Problem after hitting breakpoint on Windows (with GDBserver)
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-1994, 1997-2000, 2003-2005, 2007-2012 Free
4 Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include "defs.h"
23 #include <stdio.h>
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include <stdarg.h>
27 #include "demangle.h"
28 #include "gdb_regex.h"
29 #include "frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35 #include "language.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include "gdb_stat.h"
47 #ifdef UI_OUT
48 #include "ui-out.h"
49 #endif
50 #include "block.h"
51 #include "infcall.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
54 #include "annotate.h"
55 #include "valprint.h"
56 #include "source.h"
57 #include "observer.h"
58 #include "vec.h"
59 #include "stack.h"
60 #include "gdb_vecs.h"
61
62 #include "psymtab.h"
63 #include "value.h"
64 #include "mi/mi-common.h"
65 #include "arch-utils.h"
66 #include "exceptions.h"
67 #include "cli/cli-utils.h"
68
69 /* Define whether or not the C operator '/' truncates towards zero for
70 differently signed operands (truncation direction is undefined in C).
71 Copied from valarith.c. */
72
73 #ifndef TRUNCATION_TOWARDS_ZERO
74 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
75 #endif
76
77 static struct type *desc_base_type (struct type *);
78
79 static struct type *desc_bounds_type (struct type *);
80
81 static struct value *desc_bounds (struct value *);
82
83 static int fat_pntr_bounds_bitpos (struct type *);
84
85 static int fat_pntr_bounds_bitsize (struct type *);
86
87 static struct type *desc_data_target_type (struct type *);
88
89 static struct value *desc_data (struct value *);
90
91 static int fat_pntr_data_bitpos (struct type *);
92
93 static int fat_pntr_data_bitsize (struct type *);
94
95 static struct value *desc_one_bound (struct value *, int, int);
96
97 static int desc_bound_bitpos (struct type *, int, int);
98
99 static int desc_bound_bitsize (struct type *, int, int);
100
101 static struct type *desc_index_type (struct type *, int);
102
103 static int desc_arity (struct type *);
104
105 static int ada_type_match (struct type *, struct type *, int);
106
107 static int ada_args_match (struct symbol *, struct value **, int);
108
109 static int full_match (const char *, const char *);
110
111 static struct value *make_array_descriptor (struct type *, struct value *);
112
113 static void ada_add_block_symbols (struct obstack *,
114 struct block *, const char *,
115 domain_enum, struct objfile *, int);
116
117 static int is_nonfunction (struct ada_symbol_info *, int);
118
119 static void add_defn_to_vec (struct obstack *, struct symbol *,
120 struct block *);
121
122 static int num_defns_collected (struct obstack *);
123
124 static struct ada_symbol_info *defns_collected (struct obstack *, int);
125
126 static struct value *resolve_subexp (struct expression **, int *, int,
127 struct type *);
128
129 static void replace_operator_with_call (struct expression **, int, int, int,
130 struct symbol *, struct block *);
131
132 static int possible_user_operator_p (enum exp_opcode, struct value **);
133
134 static char *ada_op_name (enum exp_opcode);
135
136 static const char *ada_decoded_op_name (enum exp_opcode);
137
138 static int numeric_type_p (struct type *);
139
140 static int integer_type_p (struct type *);
141
142 static int scalar_type_p (struct type *);
143
144 static int discrete_type_p (struct type *);
145
146 static enum ada_renaming_category parse_old_style_renaming (struct type *,
147 const char **,
148 int *,
149 const char **);
150
151 static struct symbol *find_old_style_renaming_symbol (const char *,
152 struct block *);
153
154 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
155 int, int, int *);
156
157 static struct value *evaluate_subexp_type (struct expression *, int *);
158
159 static struct type *ada_find_parallel_type_with_name (struct type *,
160 const char *);
161
162 static int is_dynamic_field (struct type *, int);
163
164 static struct type *to_fixed_variant_branch_type (struct type *,
165 const gdb_byte *,
166 CORE_ADDR, struct value *);
167
168 static struct type *to_fixed_array_type (struct type *, struct value *, int);
169
170 static struct type *to_fixed_range_type (struct type *, struct value *);
171
172 static struct type *to_static_fixed_type (struct type *);
173 static struct type *static_unwrap_type (struct type *type);
174
175 static struct value *unwrap_value (struct value *);
176
177 static struct type *constrained_packed_array_type (struct type *, long *);
178
179 static struct type *decode_constrained_packed_array_type (struct type *);
180
181 static long decode_packed_array_bitsize (struct type *);
182
183 static struct value *decode_constrained_packed_array (struct value *);
184
185 static int ada_is_packed_array_type (struct type *);
186
187 static int ada_is_unconstrained_packed_array_type (struct type *);
188
189 static struct value *value_subscript_packed (struct value *, int,
190 struct value **);
191
192 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
193
194 static struct value *coerce_unspec_val_to_type (struct value *,
195 struct type *);
196
197 static struct value *get_var_value (char *, char *);
198
199 static int lesseq_defined_than (struct symbol *, struct symbol *);
200
201 static int equiv_types (struct type *, struct type *);
202
203 static int is_name_suffix (const char *);
204
205 static int advance_wild_match (const char **, const char *, int);
206
207 static int wild_match (const char *, const char *);
208
209 static struct value *ada_coerce_ref (struct value *);
210
211 static LONGEST pos_atr (struct value *);
212
213 static struct value *value_pos_atr (struct type *, struct value *);
214
215 static struct value *value_val_atr (struct type *, struct value *);
216
217 static struct symbol *standard_lookup (const char *, const struct block *,
218 domain_enum);
219
220 static struct value *ada_search_struct_field (char *, struct value *, int,
221 struct type *);
222
223 static struct value *ada_value_primitive_field (struct value *, int, int,
224 struct type *);
225
226 static int find_struct_field (const char *, struct type *, int,
227 struct type **, int *, int *, int *, int *);
228
229 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
230 struct value *);
231
232 static int ada_resolve_function (struct ada_symbol_info *, int,
233 struct value **, int, const char *,
234 struct type *);
235
236 static int ada_is_direct_array_type (struct type *);
237
238 static void ada_language_arch_info (struct gdbarch *,
239 struct language_arch_info *);
240
241 static void check_size (const struct type *);
242
243 static struct value *ada_index_struct_field (int, struct value *, int,
244 struct type *);
245
246 static struct value *assign_aggregate (struct value *, struct value *,
247 struct expression *,
248 int *, enum noside);
249
250 static void aggregate_assign_from_choices (struct value *, struct value *,
251 struct expression *,
252 int *, LONGEST *, int *,
253 int, LONGEST, LONGEST);
254
255 static void aggregate_assign_positional (struct value *, struct value *,
256 struct expression *,
257 int *, LONGEST *, int *, int,
258 LONGEST, LONGEST);
259
260
261 static void aggregate_assign_others (struct value *, struct value *,
262 struct expression *,
263 int *, LONGEST *, int, LONGEST, LONGEST);
264
265
266 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
267
268
269 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
270 int *, enum noside);
271
272 static void ada_forward_operator_length (struct expression *, int, int *,
273 int *);
274
275 static struct type *ada_find_any_type (const char *name);
276 \f
277
278
279 /* Maximum-sized dynamic type. */
280 static unsigned int varsize_limit;
281
282 /* FIXME: brobecker/2003-09-17: No longer a const because it is
283 returned by a function that does not return a const char *. */
284 static char *ada_completer_word_break_characters =
285 #ifdef VMS
286 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
287 #else
288 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
289 #endif
290
291 /* The name of the symbol to use to get the name of the main subprogram. */
292 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
293 = "__gnat_ada_main_program_name";
294
295 /* Limit on the number of warnings to raise per expression evaluation. */
296 static int warning_limit = 2;
297
298 /* Number of warning messages issued; reset to 0 by cleanups after
299 expression evaluation. */
300 static int warnings_issued = 0;
301
302 static const char *known_runtime_file_name_patterns[] = {
303 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
304 };
305
306 static const char *known_auxiliary_function_name_patterns[] = {
307 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
308 };
309
310 /* Space for allocating results of ada_lookup_symbol_list. */
311 static struct obstack symbol_list_obstack;
312
313 /* Inferior-specific data. */
314
315 /* Per-inferior data for this module. */
316
317 struct ada_inferior_data
318 {
319 /* The ada__tags__type_specific_data type, which is used when decoding
320 tagged types. With older versions of GNAT, this type was directly
321 accessible through a component ("tsd") in the object tag. But this
322 is no longer the case, so we cache it for each inferior. */
323 struct type *tsd_type;
324
325 /* The exception_support_info data. This data is used to determine
326 how to implement support for Ada exception catchpoints in a given
327 inferior. */
328 const struct exception_support_info *exception_info;
329 };
330
331 /* Our key to this module's inferior data. */
332 static const struct inferior_data *ada_inferior_data;
333
334 /* A cleanup routine for our inferior data. */
335 static void
336 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
337 {
338 struct ada_inferior_data *data;
339
340 data = inferior_data (inf, ada_inferior_data);
341 if (data != NULL)
342 xfree (data);
343 }
344
345 /* Return our inferior data for the given inferior (INF).
346
347 This function always returns a valid pointer to an allocated
348 ada_inferior_data structure. If INF's inferior data has not
349 been previously set, this functions creates a new one with all
350 fields set to zero, sets INF's inferior to it, and then returns
351 a pointer to that newly allocated ada_inferior_data. */
352
353 static struct ada_inferior_data *
354 get_ada_inferior_data (struct inferior *inf)
355 {
356 struct ada_inferior_data *data;
357
358 data = inferior_data (inf, ada_inferior_data);
359 if (data == NULL)
360 {
361 data = XZALLOC (struct ada_inferior_data);
362 set_inferior_data (inf, ada_inferior_data, data);
363 }
364
365 return data;
366 }
367
368 /* Perform all necessary cleanups regarding our module's inferior data
369 that is required after the inferior INF just exited. */
370
371 static void
372 ada_inferior_exit (struct inferior *inf)
373 {
374 ada_inferior_data_cleanup (inf, NULL);
375 set_inferior_data (inf, ada_inferior_data, NULL);
376 }
377
378 /* Utilities */
379
380 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
381 all typedef layers have been peeled. Otherwise, return TYPE.
382
383 Normally, we really expect a typedef type to only have 1 typedef layer.
384 In other words, we really expect the target type of a typedef type to be
385 a non-typedef type. This is particularly true for Ada units, because
386 the language does not have a typedef vs not-typedef distinction.
387 In that respect, the Ada compiler has been trying to eliminate as many
388 typedef definitions in the debugging information, since they generally
389 do not bring any extra information (we still use typedef under certain
390 circumstances related mostly to the GNAT encoding).
391
392 Unfortunately, we have seen situations where the debugging information
393 generated by the compiler leads to such multiple typedef layers. For
394 instance, consider the following example with stabs:
395
396 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
397 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
398
399 This is an error in the debugging information which causes type
400 pck__float_array___XUP to be defined twice, and the second time,
401 it is defined as a typedef of a typedef.
402
403 This is on the fringe of legality as far as debugging information is
404 concerned, and certainly unexpected. But it is easy to handle these
405 situations correctly, so we can afford to be lenient in this case. */
406
407 static struct type *
408 ada_typedef_target_type (struct type *type)
409 {
410 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
411 type = TYPE_TARGET_TYPE (type);
412 return type;
413 }
414
415 /* Given DECODED_NAME a string holding a symbol name in its
416 decoded form (ie using the Ada dotted notation), returns
417 its unqualified name. */
418
419 static const char *
420 ada_unqualified_name (const char *decoded_name)
421 {
422 const char *result = strrchr (decoded_name, '.');
423
424 if (result != NULL)
425 result++; /* Skip the dot... */
426 else
427 result = decoded_name;
428
429 return result;
430 }
431
432 /* Return a string starting with '<', followed by STR, and '>'.
433 The result is good until the next call. */
434
435 static char *
436 add_angle_brackets (const char *str)
437 {
438 static char *result = NULL;
439
440 xfree (result);
441 result = xstrprintf ("<%s>", str);
442 return result;
443 }
444
445 static char *
446 ada_get_gdb_completer_word_break_characters (void)
447 {
448 return ada_completer_word_break_characters;
449 }
450
451 /* Print an array element index using the Ada syntax. */
452
453 static void
454 ada_print_array_index (struct value *index_value, struct ui_file *stream,
455 const struct value_print_options *options)
456 {
457 LA_VALUE_PRINT (index_value, stream, options);
458 fprintf_filtered (stream, " => ");
459 }
460
461 /* Assuming VECT points to an array of *SIZE objects of size
462 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
463 updating *SIZE as necessary and returning the (new) array. */
464
465 void *
466 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
467 {
468 if (*size < min_size)
469 {
470 *size *= 2;
471 if (*size < min_size)
472 *size = min_size;
473 vect = xrealloc (vect, *size * element_size);
474 }
475 return vect;
476 }
477
478 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
479 suffix of FIELD_NAME beginning "___". */
480
481 static int
482 field_name_match (const char *field_name, const char *target)
483 {
484 int len = strlen (target);
485
486 return
487 (strncmp (field_name, target, len) == 0
488 && (field_name[len] == '\0'
489 || (strncmp (field_name + len, "___", 3) == 0
490 && strcmp (field_name + strlen (field_name) - 6,
491 "___XVN") != 0)));
492 }
493
494
495 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
496 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
497 and return its index. This function also handles fields whose name
498 have ___ suffixes because the compiler sometimes alters their name
499 by adding such a suffix to represent fields with certain constraints.
500 If the field could not be found, return a negative number if
501 MAYBE_MISSING is set. Otherwise raise an error. */
502
503 int
504 ada_get_field_index (const struct type *type, const char *field_name,
505 int maybe_missing)
506 {
507 int fieldno;
508 struct type *struct_type = check_typedef ((struct type *) type);
509
510 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
511 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
512 return fieldno;
513
514 if (!maybe_missing)
515 error (_("Unable to find field %s in struct %s. Aborting"),
516 field_name, TYPE_NAME (struct_type));
517
518 return -1;
519 }
520
521 /* The length of the prefix of NAME prior to any "___" suffix. */
522
523 int
524 ada_name_prefix_len (const char *name)
525 {
526 if (name == NULL)
527 return 0;
528 else
529 {
530 const char *p = strstr (name, "___");
531
532 if (p == NULL)
533 return strlen (name);
534 else
535 return p - name;
536 }
537 }
538
539 /* Return non-zero if SUFFIX is a suffix of STR.
540 Return zero if STR is null. */
541
542 static int
543 is_suffix (const char *str, const char *suffix)
544 {
545 int len1, len2;
546
547 if (str == NULL)
548 return 0;
549 len1 = strlen (str);
550 len2 = strlen (suffix);
551 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
552 }
553
554 /* The contents of value VAL, treated as a value of type TYPE. The
555 result is an lval in memory if VAL is. */
556
557 static struct value *
558 coerce_unspec_val_to_type (struct value *val, struct type *type)
559 {
560 type = ada_check_typedef (type);
561 if (value_type (val) == type)
562 return val;
563 else
564 {
565 struct value *result;
566
567 /* Make sure that the object size is not unreasonable before
568 trying to allocate some memory for it. */
569 check_size (type);
570
571 if (value_lazy (val)
572 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
573 result = allocate_value_lazy (type);
574 else
575 {
576 result = allocate_value (type);
577 memcpy (value_contents_raw (result), value_contents (val),
578 TYPE_LENGTH (type));
579 }
580 set_value_component_location (result, val);
581 set_value_bitsize (result, value_bitsize (val));
582 set_value_bitpos (result, value_bitpos (val));
583 set_value_address (result, value_address (val));
584 return result;
585 }
586 }
587
588 static const gdb_byte *
589 cond_offset_host (const gdb_byte *valaddr, long offset)
590 {
591 if (valaddr == NULL)
592 return NULL;
593 else
594 return valaddr + offset;
595 }
596
597 static CORE_ADDR
598 cond_offset_target (CORE_ADDR address, long offset)
599 {
600 if (address == 0)
601 return 0;
602 else
603 return address + offset;
604 }
605
606 /* Issue a warning (as for the definition of warning in utils.c, but
607 with exactly one argument rather than ...), unless the limit on the
608 number of warnings has passed during the evaluation of the current
609 expression. */
610
611 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
612 provided by "complaint". */
613 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
614
615 static void
616 lim_warning (const char *format, ...)
617 {
618 va_list args;
619
620 va_start (args, format);
621 warnings_issued += 1;
622 if (warnings_issued <= warning_limit)
623 vwarning (format, args);
624
625 va_end (args);
626 }
627
628 /* Issue an error if the size of an object of type T is unreasonable,
629 i.e. if it would be a bad idea to allocate a value of this type in
630 GDB. */
631
632 static void
633 check_size (const struct type *type)
634 {
635 if (TYPE_LENGTH (type) > varsize_limit)
636 error (_("object size is larger than varsize-limit"));
637 }
638
639 /* Maximum value of a SIZE-byte signed integer type. */
640 static LONGEST
641 max_of_size (int size)
642 {
643 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
644
645 return top_bit | (top_bit - 1);
646 }
647
648 /* Minimum value of a SIZE-byte signed integer type. */
649 static LONGEST
650 min_of_size (int size)
651 {
652 return -max_of_size (size) - 1;
653 }
654
655 /* Maximum value of a SIZE-byte unsigned integer type. */
656 static ULONGEST
657 umax_of_size (int size)
658 {
659 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
660
661 return top_bit | (top_bit - 1);
662 }
663
664 /* Maximum value of integral type T, as a signed quantity. */
665 static LONGEST
666 max_of_type (struct type *t)
667 {
668 if (TYPE_UNSIGNED (t))
669 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
670 else
671 return max_of_size (TYPE_LENGTH (t));
672 }
673
674 /* Minimum value of integral type T, as a signed quantity. */
675 static LONGEST
676 min_of_type (struct type *t)
677 {
678 if (TYPE_UNSIGNED (t))
679 return 0;
680 else
681 return min_of_size (TYPE_LENGTH (t));
682 }
683
684 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
685 LONGEST
686 ada_discrete_type_high_bound (struct type *type)
687 {
688 switch (TYPE_CODE (type))
689 {
690 case TYPE_CODE_RANGE:
691 return TYPE_HIGH_BOUND (type);
692 case TYPE_CODE_ENUM:
693 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
694 case TYPE_CODE_BOOL:
695 return 1;
696 case TYPE_CODE_CHAR:
697 case TYPE_CODE_INT:
698 return max_of_type (type);
699 default:
700 error (_("Unexpected type in ada_discrete_type_high_bound."));
701 }
702 }
703
704 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
705 LONGEST
706 ada_discrete_type_low_bound (struct type *type)
707 {
708 switch (TYPE_CODE (type))
709 {
710 case TYPE_CODE_RANGE:
711 return TYPE_LOW_BOUND (type);
712 case TYPE_CODE_ENUM:
713 return TYPE_FIELD_BITPOS (type, 0);
714 case TYPE_CODE_BOOL:
715 return 0;
716 case TYPE_CODE_CHAR:
717 case TYPE_CODE_INT:
718 return min_of_type (type);
719 default:
720 error (_("Unexpected type in ada_discrete_type_low_bound."));
721 }
722 }
723
724 /* The identity on non-range types. For range types, the underlying
725 non-range scalar type. */
726
727 static struct type *
728 get_base_type (struct type *type)
729 {
730 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
731 {
732 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
733 return type;
734 type = TYPE_TARGET_TYPE (type);
735 }
736 return type;
737 }
738
739 /* Return a decoded version of the given VALUE. This means returning
740 a value whose type is obtained by applying all the GNAT-specific
741 encondings, making the resulting type a static but standard description
742 of the initial type. */
743
744 struct value *
745 ada_get_decoded_value (struct value *value)
746 {
747 struct type *type = ada_check_typedef (value_type (value));
748
749 if (ada_is_array_descriptor_type (type)
750 || (ada_is_constrained_packed_array_type (type)
751 && TYPE_CODE (type) != TYPE_CODE_PTR))
752 {
753 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
754 value = ada_coerce_to_simple_array_ptr (value);
755 else
756 value = ada_coerce_to_simple_array (value);
757 }
758 else
759 value = ada_to_fixed_value (value);
760
761 return value;
762 }
763
764 /* Same as ada_get_decoded_value, but with the given TYPE.
765 Because there is no associated actual value for this type,
766 the resulting type might be a best-effort approximation in
767 the case of dynamic types. */
768
769 struct type *
770 ada_get_decoded_type (struct type *type)
771 {
772 type = to_static_fixed_type (type);
773 if (ada_is_constrained_packed_array_type (type))
774 type = ada_coerce_to_simple_array_type (type);
775 return type;
776 }
777
778 \f
779
780 /* Language Selection */
781
782 /* If the main program is in Ada, return language_ada, otherwise return LANG
783 (the main program is in Ada iif the adainit symbol is found). */
784
785 enum language
786 ada_update_initial_language (enum language lang)
787 {
788 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
789 (struct objfile *) NULL) != NULL)
790 return language_ada;
791
792 return lang;
793 }
794
795 /* If the main procedure is written in Ada, then return its name.
796 The result is good until the next call. Return NULL if the main
797 procedure doesn't appear to be in Ada. */
798
799 char *
800 ada_main_name (void)
801 {
802 struct minimal_symbol *msym;
803 static char *main_program_name = NULL;
804
805 /* For Ada, the name of the main procedure is stored in a specific
806 string constant, generated by the binder. Look for that symbol,
807 extract its address, and then read that string. If we didn't find
808 that string, then most probably the main procedure is not written
809 in Ada. */
810 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
811
812 if (msym != NULL)
813 {
814 CORE_ADDR main_program_name_addr;
815 int err_code;
816
817 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
818 if (main_program_name_addr == 0)
819 error (_("Invalid address for Ada main program name."));
820
821 xfree (main_program_name);
822 target_read_string (main_program_name_addr, &main_program_name,
823 1024, &err_code);
824
825 if (err_code != 0)
826 return NULL;
827 return main_program_name;
828 }
829
830 /* The main procedure doesn't seem to be in Ada. */
831 return NULL;
832 }
833 \f
834 /* Symbols */
835
836 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
837 of NULLs. */
838
839 const struct ada_opname_map ada_opname_table[] = {
840 {"Oadd", "\"+\"", BINOP_ADD},
841 {"Osubtract", "\"-\"", BINOP_SUB},
842 {"Omultiply", "\"*\"", BINOP_MUL},
843 {"Odivide", "\"/\"", BINOP_DIV},
844 {"Omod", "\"mod\"", BINOP_MOD},
845 {"Orem", "\"rem\"", BINOP_REM},
846 {"Oexpon", "\"**\"", BINOP_EXP},
847 {"Olt", "\"<\"", BINOP_LESS},
848 {"Ole", "\"<=\"", BINOP_LEQ},
849 {"Ogt", "\">\"", BINOP_GTR},
850 {"Oge", "\">=\"", BINOP_GEQ},
851 {"Oeq", "\"=\"", BINOP_EQUAL},
852 {"One", "\"/=\"", BINOP_NOTEQUAL},
853 {"Oand", "\"and\"", BINOP_BITWISE_AND},
854 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
855 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
856 {"Oconcat", "\"&\"", BINOP_CONCAT},
857 {"Oabs", "\"abs\"", UNOP_ABS},
858 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
859 {"Oadd", "\"+\"", UNOP_PLUS},
860 {"Osubtract", "\"-\"", UNOP_NEG},
861 {NULL, NULL}
862 };
863
864 /* The "encoded" form of DECODED, according to GNAT conventions.
865 The result is valid until the next call to ada_encode. */
866
867 char *
868 ada_encode (const char *decoded)
869 {
870 static char *encoding_buffer = NULL;
871 static size_t encoding_buffer_size = 0;
872 const char *p;
873 int k;
874
875 if (decoded == NULL)
876 return NULL;
877
878 GROW_VECT (encoding_buffer, encoding_buffer_size,
879 2 * strlen (decoded) + 10);
880
881 k = 0;
882 for (p = decoded; *p != '\0'; p += 1)
883 {
884 if (*p == '.')
885 {
886 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
887 k += 2;
888 }
889 else if (*p == '"')
890 {
891 const struct ada_opname_map *mapping;
892
893 for (mapping = ada_opname_table;
894 mapping->encoded != NULL
895 && strncmp (mapping->decoded, p,
896 strlen (mapping->decoded)) != 0; mapping += 1)
897 ;
898 if (mapping->encoded == NULL)
899 error (_("invalid Ada operator name: %s"), p);
900 strcpy (encoding_buffer + k, mapping->encoded);
901 k += strlen (mapping->encoded);
902 break;
903 }
904 else
905 {
906 encoding_buffer[k] = *p;
907 k += 1;
908 }
909 }
910
911 encoding_buffer[k] = '\0';
912 return encoding_buffer;
913 }
914
915 /* Return NAME folded to lower case, or, if surrounded by single
916 quotes, unfolded, but with the quotes stripped away. Result good
917 to next call. */
918
919 char *
920 ada_fold_name (const char *name)
921 {
922 static char *fold_buffer = NULL;
923 static size_t fold_buffer_size = 0;
924
925 int len = strlen (name);
926 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
927
928 if (name[0] == '\'')
929 {
930 strncpy (fold_buffer, name + 1, len - 2);
931 fold_buffer[len - 2] = '\000';
932 }
933 else
934 {
935 int i;
936
937 for (i = 0; i <= len; i += 1)
938 fold_buffer[i] = tolower (name[i]);
939 }
940
941 return fold_buffer;
942 }
943
944 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
945
946 static int
947 is_lower_alphanum (const char c)
948 {
949 return (isdigit (c) || (isalpha (c) && islower (c)));
950 }
951
952 /* ENCODED is the linkage name of a symbol and LEN contains its length.
953 This function saves in LEN the length of that same symbol name but
954 without either of these suffixes:
955 . .{DIGIT}+
956 . ${DIGIT}+
957 . ___{DIGIT}+
958 . __{DIGIT}+.
959
960 These are suffixes introduced by the compiler for entities such as
961 nested subprogram for instance, in order to avoid name clashes.
962 They do not serve any purpose for the debugger. */
963
964 static void
965 ada_remove_trailing_digits (const char *encoded, int *len)
966 {
967 if (*len > 1 && isdigit (encoded[*len - 1]))
968 {
969 int i = *len - 2;
970
971 while (i > 0 && isdigit (encoded[i]))
972 i--;
973 if (i >= 0 && encoded[i] == '.')
974 *len = i;
975 else if (i >= 0 && encoded[i] == '$')
976 *len = i;
977 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
978 *len = i - 2;
979 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
980 *len = i - 1;
981 }
982 }
983
984 /* Remove the suffix introduced by the compiler for protected object
985 subprograms. */
986
987 static void
988 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
989 {
990 /* Remove trailing N. */
991
992 /* Protected entry subprograms are broken into two
993 separate subprograms: The first one is unprotected, and has
994 a 'N' suffix; the second is the protected version, and has
995 the 'P' suffix. The second calls the first one after handling
996 the protection. Since the P subprograms are internally generated,
997 we leave these names undecoded, giving the user a clue that this
998 entity is internal. */
999
1000 if (*len > 1
1001 && encoded[*len - 1] == 'N'
1002 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1003 *len = *len - 1;
1004 }
1005
1006 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1007
1008 static void
1009 ada_remove_Xbn_suffix (const char *encoded, int *len)
1010 {
1011 int i = *len - 1;
1012
1013 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1014 i--;
1015
1016 if (encoded[i] != 'X')
1017 return;
1018
1019 if (i == 0)
1020 return;
1021
1022 if (isalnum (encoded[i-1]))
1023 *len = i;
1024 }
1025
1026 /* If ENCODED follows the GNAT entity encoding conventions, then return
1027 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1028 replaced by ENCODED.
1029
1030 The resulting string is valid until the next call of ada_decode.
1031 If the string is unchanged by decoding, the original string pointer
1032 is returned. */
1033
1034 const char *
1035 ada_decode (const char *encoded)
1036 {
1037 int i, j;
1038 int len0;
1039 const char *p;
1040 char *decoded;
1041 int at_start_name;
1042 static char *decoding_buffer = NULL;
1043 static size_t decoding_buffer_size = 0;
1044
1045 /* The name of the Ada main procedure starts with "_ada_".
1046 This prefix is not part of the decoded name, so skip this part
1047 if we see this prefix. */
1048 if (strncmp (encoded, "_ada_", 5) == 0)
1049 encoded += 5;
1050
1051 /* If the name starts with '_', then it is not a properly encoded
1052 name, so do not attempt to decode it. Similarly, if the name
1053 starts with '<', the name should not be decoded. */
1054 if (encoded[0] == '_' || encoded[0] == '<')
1055 goto Suppress;
1056
1057 len0 = strlen (encoded);
1058
1059 ada_remove_trailing_digits (encoded, &len0);
1060 ada_remove_po_subprogram_suffix (encoded, &len0);
1061
1062 /* Remove the ___X.* suffix if present. Do not forget to verify that
1063 the suffix is located before the current "end" of ENCODED. We want
1064 to avoid re-matching parts of ENCODED that have previously been
1065 marked as discarded (by decrementing LEN0). */
1066 p = strstr (encoded, "___");
1067 if (p != NULL && p - encoded < len0 - 3)
1068 {
1069 if (p[3] == 'X')
1070 len0 = p - encoded;
1071 else
1072 goto Suppress;
1073 }
1074
1075 /* Remove any trailing TKB suffix. It tells us that this symbol
1076 is for the body of a task, but that information does not actually
1077 appear in the decoded name. */
1078
1079 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
1080 len0 -= 3;
1081
1082 /* Remove any trailing TB suffix. The TB suffix is slightly different
1083 from the TKB suffix because it is used for non-anonymous task
1084 bodies. */
1085
1086 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1087 len0 -= 2;
1088
1089 /* Remove trailing "B" suffixes. */
1090 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1091
1092 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
1093 len0 -= 1;
1094
1095 /* Make decoded big enough for possible expansion by operator name. */
1096
1097 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1098 decoded = decoding_buffer;
1099
1100 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1101
1102 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1103 {
1104 i = len0 - 2;
1105 while ((i >= 0 && isdigit (encoded[i]))
1106 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1107 i -= 1;
1108 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1109 len0 = i - 1;
1110 else if (encoded[i] == '$')
1111 len0 = i;
1112 }
1113
1114 /* The first few characters that are not alphabetic are not part
1115 of any encoding we use, so we can copy them over verbatim. */
1116
1117 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1118 decoded[j] = encoded[i];
1119
1120 at_start_name = 1;
1121 while (i < len0)
1122 {
1123 /* Is this a symbol function? */
1124 if (at_start_name && encoded[i] == 'O')
1125 {
1126 int k;
1127
1128 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1129 {
1130 int op_len = strlen (ada_opname_table[k].encoded);
1131 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1132 op_len - 1) == 0)
1133 && !isalnum (encoded[i + op_len]))
1134 {
1135 strcpy (decoded + j, ada_opname_table[k].decoded);
1136 at_start_name = 0;
1137 i += op_len;
1138 j += strlen (ada_opname_table[k].decoded);
1139 break;
1140 }
1141 }
1142 if (ada_opname_table[k].encoded != NULL)
1143 continue;
1144 }
1145 at_start_name = 0;
1146
1147 /* Replace "TK__" with "__", which will eventually be translated
1148 into "." (just below). */
1149
1150 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1151 i += 2;
1152
1153 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1154 be translated into "." (just below). These are internal names
1155 generated for anonymous blocks inside which our symbol is nested. */
1156
1157 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1158 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1159 && isdigit (encoded [i+4]))
1160 {
1161 int k = i + 5;
1162
1163 while (k < len0 && isdigit (encoded[k]))
1164 k++; /* Skip any extra digit. */
1165
1166 /* Double-check that the "__B_{DIGITS}+" sequence we found
1167 is indeed followed by "__". */
1168 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1169 i = k;
1170 }
1171
1172 /* Remove _E{DIGITS}+[sb] */
1173
1174 /* Just as for protected object subprograms, there are 2 categories
1175 of subprograms created by the compiler for each entry. The first
1176 one implements the actual entry code, and has a suffix following
1177 the convention above; the second one implements the barrier and
1178 uses the same convention as above, except that the 'E' is replaced
1179 by a 'B'.
1180
1181 Just as above, we do not decode the name of barrier functions
1182 to give the user a clue that the code he is debugging has been
1183 internally generated. */
1184
1185 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1186 && isdigit (encoded[i+2]))
1187 {
1188 int k = i + 3;
1189
1190 while (k < len0 && isdigit (encoded[k]))
1191 k++;
1192
1193 if (k < len0
1194 && (encoded[k] == 'b' || encoded[k] == 's'))
1195 {
1196 k++;
1197 /* Just as an extra precaution, make sure that if this
1198 suffix is followed by anything else, it is a '_'.
1199 Otherwise, we matched this sequence by accident. */
1200 if (k == len0
1201 || (k < len0 && encoded[k] == '_'))
1202 i = k;
1203 }
1204 }
1205
1206 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1207 the GNAT front-end in protected object subprograms. */
1208
1209 if (i < len0 + 3
1210 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1211 {
1212 /* Backtrack a bit up until we reach either the begining of
1213 the encoded name, or "__". Make sure that we only find
1214 digits or lowercase characters. */
1215 const char *ptr = encoded + i - 1;
1216
1217 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1218 ptr--;
1219 if (ptr < encoded
1220 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1221 i++;
1222 }
1223
1224 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1225 {
1226 /* This is a X[bn]* sequence not separated from the previous
1227 part of the name with a non-alpha-numeric character (in other
1228 words, immediately following an alpha-numeric character), then
1229 verify that it is placed at the end of the encoded name. If
1230 not, then the encoding is not valid and we should abort the
1231 decoding. Otherwise, just skip it, it is used in body-nested
1232 package names. */
1233 do
1234 i += 1;
1235 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1236 if (i < len0)
1237 goto Suppress;
1238 }
1239 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1240 {
1241 /* Replace '__' by '.'. */
1242 decoded[j] = '.';
1243 at_start_name = 1;
1244 i += 2;
1245 j += 1;
1246 }
1247 else
1248 {
1249 /* It's a character part of the decoded name, so just copy it
1250 over. */
1251 decoded[j] = encoded[i];
1252 i += 1;
1253 j += 1;
1254 }
1255 }
1256 decoded[j] = '\000';
1257
1258 /* Decoded names should never contain any uppercase character.
1259 Double-check this, and abort the decoding if we find one. */
1260
1261 for (i = 0; decoded[i] != '\0'; i += 1)
1262 if (isupper (decoded[i]) || decoded[i] == ' ')
1263 goto Suppress;
1264
1265 if (strcmp (decoded, encoded) == 0)
1266 return encoded;
1267 else
1268 return decoded;
1269
1270 Suppress:
1271 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1272 decoded = decoding_buffer;
1273 if (encoded[0] == '<')
1274 strcpy (decoded, encoded);
1275 else
1276 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1277 return decoded;
1278
1279 }
1280
1281 /* Table for keeping permanent unique copies of decoded names. Once
1282 allocated, names in this table are never released. While this is a
1283 storage leak, it should not be significant unless there are massive
1284 changes in the set of decoded names in successive versions of a
1285 symbol table loaded during a single session. */
1286 static struct htab *decoded_names_store;
1287
1288 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1289 in the language-specific part of GSYMBOL, if it has not been
1290 previously computed. Tries to save the decoded name in the same
1291 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1292 in any case, the decoded symbol has a lifetime at least that of
1293 GSYMBOL).
1294 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1295 const, but nevertheless modified to a semantically equivalent form
1296 when a decoded name is cached in it. */
1297
1298 char *
1299 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1300 {
1301 char **resultp =
1302 (char **) &gsymbol->language_specific.mangled_lang.demangled_name;
1303
1304 if (*resultp == NULL)
1305 {
1306 const char *decoded = ada_decode (gsymbol->name);
1307
1308 if (gsymbol->obj_section != NULL)
1309 {
1310 struct objfile *objf = gsymbol->obj_section->objfile;
1311
1312 *resultp = obsavestring (decoded, strlen (decoded),
1313 &objf->objfile_obstack);
1314 }
1315 /* Sometimes, we can't find a corresponding objfile, in which
1316 case, we put the result on the heap. Since we only decode
1317 when needed, we hope this usually does not cause a
1318 significant memory leak (FIXME). */
1319 if (*resultp == NULL)
1320 {
1321 char **slot = (char **) htab_find_slot (decoded_names_store,
1322 decoded, INSERT);
1323
1324 if (*slot == NULL)
1325 *slot = xstrdup (decoded);
1326 *resultp = *slot;
1327 }
1328 }
1329
1330 return *resultp;
1331 }
1332
1333 static char *
1334 ada_la_decode (const char *encoded, int options)
1335 {
1336 return xstrdup (ada_decode (encoded));
1337 }
1338
1339 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1340 suffixes that encode debugging information or leading _ada_ on
1341 SYM_NAME (see is_name_suffix commentary for the debugging
1342 information that is ignored). If WILD, then NAME need only match a
1343 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1344 either argument is NULL. */
1345
1346 static int
1347 match_name (const char *sym_name, const char *name, int wild)
1348 {
1349 if (sym_name == NULL || name == NULL)
1350 return 0;
1351 else if (wild)
1352 return wild_match (sym_name, name) == 0;
1353 else
1354 {
1355 int len_name = strlen (name);
1356
1357 return (strncmp (sym_name, name, len_name) == 0
1358 && is_name_suffix (sym_name + len_name))
1359 || (strncmp (sym_name, "_ada_", 5) == 0
1360 && strncmp (sym_name + 5, name, len_name) == 0
1361 && is_name_suffix (sym_name + len_name + 5));
1362 }
1363 }
1364 \f
1365
1366 /* Arrays */
1367
1368 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1369 generated by the GNAT compiler to describe the index type used
1370 for each dimension of an array, check whether it follows the latest
1371 known encoding. If not, fix it up to conform to the latest encoding.
1372 Otherwise, do nothing. This function also does nothing if
1373 INDEX_DESC_TYPE is NULL.
1374
1375 The GNAT encoding used to describle the array index type evolved a bit.
1376 Initially, the information would be provided through the name of each
1377 field of the structure type only, while the type of these fields was
1378 described as unspecified and irrelevant. The debugger was then expected
1379 to perform a global type lookup using the name of that field in order
1380 to get access to the full index type description. Because these global
1381 lookups can be very expensive, the encoding was later enhanced to make
1382 the global lookup unnecessary by defining the field type as being
1383 the full index type description.
1384
1385 The purpose of this routine is to allow us to support older versions
1386 of the compiler by detecting the use of the older encoding, and by
1387 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1388 we essentially replace each field's meaningless type by the associated
1389 index subtype). */
1390
1391 void
1392 ada_fixup_array_indexes_type (struct type *index_desc_type)
1393 {
1394 int i;
1395
1396 if (index_desc_type == NULL)
1397 return;
1398 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1399
1400 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1401 to check one field only, no need to check them all). If not, return
1402 now.
1403
1404 If our INDEX_DESC_TYPE was generated using the older encoding,
1405 the field type should be a meaningless integer type whose name
1406 is not equal to the field name. */
1407 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1408 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1409 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1410 return;
1411
1412 /* Fixup each field of INDEX_DESC_TYPE. */
1413 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1414 {
1415 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1416 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1417
1418 if (raw_type)
1419 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1420 }
1421 }
1422
1423 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1424
1425 static char *bound_name[] = {
1426 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1427 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1428 };
1429
1430 /* Maximum number of array dimensions we are prepared to handle. */
1431
1432 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1433
1434
1435 /* The desc_* routines return primitive portions of array descriptors
1436 (fat pointers). */
1437
1438 /* The descriptor or array type, if any, indicated by TYPE; removes
1439 level of indirection, if needed. */
1440
1441 static struct type *
1442 desc_base_type (struct type *type)
1443 {
1444 if (type == NULL)
1445 return NULL;
1446 type = ada_check_typedef (type);
1447 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1448 type = ada_typedef_target_type (type);
1449
1450 if (type != NULL
1451 && (TYPE_CODE (type) == TYPE_CODE_PTR
1452 || TYPE_CODE (type) == TYPE_CODE_REF))
1453 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1454 else
1455 return type;
1456 }
1457
1458 /* True iff TYPE indicates a "thin" array pointer type. */
1459
1460 static int
1461 is_thin_pntr (struct type *type)
1462 {
1463 return
1464 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1465 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1466 }
1467
1468 /* The descriptor type for thin pointer type TYPE. */
1469
1470 static struct type *
1471 thin_descriptor_type (struct type *type)
1472 {
1473 struct type *base_type = desc_base_type (type);
1474
1475 if (base_type == NULL)
1476 return NULL;
1477 if (is_suffix (ada_type_name (base_type), "___XVE"))
1478 return base_type;
1479 else
1480 {
1481 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1482
1483 if (alt_type == NULL)
1484 return base_type;
1485 else
1486 return alt_type;
1487 }
1488 }
1489
1490 /* A pointer to the array data for thin-pointer value VAL. */
1491
1492 static struct value *
1493 thin_data_pntr (struct value *val)
1494 {
1495 struct type *type = ada_check_typedef (value_type (val));
1496 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1497
1498 data_type = lookup_pointer_type (data_type);
1499
1500 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1501 return value_cast (data_type, value_copy (val));
1502 else
1503 return value_from_longest (data_type, value_address (val));
1504 }
1505
1506 /* True iff TYPE indicates a "thick" array pointer type. */
1507
1508 static int
1509 is_thick_pntr (struct type *type)
1510 {
1511 type = desc_base_type (type);
1512 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1513 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1514 }
1515
1516 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1517 pointer to one, the type of its bounds data; otherwise, NULL. */
1518
1519 static struct type *
1520 desc_bounds_type (struct type *type)
1521 {
1522 struct type *r;
1523
1524 type = desc_base_type (type);
1525
1526 if (type == NULL)
1527 return NULL;
1528 else if (is_thin_pntr (type))
1529 {
1530 type = thin_descriptor_type (type);
1531 if (type == NULL)
1532 return NULL;
1533 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1534 if (r != NULL)
1535 return ada_check_typedef (r);
1536 }
1537 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1538 {
1539 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1540 if (r != NULL)
1541 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1542 }
1543 return NULL;
1544 }
1545
1546 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1547 one, a pointer to its bounds data. Otherwise NULL. */
1548
1549 static struct value *
1550 desc_bounds (struct value *arr)
1551 {
1552 struct type *type = ada_check_typedef (value_type (arr));
1553
1554 if (is_thin_pntr (type))
1555 {
1556 struct type *bounds_type =
1557 desc_bounds_type (thin_descriptor_type (type));
1558 LONGEST addr;
1559
1560 if (bounds_type == NULL)
1561 error (_("Bad GNAT array descriptor"));
1562
1563 /* NOTE: The following calculation is not really kosher, but
1564 since desc_type is an XVE-encoded type (and shouldn't be),
1565 the correct calculation is a real pain. FIXME (and fix GCC). */
1566 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1567 addr = value_as_long (arr);
1568 else
1569 addr = value_address (arr);
1570
1571 return
1572 value_from_longest (lookup_pointer_type (bounds_type),
1573 addr - TYPE_LENGTH (bounds_type));
1574 }
1575
1576 else if (is_thick_pntr (type))
1577 {
1578 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1579 _("Bad GNAT array descriptor"));
1580 struct type *p_bounds_type = value_type (p_bounds);
1581
1582 if (p_bounds_type
1583 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1584 {
1585 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1586
1587 if (TYPE_STUB (target_type))
1588 p_bounds = value_cast (lookup_pointer_type
1589 (ada_check_typedef (target_type)),
1590 p_bounds);
1591 }
1592 else
1593 error (_("Bad GNAT array descriptor"));
1594
1595 return p_bounds;
1596 }
1597 else
1598 return NULL;
1599 }
1600
1601 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1602 position of the field containing the address of the bounds data. */
1603
1604 static int
1605 fat_pntr_bounds_bitpos (struct type *type)
1606 {
1607 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1608 }
1609
1610 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1611 size of the field containing the address of the bounds data. */
1612
1613 static int
1614 fat_pntr_bounds_bitsize (struct type *type)
1615 {
1616 type = desc_base_type (type);
1617
1618 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1619 return TYPE_FIELD_BITSIZE (type, 1);
1620 else
1621 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1622 }
1623
1624 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1625 pointer to one, the type of its array data (a array-with-no-bounds type);
1626 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1627 data. */
1628
1629 static struct type *
1630 desc_data_target_type (struct type *type)
1631 {
1632 type = desc_base_type (type);
1633
1634 /* NOTE: The following is bogus; see comment in desc_bounds. */
1635 if (is_thin_pntr (type))
1636 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1637 else if (is_thick_pntr (type))
1638 {
1639 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1640
1641 if (data_type
1642 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1643 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1644 }
1645
1646 return NULL;
1647 }
1648
1649 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1650 its array data. */
1651
1652 static struct value *
1653 desc_data (struct value *arr)
1654 {
1655 struct type *type = value_type (arr);
1656
1657 if (is_thin_pntr (type))
1658 return thin_data_pntr (arr);
1659 else if (is_thick_pntr (type))
1660 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1661 _("Bad GNAT array descriptor"));
1662 else
1663 return NULL;
1664 }
1665
1666
1667 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1668 position of the field containing the address of the data. */
1669
1670 static int
1671 fat_pntr_data_bitpos (struct type *type)
1672 {
1673 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1674 }
1675
1676 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1677 size of the field containing the address of the data. */
1678
1679 static int
1680 fat_pntr_data_bitsize (struct type *type)
1681 {
1682 type = desc_base_type (type);
1683
1684 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1685 return TYPE_FIELD_BITSIZE (type, 0);
1686 else
1687 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1688 }
1689
1690 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1691 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1692 bound, if WHICH is 1. The first bound is I=1. */
1693
1694 static struct value *
1695 desc_one_bound (struct value *bounds, int i, int which)
1696 {
1697 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1698 _("Bad GNAT array descriptor bounds"));
1699 }
1700
1701 /* If BOUNDS is an array-bounds structure type, return the bit position
1702 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1703 bound, if WHICH is 1. The first bound is I=1. */
1704
1705 static int
1706 desc_bound_bitpos (struct type *type, int i, int which)
1707 {
1708 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1709 }
1710
1711 /* If BOUNDS is an array-bounds structure type, return the bit field size
1712 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1713 bound, if WHICH is 1. The first bound is I=1. */
1714
1715 static int
1716 desc_bound_bitsize (struct type *type, int i, int which)
1717 {
1718 type = desc_base_type (type);
1719
1720 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1721 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1722 else
1723 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1724 }
1725
1726 /* If TYPE is the type of an array-bounds structure, the type of its
1727 Ith bound (numbering from 1). Otherwise, NULL. */
1728
1729 static struct type *
1730 desc_index_type (struct type *type, int i)
1731 {
1732 type = desc_base_type (type);
1733
1734 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1735 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1736 else
1737 return NULL;
1738 }
1739
1740 /* The number of index positions in the array-bounds type TYPE.
1741 Return 0 if TYPE is NULL. */
1742
1743 static int
1744 desc_arity (struct type *type)
1745 {
1746 type = desc_base_type (type);
1747
1748 if (type != NULL)
1749 return TYPE_NFIELDS (type) / 2;
1750 return 0;
1751 }
1752
1753 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1754 an array descriptor type (representing an unconstrained array
1755 type). */
1756
1757 static int
1758 ada_is_direct_array_type (struct type *type)
1759 {
1760 if (type == NULL)
1761 return 0;
1762 type = ada_check_typedef (type);
1763 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1764 || ada_is_array_descriptor_type (type));
1765 }
1766
1767 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1768 * to one. */
1769
1770 static int
1771 ada_is_array_type (struct type *type)
1772 {
1773 while (type != NULL
1774 && (TYPE_CODE (type) == TYPE_CODE_PTR
1775 || TYPE_CODE (type) == TYPE_CODE_REF))
1776 type = TYPE_TARGET_TYPE (type);
1777 return ada_is_direct_array_type (type);
1778 }
1779
1780 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1781
1782 int
1783 ada_is_simple_array_type (struct type *type)
1784 {
1785 if (type == NULL)
1786 return 0;
1787 type = ada_check_typedef (type);
1788 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1789 || (TYPE_CODE (type) == TYPE_CODE_PTR
1790 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1791 == TYPE_CODE_ARRAY));
1792 }
1793
1794 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1795
1796 int
1797 ada_is_array_descriptor_type (struct type *type)
1798 {
1799 struct type *data_type = desc_data_target_type (type);
1800
1801 if (type == NULL)
1802 return 0;
1803 type = ada_check_typedef (type);
1804 return (data_type != NULL
1805 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1806 && desc_arity (desc_bounds_type (type)) > 0);
1807 }
1808
1809 /* Non-zero iff type is a partially mal-formed GNAT array
1810 descriptor. FIXME: This is to compensate for some problems with
1811 debugging output from GNAT. Re-examine periodically to see if it
1812 is still needed. */
1813
1814 int
1815 ada_is_bogus_array_descriptor (struct type *type)
1816 {
1817 return
1818 type != NULL
1819 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1820 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1821 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1822 && !ada_is_array_descriptor_type (type);
1823 }
1824
1825
1826 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1827 (fat pointer) returns the type of the array data described---specifically,
1828 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1829 in from the descriptor; otherwise, they are left unspecified. If
1830 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1831 returns NULL. The result is simply the type of ARR if ARR is not
1832 a descriptor. */
1833 struct type *
1834 ada_type_of_array (struct value *arr, int bounds)
1835 {
1836 if (ada_is_constrained_packed_array_type (value_type (arr)))
1837 return decode_constrained_packed_array_type (value_type (arr));
1838
1839 if (!ada_is_array_descriptor_type (value_type (arr)))
1840 return value_type (arr);
1841
1842 if (!bounds)
1843 {
1844 struct type *array_type =
1845 ada_check_typedef (desc_data_target_type (value_type (arr)));
1846
1847 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1848 TYPE_FIELD_BITSIZE (array_type, 0) =
1849 decode_packed_array_bitsize (value_type (arr));
1850
1851 return array_type;
1852 }
1853 else
1854 {
1855 struct type *elt_type;
1856 int arity;
1857 struct value *descriptor;
1858
1859 elt_type = ada_array_element_type (value_type (arr), -1);
1860 arity = ada_array_arity (value_type (arr));
1861
1862 if (elt_type == NULL || arity == 0)
1863 return ada_check_typedef (value_type (arr));
1864
1865 descriptor = desc_bounds (arr);
1866 if (value_as_long (descriptor) == 0)
1867 return NULL;
1868 while (arity > 0)
1869 {
1870 struct type *range_type = alloc_type_copy (value_type (arr));
1871 struct type *array_type = alloc_type_copy (value_type (arr));
1872 struct value *low = desc_one_bound (descriptor, arity, 0);
1873 struct value *high = desc_one_bound (descriptor, arity, 1);
1874
1875 arity -= 1;
1876 create_range_type (range_type, value_type (low),
1877 longest_to_int (value_as_long (low)),
1878 longest_to_int (value_as_long (high)));
1879 elt_type = create_array_type (array_type, elt_type, range_type);
1880
1881 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1882 {
1883 /* We need to store the element packed bitsize, as well as
1884 recompute the array size, because it was previously
1885 computed based on the unpacked element size. */
1886 LONGEST lo = value_as_long (low);
1887 LONGEST hi = value_as_long (high);
1888
1889 TYPE_FIELD_BITSIZE (elt_type, 0) =
1890 decode_packed_array_bitsize (value_type (arr));
1891 /* If the array has no element, then the size is already
1892 zero, and does not need to be recomputed. */
1893 if (lo < hi)
1894 {
1895 int array_bitsize =
1896 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1897
1898 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1899 }
1900 }
1901 }
1902
1903 return lookup_pointer_type (elt_type);
1904 }
1905 }
1906
1907 /* If ARR does not represent an array, returns ARR unchanged.
1908 Otherwise, returns either a standard GDB array with bounds set
1909 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1910 GDB array. Returns NULL if ARR is a null fat pointer. */
1911
1912 struct value *
1913 ada_coerce_to_simple_array_ptr (struct value *arr)
1914 {
1915 if (ada_is_array_descriptor_type (value_type (arr)))
1916 {
1917 struct type *arrType = ada_type_of_array (arr, 1);
1918
1919 if (arrType == NULL)
1920 return NULL;
1921 return value_cast (arrType, value_copy (desc_data (arr)));
1922 }
1923 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1924 return decode_constrained_packed_array (arr);
1925 else
1926 return arr;
1927 }
1928
1929 /* If ARR does not represent an array, returns ARR unchanged.
1930 Otherwise, returns a standard GDB array describing ARR (which may
1931 be ARR itself if it already is in the proper form). */
1932
1933 struct value *
1934 ada_coerce_to_simple_array (struct value *arr)
1935 {
1936 if (ada_is_array_descriptor_type (value_type (arr)))
1937 {
1938 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1939
1940 if (arrVal == NULL)
1941 error (_("Bounds unavailable for null array pointer."));
1942 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1943 return value_ind (arrVal);
1944 }
1945 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1946 return decode_constrained_packed_array (arr);
1947 else
1948 return arr;
1949 }
1950
1951 /* If TYPE represents a GNAT array type, return it translated to an
1952 ordinary GDB array type (possibly with BITSIZE fields indicating
1953 packing). For other types, is the identity. */
1954
1955 struct type *
1956 ada_coerce_to_simple_array_type (struct type *type)
1957 {
1958 if (ada_is_constrained_packed_array_type (type))
1959 return decode_constrained_packed_array_type (type);
1960
1961 if (ada_is_array_descriptor_type (type))
1962 return ada_check_typedef (desc_data_target_type (type));
1963
1964 return type;
1965 }
1966
1967 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1968
1969 static int
1970 ada_is_packed_array_type (struct type *type)
1971 {
1972 if (type == NULL)
1973 return 0;
1974 type = desc_base_type (type);
1975 type = ada_check_typedef (type);
1976 return
1977 ada_type_name (type) != NULL
1978 && strstr (ada_type_name (type), "___XP") != NULL;
1979 }
1980
1981 /* Non-zero iff TYPE represents a standard GNAT constrained
1982 packed-array type. */
1983
1984 int
1985 ada_is_constrained_packed_array_type (struct type *type)
1986 {
1987 return ada_is_packed_array_type (type)
1988 && !ada_is_array_descriptor_type (type);
1989 }
1990
1991 /* Non-zero iff TYPE represents an array descriptor for a
1992 unconstrained packed-array type. */
1993
1994 static int
1995 ada_is_unconstrained_packed_array_type (struct type *type)
1996 {
1997 return ada_is_packed_array_type (type)
1998 && ada_is_array_descriptor_type (type);
1999 }
2000
2001 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2002 return the size of its elements in bits. */
2003
2004 static long
2005 decode_packed_array_bitsize (struct type *type)
2006 {
2007 const char *raw_name;
2008 const char *tail;
2009 long bits;
2010
2011 /* Access to arrays implemented as fat pointers are encoded as a typedef
2012 of the fat pointer type. We need the name of the fat pointer type
2013 to do the decoding, so strip the typedef layer. */
2014 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2015 type = ada_typedef_target_type (type);
2016
2017 raw_name = ada_type_name (ada_check_typedef (type));
2018 if (!raw_name)
2019 raw_name = ada_type_name (desc_base_type (type));
2020
2021 if (!raw_name)
2022 return 0;
2023
2024 tail = strstr (raw_name, "___XP");
2025 gdb_assert (tail != NULL);
2026
2027 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2028 {
2029 lim_warning
2030 (_("could not understand bit size information on packed array"));
2031 return 0;
2032 }
2033
2034 return bits;
2035 }
2036
2037 /* Given that TYPE is a standard GDB array type with all bounds filled
2038 in, and that the element size of its ultimate scalar constituents
2039 (that is, either its elements, or, if it is an array of arrays, its
2040 elements' elements, etc.) is *ELT_BITS, return an identical type,
2041 but with the bit sizes of its elements (and those of any
2042 constituent arrays) recorded in the BITSIZE components of its
2043 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2044 in bits. */
2045
2046 static struct type *
2047 constrained_packed_array_type (struct type *type, long *elt_bits)
2048 {
2049 struct type *new_elt_type;
2050 struct type *new_type;
2051 struct type *index_type_desc;
2052 struct type *index_type;
2053 LONGEST low_bound, high_bound;
2054
2055 type = ada_check_typedef (type);
2056 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2057 return type;
2058
2059 index_type_desc = ada_find_parallel_type (type, "___XA");
2060 if (index_type_desc)
2061 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2062 NULL);
2063 else
2064 index_type = TYPE_INDEX_TYPE (type);
2065
2066 new_type = alloc_type_copy (type);
2067 new_elt_type =
2068 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2069 elt_bits);
2070 create_array_type (new_type, new_elt_type, index_type);
2071 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2072 TYPE_NAME (new_type) = ada_type_name (type);
2073
2074 if (get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2075 low_bound = high_bound = 0;
2076 if (high_bound < low_bound)
2077 *elt_bits = TYPE_LENGTH (new_type) = 0;
2078 else
2079 {
2080 *elt_bits *= (high_bound - low_bound + 1);
2081 TYPE_LENGTH (new_type) =
2082 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2083 }
2084
2085 TYPE_FIXED_INSTANCE (new_type) = 1;
2086 return new_type;
2087 }
2088
2089 /* The array type encoded by TYPE, where
2090 ada_is_constrained_packed_array_type (TYPE). */
2091
2092 static struct type *
2093 decode_constrained_packed_array_type (struct type *type)
2094 {
2095 const char *raw_name = ada_type_name (ada_check_typedef (type));
2096 char *name;
2097 const char *tail;
2098 struct type *shadow_type;
2099 long bits;
2100
2101 if (!raw_name)
2102 raw_name = ada_type_name (desc_base_type (type));
2103
2104 if (!raw_name)
2105 return NULL;
2106
2107 name = (char *) alloca (strlen (raw_name) + 1);
2108 tail = strstr (raw_name, "___XP");
2109 type = desc_base_type (type);
2110
2111 memcpy (name, raw_name, tail - raw_name);
2112 name[tail - raw_name] = '\000';
2113
2114 shadow_type = ada_find_parallel_type_with_name (type, name);
2115
2116 if (shadow_type == NULL)
2117 {
2118 lim_warning (_("could not find bounds information on packed array"));
2119 return NULL;
2120 }
2121 CHECK_TYPEDEF (shadow_type);
2122
2123 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2124 {
2125 lim_warning (_("could not understand bounds "
2126 "information on packed array"));
2127 return NULL;
2128 }
2129
2130 bits = decode_packed_array_bitsize (type);
2131 return constrained_packed_array_type (shadow_type, &bits);
2132 }
2133
2134 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2135 array, returns a simple array that denotes that array. Its type is a
2136 standard GDB array type except that the BITSIZEs of the array
2137 target types are set to the number of bits in each element, and the
2138 type length is set appropriately. */
2139
2140 static struct value *
2141 decode_constrained_packed_array (struct value *arr)
2142 {
2143 struct type *type;
2144
2145 arr = ada_coerce_ref (arr);
2146
2147 /* If our value is a pointer, then dererence it. Make sure that
2148 this operation does not cause the target type to be fixed, as
2149 this would indirectly cause this array to be decoded. The rest
2150 of the routine assumes that the array hasn't been decoded yet,
2151 so we use the basic "value_ind" routine to perform the dereferencing,
2152 as opposed to using "ada_value_ind". */
2153 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2154 arr = value_ind (arr);
2155
2156 type = decode_constrained_packed_array_type (value_type (arr));
2157 if (type == NULL)
2158 {
2159 error (_("can't unpack array"));
2160 return NULL;
2161 }
2162
2163 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2164 && ada_is_modular_type (value_type (arr)))
2165 {
2166 /* This is a (right-justified) modular type representing a packed
2167 array with no wrapper. In order to interpret the value through
2168 the (left-justified) packed array type we just built, we must
2169 first left-justify it. */
2170 int bit_size, bit_pos;
2171 ULONGEST mod;
2172
2173 mod = ada_modulus (value_type (arr)) - 1;
2174 bit_size = 0;
2175 while (mod > 0)
2176 {
2177 bit_size += 1;
2178 mod >>= 1;
2179 }
2180 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2181 arr = ada_value_primitive_packed_val (arr, NULL,
2182 bit_pos / HOST_CHAR_BIT,
2183 bit_pos % HOST_CHAR_BIT,
2184 bit_size,
2185 type);
2186 }
2187
2188 return coerce_unspec_val_to_type (arr, type);
2189 }
2190
2191
2192 /* The value of the element of packed array ARR at the ARITY indices
2193 given in IND. ARR must be a simple array. */
2194
2195 static struct value *
2196 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2197 {
2198 int i;
2199 int bits, elt_off, bit_off;
2200 long elt_total_bit_offset;
2201 struct type *elt_type;
2202 struct value *v;
2203
2204 bits = 0;
2205 elt_total_bit_offset = 0;
2206 elt_type = ada_check_typedef (value_type (arr));
2207 for (i = 0; i < arity; i += 1)
2208 {
2209 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2210 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2211 error
2212 (_("attempt to do packed indexing of "
2213 "something other than a packed array"));
2214 else
2215 {
2216 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2217 LONGEST lowerbound, upperbound;
2218 LONGEST idx;
2219
2220 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2221 {
2222 lim_warning (_("don't know bounds of array"));
2223 lowerbound = upperbound = 0;
2224 }
2225
2226 idx = pos_atr (ind[i]);
2227 if (idx < lowerbound || idx > upperbound)
2228 lim_warning (_("packed array index %ld out of bounds"),
2229 (long) idx);
2230 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2231 elt_total_bit_offset += (idx - lowerbound) * bits;
2232 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2233 }
2234 }
2235 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2236 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2237
2238 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2239 bits, elt_type);
2240 return v;
2241 }
2242
2243 /* Non-zero iff TYPE includes negative integer values. */
2244
2245 static int
2246 has_negatives (struct type *type)
2247 {
2248 switch (TYPE_CODE (type))
2249 {
2250 default:
2251 return 0;
2252 case TYPE_CODE_INT:
2253 return !TYPE_UNSIGNED (type);
2254 case TYPE_CODE_RANGE:
2255 return TYPE_LOW_BOUND (type) < 0;
2256 }
2257 }
2258
2259
2260 /* Create a new value of type TYPE from the contents of OBJ starting
2261 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2262 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2263 assigning through the result will set the field fetched from.
2264 VALADDR is ignored unless OBJ is NULL, in which case,
2265 VALADDR+OFFSET must address the start of storage containing the
2266 packed value. The value returned in this case is never an lval.
2267 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2268
2269 struct value *
2270 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2271 long offset, int bit_offset, int bit_size,
2272 struct type *type)
2273 {
2274 struct value *v;
2275 int src, /* Index into the source area */
2276 targ, /* Index into the target area */
2277 srcBitsLeft, /* Number of source bits left to move */
2278 nsrc, ntarg, /* Number of source and target bytes */
2279 unusedLS, /* Number of bits in next significant
2280 byte of source that are unused */
2281 accumSize; /* Number of meaningful bits in accum */
2282 unsigned char *bytes; /* First byte containing data to unpack */
2283 unsigned char *unpacked;
2284 unsigned long accum; /* Staging area for bits being transferred */
2285 unsigned char sign;
2286 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2287 /* Transmit bytes from least to most significant; delta is the direction
2288 the indices move. */
2289 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2290
2291 type = ada_check_typedef (type);
2292
2293 if (obj == NULL)
2294 {
2295 v = allocate_value (type);
2296 bytes = (unsigned char *) (valaddr + offset);
2297 }
2298 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2299 {
2300 v = value_at (type,
2301 value_address (obj) + offset);
2302 bytes = (unsigned char *) alloca (len);
2303 read_memory (value_address (v), bytes, len);
2304 }
2305 else
2306 {
2307 v = allocate_value (type);
2308 bytes = (unsigned char *) value_contents (obj) + offset;
2309 }
2310
2311 if (obj != NULL)
2312 {
2313 CORE_ADDR new_addr;
2314
2315 set_value_component_location (v, obj);
2316 new_addr = value_address (obj) + offset;
2317 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2318 set_value_bitsize (v, bit_size);
2319 if (value_bitpos (v) >= HOST_CHAR_BIT)
2320 {
2321 ++new_addr;
2322 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2323 }
2324 set_value_address (v, new_addr);
2325 }
2326 else
2327 set_value_bitsize (v, bit_size);
2328 unpacked = (unsigned char *) value_contents (v);
2329
2330 srcBitsLeft = bit_size;
2331 nsrc = len;
2332 ntarg = TYPE_LENGTH (type);
2333 sign = 0;
2334 if (bit_size == 0)
2335 {
2336 memset (unpacked, 0, TYPE_LENGTH (type));
2337 return v;
2338 }
2339 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2340 {
2341 src = len - 1;
2342 if (has_negatives (type)
2343 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2344 sign = ~0;
2345
2346 unusedLS =
2347 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2348 % HOST_CHAR_BIT;
2349
2350 switch (TYPE_CODE (type))
2351 {
2352 case TYPE_CODE_ARRAY:
2353 case TYPE_CODE_UNION:
2354 case TYPE_CODE_STRUCT:
2355 /* Non-scalar values must be aligned at a byte boundary... */
2356 accumSize =
2357 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2358 /* ... And are placed at the beginning (most-significant) bytes
2359 of the target. */
2360 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2361 ntarg = targ + 1;
2362 break;
2363 default:
2364 accumSize = 0;
2365 targ = TYPE_LENGTH (type) - 1;
2366 break;
2367 }
2368 }
2369 else
2370 {
2371 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2372
2373 src = targ = 0;
2374 unusedLS = bit_offset;
2375 accumSize = 0;
2376
2377 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2378 sign = ~0;
2379 }
2380
2381 accum = 0;
2382 while (nsrc > 0)
2383 {
2384 /* Mask for removing bits of the next source byte that are not
2385 part of the value. */
2386 unsigned int unusedMSMask =
2387 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2388 1;
2389 /* Sign-extend bits for this byte. */
2390 unsigned int signMask = sign & ~unusedMSMask;
2391
2392 accum |=
2393 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2394 accumSize += HOST_CHAR_BIT - unusedLS;
2395 if (accumSize >= HOST_CHAR_BIT)
2396 {
2397 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2398 accumSize -= HOST_CHAR_BIT;
2399 accum >>= HOST_CHAR_BIT;
2400 ntarg -= 1;
2401 targ += delta;
2402 }
2403 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2404 unusedLS = 0;
2405 nsrc -= 1;
2406 src += delta;
2407 }
2408 while (ntarg > 0)
2409 {
2410 accum |= sign << accumSize;
2411 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2412 accumSize -= HOST_CHAR_BIT;
2413 accum >>= HOST_CHAR_BIT;
2414 ntarg -= 1;
2415 targ += delta;
2416 }
2417
2418 return v;
2419 }
2420
2421 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2422 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2423 not overlap. */
2424 static void
2425 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2426 int src_offset, int n, int bits_big_endian_p)
2427 {
2428 unsigned int accum, mask;
2429 int accum_bits, chunk_size;
2430
2431 target += targ_offset / HOST_CHAR_BIT;
2432 targ_offset %= HOST_CHAR_BIT;
2433 source += src_offset / HOST_CHAR_BIT;
2434 src_offset %= HOST_CHAR_BIT;
2435 if (bits_big_endian_p)
2436 {
2437 accum = (unsigned char) *source;
2438 source += 1;
2439 accum_bits = HOST_CHAR_BIT - src_offset;
2440
2441 while (n > 0)
2442 {
2443 int unused_right;
2444
2445 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2446 accum_bits += HOST_CHAR_BIT;
2447 source += 1;
2448 chunk_size = HOST_CHAR_BIT - targ_offset;
2449 if (chunk_size > n)
2450 chunk_size = n;
2451 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2452 mask = ((1 << chunk_size) - 1) << unused_right;
2453 *target =
2454 (*target & ~mask)
2455 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2456 n -= chunk_size;
2457 accum_bits -= chunk_size;
2458 target += 1;
2459 targ_offset = 0;
2460 }
2461 }
2462 else
2463 {
2464 accum = (unsigned char) *source >> src_offset;
2465 source += 1;
2466 accum_bits = HOST_CHAR_BIT - src_offset;
2467
2468 while (n > 0)
2469 {
2470 accum = accum + ((unsigned char) *source << accum_bits);
2471 accum_bits += HOST_CHAR_BIT;
2472 source += 1;
2473 chunk_size = HOST_CHAR_BIT - targ_offset;
2474 if (chunk_size > n)
2475 chunk_size = n;
2476 mask = ((1 << chunk_size) - 1) << targ_offset;
2477 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2478 n -= chunk_size;
2479 accum_bits -= chunk_size;
2480 accum >>= chunk_size;
2481 target += 1;
2482 targ_offset = 0;
2483 }
2484 }
2485 }
2486
2487 /* Store the contents of FROMVAL into the location of TOVAL.
2488 Return a new value with the location of TOVAL and contents of
2489 FROMVAL. Handles assignment into packed fields that have
2490 floating-point or non-scalar types. */
2491
2492 static struct value *
2493 ada_value_assign (struct value *toval, struct value *fromval)
2494 {
2495 struct type *type = value_type (toval);
2496 int bits = value_bitsize (toval);
2497
2498 toval = ada_coerce_ref (toval);
2499 fromval = ada_coerce_ref (fromval);
2500
2501 if (ada_is_direct_array_type (value_type (toval)))
2502 toval = ada_coerce_to_simple_array (toval);
2503 if (ada_is_direct_array_type (value_type (fromval)))
2504 fromval = ada_coerce_to_simple_array (fromval);
2505
2506 if (!deprecated_value_modifiable (toval))
2507 error (_("Left operand of assignment is not a modifiable lvalue."));
2508
2509 if (VALUE_LVAL (toval) == lval_memory
2510 && bits > 0
2511 && (TYPE_CODE (type) == TYPE_CODE_FLT
2512 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2513 {
2514 int len = (value_bitpos (toval)
2515 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2516 int from_size;
2517 char *buffer = (char *) alloca (len);
2518 struct value *val;
2519 CORE_ADDR to_addr = value_address (toval);
2520
2521 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2522 fromval = value_cast (type, fromval);
2523
2524 read_memory (to_addr, buffer, len);
2525 from_size = value_bitsize (fromval);
2526 if (from_size == 0)
2527 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2528 if (gdbarch_bits_big_endian (get_type_arch (type)))
2529 move_bits (buffer, value_bitpos (toval),
2530 value_contents (fromval), from_size - bits, bits, 1);
2531 else
2532 move_bits (buffer, value_bitpos (toval),
2533 value_contents (fromval), 0, bits, 0);
2534 write_memory (to_addr, buffer, len);
2535 observer_notify_memory_changed (to_addr, len, buffer);
2536
2537 val = value_copy (toval);
2538 memcpy (value_contents_raw (val), value_contents (fromval),
2539 TYPE_LENGTH (type));
2540 deprecated_set_value_type (val, type);
2541
2542 return val;
2543 }
2544
2545 return value_assign (toval, fromval);
2546 }
2547
2548
2549 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2550 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2551 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2552 * COMPONENT, and not the inferior's memory. The current contents
2553 * of COMPONENT are ignored. */
2554 static void
2555 value_assign_to_component (struct value *container, struct value *component,
2556 struct value *val)
2557 {
2558 LONGEST offset_in_container =
2559 (LONGEST) (value_address (component) - value_address (container));
2560 int bit_offset_in_container =
2561 value_bitpos (component) - value_bitpos (container);
2562 int bits;
2563
2564 val = value_cast (value_type (component), val);
2565
2566 if (value_bitsize (component) == 0)
2567 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2568 else
2569 bits = value_bitsize (component);
2570
2571 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2572 move_bits (value_contents_writeable (container) + offset_in_container,
2573 value_bitpos (container) + bit_offset_in_container,
2574 value_contents (val),
2575 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2576 bits, 1);
2577 else
2578 move_bits (value_contents_writeable (container) + offset_in_container,
2579 value_bitpos (container) + bit_offset_in_container,
2580 value_contents (val), 0, bits, 0);
2581 }
2582
2583 /* The value of the element of array ARR at the ARITY indices given in IND.
2584 ARR may be either a simple array, GNAT array descriptor, or pointer
2585 thereto. */
2586
2587 struct value *
2588 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2589 {
2590 int k;
2591 struct value *elt;
2592 struct type *elt_type;
2593
2594 elt = ada_coerce_to_simple_array (arr);
2595
2596 elt_type = ada_check_typedef (value_type (elt));
2597 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2598 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2599 return value_subscript_packed (elt, arity, ind);
2600
2601 for (k = 0; k < arity; k += 1)
2602 {
2603 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2604 error (_("too many subscripts (%d expected)"), k);
2605 elt = value_subscript (elt, pos_atr (ind[k]));
2606 }
2607 return elt;
2608 }
2609
2610 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2611 value of the element of *ARR at the ARITY indices given in
2612 IND. Does not read the entire array into memory. */
2613
2614 static struct value *
2615 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2616 struct value **ind)
2617 {
2618 int k;
2619
2620 for (k = 0; k < arity; k += 1)
2621 {
2622 LONGEST lwb, upb;
2623
2624 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2625 error (_("too many subscripts (%d expected)"), k);
2626 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2627 value_copy (arr));
2628 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2629 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2630 type = TYPE_TARGET_TYPE (type);
2631 }
2632
2633 return value_ind (arr);
2634 }
2635
2636 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2637 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2638 elements starting at index LOW. The lower bound of this array is LOW, as
2639 per Ada rules. */
2640 static struct value *
2641 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2642 int low, int high)
2643 {
2644 struct type *type0 = ada_check_typedef (type);
2645 CORE_ADDR base = value_as_address (array_ptr)
2646 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2647 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2648 struct type *index_type =
2649 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
2650 low, high);
2651 struct type *slice_type =
2652 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2653
2654 return value_at_lazy (slice_type, base);
2655 }
2656
2657
2658 static struct value *
2659 ada_value_slice (struct value *array, int low, int high)
2660 {
2661 struct type *type = ada_check_typedef (value_type (array));
2662 struct type *index_type =
2663 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2664 struct type *slice_type =
2665 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2666
2667 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2668 }
2669
2670 /* If type is a record type in the form of a standard GNAT array
2671 descriptor, returns the number of dimensions for type. If arr is a
2672 simple array, returns the number of "array of"s that prefix its
2673 type designation. Otherwise, returns 0. */
2674
2675 int
2676 ada_array_arity (struct type *type)
2677 {
2678 int arity;
2679
2680 if (type == NULL)
2681 return 0;
2682
2683 type = desc_base_type (type);
2684
2685 arity = 0;
2686 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2687 return desc_arity (desc_bounds_type (type));
2688 else
2689 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2690 {
2691 arity += 1;
2692 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2693 }
2694
2695 return arity;
2696 }
2697
2698 /* If TYPE is a record type in the form of a standard GNAT array
2699 descriptor or a simple array type, returns the element type for
2700 TYPE after indexing by NINDICES indices, or by all indices if
2701 NINDICES is -1. Otherwise, returns NULL. */
2702
2703 struct type *
2704 ada_array_element_type (struct type *type, int nindices)
2705 {
2706 type = desc_base_type (type);
2707
2708 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2709 {
2710 int k;
2711 struct type *p_array_type;
2712
2713 p_array_type = desc_data_target_type (type);
2714
2715 k = ada_array_arity (type);
2716 if (k == 0)
2717 return NULL;
2718
2719 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2720 if (nindices >= 0 && k > nindices)
2721 k = nindices;
2722 while (k > 0 && p_array_type != NULL)
2723 {
2724 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2725 k -= 1;
2726 }
2727 return p_array_type;
2728 }
2729 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2730 {
2731 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2732 {
2733 type = TYPE_TARGET_TYPE (type);
2734 nindices -= 1;
2735 }
2736 return type;
2737 }
2738
2739 return NULL;
2740 }
2741
2742 /* The type of nth index in arrays of given type (n numbering from 1).
2743 Does not examine memory. Throws an error if N is invalid or TYPE
2744 is not an array type. NAME is the name of the Ada attribute being
2745 evaluated ('range, 'first, 'last, or 'length); it is used in building
2746 the error message. */
2747
2748 static struct type *
2749 ada_index_type (struct type *type, int n, const char *name)
2750 {
2751 struct type *result_type;
2752
2753 type = desc_base_type (type);
2754
2755 if (n < 0 || n > ada_array_arity (type))
2756 error (_("invalid dimension number to '%s"), name);
2757
2758 if (ada_is_simple_array_type (type))
2759 {
2760 int i;
2761
2762 for (i = 1; i < n; i += 1)
2763 type = TYPE_TARGET_TYPE (type);
2764 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2765 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2766 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2767 perhaps stabsread.c would make more sense. */
2768 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2769 result_type = NULL;
2770 }
2771 else
2772 {
2773 result_type = desc_index_type (desc_bounds_type (type), n);
2774 if (result_type == NULL)
2775 error (_("attempt to take bound of something that is not an array"));
2776 }
2777
2778 return result_type;
2779 }
2780
2781 /* Given that arr is an array type, returns the lower bound of the
2782 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2783 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2784 array-descriptor type. It works for other arrays with bounds supplied
2785 by run-time quantities other than discriminants. */
2786
2787 static LONGEST
2788 ada_array_bound_from_type (struct type * arr_type, int n, int which)
2789 {
2790 struct type *type, *elt_type, *index_type_desc, *index_type;
2791 int i;
2792
2793 gdb_assert (which == 0 || which == 1);
2794
2795 if (ada_is_constrained_packed_array_type (arr_type))
2796 arr_type = decode_constrained_packed_array_type (arr_type);
2797
2798 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2799 return (LONGEST) - which;
2800
2801 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2802 type = TYPE_TARGET_TYPE (arr_type);
2803 else
2804 type = arr_type;
2805
2806 elt_type = type;
2807 for (i = n; i > 1; i--)
2808 elt_type = TYPE_TARGET_TYPE (type);
2809
2810 index_type_desc = ada_find_parallel_type (type, "___XA");
2811 ada_fixup_array_indexes_type (index_type_desc);
2812 if (index_type_desc != NULL)
2813 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2814 NULL);
2815 else
2816 index_type = TYPE_INDEX_TYPE (elt_type);
2817
2818 return
2819 (LONGEST) (which == 0
2820 ? ada_discrete_type_low_bound (index_type)
2821 : ada_discrete_type_high_bound (index_type));
2822 }
2823
2824 /* Given that arr is an array value, returns the lower bound of the
2825 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2826 WHICH is 1. This routine will also work for arrays with bounds
2827 supplied by run-time quantities other than discriminants. */
2828
2829 static LONGEST
2830 ada_array_bound (struct value *arr, int n, int which)
2831 {
2832 struct type *arr_type = value_type (arr);
2833
2834 if (ada_is_constrained_packed_array_type (arr_type))
2835 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2836 else if (ada_is_simple_array_type (arr_type))
2837 return ada_array_bound_from_type (arr_type, n, which);
2838 else
2839 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2840 }
2841
2842 /* Given that arr is an array value, returns the length of the
2843 nth index. This routine will also work for arrays with bounds
2844 supplied by run-time quantities other than discriminants.
2845 Does not work for arrays indexed by enumeration types with representation
2846 clauses at the moment. */
2847
2848 static LONGEST
2849 ada_array_length (struct value *arr, int n)
2850 {
2851 struct type *arr_type = ada_check_typedef (value_type (arr));
2852
2853 if (ada_is_constrained_packed_array_type (arr_type))
2854 return ada_array_length (decode_constrained_packed_array (arr), n);
2855
2856 if (ada_is_simple_array_type (arr_type))
2857 return (ada_array_bound_from_type (arr_type, n, 1)
2858 - ada_array_bound_from_type (arr_type, n, 0) + 1);
2859 else
2860 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2861 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2862 }
2863
2864 /* An empty array whose type is that of ARR_TYPE (an array type),
2865 with bounds LOW to LOW-1. */
2866
2867 static struct value *
2868 empty_array (struct type *arr_type, int low)
2869 {
2870 struct type *arr_type0 = ada_check_typedef (arr_type);
2871 struct type *index_type =
2872 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)),
2873 low, low - 1);
2874 struct type *elt_type = ada_array_element_type (arr_type0, 1);
2875
2876 return allocate_value (create_array_type (NULL, elt_type, index_type));
2877 }
2878 \f
2879
2880 /* Name resolution */
2881
2882 /* The "decoded" name for the user-definable Ada operator corresponding
2883 to OP. */
2884
2885 static const char *
2886 ada_decoded_op_name (enum exp_opcode op)
2887 {
2888 int i;
2889
2890 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2891 {
2892 if (ada_opname_table[i].op == op)
2893 return ada_opname_table[i].decoded;
2894 }
2895 error (_("Could not find operator name for opcode"));
2896 }
2897
2898
2899 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2900 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2901 undefined namespace) and converts operators that are
2902 user-defined into appropriate function calls. If CONTEXT_TYPE is
2903 non-null, it provides a preferred result type [at the moment, only
2904 type void has any effect---causing procedures to be preferred over
2905 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2906 return type is preferred. May change (expand) *EXP. */
2907
2908 static void
2909 resolve (struct expression **expp, int void_context_p)
2910 {
2911 struct type *context_type = NULL;
2912 int pc = 0;
2913
2914 if (void_context_p)
2915 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2916
2917 resolve_subexp (expp, &pc, 1, context_type);
2918 }
2919
2920 /* Resolve the operator of the subexpression beginning at
2921 position *POS of *EXPP. "Resolving" consists of replacing
2922 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2923 with their resolutions, replacing built-in operators with
2924 function calls to user-defined operators, where appropriate, and,
2925 when DEPROCEDURE_P is non-zero, converting function-valued variables
2926 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2927 are as in ada_resolve, above. */
2928
2929 static struct value *
2930 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2931 struct type *context_type)
2932 {
2933 int pc = *pos;
2934 int i;
2935 struct expression *exp; /* Convenience: == *expp. */
2936 enum exp_opcode op = (*expp)->elts[pc].opcode;
2937 struct value **argvec; /* Vector of operand types (alloca'ed). */
2938 int nargs; /* Number of operands. */
2939 int oplen;
2940
2941 argvec = NULL;
2942 nargs = 0;
2943 exp = *expp;
2944
2945 /* Pass one: resolve operands, saving their types and updating *pos,
2946 if needed. */
2947 switch (op)
2948 {
2949 case OP_FUNCALL:
2950 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2951 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2952 *pos += 7;
2953 else
2954 {
2955 *pos += 3;
2956 resolve_subexp (expp, pos, 0, NULL);
2957 }
2958 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2959 break;
2960
2961 case UNOP_ADDR:
2962 *pos += 1;
2963 resolve_subexp (expp, pos, 0, NULL);
2964 break;
2965
2966 case UNOP_QUAL:
2967 *pos += 3;
2968 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
2969 break;
2970
2971 case OP_ATR_MODULUS:
2972 case OP_ATR_SIZE:
2973 case OP_ATR_TAG:
2974 case OP_ATR_FIRST:
2975 case OP_ATR_LAST:
2976 case OP_ATR_LENGTH:
2977 case OP_ATR_POS:
2978 case OP_ATR_VAL:
2979 case OP_ATR_MIN:
2980 case OP_ATR_MAX:
2981 case TERNOP_IN_RANGE:
2982 case BINOP_IN_BOUNDS:
2983 case UNOP_IN_RANGE:
2984 case OP_AGGREGATE:
2985 case OP_OTHERS:
2986 case OP_CHOICES:
2987 case OP_POSITIONAL:
2988 case OP_DISCRETE_RANGE:
2989 case OP_NAME:
2990 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2991 *pos += oplen;
2992 break;
2993
2994 case BINOP_ASSIGN:
2995 {
2996 struct value *arg1;
2997
2998 *pos += 1;
2999 arg1 = resolve_subexp (expp, pos, 0, NULL);
3000 if (arg1 == NULL)
3001 resolve_subexp (expp, pos, 1, NULL);
3002 else
3003 resolve_subexp (expp, pos, 1, value_type (arg1));
3004 break;
3005 }
3006
3007 case UNOP_CAST:
3008 *pos += 3;
3009 nargs = 1;
3010 break;
3011
3012 case BINOP_ADD:
3013 case BINOP_SUB:
3014 case BINOP_MUL:
3015 case BINOP_DIV:
3016 case BINOP_REM:
3017 case BINOP_MOD:
3018 case BINOP_EXP:
3019 case BINOP_CONCAT:
3020 case BINOP_LOGICAL_AND:
3021 case BINOP_LOGICAL_OR:
3022 case BINOP_BITWISE_AND:
3023 case BINOP_BITWISE_IOR:
3024 case BINOP_BITWISE_XOR:
3025
3026 case BINOP_EQUAL:
3027 case BINOP_NOTEQUAL:
3028 case BINOP_LESS:
3029 case BINOP_GTR:
3030 case BINOP_LEQ:
3031 case BINOP_GEQ:
3032
3033 case BINOP_REPEAT:
3034 case BINOP_SUBSCRIPT:
3035 case BINOP_COMMA:
3036 *pos += 1;
3037 nargs = 2;
3038 break;
3039
3040 case UNOP_NEG:
3041 case UNOP_PLUS:
3042 case UNOP_LOGICAL_NOT:
3043 case UNOP_ABS:
3044 case UNOP_IND:
3045 *pos += 1;
3046 nargs = 1;
3047 break;
3048
3049 case OP_LONG:
3050 case OP_DOUBLE:
3051 case OP_VAR_VALUE:
3052 *pos += 4;
3053 break;
3054
3055 case OP_TYPE:
3056 case OP_BOOL:
3057 case OP_LAST:
3058 case OP_INTERNALVAR:
3059 *pos += 3;
3060 break;
3061
3062 case UNOP_MEMVAL:
3063 *pos += 3;
3064 nargs = 1;
3065 break;
3066
3067 case OP_REGISTER:
3068 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3069 break;
3070
3071 case STRUCTOP_STRUCT:
3072 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3073 nargs = 1;
3074 break;
3075
3076 case TERNOP_SLICE:
3077 *pos += 1;
3078 nargs = 3;
3079 break;
3080
3081 case OP_STRING:
3082 break;
3083
3084 default:
3085 error (_("Unexpected operator during name resolution"));
3086 }
3087
3088 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
3089 for (i = 0; i < nargs; i += 1)
3090 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3091 argvec[i] = NULL;
3092 exp = *expp;
3093
3094 /* Pass two: perform any resolution on principal operator. */
3095 switch (op)
3096 {
3097 default:
3098 break;
3099
3100 case OP_VAR_VALUE:
3101 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3102 {
3103 struct ada_symbol_info *candidates;
3104 int n_candidates;
3105
3106 n_candidates =
3107 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3108 (exp->elts[pc + 2].symbol),
3109 exp->elts[pc + 1].block, VAR_DOMAIN,
3110 &candidates, 1);
3111
3112 if (n_candidates > 1)
3113 {
3114 /* Types tend to get re-introduced locally, so if there
3115 are any local symbols that are not types, first filter
3116 out all types. */
3117 int j;
3118 for (j = 0; j < n_candidates; j += 1)
3119 switch (SYMBOL_CLASS (candidates[j].sym))
3120 {
3121 case LOC_REGISTER:
3122 case LOC_ARG:
3123 case LOC_REF_ARG:
3124 case LOC_REGPARM_ADDR:
3125 case LOC_LOCAL:
3126 case LOC_COMPUTED:
3127 goto FoundNonType;
3128 default:
3129 break;
3130 }
3131 FoundNonType:
3132 if (j < n_candidates)
3133 {
3134 j = 0;
3135 while (j < n_candidates)
3136 {
3137 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3138 {
3139 candidates[j] = candidates[n_candidates - 1];
3140 n_candidates -= 1;
3141 }
3142 else
3143 j += 1;
3144 }
3145 }
3146 }
3147
3148 if (n_candidates == 0)
3149 error (_("No definition found for %s"),
3150 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3151 else if (n_candidates == 1)
3152 i = 0;
3153 else if (deprocedure_p
3154 && !is_nonfunction (candidates, n_candidates))
3155 {
3156 i = ada_resolve_function
3157 (candidates, n_candidates, NULL, 0,
3158 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3159 context_type);
3160 if (i < 0)
3161 error (_("Could not find a match for %s"),
3162 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3163 }
3164 else
3165 {
3166 printf_filtered (_("Multiple matches for %s\n"),
3167 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3168 user_select_syms (candidates, n_candidates, 1);
3169 i = 0;
3170 }
3171
3172 exp->elts[pc + 1].block = candidates[i].block;
3173 exp->elts[pc + 2].symbol = candidates[i].sym;
3174 if (innermost_block == NULL
3175 || contained_in (candidates[i].block, innermost_block))
3176 innermost_block = candidates[i].block;
3177 }
3178
3179 if (deprocedure_p
3180 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3181 == TYPE_CODE_FUNC))
3182 {
3183 replace_operator_with_call (expp, pc, 0, 0,
3184 exp->elts[pc + 2].symbol,
3185 exp->elts[pc + 1].block);
3186 exp = *expp;
3187 }
3188 break;
3189
3190 case OP_FUNCALL:
3191 {
3192 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3193 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3194 {
3195 struct ada_symbol_info *candidates;
3196 int n_candidates;
3197
3198 n_candidates =
3199 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3200 (exp->elts[pc + 5].symbol),
3201 exp->elts[pc + 4].block, VAR_DOMAIN,
3202 &candidates, 1);
3203 if (n_candidates == 1)
3204 i = 0;
3205 else
3206 {
3207 i = ada_resolve_function
3208 (candidates, n_candidates,
3209 argvec, nargs,
3210 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3211 context_type);
3212 if (i < 0)
3213 error (_("Could not find a match for %s"),
3214 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3215 }
3216
3217 exp->elts[pc + 4].block = candidates[i].block;
3218 exp->elts[pc + 5].symbol = candidates[i].sym;
3219 if (innermost_block == NULL
3220 || contained_in (candidates[i].block, innermost_block))
3221 innermost_block = candidates[i].block;
3222 }
3223 }
3224 break;
3225 case BINOP_ADD:
3226 case BINOP_SUB:
3227 case BINOP_MUL:
3228 case BINOP_DIV:
3229 case BINOP_REM:
3230 case BINOP_MOD:
3231 case BINOP_CONCAT:
3232 case BINOP_BITWISE_AND:
3233 case BINOP_BITWISE_IOR:
3234 case BINOP_BITWISE_XOR:
3235 case BINOP_EQUAL:
3236 case BINOP_NOTEQUAL:
3237 case BINOP_LESS:
3238 case BINOP_GTR:
3239 case BINOP_LEQ:
3240 case BINOP_GEQ:
3241 case BINOP_EXP:
3242 case UNOP_NEG:
3243 case UNOP_PLUS:
3244 case UNOP_LOGICAL_NOT:
3245 case UNOP_ABS:
3246 if (possible_user_operator_p (op, argvec))
3247 {
3248 struct ada_symbol_info *candidates;
3249 int n_candidates;
3250
3251 n_candidates =
3252 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3253 (struct block *) NULL, VAR_DOMAIN,
3254 &candidates, 1);
3255 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3256 ada_decoded_op_name (op), NULL);
3257 if (i < 0)
3258 break;
3259
3260 replace_operator_with_call (expp, pc, nargs, 1,
3261 candidates[i].sym, candidates[i].block);
3262 exp = *expp;
3263 }
3264 break;
3265
3266 case OP_TYPE:
3267 case OP_REGISTER:
3268 return NULL;
3269 }
3270
3271 *pos = pc;
3272 return evaluate_subexp_type (exp, pos);
3273 }
3274
3275 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3276 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3277 a non-pointer. */
3278 /* The term "match" here is rather loose. The match is heuristic and
3279 liberal. */
3280
3281 static int
3282 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3283 {
3284 ftype = ada_check_typedef (ftype);
3285 atype = ada_check_typedef (atype);
3286
3287 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3288 ftype = TYPE_TARGET_TYPE (ftype);
3289 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3290 atype = TYPE_TARGET_TYPE (atype);
3291
3292 switch (TYPE_CODE (ftype))
3293 {
3294 default:
3295 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3296 case TYPE_CODE_PTR:
3297 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3298 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3299 TYPE_TARGET_TYPE (atype), 0);
3300 else
3301 return (may_deref
3302 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3303 case TYPE_CODE_INT:
3304 case TYPE_CODE_ENUM:
3305 case TYPE_CODE_RANGE:
3306 switch (TYPE_CODE (atype))
3307 {
3308 case TYPE_CODE_INT:
3309 case TYPE_CODE_ENUM:
3310 case TYPE_CODE_RANGE:
3311 return 1;
3312 default:
3313 return 0;
3314 }
3315
3316 case TYPE_CODE_ARRAY:
3317 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3318 || ada_is_array_descriptor_type (atype));
3319
3320 case TYPE_CODE_STRUCT:
3321 if (ada_is_array_descriptor_type (ftype))
3322 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3323 || ada_is_array_descriptor_type (atype));
3324 else
3325 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3326 && !ada_is_array_descriptor_type (atype));
3327
3328 case TYPE_CODE_UNION:
3329 case TYPE_CODE_FLT:
3330 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3331 }
3332 }
3333
3334 /* Return non-zero if the formals of FUNC "sufficiently match" the
3335 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3336 may also be an enumeral, in which case it is treated as a 0-
3337 argument function. */
3338
3339 static int
3340 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3341 {
3342 int i;
3343 struct type *func_type = SYMBOL_TYPE (func);
3344
3345 if (SYMBOL_CLASS (func) == LOC_CONST
3346 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3347 return (n_actuals == 0);
3348 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3349 return 0;
3350
3351 if (TYPE_NFIELDS (func_type) != n_actuals)
3352 return 0;
3353
3354 for (i = 0; i < n_actuals; i += 1)
3355 {
3356 if (actuals[i] == NULL)
3357 return 0;
3358 else
3359 {
3360 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3361 i));
3362 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3363
3364 if (!ada_type_match (ftype, atype, 1))
3365 return 0;
3366 }
3367 }
3368 return 1;
3369 }
3370
3371 /* False iff function type FUNC_TYPE definitely does not produce a value
3372 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3373 FUNC_TYPE is not a valid function type with a non-null return type
3374 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3375
3376 static int
3377 return_match (struct type *func_type, struct type *context_type)
3378 {
3379 struct type *return_type;
3380
3381 if (func_type == NULL)
3382 return 1;
3383
3384 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3385 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3386 else
3387 return_type = get_base_type (func_type);
3388 if (return_type == NULL)
3389 return 1;
3390
3391 context_type = get_base_type (context_type);
3392
3393 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3394 return context_type == NULL || return_type == context_type;
3395 else if (context_type == NULL)
3396 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3397 else
3398 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3399 }
3400
3401
3402 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3403 function (if any) that matches the types of the NARGS arguments in
3404 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3405 that returns that type, then eliminate matches that don't. If
3406 CONTEXT_TYPE is void and there is at least one match that does not
3407 return void, eliminate all matches that do.
3408
3409 Asks the user if there is more than one match remaining. Returns -1
3410 if there is no such symbol or none is selected. NAME is used
3411 solely for messages. May re-arrange and modify SYMS in
3412 the process; the index returned is for the modified vector. */
3413
3414 static int
3415 ada_resolve_function (struct ada_symbol_info syms[],
3416 int nsyms, struct value **args, int nargs,
3417 const char *name, struct type *context_type)
3418 {
3419 int fallback;
3420 int k;
3421 int m; /* Number of hits */
3422
3423 m = 0;
3424 /* In the first pass of the loop, we only accept functions matching
3425 context_type. If none are found, we add a second pass of the loop
3426 where every function is accepted. */
3427 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3428 {
3429 for (k = 0; k < nsyms; k += 1)
3430 {
3431 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3432
3433 if (ada_args_match (syms[k].sym, args, nargs)
3434 && (fallback || return_match (type, context_type)))
3435 {
3436 syms[m] = syms[k];
3437 m += 1;
3438 }
3439 }
3440 }
3441
3442 if (m == 0)
3443 return -1;
3444 else if (m > 1)
3445 {
3446 printf_filtered (_("Multiple matches for %s\n"), name);
3447 user_select_syms (syms, m, 1);
3448 return 0;
3449 }
3450 return 0;
3451 }
3452
3453 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3454 in a listing of choices during disambiguation (see sort_choices, below).
3455 The idea is that overloadings of a subprogram name from the
3456 same package should sort in their source order. We settle for ordering
3457 such symbols by their trailing number (__N or $N). */
3458
3459 static int
3460 encoded_ordered_before (const char *N0, const char *N1)
3461 {
3462 if (N1 == NULL)
3463 return 0;
3464 else if (N0 == NULL)
3465 return 1;
3466 else
3467 {
3468 int k0, k1;
3469
3470 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3471 ;
3472 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3473 ;
3474 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3475 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3476 {
3477 int n0, n1;
3478
3479 n0 = k0;
3480 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3481 n0 -= 1;
3482 n1 = k1;
3483 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3484 n1 -= 1;
3485 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3486 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3487 }
3488 return (strcmp (N0, N1) < 0);
3489 }
3490 }
3491
3492 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3493 encoded names. */
3494
3495 static void
3496 sort_choices (struct ada_symbol_info syms[], int nsyms)
3497 {
3498 int i;
3499
3500 for (i = 1; i < nsyms; i += 1)
3501 {
3502 struct ada_symbol_info sym = syms[i];
3503 int j;
3504
3505 for (j = i - 1; j >= 0; j -= 1)
3506 {
3507 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3508 SYMBOL_LINKAGE_NAME (sym.sym)))
3509 break;
3510 syms[j + 1] = syms[j];
3511 }
3512 syms[j + 1] = sym;
3513 }
3514 }
3515
3516 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3517 by asking the user (if necessary), returning the number selected,
3518 and setting the first elements of SYMS items. Error if no symbols
3519 selected. */
3520
3521 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3522 to be re-integrated one of these days. */
3523
3524 int
3525 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3526 {
3527 int i;
3528 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3529 int n_chosen;
3530 int first_choice = (max_results == 1) ? 1 : 2;
3531 const char *select_mode = multiple_symbols_select_mode ();
3532
3533 if (max_results < 1)
3534 error (_("Request to select 0 symbols!"));
3535 if (nsyms <= 1)
3536 return nsyms;
3537
3538 if (select_mode == multiple_symbols_cancel)
3539 error (_("\
3540 canceled because the command is ambiguous\n\
3541 See set/show multiple-symbol."));
3542
3543 /* If select_mode is "all", then return all possible symbols.
3544 Only do that if more than one symbol can be selected, of course.
3545 Otherwise, display the menu as usual. */
3546 if (select_mode == multiple_symbols_all && max_results > 1)
3547 return nsyms;
3548
3549 printf_unfiltered (_("[0] cancel\n"));
3550 if (max_results > 1)
3551 printf_unfiltered (_("[1] all\n"));
3552
3553 sort_choices (syms, nsyms);
3554
3555 for (i = 0; i < nsyms; i += 1)
3556 {
3557 if (syms[i].sym == NULL)
3558 continue;
3559
3560 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3561 {
3562 struct symtab_and_line sal =
3563 find_function_start_sal (syms[i].sym, 1);
3564
3565 if (sal.symtab == NULL)
3566 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3567 i + first_choice,
3568 SYMBOL_PRINT_NAME (syms[i].sym),
3569 sal.line);
3570 else
3571 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3572 SYMBOL_PRINT_NAME (syms[i].sym),
3573 sal.symtab->filename, sal.line);
3574 continue;
3575 }
3576 else
3577 {
3578 int is_enumeral =
3579 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3580 && SYMBOL_TYPE (syms[i].sym) != NULL
3581 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3582 struct symtab *symtab = syms[i].sym->symtab;
3583
3584 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3585 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3586 i + first_choice,
3587 SYMBOL_PRINT_NAME (syms[i].sym),
3588 symtab->filename, SYMBOL_LINE (syms[i].sym));
3589 else if (is_enumeral
3590 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3591 {
3592 printf_unfiltered (("[%d] "), i + first_choice);
3593 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3594 gdb_stdout, -1, 0);
3595 printf_unfiltered (_("'(%s) (enumeral)\n"),
3596 SYMBOL_PRINT_NAME (syms[i].sym));
3597 }
3598 else if (symtab != NULL)
3599 printf_unfiltered (is_enumeral
3600 ? _("[%d] %s in %s (enumeral)\n")
3601 : _("[%d] %s at %s:?\n"),
3602 i + first_choice,
3603 SYMBOL_PRINT_NAME (syms[i].sym),
3604 symtab->filename);
3605 else
3606 printf_unfiltered (is_enumeral
3607 ? _("[%d] %s (enumeral)\n")
3608 : _("[%d] %s at ?\n"),
3609 i + first_choice,
3610 SYMBOL_PRINT_NAME (syms[i].sym));
3611 }
3612 }
3613
3614 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3615 "overload-choice");
3616
3617 for (i = 0; i < n_chosen; i += 1)
3618 syms[i] = syms[chosen[i]];
3619
3620 return n_chosen;
3621 }
3622
3623 /* Read and validate a set of numeric choices from the user in the
3624 range 0 .. N_CHOICES-1. Place the results in increasing
3625 order in CHOICES[0 .. N-1], and return N.
3626
3627 The user types choices as a sequence of numbers on one line
3628 separated by blanks, encoding them as follows:
3629
3630 + A choice of 0 means to cancel the selection, throwing an error.
3631 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3632 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3633
3634 The user is not allowed to choose more than MAX_RESULTS values.
3635
3636 ANNOTATION_SUFFIX, if present, is used to annotate the input
3637 prompts (for use with the -f switch). */
3638
3639 int
3640 get_selections (int *choices, int n_choices, int max_results,
3641 int is_all_choice, char *annotation_suffix)
3642 {
3643 char *args;
3644 char *prompt;
3645 int n_chosen;
3646 int first_choice = is_all_choice ? 2 : 1;
3647
3648 prompt = getenv ("PS2");
3649 if (prompt == NULL)
3650 prompt = "> ";
3651
3652 args = command_line_input (prompt, 0, annotation_suffix);
3653
3654 if (args == NULL)
3655 error_no_arg (_("one or more choice numbers"));
3656
3657 n_chosen = 0;
3658
3659 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3660 order, as given in args. Choices are validated. */
3661 while (1)
3662 {
3663 char *args2;
3664 int choice, j;
3665
3666 args = skip_spaces (args);
3667 if (*args == '\0' && n_chosen == 0)
3668 error_no_arg (_("one or more choice numbers"));
3669 else if (*args == '\0')
3670 break;
3671
3672 choice = strtol (args, &args2, 10);
3673 if (args == args2 || choice < 0
3674 || choice > n_choices + first_choice - 1)
3675 error (_("Argument must be choice number"));
3676 args = args2;
3677
3678 if (choice == 0)
3679 error (_("cancelled"));
3680
3681 if (choice < first_choice)
3682 {
3683 n_chosen = n_choices;
3684 for (j = 0; j < n_choices; j += 1)
3685 choices[j] = j;
3686 break;
3687 }
3688 choice -= first_choice;
3689
3690 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3691 {
3692 }
3693
3694 if (j < 0 || choice != choices[j])
3695 {
3696 int k;
3697
3698 for (k = n_chosen - 1; k > j; k -= 1)
3699 choices[k + 1] = choices[k];
3700 choices[j + 1] = choice;
3701 n_chosen += 1;
3702 }
3703 }
3704
3705 if (n_chosen > max_results)
3706 error (_("Select no more than %d of the above"), max_results);
3707
3708 return n_chosen;
3709 }
3710
3711 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3712 on the function identified by SYM and BLOCK, and taking NARGS
3713 arguments. Update *EXPP as needed to hold more space. */
3714
3715 static void
3716 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3717 int oplen, struct symbol *sym,
3718 struct block *block)
3719 {
3720 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3721 symbol, -oplen for operator being replaced). */
3722 struct expression *newexp = (struct expression *)
3723 xzalloc (sizeof (struct expression)
3724 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3725 struct expression *exp = *expp;
3726
3727 newexp->nelts = exp->nelts + 7 - oplen;
3728 newexp->language_defn = exp->language_defn;
3729 newexp->gdbarch = exp->gdbarch;
3730 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3731 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3732 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3733
3734 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3735 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3736
3737 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3738 newexp->elts[pc + 4].block = block;
3739 newexp->elts[pc + 5].symbol = sym;
3740
3741 *expp = newexp;
3742 xfree (exp);
3743 }
3744
3745 /* Type-class predicates */
3746
3747 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3748 or FLOAT). */
3749
3750 static int
3751 numeric_type_p (struct type *type)
3752 {
3753 if (type == NULL)
3754 return 0;
3755 else
3756 {
3757 switch (TYPE_CODE (type))
3758 {
3759 case TYPE_CODE_INT:
3760 case TYPE_CODE_FLT:
3761 return 1;
3762 case TYPE_CODE_RANGE:
3763 return (type == TYPE_TARGET_TYPE (type)
3764 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3765 default:
3766 return 0;
3767 }
3768 }
3769 }
3770
3771 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3772
3773 static int
3774 integer_type_p (struct type *type)
3775 {
3776 if (type == NULL)
3777 return 0;
3778 else
3779 {
3780 switch (TYPE_CODE (type))
3781 {
3782 case TYPE_CODE_INT:
3783 return 1;
3784 case TYPE_CODE_RANGE:
3785 return (type == TYPE_TARGET_TYPE (type)
3786 || integer_type_p (TYPE_TARGET_TYPE (type)));
3787 default:
3788 return 0;
3789 }
3790 }
3791 }
3792
3793 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3794
3795 static int
3796 scalar_type_p (struct type *type)
3797 {
3798 if (type == NULL)
3799 return 0;
3800 else
3801 {
3802 switch (TYPE_CODE (type))
3803 {
3804 case TYPE_CODE_INT:
3805 case TYPE_CODE_RANGE:
3806 case TYPE_CODE_ENUM:
3807 case TYPE_CODE_FLT:
3808 return 1;
3809 default:
3810 return 0;
3811 }
3812 }
3813 }
3814
3815 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3816
3817 static int
3818 discrete_type_p (struct type *type)
3819 {
3820 if (type == NULL)
3821 return 0;
3822 else
3823 {
3824 switch (TYPE_CODE (type))
3825 {
3826 case TYPE_CODE_INT:
3827 case TYPE_CODE_RANGE:
3828 case TYPE_CODE_ENUM:
3829 case TYPE_CODE_BOOL:
3830 return 1;
3831 default:
3832 return 0;
3833 }
3834 }
3835 }
3836
3837 /* Returns non-zero if OP with operands in the vector ARGS could be
3838 a user-defined function. Errs on the side of pre-defined operators
3839 (i.e., result 0). */
3840
3841 static int
3842 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3843 {
3844 struct type *type0 =
3845 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3846 struct type *type1 =
3847 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3848
3849 if (type0 == NULL)
3850 return 0;
3851
3852 switch (op)
3853 {
3854 default:
3855 return 0;
3856
3857 case BINOP_ADD:
3858 case BINOP_SUB:
3859 case BINOP_MUL:
3860 case BINOP_DIV:
3861 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3862
3863 case BINOP_REM:
3864 case BINOP_MOD:
3865 case BINOP_BITWISE_AND:
3866 case BINOP_BITWISE_IOR:
3867 case BINOP_BITWISE_XOR:
3868 return (!(integer_type_p (type0) && integer_type_p (type1)));
3869
3870 case BINOP_EQUAL:
3871 case BINOP_NOTEQUAL:
3872 case BINOP_LESS:
3873 case BINOP_GTR:
3874 case BINOP_LEQ:
3875 case BINOP_GEQ:
3876 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3877
3878 case BINOP_CONCAT:
3879 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3880
3881 case BINOP_EXP:
3882 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3883
3884 case UNOP_NEG:
3885 case UNOP_PLUS:
3886 case UNOP_LOGICAL_NOT:
3887 case UNOP_ABS:
3888 return (!numeric_type_p (type0));
3889
3890 }
3891 }
3892 \f
3893 /* Renaming */
3894
3895 /* NOTES:
3896
3897 1. In the following, we assume that a renaming type's name may
3898 have an ___XD suffix. It would be nice if this went away at some
3899 point.
3900 2. We handle both the (old) purely type-based representation of
3901 renamings and the (new) variable-based encoding. At some point,
3902 it is devoutly to be hoped that the former goes away
3903 (FIXME: hilfinger-2007-07-09).
3904 3. Subprogram renamings are not implemented, although the XRS
3905 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3906
3907 /* If SYM encodes a renaming,
3908
3909 <renaming> renames <renamed entity>,
3910
3911 sets *LEN to the length of the renamed entity's name,
3912 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3913 the string describing the subcomponent selected from the renamed
3914 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3915 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3916 are undefined). Otherwise, returns a value indicating the category
3917 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3918 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3919 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3920 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3921 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3922 may be NULL, in which case they are not assigned.
3923
3924 [Currently, however, GCC does not generate subprogram renamings.] */
3925
3926 enum ada_renaming_category
3927 ada_parse_renaming (struct symbol *sym,
3928 const char **renamed_entity, int *len,
3929 const char **renaming_expr)
3930 {
3931 enum ada_renaming_category kind;
3932 const char *info;
3933 const char *suffix;
3934
3935 if (sym == NULL)
3936 return ADA_NOT_RENAMING;
3937 switch (SYMBOL_CLASS (sym))
3938 {
3939 default:
3940 return ADA_NOT_RENAMING;
3941 case LOC_TYPEDEF:
3942 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3943 renamed_entity, len, renaming_expr);
3944 case LOC_LOCAL:
3945 case LOC_STATIC:
3946 case LOC_COMPUTED:
3947 case LOC_OPTIMIZED_OUT:
3948 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3949 if (info == NULL)
3950 return ADA_NOT_RENAMING;
3951 switch (info[5])
3952 {
3953 case '_':
3954 kind = ADA_OBJECT_RENAMING;
3955 info += 6;
3956 break;
3957 case 'E':
3958 kind = ADA_EXCEPTION_RENAMING;
3959 info += 7;
3960 break;
3961 case 'P':
3962 kind = ADA_PACKAGE_RENAMING;
3963 info += 7;
3964 break;
3965 case 'S':
3966 kind = ADA_SUBPROGRAM_RENAMING;
3967 info += 7;
3968 break;
3969 default:
3970 return ADA_NOT_RENAMING;
3971 }
3972 }
3973
3974 if (renamed_entity != NULL)
3975 *renamed_entity = info;
3976 suffix = strstr (info, "___XE");
3977 if (suffix == NULL || suffix == info)
3978 return ADA_NOT_RENAMING;
3979 if (len != NULL)
3980 *len = strlen (info) - strlen (suffix);
3981 suffix += 5;
3982 if (renaming_expr != NULL)
3983 *renaming_expr = suffix;
3984 return kind;
3985 }
3986
3987 /* Assuming TYPE encodes a renaming according to the old encoding in
3988 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3989 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3990 ADA_NOT_RENAMING otherwise. */
3991 static enum ada_renaming_category
3992 parse_old_style_renaming (struct type *type,
3993 const char **renamed_entity, int *len,
3994 const char **renaming_expr)
3995 {
3996 enum ada_renaming_category kind;
3997 const char *name;
3998 const char *info;
3999 const char *suffix;
4000
4001 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4002 || TYPE_NFIELDS (type) != 1)
4003 return ADA_NOT_RENAMING;
4004
4005 name = type_name_no_tag (type);
4006 if (name == NULL)
4007 return ADA_NOT_RENAMING;
4008
4009 name = strstr (name, "___XR");
4010 if (name == NULL)
4011 return ADA_NOT_RENAMING;
4012 switch (name[5])
4013 {
4014 case '\0':
4015 case '_':
4016 kind = ADA_OBJECT_RENAMING;
4017 break;
4018 case 'E':
4019 kind = ADA_EXCEPTION_RENAMING;
4020 break;
4021 case 'P':
4022 kind = ADA_PACKAGE_RENAMING;
4023 break;
4024 case 'S':
4025 kind = ADA_SUBPROGRAM_RENAMING;
4026 break;
4027 default:
4028 return ADA_NOT_RENAMING;
4029 }
4030
4031 info = TYPE_FIELD_NAME (type, 0);
4032 if (info == NULL)
4033 return ADA_NOT_RENAMING;
4034 if (renamed_entity != NULL)
4035 *renamed_entity = info;
4036 suffix = strstr (info, "___XE");
4037 if (renaming_expr != NULL)
4038 *renaming_expr = suffix + 5;
4039 if (suffix == NULL || suffix == info)
4040 return ADA_NOT_RENAMING;
4041 if (len != NULL)
4042 *len = suffix - info;
4043 return kind;
4044 }
4045
4046 /* Compute the value of the given RENAMING_SYM, which is expected to
4047 be a symbol encoding a renaming expression. BLOCK is the block
4048 used to evaluate the renaming. */
4049
4050 static struct value *
4051 ada_read_renaming_var_value (struct symbol *renaming_sym,
4052 struct block *block)
4053 {
4054 char *sym_name;
4055 struct expression *expr;
4056 struct value *value;
4057 struct cleanup *old_chain = NULL;
4058
4059 sym_name = xstrdup (SYMBOL_LINKAGE_NAME (renaming_sym));
4060 old_chain = make_cleanup (xfree, sym_name);
4061 expr = parse_exp_1 (&sym_name, block, 0);
4062 make_cleanup (free_current_contents, &expr);
4063 value = evaluate_expression (expr);
4064
4065 do_cleanups (old_chain);
4066 return value;
4067 }
4068 \f
4069
4070 /* Evaluation: Function Calls */
4071
4072 /* Return an lvalue containing the value VAL. This is the identity on
4073 lvalues, and otherwise has the side-effect of allocating memory
4074 in the inferior where a copy of the value contents is copied. */
4075
4076 static struct value *
4077 ensure_lval (struct value *val)
4078 {
4079 if (VALUE_LVAL (val) == not_lval
4080 || VALUE_LVAL (val) == lval_internalvar)
4081 {
4082 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4083 const CORE_ADDR addr =
4084 value_as_long (value_allocate_space_in_inferior (len));
4085
4086 set_value_address (val, addr);
4087 VALUE_LVAL (val) = lval_memory;
4088 write_memory (addr, value_contents (val), len);
4089 }
4090
4091 return val;
4092 }
4093
4094 /* Return the value ACTUAL, converted to be an appropriate value for a
4095 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4096 allocating any necessary descriptors (fat pointers), or copies of
4097 values not residing in memory, updating it as needed. */
4098
4099 struct value *
4100 ada_convert_actual (struct value *actual, struct type *formal_type0)
4101 {
4102 struct type *actual_type = ada_check_typedef (value_type (actual));
4103 struct type *formal_type = ada_check_typedef (formal_type0);
4104 struct type *formal_target =
4105 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4106 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4107 struct type *actual_target =
4108 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4109 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4110
4111 if (ada_is_array_descriptor_type (formal_target)
4112 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4113 return make_array_descriptor (formal_type, actual);
4114 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4115 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4116 {
4117 struct value *result;
4118
4119 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4120 && ada_is_array_descriptor_type (actual_target))
4121 result = desc_data (actual);
4122 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4123 {
4124 if (VALUE_LVAL (actual) != lval_memory)
4125 {
4126 struct value *val;
4127
4128 actual_type = ada_check_typedef (value_type (actual));
4129 val = allocate_value (actual_type);
4130 memcpy ((char *) value_contents_raw (val),
4131 (char *) value_contents (actual),
4132 TYPE_LENGTH (actual_type));
4133 actual = ensure_lval (val);
4134 }
4135 result = value_addr (actual);
4136 }
4137 else
4138 return actual;
4139 return value_cast_pointers (formal_type, result);
4140 }
4141 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4142 return ada_value_ind (actual);
4143
4144 return actual;
4145 }
4146
4147 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4148 type TYPE. This is usually an inefficient no-op except on some targets
4149 (such as AVR) where the representation of a pointer and an address
4150 differs. */
4151
4152 static CORE_ADDR
4153 value_pointer (struct value *value, struct type *type)
4154 {
4155 struct gdbarch *gdbarch = get_type_arch (type);
4156 unsigned len = TYPE_LENGTH (type);
4157 gdb_byte *buf = alloca (len);
4158 CORE_ADDR addr;
4159
4160 addr = value_address (value);
4161 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4162 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4163 return addr;
4164 }
4165
4166
4167 /* Push a descriptor of type TYPE for array value ARR on the stack at
4168 *SP, updating *SP to reflect the new descriptor. Return either
4169 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4170 to-descriptor type rather than a descriptor type), a struct value *
4171 representing a pointer to this descriptor. */
4172
4173 static struct value *
4174 make_array_descriptor (struct type *type, struct value *arr)
4175 {
4176 struct type *bounds_type = desc_bounds_type (type);
4177 struct type *desc_type = desc_base_type (type);
4178 struct value *descriptor = allocate_value (desc_type);
4179 struct value *bounds = allocate_value (bounds_type);
4180 int i;
4181
4182 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4183 i > 0; i -= 1)
4184 {
4185 modify_field (value_type (bounds), value_contents_writeable (bounds),
4186 ada_array_bound (arr, i, 0),
4187 desc_bound_bitpos (bounds_type, i, 0),
4188 desc_bound_bitsize (bounds_type, i, 0));
4189 modify_field (value_type (bounds), value_contents_writeable (bounds),
4190 ada_array_bound (arr, i, 1),
4191 desc_bound_bitpos (bounds_type, i, 1),
4192 desc_bound_bitsize (bounds_type, i, 1));
4193 }
4194
4195 bounds = ensure_lval (bounds);
4196
4197 modify_field (value_type (descriptor),
4198 value_contents_writeable (descriptor),
4199 value_pointer (ensure_lval (arr),
4200 TYPE_FIELD_TYPE (desc_type, 0)),
4201 fat_pntr_data_bitpos (desc_type),
4202 fat_pntr_data_bitsize (desc_type));
4203
4204 modify_field (value_type (descriptor),
4205 value_contents_writeable (descriptor),
4206 value_pointer (bounds,
4207 TYPE_FIELD_TYPE (desc_type, 1)),
4208 fat_pntr_bounds_bitpos (desc_type),
4209 fat_pntr_bounds_bitsize (desc_type));
4210
4211 descriptor = ensure_lval (descriptor);
4212
4213 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4214 return value_addr (descriptor);
4215 else
4216 return descriptor;
4217 }
4218 \f
4219 /* Dummy definitions for an experimental caching module that is not
4220 * used in the public sources. */
4221
4222 static int
4223 lookup_cached_symbol (const char *name, domain_enum namespace,
4224 struct symbol **sym, struct block **block)
4225 {
4226 return 0;
4227 }
4228
4229 static void
4230 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
4231 struct block *block)
4232 {
4233 }
4234 \f
4235 /* Symbol Lookup */
4236
4237 /* Return nonzero if wild matching should be used when searching for
4238 all symbols matching LOOKUP_NAME.
4239
4240 LOOKUP_NAME is expected to be a symbol name after transformation
4241 for Ada lookups (see ada_name_for_lookup). */
4242
4243 static int
4244 should_use_wild_match (const char *lookup_name)
4245 {
4246 return (strstr (lookup_name, "__") == NULL);
4247 }
4248
4249 /* Return the result of a standard (literal, C-like) lookup of NAME in
4250 given DOMAIN, visible from lexical block BLOCK. */
4251
4252 static struct symbol *
4253 standard_lookup (const char *name, const struct block *block,
4254 domain_enum domain)
4255 {
4256 struct symbol *sym;
4257
4258 if (lookup_cached_symbol (name, domain, &sym, NULL))
4259 return sym;
4260 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4261 cache_symbol (name, domain, sym, block_found);
4262 return sym;
4263 }
4264
4265
4266 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4267 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4268 since they contend in overloading in the same way. */
4269 static int
4270 is_nonfunction (struct ada_symbol_info syms[], int n)
4271 {
4272 int i;
4273
4274 for (i = 0; i < n; i += 1)
4275 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4276 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4277 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4278 return 1;
4279
4280 return 0;
4281 }
4282
4283 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4284 struct types. Otherwise, they may not. */
4285
4286 static int
4287 equiv_types (struct type *type0, struct type *type1)
4288 {
4289 if (type0 == type1)
4290 return 1;
4291 if (type0 == NULL || type1 == NULL
4292 || TYPE_CODE (type0) != TYPE_CODE (type1))
4293 return 0;
4294 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4295 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4296 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4297 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4298 return 1;
4299
4300 return 0;
4301 }
4302
4303 /* True iff SYM0 represents the same entity as SYM1, or one that is
4304 no more defined than that of SYM1. */
4305
4306 static int
4307 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4308 {
4309 if (sym0 == sym1)
4310 return 1;
4311 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4312 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4313 return 0;
4314
4315 switch (SYMBOL_CLASS (sym0))
4316 {
4317 case LOC_UNDEF:
4318 return 1;
4319 case LOC_TYPEDEF:
4320 {
4321 struct type *type0 = SYMBOL_TYPE (sym0);
4322 struct type *type1 = SYMBOL_TYPE (sym1);
4323 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4324 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4325 int len0 = strlen (name0);
4326
4327 return
4328 TYPE_CODE (type0) == TYPE_CODE (type1)
4329 && (equiv_types (type0, type1)
4330 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4331 && strncmp (name1 + len0, "___XV", 5) == 0));
4332 }
4333 case LOC_CONST:
4334 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4335 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4336 default:
4337 return 0;
4338 }
4339 }
4340
4341 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4342 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4343
4344 static void
4345 add_defn_to_vec (struct obstack *obstackp,
4346 struct symbol *sym,
4347 struct block *block)
4348 {
4349 int i;
4350 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4351
4352 /* Do not try to complete stub types, as the debugger is probably
4353 already scanning all symbols matching a certain name at the
4354 time when this function is called. Trying to replace the stub
4355 type by its associated full type will cause us to restart a scan
4356 which may lead to an infinite recursion. Instead, the client
4357 collecting the matching symbols will end up collecting several
4358 matches, with at least one of them complete. It can then filter
4359 out the stub ones if needed. */
4360
4361 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4362 {
4363 if (lesseq_defined_than (sym, prevDefns[i].sym))
4364 return;
4365 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4366 {
4367 prevDefns[i].sym = sym;
4368 prevDefns[i].block = block;
4369 return;
4370 }
4371 }
4372
4373 {
4374 struct ada_symbol_info info;
4375
4376 info.sym = sym;
4377 info.block = block;
4378 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4379 }
4380 }
4381
4382 /* Number of ada_symbol_info structures currently collected in
4383 current vector in *OBSTACKP. */
4384
4385 static int
4386 num_defns_collected (struct obstack *obstackp)
4387 {
4388 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4389 }
4390
4391 /* Vector of ada_symbol_info structures currently collected in current
4392 vector in *OBSTACKP. If FINISH, close off the vector and return
4393 its final address. */
4394
4395 static struct ada_symbol_info *
4396 defns_collected (struct obstack *obstackp, int finish)
4397 {
4398 if (finish)
4399 return obstack_finish (obstackp);
4400 else
4401 return (struct ada_symbol_info *) obstack_base (obstackp);
4402 }
4403
4404 /* Return a minimal symbol matching NAME according to Ada decoding
4405 rules. Returns NULL if there is no such minimal symbol. Names
4406 prefixed with "standard__" are handled specially: "standard__" is
4407 first stripped off, and only static and global symbols are searched. */
4408
4409 struct minimal_symbol *
4410 ada_lookup_simple_minsym (const char *name)
4411 {
4412 struct objfile *objfile;
4413 struct minimal_symbol *msymbol;
4414 const int wild_match = should_use_wild_match (name);
4415
4416 /* Special case: If the user specifies a symbol name inside package
4417 Standard, do a non-wild matching of the symbol name without
4418 the "standard__" prefix. This was primarily introduced in order
4419 to allow the user to specifically access the standard exceptions
4420 using, for instance, Standard.Constraint_Error when Constraint_Error
4421 is ambiguous (due to the user defining its own Constraint_Error
4422 entity inside its program). */
4423 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4424 name += sizeof ("standard__") - 1;
4425
4426 ALL_MSYMBOLS (objfile, msymbol)
4427 {
4428 if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4429 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4430 return msymbol;
4431 }
4432
4433 return NULL;
4434 }
4435
4436 /* For all subprograms that statically enclose the subprogram of the
4437 selected frame, add symbols matching identifier NAME in DOMAIN
4438 and their blocks to the list of data in OBSTACKP, as for
4439 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4440 wildcard prefix. */
4441
4442 static void
4443 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4444 const char *name, domain_enum namespace,
4445 int wild_match)
4446 {
4447 }
4448
4449 /* True if TYPE is definitely an artificial type supplied to a symbol
4450 for which no debugging information was given in the symbol file. */
4451
4452 static int
4453 is_nondebugging_type (struct type *type)
4454 {
4455 const char *name = ada_type_name (type);
4456
4457 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4458 }
4459
4460 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4461 that are deemed "identical" for practical purposes.
4462
4463 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4464 types and that their number of enumerals is identical (in other
4465 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4466
4467 static int
4468 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4469 {
4470 int i;
4471
4472 /* The heuristic we use here is fairly conservative. We consider
4473 that 2 enumerate types are identical if they have the same
4474 number of enumerals and that all enumerals have the same
4475 underlying value and name. */
4476
4477 /* All enums in the type should have an identical underlying value. */
4478 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4479 if (TYPE_FIELD_BITPOS (type1, i) != TYPE_FIELD_BITPOS (type2, i))
4480 return 0;
4481
4482 /* All enumerals should also have the same name (modulo any numerical
4483 suffix). */
4484 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4485 {
4486 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4487 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4488 int len_1 = strlen (name_1);
4489 int len_2 = strlen (name_2);
4490
4491 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4492 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4493 if (len_1 != len_2
4494 || strncmp (TYPE_FIELD_NAME (type1, i),
4495 TYPE_FIELD_NAME (type2, i),
4496 len_1) != 0)
4497 return 0;
4498 }
4499
4500 return 1;
4501 }
4502
4503 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4504 that are deemed "identical" for practical purposes. Sometimes,
4505 enumerals are not strictly identical, but their types are so similar
4506 that they can be considered identical.
4507
4508 For instance, consider the following code:
4509
4510 type Color is (Black, Red, Green, Blue, White);
4511 type RGB_Color is new Color range Red .. Blue;
4512
4513 Type RGB_Color is a subrange of an implicit type which is a copy
4514 of type Color. If we call that implicit type RGB_ColorB ("B" is
4515 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4516 As a result, when an expression references any of the enumeral
4517 by name (Eg. "print green"), the expression is technically
4518 ambiguous and the user should be asked to disambiguate. But
4519 doing so would only hinder the user, since it wouldn't matter
4520 what choice he makes, the outcome would always be the same.
4521 So, for practical purposes, we consider them as the same. */
4522
4523 static int
4524 symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4525 {
4526 int i;
4527
4528 /* Before performing a thorough comparison check of each type,
4529 we perform a series of inexpensive checks. We expect that these
4530 checks will quickly fail in the vast majority of cases, and thus
4531 help prevent the unnecessary use of a more expensive comparison.
4532 Said comparison also expects us to make some of these checks
4533 (see ada_identical_enum_types_p). */
4534
4535 /* Quick check: All symbols should have an enum type. */
4536 for (i = 0; i < nsyms; i++)
4537 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4538 return 0;
4539
4540 /* Quick check: They should all have the same value. */
4541 for (i = 1; i < nsyms; i++)
4542 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4543 return 0;
4544
4545 /* Quick check: They should all have the same number of enumerals. */
4546 for (i = 1; i < nsyms; i++)
4547 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4548 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4549 return 0;
4550
4551 /* All the sanity checks passed, so we might have a set of
4552 identical enumeration types. Perform a more complete
4553 comparison of the type of each symbol. */
4554 for (i = 1; i < nsyms; i++)
4555 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4556 SYMBOL_TYPE (syms[0].sym)))
4557 return 0;
4558
4559 return 1;
4560 }
4561
4562 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4563 duplicate other symbols in the list (The only case I know of where
4564 this happens is when object files containing stabs-in-ecoff are
4565 linked with files containing ordinary ecoff debugging symbols (or no
4566 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4567 Returns the number of items in the modified list. */
4568
4569 static int
4570 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4571 {
4572 int i, j;
4573
4574 /* We should never be called with less than 2 symbols, as there
4575 cannot be any extra symbol in that case. But it's easy to
4576 handle, since we have nothing to do in that case. */
4577 if (nsyms < 2)
4578 return nsyms;
4579
4580 i = 0;
4581 while (i < nsyms)
4582 {
4583 int remove_p = 0;
4584
4585 /* If two symbols have the same name and one of them is a stub type,
4586 the get rid of the stub. */
4587
4588 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4589 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4590 {
4591 for (j = 0; j < nsyms; j++)
4592 {
4593 if (j != i
4594 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4595 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4596 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4597 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4598 remove_p = 1;
4599 }
4600 }
4601
4602 /* Two symbols with the same name, same class and same address
4603 should be identical. */
4604
4605 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4606 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4607 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4608 {
4609 for (j = 0; j < nsyms; j += 1)
4610 {
4611 if (i != j
4612 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4613 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4614 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4615 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4616 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4617 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4618 remove_p = 1;
4619 }
4620 }
4621
4622 if (remove_p)
4623 {
4624 for (j = i + 1; j < nsyms; j += 1)
4625 syms[j - 1] = syms[j];
4626 nsyms -= 1;
4627 }
4628
4629 i += 1;
4630 }
4631
4632 /* If all the remaining symbols are identical enumerals, then
4633 just keep the first one and discard the rest.
4634
4635 Unlike what we did previously, we do not discard any entry
4636 unless they are ALL identical. This is because the symbol
4637 comparison is not a strict comparison, but rather a practical
4638 comparison. If all symbols are considered identical, then
4639 we can just go ahead and use the first one and discard the rest.
4640 But if we cannot reduce the list to a single element, we have
4641 to ask the user to disambiguate anyways. And if we have to
4642 present a multiple-choice menu, it's less confusing if the list
4643 isn't missing some choices that were identical and yet distinct. */
4644 if (symbols_are_identical_enums (syms, nsyms))
4645 nsyms = 1;
4646
4647 return nsyms;
4648 }
4649
4650 /* Given a type that corresponds to a renaming entity, use the type name
4651 to extract the scope (package name or function name, fully qualified,
4652 and following the GNAT encoding convention) where this renaming has been
4653 defined. The string returned needs to be deallocated after use. */
4654
4655 static char *
4656 xget_renaming_scope (struct type *renaming_type)
4657 {
4658 /* The renaming types adhere to the following convention:
4659 <scope>__<rename>___<XR extension>.
4660 So, to extract the scope, we search for the "___XR" extension,
4661 and then backtrack until we find the first "__". */
4662
4663 const char *name = type_name_no_tag (renaming_type);
4664 char *suffix = strstr (name, "___XR");
4665 char *last;
4666 int scope_len;
4667 char *scope;
4668
4669 /* Now, backtrack a bit until we find the first "__". Start looking
4670 at suffix - 3, as the <rename> part is at least one character long. */
4671
4672 for (last = suffix - 3; last > name; last--)
4673 if (last[0] == '_' && last[1] == '_')
4674 break;
4675
4676 /* Make a copy of scope and return it. */
4677
4678 scope_len = last - name;
4679 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4680
4681 strncpy (scope, name, scope_len);
4682 scope[scope_len] = '\0';
4683
4684 return scope;
4685 }
4686
4687 /* Return nonzero if NAME corresponds to a package name. */
4688
4689 static int
4690 is_package_name (const char *name)
4691 {
4692 /* Here, We take advantage of the fact that no symbols are generated
4693 for packages, while symbols are generated for each function.
4694 So the condition for NAME represent a package becomes equivalent
4695 to NAME not existing in our list of symbols. There is only one
4696 small complication with library-level functions (see below). */
4697
4698 char *fun_name;
4699
4700 /* If it is a function that has not been defined at library level,
4701 then we should be able to look it up in the symbols. */
4702 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4703 return 0;
4704
4705 /* Library-level function names start with "_ada_". See if function
4706 "_ada_" followed by NAME can be found. */
4707
4708 /* Do a quick check that NAME does not contain "__", since library-level
4709 functions names cannot contain "__" in them. */
4710 if (strstr (name, "__") != NULL)
4711 return 0;
4712
4713 fun_name = xstrprintf ("_ada_%s", name);
4714
4715 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4716 }
4717
4718 /* Return nonzero if SYM corresponds to a renaming entity that is
4719 not visible from FUNCTION_NAME. */
4720
4721 static int
4722 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
4723 {
4724 char *scope;
4725
4726 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4727 return 0;
4728
4729 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4730
4731 make_cleanup (xfree, scope);
4732
4733 /* If the rename has been defined in a package, then it is visible. */
4734 if (is_package_name (scope))
4735 return 0;
4736
4737 /* Check that the rename is in the current function scope by checking
4738 that its name starts with SCOPE. */
4739
4740 /* If the function name starts with "_ada_", it means that it is
4741 a library-level function. Strip this prefix before doing the
4742 comparison, as the encoding for the renaming does not contain
4743 this prefix. */
4744 if (strncmp (function_name, "_ada_", 5) == 0)
4745 function_name += 5;
4746
4747 return (strncmp (function_name, scope, strlen (scope)) != 0);
4748 }
4749
4750 /* Remove entries from SYMS that corresponds to a renaming entity that
4751 is not visible from the function associated with CURRENT_BLOCK or
4752 that is superfluous due to the presence of more specific renaming
4753 information. Places surviving symbols in the initial entries of
4754 SYMS and returns the number of surviving symbols.
4755
4756 Rationale:
4757 First, in cases where an object renaming is implemented as a
4758 reference variable, GNAT may produce both the actual reference
4759 variable and the renaming encoding. In this case, we discard the
4760 latter.
4761
4762 Second, GNAT emits a type following a specified encoding for each renaming
4763 entity. Unfortunately, STABS currently does not support the definition
4764 of types that are local to a given lexical block, so all renamings types
4765 are emitted at library level. As a consequence, if an application
4766 contains two renaming entities using the same name, and a user tries to
4767 print the value of one of these entities, the result of the ada symbol
4768 lookup will also contain the wrong renaming type.
4769
4770 This function partially covers for this limitation by attempting to
4771 remove from the SYMS list renaming symbols that should be visible
4772 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4773 method with the current information available. The implementation
4774 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4775
4776 - When the user tries to print a rename in a function while there
4777 is another rename entity defined in a package: Normally, the
4778 rename in the function has precedence over the rename in the
4779 package, so the latter should be removed from the list. This is
4780 currently not the case.
4781
4782 - This function will incorrectly remove valid renames if
4783 the CURRENT_BLOCK corresponds to a function which symbol name
4784 has been changed by an "Export" pragma. As a consequence,
4785 the user will be unable to print such rename entities. */
4786
4787 static int
4788 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4789 int nsyms, const struct block *current_block)
4790 {
4791 struct symbol *current_function;
4792 const char *current_function_name;
4793 int i;
4794 int is_new_style_renaming;
4795
4796 /* If there is both a renaming foo___XR... encoded as a variable and
4797 a simple variable foo in the same block, discard the latter.
4798 First, zero out such symbols, then compress. */
4799 is_new_style_renaming = 0;
4800 for (i = 0; i < nsyms; i += 1)
4801 {
4802 struct symbol *sym = syms[i].sym;
4803 struct block *block = syms[i].block;
4804 const char *name;
4805 const char *suffix;
4806
4807 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4808 continue;
4809 name = SYMBOL_LINKAGE_NAME (sym);
4810 suffix = strstr (name, "___XR");
4811
4812 if (suffix != NULL)
4813 {
4814 int name_len = suffix - name;
4815 int j;
4816
4817 is_new_style_renaming = 1;
4818 for (j = 0; j < nsyms; j += 1)
4819 if (i != j && syms[j].sym != NULL
4820 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4821 name_len) == 0
4822 && block == syms[j].block)
4823 syms[j].sym = NULL;
4824 }
4825 }
4826 if (is_new_style_renaming)
4827 {
4828 int j, k;
4829
4830 for (j = k = 0; j < nsyms; j += 1)
4831 if (syms[j].sym != NULL)
4832 {
4833 syms[k] = syms[j];
4834 k += 1;
4835 }
4836 return k;
4837 }
4838
4839 /* Extract the function name associated to CURRENT_BLOCK.
4840 Abort if unable to do so. */
4841
4842 if (current_block == NULL)
4843 return nsyms;
4844
4845 current_function = block_linkage_function (current_block);
4846 if (current_function == NULL)
4847 return nsyms;
4848
4849 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4850 if (current_function_name == NULL)
4851 return nsyms;
4852
4853 /* Check each of the symbols, and remove it from the list if it is
4854 a type corresponding to a renaming that is out of the scope of
4855 the current block. */
4856
4857 i = 0;
4858 while (i < nsyms)
4859 {
4860 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4861 == ADA_OBJECT_RENAMING
4862 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4863 {
4864 int j;
4865
4866 for (j = i + 1; j < nsyms; j += 1)
4867 syms[j - 1] = syms[j];
4868 nsyms -= 1;
4869 }
4870 else
4871 i += 1;
4872 }
4873
4874 return nsyms;
4875 }
4876
4877 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4878 whose name and domain match NAME and DOMAIN respectively.
4879 If no match was found, then extend the search to "enclosing"
4880 routines (in other words, if we're inside a nested function,
4881 search the symbols defined inside the enclosing functions).
4882
4883 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4884
4885 static void
4886 ada_add_local_symbols (struct obstack *obstackp, const char *name,
4887 struct block *block, domain_enum domain,
4888 int wild_match)
4889 {
4890 int block_depth = 0;
4891
4892 while (block != NULL)
4893 {
4894 block_depth += 1;
4895 ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4896
4897 /* If we found a non-function match, assume that's the one. */
4898 if (is_nonfunction (defns_collected (obstackp, 0),
4899 num_defns_collected (obstackp)))
4900 return;
4901
4902 block = BLOCK_SUPERBLOCK (block);
4903 }
4904
4905 /* If no luck so far, try to find NAME as a local symbol in some lexically
4906 enclosing subprogram. */
4907 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4908 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4909 }
4910
4911 /* An object of this type is used as the user_data argument when
4912 calling the map_matching_symbols method. */
4913
4914 struct match_data
4915 {
4916 struct objfile *objfile;
4917 struct obstack *obstackp;
4918 struct symbol *arg_sym;
4919 int found_sym;
4920 };
4921
4922 /* A callback for add_matching_symbols that adds SYM, found in BLOCK,
4923 to a list of symbols. DATA0 is a pointer to a struct match_data *
4924 containing the obstack that collects the symbol list, the file that SYM
4925 must come from, a flag indicating whether a non-argument symbol has
4926 been found in the current block, and the last argument symbol
4927 passed in SYM within the current block (if any). When SYM is null,
4928 marking the end of a block, the argument symbol is added if no
4929 other has been found. */
4930
4931 static int
4932 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
4933 {
4934 struct match_data *data = (struct match_data *) data0;
4935
4936 if (sym == NULL)
4937 {
4938 if (!data->found_sym && data->arg_sym != NULL)
4939 add_defn_to_vec (data->obstackp,
4940 fixup_symbol_section (data->arg_sym, data->objfile),
4941 block);
4942 data->found_sym = 0;
4943 data->arg_sym = NULL;
4944 }
4945 else
4946 {
4947 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4948 return 0;
4949 else if (SYMBOL_IS_ARGUMENT (sym))
4950 data->arg_sym = sym;
4951 else
4952 {
4953 data->found_sym = 1;
4954 add_defn_to_vec (data->obstackp,
4955 fixup_symbol_section (sym, data->objfile),
4956 block);
4957 }
4958 }
4959 return 0;
4960 }
4961
4962 /* Compare STRING1 to STRING2, with results as for strcmp.
4963 Compatible with strcmp_iw in that strcmp_iw (STRING1, STRING2) <= 0
4964 implies compare_names (STRING1, STRING2) (they may differ as to
4965 what symbols compare equal). */
4966
4967 static int
4968 compare_names (const char *string1, const char *string2)
4969 {
4970 while (*string1 != '\0' && *string2 != '\0')
4971 {
4972 if (isspace (*string1) || isspace (*string2))
4973 return strcmp_iw_ordered (string1, string2);
4974 if (*string1 != *string2)
4975 break;
4976 string1 += 1;
4977 string2 += 1;
4978 }
4979 switch (*string1)
4980 {
4981 case '(':
4982 return strcmp_iw_ordered (string1, string2);
4983 case '_':
4984 if (*string2 == '\0')
4985 {
4986 if (is_name_suffix (string1))
4987 return 0;
4988 else
4989 return 1;
4990 }
4991 /* FALLTHROUGH */
4992 default:
4993 if (*string2 == '(')
4994 return strcmp_iw_ordered (string1, string2);
4995 else
4996 return *string1 - *string2;
4997 }
4998 }
4999
5000 /* Add to OBSTACKP all non-local symbols whose name and domain match
5001 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5002 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5003
5004 static void
5005 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5006 domain_enum domain, int global,
5007 int is_wild_match)
5008 {
5009 struct objfile *objfile;
5010 struct match_data data;
5011
5012 memset (&data, 0, sizeof data);
5013 data.obstackp = obstackp;
5014
5015 ALL_OBJFILES (objfile)
5016 {
5017 data.objfile = objfile;
5018
5019 if (is_wild_match)
5020 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
5021 aux_add_nonlocal_symbols, &data,
5022 wild_match, NULL);
5023 else
5024 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
5025 aux_add_nonlocal_symbols, &data,
5026 full_match, compare_names);
5027 }
5028
5029 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5030 {
5031 ALL_OBJFILES (objfile)
5032 {
5033 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
5034 strcpy (name1, "_ada_");
5035 strcpy (name1 + sizeof ("_ada_") - 1, name);
5036 data.objfile = objfile;
5037 objfile->sf->qf->map_matching_symbols (name1, domain,
5038 objfile, global,
5039 aux_add_nonlocal_symbols,
5040 &data,
5041 full_match, compare_names);
5042 }
5043 }
5044 }
5045
5046 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
5047 scope and in global scopes, returning the number of matches. Sets
5048 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5049 indicating the symbols found and the blocks and symbol tables (if
5050 any) in which they were found. This vector are transient---good only to
5051 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
5052 symbol match within the nest of blocks whose innermost member is BLOCK0,
5053 is the one match returned (no other matches in that or
5054 enclosing blocks is returned). If there are any matches in or
5055 surrounding BLOCK0, then these alone are returned. Otherwise, if
5056 FULL_SEARCH is non-zero, then the search extends to global and
5057 file-scope (static) symbol tables.
5058 Names prefixed with "standard__" are handled specially: "standard__"
5059 is first stripped off, and only static and global symbols are searched. */
5060
5061 int
5062 ada_lookup_symbol_list (const char *name0, const struct block *block0,
5063 domain_enum namespace,
5064 struct ada_symbol_info **results,
5065 int full_search)
5066 {
5067 struct symbol *sym;
5068 struct block *block;
5069 const char *name;
5070 const int wild_match = should_use_wild_match (name0);
5071 int cacheIfUnique;
5072 int ndefns;
5073
5074 obstack_free (&symbol_list_obstack, NULL);
5075 obstack_init (&symbol_list_obstack);
5076
5077 cacheIfUnique = 0;
5078
5079 /* Search specified block and its superiors. */
5080
5081 name = name0;
5082 block = (struct block *) block0; /* FIXME: No cast ought to be
5083 needed, but adding const will
5084 have a cascade effect. */
5085
5086 /* Special case: If the user specifies a symbol name inside package
5087 Standard, do a non-wild matching of the symbol name without
5088 the "standard__" prefix. This was primarily introduced in order
5089 to allow the user to specifically access the standard exceptions
5090 using, for instance, Standard.Constraint_Error when Constraint_Error
5091 is ambiguous (due to the user defining its own Constraint_Error
5092 entity inside its program). */
5093 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
5094 {
5095 block = NULL;
5096 name = name0 + sizeof ("standard__") - 1;
5097 }
5098
5099 /* Check the non-global symbols. If we have ANY match, then we're done. */
5100
5101 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
5102 wild_match);
5103 if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search)
5104 goto done;
5105
5106 /* No non-global symbols found. Check our cache to see if we have
5107 already performed this search before. If we have, then return
5108 the same result. */
5109
5110 cacheIfUnique = 1;
5111 if (lookup_cached_symbol (name0, namespace, &sym, &block))
5112 {
5113 if (sym != NULL)
5114 add_defn_to_vec (&symbol_list_obstack, sym, block);
5115 goto done;
5116 }
5117
5118 /* Search symbols from all global blocks. */
5119
5120 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
5121 wild_match);
5122
5123 /* Now add symbols from all per-file blocks if we've gotten no hits
5124 (not strictly correct, but perhaps better than an error). */
5125
5126 if (num_defns_collected (&symbol_list_obstack) == 0)
5127 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
5128 wild_match);
5129
5130 done:
5131 ndefns = num_defns_collected (&symbol_list_obstack);
5132 *results = defns_collected (&symbol_list_obstack, 1);
5133
5134 ndefns = remove_extra_symbols (*results, ndefns);
5135
5136 if (ndefns == 0 && full_search)
5137 cache_symbol (name0, namespace, NULL, NULL);
5138
5139 if (ndefns == 1 && full_search && cacheIfUnique)
5140 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
5141
5142 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
5143
5144 return ndefns;
5145 }
5146
5147 /* If NAME is the name of an entity, return a string that should
5148 be used to look that entity up in Ada units. This string should
5149 be deallocated after use using xfree.
5150
5151 NAME can have any form that the "break" or "print" commands might
5152 recognize. In other words, it does not have to be the "natural"
5153 name, or the "encoded" name. */
5154
5155 char *
5156 ada_name_for_lookup (const char *name)
5157 {
5158 char *canon;
5159 int nlen = strlen (name);
5160
5161 if (name[0] == '<' && name[nlen - 1] == '>')
5162 {
5163 canon = xmalloc (nlen - 1);
5164 memcpy (canon, name + 1, nlen - 2);
5165 canon[nlen - 2] = '\0';
5166 }
5167 else
5168 canon = xstrdup (ada_encode (ada_fold_name (name)));
5169 return canon;
5170 }
5171
5172 /* Implementation of the la_iterate_over_symbols method. */
5173
5174 static void
5175 ada_iterate_over_symbols (const struct block *block,
5176 const char *name, domain_enum domain,
5177 symbol_found_callback_ftype *callback,
5178 void *data)
5179 {
5180 int ndefs, i;
5181 struct ada_symbol_info *results;
5182
5183 ndefs = ada_lookup_symbol_list (name, block, domain, &results, 0);
5184 for (i = 0; i < ndefs; ++i)
5185 {
5186 if (! (*callback) (results[i].sym, data))
5187 break;
5188 }
5189 }
5190
5191 struct symbol *
5192 ada_lookup_encoded_symbol (const char *name, const struct block *block0,
5193 domain_enum namespace, struct block **block_found)
5194 {
5195 struct ada_symbol_info *candidates;
5196 int n_candidates;
5197
5198 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates,
5199 1);
5200
5201 if (n_candidates == 0)
5202 return NULL;
5203
5204 if (block_found != NULL)
5205 *block_found = candidates[0].block;
5206
5207 return fixup_symbol_section (candidates[0].sym, NULL);
5208 }
5209
5210 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5211 scope and in global scopes, or NULL if none. NAME is folded and
5212 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5213 choosing the first symbol if there are multiple choices.
5214 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
5215 table in which the symbol was found (in both cases, these
5216 assignments occur only if the pointers are non-null). */
5217 struct symbol *
5218 ada_lookup_symbol (const char *name, const struct block *block0,
5219 domain_enum namespace, int *is_a_field_of_this)
5220 {
5221 if (is_a_field_of_this != NULL)
5222 *is_a_field_of_this = 0;
5223
5224 return
5225 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5226 block0, namespace, NULL);
5227 }
5228
5229 static struct symbol *
5230 ada_lookup_symbol_nonlocal (const char *name,
5231 const struct block *block,
5232 const domain_enum domain)
5233 {
5234 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5235 }
5236
5237
5238 /* True iff STR is a possible encoded suffix of a normal Ada name
5239 that is to be ignored for matching purposes. Suffixes of parallel
5240 names (e.g., XVE) are not included here. Currently, the possible suffixes
5241 are given by any of the regular expressions:
5242
5243 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5244 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5245 TKB [subprogram suffix for task bodies]
5246 _E[0-9]+[bs]$ [protected object entry suffixes]
5247 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5248
5249 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5250 match is performed. This sequence is used to differentiate homonyms,
5251 is an optional part of a valid name suffix. */
5252
5253 static int
5254 is_name_suffix (const char *str)
5255 {
5256 int k;
5257 const char *matching;
5258 const int len = strlen (str);
5259
5260 /* Skip optional leading __[0-9]+. */
5261
5262 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5263 {
5264 str += 3;
5265 while (isdigit (str[0]))
5266 str += 1;
5267 }
5268
5269 /* [.$][0-9]+ */
5270
5271 if (str[0] == '.' || str[0] == '$')
5272 {
5273 matching = str + 1;
5274 while (isdigit (matching[0]))
5275 matching += 1;
5276 if (matching[0] == '\0')
5277 return 1;
5278 }
5279
5280 /* ___[0-9]+ */
5281
5282 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5283 {
5284 matching = str + 3;
5285 while (isdigit (matching[0]))
5286 matching += 1;
5287 if (matching[0] == '\0')
5288 return 1;
5289 }
5290
5291 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5292
5293 if (strcmp (str, "TKB") == 0)
5294 return 1;
5295
5296 #if 0
5297 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5298 with a N at the end. Unfortunately, the compiler uses the same
5299 convention for other internal types it creates. So treating
5300 all entity names that end with an "N" as a name suffix causes
5301 some regressions. For instance, consider the case of an enumerated
5302 type. To support the 'Image attribute, it creates an array whose
5303 name ends with N.
5304 Having a single character like this as a suffix carrying some
5305 information is a bit risky. Perhaps we should change the encoding
5306 to be something like "_N" instead. In the meantime, do not do
5307 the following check. */
5308 /* Protected Object Subprograms */
5309 if (len == 1 && str [0] == 'N')
5310 return 1;
5311 #endif
5312
5313 /* _E[0-9]+[bs]$ */
5314 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5315 {
5316 matching = str + 3;
5317 while (isdigit (matching[0]))
5318 matching += 1;
5319 if ((matching[0] == 'b' || matching[0] == 's')
5320 && matching [1] == '\0')
5321 return 1;
5322 }
5323
5324 /* ??? We should not modify STR directly, as we are doing below. This
5325 is fine in this case, but may become problematic later if we find
5326 that this alternative did not work, and want to try matching
5327 another one from the begining of STR. Since we modified it, we
5328 won't be able to find the begining of the string anymore! */
5329 if (str[0] == 'X')
5330 {
5331 str += 1;
5332 while (str[0] != '_' && str[0] != '\0')
5333 {
5334 if (str[0] != 'n' && str[0] != 'b')
5335 return 0;
5336 str += 1;
5337 }
5338 }
5339
5340 if (str[0] == '\000')
5341 return 1;
5342
5343 if (str[0] == '_')
5344 {
5345 if (str[1] != '_' || str[2] == '\000')
5346 return 0;
5347 if (str[2] == '_')
5348 {
5349 if (strcmp (str + 3, "JM") == 0)
5350 return 1;
5351 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5352 the LJM suffix in favor of the JM one. But we will
5353 still accept LJM as a valid suffix for a reasonable
5354 amount of time, just to allow ourselves to debug programs
5355 compiled using an older version of GNAT. */
5356 if (strcmp (str + 3, "LJM") == 0)
5357 return 1;
5358 if (str[3] != 'X')
5359 return 0;
5360 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5361 || str[4] == 'U' || str[4] == 'P')
5362 return 1;
5363 if (str[4] == 'R' && str[5] != 'T')
5364 return 1;
5365 return 0;
5366 }
5367 if (!isdigit (str[2]))
5368 return 0;
5369 for (k = 3; str[k] != '\0'; k += 1)
5370 if (!isdigit (str[k]) && str[k] != '_')
5371 return 0;
5372 return 1;
5373 }
5374 if (str[0] == '$' && isdigit (str[1]))
5375 {
5376 for (k = 2; str[k] != '\0'; k += 1)
5377 if (!isdigit (str[k]) && str[k] != '_')
5378 return 0;
5379 return 1;
5380 }
5381 return 0;
5382 }
5383
5384 /* Return non-zero if the string starting at NAME and ending before
5385 NAME_END contains no capital letters. */
5386
5387 static int
5388 is_valid_name_for_wild_match (const char *name0)
5389 {
5390 const char *decoded_name = ada_decode (name0);
5391 int i;
5392
5393 /* If the decoded name starts with an angle bracket, it means that
5394 NAME0 does not follow the GNAT encoding format. It should then
5395 not be allowed as a possible wild match. */
5396 if (decoded_name[0] == '<')
5397 return 0;
5398
5399 for (i=0; decoded_name[i] != '\0'; i++)
5400 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5401 return 0;
5402
5403 return 1;
5404 }
5405
5406 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5407 that could start a simple name. Assumes that *NAMEP points into
5408 the string beginning at NAME0. */
5409
5410 static int
5411 advance_wild_match (const char **namep, const char *name0, int target0)
5412 {
5413 const char *name = *namep;
5414
5415 while (1)
5416 {
5417 int t0, t1;
5418
5419 t0 = *name;
5420 if (t0 == '_')
5421 {
5422 t1 = name[1];
5423 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5424 {
5425 name += 1;
5426 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5427 break;
5428 else
5429 name += 1;
5430 }
5431 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5432 || name[2] == target0))
5433 {
5434 name += 2;
5435 break;
5436 }
5437 else
5438 return 0;
5439 }
5440 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5441 name += 1;
5442 else
5443 return 0;
5444 }
5445
5446 *namep = name;
5447 return 1;
5448 }
5449
5450 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5451 informational suffixes of NAME (i.e., for which is_name_suffix is
5452 true). Assumes that PATN is a lower-cased Ada simple name. */
5453
5454 static int
5455 wild_match (const char *name, const char *patn)
5456 {
5457 const char *p, *n;
5458 const char *name0 = name;
5459
5460 while (1)
5461 {
5462 const char *match = name;
5463
5464 if (*name == *patn)
5465 {
5466 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5467 if (*p != *name)
5468 break;
5469 if (*p == '\0' && is_name_suffix (name))
5470 return match != name0 && !is_valid_name_for_wild_match (name0);
5471
5472 if (name[-1] == '_')
5473 name -= 1;
5474 }
5475 if (!advance_wild_match (&name, name0, *patn))
5476 return 1;
5477 }
5478 }
5479
5480 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5481 informational suffix. */
5482
5483 static int
5484 full_match (const char *sym_name, const char *search_name)
5485 {
5486 return !match_name (sym_name, search_name, 0);
5487 }
5488
5489
5490 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5491 vector *defn_symbols, updating the list of symbols in OBSTACKP
5492 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5493 OBJFILE is the section containing BLOCK.
5494 SYMTAB is recorded with each symbol added. */
5495
5496 static void
5497 ada_add_block_symbols (struct obstack *obstackp,
5498 struct block *block, const char *name,
5499 domain_enum domain, struct objfile *objfile,
5500 int wild)
5501 {
5502 struct dict_iterator iter;
5503 int name_len = strlen (name);
5504 /* A matching argument symbol, if any. */
5505 struct symbol *arg_sym;
5506 /* Set true when we find a matching non-argument symbol. */
5507 int found_sym;
5508 struct symbol *sym;
5509
5510 arg_sym = NULL;
5511 found_sym = 0;
5512 if (wild)
5513 {
5514 for (sym = dict_iter_match_first (BLOCK_DICT (block), name,
5515 wild_match, &iter);
5516 sym != NULL; sym = dict_iter_match_next (name, wild_match, &iter))
5517 {
5518 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5519 SYMBOL_DOMAIN (sym), domain)
5520 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
5521 {
5522 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5523 continue;
5524 else if (SYMBOL_IS_ARGUMENT (sym))
5525 arg_sym = sym;
5526 else
5527 {
5528 found_sym = 1;
5529 add_defn_to_vec (obstackp,
5530 fixup_symbol_section (sym, objfile),
5531 block);
5532 }
5533 }
5534 }
5535 }
5536 else
5537 {
5538 for (sym = dict_iter_match_first (BLOCK_DICT (block), name,
5539 full_match, &iter);
5540 sym != NULL; sym = dict_iter_match_next (name, full_match, &iter))
5541 {
5542 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5543 SYMBOL_DOMAIN (sym), domain))
5544 {
5545 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5546 {
5547 if (SYMBOL_IS_ARGUMENT (sym))
5548 arg_sym = sym;
5549 else
5550 {
5551 found_sym = 1;
5552 add_defn_to_vec (obstackp,
5553 fixup_symbol_section (sym, objfile),
5554 block);
5555 }
5556 }
5557 }
5558 }
5559 }
5560
5561 if (!found_sym && arg_sym != NULL)
5562 {
5563 add_defn_to_vec (obstackp,
5564 fixup_symbol_section (arg_sym, objfile),
5565 block);
5566 }
5567
5568 if (!wild)
5569 {
5570 arg_sym = NULL;
5571 found_sym = 0;
5572
5573 ALL_BLOCK_SYMBOLS (block, iter, sym)
5574 {
5575 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5576 SYMBOL_DOMAIN (sym), domain))
5577 {
5578 int cmp;
5579
5580 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5581 if (cmp == 0)
5582 {
5583 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5584 if (cmp == 0)
5585 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5586 name_len);
5587 }
5588
5589 if (cmp == 0
5590 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5591 {
5592 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5593 {
5594 if (SYMBOL_IS_ARGUMENT (sym))
5595 arg_sym = sym;
5596 else
5597 {
5598 found_sym = 1;
5599 add_defn_to_vec (obstackp,
5600 fixup_symbol_section (sym, objfile),
5601 block);
5602 }
5603 }
5604 }
5605 }
5606 }
5607
5608 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5609 They aren't parameters, right? */
5610 if (!found_sym && arg_sym != NULL)
5611 {
5612 add_defn_to_vec (obstackp,
5613 fixup_symbol_section (arg_sym, objfile),
5614 block);
5615 }
5616 }
5617 }
5618 \f
5619
5620 /* Symbol Completion */
5621
5622 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5623 name in a form that's appropriate for the completion. The result
5624 does not need to be deallocated, but is only good until the next call.
5625
5626 TEXT_LEN is equal to the length of TEXT.
5627 Perform a wild match if WILD_MATCH is set.
5628 ENCODED should be set if TEXT represents the start of a symbol name
5629 in its encoded form. */
5630
5631 static const char *
5632 symbol_completion_match (const char *sym_name,
5633 const char *text, int text_len,
5634 int wild_match, int encoded)
5635 {
5636 const int verbatim_match = (text[0] == '<');
5637 int match = 0;
5638
5639 if (verbatim_match)
5640 {
5641 /* Strip the leading angle bracket. */
5642 text = text + 1;
5643 text_len--;
5644 }
5645
5646 /* First, test against the fully qualified name of the symbol. */
5647
5648 if (strncmp (sym_name, text, text_len) == 0)
5649 match = 1;
5650
5651 if (match && !encoded)
5652 {
5653 /* One needed check before declaring a positive match is to verify
5654 that iff we are doing a verbatim match, the decoded version
5655 of the symbol name starts with '<'. Otherwise, this symbol name
5656 is not a suitable completion. */
5657 const char *sym_name_copy = sym_name;
5658 int has_angle_bracket;
5659
5660 sym_name = ada_decode (sym_name);
5661 has_angle_bracket = (sym_name[0] == '<');
5662 match = (has_angle_bracket == verbatim_match);
5663 sym_name = sym_name_copy;
5664 }
5665
5666 if (match && !verbatim_match)
5667 {
5668 /* When doing non-verbatim match, another check that needs to
5669 be done is to verify that the potentially matching symbol name
5670 does not include capital letters, because the ada-mode would
5671 not be able to understand these symbol names without the
5672 angle bracket notation. */
5673 const char *tmp;
5674
5675 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5676 if (*tmp != '\0')
5677 match = 0;
5678 }
5679
5680 /* Second: Try wild matching... */
5681
5682 if (!match && wild_match)
5683 {
5684 /* Since we are doing wild matching, this means that TEXT
5685 may represent an unqualified symbol name. We therefore must
5686 also compare TEXT against the unqualified name of the symbol. */
5687 sym_name = ada_unqualified_name (ada_decode (sym_name));
5688
5689 if (strncmp (sym_name, text, text_len) == 0)
5690 match = 1;
5691 }
5692
5693 /* Finally: If we found a mach, prepare the result to return. */
5694
5695 if (!match)
5696 return NULL;
5697
5698 if (verbatim_match)
5699 sym_name = add_angle_brackets (sym_name);
5700
5701 if (!encoded)
5702 sym_name = ada_decode (sym_name);
5703
5704 return sym_name;
5705 }
5706
5707 /* A companion function to ada_make_symbol_completion_list().
5708 Check if SYM_NAME represents a symbol which name would be suitable
5709 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5710 it is appended at the end of the given string vector SV.
5711
5712 ORIG_TEXT is the string original string from the user command
5713 that needs to be completed. WORD is the entire command on which
5714 completion should be performed. These two parameters are used to
5715 determine which part of the symbol name should be added to the
5716 completion vector.
5717 if WILD_MATCH is set, then wild matching is performed.
5718 ENCODED should be set if TEXT represents a symbol name in its
5719 encoded formed (in which case the completion should also be
5720 encoded). */
5721
5722 static void
5723 symbol_completion_add (VEC(char_ptr) **sv,
5724 const char *sym_name,
5725 const char *text, int text_len,
5726 const char *orig_text, const char *word,
5727 int wild_match, int encoded)
5728 {
5729 const char *match = symbol_completion_match (sym_name, text, text_len,
5730 wild_match, encoded);
5731 char *completion;
5732
5733 if (match == NULL)
5734 return;
5735
5736 /* We found a match, so add the appropriate completion to the given
5737 string vector. */
5738
5739 if (word == orig_text)
5740 {
5741 completion = xmalloc (strlen (match) + 5);
5742 strcpy (completion, match);
5743 }
5744 else if (word > orig_text)
5745 {
5746 /* Return some portion of sym_name. */
5747 completion = xmalloc (strlen (match) + 5);
5748 strcpy (completion, match + (word - orig_text));
5749 }
5750 else
5751 {
5752 /* Return some of ORIG_TEXT plus sym_name. */
5753 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5754 strncpy (completion, word, orig_text - word);
5755 completion[orig_text - word] = '\0';
5756 strcat (completion, match);
5757 }
5758
5759 VEC_safe_push (char_ptr, *sv, completion);
5760 }
5761
5762 /* An object of this type is passed as the user_data argument to the
5763 expand_partial_symbol_names method. */
5764 struct add_partial_datum
5765 {
5766 VEC(char_ptr) **completions;
5767 char *text;
5768 int text_len;
5769 char *text0;
5770 char *word;
5771 int wild_match;
5772 int encoded;
5773 };
5774
5775 /* A callback for expand_partial_symbol_names. */
5776 static int
5777 ada_expand_partial_symbol_name (const char *name, void *user_data)
5778 {
5779 struct add_partial_datum *data = user_data;
5780
5781 return symbol_completion_match (name, data->text, data->text_len,
5782 data->wild_match, data->encoded) != NULL;
5783 }
5784
5785 /* Return a list of possible symbol names completing TEXT0. The list
5786 is NULL terminated. WORD is the entire command on which completion
5787 is made. */
5788
5789 static char **
5790 ada_make_symbol_completion_list (char *text0, char *word)
5791 {
5792 char *text;
5793 int text_len;
5794 int wild_match;
5795 int encoded;
5796 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5797 struct symbol *sym;
5798 struct symtab *s;
5799 struct minimal_symbol *msymbol;
5800 struct objfile *objfile;
5801 struct block *b, *surrounding_static_block = 0;
5802 int i;
5803 struct dict_iterator iter;
5804
5805 if (text0[0] == '<')
5806 {
5807 text = xstrdup (text0);
5808 make_cleanup (xfree, text);
5809 text_len = strlen (text);
5810 wild_match = 0;
5811 encoded = 1;
5812 }
5813 else
5814 {
5815 text = xstrdup (ada_encode (text0));
5816 make_cleanup (xfree, text);
5817 text_len = strlen (text);
5818 for (i = 0; i < text_len; i++)
5819 text[i] = tolower (text[i]);
5820
5821 encoded = (strstr (text0, "__") != NULL);
5822 /* If the name contains a ".", then the user is entering a fully
5823 qualified entity name, and the match must not be done in wild
5824 mode. Similarly, if the user wants to complete what looks like
5825 an encoded name, the match must not be done in wild mode. */
5826 wild_match = (strchr (text0, '.') == NULL && !encoded);
5827 }
5828
5829 /* First, look at the partial symtab symbols. */
5830 {
5831 struct add_partial_datum data;
5832
5833 data.completions = &completions;
5834 data.text = text;
5835 data.text_len = text_len;
5836 data.text0 = text0;
5837 data.word = word;
5838 data.wild_match = wild_match;
5839 data.encoded = encoded;
5840 expand_partial_symbol_names (ada_expand_partial_symbol_name, &data);
5841 }
5842
5843 /* At this point scan through the misc symbol vectors and add each
5844 symbol you find to the list. Eventually we want to ignore
5845 anything that isn't a text symbol (everything else will be
5846 handled by the psymtab code above). */
5847
5848 ALL_MSYMBOLS (objfile, msymbol)
5849 {
5850 QUIT;
5851 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5852 text, text_len, text0, word, wild_match, encoded);
5853 }
5854
5855 /* Search upwards from currently selected frame (so that we can
5856 complete on local vars. */
5857
5858 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5859 {
5860 if (!BLOCK_SUPERBLOCK (b))
5861 surrounding_static_block = b; /* For elmin of dups */
5862
5863 ALL_BLOCK_SYMBOLS (b, iter, sym)
5864 {
5865 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5866 text, text_len, text0, word,
5867 wild_match, encoded);
5868 }
5869 }
5870
5871 /* Go through the symtabs and check the externs and statics for
5872 symbols which match. */
5873
5874 ALL_SYMTABS (objfile, s)
5875 {
5876 QUIT;
5877 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5878 ALL_BLOCK_SYMBOLS (b, iter, sym)
5879 {
5880 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5881 text, text_len, text0, word,
5882 wild_match, encoded);
5883 }
5884 }
5885
5886 ALL_SYMTABS (objfile, s)
5887 {
5888 QUIT;
5889 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5890 /* Don't do this block twice. */
5891 if (b == surrounding_static_block)
5892 continue;
5893 ALL_BLOCK_SYMBOLS (b, iter, sym)
5894 {
5895 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5896 text, text_len, text0, word,
5897 wild_match, encoded);
5898 }
5899 }
5900
5901 /* Append the closing NULL entry. */
5902 VEC_safe_push (char_ptr, completions, NULL);
5903
5904 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5905 return the copy. It's unfortunate that we have to make a copy
5906 of an array that we're about to destroy, but there is nothing much
5907 we can do about it. Fortunately, it's typically not a very large
5908 array. */
5909 {
5910 const size_t completions_size =
5911 VEC_length (char_ptr, completions) * sizeof (char *);
5912 char **result = xmalloc (completions_size);
5913
5914 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5915
5916 VEC_free (char_ptr, completions);
5917 return result;
5918 }
5919 }
5920
5921 /* Field Access */
5922
5923 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5924 for tagged types. */
5925
5926 static int
5927 ada_is_dispatch_table_ptr_type (struct type *type)
5928 {
5929 const char *name;
5930
5931 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5932 return 0;
5933
5934 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5935 if (name == NULL)
5936 return 0;
5937
5938 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5939 }
5940
5941 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5942 to be invisible to users. */
5943
5944 int
5945 ada_is_ignored_field (struct type *type, int field_num)
5946 {
5947 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5948 return 1;
5949
5950 /* Check the name of that field. */
5951 {
5952 const char *name = TYPE_FIELD_NAME (type, field_num);
5953
5954 /* Anonymous field names should not be printed.
5955 brobecker/2007-02-20: I don't think this can actually happen
5956 but we don't want to print the value of annonymous fields anyway. */
5957 if (name == NULL)
5958 return 1;
5959
5960 /* Normally, fields whose name start with an underscore ("_")
5961 are fields that have been internally generated by the compiler,
5962 and thus should not be printed. The "_parent" field is special,
5963 however: This is a field internally generated by the compiler
5964 for tagged types, and it contains the components inherited from
5965 the parent type. This field should not be printed as is, but
5966 should not be ignored either. */
5967 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5968 return 1;
5969 }
5970
5971 /* If this is the dispatch table of a tagged type, then ignore. */
5972 if (ada_is_tagged_type (type, 1)
5973 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5974 return 1;
5975
5976 /* Not a special field, so it should not be ignored. */
5977 return 0;
5978 }
5979
5980 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5981 pointer or reference type whose ultimate target has a tag field. */
5982
5983 int
5984 ada_is_tagged_type (struct type *type, int refok)
5985 {
5986 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5987 }
5988
5989 /* True iff TYPE represents the type of X'Tag */
5990
5991 int
5992 ada_is_tag_type (struct type *type)
5993 {
5994 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5995 return 0;
5996 else
5997 {
5998 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5999
6000 return (name != NULL
6001 && strcmp (name, "ada__tags__dispatch_table") == 0);
6002 }
6003 }
6004
6005 /* The type of the tag on VAL. */
6006
6007 struct type *
6008 ada_tag_type (struct value *val)
6009 {
6010 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
6011 }
6012
6013 /* The value of the tag on VAL. */
6014
6015 struct value *
6016 ada_value_tag (struct value *val)
6017 {
6018 return ada_value_struct_elt (val, "_tag", 0);
6019 }
6020
6021 /* The value of the tag on the object of type TYPE whose contents are
6022 saved at VALADDR, if it is non-null, or is at memory address
6023 ADDRESS. */
6024
6025 static struct value *
6026 value_tag_from_contents_and_address (struct type *type,
6027 const gdb_byte *valaddr,
6028 CORE_ADDR address)
6029 {
6030 int tag_byte_offset;
6031 struct type *tag_type;
6032
6033 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6034 NULL, NULL, NULL))
6035 {
6036 const gdb_byte *valaddr1 = ((valaddr == NULL)
6037 ? NULL
6038 : valaddr + tag_byte_offset);
6039 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6040
6041 return value_from_contents_and_address (tag_type, valaddr1, address1);
6042 }
6043 return NULL;
6044 }
6045
6046 static struct type *
6047 type_from_tag (struct value *tag)
6048 {
6049 const char *type_name = ada_tag_name (tag);
6050
6051 if (type_name != NULL)
6052 return ada_find_any_type (ada_encode (type_name));
6053 return NULL;
6054 }
6055
6056 /* Return the "ada__tags__type_specific_data" type. */
6057
6058 static struct type *
6059 ada_get_tsd_type (struct inferior *inf)
6060 {
6061 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6062
6063 if (data->tsd_type == 0)
6064 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6065 return data->tsd_type;
6066 }
6067
6068 /* Return the TSD (type-specific data) associated to the given TAG.
6069 TAG is assumed to be the tag of a tagged-type entity.
6070
6071 May return NULL if we are unable to get the TSD. */
6072
6073 static struct value *
6074 ada_get_tsd_from_tag (struct value *tag)
6075 {
6076 struct value *val;
6077 struct type *type;
6078
6079 /* First option: The TSD is simply stored as a field of our TAG.
6080 Only older versions of GNAT would use this format, but we have
6081 to test it first, because there are no visible markers for
6082 the current approach except the absence of that field. */
6083
6084 val = ada_value_struct_elt (tag, "tsd", 1);
6085 if (val)
6086 return val;
6087
6088 /* Try the second representation for the dispatch table (in which
6089 there is no explicit 'tsd' field in the referent of the tag pointer,
6090 and instead the tsd pointer is stored just before the dispatch
6091 table. */
6092
6093 type = ada_get_tsd_type (current_inferior());
6094 if (type == NULL)
6095 return NULL;
6096 type = lookup_pointer_type (lookup_pointer_type (type));
6097 val = value_cast (type, tag);
6098 if (val == NULL)
6099 return NULL;
6100 return value_ind (value_ptradd (val, -1));
6101 }
6102
6103 /* Given the TSD of a tag (type-specific data), return a string
6104 containing the name of the associated type.
6105
6106 The returned value is good until the next call. May return NULL
6107 if we are unable to determine the tag name. */
6108
6109 static char *
6110 ada_tag_name_from_tsd (struct value *tsd)
6111 {
6112 static char name[1024];
6113 char *p;
6114 struct value *val;
6115
6116 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6117 if (val == NULL)
6118 return NULL;
6119 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6120 for (p = name; *p != '\0'; p += 1)
6121 if (isalpha (*p))
6122 *p = tolower (*p);
6123 return name;
6124 }
6125
6126 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6127 a C string.
6128
6129 Return NULL if the TAG is not an Ada tag, or if we were unable to
6130 determine the name of that tag. The result is good until the next
6131 call. */
6132
6133 const char *
6134 ada_tag_name (struct value *tag)
6135 {
6136 volatile struct gdb_exception e;
6137 char *name = NULL;
6138
6139 if (!ada_is_tag_type (value_type (tag)))
6140 return NULL;
6141
6142 /* It is perfectly possible that an exception be raised while trying
6143 to determine the TAG's name, even under normal circumstances:
6144 The associated variable may be uninitialized or corrupted, for
6145 instance. We do not let any exception propagate past this point.
6146 instead we return NULL.
6147
6148 We also do not print the error message either (which often is very
6149 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6150 the caller print a more meaningful message if necessary. */
6151 TRY_CATCH (e, RETURN_MASK_ERROR)
6152 {
6153 struct value *tsd = ada_get_tsd_from_tag (tag);
6154
6155 if (tsd != NULL)
6156 name = ada_tag_name_from_tsd (tsd);
6157 }
6158
6159 return name;
6160 }
6161
6162 /* The parent type of TYPE, or NULL if none. */
6163
6164 struct type *
6165 ada_parent_type (struct type *type)
6166 {
6167 int i;
6168
6169 type = ada_check_typedef (type);
6170
6171 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6172 return NULL;
6173
6174 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6175 if (ada_is_parent_field (type, i))
6176 {
6177 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6178
6179 /* If the _parent field is a pointer, then dereference it. */
6180 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6181 parent_type = TYPE_TARGET_TYPE (parent_type);
6182 /* If there is a parallel XVS type, get the actual base type. */
6183 parent_type = ada_get_base_type (parent_type);
6184
6185 return ada_check_typedef (parent_type);
6186 }
6187
6188 return NULL;
6189 }
6190
6191 /* True iff field number FIELD_NUM of structure type TYPE contains the
6192 parent-type (inherited) fields of a derived type. Assumes TYPE is
6193 a structure type with at least FIELD_NUM+1 fields. */
6194
6195 int
6196 ada_is_parent_field (struct type *type, int field_num)
6197 {
6198 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6199
6200 return (name != NULL
6201 && (strncmp (name, "PARENT", 6) == 0
6202 || strncmp (name, "_parent", 7) == 0));
6203 }
6204
6205 /* True iff field number FIELD_NUM of structure type TYPE is a
6206 transparent wrapper field (which should be silently traversed when doing
6207 field selection and flattened when printing). Assumes TYPE is a
6208 structure type with at least FIELD_NUM+1 fields. Such fields are always
6209 structures. */
6210
6211 int
6212 ada_is_wrapper_field (struct type *type, int field_num)
6213 {
6214 const char *name = TYPE_FIELD_NAME (type, field_num);
6215
6216 return (name != NULL
6217 && (strncmp (name, "PARENT", 6) == 0
6218 || strcmp (name, "REP") == 0
6219 || strncmp (name, "_parent", 7) == 0
6220 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6221 }
6222
6223 /* True iff field number FIELD_NUM of structure or union type TYPE
6224 is a variant wrapper. Assumes TYPE is a structure type with at least
6225 FIELD_NUM+1 fields. */
6226
6227 int
6228 ada_is_variant_part (struct type *type, int field_num)
6229 {
6230 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6231
6232 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6233 || (is_dynamic_field (type, field_num)
6234 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6235 == TYPE_CODE_UNION)));
6236 }
6237
6238 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6239 whose discriminants are contained in the record type OUTER_TYPE,
6240 returns the type of the controlling discriminant for the variant.
6241 May return NULL if the type could not be found. */
6242
6243 struct type *
6244 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6245 {
6246 char *name = ada_variant_discrim_name (var_type);
6247
6248 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
6249 }
6250
6251 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6252 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6253 represents a 'when others' clause; otherwise 0. */
6254
6255 int
6256 ada_is_others_clause (struct type *type, int field_num)
6257 {
6258 const char *name = TYPE_FIELD_NAME (type, field_num);
6259
6260 return (name != NULL && name[0] == 'O');
6261 }
6262
6263 /* Assuming that TYPE0 is the type of the variant part of a record,
6264 returns the name of the discriminant controlling the variant.
6265 The value is valid until the next call to ada_variant_discrim_name. */
6266
6267 char *
6268 ada_variant_discrim_name (struct type *type0)
6269 {
6270 static char *result = NULL;
6271 static size_t result_len = 0;
6272 struct type *type;
6273 const char *name;
6274 const char *discrim_end;
6275 const char *discrim_start;
6276
6277 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6278 type = TYPE_TARGET_TYPE (type0);
6279 else
6280 type = type0;
6281
6282 name = ada_type_name (type);
6283
6284 if (name == NULL || name[0] == '\000')
6285 return "";
6286
6287 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6288 discrim_end -= 1)
6289 {
6290 if (strncmp (discrim_end, "___XVN", 6) == 0)
6291 break;
6292 }
6293 if (discrim_end == name)
6294 return "";
6295
6296 for (discrim_start = discrim_end; discrim_start != name + 3;
6297 discrim_start -= 1)
6298 {
6299 if (discrim_start == name + 1)
6300 return "";
6301 if ((discrim_start > name + 3
6302 && strncmp (discrim_start - 3, "___", 3) == 0)
6303 || discrim_start[-1] == '.')
6304 break;
6305 }
6306
6307 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6308 strncpy (result, discrim_start, discrim_end - discrim_start);
6309 result[discrim_end - discrim_start] = '\0';
6310 return result;
6311 }
6312
6313 /* Scan STR for a subtype-encoded number, beginning at position K.
6314 Put the position of the character just past the number scanned in
6315 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6316 Return 1 if there was a valid number at the given position, and 0
6317 otherwise. A "subtype-encoded" number consists of the absolute value
6318 in decimal, followed by the letter 'm' to indicate a negative number.
6319 Assumes 0m does not occur. */
6320
6321 int
6322 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6323 {
6324 ULONGEST RU;
6325
6326 if (!isdigit (str[k]))
6327 return 0;
6328
6329 /* Do it the hard way so as not to make any assumption about
6330 the relationship of unsigned long (%lu scan format code) and
6331 LONGEST. */
6332 RU = 0;
6333 while (isdigit (str[k]))
6334 {
6335 RU = RU * 10 + (str[k] - '0');
6336 k += 1;
6337 }
6338
6339 if (str[k] == 'm')
6340 {
6341 if (R != NULL)
6342 *R = (-(LONGEST) (RU - 1)) - 1;
6343 k += 1;
6344 }
6345 else if (R != NULL)
6346 *R = (LONGEST) RU;
6347
6348 /* NOTE on the above: Technically, C does not say what the results of
6349 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6350 number representable as a LONGEST (although either would probably work
6351 in most implementations). When RU>0, the locution in the then branch
6352 above is always equivalent to the negative of RU. */
6353
6354 if (new_k != NULL)
6355 *new_k = k;
6356 return 1;
6357 }
6358
6359 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6360 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6361 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6362
6363 int
6364 ada_in_variant (LONGEST val, struct type *type, int field_num)
6365 {
6366 const char *name = TYPE_FIELD_NAME (type, field_num);
6367 int p;
6368
6369 p = 0;
6370 while (1)
6371 {
6372 switch (name[p])
6373 {
6374 case '\0':
6375 return 0;
6376 case 'S':
6377 {
6378 LONGEST W;
6379
6380 if (!ada_scan_number (name, p + 1, &W, &p))
6381 return 0;
6382 if (val == W)
6383 return 1;
6384 break;
6385 }
6386 case 'R':
6387 {
6388 LONGEST L, U;
6389
6390 if (!ada_scan_number (name, p + 1, &L, &p)
6391 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6392 return 0;
6393 if (val >= L && val <= U)
6394 return 1;
6395 break;
6396 }
6397 case 'O':
6398 return 1;
6399 default:
6400 return 0;
6401 }
6402 }
6403 }
6404
6405 /* FIXME: Lots of redundancy below. Try to consolidate. */
6406
6407 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6408 ARG_TYPE, extract and return the value of one of its (non-static)
6409 fields. FIELDNO says which field. Differs from value_primitive_field
6410 only in that it can handle packed values of arbitrary type. */
6411
6412 static struct value *
6413 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6414 struct type *arg_type)
6415 {
6416 struct type *type;
6417
6418 arg_type = ada_check_typedef (arg_type);
6419 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6420
6421 /* Handle packed fields. */
6422
6423 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6424 {
6425 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6426 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6427
6428 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6429 offset + bit_pos / 8,
6430 bit_pos % 8, bit_size, type);
6431 }
6432 else
6433 return value_primitive_field (arg1, offset, fieldno, arg_type);
6434 }
6435
6436 /* Find field with name NAME in object of type TYPE. If found,
6437 set the following for each argument that is non-null:
6438 - *FIELD_TYPE_P to the field's type;
6439 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6440 an object of that type;
6441 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6442 - *BIT_SIZE_P to its size in bits if the field is packed, and
6443 0 otherwise;
6444 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6445 fields up to but not including the desired field, or by the total
6446 number of fields if not found. A NULL value of NAME never
6447 matches; the function just counts visible fields in this case.
6448
6449 Returns 1 if found, 0 otherwise. */
6450
6451 static int
6452 find_struct_field (const char *name, struct type *type, int offset,
6453 struct type **field_type_p,
6454 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6455 int *index_p)
6456 {
6457 int i;
6458
6459 type = ada_check_typedef (type);
6460
6461 if (field_type_p != NULL)
6462 *field_type_p = NULL;
6463 if (byte_offset_p != NULL)
6464 *byte_offset_p = 0;
6465 if (bit_offset_p != NULL)
6466 *bit_offset_p = 0;
6467 if (bit_size_p != NULL)
6468 *bit_size_p = 0;
6469
6470 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6471 {
6472 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6473 int fld_offset = offset + bit_pos / 8;
6474 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6475
6476 if (t_field_name == NULL)
6477 continue;
6478
6479 else if (name != NULL && field_name_match (t_field_name, name))
6480 {
6481 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6482
6483 if (field_type_p != NULL)
6484 *field_type_p = TYPE_FIELD_TYPE (type, i);
6485 if (byte_offset_p != NULL)
6486 *byte_offset_p = fld_offset;
6487 if (bit_offset_p != NULL)
6488 *bit_offset_p = bit_pos % 8;
6489 if (bit_size_p != NULL)
6490 *bit_size_p = bit_size;
6491 return 1;
6492 }
6493 else if (ada_is_wrapper_field (type, i))
6494 {
6495 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6496 field_type_p, byte_offset_p, bit_offset_p,
6497 bit_size_p, index_p))
6498 return 1;
6499 }
6500 else if (ada_is_variant_part (type, i))
6501 {
6502 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6503 fixed type?? */
6504 int j;
6505 struct type *field_type
6506 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6507
6508 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6509 {
6510 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6511 fld_offset
6512 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6513 field_type_p, byte_offset_p,
6514 bit_offset_p, bit_size_p, index_p))
6515 return 1;
6516 }
6517 }
6518 else if (index_p != NULL)
6519 *index_p += 1;
6520 }
6521 return 0;
6522 }
6523
6524 /* Number of user-visible fields in record type TYPE. */
6525
6526 static int
6527 num_visible_fields (struct type *type)
6528 {
6529 int n;
6530
6531 n = 0;
6532 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6533 return n;
6534 }
6535
6536 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6537 and search in it assuming it has (class) type TYPE.
6538 If found, return value, else return NULL.
6539
6540 Searches recursively through wrapper fields (e.g., '_parent'). */
6541
6542 static struct value *
6543 ada_search_struct_field (char *name, struct value *arg, int offset,
6544 struct type *type)
6545 {
6546 int i;
6547
6548 type = ada_check_typedef (type);
6549 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6550 {
6551 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6552
6553 if (t_field_name == NULL)
6554 continue;
6555
6556 else if (field_name_match (t_field_name, name))
6557 return ada_value_primitive_field (arg, offset, i, type);
6558
6559 else if (ada_is_wrapper_field (type, i))
6560 {
6561 struct value *v = /* Do not let indent join lines here. */
6562 ada_search_struct_field (name, arg,
6563 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6564 TYPE_FIELD_TYPE (type, i));
6565
6566 if (v != NULL)
6567 return v;
6568 }
6569
6570 else if (ada_is_variant_part (type, i))
6571 {
6572 /* PNH: Do we ever get here? See find_struct_field. */
6573 int j;
6574 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6575 i));
6576 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6577
6578 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6579 {
6580 struct value *v = ada_search_struct_field /* Force line
6581 break. */
6582 (name, arg,
6583 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6584 TYPE_FIELD_TYPE (field_type, j));
6585
6586 if (v != NULL)
6587 return v;
6588 }
6589 }
6590 }
6591 return NULL;
6592 }
6593
6594 static struct value *ada_index_struct_field_1 (int *, struct value *,
6595 int, struct type *);
6596
6597
6598 /* Return field #INDEX in ARG, where the index is that returned by
6599 * find_struct_field through its INDEX_P argument. Adjust the address
6600 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6601 * If found, return value, else return NULL. */
6602
6603 static struct value *
6604 ada_index_struct_field (int index, struct value *arg, int offset,
6605 struct type *type)
6606 {
6607 return ada_index_struct_field_1 (&index, arg, offset, type);
6608 }
6609
6610
6611 /* Auxiliary function for ada_index_struct_field. Like
6612 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6613 * *INDEX_P. */
6614
6615 static struct value *
6616 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6617 struct type *type)
6618 {
6619 int i;
6620 type = ada_check_typedef (type);
6621
6622 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6623 {
6624 if (TYPE_FIELD_NAME (type, i) == NULL)
6625 continue;
6626 else if (ada_is_wrapper_field (type, i))
6627 {
6628 struct value *v = /* Do not let indent join lines here. */
6629 ada_index_struct_field_1 (index_p, arg,
6630 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6631 TYPE_FIELD_TYPE (type, i));
6632
6633 if (v != NULL)
6634 return v;
6635 }
6636
6637 else if (ada_is_variant_part (type, i))
6638 {
6639 /* PNH: Do we ever get here? See ada_search_struct_field,
6640 find_struct_field. */
6641 error (_("Cannot assign this kind of variant record"));
6642 }
6643 else if (*index_p == 0)
6644 return ada_value_primitive_field (arg, offset, i, type);
6645 else
6646 *index_p -= 1;
6647 }
6648 return NULL;
6649 }
6650
6651 /* Given ARG, a value of type (pointer or reference to a)*
6652 structure/union, extract the component named NAME from the ultimate
6653 target structure/union and return it as a value with its
6654 appropriate type.
6655
6656 The routine searches for NAME among all members of the structure itself
6657 and (recursively) among all members of any wrapper members
6658 (e.g., '_parent').
6659
6660 If NO_ERR, then simply return NULL in case of error, rather than
6661 calling error. */
6662
6663 struct value *
6664 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6665 {
6666 struct type *t, *t1;
6667 struct value *v;
6668
6669 v = NULL;
6670 t1 = t = ada_check_typedef (value_type (arg));
6671 if (TYPE_CODE (t) == TYPE_CODE_REF)
6672 {
6673 t1 = TYPE_TARGET_TYPE (t);
6674 if (t1 == NULL)
6675 goto BadValue;
6676 t1 = ada_check_typedef (t1);
6677 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6678 {
6679 arg = coerce_ref (arg);
6680 t = t1;
6681 }
6682 }
6683
6684 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6685 {
6686 t1 = TYPE_TARGET_TYPE (t);
6687 if (t1 == NULL)
6688 goto BadValue;
6689 t1 = ada_check_typedef (t1);
6690 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6691 {
6692 arg = value_ind (arg);
6693 t = t1;
6694 }
6695 else
6696 break;
6697 }
6698
6699 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6700 goto BadValue;
6701
6702 if (t1 == t)
6703 v = ada_search_struct_field (name, arg, 0, t);
6704 else
6705 {
6706 int bit_offset, bit_size, byte_offset;
6707 struct type *field_type;
6708 CORE_ADDR address;
6709
6710 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6711 address = value_as_address (arg);
6712 else
6713 address = unpack_pointer (t, value_contents (arg));
6714
6715 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6716 if (find_struct_field (name, t1, 0,
6717 &field_type, &byte_offset, &bit_offset,
6718 &bit_size, NULL))
6719 {
6720 if (bit_size != 0)
6721 {
6722 if (TYPE_CODE (t) == TYPE_CODE_REF)
6723 arg = ada_coerce_ref (arg);
6724 else
6725 arg = ada_value_ind (arg);
6726 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6727 bit_offset, bit_size,
6728 field_type);
6729 }
6730 else
6731 v = value_at_lazy (field_type, address + byte_offset);
6732 }
6733 }
6734
6735 if (v != NULL || no_err)
6736 return v;
6737 else
6738 error (_("There is no member named %s."), name);
6739
6740 BadValue:
6741 if (no_err)
6742 return NULL;
6743 else
6744 error (_("Attempt to extract a component of "
6745 "a value that is not a record."));
6746 }
6747
6748 /* Given a type TYPE, look up the type of the component of type named NAME.
6749 If DISPP is non-null, add its byte displacement from the beginning of a
6750 structure (pointed to by a value) of type TYPE to *DISPP (does not
6751 work for packed fields).
6752
6753 Matches any field whose name has NAME as a prefix, possibly
6754 followed by "___".
6755
6756 TYPE can be either a struct or union. If REFOK, TYPE may also
6757 be a (pointer or reference)+ to a struct or union, and the
6758 ultimate target type will be searched.
6759
6760 Looks recursively into variant clauses and parent types.
6761
6762 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6763 TYPE is not a type of the right kind. */
6764
6765 static struct type *
6766 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6767 int noerr, int *dispp)
6768 {
6769 int i;
6770
6771 if (name == NULL)
6772 goto BadName;
6773
6774 if (refok && type != NULL)
6775 while (1)
6776 {
6777 type = ada_check_typedef (type);
6778 if (TYPE_CODE (type) != TYPE_CODE_PTR
6779 && TYPE_CODE (type) != TYPE_CODE_REF)
6780 break;
6781 type = TYPE_TARGET_TYPE (type);
6782 }
6783
6784 if (type == NULL
6785 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6786 && TYPE_CODE (type) != TYPE_CODE_UNION))
6787 {
6788 if (noerr)
6789 return NULL;
6790 else
6791 {
6792 target_terminal_ours ();
6793 gdb_flush (gdb_stdout);
6794 if (type == NULL)
6795 error (_("Type (null) is not a structure or union type"));
6796 else
6797 {
6798 /* XXX: type_sprint */
6799 fprintf_unfiltered (gdb_stderr, _("Type "));
6800 type_print (type, "", gdb_stderr, -1);
6801 error (_(" is not a structure or union type"));
6802 }
6803 }
6804 }
6805
6806 type = to_static_fixed_type (type);
6807
6808 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6809 {
6810 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6811 struct type *t;
6812 int disp;
6813
6814 if (t_field_name == NULL)
6815 continue;
6816
6817 else if (field_name_match (t_field_name, name))
6818 {
6819 if (dispp != NULL)
6820 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6821 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6822 }
6823
6824 else if (ada_is_wrapper_field (type, i))
6825 {
6826 disp = 0;
6827 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6828 0, 1, &disp);
6829 if (t != NULL)
6830 {
6831 if (dispp != NULL)
6832 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6833 return t;
6834 }
6835 }
6836
6837 else if (ada_is_variant_part (type, i))
6838 {
6839 int j;
6840 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6841 i));
6842
6843 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6844 {
6845 /* FIXME pnh 2008/01/26: We check for a field that is
6846 NOT wrapped in a struct, since the compiler sometimes
6847 generates these for unchecked variant types. Revisit
6848 if the compiler changes this practice. */
6849 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
6850 disp = 0;
6851 if (v_field_name != NULL
6852 && field_name_match (v_field_name, name))
6853 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6854 else
6855 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
6856 j),
6857 name, 0, 1, &disp);
6858
6859 if (t != NULL)
6860 {
6861 if (dispp != NULL)
6862 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6863 return t;
6864 }
6865 }
6866 }
6867
6868 }
6869
6870 BadName:
6871 if (!noerr)
6872 {
6873 target_terminal_ours ();
6874 gdb_flush (gdb_stdout);
6875 if (name == NULL)
6876 {
6877 /* XXX: type_sprint */
6878 fprintf_unfiltered (gdb_stderr, _("Type "));
6879 type_print (type, "", gdb_stderr, -1);
6880 error (_(" has no component named <null>"));
6881 }
6882 else
6883 {
6884 /* XXX: type_sprint */
6885 fprintf_unfiltered (gdb_stderr, _("Type "));
6886 type_print (type, "", gdb_stderr, -1);
6887 error (_(" has no component named %s"), name);
6888 }
6889 }
6890
6891 return NULL;
6892 }
6893
6894 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6895 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6896 represents an unchecked union (that is, the variant part of a
6897 record that is named in an Unchecked_Union pragma). */
6898
6899 static int
6900 is_unchecked_variant (struct type *var_type, struct type *outer_type)
6901 {
6902 char *discrim_name = ada_variant_discrim_name (var_type);
6903
6904 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6905 == NULL);
6906 }
6907
6908
6909 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6910 within a value of type OUTER_TYPE that is stored in GDB at
6911 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6912 numbering from 0) is applicable. Returns -1 if none are. */
6913
6914 int
6915 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6916 const gdb_byte *outer_valaddr)
6917 {
6918 int others_clause;
6919 int i;
6920 char *discrim_name = ada_variant_discrim_name (var_type);
6921 struct value *outer;
6922 struct value *discrim;
6923 LONGEST discrim_val;
6924
6925 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6926 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6927 if (discrim == NULL)
6928 return -1;
6929 discrim_val = value_as_long (discrim);
6930
6931 others_clause = -1;
6932 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6933 {
6934 if (ada_is_others_clause (var_type, i))
6935 others_clause = i;
6936 else if (ada_in_variant (discrim_val, var_type, i))
6937 return i;
6938 }
6939
6940 return others_clause;
6941 }
6942 \f
6943
6944
6945 /* Dynamic-Sized Records */
6946
6947 /* Strategy: The type ostensibly attached to a value with dynamic size
6948 (i.e., a size that is not statically recorded in the debugging
6949 data) does not accurately reflect the size or layout of the value.
6950 Our strategy is to convert these values to values with accurate,
6951 conventional types that are constructed on the fly. */
6952
6953 /* There is a subtle and tricky problem here. In general, we cannot
6954 determine the size of dynamic records without its data. However,
6955 the 'struct value' data structure, which GDB uses to represent
6956 quantities in the inferior process (the target), requires the size
6957 of the type at the time of its allocation in order to reserve space
6958 for GDB's internal copy of the data. That's why the
6959 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6960 rather than struct value*s.
6961
6962 However, GDB's internal history variables ($1, $2, etc.) are
6963 struct value*s containing internal copies of the data that are not, in
6964 general, the same as the data at their corresponding addresses in
6965 the target. Fortunately, the types we give to these values are all
6966 conventional, fixed-size types (as per the strategy described
6967 above), so that we don't usually have to perform the
6968 'to_fixed_xxx_type' conversions to look at their values.
6969 Unfortunately, there is one exception: if one of the internal
6970 history variables is an array whose elements are unconstrained
6971 records, then we will need to create distinct fixed types for each
6972 element selected. */
6973
6974 /* The upshot of all of this is that many routines take a (type, host
6975 address, target address) triple as arguments to represent a value.
6976 The host address, if non-null, is supposed to contain an internal
6977 copy of the relevant data; otherwise, the program is to consult the
6978 target at the target address. */
6979
6980 /* Assuming that VAL0 represents a pointer value, the result of
6981 dereferencing it. Differs from value_ind in its treatment of
6982 dynamic-sized types. */
6983
6984 struct value *
6985 ada_value_ind (struct value *val0)
6986 {
6987 struct value *val = value_ind (val0);
6988
6989 return ada_to_fixed_value (val);
6990 }
6991
6992 /* The value resulting from dereferencing any "reference to"
6993 qualifiers on VAL0. */
6994
6995 static struct value *
6996 ada_coerce_ref (struct value *val0)
6997 {
6998 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6999 {
7000 struct value *val = val0;
7001
7002 val = coerce_ref (val);
7003 return ada_to_fixed_value (val);
7004 }
7005 else
7006 return val0;
7007 }
7008
7009 /* Return OFF rounded upward if necessary to a multiple of
7010 ALIGNMENT (a power of 2). */
7011
7012 static unsigned int
7013 align_value (unsigned int off, unsigned int alignment)
7014 {
7015 return (off + alignment - 1) & ~(alignment - 1);
7016 }
7017
7018 /* Return the bit alignment required for field #F of template type TYPE. */
7019
7020 static unsigned int
7021 field_alignment (struct type *type, int f)
7022 {
7023 const char *name = TYPE_FIELD_NAME (type, f);
7024 int len;
7025 int align_offset;
7026
7027 /* The field name should never be null, unless the debugging information
7028 is somehow malformed. In this case, we assume the field does not
7029 require any alignment. */
7030 if (name == NULL)
7031 return 1;
7032
7033 len = strlen (name);
7034
7035 if (!isdigit (name[len - 1]))
7036 return 1;
7037
7038 if (isdigit (name[len - 2]))
7039 align_offset = len - 2;
7040 else
7041 align_offset = len - 1;
7042
7043 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
7044 return TARGET_CHAR_BIT;
7045
7046 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7047 }
7048
7049 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7050
7051 static struct symbol *
7052 ada_find_any_type_symbol (const char *name)
7053 {
7054 struct symbol *sym;
7055
7056 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7057 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7058 return sym;
7059
7060 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7061 return sym;
7062 }
7063
7064 /* Find a type named NAME. Ignores ambiguity. This routine will look
7065 solely for types defined by debug info, it will not search the GDB
7066 primitive types. */
7067
7068 static struct type *
7069 ada_find_any_type (const char *name)
7070 {
7071 struct symbol *sym = ada_find_any_type_symbol (name);
7072
7073 if (sym != NULL)
7074 return SYMBOL_TYPE (sym);
7075
7076 return NULL;
7077 }
7078
7079 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7080 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7081 symbol, in which case it is returned. Otherwise, this looks for
7082 symbols whose name is that of NAME_SYM suffixed with "___XR".
7083 Return symbol if found, and NULL otherwise. */
7084
7085 struct symbol *
7086 ada_find_renaming_symbol (struct symbol *name_sym, struct block *block)
7087 {
7088 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7089 struct symbol *sym;
7090
7091 if (strstr (name, "___XR") != NULL)
7092 return name_sym;
7093
7094 sym = find_old_style_renaming_symbol (name, block);
7095
7096 if (sym != NULL)
7097 return sym;
7098
7099 /* Not right yet. FIXME pnh 7/20/2007. */
7100 sym = ada_find_any_type_symbol (name);
7101 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7102 return sym;
7103 else
7104 return NULL;
7105 }
7106
7107 static struct symbol *
7108 find_old_style_renaming_symbol (const char *name, struct block *block)
7109 {
7110 const struct symbol *function_sym = block_linkage_function (block);
7111 char *rename;
7112
7113 if (function_sym != NULL)
7114 {
7115 /* If the symbol is defined inside a function, NAME is not fully
7116 qualified. This means we need to prepend the function name
7117 as well as adding the ``___XR'' suffix to build the name of
7118 the associated renaming symbol. */
7119 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7120 /* Function names sometimes contain suffixes used
7121 for instance to qualify nested subprograms. When building
7122 the XR type name, we need to make sure that this suffix is
7123 not included. So do not include any suffix in the function
7124 name length below. */
7125 int function_name_len = ada_name_prefix_len (function_name);
7126 const int rename_len = function_name_len + 2 /* "__" */
7127 + strlen (name) + 6 /* "___XR\0" */ ;
7128
7129 /* Strip the suffix if necessary. */
7130 ada_remove_trailing_digits (function_name, &function_name_len);
7131 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7132 ada_remove_Xbn_suffix (function_name, &function_name_len);
7133
7134 /* Library-level functions are a special case, as GNAT adds
7135 a ``_ada_'' prefix to the function name to avoid namespace
7136 pollution. However, the renaming symbols themselves do not
7137 have this prefix, so we need to skip this prefix if present. */
7138 if (function_name_len > 5 /* "_ada_" */
7139 && strstr (function_name, "_ada_") == function_name)
7140 {
7141 function_name += 5;
7142 function_name_len -= 5;
7143 }
7144
7145 rename = (char *) alloca (rename_len * sizeof (char));
7146 strncpy (rename, function_name, function_name_len);
7147 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7148 "__%s___XR", name);
7149 }
7150 else
7151 {
7152 const int rename_len = strlen (name) + 6;
7153
7154 rename = (char *) alloca (rename_len * sizeof (char));
7155 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
7156 }
7157
7158 return ada_find_any_type_symbol (rename);
7159 }
7160
7161 /* Because of GNAT encoding conventions, several GDB symbols may match a
7162 given type name. If the type denoted by TYPE0 is to be preferred to
7163 that of TYPE1 for purposes of type printing, return non-zero;
7164 otherwise return 0. */
7165
7166 int
7167 ada_prefer_type (struct type *type0, struct type *type1)
7168 {
7169 if (type1 == NULL)
7170 return 1;
7171 else if (type0 == NULL)
7172 return 0;
7173 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7174 return 1;
7175 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7176 return 0;
7177 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7178 return 1;
7179 else if (ada_is_constrained_packed_array_type (type0))
7180 return 1;
7181 else if (ada_is_array_descriptor_type (type0)
7182 && !ada_is_array_descriptor_type (type1))
7183 return 1;
7184 else
7185 {
7186 const char *type0_name = type_name_no_tag (type0);
7187 const char *type1_name = type_name_no_tag (type1);
7188
7189 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7190 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7191 return 1;
7192 }
7193 return 0;
7194 }
7195
7196 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
7197 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7198
7199 const char *
7200 ada_type_name (struct type *type)
7201 {
7202 if (type == NULL)
7203 return NULL;
7204 else if (TYPE_NAME (type) != NULL)
7205 return TYPE_NAME (type);
7206 else
7207 return TYPE_TAG_NAME (type);
7208 }
7209
7210 /* Search the list of "descriptive" types associated to TYPE for a type
7211 whose name is NAME. */
7212
7213 static struct type *
7214 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7215 {
7216 struct type *result;
7217
7218 /* If there no descriptive-type info, then there is no parallel type
7219 to be found. */
7220 if (!HAVE_GNAT_AUX_INFO (type))
7221 return NULL;
7222
7223 result = TYPE_DESCRIPTIVE_TYPE (type);
7224 while (result != NULL)
7225 {
7226 const char *result_name = ada_type_name (result);
7227
7228 if (result_name == NULL)
7229 {
7230 warning (_("unexpected null name on descriptive type"));
7231 return NULL;
7232 }
7233
7234 /* If the names match, stop. */
7235 if (strcmp (result_name, name) == 0)
7236 break;
7237
7238 /* Otherwise, look at the next item on the list, if any. */
7239 if (HAVE_GNAT_AUX_INFO (result))
7240 result = TYPE_DESCRIPTIVE_TYPE (result);
7241 else
7242 result = NULL;
7243 }
7244
7245 /* If we didn't find a match, see whether this is a packed array. With
7246 older compilers, the descriptive type information is either absent or
7247 irrelevant when it comes to packed arrays so the above lookup fails.
7248 Fall back to using a parallel lookup by name in this case. */
7249 if (result == NULL && ada_is_constrained_packed_array_type (type))
7250 return ada_find_any_type (name);
7251
7252 return result;
7253 }
7254
7255 /* Find a parallel type to TYPE with the specified NAME, using the
7256 descriptive type taken from the debugging information, if available,
7257 and otherwise using the (slower) name-based method. */
7258
7259 static struct type *
7260 ada_find_parallel_type_with_name (struct type *type, const char *name)
7261 {
7262 struct type *result = NULL;
7263
7264 if (HAVE_GNAT_AUX_INFO (type))
7265 result = find_parallel_type_by_descriptive_type (type, name);
7266 else
7267 result = ada_find_any_type (name);
7268
7269 return result;
7270 }
7271
7272 /* Same as above, but specify the name of the parallel type by appending
7273 SUFFIX to the name of TYPE. */
7274
7275 struct type *
7276 ada_find_parallel_type (struct type *type, const char *suffix)
7277 {
7278 char *name;
7279 const char *typename = ada_type_name (type);
7280 int len;
7281
7282 if (typename == NULL)
7283 return NULL;
7284
7285 len = strlen (typename);
7286
7287 name = (char *) alloca (len + strlen (suffix) + 1);
7288
7289 strcpy (name, typename);
7290 strcpy (name + len, suffix);
7291
7292 return ada_find_parallel_type_with_name (type, name);
7293 }
7294
7295 /* If TYPE is a variable-size record type, return the corresponding template
7296 type describing its fields. Otherwise, return NULL. */
7297
7298 static struct type *
7299 dynamic_template_type (struct type *type)
7300 {
7301 type = ada_check_typedef (type);
7302
7303 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
7304 || ada_type_name (type) == NULL)
7305 return NULL;
7306 else
7307 {
7308 int len = strlen (ada_type_name (type));
7309
7310 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7311 return type;
7312 else
7313 return ada_find_parallel_type (type, "___XVE");
7314 }
7315 }
7316
7317 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7318 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7319
7320 static int
7321 is_dynamic_field (struct type *templ_type, int field_num)
7322 {
7323 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7324
7325 return name != NULL
7326 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7327 && strstr (name, "___XVL") != NULL;
7328 }
7329
7330 /* The index of the variant field of TYPE, or -1 if TYPE does not
7331 represent a variant record type. */
7332
7333 static int
7334 variant_field_index (struct type *type)
7335 {
7336 int f;
7337
7338 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7339 return -1;
7340
7341 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7342 {
7343 if (ada_is_variant_part (type, f))
7344 return f;
7345 }
7346 return -1;
7347 }
7348
7349 /* A record type with no fields. */
7350
7351 static struct type *
7352 empty_record (struct type *template)
7353 {
7354 struct type *type = alloc_type_copy (template);
7355
7356 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7357 TYPE_NFIELDS (type) = 0;
7358 TYPE_FIELDS (type) = NULL;
7359 INIT_CPLUS_SPECIFIC (type);
7360 TYPE_NAME (type) = "<empty>";
7361 TYPE_TAG_NAME (type) = NULL;
7362 TYPE_LENGTH (type) = 0;
7363 return type;
7364 }
7365
7366 /* An ordinary record type (with fixed-length fields) that describes
7367 the value of type TYPE at VALADDR or ADDRESS (see comments at
7368 the beginning of this section) VAL according to GNAT conventions.
7369 DVAL0 should describe the (portion of a) record that contains any
7370 necessary discriminants. It should be NULL if value_type (VAL) is
7371 an outer-level type (i.e., as opposed to a branch of a variant.) A
7372 variant field (unless unchecked) is replaced by a particular branch
7373 of the variant.
7374
7375 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7376 length are not statically known are discarded. As a consequence,
7377 VALADDR, ADDRESS and DVAL0 are ignored.
7378
7379 NOTE: Limitations: For now, we assume that dynamic fields and
7380 variants occupy whole numbers of bytes. However, they need not be
7381 byte-aligned. */
7382
7383 struct type *
7384 ada_template_to_fixed_record_type_1 (struct type *type,
7385 const gdb_byte *valaddr,
7386 CORE_ADDR address, struct value *dval0,
7387 int keep_dynamic_fields)
7388 {
7389 struct value *mark = value_mark ();
7390 struct value *dval;
7391 struct type *rtype;
7392 int nfields, bit_len;
7393 int variant_field;
7394 long off;
7395 int fld_bit_len;
7396 int f;
7397
7398 /* Compute the number of fields in this record type that are going
7399 to be processed: unless keep_dynamic_fields, this includes only
7400 fields whose position and length are static will be processed. */
7401 if (keep_dynamic_fields)
7402 nfields = TYPE_NFIELDS (type);
7403 else
7404 {
7405 nfields = 0;
7406 while (nfields < TYPE_NFIELDS (type)
7407 && !ada_is_variant_part (type, nfields)
7408 && !is_dynamic_field (type, nfields))
7409 nfields++;
7410 }
7411
7412 rtype = alloc_type_copy (type);
7413 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7414 INIT_CPLUS_SPECIFIC (rtype);
7415 TYPE_NFIELDS (rtype) = nfields;
7416 TYPE_FIELDS (rtype) = (struct field *)
7417 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7418 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7419 TYPE_NAME (rtype) = ada_type_name (type);
7420 TYPE_TAG_NAME (rtype) = NULL;
7421 TYPE_FIXED_INSTANCE (rtype) = 1;
7422
7423 off = 0;
7424 bit_len = 0;
7425 variant_field = -1;
7426
7427 for (f = 0; f < nfields; f += 1)
7428 {
7429 off = align_value (off, field_alignment (type, f))
7430 + TYPE_FIELD_BITPOS (type, f);
7431 TYPE_FIELD_BITPOS (rtype, f) = off;
7432 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7433
7434 if (ada_is_variant_part (type, f))
7435 {
7436 variant_field = f;
7437 fld_bit_len = 0;
7438 }
7439 else if (is_dynamic_field (type, f))
7440 {
7441 const gdb_byte *field_valaddr = valaddr;
7442 CORE_ADDR field_address = address;
7443 struct type *field_type =
7444 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7445
7446 if (dval0 == NULL)
7447 {
7448 /* rtype's length is computed based on the run-time
7449 value of discriminants. If the discriminants are not
7450 initialized, the type size may be completely bogus and
7451 GDB may fail to allocate a value for it. So check the
7452 size first before creating the value. */
7453 check_size (rtype);
7454 dval = value_from_contents_and_address (rtype, valaddr, address);
7455 }
7456 else
7457 dval = dval0;
7458
7459 /* If the type referenced by this field is an aligner type, we need
7460 to unwrap that aligner type, because its size might not be set.
7461 Keeping the aligner type would cause us to compute the wrong
7462 size for this field, impacting the offset of the all the fields
7463 that follow this one. */
7464 if (ada_is_aligner_type (field_type))
7465 {
7466 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7467
7468 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7469 field_address = cond_offset_target (field_address, field_offset);
7470 field_type = ada_aligned_type (field_type);
7471 }
7472
7473 field_valaddr = cond_offset_host (field_valaddr,
7474 off / TARGET_CHAR_BIT);
7475 field_address = cond_offset_target (field_address,
7476 off / TARGET_CHAR_BIT);
7477
7478 /* Get the fixed type of the field. Note that, in this case,
7479 we do not want to get the real type out of the tag: if
7480 the current field is the parent part of a tagged record,
7481 we will get the tag of the object. Clearly wrong: the real
7482 type of the parent is not the real type of the child. We
7483 would end up in an infinite loop. */
7484 field_type = ada_get_base_type (field_type);
7485 field_type = ada_to_fixed_type (field_type, field_valaddr,
7486 field_address, dval, 0);
7487 /* If the field size is already larger than the maximum
7488 object size, then the record itself will necessarily
7489 be larger than the maximum object size. We need to make
7490 this check now, because the size might be so ridiculously
7491 large (due to an uninitialized variable in the inferior)
7492 that it would cause an overflow when adding it to the
7493 record size. */
7494 check_size (field_type);
7495
7496 TYPE_FIELD_TYPE (rtype, f) = field_type;
7497 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7498 /* The multiplication can potentially overflow. But because
7499 the field length has been size-checked just above, and
7500 assuming that the maximum size is a reasonable value,
7501 an overflow should not happen in practice. So rather than
7502 adding overflow recovery code to this already complex code,
7503 we just assume that it's not going to happen. */
7504 fld_bit_len =
7505 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7506 }
7507 else
7508 {
7509 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7510
7511 /* If our field is a typedef type (most likely a typedef of
7512 a fat pointer, encoding an array access), then we need to
7513 look at its target type to determine its characteristics.
7514 In particular, we would miscompute the field size if we took
7515 the size of the typedef (zero), instead of the size of
7516 the target type. */
7517 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7518 field_type = ada_typedef_target_type (field_type);
7519
7520 TYPE_FIELD_TYPE (rtype, f) = field_type;
7521 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7522 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7523 fld_bit_len =
7524 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7525 else
7526 fld_bit_len =
7527 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7528 }
7529 if (off + fld_bit_len > bit_len)
7530 bit_len = off + fld_bit_len;
7531 off += fld_bit_len;
7532 TYPE_LENGTH (rtype) =
7533 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7534 }
7535
7536 /* We handle the variant part, if any, at the end because of certain
7537 odd cases in which it is re-ordered so as NOT to be the last field of
7538 the record. This can happen in the presence of representation
7539 clauses. */
7540 if (variant_field >= 0)
7541 {
7542 struct type *branch_type;
7543
7544 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7545
7546 if (dval0 == NULL)
7547 dval = value_from_contents_and_address (rtype, valaddr, address);
7548 else
7549 dval = dval0;
7550
7551 branch_type =
7552 to_fixed_variant_branch_type
7553 (TYPE_FIELD_TYPE (type, variant_field),
7554 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7555 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7556 if (branch_type == NULL)
7557 {
7558 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7559 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7560 TYPE_NFIELDS (rtype) -= 1;
7561 }
7562 else
7563 {
7564 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7565 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7566 fld_bit_len =
7567 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7568 TARGET_CHAR_BIT;
7569 if (off + fld_bit_len > bit_len)
7570 bit_len = off + fld_bit_len;
7571 TYPE_LENGTH (rtype) =
7572 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7573 }
7574 }
7575
7576 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7577 should contain the alignment of that record, which should be a strictly
7578 positive value. If null or negative, then something is wrong, most
7579 probably in the debug info. In that case, we don't round up the size
7580 of the resulting type. If this record is not part of another structure,
7581 the current RTYPE length might be good enough for our purposes. */
7582 if (TYPE_LENGTH (type) <= 0)
7583 {
7584 if (TYPE_NAME (rtype))
7585 warning (_("Invalid type size for `%s' detected: %d."),
7586 TYPE_NAME (rtype), TYPE_LENGTH (type));
7587 else
7588 warning (_("Invalid type size for <unnamed> detected: %d."),
7589 TYPE_LENGTH (type));
7590 }
7591 else
7592 {
7593 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7594 TYPE_LENGTH (type));
7595 }
7596
7597 value_free_to_mark (mark);
7598 if (TYPE_LENGTH (rtype) > varsize_limit)
7599 error (_("record type with dynamic size is larger than varsize-limit"));
7600 return rtype;
7601 }
7602
7603 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7604 of 1. */
7605
7606 static struct type *
7607 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
7608 CORE_ADDR address, struct value *dval0)
7609 {
7610 return ada_template_to_fixed_record_type_1 (type, valaddr,
7611 address, dval0, 1);
7612 }
7613
7614 /* An ordinary record type in which ___XVL-convention fields and
7615 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7616 static approximations, containing all possible fields. Uses
7617 no runtime values. Useless for use in values, but that's OK,
7618 since the results are used only for type determinations. Works on both
7619 structs and unions. Representation note: to save space, we memorize
7620 the result of this function in the TYPE_TARGET_TYPE of the
7621 template type. */
7622
7623 static struct type *
7624 template_to_static_fixed_type (struct type *type0)
7625 {
7626 struct type *type;
7627 int nfields;
7628 int f;
7629
7630 if (TYPE_TARGET_TYPE (type0) != NULL)
7631 return TYPE_TARGET_TYPE (type0);
7632
7633 nfields = TYPE_NFIELDS (type0);
7634 type = type0;
7635
7636 for (f = 0; f < nfields; f += 1)
7637 {
7638 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
7639 struct type *new_type;
7640
7641 if (is_dynamic_field (type0, f))
7642 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7643 else
7644 new_type = static_unwrap_type (field_type);
7645 if (type == type0 && new_type != field_type)
7646 {
7647 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
7648 TYPE_CODE (type) = TYPE_CODE (type0);
7649 INIT_CPLUS_SPECIFIC (type);
7650 TYPE_NFIELDS (type) = nfields;
7651 TYPE_FIELDS (type) = (struct field *)
7652 TYPE_ALLOC (type, nfields * sizeof (struct field));
7653 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7654 sizeof (struct field) * nfields);
7655 TYPE_NAME (type) = ada_type_name (type0);
7656 TYPE_TAG_NAME (type) = NULL;
7657 TYPE_FIXED_INSTANCE (type) = 1;
7658 TYPE_LENGTH (type) = 0;
7659 }
7660 TYPE_FIELD_TYPE (type, f) = new_type;
7661 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7662 }
7663 return type;
7664 }
7665
7666 /* Given an object of type TYPE whose contents are at VALADDR and
7667 whose address in memory is ADDRESS, returns a revision of TYPE,
7668 which should be a non-dynamic-sized record, in which the variant
7669 part, if any, is replaced with the appropriate branch. Looks
7670 for discriminant values in DVAL0, which can be NULL if the record
7671 contains the necessary discriminant values. */
7672
7673 static struct type *
7674 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7675 CORE_ADDR address, struct value *dval0)
7676 {
7677 struct value *mark = value_mark ();
7678 struct value *dval;
7679 struct type *rtype;
7680 struct type *branch_type;
7681 int nfields = TYPE_NFIELDS (type);
7682 int variant_field = variant_field_index (type);
7683
7684 if (variant_field == -1)
7685 return type;
7686
7687 if (dval0 == NULL)
7688 dval = value_from_contents_and_address (type, valaddr, address);
7689 else
7690 dval = dval0;
7691
7692 rtype = alloc_type_copy (type);
7693 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7694 INIT_CPLUS_SPECIFIC (rtype);
7695 TYPE_NFIELDS (rtype) = nfields;
7696 TYPE_FIELDS (rtype) =
7697 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7698 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
7699 sizeof (struct field) * nfields);
7700 TYPE_NAME (rtype) = ada_type_name (type);
7701 TYPE_TAG_NAME (rtype) = NULL;
7702 TYPE_FIXED_INSTANCE (rtype) = 1;
7703 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7704
7705 branch_type = to_fixed_variant_branch_type
7706 (TYPE_FIELD_TYPE (type, variant_field),
7707 cond_offset_host (valaddr,
7708 TYPE_FIELD_BITPOS (type, variant_field)
7709 / TARGET_CHAR_BIT),
7710 cond_offset_target (address,
7711 TYPE_FIELD_BITPOS (type, variant_field)
7712 / TARGET_CHAR_BIT), dval);
7713 if (branch_type == NULL)
7714 {
7715 int f;
7716
7717 for (f = variant_field + 1; f < nfields; f += 1)
7718 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7719 TYPE_NFIELDS (rtype) -= 1;
7720 }
7721 else
7722 {
7723 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7724 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7725 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7726 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7727 }
7728 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7729
7730 value_free_to_mark (mark);
7731 return rtype;
7732 }
7733
7734 /* An ordinary record type (with fixed-length fields) that describes
7735 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7736 beginning of this section]. Any necessary discriminants' values
7737 should be in DVAL, a record value; it may be NULL if the object
7738 at ADDR itself contains any necessary discriminant values.
7739 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7740 values from the record are needed. Except in the case that DVAL,
7741 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7742 unchecked) is replaced by a particular branch of the variant.
7743
7744 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7745 is questionable and may be removed. It can arise during the
7746 processing of an unconstrained-array-of-record type where all the
7747 variant branches have exactly the same size. This is because in
7748 such cases, the compiler does not bother to use the XVS convention
7749 when encoding the record. I am currently dubious of this
7750 shortcut and suspect the compiler should be altered. FIXME. */
7751
7752 static struct type *
7753 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7754 CORE_ADDR address, struct value *dval)
7755 {
7756 struct type *templ_type;
7757
7758 if (TYPE_FIXED_INSTANCE (type0))
7759 return type0;
7760
7761 templ_type = dynamic_template_type (type0);
7762
7763 if (templ_type != NULL)
7764 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7765 else if (variant_field_index (type0) >= 0)
7766 {
7767 if (dval == NULL && valaddr == NULL && address == 0)
7768 return type0;
7769 return to_record_with_fixed_variant_part (type0, valaddr, address,
7770 dval);
7771 }
7772 else
7773 {
7774 TYPE_FIXED_INSTANCE (type0) = 1;
7775 return type0;
7776 }
7777
7778 }
7779
7780 /* An ordinary record type (with fixed-length fields) that describes
7781 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7782 union type. Any necessary discriminants' values should be in DVAL,
7783 a record value. That is, this routine selects the appropriate
7784 branch of the union at ADDR according to the discriminant value
7785 indicated in the union's type name. Returns VAR_TYPE0 itself if
7786 it represents a variant subject to a pragma Unchecked_Union. */
7787
7788 static struct type *
7789 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7790 CORE_ADDR address, struct value *dval)
7791 {
7792 int which;
7793 struct type *templ_type;
7794 struct type *var_type;
7795
7796 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7797 var_type = TYPE_TARGET_TYPE (var_type0);
7798 else
7799 var_type = var_type0;
7800
7801 templ_type = ada_find_parallel_type (var_type, "___XVU");
7802
7803 if (templ_type != NULL)
7804 var_type = templ_type;
7805
7806 if (is_unchecked_variant (var_type, value_type (dval)))
7807 return var_type0;
7808 which =
7809 ada_which_variant_applies (var_type,
7810 value_type (dval), value_contents (dval));
7811
7812 if (which < 0)
7813 return empty_record (var_type);
7814 else if (is_dynamic_field (var_type, which))
7815 return to_fixed_record_type
7816 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7817 valaddr, address, dval);
7818 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7819 return
7820 to_fixed_record_type
7821 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7822 else
7823 return TYPE_FIELD_TYPE (var_type, which);
7824 }
7825
7826 /* Assuming that TYPE0 is an array type describing the type of a value
7827 at ADDR, and that DVAL describes a record containing any
7828 discriminants used in TYPE0, returns a type for the value that
7829 contains no dynamic components (that is, no components whose sizes
7830 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7831 true, gives an error message if the resulting type's size is over
7832 varsize_limit. */
7833
7834 static struct type *
7835 to_fixed_array_type (struct type *type0, struct value *dval,
7836 int ignore_too_big)
7837 {
7838 struct type *index_type_desc;
7839 struct type *result;
7840 int constrained_packed_array_p;
7841
7842 type0 = ada_check_typedef (type0);
7843 if (TYPE_FIXED_INSTANCE (type0))
7844 return type0;
7845
7846 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7847 if (constrained_packed_array_p)
7848 type0 = decode_constrained_packed_array_type (type0);
7849
7850 index_type_desc = ada_find_parallel_type (type0, "___XA");
7851 ada_fixup_array_indexes_type (index_type_desc);
7852 if (index_type_desc == NULL)
7853 {
7854 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7855
7856 /* NOTE: elt_type---the fixed version of elt_type0---should never
7857 depend on the contents of the array in properly constructed
7858 debugging data. */
7859 /* Create a fixed version of the array element type.
7860 We're not providing the address of an element here,
7861 and thus the actual object value cannot be inspected to do
7862 the conversion. This should not be a problem, since arrays of
7863 unconstrained objects are not allowed. In particular, all
7864 the elements of an array of a tagged type should all be of
7865 the same type specified in the debugging info. No need to
7866 consult the object tag. */
7867 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7868
7869 /* Make sure we always create a new array type when dealing with
7870 packed array types, since we're going to fix-up the array
7871 type length and element bitsize a little further down. */
7872 if (elt_type0 == elt_type && !constrained_packed_array_p)
7873 result = type0;
7874 else
7875 result = create_array_type (alloc_type_copy (type0),
7876 elt_type, TYPE_INDEX_TYPE (type0));
7877 }
7878 else
7879 {
7880 int i;
7881 struct type *elt_type0;
7882
7883 elt_type0 = type0;
7884 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7885 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7886
7887 /* NOTE: result---the fixed version of elt_type0---should never
7888 depend on the contents of the array in properly constructed
7889 debugging data. */
7890 /* Create a fixed version of the array element type.
7891 We're not providing the address of an element here,
7892 and thus the actual object value cannot be inspected to do
7893 the conversion. This should not be a problem, since arrays of
7894 unconstrained objects are not allowed. In particular, all
7895 the elements of an array of a tagged type should all be of
7896 the same type specified in the debugging info. No need to
7897 consult the object tag. */
7898 result =
7899 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
7900
7901 elt_type0 = type0;
7902 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
7903 {
7904 struct type *range_type =
7905 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
7906
7907 result = create_array_type (alloc_type_copy (elt_type0),
7908 result, range_type);
7909 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7910 }
7911 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7912 error (_("array type with dynamic size is larger than varsize-limit"));
7913 }
7914
7915 /* We want to preserve the type name. This can be useful when
7916 trying to get the type name of a value that has already been
7917 printed (for instance, if the user did "print VAR; whatis $". */
7918 TYPE_NAME (result) = TYPE_NAME (type0);
7919
7920 if (constrained_packed_array_p)
7921 {
7922 /* So far, the resulting type has been created as if the original
7923 type was a regular (non-packed) array type. As a result, the
7924 bitsize of the array elements needs to be set again, and the array
7925 length needs to be recomputed based on that bitsize. */
7926 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
7927 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
7928
7929 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
7930 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
7931 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
7932 TYPE_LENGTH (result)++;
7933 }
7934
7935 TYPE_FIXED_INSTANCE (result) = 1;
7936 return result;
7937 }
7938
7939
7940 /* A standard type (containing no dynamically sized components)
7941 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7942 DVAL describes a record containing any discriminants used in TYPE0,
7943 and may be NULL if there are none, or if the object of type TYPE at
7944 ADDRESS or in VALADDR contains these discriminants.
7945
7946 If CHECK_TAG is not null, in the case of tagged types, this function
7947 attempts to locate the object's tag and use it to compute the actual
7948 type. However, when ADDRESS is null, we cannot use it to determine the
7949 location of the tag, and therefore compute the tagged type's actual type.
7950 So we return the tagged type without consulting the tag. */
7951
7952 static struct type *
7953 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
7954 CORE_ADDR address, struct value *dval, int check_tag)
7955 {
7956 type = ada_check_typedef (type);
7957 switch (TYPE_CODE (type))
7958 {
7959 default:
7960 return type;
7961 case TYPE_CODE_STRUCT:
7962 {
7963 struct type *static_type = to_static_fixed_type (type);
7964 struct type *fixed_record_type =
7965 to_fixed_record_type (type, valaddr, address, NULL);
7966
7967 /* If STATIC_TYPE is a tagged type and we know the object's address,
7968 then we can determine its tag, and compute the object's actual
7969 type from there. Note that we have to use the fixed record
7970 type (the parent part of the record may have dynamic fields
7971 and the way the location of _tag is expressed may depend on
7972 them). */
7973
7974 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
7975 {
7976 struct type *real_type =
7977 type_from_tag (value_tag_from_contents_and_address
7978 (fixed_record_type,
7979 valaddr,
7980 address));
7981
7982 if (real_type != NULL)
7983 return to_fixed_record_type (real_type, valaddr, address, NULL);
7984 }
7985
7986 /* Check to see if there is a parallel ___XVZ variable.
7987 If there is, then it provides the actual size of our type. */
7988 else if (ada_type_name (fixed_record_type) != NULL)
7989 {
7990 const char *name = ada_type_name (fixed_record_type);
7991 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7992 int xvz_found = 0;
7993 LONGEST size;
7994
7995 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
7996 size = get_int_var_value (xvz_name, &xvz_found);
7997 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
7998 {
7999 fixed_record_type = copy_type (fixed_record_type);
8000 TYPE_LENGTH (fixed_record_type) = size;
8001
8002 /* The FIXED_RECORD_TYPE may have be a stub. We have
8003 observed this when the debugging info is STABS, and
8004 apparently it is something that is hard to fix.
8005
8006 In practice, we don't need the actual type definition
8007 at all, because the presence of the XVZ variable allows us
8008 to assume that there must be a XVS type as well, which we
8009 should be able to use later, when we need the actual type
8010 definition.
8011
8012 In the meantime, pretend that the "fixed" type we are
8013 returning is NOT a stub, because this can cause trouble
8014 when using this type to create new types targeting it.
8015 Indeed, the associated creation routines often check
8016 whether the target type is a stub and will try to replace
8017 it, thus using a type with the wrong size. This, in turn,
8018 might cause the new type to have the wrong size too.
8019 Consider the case of an array, for instance, where the size
8020 of the array is computed from the number of elements in
8021 our array multiplied by the size of its element. */
8022 TYPE_STUB (fixed_record_type) = 0;
8023 }
8024 }
8025 return fixed_record_type;
8026 }
8027 case TYPE_CODE_ARRAY:
8028 return to_fixed_array_type (type, dval, 1);
8029 case TYPE_CODE_UNION:
8030 if (dval == NULL)
8031 return type;
8032 else
8033 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8034 }
8035 }
8036
8037 /* The same as ada_to_fixed_type_1, except that it preserves the type
8038 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8039
8040 The typedef layer needs be preserved in order to differentiate between
8041 arrays and array pointers when both types are implemented using the same
8042 fat pointer. In the array pointer case, the pointer is encoded as
8043 a typedef of the pointer type. For instance, considering:
8044
8045 type String_Access is access String;
8046 S1 : String_Access := null;
8047
8048 To the debugger, S1 is defined as a typedef of type String. But
8049 to the user, it is a pointer. So if the user tries to print S1,
8050 we should not dereference the array, but print the array address
8051 instead.
8052
8053 If we didn't preserve the typedef layer, we would lose the fact that
8054 the type is to be presented as a pointer (needs de-reference before
8055 being printed). And we would also use the source-level type name. */
8056
8057 struct type *
8058 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8059 CORE_ADDR address, struct value *dval, int check_tag)
8060
8061 {
8062 struct type *fixed_type =
8063 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8064
8065 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8066 then preserve the typedef layer.
8067
8068 Implementation note: We can only check the main-type portion of
8069 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8070 from TYPE now returns a type that has the same instance flags
8071 as TYPE. For instance, if TYPE is a "typedef const", and its
8072 target type is a "struct", then the typedef elimination will return
8073 a "const" version of the target type. See check_typedef for more
8074 details about how the typedef layer elimination is done.
8075
8076 brobecker/2010-11-19: It seems to me that the only case where it is
8077 useful to preserve the typedef layer is when dealing with fat pointers.
8078 Perhaps, we could add a check for that and preserve the typedef layer
8079 only in that situation. But this seems unecessary so far, probably
8080 because we call check_typedef/ada_check_typedef pretty much everywhere.
8081 */
8082 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8083 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8084 == TYPE_MAIN_TYPE (fixed_type)))
8085 return type;
8086
8087 return fixed_type;
8088 }
8089
8090 /* A standard (static-sized) type corresponding as well as possible to
8091 TYPE0, but based on no runtime data. */
8092
8093 static struct type *
8094 to_static_fixed_type (struct type *type0)
8095 {
8096 struct type *type;
8097
8098 if (type0 == NULL)
8099 return NULL;
8100
8101 if (TYPE_FIXED_INSTANCE (type0))
8102 return type0;
8103
8104 type0 = ada_check_typedef (type0);
8105
8106 switch (TYPE_CODE (type0))
8107 {
8108 default:
8109 return type0;
8110 case TYPE_CODE_STRUCT:
8111 type = dynamic_template_type (type0);
8112 if (type != NULL)
8113 return template_to_static_fixed_type (type);
8114 else
8115 return template_to_static_fixed_type (type0);
8116 case TYPE_CODE_UNION:
8117 type = ada_find_parallel_type (type0, "___XVU");
8118 if (type != NULL)
8119 return template_to_static_fixed_type (type);
8120 else
8121 return template_to_static_fixed_type (type0);
8122 }
8123 }
8124
8125 /* A static approximation of TYPE with all type wrappers removed. */
8126
8127 static struct type *
8128 static_unwrap_type (struct type *type)
8129 {
8130 if (ada_is_aligner_type (type))
8131 {
8132 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
8133 if (ada_type_name (type1) == NULL)
8134 TYPE_NAME (type1) = ada_type_name (type);
8135
8136 return static_unwrap_type (type1);
8137 }
8138 else
8139 {
8140 struct type *raw_real_type = ada_get_base_type (type);
8141
8142 if (raw_real_type == type)
8143 return type;
8144 else
8145 return to_static_fixed_type (raw_real_type);
8146 }
8147 }
8148
8149 /* In some cases, incomplete and private types require
8150 cross-references that are not resolved as records (for example,
8151 type Foo;
8152 type FooP is access Foo;
8153 V: FooP;
8154 type Foo is array ...;
8155 ). In these cases, since there is no mechanism for producing
8156 cross-references to such types, we instead substitute for FooP a
8157 stub enumeration type that is nowhere resolved, and whose tag is
8158 the name of the actual type. Call these types "non-record stubs". */
8159
8160 /* A type equivalent to TYPE that is not a non-record stub, if one
8161 exists, otherwise TYPE. */
8162
8163 struct type *
8164 ada_check_typedef (struct type *type)
8165 {
8166 if (type == NULL)
8167 return NULL;
8168
8169 /* If our type is a typedef type of a fat pointer, then we're done.
8170 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8171 what allows us to distinguish between fat pointers that represent
8172 array types, and fat pointers that represent array access types
8173 (in both cases, the compiler implements them as fat pointers). */
8174 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8175 && is_thick_pntr (ada_typedef_target_type (type)))
8176 return type;
8177
8178 CHECK_TYPEDEF (type);
8179 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
8180 || !TYPE_STUB (type)
8181 || TYPE_TAG_NAME (type) == NULL)
8182 return type;
8183 else
8184 {
8185 const char *name = TYPE_TAG_NAME (type);
8186 struct type *type1 = ada_find_any_type (name);
8187
8188 if (type1 == NULL)
8189 return type;
8190
8191 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8192 stubs pointing to arrays, as we don't create symbols for array
8193 types, only for the typedef-to-array types). If that's the case,
8194 strip the typedef layer. */
8195 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8196 type1 = ada_check_typedef (type1);
8197
8198 return type1;
8199 }
8200 }
8201
8202 /* A value representing the data at VALADDR/ADDRESS as described by
8203 type TYPE0, but with a standard (static-sized) type that correctly
8204 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8205 type, then return VAL0 [this feature is simply to avoid redundant
8206 creation of struct values]. */
8207
8208 static struct value *
8209 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8210 struct value *val0)
8211 {
8212 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8213
8214 if (type == type0 && val0 != NULL)
8215 return val0;
8216 else
8217 return value_from_contents_and_address (type, 0, address);
8218 }
8219
8220 /* A value representing VAL, but with a standard (static-sized) type
8221 that correctly describes it. Does not necessarily create a new
8222 value. */
8223
8224 struct value *
8225 ada_to_fixed_value (struct value *val)
8226 {
8227 val = unwrap_value (val);
8228 val = ada_to_fixed_value_create (value_type (val),
8229 value_address (val),
8230 val);
8231 return val;
8232 }
8233 \f
8234
8235 /* Attributes */
8236
8237 /* Table mapping attribute numbers to names.
8238 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8239
8240 static const char *attribute_names[] = {
8241 "<?>",
8242
8243 "first",
8244 "last",
8245 "length",
8246 "image",
8247 "max",
8248 "min",
8249 "modulus",
8250 "pos",
8251 "size",
8252 "tag",
8253 "val",
8254 0
8255 };
8256
8257 const char *
8258 ada_attribute_name (enum exp_opcode n)
8259 {
8260 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8261 return attribute_names[n - OP_ATR_FIRST + 1];
8262 else
8263 return attribute_names[0];
8264 }
8265
8266 /* Evaluate the 'POS attribute applied to ARG. */
8267
8268 static LONGEST
8269 pos_atr (struct value *arg)
8270 {
8271 struct value *val = coerce_ref (arg);
8272 struct type *type = value_type (val);
8273
8274 if (!discrete_type_p (type))
8275 error (_("'POS only defined on discrete types"));
8276
8277 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8278 {
8279 int i;
8280 LONGEST v = value_as_long (val);
8281
8282 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
8283 {
8284 if (v == TYPE_FIELD_BITPOS (type, i))
8285 return i;
8286 }
8287 error (_("enumeration value is invalid: can't find 'POS"));
8288 }
8289 else
8290 return value_as_long (val);
8291 }
8292
8293 static struct value *
8294 value_pos_atr (struct type *type, struct value *arg)
8295 {
8296 return value_from_longest (type, pos_atr (arg));
8297 }
8298
8299 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8300
8301 static struct value *
8302 value_val_atr (struct type *type, struct value *arg)
8303 {
8304 if (!discrete_type_p (type))
8305 error (_("'VAL only defined on discrete types"));
8306 if (!integer_type_p (value_type (arg)))
8307 error (_("'VAL requires integral argument"));
8308
8309 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8310 {
8311 long pos = value_as_long (arg);
8312
8313 if (pos < 0 || pos >= TYPE_NFIELDS (type))
8314 error (_("argument to 'VAL out of range"));
8315 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
8316 }
8317 else
8318 return value_from_longest (type, value_as_long (arg));
8319 }
8320 \f
8321
8322 /* Evaluation */
8323
8324 /* True if TYPE appears to be an Ada character type.
8325 [At the moment, this is true only for Character and Wide_Character;
8326 It is a heuristic test that could stand improvement]. */
8327
8328 int
8329 ada_is_character_type (struct type *type)
8330 {
8331 const char *name;
8332
8333 /* If the type code says it's a character, then assume it really is,
8334 and don't check any further. */
8335 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8336 return 1;
8337
8338 /* Otherwise, assume it's a character type iff it is a discrete type
8339 with a known character type name. */
8340 name = ada_type_name (type);
8341 return (name != NULL
8342 && (TYPE_CODE (type) == TYPE_CODE_INT
8343 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8344 && (strcmp (name, "character") == 0
8345 || strcmp (name, "wide_character") == 0
8346 || strcmp (name, "wide_wide_character") == 0
8347 || strcmp (name, "unsigned char") == 0));
8348 }
8349
8350 /* True if TYPE appears to be an Ada string type. */
8351
8352 int
8353 ada_is_string_type (struct type *type)
8354 {
8355 type = ada_check_typedef (type);
8356 if (type != NULL
8357 && TYPE_CODE (type) != TYPE_CODE_PTR
8358 && (ada_is_simple_array_type (type)
8359 || ada_is_array_descriptor_type (type))
8360 && ada_array_arity (type) == 1)
8361 {
8362 struct type *elttype = ada_array_element_type (type, 1);
8363
8364 return ada_is_character_type (elttype);
8365 }
8366 else
8367 return 0;
8368 }
8369
8370 /* The compiler sometimes provides a parallel XVS type for a given
8371 PAD type. Normally, it is safe to follow the PAD type directly,
8372 but older versions of the compiler have a bug that causes the offset
8373 of its "F" field to be wrong. Following that field in that case
8374 would lead to incorrect results, but this can be worked around
8375 by ignoring the PAD type and using the associated XVS type instead.
8376
8377 Set to True if the debugger should trust the contents of PAD types.
8378 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8379 static int trust_pad_over_xvs = 1;
8380
8381 /* True if TYPE is a struct type introduced by the compiler to force the
8382 alignment of a value. Such types have a single field with a
8383 distinctive name. */
8384
8385 int
8386 ada_is_aligner_type (struct type *type)
8387 {
8388 type = ada_check_typedef (type);
8389
8390 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
8391 return 0;
8392
8393 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
8394 && TYPE_NFIELDS (type) == 1
8395 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
8396 }
8397
8398 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
8399 the parallel type. */
8400
8401 struct type *
8402 ada_get_base_type (struct type *raw_type)
8403 {
8404 struct type *real_type_namer;
8405 struct type *raw_real_type;
8406
8407 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8408 return raw_type;
8409
8410 if (ada_is_aligner_type (raw_type))
8411 /* The encoding specifies that we should always use the aligner type.
8412 So, even if this aligner type has an associated XVS type, we should
8413 simply ignore it.
8414
8415 According to the compiler gurus, an XVS type parallel to an aligner
8416 type may exist because of a stabs limitation. In stabs, aligner
8417 types are empty because the field has a variable-sized type, and
8418 thus cannot actually be used as an aligner type. As a result,
8419 we need the associated parallel XVS type to decode the type.
8420 Since the policy in the compiler is to not change the internal
8421 representation based on the debugging info format, we sometimes
8422 end up having a redundant XVS type parallel to the aligner type. */
8423 return raw_type;
8424
8425 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
8426 if (real_type_namer == NULL
8427 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8428 || TYPE_NFIELDS (real_type_namer) != 1)
8429 return raw_type;
8430
8431 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8432 {
8433 /* This is an older encoding form where the base type needs to be
8434 looked up by name. We prefer the newer enconding because it is
8435 more efficient. */
8436 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8437 if (raw_real_type == NULL)
8438 return raw_type;
8439 else
8440 return raw_real_type;
8441 }
8442
8443 /* The field in our XVS type is a reference to the base type. */
8444 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
8445 }
8446
8447 /* The type of value designated by TYPE, with all aligners removed. */
8448
8449 struct type *
8450 ada_aligned_type (struct type *type)
8451 {
8452 if (ada_is_aligner_type (type))
8453 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8454 else
8455 return ada_get_base_type (type);
8456 }
8457
8458
8459 /* The address of the aligned value in an object at address VALADDR
8460 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
8461
8462 const gdb_byte *
8463 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
8464 {
8465 if (ada_is_aligner_type (type))
8466 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
8467 valaddr +
8468 TYPE_FIELD_BITPOS (type,
8469 0) / TARGET_CHAR_BIT);
8470 else
8471 return valaddr;
8472 }
8473
8474
8475
8476 /* The printed representation of an enumeration literal with encoded
8477 name NAME. The value is good to the next call of ada_enum_name. */
8478 const char *
8479 ada_enum_name (const char *name)
8480 {
8481 static char *result;
8482 static size_t result_len = 0;
8483 char *tmp;
8484
8485 /* First, unqualify the enumeration name:
8486 1. Search for the last '.' character. If we find one, then skip
8487 all the preceding characters, the unqualified name starts
8488 right after that dot.
8489 2. Otherwise, we may be debugging on a target where the compiler
8490 translates dots into "__". Search forward for double underscores,
8491 but stop searching when we hit an overloading suffix, which is
8492 of the form "__" followed by digits. */
8493
8494 tmp = strrchr (name, '.');
8495 if (tmp != NULL)
8496 name = tmp + 1;
8497 else
8498 {
8499 while ((tmp = strstr (name, "__")) != NULL)
8500 {
8501 if (isdigit (tmp[2]))
8502 break;
8503 else
8504 name = tmp + 2;
8505 }
8506 }
8507
8508 if (name[0] == 'Q')
8509 {
8510 int v;
8511
8512 if (name[1] == 'U' || name[1] == 'W')
8513 {
8514 if (sscanf (name + 2, "%x", &v) != 1)
8515 return name;
8516 }
8517 else
8518 return name;
8519
8520 GROW_VECT (result, result_len, 16);
8521 if (isascii (v) && isprint (v))
8522 xsnprintf (result, result_len, "'%c'", v);
8523 else if (name[1] == 'U')
8524 xsnprintf (result, result_len, "[\"%02x\"]", v);
8525 else
8526 xsnprintf (result, result_len, "[\"%04x\"]", v);
8527
8528 return result;
8529 }
8530 else
8531 {
8532 tmp = strstr (name, "__");
8533 if (tmp == NULL)
8534 tmp = strstr (name, "$");
8535 if (tmp != NULL)
8536 {
8537 GROW_VECT (result, result_len, tmp - name + 1);
8538 strncpy (result, name, tmp - name);
8539 result[tmp - name] = '\0';
8540 return result;
8541 }
8542
8543 return name;
8544 }
8545 }
8546
8547 /* Evaluate the subexpression of EXP starting at *POS as for
8548 evaluate_type, updating *POS to point just past the evaluated
8549 expression. */
8550
8551 static struct value *
8552 evaluate_subexp_type (struct expression *exp, int *pos)
8553 {
8554 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8555 }
8556
8557 /* If VAL is wrapped in an aligner or subtype wrapper, return the
8558 value it wraps. */
8559
8560 static struct value *
8561 unwrap_value (struct value *val)
8562 {
8563 struct type *type = ada_check_typedef (value_type (val));
8564
8565 if (ada_is_aligner_type (type))
8566 {
8567 struct value *v = ada_value_struct_elt (val, "F", 0);
8568 struct type *val_type = ada_check_typedef (value_type (v));
8569
8570 if (ada_type_name (val_type) == NULL)
8571 TYPE_NAME (val_type) = ada_type_name (type);
8572
8573 return unwrap_value (v);
8574 }
8575 else
8576 {
8577 struct type *raw_real_type =
8578 ada_check_typedef (ada_get_base_type (type));
8579
8580 /* If there is no parallel XVS or XVE type, then the value is
8581 already unwrapped. Return it without further modification. */
8582 if ((type == raw_real_type)
8583 && ada_find_parallel_type (type, "___XVE") == NULL)
8584 return val;
8585
8586 return
8587 coerce_unspec_val_to_type
8588 (val, ada_to_fixed_type (raw_real_type, 0,
8589 value_address (val),
8590 NULL, 1));
8591 }
8592 }
8593
8594 static struct value *
8595 cast_to_fixed (struct type *type, struct value *arg)
8596 {
8597 LONGEST val;
8598
8599 if (type == value_type (arg))
8600 return arg;
8601 else if (ada_is_fixed_point_type (value_type (arg)))
8602 val = ada_float_to_fixed (type,
8603 ada_fixed_to_float (value_type (arg),
8604 value_as_long (arg)));
8605 else
8606 {
8607 DOUBLEST argd = value_as_double (arg);
8608
8609 val = ada_float_to_fixed (type, argd);
8610 }
8611
8612 return value_from_longest (type, val);
8613 }
8614
8615 static struct value *
8616 cast_from_fixed (struct type *type, struct value *arg)
8617 {
8618 DOUBLEST val = ada_fixed_to_float (value_type (arg),
8619 value_as_long (arg));
8620
8621 return value_from_double (type, val);
8622 }
8623
8624 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8625 return the converted value. */
8626
8627 static struct value *
8628 coerce_for_assign (struct type *type, struct value *val)
8629 {
8630 struct type *type2 = value_type (val);
8631
8632 if (type == type2)
8633 return val;
8634
8635 type2 = ada_check_typedef (type2);
8636 type = ada_check_typedef (type);
8637
8638 if (TYPE_CODE (type2) == TYPE_CODE_PTR
8639 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8640 {
8641 val = ada_value_ind (val);
8642 type2 = value_type (val);
8643 }
8644
8645 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
8646 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8647 {
8648 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
8649 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8650 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
8651 error (_("Incompatible types in assignment"));
8652 deprecated_set_value_type (val, type);
8653 }
8654 return val;
8655 }
8656
8657 static struct value *
8658 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8659 {
8660 struct value *val;
8661 struct type *type1, *type2;
8662 LONGEST v, v1, v2;
8663
8664 arg1 = coerce_ref (arg1);
8665 arg2 = coerce_ref (arg2);
8666 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
8667 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
8668
8669 if (TYPE_CODE (type1) != TYPE_CODE_INT
8670 || TYPE_CODE (type2) != TYPE_CODE_INT)
8671 return value_binop (arg1, arg2, op);
8672
8673 switch (op)
8674 {
8675 case BINOP_MOD:
8676 case BINOP_DIV:
8677 case BINOP_REM:
8678 break;
8679 default:
8680 return value_binop (arg1, arg2, op);
8681 }
8682
8683 v2 = value_as_long (arg2);
8684 if (v2 == 0)
8685 error (_("second operand of %s must not be zero."), op_string (op));
8686
8687 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8688 return value_binop (arg1, arg2, op);
8689
8690 v1 = value_as_long (arg1);
8691 switch (op)
8692 {
8693 case BINOP_DIV:
8694 v = v1 / v2;
8695 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8696 v += v > 0 ? -1 : 1;
8697 break;
8698 case BINOP_REM:
8699 v = v1 % v2;
8700 if (v * v1 < 0)
8701 v -= v2;
8702 break;
8703 default:
8704 /* Should not reach this point. */
8705 v = 0;
8706 }
8707
8708 val = allocate_value (type1);
8709 store_unsigned_integer (value_contents_raw (val),
8710 TYPE_LENGTH (value_type (val)),
8711 gdbarch_byte_order (get_type_arch (type1)), v);
8712 return val;
8713 }
8714
8715 static int
8716 ada_value_equal (struct value *arg1, struct value *arg2)
8717 {
8718 if (ada_is_direct_array_type (value_type (arg1))
8719 || ada_is_direct_array_type (value_type (arg2)))
8720 {
8721 /* Automatically dereference any array reference before
8722 we attempt to perform the comparison. */
8723 arg1 = ada_coerce_ref (arg1);
8724 arg2 = ada_coerce_ref (arg2);
8725
8726 arg1 = ada_coerce_to_simple_array (arg1);
8727 arg2 = ada_coerce_to_simple_array (arg2);
8728 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8729 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
8730 error (_("Attempt to compare array with non-array"));
8731 /* FIXME: The following works only for types whose
8732 representations use all bits (no padding or undefined bits)
8733 and do not have user-defined equality. */
8734 return
8735 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
8736 && memcmp (value_contents (arg1), value_contents (arg2),
8737 TYPE_LENGTH (value_type (arg1))) == 0;
8738 }
8739 return value_equal (arg1, arg2);
8740 }
8741
8742 /* Total number of component associations in the aggregate starting at
8743 index PC in EXP. Assumes that index PC is the start of an
8744 OP_AGGREGATE. */
8745
8746 static int
8747 num_component_specs (struct expression *exp, int pc)
8748 {
8749 int n, m, i;
8750
8751 m = exp->elts[pc + 1].longconst;
8752 pc += 3;
8753 n = 0;
8754 for (i = 0; i < m; i += 1)
8755 {
8756 switch (exp->elts[pc].opcode)
8757 {
8758 default:
8759 n += 1;
8760 break;
8761 case OP_CHOICES:
8762 n += exp->elts[pc + 1].longconst;
8763 break;
8764 }
8765 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8766 }
8767 return n;
8768 }
8769
8770 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
8771 component of LHS (a simple array or a record), updating *POS past
8772 the expression, assuming that LHS is contained in CONTAINER. Does
8773 not modify the inferior's memory, nor does it modify LHS (unless
8774 LHS == CONTAINER). */
8775
8776 static void
8777 assign_component (struct value *container, struct value *lhs, LONGEST index,
8778 struct expression *exp, int *pos)
8779 {
8780 struct value *mark = value_mark ();
8781 struct value *elt;
8782
8783 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8784 {
8785 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
8786 struct value *index_val = value_from_longest (index_type, index);
8787
8788 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8789 }
8790 else
8791 {
8792 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8793 elt = ada_to_fixed_value (elt);
8794 }
8795
8796 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8797 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8798 else
8799 value_assign_to_component (container, elt,
8800 ada_evaluate_subexp (NULL, exp, pos,
8801 EVAL_NORMAL));
8802
8803 value_free_to_mark (mark);
8804 }
8805
8806 /* Assuming that LHS represents an lvalue having a record or array
8807 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8808 of that aggregate's value to LHS, advancing *POS past the
8809 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8810 lvalue containing LHS (possibly LHS itself). Does not modify
8811 the inferior's memory, nor does it modify the contents of
8812 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8813
8814 static struct value *
8815 assign_aggregate (struct value *container,
8816 struct value *lhs, struct expression *exp,
8817 int *pos, enum noside noside)
8818 {
8819 struct type *lhs_type;
8820 int n = exp->elts[*pos+1].longconst;
8821 LONGEST low_index, high_index;
8822 int num_specs;
8823 LONGEST *indices;
8824 int max_indices, num_indices;
8825 int is_array_aggregate;
8826 int i;
8827
8828 *pos += 3;
8829 if (noside != EVAL_NORMAL)
8830 {
8831 for (i = 0; i < n; i += 1)
8832 ada_evaluate_subexp (NULL, exp, pos, noside);
8833 return container;
8834 }
8835
8836 container = ada_coerce_ref (container);
8837 if (ada_is_direct_array_type (value_type (container)))
8838 container = ada_coerce_to_simple_array (container);
8839 lhs = ada_coerce_ref (lhs);
8840 if (!deprecated_value_modifiable (lhs))
8841 error (_("Left operand of assignment is not a modifiable lvalue."));
8842
8843 lhs_type = value_type (lhs);
8844 if (ada_is_direct_array_type (lhs_type))
8845 {
8846 lhs = ada_coerce_to_simple_array (lhs);
8847 lhs_type = value_type (lhs);
8848 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8849 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8850 is_array_aggregate = 1;
8851 }
8852 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8853 {
8854 low_index = 0;
8855 high_index = num_visible_fields (lhs_type) - 1;
8856 is_array_aggregate = 0;
8857 }
8858 else
8859 error (_("Left-hand side must be array or record."));
8860
8861 num_specs = num_component_specs (exp, *pos - 3);
8862 max_indices = 4 * num_specs + 4;
8863 indices = alloca (max_indices * sizeof (indices[0]));
8864 indices[0] = indices[1] = low_index - 1;
8865 indices[2] = indices[3] = high_index + 1;
8866 num_indices = 4;
8867
8868 for (i = 0; i < n; i += 1)
8869 {
8870 switch (exp->elts[*pos].opcode)
8871 {
8872 case OP_CHOICES:
8873 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8874 &num_indices, max_indices,
8875 low_index, high_index);
8876 break;
8877 case OP_POSITIONAL:
8878 aggregate_assign_positional (container, lhs, exp, pos, indices,
8879 &num_indices, max_indices,
8880 low_index, high_index);
8881 break;
8882 case OP_OTHERS:
8883 if (i != n-1)
8884 error (_("Misplaced 'others' clause"));
8885 aggregate_assign_others (container, lhs, exp, pos, indices,
8886 num_indices, low_index, high_index);
8887 break;
8888 default:
8889 error (_("Internal error: bad aggregate clause"));
8890 }
8891 }
8892
8893 return container;
8894 }
8895
8896 /* Assign into the component of LHS indexed by the OP_POSITIONAL
8897 construct at *POS, updating *POS past the construct, given that
8898 the positions are relative to lower bound LOW, where HIGH is the
8899 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8900 updating *NUM_INDICES as needed. CONTAINER is as for
8901 assign_aggregate. */
8902 static void
8903 aggregate_assign_positional (struct value *container,
8904 struct value *lhs, struct expression *exp,
8905 int *pos, LONGEST *indices, int *num_indices,
8906 int max_indices, LONGEST low, LONGEST high)
8907 {
8908 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8909
8910 if (ind - 1 == high)
8911 warning (_("Extra components in aggregate ignored."));
8912 if (ind <= high)
8913 {
8914 add_component_interval (ind, ind, indices, num_indices, max_indices);
8915 *pos += 3;
8916 assign_component (container, lhs, ind, exp, pos);
8917 }
8918 else
8919 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8920 }
8921
8922 /* Assign into the components of LHS indexed by the OP_CHOICES
8923 construct at *POS, updating *POS past the construct, given that
8924 the allowable indices are LOW..HIGH. Record the indices assigned
8925 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8926 needed. CONTAINER is as for assign_aggregate. */
8927 static void
8928 aggregate_assign_from_choices (struct value *container,
8929 struct value *lhs, struct expression *exp,
8930 int *pos, LONGEST *indices, int *num_indices,
8931 int max_indices, LONGEST low, LONGEST high)
8932 {
8933 int j;
8934 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8935 int choice_pos, expr_pc;
8936 int is_array = ada_is_direct_array_type (value_type (lhs));
8937
8938 choice_pos = *pos += 3;
8939
8940 for (j = 0; j < n_choices; j += 1)
8941 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8942 expr_pc = *pos;
8943 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8944
8945 for (j = 0; j < n_choices; j += 1)
8946 {
8947 LONGEST lower, upper;
8948 enum exp_opcode op = exp->elts[choice_pos].opcode;
8949
8950 if (op == OP_DISCRETE_RANGE)
8951 {
8952 choice_pos += 1;
8953 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8954 EVAL_NORMAL));
8955 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8956 EVAL_NORMAL));
8957 }
8958 else if (is_array)
8959 {
8960 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8961 EVAL_NORMAL));
8962 upper = lower;
8963 }
8964 else
8965 {
8966 int ind;
8967 const char *name;
8968
8969 switch (op)
8970 {
8971 case OP_NAME:
8972 name = &exp->elts[choice_pos + 2].string;
8973 break;
8974 case OP_VAR_VALUE:
8975 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8976 break;
8977 default:
8978 error (_("Invalid record component association."));
8979 }
8980 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8981 ind = 0;
8982 if (! find_struct_field (name, value_type (lhs), 0,
8983 NULL, NULL, NULL, NULL, &ind))
8984 error (_("Unknown component name: %s."), name);
8985 lower = upper = ind;
8986 }
8987
8988 if (lower <= upper && (lower < low || upper > high))
8989 error (_("Index in component association out of bounds."));
8990
8991 add_component_interval (lower, upper, indices, num_indices,
8992 max_indices);
8993 while (lower <= upper)
8994 {
8995 int pos1;
8996
8997 pos1 = expr_pc;
8998 assign_component (container, lhs, lower, exp, &pos1);
8999 lower += 1;
9000 }
9001 }
9002 }
9003
9004 /* Assign the value of the expression in the OP_OTHERS construct in
9005 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9006 have not been previously assigned. The index intervals already assigned
9007 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
9008 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
9009 static void
9010 aggregate_assign_others (struct value *container,
9011 struct value *lhs, struct expression *exp,
9012 int *pos, LONGEST *indices, int num_indices,
9013 LONGEST low, LONGEST high)
9014 {
9015 int i;
9016 int expr_pc = *pos + 1;
9017
9018 for (i = 0; i < num_indices - 2; i += 2)
9019 {
9020 LONGEST ind;
9021
9022 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9023 {
9024 int localpos;
9025
9026 localpos = expr_pc;
9027 assign_component (container, lhs, ind, exp, &localpos);
9028 }
9029 }
9030 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9031 }
9032
9033 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9034 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9035 modifying *SIZE as needed. It is an error if *SIZE exceeds
9036 MAX_SIZE. The resulting intervals do not overlap. */
9037 static void
9038 add_component_interval (LONGEST low, LONGEST high,
9039 LONGEST* indices, int *size, int max_size)
9040 {
9041 int i, j;
9042
9043 for (i = 0; i < *size; i += 2) {
9044 if (high >= indices[i] && low <= indices[i + 1])
9045 {
9046 int kh;
9047
9048 for (kh = i + 2; kh < *size; kh += 2)
9049 if (high < indices[kh])
9050 break;
9051 if (low < indices[i])
9052 indices[i] = low;
9053 indices[i + 1] = indices[kh - 1];
9054 if (high > indices[i + 1])
9055 indices[i + 1] = high;
9056 memcpy (indices + i + 2, indices + kh, *size - kh);
9057 *size -= kh - i - 2;
9058 return;
9059 }
9060 else if (high < indices[i])
9061 break;
9062 }
9063
9064 if (*size == max_size)
9065 error (_("Internal error: miscounted aggregate components."));
9066 *size += 2;
9067 for (j = *size-1; j >= i+2; j -= 1)
9068 indices[j] = indices[j - 2];
9069 indices[i] = low;
9070 indices[i + 1] = high;
9071 }
9072
9073 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9074 is different. */
9075
9076 static struct value *
9077 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
9078 {
9079 if (type == ada_check_typedef (value_type (arg2)))
9080 return arg2;
9081
9082 if (ada_is_fixed_point_type (type))
9083 return (cast_to_fixed (type, arg2));
9084
9085 if (ada_is_fixed_point_type (value_type (arg2)))
9086 return cast_from_fixed (type, arg2);
9087
9088 return value_cast (type, arg2);
9089 }
9090
9091 /* Evaluating Ada expressions, and printing their result.
9092 ------------------------------------------------------
9093
9094 1. Introduction:
9095 ----------------
9096
9097 We usually evaluate an Ada expression in order to print its value.
9098 We also evaluate an expression in order to print its type, which
9099 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9100 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9101 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9102 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9103 similar.
9104
9105 Evaluating expressions is a little more complicated for Ada entities
9106 than it is for entities in languages such as C. The main reason for
9107 this is that Ada provides types whose definition might be dynamic.
9108 One example of such types is variant records. Or another example
9109 would be an array whose bounds can only be known at run time.
9110
9111 The following description is a general guide as to what should be
9112 done (and what should NOT be done) in order to evaluate an expression
9113 involving such types, and when. This does not cover how the semantic
9114 information is encoded by GNAT as this is covered separatly. For the
9115 document used as the reference for the GNAT encoding, see exp_dbug.ads
9116 in the GNAT sources.
9117
9118 Ideally, we should embed each part of this description next to its
9119 associated code. Unfortunately, the amount of code is so vast right
9120 now that it's hard to see whether the code handling a particular
9121 situation might be duplicated or not. One day, when the code is
9122 cleaned up, this guide might become redundant with the comments
9123 inserted in the code, and we might want to remove it.
9124
9125 2. ``Fixing'' an Entity, the Simple Case:
9126 -----------------------------------------
9127
9128 When evaluating Ada expressions, the tricky issue is that they may
9129 reference entities whose type contents and size are not statically
9130 known. Consider for instance a variant record:
9131
9132 type Rec (Empty : Boolean := True) is record
9133 case Empty is
9134 when True => null;
9135 when False => Value : Integer;
9136 end case;
9137 end record;
9138 Yes : Rec := (Empty => False, Value => 1);
9139 No : Rec := (empty => True);
9140
9141 The size and contents of that record depends on the value of the
9142 descriminant (Rec.Empty). At this point, neither the debugging
9143 information nor the associated type structure in GDB are able to
9144 express such dynamic types. So what the debugger does is to create
9145 "fixed" versions of the type that applies to the specific object.
9146 We also informally refer to this opperation as "fixing" an object,
9147 which means creating its associated fixed type.
9148
9149 Example: when printing the value of variable "Yes" above, its fixed
9150 type would look like this:
9151
9152 type Rec is record
9153 Empty : Boolean;
9154 Value : Integer;
9155 end record;
9156
9157 On the other hand, if we printed the value of "No", its fixed type
9158 would become:
9159
9160 type Rec is record
9161 Empty : Boolean;
9162 end record;
9163
9164 Things become a little more complicated when trying to fix an entity
9165 with a dynamic type that directly contains another dynamic type,
9166 such as an array of variant records, for instance. There are
9167 two possible cases: Arrays, and records.
9168
9169 3. ``Fixing'' Arrays:
9170 ---------------------
9171
9172 The type structure in GDB describes an array in terms of its bounds,
9173 and the type of its elements. By design, all elements in the array
9174 have the same type and we cannot represent an array of variant elements
9175 using the current type structure in GDB. When fixing an array,
9176 we cannot fix the array element, as we would potentially need one
9177 fixed type per element of the array. As a result, the best we can do
9178 when fixing an array is to produce an array whose bounds and size
9179 are correct (allowing us to read it from memory), but without having
9180 touched its element type. Fixing each element will be done later,
9181 when (if) necessary.
9182
9183 Arrays are a little simpler to handle than records, because the same
9184 amount of memory is allocated for each element of the array, even if
9185 the amount of space actually used by each element differs from element
9186 to element. Consider for instance the following array of type Rec:
9187
9188 type Rec_Array is array (1 .. 2) of Rec;
9189
9190 The actual amount of memory occupied by each element might be different
9191 from element to element, depending on the value of their discriminant.
9192 But the amount of space reserved for each element in the array remains
9193 fixed regardless. So we simply need to compute that size using
9194 the debugging information available, from which we can then determine
9195 the array size (we multiply the number of elements of the array by
9196 the size of each element).
9197
9198 The simplest case is when we have an array of a constrained element
9199 type. For instance, consider the following type declarations:
9200
9201 type Bounded_String (Max_Size : Integer) is
9202 Length : Integer;
9203 Buffer : String (1 .. Max_Size);
9204 end record;
9205 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9206
9207 In this case, the compiler describes the array as an array of
9208 variable-size elements (identified by its XVS suffix) for which
9209 the size can be read in the parallel XVZ variable.
9210
9211 In the case of an array of an unconstrained element type, the compiler
9212 wraps the array element inside a private PAD type. This type should not
9213 be shown to the user, and must be "unwrap"'ed before printing. Note
9214 that we also use the adjective "aligner" in our code to designate
9215 these wrapper types.
9216
9217 In some cases, the size allocated for each element is statically
9218 known. In that case, the PAD type already has the correct size,
9219 and the array element should remain unfixed.
9220
9221 But there are cases when this size is not statically known.
9222 For instance, assuming that "Five" is an integer variable:
9223
9224 type Dynamic is array (1 .. Five) of Integer;
9225 type Wrapper (Has_Length : Boolean := False) is record
9226 Data : Dynamic;
9227 case Has_Length is
9228 when True => Length : Integer;
9229 when False => null;
9230 end case;
9231 end record;
9232 type Wrapper_Array is array (1 .. 2) of Wrapper;
9233
9234 Hello : Wrapper_Array := (others => (Has_Length => True,
9235 Data => (others => 17),
9236 Length => 1));
9237
9238
9239 The debugging info would describe variable Hello as being an
9240 array of a PAD type. The size of that PAD type is not statically
9241 known, but can be determined using a parallel XVZ variable.
9242 In that case, a copy of the PAD type with the correct size should
9243 be used for the fixed array.
9244
9245 3. ``Fixing'' record type objects:
9246 ----------------------------------
9247
9248 Things are slightly different from arrays in the case of dynamic
9249 record types. In this case, in order to compute the associated
9250 fixed type, we need to determine the size and offset of each of
9251 its components. This, in turn, requires us to compute the fixed
9252 type of each of these components.
9253
9254 Consider for instance the example:
9255
9256 type Bounded_String (Max_Size : Natural) is record
9257 Str : String (1 .. Max_Size);
9258 Length : Natural;
9259 end record;
9260 My_String : Bounded_String (Max_Size => 10);
9261
9262 In that case, the position of field "Length" depends on the size
9263 of field Str, which itself depends on the value of the Max_Size
9264 discriminant. In order to fix the type of variable My_String,
9265 we need to fix the type of field Str. Therefore, fixing a variant
9266 record requires us to fix each of its components.
9267
9268 However, if a component does not have a dynamic size, the component
9269 should not be fixed. In particular, fields that use a PAD type
9270 should not fixed. Here is an example where this might happen
9271 (assuming type Rec above):
9272
9273 type Container (Big : Boolean) is record
9274 First : Rec;
9275 After : Integer;
9276 case Big is
9277 when True => Another : Integer;
9278 when False => null;
9279 end case;
9280 end record;
9281 My_Container : Container := (Big => False,
9282 First => (Empty => True),
9283 After => 42);
9284
9285 In that example, the compiler creates a PAD type for component First,
9286 whose size is constant, and then positions the component After just
9287 right after it. The offset of component After is therefore constant
9288 in this case.
9289
9290 The debugger computes the position of each field based on an algorithm
9291 that uses, among other things, the actual position and size of the field
9292 preceding it. Let's now imagine that the user is trying to print
9293 the value of My_Container. If the type fixing was recursive, we would
9294 end up computing the offset of field After based on the size of the
9295 fixed version of field First. And since in our example First has
9296 only one actual field, the size of the fixed type is actually smaller
9297 than the amount of space allocated to that field, and thus we would
9298 compute the wrong offset of field After.
9299
9300 To make things more complicated, we need to watch out for dynamic
9301 components of variant records (identified by the ___XVL suffix in
9302 the component name). Even if the target type is a PAD type, the size
9303 of that type might not be statically known. So the PAD type needs
9304 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9305 we might end up with the wrong size for our component. This can be
9306 observed with the following type declarations:
9307
9308 type Octal is new Integer range 0 .. 7;
9309 type Octal_Array is array (Positive range <>) of Octal;
9310 pragma Pack (Octal_Array);
9311
9312 type Octal_Buffer (Size : Positive) is record
9313 Buffer : Octal_Array (1 .. Size);
9314 Length : Integer;
9315 end record;
9316
9317 In that case, Buffer is a PAD type whose size is unset and needs
9318 to be computed by fixing the unwrapped type.
9319
9320 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9321 ----------------------------------------------------------
9322
9323 Lastly, when should the sub-elements of an entity that remained unfixed
9324 thus far, be actually fixed?
9325
9326 The answer is: Only when referencing that element. For instance
9327 when selecting one component of a record, this specific component
9328 should be fixed at that point in time. Or when printing the value
9329 of a record, each component should be fixed before its value gets
9330 printed. Similarly for arrays, the element of the array should be
9331 fixed when printing each element of the array, or when extracting
9332 one element out of that array. On the other hand, fixing should
9333 not be performed on the elements when taking a slice of an array!
9334
9335 Note that one of the side-effects of miscomputing the offset and
9336 size of each field is that we end up also miscomputing the size
9337 of the containing type. This can have adverse results when computing
9338 the value of an entity. GDB fetches the value of an entity based
9339 on the size of its type, and thus a wrong size causes GDB to fetch
9340 the wrong amount of memory. In the case where the computed size is
9341 too small, GDB fetches too little data to print the value of our
9342 entiry. Results in this case as unpredicatble, as we usually read
9343 past the buffer containing the data =:-o. */
9344
9345 /* Implement the evaluate_exp routine in the exp_descriptor structure
9346 for the Ada language. */
9347
9348 static struct value *
9349 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
9350 int *pos, enum noside noside)
9351 {
9352 enum exp_opcode op;
9353 int tem;
9354 int pc;
9355 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9356 struct type *type;
9357 int nargs, oplen;
9358 struct value **argvec;
9359
9360 pc = *pos;
9361 *pos += 1;
9362 op = exp->elts[pc].opcode;
9363
9364 switch (op)
9365 {
9366 default:
9367 *pos -= 1;
9368 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9369 arg1 = unwrap_value (arg1);
9370
9371 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9372 then we need to perform the conversion manually, because
9373 evaluate_subexp_standard doesn't do it. This conversion is
9374 necessary in Ada because the different kinds of float/fixed
9375 types in Ada have different representations.
9376
9377 Similarly, we need to perform the conversion from OP_LONG
9378 ourselves. */
9379 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9380 arg1 = ada_value_cast (expect_type, arg1, noside);
9381
9382 return arg1;
9383
9384 case OP_STRING:
9385 {
9386 struct value *result;
9387
9388 *pos -= 1;
9389 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9390 /* The result type will have code OP_STRING, bashed there from
9391 OP_ARRAY. Bash it back. */
9392 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9393 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
9394 return result;
9395 }
9396
9397 case UNOP_CAST:
9398 (*pos) += 2;
9399 type = exp->elts[pc + 1].type;
9400 arg1 = evaluate_subexp (type, exp, pos, noside);
9401 if (noside == EVAL_SKIP)
9402 goto nosideret;
9403 arg1 = ada_value_cast (type, arg1, noside);
9404 return arg1;
9405
9406 case UNOP_QUAL:
9407 (*pos) += 2;
9408 type = exp->elts[pc + 1].type;
9409 return ada_evaluate_subexp (type, exp, pos, noside);
9410
9411 case BINOP_ASSIGN:
9412 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9413 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9414 {
9415 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9416 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9417 return arg1;
9418 return ada_value_assign (arg1, arg1);
9419 }
9420 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9421 except if the lhs of our assignment is a convenience variable.
9422 In the case of assigning to a convenience variable, the lhs
9423 should be exactly the result of the evaluation of the rhs. */
9424 type = value_type (arg1);
9425 if (VALUE_LVAL (arg1) == lval_internalvar)
9426 type = NULL;
9427 arg2 = evaluate_subexp (type, exp, pos, noside);
9428 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9429 return arg1;
9430 if (ada_is_fixed_point_type (value_type (arg1)))
9431 arg2 = cast_to_fixed (value_type (arg1), arg2);
9432 else if (ada_is_fixed_point_type (value_type (arg2)))
9433 error
9434 (_("Fixed-point values must be assigned to fixed-point variables"));
9435 else
9436 arg2 = coerce_for_assign (value_type (arg1), arg2);
9437 return ada_value_assign (arg1, arg2);
9438
9439 case BINOP_ADD:
9440 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9441 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9442 if (noside == EVAL_SKIP)
9443 goto nosideret;
9444 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9445 return (value_from_longest
9446 (value_type (arg1),
9447 value_as_long (arg1) + value_as_long (arg2)));
9448 if ((ada_is_fixed_point_type (value_type (arg1))
9449 || ada_is_fixed_point_type (value_type (arg2)))
9450 && value_type (arg1) != value_type (arg2))
9451 error (_("Operands of fixed-point addition must have the same type"));
9452 /* Do the addition, and cast the result to the type of the first
9453 argument. We cannot cast the result to a reference type, so if
9454 ARG1 is a reference type, find its underlying type. */
9455 type = value_type (arg1);
9456 while (TYPE_CODE (type) == TYPE_CODE_REF)
9457 type = TYPE_TARGET_TYPE (type);
9458 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9459 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
9460
9461 case BINOP_SUB:
9462 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9463 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9464 if (noside == EVAL_SKIP)
9465 goto nosideret;
9466 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9467 return (value_from_longest
9468 (value_type (arg1),
9469 value_as_long (arg1) - value_as_long (arg2)));
9470 if ((ada_is_fixed_point_type (value_type (arg1))
9471 || ada_is_fixed_point_type (value_type (arg2)))
9472 && value_type (arg1) != value_type (arg2))
9473 error (_("Operands of fixed-point subtraction "
9474 "must have the same type"));
9475 /* Do the substraction, and cast the result to the type of the first
9476 argument. We cannot cast the result to a reference type, so if
9477 ARG1 is a reference type, find its underlying type. */
9478 type = value_type (arg1);
9479 while (TYPE_CODE (type) == TYPE_CODE_REF)
9480 type = TYPE_TARGET_TYPE (type);
9481 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9482 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
9483
9484 case BINOP_MUL:
9485 case BINOP_DIV:
9486 case BINOP_REM:
9487 case BINOP_MOD:
9488 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9489 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9490 if (noside == EVAL_SKIP)
9491 goto nosideret;
9492 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9493 {
9494 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9495 return value_zero (value_type (arg1), not_lval);
9496 }
9497 else
9498 {
9499 type = builtin_type (exp->gdbarch)->builtin_double;
9500 if (ada_is_fixed_point_type (value_type (arg1)))
9501 arg1 = cast_from_fixed (type, arg1);
9502 if (ada_is_fixed_point_type (value_type (arg2)))
9503 arg2 = cast_from_fixed (type, arg2);
9504 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9505 return ada_value_binop (arg1, arg2, op);
9506 }
9507
9508 case BINOP_EQUAL:
9509 case BINOP_NOTEQUAL:
9510 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9511 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
9512 if (noside == EVAL_SKIP)
9513 goto nosideret;
9514 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9515 tem = 0;
9516 else
9517 {
9518 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9519 tem = ada_value_equal (arg1, arg2);
9520 }
9521 if (op == BINOP_NOTEQUAL)
9522 tem = !tem;
9523 type = language_bool_type (exp->language_defn, exp->gdbarch);
9524 return value_from_longest (type, (LONGEST) tem);
9525
9526 case UNOP_NEG:
9527 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9528 if (noside == EVAL_SKIP)
9529 goto nosideret;
9530 else if (ada_is_fixed_point_type (value_type (arg1)))
9531 return value_cast (value_type (arg1), value_neg (arg1));
9532 else
9533 {
9534 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9535 return value_neg (arg1);
9536 }
9537
9538 case BINOP_LOGICAL_AND:
9539 case BINOP_LOGICAL_OR:
9540 case UNOP_LOGICAL_NOT:
9541 {
9542 struct value *val;
9543
9544 *pos -= 1;
9545 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9546 type = language_bool_type (exp->language_defn, exp->gdbarch);
9547 return value_cast (type, val);
9548 }
9549
9550 case BINOP_BITWISE_AND:
9551 case BINOP_BITWISE_IOR:
9552 case BINOP_BITWISE_XOR:
9553 {
9554 struct value *val;
9555
9556 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9557 *pos = pc;
9558 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9559
9560 return value_cast (value_type (arg1), val);
9561 }
9562
9563 case OP_VAR_VALUE:
9564 *pos -= 1;
9565
9566 if (noside == EVAL_SKIP)
9567 {
9568 *pos += 4;
9569 goto nosideret;
9570 }
9571 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
9572 /* Only encountered when an unresolved symbol occurs in a
9573 context other than a function call, in which case, it is
9574 invalid. */
9575 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9576 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
9577 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9578 {
9579 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
9580 /* Check to see if this is a tagged type. We also need to handle
9581 the case where the type is a reference to a tagged type, but
9582 we have to be careful to exclude pointers to tagged types.
9583 The latter should be shown as usual (as a pointer), whereas
9584 a reference should mostly be transparent to the user. */
9585 if (ada_is_tagged_type (type, 0)
9586 || (TYPE_CODE(type) == TYPE_CODE_REF
9587 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
9588 {
9589 /* Tagged types are a little special in the fact that the real
9590 type is dynamic and can only be determined by inspecting the
9591 object's tag. This means that we need to get the object's
9592 value first (EVAL_NORMAL) and then extract the actual object
9593 type from its tag.
9594
9595 Note that we cannot skip the final step where we extract
9596 the object type from its tag, because the EVAL_NORMAL phase
9597 results in dynamic components being resolved into fixed ones.
9598 This can cause problems when trying to print the type
9599 description of tagged types whose parent has a dynamic size:
9600 We use the type name of the "_parent" component in order
9601 to print the name of the ancestor type in the type description.
9602 If that component had a dynamic size, the resolution into
9603 a fixed type would result in the loss of that type name,
9604 thus preventing us from printing the name of the ancestor
9605 type in the type description. */
9606 struct type *actual_type;
9607
9608 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
9609 actual_type = type_from_tag (ada_value_tag (arg1));
9610 if (actual_type == NULL)
9611 /* If, for some reason, we were unable to determine
9612 the actual type from the tag, then use the static
9613 approximation that we just computed as a fallback.
9614 This can happen if the debugging information is
9615 incomplete, for instance. */
9616 actual_type = type;
9617
9618 return value_zero (actual_type, not_lval);
9619 }
9620
9621 *pos += 4;
9622 return value_zero
9623 (to_static_fixed_type
9624 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
9625 not_lval);
9626 }
9627 else
9628 {
9629 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9630 return ada_to_fixed_value (arg1);
9631 }
9632
9633 case OP_FUNCALL:
9634 (*pos) += 2;
9635
9636 /* Allocate arg vector, including space for the function to be
9637 called in argvec[0] and a terminating NULL. */
9638 nargs = longest_to_int (exp->elts[pc + 1].longconst);
9639 argvec =
9640 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
9641
9642 if (exp->elts[*pos].opcode == OP_VAR_VALUE
9643 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
9644 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9645 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
9646 else
9647 {
9648 for (tem = 0; tem <= nargs; tem += 1)
9649 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9650 argvec[tem] = 0;
9651
9652 if (noside == EVAL_SKIP)
9653 goto nosideret;
9654 }
9655
9656 if (ada_is_constrained_packed_array_type
9657 (desc_base_type (value_type (argvec[0]))))
9658 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
9659 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9660 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
9661 /* This is a packed array that has already been fixed, and
9662 therefore already coerced to a simple array. Nothing further
9663 to do. */
9664 ;
9665 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
9666 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9667 && VALUE_LVAL (argvec[0]) == lval_memory))
9668 argvec[0] = value_addr (argvec[0]);
9669
9670 type = ada_check_typedef (value_type (argvec[0]));
9671
9672 /* Ada allows us to implicitly dereference arrays when subscripting
9673 them. So, if this is an array typedef (encoding use for array
9674 access types encoded as fat pointers), strip it now. */
9675 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
9676 type = ada_typedef_target_type (type);
9677
9678 if (TYPE_CODE (type) == TYPE_CODE_PTR)
9679 {
9680 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
9681 {
9682 case TYPE_CODE_FUNC:
9683 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9684 break;
9685 case TYPE_CODE_ARRAY:
9686 break;
9687 case TYPE_CODE_STRUCT:
9688 if (noside != EVAL_AVOID_SIDE_EFFECTS)
9689 argvec[0] = ada_value_ind (argvec[0]);
9690 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9691 break;
9692 default:
9693 error (_("cannot subscript or call something of type `%s'"),
9694 ada_type_name (value_type (argvec[0])));
9695 break;
9696 }
9697 }
9698
9699 switch (TYPE_CODE (type))
9700 {
9701 case TYPE_CODE_FUNC:
9702 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9703 return allocate_value (TYPE_TARGET_TYPE (type));
9704 return call_function_by_hand (argvec[0], nargs, argvec + 1);
9705 case TYPE_CODE_STRUCT:
9706 {
9707 int arity;
9708
9709 arity = ada_array_arity (type);
9710 type = ada_array_element_type (type, nargs);
9711 if (type == NULL)
9712 error (_("cannot subscript or call a record"));
9713 if (arity != nargs)
9714 error (_("wrong number of subscripts; expecting %d"), arity);
9715 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9716 return value_zero (ada_aligned_type (type), lval_memory);
9717 return
9718 unwrap_value (ada_value_subscript
9719 (argvec[0], nargs, argvec + 1));
9720 }
9721 case TYPE_CODE_ARRAY:
9722 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9723 {
9724 type = ada_array_element_type (type, nargs);
9725 if (type == NULL)
9726 error (_("element type of array unknown"));
9727 else
9728 return value_zero (ada_aligned_type (type), lval_memory);
9729 }
9730 return
9731 unwrap_value (ada_value_subscript
9732 (ada_coerce_to_simple_array (argvec[0]),
9733 nargs, argvec + 1));
9734 case TYPE_CODE_PTR: /* Pointer to array */
9735 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
9736 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9737 {
9738 type = ada_array_element_type (type, nargs);
9739 if (type == NULL)
9740 error (_("element type of array unknown"));
9741 else
9742 return value_zero (ada_aligned_type (type), lval_memory);
9743 }
9744 return
9745 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
9746 nargs, argvec + 1));
9747
9748 default:
9749 error (_("Attempt to index or call something other than an "
9750 "array or function"));
9751 }
9752
9753 case TERNOP_SLICE:
9754 {
9755 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9756 struct value *low_bound_val =
9757 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9758 struct value *high_bound_val =
9759 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9760 LONGEST low_bound;
9761 LONGEST high_bound;
9762
9763 low_bound_val = coerce_ref (low_bound_val);
9764 high_bound_val = coerce_ref (high_bound_val);
9765 low_bound = pos_atr (low_bound_val);
9766 high_bound = pos_atr (high_bound_val);
9767
9768 if (noside == EVAL_SKIP)
9769 goto nosideret;
9770
9771 /* If this is a reference to an aligner type, then remove all
9772 the aligners. */
9773 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9774 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
9775 TYPE_TARGET_TYPE (value_type (array)) =
9776 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
9777
9778 if (ada_is_constrained_packed_array_type (value_type (array)))
9779 error (_("cannot slice a packed array"));
9780
9781 /* If this is a reference to an array or an array lvalue,
9782 convert to a pointer. */
9783 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9784 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
9785 && VALUE_LVAL (array) == lval_memory))
9786 array = value_addr (array);
9787
9788 if (noside == EVAL_AVOID_SIDE_EFFECTS
9789 && ada_is_array_descriptor_type (ada_check_typedef
9790 (value_type (array))))
9791 return empty_array (ada_type_of_array (array, 0), low_bound);
9792
9793 array = ada_coerce_to_simple_array_ptr (array);
9794
9795 /* If we have more than one level of pointer indirection,
9796 dereference the value until we get only one level. */
9797 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
9798 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
9799 == TYPE_CODE_PTR))
9800 array = value_ind (array);
9801
9802 /* Make sure we really do have an array type before going further,
9803 to avoid a SEGV when trying to get the index type or the target
9804 type later down the road if the debug info generated by
9805 the compiler is incorrect or incomplete. */
9806 if (!ada_is_simple_array_type (value_type (array)))
9807 error (_("cannot take slice of non-array"));
9808
9809 if (TYPE_CODE (ada_check_typedef (value_type (array)))
9810 == TYPE_CODE_PTR)
9811 {
9812 struct type *type0 = ada_check_typedef (value_type (array));
9813
9814 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
9815 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
9816 else
9817 {
9818 struct type *arr_type0 =
9819 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
9820
9821 return ada_value_slice_from_ptr (array, arr_type0,
9822 longest_to_int (low_bound),
9823 longest_to_int (high_bound));
9824 }
9825 }
9826 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9827 return array;
9828 else if (high_bound < low_bound)
9829 return empty_array (value_type (array), low_bound);
9830 else
9831 return ada_value_slice (array, longest_to_int (low_bound),
9832 longest_to_int (high_bound));
9833 }
9834
9835 case UNOP_IN_RANGE:
9836 (*pos) += 2;
9837 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9838 type = check_typedef (exp->elts[pc + 1].type);
9839
9840 if (noside == EVAL_SKIP)
9841 goto nosideret;
9842
9843 switch (TYPE_CODE (type))
9844 {
9845 default:
9846 lim_warning (_("Membership test incompletely implemented; "
9847 "always returns true"));
9848 type = language_bool_type (exp->language_defn, exp->gdbarch);
9849 return value_from_longest (type, (LONGEST) 1);
9850
9851 case TYPE_CODE_RANGE:
9852 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
9853 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
9854 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9855 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9856 type = language_bool_type (exp->language_defn, exp->gdbarch);
9857 return
9858 value_from_longest (type,
9859 (value_less (arg1, arg3)
9860 || value_equal (arg1, arg3))
9861 && (value_less (arg2, arg1)
9862 || value_equal (arg2, arg1)));
9863 }
9864
9865 case BINOP_IN_BOUNDS:
9866 (*pos) += 2;
9867 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9868 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9869
9870 if (noside == EVAL_SKIP)
9871 goto nosideret;
9872
9873 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9874 {
9875 type = language_bool_type (exp->language_defn, exp->gdbarch);
9876 return value_zero (type, not_lval);
9877 }
9878
9879 tem = longest_to_int (exp->elts[pc + 1].longconst);
9880
9881 type = ada_index_type (value_type (arg2), tem, "range");
9882 if (!type)
9883 type = value_type (arg1);
9884
9885 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
9886 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
9887
9888 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9889 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9890 type = language_bool_type (exp->language_defn, exp->gdbarch);
9891 return
9892 value_from_longest (type,
9893 (value_less (arg1, arg3)
9894 || value_equal (arg1, arg3))
9895 && (value_less (arg2, arg1)
9896 || value_equal (arg2, arg1)));
9897
9898 case TERNOP_IN_RANGE:
9899 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9900 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9901 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9902
9903 if (noside == EVAL_SKIP)
9904 goto nosideret;
9905
9906 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9907 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9908 type = language_bool_type (exp->language_defn, exp->gdbarch);
9909 return
9910 value_from_longest (type,
9911 (value_less (arg1, arg3)
9912 || value_equal (arg1, arg3))
9913 && (value_less (arg2, arg1)
9914 || value_equal (arg2, arg1)));
9915
9916 case OP_ATR_FIRST:
9917 case OP_ATR_LAST:
9918 case OP_ATR_LENGTH:
9919 {
9920 struct type *type_arg;
9921
9922 if (exp->elts[*pos].opcode == OP_TYPE)
9923 {
9924 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9925 arg1 = NULL;
9926 type_arg = check_typedef (exp->elts[pc + 2].type);
9927 }
9928 else
9929 {
9930 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9931 type_arg = NULL;
9932 }
9933
9934 if (exp->elts[*pos].opcode != OP_LONG)
9935 error (_("Invalid operand to '%s"), ada_attribute_name (op));
9936 tem = longest_to_int (exp->elts[*pos + 2].longconst);
9937 *pos += 4;
9938
9939 if (noside == EVAL_SKIP)
9940 goto nosideret;
9941
9942 if (type_arg == NULL)
9943 {
9944 arg1 = ada_coerce_ref (arg1);
9945
9946 if (ada_is_constrained_packed_array_type (value_type (arg1)))
9947 arg1 = ada_coerce_to_simple_array (arg1);
9948
9949 type = ada_index_type (value_type (arg1), tem,
9950 ada_attribute_name (op));
9951 if (type == NULL)
9952 type = builtin_type (exp->gdbarch)->builtin_int;
9953
9954 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9955 return allocate_value (type);
9956
9957 switch (op)
9958 {
9959 default: /* Should never happen. */
9960 error (_("unexpected attribute encountered"));
9961 case OP_ATR_FIRST:
9962 return value_from_longest
9963 (type, ada_array_bound (arg1, tem, 0));
9964 case OP_ATR_LAST:
9965 return value_from_longest
9966 (type, ada_array_bound (arg1, tem, 1));
9967 case OP_ATR_LENGTH:
9968 return value_from_longest
9969 (type, ada_array_length (arg1, tem));
9970 }
9971 }
9972 else if (discrete_type_p (type_arg))
9973 {
9974 struct type *range_type;
9975 const char *name = ada_type_name (type_arg);
9976
9977 range_type = NULL;
9978 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
9979 range_type = to_fixed_range_type (type_arg, NULL);
9980 if (range_type == NULL)
9981 range_type = type_arg;
9982 switch (op)
9983 {
9984 default:
9985 error (_("unexpected attribute encountered"));
9986 case OP_ATR_FIRST:
9987 return value_from_longest
9988 (range_type, ada_discrete_type_low_bound (range_type));
9989 case OP_ATR_LAST:
9990 return value_from_longest
9991 (range_type, ada_discrete_type_high_bound (range_type));
9992 case OP_ATR_LENGTH:
9993 error (_("the 'length attribute applies only to array types"));
9994 }
9995 }
9996 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
9997 error (_("unimplemented type attribute"));
9998 else
9999 {
10000 LONGEST low, high;
10001
10002 if (ada_is_constrained_packed_array_type (type_arg))
10003 type_arg = decode_constrained_packed_array_type (type_arg);
10004
10005 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10006 if (type == NULL)
10007 type = builtin_type (exp->gdbarch)->builtin_int;
10008
10009 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10010 return allocate_value (type);
10011
10012 switch (op)
10013 {
10014 default:
10015 error (_("unexpected attribute encountered"));
10016 case OP_ATR_FIRST:
10017 low = ada_array_bound_from_type (type_arg, tem, 0);
10018 return value_from_longest (type, low);
10019 case OP_ATR_LAST:
10020 high = ada_array_bound_from_type (type_arg, tem, 1);
10021 return value_from_longest (type, high);
10022 case OP_ATR_LENGTH:
10023 low = ada_array_bound_from_type (type_arg, tem, 0);
10024 high = ada_array_bound_from_type (type_arg, tem, 1);
10025 return value_from_longest (type, high - low + 1);
10026 }
10027 }
10028 }
10029
10030 case OP_ATR_TAG:
10031 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10032 if (noside == EVAL_SKIP)
10033 goto nosideret;
10034
10035 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10036 return value_zero (ada_tag_type (arg1), not_lval);
10037
10038 return ada_value_tag (arg1);
10039
10040 case OP_ATR_MIN:
10041 case OP_ATR_MAX:
10042 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10043 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10044 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10045 if (noside == EVAL_SKIP)
10046 goto nosideret;
10047 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10048 return value_zero (value_type (arg1), not_lval);
10049 else
10050 {
10051 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10052 return value_binop (arg1, arg2,
10053 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10054 }
10055
10056 case OP_ATR_MODULUS:
10057 {
10058 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
10059
10060 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10061 if (noside == EVAL_SKIP)
10062 goto nosideret;
10063
10064 if (!ada_is_modular_type (type_arg))
10065 error (_("'modulus must be applied to modular type"));
10066
10067 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10068 ada_modulus (type_arg));
10069 }
10070
10071
10072 case OP_ATR_POS:
10073 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10074 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10075 if (noside == EVAL_SKIP)
10076 goto nosideret;
10077 type = builtin_type (exp->gdbarch)->builtin_int;
10078 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10079 return value_zero (type, not_lval);
10080 else
10081 return value_pos_atr (type, arg1);
10082
10083 case OP_ATR_SIZE:
10084 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10085 type = value_type (arg1);
10086
10087 /* If the argument is a reference, then dereference its type, since
10088 the user is really asking for the size of the actual object,
10089 not the size of the pointer. */
10090 if (TYPE_CODE (type) == TYPE_CODE_REF)
10091 type = TYPE_TARGET_TYPE (type);
10092
10093 if (noside == EVAL_SKIP)
10094 goto nosideret;
10095 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10096 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
10097 else
10098 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
10099 TARGET_CHAR_BIT * TYPE_LENGTH (type));
10100
10101 case OP_ATR_VAL:
10102 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10103 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10104 type = exp->elts[pc + 2].type;
10105 if (noside == EVAL_SKIP)
10106 goto nosideret;
10107 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10108 return value_zero (type, not_lval);
10109 else
10110 return value_val_atr (type, arg1);
10111
10112 case BINOP_EXP:
10113 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10114 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10115 if (noside == EVAL_SKIP)
10116 goto nosideret;
10117 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10118 return value_zero (value_type (arg1), not_lval);
10119 else
10120 {
10121 /* For integer exponentiation operations,
10122 only promote the first argument. */
10123 if (is_integral_type (value_type (arg2)))
10124 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10125 else
10126 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10127
10128 return value_binop (arg1, arg2, op);
10129 }
10130
10131 case UNOP_PLUS:
10132 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10133 if (noside == EVAL_SKIP)
10134 goto nosideret;
10135 else
10136 return arg1;
10137
10138 case UNOP_ABS:
10139 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10140 if (noside == EVAL_SKIP)
10141 goto nosideret;
10142 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10143 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
10144 return value_neg (arg1);
10145 else
10146 return arg1;
10147
10148 case UNOP_IND:
10149 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10150 if (noside == EVAL_SKIP)
10151 goto nosideret;
10152 type = ada_check_typedef (value_type (arg1));
10153 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10154 {
10155 if (ada_is_array_descriptor_type (type))
10156 /* GDB allows dereferencing GNAT array descriptors. */
10157 {
10158 struct type *arrType = ada_type_of_array (arg1, 0);
10159
10160 if (arrType == NULL)
10161 error (_("Attempt to dereference null array pointer."));
10162 return value_at_lazy (arrType, 0);
10163 }
10164 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10165 || TYPE_CODE (type) == TYPE_CODE_REF
10166 /* In C you can dereference an array to get the 1st elt. */
10167 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
10168 {
10169 type = to_static_fixed_type
10170 (ada_aligned_type
10171 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10172 check_size (type);
10173 return value_zero (type, lval_memory);
10174 }
10175 else if (TYPE_CODE (type) == TYPE_CODE_INT)
10176 {
10177 /* GDB allows dereferencing an int. */
10178 if (expect_type == NULL)
10179 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10180 lval_memory);
10181 else
10182 {
10183 expect_type =
10184 to_static_fixed_type (ada_aligned_type (expect_type));
10185 return value_zero (expect_type, lval_memory);
10186 }
10187 }
10188 else
10189 error (_("Attempt to take contents of a non-pointer value."));
10190 }
10191 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
10192 type = ada_check_typedef (value_type (arg1));
10193
10194 if (TYPE_CODE (type) == TYPE_CODE_INT)
10195 /* GDB allows dereferencing an int. If we were given
10196 the expect_type, then use that as the target type.
10197 Otherwise, assume that the target type is an int. */
10198 {
10199 if (expect_type != NULL)
10200 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10201 arg1));
10202 else
10203 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10204 (CORE_ADDR) value_as_address (arg1));
10205 }
10206
10207 if (ada_is_array_descriptor_type (type))
10208 /* GDB allows dereferencing GNAT array descriptors. */
10209 return ada_coerce_to_simple_array (arg1);
10210 else
10211 return ada_value_ind (arg1);
10212
10213 case STRUCTOP_STRUCT:
10214 tem = longest_to_int (exp->elts[pc + 1].longconst);
10215 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
10216 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10217 if (noside == EVAL_SKIP)
10218 goto nosideret;
10219 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10220 {
10221 struct type *type1 = value_type (arg1);
10222
10223 if (ada_is_tagged_type (type1, 1))
10224 {
10225 type = ada_lookup_struct_elt_type (type1,
10226 &exp->elts[pc + 2].string,
10227 1, 1, NULL);
10228 if (type == NULL)
10229 /* In this case, we assume that the field COULD exist
10230 in some extension of the type. Return an object of
10231 "type" void, which will match any formal
10232 (see ada_type_match). */
10233 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
10234 lval_memory);
10235 }
10236 else
10237 type =
10238 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
10239 0, NULL);
10240
10241 return value_zero (ada_aligned_type (type), lval_memory);
10242 }
10243 else
10244 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
10245 arg1 = unwrap_value (arg1);
10246 return ada_to_fixed_value (arg1);
10247
10248 case OP_TYPE:
10249 /* The value is not supposed to be used. This is here to make it
10250 easier to accommodate expressions that contain types. */
10251 (*pos) += 2;
10252 if (noside == EVAL_SKIP)
10253 goto nosideret;
10254 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10255 return allocate_value (exp->elts[pc + 1].type);
10256 else
10257 error (_("Attempt to use a type name as an expression"));
10258
10259 case OP_AGGREGATE:
10260 case OP_CHOICES:
10261 case OP_OTHERS:
10262 case OP_DISCRETE_RANGE:
10263 case OP_POSITIONAL:
10264 case OP_NAME:
10265 if (noside == EVAL_NORMAL)
10266 switch (op)
10267 {
10268 case OP_NAME:
10269 error (_("Undefined name, ambiguous name, or renaming used in "
10270 "component association: %s."), &exp->elts[pc+2].string);
10271 case OP_AGGREGATE:
10272 error (_("Aggregates only allowed on the right of an assignment"));
10273 default:
10274 internal_error (__FILE__, __LINE__,
10275 _("aggregate apparently mangled"));
10276 }
10277
10278 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10279 *pos += oplen - 1;
10280 for (tem = 0; tem < nargs; tem += 1)
10281 ada_evaluate_subexp (NULL, exp, pos, noside);
10282 goto nosideret;
10283 }
10284
10285 nosideret:
10286 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
10287 }
10288 \f
10289
10290 /* Fixed point */
10291
10292 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
10293 type name that encodes the 'small and 'delta information.
10294 Otherwise, return NULL. */
10295
10296 static const char *
10297 fixed_type_info (struct type *type)
10298 {
10299 const char *name = ada_type_name (type);
10300 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10301
10302 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10303 {
10304 const char *tail = strstr (name, "___XF_");
10305
10306 if (tail == NULL)
10307 return NULL;
10308 else
10309 return tail + 5;
10310 }
10311 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10312 return fixed_type_info (TYPE_TARGET_TYPE (type));
10313 else
10314 return NULL;
10315 }
10316
10317 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
10318
10319 int
10320 ada_is_fixed_point_type (struct type *type)
10321 {
10322 return fixed_type_info (type) != NULL;
10323 }
10324
10325 /* Return non-zero iff TYPE represents a System.Address type. */
10326
10327 int
10328 ada_is_system_address_type (struct type *type)
10329 {
10330 return (TYPE_NAME (type)
10331 && strcmp (TYPE_NAME (type), "system__address") == 0);
10332 }
10333
10334 /* Assuming that TYPE is the representation of an Ada fixed-point
10335 type, return its delta, or -1 if the type is malformed and the
10336 delta cannot be determined. */
10337
10338 DOUBLEST
10339 ada_delta (struct type *type)
10340 {
10341 const char *encoding = fixed_type_info (type);
10342 DOUBLEST num, den;
10343
10344 /* Strictly speaking, num and den are encoded as integer. However,
10345 they may not fit into a long, and they will have to be converted
10346 to DOUBLEST anyway. So scan them as DOUBLEST. */
10347 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10348 &num, &den) < 2)
10349 return -1.0;
10350 else
10351 return num / den;
10352 }
10353
10354 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
10355 factor ('SMALL value) associated with the type. */
10356
10357 static DOUBLEST
10358 scaling_factor (struct type *type)
10359 {
10360 const char *encoding = fixed_type_info (type);
10361 DOUBLEST num0, den0, num1, den1;
10362 int n;
10363
10364 /* Strictly speaking, num's and den's are encoded as integer. However,
10365 they may not fit into a long, and they will have to be converted
10366 to DOUBLEST anyway. So scan them as DOUBLEST. */
10367 n = sscanf (encoding,
10368 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
10369 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10370 &num0, &den0, &num1, &den1);
10371
10372 if (n < 2)
10373 return 1.0;
10374 else if (n == 4)
10375 return num1 / den1;
10376 else
10377 return num0 / den0;
10378 }
10379
10380
10381 /* Assuming that X is the representation of a value of fixed-point
10382 type TYPE, return its floating-point equivalent. */
10383
10384 DOUBLEST
10385 ada_fixed_to_float (struct type *type, LONGEST x)
10386 {
10387 return (DOUBLEST) x *scaling_factor (type);
10388 }
10389
10390 /* The representation of a fixed-point value of type TYPE
10391 corresponding to the value X. */
10392
10393 LONGEST
10394 ada_float_to_fixed (struct type *type, DOUBLEST x)
10395 {
10396 return (LONGEST) (x / scaling_factor (type) + 0.5);
10397 }
10398
10399 \f
10400
10401 /* Range types */
10402
10403 /* Scan STR beginning at position K for a discriminant name, and
10404 return the value of that discriminant field of DVAL in *PX. If
10405 PNEW_K is not null, put the position of the character beyond the
10406 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
10407 not alter *PX and *PNEW_K if unsuccessful. */
10408
10409 static int
10410 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
10411 int *pnew_k)
10412 {
10413 static char *bound_buffer = NULL;
10414 static size_t bound_buffer_len = 0;
10415 char *bound;
10416 char *pend;
10417 struct value *bound_val;
10418
10419 if (dval == NULL || str == NULL || str[k] == '\0')
10420 return 0;
10421
10422 pend = strstr (str + k, "__");
10423 if (pend == NULL)
10424 {
10425 bound = str + k;
10426 k += strlen (bound);
10427 }
10428 else
10429 {
10430 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
10431 bound = bound_buffer;
10432 strncpy (bound_buffer, str + k, pend - (str + k));
10433 bound[pend - (str + k)] = '\0';
10434 k = pend - str;
10435 }
10436
10437 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
10438 if (bound_val == NULL)
10439 return 0;
10440
10441 *px = value_as_long (bound_val);
10442 if (pnew_k != NULL)
10443 *pnew_k = k;
10444 return 1;
10445 }
10446
10447 /* Value of variable named NAME in the current environment. If
10448 no such variable found, then if ERR_MSG is null, returns 0, and
10449 otherwise causes an error with message ERR_MSG. */
10450
10451 static struct value *
10452 get_var_value (char *name, char *err_msg)
10453 {
10454 struct ada_symbol_info *syms;
10455 int nsyms;
10456
10457 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
10458 &syms, 1);
10459
10460 if (nsyms != 1)
10461 {
10462 if (err_msg == NULL)
10463 return 0;
10464 else
10465 error (("%s"), err_msg);
10466 }
10467
10468 return value_of_variable (syms[0].sym, syms[0].block);
10469 }
10470
10471 /* Value of integer variable named NAME in the current environment. If
10472 no such variable found, returns 0, and sets *FLAG to 0. If
10473 successful, sets *FLAG to 1. */
10474
10475 LONGEST
10476 get_int_var_value (char *name, int *flag)
10477 {
10478 struct value *var_val = get_var_value (name, 0);
10479
10480 if (var_val == 0)
10481 {
10482 if (flag != NULL)
10483 *flag = 0;
10484 return 0;
10485 }
10486 else
10487 {
10488 if (flag != NULL)
10489 *flag = 1;
10490 return value_as_long (var_val);
10491 }
10492 }
10493
10494
10495 /* Return a range type whose base type is that of the range type named
10496 NAME in the current environment, and whose bounds are calculated
10497 from NAME according to the GNAT range encoding conventions.
10498 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10499 corresponding range type from debug information; fall back to using it
10500 if symbol lookup fails. If a new type must be created, allocate it
10501 like ORIG_TYPE was. The bounds information, in general, is encoded
10502 in NAME, the base type given in the named range type. */
10503
10504 static struct type *
10505 to_fixed_range_type (struct type *raw_type, struct value *dval)
10506 {
10507 const char *name;
10508 struct type *base_type;
10509 char *subtype_info;
10510
10511 gdb_assert (raw_type != NULL);
10512 gdb_assert (TYPE_NAME (raw_type) != NULL);
10513
10514 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
10515 base_type = TYPE_TARGET_TYPE (raw_type);
10516 else
10517 base_type = raw_type;
10518
10519 name = TYPE_NAME (raw_type);
10520 subtype_info = strstr (name, "___XD");
10521 if (subtype_info == NULL)
10522 {
10523 LONGEST L = ada_discrete_type_low_bound (raw_type);
10524 LONGEST U = ada_discrete_type_high_bound (raw_type);
10525
10526 if (L < INT_MIN || U > INT_MAX)
10527 return raw_type;
10528 else
10529 return create_range_type (alloc_type_copy (raw_type), raw_type,
10530 ada_discrete_type_low_bound (raw_type),
10531 ada_discrete_type_high_bound (raw_type));
10532 }
10533 else
10534 {
10535 static char *name_buf = NULL;
10536 static size_t name_len = 0;
10537 int prefix_len = subtype_info - name;
10538 LONGEST L, U;
10539 struct type *type;
10540 char *bounds_str;
10541 int n;
10542
10543 GROW_VECT (name_buf, name_len, prefix_len + 5);
10544 strncpy (name_buf, name, prefix_len);
10545 name_buf[prefix_len] = '\0';
10546
10547 subtype_info += 5;
10548 bounds_str = strchr (subtype_info, '_');
10549 n = 1;
10550
10551 if (*subtype_info == 'L')
10552 {
10553 if (!ada_scan_number (bounds_str, n, &L, &n)
10554 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10555 return raw_type;
10556 if (bounds_str[n] == '_')
10557 n += 2;
10558 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
10559 n += 1;
10560 subtype_info += 1;
10561 }
10562 else
10563 {
10564 int ok;
10565
10566 strcpy (name_buf + prefix_len, "___L");
10567 L = get_int_var_value (name_buf, &ok);
10568 if (!ok)
10569 {
10570 lim_warning (_("Unknown lower bound, using 1."));
10571 L = 1;
10572 }
10573 }
10574
10575 if (*subtype_info == 'U')
10576 {
10577 if (!ada_scan_number (bounds_str, n, &U, &n)
10578 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10579 return raw_type;
10580 }
10581 else
10582 {
10583 int ok;
10584
10585 strcpy (name_buf + prefix_len, "___U");
10586 U = get_int_var_value (name_buf, &ok);
10587 if (!ok)
10588 {
10589 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
10590 U = L;
10591 }
10592 }
10593
10594 type = create_range_type (alloc_type_copy (raw_type), base_type, L, U);
10595 TYPE_NAME (type) = name;
10596 return type;
10597 }
10598 }
10599
10600 /* True iff NAME is the name of a range type. */
10601
10602 int
10603 ada_is_range_type_name (const char *name)
10604 {
10605 return (name != NULL && strstr (name, "___XD"));
10606 }
10607 \f
10608
10609 /* Modular types */
10610
10611 /* True iff TYPE is an Ada modular type. */
10612
10613 int
10614 ada_is_modular_type (struct type *type)
10615 {
10616 struct type *subranged_type = get_base_type (type);
10617
10618 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
10619 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
10620 && TYPE_UNSIGNED (subranged_type));
10621 }
10622
10623 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
10624
10625 ULONGEST
10626 ada_modulus (struct type *type)
10627 {
10628 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
10629 }
10630 \f
10631
10632 /* Ada exception catchpoint support:
10633 ---------------------------------
10634
10635 We support 3 kinds of exception catchpoints:
10636 . catchpoints on Ada exceptions
10637 . catchpoints on unhandled Ada exceptions
10638 . catchpoints on failed assertions
10639
10640 Exceptions raised during failed assertions, or unhandled exceptions
10641 could perfectly be caught with the general catchpoint on Ada exceptions.
10642 However, we can easily differentiate these two special cases, and having
10643 the option to distinguish these two cases from the rest can be useful
10644 to zero-in on certain situations.
10645
10646 Exception catchpoints are a specialized form of breakpoint,
10647 since they rely on inserting breakpoints inside known routines
10648 of the GNAT runtime. The implementation therefore uses a standard
10649 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10650 of breakpoint_ops.
10651
10652 Support in the runtime for exception catchpoints have been changed
10653 a few times already, and these changes affect the implementation
10654 of these catchpoints. In order to be able to support several
10655 variants of the runtime, we use a sniffer that will determine
10656 the runtime variant used by the program being debugged. */
10657
10658 /* The different types of catchpoints that we introduced for catching
10659 Ada exceptions. */
10660
10661 enum exception_catchpoint_kind
10662 {
10663 ex_catch_exception,
10664 ex_catch_exception_unhandled,
10665 ex_catch_assert
10666 };
10667
10668 /* Ada's standard exceptions. */
10669
10670 static char *standard_exc[] = {
10671 "constraint_error",
10672 "program_error",
10673 "storage_error",
10674 "tasking_error"
10675 };
10676
10677 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
10678
10679 /* A structure that describes how to support exception catchpoints
10680 for a given executable. */
10681
10682 struct exception_support_info
10683 {
10684 /* The name of the symbol to break on in order to insert
10685 a catchpoint on exceptions. */
10686 const char *catch_exception_sym;
10687
10688 /* The name of the symbol to break on in order to insert
10689 a catchpoint on unhandled exceptions. */
10690 const char *catch_exception_unhandled_sym;
10691
10692 /* The name of the symbol to break on in order to insert
10693 a catchpoint on failed assertions. */
10694 const char *catch_assert_sym;
10695
10696 /* Assuming that the inferior just triggered an unhandled exception
10697 catchpoint, this function is responsible for returning the address
10698 in inferior memory where the name of that exception is stored.
10699 Return zero if the address could not be computed. */
10700 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
10701 };
10702
10703 static CORE_ADDR ada_unhandled_exception_name_addr (void);
10704 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
10705
10706 /* The following exception support info structure describes how to
10707 implement exception catchpoints with the latest version of the
10708 Ada runtime (as of 2007-03-06). */
10709
10710 static const struct exception_support_info default_exception_support_info =
10711 {
10712 "__gnat_debug_raise_exception", /* catch_exception_sym */
10713 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10714 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
10715 ada_unhandled_exception_name_addr
10716 };
10717
10718 /* The following exception support info structure describes how to
10719 implement exception catchpoints with a slightly older version
10720 of the Ada runtime. */
10721
10722 static const struct exception_support_info exception_support_info_fallback =
10723 {
10724 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
10725 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10726 "system__assertions__raise_assert_failure", /* catch_assert_sym */
10727 ada_unhandled_exception_name_addr_from_raise
10728 };
10729
10730 /* Return nonzero if we can detect the exception support routines
10731 described in EINFO.
10732
10733 This function errors out if an abnormal situation is detected
10734 (for instance, if we find the exception support routines, but
10735 that support is found to be incomplete). */
10736
10737 static int
10738 ada_has_this_exception_support (const struct exception_support_info *einfo)
10739 {
10740 struct symbol *sym;
10741
10742 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10743 that should be compiled with debugging information. As a result, we
10744 expect to find that symbol in the symtabs. */
10745
10746 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
10747 if (sym == NULL)
10748 {
10749 /* Perhaps we did not find our symbol because the Ada runtime was
10750 compiled without debugging info, or simply stripped of it.
10751 It happens on some GNU/Linux distributions for instance, where
10752 users have to install a separate debug package in order to get
10753 the runtime's debugging info. In that situation, let the user
10754 know why we cannot insert an Ada exception catchpoint.
10755
10756 Note: Just for the purpose of inserting our Ada exception
10757 catchpoint, we could rely purely on the associated minimal symbol.
10758 But we would be operating in degraded mode anyway, since we are
10759 still lacking the debugging info needed later on to extract
10760 the name of the exception being raised (this name is printed in
10761 the catchpoint message, and is also used when trying to catch
10762 a specific exception). We do not handle this case for now. */
10763 if (lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL))
10764 error (_("Your Ada runtime appears to be missing some debugging "
10765 "information.\nCannot insert Ada exception catchpoint "
10766 "in this configuration."));
10767
10768 return 0;
10769 }
10770
10771 /* Make sure that the symbol we found corresponds to a function. */
10772
10773 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10774 error (_("Symbol \"%s\" is not a function (class = %d)"),
10775 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
10776
10777 return 1;
10778 }
10779
10780 /* Inspect the Ada runtime and determine which exception info structure
10781 should be used to provide support for exception catchpoints.
10782
10783 This function will always set the per-inferior exception_info,
10784 or raise an error. */
10785
10786 static void
10787 ada_exception_support_info_sniffer (void)
10788 {
10789 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
10790 struct symbol *sym;
10791
10792 /* If the exception info is already known, then no need to recompute it. */
10793 if (data->exception_info != NULL)
10794 return;
10795
10796 /* Check the latest (default) exception support info. */
10797 if (ada_has_this_exception_support (&default_exception_support_info))
10798 {
10799 data->exception_info = &default_exception_support_info;
10800 return;
10801 }
10802
10803 /* Try our fallback exception suport info. */
10804 if (ada_has_this_exception_support (&exception_support_info_fallback))
10805 {
10806 data->exception_info = &exception_support_info_fallback;
10807 return;
10808 }
10809
10810 /* Sometimes, it is normal for us to not be able to find the routine
10811 we are looking for. This happens when the program is linked with
10812 the shared version of the GNAT runtime, and the program has not been
10813 started yet. Inform the user of these two possible causes if
10814 applicable. */
10815
10816 if (ada_update_initial_language (language_unknown) != language_ada)
10817 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
10818
10819 /* If the symbol does not exist, then check that the program is
10820 already started, to make sure that shared libraries have been
10821 loaded. If it is not started, this may mean that the symbol is
10822 in a shared library. */
10823
10824 if (ptid_get_pid (inferior_ptid) == 0)
10825 error (_("Unable to insert catchpoint. Try to start the program first."));
10826
10827 /* At this point, we know that we are debugging an Ada program and
10828 that the inferior has been started, but we still are not able to
10829 find the run-time symbols. That can mean that we are in
10830 configurable run time mode, or that a-except as been optimized
10831 out by the linker... In any case, at this point it is not worth
10832 supporting this feature. */
10833
10834 error (_("Cannot insert Ada exception catchpoints in this configuration."));
10835 }
10836
10837 /* True iff FRAME is very likely to be that of a function that is
10838 part of the runtime system. This is all very heuristic, but is
10839 intended to be used as advice as to what frames are uninteresting
10840 to most users. */
10841
10842 static int
10843 is_known_support_routine (struct frame_info *frame)
10844 {
10845 struct symtab_and_line sal;
10846 const char *func_name;
10847 enum language func_lang;
10848 int i;
10849
10850 /* If this code does not have any debugging information (no symtab),
10851 This cannot be any user code. */
10852
10853 find_frame_sal (frame, &sal);
10854 if (sal.symtab == NULL)
10855 return 1;
10856
10857 /* If there is a symtab, but the associated source file cannot be
10858 located, then assume this is not user code: Selecting a frame
10859 for which we cannot display the code would not be very helpful
10860 for the user. This should also take care of case such as VxWorks
10861 where the kernel has some debugging info provided for a few units. */
10862
10863 if (symtab_to_fullname (sal.symtab) == NULL)
10864 return 1;
10865
10866 /* Check the unit filename againt the Ada runtime file naming.
10867 We also check the name of the objfile against the name of some
10868 known system libraries that sometimes come with debugging info
10869 too. */
10870
10871 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
10872 {
10873 re_comp (known_runtime_file_name_patterns[i]);
10874 if (re_exec (sal.symtab->filename))
10875 return 1;
10876 if (sal.symtab->objfile != NULL
10877 && re_exec (sal.symtab->objfile->name))
10878 return 1;
10879 }
10880
10881 /* Check whether the function is a GNAT-generated entity. */
10882
10883 find_frame_funname (frame, &func_name, &func_lang, NULL);
10884 if (func_name == NULL)
10885 return 1;
10886
10887 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
10888 {
10889 re_comp (known_auxiliary_function_name_patterns[i]);
10890 if (re_exec (func_name))
10891 return 1;
10892 }
10893
10894 return 0;
10895 }
10896
10897 /* Find the first frame that contains debugging information and that is not
10898 part of the Ada run-time, starting from FI and moving upward. */
10899
10900 void
10901 ada_find_printable_frame (struct frame_info *fi)
10902 {
10903 for (; fi != NULL; fi = get_prev_frame (fi))
10904 {
10905 if (!is_known_support_routine (fi))
10906 {
10907 select_frame (fi);
10908 break;
10909 }
10910 }
10911
10912 }
10913
10914 /* Assuming that the inferior just triggered an unhandled exception
10915 catchpoint, return the address in inferior memory where the name
10916 of the exception is stored.
10917
10918 Return zero if the address could not be computed. */
10919
10920 static CORE_ADDR
10921 ada_unhandled_exception_name_addr (void)
10922 {
10923 return parse_and_eval_address ("e.full_name");
10924 }
10925
10926 /* Same as ada_unhandled_exception_name_addr, except that this function
10927 should be used when the inferior uses an older version of the runtime,
10928 where the exception name needs to be extracted from a specific frame
10929 several frames up in the callstack. */
10930
10931 static CORE_ADDR
10932 ada_unhandled_exception_name_addr_from_raise (void)
10933 {
10934 int frame_level;
10935 struct frame_info *fi;
10936 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
10937
10938 /* To determine the name of this exception, we need to select
10939 the frame corresponding to RAISE_SYM_NAME. This frame is
10940 at least 3 levels up, so we simply skip the first 3 frames
10941 without checking the name of their associated function. */
10942 fi = get_current_frame ();
10943 for (frame_level = 0; frame_level < 3; frame_level += 1)
10944 if (fi != NULL)
10945 fi = get_prev_frame (fi);
10946
10947 while (fi != NULL)
10948 {
10949 const char *func_name;
10950 enum language func_lang;
10951
10952 find_frame_funname (fi, &func_name, &func_lang, NULL);
10953 if (func_name != NULL
10954 && strcmp (func_name, data->exception_info->catch_exception_sym) == 0)
10955 break; /* We found the frame we were looking for... */
10956 fi = get_prev_frame (fi);
10957 }
10958
10959 if (fi == NULL)
10960 return 0;
10961
10962 select_frame (fi);
10963 return parse_and_eval_address ("id.full_name");
10964 }
10965
10966 /* Assuming the inferior just triggered an Ada exception catchpoint
10967 (of any type), return the address in inferior memory where the name
10968 of the exception is stored, if applicable.
10969
10970 Return zero if the address could not be computed, or if not relevant. */
10971
10972 static CORE_ADDR
10973 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
10974 struct breakpoint *b)
10975 {
10976 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
10977
10978 switch (ex)
10979 {
10980 case ex_catch_exception:
10981 return (parse_and_eval_address ("e.full_name"));
10982 break;
10983
10984 case ex_catch_exception_unhandled:
10985 return data->exception_info->unhandled_exception_name_addr ();
10986 break;
10987
10988 case ex_catch_assert:
10989 return 0; /* Exception name is not relevant in this case. */
10990 break;
10991
10992 default:
10993 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10994 break;
10995 }
10996
10997 return 0; /* Should never be reached. */
10998 }
10999
11000 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
11001 any error that ada_exception_name_addr_1 might cause to be thrown.
11002 When an error is intercepted, a warning with the error message is printed,
11003 and zero is returned. */
11004
11005 static CORE_ADDR
11006 ada_exception_name_addr (enum exception_catchpoint_kind ex,
11007 struct breakpoint *b)
11008 {
11009 volatile struct gdb_exception e;
11010 CORE_ADDR result = 0;
11011
11012 TRY_CATCH (e, RETURN_MASK_ERROR)
11013 {
11014 result = ada_exception_name_addr_1 (ex, b);
11015 }
11016
11017 if (e.reason < 0)
11018 {
11019 warning (_("failed to get exception name: %s"), e.message);
11020 return 0;
11021 }
11022
11023 return result;
11024 }
11025
11026 static struct symtab_and_line ada_exception_sal (enum exception_catchpoint_kind,
11027 char *, char **,
11028 const struct breakpoint_ops **);
11029 static char *ada_exception_catchpoint_cond_string (const char *excep_string);
11030
11031 /* Ada catchpoints.
11032
11033 In the case of catchpoints on Ada exceptions, the catchpoint will
11034 stop the target on every exception the program throws. When a user
11035 specifies the name of a specific exception, we translate this
11036 request into a condition expression (in text form), and then parse
11037 it into an expression stored in each of the catchpoint's locations.
11038 We then use this condition to check whether the exception that was
11039 raised is the one the user is interested in. If not, then the
11040 target is resumed again. We store the name of the requested
11041 exception, in order to be able to re-set the condition expression
11042 when symbols change. */
11043
11044 /* An instance of this type is used to represent an Ada catchpoint
11045 breakpoint location. It includes a "struct bp_location" as a kind
11046 of base class; users downcast to "struct bp_location *" when
11047 needed. */
11048
11049 struct ada_catchpoint_location
11050 {
11051 /* The base class. */
11052 struct bp_location base;
11053
11054 /* The condition that checks whether the exception that was raised
11055 is the specific exception the user specified on catchpoint
11056 creation. */
11057 struct expression *excep_cond_expr;
11058 };
11059
11060 /* Implement the DTOR method in the bp_location_ops structure for all
11061 Ada exception catchpoint kinds. */
11062
11063 static void
11064 ada_catchpoint_location_dtor (struct bp_location *bl)
11065 {
11066 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
11067
11068 xfree (al->excep_cond_expr);
11069 }
11070
11071 /* The vtable to be used in Ada catchpoint locations. */
11072
11073 static const struct bp_location_ops ada_catchpoint_location_ops =
11074 {
11075 ada_catchpoint_location_dtor
11076 };
11077
11078 /* An instance of this type is used to represent an Ada catchpoint.
11079 It includes a "struct breakpoint" as a kind of base class; users
11080 downcast to "struct breakpoint *" when needed. */
11081
11082 struct ada_catchpoint
11083 {
11084 /* The base class. */
11085 struct breakpoint base;
11086
11087 /* The name of the specific exception the user specified. */
11088 char *excep_string;
11089 };
11090
11091 /* Parse the exception condition string in the context of each of the
11092 catchpoint's locations, and store them for later evaluation. */
11093
11094 static void
11095 create_excep_cond_exprs (struct ada_catchpoint *c)
11096 {
11097 struct cleanup *old_chain;
11098 struct bp_location *bl;
11099 char *cond_string;
11100
11101 /* Nothing to do if there's no specific exception to catch. */
11102 if (c->excep_string == NULL)
11103 return;
11104
11105 /* Same if there are no locations... */
11106 if (c->base.loc == NULL)
11107 return;
11108
11109 /* Compute the condition expression in text form, from the specific
11110 expection we want to catch. */
11111 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11112 old_chain = make_cleanup (xfree, cond_string);
11113
11114 /* Iterate over all the catchpoint's locations, and parse an
11115 expression for each. */
11116 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11117 {
11118 struct ada_catchpoint_location *ada_loc
11119 = (struct ada_catchpoint_location *) bl;
11120 struct expression *exp = NULL;
11121
11122 if (!bl->shlib_disabled)
11123 {
11124 volatile struct gdb_exception e;
11125 char *s;
11126
11127 s = cond_string;
11128 TRY_CATCH (e, RETURN_MASK_ERROR)
11129 {
11130 exp = parse_exp_1 (&s, block_for_pc (bl->address), 0);
11131 }
11132 if (e.reason < 0)
11133 warning (_("failed to reevaluate internal exception condition "
11134 "for catchpoint %d: %s"),
11135 c->base.number, e.message);
11136 }
11137
11138 ada_loc->excep_cond_expr = exp;
11139 }
11140
11141 do_cleanups (old_chain);
11142 }
11143
11144 /* Implement the DTOR method in the breakpoint_ops structure for all
11145 exception catchpoint kinds. */
11146
11147 static void
11148 dtor_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11149 {
11150 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11151
11152 xfree (c->excep_string);
11153
11154 bkpt_breakpoint_ops.dtor (b);
11155 }
11156
11157 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11158 structure for all exception catchpoint kinds. */
11159
11160 static struct bp_location *
11161 allocate_location_exception (enum exception_catchpoint_kind ex,
11162 struct breakpoint *self)
11163 {
11164 struct ada_catchpoint_location *loc;
11165
11166 loc = XNEW (struct ada_catchpoint_location);
11167 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11168 loc->excep_cond_expr = NULL;
11169 return &loc->base;
11170 }
11171
11172 /* Implement the RE_SET method in the breakpoint_ops structure for all
11173 exception catchpoint kinds. */
11174
11175 static void
11176 re_set_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11177 {
11178 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11179
11180 /* Call the base class's method. This updates the catchpoint's
11181 locations. */
11182 bkpt_breakpoint_ops.re_set (b);
11183
11184 /* Reparse the exception conditional expressions. One for each
11185 location. */
11186 create_excep_cond_exprs (c);
11187 }
11188
11189 /* Returns true if we should stop for this breakpoint hit. If the
11190 user specified a specific exception, we only want to cause a stop
11191 if the program thrown that exception. */
11192
11193 static int
11194 should_stop_exception (const struct bp_location *bl)
11195 {
11196 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11197 const struct ada_catchpoint_location *ada_loc
11198 = (const struct ada_catchpoint_location *) bl;
11199 volatile struct gdb_exception ex;
11200 int stop;
11201
11202 /* With no specific exception, should always stop. */
11203 if (c->excep_string == NULL)
11204 return 1;
11205
11206 if (ada_loc->excep_cond_expr == NULL)
11207 {
11208 /* We will have a NULL expression if back when we were creating
11209 the expressions, this location's had failed to parse. */
11210 return 1;
11211 }
11212
11213 stop = 1;
11214 TRY_CATCH (ex, RETURN_MASK_ALL)
11215 {
11216 struct value *mark;
11217
11218 mark = value_mark ();
11219 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
11220 value_free_to_mark (mark);
11221 }
11222 if (ex.reason < 0)
11223 exception_fprintf (gdb_stderr, ex,
11224 _("Error in testing exception condition:\n"));
11225 return stop;
11226 }
11227
11228 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
11229 for all exception catchpoint kinds. */
11230
11231 static void
11232 check_status_exception (enum exception_catchpoint_kind ex, bpstat bs)
11233 {
11234 bs->stop = should_stop_exception (bs->bp_location_at);
11235 }
11236
11237 /* Implement the PRINT_IT method in the breakpoint_ops structure
11238 for all exception catchpoint kinds. */
11239
11240 static enum print_stop_action
11241 print_it_exception (enum exception_catchpoint_kind ex, bpstat bs)
11242 {
11243 struct ui_out *uiout = current_uiout;
11244 struct breakpoint *b = bs->breakpoint_at;
11245
11246 annotate_catchpoint (b->number);
11247
11248 if (ui_out_is_mi_like_p (uiout))
11249 {
11250 ui_out_field_string (uiout, "reason",
11251 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11252 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
11253 }
11254
11255 ui_out_text (uiout,
11256 b->disposition == disp_del ? "\nTemporary catchpoint "
11257 : "\nCatchpoint ");
11258 ui_out_field_int (uiout, "bkptno", b->number);
11259 ui_out_text (uiout, ", ");
11260
11261 switch (ex)
11262 {
11263 case ex_catch_exception:
11264 case ex_catch_exception_unhandled:
11265 {
11266 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
11267 char exception_name[256];
11268
11269 if (addr != 0)
11270 {
11271 read_memory (addr, exception_name, sizeof (exception_name) - 1);
11272 exception_name [sizeof (exception_name) - 1] = '\0';
11273 }
11274 else
11275 {
11276 /* For some reason, we were unable to read the exception
11277 name. This could happen if the Runtime was compiled
11278 without debugging info, for instance. In that case,
11279 just replace the exception name by the generic string
11280 "exception" - it will read as "an exception" in the
11281 notification we are about to print. */
11282 memcpy (exception_name, "exception", sizeof ("exception"));
11283 }
11284 /* In the case of unhandled exception breakpoints, we print
11285 the exception name as "unhandled EXCEPTION_NAME", to make
11286 it clearer to the user which kind of catchpoint just got
11287 hit. We used ui_out_text to make sure that this extra
11288 info does not pollute the exception name in the MI case. */
11289 if (ex == ex_catch_exception_unhandled)
11290 ui_out_text (uiout, "unhandled ");
11291 ui_out_field_string (uiout, "exception-name", exception_name);
11292 }
11293 break;
11294 case ex_catch_assert:
11295 /* In this case, the name of the exception is not really
11296 important. Just print "failed assertion" to make it clearer
11297 that his program just hit an assertion-failure catchpoint.
11298 We used ui_out_text because this info does not belong in
11299 the MI output. */
11300 ui_out_text (uiout, "failed assertion");
11301 break;
11302 }
11303 ui_out_text (uiout, " at ");
11304 ada_find_printable_frame (get_current_frame ());
11305
11306 return PRINT_SRC_AND_LOC;
11307 }
11308
11309 /* Implement the PRINT_ONE method in the breakpoint_ops structure
11310 for all exception catchpoint kinds. */
11311
11312 static void
11313 print_one_exception (enum exception_catchpoint_kind ex,
11314 struct breakpoint *b, struct bp_location **last_loc)
11315 {
11316 struct ui_out *uiout = current_uiout;
11317 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11318 struct value_print_options opts;
11319
11320 get_user_print_options (&opts);
11321 if (opts.addressprint)
11322 {
11323 annotate_field (4);
11324 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
11325 }
11326
11327 annotate_field (5);
11328 *last_loc = b->loc;
11329 switch (ex)
11330 {
11331 case ex_catch_exception:
11332 if (c->excep_string != NULL)
11333 {
11334 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11335
11336 ui_out_field_string (uiout, "what", msg);
11337 xfree (msg);
11338 }
11339 else
11340 ui_out_field_string (uiout, "what", "all Ada exceptions");
11341
11342 break;
11343
11344 case ex_catch_exception_unhandled:
11345 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
11346 break;
11347
11348 case ex_catch_assert:
11349 ui_out_field_string (uiout, "what", "failed Ada assertions");
11350 break;
11351
11352 default:
11353 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11354 break;
11355 }
11356 }
11357
11358 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
11359 for all exception catchpoint kinds. */
11360
11361 static void
11362 print_mention_exception (enum exception_catchpoint_kind ex,
11363 struct breakpoint *b)
11364 {
11365 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11366 struct ui_out *uiout = current_uiout;
11367
11368 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
11369 : _("Catchpoint "));
11370 ui_out_field_int (uiout, "bkptno", b->number);
11371 ui_out_text (uiout, ": ");
11372
11373 switch (ex)
11374 {
11375 case ex_catch_exception:
11376 if (c->excep_string != NULL)
11377 {
11378 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11379 struct cleanup *old_chain = make_cleanup (xfree, info);
11380
11381 ui_out_text (uiout, info);
11382 do_cleanups (old_chain);
11383 }
11384 else
11385 ui_out_text (uiout, _("all Ada exceptions"));
11386 break;
11387
11388 case ex_catch_exception_unhandled:
11389 ui_out_text (uiout, _("unhandled Ada exceptions"));
11390 break;
11391
11392 case ex_catch_assert:
11393 ui_out_text (uiout, _("failed Ada assertions"));
11394 break;
11395
11396 default:
11397 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11398 break;
11399 }
11400 }
11401
11402 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
11403 for all exception catchpoint kinds. */
11404
11405 static void
11406 print_recreate_exception (enum exception_catchpoint_kind ex,
11407 struct breakpoint *b, struct ui_file *fp)
11408 {
11409 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11410
11411 switch (ex)
11412 {
11413 case ex_catch_exception:
11414 fprintf_filtered (fp, "catch exception");
11415 if (c->excep_string != NULL)
11416 fprintf_filtered (fp, " %s", c->excep_string);
11417 break;
11418
11419 case ex_catch_exception_unhandled:
11420 fprintf_filtered (fp, "catch exception unhandled");
11421 break;
11422
11423 case ex_catch_assert:
11424 fprintf_filtered (fp, "catch assert");
11425 break;
11426
11427 default:
11428 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11429 }
11430 print_recreate_thread (b, fp);
11431 }
11432
11433 /* Virtual table for "catch exception" breakpoints. */
11434
11435 static void
11436 dtor_catch_exception (struct breakpoint *b)
11437 {
11438 dtor_exception (ex_catch_exception, b);
11439 }
11440
11441 static struct bp_location *
11442 allocate_location_catch_exception (struct breakpoint *self)
11443 {
11444 return allocate_location_exception (ex_catch_exception, self);
11445 }
11446
11447 static void
11448 re_set_catch_exception (struct breakpoint *b)
11449 {
11450 re_set_exception (ex_catch_exception, b);
11451 }
11452
11453 static void
11454 check_status_catch_exception (bpstat bs)
11455 {
11456 check_status_exception (ex_catch_exception, bs);
11457 }
11458
11459 static enum print_stop_action
11460 print_it_catch_exception (bpstat bs)
11461 {
11462 return print_it_exception (ex_catch_exception, bs);
11463 }
11464
11465 static void
11466 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
11467 {
11468 print_one_exception (ex_catch_exception, b, last_loc);
11469 }
11470
11471 static void
11472 print_mention_catch_exception (struct breakpoint *b)
11473 {
11474 print_mention_exception (ex_catch_exception, b);
11475 }
11476
11477 static void
11478 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
11479 {
11480 print_recreate_exception (ex_catch_exception, b, fp);
11481 }
11482
11483 static struct breakpoint_ops catch_exception_breakpoint_ops;
11484
11485 /* Virtual table for "catch exception unhandled" breakpoints. */
11486
11487 static void
11488 dtor_catch_exception_unhandled (struct breakpoint *b)
11489 {
11490 dtor_exception (ex_catch_exception_unhandled, b);
11491 }
11492
11493 static struct bp_location *
11494 allocate_location_catch_exception_unhandled (struct breakpoint *self)
11495 {
11496 return allocate_location_exception (ex_catch_exception_unhandled, self);
11497 }
11498
11499 static void
11500 re_set_catch_exception_unhandled (struct breakpoint *b)
11501 {
11502 re_set_exception (ex_catch_exception_unhandled, b);
11503 }
11504
11505 static void
11506 check_status_catch_exception_unhandled (bpstat bs)
11507 {
11508 check_status_exception (ex_catch_exception_unhandled, bs);
11509 }
11510
11511 static enum print_stop_action
11512 print_it_catch_exception_unhandled (bpstat bs)
11513 {
11514 return print_it_exception (ex_catch_exception_unhandled, bs);
11515 }
11516
11517 static void
11518 print_one_catch_exception_unhandled (struct breakpoint *b,
11519 struct bp_location **last_loc)
11520 {
11521 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
11522 }
11523
11524 static void
11525 print_mention_catch_exception_unhandled (struct breakpoint *b)
11526 {
11527 print_mention_exception (ex_catch_exception_unhandled, b);
11528 }
11529
11530 static void
11531 print_recreate_catch_exception_unhandled (struct breakpoint *b,
11532 struct ui_file *fp)
11533 {
11534 print_recreate_exception (ex_catch_exception_unhandled, b, fp);
11535 }
11536
11537 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
11538
11539 /* Virtual table for "catch assert" breakpoints. */
11540
11541 static void
11542 dtor_catch_assert (struct breakpoint *b)
11543 {
11544 dtor_exception (ex_catch_assert, b);
11545 }
11546
11547 static struct bp_location *
11548 allocate_location_catch_assert (struct breakpoint *self)
11549 {
11550 return allocate_location_exception (ex_catch_assert, self);
11551 }
11552
11553 static void
11554 re_set_catch_assert (struct breakpoint *b)
11555 {
11556 return re_set_exception (ex_catch_assert, b);
11557 }
11558
11559 static void
11560 check_status_catch_assert (bpstat bs)
11561 {
11562 check_status_exception (ex_catch_assert, bs);
11563 }
11564
11565 static enum print_stop_action
11566 print_it_catch_assert (bpstat bs)
11567 {
11568 return print_it_exception (ex_catch_assert, bs);
11569 }
11570
11571 static void
11572 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
11573 {
11574 print_one_exception (ex_catch_assert, b, last_loc);
11575 }
11576
11577 static void
11578 print_mention_catch_assert (struct breakpoint *b)
11579 {
11580 print_mention_exception (ex_catch_assert, b);
11581 }
11582
11583 static void
11584 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
11585 {
11586 print_recreate_exception (ex_catch_assert, b, fp);
11587 }
11588
11589 static struct breakpoint_ops catch_assert_breakpoint_ops;
11590
11591 /* Return a newly allocated copy of the first space-separated token
11592 in ARGSP, and then adjust ARGSP to point immediately after that
11593 token.
11594
11595 Return NULL if ARGPS does not contain any more tokens. */
11596
11597 static char *
11598 ada_get_next_arg (char **argsp)
11599 {
11600 char *args = *argsp;
11601 char *end;
11602 char *result;
11603
11604 args = skip_spaces (args);
11605 if (args[0] == '\0')
11606 return NULL; /* No more arguments. */
11607
11608 /* Find the end of the current argument. */
11609
11610 end = skip_to_space (args);
11611
11612 /* Adjust ARGSP to point to the start of the next argument. */
11613
11614 *argsp = end;
11615
11616 /* Make a copy of the current argument and return it. */
11617
11618 result = xmalloc (end - args + 1);
11619 strncpy (result, args, end - args);
11620 result[end - args] = '\0';
11621
11622 return result;
11623 }
11624
11625 /* Split the arguments specified in a "catch exception" command.
11626 Set EX to the appropriate catchpoint type.
11627 Set EXCEP_STRING to the name of the specific exception if
11628 specified by the user.
11629 If a condition is found at the end of the arguments, the condition
11630 expression is stored in COND_STRING (memory must be deallocated
11631 after use). Otherwise COND_STRING is set to NULL. */
11632
11633 static void
11634 catch_ada_exception_command_split (char *args,
11635 enum exception_catchpoint_kind *ex,
11636 char **excep_string,
11637 char **cond_string)
11638 {
11639 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
11640 char *exception_name;
11641 char *cond = NULL;
11642
11643 exception_name = ada_get_next_arg (&args);
11644 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
11645 {
11646 /* This is not an exception name; this is the start of a condition
11647 expression for a catchpoint on all exceptions. So, "un-get"
11648 this token, and set exception_name to NULL. */
11649 xfree (exception_name);
11650 exception_name = NULL;
11651 args -= 2;
11652 }
11653 make_cleanup (xfree, exception_name);
11654
11655 /* Check to see if we have a condition. */
11656
11657 args = skip_spaces (args);
11658 if (strncmp (args, "if", 2) == 0
11659 && (isspace (args[2]) || args[2] == '\0'))
11660 {
11661 args += 2;
11662 args = skip_spaces (args);
11663
11664 if (args[0] == '\0')
11665 error (_("Condition missing after `if' keyword"));
11666 cond = xstrdup (args);
11667 make_cleanup (xfree, cond);
11668
11669 args += strlen (args);
11670 }
11671
11672 /* Check that we do not have any more arguments. Anything else
11673 is unexpected. */
11674
11675 if (args[0] != '\0')
11676 error (_("Junk at end of expression"));
11677
11678 discard_cleanups (old_chain);
11679
11680 if (exception_name == NULL)
11681 {
11682 /* Catch all exceptions. */
11683 *ex = ex_catch_exception;
11684 *excep_string = NULL;
11685 }
11686 else if (strcmp (exception_name, "unhandled") == 0)
11687 {
11688 /* Catch unhandled exceptions. */
11689 *ex = ex_catch_exception_unhandled;
11690 *excep_string = NULL;
11691 }
11692 else
11693 {
11694 /* Catch a specific exception. */
11695 *ex = ex_catch_exception;
11696 *excep_string = exception_name;
11697 }
11698 *cond_string = cond;
11699 }
11700
11701 /* Return the name of the symbol on which we should break in order to
11702 implement a catchpoint of the EX kind. */
11703
11704 static const char *
11705 ada_exception_sym_name (enum exception_catchpoint_kind ex)
11706 {
11707 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11708
11709 gdb_assert (data->exception_info != NULL);
11710
11711 switch (ex)
11712 {
11713 case ex_catch_exception:
11714 return (data->exception_info->catch_exception_sym);
11715 break;
11716 case ex_catch_exception_unhandled:
11717 return (data->exception_info->catch_exception_unhandled_sym);
11718 break;
11719 case ex_catch_assert:
11720 return (data->exception_info->catch_assert_sym);
11721 break;
11722 default:
11723 internal_error (__FILE__, __LINE__,
11724 _("unexpected catchpoint kind (%d)"), ex);
11725 }
11726 }
11727
11728 /* Return the breakpoint ops "virtual table" used for catchpoints
11729 of the EX kind. */
11730
11731 static const struct breakpoint_ops *
11732 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
11733 {
11734 switch (ex)
11735 {
11736 case ex_catch_exception:
11737 return (&catch_exception_breakpoint_ops);
11738 break;
11739 case ex_catch_exception_unhandled:
11740 return (&catch_exception_unhandled_breakpoint_ops);
11741 break;
11742 case ex_catch_assert:
11743 return (&catch_assert_breakpoint_ops);
11744 break;
11745 default:
11746 internal_error (__FILE__, __LINE__,
11747 _("unexpected catchpoint kind (%d)"), ex);
11748 }
11749 }
11750
11751 /* Return the condition that will be used to match the current exception
11752 being raised with the exception that the user wants to catch. This
11753 assumes that this condition is used when the inferior just triggered
11754 an exception catchpoint.
11755
11756 The string returned is a newly allocated string that needs to be
11757 deallocated later. */
11758
11759 static char *
11760 ada_exception_catchpoint_cond_string (const char *excep_string)
11761 {
11762 int i;
11763
11764 /* The standard exceptions are a special case. They are defined in
11765 runtime units that have been compiled without debugging info; if
11766 EXCEP_STRING is the not-fully-qualified name of a standard
11767 exception (e.g. "constraint_error") then, during the evaluation
11768 of the condition expression, the symbol lookup on this name would
11769 *not* return this standard exception. The catchpoint condition
11770 may then be set only on user-defined exceptions which have the
11771 same not-fully-qualified name (e.g. my_package.constraint_error).
11772
11773 To avoid this unexcepted behavior, these standard exceptions are
11774 systematically prefixed by "standard". This means that "catch
11775 exception constraint_error" is rewritten into "catch exception
11776 standard.constraint_error".
11777
11778 If an exception named contraint_error is defined in another package of
11779 the inferior program, then the only way to specify this exception as a
11780 breakpoint condition is to use its fully-qualified named:
11781 e.g. my_package.constraint_error. */
11782
11783 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
11784 {
11785 if (strcmp (standard_exc [i], excep_string) == 0)
11786 {
11787 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
11788 excep_string);
11789 }
11790 }
11791 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
11792 }
11793
11794 /* Return the symtab_and_line that should be used to insert an exception
11795 catchpoint of the TYPE kind.
11796
11797 EXCEP_STRING should contain the name of a specific exception that
11798 the catchpoint should catch, or NULL otherwise.
11799
11800 ADDR_STRING returns the name of the function where the real
11801 breakpoint that implements the catchpoints is set, depending on the
11802 type of catchpoint we need to create. */
11803
11804 static struct symtab_and_line
11805 ada_exception_sal (enum exception_catchpoint_kind ex, char *excep_string,
11806 char **addr_string, const struct breakpoint_ops **ops)
11807 {
11808 const char *sym_name;
11809 struct symbol *sym;
11810
11811 /* First, find out which exception support info to use. */
11812 ada_exception_support_info_sniffer ();
11813
11814 /* Then lookup the function on which we will break in order to catch
11815 the Ada exceptions requested by the user. */
11816 sym_name = ada_exception_sym_name (ex);
11817 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
11818
11819 /* We can assume that SYM is not NULL at this stage. If the symbol
11820 did not exist, ada_exception_support_info_sniffer would have
11821 raised an exception.
11822
11823 Also, ada_exception_support_info_sniffer should have already
11824 verified that SYM is a function symbol. */
11825 gdb_assert (sym != NULL);
11826 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
11827
11828 /* Set ADDR_STRING. */
11829 *addr_string = xstrdup (sym_name);
11830
11831 /* Set OPS. */
11832 *ops = ada_exception_breakpoint_ops (ex);
11833
11834 return find_function_start_sal (sym, 1);
11835 }
11836
11837 /* Parse the arguments (ARGS) of the "catch exception" command.
11838
11839 If the user asked the catchpoint to catch only a specific
11840 exception, then save the exception name in ADDR_STRING.
11841
11842 If the user provided a condition, then set COND_STRING to
11843 that condition expression (the memory must be deallocated
11844 after use). Otherwise, set COND_STRING to NULL.
11845
11846 See ada_exception_sal for a description of all the remaining
11847 function arguments of this function. */
11848
11849 static struct symtab_and_line
11850 ada_decode_exception_location (char *args, char **addr_string,
11851 char **excep_string,
11852 char **cond_string,
11853 const struct breakpoint_ops **ops)
11854 {
11855 enum exception_catchpoint_kind ex;
11856
11857 catch_ada_exception_command_split (args, &ex, excep_string, cond_string);
11858 return ada_exception_sal (ex, *excep_string, addr_string, ops);
11859 }
11860
11861 /* Create an Ada exception catchpoint. */
11862
11863 static void
11864 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
11865 struct symtab_and_line sal,
11866 char *addr_string,
11867 char *excep_string,
11868 char *cond_string,
11869 const struct breakpoint_ops *ops,
11870 int tempflag,
11871 int from_tty)
11872 {
11873 struct ada_catchpoint *c;
11874
11875 c = XNEW (struct ada_catchpoint);
11876 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
11877 ops, tempflag, from_tty);
11878 c->excep_string = excep_string;
11879 create_excep_cond_exprs (c);
11880 if (cond_string != NULL)
11881 set_breakpoint_condition (&c->base, cond_string, from_tty);
11882 install_breakpoint (0, &c->base, 1);
11883 }
11884
11885 /* Implement the "catch exception" command. */
11886
11887 static void
11888 catch_ada_exception_command (char *arg, int from_tty,
11889 struct cmd_list_element *command)
11890 {
11891 struct gdbarch *gdbarch = get_current_arch ();
11892 int tempflag;
11893 struct symtab_and_line sal;
11894 char *addr_string = NULL;
11895 char *excep_string = NULL;
11896 char *cond_string = NULL;
11897 const struct breakpoint_ops *ops = NULL;
11898
11899 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11900
11901 if (!arg)
11902 arg = "";
11903 sal = ada_decode_exception_location (arg, &addr_string, &excep_string,
11904 &cond_string, &ops);
11905 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
11906 excep_string, cond_string, ops,
11907 tempflag, from_tty);
11908 }
11909
11910 /* Assuming that ARGS contains the arguments of a "catch assert"
11911 command, parse those arguments and return a symtab_and_line object
11912 for a failed assertion catchpoint.
11913
11914 Set ADDR_STRING to the name of the function where the real
11915 breakpoint that implements the catchpoint is set.
11916
11917 If ARGS contains a condition, set COND_STRING to that condition
11918 (the memory needs to be deallocated after use). Otherwise, set
11919 COND_STRING to NULL. */
11920
11921 static struct symtab_and_line
11922 ada_decode_assert_location (char *args, char **addr_string,
11923 char **cond_string,
11924 const struct breakpoint_ops **ops)
11925 {
11926 args = skip_spaces (args);
11927
11928 /* Check whether a condition was provided. */
11929 if (strncmp (args, "if", 2) == 0
11930 && (isspace (args[2]) || args[2] == '\0'))
11931 {
11932 args += 2;
11933 args = skip_spaces (args);
11934 if (args[0] == '\0')
11935 error (_("condition missing after `if' keyword"));
11936 *cond_string = xstrdup (args);
11937 }
11938
11939 /* Otherwise, there should be no other argument at the end of
11940 the command. */
11941 else if (args[0] != '\0')
11942 error (_("Junk at end of arguments."));
11943
11944 return ada_exception_sal (ex_catch_assert, NULL, addr_string, ops);
11945 }
11946
11947 /* Implement the "catch assert" command. */
11948
11949 static void
11950 catch_assert_command (char *arg, int from_tty,
11951 struct cmd_list_element *command)
11952 {
11953 struct gdbarch *gdbarch = get_current_arch ();
11954 int tempflag;
11955 struct symtab_and_line sal;
11956 char *addr_string = NULL;
11957 char *cond_string = NULL;
11958 const struct breakpoint_ops *ops = NULL;
11959
11960 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11961
11962 if (!arg)
11963 arg = "";
11964 sal = ada_decode_assert_location (arg, &addr_string, &cond_string, &ops);
11965 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
11966 NULL, cond_string, ops, tempflag,
11967 from_tty);
11968 }
11969 /* Operators */
11970 /* Information about operators given special treatment in functions
11971 below. */
11972 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
11973
11974 #define ADA_OPERATORS \
11975 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
11976 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
11977 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
11978 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
11979 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
11980 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
11981 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
11982 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
11983 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
11984 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
11985 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
11986 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
11987 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
11988 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
11989 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
11990 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
11991 OP_DEFN (OP_OTHERS, 1, 1, 0) \
11992 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
11993 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
11994
11995 static void
11996 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
11997 int *argsp)
11998 {
11999 switch (exp->elts[pc - 1].opcode)
12000 {
12001 default:
12002 operator_length_standard (exp, pc, oplenp, argsp);
12003 break;
12004
12005 #define OP_DEFN(op, len, args, binop) \
12006 case op: *oplenp = len; *argsp = args; break;
12007 ADA_OPERATORS;
12008 #undef OP_DEFN
12009
12010 case OP_AGGREGATE:
12011 *oplenp = 3;
12012 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
12013 break;
12014
12015 case OP_CHOICES:
12016 *oplenp = 3;
12017 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
12018 break;
12019 }
12020 }
12021
12022 /* Implementation of the exp_descriptor method operator_check. */
12023
12024 static int
12025 ada_operator_check (struct expression *exp, int pos,
12026 int (*objfile_func) (struct objfile *objfile, void *data),
12027 void *data)
12028 {
12029 const union exp_element *const elts = exp->elts;
12030 struct type *type = NULL;
12031
12032 switch (elts[pos].opcode)
12033 {
12034 case UNOP_IN_RANGE:
12035 case UNOP_QUAL:
12036 type = elts[pos + 1].type;
12037 break;
12038
12039 default:
12040 return operator_check_standard (exp, pos, objfile_func, data);
12041 }
12042
12043 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
12044
12045 if (type && TYPE_OBJFILE (type)
12046 && (*objfile_func) (TYPE_OBJFILE (type), data))
12047 return 1;
12048
12049 return 0;
12050 }
12051
12052 static char *
12053 ada_op_name (enum exp_opcode opcode)
12054 {
12055 switch (opcode)
12056 {
12057 default:
12058 return op_name_standard (opcode);
12059
12060 #define OP_DEFN(op, len, args, binop) case op: return #op;
12061 ADA_OPERATORS;
12062 #undef OP_DEFN
12063
12064 case OP_AGGREGATE:
12065 return "OP_AGGREGATE";
12066 case OP_CHOICES:
12067 return "OP_CHOICES";
12068 case OP_NAME:
12069 return "OP_NAME";
12070 }
12071 }
12072
12073 /* As for operator_length, but assumes PC is pointing at the first
12074 element of the operator, and gives meaningful results only for the
12075 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
12076
12077 static void
12078 ada_forward_operator_length (struct expression *exp, int pc,
12079 int *oplenp, int *argsp)
12080 {
12081 switch (exp->elts[pc].opcode)
12082 {
12083 default:
12084 *oplenp = *argsp = 0;
12085 break;
12086
12087 #define OP_DEFN(op, len, args, binop) \
12088 case op: *oplenp = len; *argsp = args; break;
12089 ADA_OPERATORS;
12090 #undef OP_DEFN
12091
12092 case OP_AGGREGATE:
12093 *oplenp = 3;
12094 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
12095 break;
12096
12097 case OP_CHOICES:
12098 *oplenp = 3;
12099 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
12100 break;
12101
12102 case OP_STRING:
12103 case OP_NAME:
12104 {
12105 int len = longest_to_int (exp->elts[pc + 1].longconst);
12106
12107 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
12108 *argsp = 0;
12109 break;
12110 }
12111 }
12112 }
12113
12114 static int
12115 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
12116 {
12117 enum exp_opcode op = exp->elts[elt].opcode;
12118 int oplen, nargs;
12119 int pc = elt;
12120 int i;
12121
12122 ada_forward_operator_length (exp, elt, &oplen, &nargs);
12123
12124 switch (op)
12125 {
12126 /* Ada attributes ('Foo). */
12127 case OP_ATR_FIRST:
12128 case OP_ATR_LAST:
12129 case OP_ATR_LENGTH:
12130 case OP_ATR_IMAGE:
12131 case OP_ATR_MAX:
12132 case OP_ATR_MIN:
12133 case OP_ATR_MODULUS:
12134 case OP_ATR_POS:
12135 case OP_ATR_SIZE:
12136 case OP_ATR_TAG:
12137 case OP_ATR_VAL:
12138 break;
12139
12140 case UNOP_IN_RANGE:
12141 case UNOP_QUAL:
12142 /* XXX: gdb_sprint_host_address, type_sprint */
12143 fprintf_filtered (stream, _("Type @"));
12144 gdb_print_host_address (exp->elts[pc + 1].type, stream);
12145 fprintf_filtered (stream, " (");
12146 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
12147 fprintf_filtered (stream, ")");
12148 break;
12149 case BINOP_IN_BOUNDS:
12150 fprintf_filtered (stream, " (%d)",
12151 longest_to_int (exp->elts[pc + 2].longconst));
12152 break;
12153 case TERNOP_IN_RANGE:
12154 break;
12155
12156 case OP_AGGREGATE:
12157 case OP_OTHERS:
12158 case OP_DISCRETE_RANGE:
12159 case OP_POSITIONAL:
12160 case OP_CHOICES:
12161 break;
12162
12163 case OP_NAME:
12164 case OP_STRING:
12165 {
12166 char *name = &exp->elts[elt + 2].string;
12167 int len = longest_to_int (exp->elts[elt + 1].longconst);
12168
12169 fprintf_filtered (stream, "Text: `%.*s'", len, name);
12170 break;
12171 }
12172
12173 default:
12174 return dump_subexp_body_standard (exp, stream, elt);
12175 }
12176
12177 elt += oplen;
12178 for (i = 0; i < nargs; i += 1)
12179 elt = dump_subexp (exp, stream, elt);
12180
12181 return elt;
12182 }
12183
12184 /* The Ada extension of print_subexp (q.v.). */
12185
12186 static void
12187 ada_print_subexp (struct expression *exp, int *pos,
12188 struct ui_file *stream, enum precedence prec)
12189 {
12190 int oplen, nargs, i;
12191 int pc = *pos;
12192 enum exp_opcode op = exp->elts[pc].opcode;
12193
12194 ada_forward_operator_length (exp, pc, &oplen, &nargs);
12195
12196 *pos += oplen;
12197 switch (op)
12198 {
12199 default:
12200 *pos -= oplen;
12201 print_subexp_standard (exp, pos, stream, prec);
12202 return;
12203
12204 case OP_VAR_VALUE:
12205 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
12206 return;
12207
12208 case BINOP_IN_BOUNDS:
12209 /* XXX: sprint_subexp */
12210 print_subexp (exp, pos, stream, PREC_SUFFIX);
12211 fputs_filtered (" in ", stream);
12212 print_subexp (exp, pos, stream, PREC_SUFFIX);
12213 fputs_filtered ("'range", stream);
12214 if (exp->elts[pc + 1].longconst > 1)
12215 fprintf_filtered (stream, "(%ld)",
12216 (long) exp->elts[pc + 1].longconst);
12217 return;
12218
12219 case TERNOP_IN_RANGE:
12220 if (prec >= PREC_EQUAL)
12221 fputs_filtered ("(", stream);
12222 /* XXX: sprint_subexp */
12223 print_subexp (exp, pos, stream, PREC_SUFFIX);
12224 fputs_filtered (" in ", stream);
12225 print_subexp (exp, pos, stream, PREC_EQUAL);
12226 fputs_filtered (" .. ", stream);
12227 print_subexp (exp, pos, stream, PREC_EQUAL);
12228 if (prec >= PREC_EQUAL)
12229 fputs_filtered (")", stream);
12230 return;
12231
12232 case OP_ATR_FIRST:
12233 case OP_ATR_LAST:
12234 case OP_ATR_LENGTH:
12235 case OP_ATR_IMAGE:
12236 case OP_ATR_MAX:
12237 case OP_ATR_MIN:
12238 case OP_ATR_MODULUS:
12239 case OP_ATR_POS:
12240 case OP_ATR_SIZE:
12241 case OP_ATR_TAG:
12242 case OP_ATR_VAL:
12243 if (exp->elts[*pos].opcode == OP_TYPE)
12244 {
12245 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
12246 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
12247 *pos += 3;
12248 }
12249 else
12250 print_subexp (exp, pos, stream, PREC_SUFFIX);
12251 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
12252 if (nargs > 1)
12253 {
12254 int tem;
12255
12256 for (tem = 1; tem < nargs; tem += 1)
12257 {
12258 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
12259 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
12260 }
12261 fputs_filtered (")", stream);
12262 }
12263 return;
12264
12265 case UNOP_QUAL:
12266 type_print (exp->elts[pc + 1].type, "", stream, 0);
12267 fputs_filtered ("'(", stream);
12268 print_subexp (exp, pos, stream, PREC_PREFIX);
12269 fputs_filtered (")", stream);
12270 return;
12271
12272 case UNOP_IN_RANGE:
12273 /* XXX: sprint_subexp */
12274 print_subexp (exp, pos, stream, PREC_SUFFIX);
12275 fputs_filtered (" in ", stream);
12276 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
12277 return;
12278
12279 case OP_DISCRETE_RANGE:
12280 print_subexp (exp, pos, stream, PREC_SUFFIX);
12281 fputs_filtered ("..", stream);
12282 print_subexp (exp, pos, stream, PREC_SUFFIX);
12283 return;
12284
12285 case OP_OTHERS:
12286 fputs_filtered ("others => ", stream);
12287 print_subexp (exp, pos, stream, PREC_SUFFIX);
12288 return;
12289
12290 case OP_CHOICES:
12291 for (i = 0; i < nargs-1; i += 1)
12292 {
12293 if (i > 0)
12294 fputs_filtered ("|", stream);
12295 print_subexp (exp, pos, stream, PREC_SUFFIX);
12296 }
12297 fputs_filtered (" => ", stream);
12298 print_subexp (exp, pos, stream, PREC_SUFFIX);
12299 return;
12300
12301 case OP_POSITIONAL:
12302 print_subexp (exp, pos, stream, PREC_SUFFIX);
12303 return;
12304
12305 case OP_AGGREGATE:
12306 fputs_filtered ("(", stream);
12307 for (i = 0; i < nargs; i += 1)
12308 {
12309 if (i > 0)
12310 fputs_filtered (", ", stream);
12311 print_subexp (exp, pos, stream, PREC_SUFFIX);
12312 }
12313 fputs_filtered (")", stream);
12314 return;
12315 }
12316 }
12317
12318 /* Table mapping opcodes into strings for printing operators
12319 and precedences of the operators. */
12320
12321 static const struct op_print ada_op_print_tab[] = {
12322 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
12323 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
12324 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
12325 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
12326 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
12327 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
12328 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
12329 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
12330 {"<=", BINOP_LEQ, PREC_ORDER, 0},
12331 {">=", BINOP_GEQ, PREC_ORDER, 0},
12332 {">", BINOP_GTR, PREC_ORDER, 0},
12333 {"<", BINOP_LESS, PREC_ORDER, 0},
12334 {">>", BINOP_RSH, PREC_SHIFT, 0},
12335 {"<<", BINOP_LSH, PREC_SHIFT, 0},
12336 {"+", BINOP_ADD, PREC_ADD, 0},
12337 {"-", BINOP_SUB, PREC_ADD, 0},
12338 {"&", BINOP_CONCAT, PREC_ADD, 0},
12339 {"*", BINOP_MUL, PREC_MUL, 0},
12340 {"/", BINOP_DIV, PREC_MUL, 0},
12341 {"rem", BINOP_REM, PREC_MUL, 0},
12342 {"mod", BINOP_MOD, PREC_MUL, 0},
12343 {"**", BINOP_EXP, PREC_REPEAT, 0},
12344 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
12345 {"-", UNOP_NEG, PREC_PREFIX, 0},
12346 {"+", UNOP_PLUS, PREC_PREFIX, 0},
12347 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
12348 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
12349 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
12350 {".all", UNOP_IND, PREC_SUFFIX, 1},
12351 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
12352 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
12353 {NULL, 0, 0, 0}
12354 };
12355 \f
12356 enum ada_primitive_types {
12357 ada_primitive_type_int,
12358 ada_primitive_type_long,
12359 ada_primitive_type_short,
12360 ada_primitive_type_char,
12361 ada_primitive_type_float,
12362 ada_primitive_type_double,
12363 ada_primitive_type_void,
12364 ada_primitive_type_long_long,
12365 ada_primitive_type_long_double,
12366 ada_primitive_type_natural,
12367 ada_primitive_type_positive,
12368 ada_primitive_type_system_address,
12369 nr_ada_primitive_types
12370 };
12371
12372 static void
12373 ada_language_arch_info (struct gdbarch *gdbarch,
12374 struct language_arch_info *lai)
12375 {
12376 const struct builtin_type *builtin = builtin_type (gdbarch);
12377
12378 lai->primitive_type_vector
12379 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
12380 struct type *);
12381
12382 lai->primitive_type_vector [ada_primitive_type_int]
12383 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12384 0, "integer");
12385 lai->primitive_type_vector [ada_primitive_type_long]
12386 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
12387 0, "long_integer");
12388 lai->primitive_type_vector [ada_primitive_type_short]
12389 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
12390 0, "short_integer");
12391 lai->string_char_type
12392 = lai->primitive_type_vector [ada_primitive_type_char]
12393 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
12394 lai->primitive_type_vector [ada_primitive_type_float]
12395 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
12396 "float", NULL);
12397 lai->primitive_type_vector [ada_primitive_type_double]
12398 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12399 "long_float", NULL);
12400 lai->primitive_type_vector [ada_primitive_type_long_long]
12401 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
12402 0, "long_long_integer");
12403 lai->primitive_type_vector [ada_primitive_type_long_double]
12404 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12405 "long_long_float", NULL);
12406 lai->primitive_type_vector [ada_primitive_type_natural]
12407 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12408 0, "natural");
12409 lai->primitive_type_vector [ada_primitive_type_positive]
12410 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12411 0, "positive");
12412 lai->primitive_type_vector [ada_primitive_type_void]
12413 = builtin->builtin_void;
12414
12415 lai->primitive_type_vector [ada_primitive_type_system_address]
12416 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
12417 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
12418 = "system__address";
12419
12420 lai->bool_type_symbol = NULL;
12421 lai->bool_type_default = builtin->builtin_bool;
12422 }
12423 \f
12424 /* Language vector */
12425
12426 /* Not really used, but needed in the ada_language_defn. */
12427
12428 static void
12429 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
12430 {
12431 ada_emit_char (c, type, stream, quoter, 1);
12432 }
12433
12434 static int
12435 parse (void)
12436 {
12437 warnings_issued = 0;
12438 return ada_parse ();
12439 }
12440
12441 static const struct exp_descriptor ada_exp_descriptor = {
12442 ada_print_subexp,
12443 ada_operator_length,
12444 ada_operator_check,
12445 ada_op_name,
12446 ada_dump_subexp_body,
12447 ada_evaluate_subexp
12448 };
12449
12450 /* Implement the "la_get_symbol_name_cmp" language_defn method
12451 for Ada. */
12452
12453 static symbol_name_cmp_ftype
12454 ada_get_symbol_name_cmp (const char *lookup_name)
12455 {
12456 if (should_use_wild_match (lookup_name))
12457 return wild_match;
12458 else
12459 return compare_names;
12460 }
12461
12462 /* Implement the "la_read_var_value" language_defn method for Ada. */
12463
12464 static struct value *
12465 ada_read_var_value (struct symbol *var, struct frame_info *frame)
12466 {
12467 struct block *frame_block = NULL;
12468 struct symbol *renaming_sym = NULL;
12469
12470 /* The only case where default_read_var_value is not sufficient
12471 is when VAR is a renaming... */
12472 if (frame)
12473 frame_block = get_frame_block (frame, NULL);
12474 if (frame_block)
12475 renaming_sym = ada_find_renaming_symbol (var, frame_block);
12476 if (renaming_sym != NULL)
12477 return ada_read_renaming_var_value (renaming_sym, frame_block);
12478
12479 /* This is a typical case where we expect the default_read_var_value
12480 function to work. */
12481 return default_read_var_value (var, frame);
12482 }
12483
12484 const struct language_defn ada_language_defn = {
12485 "ada", /* Language name */
12486 language_ada,
12487 range_check_off,
12488 type_check_off,
12489 case_sensitive_on, /* Yes, Ada is case-insensitive, but
12490 that's not quite what this means. */
12491 array_row_major,
12492 macro_expansion_no,
12493 &ada_exp_descriptor,
12494 parse,
12495 ada_error,
12496 resolve,
12497 ada_printchar, /* Print a character constant */
12498 ada_printstr, /* Function to print string constant */
12499 emit_char, /* Function to print single char (not used) */
12500 ada_print_type, /* Print a type using appropriate syntax */
12501 ada_print_typedef, /* Print a typedef using appropriate syntax */
12502 ada_val_print, /* Print a value using appropriate syntax */
12503 ada_value_print, /* Print a top-level value */
12504 ada_read_var_value, /* la_read_var_value */
12505 NULL, /* Language specific skip_trampoline */
12506 NULL, /* name_of_this */
12507 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
12508 basic_lookup_transparent_type, /* lookup_transparent_type */
12509 ada_la_decode, /* Language specific symbol demangler */
12510 NULL, /* Language specific
12511 class_name_from_physname */
12512 ada_op_print_tab, /* expression operators for printing */
12513 0, /* c-style arrays */
12514 1, /* String lower bound */
12515 ada_get_gdb_completer_word_break_characters,
12516 ada_make_symbol_completion_list,
12517 ada_language_arch_info,
12518 ada_print_array_index,
12519 default_pass_by_reference,
12520 c_get_string,
12521 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
12522 ada_iterate_over_symbols,
12523 LANG_MAGIC
12524 };
12525
12526 /* Provide a prototype to silence -Wmissing-prototypes. */
12527 extern initialize_file_ftype _initialize_ada_language;
12528
12529 /* Command-list for the "set/show ada" prefix command. */
12530 static struct cmd_list_element *set_ada_list;
12531 static struct cmd_list_element *show_ada_list;
12532
12533 /* Implement the "set ada" prefix command. */
12534
12535 static void
12536 set_ada_command (char *arg, int from_tty)
12537 {
12538 printf_unfiltered (_(\
12539 "\"set ada\" must be followed by the name of a setting.\n"));
12540 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
12541 }
12542
12543 /* Implement the "show ada" prefix command. */
12544
12545 static void
12546 show_ada_command (char *args, int from_tty)
12547 {
12548 cmd_show_list (show_ada_list, from_tty, "");
12549 }
12550
12551 static void
12552 initialize_ada_catchpoint_ops (void)
12553 {
12554 struct breakpoint_ops *ops;
12555
12556 initialize_breakpoint_ops ();
12557
12558 ops = &catch_exception_breakpoint_ops;
12559 *ops = bkpt_breakpoint_ops;
12560 ops->dtor = dtor_catch_exception;
12561 ops->allocate_location = allocate_location_catch_exception;
12562 ops->re_set = re_set_catch_exception;
12563 ops->check_status = check_status_catch_exception;
12564 ops->print_it = print_it_catch_exception;
12565 ops->print_one = print_one_catch_exception;
12566 ops->print_mention = print_mention_catch_exception;
12567 ops->print_recreate = print_recreate_catch_exception;
12568
12569 ops = &catch_exception_unhandled_breakpoint_ops;
12570 *ops = bkpt_breakpoint_ops;
12571 ops->dtor = dtor_catch_exception_unhandled;
12572 ops->allocate_location = allocate_location_catch_exception_unhandled;
12573 ops->re_set = re_set_catch_exception_unhandled;
12574 ops->check_status = check_status_catch_exception_unhandled;
12575 ops->print_it = print_it_catch_exception_unhandled;
12576 ops->print_one = print_one_catch_exception_unhandled;
12577 ops->print_mention = print_mention_catch_exception_unhandled;
12578 ops->print_recreate = print_recreate_catch_exception_unhandled;
12579
12580 ops = &catch_assert_breakpoint_ops;
12581 *ops = bkpt_breakpoint_ops;
12582 ops->dtor = dtor_catch_assert;
12583 ops->allocate_location = allocate_location_catch_assert;
12584 ops->re_set = re_set_catch_assert;
12585 ops->check_status = check_status_catch_assert;
12586 ops->print_it = print_it_catch_assert;
12587 ops->print_one = print_one_catch_assert;
12588 ops->print_mention = print_mention_catch_assert;
12589 ops->print_recreate = print_recreate_catch_assert;
12590 }
12591
12592 void
12593 _initialize_ada_language (void)
12594 {
12595 add_language (&ada_language_defn);
12596
12597 initialize_ada_catchpoint_ops ();
12598
12599 add_prefix_cmd ("ada", no_class, set_ada_command,
12600 _("Prefix command for changing Ada-specfic settings"),
12601 &set_ada_list, "set ada ", 0, &setlist);
12602
12603 add_prefix_cmd ("ada", no_class, show_ada_command,
12604 _("Generic command for showing Ada-specific settings."),
12605 &show_ada_list, "show ada ", 0, &showlist);
12606
12607 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
12608 &trust_pad_over_xvs, _("\
12609 Enable or disable an optimization trusting PAD types over XVS types"), _("\
12610 Show whether an optimization trusting PAD types over XVS types is activated"),
12611 _("\
12612 This is related to the encoding used by the GNAT compiler. The debugger\n\
12613 should normally trust the contents of PAD types, but certain older versions\n\
12614 of GNAT have a bug that sometimes causes the information in the PAD type\n\
12615 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
12616 work around this bug. It is always safe to turn this option \"off\", but\n\
12617 this incurs a slight performance penalty, so it is recommended to NOT change\n\
12618 this option to \"off\" unless necessary."),
12619 NULL, NULL, &set_ada_list, &show_ada_list);
12620
12621 add_catch_command ("exception", _("\
12622 Catch Ada exceptions, when raised.\n\
12623 With an argument, catch only exceptions with the given name."),
12624 catch_ada_exception_command,
12625 NULL,
12626 CATCH_PERMANENT,
12627 CATCH_TEMPORARY);
12628 add_catch_command ("assert", _("\
12629 Catch failed Ada assertions, when raised.\n\
12630 With an argument, catch only exceptions with the given name."),
12631 catch_assert_command,
12632 NULL,
12633 CATCH_PERMANENT,
12634 CATCH_TEMPORARY);
12635
12636 varsize_limit = 65536;
12637
12638 obstack_init (&symbol_list_obstack);
12639
12640 decoded_names_store = htab_create_alloc
12641 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
12642 NULL, xcalloc, xfree);
12643
12644 /* Setup per-inferior data. */
12645 observer_attach_inferior_exit (ada_inferior_exit);
12646 ada_inferior_data
12647 = register_inferior_data_with_cleanup (ada_inferior_data_cleanup);
12648 }
This page took 0.302692 seconds and 4 git commands to generate.