Remove a call to update_exec_info
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "gdb_regex.h"
24 #include "frame.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcmd.h"
28 #include "expression.h"
29 #include "parser-defs.h"
30 #include "language.h"
31 #include "varobj.h"
32 #include "inferior.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "breakpoint.h"
36 #include "gdbcore.h"
37 #include "hashtab.h"
38 #include "gdb_obstack.h"
39 #include "ada-lang.h"
40 #include "completer.h"
41 #include "ui-out.h"
42 #include "block.h"
43 #include "infcall.h"
44 #include "annotate.h"
45 #include "valprint.h"
46 #include "source.h"
47 #include "observable.h"
48 #include "stack.h"
49 #include "typeprint.h"
50 #include "namespace.h"
51 #include "cli/cli-style.h"
52
53 #include "value.h"
54 #include "mi/mi-common.h"
55 #include "arch-utils.h"
56 #include "cli/cli-utils.h"
57 #include "gdbsupport/function-view.h"
58 #include "gdbsupport/byte-vector.h"
59 #include <algorithm>
60
61 /* Define whether or not the C operator '/' truncates towards zero for
62 differently signed operands (truncation direction is undefined in C).
63 Copied from valarith.c. */
64
65 #ifndef TRUNCATION_TOWARDS_ZERO
66 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
67 #endif
68
69 static struct type *desc_base_type (struct type *);
70
71 static struct type *desc_bounds_type (struct type *);
72
73 static struct value *desc_bounds (struct value *);
74
75 static int fat_pntr_bounds_bitpos (struct type *);
76
77 static int fat_pntr_bounds_bitsize (struct type *);
78
79 static struct type *desc_data_target_type (struct type *);
80
81 static struct value *desc_data (struct value *);
82
83 static int fat_pntr_data_bitpos (struct type *);
84
85 static int fat_pntr_data_bitsize (struct type *);
86
87 static struct value *desc_one_bound (struct value *, int, int);
88
89 static int desc_bound_bitpos (struct type *, int, int);
90
91 static int desc_bound_bitsize (struct type *, int, int);
92
93 static struct type *desc_index_type (struct type *, int);
94
95 static int desc_arity (struct type *);
96
97 static int ada_type_match (struct type *, struct type *, int);
98
99 static int ada_args_match (struct symbol *, struct value **, int);
100
101 static struct value *make_array_descriptor (struct type *, struct value *);
102
103 static void ada_add_block_symbols (struct obstack *,
104 const struct block *,
105 const lookup_name_info &lookup_name,
106 domain_enum, struct objfile *);
107
108 static void ada_add_all_symbols (struct obstack *, const struct block *,
109 const lookup_name_info &lookup_name,
110 domain_enum, int, int *);
111
112 static int is_nonfunction (struct block_symbol *, int);
113
114 static void add_defn_to_vec (struct obstack *, struct symbol *,
115 const struct block *);
116
117 static int num_defns_collected (struct obstack *);
118
119 static struct block_symbol *defns_collected (struct obstack *, int);
120
121 static struct value *resolve_subexp (expression_up *, int *, int,
122 struct type *, int,
123 innermost_block_tracker *);
124
125 static void replace_operator_with_call (expression_up *, int, int, int,
126 struct symbol *, const struct block *);
127
128 static int possible_user_operator_p (enum exp_opcode, struct value **);
129
130 static const char *ada_op_name (enum exp_opcode);
131
132 static const char *ada_decoded_op_name (enum exp_opcode);
133
134 static int numeric_type_p (struct type *);
135
136 static int integer_type_p (struct type *);
137
138 static int scalar_type_p (struct type *);
139
140 static int discrete_type_p (struct type *);
141
142 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
143 int, int);
144
145 static struct value *evaluate_subexp_type (struct expression *, int *);
146
147 static struct type *ada_find_parallel_type_with_name (struct type *,
148 const char *);
149
150 static int is_dynamic_field (struct type *, int);
151
152 static struct type *to_fixed_variant_branch_type (struct type *,
153 const gdb_byte *,
154 CORE_ADDR, struct value *);
155
156 static struct type *to_fixed_array_type (struct type *, struct value *, int);
157
158 static struct type *to_fixed_range_type (struct type *, struct value *);
159
160 static struct type *to_static_fixed_type (struct type *);
161 static struct type *static_unwrap_type (struct type *type);
162
163 static struct value *unwrap_value (struct value *);
164
165 static struct type *constrained_packed_array_type (struct type *, long *);
166
167 static struct type *decode_constrained_packed_array_type (struct type *);
168
169 static long decode_packed_array_bitsize (struct type *);
170
171 static struct value *decode_constrained_packed_array (struct value *);
172
173 static int ada_is_packed_array_type (struct type *);
174
175 static int ada_is_unconstrained_packed_array_type (struct type *);
176
177 static struct value *value_subscript_packed (struct value *, int,
178 struct value **);
179
180 static struct value *coerce_unspec_val_to_type (struct value *,
181 struct type *);
182
183 static int lesseq_defined_than (struct symbol *, struct symbol *);
184
185 static int equiv_types (struct type *, struct type *);
186
187 static int is_name_suffix (const char *);
188
189 static int advance_wild_match (const char **, const char *, int);
190
191 static bool wild_match (const char *name, const char *patn);
192
193 static struct value *ada_coerce_ref (struct value *);
194
195 static LONGEST pos_atr (struct value *);
196
197 static struct value *value_pos_atr (struct type *, struct value *);
198
199 static struct value *value_val_atr (struct type *, struct value *);
200
201 static struct symbol *standard_lookup (const char *, const struct block *,
202 domain_enum);
203
204 static struct value *ada_search_struct_field (const char *, struct value *, int,
205 struct type *);
206
207 static struct value *ada_value_primitive_field (struct value *, int, int,
208 struct type *);
209
210 static int find_struct_field (const char *, struct type *, int,
211 struct type **, int *, int *, int *, int *);
212
213 static int ada_resolve_function (struct block_symbol *, int,
214 struct value **, int, const char *,
215 struct type *, int);
216
217 static int ada_is_direct_array_type (struct type *);
218
219 static void ada_language_arch_info (struct gdbarch *,
220 struct language_arch_info *);
221
222 static struct value *ada_index_struct_field (int, struct value *, int,
223 struct type *);
224
225 static struct value *assign_aggregate (struct value *, struct value *,
226 struct expression *,
227 int *, enum noside);
228
229 static void aggregate_assign_from_choices (struct value *, struct value *,
230 struct expression *,
231 int *, LONGEST *, int *,
232 int, LONGEST, LONGEST);
233
234 static void aggregate_assign_positional (struct value *, struct value *,
235 struct expression *,
236 int *, LONGEST *, int *, int,
237 LONGEST, LONGEST);
238
239
240 static void aggregate_assign_others (struct value *, struct value *,
241 struct expression *,
242 int *, LONGEST *, int, LONGEST, LONGEST);
243
244
245 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
246
247
248 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
249 int *, enum noside);
250
251 static void ada_forward_operator_length (struct expression *, int, int *,
252 int *);
253
254 static struct type *ada_find_any_type (const char *name);
255
256 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
257 (const lookup_name_info &lookup_name);
258
259 \f
260
261 /* The result of a symbol lookup to be stored in our symbol cache. */
262
263 struct cache_entry
264 {
265 /* The name used to perform the lookup. */
266 const char *name;
267 /* The namespace used during the lookup. */
268 domain_enum domain;
269 /* The symbol returned by the lookup, or NULL if no matching symbol
270 was found. */
271 struct symbol *sym;
272 /* The block where the symbol was found, or NULL if no matching
273 symbol was found. */
274 const struct block *block;
275 /* A pointer to the next entry with the same hash. */
276 struct cache_entry *next;
277 };
278
279 /* The Ada symbol cache, used to store the result of Ada-mode symbol
280 lookups in the course of executing the user's commands.
281
282 The cache is implemented using a simple, fixed-sized hash.
283 The size is fixed on the grounds that there are not likely to be
284 all that many symbols looked up during any given session, regardless
285 of the size of the symbol table. If we decide to go to a resizable
286 table, let's just use the stuff from libiberty instead. */
287
288 #define HASH_SIZE 1009
289
290 struct ada_symbol_cache
291 {
292 /* An obstack used to store the entries in our cache. */
293 struct obstack cache_space;
294
295 /* The root of the hash table used to implement our symbol cache. */
296 struct cache_entry *root[HASH_SIZE];
297 };
298
299 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
300
301 /* Maximum-sized dynamic type. */
302 static unsigned int varsize_limit;
303
304 static const char ada_completer_word_break_characters[] =
305 #ifdef VMS
306 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
307 #else
308 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
309 #endif
310
311 /* The name of the symbol to use to get the name of the main subprogram. */
312 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
313 = "__gnat_ada_main_program_name";
314
315 /* Limit on the number of warnings to raise per expression evaluation. */
316 static int warning_limit = 2;
317
318 /* Number of warning messages issued; reset to 0 by cleanups after
319 expression evaluation. */
320 static int warnings_issued = 0;
321
322 static const char *known_runtime_file_name_patterns[] = {
323 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
324 };
325
326 static const char *known_auxiliary_function_name_patterns[] = {
327 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
328 };
329
330 /* Maintenance-related settings for this module. */
331
332 static struct cmd_list_element *maint_set_ada_cmdlist;
333 static struct cmd_list_element *maint_show_ada_cmdlist;
334
335 /* Implement the "maintenance set ada" (prefix) command. */
336
337 static void
338 maint_set_ada_cmd (const char *args, int from_tty)
339 {
340 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
341 gdb_stdout);
342 }
343
344 /* Implement the "maintenance show ada" (prefix) command. */
345
346 static void
347 maint_show_ada_cmd (const char *args, int from_tty)
348 {
349 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
350 }
351
352 /* The "maintenance ada set/show ignore-descriptive-type" value. */
353
354 static bool ada_ignore_descriptive_types_p = false;
355
356 /* Inferior-specific data. */
357
358 /* Per-inferior data for this module. */
359
360 struct ada_inferior_data
361 {
362 /* The ada__tags__type_specific_data type, which is used when decoding
363 tagged types. With older versions of GNAT, this type was directly
364 accessible through a component ("tsd") in the object tag. But this
365 is no longer the case, so we cache it for each inferior. */
366 struct type *tsd_type = nullptr;
367
368 /* The exception_support_info data. This data is used to determine
369 how to implement support for Ada exception catchpoints in a given
370 inferior. */
371 const struct exception_support_info *exception_info = nullptr;
372 };
373
374 /* Our key to this module's inferior data. */
375 static const struct inferior_key<ada_inferior_data> ada_inferior_data;
376
377 /* Return our inferior data for the given inferior (INF).
378
379 This function always returns a valid pointer to an allocated
380 ada_inferior_data structure. If INF's inferior data has not
381 been previously set, this functions creates a new one with all
382 fields set to zero, sets INF's inferior to it, and then returns
383 a pointer to that newly allocated ada_inferior_data. */
384
385 static struct ada_inferior_data *
386 get_ada_inferior_data (struct inferior *inf)
387 {
388 struct ada_inferior_data *data;
389
390 data = ada_inferior_data.get (inf);
391 if (data == NULL)
392 data = ada_inferior_data.emplace (inf);
393
394 return data;
395 }
396
397 /* Perform all necessary cleanups regarding our module's inferior data
398 that is required after the inferior INF just exited. */
399
400 static void
401 ada_inferior_exit (struct inferior *inf)
402 {
403 ada_inferior_data.clear (inf);
404 }
405
406
407 /* program-space-specific data. */
408
409 /* This module's per-program-space data. */
410 struct ada_pspace_data
411 {
412 ~ada_pspace_data ()
413 {
414 if (sym_cache != NULL)
415 ada_free_symbol_cache (sym_cache);
416 }
417
418 /* The Ada symbol cache. */
419 struct ada_symbol_cache *sym_cache = nullptr;
420 };
421
422 /* Key to our per-program-space data. */
423 static const struct program_space_key<ada_pspace_data> ada_pspace_data_handle;
424
425 /* Return this module's data for the given program space (PSPACE).
426 If not is found, add a zero'ed one now.
427
428 This function always returns a valid object. */
429
430 static struct ada_pspace_data *
431 get_ada_pspace_data (struct program_space *pspace)
432 {
433 struct ada_pspace_data *data;
434
435 data = ada_pspace_data_handle.get (pspace);
436 if (data == NULL)
437 data = ada_pspace_data_handle.emplace (pspace);
438
439 return data;
440 }
441
442 /* Utilities */
443
444 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
445 all typedef layers have been peeled. Otherwise, return TYPE.
446
447 Normally, we really expect a typedef type to only have 1 typedef layer.
448 In other words, we really expect the target type of a typedef type to be
449 a non-typedef type. This is particularly true for Ada units, because
450 the language does not have a typedef vs not-typedef distinction.
451 In that respect, the Ada compiler has been trying to eliminate as many
452 typedef definitions in the debugging information, since they generally
453 do not bring any extra information (we still use typedef under certain
454 circumstances related mostly to the GNAT encoding).
455
456 Unfortunately, we have seen situations where the debugging information
457 generated by the compiler leads to such multiple typedef layers. For
458 instance, consider the following example with stabs:
459
460 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
461 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
462
463 This is an error in the debugging information which causes type
464 pck__float_array___XUP to be defined twice, and the second time,
465 it is defined as a typedef of a typedef.
466
467 This is on the fringe of legality as far as debugging information is
468 concerned, and certainly unexpected. But it is easy to handle these
469 situations correctly, so we can afford to be lenient in this case. */
470
471 static struct type *
472 ada_typedef_target_type (struct type *type)
473 {
474 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
475 type = TYPE_TARGET_TYPE (type);
476 return type;
477 }
478
479 /* Given DECODED_NAME a string holding a symbol name in its
480 decoded form (ie using the Ada dotted notation), returns
481 its unqualified name. */
482
483 static const char *
484 ada_unqualified_name (const char *decoded_name)
485 {
486 const char *result;
487
488 /* If the decoded name starts with '<', it means that the encoded
489 name does not follow standard naming conventions, and thus that
490 it is not your typical Ada symbol name. Trying to unqualify it
491 is therefore pointless and possibly erroneous. */
492 if (decoded_name[0] == '<')
493 return decoded_name;
494
495 result = strrchr (decoded_name, '.');
496 if (result != NULL)
497 result++; /* Skip the dot... */
498 else
499 result = decoded_name;
500
501 return result;
502 }
503
504 /* Return a string starting with '<', followed by STR, and '>'. */
505
506 static std::string
507 add_angle_brackets (const char *str)
508 {
509 return string_printf ("<%s>", str);
510 }
511
512 static const char *
513 ada_get_gdb_completer_word_break_characters (void)
514 {
515 return ada_completer_word_break_characters;
516 }
517
518 /* Print an array element index using the Ada syntax. */
519
520 static void
521 ada_print_array_index (struct value *index_value, struct ui_file *stream,
522 const struct value_print_options *options)
523 {
524 LA_VALUE_PRINT (index_value, stream, options);
525 fprintf_filtered (stream, " => ");
526 }
527
528 /* la_watch_location_expression for Ada. */
529
530 static gdb::unique_xmalloc_ptr<char>
531 ada_watch_location_expression (struct type *type, CORE_ADDR addr)
532 {
533 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
534 std::string name = type_to_string (type);
535 return gdb::unique_xmalloc_ptr<char>
536 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
537 }
538
539 /* Assuming V points to an array of S objects, make sure that it contains at
540 least M objects, updating V and S as necessary. */
541
542 #define GROW_VECT(v, s, m) \
543 if ((s) < (m)) (v) = (char *) grow_vect (v, &(s), m, sizeof *(v));
544
545 /* Assuming VECT points to an array of *SIZE objects of size
546 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
547 updating *SIZE as necessary and returning the (new) array. */
548
549 static void *
550 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
551 {
552 if (*size < min_size)
553 {
554 *size *= 2;
555 if (*size < min_size)
556 *size = min_size;
557 vect = xrealloc (vect, *size * element_size);
558 }
559 return vect;
560 }
561
562 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
563 suffix of FIELD_NAME beginning "___". */
564
565 static int
566 field_name_match (const char *field_name, const char *target)
567 {
568 int len = strlen (target);
569
570 return
571 (strncmp (field_name, target, len) == 0
572 && (field_name[len] == '\0'
573 || (startswith (field_name + len, "___")
574 && strcmp (field_name + strlen (field_name) - 6,
575 "___XVN") != 0)));
576 }
577
578
579 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
580 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
581 and return its index. This function also handles fields whose name
582 have ___ suffixes because the compiler sometimes alters their name
583 by adding such a suffix to represent fields with certain constraints.
584 If the field could not be found, return a negative number if
585 MAYBE_MISSING is set. Otherwise raise an error. */
586
587 int
588 ada_get_field_index (const struct type *type, const char *field_name,
589 int maybe_missing)
590 {
591 int fieldno;
592 struct type *struct_type = check_typedef ((struct type *) type);
593
594 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
595 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
596 return fieldno;
597
598 if (!maybe_missing)
599 error (_("Unable to find field %s in struct %s. Aborting"),
600 field_name, TYPE_NAME (struct_type));
601
602 return -1;
603 }
604
605 /* The length of the prefix of NAME prior to any "___" suffix. */
606
607 int
608 ada_name_prefix_len (const char *name)
609 {
610 if (name == NULL)
611 return 0;
612 else
613 {
614 const char *p = strstr (name, "___");
615
616 if (p == NULL)
617 return strlen (name);
618 else
619 return p - name;
620 }
621 }
622
623 /* Return non-zero if SUFFIX is a suffix of STR.
624 Return zero if STR is null. */
625
626 static int
627 is_suffix (const char *str, const char *suffix)
628 {
629 int len1, len2;
630
631 if (str == NULL)
632 return 0;
633 len1 = strlen (str);
634 len2 = strlen (suffix);
635 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
636 }
637
638 /* The contents of value VAL, treated as a value of type TYPE. The
639 result is an lval in memory if VAL is. */
640
641 static struct value *
642 coerce_unspec_val_to_type (struct value *val, struct type *type)
643 {
644 type = ada_check_typedef (type);
645 if (value_type (val) == type)
646 return val;
647 else
648 {
649 struct value *result;
650
651 /* Make sure that the object size is not unreasonable before
652 trying to allocate some memory for it. */
653 ada_ensure_varsize_limit (type);
654
655 if (value_lazy (val)
656 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
657 result = allocate_value_lazy (type);
658 else
659 {
660 result = allocate_value (type);
661 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
662 }
663 set_value_component_location (result, val);
664 set_value_bitsize (result, value_bitsize (val));
665 set_value_bitpos (result, value_bitpos (val));
666 if (VALUE_LVAL (result) == lval_memory)
667 set_value_address (result, value_address (val));
668 return result;
669 }
670 }
671
672 static const gdb_byte *
673 cond_offset_host (const gdb_byte *valaddr, long offset)
674 {
675 if (valaddr == NULL)
676 return NULL;
677 else
678 return valaddr + offset;
679 }
680
681 static CORE_ADDR
682 cond_offset_target (CORE_ADDR address, long offset)
683 {
684 if (address == 0)
685 return 0;
686 else
687 return address + offset;
688 }
689
690 /* Issue a warning (as for the definition of warning in utils.c, but
691 with exactly one argument rather than ...), unless the limit on the
692 number of warnings has passed during the evaluation of the current
693 expression. */
694
695 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
696 provided by "complaint". */
697 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
698
699 static void
700 lim_warning (const char *format, ...)
701 {
702 va_list args;
703
704 va_start (args, format);
705 warnings_issued += 1;
706 if (warnings_issued <= warning_limit)
707 vwarning (format, args);
708
709 va_end (args);
710 }
711
712 /* Issue an error if the size of an object of type T is unreasonable,
713 i.e. if it would be a bad idea to allocate a value of this type in
714 GDB. */
715
716 void
717 ada_ensure_varsize_limit (const struct type *type)
718 {
719 if (TYPE_LENGTH (type) > varsize_limit)
720 error (_("object size is larger than varsize-limit"));
721 }
722
723 /* Maximum value of a SIZE-byte signed integer type. */
724 static LONGEST
725 max_of_size (int size)
726 {
727 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
728
729 return top_bit | (top_bit - 1);
730 }
731
732 /* Minimum value of a SIZE-byte signed integer type. */
733 static LONGEST
734 min_of_size (int size)
735 {
736 return -max_of_size (size) - 1;
737 }
738
739 /* Maximum value of a SIZE-byte unsigned integer type. */
740 static ULONGEST
741 umax_of_size (int size)
742 {
743 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
744
745 return top_bit | (top_bit - 1);
746 }
747
748 /* Maximum value of integral type T, as a signed quantity. */
749 static LONGEST
750 max_of_type (struct type *t)
751 {
752 if (TYPE_UNSIGNED (t))
753 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
754 else
755 return max_of_size (TYPE_LENGTH (t));
756 }
757
758 /* Minimum value of integral type T, as a signed quantity. */
759 static LONGEST
760 min_of_type (struct type *t)
761 {
762 if (TYPE_UNSIGNED (t))
763 return 0;
764 else
765 return min_of_size (TYPE_LENGTH (t));
766 }
767
768 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
769 LONGEST
770 ada_discrete_type_high_bound (struct type *type)
771 {
772 type = resolve_dynamic_type (type, NULL, 0);
773 switch (TYPE_CODE (type))
774 {
775 case TYPE_CODE_RANGE:
776 return TYPE_HIGH_BOUND (type);
777 case TYPE_CODE_ENUM:
778 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
779 case TYPE_CODE_BOOL:
780 return 1;
781 case TYPE_CODE_CHAR:
782 case TYPE_CODE_INT:
783 return max_of_type (type);
784 default:
785 error (_("Unexpected type in ada_discrete_type_high_bound."));
786 }
787 }
788
789 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
790 LONGEST
791 ada_discrete_type_low_bound (struct type *type)
792 {
793 type = resolve_dynamic_type (type, NULL, 0);
794 switch (TYPE_CODE (type))
795 {
796 case TYPE_CODE_RANGE:
797 return TYPE_LOW_BOUND (type);
798 case TYPE_CODE_ENUM:
799 return TYPE_FIELD_ENUMVAL (type, 0);
800 case TYPE_CODE_BOOL:
801 return 0;
802 case TYPE_CODE_CHAR:
803 case TYPE_CODE_INT:
804 return min_of_type (type);
805 default:
806 error (_("Unexpected type in ada_discrete_type_low_bound."));
807 }
808 }
809
810 /* The identity on non-range types. For range types, the underlying
811 non-range scalar type. */
812
813 static struct type *
814 get_base_type (struct type *type)
815 {
816 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
817 {
818 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
819 return type;
820 type = TYPE_TARGET_TYPE (type);
821 }
822 return type;
823 }
824
825 /* Return a decoded version of the given VALUE. This means returning
826 a value whose type is obtained by applying all the GNAT-specific
827 encodings, making the resulting type a static but standard description
828 of the initial type. */
829
830 struct value *
831 ada_get_decoded_value (struct value *value)
832 {
833 struct type *type = ada_check_typedef (value_type (value));
834
835 if (ada_is_array_descriptor_type (type)
836 || (ada_is_constrained_packed_array_type (type)
837 && TYPE_CODE (type) != TYPE_CODE_PTR))
838 {
839 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
840 value = ada_coerce_to_simple_array_ptr (value);
841 else
842 value = ada_coerce_to_simple_array (value);
843 }
844 else
845 value = ada_to_fixed_value (value);
846
847 return value;
848 }
849
850 /* Same as ada_get_decoded_value, but with the given TYPE.
851 Because there is no associated actual value for this type,
852 the resulting type might be a best-effort approximation in
853 the case of dynamic types. */
854
855 struct type *
856 ada_get_decoded_type (struct type *type)
857 {
858 type = to_static_fixed_type (type);
859 if (ada_is_constrained_packed_array_type (type))
860 type = ada_coerce_to_simple_array_type (type);
861 return type;
862 }
863
864 \f
865
866 /* Language Selection */
867
868 /* If the main program is in Ada, return language_ada, otherwise return LANG
869 (the main program is in Ada iif the adainit symbol is found). */
870
871 static enum language
872 ada_update_initial_language (enum language lang)
873 {
874 if (lookup_minimal_symbol ("adainit", NULL, NULL).minsym != NULL)
875 return language_ada;
876
877 return lang;
878 }
879
880 /* If the main procedure is written in Ada, then return its name.
881 The result is good until the next call. Return NULL if the main
882 procedure doesn't appear to be in Ada. */
883
884 char *
885 ada_main_name (void)
886 {
887 struct bound_minimal_symbol msym;
888 static gdb::unique_xmalloc_ptr<char> main_program_name;
889
890 /* For Ada, the name of the main procedure is stored in a specific
891 string constant, generated by the binder. Look for that symbol,
892 extract its address, and then read that string. If we didn't find
893 that string, then most probably the main procedure is not written
894 in Ada. */
895 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
896
897 if (msym.minsym != NULL)
898 {
899 CORE_ADDR main_program_name_addr;
900 int err_code;
901
902 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
903 if (main_program_name_addr == 0)
904 error (_("Invalid address for Ada main program name."));
905
906 target_read_string (main_program_name_addr, &main_program_name,
907 1024, &err_code);
908
909 if (err_code != 0)
910 return NULL;
911 return main_program_name.get ();
912 }
913
914 /* The main procedure doesn't seem to be in Ada. */
915 return NULL;
916 }
917 \f
918 /* Symbols */
919
920 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
921 of NULLs. */
922
923 const struct ada_opname_map ada_opname_table[] = {
924 {"Oadd", "\"+\"", BINOP_ADD},
925 {"Osubtract", "\"-\"", BINOP_SUB},
926 {"Omultiply", "\"*\"", BINOP_MUL},
927 {"Odivide", "\"/\"", BINOP_DIV},
928 {"Omod", "\"mod\"", BINOP_MOD},
929 {"Orem", "\"rem\"", BINOP_REM},
930 {"Oexpon", "\"**\"", BINOP_EXP},
931 {"Olt", "\"<\"", BINOP_LESS},
932 {"Ole", "\"<=\"", BINOP_LEQ},
933 {"Ogt", "\">\"", BINOP_GTR},
934 {"Oge", "\">=\"", BINOP_GEQ},
935 {"Oeq", "\"=\"", BINOP_EQUAL},
936 {"One", "\"/=\"", BINOP_NOTEQUAL},
937 {"Oand", "\"and\"", BINOP_BITWISE_AND},
938 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
939 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
940 {"Oconcat", "\"&\"", BINOP_CONCAT},
941 {"Oabs", "\"abs\"", UNOP_ABS},
942 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
943 {"Oadd", "\"+\"", UNOP_PLUS},
944 {"Osubtract", "\"-\"", UNOP_NEG},
945 {NULL, NULL}
946 };
947
948 /* The "encoded" form of DECODED, according to GNAT conventions. The
949 result is valid until the next call to ada_encode. If
950 THROW_ERRORS, throw an error if invalid operator name is found.
951 Otherwise, return NULL in that case. */
952
953 static char *
954 ada_encode_1 (const char *decoded, bool throw_errors)
955 {
956 static char *encoding_buffer = NULL;
957 static size_t encoding_buffer_size = 0;
958 const char *p;
959 int k;
960
961 if (decoded == NULL)
962 return NULL;
963
964 GROW_VECT (encoding_buffer, encoding_buffer_size,
965 2 * strlen (decoded) + 10);
966
967 k = 0;
968 for (p = decoded; *p != '\0'; p += 1)
969 {
970 if (*p == '.')
971 {
972 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
973 k += 2;
974 }
975 else if (*p == '"')
976 {
977 const struct ada_opname_map *mapping;
978
979 for (mapping = ada_opname_table;
980 mapping->encoded != NULL
981 && !startswith (p, mapping->decoded); mapping += 1)
982 ;
983 if (mapping->encoded == NULL)
984 {
985 if (throw_errors)
986 error (_("invalid Ada operator name: %s"), p);
987 else
988 return NULL;
989 }
990 strcpy (encoding_buffer + k, mapping->encoded);
991 k += strlen (mapping->encoded);
992 break;
993 }
994 else
995 {
996 encoding_buffer[k] = *p;
997 k += 1;
998 }
999 }
1000
1001 encoding_buffer[k] = '\0';
1002 return encoding_buffer;
1003 }
1004
1005 /* The "encoded" form of DECODED, according to GNAT conventions.
1006 The result is valid until the next call to ada_encode. */
1007
1008 char *
1009 ada_encode (const char *decoded)
1010 {
1011 return ada_encode_1 (decoded, true);
1012 }
1013
1014 /* Return NAME folded to lower case, or, if surrounded by single
1015 quotes, unfolded, but with the quotes stripped away. Result good
1016 to next call. */
1017
1018 static char *
1019 ada_fold_name (const char *name)
1020 {
1021 static char *fold_buffer = NULL;
1022 static size_t fold_buffer_size = 0;
1023
1024 int len = strlen (name);
1025 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1026
1027 if (name[0] == '\'')
1028 {
1029 strncpy (fold_buffer, name + 1, len - 2);
1030 fold_buffer[len - 2] = '\000';
1031 }
1032 else
1033 {
1034 int i;
1035
1036 for (i = 0; i <= len; i += 1)
1037 fold_buffer[i] = tolower (name[i]);
1038 }
1039
1040 return fold_buffer;
1041 }
1042
1043 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1044
1045 static int
1046 is_lower_alphanum (const char c)
1047 {
1048 return (isdigit (c) || (isalpha (c) && islower (c)));
1049 }
1050
1051 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1052 This function saves in LEN the length of that same symbol name but
1053 without either of these suffixes:
1054 . .{DIGIT}+
1055 . ${DIGIT}+
1056 . ___{DIGIT}+
1057 . __{DIGIT}+.
1058
1059 These are suffixes introduced by the compiler for entities such as
1060 nested subprogram for instance, in order to avoid name clashes.
1061 They do not serve any purpose for the debugger. */
1062
1063 static void
1064 ada_remove_trailing_digits (const char *encoded, int *len)
1065 {
1066 if (*len > 1 && isdigit (encoded[*len - 1]))
1067 {
1068 int i = *len - 2;
1069
1070 while (i > 0 && isdigit (encoded[i]))
1071 i--;
1072 if (i >= 0 && encoded[i] == '.')
1073 *len = i;
1074 else if (i >= 0 && encoded[i] == '$')
1075 *len = i;
1076 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1077 *len = i - 2;
1078 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1079 *len = i - 1;
1080 }
1081 }
1082
1083 /* Remove the suffix introduced by the compiler for protected object
1084 subprograms. */
1085
1086 static void
1087 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1088 {
1089 /* Remove trailing N. */
1090
1091 /* Protected entry subprograms are broken into two
1092 separate subprograms: The first one is unprotected, and has
1093 a 'N' suffix; the second is the protected version, and has
1094 the 'P' suffix. The second calls the first one after handling
1095 the protection. Since the P subprograms are internally generated,
1096 we leave these names undecoded, giving the user a clue that this
1097 entity is internal. */
1098
1099 if (*len > 1
1100 && encoded[*len - 1] == 'N'
1101 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1102 *len = *len - 1;
1103 }
1104
1105 /* If ENCODED follows the GNAT entity encoding conventions, then return
1106 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1107 replaced by ENCODED. */
1108
1109 std::string
1110 ada_decode (const char *encoded)
1111 {
1112 int i, j;
1113 int len0;
1114 const char *p;
1115 int at_start_name;
1116 std::string decoded;
1117
1118 /* With function descriptors on PPC64, the value of a symbol named
1119 ".FN", if it exists, is the entry point of the function "FN". */
1120 if (encoded[0] == '.')
1121 encoded += 1;
1122
1123 /* The name of the Ada main procedure starts with "_ada_".
1124 This prefix is not part of the decoded name, so skip this part
1125 if we see this prefix. */
1126 if (startswith (encoded, "_ada_"))
1127 encoded += 5;
1128
1129 /* If the name starts with '_', then it is not a properly encoded
1130 name, so do not attempt to decode it. Similarly, if the name
1131 starts with '<', the name should not be decoded. */
1132 if (encoded[0] == '_' || encoded[0] == '<')
1133 goto Suppress;
1134
1135 len0 = strlen (encoded);
1136
1137 ada_remove_trailing_digits (encoded, &len0);
1138 ada_remove_po_subprogram_suffix (encoded, &len0);
1139
1140 /* Remove the ___X.* suffix if present. Do not forget to verify that
1141 the suffix is located before the current "end" of ENCODED. We want
1142 to avoid re-matching parts of ENCODED that have previously been
1143 marked as discarded (by decrementing LEN0). */
1144 p = strstr (encoded, "___");
1145 if (p != NULL && p - encoded < len0 - 3)
1146 {
1147 if (p[3] == 'X')
1148 len0 = p - encoded;
1149 else
1150 goto Suppress;
1151 }
1152
1153 /* Remove any trailing TKB suffix. It tells us that this symbol
1154 is for the body of a task, but that information does not actually
1155 appear in the decoded name. */
1156
1157 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1158 len0 -= 3;
1159
1160 /* Remove any trailing TB suffix. The TB suffix is slightly different
1161 from the TKB suffix because it is used for non-anonymous task
1162 bodies. */
1163
1164 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1165 len0 -= 2;
1166
1167 /* Remove trailing "B" suffixes. */
1168 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1169
1170 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1171 len0 -= 1;
1172
1173 /* Make decoded big enough for possible expansion by operator name. */
1174
1175 decoded.resize (2 * len0 + 1, 'X');
1176
1177 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1178
1179 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1180 {
1181 i = len0 - 2;
1182 while ((i >= 0 && isdigit (encoded[i]))
1183 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1184 i -= 1;
1185 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1186 len0 = i - 1;
1187 else if (encoded[i] == '$')
1188 len0 = i;
1189 }
1190
1191 /* The first few characters that are not alphabetic are not part
1192 of any encoding we use, so we can copy them over verbatim. */
1193
1194 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1195 decoded[j] = encoded[i];
1196
1197 at_start_name = 1;
1198 while (i < len0)
1199 {
1200 /* Is this a symbol function? */
1201 if (at_start_name && encoded[i] == 'O')
1202 {
1203 int k;
1204
1205 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1206 {
1207 int op_len = strlen (ada_opname_table[k].encoded);
1208 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1209 op_len - 1) == 0)
1210 && !isalnum (encoded[i + op_len]))
1211 {
1212 strcpy (&decoded.front() + j, ada_opname_table[k].decoded);
1213 at_start_name = 0;
1214 i += op_len;
1215 j += strlen (ada_opname_table[k].decoded);
1216 break;
1217 }
1218 }
1219 if (ada_opname_table[k].encoded != NULL)
1220 continue;
1221 }
1222 at_start_name = 0;
1223
1224 /* Replace "TK__" with "__", which will eventually be translated
1225 into "." (just below). */
1226
1227 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1228 i += 2;
1229
1230 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1231 be translated into "." (just below). These are internal names
1232 generated for anonymous blocks inside which our symbol is nested. */
1233
1234 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1235 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1236 && isdigit (encoded [i+4]))
1237 {
1238 int k = i + 5;
1239
1240 while (k < len0 && isdigit (encoded[k]))
1241 k++; /* Skip any extra digit. */
1242
1243 /* Double-check that the "__B_{DIGITS}+" sequence we found
1244 is indeed followed by "__". */
1245 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1246 i = k;
1247 }
1248
1249 /* Remove _E{DIGITS}+[sb] */
1250
1251 /* Just as for protected object subprograms, there are 2 categories
1252 of subprograms created by the compiler for each entry. The first
1253 one implements the actual entry code, and has a suffix following
1254 the convention above; the second one implements the barrier and
1255 uses the same convention as above, except that the 'E' is replaced
1256 by a 'B'.
1257
1258 Just as above, we do not decode the name of barrier functions
1259 to give the user a clue that the code he is debugging has been
1260 internally generated. */
1261
1262 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1263 && isdigit (encoded[i+2]))
1264 {
1265 int k = i + 3;
1266
1267 while (k < len0 && isdigit (encoded[k]))
1268 k++;
1269
1270 if (k < len0
1271 && (encoded[k] == 'b' || encoded[k] == 's'))
1272 {
1273 k++;
1274 /* Just as an extra precaution, make sure that if this
1275 suffix is followed by anything else, it is a '_'.
1276 Otherwise, we matched this sequence by accident. */
1277 if (k == len0
1278 || (k < len0 && encoded[k] == '_'))
1279 i = k;
1280 }
1281 }
1282
1283 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1284 the GNAT front-end in protected object subprograms. */
1285
1286 if (i < len0 + 3
1287 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1288 {
1289 /* Backtrack a bit up until we reach either the begining of
1290 the encoded name, or "__". Make sure that we only find
1291 digits or lowercase characters. */
1292 const char *ptr = encoded + i - 1;
1293
1294 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1295 ptr--;
1296 if (ptr < encoded
1297 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1298 i++;
1299 }
1300
1301 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1302 {
1303 /* This is a X[bn]* sequence not separated from the previous
1304 part of the name with a non-alpha-numeric character (in other
1305 words, immediately following an alpha-numeric character), then
1306 verify that it is placed at the end of the encoded name. If
1307 not, then the encoding is not valid and we should abort the
1308 decoding. Otherwise, just skip it, it is used in body-nested
1309 package names. */
1310 do
1311 i += 1;
1312 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1313 if (i < len0)
1314 goto Suppress;
1315 }
1316 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1317 {
1318 /* Replace '__' by '.'. */
1319 decoded[j] = '.';
1320 at_start_name = 1;
1321 i += 2;
1322 j += 1;
1323 }
1324 else
1325 {
1326 /* It's a character part of the decoded name, so just copy it
1327 over. */
1328 decoded[j] = encoded[i];
1329 i += 1;
1330 j += 1;
1331 }
1332 }
1333 decoded.resize (j);
1334
1335 /* Decoded names should never contain any uppercase character.
1336 Double-check this, and abort the decoding if we find one. */
1337
1338 for (i = 0; i < decoded.length(); ++i)
1339 if (isupper (decoded[i]) || decoded[i] == ' ')
1340 goto Suppress;
1341
1342 return decoded;
1343
1344 Suppress:
1345 if (encoded[0] == '<')
1346 decoded = encoded;
1347 else
1348 decoded = '<' + std::string(encoded) + '>';
1349 return decoded;
1350
1351 }
1352
1353 /* Table for keeping permanent unique copies of decoded names. Once
1354 allocated, names in this table are never released. While this is a
1355 storage leak, it should not be significant unless there are massive
1356 changes in the set of decoded names in successive versions of a
1357 symbol table loaded during a single session. */
1358 static struct htab *decoded_names_store;
1359
1360 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1361 in the language-specific part of GSYMBOL, if it has not been
1362 previously computed. Tries to save the decoded name in the same
1363 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1364 in any case, the decoded symbol has a lifetime at least that of
1365 GSYMBOL).
1366 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1367 const, but nevertheless modified to a semantically equivalent form
1368 when a decoded name is cached in it. */
1369
1370 const char *
1371 ada_decode_symbol (const struct general_symbol_info *arg)
1372 {
1373 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1374 const char **resultp =
1375 &gsymbol->language_specific.demangled_name;
1376
1377 if (!gsymbol->ada_mangled)
1378 {
1379 std::string decoded = ada_decode (gsymbol->name);
1380 struct obstack *obstack = gsymbol->language_specific.obstack;
1381
1382 gsymbol->ada_mangled = 1;
1383
1384 if (obstack != NULL)
1385 *resultp = obstack_strdup (obstack, decoded.c_str ());
1386 else
1387 {
1388 /* Sometimes, we can't find a corresponding objfile, in
1389 which case, we put the result on the heap. Since we only
1390 decode when needed, we hope this usually does not cause a
1391 significant memory leak (FIXME). */
1392
1393 char **slot = (char **) htab_find_slot (decoded_names_store,
1394 decoded.c_str (), INSERT);
1395
1396 if (*slot == NULL)
1397 *slot = xstrdup (decoded.c_str ());
1398 *resultp = *slot;
1399 }
1400 }
1401
1402 return *resultp;
1403 }
1404
1405 static char *
1406 ada_la_decode (const char *encoded, int options)
1407 {
1408 return xstrdup (ada_decode (encoded).c_str ());
1409 }
1410
1411 /* Implement la_sniff_from_mangled_name for Ada. */
1412
1413 static int
1414 ada_sniff_from_mangled_name (const char *mangled, char **out)
1415 {
1416 std::string demangled = ada_decode (mangled);
1417
1418 *out = NULL;
1419
1420 if (demangled != mangled && demangled[0] != '<')
1421 {
1422 /* Set the gsymbol language to Ada, but still return 0.
1423 Two reasons for that:
1424
1425 1. For Ada, we prefer computing the symbol's decoded name
1426 on the fly rather than pre-compute it, in order to save
1427 memory (Ada projects are typically very large).
1428
1429 2. There are some areas in the definition of the GNAT
1430 encoding where, with a bit of bad luck, we might be able
1431 to decode a non-Ada symbol, generating an incorrect
1432 demangled name (Eg: names ending with "TB" for instance
1433 are identified as task bodies and so stripped from
1434 the decoded name returned).
1435
1436 Returning 1, here, but not setting *DEMANGLED, helps us get a
1437 little bit of the best of both worlds. Because we're last,
1438 we should not affect any of the other languages that were
1439 able to demangle the symbol before us; we get to correctly
1440 tag Ada symbols as such; and even if we incorrectly tagged a
1441 non-Ada symbol, which should be rare, any routing through the
1442 Ada language should be transparent (Ada tries to behave much
1443 like C/C++ with non-Ada symbols). */
1444 return 1;
1445 }
1446
1447 return 0;
1448 }
1449
1450 \f
1451
1452 /* Arrays */
1453
1454 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1455 generated by the GNAT compiler to describe the index type used
1456 for each dimension of an array, check whether it follows the latest
1457 known encoding. If not, fix it up to conform to the latest encoding.
1458 Otherwise, do nothing. This function also does nothing if
1459 INDEX_DESC_TYPE is NULL.
1460
1461 The GNAT encoding used to describe the array index type evolved a bit.
1462 Initially, the information would be provided through the name of each
1463 field of the structure type only, while the type of these fields was
1464 described as unspecified and irrelevant. The debugger was then expected
1465 to perform a global type lookup using the name of that field in order
1466 to get access to the full index type description. Because these global
1467 lookups can be very expensive, the encoding was later enhanced to make
1468 the global lookup unnecessary by defining the field type as being
1469 the full index type description.
1470
1471 The purpose of this routine is to allow us to support older versions
1472 of the compiler by detecting the use of the older encoding, and by
1473 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1474 we essentially replace each field's meaningless type by the associated
1475 index subtype). */
1476
1477 void
1478 ada_fixup_array_indexes_type (struct type *index_desc_type)
1479 {
1480 int i;
1481
1482 if (index_desc_type == NULL)
1483 return;
1484 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1485
1486 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1487 to check one field only, no need to check them all). If not, return
1488 now.
1489
1490 If our INDEX_DESC_TYPE was generated using the older encoding,
1491 the field type should be a meaningless integer type whose name
1492 is not equal to the field name. */
1493 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1494 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1495 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1496 return;
1497
1498 /* Fixup each field of INDEX_DESC_TYPE. */
1499 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1500 {
1501 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1502 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1503
1504 if (raw_type)
1505 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1506 }
1507 }
1508
1509 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1510
1511 static const char *bound_name[] = {
1512 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1513 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1514 };
1515
1516 /* Maximum number of array dimensions we are prepared to handle. */
1517
1518 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1519
1520
1521 /* The desc_* routines return primitive portions of array descriptors
1522 (fat pointers). */
1523
1524 /* The descriptor or array type, if any, indicated by TYPE; removes
1525 level of indirection, if needed. */
1526
1527 static struct type *
1528 desc_base_type (struct type *type)
1529 {
1530 if (type == NULL)
1531 return NULL;
1532 type = ada_check_typedef (type);
1533 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1534 type = ada_typedef_target_type (type);
1535
1536 if (type != NULL
1537 && (TYPE_CODE (type) == TYPE_CODE_PTR
1538 || TYPE_CODE (type) == TYPE_CODE_REF))
1539 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1540 else
1541 return type;
1542 }
1543
1544 /* True iff TYPE indicates a "thin" array pointer type. */
1545
1546 static int
1547 is_thin_pntr (struct type *type)
1548 {
1549 return
1550 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1551 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1552 }
1553
1554 /* The descriptor type for thin pointer type TYPE. */
1555
1556 static struct type *
1557 thin_descriptor_type (struct type *type)
1558 {
1559 struct type *base_type = desc_base_type (type);
1560
1561 if (base_type == NULL)
1562 return NULL;
1563 if (is_suffix (ada_type_name (base_type), "___XVE"))
1564 return base_type;
1565 else
1566 {
1567 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1568
1569 if (alt_type == NULL)
1570 return base_type;
1571 else
1572 return alt_type;
1573 }
1574 }
1575
1576 /* A pointer to the array data for thin-pointer value VAL. */
1577
1578 static struct value *
1579 thin_data_pntr (struct value *val)
1580 {
1581 struct type *type = ada_check_typedef (value_type (val));
1582 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1583
1584 data_type = lookup_pointer_type (data_type);
1585
1586 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1587 return value_cast (data_type, value_copy (val));
1588 else
1589 return value_from_longest (data_type, value_address (val));
1590 }
1591
1592 /* True iff TYPE indicates a "thick" array pointer type. */
1593
1594 static int
1595 is_thick_pntr (struct type *type)
1596 {
1597 type = desc_base_type (type);
1598 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1599 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1600 }
1601
1602 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1603 pointer to one, the type of its bounds data; otherwise, NULL. */
1604
1605 static struct type *
1606 desc_bounds_type (struct type *type)
1607 {
1608 struct type *r;
1609
1610 type = desc_base_type (type);
1611
1612 if (type == NULL)
1613 return NULL;
1614 else if (is_thin_pntr (type))
1615 {
1616 type = thin_descriptor_type (type);
1617 if (type == NULL)
1618 return NULL;
1619 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1620 if (r != NULL)
1621 return ada_check_typedef (r);
1622 }
1623 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1624 {
1625 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1626 if (r != NULL)
1627 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1628 }
1629 return NULL;
1630 }
1631
1632 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1633 one, a pointer to its bounds data. Otherwise NULL. */
1634
1635 static struct value *
1636 desc_bounds (struct value *arr)
1637 {
1638 struct type *type = ada_check_typedef (value_type (arr));
1639
1640 if (is_thin_pntr (type))
1641 {
1642 struct type *bounds_type =
1643 desc_bounds_type (thin_descriptor_type (type));
1644 LONGEST addr;
1645
1646 if (bounds_type == NULL)
1647 error (_("Bad GNAT array descriptor"));
1648
1649 /* NOTE: The following calculation is not really kosher, but
1650 since desc_type is an XVE-encoded type (and shouldn't be),
1651 the correct calculation is a real pain. FIXME (and fix GCC). */
1652 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1653 addr = value_as_long (arr);
1654 else
1655 addr = value_address (arr);
1656
1657 return
1658 value_from_longest (lookup_pointer_type (bounds_type),
1659 addr - TYPE_LENGTH (bounds_type));
1660 }
1661
1662 else if (is_thick_pntr (type))
1663 {
1664 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1665 _("Bad GNAT array descriptor"));
1666 struct type *p_bounds_type = value_type (p_bounds);
1667
1668 if (p_bounds_type
1669 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1670 {
1671 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1672
1673 if (TYPE_STUB (target_type))
1674 p_bounds = value_cast (lookup_pointer_type
1675 (ada_check_typedef (target_type)),
1676 p_bounds);
1677 }
1678 else
1679 error (_("Bad GNAT array descriptor"));
1680
1681 return p_bounds;
1682 }
1683 else
1684 return NULL;
1685 }
1686
1687 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1688 position of the field containing the address of the bounds data. */
1689
1690 static int
1691 fat_pntr_bounds_bitpos (struct type *type)
1692 {
1693 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1694 }
1695
1696 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1697 size of the field containing the address of the bounds data. */
1698
1699 static int
1700 fat_pntr_bounds_bitsize (struct type *type)
1701 {
1702 type = desc_base_type (type);
1703
1704 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1705 return TYPE_FIELD_BITSIZE (type, 1);
1706 else
1707 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1708 }
1709
1710 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1711 pointer to one, the type of its array data (a array-with-no-bounds type);
1712 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1713 data. */
1714
1715 static struct type *
1716 desc_data_target_type (struct type *type)
1717 {
1718 type = desc_base_type (type);
1719
1720 /* NOTE: The following is bogus; see comment in desc_bounds. */
1721 if (is_thin_pntr (type))
1722 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1723 else if (is_thick_pntr (type))
1724 {
1725 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1726
1727 if (data_type
1728 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1729 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1730 }
1731
1732 return NULL;
1733 }
1734
1735 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1736 its array data. */
1737
1738 static struct value *
1739 desc_data (struct value *arr)
1740 {
1741 struct type *type = value_type (arr);
1742
1743 if (is_thin_pntr (type))
1744 return thin_data_pntr (arr);
1745 else if (is_thick_pntr (type))
1746 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1747 _("Bad GNAT array descriptor"));
1748 else
1749 return NULL;
1750 }
1751
1752
1753 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1754 position of the field containing the address of the data. */
1755
1756 static int
1757 fat_pntr_data_bitpos (struct type *type)
1758 {
1759 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1760 }
1761
1762 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1763 size of the field containing the address of the data. */
1764
1765 static int
1766 fat_pntr_data_bitsize (struct type *type)
1767 {
1768 type = desc_base_type (type);
1769
1770 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1771 return TYPE_FIELD_BITSIZE (type, 0);
1772 else
1773 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1774 }
1775
1776 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1777 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1778 bound, if WHICH is 1. The first bound is I=1. */
1779
1780 static struct value *
1781 desc_one_bound (struct value *bounds, int i, int which)
1782 {
1783 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1784 _("Bad GNAT array descriptor bounds"));
1785 }
1786
1787 /* If BOUNDS is an array-bounds structure type, return the bit position
1788 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1789 bound, if WHICH is 1. The first bound is I=1. */
1790
1791 static int
1792 desc_bound_bitpos (struct type *type, int i, int which)
1793 {
1794 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1795 }
1796
1797 /* If BOUNDS is an array-bounds structure type, return the bit field size
1798 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1799 bound, if WHICH is 1. The first bound is I=1. */
1800
1801 static int
1802 desc_bound_bitsize (struct type *type, int i, int which)
1803 {
1804 type = desc_base_type (type);
1805
1806 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1807 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1808 else
1809 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1810 }
1811
1812 /* If TYPE is the type of an array-bounds structure, the type of its
1813 Ith bound (numbering from 1). Otherwise, NULL. */
1814
1815 static struct type *
1816 desc_index_type (struct type *type, int i)
1817 {
1818 type = desc_base_type (type);
1819
1820 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1821 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1822 else
1823 return NULL;
1824 }
1825
1826 /* The number of index positions in the array-bounds type TYPE.
1827 Return 0 if TYPE is NULL. */
1828
1829 static int
1830 desc_arity (struct type *type)
1831 {
1832 type = desc_base_type (type);
1833
1834 if (type != NULL)
1835 return TYPE_NFIELDS (type) / 2;
1836 return 0;
1837 }
1838
1839 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1840 an array descriptor type (representing an unconstrained array
1841 type). */
1842
1843 static int
1844 ada_is_direct_array_type (struct type *type)
1845 {
1846 if (type == NULL)
1847 return 0;
1848 type = ada_check_typedef (type);
1849 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1850 || ada_is_array_descriptor_type (type));
1851 }
1852
1853 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1854 * to one. */
1855
1856 static int
1857 ada_is_array_type (struct type *type)
1858 {
1859 while (type != NULL
1860 && (TYPE_CODE (type) == TYPE_CODE_PTR
1861 || TYPE_CODE (type) == TYPE_CODE_REF))
1862 type = TYPE_TARGET_TYPE (type);
1863 return ada_is_direct_array_type (type);
1864 }
1865
1866 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1867
1868 int
1869 ada_is_simple_array_type (struct type *type)
1870 {
1871 if (type == NULL)
1872 return 0;
1873 type = ada_check_typedef (type);
1874 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1875 || (TYPE_CODE (type) == TYPE_CODE_PTR
1876 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1877 == TYPE_CODE_ARRAY));
1878 }
1879
1880 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1881
1882 int
1883 ada_is_array_descriptor_type (struct type *type)
1884 {
1885 struct type *data_type = desc_data_target_type (type);
1886
1887 if (type == NULL)
1888 return 0;
1889 type = ada_check_typedef (type);
1890 return (data_type != NULL
1891 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1892 && desc_arity (desc_bounds_type (type)) > 0);
1893 }
1894
1895 /* Non-zero iff type is a partially mal-formed GNAT array
1896 descriptor. FIXME: This is to compensate for some problems with
1897 debugging output from GNAT. Re-examine periodically to see if it
1898 is still needed. */
1899
1900 int
1901 ada_is_bogus_array_descriptor (struct type *type)
1902 {
1903 return
1904 type != NULL
1905 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1906 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1907 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1908 && !ada_is_array_descriptor_type (type);
1909 }
1910
1911
1912 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1913 (fat pointer) returns the type of the array data described---specifically,
1914 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1915 in from the descriptor; otherwise, they are left unspecified. If
1916 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1917 returns NULL. The result is simply the type of ARR if ARR is not
1918 a descriptor. */
1919
1920 static struct type *
1921 ada_type_of_array (struct value *arr, int bounds)
1922 {
1923 if (ada_is_constrained_packed_array_type (value_type (arr)))
1924 return decode_constrained_packed_array_type (value_type (arr));
1925
1926 if (!ada_is_array_descriptor_type (value_type (arr)))
1927 return value_type (arr);
1928
1929 if (!bounds)
1930 {
1931 struct type *array_type =
1932 ada_check_typedef (desc_data_target_type (value_type (arr)));
1933
1934 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1935 TYPE_FIELD_BITSIZE (array_type, 0) =
1936 decode_packed_array_bitsize (value_type (arr));
1937
1938 return array_type;
1939 }
1940 else
1941 {
1942 struct type *elt_type;
1943 int arity;
1944 struct value *descriptor;
1945
1946 elt_type = ada_array_element_type (value_type (arr), -1);
1947 arity = ada_array_arity (value_type (arr));
1948
1949 if (elt_type == NULL || arity == 0)
1950 return ada_check_typedef (value_type (arr));
1951
1952 descriptor = desc_bounds (arr);
1953 if (value_as_long (descriptor) == 0)
1954 return NULL;
1955 while (arity > 0)
1956 {
1957 struct type *range_type = alloc_type_copy (value_type (arr));
1958 struct type *array_type = alloc_type_copy (value_type (arr));
1959 struct value *low = desc_one_bound (descriptor, arity, 0);
1960 struct value *high = desc_one_bound (descriptor, arity, 1);
1961
1962 arity -= 1;
1963 create_static_range_type (range_type, value_type (low),
1964 longest_to_int (value_as_long (low)),
1965 longest_to_int (value_as_long (high)));
1966 elt_type = create_array_type (array_type, elt_type, range_type);
1967
1968 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1969 {
1970 /* We need to store the element packed bitsize, as well as
1971 recompute the array size, because it was previously
1972 computed based on the unpacked element size. */
1973 LONGEST lo = value_as_long (low);
1974 LONGEST hi = value_as_long (high);
1975
1976 TYPE_FIELD_BITSIZE (elt_type, 0) =
1977 decode_packed_array_bitsize (value_type (arr));
1978 /* If the array has no element, then the size is already
1979 zero, and does not need to be recomputed. */
1980 if (lo < hi)
1981 {
1982 int array_bitsize =
1983 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1984
1985 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1986 }
1987 }
1988 }
1989
1990 return lookup_pointer_type (elt_type);
1991 }
1992 }
1993
1994 /* If ARR does not represent an array, returns ARR unchanged.
1995 Otherwise, returns either a standard GDB array with bounds set
1996 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1997 GDB array. Returns NULL if ARR is a null fat pointer. */
1998
1999 struct value *
2000 ada_coerce_to_simple_array_ptr (struct value *arr)
2001 {
2002 if (ada_is_array_descriptor_type (value_type (arr)))
2003 {
2004 struct type *arrType = ada_type_of_array (arr, 1);
2005
2006 if (arrType == NULL)
2007 return NULL;
2008 return value_cast (arrType, value_copy (desc_data (arr)));
2009 }
2010 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2011 return decode_constrained_packed_array (arr);
2012 else
2013 return arr;
2014 }
2015
2016 /* If ARR does not represent an array, returns ARR unchanged.
2017 Otherwise, returns a standard GDB array describing ARR (which may
2018 be ARR itself if it already is in the proper form). */
2019
2020 struct value *
2021 ada_coerce_to_simple_array (struct value *arr)
2022 {
2023 if (ada_is_array_descriptor_type (value_type (arr)))
2024 {
2025 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2026
2027 if (arrVal == NULL)
2028 error (_("Bounds unavailable for null array pointer."));
2029 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2030 return value_ind (arrVal);
2031 }
2032 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2033 return decode_constrained_packed_array (arr);
2034 else
2035 return arr;
2036 }
2037
2038 /* If TYPE represents a GNAT array type, return it translated to an
2039 ordinary GDB array type (possibly with BITSIZE fields indicating
2040 packing). For other types, is the identity. */
2041
2042 struct type *
2043 ada_coerce_to_simple_array_type (struct type *type)
2044 {
2045 if (ada_is_constrained_packed_array_type (type))
2046 return decode_constrained_packed_array_type (type);
2047
2048 if (ada_is_array_descriptor_type (type))
2049 return ada_check_typedef (desc_data_target_type (type));
2050
2051 return type;
2052 }
2053
2054 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2055
2056 static int
2057 ada_is_packed_array_type (struct type *type)
2058 {
2059 if (type == NULL)
2060 return 0;
2061 type = desc_base_type (type);
2062 type = ada_check_typedef (type);
2063 return
2064 ada_type_name (type) != NULL
2065 && strstr (ada_type_name (type), "___XP") != NULL;
2066 }
2067
2068 /* Non-zero iff TYPE represents a standard GNAT constrained
2069 packed-array type. */
2070
2071 int
2072 ada_is_constrained_packed_array_type (struct type *type)
2073 {
2074 return ada_is_packed_array_type (type)
2075 && !ada_is_array_descriptor_type (type);
2076 }
2077
2078 /* Non-zero iff TYPE represents an array descriptor for a
2079 unconstrained packed-array type. */
2080
2081 static int
2082 ada_is_unconstrained_packed_array_type (struct type *type)
2083 {
2084 return ada_is_packed_array_type (type)
2085 && ada_is_array_descriptor_type (type);
2086 }
2087
2088 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2089 return the size of its elements in bits. */
2090
2091 static long
2092 decode_packed_array_bitsize (struct type *type)
2093 {
2094 const char *raw_name;
2095 const char *tail;
2096 long bits;
2097
2098 /* Access to arrays implemented as fat pointers are encoded as a typedef
2099 of the fat pointer type. We need the name of the fat pointer type
2100 to do the decoding, so strip the typedef layer. */
2101 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2102 type = ada_typedef_target_type (type);
2103
2104 raw_name = ada_type_name (ada_check_typedef (type));
2105 if (!raw_name)
2106 raw_name = ada_type_name (desc_base_type (type));
2107
2108 if (!raw_name)
2109 return 0;
2110
2111 tail = strstr (raw_name, "___XP");
2112 gdb_assert (tail != NULL);
2113
2114 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2115 {
2116 lim_warning
2117 (_("could not understand bit size information on packed array"));
2118 return 0;
2119 }
2120
2121 return bits;
2122 }
2123
2124 /* Given that TYPE is a standard GDB array type with all bounds filled
2125 in, and that the element size of its ultimate scalar constituents
2126 (that is, either its elements, or, if it is an array of arrays, its
2127 elements' elements, etc.) is *ELT_BITS, return an identical type,
2128 but with the bit sizes of its elements (and those of any
2129 constituent arrays) recorded in the BITSIZE components of its
2130 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2131 in bits.
2132
2133 Note that, for arrays whose index type has an XA encoding where
2134 a bound references a record discriminant, getting that discriminant,
2135 and therefore the actual value of that bound, is not possible
2136 because none of the given parameters gives us access to the record.
2137 This function assumes that it is OK in the context where it is being
2138 used to return an array whose bounds are still dynamic and where
2139 the length is arbitrary. */
2140
2141 static struct type *
2142 constrained_packed_array_type (struct type *type, long *elt_bits)
2143 {
2144 struct type *new_elt_type;
2145 struct type *new_type;
2146 struct type *index_type_desc;
2147 struct type *index_type;
2148 LONGEST low_bound, high_bound;
2149
2150 type = ada_check_typedef (type);
2151 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2152 return type;
2153
2154 index_type_desc = ada_find_parallel_type (type, "___XA");
2155 if (index_type_desc)
2156 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2157 NULL);
2158 else
2159 index_type = TYPE_INDEX_TYPE (type);
2160
2161 new_type = alloc_type_copy (type);
2162 new_elt_type =
2163 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2164 elt_bits);
2165 create_array_type (new_type, new_elt_type, index_type);
2166 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2167 TYPE_NAME (new_type) = ada_type_name (type);
2168
2169 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2170 && is_dynamic_type (check_typedef (index_type)))
2171 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2172 low_bound = high_bound = 0;
2173 if (high_bound < low_bound)
2174 *elt_bits = TYPE_LENGTH (new_type) = 0;
2175 else
2176 {
2177 *elt_bits *= (high_bound - low_bound + 1);
2178 TYPE_LENGTH (new_type) =
2179 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2180 }
2181
2182 TYPE_FIXED_INSTANCE (new_type) = 1;
2183 return new_type;
2184 }
2185
2186 /* The array type encoded by TYPE, where
2187 ada_is_constrained_packed_array_type (TYPE). */
2188
2189 static struct type *
2190 decode_constrained_packed_array_type (struct type *type)
2191 {
2192 const char *raw_name = ada_type_name (ada_check_typedef (type));
2193 char *name;
2194 const char *tail;
2195 struct type *shadow_type;
2196 long bits;
2197
2198 if (!raw_name)
2199 raw_name = ada_type_name (desc_base_type (type));
2200
2201 if (!raw_name)
2202 return NULL;
2203
2204 name = (char *) alloca (strlen (raw_name) + 1);
2205 tail = strstr (raw_name, "___XP");
2206 type = desc_base_type (type);
2207
2208 memcpy (name, raw_name, tail - raw_name);
2209 name[tail - raw_name] = '\000';
2210
2211 shadow_type = ada_find_parallel_type_with_name (type, name);
2212
2213 if (shadow_type == NULL)
2214 {
2215 lim_warning (_("could not find bounds information on packed array"));
2216 return NULL;
2217 }
2218 shadow_type = check_typedef (shadow_type);
2219
2220 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2221 {
2222 lim_warning (_("could not understand bounds "
2223 "information on packed array"));
2224 return NULL;
2225 }
2226
2227 bits = decode_packed_array_bitsize (type);
2228 return constrained_packed_array_type (shadow_type, &bits);
2229 }
2230
2231 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2232 array, returns a simple array that denotes that array. Its type is a
2233 standard GDB array type except that the BITSIZEs of the array
2234 target types are set to the number of bits in each element, and the
2235 type length is set appropriately. */
2236
2237 static struct value *
2238 decode_constrained_packed_array (struct value *arr)
2239 {
2240 struct type *type;
2241
2242 /* If our value is a pointer, then dereference it. Likewise if
2243 the value is a reference. Make sure that this operation does not
2244 cause the target type to be fixed, as this would indirectly cause
2245 this array to be decoded. The rest of the routine assumes that
2246 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2247 and "value_ind" routines to perform the dereferencing, as opposed
2248 to using "ada_coerce_ref" or "ada_value_ind". */
2249 arr = coerce_ref (arr);
2250 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2251 arr = value_ind (arr);
2252
2253 type = decode_constrained_packed_array_type (value_type (arr));
2254 if (type == NULL)
2255 {
2256 error (_("can't unpack array"));
2257 return NULL;
2258 }
2259
2260 if (type_byte_order (value_type (arr)) == BFD_ENDIAN_BIG
2261 && ada_is_modular_type (value_type (arr)))
2262 {
2263 /* This is a (right-justified) modular type representing a packed
2264 array with no wrapper. In order to interpret the value through
2265 the (left-justified) packed array type we just built, we must
2266 first left-justify it. */
2267 int bit_size, bit_pos;
2268 ULONGEST mod;
2269
2270 mod = ada_modulus (value_type (arr)) - 1;
2271 bit_size = 0;
2272 while (mod > 0)
2273 {
2274 bit_size += 1;
2275 mod >>= 1;
2276 }
2277 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2278 arr = ada_value_primitive_packed_val (arr, NULL,
2279 bit_pos / HOST_CHAR_BIT,
2280 bit_pos % HOST_CHAR_BIT,
2281 bit_size,
2282 type);
2283 }
2284
2285 return coerce_unspec_val_to_type (arr, type);
2286 }
2287
2288
2289 /* The value of the element of packed array ARR at the ARITY indices
2290 given in IND. ARR must be a simple array. */
2291
2292 static struct value *
2293 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2294 {
2295 int i;
2296 int bits, elt_off, bit_off;
2297 long elt_total_bit_offset;
2298 struct type *elt_type;
2299 struct value *v;
2300
2301 bits = 0;
2302 elt_total_bit_offset = 0;
2303 elt_type = ada_check_typedef (value_type (arr));
2304 for (i = 0; i < arity; i += 1)
2305 {
2306 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2307 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2308 error
2309 (_("attempt to do packed indexing of "
2310 "something other than a packed array"));
2311 else
2312 {
2313 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2314 LONGEST lowerbound, upperbound;
2315 LONGEST idx;
2316
2317 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2318 {
2319 lim_warning (_("don't know bounds of array"));
2320 lowerbound = upperbound = 0;
2321 }
2322
2323 idx = pos_atr (ind[i]);
2324 if (idx < lowerbound || idx > upperbound)
2325 lim_warning (_("packed array index %ld out of bounds"),
2326 (long) idx);
2327 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2328 elt_total_bit_offset += (idx - lowerbound) * bits;
2329 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2330 }
2331 }
2332 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2333 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2334
2335 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2336 bits, elt_type);
2337 return v;
2338 }
2339
2340 /* Non-zero iff TYPE includes negative integer values. */
2341
2342 static int
2343 has_negatives (struct type *type)
2344 {
2345 switch (TYPE_CODE (type))
2346 {
2347 default:
2348 return 0;
2349 case TYPE_CODE_INT:
2350 return !TYPE_UNSIGNED (type);
2351 case TYPE_CODE_RANGE:
2352 return TYPE_LOW_BOUND (type) - TYPE_RANGE_DATA (type)->bias < 0;
2353 }
2354 }
2355
2356 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2357 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2358 the unpacked buffer.
2359
2360 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2361 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2362
2363 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2364 zero otherwise.
2365
2366 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2367
2368 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2369
2370 static void
2371 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2372 gdb_byte *unpacked, int unpacked_len,
2373 int is_big_endian, int is_signed_type,
2374 int is_scalar)
2375 {
2376 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2377 int src_idx; /* Index into the source area */
2378 int src_bytes_left; /* Number of source bytes left to process. */
2379 int srcBitsLeft; /* Number of source bits left to move */
2380 int unusedLS; /* Number of bits in next significant
2381 byte of source that are unused */
2382
2383 int unpacked_idx; /* Index into the unpacked buffer */
2384 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2385
2386 unsigned long accum; /* Staging area for bits being transferred */
2387 int accumSize; /* Number of meaningful bits in accum */
2388 unsigned char sign;
2389
2390 /* Transmit bytes from least to most significant; delta is the direction
2391 the indices move. */
2392 int delta = is_big_endian ? -1 : 1;
2393
2394 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2395 bits from SRC. .*/
2396 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2397 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2398 bit_size, unpacked_len);
2399
2400 srcBitsLeft = bit_size;
2401 src_bytes_left = src_len;
2402 unpacked_bytes_left = unpacked_len;
2403 sign = 0;
2404
2405 if (is_big_endian)
2406 {
2407 src_idx = src_len - 1;
2408 if (is_signed_type
2409 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2410 sign = ~0;
2411
2412 unusedLS =
2413 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2414 % HOST_CHAR_BIT;
2415
2416 if (is_scalar)
2417 {
2418 accumSize = 0;
2419 unpacked_idx = unpacked_len - 1;
2420 }
2421 else
2422 {
2423 /* Non-scalar values must be aligned at a byte boundary... */
2424 accumSize =
2425 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2426 /* ... And are placed at the beginning (most-significant) bytes
2427 of the target. */
2428 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2429 unpacked_bytes_left = unpacked_idx + 1;
2430 }
2431 }
2432 else
2433 {
2434 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2435
2436 src_idx = unpacked_idx = 0;
2437 unusedLS = bit_offset;
2438 accumSize = 0;
2439
2440 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2441 sign = ~0;
2442 }
2443
2444 accum = 0;
2445 while (src_bytes_left > 0)
2446 {
2447 /* Mask for removing bits of the next source byte that are not
2448 part of the value. */
2449 unsigned int unusedMSMask =
2450 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2451 1;
2452 /* Sign-extend bits for this byte. */
2453 unsigned int signMask = sign & ~unusedMSMask;
2454
2455 accum |=
2456 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2457 accumSize += HOST_CHAR_BIT - unusedLS;
2458 if (accumSize >= HOST_CHAR_BIT)
2459 {
2460 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2461 accumSize -= HOST_CHAR_BIT;
2462 accum >>= HOST_CHAR_BIT;
2463 unpacked_bytes_left -= 1;
2464 unpacked_idx += delta;
2465 }
2466 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2467 unusedLS = 0;
2468 src_bytes_left -= 1;
2469 src_idx += delta;
2470 }
2471 while (unpacked_bytes_left > 0)
2472 {
2473 accum |= sign << accumSize;
2474 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2475 accumSize -= HOST_CHAR_BIT;
2476 if (accumSize < 0)
2477 accumSize = 0;
2478 accum >>= HOST_CHAR_BIT;
2479 unpacked_bytes_left -= 1;
2480 unpacked_idx += delta;
2481 }
2482 }
2483
2484 /* Create a new value of type TYPE from the contents of OBJ starting
2485 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2486 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2487 assigning through the result will set the field fetched from.
2488 VALADDR is ignored unless OBJ is NULL, in which case,
2489 VALADDR+OFFSET must address the start of storage containing the
2490 packed value. The value returned in this case is never an lval.
2491 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2492
2493 struct value *
2494 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2495 long offset, int bit_offset, int bit_size,
2496 struct type *type)
2497 {
2498 struct value *v;
2499 const gdb_byte *src; /* First byte containing data to unpack */
2500 gdb_byte *unpacked;
2501 const int is_scalar = is_scalar_type (type);
2502 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
2503 gdb::byte_vector staging;
2504
2505 type = ada_check_typedef (type);
2506
2507 if (obj == NULL)
2508 src = valaddr + offset;
2509 else
2510 src = value_contents (obj) + offset;
2511
2512 if (is_dynamic_type (type))
2513 {
2514 /* The length of TYPE might by dynamic, so we need to resolve
2515 TYPE in order to know its actual size, which we then use
2516 to create the contents buffer of the value we return.
2517 The difficulty is that the data containing our object is
2518 packed, and therefore maybe not at a byte boundary. So, what
2519 we do, is unpack the data into a byte-aligned buffer, and then
2520 use that buffer as our object's value for resolving the type. */
2521 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2522 staging.resize (staging_len);
2523
2524 ada_unpack_from_contents (src, bit_offset, bit_size,
2525 staging.data (), staging.size (),
2526 is_big_endian, has_negatives (type),
2527 is_scalar);
2528 type = resolve_dynamic_type (type, staging.data (), 0);
2529 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2530 {
2531 /* This happens when the length of the object is dynamic,
2532 and is actually smaller than the space reserved for it.
2533 For instance, in an array of variant records, the bit_size
2534 we're given is the array stride, which is constant and
2535 normally equal to the maximum size of its element.
2536 But, in reality, each element only actually spans a portion
2537 of that stride. */
2538 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2539 }
2540 }
2541
2542 if (obj == NULL)
2543 {
2544 v = allocate_value (type);
2545 src = valaddr + offset;
2546 }
2547 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2548 {
2549 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2550 gdb_byte *buf;
2551
2552 v = value_at (type, value_address (obj) + offset);
2553 buf = (gdb_byte *) alloca (src_len);
2554 read_memory (value_address (v), buf, src_len);
2555 src = buf;
2556 }
2557 else
2558 {
2559 v = allocate_value (type);
2560 src = value_contents (obj) + offset;
2561 }
2562
2563 if (obj != NULL)
2564 {
2565 long new_offset = offset;
2566
2567 set_value_component_location (v, obj);
2568 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2569 set_value_bitsize (v, bit_size);
2570 if (value_bitpos (v) >= HOST_CHAR_BIT)
2571 {
2572 ++new_offset;
2573 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2574 }
2575 set_value_offset (v, new_offset);
2576
2577 /* Also set the parent value. This is needed when trying to
2578 assign a new value (in inferior memory). */
2579 set_value_parent (v, obj);
2580 }
2581 else
2582 set_value_bitsize (v, bit_size);
2583 unpacked = value_contents_writeable (v);
2584
2585 if (bit_size == 0)
2586 {
2587 memset (unpacked, 0, TYPE_LENGTH (type));
2588 return v;
2589 }
2590
2591 if (staging.size () == TYPE_LENGTH (type))
2592 {
2593 /* Small short-cut: If we've unpacked the data into a buffer
2594 of the same size as TYPE's length, then we can reuse that,
2595 instead of doing the unpacking again. */
2596 memcpy (unpacked, staging.data (), staging.size ());
2597 }
2598 else
2599 ada_unpack_from_contents (src, bit_offset, bit_size,
2600 unpacked, TYPE_LENGTH (type),
2601 is_big_endian, has_negatives (type), is_scalar);
2602
2603 return v;
2604 }
2605
2606 /* Store the contents of FROMVAL into the location of TOVAL.
2607 Return a new value with the location of TOVAL and contents of
2608 FROMVAL. Handles assignment into packed fields that have
2609 floating-point or non-scalar types. */
2610
2611 static struct value *
2612 ada_value_assign (struct value *toval, struct value *fromval)
2613 {
2614 struct type *type = value_type (toval);
2615 int bits = value_bitsize (toval);
2616
2617 toval = ada_coerce_ref (toval);
2618 fromval = ada_coerce_ref (fromval);
2619
2620 if (ada_is_direct_array_type (value_type (toval)))
2621 toval = ada_coerce_to_simple_array (toval);
2622 if (ada_is_direct_array_type (value_type (fromval)))
2623 fromval = ada_coerce_to_simple_array (fromval);
2624
2625 if (!deprecated_value_modifiable (toval))
2626 error (_("Left operand of assignment is not a modifiable lvalue."));
2627
2628 if (VALUE_LVAL (toval) == lval_memory
2629 && bits > 0
2630 && (TYPE_CODE (type) == TYPE_CODE_FLT
2631 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2632 {
2633 int len = (value_bitpos (toval)
2634 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2635 int from_size;
2636 gdb_byte *buffer = (gdb_byte *) alloca (len);
2637 struct value *val;
2638 CORE_ADDR to_addr = value_address (toval);
2639
2640 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2641 fromval = value_cast (type, fromval);
2642
2643 read_memory (to_addr, buffer, len);
2644 from_size = value_bitsize (fromval);
2645 if (from_size == 0)
2646 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2647
2648 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
2649 ULONGEST from_offset = 0;
2650 if (is_big_endian && is_scalar_type (value_type (fromval)))
2651 from_offset = from_size - bits;
2652 copy_bitwise (buffer, value_bitpos (toval),
2653 value_contents (fromval), from_offset,
2654 bits, is_big_endian);
2655 write_memory_with_notification (to_addr, buffer, len);
2656
2657 val = value_copy (toval);
2658 memcpy (value_contents_raw (val), value_contents (fromval),
2659 TYPE_LENGTH (type));
2660 deprecated_set_value_type (val, type);
2661
2662 return val;
2663 }
2664
2665 return value_assign (toval, fromval);
2666 }
2667
2668
2669 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2670 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2671 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2672 COMPONENT, and not the inferior's memory. The current contents
2673 of COMPONENT are ignored.
2674
2675 Although not part of the initial design, this function also works
2676 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2677 had a null address, and COMPONENT had an address which is equal to
2678 its offset inside CONTAINER. */
2679
2680 static void
2681 value_assign_to_component (struct value *container, struct value *component,
2682 struct value *val)
2683 {
2684 LONGEST offset_in_container =
2685 (LONGEST) (value_address (component) - value_address (container));
2686 int bit_offset_in_container =
2687 value_bitpos (component) - value_bitpos (container);
2688 int bits;
2689
2690 val = value_cast (value_type (component), val);
2691
2692 if (value_bitsize (component) == 0)
2693 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2694 else
2695 bits = value_bitsize (component);
2696
2697 if (type_byte_order (value_type (container)) == BFD_ENDIAN_BIG)
2698 {
2699 int src_offset;
2700
2701 if (is_scalar_type (check_typedef (value_type (component))))
2702 src_offset
2703 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2704 else
2705 src_offset = 0;
2706 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2707 value_bitpos (container) + bit_offset_in_container,
2708 value_contents (val), src_offset, bits, 1);
2709 }
2710 else
2711 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2712 value_bitpos (container) + bit_offset_in_container,
2713 value_contents (val), 0, bits, 0);
2714 }
2715
2716 /* Determine if TYPE is an access to an unconstrained array. */
2717
2718 bool
2719 ada_is_access_to_unconstrained_array (struct type *type)
2720 {
2721 return (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
2722 && is_thick_pntr (ada_typedef_target_type (type)));
2723 }
2724
2725 /* The value of the element of array ARR at the ARITY indices given in IND.
2726 ARR may be either a simple array, GNAT array descriptor, or pointer
2727 thereto. */
2728
2729 struct value *
2730 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2731 {
2732 int k;
2733 struct value *elt;
2734 struct type *elt_type;
2735
2736 elt = ada_coerce_to_simple_array (arr);
2737
2738 elt_type = ada_check_typedef (value_type (elt));
2739 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2740 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2741 return value_subscript_packed (elt, arity, ind);
2742
2743 for (k = 0; k < arity; k += 1)
2744 {
2745 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2746
2747 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2748 error (_("too many subscripts (%d expected)"), k);
2749
2750 elt = value_subscript (elt, pos_atr (ind[k]));
2751
2752 if (ada_is_access_to_unconstrained_array (saved_elt_type)
2753 && TYPE_CODE (value_type (elt)) != TYPE_CODE_TYPEDEF)
2754 {
2755 /* The element is a typedef to an unconstrained array,
2756 except that the value_subscript call stripped the
2757 typedef layer. The typedef layer is GNAT's way to
2758 specify that the element is, at the source level, an
2759 access to the unconstrained array, rather than the
2760 unconstrained array. So, we need to restore that
2761 typedef layer, which we can do by forcing the element's
2762 type back to its original type. Otherwise, the returned
2763 value is going to be printed as the array, rather
2764 than as an access. Another symptom of the same issue
2765 would be that an expression trying to dereference the
2766 element would also be improperly rejected. */
2767 deprecated_set_value_type (elt, saved_elt_type);
2768 }
2769
2770 elt_type = ada_check_typedef (value_type (elt));
2771 }
2772
2773 return elt;
2774 }
2775
2776 /* Assuming ARR is a pointer to a GDB array, the value of the element
2777 of *ARR at the ARITY indices given in IND.
2778 Does not read the entire array into memory.
2779
2780 Note: Unlike what one would expect, this function is used instead of
2781 ada_value_subscript for basically all non-packed array types. The reason
2782 for this is that a side effect of doing our own pointer arithmetics instead
2783 of relying on value_subscript is that there is no implicit typedef peeling.
2784 This is important for arrays of array accesses, where it allows us to
2785 preserve the fact that the array's element is an array access, where the
2786 access part os encoded in a typedef layer. */
2787
2788 static struct value *
2789 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2790 {
2791 int k;
2792 struct value *array_ind = ada_value_ind (arr);
2793 struct type *type
2794 = check_typedef (value_enclosing_type (array_ind));
2795
2796 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2797 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2798 return value_subscript_packed (array_ind, arity, ind);
2799
2800 for (k = 0; k < arity; k += 1)
2801 {
2802 LONGEST lwb, upb;
2803 struct value *lwb_value;
2804
2805 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2806 error (_("too many subscripts (%d expected)"), k);
2807 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2808 value_copy (arr));
2809 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2810 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2811 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
2812 type = TYPE_TARGET_TYPE (type);
2813 }
2814
2815 return value_ind (arr);
2816 }
2817
2818 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2819 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2820 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2821 this array is LOW, as per Ada rules. */
2822 static struct value *
2823 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2824 int low, int high)
2825 {
2826 struct type *type0 = ada_check_typedef (type);
2827 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
2828 struct type *index_type
2829 = create_static_range_type (NULL, base_index_type, low, high);
2830 struct type *slice_type = create_array_type_with_stride
2831 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2832 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type0),
2833 TYPE_FIELD_BITSIZE (type0, 0));
2834 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2835 LONGEST base_low_pos, low_pos;
2836 CORE_ADDR base;
2837
2838 if (!discrete_position (base_index_type, low, &low_pos)
2839 || !discrete_position (base_index_type, base_low, &base_low_pos))
2840 {
2841 warning (_("unable to get positions in slice, use bounds instead"));
2842 low_pos = low;
2843 base_low_pos = base_low;
2844 }
2845
2846 base = value_as_address (array_ptr)
2847 + ((low_pos - base_low_pos)
2848 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2849 return value_at_lazy (slice_type, base);
2850 }
2851
2852
2853 static struct value *
2854 ada_value_slice (struct value *array, int low, int high)
2855 {
2856 struct type *type = ada_check_typedef (value_type (array));
2857 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2858 struct type *index_type
2859 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2860 struct type *slice_type = create_array_type_with_stride
2861 (NULL, TYPE_TARGET_TYPE (type), index_type,
2862 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type),
2863 TYPE_FIELD_BITSIZE (type, 0));
2864 LONGEST low_pos, high_pos;
2865
2866 if (!discrete_position (base_index_type, low, &low_pos)
2867 || !discrete_position (base_index_type, high, &high_pos))
2868 {
2869 warning (_("unable to get positions in slice, use bounds instead"));
2870 low_pos = low;
2871 high_pos = high;
2872 }
2873
2874 return value_cast (slice_type,
2875 value_slice (array, low, high_pos - low_pos + 1));
2876 }
2877
2878 /* If type is a record type in the form of a standard GNAT array
2879 descriptor, returns the number of dimensions for type. If arr is a
2880 simple array, returns the number of "array of"s that prefix its
2881 type designation. Otherwise, returns 0. */
2882
2883 int
2884 ada_array_arity (struct type *type)
2885 {
2886 int arity;
2887
2888 if (type == NULL)
2889 return 0;
2890
2891 type = desc_base_type (type);
2892
2893 arity = 0;
2894 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2895 return desc_arity (desc_bounds_type (type));
2896 else
2897 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2898 {
2899 arity += 1;
2900 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2901 }
2902
2903 return arity;
2904 }
2905
2906 /* If TYPE is a record type in the form of a standard GNAT array
2907 descriptor or a simple array type, returns the element type for
2908 TYPE after indexing by NINDICES indices, or by all indices if
2909 NINDICES is -1. Otherwise, returns NULL. */
2910
2911 struct type *
2912 ada_array_element_type (struct type *type, int nindices)
2913 {
2914 type = desc_base_type (type);
2915
2916 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2917 {
2918 int k;
2919 struct type *p_array_type;
2920
2921 p_array_type = desc_data_target_type (type);
2922
2923 k = ada_array_arity (type);
2924 if (k == 0)
2925 return NULL;
2926
2927 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2928 if (nindices >= 0 && k > nindices)
2929 k = nindices;
2930 while (k > 0 && p_array_type != NULL)
2931 {
2932 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2933 k -= 1;
2934 }
2935 return p_array_type;
2936 }
2937 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2938 {
2939 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2940 {
2941 type = TYPE_TARGET_TYPE (type);
2942 nindices -= 1;
2943 }
2944 return type;
2945 }
2946
2947 return NULL;
2948 }
2949
2950 /* The type of nth index in arrays of given type (n numbering from 1).
2951 Does not examine memory. Throws an error if N is invalid or TYPE
2952 is not an array type. NAME is the name of the Ada attribute being
2953 evaluated ('range, 'first, 'last, or 'length); it is used in building
2954 the error message. */
2955
2956 static struct type *
2957 ada_index_type (struct type *type, int n, const char *name)
2958 {
2959 struct type *result_type;
2960
2961 type = desc_base_type (type);
2962
2963 if (n < 0 || n > ada_array_arity (type))
2964 error (_("invalid dimension number to '%s"), name);
2965
2966 if (ada_is_simple_array_type (type))
2967 {
2968 int i;
2969
2970 for (i = 1; i < n; i += 1)
2971 type = TYPE_TARGET_TYPE (type);
2972 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2973 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2974 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2975 perhaps stabsread.c would make more sense. */
2976 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2977 result_type = NULL;
2978 }
2979 else
2980 {
2981 result_type = desc_index_type (desc_bounds_type (type), n);
2982 if (result_type == NULL)
2983 error (_("attempt to take bound of something that is not an array"));
2984 }
2985
2986 return result_type;
2987 }
2988
2989 /* Given that arr is an array type, returns the lower bound of the
2990 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2991 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2992 array-descriptor type. It works for other arrays with bounds supplied
2993 by run-time quantities other than discriminants. */
2994
2995 static LONGEST
2996 ada_array_bound_from_type (struct type *arr_type, int n, int which)
2997 {
2998 struct type *type, *index_type_desc, *index_type;
2999 int i;
3000
3001 gdb_assert (which == 0 || which == 1);
3002
3003 if (ada_is_constrained_packed_array_type (arr_type))
3004 arr_type = decode_constrained_packed_array_type (arr_type);
3005
3006 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
3007 return (LONGEST) - which;
3008
3009 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3010 type = TYPE_TARGET_TYPE (arr_type);
3011 else
3012 type = arr_type;
3013
3014 if (TYPE_FIXED_INSTANCE (type))
3015 {
3016 /* The array has already been fixed, so we do not need to
3017 check the parallel ___XA type again. That encoding has
3018 already been applied, so ignore it now. */
3019 index_type_desc = NULL;
3020 }
3021 else
3022 {
3023 index_type_desc = ada_find_parallel_type (type, "___XA");
3024 ada_fixup_array_indexes_type (index_type_desc);
3025 }
3026
3027 if (index_type_desc != NULL)
3028 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3029 NULL);
3030 else
3031 {
3032 struct type *elt_type = check_typedef (type);
3033
3034 for (i = 1; i < n; i++)
3035 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3036
3037 index_type = TYPE_INDEX_TYPE (elt_type);
3038 }
3039
3040 return
3041 (LONGEST) (which == 0
3042 ? ada_discrete_type_low_bound (index_type)
3043 : ada_discrete_type_high_bound (index_type));
3044 }
3045
3046 /* Given that arr is an array value, returns the lower bound of the
3047 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3048 WHICH is 1. This routine will also work for arrays with bounds
3049 supplied by run-time quantities other than discriminants. */
3050
3051 static LONGEST
3052 ada_array_bound (struct value *arr, int n, int which)
3053 {
3054 struct type *arr_type;
3055
3056 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3057 arr = value_ind (arr);
3058 arr_type = value_enclosing_type (arr);
3059
3060 if (ada_is_constrained_packed_array_type (arr_type))
3061 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3062 else if (ada_is_simple_array_type (arr_type))
3063 return ada_array_bound_from_type (arr_type, n, which);
3064 else
3065 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3066 }
3067
3068 /* Given that arr is an array value, returns the length of the
3069 nth index. This routine will also work for arrays with bounds
3070 supplied by run-time quantities other than discriminants.
3071 Does not work for arrays indexed by enumeration types with representation
3072 clauses at the moment. */
3073
3074 static LONGEST
3075 ada_array_length (struct value *arr, int n)
3076 {
3077 struct type *arr_type, *index_type;
3078 int low, high;
3079
3080 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3081 arr = value_ind (arr);
3082 arr_type = value_enclosing_type (arr);
3083
3084 if (ada_is_constrained_packed_array_type (arr_type))
3085 return ada_array_length (decode_constrained_packed_array (arr), n);
3086
3087 if (ada_is_simple_array_type (arr_type))
3088 {
3089 low = ada_array_bound_from_type (arr_type, n, 0);
3090 high = ada_array_bound_from_type (arr_type, n, 1);
3091 }
3092 else
3093 {
3094 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3095 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3096 }
3097
3098 arr_type = check_typedef (arr_type);
3099 index_type = ada_index_type (arr_type, n, "length");
3100 if (index_type != NULL)
3101 {
3102 struct type *base_type;
3103 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3104 base_type = TYPE_TARGET_TYPE (index_type);
3105 else
3106 base_type = index_type;
3107
3108 low = pos_atr (value_from_longest (base_type, low));
3109 high = pos_atr (value_from_longest (base_type, high));
3110 }
3111 return high - low + 1;
3112 }
3113
3114 /* An array whose type is that of ARR_TYPE (an array type), with
3115 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3116 less than LOW, then LOW-1 is used. */
3117
3118 static struct value *
3119 empty_array (struct type *arr_type, int low, int high)
3120 {
3121 struct type *arr_type0 = ada_check_typedef (arr_type);
3122 struct type *index_type
3123 = create_static_range_type
3124 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low,
3125 high < low ? low - 1 : high);
3126 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3127
3128 return allocate_value (create_array_type (NULL, elt_type, index_type));
3129 }
3130 \f
3131
3132 /* Name resolution */
3133
3134 /* The "decoded" name for the user-definable Ada operator corresponding
3135 to OP. */
3136
3137 static const char *
3138 ada_decoded_op_name (enum exp_opcode op)
3139 {
3140 int i;
3141
3142 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3143 {
3144 if (ada_opname_table[i].op == op)
3145 return ada_opname_table[i].decoded;
3146 }
3147 error (_("Could not find operator name for opcode"));
3148 }
3149
3150 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3151 in a listing of choices during disambiguation (see sort_choices, below).
3152 The idea is that overloadings of a subprogram name from the
3153 same package should sort in their source order. We settle for ordering
3154 such symbols by their trailing number (__N or $N). */
3155
3156 static int
3157 encoded_ordered_before (const char *N0, const char *N1)
3158 {
3159 if (N1 == NULL)
3160 return 0;
3161 else if (N0 == NULL)
3162 return 1;
3163 else
3164 {
3165 int k0, k1;
3166
3167 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3168 ;
3169 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3170 ;
3171 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3172 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3173 {
3174 int n0, n1;
3175
3176 n0 = k0;
3177 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3178 n0 -= 1;
3179 n1 = k1;
3180 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3181 n1 -= 1;
3182 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3183 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3184 }
3185 return (strcmp (N0, N1) < 0);
3186 }
3187 }
3188
3189 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3190 encoded names. */
3191
3192 static void
3193 sort_choices (struct block_symbol syms[], int nsyms)
3194 {
3195 int i;
3196
3197 for (i = 1; i < nsyms; i += 1)
3198 {
3199 struct block_symbol sym = syms[i];
3200 int j;
3201
3202 for (j = i - 1; j >= 0; j -= 1)
3203 {
3204 if (encoded_ordered_before (syms[j].symbol->linkage_name (),
3205 sym.symbol->linkage_name ()))
3206 break;
3207 syms[j + 1] = syms[j];
3208 }
3209 syms[j + 1] = sym;
3210 }
3211 }
3212
3213 /* Whether GDB should display formals and return types for functions in the
3214 overloads selection menu. */
3215 static bool print_signatures = true;
3216
3217 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3218 all but functions, the signature is just the name of the symbol. For
3219 functions, this is the name of the function, the list of types for formals
3220 and the return type (if any). */
3221
3222 static void
3223 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3224 const struct type_print_options *flags)
3225 {
3226 struct type *type = SYMBOL_TYPE (sym);
3227
3228 fprintf_filtered (stream, "%s", sym->print_name ());
3229 if (!print_signatures
3230 || type == NULL
3231 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3232 return;
3233
3234 if (TYPE_NFIELDS (type) > 0)
3235 {
3236 int i;
3237
3238 fprintf_filtered (stream, " (");
3239 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3240 {
3241 if (i > 0)
3242 fprintf_filtered (stream, "; ");
3243 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3244 flags);
3245 }
3246 fprintf_filtered (stream, ")");
3247 }
3248 if (TYPE_TARGET_TYPE (type) != NULL
3249 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3250 {
3251 fprintf_filtered (stream, " return ");
3252 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3253 }
3254 }
3255
3256 /* Read and validate a set of numeric choices from the user in the
3257 range 0 .. N_CHOICES-1. Place the results in increasing
3258 order in CHOICES[0 .. N-1], and return N.
3259
3260 The user types choices as a sequence of numbers on one line
3261 separated by blanks, encoding them as follows:
3262
3263 + A choice of 0 means to cancel the selection, throwing an error.
3264 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3265 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3266
3267 The user is not allowed to choose more than MAX_RESULTS values.
3268
3269 ANNOTATION_SUFFIX, if present, is used to annotate the input
3270 prompts (for use with the -f switch). */
3271
3272 static int
3273 get_selections (int *choices, int n_choices, int max_results,
3274 int is_all_choice, const char *annotation_suffix)
3275 {
3276 const char *args;
3277 const char *prompt;
3278 int n_chosen;
3279 int first_choice = is_all_choice ? 2 : 1;
3280
3281 prompt = getenv ("PS2");
3282 if (prompt == NULL)
3283 prompt = "> ";
3284
3285 args = command_line_input (prompt, annotation_suffix);
3286
3287 if (args == NULL)
3288 error_no_arg (_("one or more choice numbers"));
3289
3290 n_chosen = 0;
3291
3292 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3293 order, as given in args. Choices are validated. */
3294 while (1)
3295 {
3296 char *args2;
3297 int choice, j;
3298
3299 args = skip_spaces (args);
3300 if (*args == '\0' && n_chosen == 0)
3301 error_no_arg (_("one or more choice numbers"));
3302 else if (*args == '\0')
3303 break;
3304
3305 choice = strtol (args, &args2, 10);
3306 if (args == args2 || choice < 0
3307 || choice > n_choices + first_choice - 1)
3308 error (_("Argument must be choice number"));
3309 args = args2;
3310
3311 if (choice == 0)
3312 error (_("cancelled"));
3313
3314 if (choice < first_choice)
3315 {
3316 n_chosen = n_choices;
3317 for (j = 0; j < n_choices; j += 1)
3318 choices[j] = j;
3319 break;
3320 }
3321 choice -= first_choice;
3322
3323 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3324 {
3325 }
3326
3327 if (j < 0 || choice != choices[j])
3328 {
3329 int k;
3330
3331 for (k = n_chosen - 1; k > j; k -= 1)
3332 choices[k + 1] = choices[k];
3333 choices[j + 1] = choice;
3334 n_chosen += 1;
3335 }
3336 }
3337
3338 if (n_chosen > max_results)
3339 error (_("Select no more than %d of the above"), max_results);
3340
3341 return n_chosen;
3342 }
3343
3344 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3345 by asking the user (if necessary), returning the number selected,
3346 and setting the first elements of SYMS items. Error if no symbols
3347 selected. */
3348
3349 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3350 to be re-integrated one of these days. */
3351
3352 static int
3353 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3354 {
3355 int i;
3356 int *chosen = XALLOCAVEC (int , nsyms);
3357 int n_chosen;
3358 int first_choice = (max_results == 1) ? 1 : 2;
3359 const char *select_mode = multiple_symbols_select_mode ();
3360
3361 if (max_results < 1)
3362 error (_("Request to select 0 symbols!"));
3363 if (nsyms <= 1)
3364 return nsyms;
3365
3366 if (select_mode == multiple_symbols_cancel)
3367 error (_("\
3368 canceled because the command is ambiguous\n\
3369 See set/show multiple-symbol."));
3370
3371 /* If select_mode is "all", then return all possible symbols.
3372 Only do that if more than one symbol can be selected, of course.
3373 Otherwise, display the menu as usual. */
3374 if (select_mode == multiple_symbols_all && max_results > 1)
3375 return nsyms;
3376
3377 printf_filtered (_("[0] cancel\n"));
3378 if (max_results > 1)
3379 printf_filtered (_("[1] all\n"));
3380
3381 sort_choices (syms, nsyms);
3382
3383 for (i = 0; i < nsyms; i += 1)
3384 {
3385 if (syms[i].symbol == NULL)
3386 continue;
3387
3388 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3389 {
3390 struct symtab_and_line sal =
3391 find_function_start_sal (syms[i].symbol, 1);
3392
3393 printf_filtered ("[%d] ", i + first_choice);
3394 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3395 &type_print_raw_options);
3396 if (sal.symtab == NULL)
3397 printf_filtered (_(" at %p[<no source file available>%p]:%d\n"),
3398 metadata_style.style ().ptr (), nullptr, sal.line);
3399 else
3400 printf_filtered
3401 (_(" at %ps:%d\n"),
3402 styled_string (file_name_style.style (),
3403 symtab_to_filename_for_display (sal.symtab)),
3404 sal.line);
3405 continue;
3406 }
3407 else
3408 {
3409 int is_enumeral =
3410 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3411 && SYMBOL_TYPE (syms[i].symbol) != NULL
3412 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
3413 struct symtab *symtab = NULL;
3414
3415 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3416 symtab = symbol_symtab (syms[i].symbol);
3417
3418 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3419 {
3420 printf_filtered ("[%d] ", i + first_choice);
3421 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3422 &type_print_raw_options);
3423 printf_filtered (_(" at %s:%d\n"),
3424 symtab_to_filename_for_display (symtab),
3425 SYMBOL_LINE (syms[i].symbol));
3426 }
3427 else if (is_enumeral
3428 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
3429 {
3430 printf_filtered (("[%d] "), i + first_choice);
3431 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3432 gdb_stdout, -1, 0, &type_print_raw_options);
3433 printf_filtered (_("'(%s) (enumeral)\n"),
3434 syms[i].symbol->print_name ());
3435 }
3436 else
3437 {
3438 printf_filtered ("[%d] ", i + first_choice);
3439 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3440 &type_print_raw_options);
3441
3442 if (symtab != NULL)
3443 printf_filtered (is_enumeral
3444 ? _(" in %s (enumeral)\n")
3445 : _(" at %s:?\n"),
3446 symtab_to_filename_for_display (symtab));
3447 else
3448 printf_filtered (is_enumeral
3449 ? _(" (enumeral)\n")
3450 : _(" at ?\n"));
3451 }
3452 }
3453 }
3454
3455 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3456 "overload-choice");
3457
3458 for (i = 0; i < n_chosen; i += 1)
3459 syms[i] = syms[chosen[i]];
3460
3461 return n_chosen;
3462 }
3463
3464 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3465 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3466 undefined namespace) and converts operators that are
3467 user-defined into appropriate function calls. If CONTEXT_TYPE is
3468 non-null, it provides a preferred result type [at the moment, only
3469 type void has any effect---causing procedures to be preferred over
3470 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3471 return type is preferred. May change (expand) *EXP. */
3472
3473 static void
3474 resolve (expression_up *expp, int void_context_p, int parse_completion,
3475 innermost_block_tracker *tracker)
3476 {
3477 struct type *context_type = NULL;
3478 int pc = 0;
3479
3480 if (void_context_p)
3481 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3482
3483 resolve_subexp (expp, &pc, 1, context_type, parse_completion, tracker);
3484 }
3485
3486 /* Resolve the operator of the subexpression beginning at
3487 position *POS of *EXPP. "Resolving" consists of replacing
3488 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3489 with their resolutions, replacing built-in operators with
3490 function calls to user-defined operators, where appropriate, and,
3491 when DEPROCEDURE_P is non-zero, converting function-valued variables
3492 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3493 are as in ada_resolve, above. */
3494
3495 static struct value *
3496 resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
3497 struct type *context_type, int parse_completion,
3498 innermost_block_tracker *tracker)
3499 {
3500 int pc = *pos;
3501 int i;
3502 struct expression *exp; /* Convenience: == *expp. */
3503 enum exp_opcode op = (*expp)->elts[pc].opcode;
3504 struct value **argvec; /* Vector of operand types (alloca'ed). */
3505 int nargs; /* Number of operands. */
3506 int oplen;
3507
3508 argvec = NULL;
3509 nargs = 0;
3510 exp = expp->get ();
3511
3512 /* Pass one: resolve operands, saving their types and updating *pos,
3513 if needed. */
3514 switch (op)
3515 {
3516 case OP_FUNCALL:
3517 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3518 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3519 *pos += 7;
3520 else
3521 {
3522 *pos += 3;
3523 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3524 }
3525 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3526 break;
3527
3528 case UNOP_ADDR:
3529 *pos += 1;
3530 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3531 break;
3532
3533 case UNOP_QUAL:
3534 *pos += 3;
3535 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type),
3536 parse_completion, tracker);
3537 break;
3538
3539 case OP_ATR_MODULUS:
3540 case OP_ATR_SIZE:
3541 case OP_ATR_TAG:
3542 case OP_ATR_FIRST:
3543 case OP_ATR_LAST:
3544 case OP_ATR_LENGTH:
3545 case OP_ATR_POS:
3546 case OP_ATR_VAL:
3547 case OP_ATR_MIN:
3548 case OP_ATR_MAX:
3549 case TERNOP_IN_RANGE:
3550 case BINOP_IN_BOUNDS:
3551 case UNOP_IN_RANGE:
3552 case OP_AGGREGATE:
3553 case OP_OTHERS:
3554 case OP_CHOICES:
3555 case OP_POSITIONAL:
3556 case OP_DISCRETE_RANGE:
3557 case OP_NAME:
3558 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3559 *pos += oplen;
3560 break;
3561
3562 case BINOP_ASSIGN:
3563 {
3564 struct value *arg1;
3565
3566 *pos += 1;
3567 arg1 = resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3568 if (arg1 == NULL)
3569 resolve_subexp (expp, pos, 1, NULL, parse_completion, tracker);
3570 else
3571 resolve_subexp (expp, pos, 1, value_type (arg1), parse_completion,
3572 tracker);
3573 break;
3574 }
3575
3576 case UNOP_CAST:
3577 *pos += 3;
3578 nargs = 1;
3579 break;
3580
3581 case BINOP_ADD:
3582 case BINOP_SUB:
3583 case BINOP_MUL:
3584 case BINOP_DIV:
3585 case BINOP_REM:
3586 case BINOP_MOD:
3587 case BINOP_EXP:
3588 case BINOP_CONCAT:
3589 case BINOP_LOGICAL_AND:
3590 case BINOP_LOGICAL_OR:
3591 case BINOP_BITWISE_AND:
3592 case BINOP_BITWISE_IOR:
3593 case BINOP_BITWISE_XOR:
3594
3595 case BINOP_EQUAL:
3596 case BINOP_NOTEQUAL:
3597 case BINOP_LESS:
3598 case BINOP_GTR:
3599 case BINOP_LEQ:
3600 case BINOP_GEQ:
3601
3602 case BINOP_REPEAT:
3603 case BINOP_SUBSCRIPT:
3604 case BINOP_COMMA:
3605 *pos += 1;
3606 nargs = 2;
3607 break;
3608
3609 case UNOP_NEG:
3610 case UNOP_PLUS:
3611 case UNOP_LOGICAL_NOT:
3612 case UNOP_ABS:
3613 case UNOP_IND:
3614 *pos += 1;
3615 nargs = 1;
3616 break;
3617
3618 case OP_LONG:
3619 case OP_FLOAT:
3620 case OP_VAR_VALUE:
3621 case OP_VAR_MSYM_VALUE:
3622 *pos += 4;
3623 break;
3624
3625 case OP_TYPE:
3626 case OP_BOOL:
3627 case OP_LAST:
3628 case OP_INTERNALVAR:
3629 *pos += 3;
3630 break;
3631
3632 case UNOP_MEMVAL:
3633 *pos += 3;
3634 nargs = 1;
3635 break;
3636
3637 case OP_REGISTER:
3638 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3639 break;
3640
3641 case STRUCTOP_STRUCT:
3642 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3643 nargs = 1;
3644 break;
3645
3646 case TERNOP_SLICE:
3647 *pos += 1;
3648 nargs = 3;
3649 break;
3650
3651 case OP_STRING:
3652 break;
3653
3654 default:
3655 error (_("Unexpected operator during name resolution"));
3656 }
3657
3658 argvec = XALLOCAVEC (struct value *, nargs + 1);
3659 for (i = 0; i < nargs; i += 1)
3660 argvec[i] = resolve_subexp (expp, pos, 1, NULL, parse_completion,
3661 tracker);
3662 argvec[i] = NULL;
3663 exp = expp->get ();
3664
3665 /* Pass two: perform any resolution on principal operator. */
3666 switch (op)
3667 {
3668 default:
3669 break;
3670
3671 case OP_VAR_VALUE:
3672 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3673 {
3674 std::vector<struct block_symbol> candidates;
3675 int n_candidates;
3676
3677 n_candidates =
3678 ada_lookup_symbol_list (exp->elts[pc + 2].symbol->linkage_name (),
3679 exp->elts[pc + 1].block, VAR_DOMAIN,
3680 &candidates);
3681
3682 if (n_candidates > 1)
3683 {
3684 /* Types tend to get re-introduced locally, so if there
3685 are any local symbols that are not types, first filter
3686 out all types. */
3687 int j;
3688 for (j = 0; j < n_candidates; j += 1)
3689 switch (SYMBOL_CLASS (candidates[j].symbol))
3690 {
3691 case LOC_REGISTER:
3692 case LOC_ARG:
3693 case LOC_REF_ARG:
3694 case LOC_REGPARM_ADDR:
3695 case LOC_LOCAL:
3696 case LOC_COMPUTED:
3697 goto FoundNonType;
3698 default:
3699 break;
3700 }
3701 FoundNonType:
3702 if (j < n_candidates)
3703 {
3704 j = 0;
3705 while (j < n_candidates)
3706 {
3707 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3708 {
3709 candidates[j] = candidates[n_candidates - 1];
3710 n_candidates -= 1;
3711 }
3712 else
3713 j += 1;
3714 }
3715 }
3716 }
3717
3718 if (n_candidates == 0)
3719 error (_("No definition found for %s"),
3720 exp->elts[pc + 2].symbol->print_name ());
3721 else if (n_candidates == 1)
3722 i = 0;
3723 else if (deprocedure_p
3724 && !is_nonfunction (candidates.data (), n_candidates))
3725 {
3726 i = ada_resolve_function
3727 (candidates.data (), n_candidates, NULL, 0,
3728 exp->elts[pc + 2].symbol->linkage_name (),
3729 context_type, parse_completion);
3730 if (i < 0)
3731 error (_("Could not find a match for %s"),
3732 exp->elts[pc + 2].symbol->print_name ());
3733 }
3734 else
3735 {
3736 printf_filtered (_("Multiple matches for %s\n"),
3737 exp->elts[pc + 2].symbol->print_name ());
3738 user_select_syms (candidates.data (), n_candidates, 1);
3739 i = 0;
3740 }
3741
3742 exp->elts[pc + 1].block = candidates[i].block;
3743 exp->elts[pc + 2].symbol = candidates[i].symbol;
3744 tracker->update (candidates[i]);
3745 }
3746
3747 if (deprocedure_p
3748 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3749 == TYPE_CODE_FUNC))
3750 {
3751 replace_operator_with_call (expp, pc, 0, 4,
3752 exp->elts[pc + 2].symbol,
3753 exp->elts[pc + 1].block);
3754 exp = expp->get ();
3755 }
3756 break;
3757
3758 case OP_FUNCALL:
3759 {
3760 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3761 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3762 {
3763 std::vector<struct block_symbol> candidates;
3764 int n_candidates;
3765
3766 n_candidates =
3767 ada_lookup_symbol_list (exp->elts[pc + 5].symbol->linkage_name (),
3768 exp->elts[pc + 4].block, VAR_DOMAIN,
3769 &candidates);
3770
3771 if (n_candidates == 1)
3772 i = 0;
3773 else
3774 {
3775 i = ada_resolve_function
3776 (candidates.data (), n_candidates,
3777 argvec, nargs,
3778 exp->elts[pc + 5].symbol->linkage_name (),
3779 context_type, parse_completion);
3780 if (i < 0)
3781 error (_("Could not find a match for %s"),
3782 exp->elts[pc + 5].symbol->print_name ());
3783 }
3784
3785 exp->elts[pc + 4].block = candidates[i].block;
3786 exp->elts[pc + 5].symbol = candidates[i].symbol;
3787 tracker->update (candidates[i]);
3788 }
3789 }
3790 break;
3791 case BINOP_ADD:
3792 case BINOP_SUB:
3793 case BINOP_MUL:
3794 case BINOP_DIV:
3795 case BINOP_REM:
3796 case BINOP_MOD:
3797 case BINOP_CONCAT:
3798 case BINOP_BITWISE_AND:
3799 case BINOP_BITWISE_IOR:
3800 case BINOP_BITWISE_XOR:
3801 case BINOP_EQUAL:
3802 case BINOP_NOTEQUAL:
3803 case BINOP_LESS:
3804 case BINOP_GTR:
3805 case BINOP_LEQ:
3806 case BINOP_GEQ:
3807 case BINOP_EXP:
3808 case UNOP_NEG:
3809 case UNOP_PLUS:
3810 case UNOP_LOGICAL_NOT:
3811 case UNOP_ABS:
3812 if (possible_user_operator_p (op, argvec))
3813 {
3814 std::vector<struct block_symbol> candidates;
3815 int n_candidates;
3816
3817 n_candidates =
3818 ada_lookup_symbol_list (ada_decoded_op_name (op),
3819 NULL, VAR_DOMAIN,
3820 &candidates);
3821
3822 i = ada_resolve_function (candidates.data (), n_candidates, argvec,
3823 nargs, ada_decoded_op_name (op), NULL,
3824 parse_completion);
3825 if (i < 0)
3826 break;
3827
3828 replace_operator_with_call (expp, pc, nargs, 1,
3829 candidates[i].symbol,
3830 candidates[i].block);
3831 exp = expp->get ();
3832 }
3833 break;
3834
3835 case OP_TYPE:
3836 case OP_REGISTER:
3837 return NULL;
3838 }
3839
3840 *pos = pc;
3841 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3842 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3843 exp->elts[pc + 1].objfile,
3844 exp->elts[pc + 2].msymbol);
3845 else
3846 return evaluate_subexp_type (exp, pos);
3847 }
3848
3849 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3850 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3851 a non-pointer. */
3852 /* The term "match" here is rather loose. The match is heuristic and
3853 liberal. */
3854
3855 static int
3856 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3857 {
3858 ftype = ada_check_typedef (ftype);
3859 atype = ada_check_typedef (atype);
3860
3861 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3862 ftype = TYPE_TARGET_TYPE (ftype);
3863 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3864 atype = TYPE_TARGET_TYPE (atype);
3865
3866 switch (TYPE_CODE (ftype))
3867 {
3868 default:
3869 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3870 case TYPE_CODE_PTR:
3871 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3872 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3873 TYPE_TARGET_TYPE (atype), 0);
3874 else
3875 return (may_deref
3876 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3877 case TYPE_CODE_INT:
3878 case TYPE_CODE_ENUM:
3879 case TYPE_CODE_RANGE:
3880 switch (TYPE_CODE (atype))
3881 {
3882 case TYPE_CODE_INT:
3883 case TYPE_CODE_ENUM:
3884 case TYPE_CODE_RANGE:
3885 return 1;
3886 default:
3887 return 0;
3888 }
3889
3890 case TYPE_CODE_ARRAY:
3891 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3892 || ada_is_array_descriptor_type (atype));
3893
3894 case TYPE_CODE_STRUCT:
3895 if (ada_is_array_descriptor_type (ftype))
3896 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3897 || ada_is_array_descriptor_type (atype));
3898 else
3899 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3900 && !ada_is_array_descriptor_type (atype));
3901
3902 case TYPE_CODE_UNION:
3903 case TYPE_CODE_FLT:
3904 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3905 }
3906 }
3907
3908 /* Return non-zero if the formals of FUNC "sufficiently match" the
3909 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3910 may also be an enumeral, in which case it is treated as a 0-
3911 argument function. */
3912
3913 static int
3914 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3915 {
3916 int i;
3917 struct type *func_type = SYMBOL_TYPE (func);
3918
3919 if (SYMBOL_CLASS (func) == LOC_CONST
3920 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3921 return (n_actuals == 0);
3922 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3923 return 0;
3924
3925 if (TYPE_NFIELDS (func_type) != n_actuals)
3926 return 0;
3927
3928 for (i = 0; i < n_actuals; i += 1)
3929 {
3930 if (actuals[i] == NULL)
3931 return 0;
3932 else
3933 {
3934 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3935 i));
3936 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3937
3938 if (!ada_type_match (ftype, atype, 1))
3939 return 0;
3940 }
3941 }
3942 return 1;
3943 }
3944
3945 /* False iff function type FUNC_TYPE definitely does not produce a value
3946 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3947 FUNC_TYPE is not a valid function type with a non-null return type
3948 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3949
3950 static int
3951 return_match (struct type *func_type, struct type *context_type)
3952 {
3953 struct type *return_type;
3954
3955 if (func_type == NULL)
3956 return 1;
3957
3958 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3959 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3960 else
3961 return_type = get_base_type (func_type);
3962 if (return_type == NULL)
3963 return 1;
3964
3965 context_type = get_base_type (context_type);
3966
3967 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3968 return context_type == NULL || return_type == context_type;
3969 else if (context_type == NULL)
3970 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3971 else
3972 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3973 }
3974
3975
3976 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3977 function (if any) that matches the types of the NARGS arguments in
3978 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3979 that returns that type, then eliminate matches that don't. If
3980 CONTEXT_TYPE is void and there is at least one match that does not
3981 return void, eliminate all matches that do.
3982
3983 Asks the user if there is more than one match remaining. Returns -1
3984 if there is no such symbol or none is selected. NAME is used
3985 solely for messages. May re-arrange and modify SYMS in
3986 the process; the index returned is for the modified vector. */
3987
3988 static int
3989 ada_resolve_function (struct block_symbol syms[],
3990 int nsyms, struct value **args, int nargs,
3991 const char *name, struct type *context_type,
3992 int parse_completion)
3993 {
3994 int fallback;
3995 int k;
3996 int m; /* Number of hits */
3997
3998 m = 0;
3999 /* In the first pass of the loop, we only accept functions matching
4000 context_type. If none are found, we add a second pass of the loop
4001 where every function is accepted. */
4002 for (fallback = 0; m == 0 && fallback < 2; fallback++)
4003 {
4004 for (k = 0; k < nsyms; k += 1)
4005 {
4006 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
4007
4008 if (ada_args_match (syms[k].symbol, args, nargs)
4009 && (fallback || return_match (type, context_type)))
4010 {
4011 syms[m] = syms[k];
4012 m += 1;
4013 }
4014 }
4015 }
4016
4017 /* If we got multiple matches, ask the user which one to use. Don't do this
4018 interactive thing during completion, though, as the purpose of the
4019 completion is providing a list of all possible matches. Prompting the
4020 user to filter it down would be completely unexpected in this case. */
4021 if (m == 0)
4022 return -1;
4023 else if (m > 1 && !parse_completion)
4024 {
4025 printf_filtered (_("Multiple matches for %s\n"), name);
4026 user_select_syms (syms, m, 1);
4027 return 0;
4028 }
4029 return 0;
4030 }
4031
4032 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
4033 on the function identified by SYM and BLOCK, and taking NARGS
4034 arguments. Update *EXPP as needed to hold more space. */
4035
4036 static void
4037 replace_operator_with_call (expression_up *expp, int pc, int nargs,
4038 int oplen, struct symbol *sym,
4039 const struct block *block)
4040 {
4041 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4042 symbol, -oplen for operator being replaced). */
4043 struct expression *newexp = (struct expression *)
4044 xzalloc (sizeof (struct expression)
4045 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
4046 struct expression *exp = expp->get ();
4047
4048 newexp->nelts = exp->nelts + 7 - oplen;
4049 newexp->language_defn = exp->language_defn;
4050 newexp->gdbarch = exp->gdbarch;
4051 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
4052 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4053 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
4054
4055 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4056 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4057
4058 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4059 newexp->elts[pc + 4].block = block;
4060 newexp->elts[pc + 5].symbol = sym;
4061
4062 expp->reset (newexp);
4063 }
4064
4065 /* Type-class predicates */
4066
4067 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4068 or FLOAT). */
4069
4070 static int
4071 numeric_type_p (struct type *type)
4072 {
4073 if (type == NULL)
4074 return 0;
4075 else
4076 {
4077 switch (TYPE_CODE (type))
4078 {
4079 case TYPE_CODE_INT:
4080 case TYPE_CODE_FLT:
4081 return 1;
4082 case TYPE_CODE_RANGE:
4083 return (type == TYPE_TARGET_TYPE (type)
4084 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4085 default:
4086 return 0;
4087 }
4088 }
4089 }
4090
4091 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4092
4093 static int
4094 integer_type_p (struct type *type)
4095 {
4096 if (type == NULL)
4097 return 0;
4098 else
4099 {
4100 switch (TYPE_CODE (type))
4101 {
4102 case TYPE_CODE_INT:
4103 return 1;
4104 case TYPE_CODE_RANGE:
4105 return (type == TYPE_TARGET_TYPE (type)
4106 || integer_type_p (TYPE_TARGET_TYPE (type)));
4107 default:
4108 return 0;
4109 }
4110 }
4111 }
4112
4113 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4114
4115 static int
4116 scalar_type_p (struct type *type)
4117 {
4118 if (type == NULL)
4119 return 0;
4120 else
4121 {
4122 switch (TYPE_CODE (type))
4123 {
4124 case TYPE_CODE_INT:
4125 case TYPE_CODE_RANGE:
4126 case TYPE_CODE_ENUM:
4127 case TYPE_CODE_FLT:
4128 return 1;
4129 default:
4130 return 0;
4131 }
4132 }
4133 }
4134
4135 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4136
4137 static int
4138 discrete_type_p (struct type *type)
4139 {
4140 if (type == NULL)
4141 return 0;
4142 else
4143 {
4144 switch (TYPE_CODE (type))
4145 {
4146 case TYPE_CODE_INT:
4147 case TYPE_CODE_RANGE:
4148 case TYPE_CODE_ENUM:
4149 case TYPE_CODE_BOOL:
4150 return 1;
4151 default:
4152 return 0;
4153 }
4154 }
4155 }
4156
4157 /* Returns non-zero if OP with operands in the vector ARGS could be
4158 a user-defined function. Errs on the side of pre-defined operators
4159 (i.e., result 0). */
4160
4161 static int
4162 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4163 {
4164 struct type *type0 =
4165 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4166 struct type *type1 =
4167 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4168
4169 if (type0 == NULL)
4170 return 0;
4171
4172 switch (op)
4173 {
4174 default:
4175 return 0;
4176
4177 case BINOP_ADD:
4178 case BINOP_SUB:
4179 case BINOP_MUL:
4180 case BINOP_DIV:
4181 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4182
4183 case BINOP_REM:
4184 case BINOP_MOD:
4185 case BINOP_BITWISE_AND:
4186 case BINOP_BITWISE_IOR:
4187 case BINOP_BITWISE_XOR:
4188 return (!(integer_type_p (type0) && integer_type_p (type1)));
4189
4190 case BINOP_EQUAL:
4191 case BINOP_NOTEQUAL:
4192 case BINOP_LESS:
4193 case BINOP_GTR:
4194 case BINOP_LEQ:
4195 case BINOP_GEQ:
4196 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4197
4198 case BINOP_CONCAT:
4199 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4200
4201 case BINOP_EXP:
4202 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4203
4204 case UNOP_NEG:
4205 case UNOP_PLUS:
4206 case UNOP_LOGICAL_NOT:
4207 case UNOP_ABS:
4208 return (!numeric_type_p (type0));
4209
4210 }
4211 }
4212 \f
4213 /* Renaming */
4214
4215 /* NOTES:
4216
4217 1. In the following, we assume that a renaming type's name may
4218 have an ___XD suffix. It would be nice if this went away at some
4219 point.
4220 2. We handle both the (old) purely type-based representation of
4221 renamings and the (new) variable-based encoding. At some point,
4222 it is devoutly to be hoped that the former goes away
4223 (FIXME: hilfinger-2007-07-09).
4224 3. Subprogram renamings are not implemented, although the XRS
4225 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4226
4227 /* If SYM encodes a renaming,
4228
4229 <renaming> renames <renamed entity>,
4230
4231 sets *LEN to the length of the renamed entity's name,
4232 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4233 the string describing the subcomponent selected from the renamed
4234 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4235 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4236 are undefined). Otherwise, returns a value indicating the category
4237 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4238 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4239 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4240 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4241 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4242 may be NULL, in which case they are not assigned.
4243
4244 [Currently, however, GCC does not generate subprogram renamings.] */
4245
4246 enum ada_renaming_category
4247 ada_parse_renaming (struct symbol *sym,
4248 const char **renamed_entity, int *len,
4249 const char **renaming_expr)
4250 {
4251 enum ada_renaming_category kind;
4252 const char *info;
4253 const char *suffix;
4254
4255 if (sym == NULL)
4256 return ADA_NOT_RENAMING;
4257 switch (SYMBOL_CLASS (sym))
4258 {
4259 default:
4260 return ADA_NOT_RENAMING;
4261 case LOC_LOCAL:
4262 case LOC_STATIC:
4263 case LOC_COMPUTED:
4264 case LOC_OPTIMIZED_OUT:
4265 info = strstr (sym->linkage_name (), "___XR");
4266 if (info == NULL)
4267 return ADA_NOT_RENAMING;
4268 switch (info[5])
4269 {
4270 case '_':
4271 kind = ADA_OBJECT_RENAMING;
4272 info += 6;
4273 break;
4274 case 'E':
4275 kind = ADA_EXCEPTION_RENAMING;
4276 info += 7;
4277 break;
4278 case 'P':
4279 kind = ADA_PACKAGE_RENAMING;
4280 info += 7;
4281 break;
4282 case 'S':
4283 kind = ADA_SUBPROGRAM_RENAMING;
4284 info += 7;
4285 break;
4286 default:
4287 return ADA_NOT_RENAMING;
4288 }
4289 }
4290
4291 if (renamed_entity != NULL)
4292 *renamed_entity = info;
4293 suffix = strstr (info, "___XE");
4294 if (suffix == NULL || suffix == info)
4295 return ADA_NOT_RENAMING;
4296 if (len != NULL)
4297 *len = strlen (info) - strlen (suffix);
4298 suffix += 5;
4299 if (renaming_expr != NULL)
4300 *renaming_expr = suffix;
4301 return kind;
4302 }
4303
4304 /* Compute the value of the given RENAMING_SYM, which is expected to
4305 be a symbol encoding a renaming expression. BLOCK is the block
4306 used to evaluate the renaming. */
4307
4308 static struct value *
4309 ada_read_renaming_var_value (struct symbol *renaming_sym,
4310 const struct block *block)
4311 {
4312 const char *sym_name;
4313
4314 sym_name = renaming_sym->linkage_name ();
4315 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4316 return evaluate_expression (expr.get ());
4317 }
4318 \f
4319
4320 /* Evaluation: Function Calls */
4321
4322 /* Return an lvalue containing the value VAL. This is the identity on
4323 lvalues, and otherwise has the side-effect of allocating memory
4324 in the inferior where a copy of the value contents is copied. */
4325
4326 static struct value *
4327 ensure_lval (struct value *val)
4328 {
4329 if (VALUE_LVAL (val) == not_lval
4330 || VALUE_LVAL (val) == lval_internalvar)
4331 {
4332 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4333 const CORE_ADDR addr =
4334 value_as_long (value_allocate_space_in_inferior (len));
4335
4336 VALUE_LVAL (val) = lval_memory;
4337 set_value_address (val, addr);
4338 write_memory (addr, value_contents (val), len);
4339 }
4340
4341 return val;
4342 }
4343
4344 /* Given ARG, a value of type (pointer or reference to a)*
4345 structure/union, extract the component named NAME from the ultimate
4346 target structure/union and return it as a value with its
4347 appropriate type.
4348
4349 The routine searches for NAME among all members of the structure itself
4350 and (recursively) among all members of any wrapper members
4351 (e.g., '_parent').
4352
4353 If NO_ERR, then simply return NULL in case of error, rather than
4354 calling error. */
4355
4356 static struct value *
4357 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
4358 {
4359 struct type *t, *t1;
4360 struct value *v;
4361 int check_tag;
4362
4363 v = NULL;
4364 t1 = t = ada_check_typedef (value_type (arg));
4365 if (TYPE_CODE (t) == TYPE_CODE_REF)
4366 {
4367 t1 = TYPE_TARGET_TYPE (t);
4368 if (t1 == NULL)
4369 goto BadValue;
4370 t1 = ada_check_typedef (t1);
4371 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
4372 {
4373 arg = coerce_ref (arg);
4374 t = t1;
4375 }
4376 }
4377
4378 while (TYPE_CODE (t) == TYPE_CODE_PTR)
4379 {
4380 t1 = TYPE_TARGET_TYPE (t);
4381 if (t1 == NULL)
4382 goto BadValue;
4383 t1 = ada_check_typedef (t1);
4384 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
4385 {
4386 arg = value_ind (arg);
4387 t = t1;
4388 }
4389 else
4390 break;
4391 }
4392
4393 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
4394 goto BadValue;
4395
4396 if (t1 == t)
4397 v = ada_search_struct_field (name, arg, 0, t);
4398 else
4399 {
4400 int bit_offset, bit_size, byte_offset;
4401 struct type *field_type;
4402 CORE_ADDR address;
4403
4404 if (TYPE_CODE (t) == TYPE_CODE_PTR)
4405 address = value_address (ada_value_ind (arg));
4406 else
4407 address = value_address (ada_coerce_ref (arg));
4408
4409 /* Check to see if this is a tagged type. We also need to handle
4410 the case where the type is a reference to a tagged type, but
4411 we have to be careful to exclude pointers to tagged types.
4412 The latter should be shown as usual (as a pointer), whereas
4413 a reference should mostly be transparent to the user. */
4414
4415 if (ada_is_tagged_type (t1, 0)
4416 || (TYPE_CODE (t1) == TYPE_CODE_REF
4417 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
4418 {
4419 /* We first try to find the searched field in the current type.
4420 If not found then let's look in the fixed type. */
4421
4422 if (!find_struct_field (name, t1, 0,
4423 &field_type, &byte_offset, &bit_offset,
4424 &bit_size, NULL))
4425 check_tag = 1;
4426 else
4427 check_tag = 0;
4428 }
4429 else
4430 check_tag = 0;
4431
4432 /* Convert to fixed type in all cases, so that we have proper
4433 offsets to each field in unconstrained record types. */
4434 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
4435 address, NULL, check_tag);
4436
4437 if (find_struct_field (name, t1, 0,
4438 &field_type, &byte_offset, &bit_offset,
4439 &bit_size, NULL))
4440 {
4441 if (bit_size != 0)
4442 {
4443 if (TYPE_CODE (t) == TYPE_CODE_REF)
4444 arg = ada_coerce_ref (arg);
4445 else
4446 arg = ada_value_ind (arg);
4447 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
4448 bit_offset, bit_size,
4449 field_type);
4450 }
4451 else
4452 v = value_at_lazy (field_type, address + byte_offset);
4453 }
4454 }
4455
4456 if (v != NULL || no_err)
4457 return v;
4458 else
4459 error (_("There is no member named %s."), name);
4460
4461 BadValue:
4462 if (no_err)
4463 return NULL;
4464 else
4465 error (_("Attempt to extract a component of "
4466 "a value that is not a record."));
4467 }
4468
4469 /* Return the value ACTUAL, converted to be an appropriate value for a
4470 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4471 allocating any necessary descriptors (fat pointers), or copies of
4472 values not residing in memory, updating it as needed. */
4473
4474 struct value *
4475 ada_convert_actual (struct value *actual, struct type *formal_type0)
4476 {
4477 struct type *actual_type = ada_check_typedef (value_type (actual));
4478 struct type *formal_type = ada_check_typedef (formal_type0);
4479 struct type *formal_target =
4480 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4481 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4482 struct type *actual_target =
4483 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4484 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4485
4486 if (ada_is_array_descriptor_type (formal_target)
4487 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4488 return make_array_descriptor (formal_type, actual);
4489 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4490 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4491 {
4492 struct value *result;
4493
4494 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4495 && ada_is_array_descriptor_type (actual_target))
4496 result = desc_data (actual);
4497 else if (TYPE_CODE (formal_type) != TYPE_CODE_PTR)
4498 {
4499 if (VALUE_LVAL (actual) != lval_memory)
4500 {
4501 struct value *val;
4502
4503 actual_type = ada_check_typedef (value_type (actual));
4504 val = allocate_value (actual_type);
4505 memcpy ((char *) value_contents_raw (val),
4506 (char *) value_contents (actual),
4507 TYPE_LENGTH (actual_type));
4508 actual = ensure_lval (val);
4509 }
4510 result = value_addr (actual);
4511 }
4512 else
4513 return actual;
4514 return value_cast_pointers (formal_type, result, 0);
4515 }
4516 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4517 return ada_value_ind (actual);
4518 else if (ada_is_aligner_type (formal_type))
4519 {
4520 /* We need to turn this parameter into an aligner type
4521 as well. */
4522 struct value *aligner = allocate_value (formal_type);
4523 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4524
4525 value_assign_to_component (aligner, component, actual);
4526 return aligner;
4527 }
4528
4529 return actual;
4530 }
4531
4532 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4533 type TYPE. This is usually an inefficient no-op except on some targets
4534 (such as AVR) where the representation of a pointer and an address
4535 differs. */
4536
4537 static CORE_ADDR
4538 value_pointer (struct value *value, struct type *type)
4539 {
4540 struct gdbarch *gdbarch = get_type_arch (type);
4541 unsigned len = TYPE_LENGTH (type);
4542 gdb_byte *buf = (gdb_byte *) alloca (len);
4543 CORE_ADDR addr;
4544
4545 addr = value_address (value);
4546 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4547 addr = extract_unsigned_integer (buf, len, type_byte_order (type));
4548 return addr;
4549 }
4550
4551
4552 /* Push a descriptor of type TYPE for array value ARR on the stack at
4553 *SP, updating *SP to reflect the new descriptor. Return either
4554 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4555 to-descriptor type rather than a descriptor type), a struct value *
4556 representing a pointer to this descriptor. */
4557
4558 static struct value *
4559 make_array_descriptor (struct type *type, struct value *arr)
4560 {
4561 struct type *bounds_type = desc_bounds_type (type);
4562 struct type *desc_type = desc_base_type (type);
4563 struct value *descriptor = allocate_value (desc_type);
4564 struct value *bounds = allocate_value (bounds_type);
4565 int i;
4566
4567 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4568 i > 0; i -= 1)
4569 {
4570 modify_field (value_type (bounds), value_contents_writeable (bounds),
4571 ada_array_bound (arr, i, 0),
4572 desc_bound_bitpos (bounds_type, i, 0),
4573 desc_bound_bitsize (bounds_type, i, 0));
4574 modify_field (value_type (bounds), value_contents_writeable (bounds),
4575 ada_array_bound (arr, i, 1),
4576 desc_bound_bitpos (bounds_type, i, 1),
4577 desc_bound_bitsize (bounds_type, i, 1));
4578 }
4579
4580 bounds = ensure_lval (bounds);
4581
4582 modify_field (value_type (descriptor),
4583 value_contents_writeable (descriptor),
4584 value_pointer (ensure_lval (arr),
4585 TYPE_FIELD_TYPE (desc_type, 0)),
4586 fat_pntr_data_bitpos (desc_type),
4587 fat_pntr_data_bitsize (desc_type));
4588
4589 modify_field (value_type (descriptor),
4590 value_contents_writeable (descriptor),
4591 value_pointer (bounds,
4592 TYPE_FIELD_TYPE (desc_type, 1)),
4593 fat_pntr_bounds_bitpos (desc_type),
4594 fat_pntr_bounds_bitsize (desc_type));
4595
4596 descriptor = ensure_lval (descriptor);
4597
4598 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4599 return value_addr (descriptor);
4600 else
4601 return descriptor;
4602 }
4603 \f
4604 /* Symbol Cache Module */
4605
4606 /* Performance measurements made as of 2010-01-15 indicate that
4607 this cache does bring some noticeable improvements. Depending
4608 on the type of entity being printed, the cache can make it as much
4609 as an order of magnitude faster than without it.
4610
4611 The descriptive type DWARF extension has significantly reduced
4612 the need for this cache, at least when DWARF is being used. However,
4613 even in this case, some expensive name-based symbol searches are still
4614 sometimes necessary - to find an XVZ variable, mostly. */
4615
4616 /* Initialize the contents of SYM_CACHE. */
4617
4618 static void
4619 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4620 {
4621 obstack_init (&sym_cache->cache_space);
4622 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4623 }
4624
4625 /* Free the memory used by SYM_CACHE. */
4626
4627 static void
4628 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4629 {
4630 obstack_free (&sym_cache->cache_space, NULL);
4631 xfree (sym_cache);
4632 }
4633
4634 /* Return the symbol cache associated to the given program space PSPACE.
4635 If not allocated for this PSPACE yet, allocate and initialize one. */
4636
4637 static struct ada_symbol_cache *
4638 ada_get_symbol_cache (struct program_space *pspace)
4639 {
4640 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4641
4642 if (pspace_data->sym_cache == NULL)
4643 {
4644 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4645 ada_init_symbol_cache (pspace_data->sym_cache);
4646 }
4647
4648 return pspace_data->sym_cache;
4649 }
4650
4651 /* Clear all entries from the symbol cache. */
4652
4653 static void
4654 ada_clear_symbol_cache (void)
4655 {
4656 struct ada_symbol_cache *sym_cache
4657 = ada_get_symbol_cache (current_program_space);
4658
4659 obstack_free (&sym_cache->cache_space, NULL);
4660 ada_init_symbol_cache (sym_cache);
4661 }
4662
4663 /* Search our cache for an entry matching NAME and DOMAIN.
4664 Return it if found, or NULL otherwise. */
4665
4666 static struct cache_entry **
4667 find_entry (const char *name, domain_enum domain)
4668 {
4669 struct ada_symbol_cache *sym_cache
4670 = ada_get_symbol_cache (current_program_space);
4671 int h = msymbol_hash (name) % HASH_SIZE;
4672 struct cache_entry **e;
4673
4674 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4675 {
4676 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4677 return e;
4678 }
4679 return NULL;
4680 }
4681
4682 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4683 Return 1 if found, 0 otherwise.
4684
4685 If an entry was found and SYM is not NULL, set *SYM to the entry's
4686 SYM. Same principle for BLOCK if not NULL. */
4687
4688 static int
4689 lookup_cached_symbol (const char *name, domain_enum domain,
4690 struct symbol **sym, const struct block **block)
4691 {
4692 struct cache_entry **e = find_entry (name, domain);
4693
4694 if (e == NULL)
4695 return 0;
4696 if (sym != NULL)
4697 *sym = (*e)->sym;
4698 if (block != NULL)
4699 *block = (*e)->block;
4700 return 1;
4701 }
4702
4703 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4704 in domain DOMAIN, save this result in our symbol cache. */
4705
4706 static void
4707 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4708 const struct block *block)
4709 {
4710 struct ada_symbol_cache *sym_cache
4711 = ada_get_symbol_cache (current_program_space);
4712 int h;
4713 char *copy;
4714 struct cache_entry *e;
4715
4716 /* Symbols for builtin types don't have a block.
4717 For now don't cache such symbols. */
4718 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4719 return;
4720
4721 /* If the symbol is a local symbol, then do not cache it, as a search
4722 for that symbol depends on the context. To determine whether
4723 the symbol is local or not, we check the block where we found it
4724 against the global and static blocks of its associated symtab. */
4725 if (sym
4726 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4727 GLOBAL_BLOCK) != block
4728 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4729 STATIC_BLOCK) != block)
4730 return;
4731
4732 h = msymbol_hash (name) % HASH_SIZE;
4733 e = XOBNEW (&sym_cache->cache_space, cache_entry);
4734 e->next = sym_cache->root[h];
4735 sym_cache->root[h] = e;
4736 e->name = copy
4737 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4738 strcpy (copy, name);
4739 e->sym = sym;
4740 e->domain = domain;
4741 e->block = block;
4742 }
4743 \f
4744 /* Symbol Lookup */
4745
4746 /* Return the symbol name match type that should be used used when
4747 searching for all symbols matching LOOKUP_NAME.
4748
4749 LOOKUP_NAME is expected to be a symbol name after transformation
4750 for Ada lookups. */
4751
4752 static symbol_name_match_type
4753 name_match_type_from_name (const char *lookup_name)
4754 {
4755 return (strstr (lookup_name, "__") == NULL
4756 ? symbol_name_match_type::WILD
4757 : symbol_name_match_type::FULL);
4758 }
4759
4760 /* Return the result of a standard (literal, C-like) lookup of NAME in
4761 given DOMAIN, visible from lexical block BLOCK. */
4762
4763 static struct symbol *
4764 standard_lookup (const char *name, const struct block *block,
4765 domain_enum domain)
4766 {
4767 /* Initialize it just to avoid a GCC false warning. */
4768 struct block_symbol sym = {};
4769
4770 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4771 return sym.symbol;
4772 ada_lookup_encoded_symbol (name, block, domain, &sym);
4773 cache_symbol (name, domain, sym.symbol, sym.block);
4774 return sym.symbol;
4775 }
4776
4777
4778 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4779 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4780 since they contend in overloading in the same way. */
4781 static int
4782 is_nonfunction (struct block_symbol syms[], int n)
4783 {
4784 int i;
4785
4786 for (i = 0; i < n; i += 1)
4787 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4788 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4789 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4790 return 1;
4791
4792 return 0;
4793 }
4794
4795 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4796 struct types. Otherwise, they may not. */
4797
4798 static int
4799 equiv_types (struct type *type0, struct type *type1)
4800 {
4801 if (type0 == type1)
4802 return 1;
4803 if (type0 == NULL || type1 == NULL
4804 || TYPE_CODE (type0) != TYPE_CODE (type1))
4805 return 0;
4806 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4807 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4808 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4809 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4810 return 1;
4811
4812 return 0;
4813 }
4814
4815 /* True iff SYM0 represents the same entity as SYM1, or one that is
4816 no more defined than that of SYM1. */
4817
4818 static int
4819 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4820 {
4821 if (sym0 == sym1)
4822 return 1;
4823 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4824 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4825 return 0;
4826
4827 switch (SYMBOL_CLASS (sym0))
4828 {
4829 case LOC_UNDEF:
4830 return 1;
4831 case LOC_TYPEDEF:
4832 {
4833 struct type *type0 = SYMBOL_TYPE (sym0);
4834 struct type *type1 = SYMBOL_TYPE (sym1);
4835 const char *name0 = sym0->linkage_name ();
4836 const char *name1 = sym1->linkage_name ();
4837 int len0 = strlen (name0);
4838
4839 return
4840 TYPE_CODE (type0) == TYPE_CODE (type1)
4841 && (equiv_types (type0, type1)
4842 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4843 && startswith (name1 + len0, "___XV")));
4844 }
4845 case LOC_CONST:
4846 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4847 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4848
4849 case LOC_STATIC:
4850 {
4851 const char *name0 = sym0->linkage_name ();
4852 const char *name1 = sym1->linkage_name ();
4853 return (strcmp (name0, name1) == 0
4854 && SYMBOL_VALUE_ADDRESS (sym0) == SYMBOL_VALUE_ADDRESS (sym1));
4855 }
4856
4857 default:
4858 return 0;
4859 }
4860 }
4861
4862 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4863 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4864
4865 static void
4866 add_defn_to_vec (struct obstack *obstackp,
4867 struct symbol *sym,
4868 const struct block *block)
4869 {
4870 int i;
4871 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4872
4873 /* Do not try to complete stub types, as the debugger is probably
4874 already scanning all symbols matching a certain name at the
4875 time when this function is called. Trying to replace the stub
4876 type by its associated full type will cause us to restart a scan
4877 which may lead to an infinite recursion. Instead, the client
4878 collecting the matching symbols will end up collecting several
4879 matches, with at least one of them complete. It can then filter
4880 out the stub ones if needed. */
4881
4882 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4883 {
4884 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4885 return;
4886 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4887 {
4888 prevDefns[i].symbol = sym;
4889 prevDefns[i].block = block;
4890 return;
4891 }
4892 }
4893
4894 {
4895 struct block_symbol info;
4896
4897 info.symbol = sym;
4898 info.block = block;
4899 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4900 }
4901 }
4902
4903 /* Number of block_symbol structures currently collected in current vector in
4904 OBSTACKP. */
4905
4906 static int
4907 num_defns_collected (struct obstack *obstackp)
4908 {
4909 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4910 }
4911
4912 /* Vector of block_symbol structures currently collected in current vector in
4913 OBSTACKP. If FINISH, close off the vector and return its final address. */
4914
4915 static struct block_symbol *
4916 defns_collected (struct obstack *obstackp, int finish)
4917 {
4918 if (finish)
4919 return (struct block_symbol *) obstack_finish (obstackp);
4920 else
4921 return (struct block_symbol *) obstack_base (obstackp);
4922 }
4923
4924 /* Return a bound minimal symbol matching NAME according to Ada
4925 decoding rules. Returns an invalid symbol if there is no such
4926 minimal symbol. Names prefixed with "standard__" are handled
4927 specially: "standard__" is first stripped off, and only static and
4928 global symbols are searched. */
4929
4930 struct bound_minimal_symbol
4931 ada_lookup_simple_minsym (const char *name)
4932 {
4933 struct bound_minimal_symbol result;
4934
4935 memset (&result, 0, sizeof (result));
4936
4937 symbol_name_match_type match_type = name_match_type_from_name (name);
4938 lookup_name_info lookup_name (name, match_type);
4939
4940 symbol_name_matcher_ftype *match_name
4941 = ada_get_symbol_name_matcher (lookup_name);
4942
4943 for (objfile *objfile : current_program_space->objfiles ())
4944 {
4945 for (minimal_symbol *msymbol : objfile->msymbols ())
4946 {
4947 if (match_name (msymbol->linkage_name (), lookup_name, NULL)
4948 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4949 {
4950 result.minsym = msymbol;
4951 result.objfile = objfile;
4952 break;
4953 }
4954 }
4955 }
4956
4957 return result;
4958 }
4959
4960 /* For all subprograms that statically enclose the subprogram of the
4961 selected frame, add symbols matching identifier NAME in DOMAIN
4962 and their blocks to the list of data in OBSTACKP, as for
4963 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4964 with a wildcard prefix. */
4965
4966 static void
4967 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4968 const lookup_name_info &lookup_name,
4969 domain_enum domain)
4970 {
4971 }
4972
4973 /* True if TYPE is definitely an artificial type supplied to a symbol
4974 for which no debugging information was given in the symbol file. */
4975
4976 static int
4977 is_nondebugging_type (struct type *type)
4978 {
4979 const char *name = ada_type_name (type);
4980
4981 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4982 }
4983
4984 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4985 that are deemed "identical" for practical purposes.
4986
4987 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4988 types and that their number of enumerals is identical (in other
4989 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4990
4991 static int
4992 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4993 {
4994 int i;
4995
4996 /* The heuristic we use here is fairly conservative. We consider
4997 that 2 enumerate types are identical if they have the same
4998 number of enumerals and that all enumerals have the same
4999 underlying value and name. */
5000
5001 /* All enums in the type should have an identical underlying value. */
5002 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5003 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
5004 return 0;
5005
5006 /* All enumerals should also have the same name (modulo any numerical
5007 suffix). */
5008 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5009 {
5010 const char *name_1 = TYPE_FIELD_NAME (type1, i);
5011 const char *name_2 = TYPE_FIELD_NAME (type2, i);
5012 int len_1 = strlen (name_1);
5013 int len_2 = strlen (name_2);
5014
5015 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
5016 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
5017 if (len_1 != len_2
5018 || strncmp (TYPE_FIELD_NAME (type1, i),
5019 TYPE_FIELD_NAME (type2, i),
5020 len_1) != 0)
5021 return 0;
5022 }
5023
5024 return 1;
5025 }
5026
5027 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
5028 that are deemed "identical" for practical purposes. Sometimes,
5029 enumerals are not strictly identical, but their types are so similar
5030 that they can be considered identical.
5031
5032 For instance, consider the following code:
5033
5034 type Color is (Black, Red, Green, Blue, White);
5035 type RGB_Color is new Color range Red .. Blue;
5036
5037 Type RGB_Color is a subrange of an implicit type which is a copy
5038 of type Color. If we call that implicit type RGB_ColorB ("B" is
5039 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5040 As a result, when an expression references any of the enumeral
5041 by name (Eg. "print green"), the expression is technically
5042 ambiguous and the user should be asked to disambiguate. But
5043 doing so would only hinder the user, since it wouldn't matter
5044 what choice he makes, the outcome would always be the same.
5045 So, for practical purposes, we consider them as the same. */
5046
5047 static int
5048 symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
5049 {
5050 int i;
5051
5052 /* Before performing a thorough comparison check of each type,
5053 we perform a series of inexpensive checks. We expect that these
5054 checks will quickly fail in the vast majority of cases, and thus
5055 help prevent the unnecessary use of a more expensive comparison.
5056 Said comparison also expects us to make some of these checks
5057 (see ada_identical_enum_types_p). */
5058
5059 /* Quick check: All symbols should have an enum type. */
5060 for (i = 0; i < syms.size (); i++)
5061 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
5062 return 0;
5063
5064 /* Quick check: They should all have the same value. */
5065 for (i = 1; i < syms.size (); i++)
5066 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
5067 return 0;
5068
5069 /* Quick check: They should all have the same number of enumerals. */
5070 for (i = 1; i < syms.size (); i++)
5071 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5072 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
5073 return 0;
5074
5075 /* All the sanity checks passed, so we might have a set of
5076 identical enumeration types. Perform a more complete
5077 comparison of the type of each symbol. */
5078 for (i = 1; i < syms.size (); i++)
5079 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5080 SYMBOL_TYPE (syms[0].symbol)))
5081 return 0;
5082
5083 return 1;
5084 }
5085
5086 /* Remove any non-debugging symbols in SYMS that definitely
5087 duplicate other symbols in the list (The only case I know of where
5088 this happens is when object files containing stabs-in-ecoff are
5089 linked with files containing ordinary ecoff debugging symbols (or no
5090 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5091 Returns the number of items in the modified list. */
5092
5093 static int
5094 remove_extra_symbols (std::vector<struct block_symbol> *syms)
5095 {
5096 int i, j;
5097
5098 /* We should never be called with less than 2 symbols, as there
5099 cannot be any extra symbol in that case. But it's easy to
5100 handle, since we have nothing to do in that case. */
5101 if (syms->size () < 2)
5102 return syms->size ();
5103
5104 i = 0;
5105 while (i < syms->size ())
5106 {
5107 int remove_p = 0;
5108
5109 /* If two symbols have the same name and one of them is a stub type,
5110 the get rid of the stub. */
5111
5112 if (TYPE_STUB (SYMBOL_TYPE ((*syms)[i].symbol))
5113 && (*syms)[i].symbol->linkage_name () != NULL)
5114 {
5115 for (j = 0; j < syms->size (); j++)
5116 {
5117 if (j != i
5118 && !TYPE_STUB (SYMBOL_TYPE ((*syms)[j].symbol))
5119 && (*syms)[j].symbol->linkage_name () != NULL
5120 && strcmp ((*syms)[i].symbol->linkage_name (),
5121 (*syms)[j].symbol->linkage_name ()) == 0)
5122 remove_p = 1;
5123 }
5124 }
5125
5126 /* Two symbols with the same name, same class and same address
5127 should be identical. */
5128
5129 else if ((*syms)[i].symbol->linkage_name () != NULL
5130 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5131 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
5132 {
5133 for (j = 0; j < syms->size (); j += 1)
5134 {
5135 if (i != j
5136 && (*syms)[j].symbol->linkage_name () != NULL
5137 && strcmp ((*syms)[i].symbol->linkage_name (),
5138 (*syms)[j].symbol->linkage_name ()) == 0
5139 && SYMBOL_CLASS ((*syms)[i].symbol)
5140 == SYMBOL_CLASS ((*syms)[j].symbol)
5141 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5142 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
5143 remove_p = 1;
5144 }
5145 }
5146
5147 if (remove_p)
5148 syms->erase (syms->begin () + i);
5149
5150 i += 1;
5151 }
5152
5153 /* If all the remaining symbols are identical enumerals, then
5154 just keep the first one and discard the rest.
5155
5156 Unlike what we did previously, we do not discard any entry
5157 unless they are ALL identical. This is because the symbol
5158 comparison is not a strict comparison, but rather a practical
5159 comparison. If all symbols are considered identical, then
5160 we can just go ahead and use the first one and discard the rest.
5161 But if we cannot reduce the list to a single element, we have
5162 to ask the user to disambiguate anyways. And if we have to
5163 present a multiple-choice menu, it's less confusing if the list
5164 isn't missing some choices that were identical and yet distinct. */
5165 if (symbols_are_identical_enums (*syms))
5166 syms->resize (1);
5167
5168 return syms->size ();
5169 }
5170
5171 /* Given a type that corresponds to a renaming entity, use the type name
5172 to extract the scope (package name or function name, fully qualified,
5173 and following the GNAT encoding convention) where this renaming has been
5174 defined. */
5175
5176 static std::string
5177 xget_renaming_scope (struct type *renaming_type)
5178 {
5179 /* The renaming types adhere to the following convention:
5180 <scope>__<rename>___<XR extension>.
5181 So, to extract the scope, we search for the "___XR" extension,
5182 and then backtrack until we find the first "__". */
5183
5184 const char *name = TYPE_NAME (renaming_type);
5185 const char *suffix = strstr (name, "___XR");
5186 const char *last;
5187
5188 /* Now, backtrack a bit until we find the first "__". Start looking
5189 at suffix - 3, as the <rename> part is at least one character long. */
5190
5191 for (last = suffix - 3; last > name; last--)
5192 if (last[0] == '_' && last[1] == '_')
5193 break;
5194
5195 /* Make a copy of scope and return it. */
5196 return std::string (name, last);
5197 }
5198
5199 /* Return nonzero if NAME corresponds to a package name. */
5200
5201 static int
5202 is_package_name (const char *name)
5203 {
5204 /* Here, We take advantage of the fact that no symbols are generated
5205 for packages, while symbols are generated for each function.
5206 So the condition for NAME represent a package becomes equivalent
5207 to NAME not existing in our list of symbols. There is only one
5208 small complication with library-level functions (see below). */
5209
5210 /* If it is a function that has not been defined at library level,
5211 then we should be able to look it up in the symbols. */
5212 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5213 return 0;
5214
5215 /* Library-level function names start with "_ada_". See if function
5216 "_ada_" followed by NAME can be found. */
5217
5218 /* Do a quick check that NAME does not contain "__", since library-level
5219 functions names cannot contain "__" in them. */
5220 if (strstr (name, "__") != NULL)
5221 return 0;
5222
5223 std::string fun_name = string_printf ("_ada_%s", name);
5224
5225 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
5226 }
5227
5228 /* Return nonzero if SYM corresponds to a renaming entity that is
5229 not visible from FUNCTION_NAME. */
5230
5231 static int
5232 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5233 {
5234 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5235 return 0;
5236
5237 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5238
5239 /* If the rename has been defined in a package, then it is visible. */
5240 if (is_package_name (scope.c_str ()))
5241 return 0;
5242
5243 /* Check that the rename is in the current function scope by checking
5244 that its name starts with SCOPE. */
5245
5246 /* If the function name starts with "_ada_", it means that it is
5247 a library-level function. Strip this prefix before doing the
5248 comparison, as the encoding for the renaming does not contain
5249 this prefix. */
5250 if (startswith (function_name, "_ada_"))
5251 function_name += 5;
5252
5253 return !startswith (function_name, scope.c_str ());
5254 }
5255
5256 /* Remove entries from SYMS that corresponds to a renaming entity that
5257 is not visible from the function associated with CURRENT_BLOCK or
5258 that is superfluous due to the presence of more specific renaming
5259 information. Places surviving symbols in the initial entries of
5260 SYMS and returns the number of surviving symbols.
5261
5262 Rationale:
5263 First, in cases where an object renaming is implemented as a
5264 reference variable, GNAT may produce both the actual reference
5265 variable and the renaming encoding. In this case, we discard the
5266 latter.
5267
5268 Second, GNAT emits a type following a specified encoding for each renaming
5269 entity. Unfortunately, STABS currently does not support the definition
5270 of types that are local to a given lexical block, so all renamings types
5271 are emitted at library level. As a consequence, if an application
5272 contains two renaming entities using the same name, and a user tries to
5273 print the value of one of these entities, the result of the ada symbol
5274 lookup will also contain the wrong renaming type.
5275
5276 This function partially covers for this limitation by attempting to
5277 remove from the SYMS list renaming symbols that should be visible
5278 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5279 method with the current information available. The implementation
5280 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5281
5282 - When the user tries to print a rename in a function while there
5283 is another rename entity defined in a package: Normally, the
5284 rename in the function has precedence over the rename in the
5285 package, so the latter should be removed from the list. This is
5286 currently not the case.
5287
5288 - This function will incorrectly remove valid renames if
5289 the CURRENT_BLOCK corresponds to a function which symbol name
5290 has been changed by an "Export" pragma. As a consequence,
5291 the user will be unable to print such rename entities. */
5292
5293 static int
5294 remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5295 const struct block *current_block)
5296 {
5297 struct symbol *current_function;
5298 const char *current_function_name;
5299 int i;
5300 int is_new_style_renaming;
5301
5302 /* If there is both a renaming foo___XR... encoded as a variable and
5303 a simple variable foo in the same block, discard the latter.
5304 First, zero out such symbols, then compress. */
5305 is_new_style_renaming = 0;
5306 for (i = 0; i < syms->size (); i += 1)
5307 {
5308 struct symbol *sym = (*syms)[i].symbol;
5309 const struct block *block = (*syms)[i].block;
5310 const char *name;
5311 const char *suffix;
5312
5313 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5314 continue;
5315 name = sym->linkage_name ();
5316 suffix = strstr (name, "___XR");
5317
5318 if (suffix != NULL)
5319 {
5320 int name_len = suffix - name;
5321 int j;
5322
5323 is_new_style_renaming = 1;
5324 for (j = 0; j < syms->size (); j += 1)
5325 if (i != j && (*syms)[j].symbol != NULL
5326 && strncmp (name, (*syms)[j].symbol->linkage_name (),
5327 name_len) == 0
5328 && block == (*syms)[j].block)
5329 (*syms)[j].symbol = NULL;
5330 }
5331 }
5332 if (is_new_style_renaming)
5333 {
5334 int j, k;
5335
5336 for (j = k = 0; j < syms->size (); j += 1)
5337 if ((*syms)[j].symbol != NULL)
5338 {
5339 (*syms)[k] = (*syms)[j];
5340 k += 1;
5341 }
5342 return k;
5343 }
5344
5345 /* Extract the function name associated to CURRENT_BLOCK.
5346 Abort if unable to do so. */
5347
5348 if (current_block == NULL)
5349 return syms->size ();
5350
5351 current_function = block_linkage_function (current_block);
5352 if (current_function == NULL)
5353 return syms->size ();
5354
5355 current_function_name = current_function->linkage_name ();
5356 if (current_function_name == NULL)
5357 return syms->size ();
5358
5359 /* Check each of the symbols, and remove it from the list if it is
5360 a type corresponding to a renaming that is out of the scope of
5361 the current block. */
5362
5363 i = 0;
5364 while (i < syms->size ())
5365 {
5366 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
5367 == ADA_OBJECT_RENAMING
5368 && old_renaming_is_invisible ((*syms)[i].symbol,
5369 current_function_name))
5370 syms->erase (syms->begin () + i);
5371 else
5372 i += 1;
5373 }
5374
5375 return syms->size ();
5376 }
5377
5378 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5379 whose name and domain match NAME and DOMAIN respectively.
5380 If no match was found, then extend the search to "enclosing"
5381 routines (in other words, if we're inside a nested function,
5382 search the symbols defined inside the enclosing functions).
5383 If WILD_MATCH_P is nonzero, perform the naming matching in
5384 "wild" mode (see function "wild_match" for more info).
5385
5386 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5387
5388 static void
5389 ada_add_local_symbols (struct obstack *obstackp,
5390 const lookup_name_info &lookup_name,
5391 const struct block *block, domain_enum domain)
5392 {
5393 int block_depth = 0;
5394
5395 while (block != NULL)
5396 {
5397 block_depth += 1;
5398 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5399
5400 /* If we found a non-function match, assume that's the one. */
5401 if (is_nonfunction (defns_collected (obstackp, 0),
5402 num_defns_collected (obstackp)))
5403 return;
5404
5405 block = BLOCK_SUPERBLOCK (block);
5406 }
5407
5408 /* If no luck so far, try to find NAME as a local symbol in some lexically
5409 enclosing subprogram. */
5410 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5411 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
5412 }
5413
5414 /* An object of this type is used as the user_data argument when
5415 calling the map_matching_symbols method. */
5416
5417 struct match_data
5418 {
5419 struct objfile *objfile;
5420 struct obstack *obstackp;
5421 struct symbol *arg_sym;
5422 int found_sym;
5423 };
5424
5425 /* A callback for add_nonlocal_symbols that adds symbol, found in BSYM,
5426 to a list of symbols. DATA is a pointer to a struct match_data *
5427 containing the obstack that collects the symbol list, the file that SYM
5428 must come from, a flag indicating whether a non-argument symbol has
5429 been found in the current block, and the last argument symbol
5430 passed in SYM within the current block (if any). When SYM is null,
5431 marking the end of a block, the argument symbol is added if no
5432 other has been found. */
5433
5434 static bool
5435 aux_add_nonlocal_symbols (struct block_symbol *bsym,
5436 struct match_data *data)
5437 {
5438 const struct block *block = bsym->block;
5439 struct symbol *sym = bsym->symbol;
5440
5441 if (sym == NULL)
5442 {
5443 if (!data->found_sym && data->arg_sym != NULL)
5444 add_defn_to_vec (data->obstackp,
5445 fixup_symbol_section (data->arg_sym, data->objfile),
5446 block);
5447 data->found_sym = 0;
5448 data->arg_sym = NULL;
5449 }
5450 else
5451 {
5452 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5453 return true;
5454 else if (SYMBOL_IS_ARGUMENT (sym))
5455 data->arg_sym = sym;
5456 else
5457 {
5458 data->found_sym = 1;
5459 add_defn_to_vec (data->obstackp,
5460 fixup_symbol_section (sym, data->objfile),
5461 block);
5462 }
5463 }
5464 return true;
5465 }
5466
5467 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5468 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5469 symbols to OBSTACKP. Return whether we found such symbols. */
5470
5471 static int
5472 ada_add_block_renamings (struct obstack *obstackp,
5473 const struct block *block,
5474 const lookup_name_info &lookup_name,
5475 domain_enum domain)
5476 {
5477 struct using_direct *renaming;
5478 int defns_mark = num_defns_collected (obstackp);
5479
5480 symbol_name_matcher_ftype *name_match
5481 = ada_get_symbol_name_matcher (lookup_name);
5482
5483 for (renaming = block_using (block);
5484 renaming != NULL;
5485 renaming = renaming->next)
5486 {
5487 const char *r_name;
5488
5489 /* Avoid infinite recursions: skip this renaming if we are actually
5490 already traversing it.
5491
5492 Currently, symbol lookup in Ada don't use the namespace machinery from
5493 C++/Fortran support: skip namespace imports that use them. */
5494 if (renaming->searched
5495 || (renaming->import_src != NULL
5496 && renaming->import_src[0] != '\0')
5497 || (renaming->import_dest != NULL
5498 && renaming->import_dest[0] != '\0'))
5499 continue;
5500 renaming->searched = 1;
5501
5502 /* TODO: here, we perform another name-based symbol lookup, which can
5503 pull its own multiple overloads. In theory, we should be able to do
5504 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5505 not a simple name. But in order to do this, we would need to enhance
5506 the DWARF reader to associate a symbol to this renaming, instead of a
5507 name. So, for now, we do something simpler: re-use the C++/Fortran
5508 namespace machinery. */
5509 r_name = (renaming->alias != NULL
5510 ? renaming->alias
5511 : renaming->declaration);
5512 if (name_match (r_name, lookup_name, NULL))
5513 {
5514 lookup_name_info decl_lookup_name (renaming->declaration,
5515 lookup_name.match_type ());
5516 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5517 1, NULL);
5518 }
5519 renaming->searched = 0;
5520 }
5521 return num_defns_collected (obstackp) != defns_mark;
5522 }
5523
5524 /* Implements compare_names, but only applying the comparision using
5525 the given CASING. */
5526
5527 static int
5528 compare_names_with_case (const char *string1, const char *string2,
5529 enum case_sensitivity casing)
5530 {
5531 while (*string1 != '\0' && *string2 != '\0')
5532 {
5533 char c1, c2;
5534
5535 if (isspace (*string1) || isspace (*string2))
5536 return strcmp_iw_ordered (string1, string2);
5537
5538 if (casing == case_sensitive_off)
5539 {
5540 c1 = tolower (*string1);
5541 c2 = tolower (*string2);
5542 }
5543 else
5544 {
5545 c1 = *string1;
5546 c2 = *string2;
5547 }
5548 if (c1 != c2)
5549 break;
5550
5551 string1 += 1;
5552 string2 += 1;
5553 }
5554
5555 switch (*string1)
5556 {
5557 case '(':
5558 return strcmp_iw_ordered (string1, string2);
5559 case '_':
5560 if (*string2 == '\0')
5561 {
5562 if (is_name_suffix (string1))
5563 return 0;
5564 else
5565 return 1;
5566 }
5567 /* FALLTHROUGH */
5568 default:
5569 if (*string2 == '(')
5570 return strcmp_iw_ordered (string1, string2);
5571 else
5572 {
5573 if (casing == case_sensitive_off)
5574 return tolower (*string1) - tolower (*string2);
5575 else
5576 return *string1 - *string2;
5577 }
5578 }
5579 }
5580
5581 /* Compare STRING1 to STRING2, with results as for strcmp.
5582 Compatible with strcmp_iw_ordered in that...
5583
5584 strcmp_iw_ordered (STRING1, STRING2) <= 0
5585
5586 ... implies...
5587
5588 compare_names (STRING1, STRING2) <= 0
5589
5590 (they may differ as to what symbols compare equal). */
5591
5592 static int
5593 compare_names (const char *string1, const char *string2)
5594 {
5595 int result;
5596
5597 /* Similar to what strcmp_iw_ordered does, we need to perform
5598 a case-insensitive comparison first, and only resort to
5599 a second, case-sensitive, comparison if the first one was
5600 not sufficient to differentiate the two strings. */
5601
5602 result = compare_names_with_case (string1, string2, case_sensitive_off);
5603 if (result == 0)
5604 result = compare_names_with_case (string1, string2, case_sensitive_on);
5605
5606 return result;
5607 }
5608
5609 /* Convenience function to get at the Ada encoded lookup name for
5610 LOOKUP_NAME, as a C string. */
5611
5612 static const char *
5613 ada_lookup_name (const lookup_name_info &lookup_name)
5614 {
5615 return lookup_name.ada ().lookup_name ().c_str ();
5616 }
5617
5618 /* Add to OBSTACKP all non-local symbols whose name and domain match
5619 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5620 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5621 symbols otherwise. */
5622
5623 static void
5624 add_nonlocal_symbols (struct obstack *obstackp,
5625 const lookup_name_info &lookup_name,
5626 domain_enum domain, int global)
5627 {
5628 struct match_data data;
5629
5630 memset (&data, 0, sizeof data);
5631 data.obstackp = obstackp;
5632
5633 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5634
5635 auto callback = [&] (struct block_symbol *bsym)
5636 {
5637 return aux_add_nonlocal_symbols (bsym, &data);
5638 };
5639
5640 for (objfile *objfile : current_program_space->objfiles ())
5641 {
5642 data.objfile = objfile;
5643
5644 objfile->sf->qf->map_matching_symbols (objfile, lookup_name,
5645 domain, global, callback,
5646 (is_wild_match
5647 ? NULL : compare_names));
5648
5649 for (compunit_symtab *cu : objfile->compunits ())
5650 {
5651 const struct block *global_block
5652 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5653
5654 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5655 domain))
5656 data.found_sym = 1;
5657 }
5658 }
5659
5660 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5661 {
5662 const char *name = ada_lookup_name (lookup_name);
5663 lookup_name_info name1 (std::string ("<_ada_") + name + '>',
5664 symbol_name_match_type::FULL);
5665
5666 for (objfile *objfile : current_program_space->objfiles ())
5667 {
5668 data.objfile = objfile;
5669 objfile->sf->qf->map_matching_symbols (objfile, name1,
5670 domain, global, callback,
5671 compare_names);
5672 }
5673 }
5674 }
5675
5676 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5677 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5678 returning the number of matches. Add these to OBSTACKP.
5679
5680 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5681 symbol match within the nest of blocks whose innermost member is BLOCK,
5682 is the one match returned (no other matches in that or
5683 enclosing blocks is returned). If there are any matches in or
5684 surrounding BLOCK, then these alone are returned.
5685
5686 Names prefixed with "standard__" are handled specially:
5687 "standard__" is first stripped off (by the lookup_name
5688 constructor), and only static and global symbols are searched.
5689
5690 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5691 to lookup global symbols. */
5692
5693 static void
5694 ada_add_all_symbols (struct obstack *obstackp,
5695 const struct block *block,
5696 const lookup_name_info &lookup_name,
5697 domain_enum domain,
5698 int full_search,
5699 int *made_global_lookup_p)
5700 {
5701 struct symbol *sym;
5702
5703 if (made_global_lookup_p)
5704 *made_global_lookup_p = 0;
5705
5706 /* Special case: If the user specifies a symbol name inside package
5707 Standard, do a non-wild matching of the symbol name without
5708 the "standard__" prefix. This was primarily introduced in order
5709 to allow the user to specifically access the standard exceptions
5710 using, for instance, Standard.Constraint_Error when Constraint_Error
5711 is ambiguous (due to the user defining its own Constraint_Error
5712 entity inside its program). */
5713 if (lookup_name.ada ().standard_p ())
5714 block = NULL;
5715
5716 /* Check the non-global symbols. If we have ANY match, then we're done. */
5717
5718 if (block != NULL)
5719 {
5720 if (full_search)
5721 ada_add_local_symbols (obstackp, lookup_name, block, domain);
5722 else
5723 {
5724 /* In the !full_search case we're are being called by
5725 ada_iterate_over_symbols, and we don't want to search
5726 superblocks. */
5727 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5728 }
5729 if (num_defns_collected (obstackp) > 0 || !full_search)
5730 return;
5731 }
5732
5733 /* No non-global symbols found. Check our cache to see if we have
5734 already performed this search before. If we have, then return
5735 the same result. */
5736
5737 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5738 domain, &sym, &block))
5739 {
5740 if (sym != NULL)
5741 add_defn_to_vec (obstackp, sym, block);
5742 return;
5743 }
5744
5745 if (made_global_lookup_p)
5746 *made_global_lookup_p = 1;
5747
5748 /* Search symbols from all global blocks. */
5749
5750 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
5751
5752 /* Now add symbols from all per-file blocks if we've gotten no hits
5753 (not strictly correct, but perhaps better than an error). */
5754
5755 if (num_defns_collected (obstackp) == 0)
5756 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
5757 }
5758
5759 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5760 is non-zero, enclosing scope and in global scopes, returning the number of
5761 matches.
5762 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5763 found and the blocks and symbol tables (if any) in which they were
5764 found.
5765
5766 When full_search is non-zero, any non-function/non-enumeral
5767 symbol match within the nest of blocks whose innermost member is BLOCK,
5768 is the one match returned (no other matches in that or
5769 enclosing blocks is returned). If there are any matches in or
5770 surrounding BLOCK, then these alone are returned.
5771
5772 Names prefixed with "standard__" are handled specially: "standard__"
5773 is first stripped off, and only static and global symbols are searched. */
5774
5775 static int
5776 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5777 const struct block *block,
5778 domain_enum domain,
5779 std::vector<struct block_symbol> *results,
5780 int full_search)
5781 {
5782 int syms_from_global_search;
5783 int ndefns;
5784 auto_obstack obstack;
5785
5786 ada_add_all_symbols (&obstack, block, lookup_name,
5787 domain, full_search, &syms_from_global_search);
5788
5789 ndefns = num_defns_collected (&obstack);
5790
5791 struct block_symbol *base = defns_collected (&obstack, 1);
5792 for (int i = 0; i < ndefns; ++i)
5793 results->push_back (base[i]);
5794
5795 ndefns = remove_extra_symbols (results);
5796
5797 if (ndefns == 0 && full_search && syms_from_global_search)
5798 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5799
5800 if (ndefns == 1 && full_search && syms_from_global_search)
5801 cache_symbol (ada_lookup_name (lookup_name), domain,
5802 (*results)[0].symbol, (*results)[0].block);
5803
5804 ndefns = remove_irrelevant_renamings (results, block);
5805
5806 return ndefns;
5807 }
5808
5809 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5810 in global scopes, returning the number of matches, and filling *RESULTS
5811 with (SYM,BLOCK) tuples.
5812
5813 See ada_lookup_symbol_list_worker for further details. */
5814
5815 int
5816 ada_lookup_symbol_list (const char *name, const struct block *block,
5817 domain_enum domain,
5818 std::vector<struct block_symbol> *results)
5819 {
5820 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5821 lookup_name_info lookup_name (name, name_match_type);
5822
5823 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
5824 }
5825
5826 /* Implementation of the la_iterate_over_symbols method. */
5827
5828 static bool
5829 ada_iterate_over_symbols
5830 (const struct block *block, const lookup_name_info &name,
5831 domain_enum domain,
5832 gdb::function_view<symbol_found_callback_ftype> callback)
5833 {
5834 int ndefs, i;
5835 std::vector<struct block_symbol> results;
5836
5837 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5838
5839 for (i = 0; i < ndefs; ++i)
5840 {
5841 if (!callback (&results[i]))
5842 return false;
5843 }
5844
5845 return true;
5846 }
5847
5848 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5849 to 1, but choosing the first symbol found if there are multiple
5850 choices.
5851
5852 The result is stored in *INFO, which must be non-NULL.
5853 If no match is found, INFO->SYM is set to NULL. */
5854
5855 void
5856 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5857 domain_enum domain,
5858 struct block_symbol *info)
5859 {
5860 /* Since we already have an encoded name, wrap it in '<>' to force a
5861 verbatim match. Otherwise, if the name happens to not look like
5862 an encoded name (because it doesn't include a "__"),
5863 ada_lookup_name_info would re-encode/fold it again, and that
5864 would e.g., incorrectly lowercase object renaming names like
5865 "R28b" -> "r28b". */
5866 std::string verbatim = std::string ("<") + name + '>';
5867
5868 gdb_assert (info != NULL);
5869 *info = ada_lookup_symbol (verbatim.c_str (), block, domain);
5870 }
5871
5872 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5873 scope and in global scopes, or NULL if none. NAME is folded and
5874 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5875 choosing the first symbol if there are multiple choices. */
5876
5877 struct block_symbol
5878 ada_lookup_symbol (const char *name, const struct block *block0,
5879 domain_enum domain)
5880 {
5881 std::vector<struct block_symbol> candidates;
5882 int n_candidates;
5883
5884 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
5885
5886 if (n_candidates == 0)
5887 return {};
5888
5889 block_symbol info = candidates[0];
5890 info.symbol = fixup_symbol_section (info.symbol, NULL);
5891 return info;
5892 }
5893
5894 static struct block_symbol
5895 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5896 const char *name,
5897 const struct block *block,
5898 const domain_enum domain)
5899 {
5900 struct block_symbol sym;
5901
5902 sym = ada_lookup_symbol (name, block_static_block (block), domain);
5903 if (sym.symbol != NULL)
5904 return sym;
5905
5906 /* If we haven't found a match at this point, try the primitive
5907 types. In other languages, this search is performed before
5908 searching for global symbols in order to short-circuit that
5909 global-symbol search if it happens that the name corresponds
5910 to a primitive type. But we cannot do the same in Ada, because
5911 it is perfectly legitimate for a program to declare a type which
5912 has the same name as a standard type. If looking up a type in
5913 that situation, we have traditionally ignored the primitive type
5914 in favor of user-defined types. This is why, unlike most other
5915 languages, we search the primitive types this late and only after
5916 having searched the global symbols without success. */
5917
5918 if (domain == VAR_DOMAIN)
5919 {
5920 struct gdbarch *gdbarch;
5921
5922 if (block == NULL)
5923 gdbarch = target_gdbarch ();
5924 else
5925 gdbarch = block_gdbarch (block);
5926 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5927 if (sym.symbol != NULL)
5928 return sym;
5929 }
5930
5931 return {};
5932 }
5933
5934
5935 /* True iff STR is a possible encoded suffix of a normal Ada name
5936 that is to be ignored for matching purposes. Suffixes of parallel
5937 names (e.g., XVE) are not included here. Currently, the possible suffixes
5938 are given by any of the regular expressions:
5939
5940 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5941 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5942 TKB [subprogram suffix for task bodies]
5943 _E[0-9]+[bs]$ [protected object entry suffixes]
5944 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5945
5946 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5947 match is performed. This sequence is used to differentiate homonyms,
5948 is an optional part of a valid name suffix. */
5949
5950 static int
5951 is_name_suffix (const char *str)
5952 {
5953 int k;
5954 const char *matching;
5955 const int len = strlen (str);
5956
5957 /* Skip optional leading __[0-9]+. */
5958
5959 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5960 {
5961 str += 3;
5962 while (isdigit (str[0]))
5963 str += 1;
5964 }
5965
5966 /* [.$][0-9]+ */
5967
5968 if (str[0] == '.' || str[0] == '$')
5969 {
5970 matching = str + 1;
5971 while (isdigit (matching[0]))
5972 matching += 1;
5973 if (matching[0] == '\0')
5974 return 1;
5975 }
5976
5977 /* ___[0-9]+ */
5978
5979 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5980 {
5981 matching = str + 3;
5982 while (isdigit (matching[0]))
5983 matching += 1;
5984 if (matching[0] == '\0')
5985 return 1;
5986 }
5987
5988 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5989
5990 if (strcmp (str, "TKB") == 0)
5991 return 1;
5992
5993 #if 0
5994 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5995 with a N at the end. Unfortunately, the compiler uses the same
5996 convention for other internal types it creates. So treating
5997 all entity names that end with an "N" as a name suffix causes
5998 some regressions. For instance, consider the case of an enumerated
5999 type. To support the 'Image attribute, it creates an array whose
6000 name ends with N.
6001 Having a single character like this as a suffix carrying some
6002 information is a bit risky. Perhaps we should change the encoding
6003 to be something like "_N" instead. In the meantime, do not do
6004 the following check. */
6005 /* Protected Object Subprograms */
6006 if (len == 1 && str [0] == 'N')
6007 return 1;
6008 #endif
6009
6010 /* _E[0-9]+[bs]$ */
6011 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6012 {
6013 matching = str + 3;
6014 while (isdigit (matching[0]))
6015 matching += 1;
6016 if ((matching[0] == 'b' || matching[0] == 's')
6017 && matching [1] == '\0')
6018 return 1;
6019 }
6020
6021 /* ??? We should not modify STR directly, as we are doing below. This
6022 is fine in this case, but may become problematic later if we find
6023 that this alternative did not work, and want to try matching
6024 another one from the begining of STR. Since we modified it, we
6025 won't be able to find the begining of the string anymore! */
6026 if (str[0] == 'X')
6027 {
6028 str += 1;
6029 while (str[0] != '_' && str[0] != '\0')
6030 {
6031 if (str[0] != 'n' && str[0] != 'b')
6032 return 0;
6033 str += 1;
6034 }
6035 }
6036
6037 if (str[0] == '\000')
6038 return 1;
6039
6040 if (str[0] == '_')
6041 {
6042 if (str[1] != '_' || str[2] == '\000')
6043 return 0;
6044 if (str[2] == '_')
6045 {
6046 if (strcmp (str + 3, "JM") == 0)
6047 return 1;
6048 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6049 the LJM suffix in favor of the JM one. But we will
6050 still accept LJM as a valid suffix for a reasonable
6051 amount of time, just to allow ourselves to debug programs
6052 compiled using an older version of GNAT. */
6053 if (strcmp (str + 3, "LJM") == 0)
6054 return 1;
6055 if (str[3] != 'X')
6056 return 0;
6057 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6058 || str[4] == 'U' || str[4] == 'P')
6059 return 1;
6060 if (str[4] == 'R' && str[5] != 'T')
6061 return 1;
6062 return 0;
6063 }
6064 if (!isdigit (str[2]))
6065 return 0;
6066 for (k = 3; str[k] != '\0'; k += 1)
6067 if (!isdigit (str[k]) && str[k] != '_')
6068 return 0;
6069 return 1;
6070 }
6071 if (str[0] == '$' && isdigit (str[1]))
6072 {
6073 for (k = 2; str[k] != '\0'; k += 1)
6074 if (!isdigit (str[k]) && str[k] != '_')
6075 return 0;
6076 return 1;
6077 }
6078 return 0;
6079 }
6080
6081 /* Return non-zero if the string starting at NAME and ending before
6082 NAME_END contains no capital letters. */
6083
6084 static int
6085 is_valid_name_for_wild_match (const char *name0)
6086 {
6087 std::string decoded_name = ada_decode (name0);
6088 int i;
6089
6090 /* If the decoded name starts with an angle bracket, it means that
6091 NAME0 does not follow the GNAT encoding format. It should then
6092 not be allowed as a possible wild match. */
6093 if (decoded_name[0] == '<')
6094 return 0;
6095
6096 for (i=0; decoded_name[i] != '\0'; i++)
6097 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6098 return 0;
6099
6100 return 1;
6101 }
6102
6103 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6104 that could start a simple name. Assumes that *NAMEP points into
6105 the string beginning at NAME0. */
6106
6107 static int
6108 advance_wild_match (const char **namep, const char *name0, int target0)
6109 {
6110 const char *name = *namep;
6111
6112 while (1)
6113 {
6114 int t0, t1;
6115
6116 t0 = *name;
6117 if (t0 == '_')
6118 {
6119 t1 = name[1];
6120 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6121 {
6122 name += 1;
6123 if (name == name0 + 5 && startswith (name0, "_ada"))
6124 break;
6125 else
6126 name += 1;
6127 }
6128 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6129 || name[2] == target0))
6130 {
6131 name += 2;
6132 break;
6133 }
6134 else
6135 return 0;
6136 }
6137 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6138 name += 1;
6139 else
6140 return 0;
6141 }
6142
6143 *namep = name;
6144 return 1;
6145 }
6146
6147 /* Return true iff NAME encodes a name of the form prefix.PATN.
6148 Ignores any informational suffixes of NAME (i.e., for which
6149 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6150 simple name. */
6151
6152 static bool
6153 wild_match (const char *name, const char *patn)
6154 {
6155 const char *p;
6156 const char *name0 = name;
6157
6158 while (1)
6159 {
6160 const char *match = name;
6161
6162 if (*name == *patn)
6163 {
6164 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6165 if (*p != *name)
6166 break;
6167 if (*p == '\0' && is_name_suffix (name))
6168 return match == name0 || is_valid_name_for_wild_match (name0);
6169
6170 if (name[-1] == '_')
6171 name -= 1;
6172 }
6173 if (!advance_wild_match (&name, name0, *patn))
6174 return false;
6175 }
6176 }
6177
6178 /* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6179 any trailing suffixes that encode debugging information or leading
6180 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6181 information that is ignored). */
6182
6183 static bool
6184 full_match (const char *sym_name, const char *search_name)
6185 {
6186 size_t search_name_len = strlen (search_name);
6187
6188 if (strncmp (sym_name, search_name, search_name_len) == 0
6189 && is_name_suffix (sym_name + search_name_len))
6190 return true;
6191
6192 if (startswith (sym_name, "_ada_")
6193 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6194 && is_name_suffix (sym_name + search_name_len + 5))
6195 return true;
6196
6197 return false;
6198 }
6199
6200 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6201 *defn_symbols, updating the list of symbols in OBSTACKP (if
6202 necessary). OBJFILE is the section containing BLOCK. */
6203
6204 static void
6205 ada_add_block_symbols (struct obstack *obstackp,
6206 const struct block *block,
6207 const lookup_name_info &lookup_name,
6208 domain_enum domain, struct objfile *objfile)
6209 {
6210 struct block_iterator iter;
6211 /* A matching argument symbol, if any. */
6212 struct symbol *arg_sym;
6213 /* Set true when we find a matching non-argument symbol. */
6214 int found_sym;
6215 struct symbol *sym;
6216
6217 arg_sym = NULL;
6218 found_sym = 0;
6219 for (sym = block_iter_match_first (block, lookup_name, &iter);
6220 sym != NULL;
6221 sym = block_iter_match_next (lookup_name, &iter))
6222 {
6223 if (symbol_matches_domain (sym->language (), SYMBOL_DOMAIN (sym), domain))
6224 {
6225 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6226 {
6227 if (SYMBOL_IS_ARGUMENT (sym))
6228 arg_sym = sym;
6229 else
6230 {
6231 found_sym = 1;
6232 add_defn_to_vec (obstackp,
6233 fixup_symbol_section (sym, objfile),
6234 block);
6235 }
6236 }
6237 }
6238 }
6239
6240 /* Handle renamings. */
6241
6242 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
6243 found_sym = 1;
6244
6245 if (!found_sym && arg_sym != NULL)
6246 {
6247 add_defn_to_vec (obstackp,
6248 fixup_symbol_section (arg_sym, objfile),
6249 block);
6250 }
6251
6252 if (!lookup_name.ada ().wild_match_p ())
6253 {
6254 arg_sym = NULL;
6255 found_sym = 0;
6256 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6257 const char *name = ada_lookup_name.c_str ();
6258 size_t name_len = ada_lookup_name.size ();
6259
6260 ALL_BLOCK_SYMBOLS (block, iter, sym)
6261 {
6262 if (symbol_matches_domain (sym->language (),
6263 SYMBOL_DOMAIN (sym), domain))
6264 {
6265 int cmp;
6266
6267 cmp = (int) '_' - (int) sym->linkage_name ()[0];
6268 if (cmp == 0)
6269 {
6270 cmp = !startswith (sym->linkage_name (), "_ada_");
6271 if (cmp == 0)
6272 cmp = strncmp (name, sym->linkage_name () + 5,
6273 name_len);
6274 }
6275
6276 if (cmp == 0
6277 && is_name_suffix (sym->linkage_name () + name_len + 5))
6278 {
6279 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6280 {
6281 if (SYMBOL_IS_ARGUMENT (sym))
6282 arg_sym = sym;
6283 else
6284 {
6285 found_sym = 1;
6286 add_defn_to_vec (obstackp,
6287 fixup_symbol_section (sym, objfile),
6288 block);
6289 }
6290 }
6291 }
6292 }
6293 }
6294
6295 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6296 They aren't parameters, right? */
6297 if (!found_sym && arg_sym != NULL)
6298 {
6299 add_defn_to_vec (obstackp,
6300 fixup_symbol_section (arg_sym, objfile),
6301 block);
6302 }
6303 }
6304 }
6305 \f
6306
6307 /* Symbol Completion */
6308
6309 /* See symtab.h. */
6310
6311 bool
6312 ada_lookup_name_info::matches
6313 (const char *sym_name,
6314 symbol_name_match_type match_type,
6315 completion_match_result *comp_match_res) const
6316 {
6317 bool match = false;
6318 const char *text = m_encoded_name.c_str ();
6319 size_t text_len = m_encoded_name.size ();
6320
6321 /* First, test against the fully qualified name of the symbol. */
6322
6323 if (strncmp (sym_name, text, text_len) == 0)
6324 match = true;
6325
6326 std::string decoded_name = ada_decode (sym_name);
6327 if (match && !m_encoded_p)
6328 {
6329 /* One needed check before declaring a positive match is to verify
6330 that iff we are doing a verbatim match, the decoded version
6331 of the symbol name starts with '<'. Otherwise, this symbol name
6332 is not a suitable completion. */
6333
6334 bool has_angle_bracket = (decoded_name[0] == '<');
6335 match = (has_angle_bracket == m_verbatim_p);
6336 }
6337
6338 if (match && !m_verbatim_p)
6339 {
6340 /* When doing non-verbatim match, another check that needs to
6341 be done is to verify that the potentially matching symbol name
6342 does not include capital letters, because the ada-mode would
6343 not be able to understand these symbol names without the
6344 angle bracket notation. */
6345 const char *tmp;
6346
6347 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6348 if (*tmp != '\0')
6349 match = false;
6350 }
6351
6352 /* Second: Try wild matching... */
6353
6354 if (!match && m_wild_match_p)
6355 {
6356 /* Since we are doing wild matching, this means that TEXT
6357 may represent an unqualified symbol name. We therefore must
6358 also compare TEXT against the unqualified name of the symbol. */
6359 sym_name = ada_unqualified_name (decoded_name.c_str ());
6360
6361 if (strncmp (sym_name, text, text_len) == 0)
6362 match = true;
6363 }
6364
6365 /* Finally: If we found a match, prepare the result to return. */
6366
6367 if (!match)
6368 return false;
6369
6370 if (comp_match_res != NULL)
6371 {
6372 std::string &match_str = comp_match_res->match.storage ();
6373
6374 if (!m_encoded_p)
6375 match_str = ada_decode (sym_name);
6376 else
6377 {
6378 if (m_verbatim_p)
6379 match_str = add_angle_brackets (sym_name);
6380 else
6381 match_str = sym_name;
6382
6383 }
6384
6385 comp_match_res->set_match (match_str.c_str ());
6386 }
6387
6388 return true;
6389 }
6390
6391 /* Add the list of possible symbol names completing TEXT to TRACKER.
6392 WORD is the entire command on which completion is made. */
6393
6394 static void
6395 ada_collect_symbol_completion_matches (completion_tracker &tracker,
6396 complete_symbol_mode mode,
6397 symbol_name_match_type name_match_type,
6398 const char *text, const char *word,
6399 enum type_code code)
6400 {
6401 struct symbol *sym;
6402 const struct block *b, *surrounding_static_block = 0;
6403 struct block_iterator iter;
6404
6405 gdb_assert (code == TYPE_CODE_UNDEF);
6406
6407 lookup_name_info lookup_name (text, name_match_type, true);
6408
6409 /* First, look at the partial symtab symbols. */
6410 expand_symtabs_matching (NULL,
6411 lookup_name,
6412 NULL,
6413 NULL,
6414 ALL_DOMAIN);
6415
6416 /* At this point scan through the misc symbol vectors and add each
6417 symbol you find to the list. Eventually we want to ignore
6418 anything that isn't a text symbol (everything else will be
6419 handled by the psymtab code above). */
6420
6421 for (objfile *objfile : current_program_space->objfiles ())
6422 {
6423 for (minimal_symbol *msymbol : objfile->msymbols ())
6424 {
6425 QUIT;
6426
6427 if (completion_skip_symbol (mode, msymbol))
6428 continue;
6429
6430 language symbol_language = msymbol->language ();
6431
6432 /* Ada minimal symbols won't have their language set to Ada. If
6433 we let completion_list_add_name compare using the
6434 default/C-like matcher, then when completing e.g., symbols in a
6435 package named "pck", we'd match internal Ada symbols like
6436 "pckS", which are invalid in an Ada expression, unless you wrap
6437 them in '<' '>' to request a verbatim match.
6438
6439 Unfortunately, some Ada encoded names successfully demangle as
6440 C++ symbols (using an old mangling scheme), such as "name__2Xn"
6441 -> "Xn::name(void)" and thus some Ada minimal symbols end up
6442 with the wrong language set. Paper over that issue here. */
6443 if (symbol_language == language_auto
6444 || symbol_language == language_cplus)
6445 symbol_language = language_ada;
6446
6447 completion_list_add_name (tracker,
6448 symbol_language,
6449 msymbol->linkage_name (),
6450 lookup_name, text, word);
6451 }
6452 }
6453
6454 /* Search upwards from currently selected frame (so that we can
6455 complete on local vars. */
6456
6457 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6458 {
6459 if (!BLOCK_SUPERBLOCK (b))
6460 surrounding_static_block = b; /* For elmin of dups */
6461
6462 ALL_BLOCK_SYMBOLS (b, iter, sym)
6463 {
6464 if (completion_skip_symbol (mode, sym))
6465 continue;
6466
6467 completion_list_add_name (tracker,
6468 sym->language (),
6469 sym->linkage_name (),
6470 lookup_name, text, word);
6471 }
6472 }
6473
6474 /* Go through the symtabs and check the externs and statics for
6475 symbols which match. */
6476
6477 for (objfile *objfile : current_program_space->objfiles ())
6478 {
6479 for (compunit_symtab *s : objfile->compunits ())
6480 {
6481 QUIT;
6482 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6483 ALL_BLOCK_SYMBOLS (b, iter, sym)
6484 {
6485 if (completion_skip_symbol (mode, sym))
6486 continue;
6487
6488 completion_list_add_name (tracker,
6489 sym->language (),
6490 sym->linkage_name (),
6491 lookup_name, text, word);
6492 }
6493 }
6494 }
6495
6496 for (objfile *objfile : current_program_space->objfiles ())
6497 {
6498 for (compunit_symtab *s : objfile->compunits ())
6499 {
6500 QUIT;
6501 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6502 /* Don't do this block twice. */
6503 if (b == surrounding_static_block)
6504 continue;
6505 ALL_BLOCK_SYMBOLS (b, iter, sym)
6506 {
6507 if (completion_skip_symbol (mode, sym))
6508 continue;
6509
6510 completion_list_add_name (tracker,
6511 sym->language (),
6512 sym->linkage_name (),
6513 lookup_name, text, word);
6514 }
6515 }
6516 }
6517 }
6518
6519 /* Field Access */
6520
6521 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6522 for tagged types. */
6523
6524 static int
6525 ada_is_dispatch_table_ptr_type (struct type *type)
6526 {
6527 const char *name;
6528
6529 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6530 return 0;
6531
6532 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6533 if (name == NULL)
6534 return 0;
6535
6536 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6537 }
6538
6539 /* Return non-zero if TYPE is an interface tag. */
6540
6541 static int
6542 ada_is_interface_tag (struct type *type)
6543 {
6544 const char *name = TYPE_NAME (type);
6545
6546 if (name == NULL)
6547 return 0;
6548
6549 return (strcmp (name, "ada__tags__interface_tag") == 0);
6550 }
6551
6552 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6553 to be invisible to users. */
6554
6555 int
6556 ada_is_ignored_field (struct type *type, int field_num)
6557 {
6558 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6559 return 1;
6560
6561 /* Check the name of that field. */
6562 {
6563 const char *name = TYPE_FIELD_NAME (type, field_num);
6564
6565 /* Anonymous field names should not be printed.
6566 brobecker/2007-02-20: I don't think this can actually happen
6567 but we don't want to print the value of anonymous fields anyway. */
6568 if (name == NULL)
6569 return 1;
6570
6571 /* Normally, fields whose name start with an underscore ("_")
6572 are fields that have been internally generated by the compiler,
6573 and thus should not be printed. The "_parent" field is special,
6574 however: This is a field internally generated by the compiler
6575 for tagged types, and it contains the components inherited from
6576 the parent type. This field should not be printed as is, but
6577 should not be ignored either. */
6578 if (name[0] == '_' && !startswith (name, "_parent"))
6579 return 1;
6580 }
6581
6582 /* If this is the dispatch table of a tagged type or an interface tag,
6583 then ignore. */
6584 if (ada_is_tagged_type (type, 1)
6585 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6586 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6587 return 1;
6588
6589 /* Not a special field, so it should not be ignored. */
6590 return 0;
6591 }
6592
6593 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6594 pointer or reference type whose ultimate target has a tag field. */
6595
6596 int
6597 ada_is_tagged_type (struct type *type, int refok)
6598 {
6599 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
6600 }
6601
6602 /* True iff TYPE represents the type of X'Tag */
6603
6604 int
6605 ada_is_tag_type (struct type *type)
6606 {
6607 type = ada_check_typedef (type);
6608
6609 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6610 return 0;
6611 else
6612 {
6613 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6614
6615 return (name != NULL
6616 && strcmp (name, "ada__tags__dispatch_table") == 0);
6617 }
6618 }
6619
6620 /* The type of the tag on VAL. */
6621
6622 static struct type *
6623 ada_tag_type (struct value *val)
6624 {
6625 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6626 }
6627
6628 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6629 retired at Ada 05). */
6630
6631 static int
6632 is_ada95_tag (struct value *tag)
6633 {
6634 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6635 }
6636
6637 /* The value of the tag on VAL. */
6638
6639 static struct value *
6640 ada_value_tag (struct value *val)
6641 {
6642 return ada_value_struct_elt (val, "_tag", 0);
6643 }
6644
6645 /* The value of the tag on the object of type TYPE whose contents are
6646 saved at VALADDR, if it is non-null, or is at memory address
6647 ADDRESS. */
6648
6649 static struct value *
6650 value_tag_from_contents_and_address (struct type *type,
6651 const gdb_byte *valaddr,
6652 CORE_ADDR address)
6653 {
6654 int tag_byte_offset;
6655 struct type *tag_type;
6656
6657 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6658 NULL, NULL, NULL))
6659 {
6660 const gdb_byte *valaddr1 = ((valaddr == NULL)
6661 ? NULL
6662 : valaddr + tag_byte_offset);
6663 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6664
6665 return value_from_contents_and_address (tag_type, valaddr1, address1);
6666 }
6667 return NULL;
6668 }
6669
6670 static struct type *
6671 type_from_tag (struct value *tag)
6672 {
6673 const char *type_name = ada_tag_name (tag);
6674
6675 if (type_name != NULL)
6676 return ada_find_any_type (ada_encode (type_name));
6677 return NULL;
6678 }
6679
6680 /* Given a value OBJ of a tagged type, return a value of this
6681 type at the base address of the object. The base address, as
6682 defined in Ada.Tags, it is the address of the primary tag of
6683 the object, and therefore where the field values of its full
6684 view can be fetched. */
6685
6686 struct value *
6687 ada_tag_value_at_base_address (struct value *obj)
6688 {
6689 struct value *val;
6690 LONGEST offset_to_top = 0;
6691 struct type *ptr_type, *obj_type;
6692 struct value *tag;
6693 CORE_ADDR base_address;
6694
6695 obj_type = value_type (obj);
6696
6697 /* It is the responsability of the caller to deref pointers. */
6698
6699 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6700 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6701 return obj;
6702
6703 tag = ada_value_tag (obj);
6704 if (!tag)
6705 return obj;
6706
6707 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6708
6709 if (is_ada95_tag (tag))
6710 return obj;
6711
6712 ptr_type = language_lookup_primitive_type
6713 (language_def (language_ada), target_gdbarch(), "storage_offset");
6714 ptr_type = lookup_pointer_type (ptr_type);
6715 val = value_cast (ptr_type, tag);
6716 if (!val)
6717 return obj;
6718
6719 /* It is perfectly possible that an exception be raised while
6720 trying to determine the base address, just like for the tag;
6721 see ada_tag_name for more details. We do not print the error
6722 message for the same reason. */
6723
6724 try
6725 {
6726 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6727 }
6728
6729 catch (const gdb_exception_error &e)
6730 {
6731 return obj;
6732 }
6733
6734 /* If offset is null, nothing to do. */
6735
6736 if (offset_to_top == 0)
6737 return obj;
6738
6739 /* -1 is a special case in Ada.Tags; however, what should be done
6740 is not quite clear from the documentation. So do nothing for
6741 now. */
6742
6743 if (offset_to_top == -1)
6744 return obj;
6745
6746 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6747 from the base address. This was however incompatible with
6748 C++ dispatch table: C++ uses a *negative* value to *add*
6749 to the base address. Ada's convention has therefore been
6750 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6751 use the same convention. Here, we support both cases by
6752 checking the sign of OFFSET_TO_TOP. */
6753
6754 if (offset_to_top > 0)
6755 offset_to_top = -offset_to_top;
6756
6757 base_address = value_address (obj) + offset_to_top;
6758 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6759
6760 /* Make sure that we have a proper tag at the new address.
6761 Otherwise, offset_to_top is bogus (which can happen when
6762 the object is not initialized yet). */
6763
6764 if (!tag)
6765 return obj;
6766
6767 obj_type = type_from_tag (tag);
6768
6769 if (!obj_type)
6770 return obj;
6771
6772 return value_from_contents_and_address (obj_type, NULL, base_address);
6773 }
6774
6775 /* Return the "ada__tags__type_specific_data" type. */
6776
6777 static struct type *
6778 ada_get_tsd_type (struct inferior *inf)
6779 {
6780 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6781
6782 if (data->tsd_type == 0)
6783 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6784 return data->tsd_type;
6785 }
6786
6787 /* Return the TSD (type-specific data) associated to the given TAG.
6788 TAG is assumed to be the tag of a tagged-type entity.
6789
6790 May return NULL if we are unable to get the TSD. */
6791
6792 static struct value *
6793 ada_get_tsd_from_tag (struct value *tag)
6794 {
6795 struct value *val;
6796 struct type *type;
6797
6798 /* First option: The TSD is simply stored as a field of our TAG.
6799 Only older versions of GNAT would use this format, but we have
6800 to test it first, because there are no visible markers for
6801 the current approach except the absence of that field. */
6802
6803 val = ada_value_struct_elt (tag, "tsd", 1);
6804 if (val)
6805 return val;
6806
6807 /* Try the second representation for the dispatch table (in which
6808 there is no explicit 'tsd' field in the referent of the tag pointer,
6809 and instead the tsd pointer is stored just before the dispatch
6810 table. */
6811
6812 type = ada_get_tsd_type (current_inferior());
6813 if (type == NULL)
6814 return NULL;
6815 type = lookup_pointer_type (lookup_pointer_type (type));
6816 val = value_cast (type, tag);
6817 if (val == NULL)
6818 return NULL;
6819 return value_ind (value_ptradd (val, -1));
6820 }
6821
6822 /* Given the TSD of a tag (type-specific data), return a string
6823 containing the name of the associated type.
6824
6825 The returned value is good until the next call. May return NULL
6826 if we are unable to determine the tag name. */
6827
6828 static char *
6829 ada_tag_name_from_tsd (struct value *tsd)
6830 {
6831 static char name[1024];
6832 char *p;
6833 struct value *val;
6834
6835 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6836 if (val == NULL)
6837 return NULL;
6838 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6839 for (p = name; *p != '\0'; p += 1)
6840 if (isalpha (*p))
6841 *p = tolower (*p);
6842 return name;
6843 }
6844
6845 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6846 a C string.
6847
6848 Return NULL if the TAG is not an Ada tag, or if we were unable to
6849 determine the name of that tag. The result is good until the next
6850 call. */
6851
6852 const char *
6853 ada_tag_name (struct value *tag)
6854 {
6855 char *name = NULL;
6856
6857 if (!ada_is_tag_type (value_type (tag)))
6858 return NULL;
6859
6860 /* It is perfectly possible that an exception be raised while trying
6861 to determine the TAG's name, even under normal circumstances:
6862 The associated variable may be uninitialized or corrupted, for
6863 instance. We do not let any exception propagate past this point.
6864 instead we return NULL.
6865
6866 We also do not print the error message either (which often is very
6867 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6868 the caller print a more meaningful message if necessary. */
6869 try
6870 {
6871 struct value *tsd = ada_get_tsd_from_tag (tag);
6872
6873 if (tsd != NULL)
6874 name = ada_tag_name_from_tsd (tsd);
6875 }
6876 catch (const gdb_exception_error &e)
6877 {
6878 }
6879
6880 return name;
6881 }
6882
6883 /* The parent type of TYPE, or NULL if none. */
6884
6885 struct type *
6886 ada_parent_type (struct type *type)
6887 {
6888 int i;
6889
6890 type = ada_check_typedef (type);
6891
6892 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6893 return NULL;
6894
6895 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6896 if (ada_is_parent_field (type, i))
6897 {
6898 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6899
6900 /* If the _parent field is a pointer, then dereference it. */
6901 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6902 parent_type = TYPE_TARGET_TYPE (parent_type);
6903 /* If there is a parallel XVS type, get the actual base type. */
6904 parent_type = ada_get_base_type (parent_type);
6905
6906 return ada_check_typedef (parent_type);
6907 }
6908
6909 return NULL;
6910 }
6911
6912 /* True iff field number FIELD_NUM of structure type TYPE contains the
6913 parent-type (inherited) fields of a derived type. Assumes TYPE is
6914 a structure type with at least FIELD_NUM+1 fields. */
6915
6916 int
6917 ada_is_parent_field (struct type *type, int field_num)
6918 {
6919 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6920
6921 return (name != NULL
6922 && (startswith (name, "PARENT")
6923 || startswith (name, "_parent")));
6924 }
6925
6926 /* True iff field number FIELD_NUM of structure type TYPE is a
6927 transparent wrapper field (which should be silently traversed when doing
6928 field selection and flattened when printing). Assumes TYPE is a
6929 structure type with at least FIELD_NUM+1 fields. Such fields are always
6930 structures. */
6931
6932 int
6933 ada_is_wrapper_field (struct type *type, int field_num)
6934 {
6935 const char *name = TYPE_FIELD_NAME (type, field_num);
6936
6937 if (name != NULL && strcmp (name, "RETVAL") == 0)
6938 {
6939 /* This happens in functions with "out" or "in out" parameters
6940 which are passed by copy. For such functions, GNAT describes
6941 the function's return type as being a struct where the return
6942 value is in a field called RETVAL, and where the other "out"
6943 or "in out" parameters are fields of that struct. This is not
6944 a wrapper. */
6945 return 0;
6946 }
6947
6948 return (name != NULL
6949 && (startswith (name, "PARENT")
6950 || strcmp (name, "REP") == 0
6951 || startswith (name, "_parent")
6952 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6953 }
6954
6955 /* True iff field number FIELD_NUM of structure or union type TYPE
6956 is a variant wrapper. Assumes TYPE is a structure type with at least
6957 FIELD_NUM+1 fields. */
6958
6959 int
6960 ada_is_variant_part (struct type *type, int field_num)
6961 {
6962 /* Only Ada types are eligible. */
6963 if (!ADA_TYPE_P (type))
6964 return 0;
6965
6966 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6967
6968 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6969 || (is_dynamic_field (type, field_num)
6970 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6971 == TYPE_CODE_UNION)));
6972 }
6973
6974 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6975 whose discriminants are contained in the record type OUTER_TYPE,
6976 returns the type of the controlling discriminant for the variant.
6977 May return NULL if the type could not be found. */
6978
6979 struct type *
6980 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6981 {
6982 const char *name = ada_variant_discrim_name (var_type);
6983
6984 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
6985 }
6986
6987 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6988 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6989 represents a 'when others' clause; otherwise 0. */
6990
6991 static int
6992 ada_is_others_clause (struct type *type, int field_num)
6993 {
6994 const char *name = TYPE_FIELD_NAME (type, field_num);
6995
6996 return (name != NULL && name[0] == 'O');
6997 }
6998
6999 /* Assuming that TYPE0 is the type of the variant part of a record,
7000 returns the name of the discriminant controlling the variant.
7001 The value is valid until the next call to ada_variant_discrim_name. */
7002
7003 const char *
7004 ada_variant_discrim_name (struct type *type0)
7005 {
7006 static char *result = NULL;
7007 static size_t result_len = 0;
7008 struct type *type;
7009 const char *name;
7010 const char *discrim_end;
7011 const char *discrim_start;
7012
7013 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7014 type = TYPE_TARGET_TYPE (type0);
7015 else
7016 type = type0;
7017
7018 name = ada_type_name (type);
7019
7020 if (name == NULL || name[0] == '\000')
7021 return "";
7022
7023 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7024 discrim_end -= 1)
7025 {
7026 if (startswith (discrim_end, "___XVN"))
7027 break;
7028 }
7029 if (discrim_end == name)
7030 return "";
7031
7032 for (discrim_start = discrim_end; discrim_start != name + 3;
7033 discrim_start -= 1)
7034 {
7035 if (discrim_start == name + 1)
7036 return "";
7037 if ((discrim_start > name + 3
7038 && startswith (discrim_start - 3, "___"))
7039 || discrim_start[-1] == '.')
7040 break;
7041 }
7042
7043 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7044 strncpy (result, discrim_start, discrim_end - discrim_start);
7045 result[discrim_end - discrim_start] = '\0';
7046 return result;
7047 }
7048
7049 /* Scan STR for a subtype-encoded number, beginning at position K.
7050 Put the position of the character just past the number scanned in
7051 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7052 Return 1 if there was a valid number at the given position, and 0
7053 otherwise. A "subtype-encoded" number consists of the absolute value
7054 in decimal, followed by the letter 'm' to indicate a negative number.
7055 Assumes 0m does not occur. */
7056
7057 int
7058 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
7059 {
7060 ULONGEST RU;
7061
7062 if (!isdigit (str[k]))
7063 return 0;
7064
7065 /* Do it the hard way so as not to make any assumption about
7066 the relationship of unsigned long (%lu scan format code) and
7067 LONGEST. */
7068 RU = 0;
7069 while (isdigit (str[k]))
7070 {
7071 RU = RU * 10 + (str[k] - '0');
7072 k += 1;
7073 }
7074
7075 if (str[k] == 'm')
7076 {
7077 if (R != NULL)
7078 *R = (-(LONGEST) (RU - 1)) - 1;
7079 k += 1;
7080 }
7081 else if (R != NULL)
7082 *R = (LONGEST) RU;
7083
7084 /* NOTE on the above: Technically, C does not say what the results of
7085 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7086 number representable as a LONGEST (although either would probably work
7087 in most implementations). When RU>0, the locution in the then branch
7088 above is always equivalent to the negative of RU. */
7089
7090 if (new_k != NULL)
7091 *new_k = k;
7092 return 1;
7093 }
7094
7095 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7096 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7097 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
7098
7099 static int
7100 ada_in_variant (LONGEST val, struct type *type, int field_num)
7101 {
7102 const char *name = TYPE_FIELD_NAME (type, field_num);
7103 int p;
7104
7105 p = 0;
7106 while (1)
7107 {
7108 switch (name[p])
7109 {
7110 case '\0':
7111 return 0;
7112 case 'S':
7113 {
7114 LONGEST W;
7115
7116 if (!ada_scan_number (name, p + 1, &W, &p))
7117 return 0;
7118 if (val == W)
7119 return 1;
7120 break;
7121 }
7122 case 'R':
7123 {
7124 LONGEST L, U;
7125
7126 if (!ada_scan_number (name, p + 1, &L, &p)
7127 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7128 return 0;
7129 if (val >= L && val <= U)
7130 return 1;
7131 break;
7132 }
7133 case 'O':
7134 return 1;
7135 default:
7136 return 0;
7137 }
7138 }
7139 }
7140
7141 /* FIXME: Lots of redundancy below. Try to consolidate. */
7142
7143 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7144 ARG_TYPE, extract and return the value of one of its (non-static)
7145 fields. FIELDNO says which field. Differs from value_primitive_field
7146 only in that it can handle packed values of arbitrary type. */
7147
7148 static struct value *
7149 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
7150 struct type *arg_type)
7151 {
7152 struct type *type;
7153
7154 arg_type = ada_check_typedef (arg_type);
7155 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7156
7157 /* Handle packed fields. It might be that the field is not packed
7158 relative to its containing structure, but the structure itself is
7159 packed; in this case we must take the bit-field path. */
7160 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || value_bitpos (arg1) != 0)
7161 {
7162 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7163 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
7164
7165 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
7166 offset + bit_pos / 8,
7167 bit_pos % 8, bit_size, type);
7168 }
7169 else
7170 return value_primitive_field (arg1, offset, fieldno, arg_type);
7171 }
7172
7173 /* Find field with name NAME in object of type TYPE. If found,
7174 set the following for each argument that is non-null:
7175 - *FIELD_TYPE_P to the field's type;
7176 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7177 an object of that type;
7178 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7179 - *BIT_SIZE_P to its size in bits if the field is packed, and
7180 0 otherwise;
7181 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7182 fields up to but not including the desired field, or by the total
7183 number of fields if not found. A NULL value of NAME never
7184 matches; the function just counts visible fields in this case.
7185
7186 Notice that we need to handle when a tagged record hierarchy
7187 has some components with the same name, like in this scenario:
7188
7189 type Top_T is tagged record
7190 N : Integer := 1;
7191 U : Integer := 974;
7192 A : Integer := 48;
7193 end record;
7194
7195 type Middle_T is new Top.Top_T with record
7196 N : Character := 'a';
7197 C : Integer := 3;
7198 end record;
7199
7200 type Bottom_T is new Middle.Middle_T with record
7201 N : Float := 4.0;
7202 C : Character := '5';
7203 X : Integer := 6;
7204 A : Character := 'J';
7205 end record;
7206
7207 Let's say we now have a variable declared and initialized as follow:
7208
7209 TC : Top_A := new Bottom_T;
7210
7211 And then we use this variable to call this function
7212
7213 procedure Assign (Obj: in out Top_T; TV : Integer);
7214
7215 as follow:
7216
7217 Assign (Top_T (B), 12);
7218
7219 Now, we're in the debugger, and we're inside that procedure
7220 then and we want to print the value of obj.c:
7221
7222 Usually, the tagged record or one of the parent type owns the
7223 component to print and there's no issue but in this particular
7224 case, what does it mean to ask for Obj.C? Since the actual
7225 type for object is type Bottom_T, it could mean two things: type
7226 component C from the Middle_T view, but also component C from
7227 Bottom_T. So in that "undefined" case, when the component is
7228 not found in the non-resolved type (which includes all the
7229 components of the parent type), then resolve it and see if we
7230 get better luck once expanded.
7231
7232 In the case of homonyms in the derived tagged type, we don't
7233 guaranty anything, and pick the one that's easiest for us
7234 to program.
7235
7236 Returns 1 if found, 0 otherwise. */
7237
7238 static int
7239 find_struct_field (const char *name, struct type *type, int offset,
7240 struct type **field_type_p,
7241 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7242 int *index_p)
7243 {
7244 int i;
7245 int parent_offset = -1;
7246
7247 type = ada_check_typedef (type);
7248
7249 if (field_type_p != NULL)
7250 *field_type_p = NULL;
7251 if (byte_offset_p != NULL)
7252 *byte_offset_p = 0;
7253 if (bit_offset_p != NULL)
7254 *bit_offset_p = 0;
7255 if (bit_size_p != NULL)
7256 *bit_size_p = 0;
7257
7258 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7259 {
7260 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7261 int fld_offset = offset + bit_pos / 8;
7262 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7263
7264 if (t_field_name == NULL)
7265 continue;
7266
7267 else if (ada_is_parent_field (type, i))
7268 {
7269 /* This is a field pointing us to the parent type of a tagged
7270 type. As hinted in this function's documentation, we give
7271 preference to fields in the current record first, so what
7272 we do here is just record the index of this field before
7273 we skip it. If it turns out we couldn't find our field
7274 in the current record, then we'll get back to it and search
7275 inside it whether the field might exist in the parent. */
7276
7277 parent_offset = i;
7278 continue;
7279 }
7280
7281 else if (name != NULL && field_name_match (t_field_name, name))
7282 {
7283 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7284
7285 if (field_type_p != NULL)
7286 *field_type_p = TYPE_FIELD_TYPE (type, i);
7287 if (byte_offset_p != NULL)
7288 *byte_offset_p = fld_offset;
7289 if (bit_offset_p != NULL)
7290 *bit_offset_p = bit_pos % 8;
7291 if (bit_size_p != NULL)
7292 *bit_size_p = bit_size;
7293 return 1;
7294 }
7295 else if (ada_is_wrapper_field (type, i))
7296 {
7297 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7298 field_type_p, byte_offset_p, bit_offset_p,
7299 bit_size_p, index_p))
7300 return 1;
7301 }
7302 else if (ada_is_variant_part (type, i))
7303 {
7304 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7305 fixed type?? */
7306 int j;
7307 struct type *field_type
7308 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7309
7310 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7311 {
7312 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7313 fld_offset
7314 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7315 field_type_p, byte_offset_p,
7316 bit_offset_p, bit_size_p, index_p))
7317 return 1;
7318 }
7319 }
7320 else if (index_p != NULL)
7321 *index_p += 1;
7322 }
7323
7324 /* Field not found so far. If this is a tagged type which
7325 has a parent, try finding that field in the parent now. */
7326
7327 if (parent_offset != -1)
7328 {
7329 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7330 int fld_offset = offset + bit_pos / 8;
7331
7332 if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset),
7333 fld_offset, field_type_p, byte_offset_p,
7334 bit_offset_p, bit_size_p, index_p))
7335 return 1;
7336 }
7337
7338 return 0;
7339 }
7340
7341 /* Number of user-visible fields in record type TYPE. */
7342
7343 static int
7344 num_visible_fields (struct type *type)
7345 {
7346 int n;
7347
7348 n = 0;
7349 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7350 return n;
7351 }
7352
7353 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7354 and search in it assuming it has (class) type TYPE.
7355 If found, return value, else return NULL.
7356
7357 Searches recursively through wrapper fields (e.g., '_parent').
7358
7359 In the case of homonyms in the tagged types, please refer to the
7360 long explanation in find_struct_field's function documentation. */
7361
7362 static struct value *
7363 ada_search_struct_field (const char *name, struct value *arg, int offset,
7364 struct type *type)
7365 {
7366 int i;
7367 int parent_offset = -1;
7368
7369 type = ada_check_typedef (type);
7370 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7371 {
7372 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7373
7374 if (t_field_name == NULL)
7375 continue;
7376
7377 else if (ada_is_parent_field (type, i))
7378 {
7379 /* This is a field pointing us to the parent type of a tagged
7380 type. As hinted in this function's documentation, we give
7381 preference to fields in the current record first, so what
7382 we do here is just record the index of this field before
7383 we skip it. If it turns out we couldn't find our field
7384 in the current record, then we'll get back to it and search
7385 inside it whether the field might exist in the parent. */
7386
7387 parent_offset = i;
7388 continue;
7389 }
7390
7391 else if (field_name_match (t_field_name, name))
7392 return ada_value_primitive_field (arg, offset, i, type);
7393
7394 else if (ada_is_wrapper_field (type, i))
7395 {
7396 struct value *v = /* Do not let indent join lines here. */
7397 ada_search_struct_field (name, arg,
7398 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7399 TYPE_FIELD_TYPE (type, i));
7400
7401 if (v != NULL)
7402 return v;
7403 }
7404
7405 else if (ada_is_variant_part (type, i))
7406 {
7407 /* PNH: Do we ever get here? See find_struct_field. */
7408 int j;
7409 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7410 i));
7411 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7412
7413 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7414 {
7415 struct value *v = ada_search_struct_field /* Force line
7416 break. */
7417 (name, arg,
7418 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7419 TYPE_FIELD_TYPE (field_type, j));
7420
7421 if (v != NULL)
7422 return v;
7423 }
7424 }
7425 }
7426
7427 /* Field not found so far. If this is a tagged type which
7428 has a parent, try finding that field in the parent now. */
7429
7430 if (parent_offset != -1)
7431 {
7432 struct value *v = ada_search_struct_field (
7433 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7434 TYPE_FIELD_TYPE (type, parent_offset));
7435
7436 if (v != NULL)
7437 return v;
7438 }
7439
7440 return NULL;
7441 }
7442
7443 static struct value *ada_index_struct_field_1 (int *, struct value *,
7444 int, struct type *);
7445
7446
7447 /* Return field #INDEX in ARG, where the index is that returned by
7448 * find_struct_field through its INDEX_P argument. Adjust the address
7449 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7450 * If found, return value, else return NULL. */
7451
7452 static struct value *
7453 ada_index_struct_field (int index, struct value *arg, int offset,
7454 struct type *type)
7455 {
7456 return ada_index_struct_field_1 (&index, arg, offset, type);
7457 }
7458
7459
7460 /* Auxiliary function for ada_index_struct_field. Like
7461 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7462 * *INDEX_P. */
7463
7464 static struct value *
7465 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7466 struct type *type)
7467 {
7468 int i;
7469 type = ada_check_typedef (type);
7470
7471 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7472 {
7473 if (TYPE_FIELD_NAME (type, i) == NULL)
7474 continue;
7475 else if (ada_is_wrapper_field (type, i))
7476 {
7477 struct value *v = /* Do not let indent join lines here. */
7478 ada_index_struct_field_1 (index_p, arg,
7479 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7480 TYPE_FIELD_TYPE (type, i));
7481
7482 if (v != NULL)
7483 return v;
7484 }
7485
7486 else if (ada_is_variant_part (type, i))
7487 {
7488 /* PNH: Do we ever get here? See ada_search_struct_field,
7489 find_struct_field. */
7490 error (_("Cannot assign this kind of variant record"));
7491 }
7492 else if (*index_p == 0)
7493 return ada_value_primitive_field (arg, offset, i, type);
7494 else
7495 *index_p -= 1;
7496 }
7497 return NULL;
7498 }
7499
7500 /* Return a string representation of type TYPE. */
7501
7502 static std::string
7503 type_as_string (struct type *type)
7504 {
7505 string_file tmp_stream;
7506
7507 type_print (type, "", &tmp_stream, -1);
7508
7509 return std::move (tmp_stream.string ());
7510 }
7511
7512 /* Given a type TYPE, look up the type of the component of type named NAME.
7513 If DISPP is non-null, add its byte displacement from the beginning of a
7514 structure (pointed to by a value) of type TYPE to *DISPP (does not
7515 work for packed fields).
7516
7517 Matches any field whose name has NAME as a prefix, possibly
7518 followed by "___".
7519
7520 TYPE can be either a struct or union. If REFOK, TYPE may also
7521 be a (pointer or reference)+ to a struct or union, and the
7522 ultimate target type will be searched.
7523
7524 Looks recursively into variant clauses and parent types.
7525
7526 In the case of homonyms in the tagged types, please refer to the
7527 long explanation in find_struct_field's function documentation.
7528
7529 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7530 TYPE is not a type of the right kind. */
7531
7532 static struct type *
7533 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
7534 int noerr)
7535 {
7536 int i;
7537 int parent_offset = -1;
7538
7539 if (name == NULL)
7540 goto BadName;
7541
7542 if (refok && type != NULL)
7543 while (1)
7544 {
7545 type = ada_check_typedef (type);
7546 if (TYPE_CODE (type) != TYPE_CODE_PTR
7547 && TYPE_CODE (type) != TYPE_CODE_REF)
7548 break;
7549 type = TYPE_TARGET_TYPE (type);
7550 }
7551
7552 if (type == NULL
7553 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7554 && TYPE_CODE (type) != TYPE_CODE_UNION))
7555 {
7556 if (noerr)
7557 return NULL;
7558
7559 error (_("Type %s is not a structure or union type"),
7560 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7561 }
7562
7563 type = to_static_fixed_type (type);
7564
7565 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7566 {
7567 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7568 struct type *t;
7569
7570 if (t_field_name == NULL)
7571 continue;
7572
7573 else if (ada_is_parent_field (type, i))
7574 {
7575 /* This is a field pointing us to the parent type of a tagged
7576 type. As hinted in this function's documentation, we give
7577 preference to fields in the current record first, so what
7578 we do here is just record the index of this field before
7579 we skip it. If it turns out we couldn't find our field
7580 in the current record, then we'll get back to it and search
7581 inside it whether the field might exist in the parent. */
7582
7583 parent_offset = i;
7584 continue;
7585 }
7586
7587 else if (field_name_match (t_field_name, name))
7588 return TYPE_FIELD_TYPE (type, i);
7589
7590 else if (ada_is_wrapper_field (type, i))
7591 {
7592 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7593 0, 1);
7594 if (t != NULL)
7595 return t;
7596 }
7597
7598 else if (ada_is_variant_part (type, i))
7599 {
7600 int j;
7601 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7602 i));
7603
7604 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7605 {
7606 /* FIXME pnh 2008/01/26: We check for a field that is
7607 NOT wrapped in a struct, since the compiler sometimes
7608 generates these for unchecked variant types. Revisit
7609 if the compiler changes this practice. */
7610 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7611
7612 if (v_field_name != NULL
7613 && field_name_match (v_field_name, name))
7614 t = TYPE_FIELD_TYPE (field_type, j);
7615 else
7616 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7617 j),
7618 name, 0, 1);
7619
7620 if (t != NULL)
7621 return t;
7622 }
7623 }
7624
7625 }
7626
7627 /* Field not found so far. If this is a tagged type which
7628 has a parent, try finding that field in the parent now. */
7629
7630 if (parent_offset != -1)
7631 {
7632 struct type *t;
7633
7634 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset),
7635 name, 0, 1);
7636 if (t != NULL)
7637 return t;
7638 }
7639
7640 BadName:
7641 if (!noerr)
7642 {
7643 const char *name_str = name != NULL ? name : _("<null>");
7644
7645 error (_("Type %s has no component named %s"),
7646 type_as_string (type).c_str (), name_str);
7647 }
7648
7649 return NULL;
7650 }
7651
7652 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7653 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7654 represents an unchecked union (that is, the variant part of a
7655 record that is named in an Unchecked_Union pragma). */
7656
7657 static int
7658 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7659 {
7660 const char *discrim_name = ada_variant_discrim_name (var_type);
7661
7662 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7663 }
7664
7665
7666 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7667 within a value of type OUTER_TYPE that is stored in GDB at
7668 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7669 numbering from 0) is applicable. Returns -1 if none are. */
7670
7671 int
7672 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7673 const gdb_byte *outer_valaddr)
7674 {
7675 int others_clause;
7676 int i;
7677 const char *discrim_name = ada_variant_discrim_name (var_type);
7678 struct value *outer;
7679 struct value *discrim;
7680 LONGEST discrim_val;
7681
7682 /* Using plain value_from_contents_and_address here causes problems
7683 because we will end up trying to resolve a type that is currently
7684 being constructed. */
7685 outer = value_from_contents_and_address_unresolved (outer_type,
7686 outer_valaddr, 0);
7687 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7688 if (discrim == NULL)
7689 return -1;
7690 discrim_val = value_as_long (discrim);
7691
7692 others_clause = -1;
7693 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7694 {
7695 if (ada_is_others_clause (var_type, i))
7696 others_clause = i;
7697 else if (ada_in_variant (discrim_val, var_type, i))
7698 return i;
7699 }
7700
7701 return others_clause;
7702 }
7703 \f
7704
7705
7706 /* Dynamic-Sized Records */
7707
7708 /* Strategy: The type ostensibly attached to a value with dynamic size
7709 (i.e., a size that is not statically recorded in the debugging
7710 data) does not accurately reflect the size or layout of the value.
7711 Our strategy is to convert these values to values with accurate,
7712 conventional types that are constructed on the fly. */
7713
7714 /* There is a subtle and tricky problem here. In general, we cannot
7715 determine the size of dynamic records without its data. However,
7716 the 'struct value' data structure, which GDB uses to represent
7717 quantities in the inferior process (the target), requires the size
7718 of the type at the time of its allocation in order to reserve space
7719 for GDB's internal copy of the data. That's why the
7720 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7721 rather than struct value*s.
7722
7723 However, GDB's internal history variables ($1, $2, etc.) are
7724 struct value*s containing internal copies of the data that are not, in
7725 general, the same as the data at their corresponding addresses in
7726 the target. Fortunately, the types we give to these values are all
7727 conventional, fixed-size types (as per the strategy described
7728 above), so that we don't usually have to perform the
7729 'to_fixed_xxx_type' conversions to look at their values.
7730 Unfortunately, there is one exception: if one of the internal
7731 history variables is an array whose elements are unconstrained
7732 records, then we will need to create distinct fixed types for each
7733 element selected. */
7734
7735 /* The upshot of all of this is that many routines take a (type, host
7736 address, target address) triple as arguments to represent a value.
7737 The host address, if non-null, is supposed to contain an internal
7738 copy of the relevant data; otherwise, the program is to consult the
7739 target at the target address. */
7740
7741 /* Assuming that VAL0 represents a pointer value, the result of
7742 dereferencing it. Differs from value_ind in its treatment of
7743 dynamic-sized types. */
7744
7745 struct value *
7746 ada_value_ind (struct value *val0)
7747 {
7748 struct value *val = value_ind (val0);
7749
7750 if (ada_is_tagged_type (value_type (val), 0))
7751 val = ada_tag_value_at_base_address (val);
7752
7753 return ada_to_fixed_value (val);
7754 }
7755
7756 /* The value resulting from dereferencing any "reference to"
7757 qualifiers on VAL0. */
7758
7759 static struct value *
7760 ada_coerce_ref (struct value *val0)
7761 {
7762 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7763 {
7764 struct value *val = val0;
7765
7766 val = coerce_ref (val);
7767
7768 if (ada_is_tagged_type (value_type (val), 0))
7769 val = ada_tag_value_at_base_address (val);
7770
7771 return ada_to_fixed_value (val);
7772 }
7773 else
7774 return val0;
7775 }
7776
7777 /* Return OFF rounded upward if necessary to a multiple of
7778 ALIGNMENT (a power of 2). */
7779
7780 static unsigned int
7781 align_value (unsigned int off, unsigned int alignment)
7782 {
7783 return (off + alignment - 1) & ~(alignment - 1);
7784 }
7785
7786 /* Return the bit alignment required for field #F of template type TYPE. */
7787
7788 static unsigned int
7789 field_alignment (struct type *type, int f)
7790 {
7791 const char *name = TYPE_FIELD_NAME (type, f);
7792 int len;
7793 int align_offset;
7794
7795 /* The field name should never be null, unless the debugging information
7796 is somehow malformed. In this case, we assume the field does not
7797 require any alignment. */
7798 if (name == NULL)
7799 return 1;
7800
7801 len = strlen (name);
7802
7803 if (!isdigit (name[len - 1]))
7804 return 1;
7805
7806 if (isdigit (name[len - 2]))
7807 align_offset = len - 2;
7808 else
7809 align_offset = len - 1;
7810
7811 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7812 return TARGET_CHAR_BIT;
7813
7814 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7815 }
7816
7817 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7818
7819 static struct symbol *
7820 ada_find_any_type_symbol (const char *name)
7821 {
7822 struct symbol *sym;
7823
7824 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7825 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7826 return sym;
7827
7828 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7829 return sym;
7830 }
7831
7832 /* Find a type named NAME. Ignores ambiguity. This routine will look
7833 solely for types defined by debug info, it will not search the GDB
7834 primitive types. */
7835
7836 static struct type *
7837 ada_find_any_type (const char *name)
7838 {
7839 struct symbol *sym = ada_find_any_type_symbol (name);
7840
7841 if (sym != NULL)
7842 return SYMBOL_TYPE (sym);
7843
7844 return NULL;
7845 }
7846
7847 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7848 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7849 symbol, in which case it is returned. Otherwise, this looks for
7850 symbols whose name is that of NAME_SYM suffixed with "___XR".
7851 Return symbol if found, and NULL otherwise. */
7852
7853 static bool
7854 ada_is_renaming_symbol (struct symbol *name_sym)
7855 {
7856 const char *name = name_sym->linkage_name ();
7857 return strstr (name, "___XR") != NULL;
7858 }
7859
7860 /* Because of GNAT encoding conventions, several GDB symbols may match a
7861 given type name. If the type denoted by TYPE0 is to be preferred to
7862 that of TYPE1 for purposes of type printing, return non-zero;
7863 otherwise return 0. */
7864
7865 int
7866 ada_prefer_type (struct type *type0, struct type *type1)
7867 {
7868 if (type1 == NULL)
7869 return 1;
7870 else if (type0 == NULL)
7871 return 0;
7872 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7873 return 1;
7874 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7875 return 0;
7876 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7877 return 1;
7878 else if (ada_is_constrained_packed_array_type (type0))
7879 return 1;
7880 else if (ada_is_array_descriptor_type (type0)
7881 && !ada_is_array_descriptor_type (type1))
7882 return 1;
7883 else
7884 {
7885 const char *type0_name = TYPE_NAME (type0);
7886 const char *type1_name = TYPE_NAME (type1);
7887
7888 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7889 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7890 return 1;
7891 }
7892 return 0;
7893 }
7894
7895 /* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
7896 null. */
7897
7898 const char *
7899 ada_type_name (struct type *type)
7900 {
7901 if (type == NULL)
7902 return NULL;
7903 return TYPE_NAME (type);
7904 }
7905
7906 /* Search the list of "descriptive" types associated to TYPE for a type
7907 whose name is NAME. */
7908
7909 static struct type *
7910 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7911 {
7912 struct type *result, *tmp;
7913
7914 if (ada_ignore_descriptive_types_p)
7915 return NULL;
7916
7917 /* If there no descriptive-type info, then there is no parallel type
7918 to be found. */
7919 if (!HAVE_GNAT_AUX_INFO (type))
7920 return NULL;
7921
7922 result = TYPE_DESCRIPTIVE_TYPE (type);
7923 while (result != NULL)
7924 {
7925 const char *result_name = ada_type_name (result);
7926
7927 if (result_name == NULL)
7928 {
7929 warning (_("unexpected null name on descriptive type"));
7930 return NULL;
7931 }
7932
7933 /* If the names match, stop. */
7934 if (strcmp (result_name, name) == 0)
7935 break;
7936
7937 /* Otherwise, look at the next item on the list, if any. */
7938 if (HAVE_GNAT_AUX_INFO (result))
7939 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7940 else
7941 tmp = NULL;
7942
7943 /* If not found either, try after having resolved the typedef. */
7944 if (tmp != NULL)
7945 result = tmp;
7946 else
7947 {
7948 result = check_typedef (result);
7949 if (HAVE_GNAT_AUX_INFO (result))
7950 result = TYPE_DESCRIPTIVE_TYPE (result);
7951 else
7952 result = NULL;
7953 }
7954 }
7955
7956 /* If we didn't find a match, see whether this is a packed array. With
7957 older compilers, the descriptive type information is either absent or
7958 irrelevant when it comes to packed arrays so the above lookup fails.
7959 Fall back to using a parallel lookup by name in this case. */
7960 if (result == NULL && ada_is_constrained_packed_array_type (type))
7961 return ada_find_any_type (name);
7962
7963 return result;
7964 }
7965
7966 /* Find a parallel type to TYPE with the specified NAME, using the
7967 descriptive type taken from the debugging information, if available,
7968 and otherwise using the (slower) name-based method. */
7969
7970 static struct type *
7971 ada_find_parallel_type_with_name (struct type *type, const char *name)
7972 {
7973 struct type *result = NULL;
7974
7975 if (HAVE_GNAT_AUX_INFO (type))
7976 result = find_parallel_type_by_descriptive_type (type, name);
7977 else
7978 result = ada_find_any_type (name);
7979
7980 return result;
7981 }
7982
7983 /* Same as above, but specify the name of the parallel type by appending
7984 SUFFIX to the name of TYPE. */
7985
7986 struct type *
7987 ada_find_parallel_type (struct type *type, const char *suffix)
7988 {
7989 char *name;
7990 const char *type_name = ada_type_name (type);
7991 int len;
7992
7993 if (type_name == NULL)
7994 return NULL;
7995
7996 len = strlen (type_name);
7997
7998 name = (char *) alloca (len + strlen (suffix) + 1);
7999
8000 strcpy (name, type_name);
8001 strcpy (name + len, suffix);
8002
8003 return ada_find_parallel_type_with_name (type, name);
8004 }
8005
8006 /* If TYPE is a variable-size record type, return the corresponding template
8007 type describing its fields. Otherwise, return NULL. */
8008
8009 static struct type *
8010 dynamic_template_type (struct type *type)
8011 {
8012 type = ada_check_typedef (type);
8013
8014 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
8015 || ada_type_name (type) == NULL)
8016 return NULL;
8017 else
8018 {
8019 int len = strlen (ada_type_name (type));
8020
8021 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8022 return type;
8023 else
8024 return ada_find_parallel_type (type, "___XVE");
8025 }
8026 }
8027
8028 /* Assuming that TEMPL_TYPE is a union or struct type, returns
8029 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
8030
8031 static int
8032 is_dynamic_field (struct type *templ_type, int field_num)
8033 {
8034 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
8035
8036 return name != NULL
8037 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8038 && strstr (name, "___XVL") != NULL;
8039 }
8040
8041 /* The index of the variant field of TYPE, or -1 if TYPE does not
8042 represent a variant record type. */
8043
8044 static int
8045 variant_field_index (struct type *type)
8046 {
8047 int f;
8048
8049 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8050 return -1;
8051
8052 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8053 {
8054 if (ada_is_variant_part (type, f))
8055 return f;
8056 }
8057 return -1;
8058 }
8059
8060 /* A record type with no fields. */
8061
8062 static struct type *
8063 empty_record (struct type *templ)
8064 {
8065 struct type *type = alloc_type_copy (templ);
8066
8067 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8068 TYPE_NFIELDS (type) = 0;
8069 TYPE_FIELDS (type) = NULL;
8070 INIT_NONE_SPECIFIC (type);
8071 TYPE_NAME (type) = "<empty>";
8072 TYPE_LENGTH (type) = 0;
8073 return type;
8074 }
8075
8076 /* An ordinary record type (with fixed-length fields) that describes
8077 the value of type TYPE at VALADDR or ADDRESS (see comments at
8078 the beginning of this section) VAL according to GNAT conventions.
8079 DVAL0 should describe the (portion of a) record that contains any
8080 necessary discriminants. It should be NULL if value_type (VAL) is
8081 an outer-level type (i.e., as opposed to a branch of a variant.) A
8082 variant field (unless unchecked) is replaced by a particular branch
8083 of the variant.
8084
8085 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8086 length are not statically known are discarded. As a consequence,
8087 VALADDR, ADDRESS and DVAL0 are ignored.
8088
8089 NOTE: Limitations: For now, we assume that dynamic fields and
8090 variants occupy whole numbers of bytes. However, they need not be
8091 byte-aligned. */
8092
8093 struct type *
8094 ada_template_to_fixed_record_type_1 (struct type *type,
8095 const gdb_byte *valaddr,
8096 CORE_ADDR address, struct value *dval0,
8097 int keep_dynamic_fields)
8098 {
8099 struct value *mark = value_mark ();
8100 struct value *dval;
8101 struct type *rtype;
8102 int nfields, bit_len;
8103 int variant_field;
8104 long off;
8105 int fld_bit_len;
8106 int f;
8107
8108 /* Compute the number of fields in this record type that are going
8109 to be processed: unless keep_dynamic_fields, this includes only
8110 fields whose position and length are static will be processed. */
8111 if (keep_dynamic_fields)
8112 nfields = TYPE_NFIELDS (type);
8113 else
8114 {
8115 nfields = 0;
8116 while (nfields < TYPE_NFIELDS (type)
8117 && !ada_is_variant_part (type, nfields)
8118 && !is_dynamic_field (type, nfields))
8119 nfields++;
8120 }
8121
8122 rtype = alloc_type_copy (type);
8123 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8124 INIT_NONE_SPECIFIC (rtype);
8125 TYPE_NFIELDS (rtype) = nfields;
8126 TYPE_FIELDS (rtype) = (struct field *)
8127 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8128 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8129 TYPE_NAME (rtype) = ada_type_name (type);
8130 TYPE_FIXED_INSTANCE (rtype) = 1;
8131
8132 off = 0;
8133 bit_len = 0;
8134 variant_field = -1;
8135
8136 for (f = 0; f < nfields; f += 1)
8137 {
8138 off = align_value (off, field_alignment (type, f))
8139 + TYPE_FIELD_BITPOS (type, f);
8140 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
8141 TYPE_FIELD_BITSIZE (rtype, f) = 0;
8142
8143 if (ada_is_variant_part (type, f))
8144 {
8145 variant_field = f;
8146 fld_bit_len = 0;
8147 }
8148 else if (is_dynamic_field (type, f))
8149 {
8150 const gdb_byte *field_valaddr = valaddr;
8151 CORE_ADDR field_address = address;
8152 struct type *field_type =
8153 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8154
8155 if (dval0 == NULL)
8156 {
8157 /* rtype's length is computed based on the run-time
8158 value of discriminants. If the discriminants are not
8159 initialized, the type size may be completely bogus and
8160 GDB may fail to allocate a value for it. So check the
8161 size first before creating the value. */
8162 ada_ensure_varsize_limit (rtype);
8163 /* Using plain value_from_contents_and_address here
8164 causes problems because we will end up trying to
8165 resolve a type that is currently being
8166 constructed. */
8167 dval = value_from_contents_and_address_unresolved (rtype,
8168 valaddr,
8169 address);
8170 rtype = value_type (dval);
8171 }
8172 else
8173 dval = dval0;
8174
8175 /* If the type referenced by this field is an aligner type, we need
8176 to unwrap that aligner type, because its size might not be set.
8177 Keeping the aligner type would cause us to compute the wrong
8178 size for this field, impacting the offset of the all the fields
8179 that follow this one. */
8180 if (ada_is_aligner_type (field_type))
8181 {
8182 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8183
8184 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8185 field_address = cond_offset_target (field_address, field_offset);
8186 field_type = ada_aligned_type (field_type);
8187 }
8188
8189 field_valaddr = cond_offset_host (field_valaddr,
8190 off / TARGET_CHAR_BIT);
8191 field_address = cond_offset_target (field_address,
8192 off / TARGET_CHAR_BIT);
8193
8194 /* Get the fixed type of the field. Note that, in this case,
8195 we do not want to get the real type out of the tag: if
8196 the current field is the parent part of a tagged record,
8197 we will get the tag of the object. Clearly wrong: the real
8198 type of the parent is not the real type of the child. We
8199 would end up in an infinite loop. */
8200 field_type = ada_get_base_type (field_type);
8201 field_type = ada_to_fixed_type (field_type, field_valaddr,
8202 field_address, dval, 0);
8203 /* If the field size is already larger than the maximum
8204 object size, then the record itself will necessarily
8205 be larger than the maximum object size. We need to make
8206 this check now, because the size might be so ridiculously
8207 large (due to an uninitialized variable in the inferior)
8208 that it would cause an overflow when adding it to the
8209 record size. */
8210 ada_ensure_varsize_limit (field_type);
8211
8212 TYPE_FIELD_TYPE (rtype, f) = field_type;
8213 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8214 /* The multiplication can potentially overflow. But because
8215 the field length has been size-checked just above, and
8216 assuming that the maximum size is a reasonable value,
8217 an overflow should not happen in practice. So rather than
8218 adding overflow recovery code to this already complex code,
8219 we just assume that it's not going to happen. */
8220 fld_bit_len =
8221 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8222 }
8223 else
8224 {
8225 /* Note: If this field's type is a typedef, it is important
8226 to preserve the typedef layer.
8227
8228 Otherwise, we might be transforming a typedef to a fat
8229 pointer (encoding a pointer to an unconstrained array),
8230 into a basic fat pointer (encoding an unconstrained
8231 array). As both types are implemented using the same
8232 structure, the typedef is the only clue which allows us
8233 to distinguish between the two options. Stripping it
8234 would prevent us from printing this field appropriately. */
8235 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8236 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8237 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8238 fld_bit_len =
8239 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8240 else
8241 {
8242 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8243
8244 /* We need to be careful of typedefs when computing
8245 the length of our field. If this is a typedef,
8246 get the length of the target type, not the length
8247 of the typedef. */
8248 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8249 field_type = ada_typedef_target_type (field_type);
8250
8251 fld_bit_len =
8252 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8253 }
8254 }
8255 if (off + fld_bit_len > bit_len)
8256 bit_len = off + fld_bit_len;
8257 off += fld_bit_len;
8258 TYPE_LENGTH (rtype) =
8259 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8260 }
8261
8262 /* We handle the variant part, if any, at the end because of certain
8263 odd cases in which it is re-ordered so as NOT to be the last field of
8264 the record. This can happen in the presence of representation
8265 clauses. */
8266 if (variant_field >= 0)
8267 {
8268 struct type *branch_type;
8269
8270 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8271
8272 if (dval0 == NULL)
8273 {
8274 /* Using plain value_from_contents_and_address here causes
8275 problems because we will end up trying to resolve a type
8276 that is currently being constructed. */
8277 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8278 address);
8279 rtype = value_type (dval);
8280 }
8281 else
8282 dval = dval0;
8283
8284 branch_type =
8285 to_fixed_variant_branch_type
8286 (TYPE_FIELD_TYPE (type, variant_field),
8287 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8288 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8289 if (branch_type == NULL)
8290 {
8291 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8292 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8293 TYPE_NFIELDS (rtype) -= 1;
8294 }
8295 else
8296 {
8297 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8298 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8299 fld_bit_len =
8300 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8301 TARGET_CHAR_BIT;
8302 if (off + fld_bit_len > bit_len)
8303 bit_len = off + fld_bit_len;
8304 TYPE_LENGTH (rtype) =
8305 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8306 }
8307 }
8308
8309 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8310 should contain the alignment of that record, which should be a strictly
8311 positive value. If null or negative, then something is wrong, most
8312 probably in the debug info. In that case, we don't round up the size
8313 of the resulting type. If this record is not part of another structure,
8314 the current RTYPE length might be good enough for our purposes. */
8315 if (TYPE_LENGTH (type) <= 0)
8316 {
8317 if (TYPE_NAME (rtype))
8318 warning (_("Invalid type size for `%s' detected: %s."),
8319 TYPE_NAME (rtype), pulongest (TYPE_LENGTH (type)));
8320 else
8321 warning (_("Invalid type size for <unnamed> detected: %s."),
8322 pulongest (TYPE_LENGTH (type)));
8323 }
8324 else
8325 {
8326 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8327 TYPE_LENGTH (type));
8328 }
8329
8330 value_free_to_mark (mark);
8331 if (TYPE_LENGTH (rtype) > varsize_limit)
8332 error (_("record type with dynamic size is larger than varsize-limit"));
8333 return rtype;
8334 }
8335
8336 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8337 of 1. */
8338
8339 static struct type *
8340 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8341 CORE_ADDR address, struct value *dval0)
8342 {
8343 return ada_template_to_fixed_record_type_1 (type, valaddr,
8344 address, dval0, 1);
8345 }
8346
8347 /* An ordinary record type in which ___XVL-convention fields and
8348 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8349 static approximations, containing all possible fields. Uses
8350 no runtime values. Useless for use in values, but that's OK,
8351 since the results are used only for type determinations. Works on both
8352 structs and unions. Representation note: to save space, we memorize
8353 the result of this function in the TYPE_TARGET_TYPE of the
8354 template type. */
8355
8356 static struct type *
8357 template_to_static_fixed_type (struct type *type0)
8358 {
8359 struct type *type;
8360 int nfields;
8361 int f;
8362
8363 /* No need no do anything if the input type is already fixed. */
8364 if (TYPE_FIXED_INSTANCE (type0))
8365 return type0;
8366
8367 /* Likewise if we already have computed the static approximation. */
8368 if (TYPE_TARGET_TYPE (type0) != NULL)
8369 return TYPE_TARGET_TYPE (type0);
8370
8371 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8372 type = type0;
8373 nfields = TYPE_NFIELDS (type0);
8374
8375 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8376 recompute all over next time. */
8377 TYPE_TARGET_TYPE (type0) = type;
8378
8379 for (f = 0; f < nfields; f += 1)
8380 {
8381 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
8382 struct type *new_type;
8383
8384 if (is_dynamic_field (type0, f))
8385 {
8386 field_type = ada_check_typedef (field_type);
8387 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8388 }
8389 else
8390 new_type = static_unwrap_type (field_type);
8391
8392 if (new_type != field_type)
8393 {
8394 /* Clone TYPE0 only the first time we get a new field type. */
8395 if (type == type0)
8396 {
8397 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8398 TYPE_CODE (type) = TYPE_CODE (type0);
8399 INIT_NONE_SPECIFIC (type);
8400 TYPE_NFIELDS (type) = nfields;
8401 TYPE_FIELDS (type) = (struct field *)
8402 TYPE_ALLOC (type, nfields * sizeof (struct field));
8403 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8404 sizeof (struct field) * nfields);
8405 TYPE_NAME (type) = ada_type_name (type0);
8406 TYPE_FIXED_INSTANCE (type) = 1;
8407 TYPE_LENGTH (type) = 0;
8408 }
8409 TYPE_FIELD_TYPE (type, f) = new_type;
8410 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8411 }
8412 }
8413
8414 return type;
8415 }
8416
8417 /* Given an object of type TYPE whose contents are at VALADDR and
8418 whose address in memory is ADDRESS, returns a revision of TYPE,
8419 which should be a non-dynamic-sized record, in which the variant
8420 part, if any, is replaced with the appropriate branch. Looks
8421 for discriminant values in DVAL0, which can be NULL if the record
8422 contains the necessary discriminant values. */
8423
8424 static struct type *
8425 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8426 CORE_ADDR address, struct value *dval0)
8427 {
8428 struct value *mark = value_mark ();
8429 struct value *dval;
8430 struct type *rtype;
8431 struct type *branch_type;
8432 int nfields = TYPE_NFIELDS (type);
8433 int variant_field = variant_field_index (type);
8434
8435 if (variant_field == -1)
8436 return type;
8437
8438 if (dval0 == NULL)
8439 {
8440 dval = value_from_contents_and_address (type, valaddr, address);
8441 type = value_type (dval);
8442 }
8443 else
8444 dval = dval0;
8445
8446 rtype = alloc_type_copy (type);
8447 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8448 INIT_NONE_SPECIFIC (rtype);
8449 TYPE_NFIELDS (rtype) = nfields;
8450 TYPE_FIELDS (rtype) =
8451 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8452 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8453 sizeof (struct field) * nfields);
8454 TYPE_NAME (rtype) = ada_type_name (type);
8455 TYPE_FIXED_INSTANCE (rtype) = 1;
8456 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8457
8458 branch_type = to_fixed_variant_branch_type
8459 (TYPE_FIELD_TYPE (type, variant_field),
8460 cond_offset_host (valaddr,
8461 TYPE_FIELD_BITPOS (type, variant_field)
8462 / TARGET_CHAR_BIT),
8463 cond_offset_target (address,
8464 TYPE_FIELD_BITPOS (type, variant_field)
8465 / TARGET_CHAR_BIT), dval);
8466 if (branch_type == NULL)
8467 {
8468 int f;
8469
8470 for (f = variant_field + 1; f < nfields; f += 1)
8471 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8472 TYPE_NFIELDS (rtype) -= 1;
8473 }
8474 else
8475 {
8476 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8477 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8478 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8479 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8480 }
8481 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8482
8483 value_free_to_mark (mark);
8484 return rtype;
8485 }
8486
8487 /* An ordinary record type (with fixed-length fields) that describes
8488 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8489 beginning of this section]. Any necessary discriminants' values
8490 should be in DVAL, a record value; it may be NULL if the object
8491 at ADDR itself contains any necessary discriminant values.
8492 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8493 values from the record are needed. Except in the case that DVAL,
8494 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8495 unchecked) is replaced by a particular branch of the variant.
8496
8497 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8498 is questionable and may be removed. It can arise during the
8499 processing of an unconstrained-array-of-record type where all the
8500 variant branches have exactly the same size. This is because in
8501 such cases, the compiler does not bother to use the XVS convention
8502 when encoding the record. I am currently dubious of this
8503 shortcut and suspect the compiler should be altered. FIXME. */
8504
8505 static struct type *
8506 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8507 CORE_ADDR address, struct value *dval)
8508 {
8509 struct type *templ_type;
8510
8511 if (TYPE_FIXED_INSTANCE (type0))
8512 return type0;
8513
8514 templ_type = dynamic_template_type (type0);
8515
8516 if (templ_type != NULL)
8517 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8518 else if (variant_field_index (type0) >= 0)
8519 {
8520 if (dval == NULL && valaddr == NULL && address == 0)
8521 return type0;
8522 return to_record_with_fixed_variant_part (type0, valaddr, address,
8523 dval);
8524 }
8525 else
8526 {
8527 TYPE_FIXED_INSTANCE (type0) = 1;
8528 return type0;
8529 }
8530
8531 }
8532
8533 /* An ordinary record type (with fixed-length fields) that describes
8534 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8535 union type. Any necessary discriminants' values should be in DVAL,
8536 a record value. That is, this routine selects the appropriate
8537 branch of the union at ADDR according to the discriminant value
8538 indicated in the union's type name. Returns VAR_TYPE0 itself if
8539 it represents a variant subject to a pragma Unchecked_Union. */
8540
8541 static struct type *
8542 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8543 CORE_ADDR address, struct value *dval)
8544 {
8545 int which;
8546 struct type *templ_type;
8547 struct type *var_type;
8548
8549 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8550 var_type = TYPE_TARGET_TYPE (var_type0);
8551 else
8552 var_type = var_type0;
8553
8554 templ_type = ada_find_parallel_type (var_type, "___XVU");
8555
8556 if (templ_type != NULL)
8557 var_type = templ_type;
8558
8559 if (is_unchecked_variant (var_type, value_type (dval)))
8560 return var_type0;
8561 which =
8562 ada_which_variant_applies (var_type,
8563 value_type (dval), value_contents (dval));
8564
8565 if (which < 0)
8566 return empty_record (var_type);
8567 else if (is_dynamic_field (var_type, which))
8568 return to_fixed_record_type
8569 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8570 valaddr, address, dval);
8571 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8572 return
8573 to_fixed_record_type
8574 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8575 else
8576 return TYPE_FIELD_TYPE (var_type, which);
8577 }
8578
8579 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8580 ENCODING_TYPE, a type following the GNAT conventions for discrete
8581 type encodings, only carries redundant information. */
8582
8583 static int
8584 ada_is_redundant_range_encoding (struct type *range_type,
8585 struct type *encoding_type)
8586 {
8587 const char *bounds_str;
8588 int n;
8589 LONGEST lo, hi;
8590
8591 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8592
8593 if (TYPE_CODE (get_base_type (range_type))
8594 != TYPE_CODE (get_base_type (encoding_type)))
8595 {
8596 /* The compiler probably used a simple base type to describe
8597 the range type instead of the range's actual base type,
8598 expecting us to get the real base type from the encoding
8599 anyway. In this situation, the encoding cannot be ignored
8600 as redundant. */
8601 return 0;
8602 }
8603
8604 if (is_dynamic_type (range_type))
8605 return 0;
8606
8607 if (TYPE_NAME (encoding_type) == NULL)
8608 return 0;
8609
8610 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8611 if (bounds_str == NULL)
8612 return 0;
8613
8614 n = 8; /* Skip "___XDLU_". */
8615 if (!ada_scan_number (bounds_str, n, &lo, &n))
8616 return 0;
8617 if (TYPE_LOW_BOUND (range_type) != lo)
8618 return 0;
8619
8620 n += 2; /* Skip the "__" separator between the two bounds. */
8621 if (!ada_scan_number (bounds_str, n, &hi, &n))
8622 return 0;
8623 if (TYPE_HIGH_BOUND (range_type) != hi)
8624 return 0;
8625
8626 return 1;
8627 }
8628
8629 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8630 a type following the GNAT encoding for describing array type
8631 indices, only carries redundant information. */
8632
8633 static int
8634 ada_is_redundant_index_type_desc (struct type *array_type,
8635 struct type *desc_type)
8636 {
8637 struct type *this_layer = check_typedef (array_type);
8638 int i;
8639
8640 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8641 {
8642 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8643 TYPE_FIELD_TYPE (desc_type, i)))
8644 return 0;
8645 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8646 }
8647
8648 return 1;
8649 }
8650
8651 /* Assuming that TYPE0 is an array type describing the type of a value
8652 at ADDR, and that DVAL describes a record containing any
8653 discriminants used in TYPE0, returns a type for the value that
8654 contains no dynamic components (that is, no components whose sizes
8655 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8656 true, gives an error message if the resulting type's size is over
8657 varsize_limit. */
8658
8659 static struct type *
8660 to_fixed_array_type (struct type *type0, struct value *dval,
8661 int ignore_too_big)
8662 {
8663 struct type *index_type_desc;
8664 struct type *result;
8665 int constrained_packed_array_p;
8666 static const char *xa_suffix = "___XA";
8667
8668 type0 = ada_check_typedef (type0);
8669 if (TYPE_FIXED_INSTANCE (type0))
8670 return type0;
8671
8672 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8673 if (constrained_packed_array_p)
8674 type0 = decode_constrained_packed_array_type (type0);
8675
8676 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8677
8678 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8679 encoding suffixed with 'P' may still be generated. If so,
8680 it should be used to find the XA type. */
8681
8682 if (index_type_desc == NULL)
8683 {
8684 const char *type_name = ada_type_name (type0);
8685
8686 if (type_name != NULL)
8687 {
8688 const int len = strlen (type_name);
8689 char *name = (char *) alloca (len + strlen (xa_suffix));
8690
8691 if (type_name[len - 1] == 'P')
8692 {
8693 strcpy (name, type_name);
8694 strcpy (name + len - 1, xa_suffix);
8695 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8696 }
8697 }
8698 }
8699
8700 ada_fixup_array_indexes_type (index_type_desc);
8701 if (index_type_desc != NULL
8702 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8703 {
8704 /* Ignore this ___XA parallel type, as it does not bring any
8705 useful information. This allows us to avoid creating fixed
8706 versions of the array's index types, which would be identical
8707 to the original ones. This, in turn, can also help avoid
8708 the creation of fixed versions of the array itself. */
8709 index_type_desc = NULL;
8710 }
8711
8712 if (index_type_desc == NULL)
8713 {
8714 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8715
8716 /* NOTE: elt_type---the fixed version of elt_type0---should never
8717 depend on the contents of the array in properly constructed
8718 debugging data. */
8719 /* Create a fixed version of the array element type.
8720 We're not providing the address of an element here,
8721 and thus the actual object value cannot be inspected to do
8722 the conversion. This should not be a problem, since arrays of
8723 unconstrained objects are not allowed. In particular, all
8724 the elements of an array of a tagged type should all be of
8725 the same type specified in the debugging info. No need to
8726 consult the object tag. */
8727 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8728
8729 /* Make sure we always create a new array type when dealing with
8730 packed array types, since we're going to fix-up the array
8731 type length and element bitsize a little further down. */
8732 if (elt_type0 == elt_type && !constrained_packed_array_p)
8733 result = type0;
8734 else
8735 result = create_array_type (alloc_type_copy (type0),
8736 elt_type, TYPE_INDEX_TYPE (type0));
8737 }
8738 else
8739 {
8740 int i;
8741 struct type *elt_type0;
8742
8743 elt_type0 = type0;
8744 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8745 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8746
8747 /* NOTE: result---the fixed version of elt_type0---should never
8748 depend on the contents of the array in properly constructed
8749 debugging data. */
8750 /* Create a fixed version of the array element type.
8751 We're not providing the address of an element here,
8752 and thus the actual object value cannot be inspected to do
8753 the conversion. This should not be a problem, since arrays of
8754 unconstrained objects are not allowed. In particular, all
8755 the elements of an array of a tagged type should all be of
8756 the same type specified in the debugging info. No need to
8757 consult the object tag. */
8758 result =
8759 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8760
8761 elt_type0 = type0;
8762 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8763 {
8764 struct type *range_type =
8765 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8766
8767 result = create_array_type (alloc_type_copy (elt_type0),
8768 result, range_type);
8769 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8770 }
8771 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8772 error (_("array type with dynamic size is larger than varsize-limit"));
8773 }
8774
8775 /* We want to preserve the type name. This can be useful when
8776 trying to get the type name of a value that has already been
8777 printed (for instance, if the user did "print VAR; whatis $". */
8778 TYPE_NAME (result) = TYPE_NAME (type0);
8779
8780 if (constrained_packed_array_p)
8781 {
8782 /* So far, the resulting type has been created as if the original
8783 type was a regular (non-packed) array type. As a result, the
8784 bitsize of the array elements needs to be set again, and the array
8785 length needs to be recomputed based on that bitsize. */
8786 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8787 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8788
8789 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8790 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8791 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8792 TYPE_LENGTH (result)++;
8793 }
8794
8795 TYPE_FIXED_INSTANCE (result) = 1;
8796 return result;
8797 }
8798
8799
8800 /* A standard type (containing no dynamically sized components)
8801 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8802 DVAL describes a record containing any discriminants used in TYPE0,
8803 and may be NULL if there are none, or if the object of type TYPE at
8804 ADDRESS or in VALADDR contains these discriminants.
8805
8806 If CHECK_TAG is not null, in the case of tagged types, this function
8807 attempts to locate the object's tag and use it to compute the actual
8808 type. However, when ADDRESS is null, we cannot use it to determine the
8809 location of the tag, and therefore compute the tagged type's actual type.
8810 So we return the tagged type without consulting the tag. */
8811
8812 static struct type *
8813 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8814 CORE_ADDR address, struct value *dval, int check_tag)
8815 {
8816 type = ada_check_typedef (type);
8817
8818 /* Only un-fixed types need to be handled here. */
8819 if (!HAVE_GNAT_AUX_INFO (type))
8820 return type;
8821
8822 switch (TYPE_CODE (type))
8823 {
8824 default:
8825 return type;
8826 case TYPE_CODE_STRUCT:
8827 {
8828 struct type *static_type = to_static_fixed_type (type);
8829 struct type *fixed_record_type =
8830 to_fixed_record_type (type, valaddr, address, NULL);
8831
8832 /* If STATIC_TYPE is a tagged type and we know the object's address,
8833 then we can determine its tag, and compute the object's actual
8834 type from there. Note that we have to use the fixed record
8835 type (the parent part of the record may have dynamic fields
8836 and the way the location of _tag is expressed may depend on
8837 them). */
8838
8839 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8840 {
8841 struct value *tag =
8842 value_tag_from_contents_and_address
8843 (fixed_record_type,
8844 valaddr,
8845 address);
8846 struct type *real_type = type_from_tag (tag);
8847 struct value *obj =
8848 value_from_contents_and_address (fixed_record_type,
8849 valaddr,
8850 address);
8851 fixed_record_type = value_type (obj);
8852 if (real_type != NULL)
8853 return to_fixed_record_type
8854 (real_type, NULL,
8855 value_address (ada_tag_value_at_base_address (obj)), NULL);
8856 }
8857
8858 /* Check to see if there is a parallel ___XVZ variable.
8859 If there is, then it provides the actual size of our type. */
8860 else if (ada_type_name (fixed_record_type) != NULL)
8861 {
8862 const char *name = ada_type_name (fixed_record_type);
8863 char *xvz_name
8864 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
8865 bool xvz_found = false;
8866 LONGEST size;
8867
8868 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8869 try
8870 {
8871 xvz_found = get_int_var_value (xvz_name, size);
8872 }
8873 catch (const gdb_exception_error &except)
8874 {
8875 /* We found the variable, but somehow failed to read
8876 its value. Rethrow the same error, but with a little
8877 bit more information, to help the user understand
8878 what went wrong (Eg: the variable might have been
8879 optimized out). */
8880 throw_error (except.error,
8881 _("unable to read value of %s (%s)"),
8882 xvz_name, except.what ());
8883 }
8884
8885 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8886 {
8887 fixed_record_type = copy_type (fixed_record_type);
8888 TYPE_LENGTH (fixed_record_type) = size;
8889
8890 /* The FIXED_RECORD_TYPE may have be a stub. We have
8891 observed this when the debugging info is STABS, and
8892 apparently it is something that is hard to fix.
8893
8894 In practice, we don't need the actual type definition
8895 at all, because the presence of the XVZ variable allows us
8896 to assume that there must be a XVS type as well, which we
8897 should be able to use later, when we need the actual type
8898 definition.
8899
8900 In the meantime, pretend that the "fixed" type we are
8901 returning is NOT a stub, because this can cause trouble
8902 when using this type to create new types targeting it.
8903 Indeed, the associated creation routines often check
8904 whether the target type is a stub and will try to replace
8905 it, thus using a type with the wrong size. This, in turn,
8906 might cause the new type to have the wrong size too.
8907 Consider the case of an array, for instance, where the size
8908 of the array is computed from the number of elements in
8909 our array multiplied by the size of its element. */
8910 TYPE_STUB (fixed_record_type) = 0;
8911 }
8912 }
8913 return fixed_record_type;
8914 }
8915 case TYPE_CODE_ARRAY:
8916 return to_fixed_array_type (type, dval, 1);
8917 case TYPE_CODE_UNION:
8918 if (dval == NULL)
8919 return type;
8920 else
8921 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8922 }
8923 }
8924
8925 /* The same as ada_to_fixed_type_1, except that it preserves the type
8926 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8927
8928 The typedef layer needs be preserved in order to differentiate between
8929 arrays and array pointers when both types are implemented using the same
8930 fat pointer. In the array pointer case, the pointer is encoded as
8931 a typedef of the pointer type. For instance, considering:
8932
8933 type String_Access is access String;
8934 S1 : String_Access := null;
8935
8936 To the debugger, S1 is defined as a typedef of type String. But
8937 to the user, it is a pointer. So if the user tries to print S1,
8938 we should not dereference the array, but print the array address
8939 instead.
8940
8941 If we didn't preserve the typedef layer, we would lose the fact that
8942 the type is to be presented as a pointer (needs de-reference before
8943 being printed). And we would also use the source-level type name. */
8944
8945 struct type *
8946 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8947 CORE_ADDR address, struct value *dval, int check_tag)
8948
8949 {
8950 struct type *fixed_type =
8951 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8952
8953 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8954 then preserve the typedef layer.
8955
8956 Implementation note: We can only check the main-type portion of
8957 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8958 from TYPE now returns a type that has the same instance flags
8959 as TYPE. For instance, if TYPE is a "typedef const", and its
8960 target type is a "struct", then the typedef elimination will return
8961 a "const" version of the target type. See check_typedef for more
8962 details about how the typedef layer elimination is done.
8963
8964 brobecker/2010-11-19: It seems to me that the only case where it is
8965 useful to preserve the typedef layer is when dealing with fat pointers.
8966 Perhaps, we could add a check for that and preserve the typedef layer
8967 only in that situation. But this seems unnecessary so far, probably
8968 because we call check_typedef/ada_check_typedef pretty much everywhere.
8969 */
8970 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8971 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8972 == TYPE_MAIN_TYPE (fixed_type)))
8973 return type;
8974
8975 return fixed_type;
8976 }
8977
8978 /* A standard (static-sized) type corresponding as well as possible to
8979 TYPE0, but based on no runtime data. */
8980
8981 static struct type *
8982 to_static_fixed_type (struct type *type0)
8983 {
8984 struct type *type;
8985
8986 if (type0 == NULL)
8987 return NULL;
8988
8989 if (TYPE_FIXED_INSTANCE (type0))
8990 return type0;
8991
8992 type0 = ada_check_typedef (type0);
8993
8994 switch (TYPE_CODE (type0))
8995 {
8996 default:
8997 return type0;
8998 case TYPE_CODE_STRUCT:
8999 type = dynamic_template_type (type0);
9000 if (type != NULL)
9001 return template_to_static_fixed_type (type);
9002 else
9003 return template_to_static_fixed_type (type0);
9004 case TYPE_CODE_UNION:
9005 type = ada_find_parallel_type (type0, "___XVU");
9006 if (type != NULL)
9007 return template_to_static_fixed_type (type);
9008 else
9009 return template_to_static_fixed_type (type0);
9010 }
9011 }
9012
9013 /* A static approximation of TYPE with all type wrappers removed. */
9014
9015 static struct type *
9016 static_unwrap_type (struct type *type)
9017 {
9018 if (ada_is_aligner_type (type))
9019 {
9020 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
9021 if (ada_type_name (type1) == NULL)
9022 TYPE_NAME (type1) = ada_type_name (type);
9023
9024 return static_unwrap_type (type1);
9025 }
9026 else
9027 {
9028 struct type *raw_real_type = ada_get_base_type (type);
9029
9030 if (raw_real_type == type)
9031 return type;
9032 else
9033 return to_static_fixed_type (raw_real_type);
9034 }
9035 }
9036
9037 /* In some cases, incomplete and private types require
9038 cross-references that are not resolved as records (for example,
9039 type Foo;
9040 type FooP is access Foo;
9041 V: FooP;
9042 type Foo is array ...;
9043 ). In these cases, since there is no mechanism for producing
9044 cross-references to such types, we instead substitute for FooP a
9045 stub enumeration type that is nowhere resolved, and whose tag is
9046 the name of the actual type. Call these types "non-record stubs". */
9047
9048 /* A type equivalent to TYPE that is not a non-record stub, if one
9049 exists, otherwise TYPE. */
9050
9051 struct type *
9052 ada_check_typedef (struct type *type)
9053 {
9054 if (type == NULL)
9055 return NULL;
9056
9057 /* If our type is an access to an unconstrained array, which is encoded
9058 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
9059 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9060 what allows us to distinguish between fat pointers that represent
9061 array types, and fat pointers that represent array access types
9062 (in both cases, the compiler implements them as fat pointers). */
9063 if (ada_is_access_to_unconstrained_array (type))
9064 return type;
9065
9066 type = check_typedef (type);
9067 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
9068 || !TYPE_STUB (type)
9069 || TYPE_NAME (type) == NULL)
9070 return type;
9071 else
9072 {
9073 const char *name = TYPE_NAME (type);
9074 struct type *type1 = ada_find_any_type (name);
9075
9076 if (type1 == NULL)
9077 return type;
9078
9079 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9080 stubs pointing to arrays, as we don't create symbols for array
9081 types, only for the typedef-to-array types). If that's the case,
9082 strip the typedef layer. */
9083 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9084 type1 = ada_check_typedef (type1);
9085
9086 return type1;
9087 }
9088 }
9089
9090 /* A value representing the data at VALADDR/ADDRESS as described by
9091 type TYPE0, but with a standard (static-sized) type that correctly
9092 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9093 type, then return VAL0 [this feature is simply to avoid redundant
9094 creation of struct values]. */
9095
9096 static struct value *
9097 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9098 struct value *val0)
9099 {
9100 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
9101
9102 if (type == type0 && val0 != NULL)
9103 return val0;
9104
9105 if (VALUE_LVAL (val0) != lval_memory)
9106 {
9107 /* Our value does not live in memory; it could be a convenience
9108 variable, for instance. Create a not_lval value using val0's
9109 contents. */
9110 return value_from_contents (type, value_contents (val0));
9111 }
9112
9113 return value_from_contents_and_address (type, 0, address);
9114 }
9115
9116 /* A value representing VAL, but with a standard (static-sized) type
9117 that correctly describes it. Does not necessarily create a new
9118 value. */
9119
9120 struct value *
9121 ada_to_fixed_value (struct value *val)
9122 {
9123 val = unwrap_value (val);
9124 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
9125 return val;
9126 }
9127 \f
9128
9129 /* Attributes */
9130
9131 /* Table mapping attribute numbers to names.
9132 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
9133
9134 static const char *attribute_names[] = {
9135 "<?>",
9136
9137 "first",
9138 "last",
9139 "length",
9140 "image",
9141 "max",
9142 "min",
9143 "modulus",
9144 "pos",
9145 "size",
9146 "tag",
9147 "val",
9148 0
9149 };
9150
9151 static const char *
9152 ada_attribute_name (enum exp_opcode n)
9153 {
9154 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9155 return attribute_names[n - OP_ATR_FIRST + 1];
9156 else
9157 return attribute_names[0];
9158 }
9159
9160 /* Evaluate the 'POS attribute applied to ARG. */
9161
9162 static LONGEST
9163 pos_atr (struct value *arg)
9164 {
9165 struct value *val = coerce_ref (arg);
9166 struct type *type = value_type (val);
9167 LONGEST result;
9168
9169 if (!discrete_type_p (type))
9170 error (_("'POS only defined on discrete types"));
9171
9172 if (!discrete_position (type, value_as_long (val), &result))
9173 error (_("enumeration value is invalid: can't find 'POS"));
9174
9175 return result;
9176 }
9177
9178 static struct value *
9179 value_pos_atr (struct type *type, struct value *arg)
9180 {
9181 return value_from_longest (type, pos_atr (arg));
9182 }
9183
9184 /* Evaluate the TYPE'VAL attribute applied to ARG. */
9185
9186 static struct value *
9187 value_val_atr (struct type *type, struct value *arg)
9188 {
9189 if (!discrete_type_p (type))
9190 error (_("'VAL only defined on discrete types"));
9191 if (!integer_type_p (value_type (arg)))
9192 error (_("'VAL requires integral argument"));
9193
9194 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9195 {
9196 long pos = value_as_long (arg);
9197
9198 if (pos < 0 || pos >= TYPE_NFIELDS (type))
9199 error (_("argument to 'VAL out of range"));
9200 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
9201 }
9202 else
9203 return value_from_longest (type, value_as_long (arg));
9204 }
9205 \f
9206
9207 /* Evaluation */
9208
9209 /* True if TYPE appears to be an Ada character type.
9210 [At the moment, this is true only for Character and Wide_Character;
9211 It is a heuristic test that could stand improvement]. */
9212
9213 bool
9214 ada_is_character_type (struct type *type)
9215 {
9216 const char *name;
9217
9218 /* If the type code says it's a character, then assume it really is,
9219 and don't check any further. */
9220 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9221 return true;
9222
9223 /* Otherwise, assume it's a character type iff it is a discrete type
9224 with a known character type name. */
9225 name = ada_type_name (type);
9226 return (name != NULL
9227 && (TYPE_CODE (type) == TYPE_CODE_INT
9228 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9229 && (strcmp (name, "character") == 0
9230 || strcmp (name, "wide_character") == 0
9231 || strcmp (name, "wide_wide_character") == 0
9232 || strcmp (name, "unsigned char") == 0));
9233 }
9234
9235 /* True if TYPE appears to be an Ada string type. */
9236
9237 bool
9238 ada_is_string_type (struct type *type)
9239 {
9240 type = ada_check_typedef (type);
9241 if (type != NULL
9242 && TYPE_CODE (type) != TYPE_CODE_PTR
9243 && (ada_is_simple_array_type (type)
9244 || ada_is_array_descriptor_type (type))
9245 && ada_array_arity (type) == 1)
9246 {
9247 struct type *elttype = ada_array_element_type (type, 1);
9248
9249 return ada_is_character_type (elttype);
9250 }
9251 else
9252 return false;
9253 }
9254
9255 /* The compiler sometimes provides a parallel XVS type for a given
9256 PAD type. Normally, it is safe to follow the PAD type directly,
9257 but older versions of the compiler have a bug that causes the offset
9258 of its "F" field to be wrong. Following that field in that case
9259 would lead to incorrect results, but this can be worked around
9260 by ignoring the PAD type and using the associated XVS type instead.
9261
9262 Set to True if the debugger should trust the contents of PAD types.
9263 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9264 static bool trust_pad_over_xvs = true;
9265
9266 /* True if TYPE is a struct type introduced by the compiler to force the
9267 alignment of a value. Such types have a single field with a
9268 distinctive name. */
9269
9270 int
9271 ada_is_aligner_type (struct type *type)
9272 {
9273 type = ada_check_typedef (type);
9274
9275 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9276 return 0;
9277
9278 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
9279 && TYPE_NFIELDS (type) == 1
9280 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9281 }
9282
9283 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9284 the parallel type. */
9285
9286 struct type *
9287 ada_get_base_type (struct type *raw_type)
9288 {
9289 struct type *real_type_namer;
9290 struct type *raw_real_type;
9291
9292 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9293 return raw_type;
9294
9295 if (ada_is_aligner_type (raw_type))
9296 /* The encoding specifies that we should always use the aligner type.
9297 So, even if this aligner type has an associated XVS type, we should
9298 simply ignore it.
9299
9300 According to the compiler gurus, an XVS type parallel to an aligner
9301 type may exist because of a stabs limitation. In stabs, aligner
9302 types are empty because the field has a variable-sized type, and
9303 thus cannot actually be used as an aligner type. As a result,
9304 we need the associated parallel XVS type to decode the type.
9305 Since the policy in the compiler is to not change the internal
9306 representation based on the debugging info format, we sometimes
9307 end up having a redundant XVS type parallel to the aligner type. */
9308 return raw_type;
9309
9310 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9311 if (real_type_namer == NULL
9312 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9313 || TYPE_NFIELDS (real_type_namer) != 1)
9314 return raw_type;
9315
9316 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9317 {
9318 /* This is an older encoding form where the base type needs to be
9319 looked up by name. We prefer the newer encoding because it is
9320 more efficient. */
9321 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9322 if (raw_real_type == NULL)
9323 return raw_type;
9324 else
9325 return raw_real_type;
9326 }
9327
9328 /* The field in our XVS type is a reference to the base type. */
9329 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9330 }
9331
9332 /* The type of value designated by TYPE, with all aligners removed. */
9333
9334 struct type *
9335 ada_aligned_type (struct type *type)
9336 {
9337 if (ada_is_aligner_type (type))
9338 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9339 else
9340 return ada_get_base_type (type);
9341 }
9342
9343
9344 /* The address of the aligned value in an object at address VALADDR
9345 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9346
9347 const gdb_byte *
9348 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9349 {
9350 if (ada_is_aligner_type (type))
9351 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9352 valaddr +
9353 TYPE_FIELD_BITPOS (type,
9354 0) / TARGET_CHAR_BIT);
9355 else
9356 return valaddr;
9357 }
9358
9359
9360
9361 /* The printed representation of an enumeration literal with encoded
9362 name NAME. The value is good to the next call of ada_enum_name. */
9363 const char *
9364 ada_enum_name (const char *name)
9365 {
9366 static char *result;
9367 static size_t result_len = 0;
9368 const char *tmp;
9369
9370 /* First, unqualify the enumeration name:
9371 1. Search for the last '.' character. If we find one, then skip
9372 all the preceding characters, the unqualified name starts
9373 right after that dot.
9374 2. Otherwise, we may be debugging on a target where the compiler
9375 translates dots into "__". Search forward for double underscores,
9376 but stop searching when we hit an overloading suffix, which is
9377 of the form "__" followed by digits. */
9378
9379 tmp = strrchr (name, '.');
9380 if (tmp != NULL)
9381 name = tmp + 1;
9382 else
9383 {
9384 while ((tmp = strstr (name, "__")) != NULL)
9385 {
9386 if (isdigit (tmp[2]))
9387 break;
9388 else
9389 name = tmp + 2;
9390 }
9391 }
9392
9393 if (name[0] == 'Q')
9394 {
9395 int v;
9396
9397 if (name[1] == 'U' || name[1] == 'W')
9398 {
9399 if (sscanf (name + 2, "%x", &v) != 1)
9400 return name;
9401 }
9402 else if (((name[1] >= '0' && name[1] <= '9')
9403 || (name[1] >= 'a' && name[1] <= 'z'))
9404 && name[2] == '\0')
9405 {
9406 GROW_VECT (result, result_len, 4);
9407 xsnprintf (result, result_len, "'%c'", name[1]);
9408 return result;
9409 }
9410 else
9411 return name;
9412
9413 GROW_VECT (result, result_len, 16);
9414 if (isascii (v) && isprint (v))
9415 xsnprintf (result, result_len, "'%c'", v);
9416 else if (name[1] == 'U')
9417 xsnprintf (result, result_len, "[\"%02x\"]", v);
9418 else
9419 xsnprintf (result, result_len, "[\"%04x\"]", v);
9420
9421 return result;
9422 }
9423 else
9424 {
9425 tmp = strstr (name, "__");
9426 if (tmp == NULL)
9427 tmp = strstr (name, "$");
9428 if (tmp != NULL)
9429 {
9430 GROW_VECT (result, result_len, tmp - name + 1);
9431 strncpy (result, name, tmp - name);
9432 result[tmp - name] = '\0';
9433 return result;
9434 }
9435
9436 return name;
9437 }
9438 }
9439
9440 /* Evaluate the subexpression of EXP starting at *POS as for
9441 evaluate_type, updating *POS to point just past the evaluated
9442 expression. */
9443
9444 static struct value *
9445 evaluate_subexp_type (struct expression *exp, int *pos)
9446 {
9447 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9448 }
9449
9450 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9451 value it wraps. */
9452
9453 static struct value *
9454 unwrap_value (struct value *val)
9455 {
9456 struct type *type = ada_check_typedef (value_type (val));
9457
9458 if (ada_is_aligner_type (type))
9459 {
9460 struct value *v = ada_value_struct_elt (val, "F", 0);
9461 struct type *val_type = ada_check_typedef (value_type (v));
9462
9463 if (ada_type_name (val_type) == NULL)
9464 TYPE_NAME (val_type) = ada_type_name (type);
9465
9466 return unwrap_value (v);
9467 }
9468 else
9469 {
9470 struct type *raw_real_type =
9471 ada_check_typedef (ada_get_base_type (type));
9472
9473 /* If there is no parallel XVS or XVE type, then the value is
9474 already unwrapped. Return it without further modification. */
9475 if ((type == raw_real_type)
9476 && ada_find_parallel_type (type, "___XVE") == NULL)
9477 return val;
9478
9479 return
9480 coerce_unspec_val_to_type
9481 (val, ada_to_fixed_type (raw_real_type, 0,
9482 value_address (val),
9483 NULL, 1));
9484 }
9485 }
9486
9487 static struct value *
9488 cast_from_fixed (struct type *type, struct value *arg)
9489 {
9490 struct value *scale = ada_scaling_factor (value_type (arg));
9491 arg = value_cast (value_type (scale), arg);
9492
9493 arg = value_binop (arg, scale, BINOP_MUL);
9494 return value_cast (type, arg);
9495 }
9496
9497 static struct value *
9498 cast_to_fixed (struct type *type, struct value *arg)
9499 {
9500 if (type == value_type (arg))
9501 return arg;
9502
9503 struct value *scale = ada_scaling_factor (type);
9504 if (ada_is_fixed_point_type (value_type (arg)))
9505 arg = cast_from_fixed (value_type (scale), arg);
9506 else
9507 arg = value_cast (value_type (scale), arg);
9508
9509 arg = value_binop (arg, scale, BINOP_DIV);
9510 return value_cast (type, arg);
9511 }
9512
9513 /* Given two array types T1 and T2, return nonzero iff both arrays
9514 contain the same number of elements. */
9515
9516 static int
9517 ada_same_array_size_p (struct type *t1, struct type *t2)
9518 {
9519 LONGEST lo1, hi1, lo2, hi2;
9520
9521 /* Get the array bounds in order to verify that the size of
9522 the two arrays match. */
9523 if (!get_array_bounds (t1, &lo1, &hi1)
9524 || !get_array_bounds (t2, &lo2, &hi2))
9525 error (_("unable to determine array bounds"));
9526
9527 /* To make things easier for size comparison, normalize a bit
9528 the case of empty arrays by making sure that the difference
9529 between upper bound and lower bound is always -1. */
9530 if (lo1 > hi1)
9531 hi1 = lo1 - 1;
9532 if (lo2 > hi2)
9533 hi2 = lo2 - 1;
9534
9535 return (hi1 - lo1 == hi2 - lo2);
9536 }
9537
9538 /* Assuming that VAL is an array of integrals, and TYPE represents
9539 an array with the same number of elements, but with wider integral
9540 elements, return an array "casted" to TYPE. In practice, this
9541 means that the returned array is built by casting each element
9542 of the original array into TYPE's (wider) element type. */
9543
9544 static struct value *
9545 ada_promote_array_of_integrals (struct type *type, struct value *val)
9546 {
9547 struct type *elt_type = TYPE_TARGET_TYPE (type);
9548 LONGEST lo, hi;
9549 struct value *res;
9550 LONGEST i;
9551
9552 /* Verify that both val and type are arrays of scalars, and
9553 that the size of val's elements is smaller than the size
9554 of type's element. */
9555 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9556 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9557 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9558 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9559 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9560 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9561
9562 if (!get_array_bounds (type, &lo, &hi))
9563 error (_("unable to determine array bounds"));
9564
9565 res = allocate_value (type);
9566
9567 /* Promote each array element. */
9568 for (i = 0; i < hi - lo + 1; i++)
9569 {
9570 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9571
9572 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9573 value_contents_all (elt), TYPE_LENGTH (elt_type));
9574 }
9575
9576 return res;
9577 }
9578
9579 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9580 return the converted value. */
9581
9582 static struct value *
9583 coerce_for_assign (struct type *type, struct value *val)
9584 {
9585 struct type *type2 = value_type (val);
9586
9587 if (type == type2)
9588 return val;
9589
9590 type2 = ada_check_typedef (type2);
9591 type = ada_check_typedef (type);
9592
9593 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9594 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9595 {
9596 val = ada_value_ind (val);
9597 type2 = value_type (val);
9598 }
9599
9600 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9601 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9602 {
9603 if (!ada_same_array_size_p (type, type2))
9604 error (_("cannot assign arrays of different length"));
9605
9606 if (is_integral_type (TYPE_TARGET_TYPE (type))
9607 && is_integral_type (TYPE_TARGET_TYPE (type2))
9608 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9609 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9610 {
9611 /* Allow implicit promotion of the array elements to
9612 a wider type. */
9613 return ada_promote_array_of_integrals (type, val);
9614 }
9615
9616 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9617 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9618 error (_("Incompatible types in assignment"));
9619 deprecated_set_value_type (val, type);
9620 }
9621 return val;
9622 }
9623
9624 static struct value *
9625 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9626 {
9627 struct value *val;
9628 struct type *type1, *type2;
9629 LONGEST v, v1, v2;
9630
9631 arg1 = coerce_ref (arg1);
9632 arg2 = coerce_ref (arg2);
9633 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9634 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9635
9636 if (TYPE_CODE (type1) != TYPE_CODE_INT
9637 || TYPE_CODE (type2) != TYPE_CODE_INT)
9638 return value_binop (arg1, arg2, op);
9639
9640 switch (op)
9641 {
9642 case BINOP_MOD:
9643 case BINOP_DIV:
9644 case BINOP_REM:
9645 break;
9646 default:
9647 return value_binop (arg1, arg2, op);
9648 }
9649
9650 v2 = value_as_long (arg2);
9651 if (v2 == 0)
9652 error (_("second operand of %s must not be zero."), op_string (op));
9653
9654 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9655 return value_binop (arg1, arg2, op);
9656
9657 v1 = value_as_long (arg1);
9658 switch (op)
9659 {
9660 case BINOP_DIV:
9661 v = v1 / v2;
9662 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9663 v += v > 0 ? -1 : 1;
9664 break;
9665 case BINOP_REM:
9666 v = v1 % v2;
9667 if (v * v1 < 0)
9668 v -= v2;
9669 break;
9670 default:
9671 /* Should not reach this point. */
9672 v = 0;
9673 }
9674
9675 val = allocate_value (type1);
9676 store_unsigned_integer (value_contents_raw (val),
9677 TYPE_LENGTH (value_type (val)),
9678 type_byte_order (type1), v);
9679 return val;
9680 }
9681
9682 static int
9683 ada_value_equal (struct value *arg1, struct value *arg2)
9684 {
9685 if (ada_is_direct_array_type (value_type (arg1))
9686 || ada_is_direct_array_type (value_type (arg2)))
9687 {
9688 struct type *arg1_type, *arg2_type;
9689
9690 /* Automatically dereference any array reference before
9691 we attempt to perform the comparison. */
9692 arg1 = ada_coerce_ref (arg1);
9693 arg2 = ada_coerce_ref (arg2);
9694
9695 arg1 = ada_coerce_to_simple_array (arg1);
9696 arg2 = ada_coerce_to_simple_array (arg2);
9697
9698 arg1_type = ada_check_typedef (value_type (arg1));
9699 arg2_type = ada_check_typedef (value_type (arg2));
9700
9701 if (TYPE_CODE (arg1_type) != TYPE_CODE_ARRAY
9702 || TYPE_CODE (arg2_type) != TYPE_CODE_ARRAY)
9703 error (_("Attempt to compare array with non-array"));
9704 /* FIXME: The following works only for types whose
9705 representations use all bits (no padding or undefined bits)
9706 and do not have user-defined equality. */
9707 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9708 && memcmp (value_contents (arg1), value_contents (arg2),
9709 TYPE_LENGTH (arg1_type)) == 0);
9710 }
9711 return value_equal (arg1, arg2);
9712 }
9713
9714 /* Total number of component associations in the aggregate starting at
9715 index PC in EXP. Assumes that index PC is the start of an
9716 OP_AGGREGATE. */
9717
9718 static int
9719 num_component_specs (struct expression *exp, int pc)
9720 {
9721 int n, m, i;
9722
9723 m = exp->elts[pc + 1].longconst;
9724 pc += 3;
9725 n = 0;
9726 for (i = 0; i < m; i += 1)
9727 {
9728 switch (exp->elts[pc].opcode)
9729 {
9730 default:
9731 n += 1;
9732 break;
9733 case OP_CHOICES:
9734 n += exp->elts[pc + 1].longconst;
9735 break;
9736 }
9737 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9738 }
9739 return n;
9740 }
9741
9742 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9743 component of LHS (a simple array or a record), updating *POS past
9744 the expression, assuming that LHS is contained in CONTAINER. Does
9745 not modify the inferior's memory, nor does it modify LHS (unless
9746 LHS == CONTAINER). */
9747
9748 static void
9749 assign_component (struct value *container, struct value *lhs, LONGEST index,
9750 struct expression *exp, int *pos)
9751 {
9752 struct value *mark = value_mark ();
9753 struct value *elt;
9754 struct type *lhs_type = check_typedef (value_type (lhs));
9755
9756 if (TYPE_CODE (lhs_type) == TYPE_CODE_ARRAY)
9757 {
9758 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9759 struct value *index_val = value_from_longest (index_type, index);
9760
9761 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9762 }
9763 else
9764 {
9765 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9766 elt = ada_to_fixed_value (elt);
9767 }
9768
9769 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9770 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9771 else
9772 value_assign_to_component (container, elt,
9773 ada_evaluate_subexp (NULL, exp, pos,
9774 EVAL_NORMAL));
9775
9776 value_free_to_mark (mark);
9777 }
9778
9779 /* Assuming that LHS represents an lvalue having a record or array
9780 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9781 of that aggregate's value to LHS, advancing *POS past the
9782 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9783 lvalue containing LHS (possibly LHS itself). Does not modify
9784 the inferior's memory, nor does it modify the contents of
9785 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9786
9787 static struct value *
9788 assign_aggregate (struct value *container,
9789 struct value *lhs, struct expression *exp,
9790 int *pos, enum noside noside)
9791 {
9792 struct type *lhs_type;
9793 int n = exp->elts[*pos+1].longconst;
9794 LONGEST low_index, high_index;
9795 int num_specs;
9796 LONGEST *indices;
9797 int max_indices, num_indices;
9798 int i;
9799
9800 *pos += 3;
9801 if (noside != EVAL_NORMAL)
9802 {
9803 for (i = 0; i < n; i += 1)
9804 ada_evaluate_subexp (NULL, exp, pos, noside);
9805 return container;
9806 }
9807
9808 container = ada_coerce_ref (container);
9809 if (ada_is_direct_array_type (value_type (container)))
9810 container = ada_coerce_to_simple_array (container);
9811 lhs = ada_coerce_ref (lhs);
9812 if (!deprecated_value_modifiable (lhs))
9813 error (_("Left operand of assignment is not a modifiable lvalue."));
9814
9815 lhs_type = check_typedef (value_type (lhs));
9816 if (ada_is_direct_array_type (lhs_type))
9817 {
9818 lhs = ada_coerce_to_simple_array (lhs);
9819 lhs_type = check_typedef (value_type (lhs));
9820 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9821 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9822 }
9823 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9824 {
9825 low_index = 0;
9826 high_index = num_visible_fields (lhs_type) - 1;
9827 }
9828 else
9829 error (_("Left-hand side must be array or record."));
9830
9831 num_specs = num_component_specs (exp, *pos - 3);
9832 max_indices = 4 * num_specs + 4;
9833 indices = XALLOCAVEC (LONGEST, max_indices);
9834 indices[0] = indices[1] = low_index - 1;
9835 indices[2] = indices[3] = high_index + 1;
9836 num_indices = 4;
9837
9838 for (i = 0; i < n; i += 1)
9839 {
9840 switch (exp->elts[*pos].opcode)
9841 {
9842 case OP_CHOICES:
9843 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9844 &num_indices, max_indices,
9845 low_index, high_index);
9846 break;
9847 case OP_POSITIONAL:
9848 aggregate_assign_positional (container, lhs, exp, pos, indices,
9849 &num_indices, max_indices,
9850 low_index, high_index);
9851 break;
9852 case OP_OTHERS:
9853 if (i != n-1)
9854 error (_("Misplaced 'others' clause"));
9855 aggregate_assign_others (container, lhs, exp, pos, indices,
9856 num_indices, low_index, high_index);
9857 break;
9858 default:
9859 error (_("Internal error: bad aggregate clause"));
9860 }
9861 }
9862
9863 return container;
9864 }
9865
9866 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9867 construct at *POS, updating *POS past the construct, given that
9868 the positions are relative to lower bound LOW, where HIGH is the
9869 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9870 updating *NUM_INDICES as needed. CONTAINER is as for
9871 assign_aggregate. */
9872 static void
9873 aggregate_assign_positional (struct value *container,
9874 struct value *lhs, struct expression *exp,
9875 int *pos, LONGEST *indices, int *num_indices,
9876 int max_indices, LONGEST low, LONGEST high)
9877 {
9878 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9879
9880 if (ind - 1 == high)
9881 warning (_("Extra components in aggregate ignored."));
9882 if (ind <= high)
9883 {
9884 add_component_interval (ind, ind, indices, num_indices, max_indices);
9885 *pos += 3;
9886 assign_component (container, lhs, ind, exp, pos);
9887 }
9888 else
9889 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9890 }
9891
9892 /* Assign into the components of LHS indexed by the OP_CHOICES
9893 construct at *POS, updating *POS past the construct, given that
9894 the allowable indices are LOW..HIGH. Record the indices assigned
9895 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9896 needed. CONTAINER is as for assign_aggregate. */
9897 static void
9898 aggregate_assign_from_choices (struct value *container,
9899 struct value *lhs, struct expression *exp,
9900 int *pos, LONGEST *indices, int *num_indices,
9901 int max_indices, LONGEST low, LONGEST high)
9902 {
9903 int j;
9904 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9905 int choice_pos, expr_pc;
9906 int is_array = ada_is_direct_array_type (value_type (lhs));
9907
9908 choice_pos = *pos += 3;
9909
9910 for (j = 0; j < n_choices; j += 1)
9911 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9912 expr_pc = *pos;
9913 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9914
9915 for (j = 0; j < n_choices; j += 1)
9916 {
9917 LONGEST lower, upper;
9918 enum exp_opcode op = exp->elts[choice_pos].opcode;
9919
9920 if (op == OP_DISCRETE_RANGE)
9921 {
9922 choice_pos += 1;
9923 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9924 EVAL_NORMAL));
9925 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9926 EVAL_NORMAL));
9927 }
9928 else if (is_array)
9929 {
9930 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9931 EVAL_NORMAL));
9932 upper = lower;
9933 }
9934 else
9935 {
9936 int ind;
9937 const char *name;
9938
9939 switch (op)
9940 {
9941 case OP_NAME:
9942 name = &exp->elts[choice_pos + 2].string;
9943 break;
9944 case OP_VAR_VALUE:
9945 name = exp->elts[choice_pos + 2].symbol->natural_name ();
9946 break;
9947 default:
9948 error (_("Invalid record component association."));
9949 }
9950 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9951 ind = 0;
9952 if (! find_struct_field (name, value_type (lhs), 0,
9953 NULL, NULL, NULL, NULL, &ind))
9954 error (_("Unknown component name: %s."), name);
9955 lower = upper = ind;
9956 }
9957
9958 if (lower <= upper && (lower < low || upper > high))
9959 error (_("Index in component association out of bounds."));
9960
9961 add_component_interval (lower, upper, indices, num_indices,
9962 max_indices);
9963 while (lower <= upper)
9964 {
9965 int pos1;
9966
9967 pos1 = expr_pc;
9968 assign_component (container, lhs, lower, exp, &pos1);
9969 lower += 1;
9970 }
9971 }
9972 }
9973
9974 /* Assign the value of the expression in the OP_OTHERS construct in
9975 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9976 have not been previously assigned. The index intervals already assigned
9977 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
9978 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
9979 static void
9980 aggregate_assign_others (struct value *container,
9981 struct value *lhs, struct expression *exp,
9982 int *pos, LONGEST *indices, int num_indices,
9983 LONGEST low, LONGEST high)
9984 {
9985 int i;
9986 int expr_pc = *pos + 1;
9987
9988 for (i = 0; i < num_indices - 2; i += 2)
9989 {
9990 LONGEST ind;
9991
9992 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9993 {
9994 int localpos;
9995
9996 localpos = expr_pc;
9997 assign_component (container, lhs, ind, exp, &localpos);
9998 }
9999 }
10000 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10001 }
10002
10003 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
10004 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10005 modifying *SIZE as needed. It is an error if *SIZE exceeds
10006 MAX_SIZE. The resulting intervals do not overlap. */
10007 static void
10008 add_component_interval (LONGEST low, LONGEST high,
10009 LONGEST* indices, int *size, int max_size)
10010 {
10011 int i, j;
10012
10013 for (i = 0; i < *size; i += 2) {
10014 if (high >= indices[i] && low <= indices[i + 1])
10015 {
10016 int kh;
10017
10018 for (kh = i + 2; kh < *size; kh += 2)
10019 if (high < indices[kh])
10020 break;
10021 if (low < indices[i])
10022 indices[i] = low;
10023 indices[i + 1] = indices[kh - 1];
10024 if (high > indices[i + 1])
10025 indices[i + 1] = high;
10026 memcpy (indices + i + 2, indices + kh, *size - kh);
10027 *size -= kh - i - 2;
10028 return;
10029 }
10030 else if (high < indices[i])
10031 break;
10032 }
10033
10034 if (*size == max_size)
10035 error (_("Internal error: miscounted aggregate components."));
10036 *size += 2;
10037 for (j = *size-1; j >= i+2; j -= 1)
10038 indices[j] = indices[j - 2];
10039 indices[i] = low;
10040 indices[i + 1] = high;
10041 }
10042
10043 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10044 is different. */
10045
10046 static struct value *
10047 ada_value_cast (struct type *type, struct value *arg2)
10048 {
10049 if (type == ada_check_typedef (value_type (arg2)))
10050 return arg2;
10051
10052 if (ada_is_fixed_point_type (type))
10053 return cast_to_fixed (type, arg2);
10054
10055 if (ada_is_fixed_point_type (value_type (arg2)))
10056 return cast_from_fixed (type, arg2);
10057
10058 return value_cast (type, arg2);
10059 }
10060
10061 /* Evaluating Ada expressions, and printing their result.
10062 ------------------------------------------------------
10063
10064 1. Introduction:
10065 ----------------
10066
10067 We usually evaluate an Ada expression in order to print its value.
10068 We also evaluate an expression in order to print its type, which
10069 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10070 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10071 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10072 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10073 similar.
10074
10075 Evaluating expressions is a little more complicated for Ada entities
10076 than it is for entities in languages such as C. The main reason for
10077 this is that Ada provides types whose definition might be dynamic.
10078 One example of such types is variant records. Or another example
10079 would be an array whose bounds can only be known at run time.
10080
10081 The following description is a general guide as to what should be
10082 done (and what should NOT be done) in order to evaluate an expression
10083 involving such types, and when. This does not cover how the semantic
10084 information is encoded by GNAT as this is covered separatly. For the
10085 document used as the reference for the GNAT encoding, see exp_dbug.ads
10086 in the GNAT sources.
10087
10088 Ideally, we should embed each part of this description next to its
10089 associated code. Unfortunately, the amount of code is so vast right
10090 now that it's hard to see whether the code handling a particular
10091 situation might be duplicated or not. One day, when the code is
10092 cleaned up, this guide might become redundant with the comments
10093 inserted in the code, and we might want to remove it.
10094
10095 2. ``Fixing'' an Entity, the Simple Case:
10096 -----------------------------------------
10097
10098 When evaluating Ada expressions, the tricky issue is that they may
10099 reference entities whose type contents and size are not statically
10100 known. Consider for instance a variant record:
10101
10102 type Rec (Empty : Boolean := True) is record
10103 case Empty is
10104 when True => null;
10105 when False => Value : Integer;
10106 end case;
10107 end record;
10108 Yes : Rec := (Empty => False, Value => 1);
10109 No : Rec := (empty => True);
10110
10111 The size and contents of that record depends on the value of the
10112 descriminant (Rec.Empty). At this point, neither the debugging
10113 information nor the associated type structure in GDB are able to
10114 express such dynamic types. So what the debugger does is to create
10115 "fixed" versions of the type that applies to the specific object.
10116 We also informally refer to this operation as "fixing" an object,
10117 which means creating its associated fixed type.
10118
10119 Example: when printing the value of variable "Yes" above, its fixed
10120 type would look like this:
10121
10122 type Rec is record
10123 Empty : Boolean;
10124 Value : Integer;
10125 end record;
10126
10127 On the other hand, if we printed the value of "No", its fixed type
10128 would become:
10129
10130 type Rec is record
10131 Empty : Boolean;
10132 end record;
10133
10134 Things become a little more complicated when trying to fix an entity
10135 with a dynamic type that directly contains another dynamic type,
10136 such as an array of variant records, for instance. There are
10137 two possible cases: Arrays, and records.
10138
10139 3. ``Fixing'' Arrays:
10140 ---------------------
10141
10142 The type structure in GDB describes an array in terms of its bounds,
10143 and the type of its elements. By design, all elements in the array
10144 have the same type and we cannot represent an array of variant elements
10145 using the current type structure in GDB. When fixing an array,
10146 we cannot fix the array element, as we would potentially need one
10147 fixed type per element of the array. As a result, the best we can do
10148 when fixing an array is to produce an array whose bounds and size
10149 are correct (allowing us to read it from memory), but without having
10150 touched its element type. Fixing each element will be done later,
10151 when (if) necessary.
10152
10153 Arrays are a little simpler to handle than records, because the same
10154 amount of memory is allocated for each element of the array, even if
10155 the amount of space actually used by each element differs from element
10156 to element. Consider for instance the following array of type Rec:
10157
10158 type Rec_Array is array (1 .. 2) of Rec;
10159
10160 The actual amount of memory occupied by each element might be different
10161 from element to element, depending on the value of their discriminant.
10162 But the amount of space reserved for each element in the array remains
10163 fixed regardless. So we simply need to compute that size using
10164 the debugging information available, from which we can then determine
10165 the array size (we multiply the number of elements of the array by
10166 the size of each element).
10167
10168 The simplest case is when we have an array of a constrained element
10169 type. For instance, consider the following type declarations:
10170
10171 type Bounded_String (Max_Size : Integer) is
10172 Length : Integer;
10173 Buffer : String (1 .. Max_Size);
10174 end record;
10175 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10176
10177 In this case, the compiler describes the array as an array of
10178 variable-size elements (identified by its XVS suffix) for which
10179 the size can be read in the parallel XVZ variable.
10180
10181 In the case of an array of an unconstrained element type, the compiler
10182 wraps the array element inside a private PAD type. This type should not
10183 be shown to the user, and must be "unwrap"'ed before printing. Note
10184 that we also use the adjective "aligner" in our code to designate
10185 these wrapper types.
10186
10187 In some cases, the size allocated for each element is statically
10188 known. In that case, the PAD type already has the correct size,
10189 and the array element should remain unfixed.
10190
10191 But there are cases when this size is not statically known.
10192 For instance, assuming that "Five" is an integer variable:
10193
10194 type Dynamic is array (1 .. Five) of Integer;
10195 type Wrapper (Has_Length : Boolean := False) is record
10196 Data : Dynamic;
10197 case Has_Length is
10198 when True => Length : Integer;
10199 when False => null;
10200 end case;
10201 end record;
10202 type Wrapper_Array is array (1 .. 2) of Wrapper;
10203
10204 Hello : Wrapper_Array := (others => (Has_Length => True,
10205 Data => (others => 17),
10206 Length => 1));
10207
10208
10209 The debugging info would describe variable Hello as being an
10210 array of a PAD type. The size of that PAD type is not statically
10211 known, but can be determined using a parallel XVZ variable.
10212 In that case, a copy of the PAD type with the correct size should
10213 be used for the fixed array.
10214
10215 3. ``Fixing'' record type objects:
10216 ----------------------------------
10217
10218 Things are slightly different from arrays in the case of dynamic
10219 record types. In this case, in order to compute the associated
10220 fixed type, we need to determine the size and offset of each of
10221 its components. This, in turn, requires us to compute the fixed
10222 type of each of these components.
10223
10224 Consider for instance the example:
10225
10226 type Bounded_String (Max_Size : Natural) is record
10227 Str : String (1 .. Max_Size);
10228 Length : Natural;
10229 end record;
10230 My_String : Bounded_String (Max_Size => 10);
10231
10232 In that case, the position of field "Length" depends on the size
10233 of field Str, which itself depends on the value of the Max_Size
10234 discriminant. In order to fix the type of variable My_String,
10235 we need to fix the type of field Str. Therefore, fixing a variant
10236 record requires us to fix each of its components.
10237
10238 However, if a component does not have a dynamic size, the component
10239 should not be fixed. In particular, fields that use a PAD type
10240 should not fixed. Here is an example where this might happen
10241 (assuming type Rec above):
10242
10243 type Container (Big : Boolean) is record
10244 First : Rec;
10245 After : Integer;
10246 case Big is
10247 when True => Another : Integer;
10248 when False => null;
10249 end case;
10250 end record;
10251 My_Container : Container := (Big => False,
10252 First => (Empty => True),
10253 After => 42);
10254
10255 In that example, the compiler creates a PAD type for component First,
10256 whose size is constant, and then positions the component After just
10257 right after it. The offset of component After is therefore constant
10258 in this case.
10259
10260 The debugger computes the position of each field based on an algorithm
10261 that uses, among other things, the actual position and size of the field
10262 preceding it. Let's now imagine that the user is trying to print
10263 the value of My_Container. If the type fixing was recursive, we would
10264 end up computing the offset of field After based on the size of the
10265 fixed version of field First. And since in our example First has
10266 only one actual field, the size of the fixed type is actually smaller
10267 than the amount of space allocated to that field, and thus we would
10268 compute the wrong offset of field After.
10269
10270 To make things more complicated, we need to watch out for dynamic
10271 components of variant records (identified by the ___XVL suffix in
10272 the component name). Even if the target type is a PAD type, the size
10273 of that type might not be statically known. So the PAD type needs
10274 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10275 we might end up with the wrong size for our component. This can be
10276 observed with the following type declarations:
10277
10278 type Octal is new Integer range 0 .. 7;
10279 type Octal_Array is array (Positive range <>) of Octal;
10280 pragma Pack (Octal_Array);
10281
10282 type Octal_Buffer (Size : Positive) is record
10283 Buffer : Octal_Array (1 .. Size);
10284 Length : Integer;
10285 end record;
10286
10287 In that case, Buffer is a PAD type whose size is unset and needs
10288 to be computed by fixing the unwrapped type.
10289
10290 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10291 ----------------------------------------------------------
10292
10293 Lastly, when should the sub-elements of an entity that remained unfixed
10294 thus far, be actually fixed?
10295
10296 The answer is: Only when referencing that element. For instance
10297 when selecting one component of a record, this specific component
10298 should be fixed at that point in time. Or when printing the value
10299 of a record, each component should be fixed before its value gets
10300 printed. Similarly for arrays, the element of the array should be
10301 fixed when printing each element of the array, or when extracting
10302 one element out of that array. On the other hand, fixing should
10303 not be performed on the elements when taking a slice of an array!
10304
10305 Note that one of the side effects of miscomputing the offset and
10306 size of each field is that we end up also miscomputing the size
10307 of the containing type. This can have adverse results when computing
10308 the value of an entity. GDB fetches the value of an entity based
10309 on the size of its type, and thus a wrong size causes GDB to fetch
10310 the wrong amount of memory. In the case where the computed size is
10311 too small, GDB fetches too little data to print the value of our
10312 entity. Results in this case are unpredictable, as we usually read
10313 past the buffer containing the data =:-o. */
10314
10315 /* Evaluate a subexpression of EXP, at index *POS, and return a value
10316 for that subexpression cast to TO_TYPE. Advance *POS over the
10317 subexpression. */
10318
10319 static value *
10320 ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10321 enum noside noside, struct type *to_type)
10322 {
10323 int pc = *pos;
10324
10325 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10326 || exp->elts[pc].opcode == OP_VAR_VALUE)
10327 {
10328 (*pos) += 4;
10329
10330 value *val;
10331 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10332 {
10333 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10334 return value_zero (to_type, not_lval);
10335
10336 val = evaluate_var_msym_value (noside,
10337 exp->elts[pc + 1].objfile,
10338 exp->elts[pc + 2].msymbol);
10339 }
10340 else
10341 val = evaluate_var_value (noside,
10342 exp->elts[pc + 1].block,
10343 exp->elts[pc + 2].symbol);
10344
10345 if (noside == EVAL_SKIP)
10346 return eval_skip_value (exp);
10347
10348 val = ada_value_cast (to_type, val);
10349
10350 /* Follow the Ada language semantics that do not allow taking
10351 an address of the result of a cast (view conversion in Ada). */
10352 if (VALUE_LVAL (val) == lval_memory)
10353 {
10354 if (value_lazy (val))
10355 value_fetch_lazy (val);
10356 VALUE_LVAL (val) = not_lval;
10357 }
10358 return val;
10359 }
10360
10361 value *val = evaluate_subexp (to_type, exp, pos, noside);
10362 if (noside == EVAL_SKIP)
10363 return eval_skip_value (exp);
10364 return ada_value_cast (to_type, val);
10365 }
10366
10367 /* Implement the evaluate_exp routine in the exp_descriptor structure
10368 for the Ada language. */
10369
10370 static struct value *
10371 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10372 int *pos, enum noside noside)
10373 {
10374 enum exp_opcode op;
10375 int tem;
10376 int pc;
10377 int preeval_pos;
10378 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10379 struct type *type;
10380 int nargs, oplen;
10381 struct value **argvec;
10382
10383 pc = *pos;
10384 *pos += 1;
10385 op = exp->elts[pc].opcode;
10386
10387 switch (op)
10388 {
10389 default:
10390 *pos -= 1;
10391 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10392
10393 if (noside == EVAL_NORMAL)
10394 arg1 = unwrap_value (arg1);
10395
10396 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10397 then we need to perform the conversion manually, because
10398 evaluate_subexp_standard doesn't do it. This conversion is
10399 necessary in Ada because the different kinds of float/fixed
10400 types in Ada have different representations.
10401
10402 Similarly, we need to perform the conversion from OP_LONG
10403 ourselves. */
10404 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
10405 arg1 = ada_value_cast (expect_type, arg1);
10406
10407 return arg1;
10408
10409 case OP_STRING:
10410 {
10411 struct value *result;
10412
10413 *pos -= 1;
10414 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10415 /* The result type will have code OP_STRING, bashed there from
10416 OP_ARRAY. Bash it back. */
10417 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10418 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
10419 return result;
10420 }
10421
10422 case UNOP_CAST:
10423 (*pos) += 2;
10424 type = exp->elts[pc + 1].type;
10425 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
10426
10427 case UNOP_QUAL:
10428 (*pos) += 2;
10429 type = exp->elts[pc + 1].type;
10430 return ada_evaluate_subexp (type, exp, pos, noside);
10431
10432 case BINOP_ASSIGN:
10433 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10434 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10435 {
10436 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10437 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10438 return arg1;
10439 return ada_value_assign (arg1, arg1);
10440 }
10441 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10442 except if the lhs of our assignment is a convenience variable.
10443 In the case of assigning to a convenience variable, the lhs
10444 should be exactly the result of the evaluation of the rhs. */
10445 type = value_type (arg1);
10446 if (VALUE_LVAL (arg1) == lval_internalvar)
10447 type = NULL;
10448 arg2 = evaluate_subexp (type, exp, pos, noside);
10449 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10450 return arg1;
10451 if (VALUE_LVAL (arg1) == lval_internalvar)
10452 {
10453 /* Nothing. */
10454 }
10455 else if (ada_is_fixed_point_type (value_type (arg1)))
10456 arg2 = cast_to_fixed (value_type (arg1), arg2);
10457 else if (ada_is_fixed_point_type (value_type (arg2)))
10458 error
10459 (_("Fixed-point values must be assigned to fixed-point variables"));
10460 else
10461 arg2 = coerce_for_assign (value_type (arg1), arg2);
10462 return ada_value_assign (arg1, arg2);
10463
10464 case BINOP_ADD:
10465 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10466 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10467 if (noside == EVAL_SKIP)
10468 goto nosideret;
10469 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10470 return (value_from_longest
10471 (value_type (arg1),
10472 value_as_long (arg1) + value_as_long (arg2)));
10473 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10474 return (value_from_longest
10475 (value_type (arg2),
10476 value_as_long (arg1) + value_as_long (arg2)));
10477 if ((ada_is_fixed_point_type (value_type (arg1))
10478 || ada_is_fixed_point_type (value_type (arg2)))
10479 && value_type (arg1) != value_type (arg2))
10480 error (_("Operands of fixed-point addition must have the same type"));
10481 /* Do the addition, and cast the result to the type of the first
10482 argument. We cannot cast the result to a reference type, so if
10483 ARG1 is a reference type, find its underlying type. */
10484 type = value_type (arg1);
10485 while (TYPE_CODE (type) == TYPE_CODE_REF)
10486 type = TYPE_TARGET_TYPE (type);
10487 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10488 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10489
10490 case BINOP_SUB:
10491 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10492 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10493 if (noside == EVAL_SKIP)
10494 goto nosideret;
10495 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10496 return (value_from_longest
10497 (value_type (arg1),
10498 value_as_long (arg1) - value_as_long (arg2)));
10499 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10500 return (value_from_longest
10501 (value_type (arg2),
10502 value_as_long (arg1) - value_as_long (arg2)));
10503 if ((ada_is_fixed_point_type (value_type (arg1))
10504 || ada_is_fixed_point_type (value_type (arg2)))
10505 && value_type (arg1) != value_type (arg2))
10506 error (_("Operands of fixed-point subtraction "
10507 "must have the same type"));
10508 /* Do the substraction, and cast the result to the type of the first
10509 argument. We cannot cast the result to a reference type, so if
10510 ARG1 is a reference type, find its underlying type. */
10511 type = value_type (arg1);
10512 while (TYPE_CODE (type) == TYPE_CODE_REF)
10513 type = TYPE_TARGET_TYPE (type);
10514 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10515 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10516
10517 case BINOP_MUL:
10518 case BINOP_DIV:
10519 case BINOP_REM:
10520 case BINOP_MOD:
10521 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10522 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10523 if (noside == EVAL_SKIP)
10524 goto nosideret;
10525 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10526 {
10527 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10528 return value_zero (value_type (arg1), not_lval);
10529 }
10530 else
10531 {
10532 type = builtin_type (exp->gdbarch)->builtin_double;
10533 if (ada_is_fixed_point_type (value_type (arg1)))
10534 arg1 = cast_from_fixed (type, arg1);
10535 if (ada_is_fixed_point_type (value_type (arg2)))
10536 arg2 = cast_from_fixed (type, arg2);
10537 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10538 return ada_value_binop (arg1, arg2, op);
10539 }
10540
10541 case BINOP_EQUAL:
10542 case BINOP_NOTEQUAL:
10543 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10544 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10545 if (noside == EVAL_SKIP)
10546 goto nosideret;
10547 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10548 tem = 0;
10549 else
10550 {
10551 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10552 tem = ada_value_equal (arg1, arg2);
10553 }
10554 if (op == BINOP_NOTEQUAL)
10555 tem = !tem;
10556 type = language_bool_type (exp->language_defn, exp->gdbarch);
10557 return value_from_longest (type, (LONGEST) tem);
10558
10559 case UNOP_NEG:
10560 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10561 if (noside == EVAL_SKIP)
10562 goto nosideret;
10563 else if (ada_is_fixed_point_type (value_type (arg1)))
10564 return value_cast (value_type (arg1), value_neg (arg1));
10565 else
10566 {
10567 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10568 return value_neg (arg1);
10569 }
10570
10571 case BINOP_LOGICAL_AND:
10572 case BINOP_LOGICAL_OR:
10573 case UNOP_LOGICAL_NOT:
10574 {
10575 struct value *val;
10576
10577 *pos -= 1;
10578 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10579 type = language_bool_type (exp->language_defn, exp->gdbarch);
10580 return value_cast (type, val);
10581 }
10582
10583 case BINOP_BITWISE_AND:
10584 case BINOP_BITWISE_IOR:
10585 case BINOP_BITWISE_XOR:
10586 {
10587 struct value *val;
10588
10589 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10590 *pos = pc;
10591 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10592
10593 return value_cast (value_type (arg1), val);
10594 }
10595
10596 case OP_VAR_VALUE:
10597 *pos -= 1;
10598
10599 if (noside == EVAL_SKIP)
10600 {
10601 *pos += 4;
10602 goto nosideret;
10603 }
10604
10605 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10606 /* Only encountered when an unresolved symbol occurs in a
10607 context other than a function call, in which case, it is
10608 invalid. */
10609 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10610 exp->elts[pc + 2].symbol->print_name ());
10611
10612 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10613 {
10614 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10615 /* Check to see if this is a tagged type. We also need to handle
10616 the case where the type is a reference to a tagged type, but
10617 we have to be careful to exclude pointers to tagged types.
10618 The latter should be shown as usual (as a pointer), whereas
10619 a reference should mostly be transparent to the user. */
10620 if (ada_is_tagged_type (type, 0)
10621 || (TYPE_CODE (type) == TYPE_CODE_REF
10622 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10623 {
10624 /* Tagged types are a little special in the fact that the real
10625 type is dynamic and can only be determined by inspecting the
10626 object's tag. This means that we need to get the object's
10627 value first (EVAL_NORMAL) and then extract the actual object
10628 type from its tag.
10629
10630 Note that we cannot skip the final step where we extract
10631 the object type from its tag, because the EVAL_NORMAL phase
10632 results in dynamic components being resolved into fixed ones.
10633 This can cause problems when trying to print the type
10634 description of tagged types whose parent has a dynamic size:
10635 We use the type name of the "_parent" component in order
10636 to print the name of the ancestor type in the type description.
10637 If that component had a dynamic size, the resolution into
10638 a fixed type would result in the loss of that type name,
10639 thus preventing us from printing the name of the ancestor
10640 type in the type description. */
10641 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10642
10643 if (TYPE_CODE (type) != TYPE_CODE_REF)
10644 {
10645 struct type *actual_type;
10646
10647 actual_type = type_from_tag (ada_value_tag (arg1));
10648 if (actual_type == NULL)
10649 /* If, for some reason, we were unable to determine
10650 the actual type from the tag, then use the static
10651 approximation that we just computed as a fallback.
10652 This can happen if the debugging information is
10653 incomplete, for instance. */
10654 actual_type = type;
10655 return value_zero (actual_type, not_lval);
10656 }
10657 else
10658 {
10659 /* In the case of a ref, ada_coerce_ref takes care
10660 of determining the actual type. But the evaluation
10661 should return a ref as it should be valid to ask
10662 for its address; so rebuild a ref after coerce. */
10663 arg1 = ada_coerce_ref (arg1);
10664 return value_ref (arg1, TYPE_CODE_REF);
10665 }
10666 }
10667
10668 /* Records and unions for which GNAT encodings have been
10669 generated need to be statically fixed as well.
10670 Otherwise, non-static fixing produces a type where
10671 all dynamic properties are removed, which prevents "ptype"
10672 from being able to completely describe the type.
10673 For instance, a case statement in a variant record would be
10674 replaced by the relevant components based on the actual
10675 value of the discriminants. */
10676 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10677 && dynamic_template_type (type) != NULL)
10678 || (TYPE_CODE (type) == TYPE_CODE_UNION
10679 && ada_find_parallel_type (type, "___XVU") != NULL))
10680 {
10681 *pos += 4;
10682 return value_zero (to_static_fixed_type (type), not_lval);
10683 }
10684 }
10685
10686 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10687 return ada_to_fixed_value (arg1);
10688
10689 case OP_FUNCALL:
10690 (*pos) += 2;
10691
10692 /* Allocate arg vector, including space for the function to be
10693 called in argvec[0] and a terminating NULL. */
10694 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10695 argvec = XALLOCAVEC (struct value *, nargs + 2);
10696
10697 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10698 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10699 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10700 exp->elts[pc + 5].symbol->print_name ());
10701 else
10702 {
10703 for (tem = 0; tem <= nargs; tem += 1)
10704 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10705 argvec[tem] = 0;
10706
10707 if (noside == EVAL_SKIP)
10708 goto nosideret;
10709 }
10710
10711 if (ada_is_constrained_packed_array_type
10712 (desc_base_type (value_type (argvec[0]))))
10713 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10714 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10715 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10716 /* This is a packed array that has already been fixed, and
10717 therefore already coerced to a simple array. Nothing further
10718 to do. */
10719 ;
10720 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10721 {
10722 /* Make sure we dereference references so that all the code below
10723 feels like it's really handling the referenced value. Wrapping
10724 types (for alignment) may be there, so make sure we strip them as
10725 well. */
10726 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10727 }
10728 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10729 && VALUE_LVAL (argvec[0]) == lval_memory)
10730 argvec[0] = value_addr (argvec[0]);
10731
10732 type = ada_check_typedef (value_type (argvec[0]));
10733
10734 /* Ada allows us to implicitly dereference arrays when subscripting
10735 them. So, if this is an array typedef (encoding use for array
10736 access types encoded as fat pointers), strip it now. */
10737 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10738 type = ada_typedef_target_type (type);
10739
10740 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10741 {
10742 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10743 {
10744 case TYPE_CODE_FUNC:
10745 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10746 break;
10747 case TYPE_CODE_ARRAY:
10748 break;
10749 case TYPE_CODE_STRUCT:
10750 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10751 argvec[0] = ada_value_ind (argvec[0]);
10752 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10753 break;
10754 default:
10755 error (_("cannot subscript or call something of type `%s'"),
10756 ada_type_name (value_type (argvec[0])));
10757 break;
10758 }
10759 }
10760
10761 switch (TYPE_CODE (type))
10762 {
10763 case TYPE_CODE_FUNC:
10764 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10765 {
10766 if (TYPE_TARGET_TYPE (type) == NULL)
10767 error_call_unknown_return_type (NULL);
10768 return allocate_value (TYPE_TARGET_TYPE (type));
10769 }
10770 return call_function_by_hand (argvec[0], NULL,
10771 gdb::make_array_view (argvec + 1,
10772 nargs));
10773 case TYPE_CODE_INTERNAL_FUNCTION:
10774 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10775 /* We don't know anything about what the internal
10776 function might return, but we have to return
10777 something. */
10778 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10779 not_lval);
10780 else
10781 return call_internal_function (exp->gdbarch, exp->language_defn,
10782 argvec[0], nargs, argvec + 1);
10783
10784 case TYPE_CODE_STRUCT:
10785 {
10786 int arity;
10787
10788 arity = ada_array_arity (type);
10789 type = ada_array_element_type (type, nargs);
10790 if (type == NULL)
10791 error (_("cannot subscript or call a record"));
10792 if (arity != nargs)
10793 error (_("wrong number of subscripts; expecting %d"), arity);
10794 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10795 return value_zero (ada_aligned_type (type), lval_memory);
10796 return
10797 unwrap_value (ada_value_subscript
10798 (argvec[0], nargs, argvec + 1));
10799 }
10800 case TYPE_CODE_ARRAY:
10801 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10802 {
10803 type = ada_array_element_type (type, nargs);
10804 if (type == NULL)
10805 error (_("element type of array unknown"));
10806 else
10807 return value_zero (ada_aligned_type (type), lval_memory);
10808 }
10809 return
10810 unwrap_value (ada_value_subscript
10811 (ada_coerce_to_simple_array (argvec[0]),
10812 nargs, argvec + 1));
10813 case TYPE_CODE_PTR: /* Pointer to array */
10814 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10815 {
10816 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10817 type = ada_array_element_type (type, nargs);
10818 if (type == NULL)
10819 error (_("element type of array unknown"));
10820 else
10821 return value_zero (ada_aligned_type (type), lval_memory);
10822 }
10823 return
10824 unwrap_value (ada_value_ptr_subscript (argvec[0],
10825 nargs, argvec + 1));
10826
10827 default:
10828 error (_("Attempt to index or call something other than an "
10829 "array or function"));
10830 }
10831
10832 case TERNOP_SLICE:
10833 {
10834 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10835 struct value *low_bound_val =
10836 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10837 struct value *high_bound_val =
10838 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10839 LONGEST low_bound;
10840 LONGEST high_bound;
10841
10842 low_bound_val = coerce_ref (low_bound_val);
10843 high_bound_val = coerce_ref (high_bound_val);
10844 low_bound = value_as_long (low_bound_val);
10845 high_bound = value_as_long (high_bound_val);
10846
10847 if (noside == EVAL_SKIP)
10848 goto nosideret;
10849
10850 /* If this is a reference to an aligner type, then remove all
10851 the aligners. */
10852 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10853 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10854 TYPE_TARGET_TYPE (value_type (array)) =
10855 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10856
10857 if (ada_is_constrained_packed_array_type (value_type (array)))
10858 error (_("cannot slice a packed array"));
10859
10860 /* If this is a reference to an array or an array lvalue,
10861 convert to a pointer. */
10862 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10863 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
10864 && VALUE_LVAL (array) == lval_memory))
10865 array = value_addr (array);
10866
10867 if (noside == EVAL_AVOID_SIDE_EFFECTS
10868 && ada_is_array_descriptor_type (ada_check_typedef
10869 (value_type (array))))
10870 return empty_array (ada_type_of_array (array, 0), low_bound,
10871 high_bound);
10872
10873 array = ada_coerce_to_simple_array_ptr (array);
10874
10875 /* If we have more than one level of pointer indirection,
10876 dereference the value until we get only one level. */
10877 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10878 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
10879 == TYPE_CODE_PTR))
10880 array = value_ind (array);
10881
10882 /* Make sure we really do have an array type before going further,
10883 to avoid a SEGV when trying to get the index type or the target
10884 type later down the road if the debug info generated by
10885 the compiler is incorrect or incomplete. */
10886 if (!ada_is_simple_array_type (value_type (array)))
10887 error (_("cannot take slice of non-array"));
10888
10889 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10890 == TYPE_CODE_PTR)
10891 {
10892 struct type *type0 = ada_check_typedef (value_type (array));
10893
10894 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10895 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
10896 else
10897 {
10898 struct type *arr_type0 =
10899 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10900
10901 return ada_value_slice_from_ptr (array, arr_type0,
10902 longest_to_int (low_bound),
10903 longest_to_int (high_bound));
10904 }
10905 }
10906 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10907 return array;
10908 else if (high_bound < low_bound)
10909 return empty_array (value_type (array), low_bound, high_bound);
10910 else
10911 return ada_value_slice (array, longest_to_int (low_bound),
10912 longest_to_int (high_bound));
10913 }
10914
10915 case UNOP_IN_RANGE:
10916 (*pos) += 2;
10917 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10918 type = check_typedef (exp->elts[pc + 1].type);
10919
10920 if (noside == EVAL_SKIP)
10921 goto nosideret;
10922
10923 switch (TYPE_CODE (type))
10924 {
10925 default:
10926 lim_warning (_("Membership test incompletely implemented; "
10927 "always returns true"));
10928 type = language_bool_type (exp->language_defn, exp->gdbarch);
10929 return value_from_longest (type, (LONGEST) 1);
10930
10931 case TYPE_CODE_RANGE:
10932 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10933 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
10934 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10935 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10936 type = language_bool_type (exp->language_defn, exp->gdbarch);
10937 return
10938 value_from_longest (type,
10939 (value_less (arg1, arg3)
10940 || value_equal (arg1, arg3))
10941 && (value_less (arg2, arg1)
10942 || value_equal (arg2, arg1)));
10943 }
10944
10945 case BINOP_IN_BOUNDS:
10946 (*pos) += 2;
10947 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10948 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10949
10950 if (noside == EVAL_SKIP)
10951 goto nosideret;
10952
10953 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10954 {
10955 type = language_bool_type (exp->language_defn, exp->gdbarch);
10956 return value_zero (type, not_lval);
10957 }
10958
10959 tem = longest_to_int (exp->elts[pc + 1].longconst);
10960
10961 type = ada_index_type (value_type (arg2), tem, "range");
10962 if (!type)
10963 type = value_type (arg1);
10964
10965 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10966 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
10967
10968 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10969 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10970 type = language_bool_type (exp->language_defn, exp->gdbarch);
10971 return
10972 value_from_longest (type,
10973 (value_less (arg1, arg3)
10974 || value_equal (arg1, arg3))
10975 && (value_less (arg2, arg1)
10976 || value_equal (arg2, arg1)));
10977
10978 case TERNOP_IN_RANGE:
10979 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10980 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10981 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10982
10983 if (noside == EVAL_SKIP)
10984 goto nosideret;
10985
10986 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10987 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10988 type = language_bool_type (exp->language_defn, exp->gdbarch);
10989 return
10990 value_from_longest (type,
10991 (value_less (arg1, arg3)
10992 || value_equal (arg1, arg3))
10993 && (value_less (arg2, arg1)
10994 || value_equal (arg2, arg1)));
10995
10996 case OP_ATR_FIRST:
10997 case OP_ATR_LAST:
10998 case OP_ATR_LENGTH:
10999 {
11000 struct type *type_arg;
11001
11002 if (exp->elts[*pos].opcode == OP_TYPE)
11003 {
11004 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11005 arg1 = NULL;
11006 type_arg = check_typedef (exp->elts[pc + 2].type);
11007 }
11008 else
11009 {
11010 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11011 type_arg = NULL;
11012 }
11013
11014 if (exp->elts[*pos].opcode != OP_LONG)
11015 error (_("Invalid operand to '%s"), ada_attribute_name (op));
11016 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11017 *pos += 4;
11018
11019 if (noside == EVAL_SKIP)
11020 goto nosideret;
11021 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11022 {
11023 if (type_arg == NULL)
11024 type_arg = value_type (arg1);
11025
11026 if (ada_is_constrained_packed_array_type (type_arg))
11027 type_arg = decode_constrained_packed_array_type (type_arg);
11028
11029 if (!discrete_type_p (type_arg))
11030 {
11031 switch (op)
11032 {
11033 default: /* Should never happen. */
11034 error (_("unexpected attribute encountered"));
11035 case OP_ATR_FIRST:
11036 case OP_ATR_LAST:
11037 type_arg = ada_index_type (type_arg, tem,
11038 ada_attribute_name (op));
11039 break;
11040 case OP_ATR_LENGTH:
11041 type_arg = builtin_type (exp->gdbarch)->builtin_int;
11042 break;
11043 }
11044 }
11045
11046 return value_zero (type_arg, not_lval);
11047 }
11048 else if (type_arg == NULL)
11049 {
11050 arg1 = ada_coerce_ref (arg1);
11051
11052 if (ada_is_constrained_packed_array_type (value_type (arg1)))
11053 arg1 = ada_coerce_to_simple_array (arg1);
11054
11055 if (op == OP_ATR_LENGTH)
11056 type = builtin_type (exp->gdbarch)->builtin_int;
11057 else
11058 {
11059 type = ada_index_type (value_type (arg1), tem,
11060 ada_attribute_name (op));
11061 if (type == NULL)
11062 type = builtin_type (exp->gdbarch)->builtin_int;
11063 }
11064
11065 switch (op)
11066 {
11067 default: /* Should never happen. */
11068 error (_("unexpected attribute encountered"));
11069 case OP_ATR_FIRST:
11070 return value_from_longest
11071 (type, ada_array_bound (arg1, tem, 0));
11072 case OP_ATR_LAST:
11073 return value_from_longest
11074 (type, ada_array_bound (arg1, tem, 1));
11075 case OP_ATR_LENGTH:
11076 return value_from_longest
11077 (type, ada_array_length (arg1, tem));
11078 }
11079 }
11080 else if (discrete_type_p (type_arg))
11081 {
11082 struct type *range_type;
11083 const char *name = ada_type_name (type_arg);
11084
11085 range_type = NULL;
11086 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
11087 range_type = to_fixed_range_type (type_arg, NULL);
11088 if (range_type == NULL)
11089 range_type = type_arg;
11090 switch (op)
11091 {
11092 default:
11093 error (_("unexpected attribute encountered"));
11094 case OP_ATR_FIRST:
11095 return value_from_longest
11096 (range_type, ada_discrete_type_low_bound (range_type));
11097 case OP_ATR_LAST:
11098 return value_from_longest
11099 (range_type, ada_discrete_type_high_bound (range_type));
11100 case OP_ATR_LENGTH:
11101 error (_("the 'length attribute applies only to array types"));
11102 }
11103 }
11104 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
11105 error (_("unimplemented type attribute"));
11106 else
11107 {
11108 LONGEST low, high;
11109
11110 if (ada_is_constrained_packed_array_type (type_arg))
11111 type_arg = decode_constrained_packed_array_type (type_arg);
11112
11113 if (op == OP_ATR_LENGTH)
11114 type = builtin_type (exp->gdbarch)->builtin_int;
11115 else
11116 {
11117 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11118 if (type == NULL)
11119 type = builtin_type (exp->gdbarch)->builtin_int;
11120 }
11121
11122 switch (op)
11123 {
11124 default:
11125 error (_("unexpected attribute encountered"));
11126 case OP_ATR_FIRST:
11127 low = ada_array_bound_from_type (type_arg, tem, 0);
11128 return value_from_longest (type, low);
11129 case OP_ATR_LAST:
11130 high = ada_array_bound_from_type (type_arg, tem, 1);
11131 return value_from_longest (type, high);
11132 case OP_ATR_LENGTH:
11133 low = ada_array_bound_from_type (type_arg, tem, 0);
11134 high = ada_array_bound_from_type (type_arg, tem, 1);
11135 return value_from_longest (type, high - low + 1);
11136 }
11137 }
11138 }
11139
11140 case OP_ATR_TAG:
11141 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11142 if (noside == EVAL_SKIP)
11143 goto nosideret;
11144
11145 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11146 return value_zero (ada_tag_type (arg1), not_lval);
11147
11148 return ada_value_tag (arg1);
11149
11150 case OP_ATR_MIN:
11151 case OP_ATR_MAX:
11152 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11153 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11154 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11155 if (noside == EVAL_SKIP)
11156 goto nosideret;
11157 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11158 return value_zero (value_type (arg1), not_lval);
11159 else
11160 {
11161 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11162 return value_binop (arg1, arg2,
11163 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11164 }
11165
11166 case OP_ATR_MODULUS:
11167 {
11168 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
11169
11170 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11171 if (noside == EVAL_SKIP)
11172 goto nosideret;
11173
11174 if (!ada_is_modular_type (type_arg))
11175 error (_("'modulus must be applied to modular type"));
11176
11177 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11178 ada_modulus (type_arg));
11179 }
11180
11181
11182 case OP_ATR_POS:
11183 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11184 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11185 if (noside == EVAL_SKIP)
11186 goto nosideret;
11187 type = builtin_type (exp->gdbarch)->builtin_int;
11188 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11189 return value_zero (type, not_lval);
11190 else
11191 return value_pos_atr (type, arg1);
11192
11193 case OP_ATR_SIZE:
11194 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11195 type = value_type (arg1);
11196
11197 /* If the argument is a reference, then dereference its type, since
11198 the user is really asking for the size of the actual object,
11199 not the size of the pointer. */
11200 if (TYPE_CODE (type) == TYPE_CODE_REF)
11201 type = TYPE_TARGET_TYPE (type);
11202
11203 if (noside == EVAL_SKIP)
11204 goto nosideret;
11205 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11206 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
11207 else
11208 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
11209 TARGET_CHAR_BIT * TYPE_LENGTH (type));
11210
11211 case OP_ATR_VAL:
11212 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11213 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11214 type = exp->elts[pc + 2].type;
11215 if (noside == EVAL_SKIP)
11216 goto nosideret;
11217 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11218 return value_zero (type, not_lval);
11219 else
11220 return value_val_atr (type, arg1);
11221
11222 case BINOP_EXP:
11223 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11224 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11225 if (noside == EVAL_SKIP)
11226 goto nosideret;
11227 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11228 return value_zero (value_type (arg1), not_lval);
11229 else
11230 {
11231 /* For integer exponentiation operations,
11232 only promote the first argument. */
11233 if (is_integral_type (value_type (arg2)))
11234 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11235 else
11236 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11237
11238 return value_binop (arg1, arg2, op);
11239 }
11240
11241 case UNOP_PLUS:
11242 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11243 if (noside == EVAL_SKIP)
11244 goto nosideret;
11245 else
11246 return arg1;
11247
11248 case UNOP_ABS:
11249 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11250 if (noside == EVAL_SKIP)
11251 goto nosideret;
11252 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11253 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11254 return value_neg (arg1);
11255 else
11256 return arg1;
11257
11258 case UNOP_IND:
11259 preeval_pos = *pos;
11260 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11261 if (noside == EVAL_SKIP)
11262 goto nosideret;
11263 type = ada_check_typedef (value_type (arg1));
11264 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11265 {
11266 if (ada_is_array_descriptor_type (type))
11267 /* GDB allows dereferencing GNAT array descriptors. */
11268 {
11269 struct type *arrType = ada_type_of_array (arg1, 0);
11270
11271 if (arrType == NULL)
11272 error (_("Attempt to dereference null array pointer."));
11273 return value_at_lazy (arrType, 0);
11274 }
11275 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11276 || TYPE_CODE (type) == TYPE_CODE_REF
11277 /* In C you can dereference an array to get the 1st elt. */
11278 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
11279 {
11280 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11281 only be determined by inspecting the object's tag.
11282 This means that we need to evaluate completely the
11283 expression in order to get its type. */
11284
11285 if ((TYPE_CODE (type) == TYPE_CODE_REF
11286 || TYPE_CODE (type) == TYPE_CODE_PTR)
11287 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11288 {
11289 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11290 EVAL_NORMAL);
11291 type = value_type (ada_value_ind (arg1));
11292 }
11293 else
11294 {
11295 type = to_static_fixed_type
11296 (ada_aligned_type
11297 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11298 }
11299 ada_ensure_varsize_limit (type);
11300 return value_zero (type, lval_memory);
11301 }
11302 else if (TYPE_CODE (type) == TYPE_CODE_INT)
11303 {
11304 /* GDB allows dereferencing an int. */
11305 if (expect_type == NULL)
11306 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11307 lval_memory);
11308 else
11309 {
11310 expect_type =
11311 to_static_fixed_type (ada_aligned_type (expect_type));
11312 return value_zero (expect_type, lval_memory);
11313 }
11314 }
11315 else
11316 error (_("Attempt to take contents of a non-pointer value."));
11317 }
11318 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11319 type = ada_check_typedef (value_type (arg1));
11320
11321 if (TYPE_CODE (type) == TYPE_CODE_INT)
11322 /* GDB allows dereferencing an int. If we were given
11323 the expect_type, then use that as the target type.
11324 Otherwise, assume that the target type is an int. */
11325 {
11326 if (expect_type != NULL)
11327 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11328 arg1));
11329 else
11330 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11331 (CORE_ADDR) value_as_address (arg1));
11332 }
11333
11334 if (ada_is_array_descriptor_type (type))
11335 /* GDB allows dereferencing GNAT array descriptors. */
11336 return ada_coerce_to_simple_array (arg1);
11337 else
11338 return ada_value_ind (arg1);
11339
11340 case STRUCTOP_STRUCT:
11341 tem = longest_to_int (exp->elts[pc + 1].longconst);
11342 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11343 preeval_pos = *pos;
11344 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11345 if (noside == EVAL_SKIP)
11346 goto nosideret;
11347 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11348 {
11349 struct type *type1 = value_type (arg1);
11350
11351 if (ada_is_tagged_type (type1, 1))
11352 {
11353 type = ada_lookup_struct_elt_type (type1,
11354 &exp->elts[pc + 2].string,
11355 1, 1);
11356
11357 /* If the field is not found, check if it exists in the
11358 extension of this object's type. This means that we
11359 need to evaluate completely the expression. */
11360
11361 if (type == NULL)
11362 {
11363 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11364 EVAL_NORMAL);
11365 arg1 = ada_value_struct_elt (arg1,
11366 &exp->elts[pc + 2].string,
11367 0);
11368 arg1 = unwrap_value (arg1);
11369 type = value_type (ada_to_fixed_value (arg1));
11370 }
11371 }
11372 else
11373 type =
11374 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11375 0);
11376
11377 return value_zero (ada_aligned_type (type), lval_memory);
11378 }
11379 else
11380 {
11381 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11382 arg1 = unwrap_value (arg1);
11383 return ada_to_fixed_value (arg1);
11384 }
11385
11386 case OP_TYPE:
11387 /* The value is not supposed to be used. This is here to make it
11388 easier to accommodate expressions that contain types. */
11389 (*pos) += 2;
11390 if (noside == EVAL_SKIP)
11391 goto nosideret;
11392 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11393 return allocate_value (exp->elts[pc + 1].type);
11394 else
11395 error (_("Attempt to use a type name as an expression"));
11396
11397 case OP_AGGREGATE:
11398 case OP_CHOICES:
11399 case OP_OTHERS:
11400 case OP_DISCRETE_RANGE:
11401 case OP_POSITIONAL:
11402 case OP_NAME:
11403 if (noside == EVAL_NORMAL)
11404 switch (op)
11405 {
11406 case OP_NAME:
11407 error (_("Undefined name, ambiguous name, or renaming used in "
11408 "component association: %s."), &exp->elts[pc+2].string);
11409 case OP_AGGREGATE:
11410 error (_("Aggregates only allowed on the right of an assignment"));
11411 default:
11412 internal_error (__FILE__, __LINE__,
11413 _("aggregate apparently mangled"));
11414 }
11415
11416 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11417 *pos += oplen - 1;
11418 for (tem = 0; tem < nargs; tem += 1)
11419 ada_evaluate_subexp (NULL, exp, pos, noside);
11420 goto nosideret;
11421 }
11422
11423 nosideret:
11424 return eval_skip_value (exp);
11425 }
11426 \f
11427
11428 /* Fixed point */
11429
11430 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11431 type name that encodes the 'small and 'delta information.
11432 Otherwise, return NULL. */
11433
11434 static const char *
11435 fixed_type_info (struct type *type)
11436 {
11437 const char *name = ada_type_name (type);
11438 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11439
11440 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11441 {
11442 const char *tail = strstr (name, "___XF_");
11443
11444 if (tail == NULL)
11445 return NULL;
11446 else
11447 return tail + 5;
11448 }
11449 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11450 return fixed_type_info (TYPE_TARGET_TYPE (type));
11451 else
11452 return NULL;
11453 }
11454
11455 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11456
11457 int
11458 ada_is_fixed_point_type (struct type *type)
11459 {
11460 return fixed_type_info (type) != NULL;
11461 }
11462
11463 /* Return non-zero iff TYPE represents a System.Address type. */
11464
11465 int
11466 ada_is_system_address_type (struct type *type)
11467 {
11468 return (TYPE_NAME (type)
11469 && strcmp (TYPE_NAME (type), "system__address") == 0);
11470 }
11471
11472 /* Assuming that TYPE is the representation of an Ada fixed-point
11473 type, return the target floating-point type to be used to represent
11474 of this type during internal computation. */
11475
11476 static struct type *
11477 ada_scaling_type (struct type *type)
11478 {
11479 return builtin_type (get_type_arch (type))->builtin_long_double;
11480 }
11481
11482 /* Assuming that TYPE is the representation of an Ada fixed-point
11483 type, return its delta, or NULL if the type is malformed and the
11484 delta cannot be determined. */
11485
11486 struct value *
11487 ada_delta (struct type *type)
11488 {
11489 const char *encoding = fixed_type_info (type);
11490 struct type *scale_type = ada_scaling_type (type);
11491
11492 long long num, den;
11493
11494 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11495 return nullptr;
11496 else
11497 return value_binop (value_from_longest (scale_type, num),
11498 value_from_longest (scale_type, den), BINOP_DIV);
11499 }
11500
11501 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11502 factor ('SMALL value) associated with the type. */
11503
11504 struct value *
11505 ada_scaling_factor (struct type *type)
11506 {
11507 const char *encoding = fixed_type_info (type);
11508 struct type *scale_type = ada_scaling_type (type);
11509
11510 long long num0, den0, num1, den1;
11511 int n;
11512
11513 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
11514 &num0, &den0, &num1, &den1);
11515
11516 if (n < 2)
11517 return value_from_longest (scale_type, 1);
11518 else if (n == 4)
11519 return value_binop (value_from_longest (scale_type, num1),
11520 value_from_longest (scale_type, den1), BINOP_DIV);
11521 else
11522 return value_binop (value_from_longest (scale_type, num0),
11523 value_from_longest (scale_type, den0), BINOP_DIV);
11524 }
11525
11526 \f
11527
11528 /* Range types */
11529
11530 /* Scan STR beginning at position K for a discriminant name, and
11531 return the value of that discriminant field of DVAL in *PX. If
11532 PNEW_K is not null, put the position of the character beyond the
11533 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11534 not alter *PX and *PNEW_K if unsuccessful. */
11535
11536 static int
11537 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11538 int *pnew_k)
11539 {
11540 static char *bound_buffer = NULL;
11541 static size_t bound_buffer_len = 0;
11542 const char *pstart, *pend, *bound;
11543 struct value *bound_val;
11544
11545 if (dval == NULL || str == NULL || str[k] == '\0')
11546 return 0;
11547
11548 pstart = str + k;
11549 pend = strstr (pstart, "__");
11550 if (pend == NULL)
11551 {
11552 bound = pstart;
11553 k += strlen (bound);
11554 }
11555 else
11556 {
11557 int len = pend - pstart;
11558
11559 /* Strip __ and beyond. */
11560 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11561 strncpy (bound_buffer, pstart, len);
11562 bound_buffer[len] = '\0';
11563
11564 bound = bound_buffer;
11565 k = pend - str;
11566 }
11567
11568 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11569 if (bound_val == NULL)
11570 return 0;
11571
11572 *px = value_as_long (bound_val);
11573 if (pnew_k != NULL)
11574 *pnew_k = k;
11575 return 1;
11576 }
11577
11578 /* Value of variable named NAME in the current environment. If
11579 no such variable found, then if ERR_MSG is null, returns 0, and
11580 otherwise causes an error with message ERR_MSG. */
11581
11582 static struct value *
11583 get_var_value (const char *name, const char *err_msg)
11584 {
11585 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
11586
11587 std::vector<struct block_symbol> syms;
11588 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11589 get_selected_block (0),
11590 VAR_DOMAIN, &syms, 1);
11591
11592 if (nsyms != 1)
11593 {
11594 if (err_msg == NULL)
11595 return 0;
11596 else
11597 error (("%s"), err_msg);
11598 }
11599
11600 return value_of_variable (syms[0].symbol, syms[0].block);
11601 }
11602
11603 /* Value of integer variable named NAME in the current environment.
11604 If no such variable is found, returns false. Otherwise, sets VALUE
11605 to the variable's value and returns true. */
11606
11607 bool
11608 get_int_var_value (const char *name, LONGEST &value)
11609 {
11610 struct value *var_val = get_var_value (name, 0);
11611
11612 if (var_val == 0)
11613 return false;
11614
11615 value = value_as_long (var_val);
11616 return true;
11617 }
11618
11619
11620 /* Return a range type whose base type is that of the range type named
11621 NAME in the current environment, and whose bounds are calculated
11622 from NAME according to the GNAT range encoding conventions.
11623 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11624 corresponding range type from debug information; fall back to using it
11625 if symbol lookup fails. If a new type must be created, allocate it
11626 like ORIG_TYPE was. The bounds information, in general, is encoded
11627 in NAME, the base type given in the named range type. */
11628
11629 static struct type *
11630 to_fixed_range_type (struct type *raw_type, struct value *dval)
11631 {
11632 const char *name;
11633 struct type *base_type;
11634 const char *subtype_info;
11635
11636 gdb_assert (raw_type != NULL);
11637 gdb_assert (TYPE_NAME (raw_type) != NULL);
11638
11639 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11640 base_type = TYPE_TARGET_TYPE (raw_type);
11641 else
11642 base_type = raw_type;
11643
11644 name = TYPE_NAME (raw_type);
11645 subtype_info = strstr (name, "___XD");
11646 if (subtype_info == NULL)
11647 {
11648 LONGEST L = ada_discrete_type_low_bound (raw_type);
11649 LONGEST U = ada_discrete_type_high_bound (raw_type);
11650
11651 if (L < INT_MIN || U > INT_MAX)
11652 return raw_type;
11653 else
11654 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11655 L, U);
11656 }
11657 else
11658 {
11659 static char *name_buf = NULL;
11660 static size_t name_len = 0;
11661 int prefix_len = subtype_info - name;
11662 LONGEST L, U;
11663 struct type *type;
11664 const char *bounds_str;
11665 int n;
11666
11667 GROW_VECT (name_buf, name_len, prefix_len + 5);
11668 strncpy (name_buf, name, prefix_len);
11669 name_buf[prefix_len] = '\0';
11670
11671 subtype_info += 5;
11672 bounds_str = strchr (subtype_info, '_');
11673 n = 1;
11674
11675 if (*subtype_info == 'L')
11676 {
11677 if (!ada_scan_number (bounds_str, n, &L, &n)
11678 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11679 return raw_type;
11680 if (bounds_str[n] == '_')
11681 n += 2;
11682 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11683 n += 1;
11684 subtype_info += 1;
11685 }
11686 else
11687 {
11688 strcpy (name_buf + prefix_len, "___L");
11689 if (!get_int_var_value (name_buf, L))
11690 {
11691 lim_warning (_("Unknown lower bound, using 1."));
11692 L = 1;
11693 }
11694 }
11695
11696 if (*subtype_info == 'U')
11697 {
11698 if (!ada_scan_number (bounds_str, n, &U, &n)
11699 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11700 return raw_type;
11701 }
11702 else
11703 {
11704 strcpy (name_buf + prefix_len, "___U");
11705 if (!get_int_var_value (name_buf, U))
11706 {
11707 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11708 U = L;
11709 }
11710 }
11711
11712 type = create_static_range_type (alloc_type_copy (raw_type),
11713 base_type, L, U);
11714 /* create_static_range_type alters the resulting type's length
11715 to match the size of the base_type, which is not what we want.
11716 Set it back to the original range type's length. */
11717 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
11718 TYPE_NAME (type) = name;
11719 return type;
11720 }
11721 }
11722
11723 /* True iff NAME is the name of a range type. */
11724
11725 int
11726 ada_is_range_type_name (const char *name)
11727 {
11728 return (name != NULL && strstr (name, "___XD"));
11729 }
11730 \f
11731
11732 /* Modular types */
11733
11734 /* True iff TYPE is an Ada modular type. */
11735
11736 int
11737 ada_is_modular_type (struct type *type)
11738 {
11739 struct type *subranged_type = get_base_type (type);
11740
11741 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11742 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11743 && TYPE_UNSIGNED (subranged_type));
11744 }
11745
11746 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11747
11748 ULONGEST
11749 ada_modulus (struct type *type)
11750 {
11751 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11752 }
11753 \f
11754
11755 /* Ada exception catchpoint support:
11756 ---------------------------------
11757
11758 We support 3 kinds of exception catchpoints:
11759 . catchpoints on Ada exceptions
11760 . catchpoints on unhandled Ada exceptions
11761 . catchpoints on failed assertions
11762
11763 Exceptions raised during failed assertions, or unhandled exceptions
11764 could perfectly be caught with the general catchpoint on Ada exceptions.
11765 However, we can easily differentiate these two special cases, and having
11766 the option to distinguish these two cases from the rest can be useful
11767 to zero-in on certain situations.
11768
11769 Exception catchpoints are a specialized form of breakpoint,
11770 since they rely on inserting breakpoints inside known routines
11771 of the GNAT runtime. The implementation therefore uses a standard
11772 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11773 of breakpoint_ops.
11774
11775 Support in the runtime for exception catchpoints have been changed
11776 a few times already, and these changes affect the implementation
11777 of these catchpoints. In order to be able to support several
11778 variants of the runtime, we use a sniffer that will determine
11779 the runtime variant used by the program being debugged. */
11780
11781 /* Ada's standard exceptions.
11782
11783 The Ada 83 standard also defined Numeric_Error. But there so many
11784 situations where it was unclear from the Ada 83 Reference Manual
11785 (RM) whether Constraint_Error or Numeric_Error should be raised,
11786 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11787 Interpretation saying that anytime the RM says that Numeric_Error
11788 should be raised, the implementation may raise Constraint_Error.
11789 Ada 95 went one step further and pretty much removed Numeric_Error
11790 from the list of standard exceptions (it made it a renaming of
11791 Constraint_Error, to help preserve compatibility when compiling
11792 an Ada83 compiler). As such, we do not include Numeric_Error from
11793 this list of standard exceptions. */
11794
11795 static const char *standard_exc[] = {
11796 "constraint_error",
11797 "program_error",
11798 "storage_error",
11799 "tasking_error"
11800 };
11801
11802 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11803
11804 /* A structure that describes how to support exception catchpoints
11805 for a given executable. */
11806
11807 struct exception_support_info
11808 {
11809 /* The name of the symbol to break on in order to insert
11810 a catchpoint on exceptions. */
11811 const char *catch_exception_sym;
11812
11813 /* The name of the symbol to break on in order to insert
11814 a catchpoint on unhandled exceptions. */
11815 const char *catch_exception_unhandled_sym;
11816
11817 /* The name of the symbol to break on in order to insert
11818 a catchpoint on failed assertions. */
11819 const char *catch_assert_sym;
11820
11821 /* The name of the symbol to break on in order to insert
11822 a catchpoint on exception handling. */
11823 const char *catch_handlers_sym;
11824
11825 /* Assuming that the inferior just triggered an unhandled exception
11826 catchpoint, this function is responsible for returning the address
11827 in inferior memory where the name of that exception is stored.
11828 Return zero if the address could not be computed. */
11829 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11830 };
11831
11832 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11833 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11834
11835 /* The following exception support info structure describes how to
11836 implement exception catchpoints with the latest version of the
11837 Ada runtime (as of 2019-08-??). */
11838
11839 static const struct exception_support_info default_exception_support_info =
11840 {
11841 "__gnat_debug_raise_exception", /* catch_exception_sym */
11842 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11843 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11844 "__gnat_begin_handler_v1", /* catch_handlers_sym */
11845 ada_unhandled_exception_name_addr
11846 };
11847
11848 /* The following exception support info structure describes how to
11849 implement exception catchpoints with an earlier version of the
11850 Ada runtime (as of 2007-03-06) using v0 of the EH ABI. */
11851
11852 static const struct exception_support_info exception_support_info_v0 =
11853 {
11854 "__gnat_debug_raise_exception", /* catch_exception_sym */
11855 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11856 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11857 "__gnat_begin_handler", /* catch_handlers_sym */
11858 ada_unhandled_exception_name_addr
11859 };
11860
11861 /* The following exception support info structure describes how to
11862 implement exception catchpoints with a slightly older version
11863 of the Ada runtime. */
11864
11865 static const struct exception_support_info exception_support_info_fallback =
11866 {
11867 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11868 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11869 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11870 "__gnat_begin_handler", /* catch_handlers_sym */
11871 ada_unhandled_exception_name_addr_from_raise
11872 };
11873
11874 /* Return nonzero if we can detect the exception support routines
11875 described in EINFO.
11876
11877 This function errors out if an abnormal situation is detected
11878 (for instance, if we find the exception support routines, but
11879 that support is found to be incomplete). */
11880
11881 static int
11882 ada_has_this_exception_support (const struct exception_support_info *einfo)
11883 {
11884 struct symbol *sym;
11885
11886 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11887 that should be compiled with debugging information. As a result, we
11888 expect to find that symbol in the symtabs. */
11889
11890 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11891 if (sym == NULL)
11892 {
11893 /* Perhaps we did not find our symbol because the Ada runtime was
11894 compiled without debugging info, or simply stripped of it.
11895 It happens on some GNU/Linux distributions for instance, where
11896 users have to install a separate debug package in order to get
11897 the runtime's debugging info. In that situation, let the user
11898 know why we cannot insert an Ada exception catchpoint.
11899
11900 Note: Just for the purpose of inserting our Ada exception
11901 catchpoint, we could rely purely on the associated minimal symbol.
11902 But we would be operating in degraded mode anyway, since we are
11903 still lacking the debugging info needed later on to extract
11904 the name of the exception being raised (this name is printed in
11905 the catchpoint message, and is also used when trying to catch
11906 a specific exception). We do not handle this case for now. */
11907 struct bound_minimal_symbol msym
11908 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11909
11910 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11911 error (_("Your Ada runtime appears to be missing some debugging "
11912 "information.\nCannot insert Ada exception catchpoint "
11913 "in this configuration."));
11914
11915 return 0;
11916 }
11917
11918 /* Make sure that the symbol we found corresponds to a function. */
11919
11920 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11921 {
11922 error (_("Symbol \"%s\" is not a function (class = %d)"),
11923 sym->linkage_name (), SYMBOL_CLASS (sym));
11924 return 0;
11925 }
11926
11927 sym = standard_lookup (einfo->catch_handlers_sym, NULL, VAR_DOMAIN);
11928 if (sym == NULL)
11929 {
11930 struct bound_minimal_symbol msym
11931 = lookup_minimal_symbol (einfo->catch_handlers_sym, NULL, NULL);
11932
11933 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11934 error (_("Your Ada runtime appears to be missing some debugging "
11935 "information.\nCannot insert Ada exception catchpoint "
11936 "in this configuration."));
11937
11938 return 0;
11939 }
11940
11941 /* Make sure that the symbol we found corresponds to a function. */
11942
11943 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11944 {
11945 error (_("Symbol \"%s\" is not a function (class = %d)"),
11946 sym->linkage_name (), SYMBOL_CLASS (sym));
11947 return 0;
11948 }
11949
11950 return 1;
11951 }
11952
11953 /* Inspect the Ada runtime and determine which exception info structure
11954 should be used to provide support for exception catchpoints.
11955
11956 This function will always set the per-inferior exception_info,
11957 or raise an error. */
11958
11959 static void
11960 ada_exception_support_info_sniffer (void)
11961 {
11962 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11963
11964 /* If the exception info is already known, then no need to recompute it. */
11965 if (data->exception_info != NULL)
11966 return;
11967
11968 /* Check the latest (default) exception support info. */
11969 if (ada_has_this_exception_support (&default_exception_support_info))
11970 {
11971 data->exception_info = &default_exception_support_info;
11972 return;
11973 }
11974
11975 /* Try the v0 exception suport info. */
11976 if (ada_has_this_exception_support (&exception_support_info_v0))
11977 {
11978 data->exception_info = &exception_support_info_v0;
11979 return;
11980 }
11981
11982 /* Try our fallback exception suport info. */
11983 if (ada_has_this_exception_support (&exception_support_info_fallback))
11984 {
11985 data->exception_info = &exception_support_info_fallback;
11986 return;
11987 }
11988
11989 /* Sometimes, it is normal for us to not be able to find the routine
11990 we are looking for. This happens when the program is linked with
11991 the shared version of the GNAT runtime, and the program has not been
11992 started yet. Inform the user of these two possible causes if
11993 applicable. */
11994
11995 if (ada_update_initial_language (language_unknown) != language_ada)
11996 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11997
11998 /* If the symbol does not exist, then check that the program is
11999 already started, to make sure that shared libraries have been
12000 loaded. If it is not started, this may mean that the symbol is
12001 in a shared library. */
12002
12003 if (inferior_ptid.pid () == 0)
12004 error (_("Unable to insert catchpoint. Try to start the program first."));
12005
12006 /* At this point, we know that we are debugging an Ada program and
12007 that the inferior has been started, but we still are not able to
12008 find the run-time symbols. That can mean that we are in
12009 configurable run time mode, or that a-except as been optimized
12010 out by the linker... In any case, at this point it is not worth
12011 supporting this feature. */
12012
12013 error (_("Cannot insert Ada exception catchpoints in this configuration."));
12014 }
12015
12016 /* True iff FRAME is very likely to be that of a function that is
12017 part of the runtime system. This is all very heuristic, but is
12018 intended to be used as advice as to what frames are uninteresting
12019 to most users. */
12020
12021 static int
12022 is_known_support_routine (struct frame_info *frame)
12023 {
12024 enum language func_lang;
12025 int i;
12026 const char *fullname;
12027
12028 /* If this code does not have any debugging information (no symtab),
12029 This cannot be any user code. */
12030
12031 symtab_and_line sal = find_frame_sal (frame);
12032 if (sal.symtab == NULL)
12033 return 1;
12034
12035 /* If there is a symtab, but the associated source file cannot be
12036 located, then assume this is not user code: Selecting a frame
12037 for which we cannot display the code would not be very helpful
12038 for the user. This should also take care of case such as VxWorks
12039 where the kernel has some debugging info provided for a few units. */
12040
12041 fullname = symtab_to_fullname (sal.symtab);
12042 if (access (fullname, R_OK) != 0)
12043 return 1;
12044
12045 /* Check the unit filename against the Ada runtime file naming.
12046 We also check the name of the objfile against the name of some
12047 known system libraries that sometimes come with debugging info
12048 too. */
12049
12050 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12051 {
12052 re_comp (known_runtime_file_name_patterns[i]);
12053 if (re_exec (lbasename (sal.symtab->filename)))
12054 return 1;
12055 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12056 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
12057 return 1;
12058 }
12059
12060 /* Check whether the function is a GNAT-generated entity. */
12061
12062 gdb::unique_xmalloc_ptr<char> func_name
12063 = find_frame_funname (frame, &func_lang, NULL);
12064 if (func_name == NULL)
12065 return 1;
12066
12067 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12068 {
12069 re_comp (known_auxiliary_function_name_patterns[i]);
12070 if (re_exec (func_name.get ()))
12071 return 1;
12072 }
12073
12074 return 0;
12075 }
12076
12077 /* Find the first frame that contains debugging information and that is not
12078 part of the Ada run-time, starting from FI and moving upward. */
12079
12080 void
12081 ada_find_printable_frame (struct frame_info *fi)
12082 {
12083 for (; fi != NULL; fi = get_prev_frame (fi))
12084 {
12085 if (!is_known_support_routine (fi))
12086 {
12087 select_frame (fi);
12088 break;
12089 }
12090 }
12091
12092 }
12093
12094 /* Assuming that the inferior just triggered an unhandled exception
12095 catchpoint, return the address in inferior memory where the name
12096 of the exception is stored.
12097
12098 Return zero if the address could not be computed. */
12099
12100 static CORE_ADDR
12101 ada_unhandled_exception_name_addr (void)
12102 {
12103 return parse_and_eval_address ("e.full_name");
12104 }
12105
12106 /* Same as ada_unhandled_exception_name_addr, except that this function
12107 should be used when the inferior uses an older version of the runtime,
12108 where the exception name needs to be extracted from a specific frame
12109 several frames up in the callstack. */
12110
12111 static CORE_ADDR
12112 ada_unhandled_exception_name_addr_from_raise (void)
12113 {
12114 int frame_level;
12115 struct frame_info *fi;
12116 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12117
12118 /* To determine the name of this exception, we need to select
12119 the frame corresponding to RAISE_SYM_NAME. This frame is
12120 at least 3 levels up, so we simply skip the first 3 frames
12121 without checking the name of their associated function. */
12122 fi = get_current_frame ();
12123 for (frame_level = 0; frame_level < 3; frame_level += 1)
12124 if (fi != NULL)
12125 fi = get_prev_frame (fi);
12126
12127 while (fi != NULL)
12128 {
12129 enum language func_lang;
12130
12131 gdb::unique_xmalloc_ptr<char> func_name
12132 = find_frame_funname (fi, &func_lang, NULL);
12133 if (func_name != NULL)
12134 {
12135 if (strcmp (func_name.get (),
12136 data->exception_info->catch_exception_sym) == 0)
12137 break; /* We found the frame we were looking for... */
12138 }
12139 fi = get_prev_frame (fi);
12140 }
12141
12142 if (fi == NULL)
12143 return 0;
12144
12145 select_frame (fi);
12146 return parse_and_eval_address ("id.full_name");
12147 }
12148
12149 /* Assuming the inferior just triggered an Ada exception catchpoint
12150 (of any type), return the address in inferior memory where the name
12151 of the exception is stored, if applicable.
12152
12153 Assumes the selected frame is the current frame.
12154
12155 Return zero if the address could not be computed, or if not relevant. */
12156
12157 static CORE_ADDR
12158 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
12159 struct breakpoint *b)
12160 {
12161 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12162
12163 switch (ex)
12164 {
12165 case ada_catch_exception:
12166 return (parse_and_eval_address ("e.full_name"));
12167 break;
12168
12169 case ada_catch_exception_unhandled:
12170 return data->exception_info->unhandled_exception_name_addr ();
12171 break;
12172
12173 case ada_catch_handlers:
12174 return 0; /* The runtimes does not provide access to the exception
12175 name. */
12176 break;
12177
12178 case ada_catch_assert:
12179 return 0; /* Exception name is not relevant in this case. */
12180 break;
12181
12182 default:
12183 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12184 break;
12185 }
12186
12187 return 0; /* Should never be reached. */
12188 }
12189
12190 /* Assuming the inferior is stopped at an exception catchpoint,
12191 return the message which was associated to the exception, if
12192 available. Return NULL if the message could not be retrieved.
12193
12194 Note: The exception message can be associated to an exception
12195 either through the use of the Raise_Exception function, or
12196 more simply (Ada 2005 and later), via:
12197
12198 raise Exception_Name with "exception message";
12199
12200 */
12201
12202 static gdb::unique_xmalloc_ptr<char>
12203 ada_exception_message_1 (void)
12204 {
12205 struct value *e_msg_val;
12206 int e_msg_len;
12207
12208 /* For runtimes that support this feature, the exception message
12209 is passed as an unbounded string argument called "message". */
12210 e_msg_val = parse_and_eval ("message");
12211 if (e_msg_val == NULL)
12212 return NULL; /* Exception message not supported. */
12213
12214 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12215 gdb_assert (e_msg_val != NULL);
12216 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12217
12218 /* If the message string is empty, then treat it as if there was
12219 no exception message. */
12220 if (e_msg_len <= 0)
12221 return NULL;
12222
12223 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
12224 read_memory_string (value_address (e_msg_val), e_msg.get (), e_msg_len + 1);
12225 e_msg.get ()[e_msg_len] = '\0';
12226
12227 return e_msg;
12228 }
12229
12230 /* Same as ada_exception_message_1, except that all exceptions are
12231 contained here (returning NULL instead). */
12232
12233 static gdb::unique_xmalloc_ptr<char>
12234 ada_exception_message (void)
12235 {
12236 gdb::unique_xmalloc_ptr<char> e_msg;
12237
12238 try
12239 {
12240 e_msg = ada_exception_message_1 ();
12241 }
12242 catch (const gdb_exception_error &e)
12243 {
12244 e_msg.reset (nullptr);
12245 }
12246
12247 return e_msg;
12248 }
12249
12250 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12251 any error that ada_exception_name_addr_1 might cause to be thrown.
12252 When an error is intercepted, a warning with the error message is printed,
12253 and zero is returned. */
12254
12255 static CORE_ADDR
12256 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12257 struct breakpoint *b)
12258 {
12259 CORE_ADDR result = 0;
12260
12261 try
12262 {
12263 result = ada_exception_name_addr_1 (ex, b);
12264 }
12265
12266 catch (const gdb_exception_error &e)
12267 {
12268 warning (_("failed to get exception name: %s"), e.what ());
12269 return 0;
12270 }
12271
12272 return result;
12273 }
12274
12275 static std::string ada_exception_catchpoint_cond_string
12276 (const char *excep_string,
12277 enum ada_exception_catchpoint_kind ex);
12278
12279 /* Ada catchpoints.
12280
12281 In the case of catchpoints on Ada exceptions, the catchpoint will
12282 stop the target on every exception the program throws. When a user
12283 specifies the name of a specific exception, we translate this
12284 request into a condition expression (in text form), and then parse
12285 it into an expression stored in each of the catchpoint's locations.
12286 We then use this condition to check whether the exception that was
12287 raised is the one the user is interested in. If not, then the
12288 target is resumed again. We store the name of the requested
12289 exception, in order to be able to re-set the condition expression
12290 when symbols change. */
12291
12292 /* An instance of this type is used to represent an Ada catchpoint
12293 breakpoint location. */
12294
12295 class ada_catchpoint_location : public bp_location
12296 {
12297 public:
12298 ada_catchpoint_location (breakpoint *owner)
12299 : bp_location (owner, bp_loc_software_breakpoint)
12300 {}
12301
12302 /* The condition that checks whether the exception that was raised
12303 is the specific exception the user specified on catchpoint
12304 creation. */
12305 expression_up excep_cond_expr;
12306 };
12307
12308 /* An instance of this type is used to represent an Ada catchpoint. */
12309
12310 struct ada_catchpoint : public breakpoint
12311 {
12312 explicit ada_catchpoint (enum ada_exception_catchpoint_kind kind)
12313 : m_kind (kind)
12314 {
12315 }
12316
12317 /* The name of the specific exception the user specified. */
12318 std::string excep_string;
12319
12320 /* What kind of catchpoint this is. */
12321 enum ada_exception_catchpoint_kind m_kind;
12322 };
12323
12324 /* Parse the exception condition string in the context of each of the
12325 catchpoint's locations, and store them for later evaluation. */
12326
12327 static void
12328 create_excep_cond_exprs (struct ada_catchpoint *c,
12329 enum ada_exception_catchpoint_kind ex)
12330 {
12331 struct bp_location *bl;
12332
12333 /* Nothing to do if there's no specific exception to catch. */
12334 if (c->excep_string.empty ())
12335 return;
12336
12337 /* Same if there are no locations... */
12338 if (c->loc == NULL)
12339 return;
12340
12341 /* Compute the condition expression in text form, from the specific
12342 expection we want to catch. */
12343 std::string cond_string
12344 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
12345
12346 /* Iterate over all the catchpoint's locations, and parse an
12347 expression for each. */
12348 for (bl = c->loc; bl != NULL; bl = bl->next)
12349 {
12350 struct ada_catchpoint_location *ada_loc
12351 = (struct ada_catchpoint_location *) bl;
12352 expression_up exp;
12353
12354 if (!bl->shlib_disabled)
12355 {
12356 const char *s;
12357
12358 s = cond_string.c_str ();
12359 try
12360 {
12361 exp = parse_exp_1 (&s, bl->address,
12362 block_for_pc (bl->address),
12363 0);
12364 }
12365 catch (const gdb_exception_error &e)
12366 {
12367 warning (_("failed to reevaluate internal exception condition "
12368 "for catchpoint %d: %s"),
12369 c->number, e.what ());
12370 }
12371 }
12372
12373 ada_loc->excep_cond_expr = std::move (exp);
12374 }
12375 }
12376
12377 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12378 structure for all exception catchpoint kinds. */
12379
12380 static struct bp_location *
12381 allocate_location_exception (struct breakpoint *self)
12382 {
12383 return new ada_catchpoint_location (self);
12384 }
12385
12386 /* Implement the RE_SET method in the breakpoint_ops structure for all
12387 exception catchpoint kinds. */
12388
12389 static void
12390 re_set_exception (struct breakpoint *b)
12391 {
12392 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12393
12394 /* Call the base class's method. This updates the catchpoint's
12395 locations. */
12396 bkpt_breakpoint_ops.re_set (b);
12397
12398 /* Reparse the exception conditional expressions. One for each
12399 location. */
12400 create_excep_cond_exprs (c, c->m_kind);
12401 }
12402
12403 /* Returns true if we should stop for this breakpoint hit. If the
12404 user specified a specific exception, we only want to cause a stop
12405 if the program thrown that exception. */
12406
12407 static int
12408 should_stop_exception (const struct bp_location *bl)
12409 {
12410 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12411 const struct ada_catchpoint_location *ada_loc
12412 = (const struct ada_catchpoint_location *) bl;
12413 int stop;
12414
12415 struct internalvar *var = lookup_internalvar ("_ada_exception");
12416 if (c->m_kind == ada_catch_assert)
12417 clear_internalvar (var);
12418 else
12419 {
12420 try
12421 {
12422 const char *expr;
12423
12424 if (c->m_kind == ada_catch_handlers)
12425 expr = ("GNAT_GCC_exception_Access(gcc_exception)"
12426 ".all.occurrence.id");
12427 else
12428 expr = "e";
12429
12430 struct value *exc = parse_and_eval (expr);
12431 set_internalvar (var, exc);
12432 }
12433 catch (const gdb_exception_error &ex)
12434 {
12435 clear_internalvar (var);
12436 }
12437 }
12438
12439 /* With no specific exception, should always stop. */
12440 if (c->excep_string.empty ())
12441 return 1;
12442
12443 if (ada_loc->excep_cond_expr == NULL)
12444 {
12445 /* We will have a NULL expression if back when we were creating
12446 the expressions, this location's had failed to parse. */
12447 return 1;
12448 }
12449
12450 stop = 1;
12451 try
12452 {
12453 struct value *mark;
12454
12455 mark = value_mark ();
12456 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12457 value_free_to_mark (mark);
12458 }
12459 catch (const gdb_exception &ex)
12460 {
12461 exception_fprintf (gdb_stderr, ex,
12462 _("Error in testing exception condition:\n"));
12463 }
12464
12465 return stop;
12466 }
12467
12468 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12469 for all exception catchpoint kinds. */
12470
12471 static void
12472 check_status_exception (bpstat bs)
12473 {
12474 bs->stop = should_stop_exception (bs->bp_location_at);
12475 }
12476
12477 /* Implement the PRINT_IT method in the breakpoint_ops structure
12478 for all exception catchpoint kinds. */
12479
12480 static enum print_stop_action
12481 print_it_exception (bpstat bs)
12482 {
12483 struct ui_out *uiout = current_uiout;
12484 struct breakpoint *b = bs->breakpoint_at;
12485
12486 annotate_catchpoint (b->number);
12487
12488 if (uiout->is_mi_like_p ())
12489 {
12490 uiout->field_string ("reason",
12491 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12492 uiout->field_string ("disp", bpdisp_text (b->disposition));
12493 }
12494
12495 uiout->text (b->disposition == disp_del
12496 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12497 uiout->field_signed ("bkptno", b->number);
12498 uiout->text (", ");
12499
12500 /* ada_exception_name_addr relies on the selected frame being the
12501 current frame. Need to do this here because this function may be
12502 called more than once when printing a stop, and below, we'll
12503 select the first frame past the Ada run-time (see
12504 ada_find_printable_frame). */
12505 select_frame (get_current_frame ());
12506
12507 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12508 switch (c->m_kind)
12509 {
12510 case ada_catch_exception:
12511 case ada_catch_exception_unhandled:
12512 case ada_catch_handlers:
12513 {
12514 const CORE_ADDR addr = ada_exception_name_addr (c->m_kind, b);
12515 char exception_name[256];
12516
12517 if (addr != 0)
12518 {
12519 read_memory (addr, (gdb_byte *) exception_name,
12520 sizeof (exception_name) - 1);
12521 exception_name [sizeof (exception_name) - 1] = '\0';
12522 }
12523 else
12524 {
12525 /* For some reason, we were unable to read the exception
12526 name. This could happen if the Runtime was compiled
12527 without debugging info, for instance. In that case,
12528 just replace the exception name by the generic string
12529 "exception" - it will read as "an exception" in the
12530 notification we are about to print. */
12531 memcpy (exception_name, "exception", sizeof ("exception"));
12532 }
12533 /* In the case of unhandled exception breakpoints, we print
12534 the exception name as "unhandled EXCEPTION_NAME", to make
12535 it clearer to the user which kind of catchpoint just got
12536 hit. We used ui_out_text to make sure that this extra
12537 info does not pollute the exception name in the MI case. */
12538 if (c->m_kind == ada_catch_exception_unhandled)
12539 uiout->text ("unhandled ");
12540 uiout->field_string ("exception-name", exception_name);
12541 }
12542 break;
12543 case ada_catch_assert:
12544 /* In this case, the name of the exception is not really
12545 important. Just print "failed assertion" to make it clearer
12546 that his program just hit an assertion-failure catchpoint.
12547 We used ui_out_text because this info does not belong in
12548 the MI output. */
12549 uiout->text ("failed assertion");
12550 break;
12551 }
12552
12553 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
12554 if (exception_message != NULL)
12555 {
12556 uiout->text (" (");
12557 uiout->field_string ("exception-message", exception_message.get ());
12558 uiout->text (")");
12559 }
12560
12561 uiout->text (" at ");
12562 ada_find_printable_frame (get_current_frame ());
12563
12564 return PRINT_SRC_AND_LOC;
12565 }
12566
12567 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12568 for all exception catchpoint kinds. */
12569
12570 static void
12571 print_one_exception (struct breakpoint *b, struct bp_location **last_loc)
12572 {
12573 struct ui_out *uiout = current_uiout;
12574 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12575 struct value_print_options opts;
12576
12577 get_user_print_options (&opts);
12578
12579 if (opts.addressprint)
12580 uiout->field_skip ("addr");
12581
12582 annotate_field (5);
12583 switch (c->m_kind)
12584 {
12585 case ada_catch_exception:
12586 if (!c->excep_string.empty ())
12587 {
12588 std::string msg = string_printf (_("`%s' Ada exception"),
12589 c->excep_string.c_str ());
12590
12591 uiout->field_string ("what", msg);
12592 }
12593 else
12594 uiout->field_string ("what", "all Ada exceptions");
12595
12596 break;
12597
12598 case ada_catch_exception_unhandled:
12599 uiout->field_string ("what", "unhandled Ada exceptions");
12600 break;
12601
12602 case ada_catch_handlers:
12603 if (!c->excep_string.empty ())
12604 {
12605 uiout->field_fmt ("what",
12606 _("`%s' Ada exception handlers"),
12607 c->excep_string.c_str ());
12608 }
12609 else
12610 uiout->field_string ("what", "all Ada exceptions handlers");
12611 break;
12612
12613 case ada_catch_assert:
12614 uiout->field_string ("what", "failed Ada assertions");
12615 break;
12616
12617 default:
12618 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12619 break;
12620 }
12621 }
12622
12623 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12624 for all exception catchpoint kinds. */
12625
12626 static void
12627 print_mention_exception (struct breakpoint *b)
12628 {
12629 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12630 struct ui_out *uiout = current_uiout;
12631
12632 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
12633 : _("Catchpoint "));
12634 uiout->field_signed ("bkptno", b->number);
12635 uiout->text (": ");
12636
12637 switch (c->m_kind)
12638 {
12639 case ada_catch_exception:
12640 if (!c->excep_string.empty ())
12641 {
12642 std::string info = string_printf (_("`%s' Ada exception"),
12643 c->excep_string.c_str ());
12644 uiout->text (info.c_str ());
12645 }
12646 else
12647 uiout->text (_("all Ada exceptions"));
12648 break;
12649
12650 case ada_catch_exception_unhandled:
12651 uiout->text (_("unhandled Ada exceptions"));
12652 break;
12653
12654 case ada_catch_handlers:
12655 if (!c->excep_string.empty ())
12656 {
12657 std::string info
12658 = string_printf (_("`%s' Ada exception handlers"),
12659 c->excep_string.c_str ());
12660 uiout->text (info.c_str ());
12661 }
12662 else
12663 uiout->text (_("all Ada exceptions handlers"));
12664 break;
12665
12666 case ada_catch_assert:
12667 uiout->text (_("failed Ada assertions"));
12668 break;
12669
12670 default:
12671 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12672 break;
12673 }
12674 }
12675
12676 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12677 for all exception catchpoint kinds. */
12678
12679 static void
12680 print_recreate_exception (struct breakpoint *b, struct ui_file *fp)
12681 {
12682 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12683
12684 switch (c->m_kind)
12685 {
12686 case ada_catch_exception:
12687 fprintf_filtered (fp, "catch exception");
12688 if (!c->excep_string.empty ())
12689 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
12690 break;
12691
12692 case ada_catch_exception_unhandled:
12693 fprintf_filtered (fp, "catch exception unhandled");
12694 break;
12695
12696 case ada_catch_handlers:
12697 fprintf_filtered (fp, "catch handlers");
12698 break;
12699
12700 case ada_catch_assert:
12701 fprintf_filtered (fp, "catch assert");
12702 break;
12703
12704 default:
12705 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12706 }
12707 print_recreate_thread (b, fp);
12708 }
12709
12710 /* Virtual tables for various breakpoint types. */
12711 static struct breakpoint_ops catch_exception_breakpoint_ops;
12712 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12713 static struct breakpoint_ops catch_assert_breakpoint_ops;
12714 static struct breakpoint_ops catch_handlers_breakpoint_ops;
12715
12716 /* See ada-lang.h. */
12717
12718 bool
12719 is_ada_exception_catchpoint (breakpoint *bp)
12720 {
12721 return (bp->ops == &catch_exception_breakpoint_ops
12722 || bp->ops == &catch_exception_unhandled_breakpoint_ops
12723 || bp->ops == &catch_assert_breakpoint_ops
12724 || bp->ops == &catch_handlers_breakpoint_ops);
12725 }
12726
12727 /* Split the arguments specified in a "catch exception" command.
12728 Set EX to the appropriate catchpoint type.
12729 Set EXCEP_STRING to the name of the specific exception if
12730 specified by the user.
12731 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12732 "catch handlers" command. False otherwise.
12733 If a condition is found at the end of the arguments, the condition
12734 expression is stored in COND_STRING (memory must be deallocated
12735 after use). Otherwise COND_STRING is set to NULL. */
12736
12737 static void
12738 catch_ada_exception_command_split (const char *args,
12739 bool is_catch_handlers_cmd,
12740 enum ada_exception_catchpoint_kind *ex,
12741 std::string *excep_string,
12742 std::string *cond_string)
12743 {
12744 std::string exception_name;
12745
12746 exception_name = extract_arg (&args);
12747 if (exception_name == "if")
12748 {
12749 /* This is not an exception name; this is the start of a condition
12750 expression for a catchpoint on all exceptions. So, "un-get"
12751 this token, and set exception_name to NULL. */
12752 exception_name.clear ();
12753 args -= 2;
12754 }
12755
12756 /* Check to see if we have a condition. */
12757
12758 args = skip_spaces (args);
12759 if (startswith (args, "if")
12760 && (isspace (args[2]) || args[2] == '\0'))
12761 {
12762 args += 2;
12763 args = skip_spaces (args);
12764
12765 if (args[0] == '\0')
12766 error (_("Condition missing after `if' keyword"));
12767 *cond_string = args;
12768
12769 args += strlen (args);
12770 }
12771
12772 /* Check that we do not have any more arguments. Anything else
12773 is unexpected. */
12774
12775 if (args[0] != '\0')
12776 error (_("Junk at end of expression"));
12777
12778 if (is_catch_handlers_cmd)
12779 {
12780 /* Catch handling of exceptions. */
12781 *ex = ada_catch_handlers;
12782 *excep_string = exception_name;
12783 }
12784 else if (exception_name.empty ())
12785 {
12786 /* Catch all exceptions. */
12787 *ex = ada_catch_exception;
12788 excep_string->clear ();
12789 }
12790 else if (exception_name == "unhandled")
12791 {
12792 /* Catch unhandled exceptions. */
12793 *ex = ada_catch_exception_unhandled;
12794 excep_string->clear ();
12795 }
12796 else
12797 {
12798 /* Catch a specific exception. */
12799 *ex = ada_catch_exception;
12800 *excep_string = exception_name;
12801 }
12802 }
12803
12804 /* Return the name of the symbol on which we should break in order to
12805 implement a catchpoint of the EX kind. */
12806
12807 static const char *
12808 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12809 {
12810 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12811
12812 gdb_assert (data->exception_info != NULL);
12813
12814 switch (ex)
12815 {
12816 case ada_catch_exception:
12817 return (data->exception_info->catch_exception_sym);
12818 break;
12819 case ada_catch_exception_unhandled:
12820 return (data->exception_info->catch_exception_unhandled_sym);
12821 break;
12822 case ada_catch_assert:
12823 return (data->exception_info->catch_assert_sym);
12824 break;
12825 case ada_catch_handlers:
12826 return (data->exception_info->catch_handlers_sym);
12827 break;
12828 default:
12829 internal_error (__FILE__, __LINE__,
12830 _("unexpected catchpoint kind (%d)"), ex);
12831 }
12832 }
12833
12834 /* Return the breakpoint ops "virtual table" used for catchpoints
12835 of the EX kind. */
12836
12837 static const struct breakpoint_ops *
12838 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12839 {
12840 switch (ex)
12841 {
12842 case ada_catch_exception:
12843 return (&catch_exception_breakpoint_ops);
12844 break;
12845 case ada_catch_exception_unhandled:
12846 return (&catch_exception_unhandled_breakpoint_ops);
12847 break;
12848 case ada_catch_assert:
12849 return (&catch_assert_breakpoint_ops);
12850 break;
12851 case ada_catch_handlers:
12852 return (&catch_handlers_breakpoint_ops);
12853 break;
12854 default:
12855 internal_error (__FILE__, __LINE__,
12856 _("unexpected catchpoint kind (%d)"), ex);
12857 }
12858 }
12859
12860 /* Return the condition that will be used to match the current exception
12861 being raised with the exception that the user wants to catch. This
12862 assumes that this condition is used when the inferior just triggered
12863 an exception catchpoint.
12864 EX: the type of catchpoints used for catching Ada exceptions. */
12865
12866 static std::string
12867 ada_exception_catchpoint_cond_string (const char *excep_string,
12868 enum ada_exception_catchpoint_kind ex)
12869 {
12870 int i;
12871 bool is_standard_exc = false;
12872 std::string result;
12873
12874 if (ex == ada_catch_handlers)
12875 {
12876 /* For exception handlers catchpoints, the condition string does
12877 not use the same parameter as for the other exceptions. */
12878 result = ("long_integer (GNAT_GCC_exception_Access"
12879 "(gcc_exception).all.occurrence.id)");
12880 }
12881 else
12882 result = "long_integer (e)";
12883
12884 /* The standard exceptions are a special case. They are defined in
12885 runtime units that have been compiled without debugging info; if
12886 EXCEP_STRING is the not-fully-qualified name of a standard
12887 exception (e.g. "constraint_error") then, during the evaluation
12888 of the condition expression, the symbol lookup on this name would
12889 *not* return this standard exception. The catchpoint condition
12890 may then be set only on user-defined exceptions which have the
12891 same not-fully-qualified name (e.g. my_package.constraint_error).
12892
12893 To avoid this unexcepted behavior, these standard exceptions are
12894 systematically prefixed by "standard". This means that "catch
12895 exception constraint_error" is rewritten into "catch exception
12896 standard.constraint_error".
12897
12898 If an exception named constraint_error is defined in another package of
12899 the inferior program, then the only way to specify this exception as a
12900 breakpoint condition is to use its fully-qualified named:
12901 e.g. my_package.constraint_error. */
12902
12903 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12904 {
12905 if (strcmp (standard_exc [i], excep_string) == 0)
12906 {
12907 is_standard_exc = true;
12908 break;
12909 }
12910 }
12911
12912 result += " = ";
12913
12914 if (is_standard_exc)
12915 string_appendf (result, "long_integer (&standard.%s)", excep_string);
12916 else
12917 string_appendf (result, "long_integer (&%s)", excep_string);
12918
12919 return result;
12920 }
12921
12922 /* Return the symtab_and_line that should be used to insert an exception
12923 catchpoint of the TYPE kind.
12924
12925 ADDR_STRING returns the name of the function where the real
12926 breakpoint that implements the catchpoints is set, depending on the
12927 type of catchpoint we need to create. */
12928
12929 static struct symtab_and_line
12930 ada_exception_sal (enum ada_exception_catchpoint_kind ex,
12931 std::string *addr_string, const struct breakpoint_ops **ops)
12932 {
12933 const char *sym_name;
12934 struct symbol *sym;
12935
12936 /* First, find out which exception support info to use. */
12937 ada_exception_support_info_sniffer ();
12938
12939 /* Then lookup the function on which we will break in order to catch
12940 the Ada exceptions requested by the user. */
12941 sym_name = ada_exception_sym_name (ex);
12942 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12943
12944 if (sym == NULL)
12945 error (_("Catchpoint symbol not found: %s"), sym_name);
12946
12947 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12948 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
12949
12950 /* Set ADDR_STRING. */
12951 *addr_string = sym_name;
12952
12953 /* Set OPS. */
12954 *ops = ada_exception_breakpoint_ops (ex);
12955
12956 return find_function_start_sal (sym, 1);
12957 }
12958
12959 /* Create an Ada exception catchpoint.
12960
12961 EX_KIND is the kind of exception catchpoint to be created.
12962
12963 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
12964 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12965 of the exception to which this catchpoint applies.
12966
12967 COND_STRING, if not empty, is the catchpoint condition.
12968
12969 TEMPFLAG, if nonzero, means that the underlying breakpoint
12970 should be temporary.
12971
12972 FROM_TTY is the usual argument passed to all commands implementations. */
12973
12974 void
12975 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12976 enum ada_exception_catchpoint_kind ex_kind,
12977 const std::string &excep_string,
12978 const std::string &cond_string,
12979 int tempflag,
12980 int disabled,
12981 int from_tty)
12982 {
12983 std::string addr_string;
12984 const struct breakpoint_ops *ops = NULL;
12985 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
12986
12987 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint (ex_kind));
12988 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
12989 ops, tempflag, disabled, from_tty);
12990 c->excep_string = excep_string;
12991 create_excep_cond_exprs (c.get (), ex_kind);
12992 if (!cond_string.empty ())
12993 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty);
12994 install_breakpoint (0, std::move (c), 1);
12995 }
12996
12997 /* Implement the "catch exception" command. */
12998
12999 static void
13000 catch_ada_exception_command (const char *arg_entry, int from_tty,
13001 struct cmd_list_element *command)
13002 {
13003 const char *arg = arg_entry;
13004 struct gdbarch *gdbarch = get_current_arch ();
13005 int tempflag;
13006 enum ada_exception_catchpoint_kind ex_kind;
13007 std::string excep_string;
13008 std::string cond_string;
13009
13010 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13011
13012 if (!arg)
13013 arg = "";
13014 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
13015 &cond_string);
13016 create_ada_exception_catchpoint (gdbarch, ex_kind,
13017 excep_string, cond_string,
13018 tempflag, 1 /* enabled */,
13019 from_tty);
13020 }
13021
13022 /* Implement the "catch handlers" command. */
13023
13024 static void
13025 catch_ada_handlers_command (const char *arg_entry, int from_tty,
13026 struct cmd_list_element *command)
13027 {
13028 const char *arg = arg_entry;
13029 struct gdbarch *gdbarch = get_current_arch ();
13030 int tempflag;
13031 enum ada_exception_catchpoint_kind ex_kind;
13032 std::string excep_string;
13033 std::string cond_string;
13034
13035 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13036
13037 if (!arg)
13038 arg = "";
13039 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
13040 &cond_string);
13041 create_ada_exception_catchpoint (gdbarch, ex_kind,
13042 excep_string, cond_string,
13043 tempflag, 1 /* enabled */,
13044 from_tty);
13045 }
13046
13047 /* Completion function for the Ada "catch" commands. */
13048
13049 static void
13050 catch_ada_completer (struct cmd_list_element *cmd, completion_tracker &tracker,
13051 const char *text, const char *word)
13052 {
13053 std::vector<ada_exc_info> exceptions = ada_exceptions_list (NULL);
13054
13055 for (const ada_exc_info &info : exceptions)
13056 {
13057 if (startswith (info.name, word))
13058 tracker.add_completion (make_unique_xstrdup (info.name));
13059 }
13060 }
13061
13062 /* Split the arguments specified in a "catch assert" command.
13063
13064 ARGS contains the command's arguments (or the empty string if
13065 no arguments were passed).
13066
13067 If ARGS contains a condition, set COND_STRING to that condition
13068 (the memory needs to be deallocated after use). */
13069
13070 static void
13071 catch_ada_assert_command_split (const char *args, std::string &cond_string)
13072 {
13073 args = skip_spaces (args);
13074
13075 /* Check whether a condition was provided. */
13076 if (startswith (args, "if")
13077 && (isspace (args[2]) || args[2] == '\0'))
13078 {
13079 args += 2;
13080 args = skip_spaces (args);
13081 if (args[0] == '\0')
13082 error (_("condition missing after `if' keyword"));
13083 cond_string.assign (args);
13084 }
13085
13086 /* Otherwise, there should be no other argument at the end of
13087 the command. */
13088 else if (args[0] != '\0')
13089 error (_("Junk at end of arguments."));
13090 }
13091
13092 /* Implement the "catch assert" command. */
13093
13094 static void
13095 catch_assert_command (const char *arg_entry, int from_tty,
13096 struct cmd_list_element *command)
13097 {
13098 const char *arg = arg_entry;
13099 struct gdbarch *gdbarch = get_current_arch ();
13100 int tempflag;
13101 std::string cond_string;
13102
13103 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13104
13105 if (!arg)
13106 arg = "";
13107 catch_ada_assert_command_split (arg, cond_string);
13108 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
13109 "", cond_string,
13110 tempflag, 1 /* enabled */,
13111 from_tty);
13112 }
13113
13114 /* Return non-zero if the symbol SYM is an Ada exception object. */
13115
13116 static int
13117 ada_is_exception_sym (struct symbol *sym)
13118 {
13119 const char *type_name = TYPE_NAME (SYMBOL_TYPE (sym));
13120
13121 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13122 && SYMBOL_CLASS (sym) != LOC_BLOCK
13123 && SYMBOL_CLASS (sym) != LOC_CONST
13124 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13125 && type_name != NULL && strcmp (type_name, "exception") == 0);
13126 }
13127
13128 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13129 Ada exception object. This matches all exceptions except the ones
13130 defined by the Ada language. */
13131
13132 static int
13133 ada_is_non_standard_exception_sym (struct symbol *sym)
13134 {
13135 int i;
13136
13137 if (!ada_is_exception_sym (sym))
13138 return 0;
13139
13140 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13141 if (strcmp (sym->linkage_name (), standard_exc[i]) == 0)
13142 return 0; /* A standard exception. */
13143
13144 /* Numeric_Error is also a standard exception, so exclude it.
13145 See the STANDARD_EXC description for more details as to why
13146 this exception is not listed in that array. */
13147 if (strcmp (sym->linkage_name (), "numeric_error") == 0)
13148 return 0;
13149
13150 return 1;
13151 }
13152
13153 /* A helper function for std::sort, comparing two struct ada_exc_info
13154 objects.
13155
13156 The comparison is determined first by exception name, and then
13157 by exception address. */
13158
13159 bool
13160 ada_exc_info::operator< (const ada_exc_info &other) const
13161 {
13162 int result;
13163
13164 result = strcmp (name, other.name);
13165 if (result < 0)
13166 return true;
13167 if (result == 0 && addr < other.addr)
13168 return true;
13169 return false;
13170 }
13171
13172 bool
13173 ada_exc_info::operator== (const ada_exc_info &other) const
13174 {
13175 return addr == other.addr && strcmp (name, other.name) == 0;
13176 }
13177
13178 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13179 routine, but keeping the first SKIP elements untouched.
13180
13181 All duplicates are also removed. */
13182
13183 static void
13184 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
13185 int skip)
13186 {
13187 std::sort (exceptions->begin () + skip, exceptions->end ());
13188 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13189 exceptions->end ());
13190 }
13191
13192 /* Add all exceptions defined by the Ada standard whose name match
13193 a regular expression.
13194
13195 If PREG is not NULL, then this regexp_t object is used to
13196 perform the symbol name matching. Otherwise, no name-based
13197 filtering is performed.
13198
13199 EXCEPTIONS is a vector of exceptions to which matching exceptions
13200 gets pushed. */
13201
13202 static void
13203 ada_add_standard_exceptions (compiled_regex *preg,
13204 std::vector<ada_exc_info> *exceptions)
13205 {
13206 int i;
13207
13208 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13209 {
13210 if (preg == NULL
13211 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
13212 {
13213 struct bound_minimal_symbol msymbol
13214 = ada_lookup_simple_minsym (standard_exc[i]);
13215
13216 if (msymbol.minsym != NULL)
13217 {
13218 struct ada_exc_info info
13219 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13220
13221 exceptions->push_back (info);
13222 }
13223 }
13224 }
13225 }
13226
13227 /* Add all Ada exceptions defined locally and accessible from the given
13228 FRAME.
13229
13230 If PREG is not NULL, then this regexp_t object is used to
13231 perform the symbol name matching. Otherwise, no name-based
13232 filtering is performed.
13233
13234 EXCEPTIONS is a vector of exceptions to which matching exceptions
13235 gets pushed. */
13236
13237 static void
13238 ada_add_exceptions_from_frame (compiled_regex *preg,
13239 struct frame_info *frame,
13240 std::vector<ada_exc_info> *exceptions)
13241 {
13242 const struct block *block = get_frame_block (frame, 0);
13243
13244 while (block != 0)
13245 {
13246 struct block_iterator iter;
13247 struct symbol *sym;
13248
13249 ALL_BLOCK_SYMBOLS (block, iter, sym)
13250 {
13251 switch (SYMBOL_CLASS (sym))
13252 {
13253 case LOC_TYPEDEF:
13254 case LOC_BLOCK:
13255 case LOC_CONST:
13256 break;
13257 default:
13258 if (ada_is_exception_sym (sym))
13259 {
13260 struct ada_exc_info info = {sym->print_name (),
13261 SYMBOL_VALUE_ADDRESS (sym)};
13262
13263 exceptions->push_back (info);
13264 }
13265 }
13266 }
13267 if (BLOCK_FUNCTION (block) != NULL)
13268 break;
13269 block = BLOCK_SUPERBLOCK (block);
13270 }
13271 }
13272
13273 /* Return true if NAME matches PREG or if PREG is NULL. */
13274
13275 static bool
13276 name_matches_regex (const char *name, compiled_regex *preg)
13277 {
13278 return (preg == NULL
13279 || preg->exec (ada_decode (name).c_str (), 0, NULL, 0) == 0);
13280 }
13281
13282 /* Add all exceptions defined globally whose name name match
13283 a regular expression, excluding standard exceptions.
13284
13285 The reason we exclude standard exceptions is that they need
13286 to be handled separately: Standard exceptions are defined inside
13287 a runtime unit which is normally not compiled with debugging info,
13288 and thus usually do not show up in our symbol search. However,
13289 if the unit was in fact built with debugging info, we need to
13290 exclude them because they would duplicate the entry we found
13291 during the special loop that specifically searches for those
13292 standard exceptions.
13293
13294 If PREG is not NULL, then this regexp_t object is used to
13295 perform the symbol name matching. Otherwise, no name-based
13296 filtering is performed.
13297
13298 EXCEPTIONS is a vector of exceptions to which matching exceptions
13299 gets pushed. */
13300
13301 static void
13302 ada_add_global_exceptions (compiled_regex *preg,
13303 std::vector<ada_exc_info> *exceptions)
13304 {
13305 /* In Ada, the symbol "search name" is a linkage name, whereas the
13306 regular expression used to do the matching refers to the natural
13307 name. So match against the decoded name. */
13308 expand_symtabs_matching (NULL,
13309 lookup_name_info::match_any (),
13310 [&] (const char *search_name)
13311 {
13312 std::string decoded = ada_decode (search_name);
13313 return name_matches_regex (decoded.c_str (), preg);
13314 },
13315 NULL,
13316 VARIABLES_DOMAIN);
13317
13318 for (objfile *objfile : current_program_space->objfiles ())
13319 {
13320 for (compunit_symtab *s : objfile->compunits ())
13321 {
13322 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13323 int i;
13324
13325 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13326 {
13327 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13328 struct block_iterator iter;
13329 struct symbol *sym;
13330
13331 ALL_BLOCK_SYMBOLS (b, iter, sym)
13332 if (ada_is_non_standard_exception_sym (sym)
13333 && name_matches_regex (sym->natural_name (), preg))
13334 {
13335 struct ada_exc_info info
13336 = {sym->print_name (), SYMBOL_VALUE_ADDRESS (sym)};
13337
13338 exceptions->push_back (info);
13339 }
13340 }
13341 }
13342 }
13343 }
13344
13345 /* Implements ada_exceptions_list with the regular expression passed
13346 as a regex_t, rather than a string.
13347
13348 If not NULL, PREG is used to filter out exceptions whose names
13349 do not match. Otherwise, all exceptions are listed. */
13350
13351 static std::vector<ada_exc_info>
13352 ada_exceptions_list_1 (compiled_regex *preg)
13353 {
13354 std::vector<ada_exc_info> result;
13355 int prev_len;
13356
13357 /* First, list the known standard exceptions. These exceptions
13358 need to be handled separately, as they are usually defined in
13359 runtime units that have been compiled without debugging info. */
13360
13361 ada_add_standard_exceptions (preg, &result);
13362
13363 /* Next, find all exceptions whose scope is local and accessible
13364 from the currently selected frame. */
13365
13366 if (has_stack_frames ())
13367 {
13368 prev_len = result.size ();
13369 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13370 &result);
13371 if (result.size () > prev_len)
13372 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13373 }
13374
13375 /* Add all exceptions whose scope is global. */
13376
13377 prev_len = result.size ();
13378 ada_add_global_exceptions (preg, &result);
13379 if (result.size () > prev_len)
13380 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13381
13382 return result;
13383 }
13384
13385 /* Return a vector of ada_exc_info.
13386
13387 If REGEXP is NULL, all exceptions are included in the result.
13388 Otherwise, it should contain a valid regular expression,
13389 and only the exceptions whose names match that regular expression
13390 are included in the result.
13391
13392 The exceptions are sorted in the following order:
13393 - Standard exceptions (defined by the Ada language), in
13394 alphabetical order;
13395 - Exceptions only visible from the current frame, in
13396 alphabetical order;
13397 - Exceptions whose scope is global, in alphabetical order. */
13398
13399 std::vector<ada_exc_info>
13400 ada_exceptions_list (const char *regexp)
13401 {
13402 if (regexp == NULL)
13403 return ada_exceptions_list_1 (NULL);
13404
13405 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13406 return ada_exceptions_list_1 (&reg);
13407 }
13408
13409 /* Implement the "info exceptions" command. */
13410
13411 static void
13412 info_exceptions_command (const char *regexp, int from_tty)
13413 {
13414 struct gdbarch *gdbarch = get_current_arch ();
13415
13416 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
13417
13418 if (regexp != NULL)
13419 printf_filtered
13420 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13421 else
13422 printf_filtered (_("All defined Ada exceptions:\n"));
13423
13424 for (const ada_exc_info &info : exceptions)
13425 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
13426 }
13427
13428 /* Operators */
13429 /* Information about operators given special treatment in functions
13430 below. */
13431 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13432
13433 #define ADA_OPERATORS \
13434 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13435 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13436 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13437 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13438 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13439 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13440 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13441 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13442 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13443 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13444 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13445 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13446 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13447 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13448 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13449 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13450 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13451 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13452 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13453
13454 static void
13455 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13456 int *argsp)
13457 {
13458 switch (exp->elts[pc - 1].opcode)
13459 {
13460 default:
13461 operator_length_standard (exp, pc, oplenp, argsp);
13462 break;
13463
13464 #define OP_DEFN(op, len, args, binop) \
13465 case op: *oplenp = len; *argsp = args; break;
13466 ADA_OPERATORS;
13467 #undef OP_DEFN
13468
13469 case OP_AGGREGATE:
13470 *oplenp = 3;
13471 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13472 break;
13473
13474 case OP_CHOICES:
13475 *oplenp = 3;
13476 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13477 break;
13478 }
13479 }
13480
13481 /* Implementation of the exp_descriptor method operator_check. */
13482
13483 static int
13484 ada_operator_check (struct expression *exp, int pos,
13485 int (*objfile_func) (struct objfile *objfile, void *data),
13486 void *data)
13487 {
13488 const union exp_element *const elts = exp->elts;
13489 struct type *type = NULL;
13490
13491 switch (elts[pos].opcode)
13492 {
13493 case UNOP_IN_RANGE:
13494 case UNOP_QUAL:
13495 type = elts[pos + 1].type;
13496 break;
13497
13498 default:
13499 return operator_check_standard (exp, pos, objfile_func, data);
13500 }
13501
13502 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13503
13504 if (type && TYPE_OBJFILE (type)
13505 && (*objfile_func) (TYPE_OBJFILE (type), data))
13506 return 1;
13507
13508 return 0;
13509 }
13510
13511 static const char *
13512 ada_op_name (enum exp_opcode opcode)
13513 {
13514 switch (opcode)
13515 {
13516 default:
13517 return op_name_standard (opcode);
13518
13519 #define OP_DEFN(op, len, args, binop) case op: return #op;
13520 ADA_OPERATORS;
13521 #undef OP_DEFN
13522
13523 case OP_AGGREGATE:
13524 return "OP_AGGREGATE";
13525 case OP_CHOICES:
13526 return "OP_CHOICES";
13527 case OP_NAME:
13528 return "OP_NAME";
13529 }
13530 }
13531
13532 /* As for operator_length, but assumes PC is pointing at the first
13533 element of the operator, and gives meaningful results only for the
13534 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13535
13536 static void
13537 ada_forward_operator_length (struct expression *exp, int pc,
13538 int *oplenp, int *argsp)
13539 {
13540 switch (exp->elts[pc].opcode)
13541 {
13542 default:
13543 *oplenp = *argsp = 0;
13544 break;
13545
13546 #define OP_DEFN(op, len, args, binop) \
13547 case op: *oplenp = len; *argsp = args; break;
13548 ADA_OPERATORS;
13549 #undef OP_DEFN
13550
13551 case OP_AGGREGATE:
13552 *oplenp = 3;
13553 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13554 break;
13555
13556 case OP_CHOICES:
13557 *oplenp = 3;
13558 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13559 break;
13560
13561 case OP_STRING:
13562 case OP_NAME:
13563 {
13564 int len = longest_to_int (exp->elts[pc + 1].longconst);
13565
13566 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13567 *argsp = 0;
13568 break;
13569 }
13570 }
13571 }
13572
13573 static int
13574 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13575 {
13576 enum exp_opcode op = exp->elts[elt].opcode;
13577 int oplen, nargs;
13578 int pc = elt;
13579 int i;
13580
13581 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13582
13583 switch (op)
13584 {
13585 /* Ada attributes ('Foo). */
13586 case OP_ATR_FIRST:
13587 case OP_ATR_LAST:
13588 case OP_ATR_LENGTH:
13589 case OP_ATR_IMAGE:
13590 case OP_ATR_MAX:
13591 case OP_ATR_MIN:
13592 case OP_ATR_MODULUS:
13593 case OP_ATR_POS:
13594 case OP_ATR_SIZE:
13595 case OP_ATR_TAG:
13596 case OP_ATR_VAL:
13597 break;
13598
13599 case UNOP_IN_RANGE:
13600 case UNOP_QUAL:
13601 /* XXX: gdb_sprint_host_address, type_sprint */
13602 fprintf_filtered (stream, _("Type @"));
13603 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13604 fprintf_filtered (stream, " (");
13605 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13606 fprintf_filtered (stream, ")");
13607 break;
13608 case BINOP_IN_BOUNDS:
13609 fprintf_filtered (stream, " (%d)",
13610 longest_to_int (exp->elts[pc + 2].longconst));
13611 break;
13612 case TERNOP_IN_RANGE:
13613 break;
13614
13615 case OP_AGGREGATE:
13616 case OP_OTHERS:
13617 case OP_DISCRETE_RANGE:
13618 case OP_POSITIONAL:
13619 case OP_CHOICES:
13620 break;
13621
13622 case OP_NAME:
13623 case OP_STRING:
13624 {
13625 char *name = &exp->elts[elt + 2].string;
13626 int len = longest_to_int (exp->elts[elt + 1].longconst);
13627
13628 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13629 break;
13630 }
13631
13632 default:
13633 return dump_subexp_body_standard (exp, stream, elt);
13634 }
13635
13636 elt += oplen;
13637 for (i = 0; i < nargs; i += 1)
13638 elt = dump_subexp (exp, stream, elt);
13639
13640 return elt;
13641 }
13642
13643 /* The Ada extension of print_subexp (q.v.). */
13644
13645 static void
13646 ada_print_subexp (struct expression *exp, int *pos,
13647 struct ui_file *stream, enum precedence prec)
13648 {
13649 int oplen, nargs, i;
13650 int pc = *pos;
13651 enum exp_opcode op = exp->elts[pc].opcode;
13652
13653 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13654
13655 *pos += oplen;
13656 switch (op)
13657 {
13658 default:
13659 *pos -= oplen;
13660 print_subexp_standard (exp, pos, stream, prec);
13661 return;
13662
13663 case OP_VAR_VALUE:
13664 fputs_filtered (exp->elts[pc + 2].symbol->natural_name (), stream);
13665 return;
13666
13667 case BINOP_IN_BOUNDS:
13668 /* XXX: sprint_subexp */
13669 print_subexp (exp, pos, stream, PREC_SUFFIX);
13670 fputs_filtered (" in ", stream);
13671 print_subexp (exp, pos, stream, PREC_SUFFIX);
13672 fputs_filtered ("'range", stream);
13673 if (exp->elts[pc + 1].longconst > 1)
13674 fprintf_filtered (stream, "(%ld)",
13675 (long) exp->elts[pc + 1].longconst);
13676 return;
13677
13678 case TERNOP_IN_RANGE:
13679 if (prec >= PREC_EQUAL)
13680 fputs_filtered ("(", stream);
13681 /* XXX: sprint_subexp */
13682 print_subexp (exp, pos, stream, PREC_SUFFIX);
13683 fputs_filtered (" in ", stream);
13684 print_subexp (exp, pos, stream, PREC_EQUAL);
13685 fputs_filtered (" .. ", stream);
13686 print_subexp (exp, pos, stream, PREC_EQUAL);
13687 if (prec >= PREC_EQUAL)
13688 fputs_filtered (")", stream);
13689 return;
13690
13691 case OP_ATR_FIRST:
13692 case OP_ATR_LAST:
13693 case OP_ATR_LENGTH:
13694 case OP_ATR_IMAGE:
13695 case OP_ATR_MAX:
13696 case OP_ATR_MIN:
13697 case OP_ATR_MODULUS:
13698 case OP_ATR_POS:
13699 case OP_ATR_SIZE:
13700 case OP_ATR_TAG:
13701 case OP_ATR_VAL:
13702 if (exp->elts[*pos].opcode == OP_TYPE)
13703 {
13704 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
13705 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13706 &type_print_raw_options);
13707 *pos += 3;
13708 }
13709 else
13710 print_subexp (exp, pos, stream, PREC_SUFFIX);
13711 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13712 if (nargs > 1)
13713 {
13714 int tem;
13715
13716 for (tem = 1; tem < nargs; tem += 1)
13717 {
13718 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13719 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13720 }
13721 fputs_filtered (")", stream);
13722 }
13723 return;
13724
13725 case UNOP_QUAL:
13726 type_print (exp->elts[pc + 1].type, "", stream, 0);
13727 fputs_filtered ("'(", stream);
13728 print_subexp (exp, pos, stream, PREC_PREFIX);
13729 fputs_filtered (")", stream);
13730 return;
13731
13732 case UNOP_IN_RANGE:
13733 /* XXX: sprint_subexp */
13734 print_subexp (exp, pos, stream, PREC_SUFFIX);
13735 fputs_filtered (" in ", stream);
13736 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13737 &type_print_raw_options);
13738 return;
13739
13740 case OP_DISCRETE_RANGE:
13741 print_subexp (exp, pos, stream, PREC_SUFFIX);
13742 fputs_filtered ("..", stream);
13743 print_subexp (exp, pos, stream, PREC_SUFFIX);
13744 return;
13745
13746 case OP_OTHERS:
13747 fputs_filtered ("others => ", stream);
13748 print_subexp (exp, pos, stream, PREC_SUFFIX);
13749 return;
13750
13751 case OP_CHOICES:
13752 for (i = 0; i < nargs-1; i += 1)
13753 {
13754 if (i > 0)
13755 fputs_filtered ("|", stream);
13756 print_subexp (exp, pos, stream, PREC_SUFFIX);
13757 }
13758 fputs_filtered (" => ", stream);
13759 print_subexp (exp, pos, stream, PREC_SUFFIX);
13760 return;
13761
13762 case OP_POSITIONAL:
13763 print_subexp (exp, pos, stream, PREC_SUFFIX);
13764 return;
13765
13766 case OP_AGGREGATE:
13767 fputs_filtered ("(", stream);
13768 for (i = 0; i < nargs; i += 1)
13769 {
13770 if (i > 0)
13771 fputs_filtered (", ", stream);
13772 print_subexp (exp, pos, stream, PREC_SUFFIX);
13773 }
13774 fputs_filtered (")", stream);
13775 return;
13776 }
13777 }
13778
13779 /* Table mapping opcodes into strings for printing operators
13780 and precedences of the operators. */
13781
13782 static const struct op_print ada_op_print_tab[] = {
13783 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13784 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13785 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13786 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13787 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13788 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13789 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13790 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13791 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13792 {">=", BINOP_GEQ, PREC_ORDER, 0},
13793 {">", BINOP_GTR, PREC_ORDER, 0},
13794 {"<", BINOP_LESS, PREC_ORDER, 0},
13795 {">>", BINOP_RSH, PREC_SHIFT, 0},
13796 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13797 {"+", BINOP_ADD, PREC_ADD, 0},
13798 {"-", BINOP_SUB, PREC_ADD, 0},
13799 {"&", BINOP_CONCAT, PREC_ADD, 0},
13800 {"*", BINOP_MUL, PREC_MUL, 0},
13801 {"/", BINOP_DIV, PREC_MUL, 0},
13802 {"rem", BINOP_REM, PREC_MUL, 0},
13803 {"mod", BINOP_MOD, PREC_MUL, 0},
13804 {"**", BINOP_EXP, PREC_REPEAT, 0},
13805 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13806 {"-", UNOP_NEG, PREC_PREFIX, 0},
13807 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13808 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13809 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13810 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
13811 {".all", UNOP_IND, PREC_SUFFIX, 1},
13812 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13813 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
13814 {NULL, OP_NULL, PREC_SUFFIX, 0}
13815 };
13816 \f
13817 enum ada_primitive_types {
13818 ada_primitive_type_int,
13819 ada_primitive_type_long,
13820 ada_primitive_type_short,
13821 ada_primitive_type_char,
13822 ada_primitive_type_float,
13823 ada_primitive_type_double,
13824 ada_primitive_type_void,
13825 ada_primitive_type_long_long,
13826 ada_primitive_type_long_double,
13827 ada_primitive_type_natural,
13828 ada_primitive_type_positive,
13829 ada_primitive_type_system_address,
13830 ada_primitive_type_storage_offset,
13831 nr_ada_primitive_types
13832 };
13833
13834 static void
13835 ada_language_arch_info (struct gdbarch *gdbarch,
13836 struct language_arch_info *lai)
13837 {
13838 const struct builtin_type *builtin = builtin_type (gdbarch);
13839
13840 lai->primitive_type_vector
13841 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
13842 struct type *);
13843
13844 lai->primitive_type_vector [ada_primitive_type_int]
13845 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13846 0, "integer");
13847 lai->primitive_type_vector [ada_primitive_type_long]
13848 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13849 0, "long_integer");
13850 lai->primitive_type_vector [ada_primitive_type_short]
13851 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13852 0, "short_integer");
13853 lai->string_char_type
13854 = lai->primitive_type_vector [ada_primitive_type_char]
13855 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13856 lai->primitive_type_vector [ada_primitive_type_float]
13857 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13858 "float", gdbarch_float_format (gdbarch));
13859 lai->primitive_type_vector [ada_primitive_type_double]
13860 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13861 "long_float", gdbarch_double_format (gdbarch));
13862 lai->primitive_type_vector [ada_primitive_type_long_long]
13863 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13864 0, "long_long_integer");
13865 lai->primitive_type_vector [ada_primitive_type_long_double]
13866 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
13867 "long_long_float", gdbarch_long_double_format (gdbarch));
13868 lai->primitive_type_vector [ada_primitive_type_natural]
13869 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13870 0, "natural");
13871 lai->primitive_type_vector [ada_primitive_type_positive]
13872 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13873 0, "positive");
13874 lai->primitive_type_vector [ada_primitive_type_void]
13875 = builtin->builtin_void;
13876
13877 lai->primitive_type_vector [ada_primitive_type_system_address]
13878 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
13879 "void"));
13880 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13881 = "system__address";
13882
13883 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
13884 type. This is a signed integral type whose size is the same as
13885 the size of addresses. */
13886 {
13887 unsigned int addr_length = TYPE_LENGTH
13888 (lai->primitive_type_vector [ada_primitive_type_system_address]);
13889
13890 lai->primitive_type_vector [ada_primitive_type_storage_offset]
13891 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
13892 "storage_offset");
13893 }
13894
13895 lai->bool_type_symbol = NULL;
13896 lai->bool_type_default = builtin->builtin_bool;
13897 }
13898 \f
13899 /* Language vector */
13900
13901 /* Not really used, but needed in the ada_language_defn. */
13902
13903 static void
13904 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
13905 {
13906 ada_emit_char (c, type, stream, quoter, 1);
13907 }
13908
13909 static int
13910 parse (struct parser_state *ps)
13911 {
13912 warnings_issued = 0;
13913 return ada_parse (ps);
13914 }
13915
13916 static const struct exp_descriptor ada_exp_descriptor = {
13917 ada_print_subexp,
13918 ada_operator_length,
13919 ada_operator_check,
13920 ada_op_name,
13921 ada_dump_subexp_body,
13922 ada_evaluate_subexp
13923 };
13924
13925 /* symbol_name_matcher_ftype adapter for wild_match. */
13926
13927 static bool
13928 do_wild_match (const char *symbol_search_name,
13929 const lookup_name_info &lookup_name,
13930 completion_match_result *comp_match_res)
13931 {
13932 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
13933 }
13934
13935 /* symbol_name_matcher_ftype adapter for full_match. */
13936
13937 static bool
13938 do_full_match (const char *symbol_search_name,
13939 const lookup_name_info &lookup_name,
13940 completion_match_result *comp_match_res)
13941 {
13942 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
13943 }
13944
13945 /* symbol_name_matcher_ftype for exact (verbatim) matches. */
13946
13947 static bool
13948 do_exact_match (const char *symbol_search_name,
13949 const lookup_name_info &lookup_name,
13950 completion_match_result *comp_match_res)
13951 {
13952 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
13953 }
13954
13955 /* Build the Ada lookup name for LOOKUP_NAME. */
13956
13957 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
13958 {
13959 const std::string &user_name = lookup_name.name ();
13960
13961 if (user_name[0] == '<')
13962 {
13963 if (user_name.back () == '>')
13964 m_encoded_name = user_name.substr (1, user_name.size () - 2);
13965 else
13966 m_encoded_name = user_name.substr (1, user_name.size () - 1);
13967 m_encoded_p = true;
13968 m_verbatim_p = true;
13969 m_wild_match_p = false;
13970 m_standard_p = false;
13971 }
13972 else
13973 {
13974 m_verbatim_p = false;
13975
13976 m_encoded_p = user_name.find ("__") != std::string::npos;
13977
13978 if (!m_encoded_p)
13979 {
13980 const char *folded = ada_fold_name (user_name.c_str ());
13981 const char *encoded = ada_encode_1 (folded, false);
13982 if (encoded != NULL)
13983 m_encoded_name = encoded;
13984 else
13985 m_encoded_name = user_name;
13986 }
13987 else
13988 m_encoded_name = user_name;
13989
13990 /* Handle the 'package Standard' special case. See description
13991 of m_standard_p. */
13992 if (startswith (m_encoded_name.c_str (), "standard__"))
13993 {
13994 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
13995 m_standard_p = true;
13996 }
13997 else
13998 m_standard_p = false;
13999
14000 /* If the name contains a ".", then the user is entering a fully
14001 qualified entity name, and the match must not be done in wild
14002 mode. Similarly, if the user wants to complete what looks
14003 like an encoded name, the match must not be done in wild
14004 mode. Also, in the standard__ special case always do
14005 non-wild matching. */
14006 m_wild_match_p
14007 = (lookup_name.match_type () != symbol_name_match_type::FULL
14008 && !m_encoded_p
14009 && !m_standard_p
14010 && user_name.find ('.') == std::string::npos);
14011 }
14012 }
14013
14014 /* symbol_name_matcher_ftype method for Ada. This only handles
14015 completion mode. */
14016
14017 static bool
14018 ada_symbol_name_matches (const char *symbol_search_name,
14019 const lookup_name_info &lookup_name,
14020 completion_match_result *comp_match_res)
14021 {
14022 return lookup_name.ada ().matches (symbol_search_name,
14023 lookup_name.match_type (),
14024 comp_match_res);
14025 }
14026
14027 /* A name matcher that matches the symbol name exactly, with
14028 strcmp. */
14029
14030 static bool
14031 literal_symbol_name_matcher (const char *symbol_search_name,
14032 const lookup_name_info &lookup_name,
14033 completion_match_result *comp_match_res)
14034 {
14035 const std::string &name = lookup_name.name ();
14036
14037 int cmp = (lookup_name.completion_mode ()
14038 ? strncmp (symbol_search_name, name.c_str (), name.size ())
14039 : strcmp (symbol_search_name, name.c_str ()));
14040 if (cmp == 0)
14041 {
14042 if (comp_match_res != NULL)
14043 comp_match_res->set_match (symbol_search_name);
14044 return true;
14045 }
14046 else
14047 return false;
14048 }
14049
14050 /* Implement the "la_get_symbol_name_matcher" language_defn method for
14051 Ada. */
14052
14053 static symbol_name_matcher_ftype *
14054 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
14055 {
14056 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
14057 return literal_symbol_name_matcher;
14058
14059 if (lookup_name.completion_mode ())
14060 return ada_symbol_name_matches;
14061 else
14062 {
14063 if (lookup_name.ada ().wild_match_p ())
14064 return do_wild_match;
14065 else if (lookup_name.ada ().verbatim_p ())
14066 return do_exact_match;
14067 else
14068 return do_full_match;
14069 }
14070 }
14071
14072 /* Implement the "la_read_var_value" language_defn method for Ada. */
14073
14074 static struct value *
14075 ada_read_var_value (struct symbol *var, const struct block *var_block,
14076 struct frame_info *frame)
14077 {
14078 /* The only case where default_read_var_value is not sufficient
14079 is when VAR is a renaming... */
14080 if (frame != nullptr)
14081 {
14082 const struct block *frame_block = get_frame_block (frame, NULL);
14083 if (frame_block != nullptr && ada_is_renaming_symbol (var))
14084 return ada_read_renaming_var_value (var, frame_block);
14085 }
14086
14087 /* This is a typical case where we expect the default_read_var_value
14088 function to work. */
14089 return default_read_var_value (var, var_block, frame);
14090 }
14091
14092 static const char *ada_extensions[] =
14093 {
14094 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14095 };
14096
14097 extern const struct language_defn ada_language_defn = {
14098 "ada", /* Language name */
14099 "Ada",
14100 language_ada,
14101 range_check_off,
14102 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14103 that's not quite what this means. */
14104 array_row_major,
14105 macro_expansion_no,
14106 ada_extensions,
14107 &ada_exp_descriptor,
14108 parse,
14109 resolve,
14110 ada_printchar, /* Print a character constant */
14111 ada_printstr, /* Function to print string constant */
14112 emit_char, /* Function to print single char (not used) */
14113 ada_print_type, /* Print a type using appropriate syntax */
14114 ada_print_typedef, /* Print a typedef using appropriate syntax */
14115 ada_val_print, /* Print a value using appropriate syntax */
14116 ada_value_print, /* Print a top-level value */
14117 ada_read_var_value, /* la_read_var_value */
14118 NULL, /* Language specific skip_trampoline */
14119 NULL, /* name_of_this */
14120 true, /* la_store_sym_names_in_linkage_form_p */
14121 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14122 basic_lookup_transparent_type, /* lookup_transparent_type */
14123 ada_la_decode, /* Language specific symbol demangler */
14124 ada_sniff_from_mangled_name,
14125 NULL, /* Language specific
14126 class_name_from_physname */
14127 ada_op_print_tab, /* expression operators for printing */
14128 0, /* c-style arrays */
14129 1, /* String lower bound */
14130 ada_get_gdb_completer_word_break_characters,
14131 ada_collect_symbol_completion_matches,
14132 ada_language_arch_info,
14133 ada_print_array_index,
14134 default_pass_by_reference,
14135 ada_watch_location_expression,
14136 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
14137 ada_iterate_over_symbols,
14138 default_search_name_hash,
14139 &ada_varobj_ops,
14140 NULL,
14141 NULL,
14142 ada_is_string_type,
14143 "(...)" /* la_struct_too_deep_ellipsis */
14144 };
14145
14146 /* Command-list for the "set/show ada" prefix command. */
14147 static struct cmd_list_element *set_ada_list;
14148 static struct cmd_list_element *show_ada_list;
14149
14150 /* Implement the "set ada" prefix command. */
14151
14152 static void
14153 set_ada_command (const char *arg, int from_tty)
14154 {
14155 printf_unfiltered (_(\
14156 "\"set ada\" must be followed by the name of a setting.\n"));
14157 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
14158 }
14159
14160 /* Implement the "show ada" prefix command. */
14161
14162 static void
14163 show_ada_command (const char *args, int from_tty)
14164 {
14165 cmd_show_list (show_ada_list, from_tty, "");
14166 }
14167
14168 static void
14169 initialize_ada_catchpoint_ops (void)
14170 {
14171 struct breakpoint_ops *ops;
14172
14173 initialize_breakpoint_ops ();
14174
14175 ops = &catch_exception_breakpoint_ops;
14176 *ops = bkpt_breakpoint_ops;
14177 ops->allocate_location = allocate_location_exception;
14178 ops->re_set = re_set_exception;
14179 ops->check_status = check_status_exception;
14180 ops->print_it = print_it_exception;
14181 ops->print_one = print_one_exception;
14182 ops->print_mention = print_mention_exception;
14183 ops->print_recreate = print_recreate_exception;
14184
14185 ops = &catch_exception_unhandled_breakpoint_ops;
14186 *ops = bkpt_breakpoint_ops;
14187 ops->allocate_location = allocate_location_exception;
14188 ops->re_set = re_set_exception;
14189 ops->check_status = check_status_exception;
14190 ops->print_it = print_it_exception;
14191 ops->print_one = print_one_exception;
14192 ops->print_mention = print_mention_exception;
14193 ops->print_recreate = print_recreate_exception;
14194
14195 ops = &catch_assert_breakpoint_ops;
14196 *ops = bkpt_breakpoint_ops;
14197 ops->allocate_location = allocate_location_exception;
14198 ops->re_set = re_set_exception;
14199 ops->check_status = check_status_exception;
14200 ops->print_it = print_it_exception;
14201 ops->print_one = print_one_exception;
14202 ops->print_mention = print_mention_exception;
14203 ops->print_recreate = print_recreate_exception;
14204
14205 ops = &catch_handlers_breakpoint_ops;
14206 *ops = bkpt_breakpoint_ops;
14207 ops->allocate_location = allocate_location_exception;
14208 ops->re_set = re_set_exception;
14209 ops->check_status = check_status_exception;
14210 ops->print_it = print_it_exception;
14211 ops->print_one = print_one_exception;
14212 ops->print_mention = print_mention_exception;
14213 ops->print_recreate = print_recreate_exception;
14214 }
14215
14216 /* This module's 'new_objfile' observer. */
14217
14218 static void
14219 ada_new_objfile_observer (struct objfile *objfile)
14220 {
14221 ada_clear_symbol_cache ();
14222 }
14223
14224 /* This module's 'free_objfile' observer. */
14225
14226 static void
14227 ada_free_objfile_observer (struct objfile *objfile)
14228 {
14229 ada_clear_symbol_cache ();
14230 }
14231
14232 void
14233 _initialize_ada_language (void)
14234 {
14235 initialize_ada_catchpoint_ops ();
14236
14237 add_prefix_cmd ("ada", no_class, set_ada_command,
14238 _("Prefix command for changing Ada-specific settings."),
14239 &set_ada_list, "set ada ", 0, &setlist);
14240
14241 add_prefix_cmd ("ada", no_class, show_ada_command,
14242 _("Generic command for showing Ada-specific settings."),
14243 &show_ada_list, "show ada ", 0, &showlist);
14244
14245 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14246 &trust_pad_over_xvs, _("\
14247 Enable or disable an optimization trusting PAD types over XVS types."), _("\
14248 Show whether an optimization trusting PAD types over XVS types is activated."),
14249 _("\
14250 This is related to the encoding used by the GNAT compiler. The debugger\n\
14251 should normally trust the contents of PAD types, but certain older versions\n\
14252 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14253 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14254 work around this bug. It is always safe to turn this option \"off\", but\n\
14255 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14256 this option to \"off\" unless necessary."),
14257 NULL, NULL, &set_ada_list, &show_ada_list);
14258
14259 add_setshow_boolean_cmd ("print-signatures", class_vars,
14260 &print_signatures, _("\
14261 Enable or disable the output of formal and return types for functions in the \
14262 overloads selection menu."), _("\
14263 Show whether the output of formal and return types for functions in the \
14264 overloads selection menu is activated."),
14265 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14266
14267 add_catch_command ("exception", _("\
14268 Catch Ada exceptions, when raised.\n\
14269 Usage: catch exception [ARG] [if CONDITION]\n\
14270 Without any argument, stop when any Ada exception is raised.\n\
14271 If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
14272 being raised does not have a handler (and will therefore lead to the task's\n\
14273 termination).\n\
14274 Otherwise, the catchpoint only stops when the name of the exception being\n\
14275 raised is the same as ARG.\n\
14276 CONDITION is a boolean expression that is evaluated to see whether the\n\
14277 exception should cause a stop."),
14278 catch_ada_exception_command,
14279 catch_ada_completer,
14280 CATCH_PERMANENT,
14281 CATCH_TEMPORARY);
14282
14283 add_catch_command ("handlers", _("\
14284 Catch Ada exceptions, when handled.\n\
14285 Usage: catch handlers [ARG] [if CONDITION]\n\
14286 Without any argument, stop when any Ada exception is handled.\n\
14287 With an argument, catch only exceptions with the given name.\n\
14288 CONDITION is a boolean expression that is evaluated to see whether the\n\
14289 exception should cause a stop."),
14290 catch_ada_handlers_command,
14291 catch_ada_completer,
14292 CATCH_PERMANENT,
14293 CATCH_TEMPORARY);
14294 add_catch_command ("assert", _("\
14295 Catch failed Ada assertions, when raised.\n\
14296 Usage: catch assert [if CONDITION]\n\
14297 CONDITION is a boolean expression that is evaluated to see whether the\n\
14298 exception should cause a stop."),
14299 catch_assert_command,
14300 NULL,
14301 CATCH_PERMANENT,
14302 CATCH_TEMPORARY);
14303
14304 varsize_limit = 65536;
14305 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14306 &varsize_limit, _("\
14307 Set the maximum number of bytes allowed in a variable-size object."), _("\
14308 Show the maximum number of bytes allowed in a variable-size object."), _("\
14309 Attempts to access an object whose size is not a compile-time constant\n\
14310 and exceeds this limit will cause an error."),
14311 NULL, NULL, &setlist, &showlist);
14312
14313 add_info ("exceptions", info_exceptions_command,
14314 _("\
14315 List all Ada exception names.\n\
14316 Usage: info exceptions [REGEXP]\n\
14317 If a regular expression is passed as an argument, only those matching\n\
14318 the regular expression are listed."));
14319
14320 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14321 _("Set Ada maintenance-related variables."),
14322 &maint_set_ada_cmdlist, "maintenance set ada ",
14323 0/*allow-unknown*/, &maintenance_set_cmdlist);
14324
14325 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14326 _("Show Ada maintenance-related variables."),
14327 &maint_show_ada_cmdlist, "maintenance show ada ",
14328 0/*allow-unknown*/, &maintenance_show_cmdlist);
14329
14330 add_setshow_boolean_cmd
14331 ("ignore-descriptive-types", class_maintenance,
14332 &ada_ignore_descriptive_types_p,
14333 _("Set whether descriptive types generated by GNAT should be ignored."),
14334 _("Show whether descriptive types generated by GNAT should be ignored."),
14335 _("\
14336 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14337 DWARF attribute."),
14338 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14339
14340 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14341 NULL, xcalloc, xfree);
14342
14343 /* The ada-lang observers. */
14344 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14345 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14346 gdb::observers::inferior_exit.attach (ada_inferior_exit);
14347 }
This page took 0.331266 seconds and 4 git commands to generate.