e2e64991e466fea1e09813927cfb69a5e5d19d51
[deliverable/binutils-gdb.git] / gas / expr.c
1 /* expr.c -operands, expressions-
2 Copyright (C) 1987, 90, 91, 92, 93, 94, 95, 96, 97, 98, 1999
3 Free Software Foundation, Inc.
4
5 This file is part of GAS, the GNU Assembler.
6
7 GAS is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GAS is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GAS; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /*
23 * This is really a branch office of as-read.c. I split it out to clearly
24 * distinguish the world of expressions from the world of statements.
25 * (It also gives smaller files to re-compile.)
26 * Here, "operand"s are of expressions, not instructions.
27 */
28
29 #include <ctype.h>
30 #include <string.h>
31 #define min(a, b) ((a) < (b) ? (a) : (b))
32
33 #include "as.h"
34 #include "obstack.h"
35
36 static void floating_constant PARAMS ((expressionS * expressionP));
37 static valueT generic_bignum_to_int32 PARAMS ((void));
38 #ifdef BFD64
39 static valueT generic_bignum_to_int64 PARAMS ((void));
40 #endif
41 static void integer_constant PARAMS ((int radix, expressionS * expressionP));
42 static void mri_char_constant PARAMS ((expressionS *));
43 static void current_location PARAMS ((expressionS *));
44 static void clean_up_expression PARAMS ((expressionS * expressionP));
45 static segT operand PARAMS ((expressionS *));
46 static operatorT operator PARAMS ((void));
47
48 extern const char EXP_CHARS[], FLT_CHARS[];
49
50 /* We keep a mapping of expression symbols to file positions, so that
51 we can provide better error messages. */
52
53 struct expr_symbol_line
54 {
55 struct expr_symbol_line *next;
56 symbolS *sym;
57 char *file;
58 unsigned int line;
59 };
60
61 static struct expr_symbol_line *expr_symbol_lines;
62 \f
63 /* Build a dummy symbol to hold a complex expression. This is how we
64 build expressions up out of other expressions. The symbol is put
65 into the fake section expr_section. */
66
67 symbolS *
68 make_expr_symbol (expressionP)
69 expressionS *expressionP;
70 {
71 expressionS zero;
72 const char *fake;
73 symbolS *symbolP;
74 struct expr_symbol_line *n;
75
76 if (expressionP->X_op == O_symbol
77 && expressionP->X_add_number == 0)
78 return expressionP->X_add_symbol;
79
80 if (expressionP->X_op == O_big)
81 {
82 /* This won't work, because the actual value is stored in
83 generic_floating_point_number or generic_bignum, and we are
84 going to lose it if we haven't already. */
85 if (expressionP->X_add_number > 0)
86 as_bad (_("bignum invalid; zero assumed"));
87 else
88 as_bad (_("floating point number invalid; zero assumed"));
89 zero.X_op = O_constant;
90 zero.X_add_number = 0;
91 zero.X_unsigned = 0;
92 clean_up_expression (&zero);
93 expressionP = &zero;
94 }
95
96 fake = FAKE_LABEL_NAME;
97
98 /* Putting constant symbols in absolute_section rather than
99 expr_section is convenient for the old a.out code, for which
100 S_GET_SEGMENT does not always retrieve the value put in by
101 S_SET_SEGMENT. */
102 symbolP = symbol_create (fake,
103 (expressionP->X_op == O_constant
104 ? absolute_section
105 : expr_section),
106 0, &zero_address_frag);
107 symbol_set_value_expression (symbolP, expressionP);
108
109 if (expressionP->X_op == O_constant)
110 resolve_symbol_value (symbolP, 1);
111
112 n = (struct expr_symbol_line *) xmalloc (sizeof *n);
113 n->sym = symbolP;
114 as_where (&n->file, &n->line);
115 n->next = expr_symbol_lines;
116 expr_symbol_lines = n;
117
118 return symbolP;
119 }
120
121 /* Return the file and line number for an expr symbol. Return
122 non-zero if something was found, 0 if no information is known for
123 the symbol. */
124
125 int
126 expr_symbol_where (sym, pfile, pline)
127 symbolS *sym;
128 char **pfile;
129 unsigned int *pline;
130 {
131 register struct expr_symbol_line *l;
132
133 for (l = expr_symbol_lines; l != NULL; l = l->next)
134 {
135 if (l->sym == sym)
136 {
137 *pfile = l->file;
138 *pline = l->line;
139 return 1;
140 }
141 }
142
143 return 0;
144 }
145 \f
146 /* Utilities for building expressions.
147 Since complex expressions are recorded as symbols for use in other
148 expressions these return a symbolS * and not an expressionS *.
149 These explicitly do not take an "add_number" argument. */
150 /* ??? For completeness' sake one might want expr_build_symbol.
151 It would just return its argument. */
152
153 /* Build an expression for an unsigned constant.
154 The corresponding one for signed constants is missing because
155 there's currently no need for it. One could add an unsigned_p flag
156 but that seems more clumsy. */
157
158 symbolS *
159 expr_build_uconstant (value)
160 offsetT value;
161 {
162 expressionS e;
163
164 e.X_op = O_constant;
165 e.X_add_number = value;
166 e.X_unsigned = 1;
167 return make_expr_symbol (&e);
168 }
169
170 /* Build an expression for OP s1. */
171
172 symbolS *
173 expr_build_unary (op, s1)
174 operatorT op;
175 symbolS *s1;
176 {
177 expressionS e;
178
179 e.X_op = op;
180 e.X_add_symbol = s1;
181 e.X_add_number = 0;
182 return make_expr_symbol (&e);
183 }
184
185 /* Build an expression for s1 OP s2. */
186
187 symbolS *
188 expr_build_binary (op, s1, s2)
189 operatorT op;
190 symbolS *s1;
191 symbolS *s2;
192 {
193 expressionS e;
194
195 e.X_op = op;
196 e.X_add_symbol = s1;
197 e.X_op_symbol = s2;
198 e.X_add_number = 0;
199 return make_expr_symbol (&e);
200 }
201
202 /* Build an expression for the current location ('.'). */
203
204 symbolS *
205 expr_build_dot ()
206 {
207 expressionS e;
208
209 current_location (&e);
210 return make_expr_symbol (&e);
211 }
212 \f
213 /*
214 * Build any floating-point literal here.
215 * Also build any bignum literal here.
216 */
217
218 /* Seems atof_machine can backscan through generic_bignum and hit whatever
219 happens to be loaded before it in memory. And its way too complicated
220 for me to fix right. Thus a hack. JF: Just make generic_bignum bigger,
221 and never write into the early words, thus they'll always be zero.
222 I hate Dean's floating-point code. Bleh. */
223 LITTLENUM_TYPE generic_bignum[SIZE_OF_LARGE_NUMBER + 6];
224 FLONUM_TYPE generic_floating_point_number =
225 {
226 &generic_bignum[6], /* low (JF: Was 0) */
227 &generic_bignum[SIZE_OF_LARGE_NUMBER + 6 - 1], /* high JF: (added +6) */
228 0, /* leader */
229 0, /* exponent */
230 0 /* sign */
231 };
232 /* If nonzero, we've been asked to assemble nan, +inf or -inf */
233 int generic_floating_point_magic;
234 \f
235 static void
236 floating_constant (expressionP)
237 expressionS *expressionP;
238 {
239 /* input_line_pointer->*/
240 /* floating-point constant. */
241 int error_code;
242
243 error_code = atof_generic (&input_line_pointer, ".", EXP_CHARS,
244 &generic_floating_point_number);
245
246 if (error_code)
247 {
248 if (error_code == ERROR_EXPONENT_OVERFLOW)
249 {
250 as_bad (_("bad floating-point constant: exponent overflow, probably assembling junk"));
251 }
252 else
253 {
254 as_bad (_("bad floating-point constant: unknown error code=%d."), error_code);
255 }
256 }
257 expressionP->X_op = O_big;
258 /* input_line_pointer->just after constant, */
259 /* which may point to whitespace. */
260 expressionP->X_add_number = -1;
261 }
262
263 static valueT
264 generic_bignum_to_int32 ()
265 {
266 valueT number =
267 ((generic_bignum[1] & LITTLENUM_MASK) << LITTLENUM_NUMBER_OF_BITS)
268 | (generic_bignum[0] & LITTLENUM_MASK);
269 number &= 0xffffffff;
270 return number;
271 }
272
273 #ifdef BFD64
274 static valueT
275 generic_bignum_to_int64 ()
276 {
277 valueT number =
278 ((((((((valueT) generic_bignum[3] & LITTLENUM_MASK)
279 << LITTLENUM_NUMBER_OF_BITS)
280 | ((valueT) generic_bignum[2] & LITTLENUM_MASK))
281 << LITTLENUM_NUMBER_OF_BITS)
282 | ((valueT) generic_bignum[1] & LITTLENUM_MASK))
283 << LITTLENUM_NUMBER_OF_BITS)
284 | ((valueT) generic_bignum[0] & LITTLENUM_MASK));
285 return number;
286 }
287 #endif
288
289 static void
290 integer_constant (radix, expressionP)
291 int radix;
292 expressionS *expressionP;
293 {
294 char *start; /* start of number. */
295 char *suffix = NULL;
296 char c;
297 valueT number; /* offset or (absolute) value */
298 short int digit; /* value of next digit in current radix */
299 short int maxdig = 0;/* highest permitted digit value. */
300 int too_many_digits = 0; /* if we see >= this number of */
301 char *name; /* points to name of symbol */
302 symbolS *symbolP; /* points to symbol */
303
304 int small; /* true if fits in 32 bits. */
305
306 /* May be bignum, or may fit in 32 bits. */
307 /* Most numbers fit into 32 bits, and we want this case to be fast.
308 so we pretend it will fit into 32 bits. If, after making up a 32
309 bit number, we realise that we have scanned more digits than
310 comfortably fit into 32 bits, we re-scan the digits coding them
311 into a bignum. For decimal and octal numbers we are
312 conservative: Some numbers may be assumed bignums when in fact
313 they do fit into 32 bits. Numbers of any radix can have excess
314 leading zeros: We strive to recognise this and cast them back
315 into 32 bits. We must check that the bignum really is more than
316 32 bits, and change it back to a 32-bit number if it fits. The
317 number we are looking for is expected to be positive, but if it
318 fits into 32 bits as an unsigned number, we let it be a 32-bit
319 number. The cavalier approach is for speed in ordinary cases. */
320 /* This has been extended for 64 bits. We blindly assume that if
321 you're compiling in 64-bit mode, the target is a 64-bit machine.
322 This should be cleaned up. */
323
324 #ifdef BFD64
325 #define valuesize 64
326 #else /* includes non-bfd case, mostly */
327 #define valuesize 32
328 #endif
329
330 if ((NUMBERS_WITH_SUFFIX || flag_m68k_mri) && radix == 0)
331 {
332 int flt = 0;
333
334 /* In MRI mode, the number may have a suffix indicating the
335 radix. For that matter, it might actually be a floating
336 point constant. */
337 for (suffix = input_line_pointer;
338 isalnum ((unsigned char) *suffix);
339 suffix++)
340 {
341 if (*suffix == 'e' || *suffix == 'E')
342 flt = 1;
343 }
344
345 if (suffix == input_line_pointer)
346 {
347 radix = 10;
348 suffix = NULL;
349 }
350 else
351 {
352 c = *--suffix;
353 if (islower ((unsigned char) c))
354 c = toupper (c);
355 if (c == 'B')
356 radix = 2;
357 else if (c == 'D')
358 radix = 10;
359 else if (c == 'O' || c == 'Q')
360 radix = 8;
361 else if (c == 'H')
362 radix = 16;
363 else if (suffix[1] == '.' || c == 'E' || flt)
364 {
365 floating_constant (expressionP);
366 return;
367 }
368 else
369 {
370 radix = 10;
371 suffix = NULL;
372 }
373 }
374 }
375
376 switch (radix)
377 {
378 case 2:
379 maxdig = 2;
380 too_many_digits = valuesize + 1;
381 break;
382 case 8:
383 maxdig = radix = 8;
384 too_many_digits = (valuesize + 2) / 3 + 1;
385 break;
386 case 16:
387 maxdig = radix = 16;
388 too_many_digits = (valuesize + 3) / 4 + 1;
389 break;
390 case 10:
391 maxdig = radix = 10;
392 too_many_digits = (valuesize + 11) / 4; /* very rough */
393 }
394 #undef valuesize
395 start = input_line_pointer;
396 c = *input_line_pointer++;
397 for (number = 0;
398 (digit = hex_value (c)) < maxdig;
399 c = *input_line_pointer++)
400 {
401 number = number * radix + digit;
402 }
403 /* c contains character after number. */
404 /* input_line_pointer->char after c. */
405 small = (input_line_pointer - start - 1) < too_many_digits;
406
407 if (radix == 16 && c == '_')
408 {
409 /* This is literal of the form 0x333_0_12345678_1.
410 This example is equivalent to 0x00000333000000001234567800000001. */
411
412 int num_little_digits = 0;
413 int i;
414 input_line_pointer = start; /*->1st digit. */
415
416 know (LITTLENUM_NUMBER_OF_BITS == 16);
417
418 for (c = '_'; c == '_'; num_little_digits+=2)
419 {
420
421 /* Convert one 64-bit word. */
422 int ndigit = 0;
423 number = 0;
424 for (c = *input_line_pointer++;
425 (digit = hex_value (c)) < maxdig;
426 c = *(input_line_pointer++))
427 {
428 number = number * radix + digit;
429 ndigit++;
430 }
431
432 /* Check for 8 digit per word max. */
433 if (ndigit > 8)
434 as_bad (_("A bignum with underscores may not have more than 8 hex digits in any word."));
435
436 /* Add this chunk to the bignum. Shift things down 2 little digits.*/
437 know (LITTLENUM_NUMBER_OF_BITS == 16);
438 for (i = min (num_little_digits + 1, SIZE_OF_LARGE_NUMBER - 1); i >= 2; i--)
439 generic_bignum[i] = generic_bignum[i-2];
440
441 /* Add the new digits as the least significant new ones. */
442 generic_bignum[0] = number & 0xffffffff;
443 generic_bignum[1] = number >> 16;
444 }
445
446 /* Again, c is char after number, input_line_pointer->after c. */
447
448 if (num_little_digits > SIZE_OF_LARGE_NUMBER - 1)
449 num_little_digits = SIZE_OF_LARGE_NUMBER - 1;
450
451 assert (num_little_digits >= 4);
452
453 if (num_little_digits != 8)
454 as_bad (_("A bignum with underscores must have exactly 4 words."));
455
456 /* We might have some leading zeros. These can be trimmed to give
457 * us a change to fit this constant into a small number.
458 */
459 while (generic_bignum[num_little_digits-1] == 0 && num_little_digits > 1)
460 num_little_digits--;
461
462 if (num_little_digits <= 2)
463 {
464 /* will fit into 32 bits. */
465 number = generic_bignum_to_int32 ();
466 small = 1;
467 }
468 #ifdef BFD64
469 else if (num_little_digits <= 4)
470 {
471 /* Will fit into 64 bits. */
472 number = generic_bignum_to_int64 ();
473 small = 1;
474 }
475 #endif
476 else
477 {
478 small = 0;
479 number = num_little_digits; /* number of littlenums in the bignum. */
480 }
481 }
482 else if (!small)
483 {
484 /*
485 * we saw a lot of digits. manufacture a bignum the hard way.
486 */
487 LITTLENUM_TYPE *leader; /*->high order littlenum of the bignum. */
488 LITTLENUM_TYPE *pointer; /*->littlenum we are frobbing now. */
489 long carry;
490
491 leader = generic_bignum;
492 generic_bignum[0] = 0;
493 generic_bignum[1] = 0;
494 generic_bignum[2] = 0;
495 generic_bignum[3] = 0;
496 input_line_pointer = start; /*->1st digit. */
497 c = *input_line_pointer++;
498 for (;
499 (carry = hex_value (c)) < maxdig;
500 c = *input_line_pointer++)
501 {
502 for (pointer = generic_bignum;
503 pointer <= leader;
504 pointer++)
505 {
506 long work;
507
508 work = carry + radix * *pointer;
509 *pointer = work & LITTLENUM_MASK;
510 carry = work >> LITTLENUM_NUMBER_OF_BITS;
511 }
512 if (carry)
513 {
514 if (leader < generic_bignum + SIZE_OF_LARGE_NUMBER - 1)
515 {
516 /* room to grow a longer bignum. */
517 *++leader = carry;
518 }
519 }
520 }
521 /* again, c is char after number, */
522 /* input_line_pointer->after c. */
523 know (LITTLENUM_NUMBER_OF_BITS == 16);
524 if (leader < generic_bignum + 2)
525 {
526 /* will fit into 32 bits. */
527 number = generic_bignum_to_int32 ();
528 small = 1;
529 }
530 #ifdef BFD64
531 else if (leader < generic_bignum + 4)
532 {
533 /* Will fit into 64 bits. */
534 number = generic_bignum_to_int64 ();
535 small = 1;
536 }
537 #endif
538 else
539 {
540 number = leader - generic_bignum + 1; /* number of littlenums in the bignum. */
541 }
542 }
543
544 if ((NUMBERS_WITH_SUFFIX || flag_m68k_mri)
545 && suffix != NULL
546 && input_line_pointer - 1 == suffix)
547 c = *input_line_pointer++;
548
549 if (small)
550 {
551 /*
552 * here with number, in correct radix. c is the next char.
553 * note that unlike un*x, we allow "011f" "0x9f" to
554 * both mean the same as the (conventional) "9f". this is simply easier
555 * than checking for strict canonical form. syntax sux!
556 */
557
558 if (LOCAL_LABELS_FB && c == 'b')
559 {
560 /*
561 * backward ref to local label.
562 * because it is backward, expect it to be defined.
563 */
564 /* Construct a local label. */
565 name = fb_label_name ((int) number, 0);
566
567 /* seen before, or symbol is defined: ok */
568 symbolP = symbol_find (name);
569 if ((symbolP != NULL) && (S_IS_DEFINED (symbolP)))
570 {
571 /* local labels are never absolute. don't waste time
572 checking absoluteness. */
573 know (SEG_NORMAL (S_GET_SEGMENT (symbolP)));
574
575 expressionP->X_op = O_symbol;
576 expressionP->X_add_symbol = symbolP;
577 }
578 else
579 {
580 /* either not seen or not defined. */
581 /* @@ Should print out the original string instead of
582 the parsed number. */
583 as_bad (_("backw. ref to unknown label \"%d:\", 0 assumed."),
584 (int) number);
585 expressionP->X_op = O_constant;
586 }
587
588 expressionP->X_add_number = 0;
589 } /* case 'b' */
590 else if (LOCAL_LABELS_FB && c == 'f')
591 {
592 /*
593 * forward reference. expect symbol to be undefined or
594 * unknown. undefined: seen it before. unknown: never seen
595 * it before.
596 * construct a local label name, then an undefined symbol.
597 * don't create a xseg frag for it: caller may do that.
598 * just return it as never seen before.
599 */
600 name = fb_label_name ((int) number, 1);
601 symbolP = symbol_find_or_make (name);
602 /* we have no need to check symbol properties. */
603 #ifndef many_segments
604 /* since "know" puts its arg into a "string", we
605 can't have newlines in the argument. */
606 know (S_GET_SEGMENT (symbolP) == undefined_section || S_GET_SEGMENT (symbolP) == text_section || S_GET_SEGMENT (symbolP) == data_section);
607 #endif
608 expressionP->X_op = O_symbol;
609 expressionP->X_add_symbol = symbolP;
610 expressionP->X_add_number = 0;
611 } /* case 'f' */
612 else if (LOCAL_LABELS_DOLLAR && c == '$')
613 {
614 /* If the dollar label is *currently* defined, then this is just
615 another reference to it. If it is not *currently* defined,
616 then this is a fresh instantiation of that number, so create
617 it. */
618
619 if (dollar_label_defined ((long) number))
620 {
621 name = dollar_label_name ((long) number, 0);
622 symbolP = symbol_find (name);
623 know (symbolP != NULL);
624 }
625 else
626 {
627 name = dollar_label_name ((long) number, 1);
628 symbolP = symbol_find_or_make (name);
629 }
630
631 expressionP->X_op = O_symbol;
632 expressionP->X_add_symbol = symbolP;
633 expressionP->X_add_number = 0;
634 } /* case '$' */
635 else
636 {
637 expressionP->X_op = O_constant;
638 #ifdef TARGET_WORD_SIZE
639 /* Sign extend NUMBER. */
640 number |= (-(number >> (TARGET_WORD_SIZE - 1))) << (TARGET_WORD_SIZE - 1);
641 #endif
642 expressionP->X_add_number = number;
643 input_line_pointer--; /* restore following character. */
644 } /* really just a number */
645 }
646 else
647 {
648 /* not a small number */
649 expressionP->X_op = O_big;
650 expressionP->X_add_number = number; /* number of littlenums */
651 input_line_pointer--; /*->char following number. */
652 }
653 }
654
655 /* Parse an MRI multi character constant. */
656
657 static void
658 mri_char_constant (expressionP)
659 expressionS *expressionP;
660 {
661 int i;
662
663 if (*input_line_pointer == '\''
664 && input_line_pointer[1] != '\'')
665 {
666 expressionP->X_op = O_constant;
667 expressionP->X_add_number = 0;
668 return;
669 }
670
671 /* In order to get the correct byte ordering, we must build the
672 number in reverse. */
673 for (i = SIZE_OF_LARGE_NUMBER - 1; i >= 0; i--)
674 {
675 int j;
676
677 generic_bignum[i] = 0;
678 for (j = 0; j < CHARS_PER_LITTLENUM; j++)
679 {
680 if (*input_line_pointer == '\'')
681 {
682 if (input_line_pointer[1] != '\'')
683 break;
684 ++input_line_pointer;
685 }
686 generic_bignum[i] <<= 8;
687 generic_bignum[i] += *input_line_pointer;
688 ++input_line_pointer;
689 }
690
691 if (i < SIZE_OF_LARGE_NUMBER - 1)
692 {
693 /* If there is more than one littlenum, left justify the
694 last one to make it match the earlier ones. If there is
695 only one, we can just use the value directly. */
696 for (; j < CHARS_PER_LITTLENUM; j++)
697 generic_bignum[i] <<= 8;
698 }
699
700 if (*input_line_pointer == '\''
701 && input_line_pointer[1] != '\'')
702 break;
703 }
704
705 if (i < 0)
706 {
707 as_bad (_("Character constant too large"));
708 i = 0;
709 }
710
711 if (i > 0)
712 {
713 int c;
714 int j;
715
716 c = SIZE_OF_LARGE_NUMBER - i;
717 for (j = 0; j < c; j++)
718 generic_bignum[j] = generic_bignum[i + j];
719 i = c;
720 }
721
722 know (LITTLENUM_NUMBER_OF_BITS == 16);
723 if (i > 2)
724 {
725 expressionP->X_op = O_big;
726 expressionP->X_add_number = i;
727 }
728 else
729 {
730 expressionP->X_op = O_constant;
731 if (i < 2)
732 expressionP->X_add_number = generic_bignum[0] & LITTLENUM_MASK;
733 else
734 expressionP->X_add_number =
735 (((generic_bignum[1] & LITTLENUM_MASK)
736 << LITTLENUM_NUMBER_OF_BITS)
737 | (generic_bignum[0] & LITTLENUM_MASK));
738 }
739
740 /* Skip the final closing quote. */
741 ++input_line_pointer;
742 }
743
744 /* Return an expression representing the current location. This
745 handles the magic symbol `.'. */
746
747 static void
748 current_location (expressionp)
749 expressionS *expressionp;
750 {
751 if (now_seg == absolute_section)
752 {
753 expressionp->X_op = O_constant;
754 expressionp->X_add_number = abs_section_offset;
755 }
756 else
757 {
758 symbolS *symbolp;
759
760 symbolp = symbol_new (FAKE_LABEL_NAME, now_seg,
761 (valueT) frag_now_fix (),
762 frag_now);
763 expressionp->X_op = O_symbol;
764 expressionp->X_add_symbol = symbolp;
765 expressionp->X_add_number = 0;
766 }
767 }
768
769 /*
770 * Summary of operand().
771 *
772 * in: Input_line_pointer points to 1st char of operand, which may
773 * be a space.
774 *
775 * out: A expressionS.
776 * The operand may have been empty: in this case X_op == O_absent.
777 * Input_line_pointer->(next non-blank) char after operand.
778 */
779
780 static segT
781 operand (expressionP)
782 expressionS *expressionP;
783 {
784 char c;
785 symbolS *symbolP; /* points to symbol */
786 char *name; /* points to name of symbol */
787 segT segment;
788
789 /* All integers are regarded as unsigned unless they are negated.
790 This is because the only thing which cares whether a number is
791 unsigned is the code in emit_expr which extends constants into
792 bignums. It should only sign extend negative numbers, so that
793 something like ``.quad 0x80000000'' is not sign extended even
794 though it appears negative if valueT is 32 bits. */
795 expressionP->X_unsigned = 1;
796
797 /* digits, assume it is a bignum. */
798
799 SKIP_WHITESPACE (); /* leading whitespace is part of operand. */
800 c = *input_line_pointer++; /* input_line_pointer->past char in c. */
801
802 switch (c)
803 {
804 case '1':
805 case '2':
806 case '3':
807 case '4':
808 case '5':
809 case '6':
810 case '7':
811 case '8':
812 case '9':
813 input_line_pointer--;
814
815 integer_constant ((NUMBERS_WITH_SUFFIX || flag_m68k_mri)
816 ? 0 : 10,
817 expressionP);
818 break;
819
820 case '0':
821 /* non-decimal radix */
822
823 if (NUMBERS_WITH_SUFFIX || flag_m68k_mri)
824 {
825 char *s;
826
827 /* Check for a hex constant. */
828 for (s = input_line_pointer; hex_p (*s); s++)
829 ;
830 if (*s == 'h' || *s == 'H')
831 {
832 --input_line_pointer;
833 integer_constant (0, expressionP);
834 break;
835 }
836 if (NUMBERS_WITH_SUFFIX)
837 {
838 /* Check for a binary constant. */
839 for (s = input_line_pointer; *s == '0' || *s == '1'; s++)
840 ;
841 if (toupper (*s) == 'B')
842 {
843 integer_constant (0, expressionP);
844 break;
845 }
846 /* Check for an octal constant. */
847 for (s = input_line_pointer; *s >= '0' && *s <= '7'; s++)
848 ;
849 if (toupper (*s) == 'Q')
850 {
851 integer_constant (0, expressionP);
852 break;
853 }
854 }
855 }
856 c = *input_line_pointer;
857 switch (c)
858 {
859 case 'o':
860 case 'O':
861 case 'q':
862 case 'Q':
863 case '8':
864 case '9':
865 if (NUMBERS_WITH_SUFFIX || flag_m68k_mri)
866 {
867 integer_constant (0, expressionP);
868 break;
869 }
870 /* Fall through. */
871 default:
872 default_case:
873 if (c && strchr (FLT_CHARS, c))
874 {
875 input_line_pointer++;
876 floating_constant (expressionP);
877 expressionP->X_add_number =
878 - (isupper ((unsigned char) c) ? tolower (c) : c);
879 }
880 else
881 {
882 /* The string was only zero */
883 expressionP->X_op = O_constant;
884 expressionP->X_add_number = 0;
885 }
886
887 break;
888
889 case 'x':
890 case 'X':
891 if (flag_m68k_mri)
892 goto default_case;
893 input_line_pointer++;
894 integer_constant (16, expressionP);
895 break;
896
897 case 'b':
898 if (LOCAL_LABELS_FB && ! flag_m68k_mri && ! NUMBERS_WITH_SUFFIX)
899 {
900 /* This code used to check for '+' and '-' here, and, in
901 some conditions, fall through to call
902 integer_constant. However, that didn't make sense,
903 as integer_constant only accepts digits. */
904 /* Some of our code elsewhere does permit digits greater
905 than the expected base; for consistency, do the same
906 here. */
907 if (input_line_pointer[1] < '0'
908 || input_line_pointer[1] > '9')
909 {
910 /* Parse this as a back reference to label 0. */
911 input_line_pointer--;
912 integer_constant (10, expressionP);
913 break;
914 }
915 /* Otherwise, parse this as a binary number. */
916 }
917 /* Fall through. */
918 case 'B':
919 input_line_pointer++;
920 if (flag_m68k_mri)
921 goto default_case;
922 integer_constant (2, expressionP);
923 break;
924
925 case '0':
926 case '1':
927 case '2':
928 case '3':
929 case '4':
930 case '5':
931 case '6':
932 case '7':
933 integer_constant (flag_m68k_mri ? 0 : 8, expressionP);
934 break;
935
936 case 'f':
937 if (LOCAL_LABELS_FB)
938 {
939 /* If it says "0f" and it could possibly be a floating point
940 number, make it one. Otherwise, make it a local label,
941 and try to deal with parsing the rest later. */
942 if (!input_line_pointer[1]
943 || (is_end_of_line[0xff & input_line_pointer[1]]))
944 goto is_0f_label;
945 {
946 char *cp = input_line_pointer + 1;
947 int r = atof_generic (&cp, ".", EXP_CHARS,
948 &generic_floating_point_number);
949 switch (r)
950 {
951 case 0:
952 case ERROR_EXPONENT_OVERFLOW:
953 if (*cp == 'f' || *cp == 'b')
954 /* looks like a difference expression */
955 goto is_0f_label;
956 else if (cp == input_line_pointer + 1)
957 /* No characters has been accepted -- looks like
958 end of operand. */
959 goto is_0f_label;
960 else
961 goto is_0f_float;
962 default:
963 as_fatal (_("expr.c(operand): bad atof_generic return val %d"),
964 r);
965 }
966 }
967
968 /* Okay, now we've sorted it out. We resume at one of these
969 two labels, depending on what we've decided we're probably
970 looking at. */
971 is_0f_label:
972 input_line_pointer--;
973 integer_constant (10, expressionP);
974 break;
975
976 is_0f_float:
977 /* fall through */
978 ;
979 }
980
981 case 'd':
982 case 'D':
983 if (flag_m68k_mri)
984 {
985 integer_constant (0, expressionP);
986 break;
987 }
988 /* Fall through. */
989 case 'F':
990 case 'r':
991 case 'e':
992 case 'E':
993 case 'g':
994 case 'G':
995 input_line_pointer++;
996 floating_constant (expressionP);
997 expressionP->X_add_number =
998 - (isupper ((unsigned char) c) ? tolower (c) : c);
999 break;
1000
1001 case '$':
1002 if (LOCAL_LABELS_DOLLAR)
1003 {
1004 integer_constant (10, expressionP);
1005 break;
1006 }
1007 else
1008 goto default_case;
1009 }
1010
1011 break;
1012
1013 case '(':
1014 #ifndef NEED_INDEX_OPERATOR
1015 case '[':
1016 #endif
1017 /* didn't begin with digit & not a name */
1018 segment = expression (expressionP);
1019 /* Expression() will pass trailing whitespace */
1020 if ((c == '(' && *input_line_pointer++ != ')')
1021 || (c == '[' && *input_line_pointer++ != ']'))
1022 {
1023 as_bad (_("Missing ')' assumed"));
1024 input_line_pointer--;
1025 }
1026 SKIP_WHITESPACE ();
1027 /* here with input_line_pointer->char after "(...)" */
1028 return segment;
1029
1030 case 'E':
1031 if (! flag_m68k_mri || *input_line_pointer != '\'')
1032 goto de_fault;
1033 as_bad (_("EBCDIC constants are not supported"));
1034 /* Fall through. */
1035 case 'A':
1036 if (! flag_m68k_mri || *input_line_pointer != '\'')
1037 goto de_fault;
1038 ++input_line_pointer;
1039 /* Fall through. */
1040 case '\'':
1041 if (! flag_m68k_mri)
1042 {
1043 /* Warning: to conform to other people's assemblers NO
1044 ESCAPEMENT is permitted for a single quote. The next
1045 character, parity errors and all, is taken as the value
1046 of the operand. VERY KINKY. */
1047 expressionP->X_op = O_constant;
1048 expressionP->X_add_number = *input_line_pointer++;
1049 break;
1050 }
1051
1052 mri_char_constant (expressionP);
1053 break;
1054
1055 case '+':
1056 (void) operand (expressionP);
1057 break;
1058
1059 case '"':
1060 /* Double quote is the bitwise not operator in MRI mode. */
1061 if (! flag_m68k_mri)
1062 goto de_fault;
1063 /* Fall through. */
1064 case '~':
1065 /* ~ is permitted to start a label on the Delta. */
1066 if (is_name_beginner (c))
1067 goto isname;
1068 case '!':
1069 case '-':
1070 {
1071 operand (expressionP);
1072 if (expressionP->X_op == O_constant)
1073 {
1074 /* input_line_pointer -> char after operand */
1075 if (c == '-')
1076 {
1077 expressionP->X_add_number = - expressionP->X_add_number;
1078 /* Notice: '-' may overflow: no warning is given. This is
1079 compatible with other people's assemblers. Sigh. */
1080 expressionP->X_unsigned = 0;
1081 }
1082 else if (c == '~' || c == '"')
1083 expressionP->X_add_number = ~ expressionP->X_add_number;
1084 else
1085 expressionP->X_add_number = ! expressionP->X_add_number;
1086 }
1087 else if (expressionP->X_op != O_illegal
1088 && expressionP->X_op != O_absent)
1089 {
1090 expressionP->X_add_symbol = make_expr_symbol (expressionP);
1091 if (c == '-')
1092 expressionP->X_op = O_uminus;
1093 else if (c == '~' || c == '"')
1094 expressionP->X_op = O_bit_not;
1095 else
1096 expressionP->X_op = O_logical_not;
1097 expressionP->X_add_number = 0;
1098 }
1099 else
1100 as_warn (_("Unary operator %c ignored because bad operand follows"),
1101 c);
1102 }
1103 break;
1104
1105 case '$':
1106 /* $ is the program counter when in MRI mode, or when DOLLAR_DOT
1107 is defined. */
1108 #ifndef DOLLAR_DOT
1109 if (! flag_m68k_mri)
1110 goto de_fault;
1111 #endif
1112 if (flag_m68k_mri && hex_p (*input_line_pointer))
1113 {
1114 /* In MRI mode, $ is also used as the prefix for a
1115 hexadecimal constant. */
1116 integer_constant (16, expressionP);
1117 break;
1118 }
1119
1120 if (is_part_of_name (*input_line_pointer))
1121 goto isname;
1122
1123 current_location (expressionP);
1124 break;
1125
1126 case '.':
1127 if (!is_part_of_name (*input_line_pointer))
1128 {
1129 current_location (expressionP);
1130 break;
1131 }
1132 else if ((strncasecmp (input_line_pointer, "startof.", 8) == 0
1133 && ! is_part_of_name (input_line_pointer[8]))
1134 || (strncasecmp (input_line_pointer, "sizeof.", 7) == 0
1135 && ! is_part_of_name (input_line_pointer[7])))
1136 {
1137 int start;
1138
1139 start = (input_line_pointer[1] == 't'
1140 || input_line_pointer[1] == 'T');
1141 input_line_pointer += start ? 8 : 7;
1142 SKIP_WHITESPACE ();
1143 if (*input_line_pointer != '(')
1144 as_bad (_("syntax error in .startof. or .sizeof."));
1145 else
1146 {
1147 char *buf;
1148
1149 ++input_line_pointer;
1150 SKIP_WHITESPACE ();
1151 name = input_line_pointer;
1152 c = get_symbol_end ();
1153
1154 buf = (char *) xmalloc (strlen (name) + 10);
1155 if (start)
1156 sprintf (buf, ".startof.%s", name);
1157 else
1158 sprintf (buf, ".sizeof.%s", name);
1159 symbolP = symbol_make (buf);
1160 free (buf);
1161
1162 expressionP->X_op = O_symbol;
1163 expressionP->X_add_symbol = symbolP;
1164 expressionP->X_add_number = 0;
1165
1166 *input_line_pointer = c;
1167 SKIP_WHITESPACE ();
1168 if (*input_line_pointer != ')')
1169 as_bad (_("syntax error in .startof. or .sizeof."));
1170 else
1171 ++input_line_pointer;
1172 }
1173 break;
1174 }
1175 else
1176 {
1177 goto isname;
1178 }
1179 case ',':
1180 case '\n':
1181 case '\0':
1182 eol:
1183 /* can't imagine any other kind of operand */
1184 expressionP->X_op = O_absent;
1185 input_line_pointer--;
1186 break;
1187
1188 case '%':
1189 if (! flag_m68k_mri)
1190 goto de_fault;
1191 integer_constant (2, expressionP);
1192 break;
1193
1194 case '@':
1195 if (! flag_m68k_mri)
1196 goto de_fault;
1197 integer_constant (8, expressionP);
1198 break;
1199
1200 case ':':
1201 if (! flag_m68k_mri)
1202 goto de_fault;
1203
1204 /* In MRI mode, this is a floating point constant represented
1205 using hexadecimal digits. */
1206
1207 ++input_line_pointer;
1208 integer_constant (16, expressionP);
1209 break;
1210
1211 case '*':
1212 if (! flag_m68k_mri || is_part_of_name (*input_line_pointer))
1213 goto de_fault;
1214
1215 current_location (expressionP);
1216 break;
1217
1218 default:
1219 de_fault:
1220 if (is_end_of_line[(unsigned char) c])
1221 goto eol;
1222 if (is_name_beginner (c)) /* here if did not begin with a digit */
1223 {
1224 /*
1225 * Identifier begins here.
1226 * This is kludged for speed, so code is repeated.
1227 */
1228 isname:
1229 name = --input_line_pointer;
1230 c = get_symbol_end ();
1231
1232 #ifdef md_parse_name
1233 /* This is a hook for the backend to parse certain names
1234 specially in certain contexts. If a name always has a
1235 specific value, it can often be handled by simply
1236 entering it in the symbol table. */
1237 if (md_parse_name (name, expressionP))
1238 {
1239 *input_line_pointer = c;
1240 break;
1241 }
1242 #endif
1243
1244 #ifdef TC_I960
1245 /* The MRI i960 assembler permits
1246 lda sizeof code,g13
1247 FIXME: This should use md_parse_name. */
1248 if (flag_mri
1249 && (strcasecmp (name, "sizeof") == 0
1250 || strcasecmp (name, "startof") == 0))
1251 {
1252 int start;
1253 char *buf;
1254
1255 start = (name[1] == 't'
1256 || name[1] == 'T');
1257
1258 *input_line_pointer = c;
1259 SKIP_WHITESPACE ();
1260
1261 name = input_line_pointer;
1262 c = get_symbol_end ();
1263
1264 buf = (char *) xmalloc (strlen (name) + 10);
1265 if (start)
1266 sprintf (buf, ".startof.%s", name);
1267 else
1268 sprintf (buf, ".sizeof.%s", name);
1269 symbolP = symbol_make (buf);
1270 free (buf);
1271
1272 expressionP->X_op = O_symbol;
1273 expressionP->X_add_symbol = symbolP;
1274 expressionP->X_add_number = 0;
1275
1276 *input_line_pointer = c;
1277 SKIP_WHITESPACE ();
1278
1279 break;
1280 }
1281 #endif
1282
1283 symbolP = symbol_find_or_make (name);
1284
1285 /* If we have an absolute symbol or a reg, then we know its
1286 value now. */
1287 segment = S_GET_SEGMENT (symbolP);
1288 if (segment == absolute_section)
1289 {
1290 expressionP->X_op = O_constant;
1291 expressionP->X_add_number = S_GET_VALUE (symbolP);
1292 }
1293 else if (segment == reg_section)
1294 {
1295 expressionP->X_op = O_register;
1296 expressionP->X_add_number = S_GET_VALUE (symbolP);
1297 }
1298 else
1299 {
1300 expressionP->X_op = O_symbol;
1301 expressionP->X_add_symbol = symbolP;
1302 expressionP->X_add_number = 0;
1303 }
1304 *input_line_pointer = c;
1305 }
1306 else
1307 {
1308 /* Let the target try to parse it. Success is indicated by changing
1309 the X_op field to something other than O_absent and pointing
1310 input_line_pointer passed the expression. If it can't parse the
1311 expression, X_op and input_line_pointer should be unchanged. */
1312 expressionP->X_op = O_absent;
1313 --input_line_pointer;
1314 md_operand (expressionP);
1315 if (expressionP->X_op == O_absent)
1316 {
1317 ++input_line_pointer;
1318 as_bad (_("Bad expression"));
1319 expressionP->X_op = O_constant;
1320 expressionP->X_add_number = 0;
1321 }
1322 }
1323 break;
1324 }
1325
1326 /*
1327 * It is more 'efficient' to clean up the expressionS when they are created.
1328 * Doing it here saves lines of code.
1329 */
1330 clean_up_expression (expressionP);
1331 SKIP_WHITESPACE (); /*->1st char after operand. */
1332 know (*input_line_pointer != ' ');
1333
1334 /* The PA port needs this information. */
1335 if (expressionP->X_add_symbol)
1336 symbol_mark_used (expressionP->X_add_symbol);
1337
1338 switch (expressionP->X_op)
1339 {
1340 default:
1341 return absolute_section;
1342 case O_symbol:
1343 return S_GET_SEGMENT (expressionP->X_add_symbol);
1344 case O_register:
1345 return reg_section;
1346 }
1347 } /* operand() */
1348 \f
1349 /* Internal. Simplify a struct expression for use by expr() */
1350
1351 /*
1352 * In: address of a expressionS.
1353 * The X_op field of the expressionS may only take certain values.
1354 * Elsewise we waste time special-case testing. Sigh. Ditto SEG_ABSENT.
1355 * Out: expressionS may have been modified:
1356 * 'foo-foo' symbol references cancelled to 0,
1357 * which changes X_op from O_subtract to O_constant.
1358 * Unused fields zeroed to help expr().
1359 */
1360
1361 static void
1362 clean_up_expression (expressionP)
1363 expressionS *expressionP;
1364 {
1365 switch (expressionP->X_op)
1366 {
1367 case O_illegal:
1368 case O_absent:
1369 expressionP->X_add_number = 0;
1370 /* Fall through. */
1371 case O_big:
1372 case O_constant:
1373 case O_register:
1374 expressionP->X_add_symbol = NULL;
1375 /* Fall through. */
1376 case O_symbol:
1377 case O_uminus:
1378 case O_bit_not:
1379 expressionP->X_op_symbol = NULL;
1380 break;
1381 case O_subtract:
1382 if (expressionP->X_op_symbol == expressionP->X_add_symbol
1383 || ((symbol_get_frag (expressionP->X_op_symbol)
1384 == symbol_get_frag (expressionP->X_add_symbol))
1385 && SEG_NORMAL (S_GET_SEGMENT (expressionP->X_add_symbol))
1386 && (S_GET_VALUE (expressionP->X_op_symbol)
1387 == S_GET_VALUE (expressionP->X_add_symbol))))
1388 {
1389 addressT diff = (S_GET_VALUE (expressionP->X_add_symbol)
1390 - S_GET_VALUE (expressionP->X_op_symbol));
1391
1392 expressionP->X_op = O_constant;
1393 expressionP->X_add_symbol = NULL;
1394 expressionP->X_op_symbol = NULL;
1395 expressionP->X_add_number += diff;
1396 }
1397 break;
1398 default:
1399 break;
1400 }
1401 }
1402 \f
1403 /* Expression parser. */
1404
1405 /*
1406 * We allow an empty expression, and just assume (absolute,0) silently.
1407 * Unary operators and parenthetical expressions are treated as operands.
1408 * As usual, Q==quantity==operand, O==operator, X==expression mnemonics.
1409 *
1410 * We used to do a aho/ullman shift-reduce parser, but the logic got so
1411 * warped that I flushed it and wrote a recursive-descent parser instead.
1412 * Now things are stable, would anybody like to write a fast parser?
1413 * Most expressions are either register (which does not even reach here)
1414 * or 1 symbol. Then "symbol+constant" and "symbol-symbol" are common.
1415 * So I guess it doesn't really matter how inefficient more complex expressions
1416 * are parsed.
1417 *
1418 * After expr(RANK,resultP) input_line_pointer->operator of rank <= RANK.
1419 * Also, we have consumed any leading or trailing spaces (operand does that)
1420 * and done all intervening operators.
1421 *
1422 * This returns the segment of the result, which will be
1423 * absolute_section or the segment of a symbol.
1424 */
1425
1426 #undef __
1427 #define __ O_illegal
1428
1429 static const operatorT op_encoding[256] =
1430 { /* maps ASCII->operators */
1431
1432 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1433 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1434
1435 __, O_bit_or_not, __, __, __, O_modulus, O_bit_and, __,
1436 __, __, O_multiply, O_add, __, O_subtract, __, O_divide,
1437 __, __, __, __, __, __, __, __,
1438 __, __, __, __, O_lt, __, O_gt, __,
1439 __, __, __, __, __, __, __, __,
1440 __, __, __, __, __, __, __, __,
1441 __, __, __, __, __, __, __, __,
1442 __, __, __,
1443 #ifdef NEED_INDEX_OPERATOR
1444 O_index,
1445 #else
1446 __,
1447 #endif
1448 __, __, O_bit_exclusive_or, __,
1449 __, __, __, __, __, __, __, __,
1450 __, __, __, __, __, __, __, __,
1451 __, __, __, __, __, __, __, __,
1452 __, __, __, __, O_bit_inclusive_or, __, __, __,
1453
1454 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1455 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1456 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1457 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1458 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1459 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1460 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1461 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __
1462 };
1463
1464
1465 /*
1466 * Rank Examples
1467 * 0 operand, (expression)
1468 * 1 ||
1469 * 2 &&
1470 * 3 = <> < <= >= >
1471 * 4 + -
1472 * 5 used for * / % in MRI mode
1473 * 6 & ^ ! |
1474 * 7 * / % << >>
1475 * 8 unary - unary ~
1476 */
1477 static operator_rankT op_rank[] =
1478 {
1479 0, /* O_illegal */
1480 0, /* O_absent */
1481 0, /* O_constant */
1482 0, /* O_symbol */
1483 0, /* O_symbol_rva */
1484 0, /* O_register */
1485 0, /* O_bit */
1486 9, /* O_uminus */
1487 9, /* O_bit_not */
1488 9, /* O_logical_not */
1489 8, /* O_multiply */
1490 8, /* O_divide */
1491 8, /* O_modulus */
1492 8, /* O_left_shift */
1493 8, /* O_right_shift */
1494 7, /* O_bit_inclusive_or */
1495 7, /* O_bit_or_not */
1496 7, /* O_bit_exclusive_or */
1497 7, /* O_bit_and */
1498 5, /* O_add */
1499 5, /* O_subtract */
1500 4, /* O_eq */
1501 4, /* O_ne */
1502 4, /* O_lt */
1503 4, /* O_le */
1504 4, /* O_ge */
1505 4, /* O_gt */
1506 3, /* O_logical_and */
1507 2, /* O_logical_or */
1508 1, /* O_index */
1509 0, /* O_md1 */
1510 0, /* O_md2 */
1511 0, /* O_md3 */
1512 0, /* O_md4 */
1513 0, /* O_md5 */
1514 0, /* O_md6 */
1515 0, /* O_md7 */
1516 0, /* O_md8 */
1517 0, /* O_md9 */
1518 0, /* O_md10 */
1519 0, /* O_md11 */
1520 0, /* O_md12 */
1521 0, /* O_md13 */
1522 0, /* O_md14 */
1523 0, /* O_md15 */
1524 0, /* O_md16 */
1525 };
1526
1527 /* Unfortunately, in MRI mode for the m68k, multiplication and
1528 division have lower precedence than the bit wise operators. This
1529 function sets the operator precedences correctly for the current
1530 mode. Also, MRI uses a different bit_not operator, and this fixes
1531 that as well. */
1532
1533 #define STANDARD_MUL_PRECEDENCE (7)
1534 #define MRI_MUL_PRECEDENCE (5)
1535
1536 void
1537 expr_set_precedence ()
1538 {
1539 if (flag_m68k_mri)
1540 {
1541 op_rank[O_multiply] = MRI_MUL_PRECEDENCE;
1542 op_rank[O_divide] = MRI_MUL_PRECEDENCE;
1543 op_rank[O_modulus] = MRI_MUL_PRECEDENCE;
1544 }
1545 else
1546 {
1547 op_rank[O_multiply] = STANDARD_MUL_PRECEDENCE;
1548 op_rank[O_divide] = STANDARD_MUL_PRECEDENCE;
1549 op_rank[O_modulus] = STANDARD_MUL_PRECEDENCE;
1550 }
1551 }
1552
1553 /* Initialize the expression parser. */
1554
1555 void
1556 expr_begin ()
1557 {
1558 expr_set_precedence ();
1559
1560 /* Verify that X_op field is wide enough. */
1561 {
1562 expressionS e;
1563 e.X_op = O_max;
1564 assert (e.X_op == O_max);
1565 }
1566 }
1567 \f
1568 /* Return the encoding for the operator at INPUT_LINE_POINTER.
1569 Advance INPUT_LINE_POINTER to the last character in the operator
1570 (i.e., don't change it for a single character operator). */
1571
1572 static inline operatorT
1573 operator ()
1574 {
1575 int c;
1576 operatorT ret;
1577
1578 c = *input_line_pointer & 0xff;
1579
1580 switch (c)
1581 {
1582 default:
1583 return op_encoding[c];
1584
1585 case '<':
1586 switch (input_line_pointer[1])
1587 {
1588 default:
1589 return op_encoding[c];
1590 case '<':
1591 ret = O_left_shift;
1592 break;
1593 case '>':
1594 ret = O_ne;
1595 break;
1596 case '=':
1597 ret = O_le;
1598 break;
1599 }
1600 ++input_line_pointer;
1601 return ret;
1602
1603 case '=':
1604 if (input_line_pointer[1] != '=')
1605 return op_encoding[c];
1606
1607 ++input_line_pointer;
1608 return O_eq;
1609
1610 case '>':
1611 switch (input_line_pointer[1])
1612 {
1613 default:
1614 return op_encoding[c];
1615 case '>':
1616 ret = O_right_shift;
1617 break;
1618 case '=':
1619 ret = O_ge;
1620 break;
1621 }
1622 ++input_line_pointer;
1623 return ret;
1624
1625 case '!':
1626 /* We accept !! as equivalent to ^ for MRI compatibility. */
1627 if (input_line_pointer[1] != '!')
1628 {
1629 if (flag_m68k_mri)
1630 return O_bit_inclusive_or;
1631 return op_encoding[c];
1632 }
1633 ++input_line_pointer;
1634 return O_bit_exclusive_or;
1635
1636 case '|':
1637 if (input_line_pointer[1] != '|')
1638 return op_encoding[c];
1639
1640 ++input_line_pointer;
1641 return O_logical_or;
1642
1643 case '&':
1644 if (input_line_pointer[1] != '&')
1645 return op_encoding[c];
1646
1647 ++input_line_pointer;
1648 return O_logical_and;
1649 }
1650
1651 /*NOTREACHED*/
1652 }
1653
1654 /* Parse an expression. */
1655
1656 segT
1657 expr (rankarg, resultP)
1658 int rankarg; /* Larger # is higher rank. */
1659 expressionS *resultP; /* Deliver result here. */
1660 {
1661 operator_rankT rank = (operator_rankT) rankarg;
1662 segT retval;
1663 expressionS right;
1664 operatorT op_left;
1665 operatorT op_right;
1666
1667 know (rank >= 0);
1668
1669 retval = operand (resultP);
1670
1671 know (*input_line_pointer != ' '); /* Operand() gobbles spaces. */
1672
1673 op_left = operator ();
1674 while (op_left != O_illegal && op_rank[(int) op_left] > rank)
1675 {
1676 segT rightseg;
1677
1678 input_line_pointer++; /*->after 1st character of operator. */
1679
1680 rightseg = expr (op_rank[(int) op_left], &right);
1681 if (right.X_op == O_absent)
1682 {
1683 as_warn (_("missing operand; zero assumed"));
1684 right.X_op = O_constant;
1685 right.X_add_number = 0;
1686 right.X_add_symbol = NULL;
1687 right.X_op_symbol = NULL;
1688 }
1689
1690 know (*input_line_pointer != ' ');
1691
1692 if (op_left == O_index)
1693 {
1694 if (*input_line_pointer != ']')
1695 as_bad ("missing right bracket");
1696 else
1697 {
1698 ++input_line_pointer;
1699 SKIP_WHITESPACE ();
1700 }
1701 }
1702
1703 if (retval == undefined_section)
1704 {
1705 if (SEG_NORMAL (rightseg))
1706 retval = rightseg;
1707 }
1708 else if (! SEG_NORMAL (retval))
1709 retval = rightseg;
1710 else if (SEG_NORMAL (rightseg)
1711 && retval != rightseg
1712 #ifdef DIFF_EXPR_OK
1713 && op_left != O_subtract
1714 #endif
1715 )
1716 as_bad (_("operation combines symbols in different segments"));
1717
1718 op_right = operator ();
1719
1720 know (op_right == O_illegal || op_rank[(int) op_right] <= op_rank[(int) op_left]);
1721 know ((int) op_left >= (int) O_multiply
1722 && (int) op_left <= (int) O_logical_or);
1723
1724 /* input_line_pointer->after right-hand quantity. */
1725 /* left-hand quantity in resultP */
1726 /* right-hand quantity in right. */
1727 /* operator in op_left. */
1728
1729 if (resultP->X_op == O_big)
1730 {
1731 if (resultP->X_add_number > 0)
1732 as_warn (_("left operand is a bignum; integer 0 assumed"));
1733 else
1734 as_warn (_("left operand is a float; integer 0 assumed"));
1735 resultP->X_op = O_constant;
1736 resultP->X_add_number = 0;
1737 resultP->X_add_symbol = NULL;
1738 resultP->X_op_symbol = NULL;
1739 }
1740 if (right.X_op == O_big)
1741 {
1742 if (right.X_add_number > 0)
1743 as_warn (_("right operand is a bignum; integer 0 assumed"));
1744 else
1745 as_warn (_("right operand is a float; integer 0 assumed"));
1746 right.X_op = O_constant;
1747 right.X_add_number = 0;
1748 right.X_add_symbol = NULL;
1749 right.X_op_symbol = NULL;
1750 }
1751
1752 /* Optimize common cases. */
1753 if (op_left == O_add && right.X_op == O_constant)
1754 {
1755 /* X + constant. */
1756 resultP->X_add_number += right.X_add_number;
1757 }
1758 /* This case comes up in PIC code. */
1759 else if (op_left == O_subtract
1760 && right.X_op == O_symbol
1761 && resultP->X_op == O_symbol
1762 && (symbol_get_frag (right.X_add_symbol)
1763 == symbol_get_frag (resultP->X_add_symbol))
1764 && SEG_NORMAL (S_GET_SEGMENT (right.X_add_symbol)))
1765
1766 {
1767 resultP->X_add_number -= right.X_add_number;
1768 resultP->X_add_number += (S_GET_VALUE (resultP->X_add_symbol)
1769 - S_GET_VALUE (right.X_add_symbol));
1770 resultP->X_op = O_constant;
1771 resultP->X_add_symbol = 0;
1772 }
1773 else if (op_left == O_subtract && right.X_op == O_constant)
1774 {
1775 /* X - constant. */
1776 resultP->X_add_number -= right.X_add_number;
1777 }
1778 else if (op_left == O_add && resultP->X_op == O_constant)
1779 {
1780 /* Constant + X. */
1781 resultP->X_op = right.X_op;
1782 resultP->X_add_symbol = right.X_add_symbol;
1783 resultP->X_op_symbol = right.X_op_symbol;
1784 resultP->X_add_number += right.X_add_number;
1785 retval = rightseg;
1786 }
1787 else if (resultP->X_op == O_constant && right.X_op == O_constant)
1788 {
1789 /* Constant OP constant. */
1790 offsetT v = right.X_add_number;
1791 if (v == 0 && (op_left == O_divide || op_left == O_modulus))
1792 {
1793 as_warn (_("division by zero"));
1794 v = 1;
1795 }
1796 switch (op_left)
1797 {
1798 default: abort ();
1799 case O_multiply: resultP->X_add_number *= v; break;
1800 case O_divide: resultP->X_add_number /= v; break;
1801 case O_modulus: resultP->X_add_number %= v; break;
1802 case O_left_shift: resultP->X_add_number <<= v; break;
1803 case O_right_shift:
1804 /* We always use unsigned shifts, to avoid relying on
1805 characteristics of the compiler used to compile gas. */
1806 resultP->X_add_number =
1807 (offsetT) ((valueT) resultP->X_add_number >> (valueT) v);
1808 break;
1809 case O_bit_inclusive_or: resultP->X_add_number |= v; break;
1810 case O_bit_or_not: resultP->X_add_number |= ~v; break;
1811 case O_bit_exclusive_or: resultP->X_add_number ^= v; break;
1812 case O_bit_and: resultP->X_add_number &= v; break;
1813 case O_add: resultP->X_add_number += v; break;
1814 case O_subtract: resultP->X_add_number -= v; break;
1815 case O_eq:
1816 resultP->X_add_number =
1817 resultP->X_add_number == v ? ~ (offsetT) 0 : 0;
1818 break;
1819 case O_ne:
1820 resultP->X_add_number =
1821 resultP->X_add_number != v ? ~ (offsetT) 0 : 0;
1822 break;
1823 case O_lt:
1824 resultP->X_add_number =
1825 resultP->X_add_number < v ? ~ (offsetT) 0 : 0;
1826 break;
1827 case O_le:
1828 resultP->X_add_number =
1829 resultP->X_add_number <= v ? ~ (offsetT) 0 : 0;
1830 break;
1831 case O_ge:
1832 resultP->X_add_number =
1833 resultP->X_add_number >= v ? ~ (offsetT) 0 : 0;
1834 break;
1835 case O_gt:
1836 resultP->X_add_number =
1837 resultP->X_add_number > v ? ~ (offsetT) 0 : 0;
1838 break;
1839 case O_logical_and:
1840 resultP->X_add_number = resultP->X_add_number && v;
1841 break;
1842 case O_logical_or:
1843 resultP->X_add_number = resultP->X_add_number || v;
1844 break;
1845 }
1846 }
1847 else if (resultP->X_op == O_symbol
1848 && right.X_op == O_symbol
1849 && (op_left == O_add
1850 || op_left == O_subtract
1851 || (resultP->X_add_number == 0
1852 && right.X_add_number == 0)))
1853 {
1854 /* Symbol OP symbol. */
1855 resultP->X_op = op_left;
1856 resultP->X_op_symbol = right.X_add_symbol;
1857 if (op_left == O_add)
1858 resultP->X_add_number += right.X_add_number;
1859 else if (op_left == O_subtract)
1860 resultP->X_add_number -= right.X_add_number;
1861 }
1862 else
1863 {
1864 /* The general case. */
1865 resultP->X_add_symbol = make_expr_symbol (resultP);
1866 resultP->X_op_symbol = make_expr_symbol (&right);
1867 resultP->X_op = op_left;
1868 resultP->X_add_number = 0;
1869 resultP->X_unsigned = 1;
1870 }
1871
1872 op_left = op_right;
1873 } /* While next operator is >= this rank. */
1874
1875 /* The PA port needs this information. */
1876 if (resultP->X_add_symbol)
1877 symbol_mark_used (resultP->X_add_symbol);
1878
1879 return resultP->X_op == O_constant ? absolute_section : retval;
1880 }
1881 \f
1882 /*
1883 * get_symbol_end()
1884 *
1885 * This lives here because it belongs equally in expr.c & read.c.
1886 * Expr.c is just a branch office read.c anyway, and putting it
1887 * here lessens the crowd at read.c.
1888 *
1889 * Assume input_line_pointer is at start of symbol name.
1890 * Advance input_line_pointer past symbol name.
1891 * Turn that character into a '\0', returning its former value.
1892 * This allows a string compare (RMS wants symbol names to be strings)
1893 * of the symbol name.
1894 * There will always be a char following symbol name, because all good
1895 * lines end in end-of-line.
1896 */
1897 char
1898 get_symbol_end ()
1899 {
1900 char c;
1901
1902 /* We accept \001 in a name in case this is being called with a
1903 constructed string. */
1904 if (is_name_beginner (c = *input_line_pointer++) || c == '\001')
1905 {
1906 while (is_part_of_name (c = *input_line_pointer++)
1907 || c == '\001')
1908 ;
1909 if (is_name_ender (c))
1910 c = *input_line_pointer++;
1911 }
1912 *--input_line_pointer = 0;
1913 return (c);
1914 }
1915
1916
1917 unsigned int
1918 get_single_number ()
1919 {
1920 expressionS exp;
1921 operand (&exp);
1922 return exp.X_add_number;
1923
1924 }
1925
1926 /* end of expr.c */
This page took 0.069019 seconds and 4 git commands to generate.