registers available:
1050
1051 @itemize @bullet
1052
1053 @item
1054 the 16 128-bit registers @samp{%xmm16}--@samp{%xmm31} and the 16 256-bit
1055 registers @samp{%ymm16}--@samp{%ymm31}.
1056
1057 @end itemize
1058
1059 The AVX512 extensions added the following registers:
1060
1061 @itemize @bullet
1062
1063 @item
1064 the 32 512-bit registers @samp{%zmm0}--@samp{%zmm31} (only the first 8
1065 available in 32-bit mode). The bottom 128 bits are overlaid with the
1066 @samp{%xmm0}--@samp{%xmm31} registers and the first 256 bits are
1067 overlaid with the @samp{%ymm0}--@samp{%ymm31} registers.
1068
1069 @item
1070 the 8 mask registers @samp{%k0}--@samp{%k7}.
1071
1072 @end itemize
1073
1074 @node i386-Prefixes
1075 @section Instruction Prefixes
1076
1077 @cindex i386 instruction prefixes
1078 @cindex instruction prefixes, i386
1079 @cindex prefixes, i386
1080 Instruction prefixes are used to modify the following instruction. They
1081 are used to repeat string instructions, to provide section overrides, to
1082 perform bus lock operations, and to change operand and address sizes.
1083 (Most instructions that normally operate on 32-bit operands will use
1084 16-bit operands if the instruction has an ``operand size'' prefix.)
1085 Instruction prefixes are best written on the same line as the instruction
1086 they act upon. For example, the @samp{scas} (scan string) instruction is
1087 repeated with:
1088
1089 @smallexample
1090 repne scas %es:(%edi),%al
1091 @end smallexample
1092
1093 You may also place prefixes on the lines immediately preceding the
1094 instruction, but this circumvents checks that @code{@value{AS}} does
1095 with prefixes, and will not work with all prefixes.
1096
1097 Here is a list of instruction prefixes:
1098
1099 @cindex section override prefixes, i386
1100 @itemize @bullet
1101 @item
1102 Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
1103 @samp{fs}, @samp{gs}. These are automatically added by specifying
1104 using the @var{section}:@var{memory-operand} form for memory references.
1105
1106 @cindex size prefixes, i386
1107 @item
1108 Operand/Address size prefixes @samp{data16} and @samp{addr16}
1109 change 32-bit operands/addresses into 16-bit operands/addresses,
1110 while @samp{data32} and @samp{addr32} change 16-bit ones (in a
1111 @code{.code16} section) into 32-bit operands/addresses. These prefixes
1112 @emph{must} appear on the same line of code as the instruction they
1113 modify. For example, in a 16-bit @code{.code16} section, you might
1114 write:
1115
1116 @smallexample
1117 addr32 jmpl *(%ebx)
1118 @end smallexample
1119
1120 @cindex bus lock prefixes, i386
1121 @cindex inhibiting interrupts, i386
1122 @item
1123 The bus lock prefix @samp{lock} inhibits interrupts during execution of
1124 the instruction it precedes. (This is only valid with certain
1125 instructions; see a 80386 manual for details).
1126
1127 @cindex coprocessor wait, i386
1128 @item
1129 The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
1130 complete the current instruction. This should never be needed for the
1131 80386/80387 combination.
1132
1133 @cindex repeat prefixes, i386
1134 @item
1135 The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
1136 to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
1137 times if the current address size is 16-bits).
1138 @cindex REX prefixes, i386
1139 @item
1140 The @samp{rex} family of prefixes is used by x86-64 to encode
1141 extensions to i386 instruction set. The @samp{rex} prefix has four
1142 bits --- an operand size overwrite (@code{64}) used to change operand size
1143 from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
1144 register set.
1145
1146 You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
1147 instruction emits @samp{rex} prefix with all the bits set. By omitting
1148 the @code{64}, @code{x}, @code{y} or @code{z} you may write other
1149 prefixes as well. Normally, there is no need to write the prefixes
1150 explicitly, since gas will automatically generate them based on the
1151 instruction operands.
1152 @end itemize
1153
1154 @node i386-Memory
1155 @section Memory References
1156
1157 @cindex i386 memory references
1158 @cindex memory references, i386
1159 @cindex x86-64 memory references
1160 @cindex memory references, x86-64
1161 An Intel syntax indirect memory reference of the form
1162
1163 @smallexample
1164 @var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
1165 @end smallexample
1166
1167 @noindent
1168 is translated into the AT&T syntax
1169
1170 @smallexample
1171 @var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
1172 @end smallexample
1173
1174 @noindent
1175 where @var{base} and @var{index} are the optional 32-bit base and
1176 index registers, @var{disp} is the optional displacement, and
1177 @var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
1178 to calculate the address of the operand. If no @var{scale} is
1179 specified, @var{scale} is taken to be 1. @var{section} specifies the
1180 optional section register for the memory operand, and may override the
1181 default section register (see a 80386 manual for section register
1182 defaults). Note that section overrides in AT&T syntax @emph{must}
1183 be preceded by a @samp{%}. If you specify a section override which
1184 coincides with the default section register, @code{@value{AS}} does @emph{not}
1185 output any section register override prefixes to assemble the given
1186 instruction. Thus, section overrides can be specified to emphasize which
1187 section register is used for a given memory operand.
1188
1189 Here are some examples of Intel and AT&T style memory references:
1190
1191 @table @asis
1192 @item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
1193 @var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
1194 missing, and the default section is used (@samp{%ss} for addressing with
1195 @samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
1196
1197 @item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
1198 @var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
1199 @samp{foo}. All other fields are missing. The section register here
1200 defaults to @samp{%ds}.
1201
1202 @item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
1203 This uses the value pointed to by @samp{foo} as a memory operand.
1204 Note that @var{base} and @var{index} are both missing, but there is only
1205 @emph{one} @samp{,}. This is a syntactic exception.
1206
1207 @item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
1208 This selects the contents of the variable @samp{foo} with section
1209 register @var{section} being @samp{%gs}.
1210 @end table
1211
1212 Absolute (as opposed to PC relative) call and jump operands must be
1213 prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
1214 always chooses PC relative addressing for jump/call labels.
1215
1216 Any instruction that has a memory operand, but no register operand,
1217 @emph{must} specify its size (byte, word, long, or quadruple) with an
1218 instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
1219 respectively).
1220
1221 The x86-64 architecture adds an RIP (instruction pointer relative)
1222 addressing. This addressing mode is specified by using @samp{rip} as a
1223 base register. Only constant offsets are valid. For example:
1224
1225 @table @asis
1226 @item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
1227 Points to the address 1234 bytes past the end of the current
1228 instruction.
1229
1230 @item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
1231 Points to the @code{symbol} in RIP relative way, this is shorter than
1232 the default absolute addressing.
1233 @end table
1234
1235 Other addressing modes remain unchanged in x86-64 architecture, except
1236 registers used are 64-bit instead of 32-bit.
1237
1238 @node i386-Jumps
1239 @section Handling of Jump Instructions
1240
1241 @cindex jump optimization, i386
1242 @cindex i386 jump optimization
1243 @cindex jump optimization, x86-64
1244 @cindex x86-64 jump optimization
1245 Jump instructions are always optimized to use the smallest possible
1246 displacements. This is accomplished by using byte (8-bit) displacement
1247 jumps whenever the target is sufficiently close. If a byte displacement
1248 is insufficient a long displacement is used. We do not support
1249 word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
1250 instruction with the @samp{data16} instruction prefix), since the 80386
1251 insists upon masking @samp{%eip} to 16 bits after the word displacement
1252 is added. (See also @pxref{i386-Arch})
1253
1254 Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
1255 @samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
1256 displacements, so that if you use these instructions (@code{@value{GCC}} does
1257 not use them) you may get an error message (and incorrect code). The AT&T
1258 80386 assembler tries to get around this problem by expanding @samp{jcxz foo}
1259 to
1260
1261 @smallexample
1262 jcxz cx_zero
1263 jmp cx_nonzero
1264 cx_zero: jmp foo
1265 cx_nonzero:
1266 @end smallexample
1267
1268 @node i386-Float
1269 @section Floating Point
1270
1271 @cindex i386 floating point
1272 @cindex floating point, i386
1273 @cindex x86-64 floating point
1274 @cindex floating point, x86-64
1275 All 80387 floating point types except packed BCD are supported.
1276 (BCD support may be added without much difficulty). These data
1277 types are 16-, 32-, and 64- bit integers, and single (32-bit),
1278 double (64-bit), and extended (80-bit) precision floating point.
1279 Each supported type has an instruction mnemonic suffix and a constructor
1280 associated with it. Instruction mnemonic suffixes specify the operand's
1281 data type. Constructors build these data types into memory.
1282
1283 @cindex @code{float} directive, i386
1284 @cindex @code{single} directive, i386
1285 @cindex @code{double} directive, i386
1286 @cindex @code{tfloat} directive, i386
1287 @cindex @code{float} directive, x86-64
1288 @cindex @code{single} directive, x86-64
1289 @cindex @code{double} directive, x86-64
1290 @cindex @code{tfloat} directive, x86-64
1291 @itemize @bullet
1292 @item
1293 Floating point constructors are @samp{.float} or @samp{.single},
1294 @samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
1295 These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
1296 and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
1297 only supports this format via the @samp{fldt} (load 80-bit real to stack
1298 top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
1299
1300 @cindex @code{word} directive, i386
1301 @cindex @code{long} directive, i386
1302 @cindex @code{int} directive, i386
1303 @cindex @code{quad} directive, i386
1304 @cindex @code{word} directive, x86-64
1305 @cindex @code{long} directive, x86-64
1306 @cindex @code{int} directive, x86-64
1307 @cindex @code{quad} directive, x86-64
1308 @item
1309 Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
1310 @samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
1311 corresponding instruction mnemonic suffixes are @samp{s} (single),
1312 @samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
1313 the 64-bit @samp{q} format is only present in the @samp{fildq} (load
1314 quad integer to stack top) and @samp{fistpq} (store quad integer and pop
1315 stack) instructions.
1316 @end itemize
1317
1318 Register to register operations should not use instruction mnemonic suffixes.
1319 @samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
1320 wrote @samp{fst %st, %st(1)}, since all register to register operations
1321 use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
1322 which converts @samp{%st} from 80-bit to 64-bit floating point format,
1323 then stores the result in the 4 byte location @samp{mem})
1324
1325 @node i386-SIMD
1326 @section Intel's MMX and AMD's 3DNow! SIMD Operations
1327
1328 @cindex MMX, i386
1329 @cindex 3DNow!, i386
1330 @cindex SIMD, i386
1331 @cindex MMX, x86-64
1332 @cindex 3DNow!, x86-64
1333 @cindex SIMD, x86-64
1334
1335 @code{@value{AS}} supports Intel's MMX instruction set (SIMD
1336 instructions for integer data), available on Intel's Pentium MMX
1337 processors and Pentium II processors, AMD's K6 and K6-2 processors,
1338 Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
1339 instruction set (SIMD instructions for 32-bit floating point data)
1340 available on AMD's K6-2 processor and possibly others in the future.
1341
1342 Currently, @code{@value{AS}} does not support Intel's floating point
1343 SIMD, Katmai (KNI).
1344
1345 The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
1346 @samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
1347 16-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
1348 floating point values. The MMX registers cannot be used at the same time
1349 as the floating point stack.
1350
1351 See Intel and AMD documentation, keeping in mind that the operand order in
1352 instructions is reversed from the Intel syntax.
1353
1354 @node i386-LWP
1355 @section AMD's Lightweight Profiling Instructions
1356
1357 @cindex LWP, i386
1358 @cindex LWP, x86-64
1359
1360 @code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
1361 instruction set, available on AMD's Family 15h (Orochi) processors.
1362
1363 LWP enables applications to collect and manage performance data, and
1364 react to performance events. The collection of performance data
1365 requires no context switches. LWP runs in the context of a thread and
1366 so several counters can be used independently across multiple threads.
1367 LWP can be used in both 64-bit and legacy 32-bit modes.
1368
1369 For detailed information on the LWP instruction set, see the
1370 @cite{AMD Lightweight Profiling Specification} available at
1371 @uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
1372
1373 @node i386-BMI
1374 @section Bit Manipulation Instructions
1375
1376 @cindex BMI, i386
1377 @cindex BMI, x86-64
1378
1379 @code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1380
1381 BMI instructions provide several instructions implementing individual
1382 bit manipulation operations such as isolation, masking, setting, or
1383 resetting.
1384
1385 @c Need to add a specification citation here when available.
1386
1387 @node i386-TBM
1388 @section AMD's Trailing Bit Manipulation Instructions
1389
1390 @cindex TBM, i386
1391 @cindex TBM, x86-64
1392
1393 @code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1394 instruction set, available on AMD's BDVER2 processors (Trinity and
1395 Viperfish).
1396
1397 TBM instructions provide instructions implementing individual bit
1398 manipulation operations such as isolating, masking, setting, resetting,
1399 complementing, and operations on trailing zeros and ones.
1400
1401 @c Need to add a specification citation here when available.
1402
1403 @node i386-16bit
1404 @section Writing 16-bit Code
1405
1406 @cindex i386 16-bit code
1407 @cindex 16-bit code, i386
1408 @cindex real-mode code, i386
1409 @cindex @code{code16gcc} directive, i386
1410 @cindex @code{code16} directive, i386
1411 @cindex @code{code32} directive, i386
1412 @cindex @code{code64} directive, i386
1413 @cindex @code{code64} directive, x86-64
1414 While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1415 or 64-bit x86-64 code depending on the default configuration,
1416 it also supports writing code to run in real mode or in 16-bit protected
1417 mode code segments. To do this, put a @samp{.code16} or
1418 @samp{.code16gcc} directive before the assembly language instructions to
1419 be run in 16-bit mode. You can switch @code{@value{AS}} to writing
1420 32-bit code with the @samp{.code32} directive or 64-bit code with the
1421 @samp{.code64} directive.
1422
1423 @samp{.code16gcc} provides experimental support for generating 16-bit
1424 code from gcc, and differs from @samp{.code16} in that @samp{call},
1425 @samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1426 @samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1427 default to 32-bit size. This is so that the stack pointer is
1428 manipulated in the same way over function calls, allowing access to
1429 function parameters at the same stack offsets as in 32-bit mode.
1430 @samp{.code16gcc} also automatically adds address size prefixes where
1431 necessary to use the 32-bit addressing modes that gcc generates.
1432
1433 The code which @code{@value{AS}} generates in 16-bit mode will not
1434 necessarily run on a 16-bit pre-80386 processor. To write code that
1435 runs on such a processor, you must refrain from using @emph{any} 32-bit
1436 constructs which require @code{@value{AS}} to output address or operand
1437 size prefixes.
1438
1439 Note that writing 16-bit code instructions by explicitly specifying a
1440 prefix or an instruction mnemonic suffix within a 32-bit code section
1441 generates different machine instructions than those generated for a
1442 16-bit code segment. In a 32-bit code section, the following code
1443 generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1444 value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1445
1446 @smallexample
1447 pushw $4
1448 @end smallexample
1449
1450 The same code in a 16-bit code section would generate the machine
1451 opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
1452 is correct since the processor default operand size is assumed to be 16
1453 bits in a 16-bit code section.
1454
1455 @node i386-Arch
1456 @section Specifying CPU Architecture
1457
1458 @cindex arch directive, i386
1459 @cindex i386 arch directive
1460 @cindex arch directive, x86-64
1461 @cindex x86-64 arch directive
1462
1463 @code{@value{AS}} may be told to assemble for a particular CPU
1464 (sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
1465 directive enables a warning when gas detects an instruction that is not
1466 supported on the CPU specified. The choices for @var{cpu_type} are:
1467
1468 @multitable @columnfractions .20 .20 .20 .20
1469 @item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1470 @item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
1471 @item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
1472 @item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
1473 @item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @tab @samp{iamcu}
1474 @item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
1475 @item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
1476 @item @samp{bdver4} @tab @samp{znver1} @tab @samp{znver2} @tab @samp{btver1}
1477 @item @samp{btver2} @tab @samp{generic32} @tab @samp{generic64}
1478 @item @samp{.cmov} @tab @samp{.fxsr} @tab @samp{.mmx}
1479 @item @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3} @tab @samp{.sse4a}
1480 @item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
1481 @item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1482 @item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1483 @item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
1484 @item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
1485 @item @samp{.lzcnt} @tab @samp{.popcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc}
1486 @item @samp{.hle}
1487 @item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1488 @item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1489 @item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1490 @item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
1491 @item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
1492 @item @samp{.avx512vbmi} @tab @samp{.avx512_4fmaps} @tab @samp{.avx512_4vnniw}
1493 @item @samp{.avx512_vpopcntdq} @tab @samp{.avx512_vbmi2} @tab @samp{.avx512_vnni}
1494 @item @samp{.avx512_bitalg} @tab @samp{.avx512_bf16} @tab @samp{.avx512_vp2intersect}
1495 @item @samp{.clwb} @tab @samp{.rdpid} @tab @samp{.ptwrite} @tab @item @samp{.ibt}
1496 @item @samp{.wbnoinvd} @tab @samp{.pconfig} @tab @samp{.waitpkg} @tab @samp{.cldemote}
1497 @item @samp{.shstk} @tab @samp{.gfni} @tab @samp{.vaes} @tab @samp{.vpclmulqdq}
1498 @item @samp{.movdiri} @tab @samp{.movdir64b} @tab @samp{.enqcmd}
1499 @item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
1500 @item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme}
1501 @item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
1502 @item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx} @tab @samp{.rdpru}
1503 @item @samp{.mcommit} @tab @samp{.sev_es}
1504 @end multitable
1505
1506 Apart from the warning, there are only two other effects on
1507 @code{@value{AS}} operation; Firstly, if you specify a CPU other than
1508 @samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1509 will automatically use a two byte opcode sequence. The larger three
1510 byte opcode sequence is used on the 486 (and when no architecture is
1511 specified) because it executes faster on the 486. Note that you can
1512 explicitly request the two byte opcode by writing @samp{sarl %eax}.
1513 Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1514 @emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1515 conditional jumps will be promoted when necessary to a two instruction
1516 sequence consisting of a conditional jump of the opposite sense around
1517 an unconditional jump to the target.
1518
1519 Following the CPU architecture (but not a sub-architecture, which are those
1520 starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1521 control automatic promotion of conditional jumps. @samp{jumps} is the
1522 default, and enables jump promotion; All external jumps will be of the long
1523 variety, and file-local jumps will be promoted as necessary.
1524 (@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1525 byte offset jumps, and warns about file-local conditional jumps that
1526 @code{@value{AS}} promotes.
1527 Unconditional jumps are treated as for @samp{jumps}.
1528
1529 For example
1530
1531 @smallexample
1532 .arch i8086,nojumps
1533 @end smallexample
1534
1535 @node i386-ISA
1536 @section AMD64 ISA vs. Intel64 ISA
1537
1538 There are some discrepancies between AMD64 and Intel64 ISAs.
1539
1540 @itemize @bullet
1541 @item For @samp{movsxd} with 16-bit destination register, AMD64
1542 supports 32-bit source operand and Intel64 supports 16-bit source
1543 operand.
1544
1545 @item For far branches (with explicit memory operand), both ISAs support
1546 32- and 16-bit operand size. Intel64 additionally supports 64-bit
1547 operand size, encoded as @samp{ljmpq} and @samp{lcallq} in AT&T syntax
1548 and with an explicit @samp{tbyte ptr} operand size specifier in Intel
1549 syntax.
1550
1551 @item @samp{lfs}, @samp{lgs}, and @samp{lss} similarly allow for 16-
1552 and 32-bit operand size (32- and 48-bit memory operand) in both ISAs,
1553 while Intel64 additionally supports 64-bit operand sise (80-bit memory
1554 operands).
1555
1556 @end itemize
1557
1558 @node i386-Bugs
1559 @section AT&T Syntax bugs
1560
1561 The UnixWare assembler, and probably other AT&T derived ix86 Unix
1562 assemblers, generate floating point instructions with reversed source
1563 and destination registers in certain cases. Unfortunately, gcc and
1564 possibly many other programs use this reversed syntax, so we're stuck
1565 with it.
1566
1567 For example
1568
1569 @smallexample
1570 fsub %st,%st(3)
1571 @end smallexample
1572 @noindent
1573 results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1574 than the expected @samp{%st(3) - %st}. This happens with all the
1575 non-commutative arithmetic floating point operations with two register
1576 operands where the source register is @samp{%st} and the destination
1577 register is @samp{%st(i)}.
1578
1579 @node i386-Notes
1580 @section Notes
1581
1582 @cindex i386 @code{mul}, @code{imul} instructions
1583 @cindex @code{mul} instruction, i386
1584 @cindex @code{imul} instruction, i386
1585 @cindex @code{mul} instruction, x86-64
1586 @cindex @code{imul} instruction, x86-64
1587 There is some trickery concerning the @samp{mul} and @samp{imul}
1588 instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
1589 multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1590 for @samp{imul}) can be output only in the one operand form. Thus,
1591 @samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1592 the expanding multiply would clobber the @samp{%edx} register, and this
1593 would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
1594 64-bit product in @samp{%edx:%eax}.
1595
1596 We have added a two operand form of @samp{imul} when the first operand
1597 is an immediate mode expression and the second operand is a register.
1598 This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1599 example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1600 $69, %eax, %eax}.
1601
This page took 0.062032 seconds and 5 git commands to generate.