gdb: use compiled_regex instead of std::regex
[deliverable/binutils-gdb.git] / gdb / ada-exp.y
1 /* YACC parser for Ada expressions, for GDB.
2 Copyright (C) 1986-2021 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 /* Parse an Ada expression from text in a string,
20 and return the result as a struct expression pointer.
21 That structure contains arithmetic operations in reverse polish,
22 with constants represented by operations that are followed by special data.
23 See expression.h for the details of the format.
24 What is important here is that it can be built up sequentially
25 during the process of parsing; the lower levels of the tree always
26 come first in the result.
27
28 malloc's and realloc's in this file are transformed to
29 xmalloc and xrealloc respectively by the same sed command in the
30 makefile that remaps any other malloc/realloc inserted by the parser
31 generator. Doing this with #defines and trying to control the interaction
32 with include files (<malloc.h> and <stdlib.h> for example) just became
33 too messy, particularly when such includes can be inserted at random
34 times by the parser generator. */
35
36 %{
37
38 #include "defs.h"
39 #include <ctype.h>
40 #include "expression.h"
41 #include "value.h"
42 #include "parser-defs.h"
43 #include "language.h"
44 #include "ada-lang.h"
45 #include "bfd.h" /* Required by objfiles.h. */
46 #include "symfile.h" /* Required by objfiles.h. */
47 #include "objfiles.h" /* For have_full_symbols and have_partial_symbols */
48 #include "frame.h"
49 #include "block.h"
50 #include "ada-exp.h"
51
52 #define parse_type(ps) builtin_type (ps->gdbarch ())
53
54 /* Remap normal yacc parser interface names (yyparse, yylex, yyerror,
55 etc). */
56 #define GDB_YY_REMAP_PREFIX ada_
57 #include "yy-remap.h"
58
59 struct name_info {
60 struct symbol *sym;
61 struct minimal_symbol *msym;
62 const struct block *block;
63 struct stoken stoken;
64 };
65
66 /* The state of the parser, used internally when we are parsing the
67 expression. */
68
69 static struct parser_state *pstate = NULL;
70
71 /* If expression is in the context of TYPE'(...), then TYPE, else
72 * NULL. */
73 static struct type *type_qualifier;
74
75 int yyparse (void);
76
77 static int yylex (void);
78
79 static void yyerror (const char *);
80
81 static void write_int (struct parser_state *, LONGEST, struct type *);
82
83 static void write_object_renaming (struct parser_state *,
84 const struct block *, const char *, int,
85 const char *, int);
86
87 static struct type* write_var_or_type (struct parser_state *,
88 const struct block *, struct stoken);
89
90 static void write_name_assoc (struct parser_state *, struct stoken);
91
92 static const struct block *block_lookup (const struct block *, const char *);
93
94 static LONGEST convert_char_literal (struct type *, LONGEST);
95
96 static void write_ambiguous_var (struct parser_state *,
97 const struct block *, char *, int);
98
99 static struct type *type_int (struct parser_state *);
100
101 static struct type *type_long (struct parser_state *);
102
103 static struct type *type_long_long (struct parser_state *);
104
105 static struct type *type_long_double (struct parser_state *);
106
107 static struct type *type_char (struct parser_state *);
108
109 static struct type *type_boolean (struct parser_state *);
110
111 static struct type *type_system_address (struct parser_state *);
112
113 using namespace expr;
114
115 /* Handle Ada type resolution for OP. DEPROCEDURE_P and CONTEXT_TYPE
116 are passed to the resolve method, if called. */
117 static operation_up
118 resolve (operation_up &&op, bool deprocedure_p, struct type *context_type)
119 {
120 operation_up result = std::move (op);
121 ada_resolvable *res = dynamic_cast<ada_resolvable *> (result.get ());
122 if (res != nullptr
123 && res->resolve (pstate->expout.get (),
124 deprocedure_p,
125 pstate->parse_completion,
126 pstate->block_tracker,
127 context_type))
128 result
129 = make_operation<ada_funcall_operation> (std::move (result),
130 std::vector<operation_up> ());
131
132 return result;
133 }
134
135 /* Like parser_state::pop, but handles Ada type resolution.
136 DEPROCEDURE_P and CONTEXT_TYPE are passed to the resolve method, if
137 called. */
138 static operation_up
139 ada_pop (bool deprocedure_p = true, struct type *context_type = nullptr)
140 {
141 /* Of course it's ok to call parser_state::pop here... */
142 return resolve (pstate->pop (), deprocedure_p, context_type);
143 }
144
145 /* Like parser_state::wrap, but use ada_pop to pop the value. */
146 template<typename T>
147 void
148 ada_wrap ()
149 {
150 operation_up arg = ada_pop ();
151 pstate->push_new<T> (std::move (arg));
152 }
153
154 /* Create and push an address-of operation, as appropriate for Ada.
155 If TYPE is not NULL, the resulting operation will be wrapped in a
156 cast to TYPE. */
157 static void
158 ada_addrof (struct type *type = nullptr)
159 {
160 operation_up arg = ada_pop (false);
161 operation_up addr = make_operation<unop_addr_operation> (std::move (arg));
162 operation_up wrapped
163 = make_operation<ada_wrapped_operation> (std::move (addr));
164 if (type != nullptr)
165 wrapped = make_operation<unop_cast_operation> (std::move (wrapped), type);
166 pstate->push (std::move (wrapped));
167 }
168
169 /* Handle operator overloading. Either returns a function all
170 operation wrapping the arguments, or it returns null, leaving the
171 caller to construct the appropriate operation. If RHS is null, a
172 unary operator is assumed. */
173 static operation_up
174 maybe_overload (enum exp_opcode op, operation_up &lhs, operation_up &rhs)
175 {
176 struct value *args[2];
177
178 int nargs = 1;
179 args[0] = lhs->evaluate (nullptr, pstate->expout.get (),
180 EVAL_AVOID_SIDE_EFFECTS);
181 if (rhs == nullptr)
182 args[1] = nullptr;
183 else
184 {
185 args[1] = rhs->evaluate (nullptr, pstate->expout.get (),
186 EVAL_AVOID_SIDE_EFFECTS);
187 ++nargs;
188 }
189
190 block_symbol fn = ada_find_operator_symbol (op, pstate->parse_completion,
191 nargs, args);
192 if (fn.symbol == nullptr)
193 return {};
194
195 if (symbol_read_needs_frame (fn.symbol))
196 pstate->block_tracker->update (fn.block, INNERMOST_BLOCK_FOR_SYMBOLS);
197 operation_up callee = make_operation<ada_var_value_operation> (fn);
198
199 std::vector<operation_up> argvec;
200 argvec.push_back (std::move (lhs));
201 if (rhs != nullptr)
202 argvec.push_back (std::move (rhs));
203 return make_operation<ada_funcall_operation> (std::move (callee),
204 std::move (argvec));
205 }
206
207 /* Like parser_state::wrap, but use ada_pop to pop the value, and
208 handle unary overloading. */
209 template<typename T>
210 void
211 ada_wrap_overload (enum exp_opcode op)
212 {
213 operation_up arg = ada_pop ();
214 operation_up empty;
215
216 operation_up call = maybe_overload (op, arg, empty);
217 if (call == nullptr)
218 call = make_operation<T> (std::move (arg));
219 pstate->push (std::move (call));
220 }
221
222 /* A variant of parser_state::wrap2 that uses ada_pop to pop both
223 operands, and then pushes a new Ada-wrapped operation of the
224 template type T. */
225 template<typename T>
226 void
227 ada_un_wrap2 (enum exp_opcode op)
228 {
229 operation_up rhs = ada_pop ();
230 operation_up lhs = ada_pop ();
231
232 operation_up wrapped = maybe_overload (op, lhs, rhs);
233 if (wrapped == nullptr)
234 {
235 wrapped = make_operation<T> (std::move (lhs), std::move (rhs));
236 wrapped = make_operation<ada_wrapped_operation> (std::move (wrapped));
237 }
238 pstate->push (std::move (wrapped));
239 }
240
241 /* A variant of parser_state::wrap2 that uses ada_pop to pop both
242 operands. Unlike ada_un_wrap2, ada_wrapped_operation is not
243 used. */
244 template<typename T>
245 void
246 ada_wrap2 (enum exp_opcode op)
247 {
248 operation_up rhs = ada_pop ();
249 operation_up lhs = ada_pop ();
250 operation_up call = maybe_overload (op, lhs, rhs);
251 if (call == nullptr)
252 call = make_operation<T> (std::move (lhs), std::move (rhs));
253 pstate->push (std::move (call));
254 }
255
256 /* A variant of parser_state::wrap2 that uses ada_pop to pop both
257 operands. OP is also passed to the constructor of the new binary
258 operation. */
259 template<typename T>
260 void
261 ada_wrap_op (enum exp_opcode op)
262 {
263 operation_up rhs = ada_pop ();
264 operation_up lhs = ada_pop ();
265 operation_up call = maybe_overload (op, lhs, rhs);
266 if (call == nullptr)
267 call = make_operation<T> (op, std::move (lhs), std::move (rhs));
268 pstate->push (std::move (call));
269 }
270
271 /* Pop three operands using ada_pop, then construct a new ternary
272 operation of type T and push it. */
273 template<typename T>
274 void
275 ada_wrap3 ()
276 {
277 operation_up rhs = ada_pop ();
278 operation_up mid = ada_pop ();
279 operation_up lhs = ada_pop ();
280 pstate->push_new<T> (std::move (lhs), std::move (mid), std::move (rhs));
281 }
282
283 /* Pop NARGS operands, then a callee operand, and use these to
284 construct and push a new Ada function call operation. */
285 static void
286 ada_funcall (int nargs)
287 {
288 /* We use the ordinary pop here, because we're going to do
289 resolution in a separate step, in order to handle array
290 indices. */
291 std::vector<operation_up> args = pstate->pop_vector (nargs);
292 /* Call parser_state::pop here, because we don't want to
293 function-convert the callee slot of a call we're already
294 constructing. */
295 operation_up callee = pstate->pop ();
296
297 ada_var_value_operation *vvo
298 = dynamic_cast<ada_var_value_operation *> (callee.get ());
299 int array_arity = 0;
300 struct type *callee_t = nullptr;
301 if (vvo == nullptr
302 || SYMBOL_DOMAIN (vvo->get_symbol ()) != UNDEF_DOMAIN)
303 {
304 struct value *callee_v = callee->evaluate (nullptr,
305 pstate->expout.get (),
306 EVAL_AVOID_SIDE_EFFECTS);
307 callee_t = ada_check_typedef (value_type (callee_v));
308 array_arity = ada_array_arity (callee_t);
309 }
310
311 for (int i = 0; i < nargs; ++i)
312 {
313 struct type *subtype = nullptr;
314 if (i < array_arity)
315 subtype = ada_index_type (callee_t, i + 1, "array type");
316 args[i] = resolve (std::move (args[i]), true, subtype);
317 }
318
319 std::unique_ptr<ada_funcall_operation> funcall
320 (new ada_funcall_operation (std::move (callee), std::move (args)));
321 funcall->resolve (pstate->expout.get (), true, pstate->parse_completion,
322 pstate->block_tracker, nullptr);
323 pstate->push (std::move (funcall));
324 }
325
326 /* The components being constructed during this parse. */
327 static std::vector<ada_component_up> components;
328
329 /* Create a new ada_component_up of the indicated type and arguments,
330 and push it on the global 'components' vector. */
331 template<typename T, typename... Arg>
332 void
333 push_component (Arg... args)
334 {
335 components.emplace_back (new T (std::forward<Arg> (args)...));
336 }
337
338 /* Examine the final element of the 'components' vector, and return it
339 as a pointer to an ada_choices_component. The caller is
340 responsible for ensuring that the final element is in fact an
341 ada_choices_component. */
342 static ada_choices_component *
343 choice_component ()
344 {
345 ada_component *last = components.back ().get ();
346 ada_choices_component *result = dynamic_cast<ada_choices_component *> (last);
347 gdb_assert (result != nullptr);
348 return result;
349 }
350
351 /* Pop the most recent component from the global stack, and return
352 it. */
353 static ada_component_up
354 pop_component ()
355 {
356 ada_component_up result = std::move (components.back ());
357 components.pop_back ();
358 return result;
359 }
360
361 /* Pop the N most recent components from the global stack, and return
362 them in a vector. */
363 static std::vector<ada_component_up>
364 pop_components (int n)
365 {
366 std::vector<ada_component_up> result (n);
367 for (int i = 1; i <= n; ++i)
368 result[n - i] = pop_component ();
369 return result;
370 }
371
372 /* The associations being constructed during this parse. */
373 static std::vector<ada_association_up> associations;
374
375 /* Create a new ada_association_up of the indicated type and
376 arguments, and push it on the global 'associations' vector. */
377 template<typename T, typename... Arg>
378 void
379 push_association (Arg... args)
380 {
381 associations.emplace_back (new T (std::forward<Arg> (args)...));
382 }
383
384 /* Pop the most recent association from the global stack, and return
385 it. */
386 static ada_association_up
387 pop_association ()
388 {
389 ada_association_up result = std::move (associations.back ());
390 associations.pop_back ();
391 return result;
392 }
393
394 /* Pop the N most recent associations from the global stack, and
395 return them in a vector. */
396 static std::vector<ada_association_up>
397 pop_associations (int n)
398 {
399 std::vector<ada_association_up> result (n);
400 for (int i = 1; i <= n; ++i)
401 result[n - i] = pop_association ();
402 return result;
403 }
404
405 %}
406
407 %union
408 {
409 LONGEST lval;
410 struct {
411 LONGEST val;
412 struct type *type;
413 } typed_val;
414 struct {
415 gdb_byte val[16];
416 struct type *type;
417 } typed_val_float;
418 struct type *tval;
419 struct stoken sval;
420 const struct block *bval;
421 struct internalvar *ivar;
422 }
423
424 %type <lval> positional_list component_groups component_associations
425 %type <lval> aggregate_component_list
426 %type <tval> var_or_type type_prefix opt_type_prefix
427
428 %token <typed_val> INT NULL_PTR CHARLIT
429 %token <typed_val_float> FLOAT
430 %token TRUEKEYWORD FALSEKEYWORD
431 %token COLONCOLON
432 %token <sval> STRING NAME DOT_ID
433 %type <bval> block
434 %type <lval> arglist tick_arglist
435
436 %type <tval> save_qualifier
437
438 %token DOT_ALL
439
440 /* Special type cases, put in to allow the parser to distinguish different
441 legal basetypes. */
442 %token <sval> DOLLAR_VARIABLE
443
444 %nonassoc ASSIGN
445 %left _AND_ OR XOR THEN ELSE
446 %left '=' NOTEQUAL '<' '>' LEQ GEQ IN DOTDOT
447 %left '@'
448 %left '+' '-' '&'
449 %left UNARY
450 %left '*' '/' MOD REM
451 %right STARSTAR ABS NOT
452
453 /* Artificial token to give NAME => ... and NAME | priority over reducing
454 NAME to <primary> and to give <primary>' priority over reducing <primary>
455 to <simple_exp>. */
456 %nonassoc VAR
457
458 %nonassoc ARROW '|'
459
460 %right TICK_ACCESS TICK_ADDRESS TICK_FIRST TICK_LAST TICK_LENGTH
461 %right TICK_MAX TICK_MIN TICK_MODULUS
462 %right TICK_POS TICK_RANGE TICK_SIZE TICK_TAG TICK_VAL
463 /* The following are right-associative only so that reductions at this
464 precedence have lower precedence than '.' and '('. The syntax still
465 forces a.b.c, e.g., to be LEFT-associated. */
466 %right '.' '(' '[' DOT_ID DOT_ALL
467
468 %token NEW OTHERS
469
470 \f
471 %%
472
473 start : exp1
474 ;
475
476 /* Expressions, including the sequencing operator. */
477 exp1 : exp
478 | exp1 ';' exp
479 { ada_wrap2<comma_operation> (BINOP_COMMA); }
480 | primary ASSIGN exp /* Extension for convenience */
481 {
482 operation_up rhs = pstate->pop ();
483 operation_up lhs = ada_pop ();
484 value *lhs_val
485 = lhs->evaluate (nullptr, pstate->expout.get (),
486 EVAL_AVOID_SIDE_EFFECTS);
487 rhs = resolve (std::move (rhs), true,
488 value_type (lhs_val));
489 pstate->push_new<ada_assign_operation>
490 (std::move (lhs), std::move (rhs));
491 }
492 ;
493
494 /* Expressions, not including the sequencing operator. */
495 primary : primary DOT_ALL
496 { ada_wrap<ada_unop_ind_operation> (); }
497 ;
498
499 primary : primary DOT_ID
500 {
501 operation_up arg = ada_pop ();
502 pstate->push_new<ada_structop_operation>
503 (std::move (arg), copy_name ($2));
504 }
505 ;
506
507 primary : primary '(' arglist ')'
508 { ada_funcall ($3); }
509 | var_or_type '(' arglist ')'
510 {
511 if ($1 != NULL)
512 {
513 if ($3 != 1)
514 error (_("Invalid conversion"));
515 operation_up arg = ada_pop ();
516 pstate->push_new<unop_cast_operation>
517 (std::move (arg), $1);
518 }
519 else
520 ada_funcall ($3);
521 }
522 ;
523
524 primary : var_or_type '\'' save_qualifier { type_qualifier = $1; }
525 '(' exp ')'
526 {
527 if ($1 == NULL)
528 error (_("Type required for qualification"));
529 operation_up arg = ada_pop (true,
530 check_typedef ($1));
531 pstate->push_new<ada_qual_operation>
532 (std::move (arg), $1);
533 type_qualifier = $3;
534 }
535 ;
536
537 save_qualifier : { $$ = type_qualifier; }
538 ;
539
540 primary :
541 primary '(' simple_exp DOTDOT simple_exp ')'
542 { ada_wrap3<ada_ternop_slice_operation> (); }
543 | var_or_type '(' simple_exp DOTDOT simple_exp ')'
544 { if ($1 == NULL)
545 ada_wrap3<ada_ternop_slice_operation> ();
546 else
547 error (_("Cannot slice a type"));
548 }
549 ;
550
551 primary : '(' exp1 ')' { }
552 ;
553
554 /* The following rule causes a conflict with the type conversion
555 var_or_type (exp)
556 To get around it, we give '(' higher priority and add bridge rules for
557 var_or_type (exp, exp, ...)
558 var_or_type (exp .. exp)
559 We also have the action for var_or_type(exp) generate a function call
560 when the first symbol does not denote a type. */
561
562 primary : var_or_type %prec VAR
563 { if ($1 != NULL)
564 pstate->push_new<type_operation> ($1);
565 }
566 ;
567
568 primary : DOLLAR_VARIABLE /* Various GDB extensions */
569 { pstate->push_dollar ($1); }
570 ;
571
572 primary : aggregate
573 {
574 pstate->push_new<ada_aggregate_operation>
575 (pop_component ());
576 }
577 ;
578
579 simple_exp : primary
580 ;
581
582 simple_exp : '-' simple_exp %prec UNARY
583 { ada_wrap_overload<ada_neg_operation> (UNOP_NEG); }
584 ;
585
586 simple_exp : '+' simple_exp %prec UNARY
587 {
588 operation_up arg = ada_pop ();
589 operation_up empty;
590
591 /* If an overloaded operator was found, use
592 it. Otherwise, unary + has no effect and
593 the argument can be pushed instead. */
594 operation_up call = maybe_overload (UNOP_PLUS, arg,
595 empty);
596 if (call != nullptr)
597 arg = std::move (call);
598 pstate->push (std::move (arg));
599 }
600 ;
601
602 simple_exp : NOT simple_exp %prec UNARY
603 {
604 ada_wrap_overload<unary_logical_not_operation>
605 (UNOP_LOGICAL_NOT);
606 }
607 ;
608
609 simple_exp : ABS simple_exp %prec UNARY
610 { ada_wrap_overload<ada_abs_operation> (UNOP_ABS); }
611 ;
612
613 arglist : { $$ = 0; }
614 ;
615
616 arglist : exp
617 { $$ = 1; }
618 | NAME ARROW exp
619 { $$ = 1; }
620 | arglist ',' exp
621 { $$ = $1 + 1; }
622 | arglist ',' NAME ARROW exp
623 { $$ = $1 + 1; }
624 ;
625
626 primary : '{' var_or_type '}' primary %prec '.'
627 /* GDB extension */
628 {
629 if ($2 == NULL)
630 error (_("Type required within braces in coercion"));
631 operation_up arg = ada_pop ();
632 pstate->push_new<unop_memval_operation>
633 (std::move (arg), $2);
634 }
635 ;
636
637 /* Binary operators in order of decreasing precedence. */
638
639 simple_exp : simple_exp STARSTAR simple_exp
640 { ada_wrap2<ada_binop_exp_operation> (BINOP_EXP); }
641 ;
642
643 simple_exp : simple_exp '*' simple_exp
644 { ada_wrap2<ada_binop_mul_operation> (BINOP_MUL); }
645 ;
646
647 simple_exp : simple_exp '/' simple_exp
648 { ada_wrap2<ada_binop_div_operation> (BINOP_DIV); }
649 ;
650
651 simple_exp : simple_exp REM simple_exp /* May need to be fixed to give correct Ada REM */
652 { ada_wrap2<ada_binop_rem_operation> (BINOP_REM); }
653 ;
654
655 simple_exp : simple_exp MOD simple_exp
656 { ada_wrap2<ada_binop_mod_operation> (BINOP_MOD); }
657 ;
658
659 simple_exp : simple_exp '@' simple_exp /* GDB extension */
660 { ada_wrap2<repeat_operation> (BINOP_REPEAT); }
661 ;
662
663 simple_exp : simple_exp '+' simple_exp
664 { ada_wrap_op<ada_binop_addsub_operation> (BINOP_ADD); }
665 ;
666
667 simple_exp : simple_exp '&' simple_exp
668 { ada_wrap2<concat_operation> (BINOP_CONCAT); }
669 ;
670
671 simple_exp : simple_exp '-' simple_exp
672 { ada_wrap_op<ada_binop_addsub_operation> (BINOP_SUB); }
673 ;
674
675 relation : simple_exp
676 ;
677
678 relation : simple_exp '=' simple_exp
679 { ada_wrap_op<ada_binop_equal_operation> (BINOP_EQUAL); }
680 ;
681
682 relation : simple_exp NOTEQUAL simple_exp
683 { ada_wrap_op<ada_binop_equal_operation> (BINOP_NOTEQUAL); }
684 ;
685
686 relation : simple_exp LEQ simple_exp
687 { ada_un_wrap2<leq_operation> (BINOP_LEQ); }
688 ;
689
690 relation : simple_exp IN simple_exp DOTDOT simple_exp
691 { ada_wrap3<ada_ternop_range_operation> (); }
692 | simple_exp IN primary TICK_RANGE tick_arglist
693 {
694 operation_up rhs = ada_pop ();
695 operation_up lhs = ada_pop ();
696 pstate->push_new<ada_binop_in_bounds_operation>
697 (std::move (lhs), std::move (rhs), $5);
698 }
699 | simple_exp IN var_or_type %prec TICK_ACCESS
700 {
701 if ($3 == NULL)
702 error (_("Right operand of 'in' must be type"));
703 operation_up arg = ada_pop ();
704 pstate->push_new<ada_unop_range_operation>
705 (std::move (arg), $3);
706 }
707 | simple_exp NOT IN simple_exp DOTDOT simple_exp
708 { ada_wrap3<ada_ternop_range_operation> ();
709 ada_wrap<unary_logical_not_operation> (); }
710 | simple_exp NOT IN primary TICK_RANGE tick_arglist
711 {
712 operation_up rhs = ada_pop ();
713 operation_up lhs = ada_pop ();
714 pstate->push_new<ada_binop_in_bounds_operation>
715 (std::move (lhs), std::move (rhs), $6);
716 ada_wrap<unary_logical_not_operation> ();
717 }
718 | simple_exp NOT IN var_or_type %prec TICK_ACCESS
719 {
720 if ($4 == NULL)
721 error (_("Right operand of 'in' must be type"));
722 operation_up arg = ada_pop ();
723 pstate->push_new<ada_unop_range_operation>
724 (std::move (arg), $4);
725 ada_wrap<unary_logical_not_operation> ();
726 }
727 ;
728
729 relation : simple_exp GEQ simple_exp
730 { ada_un_wrap2<geq_operation> (BINOP_GEQ); }
731 ;
732
733 relation : simple_exp '<' simple_exp
734 { ada_un_wrap2<less_operation> (BINOP_LESS); }
735 ;
736
737 relation : simple_exp '>' simple_exp
738 { ada_un_wrap2<gtr_operation> (BINOP_GTR); }
739 ;
740
741 exp : relation
742 | and_exp
743 | and_then_exp
744 | or_exp
745 | or_else_exp
746 | xor_exp
747 ;
748
749 and_exp :
750 relation _AND_ relation
751 { ada_wrap2<ada_bitwise_and_operation>
752 (BINOP_BITWISE_AND); }
753 | and_exp _AND_ relation
754 { ada_wrap2<ada_bitwise_and_operation>
755 (BINOP_BITWISE_AND); }
756 ;
757
758 and_then_exp :
759 relation _AND_ THEN relation
760 { ada_wrap2<logical_and_operation>
761 (BINOP_LOGICAL_AND); }
762 | and_then_exp _AND_ THEN relation
763 { ada_wrap2<logical_and_operation>
764 (BINOP_LOGICAL_AND); }
765 ;
766
767 or_exp :
768 relation OR relation
769 { ada_wrap2<ada_bitwise_ior_operation>
770 (BINOP_BITWISE_IOR); }
771 | or_exp OR relation
772 { ada_wrap2<ada_bitwise_ior_operation>
773 (BINOP_BITWISE_IOR); }
774 ;
775
776 or_else_exp :
777 relation OR ELSE relation
778 { ada_wrap2<logical_or_operation> (BINOP_LOGICAL_OR); }
779 | or_else_exp OR ELSE relation
780 { ada_wrap2<logical_or_operation> (BINOP_LOGICAL_OR); }
781 ;
782
783 xor_exp : relation XOR relation
784 { ada_wrap2<ada_bitwise_xor_operation>
785 (BINOP_BITWISE_XOR); }
786 | xor_exp XOR relation
787 { ada_wrap2<ada_bitwise_xor_operation>
788 (BINOP_BITWISE_XOR); }
789 ;
790
791 /* Primaries can denote types (OP_TYPE). In cases such as
792 primary TICK_ADDRESS, where a type would be invalid, it will be
793 caught when evaluate_subexp in ada-lang.c tries to evaluate the
794 primary, expecting a value. Precedence rules resolve the ambiguity
795 in NAME TICK_ACCESS in favor of shifting to form a var_or_type. A
796 construct such as aType'access'access will again cause an error when
797 aType'access evaluates to a type that evaluate_subexp attempts to
798 evaluate. */
799 primary : primary TICK_ACCESS
800 { ada_addrof (); }
801 | primary TICK_ADDRESS
802 { ada_addrof (type_system_address (pstate)); }
803 | primary TICK_FIRST tick_arglist
804 {
805 operation_up arg = ada_pop ();
806 pstate->push_new<ada_unop_atr_operation>
807 (std::move (arg), OP_ATR_FIRST, $3);
808 }
809 | primary TICK_LAST tick_arglist
810 {
811 operation_up arg = ada_pop ();
812 pstate->push_new<ada_unop_atr_operation>
813 (std::move (arg), OP_ATR_LAST, $3);
814 }
815 | primary TICK_LENGTH tick_arglist
816 {
817 operation_up arg = ada_pop ();
818 pstate->push_new<ada_unop_atr_operation>
819 (std::move (arg), OP_ATR_LENGTH, $3);
820 }
821 | primary TICK_SIZE
822 { ada_wrap<ada_atr_size_operation> (); }
823 | primary TICK_TAG
824 { ada_wrap<ada_atr_tag_operation> (); }
825 | opt_type_prefix TICK_MIN '(' exp ',' exp ')'
826 { ada_wrap2<ada_binop_min_operation> (BINOP_MIN); }
827 | opt_type_prefix TICK_MAX '(' exp ',' exp ')'
828 { ada_wrap2<ada_binop_max_operation> (BINOP_MAX); }
829 | opt_type_prefix TICK_POS '(' exp ')'
830 { ada_wrap<ada_pos_operation> (); }
831 | type_prefix TICK_VAL '(' exp ')'
832 {
833 operation_up arg = ada_pop ();
834 pstate->push_new<ada_atr_val_operation>
835 ($1, std::move (arg));
836 }
837 | type_prefix TICK_MODULUS
838 {
839 struct type *type_arg = check_typedef ($1);
840 if (!ada_is_modular_type (type_arg))
841 error (_("'modulus must be applied to modular type"));
842 write_int (pstate, ada_modulus (type_arg),
843 TYPE_TARGET_TYPE (type_arg));
844 }
845 ;
846
847 tick_arglist : %prec '('
848 { $$ = 1; }
849 | '(' INT ')'
850 { $$ = $2.val; }
851 ;
852
853 type_prefix :
854 var_or_type
855 {
856 if ($1 == NULL)
857 error (_("Prefix must be type"));
858 $$ = $1;
859 }
860 ;
861
862 opt_type_prefix :
863 type_prefix
864 { $$ = $1; }
865 | /* EMPTY */
866 { $$ = parse_type (pstate)->builtin_void; }
867 ;
868
869
870 primary : INT
871 { write_int (pstate, (LONGEST) $1.val, $1.type); }
872 ;
873
874 primary : CHARLIT
875 { write_int (pstate,
876 convert_char_literal (type_qualifier, $1.val),
877 (type_qualifier == NULL)
878 ? $1.type : type_qualifier);
879 }
880 ;
881
882 primary : FLOAT
883 {
884 float_data data;
885 std::copy (std::begin ($1.val), std::end ($1.val),
886 std::begin (data));
887 pstate->push_new<float_const_operation>
888 ($1.type, data);
889 ada_wrap<ada_wrapped_operation> ();
890 }
891 ;
892
893 primary : NULL_PTR
894 { write_int (pstate, 0, type_int (pstate)); }
895 ;
896
897 primary : STRING
898 {
899 pstate->push_new<ada_string_operation>
900 (copy_name ($1));
901 }
902 ;
903
904 primary : TRUEKEYWORD
905 { write_int (pstate, 1, type_boolean (pstate)); }
906 | FALSEKEYWORD
907 { write_int (pstate, 0, type_boolean (pstate)); }
908 ;
909
910 primary : NEW NAME
911 { error (_("NEW not implemented.")); }
912 ;
913
914 var_or_type: NAME %prec VAR
915 { $$ = write_var_or_type (pstate, NULL, $1); }
916 | block NAME %prec VAR
917 { $$ = write_var_or_type (pstate, $1, $2); }
918 | NAME TICK_ACCESS
919 {
920 $$ = write_var_or_type (pstate, NULL, $1);
921 if ($$ == NULL)
922 ada_addrof ();
923 else
924 $$ = lookup_pointer_type ($$);
925 }
926 | block NAME TICK_ACCESS
927 {
928 $$ = write_var_or_type (pstate, $1, $2);
929 if ($$ == NULL)
930 ada_addrof ();
931 else
932 $$ = lookup_pointer_type ($$);
933 }
934 ;
935
936 /* GDB extension */
937 block : NAME COLONCOLON
938 { $$ = block_lookup (NULL, $1.ptr); }
939 | block NAME COLONCOLON
940 { $$ = block_lookup ($1, $2.ptr); }
941 ;
942
943 aggregate :
944 '(' aggregate_component_list ')'
945 {
946 std::vector<ada_component_up> components
947 = pop_components ($2);
948
949 push_component<ada_aggregate_component>
950 (std::move (components));
951 }
952 ;
953
954 aggregate_component_list :
955 component_groups { $$ = $1; }
956 | positional_list exp
957 {
958 push_component<ada_positional_component>
959 ($1, ada_pop ());
960 $$ = $1 + 1;
961 }
962 | positional_list component_groups
963 { $$ = $1 + $2; }
964 ;
965
966 positional_list :
967 exp ','
968 {
969 push_component<ada_positional_component>
970 (0, ada_pop ());
971 $$ = 1;
972 }
973 | positional_list exp ','
974 {
975 push_component<ada_positional_component>
976 ($1, ada_pop ());
977 $$ = $1 + 1;
978 }
979 ;
980
981 component_groups:
982 others { $$ = 1; }
983 | component_group { $$ = 1; }
984 | component_group ',' component_groups
985 { $$ = $3 + 1; }
986 ;
987
988 others : OTHERS ARROW exp
989 {
990 push_component<ada_others_component> (ada_pop ());
991 }
992 ;
993
994 component_group :
995 component_associations
996 {
997 ada_choices_component *choices = choice_component ();
998 choices->set_associations (pop_associations ($1));
999 }
1000 ;
1001
1002 /* We use this somewhat obscure definition in order to handle NAME => and
1003 NAME | differently from exp => and exp |. ARROW and '|' have a precedence
1004 above that of the reduction of NAME to var_or_type. By delaying
1005 decisions until after the => or '|', we convert the ambiguity to a
1006 resolved shift/reduce conflict. */
1007 component_associations :
1008 NAME ARROW exp
1009 {
1010 push_component<ada_choices_component> (ada_pop ());
1011 write_name_assoc (pstate, $1);
1012 $$ = 1;
1013 }
1014 | simple_exp ARROW exp
1015 {
1016 push_component<ada_choices_component> (ada_pop ());
1017 push_association<ada_name_association> (ada_pop ());
1018 $$ = 1;
1019 }
1020 | simple_exp DOTDOT simple_exp ARROW exp
1021 {
1022 push_component<ada_choices_component> (ada_pop ());
1023 operation_up rhs = ada_pop ();
1024 operation_up lhs = ada_pop ();
1025 push_association<ada_discrete_range_association>
1026 (std::move (lhs), std::move (rhs));
1027 $$ = 1;
1028 }
1029 | NAME '|' component_associations
1030 {
1031 write_name_assoc (pstate, $1);
1032 $$ = $3 + 1;
1033 }
1034 | simple_exp '|' component_associations
1035 {
1036 push_association<ada_name_association> (ada_pop ());
1037 $$ = $3 + 1;
1038 }
1039 | simple_exp DOTDOT simple_exp '|' component_associations
1040
1041 {
1042 operation_up rhs = ada_pop ();
1043 operation_up lhs = ada_pop ();
1044 push_association<ada_discrete_range_association>
1045 (std::move (lhs), std::move (rhs));
1046 $$ = $5 + 1;
1047 }
1048 ;
1049
1050 /* Some extensions borrowed from C, for the benefit of those who find they
1051 can't get used to Ada notation in GDB. */
1052
1053 primary : '*' primary %prec '.'
1054 { ada_wrap<ada_unop_ind_operation> (); }
1055 | '&' primary %prec '.'
1056 { ada_addrof (); }
1057 | primary '[' exp ']'
1058 {
1059 ada_wrap2<subscript_operation> (BINOP_SUBSCRIPT);
1060 ada_wrap<ada_wrapped_operation> ();
1061 }
1062 ;
1063
1064 %%
1065
1066 /* yylex defined in ada-lex.c: Reads one token, getting characters */
1067 /* through lexptr. */
1068
1069 /* Remap normal flex interface names (yylex) as well as gratuitiously */
1070 /* global symbol names, so we can have multiple flex-generated parsers */
1071 /* in gdb. */
1072
1073 /* (See note above on previous definitions for YACC.) */
1074
1075 #define yy_create_buffer ada_yy_create_buffer
1076 #define yy_delete_buffer ada_yy_delete_buffer
1077 #define yy_init_buffer ada_yy_init_buffer
1078 #define yy_load_buffer_state ada_yy_load_buffer_state
1079 #define yy_switch_to_buffer ada_yy_switch_to_buffer
1080 #define yyrestart ada_yyrestart
1081 #define yytext ada_yytext
1082
1083 static struct obstack temp_parse_space;
1084
1085 /* The following kludge was found necessary to prevent conflicts between */
1086 /* defs.h and non-standard stdlib.h files. */
1087 #define qsort __qsort__dummy
1088 #include "ada-lex.c"
1089
1090 int
1091 ada_parse (struct parser_state *par_state)
1092 {
1093 /* Setting up the parser state. */
1094 scoped_restore pstate_restore = make_scoped_restore (&pstate);
1095 gdb_assert (par_state != NULL);
1096 pstate = par_state;
1097
1098 lexer_init (yyin); /* (Re-)initialize lexer. */
1099 type_qualifier = NULL;
1100 obstack_free (&temp_parse_space, NULL);
1101 obstack_init (&temp_parse_space);
1102 components.clear ();
1103 associations.clear ();
1104
1105 int result = yyparse ();
1106 if (!result)
1107 {
1108 struct type *context_type = nullptr;
1109 if (par_state->void_context_p)
1110 context_type = parse_type (par_state)->builtin_void;
1111 pstate->set_operation (ada_pop (true, context_type));
1112 }
1113 return result;
1114 }
1115
1116 static void
1117 yyerror (const char *msg)
1118 {
1119 error (_("Error in expression, near `%s'."), pstate->lexptr);
1120 }
1121
1122 /* Emit expression to access an instance of SYM, in block BLOCK (if
1123 non-NULL). */
1124
1125 static void
1126 write_var_from_sym (struct parser_state *par_state, block_symbol sym)
1127 {
1128 if (symbol_read_needs_frame (sym.symbol))
1129 par_state->block_tracker->update (sym.block, INNERMOST_BLOCK_FOR_SYMBOLS);
1130
1131 par_state->push_new<ada_var_value_operation> (sym);
1132 }
1133
1134 /* Write integer or boolean constant ARG of type TYPE. */
1135
1136 static void
1137 write_int (struct parser_state *par_state, LONGEST arg, struct type *type)
1138 {
1139 pstate->push_new<long_const_operation> (type, arg);
1140 ada_wrap<ada_wrapped_operation> ();
1141 }
1142
1143 /* Emit expression corresponding to the renamed object named
1144 * designated by RENAMED_ENTITY[0 .. RENAMED_ENTITY_LEN-1] in the
1145 * context of ORIG_LEFT_CONTEXT, to which is applied the operations
1146 * encoded by RENAMING_EXPR. MAX_DEPTH is the maximum number of
1147 * cascaded renamings to allow. If ORIG_LEFT_CONTEXT is null, it
1148 * defaults to the currently selected block. ORIG_SYMBOL is the
1149 * symbol that originally encoded the renaming. It is needed only
1150 * because its prefix also qualifies any index variables used to index
1151 * or slice an array. It should not be necessary once we go to the
1152 * new encoding entirely (FIXME pnh 7/20/2007). */
1153
1154 static void
1155 write_object_renaming (struct parser_state *par_state,
1156 const struct block *orig_left_context,
1157 const char *renamed_entity, int renamed_entity_len,
1158 const char *renaming_expr, int max_depth)
1159 {
1160 char *name;
1161 enum { SIMPLE_INDEX, LOWER_BOUND, UPPER_BOUND } slice_state;
1162 struct block_symbol sym_info;
1163
1164 if (max_depth <= 0)
1165 error (_("Could not find renamed symbol"));
1166
1167 if (orig_left_context == NULL)
1168 orig_left_context = get_selected_block (NULL);
1169
1170 name = obstack_strndup (&temp_parse_space, renamed_entity,
1171 renamed_entity_len);
1172 ada_lookup_encoded_symbol (name, orig_left_context, VAR_DOMAIN, &sym_info);
1173 if (sym_info.symbol == NULL)
1174 error (_("Could not find renamed variable: %s"), ada_decode (name).c_str ());
1175 else if (SYMBOL_CLASS (sym_info.symbol) == LOC_TYPEDEF)
1176 /* We have a renaming of an old-style renaming symbol. Don't
1177 trust the block information. */
1178 sym_info.block = orig_left_context;
1179
1180 {
1181 const char *inner_renamed_entity;
1182 int inner_renamed_entity_len;
1183 const char *inner_renaming_expr;
1184
1185 switch (ada_parse_renaming (sym_info.symbol, &inner_renamed_entity,
1186 &inner_renamed_entity_len,
1187 &inner_renaming_expr))
1188 {
1189 case ADA_NOT_RENAMING:
1190 write_var_from_sym (par_state, sym_info);
1191 break;
1192 case ADA_OBJECT_RENAMING:
1193 write_object_renaming (par_state, sym_info.block,
1194 inner_renamed_entity, inner_renamed_entity_len,
1195 inner_renaming_expr, max_depth - 1);
1196 break;
1197 default:
1198 goto BadEncoding;
1199 }
1200 }
1201
1202 slice_state = SIMPLE_INDEX;
1203 while (*renaming_expr == 'X')
1204 {
1205 renaming_expr += 1;
1206
1207 switch (*renaming_expr) {
1208 case 'A':
1209 renaming_expr += 1;
1210 ada_wrap<ada_unop_ind_operation> ();
1211 break;
1212 case 'L':
1213 slice_state = LOWER_BOUND;
1214 /* FALLTHROUGH */
1215 case 'S':
1216 renaming_expr += 1;
1217 if (isdigit (*renaming_expr))
1218 {
1219 char *next;
1220 long val = strtol (renaming_expr, &next, 10);
1221 if (next == renaming_expr)
1222 goto BadEncoding;
1223 renaming_expr = next;
1224 write_int (par_state, val, type_int (par_state));
1225 }
1226 else
1227 {
1228 const char *end;
1229 char *index_name;
1230 struct block_symbol index_sym_info;
1231
1232 end = strchr (renaming_expr, 'X');
1233 if (end == NULL)
1234 end = renaming_expr + strlen (renaming_expr);
1235
1236 index_name = obstack_strndup (&temp_parse_space, renaming_expr,
1237 end - renaming_expr);
1238 renaming_expr = end;
1239
1240 ada_lookup_encoded_symbol (index_name, orig_left_context,
1241 VAR_DOMAIN, &index_sym_info);
1242 if (index_sym_info.symbol == NULL)
1243 error (_("Could not find %s"), index_name);
1244 else if (SYMBOL_CLASS (index_sym_info.symbol) == LOC_TYPEDEF)
1245 /* Index is an old-style renaming symbol. */
1246 index_sym_info.block = orig_left_context;
1247 write_var_from_sym (par_state, index_sym_info);
1248 }
1249 if (slice_state == SIMPLE_INDEX)
1250 ada_funcall (1);
1251 else if (slice_state == LOWER_BOUND)
1252 slice_state = UPPER_BOUND;
1253 else if (slice_state == UPPER_BOUND)
1254 {
1255 ada_wrap3<ada_ternop_slice_operation> ();
1256 slice_state = SIMPLE_INDEX;
1257 }
1258 break;
1259
1260 case 'R':
1261 {
1262 const char *end;
1263
1264 renaming_expr += 1;
1265
1266 if (slice_state != SIMPLE_INDEX)
1267 goto BadEncoding;
1268 end = strchr (renaming_expr, 'X');
1269 if (end == NULL)
1270 end = renaming_expr + strlen (renaming_expr);
1271
1272 operation_up arg = ada_pop ();
1273 pstate->push_new<ada_structop_operation>
1274 (std::move (arg), std::string (renaming_expr,
1275 end - renaming_expr));
1276 renaming_expr = end;
1277 break;
1278 }
1279
1280 default:
1281 goto BadEncoding;
1282 }
1283 }
1284 if (slice_state == SIMPLE_INDEX)
1285 return;
1286
1287 BadEncoding:
1288 error (_("Internal error in encoding of renaming declaration"));
1289 }
1290
1291 static const struct block*
1292 block_lookup (const struct block *context, const char *raw_name)
1293 {
1294 const char *name;
1295 struct symtab *symtab;
1296 const struct block *result = NULL;
1297
1298 std::string name_storage;
1299 if (raw_name[0] == '\'')
1300 {
1301 raw_name += 1;
1302 name = raw_name;
1303 }
1304 else
1305 {
1306 name_storage = ada_encode (raw_name);
1307 name = name_storage.c_str ();
1308 }
1309
1310 std::vector<struct block_symbol> syms
1311 = ada_lookup_symbol_list (name, context, VAR_DOMAIN);
1312
1313 if (context == NULL
1314 && (syms.empty () || SYMBOL_CLASS (syms[0].symbol) != LOC_BLOCK))
1315 symtab = lookup_symtab (name);
1316 else
1317 symtab = NULL;
1318
1319 if (symtab != NULL)
1320 result = BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symtab), STATIC_BLOCK);
1321 else if (syms.empty () || SYMBOL_CLASS (syms[0].symbol) != LOC_BLOCK)
1322 {
1323 if (context == NULL)
1324 error (_("No file or function \"%s\"."), raw_name);
1325 else
1326 error (_("No function \"%s\" in specified context."), raw_name);
1327 }
1328 else
1329 {
1330 if (syms.size () > 1)
1331 warning (_("Function name \"%s\" ambiguous here"), raw_name);
1332 result = SYMBOL_BLOCK_VALUE (syms[0].symbol);
1333 }
1334
1335 return result;
1336 }
1337
1338 static struct symbol*
1339 select_possible_type_sym (const std::vector<struct block_symbol> &syms)
1340 {
1341 int i;
1342 int preferred_index;
1343 struct type *preferred_type;
1344
1345 preferred_index = -1; preferred_type = NULL;
1346 for (i = 0; i < syms.size (); i += 1)
1347 switch (SYMBOL_CLASS (syms[i].symbol))
1348 {
1349 case LOC_TYPEDEF:
1350 if (ada_prefer_type (SYMBOL_TYPE (syms[i].symbol), preferred_type))
1351 {
1352 preferred_index = i;
1353 preferred_type = SYMBOL_TYPE (syms[i].symbol);
1354 }
1355 break;
1356 case LOC_REGISTER:
1357 case LOC_ARG:
1358 case LOC_REF_ARG:
1359 case LOC_REGPARM_ADDR:
1360 case LOC_LOCAL:
1361 case LOC_COMPUTED:
1362 return NULL;
1363 default:
1364 break;
1365 }
1366 if (preferred_type == NULL)
1367 return NULL;
1368 return syms[preferred_index].symbol;
1369 }
1370
1371 static struct type*
1372 find_primitive_type (struct parser_state *par_state, const char *name)
1373 {
1374 struct type *type;
1375 type = language_lookup_primitive_type (par_state->language (),
1376 par_state->gdbarch (),
1377 name);
1378 if (type == NULL && strcmp ("system__address", name) == 0)
1379 type = type_system_address (par_state);
1380
1381 if (type != NULL)
1382 {
1383 /* Check to see if we have a regular definition of this
1384 type that just didn't happen to have been read yet. */
1385 struct symbol *sym;
1386 char *expanded_name =
1387 (char *) alloca (strlen (name) + sizeof ("standard__"));
1388 strcpy (expanded_name, "standard__");
1389 strcat (expanded_name, name);
1390 sym = ada_lookup_symbol (expanded_name, NULL, VAR_DOMAIN).symbol;
1391 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1392 type = SYMBOL_TYPE (sym);
1393 }
1394
1395 return type;
1396 }
1397
1398 static int
1399 chop_selector (char *name, int end)
1400 {
1401 int i;
1402 for (i = end - 1; i > 0; i -= 1)
1403 if (name[i] == '.' || (name[i] == '_' && name[i+1] == '_'))
1404 return i;
1405 return -1;
1406 }
1407
1408 /* If NAME is a string beginning with a separator (either '__', or
1409 '.'), chop this separator and return the result; else, return
1410 NAME. */
1411
1412 static char *
1413 chop_separator (char *name)
1414 {
1415 if (*name == '.')
1416 return name + 1;
1417
1418 if (name[0] == '_' && name[1] == '_')
1419 return name + 2;
1420
1421 return name;
1422 }
1423
1424 /* Given that SELS is a string of the form (<sep><identifier>)*, where
1425 <sep> is '__' or '.', write the indicated sequence of
1426 STRUCTOP_STRUCT expression operators. */
1427 static void
1428 write_selectors (struct parser_state *par_state, char *sels)
1429 {
1430 while (*sels != '\0')
1431 {
1432 char *p = chop_separator (sels);
1433 sels = p;
1434 while (*sels != '\0' && *sels != '.'
1435 && (sels[0] != '_' || sels[1] != '_'))
1436 sels += 1;
1437 operation_up arg = ada_pop ();
1438 pstate->push_new<ada_structop_operation>
1439 (std::move (arg), std::string (p, sels - p));
1440 }
1441 }
1442
1443 /* Write a variable access (OP_VAR_VALUE) to ambiguous encoded name
1444 NAME[0..LEN-1], in block context BLOCK, to be resolved later. Writes
1445 a temporary symbol that is valid until the next call to ada_parse.
1446 */
1447 static void
1448 write_ambiguous_var (struct parser_state *par_state,
1449 const struct block *block, char *name, int len)
1450 {
1451 struct symbol *sym = new (&temp_parse_space) symbol ();
1452
1453 SYMBOL_DOMAIN (sym) = UNDEF_DOMAIN;
1454 sym->set_linkage_name (obstack_strndup (&temp_parse_space, name, len));
1455 sym->set_language (language_ada, nullptr);
1456
1457 block_symbol bsym { sym, block };
1458 par_state->push_new<ada_var_value_operation> (bsym);
1459 }
1460
1461 /* A convenient wrapper around ada_get_field_index that takes
1462 a non NUL-terminated FIELD_NAME0 and a FIELD_NAME_LEN instead
1463 of a NUL-terminated field name. */
1464
1465 static int
1466 ada_nget_field_index (const struct type *type, const char *field_name0,
1467 int field_name_len, int maybe_missing)
1468 {
1469 char *field_name = (char *) alloca ((field_name_len + 1) * sizeof (char));
1470
1471 strncpy (field_name, field_name0, field_name_len);
1472 field_name[field_name_len] = '\0';
1473 return ada_get_field_index (type, field_name, maybe_missing);
1474 }
1475
1476 /* If encoded_field_name is the name of a field inside symbol SYM,
1477 then return the type of that field. Otherwise, return NULL.
1478
1479 This function is actually recursive, so if ENCODED_FIELD_NAME
1480 doesn't match one of the fields of our symbol, then try to see
1481 if ENCODED_FIELD_NAME could not be a succession of field names
1482 (in other words, the user entered an expression of the form
1483 TYPE_NAME.FIELD1.FIELD2.FIELD3), in which case we evaluate
1484 each field name sequentially to obtain the desired field type.
1485 In case of failure, we return NULL. */
1486
1487 static struct type *
1488 get_symbol_field_type (struct symbol *sym, char *encoded_field_name)
1489 {
1490 char *field_name = encoded_field_name;
1491 char *subfield_name;
1492 struct type *type = SYMBOL_TYPE (sym);
1493 int fieldno;
1494
1495 if (type == NULL || field_name == NULL)
1496 return NULL;
1497 type = check_typedef (type);
1498
1499 while (field_name[0] != '\0')
1500 {
1501 field_name = chop_separator (field_name);
1502
1503 fieldno = ada_get_field_index (type, field_name, 1);
1504 if (fieldno >= 0)
1505 return type->field (fieldno).type ();
1506
1507 subfield_name = field_name;
1508 while (*subfield_name != '\0' && *subfield_name != '.'
1509 && (subfield_name[0] != '_' || subfield_name[1] != '_'))
1510 subfield_name += 1;
1511
1512 if (subfield_name[0] == '\0')
1513 return NULL;
1514
1515 fieldno = ada_nget_field_index (type, field_name,
1516 subfield_name - field_name, 1);
1517 if (fieldno < 0)
1518 return NULL;
1519
1520 type = type->field (fieldno).type ();
1521 field_name = subfield_name;
1522 }
1523
1524 return NULL;
1525 }
1526
1527 /* Look up NAME0 (an unencoded identifier or dotted name) in BLOCK (or
1528 expression_block_context if NULL). If it denotes a type, return
1529 that type. Otherwise, write expression code to evaluate it as an
1530 object and return NULL. In this second case, NAME0 will, in general,
1531 have the form <name>(.<selector_name>)*, where <name> is an object
1532 or renaming encoded in the debugging data. Calls error if no
1533 prefix <name> matches a name in the debugging data (i.e., matches
1534 either a complete name or, as a wild-card match, the final
1535 identifier). */
1536
1537 static struct type*
1538 write_var_or_type (struct parser_state *par_state,
1539 const struct block *block, struct stoken name0)
1540 {
1541 int depth;
1542 char *encoded_name;
1543 int name_len;
1544
1545 if (block == NULL)
1546 block = par_state->expression_context_block;
1547
1548 std::string name_storage = ada_encode (name0.ptr);
1549 name_len = name_storage.size ();
1550 encoded_name = obstack_strndup (&temp_parse_space, name_storage.c_str (),
1551 name_len);
1552 for (depth = 0; depth < MAX_RENAMING_CHAIN_LENGTH; depth += 1)
1553 {
1554 int tail_index;
1555
1556 tail_index = name_len;
1557 while (tail_index > 0)
1558 {
1559 struct symbol *type_sym;
1560 struct symbol *renaming_sym;
1561 const char* renaming;
1562 int renaming_len;
1563 const char* renaming_expr;
1564 int terminator = encoded_name[tail_index];
1565
1566 encoded_name[tail_index] = '\0';
1567 std::vector<struct block_symbol> syms
1568 = ada_lookup_symbol_list (encoded_name, block, VAR_DOMAIN);
1569 encoded_name[tail_index] = terminator;
1570
1571 type_sym = select_possible_type_sym (syms);
1572
1573 if (type_sym != NULL)
1574 renaming_sym = type_sym;
1575 else if (syms.size () == 1)
1576 renaming_sym = syms[0].symbol;
1577 else
1578 renaming_sym = NULL;
1579
1580 switch (ada_parse_renaming (renaming_sym, &renaming,
1581 &renaming_len, &renaming_expr))
1582 {
1583 case ADA_NOT_RENAMING:
1584 break;
1585 case ADA_PACKAGE_RENAMING:
1586 case ADA_EXCEPTION_RENAMING:
1587 case ADA_SUBPROGRAM_RENAMING:
1588 {
1589 int alloc_len = renaming_len + name_len - tail_index + 1;
1590 char *new_name
1591 = (char *) obstack_alloc (&temp_parse_space, alloc_len);
1592 strncpy (new_name, renaming, renaming_len);
1593 strcpy (new_name + renaming_len, encoded_name + tail_index);
1594 encoded_name = new_name;
1595 name_len = renaming_len + name_len - tail_index;
1596 goto TryAfterRenaming;
1597 }
1598 case ADA_OBJECT_RENAMING:
1599 write_object_renaming (par_state, block, renaming, renaming_len,
1600 renaming_expr, MAX_RENAMING_CHAIN_LENGTH);
1601 write_selectors (par_state, encoded_name + tail_index);
1602 return NULL;
1603 default:
1604 internal_error (__FILE__, __LINE__,
1605 _("impossible value from ada_parse_renaming"));
1606 }
1607
1608 if (type_sym != NULL)
1609 {
1610 struct type *field_type;
1611
1612 if (tail_index == name_len)
1613 return SYMBOL_TYPE (type_sym);
1614
1615 /* We have some extraneous characters after the type name.
1616 If this is an expression "TYPE_NAME.FIELD0.[...].FIELDN",
1617 then try to get the type of FIELDN. */
1618 field_type
1619 = get_symbol_field_type (type_sym, encoded_name + tail_index);
1620 if (field_type != NULL)
1621 return field_type;
1622 else
1623 error (_("Invalid attempt to select from type: \"%s\"."),
1624 name0.ptr);
1625 }
1626 else if (tail_index == name_len && syms.empty ())
1627 {
1628 struct type *type = find_primitive_type (par_state,
1629 encoded_name);
1630
1631 if (type != NULL)
1632 return type;
1633 }
1634
1635 if (syms.size () == 1)
1636 {
1637 write_var_from_sym (par_state, syms[0]);
1638 write_selectors (par_state, encoded_name + tail_index);
1639 return NULL;
1640 }
1641 else if (syms.empty ())
1642 {
1643 struct bound_minimal_symbol msym
1644 = ada_lookup_simple_minsym (encoded_name);
1645 if (msym.minsym != NULL)
1646 {
1647 par_state->push_new<ada_var_msym_value_operation> (msym);
1648 /* Maybe cause error here rather than later? FIXME? */
1649 write_selectors (par_state, encoded_name + tail_index);
1650 return NULL;
1651 }
1652
1653 if (tail_index == name_len
1654 && strncmp (encoded_name, "standard__",
1655 sizeof ("standard__") - 1) == 0)
1656 error (_("No definition of \"%s\" found."), name0.ptr);
1657
1658 tail_index = chop_selector (encoded_name, tail_index);
1659 }
1660 else
1661 {
1662 write_ambiguous_var (par_state, block, encoded_name,
1663 tail_index);
1664 write_selectors (par_state, encoded_name + tail_index);
1665 return NULL;
1666 }
1667 }
1668
1669 if (!have_full_symbols () && !have_partial_symbols () && block == NULL)
1670 error (_("No symbol table is loaded. Use the \"file\" command."));
1671 if (block == par_state->expression_context_block)
1672 error (_("No definition of \"%s\" in current context."), name0.ptr);
1673 else
1674 error (_("No definition of \"%s\" in specified context."), name0.ptr);
1675
1676 TryAfterRenaming: ;
1677 }
1678
1679 error (_("Could not find renamed symbol \"%s\""), name0.ptr);
1680
1681 }
1682
1683 /* Write a left side of a component association (e.g., NAME in NAME =>
1684 exp). If NAME has the form of a selected component, write it as an
1685 ordinary expression. If it is a simple variable that unambiguously
1686 corresponds to exactly one symbol that does not denote a type or an
1687 object renaming, also write it normally as an OP_VAR_VALUE.
1688 Otherwise, write it as an OP_NAME.
1689
1690 Unfortunately, we don't know at this point whether NAME is supposed
1691 to denote a record component name or the value of an array index.
1692 Therefore, it is not appropriate to disambiguate an ambiguous name
1693 as we normally would, nor to replace a renaming with its referent.
1694 As a result, in the (one hopes) rare case that one writes an
1695 aggregate such as (R => 42) where R renames an object or is an
1696 ambiguous name, one must write instead ((R) => 42). */
1697
1698 static void
1699 write_name_assoc (struct parser_state *par_state, struct stoken name)
1700 {
1701 if (strchr (name.ptr, '.') == NULL)
1702 {
1703 std::vector<struct block_symbol> syms
1704 = ada_lookup_symbol_list (name.ptr,
1705 par_state->expression_context_block,
1706 VAR_DOMAIN);
1707
1708 if (syms.size () != 1 || SYMBOL_CLASS (syms[0].symbol) == LOC_TYPEDEF)
1709 pstate->push_new<ada_string_operation> (copy_name (name));
1710 else
1711 write_var_from_sym (par_state, syms[0]);
1712 }
1713 else
1714 if (write_var_or_type (par_state, NULL, name) != NULL)
1715 error (_("Invalid use of type."));
1716
1717 push_association<ada_name_association> (ada_pop ());
1718 }
1719
1720 /* Convert the character literal whose ASCII value would be VAL to the
1721 appropriate value of type TYPE, if there is a translation.
1722 Otherwise return VAL. Hence, in an enumeration type ('A', 'B'),
1723 the literal 'A' (VAL == 65), returns 0. */
1724
1725 static LONGEST
1726 convert_char_literal (struct type *type, LONGEST val)
1727 {
1728 char name[7];
1729 int f;
1730
1731 if (type == NULL)
1732 return val;
1733 type = check_typedef (type);
1734 if (type->code () != TYPE_CODE_ENUM)
1735 return val;
1736
1737 if ((val >= 'a' && val <= 'z') || (val >= '0' && val <= '9'))
1738 xsnprintf (name, sizeof (name), "Q%c", (int) val);
1739 else
1740 xsnprintf (name, sizeof (name), "QU%02x", (int) val);
1741 size_t len = strlen (name);
1742 for (f = 0; f < type->num_fields (); f += 1)
1743 {
1744 /* Check the suffix because an enum constant in a package will
1745 have a name like "pkg__QUxx". This is safe enough because we
1746 already have the correct type, and because mangling means
1747 there can't be clashes. */
1748 const char *ename = TYPE_FIELD_NAME (type, f);
1749 size_t elen = strlen (ename);
1750
1751 if (elen >= len && strcmp (name, ename + elen - len) == 0)
1752 return TYPE_FIELD_ENUMVAL (type, f);
1753 }
1754 return val;
1755 }
1756
1757 static struct type *
1758 type_int (struct parser_state *par_state)
1759 {
1760 return parse_type (par_state)->builtin_int;
1761 }
1762
1763 static struct type *
1764 type_long (struct parser_state *par_state)
1765 {
1766 return parse_type (par_state)->builtin_long;
1767 }
1768
1769 static struct type *
1770 type_long_long (struct parser_state *par_state)
1771 {
1772 return parse_type (par_state)->builtin_long_long;
1773 }
1774
1775 static struct type *
1776 type_long_double (struct parser_state *par_state)
1777 {
1778 return parse_type (par_state)->builtin_long_double;
1779 }
1780
1781 static struct type *
1782 type_char (struct parser_state *par_state)
1783 {
1784 return language_string_char_type (par_state->language (),
1785 par_state->gdbarch ());
1786 }
1787
1788 static struct type *
1789 type_boolean (struct parser_state *par_state)
1790 {
1791 return parse_type (par_state)->builtin_bool;
1792 }
1793
1794 static struct type *
1795 type_system_address (struct parser_state *par_state)
1796 {
1797 struct type *type
1798 = language_lookup_primitive_type (par_state->language (),
1799 par_state->gdbarch (),
1800 "system__address");
1801 return type != NULL ? type : parse_type (par_state)->builtin_data_ptr;
1802 }
1803
1804 void _initialize_ada_exp ();
1805 void
1806 _initialize_ada_exp ()
1807 {
1808 obstack_init (&temp_parse_space);
1809 }
This page took 0.065508 seconds and 4 git commands to generate.