Tue Feb 9 08:18:07 1993 Ian Lance Taylor (ian@cygnus.com)
[deliverable/binutils-gdb.git] / gas / expr.c
1 /* expr.c -operands, expressions-
2 Copyright (C) 1987, 1990, 1991, 1992 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 /*
21 * This is really a branch office of as-read.c. I split it out to clearly
22 * distinguish the world of expressions from the world of statements.
23 * (It also gives smaller files to re-compile.)
24 * Here, "operand"s are of expressions, not instructions.
25 */
26
27 #include <ctype.h>
28 #include <string.h>
29
30 #include "as.h"
31
32 #include "obstack.h"
33
34 #if __STDC__ == 1
35 static void clean_up_expression (expressionS * expressionP);
36 #else /* __STDC__ */
37 static void clean_up_expression (); /* Internal. */
38 #endif /* not __STDC__ */
39 extern const char EXP_CHARS[]; /* JF hide MD floating pt stuff all the same place */
40 extern const char FLT_CHARS[];
41
42 /*
43 * Build any floating-point literal here.
44 * Also build any bignum literal here.
45 */
46
47 /* LITTLENUM_TYPE generic_buffer [6]; *//* JF this is a hack */
48 /* Seems atof_machine can backscan through generic_bignum and hit whatever
49 happens to be loaded before it in memory. And its way too complicated
50 for me to fix right. Thus a hack. JF: Just make generic_bignum bigger,
51 and never write into the early words, thus they'll always be zero.
52 I hate Dean's floating-point code. Bleh.
53 */
54 LITTLENUM_TYPE generic_bignum[SIZE_OF_LARGE_NUMBER + 6];
55 FLONUM_TYPE generic_floating_point_number =
56 {
57 &generic_bignum[6], /* low (JF: Was 0) */
58 &generic_bignum[SIZE_OF_LARGE_NUMBER + 6 - 1], /* high JF: (added +6) */
59 0, /* leader */
60 0, /* exponent */
61 0 /* sign */
62 };
63 /* If nonzero, we've been asked to assemble nan, +inf or -inf */
64 int generic_floating_point_magic;
65 \f
66 floating_constant (expressionP)
67 expressionS *expressionP;
68 {
69 /* input_line_pointer->*/
70 /* floating-point constant. */
71 int error_code;
72
73 error_code = atof_generic
74 (&input_line_pointer, ".", EXP_CHARS,
75 &generic_floating_point_number);
76
77 if (error_code)
78 {
79 if (error_code == ERROR_EXPONENT_OVERFLOW)
80 {
81 as_bad ("bad floating-point constant: exponent overflow, probably assembling junk");
82 }
83 else
84 {
85 as_bad ("bad floating-point constant: unknown error code=%d.", error_code);
86 }
87 }
88 expressionP->X_seg = SEG_BIG;
89 /* input_line_pointer->just after constant, */
90 /* which may point to whitespace. */
91 expressionP->X_add_number = -1;
92 }
93
94
95
96 integer_constant (radix, expressionP)
97 int radix;
98 expressionS *expressionP;
99 {
100 register char *digit_2; /*->2nd digit of number. */
101 char c;
102
103 register valueT number; /* offset or (absolute) value */
104 register short int digit; /* value of next digit in current radix */
105 register short int maxdig = 0;/* highest permitted digit value. */
106 register int too_many_digits = 0; /* if we see >= this number of */
107 register char *name; /* points to name of symbol */
108 register symbolS *symbolP; /* points to symbol */
109
110 int small; /* true if fits in 32 bits. */
111 extern char hex_value[]; /* in hex_value.c */
112
113 /* may be bignum, or may fit in 32 bits. */
114 /*
115 * most numbers fit into 32 bits, and we want this case to be fast.
116 * so we pretend it will fit into 32 bits. if, after making up a 32
117 * bit number, we realise that we have scanned more digits than
118 * comfortably fit into 32 bits, we re-scan the digits coding
119 * them into a bignum. for decimal and octal numbers we are conservative: some
120 * numbers may be assumed bignums when in fact they do fit into 32 bits.
121 * numbers of any radix can have excess leading zeros: we strive
122 * to recognise this and cast them back into 32 bits.
123 * we must check that the bignum really is more than 32
124 * bits, and change it back to a 32-bit number if it fits.
125 * the number we are looking for is expected to be positive, but
126 * if it fits into 32 bits as an unsigned number, we let it be a 32-bit
127 * number. the cavalier approach is for speed in ordinary cases.
128 */
129
130 switch (radix)
131 {
132
133 case 2:
134 maxdig = 2;
135 too_many_digits = 33;
136 break;
137 case 8:
138 maxdig = radix = 8;
139 too_many_digits = 11;
140 break;
141 case 16:
142
143
144 maxdig = radix = 16;
145 too_many_digits = 9;
146 break;
147 case 10:
148 maxdig = radix = 10;
149 too_many_digits = 11;
150 }
151 c = *input_line_pointer;
152 input_line_pointer++;
153 digit_2 = input_line_pointer;
154 for (number = 0; (digit = hex_value[c]) < maxdig; c = *input_line_pointer++)
155 {
156 number = number * radix + digit;
157 }
158 /* c contains character after number. */
159 /* input_line_pointer->char after c. */
160 small = input_line_pointer - digit_2 < too_many_digits;
161 if (!small)
162 {
163 /*
164 * we saw a lot of digits. manufacture a bignum the hard way.
165 */
166 LITTLENUM_TYPE *leader; /*->high order littlenum of the bignum. */
167 LITTLENUM_TYPE *pointer; /*->littlenum we are frobbing now. */
168 long carry;
169
170 leader = generic_bignum;
171 generic_bignum[0] = 0;
172 generic_bignum[1] = 0;
173 /* we could just use digit_2, but lets be mnemonic. */
174 input_line_pointer = --digit_2; /*->1st digit. */
175 c = *input_line_pointer++;
176 for (; (carry = hex_value[c]) < maxdig; c = *input_line_pointer++)
177 {
178 for (pointer = generic_bignum;
179 pointer <= leader;
180 pointer++)
181 {
182 long work;
183
184 work = carry + radix * *pointer;
185 *pointer = work & LITTLENUM_MASK;
186 carry = work >> LITTLENUM_NUMBER_OF_BITS;
187 }
188 if (carry)
189 {
190 if (leader < generic_bignum + SIZE_OF_LARGE_NUMBER - 1)
191 { /* room to grow a longer bignum. */
192 *++leader = carry;
193 }
194 }
195 }
196 /* again, c is char after number, */
197 /* input_line_pointer->after c. */
198 know (sizeof (int) * 8 == 32);
199 know (LITTLENUM_NUMBER_OF_BITS == 16);
200 /* hence the constant "2" in the next line. */
201 if (leader < generic_bignum + 2)
202 { /* will fit into 32 bits. */
203 number =
204 ((generic_bignum[1] & LITTLENUM_MASK) << LITTLENUM_NUMBER_OF_BITS)
205 | (generic_bignum[0] & LITTLENUM_MASK);
206 small = 1;
207 }
208 else
209 {
210 number = leader - generic_bignum + 1; /* number of littlenums in the bignum. */
211 }
212 }
213 if (small)
214 {
215 /*
216 * here with number, in correct radix. c is the next char.
217 * note that unlike un*x, we allow "011f" "0x9f" to
218 * both mean the same as the (conventional) "9f". this is simply easier
219 * than checking for strict canonical form. syntax sux!
220 */
221
222 switch (c)
223 {
224
225 #ifdef LOCAL_LABELS_FB
226 case 'b':
227 {
228 /*
229 * backward ref to local label.
230 * because it is backward, expect it to be defined.
231 */
232 /* Construct a local label. */
233 name = fb_label_name ((int) number, 0);
234
235 /* seen before, or symbol is defined: ok */
236 symbolP = symbol_find (name);
237 if ((symbolP != NULL) && (S_IS_DEFINED (symbolP)))
238 {
239
240 /* local labels are never absolute. don't waste time
241 checking absoluteness. */
242 know (SEG_NORMAL (S_GET_SEGMENT (symbolP)));
243
244 expressionP->X_add_symbol = symbolP;
245 expressionP->X_seg = S_GET_SEGMENT (symbolP);
246
247 }
248 else
249 { /* either not seen or not defined. */
250 as_bad ("backw. ref to unknown label \"%d:\", 0 assumed.", number);
251 expressionP->X_seg = SEG_ABSOLUTE;
252 }
253
254 expressionP->X_add_number = 0;
255 break;
256 } /* case 'b' */
257
258 case 'f':
259 {
260 /*
261 * forward reference. expect symbol to be undefined or
262 * unknown. undefined: seen it before. unknown: never seen
263 * it before.
264 * construct a local label name, then an undefined symbol.
265 * don't create a xseg frag for it: caller may do that.
266 * just return it as never seen before.
267 */
268 name = fb_label_name ((int) number, 1);
269 symbolP = symbol_find_or_make (name);
270 /* we have no need to check symbol properties. */
271 #ifndef many_segments
272 /* since "know" puts its arg into a "string", we
273 can't have newlines in the argument. */
274 know (S_GET_SEGMENT (symbolP) == SEG_UNKNOWN || S_GET_SEGMENT (symbolP) == SEG_TEXT || S_GET_SEGMENT (symbolP) == SEG_DATA);
275 #endif
276 expressionP->X_add_symbol = symbolP;
277 expressionP->X_seg = SEG_UNKNOWN;
278 expressionP->X_subtract_symbol = NULL;
279 expressionP->X_add_number = 0;
280
281 break;
282 } /* case 'f' */
283
284 #endif /* LOCAL_LABELS_FB */
285
286 #ifdef LOCAL_LABELS_DOLLAR
287
288 case '$':
289 {
290
291 /* If the dollar label is *currently* defined, then this is just
292 another reference to it. If it is not *currently* defined,
293 then this is a fresh instantiation of that number, so create
294 it. */
295
296 if (dollar_label_defined (number))
297 {
298 name = dollar_label_name (number, 0);
299 symbolP = symbol_find (name);
300 know (symbolP != NULL);
301 }
302 else
303 {
304 name = dollar_label_name (number, 1);
305 symbolP = symbol_find_or_make (name);
306 }
307
308 expressionP->X_add_symbol = symbolP;
309 expressionP->X_add_number = 0;
310 expressionP->X_seg = S_GET_SEGMENT (symbolP);
311
312 break;
313 } /* case '$' */
314
315 #endif /* LOCAL_LABELS_DOLLAR */
316
317 default:
318 {
319 expressionP->X_add_number = number;
320 expressionP->X_seg = SEG_ABSOLUTE;
321 input_line_pointer--; /* restore following character. */
322 break;
323 } /* really just a number */
324
325 } /* switch on char following the number */
326
327
328 }
329 else
330 { /* not a small number */
331 expressionP->X_add_number = number;
332 expressionP->X_seg = SEG_BIG;
333 input_line_pointer--; /*->char following number. */
334 } /* if (small) */
335 } /* integer_constant() */
336
337
338 /*
339 * Summary of operand().
340 *
341 * in: Input_line_pointer points to 1st char of operand, which may
342 * be a space.
343 *
344 * out: A expressionS. X_seg determines how to understand the rest of the
345 * expressionS.
346 * The operand may have been empty: in this case X_seg == SEG_ABSENT.
347 * Input_line_pointer->(next non-blank) char after operand.
348 *
349 */
350 \f
351
352
353 static segT
354 operand (expressionP)
355 register expressionS *expressionP;
356 {
357 register char c;
358 register symbolS *symbolP; /* points to symbol */
359 register char *name; /* points to name of symbol */
360 /* invented for humans only, hope */
361 /* optimising compiler flushes it! */
362 register short int radix; /* 2, 8, 10 or 16, 0 when floating */
363 /* 0 means we saw start of a floating- */
364 /* point constant. */
365
366 /* digits, assume it is a bignum. */
367
368 SKIP_WHITESPACE (); /* leading whitespace is part of operand. */
369 c = *input_line_pointer++; /* input_line_pointer->past char in c. */
370
371 switch (c)
372 {
373 #ifdef MRI
374 case '%':
375 integer_constant (2, expressionP);
376 break;
377 case '@':
378 integer_constant (8, expressionP);
379 break;
380 case '$':
381 integer_constant (16, expressionP);
382 break;
383 #endif
384 case '1':
385 case '2':
386 case '3':
387 case '4':
388 case '5':
389 case '6':
390 case '7':
391 case '8':
392 case '9':
393 input_line_pointer--;
394
395 integer_constant (10, expressionP);
396 break;
397
398 case '0':
399 /* non-decimal radix */
400
401
402 c = *input_line_pointer;
403 switch (c)
404 {
405
406 default:
407 if (c && strchr (FLT_CHARS, c))
408 {
409 input_line_pointer++;
410 floating_constant (expressionP);
411 }
412 else
413 {
414 /* The string was only zero */
415 expressionP->X_add_symbol = 0;
416 expressionP->X_add_number = 0;
417 expressionP->X_seg = SEG_ABSOLUTE;
418 }
419
420 break;
421
422 case 'x':
423 case 'X':
424 input_line_pointer++;
425 integer_constant (16, expressionP);
426 break;
427
428 case 'b':
429 #ifdef LOCAL_LABELS_FB
430 if (!*input_line_pointer
431 || (!strchr ("+-.0123456789", *input_line_pointer)
432 && !strchr (EXP_CHARS, *input_line_pointer)))
433 {
434 input_line_pointer--;
435 integer_constant (10, expressionP);
436 break;
437 }
438 #endif
439 case 'B':
440 input_line_pointer++;
441 integer_constant (2, expressionP);
442 break;
443
444 case '0':
445 case '1':
446 case '2':
447 case '3':
448 case '4':
449 case '5':
450 case '6':
451 case '7':
452 integer_constant (8, expressionP);
453 break;
454
455 case 'f':
456 #ifdef LOCAL_LABELS_FB
457 /* if it says '0f' and the line ends or it doesn't look like
458 a floating point #, its a local label ref. dtrt */
459 /* likewise for the b's. xoxorich. */
460 if (c == 'f'
461 && (!*input_line_pointer ||
462 (!strchr ("+-.0123456789", *input_line_pointer) &&
463 !strchr (EXP_CHARS, *input_line_pointer))))
464 {
465 input_line_pointer -= 1;
466 integer_constant (10, expressionP);
467 break;
468 }
469 #endif
470
471 case 'd':
472 case 'D':
473 case 'F':
474 case 'r':
475 case 'e':
476 case 'E':
477 case 'g':
478 case 'G':
479
480 input_line_pointer++;
481 floating_constant (expressionP);
482 break;
483
484 #ifdef LOCAL_LABELS_DOLLAR
485 case '$':
486 integer_constant (10, expressionP);
487 break;
488 #endif
489 }
490
491 break;
492 case '(':
493 /* didn't begin with digit & not a name */
494 {
495 (void) expression (expressionP);
496 /* Expression() will pass trailing whitespace */
497 if (*input_line_pointer++ != ')')
498 {
499 as_bad ("Missing ')' assumed");
500 input_line_pointer--;
501 }
502 /* here with input_line_pointer->char after "(...)" */
503 }
504 return expressionP->X_seg;
505
506
507 case '\'':
508 /* Warning: to conform to other people's assemblers NO ESCAPEMENT is
509 permitted for a single quote. The next character, parity errors and
510 all, is taken as the value of the operand. VERY KINKY. */
511 expressionP->X_add_number = *input_line_pointer++;
512 expressionP->X_seg = SEG_ABSOLUTE;
513 break;
514
515 case '~':
516 case '-':
517 case '+':
518
519 {
520 /* unary operator: hope for SEG_ABSOLUTE */
521 switch (operand (expressionP))
522 {
523 case SEG_ABSOLUTE:
524 /* input_line_pointer -> char after operand */
525 if (c == '-')
526 {
527 expressionP->X_add_number = -expressionP->X_add_number;
528 /* Notice: '-' may overflow: no warning is given. This is
529 compatible with other people's assemblers. Sigh. */
530 }
531 else
532 {
533 expressionP->X_add_number = ~expressionP->X_add_number;
534 }
535 break;
536
537 case SEG_TEXT:
538 case SEG_DATA:
539 case SEG_BSS:
540 case SEG_PASS1:
541 case SEG_UNKNOWN:
542 if (c == '-')
543 { /* JF I hope this hack works */
544 expressionP->X_subtract_symbol = expressionP->X_add_symbol;
545 expressionP->X_add_symbol = 0;
546 expressionP->X_seg = SEG_DIFFERENCE;
547 break;
548 }
549 default: /* unary on non-absolute is unsuported */
550 as_warn ("Unary operator %c ignored because bad operand follows", c);
551 break;
552 /* Expression undisturbed from operand(). */
553 }
554 }
555
556
557
558 break;
559
560 case '.':
561 if (!is_part_of_name (*input_line_pointer))
562 {
563 char *fake;
564 extern struct obstack frags;
565
566 /* JF: '.' is pseudo symbol with value of current location
567 in current segment. */
568 #ifdef DOT_LABEL_PREFIX
569 fake = ".L0\001";
570 #else
571 fake = "L0\001";
572 #endif
573 symbolP = symbol_new (fake,
574 now_seg,
575 (valueT) (obstack_next_free (&frags) - frag_now->fr_literal),
576 frag_now);
577
578 expressionP->X_add_number = 0;
579 expressionP->X_add_symbol = symbolP;
580 expressionP->X_seg = now_seg;
581 break;
582
583 }
584 else
585 {
586 goto isname;
587
588
589 }
590 case ',':
591 case '\n':
592 eol:
593 /* can't imagine any other kind of operand */
594 expressionP->X_seg = SEG_ABSENT;
595 input_line_pointer--;
596 md_operand (expressionP);
597 break;
598
599 default:
600 if (is_end_of_line[c])
601 goto eol;
602 if (is_name_beginner (c)) /* here if did not begin with a digit */
603 {
604 /*
605 * Identifier begins here.
606 * This is kludged for speed, so code is repeated.
607 */
608 isname:
609 name = --input_line_pointer;
610 c = get_symbol_end ();
611 symbolP = symbol_find_or_make (name);
612 /* If we have an absolute symbol or a reg, then we know its value
613 now. */
614 expressionP->X_seg = S_GET_SEGMENT (symbolP);
615 switch (expressionP->X_seg)
616 {
617 case SEG_ABSOLUTE:
618 case SEG_REGISTER:
619 expressionP->X_add_number = S_GET_VALUE (symbolP);
620 break;
621
622 default:
623 expressionP->X_add_number = 0;
624 expressionP->X_add_symbol = symbolP;
625 }
626 *input_line_pointer = c;
627 expressionP->X_subtract_symbol = NULL;
628 }
629 else
630 {
631 as_bad ("Bad expression");
632 expressionP->X_add_number = 0;
633 expressionP->X_seg = SEG_ABSOLUTE;
634
635 }
636
637 }
638
639
640
641
642
643
644
645 /*
646 * It is more 'efficient' to clean up the expressionS when they are created.
647 * Doing it here saves lines of code.
648 */
649 clean_up_expression (expressionP);
650 SKIP_WHITESPACE (); /*->1st char after operand. */
651 know (*input_line_pointer != ' ');
652 return (expressionP->X_seg);
653 } /* operand() */
654 \f
655
656 /* Internal. Simplify a struct expression for use by expr() */
657
658 /*
659 * In: address of a expressionS.
660 * The X_seg field of the expressionS may only take certain values.
661 * Now, we permit SEG_PASS1 to make code smaller & faster.
662 * Elsewise we waste time special-case testing. Sigh. Ditto SEG_ABSENT.
663 * Out: expressionS may have been modified:
664 * 'foo-foo' symbol references cancelled to 0,
665 * which changes X_seg from SEG_DIFFERENCE to SEG_ABSOLUTE;
666 * Unused fields zeroed to help expr().
667 */
668
669 static void
670 clean_up_expression (expressionP)
671 register expressionS *expressionP;
672 {
673 switch (expressionP->X_seg)
674 {
675 case SEG_ABSENT:
676 case SEG_PASS1:
677 expressionP->X_add_symbol = NULL;
678 expressionP->X_subtract_symbol = NULL;
679 expressionP->X_add_number = 0;
680 break;
681
682 case SEG_BIG:
683 case SEG_ABSOLUTE:
684 expressionP->X_subtract_symbol = NULL;
685 expressionP->X_add_symbol = NULL;
686 break;
687
688 case SEG_UNKNOWN:
689 expressionP->X_subtract_symbol = NULL;
690 break;
691
692 case SEG_DIFFERENCE:
693 /*
694 * It does not hurt to 'cancel' NULL==NULL
695 * when comparing symbols for 'eq'ness.
696 * It is faster to re-cancel them to NULL
697 * than to check for this special case.
698 */
699 if (expressionP->X_subtract_symbol == expressionP->X_add_symbol
700 || (expressionP->X_subtract_symbol
701 && expressionP->X_add_symbol
702 && expressionP->X_subtract_symbol->sy_frag == expressionP->X_add_symbol->sy_frag
703 && S_GET_VALUE (expressionP->X_subtract_symbol) == S_GET_VALUE (expressionP->X_add_symbol)))
704 {
705 expressionP->X_subtract_symbol = NULL;
706 expressionP->X_add_symbol = NULL;
707 expressionP->X_seg = SEG_ABSOLUTE;
708 }
709 break;
710
711 case SEG_REGISTER:
712 expressionP->X_add_symbol = NULL;
713 expressionP->X_subtract_symbol = NULL;
714 break;
715
716 default:
717 if (SEG_NORMAL (expressionP->X_seg))
718 {
719 expressionP->X_subtract_symbol = NULL;
720 }
721 else
722 {
723 BAD_CASE (expressionP->X_seg);
724 }
725 break;
726 }
727 } /* clean_up_expression() */
728 \f
729 /*
730 * expr_part ()
731 *
732 * Internal. Made a function because this code is used in 2 places.
733 * Generate error or correct X_?????_symbol of expressionS.
734 */
735
736 /*
737 * symbol_1 += symbol_2 ... well ... sort of.
738 */
739
740 static segT
741 expr_part (symbol_1_PP, symbol_2_P)
742 symbolS **symbol_1_PP;
743 symbolS *symbol_2_P;
744 {
745 segT return_value;
746 #ifndef MANY_SEGMENTS
747 know ((*symbol_1_PP) == NULL || (S_GET_SEGMENT (*symbol_1_PP) == SEG_TEXT) || (S_GET_SEGMENT (*symbol_1_PP) == SEG_DATA) || (S_GET_SEGMENT (*symbol_1_PP) == SEG_BSS) || (!S_IS_DEFINED (*symbol_1_PP)));
748 know (symbol_2_P == NULL || (S_GET_SEGMENT (symbol_2_P) == SEG_TEXT) || (S_GET_SEGMENT (symbol_2_P) == SEG_DATA) || (S_GET_SEGMENT (symbol_2_P) == SEG_BSS) || (!S_IS_DEFINED (symbol_2_P)));
749 #endif
750 if (*symbol_1_PP)
751 {
752 if (!S_IS_DEFINED (*symbol_1_PP))
753 {
754 if (symbol_2_P)
755 {
756 return_value = SEG_PASS1;
757 *symbol_1_PP = NULL;
758 }
759 else
760 {
761 know (!S_IS_DEFINED (*symbol_1_PP));
762 return_value = SEG_UNKNOWN;
763 }
764 }
765 else
766 {
767 if (symbol_2_P)
768 {
769 if (!S_IS_DEFINED (symbol_2_P))
770 {
771 *symbol_1_PP = NULL;
772 return_value = SEG_PASS1;
773 }
774 else
775 {
776 /* {seg1} - {seg2} */
777 as_bad ("Expression too complex, 2 symbolS forgotten: \"%s\" \"%s\"",
778 S_GET_NAME (*symbol_1_PP), S_GET_NAME (symbol_2_P));
779 *symbol_1_PP = NULL;
780 return_value = SEG_ABSOLUTE;
781 }
782 }
783 else
784 {
785 return_value = S_GET_SEGMENT (*symbol_1_PP);
786 }
787 }
788 }
789 else
790 { /* (* symbol_1_PP) == NULL */
791 if (symbol_2_P)
792 {
793 *symbol_1_PP = symbol_2_P;
794 return_value = S_GET_SEGMENT (symbol_2_P);
795 }
796 else
797 {
798 *symbol_1_PP = NULL;
799 return_value = SEG_ABSOLUTE;
800 }
801 }
802 #ifndef MANY_SEGMENTS
803 know (return_value == SEG_ABSOLUTE || return_value == SEG_TEXT || return_value == SEG_DATA || return_value == SEG_BSS || return_value == SEG_UNKNOWN || return_value == SEG_PASS1);
804 #endif
805 know ((*symbol_1_PP) == NULL || (S_GET_SEGMENT (*symbol_1_PP) == return_value));
806 return (return_value);
807 } /* expr_part() */
808 \f
809 /* Expression parser. */
810
811 /*
812 * We allow an empty expression, and just assume (absolute,0) silently.
813 * Unary operators and parenthetical expressions are treated as operands.
814 * As usual, Q==quantity==operand, O==operator, X==expression mnemonics.
815 *
816 * We used to do a aho/ullman shift-reduce parser, but the logic got so
817 * warped that I flushed it and wrote a recursive-descent parser instead.
818 * Now things are stable, would anybody like to write a fast parser?
819 * Most expressions are either register (which does not even reach here)
820 * or 1 symbol. Then "symbol+constant" and "symbol-symbol" are common.
821 * So I guess it doesn't really matter how inefficient more complex expressions
822 * are parsed.
823 *
824 * After expr(RANK,resultP) input_line_pointer->operator of rank <= RANK.
825 * Also, we have consumed any leading or trailing spaces (operand does that)
826 * and done all intervening operators.
827 */
828
829 typedef enum
830 {
831 O_illegal, /* (0) what we get for illegal op */
832
833 O_multiply, /* (1) * */
834 O_divide, /* (2) / */
835 O_modulus, /* (3) % */
836 O_left_shift, /* (4) < */
837 O_right_shift, /* (5) > */
838 O_bit_inclusive_or, /* (6) | */
839 O_bit_or_not, /* (7) ! */
840 O_bit_exclusive_or, /* (8) ^ */
841 O_bit_and, /* (9) & */
842 O_add, /* (10) + */
843 O_subtract /* (11) - */
844 }
845
846 operatorT;
847
848 #define __ O_illegal
849
850 static const operatorT op_encoding[256] =
851 { /* maps ASCII->operators */
852
853 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
854 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
855
856 __, O_bit_or_not, __, __, __, O_modulus, O_bit_and, __,
857 __, __, O_multiply, O_add, __, O_subtract, __, O_divide,
858 __, __, __, __, __, __, __, __,
859 __, __, __, __, O_left_shift, __, O_right_shift, __,
860 __, __, __, __, __, __, __, __,
861 __, __, __, __, __, __, __, __,
862 __, __, __, __, __, __, __, __,
863 __, __, __, __, __, __, O_bit_exclusive_or, __,
864 __, __, __, __, __, __, __, __,
865 __, __, __, __, __, __, __, __,
866 __, __, __, __, __, __, __, __,
867 __, __, __, __, O_bit_inclusive_or, __, __, __,
868
869 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
870 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
871 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
872 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
873 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
874 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
875 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
876 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __
877 };
878
879
880 /*
881 * Rank Examples
882 * 0 operand, (expression)
883 * 1 + -
884 * 2 & ^ ! |
885 * 3 * / % << >>
886 */
887 static const operator_rankT
888 op_rank[] =
889 {0, 3, 3, 3, 3, 3, 2, 2, 2, 2, 1, 1};
890 \f
891 /* Return resultP->X_seg. */
892 segT
893 expr (rank, resultP)
894 register operator_rankT rank; /* Larger # is higher rank. */
895 register expressionS *resultP; /* Deliver result here. */
896 {
897 expressionS right;
898 register operatorT op_left;
899 register char c_left; /* 1st operator character. */
900 register operatorT op_right;
901 register char c_right;
902
903 know (rank >= 0);
904 (void) operand (resultP);
905 know (*input_line_pointer != ' '); /* Operand() gobbles spaces. */
906 c_left = *input_line_pointer; /* Potential operator character. */
907 op_left = op_encoding[c_left];
908 while (op_left != O_illegal && op_rank[(int) op_left] > rank)
909 {
910 input_line_pointer++; /*->after 1st character of operator. */
911 /* Operators "<<" and ">>" have 2 characters. */
912 if (*input_line_pointer == c_left && (c_left == '<' || c_left == '>'))
913 {
914 input_line_pointer++;
915 } /*->after operator. */
916 if (SEG_ABSENT == expr (op_rank[(int) op_left], &right))
917 {
918 as_warn ("Missing operand value assumed absolute 0.");
919 resultP->X_add_number = 0;
920 resultP->X_subtract_symbol = NULL;
921 resultP->X_add_symbol = NULL;
922 resultP->X_seg = SEG_ABSOLUTE;
923 }
924 know (*input_line_pointer != ' ');
925 c_right = *input_line_pointer;
926 op_right = op_encoding[c_right];
927 if (*input_line_pointer == c_right && (c_right == '<' || c_right == '>'))
928 {
929 input_line_pointer++;
930 } /*->after operator. */
931 know ((int) op_right == 0 || op_rank[(int) op_right] <= op_rank[(int) op_left]);
932 /* input_line_pointer->after right-hand quantity. */
933 /* left-hand quantity in resultP */
934 /* right-hand quantity in right. */
935 /* operator in op_left. */
936 if (resultP->X_seg == SEG_PASS1 || right.X_seg == SEG_PASS1)
937 {
938 resultP->X_seg = SEG_PASS1;
939 }
940 else
941 {
942 if (resultP->X_seg == SEG_BIG)
943 {
944 as_warn ("Left operand of %c is a %s. Integer 0 assumed.",
945 c_left, resultP->X_add_number > 0 ? "bignum" : "float");
946 resultP->X_seg = SEG_ABSOLUTE;
947 resultP->X_add_symbol = 0;
948 resultP->X_subtract_symbol = 0;
949 resultP->X_add_number = 0;
950 }
951 if (right.X_seg == SEG_BIG)
952 {
953 as_warn ("Right operand of %c is a %s. Integer 0 assumed.",
954 c_left, right.X_add_number > 0 ? "bignum" : "float");
955 right.X_seg = SEG_ABSOLUTE;
956 right.X_add_symbol = 0;
957 right.X_subtract_symbol = 0;
958 right.X_add_number = 0;
959 }
960 if (op_left == O_subtract)
961 {
962 /*
963 * Convert - into + by exchanging symbolS and negating number.
964 * I know -infinity can't be negated in 2's complement:
965 * but then it can't be subtracted either. This trick
966 * does not cause any further inaccuracy.
967 */
968
969 register symbolS *symbolP;
970
971 right.X_add_number = -right.X_add_number;
972 symbolP = right.X_add_symbol;
973 right.X_add_symbol = right.X_subtract_symbol;
974 right.X_subtract_symbol = symbolP;
975 if (symbolP)
976 {
977 right.X_seg = SEG_DIFFERENCE;
978 }
979 op_left = O_add;
980 }
981 \f
982 if (op_left == O_add)
983 {
984 segT seg1;
985 segT seg2;
986 #ifndef MANY_SEGMENTS
987
988 know (resultP->X_seg == SEG_DATA || resultP->X_seg == SEG_TEXT || resultP->X_seg == SEG_BSS || resultP->X_seg == SEG_UNKNOWN || resultP->X_seg == SEG_DIFFERENCE || resultP->X_seg == SEG_ABSOLUTE || resultP->X_seg == SEG_PASS1 || resultP->X_seg == SEG_REGISTER);
989
990 know (right.X_seg == SEG_DATA || right.X_seg == SEG_TEXT || right.X_seg == SEG_BSS || right.X_seg == SEG_UNKNOWN || right.X_seg == SEG_DIFFERENCE || right.X_seg == SEG_ABSOLUTE || right.X_seg == SEG_PASS1);
991 #endif
992 clean_up_expression (&right);
993 clean_up_expression (resultP);
994
995 seg1 = expr_part (&resultP->X_add_symbol, right.X_add_symbol);
996 seg2 = expr_part (&resultP->X_subtract_symbol, right.X_subtract_symbol);
997 if (seg1 == SEG_PASS1 || seg2 == SEG_PASS1)
998 {
999 need_pass_2 = 1;
1000 resultP->X_seg = SEG_PASS1;
1001 }
1002 else if (seg2 == SEG_ABSOLUTE)
1003 resultP->X_seg = seg1;
1004 else if (seg1 != SEG_UNKNOWN
1005 && seg1 != SEG_ABSOLUTE
1006 && seg2 != SEG_UNKNOWN
1007 && seg1 != seg2)
1008 {
1009 know (seg2 != SEG_ABSOLUTE);
1010 know (resultP->X_subtract_symbol);
1011 #ifndef MANY_SEGMENTS
1012 know (seg1 == SEG_TEXT || seg1 == SEG_DATA || seg1 == SEG_BSS);
1013 know (seg2 == SEG_TEXT || seg2 == SEG_DATA || seg2 == SEG_BSS);
1014 #endif
1015 know (resultP->X_add_symbol);
1016 know (resultP->X_subtract_symbol);
1017 as_bad ("Expression too complex: forgetting %s - %s",
1018 S_GET_NAME (resultP->X_add_symbol),
1019 S_GET_NAME (resultP->X_subtract_symbol));
1020 resultP->X_seg = SEG_ABSOLUTE;
1021 /* Clean_up_expression() will do the rest. */
1022 }
1023 else
1024 resultP->X_seg = SEG_DIFFERENCE;
1025
1026 resultP->X_add_number += right.X_add_number;
1027 clean_up_expression (resultP);
1028 }
1029 else
1030 { /* Not +. */
1031 if (resultP->X_seg == SEG_UNKNOWN || right.X_seg == SEG_UNKNOWN)
1032 {
1033 resultP->X_seg = SEG_PASS1;
1034 need_pass_2 = 1;
1035 }
1036 else
1037 {
1038 resultP->X_subtract_symbol = NULL;
1039 resultP->X_add_symbol = NULL;
1040 /* Will be SEG_ABSOLUTE. */
1041 if (resultP->X_seg != SEG_ABSOLUTE || right.X_seg != SEG_ABSOLUTE)
1042 {
1043 as_bad ("Relocation error. Absolute 0 assumed.");
1044 resultP->X_seg = SEG_ABSOLUTE;
1045 resultP->X_add_number = 0;
1046 }
1047 else
1048 {
1049 switch (op_left)
1050 {
1051 case O_bit_inclusive_or:
1052 resultP->X_add_number |= right.X_add_number;
1053 break;
1054
1055 case O_modulus:
1056 if (right.X_add_number)
1057 {
1058 resultP->X_add_number %= right.X_add_number;
1059 }
1060 else
1061 {
1062 as_warn ("Division by 0. 0 assumed.");
1063 resultP->X_add_number = 0;
1064 }
1065 break;
1066
1067 case O_bit_and:
1068 resultP->X_add_number &= right.X_add_number;
1069 break;
1070
1071 case O_multiply:
1072 resultP->X_add_number *= right.X_add_number;
1073 break;
1074
1075 case O_divide:
1076 if (right.X_add_number)
1077 {
1078 resultP->X_add_number /= right.X_add_number;
1079 }
1080 else
1081 {
1082 as_warn ("Division by 0. 0 assumed.");
1083 resultP->X_add_number = 0;
1084 }
1085 break;
1086
1087 case O_left_shift:
1088 resultP->X_add_number <<= right.X_add_number;
1089 break;
1090
1091 case O_right_shift:
1092 resultP->X_add_number >>= right.X_add_number;
1093 break;
1094
1095 case O_bit_exclusive_or:
1096 resultP->X_add_number ^= right.X_add_number;
1097 break;
1098
1099 case O_bit_or_not:
1100 resultP->X_add_number |= ~right.X_add_number;
1101 break;
1102
1103 default:
1104 BAD_CASE (op_left);
1105 break;
1106 } /* switch(operator) */
1107 }
1108 } /* If we have to force need_pass_2. */
1109 } /* If operator was +. */
1110 } /* If we didn't set need_pass_2. */
1111 op_left = op_right;
1112 } /* While next operator is >= this rank. */
1113 return (resultP->X_seg);
1114 }
1115 \f
1116 /*
1117 * get_symbol_end()
1118 *
1119 * This lives here because it belongs equally in expr.c & read.c.
1120 * Expr.c is just a branch office read.c anyway, and putting it
1121 * here lessens the crowd at read.c.
1122 *
1123 * Assume input_line_pointer is at start of symbol name.
1124 * Advance input_line_pointer past symbol name.
1125 * Turn that character into a '\0', returning its former value.
1126 * This allows a string compare (RMS wants symbol names to be strings)
1127 * of the symbol name.
1128 * There will always be a char following symbol name, because all good
1129 * lines end in end-of-line.
1130 */
1131 char
1132 get_symbol_end ()
1133 {
1134 register char c;
1135
1136 while (is_part_of_name (c = *input_line_pointer++))
1137 ;
1138 *--input_line_pointer = 0;
1139 return (c);
1140 }
1141
1142
1143 unsigned int
1144 get_single_number ()
1145 {
1146 expressionS exp;
1147 operand (&exp);
1148 return exp.X_add_number;
1149
1150 }
1151
1152 /* end of expr.c */
This page took 0.052364 seconds and 4 git commands to generate.