jit: make gdb_symtab::blocks an std::forward_list
[deliverable/binutils-gdb.git] / gdb / aarch64-linux-nat.c
1 /* Native-dependent code for GNU/Linux AArch64.
2
3 Copyright (C) 2011-2019 Free Software Foundation, Inc.
4 Contributed by ARM Ltd.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22
23 #include "inferior.h"
24 #include "gdbcore.h"
25 #include "regcache.h"
26 #include "linux-nat.h"
27 #include "target-descriptions.h"
28 #include "auxv.h"
29 #include "gdbcmd.h"
30 #include "aarch64-tdep.h"
31 #include "aarch64-linux-tdep.h"
32 #include "aarch32-linux-nat.h"
33 #include "aarch32-tdep.h"
34 #include "arch/arm.h"
35 #include "nat/aarch64-linux.h"
36 #include "nat/aarch64-linux-hw-point.h"
37 #include "nat/aarch64-sve-linux-ptrace.h"
38
39 #include "elf/external.h"
40 #include "elf/common.h"
41
42 #include "nat/gdb_ptrace.h"
43 #include <sys/utsname.h>
44 #include <asm/ptrace.h>
45
46 #include "gregset.h"
47 #include "linux-tdep.h"
48
49 /* Defines ps_err_e, struct ps_prochandle. */
50 #include "gdb_proc_service.h"
51 #include "arch-utils.h"
52
53 #ifndef TRAP_HWBKPT
54 #define TRAP_HWBKPT 0x0004
55 #endif
56
57 class aarch64_linux_nat_target final : public linux_nat_target
58 {
59 public:
60 /* Add our register access methods. */
61 void fetch_registers (struct regcache *, int) override;
62 void store_registers (struct regcache *, int) override;
63
64 const struct target_desc *read_description () override;
65
66 /* Add our hardware breakpoint and watchpoint implementation. */
67 int can_use_hw_breakpoint (enum bptype, int, int) override;
68 int insert_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
69 int remove_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
70 int region_ok_for_hw_watchpoint (CORE_ADDR, int) override;
71 int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
72 struct expression *) override;
73 int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
74 struct expression *) override;
75 bool stopped_by_watchpoint () override;
76 bool stopped_data_address (CORE_ADDR *) override;
77 bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int) override;
78
79 int can_do_single_step () override;
80
81 /* Override the GNU/Linux inferior startup hook. */
82 void post_startup_inferior (ptid_t) override;
83
84 /* Override the GNU/Linux post attach hook. */
85 void post_attach (int pid) override;
86
87 /* These three defer to common nat/ code. */
88 void low_new_thread (struct lwp_info *lp) override
89 { aarch64_linux_new_thread (lp); }
90 void low_delete_thread (struct arch_lwp_info *lp) override
91 { aarch64_linux_delete_thread (lp); }
92 void low_prepare_to_resume (struct lwp_info *lp) override
93 { aarch64_linux_prepare_to_resume (lp); }
94
95 void low_new_fork (struct lwp_info *parent, pid_t child_pid) override;
96 void low_forget_process (pid_t pid) override;
97
98 /* Add our siginfo layout converter. */
99 bool low_siginfo_fixup (siginfo_t *ptrace, gdb_byte *inf, int direction)
100 override;
101
102 struct gdbarch *thread_architecture (ptid_t) override;
103 };
104
105 static aarch64_linux_nat_target the_aarch64_linux_nat_target;
106
107 /* Per-process data. We don't bind this to a per-inferior registry
108 because of targets like x86 GNU/Linux that need to keep track of
109 processes that aren't bound to any inferior (e.g., fork children,
110 checkpoints). */
111
112 struct aarch64_process_info
113 {
114 /* Linked list. */
115 struct aarch64_process_info *next;
116
117 /* The process identifier. */
118 pid_t pid;
119
120 /* Copy of aarch64 hardware debug registers. */
121 struct aarch64_debug_reg_state state;
122 };
123
124 static struct aarch64_process_info *aarch64_process_list = NULL;
125
126 /* Find process data for process PID. */
127
128 static struct aarch64_process_info *
129 aarch64_find_process_pid (pid_t pid)
130 {
131 struct aarch64_process_info *proc;
132
133 for (proc = aarch64_process_list; proc; proc = proc->next)
134 if (proc->pid == pid)
135 return proc;
136
137 return NULL;
138 }
139
140 /* Add process data for process PID. Returns newly allocated info
141 object. */
142
143 static struct aarch64_process_info *
144 aarch64_add_process (pid_t pid)
145 {
146 struct aarch64_process_info *proc;
147
148 proc = XCNEW (struct aarch64_process_info);
149 proc->pid = pid;
150
151 proc->next = aarch64_process_list;
152 aarch64_process_list = proc;
153
154 return proc;
155 }
156
157 /* Get data specific info for process PID, creating it if necessary.
158 Never returns NULL. */
159
160 static struct aarch64_process_info *
161 aarch64_process_info_get (pid_t pid)
162 {
163 struct aarch64_process_info *proc;
164
165 proc = aarch64_find_process_pid (pid);
166 if (proc == NULL)
167 proc = aarch64_add_process (pid);
168
169 return proc;
170 }
171
172 /* Called whenever GDB is no longer debugging process PID. It deletes
173 data structures that keep track of debug register state. */
174
175 void
176 aarch64_linux_nat_target::low_forget_process (pid_t pid)
177 {
178 struct aarch64_process_info *proc, **proc_link;
179
180 proc = aarch64_process_list;
181 proc_link = &aarch64_process_list;
182
183 while (proc != NULL)
184 {
185 if (proc->pid == pid)
186 {
187 *proc_link = proc->next;
188
189 xfree (proc);
190 return;
191 }
192
193 proc_link = &proc->next;
194 proc = *proc_link;
195 }
196 }
197
198 /* Get debug registers state for process PID. */
199
200 struct aarch64_debug_reg_state *
201 aarch64_get_debug_reg_state (pid_t pid)
202 {
203 return &aarch64_process_info_get (pid)->state;
204 }
205
206 /* Fill GDB's register array with the general-purpose register values
207 from the current thread. */
208
209 static void
210 fetch_gregs_from_thread (struct regcache *regcache)
211 {
212 int ret, tid;
213 struct gdbarch *gdbarch = regcache->arch ();
214 elf_gregset_t regs;
215 struct iovec iovec;
216
217 /* Make sure REGS can hold all registers contents on both aarch64
218 and arm. */
219 gdb_static_assert (sizeof (regs) >= 18 * 4);
220
221 tid = regcache->ptid ().lwp ();
222
223 iovec.iov_base = &regs;
224 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 32)
225 iovec.iov_len = 18 * 4;
226 else
227 iovec.iov_len = sizeof (regs);
228
229 ret = ptrace (PTRACE_GETREGSET, tid, NT_PRSTATUS, &iovec);
230 if (ret < 0)
231 perror_with_name (_("Unable to fetch general registers."));
232
233 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 32)
234 aarch32_gp_regcache_supply (regcache, (uint32_t *) regs, 1);
235 else
236 {
237 int regno;
238
239 for (regno = AARCH64_X0_REGNUM; regno <= AARCH64_CPSR_REGNUM; regno++)
240 regcache->raw_supply (regno, &regs[regno - AARCH64_X0_REGNUM]);
241 }
242 }
243
244 /* Store to the current thread the valid general-purpose register
245 values in the GDB's register array. */
246
247 static void
248 store_gregs_to_thread (const struct regcache *regcache)
249 {
250 int ret, tid;
251 elf_gregset_t regs;
252 struct iovec iovec;
253 struct gdbarch *gdbarch = regcache->arch ();
254
255 /* Make sure REGS can hold all registers contents on both aarch64
256 and arm. */
257 gdb_static_assert (sizeof (regs) >= 18 * 4);
258 tid = regcache->ptid ().lwp ();
259
260 iovec.iov_base = &regs;
261 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 32)
262 iovec.iov_len = 18 * 4;
263 else
264 iovec.iov_len = sizeof (regs);
265
266 ret = ptrace (PTRACE_GETREGSET, tid, NT_PRSTATUS, &iovec);
267 if (ret < 0)
268 perror_with_name (_("Unable to fetch general registers."));
269
270 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 32)
271 aarch32_gp_regcache_collect (regcache, (uint32_t *) regs, 1);
272 else
273 {
274 int regno;
275
276 for (regno = AARCH64_X0_REGNUM; regno <= AARCH64_CPSR_REGNUM; regno++)
277 if (REG_VALID == regcache->get_register_status (regno))
278 regcache->raw_collect (regno, &regs[regno - AARCH64_X0_REGNUM]);
279 }
280
281 ret = ptrace (PTRACE_SETREGSET, tid, NT_PRSTATUS, &iovec);
282 if (ret < 0)
283 perror_with_name (_("Unable to store general registers."));
284 }
285
286 /* Fill GDB's register array with the fp/simd register values
287 from the current thread. */
288
289 static void
290 fetch_fpregs_from_thread (struct regcache *regcache)
291 {
292 int ret, tid;
293 elf_fpregset_t regs;
294 struct iovec iovec;
295 struct gdbarch *gdbarch = regcache->arch ();
296
297 /* Make sure REGS can hold all VFP registers contents on both aarch64
298 and arm. */
299 gdb_static_assert (sizeof regs >= ARM_VFP3_REGS_SIZE);
300
301 tid = regcache->ptid ().lwp ();
302
303 iovec.iov_base = &regs;
304
305 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 32)
306 {
307 iovec.iov_len = ARM_VFP3_REGS_SIZE;
308
309 ret = ptrace (PTRACE_GETREGSET, tid, NT_ARM_VFP, &iovec);
310 if (ret < 0)
311 perror_with_name (_("Unable to fetch VFP registers."));
312
313 aarch32_vfp_regcache_supply (regcache, (gdb_byte *) &regs, 32);
314 }
315 else
316 {
317 int regno;
318
319 iovec.iov_len = sizeof (regs);
320
321 ret = ptrace (PTRACE_GETREGSET, tid, NT_FPREGSET, &iovec);
322 if (ret < 0)
323 perror_with_name (_("Unable to fetch vFP/SIMD registers."));
324
325 for (regno = AARCH64_V0_REGNUM; regno <= AARCH64_V31_REGNUM; regno++)
326 regcache->raw_supply (regno, &regs.vregs[regno - AARCH64_V0_REGNUM]);
327
328 regcache->raw_supply (AARCH64_FPSR_REGNUM, &regs.fpsr);
329 regcache->raw_supply (AARCH64_FPCR_REGNUM, &regs.fpcr);
330 }
331 }
332
333 /* Store to the current thread the valid fp/simd register
334 values in the GDB's register array. */
335
336 static void
337 store_fpregs_to_thread (const struct regcache *regcache)
338 {
339 int ret, tid;
340 elf_fpregset_t regs;
341 struct iovec iovec;
342 struct gdbarch *gdbarch = regcache->arch ();
343
344 /* Make sure REGS can hold all VFP registers contents on both aarch64
345 and arm. */
346 gdb_static_assert (sizeof regs >= ARM_VFP3_REGS_SIZE);
347 tid = regcache->ptid ().lwp ();
348
349 iovec.iov_base = &regs;
350
351 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 32)
352 {
353 iovec.iov_len = ARM_VFP3_REGS_SIZE;
354
355 ret = ptrace (PTRACE_GETREGSET, tid, NT_ARM_VFP, &iovec);
356 if (ret < 0)
357 perror_with_name (_("Unable to fetch VFP registers."));
358
359 aarch32_vfp_regcache_collect (regcache, (gdb_byte *) &regs, 32);
360 }
361 else
362 {
363 int regno;
364
365 iovec.iov_len = sizeof (regs);
366
367 ret = ptrace (PTRACE_GETREGSET, tid, NT_FPREGSET, &iovec);
368 if (ret < 0)
369 perror_with_name (_("Unable to fetch FP/SIMD registers."));
370
371 for (regno = AARCH64_V0_REGNUM; regno <= AARCH64_V31_REGNUM; regno++)
372 if (REG_VALID == regcache->get_register_status (regno))
373 regcache->raw_collect
374 (regno, (char *) &regs.vregs[regno - AARCH64_V0_REGNUM]);
375
376 if (REG_VALID == regcache->get_register_status (AARCH64_FPSR_REGNUM))
377 regcache->raw_collect (AARCH64_FPSR_REGNUM, (char *) &regs.fpsr);
378 if (REG_VALID == regcache->get_register_status (AARCH64_FPCR_REGNUM))
379 regcache->raw_collect (AARCH64_FPCR_REGNUM, (char *) &regs.fpcr);
380 }
381
382 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 32)
383 {
384 ret = ptrace (PTRACE_SETREGSET, tid, NT_ARM_VFP, &iovec);
385 if (ret < 0)
386 perror_with_name (_("Unable to store VFP registers."));
387 }
388 else
389 {
390 ret = ptrace (PTRACE_SETREGSET, tid, NT_FPREGSET, &iovec);
391 if (ret < 0)
392 perror_with_name (_("Unable to store FP/SIMD registers."));
393 }
394 }
395
396 /* Fill GDB's register array with the sve register values
397 from the current thread. */
398
399 static void
400 fetch_sveregs_from_thread (struct regcache *regcache)
401 {
402 std::unique_ptr<gdb_byte[]> base
403 = aarch64_sve_get_sveregs (regcache->ptid ().lwp ());
404 aarch64_sve_regs_copy_to_reg_buf (regcache, base.get ());
405 }
406
407 /* Store to the current thread the valid sve register
408 values in the GDB's register array. */
409
410 static void
411 store_sveregs_to_thread (struct regcache *regcache)
412 {
413 int ret;
414 struct iovec iovec;
415 int tid = regcache->ptid ().lwp ();
416
417 /* First store vector length to the thread. This is done first to ensure the
418 ptrace buffers read from the kernel are the correct size. */
419 if (!aarch64_sve_set_vq (tid, regcache))
420 perror_with_name (_("Unable to set VG register."));
421
422 /* Obtain a dump of SVE registers from ptrace. */
423 std::unique_ptr<gdb_byte[]> base = aarch64_sve_get_sveregs (tid);
424
425 /* Overwrite with regcache state. */
426 aarch64_sve_regs_copy_from_reg_buf (regcache, base.get ());
427
428 /* Write back to the kernel. */
429 iovec.iov_base = base.get ();
430 iovec.iov_len = ((struct user_sve_header *) base.get ())->size;
431 ret = ptrace (PTRACE_SETREGSET, tid, NT_ARM_SVE, &iovec);
432
433 if (ret < 0)
434 perror_with_name (_("Unable to store sve registers"));
435 }
436
437 /* Fill GDB's register array with the pointer authentication mask values from
438 the current thread. */
439
440 static void
441 fetch_pauth_masks_from_thread (struct regcache *regcache)
442 {
443 struct gdbarch_tdep *tdep = gdbarch_tdep (regcache->arch ());
444 int ret;
445 struct iovec iovec;
446 uint64_t pauth_regset[2] = {0, 0};
447 int tid = regcache->ptid ().lwp ();
448
449 iovec.iov_base = &pauth_regset;
450 iovec.iov_len = sizeof (pauth_regset);
451
452 ret = ptrace (PTRACE_GETREGSET, tid, NT_ARM_PAC_MASK, &iovec);
453 if (ret != 0)
454 perror_with_name (_("unable to fetch pauth registers."));
455
456 regcache->raw_supply (AARCH64_PAUTH_DMASK_REGNUM (tdep->pauth_reg_base),
457 &pauth_regset[0]);
458 regcache->raw_supply (AARCH64_PAUTH_CMASK_REGNUM (tdep->pauth_reg_base),
459 &pauth_regset[1]);
460 }
461
462 /* Implement the "fetch_registers" target_ops method. */
463
464 void
465 aarch64_linux_nat_target::fetch_registers (struct regcache *regcache,
466 int regno)
467 {
468 struct gdbarch_tdep *tdep = gdbarch_tdep (regcache->arch ());
469
470 if (regno == -1)
471 {
472 fetch_gregs_from_thread (regcache);
473 if (tdep->has_sve ())
474 fetch_sveregs_from_thread (regcache);
475 else
476 fetch_fpregs_from_thread (regcache);
477
478 if (tdep->has_pauth ())
479 fetch_pauth_masks_from_thread (regcache);
480 }
481 else if (regno < AARCH64_V0_REGNUM)
482 fetch_gregs_from_thread (regcache);
483 else if (tdep->has_sve ())
484 fetch_sveregs_from_thread (regcache);
485 else
486 fetch_fpregs_from_thread (regcache);
487
488 if (tdep->has_pauth ())
489 {
490 if (regno == AARCH64_PAUTH_DMASK_REGNUM (tdep->pauth_reg_base)
491 || regno == AARCH64_PAUTH_CMASK_REGNUM (tdep->pauth_reg_base))
492 fetch_pauth_masks_from_thread (regcache);
493 }
494 }
495
496 /* Implement the "store_registers" target_ops method. */
497
498 void
499 aarch64_linux_nat_target::store_registers (struct regcache *regcache,
500 int regno)
501 {
502 struct gdbarch_tdep *tdep = gdbarch_tdep (regcache->arch ());
503
504 if (regno == -1)
505 {
506 store_gregs_to_thread (regcache);
507 if (tdep->has_sve ())
508 store_sveregs_to_thread (regcache);
509 else
510 store_fpregs_to_thread (regcache);
511 }
512 else if (regno < AARCH64_V0_REGNUM)
513 store_gregs_to_thread (regcache);
514 else if (tdep->has_sve ())
515 store_sveregs_to_thread (regcache);
516 else
517 store_fpregs_to_thread (regcache);
518 }
519
520 /* Fill register REGNO (if it is a general-purpose register) in
521 *GREGSETPS with the value in GDB's register array. If REGNO is -1,
522 do this for all registers. */
523
524 void
525 fill_gregset (const struct regcache *regcache,
526 gdb_gregset_t *gregsetp, int regno)
527 {
528 regcache_collect_regset (&aarch64_linux_gregset, regcache,
529 regno, (gdb_byte *) gregsetp,
530 AARCH64_LINUX_SIZEOF_GREGSET);
531 }
532
533 /* Fill GDB's register array with the general-purpose register values
534 in *GREGSETP. */
535
536 void
537 supply_gregset (struct regcache *regcache, const gdb_gregset_t *gregsetp)
538 {
539 regcache_supply_regset (&aarch64_linux_gregset, regcache, -1,
540 (const gdb_byte *) gregsetp,
541 AARCH64_LINUX_SIZEOF_GREGSET);
542 }
543
544 /* Fill register REGNO (if it is a floating-point register) in
545 *FPREGSETP with the value in GDB's register array. If REGNO is -1,
546 do this for all registers. */
547
548 void
549 fill_fpregset (const struct regcache *regcache,
550 gdb_fpregset_t *fpregsetp, int regno)
551 {
552 regcache_collect_regset (&aarch64_linux_fpregset, regcache,
553 regno, (gdb_byte *) fpregsetp,
554 AARCH64_LINUX_SIZEOF_FPREGSET);
555 }
556
557 /* Fill GDB's register array with the floating-point register values
558 in *FPREGSETP. */
559
560 void
561 supply_fpregset (struct regcache *regcache, const gdb_fpregset_t *fpregsetp)
562 {
563 regcache_supply_regset (&aarch64_linux_fpregset, regcache, -1,
564 (const gdb_byte *) fpregsetp,
565 AARCH64_LINUX_SIZEOF_FPREGSET);
566 }
567
568 /* linux_nat_new_fork hook. */
569
570 void
571 aarch64_linux_nat_target::low_new_fork (struct lwp_info *parent,
572 pid_t child_pid)
573 {
574 pid_t parent_pid;
575 struct aarch64_debug_reg_state *parent_state;
576 struct aarch64_debug_reg_state *child_state;
577
578 /* NULL means no watchpoint has ever been set in the parent. In
579 that case, there's nothing to do. */
580 if (parent->arch_private == NULL)
581 return;
582
583 /* GDB core assumes the child inherits the watchpoints/hw
584 breakpoints of the parent, and will remove them all from the
585 forked off process. Copy the debug registers mirrors into the
586 new process so that all breakpoints and watchpoints can be
587 removed together. */
588
589 parent_pid = parent->ptid.pid ();
590 parent_state = aarch64_get_debug_reg_state (parent_pid);
591 child_state = aarch64_get_debug_reg_state (child_pid);
592 *child_state = *parent_state;
593 }
594 \f
595
596 /* Called by libthread_db. Returns a pointer to the thread local
597 storage (or its descriptor). */
598
599 ps_err_e
600 ps_get_thread_area (struct ps_prochandle *ph,
601 lwpid_t lwpid, int idx, void **base)
602 {
603 int is_64bit_p
604 = (gdbarch_bfd_arch_info (target_gdbarch ())->bits_per_word == 64);
605
606 return aarch64_ps_get_thread_area (ph, lwpid, idx, base, is_64bit_p);
607 }
608 \f
609
610 /* Implement the "post_startup_inferior" target_ops method. */
611
612 void
613 aarch64_linux_nat_target::post_startup_inferior (ptid_t ptid)
614 {
615 low_forget_process (ptid.pid ());
616 aarch64_linux_get_debug_reg_capacity (ptid.pid ());
617 linux_nat_target::post_startup_inferior (ptid);
618 }
619
620 /* Implement the "post_attach" target_ops method. */
621
622 void
623 aarch64_linux_nat_target::post_attach (int pid)
624 {
625 low_forget_process (pid);
626 /* Set the hardware debug register capacity. If
627 aarch64_linux_get_debug_reg_capacity is not called
628 (as it is in aarch64_linux_child_post_startup_inferior) then
629 software watchpoints will be used instead of hardware
630 watchpoints when attaching to a target. */
631 aarch64_linux_get_debug_reg_capacity (pid);
632 linux_nat_target::post_attach (pid);
633 }
634
635 /* Implement the "read_description" target_ops method. */
636
637 const struct target_desc *
638 aarch64_linux_nat_target::read_description ()
639 {
640 int ret, tid;
641 gdb_byte regbuf[ARM_VFP3_REGS_SIZE];
642 struct iovec iovec;
643
644 tid = inferior_ptid.lwp ();
645
646 iovec.iov_base = regbuf;
647 iovec.iov_len = ARM_VFP3_REGS_SIZE;
648
649 ret = ptrace (PTRACE_GETREGSET, tid, NT_ARM_VFP, &iovec);
650 if (ret == 0)
651 return aarch32_read_description ();
652
653 CORE_ADDR hwcap = linux_get_hwcap (this);
654
655 return aarch64_read_description (aarch64_sve_get_vq (tid),
656 hwcap & AARCH64_HWCAP_PACA);
657 }
658
659 /* Convert a native/host siginfo object, into/from the siginfo in the
660 layout of the inferiors' architecture. Returns true if any
661 conversion was done; false otherwise. If DIRECTION is 1, then copy
662 from INF to NATIVE. If DIRECTION is 0, copy from NATIVE to
663 INF. */
664
665 bool
666 aarch64_linux_nat_target::low_siginfo_fixup (siginfo_t *native, gdb_byte *inf,
667 int direction)
668 {
669 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
670
671 /* Is the inferior 32-bit? If so, then do fixup the siginfo
672 object. */
673 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 32)
674 {
675 if (direction == 0)
676 aarch64_compat_siginfo_from_siginfo ((struct compat_siginfo *) inf,
677 native);
678 else
679 aarch64_siginfo_from_compat_siginfo (native,
680 (struct compat_siginfo *) inf);
681
682 return true;
683 }
684
685 return false;
686 }
687
688 /* Returns the number of hardware watchpoints of type TYPE that we can
689 set. Value is positive if we can set CNT watchpoints, zero if
690 setting watchpoints of type TYPE is not supported, and negative if
691 CNT is more than the maximum number of watchpoints of type TYPE
692 that we can support. TYPE is one of bp_hardware_watchpoint,
693 bp_read_watchpoint, bp_write_watchpoint, or bp_hardware_breakpoint.
694 CNT is the number of such watchpoints used so far (including this
695 one). OTHERTYPE is non-zero if other types of watchpoints are
696 currently enabled. */
697
698 int
699 aarch64_linux_nat_target::can_use_hw_breakpoint (enum bptype type,
700 int cnt, int othertype)
701 {
702 if (type == bp_hardware_watchpoint || type == bp_read_watchpoint
703 || type == bp_access_watchpoint || type == bp_watchpoint)
704 {
705 if (aarch64_num_wp_regs == 0)
706 return 0;
707 }
708 else if (type == bp_hardware_breakpoint)
709 {
710 if (aarch64_num_bp_regs == 0)
711 return 0;
712 }
713 else
714 gdb_assert_not_reached ("unexpected breakpoint type");
715
716 /* We always return 1 here because we don't have enough information
717 about possible overlap of addresses that they want to watch. As an
718 extreme example, consider the case where all the watchpoints watch
719 the same address and the same region length: then we can handle a
720 virtually unlimited number of watchpoints, due to debug register
721 sharing implemented via reference counts. */
722 return 1;
723 }
724
725 /* Insert a hardware-assisted breakpoint at BP_TGT->reqstd_address.
726 Return 0 on success, -1 on failure. */
727
728 int
729 aarch64_linux_nat_target::insert_hw_breakpoint (struct gdbarch *gdbarch,
730 struct bp_target_info *bp_tgt)
731 {
732 int ret;
733 CORE_ADDR addr = bp_tgt->placed_address = bp_tgt->reqstd_address;
734 int len;
735 const enum target_hw_bp_type type = hw_execute;
736 struct aarch64_debug_reg_state *state
737 = aarch64_get_debug_reg_state (inferior_ptid.pid ());
738
739 gdbarch_breakpoint_from_pc (gdbarch, &addr, &len);
740
741 if (show_debug_regs)
742 fprintf_unfiltered
743 (gdb_stdlog,
744 "insert_hw_breakpoint on entry (addr=0x%08lx, len=%d))\n",
745 (unsigned long) addr, len);
746
747 ret = aarch64_handle_breakpoint (type, addr, len, 1 /* is_insert */, state);
748
749 if (show_debug_regs)
750 {
751 aarch64_show_debug_reg_state (state,
752 "insert_hw_breakpoint", addr, len, type);
753 }
754
755 return ret;
756 }
757
758 /* Remove a hardware-assisted breakpoint at BP_TGT->placed_address.
759 Return 0 on success, -1 on failure. */
760
761 int
762 aarch64_linux_nat_target::remove_hw_breakpoint (struct gdbarch *gdbarch,
763 struct bp_target_info *bp_tgt)
764 {
765 int ret;
766 CORE_ADDR addr = bp_tgt->placed_address;
767 int len = 4;
768 const enum target_hw_bp_type type = hw_execute;
769 struct aarch64_debug_reg_state *state
770 = aarch64_get_debug_reg_state (inferior_ptid.pid ());
771
772 gdbarch_breakpoint_from_pc (gdbarch, &addr, &len);
773
774 if (show_debug_regs)
775 fprintf_unfiltered
776 (gdb_stdlog, "remove_hw_breakpoint on entry (addr=0x%08lx, len=%d))\n",
777 (unsigned long) addr, len);
778
779 ret = aarch64_handle_breakpoint (type, addr, len, 0 /* is_insert */, state);
780
781 if (show_debug_regs)
782 {
783 aarch64_show_debug_reg_state (state,
784 "remove_hw_watchpoint", addr, len, type);
785 }
786
787 return ret;
788 }
789
790 /* Implement the "insert_watchpoint" target_ops method.
791
792 Insert a watchpoint to watch a memory region which starts at
793 address ADDR and whose length is LEN bytes. Watch memory accesses
794 of the type TYPE. Return 0 on success, -1 on failure. */
795
796 int
797 aarch64_linux_nat_target::insert_watchpoint (CORE_ADDR addr, int len,
798 enum target_hw_bp_type type,
799 struct expression *cond)
800 {
801 int ret;
802 struct aarch64_debug_reg_state *state
803 = aarch64_get_debug_reg_state (inferior_ptid.pid ());
804
805 if (show_debug_regs)
806 fprintf_unfiltered (gdb_stdlog,
807 "insert_watchpoint on entry (addr=0x%08lx, len=%d)\n",
808 (unsigned long) addr, len);
809
810 gdb_assert (type != hw_execute);
811
812 ret = aarch64_handle_watchpoint (type, addr, len, 1 /* is_insert */, state);
813
814 if (show_debug_regs)
815 {
816 aarch64_show_debug_reg_state (state,
817 "insert_watchpoint", addr, len, type);
818 }
819
820 return ret;
821 }
822
823 /* Implement the "remove_watchpoint" target_ops method.
824 Remove a watchpoint that watched the memory region which starts at
825 address ADDR, whose length is LEN bytes, and for accesses of the
826 type TYPE. Return 0 on success, -1 on failure. */
827
828 int
829 aarch64_linux_nat_target::remove_watchpoint (CORE_ADDR addr, int len,
830 enum target_hw_bp_type type,
831 struct expression *cond)
832 {
833 int ret;
834 struct aarch64_debug_reg_state *state
835 = aarch64_get_debug_reg_state (inferior_ptid.pid ());
836
837 if (show_debug_regs)
838 fprintf_unfiltered (gdb_stdlog,
839 "remove_watchpoint on entry (addr=0x%08lx, len=%d)\n",
840 (unsigned long) addr, len);
841
842 gdb_assert (type != hw_execute);
843
844 ret = aarch64_handle_watchpoint (type, addr, len, 0 /* is_insert */, state);
845
846 if (show_debug_regs)
847 {
848 aarch64_show_debug_reg_state (state,
849 "remove_watchpoint", addr, len, type);
850 }
851
852 return ret;
853 }
854
855 /* Implement the "region_ok_for_hw_watchpoint" target_ops method. */
856
857 int
858 aarch64_linux_nat_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
859 {
860 return aarch64_linux_region_ok_for_watchpoint (addr, len);
861 }
862
863 /* Implement the "stopped_data_address" target_ops method. */
864
865 bool
866 aarch64_linux_nat_target::stopped_data_address (CORE_ADDR *addr_p)
867 {
868 siginfo_t siginfo;
869 int i;
870 struct aarch64_debug_reg_state *state;
871
872 if (!linux_nat_get_siginfo (inferior_ptid, &siginfo))
873 return false;
874
875 /* This must be a hardware breakpoint. */
876 if (siginfo.si_signo != SIGTRAP
877 || (siginfo.si_code & 0xffff) != TRAP_HWBKPT)
878 return false;
879
880 /* Check if the address matches any watched address. */
881 state = aarch64_get_debug_reg_state (inferior_ptid.pid ());
882 for (i = aarch64_num_wp_regs - 1; i >= 0; --i)
883 {
884 const unsigned int offset
885 = aarch64_watchpoint_offset (state->dr_ctrl_wp[i]);
886 const unsigned int len = aarch64_watchpoint_length (state->dr_ctrl_wp[i]);
887 const CORE_ADDR addr_trap = (CORE_ADDR) siginfo.si_addr;
888 const CORE_ADDR addr_watch = state->dr_addr_wp[i] + offset;
889 const CORE_ADDR addr_watch_aligned = align_down (state->dr_addr_wp[i], 8);
890 const CORE_ADDR addr_orig = state->dr_addr_orig_wp[i];
891
892 if (state->dr_ref_count_wp[i]
893 && DR_CONTROL_ENABLED (state->dr_ctrl_wp[i])
894 && addr_trap >= addr_watch_aligned
895 && addr_trap < addr_watch + len)
896 {
897 /* ADDR_TRAP reports the first address of the memory range
898 accessed by the CPU, regardless of what was the memory
899 range watched. Thus, a large CPU access that straddles
900 the ADDR_WATCH..ADDR_WATCH+LEN range may result in an
901 ADDR_TRAP that is lower than the
902 ADDR_WATCH..ADDR_WATCH+LEN range. E.g.:
903
904 addr: | 4 | 5 | 6 | 7 | 8 |
905 |---- range watched ----|
906 |----------- range accessed ------------|
907
908 In this case, ADDR_TRAP will be 4.
909
910 To match a watchpoint known to GDB core, we must never
911 report *ADDR_P outside of any ADDR_WATCH..ADDR_WATCH+LEN
912 range. ADDR_WATCH <= ADDR_TRAP < ADDR_ORIG is a false
913 positive on kernels older than 4.10. See PR
914 external/20207. */
915 *addr_p = addr_orig;
916 return true;
917 }
918 }
919
920 return false;
921 }
922
923 /* Implement the "stopped_by_watchpoint" target_ops method. */
924
925 bool
926 aarch64_linux_nat_target::stopped_by_watchpoint ()
927 {
928 CORE_ADDR addr;
929
930 return stopped_data_address (&addr);
931 }
932
933 /* Implement the "watchpoint_addr_within_range" target_ops method. */
934
935 bool
936 aarch64_linux_nat_target::watchpoint_addr_within_range (CORE_ADDR addr,
937 CORE_ADDR start, int length)
938 {
939 return start <= addr && start + length - 1 >= addr;
940 }
941
942 /* Implement the "can_do_single_step" target_ops method. */
943
944 int
945 aarch64_linux_nat_target::can_do_single_step ()
946 {
947 return 1;
948 }
949
950 /* Implement the "thread_architecture" target_ops method. */
951
952 struct gdbarch *
953 aarch64_linux_nat_target::thread_architecture (ptid_t ptid)
954 {
955 /* Return the gdbarch for the current thread. If the vector length has
956 changed since the last time this was called, then do a further lookup. */
957
958 uint64_t vq = aarch64_sve_get_vq (ptid.lwp ());
959
960 /* Find the current gdbarch the same way as process_stratum_target. Only
961 return it if the current vector length matches the one in the tdep. */
962 inferior *inf = find_inferior_ptid (ptid);
963 gdb_assert (inf != NULL);
964 if (vq == gdbarch_tdep (inf->gdbarch)->vq)
965 return inf->gdbarch;
966
967 /* We reach here if the vector length for the thread is different from its
968 value at process start. Lookup gdbarch via info (potentially creating a
969 new one), stashing the vector length inside id. Use -1 for when SVE
970 unavailable, to distinguish from an unset value of 0. */
971 struct gdbarch_info info;
972 gdbarch_info_init (&info);
973 info.bfd_arch_info = bfd_lookup_arch (bfd_arch_spu, bfd_mach_spu);
974 info.id = (int *) (vq == 0 ? -1 : vq);
975 return gdbarch_find_by_info (info);
976 }
977
978 /* Define AArch64 maintenance commands. */
979
980 static void
981 add_show_debug_regs_command (void)
982 {
983 /* A maintenance command to enable printing the internal DRi mirror
984 variables. */
985 add_setshow_boolean_cmd ("show-debug-regs", class_maintenance,
986 &show_debug_regs, _("\
987 Set whether to show variables that mirror the AArch64 debug registers."), _("\
988 Show whether to show variables that mirror the AArch64 debug registers."), _("\
989 Use \"on\" to enable, \"off\" to disable.\n\
990 If enabled, the debug registers values are shown when GDB inserts\n\
991 or removes a hardware breakpoint or watchpoint, and when the inferior\n\
992 triggers a breakpoint or watchpoint."),
993 NULL,
994 NULL,
995 &maintenance_set_cmdlist,
996 &maintenance_show_cmdlist);
997 }
998
999 void
1000 _initialize_aarch64_linux_nat (void)
1001 {
1002 add_show_debug_regs_command ();
1003
1004 /* Register the target. */
1005 linux_target = &the_aarch64_linux_nat_target;
1006 add_inf_child_target (&the_aarch64_linux_nat_target);
1007 }
This page took 0.062408 seconds and 4 git commands to generate.