RISC-V: Add description for RISC-V Modifiers to as doc.
[deliverable/binutils-gdb.git] / gas / doc / c-riscv.texi
1 @c Copyright (C) 2016-2020 Free Software Foundation, Inc.
2 @c This is part of the GAS anual.
3 @c For copying conditions, see the file as.texinfo
4 @c man end
5
6 @ifset GENERIC
7 @page
8 @node RISC-V-Dependent
9 @chapter RISC-V Dependent Features
10 @end ifset
11 @ifclear GENERIC
12 @node Machine Dependencies
13 @chapter RISC-V Dependent Features
14 @end ifclear
15
16 @cindex RISC-V support
17 @menu
18 * RISC-V-Options:: RISC-V Options
19 * RISC-V-Directives:: RISC-V Directives
20 * RISC-V-Modifiers:: RISC-V Assembler Modifiers
21 * RISC-V-Formats:: RISC-V Instruction Formats
22 * RISC-V-ATTRIBUTE:: RISC-V Object Attribute
23 @end menu
24
25 @node RISC-V-Options
26 @section RISC-V Options
27
28 The following table lists all available RISC-V specific options.
29
30 @c man begin OPTIONS
31 @table @gcctabopt
32
33 @cindex @samp{-fpic} option, RISC-V
34 @item -fpic
35 @itemx -fPIC
36 Generate position-independent code
37
38 @cindex @samp{-fno-pic} option, RISC-V
39 @item -fno-pic
40 Don't generate position-independent code (default)
41
42 @cindex @samp{-march=ISA} option, RISC-V
43 @item -march=ISA
44 Select the base isa, as specified by ISA. For example -march=rv32ima.
45
46 @cindex @samp{-mabi=ABI} option, RISC-V
47 @item -mabi=ABI
48 Selects the ABI, which is either "ilp32" or "lp64", optionally followed
49 by "f", "d", or "q" to indicate single-precision, double-precision, or
50 quad-precision floating-point calling convention, or none to indicate
51 the soft-float calling convention. Also, "ilp32" can optionally be followed
52 by "e" to indicate the RVE ABI, which is always soft-float.
53
54 @cindex @samp{-mrelax} option, RISC-V
55 @item -mrelax
56 Take advantage of linker relaxations to reduce the number of instructions
57 required to materialize symbol addresses. (default)
58
59 @cindex @samp{-mno-relax} option, RISC-V
60 @item -mno-relax
61 Don't do linker relaxations.
62
63 @cindex @samp{-march-attr} option, RISC-V
64 @item -march-attr
65 Generate the default contents for the riscv elf attribute section if the
66 .attribute directives are not set. This section is used to record the
67 information that a linker or runtime loader needs to check compatibility.
68 This information includes ISA string, stack alignment requirement, unaligned
69 memory accesses, and the major, minor and revision version of privileged
70 specification.
71
72 @cindex @samp{-mno-arch-attr} option, RISC-V
73 @item -mno-arch-attr
74 Don't generate the default riscv elf attribute section if the .attribute
75 directives are not set.
76
77 @cindex @samp{-mcsr-check} option, RISC-V
78 @item -mcsr-check
79 Enable the CSR checking for the ISA-dependent CRS and the read-only CSR.
80 The ISA-dependent CSR are only valid when the specific ISA is set. The
81 read-only CSR can not be written by the CSR instructions.
82
83 @cindex @samp{-mno-csr-check} option, RISC-V
84 @item -mno-csr-check
85 Don't do CSR cheching.
86 @end table
87 @c man end
88
89 @node RISC-V-Directives
90 @section RISC-V Directives
91 @cindex machine directives, RISC-V
92 @cindex RISC-V machine directives
93
94 The following table lists all available RISC-V specific directives.
95
96 @table @code
97
98 @cindex @code{align} directive
99 @item .align @var{size-log-2}
100 Align to the given boundary, with the size given as log2 the number of bytes to
101 align to.
102
103 @cindex Data directives
104 @item .half @var{value}
105 @itemx .word @var{value}
106 @itemx .dword @var{value}
107 Emits a half-word, word, or double-word value at the current position.
108
109 @cindex DTP-relative data directives
110 @item .dtprelword @var{value}
111 @itemx .dtpreldword @var{value}
112 Emits a DTP-relative word (or double-word) at the current position. This is
113 meant to be used by the compiler in shared libraries for DWARF debug info for
114 thread local variables.
115
116 @cindex BSS directive
117 @item .bss
118 Sets the current section to the BSS section.
119
120 @cindex LEB128 directives
121 @item .uleb128 @var{value}
122 @itemx .sleb128 @var{value}
123 Emits a signed or unsigned LEB128 value at the current position. This only
124 accepts constant expressions, because symbol addresses can change with
125 relaxation, and we don't support relocations to modify LEB128 values at link
126 time.
127
128 @cindex Option directive
129 @cindex @code{option} directive
130 @item .option @var{argument}
131 Modifies RISC-V specific assembler options inline with the assembly code.
132 This is used when particular instruction sequences must be assembled with a
133 specific set of options. For example, since we relax addressing sequences to
134 shorter GP-relative sequences when possible the initial load of GP must not be
135 relaxed and should be emitted as something like
136
137 @smallexample
138 .option push
139 .option norelax
140 la gp, __global_pointer$
141 .option pop
142 @end smallexample
143
144 in order to produce after linker relaxation the expected
145
146 @smallexample
147 auipc gp, %pcrel_hi(__global_pointer$)
148 addi gp, gp, %pcrel_lo(__global_pointer$)
149 @end smallexample
150
151 instead of just
152
153 @smallexample
154 addi gp, gp, 0
155 @end smallexample
156
157 It's not expected that options are changed in this manner during regular use,
158 but there are a handful of esoteric cases like the one above where users need
159 to disable particular features of the assembler for particular code sequences.
160 The complete list of option arguments is shown below:
161
162 @table @code
163 @item push
164 @itemx pop
165 Pushes or pops the current option stack. These should be used whenever
166 changing an option in line with assembly code in order to ensure the user's
167 command-line options are respected for the bulk of the file being assembled.
168
169 @item rvc
170 @itemx norvc
171 Enables or disables the generation of compressed instructions. Instructions
172 are opportunistically compressed by the RISC-V assembler when possible, but
173 sometimes this behavior is not desirable.
174
175 @item pic
176 @itemx nopic
177 Enables or disables position-independent code generation. Unless you really
178 know what you're doing, this should only be at the top of a file.
179
180 @item relax
181 @itemx norelax
182 Enables or disables relaxation. The RISC-V assembler and linker
183 opportunistically relax some code sequences, but sometimes this behavior is not
184 desirable.
185 @end table
186
187 @item csr-check
188 @itemx no-csr-check
189 Enables or disables the CSR checking.
190
191 @cindex INSN directives
192 @item .insn @var{value}
193 @itemx .insn @var{value}
194 This directive permits the numeric representation of an instructions
195 and makes the assembler insert the operands according to one of the
196 instruction formats for @samp{.insn} (@ref{RISC-V-Formats}).
197 For example, the instruction @samp{add a0, a1, a2} could be written as
198 @samp{.insn r 0x33, 0, 0, a0, a1, a2}.
199
200 @cindex @code{.attribute} directive, RISC-V
201 @item .attribute @var{tag}, @var{value}
202 Set the object attribute @var{tag} to @var{value}.
203
204 The @var{tag} is either an attribute number, or one of the following:
205 @code{Tag_RISCV_arch}, @code{Tag_RISCV_stack_align},
206 @code{Tag_RISCV_unaligned_access}, @code{Tag_RISCV_priv_spec},
207 @code{Tag_RISCV_priv_spec_minor}, @code{Tag_RISCV_priv_spec_revision}.
208
209 @end table
210
211 @node RISC-V-Modifiers
212 @section RISC-V Assembler Modifiers
213
214 The RISC-V assembler supports following modifiers for relocatable addresses
215 used in RISC-V instruction operands. However, we also support some pseudo
216 instructions that are easier to use than these modifiers.
217
218 @table @code
219 @item %lo(@var{symbol})
220 The low 12 bits of absolute address for @var{symbol}.
221
222 @item %hi(@var{symbol})
223 The high 20 bits of absolute address for @var{symbol}. This is usually
224 used with the %lo modifier to represent a 32-bit absolute address.
225
226 @smallexample
227 lui a0, %hi(@var{symbol}) // R_RISCV_HI20
228 addi a0, a0, %lo(@var{symbol}) // R_RISCV_LO12_I
229
230 lui a0, %hi(@var{symbol}) // R_RISCV_HI20
231 load/store a0, %lo(@var{symbol})(a0) // R_RISCV_LO12_I/S
232 @end smallexample
233
234 @item %pcrel_lo(@var{label})
235 The low 12 bits of relative address between pc and @var{symbol}.
236 The @var{symbol} is related to the high part instruction which is marked
237 by @var{label}.
238
239 @item %pcrel_hi(@var{symbol})
240 The high 20 bits of relative address between pc and @var{symbol}.
241 This is usually used with the %pcrel_lo modifier to represent a +/-2GB
242 pc-relative range.
243
244 @smallexample
245 @var{label}:
246 auipc a0, %pcrel_hi(@var{symbol}) // R_RISCV_PCREL_HI20
247 addi a0, a0, %pcrel_lo(@var{label}) // R_RISCV_PCREL_LO12_I
248
249 @var{label}:
250 auipc a0, %pcrel_hi(@var{symbol}) // R_RISCV_PCREL_HI20
251 load/store a0, %pcrel_lo(@var{label})(a0) // R_RISCV_PCREL_LO12_I/S
252 @end smallexample
253
254 Or you can use the pseudo lla/lw/sw/... instruction to do this.
255
256 @smallexample
257 lla a0, @var{symbol}
258 @end smallexample
259
260 @item %tprel_add(@var{symbol})
261 This is used purely to associate the R_RISCV_TPREL_ADD relocation for
262 TLS relaxation. This one is only valid as the fourth operand to the normally
263 3 operand add instruction.
264
265 @item %tprel_lo(@var{symbol})
266 The low 12 bits of relative address between tp and @var{symbol}.
267
268 @item %tprel_hi(@var{symbol})
269 The high 20 bits of relative address between tp and @var{symbol}. This is
270 usually used with the %tprel_lo and %tprel_add modifiers to access the thread
271 local variable @var{symbol} in TLS Local Exec.
272
273 @smallexample
274 lui a5, %tprel_hi(@var{symbol}) // R_RISCV_TPREL_HI20
275 add a5, a5, tp, %tprel_add(@var{symbol}) // R_RISCV_TPREL_ADD
276 load/store t0, %tprel_lo(@var{symbol})(a5) // R_RISCV_TPREL_LO12_I/S
277 @end smallexample
278
279 @item %tls_ie_pcrel_hi(@var{symbol})
280 The high 20 bits of relative address between pc and GOT entry. It is
281 usually used with the %pcrel_lo modifier to access the thread local
282 variable @var{symbol} in TLS Initial Exec.
283
284 @smallexample
285 la.tls.ie a5, @var{symbol}
286 add a5, a5, tp
287 load/store t0, 0(a5)
288 @end smallexample
289
290 The pseudo la.tls.ie instruction can be expended to
291
292 @smallexample
293 @var{label}:
294 auipc a5, %tls_ie_pcrel_hi(@var{symbol}) // R_RISCV_TLS_GOT_HI20
295 load a5, %pcrel_lo(@var{label})(a5) // R_RISCV_PCREL_LO12_I
296 @end smallexample
297
298 @item %tls_gd_pcrel_hi(@var{symbol})
299 The high 20 bits of relative address between pc and GOT entry. It is
300 usually used with the %pcrel_lo modifier to access the thread local variable
301 @var{symbol} in TLS Global Dynamic.
302
303 @smallexample
304 la.tls.gd a0, @var{symbol}
305 call __tls_get_addr@@plt
306 mv a5, a0
307 load/store t0, 0(a5)
308 @end smallexample
309
310 The pseudo la.tls.gd instruction can be expended to
311
312 @smallexample
313 @var{label}:
314 auipc a0, %tls_gd_pcrel_hi(@var{symbol}) // R_RISCV_TLS_GD_HI20
315 addi a0, a0, %pcrel_lo(@var{label}) // R_RISCV_PCREL_LO12_I
316 @end smallexample
317
318 @end table
319
320 @node RISC-V-Formats
321 @section RISC-V Instruction Formats
322 @cindex instruction formats, risc-v
323 @cindex RISC-V instruction formats
324
325 The RISC-V Instruction Set Manual Volume I: User-Level ISA lists 12
326 instruction formats where some of the formats have multiple variants.
327 For the @samp{.insn} pseudo directive the assembler recognizes some
328 of the formats.
329 Typically, the most general variant of the instruction format is used
330 by the @samp{.insn} directive.
331
332 The following table lists the abbreviations used in the table of
333 instruction formats:
334
335 @display
336 @multitable @columnfractions .15 .40
337 @item opcode @tab Unsigned immediate or opcode name for 7-bits opcode.
338 @item opcode2 @tab Unsigned immediate or opcode name for 2-bits opcode.
339 @item func7 @tab Unsigned immediate for 7-bits function code.
340 @item func6 @tab Unsigned immediate for 6-bits function code.
341 @item func4 @tab Unsigned immediate for 4-bits function code.
342 @item func3 @tab Unsigned immediate for 3-bits function code.
343 @item func2 @tab Unsigned immediate for 2-bits function code.
344 @item rd @tab Destination register number for operand x, can be GPR or FPR.
345 @item rd' @tab Destination register number for operand x,
346 only accept s0-s1, a0-a5, fs0-fs1 and fa0-fa5.
347 @item rs1 @tab First source register number for operand x, can be GPR or FPR.
348 @item rs1' @tab First source register number for operand x,
349 only accept s0-s1, a0-a5, fs0-fs1 and fa0-fa5.
350 @item rs2 @tab Second source register number for operand x, can be GPR or FPR.
351 @item rs2' @tab Second source register number for operand x,
352 only accept s0-s1, a0-a5, fs0-fs1 and fa0-fa5.
353 @item simm12 @tab Sign-extended 12-bit immediate for operand x.
354 @item simm20 @tab Sign-extended 20-bit immediate for operand x.
355 @item simm6 @tab Sign-extended 6-bit immediate for operand x.
356 @item uimm8 @tab Unsigned 8-bit immediate for operand x.
357 @item symbol @tab Symbol or lable reference for operand x.
358 @end multitable
359 @end display
360
361 The following table lists all available opcode name:
362
363 @table @code
364 @item C0
365 @item C1
366 @item C2
367 Opcode space for compressed instructions.
368
369 @item LOAD
370 Opcode space for load instructions.
371
372 @item LOAD_FP
373 Opcode space for floating-point load instructions.
374
375 @item STORE
376 Opcode space for store instructions.
377
378 @item STORE_FP
379 Opcode space for floating-point store instructions.
380
381 @item AUIPC
382 Opcode space for auipc instruction.
383
384 @item LUI
385 Opcode space for lui instruction.
386
387 @item BRANCH
388 Opcode space for branch instructions.
389
390 @item JAL
391 Opcode space for jal instruction.
392
393 @item JALR
394 Opcode space for jalr instruction.
395
396 @item OP
397 Opcode space for ALU instructions.
398
399 @item OP_32
400 Opcode space for 32-bits ALU instructions.
401
402 @item OP_IMM
403 Opcode space for ALU with immediate instructions.
404
405 @item OP_IMM_32
406 Opcode space for 32-bits ALU with immediate instructions.
407
408 @item OP_FP
409 Opcode space for floating-point operation instructions.
410
411 @item MADD
412 Opcode space for madd instruction.
413
414 @item MSUB
415 Opcode space for msub instruction.
416
417 @item NMADD
418 Opcode space for nmadd instruction.
419
420 @item NMSUB
421 Opcode space for msub instruction.
422
423 @item AMO
424 Opcode space for atomic memory operation instructions.
425
426 @item MISC_MEM
427 Opcode space for misc instructions.
428
429 @item SYSTEM
430 Opcode space for system instructions.
431
432 @item CUSTOM_0
433 @item CUSTOM_1
434 @item CUSTOM_2
435 @item CUSTOM_3
436 Opcode space for customize instructions.
437
438 @end table
439
440 An instruction is two or four bytes in length and must be aligned
441 on a 2 byte boundary. The first two bits of the instruction specify the
442 length of the instruction, 00, 01 and 10 indicates a two byte instruction,
443 11 indicates a four byte instruction.
444
445 The following table lists the RISC-V instruction formats that are available
446 with the @samp{.insn} pseudo directive:
447
448 @table @code
449 @item R type: .insn r opcode, func3, func7, rd, rs1, rs2
450 @verbatim
451 +-------+-----+-----+-------+----+-------------+
452 | func7 | rs2 | rs1 | func3 | rd | opcode |
453 +-------+-----+-----+-------+----+-------------+
454 31 25 20 15 12 7 0
455 @end verbatim
456
457 @item R type with 4 register operands: .insn r opcode, func3, func2, rd, rs1, rs2, rs3
458 @itemx R4 type: .insn r4 opcode, func3, func2, rd, rs1, rs2, rs3
459 @verbatim
460 +-----+-------+-----+-----+-------+----+-------------+
461 | rs3 | func2 | rs2 | rs1 | func3 | rd | opcode |
462 +-----+-------+-----+-----+-------+----+-------------+
463 31 27 25 20 15 12 7 0
464 @end verbatim
465
466 @item I type: .insn i opcode, func3, rd, rs1, simm12
467 @verbatim
468 +-------------+-----+-------+----+-------------+
469 | simm12 | rs1 | func3 | rd | opcode |
470 +-------------+-----+-------+----+-------------+
471 31 20 15 12 7 0
472 @end verbatim
473
474 @item S type: .insn s opcode, func3, rd, rs1, simm12
475 @verbatim
476 +--------------+-----+-----+-------+-------------+-------------+
477 | simm12[11:5] | rs2 | rs1 | func3 | simm12[4:0] | opcode |
478 +--------------+-----+-----+-------+-------------+-------------+
479 31 25 20 15 12 7 0
480 @end verbatim
481
482 @item SB type: .insn sb opcode, func3, rd, rs1, symbol
483 @itemx SB type: .insn sb opcode, func3, rd, simm12(rs1)
484 @itemx B type: .insn s opcode, func3, rd, rs1, symbol
485 @itemx B type: .insn s opcode, func3, rd, simm12(rs1)
486 @verbatim
487 +------------+--------------+-----+-----+-------+-------------+-------------+--------+
488 | simm12[12] | simm12[10:5] | rs2 | rs1 | func3 | simm12[4:1] | simm12[11]] | opcode |
489 +------------+--------------+-----+-----+-------+-------------+-------------+--------+
490 31 30 25 20 15 12 7 0
491 @end verbatim
492
493 @item U type: .insn u opcode, rd, simm20
494 @verbatim
495 +---------------------------+----+-------------+
496 | simm20 | rd | opcode |
497 +---------------------------+----+-------------+
498 31 12 7 0
499 @end verbatim
500
501 @item UJ type: .insn uj opcode, rd, symbol
502 @itemx J type: .insn j opcode, rd, symbol
503 @verbatim
504 +------------+--------------+------------+---------------+----+-------------+
505 | simm20[20] | simm20[10:1] | simm20[11] | simm20[19:12] | rd | opcode |
506 +------------+--------------+------------+---------------+----+-------------+
507 31 30 21 20 12 7 0
508 @end verbatim
509
510 @item CR type: .insn cr opcode2, func4, rd, rs2
511 @verbatim
512 +---------+--------+-----+---------+
513 | func4 | rd/rs1 | rs2 | opcode2 |
514 +---------+--------+-----+---------+
515 15 12 7 2 0
516 @end verbatim
517
518 @item CI type: .insn ci opcode2, func3, rd, simm6
519 @verbatim
520 +---------+-----+--------+-----+---------+
521 | func3 | imm | rd/rs1 | imm | opcode2 |
522 +---------+-----+--------+-----+---------+
523 15 13 12 7 2 0
524 @end verbatim
525
526 @item CIW type: .insn ciw opcode2, func3, rd, uimm8
527 @verbatim
528 +---------+--------------+-----+---------+
529 | func3 | imm | rd' | opcode2 |
530 +---------+--------------+-----+---------+
531 15 13 7 2 0
532 @end verbatim
533
534 @item CA type: .insn ca opcode2, func6, func2, rd, rs2
535 @verbatim
536 +---------+----------+-------+------+--------+
537 | func6 | rd'/rs1' | func2 | rs2' | opcode |
538 +---------+----------+-------+------+--------+
539 15 10 7 5 2 0
540 @end verbatim
541
542 @item CB type: .insn cb opcode2, func3, rs1, symbol
543 @verbatim
544 +---------+--------+------+--------+---------+
545 | func3 | offset | rs1' | offset | opcode2 |
546 +---------+--------+------+--------+---------+
547 15 13 10 7 2 0
548 @end verbatim
549
550 @item CJ type: .insn cj opcode2, symbol
551 @verbatim
552 +---------+--------------------+---------+
553 | func3 | jump target | opcode2 |
554 +---------+--------------------+---------+
555 15 13 7 2 0
556 @end verbatim
557
558
559 @end table
560
561 For the complete list of all instruction format variants see
562 The RISC-V Instruction Set Manual Volume I: User-Level ISA.
563
564 @node RISC-V-ATTRIBUTE
565 @section RISC-V Object Attribute
566 @cindex Object Attribute, RISC-V
567
568 RISC-V attributes have a string value if the tag number is odd and an integer
569 value if the tag number is even.
570
571 @table @r
572 @item Tag_RISCV_stack_align (4)
573 Tag_RISCV_strict_align records the N-byte stack alignment for this object. The
574 default value is 16 for RV32I or RV64I, and 4 for RV32E.
575
576 The smallest value will be used if object files with different
577 Tag_RISCV_stack_align values are merged.
578
579 @item Tag_RISCV_arch (5)
580 Tag_RISCV_arch contains a string for the target architecture taken from the
581 option @option{-march}. Different architectures will be integrated into a
582 superset when object files are merged.
583
584 Note that the version information of the target architecture must be presented
585 explicitly in the attribute and abbreviations must be expanded. The version
586 information, if not given by @option{-march}, must be in accordance with the
587 default specified by the tool. For example, the architecture @code{RV32I} has
588 to be recorded in the attribute as @code{RV32I2P0} in which @code{2P0} stands
589 for the default version of its base ISA. On the other hand, the architecture
590 @code{RV32G} has to be presented as @code{RV32I2P0_M2P0_A2P0_F2P0_D2P0} in
591 which the abbreviation @code{G} is expanded to the @code{IMAFD} combination
592 with default versions of the standard extensions.
593
594 @item Tag_RISCV_unaligned_access (6)
595 Tag_RISCV_unaligned_access is 0 for files that do not allow any unaligned
596 memory accesses, and 1 for files that do allow unaligned memory accesses.
597
598 @item Tag_RISCV_priv_spec (8)
599 @item Tag_RISCV_priv_spec_minor (10)
600 @item Tag_RISCV_priv_spec_revision (12)
601 Tag_RISCV_priv_spec contains the major/minor/revision version information of
602 the privileged specification. It will report errors if object files of
603 different privileged specification versions are merged.
604
605 @end table
This page took 0.041856 seconds and 5 git commands to generate.