Replace thread config with automatic config using ax_pthread.m4.
[deliverable/binutils-gdb.git] / gdb / aarch64-linux-nat.c
1 /* Native-dependent code for GNU/Linux AArch64.
2
3 Copyright (C) 2011-2018 Free Software Foundation, Inc.
4 Contributed by ARM Ltd.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22
23 #include "inferior.h"
24 #include "gdbcore.h"
25 #include "regcache.h"
26 #include "linux-nat.h"
27 #include "target-descriptions.h"
28 #include "auxv.h"
29 #include "gdbcmd.h"
30 #include "aarch64-tdep.h"
31 #include "aarch64-linux-tdep.h"
32 #include "aarch32-linux-nat.h"
33 #include "nat/aarch64-linux.h"
34 #include "nat/aarch64-linux-hw-point.h"
35 #include "nat/aarch64-sve-linux-ptrace.h"
36
37 #include "elf/external.h"
38 #include "elf/common.h"
39
40 #include "nat/gdb_ptrace.h"
41 #include <sys/utsname.h>
42 #include <asm/ptrace.h>
43
44 #include "gregset.h"
45
46 /* Defines ps_err_e, struct ps_prochandle. */
47 #include "gdb_proc_service.h"
48
49 #ifndef TRAP_HWBKPT
50 #define TRAP_HWBKPT 0x0004
51 #endif
52
53 class aarch64_linux_nat_target final : public linux_nat_target
54 {
55 public:
56 /* Add our register access methods. */
57 void fetch_registers (struct regcache *, int) override;
58 void store_registers (struct regcache *, int) override;
59
60 const struct target_desc *read_description () override;
61
62 /* Add our hardware breakpoint and watchpoint implementation. */
63 int can_use_hw_breakpoint (enum bptype, int, int) override;
64 int insert_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
65 int remove_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
66 int region_ok_for_hw_watchpoint (CORE_ADDR, int) override;
67 int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
68 struct expression *) override;
69 int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
70 struct expression *) override;
71 bool stopped_by_watchpoint () override;
72 bool stopped_data_address (CORE_ADDR *) override;
73 bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int) override;
74
75 int can_do_single_step () override;
76
77 /* Override the GNU/Linux inferior startup hook. */
78 void post_startup_inferior (ptid_t) override;
79
80 /* These three defer to common nat/ code. */
81 void low_new_thread (struct lwp_info *lp) override
82 { aarch64_linux_new_thread (lp); }
83 void low_delete_thread (struct arch_lwp_info *lp) override
84 { aarch64_linux_delete_thread (lp); }
85 void low_prepare_to_resume (struct lwp_info *lp) override
86 { aarch64_linux_prepare_to_resume (lp); }
87
88 void low_new_fork (struct lwp_info *parent, pid_t child_pid) override;
89 void low_forget_process (pid_t pid) override;
90
91 /* Add our siginfo layout converter. */
92 bool low_siginfo_fixup (siginfo_t *ptrace, gdb_byte *inf, int direction)
93 override;
94 };
95
96 static aarch64_linux_nat_target the_aarch64_linux_nat_target;
97
98 /* Per-process data. We don't bind this to a per-inferior registry
99 because of targets like x86 GNU/Linux that need to keep track of
100 processes that aren't bound to any inferior (e.g., fork children,
101 checkpoints). */
102
103 struct aarch64_process_info
104 {
105 /* Linked list. */
106 struct aarch64_process_info *next;
107
108 /* The process identifier. */
109 pid_t pid;
110
111 /* Copy of aarch64 hardware debug registers. */
112 struct aarch64_debug_reg_state state;
113 };
114
115 static struct aarch64_process_info *aarch64_process_list = NULL;
116
117 /* Find process data for process PID. */
118
119 static struct aarch64_process_info *
120 aarch64_find_process_pid (pid_t pid)
121 {
122 struct aarch64_process_info *proc;
123
124 for (proc = aarch64_process_list; proc; proc = proc->next)
125 if (proc->pid == pid)
126 return proc;
127
128 return NULL;
129 }
130
131 /* Add process data for process PID. Returns newly allocated info
132 object. */
133
134 static struct aarch64_process_info *
135 aarch64_add_process (pid_t pid)
136 {
137 struct aarch64_process_info *proc;
138
139 proc = XCNEW (struct aarch64_process_info);
140 proc->pid = pid;
141
142 proc->next = aarch64_process_list;
143 aarch64_process_list = proc;
144
145 return proc;
146 }
147
148 /* Get data specific info for process PID, creating it if necessary.
149 Never returns NULL. */
150
151 static struct aarch64_process_info *
152 aarch64_process_info_get (pid_t pid)
153 {
154 struct aarch64_process_info *proc;
155
156 proc = aarch64_find_process_pid (pid);
157 if (proc == NULL)
158 proc = aarch64_add_process (pid);
159
160 return proc;
161 }
162
163 /* Called whenever GDB is no longer debugging process PID. It deletes
164 data structures that keep track of debug register state. */
165
166 void
167 aarch64_linux_nat_target::low_forget_process (pid_t pid)
168 {
169 struct aarch64_process_info *proc, **proc_link;
170
171 proc = aarch64_process_list;
172 proc_link = &aarch64_process_list;
173
174 while (proc != NULL)
175 {
176 if (proc->pid == pid)
177 {
178 *proc_link = proc->next;
179
180 xfree (proc);
181 return;
182 }
183
184 proc_link = &proc->next;
185 proc = *proc_link;
186 }
187 }
188
189 /* Get debug registers state for process PID. */
190
191 struct aarch64_debug_reg_state *
192 aarch64_get_debug_reg_state (pid_t pid)
193 {
194 return &aarch64_process_info_get (pid)->state;
195 }
196
197 /* Fill GDB's register array with the general-purpose register values
198 from the current thread. */
199
200 static void
201 fetch_gregs_from_thread (struct regcache *regcache)
202 {
203 int ret, tid;
204 struct gdbarch *gdbarch = regcache->arch ();
205 elf_gregset_t regs;
206 struct iovec iovec;
207
208 /* Make sure REGS can hold all registers contents on both aarch64
209 and arm. */
210 gdb_static_assert (sizeof (regs) >= 18 * 4);
211
212 tid = ptid_get_lwp (regcache->ptid ());
213
214 iovec.iov_base = &regs;
215 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 32)
216 iovec.iov_len = 18 * 4;
217 else
218 iovec.iov_len = sizeof (regs);
219
220 ret = ptrace (PTRACE_GETREGSET, tid, NT_PRSTATUS, &iovec);
221 if (ret < 0)
222 perror_with_name (_("Unable to fetch general registers."));
223
224 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 32)
225 aarch32_gp_regcache_supply (regcache, (uint32_t *) regs, 1);
226 else
227 {
228 int regno;
229
230 for (regno = AARCH64_X0_REGNUM; regno <= AARCH64_CPSR_REGNUM; regno++)
231 regcache->raw_supply (regno, &regs[regno - AARCH64_X0_REGNUM]);
232 }
233 }
234
235 /* Store to the current thread the valid general-purpose register
236 values in the GDB's register array. */
237
238 static void
239 store_gregs_to_thread (const struct regcache *regcache)
240 {
241 int ret, tid;
242 elf_gregset_t regs;
243 struct iovec iovec;
244 struct gdbarch *gdbarch = regcache->arch ();
245
246 /* Make sure REGS can hold all registers contents on both aarch64
247 and arm. */
248 gdb_static_assert (sizeof (regs) >= 18 * 4);
249 tid = ptid_get_lwp (regcache->ptid ());
250
251 iovec.iov_base = &regs;
252 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 32)
253 iovec.iov_len = 18 * 4;
254 else
255 iovec.iov_len = sizeof (regs);
256
257 ret = ptrace (PTRACE_GETREGSET, tid, NT_PRSTATUS, &iovec);
258 if (ret < 0)
259 perror_with_name (_("Unable to fetch general registers."));
260
261 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 32)
262 aarch32_gp_regcache_collect (regcache, (uint32_t *) regs, 1);
263 else
264 {
265 int regno;
266
267 for (regno = AARCH64_X0_REGNUM; regno <= AARCH64_CPSR_REGNUM; regno++)
268 if (REG_VALID == regcache->get_register_status (regno))
269 regcache->raw_collect (regno, &regs[regno - AARCH64_X0_REGNUM]);
270 }
271
272 ret = ptrace (PTRACE_SETREGSET, tid, NT_PRSTATUS, &iovec);
273 if (ret < 0)
274 perror_with_name (_("Unable to store general registers."));
275 }
276
277 /* Fill GDB's register array with the fp/simd register values
278 from the current thread. */
279
280 static void
281 fetch_fpregs_from_thread (struct regcache *regcache)
282 {
283 int ret, tid;
284 elf_fpregset_t regs;
285 struct iovec iovec;
286 struct gdbarch *gdbarch = regcache->arch ();
287
288 /* Make sure REGS can hold all VFP registers contents on both aarch64
289 and arm. */
290 gdb_static_assert (sizeof regs >= VFP_REGS_SIZE);
291
292 tid = ptid_get_lwp (regcache->ptid ());
293
294 iovec.iov_base = &regs;
295
296 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 32)
297 {
298 iovec.iov_len = VFP_REGS_SIZE;
299
300 ret = ptrace (PTRACE_GETREGSET, tid, NT_ARM_VFP, &iovec);
301 if (ret < 0)
302 perror_with_name (_("Unable to fetch VFP registers."));
303
304 aarch32_vfp_regcache_supply (regcache, (gdb_byte *) &regs, 32);
305 }
306 else
307 {
308 int regno;
309
310 iovec.iov_len = sizeof (regs);
311
312 ret = ptrace (PTRACE_GETREGSET, tid, NT_FPREGSET, &iovec);
313 if (ret < 0)
314 perror_with_name (_("Unable to fetch vFP/SIMD registers."));
315
316 for (regno = AARCH64_V0_REGNUM; regno <= AARCH64_V31_REGNUM; regno++)
317 regcache->raw_supply (regno, &regs.vregs[regno - AARCH64_V0_REGNUM]);
318
319 regcache->raw_supply (AARCH64_FPSR_REGNUM, &regs.fpsr);
320 regcache->raw_supply (AARCH64_FPCR_REGNUM, &regs.fpcr);
321 }
322 }
323
324 /* Store to the current thread the valid fp/simd register
325 values in the GDB's register array. */
326
327 static void
328 store_fpregs_to_thread (const struct regcache *regcache)
329 {
330 int ret, tid;
331 elf_fpregset_t regs;
332 struct iovec iovec;
333 struct gdbarch *gdbarch = regcache->arch ();
334
335 /* Make sure REGS can hold all VFP registers contents on both aarch64
336 and arm. */
337 gdb_static_assert (sizeof regs >= VFP_REGS_SIZE);
338 tid = ptid_get_lwp (regcache->ptid ());
339
340 iovec.iov_base = &regs;
341
342 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 32)
343 {
344 iovec.iov_len = VFP_REGS_SIZE;
345
346 ret = ptrace (PTRACE_GETREGSET, tid, NT_ARM_VFP, &iovec);
347 if (ret < 0)
348 perror_with_name (_("Unable to fetch VFP registers."));
349
350 aarch32_vfp_regcache_collect (regcache, (gdb_byte *) &regs, 32);
351 }
352 else
353 {
354 int regno;
355
356 iovec.iov_len = sizeof (regs);
357
358 ret = ptrace (PTRACE_GETREGSET, tid, NT_FPREGSET, &iovec);
359 if (ret < 0)
360 perror_with_name (_("Unable to fetch FP/SIMD registers."));
361
362 for (regno = AARCH64_V0_REGNUM; regno <= AARCH64_V31_REGNUM; regno++)
363 if (REG_VALID == regcache->get_register_status (regno))
364 regcache->raw_collect
365 (regno, (char *) &regs.vregs[regno - AARCH64_V0_REGNUM]);
366
367 if (REG_VALID == regcache->get_register_status (AARCH64_FPSR_REGNUM))
368 regcache->raw_collect (AARCH64_FPSR_REGNUM, (char *) &regs.fpsr);
369 if (REG_VALID == regcache->get_register_status (AARCH64_FPCR_REGNUM))
370 regcache->raw_collect (AARCH64_FPCR_REGNUM, (char *) &regs.fpcr);
371 }
372
373 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 32)
374 {
375 ret = ptrace (PTRACE_SETREGSET, tid, NT_ARM_VFP, &iovec);
376 if (ret < 0)
377 perror_with_name (_("Unable to store VFP registers."));
378 }
379 else
380 {
381 ret = ptrace (PTRACE_SETREGSET, tid, NT_FPREGSET, &iovec);
382 if (ret < 0)
383 perror_with_name (_("Unable to store FP/SIMD registers."));
384 }
385 }
386
387 /* Fill GDB's register array with the sve register values
388 from the current thread. */
389
390 static void
391 fetch_sveregs_from_thread (struct regcache *regcache)
392 {
393 std::unique_ptr<gdb_byte[]> base
394 = aarch64_sve_get_sveregs (ptid_get_lwp (regcache->ptid ()));
395 aarch64_sve_regs_copy_to_reg_buf (regcache, base.get ());
396 }
397
398 /* Store to the current thread the valid sve register
399 values in the GDB's register array. */
400
401 static void
402 store_sveregs_to_thread (struct regcache *regcache)
403 {
404 int ret;
405 struct iovec iovec;
406 int tid = ptid_get_lwp (regcache->ptid ());
407
408 /* Obtain a dump of SVE registers from ptrace. */
409 std::unique_ptr<gdb_byte[]> base = aarch64_sve_get_sveregs (tid);
410
411 /* Overwrite with regcache state. */
412 aarch64_sve_regs_copy_from_reg_buf (regcache, base.get ());
413
414 /* Write back to the kernel. */
415 iovec.iov_base = base.get ();
416 iovec.iov_len = ((struct user_sve_header *) base.get ())->size;
417 ret = ptrace (PTRACE_SETREGSET, tid, NT_ARM_SVE, &iovec);
418
419 if (ret < 0)
420 perror_with_name (_("Unable to store sve registers"));
421 }
422
423 /* Implement the "fetch_registers" target_ops method. */
424
425 void
426 aarch64_linux_nat_target::fetch_registers (struct regcache *regcache,
427 int regno)
428 {
429 struct gdbarch_tdep *tdep = gdbarch_tdep (regcache->arch ());
430
431 if (regno == -1)
432 {
433 fetch_gregs_from_thread (regcache);
434 if (tdep->has_sve ())
435 fetch_sveregs_from_thread (regcache);
436 else
437 fetch_fpregs_from_thread (regcache);
438 }
439 else if (regno < AARCH64_V0_REGNUM)
440 fetch_gregs_from_thread (regcache);
441 else if (tdep->has_sve ())
442 fetch_sveregs_from_thread (regcache);
443 else
444 fetch_fpregs_from_thread (regcache);
445 }
446
447 /* Implement the "store_registers" target_ops method. */
448
449 void
450 aarch64_linux_nat_target::store_registers (struct regcache *regcache,
451 int regno)
452 {
453 struct gdbarch_tdep *tdep = gdbarch_tdep (regcache->arch ());
454
455 if (regno == -1)
456 {
457 store_gregs_to_thread (regcache);
458 if (tdep->has_sve ())
459 store_sveregs_to_thread (regcache);
460 else
461 store_fpregs_to_thread (regcache);
462 }
463 else if (regno < AARCH64_V0_REGNUM)
464 store_gregs_to_thread (regcache);
465 else if (tdep->has_sve ())
466 store_sveregs_to_thread (regcache);
467 else
468 store_fpregs_to_thread (regcache);
469 }
470
471 /* Fill register REGNO (if it is a general-purpose register) in
472 *GREGSETPS with the value in GDB's register array. If REGNO is -1,
473 do this for all registers. */
474
475 void
476 fill_gregset (const struct regcache *regcache,
477 gdb_gregset_t *gregsetp, int regno)
478 {
479 regcache_collect_regset (&aarch64_linux_gregset, regcache,
480 regno, (gdb_byte *) gregsetp,
481 AARCH64_LINUX_SIZEOF_GREGSET);
482 }
483
484 /* Fill GDB's register array with the general-purpose register values
485 in *GREGSETP. */
486
487 void
488 supply_gregset (struct regcache *regcache, const gdb_gregset_t *gregsetp)
489 {
490 regcache_supply_regset (&aarch64_linux_gregset, regcache, -1,
491 (const gdb_byte *) gregsetp,
492 AARCH64_LINUX_SIZEOF_GREGSET);
493 }
494
495 /* Fill register REGNO (if it is a floating-point register) in
496 *FPREGSETP with the value in GDB's register array. If REGNO is -1,
497 do this for all registers. */
498
499 void
500 fill_fpregset (const struct regcache *regcache,
501 gdb_fpregset_t *fpregsetp, int regno)
502 {
503 regcache_collect_regset (&aarch64_linux_fpregset, regcache,
504 regno, (gdb_byte *) fpregsetp,
505 AARCH64_LINUX_SIZEOF_FPREGSET);
506 }
507
508 /* Fill GDB's register array with the floating-point register values
509 in *FPREGSETP. */
510
511 void
512 supply_fpregset (struct regcache *regcache, const gdb_fpregset_t *fpregsetp)
513 {
514 regcache_supply_regset (&aarch64_linux_fpregset, regcache, -1,
515 (const gdb_byte *) fpregsetp,
516 AARCH64_LINUX_SIZEOF_FPREGSET);
517 }
518
519 /* linux_nat_new_fork hook. */
520
521 void
522 aarch64_linux_nat_target::low_new_fork (struct lwp_info *parent,
523 pid_t child_pid)
524 {
525 pid_t parent_pid;
526 struct aarch64_debug_reg_state *parent_state;
527 struct aarch64_debug_reg_state *child_state;
528
529 /* NULL means no watchpoint has ever been set in the parent. In
530 that case, there's nothing to do. */
531 if (parent->arch_private == NULL)
532 return;
533
534 /* GDB core assumes the child inherits the watchpoints/hw
535 breakpoints of the parent, and will remove them all from the
536 forked off process. Copy the debug registers mirrors into the
537 new process so that all breakpoints and watchpoints can be
538 removed together. */
539
540 parent_pid = ptid_get_pid (parent->ptid);
541 parent_state = aarch64_get_debug_reg_state (parent_pid);
542 child_state = aarch64_get_debug_reg_state (child_pid);
543 *child_state = *parent_state;
544 }
545 \f
546
547 /* Called by libthread_db. Returns a pointer to the thread local
548 storage (or its descriptor). */
549
550 ps_err_e
551 ps_get_thread_area (struct ps_prochandle *ph,
552 lwpid_t lwpid, int idx, void **base)
553 {
554 int is_64bit_p
555 = (gdbarch_bfd_arch_info (target_gdbarch ())->bits_per_word == 64);
556
557 return aarch64_ps_get_thread_area (ph, lwpid, idx, base, is_64bit_p);
558 }
559 \f
560
561 /* Implement the "post_startup_inferior" target_ops method. */
562
563 void
564 aarch64_linux_nat_target::post_startup_inferior (ptid_t ptid)
565 {
566 low_forget_process (ptid_get_pid (ptid));
567 aarch64_linux_get_debug_reg_capacity (ptid_get_pid (ptid));
568 linux_nat_target::post_startup_inferior (ptid);
569 }
570
571 extern struct target_desc *tdesc_arm_with_neon;
572
573 /* Implement the "read_description" target_ops method. */
574
575 const struct target_desc *
576 aarch64_linux_nat_target::read_description ()
577 {
578 int ret, tid;
579 gdb_byte regbuf[VFP_REGS_SIZE];
580 struct iovec iovec;
581
582 tid = ptid_get_lwp (inferior_ptid);
583
584 iovec.iov_base = regbuf;
585 iovec.iov_len = VFP_REGS_SIZE;
586
587 ret = ptrace (PTRACE_GETREGSET, tid, NT_ARM_VFP, &iovec);
588 if (ret == 0)
589 return tdesc_arm_with_neon;
590 else
591 return aarch64_read_description (aarch64_sve_get_vq (tid));
592 }
593
594 /* Convert a native/host siginfo object, into/from the siginfo in the
595 layout of the inferiors' architecture. Returns true if any
596 conversion was done; false otherwise. If DIRECTION is 1, then copy
597 from INF to NATIVE. If DIRECTION is 0, copy from NATIVE to
598 INF. */
599
600 bool
601 aarch64_linux_nat_target::low_siginfo_fixup (siginfo_t *native, gdb_byte *inf,
602 int direction)
603 {
604 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
605
606 /* Is the inferior 32-bit? If so, then do fixup the siginfo
607 object. */
608 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 32)
609 {
610 if (direction == 0)
611 aarch64_compat_siginfo_from_siginfo ((struct compat_siginfo *) inf,
612 native);
613 else
614 aarch64_siginfo_from_compat_siginfo (native,
615 (struct compat_siginfo *) inf);
616
617 return true;
618 }
619
620 return false;
621 }
622
623 /* Returns the number of hardware watchpoints of type TYPE that we can
624 set. Value is positive if we can set CNT watchpoints, zero if
625 setting watchpoints of type TYPE is not supported, and negative if
626 CNT is more than the maximum number of watchpoints of type TYPE
627 that we can support. TYPE is one of bp_hardware_watchpoint,
628 bp_read_watchpoint, bp_write_watchpoint, or bp_hardware_breakpoint.
629 CNT is the number of such watchpoints used so far (including this
630 one). OTHERTYPE is non-zero if other types of watchpoints are
631 currently enabled. */
632
633 int
634 aarch64_linux_nat_target::can_use_hw_breakpoint (enum bptype type,
635 int cnt, int othertype)
636 {
637 if (type == bp_hardware_watchpoint || type == bp_read_watchpoint
638 || type == bp_access_watchpoint || type == bp_watchpoint)
639 {
640 if (aarch64_num_wp_regs == 0)
641 return 0;
642 }
643 else if (type == bp_hardware_breakpoint)
644 {
645 if (aarch64_num_bp_regs == 0)
646 return 0;
647 }
648 else
649 gdb_assert_not_reached ("unexpected breakpoint type");
650
651 /* We always return 1 here because we don't have enough information
652 about possible overlap of addresses that they want to watch. As an
653 extreme example, consider the case where all the watchpoints watch
654 the same address and the same region length: then we can handle a
655 virtually unlimited number of watchpoints, due to debug register
656 sharing implemented via reference counts. */
657 return 1;
658 }
659
660 /* Insert a hardware-assisted breakpoint at BP_TGT->reqstd_address.
661 Return 0 on success, -1 on failure. */
662
663 int
664 aarch64_linux_nat_target::insert_hw_breakpoint (struct gdbarch *gdbarch,
665 struct bp_target_info *bp_tgt)
666 {
667 int ret;
668 CORE_ADDR addr = bp_tgt->placed_address = bp_tgt->reqstd_address;
669 int len;
670 const enum target_hw_bp_type type = hw_execute;
671 struct aarch64_debug_reg_state *state
672 = aarch64_get_debug_reg_state (ptid_get_pid (inferior_ptid));
673
674 gdbarch_breakpoint_from_pc (gdbarch, &addr, &len);
675
676 if (show_debug_regs)
677 fprintf_unfiltered
678 (gdb_stdlog,
679 "insert_hw_breakpoint on entry (addr=0x%08lx, len=%d))\n",
680 (unsigned long) addr, len);
681
682 ret = aarch64_handle_breakpoint (type, addr, len, 1 /* is_insert */, state);
683
684 if (show_debug_regs)
685 {
686 aarch64_show_debug_reg_state (state,
687 "insert_hw_breakpoint", addr, len, type);
688 }
689
690 return ret;
691 }
692
693 /* Remove a hardware-assisted breakpoint at BP_TGT->placed_address.
694 Return 0 on success, -1 on failure. */
695
696 int
697 aarch64_linux_nat_target::remove_hw_breakpoint (struct gdbarch *gdbarch,
698 struct bp_target_info *bp_tgt)
699 {
700 int ret;
701 CORE_ADDR addr = bp_tgt->placed_address;
702 int len = 4;
703 const enum target_hw_bp_type type = hw_execute;
704 struct aarch64_debug_reg_state *state
705 = aarch64_get_debug_reg_state (ptid_get_pid (inferior_ptid));
706
707 gdbarch_breakpoint_from_pc (gdbarch, &addr, &len);
708
709 if (show_debug_regs)
710 fprintf_unfiltered
711 (gdb_stdlog, "remove_hw_breakpoint on entry (addr=0x%08lx, len=%d))\n",
712 (unsigned long) addr, len);
713
714 ret = aarch64_handle_breakpoint (type, addr, len, 0 /* is_insert */, state);
715
716 if (show_debug_regs)
717 {
718 aarch64_show_debug_reg_state (state,
719 "remove_hw_watchpoint", addr, len, type);
720 }
721
722 return ret;
723 }
724
725 /* Implement the "insert_watchpoint" target_ops method.
726
727 Insert a watchpoint to watch a memory region which starts at
728 address ADDR and whose length is LEN bytes. Watch memory accesses
729 of the type TYPE. Return 0 on success, -1 on failure. */
730
731 int
732 aarch64_linux_nat_target::insert_watchpoint (CORE_ADDR addr, int len,
733 enum target_hw_bp_type type,
734 struct expression *cond)
735 {
736 int ret;
737 struct aarch64_debug_reg_state *state
738 = aarch64_get_debug_reg_state (ptid_get_pid (inferior_ptid));
739
740 if (show_debug_regs)
741 fprintf_unfiltered (gdb_stdlog,
742 "insert_watchpoint on entry (addr=0x%08lx, len=%d)\n",
743 (unsigned long) addr, len);
744
745 gdb_assert (type != hw_execute);
746
747 ret = aarch64_handle_watchpoint (type, addr, len, 1 /* is_insert */, state);
748
749 if (show_debug_regs)
750 {
751 aarch64_show_debug_reg_state (state,
752 "insert_watchpoint", addr, len, type);
753 }
754
755 return ret;
756 }
757
758 /* Implement the "remove_watchpoint" target_ops method.
759 Remove a watchpoint that watched the memory region which starts at
760 address ADDR, whose length is LEN bytes, and for accesses of the
761 type TYPE. Return 0 on success, -1 on failure. */
762
763 int
764 aarch64_linux_nat_target::remove_watchpoint (CORE_ADDR addr, int len,
765 enum target_hw_bp_type type,
766 struct expression *cond)
767 {
768 int ret;
769 struct aarch64_debug_reg_state *state
770 = aarch64_get_debug_reg_state (ptid_get_pid (inferior_ptid));
771
772 if (show_debug_regs)
773 fprintf_unfiltered (gdb_stdlog,
774 "remove_watchpoint on entry (addr=0x%08lx, len=%d)\n",
775 (unsigned long) addr, len);
776
777 gdb_assert (type != hw_execute);
778
779 ret = aarch64_handle_watchpoint (type, addr, len, 0 /* is_insert */, state);
780
781 if (show_debug_regs)
782 {
783 aarch64_show_debug_reg_state (state,
784 "remove_watchpoint", addr, len, type);
785 }
786
787 return ret;
788 }
789
790 /* Implement the "region_ok_for_hw_watchpoint" target_ops method. */
791
792 int
793 aarch64_linux_nat_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
794 {
795 return aarch64_linux_region_ok_for_watchpoint (addr, len);
796 }
797
798 /* Implement the "stopped_data_address" target_ops method. */
799
800 bool
801 aarch64_linux_nat_target::stopped_data_address (CORE_ADDR *addr_p)
802 {
803 siginfo_t siginfo;
804 int i, tid;
805 struct aarch64_debug_reg_state *state;
806
807 if (!linux_nat_get_siginfo (inferior_ptid, &siginfo))
808 return false;
809
810 /* This must be a hardware breakpoint. */
811 if (siginfo.si_signo != SIGTRAP
812 || (siginfo.si_code & 0xffff) != TRAP_HWBKPT)
813 return false;
814
815 /* Check if the address matches any watched address. */
816 state = aarch64_get_debug_reg_state (ptid_get_pid (inferior_ptid));
817 for (i = aarch64_num_wp_regs - 1; i >= 0; --i)
818 {
819 const unsigned int offset
820 = aarch64_watchpoint_offset (state->dr_ctrl_wp[i]);
821 const unsigned int len = aarch64_watchpoint_length (state->dr_ctrl_wp[i]);
822 const CORE_ADDR addr_trap = (CORE_ADDR) siginfo.si_addr;
823 const CORE_ADDR addr_watch = state->dr_addr_wp[i] + offset;
824 const CORE_ADDR addr_watch_aligned = align_down (state->dr_addr_wp[i], 8);
825 const CORE_ADDR addr_orig = state->dr_addr_orig_wp[i];
826
827 if (state->dr_ref_count_wp[i]
828 && DR_CONTROL_ENABLED (state->dr_ctrl_wp[i])
829 && addr_trap >= addr_watch_aligned
830 && addr_trap < addr_watch + len)
831 {
832 /* ADDR_TRAP reports the first address of the memory range
833 accessed by the CPU, regardless of what was the memory
834 range watched. Thus, a large CPU access that straddles
835 the ADDR_WATCH..ADDR_WATCH+LEN range may result in an
836 ADDR_TRAP that is lower than the
837 ADDR_WATCH..ADDR_WATCH+LEN range. E.g.:
838
839 addr: | 4 | 5 | 6 | 7 | 8 |
840 |---- range watched ----|
841 |----------- range accessed ------------|
842
843 In this case, ADDR_TRAP will be 4.
844
845 To match a watchpoint known to GDB core, we must never
846 report *ADDR_P outside of any ADDR_WATCH..ADDR_WATCH+LEN
847 range. ADDR_WATCH <= ADDR_TRAP < ADDR_ORIG is a false
848 positive on kernels older than 4.10. See PR
849 external/20207. */
850 *addr_p = addr_orig;
851 return true;
852 }
853 }
854
855 return false;
856 }
857
858 /* Implement the "stopped_by_watchpoint" target_ops method. */
859
860 bool
861 aarch64_linux_nat_target::stopped_by_watchpoint ()
862 {
863 CORE_ADDR addr;
864
865 return stopped_data_address (&addr);
866 }
867
868 /* Implement the "watchpoint_addr_within_range" target_ops method. */
869
870 bool
871 aarch64_linux_nat_target::watchpoint_addr_within_range (CORE_ADDR addr,
872 CORE_ADDR start, int length)
873 {
874 return start <= addr && start + length - 1 >= addr;
875 }
876
877 /* Implement the "can_do_single_step" target_ops method. */
878
879 int
880 aarch64_linux_nat_target::can_do_single_step ()
881 {
882 return 1;
883 }
884
885 /* Define AArch64 maintenance commands. */
886
887 static void
888 add_show_debug_regs_command (void)
889 {
890 /* A maintenance command to enable printing the internal DRi mirror
891 variables. */
892 add_setshow_boolean_cmd ("show-debug-regs", class_maintenance,
893 &show_debug_regs, _("\
894 Set whether to show variables that mirror the AArch64 debug registers."), _("\
895 Show whether to show variables that mirror the AArch64 debug registers."), _("\
896 Use \"on\" to enable, \"off\" to disable.\n\
897 If enabled, the debug registers values are shown when GDB inserts\n\
898 or removes a hardware breakpoint or watchpoint, and when the inferior\n\
899 triggers a breakpoint or watchpoint."),
900 NULL,
901 NULL,
902 &maintenance_set_cmdlist,
903 &maintenance_show_cmdlist);
904 }
905
906 void
907 _initialize_aarch64_linux_nat (void)
908 {
909 add_show_debug_regs_command ();
910
911 /* Register the target. */
912 linux_target = &the_aarch64_linux_nat_target;
913 add_inf_child_target (&the_aarch64_linux_nat_target);
914 }
This page took 0.073241 seconds and 4 git commands to generate.