gas 0b vs 0b0 vs 00b
[deliverable/binutils-gdb.git] / gas / expr.c
1 /* expr.c -operands, expressions-
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* This is really a branch office of as-read.c. I split it out to clearly
22 distinguish the world of expressions from the world of statements.
23 (It also gives smaller files to re-compile.)
24 Here, "operand"s are of expressions, not instructions. */
25
26 #define min(a, b) ((a) < (b) ? (a) : (b))
27
28 #include "as.h"
29 #include "safe-ctype.h"
30
31 #ifdef HAVE_LIMITS_H
32 #include <limits.h>
33 #endif
34 #ifndef CHAR_BIT
35 #define CHAR_BIT 8
36 #endif
37
38 static void floating_constant (expressionS * expressionP);
39 static valueT generic_bignum_to_int32 (void);
40 #ifdef BFD64
41 static valueT generic_bignum_to_int64 (void);
42 #endif
43 static void integer_constant (int radix, expressionS * expressionP);
44 static void mri_char_constant (expressionS *);
45 static void clean_up_expression (expressionS * expressionP);
46 static segT operand (expressionS *, enum expr_mode);
47 static operatorT operatorf (int *);
48
49 extern const char EXP_CHARS[], FLT_CHARS[];
50
51 /* We keep a mapping of expression symbols to file positions, so that
52 we can provide better error messages. */
53
54 struct expr_symbol_line {
55 struct expr_symbol_line *next;
56 symbolS *sym;
57 char *file;
58 unsigned int line;
59 };
60
61 static struct expr_symbol_line *expr_symbol_lines;
62 \f
63 /* Build a dummy symbol to hold a complex expression. This is how we
64 build expressions up out of other expressions. The symbol is put
65 into the fake section expr_section. */
66
67 symbolS *
68 make_expr_symbol (expressionS *expressionP)
69 {
70 expressionS zero;
71 symbolS *symbolP;
72 struct expr_symbol_line *n;
73
74 if (expressionP->X_op == O_symbol
75 && expressionP->X_add_number == 0)
76 return expressionP->X_add_symbol;
77
78 if (expressionP->X_op == O_big)
79 {
80 /* This won't work, because the actual value is stored in
81 generic_floating_point_number or generic_bignum, and we are
82 going to lose it if we haven't already. */
83 if (expressionP->X_add_number > 0)
84 as_bad (_("bignum invalid"));
85 else
86 as_bad (_("floating point number invalid"));
87 zero.X_op = O_constant;
88 zero.X_add_number = 0;
89 zero.X_unsigned = 0;
90 zero.X_extrabit = 0;
91 clean_up_expression (&zero);
92 expressionP = &zero;
93 }
94
95 /* Putting constant symbols in absolute_section rather than
96 expr_section is convenient for the old a.out code, for which
97 S_GET_SEGMENT does not always retrieve the value put in by
98 S_SET_SEGMENT. */
99 symbolP = symbol_create (FAKE_LABEL_NAME,
100 (expressionP->X_op == O_constant
101 ? absolute_section
102 : expressionP->X_op == O_register
103 ? reg_section
104 : expr_section),
105 0, &zero_address_frag);
106 symbol_set_value_expression (symbolP, expressionP);
107
108 if (expressionP->X_op == O_constant)
109 resolve_symbol_value (symbolP);
110
111 n = (struct expr_symbol_line *) xmalloc (sizeof *n);
112 n->sym = symbolP;
113 as_where (&n->file, &n->line);
114 n->next = expr_symbol_lines;
115 expr_symbol_lines = n;
116
117 return symbolP;
118 }
119
120 /* Return the file and line number for an expr symbol. Return
121 non-zero if something was found, 0 if no information is known for
122 the symbol. */
123
124 int
125 expr_symbol_where (symbolS *sym, char **pfile, unsigned int *pline)
126 {
127 struct expr_symbol_line *l;
128
129 for (l = expr_symbol_lines; l != NULL; l = l->next)
130 {
131 if (l->sym == sym)
132 {
133 *pfile = l->file;
134 *pline = l->line;
135 return 1;
136 }
137 }
138
139 return 0;
140 }
141 \f
142 /* Utilities for building expressions.
143 Since complex expressions are recorded as symbols for use in other
144 expressions these return a symbolS * and not an expressionS *.
145 These explicitly do not take an "add_number" argument. */
146 /* ??? For completeness' sake one might want expr_build_symbol.
147 It would just return its argument. */
148
149 /* Build an expression for an unsigned constant.
150 The corresponding one for signed constants is missing because
151 there's currently no need for it. One could add an unsigned_p flag
152 but that seems more clumsy. */
153
154 symbolS *
155 expr_build_uconstant (offsetT value)
156 {
157 expressionS e;
158
159 e.X_op = O_constant;
160 e.X_add_number = value;
161 e.X_unsigned = 1;
162 e.X_extrabit = 0;
163 return make_expr_symbol (&e);
164 }
165
166 /* Build an expression for the current location ('.'). */
167
168 symbolS *
169 expr_build_dot (void)
170 {
171 expressionS e;
172
173 current_location (&e);
174 return symbol_clone_if_forward_ref (make_expr_symbol (&e));
175 }
176 \f
177 /* Build any floating-point literal here.
178 Also build any bignum literal here. */
179
180 /* Seems atof_machine can backscan through generic_bignum and hit whatever
181 happens to be loaded before it in memory. And its way too complicated
182 for me to fix right. Thus a hack. JF: Just make generic_bignum bigger,
183 and never write into the early words, thus they'll always be zero.
184 I hate Dean's floating-point code. Bleh. */
185 LITTLENUM_TYPE generic_bignum[SIZE_OF_LARGE_NUMBER + 6];
186
187 FLONUM_TYPE generic_floating_point_number = {
188 &generic_bignum[6], /* low. (JF: Was 0) */
189 &generic_bignum[SIZE_OF_LARGE_NUMBER + 6 - 1], /* high. JF: (added +6) */
190 0, /* leader. */
191 0, /* exponent. */
192 0 /* sign. */
193 };
194
195 \f
196 static void
197 floating_constant (expressionS *expressionP)
198 {
199 /* input_line_pointer -> floating-point constant. */
200 int error_code;
201
202 error_code = atof_generic (&input_line_pointer, ".", EXP_CHARS,
203 &generic_floating_point_number);
204
205 if (error_code)
206 {
207 if (error_code == ERROR_EXPONENT_OVERFLOW)
208 {
209 as_bad (_("bad floating-point constant: exponent overflow"));
210 }
211 else
212 {
213 as_bad (_("bad floating-point constant: unknown error code=%d"),
214 error_code);
215 }
216 }
217 expressionP->X_op = O_big;
218 /* input_line_pointer -> just after constant, which may point to
219 whitespace. */
220 expressionP->X_add_number = -1;
221 }
222
223 static valueT
224 generic_bignum_to_int32 (void)
225 {
226 valueT number =
227 ((generic_bignum[1] & LITTLENUM_MASK) << LITTLENUM_NUMBER_OF_BITS)
228 | (generic_bignum[0] & LITTLENUM_MASK);
229 number &= 0xffffffff;
230 return number;
231 }
232
233 #ifdef BFD64
234 static valueT
235 generic_bignum_to_int64 (void)
236 {
237 valueT number =
238 ((((((((valueT) generic_bignum[3] & LITTLENUM_MASK)
239 << LITTLENUM_NUMBER_OF_BITS)
240 | ((valueT) generic_bignum[2] & LITTLENUM_MASK))
241 << LITTLENUM_NUMBER_OF_BITS)
242 | ((valueT) generic_bignum[1] & LITTLENUM_MASK))
243 << LITTLENUM_NUMBER_OF_BITS)
244 | ((valueT) generic_bignum[0] & LITTLENUM_MASK));
245 return number;
246 }
247 #endif
248
249 static void
250 integer_constant (int radix, expressionS *expressionP)
251 {
252 char *start; /* Start of number. */
253 char *suffix = NULL;
254 char c;
255 valueT number; /* Offset or (absolute) value. */
256 short int digit; /* Value of next digit in current radix. */
257 short int maxdig = 0; /* Highest permitted digit value. */
258 int too_many_digits = 0; /* If we see >= this number of. */
259 char *name; /* Points to name of symbol. */
260 symbolS *symbolP; /* Points to symbol. */
261
262 int small; /* True if fits in 32 bits. */
263
264 /* May be bignum, or may fit in 32 bits. */
265 /* Most numbers fit into 32 bits, and we want this case to be fast.
266 so we pretend it will fit into 32 bits. If, after making up a 32
267 bit number, we realise that we have scanned more digits than
268 comfortably fit into 32 bits, we re-scan the digits coding them
269 into a bignum. For decimal and octal numbers we are
270 conservative: Some numbers may be assumed bignums when in fact
271 they do fit into 32 bits. Numbers of any radix can have excess
272 leading zeros: We strive to recognise this and cast them back
273 into 32 bits. We must check that the bignum really is more than
274 32 bits, and change it back to a 32-bit number if it fits. The
275 number we are looking for is expected to be positive, but if it
276 fits into 32 bits as an unsigned number, we let it be a 32-bit
277 number. The cavalier approach is for speed in ordinary cases. */
278 /* This has been extended for 64 bits. We blindly assume that if
279 you're compiling in 64-bit mode, the target is a 64-bit machine.
280 This should be cleaned up. */
281
282 #ifdef BFD64
283 #define valuesize 64
284 #else /* includes non-bfd case, mostly */
285 #define valuesize 32
286 #endif
287
288 if (is_end_of_line[(unsigned char) *input_line_pointer])
289 {
290 expressionP->X_op = O_absent;
291 return;
292 }
293
294 if ((NUMBERS_WITH_SUFFIX || flag_m68k_mri) && radix == 0)
295 {
296 int flt = 0;
297
298 /* In MRI mode, the number may have a suffix indicating the
299 radix. For that matter, it might actually be a floating
300 point constant. */
301 for (suffix = input_line_pointer; ISALNUM (*suffix); suffix++)
302 {
303 if (*suffix == 'e' || *suffix == 'E')
304 flt = 1;
305 }
306
307 if (suffix == input_line_pointer)
308 {
309 radix = 10;
310 suffix = NULL;
311 }
312 else
313 {
314 c = *--suffix;
315 c = TOUPPER (c);
316 /* If we have both NUMBERS_WITH_SUFFIX and LOCAL_LABELS_FB,
317 we distinguish between 'B' and 'b'. This is the case for
318 Z80. */
319 if ((NUMBERS_WITH_SUFFIX && LOCAL_LABELS_FB ? *suffix : c) == 'B')
320 radix = 2;
321 else if (c == 'D')
322 radix = 10;
323 else if (c == 'O' || c == 'Q')
324 radix = 8;
325 else if (c == 'H')
326 radix = 16;
327 else if (suffix[1] == '.' || c == 'E' || flt)
328 {
329 floating_constant (expressionP);
330 return;
331 }
332 else
333 {
334 radix = 10;
335 suffix = NULL;
336 }
337 }
338 }
339
340 switch (radix)
341 {
342 case 2:
343 maxdig = 2;
344 too_many_digits = valuesize + 1;
345 break;
346 case 8:
347 maxdig = radix = 8;
348 too_many_digits = (valuesize + 2) / 3 + 1;
349 break;
350 case 16:
351 maxdig = radix = 16;
352 too_many_digits = (valuesize + 3) / 4 + 1;
353 break;
354 case 10:
355 maxdig = radix = 10;
356 too_many_digits = (valuesize + 11) / 4; /* Very rough. */
357 }
358 #undef valuesize
359 start = input_line_pointer;
360 c = *input_line_pointer++;
361 for (number = 0;
362 (digit = hex_value (c)) < maxdig;
363 c = *input_line_pointer++)
364 {
365 number = number * radix + digit;
366 }
367 /* c contains character after number. */
368 /* input_line_pointer->char after c. */
369 small = (input_line_pointer - start - 1) < too_many_digits;
370
371 if (radix == 16 && c == '_')
372 {
373 /* This is literal of the form 0x333_0_12345678_1.
374 This example is equivalent to 0x00000333000000001234567800000001. */
375
376 int num_little_digits = 0;
377 int i;
378 input_line_pointer = start; /* -> 1st digit. */
379
380 know (LITTLENUM_NUMBER_OF_BITS == 16);
381
382 for (c = '_'; c == '_'; num_little_digits += 2)
383 {
384
385 /* Convert one 64-bit word. */
386 int ndigit = 0;
387 number = 0;
388 for (c = *input_line_pointer++;
389 (digit = hex_value (c)) < maxdig;
390 c = *(input_line_pointer++))
391 {
392 number = number * radix + digit;
393 ndigit++;
394 }
395
396 /* Check for 8 digit per word max. */
397 if (ndigit > 8)
398 as_bad (_("a bignum with underscores may not have more than 8 hex digits in any word"));
399
400 /* Add this chunk to the bignum.
401 Shift things down 2 little digits. */
402 know (LITTLENUM_NUMBER_OF_BITS == 16);
403 for (i = min (num_little_digits + 1, SIZE_OF_LARGE_NUMBER - 1);
404 i >= 2;
405 i--)
406 generic_bignum[i] = generic_bignum[i - 2];
407
408 /* Add the new digits as the least significant new ones. */
409 generic_bignum[0] = number & 0xffffffff;
410 generic_bignum[1] = number >> 16;
411 }
412
413 /* Again, c is char after number, input_line_pointer->after c. */
414
415 if (num_little_digits > SIZE_OF_LARGE_NUMBER - 1)
416 num_little_digits = SIZE_OF_LARGE_NUMBER - 1;
417
418 gas_assert (num_little_digits >= 4);
419
420 if (num_little_digits != 8)
421 as_bad (_("a bignum with underscores must have exactly 4 words"));
422
423 /* We might have some leading zeros. These can be trimmed to give
424 us a change to fit this constant into a small number. */
425 while (generic_bignum[num_little_digits - 1] == 0
426 && num_little_digits > 1)
427 num_little_digits--;
428
429 if (num_little_digits <= 2)
430 {
431 /* will fit into 32 bits. */
432 number = generic_bignum_to_int32 ();
433 small = 1;
434 }
435 #ifdef BFD64
436 else if (num_little_digits <= 4)
437 {
438 /* Will fit into 64 bits. */
439 number = generic_bignum_to_int64 ();
440 small = 1;
441 }
442 #endif
443 else
444 {
445 small = 0;
446
447 /* Number of littlenums in the bignum. */
448 number = num_little_digits;
449 }
450 }
451 else if (!small)
452 {
453 /* We saw a lot of digits. manufacture a bignum the hard way. */
454 LITTLENUM_TYPE *leader; /* -> high order littlenum of the bignum. */
455 LITTLENUM_TYPE *pointer; /* -> littlenum we are frobbing now. */
456 long carry;
457
458 leader = generic_bignum;
459 generic_bignum[0] = 0;
460 generic_bignum[1] = 0;
461 generic_bignum[2] = 0;
462 generic_bignum[3] = 0;
463 input_line_pointer = start; /* -> 1st digit. */
464 c = *input_line_pointer++;
465 for (; (carry = hex_value (c)) < maxdig; c = *input_line_pointer++)
466 {
467 for (pointer = generic_bignum; pointer <= leader; pointer++)
468 {
469 long work;
470
471 work = carry + radix * *pointer;
472 *pointer = work & LITTLENUM_MASK;
473 carry = work >> LITTLENUM_NUMBER_OF_BITS;
474 }
475 if (carry)
476 {
477 if (leader < generic_bignum + SIZE_OF_LARGE_NUMBER - 1)
478 {
479 /* Room to grow a longer bignum. */
480 *++leader = carry;
481 }
482 }
483 }
484 /* Again, c is char after number. */
485 /* input_line_pointer -> after c. */
486 know (LITTLENUM_NUMBER_OF_BITS == 16);
487 if (leader < generic_bignum + 2)
488 {
489 /* Will fit into 32 bits. */
490 number = generic_bignum_to_int32 ();
491 small = 1;
492 }
493 #ifdef BFD64
494 else if (leader < generic_bignum + 4)
495 {
496 /* Will fit into 64 bits. */
497 number = generic_bignum_to_int64 ();
498 small = 1;
499 }
500 #endif
501 else
502 {
503 /* Number of littlenums in the bignum. */
504 number = leader - generic_bignum + 1;
505 }
506 }
507
508 if ((NUMBERS_WITH_SUFFIX || flag_m68k_mri)
509 && suffix != NULL
510 && input_line_pointer - 1 == suffix)
511 c = *input_line_pointer++;
512
513 if (small)
514 {
515 /* Here with number, in correct radix. c is the next char.
516 Note that unlike un*x, we allow "011f" "0x9f" to both mean
517 the same as the (conventional) "9f".
518 This is simply easier than checking for strict canonical
519 form. Syntax sux! */
520
521 if (LOCAL_LABELS_FB && c == 'b')
522 {
523 /* Backward ref to local label.
524 Because it is backward, expect it to be defined. */
525 /* Construct a local label. */
526 name = fb_label_name ((int) number, 0);
527
528 /* Seen before, or symbol is defined: OK. */
529 symbolP = symbol_find (name);
530 if ((symbolP != NULL) && (S_IS_DEFINED (symbolP)))
531 {
532 /* Local labels are never absolute. Don't waste time
533 checking absoluteness. */
534 know (SEG_NORMAL (S_GET_SEGMENT (symbolP)));
535
536 expressionP->X_op = O_symbol;
537 expressionP->X_add_symbol = symbolP;
538 }
539 else
540 {
541 /* Either not seen or not defined. */
542 /* @@ Should print out the original string instead of
543 the parsed number. */
544 as_bad (_("backward ref to unknown label \"%d:\""),
545 (int) number);
546 expressionP->X_op = O_constant;
547 }
548
549 expressionP->X_add_number = 0;
550 } /* case 'b' */
551 else if (LOCAL_LABELS_FB && c == 'f')
552 {
553 /* Forward reference. Expect symbol to be undefined or
554 unknown. undefined: seen it before. unknown: never seen
555 it before.
556
557 Construct a local label name, then an undefined symbol.
558 Don't create a xseg frag for it: caller may do that.
559 Just return it as never seen before. */
560 name = fb_label_name ((int) number, 1);
561 symbolP = symbol_find_or_make (name);
562 /* We have no need to check symbol properties. */
563 #ifndef many_segments
564 /* Since "know" puts its arg into a "string", we
565 can't have newlines in the argument. */
566 know (S_GET_SEGMENT (symbolP) == undefined_section || S_GET_SEGMENT (symbolP) == text_section || S_GET_SEGMENT (symbolP) == data_section);
567 #endif
568 expressionP->X_op = O_symbol;
569 expressionP->X_add_symbol = symbolP;
570 expressionP->X_add_number = 0;
571 } /* case 'f' */
572 else if (LOCAL_LABELS_DOLLAR && c == '$')
573 {
574 /* If the dollar label is *currently* defined, then this is just
575 another reference to it. If it is not *currently* defined,
576 then this is a fresh instantiation of that number, so create
577 it. */
578
579 if (dollar_label_defined ((long) number))
580 {
581 name = dollar_label_name ((long) number, 0);
582 symbolP = symbol_find (name);
583 know (symbolP != NULL);
584 }
585 else
586 {
587 name = dollar_label_name ((long) number, 1);
588 symbolP = symbol_find_or_make (name);
589 }
590
591 expressionP->X_op = O_symbol;
592 expressionP->X_add_symbol = symbolP;
593 expressionP->X_add_number = 0;
594 } /* case '$' */
595 else
596 {
597 expressionP->X_op = O_constant;
598 expressionP->X_add_number = number;
599 input_line_pointer--; /* Restore following character. */
600 } /* Really just a number. */
601 }
602 else
603 {
604 /* Not a small number. */
605 expressionP->X_op = O_big;
606 expressionP->X_add_number = number; /* Number of littlenums. */
607 input_line_pointer--; /* -> char following number. */
608 }
609 }
610
611 /* Parse an MRI multi character constant. */
612
613 static void
614 mri_char_constant (expressionS *expressionP)
615 {
616 int i;
617
618 if (*input_line_pointer == '\''
619 && input_line_pointer[1] != '\'')
620 {
621 expressionP->X_op = O_constant;
622 expressionP->X_add_number = 0;
623 return;
624 }
625
626 /* In order to get the correct byte ordering, we must build the
627 number in reverse. */
628 for (i = SIZE_OF_LARGE_NUMBER - 1; i >= 0; i--)
629 {
630 int j;
631
632 generic_bignum[i] = 0;
633 for (j = 0; j < CHARS_PER_LITTLENUM; j++)
634 {
635 if (*input_line_pointer == '\'')
636 {
637 if (input_line_pointer[1] != '\'')
638 break;
639 ++input_line_pointer;
640 }
641 generic_bignum[i] <<= 8;
642 generic_bignum[i] += *input_line_pointer;
643 ++input_line_pointer;
644 }
645
646 if (i < SIZE_OF_LARGE_NUMBER - 1)
647 {
648 /* If there is more than one littlenum, left justify the
649 last one to make it match the earlier ones. If there is
650 only one, we can just use the value directly. */
651 for (; j < CHARS_PER_LITTLENUM; j++)
652 generic_bignum[i] <<= 8;
653 }
654
655 if (*input_line_pointer == '\''
656 && input_line_pointer[1] != '\'')
657 break;
658 }
659
660 if (i < 0)
661 {
662 as_bad (_("character constant too large"));
663 i = 0;
664 }
665
666 if (i > 0)
667 {
668 int c;
669 int j;
670
671 c = SIZE_OF_LARGE_NUMBER - i;
672 for (j = 0; j < c; j++)
673 generic_bignum[j] = generic_bignum[i + j];
674 i = c;
675 }
676
677 know (LITTLENUM_NUMBER_OF_BITS == 16);
678 if (i > 2)
679 {
680 expressionP->X_op = O_big;
681 expressionP->X_add_number = i;
682 }
683 else
684 {
685 expressionP->X_op = O_constant;
686 if (i < 2)
687 expressionP->X_add_number = generic_bignum[0] & LITTLENUM_MASK;
688 else
689 expressionP->X_add_number =
690 (((generic_bignum[1] & LITTLENUM_MASK)
691 << LITTLENUM_NUMBER_OF_BITS)
692 | (generic_bignum[0] & LITTLENUM_MASK));
693 }
694
695 /* Skip the final closing quote. */
696 ++input_line_pointer;
697 }
698
699 /* Return an expression representing the current location. This
700 handles the magic symbol `.'. */
701
702 void
703 current_location (expressionS *expressionp)
704 {
705 if (now_seg == absolute_section)
706 {
707 expressionp->X_op = O_constant;
708 expressionp->X_add_number = abs_section_offset;
709 }
710 else
711 {
712 expressionp->X_op = O_symbol;
713 expressionp->X_add_symbol = &dot_symbol;
714 expressionp->X_add_number = 0;
715 }
716 }
717
718 /* In: Input_line_pointer points to 1st char of operand, which may
719 be a space.
720
721 Out: An expressionS.
722 The operand may have been empty: in this case X_op == O_absent.
723 Input_line_pointer->(next non-blank) char after operand. */
724
725 static segT
726 operand (expressionS *expressionP, enum expr_mode mode)
727 {
728 char c;
729 symbolS *symbolP; /* Points to symbol. */
730 char *name; /* Points to name of symbol. */
731 segT segment;
732
733 /* All integers are regarded as unsigned unless they are negated.
734 This is because the only thing which cares whether a number is
735 unsigned is the code in emit_expr which extends constants into
736 bignums. It should only sign extend negative numbers, so that
737 something like ``.quad 0x80000000'' is not sign extended even
738 though it appears negative if valueT is 32 bits. */
739 expressionP->X_unsigned = 1;
740 expressionP->X_extrabit = 0;
741
742 /* Digits, assume it is a bignum. */
743
744 SKIP_WHITESPACE (); /* Leading whitespace is part of operand. */
745 c = *input_line_pointer++; /* input_line_pointer -> past char in c. */
746
747 if (is_end_of_line[(unsigned char) c])
748 goto eol;
749
750 switch (c)
751 {
752 case '1':
753 case '2':
754 case '3':
755 case '4':
756 case '5':
757 case '6':
758 case '7':
759 case '8':
760 case '9':
761 input_line_pointer--;
762
763 integer_constant ((NUMBERS_WITH_SUFFIX || flag_m68k_mri)
764 ? 0 : 10,
765 expressionP);
766 break;
767
768 #ifdef LITERAL_PREFIXDOLLAR_HEX
769 case '$':
770 /* $L is the start of a local label, not a hex constant. */
771 if (* input_line_pointer == 'L')
772 goto isname;
773 integer_constant (16, expressionP);
774 break;
775 #endif
776
777 #ifdef LITERAL_PREFIXPERCENT_BIN
778 case '%':
779 integer_constant (2, expressionP);
780 break;
781 #endif
782
783 case '0':
784 /* Non-decimal radix. */
785
786 if (NUMBERS_WITH_SUFFIX || flag_m68k_mri)
787 {
788 char *s;
789
790 /* Check for a hex or float constant. */
791 for (s = input_line_pointer; hex_p (*s); s++)
792 ;
793 if (*s == 'h' || *s == 'H' || *input_line_pointer == '.')
794 {
795 --input_line_pointer;
796 integer_constant (0, expressionP);
797 break;
798 }
799 }
800 c = *input_line_pointer;
801 switch (c)
802 {
803 case 'o':
804 case 'O':
805 case 'q':
806 case 'Q':
807 case '8':
808 case '9':
809 if (NUMBERS_WITH_SUFFIX || flag_m68k_mri)
810 {
811 integer_constant (0, expressionP);
812 break;
813 }
814 /* Fall through. */
815 default:
816 default_case:
817 if (c && strchr (FLT_CHARS, c))
818 {
819 input_line_pointer++;
820 floating_constant (expressionP);
821 expressionP->X_add_number = - TOLOWER (c);
822 }
823 else
824 {
825 /* The string was only zero. */
826 expressionP->X_op = O_constant;
827 expressionP->X_add_number = 0;
828 }
829
830 break;
831
832 case 'x':
833 case 'X':
834 if (flag_m68k_mri)
835 goto default_case;
836 input_line_pointer++;
837 integer_constant (16, expressionP);
838 break;
839
840 case 'b':
841 if (LOCAL_LABELS_FB && !flag_m68k_mri
842 && input_line_pointer[1] != '0'
843 && input_line_pointer[1] != '1')
844 {
845 /* Parse this as a back reference to label 0. */
846 input_line_pointer--;
847 integer_constant (10, expressionP);
848 break;
849 }
850 /* Otherwise, parse this as a binary number. */
851 /* Fall through. */
852 case 'B':
853 if (input_line_pointer[1] == '0'
854 || input_line_pointer[1] == '1')
855 {
856 input_line_pointer++;
857 integer_constant (2, expressionP);
858 break;
859 }
860 if (flag_m68k_mri || NUMBERS_WITH_SUFFIX)
861 input_line_pointer++;
862 goto default_case;
863
864 case '0':
865 case '1':
866 case '2':
867 case '3':
868 case '4':
869 case '5':
870 case '6':
871 case '7':
872 integer_constant ((flag_m68k_mri || NUMBERS_WITH_SUFFIX)
873 ? 0 : 8,
874 expressionP);
875 break;
876
877 case 'f':
878 if (LOCAL_LABELS_FB)
879 {
880 /* If it says "0f" and it could possibly be a floating point
881 number, make it one. Otherwise, make it a local label,
882 and try to deal with parsing the rest later. */
883 if (!input_line_pointer[1]
884 || (is_end_of_line[0xff & input_line_pointer[1]])
885 || strchr (FLT_CHARS, 'f') == NULL)
886 goto is_0f_label;
887 {
888 char *cp = input_line_pointer + 1;
889 int r = atof_generic (&cp, ".", EXP_CHARS,
890 &generic_floating_point_number);
891 switch (r)
892 {
893 case 0:
894 case ERROR_EXPONENT_OVERFLOW:
895 if (*cp == 'f' || *cp == 'b')
896 /* Looks like a difference expression. */
897 goto is_0f_label;
898 else if (cp == input_line_pointer + 1)
899 /* No characters has been accepted -- looks like
900 end of operand. */
901 goto is_0f_label;
902 else
903 goto is_0f_float;
904 default:
905 as_fatal (_("expr.c(operand): bad atof_generic return val %d"),
906 r);
907 }
908 }
909
910 /* Okay, now we've sorted it out. We resume at one of these
911 two labels, depending on what we've decided we're probably
912 looking at. */
913 is_0f_label:
914 input_line_pointer--;
915 integer_constant (10, expressionP);
916 break;
917
918 is_0f_float:
919 /* Fall through. */
920 ;
921 }
922
923 case 'd':
924 case 'D':
925 if (flag_m68k_mri || NUMBERS_WITH_SUFFIX)
926 {
927 integer_constant (0, expressionP);
928 break;
929 }
930 /* Fall through. */
931 case 'F':
932 case 'r':
933 case 'e':
934 case 'E':
935 case 'g':
936 case 'G':
937 input_line_pointer++;
938 floating_constant (expressionP);
939 expressionP->X_add_number = - TOLOWER (c);
940 break;
941
942 case '$':
943 if (LOCAL_LABELS_DOLLAR)
944 {
945 integer_constant (10, expressionP);
946 break;
947 }
948 else
949 goto default_case;
950 }
951
952 break;
953
954 #ifndef NEED_INDEX_OPERATOR
955 case '[':
956 # ifdef md_need_index_operator
957 if (md_need_index_operator())
958 goto de_fault;
959 # endif
960 /* FALLTHROUGH */
961 #endif
962 case '(':
963 /* Didn't begin with digit & not a name. */
964 segment = expr (0, expressionP, mode);
965 /* expression () will pass trailing whitespace. */
966 if ((c == '(' && *input_line_pointer != ')')
967 || (c == '[' && *input_line_pointer != ']'))
968 as_bad (_("missing '%c'"), c == '(' ? ')' : ']');
969 else
970 input_line_pointer++;
971 SKIP_WHITESPACE ();
972 /* Here with input_line_pointer -> char after "(...)". */
973 return segment;
974
975 #ifdef TC_M68K
976 case 'E':
977 if (! flag_m68k_mri || *input_line_pointer != '\'')
978 goto de_fault;
979 as_bad (_("EBCDIC constants are not supported"));
980 /* Fall through. */
981 case 'A':
982 if (! flag_m68k_mri || *input_line_pointer != '\'')
983 goto de_fault;
984 ++input_line_pointer;
985 /* Fall through. */
986 #endif
987 case '\'':
988 if (! flag_m68k_mri)
989 {
990 /* Warning: to conform to other people's assemblers NO
991 ESCAPEMENT is permitted for a single quote. The next
992 character, parity errors and all, is taken as the value
993 of the operand. VERY KINKY. */
994 expressionP->X_op = O_constant;
995 expressionP->X_add_number = *input_line_pointer++;
996 break;
997 }
998
999 mri_char_constant (expressionP);
1000 break;
1001
1002 #ifdef TC_M68K
1003 case '"':
1004 /* Double quote is the bitwise not operator in MRI mode. */
1005 if (! flag_m68k_mri)
1006 goto de_fault;
1007 /* Fall through. */
1008 #endif
1009 case '~':
1010 /* '~' is permitted to start a label on the Delta. */
1011 if (is_name_beginner (c))
1012 goto isname;
1013 case '!':
1014 case '-':
1015 case '+':
1016 {
1017 #ifdef md_operator
1018 unary:
1019 #endif
1020 operand (expressionP, mode);
1021 if (expressionP->X_op == O_constant)
1022 {
1023 /* input_line_pointer -> char after operand. */
1024 if (c == '-')
1025 {
1026 expressionP->X_add_number
1027 = - (addressT) expressionP->X_add_number;
1028 /* Notice: '-' may overflow: no warning is given.
1029 This is compatible with other people's
1030 assemblers. Sigh. */
1031 expressionP->X_unsigned = 0;
1032 if (expressionP->X_add_number)
1033 expressionP->X_extrabit ^= 1;
1034 }
1035 else if (c == '~' || c == '"')
1036 expressionP->X_add_number = ~ expressionP->X_add_number;
1037 else if (c == '!')
1038 expressionP->X_add_number = ! expressionP->X_add_number;
1039 }
1040 else if (expressionP->X_op == O_big
1041 && expressionP->X_add_number <= 0
1042 && c == '-'
1043 && (generic_floating_point_number.sign == '+'
1044 || generic_floating_point_number.sign == 'P'))
1045 {
1046 /* Negative flonum (eg, -1.000e0). */
1047 if (generic_floating_point_number.sign == '+')
1048 generic_floating_point_number.sign = '-';
1049 else
1050 generic_floating_point_number.sign = 'N';
1051 }
1052 else if (expressionP->X_op == O_big
1053 && expressionP->X_add_number > 0)
1054 {
1055 int i;
1056
1057 if (c == '~' || c == '-')
1058 {
1059 for (i = 0; i < expressionP->X_add_number; ++i)
1060 generic_bignum[i] = ~generic_bignum[i];
1061
1062 /* Extend the bignum to at least the size of .octa. */
1063 if (expressionP->X_add_number < SIZE_OF_LARGE_NUMBER)
1064 {
1065 expressionP->X_add_number = SIZE_OF_LARGE_NUMBER;
1066 for (; i < expressionP->X_add_number; ++i)
1067 generic_bignum[i] = ~(LITTLENUM_TYPE) 0;
1068 }
1069
1070 if (c == '-')
1071 for (i = 0; i < expressionP->X_add_number; ++i)
1072 {
1073 generic_bignum[i] += 1;
1074 if (generic_bignum[i])
1075 break;
1076 }
1077 }
1078 else if (c == '!')
1079 {
1080 for (i = 0; i < expressionP->X_add_number; ++i)
1081 if (generic_bignum[i] != 0)
1082 break;
1083 expressionP->X_add_number = i >= expressionP->X_add_number;
1084 expressionP->X_op = O_constant;
1085 expressionP->X_unsigned = 1;
1086 expressionP->X_extrabit = 0;
1087 }
1088 }
1089 else if (expressionP->X_op != O_illegal
1090 && expressionP->X_op != O_absent)
1091 {
1092 if (c != '+')
1093 {
1094 expressionP->X_add_symbol = make_expr_symbol (expressionP);
1095 if (c == '-')
1096 expressionP->X_op = O_uminus;
1097 else if (c == '~' || c == '"')
1098 expressionP->X_op = O_bit_not;
1099 else
1100 expressionP->X_op = O_logical_not;
1101 expressionP->X_add_number = 0;
1102 }
1103 }
1104 else
1105 as_warn (_("Unary operator %c ignored because bad operand follows"),
1106 c);
1107 }
1108 break;
1109
1110 #if defined (DOLLAR_DOT) || defined (TC_M68K)
1111 case '$':
1112 /* '$' is the program counter when in MRI mode, or when
1113 DOLLAR_DOT is defined. */
1114 #ifndef DOLLAR_DOT
1115 if (! flag_m68k_mri)
1116 goto de_fault;
1117 #endif
1118 if (DOLLAR_AMBIGU && hex_p (*input_line_pointer))
1119 {
1120 /* In MRI mode and on Z80, '$' is also used as the prefix
1121 for a hexadecimal constant. */
1122 integer_constant (16, expressionP);
1123 break;
1124 }
1125
1126 if (is_part_of_name (*input_line_pointer))
1127 goto isname;
1128
1129 current_location (expressionP);
1130 break;
1131 #endif
1132
1133 case '.':
1134 if (!is_part_of_name (*input_line_pointer))
1135 {
1136 current_location (expressionP);
1137 break;
1138 }
1139 else if ((strncasecmp (input_line_pointer, "startof.", 8) == 0
1140 && ! is_part_of_name (input_line_pointer[8]))
1141 || (strncasecmp (input_line_pointer, "sizeof.", 7) == 0
1142 && ! is_part_of_name (input_line_pointer[7])))
1143 {
1144 int start;
1145
1146 start = (input_line_pointer[1] == 't'
1147 || input_line_pointer[1] == 'T');
1148 input_line_pointer += start ? 8 : 7;
1149 SKIP_WHITESPACE ();
1150 if (*input_line_pointer != '(')
1151 as_bad (_("syntax error in .startof. or .sizeof."));
1152 else
1153 {
1154 char *buf;
1155
1156 ++input_line_pointer;
1157 SKIP_WHITESPACE ();
1158 name = input_line_pointer;
1159 c = get_symbol_end ();
1160
1161 buf = (char *) xmalloc (strlen (name) + 10);
1162 if (start)
1163 sprintf (buf, ".startof.%s", name);
1164 else
1165 sprintf (buf, ".sizeof.%s", name);
1166 symbolP = symbol_make (buf);
1167 free (buf);
1168
1169 expressionP->X_op = O_symbol;
1170 expressionP->X_add_symbol = symbolP;
1171 expressionP->X_add_number = 0;
1172
1173 *input_line_pointer = c;
1174 SKIP_WHITESPACE ();
1175 if (*input_line_pointer != ')')
1176 as_bad (_("syntax error in .startof. or .sizeof."));
1177 else
1178 ++input_line_pointer;
1179 }
1180 break;
1181 }
1182 else
1183 {
1184 goto isname;
1185 }
1186
1187 case ',':
1188 eol:
1189 /* Can't imagine any other kind of operand. */
1190 expressionP->X_op = O_absent;
1191 input_line_pointer--;
1192 break;
1193
1194 #ifdef TC_M68K
1195 case '%':
1196 if (! flag_m68k_mri)
1197 goto de_fault;
1198 integer_constant (2, expressionP);
1199 break;
1200
1201 case '@':
1202 if (! flag_m68k_mri)
1203 goto de_fault;
1204 integer_constant (8, expressionP);
1205 break;
1206
1207 case ':':
1208 if (! flag_m68k_mri)
1209 goto de_fault;
1210
1211 /* In MRI mode, this is a floating point constant represented
1212 using hexadecimal digits. */
1213
1214 ++input_line_pointer;
1215 integer_constant (16, expressionP);
1216 break;
1217
1218 case '*':
1219 if (! flag_m68k_mri || is_part_of_name (*input_line_pointer))
1220 goto de_fault;
1221
1222 current_location (expressionP);
1223 break;
1224 #endif
1225
1226 default:
1227 #if defined(md_need_index_operator) || defined(TC_M68K)
1228 de_fault:
1229 #endif
1230 if (is_name_beginner (c)) /* Here if did not begin with a digit. */
1231 {
1232 /* Identifier begins here.
1233 This is kludged for speed, so code is repeated. */
1234 isname:
1235 name = --input_line_pointer;
1236 c = get_symbol_end ();
1237
1238 #ifdef md_operator
1239 {
1240 operatorT op = md_operator (name, 1, &c);
1241
1242 switch (op)
1243 {
1244 case O_uminus:
1245 *input_line_pointer = c;
1246 c = '-';
1247 goto unary;
1248 case O_bit_not:
1249 *input_line_pointer = c;
1250 c = '~';
1251 goto unary;
1252 case O_logical_not:
1253 *input_line_pointer = c;
1254 c = '!';
1255 goto unary;
1256 case O_illegal:
1257 as_bad (_("invalid use of operator \"%s\""), name);
1258 break;
1259 default:
1260 break;
1261 }
1262 if (op != O_absent && op != O_illegal)
1263 {
1264 *input_line_pointer = c;
1265 expr (9, expressionP, mode);
1266 expressionP->X_add_symbol = make_expr_symbol (expressionP);
1267 expressionP->X_op_symbol = NULL;
1268 expressionP->X_add_number = 0;
1269 expressionP->X_op = op;
1270 break;
1271 }
1272 }
1273 #endif
1274
1275 #ifdef md_parse_name
1276 /* This is a hook for the backend to parse certain names
1277 specially in certain contexts. If a name always has a
1278 specific value, it can often be handled by simply
1279 entering it in the symbol table. */
1280 if (md_parse_name (name, expressionP, mode, &c))
1281 {
1282 *input_line_pointer = c;
1283 break;
1284 }
1285 #endif
1286
1287 #ifdef TC_I960
1288 /* The MRI i960 assembler permits
1289 lda sizeof code,g13
1290 FIXME: This should use md_parse_name. */
1291 if (flag_mri
1292 && (strcasecmp (name, "sizeof") == 0
1293 || strcasecmp (name, "startof") == 0))
1294 {
1295 int start;
1296 char *buf;
1297
1298 start = (name[1] == 't'
1299 || name[1] == 'T');
1300
1301 *input_line_pointer = c;
1302 SKIP_WHITESPACE ();
1303
1304 name = input_line_pointer;
1305 c = get_symbol_end ();
1306
1307 buf = (char *) xmalloc (strlen (name) + 10);
1308 if (start)
1309 sprintf (buf, ".startof.%s", name);
1310 else
1311 sprintf (buf, ".sizeof.%s", name);
1312 symbolP = symbol_make (buf);
1313 free (buf);
1314
1315 expressionP->X_op = O_symbol;
1316 expressionP->X_add_symbol = symbolP;
1317 expressionP->X_add_number = 0;
1318
1319 *input_line_pointer = c;
1320 SKIP_WHITESPACE ();
1321
1322 break;
1323 }
1324 #endif
1325
1326 symbolP = symbol_find_or_make (name);
1327
1328 /* If we have an absolute symbol or a reg, then we know its
1329 value now. */
1330 segment = S_GET_SEGMENT (symbolP);
1331 if (mode != expr_defer
1332 && segment == absolute_section
1333 && !S_FORCE_RELOC (symbolP, 0))
1334 {
1335 expressionP->X_op = O_constant;
1336 expressionP->X_add_number = S_GET_VALUE (symbolP);
1337 }
1338 else if (mode != expr_defer && segment == reg_section)
1339 {
1340 expressionP->X_op = O_register;
1341 expressionP->X_add_number = S_GET_VALUE (symbolP);
1342 }
1343 else
1344 {
1345 expressionP->X_op = O_symbol;
1346 expressionP->X_add_symbol = symbolP;
1347 expressionP->X_add_number = 0;
1348 }
1349 *input_line_pointer = c;
1350 }
1351 else
1352 {
1353 /* Let the target try to parse it. Success is indicated by changing
1354 the X_op field to something other than O_absent and pointing
1355 input_line_pointer past the expression. If it can't parse the
1356 expression, X_op and input_line_pointer should be unchanged. */
1357 expressionP->X_op = O_absent;
1358 --input_line_pointer;
1359 md_operand (expressionP);
1360 if (expressionP->X_op == O_absent)
1361 {
1362 ++input_line_pointer;
1363 as_bad (_("bad expression"));
1364 expressionP->X_op = O_constant;
1365 expressionP->X_add_number = 0;
1366 }
1367 }
1368 break;
1369 }
1370
1371 /* It is more 'efficient' to clean up the expressionS when they are
1372 created. Doing it here saves lines of code. */
1373 clean_up_expression (expressionP);
1374 SKIP_WHITESPACE (); /* -> 1st char after operand. */
1375 know (*input_line_pointer != ' ');
1376
1377 /* The PA port needs this information. */
1378 if (expressionP->X_add_symbol)
1379 symbol_mark_used (expressionP->X_add_symbol);
1380
1381 if (mode != expr_defer)
1382 {
1383 expressionP->X_add_symbol
1384 = symbol_clone_if_forward_ref (expressionP->X_add_symbol);
1385 expressionP->X_op_symbol
1386 = symbol_clone_if_forward_ref (expressionP->X_op_symbol);
1387 }
1388
1389 switch (expressionP->X_op)
1390 {
1391 default:
1392 return absolute_section;
1393 case O_symbol:
1394 return S_GET_SEGMENT (expressionP->X_add_symbol);
1395 case O_register:
1396 return reg_section;
1397 }
1398 }
1399 \f
1400 /* Internal. Simplify a struct expression for use by expr (). */
1401
1402 /* In: address of an expressionS.
1403 The X_op field of the expressionS may only take certain values.
1404 Elsewise we waste time special-case testing. Sigh. Ditto SEG_ABSENT.
1405
1406 Out: expressionS may have been modified:
1407 Unused fields zeroed to help expr (). */
1408
1409 static void
1410 clean_up_expression (expressionS *expressionP)
1411 {
1412 switch (expressionP->X_op)
1413 {
1414 case O_illegal:
1415 case O_absent:
1416 expressionP->X_add_number = 0;
1417 /* Fall through. */
1418 case O_big:
1419 case O_constant:
1420 case O_register:
1421 expressionP->X_add_symbol = NULL;
1422 /* Fall through. */
1423 case O_symbol:
1424 case O_uminus:
1425 case O_bit_not:
1426 expressionP->X_op_symbol = NULL;
1427 break;
1428 default:
1429 break;
1430 }
1431 }
1432 \f
1433 /* Expression parser. */
1434
1435 /* We allow an empty expression, and just assume (absolute,0) silently.
1436 Unary operators and parenthetical expressions are treated as operands.
1437 As usual, Q==quantity==operand, O==operator, X==expression mnemonics.
1438
1439 We used to do an aho/ullman shift-reduce parser, but the logic got so
1440 warped that I flushed it and wrote a recursive-descent parser instead.
1441 Now things are stable, would anybody like to write a fast parser?
1442 Most expressions are either register (which does not even reach here)
1443 or 1 symbol. Then "symbol+constant" and "symbol-symbol" are common.
1444 So I guess it doesn't really matter how inefficient more complex expressions
1445 are parsed.
1446
1447 After expr(RANK,resultP) input_line_pointer->operator of rank <= RANK.
1448 Also, we have consumed any leading or trailing spaces (operand does that)
1449 and done all intervening operators.
1450
1451 This returns the segment of the result, which will be
1452 absolute_section or the segment of a symbol. */
1453
1454 #undef __
1455 #define __ O_illegal
1456 #ifndef O_SINGLE_EQ
1457 #define O_SINGLE_EQ O_illegal
1458 #endif
1459
1460 /* Maps ASCII -> operators. */
1461 static const operatorT op_encoding[256] = {
1462 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1463 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1464
1465 __, O_bit_or_not, __, __, __, O_modulus, O_bit_and, __,
1466 __, __, O_multiply, O_add, __, O_subtract, __, O_divide,
1467 __, __, __, __, __, __, __, __,
1468 __, __, __, __, O_lt, O_SINGLE_EQ, O_gt, __,
1469 __, __, __, __, __, __, __, __,
1470 __, __, __, __, __, __, __, __,
1471 __, __, __, __, __, __, __, __,
1472 __, __, __,
1473 #ifdef NEED_INDEX_OPERATOR
1474 O_index,
1475 #else
1476 __,
1477 #endif
1478 __, __, O_bit_exclusive_or, __,
1479 __, __, __, __, __, __, __, __,
1480 __, __, __, __, __, __, __, __,
1481 __, __, __, __, __, __, __, __,
1482 __, __, __, __, O_bit_inclusive_or, __, __, __,
1483
1484 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1485 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1486 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1487 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1488 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1489 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1490 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1491 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __
1492 };
1493
1494 /* Rank Examples
1495 0 operand, (expression)
1496 1 ||
1497 2 &&
1498 3 == <> < <= >= >
1499 4 + -
1500 5 used for * / % in MRI mode
1501 6 & ^ ! |
1502 7 * / % << >>
1503 8 unary - unary ~
1504 */
1505 static operator_rankT op_rank[O_max] = {
1506 0, /* O_illegal */
1507 0, /* O_absent */
1508 0, /* O_constant */
1509 0, /* O_symbol */
1510 0, /* O_symbol_rva */
1511 0, /* O_register */
1512 0, /* O_big */
1513 9, /* O_uminus */
1514 9, /* O_bit_not */
1515 9, /* O_logical_not */
1516 8, /* O_multiply */
1517 8, /* O_divide */
1518 8, /* O_modulus */
1519 8, /* O_left_shift */
1520 8, /* O_right_shift */
1521 7, /* O_bit_inclusive_or */
1522 7, /* O_bit_or_not */
1523 7, /* O_bit_exclusive_or */
1524 7, /* O_bit_and */
1525 5, /* O_add */
1526 5, /* O_subtract */
1527 4, /* O_eq */
1528 4, /* O_ne */
1529 4, /* O_lt */
1530 4, /* O_le */
1531 4, /* O_ge */
1532 4, /* O_gt */
1533 3, /* O_logical_and */
1534 2, /* O_logical_or */
1535 1, /* O_index */
1536 };
1537
1538 /* Unfortunately, in MRI mode for the m68k, multiplication and
1539 division have lower precedence than the bit wise operators. This
1540 function sets the operator precedences correctly for the current
1541 mode. Also, MRI uses a different bit_not operator, and this fixes
1542 that as well. */
1543
1544 #define STANDARD_MUL_PRECEDENCE 8
1545 #define MRI_MUL_PRECEDENCE 6
1546
1547 void
1548 expr_set_precedence (void)
1549 {
1550 if (flag_m68k_mri)
1551 {
1552 op_rank[O_multiply] = MRI_MUL_PRECEDENCE;
1553 op_rank[O_divide] = MRI_MUL_PRECEDENCE;
1554 op_rank[O_modulus] = MRI_MUL_PRECEDENCE;
1555 }
1556 else
1557 {
1558 op_rank[O_multiply] = STANDARD_MUL_PRECEDENCE;
1559 op_rank[O_divide] = STANDARD_MUL_PRECEDENCE;
1560 op_rank[O_modulus] = STANDARD_MUL_PRECEDENCE;
1561 }
1562 }
1563
1564 void
1565 expr_set_rank (operatorT op, operator_rankT rank)
1566 {
1567 gas_assert (op >= O_md1 && op < ARRAY_SIZE (op_rank));
1568 op_rank[op] = rank;
1569 }
1570
1571 /* Initialize the expression parser. */
1572
1573 void
1574 expr_begin (void)
1575 {
1576 expr_set_precedence ();
1577
1578 /* Verify that X_op field is wide enough. */
1579 {
1580 expressionS e;
1581 e.X_op = O_max;
1582 gas_assert (e.X_op == O_max);
1583 }
1584 }
1585 \f
1586 /* Return the encoding for the operator at INPUT_LINE_POINTER, and
1587 sets NUM_CHARS to the number of characters in the operator.
1588 Does not advance INPUT_LINE_POINTER. */
1589
1590 static inline operatorT
1591 operatorf (int *num_chars)
1592 {
1593 int c;
1594 operatorT ret;
1595
1596 c = *input_line_pointer & 0xff;
1597 *num_chars = 1;
1598
1599 if (is_end_of_line[c])
1600 return O_illegal;
1601
1602 #ifdef md_operator
1603 if (is_name_beginner (c))
1604 {
1605 char *name = input_line_pointer;
1606 char ec = get_symbol_end ();
1607
1608 ret = md_operator (name, 2, &ec);
1609 switch (ret)
1610 {
1611 case O_absent:
1612 *input_line_pointer = ec;
1613 input_line_pointer = name;
1614 break;
1615 case O_uminus:
1616 case O_bit_not:
1617 case O_logical_not:
1618 as_bad (_("invalid use of operator \"%s\""), name);
1619 ret = O_illegal;
1620 /* FALLTHROUGH */
1621 default:
1622 *input_line_pointer = ec;
1623 *num_chars = input_line_pointer - name;
1624 input_line_pointer = name;
1625 return ret;
1626 }
1627 }
1628 #endif
1629
1630 switch (c)
1631 {
1632 default:
1633 ret = op_encoding[c];
1634 #ifdef md_operator
1635 if (ret == O_illegal)
1636 {
1637 char *start = input_line_pointer;
1638
1639 ret = md_operator (NULL, 2, NULL);
1640 if (ret != O_illegal)
1641 *num_chars = input_line_pointer - start;
1642 input_line_pointer = start;
1643 }
1644 #endif
1645 return ret;
1646
1647 case '+':
1648 case '-':
1649 return op_encoding[c];
1650
1651 case '<':
1652 switch (input_line_pointer[1])
1653 {
1654 default:
1655 return op_encoding[c];
1656 case '<':
1657 ret = O_left_shift;
1658 break;
1659 case '>':
1660 ret = O_ne;
1661 break;
1662 case '=':
1663 ret = O_le;
1664 break;
1665 }
1666 *num_chars = 2;
1667 return ret;
1668
1669 case '=':
1670 if (input_line_pointer[1] != '=')
1671 return op_encoding[c];
1672
1673 *num_chars = 2;
1674 return O_eq;
1675
1676 case '>':
1677 switch (input_line_pointer[1])
1678 {
1679 default:
1680 return op_encoding[c];
1681 case '>':
1682 ret = O_right_shift;
1683 break;
1684 case '=':
1685 ret = O_ge;
1686 break;
1687 }
1688 *num_chars = 2;
1689 return ret;
1690
1691 case '!':
1692 switch (input_line_pointer[1])
1693 {
1694 case '!':
1695 /* We accept !! as equivalent to ^ for MRI compatibility. */
1696 *num_chars = 2;
1697 return O_bit_exclusive_or;
1698 case '=':
1699 /* We accept != as equivalent to <>. */
1700 *num_chars = 2;
1701 return O_ne;
1702 default:
1703 if (flag_m68k_mri)
1704 return O_bit_inclusive_or;
1705 return op_encoding[c];
1706 }
1707
1708 case '|':
1709 if (input_line_pointer[1] != '|')
1710 return op_encoding[c];
1711
1712 *num_chars = 2;
1713 return O_logical_or;
1714
1715 case '&':
1716 if (input_line_pointer[1] != '&')
1717 return op_encoding[c];
1718
1719 *num_chars = 2;
1720 return O_logical_and;
1721 }
1722
1723 /* NOTREACHED */
1724 }
1725
1726 /* Implement "word-size + 1 bit" addition for
1727 {resultP->X_extrabit:resultP->X_add_number} + {rhs_highbit:amount}. This
1728 is used so that the full range of unsigned word values and the full range of
1729 signed word values can be represented in an O_constant expression, which is
1730 useful e.g. for .sleb128 directives. */
1731
1732 void
1733 add_to_result (expressionS *resultP, offsetT amount, int rhs_highbit)
1734 {
1735 valueT ures = resultP->X_add_number;
1736 valueT uamount = amount;
1737
1738 resultP->X_add_number += amount;
1739
1740 resultP->X_extrabit ^= rhs_highbit;
1741
1742 if (ures + uamount < ures)
1743 resultP->X_extrabit ^= 1;
1744 }
1745
1746 /* Similarly, for subtraction. */
1747
1748 void
1749 subtract_from_result (expressionS *resultP, offsetT amount, int rhs_highbit)
1750 {
1751 valueT ures = resultP->X_add_number;
1752 valueT uamount = amount;
1753
1754 resultP->X_add_number -= amount;
1755
1756 resultP->X_extrabit ^= rhs_highbit;
1757
1758 if (ures < uamount)
1759 resultP->X_extrabit ^= 1;
1760 }
1761
1762 /* Parse an expression. */
1763
1764 segT
1765 expr (int rankarg, /* Larger # is higher rank. */
1766 expressionS *resultP, /* Deliver result here. */
1767 enum expr_mode mode /* Controls behavior. */)
1768 {
1769 operator_rankT rank = (operator_rankT) rankarg;
1770 segT retval;
1771 expressionS right;
1772 operatorT op_left;
1773 operatorT op_right;
1774 int op_chars;
1775
1776 know (rankarg >= 0);
1777
1778 /* Save the value of dot for the fixup code. */
1779 if (rank == 0)
1780 {
1781 dot_value = frag_now_fix ();
1782 dot_frag = frag_now;
1783 }
1784
1785 retval = operand (resultP, mode);
1786
1787 /* operand () gobbles spaces. */
1788 know (*input_line_pointer != ' ');
1789
1790 op_left = operatorf (&op_chars);
1791 while (op_left != O_illegal && op_rank[(int) op_left] > rank)
1792 {
1793 segT rightseg;
1794 offsetT frag_off;
1795
1796 input_line_pointer += op_chars; /* -> after operator. */
1797
1798 right.X_md = 0;
1799 rightseg = expr (op_rank[(int) op_left], &right, mode);
1800 if (right.X_op == O_absent)
1801 {
1802 as_warn (_("missing operand; zero assumed"));
1803 right.X_op = O_constant;
1804 right.X_add_number = 0;
1805 right.X_add_symbol = NULL;
1806 right.X_op_symbol = NULL;
1807 }
1808
1809 know (*input_line_pointer != ' ');
1810
1811 if (op_left == O_index)
1812 {
1813 if (*input_line_pointer != ']')
1814 as_bad ("missing right bracket");
1815 else
1816 {
1817 ++input_line_pointer;
1818 SKIP_WHITESPACE ();
1819 }
1820 }
1821
1822 op_right = operatorf (&op_chars);
1823
1824 know (op_right == O_illegal || op_left == O_index
1825 || op_rank[(int) op_right] <= op_rank[(int) op_left]);
1826 know ((int) op_left >= (int) O_multiply);
1827 #ifndef md_operator
1828 know ((int) op_left <= (int) O_index);
1829 #else
1830 know ((int) op_left < (int) O_max);
1831 #endif
1832
1833 /* input_line_pointer->after right-hand quantity. */
1834 /* left-hand quantity in resultP. */
1835 /* right-hand quantity in right. */
1836 /* operator in op_left. */
1837
1838 if (resultP->X_op == O_big)
1839 {
1840 if (resultP->X_add_number > 0)
1841 as_warn (_("left operand is a bignum; integer 0 assumed"));
1842 else
1843 as_warn (_("left operand is a float; integer 0 assumed"));
1844 resultP->X_op = O_constant;
1845 resultP->X_add_number = 0;
1846 resultP->X_add_symbol = NULL;
1847 resultP->X_op_symbol = NULL;
1848 }
1849 if (right.X_op == O_big)
1850 {
1851 if (right.X_add_number > 0)
1852 as_warn (_("right operand is a bignum; integer 0 assumed"));
1853 else
1854 as_warn (_("right operand is a float; integer 0 assumed"));
1855 right.X_op = O_constant;
1856 right.X_add_number = 0;
1857 right.X_add_symbol = NULL;
1858 right.X_op_symbol = NULL;
1859 }
1860
1861 /* Optimize common cases. */
1862 #ifdef md_optimize_expr
1863 if (md_optimize_expr (resultP, op_left, &right))
1864 {
1865 /* Skip. */
1866 ;
1867 }
1868 else
1869 #endif
1870 #ifndef md_register_arithmetic
1871 # define md_register_arithmetic 1
1872 #endif
1873 if (op_left == O_add && right.X_op == O_constant
1874 && (md_register_arithmetic || resultP->X_op != O_register))
1875 {
1876 /* X + constant. */
1877 add_to_result (resultP, right.X_add_number, right.X_extrabit);
1878 }
1879 /* This case comes up in PIC code. */
1880 else if (op_left == O_subtract
1881 && right.X_op == O_symbol
1882 && resultP->X_op == O_symbol
1883 && retval == rightseg
1884 #ifdef md_allow_local_subtract
1885 && md_allow_local_subtract (resultP, & right, rightseg)
1886 #endif
1887 && ((SEG_NORMAL (rightseg)
1888 && !S_FORCE_RELOC (resultP->X_add_symbol, 0)
1889 && !S_FORCE_RELOC (right.X_add_symbol, 0))
1890 || right.X_add_symbol == resultP->X_add_symbol)
1891 && frag_offset_fixed_p (symbol_get_frag (resultP->X_add_symbol),
1892 symbol_get_frag (right.X_add_symbol),
1893 &frag_off))
1894 {
1895 offsetT symval_diff = S_GET_VALUE (resultP->X_add_symbol)
1896 - S_GET_VALUE (right.X_add_symbol);
1897 subtract_from_result (resultP, right.X_add_number, right.X_extrabit);
1898 subtract_from_result (resultP, frag_off / OCTETS_PER_BYTE, 0);
1899 add_to_result (resultP, symval_diff, symval_diff < 0);
1900 resultP->X_op = O_constant;
1901 resultP->X_add_symbol = 0;
1902 }
1903 else if (op_left == O_subtract && right.X_op == O_constant
1904 && (md_register_arithmetic || resultP->X_op != O_register))
1905 {
1906 /* X - constant. */
1907 subtract_from_result (resultP, right.X_add_number, right.X_extrabit);
1908 }
1909 else if (op_left == O_add && resultP->X_op == O_constant
1910 && (md_register_arithmetic || right.X_op != O_register))
1911 {
1912 /* Constant + X. */
1913 resultP->X_op = right.X_op;
1914 resultP->X_add_symbol = right.X_add_symbol;
1915 resultP->X_op_symbol = right.X_op_symbol;
1916 add_to_result (resultP, right.X_add_number, right.X_extrabit);
1917 retval = rightseg;
1918 }
1919 else if (resultP->X_op == O_constant && right.X_op == O_constant)
1920 {
1921 /* Constant OP constant. */
1922 offsetT v = right.X_add_number;
1923 if (v == 0 && (op_left == O_divide || op_left == O_modulus))
1924 {
1925 as_warn (_("division by zero"));
1926 v = 1;
1927 }
1928 if ((valueT) v >= sizeof(valueT) * CHAR_BIT
1929 && (op_left == O_left_shift || op_left == O_right_shift))
1930 {
1931 as_warn_value_out_of_range (_("shift count"), v, 0,
1932 sizeof(valueT) * CHAR_BIT - 1,
1933 NULL, 0);
1934 resultP->X_add_number = v = 0;
1935 }
1936 switch (op_left)
1937 {
1938 default: goto general;
1939 case O_multiply: resultP->X_add_number *= v; break;
1940 case O_divide: resultP->X_add_number /= v; break;
1941 case O_modulus: resultP->X_add_number %= v; break;
1942 case O_left_shift: resultP->X_add_number <<= v; break;
1943 case O_right_shift:
1944 /* We always use unsigned shifts, to avoid relying on
1945 characteristics of the compiler used to compile gas. */
1946 resultP->X_add_number =
1947 (offsetT) ((valueT) resultP->X_add_number >> (valueT) v);
1948 break;
1949 case O_bit_inclusive_or: resultP->X_add_number |= v; break;
1950 case O_bit_or_not: resultP->X_add_number |= ~v; break;
1951 case O_bit_exclusive_or: resultP->X_add_number ^= v; break;
1952 case O_bit_and: resultP->X_add_number &= v; break;
1953 /* Constant + constant (O_add) is handled by the
1954 previous if statement for constant + X, so is omitted
1955 here. */
1956 case O_subtract:
1957 subtract_from_result (resultP, v, 0);
1958 break;
1959 case O_eq:
1960 resultP->X_add_number =
1961 resultP->X_add_number == v ? ~ (offsetT) 0 : 0;
1962 break;
1963 case O_ne:
1964 resultP->X_add_number =
1965 resultP->X_add_number != v ? ~ (offsetT) 0 : 0;
1966 break;
1967 case O_lt:
1968 resultP->X_add_number =
1969 resultP->X_add_number < v ? ~ (offsetT) 0 : 0;
1970 break;
1971 case O_le:
1972 resultP->X_add_number =
1973 resultP->X_add_number <= v ? ~ (offsetT) 0 : 0;
1974 break;
1975 case O_ge:
1976 resultP->X_add_number =
1977 resultP->X_add_number >= v ? ~ (offsetT) 0 : 0;
1978 break;
1979 case O_gt:
1980 resultP->X_add_number =
1981 resultP->X_add_number > v ? ~ (offsetT) 0 : 0;
1982 break;
1983 case O_logical_and:
1984 resultP->X_add_number = resultP->X_add_number && v;
1985 break;
1986 case O_logical_or:
1987 resultP->X_add_number = resultP->X_add_number || v;
1988 break;
1989 }
1990 }
1991 else if (resultP->X_op == O_symbol
1992 && right.X_op == O_symbol
1993 && (op_left == O_add
1994 || op_left == O_subtract
1995 || (resultP->X_add_number == 0
1996 && right.X_add_number == 0)))
1997 {
1998 /* Symbol OP symbol. */
1999 resultP->X_op = op_left;
2000 resultP->X_op_symbol = right.X_add_symbol;
2001 if (op_left == O_add)
2002 add_to_result (resultP, right.X_add_number, right.X_extrabit);
2003 else if (op_left == O_subtract)
2004 {
2005 subtract_from_result (resultP, right.X_add_number,
2006 right.X_extrabit);
2007 if (retval == rightseg
2008 && SEG_NORMAL (retval)
2009 && !S_FORCE_RELOC (resultP->X_add_symbol, 0)
2010 && !S_FORCE_RELOC (right.X_add_symbol, 0))
2011 {
2012 retval = absolute_section;
2013 rightseg = absolute_section;
2014 }
2015 }
2016 }
2017 else
2018 {
2019 general:
2020 /* The general case. */
2021 resultP->X_add_symbol = make_expr_symbol (resultP);
2022 resultP->X_op_symbol = make_expr_symbol (&right);
2023 resultP->X_op = op_left;
2024 resultP->X_add_number = 0;
2025 resultP->X_unsigned = 1;
2026 resultP->X_extrabit = 0;
2027 }
2028
2029 if (retval != rightseg)
2030 {
2031 if (retval == undefined_section)
2032 ;
2033 else if (rightseg == undefined_section)
2034 retval = rightseg;
2035 else if (retval == expr_section)
2036 ;
2037 else if (rightseg == expr_section)
2038 retval = rightseg;
2039 else if (retval == reg_section)
2040 ;
2041 else if (rightseg == reg_section)
2042 retval = rightseg;
2043 else if (rightseg == absolute_section)
2044 ;
2045 else if (retval == absolute_section)
2046 retval = rightseg;
2047 #ifdef DIFF_EXPR_OK
2048 else if (op_left == O_subtract)
2049 ;
2050 #endif
2051 else
2052 as_bad (_("operation combines symbols in different segments"));
2053 }
2054
2055 op_left = op_right;
2056 } /* While next operator is >= this rank. */
2057
2058 /* The PA port needs this information. */
2059 if (resultP->X_add_symbol)
2060 symbol_mark_used (resultP->X_add_symbol);
2061
2062 if (rank == 0 && mode == expr_evaluate)
2063 resolve_expression (resultP);
2064
2065 return resultP->X_op == O_constant ? absolute_section : retval;
2066 }
2067
2068 /* Resolve an expression without changing any symbols/sub-expressions
2069 used. */
2070
2071 int
2072 resolve_expression (expressionS *expressionP)
2073 {
2074 /* Help out with CSE. */
2075 valueT final_val = expressionP->X_add_number;
2076 symbolS *add_symbol = expressionP->X_add_symbol;
2077 symbolS *orig_add_symbol = add_symbol;
2078 symbolS *op_symbol = expressionP->X_op_symbol;
2079 operatorT op = expressionP->X_op;
2080 valueT left, right;
2081 segT seg_left, seg_right;
2082 fragS *frag_left, *frag_right;
2083 offsetT frag_off;
2084
2085 switch (op)
2086 {
2087 default:
2088 return 0;
2089
2090 case O_constant:
2091 case O_register:
2092 left = 0;
2093 break;
2094
2095 case O_symbol:
2096 case O_symbol_rva:
2097 if (!snapshot_symbol (&add_symbol, &left, &seg_left, &frag_left))
2098 return 0;
2099
2100 break;
2101
2102 case O_uminus:
2103 case O_bit_not:
2104 case O_logical_not:
2105 if (!snapshot_symbol (&add_symbol, &left, &seg_left, &frag_left))
2106 return 0;
2107
2108 if (seg_left != absolute_section)
2109 return 0;
2110
2111 if (op == O_logical_not)
2112 left = !left;
2113 else if (op == O_uminus)
2114 left = -left;
2115 else
2116 left = ~left;
2117 op = O_constant;
2118 break;
2119
2120 case O_multiply:
2121 case O_divide:
2122 case O_modulus:
2123 case O_left_shift:
2124 case O_right_shift:
2125 case O_bit_inclusive_or:
2126 case O_bit_or_not:
2127 case O_bit_exclusive_or:
2128 case O_bit_and:
2129 case O_add:
2130 case O_subtract:
2131 case O_eq:
2132 case O_ne:
2133 case O_lt:
2134 case O_le:
2135 case O_ge:
2136 case O_gt:
2137 case O_logical_and:
2138 case O_logical_or:
2139 if (!snapshot_symbol (&add_symbol, &left, &seg_left, &frag_left)
2140 || !snapshot_symbol (&op_symbol, &right, &seg_right, &frag_right))
2141 return 0;
2142
2143 /* Simplify addition or subtraction of a constant by folding the
2144 constant into X_add_number. */
2145 if (op == O_add)
2146 {
2147 if (seg_right == absolute_section)
2148 {
2149 final_val += right;
2150 op = O_symbol;
2151 break;
2152 }
2153 else if (seg_left == absolute_section)
2154 {
2155 final_val += left;
2156 left = right;
2157 seg_left = seg_right;
2158 add_symbol = op_symbol;
2159 orig_add_symbol = expressionP->X_op_symbol;
2160 op = O_symbol;
2161 break;
2162 }
2163 }
2164 else if (op == O_subtract)
2165 {
2166 if (seg_right == absolute_section)
2167 {
2168 final_val -= right;
2169 op = O_symbol;
2170 break;
2171 }
2172 }
2173
2174 /* Equality and non-equality tests are permitted on anything.
2175 Subtraction, and other comparison operators are permitted if
2176 both operands are in the same section.
2177 Shifts by constant zero are permitted on anything.
2178 Multiplies, bit-ors, and bit-ands with constant zero are
2179 permitted on anything.
2180 Multiplies and divides by constant one are permitted on
2181 anything.
2182 Binary operations with both operands being the same register
2183 or undefined symbol are permitted if the result doesn't depend
2184 on the input value.
2185 Otherwise, both operands must be absolute. We already handled
2186 the case of addition or subtraction of a constant above. */
2187 frag_off = 0;
2188 if (!(seg_left == absolute_section
2189 && seg_right == absolute_section)
2190 && !(op == O_eq || op == O_ne)
2191 && !((op == O_subtract
2192 || op == O_lt || op == O_le || op == O_ge || op == O_gt)
2193 && seg_left == seg_right
2194 && (finalize_syms
2195 || frag_offset_fixed_p (frag_left, frag_right, &frag_off))
2196 && (seg_left != reg_section || left == right)
2197 && (seg_left != undefined_section || add_symbol == op_symbol)))
2198 {
2199 if ((seg_left == absolute_section && left == 0)
2200 || (seg_right == absolute_section && right == 0))
2201 {
2202 if (op == O_bit_exclusive_or || op == O_bit_inclusive_or)
2203 {
2204 if (!(seg_right == absolute_section && right == 0))
2205 {
2206 seg_left = seg_right;
2207 left = right;
2208 add_symbol = op_symbol;
2209 orig_add_symbol = expressionP->X_op_symbol;
2210 }
2211 op = O_symbol;
2212 break;
2213 }
2214 else if (op == O_left_shift || op == O_right_shift)
2215 {
2216 if (!(seg_left == absolute_section && left == 0))
2217 {
2218 op = O_symbol;
2219 break;
2220 }
2221 }
2222 else if (op != O_multiply
2223 && op != O_bit_or_not && op != O_bit_and)
2224 return 0;
2225 }
2226 else if (op == O_multiply
2227 && seg_left == absolute_section && left == 1)
2228 {
2229 seg_left = seg_right;
2230 left = right;
2231 add_symbol = op_symbol;
2232 orig_add_symbol = expressionP->X_op_symbol;
2233 op = O_symbol;
2234 break;
2235 }
2236 else if ((op == O_multiply || op == O_divide)
2237 && seg_right == absolute_section && right == 1)
2238 {
2239 op = O_symbol;
2240 break;
2241 }
2242 else if (!(left == right
2243 && ((seg_left == reg_section && seg_right == reg_section)
2244 || (seg_left == undefined_section
2245 && seg_right == undefined_section
2246 && add_symbol == op_symbol))))
2247 return 0;
2248 else if (op == O_bit_and || op == O_bit_inclusive_or)
2249 {
2250 op = O_symbol;
2251 break;
2252 }
2253 else if (op != O_bit_exclusive_or && op != O_bit_or_not)
2254 return 0;
2255 }
2256
2257 right += frag_off / OCTETS_PER_BYTE;
2258 switch (op)
2259 {
2260 case O_add: left += right; break;
2261 case O_subtract: left -= right; break;
2262 case O_multiply: left *= right; break;
2263 case O_divide:
2264 if (right == 0)
2265 return 0;
2266 left = (offsetT) left / (offsetT) right;
2267 break;
2268 case O_modulus:
2269 if (right == 0)
2270 return 0;
2271 left = (offsetT) left % (offsetT) right;
2272 break;
2273 case O_left_shift: left <<= right; break;
2274 case O_right_shift: left >>= right; break;
2275 case O_bit_inclusive_or: left |= right; break;
2276 case O_bit_or_not: left |= ~right; break;
2277 case O_bit_exclusive_or: left ^= right; break;
2278 case O_bit_and: left &= right; break;
2279 case O_eq:
2280 case O_ne:
2281 left = (left == right
2282 && seg_left == seg_right
2283 && (finalize_syms || frag_left == frag_right)
2284 && (seg_left != undefined_section
2285 || add_symbol == op_symbol)
2286 ? ~ (valueT) 0 : 0);
2287 if (op == O_ne)
2288 left = ~left;
2289 break;
2290 case O_lt:
2291 left = (offsetT) left < (offsetT) right ? ~ (valueT) 0 : 0;
2292 break;
2293 case O_le:
2294 left = (offsetT) left <= (offsetT) right ? ~ (valueT) 0 : 0;
2295 break;
2296 case O_ge:
2297 left = (offsetT) left >= (offsetT) right ? ~ (valueT) 0 : 0;
2298 break;
2299 case O_gt:
2300 left = (offsetT) left > (offsetT) right ? ~ (valueT) 0 : 0;
2301 break;
2302 case O_logical_and: left = left && right; break;
2303 case O_logical_or: left = left || right; break;
2304 default: abort ();
2305 }
2306
2307 op = O_constant;
2308 break;
2309 }
2310
2311 if (op == O_symbol)
2312 {
2313 if (seg_left == absolute_section)
2314 op = O_constant;
2315 else if (seg_left == reg_section && final_val == 0)
2316 op = O_register;
2317 else if (!symbol_same_p (add_symbol, orig_add_symbol))
2318 final_val += left;
2319 expressionP->X_add_symbol = add_symbol;
2320 }
2321 expressionP->X_op = op;
2322
2323 if (op == O_constant || op == O_register)
2324 final_val += left;
2325 expressionP->X_add_number = final_val;
2326
2327 return 1;
2328 }
2329 \f
2330 /* This lives here because it belongs equally in expr.c & read.c.
2331 expr.c is just a branch office read.c anyway, and putting it
2332 here lessens the crowd at read.c.
2333
2334 Assume input_line_pointer is at start of symbol name.
2335 Advance input_line_pointer past symbol name.
2336 Turn that character into a '\0', returning its former value.
2337 This allows a string compare (RMS wants symbol names to be strings)
2338 of the symbol name.
2339 There will always be a char following symbol name, because all good
2340 lines end in end-of-line. */
2341
2342 char
2343 get_symbol_end (void)
2344 {
2345 char c;
2346
2347 /* We accept \001 in a name in case this is being called with a
2348 constructed string. */
2349 if (is_name_beginner (c = *input_line_pointer++) || c == '\001')
2350 {
2351 while (is_part_of_name (c = *input_line_pointer++)
2352 || c == '\001')
2353 ;
2354 if (is_name_ender (c))
2355 c = *input_line_pointer++;
2356 }
2357 *--input_line_pointer = 0;
2358 return (c);
2359 }
2360
2361 unsigned int
2362 get_single_number (void)
2363 {
2364 expressionS exp;
2365 operand (&exp, expr_normal);
2366 return exp.X_add_number;
2367 }
This page took 0.079815 seconds and 4 git commands to generate.