Fix BFD leak in dwarf2_get_dwz_file.
[deliverable/binutils-gdb.git] / gdb / aarch64-tdep.c
1 /* Common target dependent code for GDB on AArch64 systems.
2
3 Copyright (C) 2009-2019 Free Software Foundation, Inc.
4 Contributed by ARM Ltd.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22
23 #include "frame.h"
24 #include "inferior.h"
25 #include "gdbcmd.h"
26 #include "gdbcore.h"
27 #include "dis-asm.h"
28 #include "regcache.h"
29 #include "reggroups.h"
30 #include "value.h"
31 #include "arch-utils.h"
32 #include "osabi.h"
33 #include "frame-unwind.h"
34 #include "frame-base.h"
35 #include "trad-frame.h"
36 #include "objfiles.h"
37 #include "dwarf2-frame.h"
38 #include "gdbtypes.h"
39 #include "prologue-value.h"
40 #include "target-descriptions.h"
41 #include "user-regs.h"
42 #include "language.h"
43 #include "infcall.h"
44 #include "ax.h"
45 #include "ax-gdb.h"
46 #include "common/selftest.h"
47
48 #include "aarch64-tdep.h"
49 #include "aarch64-ravenscar-thread.h"
50
51 #include "elf-bfd.h"
52 #include "elf/aarch64.h"
53
54 #include "common/vec.h"
55
56 #include "record.h"
57 #include "record-full.h"
58 #include "arch/aarch64-insn.h"
59
60 #include "opcode/aarch64.h"
61 #include <algorithm>
62
63 #define submask(x) ((1L << ((x) + 1)) - 1)
64 #define bit(obj,st) (((obj) >> (st)) & 1)
65 #define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st)))
66
67 /* A Homogeneous Floating-Point or Short-Vector Aggregate may have at most
68 four members. */
69 #define HA_MAX_NUM_FLDS 4
70
71 /* All possible aarch64 target descriptors. */
72 struct target_desc *tdesc_aarch64_list[AARCH64_MAX_SVE_VQ + 1];
73
74 /* The standard register names, and all the valid aliases for them. */
75 static const struct
76 {
77 const char *const name;
78 int regnum;
79 } aarch64_register_aliases[] =
80 {
81 /* 64-bit register names. */
82 {"fp", AARCH64_FP_REGNUM},
83 {"lr", AARCH64_LR_REGNUM},
84 {"sp", AARCH64_SP_REGNUM},
85
86 /* 32-bit register names. */
87 {"w0", AARCH64_X0_REGNUM + 0},
88 {"w1", AARCH64_X0_REGNUM + 1},
89 {"w2", AARCH64_X0_REGNUM + 2},
90 {"w3", AARCH64_X0_REGNUM + 3},
91 {"w4", AARCH64_X0_REGNUM + 4},
92 {"w5", AARCH64_X0_REGNUM + 5},
93 {"w6", AARCH64_X0_REGNUM + 6},
94 {"w7", AARCH64_X0_REGNUM + 7},
95 {"w8", AARCH64_X0_REGNUM + 8},
96 {"w9", AARCH64_X0_REGNUM + 9},
97 {"w10", AARCH64_X0_REGNUM + 10},
98 {"w11", AARCH64_X0_REGNUM + 11},
99 {"w12", AARCH64_X0_REGNUM + 12},
100 {"w13", AARCH64_X0_REGNUM + 13},
101 {"w14", AARCH64_X0_REGNUM + 14},
102 {"w15", AARCH64_X0_REGNUM + 15},
103 {"w16", AARCH64_X0_REGNUM + 16},
104 {"w17", AARCH64_X0_REGNUM + 17},
105 {"w18", AARCH64_X0_REGNUM + 18},
106 {"w19", AARCH64_X0_REGNUM + 19},
107 {"w20", AARCH64_X0_REGNUM + 20},
108 {"w21", AARCH64_X0_REGNUM + 21},
109 {"w22", AARCH64_X0_REGNUM + 22},
110 {"w23", AARCH64_X0_REGNUM + 23},
111 {"w24", AARCH64_X0_REGNUM + 24},
112 {"w25", AARCH64_X0_REGNUM + 25},
113 {"w26", AARCH64_X0_REGNUM + 26},
114 {"w27", AARCH64_X0_REGNUM + 27},
115 {"w28", AARCH64_X0_REGNUM + 28},
116 {"w29", AARCH64_X0_REGNUM + 29},
117 {"w30", AARCH64_X0_REGNUM + 30},
118
119 /* specials */
120 {"ip0", AARCH64_X0_REGNUM + 16},
121 {"ip1", AARCH64_X0_REGNUM + 17}
122 };
123
124 /* The required core 'R' registers. */
125 static const char *const aarch64_r_register_names[] =
126 {
127 /* These registers must appear in consecutive RAW register number
128 order and they must begin with AARCH64_X0_REGNUM! */
129 "x0", "x1", "x2", "x3",
130 "x4", "x5", "x6", "x7",
131 "x8", "x9", "x10", "x11",
132 "x12", "x13", "x14", "x15",
133 "x16", "x17", "x18", "x19",
134 "x20", "x21", "x22", "x23",
135 "x24", "x25", "x26", "x27",
136 "x28", "x29", "x30", "sp",
137 "pc", "cpsr"
138 };
139
140 /* The FP/SIMD 'V' registers. */
141 static const char *const aarch64_v_register_names[] =
142 {
143 /* These registers must appear in consecutive RAW register number
144 order and they must begin with AARCH64_V0_REGNUM! */
145 "v0", "v1", "v2", "v3",
146 "v4", "v5", "v6", "v7",
147 "v8", "v9", "v10", "v11",
148 "v12", "v13", "v14", "v15",
149 "v16", "v17", "v18", "v19",
150 "v20", "v21", "v22", "v23",
151 "v24", "v25", "v26", "v27",
152 "v28", "v29", "v30", "v31",
153 "fpsr",
154 "fpcr"
155 };
156
157 /* The SVE 'Z' and 'P' registers. */
158 static const char *const aarch64_sve_register_names[] =
159 {
160 /* These registers must appear in consecutive RAW register number
161 order and they must begin with AARCH64_SVE_Z0_REGNUM! */
162 "z0", "z1", "z2", "z3",
163 "z4", "z5", "z6", "z7",
164 "z8", "z9", "z10", "z11",
165 "z12", "z13", "z14", "z15",
166 "z16", "z17", "z18", "z19",
167 "z20", "z21", "z22", "z23",
168 "z24", "z25", "z26", "z27",
169 "z28", "z29", "z30", "z31",
170 "fpsr", "fpcr",
171 "p0", "p1", "p2", "p3",
172 "p4", "p5", "p6", "p7",
173 "p8", "p9", "p10", "p11",
174 "p12", "p13", "p14", "p15",
175 "ffr", "vg"
176 };
177
178 /* AArch64 prologue cache structure. */
179 struct aarch64_prologue_cache
180 {
181 /* The program counter at the start of the function. It is used to
182 identify this frame as a prologue frame. */
183 CORE_ADDR func;
184
185 /* The program counter at the time this frame was created; i.e. where
186 this function was called from. It is used to identify this frame as a
187 stub frame. */
188 CORE_ADDR prev_pc;
189
190 /* The stack pointer at the time this frame was created; i.e. the
191 caller's stack pointer when this function was called. It is used
192 to identify this frame. */
193 CORE_ADDR prev_sp;
194
195 /* Is the target available to read from? */
196 int available_p;
197
198 /* The frame base for this frame is just prev_sp - frame size.
199 FRAMESIZE is the distance from the frame pointer to the
200 initial stack pointer. */
201 int framesize;
202
203 /* The register used to hold the frame pointer for this frame. */
204 int framereg;
205
206 /* Saved register offsets. */
207 struct trad_frame_saved_reg *saved_regs;
208 };
209
210 static void
211 show_aarch64_debug (struct ui_file *file, int from_tty,
212 struct cmd_list_element *c, const char *value)
213 {
214 fprintf_filtered (file, _("AArch64 debugging is %s.\n"), value);
215 }
216
217 namespace {
218
219 /* Abstract instruction reader. */
220
221 class abstract_instruction_reader
222 {
223 public:
224 /* Read in one instruction. */
225 virtual ULONGEST read (CORE_ADDR memaddr, int len,
226 enum bfd_endian byte_order) = 0;
227 };
228
229 /* Instruction reader from real target. */
230
231 class instruction_reader : public abstract_instruction_reader
232 {
233 public:
234 ULONGEST read (CORE_ADDR memaddr, int len, enum bfd_endian byte_order)
235 override
236 {
237 return read_code_unsigned_integer (memaddr, len, byte_order);
238 }
239 };
240
241 } // namespace
242
243 /* Analyze a prologue, looking for a recognizable stack frame
244 and frame pointer. Scan until we encounter a store that could
245 clobber the stack frame unexpectedly, or an unknown instruction. */
246
247 static CORE_ADDR
248 aarch64_analyze_prologue (struct gdbarch *gdbarch,
249 CORE_ADDR start, CORE_ADDR limit,
250 struct aarch64_prologue_cache *cache,
251 abstract_instruction_reader& reader)
252 {
253 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
254 int i;
255 /* Track X registers and D registers in prologue. */
256 pv_t regs[AARCH64_X_REGISTER_COUNT + AARCH64_D_REGISTER_COUNT];
257
258 for (i = 0; i < AARCH64_X_REGISTER_COUNT + AARCH64_D_REGISTER_COUNT; i++)
259 regs[i] = pv_register (i, 0);
260 pv_area stack (AARCH64_SP_REGNUM, gdbarch_addr_bit (gdbarch));
261
262 for (; start < limit; start += 4)
263 {
264 uint32_t insn;
265 aarch64_inst inst;
266
267 insn = reader.read (start, 4, byte_order_for_code);
268
269 if (aarch64_decode_insn (insn, &inst, 1, NULL) != 0)
270 break;
271
272 if (inst.opcode->iclass == addsub_imm
273 && (inst.opcode->op == OP_ADD
274 || strcmp ("sub", inst.opcode->name) == 0))
275 {
276 unsigned rd = inst.operands[0].reg.regno;
277 unsigned rn = inst.operands[1].reg.regno;
278
279 gdb_assert (aarch64_num_of_operands (inst.opcode) == 3);
280 gdb_assert (inst.operands[0].type == AARCH64_OPND_Rd_SP);
281 gdb_assert (inst.operands[1].type == AARCH64_OPND_Rn_SP);
282 gdb_assert (inst.operands[2].type == AARCH64_OPND_AIMM);
283
284 if (inst.opcode->op == OP_ADD)
285 {
286 regs[rd] = pv_add_constant (regs[rn],
287 inst.operands[2].imm.value);
288 }
289 else
290 {
291 regs[rd] = pv_add_constant (regs[rn],
292 -inst.operands[2].imm.value);
293 }
294 }
295 else if (inst.opcode->iclass == pcreladdr
296 && inst.operands[1].type == AARCH64_OPND_ADDR_ADRP)
297 {
298 gdb_assert (aarch64_num_of_operands (inst.opcode) == 2);
299 gdb_assert (inst.operands[0].type == AARCH64_OPND_Rd);
300
301 regs[inst.operands[0].reg.regno] = pv_unknown ();
302 }
303 else if (inst.opcode->iclass == branch_imm)
304 {
305 /* Stop analysis on branch. */
306 break;
307 }
308 else if (inst.opcode->iclass == condbranch)
309 {
310 /* Stop analysis on branch. */
311 break;
312 }
313 else if (inst.opcode->iclass == branch_reg)
314 {
315 /* Stop analysis on branch. */
316 break;
317 }
318 else if (inst.opcode->iclass == compbranch)
319 {
320 /* Stop analysis on branch. */
321 break;
322 }
323 else if (inst.opcode->op == OP_MOVZ)
324 {
325 gdb_assert (inst.operands[0].type == AARCH64_OPND_Rd);
326 regs[inst.operands[0].reg.regno] = pv_unknown ();
327 }
328 else if (inst.opcode->iclass == log_shift
329 && strcmp (inst.opcode->name, "orr") == 0)
330 {
331 unsigned rd = inst.operands[0].reg.regno;
332 unsigned rn = inst.operands[1].reg.regno;
333 unsigned rm = inst.operands[2].reg.regno;
334
335 gdb_assert (inst.operands[0].type == AARCH64_OPND_Rd);
336 gdb_assert (inst.operands[1].type == AARCH64_OPND_Rn);
337 gdb_assert (inst.operands[2].type == AARCH64_OPND_Rm_SFT);
338
339 if (inst.operands[2].shifter.amount == 0
340 && rn == AARCH64_SP_REGNUM)
341 regs[rd] = regs[rm];
342 else
343 {
344 if (aarch64_debug)
345 {
346 debug_printf ("aarch64: prologue analysis gave up "
347 "addr=%s opcode=0x%x (orr x register)\n",
348 core_addr_to_string_nz (start), insn);
349 }
350 break;
351 }
352 }
353 else if (inst.opcode->op == OP_STUR)
354 {
355 unsigned rt = inst.operands[0].reg.regno;
356 unsigned rn = inst.operands[1].addr.base_regno;
357 int is64
358 = (aarch64_get_qualifier_esize (inst.operands[0].qualifier) == 8);
359
360 gdb_assert (aarch64_num_of_operands (inst.opcode) == 2);
361 gdb_assert (inst.operands[0].type == AARCH64_OPND_Rt);
362 gdb_assert (inst.operands[1].type == AARCH64_OPND_ADDR_SIMM9);
363 gdb_assert (!inst.operands[1].addr.offset.is_reg);
364
365 stack.store (pv_add_constant (regs[rn],
366 inst.operands[1].addr.offset.imm),
367 is64 ? 8 : 4, regs[rt]);
368 }
369 else if ((inst.opcode->iclass == ldstpair_off
370 || (inst.opcode->iclass == ldstpair_indexed
371 && inst.operands[2].addr.preind))
372 && strcmp ("stp", inst.opcode->name) == 0)
373 {
374 /* STP with addressing mode Pre-indexed and Base register. */
375 unsigned rt1;
376 unsigned rt2;
377 unsigned rn = inst.operands[2].addr.base_regno;
378 int32_t imm = inst.operands[2].addr.offset.imm;
379
380 gdb_assert (inst.operands[0].type == AARCH64_OPND_Rt
381 || inst.operands[0].type == AARCH64_OPND_Ft);
382 gdb_assert (inst.operands[1].type == AARCH64_OPND_Rt2
383 || inst.operands[1].type == AARCH64_OPND_Ft2);
384 gdb_assert (inst.operands[2].type == AARCH64_OPND_ADDR_SIMM7);
385 gdb_assert (!inst.operands[2].addr.offset.is_reg);
386
387 /* If recording this store would invalidate the store area
388 (perhaps because rn is not known) then we should abandon
389 further prologue analysis. */
390 if (stack.store_would_trash (pv_add_constant (regs[rn], imm)))
391 break;
392
393 if (stack.store_would_trash (pv_add_constant (regs[rn], imm + 8)))
394 break;
395
396 rt1 = inst.operands[0].reg.regno;
397 rt2 = inst.operands[1].reg.regno;
398 if (inst.operands[0].type == AARCH64_OPND_Ft)
399 {
400 /* Only bottom 64-bit of each V register (D register) need
401 to be preserved. */
402 gdb_assert (inst.operands[0].qualifier == AARCH64_OPND_QLF_S_D);
403 rt1 += AARCH64_X_REGISTER_COUNT;
404 rt2 += AARCH64_X_REGISTER_COUNT;
405 }
406
407 stack.store (pv_add_constant (regs[rn], imm), 8,
408 regs[rt1]);
409 stack.store (pv_add_constant (regs[rn], imm + 8), 8,
410 regs[rt2]);
411
412 if (inst.operands[2].addr.writeback)
413 regs[rn] = pv_add_constant (regs[rn], imm);
414
415 }
416 else if ((inst.opcode->iclass == ldst_imm9 /* Signed immediate. */
417 || (inst.opcode->iclass == ldst_pos /* Unsigned immediate. */
418 && (inst.opcode->op == OP_STR_POS
419 || inst.opcode->op == OP_STRF_POS)))
420 && inst.operands[1].addr.base_regno == AARCH64_SP_REGNUM
421 && strcmp ("str", inst.opcode->name) == 0)
422 {
423 /* STR (immediate) */
424 unsigned int rt = inst.operands[0].reg.regno;
425 int32_t imm = inst.operands[1].addr.offset.imm;
426 unsigned int rn = inst.operands[1].addr.base_regno;
427 bool is64
428 = (aarch64_get_qualifier_esize (inst.operands[0].qualifier) == 8);
429 gdb_assert (inst.operands[0].type == AARCH64_OPND_Rt
430 || inst.operands[0].type == AARCH64_OPND_Ft);
431
432 if (inst.operands[0].type == AARCH64_OPND_Ft)
433 {
434 /* Only bottom 64-bit of each V register (D register) need
435 to be preserved. */
436 gdb_assert (inst.operands[0].qualifier == AARCH64_OPND_QLF_S_D);
437 rt += AARCH64_X_REGISTER_COUNT;
438 }
439
440 stack.store (pv_add_constant (regs[rn], imm),
441 is64 ? 8 : 4, regs[rt]);
442 if (inst.operands[1].addr.writeback)
443 regs[rn] = pv_add_constant (regs[rn], imm);
444 }
445 else if (inst.opcode->iclass == testbranch)
446 {
447 /* Stop analysis on branch. */
448 break;
449 }
450 else
451 {
452 if (aarch64_debug)
453 {
454 debug_printf ("aarch64: prologue analysis gave up addr=%s"
455 " opcode=0x%x\n",
456 core_addr_to_string_nz (start), insn);
457 }
458 break;
459 }
460 }
461
462 if (cache == NULL)
463 return start;
464
465 if (pv_is_register (regs[AARCH64_FP_REGNUM], AARCH64_SP_REGNUM))
466 {
467 /* Frame pointer is fp. Frame size is constant. */
468 cache->framereg = AARCH64_FP_REGNUM;
469 cache->framesize = -regs[AARCH64_FP_REGNUM].k;
470 }
471 else if (pv_is_register (regs[AARCH64_SP_REGNUM], AARCH64_SP_REGNUM))
472 {
473 /* Try the stack pointer. */
474 cache->framesize = -regs[AARCH64_SP_REGNUM].k;
475 cache->framereg = AARCH64_SP_REGNUM;
476 }
477 else
478 {
479 /* We're just out of luck. We don't know where the frame is. */
480 cache->framereg = -1;
481 cache->framesize = 0;
482 }
483
484 for (i = 0; i < AARCH64_X_REGISTER_COUNT; i++)
485 {
486 CORE_ADDR offset;
487
488 if (stack.find_reg (gdbarch, i, &offset))
489 cache->saved_regs[i].addr = offset;
490 }
491
492 for (i = 0; i < AARCH64_D_REGISTER_COUNT; i++)
493 {
494 int regnum = gdbarch_num_regs (gdbarch);
495 CORE_ADDR offset;
496
497 if (stack.find_reg (gdbarch, i + AARCH64_X_REGISTER_COUNT,
498 &offset))
499 cache->saved_regs[i + regnum + AARCH64_D0_REGNUM].addr = offset;
500 }
501
502 return start;
503 }
504
505 static CORE_ADDR
506 aarch64_analyze_prologue (struct gdbarch *gdbarch,
507 CORE_ADDR start, CORE_ADDR limit,
508 struct aarch64_prologue_cache *cache)
509 {
510 instruction_reader reader;
511
512 return aarch64_analyze_prologue (gdbarch, start, limit, cache,
513 reader);
514 }
515
516 #if GDB_SELF_TEST
517
518 namespace selftests {
519
520 /* Instruction reader from manually cooked instruction sequences. */
521
522 class instruction_reader_test : public abstract_instruction_reader
523 {
524 public:
525 template<size_t SIZE>
526 explicit instruction_reader_test (const uint32_t (&insns)[SIZE])
527 : m_insns (insns), m_insns_size (SIZE)
528 {}
529
530 ULONGEST read (CORE_ADDR memaddr, int len, enum bfd_endian byte_order)
531 override
532 {
533 SELF_CHECK (len == 4);
534 SELF_CHECK (memaddr % 4 == 0);
535 SELF_CHECK (memaddr / 4 < m_insns_size);
536
537 return m_insns[memaddr / 4];
538 }
539
540 private:
541 const uint32_t *m_insns;
542 size_t m_insns_size;
543 };
544
545 static void
546 aarch64_analyze_prologue_test (void)
547 {
548 struct gdbarch_info info;
549
550 gdbarch_info_init (&info);
551 info.bfd_arch_info = bfd_scan_arch ("aarch64");
552
553 struct gdbarch *gdbarch = gdbarch_find_by_info (info);
554 SELF_CHECK (gdbarch != NULL);
555
556 /* Test the simple prologue in which frame pointer is used. */
557 {
558 struct aarch64_prologue_cache cache;
559 cache.saved_regs = trad_frame_alloc_saved_regs (gdbarch);
560
561 static const uint32_t insns[] = {
562 0xa9af7bfd, /* stp x29, x30, [sp,#-272]! */
563 0x910003fd, /* mov x29, sp */
564 0x97ffffe6, /* bl 0x400580 */
565 };
566 instruction_reader_test reader (insns);
567
568 CORE_ADDR end = aarch64_analyze_prologue (gdbarch, 0, 128, &cache, reader);
569 SELF_CHECK (end == 4 * 2);
570
571 SELF_CHECK (cache.framereg == AARCH64_FP_REGNUM);
572 SELF_CHECK (cache.framesize == 272);
573
574 for (int i = 0; i < AARCH64_X_REGISTER_COUNT; i++)
575 {
576 if (i == AARCH64_FP_REGNUM)
577 SELF_CHECK (cache.saved_regs[i].addr == -272);
578 else if (i == AARCH64_LR_REGNUM)
579 SELF_CHECK (cache.saved_regs[i].addr == -264);
580 else
581 SELF_CHECK (cache.saved_regs[i].addr == -1);
582 }
583
584 for (int i = 0; i < AARCH64_D_REGISTER_COUNT; i++)
585 {
586 int regnum = gdbarch_num_regs (gdbarch);
587
588 SELF_CHECK (cache.saved_regs[i + regnum + AARCH64_D0_REGNUM].addr
589 == -1);
590 }
591 }
592
593 /* Test a prologue in which STR is used and frame pointer is not
594 used. */
595 {
596 struct aarch64_prologue_cache cache;
597 cache.saved_regs = trad_frame_alloc_saved_regs (gdbarch);
598
599 static const uint32_t insns[] = {
600 0xf81d0ff3, /* str x19, [sp, #-48]! */
601 0xb9002fe0, /* str w0, [sp, #44] */
602 0xf90013e1, /* str x1, [sp, #32]*/
603 0xfd000fe0, /* str d0, [sp, #24] */
604 0xaa0203f3, /* mov x19, x2 */
605 0xf94013e0, /* ldr x0, [sp, #32] */
606 };
607 instruction_reader_test reader (insns);
608
609 CORE_ADDR end = aarch64_analyze_prologue (gdbarch, 0, 128, &cache, reader);
610
611 SELF_CHECK (end == 4 * 5);
612
613 SELF_CHECK (cache.framereg == AARCH64_SP_REGNUM);
614 SELF_CHECK (cache.framesize == 48);
615
616 for (int i = 0; i < AARCH64_X_REGISTER_COUNT; i++)
617 {
618 if (i == 1)
619 SELF_CHECK (cache.saved_regs[i].addr == -16);
620 else if (i == 19)
621 SELF_CHECK (cache.saved_regs[i].addr == -48);
622 else
623 SELF_CHECK (cache.saved_regs[i].addr == -1);
624 }
625
626 for (int i = 0; i < AARCH64_D_REGISTER_COUNT; i++)
627 {
628 int regnum = gdbarch_num_regs (gdbarch);
629
630 if (i == 0)
631 SELF_CHECK (cache.saved_regs[i + regnum + AARCH64_D0_REGNUM].addr
632 == -24);
633 else
634 SELF_CHECK (cache.saved_regs[i + regnum + AARCH64_D0_REGNUM].addr
635 == -1);
636 }
637 }
638 }
639 } // namespace selftests
640 #endif /* GDB_SELF_TEST */
641
642 /* Implement the "skip_prologue" gdbarch method. */
643
644 static CORE_ADDR
645 aarch64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
646 {
647 CORE_ADDR func_addr, limit_pc;
648
649 /* See if we can determine the end of the prologue via the symbol
650 table. If so, then return either PC, or the PC after the
651 prologue, whichever is greater. */
652 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
653 {
654 CORE_ADDR post_prologue_pc
655 = skip_prologue_using_sal (gdbarch, func_addr);
656
657 if (post_prologue_pc != 0)
658 return std::max (pc, post_prologue_pc);
659 }
660
661 /* Can't determine prologue from the symbol table, need to examine
662 instructions. */
663
664 /* Find an upper limit on the function prologue using the debug
665 information. If the debug information could not be used to
666 provide that bound, then use an arbitrary large number as the
667 upper bound. */
668 limit_pc = skip_prologue_using_sal (gdbarch, pc);
669 if (limit_pc == 0)
670 limit_pc = pc + 128; /* Magic. */
671
672 /* Try disassembling prologue. */
673 return aarch64_analyze_prologue (gdbarch, pc, limit_pc, NULL);
674 }
675
676 /* Scan the function prologue for THIS_FRAME and populate the prologue
677 cache CACHE. */
678
679 static void
680 aarch64_scan_prologue (struct frame_info *this_frame,
681 struct aarch64_prologue_cache *cache)
682 {
683 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
684 CORE_ADDR prologue_start;
685 CORE_ADDR prologue_end;
686 CORE_ADDR prev_pc = get_frame_pc (this_frame);
687 struct gdbarch *gdbarch = get_frame_arch (this_frame);
688
689 cache->prev_pc = prev_pc;
690
691 /* Assume we do not find a frame. */
692 cache->framereg = -1;
693 cache->framesize = 0;
694
695 if (find_pc_partial_function (block_addr, NULL, &prologue_start,
696 &prologue_end))
697 {
698 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
699
700 if (sal.line == 0)
701 {
702 /* No line info so use the current PC. */
703 prologue_end = prev_pc;
704 }
705 else if (sal.end < prologue_end)
706 {
707 /* The next line begins after the function end. */
708 prologue_end = sal.end;
709 }
710
711 prologue_end = std::min (prologue_end, prev_pc);
712 aarch64_analyze_prologue (gdbarch, prologue_start, prologue_end, cache);
713 }
714 else
715 {
716 CORE_ADDR frame_loc;
717
718 frame_loc = get_frame_register_unsigned (this_frame, AARCH64_FP_REGNUM);
719 if (frame_loc == 0)
720 return;
721
722 cache->framereg = AARCH64_FP_REGNUM;
723 cache->framesize = 16;
724 cache->saved_regs[29].addr = 0;
725 cache->saved_regs[30].addr = 8;
726 }
727 }
728
729 /* Fill in *CACHE with information about the prologue of *THIS_FRAME. This
730 function may throw an exception if the inferior's registers or memory is
731 not available. */
732
733 static void
734 aarch64_make_prologue_cache_1 (struct frame_info *this_frame,
735 struct aarch64_prologue_cache *cache)
736 {
737 CORE_ADDR unwound_fp;
738 int reg;
739
740 aarch64_scan_prologue (this_frame, cache);
741
742 if (cache->framereg == -1)
743 return;
744
745 unwound_fp = get_frame_register_unsigned (this_frame, cache->framereg);
746 if (unwound_fp == 0)
747 return;
748
749 cache->prev_sp = unwound_fp + cache->framesize;
750
751 /* Calculate actual addresses of saved registers using offsets
752 determined by aarch64_analyze_prologue. */
753 for (reg = 0; reg < gdbarch_num_regs (get_frame_arch (this_frame)); reg++)
754 if (trad_frame_addr_p (cache->saved_regs, reg))
755 cache->saved_regs[reg].addr += cache->prev_sp;
756
757 cache->func = get_frame_func (this_frame);
758
759 cache->available_p = 1;
760 }
761
762 /* Allocate and fill in *THIS_CACHE with information about the prologue of
763 *THIS_FRAME. Do not do this is if *THIS_CACHE was already allocated.
764 Return a pointer to the current aarch64_prologue_cache in
765 *THIS_CACHE. */
766
767 static struct aarch64_prologue_cache *
768 aarch64_make_prologue_cache (struct frame_info *this_frame, void **this_cache)
769 {
770 struct aarch64_prologue_cache *cache;
771
772 if (*this_cache != NULL)
773 return (struct aarch64_prologue_cache *) *this_cache;
774
775 cache = FRAME_OBSTACK_ZALLOC (struct aarch64_prologue_cache);
776 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
777 *this_cache = cache;
778
779 TRY
780 {
781 aarch64_make_prologue_cache_1 (this_frame, cache);
782 }
783 CATCH (ex, RETURN_MASK_ERROR)
784 {
785 if (ex.error != NOT_AVAILABLE_ERROR)
786 throw_exception (ex);
787 }
788 END_CATCH
789
790 return cache;
791 }
792
793 /* Implement the "stop_reason" frame_unwind method. */
794
795 static enum unwind_stop_reason
796 aarch64_prologue_frame_unwind_stop_reason (struct frame_info *this_frame,
797 void **this_cache)
798 {
799 struct aarch64_prologue_cache *cache
800 = aarch64_make_prologue_cache (this_frame, this_cache);
801
802 if (!cache->available_p)
803 return UNWIND_UNAVAILABLE;
804
805 /* Halt the backtrace at "_start". */
806 if (cache->prev_pc <= gdbarch_tdep (get_frame_arch (this_frame))->lowest_pc)
807 return UNWIND_OUTERMOST;
808
809 /* We've hit a wall, stop. */
810 if (cache->prev_sp == 0)
811 return UNWIND_OUTERMOST;
812
813 return UNWIND_NO_REASON;
814 }
815
816 /* Our frame ID for a normal frame is the current function's starting
817 PC and the caller's SP when we were called. */
818
819 static void
820 aarch64_prologue_this_id (struct frame_info *this_frame,
821 void **this_cache, struct frame_id *this_id)
822 {
823 struct aarch64_prologue_cache *cache
824 = aarch64_make_prologue_cache (this_frame, this_cache);
825
826 if (!cache->available_p)
827 *this_id = frame_id_build_unavailable_stack (cache->func);
828 else
829 *this_id = frame_id_build (cache->prev_sp, cache->func);
830 }
831
832 /* Implement the "prev_register" frame_unwind method. */
833
834 static struct value *
835 aarch64_prologue_prev_register (struct frame_info *this_frame,
836 void **this_cache, int prev_regnum)
837 {
838 struct aarch64_prologue_cache *cache
839 = aarch64_make_prologue_cache (this_frame, this_cache);
840
841 /* If we are asked to unwind the PC, then we need to return the LR
842 instead. The prologue may save PC, but it will point into this
843 frame's prologue, not the next frame's resume location. */
844 if (prev_regnum == AARCH64_PC_REGNUM)
845 {
846 CORE_ADDR lr;
847
848 lr = frame_unwind_register_unsigned (this_frame, AARCH64_LR_REGNUM);
849 return frame_unwind_got_constant (this_frame, prev_regnum, lr);
850 }
851
852 /* SP is generally not saved to the stack, but this frame is
853 identified by the next frame's stack pointer at the time of the
854 call. The value was already reconstructed into PREV_SP. */
855 /*
856 +----------+ ^
857 | saved lr | |
858 +->| saved fp |--+
859 | | |
860 | | | <- Previous SP
861 | +----------+
862 | | saved lr |
863 +--| saved fp |<- FP
864 | |
865 | |<- SP
866 +----------+ */
867 if (prev_regnum == AARCH64_SP_REGNUM)
868 return frame_unwind_got_constant (this_frame, prev_regnum,
869 cache->prev_sp);
870
871 return trad_frame_get_prev_register (this_frame, cache->saved_regs,
872 prev_regnum);
873 }
874
875 /* AArch64 prologue unwinder. */
876 struct frame_unwind aarch64_prologue_unwind =
877 {
878 NORMAL_FRAME,
879 aarch64_prologue_frame_unwind_stop_reason,
880 aarch64_prologue_this_id,
881 aarch64_prologue_prev_register,
882 NULL,
883 default_frame_sniffer
884 };
885
886 /* Allocate and fill in *THIS_CACHE with information about the prologue of
887 *THIS_FRAME. Do not do this is if *THIS_CACHE was already allocated.
888 Return a pointer to the current aarch64_prologue_cache in
889 *THIS_CACHE. */
890
891 static struct aarch64_prologue_cache *
892 aarch64_make_stub_cache (struct frame_info *this_frame, void **this_cache)
893 {
894 struct aarch64_prologue_cache *cache;
895
896 if (*this_cache != NULL)
897 return (struct aarch64_prologue_cache *) *this_cache;
898
899 cache = FRAME_OBSTACK_ZALLOC (struct aarch64_prologue_cache);
900 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
901 *this_cache = cache;
902
903 TRY
904 {
905 cache->prev_sp = get_frame_register_unsigned (this_frame,
906 AARCH64_SP_REGNUM);
907 cache->prev_pc = get_frame_pc (this_frame);
908 cache->available_p = 1;
909 }
910 CATCH (ex, RETURN_MASK_ERROR)
911 {
912 if (ex.error != NOT_AVAILABLE_ERROR)
913 throw_exception (ex);
914 }
915 END_CATCH
916
917 return cache;
918 }
919
920 /* Implement the "stop_reason" frame_unwind method. */
921
922 static enum unwind_stop_reason
923 aarch64_stub_frame_unwind_stop_reason (struct frame_info *this_frame,
924 void **this_cache)
925 {
926 struct aarch64_prologue_cache *cache
927 = aarch64_make_stub_cache (this_frame, this_cache);
928
929 if (!cache->available_p)
930 return UNWIND_UNAVAILABLE;
931
932 return UNWIND_NO_REASON;
933 }
934
935 /* Our frame ID for a stub frame is the current SP and LR. */
936
937 static void
938 aarch64_stub_this_id (struct frame_info *this_frame,
939 void **this_cache, struct frame_id *this_id)
940 {
941 struct aarch64_prologue_cache *cache
942 = aarch64_make_stub_cache (this_frame, this_cache);
943
944 if (cache->available_p)
945 *this_id = frame_id_build (cache->prev_sp, cache->prev_pc);
946 else
947 *this_id = frame_id_build_unavailable_stack (cache->prev_pc);
948 }
949
950 /* Implement the "sniffer" frame_unwind method. */
951
952 static int
953 aarch64_stub_unwind_sniffer (const struct frame_unwind *self,
954 struct frame_info *this_frame,
955 void **this_prologue_cache)
956 {
957 CORE_ADDR addr_in_block;
958 gdb_byte dummy[4];
959
960 addr_in_block = get_frame_address_in_block (this_frame);
961 if (in_plt_section (addr_in_block)
962 /* We also use the stub winder if the target memory is unreadable
963 to avoid having the prologue unwinder trying to read it. */
964 || target_read_memory (get_frame_pc (this_frame), dummy, 4) != 0)
965 return 1;
966
967 return 0;
968 }
969
970 /* AArch64 stub unwinder. */
971 struct frame_unwind aarch64_stub_unwind =
972 {
973 NORMAL_FRAME,
974 aarch64_stub_frame_unwind_stop_reason,
975 aarch64_stub_this_id,
976 aarch64_prologue_prev_register,
977 NULL,
978 aarch64_stub_unwind_sniffer
979 };
980
981 /* Return the frame base address of *THIS_FRAME. */
982
983 static CORE_ADDR
984 aarch64_normal_frame_base (struct frame_info *this_frame, void **this_cache)
985 {
986 struct aarch64_prologue_cache *cache
987 = aarch64_make_prologue_cache (this_frame, this_cache);
988
989 return cache->prev_sp - cache->framesize;
990 }
991
992 /* AArch64 default frame base information. */
993 struct frame_base aarch64_normal_base =
994 {
995 &aarch64_prologue_unwind,
996 aarch64_normal_frame_base,
997 aarch64_normal_frame_base,
998 aarch64_normal_frame_base
999 };
1000
1001 /* Assuming THIS_FRAME is a dummy, return the frame ID of that
1002 dummy frame. The frame ID's base needs to match the TOS value
1003 saved by save_dummy_frame_tos () and returned from
1004 aarch64_push_dummy_call, and the PC needs to match the dummy
1005 frame's breakpoint. */
1006
1007 static struct frame_id
1008 aarch64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1009 {
1010 return frame_id_build (get_frame_register_unsigned (this_frame,
1011 AARCH64_SP_REGNUM),
1012 get_frame_pc (this_frame));
1013 }
1014
1015 /* Implement the "unwind_pc" gdbarch method. */
1016
1017 static CORE_ADDR
1018 aarch64_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
1019 {
1020 CORE_ADDR pc
1021 = frame_unwind_register_unsigned (this_frame, AARCH64_PC_REGNUM);
1022
1023 return pc;
1024 }
1025
1026 /* Implement the "unwind_sp" gdbarch method. */
1027
1028 static CORE_ADDR
1029 aarch64_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
1030 {
1031 return frame_unwind_register_unsigned (this_frame, AARCH64_SP_REGNUM);
1032 }
1033
1034 /* Return the value of the REGNUM register in the previous frame of
1035 *THIS_FRAME. */
1036
1037 static struct value *
1038 aarch64_dwarf2_prev_register (struct frame_info *this_frame,
1039 void **this_cache, int regnum)
1040 {
1041 CORE_ADDR lr;
1042
1043 switch (regnum)
1044 {
1045 case AARCH64_PC_REGNUM:
1046 lr = frame_unwind_register_unsigned (this_frame, AARCH64_LR_REGNUM);
1047 return frame_unwind_got_constant (this_frame, regnum, lr);
1048
1049 default:
1050 internal_error (__FILE__, __LINE__,
1051 _("Unexpected register %d"), regnum);
1052 }
1053 }
1054
1055 /* Implement the "init_reg" dwarf2_frame_ops method. */
1056
1057 static void
1058 aarch64_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1059 struct dwarf2_frame_state_reg *reg,
1060 struct frame_info *this_frame)
1061 {
1062 switch (regnum)
1063 {
1064 case AARCH64_PC_REGNUM:
1065 reg->how = DWARF2_FRAME_REG_FN;
1066 reg->loc.fn = aarch64_dwarf2_prev_register;
1067 break;
1068 case AARCH64_SP_REGNUM:
1069 reg->how = DWARF2_FRAME_REG_CFA;
1070 break;
1071 }
1072 }
1073
1074 /* When arguments must be pushed onto the stack, they go on in reverse
1075 order. The code below implements a FILO (stack) to do this. */
1076
1077 typedef struct
1078 {
1079 /* Value to pass on stack. It can be NULL if this item is for stack
1080 padding. */
1081 const gdb_byte *data;
1082
1083 /* Size in bytes of value to pass on stack. */
1084 int len;
1085 } stack_item_t;
1086
1087 DEF_VEC_O (stack_item_t);
1088
1089 /* Return the alignment (in bytes) of the given type. */
1090
1091 static int
1092 aarch64_type_align (struct type *t)
1093 {
1094 int n;
1095 int align;
1096 int falign;
1097
1098 t = check_typedef (t);
1099 switch (TYPE_CODE (t))
1100 {
1101 default:
1102 /* Should never happen. */
1103 internal_error (__FILE__, __LINE__, _("unknown type alignment"));
1104 return 4;
1105
1106 case TYPE_CODE_PTR:
1107 case TYPE_CODE_ENUM:
1108 case TYPE_CODE_INT:
1109 case TYPE_CODE_FLT:
1110 case TYPE_CODE_SET:
1111 case TYPE_CODE_RANGE:
1112 case TYPE_CODE_BITSTRING:
1113 case TYPE_CODE_REF:
1114 case TYPE_CODE_RVALUE_REF:
1115 case TYPE_CODE_CHAR:
1116 case TYPE_CODE_BOOL:
1117 return TYPE_LENGTH (t);
1118
1119 case TYPE_CODE_ARRAY:
1120 if (TYPE_VECTOR (t))
1121 {
1122 /* Use the natural alignment for vector types (the same for
1123 scalar type), but the maximum alignment is 128-bit. */
1124 if (TYPE_LENGTH (t) > 16)
1125 return 16;
1126 else
1127 return TYPE_LENGTH (t);
1128 }
1129 else
1130 return aarch64_type_align (TYPE_TARGET_TYPE (t));
1131 case TYPE_CODE_COMPLEX:
1132 return aarch64_type_align (TYPE_TARGET_TYPE (t));
1133
1134 case TYPE_CODE_STRUCT:
1135 case TYPE_CODE_UNION:
1136 align = 1;
1137 for (n = 0; n < TYPE_NFIELDS (t); n++)
1138 {
1139 falign = aarch64_type_align (TYPE_FIELD_TYPE (t, n));
1140 if (falign > align)
1141 align = falign;
1142 }
1143 return align;
1144 }
1145 }
1146
1147 /* Worker function for aapcs_is_vfp_call_or_return_candidate.
1148
1149 Return the number of register required, or -1 on failure.
1150
1151 When encountering a base element, if FUNDAMENTAL_TYPE is not set then set it
1152 to the element, else fail if the type of this element does not match the
1153 existing value. */
1154
1155 static int
1156 aapcs_is_vfp_call_or_return_candidate_1 (struct type *type,
1157 struct type **fundamental_type)
1158 {
1159 if (type == nullptr)
1160 return -1;
1161
1162 switch (TYPE_CODE (type))
1163 {
1164 case TYPE_CODE_FLT:
1165 if (TYPE_LENGTH (type) > 16)
1166 return -1;
1167
1168 if (*fundamental_type == nullptr)
1169 *fundamental_type = type;
1170 else if (TYPE_LENGTH (type) != TYPE_LENGTH (*fundamental_type)
1171 || TYPE_CODE (type) != TYPE_CODE (*fundamental_type))
1172 return -1;
1173
1174 return 1;
1175
1176 case TYPE_CODE_COMPLEX:
1177 {
1178 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1179 if (TYPE_LENGTH (target_type) > 16)
1180 return -1;
1181
1182 if (*fundamental_type == nullptr)
1183 *fundamental_type = target_type;
1184 else if (TYPE_LENGTH (target_type) != TYPE_LENGTH (*fundamental_type)
1185 || TYPE_CODE (target_type) != TYPE_CODE (*fundamental_type))
1186 return -1;
1187
1188 return 2;
1189 }
1190
1191 case TYPE_CODE_ARRAY:
1192 {
1193 if (TYPE_VECTOR (type))
1194 {
1195 if (TYPE_LENGTH (type) != 8 && TYPE_LENGTH (type) != 16)
1196 return -1;
1197
1198 if (*fundamental_type == nullptr)
1199 *fundamental_type = type;
1200 else if (TYPE_LENGTH (type) != TYPE_LENGTH (*fundamental_type)
1201 || TYPE_CODE (type) != TYPE_CODE (*fundamental_type))
1202 return -1;
1203
1204 return 1;
1205 }
1206 else
1207 {
1208 struct type *target_type = TYPE_TARGET_TYPE (type);
1209 int count = aapcs_is_vfp_call_or_return_candidate_1
1210 (target_type, fundamental_type);
1211
1212 if (count == -1)
1213 return count;
1214
1215 count *= (TYPE_LENGTH (type) / TYPE_LENGTH (target_type));
1216 return count;
1217 }
1218 }
1219
1220 case TYPE_CODE_STRUCT:
1221 case TYPE_CODE_UNION:
1222 {
1223 int count = 0;
1224
1225 for (int i = 0; i < TYPE_NFIELDS (type); i++)
1226 {
1227 /* Ignore any static fields. */
1228 if (field_is_static (&TYPE_FIELD (type, i)))
1229 continue;
1230
1231 struct type *member = check_typedef (TYPE_FIELD_TYPE (type, i));
1232
1233 int sub_count = aapcs_is_vfp_call_or_return_candidate_1
1234 (member, fundamental_type);
1235 if (sub_count == -1)
1236 return -1;
1237 count += sub_count;
1238 }
1239
1240 /* Ensure there is no padding between the fields (allowing for empty
1241 zero length structs) */
1242 int ftype_length = (*fundamental_type == nullptr)
1243 ? 0 : TYPE_LENGTH (*fundamental_type);
1244 if (count * ftype_length != TYPE_LENGTH (type))
1245 return -1;
1246
1247 return count;
1248 }
1249
1250 default:
1251 break;
1252 }
1253
1254 return -1;
1255 }
1256
1257 /* Return true if an argument, whose type is described by TYPE, can be passed or
1258 returned in simd/fp registers, providing enough parameter passing registers
1259 are available. This is as described in the AAPCS64.
1260
1261 Upon successful return, *COUNT returns the number of needed registers,
1262 *FUNDAMENTAL_TYPE contains the type of those registers.
1263
1264 Candidate as per the AAPCS64 5.4.2.C is either a:
1265 - float.
1266 - short-vector.
1267 - HFA (Homogeneous Floating-point Aggregate, 4.3.5.1). A Composite type where
1268 all the members are floats and has at most 4 members.
1269 - HVA (Homogeneous Short-vector Aggregate, 4.3.5.2). A Composite type where
1270 all the members are short vectors and has at most 4 members.
1271 - Complex (7.1.1)
1272
1273 Note that HFAs and HVAs can include nested structures and arrays. */
1274
1275 static bool
1276 aapcs_is_vfp_call_or_return_candidate (struct type *type, int *count,
1277 struct type **fundamental_type)
1278 {
1279 if (type == nullptr)
1280 return false;
1281
1282 *fundamental_type = nullptr;
1283
1284 int ag_count = aapcs_is_vfp_call_or_return_candidate_1 (type,
1285 fundamental_type);
1286
1287 if (ag_count > 0 && ag_count <= HA_MAX_NUM_FLDS)
1288 {
1289 *count = ag_count;
1290 return true;
1291 }
1292 else
1293 return false;
1294 }
1295
1296 /* AArch64 function call information structure. */
1297 struct aarch64_call_info
1298 {
1299 /* the current argument number. */
1300 unsigned argnum;
1301
1302 /* The next general purpose register number, equivalent to NGRN as
1303 described in the AArch64 Procedure Call Standard. */
1304 unsigned ngrn;
1305
1306 /* The next SIMD and floating point register number, equivalent to
1307 NSRN as described in the AArch64 Procedure Call Standard. */
1308 unsigned nsrn;
1309
1310 /* The next stacked argument address, equivalent to NSAA as
1311 described in the AArch64 Procedure Call Standard. */
1312 unsigned nsaa;
1313
1314 /* Stack item vector. */
1315 VEC(stack_item_t) *si;
1316 };
1317
1318 /* Pass a value in a sequence of consecutive X registers. The caller
1319 is responsbile for ensuring sufficient registers are available. */
1320
1321 static void
1322 pass_in_x (struct gdbarch *gdbarch, struct regcache *regcache,
1323 struct aarch64_call_info *info, struct type *type,
1324 struct value *arg)
1325 {
1326 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1327 int len = TYPE_LENGTH (type);
1328 enum type_code typecode = TYPE_CODE (type);
1329 int regnum = AARCH64_X0_REGNUM + info->ngrn;
1330 const bfd_byte *buf = value_contents (arg);
1331
1332 info->argnum++;
1333
1334 while (len > 0)
1335 {
1336 int partial_len = len < X_REGISTER_SIZE ? len : X_REGISTER_SIZE;
1337 CORE_ADDR regval = extract_unsigned_integer (buf, partial_len,
1338 byte_order);
1339
1340
1341 /* Adjust sub-word struct/union args when big-endian. */
1342 if (byte_order == BFD_ENDIAN_BIG
1343 && partial_len < X_REGISTER_SIZE
1344 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
1345 regval <<= ((X_REGISTER_SIZE - partial_len) * TARGET_CHAR_BIT);
1346
1347 if (aarch64_debug)
1348 {
1349 debug_printf ("arg %d in %s = 0x%s\n", info->argnum,
1350 gdbarch_register_name (gdbarch, regnum),
1351 phex (regval, X_REGISTER_SIZE));
1352 }
1353 regcache_cooked_write_unsigned (regcache, regnum, regval);
1354 len -= partial_len;
1355 buf += partial_len;
1356 regnum++;
1357 }
1358 }
1359
1360 /* Attempt to marshall a value in a V register. Return 1 if
1361 successful, or 0 if insufficient registers are available. This
1362 function, unlike the equivalent pass_in_x() function does not
1363 handle arguments spread across multiple registers. */
1364
1365 static int
1366 pass_in_v (struct gdbarch *gdbarch,
1367 struct regcache *regcache,
1368 struct aarch64_call_info *info,
1369 int len, const bfd_byte *buf)
1370 {
1371 if (info->nsrn < 8)
1372 {
1373 int regnum = AARCH64_V0_REGNUM + info->nsrn;
1374 /* Enough space for a full vector register. */
1375 gdb_byte reg[register_size (gdbarch, regnum)];
1376 gdb_assert (len <= sizeof (reg));
1377
1378 info->argnum++;
1379 info->nsrn++;
1380
1381 memset (reg, 0, sizeof (reg));
1382 /* PCS C.1, the argument is allocated to the least significant
1383 bits of V register. */
1384 memcpy (reg, buf, len);
1385 regcache->cooked_write (regnum, reg);
1386
1387 if (aarch64_debug)
1388 {
1389 debug_printf ("arg %d in %s\n", info->argnum,
1390 gdbarch_register_name (gdbarch, regnum));
1391 }
1392 return 1;
1393 }
1394 info->nsrn = 8;
1395 return 0;
1396 }
1397
1398 /* Marshall an argument onto the stack. */
1399
1400 static void
1401 pass_on_stack (struct aarch64_call_info *info, struct type *type,
1402 struct value *arg)
1403 {
1404 const bfd_byte *buf = value_contents (arg);
1405 int len = TYPE_LENGTH (type);
1406 int align;
1407 stack_item_t item;
1408
1409 info->argnum++;
1410
1411 align = aarch64_type_align (type);
1412
1413 /* PCS C.17 Stack should be aligned to the larger of 8 bytes or the
1414 Natural alignment of the argument's type. */
1415 align = align_up (align, 8);
1416
1417 /* The AArch64 PCS requires at most doubleword alignment. */
1418 if (align > 16)
1419 align = 16;
1420
1421 if (aarch64_debug)
1422 {
1423 debug_printf ("arg %d len=%d @ sp + %d\n", info->argnum, len,
1424 info->nsaa);
1425 }
1426
1427 item.len = len;
1428 item.data = buf;
1429 VEC_safe_push (stack_item_t, info->si, &item);
1430
1431 info->nsaa += len;
1432 if (info->nsaa & (align - 1))
1433 {
1434 /* Push stack alignment padding. */
1435 int pad = align - (info->nsaa & (align - 1));
1436
1437 item.len = pad;
1438 item.data = NULL;
1439
1440 VEC_safe_push (stack_item_t, info->si, &item);
1441 info->nsaa += pad;
1442 }
1443 }
1444
1445 /* Marshall an argument into a sequence of one or more consecutive X
1446 registers or, if insufficient X registers are available then onto
1447 the stack. */
1448
1449 static void
1450 pass_in_x_or_stack (struct gdbarch *gdbarch, struct regcache *regcache,
1451 struct aarch64_call_info *info, struct type *type,
1452 struct value *arg)
1453 {
1454 int len = TYPE_LENGTH (type);
1455 int nregs = (len + X_REGISTER_SIZE - 1) / X_REGISTER_SIZE;
1456
1457 /* PCS C.13 - Pass in registers if we have enough spare */
1458 if (info->ngrn + nregs <= 8)
1459 {
1460 pass_in_x (gdbarch, regcache, info, type, arg);
1461 info->ngrn += nregs;
1462 }
1463 else
1464 {
1465 info->ngrn = 8;
1466 pass_on_stack (info, type, arg);
1467 }
1468 }
1469
1470 /* Pass a value, which is of type arg_type, in a V register. Assumes value is a
1471 aapcs_is_vfp_call_or_return_candidate and there are enough spare V
1472 registers. A return value of false is an error state as the value will have
1473 been partially passed to the stack. */
1474 static bool
1475 pass_in_v_vfp_candidate (struct gdbarch *gdbarch, struct regcache *regcache,
1476 struct aarch64_call_info *info, struct type *arg_type,
1477 struct value *arg)
1478 {
1479 switch (TYPE_CODE (arg_type))
1480 {
1481 case TYPE_CODE_FLT:
1482 return pass_in_v (gdbarch, regcache, info, TYPE_LENGTH (arg_type),
1483 value_contents (arg));
1484 break;
1485
1486 case TYPE_CODE_COMPLEX:
1487 {
1488 const bfd_byte *buf = value_contents (arg);
1489 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (arg_type));
1490
1491 if (!pass_in_v (gdbarch, regcache, info, TYPE_LENGTH (target_type),
1492 buf))
1493 return false;
1494
1495 return pass_in_v (gdbarch, regcache, info, TYPE_LENGTH (target_type),
1496 buf + TYPE_LENGTH (target_type));
1497 }
1498
1499 case TYPE_CODE_ARRAY:
1500 if (TYPE_VECTOR (arg_type))
1501 return pass_in_v (gdbarch, regcache, info, TYPE_LENGTH (arg_type),
1502 value_contents (arg));
1503 /* fall through. */
1504
1505 case TYPE_CODE_STRUCT:
1506 case TYPE_CODE_UNION:
1507 for (int i = 0; i < TYPE_NFIELDS (arg_type); i++)
1508 {
1509 /* Don't include static fields. */
1510 if (field_is_static (&TYPE_FIELD (arg_type, i)))
1511 continue;
1512
1513 struct value *field = value_primitive_field (arg, 0, i, arg_type);
1514 struct type *field_type = check_typedef (value_type (field));
1515
1516 if (!pass_in_v_vfp_candidate (gdbarch, regcache, info, field_type,
1517 field))
1518 return false;
1519 }
1520 return true;
1521
1522 default:
1523 return false;
1524 }
1525 }
1526
1527 /* Implement the "push_dummy_call" gdbarch method. */
1528
1529 static CORE_ADDR
1530 aarch64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1531 struct regcache *regcache, CORE_ADDR bp_addr,
1532 int nargs,
1533 struct value **args, CORE_ADDR sp,
1534 function_call_return_method return_method,
1535 CORE_ADDR struct_addr)
1536 {
1537 int argnum;
1538 struct aarch64_call_info info;
1539
1540 memset (&info, 0, sizeof (info));
1541
1542 /* We need to know what the type of the called function is in order
1543 to determine the number of named/anonymous arguments for the
1544 actual argument placement, and the return type in order to handle
1545 return value correctly.
1546
1547 The generic code above us views the decision of return in memory
1548 or return in registers as a two stage processes. The language
1549 handler is consulted first and may decide to return in memory (eg
1550 class with copy constructor returned by value), this will cause
1551 the generic code to allocate space AND insert an initial leading
1552 argument.
1553
1554 If the language code does not decide to pass in memory then the
1555 target code is consulted.
1556
1557 If the language code decides to pass in memory we want to move
1558 the pointer inserted as the initial argument from the argument
1559 list and into X8, the conventional AArch64 struct return pointer
1560 register. */
1561
1562 /* Set the return address. For the AArch64, the return breakpoint
1563 is always at BP_ADDR. */
1564 regcache_cooked_write_unsigned (regcache, AARCH64_LR_REGNUM, bp_addr);
1565
1566 /* If we were given an initial argument for the return slot, lose it. */
1567 if (return_method == return_method_hidden_param)
1568 {
1569 args++;
1570 nargs--;
1571 }
1572
1573 /* The struct_return pointer occupies X8. */
1574 if (return_method != return_method_normal)
1575 {
1576 if (aarch64_debug)
1577 {
1578 debug_printf ("struct return in %s = 0x%s\n",
1579 gdbarch_register_name (gdbarch,
1580 AARCH64_STRUCT_RETURN_REGNUM),
1581 paddress (gdbarch, struct_addr));
1582 }
1583 regcache_cooked_write_unsigned (regcache, AARCH64_STRUCT_RETURN_REGNUM,
1584 struct_addr);
1585 }
1586
1587 for (argnum = 0; argnum < nargs; argnum++)
1588 {
1589 struct value *arg = args[argnum];
1590 struct type *arg_type, *fundamental_type;
1591 int len, elements;
1592
1593 arg_type = check_typedef (value_type (arg));
1594 len = TYPE_LENGTH (arg_type);
1595
1596 /* If arg can be passed in v registers as per the AAPCS64, then do so if
1597 if there are enough spare registers. */
1598 if (aapcs_is_vfp_call_or_return_candidate (arg_type, &elements,
1599 &fundamental_type))
1600 {
1601 if (info.nsrn + elements <= 8)
1602 {
1603 /* We know that we have sufficient registers available therefore
1604 this will never need to fallback to the stack. */
1605 if (!pass_in_v_vfp_candidate (gdbarch, regcache, &info, arg_type,
1606 arg))
1607 gdb_assert_not_reached ("Failed to push args");
1608 }
1609 else
1610 {
1611 info.nsrn = 8;
1612 pass_on_stack (&info, arg_type, arg);
1613 }
1614 continue;
1615 }
1616
1617 switch (TYPE_CODE (arg_type))
1618 {
1619 case TYPE_CODE_INT:
1620 case TYPE_CODE_BOOL:
1621 case TYPE_CODE_CHAR:
1622 case TYPE_CODE_RANGE:
1623 case TYPE_CODE_ENUM:
1624 if (len < 4)
1625 {
1626 /* Promote to 32 bit integer. */
1627 if (TYPE_UNSIGNED (arg_type))
1628 arg_type = builtin_type (gdbarch)->builtin_uint32;
1629 else
1630 arg_type = builtin_type (gdbarch)->builtin_int32;
1631 arg = value_cast (arg_type, arg);
1632 }
1633 pass_in_x_or_stack (gdbarch, regcache, &info, arg_type, arg);
1634 break;
1635
1636 case TYPE_CODE_STRUCT:
1637 case TYPE_CODE_ARRAY:
1638 case TYPE_CODE_UNION:
1639 if (len > 16)
1640 {
1641 /* PCS B.7 Aggregates larger than 16 bytes are passed by
1642 invisible reference. */
1643
1644 /* Allocate aligned storage. */
1645 sp = align_down (sp - len, 16);
1646
1647 /* Write the real data into the stack. */
1648 write_memory (sp, value_contents (arg), len);
1649
1650 /* Construct the indirection. */
1651 arg_type = lookup_pointer_type (arg_type);
1652 arg = value_from_pointer (arg_type, sp);
1653 pass_in_x_or_stack (gdbarch, regcache, &info, arg_type, arg);
1654 }
1655 else
1656 /* PCS C.15 / C.18 multiple values pass. */
1657 pass_in_x_or_stack (gdbarch, regcache, &info, arg_type, arg);
1658 break;
1659
1660 default:
1661 pass_in_x_or_stack (gdbarch, regcache, &info, arg_type, arg);
1662 break;
1663 }
1664 }
1665
1666 /* Make sure stack retains 16 byte alignment. */
1667 if (info.nsaa & 15)
1668 sp -= 16 - (info.nsaa & 15);
1669
1670 while (!VEC_empty (stack_item_t, info.si))
1671 {
1672 stack_item_t *si = VEC_last (stack_item_t, info.si);
1673
1674 sp -= si->len;
1675 if (si->data != NULL)
1676 write_memory (sp, si->data, si->len);
1677 VEC_pop (stack_item_t, info.si);
1678 }
1679
1680 VEC_free (stack_item_t, info.si);
1681
1682 /* Finally, update the SP register. */
1683 regcache_cooked_write_unsigned (regcache, AARCH64_SP_REGNUM, sp);
1684
1685 return sp;
1686 }
1687
1688 /* Implement the "frame_align" gdbarch method. */
1689
1690 static CORE_ADDR
1691 aarch64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1692 {
1693 /* Align the stack to sixteen bytes. */
1694 return sp & ~(CORE_ADDR) 15;
1695 }
1696
1697 /* Return the type for an AdvSISD Q register. */
1698
1699 static struct type *
1700 aarch64_vnq_type (struct gdbarch *gdbarch)
1701 {
1702 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1703
1704 if (tdep->vnq_type == NULL)
1705 {
1706 struct type *t;
1707 struct type *elem;
1708
1709 t = arch_composite_type (gdbarch, "__gdb_builtin_type_vnq",
1710 TYPE_CODE_UNION);
1711
1712 elem = builtin_type (gdbarch)->builtin_uint128;
1713 append_composite_type_field (t, "u", elem);
1714
1715 elem = builtin_type (gdbarch)->builtin_int128;
1716 append_composite_type_field (t, "s", elem);
1717
1718 tdep->vnq_type = t;
1719 }
1720
1721 return tdep->vnq_type;
1722 }
1723
1724 /* Return the type for an AdvSISD D register. */
1725
1726 static struct type *
1727 aarch64_vnd_type (struct gdbarch *gdbarch)
1728 {
1729 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1730
1731 if (tdep->vnd_type == NULL)
1732 {
1733 struct type *t;
1734 struct type *elem;
1735
1736 t = arch_composite_type (gdbarch, "__gdb_builtin_type_vnd",
1737 TYPE_CODE_UNION);
1738
1739 elem = builtin_type (gdbarch)->builtin_double;
1740 append_composite_type_field (t, "f", elem);
1741
1742 elem = builtin_type (gdbarch)->builtin_uint64;
1743 append_composite_type_field (t, "u", elem);
1744
1745 elem = builtin_type (gdbarch)->builtin_int64;
1746 append_composite_type_field (t, "s", elem);
1747
1748 tdep->vnd_type = t;
1749 }
1750
1751 return tdep->vnd_type;
1752 }
1753
1754 /* Return the type for an AdvSISD S register. */
1755
1756 static struct type *
1757 aarch64_vns_type (struct gdbarch *gdbarch)
1758 {
1759 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1760
1761 if (tdep->vns_type == NULL)
1762 {
1763 struct type *t;
1764 struct type *elem;
1765
1766 t = arch_composite_type (gdbarch, "__gdb_builtin_type_vns",
1767 TYPE_CODE_UNION);
1768
1769 elem = builtin_type (gdbarch)->builtin_float;
1770 append_composite_type_field (t, "f", elem);
1771
1772 elem = builtin_type (gdbarch)->builtin_uint32;
1773 append_composite_type_field (t, "u", elem);
1774
1775 elem = builtin_type (gdbarch)->builtin_int32;
1776 append_composite_type_field (t, "s", elem);
1777
1778 tdep->vns_type = t;
1779 }
1780
1781 return tdep->vns_type;
1782 }
1783
1784 /* Return the type for an AdvSISD H register. */
1785
1786 static struct type *
1787 aarch64_vnh_type (struct gdbarch *gdbarch)
1788 {
1789 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1790
1791 if (tdep->vnh_type == NULL)
1792 {
1793 struct type *t;
1794 struct type *elem;
1795
1796 t = arch_composite_type (gdbarch, "__gdb_builtin_type_vnh",
1797 TYPE_CODE_UNION);
1798
1799 elem = builtin_type (gdbarch)->builtin_uint16;
1800 append_composite_type_field (t, "u", elem);
1801
1802 elem = builtin_type (gdbarch)->builtin_int16;
1803 append_composite_type_field (t, "s", elem);
1804
1805 tdep->vnh_type = t;
1806 }
1807
1808 return tdep->vnh_type;
1809 }
1810
1811 /* Return the type for an AdvSISD B register. */
1812
1813 static struct type *
1814 aarch64_vnb_type (struct gdbarch *gdbarch)
1815 {
1816 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1817
1818 if (tdep->vnb_type == NULL)
1819 {
1820 struct type *t;
1821 struct type *elem;
1822
1823 t = arch_composite_type (gdbarch, "__gdb_builtin_type_vnb",
1824 TYPE_CODE_UNION);
1825
1826 elem = builtin_type (gdbarch)->builtin_uint8;
1827 append_composite_type_field (t, "u", elem);
1828
1829 elem = builtin_type (gdbarch)->builtin_int8;
1830 append_composite_type_field (t, "s", elem);
1831
1832 tdep->vnb_type = t;
1833 }
1834
1835 return tdep->vnb_type;
1836 }
1837
1838 /* Return the type for an AdvSISD V register. */
1839
1840 static struct type *
1841 aarch64_vnv_type (struct gdbarch *gdbarch)
1842 {
1843 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1844
1845 if (tdep->vnv_type == NULL)
1846 {
1847 struct type *t = arch_composite_type (gdbarch, "__gdb_builtin_type_vnv",
1848 TYPE_CODE_UNION);
1849
1850 append_composite_type_field (t, "d", aarch64_vnd_type (gdbarch));
1851 append_composite_type_field (t, "s", aarch64_vns_type (gdbarch));
1852 append_composite_type_field (t, "h", aarch64_vnh_type (gdbarch));
1853 append_composite_type_field (t, "b", aarch64_vnb_type (gdbarch));
1854 append_composite_type_field (t, "q", aarch64_vnq_type (gdbarch));
1855
1856 tdep->vnv_type = t;
1857 }
1858
1859 return tdep->vnv_type;
1860 }
1861
1862 /* Implement the "dwarf2_reg_to_regnum" gdbarch method. */
1863
1864 static int
1865 aarch64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
1866 {
1867 if (reg >= AARCH64_DWARF_X0 && reg <= AARCH64_DWARF_X0 + 30)
1868 return AARCH64_X0_REGNUM + reg - AARCH64_DWARF_X0;
1869
1870 if (reg == AARCH64_DWARF_SP)
1871 return AARCH64_SP_REGNUM;
1872
1873 if (reg >= AARCH64_DWARF_V0 && reg <= AARCH64_DWARF_V0 + 31)
1874 return AARCH64_V0_REGNUM + reg - AARCH64_DWARF_V0;
1875
1876 if (reg == AARCH64_DWARF_SVE_VG)
1877 return AARCH64_SVE_VG_REGNUM;
1878
1879 if (reg == AARCH64_DWARF_SVE_FFR)
1880 return AARCH64_SVE_FFR_REGNUM;
1881
1882 if (reg >= AARCH64_DWARF_SVE_P0 && reg <= AARCH64_DWARF_SVE_P0 + 15)
1883 return AARCH64_SVE_P0_REGNUM + reg - AARCH64_DWARF_SVE_P0;
1884
1885 if (reg >= AARCH64_DWARF_SVE_Z0 && reg <= AARCH64_DWARF_SVE_Z0 + 15)
1886 return AARCH64_SVE_Z0_REGNUM + reg - AARCH64_DWARF_SVE_Z0;
1887
1888 return -1;
1889 }
1890
1891 /* Implement the "print_insn" gdbarch method. */
1892
1893 static int
1894 aarch64_gdb_print_insn (bfd_vma memaddr, disassemble_info *info)
1895 {
1896 info->symbols = NULL;
1897 return default_print_insn (memaddr, info);
1898 }
1899
1900 /* AArch64 BRK software debug mode instruction.
1901 Note that AArch64 code is always little-endian.
1902 1101.0100.0010.0000.0000.0000.0000.0000 = 0xd4200000. */
1903 constexpr gdb_byte aarch64_default_breakpoint[] = {0x00, 0x00, 0x20, 0xd4};
1904
1905 typedef BP_MANIPULATION (aarch64_default_breakpoint) aarch64_breakpoint;
1906
1907 /* Extract from an array REGS containing the (raw) register state a
1908 function return value of type TYPE, and copy that, in virtual
1909 format, into VALBUF. */
1910
1911 static void
1912 aarch64_extract_return_value (struct type *type, struct regcache *regs,
1913 gdb_byte *valbuf)
1914 {
1915 struct gdbarch *gdbarch = regs->arch ();
1916 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1917 int elements;
1918 struct type *fundamental_type;
1919
1920 if (aapcs_is_vfp_call_or_return_candidate (type, &elements,
1921 &fundamental_type))
1922 {
1923 int len = TYPE_LENGTH (fundamental_type);
1924
1925 for (int i = 0; i < elements; i++)
1926 {
1927 int regno = AARCH64_V0_REGNUM + i;
1928 /* Enough space for a full vector register. */
1929 gdb_byte buf[register_size (gdbarch, regno)];
1930 gdb_assert (len <= sizeof (buf));
1931
1932 if (aarch64_debug)
1933 {
1934 debug_printf ("read HFA or HVA return value element %d from %s\n",
1935 i + 1,
1936 gdbarch_register_name (gdbarch, regno));
1937 }
1938 regs->cooked_read (regno, buf);
1939
1940 memcpy (valbuf, buf, len);
1941 valbuf += len;
1942 }
1943 }
1944 else if (TYPE_CODE (type) == TYPE_CODE_INT
1945 || TYPE_CODE (type) == TYPE_CODE_CHAR
1946 || TYPE_CODE (type) == TYPE_CODE_BOOL
1947 || TYPE_CODE (type) == TYPE_CODE_PTR
1948 || TYPE_IS_REFERENCE (type)
1949 || TYPE_CODE (type) == TYPE_CODE_ENUM)
1950 {
1951 /* If the type is a plain integer, then the access is
1952 straight-forward. Otherwise we have to play around a bit
1953 more. */
1954 int len = TYPE_LENGTH (type);
1955 int regno = AARCH64_X0_REGNUM;
1956 ULONGEST tmp;
1957
1958 while (len > 0)
1959 {
1960 /* By using store_unsigned_integer we avoid having to do
1961 anything special for small big-endian values. */
1962 regcache_cooked_read_unsigned (regs, regno++, &tmp);
1963 store_unsigned_integer (valbuf,
1964 (len > X_REGISTER_SIZE
1965 ? X_REGISTER_SIZE : len), byte_order, tmp);
1966 len -= X_REGISTER_SIZE;
1967 valbuf += X_REGISTER_SIZE;
1968 }
1969 }
1970 else
1971 {
1972 /* For a structure or union the behaviour is as if the value had
1973 been stored to word-aligned memory and then loaded into
1974 registers with 64-bit load instruction(s). */
1975 int len = TYPE_LENGTH (type);
1976 int regno = AARCH64_X0_REGNUM;
1977 bfd_byte buf[X_REGISTER_SIZE];
1978
1979 while (len > 0)
1980 {
1981 regs->cooked_read (regno++, buf);
1982 memcpy (valbuf, buf, len > X_REGISTER_SIZE ? X_REGISTER_SIZE : len);
1983 len -= X_REGISTER_SIZE;
1984 valbuf += X_REGISTER_SIZE;
1985 }
1986 }
1987 }
1988
1989
1990 /* Will a function return an aggregate type in memory or in a
1991 register? Return 0 if an aggregate type can be returned in a
1992 register, 1 if it must be returned in memory. */
1993
1994 static int
1995 aarch64_return_in_memory (struct gdbarch *gdbarch, struct type *type)
1996 {
1997 type = check_typedef (type);
1998 int elements;
1999 struct type *fundamental_type;
2000
2001 if (aapcs_is_vfp_call_or_return_candidate (type, &elements,
2002 &fundamental_type))
2003 {
2004 /* v0-v7 are used to return values and one register is allocated
2005 for one member. However, HFA or HVA has at most four members. */
2006 return 0;
2007 }
2008
2009 if (TYPE_LENGTH (type) > 16)
2010 {
2011 /* PCS B.6 Aggregates larger than 16 bytes are passed by
2012 invisible reference. */
2013
2014 return 1;
2015 }
2016
2017 return 0;
2018 }
2019
2020 /* Write into appropriate registers a function return value of type
2021 TYPE, given in virtual format. */
2022
2023 static void
2024 aarch64_store_return_value (struct type *type, struct regcache *regs,
2025 const gdb_byte *valbuf)
2026 {
2027 struct gdbarch *gdbarch = regs->arch ();
2028 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2029 int elements;
2030 struct type *fundamental_type;
2031
2032 if (aapcs_is_vfp_call_or_return_candidate (type, &elements,
2033 &fundamental_type))
2034 {
2035 int len = TYPE_LENGTH (fundamental_type);
2036
2037 for (int i = 0; i < elements; i++)
2038 {
2039 int regno = AARCH64_V0_REGNUM + i;
2040 /* Enough space for a full vector register. */
2041 gdb_byte tmpbuf[register_size (gdbarch, regno)];
2042 gdb_assert (len <= sizeof (tmpbuf));
2043
2044 if (aarch64_debug)
2045 {
2046 debug_printf ("write HFA or HVA return value element %d to %s\n",
2047 i + 1,
2048 gdbarch_register_name (gdbarch, regno));
2049 }
2050
2051 memcpy (tmpbuf, valbuf,
2052 len > V_REGISTER_SIZE ? V_REGISTER_SIZE : len);
2053 regs->cooked_write (regno, tmpbuf);
2054 valbuf += len;
2055 }
2056 }
2057 else if (TYPE_CODE (type) == TYPE_CODE_INT
2058 || TYPE_CODE (type) == TYPE_CODE_CHAR
2059 || TYPE_CODE (type) == TYPE_CODE_BOOL
2060 || TYPE_CODE (type) == TYPE_CODE_PTR
2061 || TYPE_IS_REFERENCE (type)
2062 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2063 {
2064 if (TYPE_LENGTH (type) <= X_REGISTER_SIZE)
2065 {
2066 /* Values of one word or less are zero/sign-extended and
2067 returned in r0. */
2068 bfd_byte tmpbuf[X_REGISTER_SIZE];
2069 LONGEST val = unpack_long (type, valbuf);
2070
2071 store_signed_integer (tmpbuf, X_REGISTER_SIZE, byte_order, val);
2072 regs->cooked_write (AARCH64_X0_REGNUM, tmpbuf);
2073 }
2074 else
2075 {
2076 /* Integral values greater than one word are stored in
2077 consecutive registers starting with r0. This will always
2078 be a multiple of the regiser size. */
2079 int len = TYPE_LENGTH (type);
2080 int regno = AARCH64_X0_REGNUM;
2081
2082 while (len > 0)
2083 {
2084 regs->cooked_write (regno++, valbuf);
2085 len -= X_REGISTER_SIZE;
2086 valbuf += X_REGISTER_SIZE;
2087 }
2088 }
2089 }
2090 else
2091 {
2092 /* For a structure or union the behaviour is as if the value had
2093 been stored to word-aligned memory and then loaded into
2094 registers with 64-bit load instruction(s). */
2095 int len = TYPE_LENGTH (type);
2096 int regno = AARCH64_X0_REGNUM;
2097 bfd_byte tmpbuf[X_REGISTER_SIZE];
2098
2099 while (len > 0)
2100 {
2101 memcpy (tmpbuf, valbuf,
2102 len > X_REGISTER_SIZE ? X_REGISTER_SIZE : len);
2103 regs->cooked_write (regno++, tmpbuf);
2104 len -= X_REGISTER_SIZE;
2105 valbuf += X_REGISTER_SIZE;
2106 }
2107 }
2108 }
2109
2110 /* Implement the "return_value" gdbarch method. */
2111
2112 static enum return_value_convention
2113 aarch64_return_value (struct gdbarch *gdbarch, struct value *func_value,
2114 struct type *valtype, struct regcache *regcache,
2115 gdb_byte *readbuf, const gdb_byte *writebuf)
2116 {
2117
2118 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
2119 || TYPE_CODE (valtype) == TYPE_CODE_UNION
2120 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
2121 {
2122 if (aarch64_return_in_memory (gdbarch, valtype))
2123 {
2124 if (aarch64_debug)
2125 debug_printf ("return value in memory\n");
2126 return RETURN_VALUE_STRUCT_CONVENTION;
2127 }
2128 }
2129
2130 if (writebuf)
2131 aarch64_store_return_value (valtype, regcache, writebuf);
2132
2133 if (readbuf)
2134 aarch64_extract_return_value (valtype, regcache, readbuf);
2135
2136 if (aarch64_debug)
2137 debug_printf ("return value in registers\n");
2138
2139 return RETURN_VALUE_REGISTER_CONVENTION;
2140 }
2141
2142 /* Implement the "get_longjmp_target" gdbarch method. */
2143
2144 static int
2145 aarch64_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2146 {
2147 CORE_ADDR jb_addr;
2148 gdb_byte buf[X_REGISTER_SIZE];
2149 struct gdbarch *gdbarch = get_frame_arch (frame);
2150 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2151 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2152
2153 jb_addr = get_frame_register_unsigned (frame, AARCH64_X0_REGNUM);
2154
2155 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
2156 X_REGISTER_SIZE))
2157 return 0;
2158
2159 *pc = extract_unsigned_integer (buf, X_REGISTER_SIZE, byte_order);
2160 return 1;
2161 }
2162
2163 /* Implement the "gen_return_address" gdbarch method. */
2164
2165 static void
2166 aarch64_gen_return_address (struct gdbarch *gdbarch,
2167 struct agent_expr *ax, struct axs_value *value,
2168 CORE_ADDR scope)
2169 {
2170 value->type = register_type (gdbarch, AARCH64_LR_REGNUM);
2171 value->kind = axs_lvalue_register;
2172 value->u.reg = AARCH64_LR_REGNUM;
2173 }
2174 \f
2175
2176 /* Return the pseudo register name corresponding to register regnum. */
2177
2178 static const char *
2179 aarch64_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
2180 {
2181 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2182
2183 static const char *const q_name[] =
2184 {
2185 "q0", "q1", "q2", "q3",
2186 "q4", "q5", "q6", "q7",
2187 "q8", "q9", "q10", "q11",
2188 "q12", "q13", "q14", "q15",
2189 "q16", "q17", "q18", "q19",
2190 "q20", "q21", "q22", "q23",
2191 "q24", "q25", "q26", "q27",
2192 "q28", "q29", "q30", "q31",
2193 };
2194
2195 static const char *const d_name[] =
2196 {
2197 "d0", "d1", "d2", "d3",
2198 "d4", "d5", "d6", "d7",
2199 "d8", "d9", "d10", "d11",
2200 "d12", "d13", "d14", "d15",
2201 "d16", "d17", "d18", "d19",
2202 "d20", "d21", "d22", "d23",
2203 "d24", "d25", "d26", "d27",
2204 "d28", "d29", "d30", "d31",
2205 };
2206
2207 static const char *const s_name[] =
2208 {
2209 "s0", "s1", "s2", "s3",
2210 "s4", "s5", "s6", "s7",
2211 "s8", "s9", "s10", "s11",
2212 "s12", "s13", "s14", "s15",
2213 "s16", "s17", "s18", "s19",
2214 "s20", "s21", "s22", "s23",
2215 "s24", "s25", "s26", "s27",
2216 "s28", "s29", "s30", "s31",
2217 };
2218
2219 static const char *const h_name[] =
2220 {
2221 "h0", "h1", "h2", "h3",
2222 "h4", "h5", "h6", "h7",
2223 "h8", "h9", "h10", "h11",
2224 "h12", "h13", "h14", "h15",
2225 "h16", "h17", "h18", "h19",
2226 "h20", "h21", "h22", "h23",
2227 "h24", "h25", "h26", "h27",
2228 "h28", "h29", "h30", "h31",
2229 };
2230
2231 static const char *const b_name[] =
2232 {
2233 "b0", "b1", "b2", "b3",
2234 "b4", "b5", "b6", "b7",
2235 "b8", "b9", "b10", "b11",
2236 "b12", "b13", "b14", "b15",
2237 "b16", "b17", "b18", "b19",
2238 "b20", "b21", "b22", "b23",
2239 "b24", "b25", "b26", "b27",
2240 "b28", "b29", "b30", "b31",
2241 };
2242
2243 regnum -= gdbarch_num_regs (gdbarch);
2244
2245 if (regnum >= AARCH64_Q0_REGNUM && regnum < AARCH64_Q0_REGNUM + 32)
2246 return q_name[regnum - AARCH64_Q0_REGNUM];
2247
2248 if (regnum >= AARCH64_D0_REGNUM && regnum < AARCH64_D0_REGNUM + 32)
2249 return d_name[regnum - AARCH64_D0_REGNUM];
2250
2251 if (regnum >= AARCH64_S0_REGNUM && regnum < AARCH64_S0_REGNUM + 32)
2252 return s_name[regnum - AARCH64_S0_REGNUM];
2253
2254 if (regnum >= AARCH64_H0_REGNUM && regnum < AARCH64_H0_REGNUM + 32)
2255 return h_name[regnum - AARCH64_H0_REGNUM];
2256
2257 if (regnum >= AARCH64_B0_REGNUM && regnum < AARCH64_B0_REGNUM + 32)
2258 return b_name[regnum - AARCH64_B0_REGNUM];
2259
2260 if (tdep->has_sve ())
2261 {
2262 static const char *const sve_v_name[] =
2263 {
2264 "v0", "v1", "v2", "v3",
2265 "v4", "v5", "v6", "v7",
2266 "v8", "v9", "v10", "v11",
2267 "v12", "v13", "v14", "v15",
2268 "v16", "v17", "v18", "v19",
2269 "v20", "v21", "v22", "v23",
2270 "v24", "v25", "v26", "v27",
2271 "v28", "v29", "v30", "v31",
2272 };
2273
2274 if (regnum >= AARCH64_SVE_V0_REGNUM
2275 && regnum < AARCH64_SVE_V0_REGNUM + AARCH64_V_REGS_NUM)
2276 return sve_v_name[regnum - AARCH64_SVE_V0_REGNUM];
2277 }
2278
2279 internal_error (__FILE__, __LINE__,
2280 _("aarch64_pseudo_register_name: bad register number %d"),
2281 regnum);
2282 }
2283
2284 /* Implement the "pseudo_register_type" tdesc_arch_data method. */
2285
2286 static struct type *
2287 aarch64_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
2288 {
2289 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2290
2291 regnum -= gdbarch_num_regs (gdbarch);
2292
2293 if (regnum >= AARCH64_Q0_REGNUM && regnum < AARCH64_Q0_REGNUM + 32)
2294 return aarch64_vnq_type (gdbarch);
2295
2296 if (regnum >= AARCH64_D0_REGNUM && regnum < AARCH64_D0_REGNUM + 32)
2297 return aarch64_vnd_type (gdbarch);
2298
2299 if (regnum >= AARCH64_S0_REGNUM && regnum < AARCH64_S0_REGNUM + 32)
2300 return aarch64_vns_type (gdbarch);
2301
2302 if (regnum >= AARCH64_H0_REGNUM && regnum < AARCH64_H0_REGNUM + 32)
2303 return aarch64_vnh_type (gdbarch);
2304
2305 if (regnum >= AARCH64_B0_REGNUM && regnum < AARCH64_B0_REGNUM + 32)
2306 return aarch64_vnb_type (gdbarch);
2307
2308 if (tdep->has_sve () && regnum >= AARCH64_SVE_V0_REGNUM
2309 && regnum < AARCH64_SVE_V0_REGNUM + AARCH64_V_REGS_NUM)
2310 return aarch64_vnv_type (gdbarch);
2311
2312 internal_error (__FILE__, __LINE__,
2313 _("aarch64_pseudo_register_type: bad register number %d"),
2314 regnum);
2315 }
2316
2317 /* Implement the "pseudo_register_reggroup_p" tdesc_arch_data method. */
2318
2319 static int
2320 aarch64_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2321 struct reggroup *group)
2322 {
2323 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2324
2325 regnum -= gdbarch_num_regs (gdbarch);
2326
2327 if (regnum >= AARCH64_Q0_REGNUM && regnum < AARCH64_Q0_REGNUM + 32)
2328 return group == all_reggroup || group == vector_reggroup;
2329 else if (regnum >= AARCH64_D0_REGNUM && regnum < AARCH64_D0_REGNUM + 32)
2330 return (group == all_reggroup || group == vector_reggroup
2331 || group == float_reggroup);
2332 else if (regnum >= AARCH64_S0_REGNUM && regnum < AARCH64_S0_REGNUM + 32)
2333 return (group == all_reggroup || group == vector_reggroup
2334 || group == float_reggroup);
2335 else if (regnum >= AARCH64_H0_REGNUM && regnum < AARCH64_H0_REGNUM + 32)
2336 return group == all_reggroup || group == vector_reggroup;
2337 else if (regnum >= AARCH64_B0_REGNUM && regnum < AARCH64_B0_REGNUM + 32)
2338 return group == all_reggroup || group == vector_reggroup;
2339 else if (tdep->has_sve () && regnum >= AARCH64_SVE_V0_REGNUM
2340 && regnum < AARCH64_SVE_V0_REGNUM + AARCH64_V_REGS_NUM)
2341 return group == all_reggroup || group == vector_reggroup;
2342
2343 return group == all_reggroup;
2344 }
2345
2346 /* Helper for aarch64_pseudo_read_value. */
2347
2348 static struct value *
2349 aarch64_pseudo_read_value_1 (struct gdbarch *gdbarch,
2350 readable_regcache *regcache, int regnum_offset,
2351 int regsize, struct value *result_value)
2352 {
2353 unsigned v_regnum = AARCH64_V0_REGNUM + regnum_offset;
2354
2355 /* Enough space for a full vector register. */
2356 gdb_byte reg_buf[register_size (gdbarch, AARCH64_V0_REGNUM)];
2357 gdb_static_assert (AARCH64_V0_REGNUM == AARCH64_SVE_Z0_REGNUM);
2358
2359 if (regcache->raw_read (v_regnum, reg_buf) != REG_VALID)
2360 mark_value_bytes_unavailable (result_value, 0,
2361 TYPE_LENGTH (value_type (result_value)));
2362 else
2363 memcpy (value_contents_raw (result_value), reg_buf, regsize);
2364
2365 return result_value;
2366 }
2367
2368 /* Implement the "pseudo_register_read_value" gdbarch method. */
2369
2370 static struct value *
2371 aarch64_pseudo_read_value (struct gdbarch *gdbarch, readable_regcache *regcache,
2372 int regnum)
2373 {
2374 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2375 struct value *result_value = allocate_value (register_type (gdbarch, regnum));
2376
2377 VALUE_LVAL (result_value) = lval_register;
2378 VALUE_REGNUM (result_value) = regnum;
2379
2380 regnum -= gdbarch_num_regs (gdbarch);
2381
2382 if (regnum >= AARCH64_Q0_REGNUM && regnum < AARCH64_Q0_REGNUM + 32)
2383 return aarch64_pseudo_read_value_1 (gdbarch, regcache,
2384 regnum - AARCH64_Q0_REGNUM,
2385 Q_REGISTER_SIZE, result_value);
2386
2387 if (regnum >= AARCH64_D0_REGNUM && regnum < AARCH64_D0_REGNUM + 32)
2388 return aarch64_pseudo_read_value_1 (gdbarch, regcache,
2389 regnum - AARCH64_D0_REGNUM,
2390 D_REGISTER_SIZE, result_value);
2391
2392 if (regnum >= AARCH64_S0_REGNUM && regnum < AARCH64_S0_REGNUM + 32)
2393 return aarch64_pseudo_read_value_1 (gdbarch, regcache,
2394 regnum - AARCH64_S0_REGNUM,
2395 S_REGISTER_SIZE, result_value);
2396
2397 if (regnum >= AARCH64_H0_REGNUM && regnum < AARCH64_H0_REGNUM + 32)
2398 return aarch64_pseudo_read_value_1 (gdbarch, regcache,
2399 regnum - AARCH64_H0_REGNUM,
2400 H_REGISTER_SIZE, result_value);
2401
2402 if (regnum >= AARCH64_B0_REGNUM && regnum < AARCH64_B0_REGNUM + 32)
2403 return aarch64_pseudo_read_value_1 (gdbarch, regcache,
2404 regnum - AARCH64_B0_REGNUM,
2405 B_REGISTER_SIZE, result_value);
2406
2407 if (tdep->has_sve () && regnum >= AARCH64_SVE_V0_REGNUM
2408 && regnum < AARCH64_SVE_V0_REGNUM + 32)
2409 return aarch64_pseudo_read_value_1 (gdbarch, regcache,
2410 regnum - AARCH64_SVE_V0_REGNUM,
2411 V_REGISTER_SIZE, result_value);
2412
2413 gdb_assert_not_reached ("regnum out of bound");
2414 }
2415
2416 /* Helper for aarch64_pseudo_write. */
2417
2418 static void
2419 aarch64_pseudo_write_1 (struct gdbarch *gdbarch, struct regcache *regcache,
2420 int regnum_offset, int regsize, const gdb_byte *buf)
2421 {
2422 unsigned v_regnum = AARCH64_V0_REGNUM + regnum_offset;
2423
2424 /* Enough space for a full vector register. */
2425 gdb_byte reg_buf[register_size (gdbarch, AARCH64_V0_REGNUM)];
2426 gdb_static_assert (AARCH64_V0_REGNUM == AARCH64_SVE_Z0_REGNUM);
2427
2428 /* Ensure the register buffer is zero, we want gdb writes of the
2429 various 'scalar' pseudo registers to behavior like architectural
2430 writes, register width bytes are written the remainder are set to
2431 zero. */
2432 memset (reg_buf, 0, register_size (gdbarch, AARCH64_V0_REGNUM));
2433
2434 memcpy (reg_buf, buf, regsize);
2435 regcache->raw_write (v_regnum, reg_buf);
2436 }
2437
2438 /* Implement the "pseudo_register_write" gdbarch method. */
2439
2440 static void
2441 aarch64_pseudo_write (struct gdbarch *gdbarch, struct regcache *regcache,
2442 int regnum, const gdb_byte *buf)
2443 {
2444 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2445 regnum -= gdbarch_num_regs (gdbarch);
2446
2447 if (regnum >= AARCH64_Q0_REGNUM && regnum < AARCH64_Q0_REGNUM + 32)
2448 return aarch64_pseudo_write_1 (gdbarch, regcache,
2449 regnum - AARCH64_Q0_REGNUM, Q_REGISTER_SIZE,
2450 buf);
2451
2452 if (regnum >= AARCH64_D0_REGNUM && regnum < AARCH64_D0_REGNUM + 32)
2453 return aarch64_pseudo_write_1 (gdbarch, regcache,
2454 regnum - AARCH64_D0_REGNUM, D_REGISTER_SIZE,
2455 buf);
2456
2457 if (regnum >= AARCH64_S0_REGNUM && regnum < AARCH64_S0_REGNUM + 32)
2458 return aarch64_pseudo_write_1 (gdbarch, regcache,
2459 regnum - AARCH64_S0_REGNUM, S_REGISTER_SIZE,
2460 buf);
2461
2462 if (regnum >= AARCH64_H0_REGNUM && regnum < AARCH64_H0_REGNUM + 32)
2463 return aarch64_pseudo_write_1 (gdbarch, regcache,
2464 regnum - AARCH64_H0_REGNUM, H_REGISTER_SIZE,
2465 buf);
2466
2467 if (regnum >= AARCH64_B0_REGNUM && regnum < AARCH64_B0_REGNUM + 32)
2468 return aarch64_pseudo_write_1 (gdbarch, regcache,
2469 regnum - AARCH64_B0_REGNUM, B_REGISTER_SIZE,
2470 buf);
2471
2472 if (tdep->has_sve () && regnum >= AARCH64_SVE_V0_REGNUM
2473 && regnum < AARCH64_SVE_V0_REGNUM + 32)
2474 return aarch64_pseudo_write_1 (gdbarch, regcache,
2475 regnum - AARCH64_SVE_V0_REGNUM,
2476 V_REGISTER_SIZE, buf);
2477
2478 gdb_assert_not_reached ("regnum out of bound");
2479 }
2480
2481 /* Callback function for user_reg_add. */
2482
2483 static struct value *
2484 value_of_aarch64_user_reg (struct frame_info *frame, const void *baton)
2485 {
2486 const int *reg_p = (const int *) baton;
2487
2488 return value_of_register (*reg_p, frame);
2489 }
2490 \f
2491
2492 /* Implement the "software_single_step" gdbarch method, needed to
2493 single step through atomic sequences on AArch64. */
2494
2495 static std::vector<CORE_ADDR>
2496 aarch64_software_single_step (struct regcache *regcache)
2497 {
2498 struct gdbarch *gdbarch = regcache->arch ();
2499 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
2500 const int insn_size = 4;
2501 const int atomic_sequence_length = 16; /* Instruction sequence length. */
2502 CORE_ADDR pc = regcache_read_pc (regcache);
2503 CORE_ADDR breaks[2] = { CORE_ADDR_MAX, CORE_ADDR_MAX };
2504 CORE_ADDR loc = pc;
2505 CORE_ADDR closing_insn = 0;
2506 uint32_t insn = read_memory_unsigned_integer (loc, insn_size,
2507 byte_order_for_code);
2508 int index;
2509 int insn_count;
2510 int bc_insn_count = 0; /* Conditional branch instruction count. */
2511 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
2512 aarch64_inst inst;
2513
2514 if (aarch64_decode_insn (insn, &inst, 1, NULL) != 0)
2515 return {};
2516
2517 /* Look for a Load Exclusive instruction which begins the sequence. */
2518 if (inst.opcode->iclass != ldstexcl || bit (insn, 22) == 0)
2519 return {};
2520
2521 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
2522 {
2523 loc += insn_size;
2524 insn = read_memory_unsigned_integer (loc, insn_size,
2525 byte_order_for_code);
2526
2527 if (aarch64_decode_insn (insn, &inst, 1, NULL) != 0)
2528 return {};
2529 /* Check if the instruction is a conditional branch. */
2530 if (inst.opcode->iclass == condbranch)
2531 {
2532 gdb_assert (inst.operands[0].type == AARCH64_OPND_ADDR_PCREL19);
2533
2534 if (bc_insn_count >= 1)
2535 return {};
2536
2537 /* It is, so we'll try to set a breakpoint at the destination. */
2538 breaks[1] = loc + inst.operands[0].imm.value;
2539
2540 bc_insn_count++;
2541 last_breakpoint++;
2542 }
2543
2544 /* Look for the Store Exclusive which closes the atomic sequence. */
2545 if (inst.opcode->iclass == ldstexcl && bit (insn, 22) == 0)
2546 {
2547 closing_insn = loc;
2548 break;
2549 }
2550 }
2551
2552 /* We didn't find a closing Store Exclusive instruction, fall back. */
2553 if (!closing_insn)
2554 return {};
2555
2556 /* Insert breakpoint after the end of the atomic sequence. */
2557 breaks[0] = loc + insn_size;
2558
2559 /* Check for duplicated breakpoints, and also check that the second
2560 breakpoint is not within the atomic sequence. */
2561 if (last_breakpoint
2562 && (breaks[1] == breaks[0]
2563 || (breaks[1] >= pc && breaks[1] <= closing_insn)))
2564 last_breakpoint = 0;
2565
2566 std::vector<CORE_ADDR> next_pcs;
2567
2568 /* Insert the breakpoint at the end of the sequence, and one at the
2569 destination of the conditional branch, if it exists. */
2570 for (index = 0; index <= last_breakpoint; index++)
2571 next_pcs.push_back (breaks[index]);
2572
2573 return next_pcs;
2574 }
2575
2576 struct aarch64_displaced_step_closure : public displaced_step_closure
2577 {
2578 /* It is true when condition instruction, such as B.CON, TBZ, etc,
2579 is being displaced stepping. */
2580 int cond = 0;
2581
2582 /* PC adjustment offset after displaced stepping. */
2583 int32_t pc_adjust = 0;
2584 };
2585
2586 /* Data when visiting instructions for displaced stepping. */
2587
2588 struct aarch64_displaced_step_data
2589 {
2590 struct aarch64_insn_data base;
2591
2592 /* The address where the instruction will be executed at. */
2593 CORE_ADDR new_addr;
2594 /* Buffer of instructions to be copied to NEW_ADDR to execute. */
2595 uint32_t insn_buf[DISPLACED_MODIFIED_INSNS];
2596 /* Number of instructions in INSN_BUF. */
2597 unsigned insn_count;
2598 /* Registers when doing displaced stepping. */
2599 struct regcache *regs;
2600
2601 aarch64_displaced_step_closure *dsc;
2602 };
2603
2604 /* Implementation of aarch64_insn_visitor method "b". */
2605
2606 static void
2607 aarch64_displaced_step_b (const int is_bl, const int32_t offset,
2608 struct aarch64_insn_data *data)
2609 {
2610 struct aarch64_displaced_step_data *dsd
2611 = (struct aarch64_displaced_step_data *) data;
2612 int64_t new_offset = data->insn_addr - dsd->new_addr + offset;
2613
2614 if (can_encode_int32 (new_offset, 28))
2615 {
2616 /* Emit B rather than BL, because executing BL on a new address
2617 will get the wrong address into LR. In order to avoid this,
2618 we emit B, and update LR if the instruction is BL. */
2619 emit_b (dsd->insn_buf, 0, new_offset);
2620 dsd->insn_count++;
2621 }
2622 else
2623 {
2624 /* Write NOP. */
2625 emit_nop (dsd->insn_buf);
2626 dsd->insn_count++;
2627 dsd->dsc->pc_adjust = offset;
2628 }
2629
2630 if (is_bl)
2631 {
2632 /* Update LR. */
2633 regcache_cooked_write_unsigned (dsd->regs, AARCH64_LR_REGNUM,
2634 data->insn_addr + 4);
2635 }
2636 }
2637
2638 /* Implementation of aarch64_insn_visitor method "b_cond". */
2639
2640 static void
2641 aarch64_displaced_step_b_cond (const unsigned cond, const int32_t offset,
2642 struct aarch64_insn_data *data)
2643 {
2644 struct aarch64_displaced_step_data *dsd
2645 = (struct aarch64_displaced_step_data *) data;
2646
2647 /* GDB has to fix up PC after displaced step this instruction
2648 differently according to the condition is true or false. Instead
2649 of checking COND against conditional flags, we can use
2650 the following instructions, and GDB can tell how to fix up PC
2651 according to the PC value.
2652
2653 B.COND TAKEN ; If cond is true, then jump to TAKEN.
2654 INSN1 ;
2655 TAKEN:
2656 INSN2
2657 */
2658
2659 emit_bcond (dsd->insn_buf, cond, 8);
2660 dsd->dsc->cond = 1;
2661 dsd->dsc->pc_adjust = offset;
2662 dsd->insn_count = 1;
2663 }
2664
2665 /* Dynamically allocate a new register. If we know the register
2666 statically, we should make it a global as above instead of using this
2667 helper function. */
2668
2669 static struct aarch64_register
2670 aarch64_register (unsigned num, int is64)
2671 {
2672 return (struct aarch64_register) { num, is64 };
2673 }
2674
2675 /* Implementation of aarch64_insn_visitor method "cb". */
2676
2677 static void
2678 aarch64_displaced_step_cb (const int32_t offset, const int is_cbnz,
2679 const unsigned rn, int is64,
2680 struct aarch64_insn_data *data)
2681 {
2682 struct aarch64_displaced_step_data *dsd
2683 = (struct aarch64_displaced_step_data *) data;
2684
2685 /* The offset is out of range for a compare and branch
2686 instruction. We can use the following instructions instead:
2687
2688 CBZ xn, TAKEN ; xn == 0, then jump to TAKEN.
2689 INSN1 ;
2690 TAKEN:
2691 INSN2
2692 */
2693 emit_cb (dsd->insn_buf, is_cbnz, aarch64_register (rn, is64), 8);
2694 dsd->insn_count = 1;
2695 dsd->dsc->cond = 1;
2696 dsd->dsc->pc_adjust = offset;
2697 }
2698
2699 /* Implementation of aarch64_insn_visitor method "tb". */
2700
2701 static void
2702 aarch64_displaced_step_tb (const int32_t offset, int is_tbnz,
2703 const unsigned rt, unsigned bit,
2704 struct aarch64_insn_data *data)
2705 {
2706 struct aarch64_displaced_step_data *dsd
2707 = (struct aarch64_displaced_step_data *) data;
2708
2709 /* The offset is out of range for a test bit and branch
2710 instruction We can use the following instructions instead:
2711
2712 TBZ xn, #bit, TAKEN ; xn[bit] == 0, then jump to TAKEN.
2713 INSN1 ;
2714 TAKEN:
2715 INSN2
2716
2717 */
2718 emit_tb (dsd->insn_buf, is_tbnz, bit, aarch64_register (rt, 1), 8);
2719 dsd->insn_count = 1;
2720 dsd->dsc->cond = 1;
2721 dsd->dsc->pc_adjust = offset;
2722 }
2723
2724 /* Implementation of aarch64_insn_visitor method "adr". */
2725
2726 static void
2727 aarch64_displaced_step_adr (const int32_t offset, const unsigned rd,
2728 const int is_adrp, struct aarch64_insn_data *data)
2729 {
2730 struct aarch64_displaced_step_data *dsd
2731 = (struct aarch64_displaced_step_data *) data;
2732 /* We know exactly the address the ADR{P,} instruction will compute.
2733 We can just write it to the destination register. */
2734 CORE_ADDR address = data->insn_addr + offset;
2735
2736 if (is_adrp)
2737 {
2738 /* Clear the lower 12 bits of the offset to get the 4K page. */
2739 regcache_cooked_write_unsigned (dsd->regs, AARCH64_X0_REGNUM + rd,
2740 address & ~0xfff);
2741 }
2742 else
2743 regcache_cooked_write_unsigned (dsd->regs, AARCH64_X0_REGNUM + rd,
2744 address);
2745
2746 dsd->dsc->pc_adjust = 4;
2747 emit_nop (dsd->insn_buf);
2748 dsd->insn_count = 1;
2749 }
2750
2751 /* Implementation of aarch64_insn_visitor method "ldr_literal". */
2752
2753 static void
2754 aarch64_displaced_step_ldr_literal (const int32_t offset, const int is_sw,
2755 const unsigned rt, const int is64,
2756 struct aarch64_insn_data *data)
2757 {
2758 struct aarch64_displaced_step_data *dsd
2759 = (struct aarch64_displaced_step_data *) data;
2760 CORE_ADDR address = data->insn_addr + offset;
2761 struct aarch64_memory_operand zero = { MEMORY_OPERAND_OFFSET, 0 };
2762
2763 regcache_cooked_write_unsigned (dsd->regs, AARCH64_X0_REGNUM + rt,
2764 address);
2765
2766 if (is_sw)
2767 dsd->insn_count = emit_ldrsw (dsd->insn_buf, aarch64_register (rt, 1),
2768 aarch64_register (rt, 1), zero);
2769 else
2770 dsd->insn_count = emit_ldr (dsd->insn_buf, aarch64_register (rt, is64),
2771 aarch64_register (rt, 1), zero);
2772
2773 dsd->dsc->pc_adjust = 4;
2774 }
2775
2776 /* Implementation of aarch64_insn_visitor method "others". */
2777
2778 static void
2779 aarch64_displaced_step_others (const uint32_t insn,
2780 struct aarch64_insn_data *data)
2781 {
2782 struct aarch64_displaced_step_data *dsd
2783 = (struct aarch64_displaced_step_data *) data;
2784
2785 aarch64_emit_insn (dsd->insn_buf, insn);
2786 dsd->insn_count = 1;
2787
2788 if ((insn & 0xfffffc1f) == 0xd65f0000)
2789 {
2790 /* RET */
2791 dsd->dsc->pc_adjust = 0;
2792 }
2793 else
2794 dsd->dsc->pc_adjust = 4;
2795 }
2796
2797 static const struct aarch64_insn_visitor visitor =
2798 {
2799 aarch64_displaced_step_b,
2800 aarch64_displaced_step_b_cond,
2801 aarch64_displaced_step_cb,
2802 aarch64_displaced_step_tb,
2803 aarch64_displaced_step_adr,
2804 aarch64_displaced_step_ldr_literal,
2805 aarch64_displaced_step_others,
2806 };
2807
2808 /* Implement the "displaced_step_copy_insn" gdbarch method. */
2809
2810 struct displaced_step_closure *
2811 aarch64_displaced_step_copy_insn (struct gdbarch *gdbarch,
2812 CORE_ADDR from, CORE_ADDR to,
2813 struct regcache *regs)
2814 {
2815 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
2816 uint32_t insn = read_memory_unsigned_integer (from, 4, byte_order_for_code);
2817 struct aarch64_displaced_step_data dsd;
2818 aarch64_inst inst;
2819
2820 if (aarch64_decode_insn (insn, &inst, 1, NULL) != 0)
2821 return NULL;
2822
2823 /* Look for a Load Exclusive instruction which begins the sequence. */
2824 if (inst.opcode->iclass == ldstexcl && bit (insn, 22))
2825 {
2826 /* We can't displaced step atomic sequences. */
2827 return NULL;
2828 }
2829
2830 std::unique_ptr<aarch64_displaced_step_closure> dsc
2831 (new aarch64_displaced_step_closure);
2832 dsd.base.insn_addr = from;
2833 dsd.new_addr = to;
2834 dsd.regs = regs;
2835 dsd.dsc = dsc.get ();
2836 dsd.insn_count = 0;
2837 aarch64_relocate_instruction (insn, &visitor,
2838 (struct aarch64_insn_data *) &dsd);
2839 gdb_assert (dsd.insn_count <= DISPLACED_MODIFIED_INSNS);
2840
2841 if (dsd.insn_count != 0)
2842 {
2843 int i;
2844
2845 /* Instruction can be relocated to scratch pad. Copy
2846 relocated instruction(s) there. */
2847 for (i = 0; i < dsd.insn_count; i++)
2848 {
2849 if (debug_displaced)
2850 {
2851 debug_printf ("displaced: writing insn ");
2852 debug_printf ("%.8x", dsd.insn_buf[i]);
2853 debug_printf (" at %s\n", paddress (gdbarch, to + i * 4));
2854 }
2855 write_memory_unsigned_integer (to + i * 4, 4, byte_order_for_code,
2856 (ULONGEST) dsd.insn_buf[i]);
2857 }
2858 }
2859 else
2860 {
2861 dsc = NULL;
2862 }
2863
2864 return dsc.release ();
2865 }
2866
2867 /* Implement the "displaced_step_fixup" gdbarch method. */
2868
2869 void
2870 aarch64_displaced_step_fixup (struct gdbarch *gdbarch,
2871 struct displaced_step_closure *dsc_,
2872 CORE_ADDR from, CORE_ADDR to,
2873 struct regcache *regs)
2874 {
2875 aarch64_displaced_step_closure *dsc = (aarch64_displaced_step_closure *) dsc_;
2876
2877 if (dsc->cond)
2878 {
2879 ULONGEST pc;
2880
2881 regcache_cooked_read_unsigned (regs, AARCH64_PC_REGNUM, &pc);
2882 if (pc - to == 8)
2883 {
2884 /* Condition is true. */
2885 }
2886 else if (pc - to == 4)
2887 {
2888 /* Condition is false. */
2889 dsc->pc_adjust = 4;
2890 }
2891 else
2892 gdb_assert_not_reached ("Unexpected PC value after displaced stepping");
2893 }
2894
2895 if (dsc->pc_adjust != 0)
2896 {
2897 if (debug_displaced)
2898 {
2899 debug_printf ("displaced: fixup: set PC to %s:%d\n",
2900 paddress (gdbarch, from), dsc->pc_adjust);
2901 }
2902 regcache_cooked_write_unsigned (regs, AARCH64_PC_REGNUM,
2903 from + dsc->pc_adjust);
2904 }
2905 }
2906
2907 /* Implement the "displaced_step_hw_singlestep" gdbarch method. */
2908
2909 int
2910 aarch64_displaced_step_hw_singlestep (struct gdbarch *gdbarch,
2911 struct displaced_step_closure *closure)
2912 {
2913 return 1;
2914 }
2915
2916 /* Get the correct target description for the given VQ value.
2917 If VQ is zero then it is assumed SVE is not supported.
2918 (It is not possible to set VQ to zero on an SVE system). */
2919
2920 const target_desc *
2921 aarch64_read_description (uint64_t vq)
2922 {
2923 if (vq > AARCH64_MAX_SVE_VQ)
2924 error (_("VQ is %" PRIu64 ", maximum supported value is %d"), vq,
2925 AARCH64_MAX_SVE_VQ);
2926
2927 struct target_desc *tdesc = tdesc_aarch64_list[vq];
2928
2929 if (tdesc == NULL)
2930 {
2931 tdesc = aarch64_create_target_description (vq);
2932 tdesc_aarch64_list[vq] = tdesc;
2933 }
2934
2935 return tdesc;
2936 }
2937
2938 /* Return the VQ used when creating the target description TDESC. */
2939
2940 static uint64_t
2941 aarch64_get_tdesc_vq (const struct target_desc *tdesc)
2942 {
2943 const struct tdesc_feature *feature_sve;
2944
2945 if (!tdesc_has_registers (tdesc))
2946 return 0;
2947
2948 feature_sve = tdesc_find_feature (tdesc, "org.gnu.gdb.aarch64.sve");
2949
2950 if (feature_sve == nullptr)
2951 return 0;
2952
2953 uint64_t vl = tdesc_register_bitsize (feature_sve,
2954 aarch64_sve_register_names[0]) / 8;
2955 return sve_vq_from_vl (vl);
2956 }
2957
2958 /* Add all the expected register sets into GDBARCH. */
2959
2960 static void
2961 aarch64_add_reggroups (struct gdbarch *gdbarch)
2962 {
2963 reggroup_add (gdbarch, general_reggroup);
2964 reggroup_add (gdbarch, float_reggroup);
2965 reggroup_add (gdbarch, system_reggroup);
2966 reggroup_add (gdbarch, vector_reggroup);
2967 reggroup_add (gdbarch, all_reggroup);
2968 reggroup_add (gdbarch, save_reggroup);
2969 reggroup_add (gdbarch, restore_reggroup);
2970 }
2971
2972 /* Initialize the current architecture based on INFO. If possible,
2973 re-use an architecture from ARCHES, which is a list of
2974 architectures already created during this debugging session.
2975
2976 Called e.g. at program startup, when reading a core file, and when
2977 reading a binary file. */
2978
2979 static struct gdbarch *
2980 aarch64_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2981 {
2982 struct gdbarch_tdep *tdep;
2983 struct gdbarch *gdbarch;
2984 struct gdbarch_list *best_arch;
2985 struct tdesc_arch_data *tdesc_data = NULL;
2986 const struct target_desc *tdesc = info.target_desc;
2987 int i;
2988 int valid_p = 1;
2989 const struct tdesc_feature *feature_core;
2990 const struct tdesc_feature *feature_fpu;
2991 const struct tdesc_feature *feature_sve;
2992 int num_regs = 0;
2993 int num_pseudo_regs = 0;
2994
2995 /* Ensure we always have a target description. */
2996 if (!tdesc_has_registers (tdesc))
2997 tdesc = aarch64_read_description (0);
2998 gdb_assert (tdesc);
2999
3000 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.aarch64.core");
3001 feature_fpu = tdesc_find_feature (tdesc, "org.gnu.gdb.aarch64.fpu");
3002 feature_sve = tdesc_find_feature (tdesc, "org.gnu.gdb.aarch64.sve");
3003
3004 if (feature_core == NULL)
3005 return NULL;
3006
3007 tdesc_data = tdesc_data_alloc ();
3008
3009 /* Validate the description provides the mandatory core R registers
3010 and allocate their numbers. */
3011 for (i = 0; i < ARRAY_SIZE (aarch64_r_register_names); i++)
3012 valid_p &= tdesc_numbered_register (feature_core, tdesc_data,
3013 AARCH64_X0_REGNUM + i,
3014 aarch64_r_register_names[i]);
3015
3016 num_regs = AARCH64_X0_REGNUM + i;
3017
3018 /* Add the V registers. */
3019 if (feature_fpu != NULL)
3020 {
3021 if (feature_sve != NULL)
3022 error (_("Program contains both fpu and SVE features."));
3023
3024 /* Validate the description provides the mandatory V registers
3025 and allocate their numbers. */
3026 for (i = 0; i < ARRAY_SIZE (aarch64_v_register_names); i++)
3027 valid_p &= tdesc_numbered_register (feature_fpu, tdesc_data,
3028 AARCH64_V0_REGNUM + i,
3029 aarch64_v_register_names[i]);
3030
3031 num_regs = AARCH64_V0_REGNUM + i;
3032 }
3033
3034 /* Add the SVE registers. */
3035 if (feature_sve != NULL)
3036 {
3037 /* Validate the description provides the mandatory SVE registers
3038 and allocate their numbers. */
3039 for (i = 0; i < ARRAY_SIZE (aarch64_sve_register_names); i++)
3040 valid_p &= tdesc_numbered_register (feature_sve, tdesc_data,
3041 AARCH64_SVE_Z0_REGNUM + i,
3042 aarch64_sve_register_names[i]);
3043
3044 num_regs = AARCH64_SVE_Z0_REGNUM + i;
3045 num_pseudo_regs += 32; /* add the Vn register pseudos. */
3046 }
3047
3048 if (feature_fpu != NULL || feature_sve != NULL)
3049 {
3050 num_pseudo_regs += 32; /* add the Qn scalar register pseudos */
3051 num_pseudo_regs += 32; /* add the Dn scalar register pseudos */
3052 num_pseudo_regs += 32; /* add the Sn scalar register pseudos */
3053 num_pseudo_regs += 32; /* add the Hn scalar register pseudos */
3054 num_pseudo_regs += 32; /* add the Bn scalar register pseudos */
3055 }
3056
3057 if (!valid_p)
3058 {
3059 tdesc_data_cleanup (tdesc_data);
3060 return NULL;
3061 }
3062
3063 /* AArch64 code is always little-endian. */
3064 info.byte_order_for_code = BFD_ENDIAN_LITTLE;
3065
3066 /* If there is already a candidate, use it. */
3067 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
3068 best_arch != NULL;
3069 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
3070 {
3071 /* Found a match. */
3072 break;
3073 }
3074
3075 if (best_arch != NULL)
3076 {
3077 if (tdesc_data != NULL)
3078 tdesc_data_cleanup (tdesc_data);
3079 return best_arch->gdbarch;
3080 }
3081
3082 tdep = XCNEW (struct gdbarch_tdep);
3083 gdbarch = gdbarch_alloc (&info, tdep);
3084
3085 /* This should be low enough for everything. */
3086 tdep->lowest_pc = 0x20;
3087 tdep->jb_pc = -1; /* Longjump support not enabled by default. */
3088 tdep->jb_elt_size = 8;
3089 tdep->vq = aarch64_get_tdesc_vq (tdesc);
3090
3091 set_gdbarch_push_dummy_call (gdbarch, aarch64_push_dummy_call);
3092 set_gdbarch_frame_align (gdbarch, aarch64_frame_align);
3093
3094 /* Frame handling. */
3095 set_gdbarch_dummy_id (gdbarch, aarch64_dummy_id);
3096 set_gdbarch_unwind_pc (gdbarch, aarch64_unwind_pc);
3097 set_gdbarch_unwind_sp (gdbarch, aarch64_unwind_sp);
3098
3099 /* Advance PC across function entry code. */
3100 set_gdbarch_skip_prologue (gdbarch, aarch64_skip_prologue);
3101
3102 /* The stack grows downward. */
3103 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
3104
3105 /* Breakpoint manipulation. */
3106 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
3107 aarch64_breakpoint::kind_from_pc);
3108 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
3109 aarch64_breakpoint::bp_from_kind);
3110 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3111 set_gdbarch_software_single_step (gdbarch, aarch64_software_single_step);
3112
3113 /* Information about registers, etc. */
3114 set_gdbarch_sp_regnum (gdbarch, AARCH64_SP_REGNUM);
3115 set_gdbarch_pc_regnum (gdbarch, AARCH64_PC_REGNUM);
3116 set_gdbarch_num_regs (gdbarch, num_regs);
3117
3118 set_gdbarch_num_pseudo_regs (gdbarch, num_pseudo_regs);
3119 set_gdbarch_pseudo_register_read_value (gdbarch, aarch64_pseudo_read_value);
3120 set_gdbarch_pseudo_register_write (gdbarch, aarch64_pseudo_write);
3121 set_tdesc_pseudo_register_name (gdbarch, aarch64_pseudo_register_name);
3122 set_tdesc_pseudo_register_type (gdbarch, aarch64_pseudo_register_type);
3123 set_tdesc_pseudo_register_reggroup_p (gdbarch,
3124 aarch64_pseudo_register_reggroup_p);
3125
3126 /* ABI */
3127 set_gdbarch_short_bit (gdbarch, 16);
3128 set_gdbarch_int_bit (gdbarch, 32);
3129 set_gdbarch_float_bit (gdbarch, 32);
3130 set_gdbarch_double_bit (gdbarch, 64);
3131 set_gdbarch_long_double_bit (gdbarch, 128);
3132 set_gdbarch_long_bit (gdbarch, 64);
3133 set_gdbarch_long_long_bit (gdbarch, 64);
3134 set_gdbarch_ptr_bit (gdbarch, 64);
3135 set_gdbarch_char_signed (gdbarch, 0);
3136 set_gdbarch_wchar_signed (gdbarch, 0);
3137 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
3138 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
3139 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
3140
3141 /* Internal <-> external register number maps. */
3142 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, aarch64_dwarf_reg_to_regnum);
3143
3144 /* Returning results. */
3145 set_gdbarch_return_value (gdbarch, aarch64_return_value);
3146
3147 /* Disassembly. */
3148 set_gdbarch_print_insn (gdbarch, aarch64_gdb_print_insn);
3149
3150 /* Virtual tables. */
3151 set_gdbarch_vbit_in_delta (gdbarch, 1);
3152
3153 /* Register architecture. */
3154 aarch64_add_reggroups (gdbarch);
3155
3156 /* Hook in the ABI-specific overrides, if they have been registered. */
3157 info.target_desc = tdesc;
3158 info.tdesc_data = tdesc_data;
3159 gdbarch_init_osabi (info, gdbarch);
3160
3161 dwarf2_frame_set_init_reg (gdbarch, aarch64_dwarf2_frame_init_reg);
3162
3163 /* Add some default predicates. */
3164 frame_unwind_append_unwinder (gdbarch, &aarch64_stub_unwind);
3165 dwarf2_append_unwinders (gdbarch);
3166 frame_unwind_append_unwinder (gdbarch, &aarch64_prologue_unwind);
3167
3168 frame_base_set_default (gdbarch, &aarch64_normal_base);
3169
3170 /* Now we have tuned the configuration, set a few final things,
3171 based on what the OS ABI has told us. */
3172
3173 if (tdep->jb_pc >= 0)
3174 set_gdbarch_get_longjmp_target (gdbarch, aarch64_get_longjmp_target);
3175
3176 set_gdbarch_gen_return_address (gdbarch, aarch64_gen_return_address);
3177
3178 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
3179
3180 /* Add standard register aliases. */
3181 for (i = 0; i < ARRAY_SIZE (aarch64_register_aliases); i++)
3182 user_reg_add (gdbarch, aarch64_register_aliases[i].name,
3183 value_of_aarch64_user_reg,
3184 &aarch64_register_aliases[i].regnum);
3185
3186 register_aarch64_ravenscar_ops (gdbarch);
3187
3188 return gdbarch;
3189 }
3190
3191 static void
3192 aarch64_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3193 {
3194 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3195
3196 if (tdep == NULL)
3197 return;
3198
3199 fprintf_unfiltered (file, _("aarch64_dump_tdep: Lowest pc = 0x%s"),
3200 paddress (gdbarch, tdep->lowest_pc));
3201 }
3202
3203 #if GDB_SELF_TEST
3204 namespace selftests
3205 {
3206 static void aarch64_process_record_test (void);
3207 }
3208 #endif
3209
3210 void
3211 _initialize_aarch64_tdep (void)
3212 {
3213 gdbarch_register (bfd_arch_aarch64, aarch64_gdbarch_init,
3214 aarch64_dump_tdep);
3215
3216 /* Debug this file's internals. */
3217 add_setshow_boolean_cmd ("aarch64", class_maintenance, &aarch64_debug, _("\
3218 Set AArch64 debugging."), _("\
3219 Show AArch64 debugging."), _("\
3220 When on, AArch64 specific debugging is enabled."),
3221 NULL,
3222 show_aarch64_debug,
3223 &setdebuglist, &showdebuglist);
3224
3225 #if GDB_SELF_TEST
3226 selftests::register_test ("aarch64-analyze-prologue",
3227 selftests::aarch64_analyze_prologue_test);
3228 selftests::register_test ("aarch64-process-record",
3229 selftests::aarch64_process_record_test);
3230 selftests::record_xml_tdesc ("aarch64.xml",
3231 aarch64_create_target_description (0));
3232 #endif
3233 }
3234
3235 /* AArch64 process record-replay related structures, defines etc. */
3236
3237 #define REG_ALLOC(REGS, LENGTH, RECORD_BUF) \
3238 do \
3239 { \
3240 unsigned int reg_len = LENGTH; \
3241 if (reg_len) \
3242 { \
3243 REGS = XNEWVEC (uint32_t, reg_len); \
3244 memcpy(&REGS[0], &RECORD_BUF[0], sizeof(uint32_t)*LENGTH); \
3245 } \
3246 } \
3247 while (0)
3248
3249 #define MEM_ALLOC(MEMS, LENGTH, RECORD_BUF) \
3250 do \
3251 { \
3252 unsigned int mem_len = LENGTH; \
3253 if (mem_len) \
3254 { \
3255 MEMS = XNEWVEC (struct aarch64_mem_r, mem_len); \
3256 memcpy(&MEMS->len, &RECORD_BUF[0], \
3257 sizeof(struct aarch64_mem_r) * LENGTH); \
3258 } \
3259 } \
3260 while (0)
3261
3262 /* AArch64 record/replay structures and enumerations. */
3263
3264 struct aarch64_mem_r
3265 {
3266 uint64_t len; /* Record length. */
3267 uint64_t addr; /* Memory address. */
3268 };
3269
3270 enum aarch64_record_result
3271 {
3272 AARCH64_RECORD_SUCCESS,
3273 AARCH64_RECORD_UNSUPPORTED,
3274 AARCH64_RECORD_UNKNOWN
3275 };
3276
3277 typedef struct insn_decode_record_t
3278 {
3279 struct gdbarch *gdbarch;
3280 struct regcache *regcache;
3281 CORE_ADDR this_addr; /* Address of insn to be recorded. */
3282 uint32_t aarch64_insn; /* Insn to be recorded. */
3283 uint32_t mem_rec_count; /* Count of memory records. */
3284 uint32_t reg_rec_count; /* Count of register records. */
3285 uint32_t *aarch64_regs; /* Registers to be recorded. */
3286 struct aarch64_mem_r *aarch64_mems; /* Memory locations to be recorded. */
3287 } insn_decode_record;
3288
3289 /* Record handler for data processing - register instructions. */
3290
3291 static unsigned int
3292 aarch64_record_data_proc_reg (insn_decode_record *aarch64_insn_r)
3293 {
3294 uint8_t reg_rd, insn_bits24_27, insn_bits21_23;
3295 uint32_t record_buf[4];
3296
3297 reg_rd = bits (aarch64_insn_r->aarch64_insn, 0, 4);
3298 insn_bits24_27 = bits (aarch64_insn_r->aarch64_insn, 24, 27);
3299 insn_bits21_23 = bits (aarch64_insn_r->aarch64_insn, 21, 23);
3300
3301 if (!bit (aarch64_insn_r->aarch64_insn, 28))
3302 {
3303 uint8_t setflags;
3304
3305 /* Logical (shifted register). */
3306 if (insn_bits24_27 == 0x0a)
3307 setflags = (bits (aarch64_insn_r->aarch64_insn, 29, 30) == 0x03);
3308 /* Add/subtract. */
3309 else if (insn_bits24_27 == 0x0b)
3310 setflags = bit (aarch64_insn_r->aarch64_insn, 29);
3311 else
3312 return AARCH64_RECORD_UNKNOWN;
3313
3314 record_buf[0] = reg_rd;
3315 aarch64_insn_r->reg_rec_count = 1;
3316 if (setflags)
3317 record_buf[aarch64_insn_r->reg_rec_count++] = AARCH64_CPSR_REGNUM;
3318 }
3319 else
3320 {
3321 if (insn_bits24_27 == 0x0b)
3322 {
3323 /* Data-processing (3 source). */
3324 record_buf[0] = reg_rd;
3325 aarch64_insn_r->reg_rec_count = 1;
3326 }
3327 else if (insn_bits24_27 == 0x0a)
3328 {
3329 if (insn_bits21_23 == 0x00)
3330 {
3331 /* Add/subtract (with carry). */
3332 record_buf[0] = reg_rd;
3333 aarch64_insn_r->reg_rec_count = 1;
3334 if (bit (aarch64_insn_r->aarch64_insn, 29))
3335 {
3336 record_buf[1] = AARCH64_CPSR_REGNUM;
3337 aarch64_insn_r->reg_rec_count = 2;
3338 }
3339 }
3340 else if (insn_bits21_23 == 0x02)
3341 {
3342 /* Conditional compare (register) and conditional compare
3343 (immediate) instructions. */
3344 record_buf[0] = AARCH64_CPSR_REGNUM;
3345 aarch64_insn_r->reg_rec_count = 1;
3346 }
3347 else if (insn_bits21_23 == 0x04 || insn_bits21_23 == 0x06)
3348 {
3349 /* CConditional select. */
3350 /* Data-processing (2 source). */
3351 /* Data-processing (1 source). */
3352 record_buf[0] = reg_rd;
3353 aarch64_insn_r->reg_rec_count = 1;
3354 }
3355 else
3356 return AARCH64_RECORD_UNKNOWN;
3357 }
3358 }
3359
3360 REG_ALLOC (aarch64_insn_r->aarch64_regs, aarch64_insn_r->reg_rec_count,
3361 record_buf);
3362 return AARCH64_RECORD_SUCCESS;
3363 }
3364
3365 /* Record handler for data processing - immediate instructions. */
3366
3367 static unsigned int
3368 aarch64_record_data_proc_imm (insn_decode_record *aarch64_insn_r)
3369 {
3370 uint8_t reg_rd, insn_bit23, insn_bits24_27, setflags;
3371 uint32_t record_buf[4];
3372
3373 reg_rd = bits (aarch64_insn_r->aarch64_insn, 0, 4);
3374 insn_bit23 = bit (aarch64_insn_r->aarch64_insn, 23);
3375 insn_bits24_27 = bits (aarch64_insn_r->aarch64_insn, 24, 27);
3376
3377 if (insn_bits24_27 == 0x00 /* PC rel addressing. */
3378 || insn_bits24_27 == 0x03 /* Bitfield and Extract. */
3379 || (insn_bits24_27 == 0x02 && insn_bit23)) /* Move wide (immediate). */
3380 {
3381 record_buf[0] = reg_rd;
3382 aarch64_insn_r->reg_rec_count = 1;
3383 }
3384 else if (insn_bits24_27 == 0x01)
3385 {
3386 /* Add/Subtract (immediate). */
3387 setflags = bit (aarch64_insn_r->aarch64_insn, 29);
3388 record_buf[0] = reg_rd;
3389 aarch64_insn_r->reg_rec_count = 1;
3390 if (setflags)
3391 record_buf[aarch64_insn_r->reg_rec_count++] = AARCH64_CPSR_REGNUM;
3392 }
3393 else if (insn_bits24_27 == 0x02 && !insn_bit23)
3394 {
3395 /* Logical (immediate). */
3396 setflags = bits (aarch64_insn_r->aarch64_insn, 29, 30) == 0x03;
3397 record_buf[0] = reg_rd;
3398 aarch64_insn_r->reg_rec_count = 1;
3399 if (setflags)
3400 record_buf[aarch64_insn_r->reg_rec_count++] = AARCH64_CPSR_REGNUM;
3401 }
3402 else
3403 return AARCH64_RECORD_UNKNOWN;
3404
3405 REG_ALLOC (aarch64_insn_r->aarch64_regs, aarch64_insn_r->reg_rec_count,
3406 record_buf);
3407 return AARCH64_RECORD_SUCCESS;
3408 }
3409
3410 /* Record handler for branch, exception generation and system instructions. */
3411
3412 static unsigned int
3413 aarch64_record_branch_except_sys (insn_decode_record *aarch64_insn_r)
3414 {
3415 struct gdbarch_tdep *tdep = gdbarch_tdep (aarch64_insn_r->gdbarch);
3416 uint8_t insn_bits24_27, insn_bits28_31, insn_bits22_23;
3417 uint32_t record_buf[4];
3418
3419 insn_bits24_27 = bits (aarch64_insn_r->aarch64_insn, 24, 27);
3420 insn_bits28_31 = bits (aarch64_insn_r->aarch64_insn, 28, 31);
3421 insn_bits22_23 = bits (aarch64_insn_r->aarch64_insn, 22, 23);
3422
3423 if (insn_bits28_31 == 0x0d)
3424 {
3425 /* Exception generation instructions. */
3426 if (insn_bits24_27 == 0x04)
3427 {
3428 if (!bits (aarch64_insn_r->aarch64_insn, 2, 4)
3429 && !bits (aarch64_insn_r->aarch64_insn, 21, 23)
3430 && bits (aarch64_insn_r->aarch64_insn, 0, 1) == 0x01)
3431 {
3432 ULONGEST svc_number;
3433
3434 regcache_raw_read_unsigned (aarch64_insn_r->regcache, 8,
3435 &svc_number);
3436 return tdep->aarch64_syscall_record (aarch64_insn_r->regcache,
3437 svc_number);
3438 }
3439 else
3440 return AARCH64_RECORD_UNSUPPORTED;
3441 }
3442 /* System instructions. */
3443 else if (insn_bits24_27 == 0x05 && insn_bits22_23 == 0x00)
3444 {
3445 uint32_t reg_rt, reg_crn;
3446
3447 reg_rt = bits (aarch64_insn_r->aarch64_insn, 0, 4);
3448 reg_crn = bits (aarch64_insn_r->aarch64_insn, 12, 15);
3449
3450 /* Record rt in case of sysl and mrs instructions. */
3451 if (bit (aarch64_insn_r->aarch64_insn, 21))
3452 {
3453 record_buf[0] = reg_rt;
3454 aarch64_insn_r->reg_rec_count = 1;
3455 }
3456 /* Record cpsr for hint and msr(immediate) instructions. */
3457 else if (reg_crn == 0x02 || reg_crn == 0x04)
3458 {
3459 record_buf[0] = AARCH64_CPSR_REGNUM;
3460 aarch64_insn_r->reg_rec_count = 1;
3461 }
3462 }
3463 /* Unconditional branch (register). */
3464 else if((insn_bits24_27 & 0x0e) == 0x06)
3465 {
3466 record_buf[aarch64_insn_r->reg_rec_count++] = AARCH64_PC_REGNUM;
3467 if (bits (aarch64_insn_r->aarch64_insn, 21, 22) == 0x01)
3468 record_buf[aarch64_insn_r->reg_rec_count++] = AARCH64_LR_REGNUM;
3469 }
3470 else
3471 return AARCH64_RECORD_UNKNOWN;
3472 }
3473 /* Unconditional branch (immediate). */
3474 else if ((insn_bits28_31 & 0x07) == 0x01 && (insn_bits24_27 & 0x0c) == 0x04)
3475 {
3476 record_buf[aarch64_insn_r->reg_rec_count++] = AARCH64_PC_REGNUM;
3477 if (bit (aarch64_insn_r->aarch64_insn, 31))
3478 record_buf[aarch64_insn_r->reg_rec_count++] = AARCH64_LR_REGNUM;
3479 }
3480 else
3481 /* Compare & branch (immediate), Test & branch (immediate) and
3482 Conditional branch (immediate). */
3483 record_buf[aarch64_insn_r->reg_rec_count++] = AARCH64_PC_REGNUM;
3484
3485 REG_ALLOC (aarch64_insn_r->aarch64_regs, aarch64_insn_r->reg_rec_count,
3486 record_buf);
3487 return AARCH64_RECORD_SUCCESS;
3488 }
3489
3490 /* Record handler for advanced SIMD load and store instructions. */
3491
3492 static unsigned int
3493 aarch64_record_asimd_load_store (insn_decode_record *aarch64_insn_r)
3494 {
3495 CORE_ADDR address;
3496 uint64_t addr_offset = 0;
3497 uint32_t record_buf[24];
3498 uint64_t record_buf_mem[24];
3499 uint32_t reg_rn, reg_rt;
3500 uint32_t reg_index = 0, mem_index = 0;
3501 uint8_t opcode_bits, size_bits;
3502
3503 reg_rt = bits (aarch64_insn_r->aarch64_insn, 0, 4);
3504 reg_rn = bits (aarch64_insn_r->aarch64_insn, 5, 9);
3505 size_bits = bits (aarch64_insn_r->aarch64_insn, 10, 11);
3506 opcode_bits = bits (aarch64_insn_r->aarch64_insn, 12, 15);
3507 regcache_raw_read_unsigned (aarch64_insn_r->regcache, reg_rn, &address);
3508
3509 if (record_debug)
3510 debug_printf ("Process record: Advanced SIMD load/store\n");
3511
3512 /* Load/store single structure. */
3513 if (bit (aarch64_insn_r->aarch64_insn, 24))
3514 {
3515 uint8_t sindex, scale, selem, esize, replicate = 0;
3516 scale = opcode_bits >> 2;
3517 selem = ((opcode_bits & 0x02) |
3518 bit (aarch64_insn_r->aarch64_insn, 21)) + 1;
3519 switch (scale)
3520 {
3521 case 1:
3522 if (size_bits & 0x01)
3523 return AARCH64_RECORD_UNKNOWN;
3524 break;
3525 case 2:
3526 if ((size_bits >> 1) & 0x01)
3527 return AARCH64_RECORD_UNKNOWN;
3528 if (size_bits & 0x01)
3529 {
3530 if (!((opcode_bits >> 1) & 0x01))
3531 scale = 3;
3532 else
3533 return AARCH64_RECORD_UNKNOWN;
3534 }
3535 break;
3536 case 3:
3537 if (bit (aarch64_insn_r->aarch64_insn, 22) && !(opcode_bits & 0x01))
3538 {
3539 scale = size_bits;
3540 replicate = 1;
3541 break;
3542 }
3543 else
3544 return AARCH64_RECORD_UNKNOWN;
3545 default:
3546 break;
3547 }
3548 esize = 8 << scale;
3549 if (replicate)
3550 for (sindex = 0; sindex < selem; sindex++)
3551 {
3552 record_buf[reg_index++] = reg_rt + AARCH64_V0_REGNUM;
3553 reg_rt = (reg_rt + 1) % 32;
3554 }
3555 else
3556 {
3557 for (sindex = 0; sindex < selem; sindex++)
3558 {
3559 if (bit (aarch64_insn_r->aarch64_insn, 22))
3560 record_buf[reg_index++] = reg_rt + AARCH64_V0_REGNUM;
3561 else
3562 {
3563 record_buf_mem[mem_index++] = esize / 8;
3564 record_buf_mem[mem_index++] = address + addr_offset;
3565 }
3566 addr_offset = addr_offset + (esize / 8);
3567 reg_rt = (reg_rt + 1) % 32;
3568 }
3569 }
3570 }
3571 /* Load/store multiple structure. */
3572 else
3573 {
3574 uint8_t selem, esize, rpt, elements;
3575 uint8_t eindex, rindex;
3576
3577 esize = 8 << size_bits;
3578 if (bit (aarch64_insn_r->aarch64_insn, 30))
3579 elements = 128 / esize;
3580 else
3581 elements = 64 / esize;
3582
3583 switch (opcode_bits)
3584 {
3585 /*LD/ST4 (4 Registers). */
3586 case 0:
3587 rpt = 1;
3588 selem = 4;
3589 break;
3590 /*LD/ST1 (4 Registers). */
3591 case 2:
3592 rpt = 4;
3593 selem = 1;
3594 break;
3595 /*LD/ST3 (3 Registers). */
3596 case 4:
3597 rpt = 1;
3598 selem = 3;
3599 break;
3600 /*LD/ST1 (3 Registers). */
3601 case 6:
3602 rpt = 3;
3603 selem = 1;
3604 break;
3605 /*LD/ST1 (1 Register). */
3606 case 7:
3607 rpt = 1;
3608 selem = 1;
3609 break;
3610 /*LD/ST2 (2 Registers). */
3611 case 8:
3612 rpt = 1;
3613 selem = 2;
3614 break;
3615 /*LD/ST1 (2 Registers). */
3616 case 10:
3617 rpt = 2;
3618 selem = 1;
3619 break;
3620 default:
3621 return AARCH64_RECORD_UNSUPPORTED;
3622 break;
3623 }
3624 for (rindex = 0; rindex < rpt; rindex++)
3625 for (eindex = 0; eindex < elements; eindex++)
3626 {
3627 uint8_t reg_tt, sindex;
3628 reg_tt = (reg_rt + rindex) % 32;
3629 for (sindex = 0; sindex < selem; sindex++)
3630 {
3631 if (bit (aarch64_insn_r->aarch64_insn, 22))
3632 record_buf[reg_index++] = reg_tt + AARCH64_V0_REGNUM;
3633 else
3634 {
3635 record_buf_mem[mem_index++] = esize / 8;
3636 record_buf_mem[mem_index++] = address + addr_offset;
3637 }
3638 addr_offset = addr_offset + (esize / 8);
3639 reg_tt = (reg_tt + 1) % 32;
3640 }
3641 }
3642 }
3643
3644 if (bit (aarch64_insn_r->aarch64_insn, 23))
3645 record_buf[reg_index++] = reg_rn;
3646
3647 aarch64_insn_r->reg_rec_count = reg_index;
3648 aarch64_insn_r->mem_rec_count = mem_index / 2;
3649 MEM_ALLOC (aarch64_insn_r->aarch64_mems, aarch64_insn_r->mem_rec_count,
3650 record_buf_mem);
3651 REG_ALLOC (aarch64_insn_r->aarch64_regs, aarch64_insn_r->reg_rec_count,
3652 record_buf);
3653 return AARCH64_RECORD_SUCCESS;
3654 }
3655
3656 /* Record handler for load and store instructions. */
3657
3658 static unsigned int
3659 aarch64_record_load_store (insn_decode_record *aarch64_insn_r)
3660 {
3661 uint8_t insn_bits24_27, insn_bits28_29, insn_bits10_11;
3662 uint8_t insn_bit23, insn_bit21;
3663 uint8_t opc, size_bits, ld_flag, vector_flag;
3664 uint32_t reg_rn, reg_rt, reg_rt2;
3665 uint64_t datasize, offset;
3666 uint32_t record_buf[8];
3667 uint64_t record_buf_mem[8];
3668 CORE_ADDR address;
3669
3670 insn_bits10_11 = bits (aarch64_insn_r->aarch64_insn, 10, 11);
3671 insn_bits24_27 = bits (aarch64_insn_r->aarch64_insn, 24, 27);
3672 insn_bits28_29 = bits (aarch64_insn_r->aarch64_insn, 28, 29);
3673 insn_bit21 = bit (aarch64_insn_r->aarch64_insn, 21);
3674 insn_bit23 = bit (aarch64_insn_r->aarch64_insn, 23);
3675 ld_flag = bit (aarch64_insn_r->aarch64_insn, 22);
3676 vector_flag = bit (aarch64_insn_r->aarch64_insn, 26);
3677 reg_rt = bits (aarch64_insn_r->aarch64_insn, 0, 4);
3678 reg_rn = bits (aarch64_insn_r->aarch64_insn, 5, 9);
3679 reg_rt2 = bits (aarch64_insn_r->aarch64_insn, 10, 14);
3680 size_bits = bits (aarch64_insn_r->aarch64_insn, 30, 31);
3681
3682 /* Load/store exclusive. */
3683 if (insn_bits24_27 == 0x08 && insn_bits28_29 == 0x00)
3684 {
3685 if (record_debug)
3686 debug_printf ("Process record: load/store exclusive\n");
3687
3688 if (ld_flag)
3689 {
3690 record_buf[0] = reg_rt;
3691 aarch64_insn_r->reg_rec_count = 1;
3692 if (insn_bit21)
3693 {
3694 record_buf[1] = reg_rt2;
3695 aarch64_insn_r->reg_rec_count = 2;
3696 }
3697 }
3698 else
3699 {
3700 if (insn_bit21)
3701 datasize = (8 << size_bits) * 2;
3702 else
3703 datasize = (8 << size_bits);
3704 regcache_raw_read_unsigned (aarch64_insn_r->regcache, reg_rn,
3705 &address);
3706 record_buf_mem[0] = datasize / 8;
3707 record_buf_mem[1] = address;
3708 aarch64_insn_r->mem_rec_count = 1;
3709 if (!insn_bit23)
3710 {
3711 /* Save register rs. */
3712 record_buf[0] = bits (aarch64_insn_r->aarch64_insn, 16, 20);
3713 aarch64_insn_r->reg_rec_count = 1;
3714 }
3715 }
3716 }
3717 /* Load register (literal) instructions decoding. */
3718 else if ((insn_bits24_27 & 0x0b) == 0x08 && insn_bits28_29 == 0x01)
3719 {
3720 if (record_debug)
3721 debug_printf ("Process record: load register (literal)\n");
3722 if (vector_flag)
3723 record_buf[0] = reg_rt + AARCH64_V0_REGNUM;
3724 else
3725 record_buf[0] = reg_rt;
3726 aarch64_insn_r->reg_rec_count = 1;
3727 }
3728 /* All types of load/store pair instructions decoding. */
3729 else if ((insn_bits24_27 & 0x0a) == 0x08 && insn_bits28_29 == 0x02)
3730 {
3731 if (record_debug)
3732 debug_printf ("Process record: load/store pair\n");
3733
3734 if (ld_flag)
3735 {
3736 if (vector_flag)
3737 {
3738 record_buf[0] = reg_rt + AARCH64_V0_REGNUM;
3739 record_buf[1] = reg_rt2 + AARCH64_V0_REGNUM;
3740 }
3741 else
3742 {
3743 record_buf[0] = reg_rt;
3744 record_buf[1] = reg_rt2;
3745 }
3746 aarch64_insn_r->reg_rec_count = 2;
3747 }
3748 else
3749 {
3750 uint16_t imm7_off;
3751 imm7_off = bits (aarch64_insn_r->aarch64_insn, 15, 21);
3752 if (!vector_flag)
3753 size_bits = size_bits >> 1;
3754 datasize = 8 << (2 + size_bits);
3755 offset = (imm7_off & 0x40) ? (~imm7_off & 0x007f) + 1 : imm7_off;
3756 offset = offset << (2 + size_bits);
3757 regcache_raw_read_unsigned (aarch64_insn_r->regcache, reg_rn,
3758 &address);
3759 if (!((insn_bits24_27 & 0x0b) == 0x08 && insn_bit23))
3760 {
3761 if (imm7_off & 0x40)
3762 address = address - offset;
3763 else
3764 address = address + offset;
3765 }
3766
3767 record_buf_mem[0] = datasize / 8;
3768 record_buf_mem[1] = address;
3769 record_buf_mem[2] = datasize / 8;
3770 record_buf_mem[3] = address + (datasize / 8);
3771 aarch64_insn_r->mem_rec_count = 2;
3772 }
3773 if (bit (aarch64_insn_r->aarch64_insn, 23))
3774 record_buf[aarch64_insn_r->reg_rec_count++] = reg_rn;
3775 }
3776 /* Load/store register (unsigned immediate) instructions. */
3777 else if ((insn_bits24_27 & 0x0b) == 0x09 && insn_bits28_29 == 0x03)
3778 {
3779 opc = bits (aarch64_insn_r->aarch64_insn, 22, 23);
3780 if (!(opc >> 1))
3781 {
3782 if (opc & 0x01)
3783 ld_flag = 0x01;
3784 else
3785 ld_flag = 0x0;
3786 }
3787 else
3788 {
3789 if (size_bits == 0x3 && vector_flag == 0x0 && opc == 0x2)
3790 {
3791 /* PRFM (immediate) */
3792 return AARCH64_RECORD_SUCCESS;
3793 }
3794 else if (size_bits == 0x2 && vector_flag == 0x0 && opc == 0x2)
3795 {
3796 /* LDRSW (immediate) */
3797 ld_flag = 0x1;
3798 }
3799 else
3800 {
3801 if (opc & 0x01)
3802 ld_flag = 0x01;
3803 else
3804 ld_flag = 0x0;
3805 }
3806 }
3807
3808 if (record_debug)
3809 {
3810 debug_printf ("Process record: load/store (unsigned immediate):"
3811 " size %x V %d opc %x\n", size_bits, vector_flag,
3812 opc);
3813 }
3814
3815 if (!ld_flag)
3816 {
3817 offset = bits (aarch64_insn_r->aarch64_insn, 10, 21);
3818 datasize = 8 << size_bits;
3819 regcache_raw_read_unsigned (aarch64_insn_r->regcache, reg_rn,
3820 &address);
3821 offset = offset << size_bits;
3822 address = address + offset;
3823
3824 record_buf_mem[0] = datasize >> 3;
3825 record_buf_mem[1] = address;
3826 aarch64_insn_r->mem_rec_count = 1;
3827 }
3828 else
3829 {
3830 if (vector_flag)
3831 record_buf[0] = reg_rt + AARCH64_V0_REGNUM;
3832 else
3833 record_buf[0] = reg_rt;
3834 aarch64_insn_r->reg_rec_count = 1;
3835 }
3836 }
3837 /* Load/store register (register offset) instructions. */
3838 else if ((insn_bits24_27 & 0x0b) == 0x08 && insn_bits28_29 == 0x03
3839 && insn_bits10_11 == 0x02 && insn_bit21)
3840 {
3841 if (record_debug)
3842 debug_printf ("Process record: load/store (register offset)\n");
3843 opc = bits (aarch64_insn_r->aarch64_insn, 22, 23);
3844 if (!(opc >> 1))
3845 if (opc & 0x01)
3846 ld_flag = 0x01;
3847 else
3848 ld_flag = 0x0;
3849 else
3850 if (size_bits != 0x03)
3851 ld_flag = 0x01;
3852 else
3853 return AARCH64_RECORD_UNKNOWN;
3854
3855 if (!ld_flag)
3856 {
3857 ULONGEST reg_rm_val;
3858
3859 regcache_raw_read_unsigned (aarch64_insn_r->regcache,
3860 bits (aarch64_insn_r->aarch64_insn, 16, 20), &reg_rm_val);
3861 if (bit (aarch64_insn_r->aarch64_insn, 12))
3862 offset = reg_rm_val << size_bits;
3863 else
3864 offset = reg_rm_val;
3865 datasize = 8 << size_bits;
3866 regcache_raw_read_unsigned (aarch64_insn_r->regcache, reg_rn,
3867 &address);
3868 address = address + offset;
3869 record_buf_mem[0] = datasize >> 3;
3870 record_buf_mem[1] = address;
3871 aarch64_insn_r->mem_rec_count = 1;
3872 }
3873 else
3874 {
3875 if (vector_flag)
3876 record_buf[0] = reg_rt + AARCH64_V0_REGNUM;
3877 else
3878 record_buf[0] = reg_rt;
3879 aarch64_insn_r->reg_rec_count = 1;
3880 }
3881 }
3882 /* Load/store register (immediate and unprivileged) instructions. */
3883 else if ((insn_bits24_27 & 0x0b) == 0x08 && insn_bits28_29 == 0x03
3884 && !insn_bit21)
3885 {
3886 if (record_debug)
3887 {
3888 debug_printf ("Process record: load/store "
3889 "(immediate and unprivileged)\n");
3890 }
3891 opc = bits (aarch64_insn_r->aarch64_insn, 22, 23);
3892 if (!(opc >> 1))
3893 if (opc & 0x01)
3894 ld_flag = 0x01;
3895 else
3896 ld_flag = 0x0;
3897 else
3898 if (size_bits != 0x03)
3899 ld_flag = 0x01;
3900 else
3901 return AARCH64_RECORD_UNKNOWN;
3902
3903 if (!ld_flag)
3904 {
3905 uint16_t imm9_off;
3906 imm9_off = bits (aarch64_insn_r->aarch64_insn, 12, 20);
3907 offset = (imm9_off & 0x0100) ? (((~imm9_off) & 0x01ff) + 1) : imm9_off;
3908 datasize = 8 << size_bits;
3909 regcache_raw_read_unsigned (aarch64_insn_r->regcache, reg_rn,
3910 &address);
3911 if (insn_bits10_11 != 0x01)
3912 {
3913 if (imm9_off & 0x0100)
3914 address = address - offset;
3915 else
3916 address = address + offset;
3917 }
3918 record_buf_mem[0] = datasize >> 3;
3919 record_buf_mem[1] = address;
3920 aarch64_insn_r->mem_rec_count = 1;
3921 }
3922 else
3923 {
3924 if (vector_flag)
3925 record_buf[0] = reg_rt + AARCH64_V0_REGNUM;
3926 else
3927 record_buf[0] = reg_rt;
3928 aarch64_insn_r->reg_rec_count = 1;
3929 }
3930 if (insn_bits10_11 == 0x01 || insn_bits10_11 == 0x03)
3931 record_buf[aarch64_insn_r->reg_rec_count++] = reg_rn;
3932 }
3933 /* Advanced SIMD load/store instructions. */
3934 else
3935 return aarch64_record_asimd_load_store (aarch64_insn_r);
3936
3937 MEM_ALLOC (aarch64_insn_r->aarch64_mems, aarch64_insn_r->mem_rec_count,
3938 record_buf_mem);
3939 REG_ALLOC (aarch64_insn_r->aarch64_regs, aarch64_insn_r->reg_rec_count,
3940 record_buf);
3941 return AARCH64_RECORD_SUCCESS;
3942 }
3943
3944 /* Record handler for data processing SIMD and floating point instructions. */
3945
3946 static unsigned int
3947 aarch64_record_data_proc_simd_fp (insn_decode_record *aarch64_insn_r)
3948 {
3949 uint8_t insn_bit21, opcode, rmode, reg_rd;
3950 uint8_t insn_bits24_27, insn_bits28_31, insn_bits10_11, insn_bits12_15;
3951 uint8_t insn_bits11_14;
3952 uint32_t record_buf[2];
3953
3954 insn_bits24_27 = bits (aarch64_insn_r->aarch64_insn, 24, 27);
3955 insn_bits28_31 = bits (aarch64_insn_r->aarch64_insn, 28, 31);
3956 insn_bits10_11 = bits (aarch64_insn_r->aarch64_insn, 10, 11);
3957 insn_bits12_15 = bits (aarch64_insn_r->aarch64_insn, 12, 15);
3958 insn_bits11_14 = bits (aarch64_insn_r->aarch64_insn, 11, 14);
3959 opcode = bits (aarch64_insn_r->aarch64_insn, 16, 18);
3960 rmode = bits (aarch64_insn_r->aarch64_insn, 19, 20);
3961 reg_rd = bits (aarch64_insn_r->aarch64_insn, 0, 4);
3962 insn_bit21 = bit (aarch64_insn_r->aarch64_insn, 21);
3963
3964 if (record_debug)
3965 debug_printf ("Process record: data processing SIMD/FP: ");
3966
3967 if ((insn_bits28_31 & 0x05) == 0x01 && insn_bits24_27 == 0x0e)
3968 {
3969 /* Floating point - fixed point conversion instructions. */
3970 if (!insn_bit21)
3971 {
3972 if (record_debug)
3973 debug_printf ("FP - fixed point conversion");
3974
3975 if ((opcode >> 1) == 0x0 && rmode == 0x03)
3976 record_buf[0] = reg_rd;
3977 else
3978 record_buf[0] = reg_rd + AARCH64_V0_REGNUM;
3979 }
3980 /* Floating point - conditional compare instructions. */
3981 else if (insn_bits10_11 == 0x01)
3982 {
3983 if (record_debug)
3984 debug_printf ("FP - conditional compare");
3985
3986 record_buf[0] = AARCH64_CPSR_REGNUM;
3987 }
3988 /* Floating point - data processing (2-source) and
3989 conditional select instructions. */
3990 else if (insn_bits10_11 == 0x02 || insn_bits10_11 == 0x03)
3991 {
3992 if (record_debug)
3993 debug_printf ("FP - DP (2-source)");
3994
3995 record_buf[0] = reg_rd + AARCH64_V0_REGNUM;
3996 }
3997 else if (insn_bits10_11 == 0x00)
3998 {
3999 /* Floating point - immediate instructions. */
4000 if ((insn_bits12_15 & 0x01) == 0x01
4001 || (insn_bits12_15 & 0x07) == 0x04)
4002 {
4003 if (record_debug)
4004 debug_printf ("FP - immediate");
4005 record_buf[0] = reg_rd + AARCH64_V0_REGNUM;
4006 }
4007 /* Floating point - compare instructions. */
4008 else if ((insn_bits12_15 & 0x03) == 0x02)
4009 {
4010 if (record_debug)
4011 debug_printf ("FP - immediate");
4012 record_buf[0] = AARCH64_CPSR_REGNUM;
4013 }
4014 /* Floating point - integer conversions instructions. */
4015 else if (insn_bits12_15 == 0x00)
4016 {
4017 /* Convert float to integer instruction. */
4018 if (!(opcode >> 1) || ((opcode >> 1) == 0x02 && !rmode))
4019 {
4020 if (record_debug)
4021 debug_printf ("float to int conversion");
4022
4023 record_buf[0] = reg_rd + AARCH64_X0_REGNUM;
4024 }
4025 /* Convert integer to float instruction. */
4026 else if ((opcode >> 1) == 0x01 && !rmode)
4027 {
4028 if (record_debug)
4029 debug_printf ("int to float conversion");
4030
4031 record_buf[0] = reg_rd + AARCH64_V0_REGNUM;
4032 }
4033 /* Move float to integer instruction. */
4034 else if ((opcode >> 1) == 0x03)
4035 {
4036 if (record_debug)
4037 debug_printf ("move float to int");
4038
4039 if (!(opcode & 0x01))
4040 record_buf[0] = reg_rd + AARCH64_X0_REGNUM;
4041 else
4042 record_buf[0] = reg_rd + AARCH64_V0_REGNUM;
4043 }
4044 else
4045 return AARCH64_RECORD_UNKNOWN;
4046 }
4047 else
4048 return AARCH64_RECORD_UNKNOWN;
4049 }
4050 else
4051 return AARCH64_RECORD_UNKNOWN;
4052 }
4053 else if ((insn_bits28_31 & 0x09) == 0x00 && insn_bits24_27 == 0x0e)
4054 {
4055 if (record_debug)
4056 debug_printf ("SIMD copy");
4057
4058 /* Advanced SIMD copy instructions. */
4059 if (!bits (aarch64_insn_r->aarch64_insn, 21, 23)
4060 && !bit (aarch64_insn_r->aarch64_insn, 15)
4061 && bit (aarch64_insn_r->aarch64_insn, 10))
4062 {
4063 if (insn_bits11_14 == 0x05 || insn_bits11_14 == 0x07)
4064 record_buf[0] = reg_rd + AARCH64_X0_REGNUM;
4065 else
4066 record_buf[0] = reg_rd + AARCH64_V0_REGNUM;
4067 }
4068 else
4069 record_buf[0] = reg_rd + AARCH64_V0_REGNUM;
4070 }
4071 /* All remaining floating point or advanced SIMD instructions. */
4072 else
4073 {
4074 if (record_debug)
4075 debug_printf ("all remain");
4076
4077 record_buf[0] = reg_rd + AARCH64_V0_REGNUM;
4078 }
4079
4080 if (record_debug)
4081 debug_printf ("\n");
4082
4083 aarch64_insn_r->reg_rec_count++;
4084 gdb_assert (aarch64_insn_r->reg_rec_count == 1);
4085 REG_ALLOC (aarch64_insn_r->aarch64_regs, aarch64_insn_r->reg_rec_count,
4086 record_buf);
4087 return AARCH64_RECORD_SUCCESS;
4088 }
4089
4090 /* Decodes insns type and invokes its record handler. */
4091
4092 static unsigned int
4093 aarch64_record_decode_insn_handler (insn_decode_record *aarch64_insn_r)
4094 {
4095 uint32_t ins_bit25, ins_bit26, ins_bit27, ins_bit28;
4096
4097 ins_bit25 = bit (aarch64_insn_r->aarch64_insn, 25);
4098 ins_bit26 = bit (aarch64_insn_r->aarch64_insn, 26);
4099 ins_bit27 = bit (aarch64_insn_r->aarch64_insn, 27);
4100 ins_bit28 = bit (aarch64_insn_r->aarch64_insn, 28);
4101
4102 /* Data processing - immediate instructions. */
4103 if (!ins_bit26 && !ins_bit27 && ins_bit28)
4104 return aarch64_record_data_proc_imm (aarch64_insn_r);
4105
4106 /* Branch, exception generation and system instructions. */
4107 if (ins_bit26 && !ins_bit27 && ins_bit28)
4108 return aarch64_record_branch_except_sys (aarch64_insn_r);
4109
4110 /* Load and store instructions. */
4111 if (!ins_bit25 && ins_bit27)
4112 return aarch64_record_load_store (aarch64_insn_r);
4113
4114 /* Data processing - register instructions. */
4115 if (ins_bit25 && !ins_bit26 && ins_bit27)
4116 return aarch64_record_data_proc_reg (aarch64_insn_r);
4117
4118 /* Data processing - SIMD and floating point instructions. */
4119 if (ins_bit25 && ins_bit26 && ins_bit27)
4120 return aarch64_record_data_proc_simd_fp (aarch64_insn_r);
4121
4122 return AARCH64_RECORD_UNSUPPORTED;
4123 }
4124
4125 /* Cleans up local record registers and memory allocations. */
4126
4127 static void
4128 deallocate_reg_mem (insn_decode_record *record)
4129 {
4130 xfree (record->aarch64_regs);
4131 xfree (record->aarch64_mems);
4132 }
4133
4134 #if GDB_SELF_TEST
4135 namespace selftests {
4136
4137 static void
4138 aarch64_process_record_test (void)
4139 {
4140 struct gdbarch_info info;
4141 uint32_t ret;
4142
4143 gdbarch_info_init (&info);
4144 info.bfd_arch_info = bfd_scan_arch ("aarch64");
4145
4146 struct gdbarch *gdbarch = gdbarch_find_by_info (info);
4147 SELF_CHECK (gdbarch != NULL);
4148
4149 insn_decode_record aarch64_record;
4150
4151 memset (&aarch64_record, 0, sizeof (insn_decode_record));
4152 aarch64_record.regcache = NULL;
4153 aarch64_record.this_addr = 0;
4154 aarch64_record.gdbarch = gdbarch;
4155
4156 /* 20 00 80 f9 prfm pldl1keep, [x1] */
4157 aarch64_record.aarch64_insn = 0xf9800020;
4158 ret = aarch64_record_decode_insn_handler (&aarch64_record);
4159 SELF_CHECK (ret == AARCH64_RECORD_SUCCESS);
4160 SELF_CHECK (aarch64_record.reg_rec_count == 0);
4161 SELF_CHECK (aarch64_record.mem_rec_count == 0);
4162
4163 deallocate_reg_mem (&aarch64_record);
4164 }
4165
4166 } // namespace selftests
4167 #endif /* GDB_SELF_TEST */
4168
4169 /* Parse the current instruction and record the values of the registers and
4170 memory that will be changed in current instruction to record_arch_list
4171 return -1 if something is wrong. */
4172
4173 int
4174 aarch64_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
4175 CORE_ADDR insn_addr)
4176 {
4177 uint32_t rec_no = 0;
4178 uint8_t insn_size = 4;
4179 uint32_t ret = 0;
4180 gdb_byte buf[insn_size];
4181 insn_decode_record aarch64_record;
4182
4183 memset (&buf[0], 0, insn_size);
4184 memset (&aarch64_record, 0, sizeof (insn_decode_record));
4185 target_read_memory (insn_addr, &buf[0], insn_size);
4186 aarch64_record.aarch64_insn
4187 = (uint32_t) extract_unsigned_integer (&buf[0],
4188 insn_size,
4189 gdbarch_byte_order (gdbarch));
4190 aarch64_record.regcache = regcache;
4191 aarch64_record.this_addr = insn_addr;
4192 aarch64_record.gdbarch = gdbarch;
4193
4194 ret = aarch64_record_decode_insn_handler (&aarch64_record);
4195 if (ret == AARCH64_RECORD_UNSUPPORTED)
4196 {
4197 printf_unfiltered (_("Process record does not support instruction "
4198 "0x%0x at address %s.\n"),
4199 aarch64_record.aarch64_insn,
4200 paddress (gdbarch, insn_addr));
4201 ret = -1;
4202 }
4203
4204 if (0 == ret)
4205 {
4206 /* Record registers. */
4207 record_full_arch_list_add_reg (aarch64_record.regcache,
4208 AARCH64_PC_REGNUM);
4209 /* Always record register CPSR. */
4210 record_full_arch_list_add_reg (aarch64_record.regcache,
4211 AARCH64_CPSR_REGNUM);
4212 if (aarch64_record.aarch64_regs)
4213 for (rec_no = 0; rec_no < aarch64_record.reg_rec_count; rec_no++)
4214 if (record_full_arch_list_add_reg (aarch64_record.regcache,
4215 aarch64_record.aarch64_regs[rec_no]))
4216 ret = -1;
4217
4218 /* Record memories. */
4219 if (aarch64_record.aarch64_mems)
4220 for (rec_no = 0; rec_no < aarch64_record.mem_rec_count; rec_no++)
4221 if (record_full_arch_list_add_mem
4222 ((CORE_ADDR)aarch64_record.aarch64_mems[rec_no].addr,
4223 aarch64_record.aarch64_mems[rec_no].len))
4224 ret = -1;
4225
4226 if (record_full_arch_list_add_end ())
4227 ret = -1;
4228 }
4229
4230 deallocate_reg_mem (&aarch64_record);
4231 return ret;
4232 }
This page took 0.119188 seconds and 4 git commands to generate.