gdb/copyright.py: Adapt after move of gnulib from gdb to toplevel
[deliverable/binutils-gdb.git] / gdb / ada-exp.y
1 /* YACC parser for Ada expressions, for GDB.
2 Copyright (C) 1986-2019 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 /* Parse an Ada expression from text in a string,
20 and return the result as a struct expression pointer.
21 That structure contains arithmetic operations in reverse polish,
22 with constants represented by operations that are followed by special data.
23 See expression.h for the details of the format.
24 What is important here is that it can be built up sequentially
25 during the process of parsing; the lower levels of the tree always
26 come first in the result.
27
28 malloc's and realloc's in this file are transformed to
29 xmalloc and xrealloc respectively by the same sed command in the
30 makefile that remaps any other malloc/realloc inserted by the parser
31 generator. Doing this with #defines and trying to control the interaction
32 with include files (<malloc.h> and <stdlib.h> for example) just became
33 too messy, particularly when such includes can be inserted at random
34 times by the parser generator. */
35
36 %{
37
38 #include "defs.h"
39 #include <ctype.h>
40 #include "expression.h"
41 #include "value.h"
42 #include "parser-defs.h"
43 #include "language.h"
44 #include "ada-lang.h"
45 #include "bfd.h" /* Required by objfiles.h. */
46 #include "symfile.h" /* Required by objfiles.h. */
47 #include "objfiles.h" /* For have_full_symbols and have_partial_symbols */
48 #include "frame.h"
49 #include "block.h"
50
51 #define parse_type(ps) builtin_type (ps->gdbarch ())
52
53 /* Remap normal yacc parser interface names (yyparse, yylex, yyerror,
54 etc). */
55 #define GDB_YY_REMAP_PREFIX ada_
56 #include "yy-remap.h"
57
58 struct name_info {
59 struct symbol *sym;
60 struct minimal_symbol *msym;
61 const struct block *block;
62 struct stoken stoken;
63 };
64
65 /* The state of the parser, used internally when we are parsing the
66 expression. */
67
68 static struct parser_state *pstate = NULL;
69
70 static struct stoken empty_stoken = { "", 0 };
71
72 /* If expression is in the context of TYPE'(...), then TYPE, else
73 * NULL. */
74 static struct type *type_qualifier;
75
76 int yyparse (void);
77
78 static int yylex (void);
79
80 static void yyerror (const char *);
81
82 static void write_int (struct parser_state *, LONGEST, struct type *);
83
84 static void write_object_renaming (struct parser_state *,
85 const struct block *, const char *, int,
86 const char *, int);
87
88 static struct type* write_var_or_type (struct parser_state *,
89 const struct block *, struct stoken);
90
91 static void write_name_assoc (struct parser_state *, struct stoken);
92
93 static void write_exp_op_with_string (struct parser_state *, enum exp_opcode,
94 struct stoken);
95
96 static const struct block *block_lookup (const struct block *, const char *);
97
98 static LONGEST convert_char_literal (struct type *, LONGEST);
99
100 static void write_ambiguous_var (struct parser_state *,
101 const struct block *, char *, int);
102
103 static struct type *type_int (struct parser_state *);
104
105 static struct type *type_long (struct parser_state *);
106
107 static struct type *type_long_long (struct parser_state *);
108
109 static struct type *type_long_double (struct parser_state *);
110
111 static struct type *type_char (struct parser_state *);
112
113 static struct type *type_boolean (struct parser_state *);
114
115 static struct type *type_system_address (struct parser_state *);
116
117 %}
118
119 %union
120 {
121 LONGEST lval;
122 struct {
123 LONGEST val;
124 struct type *type;
125 } typed_val;
126 struct {
127 gdb_byte val[16];
128 struct type *type;
129 } typed_val_float;
130 struct type *tval;
131 struct stoken sval;
132 const struct block *bval;
133 struct internalvar *ivar;
134 }
135
136 %type <lval> positional_list component_groups component_associations
137 %type <lval> aggregate_component_list
138 %type <tval> var_or_type
139
140 %token <typed_val> INT NULL_PTR CHARLIT
141 %token <typed_val_float> FLOAT
142 %token TRUEKEYWORD FALSEKEYWORD
143 %token COLONCOLON
144 %token <sval> STRING NAME DOT_ID
145 %type <bval> block
146 %type <lval> arglist tick_arglist
147
148 %type <tval> save_qualifier
149
150 %token DOT_ALL
151
152 /* Special type cases, put in to allow the parser to distinguish different
153 legal basetypes. */
154 %token <sval> DOLLAR_VARIABLE
155
156 %nonassoc ASSIGN
157 %left _AND_ OR XOR THEN ELSE
158 %left '=' NOTEQUAL '<' '>' LEQ GEQ IN DOTDOT
159 %left '@'
160 %left '+' '-' '&'
161 %left UNARY
162 %left '*' '/' MOD REM
163 %right STARSTAR ABS NOT
164
165 /* Artificial token to give NAME => ... and NAME | priority over reducing
166 NAME to <primary> and to give <primary>' priority over reducing <primary>
167 to <simple_exp>. */
168 %nonassoc VAR
169
170 %nonassoc ARROW '|'
171
172 %right TICK_ACCESS TICK_ADDRESS TICK_FIRST TICK_LAST TICK_LENGTH
173 %right TICK_MAX TICK_MIN TICK_MODULUS
174 %right TICK_POS TICK_RANGE TICK_SIZE TICK_TAG TICK_VAL
175 /* The following are right-associative only so that reductions at this
176 precedence have lower precedence than '.' and '('. The syntax still
177 forces a.b.c, e.g., to be LEFT-associated. */
178 %right '.' '(' '[' DOT_ID DOT_ALL
179
180 %token NEW OTHERS
181
182 \f
183 %%
184
185 start : exp1
186 ;
187
188 /* Expressions, including the sequencing operator. */
189 exp1 : exp
190 | exp1 ';' exp
191 { write_exp_elt_opcode (pstate, BINOP_COMMA); }
192 | primary ASSIGN exp /* Extension for convenience */
193 { write_exp_elt_opcode (pstate, BINOP_ASSIGN); }
194 ;
195
196 /* Expressions, not including the sequencing operator. */
197 primary : primary DOT_ALL
198 { write_exp_elt_opcode (pstate, UNOP_IND); }
199 ;
200
201 primary : primary DOT_ID
202 { write_exp_op_with_string (pstate, STRUCTOP_STRUCT,
203 $2); }
204 ;
205
206 primary : primary '(' arglist ')'
207 {
208 write_exp_elt_opcode (pstate, OP_FUNCALL);
209 write_exp_elt_longcst (pstate, $3);
210 write_exp_elt_opcode (pstate, OP_FUNCALL);
211 }
212 | var_or_type '(' arglist ')'
213 {
214 if ($1 != NULL)
215 {
216 if ($3 != 1)
217 error (_("Invalid conversion"));
218 write_exp_elt_opcode (pstate, UNOP_CAST);
219 write_exp_elt_type (pstate, $1);
220 write_exp_elt_opcode (pstate, UNOP_CAST);
221 }
222 else
223 {
224 write_exp_elt_opcode (pstate, OP_FUNCALL);
225 write_exp_elt_longcst (pstate, $3);
226 write_exp_elt_opcode (pstate, OP_FUNCALL);
227 }
228 }
229 ;
230
231 primary : var_or_type '\'' save_qualifier { type_qualifier = $1; }
232 '(' exp ')'
233 {
234 if ($1 == NULL)
235 error (_("Type required for qualification"));
236 write_exp_elt_opcode (pstate, UNOP_QUAL);
237 write_exp_elt_type (pstate, $1);
238 write_exp_elt_opcode (pstate, UNOP_QUAL);
239 type_qualifier = $3;
240 }
241 ;
242
243 save_qualifier : { $$ = type_qualifier; }
244 ;
245
246 primary :
247 primary '(' simple_exp DOTDOT simple_exp ')'
248 { write_exp_elt_opcode (pstate, TERNOP_SLICE); }
249 | var_or_type '(' simple_exp DOTDOT simple_exp ')'
250 { if ($1 == NULL)
251 write_exp_elt_opcode (pstate, TERNOP_SLICE);
252 else
253 error (_("Cannot slice a type"));
254 }
255 ;
256
257 primary : '(' exp1 ')' { }
258 ;
259
260 /* The following rule causes a conflict with the type conversion
261 var_or_type (exp)
262 To get around it, we give '(' higher priority and add bridge rules for
263 var_or_type (exp, exp, ...)
264 var_or_type (exp .. exp)
265 We also have the action for var_or_type(exp) generate a function call
266 when the first symbol does not denote a type. */
267
268 primary : var_or_type %prec VAR
269 { if ($1 != NULL)
270 {
271 write_exp_elt_opcode (pstate, OP_TYPE);
272 write_exp_elt_type (pstate, $1);
273 write_exp_elt_opcode (pstate, OP_TYPE);
274 }
275 }
276 ;
277
278 primary : DOLLAR_VARIABLE /* Various GDB extensions */
279 { write_dollar_variable (pstate, $1); }
280 ;
281
282 primary : aggregate
283 ;
284
285 simple_exp : primary
286 ;
287
288 simple_exp : '-' simple_exp %prec UNARY
289 { write_exp_elt_opcode (pstate, UNOP_NEG); }
290 ;
291
292 simple_exp : '+' simple_exp %prec UNARY
293 { write_exp_elt_opcode (pstate, UNOP_PLUS); }
294 ;
295
296 simple_exp : NOT simple_exp %prec UNARY
297 { write_exp_elt_opcode (pstate, UNOP_LOGICAL_NOT); }
298 ;
299
300 simple_exp : ABS simple_exp %prec UNARY
301 { write_exp_elt_opcode (pstate, UNOP_ABS); }
302 ;
303
304 arglist : { $$ = 0; }
305 ;
306
307 arglist : exp
308 { $$ = 1; }
309 | NAME ARROW exp
310 { $$ = 1; }
311 | arglist ',' exp
312 { $$ = $1 + 1; }
313 | arglist ',' NAME ARROW exp
314 { $$ = $1 + 1; }
315 ;
316
317 primary : '{' var_or_type '}' primary %prec '.'
318 /* GDB extension */
319 {
320 if ($2 == NULL)
321 error (_("Type required within braces in coercion"));
322 write_exp_elt_opcode (pstate, UNOP_MEMVAL);
323 write_exp_elt_type (pstate, $2);
324 write_exp_elt_opcode (pstate, UNOP_MEMVAL);
325 }
326 ;
327
328 /* Binary operators in order of decreasing precedence. */
329
330 simple_exp : simple_exp STARSTAR simple_exp
331 { write_exp_elt_opcode (pstate, BINOP_EXP); }
332 ;
333
334 simple_exp : simple_exp '*' simple_exp
335 { write_exp_elt_opcode (pstate, BINOP_MUL); }
336 ;
337
338 simple_exp : simple_exp '/' simple_exp
339 { write_exp_elt_opcode (pstate, BINOP_DIV); }
340 ;
341
342 simple_exp : simple_exp REM simple_exp /* May need to be fixed to give correct Ada REM */
343 { write_exp_elt_opcode (pstate, BINOP_REM); }
344 ;
345
346 simple_exp : simple_exp MOD simple_exp
347 { write_exp_elt_opcode (pstate, BINOP_MOD); }
348 ;
349
350 simple_exp : simple_exp '@' simple_exp /* GDB extension */
351 { write_exp_elt_opcode (pstate, BINOP_REPEAT); }
352 ;
353
354 simple_exp : simple_exp '+' simple_exp
355 { write_exp_elt_opcode (pstate, BINOP_ADD); }
356 ;
357
358 simple_exp : simple_exp '&' simple_exp
359 { write_exp_elt_opcode (pstate, BINOP_CONCAT); }
360 ;
361
362 simple_exp : simple_exp '-' simple_exp
363 { write_exp_elt_opcode (pstate, BINOP_SUB); }
364 ;
365
366 relation : simple_exp
367 ;
368
369 relation : simple_exp '=' simple_exp
370 { write_exp_elt_opcode (pstate, BINOP_EQUAL); }
371 ;
372
373 relation : simple_exp NOTEQUAL simple_exp
374 { write_exp_elt_opcode (pstate, BINOP_NOTEQUAL); }
375 ;
376
377 relation : simple_exp LEQ simple_exp
378 { write_exp_elt_opcode (pstate, BINOP_LEQ); }
379 ;
380
381 relation : simple_exp IN simple_exp DOTDOT simple_exp
382 { write_exp_elt_opcode (pstate, TERNOP_IN_RANGE); }
383 | simple_exp IN primary TICK_RANGE tick_arglist
384 { write_exp_elt_opcode (pstate, BINOP_IN_BOUNDS);
385 write_exp_elt_longcst (pstate, (LONGEST) $5);
386 write_exp_elt_opcode (pstate, BINOP_IN_BOUNDS);
387 }
388 | simple_exp IN var_or_type %prec TICK_ACCESS
389 {
390 if ($3 == NULL)
391 error (_("Right operand of 'in' must be type"));
392 write_exp_elt_opcode (pstate, UNOP_IN_RANGE);
393 write_exp_elt_type (pstate, $3);
394 write_exp_elt_opcode (pstate, UNOP_IN_RANGE);
395 }
396 | simple_exp NOT IN simple_exp DOTDOT simple_exp
397 { write_exp_elt_opcode (pstate, TERNOP_IN_RANGE);
398 write_exp_elt_opcode (pstate, UNOP_LOGICAL_NOT);
399 }
400 | simple_exp NOT IN primary TICK_RANGE tick_arglist
401 { write_exp_elt_opcode (pstate, BINOP_IN_BOUNDS);
402 write_exp_elt_longcst (pstate, (LONGEST) $6);
403 write_exp_elt_opcode (pstate, BINOP_IN_BOUNDS);
404 write_exp_elt_opcode (pstate, UNOP_LOGICAL_NOT);
405 }
406 | simple_exp NOT IN var_or_type %prec TICK_ACCESS
407 {
408 if ($4 == NULL)
409 error (_("Right operand of 'in' must be type"));
410 write_exp_elt_opcode (pstate, UNOP_IN_RANGE);
411 write_exp_elt_type (pstate, $4);
412 write_exp_elt_opcode (pstate, UNOP_IN_RANGE);
413 write_exp_elt_opcode (pstate, UNOP_LOGICAL_NOT);
414 }
415 ;
416
417 relation : simple_exp GEQ simple_exp
418 { write_exp_elt_opcode (pstate, BINOP_GEQ); }
419 ;
420
421 relation : simple_exp '<' simple_exp
422 { write_exp_elt_opcode (pstate, BINOP_LESS); }
423 ;
424
425 relation : simple_exp '>' simple_exp
426 { write_exp_elt_opcode (pstate, BINOP_GTR); }
427 ;
428
429 exp : relation
430 | and_exp
431 | and_then_exp
432 | or_exp
433 | or_else_exp
434 | xor_exp
435 ;
436
437 and_exp :
438 relation _AND_ relation
439 { write_exp_elt_opcode (pstate, BINOP_BITWISE_AND); }
440 | and_exp _AND_ relation
441 { write_exp_elt_opcode (pstate, BINOP_BITWISE_AND); }
442 ;
443
444 and_then_exp :
445 relation _AND_ THEN relation
446 { write_exp_elt_opcode (pstate, BINOP_LOGICAL_AND); }
447 | and_then_exp _AND_ THEN relation
448 { write_exp_elt_opcode (pstate, BINOP_LOGICAL_AND); }
449 ;
450
451 or_exp :
452 relation OR relation
453 { write_exp_elt_opcode (pstate, BINOP_BITWISE_IOR); }
454 | or_exp OR relation
455 { write_exp_elt_opcode (pstate, BINOP_BITWISE_IOR); }
456 ;
457
458 or_else_exp :
459 relation OR ELSE relation
460 { write_exp_elt_opcode (pstate, BINOP_LOGICAL_OR); }
461 | or_else_exp OR ELSE relation
462 { write_exp_elt_opcode (pstate, BINOP_LOGICAL_OR); }
463 ;
464
465 xor_exp : relation XOR relation
466 { write_exp_elt_opcode (pstate, BINOP_BITWISE_XOR); }
467 | xor_exp XOR relation
468 { write_exp_elt_opcode (pstate, BINOP_BITWISE_XOR); }
469 ;
470
471 /* Primaries can denote types (OP_TYPE). In cases such as
472 primary TICK_ADDRESS, where a type would be invalid, it will be
473 caught when evaluate_subexp in ada-lang.c tries to evaluate the
474 primary, expecting a value. Precedence rules resolve the ambiguity
475 in NAME TICK_ACCESS in favor of shifting to form a var_or_type. A
476 construct such as aType'access'access will again cause an error when
477 aType'access evaluates to a type that evaluate_subexp attempts to
478 evaluate. */
479 primary : primary TICK_ACCESS
480 { write_exp_elt_opcode (pstate, UNOP_ADDR); }
481 | primary TICK_ADDRESS
482 { write_exp_elt_opcode (pstate, UNOP_ADDR);
483 write_exp_elt_opcode (pstate, UNOP_CAST);
484 write_exp_elt_type (pstate,
485 type_system_address (pstate));
486 write_exp_elt_opcode (pstate, UNOP_CAST);
487 }
488 | primary TICK_FIRST tick_arglist
489 { write_int (pstate, $3, type_int (pstate));
490 write_exp_elt_opcode (pstate, OP_ATR_FIRST); }
491 | primary TICK_LAST tick_arglist
492 { write_int (pstate, $3, type_int (pstate));
493 write_exp_elt_opcode (pstate, OP_ATR_LAST); }
494 | primary TICK_LENGTH tick_arglist
495 { write_int (pstate, $3, type_int (pstate));
496 write_exp_elt_opcode (pstate, OP_ATR_LENGTH); }
497 | primary TICK_SIZE
498 { write_exp_elt_opcode (pstate, OP_ATR_SIZE); }
499 | primary TICK_TAG
500 { write_exp_elt_opcode (pstate, OP_ATR_TAG); }
501 | opt_type_prefix TICK_MIN '(' exp ',' exp ')'
502 { write_exp_elt_opcode (pstate, OP_ATR_MIN); }
503 | opt_type_prefix TICK_MAX '(' exp ',' exp ')'
504 { write_exp_elt_opcode (pstate, OP_ATR_MAX); }
505 | opt_type_prefix TICK_POS '(' exp ')'
506 { write_exp_elt_opcode (pstate, OP_ATR_POS); }
507 | type_prefix TICK_VAL '(' exp ')'
508 { write_exp_elt_opcode (pstate, OP_ATR_VAL); }
509 | type_prefix TICK_MODULUS
510 { write_exp_elt_opcode (pstate, OP_ATR_MODULUS); }
511 ;
512
513 tick_arglist : %prec '('
514 { $$ = 1; }
515 | '(' INT ')'
516 { $$ = $2.val; }
517 ;
518
519 type_prefix :
520 var_or_type
521 {
522 if ($1 == NULL)
523 error (_("Prefix must be type"));
524 write_exp_elt_opcode (pstate, OP_TYPE);
525 write_exp_elt_type (pstate, $1);
526 write_exp_elt_opcode (pstate, OP_TYPE); }
527 ;
528
529 opt_type_prefix :
530 type_prefix
531 | /* EMPTY */
532 { write_exp_elt_opcode (pstate, OP_TYPE);
533 write_exp_elt_type (pstate,
534 parse_type (pstate)->builtin_void);
535 write_exp_elt_opcode (pstate, OP_TYPE); }
536 ;
537
538
539 primary : INT
540 { write_int (pstate, (LONGEST) $1.val, $1.type); }
541 ;
542
543 primary : CHARLIT
544 { write_int (pstate,
545 convert_char_literal (type_qualifier, $1.val),
546 (type_qualifier == NULL)
547 ? $1.type : type_qualifier);
548 }
549 ;
550
551 primary : FLOAT
552 { write_exp_elt_opcode (pstate, OP_FLOAT);
553 write_exp_elt_type (pstate, $1.type);
554 write_exp_elt_floatcst (pstate, $1.val);
555 write_exp_elt_opcode (pstate, OP_FLOAT);
556 }
557 ;
558
559 primary : NULL_PTR
560 { write_int (pstate, 0, type_int (pstate)); }
561 ;
562
563 primary : STRING
564 {
565 write_exp_op_with_string (pstate, OP_STRING, $1);
566 }
567 ;
568
569 primary : TRUEKEYWORD
570 { write_int (pstate, 1, type_boolean (pstate)); }
571 | FALSEKEYWORD
572 { write_int (pstate, 0, type_boolean (pstate)); }
573 ;
574
575 primary : NEW NAME
576 { error (_("NEW not implemented.")); }
577 ;
578
579 var_or_type: NAME %prec VAR
580 { $$ = write_var_or_type (pstate, NULL, $1); }
581 | block NAME %prec VAR
582 { $$ = write_var_or_type (pstate, $1, $2); }
583 | NAME TICK_ACCESS
584 {
585 $$ = write_var_or_type (pstate, NULL, $1);
586 if ($$ == NULL)
587 write_exp_elt_opcode (pstate, UNOP_ADDR);
588 else
589 $$ = lookup_pointer_type ($$);
590 }
591 | block NAME TICK_ACCESS
592 {
593 $$ = write_var_or_type (pstate, $1, $2);
594 if ($$ == NULL)
595 write_exp_elt_opcode (pstate, UNOP_ADDR);
596 else
597 $$ = lookup_pointer_type ($$);
598 }
599 ;
600
601 /* GDB extension */
602 block : NAME COLONCOLON
603 { $$ = block_lookup (NULL, $1.ptr); }
604 | block NAME COLONCOLON
605 { $$ = block_lookup ($1, $2.ptr); }
606 ;
607
608 aggregate :
609 '(' aggregate_component_list ')'
610 {
611 write_exp_elt_opcode (pstate, OP_AGGREGATE);
612 write_exp_elt_longcst (pstate, $2);
613 write_exp_elt_opcode (pstate, OP_AGGREGATE);
614 }
615 ;
616
617 aggregate_component_list :
618 component_groups { $$ = $1; }
619 | positional_list exp
620 { write_exp_elt_opcode (pstate, OP_POSITIONAL);
621 write_exp_elt_longcst (pstate, $1);
622 write_exp_elt_opcode (pstate, OP_POSITIONAL);
623 $$ = $1 + 1;
624 }
625 | positional_list component_groups
626 { $$ = $1 + $2; }
627 ;
628
629 positional_list :
630 exp ','
631 { write_exp_elt_opcode (pstate, OP_POSITIONAL);
632 write_exp_elt_longcst (pstate, 0);
633 write_exp_elt_opcode (pstate, OP_POSITIONAL);
634 $$ = 1;
635 }
636 | positional_list exp ','
637 { write_exp_elt_opcode (pstate, OP_POSITIONAL);
638 write_exp_elt_longcst (pstate, $1);
639 write_exp_elt_opcode (pstate, OP_POSITIONAL);
640 $$ = $1 + 1;
641 }
642 ;
643
644 component_groups:
645 others { $$ = 1; }
646 | component_group { $$ = 1; }
647 | component_group ',' component_groups
648 { $$ = $3 + 1; }
649 ;
650
651 others : OTHERS ARROW exp
652 { write_exp_elt_opcode (pstate, OP_OTHERS); }
653 ;
654
655 component_group :
656 component_associations
657 {
658 write_exp_elt_opcode (pstate, OP_CHOICES);
659 write_exp_elt_longcst (pstate, $1);
660 write_exp_elt_opcode (pstate, OP_CHOICES);
661 }
662 ;
663
664 /* We use this somewhat obscure definition in order to handle NAME => and
665 NAME | differently from exp => and exp |. ARROW and '|' have a precedence
666 above that of the reduction of NAME to var_or_type. By delaying
667 decisions until after the => or '|', we convert the ambiguity to a
668 resolved shift/reduce conflict. */
669 component_associations :
670 NAME ARROW
671 { write_name_assoc (pstate, $1); }
672 exp { $$ = 1; }
673 | simple_exp ARROW exp
674 { $$ = 1; }
675 | simple_exp DOTDOT simple_exp ARROW
676 { write_exp_elt_opcode (pstate, OP_DISCRETE_RANGE);
677 write_exp_op_with_string (pstate, OP_NAME,
678 empty_stoken);
679 }
680 exp { $$ = 1; }
681 | NAME '|'
682 { write_name_assoc (pstate, $1); }
683 component_associations { $$ = $4 + 1; }
684 | simple_exp '|'
685 component_associations { $$ = $3 + 1; }
686 | simple_exp DOTDOT simple_exp '|'
687 { write_exp_elt_opcode (pstate, OP_DISCRETE_RANGE); }
688 component_associations { $$ = $6 + 1; }
689 ;
690
691 /* Some extensions borrowed from C, for the benefit of those who find they
692 can't get used to Ada notation in GDB. */
693
694 primary : '*' primary %prec '.'
695 { write_exp_elt_opcode (pstate, UNOP_IND); }
696 | '&' primary %prec '.'
697 { write_exp_elt_opcode (pstate, UNOP_ADDR); }
698 | primary '[' exp ']'
699 { write_exp_elt_opcode (pstate, BINOP_SUBSCRIPT); }
700 ;
701
702 %%
703
704 /* yylex defined in ada-lex.c: Reads one token, getting characters */
705 /* through lexptr. */
706
707 /* Remap normal flex interface names (yylex) as well as gratuitiously */
708 /* global symbol names, so we can have multiple flex-generated parsers */
709 /* in gdb. */
710
711 /* (See note above on previous definitions for YACC.) */
712
713 #define yy_create_buffer ada_yy_create_buffer
714 #define yy_delete_buffer ada_yy_delete_buffer
715 #define yy_init_buffer ada_yy_init_buffer
716 #define yy_load_buffer_state ada_yy_load_buffer_state
717 #define yy_switch_to_buffer ada_yy_switch_to_buffer
718 #define yyrestart ada_yyrestart
719 #define yytext ada_yytext
720
721 static struct obstack temp_parse_space;
722
723 /* The following kludge was found necessary to prevent conflicts between */
724 /* defs.h and non-standard stdlib.h files. */
725 #define qsort __qsort__dummy
726 #include "ada-lex.c"
727
728 int
729 ada_parse (struct parser_state *par_state)
730 {
731 /* Setting up the parser state. */
732 scoped_restore pstate_restore = make_scoped_restore (&pstate);
733 gdb_assert (par_state != NULL);
734 pstate = par_state;
735
736 lexer_init (yyin); /* (Re-)initialize lexer. */
737 type_qualifier = NULL;
738 obstack_free (&temp_parse_space, NULL);
739 obstack_init (&temp_parse_space);
740
741 return yyparse ();
742 }
743
744 static void
745 yyerror (const char *msg)
746 {
747 error (_("Error in expression, near `%s'."), pstate->lexptr);
748 }
749
750 /* Emit expression to access an instance of SYM, in block BLOCK (if
751 non-NULL). */
752
753 static void
754 write_var_from_sym (struct parser_state *par_state,
755 const struct block *block,
756 struct symbol *sym)
757 {
758 if (symbol_read_needs_frame (sym))
759 par_state->block_tracker->update (block, INNERMOST_BLOCK_FOR_SYMBOLS);
760
761 write_exp_elt_opcode (par_state, OP_VAR_VALUE);
762 write_exp_elt_block (par_state, block);
763 write_exp_elt_sym (par_state, sym);
764 write_exp_elt_opcode (par_state, OP_VAR_VALUE);
765 }
766
767 /* Write integer or boolean constant ARG of type TYPE. */
768
769 static void
770 write_int (struct parser_state *par_state, LONGEST arg, struct type *type)
771 {
772 write_exp_elt_opcode (par_state, OP_LONG);
773 write_exp_elt_type (par_state, type);
774 write_exp_elt_longcst (par_state, arg);
775 write_exp_elt_opcode (par_state, OP_LONG);
776 }
777
778 /* Write an OPCODE, string, OPCODE sequence to the current expression. */
779 static void
780 write_exp_op_with_string (struct parser_state *par_state,
781 enum exp_opcode opcode, struct stoken token)
782 {
783 write_exp_elt_opcode (par_state, opcode);
784 write_exp_string (par_state, token);
785 write_exp_elt_opcode (par_state, opcode);
786 }
787
788 /* Emit expression corresponding to the renamed object named
789 * designated by RENAMED_ENTITY[0 .. RENAMED_ENTITY_LEN-1] in the
790 * context of ORIG_LEFT_CONTEXT, to which is applied the operations
791 * encoded by RENAMING_EXPR. MAX_DEPTH is the maximum number of
792 * cascaded renamings to allow. If ORIG_LEFT_CONTEXT is null, it
793 * defaults to the currently selected block. ORIG_SYMBOL is the
794 * symbol that originally encoded the renaming. It is needed only
795 * because its prefix also qualifies any index variables used to index
796 * or slice an array. It should not be necessary once we go to the
797 * new encoding entirely (FIXME pnh 7/20/2007). */
798
799 static void
800 write_object_renaming (struct parser_state *par_state,
801 const struct block *orig_left_context,
802 const char *renamed_entity, int renamed_entity_len,
803 const char *renaming_expr, int max_depth)
804 {
805 char *name;
806 enum { SIMPLE_INDEX, LOWER_BOUND, UPPER_BOUND } slice_state;
807 struct block_symbol sym_info;
808
809 if (max_depth <= 0)
810 error (_("Could not find renamed symbol"));
811
812 if (orig_left_context == NULL)
813 orig_left_context = get_selected_block (NULL);
814
815 name = obstack_strndup (&temp_parse_space, renamed_entity,
816 renamed_entity_len);
817 ada_lookup_encoded_symbol (name, orig_left_context, VAR_DOMAIN, &sym_info);
818 if (sym_info.symbol == NULL)
819 error (_("Could not find renamed variable: %s"), ada_decode (name).c_str ());
820 else if (SYMBOL_CLASS (sym_info.symbol) == LOC_TYPEDEF)
821 /* We have a renaming of an old-style renaming symbol. Don't
822 trust the block information. */
823 sym_info.block = orig_left_context;
824
825 {
826 const char *inner_renamed_entity;
827 int inner_renamed_entity_len;
828 const char *inner_renaming_expr;
829
830 switch (ada_parse_renaming (sym_info.symbol, &inner_renamed_entity,
831 &inner_renamed_entity_len,
832 &inner_renaming_expr))
833 {
834 case ADA_NOT_RENAMING:
835 write_var_from_sym (par_state, sym_info.block, sym_info.symbol);
836 break;
837 case ADA_OBJECT_RENAMING:
838 write_object_renaming (par_state, sym_info.block,
839 inner_renamed_entity, inner_renamed_entity_len,
840 inner_renaming_expr, max_depth - 1);
841 break;
842 default:
843 goto BadEncoding;
844 }
845 }
846
847 slice_state = SIMPLE_INDEX;
848 while (*renaming_expr == 'X')
849 {
850 renaming_expr += 1;
851
852 switch (*renaming_expr) {
853 case 'A':
854 renaming_expr += 1;
855 write_exp_elt_opcode (par_state, UNOP_IND);
856 break;
857 case 'L':
858 slice_state = LOWER_BOUND;
859 /* FALLTHROUGH */
860 case 'S':
861 renaming_expr += 1;
862 if (isdigit (*renaming_expr))
863 {
864 char *next;
865 long val = strtol (renaming_expr, &next, 10);
866 if (next == renaming_expr)
867 goto BadEncoding;
868 renaming_expr = next;
869 write_exp_elt_opcode (par_state, OP_LONG);
870 write_exp_elt_type (par_state, type_int (par_state));
871 write_exp_elt_longcst (par_state, (LONGEST) val);
872 write_exp_elt_opcode (par_state, OP_LONG);
873 }
874 else
875 {
876 const char *end;
877 char *index_name;
878 struct block_symbol index_sym_info;
879
880 end = strchr (renaming_expr, 'X');
881 if (end == NULL)
882 end = renaming_expr + strlen (renaming_expr);
883
884 index_name = obstack_strndup (&temp_parse_space, renaming_expr,
885 end - renaming_expr);
886 renaming_expr = end;
887
888 ada_lookup_encoded_symbol (index_name, orig_left_context,
889 VAR_DOMAIN, &index_sym_info);
890 if (index_sym_info.symbol == NULL)
891 error (_("Could not find %s"), index_name);
892 else if (SYMBOL_CLASS (index_sym_info.symbol) == LOC_TYPEDEF)
893 /* Index is an old-style renaming symbol. */
894 index_sym_info.block = orig_left_context;
895 write_var_from_sym (par_state, index_sym_info.block,
896 index_sym_info.symbol);
897 }
898 if (slice_state == SIMPLE_INDEX)
899 {
900 write_exp_elt_opcode (par_state, OP_FUNCALL);
901 write_exp_elt_longcst (par_state, (LONGEST) 1);
902 write_exp_elt_opcode (par_state, OP_FUNCALL);
903 }
904 else if (slice_state == LOWER_BOUND)
905 slice_state = UPPER_BOUND;
906 else if (slice_state == UPPER_BOUND)
907 {
908 write_exp_elt_opcode (par_state, TERNOP_SLICE);
909 slice_state = SIMPLE_INDEX;
910 }
911 break;
912
913 case 'R':
914 {
915 struct stoken field_name;
916 const char *end;
917 char *buf;
918
919 renaming_expr += 1;
920
921 if (slice_state != SIMPLE_INDEX)
922 goto BadEncoding;
923 end = strchr (renaming_expr, 'X');
924 if (end == NULL)
925 end = renaming_expr + strlen (renaming_expr);
926 field_name.length = end - renaming_expr;
927 buf = (char *) malloc (end - renaming_expr + 1);
928 field_name.ptr = buf;
929 strncpy (buf, renaming_expr, end - renaming_expr);
930 buf[end - renaming_expr] = '\000';
931 renaming_expr = end;
932 write_exp_op_with_string (par_state, STRUCTOP_STRUCT, field_name);
933 break;
934 }
935
936 default:
937 goto BadEncoding;
938 }
939 }
940 if (slice_state == SIMPLE_INDEX)
941 return;
942
943 BadEncoding:
944 error (_("Internal error in encoding of renaming declaration"));
945 }
946
947 static const struct block*
948 block_lookup (const struct block *context, const char *raw_name)
949 {
950 const char *name;
951 std::vector<struct block_symbol> syms;
952 int nsyms;
953 struct symtab *symtab;
954 const struct block *result = NULL;
955
956 if (raw_name[0] == '\'')
957 {
958 raw_name += 1;
959 name = raw_name;
960 }
961 else
962 name = ada_encode (raw_name);
963
964 nsyms = ada_lookup_symbol_list (name, context, VAR_DOMAIN, &syms);
965
966 if (context == NULL
967 && (nsyms == 0 || SYMBOL_CLASS (syms[0].symbol) != LOC_BLOCK))
968 symtab = lookup_symtab (name);
969 else
970 symtab = NULL;
971
972 if (symtab != NULL)
973 result = BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symtab), STATIC_BLOCK);
974 else if (nsyms == 0 || SYMBOL_CLASS (syms[0].symbol) != LOC_BLOCK)
975 {
976 if (context == NULL)
977 error (_("No file or function \"%s\"."), raw_name);
978 else
979 error (_("No function \"%s\" in specified context."), raw_name);
980 }
981 else
982 {
983 if (nsyms > 1)
984 warning (_("Function name \"%s\" ambiguous here"), raw_name);
985 result = SYMBOL_BLOCK_VALUE (syms[0].symbol);
986 }
987
988 return result;
989 }
990
991 static struct symbol*
992 select_possible_type_sym (const std::vector<struct block_symbol> &syms)
993 {
994 int i;
995 int preferred_index;
996 struct type *preferred_type;
997
998 preferred_index = -1; preferred_type = NULL;
999 for (i = 0; i < syms.size (); i += 1)
1000 switch (SYMBOL_CLASS (syms[i].symbol))
1001 {
1002 case LOC_TYPEDEF:
1003 if (ada_prefer_type (SYMBOL_TYPE (syms[i].symbol), preferred_type))
1004 {
1005 preferred_index = i;
1006 preferred_type = SYMBOL_TYPE (syms[i].symbol);
1007 }
1008 break;
1009 case LOC_REGISTER:
1010 case LOC_ARG:
1011 case LOC_REF_ARG:
1012 case LOC_REGPARM_ADDR:
1013 case LOC_LOCAL:
1014 case LOC_COMPUTED:
1015 return NULL;
1016 default:
1017 break;
1018 }
1019 if (preferred_type == NULL)
1020 return NULL;
1021 return syms[preferred_index].symbol;
1022 }
1023
1024 static struct type*
1025 find_primitive_type (struct parser_state *par_state, char *name)
1026 {
1027 struct type *type;
1028 type = language_lookup_primitive_type (par_state->language (),
1029 par_state->gdbarch (),
1030 name);
1031 if (type == NULL && strcmp ("system__address", name) == 0)
1032 type = type_system_address (par_state);
1033
1034 if (type != NULL)
1035 {
1036 /* Check to see if we have a regular definition of this
1037 type that just didn't happen to have been read yet. */
1038 struct symbol *sym;
1039 char *expanded_name =
1040 (char *) alloca (strlen (name) + sizeof ("standard__"));
1041 strcpy (expanded_name, "standard__");
1042 strcat (expanded_name, name);
1043 sym = ada_lookup_symbol (expanded_name, NULL, VAR_DOMAIN).symbol;
1044 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1045 type = SYMBOL_TYPE (sym);
1046 }
1047
1048 return type;
1049 }
1050
1051 static int
1052 chop_selector (char *name, int end)
1053 {
1054 int i;
1055 for (i = end - 1; i > 0; i -= 1)
1056 if (name[i] == '.' || (name[i] == '_' && name[i+1] == '_'))
1057 return i;
1058 return -1;
1059 }
1060
1061 /* If NAME is a string beginning with a separator (either '__', or
1062 '.'), chop this separator and return the result; else, return
1063 NAME. */
1064
1065 static char *
1066 chop_separator (char *name)
1067 {
1068 if (*name == '.')
1069 return name + 1;
1070
1071 if (name[0] == '_' && name[1] == '_')
1072 return name + 2;
1073
1074 return name;
1075 }
1076
1077 /* Given that SELS is a string of the form (<sep><identifier>)*, where
1078 <sep> is '__' or '.', write the indicated sequence of
1079 STRUCTOP_STRUCT expression operators. */
1080 static void
1081 write_selectors (struct parser_state *par_state, char *sels)
1082 {
1083 while (*sels != '\0')
1084 {
1085 struct stoken field_name;
1086 char *p = chop_separator (sels);
1087 sels = p;
1088 while (*sels != '\0' && *sels != '.'
1089 && (sels[0] != '_' || sels[1] != '_'))
1090 sels += 1;
1091 field_name.length = sels - p;
1092 field_name.ptr = p;
1093 write_exp_op_with_string (par_state, STRUCTOP_STRUCT, field_name);
1094 }
1095 }
1096
1097 /* Write a variable access (OP_VAR_VALUE) to ambiguous encoded name
1098 NAME[0..LEN-1], in block context BLOCK, to be resolved later. Writes
1099 a temporary symbol that is valid until the next call to ada_parse.
1100 */
1101 static void
1102 write_ambiguous_var (struct parser_state *par_state,
1103 const struct block *block, char *name, int len)
1104 {
1105 struct symbol *sym = new (&temp_parse_space) symbol ();
1106
1107 SYMBOL_DOMAIN (sym) = UNDEF_DOMAIN;
1108 sym->set_linkage_name (obstack_strndup (&temp_parse_space, name, len));
1109 sym->set_language (language_ada, nullptr);
1110
1111 write_exp_elt_opcode (par_state, OP_VAR_VALUE);
1112 write_exp_elt_block (par_state, block);
1113 write_exp_elt_sym (par_state, sym);
1114 write_exp_elt_opcode (par_state, OP_VAR_VALUE);
1115 }
1116
1117 /* A convenient wrapper around ada_get_field_index that takes
1118 a non NUL-terminated FIELD_NAME0 and a FIELD_NAME_LEN instead
1119 of a NUL-terminated field name. */
1120
1121 static int
1122 ada_nget_field_index (const struct type *type, const char *field_name0,
1123 int field_name_len, int maybe_missing)
1124 {
1125 char *field_name = (char *) alloca ((field_name_len + 1) * sizeof (char));
1126
1127 strncpy (field_name, field_name0, field_name_len);
1128 field_name[field_name_len] = '\0';
1129 return ada_get_field_index (type, field_name, maybe_missing);
1130 }
1131
1132 /* If encoded_field_name is the name of a field inside symbol SYM,
1133 then return the type of that field. Otherwise, return NULL.
1134
1135 This function is actually recursive, so if ENCODED_FIELD_NAME
1136 doesn't match one of the fields of our symbol, then try to see
1137 if ENCODED_FIELD_NAME could not be a succession of field names
1138 (in other words, the user entered an expression of the form
1139 TYPE_NAME.FIELD1.FIELD2.FIELD3), in which case we evaluate
1140 each field name sequentially to obtain the desired field type.
1141 In case of failure, we return NULL. */
1142
1143 static struct type *
1144 get_symbol_field_type (struct symbol *sym, char *encoded_field_name)
1145 {
1146 char *field_name = encoded_field_name;
1147 char *subfield_name;
1148 struct type *type = SYMBOL_TYPE (sym);
1149 int fieldno;
1150
1151 if (type == NULL || field_name == NULL)
1152 return NULL;
1153 type = check_typedef (type);
1154
1155 while (field_name[0] != '\0')
1156 {
1157 field_name = chop_separator (field_name);
1158
1159 fieldno = ada_get_field_index (type, field_name, 1);
1160 if (fieldno >= 0)
1161 return TYPE_FIELD_TYPE (type, fieldno);
1162
1163 subfield_name = field_name;
1164 while (*subfield_name != '\0' && *subfield_name != '.'
1165 && (subfield_name[0] != '_' || subfield_name[1] != '_'))
1166 subfield_name += 1;
1167
1168 if (subfield_name[0] == '\0')
1169 return NULL;
1170
1171 fieldno = ada_nget_field_index (type, field_name,
1172 subfield_name - field_name, 1);
1173 if (fieldno < 0)
1174 return NULL;
1175
1176 type = TYPE_FIELD_TYPE (type, fieldno);
1177 field_name = subfield_name;
1178 }
1179
1180 return NULL;
1181 }
1182
1183 /* Look up NAME0 (an unencoded identifier or dotted name) in BLOCK (or
1184 expression_block_context if NULL). If it denotes a type, return
1185 that type. Otherwise, write expression code to evaluate it as an
1186 object and return NULL. In this second case, NAME0 will, in general,
1187 have the form <name>(.<selector_name>)*, where <name> is an object
1188 or renaming encoded in the debugging data. Calls error if no
1189 prefix <name> matches a name in the debugging data (i.e., matches
1190 either a complete name or, as a wild-card match, the final
1191 identifier). */
1192
1193 static struct type*
1194 write_var_or_type (struct parser_state *par_state,
1195 const struct block *block, struct stoken name0)
1196 {
1197 int depth;
1198 char *encoded_name;
1199 int name_len;
1200
1201 if (block == NULL)
1202 block = par_state->expression_context_block;
1203
1204 encoded_name = ada_encode (name0.ptr);
1205 name_len = strlen (encoded_name);
1206 encoded_name = obstack_strndup (&temp_parse_space, encoded_name, name_len);
1207 for (depth = 0; depth < MAX_RENAMING_CHAIN_LENGTH; depth += 1)
1208 {
1209 int tail_index;
1210
1211 tail_index = name_len;
1212 while (tail_index > 0)
1213 {
1214 int nsyms;
1215 std::vector<struct block_symbol> syms;
1216 struct symbol *type_sym;
1217 struct symbol *renaming_sym;
1218 const char* renaming;
1219 int renaming_len;
1220 const char* renaming_expr;
1221 int terminator = encoded_name[tail_index];
1222
1223 encoded_name[tail_index] = '\0';
1224 nsyms = ada_lookup_symbol_list (encoded_name, block,
1225 VAR_DOMAIN, &syms);
1226 encoded_name[tail_index] = terminator;
1227
1228 type_sym = select_possible_type_sym (syms);
1229
1230 if (type_sym != NULL)
1231 renaming_sym = type_sym;
1232 else if (nsyms == 1)
1233 renaming_sym = syms[0].symbol;
1234 else
1235 renaming_sym = NULL;
1236
1237 switch (ada_parse_renaming (renaming_sym, &renaming,
1238 &renaming_len, &renaming_expr))
1239 {
1240 case ADA_NOT_RENAMING:
1241 break;
1242 case ADA_PACKAGE_RENAMING:
1243 case ADA_EXCEPTION_RENAMING:
1244 case ADA_SUBPROGRAM_RENAMING:
1245 {
1246 int alloc_len = renaming_len + name_len - tail_index + 1;
1247 char *new_name
1248 = (char *) obstack_alloc (&temp_parse_space, alloc_len);
1249 strncpy (new_name, renaming, renaming_len);
1250 strcpy (new_name + renaming_len, encoded_name + tail_index);
1251 encoded_name = new_name;
1252 name_len = renaming_len + name_len - tail_index;
1253 goto TryAfterRenaming;
1254 }
1255 case ADA_OBJECT_RENAMING:
1256 write_object_renaming (par_state, block, renaming, renaming_len,
1257 renaming_expr, MAX_RENAMING_CHAIN_LENGTH);
1258 write_selectors (par_state, encoded_name + tail_index);
1259 return NULL;
1260 default:
1261 internal_error (__FILE__, __LINE__,
1262 _("impossible value from ada_parse_renaming"));
1263 }
1264
1265 if (type_sym != NULL)
1266 {
1267 struct type *field_type;
1268
1269 if (tail_index == name_len)
1270 return SYMBOL_TYPE (type_sym);
1271
1272 /* We have some extraneous characters after the type name.
1273 If this is an expression "TYPE_NAME.FIELD0.[...].FIELDN",
1274 then try to get the type of FIELDN. */
1275 field_type
1276 = get_symbol_field_type (type_sym, encoded_name + tail_index);
1277 if (field_type != NULL)
1278 return field_type;
1279 else
1280 error (_("Invalid attempt to select from type: \"%s\"."),
1281 name0.ptr);
1282 }
1283 else if (tail_index == name_len && nsyms == 0)
1284 {
1285 struct type *type = find_primitive_type (par_state,
1286 encoded_name);
1287
1288 if (type != NULL)
1289 return type;
1290 }
1291
1292 if (nsyms == 1)
1293 {
1294 write_var_from_sym (par_state, syms[0].block, syms[0].symbol);
1295 write_selectors (par_state, encoded_name + tail_index);
1296 return NULL;
1297 }
1298 else if (nsyms == 0)
1299 {
1300 struct bound_minimal_symbol msym
1301 = ada_lookup_simple_minsym (encoded_name);
1302 if (msym.minsym != NULL)
1303 {
1304 write_exp_msymbol (par_state, msym);
1305 /* Maybe cause error here rather than later? FIXME? */
1306 write_selectors (par_state, encoded_name + tail_index);
1307 return NULL;
1308 }
1309
1310 if (tail_index == name_len
1311 && strncmp (encoded_name, "standard__",
1312 sizeof ("standard__") - 1) == 0)
1313 error (_("No definition of \"%s\" found."), name0.ptr);
1314
1315 tail_index = chop_selector (encoded_name, tail_index);
1316 }
1317 else
1318 {
1319 write_ambiguous_var (par_state, block, encoded_name,
1320 tail_index);
1321 write_selectors (par_state, encoded_name + tail_index);
1322 return NULL;
1323 }
1324 }
1325
1326 if (!have_full_symbols () && !have_partial_symbols () && block == NULL)
1327 error (_("No symbol table is loaded. Use the \"file\" command."));
1328 if (block == par_state->expression_context_block)
1329 error (_("No definition of \"%s\" in current context."), name0.ptr);
1330 else
1331 error (_("No definition of \"%s\" in specified context."), name0.ptr);
1332
1333 TryAfterRenaming: ;
1334 }
1335
1336 error (_("Could not find renamed symbol \"%s\""), name0.ptr);
1337
1338 }
1339
1340 /* Write a left side of a component association (e.g., NAME in NAME =>
1341 exp). If NAME has the form of a selected component, write it as an
1342 ordinary expression. If it is a simple variable that unambiguously
1343 corresponds to exactly one symbol that does not denote a type or an
1344 object renaming, also write it normally as an OP_VAR_VALUE.
1345 Otherwise, write it as an OP_NAME.
1346
1347 Unfortunately, we don't know at this point whether NAME is supposed
1348 to denote a record component name or the value of an array index.
1349 Therefore, it is not appropriate to disambiguate an ambiguous name
1350 as we normally would, nor to replace a renaming with its referent.
1351 As a result, in the (one hopes) rare case that one writes an
1352 aggregate such as (R => 42) where R renames an object or is an
1353 ambiguous name, one must write instead ((R) => 42). */
1354
1355 static void
1356 write_name_assoc (struct parser_state *par_state, struct stoken name)
1357 {
1358 if (strchr (name.ptr, '.') == NULL)
1359 {
1360 std::vector<struct block_symbol> syms;
1361 int nsyms = ada_lookup_symbol_list (name.ptr,
1362 par_state->expression_context_block,
1363 VAR_DOMAIN, &syms);
1364
1365 if (nsyms != 1 || SYMBOL_CLASS (syms[0].symbol) == LOC_TYPEDEF)
1366 write_exp_op_with_string (par_state, OP_NAME, name);
1367 else
1368 write_var_from_sym (par_state, syms[0].block, syms[0].symbol);
1369 }
1370 else
1371 if (write_var_or_type (par_state, NULL, name) != NULL)
1372 error (_("Invalid use of type."));
1373 }
1374
1375 /* Convert the character literal whose ASCII value would be VAL to the
1376 appropriate value of type TYPE, if there is a translation.
1377 Otherwise return VAL. Hence, in an enumeration type ('A', 'B'),
1378 the literal 'A' (VAL == 65), returns 0. */
1379
1380 static LONGEST
1381 convert_char_literal (struct type *type, LONGEST val)
1382 {
1383 char name[7];
1384 int f;
1385
1386 if (type == NULL)
1387 return val;
1388 type = check_typedef (type);
1389 if (TYPE_CODE (type) != TYPE_CODE_ENUM)
1390 return val;
1391
1392 if ((val >= 'a' && val <= 'z') || (val >= '0' && val <= '9'))
1393 xsnprintf (name, sizeof (name), "Q%c", (int) val);
1394 else
1395 xsnprintf (name, sizeof (name), "QU%02x", (int) val);
1396 size_t len = strlen (name);
1397 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
1398 {
1399 /* Check the suffix because an enum constant in a package will
1400 have a name like "pkg__QUxx". This is safe enough because we
1401 already have the correct type, and because mangling means
1402 there can't be clashes. */
1403 const char *ename = TYPE_FIELD_NAME (type, f);
1404 size_t elen = strlen (ename);
1405
1406 if (elen >= len && strcmp (name, ename + elen - len) == 0)
1407 return TYPE_FIELD_ENUMVAL (type, f);
1408 }
1409 return val;
1410 }
1411
1412 static struct type *
1413 type_int (struct parser_state *par_state)
1414 {
1415 return parse_type (par_state)->builtin_int;
1416 }
1417
1418 static struct type *
1419 type_long (struct parser_state *par_state)
1420 {
1421 return parse_type (par_state)->builtin_long;
1422 }
1423
1424 static struct type *
1425 type_long_long (struct parser_state *par_state)
1426 {
1427 return parse_type (par_state)->builtin_long_long;
1428 }
1429
1430 static struct type *
1431 type_long_double (struct parser_state *par_state)
1432 {
1433 return parse_type (par_state)->builtin_long_double;
1434 }
1435
1436 static struct type *
1437 type_char (struct parser_state *par_state)
1438 {
1439 return language_string_char_type (par_state->language (),
1440 par_state->gdbarch ());
1441 }
1442
1443 static struct type *
1444 type_boolean (struct parser_state *par_state)
1445 {
1446 return parse_type (par_state)->builtin_bool;
1447 }
1448
1449 static struct type *
1450 type_system_address (struct parser_state *par_state)
1451 {
1452 struct type *type
1453 = language_lookup_primitive_type (par_state->language (),
1454 par_state->gdbarch (),
1455 "system__address");
1456 return type != NULL ? type : parse_type (par_state)->builtin_data_ptr;
1457 }
1458
1459 void
1460 _initialize_ada_exp (void)
1461 {
1462 obstack_init (&temp_parse_space);
1463 }
This page took 0.061653 seconds and 4 git commands to generate.