2011-05-26 Pedro Alves <pedro@codesourcery.com>
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger. Copyright (C)
2
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007, 2008,
4 2009 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include "defs.h"
23 #include <stdio.h>
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include <stdarg.h>
27 #include "demangle.h"
28 #include "gdb_regex.h"
29 #include "frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35 #include "language.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include "gdb_stat.h"
47 #ifdef UI_OUT
48 #include "ui-out.h"
49 #endif
50 #include "block.h"
51 #include "infcall.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
54 #include "annotate.h"
55 #include "valprint.h"
56 #include "source.h"
57 #include "observer.h"
58 #include "vec.h"
59 #include "stack.h"
60
61 #include "psymtab.h"
62 #include "value.h"
63 #include "mi/mi-common.h"
64
65 /* Define whether or not the C operator '/' truncates towards zero for
66 differently signed operands (truncation direction is undefined in C).
67 Copied from valarith.c. */
68
69 #ifndef TRUNCATION_TOWARDS_ZERO
70 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
71 #endif
72
73 static struct type *desc_base_type (struct type *);
74
75 static struct type *desc_bounds_type (struct type *);
76
77 static struct value *desc_bounds (struct value *);
78
79 static int fat_pntr_bounds_bitpos (struct type *);
80
81 static int fat_pntr_bounds_bitsize (struct type *);
82
83 static struct type *desc_data_target_type (struct type *);
84
85 static struct value *desc_data (struct value *);
86
87 static int fat_pntr_data_bitpos (struct type *);
88
89 static int fat_pntr_data_bitsize (struct type *);
90
91 static struct value *desc_one_bound (struct value *, int, int);
92
93 static int desc_bound_bitpos (struct type *, int, int);
94
95 static int desc_bound_bitsize (struct type *, int, int);
96
97 static struct type *desc_index_type (struct type *, int);
98
99 static int desc_arity (struct type *);
100
101 static int ada_type_match (struct type *, struct type *, int);
102
103 static int ada_args_match (struct symbol *, struct value **, int);
104
105 static int full_match (const char *, const char *);
106
107 static struct value *make_array_descriptor (struct type *, struct value *);
108
109 static void ada_add_block_symbols (struct obstack *,
110 struct block *, const char *,
111 domain_enum, struct objfile *, int);
112
113 static int is_nonfunction (struct ada_symbol_info *, int);
114
115 static void add_defn_to_vec (struct obstack *, struct symbol *,
116 struct block *);
117
118 static int num_defns_collected (struct obstack *);
119
120 static struct ada_symbol_info *defns_collected (struct obstack *, int);
121
122 static struct value *resolve_subexp (struct expression **, int *, int,
123 struct type *);
124
125 static void replace_operator_with_call (struct expression **, int, int, int,
126 struct symbol *, struct block *);
127
128 static int possible_user_operator_p (enum exp_opcode, struct value **);
129
130 static char *ada_op_name (enum exp_opcode);
131
132 static const char *ada_decoded_op_name (enum exp_opcode);
133
134 static int numeric_type_p (struct type *);
135
136 static int integer_type_p (struct type *);
137
138 static int scalar_type_p (struct type *);
139
140 static int discrete_type_p (struct type *);
141
142 static enum ada_renaming_category parse_old_style_renaming (struct type *,
143 const char **,
144 int *,
145 const char **);
146
147 static struct symbol *find_old_style_renaming_symbol (const char *,
148 struct block *);
149
150 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
151 int, int, int *);
152
153 static struct value *evaluate_subexp_type (struct expression *, int *);
154
155 static struct type *ada_find_parallel_type_with_name (struct type *,
156 const char *);
157
158 static int is_dynamic_field (struct type *, int);
159
160 static struct type *to_fixed_variant_branch_type (struct type *,
161 const gdb_byte *,
162 CORE_ADDR, struct value *);
163
164 static struct type *to_fixed_array_type (struct type *, struct value *, int);
165
166 static struct type *to_fixed_range_type (struct type *, struct value *);
167
168 static struct type *to_static_fixed_type (struct type *);
169 static struct type *static_unwrap_type (struct type *type);
170
171 static struct value *unwrap_value (struct value *);
172
173 static struct type *constrained_packed_array_type (struct type *, long *);
174
175 static struct type *decode_constrained_packed_array_type (struct type *);
176
177 static long decode_packed_array_bitsize (struct type *);
178
179 static struct value *decode_constrained_packed_array (struct value *);
180
181 static int ada_is_packed_array_type (struct type *);
182
183 static int ada_is_unconstrained_packed_array_type (struct type *);
184
185 static struct value *value_subscript_packed (struct value *, int,
186 struct value **);
187
188 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
189
190 static struct value *coerce_unspec_val_to_type (struct value *,
191 struct type *);
192
193 static struct value *get_var_value (char *, char *);
194
195 static int lesseq_defined_than (struct symbol *, struct symbol *);
196
197 static int equiv_types (struct type *, struct type *);
198
199 static int is_name_suffix (const char *);
200
201 static int advance_wild_match (const char **, const char *, int);
202
203 static int wild_match (const char *, const char *);
204
205 static struct value *ada_coerce_ref (struct value *);
206
207 static LONGEST pos_atr (struct value *);
208
209 static struct value *value_pos_atr (struct type *, struct value *);
210
211 static struct value *value_val_atr (struct type *, struct value *);
212
213 static struct symbol *standard_lookup (const char *, const struct block *,
214 domain_enum);
215
216 static struct value *ada_search_struct_field (char *, struct value *, int,
217 struct type *);
218
219 static struct value *ada_value_primitive_field (struct value *, int, int,
220 struct type *);
221
222 static int find_struct_field (char *, struct type *, int,
223 struct type **, int *, int *, int *, int *);
224
225 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
226 struct value *);
227
228 static int ada_resolve_function (struct ada_symbol_info *, int,
229 struct value **, int, const char *,
230 struct type *);
231
232 static int ada_is_direct_array_type (struct type *);
233
234 static void ada_language_arch_info (struct gdbarch *,
235 struct language_arch_info *);
236
237 static void check_size (const struct type *);
238
239 static struct value *ada_index_struct_field (int, struct value *, int,
240 struct type *);
241
242 static struct value *assign_aggregate (struct value *, struct value *,
243 struct expression *,
244 int *, enum noside);
245
246 static void aggregate_assign_from_choices (struct value *, struct value *,
247 struct expression *,
248 int *, LONGEST *, int *,
249 int, LONGEST, LONGEST);
250
251 static void aggregate_assign_positional (struct value *, struct value *,
252 struct expression *,
253 int *, LONGEST *, int *, int,
254 LONGEST, LONGEST);
255
256
257 static void aggregate_assign_others (struct value *, struct value *,
258 struct expression *,
259 int *, LONGEST *, int, LONGEST, LONGEST);
260
261
262 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
263
264
265 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
266 int *, enum noside);
267
268 static void ada_forward_operator_length (struct expression *, int, int *,
269 int *);
270 \f
271
272
273 /* Maximum-sized dynamic type. */
274 static unsigned int varsize_limit;
275
276 /* FIXME: brobecker/2003-09-17: No longer a const because it is
277 returned by a function that does not return a const char *. */
278 static char *ada_completer_word_break_characters =
279 #ifdef VMS
280 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
281 #else
282 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
283 #endif
284
285 /* The name of the symbol to use to get the name of the main subprogram. */
286 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
287 = "__gnat_ada_main_program_name";
288
289 /* Limit on the number of warnings to raise per expression evaluation. */
290 static int warning_limit = 2;
291
292 /* Number of warning messages issued; reset to 0 by cleanups after
293 expression evaluation. */
294 static int warnings_issued = 0;
295
296 static const char *known_runtime_file_name_patterns[] = {
297 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
298 };
299
300 static const char *known_auxiliary_function_name_patterns[] = {
301 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
302 };
303
304 /* Space for allocating results of ada_lookup_symbol_list. */
305 static struct obstack symbol_list_obstack;
306
307 /* Inferior-specific data. */
308
309 /* Per-inferior data for this module. */
310
311 struct ada_inferior_data
312 {
313 /* The ada__tags__type_specific_data type, which is used when decoding
314 tagged types. With older versions of GNAT, this type was directly
315 accessible through a component ("tsd") in the object tag. But this
316 is no longer the case, so we cache it for each inferior. */
317 struct type *tsd_type;
318 };
319
320 /* Our key to this module's inferior data. */
321 static const struct inferior_data *ada_inferior_data;
322
323 /* A cleanup routine for our inferior data. */
324 static void
325 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
326 {
327 struct ada_inferior_data *data;
328
329 data = inferior_data (inf, ada_inferior_data);
330 if (data != NULL)
331 xfree (data);
332 }
333
334 /* Return our inferior data for the given inferior (INF).
335
336 This function always returns a valid pointer to an allocated
337 ada_inferior_data structure. If INF's inferior data has not
338 been previously set, this functions creates a new one with all
339 fields set to zero, sets INF's inferior to it, and then returns
340 a pointer to that newly allocated ada_inferior_data. */
341
342 static struct ada_inferior_data *
343 get_ada_inferior_data (struct inferior *inf)
344 {
345 struct ada_inferior_data *data;
346
347 data = inferior_data (inf, ada_inferior_data);
348 if (data == NULL)
349 {
350 data = XZALLOC (struct ada_inferior_data);
351 set_inferior_data (inf, ada_inferior_data, data);
352 }
353
354 return data;
355 }
356
357 /* Perform all necessary cleanups regarding our module's inferior data
358 that is required after the inferior INF just exited. */
359
360 static void
361 ada_inferior_exit (struct inferior *inf)
362 {
363 ada_inferior_data_cleanup (inf, NULL);
364 set_inferior_data (inf, ada_inferior_data, NULL);
365 }
366
367 /* Utilities */
368
369 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
370 all typedef layers have been peeled. Otherwise, return TYPE.
371
372 Normally, we really expect a typedef type to only have 1 typedef layer.
373 In other words, we really expect the target type of a typedef type to be
374 a non-typedef type. This is particularly true for Ada units, because
375 the language does not have a typedef vs not-typedef distinction.
376 In that respect, the Ada compiler has been trying to eliminate as many
377 typedef definitions in the debugging information, since they generally
378 do not bring any extra information (we still use typedef under certain
379 circumstances related mostly to the GNAT encoding).
380
381 Unfortunately, we have seen situations where the debugging information
382 generated by the compiler leads to such multiple typedef layers. For
383 instance, consider the following example with stabs:
384
385 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
386 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
387
388 This is an error in the debugging information which causes type
389 pck__float_array___XUP to be defined twice, and the second time,
390 it is defined as a typedef of a typedef.
391
392 This is on the fringe of legality as far as debugging information is
393 concerned, and certainly unexpected. But it is easy to handle these
394 situations correctly, so we can afford to be lenient in this case. */
395
396 static struct type *
397 ada_typedef_target_type (struct type *type)
398 {
399 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
400 type = TYPE_TARGET_TYPE (type);
401 return type;
402 }
403
404 /* Given DECODED_NAME a string holding a symbol name in its
405 decoded form (ie using the Ada dotted notation), returns
406 its unqualified name. */
407
408 static const char *
409 ada_unqualified_name (const char *decoded_name)
410 {
411 const char *result = strrchr (decoded_name, '.');
412
413 if (result != NULL)
414 result++; /* Skip the dot... */
415 else
416 result = decoded_name;
417
418 return result;
419 }
420
421 /* Return a string starting with '<', followed by STR, and '>'.
422 The result is good until the next call. */
423
424 static char *
425 add_angle_brackets (const char *str)
426 {
427 static char *result = NULL;
428
429 xfree (result);
430 result = xstrprintf ("<%s>", str);
431 return result;
432 }
433
434 static char *
435 ada_get_gdb_completer_word_break_characters (void)
436 {
437 return ada_completer_word_break_characters;
438 }
439
440 /* Print an array element index using the Ada syntax. */
441
442 static void
443 ada_print_array_index (struct value *index_value, struct ui_file *stream,
444 const struct value_print_options *options)
445 {
446 LA_VALUE_PRINT (index_value, stream, options);
447 fprintf_filtered (stream, " => ");
448 }
449
450 /* Assuming VECT points to an array of *SIZE objects of size
451 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
452 updating *SIZE as necessary and returning the (new) array. */
453
454 void *
455 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
456 {
457 if (*size < min_size)
458 {
459 *size *= 2;
460 if (*size < min_size)
461 *size = min_size;
462 vect = xrealloc (vect, *size * element_size);
463 }
464 return vect;
465 }
466
467 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
468 suffix of FIELD_NAME beginning "___". */
469
470 static int
471 field_name_match (const char *field_name, const char *target)
472 {
473 int len = strlen (target);
474
475 return
476 (strncmp (field_name, target, len) == 0
477 && (field_name[len] == '\0'
478 || (strncmp (field_name + len, "___", 3) == 0
479 && strcmp (field_name + strlen (field_name) - 6,
480 "___XVN") != 0)));
481 }
482
483
484 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
485 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
486 and return its index. This function also handles fields whose name
487 have ___ suffixes because the compiler sometimes alters their name
488 by adding such a suffix to represent fields with certain constraints.
489 If the field could not be found, return a negative number if
490 MAYBE_MISSING is set. Otherwise raise an error. */
491
492 int
493 ada_get_field_index (const struct type *type, const char *field_name,
494 int maybe_missing)
495 {
496 int fieldno;
497 struct type *struct_type = check_typedef ((struct type *) type);
498
499 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
500 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
501 return fieldno;
502
503 if (!maybe_missing)
504 error (_("Unable to find field %s in struct %s. Aborting"),
505 field_name, TYPE_NAME (struct_type));
506
507 return -1;
508 }
509
510 /* The length of the prefix of NAME prior to any "___" suffix. */
511
512 int
513 ada_name_prefix_len (const char *name)
514 {
515 if (name == NULL)
516 return 0;
517 else
518 {
519 const char *p = strstr (name, "___");
520
521 if (p == NULL)
522 return strlen (name);
523 else
524 return p - name;
525 }
526 }
527
528 /* Return non-zero if SUFFIX is a suffix of STR.
529 Return zero if STR is null. */
530
531 static int
532 is_suffix (const char *str, const char *suffix)
533 {
534 int len1, len2;
535
536 if (str == NULL)
537 return 0;
538 len1 = strlen (str);
539 len2 = strlen (suffix);
540 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
541 }
542
543 /* The contents of value VAL, treated as a value of type TYPE. The
544 result is an lval in memory if VAL is. */
545
546 static struct value *
547 coerce_unspec_val_to_type (struct value *val, struct type *type)
548 {
549 type = ada_check_typedef (type);
550 if (value_type (val) == type)
551 return val;
552 else
553 {
554 struct value *result;
555
556 /* Make sure that the object size is not unreasonable before
557 trying to allocate some memory for it. */
558 check_size (type);
559
560 if (value_lazy (val)
561 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
562 result = allocate_value_lazy (type);
563 else
564 {
565 result = allocate_value (type);
566 memcpy (value_contents_raw (result), value_contents (val),
567 TYPE_LENGTH (type));
568 }
569 set_value_component_location (result, val);
570 set_value_bitsize (result, value_bitsize (val));
571 set_value_bitpos (result, value_bitpos (val));
572 set_value_address (result, value_address (val));
573 return result;
574 }
575 }
576
577 static const gdb_byte *
578 cond_offset_host (const gdb_byte *valaddr, long offset)
579 {
580 if (valaddr == NULL)
581 return NULL;
582 else
583 return valaddr + offset;
584 }
585
586 static CORE_ADDR
587 cond_offset_target (CORE_ADDR address, long offset)
588 {
589 if (address == 0)
590 return 0;
591 else
592 return address + offset;
593 }
594
595 /* Issue a warning (as for the definition of warning in utils.c, but
596 with exactly one argument rather than ...), unless the limit on the
597 number of warnings has passed during the evaluation of the current
598 expression. */
599
600 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
601 provided by "complaint". */
602 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
603
604 static void
605 lim_warning (const char *format, ...)
606 {
607 va_list args;
608
609 va_start (args, format);
610 warnings_issued += 1;
611 if (warnings_issued <= warning_limit)
612 vwarning (format, args);
613
614 va_end (args);
615 }
616
617 /* Issue an error if the size of an object of type T is unreasonable,
618 i.e. if it would be a bad idea to allocate a value of this type in
619 GDB. */
620
621 static void
622 check_size (const struct type *type)
623 {
624 if (TYPE_LENGTH (type) > varsize_limit)
625 error (_("object size is larger than varsize-limit"));
626 }
627
628 /* Maximum value of a SIZE-byte signed integer type. */
629 static LONGEST
630 max_of_size (int size)
631 {
632 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
633
634 return top_bit | (top_bit - 1);
635 }
636
637 /* Minimum value of a SIZE-byte signed integer type. */
638 static LONGEST
639 min_of_size (int size)
640 {
641 return -max_of_size (size) - 1;
642 }
643
644 /* Maximum value of a SIZE-byte unsigned integer type. */
645 static ULONGEST
646 umax_of_size (int size)
647 {
648 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
649
650 return top_bit | (top_bit - 1);
651 }
652
653 /* Maximum value of integral type T, as a signed quantity. */
654 static LONGEST
655 max_of_type (struct type *t)
656 {
657 if (TYPE_UNSIGNED (t))
658 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
659 else
660 return max_of_size (TYPE_LENGTH (t));
661 }
662
663 /* Minimum value of integral type T, as a signed quantity. */
664 static LONGEST
665 min_of_type (struct type *t)
666 {
667 if (TYPE_UNSIGNED (t))
668 return 0;
669 else
670 return min_of_size (TYPE_LENGTH (t));
671 }
672
673 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
674 LONGEST
675 ada_discrete_type_high_bound (struct type *type)
676 {
677 switch (TYPE_CODE (type))
678 {
679 case TYPE_CODE_RANGE:
680 return TYPE_HIGH_BOUND (type);
681 case TYPE_CODE_ENUM:
682 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
683 case TYPE_CODE_BOOL:
684 return 1;
685 case TYPE_CODE_CHAR:
686 case TYPE_CODE_INT:
687 return max_of_type (type);
688 default:
689 error (_("Unexpected type in ada_discrete_type_high_bound."));
690 }
691 }
692
693 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
694 LONGEST
695 ada_discrete_type_low_bound (struct type *type)
696 {
697 switch (TYPE_CODE (type))
698 {
699 case TYPE_CODE_RANGE:
700 return TYPE_LOW_BOUND (type);
701 case TYPE_CODE_ENUM:
702 return TYPE_FIELD_BITPOS (type, 0);
703 case TYPE_CODE_BOOL:
704 return 0;
705 case TYPE_CODE_CHAR:
706 case TYPE_CODE_INT:
707 return min_of_type (type);
708 default:
709 error (_("Unexpected type in ada_discrete_type_low_bound."));
710 }
711 }
712
713 /* The identity on non-range types. For range types, the underlying
714 non-range scalar type. */
715
716 static struct type *
717 base_type (struct type *type)
718 {
719 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
720 {
721 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
722 return type;
723 type = TYPE_TARGET_TYPE (type);
724 }
725 return type;
726 }
727 \f
728
729 /* Language Selection */
730
731 /* If the main program is in Ada, return language_ada, otherwise return LANG
732 (the main program is in Ada iif the adainit symbol is found). */
733
734 enum language
735 ada_update_initial_language (enum language lang)
736 {
737 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
738 (struct objfile *) NULL) != NULL)
739 return language_ada;
740
741 return lang;
742 }
743
744 /* If the main procedure is written in Ada, then return its name.
745 The result is good until the next call. Return NULL if the main
746 procedure doesn't appear to be in Ada. */
747
748 char *
749 ada_main_name (void)
750 {
751 struct minimal_symbol *msym;
752 static char *main_program_name = NULL;
753
754 /* For Ada, the name of the main procedure is stored in a specific
755 string constant, generated by the binder. Look for that symbol,
756 extract its address, and then read that string. If we didn't find
757 that string, then most probably the main procedure is not written
758 in Ada. */
759 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
760
761 if (msym != NULL)
762 {
763 CORE_ADDR main_program_name_addr;
764 int err_code;
765
766 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
767 if (main_program_name_addr == 0)
768 error (_("Invalid address for Ada main program name."));
769
770 xfree (main_program_name);
771 target_read_string (main_program_name_addr, &main_program_name,
772 1024, &err_code);
773
774 if (err_code != 0)
775 return NULL;
776 return main_program_name;
777 }
778
779 /* The main procedure doesn't seem to be in Ada. */
780 return NULL;
781 }
782 \f
783 /* Symbols */
784
785 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
786 of NULLs. */
787
788 const struct ada_opname_map ada_opname_table[] = {
789 {"Oadd", "\"+\"", BINOP_ADD},
790 {"Osubtract", "\"-\"", BINOP_SUB},
791 {"Omultiply", "\"*\"", BINOP_MUL},
792 {"Odivide", "\"/\"", BINOP_DIV},
793 {"Omod", "\"mod\"", BINOP_MOD},
794 {"Orem", "\"rem\"", BINOP_REM},
795 {"Oexpon", "\"**\"", BINOP_EXP},
796 {"Olt", "\"<\"", BINOP_LESS},
797 {"Ole", "\"<=\"", BINOP_LEQ},
798 {"Ogt", "\">\"", BINOP_GTR},
799 {"Oge", "\">=\"", BINOP_GEQ},
800 {"Oeq", "\"=\"", BINOP_EQUAL},
801 {"One", "\"/=\"", BINOP_NOTEQUAL},
802 {"Oand", "\"and\"", BINOP_BITWISE_AND},
803 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
804 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
805 {"Oconcat", "\"&\"", BINOP_CONCAT},
806 {"Oabs", "\"abs\"", UNOP_ABS},
807 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
808 {"Oadd", "\"+\"", UNOP_PLUS},
809 {"Osubtract", "\"-\"", UNOP_NEG},
810 {NULL, NULL}
811 };
812
813 /* The "encoded" form of DECODED, according to GNAT conventions.
814 The result is valid until the next call to ada_encode. */
815
816 char *
817 ada_encode (const char *decoded)
818 {
819 static char *encoding_buffer = NULL;
820 static size_t encoding_buffer_size = 0;
821 const char *p;
822 int k;
823
824 if (decoded == NULL)
825 return NULL;
826
827 GROW_VECT (encoding_buffer, encoding_buffer_size,
828 2 * strlen (decoded) + 10);
829
830 k = 0;
831 for (p = decoded; *p != '\0'; p += 1)
832 {
833 if (*p == '.')
834 {
835 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
836 k += 2;
837 }
838 else if (*p == '"')
839 {
840 const struct ada_opname_map *mapping;
841
842 for (mapping = ada_opname_table;
843 mapping->encoded != NULL
844 && strncmp (mapping->decoded, p,
845 strlen (mapping->decoded)) != 0; mapping += 1)
846 ;
847 if (mapping->encoded == NULL)
848 error (_("invalid Ada operator name: %s"), p);
849 strcpy (encoding_buffer + k, mapping->encoded);
850 k += strlen (mapping->encoded);
851 break;
852 }
853 else
854 {
855 encoding_buffer[k] = *p;
856 k += 1;
857 }
858 }
859
860 encoding_buffer[k] = '\0';
861 return encoding_buffer;
862 }
863
864 /* Return NAME folded to lower case, or, if surrounded by single
865 quotes, unfolded, but with the quotes stripped away. Result good
866 to next call. */
867
868 char *
869 ada_fold_name (const char *name)
870 {
871 static char *fold_buffer = NULL;
872 static size_t fold_buffer_size = 0;
873
874 int len = strlen (name);
875 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
876
877 if (name[0] == '\'')
878 {
879 strncpy (fold_buffer, name + 1, len - 2);
880 fold_buffer[len - 2] = '\000';
881 }
882 else
883 {
884 int i;
885
886 for (i = 0; i <= len; i += 1)
887 fold_buffer[i] = tolower (name[i]);
888 }
889
890 return fold_buffer;
891 }
892
893 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
894
895 static int
896 is_lower_alphanum (const char c)
897 {
898 return (isdigit (c) || (isalpha (c) && islower (c)));
899 }
900
901 /* Remove either of these suffixes:
902 . .{DIGIT}+
903 . ${DIGIT}+
904 . ___{DIGIT}+
905 . __{DIGIT}+.
906 These are suffixes introduced by the compiler for entities such as
907 nested subprogram for instance, in order to avoid name clashes.
908 They do not serve any purpose for the debugger. */
909
910 static void
911 ada_remove_trailing_digits (const char *encoded, int *len)
912 {
913 if (*len > 1 && isdigit (encoded[*len - 1]))
914 {
915 int i = *len - 2;
916
917 while (i > 0 && isdigit (encoded[i]))
918 i--;
919 if (i >= 0 && encoded[i] == '.')
920 *len = i;
921 else if (i >= 0 && encoded[i] == '$')
922 *len = i;
923 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
924 *len = i - 2;
925 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
926 *len = i - 1;
927 }
928 }
929
930 /* Remove the suffix introduced by the compiler for protected object
931 subprograms. */
932
933 static void
934 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
935 {
936 /* Remove trailing N. */
937
938 /* Protected entry subprograms are broken into two
939 separate subprograms: The first one is unprotected, and has
940 a 'N' suffix; the second is the protected version, and has
941 the 'P' suffix. The second calls the first one after handling
942 the protection. Since the P subprograms are internally generated,
943 we leave these names undecoded, giving the user a clue that this
944 entity is internal. */
945
946 if (*len > 1
947 && encoded[*len - 1] == 'N'
948 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
949 *len = *len - 1;
950 }
951
952 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
953
954 static void
955 ada_remove_Xbn_suffix (const char *encoded, int *len)
956 {
957 int i = *len - 1;
958
959 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
960 i--;
961
962 if (encoded[i] != 'X')
963 return;
964
965 if (i == 0)
966 return;
967
968 if (isalnum (encoded[i-1]))
969 *len = i;
970 }
971
972 /* If ENCODED follows the GNAT entity encoding conventions, then return
973 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
974 replaced by ENCODED.
975
976 The resulting string is valid until the next call of ada_decode.
977 If the string is unchanged by decoding, the original string pointer
978 is returned. */
979
980 const char *
981 ada_decode (const char *encoded)
982 {
983 int i, j;
984 int len0;
985 const char *p;
986 char *decoded;
987 int at_start_name;
988 static char *decoding_buffer = NULL;
989 static size_t decoding_buffer_size = 0;
990
991 /* The name of the Ada main procedure starts with "_ada_".
992 This prefix is not part of the decoded name, so skip this part
993 if we see this prefix. */
994 if (strncmp (encoded, "_ada_", 5) == 0)
995 encoded += 5;
996
997 /* If the name starts with '_', then it is not a properly encoded
998 name, so do not attempt to decode it. Similarly, if the name
999 starts with '<', the name should not be decoded. */
1000 if (encoded[0] == '_' || encoded[0] == '<')
1001 goto Suppress;
1002
1003 len0 = strlen (encoded);
1004
1005 ada_remove_trailing_digits (encoded, &len0);
1006 ada_remove_po_subprogram_suffix (encoded, &len0);
1007
1008 /* Remove the ___X.* suffix if present. Do not forget to verify that
1009 the suffix is located before the current "end" of ENCODED. We want
1010 to avoid re-matching parts of ENCODED that have previously been
1011 marked as discarded (by decrementing LEN0). */
1012 p = strstr (encoded, "___");
1013 if (p != NULL && p - encoded < len0 - 3)
1014 {
1015 if (p[3] == 'X')
1016 len0 = p - encoded;
1017 else
1018 goto Suppress;
1019 }
1020
1021 /* Remove any trailing TKB suffix. It tells us that this symbol
1022 is for the body of a task, but that information does not actually
1023 appear in the decoded name. */
1024
1025 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
1026 len0 -= 3;
1027
1028 /* Remove any trailing TB suffix. The TB suffix is slightly different
1029 from the TKB suffix because it is used for non-anonymous task
1030 bodies. */
1031
1032 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1033 len0 -= 2;
1034
1035 /* Remove trailing "B" suffixes. */
1036 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1037
1038 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
1039 len0 -= 1;
1040
1041 /* Make decoded big enough for possible expansion by operator name. */
1042
1043 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1044 decoded = decoding_buffer;
1045
1046 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1047
1048 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1049 {
1050 i = len0 - 2;
1051 while ((i >= 0 && isdigit (encoded[i]))
1052 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1053 i -= 1;
1054 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1055 len0 = i - 1;
1056 else if (encoded[i] == '$')
1057 len0 = i;
1058 }
1059
1060 /* The first few characters that are not alphabetic are not part
1061 of any encoding we use, so we can copy them over verbatim. */
1062
1063 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1064 decoded[j] = encoded[i];
1065
1066 at_start_name = 1;
1067 while (i < len0)
1068 {
1069 /* Is this a symbol function? */
1070 if (at_start_name && encoded[i] == 'O')
1071 {
1072 int k;
1073
1074 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1075 {
1076 int op_len = strlen (ada_opname_table[k].encoded);
1077 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1078 op_len - 1) == 0)
1079 && !isalnum (encoded[i + op_len]))
1080 {
1081 strcpy (decoded + j, ada_opname_table[k].decoded);
1082 at_start_name = 0;
1083 i += op_len;
1084 j += strlen (ada_opname_table[k].decoded);
1085 break;
1086 }
1087 }
1088 if (ada_opname_table[k].encoded != NULL)
1089 continue;
1090 }
1091 at_start_name = 0;
1092
1093 /* Replace "TK__" with "__", which will eventually be translated
1094 into "." (just below). */
1095
1096 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1097 i += 2;
1098
1099 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1100 be translated into "." (just below). These are internal names
1101 generated for anonymous blocks inside which our symbol is nested. */
1102
1103 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1104 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1105 && isdigit (encoded [i+4]))
1106 {
1107 int k = i + 5;
1108
1109 while (k < len0 && isdigit (encoded[k]))
1110 k++; /* Skip any extra digit. */
1111
1112 /* Double-check that the "__B_{DIGITS}+" sequence we found
1113 is indeed followed by "__". */
1114 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1115 i = k;
1116 }
1117
1118 /* Remove _E{DIGITS}+[sb] */
1119
1120 /* Just as for protected object subprograms, there are 2 categories
1121 of subprograms created by the compiler for each entry. The first
1122 one implements the actual entry code, and has a suffix following
1123 the convention above; the second one implements the barrier and
1124 uses the same convention as above, except that the 'E' is replaced
1125 by a 'B'.
1126
1127 Just as above, we do not decode the name of barrier functions
1128 to give the user a clue that the code he is debugging has been
1129 internally generated. */
1130
1131 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1132 && isdigit (encoded[i+2]))
1133 {
1134 int k = i + 3;
1135
1136 while (k < len0 && isdigit (encoded[k]))
1137 k++;
1138
1139 if (k < len0
1140 && (encoded[k] == 'b' || encoded[k] == 's'))
1141 {
1142 k++;
1143 /* Just as an extra precaution, make sure that if this
1144 suffix is followed by anything else, it is a '_'.
1145 Otherwise, we matched this sequence by accident. */
1146 if (k == len0
1147 || (k < len0 && encoded[k] == '_'))
1148 i = k;
1149 }
1150 }
1151
1152 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1153 the GNAT front-end in protected object subprograms. */
1154
1155 if (i < len0 + 3
1156 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1157 {
1158 /* Backtrack a bit up until we reach either the begining of
1159 the encoded name, or "__". Make sure that we only find
1160 digits or lowercase characters. */
1161 const char *ptr = encoded + i - 1;
1162
1163 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1164 ptr--;
1165 if (ptr < encoded
1166 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1167 i++;
1168 }
1169
1170 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1171 {
1172 /* This is a X[bn]* sequence not separated from the previous
1173 part of the name with a non-alpha-numeric character (in other
1174 words, immediately following an alpha-numeric character), then
1175 verify that it is placed at the end of the encoded name. If
1176 not, then the encoding is not valid and we should abort the
1177 decoding. Otherwise, just skip it, it is used in body-nested
1178 package names. */
1179 do
1180 i += 1;
1181 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1182 if (i < len0)
1183 goto Suppress;
1184 }
1185 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1186 {
1187 /* Replace '__' by '.'. */
1188 decoded[j] = '.';
1189 at_start_name = 1;
1190 i += 2;
1191 j += 1;
1192 }
1193 else
1194 {
1195 /* It's a character part of the decoded name, so just copy it
1196 over. */
1197 decoded[j] = encoded[i];
1198 i += 1;
1199 j += 1;
1200 }
1201 }
1202 decoded[j] = '\000';
1203
1204 /* Decoded names should never contain any uppercase character.
1205 Double-check this, and abort the decoding if we find one. */
1206
1207 for (i = 0; decoded[i] != '\0'; i += 1)
1208 if (isupper (decoded[i]) || decoded[i] == ' ')
1209 goto Suppress;
1210
1211 if (strcmp (decoded, encoded) == 0)
1212 return encoded;
1213 else
1214 return decoded;
1215
1216 Suppress:
1217 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1218 decoded = decoding_buffer;
1219 if (encoded[0] == '<')
1220 strcpy (decoded, encoded);
1221 else
1222 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1223 return decoded;
1224
1225 }
1226
1227 /* Table for keeping permanent unique copies of decoded names. Once
1228 allocated, names in this table are never released. While this is a
1229 storage leak, it should not be significant unless there are massive
1230 changes in the set of decoded names in successive versions of a
1231 symbol table loaded during a single session. */
1232 static struct htab *decoded_names_store;
1233
1234 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1235 in the language-specific part of GSYMBOL, if it has not been
1236 previously computed. Tries to save the decoded name in the same
1237 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1238 in any case, the decoded symbol has a lifetime at least that of
1239 GSYMBOL).
1240 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1241 const, but nevertheless modified to a semantically equivalent form
1242 when a decoded name is cached in it. */
1243
1244 char *
1245 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1246 {
1247 char **resultp =
1248 (char **) &gsymbol->language_specific.mangled_lang.demangled_name;
1249
1250 if (*resultp == NULL)
1251 {
1252 const char *decoded = ada_decode (gsymbol->name);
1253
1254 if (gsymbol->obj_section != NULL)
1255 {
1256 struct objfile *objf = gsymbol->obj_section->objfile;
1257
1258 *resultp = obsavestring (decoded, strlen (decoded),
1259 &objf->objfile_obstack);
1260 }
1261 /* Sometimes, we can't find a corresponding objfile, in which
1262 case, we put the result on the heap. Since we only decode
1263 when needed, we hope this usually does not cause a
1264 significant memory leak (FIXME). */
1265 if (*resultp == NULL)
1266 {
1267 char **slot = (char **) htab_find_slot (decoded_names_store,
1268 decoded, INSERT);
1269
1270 if (*slot == NULL)
1271 *slot = xstrdup (decoded);
1272 *resultp = *slot;
1273 }
1274 }
1275
1276 return *resultp;
1277 }
1278
1279 static char *
1280 ada_la_decode (const char *encoded, int options)
1281 {
1282 return xstrdup (ada_decode (encoded));
1283 }
1284
1285 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1286 suffixes that encode debugging information or leading _ada_ on
1287 SYM_NAME (see is_name_suffix commentary for the debugging
1288 information that is ignored). If WILD, then NAME need only match a
1289 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1290 either argument is NULL. */
1291
1292 static int
1293 match_name (const char *sym_name, const char *name, int wild)
1294 {
1295 if (sym_name == NULL || name == NULL)
1296 return 0;
1297 else if (wild)
1298 return wild_match (sym_name, name) == 0;
1299 else
1300 {
1301 int len_name = strlen (name);
1302
1303 return (strncmp (sym_name, name, len_name) == 0
1304 && is_name_suffix (sym_name + len_name))
1305 || (strncmp (sym_name, "_ada_", 5) == 0
1306 && strncmp (sym_name + 5, name, len_name) == 0
1307 && is_name_suffix (sym_name + len_name + 5));
1308 }
1309 }
1310 \f
1311
1312 /* Arrays */
1313
1314 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1315 generated by the GNAT compiler to describe the index type used
1316 for each dimension of an array, check whether it follows the latest
1317 known encoding. If not, fix it up to conform to the latest encoding.
1318 Otherwise, do nothing. This function also does nothing if
1319 INDEX_DESC_TYPE is NULL.
1320
1321 The GNAT encoding used to describle the array index type evolved a bit.
1322 Initially, the information would be provided through the name of each
1323 field of the structure type only, while the type of these fields was
1324 described as unspecified and irrelevant. The debugger was then expected
1325 to perform a global type lookup using the name of that field in order
1326 to get access to the full index type description. Because these global
1327 lookups can be very expensive, the encoding was later enhanced to make
1328 the global lookup unnecessary by defining the field type as being
1329 the full index type description.
1330
1331 The purpose of this routine is to allow us to support older versions
1332 of the compiler by detecting the use of the older encoding, and by
1333 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1334 we essentially replace each field's meaningless type by the associated
1335 index subtype). */
1336
1337 void
1338 ada_fixup_array_indexes_type (struct type *index_desc_type)
1339 {
1340 int i;
1341
1342 if (index_desc_type == NULL)
1343 return;
1344 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1345
1346 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1347 to check one field only, no need to check them all). If not, return
1348 now.
1349
1350 If our INDEX_DESC_TYPE was generated using the older encoding,
1351 the field type should be a meaningless integer type whose name
1352 is not equal to the field name. */
1353 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1354 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1355 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1356 return;
1357
1358 /* Fixup each field of INDEX_DESC_TYPE. */
1359 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1360 {
1361 char *name = TYPE_FIELD_NAME (index_desc_type, i);
1362 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1363
1364 if (raw_type)
1365 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1366 }
1367 }
1368
1369 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1370
1371 static char *bound_name[] = {
1372 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1373 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1374 };
1375
1376 /* Maximum number of array dimensions we are prepared to handle. */
1377
1378 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1379
1380
1381 /* The desc_* routines return primitive portions of array descriptors
1382 (fat pointers). */
1383
1384 /* The descriptor or array type, if any, indicated by TYPE; removes
1385 level of indirection, if needed. */
1386
1387 static struct type *
1388 desc_base_type (struct type *type)
1389 {
1390 if (type == NULL)
1391 return NULL;
1392 type = ada_check_typedef (type);
1393 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1394 type = ada_typedef_target_type (type);
1395
1396 if (type != NULL
1397 && (TYPE_CODE (type) == TYPE_CODE_PTR
1398 || TYPE_CODE (type) == TYPE_CODE_REF))
1399 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1400 else
1401 return type;
1402 }
1403
1404 /* True iff TYPE indicates a "thin" array pointer type. */
1405
1406 static int
1407 is_thin_pntr (struct type *type)
1408 {
1409 return
1410 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1411 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1412 }
1413
1414 /* The descriptor type for thin pointer type TYPE. */
1415
1416 static struct type *
1417 thin_descriptor_type (struct type *type)
1418 {
1419 struct type *base_type = desc_base_type (type);
1420
1421 if (base_type == NULL)
1422 return NULL;
1423 if (is_suffix (ada_type_name (base_type), "___XVE"))
1424 return base_type;
1425 else
1426 {
1427 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1428
1429 if (alt_type == NULL)
1430 return base_type;
1431 else
1432 return alt_type;
1433 }
1434 }
1435
1436 /* A pointer to the array data for thin-pointer value VAL. */
1437
1438 static struct value *
1439 thin_data_pntr (struct value *val)
1440 {
1441 struct type *type = value_type (val);
1442 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1443
1444 data_type = lookup_pointer_type (data_type);
1445
1446 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1447 return value_cast (data_type, value_copy (val));
1448 else
1449 return value_from_longest (data_type, value_address (val));
1450 }
1451
1452 /* True iff TYPE indicates a "thick" array pointer type. */
1453
1454 static int
1455 is_thick_pntr (struct type *type)
1456 {
1457 type = desc_base_type (type);
1458 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1459 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1460 }
1461
1462 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1463 pointer to one, the type of its bounds data; otherwise, NULL. */
1464
1465 static struct type *
1466 desc_bounds_type (struct type *type)
1467 {
1468 struct type *r;
1469
1470 type = desc_base_type (type);
1471
1472 if (type == NULL)
1473 return NULL;
1474 else if (is_thin_pntr (type))
1475 {
1476 type = thin_descriptor_type (type);
1477 if (type == NULL)
1478 return NULL;
1479 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1480 if (r != NULL)
1481 return ada_check_typedef (r);
1482 }
1483 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1484 {
1485 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1486 if (r != NULL)
1487 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1488 }
1489 return NULL;
1490 }
1491
1492 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1493 one, a pointer to its bounds data. Otherwise NULL. */
1494
1495 static struct value *
1496 desc_bounds (struct value *arr)
1497 {
1498 struct type *type = ada_check_typedef (value_type (arr));
1499
1500 if (is_thin_pntr (type))
1501 {
1502 struct type *bounds_type =
1503 desc_bounds_type (thin_descriptor_type (type));
1504 LONGEST addr;
1505
1506 if (bounds_type == NULL)
1507 error (_("Bad GNAT array descriptor"));
1508
1509 /* NOTE: The following calculation is not really kosher, but
1510 since desc_type is an XVE-encoded type (and shouldn't be),
1511 the correct calculation is a real pain. FIXME (and fix GCC). */
1512 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1513 addr = value_as_long (arr);
1514 else
1515 addr = value_address (arr);
1516
1517 return
1518 value_from_longest (lookup_pointer_type (bounds_type),
1519 addr - TYPE_LENGTH (bounds_type));
1520 }
1521
1522 else if (is_thick_pntr (type))
1523 {
1524 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1525 _("Bad GNAT array descriptor"));
1526 struct type *p_bounds_type = value_type (p_bounds);
1527
1528 if (p_bounds_type
1529 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1530 {
1531 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1532
1533 if (TYPE_STUB (target_type))
1534 p_bounds = value_cast (lookup_pointer_type
1535 (ada_check_typedef (target_type)),
1536 p_bounds);
1537 }
1538 else
1539 error (_("Bad GNAT array descriptor"));
1540
1541 return p_bounds;
1542 }
1543 else
1544 return NULL;
1545 }
1546
1547 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1548 position of the field containing the address of the bounds data. */
1549
1550 static int
1551 fat_pntr_bounds_bitpos (struct type *type)
1552 {
1553 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1554 }
1555
1556 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1557 size of the field containing the address of the bounds data. */
1558
1559 static int
1560 fat_pntr_bounds_bitsize (struct type *type)
1561 {
1562 type = desc_base_type (type);
1563
1564 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1565 return TYPE_FIELD_BITSIZE (type, 1);
1566 else
1567 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1568 }
1569
1570 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1571 pointer to one, the type of its array data (a array-with-no-bounds type);
1572 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1573 data. */
1574
1575 static struct type *
1576 desc_data_target_type (struct type *type)
1577 {
1578 type = desc_base_type (type);
1579
1580 /* NOTE: The following is bogus; see comment in desc_bounds. */
1581 if (is_thin_pntr (type))
1582 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1583 else if (is_thick_pntr (type))
1584 {
1585 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1586
1587 if (data_type
1588 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1589 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1590 }
1591
1592 return NULL;
1593 }
1594
1595 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1596 its array data. */
1597
1598 static struct value *
1599 desc_data (struct value *arr)
1600 {
1601 struct type *type = value_type (arr);
1602
1603 if (is_thin_pntr (type))
1604 return thin_data_pntr (arr);
1605 else if (is_thick_pntr (type))
1606 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1607 _("Bad GNAT array descriptor"));
1608 else
1609 return NULL;
1610 }
1611
1612
1613 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1614 position of the field containing the address of the data. */
1615
1616 static int
1617 fat_pntr_data_bitpos (struct type *type)
1618 {
1619 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1620 }
1621
1622 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1623 size of the field containing the address of the data. */
1624
1625 static int
1626 fat_pntr_data_bitsize (struct type *type)
1627 {
1628 type = desc_base_type (type);
1629
1630 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1631 return TYPE_FIELD_BITSIZE (type, 0);
1632 else
1633 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1634 }
1635
1636 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1637 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1638 bound, if WHICH is 1. The first bound is I=1. */
1639
1640 static struct value *
1641 desc_one_bound (struct value *bounds, int i, int which)
1642 {
1643 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1644 _("Bad GNAT array descriptor bounds"));
1645 }
1646
1647 /* If BOUNDS is an array-bounds structure type, return the bit position
1648 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1649 bound, if WHICH is 1. The first bound is I=1. */
1650
1651 static int
1652 desc_bound_bitpos (struct type *type, int i, int which)
1653 {
1654 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1655 }
1656
1657 /* If BOUNDS is an array-bounds structure type, return the bit field size
1658 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1659 bound, if WHICH is 1. The first bound is I=1. */
1660
1661 static int
1662 desc_bound_bitsize (struct type *type, int i, int which)
1663 {
1664 type = desc_base_type (type);
1665
1666 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1667 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1668 else
1669 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1670 }
1671
1672 /* If TYPE is the type of an array-bounds structure, the type of its
1673 Ith bound (numbering from 1). Otherwise, NULL. */
1674
1675 static struct type *
1676 desc_index_type (struct type *type, int i)
1677 {
1678 type = desc_base_type (type);
1679
1680 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1681 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1682 else
1683 return NULL;
1684 }
1685
1686 /* The number of index positions in the array-bounds type TYPE.
1687 Return 0 if TYPE is NULL. */
1688
1689 static int
1690 desc_arity (struct type *type)
1691 {
1692 type = desc_base_type (type);
1693
1694 if (type != NULL)
1695 return TYPE_NFIELDS (type) / 2;
1696 return 0;
1697 }
1698
1699 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1700 an array descriptor type (representing an unconstrained array
1701 type). */
1702
1703 static int
1704 ada_is_direct_array_type (struct type *type)
1705 {
1706 if (type == NULL)
1707 return 0;
1708 type = ada_check_typedef (type);
1709 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1710 || ada_is_array_descriptor_type (type));
1711 }
1712
1713 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1714 * to one. */
1715
1716 static int
1717 ada_is_array_type (struct type *type)
1718 {
1719 while (type != NULL
1720 && (TYPE_CODE (type) == TYPE_CODE_PTR
1721 || TYPE_CODE (type) == TYPE_CODE_REF))
1722 type = TYPE_TARGET_TYPE (type);
1723 return ada_is_direct_array_type (type);
1724 }
1725
1726 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1727
1728 int
1729 ada_is_simple_array_type (struct type *type)
1730 {
1731 if (type == NULL)
1732 return 0;
1733 type = ada_check_typedef (type);
1734 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1735 || (TYPE_CODE (type) == TYPE_CODE_PTR
1736 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1737 == TYPE_CODE_ARRAY));
1738 }
1739
1740 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1741
1742 int
1743 ada_is_array_descriptor_type (struct type *type)
1744 {
1745 struct type *data_type = desc_data_target_type (type);
1746
1747 if (type == NULL)
1748 return 0;
1749 type = ada_check_typedef (type);
1750 return (data_type != NULL
1751 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1752 && desc_arity (desc_bounds_type (type)) > 0);
1753 }
1754
1755 /* Non-zero iff type is a partially mal-formed GNAT array
1756 descriptor. FIXME: This is to compensate for some problems with
1757 debugging output from GNAT. Re-examine periodically to see if it
1758 is still needed. */
1759
1760 int
1761 ada_is_bogus_array_descriptor (struct type *type)
1762 {
1763 return
1764 type != NULL
1765 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1766 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1767 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1768 && !ada_is_array_descriptor_type (type);
1769 }
1770
1771
1772 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1773 (fat pointer) returns the type of the array data described---specifically,
1774 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1775 in from the descriptor; otherwise, they are left unspecified. If
1776 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1777 returns NULL. The result is simply the type of ARR if ARR is not
1778 a descriptor. */
1779 struct type *
1780 ada_type_of_array (struct value *arr, int bounds)
1781 {
1782 if (ada_is_constrained_packed_array_type (value_type (arr)))
1783 return decode_constrained_packed_array_type (value_type (arr));
1784
1785 if (!ada_is_array_descriptor_type (value_type (arr)))
1786 return value_type (arr);
1787
1788 if (!bounds)
1789 {
1790 struct type *array_type =
1791 ada_check_typedef (desc_data_target_type (value_type (arr)));
1792
1793 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1794 TYPE_FIELD_BITSIZE (array_type, 0) =
1795 decode_packed_array_bitsize (value_type (arr));
1796
1797 return array_type;
1798 }
1799 else
1800 {
1801 struct type *elt_type;
1802 int arity;
1803 struct value *descriptor;
1804
1805 elt_type = ada_array_element_type (value_type (arr), -1);
1806 arity = ada_array_arity (value_type (arr));
1807
1808 if (elt_type == NULL || arity == 0)
1809 return ada_check_typedef (value_type (arr));
1810
1811 descriptor = desc_bounds (arr);
1812 if (value_as_long (descriptor) == 0)
1813 return NULL;
1814 while (arity > 0)
1815 {
1816 struct type *range_type = alloc_type_copy (value_type (arr));
1817 struct type *array_type = alloc_type_copy (value_type (arr));
1818 struct value *low = desc_one_bound (descriptor, arity, 0);
1819 struct value *high = desc_one_bound (descriptor, arity, 1);
1820
1821 arity -= 1;
1822 create_range_type (range_type, value_type (low),
1823 longest_to_int (value_as_long (low)),
1824 longest_to_int (value_as_long (high)));
1825 elt_type = create_array_type (array_type, elt_type, range_type);
1826
1827 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1828 {
1829 /* We need to store the element packed bitsize, as well as
1830 recompute the array size, because it was previously
1831 computed based on the unpacked element size. */
1832 LONGEST lo = value_as_long (low);
1833 LONGEST hi = value_as_long (high);
1834
1835 TYPE_FIELD_BITSIZE (elt_type, 0) =
1836 decode_packed_array_bitsize (value_type (arr));
1837 /* If the array has no element, then the size is already
1838 zero, and does not need to be recomputed. */
1839 if (lo < hi)
1840 {
1841 int array_bitsize =
1842 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1843
1844 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1845 }
1846 }
1847 }
1848
1849 return lookup_pointer_type (elt_type);
1850 }
1851 }
1852
1853 /* If ARR does not represent an array, returns ARR unchanged.
1854 Otherwise, returns either a standard GDB array with bounds set
1855 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1856 GDB array. Returns NULL if ARR is a null fat pointer. */
1857
1858 struct value *
1859 ada_coerce_to_simple_array_ptr (struct value *arr)
1860 {
1861 if (ada_is_array_descriptor_type (value_type (arr)))
1862 {
1863 struct type *arrType = ada_type_of_array (arr, 1);
1864
1865 if (arrType == NULL)
1866 return NULL;
1867 return value_cast (arrType, value_copy (desc_data (arr)));
1868 }
1869 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1870 return decode_constrained_packed_array (arr);
1871 else
1872 return arr;
1873 }
1874
1875 /* If ARR does not represent an array, returns ARR unchanged.
1876 Otherwise, returns a standard GDB array describing ARR (which may
1877 be ARR itself if it already is in the proper form). */
1878
1879 struct value *
1880 ada_coerce_to_simple_array (struct value *arr)
1881 {
1882 if (ada_is_array_descriptor_type (value_type (arr)))
1883 {
1884 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1885
1886 if (arrVal == NULL)
1887 error (_("Bounds unavailable for null array pointer."));
1888 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1889 return value_ind (arrVal);
1890 }
1891 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1892 return decode_constrained_packed_array (arr);
1893 else
1894 return arr;
1895 }
1896
1897 /* If TYPE represents a GNAT array type, return it translated to an
1898 ordinary GDB array type (possibly with BITSIZE fields indicating
1899 packing). For other types, is the identity. */
1900
1901 struct type *
1902 ada_coerce_to_simple_array_type (struct type *type)
1903 {
1904 if (ada_is_constrained_packed_array_type (type))
1905 return decode_constrained_packed_array_type (type);
1906
1907 if (ada_is_array_descriptor_type (type))
1908 return ada_check_typedef (desc_data_target_type (type));
1909
1910 return type;
1911 }
1912
1913 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1914
1915 static int
1916 ada_is_packed_array_type (struct type *type)
1917 {
1918 if (type == NULL)
1919 return 0;
1920 type = desc_base_type (type);
1921 type = ada_check_typedef (type);
1922 return
1923 ada_type_name (type) != NULL
1924 && strstr (ada_type_name (type), "___XP") != NULL;
1925 }
1926
1927 /* Non-zero iff TYPE represents a standard GNAT constrained
1928 packed-array type. */
1929
1930 int
1931 ada_is_constrained_packed_array_type (struct type *type)
1932 {
1933 return ada_is_packed_array_type (type)
1934 && !ada_is_array_descriptor_type (type);
1935 }
1936
1937 /* Non-zero iff TYPE represents an array descriptor for a
1938 unconstrained packed-array type. */
1939
1940 static int
1941 ada_is_unconstrained_packed_array_type (struct type *type)
1942 {
1943 return ada_is_packed_array_type (type)
1944 && ada_is_array_descriptor_type (type);
1945 }
1946
1947 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
1948 return the size of its elements in bits. */
1949
1950 static long
1951 decode_packed_array_bitsize (struct type *type)
1952 {
1953 char *raw_name;
1954 char *tail;
1955 long bits;
1956
1957 /* Access to arrays implemented as fat pointers are encoded as a typedef
1958 of the fat pointer type. We need the name of the fat pointer type
1959 to do the decoding, so strip the typedef layer. */
1960 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1961 type = ada_typedef_target_type (type);
1962
1963 raw_name = ada_type_name (ada_check_typedef (type));
1964 if (!raw_name)
1965 raw_name = ada_type_name (desc_base_type (type));
1966
1967 if (!raw_name)
1968 return 0;
1969
1970 tail = strstr (raw_name, "___XP");
1971 gdb_assert (tail != NULL);
1972
1973 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1974 {
1975 lim_warning
1976 (_("could not understand bit size information on packed array"));
1977 return 0;
1978 }
1979
1980 return bits;
1981 }
1982
1983 /* Given that TYPE is a standard GDB array type with all bounds filled
1984 in, and that the element size of its ultimate scalar constituents
1985 (that is, either its elements, or, if it is an array of arrays, its
1986 elements' elements, etc.) is *ELT_BITS, return an identical type,
1987 but with the bit sizes of its elements (and those of any
1988 constituent arrays) recorded in the BITSIZE components of its
1989 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1990 in bits. */
1991
1992 static struct type *
1993 constrained_packed_array_type (struct type *type, long *elt_bits)
1994 {
1995 struct type *new_elt_type;
1996 struct type *new_type;
1997 LONGEST low_bound, high_bound;
1998
1999 type = ada_check_typedef (type);
2000 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2001 return type;
2002
2003 new_type = alloc_type_copy (type);
2004 new_elt_type =
2005 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2006 elt_bits);
2007 create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type));
2008 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2009 TYPE_NAME (new_type) = ada_type_name (type);
2010
2011 if (get_discrete_bounds (TYPE_INDEX_TYPE (type),
2012 &low_bound, &high_bound) < 0)
2013 low_bound = high_bound = 0;
2014 if (high_bound < low_bound)
2015 *elt_bits = TYPE_LENGTH (new_type) = 0;
2016 else
2017 {
2018 *elt_bits *= (high_bound - low_bound + 1);
2019 TYPE_LENGTH (new_type) =
2020 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2021 }
2022
2023 TYPE_FIXED_INSTANCE (new_type) = 1;
2024 return new_type;
2025 }
2026
2027 /* The array type encoded by TYPE, where
2028 ada_is_constrained_packed_array_type (TYPE). */
2029
2030 static struct type *
2031 decode_constrained_packed_array_type (struct type *type)
2032 {
2033 char *raw_name = ada_type_name (ada_check_typedef (type));
2034 char *name;
2035 char *tail;
2036 struct type *shadow_type;
2037 long bits;
2038
2039 if (!raw_name)
2040 raw_name = ada_type_name (desc_base_type (type));
2041
2042 if (!raw_name)
2043 return NULL;
2044
2045 name = (char *) alloca (strlen (raw_name) + 1);
2046 tail = strstr (raw_name, "___XP");
2047 type = desc_base_type (type);
2048
2049 memcpy (name, raw_name, tail - raw_name);
2050 name[tail - raw_name] = '\000';
2051
2052 shadow_type = ada_find_parallel_type_with_name (type, name);
2053
2054 if (shadow_type == NULL)
2055 {
2056 lim_warning (_("could not find bounds information on packed array"));
2057 return NULL;
2058 }
2059 CHECK_TYPEDEF (shadow_type);
2060
2061 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2062 {
2063 lim_warning (_("could not understand bounds "
2064 "information on packed array"));
2065 return NULL;
2066 }
2067
2068 bits = decode_packed_array_bitsize (type);
2069 return constrained_packed_array_type (shadow_type, &bits);
2070 }
2071
2072 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2073 array, returns a simple array that denotes that array. Its type is a
2074 standard GDB array type except that the BITSIZEs of the array
2075 target types are set to the number of bits in each element, and the
2076 type length is set appropriately. */
2077
2078 static struct value *
2079 decode_constrained_packed_array (struct value *arr)
2080 {
2081 struct type *type;
2082
2083 arr = ada_coerce_ref (arr);
2084
2085 /* If our value is a pointer, then dererence it. Make sure that
2086 this operation does not cause the target type to be fixed, as
2087 this would indirectly cause this array to be decoded. The rest
2088 of the routine assumes that the array hasn't been decoded yet,
2089 so we use the basic "value_ind" routine to perform the dereferencing,
2090 as opposed to using "ada_value_ind". */
2091 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
2092 arr = value_ind (arr);
2093
2094 type = decode_constrained_packed_array_type (value_type (arr));
2095 if (type == NULL)
2096 {
2097 error (_("can't unpack array"));
2098 return NULL;
2099 }
2100
2101 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2102 && ada_is_modular_type (value_type (arr)))
2103 {
2104 /* This is a (right-justified) modular type representing a packed
2105 array with no wrapper. In order to interpret the value through
2106 the (left-justified) packed array type we just built, we must
2107 first left-justify it. */
2108 int bit_size, bit_pos;
2109 ULONGEST mod;
2110
2111 mod = ada_modulus (value_type (arr)) - 1;
2112 bit_size = 0;
2113 while (mod > 0)
2114 {
2115 bit_size += 1;
2116 mod >>= 1;
2117 }
2118 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2119 arr = ada_value_primitive_packed_val (arr, NULL,
2120 bit_pos / HOST_CHAR_BIT,
2121 bit_pos % HOST_CHAR_BIT,
2122 bit_size,
2123 type);
2124 }
2125
2126 return coerce_unspec_val_to_type (arr, type);
2127 }
2128
2129
2130 /* The value of the element of packed array ARR at the ARITY indices
2131 given in IND. ARR must be a simple array. */
2132
2133 static struct value *
2134 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2135 {
2136 int i;
2137 int bits, elt_off, bit_off;
2138 long elt_total_bit_offset;
2139 struct type *elt_type;
2140 struct value *v;
2141
2142 bits = 0;
2143 elt_total_bit_offset = 0;
2144 elt_type = ada_check_typedef (value_type (arr));
2145 for (i = 0; i < arity; i += 1)
2146 {
2147 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2148 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2149 error
2150 (_("attempt to do packed indexing of "
2151 "something other than a packed array"));
2152 else
2153 {
2154 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2155 LONGEST lowerbound, upperbound;
2156 LONGEST idx;
2157
2158 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2159 {
2160 lim_warning (_("don't know bounds of array"));
2161 lowerbound = upperbound = 0;
2162 }
2163
2164 idx = pos_atr (ind[i]);
2165 if (idx < lowerbound || idx > upperbound)
2166 lim_warning (_("packed array index %ld out of bounds"),
2167 (long) idx);
2168 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2169 elt_total_bit_offset += (idx - lowerbound) * bits;
2170 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2171 }
2172 }
2173 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2174 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2175
2176 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2177 bits, elt_type);
2178 return v;
2179 }
2180
2181 /* Non-zero iff TYPE includes negative integer values. */
2182
2183 static int
2184 has_negatives (struct type *type)
2185 {
2186 switch (TYPE_CODE (type))
2187 {
2188 default:
2189 return 0;
2190 case TYPE_CODE_INT:
2191 return !TYPE_UNSIGNED (type);
2192 case TYPE_CODE_RANGE:
2193 return TYPE_LOW_BOUND (type) < 0;
2194 }
2195 }
2196
2197
2198 /* Create a new value of type TYPE from the contents of OBJ starting
2199 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2200 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2201 assigning through the result will set the field fetched from.
2202 VALADDR is ignored unless OBJ is NULL, in which case,
2203 VALADDR+OFFSET must address the start of storage containing the
2204 packed value. The value returned in this case is never an lval.
2205 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2206
2207 struct value *
2208 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2209 long offset, int bit_offset, int bit_size,
2210 struct type *type)
2211 {
2212 struct value *v;
2213 int src, /* Index into the source area */
2214 targ, /* Index into the target area */
2215 srcBitsLeft, /* Number of source bits left to move */
2216 nsrc, ntarg, /* Number of source and target bytes */
2217 unusedLS, /* Number of bits in next significant
2218 byte of source that are unused */
2219 accumSize; /* Number of meaningful bits in accum */
2220 unsigned char *bytes; /* First byte containing data to unpack */
2221 unsigned char *unpacked;
2222 unsigned long accum; /* Staging area for bits being transferred */
2223 unsigned char sign;
2224 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2225 /* Transmit bytes from least to most significant; delta is the direction
2226 the indices move. */
2227 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2228
2229 type = ada_check_typedef (type);
2230
2231 if (obj == NULL)
2232 {
2233 v = allocate_value (type);
2234 bytes = (unsigned char *) (valaddr + offset);
2235 }
2236 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2237 {
2238 v = value_at (type,
2239 value_address (obj) + offset);
2240 bytes = (unsigned char *) alloca (len);
2241 read_memory (value_address (v), bytes, len);
2242 }
2243 else
2244 {
2245 v = allocate_value (type);
2246 bytes = (unsigned char *) value_contents (obj) + offset;
2247 }
2248
2249 if (obj != NULL)
2250 {
2251 CORE_ADDR new_addr;
2252
2253 set_value_component_location (v, obj);
2254 new_addr = value_address (obj) + offset;
2255 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2256 set_value_bitsize (v, bit_size);
2257 if (value_bitpos (v) >= HOST_CHAR_BIT)
2258 {
2259 ++new_addr;
2260 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2261 }
2262 set_value_address (v, new_addr);
2263 }
2264 else
2265 set_value_bitsize (v, bit_size);
2266 unpacked = (unsigned char *) value_contents (v);
2267
2268 srcBitsLeft = bit_size;
2269 nsrc = len;
2270 ntarg = TYPE_LENGTH (type);
2271 sign = 0;
2272 if (bit_size == 0)
2273 {
2274 memset (unpacked, 0, TYPE_LENGTH (type));
2275 return v;
2276 }
2277 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2278 {
2279 src = len - 1;
2280 if (has_negatives (type)
2281 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2282 sign = ~0;
2283
2284 unusedLS =
2285 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2286 % HOST_CHAR_BIT;
2287
2288 switch (TYPE_CODE (type))
2289 {
2290 case TYPE_CODE_ARRAY:
2291 case TYPE_CODE_UNION:
2292 case TYPE_CODE_STRUCT:
2293 /* Non-scalar values must be aligned at a byte boundary... */
2294 accumSize =
2295 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2296 /* ... And are placed at the beginning (most-significant) bytes
2297 of the target. */
2298 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2299 ntarg = targ + 1;
2300 break;
2301 default:
2302 accumSize = 0;
2303 targ = TYPE_LENGTH (type) - 1;
2304 break;
2305 }
2306 }
2307 else
2308 {
2309 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2310
2311 src = targ = 0;
2312 unusedLS = bit_offset;
2313 accumSize = 0;
2314
2315 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2316 sign = ~0;
2317 }
2318
2319 accum = 0;
2320 while (nsrc > 0)
2321 {
2322 /* Mask for removing bits of the next source byte that are not
2323 part of the value. */
2324 unsigned int unusedMSMask =
2325 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2326 1;
2327 /* Sign-extend bits for this byte. */
2328 unsigned int signMask = sign & ~unusedMSMask;
2329
2330 accum |=
2331 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2332 accumSize += HOST_CHAR_BIT - unusedLS;
2333 if (accumSize >= HOST_CHAR_BIT)
2334 {
2335 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2336 accumSize -= HOST_CHAR_BIT;
2337 accum >>= HOST_CHAR_BIT;
2338 ntarg -= 1;
2339 targ += delta;
2340 }
2341 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2342 unusedLS = 0;
2343 nsrc -= 1;
2344 src += delta;
2345 }
2346 while (ntarg > 0)
2347 {
2348 accum |= sign << accumSize;
2349 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2350 accumSize -= HOST_CHAR_BIT;
2351 accum >>= HOST_CHAR_BIT;
2352 ntarg -= 1;
2353 targ += delta;
2354 }
2355
2356 return v;
2357 }
2358
2359 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2360 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2361 not overlap. */
2362 static void
2363 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2364 int src_offset, int n, int bits_big_endian_p)
2365 {
2366 unsigned int accum, mask;
2367 int accum_bits, chunk_size;
2368
2369 target += targ_offset / HOST_CHAR_BIT;
2370 targ_offset %= HOST_CHAR_BIT;
2371 source += src_offset / HOST_CHAR_BIT;
2372 src_offset %= HOST_CHAR_BIT;
2373 if (bits_big_endian_p)
2374 {
2375 accum = (unsigned char) *source;
2376 source += 1;
2377 accum_bits = HOST_CHAR_BIT - src_offset;
2378
2379 while (n > 0)
2380 {
2381 int unused_right;
2382
2383 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2384 accum_bits += HOST_CHAR_BIT;
2385 source += 1;
2386 chunk_size = HOST_CHAR_BIT - targ_offset;
2387 if (chunk_size > n)
2388 chunk_size = n;
2389 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2390 mask = ((1 << chunk_size) - 1) << unused_right;
2391 *target =
2392 (*target & ~mask)
2393 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2394 n -= chunk_size;
2395 accum_bits -= chunk_size;
2396 target += 1;
2397 targ_offset = 0;
2398 }
2399 }
2400 else
2401 {
2402 accum = (unsigned char) *source >> src_offset;
2403 source += 1;
2404 accum_bits = HOST_CHAR_BIT - src_offset;
2405
2406 while (n > 0)
2407 {
2408 accum = accum + ((unsigned char) *source << accum_bits);
2409 accum_bits += HOST_CHAR_BIT;
2410 source += 1;
2411 chunk_size = HOST_CHAR_BIT - targ_offset;
2412 if (chunk_size > n)
2413 chunk_size = n;
2414 mask = ((1 << chunk_size) - 1) << targ_offset;
2415 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2416 n -= chunk_size;
2417 accum_bits -= chunk_size;
2418 accum >>= chunk_size;
2419 target += 1;
2420 targ_offset = 0;
2421 }
2422 }
2423 }
2424
2425 /* Store the contents of FROMVAL into the location of TOVAL.
2426 Return a new value with the location of TOVAL and contents of
2427 FROMVAL. Handles assignment into packed fields that have
2428 floating-point or non-scalar types. */
2429
2430 static struct value *
2431 ada_value_assign (struct value *toval, struct value *fromval)
2432 {
2433 struct type *type = value_type (toval);
2434 int bits = value_bitsize (toval);
2435
2436 toval = ada_coerce_ref (toval);
2437 fromval = ada_coerce_ref (fromval);
2438
2439 if (ada_is_direct_array_type (value_type (toval)))
2440 toval = ada_coerce_to_simple_array (toval);
2441 if (ada_is_direct_array_type (value_type (fromval)))
2442 fromval = ada_coerce_to_simple_array (fromval);
2443
2444 if (!deprecated_value_modifiable (toval))
2445 error (_("Left operand of assignment is not a modifiable lvalue."));
2446
2447 if (VALUE_LVAL (toval) == lval_memory
2448 && bits > 0
2449 && (TYPE_CODE (type) == TYPE_CODE_FLT
2450 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2451 {
2452 int len = (value_bitpos (toval)
2453 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2454 int from_size;
2455 char *buffer = (char *) alloca (len);
2456 struct value *val;
2457 CORE_ADDR to_addr = value_address (toval);
2458
2459 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2460 fromval = value_cast (type, fromval);
2461
2462 read_memory (to_addr, buffer, len);
2463 from_size = value_bitsize (fromval);
2464 if (from_size == 0)
2465 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2466 if (gdbarch_bits_big_endian (get_type_arch (type)))
2467 move_bits (buffer, value_bitpos (toval),
2468 value_contents (fromval), from_size - bits, bits, 1);
2469 else
2470 move_bits (buffer, value_bitpos (toval),
2471 value_contents (fromval), 0, bits, 0);
2472 write_memory (to_addr, buffer, len);
2473 observer_notify_memory_changed (to_addr, len, buffer);
2474
2475 val = value_copy (toval);
2476 memcpy (value_contents_raw (val), value_contents (fromval),
2477 TYPE_LENGTH (type));
2478 deprecated_set_value_type (val, type);
2479
2480 return val;
2481 }
2482
2483 return value_assign (toval, fromval);
2484 }
2485
2486
2487 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2488 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2489 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2490 * COMPONENT, and not the inferior's memory. The current contents
2491 * of COMPONENT are ignored. */
2492 static void
2493 value_assign_to_component (struct value *container, struct value *component,
2494 struct value *val)
2495 {
2496 LONGEST offset_in_container =
2497 (LONGEST) (value_address (component) - value_address (container));
2498 int bit_offset_in_container =
2499 value_bitpos (component) - value_bitpos (container);
2500 int bits;
2501
2502 val = value_cast (value_type (component), val);
2503
2504 if (value_bitsize (component) == 0)
2505 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2506 else
2507 bits = value_bitsize (component);
2508
2509 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2510 move_bits (value_contents_writeable (container) + offset_in_container,
2511 value_bitpos (container) + bit_offset_in_container,
2512 value_contents (val),
2513 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2514 bits, 1);
2515 else
2516 move_bits (value_contents_writeable (container) + offset_in_container,
2517 value_bitpos (container) + bit_offset_in_container,
2518 value_contents (val), 0, bits, 0);
2519 }
2520
2521 /* The value of the element of array ARR at the ARITY indices given in IND.
2522 ARR may be either a simple array, GNAT array descriptor, or pointer
2523 thereto. */
2524
2525 struct value *
2526 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2527 {
2528 int k;
2529 struct value *elt;
2530 struct type *elt_type;
2531
2532 elt = ada_coerce_to_simple_array (arr);
2533
2534 elt_type = ada_check_typedef (value_type (elt));
2535 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2536 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2537 return value_subscript_packed (elt, arity, ind);
2538
2539 for (k = 0; k < arity; k += 1)
2540 {
2541 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2542 error (_("too many subscripts (%d expected)"), k);
2543 elt = value_subscript (elt, pos_atr (ind[k]));
2544 }
2545 return elt;
2546 }
2547
2548 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2549 value of the element of *ARR at the ARITY indices given in
2550 IND. Does not read the entire array into memory. */
2551
2552 static struct value *
2553 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2554 struct value **ind)
2555 {
2556 int k;
2557
2558 for (k = 0; k < arity; k += 1)
2559 {
2560 LONGEST lwb, upb;
2561
2562 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2563 error (_("too many subscripts (%d expected)"), k);
2564 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2565 value_copy (arr));
2566 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2567 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2568 type = TYPE_TARGET_TYPE (type);
2569 }
2570
2571 return value_ind (arr);
2572 }
2573
2574 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2575 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2576 elements starting at index LOW. The lower bound of this array is LOW, as
2577 per Ada rules. */
2578 static struct value *
2579 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2580 int low, int high)
2581 {
2582 struct type *type0 = ada_check_typedef (type);
2583 CORE_ADDR base = value_as_address (array_ptr)
2584 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2585 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2586 struct type *index_type =
2587 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
2588 low, high);
2589 struct type *slice_type =
2590 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2591
2592 return value_at_lazy (slice_type, base);
2593 }
2594
2595
2596 static struct value *
2597 ada_value_slice (struct value *array, int low, int high)
2598 {
2599 struct type *type = ada_check_typedef (value_type (array));
2600 struct type *index_type =
2601 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2602 struct type *slice_type =
2603 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2604
2605 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2606 }
2607
2608 /* If type is a record type in the form of a standard GNAT array
2609 descriptor, returns the number of dimensions for type. If arr is a
2610 simple array, returns the number of "array of"s that prefix its
2611 type designation. Otherwise, returns 0. */
2612
2613 int
2614 ada_array_arity (struct type *type)
2615 {
2616 int arity;
2617
2618 if (type == NULL)
2619 return 0;
2620
2621 type = desc_base_type (type);
2622
2623 arity = 0;
2624 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2625 return desc_arity (desc_bounds_type (type));
2626 else
2627 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2628 {
2629 arity += 1;
2630 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2631 }
2632
2633 return arity;
2634 }
2635
2636 /* If TYPE is a record type in the form of a standard GNAT array
2637 descriptor or a simple array type, returns the element type for
2638 TYPE after indexing by NINDICES indices, or by all indices if
2639 NINDICES is -1. Otherwise, returns NULL. */
2640
2641 struct type *
2642 ada_array_element_type (struct type *type, int nindices)
2643 {
2644 type = desc_base_type (type);
2645
2646 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2647 {
2648 int k;
2649 struct type *p_array_type;
2650
2651 p_array_type = desc_data_target_type (type);
2652
2653 k = ada_array_arity (type);
2654 if (k == 0)
2655 return NULL;
2656
2657 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2658 if (nindices >= 0 && k > nindices)
2659 k = nindices;
2660 while (k > 0 && p_array_type != NULL)
2661 {
2662 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2663 k -= 1;
2664 }
2665 return p_array_type;
2666 }
2667 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2668 {
2669 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2670 {
2671 type = TYPE_TARGET_TYPE (type);
2672 nindices -= 1;
2673 }
2674 return type;
2675 }
2676
2677 return NULL;
2678 }
2679
2680 /* The type of nth index in arrays of given type (n numbering from 1).
2681 Does not examine memory. Throws an error if N is invalid or TYPE
2682 is not an array type. NAME is the name of the Ada attribute being
2683 evaluated ('range, 'first, 'last, or 'length); it is used in building
2684 the error message. */
2685
2686 static struct type *
2687 ada_index_type (struct type *type, int n, const char *name)
2688 {
2689 struct type *result_type;
2690
2691 type = desc_base_type (type);
2692
2693 if (n < 0 || n > ada_array_arity (type))
2694 error (_("invalid dimension number to '%s"), name);
2695
2696 if (ada_is_simple_array_type (type))
2697 {
2698 int i;
2699
2700 for (i = 1; i < n; i += 1)
2701 type = TYPE_TARGET_TYPE (type);
2702 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2703 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2704 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2705 perhaps stabsread.c would make more sense. */
2706 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2707 result_type = NULL;
2708 }
2709 else
2710 {
2711 result_type = desc_index_type (desc_bounds_type (type), n);
2712 if (result_type == NULL)
2713 error (_("attempt to take bound of something that is not an array"));
2714 }
2715
2716 return result_type;
2717 }
2718
2719 /* Given that arr is an array type, returns the lower bound of the
2720 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2721 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2722 array-descriptor type. It works for other arrays with bounds supplied
2723 by run-time quantities other than discriminants. */
2724
2725 static LONGEST
2726 ada_array_bound_from_type (struct type * arr_type, int n, int which)
2727 {
2728 struct type *type, *elt_type, *index_type_desc, *index_type;
2729 int i;
2730
2731 gdb_assert (which == 0 || which == 1);
2732
2733 if (ada_is_constrained_packed_array_type (arr_type))
2734 arr_type = decode_constrained_packed_array_type (arr_type);
2735
2736 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2737 return (LONGEST) - which;
2738
2739 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2740 type = TYPE_TARGET_TYPE (arr_type);
2741 else
2742 type = arr_type;
2743
2744 elt_type = type;
2745 for (i = n; i > 1; i--)
2746 elt_type = TYPE_TARGET_TYPE (type);
2747
2748 index_type_desc = ada_find_parallel_type (type, "___XA");
2749 ada_fixup_array_indexes_type (index_type_desc);
2750 if (index_type_desc != NULL)
2751 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2752 NULL);
2753 else
2754 index_type = TYPE_INDEX_TYPE (elt_type);
2755
2756 return
2757 (LONGEST) (which == 0
2758 ? ada_discrete_type_low_bound (index_type)
2759 : ada_discrete_type_high_bound (index_type));
2760 }
2761
2762 /* Given that arr is an array value, returns the lower bound of the
2763 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2764 WHICH is 1. This routine will also work for arrays with bounds
2765 supplied by run-time quantities other than discriminants. */
2766
2767 static LONGEST
2768 ada_array_bound (struct value *arr, int n, int which)
2769 {
2770 struct type *arr_type = value_type (arr);
2771
2772 if (ada_is_constrained_packed_array_type (arr_type))
2773 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2774 else if (ada_is_simple_array_type (arr_type))
2775 return ada_array_bound_from_type (arr_type, n, which);
2776 else
2777 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2778 }
2779
2780 /* Given that arr is an array value, returns the length of the
2781 nth index. This routine will also work for arrays with bounds
2782 supplied by run-time quantities other than discriminants.
2783 Does not work for arrays indexed by enumeration types with representation
2784 clauses at the moment. */
2785
2786 static LONGEST
2787 ada_array_length (struct value *arr, int n)
2788 {
2789 struct type *arr_type = ada_check_typedef (value_type (arr));
2790
2791 if (ada_is_constrained_packed_array_type (arr_type))
2792 return ada_array_length (decode_constrained_packed_array (arr), n);
2793
2794 if (ada_is_simple_array_type (arr_type))
2795 return (ada_array_bound_from_type (arr_type, n, 1)
2796 - ada_array_bound_from_type (arr_type, n, 0) + 1);
2797 else
2798 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2799 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2800 }
2801
2802 /* An empty array whose type is that of ARR_TYPE (an array type),
2803 with bounds LOW to LOW-1. */
2804
2805 static struct value *
2806 empty_array (struct type *arr_type, int low)
2807 {
2808 struct type *arr_type0 = ada_check_typedef (arr_type);
2809 struct type *index_type =
2810 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)),
2811 low, low - 1);
2812 struct type *elt_type = ada_array_element_type (arr_type0, 1);
2813
2814 return allocate_value (create_array_type (NULL, elt_type, index_type));
2815 }
2816 \f
2817
2818 /* Name resolution */
2819
2820 /* The "decoded" name for the user-definable Ada operator corresponding
2821 to OP. */
2822
2823 static const char *
2824 ada_decoded_op_name (enum exp_opcode op)
2825 {
2826 int i;
2827
2828 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2829 {
2830 if (ada_opname_table[i].op == op)
2831 return ada_opname_table[i].decoded;
2832 }
2833 error (_("Could not find operator name for opcode"));
2834 }
2835
2836
2837 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2838 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2839 undefined namespace) and converts operators that are
2840 user-defined into appropriate function calls. If CONTEXT_TYPE is
2841 non-null, it provides a preferred result type [at the moment, only
2842 type void has any effect---causing procedures to be preferred over
2843 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2844 return type is preferred. May change (expand) *EXP. */
2845
2846 static void
2847 resolve (struct expression **expp, int void_context_p)
2848 {
2849 struct type *context_type = NULL;
2850 int pc = 0;
2851
2852 if (void_context_p)
2853 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2854
2855 resolve_subexp (expp, &pc, 1, context_type);
2856 }
2857
2858 /* Resolve the operator of the subexpression beginning at
2859 position *POS of *EXPP. "Resolving" consists of replacing
2860 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2861 with their resolutions, replacing built-in operators with
2862 function calls to user-defined operators, where appropriate, and,
2863 when DEPROCEDURE_P is non-zero, converting function-valued variables
2864 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2865 are as in ada_resolve, above. */
2866
2867 static struct value *
2868 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2869 struct type *context_type)
2870 {
2871 int pc = *pos;
2872 int i;
2873 struct expression *exp; /* Convenience: == *expp. */
2874 enum exp_opcode op = (*expp)->elts[pc].opcode;
2875 struct value **argvec; /* Vector of operand types (alloca'ed). */
2876 int nargs; /* Number of operands. */
2877 int oplen;
2878
2879 argvec = NULL;
2880 nargs = 0;
2881 exp = *expp;
2882
2883 /* Pass one: resolve operands, saving their types and updating *pos,
2884 if needed. */
2885 switch (op)
2886 {
2887 case OP_FUNCALL:
2888 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2889 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2890 *pos += 7;
2891 else
2892 {
2893 *pos += 3;
2894 resolve_subexp (expp, pos, 0, NULL);
2895 }
2896 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2897 break;
2898
2899 case UNOP_ADDR:
2900 *pos += 1;
2901 resolve_subexp (expp, pos, 0, NULL);
2902 break;
2903
2904 case UNOP_QUAL:
2905 *pos += 3;
2906 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
2907 break;
2908
2909 case OP_ATR_MODULUS:
2910 case OP_ATR_SIZE:
2911 case OP_ATR_TAG:
2912 case OP_ATR_FIRST:
2913 case OP_ATR_LAST:
2914 case OP_ATR_LENGTH:
2915 case OP_ATR_POS:
2916 case OP_ATR_VAL:
2917 case OP_ATR_MIN:
2918 case OP_ATR_MAX:
2919 case TERNOP_IN_RANGE:
2920 case BINOP_IN_BOUNDS:
2921 case UNOP_IN_RANGE:
2922 case OP_AGGREGATE:
2923 case OP_OTHERS:
2924 case OP_CHOICES:
2925 case OP_POSITIONAL:
2926 case OP_DISCRETE_RANGE:
2927 case OP_NAME:
2928 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2929 *pos += oplen;
2930 break;
2931
2932 case BINOP_ASSIGN:
2933 {
2934 struct value *arg1;
2935
2936 *pos += 1;
2937 arg1 = resolve_subexp (expp, pos, 0, NULL);
2938 if (arg1 == NULL)
2939 resolve_subexp (expp, pos, 1, NULL);
2940 else
2941 resolve_subexp (expp, pos, 1, value_type (arg1));
2942 break;
2943 }
2944
2945 case UNOP_CAST:
2946 *pos += 3;
2947 nargs = 1;
2948 break;
2949
2950 case BINOP_ADD:
2951 case BINOP_SUB:
2952 case BINOP_MUL:
2953 case BINOP_DIV:
2954 case BINOP_REM:
2955 case BINOP_MOD:
2956 case BINOP_EXP:
2957 case BINOP_CONCAT:
2958 case BINOP_LOGICAL_AND:
2959 case BINOP_LOGICAL_OR:
2960 case BINOP_BITWISE_AND:
2961 case BINOP_BITWISE_IOR:
2962 case BINOP_BITWISE_XOR:
2963
2964 case BINOP_EQUAL:
2965 case BINOP_NOTEQUAL:
2966 case BINOP_LESS:
2967 case BINOP_GTR:
2968 case BINOP_LEQ:
2969 case BINOP_GEQ:
2970
2971 case BINOP_REPEAT:
2972 case BINOP_SUBSCRIPT:
2973 case BINOP_COMMA:
2974 *pos += 1;
2975 nargs = 2;
2976 break;
2977
2978 case UNOP_NEG:
2979 case UNOP_PLUS:
2980 case UNOP_LOGICAL_NOT:
2981 case UNOP_ABS:
2982 case UNOP_IND:
2983 *pos += 1;
2984 nargs = 1;
2985 break;
2986
2987 case OP_LONG:
2988 case OP_DOUBLE:
2989 case OP_VAR_VALUE:
2990 *pos += 4;
2991 break;
2992
2993 case OP_TYPE:
2994 case OP_BOOL:
2995 case OP_LAST:
2996 case OP_INTERNALVAR:
2997 *pos += 3;
2998 break;
2999
3000 case UNOP_MEMVAL:
3001 *pos += 3;
3002 nargs = 1;
3003 break;
3004
3005 case OP_REGISTER:
3006 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3007 break;
3008
3009 case STRUCTOP_STRUCT:
3010 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3011 nargs = 1;
3012 break;
3013
3014 case TERNOP_SLICE:
3015 *pos += 1;
3016 nargs = 3;
3017 break;
3018
3019 case OP_STRING:
3020 break;
3021
3022 default:
3023 error (_("Unexpected operator during name resolution"));
3024 }
3025
3026 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
3027 for (i = 0; i < nargs; i += 1)
3028 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3029 argvec[i] = NULL;
3030 exp = *expp;
3031
3032 /* Pass two: perform any resolution on principal operator. */
3033 switch (op)
3034 {
3035 default:
3036 break;
3037
3038 case OP_VAR_VALUE:
3039 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3040 {
3041 struct ada_symbol_info *candidates;
3042 int n_candidates;
3043
3044 n_candidates =
3045 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3046 (exp->elts[pc + 2].symbol),
3047 exp->elts[pc + 1].block, VAR_DOMAIN,
3048 &candidates);
3049
3050 if (n_candidates > 1)
3051 {
3052 /* Types tend to get re-introduced locally, so if there
3053 are any local symbols that are not types, first filter
3054 out all types. */
3055 int j;
3056 for (j = 0; j < n_candidates; j += 1)
3057 switch (SYMBOL_CLASS (candidates[j].sym))
3058 {
3059 case LOC_REGISTER:
3060 case LOC_ARG:
3061 case LOC_REF_ARG:
3062 case LOC_REGPARM_ADDR:
3063 case LOC_LOCAL:
3064 case LOC_COMPUTED:
3065 goto FoundNonType;
3066 default:
3067 break;
3068 }
3069 FoundNonType:
3070 if (j < n_candidates)
3071 {
3072 j = 0;
3073 while (j < n_candidates)
3074 {
3075 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3076 {
3077 candidates[j] = candidates[n_candidates - 1];
3078 n_candidates -= 1;
3079 }
3080 else
3081 j += 1;
3082 }
3083 }
3084 }
3085
3086 if (n_candidates == 0)
3087 error (_("No definition found for %s"),
3088 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3089 else if (n_candidates == 1)
3090 i = 0;
3091 else if (deprocedure_p
3092 && !is_nonfunction (candidates, n_candidates))
3093 {
3094 i = ada_resolve_function
3095 (candidates, n_candidates, NULL, 0,
3096 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3097 context_type);
3098 if (i < 0)
3099 error (_("Could not find a match for %s"),
3100 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3101 }
3102 else
3103 {
3104 printf_filtered (_("Multiple matches for %s\n"),
3105 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3106 user_select_syms (candidates, n_candidates, 1);
3107 i = 0;
3108 }
3109
3110 exp->elts[pc + 1].block = candidates[i].block;
3111 exp->elts[pc + 2].symbol = candidates[i].sym;
3112 if (innermost_block == NULL
3113 || contained_in (candidates[i].block, innermost_block))
3114 innermost_block = candidates[i].block;
3115 }
3116
3117 if (deprocedure_p
3118 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3119 == TYPE_CODE_FUNC))
3120 {
3121 replace_operator_with_call (expp, pc, 0, 0,
3122 exp->elts[pc + 2].symbol,
3123 exp->elts[pc + 1].block);
3124 exp = *expp;
3125 }
3126 break;
3127
3128 case OP_FUNCALL:
3129 {
3130 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3131 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3132 {
3133 struct ada_symbol_info *candidates;
3134 int n_candidates;
3135
3136 n_candidates =
3137 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3138 (exp->elts[pc + 5].symbol),
3139 exp->elts[pc + 4].block, VAR_DOMAIN,
3140 &candidates);
3141 if (n_candidates == 1)
3142 i = 0;
3143 else
3144 {
3145 i = ada_resolve_function
3146 (candidates, n_candidates,
3147 argvec, nargs,
3148 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3149 context_type);
3150 if (i < 0)
3151 error (_("Could not find a match for %s"),
3152 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3153 }
3154
3155 exp->elts[pc + 4].block = candidates[i].block;
3156 exp->elts[pc + 5].symbol = candidates[i].sym;
3157 if (innermost_block == NULL
3158 || contained_in (candidates[i].block, innermost_block))
3159 innermost_block = candidates[i].block;
3160 }
3161 }
3162 break;
3163 case BINOP_ADD:
3164 case BINOP_SUB:
3165 case BINOP_MUL:
3166 case BINOP_DIV:
3167 case BINOP_REM:
3168 case BINOP_MOD:
3169 case BINOP_CONCAT:
3170 case BINOP_BITWISE_AND:
3171 case BINOP_BITWISE_IOR:
3172 case BINOP_BITWISE_XOR:
3173 case BINOP_EQUAL:
3174 case BINOP_NOTEQUAL:
3175 case BINOP_LESS:
3176 case BINOP_GTR:
3177 case BINOP_LEQ:
3178 case BINOP_GEQ:
3179 case BINOP_EXP:
3180 case UNOP_NEG:
3181 case UNOP_PLUS:
3182 case UNOP_LOGICAL_NOT:
3183 case UNOP_ABS:
3184 if (possible_user_operator_p (op, argvec))
3185 {
3186 struct ada_symbol_info *candidates;
3187 int n_candidates;
3188
3189 n_candidates =
3190 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3191 (struct block *) NULL, VAR_DOMAIN,
3192 &candidates);
3193 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3194 ada_decoded_op_name (op), NULL);
3195 if (i < 0)
3196 break;
3197
3198 replace_operator_with_call (expp, pc, nargs, 1,
3199 candidates[i].sym, candidates[i].block);
3200 exp = *expp;
3201 }
3202 break;
3203
3204 case OP_TYPE:
3205 case OP_REGISTER:
3206 return NULL;
3207 }
3208
3209 *pos = pc;
3210 return evaluate_subexp_type (exp, pos);
3211 }
3212
3213 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3214 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3215 a non-pointer. */
3216 /* The term "match" here is rather loose. The match is heuristic and
3217 liberal. */
3218
3219 static int
3220 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3221 {
3222 ftype = ada_check_typedef (ftype);
3223 atype = ada_check_typedef (atype);
3224
3225 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3226 ftype = TYPE_TARGET_TYPE (ftype);
3227 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3228 atype = TYPE_TARGET_TYPE (atype);
3229
3230 switch (TYPE_CODE (ftype))
3231 {
3232 default:
3233 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3234 case TYPE_CODE_PTR:
3235 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3236 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3237 TYPE_TARGET_TYPE (atype), 0);
3238 else
3239 return (may_deref
3240 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3241 case TYPE_CODE_INT:
3242 case TYPE_CODE_ENUM:
3243 case TYPE_CODE_RANGE:
3244 switch (TYPE_CODE (atype))
3245 {
3246 case TYPE_CODE_INT:
3247 case TYPE_CODE_ENUM:
3248 case TYPE_CODE_RANGE:
3249 return 1;
3250 default:
3251 return 0;
3252 }
3253
3254 case TYPE_CODE_ARRAY:
3255 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3256 || ada_is_array_descriptor_type (atype));
3257
3258 case TYPE_CODE_STRUCT:
3259 if (ada_is_array_descriptor_type (ftype))
3260 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3261 || ada_is_array_descriptor_type (atype));
3262 else
3263 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3264 && !ada_is_array_descriptor_type (atype));
3265
3266 case TYPE_CODE_UNION:
3267 case TYPE_CODE_FLT:
3268 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3269 }
3270 }
3271
3272 /* Return non-zero if the formals of FUNC "sufficiently match" the
3273 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3274 may also be an enumeral, in which case it is treated as a 0-
3275 argument function. */
3276
3277 static int
3278 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3279 {
3280 int i;
3281 struct type *func_type = SYMBOL_TYPE (func);
3282
3283 if (SYMBOL_CLASS (func) == LOC_CONST
3284 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3285 return (n_actuals == 0);
3286 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3287 return 0;
3288
3289 if (TYPE_NFIELDS (func_type) != n_actuals)
3290 return 0;
3291
3292 for (i = 0; i < n_actuals; i += 1)
3293 {
3294 if (actuals[i] == NULL)
3295 return 0;
3296 else
3297 {
3298 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3299 i));
3300 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3301
3302 if (!ada_type_match (ftype, atype, 1))
3303 return 0;
3304 }
3305 }
3306 return 1;
3307 }
3308
3309 /* False iff function type FUNC_TYPE definitely does not produce a value
3310 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3311 FUNC_TYPE is not a valid function type with a non-null return type
3312 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3313
3314 static int
3315 return_match (struct type *func_type, struct type *context_type)
3316 {
3317 struct type *return_type;
3318
3319 if (func_type == NULL)
3320 return 1;
3321
3322 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3323 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3324 else
3325 return_type = base_type (func_type);
3326 if (return_type == NULL)
3327 return 1;
3328
3329 context_type = base_type (context_type);
3330
3331 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3332 return context_type == NULL || return_type == context_type;
3333 else if (context_type == NULL)
3334 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3335 else
3336 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3337 }
3338
3339
3340 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3341 function (if any) that matches the types of the NARGS arguments in
3342 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3343 that returns that type, then eliminate matches that don't. If
3344 CONTEXT_TYPE is void and there is at least one match that does not
3345 return void, eliminate all matches that do.
3346
3347 Asks the user if there is more than one match remaining. Returns -1
3348 if there is no such symbol or none is selected. NAME is used
3349 solely for messages. May re-arrange and modify SYMS in
3350 the process; the index returned is for the modified vector. */
3351
3352 static int
3353 ada_resolve_function (struct ada_symbol_info syms[],
3354 int nsyms, struct value **args, int nargs,
3355 const char *name, struct type *context_type)
3356 {
3357 int fallback;
3358 int k;
3359 int m; /* Number of hits */
3360
3361 m = 0;
3362 /* In the first pass of the loop, we only accept functions matching
3363 context_type. If none are found, we add a second pass of the loop
3364 where every function is accepted. */
3365 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3366 {
3367 for (k = 0; k < nsyms; k += 1)
3368 {
3369 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3370
3371 if (ada_args_match (syms[k].sym, args, nargs)
3372 && (fallback || return_match (type, context_type)))
3373 {
3374 syms[m] = syms[k];
3375 m += 1;
3376 }
3377 }
3378 }
3379
3380 if (m == 0)
3381 return -1;
3382 else if (m > 1)
3383 {
3384 printf_filtered (_("Multiple matches for %s\n"), name);
3385 user_select_syms (syms, m, 1);
3386 return 0;
3387 }
3388 return 0;
3389 }
3390
3391 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3392 in a listing of choices during disambiguation (see sort_choices, below).
3393 The idea is that overloadings of a subprogram name from the
3394 same package should sort in their source order. We settle for ordering
3395 such symbols by their trailing number (__N or $N). */
3396
3397 static int
3398 encoded_ordered_before (char *N0, char *N1)
3399 {
3400 if (N1 == NULL)
3401 return 0;
3402 else if (N0 == NULL)
3403 return 1;
3404 else
3405 {
3406 int k0, k1;
3407
3408 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3409 ;
3410 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3411 ;
3412 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3413 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3414 {
3415 int n0, n1;
3416
3417 n0 = k0;
3418 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3419 n0 -= 1;
3420 n1 = k1;
3421 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3422 n1 -= 1;
3423 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3424 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3425 }
3426 return (strcmp (N0, N1) < 0);
3427 }
3428 }
3429
3430 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3431 encoded names. */
3432
3433 static void
3434 sort_choices (struct ada_symbol_info syms[], int nsyms)
3435 {
3436 int i;
3437
3438 for (i = 1; i < nsyms; i += 1)
3439 {
3440 struct ada_symbol_info sym = syms[i];
3441 int j;
3442
3443 for (j = i - 1; j >= 0; j -= 1)
3444 {
3445 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3446 SYMBOL_LINKAGE_NAME (sym.sym)))
3447 break;
3448 syms[j + 1] = syms[j];
3449 }
3450 syms[j + 1] = sym;
3451 }
3452 }
3453
3454 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3455 by asking the user (if necessary), returning the number selected,
3456 and setting the first elements of SYMS items. Error if no symbols
3457 selected. */
3458
3459 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3460 to be re-integrated one of these days. */
3461
3462 int
3463 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3464 {
3465 int i;
3466 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3467 int n_chosen;
3468 int first_choice = (max_results == 1) ? 1 : 2;
3469 const char *select_mode = multiple_symbols_select_mode ();
3470
3471 if (max_results < 1)
3472 error (_("Request to select 0 symbols!"));
3473 if (nsyms <= 1)
3474 return nsyms;
3475
3476 if (select_mode == multiple_symbols_cancel)
3477 error (_("\
3478 canceled because the command is ambiguous\n\
3479 See set/show multiple-symbol."));
3480
3481 /* If select_mode is "all", then return all possible symbols.
3482 Only do that if more than one symbol can be selected, of course.
3483 Otherwise, display the menu as usual. */
3484 if (select_mode == multiple_symbols_all && max_results > 1)
3485 return nsyms;
3486
3487 printf_unfiltered (_("[0] cancel\n"));
3488 if (max_results > 1)
3489 printf_unfiltered (_("[1] all\n"));
3490
3491 sort_choices (syms, nsyms);
3492
3493 for (i = 0; i < nsyms; i += 1)
3494 {
3495 if (syms[i].sym == NULL)
3496 continue;
3497
3498 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3499 {
3500 struct symtab_and_line sal =
3501 find_function_start_sal (syms[i].sym, 1);
3502
3503 if (sal.symtab == NULL)
3504 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3505 i + first_choice,
3506 SYMBOL_PRINT_NAME (syms[i].sym),
3507 sal.line);
3508 else
3509 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3510 SYMBOL_PRINT_NAME (syms[i].sym),
3511 sal.symtab->filename, sal.line);
3512 continue;
3513 }
3514 else
3515 {
3516 int is_enumeral =
3517 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3518 && SYMBOL_TYPE (syms[i].sym) != NULL
3519 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3520 struct symtab *symtab = syms[i].sym->symtab;
3521
3522 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3523 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3524 i + first_choice,
3525 SYMBOL_PRINT_NAME (syms[i].sym),
3526 symtab->filename, SYMBOL_LINE (syms[i].sym));
3527 else if (is_enumeral
3528 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3529 {
3530 printf_unfiltered (("[%d] "), i + first_choice);
3531 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3532 gdb_stdout, -1, 0);
3533 printf_unfiltered (_("'(%s) (enumeral)\n"),
3534 SYMBOL_PRINT_NAME (syms[i].sym));
3535 }
3536 else if (symtab != NULL)
3537 printf_unfiltered (is_enumeral
3538 ? _("[%d] %s in %s (enumeral)\n")
3539 : _("[%d] %s at %s:?\n"),
3540 i + first_choice,
3541 SYMBOL_PRINT_NAME (syms[i].sym),
3542 symtab->filename);
3543 else
3544 printf_unfiltered (is_enumeral
3545 ? _("[%d] %s (enumeral)\n")
3546 : _("[%d] %s at ?\n"),
3547 i + first_choice,
3548 SYMBOL_PRINT_NAME (syms[i].sym));
3549 }
3550 }
3551
3552 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3553 "overload-choice");
3554
3555 for (i = 0; i < n_chosen; i += 1)
3556 syms[i] = syms[chosen[i]];
3557
3558 return n_chosen;
3559 }
3560
3561 /* Read and validate a set of numeric choices from the user in the
3562 range 0 .. N_CHOICES-1. Place the results in increasing
3563 order in CHOICES[0 .. N-1], and return N.
3564
3565 The user types choices as a sequence of numbers on one line
3566 separated by blanks, encoding them as follows:
3567
3568 + A choice of 0 means to cancel the selection, throwing an error.
3569 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3570 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3571
3572 The user is not allowed to choose more than MAX_RESULTS values.
3573
3574 ANNOTATION_SUFFIX, if present, is used to annotate the input
3575 prompts (for use with the -f switch). */
3576
3577 int
3578 get_selections (int *choices, int n_choices, int max_results,
3579 int is_all_choice, char *annotation_suffix)
3580 {
3581 char *args;
3582 char *prompt;
3583 int n_chosen;
3584 int first_choice = is_all_choice ? 2 : 1;
3585
3586 prompt = getenv ("PS2");
3587 if (prompt == NULL)
3588 prompt = "> ";
3589
3590 args = command_line_input (prompt, 0, annotation_suffix);
3591
3592 if (args == NULL)
3593 error_no_arg (_("one or more choice numbers"));
3594
3595 n_chosen = 0;
3596
3597 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3598 order, as given in args. Choices are validated. */
3599 while (1)
3600 {
3601 char *args2;
3602 int choice, j;
3603
3604 while (isspace (*args))
3605 args += 1;
3606 if (*args == '\0' && n_chosen == 0)
3607 error_no_arg (_("one or more choice numbers"));
3608 else if (*args == '\0')
3609 break;
3610
3611 choice = strtol (args, &args2, 10);
3612 if (args == args2 || choice < 0
3613 || choice > n_choices + first_choice - 1)
3614 error (_("Argument must be choice number"));
3615 args = args2;
3616
3617 if (choice == 0)
3618 error (_("cancelled"));
3619
3620 if (choice < first_choice)
3621 {
3622 n_chosen = n_choices;
3623 for (j = 0; j < n_choices; j += 1)
3624 choices[j] = j;
3625 break;
3626 }
3627 choice -= first_choice;
3628
3629 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3630 {
3631 }
3632
3633 if (j < 0 || choice != choices[j])
3634 {
3635 int k;
3636
3637 for (k = n_chosen - 1; k > j; k -= 1)
3638 choices[k + 1] = choices[k];
3639 choices[j + 1] = choice;
3640 n_chosen += 1;
3641 }
3642 }
3643
3644 if (n_chosen > max_results)
3645 error (_("Select no more than %d of the above"), max_results);
3646
3647 return n_chosen;
3648 }
3649
3650 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3651 on the function identified by SYM and BLOCK, and taking NARGS
3652 arguments. Update *EXPP as needed to hold more space. */
3653
3654 static void
3655 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3656 int oplen, struct symbol *sym,
3657 struct block *block)
3658 {
3659 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3660 symbol, -oplen for operator being replaced). */
3661 struct expression *newexp = (struct expression *)
3662 xzalloc (sizeof (struct expression)
3663 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3664 struct expression *exp = *expp;
3665
3666 newexp->nelts = exp->nelts + 7 - oplen;
3667 newexp->language_defn = exp->language_defn;
3668 newexp->gdbarch = exp->gdbarch;
3669 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3670 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3671 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3672
3673 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3674 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3675
3676 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3677 newexp->elts[pc + 4].block = block;
3678 newexp->elts[pc + 5].symbol = sym;
3679
3680 *expp = newexp;
3681 xfree (exp);
3682 }
3683
3684 /* Type-class predicates */
3685
3686 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3687 or FLOAT). */
3688
3689 static int
3690 numeric_type_p (struct type *type)
3691 {
3692 if (type == NULL)
3693 return 0;
3694 else
3695 {
3696 switch (TYPE_CODE (type))
3697 {
3698 case TYPE_CODE_INT:
3699 case TYPE_CODE_FLT:
3700 return 1;
3701 case TYPE_CODE_RANGE:
3702 return (type == TYPE_TARGET_TYPE (type)
3703 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3704 default:
3705 return 0;
3706 }
3707 }
3708 }
3709
3710 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3711
3712 static int
3713 integer_type_p (struct type *type)
3714 {
3715 if (type == NULL)
3716 return 0;
3717 else
3718 {
3719 switch (TYPE_CODE (type))
3720 {
3721 case TYPE_CODE_INT:
3722 return 1;
3723 case TYPE_CODE_RANGE:
3724 return (type == TYPE_TARGET_TYPE (type)
3725 || integer_type_p (TYPE_TARGET_TYPE (type)));
3726 default:
3727 return 0;
3728 }
3729 }
3730 }
3731
3732 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3733
3734 static int
3735 scalar_type_p (struct type *type)
3736 {
3737 if (type == NULL)
3738 return 0;
3739 else
3740 {
3741 switch (TYPE_CODE (type))
3742 {
3743 case TYPE_CODE_INT:
3744 case TYPE_CODE_RANGE:
3745 case TYPE_CODE_ENUM:
3746 case TYPE_CODE_FLT:
3747 return 1;
3748 default:
3749 return 0;
3750 }
3751 }
3752 }
3753
3754 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3755
3756 static int
3757 discrete_type_p (struct type *type)
3758 {
3759 if (type == NULL)
3760 return 0;
3761 else
3762 {
3763 switch (TYPE_CODE (type))
3764 {
3765 case TYPE_CODE_INT:
3766 case TYPE_CODE_RANGE:
3767 case TYPE_CODE_ENUM:
3768 case TYPE_CODE_BOOL:
3769 return 1;
3770 default:
3771 return 0;
3772 }
3773 }
3774 }
3775
3776 /* Returns non-zero if OP with operands in the vector ARGS could be
3777 a user-defined function. Errs on the side of pre-defined operators
3778 (i.e., result 0). */
3779
3780 static int
3781 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3782 {
3783 struct type *type0 =
3784 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3785 struct type *type1 =
3786 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3787
3788 if (type0 == NULL)
3789 return 0;
3790
3791 switch (op)
3792 {
3793 default:
3794 return 0;
3795
3796 case BINOP_ADD:
3797 case BINOP_SUB:
3798 case BINOP_MUL:
3799 case BINOP_DIV:
3800 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3801
3802 case BINOP_REM:
3803 case BINOP_MOD:
3804 case BINOP_BITWISE_AND:
3805 case BINOP_BITWISE_IOR:
3806 case BINOP_BITWISE_XOR:
3807 return (!(integer_type_p (type0) && integer_type_p (type1)));
3808
3809 case BINOP_EQUAL:
3810 case BINOP_NOTEQUAL:
3811 case BINOP_LESS:
3812 case BINOP_GTR:
3813 case BINOP_LEQ:
3814 case BINOP_GEQ:
3815 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3816
3817 case BINOP_CONCAT:
3818 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3819
3820 case BINOP_EXP:
3821 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3822
3823 case UNOP_NEG:
3824 case UNOP_PLUS:
3825 case UNOP_LOGICAL_NOT:
3826 case UNOP_ABS:
3827 return (!numeric_type_p (type0));
3828
3829 }
3830 }
3831 \f
3832 /* Renaming */
3833
3834 /* NOTES:
3835
3836 1. In the following, we assume that a renaming type's name may
3837 have an ___XD suffix. It would be nice if this went away at some
3838 point.
3839 2. We handle both the (old) purely type-based representation of
3840 renamings and the (new) variable-based encoding. At some point,
3841 it is devoutly to be hoped that the former goes away
3842 (FIXME: hilfinger-2007-07-09).
3843 3. Subprogram renamings are not implemented, although the XRS
3844 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3845
3846 /* If SYM encodes a renaming,
3847
3848 <renaming> renames <renamed entity>,
3849
3850 sets *LEN to the length of the renamed entity's name,
3851 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3852 the string describing the subcomponent selected from the renamed
3853 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3854 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3855 are undefined). Otherwise, returns a value indicating the category
3856 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3857 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3858 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3859 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3860 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3861 may be NULL, in which case they are not assigned.
3862
3863 [Currently, however, GCC does not generate subprogram renamings.] */
3864
3865 enum ada_renaming_category
3866 ada_parse_renaming (struct symbol *sym,
3867 const char **renamed_entity, int *len,
3868 const char **renaming_expr)
3869 {
3870 enum ada_renaming_category kind;
3871 const char *info;
3872 const char *suffix;
3873
3874 if (sym == NULL)
3875 return ADA_NOT_RENAMING;
3876 switch (SYMBOL_CLASS (sym))
3877 {
3878 default:
3879 return ADA_NOT_RENAMING;
3880 case LOC_TYPEDEF:
3881 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3882 renamed_entity, len, renaming_expr);
3883 case LOC_LOCAL:
3884 case LOC_STATIC:
3885 case LOC_COMPUTED:
3886 case LOC_OPTIMIZED_OUT:
3887 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3888 if (info == NULL)
3889 return ADA_NOT_RENAMING;
3890 switch (info[5])
3891 {
3892 case '_':
3893 kind = ADA_OBJECT_RENAMING;
3894 info += 6;
3895 break;
3896 case 'E':
3897 kind = ADA_EXCEPTION_RENAMING;
3898 info += 7;
3899 break;
3900 case 'P':
3901 kind = ADA_PACKAGE_RENAMING;
3902 info += 7;
3903 break;
3904 case 'S':
3905 kind = ADA_SUBPROGRAM_RENAMING;
3906 info += 7;
3907 break;
3908 default:
3909 return ADA_NOT_RENAMING;
3910 }
3911 }
3912
3913 if (renamed_entity != NULL)
3914 *renamed_entity = info;
3915 suffix = strstr (info, "___XE");
3916 if (suffix == NULL || suffix == info)
3917 return ADA_NOT_RENAMING;
3918 if (len != NULL)
3919 *len = strlen (info) - strlen (suffix);
3920 suffix += 5;
3921 if (renaming_expr != NULL)
3922 *renaming_expr = suffix;
3923 return kind;
3924 }
3925
3926 /* Assuming TYPE encodes a renaming according to the old encoding in
3927 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3928 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3929 ADA_NOT_RENAMING otherwise. */
3930 static enum ada_renaming_category
3931 parse_old_style_renaming (struct type *type,
3932 const char **renamed_entity, int *len,
3933 const char **renaming_expr)
3934 {
3935 enum ada_renaming_category kind;
3936 const char *name;
3937 const char *info;
3938 const char *suffix;
3939
3940 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3941 || TYPE_NFIELDS (type) != 1)
3942 return ADA_NOT_RENAMING;
3943
3944 name = type_name_no_tag (type);
3945 if (name == NULL)
3946 return ADA_NOT_RENAMING;
3947
3948 name = strstr (name, "___XR");
3949 if (name == NULL)
3950 return ADA_NOT_RENAMING;
3951 switch (name[5])
3952 {
3953 case '\0':
3954 case '_':
3955 kind = ADA_OBJECT_RENAMING;
3956 break;
3957 case 'E':
3958 kind = ADA_EXCEPTION_RENAMING;
3959 break;
3960 case 'P':
3961 kind = ADA_PACKAGE_RENAMING;
3962 break;
3963 case 'S':
3964 kind = ADA_SUBPROGRAM_RENAMING;
3965 break;
3966 default:
3967 return ADA_NOT_RENAMING;
3968 }
3969
3970 info = TYPE_FIELD_NAME (type, 0);
3971 if (info == NULL)
3972 return ADA_NOT_RENAMING;
3973 if (renamed_entity != NULL)
3974 *renamed_entity = info;
3975 suffix = strstr (info, "___XE");
3976 if (renaming_expr != NULL)
3977 *renaming_expr = suffix + 5;
3978 if (suffix == NULL || suffix == info)
3979 return ADA_NOT_RENAMING;
3980 if (len != NULL)
3981 *len = suffix - info;
3982 return kind;
3983 }
3984
3985 \f
3986
3987 /* Evaluation: Function Calls */
3988
3989 /* Return an lvalue containing the value VAL. This is the identity on
3990 lvalues, and otherwise has the side-effect of allocating memory
3991 in the inferior where a copy of the value contents is copied. */
3992
3993 static struct value *
3994 ensure_lval (struct value *val)
3995 {
3996 if (VALUE_LVAL (val) == not_lval
3997 || VALUE_LVAL (val) == lval_internalvar)
3998 {
3999 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4000 const CORE_ADDR addr =
4001 value_as_long (value_allocate_space_in_inferior (len));
4002
4003 set_value_address (val, addr);
4004 VALUE_LVAL (val) = lval_memory;
4005 write_memory (addr, value_contents (val), len);
4006 }
4007
4008 return val;
4009 }
4010
4011 /* Return the value ACTUAL, converted to be an appropriate value for a
4012 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4013 allocating any necessary descriptors (fat pointers), or copies of
4014 values not residing in memory, updating it as needed. */
4015
4016 struct value *
4017 ada_convert_actual (struct value *actual, struct type *formal_type0)
4018 {
4019 struct type *actual_type = ada_check_typedef (value_type (actual));
4020 struct type *formal_type = ada_check_typedef (formal_type0);
4021 struct type *formal_target =
4022 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4023 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4024 struct type *actual_target =
4025 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4026 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4027
4028 if (ada_is_array_descriptor_type (formal_target)
4029 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4030 return make_array_descriptor (formal_type, actual);
4031 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4032 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4033 {
4034 struct value *result;
4035
4036 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4037 && ada_is_array_descriptor_type (actual_target))
4038 result = desc_data (actual);
4039 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4040 {
4041 if (VALUE_LVAL (actual) != lval_memory)
4042 {
4043 struct value *val;
4044
4045 actual_type = ada_check_typedef (value_type (actual));
4046 val = allocate_value (actual_type);
4047 memcpy ((char *) value_contents_raw (val),
4048 (char *) value_contents (actual),
4049 TYPE_LENGTH (actual_type));
4050 actual = ensure_lval (val);
4051 }
4052 result = value_addr (actual);
4053 }
4054 else
4055 return actual;
4056 return value_cast_pointers (formal_type, result);
4057 }
4058 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4059 return ada_value_ind (actual);
4060
4061 return actual;
4062 }
4063
4064 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4065 type TYPE. This is usually an inefficient no-op except on some targets
4066 (such as AVR) where the representation of a pointer and an address
4067 differs. */
4068
4069 static CORE_ADDR
4070 value_pointer (struct value *value, struct type *type)
4071 {
4072 struct gdbarch *gdbarch = get_type_arch (type);
4073 unsigned len = TYPE_LENGTH (type);
4074 gdb_byte *buf = alloca (len);
4075 CORE_ADDR addr;
4076
4077 addr = value_address (value);
4078 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4079 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4080 return addr;
4081 }
4082
4083
4084 /* Push a descriptor of type TYPE for array value ARR on the stack at
4085 *SP, updating *SP to reflect the new descriptor. Return either
4086 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4087 to-descriptor type rather than a descriptor type), a struct value *
4088 representing a pointer to this descriptor. */
4089
4090 static struct value *
4091 make_array_descriptor (struct type *type, struct value *arr)
4092 {
4093 struct type *bounds_type = desc_bounds_type (type);
4094 struct type *desc_type = desc_base_type (type);
4095 struct value *descriptor = allocate_value (desc_type);
4096 struct value *bounds = allocate_value (bounds_type);
4097 int i;
4098
4099 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4100 i > 0; i -= 1)
4101 {
4102 modify_field (value_type (bounds), value_contents_writeable (bounds),
4103 ada_array_bound (arr, i, 0),
4104 desc_bound_bitpos (bounds_type, i, 0),
4105 desc_bound_bitsize (bounds_type, i, 0));
4106 modify_field (value_type (bounds), value_contents_writeable (bounds),
4107 ada_array_bound (arr, i, 1),
4108 desc_bound_bitpos (bounds_type, i, 1),
4109 desc_bound_bitsize (bounds_type, i, 1));
4110 }
4111
4112 bounds = ensure_lval (bounds);
4113
4114 modify_field (value_type (descriptor),
4115 value_contents_writeable (descriptor),
4116 value_pointer (ensure_lval (arr),
4117 TYPE_FIELD_TYPE (desc_type, 0)),
4118 fat_pntr_data_bitpos (desc_type),
4119 fat_pntr_data_bitsize (desc_type));
4120
4121 modify_field (value_type (descriptor),
4122 value_contents_writeable (descriptor),
4123 value_pointer (bounds,
4124 TYPE_FIELD_TYPE (desc_type, 1)),
4125 fat_pntr_bounds_bitpos (desc_type),
4126 fat_pntr_bounds_bitsize (desc_type));
4127
4128 descriptor = ensure_lval (descriptor);
4129
4130 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4131 return value_addr (descriptor);
4132 else
4133 return descriptor;
4134 }
4135 \f
4136 /* Dummy definitions for an experimental caching module that is not
4137 * used in the public sources. */
4138
4139 static int
4140 lookup_cached_symbol (const char *name, domain_enum namespace,
4141 struct symbol **sym, struct block **block)
4142 {
4143 return 0;
4144 }
4145
4146 static void
4147 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
4148 struct block *block)
4149 {
4150 }
4151 \f
4152 /* Symbol Lookup */
4153
4154 /* Return the result of a standard (literal, C-like) lookup of NAME in
4155 given DOMAIN, visible from lexical block BLOCK. */
4156
4157 static struct symbol *
4158 standard_lookup (const char *name, const struct block *block,
4159 domain_enum domain)
4160 {
4161 struct symbol *sym;
4162
4163 if (lookup_cached_symbol (name, domain, &sym, NULL))
4164 return sym;
4165 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4166 cache_symbol (name, domain, sym, block_found);
4167 return sym;
4168 }
4169
4170
4171 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4172 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4173 since they contend in overloading in the same way. */
4174 static int
4175 is_nonfunction (struct ada_symbol_info syms[], int n)
4176 {
4177 int i;
4178
4179 for (i = 0; i < n; i += 1)
4180 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4181 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4182 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4183 return 1;
4184
4185 return 0;
4186 }
4187
4188 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4189 struct types. Otherwise, they may not. */
4190
4191 static int
4192 equiv_types (struct type *type0, struct type *type1)
4193 {
4194 if (type0 == type1)
4195 return 1;
4196 if (type0 == NULL || type1 == NULL
4197 || TYPE_CODE (type0) != TYPE_CODE (type1))
4198 return 0;
4199 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4200 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4201 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4202 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4203 return 1;
4204
4205 return 0;
4206 }
4207
4208 /* True iff SYM0 represents the same entity as SYM1, or one that is
4209 no more defined than that of SYM1. */
4210
4211 static int
4212 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4213 {
4214 if (sym0 == sym1)
4215 return 1;
4216 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4217 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4218 return 0;
4219
4220 switch (SYMBOL_CLASS (sym0))
4221 {
4222 case LOC_UNDEF:
4223 return 1;
4224 case LOC_TYPEDEF:
4225 {
4226 struct type *type0 = SYMBOL_TYPE (sym0);
4227 struct type *type1 = SYMBOL_TYPE (sym1);
4228 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4229 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4230 int len0 = strlen (name0);
4231
4232 return
4233 TYPE_CODE (type0) == TYPE_CODE (type1)
4234 && (equiv_types (type0, type1)
4235 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4236 && strncmp (name1 + len0, "___XV", 5) == 0));
4237 }
4238 case LOC_CONST:
4239 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4240 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4241 default:
4242 return 0;
4243 }
4244 }
4245
4246 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4247 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4248
4249 static void
4250 add_defn_to_vec (struct obstack *obstackp,
4251 struct symbol *sym,
4252 struct block *block)
4253 {
4254 int i;
4255 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4256
4257 /* Do not try to complete stub types, as the debugger is probably
4258 already scanning all symbols matching a certain name at the
4259 time when this function is called. Trying to replace the stub
4260 type by its associated full type will cause us to restart a scan
4261 which may lead to an infinite recursion. Instead, the client
4262 collecting the matching symbols will end up collecting several
4263 matches, with at least one of them complete. It can then filter
4264 out the stub ones if needed. */
4265
4266 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4267 {
4268 if (lesseq_defined_than (sym, prevDefns[i].sym))
4269 return;
4270 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4271 {
4272 prevDefns[i].sym = sym;
4273 prevDefns[i].block = block;
4274 return;
4275 }
4276 }
4277
4278 {
4279 struct ada_symbol_info info;
4280
4281 info.sym = sym;
4282 info.block = block;
4283 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4284 }
4285 }
4286
4287 /* Number of ada_symbol_info structures currently collected in
4288 current vector in *OBSTACKP. */
4289
4290 static int
4291 num_defns_collected (struct obstack *obstackp)
4292 {
4293 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4294 }
4295
4296 /* Vector of ada_symbol_info structures currently collected in current
4297 vector in *OBSTACKP. If FINISH, close off the vector and return
4298 its final address. */
4299
4300 static struct ada_symbol_info *
4301 defns_collected (struct obstack *obstackp, int finish)
4302 {
4303 if (finish)
4304 return obstack_finish (obstackp);
4305 else
4306 return (struct ada_symbol_info *) obstack_base (obstackp);
4307 }
4308
4309 /* Return a minimal symbol matching NAME according to Ada decoding
4310 rules. Returns NULL if there is no such minimal symbol. Names
4311 prefixed with "standard__" are handled specially: "standard__" is
4312 first stripped off, and only static and global symbols are searched. */
4313
4314 struct minimal_symbol *
4315 ada_lookup_simple_minsym (const char *name)
4316 {
4317 struct objfile *objfile;
4318 struct minimal_symbol *msymbol;
4319 int wild_match;
4320
4321 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4322 {
4323 name += sizeof ("standard__") - 1;
4324 wild_match = 0;
4325 }
4326 else
4327 wild_match = (strstr (name, "__") == NULL);
4328
4329 ALL_MSYMBOLS (objfile, msymbol)
4330 {
4331 if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4332 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4333 return msymbol;
4334 }
4335
4336 return NULL;
4337 }
4338
4339 /* For all subprograms that statically enclose the subprogram of the
4340 selected frame, add symbols matching identifier NAME in DOMAIN
4341 and their blocks to the list of data in OBSTACKP, as for
4342 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4343 wildcard prefix. */
4344
4345 static void
4346 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4347 const char *name, domain_enum namespace,
4348 int wild_match)
4349 {
4350 }
4351
4352 /* True if TYPE is definitely an artificial type supplied to a symbol
4353 for which no debugging information was given in the symbol file. */
4354
4355 static int
4356 is_nondebugging_type (struct type *type)
4357 {
4358 char *name = ada_type_name (type);
4359
4360 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4361 }
4362
4363 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4364 duplicate other symbols in the list (The only case I know of where
4365 this happens is when object files containing stabs-in-ecoff are
4366 linked with files containing ordinary ecoff debugging symbols (or no
4367 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4368 Returns the number of items in the modified list. */
4369
4370 static int
4371 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4372 {
4373 int i, j;
4374
4375 i = 0;
4376 while (i < nsyms)
4377 {
4378 int remove = 0;
4379
4380 /* If two symbols have the same name and one of them is a stub type,
4381 the get rid of the stub. */
4382
4383 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4384 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4385 {
4386 for (j = 0; j < nsyms; j++)
4387 {
4388 if (j != i
4389 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4390 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4391 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4392 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4393 remove = 1;
4394 }
4395 }
4396
4397 /* Two symbols with the same name, same class and same address
4398 should be identical. */
4399
4400 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4401 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4402 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4403 {
4404 for (j = 0; j < nsyms; j += 1)
4405 {
4406 if (i != j
4407 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4408 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4409 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4410 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4411 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4412 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4413 remove = 1;
4414 }
4415 }
4416
4417 if (remove)
4418 {
4419 for (j = i + 1; j < nsyms; j += 1)
4420 syms[j - 1] = syms[j];
4421 nsyms -= 1;
4422 }
4423
4424 i += 1;
4425 }
4426 return nsyms;
4427 }
4428
4429 /* Given a type that corresponds to a renaming entity, use the type name
4430 to extract the scope (package name or function name, fully qualified,
4431 and following the GNAT encoding convention) where this renaming has been
4432 defined. The string returned needs to be deallocated after use. */
4433
4434 static char *
4435 xget_renaming_scope (struct type *renaming_type)
4436 {
4437 /* The renaming types adhere to the following convention:
4438 <scope>__<rename>___<XR extension>.
4439 So, to extract the scope, we search for the "___XR" extension,
4440 and then backtrack until we find the first "__". */
4441
4442 const char *name = type_name_no_tag (renaming_type);
4443 char *suffix = strstr (name, "___XR");
4444 char *last;
4445 int scope_len;
4446 char *scope;
4447
4448 /* Now, backtrack a bit until we find the first "__". Start looking
4449 at suffix - 3, as the <rename> part is at least one character long. */
4450
4451 for (last = suffix - 3; last > name; last--)
4452 if (last[0] == '_' && last[1] == '_')
4453 break;
4454
4455 /* Make a copy of scope and return it. */
4456
4457 scope_len = last - name;
4458 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4459
4460 strncpy (scope, name, scope_len);
4461 scope[scope_len] = '\0';
4462
4463 return scope;
4464 }
4465
4466 /* Return nonzero if NAME corresponds to a package name. */
4467
4468 static int
4469 is_package_name (const char *name)
4470 {
4471 /* Here, We take advantage of the fact that no symbols are generated
4472 for packages, while symbols are generated for each function.
4473 So the condition for NAME represent a package becomes equivalent
4474 to NAME not existing in our list of symbols. There is only one
4475 small complication with library-level functions (see below). */
4476
4477 char *fun_name;
4478
4479 /* If it is a function that has not been defined at library level,
4480 then we should be able to look it up in the symbols. */
4481 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4482 return 0;
4483
4484 /* Library-level function names start with "_ada_". See if function
4485 "_ada_" followed by NAME can be found. */
4486
4487 /* Do a quick check that NAME does not contain "__", since library-level
4488 functions names cannot contain "__" in them. */
4489 if (strstr (name, "__") != NULL)
4490 return 0;
4491
4492 fun_name = xstrprintf ("_ada_%s", name);
4493
4494 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4495 }
4496
4497 /* Return nonzero if SYM corresponds to a renaming entity that is
4498 not visible from FUNCTION_NAME. */
4499
4500 static int
4501 old_renaming_is_invisible (const struct symbol *sym, char *function_name)
4502 {
4503 char *scope;
4504
4505 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4506 return 0;
4507
4508 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4509
4510 make_cleanup (xfree, scope);
4511
4512 /* If the rename has been defined in a package, then it is visible. */
4513 if (is_package_name (scope))
4514 return 0;
4515
4516 /* Check that the rename is in the current function scope by checking
4517 that its name starts with SCOPE. */
4518
4519 /* If the function name starts with "_ada_", it means that it is
4520 a library-level function. Strip this prefix before doing the
4521 comparison, as the encoding for the renaming does not contain
4522 this prefix. */
4523 if (strncmp (function_name, "_ada_", 5) == 0)
4524 function_name += 5;
4525
4526 return (strncmp (function_name, scope, strlen (scope)) != 0);
4527 }
4528
4529 /* Remove entries from SYMS that corresponds to a renaming entity that
4530 is not visible from the function associated with CURRENT_BLOCK or
4531 that is superfluous due to the presence of more specific renaming
4532 information. Places surviving symbols in the initial entries of
4533 SYMS and returns the number of surviving symbols.
4534
4535 Rationale:
4536 First, in cases where an object renaming is implemented as a
4537 reference variable, GNAT may produce both the actual reference
4538 variable and the renaming encoding. In this case, we discard the
4539 latter.
4540
4541 Second, GNAT emits a type following a specified encoding for each renaming
4542 entity. Unfortunately, STABS currently does not support the definition
4543 of types that are local to a given lexical block, so all renamings types
4544 are emitted at library level. As a consequence, if an application
4545 contains two renaming entities using the same name, and a user tries to
4546 print the value of one of these entities, the result of the ada symbol
4547 lookup will also contain the wrong renaming type.
4548
4549 This function partially covers for this limitation by attempting to
4550 remove from the SYMS list renaming symbols that should be visible
4551 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4552 method with the current information available. The implementation
4553 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4554
4555 - When the user tries to print a rename in a function while there
4556 is another rename entity defined in a package: Normally, the
4557 rename in the function has precedence over the rename in the
4558 package, so the latter should be removed from the list. This is
4559 currently not the case.
4560
4561 - This function will incorrectly remove valid renames if
4562 the CURRENT_BLOCK corresponds to a function which symbol name
4563 has been changed by an "Export" pragma. As a consequence,
4564 the user will be unable to print such rename entities. */
4565
4566 static int
4567 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4568 int nsyms, const struct block *current_block)
4569 {
4570 struct symbol *current_function;
4571 char *current_function_name;
4572 int i;
4573 int is_new_style_renaming;
4574
4575 /* If there is both a renaming foo___XR... encoded as a variable and
4576 a simple variable foo in the same block, discard the latter.
4577 First, zero out such symbols, then compress. */
4578 is_new_style_renaming = 0;
4579 for (i = 0; i < nsyms; i += 1)
4580 {
4581 struct symbol *sym = syms[i].sym;
4582 struct block *block = syms[i].block;
4583 const char *name;
4584 const char *suffix;
4585
4586 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4587 continue;
4588 name = SYMBOL_LINKAGE_NAME (sym);
4589 suffix = strstr (name, "___XR");
4590
4591 if (suffix != NULL)
4592 {
4593 int name_len = suffix - name;
4594 int j;
4595
4596 is_new_style_renaming = 1;
4597 for (j = 0; j < nsyms; j += 1)
4598 if (i != j && syms[j].sym != NULL
4599 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4600 name_len) == 0
4601 && block == syms[j].block)
4602 syms[j].sym = NULL;
4603 }
4604 }
4605 if (is_new_style_renaming)
4606 {
4607 int j, k;
4608
4609 for (j = k = 0; j < nsyms; j += 1)
4610 if (syms[j].sym != NULL)
4611 {
4612 syms[k] = syms[j];
4613 k += 1;
4614 }
4615 return k;
4616 }
4617
4618 /* Extract the function name associated to CURRENT_BLOCK.
4619 Abort if unable to do so. */
4620
4621 if (current_block == NULL)
4622 return nsyms;
4623
4624 current_function = block_linkage_function (current_block);
4625 if (current_function == NULL)
4626 return nsyms;
4627
4628 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4629 if (current_function_name == NULL)
4630 return nsyms;
4631
4632 /* Check each of the symbols, and remove it from the list if it is
4633 a type corresponding to a renaming that is out of the scope of
4634 the current block. */
4635
4636 i = 0;
4637 while (i < nsyms)
4638 {
4639 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4640 == ADA_OBJECT_RENAMING
4641 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4642 {
4643 int j;
4644
4645 for (j = i + 1; j < nsyms; j += 1)
4646 syms[j - 1] = syms[j];
4647 nsyms -= 1;
4648 }
4649 else
4650 i += 1;
4651 }
4652
4653 return nsyms;
4654 }
4655
4656 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4657 whose name and domain match NAME and DOMAIN respectively.
4658 If no match was found, then extend the search to "enclosing"
4659 routines (in other words, if we're inside a nested function,
4660 search the symbols defined inside the enclosing functions).
4661
4662 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4663
4664 static void
4665 ada_add_local_symbols (struct obstack *obstackp, const char *name,
4666 struct block *block, domain_enum domain,
4667 int wild_match)
4668 {
4669 int block_depth = 0;
4670
4671 while (block != NULL)
4672 {
4673 block_depth += 1;
4674 ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4675
4676 /* If we found a non-function match, assume that's the one. */
4677 if (is_nonfunction (defns_collected (obstackp, 0),
4678 num_defns_collected (obstackp)))
4679 return;
4680
4681 block = BLOCK_SUPERBLOCK (block);
4682 }
4683
4684 /* If no luck so far, try to find NAME as a local symbol in some lexically
4685 enclosing subprogram. */
4686 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4687 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4688 }
4689
4690 /* An object of this type is used as the user_data argument when
4691 calling the map_matching_symbols method. */
4692
4693 struct match_data
4694 {
4695 struct objfile *objfile;
4696 struct obstack *obstackp;
4697 struct symbol *arg_sym;
4698 int found_sym;
4699 };
4700
4701 /* A callback for add_matching_symbols that adds SYM, found in BLOCK,
4702 to a list of symbols. DATA0 is a pointer to a struct match_data *
4703 containing the obstack that collects the symbol list, the file that SYM
4704 must come from, a flag indicating whether a non-argument symbol has
4705 been found in the current block, and the last argument symbol
4706 passed in SYM within the current block (if any). When SYM is null,
4707 marking the end of a block, the argument symbol is added if no
4708 other has been found. */
4709
4710 static int
4711 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
4712 {
4713 struct match_data *data = (struct match_data *) data0;
4714
4715 if (sym == NULL)
4716 {
4717 if (!data->found_sym && data->arg_sym != NULL)
4718 add_defn_to_vec (data->obstackp,
4719 fixup_symbol_section (data->arg_sym, data->objfile),
4720 block);
4721 data->found_sym = 0;
4722 data->arg_sym = NULL;
4723 }
4724 else
4725 {
4726 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4727 return 0;
4728 else if (SYMBOL_IS_ARGUMENT (sym))
4729 data->arg_sym = sym;
4730 else
4731 {
4732 data->found_sym = 1;
4733 add_defn_to_vec (data->obstackp,
4734 fixup_symbol_section (sym, data->objfile),
4735 block);
4736 }
4737 }
4738 return 0;
4739 }
4740
4741 /* Compare STRING1 to STRING2, with results as for strcmp.
4742 Compatible with strcmp_iw in that strcmp_iw (STRING1, STRING2) <= 0
4743 implies compare_names (STRING1, STRING2) (they may differ as to
4744 what symbols compare equal). */
4745
4746 static int
4747 compare_names (const char *string1, const char *string2)
4748 {
4749 while (*string1 != '\0' && *string2 != '\0')
4750 {
4751 if (isspace (*string1) || isspace (*string2))
4752 return strcmp_iw_ordered (string1, string2);
4753 if (*string1 != *string2)
4754 break;
4755 string1 += 1;
4756 string2 += 1;
4757 }
4758 switch (*string1)
4759 {
4760 case '(':
4761 return strcmp_iw_ordered (string1, string2);
4762 case '_':
4763 if (*string2 == '\0')
4764 {
4765 if (is_name_suffix (string1))
4766 return 0;
4767 else
4768 return -1;
4769 }
4770 /* FALLTHROUGH */
4771 default:
4772 if (*string2 == '(')
4773 return strcmp_iw_ordered (string1, string2);
4774 else
4775 return *string1 - *string2;
4776 }
4777 }
4778
4779 /* Add to OBSTACKP all non-local symbols whose name and domain match
4780 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
4781 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
4782
4783 static void
4784 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
4785 domain_enum domain, int global,
4786 int is_wild_match)
4787 {
4788 struct objfile *objfile;
4789 struct match_data data;
4790
4791 data.obstackp = obstackp;
4792 data.arg_sym = NULL;
4793
4794 ALL_OBJFILES (objfile)
4795 {
4796 data.objfile = objfile;
4797
4798 if (is_wild_match)
4799 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
4800 aux_add_nonlocal_symbols, &data,
4801 wild_match, NULL);
4802 else
4803 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
4804 aux_add_nonlocal_symbols, &data,
4805 full_match, compare_names);
4806 }
4807
4808 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
4809 {
4810 ALL_OBJFILES (objfile)
4811 {
4812 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
4813 strcpy (name1, "_ada_");
4814 strcpy (name1 + sizeof ("_ada_") - 1, name);
4815 data.objfile = objfile;
4816 objfile->sf->qf->map_matching_symbols (name1, domain,
4817 objfile, global,
4818 aux_add_nonlocal_symbols,
4819 &data,
4820 full_match, compare_names);
4821 }
4822 }
4823 }
4824
4825 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4826 scope and in global scopes, returning the number of matches. Sets
4827 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4828 indicating the symbols found and the blocks and symbol tables (if
4829 any) in which they were found. This vector are transient---good only to
4830 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4831 symbol match within the nest of blocks whose innermost member is BLOCK0,
4832 is the one match returned (no other matches in that or
4833 enclosing blocks is returned). If there are any matches in or
4834 surrounding BLOCK0, then these alone are returned. Otherwise, the
4835 search extends to global and file-scope (static) symbol tables.
4836 Names prefixed with "standard__" are handled specially: "standard__"
4837 is first stripped off, and only static and global symbols are searched. */
4838
4839 int
4840 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4841 domain_enum namespace,
4842 struct ada_symbol_info **results)
4843 {
4844 struct symbol *sym;
4845 struct block *block;
4846 const char *name;
4847 int wild_match;
4848 int cacheIfUnique;
4849 int ndefns;
4850
4851 obstack_free (&symbol_list_obstack, NULL);
4852 obstack_init (&symbol_list_obstack);
4853
4854 cacheIfUnique = 0;
4855
4856 /* Search specified block and its superiors. */
4857
4858 wild_match = (strstr (name0, "__") == NULL);
4859 name = name0;
4860 block = (struct block *) block0; /* FIXME: No cast ought to be
4861 needed, but adding const will
4862 have a cascade effect. */
4863
4864 /* Special case: If the user specifies a symbol name inside package
4865 Standard, do a non-wild matching of the symbol name without
4866 the "standard__" prefix. This was primarily introduced in order
4867 to allow the user to specifically access the standard exceptions
4868 using, for instance, Standard.Constraint_Error when Constraint_Error
4869 is ambiguous (due to the user defining its own Constraint_Error
4870 entity inside its program). */
4871 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4872 {
4873 wild_match = 0;
4874 block = NULL;
4875 name = name0 + sizeof ("standard__") - 1;
4876 }
4877
4878 /* Check the non-global symbols. If we have ANY match, then we're done. */
4879
4880 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
4881 wild_match);
4882 if (num_defns_collected (&symbol_list_obstack) > 0)
4883 goto done;
4884
4885 /* No non-global symbols found. Check our cache to see if we have
4886 already performed this search before. If we have, then return
4887 the same result. */
4888
4889 cacheIfUnique = 1;
4890 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4891 {
4892 if (sym != NULL)
4893 add_defn_to_vec (&symbol_list_obstack, sym, block);
4894 goto done;
4895 }
4896
4897 /* Search symbols from all global blocks. */
4898
4899 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
4900 wild_match);
4901
4902 /* Now add symbols from all per-file blocks if we've gotten no hits
4903 (not strictly correct, but perhaps better than an error). */
4904
4905 if (num_defns_collected (&symbol_list_obstack) == 0)
4906 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
4907 wild_match);
4908
4909 done:
4910 ndefns = num_defns_collected (&symbol_list_obstack);
4911 *results = defns_collected (&symbol_list_obstack, 1);
4912
4913 ndefns = remove_extra_symbols (*results, ndefns);
4914
4915 if (ndefns == 0)
4916 cache_symbol (name0, namespace, NULL, NULL);
4917
4918 if (ndefns == 1 && cacheIfUnique)
4919 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
4920
4921 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
4922
4923 return ndefns;
4924 }
4925
4926 struct symbol *
4927 ada_lookup_encoded_symbol (const char *name, const struct block *block0,
4928 domain_enum namespace, struct block **block_found)
4929 {
4930 struct ada_symbol_info *candidates;
4931 int n_candidates;
4932
4933 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
4934
4935 if (n_candidates == 0)
4936 return NULL;
4937
4938 if (block_found != NULL)
4939 *block_found = candidates[0].block;
4940
4941 return fixup_symbol_section (candidates[0].sym, NULL);
4942 }
4943
4944 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4945 scope and in global scopes, or NULL if none. NAME is folded and
4946 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4947 choosing the first symbol if there are multiple choices.
4948 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4949 table in which the symbol was found (in both cases, these
4950 assignments occur only if the pointers are non-null). */
4951 struct symbol *
4952 ada_lookup_symbol (const char *name, const struct block *block0,
4953 domain_enum namespace, int *is_a_field_of_this)
4954 {
4955 if (is_a_field_of_this != NULL)
4956 *is_a_field_of_this = 0;
4957
4958 return
4959 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
4960 block0, namespace, NULL);
4961 }
4962
4963 static struct symbol *
4964 ada_lookup_symbol_nonlocal (const char *name,
4965 const struct block *block,
4966 const domain_enum domain)
4967 {
4968 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
4969 }
4970
4971
4972 /* True iff STR is a possible encoded suffix of a normal Ada name
4973 that is to be ignored for matching purposes. Suffixes of parallel
4974 names (e.g., XVE) are not included here. Currently, the possible suffixes
4975 are given by any of the regular expressions:
4976
4977 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
4978 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4979 _E[0-9]+[bs]$ [protected object entry suffixes]
4980 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4981
4982 Also, any leading "__[0-9]+" sequence is skipped before the suffix
4983 match is performed. This sequence is used to differentiate homonyms,
4984 is an optional part of a valid name suffix. */
4985
4986 static int
4987 is_name_suffix (const char *str)
4988 {
4989 int k;
4990 const char *matching;
4991 const int len = strlen (str);
4992
4993 /* Skip optional leading __[0-9]+. */
4994
4995 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4996 {
4997 str += 3;
4998 while (isdigit (str[0]))
4999 str += 1;
5000 }
5001
5002 /* [.$][0-9]+ */
5003
5004 if (str[0] == '.' || str[0] == '$')
5005 {
5006 matching = str + 1;
5007 while (isdigit (matching[0]))
5008 matching += 1;
5009 if (matching[0] == '\0')
5010 return 1;
5011 }
5012
5013 /* ___[0-9]+ */
5014
5015 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5016 {
5017 matching = str + 3;
5018 while (isdigit (matching[0]))
5019 matching += 1;
5020 if (matching[0] == '\0')
5021 return 1;
5022 }
5023
5024 #if 0
5025 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5026 with a N at the end. Unfortunately, the compiler uses the same
5027 convention for other internal types it creates. So treating
5028 all entity names that end with an "N" as a name suffix causes
5029 some regressions. For instance, consider the case of an enumerated
5030 type. To support the 'Image attribute, it creates an array whose
5031 name ends with N.
5032 Having a single character like this as a suffix carrying some
5033 information is a bit risky. Perhaps we should change the encoding
5034 to be something like "_N" instead. In the meantime, do not do
5035 the following check. */
5036 /* Protected Object Subprograms */
5037 if (len == 1 && str [0] == 'N')
5038 return 1;
5039 #endif
5040
5041 /* _E[0-9]+[bs]$ */
5042 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5043 {
5044 matching = str + 3;
5045 while (isdigit (matching[0]))
5046 matching += 1;
5047 if ((matching[0] == 'b' || matching[0] == 's')
5048 && matching [1] == '\0')
5049 return 1;
5050 }
5051
5052 /* ??? We should not modify STR directly, as we are doing below. This
5053 is fine in this case, but may become problematic later if we find
5054 that this alternative did not work, and want to try matching
5055 another one from the begining of STR. Since we modified it, we
5056 won't be able to find the begining of the string anymore! */
5057 if (str[0] == 'X')
5058 {
5059 str += 1;
5060 while (str[0] != '_' && str[0] != '\0')
5061 {
5062 if (str[0] != 'n' && str[0] != 'b')
5063 return 0;
5064 str += 1;
5065 }
5066 }
5067
5068 if (str[0] == '\000')
5069 return 1;
5070
5071 if (str[0] == '_')
5072 {
5073 if (str[1] != '_' || str[2] == '\000')
5074 return 0;
5075 if (str[2] == '_')
5076 {
5077 if (strcmp (str + 3, "JM") == 0)
5078 return 1;
5079 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5080 the LJM suffix in favor of the JM one. But we will
5081 still accept LJM as a valid suffix for a reasonable
5082 amount of time, just to allow ourselves to debug programs
5083 compiled using an older version of GNAT. */
5084 if (strcmp (str + 3, "LJM") == 0)
5085 return 1;
5086 if (str[3] != 'X')
5087 return 0;
5088 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5089 || str[4] == 'U' || str[4] == 'P')
5090 return 1;
5091 if (str[4] == 'R' && str[5] != 'T')
5092 return 1;
5093 return 0;
5094 }
5095 if (!isdigit (str[2]))
5096 return 0;
5097 for (k = 3; str[k] != '\0'; k += 1)
5098 if (!isdigit (str[k]) && str[k] != '_')
5099 return 0;
5100 return 1;
5101 }
5102 if (str[0] == '$' && isdigit (str[1]))
5103 {
5104 for (k = 2; str[k] != '\0'; k += 1)
5105 if (!isdigit (str[k]) && str[k] != '_')
5106 return 0;
5107 return 1;
5108 }
5109 return 0;
5110 }
5111
5112 /* Return non-zero if the string starting at NAME and ending before
5113 NAME_END contains no capital letters. */
5114
5115 static int
5116 is_valid_name_for_wild_match (const char *name0)
5117 {
5118 const char *decoded_name = ada_decode (name0);
5119 int i;
5120
5121 /* If the decoded name starts with an angle bracket, it means that
5122 NAME0 does not follow the GNAT encoding format. It should then
5123 not be allowed as a possible wild match. */
5124 if (decoded_name[0] == '<')
5125 return 0;
5126
5127 for (i=0; decoded_name[i] != '\0'; i++)
5128 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5129 return 0;
5130
5131 return 1;
5132 }
5133
5134 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5135 that could start a simple name. Assumes that *NAMEP points into
5136 the string beginning at NAME0. */
5137
5138 static int
5139 advance_wild_match (const char **namep, const char *name0, int target0)
5140 {
5141 const char *name = *namep;
5142
5143 while (1)
5144 {
5145 int t0, t1;
5146
5147 t0 = *name;
5148 if (t0 == '_')
5149 {
5150 t1 = name[1];
5151 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5152 {
5153 name += 1;
5154 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5155 break;
5156 else
5157 name += 1;
5158 }
5159 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5160 || name[2] == target0))
5161 {
5162 name += 2;
5163 break;
5164 }
5165 else
5166 return 0;
5167 }
5168 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5169 name += 1;
5170 else
5171 return 0;
5172 }
5173
5174 *namep = name;
5175 return 1;
5176 }
5177
5178 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5179 informational suffixes of NAME (i.e., for which is_name_suffix is
5180 true). Assumes that PATN is a lower-cased Ada simple name. */
5181
5182 static int
5183 wild_match (const char *name, const char *patn)
5184 {
5185 const char *p, *n;
5186 const char *name0 = name;
5187
5188 while (1)
5189 {
5190 const char *match = name;
5191
5192 if (*name == *patn)
5193 {
5194 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5195 if (*p != *name)
5196 break;
5197 if (*p == '\0' && is_name_suffix (name))
5198 return match != name0 && !is_valid_name_for_wild_match (name0);
5199
5200 if (name[-1] == '_')
5201 name -= 1;
5202 }
5203 if (!advance_wild_match (&name, name0, *patn))
5204 return 1;
5205 }
5206 }
5207
5208 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5209 informational suffix. */
5210
5211 static int
5212 full_match (const char *sym_name, const char *search_name)
5213 {
5214 return !match_name (sym_name, search_name, 0);
5215 }
5216
5217
5218 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5219 vector *defn_symbols, updating the list of symbols in OBSTACKP
5220 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5221 OBJFILE is the section containing BLOCK.
5222 SYMTAB is recorded with each symbol added. */
5223
5224 static void
5225 ada_add_block_symbols (struct obstack *obstackp,
5226 struct block *block, const char *name,
5227 domain_enum domain, struct objfile *objfile,
5228 int wild)
5229 {
5230 struct dict_iterator iter;
5231 int name_len = strlen (name);
5232 /* A matching argument symbol, if any. */
5233 struct symbol *arg_sym;
5234 /* Set true when we find a matching non-argument symbol. */
5235 int found_sym;
5236 struct symbol *sym;
5237
5238 arg_sym = NULL;
5239 found_sym = 0;
5240 if (wild)
5241 {
5242 for (sym = dict_iter_match_first (BLOCK_DICT (block), name,
5243 wild_match, &iter);
5244 sym != NULL; sym = dict_iter_match_next (name, wild_match, &iter))
5245 {
5246 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5247 SYMBOL_DOMAIN (sym), domain)
5248 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
5249 {
5250 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5251 continue;
5252 else if (SYMBOL_IS_ARGUMENT (sym))
5253 arg_sym = sym;
5254 else
5255 {
5256 found_sym = 1;
5257 add_defn_to_vec (obstackp,
5258 fixup_symbol_section (sym, objfile),
5259 block);
5260 }
5261 }
5262 }
5263 }
5264 else
5265 {
5266 for (sym = dict_iter_match_first (BLOCK_DICT (block), name,
5267 full_match, &iter);
5268 sym != NULL; sym = dict_iter_match_next (name, full_match, &iter))
5269 {
5270 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5271 SYMBOL_DOMAIN (sym), domain))
5272 {
5273 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5274 {
5275 if (SYMBOL_IS_ARGUMENT (sym))
5276 arg_sym = sym;
5277 else
5278 {
5279 found_sym = 1;
5280 add_defn_to_vec (obstackp,
5281 fixup_symbol_section (sym, objfile),
5282 block);
5283 }
5284 }
5285 }
5286 }
5287 }
5288
5289 if (!found_sym && arg_sym != NULL)
5290 {
5291 add_defn_to_vec (obstackp,
5292 fixup_symbol_section (arg_sym, objfile),
5293 block);
5294 }
5295
5296 if (!wild)
5297 {
5298 arg_sym = NULL;
5299 found_sym = 0;
5300
5301 ALL_BLOCK_SYMBOLS (block, iter, sym)
5302 {
5303 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5304 SYMBOL_DOMAIN (sym), domain))
5305 {
5306 int cmp;
5307
5308 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5309 if (cmp == 0)
5310 {
5311 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5312 if (cmp == 0)
5313 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5314 name_len);
5315 }
5316
5317 if (cmp == 0
5318 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5319 {
5320 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5321 {
5322 if (SYMBOL_IS_ARGUMENT (sym))
5323 arg_sym = sym;
5324 else
5325 {
5326 found_sym = 1;
5327 add_defn_to_vec (obstackp,
5328 fixup_symbol_section (sym, objfile),
5329 block);
5330 }
5331 }
5332 }
5333 }
5334 }
5335
5336 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5337 They aren't parameters, right? */
5338 if (!found_sym && arg_sym != NULL)
5339 {
5340 add_defn_to_vec (obstackp,
5341 fixup_symbol_section (arg_sym, objfile),
5342 block);
5343 }
5344 }
5345 }
5346 \f
5347
5348 /* Symbol Completion */
5349
5350 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5351 name in a form that's appropriate for the completion. The result
5352 does not need to be deallocated, but is only good until the next call.
5353
5354 TEXT_LEN is equal to the length of TEXT.
5355 Perform a wild match if WILD_MATCH is set.
5356 ENCODED should be set if TEXT represents the start of a symbol name
5357 in its encoded form. */
5358
5359 static const char *
5360 symbol_completion_match (const char *sym_name,
5361 const char *text, int text_len,
5362 int wild_match, int encoded)
5363 {
5364 const int verbatim_match = (text[0] == '<');
5365 int match = 0;
5366
5367 if (verbatim_match)
5368 {
5369 /* Strip the leading angle bracket. */
5370 text = text + 1;
5371 text_len--;
5372 }
5373
5374 /* First, test against the fully qualified name of the symbol. */
5375
5376 if (strncmp (sym_name, text, text_len) == 0)
5377 match = 1;
5378
5379 if (match && !encoded)
5380 {
5381 /* One needed check before declaring a positive match is to verify
5382 that iff we are doing a verbatim match, the decoded version
5383 of the symbol name starts with '<'. Otherwise, this symbol name
5384 is not a suitable completion. */
5385 const char *sym_name_copy = sym_name;
5386 int has_angle_bracket;
5387
5388 sym_name = ada_decode (sym_name);
5389 has_angle_bracket = (sym_name[0] == '<');
5390 match = (has_angle_bracket == verbatim_match);
5391 sym_name = sym_name_copy;
5392 }
5393
5394 if (match && !verbatim_match)
5395 {
5396 /* When doing non-verbatim match, another check that needs to
5397 be done is to verify that the potentially matching symbol name
5398 does not include capital letters, because the ada-mode would
5399 not be able to understand these symbol names without the
5400 angle bracket notation. */
5401 const char *tmp;
5402
5403 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5404 if (*tmp != '\0')
5405 match = 0;
5406 }
5407
5408 /* Second: Try wild matching... */
5409
5410 if (!match && wild_match)
5411 {
5412 /* Since we are doing wild matching, this means that TEXT
5413 may represent an unqualified symbol name. We therefore must
5414 also compare TEXT against the unqualified name of the symbol. */
5415 sym_name = ada_unqualified_name (ada_decode (sym_name));
5416
5417 if (strncmp (sym_name, text, text_len) == 0)
5418 match = 1;
5419 }
5420
5421 /* Finally: If we found a mach, prepare the result to return. */
5422
5423 if (!match)
5424 return NULL;
5425
5426 if (verbatim_match)
5427 sym_name = add_angle_brackets (sym_name);
5428
5429 if (!encoded)
5430 sym_name = ada_decode (sym_name);
5431
5432 return sym_name;
5433 }
5434
5435 DEF_VEC_P (char_ptr);
5436
5437 /* A companion function to ada_make_symbol_completion_list().
5438 Check if SYM_NAME represents a symbol which name would be suitable
5439 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5440 it is appended at the end of the given string vector SV.
5441
5442 ORIG_TEXT is the string original string from the user command
5443 that needs to be completed. WORD is the entire command on which
5444 completion should be performed. These two parameters are used to
5445 determine which part of the symbol name should be added to the
5446 completion vector.
5447 if WILD_MATCH is set, then wild matching is performed.
5448 ENCODED should be set if TEXT represents a symbol name in its
5449 encoded formed (in which case the completion should also be
5450 encoded). */
5451
5452 static void
5453 symbol_completion_add (VEC(char_ptr) **sv,
5454 const char *sym_name,
5455 const char *text, int text_len,
5456 const char *orig_text, const char *word,
5457 int wild_match, int encoded)
5458 {
5459 const char *match = symbol_completion_match (sym_name, text, text_len,
5460 wild_match, encoded);
5461 char *completion;
5462
5463 if (match == NULL)
5464 return;
5465
5466 /* We found a match, so add the appropriate completion to the given
5467 string vector. */
5468
5469 if (word == orig_text)
5470 {
5471 completion = xmalloc (strlen (match) + 5);
5472 strcpy (completion, match);
5473 }
5474 else if (word > orig_text)
5475 {
5476 /* Return some portion of sym_name. */
5477 completion = xmalloc (strlen (match) + 5);
5478 strcpy (completion, match + (word - orig_text));
5479 }
5480 else
5481 {
5482 /* Return some of ORIG_TEXT plus sym_name. */
5483 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5484 strncpy (completion, word, orig_text - word);
5485 completion[orig_text - word] = '\0';
5486 strcat (completion, match);
5487 }
5488
5489 VEC_safe_push (char_ptr, *sv, completion);
5490 }
5491
5492 /* An object of this type is passed as the user_data argument to the
5493 expand_partial_symbol_names method. */
5494 struct add_partial_datum
5495 {
5496 VEC(char_ptr) **completions;
5497 char *text;
5498 int text_len;
5499 char *text0;
5500 char *word;
5501 int wild_match;
5502 int encoded;
5503 };
5504
5505 /* A callback for expand_partial_symbol_names. */
5506 static int
5507 ada_expand_partial_symbol_name (const char *name, void *user_data)
5508 {
5509 struct add_partial_datum *data = user_data;
5510
5511 return symbol_completion_match (name, data->text, data->text_len,
5512 data->wild_match, data->encoded) != NULL;
5513 }
5514
5515 /* Return a list of possible symbol names completing TEXT0. The list
5516 is NULL terminated. WORD is the entire command on which completion
5517 is made. */
5518
5519 static char **
5520 ada_make_symbol_completion_list (char *text0, char *word)
5521 {
5522 char *text;
5523 int text_len;
5524 int wild_match;
5525 int encoded;
5526 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5527 struct symbol *sym;
5528 struct symtab *s;
5529 struct minimal_symbol *msymbol;
5530 struct objfile *objfile;
5531 struct block *b, *surrounding_static_block = 0;
5532 int i;
5533 struct dict_iterator iter;
5534
5535 if (text0[0] == '<')
5536 {
5537 text = xstrdup (text0);
5538 make_cleanup (xfree, text);
5539 text_len = strlen (text);
5540 wild_match = 0;
5541 encoded = 1;
5542 }
5543 else
5544 {
5545 text = xstrdup (ada_encode (text0));
5546 make_cleanup (xfree, text);
5547 text_len = strlen (text);
5548 for (i = 0; i < text_len; i++)
5549 text[i] = tolower (text[i]);
5550
5551 encoded = (strstr (text0, "__") != NULL);
5552 /* If the name contains a ".", then the user is entering a fully
5553 qualified entity name, and the match must not be done in wild
5554 mode. Similarly, if the user wants to complete what looks like
5555 an encoded name, the match must not be done in wild mode. */
5556 wild_match = (strchr (text0, '.') == NULL && !encoded);
5557 }
5558
5559 /* First, look at the partial symtab symbols. */
5560 {
5561 struct add_partial_datum data;
5562
5563 data.completions = &completions;
5564 data.text = text;
5565 data.text_len = text_len;
5566 data.text0 = text0;
5567 data.word = word;
5568 data.wild_match = wild_match;
5569 data.encoded = encoded;
5570 expand_partial_symbol_names (ada_expand_partial_symbol_name, &data);
5571 }
5572
5573 /* At this point scan through the misc symbol vectors and add each
5574 symbol you find to the list. Eventually we want to ignore
5575 anything that isn't a text symbol (everything else will be
5576 handled by the psymtab code above). */
5577
5578 ALL_MSYMBOLS (objfile, msymbol)
5579 {
5580 QUIT;
5581 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5582 text, text_len, text0, word, wild_match, encoded);
5583 }
5584
5585 /* Search upwards from currently selected frame (so that we can
5586 complete on local vars. */
5587
5588 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5589 {
5590 if (!BLOCK_SUPERBLOCK (b))
5591 surrounding_static_block = b; /* For elmin of dups */
5592
5593 ALL_BLOCK_SYMBOLS (b, iter, sym)
5594 {
5595 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5596 text, text_len, text0, word,
5597 wild_match, encoded);
5598 }
5599 }
5600
5601 /* Go through the symtabs and check the externs and statics for
5602 symbols which match. */
5603
5604 ALL_SYMTABS (objfile, s)
5605 {
5606 QUIT;
5607 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5608 ALL_BLOCK_SYMBOLS (b, iter, sym)
5609 {
5610 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5611 text, text_len, text0, word,
5612 wild_match, encoded);
5613 }
5614 }
5615
5616 ALL_SYMTABS (objfile, s)
5617 {
5618 QUIT;
5619 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5620 /* Don't do this block twice. */
5621 if (b == surrounding_static_block)
5622 continue;
5623 ALL_BLOCK_SYMBOLS (b, iter, sym)
5624 {
5625 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5626 text, text_len, text0, word,
5627 wild_match, encoded);
5628 }
5629 }
5630
5631 /* Append the closing NULL entry. */
5632 VEC_safe_push (char_ptr, completions, NULL);
5633
5634 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5635 return the copy. It's unfortunate that we have to make a copy
5636 of an array that we're about to destroy, but there is nothing much
5637 we can do about it. Fortunately, it's typically not a very large
5638 array. */
5639 {
5640 const size_t completions_size =
5641 VEC_length (char_ptr, completions) * sizeof (char *);
5642 char **result = xmalloc (completions_size);
5643
5644 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5645
5646 VEC_free (char_ptr, completions);
5647 return result;
5648 }
5649 }
5650
5651 /* Field Access */
5652
5653 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5654 for tagged types. */
5655
5656 static int
5657 ada_is_dispatch_table_ptr_type (struct type *type)
5658 {
5659 char *name;
5660
5661 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5662 return 0;
5663
5664 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5665 if (name == NULL)
5666 return 0;
5667
5668 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5669 }
5670
5671 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5672 to be invisible to users. */
5673
5674 int
5675 ada_is_ignored_field (struct type *type, int field_num)
5676 {
5677 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5678 return 1;
5679
5680 /* Check the name of that field. */
5681 {
5682 const char *name = TYPE_FIELD_NAME (type, field_num);
5683
5684 /* Anonymous field names should not be printed.
5685 brobecker/2007-02-20: I don't think this can actually happen
5686 but we don't want to print the value of annonymous fields anyway. */
5687 if (name == NULL)
5688 return 1;
5689
5690 /* A field named "_parent" is internally generated by GNAT for
5691 tagged types, and should not be printed either. */
5692 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5693 return 1;
5694 }
5695
5696 /* If this is the dispatch table of a tagged type, then ignore. */
5697 if (ada_is_tagged_type (type, 1)
5698 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5699 return 1;
5700
5701 /* Not a special field, so it should not be ignored. */
5702 return 0;
5703 }
5704
5705 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5706 pointer or reference type whose ultimate target has a tag field. */
5707
5708 int
5709 ada_is_tagged_type (struct type *type, int refok)
5710 {
5711 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5712 }
5713
5714 /* True iff TYPE represents the type of X'Tag */
5715
5716 int
5717 ada_is_tag_type (struct type *type)
5718 {
5719 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5720 return 0;
5721 else
5722 {
5723 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5724
5725 return (name != NULL
5726 && strcmp (name, "ada__tags__dispatch_table") == 0);
5727 }
5728 }
5729
5730 /* The type of the tag on VAL. */
5731
5732 struct type *
5733 ada_tag_type (struct value *val)
5734 {
5735 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5736 }
5737
5738 /* The value of the tag on VAL. */
5739
5740 struct value *
5741 ada_value_tag (struct value *val)
5742 {
5743 return ada_value_struct_elt (val, "_tag", 0);
5744 }
5745
5746 /* The value of the tag on the object of type TYPE whose contents are
5747 saved at VALADDR, if it is non-null, or is at memory address
5748 ADDRESS. */
5749
5750 static struct value *
5751 value_tag_from_contents_and_address (struct type *type,
5752 const gdb_byte *valaddr,
5753 CORE_ADDR address)
5754 {
5755 int tag_byte_offset;
5756 struct type *tag_type;
5757
5758 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5759 NULL, NULL, NULL))
5760 {
5761 const gdb_byte *valaddr1 = ((valaddr == NULL)
5762 ? NULL
5763 : valaddr + tag_byte_offset);
5764 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5765
5766 return value_from_contents_and_address (tag_type, valaddr1, address1);
5767 }
5768 return NULL;
5769 }
5770
5771 static struct type *
5772 type_from_tag (struct value *tag)
5773 {
5774 const char *type_name = ada_tag_name (tag);
5775
5776 if (type_name != NULL)
5777 return ada_find_any_type (ada_encode (type_name));
5778 return NULL;
5779 }
5780
5781 struct tag_args
5782 {
5783 struct value *tag;
5784 char *name;
5785 };
5786
5787
5788 static int ada_tag_name_1 (void *);
5789 static int ada_tag_name_2 (struct tag_args *);
5790
5791 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5792 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5793 The value stored in ARGS->name is valid until the next call to
5794 ada_tag_name_1. */
5795
5796 static int
5797 ada_tag_name_1 (void *args0)
5798 {
5799 struct tag_args *args = (struct tag_args *) args0;
5800 static char name[1024];
5801 char *p;
5802 struct value *val;
5803
5804 args->name = NULL;
5805 val = ada_value_struct_elt (args->tag, "tsd", 1);
5806 if (val == NULL)
5807 return ada_tag_name_2 (args);
5808 val = ada_value_struct_elt (val, "expanded_name", 1);
5809 if (val == NULL)
5810 return 0;
5811 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5812 for (p = name; *p != '\0'; p += 1)
5813 if (isalpha (*p))
5814 *p = tolower (*p);
5815 args->name = name;
5816 return 0;
5817 }
5818
5819 /* Return the "ada__tags__type_specific_data" type. */
5820
5821 static struct type *
5822 ada_get_tsd_type (struct inferior *inf)
5823 {
5824 struct ada_inferior_data *data = get_ada_inferior_data (inf);
5825
5826 if (data->tsd_type == 0)
5827 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
5828 return data->tsd_type;
5829 }
5830
5831 /* Utility function for ada_tag_name_1 that tries the second
5832 representation for the dispatch table (in which there is no
5833 explicit 'tsd' field in the referent of the tag pointer, and instead
5834 the tsd pointer is stored just before the dispatch table. */
5835
5836 static int
5837 ada_tag_name_2 (struct tag_args *args)
5838 {
5839 struct type *info_type;
5840 static char name[1024];
5841 char *p;
5842 struct value *val, *valp;
5843
5844 args->name = NULL;
5845 info_type = ada_get_tsd_type (current_inferior());
5846 if (info_type == NULL)
5847 return 0;
5848 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5849 valp = value_cast (info_type, args->tag);
5850 if (valp == NULL)
5851 return 0;
5852 val = value_ind (value_ptradd (valp, -1));
5853 if (val == NULL)
5854 return 0;
5855 val = ada_value_struct_elt (val, "expanded_name", 1);
5856 if (val == NULL)
5857 return 0;
5858 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5859 for (p = name; *p != '\0'; p += 1)
5860 if (isalpha (*p))
5861 *p = tolower (*p);
5862 args->name = name;
5863 return 0;
5864 }
5865
5866 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5867 a C string. */
5868
5869 const char *
5870 ada_tag_name (struct value *tag)
5871 {
5872 struct tag_args args;
5873
5874 if (!ada_is_tag_type (value_type (tag)))
5875 return NULL;
5876 args.tag = tag;
5877 args.name = NULL;
5878 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5879 return args.name;
5880 }
5881
5882 /* The parent type of TYPE, or NULL if none. */
5883
5884 struct type *
5885 ada_parent_type (struct type *type)
5886 {
5887 int i;
5888
5889 type = ada_check_typedef (type);
5890
5891 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5892 return NULL;
5893
5894 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5895 if (ada_is_parent_field (type, i))
5896 {
5897 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
5898
5899 /* If the _parent field is a pointer, then dereference it. */
5900 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
5901 parent_type = TYPE_TARGET_TYPE (parent_type);
5902 /* If there is a parallel XVS type, get the actual base type. */
5903 parent_type = ada_get_base_type (parent_type);
5904
5905 return ada_check_typedef (parent_type);
5906 }
5907
5908 return NULL;
5909 }
5910
5911 /* True iff field number FIELD_NUM of structure type TYPE contains the
5912 parent-type (inherited) fields of a derived type. Assumes TYPE is
5913 a structure type with at least FIELD_NUM+1 fields. */
5914
5915 int
5916 ada_is_parent_field (struct type *type, int field_num)
5917 {
5918 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5919
5920 return (name != NULL
5921 && (strncmp (name, "PARENT", 6) == 0
5922 || strncmp (name, "_parent", 7) == 0));
5923 }
5924
5925 /* True iff field number FIELD_NUM of structure type TYPE is a
5926 transparent wrapper field (which should be silently traversed when doing
5927 field selection and flattened when printing). Assumes TYPE is a
5928 structure type with at least FIELD_NUM+1 fields. Such fields are always
5929 structures. */
5930
5931 int
5932 ada_is_wrapper_field (struct type *type, int field_num)
5933 {
5934 const char *name = TYPE_FIELD_NAME (type, field_num);
5935
5936 return (name != NULL
5937 && (strncmp (name, "PARENT", 6) == 0
5938 || strcmp (name, "REP") == 0
5939 || strncmp (name, "_parent", 7) == 0
5940 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5941 }
5942
5943 /* True iff field number FIELD_NUM of structure or union type TYPE
5944 is a variant wrapper. Assumes TYPE is a structure type with at least
5945 FIELD_NUM+1 fields. */
5946
5947 int
5948 ada_is_variant_part (struct type *type, int field_num)
5949 {
5950 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5951
5952 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5953 || (is_dynamic_field (type, field_num)
5954 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5955 == TYPE_CODE_UNION)));
5956 }
5957
5958 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5959 whose discriminants are contained in the record type OUTER_TYPE,
5960 returns the type of the controlling discriminant for the variant.
5961 May return NULL if the type could not be found. */
5962
5963 struct type *
5964 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5965 {
5966 char *name = ada_variant_discrim_name (var_type);
5967
5968 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
5969 }
5970
5971 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5972 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5973 represents a 'when others' clause; otherwise 0. */
5974
5975 int
5976 ada_is_others_clause (struct type *type, int field_num)
5977 {
5978 const char *name = TYPE_FIELD_NAME (type, field_num);
5979
5980 return (name != NULL && name[0] == 'O');
5981 }
5982
5983 /* Assuming that TYPE0 is the type of the variant part of a record,
5984 returns the name of the discriminant controlling the variant.
5985 The value is valid until the next call to ada_variant_discrim_name. */
5986
5987 char *
5988 ada_variant_discrim_name (struct type *type0)
5989 {
5990 static char *result = NULL;
5991 static size_t result_len = 0;
5992 struct type *type;
5993 const char *name;
5994 const char *discrim_end;
5995 const char *discrim_start;
5996
5997 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5998 type = TYPE_TARGET_TYPE (type0);
5999 else
6000 type = type0;
6001
6002 name = ada_type_name (type);
6003
6004 if (name == NULL || name[0] == '\000')
6005 return "";
6006
6007 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6008 discrim_end -= 1)
6009 {
6010 if (strncmp (discrim_end, "___XVN", 6) == 0)
6011 break;
6012 }
6013 if (discrim_end == name)
6014 return "";
6015
6016 for (discrim_start = discrim_end; discrim_start != name + 3;
6017 discrim_start -= 1)
6018 {
6019 if (discrim_start == name + 1)
6020 return "";
6021 if ((discrim_start > name + 3
6022 && strncmp (discrim_start - 3, "___", 3) == 0)
6023 || discrim_start[-1] == '.')
6024 break;
6025 }
6026
6027 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6028 strncpy (result, discrim_start, discrim_end - discrim_start);
6029 result[discrim_end - discrim_start] = '\0';
6030 return result;
6031 }
6032
6033 /* Scan STR for a subtype-encoded number, beginning at position K.
6034 Put the position of the character just past the number scanned in
6035 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6036 Return 1 if there was a valid number at the given position, and 0
6037 otherwise. A "subtype-encoded" number consists of the absolute value
6038 in decimal, followed by the letter 'm' to indicate a negative number.
6039 Assumes 0m does not occur. */
6040
6041 int
6042 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6043 {
6044 ULONGEST RU;
6045
6046 if (!isdigit (str[k]))
6047 return 0;
6048
6049 /* Do it the hard way so as not to make any assumption about
6050 the relationship of unsigned long (%lu scan format code) and
6051 LONGEST. */
6052 RU = 0;
6053 while (isdigit (str[k]))
6054 {
6055 RU = RU * 10 + (str[k] - '0');
6056 k += 1;
6057 }
6058
6059 if (str[k] == 'm')
6060 {
6061 if (R != NULL)
6062 *R = (-(LONGEST) (RU - 1)) - 1;
6063 k += 1;
6064 }
6065 else if (R != NULL)
6066 *R = (LONGEST) RU;
6067
6068 /* NOTE on the above: Technically, C does not say what the results of
6069 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6070 number representable as a LONGEST (although either would probably work
6071 in most implementations). When RU>0, the locution in the then branch
6072 above is always equivalent to the negative of RU. */
6073
6074 if (new_k != NULL)
6075 *new_k = k;
6076 return 1;
6077 }
6078
6079 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6080 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6081 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6082
6083 int
6084 ada_in_variant (LONGEST val, struct type *type, int field_num)
6085 {
6086 const char *name = TYPE_FIELD_NAME (type, field_num);
6087 int p;
6088
6089 p = 0;
6090 while (1)
6091 {
6092 switch (name[p])
6093 {
6094 case '\0':
6095 return 0;
6096 case 'S':
6097 {
6098 LONGEST W;
6099
6100 if (!ada_scan_number (name, p + 1, &W, &p))
6101 return 0;
6102 if (val == W)
6103 return 1;
6104 break;
6105 }
6106 case 'R':
6107 {
6108 LONGEST L, U;
6109
6110 if (!ada_scan_number (name, p + 1, &L, &p)
6111 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6112 return 0;
6113 if (val >= L && val <= U)
6114 return 1;
6115 break;
6116 }
6117 case 'O':
6118 return 1;
6119 default:
6120 return 0;
6121 }
6122 }
6123 }
6124
6125 /* FIXME: Lots of redundancy below. Try to consolidate. */
6126
6127 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6128 ARG_TYPE, extract and return the value of one of its (non-static)
6129 fields. FIELDNO says which field. Differs from value_primitive_field
6130 only in that it can handle packed values of arbitrary type. */
6131
6132 static struct value *
6133 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6134 struct type *arg_type)
6135 {
6136 struct type *type;
6137
6138 arg_type = ada_check_typedef (arg_type);
6139 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6140
6141 /* Handle packed fields. */
6142
6143 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6144 {
6145 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6146 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6147
6148 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6149 offset + bit_pos / 8,
6150 bit_pos % 8, bit_size, type);
6151 }
6152 else
6153 return value_primitive_field (arg1, offset, fieldno, arg_type);
6154 }
6155
6156 /* Find field with name NAME in object of type TYPE. If found,
6157 set the following for each argument that is non-null:
6158 - *FIELD_TYPE_P to the field's type;
6159 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6160 an object of that type;
6161 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6162 - *BIT_SIZE_P to its size in bits if the field is packed, and
6163 0 otherwise;
6164 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6165 fields up to but not including the desired field, or by the total
6166 number of fields if not found. A NULL value of NAME never
6167 matches; the function just counts visible fields in this case.
6168
6169 Returns 1 if found, 0 otherwise. */
6170
6171 static int
6172 find_struct_field (char *name, struct type *type, int offset,
6173 struct type **field_type_p,
6174 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6175 int *index_p)
6176 {
6177 int i;
6178
6179 type = ada_check_typedef (type);
6180
6181 if (field_type_p != NULL)
6182 *field_type_p = NULL;
6183 if (byte_offset_p != NULL)
6184 *byte_offset_p = 0;
6185 if (bit_offset_p != NULL)
6186 *bit_offset_p = 0;
6187 if (bit_size_p != NULL)
6188 *bit_size_p = 0;
6189
6190 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6191 {
6192 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6193 int fld_offset = offset + bit_pos / 8;
6194 char *t_field_name = TYPE_FIELD_NAME (type, i);
6195
6196 if (t_field_name == NULL)
6197 continue;
6198
6199 else if (name != NULL && field_name_match (t_field_name, name))
6200 {
6201 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6202
6203 if (field_type_p != NULL)
6204 *field_type_p = TYPE_FIELD_TYPE (type, i);
6205 if (byte_offset_p != NULL)
6206 *byte_offset_p = fld_offset;
6207 if (bit_offset_p != NULL)
6208 *bit_offset_p = bit_pos % 8;
6209 if (bit_size_p != NULL)
6210 *bit_size_p = bit_size;
6211 return 1;
6212 }
6213 else if (ada_is_wrapper_field (type, i))
6214 {
6215 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6216 field_type_p, byte_offset_p, bit_offset_p,
6217 bit_size_p, index_p))
6218 return 1;
6219 }
6220 else if (ada_is_variant_part (type, i))
6221 {
6222 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6223 fixed type?? */
6224 int j;
6225 struct type *field_type
6226 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6227
6228 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6229 {
6230 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6231 fld_offset
6232 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6233 field_type_p, byte_offset_p,
6234 bit_offset_p, bit_size_p, index_p))
6235 return 1;
6236 }
6237 }
6238 else if (index_p != NULL)
6239 *index_p += 1;
6240 }
6241 return 0;
6242 }
6243
6244 /* Number of user-visible fields in record type TYPE. */
6245
6246 static int
6247 num_visible_fields (struct type *type)
6248 {
6249 int n;
6250
6251 n = 0;
6252 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6253 return n;
6254 }
6255
6256 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6257 and search in it assuming it has (class) type TYPE.
6258 If found, return value, else return NULL.
6259
6260 Searches recursively through wrapper fields (e.g., '_parent'). */
6261
6262 static struct value *
6263 ada_search_struct_field (char *name, struct value *arg, int offset,
6264 struct type *type)
6265 {
6266 int i;
6267
6268 type = ada_check_typedef (type);
6269 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6270 {
6271 char *t_field_name = TYPE_FIELD_NAME (type, i);
6272
6273 if (t_field_name == NULL)
6274 continue;
6275
6276 else if (field_name_match (t_field_name, name))
6277 return ada_value_primitive_field (arg, offset, i, type);
6278
6279 else if (ada_is_wrapper_field (type, i))
6280 {
6281 struct value *v = /* Do not let indent join lines here. */
6282 ada_search_struct_field (name, arg,
6283 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6284 TYPE_FIELD_TYPE (type, i));
6285
6286 if (v != NULL)
6287 return v;
6288 }
6289
6290 else if (ada_is_variant_part (type, i))
6291 {
6292 /* PNH: Do we ever get here? See find_struct_field. */
6293 int j;
6294 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6295 i));
6296 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6297
6298 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6299 {
6300 struct value *v = ada_search_struct_field /* Force line
6301 break. */
6302 (name, arg,
6303 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6304 TYPE_FIELD_TYPE (field_type, j));
6305
6306 if (v != NULL)
6307 return v;
6308 }
6309 }
6310 }
6311 return NULL;
6312 }
6313
6314 static struct value *ada_index_struct_field_1 (int *, struct value *,
6315 int, struct type *);
6316
6317
6318 /* Return field #INDEX in ARG, where the index is that returned by
6319 * find_struct_field through its INDEX_P argument. Adjust the address
6320 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6321 * If found, return value, else return NULL. */
6322
6323 static struct value *
6324 ada_index_struct_field (int index, struct value *arg, int offset,
6325 struct type *type)
6326 {
6327 return ada_index_struct_field_1 (&index, arg, offset, type);
6328 }
6329
6330
6331 /* Auxiliary function for ada_index_struct_field. Like
6332 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6333 * *INDEX_P. */
6334
6335 static struct value *
6336 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6337 struct type *type)
6338 {
6339 int i;
6340 type = ada_check_typedef (type);
6341
6342 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6343 {
6344 if (TYPE_FIELD_NAME (type, i) == NULL)
6345 continue;
6346 else if (ada_is_wrapper_field (type, i))
6347 {
6348 struct value *v = /* Do not let indent join lines here. */
6349 ada_index_struct_field_1 (index_p, arg,
6350 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6351 TYPE_FIELD_TYPE (type, i));
6352
6353 if (v != NULL)
6354 return v;
6355 }
6356
6357 else if (ada_is_variant_part (type, i))
6358 {
6359 /* PNH: Do we ever get here? See ada_search_struct_field,
6360 find_struct_field. */
6361 error (_("Cannot assign this kind of variant record"));
6362 }
6363 else if (*index_p == 0)
6364 return ada_value_primitive_field (arg, offset, i, type);
6365 else
6366 *index_p -= 1;
6367 }
6368 return NULL;
6369 }
6370
6371 /* Given ARG, a value of type (pointer or reference to a)*
6372 structure/union, extract the component named NAME from the ultimate
6373 target structure/union and return it as a value with its
6374 appropriate type.
6375
6376 The routine searches for NAME among all members of the structure itself
6377 and (recursively) among all members of any wrapper members
6378 (e.g., '_parent').
6379
6380 If NO_ERR, then simply return NULL in case of error, rather than
6381 calling error. */
6382
6383 struct value *
6384 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6385 {
6386 struct type *t, *t1;
6387 struct value *v;
6388
6389 v = NULL;
6390 t1 = t = ada_check_typedef (value_type (arg));
6391 if (TYPE_CODE (t) == TYPE_CODE_REF)
6392 {
6393 t1 = TYPE_TARGET_TYPE (t);
6394 if (t1 == NULL)
6395 goto BadValue;
6396 t1 = ada_check_typedef (t1);
6397 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6398 {
6399 arg = coerce_ref (arg);
6400 t = t1;
6401 }
6402 }
6403
6404 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6405 {
6406 t1 = TYPE_TARGET_TYPE (t);
6407 if (t1 == NULL)
6408 goto BadValue;
6409 t1 = ada_check_typedef (t1);
6410 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6411 {
6412 arg = value_ind (arg);
6413 t = t1;
6414 }
6415 else
6416 break;
6417 }
6418
6419 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6420 goto BadValue;
6421
6422 if (t1 == t)
6423 v = ada_search_struct_field (name, arg, 0, t);
6424 else
6425 {
6426 int bit_offset, bit_size, byte_offset;
6427 struct type *field_type;
6428 CORE_ADDR address;
6429
6430 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6431 address = value_as_address (arg);
6432 else
6433 address = unpack_pointer (t, value_contents (arg));
6434
6435 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6436 if (find_struct_field (name, t1, 0,
6437 &field_type, &byte_offset, &bit_offset,
6438 &bit_size, NULL))
6439 {
6440 if (bit_size != 0)
6441 {
6442 if (TYPE_CODE (t) == TYPE_CODE_REF)
6443 arg = ada_coerce_ref (arg);
6444 else
6445 arg = ada_value_ind (arg);
6446 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6447 bit_offset, bit_size,
6448 field_type);
6449 }
6450 else
6451 v = value_at_lazy (field_type, address + byte_offset);
6452 }
6453 }
6454
6455 if (v != NULL || no_err)
6456 return v;
6457 else
6458 error (_("There is no member named %s."), name);
6459
6460 BadValue:
6461 if (no_err)
6462 return NULL;
6463 else
6464 error (_("Attempt to extract a component of "
6465 "a value that is not a record."));
6466 }
6467
6468 /* Given a type TYPE, look up the type of the component of type named NAME.
6469 If DISPP is non-null, add its byte displacement from the beginning of a
6470 structure (pointed to by a value) of type TYPE to *DISPP (does not
6471 work for packed fields).
6472
6473 Matches any field whose name has NAME as a prefix, possibly
6474 followed by "___".
6475
6476 TYPE can be either a struct or union. If REFOK, TYPE may also
6477 be a (pointer or reference)+ to a struct or union, and the
6478 ultimate target type will be searched.
6479
6480 Looks recursively into variant clauses and parent types.
6481
6482 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6483 TYPE is not a type of the right kind. */
6484
6485 static struct type *
6486 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6487 int noerr, int *dispp)
6488 {
6489 int i;
6490
6491 if (name == NULL)
6492 goto BadName;
6493
6494 if (refok && type != NULL)
6495 while (1)
6496 {
6497 type = ada_check_typedef (type);
6498 if (TYPE_CODE (type) != TYPE_CODE_PTR
6499 && TYPE_CODE (type) != TYPE_CODE_REF)
6500 break;
6501 type = TYPE_TARGET_TYPE (type);
6502 }
6503
6504 if (type == NULL
6505 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6506 && TYPE_CODE (type) != TYPE_CODE_UNION))
6507 {
6508 if (noerr)
6509 return NULL;
6510 else
6511 {
6512 target_terminal_ours ();
6513 gdb_flush (gdb_stdout);
6514 if (type == NULL)
6515 error (_("Type (null) is not a structure or union type"));
6516 else
6517 {
6518 /* XXX: type_sprint */
6519 fprintf_unfiltered (gdb_stderr, _("Type "));
6520 type_print (type, "", gdb_stderr, -1);
6521 error (_(" is not a structure or union type"));
6522 }
6523 }
6524 }
6525
6526 type = to_static_fixed_type (type);
6527
6528 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6529 {
6530 char *t_field_name = TYPE_FIELD_NAME (type, i);
6531 struct type *t;
6532 int disp;
6533
6534 if (t_field_name == NULL)
6535 continue;
6536
6537 else if (field_name_match (t_field_name, name))
6538 {
6539 if (dispp != NULL)
6540 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6541 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6542 }
6543
6544 else if (ada_is_wrapper_field (type, i))
6545 {
6546 disp = 0;
6547 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6548 0, 1, &disp);
6549 if (t != NULL)
6550 {
6551 if (dispp != NULL)
6552 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6553 return t;
6554 }
6555 }
6556
6557 else if (ada_is_variant_part (type, i))
6558 {
6559 int j;
6560 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6561 i));
6562
6563 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6564 {
6565 /* FIXME pnh 2008/01/26: We check for a field that is
6566 NOT wrapped in a struct, since the compiler sometimes
6567 generates these for unchecked variant types. Revisit
6568 if the compiler changes this practice. */
6569 char *v_field_name = TYPE_FIELD_NAME (field_type, j);
6570 disp = 0;
6571 if (v_field_name != NULL
6572 && field_name_match (v_field_name, name))
6573 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6574 else
6575 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
6576 j),
6577 name, 0, 1, &disp);
6578
6579 if (t != NULL)
6580 {
6581 if (dispp != NULL)
6582 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6583 return t;
6584 }
6585 }
6586 }
6587
6588 }
6589
6590 BadName:
6591 if (!noerr)
6592 {
6593 target_terminal_ours ();
6594 gdb_flush (gdb_stdout);
6595 if (name == NULL)
6596 {
6597 /* XXX: type_sprint */
6598 fprintf_unfiltered (gdb_stderr, _("Type "));
6599 type_print (type, "", gdb_stderr, -1);
6600 error (_(" has no component named <null>"));
6601 }
6602 else
6603 {
6604 /* XXX: type_sprint */
6605 fprintf_unfiltered (gdb_stderr, _("Type "));
6606 type_print (type, "", gdb_stderr, -1);
6607 error (_(" has no component named %s"), name);
6608 }
6609 }
6610
6611 return NULL;
6612 }
6613
6614 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6615 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6616 represents an unchecked union (that is, the variant part of a
6617 record that is named in an Unchecked_Union pragma). */
6618
6619 static int
6620 is_unchecked_variant (struct type *var_type, struct type *outer_type)
6621 {
6622 char *discrim_name = ada_variant_discrim_name (var_type);
6623
6624 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6625 == NULL);
6626 }
6627
6628
6629 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6630 within a value of type OUTER_TYPE that is stored in GDB at
6631 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6632 numbering from 0) is applicable. Returns -1 if none are. */
6633
6634 int
6635 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6636 const gdb_byte *outer_valaddr)
6637 {
6638 int others_clause;
6639 int i;
6640 char *discrim_name = ada_variant_discrim_name (var_type);
6641 struct value *outer;
6642 struct value *discrim;
6643 LONGEST discrim_val;
6644
6645 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6646 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6647 if (discrim == NULL)
6648 return -1;
6649 discrim_val = value_as_long (discrim);
6650
6651 others_clause = -1;
6652 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6653 {
6654 if (ada_is_others_clause (var_type, i))
6655 others_clause = i;
6656 else if (ada_in_variant (discrim_val, var_type, i))
6657 return i;
6658 }
6659
6660 return others_clause;
6661 }
6662 \f
6663
6664
6665 /* Dynamic-Sized Records */
6666
6667 /* Strategy: The type ostensibly attached to a value with dynamic size
6668 (i.e., a size that is not statically recorded in the debugging
6669 data) does not accurately reflect the size or layout of the value.
6670 Our strategy is to convert these values to values with accurate,
6671 conventional types that are constructed on the fly. */
6672
6673 /* There is a subtle and tricky problem here. In general, we cannot
6674 determine the size of dynamic records without its data. However,
6675 the 'struct value' data structure, which GDB uses to represent
6676 quantities in the inferior process (the target), requires the size
6677 of the type at the time of its allocation in order to reserve space
6678 for GDB's internal copy of the data. That's why the
6679 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6680 rather than struct value*s.
6681
6682 However, GDB's internal history variables ($1, $2, etc.) are
6683 struct value*s containing internal copies of the data that are not, in
6684 general, the same as the data at their corresponding addresses in
6685 the target. Fortunately, the types we give to these values are all
6686 conventional, fixed-size types (as per the strategy described
6687 above), so that we don't usually have to perform the
6688 'to_fixed_xxx_type' conversions to look at their values.
6689 Unfortunately, there is one exception: if one of the internal
6690 history variables is an array whose elements are unconstrained
6691 records, then we will need to create distinct fixed types for each
6692 element selected. */
6693
6694 /* The upshot of all of this is that many routines take a (type, host
6695 address, target address) triple as arguments to represent a value.
6696 The host address, if non-null, is supposed to contain an internal
6697 copy of the relevant data; otherwise, the program is to consult the
6698 target at the target address. */
6699
6700 /* Assuming that VAL0 represents a pointer value, the result of
6701 dereferencing it. Differs from value_ind in its treatment of
6702 dynamic-sized types. */
6703
6704 struct value *
6705 ada_value_ind (struct value *val0)
6706 {
6707 struct value *val = unwrap_value (value_ind (val0));
6708
6709 return ada_to_fixed_value (val);
6710 }
6711
6712 /* The value resulting from dereferencing any "reference to"
6713 qualifiers on VAL0. */
6714
6715 static struct value *
6716 ada_coerce_ref (struct value *val0)
6717 {
6718 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6719 {
6720 struct value *val = val0;
6721
6722 val = coerce_ref (val);
6723 val = unwrap_value (val);
6724 return ada_to_fixed_value (val);
6725 }
6726 else
6727 return val0;
6728 }
6729
6730 /* Return OFF rounded upward if necessary to a multiple of
6731 ALIGNMENT (a power of 2). */
6732
6733 static unsigned int
6734 align_value (unsigned int off, unsigned int alignment)
6735 {
6736 return (off + alignment - 1) & ~(alignment - 1);
6737 }
6738
6739 /* Return the bit alignment required for field #F of template type TYPE. */
6740
6741 static unsigned int
6742 field_alignment (struct type *type, int f)
6743 {
6744 const char *name = TYPE_FIELD_NAME (type, f);
6745 int len;
6746 int align_offset;
6747
6748 /* The field name should never be null, unless the debugging information
6749 is somehow malformed. In this case, we assume the field does not
6750 require any alignment. */
6751 if (name == NULL)
6752 return 1;
6753
6754 len = strlen (name);
6755
6756 if (!isdigit (name[len - 1]))
6757 return 1;
6758
6759 if (isdigit (name[len - 2]))
6760 align_offset = len - 2;
6761 else
6762 align_offset = len - 1;
6763
6764 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6765 return TARGET_CHAR_BIT;
6766
6767 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6768 }
6769
6770 /* Find a symbol named NAME. Ignores ambiguity. */
6771
6772 struct symbol *
6773 ada_find_any_symbol (const char *name)
6774 {
6775 struct symbol *sym;
6776
6777 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6778 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6779 return sym;
6780
6781 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6782 return sym;
6783 }
6784
6785 /* Find a type named NAME. Ignores ambiguity. This routine will look
6786 solely for types defined by debug info, it will not search the GDB
6787 primitive types. */
6788
6789 struct type *
6790 ada_find_any_type (const char *name)
6791 {
6792 struct symbol *sym = ada_find_any_symbol (name);
6793
6794 if (sym != NULL)
6795 return SYMBOL_TYPE (sym);
6796
6797 return NULL;
6798 }
6799
6800 /* Given NAME and an associated BLOCK, search all symbols for
6801 NAME suffixed with "___XR", which is the ``renaming'' symbol
6802 associated to NAME. Return this symbol if found, return
6803 NULL otherwise. */
6804
6805 struct symbol *
6806 ada_find_renaming_symbol (const char *name, struct block *block)
6807 {
6808 struct symbol *sym;
6809
6810 sym = find_old_style_renaming_symbol (name, block);
6811
6812 if (sym != NULL)
6813 return sym;
6814
6815 /* Not right yet. FIXME pnh 7/20/2007. */
6816 sym = ada_find_any_symbol (name);
6817 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6818 return sym;
6819 else
6820 return NULL;
6821 }
6822
6823 static struct symbol *
6824 find_old_style_renaming_symbol (const char *name, struct block *block)
6825 {
6826 const struct symbol *function_sym = block_linkage_function (block);
6827 char *rename;
6828
6829 if (function_sym != NULL)
6830 {
6831 /* If the symbol is defined inside a function, NAME is not fully
6832 qualified. This means we need to prepend the function name
6833 as well as adding the ``___XR'' suffix to build the name of
6834 the associated renaming symbol. */
6835 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
6836 /* Function names sometimes contain suffixes used
6837 for instance to qualify nested subprograms. When building
6838 the XR type name, we need to make sure that this suffix is
6839 not included. So do not include any suffix in the function
6840 name length below. */
6841 int function_name_len = ada_name_prefix_len (function_name);
6842 const int rename_len = function_name_len + 2 /* "__" */
6843 + strlen (name) + 6 /* "___XR\0" */ ;
6844
6845 /* Strip the suffix if necessary. */
6846 ada_remove_trailing_digits (function_name, &function_name_len);
6847 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
6848 ada_remove_Xbn_suffix (function_name, &function_name_len);
6849
6850 /* Library-level functions are a special case, as GNAT adds
6851 a ``_ada_'' prefix to the function name to avoid namespace
6852 pollution. However, the renaming symbols themselves do not
6853 have this prefix, so we need to skip this prefix if present. */
6854 if (function_name_len > 5 /* "_ada_" */
6855 && strstr (function_name, "_ada_") == function_name)
6856 {
6857 function_name += 5;
6858 function_name_len -= 5;
6859 }
6860
6861 rename = (char *) alloca (rename_len * sizeof (char));
6862 strncpy (rename, function_name, function_name_len);
6863 xsnprintf (rename + function_name_len, rename_len - function_name_len,
6864 "__%s___XR", name);
6865 }
6866 else
6867 {
6868 const int rename_len = strlen (name) + 6;
6869
6870 rename = (char *) alloca (rename_len * sizeof (char));
6871 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
6872 }
6873
6874 return ada_find_any_symbol (rename);
6875 }
6876
6877 /* Because of GNAT encoding conventions, several GDB symbols may match a
6878 given type name. If the type denoted by TYPE0 is to be preferred to
6879 that of TYPE1 for purposes of type printing, return non-zero;
6880 otherwise return 0. */
6881
6882 int
6883 ada_prefer_type (struct type *type0, struct type *type1)
6884 {
6885 if (type1 == NULL)
6886 return 1;
6887 else if (type0 == NULL)
6888 return 0;
6889 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6890 return 1;
6891 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6892 return 0;
6893 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6894 return 1;
6895 else if (ada_is_constrained_packed_array_type (type0))
6896 return 1;
6897 else if (ada_is_array_descriptor_type (type0)
6898 && !ada_is_array_descriptor_type (type1))
6899 return 1;
6900 else
6901 {
6902 const char *type0_name = type_name_no_tag (type0);
6903 const char *type1_name = type_name_no_tag (type1);
6904
6905 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6906 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6907 return 1;
6908 }
6909 return 0;
6910 }
6911
6912 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
6913 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6914
6915 char *
6916 ada_type_name (struct type *type)
6917 {
6918 if (type == NULL)
6919 return NULL;
6920 else if (TYPE_NAME (type) != NULL)
6921 return TYPE_NAME (type);
6922 else
6923 return TYPE_TAG_NAME (type);
6924 }
6925
6926 /* Search the list of "descriptive" types associated to TYPE for a type
6927 whose name is NAME. */
6928
6929 static struct type *
6930 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
6931 {
6932 struct type *result;
6933
6934 /* If there no descriptive-type info, then there is no parallel type
6935 to be found. */
6936 if (!HAVE_GNAT_AUX_INFO (type))
6937 return NULL;
6938
6939 result = TYPE_DESCRIPTIVE_TYPE (type);
6940 while (result != NULL)
6941 {
6942 char *result_name = ada_type_name (result);
6943
6944 if (result_name == NULL)
6945 {
6946 warning (_("unexpected null name on descriptive type"));
6947 return NULL;
6948 }
6949
6950 /* If the names match, stop. */
6951 if (strcmp (result_name, name) == 0)
6952 break;
6953
6954 /* Otherwise, look at the next item on the list, if any. */
6955 if (HAVE_GNAT_AUX_INFO (result))
6956 result = TYPE_DESCRIPTIVE_TYPE (result);
6957 else
6958 result = NULL;
6959 }
6960
6961 /* If we didn't find a match, see whether this is a packed array. With
6962 older compilers, the descriptive type information is either absent or
6963 irrelevant when it comes to packed arrays so the above lookup fails.
6964 Fall back to using a parallel lookup by name in this case. */
6965 if (result == NULL && ada_is_constrained_packed_array_type (type))
6966 return ada_find_any_type (name);
6967
6968 return result;
6969 }
6970
6971 /* Find a parallel type to TYPE with the specified NAME, using the
6972 descriptive type taken from the debugging information, if available,
6973 and otherwise using the (slower) name-based method. */
6974
6975 static struct type *
6976 ada_find_parallel_type_with_name (struct type *type, const char *name)
6977 {
6978 struct type *result = NULL;
6979
6980 if (HAVE_GNAT_AUX_INFO (type))
6981 result = find_parallel_type_by_descriptive_type (type, name);
6982 else
6983 result = ada_find_any_type (name);
6984
6985 return result;
6986 }
6987
6988 /* Same as above, but specify the name of the parallel type by appending
6989 SUFFIX to the name of TYPE. */
6990
6991 struct type *
6992 ada_find_parallel_type (struct type *type, const char *suffix)
6993 {
6994 char *name, *typename = ada_type_name (type);
6995 int len;
6996
6997 if (typename == NULL)
6998 return NULL;
6999
7000 len = strlen (typename);
7001
7002 name = (char *) alloca (len + strlen (suffix) + 1);
7003
7004 strcpy (name, typename);
7005 strcpy (name + len, suffix);
7006
7007 return ada_find_parallel_type_with_name (type, name);
7008 }
7009
7010 /* If TYPE is a variable-size record type, return the corresponding template
7011 type describing its fields. Otherwise, return NULL. */
7012
7013 static struct type *
7014 dynamic_template_type (struct type *type)
7015 {
7016 type = ada_check_typedef (type);
7017
7018 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
7019 || ada_type_name (type) == NULL)
7020 return NULL;
7021 else
7022 {
7023 int len = strlen (ada_type_name (type));
7024
7025 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7026 return type;
7027 else
7028 return ada_find_parallel_type (type, "___XVE");
7029 }
7030 }
7031
7032 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7033 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7034
7035 static int
7036 is_dynamic_field (struct type *templ_type, int field_num)
7037 {
7038 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7039
7040 return name != NULL
7041 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7042 && strstr (name, "___XVL") != NULL;
7043 }
7044
7045 /* The index of the variant field of TYPE, or -1 if TYPE does not
7046 represent a variant record type. */
7047
7048 static int
7049 variant_field_index (struct type *type)
7050 {
7051 int f;
7052
7053 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7054 return -1;
7055
7056 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7057 {
7058 if (ada_is_variant_part (type, f))
7059 return f;
7060 }
7061 return -1;
7062 }
7063
7064 /* A record type with no fields. */
7065
7066 static struct type *
7067 empty_record (struct type *template)
7068 {
7069 struct type *type = alloc_type_copy (template);
7070
7071 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7072 TYPE_NFIELDS (type) = 0;
7073 TYPE_FIELDS (type) = NULL;
7074 INIT_CPLUS_SPECIFIC (type);
7075 TYPE_NAME (type) = "<empty>";
7076 TYPE_TAG_NAME (type) = NULL;
7077 TYPE_LENGTH (type) = 0;
7078 return type;
7079 }
7080
7081 /* An ordinary record type (with fixed-length fields) that describes
7082 the value of type TYPE at VALADDR or ADDRESS (see comments at
7083 the beginning of this section) VAL according to GNAT conventions.
7084 DVAL0 should describe the (portion of a) record that contains any
7085 necessary discriminants. It should be NULL if value_type (VAL) is
7086 an outer-level type (i.e., as opposed to a branch of a variant.) A
7087 variant field (unless unchecked) is replaced by a particular branch
7088 of the variant.
7089
7090 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7091 length are not statically known are discarded. As a consequence,
7092 VALADDR, ADDRESS and DVAL0 are ignored.
7093
7094 NOTE: Limitations: For now, we assume that dynamic fields and
7095 variants occupy whole numbers of bytes. However, they need not be
7096 byte-aligned. */
7097
7098 struct type *
7099 ada_template_to_fixed_record_type_1 (struct type *type,
7100 const gdb_byte *valaddr,
7101 CORE_ADDR address, struct value *dval0,
7102 int keep_dynamic_fields)
7103 {
7104 struct value *mark = value_mark ();
7105 struct value *dval;
7106 struct type *rtype;
7107 int nfields, bit_len;
7108 int variant_field;
7109 long off;
7110 int fld_bit_len;
7111 int f;
7112
7113 /* Compute the number of fields in this record type that are going
7114 to be processed: unless keep_dynamic_fields, this includes only
7115 fields whose position and length are static will be processed. */
7116 if (keep_dynamic_fields)
7117 nfields = TYPE_NFIELDS (type);
7118 else
7119 {
7120 nfields = 0;
7121 while (nfields < TYPE_NFIELDS (type)
7122 && !ada_is_variant_part (type, nfields)
7123 && !is_dynamic_field (type, nfields))
7124 nfields++;
7125 }
7126
7127 rtype = alloc_type_copy (type);
7128 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7129 INIT_CPLUS_SPECIFIC (rtype);
7130 TYPE_NFIELDS (rtype) = nfields;
7131 TYPE_FIELDS (rtype) = (struct field *)
7132 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7133 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7134 TYPE_NAME (rtype) = ada_type_name (type);
7135 TYPE_TAG_NAME (rtype) = NULL;
7136 TYPE_FIXED_INSTANCE (rtype) = 1;
7137
7138 off = 0;
7139 bit_len = 0;
7140 variant_field = -1;
7141
7142 for (f = 0; f < nfields; f += 1)
7143 {
7144 off = align_value (off, field_alignment (type, f))
7145 + TYPE_FIELD_BITPOS (type, f);
7146 TYPE_FIELD_BITPOS (rtype, f) = off;
7147 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7148
7149 if (ada_is_variant_part (type, f))
7150 {
7151 variant_field = f;
7152 fld_bit_len = 0;
7153 }
7154 else if (is_dynamic_field (type, f))
7155 {
7156 const gdb_byte *field_valaddr = valaddr;
7157 CORE_ADDR field_address = address;
7158 struct type *field_type =
7159 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7160
7161 if (dval0 == NULL)
7162 {
7163 /* rtype's length is computed based on the run-time
7164 value of discriminants. If the discriminants are not
7165 initialized, the type size may be completely bogus and
7166 GDB may fail to allocate a value for it. So check the
7167 size first before creating the value. */
7168 check_size (rtype);
7169 dval = value_from_contents_and_address (rtype, valaddr, address);
7170 }
7171 else
7172 dval = dval0;
7173
7174 /* If the type referenced by this field is an aligner type, we need
7175 to unwrap that aligner type, because its size might not be set.
7176 Keeping the aligner type would cause us to compute the wrong
7177 size for this field, impacting the offset of the all the fields
7178 that follow this one. */
7179 if (ada_is_aligner_type (field_type))
7180 {
7181 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7182
7183 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7184 field_address = cond_offset_target (field_address, field_offset);
7185 field_type = ada_aligned_type (field_type);
7186 }
7187
7188 field_valaddr = cond_offset_host (field_valaddr,
7189 off / TARGET_CHAR_BIT);
7190 field_address = cond_offset_target (field_address,
7191 off / TARGET_CHAR_BIT);
7192
7193 /* Get the fixed type of the field. Note that, in this case,
7194 we do not want to get the real type out of the tag: if
7195 the current field is the parent part of a tagged record,
7196 we will get the tag of the object. Clearly wrong: the real
7197 type of the parent is not the real type of the child. We
7198 would end up in an infinite loop. */
7199 field_type = ada_get_base_type (field_type);
7200 field_type = ada_to_fixed_type (field_type, field_valaddr,
7201 field_address, dval, 0);
7202 /* If the field size is already larger than the maximum
7203 object size, then the record itself will necessarily
7204 be larger than the maximum object size. We need to make
7205 this check now, because the size might be so ridiculously
7206 large (due to an uninitialized variable in the inferior)
7207 that it would cause an overflow when adding it to the
7208 record size. */
7209 check_size (field_type);
7210
7211 TYPE_FIELD_TYPE (rtype, f) = field_type;
7212 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7213 /* The multiplication can potentially overflow. But because
7214 the field length has been size-checked just above, and
7215 assuming that the maximum size is a reasonable value,
7216 an overflow should not happen in practice. So rather than
7217 adding overflow recovery code to this already complex code,
7218 we just assume that it's not going to happen. */
7219 fld_bit_len =
7220 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7221 }
7222 else
7223 {
7224 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7225
7226 /* If our field is a typedef type (most likely a typedef of
7227 a fat pointer, encoding an array access), then we need to
7228 look at its target type to determine its characteristics.
7229 In particular, we would miscompute the field size if we took
7230 the size of the typedef (zero), instead of the size of
7231 the target type. */
7232 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7233 field_type = ada_typedef_target_type (field_type);
7234
7235 TYPE_FIELD_TYPE (rtype, f) = field_type;
7236 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7237 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7238 fld_bit_len =
7239 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7240 else
7241 fld_bit_len =
7242 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7243 }
7244 if (off + fld_bit_len > bit_len)
7245 bit_len = off + fld_bit_len;
7246 off += fld_bit_len;
7247 TYPE_LENGTH (rtype) =
7248 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7249 }
7250
7251 /* We handle the variant part, if any, at the end because of certain
7252 odd cases in which it is re-ordered so as NOT to be the last field of
7253 the record. This can happen in the presence of representation
7254 clauses. */
7255 if (variant_field >= 0)
7256 {
7257 struct type *branch_type;
7258
7259 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7260
7261 if (dval0 == NULL)
7262 dval = value_from_contents_and_address (rtype, valaddr, address);
7263 else
7264 dval = dval0;
7265
7266 branch_type =
7267 to_fixed_variant_branch_type
7268 (TYPE_FIELD_TYPE (type, variant_field),
7269 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7270 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7271 if (branch_type == NULL)
7272 {
7273 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7274 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7275 TYPE_NFIELDS (rtype) -= 1;
7276 }
7277 else
7278 {
7279 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7280 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7281 fld_bit_len =
7282 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7283 TARGET_CHAR_BIT;
7284 if (off + fld_bit_len > bit_len)
7285 bit_len = off + fld_bit_len;
7286 TYPE_LENGTH (rtype) =
7287 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7288 }
7289 }
7290
7291 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7292 should contain the alignment of that record, which should be a strictly
7293 positive value. If null or negative, then something is wrong, most
7294 probably in the debug info. In that case, we don't round up the size
7295 of the resulting type. If this record is not part of another structure,
7296 the current RTYPE length might be good enough for our purposes. */
7297 if (TYPE_LENGTH (type) <= 0)
7298 {
7299 if (TYPE_NAME (rtype))
7300 warning (_("Invalid type size for `%s' detected: %d."),
7301 TYPE_NAME (rtype), TYPE_LENGTH (type));
7302 else
7303 warning (_("Invalid type size for <unnamed> detected: %d."),
7304 TYPE_LENGTH (type));
7305 }
7306 else
7307 {
7308 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7309 TYPE_LENGTH (type));
7310 }
7311
7312 value_free_to_mark (mark);
7313 if (TYPE_LENGTH (rtype) > varsize_limit)
7314 error (_("record type with dynamic size is larger than varsize-limit"));
7315 return rtype;
7316 }
7317
7318 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7319 of 1. */
7320
7321 static struct type *
7322 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
7323 CORE_ADDR address, struct value *dval0)
7324 {
7325 return ada_template_to_fixed_record_type_1 (type, valaddr,
7326 address, dval0, 1);
7327 }
7328
7329 /* An ordinary record type in which ___XVL-convention fields and
7330 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7331 static approximations, containing all possible fields. Uses
7332 no runtime values. Useless for use in values, but that's OK,
7333 since the results are used only for type determinations. Works on both
7334 structs and unions. Representation note: to save space, we memorize
7335 the result of this function in the TYPE_TARGET_TYPE of the
7336 template type. */
7337
7338 static struct type *
7339 template_to_static_fixed_type (struct type *type0)
7340 {
7341 struct type *type;
7342 int nfields;
7343 int f;
7344
7345 if (TYPE_TARGET_TYPE (type0) != NULL)
7346 return TYPE_TARGET_TYPE (type0);
7347
7348 nfields = TYPE_NFIELDS (type0);
7349 type = type0;
7350
7351 for (f = 0; f < nfields; f += 1)
7352 {
7353 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
7354 struct type *new_type;
7355
7356 if (is_dynamic_field (type0, f))
7357 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7358 else
7359 new_type = static_unwrap_type (field_type);
7360 if (type == type0 && new_type != field_type)
7361 {
7362 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
7363 TYPE_CODE (type) = TYPE_CODE (type0);
7364 INIT_CPLUS_SPECIFIC (type);
7365 TYPE_NFIELDS (type) = nfields;
7366 TYPE_FIELDS (type) = (struct field *)
7367 TYPE_ALLOC (type, nfields * sizeof (struct field));
7368 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7369 sizeof (struct field) * nfields);
7370 TYPE_NAME (type) = ada_type_name (type0);
7371 TYPE_TAG_NAME (type) = NULL;
7372 TYPE_FIXED_INSTANCE (type) = 1;
7373 TYPE_LENGTH (type) = 0;
7374 }
7375 TYPE_FIELD_TYPE (type, f) = new_type;
7376 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7377 }
7378 return type;
7379 }
7380
7381 /* Given an object of type TYPE whose contents are at VALADDR and
7382 whose address in memory is ADDRESS, returns a revision of TYPE,
7383 which should be a non-dynamic-sized record, in which the variant
7384 part, if any, is replaced with the appropriate branch. Looks
7385 for discriminant values in DVAL0, which can be NULL if the record
7386 contains the necessary discriminant values. */
7387
7388 static struct type *
7389 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7390 CORE_ADDR address, struct value *dval0)
7391 {
7392 struct value *mark = value_mark ();
7393 struct value *dval;
7394 struct type *rtype;
7395 struct type *branch_type;
7396 int nfields = TYPE_NFIELDS (type);
7397 int variant_field = variant_field_index (type);
7398
7399 if (variant_field == -1)
7400 return type;
7401
7402 if (dval0 == NULL)
7403 dval = value_from_contents_and_address (type, valaddr, address);
7404 else
7405 dval = dval0;
7406
7407 rtype = alloc_type_copy (type);
7408 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7409 INIT_CPLUS_SPECIFIC (rtype);
7410 TYPE_NFIELDS (rtype) = nfields;
7411 TYPE_FIELDS (rtype) =
7412 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7413 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
7414 sizeof (struct field) * nfields);
7415 TYPE_NAME (rtype) = ada_type_name (type);
7416 TYPE_TAG_NAME (rtype) = NULL;
7417 TYPE_FIXED_INSTANCE (rtype) = 1;
7418 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7419
7420 branch_type = to_fixed_variant_branch_type
7421 (TYPE_FIELD_TYPE (type, variant_field),
7422 cond_offset_host (valaddr,
7423 TYPE_FIELD_BITPOS (type, variant_field)
7424 / TARGET_CHAR_BIT),
7425 cond_offset_target (address,
7426 TYPE_FIELD_BITPOS (type, variant_field)
7427 / TARGET_CHAR_BIT), dval);
7428 if (branch_type == NULL)
7429 {
7430 int f;
7431
7432 for (f = variant_field + 1; f < nfields; f += 1)
7433 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7434 TYPE_NFIELDS (rtype) -= 1;
7435 }
7436 else
7437 {
7438 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7439 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7440 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7441 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7442 }
7443 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7444
7445 value_free_to_mark (mark);
7446 return rtype;
7447 }
7448
7449 /* An ordinary record type (with fixed-length fields) that describes
7450 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7451 beginning of this section]. Any necessary discriminants' values
7452 should be in DVAL, a record value; it may be NULL if the object
7453 at ADDR itself contains any necessary discriminant values.
7454 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7455 values from the record are needed. Except in the case that DVAL,
7456 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7457 unchecked) is replaced by a particular branch of the variant.
7458
7459 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7460 is questionable and may be removed. It can arise during the
7461 processing of an unconstrained-array-of-record type where all the
7462 variant branches have exactly the same size. This is because in
7463 such cases, the compiler does not bother to use the XVS convention
7464 when encoding the record. I am currently dubious of this
7465 shortcut and suspect the compiler should be altered. FIXME. */
7466
7467 static struct type *
7468 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7469 CORE_ADDR address, struct value *dval)
7470 {
7471 struct type *templ_type;
7472
7473 if (TYPE_FIXED_INSTANCE (type0))
7474 return type0;
7475
7476 templ_type = dynamic_template_type (type0);
7477
7478 if (templ_type != NULL)
7479 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7480 else if (variant_field_index (type0) >= 0)
7481 {
7482 if (dval == NULL && valaddr == NULL && address == 0)
7483 return type0;
7484 return to_record_with_fixed_variant_part (type0, valaddr, address,
7485 dval);
7486 }
7487 else
7488 {
7489 TYPE_FIXED_INSTANCE (type0) = 1;
7490 return type0;
7491 }
7492
7493 }
7494
7495 /* An ordinary record type (with fixed-length fields) that describes
7496 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7497 union type. Any necessary discriminants' values should be in DVAL,
7498 a record value. That is, this routine selects the appropriate
7499 branch of the union at ADDR according to the discriminant value
7500 indicated in the union's type name. Returns VAR_TYPE0 itself if
7501 it represents a variant subject to a pragma Unchecked_Union. */
7502
7503 static struct type *
7504 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7505 CORE_ADDR address, struct value *dval)
7506 {
7507 int which;
7508 struct type *templ_type;
7509 struct type *var_type;
7510
7511 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7512 var_type = TYPE_TARGET_TYPE (var_type0);
7513 else
7514 var_type = var_type0;
7515
7516 templ_type = ada_find_parallel_type (var_type, "___XVU");
7517
7518 if (templ_type != NULL)
7519 var_type = templ_type;
7520
7521 if (is_unchecked_variant (var_type, value_type (dval)))
7522 return var_type0;
7523 which =
7524 ada_which_variant_applies (var_type,
7525 value_type (dval), value_contents (dval));
7526
7527 if (which < 0)
7528 return empty_record (var_type);
7529 else if (is_dynamic_field (var_type, which))
7530 return to_fixed_record_type
7531 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7532 valaddr, address, dval);
7533 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7534 return
7535 to_fixed_record_type
7536 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7537 else
7538 return TYPE_FIELD_TYPE (var_type, which);
7539 }
7540
7541 /* Assuming that TYPE0 is an array type describing the type of a value
7542 at ADDR, and that DVAL describes a record containing any
7543 discriminants used in TYPE0, returns a type for the value that
7544 contains no dynamic components (that is, no components whose sizes
7545 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7546 true, gives an error message if the resulting type's size is over
7547 varsize_limit. */
7548
7549 static struct type *
7550 to_fixed_array_type (struct type *type0, struct value *dval,
7551 int ignore_too_big)
7552 {
7553 struct type *index_type_desc;
7554 struct type *result;
7555 int constrained_packed_array_p;
7556
7557 type0 = ada_check_typedef (type0);
7558 if (TYPE_FIXED_INSTANCE (type0))
7559 return type0;
7560
7561 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7562 if (constrained_packed_array_p)
7563 type0 = decode_constrained_packed_array_type (type0);
7564
7565 index_type_desc = ada_find_parallel_type (type0, "___XA");
7566 ada_fixup_array_indexes_type (index_type_desc);
7567 if (index_type_desc == NULL)
7568 {
7569 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7570
7571 /* NOTE: elt_type---the fixed version of elt_type0---should never
7572 depend on the contents of the array in properly constructed
7573 debugging data. */
7574 /* Create a fixed version of the array element type.
7575 We're not providing the address of an element here,
7576 and thus the actual object value cannot be inspected to do
7577 the conversion. This should not be a problem, since arrays of
7578 unconstrained objects are not allowed. In particular, all
7579 the elements of an array of a tagged type should all be of
7580 the same type specified in the debugging info. No need to
7581 consult the object tag. */
7582 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7583
7584 /* Make sure we always create a new array type when dealing with
7585 packed array types, since we're going to fix-up the array
7586 type length and element bitsize a little further down. */
7587 if (elt_type0 == elt_type && !constrained_packed_array_p)
7588 result = type0;
7589 else
7590 result = create_array_type (alloc_type_copy (type0),
7591 elt_type, TYPE_INDEX_TYPE (type0));
7592 }
7593 else
7594 {
7595 int i;
7596 struct type *elt_type0;
7597
7598 elt_type0 = type0;
7599 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7600 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7601
7602 /* NOTE: result---the fixed version of elt_type0---should never
7603 depend on the contents of the array in properly constructed
7604 debugging data. */
7605 /* Create a fixed version of the array element type.
7606 We're not providing the address of an element here,
7607 and thus the actual object value cannot be inspected to do
7608 the conversion. This should not be a problem, since arrays of
7609 unconstrained objects are not allowed. In particular, all
7610 the elements of an array of a tagged type should all be of
7611 the same type specified in the debugging info. No need to
7612 consult the object tag. */
7613 result =
7614 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
7615
7616 elt_type0 = type0;
7617 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
7618 {
7619 struct type *range_type =
7620 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
7621
7622 result = create_array_type (alloc_type_copy (elt_type0),
7623 result, range_type);
7624 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7625 }
7626 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7627 error (_("array type with dynamic size is larger than varsize-limit"));
7628 }
7629
7630 if (constrained_packed_array_p)
7631 {
7632 /* So far, the resulting type has been created as if the original
7633 type was a regular (non-packed) array type. As a result, the
7634 bitsize of the array elements needs to be set again, and the array
7635 length needs to be recomputed based on that bitsize. */
7636 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
7637 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
7638
7639 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
7640 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
7641 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
7642 TYPE_LENGTH (result)++;
7643 }
7644
7645 TYPE_FIXED_INSTANCE (result) = 1;
7646 return result;
7647 }
7648
7649
7650 /* A standard type (containing no dynamically sized components)
7651 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7652 DVAL describes a record containing any discriminants used in TYPE0,
7653 and may be NULL if there are none, or if the object of type TYPE at
7654 ADDRESS or in VALADDR contains these discriminants.
7655
7656 If CHECK_TAG is not null, in the case of tagged types, this function
7657 attempts to locate the object's tag and use it to compute the actual
7658 type. However, when ADDRESS is null, we cannot use it to determine the
7659 location of the tag, and therefore compute the tagged type's actual type.
7660 So we return the tagged type without consulting the tag. */
7661
7662 static struct type *
7663 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
7664 CORE_ADDR address, struct value *dval, int check_tag)
7665 {
7666 type = ada_check_typedef (type);
7667 switch (TYPE_CODE (type))
7668 {
7669 default:
7670 return type;
7671 case TYPE_CODE_STRUCT:
7672 {
7673 struct type *static_type = to_static_fixed_type (type);
7674 struct type *fixed_record_type =
7675 to_fixed_record_type (type, valaddr, address, NULL);
7676
7677 /* If STATIC_TYPE is a tagged type and we know the object's address,
7678 then we can determine its tag, and compute the object's actual
7679 type from there. Note that we have to use the fixed record
7680 type (the parent part of the record may have dynamic fields
7681 and the way the location of _tag is expressed may depend on
7682 them). */
7683
7684 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
7685 {
7686 struct type *real_type =
7687 type_from_tag (value_tag_from_contents_and_address
7688 (fixed_record_type,
7689 valaddr,
7690 address));
7691
7692 if (real_type != NULL)
7693 return to_fixed_record_type (real_type, valaddr, address, NULL);
7694 }
7695
7696 /* Check to see if there is a parallel ___XVZ variable.
7697 If there is, then it provides the actual size of our type. */
7698 else if (ada_type_name (fixed_record_type) != NULL)
7699 {
7700 char *name = ada_type_name (fixed_record_type);
7701 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7702 int xvz_found = 0;
7703 LONGEST size;
7704
7705 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
7706 size = get_int_var_value (xvz_name, &xvz_found);
7707 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
7708 {
7709 fixed_record_type = copy_type (fixed_record_type);
7710 TYPE_LENGTH (fixed_record_type) = size;
7711
7712 /* The FIXED_RECORD_TYPE may have be a stub. We have
7713 observed this when the debugging info is STABS, and
7714 apparently it is something that is hard to fix.
7715
7716 In practice, we don't need the actual type definition
7717 at all, because the presence of the XVZ variable allows us
7718 to assume that there must be a XVS type as well, which we
7719 should be able to use later, when we need the actual type
7720 definition.
7721
7722 In the meantime, pretend that the "fixed" type we are
7723 returning is NOT a stub, because this can cause trouble
7724 when using this type to create new types targeting it.
7725 Indeed, the associated creation routines often check
7726 whether the target type is a stub and will try to replace
7727 it, thus using a type with the wrong size. This, in turn,
7728 might cause the new type to have the wrong size too.
7729 Consider the case of an array, for instance, where the size
7730 of the array is computed from the number of elements in
7731 our array multiplied by the size of its element. */
7732 TYPE_STUB (fixed_record_type) = 0;
7733 }
7734 }
7735 return fixed_record_type;
7736 }
7737 case TYPE_CODE_ARRAY:
7738 return to_fixed_array_type (type, dval, 1);
7739 case TYPE_CODE_UNION:
7740 if (dval == NULL)
7741 return type;
7742 else
7743 return to_fixed_variant_branch_type (type, valaddr, address, dval);
7744 }
7745 }
7746
7747 /* The same as ada_to_fixed_type_1, except that it preserves the type
7748 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7749
7750 The typedef layer needs be preserved in order to differentiate between
7751 arrays and array pointers when both types are implemented using the same
7752 fat pointer. In the array pointer case, the pointer is encoded as
7753 a typedef of the pointer type. For instance, considering:
7754
7755 type String_Access is access String;
7756 S1 : String_Access := null;
7757
7758 To the debugger, S1 is defined as a typedef of type String. But
7759 to the user, it is a pointer. So if the user tries to print S1,
7760 we should not dereference the array, but print the array address
7761 instead.
7762
7763 If we didn't preserve the typedef layer, we would lose the fact that
7764 the type is to be presented as a pointer (needs de-reference before
7765 being printed). And we would also use the source-level type name. */
7766
7767 struct type *
7768 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7769 CORE_ADDR address, struct value *dval, int check_tag)
7770
7771 {
7772 struct type *fixed_type =
7773 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7774
7775 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
7776 then preserve the typedef layer.
7777
7778 Implementation note: We can only check the main-type portion of
7779 the TYPE and FIXED_TYPE, because eliminating the typedef layer
7780 from TYPE now returns a type that has the same instance flags
7781 as TYPE. For instance, if TYPE is a "typedef const", and its
7782 target type is a "struct", then the typedef elimination will return
7783 a "const" version of the target type. See check_typedef for more
7784 details about how the typedef layer elimination is done.
7785
7786 brobecker/2010-11-19: It seems to me that the only case where it is
7787 useful to preserve the typedef layer is when dealing with fat pointers.
7788 Perhaps, we could add a check for that and preserve the typedef layer
7789 only in that situation. But this seems unecessary so far, probably
7790 because we call check_typedef/ada_check_typedef pretty much everywhere.
7791 */
7792 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7793 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
7794 == TYPE_MAIN_TYPE (fixed_type)))
7795 return type;
7796
7797 return fixed_type;
7798 }
7799
7800 /* A standard (static-sized) type corresponding as well as possible to
7801 TYPE0, but based on no runtime data. */
7802
7803 static struct type *
7804 to_static_fixed_type (struct type *type0)
7805 {
7806 struct type *type;
7807
7808 if (type0 == NULL)
7809 return NULL;
7810
7811 if (TYPE_FIXED_INSTANCE (type0))
7812 return type0;
7813
7814 type0 = ada_check_typedef (type0);
7815
7816 switch (TYPE_CODE (type0))
7817 {
7818 default:
7819 return type0;
7820 case TYPE_CODE_STRUCT:
7821 type = dynamic_template_type (type0);
7822 if (type != NULL)
7823 return template_to_static_fixed_type (type);
7824 else
7825 return template_to_static_fixed_type (type0);
7826 case TYPE_CODE_UNION:
7827 type = ada_find_parallel_type (type0, "___XVU");
7828 if (type != NULL)
7829 return template_to_static_fixed_type (type);
7830 else
7831 return template_to_static_fixed_type (type0);
7832 }
7833 }
7834
7835 /* A static approximation of TYPE with all type wrappers removed. */
7836
7837 static struct type *
7838 static_unwrap_type (struct type *type)
7839 {
7840 if (ada_is_aligner_type (type))
7841 {
7842 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
7843 if (ada_type_name (type1) == NULL)
7844 TYPE_NAME (type1) = ada_type_name (type);
7845
7846 return static_unwrap_type (type1);
7847 }
7848 else
7849 {
7850 struct type *raw_real_type = ada_get_base_type (type);
7851
7852 if (raw_real_type == type)
7853 return type;
7854 else
7855 return to_static_fixed_type (raw_real_type);
7856 }
7857 }
7858
7859 /* In some cases, incomplete and private types require
7860 cross-references that are not resolved as records (for example,
7861 type Foo;
7862 type FooP is access Foo;
7863 V: FooP;
7864 type Foo is array ...;
7865 ). In these cases, since there is no mechanism for producing
7866 cross-references to such types, we instead substitute for FooP a
7867 stub enumeration type that is nowhere resolved, and whose tag is
7868 the name of the actual type. Call these types "non-record stubs". */
7869
7870 /* A type equivalent to TYPE that is not a non-record stub, if one
7871 exists, otherwise TYPE. */
7872
7873 struct type *
7874 ada_check_typedef (struct type *type)
7875 {
7876 if (type == NULL)
7877 return NULL;
7878
7879 /* If our type is a typedef type of a fat pointer, then we're done.
7880 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
7881 what allows us to distinguish between fat pointers that represent
7882 array types, and fat pointers that represent array access types
7883 (in both cases, the compiler implements them as fat pointers). */
7884 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7885 && is_thick_pntr (ada_typedef_target_type (type)))
7886 return type;
7887
7888 CHECK_TYPEDEF (type);
7889 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
7890 || !TYPE_STUB (type)
7891 || TYPE_TAG_NAME (type) == NULL)
7892 return type;
7893 else
7894 {
7895 char *name = TYPE_TAG_NAME (type);
7896 struct type *type1 = ada_find_any_type (name);
7897
7898 if (type1 == NULL)
7899 return type;
7900
7901 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
7902 stubs pointing to arrays, as we don't create symbols for array
7903 types, only for the typedef-to-array types). If that's the case,
7904 strip the typedef layer. */
7905 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
7906 type1 = ada_check_typedef (type1);
7907
7908 return type1;
7909 }
7910 }
7911
7912 /* A value representing the data at VALADDR/ADDRESS as described by
7913 type TYPE0, but with a standard (static-sized) type that correctly
7914 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7915 type, then return VAL0 [this feature is simply to avoid redundant
7916 creation of struct values]. */
7917
7918 static struct value *
7919 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7920 struct value *val0)
7921 {
7922 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
7923
7924 if (type == type0 && val0 != NULL)
7925 return val0;
7926 else
7927 return value_from_contents_and_address (type, 0, address);
7928 }
7929
7930 /* A value representing VAL, but with a standard (static-sized) type
7931 that correctly describes it. Does not necessarily create a new
7932 value. */
7933
7934 struct value *
7935 ada_to_fixed_value (struct value *val)
7936 {
7937 return ada_to_fixed_value_create (value_type (val),
7938 value_address (val),
7939 val);
7940 }
7941 \f
7942
7943 /* Attributes */
7944
7945 /* Table mapping attribute numbers to names.
7946 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
7947
7948 static const char *attribute_names[] = {
7949 "<?>",
7950
7951 "first",
7952 "last",
7953 "length",
7954 "image",
7955 "max",
7956 "min",
7957 "modulus",
7958 "pos",
7959 "size",
7960 "tag",
7961 "val",
7962 0
7963 };
7964
7965 const char *
7966 ada_attribute_name (enum exp_opcode n)
7967 {
7968 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7969 return attribute_names[n - OP_ATR_FIRST + 1];
7970 else
7971 return attribute_names[0];
7972 }
7973
7974 /* Evaluate the 'POS attribute applied to ARG. */
7975
7976 static LONGEST
7977 pos_atr (struct value *arg)
7978 {
7979 struct value *val = coerce_ref (arg);
7980 struct type *type = value_type (val);
7981
7982 if (!discrete_type_p (type))
7983 error (_("'POS only defined on discrete types"));
7984
7985 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7986 {
7987 int i;
7988 LONGEST v = value_as_long (val);
7989
7990 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7991 {
7992 if (v == TYPE_FIELD_BITPOS (type, i))
7993 return i;
7994 }
7995 error (_("enumeration value is invalid: can't find 'POS"));
7996 }
7997 else
7998 return value_as_long (val);
7999 }
8000
8001 static struct value *
8002 value_pos_atr (struct type *type, struct value *arg)
8003 {
8004 return value_from_longest (type, pos_atr (arg));
8005 }
8006
8007 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8008
8009 static struct value *
8010 value_val_atr (struct type *type, struct value *arg)
8011 {
8012 if (!discrete_type_p (type))
8013 error (_("'VAL only defined on discrete types"));
8014 if (!integer_type_p (value_type (arg)))
8015 error (_("'VAL requires integral argument"));
8016
8017 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8018 {
8019 long pos = value_as_long (arg);
8020
8021 if (pos < 0 || pos >= TYPE_NFIELDS (type))
8022 error (_("argument to 'VAL out of range"));
8023 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
8024 }
8025 else
8026 return value_from_longest (type, value_as_long (arg));
8027 }
8028 \f
8029
8030 /* Evaluation */
8031
8032 /* True if TYPE appears to be an Ada character type.
8033 [At the moment, this is true only for Character and Wide_Character;
8034 It is a heuristic test that could stand improvement]. */
8035
8036 int
8037 ada_is_character_type (struct type *type)
8038 {
8039 const char *name;
8040
8041 /* If the type code says it's a character, then assume it really is,
8042 and don't check any further. */
8043 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8044 return 1;
8045
8046 /* Otherwise, assume it's a character type iff it is a discrete type
8047 with a known character type name. */
8048 name = ada_type_name (type);
8049 return (name != NULL
8050 && (TYPE_CODE (type) == TYPE_CODE_INT
8051 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8052 && (strcmp (name, "character") == 0
8053 || strcmp (name, "wide_character") == 0
8054 || strcmp (name, "wide_wide_character") == 0
8055 || strcmp (name, "unsigned char") == 0));
8056 }
8057
8058 /* True if TYPE appears to be an Ada string type. */
8059
8060 int
8061 ada_is_string_type (struct type *type)
8062 {
8063 type = ada_check_typedef (type);
8064 if (type != NULL
8065 && TYPE_CODE (type) != TYPE_CODE_PTR
8066 && (ada_is_simple_array_type (type)
8067 || ada_is_array_descriptor_type (type))
8068 && ada_array_arity (type) == 1)
8069 {
8070 struct type *elttype = ada_array_element_type (type, 1);
8071
8072 return ada_is_character_type (elttype);
8073 }
8074 else
8075 return 0;
8076 }
8077
8078 /* The compiler sometimes provides a parallel XVS type for a given
8079 PAD type. Normally, it is safe to follow the PAD type directly,
8080 but older versions of the compiler have a bug that causes the offset
8081 of its "F" field to be wrong. Following that field in that case
8082 would lead to incorrect results, but this can be worked around
8083 by ignoring the PAD type and using the associated XVS type instead.
8084
8085 Set to True if the debugger should trust the contents of PAD types.
8086 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8087 static int trust_pad_over_xvs = 1;
8088
8089 /* True if TYPE is a struct type introduced by the compiler to force the
8090 alignment of a value. Such types have a single field with a
8091 distinctive name. */
8092
8093 int
8094 ada_is_aligner_type (struct type *type)
8095 {
8096 type = ada_check_typedef (type);
8097
8098 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
8099 return 0;
8100
8101 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
8102 && TYPE_NFIELDS (type) == 1
8103 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
8104 }
8105
8106 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
8107 the parallel type. */
8108
8109 struct type *
8110 ada_get_base_type (struct type *raw_type)
8111 {
8112 struct type *real_type_namer;
8113 struct type *raw_real_type;
8114
8115 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8116 return raw_type;
8117
8118 if (ada_is_aligner_type (raw_type))
8119 /* The encoding specifies that we should always use the aligner type.
8120 So, even if this aligner type has an associated XVS type, we should
8121 simply ignore it.
8122
8123 According to the compiler gurus, an XVS type parallel to an aligner
8124 type may exist because of a stabs limitation. In stabs, aligner
8125 types are empty because the field has a variable-sized type, and
8126 thus cannot actually be used as an aligner type. As a result,
8127 we need the associated parallel XVS type to decode the type.
8128 Since the policy in the compiler is to not change the internal
8129 representation based on the debugging info format, we sometimes
8130 end up having a redundant XVS type parallel to the aligner type. */
8131 return raw_type;
8132
8133 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
8134 if (real_type_namer == NULL
8135 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8136 || TYPE_NFIELDS (real_type_namer) != 1)
8137 return raw_type;
8138
8139 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8140 {
8141 /* This is an older encoding form where the base type needs to be
8142 looked up by name. We prefer the newer enconding because it is
8143 more efficient. */
8144 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8145 if (raw_real_type == NULL)
8146 return raw_type;
8147 else
8148 return raw_real_type;
8149 }
8150
8151 /* The field in our XVS type is a reference to the base type. */
8152 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
8153 }
8154
8155 /* The type of value designated by TYPE, with all aligners removed. */
8156
8157 struct type *
8158 ada_aligned_type (struct type *type)
8159 {
8160 if (ada_is_aligner_type (type))
8161 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8162 else
8163 return ada_get_base_type (type);
8164 }
8165
8166
8167 /* The address of the aligned value in an object at address VALADDR
8168 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
8169
8170 const gdb_byte *
8171 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
8172 {
8173 if (ada_is_aligner_type (type))
8174 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
8175 valaddr +
8176 TYPE_FIELD_BITPOS (type,
8177 0) / TARGET_CHAR_BIT);
8178 else
8179 return valaddr;
8180 }
8181
8182
8183
8184 /* The printed representation of an enumeration literal with encoded
8185 name NAME. The value is good to the next call of ada_enum_name. */
8186 const char *
8187 ada_enum_name (const char *name)
8188 {
8189 static char *result;
8190 static size_t result_len = 0;
8191 char *tmp;
8192
8193 /* First, unqualify the enumeration name:
8194 1. Search for the last '.' character. If we find one, then skip
8195 all the preceeding characters, the unqualified name starts
8196 right after that dot.
8197 2. Otherwise, we may be debugging on a target where the compiler
8198 translates dots into "__". Search forward for double underscores,
8199 but stop searching when we hit an overloading suffix, which is
8200 of the form "__" followed by digits. */
8201
8202 tmp = strrchr (name, '.');
8203 if (tmp != NULL)
8204 name = tmp + 1;
8205 else
8206 {
8207 while ((tmp = strstr (name, "__")) != NULL)
8208 {
8209 if (isdigit (tmp[2]))
8210 break;
8211 else
8212 name = tmp + 2;
8213 }
8214 }
8215
8216 if (name[0] == 'Q')
8217 {
8218 int v;
8219
8220 if (name[1] == 'U' || name[1] == 'W')
8221 {
8222 if (sscanf (name + 2, "%x", &v) != 1)
8223 return name;
8224 }
8225 else
8226 return name;
8227
8228 GROW_VECT (result, result_len, 16);
8229 if (isascii (v) && isprint (v))
8230 xsnprintf (result, result_len, "'%c'", v);
8231 else if (name[1] == 'U')
8232 xsnprintf (result, result_len, "[\"%02x\"]", v);
8233 else
8234 xsnprintf (result, result_len, "[\"%04x\"]", v);
8235
8236 return result;
8237 }
8238 else
8239 {
8240 tmp = strstr (name, "__");
8241 if (tmp == NULL)
8242 tmp = strstr (name, "$");
8243 if (tmp != NULL)
8244 {
8245 GROW_VECT (result, result_len, tmp - name + 1);
8246 strncpy (result, name, tmp - name);
8247 result[tmp - name] = '\0';
8248 return result;
8249 }
8250
8251 return name;
8252 }
8253 }
8254
8255 /* Evaluate the subexpression of EXP starting at *POS as for
8256 evaluate_type, updating *POS to point just past the evaluated
8257 expression. */
8258
8259 static struct value *
8260 evaluate_subexp_type (struct expression *exp, int *pos)
8261 {
8262 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8263 }
8264
8265 /* If VAL is wrapped in an aligner or subtype wrapper, return the
8266 value it wraps. */
8267
8268 static struct value *
8269 unwrap_value (struct value *val)
8270 {
8271 struct type *type = ada_check_typedef (value_type (val));
8272
8273 if (ada_is_aligner_type (type))
8274 {
8275 struct value *v = ada_value_struct_elt (val, "F", 0);
8276 struct type *val_type = ada_check_typedef (value_type (v));
8277
8278 if (ada_type_name (val_type) == NULL)
8279 TYPE_NAME (val_type) = ada_type_name (type);
8280
8281 return unwrap_value (v);
8282 }
8283 else
8284 {
8285 struct type *raw_real_type =
8286 ada_check_typedef (ada_get_base_type (type));
8287
8288 /* If there is no parallel XVS or XVE type, then the value is
8289 already unwrapped. Return it without further modification. */
8290 if ((type == raw_real_type)
8291 && ada_find_parallel_type (type, "___XVE") == NULL)
8292 return val;
8293
8294 return
8295 coerce_unspec_val_to_type
8296 (val, ada_to_fixed_type (raw_real_type, 0,
8297 value_address (val),
8298 NULL, 1));
8299 }
8300 }
8301
8302 static struct value *
8303 cast_to_fixed (struct type *type, struct value *arg)
8304 {
8305 LONGEST val;
8306
8307 if (type == value_type (arg))
8308 return arg;
8309 else if (ada_is_fixed_point_type (value_type (arg)))
8310 val = ada_float_to_fixed (type,
8311 ada_fixed_to_float (value_type (arg),
8312 value_as_long (arg)));
8313 else
8314 {
8315 DOUBLEST argd = value_as_double (arg);
8316
8317 val = ada_float_to_fixed (type, argd);
8318 }
8319
8320 return value_from_longest (type, val);
8321 }
8322
8323 static struct value *
8324 cast_from_fixed (struct type *type, struct value *arg)
8325 {
8326 DOUBLEST val = ada_fixed_to_float (value_type (arg),
8327 value_as_long (arg));
8328
8329 return value_from_double (type, val);
8330 }
8331
8332 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8333 return the converted value. */
8334
8335 static struct value *
8336 coerce_for_assign (struct type *type, struct value *val)
8337 {
8338 struct type *type2 = value_type (val);
8339
8340 if (type == type2)
8341 return val;
8342
8343 type2 = ada_check_typedef (type2);
8344 type = ada_check_typedef (type);
8345
8346 if (TYPE_CODE (type2) == TYPE_CODE_PTR
8347 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8348 {
8349 val = ada_value_ind (val);
8350 type2 = value_type (val);
8351 }
8352
8353 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
8354 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8355 {
8356 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
8357 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8358 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
8359 error (_("Incompatible types in assignment"));
8360 deprecated_set_value_type (val, type);
8361 }
8362 return val;
8363 }
8364
8365 static struct value *
8366 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8367 {
8368 struct value *val;
8369 struct type *type1, *type2;
8370 LONGEST v, v1, v2;
8371
8372 arg1 = coerce_ref (arg1);
8373 arg2 = coerce_ref (arg2);
8374 type1 = base_type (ada_check_typedef (value_type (arg1)));
8375 type2 = base_type (ada_check_typedef (value_type (arg2)));
8376
8377 if (TYPE_CODE (type1) != TYPE_CODE_INT
8378 || TYPE_CODE (type2) != TYPE_CODE_INT)
8379 return value_binop (arg1, arg2, op);
8380
8381 switch (op)
8382 {
8383 case BINOP_MOD:
8384 case BINOP_DIV:
8385 case BINOP_REM:
8386 break;
8387 default:
8388 return value_binop (arg1, arg2, op);
8389 }
8390
8391 v2 = value_as_long (arg2);
8392 if (v2 == 0)
8393 error (_("second operand of %s must not be zero."), op_string (op));
8394
8395 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8396 return value_binop (arg1, arg2, op);
8397
8398 v1 = value_as_long (arg1);
8399 switch (op)
8400 {
8401 case BINOP_DIV:
8402 v = v1 / v2;
8403 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8404 v += v > 0 ? -1 : 1;
8405 break;
8406 case BINOP_REM:
8407 v = v1 % v2;
8408 if (v * v1 < 0)
8409 v -= v2;
8410 break;
8411 default:
8412 /* Should not reach this point. */
8413 v = 0;
8414 }
8415
8416 val = allocate_value (type1);
8417 store_unsigned_integer (value_contents_raw (val),
8418 TYPE_LENGTH (value_type (val)),
8419 gdbarch_byte_order (get_type_arch (type1)), v);
8420 return val;
8421 }
8422
8423 static int
8424 ada_value_equal (struct value *arg1, struct value *arg2)
8425 {
8426 if (ada_is_direct_array_type (value_type (arg1))
8427 || ada_is_direct_array_type (value_type (arg2)))
8428 {
8429 /* Automatically dereference any array reference before
8430 we attempt to perform the comparison. */
8431 arg1 = ada_coerce_ref (arg1);
8432 arg2 = ada_coerce_ref (arg2);
8433
8434 arg1 = ada_coerce_to_simple_array (arg1);
8435 arg2 = ada_coerce_to_simple_array (arg2);
8436 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8437 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
8438 error (_("Attempt to compare array with non-array"));
8439 /* FIXME: The following works only for types whose
8440 representations use all bits (no padding or undefined bits)
8441 and do not have user-defined equality. */
8442 return
8443 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
8444 && memcmp (value_contents (arg1), value_contents (arg2),
8445 TYPE_LENGTH (value_type (arg1))) == 0;
8446 }
8447 return value_equal (arg1, arg2);
8448 }
8449
8450 /* Total number of component associations in the aggregate starting at
8451 index PC in EXP. Assumes that index PC is the start of an
8452 OP_AGGREGATE. */
8453
8454 static int
8455 num_component_specs (struct expression *exp, int pc)
8456 {
8457 int n, m, i;
8458
8459 m = exp->elts[pc + 1].longconst;
8460 pc += 3;
8461 n = 0;
8462 for (i = 0; i < m; i += 1)
8463 {
8464 switch (exp->elts[pc].opcode)
8465 {
8466 default:
8467 n += 1;
8468 break;
8469 case OP_CHOICES:
8470 n += exp->elts[pc + 1].longconst;
8471 break;
8472 }
8473 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8474 }
8475 return n;
8476 }
8477
8478 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
8479 component of LHS (a simple array or a record), updating *POS past
8480 the expression, assuming that LHS is contained in CONTAINER. Does
8481 not modify the inferior's memory, nor does it modify LHS (unless
8482 LHS == CONTAINER). */
8483
8484 static void
8485 assign_component (struct value *container, struct value *lhs, LONGEST index,
8486 struct expression *exp, int *pos)
8487 {
8488 struct value *mark = value_mark ();
8489 struct value *elt;
8490
8491 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8492 {
8493 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
8494 struct value *index_val = value_from_longest (index_type, index);
8495
8496 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8497 }
8498 else
8499 {
8500 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8501 elt = ada_to_fixed_value (unwrap_value (elt));
8502 }
8503
8504 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8505 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8506 else
8507 value_assign_to_component (container, elt,
8508 ada_evaluate_subexp (NULL, exp, pos,
8509 EVAL_NORMAL));
8510
8511 value_free_to_mark (mark);
8512 }
8513
8514 /* Assuming that LHS represents an lvalue having a record or array
8515 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8516 of that aggregate's value to LHS, advancing *POS past the
8517 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8518 lvalue containing LHS (possibly LHS itself). Does not modify
8519 the inferior's memory, nor does it modify the contents of
8520 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8521
8522 static struct value *
8523 assign_aggregate (struct value *container,
8524 struct value *lhs, struct expression *exp,
8525 int *pos, enum noside noside)
8526 {
8527 struct type *lhs_type;
8528 int n = exp->elts[*pos+1].longconst;
8529 LONGEST low_index, high_index;
8530 int num_specs;
8531 LONGEST *indices;
8532 int max_indices, num_indices;
8533 int is_array_aggregate;
8534 int i;
8535
8536 *pos += 3;
8537 if (noside != EVAL_NORMAL)
8538 {
8539 int i;
8540
8541 for (i = 0; i < n; i += 1)
8542 ada_evaluate_subexp (NULL, exp, pos, noside);
8543 return container;
8544 }
8545
8546 container = ada_coerce_ref (container);
8547 if (ada_is_direct_array_type (value_type (container)))
8548 container = ada_coerce_to_simple_array (container);
8549 lhs = ada_coerce_ref (lhs);
8550 if (!deprecated_value_modifiable (lhs))
8551 error (_("Left operand of assignment is not a modifiable lvalue."));
8552
8553 lhs_type = value_type (lhs);
8554 if (ada_is_direct_array_type (lhs_type))
8555 {
8556 lhs = ada_coerce_to_simple_array (lhs);
8557 lhs_type = value_type (lhs);
8558 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8559 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8560 is_array_aggregate = 1;
8561 }
8562 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8563 {
8564 low_index = 0;
8565 high_index = num_visible_fields (lhs_type) - 1;
8566 is_array_aggregate = 0;
8567 }
8568 else
8569 error (_("Left-hand side must be array or record."));
8570
8571 num_specs = num_component_specs (exp, *pos - 3);
8572 max_indices = 4 * num_specs + 4;
8573 indices = alloca (max_indices * sizeof (indices[0]));
8574 indices[0] = indices[1] = low_index - 1;
8575 indices[2] = indices[3] = high_index + 1;
8576 num_indices = 4;
8577
8578 for (i = 0; i < n; i += 1)
8579 {
8580 switch (exp->elts[*pos].opcode)
8581 {
8582 case OP_CHOICES:
8583 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8584 &num_indices, max_indices,
8585 low_index, high_index);
8586 break;
8587 case OP_POSITIONAL:
8588 aggregate_assign_positional (container, lhs, exp, pos, indices,
8589 &num_indices, max_indices,
8590 low_index, high_index);
8591 break;
8592 case OP_OTHERS:
8593 if (i != n-1)
8594 error (_("Misplaced 'others' clause"));
8595 aggregate_assign_others (container, lhs, exp, pos, indices,
8596 num_indices, low_index, high_index);
8597 break;
8598 default:
8599 error (_("Internal error: bad aggregate clause"));
8600 }
8601 }
8602
8603 return container;
8604 }
8605
8606 /* Assign into the component of LHS indexed by the OP_POSITIONAL
8607 construct at *POS, updating *POS past the construct, given that
8608 the positions are relative to lower bound LOW, where HIGH is the
8609 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8610 updating *NUM_INDICES as needed. CONTAINER is as for
8611 assign_aggregate. */
8612 static void
8613 aggregate_assign_positional (struct value *container,
8614 struct value *lhs, struct expression *exp,
8615 int *pos, LONGEST *indices, int *num_indices,
8616 int max_indices, LONGEST low, LONGEST high)
8617 {
8618 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8619
8620 if (ind - 1 == high)
8621 warning (_("Extra components in aggregate ignored."));
8622 if (ind <= high)
8623 {
8624 add_component_interval (ind, ind, indices, num_indices, max_indices);
8625 *pos += 3;
8626 assign_component (container, lhs, ind, exp, pos);
8627 }
8628 else
8629 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8630 }
8631
8632 /* Assign into the components of LHS indexed by the OP_CHOICES
8633 construct at *POS, updating *POS past the construct, given that
8634 the allowable indices are LOW..HIGH. Record the indices assigned
8635 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8636 needed. CONTAINER is as for assign_aggregate. */
8637 static void
8638 aggregate_assign_from_choices (struct value *container,
8639 struct value *lhs, struct expression *exp,
8640 int *pos, LONGEST *indices, int *num_indices,
8641 int max_indices, LONGEST low, LONGEST high)
8642 {
8643 int j;
8644 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8645 int choice_pos, expr_pc;
8646 int is_array = ada_is_direct_array_type (value_type (lhs));
8647
8648 choice_pos = *pos += 3;
8649
8650 for (j = 0; j < n_choices; j += 1)
8651 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8652 expr_pc = *pos;
8653 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8654
8655 for (j = 0; j < n_choices; j += 1)
8656 {
8657 LONGEST lower, upper;
8658 enum exp_opcode op = exp->elts[choice_pos].opcode;
8659
8660 if (op == OP_DISCRETE_RANGE)
8661 {
8662 choice_pos += 1;
8663 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8664 EVAL_NORMAL));
8665 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8666 EVAL_NORMAL));
8667 }
8668 else if (is_array)
8669 {
8670 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8671 EVAL_NORMAL));
8672 upper = lower;
8673 }
8674 else
8675 {
8676 int ind;
8677 char *name;
8678
8679 switch (op)
8680 {
8681 case OP_NAME:
8682 name = &exp->elts[choice_pos + 2].string;
8683 break;
8684 case OP_VAR_VALUE:
8685 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8686 break;
8687 default:
8688 error (_("Invalid record component association."));
8689 }
8690 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8691 ind = 0;
8692 if (! find_struct_field (name, value_type (lhs), 0,
8693 NULL, NULL, NULL, NULL, &ind))
8694 error (_("Unknown component name: %s."), name);
8695 lower = upper = ind;
8696 }
8697
8698 if (lower <= upper && (lower < low || upper > high))
8699 error (_("Index in component association out of bounds."));
8700
8701 add_component_interval (lower, upper, indices, num_indices,
8702 max_indices);
8703 while (lower <= upper)
8704 {
8705 int pos1;
8706
8707 pos1 = expr_pc;
8708 assign_component (container, lhs, lower, exp, &pos1);
8709 lower += 1;
8710 }
8711 }
8712 }
8713
8714 /* Assign the value of the expression in the OP_OTHERS construct in
8715 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8716 have not been previously assigned. The index intervals already assigned
8717 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8718 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
8719 static void
8720 aggregate_assign_others (struct value *container,
8721 struct value *lhs, struct expression *exp,
8722 int *pos, LONGEST *indices, int num_indices,
8723 LONGEST low, LONGEST high)
8724 {
8725 int i;
8726 int expr_pc = *pos + 1;
8727
8728 for (i = 0; i < num_indices - 2; i += 2)
8729 {
8730 LONGEST ind;
8731
8732 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8733 {
8734 int localpos;
8735
8736 localpos = expr_pc;
8737 assign_component (container, lhs, ind, exp, &localpos);
8738 }
8739 }
8740 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8741 }
8742
8743 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
8744 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8745 modifying *SIZE as needed. It is an error if *SIZE exceeds
8746 MAX_SIZE. The resulting intervals do not overlap. */
8747 static void
8748 add_component_interval (LONGEST low, LONGEST high,
8749 LONGEST* indices, int *size, int max_size)
8750 {
8751 int i, j;
8752
8753 for (i = 0; i < *size; i += 2) {
8754 if (high >= indices[i] && low <= indices[i + 1])
8755 {
8756 int kh;
8757
8758 for (kh = i + 2; kh < *size; kh += 2)
8759 if (high < indices[kh])
8760 break;
8761 if (low < indices[i])
8762 indices[i] = low;
8763 indices[i + 1] = indices[kh - 1];
8764 if (high > indices[i + 1])
8765 indices[i + 1] = high;
8766 memcpy (indices + i + 2, indices + kh, *size - kh);
8767 *size -= kh - i - 2;
8768 return;
8769 }
8770 else if (high < indices[i])
8771 break;
8772 }
8773
8774 if (*size == max_size)
8775 error (_("Internal error: miscounted aggregate components."));
8776 *size += 2;
8777 for (j = *size-1; j >= i+2; j -= 1)
8778 indices[j] = indices[j - 2];
8779 indices[i] = low;
8780 indices[i + 1] = high;
8781 }
8782
8783 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8784 is different. */
8785
8786 static struct value *
8787 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8788 {
8789 if (type == ada_check_typedef (value_type (arg2)))
8790 return arg2;
8791
8792 if (ada_is_fixed_point_type (type))
8793 return (cast_to_fixed (type, arg2));
8794
8795 if (ada_is_fixed_point_type (value_type (arg2)))
8796 return cast_from_fixed (type, arg2);
8797
8798 return value_cast (type, arg2);
8799 }
8800
8801 /* Evaluating Ada expressions, and printing their result.
8802 ------------------------------------------------------
8803
8804 1. Introduction:
8805 ----------------
8806
8807 We usually evaluate an Ada expression in order to print its value.
8808 We also evaluate an expression in order to print its type, which
8809 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
8810 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
8811 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
8812 the evaluation compared to the EVAL_NORMAL, but is otherwise very
8813 similar.
8814
8815 Evaluating expressions is a little more complicated for Ada entities
8816 than it is for entities in languages such as C. The main reason for
8817 this is that Ada provides types whose definition might be dynamic.
8818 One example of such types is variant records. Or another example
8819 would be an array whose bounds can only be known at run time.
8820
8821 The following description is a general guide as to what should be
8822 done (and what should NOT be done) in order to evaluate an expression
8823 involving such types, and when. This does not cover how the semantic
8824 information is encoded by GNAT as this is covered separatly. For the
8825 document used as the reference for the GNAT encoding, see exp_dbug.ads
8826 in the GNAT sources.
8827
8828 Ideally, we should embed each part of this description next to its
8829 associated code. Unfortunately, the amount of code is so vast right
8830 now that it's hard to see whether the code handling a particular
8831 situation might be duplicated or not. One day, when the code is
8832 cleaned up, this guide might become redundant with the comments
8833 inserted in the code, and we might want to remove it.
8834
8835 2. ``Fixing'' an Entity, the Simple Case:
8836 -----------------------------------------
8837
8838 When evaluating Ada expressions, the tricky issue is that they may
8839 reference entities whose type contents and size are not statically
8840 known. Consider for instance a variant record:
8841
8842 type Rec (Empty : Boolean := True) is record
8843 case Empty is
8844 when True => null;
8845 when False => Value : Integer;
8846 end case;
8847 end record;
8848 Yes : Rec := (Empty => False, Value => 1);
8849 No : Rec := (empty => True);
8850
8851 The size and contents of that record depends on the value of the
8852 descriminant (Rec.Empty). At this point, neither the debugging
8853 information nor the associated type structure in GDB are able to
8854 express such dynamic types. So what the debugger does is to create
8855 "fixed" versions of the type that applies to the specific object.
8856 We also informally refer to this opperation as "fixing" an object,
8857 which means creating its associated fixed type.
8858
8859 Example: when printing the value of variable "Yes" above, its fixed
8860 type would look like this:
8861
8862 type Rec is record
8863 Empty : Boolean;
8864 Value : Integer;
8865 end record;
8866
8867 On the other hand, if we printed the value of "No", its fixed type
8868 would become:
8869
8870 type Rec is record
8871 Empty : Boolean;
8872 end record;
8873
8874 Things become a little more complicated when trying to fix an entity
8875 with a dynamic type that directly contains another dynamic type,
8876 such as an array of variant records, for instance. There are
8877 two possible cases: Arrays, and records.
8878
8879 3. ``Fixing'' Arrays:
8880 ---------------------
8881
8882 The type structure in GDB describes an array in terms of its bounds,
8883 and the type of its elements. By design, all elements in the array
8884 have the same type and we cannot represent an array of variant elements
8885 using the current type structure in GDB. When fixing an array,
8886 we cannot fix the array element, as we would potentially need one
8887 fixed type per element of the array. As a result, the best we can do
8888 when fixing an array is to produce an array whose bounds and size
8889 are correct (allowing us to read it from memory), but without having
8890 touched its element type. Fixing each element will be done later,
8891 when (if) necessary.
8892
8893 Arrays are a little simpler to handle than records, because the same
8894 amount of memory is allocated for each element of the array, even if
8895 the amount of space actually used by each element differs from element
8896 to element. Consider for instance the following array of type Rec:
8897
8898 type Rec_Array is array (1 .. 2) of Rec;
8899
8900 The actual amount of memory occupied by each element might be different
8901 from element to element, depending on the value of their discriminant.
8902 But the amount of space reserved for each element in the array remains
8903 fixed regardless. So we simply need to compute that size using
8904 the debugging information available, from which we can then determine
8905 the array size (we multiply the number of elements of the array by
8906 the size of each element).
8907
8908 The simplest case is when we have an array of a constrained element
8909 type. For instance, consider the following type declarations:
8910
8911 type Bounded_String (Max_Size : Integer) is
8912 Length : Integer;
8913 Buffer : String (1 .. Max_Size);
8914 end record;
8915 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
8916
8917 In this case, the compiler describes the array as an array of
8918 variable-size elements (identified by its XVS suffix) for which
8919 the size can be read in the parallel XVZ variable.
8920
8921 In the case of an array of an unconstrained element type, the compiler
8922 wraps the array element inside a private PAD type. This type should not
8923 be shown to the user, and must be "unwrap"'ed before printing. Note
8924 that we also use the adjective "aligner" in our code to designate
8925 these wrapper types.
8926
8927 In some cases, the size allocated for each element is statically
8928 known. In that case, the PAD type already has the correct size,
8929 and the array element should remain unfixed.
8930
8931 But there are cases when this size is not statically known.
8932 For instance, assuming that "Five" is an integer variable:
8933
8934 type Dynamic is array (1 .. Five) of Integer;
8935 type Wrapper (Has_Length : Boolean := False) is record
8936 Data : Dynamic;
8937 case Has_Length is
8938 when True => Length : Integer;
8939 when False => null;
8940 end case;
8941 end record;
8942 type Wrapper_Array is array (1 .. 2) of Wrapper;
8943
8944 Hello : Wrapper_Array := (others => (Has_Length => True,
8945 Data => (others => 17),
8946 Length => 1));
8947
8948
8949 The debugging info would describe variable Hello as being an
8950 array of a PAD type. The size of that PAD type is not statically
8951 known, but can be determined using a parallel XVZ variable.
8952 In that case, a copy of the PAD type with the correct size should
8953 be used for the fixed array.
8954
8955 3. ``Fixing'' record type objects:
8956 ----------------------------------
8957
8958 Things are slightly different from arrays in the case of dynamic
8959 record types. In this case, in order to compute the associated
8960 fixed type, we need to determine the size and offset of each of
8961 its components. This, in turn, requires us to compute the fixed
8962 type of each of these components.
8963
8964 Consider for instance the example:
8965
8966 type Bounded_String (Max_Size : Natural) is record
8967 Str : String (1 .. Max_Size);
8968 Length : Natural;
8969 end record;
8970 My_String : Bounded_String (Max_Size => 10);
8971
8972 In that case, the position of field "Length" depends on the size
8973 of field Str, which itself depends on the value of the Max_Size
8974 discriminant. In order to fix the type of variable My_String,
8975 we need to fix the type of field Str. Therefore, fixing a variant
8976 record requires us to fix each of its components.
8977
8978 However, if a component does not have a dynamic size, the component
8979 should not be fixed. In particular, fields that use a PAD type
8980 should not fixed. Here is an example where this might happen
8981 (assuming type Rec above):
8982
8983 type Container (Big : Boolean) is record
8984 First : Rec;
8985 After : Integer;
8986 case Big is
8987 when True => Another : Integer;
8988 when False => null;
8989 end case;
8990 end record;
8991 My_Container : Container := (Big => False,
8992 First => (Empty => True),
8993 After => 42);
8994
8995 In that example, the compiler creates a PAD type for component First,
8996 whose size is constant, and then positions the component After just
8997 right after it. The offset of component After is therefore constant
8998 in this case.
8999
9000 The debugger computes the position of each field based on an algorithm
9001 that uses, among other things, the actual position and size of the field
9002 preceding it. Let's now imagine that the user is trying to print
9003 the value of My_Container. If the type fixing was recursive, we would
9004 end up computing the offset of field After based on the size of the
9005 fixed version of field First. And since in our example First has
9006 only one actual field, the size of the fixed type is actually smaller
9007 than the amount of space allocated to that field, and thus we would
9008 compute the wrong offset of field After.
9009
9010 To make things more complicated, we need to watch out for dynamic
9011 components of variant records (identified by the ___XVL suffix in
9012 the component name). Even if the target type is a PAD type, the size
9013 of that type might not be statically known. So the PAD type needs
9014 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9015 we might end up with the wrong size for our component. This can be
9016 observed with the following type declarations:
9017
9018 type Octal is new Integer range 0 .. 7;
9019 type Octal_Array is array (Positive range <>) of Octal;
9020 pragma Pack (Octal_Array);
9021
9022 type Octal_Buffer (Size : Positive) is record
9023 Buffer : Octal_Array (1 .. Size);
9024 Length : Integer;
9025 end record;
9026
9027 In that case, Buffer is a PAD type whose size is unset and needs
9028 to be computed by fixing the unwrapped type.
9029
9030 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9031 ----------------------------------------------------------
9032
9033 Lastly, when should the sub-elements of an entity that remained unfixed
9034 thus far, be actually fixed?
9035
9036 The answer is: Only when referencing that element. For instance
9037 when selecting one component of a record, this specific component
9038 should be fixed at that point in time. Or when printing the value
9039 of a record, each component should be fixed before its value gets
9040 printed. Similarly for arrays, the element of the array should be
9041 fixed when printing each element of the array, or when extracting
9042 one element out of that array. On the other hand, fixing should
9043 not be performed on the elements when taking a slice of an array!
9044
9045 Note that one of the side-effects of miscomputing the offset and
9046 size of each field is that we end up also miscomputing the size
9047 of the containing type. This can have adverse results when computing
9048 the value of an entity. GDB fetches the value of an entity based
9049 on the size of its type, and thus a wrong size causes GDB to fetch
9050 the wrong amount of memory. In the case where the computed size is
9051 too small, GDB fetches too little data to print the value of our
9052 entiry. Results in this case as unpredicatble, as we usually read
9053 past the buffer containing the data =:-o. */
9054
9055 /* Implement the evaluate_exp routine in the exp_descriptor structure
9056 for the Ada language. */
9057
9058 static struct value *
9059 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
9060 int *pos, enum noside noside)
9061 {
9062 enum exp_opcode op;
9063 int tem;
9064 int pc;
9065 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9066 struct type *type;
9067 int nargs, oplen;
9068 struct value **argvec;
9069
9070 pc = *pos;
9071 *pos += 1;
9072 op = exp->elts[pc].opcode;
9073
9074 switch (op)
9075 {
9076 default:
9077 *pos -= 1;
9078 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9079 arg1 = unwrap_value (arg1);
9080
9081 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9082 then we need to perform the conversion manually, because
9083 evaluate_subexp_standard doesn't do it. This conversion is
9084 necessary in Ada because the different kinds of float/fixed
9085 types in Ada have different representations.
9086
9087 Similarly, we need to perform the conversion from OP_LONG
9088 ourselves. */
9089 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9090 arg1 = ada_value_cast (expect_type, arg1, noside);
9091
9092 return arg1;
9093
9094 case OP_STRING:
9095 {
9096 struct value *result;
9097
9098 *pos -= 1;
9099 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9100 /* The result type will have code OP_STRING, bashed there from
9101 OP_ARRAY. Bash it back. */
9102 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9103 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
9104 return result;
9105 }
9106
9107 case UNOP_CAST:
9108 (*pos) += 2;
9109 type = exp->elts[pc + 1].type;
9110 arg1 = evaluate_subexp (type, exp, pos, noside);
9111 if (noside == EVAL_SKIP)
9112 goto nosideret;
9113 arg1 = ada_value_cast (type, arg1, noside);
9114 return arg1;
9115
9116 case UNOP_QUAL:
9117 (*pos) += 2;
9118 type = exp->elts[pc + 1].type;
9119 return ada_evaluate_subexp (type, exp, pos, noside);
9120
9121 case BINOP_ASSIGN:
9122 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9123 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9124 {
9125 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9126 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9127 return arg1;
9128 return ada_value_assign (arg1, arg1);
9129 }
9130 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9131 except if the lhs of our assignment is a convenience variable.
9132 In the case of assigning to a convenience variable, the lhs
9133 should be exactly the result of the evaluation of the rhs. */
9134 type = value_type (arg1);
9135 if (VALUE_LVAL (arg1) == lval_internalvar)
9136 type = NULL;
9137 arg2 = evaluate_subexp (type, exp, pos, noside);
9138 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9139 return arg1;
9140 if (ada_is_fixed_point_type (value_type (arg1)))
9141 arg2 = cast_to_fixed (value_type (arg1), arg2);
9142 else if (ada_is_fixed_point_type (value_type (arg2)))
9143 error
9144 (_("Fixed-point values must be assigned to fixed-point variables"));
9145 else
9146 arg2 = coerce_for_assign (value_type (arg1), arg2);
9147 return ada_value_assign (arg1, arg2);
9148
9149 case BINOP_ADD:
9150 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9151 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9152 if (noside == EVAL_SKIP)
9153 goto nosideret;
9154 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9155 return (value_from_longest
9156 (value_type (arg1),
9157 value_as_long (arg1) + value_as_long (arg2)));
9158 if ((ada_is_fixed_point_type (value_type (arg1))
9159 || ada_is_fixed_point_type (value_type (arg2)))
9160 && value_type (arg1) != value_type (arg2))
9161 error (_("Operands of fixed-point addition must have the same type"));
9162 /* Do the addition, and cast the result to the type of the first
9163 argument. We cannot cast the result to a reference type, so if
9164 ARG1 is a reference type, find its underlying type. */
9165 type = value_type (arg1);
9166 while (TYPE_CODE (type) == TYPE_CODE_REF)
9167 type = TYPE_TARGET_TYPE (type);
9168 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9169 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
9170
9171 case BINOP_SUB:
9172 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9173 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9174 if (noside == EVAL_SKIP)
9175 goto nosideret;
9176 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9177 return (value_from_longest
9178 (value_type (arg1),
9179 value_as_long (arg1) - value_as_long (arg2)));
9180 if ((ada_is_fixed_point_type (value_type (arg1))
9181 || ada_is_fixed_point_type (value_type (arg2)))
9182 && value_type (arg1) != value_type (arg2))
9183 error (_("Operands of fixed-point subtraction "
9184 "must have the same type"));
9185 /* Do the substraction, and cast the result to the type of the first
9186 argument. We cannot cast the result to a reference type, so if
9187 ARG1 is a reference type, find its underlying type. */
9188 type = value_type (arg1);
9189 while (TYPE_CODE (type) == TYPE_CODE_REF)
9190 type = TYPE_TARGET_TYPE (type);
9191 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9192 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
9193
9194 case BINOP_MUL:
9195 case BINOP_DIV:
9196 case BINOP_REM:
9197 case BINOP_MOD:
9198 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9199 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9200 if (noside == EVAL_SKIP)
9201 goto nosideret;
9202 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9203 {
9204 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9205 return value_zero (value_type (arg1), not_lval);
9206 }
9207 else
9208 {
9209 type = builtin_type (exp->gdbarch)->builtin_double;
9210 if (ada_is_fixed_point_type (value_type (arg1)))
9211 arg1 = cast_from_fixed (type, arg1);
9212 if (ada_is_fixed_point_type (value_type (arg2)))
9213 arg2 = cast_from_fixed (type, arg2);
9214 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9215 return ada_value_binop (arg1, arg2, op);
9216 }
9217
9218 case BINOP_EQUAL:
9219 case BINOP_NOTEQUAL:
9220 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9221 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
9222 if (noside == EVAL_SKIP)
9223 goto nosideret;
9224 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9225 tem = 0;
9226 else
9227 {
9228 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9229 tem = ada_value_equal (arg1, arg2);
9230 }
9231 if (op == BINOP_NOTEQUAL)
9232 tem = !tem;
9233 type = language_bool_type (exp->language_defn, exp->gdbarch);
9234 return value_from_longest (type, (LONGEST) tem);
9235
9236 case UNOP_NEG:
9237 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9238 if (noside == EVAL_SKIP)
9239 goto nosideret;
9240 else if (ada_is_fixed_point_type (value_type (arg1)))
9241 return value_cast (value_type (arg1), value_neg (arg1));
9242 else
9243 {
9244 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9245 return value_neg (arg1);
9246 }
9247
9248 case BINOP_LOGICAL_AND:
9249 case BINOP_LOGICAL_OR:
9250 case UNOP_LOGICAL_NOT:
9251 {
9252 struct value *val;
9253
9254 *pos -= 1;
9255 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9256 type = language_bool_type (exp->language_defn, exp->gdbarch);
9257 return value_cast (type, val);
9258 }
9259
9260 case BINOP_BITWISE_AND:
9261 case BINOP_BITWISE_IOR:
9262 case BINOP_BITWISE_XOR:
9263 {
9264 struct value *val;
9265
9266 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9267 *pos = pc;
9268 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9269
9270 return value_cast (value_type (arg1), val);
9271 }
9272
9273 case OP_VAR_VALUE:
9274 *pos -= 1;
9275
9276 if (noside == EVAL_SKIP)
9277 {
9278 *pos += 4;
9279 goto nosideret;
9280 }
9281 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
9282 /* Only encountered when an unresolved symbol occurs in a
9283 context other than a function call, in which case, it is
9284 invalid. */
9285 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9286 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
9287 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9288 {
9289 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
9290 /* Check to see if this is a tagged type. We also need to handle
9291 the case where the type is a reference to a tagged type, but
9292 we have to be careful to exclude pointers to tagged types.
9293 The latter should be shown as usual (as a pointer), whereas
9294 a reference should mostly be transparent to the user. */
9295 if (ada_is_tagged_type (type, 0)
9296 || (TYPE_CODE(type) == TYPE_CODE_REF
9297 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
9298 {
9299 /* Tagged types are a little special in the fact that the real
9300 type is dynamic and can only be determined by inspecting the
9301 object's tag. This means that we need to get the object's
9302 value first (EVAL_NORMAL) and then extract the actual object
9303 type from its tag.
9304
9305 Note that we cannot skip the final step where we extract
9306 the object type from its tag, because the EVAL_NORMAL phase
9307 results in dynamic components being resolved into fixed ones.
9308 This can cause problems when trying to print the type
9309 description of tagged types whose parent has a dynamic size:
9310 We use the type name of the "_parent" component in order
9311 to print the name of the ancestor type in the type description.
9312 If that component had a dynamic size, the resolution into
9313 a fixed type would result in the loss of that type name,
9314 thus preventing us from printing the name of the ancestor
9315 type in the type description. */
9316 struct type *actual_type;
9317
9318 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
9319 actual_type = type_from_tag (ada_value_tag (arg1));
9320 if (actual_type == NULL)
9321 /* If, for some reason, we were unable to determine
9322 the actual type from the tag, then use the static
9323 approximation that we just computed as a fallback.
9324 This can happen if the debugging information is
9325 incomplete, for instance. */
9326 actual_type = type;
9327
9328 return value_zero (actual_type, not_lval);
9329 }
9330
9331 *pos += 4;
9332 return value_zero
9333 (to_static_fixed_type
9334 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
9335 not_lval);
9336 }
9337 else
9338 {
9339 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9340 arg1 = unwrap_value (arg1);
9341 return ada_to_fixed_value (arg1);
9342 }
9343
9344 case OP_FUNCALL:
9345 (*pos) += 2;
9346
9347 /* Allocate arg vector, including space for the function to be
9348 called in argvec[0] and a terminating NULL. */
9349 nargs = longest_to_int (exp->elts[pc + 1].longconst);
9350 argvec =
9351 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
9352
9353 if (exp->elts[*pos].opcode == OP_VAR_VALUE
9354 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
9355 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9356 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
9357 else
9358 {
9359 for (tem = 0; tem <= nargs; tem += 1)
9360 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9361 argvec[tem] = 0;
9362
9363 if (noside == EVAL_SKIP)
9364 goto nosideret;
9365 }
9366
9367 if (ada_is_constrained_packed_array_type
9368 (desc_base_type (value_type (argvec[0]))))
9369 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
9370 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9371 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
9372 /* This is a packed array that has already been fixed, and
9373 therefore already coerced to a simple array. Nothing further
9374 to do. */
9375 ;
9376 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
9377 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9378 && VALUE_LVAL (argvec[0]) == lval_memory))
9379 argvec[0] = value_addr (argvec[0]);
9380
9381 type = ada_check_typedef (value_type (argvec[0]));
9382
9383 /* Ada allows us to implicitly dereference arrays when subscripting
9384 them. So, if this is an typedef (encoding use for array access
9385 types encoded as fat pointers), strip it now. */
9386 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
9387 type = ada_typedef_target_type (type);
9388
9389 if (TYPE_CODE (type) == TYPE_CODE_PTR)
9390 {
9391 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
9392 {
9393 case TYPE_CODE_FUNC:
9394 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9395 break;
9396 case TYPE_CODE_ARRAY:
9397 break;
9398 case TYPE_CODE_STRUCT:
9399 if (noside != EVAL_AVOID_SIDE_EFFECTS)
9400 argvec[0] = ada_value_ind (argvec[0]);
9401 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9402 break;
9403 default:
9404 error (_("cannot subscript or call something of type `%s'"),
9405 ada_type_name (value_type (argvec[0])));
9406 break;
9407 }
9408 }
9409
9410 switch (TYPE_CODE (type))
9411 {
9412 case TYPE_CODE_FUNC:
9413 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9414 return allocate_value (TYPE_TARGET_TYPE (type));
9415 return call_function_by_hand (argvec[0], nargs, argvec + 1);
9416 case TYPE_CODE_STRUCT:
9417 {
9418 int arity;
9419
9420 arity = ada_array_arity (type);
9421 type = ada_array_element_type (type, nargs);
9422 if (type == NULL)
9423 error (_("cannot subscript or call a record"));
9424 if (arity != nargs)
9425 error (_("wrong number of subscripts; expecting %d"), arity);
9426 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9427 return value_zero (ada_aligned_type (type), lval_memory);
9428 return
9429 unwrap_value (ada_value_subscript
9430 (argvec[0], nargs, argvec + 1));
9431 }
9432 case TYPE_CODE_ARRAY:
9433 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9434 {
9435 type = ada_array_element_type (type, nargs);
9436 if (type == NULL)
9437 error (_("element type of array unknown"));
9438 else
9439 return value_zero (ada_aligned_type (type), lval_memory);
9440 }
9441 return
9442 unwrap_value (ada_value_subscript
9443 (ada_coerce_to_simple_array (argvec[0]),
9444 nargs, argvec + 1));
9445 case TYPE_CODE_PTR: /* Pointer to array */
9446 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
9447 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9448 {
9449 type = ada_array_element_type (type, nargs);
9450 if (type == NULL)
9451 error (_("element type of array unknown"));
9452 else
9453 return value_zero (ada_aligned_type (type), lval_memory);
9454 }
9455 return
9456 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
9457 nargs, argvec + 1));
9458
9459 default:
9460 error (_("Attempt to index or call something other than an "
9461 "array or function"));
9462 }
9463
9464 case TERNOP_SLICE:
9465 {
9466 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9467 struct value *low_bound_val =
9468 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9469 struct value *high_bound_val =
9470 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9471 LONGEST low_bound;
9472 LONGEST high_bound;
9473
9474 low_bound_val = coerce_ref (low_bound_val);
9475 high_bound_val = coerce_ref (high_bound_val);
9476 low_bound = pos_atr (low_bound_val);
9477 high_bound = pos_atr (high_bound_val);
9478
9479 if (noside == EVAL_SKIP)
9480 goto nosideret;
9481
9482 /* If this is a reference to an aligner type, then remove all
9483 the aligners. */
9484 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9485 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
9486 TYPE_TARGET_TYPE (value_type (array)) =
9487 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
9488
9489 if (ada_is_constrained_packed_array_type (value_type (array)))
9490 error (_("cannot slice a packed array"));
9491
9492 /* If this is a reference to an array or an array lvalue,
9493 convert to a pointer. */
9494 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9495 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
9496 && VALUE_LVAL (array) == lval_memory))
9497 array = value_addr (array);
9498
9499 if (noside == EVAL_AVOID_SIDE_EFFECTS
9500 && ada_is_array_descriptor_type (ada_check_typedef
9501 (value_type (array))))
9502 return empty_array (ada_type_of_array (array, 0), low_bound);
9503
9504 array = ada_coerce_to_simple_array_ptr (array);
9505
9506 /* If we have more than one level of pointer indirection,
9507 dereference the value until we get only one level. */
9508 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
9509 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
9510 == TYPE_CODE_PTR))
9511 array = value_ind (array);
9512
9513 /* Make sure we really do have an array type before going further,
9514 to avoid a SEGV when trying to get the index type or the target
9515 type later down the road if the debug info generated by
9516 the compiler is incorrect or incomplete. */
9517 if (!ada_is_simple_array_type (value_type (array)))
9518 error (_("cannot take slice of non-array"));
9519
9520 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
9521 {
9522 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
9523 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
9524 low_bound);
9525 else
9526 {
9527 struct type *arr_type0 =
9528 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
9529 NULL, 1);
9530
9531 return ada_value_slice_from_ptr (array, arr_type0,
9532 longest_to_int (low_bound),
9533 longest_to_int (high_bound));
9534 }
9535 }
9536 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9537 return array;
9538 else if (high_bound < low_bound)
9539 return empty_array (value_type (array), low_bound);
9540 else
9541 return ada_value_slice (array, longest_to_int (low_bound),
9542 longest_to_int (high_bound));
9543 }
9544
9545 case UNOP_IN_RANGE:
9546 (*pos) += 2;
9547 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9548 type = check_typedef (exp->elts[pc + 1].type);
9549
9550 if (noside == EVAL_SKIP)
9551 goto nosideret;
9552
9553 switch (TYPE_CODE (type))
9554 {
9555 default:
9556 lim_warning (_("Membership test incompletely implemented; "
9557 "always returns true"));
9558 type = language_bool_type (exp->language_defn, exp->gdbarch);
9559 return value_from_longest (type, (LONGEST) 1);
9560
9561 case TYPE_CODE_RANGE:
9562 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
9563 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
9564 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9565 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9566 type = language_bool_type (exp->language_defn, exp->gdbarch);
9567 return
9568 value_from_longest (type,
9569 (value_less (arg1, arg3)
9570 || value_equal (arg1, arg3))
9571 && (value_less (arg2, arg1)
9572 || value_equal (arg2, arg1)));
9573 }
9574
9575 case BINOP_IN_BOUNDS:
9576 (*pos) += 2;
9577 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9578 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9579
9580 if (noside == EVAL_SKIP)
9581 goto nosideret;
9582
9583 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9584 {
9585 type = language_bool_type (exp->language_defn, exp->gdbarch);
9586 return value_zero (type, not_lval);
9587 }
9588
9589 tem = longest_to_int (exp->elts[pc + 1].longconst);
9590
9591 type = ada_index_type (value_type (arg2), tem, "range");
9592 if (!type)
9593 type = value_type (arg1);
9594
9595 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
9596 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
9597
9598 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9599 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9600 type = language_bool_type (exp->language_defn, exp->gdbarch);
9601 return
9602 value_from_longest (type,
9603 (value_less (arg1, arg3)
9604 || value_equal (arg1, arg3))
9605 && (value_less (arg2, arg1)
9606 || value_equal (arg2, arg1)));
9607
9608 case TERNOP_IN_RANGE:
9609 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9610 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9611 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9612
9613 if (noside == EVAL_SKIP)
9614 goto nosideret;
9615
9616 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9617 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9618 type = language_bool_type (exp->language_defn, exp->gdbarch);
9619 return
9620 value_from_longest (type,
9621 (value_less (arg1, arg3)
9622 || value_equal (arg1, arg3))
9623 && (value_less (arg2, arg1)
9624 || value_equal (arg2, arg1)));
9625
9626 case OP_ATR_FIRST:
9627 case OP_ATR_LAST:
9628 case OP_ATR_LENGTH:
9629 {
9630 struct type *type_arg;
9631
9632 if (exp->elts[*pos].opcode == OP_TYPE)
9633 {
9634 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9635 arg1 = NULL;
9636 type_arg = check_typedef (exp->elts[pc + 2].type);
9637 }
9638 else
9639 {
9640 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9641 type_arg = NULL;
9642 }
9643
9644 if (exp->elts[*pos].opcode != OP_LONG)
9645 error (_("Invalid operand to '%s"), ada_attribute_name (op));
9646 tem = longest_to_int (exp->elts[*pos + 2].longconst);
9647 *pos += 4;
9648
9649 if (noside == EVAL_SKIP)
9650 goto nosideret;
9651
9652 if (type_arg == NULL)
9653 {
9654 arg1 = ada_coerce_ref (arg1);
9655
9656 if (ada_is_constrained_packed_array_type (value_type (arg1)))
9657 arg1 = ada_coerce_to_simple_array (arg1);
9658
9659 type = ada_index_type (value_type (arg1), tem,
9660 ada_attribute_name (op));
9661 if (type == NULL)
9662 type = builtin_type (exp->gdbarch)->builtin_int;
9663
9664 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9665 return allocate_value (type);
9666
9667 switch (op)
9668 {
9669 default: /* Should never happen. */
9670 error (_("unexpected attribute encountered"));
9671 case OP_ATR_FIRST:
9672 return value_from_longest
9673 (type, ada_array_bound (arg1, tem, 0));
9674 case OP_ATR_LAST:
9675 return value_from_longest
9676 (type, ada_array_bound (arg1, tem, 1));
9677 case OP_ATR_LENGTH:
9678 return value_from_longest
9679 (type, ada_array_length (arg1, tem));
9680 }
9681 }
9682 else if (discrete_type_p (type_arg))
9683 {
9684 struct type *range_type;
9685 char *name = ada_type_name (type_arg);
9686
9687 range_type = NULL;
9688 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
9689 range_type = to_fixed_range_type (type_arg, NULL);
9690 if (range_type == NULL)
9691 range_type = type_arg;
9692 switch (op)
9693 {
9694 default:
9695 error (_("unexpected attribute encountered"));
9696 case OP_ATR_FIRST:
9697 return value_from_longest
9698 (range_type, ada_discrete_type_low_bound (range_type));
9699 case OP_ATR_LAST:
9700 return value_from_longest
9701 (range_type, ada_discrete_type_high_bound (range_type));
9702 case OP_ATR_LENGTH:
9703 error (_("the 'length attribute applies only to array types"));
9704 }
9705 }
9706 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
9707 error (_("unimplemented type attribute"));
9708 else
9709 {
9710 LONGEST low, high;
9711
9712 if (ada_is_constrained_packed_array_type (type_arg))
9713 type_arg = decode_constrained_packed_array_type (type_arg);
9714
9715 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
9716 if (type == NULL)
9717 type = builtin_type (exp->gdbarch)->builtin_int;
9718
9719 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9720 return allocate_value (type);
9721
9722 switch (op)
9723 {
9724 default:
9725 error (_("unexpected attribute encountered"));
9726 case OP_ATR_FIRST:
9727 low = ada_array_bound_from_type (type_arg, tem, 0);
9728 return value_from_longest (type, low);
9729 case OP_ATR_LAST:
9730 high = ada_array_bound_from_type (type_arg, tem, 1);
9731 return value_from_longest (type, high);
9732 case OP_ATR_LENGTH:
9733 low = ada_array_bound_from_type (type_arg, tem, 0);
9734 high = ada_array_bound_from_type (type_arg, tem, 1);
9735 return value_from_longest (type, high - low + 1);
9736 }
9737 }
9738 }
9739
9740 case OP_ATR_TAG:
9741 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9742 if (noside == EVAL_SKIP)
9743 goto nosideret;
9744
9745 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9746 return value_zero (ada_tag_type (arg1), not_lval);
9747
9748 return ada_value_tag (arg1);
9749
9750 case OP_ATR_MIN:
9751 case OP_ATR_MAX:
9752 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9753 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9754 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9755 if (noside == EVAL_SKIP)
9756 goto nosideret;
9757 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9758 return value_zero (value_type (arg1), not_lval);
9759 else
9760 {
9761 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9762 return value_binop (arg1, arg2,
9763 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9764 }
9765
9766 case OP_ATR_MODULUS:
9767 {
9768 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
9769
9770 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9771 if (noside == EVAL_SKIP)
9772 goto nosideret;
9773
9774 if (!ada_is_modular_type (type_arg))
9775 error (_("'modulus must be applied to modular type"));
9776
9777 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9778 ada_modulus (type_arg));
9779 }
9780
9781
9782 case OP_ATR_POS:
9783 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9784 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9785 if (noside == EVAL_SKIP)
9786 goto nosideret;
9787 type = builtin_type (exp->gdbarch)->builtin_int;
9788 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9789 return value_zero (type, not_lval);
9790 else
9791 return value_pos_atr (type, arg1);
9792
9793 case OP_ATR_SIZE:
9794 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9795 type = value_type (arg1);
9796
9797 /* If the argument is a reference, then dereference its type, since
9798 the user is really asking for the size of the actual object,
9799 not the size of the pointer. */
9800 if (TYPE_CODE (type) == TYPE_CODE_REF)
9801 type = TYPE_TARGET_TYPE (type);
9802
9803 if (noside == EVAL_SKIP)
9804 goto nosideret;
9805 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9806 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
9807 else
9808 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
9809 TARGET_CHAR_BIT * TYPE_LENGTH (type));
9810
9811 case OP_ATR_VAL:
9812 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9813 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9814 type = exp->elts[pc + 2].type;
9815 if (noside == EVAL_SKIP)
9816 goto nosideret;
9817 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9818 return value_zero (type, not_lval);
9819 else
9820 return value_val_atr (type, arg1);
9821
9822 case BINOP_EXP:
9823 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9824 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9825 if (noside == EVAL_SKIP)
9826 goto nosideret;
9827 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9828 return value_zero (value_type (arg1), not_lval);
9829 else
9830 {
9831 /* For integer exponentiation operations,
9832 only promote the first argument. */
9833 if (is_integral_type (value_type (arg2)))
9834 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9835 else
9836 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9837
9838 return value_binop (arg1, arg2, op);
9839 }
9840
9841 case UNOP_PLUS:
9842 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9843 if (noside == EVAL_SKIP)
9844 goto nosideret;
9845 else
9846 return arg1;
9847
9848 case UNOP_ABS:
9849 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9850 if (noside == EVAL_SKIP)
9851 goto nosideret;
9852 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9853 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
9854 return value_neg (arg1);
9855 else
9856 return arg1;
9857
9858 case UNOP_IND:
9859 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9860 if (noside == EVAL_SKIP)
9861 goto nosideret;
9862 type = ada_check_typedef (value_type (arg1));
9863 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9864 {
9865 if (ada_is_array_descriptor_type (type))
9866 /* GDB allows dereferencing GNAT array descriptors. */
9867 {
9868 struct type *arrType = ada_type_of_array (arg1, 0);
9869
9870 if (arrType == NULL)
9871 error (_("Attempt to dereference null array pointer."));
9872 return value_at_lazy (arrType, 0);
9873 }
9874 else if (TYPE_CODE (type) == TYPE_CODE_PTR
9875 || TYPE_CODE (type) == TYPE_CODE_REF
9876 /* In C you can dereference an array to get the 1st elt. */
9877 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
9878 {
9879 type = to_static_fixed_type
9880 (ada_aligned_type
9881 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
9882 check_size (type);
9883 return value_zero (type, lval_memory);
9884 }
9885 else if (TYPE_CODE (type) == TYPE_CODE_INT)
9886 {
9887 /* GDB allows dereferencing an int. */
9888 if (expect_type == NULL)
9889 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9890 lval_memory);
9891 else
9892 {
9893 expect_type =
9894 to_static_fixed_type (ada_aligned_type (expect_type));
9895 return value_zero (expect_type, lval_memory);
9896 }
9897 }
9898 else
9899 error (_("Attempt to take contents of a non-pointer value."));
9900 }
9901 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
9902 type = ada_check_typedef (value_type (arg1));
9903
9904 if (TYPE_CODE (type) == TYPE_CODE_INT)
9905 /* GDB allows dereferencing an int. If we were given
9906 the expect_type, then use that as the target type.
9907 Otherwise, assume that the target type is an int. */
9908 {
9909 if (expect_type != NULL)
9910 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
9911 arg1));
9912 else
9913 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
9914 (CORE_ADDR) value_as_address (arg1));
9915 }
9916
9917 if (ada_is_array_descriptor_type (type))
9918 /* GDB allows dereferencing GNAT array descriptors. */
9919 return ada_coerce_to_simple_array (arg1);
9920 else
9921 return ada_value_ind (arg1);
9922
9923 case STRUCTOP_STRUCT:
9924 tem = longest_to_int (exp->elts[pc + 1].longconst);
9925 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
9926 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9927 if (noside == EVAL_SKIP)
9928 goto nosideret;
9929 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9930 {
9931 struct type *type1 = value_type (arg1);
9932
9933 if (ada_is_tagged_type (type1, 1))
9934 {
9935 type = ada_lookup_struct_elt_type (type1,
9936 &exp->elts[pc + 2].string,
9937 1, 1, NULL);
9938 if (type == NULL)
9939 /* In this case, we assume that the field COULD exist
9940 in some extension of the type. Return an object of
9941 "type" void, which will match any formal
9942 (see ada_type_match). */
9943 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
9944 lval_memory);
9945 }
9946 else
9947 type =
9948 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
9949 0, NULL);
9950
9951 return value_zero (ada_aligned_type (type), lval_memory);
9952 }
9953 else
9954 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
9955 arg1 = unwrap_value (arg1);
9956 return ada_to_fixed_value (arg1);
9957
9958 case OP_TYPE:
9959 /* The value is not supposed to be used. This is here to make it
9960 easier to accommodate expressions that contain types. */
9961 (*pos) += 2;
9962 if (noside == EVAL_SKIP)
9963 goto nosideret;
9964 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9965 return allocate_value (exp->elts[pc + 1].type);
9966 else
9967 error (_("Attempt to use a type name as an expression"));
9968
9969 case OP_AGGREGATE:
9970 case OP_CHOICES:
9971 case OP_OTHERS:
9972 case OP_DISCRETE_RANGE:
9973 case OP_POSITIONAL:
9974 case OP_NAME:
9975 if (noside == EVAL_NORMAL)
9976 switch (op)
9977 {
9978 case OP_NAME:
9979 error (_("Undefined name, ambiguous name, or renaming used in "
9980 "component association: %s."), &exp->elts[pc+2].string);
9981 case OP_AGGREGATE:
9982 error (_("Aggregates only allowed on the right of an assignment"));
9983 default:
9984 internal_error (__FILE__, __LINE__,
9985 _("aggregate apparently mangled"));
9986 }
9987
9988 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9989 *pos += oplen - 1;
9990 for (tem = 0; tem < nargs; tem += 1)
9991 ada_evaluate_subexp (NULL, exp, pos, noside);
9992 goto nosideret;
9993 }
9994
9995 nosideret:
9996 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
9997 }
9998 \f
9999
10000 /* Fixed point */
10001
10002 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
10003 type name that encodes the 'small and 'delta information.
10004 Otherwise, return NULL. */
10005
10006 static const char *
10007 fixed_type_info (struct type *type)
10008 {
10009 const char *name = ada_type_name (type);
10010 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10011
10012 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10013 {
10014 const char *tail = strstr (name, "___XF_");
10015
10016 if (tail == NULL)
10017 return NULL;
10018 else
10019 return tail + 5;
10020 }
10021 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10022 return fixed_type_info (TYPE_TARGET_TYPE (type));
10023 else
10024 return NULL;
10025 }
10026
10027 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
10028
10029 int
10030 ada_is_fixed_point_type (struct type *type)
10031 {
10032 return fixed_type_info (type) != NULL;
10033 }
10034
10035 /* Return non-zero iff TYPE represents a System.Address type. */
10036
10037 int
10038 ada_is_system_address_type (struct type *type)
10039 {
10040 return (TYPE_NAME (type)
10041 && strcmp (TYPE_NAME (type), "system__address") == 0);
10042 }
10043
10044 /* Assuming that TYPE is the representation of an Ada fixed-point
10045 type, return its delta, or -1 if the type is malformed and the
10046 delta cannot be determined. */
10047
10048 DOUBLEST
10049 ada_delta (struct type *type)
10050 {
10051 const char *encoding = fixed_type_info (type);
10052 DOUBLEST num, den;
10053
10054 /* Strictly speaking, num and den are encoded as integer. However,
10055 they may not fit into a long, and they will have to be converted
10056 to DOUBLEST anyway. So scan them as DOUBLEST. */
10057 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10058 &num, &den) < 2)
10059 return -1.0;
10060 else
10061 return num / den;
10062 }
10063
10064 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
10065 factor ('SMALL value) associated with the type. */
10066
10067 static DOUBLEST
10068 scaling_factor (struct type *type)
10069 {
10070 const char *encoding = fixed_type_info (type);
10071 DOUBLEST num0, den0, num1, den1;
10072 int n;
10073
10074 /* Strictly speaking, num's and den's are encoded as integer. However,
10075 they may not fit into a long, and they will have to be converted
10076 to DOUBLEST anyway. So scan them as DOUBLEST. */
10077 n = sscanf (encoding,
10078 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
10079 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10080 &num0, &den0, &num1, &den1);
10081
10082 if (n < 2)
10083 return 1.0;
10084 else if (n == 4)
10085 return num1 / den1;
10086 else
10087 return num0 / den0;
10088 }
10089
10090
10091 /* Assuming that X is the representation of a value of fixed-point
10092 type TYPE, return its floating-point equivalent. */
10093
10094 DOUBLEST
10095 ada_fixed_to_float (struct type *type, LONGEST x)
10096 {
10097 return (DOUBLEST) x *scaling_factor (type);
10098 }
10099
10100 /* The representation of a fixed-point value of type TYPE
10101 corresponding to the value X. */
10102
10103 LONGEST
10104 ada_float_to_fixed (struct type *type, DOUBLEST x)
10105 {
10106 return (LONGEST) (x / scaling_factor (type) + 0.5);
10107 }
10108
10109 \f
10110
10111 /* Range types */
10112
10113 /* Scan STR beginning at position K for a discriminant name, and
10114 return the value of that discriminant field of DVAL in *PX. If
10115 PNEW_K is not null, put the position of the character beyond the
10116 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
10117 not alter *PX and *PNEW_K if unsuccessful. */
10118
10119 static int
10120 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
10121 int *pnew_k)
10122 {
10123 static char *bound_buffer = NULL;
10124 static size_t bound_buffer_len = 0;
10125 char *bound;
10126 char *pend;
10127 struct value *bound_val;
10128
10129 if (dval == NULL || str == NULL || str[k] == '\0')
10130 return 0;
10131
10132 pend = strstr (str + k, "__");
10133 if (pend == NULL)
10134 {
10135 bound = str + k;
10136 k += strlen (bound);
10137 }
10138 else
10139 {
10140 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
10141 bound = bound_buffer;
10142 strncpy (bound_buffer, str + k, pend - (str + k));
10143 bound[pend - (str + k)] = '\0';
10144 k = pend - str;
10145 }
10146
10147 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
10148 if (bound_val == NULL)
10149 return 0;
10150
10151 *px = value_as_long (bound_val);
10152 if (pnew_k != NULL)
10153 *pnew_k = k;
10154 return 1;
10155 }
10156
10157 /* Value of variable named NAME in the current environment. If
10158 no such variable found, then if ERR_MSG is null, returns 0, and
10159 otherwise causes an error with message ERR_MSG. */
10160
10161 static struct value *
10162 get_var_value (char *name, char *err_msg)
10163 {
10164 struct ada_symbol_info *syms;
10165 int nsyms;
10166
10167 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
10168 &syms);
10169
10170 if (nsyms != 1)
10171 {
10172 if (err_msg == NULL)
10173 return 0;
10174 else
10175 error (("%s"), err_msg);
10176 }
10177
10178 return value_of_variable (syms[0].sym, syms[0].block);
10179 }
10180
10181 /* Value of integer variable named NAME in the current environment. If
10182 no such variable found, returns 0, and sets *FLAG to 0. If
10183 successful, sets *FLAG to 1. */
10184
10185 LONGEST
10186 get_int_var_value (char *name, int *flag)
10187 {
10188 struct value *var_val = get_var_value (name, 0);
10189
10190 if (var_val == 0)
10191 {
10192 if (flag != NULL)
10193 *flag = 0;
10194 return 0;
10195 }
10196 else
10197 {
10198 if (flag != NULL)
10199 *flag = 1;
10200 return value_as_long (var_val);
10201 }
10202 }
10203
10204
10205 /* Return a range type whose base type is that of the range type named
10206 NAME in the current environment, and whose bounds are calculated
10207 from NAME according to the GNAT range encoding conventions.
10208 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10209 corresponding range type from debug information; fall back to using it
10210 if symbol lookup fails. If a new type must be created, allocate it
10211 like ORIG_TYPE was. The bounds information, in general, is encoded
10212 in NAME, the base type given in the named range type. */
10213
10214 static struct type *
10215 to_fixed_range_type (struct type *raw_type, struct value *dval)
10216 {
10217 char *name;
10218 struct type *base_type;
10219 char *subtype_info;
10220
10221 gdb_assert (raw_type != NULL);
10222 gdb_assert (TYPE_NAME (raw_type) != NULL);
10223
10224 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
10225 base_type = TYPE_TARGET_TYPE (raw_type);
10226 else
10227 base_type = raw_type;
10228
10229 name = TYPE_NAME (raw_type);
10230 subtype_info = strstr (name, "___XD");
10231 if (subtype_info == NULL)
10232 {
10233 LONGEST L = ada_discrete_type_low_bound (raw_type);
10234 LONGEST U = ada_discrete_type_high_bound (raw_type);
10235
10236 if (L < INT_MIN || U > INT_MAX)
10237 return raw_type;
10238 else
10239 return create_range_type (alloc_type_copy (raw_type), raw_type,
10240 ada_discrete_type_low_bound (raw_type),
10241 ada_discrete_type_high_bound (raw_type));
10242 }
10243 else
10244 {
10245 static char *name_buf = NULL;
10246 static size_t name_len = 0;
10247 int prefix_len = subtype_info - name;
10248 LONGEST L, U;
10249 struct type *type;
10250 char *bounds_str;
10251 int n;
10252
10253 GROW_VECT (name_buf, name_len, prefix_len + 5);
10254 strncpy (name_buf, name, prefix_len);
10255 name_buf[prefix_len] = '\0';
10256
10257 subtype_info += 5;
10258 bounds_str = strchr (subtype_info, '_');
10259 n = 1;
10260
10261 if (*subtype_info == 'L')
10262 {
10263 if (!ada_scan_number (bounds_str, n, &L, &n)
10264 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10265 return raw_type;
10266 if (bounds_str[n] == '_')
10267 n += 2;
10268 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
10269 n += 1;
10270 subtype_info += 1;
10271 }
10272 else
10273 {
10274 int ok;
10275
10276 strcpy (name_buf + prefix_len, "___L");
10277 L = get_int_var_value (name_buf, &ok);
10278 if (!ok)
10279 {
10280 lim_warning (_("Unknown lower bound, using 1."));
10281 L = 1;
10282 }
10283 }
10284
10285 if (*subtype_info == 'U')
10286 {
10287 if (!ada_scan_number (bounds_str, n, &U, &n)
10288 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10289 return raw_type;
10290 }
10291 else
10292 {
10293 int ok;
10294
10295 strcpy (name_buf + prefix_len, "___U");
10296 U = get_int_var_value (name_buf, &ok);
10297 if (!ok)
10298 {
10299 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
10300 U = L;
10301 }
10302 }
10303
10304 type = create_range_type (alloc_type_copy (raw_type), base_type, L, U);
10305 TYPE_NAME (type) = name;
10306 return type;
10307 }
10308 }
10309
10310 /* True iff NAME is the name of a range type. */
10311
10312 int
10313 ada_is_range_type_name (const char *name)
10314 {
10315 return (name != NULL && strstr (name, "___XD"));
10316 }
10317 \f
10318
10319 /* Modular types */
10320
10321 /* True iff TYPE is an Ada modular type. */
10322
10323 int
10324 ada_is_modular_type (struct type *type)
10325 {
10326 struct type *subranged_type = base_type (type);
10327
10328 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
10329 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
10330 && TYPE_UNSIGNED (subranged_type));
10331 }
10332
10333 /* Try to determine the lower and upper bounds of the given modular type
10334 using the type name only. Return non-zero and set L and U as the lower
10335 and upper bounds (respectively) if successful. */
10336
10337 int
10338 ada_modulus_from_name (struct type *type, ULONGEST *modulus)
10339 {
10340 char *name = ada_type_name (type);
10341 char *suffix;
10342 int k;
10343 LONGEST U;
10344
10345 if (name == NULL)
10346 return 0;
10347
10348 /* Discrete type bounds are encoded using an __XD suffix. In our case,
10349 we are looking for static bounds, which means an __XDLU suffix.
10350 Moreover, we know that the lower bound of modular types is always
10351 zero, so the actual suffix should start with "__XDLU_0__", and
10352 then be followed by the upper bound value. */
10353 suffix = strstr (name, "__XDLU_0__");
10354 if (suffix == NULL)
10355 return 0;
10356 k = 10;
10357 if (!ada_scan_number (suffix, k, &U, NULL))
10358 return 0;
10359
10360 *modulus = (ULONGEST) U + 1;
10361 return 1;
10362 }
10363
10364 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
10365
10366 ULONGEST
10367 ada_modulus (struct type *type)
10368 {
10369 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
10370 }
10371 \f
10372
10373 /* Ada exception catchpoint support:
10374 ---------------------------------
10375
10376 We support 3 kinds of exception catchpoints:
10377 . catchpoints on Ada exceptions
10378 . catchpoints on unhandled Ada exceptions
10379 . catchpoints on failed assertions
10380
10381 Exceptions raised during failed assertions, or unhandled exceptions
10382 could perfectly be caught with the general catchpoint on Ada exceptions.
10383 However, we can easily differentiate these two special cases, and having
10384 the option to distinguish these two cases from the rest can be useful
10385 to zero-in on certain situations.
10386
10387 Exception catchpoints are a specialized form of breakpoint,
10388 since they rely on inserting breakpoints inside known routines
10389 of the GNAT runtime. The implementation therefore uses a standard
10390 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10391 of breakpoint_ops.
10392
10393 Support in the runtime for exception catchpoints have been changed
10394 a few times already, and these changes affect the implementation
10395 of these catchpoints. In order to be able to support several
10396 variants of the runtime, we use a sniffer that will determine
10397 the runtime variant used by the program being debugged.
10398
10399 At this time, we do not support the use of conditions on Ada exception
10400 catchpoints. The COND and COND_STRING fields are therefore set
10401 to NULL (most of the time, see below).
10402
10403 Conditions where EXP_STRING, COND, and COND_STRING are used:
10404
10405 When a user specifies the name of a specific exception in the case
10406 of catchpoints on Ada exceptions, we store the name of that exception
10407 in the EXP_STRING. We then translate this request into an actual
10408 condition stored in COND_STRING, and then parse it into an expression
10409 stored in COND. */
10410
10411 /* The different types of catchpoints that we introduced for catching
10412 Ada exceptions. */
10413
10414 enum exception_catchpoint_kind
10415 {
10416 ex_catch_exception,
10417 ex_catch_exception_unhandled,
10418 ex_catch_assert
10419 };
10420
10421 /* Ada's standard exceptions. */
10422
10423 static char *standard_exc[] = {
10424 "constraint_error",
10425 "program_error",
10426 "storage_error",
10427 "tasking_error"
10428 };
10429
10430 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
10431
10432 /* A structure that describes how to support exception catchpoints
10433 for a given executable. */
10434
10435 struct exception_support_info
10436 {
10437 /* The name of the symbol to break on in order to insert
10438 a catchpoint on exceptions. */
10439 const char *catch_exception_sym;
10440
10441 /* The name of the symbol to break on in order to insert
10442 a catchpoint on unhandled exceptions. */
10443 const char *catch_exception_unhandled_sym;
10444
10445 /* The name of the symbol to break on in order to insert
10446 a catchpoint on failed assertions. */
10447 const char *catch_assert_sym;
10448
10449 /* Assuming that the inferior just triggered an unhandled exception
10450 catchpoint, this function is responsible for returning the address
10451 in inferior memory where the name of that exception is stored.
10452 Return zero if the address could not be computed. */
10453 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
10454 };
10455
10456 static CORE_ADDR ada_unhandled_exception_name_addr (void);
10457 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
10458
10459 /* The following exception support info structure describes how to
10460 implement exception catchpoints with the latest version of the
10461 Ada runtime (as of 2007-03-06). */
10462
10463 static const struct exception_support_info default_exception_support_info =
10464 {
10465 "__gnat_debug_raise_exception", /* catch_exception_sym */
10466 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10467 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
10468 ada_unhandled_exception_name_addr
10469 };
10470
10471 /* The following exception support info structure describes how to
10472 implement exception catchpoints with a slightly older version
10473 of the Ada runtime. */
10474
10475 static const struct exception_support_info exception_support_info_fallback =
10476 {
10477 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
10478 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10479 "system__assertions__raise_assert_failure", /* catch_assert_sym */
10480 ada_unhandled_exception_name_addr_from_raise
10481 };
10482
10483 /* For each executable, we sniff which exception info structure to use
10484 and cache it in the following global variable. */
10485
10486 static const struct exception_support_info *exception_info = NULL;
10487
10488 /* Inspect the Ada runtime and determine which exception info structure
10489 should be used to provide support for exception catchpoints.
10490
10491 This function will always set exception_info, or raise an error. */
10492
10493 static void
10494 ada_exception_support_info_sniffer (void)
10495 {
10496 struct symbol *sym;
10497
10498 /* If the exception info is already known, then no need to recompute it. */
10499 if (exception_info != NULL)
10500 return;
10501
10502 /* Check the latest (default) exception support info. */
10503 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
10504 NULL, VAR_DOMAIN);
10505 if (sym != NULL)
10506 {
10507 exception_info = &default_exception_support_info;
10508 return;
10509 }
10510
10511 /* Try our fallback exception suport info. */
10512 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
10513 NULL, VAR_DOMAIN);
10514 if (sym != NULL)
10515 {
10516 exception_info = &exception_support_info_fallback;
10517 return;
10518 }
10519
10520 /* Sometimes, it is normal for us to not be able to find the routine
10521 we are looking for. This happens when the program is linked with
10522 the shared version of the GNAT runtime, and the program has not been
10523 started yet. Inform the user of these two possible causes if
10524 applicable. */
10525
10526 if (ada_update_initial_language (language_unknown) != language_ada)
10527 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
10528
10529 /* If the symbol does not exist, then check that the program is
10530 already started, to make sure that shared libraries have been
10531 loaded. If it is not started, this may mean that the symbol is
10532 in a shared library. */
10533
10534 if (ptid_get_pid (inferior_ptid) == 0)
10535 error (_("Unable to insert catchpoint. Try to start the program first."));
10536
10537 /* At this point, we know that we are debugging an Ada program and
10538 that the inferior has been started, but we still are not able to
10539 find the run-time symbols. That can mean that we are in
10540 configurable run time mode, or that a-except as been optimized
10541 out by the linker... In any case, at this point it is not worth
10542 supporting this feature. */
10543
10544 error (_("Cannot insert catchpoints in this configuration."));
10545 }
10546
10547 /* An observer of "executable_changed" events.
10548 Its role is to clear certain cached values that need to be recomputed
10549 each time a new executable is loaded by GDB. */
10550
10551 static void
10552 ada_executable_changed_observer (void)
10553 {
10554 /* If the executable changed, then it is possible that the Ada runtime
10555 is different. So we need to invalidate the exception support info
10556 cache. */
10557 exception_info = NULL;
10558 }
10559
10560 /* True iff FRAME is very likely to be that of a function that is
10561 part of the runtime system. This is all very heuristic, but is
10562 intended to be used as advice as to what frames are uninteresting
10563 to most users. */
10564
10565 static int
10566 is_known_support_routine (struct frame_info *frame)
10567 {
10568 struct symtab_and_line sal;
10569 char *func_name;
10570 enum language func_lang;
10571 int i;
10572
10573 /* If this code does not have any debugging information (no symtab),
10574 This cannot be any user code. */
10575
10576 find_frame_sal (frame, &sal);
10577 if (sal.symtab == NULL)
10578 return 1;
10579
10580 /* If there is a symtab, but the associated source file cannot be
10581 located, then assume this is not user code: Selecting a frame
10582 for which we cannot display the code would not be very helpful
10583 for the user. This should also take care of case such as VxWorks
10584 where the kernel has some debugging info provided for a few units. */
10585
10586 if (symtab_to_fullname (sal.symtab) == NULL)
10587 return 1;
10588
10589 /* Check the unit filename againt the Ada runtime file naming.
10590 We also check the name of the objfile against the name of some
10591 known system libraries that sometimes come with debugging info
10592 too. */
10593
10594 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
10595 {
10596 re_comp (known_runtime_file_name_patterns[i]);
10597 if (re_exec (sal.symtab->filename))
10598 return 1;
10599 if (sal.symtab->objfile != NULL
10600 && re_exec (sal.symtab->objfile->name))
10601 return 1;
10602 }
10603
10604 /* Check whether the function is a GNAT-generated entity. */
10605
10606 find_frame_funname (frame, &func_name, &func_lang, NULL);
10607 if (func_name == NULL)
10608 return 1;
10609
10610 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
10611 {
10612 re_comp (known_auxiliary_function_name_patterns[i]);
10613 if (re_exec (func_name))
10614 return 1;
10615 }
10616
10617 return 0;
10618 }
10619
10620 /* Find the first frame that contains debugging information and that is not
10621 part of the Ada run-time, starting from FI and moving upward. */
10622
10623 void
10624 ada_find_printable_frame (struct frame_info *fi)
10625 {
10626 for (; fi != NULL; fi = get_prev_frame (fi))
10627 {
10628 if (!is_known_support_routine (fi))
10629 {
10630 select_frame (fi);
10631 break;
10632 }
10633 }
10634
10635 }
10636
10637 /* Assuming that the inferior just triggered an unhandled exception
10638 catchpoint, return the address in inferior memory where the name
10639 of the exception is stored.
10640
10641 Return zero if the address could not be computed. */
10642
10643 static CORE_ADDR
10644 ada_unhandled_exception_name_addr (void)
10645 {
10646 return parse_and_eval_address ("e.full_name");
10647 }
10648
10649 /* Same as ada_unhandled_exception_name_addr, except that this function
10650 should be used when the inferior uses an older version of the runtime,
10651 where the exception name needs to be extracted from a specific frame
10652 several frames up in the callstack. */
10653
10654 static CORE_ADDR
10655 ada_unhandled_exception_name_addr_from_raise (void)
10656 {
10657 int frame_level;
10658 struct frame_info *fi;
10659
10660 /* To determine the name of this exception, we need to select
10661 the frame corresponding to RAISE_SYM_NAME. This frame is
10662 at least 3 levels up, so we simply skip the first 3 frames
10663 without checking the name of their associated function. */
10664 fi = get_current_frame ();
10665 for (frame_level = 0; frame_level < 3; frame_level += 1)
10666 if (fi != NULL)
10667 fi = get_prev_frame (fi);
10668
10669 while (fi != NULL)
10670 {
10671 char *func_name;
10672 enum language func_lang;
10673
10674 find_frame_funname (fi, &func_name, &func_lang, NULL);
10675 if (func_name != NULL
10676 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
10677 break; /* We found the frame we were looking for... */
10678 fi = get_prev_frame (fi);
10679 }
10680
10681 if (fi == NULL)
10682 return 0;
10683
10684 select_frame (fi);
10685 return parse_and_eval_address ("id.full_name");
10686 }
10687
10688 /* Assuming the inferior just triggered an Ada exception catchpoint
10689 (of any type), return the address in inferior memory where the name
10690 of the exception is stored, if applicable.
10691
10692 Return zero if the address could not be computed, or if not relevant. */
10693
10694 static CORE_ADDR
10695 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
10696 struct breakpoint *b)
10697 {
10698 switch (ex)
10699 {
10700 case ex_catch_exception:
10701 return (parse_and_eval_address ("e.full_name"));
10702 break;
10703
10704 case ex_catch_exception_unhandled:
10705 return exception_info->unhandled_exception_name_addr ();
10706 break;
10707
10708 case ex_catch_assert:
10709 return 0; /* Exception name is not relevant in this case. */
10710 break;
10711
10712 default:
10713 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10714 break;
10715 }
10716
10717 return 0; /* Should never be reached. */
10718 }
10719
10720 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
10721 any error that ada_exception_name_addr_1 might cause to be thrown.
10722 When an error is intercepted, a warning with the error message is printed,
10723 and zero is returned. */
10724
10725 static CORE_ADDR
10726 ada_exception_name_addr (enum exception_catchpoint_kind ex,
10727 struct breakpoint *b)
10728 {
10729 struct gdb_exception e;
10730 CORE_ADDR result = 0;
10731
10732 TRY_CATCH (e, RETURN_MASK_ERROR)
10733 {
10734 result = ada_exception_name_addr_1 (ex, b);
10735 }
10736
10737 if (e.reason < 0)
10738 {
10739 warning (_("failed to get exception name: %s"), e.message);
10740 return 0;
10741 }
10742
10743 return result;
10744 }
10745
10746 /* Implement the PRINT_IT method in the breakpoint_ops structure
10747 for all exception catchpoint kinds. */
10748
10749 static enum print_stop_action
10750 print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
10751 {
10752 annotate_catchpoint (b->number);
10753
10754 if (ui_out_is_mi_like_p (uiout))
10755 {
10756 ui_out_field_string (uiout, "reason",
10757 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
10758 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
10759 }
10760
10761 ui_out_text (uiout, "\nCatchpoint ");
10762 ui_out_field_int (uiout, "bkptno", b->number);
10763 ui_out_text (uiout, ", ");
10764
10765 switch (ex)
10766 {
10767 case ex_catch_exception:
10768 case ex_catch_exception_unhandled:
10769 {
10770 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
10771 char exception_name[256];
10772
10773 if (addr != 0)
10774 {
10775 read_memory (addr, exception_name, sizeof (exception_name) - 1);
10776 exception_name [sizeof (exception_name) - 1] = '\0';
10777 }
10778 else
10779 {
10780 /* For some reason, we were unable to read the exception
10781 name. This could happen if the Runtime was compiled
10782 without debugging info, for instance. In that case,
10783 just replace the exception name by the generic string
10784 "exception" - it will read as "an exception" in the
10785 notification we are about to print. */
10786 memcpy (exception_name, "exception", sizeof ("exception"));
10787 }
10788 /* In the case of unhandled exception breakpoints, we print
10789 the exception name as "unhandled EXCEPTION_NAME", to make
10790 it clearer to the user which kind of catchpoint just got
10791 hit. We used ui_out_text to make sure that this extra
10792 info does not pollute the exception name in the MI case. */
10793 if (ex == ex_catch_exception_unhandled)
10794 ui_out_text (uiout, "unhandled ");
10795 ui_out_field_string (uiout, "exception-name", exception_name);
10796 }
10797 break;
10798 case ex_catch_assert:
10799 /* In this case, the name of the exception is not really
10800 important. Just print "failed assertion" to make it clearer
10801 that his program just hit an assertion-failure catchpoint.
10802 We used ui_out_text because this info does not belong in
10803 the MI output. */
10804 ui_out_text (uiout, "failed assertion");
10805 break;
10806 }
10807 ui_out_text (uiout, " at ");
10808 ada_find_printable_frame (get_current_frame ());
10809
10810 return PRINT_SRC_AND_LOC;
10811 }
10812
10813 /* Implement the PRINT_ONE method in the breakpoint_ops structure
10814 for all exception catchpoint kinds. */
10815
10816 static void
10817 print_one_exception (enum exception_catchpoint_kind ex,
10818 struct breakpoint *b, struct bp_location **last_loc)
10819 {
10820 struct value_print_options opts;
10821
10822 get_user_print_options (&opts);
10823 if (opts.addressprint)
10824 {
10825 annotate_field (4);
10826 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
10827 }
10828
10829 annotate_field (5);
10830 *last_loc = b->loc;
10831 switch (ex)
10832 {
10833 case ex_catch_exception:
10834 if (b->exp_string != NULL)
10835 {
10836 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
10837
10838 ui_out_field_string (uiout, "what", msg);
10839 xfree (msg);
10840 }
10841 else
10842 ui_out_field_string (uiout, "what", "all Ada exceptions");
10843
10844 break;
10845
10846 case ex_catch_exception_unhandled:
10847 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
10848 break;
10849
10850 case ex_catch_assert:
10851 ui_out_field_string (uiout, "what", "failed Ada assertions");
10852 break;
10853
10854 default:
10855 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10856 break;
10857 }
10858 }
10859
10860 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
10861 for all exception catchpoint kinds. */
10862
10863 static void
10864 print_mention_exception (enum exception_catchpoint_kind ex,
10865 struct breakpoint *b)
10866 {
10867 switch (ex)
10868 {
10869 case ex_catch_exception:
10870 if (b->exp_string != NULL)
10871 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
10872 b->number, b->exp_string);
10873 else
10874 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
10875
10876 break;
10877
10878 case ex_catch_exception_unhandled:
10879 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
10880 b->number);
10881 break;
10882
10883 case ex_catch_assert:
10884 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
10885 break;
10886
10887 default:
10888 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10889 break;
10890 }
10891 }
10892
10893 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
10894 for all exception catchpoint kinds. */
10895
10896 static void
10897 print_recreate_exception (enum exception_catchpoint_kind ex,
10898 struct breakpoint *b, struct ui_file *fp)
10899 {
10900 switch (ex)
10901 {
10902 case ex_catch_exception:
10903 fprintf_filtered (fp, "catch exception");
10904 if (b->exp_string != NULL)
10905 fprintf_filtered (fp, " %s", b->exp_string);
10906 break;
10907
10908 case ex_catch_exception_unhandled:
10909 fprintf_filtered (fp, "catch exception unhandled");
10910 break;
10911
10912 case ex_catch_assert:
10913 fprintf_filtered (fp, "catch assert");
10914 break;
10915
10916 default:
10917 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10918 }
10919 }
10920
10921 /* Virtual table for "catch exception" breakpoints. */
10922
10923 static enum print_stop_action
10924 print_it_catch_exception (struct breakpoint *b)
10925 {
10926 return print_it_exception (ex_catch_exception, b);
10927 }
10928
10929 static void
10930 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
10931 {
10932 print_one_exception (ex_catch_exception, b, last_loc);
10933 }
10934
10935 static void
10936 print_mention_catch_exception (struct breakpoint *b)
10937 {
10938 print_mention_exception (ex_catch_exception, b);
10939 }
10940
10941 static void
10942 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
10943 {
10944 print_recreate_exception (ex_catch_exception, b, fp);
10945 }
10946
10947 static struct breakpoint_ops catch_exception_breakpoint_ops =
10948 {
10949 NULL, /* insert */
10950 NULL, /* remove */
10951 NULL, /* breakpoint_hit */
10952 NULL, /* resources_needed */
10953 NULL, /* works_in_software_mode */
10954 print_it_catch_exception,
10955 print_one_catch_exception,
10956 NULL, /* print_one_detail */
10957 print_mention_catch_exception,
10958 print_recreate_catch_exception
10959 };
10960
10961 /* Virtual table for "catch exception unhandled" breakpoints. */
10962
10963 static enum print_stop_action
10964 print_it_catch_exception_unhandled (struct breakpoint *b)
10965 {
10966 return print_it_exception (ex_catch_exception_unhandled, b);
10967 }
10968
10969 static void
10970 print_one_catch_exception_unhandled (struct breakpoint *b,
10971 struct bp_location **last_loc)
10972 {
10973 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
10974 }
10975
10976 static void
10977 print_mention_catch_exception_unhandled (struct breakpoint *b)
10978 {
10979 print_mention_exception (ex_catch_exception_unhandled, b);
10980 }
10981
10982 static void
10983 print_recreate_catch_exception_unhandled (struct breakpoint *b,
10984 struct ui_file *fp)
10985 {
10986 print_recreate_exception (ex_catch_exception_unhandled, b, fp);
10987 }
10988
10989 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
10990 NULL, /* insert */
10991 NULL, /* remove */
10992 NULL, /* breakpoint_hit */
10993 NULL, /* resources_needed */
10994 NULL, /* works_in_software_mode */
10995 print_it_catch_exception_unhandled,
10996 print_one_catch_exception_unhandled,
10997 NULL, /* print_one_detail */
10998 print_mention_catch_exception_unhandled,
10999 print_recreate_catch_exception_unhandled
11000 };
11001
11002 /* Virtual table for "catch assert" breakpoints. */
11003
11004 static enum print_stop_action
11005 print_it_catch_assert (struct breakpoint *b)
11006 {
11007 return print_it_exception (ex_catch_assert, b);
11008 }
11009
11010 static void
11011 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
11012 {
11013 print_one_exception (ex_catch_assert, b, last_loc);
11014 }
11015
11016 static void
11017 print_mention_catch_assert (struct breakpoint *b)
11018 {
11019 print_mention_exception (ex_catch_assert, b);
11020 }
11021
11022 static void
11023 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
11024 {
11025 print_recreate_exception (ex_catch_assert, b, fp);
11026 }
11027
11028 static struct breakpoint_ops catch_assert_breakpoint_ops = {
11029 NULL, /* insert */
11030 NULL, /* remove */
11031 NULL, /* breakpoint_hit */
11032 NULL, /* resources_needed */
11033 NULL, /* works_in_software_mode */
11034 print_it_catch_assert,
11035 print_one_catch_assert,
11036 NULL, /* print_one_detail */
11037 print_mention_catch_assert,
11038 print_recreate_catch_assert
11039 };
11040
11041 /* Return non-zero if B is an Ada exception catchpoint. */
11042
11043 int
11044 ada_exception_catchpoint_p (struct breakpoint *b)
11045 {
11046 return (b->ops == &catch_exception_breakpoint_ops
11047 || b->ops == &catch_exception_unhandled_breakpoint_ops
11048 || b->ops == &catch_assert_breakpoint_ops);
11049 }
11050
11051 /* Return a newly allocated copy of the first space-separated token
11052 in ARGSP, and then adjust ARGSP to point immediately after that
11053 token.
11054
11055 Return NULL if ARGPS does not contain any more tokens. */
11056
11057 static char *
11058 ada_get_next_arg (char **argsp)
11059 {
11060 char *args = *argsp;
11061 char *end;
11062 char *result;
11063
11064 /* Skip any leading white space. */
11065
11066 while (isspace (*args))
11067 args++;
11068
11069 if (args[0] == '\0')
11070 return NULL; /* No more arguments. */
11071
11072 /* Find the end of the current argument. */
11073
11074 end = args;
11075 while (*end != '\0' && !isspace (*end))
11076 end++;
11077
11078 /* Adjust ARGSP to point to the start of the next argument. */
11079
11080 *argsp = end;
11081
11082 /* Make a copy of the current argument and return it. */
11083
11084 result = xmalloc (end - args + 1);
11085 strncpy (result, args, end - args);
11086 result[end - args] = '\0';
11087
11088 return result;
11089 }
11090
11091 /* Split the arguments specified in a "catch exception" command.
11092 Set EX to the appropriate catchpoint type.
11093 Set EXP_STRING to the name of the specific exception if
11094 specified by the user. */
11095
11096 static void
11097 catch_ada_exception_command_split (char *args,
11098 enum exception_catchpoint_kind *ex,
11099 char **exp_string)
11100 {
11101 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
11102 char *exception_name;
11103
11104 exception_name = ada_get_next_arg (&args);
11105 make_cleanup (xfree, exception_name);
11106
11107 /* Check that we do not have any more arguments. Anything else
11108 is unexpected. */
11109
11110 while (isspace (*args))
11111 args++;
11112
11113 if (args[0] != '\0')
11114 error (_("Junk at end of expression"));
11115
11116 discard_cleanups (old_chain);
11117
11118 if (exception_name == NULL)
11119 {
11120 /* Catch all exceptions. */
11121 *ex = ex_catch_exception;
11122 *exp_string = NULL;
11123 }
11124 else if (strcmp (exception_name, "unhandled") == 0)
11125 {
11126 /* Catch unhandled exceptions. */
11127 *ex = ex_catch_exception_unhandled;
11128 *exp_string = NULL;
11129 }
11130 else
11131 {
11132 /* Catch a specific exception. */
11133 *ex = ex_catch_exception;
11134 *exp_string = exception_name;
11135 }
11136 }
11137
11138 /* Return the name of the symbol on which we should break in order to
11139 implement a catchpoint of the EX kind. */
11140
11141 static const char *
11142 ada_exception_sym_name (enum exception_catchpoint_kind ex)
11143 {
11144 gdb_assert (exception_info != NULL);
11145
11146 switch (ex)
11147 {
11148 case ex_catch_exception:
11149 return (exception_info->catch_exception_sym);
11150 break;
11151 case ex_catch_exception_unhandled:
11152 return (exception_info->catch_exception_unhandled_sym);
11153 break;
11154 case ex_catch_assert:
11155 return (exception_info->catch_assert_sym);
11156 break;
11157 default:
11158 internal_error (__FILE__, __LINE__,
11159 _("unexpected catchpoint kind (%d)"), ex);
11160 }
11161 }
11162
11163 /* Return the breakpoint ops "virtual table" used for catchpoints
11164 of the EX kind. */
11165
11166 static struct breakpoint_ops *
11167 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
11168 {
11169 switch (ex)
11170 {
11171 case ex_catch_exception:
11172 return (&catch_exception_breakpoint_ops);
11173 break;
11174 case ex_catch_exception_unhandled:
11175 return (&catch_exception_unhandled_breakpoint_ops);
11176 break;
11177 case ex_catch_assert:
11178 return (&catch_assert_breakpoint_ops);
11179 break;
11180 default:
11181 internal_error (__FILE__, __LINE__,
11182 _("unexpected catchpoint kind (%d)"), ex);
11183 }
11184 }
11185
11186 /* Return the condition that will be used to match the current exception
11187 being raised with the exception that the user wants to catch. This
11188 assumes that this condition is used when the inferior just triggered
11189 an exception catchpoint.
11190
11191 The string returned is a newly allocated string that needs to be
11192 deallocated later. */
11193
11194 static char *
11195 ada_exception_catchpoint_cond_string (const char *exp_string)
11196 {
11197 int i;
11198
11199 /* The standard exceptions are a special case. They are defined in
11200 runtime units that have been compiled without debugging info; if
11201 EXP_STRING is the not-fully-qualified name of a standard
11202 exception (e.g. "constraint_error") then, during the evaluation
11203 of the condition expression, the symbol lookup on this name would
11204 *not* return this standard exception. The catchpoint condition
11205 may then be set only on user-defined exceptions which have the
11206 same not-fully-qualified name (e.g. my_package.constraint_error).
11207
11208 To avoid this unexcepted behavior, these standard exceptions are
11209 systematically prefixed by "standard". This means that "catch
11210 exception constraint_error" is rewritten into "catch exception
11211 standard.constraint_error".
11212
11213 If an exception named contraint_error is defined in another package of
11214 the inferior program, then the only way to specify this exception as a
11215 breakpoint condition is to use its fully-qualified named:
11216 e.g. my_package.constraint_error. */
11217
11218 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
11219 {
11220 if (strcmp (standard_exc [i], exp_string) == 0)
11221 {
11222 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
11223 exp_string);
11224 }
11225 }
11226 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
11227 }
11228
11229 /* Return the expression corresponding to COND_STRING evaluated at SAL. */
11230
11231 static struct expression *
11232 ada_parse_catchpoint_condition (char *cond_string,
11233 struct symtab_and_line sal)
11234 {
11235 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
11236 }
11237
11238 /* Return the symtab_and_line that should be used to insert an exception
11239 catchpoint of the TYPE kind.
11240
11241 EX_STRING should contain the name of a specific exception
11242 that the catchpoint should catch, or NULL otherwise.
11243
11244 The idea behind all the remaining parameters is that their names match
11245 the name of certain fields in the breakpoint structure that are used to
11246 handle exception catchpoints. This function returns the value to which
11247 these fields should be set, depending on the type of catchpoint we need
11248 to create.
11249
11250 If COND and COND_STRING are both non-NULL, any value they might
11251 hold will be free'ed, and then replaced by newly allocated ones.
11252 These parameters are left untouched otherwise. */
11253
11254 static struct symtab_and_line
11255 ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
11256 char **addr_string, char **cond_string,
11257 struct expression **cond, struct breakpoint_ops **ops)
11258 {
11259 const char *sym_name;
11260 struct symbol *sym;
11261 struct symtab_and_line sal;
11262
11263 /* First, find out which exception support info to use. */
11264 ada_exception_support_info_sniffer ();
11265
11266 /* Then lookup the function on which we will break in order to catch
11267 the Ada exceptions requested by the user. */
11268
11269 sym_name = ada_exception_sym_name (ex);
11270 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
11271
11272 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11273 that should be compiled with debugging information. As a result, we
11274 expect to find that symbol in the symtabs. If we don't find it, then
11275 the target most likely does not support Ada exceptions, or we cannot
11276 insert exception breakpoints yet, because the GNAT runtime hasn't been
11277 loaded yet. */
11278
11279 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
11280 in such a way that no debugging information is produced for the symbol
11281 we are looking for. In this case, we could search the minimal symbols
11282 as a fall-back mechanism. This would still be operating in degraded
11283 mode, however, as we would still be missing the debugging information
11284 that is needed in order to extract the name of the exception being
11285 raised (this name is printed in the catchpoint message, and is also
11286 used when trying to catch a specific exception). We do not handle
11287 this case for now. */
11288
11289 if (sym == NULL)
11290 error (_("Unable to break on '%s' in this configuration."), sym_name);
11291
11292 /* Make sure that the symbol we found corresponds to a function. */
11293 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11294 error (_("Symbol \"%s\" is not a function (class = %d)"),
11295 sym_name, SYMBOL_CLASS (sym));
11296
11297 sal = find_function_start_sal (sym, 1);
11298
11299 /* Set ADDR_STRING. */
11300
11301 *addr_string = xstrdup (sym_name);
11302
11303 /* Set the COND and COND_STRING (if not NULL). */
11304
11305 if (cond_string != NULL && cond != NULL)
11306 {
11307 if (*cond_string != NULL)
11308 {
11309 xfree (*cond_string);
11310 *cond_string = NULL;
11311 }
11312 if (*cond != NULL)
11313 {
11314 xfree (*cond);
11315 *cond = NULL;
11316 }
11317 if (exp_string != NULL)
11318 {
11319 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
11320 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
11321 }
11322 }
11323
11324 /* Set OPS. */
11325 *ops = ada_exception_breakpoint_ops (ex);
11326
11327 return sal;
11328 }
11329
11330 /* Parse the arguments (ARGS) of the "catch exception" command.
11331
11332 Set TYPE to the appropriate exception catchpoint type.
11333 If the user asked the catchpoint to catch only a specific
11334 exception, then save the exception name in ADDR_STRING.
11335
11336 See ada_exception_sal for a description of all the remaining
11337 function arguments of this function. */
11338
11339 struct symtab_and_line
11340 ada_decode_exception_location (char *args, char **addr_string,
11341 char **exp_string, char **cond_string,
11342 struct expression **cond,
11343 struct breakpoint_ops **ops)
11344 {
11345 enum exception_catchpoint_kind ex;
11346
11347 catch_ada_exception_command_split (args, &ex, exp_string);
11348 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
11349 cond, ops);
11350 }
11351
11352 struct symtab_and_line
11353 ada_decode_assert_location (char *args, char **addr_string,
11354 struct breakpoint_ops **ops)
11355 {
11356 /* Check that no argument where provided at the end of the command. */
11357
11358 if (args != NULL)
11359 {
11360 while (isspace (*args))
11361 args++;
11362 if (*args != '\0')
11363 error (_("Junk at end of arguments."));
11364 }
11365
11366 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
11367 ops);
11368 }
11369
11370 /* Operators */
11371 /* Information about operators given special treatment in functions
11372 below. */
11373 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
11374
11375 #define ADA_OPERATORS \
11376 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
11377 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
11378 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
11379 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
11380 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
11381 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
11382 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
11383 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
11384 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
11385 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
11386 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
11387 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
11388 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
11389 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
11390 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
11391 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
11392 OP_DEFN (OP_OTHERS, 1, 1, 0) \
11393 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
11394 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
11395
11396 static void
11397 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
11398 int *argsp)
11399 {
11400 switch (exp->elts[pc - 1].opcode)
11401 {
11402 default:
11403 operator_length_standard (exp, pc, oplenp, argsp);
11404 break;
11405
11406 #define OP_DEFN(op, len, args, binop) \
11407 case op: *oplenp = len; *argsp = args; break;
11408 ADA_OPERATORS;
11409 #undef OP_DEFN
11410
11411 case OP_AGGREGATE:
11412 *oplenp = 3;
11413 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
11414 break;
11415
11416 case OP_CHOICES:
11417 *oplenp = 3;
11418 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
11419 break;
11420 }
11421 }
11422
11423 /* Implementation of the exp_descriptor method operator_check. */
11424
11425 static int
11426 ada_operator_check (struct expression *exp, int pos,
11427 int (*objfile_func) (struct objfile *objfile, void *data),
11428 void *data)
11429 {
11430 const union exp_element *const elts = exp->elts;
11431 struct type *type = NULL;
11432
11433 switch (elts[pos].opcode)
11434 {
11435 case UNOP_IN_RANGE:
11436 case UNOP_QUAL:
11437 type = elts[pos + 1].type;
11438 break;
11439
11440 default:
11441 return operator_check_standard (exp, pos, objfile_func, data);
11442 }
11443
11444 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
11445
11446 if (type && TYPE_OBJFILE (type)
11447 && (*objfile_func) (TYPE_OBJFILE (type), data))
11448 return 1;
11449
11450 return 0;
11451 }
11452
11453 static char *
11454 ada_op_name (enum exp_opcode opcode)
11455 {
11456 switch (opcode)
11457 {
11458 default:
11459 return op_name_standard (opcode);
11460
11461 #define OP_DEFN(op, len, args, binop) case op: return #op;
11462 ADA_OPERATORS;
11463 #undef OP_DEFN
11464
11465 case OP_AGGREGATE:
11466 return "OP_AGGREGATE";
11467 case OP_CHOICES:
11468 return "OP_CHOICES";
11469 case OP_NAME:
11470 return "OP_NAME";
11471 }
11472 }
11473
11474 /* As for operator_length, but assumes PC is pointing at the first
11475 element of the operator, and gives meaningful results only for the
11476 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
11477
11478 static void
11479 ada_forward_operator_length (struct expression *exp, int pc,
11480 int *oplenp, int *argsp)
11481 {
11482 switch (exp->elts[pc].opcode)
11483 {
11484 default:
11485 *oplenp = *argsp = 0;
11486 break;
11487
11488 #define OP_DEFN(op, len, args, binop) \
11489 case op: *oplenp = len; *argsp = args; break;
11490 ADA_OPERATORS;
11491 #undef OP_DEFN
11492
11493 case OP_AGGREGATE:
11494 *oplenp = 3;
11495 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
11496 break;
11497
11498 case OP_CHOICES:
11499 *oplenp = 3;
11500 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
11501 break;
11502
11503 case OP_STRING:
11504 case OP_NAME:
11505 {
11506 int len = longest_to_int (exp->elts[pc + 1].longconst);
11507
11508 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
11509 *argsp = 0;
11510 break;
11511 }
11512 }
11513 }
11514
11515 static int
11516 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
11517 {
11518 enum exp_opcode op = exp->elts[elt].opcode;
11519 int oplen, nargs;
11520 int pc = elt;
11521 int i;
11522
11523 ada_forward_operator_length (exp, elt, &oplen, &nargs);
11524
11525 switch (op)
11526 {
11527 /* Ada attributes ('Foo). */
11528 case OP_ATR_FIRST:
11529 case OP_ATR_LAST:
11530 case OP_ATR_LENGTH:
11531 case OP_ATR_IMAGE:
11532 case OP_ATR_MAX:
11533 case OP_ATR_MIN:
11534 case OP_ATR_MODULUS:
11535 case OP_ATR_POS:
11536 case OP_ATR_SIZE:
11537 case OP_ATR_TAG:
11538 case OP_ATR_VAL:
11539 break;
11540
11541 case UNOP_IN_RANGE:
11542 case UNOP_QUAL:
11543 /* XXX: gdb_sprint_host_address, type_sprint */
11544 fprintf_filtered (stream, _("Type @"));
11545 gdb_print_host_address (exp->elts[pc + 1].type, stream);
11546 fprintf_filtered (stream, " (");
11547 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
11548 fprintf_filtered (stream, ")");
11549 break;
11550 case BINOP_IN_BOUNDS:
11551 fprintf_filtered (stream, " (%d)",
11552 longest_to_int (exp->elts[pc + 2].longconst));
11553 break;
11554 case TERNOP_IN_RANGE:
11555 break;
11556
11557 case OP_AGGREGATE:
11558 case OP_OTHERS:
11559 case OP_DISCRETE_RANGE:
11560 case OP_POSITIONAL:
11561 case OP_CHOICES:
11562 break;
11563
11564 case OP_NAME:
11565 case OP_STRING:
11566 {
11567 char *name = &exp->elts[elt + 2].string;
11568 int len = longest_to_int (exp->elts[elt + 1].longconst);
11569
11570 fprintf_filtered (stream, "Text: `%.*s'", len, name);
11571 break;
11572 }
11573
11574 default:
11575 return dump_subexp_body_standard (exp, stream, elt);
11576 }
11577
11578 elt += oplen;
11579 for (i = 0; i < nargs; i += 1)
11580 elt = dump_subexp (exp, stream, elt);
11581
11582 return elt;
11583 }
11584
11585 /* The Ada extension of print_subexp (q.v.). */
11586
11587 static void
11588 ada_print_subexp (struct expression *exp, int *pos,
11589 struct ui_file *stream, enum precedence prec)
11590 {
11591 int oplen, nargs, i;
11592 int pc = *pos;
11593 enum exp_opcode op = exp->elts[pc].opcode;
11594
11595 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11596
11597 *pos += oplen;
11598 switch (op)
11599 {
11600 default:
11601 *pos -= oplen;
11602 print_subexp_standard (exp, pos, stream, prec);
11603 return;
11604
11605 case OP_VAR_VALUE:
11606 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
11607 return;
11608
11609 case BINOP_IN_BOUNDS:
11610 /* XXX: sprint_subexp */
11611 print_subexp (exp, pos, stream, PREC_SUFFIX);
11612 fputs_filtered (" in ", stream);
11613 print_subexp (exp, pos, stream, PREC_SUFFIX);
11614 fputs_filtered ("'range", stream);
11615 if (exp->elts[pc + 1].longconst > 1)
11616 fprintf_filtered (stream, "(%ld)",
11617 (long) exp->elts[pc + 1].longconst);
11618 return;
11619
11620 case TERNOP_IN_RANGE:
11621 if (prec >= PREC_EQUAL)
11622 fputs_filtered ("(", stream);
11623 /* XXX: sprint_subexp */
11624 print_subexp (exp, pos, stream, PREC_SUFFIX);
11625 fputs_filtered (" in ", stream);
11626 print_subexp (exp, pos, stream, PREC_EQUAL);
11627 fputs_filtered (" .. ", stream);
11628 print_subexp (exp, pos, stream, PREC_EQUAL);
11629 if (prec >= PREC_EQUAL)
11630 fputs_filtered (")", stream);
11631 return;
11632
11633 case OP_ATR_FIRST:
11634 case OP_ATR_LAST:
11635 case OP_ATR_LENGTH:
11636 case OP_ATR_IMAGE:
11637 case OP_ATR_MAX:
11638 case OP_ATR_MIN:
11639 case OP_ATR_MODULUS:
11640 case OP_ATR_POS:
11641 case OP_ATR_SIZE:
11642 case OP_ATR_TAG:
11643 case OP_ATR_VAL:
11644 if (exp->elts[*pos].opcode == OP_TYPE)
11645 {
11646 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
11647 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
11648 *pos += 3;
11649 }
11650 else
11651 print_subexp (exp, pos, stream, PREC_SUFFIX);
11652 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
11653 if (nargs > 1)
11654 {
11655 int tem;
11656
11657 for (tem = 1; tem < nargs; tem += 1)
11658 {
11659 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
11660 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
11661 }
11662 fputs_filtered (")", stream);
11663 }
11664 return;
11665
11666 case UNOP_QUAL:
11667 type_print (exp->elts[pc + 1].type, "", stream, 0);
11668 fputs_filtered ("'(", stream);
11669 print_subexp (exp, pos, stream, PREC_PREFIX);
11670 fputs_filtered (")", stream);
11671 return;
11672
11673 case UNOP_IN_RANGE:
11674 /* XXX: sprint_subexp */
11675 print_subexp (exp, pos, stream, PREC_SUFFIX);
11676 fputs_filtered (" in ", stream);
11677 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
11678 return;
11679
11680 case OP_DISCRETE_RANGE:
11681 print_subexp (exp, pos, stream, PREC_SUFFIX);
11682 fputs_filtered ("..", stream);
11683 print_subexp (exp, pos, stream, PREC_SUFFIX);
11684 return;
11685
11686 case OP_OTHERS:
11687 fputs_filtered ("others => ", stream);
11688 print_subexp (exp, pos, stream, PREC_SUFFIX);
11689 return;
11690
11691 case OP_CHOICES:
11692 for (i = 0; i < nargs-1; i += 1)
11693 {
11694 if (i > 0)
11695 fputs_filtered ("|", stream);
11696 print_subexp (exp, pos, stream, PREC_SUFFIX);
11697 }
11698 fputs_filtered (" => ", stream);
11699 print_subexp (exp, pos, stream, PREC_SUFFIX);
11700 return;
11701
11702 case OP_POSITIONAL:
11703 print_subexp (exp, pos, stream, PREC_SUFFIX);
11704 return;
11705
11706 case OP_AGGREGATE:
11707 fputs_filtered ("(", stream);
11708 for (i = 0; i < nargs; i += 1)
11709 {
11710 if (i > 0)
11711 fputs_filtered (", ", stream);
11712 print_subexp (exp, pos, stream, PREC_SUFFIX);
11713 }
11714 fputs_filtered (")", stream);
11715 return;
11716 }
11717 }
11718
11719 /* Table mapping opcodes into strings for printing operators
11720 and precedences of the operators. */
11721
11722 static const struct op_print ada_op_print_tab[] = {
11723 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
11724 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
11725 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
11726 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
11727 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
11728 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
11729 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
11730 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
11731 {"<=", BINOP_LEQ, PREC_ORDER, 0},
11732 {">=", BINOP_GEQ, PREC_ORDER, 0},
11733 {">", BINOP_GTR, PREC_ORDER, 0},
11734 {"<", BINOP_LESS, PREC_ORDER, 0},
11735 {">>", BINOP_RSH, PREC_SHIFT, 0},
11736 {"<<", BINOP_LSH, PREC_SHIFT, 0},
11737 {"+", BINOP_ADD, PREC_ADD, 0},
11738 {"-", BINOP_SUB, PREC_ADD, 0},
11739 {"&", BINOP_CONCAT, PREC_ADD, 0},
11740 {"*", BINOP_MUL, PREC_MUL, 0},
11741 {"/", BINOP_DIV, PREC_MUL, 0},
11742 {"rem", BINOP_REM, PREC_MUL, 0},
11743 {"mod", BINOP_MOD, PREC_MUL, 0},
11744 {"**", BINOP_EXP, PREC_REPEAT, 0},
11745 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
11746 {"-", UNOP_NEG, PREC_PREFIX, 0},
11747 {"+", UNOP_PLUS, PREC_PREFIX, 0},
11748 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
11749 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
11750 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
11751 {".all", UNOP_IND, PREC_SUFFIX, 1},
11752 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
11753 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
11754 {NULL, 0, 0, 0}
11755 };
11756 \f
11757 enum ada_primitive_types {
11758 ada_primitive_type_int,
11759 ada_primitive_type_long,
11760 ada_primitive_type_short,
11761 ada_primitive_type_char,
11762 ada_primitive_type_float,
11763 ada_primitive_type_double,
11764 ada_primitive_type_void,
11765 ada_primitive_type_long_long,
11766 ada_primitive_type_long_double,
11767 ada_primitive_type_natural,
11768 ada_primitive_type_positive,
11769 ada_primitive_type_system_address,
11770 nr_ada_primitive_types
11771 };
11772
11773 static void
11774 ada_language_arch_info (struct gdbarch *gdbarch,
11775 struct language_arch_info *lai)
11776 {
11777 const struct builtin_type *builtin = builtin_type (gdbarch);
11778
11779 lai->primitive_type_vector
11780 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
11781 struct type *);
11782
11783 lai->primitive_type_vector [ada_primitive_type_int]
11784 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11785 0, "integer");
11786 lai->primitive_type_vector [ada_primitive_type_long]
11787 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
11788 0, "long_integer");
11789 lai->primitive_type_vector [ada_primitive_type_short]
11790 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
11791 0, "short_integer");
11792 lai->string_char_type
11793 = lai->primitive_type_vector [ada_primitive_type_char]
11794 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
11795 lai->primitive_type_vector [ada_primitive_type_float]
11796 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
11797 "float", NULL);
11798 lai->primitive_type_vector [ada_primitive_type_double]
11799 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11800 "long_float", NULL);
11801 lai->primitive_type_vector [ada_primitive_type_long_long]
11802 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
11803 0, "long_long_integer");
11804 lai->primitive_type_vector [ada_primitive_type_long_double]
11805 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11806 "long_long_float", NULL);
11807 lai->primitive_type_vector [ada_primitive_type_natural]
11808 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11809 0, "natural");
11810 lai->primitive_type_vector [ada_primitive_type_positive]
11811 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11812 0, "positive");
11813 lai->primitive_type_vector [ada_primitive_type_void]
11814 = builtin->builtin_void;
11815
11816 lai->primitive_type_vector [ada_primitive_type_system_address]
11817 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
11818 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
11819 = "system__address";
11820
11821 lai->bool_type_symbol = NULL;
11822 lai->bool_type_default = builtin->builtin_bool;
11823 }
11824 \f
11825 /* Language vector */
11826
11827 /* Not really used, but needed in the ada_language_defn. */
11828
11829 static void
11830 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
11831 {
11832 ada_emit_char (c, type, stream, quoter, 1);
11833 }
11834
11835 static int
11836 parse (void)
11837 {
11838 warnings_issued = 0;
11839 return ada_parse ();
11840 }
11841
11842 static const struct exp_descriptor ada_exp_descriptor = {
11843 ada_print_subexp,
11844 ada_operator_length,
11845 ada_operator_check,
11846 ada_op_name,
11847 ada_dump_subexp_body,
11848 ada_evaluate_subexp
11849 };
11850
11851 const struct language_defn ada_language_defn = {
11852 "ada", /* Language name */
11853 language_ada,
11854 range_check_off,
11855 type_check_off,
11856 case_sensitive_on, /* Yes, Ada is case-insensitive, but
11857 that's not quite what this means. */
11858 array_row_major,
11859 macro_expansion_no,
11860 &ada_exp_descriptor,
11861 parse,
11862 ada_error,
11863 resolve,
11864 ada_printchar, /* Print a character constant */
11865 ada_printstr, /* Function to print string constant */
11866 emit_char, /* Function to print single char (not used) */
11867 ada_print_type, /* Print a type using appropriate syntax */
11868 ada_print_typedef, /* Print a typedef using appropriate syntax */
11869 ada_val_print, /* Print a value using appropriate syntax */
11870 ada_value_print, /* Print a top-level value */
11871 NULL, /* Language specific skip_trampoline */
11872 NULL, /* name_of_this */
11873 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
11874 basic_lookup_transparent_type, /* lookup_transparent_type */
11875 ada_la_decode, /* Language specific symbol demangler */
11876 NULL, /* Language specific
11877 class_name_from_physname */
11878 ada_op_print_tab, /* expression operators for printing */
11879 0, /* c-style arrays */
11880 1, /* String lower bound */
11881 ada_get_gdb_completer_word_break_characters,
11882 ada_make_symbol_completion_list,
11883 ada_language_arch_info,
11884 ada_print_array_index,
11885 default_pass_by_reference,
11886 c_get_string,
11887 LANG_MAGIC
11888 };
11889
11890 /* Provide a prototype to silence -Wmissing-prototypes. */
11891 extern initialize_file_ftype _initialize_ada_language;
11892
11893 /* Command-list for the "set/show ada" prefix command. */
11894 static struct cmd_list_element *set_ada_list;
11895 static struct cmd_list_element *show_ada_list;
11896
11897 /* Implement the "set ada" prefix command. */
11898
11899 static void
11900 set_ada_command (char *arg, int from_tty)
11901 {
11902 printf_unfiltered (_(\
11903 "\"set ada\" must be followed by the name of a setting.\n"));
11904 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
11905 }
11906
11907 /* Implement the "show ada" prefix command. */
11908
11909 static void
11910 show_ada_command (char *args, int from_tty)
11911 {
11912 cmd_show_list (show_ada_list, from_tty, "");
11913 }
11914
11915 void
11916 _initialize_ada_language (void)
11917 {
11918 add_language (&ada_language_defn);
11919
11920 add_prefix_cmd ("ada", no_class, set_ada_command,
11921 _("Prefix command for changing Ada-specfic settings"),
11922 &set_ada_list, "set ada ", 0, &setlist);
11923
11924 add_prefix_cmd ("ada", no_class, show_ada_command,
11925 _("Generic command for showing Ada-specific settings."),
11926 &show_ada_list, "show ada ", 0, &showlist);
11927
11928 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
11929 &trust_pad_over_xvs, _("\
11930 Enable or disable an optimization trusting PAD types over XVS types"), _("\
11931 Show whether an optimization trusting PAD types over XVS types is activated"),
11932 _("\
11933 This is related to the encoding used by the GNAT compiler. The debugger\n\
11934 should normally trust the contents of PAD types, but certain older versions\n\
11935 of GNAT have a bug that sometimes causes the information in the PAD type\n\
11936 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
11937 work around this bug. It is always safe to turn this option \"off\", but\n\
11938 this incurs a slight performance penalty, so it is recommended to NOT change\n\
11939 this option to \"off\" unless necessary."),
11940 NULL, NULL, &set_ada_list, &show_ada_list);
11941
11942 varsize_limit = 65536;
11943
11944 obstack_init (&symbol_list_obstack);
11945
11946 decoded_names_store = htab_create_alloc
11947 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
11948 NULL, xcalloc, xfree);
11949
11950 observer_attach_executable_changed (ada_executable_changed_observer);
11951
11952 /* Setup per-inferior data. */
11953 observer_attach_inferior_exit (ada_inferior_exit);
11954 ada_inferior_data
11955 = register_inferior_data_with_cleanup (ada_inferior_data_cleanup);
11956 }
This page took 0.284024 seconds and 4 git commands to generate.