minor cleanups to update_current_target
[deliverable/binutils-gdb.git] / gdb / aarch64-linux-nat.c
1 /* Native-dependent code for GNU/Linux AArch64.
2
3 Copyright (C) 2011-2014 Free Software Foundation, Inc.
4 Contributed by ARM Ltd.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22
23 #include "inferior.h"
24 #include "gdbcore.h"
25 #include "regcache.h"
26 #include "linux-nat.h"
27 #include "target-descriptions.h"
28 #include "auxv.h"
29 #include "gdbcmd.h"
30 #include "aarch64-tdep.h"
31 #include "aarch64-linux-tdep.h"
32 #include "elf/common.h"
33
34 #include <sys/ptrace.h>
35 #include <sys/utsname.h>
36
37 #include "gregset.h"
38
39 #include "features/aarch64.c"
40
41 /* Defines ps_err_e, struct ps_prochandle. */
42 #include "gdb_proc_service.h"
43
44 #ifndef TRAP_HWBKPT
45 #define TRAP_HWBKPT 0x0004
46 #endif
47
48 /* On GNU/Linux, threads are implemented as pseudo-processes, in which
49 case we may be tracing more than one process at a time. In that
50 case, inferior_ptid will contain the main process ID and the
51 individual thread (process) ID. get_thread_id () is used to get
52 the thread id if it's available, and the process id otherwise. */
53
54 static int
55 get_thread_id (ptid_t ptid)
56 {
57 int tid = ptid_get_lwp (ptid);
58
59 if (0 == tid)
60 tid = ptid_get_pid (ptid);
61 return tid;
62 }
63
64 /* Macro definitions, data structures, and code for the hardware
65 breakpoint and hardware watchpoint support follow. We use the
66 following abbreviations throughout the code:
67
68 hw - hardware
69 bp - breakpoint
70 wp - watchpoint */
71
72 /* Maximum number of hardware breakpoint and watchpoint registers.
73 Neither of these values may exceed the width of dr_changed_t
74 measured in bits. */
75
76 #define AARCH64_HBP_MAX_NUM 16
77 #define AARCH64_HWP_MAX_NUM 16
78
79 /* Alignment requirement in bytes for addresses written to
80 hardware breakpoint and watchpoint value registers.
81
82 A ptrace call attempting to set an address that does not meet the
83 alignment criteria will fail. Limited support has been provided in
84 this port for unaligned watchpoints, such that from a GDB user
85 perspective, an unaligned watchpoint may be requested.
86
87 This is achieved by minimally enlarging the watched area to meet the
88 alignment requirement, and if necessary, splitting the watchpoint
89 over several hardware watchpoint registers. */
90
91 #define AARCH64_HBP_ALIGNMENT 4
92 #define AARCH64_HWP_ALIGNMENT 8
93
94 /* The maximum length of a memory region that can be watched by one
95 hardware watchpoint register. */
96
97 #define AARCH64_HWP_MAX_LEN_PER_REG 8
98
99 /* ptrace hardware breakpoint resource info is formatted as follows:
100
101 31 24 16 8 0
102 +---------------+--------------+---------------+---------------+
103 | RESERVED | RESERVED | DEBUG_ARCH | NUM_SLOTS |
104 +---------------+--------------+---------------+---------------+ */
105
106
107 /* Macros to extract fields from the hardware debug information word. */
108 #define AARCH64_DEBUG_NUM_SLOTS(x) ((x) & 0xff)
109 #define AARCH64_DEBUG_ARCH(x) (((x) >> 8) & 0xff)
110
111 /* Macro for the expected version of the ARMv8-A debug architecture. */
112 #define AARCH64_DEBUG_ARCH_V8 0x6
113
114 /* Number of hardware breakpoints/watchpoints the target supports.
115 They are initialized with values obtained via the ptrace calls
116 with NT_ARM_HW_BREAK and NT_ARM_HW_WATCH respectively. */
117
118 static int aarch64_num_bp_regs;
119 static int aarch64_num_wp_regs;
120
121 /* Debugging of hardware breakpoint/watchpoint support. */
122
123 static int debug_hw_points;
124
125 /* Each bit of a variable of this type is used to indicate whether a
126 hardware breakpoint or watchpoint setting has been changed since
127 the last update.
128
129 Bit N corresponds to the Nth hardware breakpoint or watchpoint
130 setting which is managed in aarch64_debug_reg_state, where N is
131 valid between 0 and the total number of the hardware breakpoint or
132 watchpoint debug registers minus 1.
133
134 When bit N is 1, the corresponding breakpoint or watchpoint setting
135 has changed, and therefore the corresponding hardware debug
136 register needs to be updated via the ptrace interface.
137
138 In the per-thread arch-specific data area, we define two such
139 variables for per-thread hardware breakpoint and watchpoint
140 settings respectively.
141
142 This type is part of the mechanism which helps reduce the number of
143 ptrace calls to the kernel, i.e. avoid asking the kernel to write
144 to the debug registers with unchanged values. */
145
146 typedef unsigned LONGEST dr_changed_t;
147
148 /* Set each of the lower M bits of X to 1; assert X is wide enough. */
149
150 #define DR_MARK_ALL_CHANGED(x, m) \
151 do \
152 { \
153 gdb_assert (sizeof ((x)) * 8 >= (m)); \
154 (x) = (((dr_changed_t)1 << (m)) - 1); \
155 } while (0)
156
157 #define DR_MARK_N_CHANGED(x, n) \
158 do \
159 { \
160 (x) |= ((dr_changed_t)1 << (n)); \
161 } while (0)
162
163 #define DR_CLEAR_CHANGED(x) \
164 do \
165 { \
166 (x) = 0; \
167 } while (0)
168
169 #define DR_HAS_CHANGED(x) ((x) != 0)
170 #define DR_N_HAS_CHANGED(x, n) ((x) & ((dr_changed_t)1 << (n)))
171
172 /* Structure for managing the hardware breakpoint/watchpoint resources.
173 DR_ADDR_* stores the address, DR_CTRL_* stores the control register
174 content, and DR_REF_COUNT_* counts the numbers of references to the
175 corresponding bp/wp, by which way the limited hardware resources
176 are not wasted on duplicated bp/wp settings (though so far gdb has
177 done a good job by not sending duplicated bp/wp requests). */
178
179 struct aarch64_debug_reg_state
180 {
181 /* hardware breakpoint */
182 CORE_ADDR dr_addr_bp[AARCH64_HBP_MAX_NUM];
183 unsigned int dr_ctrl_bp[AARCH64_HBP_MAX_NUM];
184 unsigned int dr_ref_count_bp[AARCH64_HBP_MAX_NUM];
185
186 /* hardware watchpoint */
187 CORE_ADDR dr_addr_wp[AARCH64_HWP_MAX_NUM];
188 unsigned int dr_ctrl_wp[AARCH64_HWP_MAX_NUM];
189 unsigned int dr_ref_count_wp[AARCH64_HWP_MAX_NUM];
190 };
191
192 /* Per-process data. We don't bind this to a per-inferior registry
193 because of targets like x86 GNU/Linux that need to keep track of
194 processes that aren't bound to any inferior (e.g., fork children,
195 checkpoints). */
196
197 struct aarch64_process_info
198 {
199 /* Linked list. */
200 struct aarch64_process_info *next;
201
202 /* The process identifier. */
203 pid_t pid;
204
205 /* Copy of aarch64 hardware debug registers. */
206 struct aarch64_debug_reg_state state;
207 };
208
209 static struct aarch64_process_info *aarch64_process_list = NULL;
210
211 /* Find process data for process PID. */
212
213 static struct aarch64_process_info *
214 aarch64_find_process_pid (pid_t pid)
215 {
216 struct aarch64_process_info *proc;
217
218 for (proc = aarch64_process_list; proc; proc = proc->next)
219 if (proc->pid == pid)
220 return proc;
221
222 return NULL;
223 }
224
225 /* Add process data for process PID. Returns newly allocated info
226 object. */
227
228 static struct aarch64_process_info *
229 aarch64_add_process (pid_t pid)
230 {
231 struct aarch64_process_info *proc;
232
233 proc = xcalloc (1, sizeof (*proc));
234 proc->pid = pid;
235
236 proc->next = aarch64_process_list;
237 aarch64_process_list = proc;
238
239 return proc;
240 }
241
242 /* Get data specific info for process PID, creating it if necessary.
243 Never returns NULL. */
244
245 static struct aarch64_process_info *
246 aarch64_process_info_get (pid_t pid)
247 {
248 struct aarch64_process_info *proc;
249
250 proc = aarch64_find_process_pid (pid);
251 if (proc == NULL)
252 proc = aarch64_add_process (pid);
253
254 return proc;
255 }
256
257 /* Called whenever GDB is no longer debugging process PID. It deletes
258 data structures that keep track of debug register state. */
259
260 static void
261 aarch64_forget_process (pid_t pid)
262 {
263 struct aarch64_process_info *proc, **proc_link;
264
265 proc = aarch64_process_list;
266 proc_link = &aarch64_process_list;
267
268 while (proc != NULL)
269 {
270 if (proc->pid == pid)
271 {
272 *proc_link = proc->next;
273
274 xfree (proc);
275 return;
276 }
277
278 proc_link = &proc->next;
279 proc = *proc_link;
280 }
281 }
282
283 /* Get debug registers state for process PID. */
284
285 static struct aarch64_debug_reg_state *
286 aarch64_get_debug_reg_state (pid_t pid)
287 {
288 return &aarch64_process_info_get (pid)->state;
289 }
290
291 /* Per-thread arch-specific data we want to keep. */
292
293 struct arch_lwp_info
294 {
295 /* When bit N is 1, it indicates the Nth hardware breakpoint or
296 watchpoint register pair needs to be updated when the thread is
297 resumed; see aarch64_linux_prepare_to_resume. */
298 dr_changed_t dr_changed_bp;
299 dr_changed_t dr_changed_wp;
300 };
301
302 /* Call ptrace to set the thread TID's hardware breakpoint/watchpoint
303 registers with data from *STATE. */
304
305 static void
306 aarch64_linux_set_debug_regs (const struct aarch64_debug_reg_state *state,
307 int tid, int watchpoint)
308 {
309 int i, count;
310 struct iovec iov;
311 struct user_hwdebug_state regs;
312 const CORE_ADDR *addr;
313 const unsigned int *ctrl;
314
315 memset (&regs, 0, sizeof (regs));
316 iov.iov_base = &regs;
317 count = watchpoint ? aarch64_num_wp_regs : aarch64_num_bp_regs;
318 addr = watchpoint ? state->dr_addr_wp : state->dr_addr_bp;
319 ctrl = watchpoint ? state->dr_ctrl_wp : state->dr_ctrl_bp;
320 if (count == 0)
321 return;
322 iov.iov_len = (offsetof (struct user_hwdebug_state, dbg_regs[count - 1])
323 + sizeof (regs.dbg_regs [count - 1]));
324
325 for (i = 0; i < count; i++)
326 {
327 regs.dbg_regs[i].addr = addr[i];
328 regs.dbg_regs[i].ctrl = ctrl[i];
329 }
330
331 if (ptrace (PTRACE_SETREGSET, tid,
332 watchpoint ? NT_ARM_HW_WATCH : NT_ARM_HW_BREAK,
333 (void *) &iov))
334 error (_("Unexpected error setting hardware debug registers"));
335 }
336
337 struct aarch64_dr_update_callback_param
338 {
339 int is_watchpoint;
340 unsigned int idx;
341 };
342
343 /* Callback for iterate_over_lwps. Records the
344 information about the change of one hardware breakpoint/watchpoint
345 setting for the thread LWP.
346 The information is passed in via PTR.
347 N.B. The actual updating of hardware debug registers is not
348 carried out until the moment the thread is resumed. */
349
350 static int
351 debug_reg_change_callback (struct lwp_info *lwp, void *ptr)
352 {
353 struct aarch64_dr_update_callback_param *param_p
354 = (struct aarch64_dr_update_callback_param *) ptr;
355 int pid = get_thread_id (lwp->ptid);
356 int idx = param_p->idx;
357 int is_watchpoint = param_p->is_watchpoint;
358 struct arch_lwp_info *info = lwp->arch_private;
359 dr_changed_t *dr_changed_ptr;
360 dr_changed_t dr_changed;
361
362 if (info == NULL)
363 info = lwp->arch_private = XCNEW (struct arch_lwp_info);
364
365 if (debug_hw_points)
366 {
367 fprintf_unfiltered (gdb_stdlog,
368 "debug_reg_change_callback: \n\tOn entry:\n");
369 fprintf_unfiltered (gdb_stdlog,
370 "\tpid%d, dr_changed_bp=0x%s, "
371 "dr_changed_wp=0x%s\n",
372 pid, phex (info->dr_changed_bp, 8),
373 phex (info->dr_changed_wp, 8));
374 }
375
376 dr_changed_ptr = is_watchpoint ? &info->dr_changed_wp
377 : &info->dr_changed_bp;
378 dr_changed = *dr_changed_ptr;
379
380 gdb_assert (idx >= 0
381 && (idx <= (is_watchpoint ? aarch64_num_wp_regs
382 : aarch64_num_bp_regs)));
383
384 /* The actual update is done later just before resuming the lwp,
385 we just mark that one register pair needs updating. */
386 DR_MARK_N_CHANGED (dr_changed, idx);
387 *dr_changed_ptr = dr_changed;
388
389 /* If the lwp isn't stopped, force it to momentarily pause, so
390 we can update its debug registers. */
391 if (!lwp->stopped)
392 linux_stop_lwp (lwp);
393
394 if (debug_hw_points)
395 {
396 fprintf_unfiltered (gdb_stdlog,
397 "\tOn exit:\n\tpid%d, dr_changed_bp=0x%s, "
398 "dr_changed_wp=0x%s\n",
399 pid, phex (info->dr_changed_bp, 8),
400 phex (info->dr_changed_wp, 8));
401 }
402
403 /* Continue the iteration. */
404 return 0;
405 }
406
407 /* Notify each thread that their IDXth breakpoint/watchpoint register
408 pair needs to be updated. The message will be recorded in each
409 thread's arch-specific data area, the actual updating will be done
410 when the thread is resumed. */
411
412 static void
413 aarch64_notify_debug_reg_change (const struct aarch64_debug_reg_state *state,
414 int is_watchpoint, unsigned int idx)
415 {
416 struct aarch64_dr_update_callback_param param;
417 ptid_t pid_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
418
419 param.is_watchpoint = is_watchpoint;
420 param.idx = idx;
421
422 iterate_over_lwps (pid_ptid, debug_reg_change_callback, (void *) &param);
423 }
424
425 /* Print the values of the cached breakpoint/watchpoint registers. */
426
427 static void
428 aarch64_show_debug_reg_state (struct aarch64_debug_reg_state *state,
429 const char *func, CORE_ADDR addr,
430 int len, int type)
431 {
432 int i;
433
434 fprintf_unfiltered (gdb_stdlog, "%s", func);
435 if (addr || len)
436 fprintf_unfiltered (gdb_stdlog, " (addr=0x%08lx, len=%d, type=%s)",
437 (unsigned long) addr, len,
438 type == hw_write ? "hw-write-watchpoint"
439 : (type == hw_read ? "hw-read-watchpoint"
440 : (type == hw_access ? "hw-access-watchpoint"
441 : (type == hw_execute ? "hw-breakpoint"
442 : "??unknown??"))));
443 fprintf_unfiltered (gdb_stdlog, ":\n");
444
445 fprintf_unfiltered (gdb_stdlog, "\tBREAKPOINTs:\n");
446 for (i = 0; i < aarch64_num_bp_regs; i++)
447 fprintf_unfiltered (gdb_stdlog,
448 "\tBP%d: addr=0x%08lx, ctrl=0x%08x, ref.count=%d\n",
449 i, state->dr_addr_bp[i],
450 state->dr_ctrl_bp[i], state->dr_ref_count_bp[i]);
451
452 fprintf_unfiltered (gdb_stdlog, "\tWATCHPOINTs:\n");
453 for (i = 0; i < aarch64_num_wp_regs; i++)
454 fprintf_unfiltered (gdb_stdlog,
455 "\tWP%d: addr=0x%08lx, ctrl=0x%08x, ref.count=%d\n",
456 i, state->dr_addr_wp[i],
457 state->dr_ctrl_wp[i], state->dr_ref_count_wp[i]);
458 }
459
460 /* Fill GDB's register array with the general-purpose register values
461 from the current thread. */
462
463 static void
464 fetch_gregs_from_thread (struct regcache *regcache)
465 {
466 int ret, regno, tid;
467 elf_gregset_t regs;
468 struct iovec iovec;
469
470 tid = get_thread_id (inferior_ptid);
471
472 iovec.iov_base = &regs;
473 iovec.iov_len = sizeof (regs);
474
475 ret = ptrace (PTRACE_GETREGSET, tid, NT_PRSTATUS, &iovec);
476 if (ret < 0)
477 perror_with_name (_("Unable to fetch general registers."));
478
479 for (regno = AARCH64_X0_REGNUM; regno <= AARCH64_CPSR_REGNUM; regno++)
480 regcache_raw_supply (regcache, regno,
481 (char *) &regs[regno - AARCH64_X0_REGNUM]);
482 }
483
484 /* Store to the current thread the valid general-purpose register
485 values in the GDB's register array. */
486
487 static void
488 store_gregs_to_thread (const struct regcache *regcache)
489 {
490 int ret, regno, tid;
491 elf_gregset_t regs;
492 struct iovec iovec;
493
494 tid = get_thread_id (inferior_ptid);
495
496 iovec.iov_base = &regs;
497 iovec.iov_len = sizeof (regs);
498
499 ret = ptrace (PTRACE_GETREGSET, tid, NT_PRSTATUS, &iovec);
500 if (ret < 0)
501 perror_with_name (_("Unable to fetch general registers."));
502
503 for (regno = AARCH64_X0_REGNUM; regno <= AARCH64_CPSR_REGNUM; regno++)
504 if (REG_VALID == regcache_register_status (regcache, regno))
505 regcache_raw_collect (regcache, regno,
506 (char *) &regs[regno - AARCH64_X0_REGNUM]);
507
508 ret = ptrace (PTRACE_SETREGSET, tid, NT_PRSTATUS, &iovec);
509 if (ret < 0)
510 perror_with_name (_("Unable to store general registers."));
511 }
512
513 /* Fill GDB's register array with the fp/simd register values
514 from the current thread. */
515
516 static void
517 fetch_fpregs_from_thread (struct regcache *regcache)
518 {
519 int ret, regno, tid;
520 elf_fpregset_t regs;
521 struct iovec iovec;
522
523 tid = get_thread_id (inferior_ptid);
524
525 iovec.iov_base = &regs;
526 iovec.iov_len = sizeof (regs);
527
528 ret = ptrace (PTRACE_GETREGSET, tid, NT_FPREGSET, &iovec);
529 if (ret < 0)
530 perror_with_name (_("Unable to fetch FP/SIMD registers."));
531
532 for (regno = AARCH64_V0_REGNUM; regno <= AARCH64_V31_REGNUM; regno++)
533 regcache_raw_supply (regcache, regno,
534 (char *) &regs.vregs[regno - AARCH64_V0_REGNUM]);
535
536 regcache_raw_supply (regcache, AARCH64_FPSR_REGNUM, (char *) &regs.fpsr);
537 regcache_raw_supply (regcache, AARCH64_FPCR_REGNUM, (char *) &regs.fpcr);
538 }
539
540 /* Store to the current thread the valid fp/simd register
541 values in the GDB's register array. */
542
543 static void
544 store_fpregs_to_thread (const struct regcache *regcache)
545 {
546 int ret, regno, tid;
547 elf_fpregset_t regs;
548 struct iovec iovec;
549
550 tid = get_thread_id (inferior_ptid);
551
552 iovec.iov_base = &regs;
553 iovec.iov_len = sizeof (regs);
554
555 ret = ptrace (PTRACE_GETREGSET, tid, NT_FPREGSET, &iovec);
556 if (ret < 0)
557 perror_with_name (_("Unable to fetch FP/SIMD registers."));
558
559 for (regno = AARCH64_V0_REGNUM; regno <= AARCH64_V31_REGNUM; regno++)
560 if (REG_VALID == regcache_register_status (regcache, regno))
561 regcache_raw_collect (regcache, regno,
562 (char *) &regs.vregs[regno - AARCH64_V0_REGNUM]);
563
564 if (REG_VALID == regcache_register_status (regcache, AARCH64_FPSR_REGNUM))
565 regcache_raw_collect (regcache, AARCH64_FPSR_REGNUM, (char *) &regs.fpsr);
566 if (REG_VALID == regcache_register_status (regcache, AARCH64_FPCR_REGNUM))
567 regcache_raw_collect (regcache, AARCH64_FPCR_REGNUM, (char *) &regs.fpcr);
568
569 ret = ptrace (PTRACE_SETREGSET, tid, NT_FPREGSET, &iovec);
570 if (ret < 0)
571 perror_with_name (_("Unable to store FP/SIMD registers."));
572 }
573
574 /* Implement the "to_fetch_register" target_ops method. */
575
576 static void
577 aarch64_linux_fetch_inferior_registers (struct target_ops *ops,
578 struct regcache *regcache,
579 int regno)
580 {
581 if (regno == -1)
582 {
583 fetch_gregs_from_thread (regcache);
584 fetch_fpregs_from_thread (regcache);
585 }
586 else if (regno < AARCH64_V0_REGNUM)
587 fetch_gregs_from_thread (regcache);
588 else
589 fetch_fpregs_from_thread (regcache);
590 }
591
592 /* Implement the "to_store_register" target_ops method. */
593
594 static void
595 aarch64_linux_store_inferior_registers (struct target_ops *ops,
596 struct regcache *regcache,
597 int regno)
598 {
599 if (regno == -1)
600 {
601 store_gregs_to_thread (regcache);
602 store_fpregs_to_thread (regcache);
603 }
604 else if (regno < AARCH64_V0_REGNUM)
605 store_gregs_to_thread (regcache);
606 else
607 store_fpregs_to_thread (regcache);
608 }
609
610 /* Fill register REGNO (if it is a general-purpose register) in
611 *GREGSETPS with the value in GDB's register array. If REGNO is -1,
612 do this for all registers. */
613
614 void
615 fill_gregset (const struct regcache *regcache,
616 gdb_gregset_t *gregsetp, int regno)
617 {
618 gdb_byte *gregs_buf = (gdb_byte *) gregsetp;
619 int i;
620
621 for (i = AARCH64_X0_REGNUM; i <= AARCH64_CPSR_REGNUM; i++)
622 if (regno == -1 || regno == i)
623 regcache_raw_collect (regcache, i,
624 gregs_buf + X_REGISTER_SIZE
625 * (i - AARCH64_X0_REGNUM));
626 }
627
628 /* Fill GDB's register array with the general-purpose register values
629 in *GREGSETP. */
630
631 void
632 supply_gregset (struct regcache *regcache, const gdb_gregset_t *gregsetp)
633 {
634 aarch64_linux_supply_gregset (regcache, (const gdb_byte *) gregsetp);
635 }
636
637 /* Fill register REGNO (if it is a floating-point register) in
638 *FPREGSETP with the value in GDB's register array. If REGNO is -1,
639 do this for all registers. */
640
641 void
642 fill_fpregset (const struct regcache *regcache,
643 gdb_fpregset_t *fpregsetp, int regno)
644 {
645 gdb_byte *fpregs_buf = (gdb_byte *) fpregsetp;
646 int i;
647
648 for (i = AARCH64_V0_REGNUM; i <= AARCH64_V31_REGNUM; i++)
649 if (regno == -1 || regno == i)
650 regcache_raw_collect (regcache, i,
651 fpregs_buf + V_REGISTER_SIZE
652 * (i - AARCH64_V0_REGNUM));
653
654 if (regno == -1 || regno == AARCH64_FPSR_REGNUM)
655 regcache_raw_collect (regcache, AARCH64_FPSR_REGNUM,
656 fpregs_buf + V_REGISTER_SIZE * 32);
657
658 if (regno == -1 || regno == AARCH64_FPCR_REGNUM)
659 regcache_raw_collect (regcache, AARCH64_FPCR_REGNUM,
660 fpregs_buf + V_REGISTER_SIZE * 32 + 4);
661 }
662
663 /* Fill GDB's register array with the floating-point register values
664 in *FPREGSETP. */
665
666 void
667 supply_fpregset (struct regcache *regcache, const gdb_fpregset_t *fpregsetp)
668 {
669 aarch64_linux_supply_fpregset (regcache, (const gdb_byte *) fpregsetp);
670 }
671
672 /* Called when resuming a thread.
673 The hardware debug registers are updated when there is any change. */
674
675 static void
676 aarch64_linux_prepare_to_resume (struct lwp_info *lwp)
677 {
678 struct arch_lwp_info *info = lwp->arch_private;
679
680 /* NULL means this is the main thread still going through the shell,
681 or, no watchpoint has been set yet. In that case, there's
682 nothing to do. */
683 if (info == NULL)
684 return;
685
686 if (DR_HAS_CHANGED (info->dr_changed_bp)
687 || DR_HAS_CHANGED (info->dr_changed_wp))
688 {
689 int tid = ptid_get_lwp (lwp->ptid);
690 struct aarch64_debug_reg_state *state
691 = aarch64_get_debug_reg_state (ptid_get_pid (lwp->ptid));
692
693 if (debug_hw_points)
694 fprintf_unfiltered (gdb_stdlog, "prepare_to_resume thread %d\n", tid);
695
696 /* Watchpoints. */
697 if (DR_HAS_CHANGED (info->dr_changed_wp))
698 {
699 aarch64_linux_set_debug_regs (state, tid, 1);
700 DR_CLEAR_CHANGED (info->dr_changed_wp);
701 }
702
703 /* Breakpoints. */
704 if (DR_HAS_CHANGED (info->dr_changed_bp))
705 {
706 aarch64_linux_set_debug_regs (state, tid, 0);
707 DR_CLEAR_CHANGED (info->dr_changed_bp);
708 }
709 }
710 }
711
712 static void
713 aarch64_linux_new_thread (struct lwp_info *lp)
714 {
715 struct arch_lwp_info *info = XCNEW (struct arch_lwp_info);
716
717 /* Mark that all the hardware breakpoint/watchpoint register pairs
718 for this thread need to be initialized. */
719 DR_MARK_ALL_CHANGED (info->dr_changed_bp, aarch64_num_bp_regs);
720 DR_MARK_ALL_CHANGED (info->dr_changed_wp, aarch64_num_wp_regs);
721
722 lp->arch_private = info;
723 }
724
725 /* linux_nat_new_fork hook. */
726
727 static void
728 aarch64_linux_new_fork (struct lwp_info *parent, pid_t child_pid)
729 {
730 pid_t parent_pid;
731 struct aarch64_debug_reg_state *parent_state;
732 struct aarch64_debug_reg_state *child_state;
733
734 /* NULL means no watchpoint has ever been set in the parent. In
735 that case, there's nothing to do. */
736 if (parent->arch_private == NULL)
737 return;
738
739 /* GDB core assumes the child inherits the watchpoints/hw
740 breakpoints of the parent, and will remove them all from the
741 forked off process. Copy the debug registers mirrors into the
742 new process so that all breakpoints and watchpoints can be
743 removed together. */
744
745 parent_pid = ptid_get_pid (parent->ptid);
746 parent_state = aarch64_get_debug_reg_state (parent_pid);
747 child_state = aarch64_get_debug_reg_state (child_pid);
748 *child_state = *parent_state;
749 }
750 \f
751
752 /* Called by libthread_db. Returns a pointer to the thread local
753 storage (or its descriptor). */
754
755 ps_err_e
756 ps_get_thread_area (const struct ps_prochandle *ph,
757 lwpid_t lwpid, int idx, void **base)
758 {
759 struct iovec iovec;
760 uint64_t reg;
761
762 iovec.iov_base = &reg;
763 iovec.iov_len = sizeof (reg);
764
765 if (ptrace (PTRACE_GETREGSET, lwpid, NT_ARM_TLS, &iovec) != 0)
766 return PS_ERR;
767
768 /* IDX is the bias from the thread pointer to the beginning of the
769 thread descriptor. It has to be subtracted due to implementation
770 quirks in libthread_db. */
771 *base = (void *) (reg - idx);
772
773 return PS_OK;
774 }
775 \f
776
777 /* Get the hardware debug register capacity information. */
778
779 static void
780 aarch64_linux_get_debug_reg_capacity (void)
781 {
782 int tid;
783 struct iovec iov;
784 struct user_hwdebug_state dreg_state;
785
786 tid = get_thread_id (inferior_ptid);
787 iov.iov_base = &dreg_state;
788 iov.iov_len = sizeof (dreg_state);
789
790 /* Get hardware watchpoint register info. */
791 if (ptrace (PTRACE_GETREGSET, tid, NT_ARM_HW_WATCH, &iov) == 0
792 && AARCH64_DEBUG_ARCH (dreg_state.dbg_info) == AARCH64_DEBUG_ARCH_V8)
793 {
794 aarch64_num_wp_regs = AARCH64_DEBUG_NUM_SLOTS (dreg_state.dbg_info);
795 if (aarch64_num_wp_regs > AARCH64_HWP_MAX_NUM)
796 {
797 warning (_("Unexpected number of hardware watchpoint registers"
798 " reported by ptrace, got %d, expected %d."),
799 aarch64_num_wp_regs, AARCH64_HWP_MAX_NUM);
800 aarch64_num_wp_regs = AARCH64_HWP_MAX_NUM;
801 }
802 }
803 else
804 {
805 warning (_("Unable to determine the number of hardware watchpoints"
806 " available."));
807 aarch64_num_wp_regs = 0;
808 }
809
810 /* Get hardware breakpoint register info. */
811 if (ptrace (PTRACE_GETREGSET, tid, NT_ARM_HW_BREAK, &iov) == 0
812 && AARCH64_DEBUG_ARCH (dreg_state.dbg_info) == AARCH64_DEBUG_ARCH_V8)
813 {
814 aarch64_num_bp_regs = AARCH64_DEBUG_NUM_SLOTS (dreg_state.dbg_info);
815 if (aarch64_num_bp_regs > AARCH64_HBP_MAX_NUM)
816 {
817 warning (_("Unexpected number of hardware breakpoint registers"
818 " reported by ptrace, got %d, expected %d."),
819 aarch64_num_bp_regs, AARCH64_HBP_MAX_NUM);
820 aarch64_num_bp_regs = AARCH64_HBP_MAX_NUM;
821 }
822 }
823 else
824 {
825 warning (_("Unable to determine the number of hardware breakpoints"
826 " available."));
827 aarch64_num_bp_regs = 0;
828 }
829 }
830
831 static void (*super_post_startup_inferior) (struct target_ops *self,
832 ptid_t ptid);
833
834 /* Implement the "to_post_startup_inferior" target_ops method. */
835
836 static void
837 aarch64_linux_child_post_startup_inferior (struct target_ops *self,
838 ptid_t ptid)
839 {
840 aarch64_forget_process (ptid_get_pid (ptid));
841 aarch64_linux_get_debug_reg_capacity ();
842 super_post_startup_inferior (self, ptid);
843 }
844
845 /* Implement the "to_read_description" target_ops method. */
846
847 static const struct target_desc *
848 aarch64_linux_read_description (struct target_ops *ops)
849 {
850 initialize_tdesc_aarch64 ();
851 return tdesc_aarch64;
852 }
853
854 /* Given the (potentially unaligned) watchpoint address in ADDR and
855 length in LEN, return the aligned address and aligned length in
856 *ALIGNED_ADDR_P and *ALIGNED_LEN_P, respectively. The returned
857 aligned address and length will be valid values to write to the
858 hardware watchpoint value and control registers.
859
860 The given watchpoint may get truncated if more than one hardware
861 register is needed to cover the watched region. *NEXT_ADDR_P
862 and *NEXT_LEN_P, if non-NULL, will return the address and length
863 of the remaining part of the watchpoint (which can be processed
864 by calling this routine again to generate another aligned address
865 and length pair.
866
867 See the comment above the function of the same name in
868 gdbserver/linux-aarch64-low.c for more information. */
869
870 static void
871 aarch64_align_watchpoint (CORE_ADDR addr, int len, CORE_ADDR *aligned_addr_p,
872 int *aligned_len_p, CORE_ADDR *next_addr_p,
873 int *next_len_p)
874 {
875 int aligned_len;
876 unsigned int offset;
877 CORE_ADDR aligned_addr;
878 const unsigned int alignment = AARCH64_HWP_ALIGNMENT;
879 const unsigned int max_wp_len = AARCH64_HWP_MAX_LEN_PER_REG;
880
881 /* As assumed by the algorithm. */
882 gdb_assert (alignment == max_wp_len);
883
884 if (len <= 0)
885 return;
886
887 /* Address to be put into the hardware watchpoint value register
888 must be aligned. */
889 offset = addr & (alignment - 1);
890 aligned_addr = addr - offset;
891
892 gdb_assert (offset >= 0 && offset < alignment);
893 gdb_assert (aligned_addr >= 0 && aligned_addr <= addr);
894 gdb_assert (offset + len > 0);
895
896 if (offset + len >= max_wp_len)
897 {
898 /* Need more than one watchpoint registers; truncate it at the
899 alignment boundary. */
900 aligned_len = max_wp_len;
901 len -= (max_wp_len - offset);
902 addr += (max_wp_len - offset);
903 gdb_assert ((addr & (alignment - 1)) == 0);
904 }
905 else
906 {
907 /* Find the smallest valid length that is large enough to
908 accommodate this watchpoint. */
909 static const unsigned char
910 aligned_len_array[AARCH64_HWP_MAX_LEN_PER_REG] =
911 { 1, 2, 4, 4, 8, 8, 8, 8 };
912
913 aligned_len = aligned_len_array[offset + len - 1];
914 addr += len;
915 len = 0;
916 }
917
918 if (aligned_addr_p)
919 *aligned_addr_p = aligned_addr;
920 if (aligned_len_p)
921 *aligned_len_p = aligned_len;
922 if (next_addr_p)
923 *next_addr_p = addr;
924 if (next_len_p)
925 *next_len_p = len;
926 }
927
928 /* Returns the number of hardware watchpoints of type TYPE that we can
929 set. Value is positive if we can set CNT watchpoints, zero if
930 setting watchpoints of type TYPE is not supported, and negative if
931 CNT is more than the maximum number of watchpoints of type TYPE
932 that we can support. TYPE is one of bp_hardware_watchpoint,
933 bp_read_watchpoint, bp_write_watchpoint, or bp_hardware_breakpoint.
934 CNT is the number of such watchpoints used so far (including this
935 one). OTHERTYPE is non-zero if other types of watchpoints are
936 currently enabled.
937
938 We always return 1 here because we don't have enough information
939 about possible overlap of addresses that they want to watch. As an
940 extreme example, consider the case where all the watchpoints watch
941 the same address and the same region length: then we can handle a
942 virtually unlimited number of watchpoints, due to debug register
943 sharing implemented via reference counts. */
944
945 static int
946 aarch64_linux_can_use_hw_breakpoint (struct target_ops *self,
947 int type, int cnt, int othertype)
948 {
949 return 1;
950 }
951
952 /* ptrace expects control registers to be formatted as follows:
953
954 31 13 5 3 1 0
955 +--------------------------------+----------+------+------+----+
956 | RESERVED (SBZ) | LENGTH | TYPE | PRIV | EN |
957 +--------------------------------+----------+------+------+----+
958
959 The TYPE field is ignored for breakpoints. */
960
961 #define DR_CONTROL_ENABLED(ctrl) (((ctrl) & 0x1) == 1)
962 #define DR_CONTROL_LENGTH(ctrl) (((ctrl) >> 5) & 0xff)
963
964 /* Utility function that returns the length in bytes of a watchpoint
965 according to the content of a hardware debug control register CTRL.
966 Note that the kernel currently only supports the following Byte
967 Address Select (BAS) values: 0x1, 0x3, 0xf and 0xff, which means
968 that for a hardware watchpoint, its valid length can only be 1
969 byte, 2 bytes, 4 bytes or 8 bytes. */
970
971 static inline unsigned int
972 aarch64_watchpoint_length (unsigned int ctrl)
973 {
974 switch (DR_CONTROL_LENGTH (ctrl))
975 {
976 case 0x01:
977 return 1;
978 case 0x03:
979 return 2;
980 case 0x0f:
981 return 4;
982 case 0xff:
983 return 8;
984 default:
985 return 0;
986 }
987 }
988
989 /* Given the hardware breakpoint or watchpoint type TYPE and its
990 length LEN, return the expected encoding for a hardware
991 breakpoint/watchpoint control register. */
992
993 static unsigned int
994 aarch64_point_encode_ctrl_reg (int type, int len)
995 {
996 unsigned int ctrl, ttype;
997
998 /* type */
999 switch (type)
1000 {
1001 case hw_write:
1002 ttype = 2;
1003 break;
1004 case hw_read:
1005 ttype = 1;
1006 break;
1007 case hw_access:
1008 ttype = 3;
1009 break;
1010 case hw_execute:
1011 ttype = 0;
1012 break;
1013 default:
1014 perror_with_name (_("Unrecognized breakpoint/watchpoint type"));
1015 }
1016 ctrl = ttype << 3;
1017
1018 /* length bitmask */
1019 ctrl |= ((1 << len) - 1) << 5;
1020 /* enabled at el0 */
1021 ctrl |= (2 << 1) | 1;
1022
1023 return ctrl;
1024 }
1025
1026 /* Addresses to be written to the hardware breakpoint and watchpoint
1027 value registers need to be aligned; the alignment is 4-byte and
1028 8-type respectively. Linux kernel rejects any non-aligned address
1029 it receives from the related ptrace call. Furthermore, the kernel
1030 currently only supports the following Byte Address Select (BAS)
1031 values: 0x1, 0x3, 0xf and 0xff, which means that for a hardware
1032 watchpoint to be accepted by the kernel (via ptrace call), its
1033 valid length can only be 1 byte, 2 bytes, 4 bytes or 8 bytes.
1034 Despite these limitations, the unaligned watchpoint is supported in
1035 this port.
1036
1037 Return 0 for any non-compliant ADDR and/or LEN; return 1 otherwise. */
1038
1039 static int
1040 aarch64_point_is_aligned (int is_watchpoint, CORE_ADDR addr, int len)
1041 {
1042 unsigned int alignment = is_watchpoint ? AARCH64_HWP_ALIGNMENT
1043 : AARCH64_HBP_ALIGNMENT;
1044
1045 if (addr & (alignment - 1))
1046 return 0;
1047
1048 if (len != 8 && len != 4 && len != 2 && len != 1)
1049 return 0;
1050
1051 return 1;
1052 }
1053
1054 /* Record the insertion of one breakpoint/watchpoint, as represented
1055 by ADDR and CTRL, in the cached debug register state area *STATE. */
1056
1057 static int
1058 aarch64_dr_state_insert_one_point (struct aarch64_debug_reg_state *state,
1059 int type, CORE_ADDR addr, int len)
1060 {
1061 int i, idx, num_regs, is_watchpoint;
1062 unsigned int ctrl, *dr_ctrl_p, *dr_ref_count;
1063 CORE_ADDR *dr_addr_p;
1064
1065 /* Set up state pointers. */
1066 is_watchpoint = (type != hw_execute);
1067 gdb_assert (aarch64_point_is_aligned (is_watchpoint, addr, len));
1068 if (is_watchpoint)
1069 {
1070 num_regs = aarch64_num_wp_regs;
1071 dr_addr_p = state->dr_addr_wp;
1072 dr_ctrl_p = state->dr_ctrl_wp;
1073 dr_ref_count = state->dr_ref_count_wp;
1074 }
1075 else
1076 {
1077 num_regs = aarch64_num_bp_regs;
1078 dr_addr_p = state->dr_addr_bp;
1079 dr_ctrl_p = state->dr_ctrl_bp;
1080 dr_ref_count = state->dr_ref_count_bp;
1081 }
1082
1083 ctrl = aarch64_point_encode_ctrl_reg (type, len);
1084
1085 /* Find an existing or free register in our cache. */
1086 idx = -1;
1087 for (i = 0; i < num_regs; ++i)
1088 {
1089 if ((dr_ctrl_p[i] & 1) == 0)
1090 {
1091 gdb_assert (dr_ref_count[i] == 0);
1092 idx = i;
1093 /* no break; continue hunting for an existing one. */
1094 }
1095 else if (dr_addr_p[i] == addr && dr_ctrl_p[i] == ctrl)
1096 {
1097 gdb_assert (dr_ref_count[i] != 0);
1098 idx = i;
1099 break;
1100 }
1101 }
1102
1103 /* No space. */
1104 if (idx == -1)
1105 return -1;
1106
1107 /* Update our cache. */
1108 if ((dr_ctrl_p[idx] & 1) == 0)
1109 {
1110 /* new entry */
1111 dr_addr_p[idx] = addr;
1112 dr_ctrl_p[idx] = ctrl;
1113 dr_ref_count[idx] = 1;
1114 /* Notify the change. */
1115 aarch64_notify_debug_reg_change (state, is_watchpoint, idx);
1116 }
1117 else
1118 {
1119 /* existing entry */
1120 dr_ref_count[idx]++;
1121 }
1122
1123 return 0;
1124 }
1125
1126 /* Record the removal of one breakpoint/watchpoint, as represented by
1127 ADDR and CTRL, in the cached debug register state area *STATE. */
1128
1129 static int
1130 aarch64_dr_state_remove_one_point (struct aarch64_debug_reg_state *state,
1131 int type, CORE_ADDR addr, int len)
1132 {
1133 int i, num_regs, is_watchpoint;
1134 unsigned int ctrl, *dr_ctrl_p, *dr_ref_count;
1135 CORE_ADDR *dr_addr_p;
1136
1137 /* Set up state pointers. */
1138 is_watchpoint = (type != hw_execute);
1139 gdb_assert (aarch64_point_is_aligned (is_watchpoint, addr, len));
1140 if (is_watchpoint)
1141 {
1142 num_regs = aarch64_num_wp_regs;
1143 dr_addr_p = state->dr_addr_wp;
1144 dr_ctrl_p = state->dr_ctrl_wp;
1145 dr_ref_count = state->dr_ref_count_wp;
1146 }
1147 else
1148 {
1149 num_regs = aarch64_num_bp_regs;
1150 dr_addr_p = state->dr_addr_bp;
1151 dr_ctrl_p = state->dr_ctrl_bp;
1152 dr_ref_count = state->dr_ref_count_bp;
1153 }
1154
1155 ctrl = aarch64_point_encode_ctrl_reg (type, len);
1156
1157 /* Find the entry that matches the ADDR and CTRL. */
1158 for (i = 0; i < num_regs; ++i)
1159 if (dr_addr_p[i] == addr && dr_ctrl_p[i] == ctrl)
1160 {
1161 gdb_assert (dr_ref_count[i] != 0);
1162 break;
1163 }
1164
1165 /* Not found. */
1166 if (i == num_regs)
1167 return -1;
1168
1169 /* Clear our cache. */
1170 if (--dr_ref_count[i] == 0)
1171 {
1172 /* Clear the enable bit. */
1173 ctrl &= ~1;
1174 dr_addr_p[i] = 0;
1175 dr_ctrl_p[i] = ctrl;
1176 /* Notify the change. */
1177 aarch64_notify_debug_reg_change (state, is_watchpoint, i);
1178 }
1179
1180 return 0;
1181 }
1182
1183 /* Implement insertion and removal of a single breakpoint. */
1184
1185 static int
1186 aarch64_handle_breakpoint (int type, CORE_ADDR addr, int len, int is_insert)
1187 {
1188 struct aarch64_debug_reg_state *state;
1189
1190 /* The hardware breakpoint on AArch64 should always be 4-byte
1191 aligned. */
1192 if (!aarch64_point_is_aligned (0 /* is_watchpoint */ , addr, len))
1193 return -1;
1194
1195 state = aarch64_get_debug_reg_state (ptid_get_pid (inferior_ptid));
1196
1197 if (is_insert)
1198 return aarch64_dr_state_insert_one_point (state, type, addr, len);
1199 else
1200 return aarch64_dr_state_remove_one_point (state, type, addr, len);
1201 }
1202
1203 /* Insert a hardware-assisted breakpoint at BP_TGT->placed_address.
1204 Return 0 on success, -1 on failure. */
1205
1206 static int
1207 aarch64_linux_insert_hw_breakpoint (struct target_ops *self,
1208 struct gdbarch *gdbarch,
1209 struct bp_target_info *bp_tgt)
1210 {
1211 int ret;
1212 CORE_ADDR addr = bp_tgt->placed_address;
1213 const int len = 4;
1214 const int type = hw_execute;
1215
1216 if (debug_hw_points)
1217 fprintf_unfiltered
1218 (gdb_stdlog,
1219 "insert_hw_breakpoint on entry (addr=0x%08lx, len=%d))\n",
1220 (unsigned long) addr, len);
1221
1222 ret = aarch64_handle_breakpoint (type, addr, len, 1 /* is_insert */);
1223
1224 if (debug_hw_points > 1)
1225 {
1226 struct aarch64_debug_reg_state *state
1227 = aarch64_get_debug_reg_state (ptid_get_pid (inferior_ptid));
1228
1229 aarch64_show_debug_reg_state (state,
1230 "insert_hw_watchpoint", addr, len, type);
1231 }
1232
1233 return ret;
1234 }
1235
1236 /* Remove a hardware-assisted breakpoint at BP_TGT->placed_address.
1237 Return 0 on success, -1 on failure. */
1238
1239 static int
1240 aarch64_linux_remove_hw_breakpoint (struct target_ops *self,
1241 struct gdbarch *gdbarch,
1242 struct bp_target_info *bp_tgt)
1243 {
1244 int ret;
1245 CORE_ADDR addr = bp_tgt->placed_address;
1246 const int len = 4;
1247 const int type = hw_execute;
1248
1249 if (debug_hw_points)
1250 fprintf_unfiltered
1251 (gdb_stdlog, "remove_hw_breakpoint on entry (addr=0x%08lx, len=%d))\n",
1252 (unsigned long) addr, len);
1253
1254 ret = aarch64_handle_breakpoint (type, addr, len, 0 /* is_insert */);
1255
1256 if (debug_hw_points > 1)
1257 {
1258 struct aarch64_debug_reg_state *state
1259 = aarch64_get_debug_reg_state (ptid_get_pid (inferior_ptid));
1260
1261 aarch64_show_debug_reg_state (state,
1262 "remove_hw_watchpoint", addr, len, type);
1263 }
1264
1265 return ret;
1266 }
1267
1268 /* This is essentially the same as aarch64_handle_breakpoint, apart
1269 from that it is an aligned watchpoint to be handled. */
1270
1271 static int
1272 aarch64_handle_aligned_watchpoint (int type, CORE_ADDR addr, int len,
1273 int is_insert)
1274 {
1275 struct aarch64_debug_reg_state *state
1276 = aarch64_get_debug_reg_state (ptid_get_pid (inferior_ptid));
1277
1278 if (is_insert)
1279 return aarch64_dr_state_insert_one_point (state, type, addr, len);
1280 else
1281 return aarch64_dr_state_remove_one_point (state, type, addr, len);
1282 }
1283
1284 /* Insert/remove unaligned watchpoint by calling
1285 aarch64_align_watchpoint repeatedly until the whole watched region,
1286 as represented by ADDR and LEN, has been properly aligned and ready
1287 to be written to one or more hardware watchpoint registers.
1288 IS_INSERT indicates whether this is an insertion or a deletion.
1289 Return 0 if succeed. */
1290
1291 static int
1292 aarch64_handle_unaligned_watchpoint (int type, CORE_ADDR addr, int len,
1293 int is_insert)
1294 {
1295 struct aarch64_debug_reg_state *state
1296 = aarch64_get_debug_reg_state (ptid_get_pid (inferior_ptid));
1297
1298 while (len > 0)
1299 {
1300 CORE_ADDR aligned_addr;
1301 int aligned_len, ret;
1302
1303 aarch64_align_watchpoint (addr, len, &aligned_addr, &aligned_len,
1304 &addr, &len);
1305
1306 if (is_insert)
1307 ret = aarch64_dr_state_insert_one_point (state, type, aligned_addr,
1308 aligned_len);
1309 else
1310 ret = aarch64_dr_state_remove_one_point (state, type, aligned_addr,
1311 aligned_len);
1312
1313 if (debug_hw_points)
1314 fprintf_unfiltered (gdb_stdlog,
1315 "handle_unaligned_watchpoint: is_insert: %d\n"
1316 " aligned_addr: 0x%08lx, aligned_len: %d\n"
1317 " next_addr: 0x%08lx, next_len: %d\n",
1318 is_insert, aligned_addr, aligned_len, addr, len);
1319
1320 if (ret != 0)
1321 return ret;
1322 }
1323
1324 return 0;
1325 }
1326
1327 /* Implements insertion and removal of a single watchpoint. */
1328
1329 static int
1330 aarch64_handle_watchpoint (int type, CORE_ADDR addr, int len, int is_insert)
1331 {
1332 if (aarch64_point_is_aligned (1 /* is_watchpoint */ , addr, len))
1333 return aarch64_handle_aligned_watchpoint (type, addr, len, is_insert);
1334 else
1335 return aarch64_handle_unaligned_watchpoint (type, addr, len, is_insert);
1336 }
1337
1338 /* Implement the "to_insert_watchpoint" target_ops method.
1339
1340 Insert a watchpoint to watch a memory region which starts at
1341 address ADDR and whose length is LEN bytes. Watch memory accesses
1342 of the type TYPE. Return 0 on success, -1 on failure. */
1343
1344 static int
1345 aarch64_linux_insert_watchpoint (struct target_ops *self,
1346 CORE_ADDR addr, int len, int type,
1347 struct expression *cond)
1348 {
1349 int ret;
1350
1351 if (debug_hw_points)
1352 fprintf_unfiltered (gdb_stdlog,
1353 "insert_watchpoint on entry (addr=0x%08lx, len=%d)\n",
1354 (unsigned long) addr, len);
1355
1356 gdb_assert (type != hw_execute);
1357
1358 ret = aarch64_handle_watchpoint (type, addr, len, 1 /* is_insert */);
1359
1360 if (debug_hw_points > 1)
1361 {
1362 struct aarch64_debug_reg_state *state
1363 = aarch64_get_debug_reg_state (ptid_get_pid (inferior_ptid));
1364
1365 aarch64_show_debug_reg_state (state,
1366 "insert_watchpoint", addr, len, type);
1367 }
1368
1369 return ret;
1370 }
1371
1372 /* Implement the "to_remove_watchpoint" target_ops method.
1373 Remove a watchpoint that watched the memory region which starts at
1374 address ADDR, whose length is LEN bytes, and for accesses of the
1375 type TYPE. Return 0 on success, -1 on failure. */
1376
1377 static int
1378 aarch64_linux_remove_watchpoint (struct target_ops *self,
1379 CORE_ADDR addr, int len, int type,
1380 struct expression *cond)
1381 {
1382 int ret;
1383
1384 if (debug_hw_points)
1385 fprintf_unfiltered (gdb_stdlog,
1386 "remove_watchpoint on entry (addr=0x%08lx, len=%d)\n",
1387 (unsigned long) addr, len);
1388
1389 gdb_assert (type != hw_execute);
1390
1391 ret = aarch64_handle_watchpoint (type, addr, len, 0 /* is_insert */);
1392
1393 if (debug_hw_points > 1)
1394 {
1395 struct aarch64_debug_reg_state *state
1396 = aarch64_get_debug_reg_state (ptid_get_pid (inferior_ptid));
1397
1398 aarch64_show_debug_reg_state (state,
1399 "remove_watchpoint", addr, len, type);
1400 }
1401
1402 return ret;
1403 }
1404
1405 /* Implement the "to_region_ok_for_hw_watchpoint" target_ops method. */
1406
1407 static int
1408 aarch64_linux_region_ok_for_hw_watchpoint (struct target_ops *self,
1409 CORE_ADDR addr, int len)
1410 {
1411 CORE_ADDR aligned_addr;
1412
1413 /* Can not set watchpoints for zero or negative lengths. */
1414 if (len <= 0)
1415 return 0;
1416
1417 /* Must have hardware watchpoint debug register(s). */
1418 if (aarch64_num_wp_regs == 0)
1419 return 0;
1420
1421 /* We support unaligned watchpoint address and arbitrary length,
1422 as long as the size of the whole watched area after alignment
1423 doesn't exceed size of the total area that all watchpoint debug
1424 registers can watch cooperatively.
1425
1426 This is a very relaxed rule, but unfortunately there are
1427 limitations, e.g. false-positive hits, due to limited support of
1428 hardware debug registers in the kernel. See comment above
1429 aarch64_align_watchpoint for more information. */
1430
1431 aligned_addr = addr & ~(AARCH64_HWP_MAX_LEN_PER_REG - 1);
1432 if (aligned_addr + aarch64_num_wp_regs * AARCH64_HWP_MAX_LEN_PER_REG
1433 < addr + len)
1434 return 0;
1435
1436 /* All tests passed so we are likely to be able to set the watchpoint.
1437 The reason that it is 'likely' rather than 'must' is because
1438 we don't check the current usage of the watchpoint registers, and
1439 there may not be enough registers available for this watchpoint.
1440 Ideally we should check the cached debug register state, however
1441 the checking is costly. */
1442 return 1;
1443 }
1444
1445 /* Implement the "to_stopped_data_address" target_ops method. */
1446
1447 static int
1448 aarch64_linux_stopped_data_address (struct target_ops *target,
1449 CORE_ADDR *addr_p)
1450 {
1451 siginfo_t siginfo;
1452 int i, tid;
1453 struct aarch64_debug_reg_state *state;
1454
1455 if (!linux_nat_get_siginfo (inferior_ptid, &siginfo))
1456 return 0;
1457
1458 /* This must be a hardware breakpoint. */
1459 if (siginfo.si_signo != SIGTRAP
1460 || (siginfo.si_code & 0xffff) != TRAP_HWBKPT)
1461 return 0;
1462
1463 /* Check if the address matches any watched address. */
1464 state = aarch64_get_debug_reg_state (ptid_get_pid (inferior_ptid));
1465 for (i = aarch64_num_wp_regs - 1; i >= 0; --i)
1466 {
1467 const unsigned int len = aarch64_watchpoint_length (state->dr_ctrl_wp[i]);
1468 const CORE_ADDR addr_trap = (CORE_ADDR) siginfo.si_addr;
1469 const CORE_ADDR addr_watch = state->dr_addr_wp[i];
1470
1471 if (state->dr_ref_count_wp[i]
1472 && DR_CONTROL_ENABLED (state->dr_ctrl_wp[i])
1473 && addr_trap >= addr_watch
1474 && addr_trap < addr_watch + len)
1475 {
1476 *addr_p = addr_trap;
1477 return 1;
1478 }
1479 }
1480
1481 return 0;
1482 }
1483
1484 /* Implement the "to_stopped_by_watchpoint" target_ops method. */
1485
1486 static int
1487 aarch64_linux_stopped_by_watchpoint (struct target_ops *ops)
1488 {
1489 CORE_ADDR addr;
1490
1491 return aarch64_linux_stopped_data_address (ops, &addr);
1492 }
1493
1494 /* Implement the "to_watchpoint_addr_within_range" target_ops method. */
1495
1496 static int
1497 aarch64_linux_watchpoint_addr_within_range (struct target_ops *target,
1498 CORE_ADDR addr,
1499 CORE_ADDR start, int length)
1500 {
1501 return start <= addr && start + length - 1 >= addr;
1502 }
1503
1504 /* Define AArch64 maintenance commands. */
1505
1506 static void
1507 add_show_debug_regs_command (void)
1508 {
1509 /* A maintenance command to enable printing the internal DRi mirror
1510 variables. */
1511 add_setshow_boolean_cmd ("show-debug-regs", class_maintenance,
1512 &debug_hw_points, _("\
1513 Set whether to show variables that mirror the AArch64 debug registers."), _("\
1514 Show whether to show variables that mirror the AArch64 debug registers."), _("\
1515 Use \"on\" to enable, \"off\" to disable.\n\
1516 If enabled, the debug registers values are shown when GDB inserts\n\
1517 or removes a hardware breakpoint or watchpoint, and when the inferior\n\
1518 triggers a breakpoint or watchpoint."),
1519 NULL,
1520 NULL,
1521 &maintenance_set_cmdlist,
1522 &maintenance_show_cmdlist);
1523 }
1524
1525 /* -Wmissing-prototypes. */
1526 void _initialize_aarch64_linux_nat (void);
1527
1528 void
1529 _initialize_aarch64_linux_nat (void)
1530 {
1531 struct target_ops *t;
1532
1533 /* Fill in the generic GNU/Linux methods. */
1534 t = linux_target ();
1535
1536 add_show_debug_regs_command ();
1537
1538 /* Add our register access methods. */
1539 t->to_fetch_registers = aarch64_linux_fetch_inferior_registers;
1540 t->to_store_registers = aarch64_linux_store_inferior_registers;
1541
1542 t->to_read_description = aarch64_linux_read_description;
1543
1544 t->to_can_use_hw_breakpoint = aarch64_linux_can_use_hw_breakpoint;
1545 t->to_insert_hw_breakpoint = aarch64_linux_insert_hw_breakpoint;
1546 t->to_remove_hw_breakpoint = aarch64_linux_remove_hw_breakpoint;
1547 t->to_region_ok_for_hw_watchpoint =
1548 aarch64_linux_region_ok_for_hw_watchpoint;
1549 t->to_insert_watchpoint = aarch64_linux_insert_watchpoint;
1550 t->to_remove_watchpoint = aarch64_linux_remove_watchpoint;
1551 t->to_stopped_by_watchpoint = aarch64_linux_stopped_by_watchpoint;
1552 t->to_stopped_data_address = aarch64_linux_stopped_data_address;
1553 t->to_watchpoint_addr_within_range =
1554 aarch64_linux_watchpoint_addr_within_range;
1555
1556 /* Override the GNU/Linux inferior startup hook. */
1557 super_post_startup_inferior = t->to_post_startup_inferior;
1558 t->to_post_startup_inferior = aarch64_linux_child_post_startup_inferior;
1559
1560 /* Register the target. */
1561 linux_nat_add_target (t);
1562 linux_nat_set_new_thread (t, aarch64_linux_new_thread);
1563 linux_nat_set_new_fork (t, aarch64_linux_new_fork);
1564 linux_nat_set_forget_process (t, aarch64_forget_process);
1565 linux_nat_set_prepare_to_resume (t, aarch64_linux_prepare_to_resume);
1566 }
This page took 0.061123 seconds and 4 git commands to generate.