* main.c (baud_rate): Add FIXME comment about printing -1 value.
[deliverable/binutils-gdb.git] / gdb / a29k-tdep.c
1 /* Target-machine dependent code for the AMD 29000
2 Copyright 1990, 1991, 1992, 1993, 1994 Free Software Foundation, Inc.
3 Contributed by Cygnus Support. Written by Jim Kingdon.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21 #include "defs.h"
22 #include "gdbcore.h"
23 #include "frame.h"
24 #include "value.h"
25 #include "symtab.h"
26 #include "inferior.h"
27 #include "gdbcmd.h"
28
29 /* If all these bits in an instruction word are zero, it is a "tag word"
30 which precedes a function entry point and gives stack traceback info.
31 This used to be defined as 0xff000000, but that treated 0x00000deb as
32 a tag word, while it is really used as a breakpoint. */
33 #define TAGWORD_ZERO_MASK 0xff00f800
34
35 extern CORE_ADDR text_start; /* FIXME, kludge... */
36
37 /* The user-settable top of the register stack in virtual memory. We
38 won't attempt to access any stored registers above this address, if set
39 nonzero. */
40
41 static CORE_ADDR rstack_high_address = UINT_MAX;
42
43 /* Structure to hold cached info about function prologues. */
44 struct prologue_info
45 {
46 CORE_ADDR pc; /* First addr after fn prologue */
47 unsigned rsize, msize; /* register stack frame size, mem stack ditto */
48 unsigned mfp_used : 1; /* memory frame pointer used */
49 unsigned rsize_valid : 1; /* Validity bits for the above */
50 unsigned msize_valid : 1;
51 unsigned mfp_valid : 1;
52 };
53
54 /* Examine the prologue of a function which starts at PC. Return
55 the first addess past the prologue. If MSIZE is non-NULL, then
56 set *MSIZE to the memory stack frame size. If RSIZE is non-NULL,
57 then set *RSIZE to the register stack frame size (not including
58 incoming arguments and the return address & frame pointer stored
59 with them). If no prologue is found, *RSIZE is set to zero.
60 If no prologue is found, or a prologue which doesn't involve
61 allocating a memory stack frame, then set *MSIZE to zero.
62
63 Note that both msize and rsize are in bytes. This is not consistent
64 with the _User's Manual_ with respect to rsize, but it is much more
65 convenient.
66
67 If MFP_USED is non-NULL, *MFP_USED is set to nonzero if a memory
68 frame pointer is being used. */
69 CORE_ADDR
70 examine_prologue (pc, rsize, msize, mfp_used)
71 CORE_ADDR pc;
72 unsigned *msize;
73 unsigned *rsize;
74 int *mfp_used;
75 {
76 long insn;
77 CORE_ADDR p = pc;
78 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (pc);
79 struct prologue_info *mi = 0;
80
81 if (msymbol != NULL)
82 mi = (struct prologue_info *) msymbol -> info;
83
84 if (mi != 0)
85 {
86 int valid = 1;
87 if (rsize != NULL)
88 {
89 *rsize = mi->rsize;
90 valid &= mi->rsize_valid;
91 }
92 if (msize != NULL)
93 {
94 *msize = mi->msize;
95 valid &= mi->msize_valid;
96 }
97 if (mfp_used != NULL)
98 {
99 *mfp_used = mi->mfp_used;
100 valid &= mi->mfp_valid;
101 }
102 if (valid)
103 return mi->pc;
104 }
105
106 if (rsize != NULL)
107 *rsize = 0;
108 if (msize != NULL)
109 *msize = 0;
110 if (mfp_used != NULL)
111 *mfp_used = 0;
112
113 /* Prologue must start with subtracting a constant from gr1.
114 Normally this is sub gr1,gr1,<rsize * 4>. */
115 insn = read_memory_integer (p, 4);
116 if ((insn & 0xffffff00) != 0x25010100)
117 {
118 /* If the frame is large, instead of a single instruction it
119 might be a pair of instructions:
120 const <reg>, <rsize * 4>
121 sub gr1,gr1,<reg>
122 */
123 int reg;
124 /* Possible value for rsize. */
125 unsigned int rsize0;
126
127 if ((insn & 0xff000000) != 0x03000000)
128 {
129 p = pc;
130 goto done;
131 }
132 reg = (insn >> 8) & 0xff;
133 rsize0 = (((insn >> 8) & 0xff00) | (insn & 0xff));
134 p += 4;
135 insn = read_memory_integer (p, 4);
136 if ((insn & 0xffffff00) != 0x24010100
137 || (insn & 0xff) != reg)
138 {
139 p = pc;
140 goto done;
141 }
142 if (rsize != NULL)
143 *rsize = rsize0;
144 }
145 else
146 {
147 if (rsize != NULL)
148 *rsize = (insn & 0xff);
149 }
150 p += 4;
151
152 /* Next instruction ought to be asgeu V_SPILL,gr1,rab.
153 * We don't check the vector number to allow for kernel debugging. The
154 * kernel will use a different trap number.
155 * If this insn is missing, we just keep going; Metaware R2.3u compiler
156 * generates prologue that intermixes initializations and puts the asgeu
157 * way down.
158 */
159 insn = read_memory_integer (p, 4);
160 if ((insn & 0xff00ffff) == (0x5e000100|RAB_HW_REGNUM))
161 {
162 p += 4;
163 }
164
165 /* Next instruction usually sets the frame pointer (lr1) by adding
166 <size * 4> from gr1. However, this can (and high C does) be
167 deferred until anytime before the first function call. So it is
168 OK if we don't see anything which sets lr1.
169 To allow for alternate register sets (gcc -mkernel-registers) the msp
170 register number is a compile time constant. */
171
172 /* Normally this is just add lr1,gr1,<size * 4>. */
173 insn = read_memory_integer (p, 4);
174 if ((insn & 0xffffff00) == 0x15810100)
175 p += 4;
176 else
177 {
178 /* However, for large frames it can be
179 const <reg>, <size *4>
180 add lr1,gr1,<reg>
181 */
182 int reg;
183 CORE_ADDR q;
184
185 if ((insn & 0xff000000) == 0x03000000)
186 {
187 reg = (insn >> 8) & 0xff;
188 q = p + 4;
189 insn = read_memory_integer (q, 4);
190 if ((insn & 0xffffff00) == 0x14810100
191 && (insn & 0xff) == reg)
192 p = q;
193 }
194 }
195
196 /* Next comes "add lr{<rsize-1>},msp,0", but only if a memory
197 frame pointer is in use. We just check for add lr<anything>,msp,0;
198 we don't check this rsize against the first instruction, and
199 we don't check that the trace-back tag indicates a memory frame pointer
200 is in use.
201 To allow for alternate register sets (gcc -mkernel-registers) the msp
202 register number is a compile time constant.
203
204 The recommended instruction is actually "sll lr<whatever>,msp,0".
205 We check for that, too. Originally Jim Kingdon's code seemed
206 to be looking for a "sub" instruction here, but the mask was set
207 up to lose all the time. */
208 insn = read_memory_integer (p, 4);
209 if (((insn & 0xff80ffff) == (0x15800000|(MSP_HW_REGNUM<<8))) /* add */
210 || ((insn & 0xff80ffff) == (0x81800000|(MSP_HW_REGNUM<<8)))) /* sll */
211 {
212 p += 4;
213 if (mfp_used != NULL)
214 *mfp_used = 1;
215 }
216
217 /* Next comes a subtraction from msp to allocate a memory frame,
218 but only if a memory frame is
219 being used. We don't check msize against the trace-back tag.
220
221 To allow for alternate register sets (gcc -mkernel-registers) the msp
222 register number is a compile time constant.
223
224 Normally this is just
225 sub msp,msp,<msize>
226 */
227 insn = read_memory_integer (p, 4);
228 if ((insn & 0xffffff00) ==
229 (0x25000000|(MSP_HW_REGNUM<<16)|(MSP_HW_REGNUM<<8)))
230 {
231 p += 4;
232 if (msize != NULL)
233 *msize = insn & 0xff;
234 }
235 else
236 {
237 /* For large frames, instead of a single instruction it might
238 be
239
240 const <reg>, <msize>
241 consth <reg>, <msize> ; optional
242 sub msp,msp,<reg>
243 */
244 int reg;
245 unsigned msize0;
246 CORE_ADDR q = p;
247
248 if ((insn & 0xff000000) == 0x03000000)
249 {
250 reg = (insn >> 8) & 0xff;
251 msize0 = ((insn >> 8) & 0xff00) | (insn & 0xff);
252 q += 4;
253 insn = read_memory_integer (q, 4);
254 /* Check for consth. */
255 if ((insn & 0xff000000) == 0x02000000
256 && (insn & 0x0000ff00) == reg)
257 {
258 msize0 |= (insn << 8) & 0xff000000;
259 msize0 |= (insn << 16) & 0x00ff0000;
260 q += 4;
261 insn = read_memory_integer (q, 4);
262 }
263 /* Check for sub msp,msp,<reg>. */
264 if ((insn & 0xffffff00) ==
265 (0x24000000|(MSP_HW_REGNUM<<16)|(MSP_HW_REGNUM<<8))
266 && (insn & 0xff) == reg)
267 {
268 p = q + 4;
269 if (msize != NULL)
270 *msize = msize0;
271 }
272 }
273 }
274
275 /* Next instruction might be asgeu V_SPILL,gr1,rab.
276 * We don't check the vector number to allow for kernel debugging. The
277 * kernel will use a different trap number.
278 * Metaware R2.3u compiler
279 * generates prologue that intermixes initializations and puts the asgeu
280 * way down after everything else.
281 */
282 insn = read_memory_integer (p, 4);
283 if ((insn & 0xff00ffff) == (0x5e000100|RAB_HW_REGNUM))
284 {
285 p += 4;
286 }
287
288 done:
289 if (msymbol != NULL)
290 {
291 if (mi == 0)
292 {
293 /* Add a new cache entry. */
294 mi = (struct prologue_info *)xmalloc (sizeof (struct prologue_info));
295 msymbol -> info = (char *)mi;
296 mi->rsize_valid = 0;
297 mi->msize_valid = 0;
298 mi->mfp_valid = 0;
299 }
300 /* else, cache entry exists, but info is incomplete. */
301 mi->pc = p;
302 if (rsize != NULL)
303 {
304 mi->rsize = *rsize;
305 mi->rsize_valid = 1;
306 }
307 if (msize != NULL)
308 {
309 mi->msize = *msize;
310 mi->msize_valid = 1;
311 }
312 if (mfp_used != NULL)
313 {
314 mi->mfp_used = *mfp_used;
315 mi->mfp_valid = 1;
316 }
317 }
318 return p;
319 }
320
321 /* Advance PC across any function entry prologue instructions
322 to reach some "real" code. */
323
324 CORE_ADDR
325 skip_prologue (pc)
326 CORE_ADDR pc;
327 {
328 return examine_prologue (pc, (unsigned *)NULL, (unsigned *)NULL,
329 (int *)NULL);
330 }
331 /*
332 * Examine the one or two word tag at the beginning of a function.
333 * The tag word is expect to be at 'p', if it is not there, we fail
334 * by returning 0. The documentation for the tag word was taken from
335 * page 7-15 of the 29050 User's Manual. We are assuming that the
336 * m bit is in bit 22 of the tag word, which seems to be the agreed upon
337 * convention today (1/15/92).
338 * msize is return in bytes.
339 */
340 static int /* 0/1 - failure/success of finding the tag word */
341 examine_tag(p, is_trans, argcount, msize, mfp_used)
342 CORE_ADDR p;
343 int *is_trans;
344 int *argcount;
345 unsigned *msize;
346 int *mfp_used;
347 {
348 unsigned int tag1, tag2;
349
350 tag1 = read_memory_integer (p, 4);
351 if ((tag1 & TAGWORD_ZERO_MASK) != 0) /* Not a tag word */
352 return 0;
353 if (tag1 & (1<<23)) /* A two word tag */
354 {
355 tag2 = read_memory_integer (p+4, 4);
356 if (msize)
357 *msize = tag2;
358 }
359 else /* A one word tag */
360 {
361 if (msize)
362 *msize = tag1 & 0x7ff;
363 }
364 if (is_trans)
365 *is_trans = ((tag1 & (1<<21)) ? 1 : 0);
366 if (argcount)
367 *argcount = (tag1 >> 16) & 0x1f;
368 if (mfp_used)
369 *mfp_used = ((tag1 & (1<<22)) ? 1 : 0);
370 return(1);
371 }
372
373 /* Initialize the frame. In addition to setting "extra" frame info,
374 we also set ->frame because we use it in a nonstandard way, and ->pc
375 because we need to know it to get the other stuff. See the diagram
376 of stacks and the frame cache in tm-a29k.h for more detail. */
377 static void
378 init_frame_info (innermost_frame, fci)
379 int innermost_frame;
380 struct frame_info *fci;
381 {
382 CORE_ADDR p;
383 long insn;
384 unsigned rsize;
385 unsigned msize;
386 int mfp_used, trans;
387 struct symbol *func;
388
389 p = fci->pc;
390
391 if (innermost_frame)
392 fci->frame = read_register (GR1_REGNUM);
393 else
394 fci->frame = fci->next->frame + fci->next->rsize;
395
396 #if CALL_DUMMY_LOCATION == ON_STACK
397 This wont work;
398 #else
399 if (PC_IN_CALL_DUMMY (p, 0, 0))
400 #endif
401 {
402 fci->rsize = DUMMY_FRAME_RSIZE;
403 /* This doesn't matter since we never try to get locals or args
404 from a dummy frame. */
405 fci->msize = 0;
406 /* Dummy frames always use a memory frame pointer. */
407 fci->saved_msp =
408 read_register_stack_integer (fci->frame + DUMMY_FRAME_RSIZE - 4, 4);
409 fci->flags |= (TRANSPARENT|MFP_USED);
410 return;
411 }
412
413 func = find_pc_function (p);
414 if (func != NULL)
415 p = BLOCK_START (SYMBOL_BLOCK_VALUE (func));
416 else
417 {
418 /* Search backward to find the trace-back tag. However,
419 do not trace back beyond the start of the text segment
420 (just as a sanity check to avoid going into never-never land). */
421 #if 1
422 while (p >= text_start
423 && ((insn = read_memory_integer (p, 4)) & TAGWORD_ZERO_MASK) != 0)
424 p -= 4;
425 #else /* 0 */
426 char pat[4] = {0, 0, 0, 0};
427 char mask[4];
428 char insn_raw[4];
429 store_unsigned_integer (mask, 4, TAGWORD_ZERO_MASK);
430 /* Enable this once target_search is enabled and tested. */
431 target_search (4, pat, mask, p, -4, text_start, p+1, &p, &insn_raw);
432 insn = extract_unsigned_integer (insn_raw, 4);
433 #endif /* 0 */
434
435 if (p < text_start)
436 {
437 /* Couldn't find the trace-back tag.
438 Something strange is going on. */
439 fci->saved_msp = 0;
440 fci->rsize = 0;
441 fci->msize = 0;
442 fci->flags = TRANSPARENT;
443 return;
444 }
445 else
446 /* Advance to the first word of the function, i.e. the word
447 after the trace-back tag. */
448 p += 4;
449 }
450
451 /* We've found the start of the function.
452 Try looking for a tag word that indicates whether there is a
453 memory frame pointer and what the memory stack allocation is.
454 If one doesn't exist, try using a more exhaustive search of
455 the prologue. */
456
457 if (examine_tag(p-4,&trans,(int *)NULL,&msize,&mfp_used)) /* Found good tag */
458 examine_prologue (p, &rsize, 0, 0);
459 else /* No tag try prologue */
460 examine_prologue (p, &rsize, &msize, &mfp_used);
461
462 fci->rsize = rsize;
463 fci->msize = msize;
464 fci->flags = 0;
465 if (mfp_used)
466 fci->flags |= MFP_USED;
467 if (trans)
468 fci->flags |= TRANSPARENT;
469 if (innermost_frame)
470 {
471 fci->saved_msp = read_register (MSP_REGNUM) + msize;
472 }
473 else
474 {
475 if (mfp_used)
476 fci->saved_msp =
477 read_register_stack_integer (fci->frame + rsize - 4, 4);
478 else
479 fci->saved_msp = fci->next->saved_msp + msize;
480 }
481 }
482
483 void
484 init_extra_frame_info (fci)
485 struct frame_info *fci;
486 {
487 if (fci->next == 0)
488 /* Assume innermost frame. May produce strange results for "info frame"
489 but there isn't any way to tell the difference. */
490 init_frame_info (1, fci);
491 else {
492 /* We're in get_prev_frame_info.
493 Take care of everything in init_frame_pc. */
494 ;
495 }
496 }
497
498 void
499 init_frame_pc (fromleaf, fci)
500 int fromleaf;
501 struct frame_info *fci;
502 {
503 fci->pc = (fromleaf ? SAVED_PC_AFTER_CALL (fci->next) :
504 fci->next ? FRAME_SAVED_PC (fci->next) : read_pc ());
505 init_frame_info (fromleaf, fci);
506 }
507 \f
508 /* Local variables (i.e. LOC_LOCAL) are on the memory stack, with their
509 offsets being relative to the memory stack pointer (high C) or
510 saved_msp (gcc). */
511
512 CORE_ADDR
513 frame_locals_address (fi)
514 struct frame_info *fi;
515 {
516 if (fi->flags & MFP_USED)
517 return fi->saved_msp;
518 else
519 return fi->saved_msp - fi->msize;
520 }
521 \f
522 /* Routines for reading the register stack. The caller gets to treat
523 the register stack as a uniform stack in memory, from address $gr1
524 straight through $rfb and beyond. */
525
526 /* Analogous to read_memory except the length is understood to be 4.
527 Also, myaddr can be NULL (meaning don't bother to read), and
528 if actual_mem_addr is non-NULL, store there the address that it
529 was fetched from (or if from a register the offset within
530 registers). Set *LVAL to lval_memory or lval_register, depending
531 on where it came from. The contents written into MYADDR are in
532 target format. */
533 void
534 read_register_stack (memaddr, myaddr, actual_mem_addr, lval)
535 CORE_ADDR memaddr;
536 char *myaddr;
537 CORE_ADDR *actual_mem_addr;
538 enum lval_type *lval;
539 {
540 long rfb = read_register (RFB_REGNUM);
541 long rsp = read_register (RSP_REGNUM);
542
543 /* If we don't do this 'info register' stops in the middle. */
544 if (memaddr >= rstack_high_address)
545 {
546 /* a bogus value */
547 static char val[] = {~0, ~0, ~0, ~0};
548 /* It's in a local register, but off the end of the stack. */
549 int regnum = (memaddr - rsp) / 4 + LR0_REGNUM;
550 if (myaddr != NULL)
551 {
552 /* Provide bogusness */
553 memcpy (myaddr, val, 4);
554 }
555 supply_register(regnum, val); /* More bogusness */
556 if (lval != NULL)
557 *lval = lval_register;
558 if (actual_mem_addr != NULL)
559 *actual_mem_addr = REGISTER_BYTE (regnum);
560 }
561 /* If it's in the part of the register stack that's in real registers,
562 get the value from the registers. If it's anywhere else in memory
563 (e.g. in another thread's saved stack), skip this part and get
564 it from real live memory. */
565 else if (memaddr < rfb && memaddr >= rsp)
566 {
567 /* It's in a register. */
568 int regnum = (memaddr - rsp) / 4 + LR0_REGNUM;
569 if (regnum > LR0_REGNUM + 127)
570 error ("Attempt to read register stack out of range.");
571 if (myaddr != NULL)
572 read_register_gen (regnum, myaddr);
573 if (lval != NULL)
574 *lval = lval_register;
575 if (actual_mem_addr != NULL)
576 *actual_mem_addr = REGISTER_BYTE (regnum);
577 }
578 else
579 {
580 /* It's in the memory portion of the register stack. */
581 if (myaddr != NULL)
582 read_memory (memaddr, myaddr, 4);
583 if (lval != NULL)
584 *lval = lval_memory;
585 if (actual_mem_addr != NULL)
586 *actual_mem_addr = memaddr;
587 }
588 }
589
590 /* Analogous to read_memory_integer
591 except the length is understood to be 4. */
592 long
593 read_register_stack_integer (memaddr, len)
594 CORE_ADDR memaddr;
595 int len;
596 {
597 char buf[4];
598 read_register_stack (memaddr, buf, NULL, NULL);
599 return extract_signed_integer (buf, 4);
600 }
601
602 /* Copy 4 bytes from GDB memory at MYADDR into inferior memory
603 at MEMADDR and put the actual address written into in
604 *ACTUAL_MEM_ADDR. */
605 static void
606 write_register_stack (memaddr, myaddr, actual_mem_addr)
607 CORE_ADDR memaddr;
608 char *myaddr;
609 CORE_ADDR *actual_mem_addr;
610 {
611 long rfb = read_register (RFB_REGNUM);
612 long rsp = read_register (RSP_REGNUM);
613 /* If we don't do this 'info register' stops in the middle. */
614 if (memaddr >= rstack_high_address)
615 {
616 /* It's in a register, but off the end of the stack. */
617 if (actual_mem_addr != NULL)
618 *actual_mem_addr = 0;
619 }
620 else if (memaddr < rfb)
621 {
622 /* It's in a register. */
623 int regnum = (memaddr - rsp) / 4 + LR0_REGNUM;
624 if (regnum < LR0_REGNUM || regnum > LR0_REGNUM + 127)
625 error ("Attempt to read register stack out of range.");
626 if (myaddr != NULL)
627 write_register (regnum, *(long *)myaddr);
628 if (actual_mem_addr != NULL)
629 *actual_mem_addr = 0;
630 }
631 else
632 {
633 /* It's in the memory portion of the register stack. */
634 if (myaddr != NULL)
635 write_memory (memaddr, myaddr, 4);
636 if (actual_mem_addr != NULL)
637 *actual_mem_addr = memaddr;
638 }
639 }
640 \f
641 /* Find register number REGNUM relative to FRAME and put its
642 (raw) contents in *RAW_BUFFER. Set *OPTIMIZED if the variable
643 was optimized out (and thus can't be fetched). If the variable
644 was fetched from memory, set *ADDRP to where it was fetched from,
645 otherwise it was fetched from a register.
646
647 The argument RAW_BUFFER must point to aligned memory. */
648 void
649 get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lvalp)
650 char *raw_buffer;
651 int *optimized;
652 CORE_ADDR *addrp;
653 FRAME frame;
654 int regnum;
655 enum lval_type *lvalp;
656 {
657 struct frame_info *fi;
658 CORE_ADDR addr;
659 enum lval_type lval;
660
661 if (frame == 0)
662 return;
663
664 fi = get_frame_info (frame);
665
666 /* Once something has a register number, it doesn't get optimized out. */
667 if (optimized != NULL)
668 *optimized = 0;
669 if (regnum == RSP_REGNUM)
670 {
671 if (raw_buffer != NULL)
672 {
673 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), fi->frame);
674 }
675 if (lvalp != NULL)
676 *lvalp = not_lval;
677 return;
678 }
679 else if (regnum == PC_REGNUM)
680 {
681 if (raw_buffer != NULL)
682 {
683 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), fi->pc);
684 }
685
686 /* Not sure we have to do this. */
687 if (lvalp != NULL)
688 *lvalp = not_lval;
689
690 return;
691 }
692 else if (regnum == MSP_REGNUM)
693 {
694 if (raw_buffer != NULL)
695 {
696 if (fi->next != NULL)
697 {
698 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum),
699 fi->next->saved_msp);
700 }
701 else
702 read_register_gen (MSP_REGNUM, raw_buffer);
703 }
704 /* The value may have been computed, not fetched. */
705 if (lvalp != NULL)
706 *lvalp = not_lval;
707 return;
708 }
709 else if (regnum < LR0_REGNUM || regnum >= LR0_REGNUM + 128)
710 {
711 /* These registers are not saved over procedure calls,
712 so just print out the current values. */
713 if (raw_buffer != NULL)
714 read_register_gen (regnum, raw_buffer);
715 if (lvalp != NULL)
716 *lvalp = lval_register;
717 if (addrp != NULL)
718 *addrp = REGISTER_BYTE (regnum);
719 return;
720 }
721
722 addr = fi->frame + (regnum - LR0_REGNUM) * 4;
723 if (raw_buffer != NULL)
724 read_register_stack (addr, raw_buffer, &addr, &lval);
725 if (lvalp != NULL)
726 *lvalp = lval;
727 if (addrp != NULL)
728 *addrp = addr;
729 }
730 \f
731
732 /* Discard from the stack the innermost frame,
733 restoring all saved registers. */
734
735 void
736 pop_frame ()
737 {
738 FRAME frame = get_current_frame ();
739 struct frame_info *fi = get_frame_info (frame);
740 CORE_ADDR rfb = read_register (RFB_REGNUM);
741 CORE_ADDR gr1 = fi->frame + fi->rsize;
742 CORE_ADDR lr1;
743 CORE_ADDR original_lr0;
744 int must_fix_lr0 = 0;
745 int i;
746
747 /* If popping a dummy frame, need to restore registers. */
748 if (PC_IN_CALL_DUMMY (read_register (PC_REGNUM),
749 read_register (SP_REGNUM),
750 FRAME_FP (fi)))
751 {
752 int lrnum = LR0_REGNUM + DUMMY_ARG/4;
753 for (i = 0; i < DUMMY_SAVE_SR128; ++i)
754 write_register (SR_REGNUM (i + 128),read_register (lrnum++));
755 for (i = 0; i < DUMMY_SAVE_SR160; ++i)
756 write_register (SR_REGNUM(i+160), read_register (lrnum++));
757 for (i = 0; i < DUMMY_SAVE_GREGS; ++i)
758 write_register (RETURN_REGNUM + i, read_register (lrnum++));
759 /* Restore the PCs and prepare to restore LR0. */
760 write_register(PC_REGNUM, read_register (lrnum++));
761 write_register(NPC_REGNUM, read_register (lrnum++));
762 write_register(PC2_REGNUM, read_register (lrnum++));
763 original_lr0 = read_register (lrnum++);
764 must_fix_lr0 = 1;
765 }
766
767 /* Restore the memory stack pointer. */
768 write_register (MSP_REGNUM, fi->saved_msp);
769 /* Restore the register stack pointer. */
770 write_register (GR1_REGNUM, gr1);
771
772 /* If we popped a dummy frame, restore lr0 now that gr1 has been restored. */
773 if (must_fix_lr0)
774 write_register (LR0_REGNUM, original_lr0);
775
776 /* Check whether we need to fill registers. */
777 lr1 = read_register (LR0_REGNUM + 1);
778 if (lr1 > rfb)
779 {
780 /* Fill. */
781 int num_bytes = lr1 - rfb;
782 int i;
783 long word;
784 write_register (RAB_REGNUM, read_register (RAB_REGNUM) + num_bytes);
785 write_register (RFB_REGNUM, lr1);
786 for (i = 0; i < num_bytes; i += 4)
787 {
788 /* Note: word is in host byte order. */
789 word = read_memory_integer (rfb + i, 4);
790 write_register (LR0_REGNUM + ((rfb - gr1) % 0x80) + i / 4, word);
791 }
792 }
793 flush_cached_frames ();
794 set_current_frame (create_new_frame (0, read_pc()));
795 }
796
797 /* Push an empty stack frame, to record the current PC, etc. */
798
799 void
800 push_dummy_frame ()
801 {
802 long w;
803 CORE_ADDR rab, gr1;
804 CORE_ADDR msp = read_register (MSP_REGNUM);
805 int lrnum, i;
806 CORE_ADDR original_lr0;
807
808 /* Read original lr0 before changing gr1. This order isn't really needed
809 since GDB happens to have a snapshot of all the regs and doesn't toss
810 it when gr1 is changed. But it's The Right Thing To Do. */
811 original_lr0 = read_register (LR0_REGNUM);
812
813 /* Allocate the new frame. */
814 gr1 = read_register (GR1_REGNUM) - DUMMY_FRAME_RSIZE;
815 write_register (GR1_REGNUM, gr1);
816
817 rab = read_register (RAB_REGNUM);
818 if (gr1 < rab)
819 {
820 /* We need to spill registers. */
821 int num_bytes = rab - gr1;
822 CORE_ADDR rfb = read_register (RFB_REGNUM);
823 int i;
824 long word;
825
826 write_register (RFB_REGNUM, rfb - num_bytes);
827 write_register (RAB_REGNUM, gr1);
828 for (i = 0; i < num_bytes; i += 4)
829 {
830 /* Note: word is in target byte order. */
831 read_register_gen (LR0_REGNUM + i / 4, (char *) &word);
832 write_memory (rfb - num_bytes + i, (char *) &word, 4);
833 }
834 }
835
836 /* There are no arguments in to the dummy frame, so we don't need
837 more than rsize plus the return address and lr1. */
838 write_register (LR0_REGNUM + 1, gr1 + DUMMY_FRAME_RSIZE + 2 * 4);
839
840 /* Set the memory frame pointer. */
841 write_register (LR0_REGNUM + DUMMY_FRAME_RSIZE / 4 - 1, msp);
842
843 /* Allocate arg_slop. */
844 write_register (MSP_REGNUM, msp - 16 * 4);
845
846 /* Save registers. */
847 lrnum = LR0_REGNUM + DUMMY_ARG/4;
848 for (i = 0; i < DUMMY_SAVE_SR128; ++i)
849 write_register (lrnum++, read_register (SR_REGNUM (i + 128)));
850 for (i = 0; i < DUMMY_SAVE_SR160; ++i)
851 write_register (lrnum++, read_register (SR_REGNUM (i + 160)));
852 for (i = 0; i < DUMMY_SAVE_GREGS; ++i)
853 write_register (lrnum++, read_register (RETURN_REGNUM + i));
854 /* Save the PCs and LR0. */
855 write_register (lrnum++, read_register (PC_REGNUM));
856 write_register (lrnum++, read_register (NPC_REGNUM));
857 write_register (lrnum++, read_register (PC2_REGNUM));
858
859 /* Why are we saving LR0? What would clobber it? (the dummy frame should
860 be below it on the register stack, no?). */
861 write_register (lrnum++, original_lr0);
862 }
863
864
865
866 /*
867 This routine takes three arguments and makes the cached frames look
868 as if these arguments defined a frame on the cache. This allows the
869 rest of `info frame' to extract the important arguments without much
870 difficulty. Since an individual frame on the 29K is determined by
871 three values (FP, PC, and MSP), we really need all three to do a
872 good job. */
873
874 FRAME
875 setup_arbitrary_frame (argc, argv)
876 int argc;
877 FRAME_ADDR *argv;
878 {
879 FRAME fid;
880
881 if (argc != 3)
882 error ("AMD 29k frame specifications require three arguments: rsp pc msp");
883
884 fid = create_new_frame (argv[0], argv[1]);
885
886 if (!fid)
887 fatal ("internal: create_new_frame returned invalid frame id");
888
889 /* Creating a new frame munges the `frame' value from the current
890 GR1, so we restore it again here. FIXME, untangle all this
891 29K frame stuff... */
892 fid->frame = argv[0];
893
894 /* Our MSP is in argv[2]. It'd be intelligent if we could just
895 save this value in the FRAME. But the way it's set up (FIXME),
896 we must save our caller's MSP. We compute that by adding our
897 memory stack frame size to our MSP. */
898 fid->saved_msp = argv[2] + fid->msize;
899
900 return fid;
901 }
902
903
904
905 enum a29k_processor_types processor_type = a29k_unknown;
906
907 void
908 a29k_get_processor_type ()
909 {
910 unsigned int cfg_reg = (unsigned int) read_register (CFG_REGNUM);
911
912 /* Most of these don't have freeze mode. */
913 processor_type = a29k_no_freeze_mode;
914
915 switch ((cfg_reg >> 28) & 0xf)
916 {
917 case 0:
918 fprintf_filtered (gdb_stderr, "Remote debugging an Am29000");
919 break;
920 case 1:
921 fprintf_filtered (gdb_stderr, "Remote debugging an Am29005");
922 break;
923 case 2:
924 fprintf_filtered (gdb_stderr, "Remote debugging an Am29050");
925 processor_type = a29k_freeze_mode;
926 break;
927 case 3:
928 fprintf_filtered (gdb_stderr, "Remote debugging an Am29035");
929 break;
930 case 4:
931 fprintf_filtered (gdb_stderr, "Remote debugging an Am29030");
932 break;
933 case 5:
934 fprintf_filtered (gdb_stderr, "Remote debugging an Am2920*");
935 break;
936 case 6:
937 fprintf_filtered (gdb_stderr, "Remote debugging an Am2924*");
938 break;
939 case 7:
940 fprintf_filtered (gdb_stderr, "Remote debugging an Am29040");
941 break;
942 default:
943 fprintf_filtered (gdb_stderr, "Remote debugging an unknown Am29k\n");
944 /* Don't bother to print the revision. */
945 return;
946 }
947 fprintf_filtered (gdb_stderr, " revision %c\n", 'A' + ((cfg_reg >> 24) & 0x0f));
948 }
949
950 void
951 _initialize_29k()
952 {
953 extern CORE_ADDR text_end;
954
955 /* FIXME, there should be a way to make a CORE_ADDR variable settable. */
956 add_show_from_set
957 (add_set_cmd ("rstack_high_address", class_support, var_uinteger,
958 (char *)&rstack_high_address,
959 "Set top address in memory of the register stack.\n\
960 Attempts to access registers saved above this address will be ignored\n\
961 or will produce the value -1.", &setlist),
962 &showlist);
963
964 /* FIXME, there should be a way to make a CORE_ADDR variable settable. */
965 add_show_from_set
966 (add_set_cmd ("call_scratch_address", class_support, var_uinteger,
967 (char *)&text_end,
968 "Set address in memory where small amounts of RAM can be used\n\
969 when making function calls into the inferior.", &setlist),
970 &showlist);
971 }
This page took 0.049957 seconds and 4 git commands to generate.