delete references to hex-value.c
[deliverable/binutils-gdb.git] / gdb / a29k-tdep.c
1 /* Target-machine dependent code for the AMD 29000
2 Copyright 1990, 1991, 1992, 1993, 1994 Free Software Foundation, Inc.
3 Contributed by Cygnus Support. Written by Jim Kingdon.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21 #include "defs.h"
22 #include "gdbcore.h"
23 #include "frame.h"
24 #include "value.h"
25 #include "symtab.h"
26 #include "inferior.h"
27 #include "gdbcmd.h"
28
29 /* If all these bits in an instruction word are zero, it is a "tag word"
30 which precedes a function entry point and gives stack traceback info.
31 This used to be defined as 0xff000000, but that treated 0x00000deb as
32 a tag word, while it is really used as a breakpoint. */
33 #define TAGWORD_ZERO_MASK 0xff00f800
34
35 extern CORE_ADDR text_start; /* FIXME, kludge... */
36
37 /* The user-settable top of the register stack in virtual memory. We
38 won't attempt to access any stored registers above this address, if set
39 nonzero. */
40
41 static CORE_ADDR rstack_high_address = UINT_MAX;
42
43 /* Structure to hold cached info about function prologues. */
44
45 struct prologue_info
46 {
47 CORE_ADDR pc; /* First addr after fn prologue */
48 unsigned rsize, msize; /* register stack frame size, mem stack ditto */
49 unsigned mfp_used : 1; /* memory frame pointer used */
50 unsigned rsize_valid : 1; /* Validity bits for the above */
51 unsigned msize_valid : 1;
52 unsigned mfp_valid : 1;
53 };
54
55 /* Examine the prologue of a function which starts at PC. Return
56 the first addess past the prologue. If MSIZE is non-NULL, then
57 set *MSIZE to the memory stack frame size. If RSIZE is non-NULL,
58 then set *RSIZE to the register stack frame size (not including
59 incoming arguments and the return address & frame pointer stored
60 with them). If no prologue is found, *RSIZE is set to zero.
61 If no prologue is found, or a prologue which doesn't involve
62 allocating a memory stack frame, then set *MSIZE to zero.
63
64 Note that both msize and rsize are in bytes. This is not consistent
65 with the _User's Manual_ with respect to rsize, but it is much more
66 convenient.
67
68 If MFP_USED is non-NULL, *MFP_USED is set to nonzero if a memory
69 frame pointer is being used. */
70
71 CORE_ADDR
72 examine_prologue (pc, rsize, msize, mfp_used)
73 CORE_ADDR pc;
74 unsigned *msize;
75 unsigned *rsize;
76 int *mfp_used;
77 {
78 long insn;
79 CORE_ADDR p = pc;
80 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (pc);
81 struct prologue_info *mi = 0;
82
83 if (msymbol != NULL)
84 mi = (struct prologue_info *) msymbol -> info;
85
86 if (mi != 0)
87 {
88 int valid = 1;
89 if (rsize != NULL)
90 {
91 *rsize = mi->rsize;
92 valid &= mi->rsize_valid;
93 }
94 if (msize != NULL)
95 {
96 *msize = mi->msize;
97 valid &= mi->msize_valid;
98 }
99 if (mfp_used != NULL)
100 {
101 *mfp_used = mi->mfp_used;
102 valid &= mi->mfp_valid;
103 }
104 if (valid)
105 return mi->pc;
106 }
107
108 if (rsize != NULL)
109 *rsize = 0;
110 if (msize != NULL)
111 *msize = 0;
112 if (mfp_used != NULL)
113 *mfp_used = 0;
114
115 /* Prologue must start with subtracting a constant from gr1.
116 Normally this is sub gr1,gr1,<rsize * 4>. */
117 insn = read_memory_integer (p, 4);
118 if ((insn & 0xffffff00) != 0x25010100)
119 {
120 /* If the frame is large, instead of a single instruction it
121 might be a pair of instructions:
122 const <reg>, <rsize * 4>
123 sub gr1,gr1,<reg>
124 */
125 int reg;
126 /* Possible value for rsize. */
127 unsigned int rsize0;
128
129 if ((insn & 0xff000000) != 0x03000000)
130 {
131 p = pc;
132 goto done;
133 }
134 reg = (insn >> 8) & 0xff;
135 rsize0 = (((insn >> 8) & 0xff00) | (insn & 0xff));
136 p += 4;
137 insn = read_memory_integer (p, 4);
138 if ((insn & 0xffffff00) != 0x24010100
139 || (insn & 0xff) != reg)
140 {
141 p = pc;
142 goto done;
143 }
144 if (rsize != NULL)
145 *rsize = rsize0;
146 }
147 else
148 {
149 if (rsize != NULL)
150 *rsize = (insn & 0xff);
151 }
152 p += 4;
153
154 /* Next instruction ought to be asgeu V_SPILL,gr1,rab.
155 * We don't check the vector number to allow for kernel debugging. The
156 * kernel will use a different trap number.
157 * If this insn is missing, we just keep going; Metaware R2.3u compiler
158 * generates prologue that intermixes initializations and puts the asgeu
159 * way down.
160 */
161 insn = read_memory_integer (p, 4);
162 if ((insn & 0xff00ffff) == (0x5e000100|RAB_HW_REGNUM))
163 {
164 p += 4;
165 }
166
167 /* Next instruction usually sets the frame pointer (lr1) by adding
168 <size * 4> from gr1. However, this can (and high C does) be
169 deferred until anytime before the first function call. So it is
170 OK if we don't see anything which sets lr1.
171 To allow for alternate register sets (gcc -mkernel-registers) the msp
172 register number is a compile time constant. */
173
174 /* Normally this is just add lr1,gr1,<size * 4>. */
175 insn = read_memory_integer (p, 4);
176 if ((insn & 0xffffff00) == 0x15810100)
177 p += 4;
178 else
179 {
180 /* However, for large frames it can be
181 const <reg>, <size *4>
182 add lr1,gr1,<reg>
183 */
184 int reg;
185 CORE_ADDR q;
186
187 if ((insn & 0xff000000) == 0x03000000)
188 {
189 reg = (insn >> 8) & 0xff;
190 q = p + 4;
191 insn = read_memory_integer (q, 4);
192 if ((insn & 0xffffff00) == 0x14810100
193 && (insn & 0xff) == reg)
194 p = q;
195 }
196 }
197
198 /* Next comes "add lr{<rsize-1>},msp,0", but only if a memory
199 frame pointer is in use. We just check for add lr<anything>,msp,0;
200 we don't check this rsize against the first instruction, and
201 we don't check that the trace-back tag indicates a memory frame pointer
202 is in use.
203 To allow for alternate register sets (gcc -mkernel-registers) the msp
204 register number is a compile time constant.
205
206 The recommended instruction is actually "sll lr<whatever>,msp,0".
207 We check for that, too. Originally Jim Kingdon's code seemed
208 to be looking for a "sub" instruction here, but the mask was set
209 up to lose all the time. */
210 insn = read_memory_integer (p, 4);
211 if (((insn & 0xff80ffff) == (0x15800000|(MSP_HW_REGNUM<<8))) /* add */
212 || ((insn & 0xff80ffff) == (0x81800000|(MSP_HW_REGNUM<<8)))) /* sll */
213 {
214 p += 4;
215 if (mfp_used != NULL)
216 *mfp_used = 1;
217 }
218
219 /* Next comes a subtraction from msp to allocate a memory frame,
220 but only if a memory frame is
221 being used. We don't check msize against the trace-back tag.
222
223 To allow for alternate register sets (gcc -mkernel-registers) the msp
224 register number is a compile time constant.
225
226 Normally this is just
227 sub msp,msp,<msize>
228 */
229 insn = read_memory_integer (p, 4);
230 if ((insn & 0xffffff00) ==
231 (0x25000000|(MSP_HW_REGNUM<<16)|(MSP_HW_REGNUM<<8)))
232 {
233 p += 4;
234 if (msize != NULL)
235 *msize = insn & 0xff;
236 }
237 else
238 {
239 /* For large frames, instead of a single instruction it might
240 be
241
242 const <reg>, <msize>
243 consth <reg>, <msize> ; optional
244 sub msp,msp,<reg>
245 */
246 int reg;
247 unsigned msize0;
248 CORE_ADDR q = p;
249
250 if ((insn & 0xff000000) == 0x03000000)
251 {
252 reg = (insn >> 8) & 0xff;
253 msize0 = ((insn >> 8) & 0xff00) | (insn & 0xff);
254 q += 4;
255 insn = read_memory_integer (q, 4);
256 /* Check for consth. */
257 if ((insn & 0xff000000) == 0x02000000
258 && (insn & 0x0000ff00) == reg)
259 {
260 msize0 |= (insn << 8) & 0xff000000;
261 msize0 |= (insn << 16) & 0x00ff0000;
262 q += 4;
263 insn = read_memory_integer (q, 4);
264 }
265 /* Check for sub msp,msp,<reg>. */
266 if ((insn & 0xffffff00) ==
267 (0x24000000|(MSP_HW_REGNUM<<16)|(MSP_HW_REGNUM<<8))
268 && (insn & 0xff) == reg)
269 {
270 p = q + 4;
271 if (msize != NULL)
272 *msize = msize0;
273 }
274 }
275 }
276
277 /* Next instruction might be asgeu V_SPILL,gr1,rab.
278 * We don't check the vector number to allow for kernel debugging. The
279 * kernel will use a different trap number.
280 * Metaware R2.3u compiler
281 * generates prologue that intermixes initializations and puts the asgeu
282 * way down after everything else.
283 */
284 insn = read_memory_integer (p, 4);
285 if ((insn & 0xff00ffff) == (0x5e000100|RAB_HW_REGNUM))
286 {
287 p += 4;
288 }
289
290 done:
291 if (msymbol != NULL)
292 {
293 if (mi == 0)
294 {
295 /* Add a new cache entry. */
296 mi = (struct prologue_info *)xmalloc (sizeof (struct prologue_info));
297 msymbol -> info = (char *)mi;
298 mi->rsize_valid = 0;
299 mi->msize_valid = 0;
300 mi->mfp_valid = 0;
301 }
302 /* else, cache entry exists, but info is incomplete. */
303 mi->pc = p;
304 if (rsize != NULL)
305 {
306 mi->rsize = *rsize;
307 mi->rsize_valid = 1;
308 }
309 if (msize != NULL)
310 {
311 mi->msize = *msize;
312 mi->msize_valid = 1;
313 }
314 if (mfp_used != NULL)
315 {
316 mi->mfp_used = *mfp_used;
317 mi->mfp_valid = 1;
318 }
319 }
320 return p;
321 }
322
323 /* Advance PC across any function entry prologue instructions
324 to reach some "real" code. */
325
326 CORE_ADDR
327 skip_prologue (pc)
328 CORE_ADDR pc;
329 {
330 return examine_prologue (pc, NULL, NULL, NULL);
331 }
332
333 /*
334 * Examine the one or two word tag at the beginning of a function.
335 * The tag word is expect to be at 'p', if it is not there, we fail
336 * by returning 0. The documentation for the tag word was taken from
337 * page 7-15 of the 29050 User's Manual. We are assuming that the
338 * m bit is in bit 22 of the tag word, which seems to be the agreed upon
339 * convention today (1/15/92).
340 * msize is return in bytes.
341 */
342
343 static int /* 0/1 - failure/success of finding the tag word */
344 examine_tag (p, is_trans, argcount, msize, mfp_used)
345 CORE_ADDR p;
346 int *is_trans;
347 int *argcount;
348 unsigned *msize;
349 int *mfp_used;
350 {
351 unsigned int tag1, tag2;
352
353 tag1 = read_memory_integer (p, 4);
354 if ((tag1 & TAGWORD_ZERO_MASK) != 0) /* Not a tag word */
355 return 0;
356 if (tag1 & (1<<23)) /* A two word tag */
357 {
358 tag2 = read_memory_integer (p-4, 4);
359 if (msize)
360 *msize = tag2 * 2;
361 }
362 else /* A one word tag */
363 {
364 if (msize)
365 *msize = tag1 & 0x7ff;
366 }
367 if (is_trans)
368 *is_trans = ((tag1 & (1<<21)) ? 1 : 0);
369 /* Note that this includes the frame pointer and the return address
370 register, so the actual number of registers of arguments is two less.
371 argcount can be zero, however, sometimes, for strange assembler
372 routines. */
373 if (argcount)
374 *argcount = (tag1 >> 16) & 0x1f;
375 if (mfp_used)
376 *mfp_used = ((tag1 & (1<<22)) ? 1 : 0);
377 return 1;
378 }
379
380 /* Initialize the frame. In addition to setting "extra" frame info,
381 we also set ->frame because we use it in a nonstandard way, and ->pc
382 because we need to know it to get the other stuff. See the diagram
383 of stacks and the frame cache in tm-a29k.h for more detail. */
384
385 static void
386 init_frame_info (innermost_frame, frame)
387 int innermost_frame;
388 struct frame_info *frame;
389 {
390 CORE_ADDR p;
391 long insn;
392 unsigned rsize;
393 unsigned msize;
394 int mfp_used, trans;
395 struct symbol *func;
396
397 p = frame->pc;
398
399 if (innermost_frame)
400 frame->frame = read_register (GR1_REGNUM);
401 else
402 frame->frame = frame->next->frame + frame->next->rsize;
403
404 #if CALL_DUMMY_LOCATION == ON_STACK
405 This wont work;
406 #else
407 if (PC_IN_CALL_DUMMY (p, 0, 0))
408 #endif
409 {
410 frame->rsize = DUMMY_FRAME_RSIZE;
411 /* This doesn't matter since we never try to get locals or args
412 from a dummy frame. */
413 frame->msize = 0;
414 /* Dummy frames always use a memory frame pointer. */
415 frame->saved_msp =
416 read_register_stack_integer (frame->frame + DUMMY_FRAME_RSIZE - 4, 4);
417 frame->flags |= (TRANSPARENT|MFP_USED);
418 return;
419 }
420
421 func = find_pc_function (p);
422 if (func != NULL)
423 p = BLOCK_START (SYMBOL_BLOCK_VALUE (func));
424 else
425 {
426 /* Search backward to find the trace-back tag. However,
427 do not trace back beyond the start of the text segment
428 (just as a sanity check to avoid going into never-never land). */
429 #if 1
430 while (p >= text_start
431 && ((insn = read_memory_integer (p, 4)) & TAGWORD_ZERO_MASK) != 0)
432 p -= 4;
433 #else /* 0 */
434 char pat[4] = {0, 0, 0, 0};
435 char mask[4];
436 char insn_raw[4];
437 store_unsigned_integer (mask, 4, TAGWORD_ZERO_MASK);
438 /* Enable this once target_search is enabled and tested. */
439 target_search (4, pat, mask, p, -4, text_start, p+1, &p, &insn_raw);
440 insn = extract_unsigned_integer (insn_raw, 4);
441 #endif /* 0 */
442
443 if (p < text_start)
444 {
445 /* Couldn't find the trace-back tag.
446 Something strange is going on. */
447 frame->saved_msp = 0;
448 frame->rsize = 0;
449 frame->msize = 0;
450 frame->flags = TRANSPARENT;
451 return;
452 }
453 else
454 /* Advance to the first word of the function, i.e. the word
455 after the trace-back tag. */
456 p += 4;
457 }
458
459 /* We've found the start of the function.
460 Try looking for a tag word that indicates whether there is a
461 memory frame pointer and what the memory stack allocation is.
462 If one doesn't exist, try using a more exhaustive search of
463 the prologue. */
464
465 if (examine_tag(p-4,&trans,(int *)NULL,&msize,&mfp_used)) /* Found good tag */
466 examine_prologue (p, &rsize, 0, 0);
467 else /* No tag try prologue */
468 examine_prologue (p, &rsize, &msize, &mfp_used);
469
470 frame->rsize = rsize;
471 frame->msize = msize;
472 frame->flags = 0;
473 if (mfp_used)
474 frame->flags |= MFP_USED;
475 if (trans)
476 frame->flags |= TRANSPARENT;
477 if (innermost_frame)
478 {
479 frame->saved_msp = read_register (MSP_REGNUM) + msize;
480 }
481 else
482 {
483 if (mfp_used)
484 frame->saved_msp =
485 read_register_stack_integer (frame->frame + rsize - 4, 4);
486 else
487 frame->saved_msp = frame->next->saved_msp + msize;
488 }
489 }
490
491 void
492 init_extra_frame_info (frame)
493 struct frame_info *frame;
494 {
495 if (frame->next == 0)
496 /* Assume innermost frame. May produce strange results for "info frame"
497 but there isn't any way to tell the difference. */
498 init_frame_info (1, frame);
499 else {
500 /* We're in get_prev_frame_info.
501 Take care of everything in init_frame_pc. */
502 ;
503 }
504 }
505
506 void
507 init_frame_pc (fromleaf, frame)
508 int fromleaf;
509 struct frame_info *frame;
510 {
511 frame->pc = (fromleaf ? SAVED_PC_AFTER_CALL (frame->next) :
512 frame->next ? FRAME_SAVED_PC (frame->next) : read_pc ());
513 init_frame_info (fromleaf, frame);
514 }
515 \f
516 /* Local variables (i.e. LOC_LOCAL) are on the memory stack, with their
517 offsets being relative to the memory stack pointer (high C) or
518 saved_msp (gcc). */
519
520 CORE_ADDR
521 frame_locals_address (fi)
522 struct frame_info *fi;
523 {
524 if (fi->flags & MFP_USED)
525 return fi->saved_msp;
526 else
527 return fi->saved_msp - fi->msize;
528 }
529 \f
530 /* Routines for reading the register stack. The caller gets to treat
531 the register stack as a uniform stack in memory, from address $gr1
532 straight through $rfb and beyond. */
533
534 /* Analogous to read_memory except the length is understood to be 4.
535 Also, myaddr can be NULL (meaning don't bother to read), and
536 if actual_mem_addr is non-NULL, store there the address that it
537 was fetched from (or if from a register the offset within
538 registers). Set *LVAL to lval_memory or lval_register, depending
539 on where it came from. The contents written into MYADDR are in
540 target format. */
541 void
542 read_register_stack (memaddr, myaddr, actual_mem_addr, lval)
543 CORE_ADDR memaddr;
544 char *myaddr;
545 CORE_ADDR *actual_mem_addr;
546 enum lval_type *lval;
547 {
548 long rfb = read_register (RFB_REGNUM);
549 long rsp = read_register (RSP_REGNUM);
550
551 /* If we don't do this 'info register' stops in the middle. */
552 if (memaddr >= rstack_high_address)
553 {
554 /* a bogus value */
555 static char val[] = {~0, ~0, ~0, ~0};
556 /* It's in a local register, but off the end of the stack. */
557 int regnum = (memaddr - rsp) / 4 + LR0_REGNUM;
558 if (myaddr != NULL)
559 {
560 /* Provide bogusness */
561 memcpy (myaddr, val, 4);
562 }
563 supply_register(regnum, val); /* More bogusness */
564 if (lval != NULL)
565 *lval = lval_register;
566 if (actual_mem_addr != NULL)
567 *actual_mem_addr = REGISTER_BYTE (regnum);
568 }
569 /* If it's in the part of the register stack that's in real registers,
570 get the value from the registers. If it's anywhere else in memory
571 (e.g. in another thread's saved stack), skip this part and get
572 it from real live memory. */
573 else if (memaddr < rfb && memaddr >= rsp)
574 {
575 /* It's in a register. */
576 int regnum = (memaddr - rsp) / 4 + LR0_REGNUM;
577 if (regnum > LR0_REGNUM + 127)
578 error ("Attempt to read register stack out of range.");
579 if (myaddr != NULL)
580 read_register_gen (regnum, myaddr);
581 if (lval != NULL)
582 *lval = lval_register;
583 if (actual_mem_addr != NULL)
584 *actual_mem_addr = REGISTER_BYTE (regnum);
585 }
586 else
587 {
588 /* It's in the memory portion of the register stack. */
589 if (myaddr != NULL)
590 read_memory (memaddr, myaddr, 4);
591 if (lval != NULL)
592 *lval = lval_memory;
593 if (actual_mem_addr != NULL)
594 *actual_mem_addr = memaddr;
595 }
596 }
597
598 /* Analogous to read_memory_integer
599 except the length is understood to be 4. */
600 long
601 read_register_stack_integer (memaddr, len)
602 CORE_ADDR memaddr;
603 int len;
604 {
605 char buf[4];
606 read_register_stack (memaddr, buf, NULL, NULL);
607 return extract_signed_integer (buf, 4);
608 }
609
610 /* Copy 4 bytes from GDB memory at MYADDR into inferior memory
611 at MEMADDR and put the actual address written into in
612 *ACTUAL_MEM_ADDR. */
613 static void
614 write_register_stack (memaddr, myaddr, actual_mem_addr)
615 CORE_ADDR memaddr;
616 char *myaddr;
617 CORE_ADDR *actual_mem_addr;
618 {
619 long rfb = read_register (RFB_REGNUM);
620 long rsp = read_register (RSP_REGNUM);
621 /* If we don't do this 'info register' stops in the middle. */
622 if (memaddr >= rstack_high_address)
623 {
624 /* It's in a register, but off the end of the stack. */
625 if (actual_mem_addr != NULL)
626 *actual_mem_addr = 0;
627 }
628 else if (memaddr < rfb)
629 {
630 /* It's in a register. */
631 int regnum = (memaddr - rsp) / 4 + LR0_REGNUM;
632 if (regnum < LR0_REGNUM || regnum > LR0_REGNUM + 127)
633 error ("Attempt to read register stack out of range.");
634 if (myaddr != NULL)
635 write_register (regnum, *(long *)myaddr);
636 if (actual_mem_addr != NULL)
637 *actual_mem_addr = 0;
638 }
639 else
640 {
641 /* It's in the memory portion of the register stack. */
642 if (myaddr != NULL)
643 write_memory (memaddr, myaddr, 4);
644 if (actual_mem_addr != NULL)
645 *actual_mem_addr = memaddr;
646 }
647 }
648 \f
649 /* Find register number REGNUM relative to FRAME and put its
650 (raw) contents in *RAW_BUFFER. Set *OPTIMIZED if the variable
651 was optimized out (and thus can't be fetched). If the variable
652 was fetched from memory, set *ADDRP to where it was fetched from,
653 otherwise it was fetched from a register.
654
655 The argument RAW_BUFFER must point to aligned memory. */
656
657 void
658 get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lvalp)
659 char *raw_buffer;
660 int *optimized;
661 CORE_ADDR *addrp;
662 struct frame_info *frame;
663 int regnum;
664 enum lval_type *lvalp;
665 {
666 struct frame_info *fi;
667 CORE_ADDR addr;
668 enum lval_type lval;
669
670 if (!target_has_registers)
671 error ("No registers.");
672
673 /* Probably now redundant with the target_has_registers check. */
674 if (frame == 0)
675 return;
676
677 /* Once something has a register number, it doesn't get optimized out. */
678 if (optimized != NULL)
679 *optimized = 0;
680 if (regnum == RSP_REGNUM)
681 {
682 if (raw_buffer != NULL)
683 {
684 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), frame->frame);
685 }
686 if (lvalp != NULL)
687 *lvalp = not_lval;
688 return;
689 }
690 else if (regnum == PC_REGNUM)
691 {
692 if (raw_buffer != NULL)
693 {
694 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), frame->pc);
695 }
696
697 /* Not sure we have to do this. */
698 if (lvalp != NULL)
699 *lvalp = not_lval;
700
701 return;
702 }
703 else if (regnum == MSP_REGNUM)
704 {
705 if (raw_buffer != NULL)
706 {
707 if (frame->next != NULL)
708 {
709 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum),
710 frame->next->saved_msp);
711 }
712 else
713 read_register_gen (MSP_REGNUM, raw_buffer);
714 }
715 /* The value may have been computed, not fetched. */
716 if (lvalp != NULL)
717 *lvalp = not_lval;
718 return;
719 }
720 else if (regnum < LR0_REGNUM || regnum >= LR0_REGNUM + 128)
721 {
722 /* These registers are not saved over procedure calls,
723 so just print out the current values. */
724 if (raw_buffer != NULL)
725 read_register_gen (regnum, raw_buffer);
726 if (lvalp != NULL)
727 *lvalp = lval_register;
728 if (addrp != NULL)
729 *addrp = REGISTER_BYTE (regnum);
730 return;
731 }
732
733 addr = frame->frame + (regnum - LR0_REGNUM) * 4;
734 if (raw_buffer != NULL)
735 read_register_stack (addr, raw_buffer, &addr, &lval);
736 if (lvalp != NULL)
737 *lvalp = lval;
738 if (addrp != NULL)
739 *addrp = addr;
740 }
741 \f
742
743 /* Discard from the stack the innermost frame,
744 restoring all saved registers. */
745
746 void
747 pop_frame ()
748 {
749 struct frame_info *frame = get_current_frame ();
750 CORE_ADDR rfb = read_register (RFB_REGNUM);
751 CORE_ADDR gr1 = frame->frame + frame->rsize;
752 CORE_ADDR lr1;
753 CORE_ADDR original_lr0;
754 int must_fix_lr0 = 0;
755 int i;
756
757 /* If popping a dummy frame, need to restore registers. */
758 if (PC_IN_CALL_DUMMY (read_register (PC_REGNUM),
759 read_register (SP_REGNUM),
760 FRAME_FP (frame)))
761 {
762 int lrnum = LR0_REGNUM + DUMMY_ARG/4;
763 for (i = 0; i < DUMMY_SAVE_SR128; ++i)
764 write_register (SR_REGNUM (i + 128),read_register (lrnum++));
765 for (i = 0; i < DUMMY_SAVE_SR160; ++i)
766 write_register (SR_REGNUM(i+160), read_register (lrnum++));
767 for (i = 0; i < DUMMY_SAVE_GREGS; ++i)
768 write_register (RETURN_REGNUM + i, read_register (lrnum++));
769 /* Restore the PCs and prepare to restore LR0. */
770 write_register(PC_REGNUM, read_register (lrnum++));
771 write_register(NPC_REGNUM, read_register (lrnum++));
772 write_register(PC2_REGNUM, read_register (lrnum++));
773 original_lr0 = read_register (lrnum++);
774 must_fix_lr0 = 1;
775 }
776
777 /* Restore the memory stack pointer. */
778 write_register (MSP_REGNUM, frame->saved_msp);
779 /* Restore the register stack pointer. */
780 write_register (GR1_REGNUM, gr1);
781
782 /* If we popped a dummy frame, restore lr0 now that gr1 has been restored. */
783 if (must_fix_lr0)
784 write_register (LR0_REGNUM, original_lr0);
785
786 /* Check whether we need to fill registers. */
787 lr1 = read_register (LR0_REGNUM + 1);
788 if (lr1 > rfb)
789 {
790 /* Fill. */
791 int num_bytes = lr1 - rfb;
792 int i;
793 long word;
794
795 write_register (RAB_REGNUM, read_register (RAB_REGNUM) + num_bytes);
796 write_register (RFB_REGNUM, lr1);
797 for (i = 0; i < num_bytes; i += 4)
798 {
799 /* Note: word is in host byte order. */
800 word = read_memory_integer (rfb + i, 4);
801 write_register (LR0_REGNUM + ((rfb - gr1) % 0x80) + i / 4, word);
802 }
803 }
804 flush_cached_frames ();
805 }
806
807 /* Push an empty stack frame, to record the current PC, etc. */
808
809 void
810 push_dummy_frame ()
811 {
812 long w;
813 CORE_ADDR rab, gr1;
814 CORE_ADDR msp = read_register (MSP_REGNUM);
815 int lrnum, i;
816 CORE_ADDR original_lr0;
817
818 /* Read original lr0 before changing gr1. This order isn't really needed
819 since GDB happens to have a snapshot of all the regs and doesn't toss
820 it when gr1 is changed. But it's The Right Thing To Do. */
821 original_lr0 = read_register (LR0_REGNUM);
822
823 /* Allocate the new frame. */
824 gr1 = read_register (GR1_REGNUM) - DUMMY_FRAME_RSIZE;
825 write_register (GR1_REGNUM, gr1);
826
827 rab = read_register (RAB_REGNUM);
828 if (gr1 < rab)
829 {
830 /* We need to spill registers. */
831 int num_bytes = rab - gr1;
832 CORE_ADDR rfb = read_register (RFB_REGNUM);
833 int i;
834 long word;
835
836 write_register (RFB_REGNUM, rfb - num_bytes);
837 write_register (RAB_REGNUM, gr1);
838 for (i = 0; i < num_bytes; i += 4)
839 {
840 /* Note: word is in target byte order. */
841 read_register_gen (LR0_REGNUM + i / 4, (char *) &word);
842 write_memory (rfb - num_bytes + i, (char *) &word, 4);
843 }
844 }
845
846 /* There are no arguments in to the dummy frame, so we don't need
847 more than rsize plus the return address and lr1. */
848 write_register (LR0_REGNUM + 1, gr1 + DUMMY_FRAME_RSIZE + 2 * 4);
849
850 /* Set the memory frame pointer. */
851 write_register (LR0_REGNUM + DUMMY_FRAME_RSIZE / 4 - 1, msp);
852
853 /* Allocate arg_slop. */
854 write_register (MSP_REGNUM, msp - 16 * 4);
855
856 /* Save registers. */
857 lrnum = LR0_REGNUM + DUMMY_ARG/4;
858 for (i = 0; i < DUMMY_SAVE_SR128; ++i)
859 write_register (lrnum++, read_register (SR_REGNUM (i + 128)));
860 for (i = 0; i < DUMMY_SAVE_SR160; ++i)
861 write_register (lrnum++, read_register (SR_REGNUM (i + 160)));
862 for (i = 0; i < DUMMY_SAVE_GREGS; ++i)
863 write_register (lrnum++, read_register (RETURN_REGNUM + i));
864 /* Save the PCs and LR0. */
865 write_register (lrnum++, read_register (PC_REGNUM));
866 write_register (lrnum++, read_register (NPC_REGNUM));
867 write_register (lrnum++, read_register (PC2_REGNUM));
868
869 /* Why are we saving LR0? What would clobber it? (the dummy frame should
870 be below it on the register stack, no?). */
871 write_register (lrnum++, original_lr0);
872 }
873
874
875
876 /*
877 This routine takes three arguments and makes the cached frames look
878 as if these arguments defined a frame on the cache. This allows the
879 rest of `info frame' to extract the important arguments without much
880 difficulty. Since an individual frame on the 29K is determined by
881 three values (FP, PC, and MSP), we really need all three to do a
882 good job. */
883
884 struct frame_info *
885 setup_arbitrary_frame (argc, argv)
886 int argc;
887 CORE_ADDR *argv;
888 {
889 struct frame_info *frame;
890
891 if (argc != 3)
892 error ("AMD 29k frame specifications require three arguments: rsp pc msp");
893
894 frame = create_new_frame (argv[0], argv[1]);
895
896 if (!frame)
897 fatal ("internal: create_new_frame returned invalid frame id");
898
899 /* Creating a new frame munges the `frame' value from the current
900 GR1, so we restore it again here. FIXME, untangle all this
901 29K frame stuff... */
902 frame->frame = argv[0];
903
904 /* Our MSP is in argv[2]. It'd be intelligent if we could just
905 save this value in the FRAME. But the way it's set up (FIXME),
906 we must save our caller's MSP. We compute that by adding our
907 memory stack frame size to our MSP. */
908 frame->saved_msp = argv[2] + frame->msize;
909
910 return frame;
911 }
912
913 enum a29k_processor_types processor_type = a29k_unknown;
914
915 void
916 a29k_get_processor_type ()
917 {
918 unsigned int cfg_reg = (unsigned int) read_register (CFG_REGNUM);
919
920 /* Most of these don't have freeze mode. */
921 processor_type = a29k_no_freeze_mode;
922
923 switch ((cfg_reg >> 28) & 0xf)
924 {
925 case 0:
926 fprintf_filtered (gdb_stderr, "Remote debugging an Am29000");
927 break;
928 case 1:
929 fprintf_filtered (gdb_stderr, "Remote debugging an Am29005");
930 break;
931 case 2:
932 fprintf_filtered (gdb_stderr, "Remote debugging an Am29050");
933 processor_type = a29k_freeze_mode;
934 break;
935 case 3:
936 fprintf_filtered (gdb_stderr, "Remote debugging an Am29035");
937 break;
938 case 4:
939 fprintf_filtered (gdb_stderr, "Remote debugging an Am29030");
940 break;
941 case 5:
942 fprintf_filtered (gdb_stderr, "Remote debugging an Am2920*");
943 break;
944 case 6:
945 fprintf_filtered (gdb_stderr, "Remote debugging an Am2924*");
946 break;
947 case 7:
948 fprintf_filtered (gdb_stderr, "Remote debugging an Am29040");
949 break;
950 default:
951 fprintf_filtered (gdb_stderr, "Remote debugging an unknown Am29k\n");
952 /* Don't bother to print the revision. */
953 return;
954 }
955 fprintf_filtered (gdb_stderr, " revision %c\n", 'A' + ((cfg_reg >> 24) & 0x0f));
956 }
957
958 void
959 _initialize_29k()
960 {
961 extern CORE_ADDR text_end;
962
963 /* FIXME, there should be a way to make a CORE_ADDR variable settable. */
964 add_show_from_set
965 (add_set_cmd ("rstack_high_address", class_support, var_uinteger,
966 (char *)&rstack_high_address,
967 "Set top address in memory of the register stack.\n\
968 Attempts to access registers saved above this address will be ignored\n\
969 or will produce the value -1.", &setlist),
970 &showlist);
971
972 /* FIXME, there should be a way to make a CORE_ADDR variable settable. */
973 add_show_from_set
974 (add_set_cmd ("call_scratch_address", class_support, var_uinteger,
975 (char *)&text_end,
976 "Set address in memory where small amounts of RAM can be used\n\
977 when making function calls into the inferior.", &setlist),
978 &showlist);
979 }
This page took 0.0535369999999999 seconds and 4 git commands to generate.