0a5b93f5e29a149130edb26afc85fafd051741b3
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "gdb_regex.h"
24 #include "frame.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcmd.h"
28 #include "expression.h"
29 #include "parser-defs.h"
30 #include "language.h"
31 #include "varobj.h"
32 #include "inferior.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "breakpoint.h"
36 #include "gdbcore.h"
37 #include "hashtab.h"
38 #include "gdb_obstack.h"
39 #include "ada-lang.h"
40 #include "completer.h"
41 #include "ui-out.h"
42 #include "block.h"
43 #include "infcall.h"
44 #include "annotate.h"
45 #include "valprint.h"
46 #include "source.h"
47 #include "observable.h"
48 #include "stack.h"
49 #include "typeprint.h"
50 #include "namespace.h"
51 #include "cli/cli-style.h"
52
53 #include "value.h"
54 #include "mi/mi-common.h"
55 #include "arch-utils.h"
56 #include "cli/cli-utils.h"
57 #include "gdbsupport/function-view.h"
58 #include "gdbsupport/byte-vector.h"
59 #include <algorithm>
60
61 /* Define whether or not the C operator '/' truncates towards zero for
62 differently signed operands (truncation direction is undefined in C).
63 Copied from valarith.c. */
64
65 #ifndef TRUNCATION_TOWARDS_ZERO
66 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
67 #endif
68
69 static struct type *desc_base_type (struct type *);
70
71 static struct type *desc_bounds_type (struct type *);
72
73 static struct value *desc_bounds (struct value *);
74
75 static int fat_pntr_bounds_bitpos (struct type *);
76
77 static int fat_pntr_bounds_bitsize (struct type *);
78
79 static struct type *desc_data_target_type (struct type *);
80
81 static struct value *desc_data (struct value *);
82
83 static int fat_pntr_data_bitpos (struct type *);
84
85 static int fat_pntr_data_bitsize (struct type *);
86
87 static struct value *desc_one_bound (struct value *, int, int);
88
89 static int desc_bound_bitpos (struct type *, int, int);
90
91 static int desc_bound_bitsize (struct type *, int, int);
92
93 static struct type *desc_index_type (struct type *, int);
94
95 static int desc_arity (struct type *);
96
97 static int ada_type_match (struct type *, struct type *, int);
98
99 static int ada_args_match (struct symbol *, struct value **, int);
100
101 static struct value *make_array_descriptor (struct type *, struct value *);
102
103 static void ada_add_block_symbols (struct obstack *,
104 const struct block *,
105 const lookup_name_info &lookup_name,
106 domain_enum, struct objfile *);
107
108 static void ada_add_all_symbols (struct obstack *, const struct block *,
109 const lookup_name_info &lookup_name,
110 domain_enum, int, int *);
111
112 static int is_nonfunction (struct block_symbol *, int);
113
114 static void add_defn_to_vec (struct obstack *, struct symbol *,
115 const struct block *);
116
117 static int num_defns_collected (struct obstack *);
118
119 static struct block_symbol *defns_collected (struct obstack *, int);
120
121 static struct value *resolve_subexp (expression_up *, int *, int,
122 struct type *, int,
123 innermost_block_tracker *);
124
125 static void replace_operator_with_call (expression_up *, int, int, int,
126 struct symbol *, const struct block *);
127
128 static int possible_user_operator_p (enum exp_opcode, struct value **);
129
130 static const char *ada_op_name (enum exp_opcode);
131
132 static const char *ada_decoded_op_name (enum exp_opcode);
133
134 static int numeric_type_p (struct type *);
135
136 static int integer_type_p (struct type *);
137
138 static int scalar_type_p (struct type *);
139
140 static int discrete_type_p (struct type *);
141
142 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
143 int, int);
144
145 static struct value *evaluate_subexp_type (struct expression *, int *);
146
147 static struct type *ada_find_parallel_type_with_name (struct type *,
148 const char *);
149
150 static int is_dynamic_field (struct type *, int);
151
152 static struct type *to_fixed_variant_branch_type (struct type *,
153 const gdb_byte *,
154 CORE_ADDR, struct value *);
155
156 static struct type *to_fixed_array_type (struct type *, struct value *, int);
157
158 static struct type *to_fixed_range_type (struct type *, struct value *);
159
160 static struct type *to_static_fixed_type (struct type *);
161 static struct type *static_unwrap_type (struct type *type);
162
163 static struct value *unwrap_value (struct value *);
164
165 static struct type *constrained_packed_array_type (struct type *, long *);
166
167 static struct type *decode_constrained_packed_array_type (struct type *);
168
169 static long decode_packed_array_bitsize (struct type *);
170
171 static struct value *decode_constrained_packed_array (struct value *);
172
173 static int ada_is_packed_array_type (struct type *);
174
175 static int ada_is_unconstrained_packed_array_type (struct type *);
176
177 static struct value *value_subscript_packed (struct value *, int,
178 struct value **);
179
180 static struct value *coerce_unspec_val_to_type (struct value *,
181 struct type *);
182
183 static int lesseq_defined_than (struct symbol *, struct symbol *);
184
185 static int equiv_types (struct type *, struct type *);
186
187 static int is_name_suffix (const char *);
188
189 static int advance_wild_match (const char **, const char *, char);
190
191 static bool wild_match (const char *name, const char *patn);
192
193 static struct value *ada_coerce_ref (struct value *);
194
195 static LONGEST pos_atr (struct value *);
196
197 static struct value *value_pos_atr (struct type *, struct value *);
198
199 static struct value *val_atr (struct type *, LONGEST);
200
201 static struct value *value_val_atr (struct type *, struct value *);
202
203 static struct symbol *standard_lookup (const char *, const struct block *,
204 domain_enum);
205
206 static struct value *ada_search_struct_field (const char *, struct value *, int,
207 struct type *);
208
209 static int find_struct_field (const char *, struct type *, int,
210 struct type **, int *, int *, int *, int *);
211
212 static int ada_resolve_function (struct block_symbol *, int,
213 struct value **, int, const char *,
214 struct type *, int);
215
216 static int ada_is_direct_array_type (struct type *);
217
218 static struct value *ada_index_struct_field (int, struct value *, int,
219 struct type *);
220
221 static struct value *assign_aggregate (struct value *, struct value *,
222 struct expression *,
223 int *, enum noside);
224
225 static void aggregate_assign_from_choices (struct value *, struct value *,
226 struct expression *,
227 int *, LONGEST *, int *,
228 int, LONGEST, LONGEST);
229
230 static void aggregate_assign_positional (struct value *, struct value *,
231 struct expression *,
232 int *, LONGEST *, int *, int,
233 LONGEST, LONGEST);
234
235
236 static void aggregate_assign_others (struct value *, struct value *,
237 struct expression *,
238 int *, LONGEST *, int, LONGEST, LONGEST);
239
240
241 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
242
243
244 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
245 int *, enum noside);
246
247 static void ada_forward_operator_length (struct expression *, int, int *,
248 int *);
249
250 static struct type *ada_find_any_type (const char *name);
251
252 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
253 (const lookup_name_info &lookup_name);
254
255 \f
256
257 /* The result of a symbol lookup to be stored in our symbol cache. */
258
259 struct cache_entry
260 {
261 /* The name used to perform the lookup. */
262 const char *name;
263 /* The namespace used during the lookup. */
264 domain_enum domain;
265 /* The symbol returned by the lookup, or NULL if no matching symbol
266 was found. */
267 struct symbol *sym;
268 /* The block where the symbol was found, or NULL if no matching
269 symbol was found. */
270 const struct block *block;
271 /* A pointer to the next entry with the same hash. */
272 struct cache_entry *next;
273 };
274
275 /* The Ada symbol cache, used to store the result of Ada-mode symbol
276 lookups in the course of executing the user's commands.
277
278 The cache is implemented using a simple, fixed-sized hash.
279 The size is fixed on the grounds that there are not likely to be
280 all that many symbols looked up during any given session, regardless
281 of the size of the symbol table. If we decide to go to a resizable
282 table, let's just use the stuff from libiberty instead. */
283
284 #define HASH_SIZE 1009
285
286 struct ada_symbol_cache
287 {
288 /* An obstack used to store the entries in our cache. */
289 struct obstack cache_space;
290
291 /* The root of the hash table used to implement our symbol cache. */
292 struct cache_entry *root[HASH_SIZE];
293 };
294
295 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
296
297 /* Maximum-sized dynamic type. */
298 static unsigned int varsize_limit;
299
300 static const char ada_completer_word_break_characters[] =
301 #ifdef VMS
302 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
303 #else
304 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
305 #endif
306
307 /* The name of the symbol to use to get the name of the main subprogram. */
308 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
309 = "__gnat_ada_main_program_name";
310
311 /* Limit on the number of warnings to raise per expression evaluation. */
312 static int warning_limit = 2;
313
314 /* Number of warning messages issued; reset to 0 by cleanups after
315 expression evaluation. */
316 static int warnings_issued = 0;
317
318 static const char * const known_runtime_file_name_patterns[] = {
319 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
320 };
321
322 static const char * const known_auxiliary_function_name_patterns[] = {
323 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
324 };
325
326 /* Maintenance-related settings for this module. */
327
328 static struct cmd_list_element *maint_set_ada_cmdlist;
329 static struct cmd_list_element *maint_show_ada_cmdlist;
330
331 /* The "maintenance ada set/show ignore-descriptive-type" value. */
332
333 static bool ada_ignore_descriptive_types_p = false;
334
335 /* Inferior-specific data. */
336
337 /* Per-inferior data for this module. */
338
339 struct ada_inferior_data
340 {
341 /* The ada__tags__type_specific_data type, which is used when decoding
342 tagged types. With older versions of GNAT, this type was directly
343 accessible through a component ("tsd") in the object tag. But this
344 is no longer the case, so we cache it for each inferior. */
345 struct type *tsd_type = nullptr;
346
347 /* The exception_support_info data. This data is used to determine
348 how to implement support for Ada exception catchpoints in a given
349 inferior. */
350 const struct exception_support_info *exception_info = nullptr;
351 };
352
353 /* Our key to this module's inferior data. */
354 static const struct inferior_key<ada_inferior_data> ada_inferior_data;
355
356 /* Return our inferior data for the given inferior (INF).
357
358 This function always returns a valid pointer to an allocated
359 ada_inferior_data structure. If INF's inferior data has not
360 been previously set, this functions creates a new one with all
361 fields set to zero, sets INF's inferior to it, and then returns
362 a pointer to that newly allocated ada_inferior_data. */
363
364 static struct ada_inferior_data *
365 get_ada_inferior_data (struct inferior *inf)
366 {
367 struct ada_inferior_data *data;
368
369 data = ada_inferior_data.get (inf);
370 if (data == NULL)
371 data = ada_inferior_data.emplace (inf);
372
373 return data;
374 }
375
376 /* Perform all necessary cleanups regarding our module's inferior data
377 that is required after the inferior INF just exited. */
378
379 static void
380 ada_inferior_exit (struct inferior *inf)
381 {
382 ada_inferior_data.clear (inf);
383 }
384
385
386 /* program-space-specific data. */
387
388 /* This module's per-program-space data. */
389 struct ada_pspace_data
390 {
391 ~ada_pspace_data ()
392 {
393 if (sym_cache != NULL)
394 ada_free_symbol_cache (sym_cache);
395 }
396
397 /* The Ada symbol cache. */
398 struct ada_symbol_cache *sym_cache = nullptr;
399 };
400
401 /* Key to our per-program-space data. */
402 static const struct program_space_key<ada_pspace_data> ada_pspace_data_handle;
403
404 /* Return this module's data for the given program space (PSPACE).
405 If not is found, add a zero'ed one now.
406
407 This function always returns a valid object. */
408
409 static struct ada_pspace_data *
410 get_ada_pspace_data (struct program_space *pspace)
411 {
412 struct ada_pspace_data *data;
413
414 data = ada_pspace_data_handle.get (pspace);
415 if (data == NULL)
416 data = ada_pspace_data_handle.emplace (pspace);
417
418 return data;
419 }
420
421 /* Utilities */
422
423 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
424 all typedef layers have been peeled. Otherwise, return TYPE.
425
426 Normally, we really expect a typedef type to only have 1 typedef layer.
427 In other words, we really expect the target type of a typedef type to be
428 a non-typedef type. This is particularly true for Ada units, because
429 the language does not have a typedef vs not-typedef distinction.
430 In that respect, the Ada compiler has been trying to eliminate as many
431 typedef definitions in the debugging information, since they generally
432 do not bring any extra information (we still use typedef under certain
433 circumstances related mostly to the GNAT encoding).
434
435 Unfortunately, we have seen situations where the debugging information
436 generated by the compiler leads to such multiple typedef layers. For
437 instance, consider the following example with stabs:
438
439 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
440 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
441
442 This is an error in the debugging information which causes type
443 pck__float_array___XUP to be defined twice, and the second time,
444 it is defined as a typedef of a typedef.
445
446 This is on the fringe of legality as far as debugging information is
447 concerned, and certainly unexpected. But it is easy to handle these
448 situations correctly, so we can afford to be lenient in this case. */
449
450 static struct type *
451 ada_typedef_target_type (struct type *type)
452 {
453 while (type->code () == TYPE_CODE_TYPEDEF)
454 type = TYPE_TARGET_TYPE (type);
455 return type;
456 }
457
458 /* Given DECODED_NAME a string holding a symbol name in its
459 decoded form (ie using the Ada dotted notation), returns
460 its unqualified name. */
461
462 static const char *
463 ada_unqualified_name (const char *decoded_name)
464 {
465 const char *result;
466
467 /* If the decoded name starts with '<', it means that the encoded
468 name does not follow standard naming conventions, and thus that
469 it is not your typical Ada symbol name. Trying to unqualify it
470 is therefore pointless and possibly erroneous. */
471 if (decoded_name[0] == '<')
472 return decoded_name;
473
474 result = strrchr (decoded_name, '.');
475 if (result != NULL)
476 result++; /* Skip the dot... */
477 else
478 result = decoded_name;
479
480 return result;
481 }
482
483 /* Return a string starting with '<', followed by STR, and '>'. */
484
485 static std::string
486 add_angle_brackets (const char *str)
487 {
488 return string_printf ("<%s>", str);
489 }
490
491 /* Assuming V points to an array of S objects, make sure that it contains at
492 least M objects, updating V and S as necessary. */
493
494 #define GROW_VECT(v, s, m) \
495 if ((s) < (m)) (v) = (char *) grow_vect (v, &(s), m, sizeof *(v));
496
497 /* Assuming VECT points to an array of *SIZE objects of size
498 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
499 updating *SIZE as necessary and returning the (new) array. */
500
501 static void *
502 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
503 {
504 if (*size < min_size)
505 {
506 *size *= 2;
507 if (*size < min_size)
508 *size = min_size;
509 vect = xrealloc (vect, *size * element_size);
510 }
511 return vect;
512 }
513
514 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
515 suffix of FIELD_NAME beginning "___". */
516
517 static int
518 field_name_match (const char *field_name, const char *target)
519 {
520 int len = strlen (target);
521
522 return
523 (strncmp (field_name, target, len) == 0
524 && (field_name[len] == '\0'
525 || (startswith (field_name + len, "___")
526 && strcmp (field_name + strlen (field_name) - 6,
527 "___XVN") != 0)));
528 }
529
530
531 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
532 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
533 and return its index. This function also handles fields whose name
534 have ___ suffixes because the compiler sometimes alters their name
535 by adding such a suffix to represent fields with certain constraints.
536 If the field could not be found, return a negative number if
537 MAYBE_MISSING is set. Otherwise raise an error. */
538
539 int
540 ada_get_field_index (const struct type *type, const char *field_name,
541 int maybe_missing)
542 {
543 int fieldno;
544 struct type *struct_type = check_typedef ((struct type *) type);
545
546 for (fieldno = 0; fieldno < struct_type->num_fields (); fieldno++)
547 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
548 return fieldno;
549
550 if (!maybe_missing)
551 error (_("Unable to find field %s in struct %s. Aborting"),
552 field_name, struct_type->name ());
553
554 return -1;
555 }
556
557 /* The length of the prefix of NAME prior to any "___" suffix. */
558
559 int
560 ada_name_prefix_len (const char *name)
561 {
562 if (name == NULL)
563 return 0;
564 else
565 {
566 const char *p = strstr (name, "___");
567
568 if (p == NULL)
569 return strlen (name);
570 else
571 return p - name;
572 }
573 }
574
575 /* Return non-zero if SUFFIX is a suffix of STR.
576 Return zero if STR is null. */
577
578 static int
579 is_suffix (const char *str, const char *suffix)
580 {
581 int len1, len2;
582
583 if (str == NULL)
584 return 0;
585 len1 = strlen (str);
586 len2 = strlen (suffix);
587 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
588 }
589
590 /* The contents of value VAL, treated as a value of type TYPE. The
591 result is an lval in memory if VAL is. */
592
593 static struct value *
594 coerce_unspec_val_to_type (struct value *val, struct type *type)
595 {
596 type = ada_check_typedef (type);
597 if (value_type (val) == type)
598 return val;
599 else
600 {
601 struct value *result;
602
603 /* Make sure that the object size is not unreasonable before
604 trying to allocate some memory for it. */
605 ada_ensure_varsize_limit (type);
606
607 if (value_lazy (val)
608 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
609 result = allocate_value_lazy (type);
610 else
611 {
612 result = allocate_value (type);
613 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
614 }
615 set_value_component_location (result, val);
616 set_value_bitsize (result, value_bitsize (val));
617 set_value_bitpos (result, value_bitpos (val));
618 if (VALUE_LVAL (result) == lval_memory)
619 set_value_address (result, value_address (val));
620 return result;
621 }
622 }
623
624 static const gdb_byte *
625 cond_offset_host (const gdb_byte *valaddr, long offset)
626 {
627 if (valaddr == NULL)
628 return NULL;
629 else
630 return valaddr + offset;
631 }
632
633 static CORE_ADDR
634 cond_offset_target (CORE_ADDR address, long offset)
635 {
636 if (address == 0)
637 return 0;
638 else
639 return address + offset;
640 }
641
642 /* Issue a warning (as for the definition of warning in utils.c, but
643 with exactly one argument rather than ...), unless the limit on the
644 number of warnings has passed during the evaluation of the current
645 expression. */
646
647 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
648 provided by "complaint". */
649 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
650
651 static void
652 lim_warning (const char *format, ...)
653 {
654 va_list args;
655
656 va_start (args, format);
657 warnings_issued += 1;
658 if (warnings_issued <= warning_limit)
659 vwarning (format, args);
660
661 va_end (args);
662 }
663
664 /* Issue an error if the size of an object of type T is unreasonable,
665 i.e. if it would be a bad idea to allocate a value of this type in
666 GDB. */
667
668 void
669 ada_ensure_varsize_limit (const struct type *type)
670 {
671 if (TYPE_LENGTH (type) > varsize_limit)
672 error (_("object size is larger than varsize-limit"));
673 }
674
675 /* Maximum value of a SIZE-byte signed integer type. */
676 static LONGEST
677 max_of_size (int size)
678 {
679 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
680
681 return top_bit | (top_bit - 1);
682 }
683
684 /* Minimum value of a SIZE-byte signed integer type. */
685 static LONGEST
686 min_of_size (int size)
687 {
688 return -max_of_size (size) - 1;
689 }
690
691 /* Maximum value of a SIZE-byte unsigned integer type. */
692 static ULONGEST
693 umax_of_size (int size)
694 {
695 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
696
697 return top_bit | (top_bit - 1);
698 }
699
700 /* Maximum value of integral type T, as a signed quantity. */
701 static LONGEST
702 max_of_type (struct type *t)
703 {
704 if (t->is_unsigned ())
705 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
706 else
707 return max_of_size (TYPE_LENGTH (t));
708 }
709
710 /* Minimum value of integral type T, as a signed quantity. */
711 static LONGEST
712 min_of_type (struct type *t)
713 {
714 if (t->is_unsigned ())
715 return 0;
716 else
717 return min_of_size (TYPE_LENGTH (t));
718 }
719
720 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
721 LONGEST
722 ada_discrete_type_high_bound (struct type *type)
723 {
724 type = resolve_dynamic_type (type, {}, 0);
725 switch (type->code ())
726 {
727 case TYPE_CODE_RANGE:
728 {
729 const dynamic_prop &high = type->bounds ()->high;
730
731 if (high.kind () == PROP_CONST)
732 return high.const_val ();
733 else
734 {
735 gdb_assert (high.kind () == PROP_UNDEFINED);
736
737 /* This happens when trying to evaluate a type's dynamic bound
738 without a live target. There is nothing relevant for us to
739 return here, so return 0. */
740 return 0;
741 }
742 }
743 case TYPE_CODE_ENUM:
744 return TYPE_FIELD_ENUMVAL (type, type->num_fields () - 1);
745 case TYPE_CODE_BOOL:
746 return 1;
747 case TYPE_CODE_CHAR:
748 case TYPE_CODE_INT:
749 return max_of_type (type);
750 default:
751 error (_("Unexpected type in ada_discrete_type_high_bound."));
752 }
753 }
754
755 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
756 LONGEST
757 ada_discrete_type_low_bound (struct type *type)
758 {
759 type = resolve_dynamic_type (type, {}, 0);
760 switch (type->code ())
761 {
762 case TYPE_CODE_RANGE:
763 {
764 const dynamic_prop &low = type->bounds ()->low;
765
766 if (low.kind () == PROP_CONST)
767 return low.const_val ();
768 else
769 {
770 gdb_assert (low.kind () == PROP_UNDEFINED);
771
772 /* This happens when trying to evaluate a type's dynamic bound
773 without a live target. There is nothing relevant for us to
774 return here, so return 0. */
775 return 0;
776 }
777 }
778 case TYPE_CODE_ENUM:
779 return TYPE_FIELD_ENUMVAL (type, 0);
780 case TYPE_CODE_BOOL:
781 return 0;
782 case TYPE_CODE_CHAR:
783 case TYPE_CODE_INT:
784 return min_of_type (type);
785 default:
786 error (_("Unexpected type in ada_discrete_type_low_bound."));
787 }
788 }
789
790 /* The identity on non-range types. For range types, the underlying
791 non-range scalar type. */
792
793 static struct type *
794 get_base_type (struct type *type)
795 {
796 while (type != NULL && type->code () == TYPE_CODE_RANGE)
797 {
798 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
799 return type;
800 type = TYPE_TARGET_TYPE (type);
801 }
802 return type;
803 }
804
805 /* Return a decoded version of the given VALUE. This means returning
806 a value whose type is obtained by applying all the GNAT-specific
807 encodings, making the resulting type a static but standard description
808 of the initial type. */
809
810 struct value *
811 ada_get_decoded_value (struct value *value)
812 {
813 struct type *type = ada_check_typedef (value_type (value));
814
815 if (ada_is_array_descriptor_type (type)
816 || (ada_is_constrained_packed_array_type (type)
817 && type->code () != TYPE_CODE_PTR))
818 {
819 if (type->code () == TYPE_CODE_TYPEDEF) /* array access type. */
820 value = ada_coerce_to_simple_array_ptr (value);
821 else
822 value = ada_coerce_to_simple_array (value);
823 }
824 else
825 value = ada_to_fixed_value (value);
826
827 return value;
828 }
829
830 /* Same as ada_get_decoded_value, but with the given TYPE.
831 Because there is no associated actual value for this type,
832 the resulting type might be a best-effort approximation in
833 the case of dynamic types. */
834
835 struct type *
836 ada_get_decoded_type (struct type *type)
837 {
838 type = to_static_fixed_type (type);
839 if (ada_is_constrained_packed_array_type (type))
840 type = ada_coerce_to_simple_array_type (type);
841 return type;
842 }
843
844 \f
845
846 /* Language Selection */
847
848 /* If the main program is in Ada, return language_ada, otherwise return LANG
849 (the main program is in Ada iif the adainit symbol is found). */
850
851 static enum language
852 ada_update_initial_language (enum language lang)
853 {
854 if (lookup_minimal_symbol ("adainit", NULL, NULL).minsym != NULL)
855 return language_ada;
856
857 return lang;
858 }
859
860 /* If the main procedure is written in Ada, then return its name.
861 The result is good until the next call. Return NULL if the main
862 procedure doesn't appear to be in Ada. */
863
864 char *
865 ada_main_name (void)
866 {
867 struct bound_minimal_symbol msym;
868 static gdb::unique_xmalloc_ptr<char> main_program_name;
869
870 /* For Ada, the name of the main procedure is stored in a specific
871 string constant, generated by the binder. Look for that symbol,
872 extract its address, and then read that string. If we didn't find
873 that string, then most probably the main procedure is not written
874 in Ada. */
875 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
876
877 if (msym.minsym != NULL)
878 {
879 CORE_ADDR main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
880 if (main_program_name_addr == 0)
881 error (_("Invalid address for Ada main program name."));
882
883 main_program_name = target_read_string (main_program_name_addr, 1024);
884 return main_program_name.get ();
885 }
886
887 /* The main procedure doesn't seem to be in Ada. */
888 return NULL;
889 }
890 \f
891 /* Symbols */
892
893 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
894 of NULLs. */
895
896 const struct ada_opname_map ada_opname_table[] = {
897 {"Oadd", "\"+\"", BINOP_ADD},
898 {"Osubtract", "\"-\"", BINOP_SUB},
899 {"Omultiply", "\"*\"", BINOP_MUL},
900 {"Odivide", "\"/\"", BINOP_DIV},
901 {"Omod", "\"mod\"", BINOP_MOD},
902 {"Orem", "\"rem\"", BINOP_REM},
903 {"Oexpon", "\"**\"", BINOP_EXP},
904 {"Olt", "\"<\"", BINOP_LESS},
905 {"Ole", "\"<=\"", BINOP_LEQ},
906 {"Ogt", "\">\"", BINOP_GTR},
907 {"Oge", "\">=\"", BINOP_GEQ},
908 {"Oeq", "\"=\"", BINOP_EQUAL},
909 {"One", "\"/=\"", BINOP_NOTEQUAL},
910 {"Oand", "\"and\"", BINOP_BITWISE_AND},
911 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
912 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
913 {"Oconcat", "\"&\"", BINOP_CONCAT},
914 {"Oabs", "\"abs\"", UNOP_ABS},
915 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
916 {"Oadd", "\"+\"", UNOP_PLUS},
917 {"Osubtract", "\"-\"", UNOP_NEG},
918 {NULL, NULL}
919 };
920
921 /* The "encoded" form of DECODED, according to GNAT conventions. If
922 THROW_ERRORS, throw an error if invalid operator name is found.
923 Otherwise, return the empty string in that case. */
924
925 static std::string
926 ada_encode_1 (const char *decoded, bool throw_errors)
927 {
928 if (decoded == NULL)
929 return {};
930
931 std::string encoding_buffer;
932 for (const char *p = decoded; *p != '\0'; p += 1)
933 {
934 if (*p == '.')
935 encoding_buffer.append ("__");
936 else if (*p == '"')
937 {
938 const struct ada_opname_map *mapping;
939
940 for (mapping = ada_opname_table;
941 mapping->encoded != NULL
942 && !startswith (p, mapping->decoded); mapping += 1)
943 ;
944 if (mapping->encoded == NULL)
945 {
946 if (throw_errors)
947 error (_("invalid Ada operator name: %s"), p);
948 else
949 return {};
950 }
951 encoding_buffer.append (mapping->encoded);
952 break;
953 }
954 else
955 encoding_buffer.push_back (*p);
956 }
957
958 return encoding_buffer;
959 }
960
961 /* The "encoded" form of DECODED, according to GNAT conventions. */
962
963 std::string
964 ada_encode (const char *decoded)
965 {
966 return ada_encode_1 (decoded, true);
967 }
968
969 /* Return NAME folded to lower case, or, if surrounded by single
970 quotes, unfolded, but with the quotes stripped away. Result good
971 to next call. */
972
973 static char *
974 ada_fold_name (gdb::string_view name)
975 {
976 static char *fold_buffer = NULL;
977 static size_t fold_buffer_size = 0;
978
979 int len = name.size ();
980 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
981
982 if (name[0] == '\'')
983 {
984 strncpy (fold_buffer, name.data () + 1, len - 2);
985 fold_buffer[len - 2] = '\000';
986 }
987 else
988 {
989 int i;
990
991 for (i = 0; i <= len; i += 1)
992 fold_buffer[i] = tolower (name[i]);
993 }
994
995 return fold_buffer;
996 }
997
998 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
999
1000 static int
1001 is_lower_alphanum (const char c)
1002 {
1003 return (isdigit (c) || (isalpha (c) && islower (c)));
1004 }
1005
1006 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1007 This function saves in LEN the length of that same symbol name but
1008 without either of these suffixes:
1009 . .{DIGIT}+
1010 . ${DIGIT}+
1011 . ___{DIGIT}+
1012 . __{DIGIT}+.
1013
1014 These are suffixes introduced by the compiler for entities such as
1015 nested subprogram for instance, in order to avoid name clashes.
1016 They do not serve any purpose for the debugger. */
1017
1018 static void
1019 ada_remove_trailing_digits (const char *encoded, int *len)
1020 {
1021 if (*len > 1 && isdigit (encoded[*len - 1]))
1022 {
1023 int i = *len - 2;
1024
1025 while (i > 0 && isdigit (encoded[i]))
1026 i--;
1027 if (i >= 0 && encoded[i] == '.')
1028 *len = i;
1029 else if (i >= 0 && encoded[i] == '$')
1030 *len = i;
1031 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1032 *len = i - 2;
1033 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1034 *len = i - 1;
1035 }
1036 }
1037
1038 /* Remove the suffix introduced by the compiler for protected object
1039 subprograms. */
1040
1041 static void
1042 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1043 {
1044 /* Remove trailing N. */
1045
1046 /* Protected entry subprograms are broken into two
1047 separate subprograms: The first one is unprotected, and has
1048 a 'N' suffix; the second is the protected version, and has
1049 the 'P' suffix. The second calls the first one after handling
1050 the protection. Since the P subprograms are internally generated,
1051 we leave these names undecoded, giving the user a clue that this
1052 entity is internal. */
1053
1054 if (*len > 1
1055 && encoded[*len - 1] == 'N'
1056 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1057 *len = *len - 1;
1058 }
1059
1060 /* If ENCODED follows the GNAT entity encoding conventions, then return
1061 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1062 replaced by ENCODED. */
1063
1064 std::string
1065 ada_decode (const char *encoded)
1066 {
1067 int i, j;
1068 int len0;
1069 const char *p;
1070 int at_start_name;
1071 std::string decoded;
1072
1073 /* With function descriptors on PPC64, the value of a symbol named
1074 ".FN", if it exists, is the entry point of the function "FN". */
1075 if (encoded[0] == '.')
1076 encoded += 1;
1077
1078 /* The name of the Ada main procedure starts with "_ada_".
1079 This prefix is not part of the decoded name, so skip this part
1080 if we see this prefix. */
1081 if (startswith (encoded, "_ada_"))
1082 encoded += 5;
1083
1084 /* If the name starts with '_', then it is not a properly encoded
1085 name, so do not attempt to decode it. Similarly, if the name
1086 starts with '<', the name should not be decoded. */
1087 if (encoded[0] == '_' || encoded[0] == '<')
1088 goto Suppress;
1089
1090 len0 = strlen (encoded);
1091
1092 ada_remove_trailing_digits (encoded, &len0);
1093 ada_remove_po_subprogram_suffix (encoded, &len0);
1094
1095 /* Remove the ___X.* suffix if present. Do not forget to verify that
1096 the suffix is located before the current "end" of ENCODED. We want
1097 to avoid re-matching parts of ENCODED that have previously been
1098 marked as discarded (by decrementing LEN0). */
1099 p = strstr (encoded, "___");
1100 if (p != NULL && p - encoded < len0 - 3)
1101 {
1102 if (p[3] == 'X')
1103 len0 = p - encoded;
1104 else
1105 goto Suppress;
1106 }
1107
1108 /* Remove any trailing TKB suffix. It tells us that this symbol
1109 is for the body of a task, but that information does not actually
1110 appear in the decoded name. */
1111
1112 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1113 len0 -= 3;
1114
1115 /* Remove any trailing TB suffix. The TB suffix is slightly different
1116 from the TKB suffix because it is used for non-anonymous task
1117 bodies. */
1118
1119 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1120 len0 -= 2;
1121
1122 /* Remove trailing "B" suffixes. */
1123 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1124
1125 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1126 len0 -= 1;
1127
1128 /* Make decoded big enough for possible expansion by operator name. */
1129
1130 decoded.resize (2 * len0 + 1, 'X');
1131
1132 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1133
1134 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1135 {
1136 i = len0 - 2;
1137 while ((i >= 0 && isdigit (encoded[i]))
1138 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1139 i -= 1;
1140 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1141 len0 = i - 1;
1142 else if (encoded[i] == '$')
1143 len0 = i;
1144 }
1145
1146 /* The first few characters that are not alphabetic are not part
1147 of any encoding we use, so we can copy them over verbatim. */
1148
1149 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1150 decoded[j] = encoded[i];
1151
1152 at_start_name = 1;
1153 while (i < len0)
1154 {
1155 /* Is this a symbol function? */
1156 if (at_start_name && encoded[i] == 'O')
1157 {
1158 int k;
1159
1160 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1161 {
1162 int op_len = strlen (ada_opname_table[k].encoded);
1163 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1164 op_len - 1) == 0)
1165 && !isalnum (encoded[i + op_len]))
1166 {
1167 strcpy (&decoded.front() + j, ada_opname_table[k].decoded);
1168 at_start_name = 0;
1169 i += op_len;
1170 j += strlen (ada_opname_table[k].decoded);
1171 break;
1172 }
1173 }
1174 if (ada_opname_table[k].encoded != NULL)
1175 continue;
1176 }
1177 at_start_name = 0;
1178
1179 /* Replace "TK__" with "__", which will eventually be translated
1180 into "." (just below). */
1181
1182 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1183 i += 2;
1184
1185 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1186 be translated into "." (just below). These are internal names
1187 generated for anonymous blocks inside which our symbol is nested. */
1188
1189 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1190 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1191 && isdigit (encoded [i+4]))
1192 {
1193 int k = i + 5;
1194
1195 while (k < len0 && isdigit (encoded[k]))
1196 k++; /* Skip any extra digit. */
1197
1198 /* Double-check that the "__B_{DIGITS}+" sequence we found
1199 is indeed followed by "__". */
1200 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1201 i = k;
1202 }
1203
1204 /* Remove _E{DIGITS}+[sb] */
1205
1206 /* Just as for protected object subprograms, there are 2 categories
1207 of subprograms created by the compiler for each entry. The first
1208 one implements the actual entry code, and has a suffix following
1209 the convention above; the second one implements the barrier and
1210 uses the same convention as above, except that the 'E' is replaced
1211 by a 'B'.
1212
1213 Just as above, we do not decode the name of barrier functions
1214 to give the user a clue that the code he is debugging has been
1215 internally generated. */
1216
1217 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1218 && isdigit (encoded[i+2]))
1219 {
1220 int k = i + 3;
1221
1222 while (k < len0 && isdigit (encoded[k]))
1223 k++;
1224
1225 if (k < len0
1226 && (encoded[k] == 'b' || encoded[k] == 's'))
1227 {
1228 k++;
1229 /* Just as an extra precaution, make sure that if this
1230 suffix is followed by anything else, it is a '_'.
1231 Otherwise, we matched this sequence by accident. */
1232 if (k == len0
1233 || (k < len0 && encoded[k] == '_'))
1234 i = k;
1235 }
1236 }
1237
1238 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1239 the GNAT front-end in protected object subprograms. */
1240
1241 if (i < len0 + 3
1242 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1243 {
1244 /* Backtrack a bit up until we reach either the begining of
1245 the encoded name, or "__". Make sure that we only find
1246 digits or lowercase characters. */
1247 const char *ptr = encoded + i - 1;
1248
1249 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1250 ptr--;
1251 if (ptr < encoded
1252 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1253 i++;
1254 }
1255
1256 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1257 {
1258 /* This is a X[bn]* sequence not separated from the previous
1259 part of the name with a non-alpha-numeric character (in other
1260 words, immediately following an alpha-numeric character), then
1261 verify that it is placed at the end of the encoded name. If
1262 not, then the encoding is not valid and we should abort the
1263 decoding. Otherwise, just skip it, it is used in body-nested
1264 package names. */
1265 do
1266 i += 1;
1267 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1268 if (i < len0)
1269 goto Suppress;
1270 }
1271 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1272 {
1273 /* Replace '__' by '.'. */
1274 decoded[j] = '.';
1275 at_start_name = 1;
1276 i += 2;
1277 j += 1;
1278 }
1279 else
1280 {
1281 /* It's a character part of the decoded name, so just copy it
1282 over. */
1283 decoded[j] = encoded[i];
1284 i += 1;
1285 j += 1;
1286 }
1287 }
1288 decoded.resize (j);
1289
1290 /* Decoded names should never contain any uppercase character.
1291 Double-check this, and abort the decoding if we find one. */
1292
1293 for (i = 0; i < decoded.length(); ++i)
1294 if (isupper (decoded[i]) || decoded[i] == ' ')
1295 goto Suppress;
1296
1297 return decoded;
1298
1299 Suppress:
1300 if (encoded[0] == '<')
1301 decoded = encoded;
1302 else
1303 decoded = '<' + std::string(encoded) + '>';
1304 return decoded;
1305
1306 }
1307
1308 /* Table for keeping permanent unique copies of decoded names. Once
1309 allocated, names in this table are never released. While this is a
1310 storage leak, it should not be significant unless there are massive
1311 changes in the set of decoded names in successive versions of a
1312 symbol table loaded during a single session. */
1313 static struct htab *decoded_names_store;
1314
1315 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1316 in the language-specific part of GSYMBOL, if it has not been
1317 previously computed. Tries to save the decoded name in the same
1318 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1319 in any case, the decoded symbol has a lifetime at least that of
1320 GSYMBOL).
1321 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1322 const, but nevertheless modified to a semantically equivalent form
1323 when a decoded name is cached in it. */
1324
1325 const char *
1326 ada_decode_symbol (const struct general_symbol_info *arg)
1327 {
1328 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1329 const char **resultp =
1330 &gsymbol->language_specific.demangled_name;
1331
1332 if (!gsymbol->ada_mangled)
1333 {
1334 std::string decoded = ada_decode (gsymbol->linkage_name ());
1335 struct obstack *obstack = gsymbol->language_specific.obstack;
1336
1337 gsymbol->ada_mangled = 1;
1338
1339 if (obstack != NULL)
1340 *resultp = obstack_strdup (obstack, decoded.c_str ());
1341 else
1342 {
1343 /* Sometimes, we can't find a corresponding objfile, in
1344 which case, we put the result on the heap. Since we only
1345 decode when needed, we hope this usually does not cause a
1346 significant memory leak (FIXME). */
1347
1348 char **slot = (char **) htab_find_slot (decoded_names_store,
1349 decoded.c_str (), INSERT);
1350
1351 if (*slot == NULL)
1352 *slot = xstrdup (decoded.c_str ());
1353 *resultp = *slot;
1354 }
1355 }
1356
1357 return *resultp;
1358 }
1359
1360 static char *
1361 ada_la_decode (const char *encoded, int options)
1362 {
1363 return xstrdup (ada_decode (encoded).c_str ());
1364 }
1365
1366 \f
1367
1368 /* Arrays */
1369
1370 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1371 generated by the GNAT compiler to describe the index type used
1372 for each dimension of an array, check whether it follows the latest
1373 known encoding. If not, fix it up to conform to the latest encoding.
1374 Otherwise, do nothing. This function also does nothing if
1375 INDEX_DESC_TYPE is NULL.
1376
1377 The GNAT encoding used to describe the array index type evolved a bit.
1378 Initially, the information would be provided through the name of each
1379 field of the structure type only, while the type of these fields was
1380 described as unspecified and irrelevant. The debugger was then expected
1381 to perform a global type lookup using the name of that field in order
1382 to get access to the full index type description. Because these global
1383 lookups can be very expensive, the encoding was later enhanced to make
1384 the global lookup unnecessary by defining the field type as being
1385 the full index type description.
1386
1387 The purpose of this routine is to allow us to support older versions
1388 of the compiler by detecting the use of the older encoding, and by
1389 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1390 we essentially replace each field's meaningless type by the associated
1391 index subtype). */
1392
1393 void
1394 ada_fixup_array_indexes_type (struct type *index_desc_type)
1395 {
1396 int i;
1397
1398 if (index_desc_type == NULL)
1399 return;
1400 gdb_assert (index_desc_type->num_fields () > 0);
1401
1402 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1403 to check one field only, no need to check them all). If not, return
1404 now.
1405
1406 If our INDEX_DESC_TYPE was generated using the older encoding,
1407 the field type should be a meaningless integer type whose name
1408 is not equal to the field name. */
1409 if (index_desc_type->field (0).type ()->name () != NULL
1410 && strcmp (index_desc_type->field (0).type ()->name (),
1411 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1412 return;
1413
1414 /* Fixup each field of INDEX_DESC_TYPE. */
1415 for (i = 0; i < index_desc_type->num_fields (); i++)
1416 {
1417 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1418 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1419
1420 if (raw_type)
1421 index_desc_type->field (i).set_type (raw_type);
1422 }
1423 }
1424
1425 /* The desc_* routines return primitive portions of array descriptors
1426 (fat pointers). */
1427
1428 /* The descriptor or array type, if any, indicated by TYPE; removes
1429 level of indirection, if needed. */
1430
1431 static struct type *
1432 desc_base_type (struct type *type)
1433 {
1434 if (type == NULL)
1435 return NULL;
1436 type = ada_check_typedef (type);
1437 if (type->code () == TYPE_CODE_TYPEDEF)
1438 type = ada_typedef_target_type (type);
1439
1440 if (type != NULL
1441 && (type->code () == TYPE_CODE_PTR
1442 || type->code () == TYPE_CODE_REF))
1443 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1444 else
1445 return type;
1446 }
1447
1448 /* True iff TYPE indicates a "thin" array pointer type. */
1449
1450 static int
1451 is_thin_pntr (struct type *type)
1452 {
1453 return
1454 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1455 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1456 }
1457
1458 /* The descriptor type for thin pointer type TYPE. */
1459
1460 static struct type *
1461 thin_descriptor_type (struct type *type)
1462 {
1463 struct type *base_type = desc_base_type (type);
1464
1465 if (base_type == NULL)
1466 return NULL;
1467 if (is_suffix (ada_type_name (base_type), "___XVE"))
1468 return base_type;
1469 else
1470 {
1471 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1472
1473 if (alt_type == NULL)
1474 return base_type;
1475 else
1476 return alt_type;
1477 }
1478 }
1479
1480 /* A pointer to the array data for thin-pointer value VAL. */
1481
1482 static struct value *
1483 thin_data_pntr (struct value *val)
1484 {
1485 struct type *type = ada_check_typedef (value_type (val));
1486 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1487
1488 data_type = lookup_pointer_type (data_type);
1489
1490 if (type->code () == TYPE_CODE_PTR)
1491 return value_cast (data_type, value_copy (val));
1492 else
1493 return value_from_longest (data_type, value_address (val));
1494 }
1495
1496 /* True iff TYPE indicates a "thick" array pointer type. */
1497
1498 static int
1499 is_thick_pntr (struct type *type)
1500 {
1501 type = desc_base_type (type);
1502 return (type != NULL && type->code () == TYPE_CODE_STRUCT
1503 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1504 }
1505
1506 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1507 pointer to one, the type of its bounds data; otherwise, NULL. */
1508
1509 static struct type *
1510 desc_bounds_type (struct type *type)
1511 {
1512 struct type *r;
1513
1514 type = desc_base_type (type);
1515
1516 if (type == NULL)
1517 return NULL;
1518 else if (is_thin_pntr (type))
1519 {
1520 type = thin_descriptor_type (type);
1521 if (type == NULL)
1522 return NULL;
1523 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1524 if (r != NULL)
1525 return ada_check_typedef (r);
1526 }
1527 else if (type->code () == TYPE_CODE_STRUCT)
1528 {
1529 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1530 if (r != NULL)
1531 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1532 }
1533 return NULL;
1534 }
1535
1536 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1537 one, a pointer to its bounds data. Otherwise NULL. */
1538
1539 static struct value *
1540 desc_bounds (struct value *arr)
1541 {
1542 struct type *type = ada_check_typedef (value_type (arr));
1543
1544 if (is_thin_pntr (type))
1545 {
1546 struct type *bounds_type =
1547 desc_bounds_type (thin_descriptor_type (type));
1548 LONGEST addr;
1549
1550 if (bounds_type == NULL)
1551 error (_("Bad GNAT array descriptor"));
1552
1553 /* NOTE: The following calculation is not really kosher, but
1554 since desc_type is an XVE-encoded type (and shouldn't be),
1555 the correct calculation is a real pain. FIXME (and fix GCC). */
1556 if (type->code () == TYPE_CODE_PTR)
1557 addr = value_as_long (arr);
1558 else
1559 addr = value_address (arr);
1560
1561 return
1562 value_from_longest (lookup_pointer_type (bounds_type),
1563 addr - TYPE_LENGTH (bounds_type));
1564 }
1565
1566 else if (is_thick_pntr (type))
1567 {
1568 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1569 _("Bad GNAT array descriptor"));
1570 struct type *p_bounds_type = value_type (p_bounds);
1571
1572 if (p_bounds_type
1573 && p_bounds_type->code () == TYPE_CODE_PTR)
1574 {
1575 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1576
1577 if (target_type->is_stub ())
1578 p_bounds = value_cast (lookup_pointer_type
1579 (ada_check_typedef (target_type)),
1580 p_bounds);
1581 }
1582 else
1583 error (_("Bad GNAT array descriptor"));
1584
1585 return p_bounds;
1586 }
1587 else
1588 return NULL;
1589 }
1590
1591 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1592 position of the field containing the address of the bounds data. */
1593
1594 static int
1595 fat_pntr_bounds_bitpos (struct type *type)
1596 {
1597 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1598 }
1599
1600 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1601 size of the field containing the address of the bounds data. */
1602
1603 static int
1604 fat_pntr_bounds_bitsize (struct type *type)
1605 {
1606 type = desc_base_type (type);
1607
1608 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1609 return TYPE_FIELD_BITSIZE (type, 1);
1610 else
1611 return 8 * TYPE_LENGTH (ada_check_typedef (type->field (1).type ()));
1612 }
1613
1614 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1615 pointer to one, the type of its array data (a array-with-no-bounds type);
1616 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1617 data. */
1618
1619 static struct type *
1620 desc_data_target_type (struct type *type)
1621 {
1622 type = desc_base_type (type);
1623
1624 /* NOTE: The following is bogus; see comment in desc_bounds. */
1625 if (is_thin_pntr (type))
1626 return desc_base_type (thin_descriptor_type (type)->field (1).type ());
1627 else if (is_thick_pntr (type))
1628 {
1629 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1630
1631 if (data_type
1632 && ada_check_typedef (data_type)->code () == TYPE_CODE_PTR)
1633 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1634 }
1635
1636 return NULL;
1637 }
1638
1639 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1640 its array data. */
1641
1642 static struct value *
1643 desc_data (struct value *arr)
1644 {
1645 struct type *type = value_type (arr);
1646
1647 if (is_thin_pntr (type))
1648 return thin_data_pntr (arr);
1649 else if (is_thick_pntr (type))
1650 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1651 _("Bad GNAT array descriptor"));
1652 else
1653 return NULL;
1654 }
1655
1656
1657 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1658 position of the field containing the address of the data. */
1659
1660 static int
1661 fat_pntr_data_bitpos (struct type *type)
1662 {
1663 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1664 }
1665
1666 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1667 size of the field containing the address of the data. */
1668
1669 static int
1670 fat_pntr_data_bitsize (struct type *type)
1671 {
1672 type = desc_base_type (type);
1673
1674 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1675 return TYPE_FIELD_BITSIZE (type, 0);
1676 else
1677 return TARGET_CHAR_BIT * TYPE_LENGTH (type->field (0).type ());
1678 }
1679
1680 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1681 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1682 bound, if WHICH is 1. The first bound is I=1. */
1683
1684 static struct value *
1685 desc_one_bound (struct value *bounds, int i, int which)
1686 {
1687 char bound_name[20];
1688 xsnprintf (bound_name, sizeof (bound_name), "%cB%d",
1689 which ? 'U' : 'L', i - 1);
1690 return value_struct_elt (&bounds, NULL, bound_name, NULL,
1691 _("Bad GNAT array descriptor bounds"));
1692 }
1693
1694 /* If BOUNDS is an array-bounds structure type, return the bit position
1695 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1696 bound, if WHICH is 1. The first bound is I=1. */
1697
1698 static int
1699 desc_bound_bitpos (struct type *type, int i, int which)
1700 {
1701 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1702 }
1703
1704 /* If BOUNDS is an array-bounds structure type, return the bit field size
1705 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1706 bound, if WHICH is 1. The first bound is I=1. */
1707
1708 static int
1709 desc_bound_bitsize (struct type *type, int i, int which)
1710 {
1711 type = desc_base_type (type);
1712
1713 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1714 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1715 else
1716 return 8 * TYPE_LENGTH (type->field (2 * i + which - 2).type ());
1717 }
1718
1719 /* If TYPE is the type of an array-bounds structure, the type of its
1720 Ith bound (numbering from 1). Otherwise, NULL. */
1721
1722 static struct type *
1723 desc_index_type (struct type *type, int i)
1724 {
1725 type = desc_base_type (type);
1726
1727 if (type->code () == TYPE_CODE_STRUCT)
1728 {
1729 char bound_name[20];
1730 xsnprintf (bound_name, sizeof (bound_name), "LB%d", i - 1);
1731 return lookup_struct_elt_type (type, bound_name, 1);
1732 }
1733 else
1734 return NULL;
1735 }
1736
1737 /* The number of index positions in the array-bounds type TYPE.
1738 Return 0 if TYPE is NULL. */
1739
1740 static int
1741 desc_arity (struct type *type)
1742 {
1743 type = desc_base_type (type);
1744
1745 if (type != NULL)
1746 return type->num_fields () / 2;
1747 return 0;
1748 }
1749
1750 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1751 an array descriptor type (representing an unconstrained array
1752 type). */
1753
1754 static int
1755 ada_is_direct_array_type (struct type *type)
1756 {
1757 if (type == NULL)
1758 return 0;
1759 type = ada_check_typedef (type);
1760 return (type->code () == TYPE_CODE_ARRAY
1761 || ada_is_array_descriptor_type (type));
1762 }
1763
1764 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1765 * to one. */
1766
1767 static int
1768 ada_is_array_type (struct type *type)
1769 {
1770 while (type != NULL
1771 && (type->code () == TYPE_CODE_PTR
1772 || type->code () == TYPE_CODE_REF))
1773 type = TYPE_TARGET_TYPE (type);
1774 return ada_is_direct_array_type (type);
1775 }
1776
1777 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1778
1779 int
1780 ada_is_simple_array_type (struct type *type)
1781 {
1782 if (type == NULL)
1783 return 0;
1784 type = ada_check_typedef (type);
1785 return (type->code () == TYPE_CODE_ARRAY
1786 || (type->code () == TYPE_CODE_PTR
1787 && (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ()
1788 == TYPE_CODE_ARRAY)));
1789 }
1790
1791 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1792
1793 int
1794 ada_is_array_descriptor_type (struct type *type)
1795 {
1796 struct type *data_type = desc_data_target_type (type);
1797
1798 if (type == NULL)
1799 return 0;
1800 type = ada_check_typedef (type);
1801 return (data_type != NULL
1802 && data_type->code () == TYPE_CODE_ARRAY
1803 && desc_arity (desc_bounds_type (type)) > 0);
1804 }
1805
1806 /* Non-zero iff type is a partially mal-formed GNAT array
1807 descriptor. FIXME: This is to compensate for some problems with
1808 debugging output from GNAT. Re-examine periodically to see if it
1809 is still needed. */
1810
1811 int
1812 ada_is_bogus_array_descriptor (struct type *type)
1813 {
1814 return
1815 type != NULL
1816 && type->code () == TYPE_CODE_STRUCT
1817 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1818 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1819 && !ada_is_array_descriptor_type (type);
1820 }
1821
1822
1823 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1824 (fat pointer) returns the type of the array data described---specifically,
1825 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1826 in from the descriptor; otherwise, they are left unspecified. If
1827 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1828 returns NULL. The result is simply the type of ARR if ARR is not
1829 a descriptor. */
1830
1831 static struct type *
1832 ada_type_of_array (struct value *arr, int bounds)
1833 {
1834 if (ada_is_constrained_packed_array_type (value_type (arr)))
1835 return decode_constrained_packed_array_type (value_type (arr));
1836
1837 if (!ada_is_array_descriptor_type (value_type (arr)))
1838 return value_type (arr);
1839
1840 if (!bounds)
1841 {
1842 struct type *array_type =
1843 ada_check_typedef (desc_data_target_type (value_type (arr)));
1844
1845 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1846 TYPE_FIELD_BITSIZE (array_type, 0) =
1847 decode_packed_array_bitsize (value_type (arr));
1848
1849 return array_type;
1850 }
1851 else
1852 {
1853 struct type *elt_type;
1854 int arity;
1855 struct value *descriptor;
1856
1857 elt_type = ada_array_element_type (value_type (arr), -1);
1858 arity = ada_array_arity (value_type (arr));
1859
1860 if (elt_type == NULL || arity == 0)
1861 return ada_check_typedef (value_type (arr));
1862
1863 descriptor = desc_bounds (arr);
1864 if (value_as_long (descriptor) == 0)
1865 return NULL;
1866 while (arity > 0)
1867 {
1868 struct type *range_type = alloc_type_copy (value_type (arr));
1869 struct type *array_type = alloc_type_copy (value_type (arr));
1870 struct value *low = desc_one_bound (descriptor, arity, 0);
1871 struct value *high = desc_one_bound (descriptor, arity, 1);
1872
1873 arity -= 1;
1874 create_static_range_type (range_type, value_type (low),
1875 longest_to_int (value_as_long (low)),
1876 longest_to_int (value_as_long (high)));
1877 elt_type = create_array_type (array_type, elt_type, range_type);
1878
1879 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1880 {
1881 /* We need to store the element packed bitsize, as well as
1882 recompute the array size, because it was previously
1883 computed based on the unpacked element size. */
1884 LONGEST lo = value_as_long (low);
1885 LONGEST hi = value_as_long (high);
1886
1887 TYPE_FIELD_BITSIZE (elt_type, 0) =
1888 decode_packed_array_bitsize (value_type (arr));
1889 /* If the array has no element, then the size is already
1890 zero, and does not need to be recomputed. */
1891 if (lo < hi)
1892 {
1893 int array_bitsize =
1894 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1895
1896 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1897 }
1898 }
1899 }
1900
1901 return lookup_pointer_type (elt_type);
1902 }
1903 }
1904
1905 /* If ARR does not represent an array, returns ARR unchanged.
1906 Otherwise, returns either a standard GDB array with bounds set
1907 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1908 GDB array. Returns NULL if ARR is a null fat pointer. */
1909
1910 struct value *
1911 ada_coerce_to_simple_array_ptr (struct value *arr)
1912 {
1913 if (ada_is_array_descriptor_type (value_type (arr)))
1914 {
1915 struct type *arrType = ada_type_of_array (arr, 1);
1916
1917 if (arrType == NULL)
1918 return NULL;
1919 return value_cast (arrType, value_copy (desc_data (arr)));
1920 }
1921 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1922 return decode_constrained_packed_array (arr);
1923 else
1924 return arr;
1925 }
1926
1927 /* If ARR does not represent an array, returns ARR unchanged.
1928 Otherwise, returns a standard GDB array describing ARR (which may
1929 be ARR itself if it already is in the proper form). */
1930
1931 struct value *
1932 ada_coerce_to_simple_array (struct value *arr)
1933 {
1934 if (ada_is_array_descriptor_type (value_type (arr)))
1935 {
1936 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1937
1938 if (arrVal == NULL)
1939 error (_("Bounds unavailable for null array pointer."));
1940 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
1941 return value_ind (arrVal);
1942 }
1943 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1944 return decode_constrained_packed_array (arr);
1945 else
1946 return arr;
1947 }
1948
1949 /* If TYPE represents a GNAT array type, return it translated to an
1950 ordinary GDB array type (possibly with BITSIZE fields indicating
1951 packing). For other types, is the identity. */
1952
1953 struct type *
1954 ada_coerce_to_simple_array_type (struct type *type)
1955 {
1956 if (ada_is_constrained_packed_array_type (type))
1957 return decode_constrained_packed_array_type (type);
1958
1959 if (ada_is_array_descriptor_type (type))
1960 return ada_check_typedef (desc_data_target_type (type));
1961
1962 return type;
1963 }
1964
1965 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1966
1967 static int
1968 ada_is_packed_array_type (struct type *type)
1969 {
1970 if (type == NULL)
1971 return 0;
1972 type = desc_base_type (type);
1973 type = ada_check_typedef (type);
1974 return
1975 ada_type_name (type) != NULL
1976 && strstr (ada_type_name (type), "___XP") != NULL;
1977 }
1978
1979 /* Non-zero iff TYPE represents a standard GNAT constrained
1980 packed-array type. */
1981
1982 int
1983 ada_is_constrained_packed_array_type (struct type *type)
1984 {
1985 return ada_is_packed_array_type (type)
1986 && !ada_is_array_descriptor_type (type);
1987 }
1988
1989 /* Non-zero iff TYPE represents an array descriptor for a
1990 unconstrained packed-array type. */
1991
1992 static int
1993 ada_is_unconstrained_packed_array_type (struct type *type)
1994 {
1995 return ada_is_packed_array_type (type)
1996 && ada_is_array_descriptor_type (type);
1997 }
1998
1999 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2000 return the size of its elements in bits. */
2001
2002 static long
2003 decode_packed_array_bitsize (struct type *type)
2004 {
2005 const char *raw_name;
2006 const char *tail;
2007 long bits;
2008
2009 /* Access to arrays implemented as fat pointers are encoded as a typedef
2010 of the fat pointer type. We need the name of the fat pointer type
2011 to do the decoding, so strip the typedef layer. */
2012 if (type->code () == TYPE_CODE_TYPEDEF)
2013 type = ada_typedef_target_type (type);
2014
2015 raw_name = ada_type_name (ada_check_typedef (type));
2016 if (!raw_name)
2017 raw_name = ada_type_name (desc_base_type (type));
2018
2019 if (!raw_name)
2020 return 0;
2021
2022 tail = strstr (raw_name, "___XP");
2023 gdb_assert (tail != NULL);
2024
2025 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2026 {
2027 lim_warning
2028 (_("could not understand bit size information on packed array"));
2029 return 0;
2030 }
2031
2032 return bits;
2033 }
2034
2035 /* Given that TYPE is a standard GDB array type with all bounds filled
2036 in, and that the element size of its ultimate scalar constituents
2037 (that is, either its elements, or, if it is an array of arrays, its
2038 elements' elements, etc.) is *ELT_BITS, return an identical type,
2039 but with the bit sizes of its elements (and those of any
2040 constituent arrays) recorded in the BITSIZE components of its
2041 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2042 in bits.
2043
2044 Note that, for arrays whose index type has an XA encoding where
2045 a bound references a record discriminant, getting that discriminant,
2046 and therefore the actual value of that bound, is not possible
2047 because none of the given parameters gives us access to the record.
2048 This function assumes that it is OK in the context where it is being
2049 used to return an array whose bounds are still dynamic and where
2050 the length is arbitrary. */
2051
2052 static struct type *
2053 constrained_packed_array_type (struct type *type, long *elt_bits)
2054 {
2055 struct type *new_elt_type;
2056 struct type *new_type;
2057 struct type *index_type_desc;
2058 struct type *index_type;
2059 LONGEST low_bound, high_bound;
2060
2061 type = ada_check_typedef (type);
2062 if (type->code () != TYPE_CODE_ARRAY)
2063 return type;
2064
2065 index_type_desc = ada_find_parallel_type (type, "___XA");
2066 if (index_type_desc)
2067 index_type = to_fixed_range_type (index_type_desc->field (0).type (),
2068 NULL);
2069 else
2070 index_type = type->index_type ();
2071
2072 new_type = alloc_type_copy (type);
2073 new_elt_type =
2074 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2075 elt_bits);
2076 create_array_type (new_type, new_elt_type, index_type);
2077 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2078 new_type->set_name (ada_type_name (type));
2079
2080 if ((check_typedef (index_type)->code () == TYPE_CODE_RANGE
2081 && is_dynamic_type (check_typedef (index_type)))
2082 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2083 low_bound = high_bound = 0;
2084 if (high_bound < low_bound)
2085 *elt_bits = TYPE_LENGTH (new_type) = 0;
2086 else
2087 {
2088 *elt_bits *= (high_bound - low_bound + 1);
2089 TYPE_LENGTH (new_type) =
2090 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2091 }
2092
2093 new_type->set_is_fixed_instance (true);
2094 return new_type;
2095 }
2096
2097 /* The array type encoded by TYPE, where
2098 ada_is_constrained_packed_array_type (TYPE). */
2099
2100 static struct type *
2101 decode_constrained_packed_array_type (struct type *type)
2102 {
2103 const char *raw_name = ada_type_name (ada_check_typedef (type));
2104 char *name;
2105 const char *tail;
2106 struct type *shadow_type;
2107 long bits;
2108
2109 if (!raw_name)
2110 raw_name = ada_type_name (desc_base_type (type));
2111
2112 if (!raw_name)
2113 return NULL;
2114
2115 name = (char *) alloca (strlen (raw_name) + 1);
2116 tail = strstr (raw_name, "___XP");
2117 type = desc_base_type (type);
2118
2119 memcpy (name, raw_name, tail - raw_name);
2120 name[tail - raw_name] = '\000';
2121
2122 shadow_type = ada_find_parallel_type_with_name (type, name);
2123
2124 if (shadow_type == NULL)
2125 {
2126 lim_warning (_("could not find bounds information on packed array"));
2127 return NULL;
2128 }
2129 shadow_type = check_typedef (shadow_type);
2130
2131 if (shadow_type->code () != TYPE_CODE_ARRAY)
2132 {
2133 lim_warning (_("could not understand bounds "
2134 "information on packed array"));
2135 return NULL;
2136 }
2137
2138 bits = decode_packed_array_bitsize (type);
2139 return constrained_packed_array_type (shadow_type, &bits);
2140 }
2141
2142 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2143 array, returns a simple array that denotes that array. Its type is a
2144 standard GDB array type except that the BITSIZEs of the array
2145 target types are set to the number of bits in each element, and the
2146 type length is set appropriately. */
2147
2148 static struct value *
2149 decode_constrained_packed_array (struct value *arr)
2150 {
2151 struct type *type;
2152
2153 /* If our value is a pointer, then dereference it. Likewise if
2154 the value is a reference. Make sure that this operation does not
2155 cause the target type to be fixed, as this would indirectly cause
2156 this array to be decoded. The rest of the routine assumes that
2157 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2158 and "value_ind" routines to perform the dereferencing, as opposed
2159 to using "ada_coerce_ref" or "ada_value_ind". */
2160 arr = coerce_ref (arr);
2161 if (ada_check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
2162 arr = value_ind (arr);
2163
2164 type = decode_constrained_packed_array_type (value_type (arr));
2165 if (type == NULL)
2166 {
2167 error (_("can't unpack array"));
2168 return NULL;
2169 }
2170
2171 if (type_byte_order (value_type (arr)) == BFD_ENDIAN_BIG
2172 && ada_is_modular_type (value_type (arr)))
2173 {
2174 /* This is a (right-justified) modular type representing a packed
2175 array with no wrapper. In order to interpret the value through
2176 the (left-justified) packed array type we just built, we must
2177 first left-justify it. */
2178 int bit_size, bit_pos;
2179 ULONGEST mod;
2180
2181 mod = ada_modulus (value_type (arr)) - 1;
2182 bit_size = 0;
2183 while (mod > 0)
2184 {
2185 bit_size += 1;
2186 mod >>= 1;
2187 }
2188 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2189 arr = ada_value_primitive_packed_val (arr, NULL,
2190 bit_pos / HOST_CHAR_BIT,
2191 bit_pos % HOST_CHAR_BIT,
2192 bit_size,
2193 type);
2194 }
2195
2196 return coerce_unspec_val_to_type (arr, type);
2197 }
2198
2199
2200 /* The value of the element of packed array ARR at the ARITY indices
2201 given in IND. ARR must be a simple array. */
2202
2203 static struct value *
2204 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2205 {
2206 int i;
2207 int bits, elt_off, bit_off;
2208 long elt_total_bit_offset;
2209 struct type *elt_type;
2210 struct value *v;
2211
2212 bits = 0;
2213 elt_total_bit_offset = 0;
2214 elt_type = ada_check_typedef (value_type (arr));
2215 for (i = 0; i < arity; i += 1)
2216 {
2217 if (elt_type->code () != TYPE_CODE_ARRAY
2218 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2219 error
2220 (_("attempt to do packed indexing of "
2221 "something other than a packed array"));
2222 else
2223 {
2224 struct type *range_type = elt_type->index_type ();
2225 LONGEST lowerbound, upperbound;
2226 LONGEST idx;
2227
2228 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2229 {
2230 lim_warning (_("don't know bounds of array"));
2231 lowerbound = upperbound = 0;
2232 }
2233
2234 idx = pos_atr (ind[i]);
2235 if (idx < lowerbound || idx > upperbound)
2236 lim_warning (_("packed array index %ld out of bounds"),
2237 (long) idx);
2238 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2239 elt_total_bit_offset += (idx - lowerbound) * bits;
2240 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2241 }
2242 }
2243 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2244 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2245
2246 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2247 bits, elt_type);
2248 return v;
2249 }
2250
2251 /* Non-zero iff TYPE includes negative integer values. */
2252
2253 static int
2254 has_negatives (struct type *type)
2255 {
2256 switch (type->code ())
2257 {
2258 default:
2259 return 0;
2260 case TYPE_CODE_INT:
2261 return !type->is_unsigned ();
2262 case TYPE_CODE_RANGE:
2263 return type->bounds ()->low.const_val () - type->bounds ()->bias < 0;
2264 }
2265 }
2266
2267 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2268 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2269 the unpacked buffer.
2270
2271 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2272 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2273
2274 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2275 zero otherwise.
2276
2277 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2278
2279 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2280
2281 static void
2282 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2283 gdb_byte *unpacked, int unpacked_len,
2284 int is_big_endian, int is_signed_type,
2285 int is_scalar)
2286 {
2287 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2288 int src_idx; /* Index into the source area */
2289 int src_bytes_left; /* Number of source bytes left to process. */
2290 int srcBitsLeft; /* Number of source bits left to move */
2291 int unusedLS; /* Number of bits in next significant
2292 byte of source that are unused */
2293
2294 int unpacked_idx; /* Index into the unpacked buffer */
2295 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2296
2297 unsigned long accum; /* Staging area for bits being transferred */
2298 int accumSize; /* Number of meaningful bits in accum */
2299 unsigned char sign;
2300
2301 /* Transmit bytes from least to most significant; delta is the direction
2302 the indices move. */
2303 int delta = is_big_endian ? -1 : 1;
2304
2305 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2306 bits from SRC. .*/
2307 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2308 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2309 bit_size, unpacked_len);
2310
2311 srcBitsLeft = bit_size;
2312 src_bytes_left = src_len;
2313 unpacked_bytes_left = unpacked_len;
2314 sign = 0;
2315
2316 if (is_big_endian)
2317 {
2318 src_idx = src_len - 1;
2319 if (is_signed_type
2320 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2321 sign = ~0;
2322
2323 unusedLS =
2324 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2325 % HOST_CHAR_BIT;
2326
2327 if (is_scalar)
2328 {
2329 accumSize = 0;
2330 unpacked_idx = unpacked_len - 1;
2331 }
2332 else
2333 {
2334 /* Non-scalar values must be aligned at a byte boundary... */
2335 accumSize =
2336 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2337 /* ... And are placed at the beginning (most-significant) bytes
2338 of the target. */
2339 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2340 unpacked_bytes_left = unpacked_idx + 1;
2341 }
2342 }
2343 else
2344 {
2345 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2346
2347 src_idx = unpacked_idx = 0;
2348 unusedLS = bit_offset;
2349 accumSize = 0;
2350
2351 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2352 sign = ~0;
2353 }
2354
2355 accum = 0;
2356 while (src_bytes_left > 0)
2357 {
2358 /* Mask for removing bits of the next source byte that are not
2359 part of the value. */
2360 unsigned int unusedMSMask =
2361 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2362 1;
2363 /* Sign-extend bits for this byte. */
2364 unsigned int signMask = sign & ~unusedMSMask;
2365
2366 accum |=
2367 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2368 accumSize += HOST_CHAR_BIT - unusedLS;
2369 if (accumSize >= HOST_CHAR_BIT)
2370 {
2371 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2372 accumSize -= HOST_CHAR_BIT;
2373 accum >>= HOST_CHAR_BIT;
2374 unpacked_bytes_left -= 1;
2375 unpacked_idx += delta;
2376 }
2377 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2378 unusedLS = 0;
2379 src_bytes_left -= 1;
2380 src_idx += delta;
2381 }
2382 while (unpacked_bytes_left > 0)
2383 {
2384 accum |= sign << accumSize;
2385 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2386 accumSize -= HOST_CHAR_BIT;
2387 if (accumSize < 0)
2388 accumSize = 0;
2389 accum >>= HOST_CHAR_BIT;
2390 unpacked_bytes_left -= 1;
2391 unpacked_idx += delta;
2392 }
2393 }
2394
2395 /* Create a new value of type TYPE from the contents of OBJ starting
2396 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2397 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2398 assigning through the result will set the field fetched from.
2399 VALADDR is ignored unless OBJ is NULL, in which case,
2400 VALADDR+OFFSET must address the start of storage containing the
2401 packed value. The value returned in this case is never an lval.
2402 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2403
2404 struct value *
2405 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2406 long offset, int bit_offset, int bit_size,
2407 struct type *type)
2408 {
2409 struct value *v;
2410 const gdb_byte *src; /* First byte containing data to unpack */
2411 gdb_byte *unpacked;
2412 const int is_scalar = is_scalar_type (type);
2413 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
2414 gdb::byte_vector staging;
2415
2416 type = ada_check_typedef (type);
2417
2418 if (obj == NULL)
2419 src = valaddr + offset;
2420 else
2421 src = value_contents (obj) + offset;
2422
2423 if (is_dynamic_type (type))
2424 {
2425 /* The length of TYPE might by dynamic, so we need to resolve
2426 TYPE in order to know its actual size, which we then use
2427 to create the contents buffer of the value we return.
2428 The difficulty is that the data containing our object is
2429 packed, and therefore maybe not at a byte boundary. So, what
2430 we do, is unpack the data into a byte-aligned buffer, and then
2431 use that buffer as our object's value for resolving the type. */
2432 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2433 staging.resize (staging_len);
2434
2435 ada_unpack_from_contents (src, bit_offset, bit_size,
2436 staging.data (), staging.size (),
2437 is_big_endian, has_negatives (type),
2438 is_scalar);
2439 type = resolve_dynamic_type (type, staging, 0);
2440 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2441 {
2442 /* This happens when the length of the object is dynamic,
2443 and is actually smaller than the space reserved for it.
2444 For instance, in an array of variant records, the bit_size
2445 we're given is the array stride, which is constant and
2446 normally equal to the maximum size of its element.
2447 But, in reality, each element only actually spans a portion
2448 of that stride. */
2449 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2450 }
2451 }
2452
2453 if (obj == NULL)
2454 {
2455 v = allocate_value (type);
2456 src = valaddr + offset;
2457 }
2458 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2459 {
2460 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2461 gdb_byte *buf;
2462
2463 v = value_at (type, value_address (obj) + offset);
2464 buf = (gdb_byte *) alloca (src_len);
2465 read_memory (value_address (v), buf, src_len);
2466 src = buf;
2467 }
2468 else
2469 {
2470 v = allocate_value (type);
2471 src = value_contents (obj) + offset;
2472 }
2473
2474 if (obj != NULL)
2475 {
2476 long new_offset = offset;
2477
2478 set_value_component_location (v, obj);
2479 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2480 set_value_bitsize (v, bit_size);
2481 if (value_bitpos (v) >= HOST_CHAR_BIT)
2482 {
2483 ++new_offset;
2484 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2485 }
2486 set_value_offset (v, new_offset);
2487
2488 /* Also set the parent value. This is needed when trying to
2489 assign a new value (in inferior memory). */
2490 set_value_parent (v, obj);
2491 }
2492 else
2493 set_value_bitsize (v, bit_size);
2494 unpacked = value_contents_writeable (v);
2495
2496 if (bit_size == 0)
2497 {
2498 memset (unpacked, 0, TYPE_LENGTH (type));
2499 return v;
2500 }
2501
2502 if (staging.size () == TYPE_LENGTH (type))
2503 {
2504 /* Small short-cut: If we've unpacked the data into a buffer
2505 of the same size as TYPE's length, then we can reuse that,
2506 instead of doing the unpacking again. */
2507 memcpy (unpacked, staging.data (), staging.size ());
2508 }
2509 else
2510 ada_unpack_from_contents (src, bit_offset, bit_size,
2511 unpacked, TYPE_LENGTH (type),
2512 is_big_endian, has_negatives (type), is_scalar);
2513
2514 return v;
2515 }
2516
2517 /* Store the contents of FROMVAL into the location of TOVAL.
2518 Return a new value with the location of TOVAL and contents of
2519 FROMVAL. Handles assignment into packed fields that have
2520 floating-point or non-scalar types. */
2521
2522 static struct value *
2523 ada_value_assign (struct value *toval, struct value *fromval)
2524 {
2525 struct type *type = value_type (toval);
2526 int bits = value_bitsize (toval);
2527
2528 toval = ada_coerce_ref (toval);
2529 fromval = ada_coerce_ref (fromval);
2530
2531 if (ada_is_direct_array_type (value_type (toval)))
2532 toval = ada_coerce_to_simple_array (toval);
2533 if (ada_is_direct_array_type (value_type (fromval)))
2534 fromval = ada_coerce_to_simple_array (fromval);
2535
2536 if (!deprecated_value_modifiable (toval))
2537 error (_("Left operand of assignment is not a modifiable lvalue."));
2538
2539 if (VALUE_LVAL (toval) == lval_memory
2540 && bits > 0
2541 && (type->code () == TYPE_CODE_FLT
2542 || type->code () == TYPE_CODE_STRUCT))
2543 {
2544 int len = (value_bitpos (toval)
2545 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2546 int from_size;
2547 gdb_byte *buffer = (gdb_byte *) alloca (len);
2548 struct value *val;
2549 CORE_ADDR to_addr = value_address (toval);
2550
2551 if (type->code () == TYPE_CODE_FLT)
2552 fromval = value_cast (type, fromval);
2553
2554 read_memory (to_addr, buffer, len);
2555 from_size = value_bitsize (fromval);
2556 if (from_size == 0)
2557 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2558
2559 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
2560 ULONGEST from_offset = 0;
2561 if (is_big_endian && is_scalar_type (value_type (fromval)))
2562 from_offset = from_size - bits;
2563 copy_bitwise (buffer, value_bitpos (toval),
2564 value_contents (fromval), from_offset,
2565 bits, is_big_endian);
2566 write_memory_with_notification (to_addr, buffer, len);
2567
2568 val = value_copy (toval);
2569 memcpy (value_contents_raw (val), value_contents (fromval),
2570 TYPE_LENGTH (type));
2571 deprecated_set_value_type (val, type);
2572
2573 return val;
2574 }
2575
2576 return value_assign (toval, fromval);
2577 }
2578
2579
2580 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2581 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2582 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2583 COMPONENT, and not the inferior's memory. The current contents
2584 of COMPONENT are ignored.
2585
2586 Although not part of the initial design, this function also works
2587 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2588 had a null address, and COMPONENT had an address which is equal to
2589 its offset inside CONTAINER. */
2590
2591 static void
2592 value_assign_to_component (struct value *container, struct value *component,
2593 struct value *val)
2594 {
2595 LONGEST offset_in_container =
2596 (LONGEST) (value_address (component) - value_address (container));
2597 int bit_offset_in_container =
2598 value_bitpos (component) - value_bitpos (container);
2599 int bits;
2600
2601 val = value_cast (value_type (component), val);
2602
2603 if (value_bitsize (component) == 0)
2604 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2605 else
2606 bits = value_bitsize (component);
2607
2608 if (type_byte_order (value_type (container)) == BFD_ENDIAN_BIG)
2609 {
2610 int src_offset;
2611
2612 if (is_scalar_type (check_typedef (value_type (component))))
2613 src_offset
2614 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2615 else
2616 src_offset = 0;
2617 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2618 value_bitpos (container) + bit_offset_in_container,
2619 value_contents (val), src_offset, bits, 1);
2620 }
2621 else
2622 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2623 value_bitpos (container) + bit_offset_in_container,
2624 value_contents (val), 0, bits, 0);
2625 }
2626
2627 /* Determine if TYPE is an access to an unconstrained array. */
2628
2629 bool
2630 ada_is_access_to_unconstrained_array (struct type *type)
2631 {
2632 return (type->code () == TYPE_CODE_TYPEDEF
2633 && is_thick_pntr (ada_typedef_target_type (type)));
2634 }
2635
2636 /* The value of the element of array ARR at the ARITY indices given in IND.
2637 ARR may be either a simple array, GNAT array descriptor, or pointer
2638 thereto. */
2639
2640 struct value *
2641 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2642 {
2643 int k;
2644 struct value *elt;
2645 struct type *elt_type;
2646
2647 elt = ada_coerce_to_simple_array (arr);
2648
2649 elt_type = ada_check_typedef (value_type (elt));
2650 if (elt_type->code () == TYPE_CODE_ARRAY
2651 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2652 return value_subscript_packed (elt, arity, ind);
2653
2654 for (k = 0; k < arity; k += 1)
2655 {
2656 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2657
2658 if (elt_type->code () != TYPE_CODE_ARRAY)
2659 error (_("too many subscripts (%d expected)"), k);
2660
2661 elt = value_subscript (elt, pos_atr (ind[k]));
2662
2663 if (ada_is_access_to_unconstrained_array (saved_elt_type)
2664 && value_type (elt)->code () != TYPE_CODE_TYPEDEF)
2665 {
2666 /* The element is a typedef to an unconstrained array,
2667 except that the value_subscript call stripped the
2668 typedef layer. The typedef layer is GNAT's way to
2669 specify that the element is, at the source level, an
2670 access to the unconstrained array, rather than the
2671 unconstrained array. So, we need to restore that
2672 typedef layer, which we can do by forcing the element's
2673 type back to its original type. Otherwise, the returned
2674 value is going to be printed as the array, rather
2675 than as an access. Another symptom of the same issue
2676 would be that an expression trying to dereference the
2677 element would also be improperly rejected. */
2678 deprecated_set_value_type (elt, saved_elt_type);
2679 }
2680
2681 elt_type = ada_check_typedef (value_type (elt));
2682 }
2683
2684 return elt;
2685 }
2686
2687 /* Assuming ARR is a pointer to a GDB array, the value of the element
2688 of *ARR at the ARITY indices given in IND.
2689 Does not read the entire array into memory.
2690
2691 Note: Unlike what one would expect, this function is used instead of
2692 ada_value_subscript for basically all non-packed array types. The reason
2693 for this is that a side effect of doing our own pointer arithmetics instead
2694 of relying on value_subscript is that there is no implicit typedef peeling.
2695 This is important for arrays of array accesses, where it allows us to
2696 preserve the fact that the array's element is an array access, where the
2697 access part os encoded in a typedef layer. */
2698
2699 static struct value *
2700 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2701 {
2702 int k;
2703 struct value *array_ind = ada_value_ind (arr);
2704 struct type *type
2705 = check_typedef (value_enclosing_type (array_ind));
2706
2707 if (type->code () == TYPE_CODE_ARRAY
2708 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2709 return value_subscript_packed (array_ind, arity, ind);
2710
2711 for (k = 0; k < arity; k += 1)
2712 {
2713 LONGEST lwb, upb;
2714
2715 if (type->code () != TYPE_CODE_ARRAY)
2716 error (_("too many subscripts (%d expected)"), k);
2717 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2718 value_copy (arr));
2719 get_discrete_bounds (type->index_type (), &lwb, &upb);
2720 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2721 type = TYPE_TARGET_TYPE (type);
2722 }
2723
2724 return value_ind (arr);
2725 }
2726
2727 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2728 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2729 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2730 this array is LOW, as per Ada rules. */
2731 static struct value *
2732 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2733 int low, int high)
2734 {
2735 struct type *type0 = ada_check_typedef (type);
2736 struct type *base_index_type = TYPE_TARGET_TYPE (type0->index_type ());
2737 struct type *index_type
2738 = create_static_range_type (NULL, base_index_type, low, high);
2739 struct type *slice_type = create_array_type_with_stride
2740 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2741 type0->dyn_prop (DYN_PROP_BYTE_STRIDE),
2742 TYPE_FIELD_BITSIZE (type0, 0));
2743 int base_low = ada_discrete_type_low_bound (type0->index_type ());
2744 LONGEST base_low_pos, low_pos;
2745 CORE_ADDR base;
2746
2747 if (!discrete_position (base_index_type, low, &low_pos)
2748 || !discrete_position (base_index_type, base_low, &base_low_pos))
2749 {
2750 warning (_("unable to get positions in slice, use bounds instead"));
2751 low_pos = low;
2752 base_low_pos = base_low;
2753 }
2754
2755 base = value_as_address (array_ptr)
2756 + ((low_pos - base_low_pos)
2757 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2758 return value_at_lazy (slice_type, base);
2759 }
2760
2761
2762 static struct value *
2763 ada_value_slice (struct value *array, int low, int high)
2764 {
2765 struct type *type = ada_check_typedef (value_type (array));
2766 struct type *base_index_type = TYPE_TARGET_TYPE (type->index_type ());
2767 struct type *index_type
2768 = create_static_range_type (NULL, type->index_type (), low, high);
2769 struct type *slice_type = create_array_type_with_stride
2770 (NULL, TYPE_TARGET_TYPE (type), index_type,
2771 type->dyn_prop (DYN_PROP_BYTE_STRIDE),
2772 TYPE_FIELD_BITSIZE (type, 0));
2773 LONGEST low_pos, high_pos;
2774
2775 if (!discrete_position (base_index_type, low, &low_pos)
2776 || !discrete_position (base_index_type, high, &high_pos))
2777 {
2778 warning (_("unable to get positions in slice, use bounds instead"));
2779 low_pos = low;
2780 high_pos = high;
2781 }
2782
2783 return value_cast (slice_type,
2784 value_slice (array, low, high_pos - low_pos + 1));
2785 }
2786
2787 /* If type is a record type in the form of a standard GNAT array
2788 descriptor, returns the number of dimensions for type. If arr is a
2789 simple array, returns the number of "array of"s that prefix its
2790 type designation. Otherwise, returns 0. */
2791
2792 int
2793 ada_array_arity (struct type *type)
2794 {
2795 int arity;
2796
2797 if (type == NULL)
2798 return 0;
2799
2800 type = desc_base_type (type);
2801
2802 arity = 0;
2803 if (type->code () == TYPE_CODE_STRUCT)
2804 return desc_arity (desc_bounds_type (type));
2805 else
2806 while (type->code () == TYPE_CODE_ARRAY)
2807 {
2808 arity += 1;
2809 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2810 }
2811
2812 return arity;
2813 }
2814
2815 /* If TYPE is a record type in the form of a standard GNAT array
2816 descriptor or a simple array type, returns the element type for
2817 TYPE after indexing by NINDICES indices, or by all indices if
2818 NINDICES is -1. Otherwise, returns NULL. */
2819
2820 struct type *
2821 ada_array_element_type (struct type *type, int nindices)
2822 {
2823 type = desc_base_type (type);
2824
2825 if (type->code () == TYPE_CODE_STRUCT)
2826 {
2827 int k;
2828 struct type *p_array_type;
2829
2830 p_array_type = desc_data_target_type (type);
2831
2832 k = ada_array_arity (type);
2833 if (k == 0)
2834 return NULL;
2835
2836 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2837 if (nindices >= 0 && k > nindices)
2838 k = nindices;
2839 while (k > 0 && p_array_type != NULL)
2840 {
2841 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2842 k -= 1;
2843 }
2844 return p_array_type;
2845 }
2846 else if (type->code () == TYPE_CODE_ARRAY)
2847 {
2848 while (nindices != 0 && type->code () == TYPE_CODE_ARRAY)
2849 {
2850 type = TYPE_TARGET_TYPE (type);
2851 nindices -= 1;
2852 }
2853 return type;
2854 }
2855
2856 return NULL;
2857 }
2858
2859 /* The type of nth index in arrays of given type (n numbering from 1).
2860 Does not examine memory. Throws an error if N is invalid or TYPE
2861 is not an array type. NAME is the name of the Ada attribute being
2862 evaluated ('range, 'first, 'last, or 'length); it is used in building
2863 the error message. */
2864
2865 static struct type *
2866 ada_index_type (struct type *type, int n, const char *name)
2867 {
2868 struct type *result_type;
2869
2870 type = desc_base_type (type);
2871
2872 if (n < 0 || n > ada_array_arity (type))
2873 error (_("invalid dimension number to '%s"), name);
2874
2875 if (ada_is_simple_array_type (type))
2876 {
2877 int i;
2878
2879 for (i = 1; i < n; i += 1)
2880 type = TYPE_TARGET_TYPE (type);
2881 result_type = TYPE_TARGET_TYPE (type->index_type ());
2882 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2883 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2884 perhaps stabsread.c would make more sense. */
2885 if (result_type && result_type->code () == TYPE_CODE_UNDEF)
2886 result_type = NULL;
2887 }
2888 else
2889 {
2890 result_type = desc_index_type (desc_bounds_type (type), n);
2891 if (result_type == NULL)
2892 error (_("attempt to take bound of something that is not an array"));
2893 }
2894
2895 return result_type;
2896 }
2897
2898 /* Given that arr is an array type, returns the lower bound of the
2899 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2900 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2901 array-descriptor type. It works for other arrays with bounds supplied
2902 by run-time quantities other than discriminants. */
2903
2904 static LONGEST
2905 ada_array_bound_from_type (struct type *arr_type, int n, int which)
2906 {
2907 struct type *type, *index_type_desc, *index_type;
2908 int i;
2909
2910 gdb_assert (which == 0 || which == 1);
2911
2912 if (ada_is_constrained_packed_array_type (arr_type))
2913 arr_type = decode_constrained_packed_array_type (arr_type);
2914
2915 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2916 return (LONGEST) - which;
2917
2918 if (arr_type->code () == TYPE_CODE_PTR)
2919 type = TYPE_TARGET_TYPE (arr_type);
2920 else
2921 type = arr_type;
2922
2923 if (type->is_fixed_instance ())
2924 {
2925 /* The array has already been fixed, so we do not need to
2926 check the parallel ___XA type again. That encoding has
2927 already been applied, so ignore it now. */
2928 index_type_desc = NULL;
2929 }
2930 else
2931 {
2932 index_type_desc = ada_find_parallel_type (type, "___XA");
2933 ada_fixup_array_indexes_type (index_type_desc);
2934 }
2935
2936 if (index_type_desc != NULL)
2937 index_type = to_fixed_range_type (index_type_desc->field (n - 1).type (),
2938 NULL);
2939 else
2940 {
2941 struct type *elt_type = check_typedef (type);
2942
2943 for (i = 1; i < n; i++)
2944 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
2945
2946 index_type = elt_type->index_type ();
2947 }
2948
2949 return
2950 (LONGEST) (which == 0
2951 ? ada_discrete_type_low_bound (index_type)
2952 : ada_discrete_type_high_bound (index_type));
2953 }
2954
2955 /* Given that arr is an array value, returns the lower bound of the
2956 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2957 WHICH is 1. This routine will also work for arrays with bounds
2958 supplied by run-time quantities other than discriminants. */
2959
2960 static LONGEST
2961 ada_array_bound (struct value *arr, int n, int which)
2962 {
2963 struct type *arr_type;
2964
2965 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
2966 arr = value_ind (arr);
2967 arr_type = value_enclosing_type (arr);
2968
2969 if (ada_is_constrained_packed_array_type (arr_type))
2970 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2971 else if (ada_is_simple_array_type (arr_type))
2972 return ada_array_bound_from_type (arr_type, n, which);
2973 else
2974 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2975 }
2976
2977 /* Given that arr is an array value, returns the length of the
2978 nth index. This routine will also work for arrays with bounds
2979 supplied by run-time quantities other than discriminants.
2980 Does not work for arrays indexed by enumeration types with representation
2981 clauses at the moment. */
2982
2983 static LONGEST
2984 ada_array_length (struct value *arr, int n)
2985 {
2986 struct type *arr_type, *index_type;
2987 int low, high;
2988
2989 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
2990 arr = value_ind (arr);
2991 arr_type = value_enclosing_type (arr);
2992
2993 if (ada_is_constrained_packed_array_type (arr_type))
2994 return ada_array_length (decode_constrained_packed_array (arr), n);
2995
2996 if (ada_is_simple_array_type (arr_type))
2997 {
2998 low = ada_array_bound_from_type (arr_type, n, 0);
2999 high = ada_array_bound_from_type (arr_type, n, 1);
3000 }
3001 else
3002 {
3003 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3004 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3005 }
3006
3007 arr_type = check_typedef (arr_type);
3008 index_type = ada_index_type (arr_type, n, "length");
3009 if (index_type != NULL)
3010 {
3011 struct type *base_type;
3012 if (index_type->code () == TYPE_CODE_RANGE)
3013 base_type = TYPE_TARGET_TYPE (index_type);
3014 else
3015 base_type = index_type;
3016
3017 low = pos_atr (value_from_longest (base_type, low));
3018 high = pos_atr (value_from_longest (base_type, high));
3019 }
3020 return high - low + 1;
3021 }
3022
3023 /* An array whose type is that of ARR_TYPE (an array type), with
3024 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3025 less than LOW, then LOW-1 is used. */
3026
3027 static struct value *
3028 empty_array (struct type *arr_type, int low, int high)
3029 {
3030 struct type *arr_type0 = ada_check_typedef (arr_type);
3031 struct type *index_type
3032 = create_static_range_type
3033 (NULL, TYPE_TARGET_TYPE (arr_type0->index_type ()), low,
3034 high < low ? low - 1 : high);
3035 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3036
3037 return allocate_value (create_array_type (NULL, elt_type, index_type));
3038 }
3039 \f
3040
3041 /* Name resolution */
3042
3043 /* The "decoded" name for the user-definable Ada operator corresponding
3044 to OP. */
3045
3046 static const char *
3047 ada_decoded_op_name (enum exp_opcode op)
3048 {
3049 int i;
3050
3051 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3052 {
3053 if (ada_opname_table[i].op == op)
3054 return ada_opname_table[i].decoded;
3055 }
3056 error (_("Could not find operator name for opcode"));
3057 }
3058
3059 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3060 in a listing of choices during disambiguation (see sort_choices, below).
3061 The idea is that overloadings of a subprogram name from the
3062 same package should sort in their source order. We settle for ordering
3063 such symbols by their trailing number (__N or $N). */
3064
3065 static int
3066 encoded_ordered_before (const char *N0, const char *N1)
3067 {
3068 if (N1 == NULL)
3069 return 0;
3070 else if (N0 == NULL)
3071 return 1;
3072 else
3073 {
3074 int k0, k1;
3075
3076 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3077 ;
3078 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3079 ;
3080 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3081 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3082 {
3083 int n0, n1;
3084
3085 n0 = k0;
3086 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3087 n0 -= 1;
3088 n1 = k1;
3089 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3090 n1 -= 1;
3091 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3092 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3093 }
3094 return (strcmp (N0, N1) < 0);
3095 }
3096 }
3097
3098 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3099 encoded names. */
3100
3101 static void
3102 sort_choices (struct block_symbol syms[], int nsyms)
3103 {
3104 int i;
3105
3106 for (i = 1; i < nsyms; i += 1)
3107 {
3108 struct block_symbol sym = syms[i];
3109 int j;
3110
3111 for (j = i - 1; j >= 0; j -= 1)
3112 {
3113 if (encoded_ordered_before (syms[j].symbol->linkage_name (),
3114 sym.symbol->linkage_name ()))
3115 break;
3116 syms[j + 1] = syms[j];
3117 }
3118 syms[j + 1] = sym;
3119 }
3120 }
3121
3122 /* Whether GDB should display formals and return types for functions in the
3123 overloads selection menu. */
3124 static bool print_signatures = true;
3125
3126 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3127 all but functions, the signature is just the name of the symbol. For
3128 functions, this is the name of the function, the list of types for formals
3129 and the return type (if any). */
3130
3131 static void
3132 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3133 const struct type_print_options *flags)
3134 {
3135 struct type *type = SYMBOL_TYPE (sym);
3136
3137 fprintf_filtered (stream, "%s", sym->print_name ());
3138 if (!print_signatures
3139 || type == NULL
3140 || type->code () != TYPE_CODE_FUNC)
3141 return;
3142
3143 if (type->num_fields () > 0)
3144 {
3145 int i;
3146
3147 fprintf_filtered (stream, " (");
3148 for (i = 0; i < type->num_fields (); ++i)
3149 {
3150 if (i > 0)
3151 fprintf_filtered (stream, "; ");
3152 ada_print_type (type->field (i).type (), NULL, stream, -1, 0,
3153 flags);
3154 }
3155 fprintf_filtered (stream, ")");
3156 }
3157 if (TYPE_TARGET_TYPE (type) != NULL
3158 && TYPE_TARGET_TYPE (type)->code () != TYPE_CODE_VOID)
3159 {
3160 fprintf_filtered (stream, " return ");
3161 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3162 }
3163 }
3164
3165 /* Read and validate a set of numeric choices from the user in the
3166 range 0 .. N_CHOICES-1. Place the results in increasing
3167 order in CHOICES[0 .. N-1], and return N.
3168
3169 The user types choices as a sequence of numbers on one line
3170 separated by blanks, encoding them as follows:
3171
3172 + A choice of 0 means to cancel the selection, throwing an error.
3173 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3174 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3175
3176 The user is not allowed to choose more than MAX_RESULTS values.
3177
3178 ANNOTATION_SUFFIX, if present, is used to annotate the input
3179 prompts (for use with the -f switch). */
3180
3181 static int
3182 get_selections (int *choices, int n_choices, int max_results,
3183 int is_all_choice, const char *annotation_suffix)
3184 {
3185 const char *args;
3186 const char *prompt;
3187 int n_chosen;
3188 int first_choice = is_all_choice ? 2 : 1;
3189
3190 prompt = getenv ("PS2");
3191 if (prompt == NULL)
3192 prompt = "> ";
3193
3194 args = command_line_input (prompt, annotation_suffix);
3195
3196 if (args == NULL)
3197 error_no_arg (_("one or more choice numbers"));
3198
3199 n_chosen = 0;
3200
3201 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3202 order, as given in args. Choices are validated. */
3203 while (1)
3204 {
3205 char *args2;
3206 int choice, j;
3207
3208 args = skip_spaces (args);
3209 if (*args == '\0' && n_chosen == 0)
3210 error_no_arg (_("one or more choice numbers"));
3211 else if (*args == '\0')
3212 break;
3213
3214 choice = strtol (args, &args2, 10);
3215 if (args == args2 || choice < 0
3216 || choice > n_choices + first_choice - 1)
3217 error (_("Argument must be choice number"));
3218 args = args2;
3219
3220 if (choice == 0)
3221 error (_("cancelled"));
3222
3223 if (choice < first_choice)
3224 {
3225 n_chosen = n_choices;
3226 for (j = 0; j < n_choices; j += 1)
3227 choices[j] = j;
3228 break;
3229 }
3230 choice -= first_choice;
3231
3232 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3233 {
3234 }
3235
3236 if (j < 0 || choice != choices[j])
3237 {
3238 int k;
3239
3240 for (k = n_chosen - 1; k > j; k -= 1)
3241 choices[k + 1] = choices[k];
3242 choices[j + 1] = choice;
3243 n_chosen += 1;
3244 }
3245 }
3246
3247 if (n_chosen > max_results)
3248 error (_("Select no more than %d of the above"), max_results);
3249
3250 return n_chosen;
3251 }
3252
3253 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3254 by asking the user (if necessary), returning the number selected,
3255 and setting the first elements of SYMS items. Error if no symbols
3256 selected. */
3257
3258 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3259 to be re-integrated one of these days. */
3260
3261 static int
3262 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3263 {
3264 int i;
3265 int *chosen = XALLOCAVEC (int , nsyms);
3266 int n_chosen;
3267 int first_choice = (max_results == 1) ? 1 : 2;
3268 const char *select_mode = multiple_symbols_select_mode ();
3269
3270 if (max_results < 1)
3271 error (_("Request to select 0 symbols!"));
3272 if (nsyms <= 1)
3273 return nsyms;
3274
3275 if (select_mode == multiple_symbols_cancel)
3276 error (_("\
3277 canceled because the command is ambiguous\n\
3278 See set/show multiple-symbol."));
3279
3280 /* If select_mode is "all", then return all possible symbols.
3281 Only do that if more than one symbol can be selected, of course.
3282 Otherwise, display the menu as usual. */
3283 if (select_mode == multiple_symbols_all && max_results > 1)
3284 return nsyms;
3285
3286 printf_filtered (_("[0] cancel\n"));
3287 if (max_results > 1)
3288 printf_filtered (_("[1] all\n"));
3289
3290 sort_choices (syms, nsyms);
3291
3292 for (i = 0; i < nsyms; i += 1)
3293 {
3294 if (syms[i].symbol == NULL)
3295 continue;
3296
3297 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3298 {
3299 struct symtab_and_line sal =
3300 find_function_start_sal (syms[i].symbol, 1);
3301
3302 printf_filtered ("[%d] ", i + first_choice);
3303 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3304 &type_print_raw_options);
3305 if (sal.symtab == NULL)
3306 printf_filtered (_(" at %p[<no source file available>%p]:%d\n"),
3307 metadata_style.style ().ptr (), nullptr, sal.line);
3308 else
3309 printf_filtered
3310 (_(" at %ps:%d\n"),
3311 styled_string (file_name_style.style (),
3312 symtab_to_filename_for_display (sal.symtab)),
3313 sal.line);
3314 continue;
3315 }
3316 else
3317 {
3318 int is_enumeral =
3319 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3320 && SYMBOL_TYPE (syms[i].symbol) != NULL
3321 && SYMBOL_TYPE (syms[i].symbol)->code () == TYPE_CODE_ENUM);
3322 struct symtab *symtab = NULL;
3323
3324 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3325 symtab = symbol_symtab (syms[i].symbol);
3326
3327 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3328 {
3329 printf_filtered ("[%d] ", i + first_choice);
3330 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3331 &type_print_raw_options);
3332 printf_filtered (_(" at %s:%d\n"),
3333 symtab_to_filename_for_display (symtab),
3334 SYMBOL_LINE (syms[i].symbol));
3335 }
3336 else if (is_enumeral
3337 && SYMBOL_TYPE (syms[i].symbol)->name () != NULL)
3338 {
3339 printf_filtered (("[%d] "), i + first_choice);
3340 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3341 gdb_stdout, -1, 0, &type_print_raw_options);
3342 printf_filtered (_("'(%s) (enumeral)\n"),
3343 syms[i].symbol->print_name ());
3344 }
3345 else
3346 {
3347 printf_filtered ("[%d] ", i + first_choice);
3348 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3349 &type_print_raw_options);
3350
3351 if (symtab != NULL)
3352 printf_filtered (is_enumeral
3353 ? _(" in %s (enumeral)\n")
3354 : _(" at %s:?\n"),
3355 symtab_to_filename_for_display (symtab));
3356 else
3357 printf_filtered (is_enumeral
3358 ? _(" (enumeral)\n")
3359 : _(" at ?\n"));
3360 }
3361 }
3362 }
3363
3364 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3365 "overload-choice");
3366
3367 for (i = 0; i < n_chosen; i += 1)
3368 syms[i] = syms[chosen[i]];
3369
3370 return n_chosen;
3371 }
3372
3373 /* Resolve the operator of the subexpression beginning at
3374 position *POS of *EXPP. "Resolving" consists of replacing
3375 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3376 with their resolutions, replacing built-in operators with
3377 function calls to user-defined operators, where appropriate, and,
3378 when DEPROCEDURE_P is non-zero, converting function-valued variables
3379 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3380 are as in ada_resolve, above. */
3381
3382 static struct value *
3383 resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
3384 struct type *context_type, int parse_completion,
3385 innermost_block_tracker *tracker)
3386 {
3387 int pc = *pos;
3388 int i;
3389 struct expression *exp; /* Convenience: == *expp. */
3390 enum exp_opcode op = (*expp)->elts[pc].opcode;
3391 struct value **argvec; /* Vector of operand types (alloca'ed). */
3392 int nargs; /* Number of operands. */
3393 int oplen;
3394
3395 argvec = NULL;
3396 nargs = 0;
3397 exp = expp->get ();
3398
3399 /* Pass one: resolve operands, saving their types and updating *pos,
3400 if needed. */
3401 switch (op)
3402 {
3403 case OP_FUNCALL:
3404 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3405 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3406 *pos += 7;
3407 else
3408 {
3409 *pos += 3;
3410 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3411 }
3412 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3413 break;
3414
3415 case UNOP_ADDR:
3416 *pos += 1;
3417 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3418 break;
3419
3420 case UNOP_QUAL:
3421 *pos += 3;
3422 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type),
3423 parse_completion, tracker);
3424 break;
3425
3426 case OP_ATR_MODULUS:
3427 case OP_ATR_SIZE:
3428 case OP_ATR_TAG:
3429 case OP_ATR_FIRST:
3430 case OP_ATR_LAST:
3431 case OP_ATR_LENGTH:
3432 case OP_ATR_POS:
3433 case OP_ATR_VAL:
3434 case OP_ATR_MIN:
3435 case OP_ATR_MAX:
3436 case TERNOP_IN_RANGE:
3437 case BINOP_IN_BOUNDS:
3438 case UNOP_IN_RANGE:
3439 case OP_AGGREGATE:
3440 case OP_OTHERS:
3441 case OP_CHOICES:
3442 case OP_POSITIONAL:
3443 case OP_DISCRETE_RANGE:
3444 case OP_NAME:
3445 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3446 *pos += oplen;
3447 break;
3448
3449 case BINOP_ASSIGN:
3450 {
3451 struct value *arg1;
3452
3453 *pos += 1;
3454 arg1 = resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3455 if (arg1 == NULL)
3456 resolve_subexp (expp, pos, 1, NULL, parse_completion, tracker);
3457 else
3458 resolve_subexp (expp, pos, 1, value_type (arg1), parse_completion,
3459 tracker);
3460 break;
3461 }
3462
3463 case UNOP_CAST:
3464 *pos += 3;
3465 nargs = 1;
3466 break;
3467
3468 case BINOP_ADD:
3469 case BINOP_SUB:
3470 case BINOP_MUL:
3471 case BINOP_DIV:
3472 case BINOP_REM:
3473 case BINOP_MOD:
3474 case BINOP_EXP:
3475 case BINOP_CONCAT:
3476 case BINOP_LOGICAL_AND:
3477 case BINOP_LOGICAL_OR:
3478 case BINOP_BITWISE_AND:
3479 case BINOP_BITWISE_IOR:
3480 case BINOP_BITWISE_XOR:
3481
3482 case BINOP_EQUAL:
3483 case BINOP_NOTEQUAL:
3484 case BINOP_LESS:
3485 case BINOP_GTR:
3486 case BINOP_LEQ:
3487 case BINOP_GEQ:
3488
3489 case BINOP_REPEAT:
3490 case BINOP_SUBSCRIPT:
3491 case BINOP_COMMA:
3492 *pos += 1;
3493 nargs = 2;
3494 break;
3495
3496 case UNOP_NEG:
3497 case UNOP_PLUS:
3498 case UNOP_LOGICAL_NOT:
3499 case UNOP_ABS:
3500 case UNOP_IND:
3501 *pos += 1;
3502 nargs = 1;
3503 break;
3504
3505 case OP_LONG:
3506 case OP_FLOAT:
3507 case OP_VAR_VALUE:
3508 case OP_VAR_MSYM_VALUE:
3509 *pos += 4;
3510 break;
3511
3512 case OP_TYPE:
3513 case OP_BOOL:
3514 case OP_LAST:
3515 case OP_INTERNALVAR:
3516 *pos += 3;
3517 break;
3518
3519 case UNOP_MEMVAL:
3520 *pos += 3;
3521 nargs = 1;
3522 break;
3523
3524 case OP_REGISTER:
3525 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3526 break;
3527
3528 case STRUCTOP_STRUCT:
3529 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3530 nargs = 1;
3531 break;
3532
3533 case TERNOP_SLICE:
3534 *pos += 1;
3535 nargs = 3;
3536 break;
3537
3538 case OP_STRING:
3539 break;
3540
3541 default:
3542 error (_("Unexpected operator during name resolution"));
3543 }
3544
3545 argvec = XALLOCAVEC (struct value *, nargs + 1);
3546 for (i = 0; i < nargs; i += 1)
3547 argvec[i] = resolve_subexp (expp, pos, 1, NULL, parse_completion,
3548 tracker);
3549 argvec[i] = NULL;
3550 exp = expp->get ();
3551
3552 /* Pass two: perform any resolution on principal operator. */
3553 switch (op)
3554 {
3555 default:
3556 break;
3557
3558 case OP_VAR_VALUE:
3559 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3560 {
3561 std::vector<struct block_symbol> candidates;
3562 int n_candidates;
3563
3564 n_candidates =
3565 ada_lookup_symbol_list (exp->elts[pc + 2].symbol->linkage_name (),
3566 exp->elts[pc + 1].block, VAR_DOMAIN,
3567 &candidates);
3568
3569 if (n_candidates > 1)
3570 {
3571 /* Types tend to get re-introduced locally, so if there
3572 are any local symbols that are not types, first filter
3573 out all types. */
3574 int j;
3575 for (j = 0; j < n_candidates; j += 1)
3576 switch (SYMBOL_CLASS (candidates[j].symbol))
3577 {
3578 case LOC_REGISTER:
3579 case LOC_ARG:
3580 case LOC_REF_ARG:
3581 case LOC_REGPARM_ADDR:
3582 case LOC_LOCAL:
3583 case LOC_COMPUTED:
3584 goto FoundNonType;
3585 default:
3586 break;
3587 }
3588 FoundNonType:
3589 if (j < n_candidates)
3590 {
3591 j = 0;
3592 while (j < n_candidates)
3593 {
3594 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3595 {
3596 candidates[j] = candidates[n_candidates - 1];
3597 n_candidates -= 1;
3598 }
3599 else
3600 j += 1;
3601 }
3602 }
3603 }
3604
3605 if (n_candidates == 0)
3606 error (_("No definition found for %s"),
3607 exp->elts[pc + 2].symbol->print_name ());
3608 else if (n_candidates == 1)
3609 i = 0;
3610 else if (deprocedure_p
3611 && !is_nonfunction (candidates.data (), n_candidates))
3612 {
3613 i = ada_resolve_function
3614 (candidates.data (), n_candidates, NULL, 0,
3615 exp->elts[pc + 2].symbol->linkage_name (),
3616 context_type, parse_completion);
3617 if (i < 0)
3618 error (_("Could not find a match for %s"),
3619 exp->elts[pc + 2].symbol->print_name ());
3620 }
3621 else
3622 {
3623 printf_filtered (_("Multiple matches for %s\n"),
3624 exp->elts[pc + 2].symbol->print_name ());
3625 user_select_syms (candidates.data (), n_candidates, 1);
3626 i = 0;
3627 }
3628
3629 exp->elts[pc + 1].block = candidates[i].block;
3630 exp->elts[pc + 2].symbol = candidates[i].symbol;
3631 tracker->update (candidates[i]);
3632 }
3633
3634 if (deprocedure_p
3635 && (SYMBOL_TYPE (exp->elts[pc + 2].symbol)->code ()
3636 == TYPE_CODE_FUNC))
3637 {
3638 replace_operator_with_call (expp, pc, 0, 4,
3639 exp->elts[pc + 2].symbol,
3640 exp->elts[pc + 1].block);
3641 exp = expp->get ();
3642 }
3643 break;
3644
3645 case OP_FUNCALL:
3646 {
3647 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3648 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3649 {
3650 std::vector<struct block_symbol> candidates;
3651 int n_candidates;
3652
3653 n_candidates =
3654 ada_lookup_symbol_list (exp->elts[pc + 5].symbol->linkage_name (),
3655 exp->elts[pc + 4].block, VAR_DOMAIN,
3656 &candidates);
3657
3658 if (n_candidates == 1)
3659 i = 0;
3660 else
3661 {
3662 i = ada_resolve_function
3663 (candidates.data (), n_candidates,
3664 argvec, nargs,
3665 exp->elts[pc + 5].symbol->linkage_name (),
3666 context_type, parse_completion);
3667 if (i < 0)
3668 error (_("Could not find a match for %s"),
3669 exp->elts[pc + 5].symbol->print_name ());
3670 }
3671
3672 exp->elts[pc + 4].block = candidates[i].block;
3673 exp->elts[pc + 5].symbol = candidates[i].symbol;
3674 tracker->update (candidates[i]);
3675 }
3676 }
3677 break;
3678 case BINOP_ADD:
3679 case BINOP_SUB:
3680 case BINOP_MUL:
3681 case BINOP_DIV:
3682 case BINOP_REM:
3683 case BINOP_MOD:
3684 case BINOP_CONCAT:
3685 case BINOP_BITWISE_AND:
3686 case BINOP_BITWISE_IOR:
3687 case BINOP_BITWISE_XOR:
3688 case BINOP_EQUAL:
3689 case BINOP_NOTEQUAL:
3690 case BINOP_LESS:
3691 case BINOP_GTR:
3692 case BINOP_LEQ:
3693 case BINOP_GEQ:
3694 case BINOP_EXP:
3695 case UNOP_NEG:
3696 case UNOP_PLUS:
3697 case UNOP_LOGICAL_NOT:
3698 case UNOP_ABS:
3699 if (possible_user_operator_p (op, argvec))
3700 {
3701 std::vector<struct block_symbol> candidates;
3702 int n_candidates;
3703
3704 n_candidates =
3705 ada_lookup_symbol_list (ada_decoded_op_name (op),
3706 NULL, VAR_DOMAIN,
3707 &candidates);
3708
3709 i = ada_resolve_function (candidates.data (), n_candidates, argvec,
3710 nargs, ada_decoded_op_name (op), NULL,
3711 parse_completion);
3712 if (i < 0)
3713 break;
3714
3715 replace_operator_with_call (expp, pc, nargs, 1,
3716 candidates[i].symbol,
3717 candidates[i].block);
3718 exp = expp->get ();
3719 }
3720 break;
3721
3722 case OP_TYPE:
3723 case OP_REGISTER:
3724 return NULL;
3725 }
3726
3727 *pos = pc;
3728 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3729 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3730 exp->elts[pc + 1].objfile,
3731 exp->elts[pc + 2].msymbol);
3732 else
3733 return evaluate_subexp_type (exp, pos);
3734 }
3735
3736 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3737 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3738 a non-pointer. */
3739 /* The term "match" here is rather loose. The match is heuristic and
3740 liberal. */
3741
3742 static int
3743 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3744 {
3745 ftype = ada_check_typedef (ftype);
3746 atype = ada_check_typedef (atype);
3747
3748 if (ftype->code () == TYPE_CODE_REF)
3749 ftype = TYPE_TARGET_TYPE (ftype);
3750 if (atype->code () == TYPE_CODE_REF)
3751 atype = TYPE_TARGET_TYPE (atype);
3752
3753 switch (ftype->code ())
3754 {
3755 default:
3756 return ftype->code () == atype->code ();
3757 case TYPE_CODE_PTR:
3758 if (atype->code () == TYPE_CODE_PTR)
3759 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3760 TYPE_TARGET_TYPE (atype), 0);
3761 else
3762 return (may_deref
3763 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3764 case TYPE_CODE_INT:
3765 case TYPE_CODE_ENUM:
3766 case TYPE_CODE_RANGE:
3767 switch (atype->code ())
3768 {
3769 case TYPE_CODE_INT:
3770 case TYPE_CODE_ENUM:
3771 case TYPE_CODE_RANGE:
3772 return 1;
3773 default:
3774 return 0;
3775 }
3776
3777 case TYPE_CODE_ARRAY:
3778 return (atype->code () == TYPE_CODE_ARRAY
3779 || ada_is_array_descriptor_type (atype));
3780
3781 case TYPE_CODE_STRUCT:
3782 if (ada_is_array_descriptor_type (ftype))
3783 return (atype->code () == TYPE_CODE_ARRAY
3784 || ada_is_array_descriptor_type (atype));
3785 else
3786 return (atype->code () == TYPE_CODE_STRUCT
3787 && !ada_is_array_descriptor_type (atype));
3788
3789 case TYPE_CODE_UNION:
3790 case TYPE_CODE_FLT:
3791 return (atype->code () == ftype->code ());
3792 }
3793 }
3794
3795 /* Return non-zero if the formals of FUNC "sufficiently match" the
3796 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3797 may also be an enumeral, in which case it is treated as a 0-
3798 argument function. */
3799
3800 static int
3801 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3802 {
3803 int i;
3804 struct type *func_type = SYMBOL_TYPE (func);
3805
3806 if (SYMBOL_CLASS (func) == LOC_CONST
3807 && func_type->code () == TYPE_CODE_ENUM)
3808 return (n_actuals == 0);
3809 else if (func_type == NULL || func_type->code () != TYPE_CODE_FUNC)
3810 return 0;
3811
3812 if (func_type->num_fields () != n_actuals)
3813 return 0;
3814
3815 for (i = 0; i < n_actuals; i += 1)
3816 {
3817 if (actuals[i] == NULL)
3818 return 0;
3819 else
3820 {
3821 struct type *ftype = ada_check_typedef (func_type->field (i).type ());
3822 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3823
3824 if (!ada_type_match (ftype, atype, 1))
3825 return 0;
3826 }
3827 }
3828 return 1;
3829 }
3830
3831 /* False iff function type FUNC_TYPE definitely does not produce a value
3832 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3833 FUNC_TYPE is not a valid function type with a non-null return type
3834 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3835
3836 static int
3837 return_match (struct type *func_type, struct type *context_type)
3838 {
3839 struct type *return_type;
3840
3841 if (func_type == NULL)
3842 return 1;
3843
3844 if (func_type->code () == TYPE_CODE_FUNC)
3845 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3846 else
3847 return_type = get_base_type (func_type);
3848 if (return_type == NULL)
3849 return 1;
3850
3851 context_type = get_base_type (context_type);
3852
3853 if (return_type->code () == TYPE_CODE_ENUM)
3854 return context_type == NULL || return_type == context_type;
3855 else if (context_type == NULL)
3856 return return_type->code () != TYPE_CODE_VOID;
3857 else
3858 return return_type->code () == context_type->code ();
3859 }
3860
3861
3862 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3863 function (if any) that matches the types of the NARGS arguments in
3864 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3865 that returns that type, then eliminate matches that don't. If
3866 CONTEXT_TYPE is void and there is at least one match that does not
3867 return void, eliminate all matches that do.
3868
3869 Asks the user if there is more than one match remaining. Returns -1
3870 if there is no such symbol or none is selected. NAME is used
3871 solely for messages. May re-arrange and modify SYMS in
3872 the process; the index returned is for the modified vector. */
3873
3874 static int
3875 ada_resolve_function (struct block_symbol syms[],
3876 int nsyms, struct value **args, int nargs,
3877 const char *name, struct type *context_type,
3878 int parse_completion)
3879 {
3880 int fallback;
3881 int k;
3882 int m; /* Number of hits */
3883
3884 m = 0;
3885 /* In the first pass of the loop, we only accept functions matching
3886 context_type. If none are found, we add a second pass of the loop
3887 where every function is accepted. */
3888 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3889 {
3890 for (k = 0; k < nsyms; k += 1)
3891 {
3892 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3893
3894 if (ada_args_match (syms[k].symbol, args, nargs)
3895 && (fallback || return_match (type, context_type)))
3896 {
3897 syms[m] = syms[k];
3898 m += 1;
3899 }
3900 }
3901 }
3902
3903 /* If we got multiple matches, ask the user which one to use. Don't do this
3904 interactive thing during completion, though, as the purpose of the
3905 completion is providing a list of all possible matches. Prompting the
3906 user to filter it down would be completely unexpected in this case. */
3907 if (m == 0)
3908 return -1;
3909 else if (m > 1 && !parse_completion)
3910 {
3911 printf_filtered (_("Multiple matches for %s\n"), name);
3912 user_select_syms (syms, m, 1);
3913 return 0;
3914 }
3915 return 0;
3916 }
3917
3918 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3919 on the function identified by SYM and BLOCK, and taking NARGS
3920 arguments. Update *EXPP as needed to hold more space. */
3921
3922 static void
3923 replace_operator_with_call (expression_up *expp, int pc, int nargs,
3924 int oplen, struct symbol *sym,
3925 const struct block *block)
3926 {
3927 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3928 symbol, -oplen for operator being replaced). */
3929 struct expression *newexp = (struct expression *)
3930 xzalloc (sizeof (struct expression)
3931 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3932 struct expression *exp = expp->get ();
3933
3934 newexp->nelts = exp->nelts + 7 - oplen;
3935 newexp->language_defn = exp->language_defn;
3936 newexp->gdbarch = exp->gdbarch;
3937 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3938 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3939 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3940
3941 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3942 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3943
3944 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3945 newexp->elts[pc + 4].block = block;
3946 newexp->elts[pc + 5].symbol = sym;
3947
3948 expp->reset (newexp);
3949 }
3950
3951 /* Type-class predicates */
3952
3953 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3954 or FLOAT). */
3955
3956 static int
3957 numeric_type_p (struct type *type)
3958 {
3959 if (type == NULL)
3960 return 0;
3961 else
3962 {
3963 switch (type->code ())
3964 {
3965 case TYPE_CODE_INT:
3966 case TYPE_CODE_FLT:
3967 return 1;
3968 case TYPE_CODE_RANGE:
3969 return (type == TYPE_TARGET_TYPE (type)
3970 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3971 default:
3972 return 0;
3973 }
3974 }
3975 }
3976
3977 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3978
3979 static int
3980 integer_type_p (struct type *type)
3981 {
3982 if (type == NULL)
3983 return 0;
3984 else
3985 {
3986 switch (type->code ())
3987 {
3988 case TYPE_CODE_INT:
3989 return 1;
3990 case TYPE_CODE_RANGE:
3991 return (type == TYPE_TARGET_TYPE (type)
3992 || integer_type_p (TYPE_TARGET_TYPE (type)));
3993 default:
3994 return 0;
3995 }
3996 }
3997 }
3998
3999 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4000
4001 static int
4002 scalar_type_p (struct type *type)
4003 {
4004 if (type == NULL)
4005 return 0;
4006 else
4007 {
4008 switch (type->code ())
4009 {
4010 case TYPE_CODE_INT:
4011 case TYPE_CODE_RANGE:
4012 case TYPE_CODE_ENUM:
4013 case TYPE_CODE_FLT:
4014 return 1;
4015 default:
4016 return 0;
4017 }
4018 }
4019 }
4020
4021 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4022
4023 static int
4024 discrete_type_p (struct type *type)
4025 {
4026 if (type == NULL)
4027 return 0;
4028 else
4029 {
4030 switch (type->code ())
4031 {
4032 case TYPE_CODE_INT:
4033 case TYPE_CODE_RANGE:
4034 case TYPE_CODE_ENUM:
4035 case TYPE_CODE_BOOL:
4036 return 1;
4037 default:
4038 return 0;
4039 }
4040 }
4041 }
4042
4043 /* Returns non-zero if OP with operands in the vector ARGS could be
4044 a user-defined function. Errs on the side of pre-defined operators
4045 (i.e., result 0). */
4046
4047 static int
4048 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4049 {
4050 struct type *type0 =
4051 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4052 struct type *type1 =
4053 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4054
4055 if (type0 == NULL)
4056 return 0;
4057
4058 switch (op)
4059 {
4060 default:
4061 return 0;
4062
4063 case BINOP_ADD:
4064 case BINOP_SUB:
4065 case BINOP_MUL:
4066 case BINOP_DIV:
4067 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4068
4069 case BINOP_REM:
4070 case BINOP_MOD:
4071 case BINOP_BITWISE_AND:
4072 case BINOP_BITWISE_IOR:
4073 case BINOP_BITWISE_XOR:
4074 return (!(integer_type_p (type0) && integer_type_p (type1)));
4075
4076 case BINOP_EQUAL:
4077 case BINOP_NOTEQUAL:
4078 case BINOP_LESS:
4079 case BINOP_GTR:
4080 case BINOP_LEQ:
4081 case BINOP_GEQ:
4082 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4083
4084 case BINOP_CONCAT:
4085 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4086
4087 case BINOP_EXP:
4088 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4089
4090 case UNOP_NEG:
4091 case UNOP_PLUS:
4092 case UNOP_LOGICAL_NOT:
4093 case UNOP_ABS:
4094 return (!numeric_type_p (type0));
4095
4096 }
4097 }
4098 \f
4099 /* Renaming */
4100
4101 /* NOTES:
4102
4103 1. In the following, we assume that a renaming type's name may
4104 have an ___XD suffix. It would be nice if this went away at some
4105 point.
4106 2. We handle both the (old) purely type-based representation of
4107 renamings and the (new) variable-based encoding. At some point,
4108 it is devoutly to be hoped that the former goes away
4109 (FIXME: hilfinger-2007-07-09).
4110 3. Subprogram renamings are not implemented, although the XRS
4111 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4112
4113 /* If SYM encodes a renaming,
4114
4115 <renaming> renames <renamed entity>,
4116
4117 sets *LEN to the length of the renamed entity's name,
4118 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4119 the string describing the subcomponent selected from the renamed
4120 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4121 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4122 are undefined). Otherwise, returns a value indicating the category
4123 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4124 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4125 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4126 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4127 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4128 may be NULL, in which case they are not assigned.
4129
4130 [Currently, however, GCC does not generate subprogram renamings.] */
4131
4132 enum ada_renaming_category
4133 ada_parse_renaming (struct symbol *sym,
4134 const char **renamed_entity, int *len,
4135 const char **renaming_expr)
4136 {
4137 enum ada_renaming_category kind;
4138 const char *info;
4139 const char *suffix;
4140
4141 if (sym == NULL)
4142 return ADA_NOT_RENAMING;
4143 switch (SYMBOL_CLASS (sym))
4144 {
4145 default:
4146 return ADA_NOT_RENAMING;
4147 case LOC_LOCAL:
4148 case LOC_STATIC:
4149 case LOC_COMPUTED:
4150 case LOC_OPTIMIZED_OUT:
4151 info = strstr (sym->linkage_name (), "___XR");
4152 if (info == NULL)
4153 return ADA_NOT_RENAMING;
4154 switch (info[5])
4155 {
4156 case '_':
4157 kind = ADA_OBJECT_RENAMING;
4158 info += 6;
4159 break;
4160 case 'E':
4161 kind = ADA_EXCEPTION_RENAMING;
4162 info += 7;
4163 break;
4164 case 'P':
4165 kind = ADA_PACKAGE_RENAMING;
4166 info += 7;
4167 break;
4168 case 'S':
4169 kind = ADA_SUBPROGRAM_RENAMING;
4170 info += 7;
4171 break;
4172 default:
4173 return ADA_NOT_RENAMING;
4174 }
4175 }
4176
4177 if (renamed_entity != NULL)
4178 *renamed_entity = info;
4179 suffix = strstr (info, "___XE");
4180 if (suffix == NULL || suffix == info)
4181 return ADA_NOT_RENAMING;
4182 if (len != NULL)
4183 *len = strlen (info) - strlen (suffix);
4184 suffix += 5;
4185 if (renaming_expr != NULL)
4186 *renaming_expr = suffix;
4187 return kind;
4188 }
4189
4190 /* Compute the value of the given RENAMING_SYM, which is expected to
4191 be a symbol encoding a renaming expression. BLOCK is the block
4192 used to evaluate the renaming. */
4193
4194 static struct value *
4195 ada_read_renaming_var_value (struct symbol *renaming_sym,
4196 const struct block *block)
4197 {
4198 const char *sym_name;
4199
4200 sym_name = renaming_sym->linkage_name ();
4201 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4202 return evaluate_expression (expr.get ());
4203 }
4204 \f
4205
4206 /* Evaluation: Function Calls */
4207
4208 /* Return an lvalue containing the value VAL. This is the identity on
4209 lvalues, and otherwise has the side-effect of allocating memory
4210 in the inferior where a copy of the value contents is copied. */
4211
4212 static struct value *
4213 ensure_lval (struct value *val)
4214 {
4215 if (VALUE_LVAL (val) == not_lval
4216 || VALUE_LVAL (val) == lval_internalvar)
4217 {
4218 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4219 const CORE_ADDR addr =
4220 value_as_long (value_allocate_space_in_inferior (len));
4221
4222 VALUE_LVAL (val) = lval_memory;
4223 set_value_address (val, addr);
4224 write_memory (addr, value_contents (val), len);
4225 }
4226
4227 return val;
4228 }
4229
4230 /* Given ARG, a value of type (pointer or reference to a)*
4231 structure/union, extract the component named NAME from the ultimate
4232 target structure/union and return it as a value with its
4233 appropriate type.
4234
4235 The routine searches for NAME among all members of the structure itself
4236 and (recursively) among all members of any wrapper members
4237 (e.g., '_parent').
4238
4239 If NO_ERR, then simply return NULL in case of error, rather than
4240 calling error. */
4241
4242 static struct value *
4243 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
4244 {
4245 struct type *t, *t1;
4246 struct value *v;
4247 int check_tag;
4248
4249 v = NULL;
4250 t1 = t = ada_check_typedef (value_type (arg));
4251 if (t->code () == TYPE_CODE_REF)
4252 {
4253 t1 = TYPE_TARGET_TYPE (t);
4254 if (t1 == NULL)
4255 goto BadValue;
4256 t1 = ada_check_typedef (t1);
4257 if (t1->code () == TYPE_CODE_PTR)
4258 {
4259 arg = coerce_ref (arg);
4260 t = t1;
4261 }
4262 }
4263
4264 while (t->code () == TYPE_CODE_PTR)
4265 {
4266 t1 = TYPE_TARGET_TYPE (t);
4267 if (t1 == NULL)
4268 goto BadValue;
4269 t1 = ada_check_typedef (t1);
4270 if (t1->code () == TYPE_CODE_PTR)
4271 {
4272 arg = value_ind (arg);
4273 t = t1;
4274 }
4275 else
4276 break;
4277 }
4278
4279 if (t1->code () != TYPE_CODE_STRUCT && t1->code () != TYPE_CODE_UNION)
4280 goto BadValue;
4281
4282 if (t1 == t)
4283 v = ada_search_struct_field (name, arg, 0, t);
4284 else
4285 {
4286 int bit_offset, bit_size, byte_offset;
4287 struct type *field_type;
4288 CORE_ADDR address;
4289
4290 if (t->code () == TYPE_CODE_PTR)
4291 address = value_address (ada_value_ind (arg));
4292 else
4293 address = value_address (ada_coerce_ref (arg));
4294
4295 /* Check to see if this is a tagged type. We also need to handle
4296 the case where the type is a reference to a tagged type, but
4297 we have to be careful to exclude pointers to tagged types.
4298 The latter should be shown as usual (as a pointer), whereas
4299 a reference should mostly be transparent to the user. */
4300
4301 if (ada_is_tagged_type (t1, 0)
4302 || (t1->code () == TYPE_CODE_REF
4303 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
4304 {
4305 /* We first try to find the searched field in the current type.
4306 If not found then let's look in the fixed type. */
4307
4308 if (!find_struct_field (name, t1, 0,
4309 &field_type, &byte_offset, &bit_offset,
4310 &bit_size, NULL))
4311 check_tag = 1;
4312 else
4313 check_tag = 0;
4314 }
4315 else
4316 check_tag = 0;
4317
4318 /* Convert to fixed type in all cases, so that we have proper
4319 offsets to each field in unconstrained record types. */
4320 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
4321 address, NULL, check_tag);
4322
4323 if (find_struct_field (name, t1, 0,
4324 &field_type, &byte_offset, &bit_offset,
4325 &bit_size, NULL))
4326 {
4327 if (bit_size != 0)
4328 {
4329 if (t->code () == TYPE_CODE_REF)
4330 arg = ada_coerce_ref (arg);
4331 else
4332 arg = ada_value_ind (arg);
4333 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
4334 bit_offset, bit_size,
4335 field_type);
4336 }
4337 else
4338 v = value_at_lazy (field_type, address + byte_offset);
4339 }
4340 }
4341
4342 if (v != NULL || no_err)
4343 return v;
4344 else
4345 error (_("There is no member named %s."), name);
4346
4347 BadValue:
4348 if (no_err)
4349 return NULL;
4350 else
4351 error (_("Attempt to extract a component of "
4352 "a value that is not a record."));
4353 }
4354
4355 /* Return the value ACTUAL, converted to be an appropriate value for a
4356 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4357 allocating any necessary descriptors (fat pointers), or copies of
4358 values not residing in memory, updating it as needed. */
4359
4360 struct value *
4361 ada_convert_actual (struct value *actual, struct type *formal_type0)
4362 {
4363 struct type *actual_type = ada_check_typedef (value_type (actual));
4364 struct type *formal_type = ada_check_typedef (formal_type0);
4365 struct type *formal_target =
4366 formal_type->code () == TYPE_CODE_PTR
4367 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4368 struct type *actual_target =
4369 actual_type->code () == TYPE_CODE_PTR
4370 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4371
4372 if (ada_is_array_descriptor_type (formal_target)
4373 && actual_target->code () == TYPE_CODE_ARRAY)
4374 return make_array_descriptor (formal_type, actual);
4375 else if (formal_type->code () == TYPE_CODE_PTR
4376 || formal_type->code () == TYPE_CODE_REF)
4377 {
4378 struct value *result;
4379
4380 if (formal_target->code () == TYPE_CODE_ARRAY
4381 && ada_is_array_descriptor_type (actual_target))
4382 result = desc_data (actual);
4383 else if (formal_type->code () != TYPE_CODE_PTR)
4384 {
4385 if (VALUE_LVAL (actual) != lval_memory)
4386 {
4387 struct value *val;
4388
4389 actual_type = ada_check_typedef (value_type (actual));
4390 val = allocate_value (actual_type);
4391 memcpy ((char *) value_contents_raw (val),
4392 (char *) value_contents (actual),
4393 TYPE_LENGTH (actual_type));
4394 actual = ensure_lval (val);
4395 }
4396 result = value_addr (actual);
4397 }
4398 else
4399 return actual;
4400 return value_cast_pointers (formal_type, result, 0);
4401 }
4402 else if (actual_type->code () == TYPE_CODE_PTR)
4403 return ada_value_ind (actual);
4404 else if (ada_is_aligner_type (formal_type))
4405 {
4406 /* We need to turn this parameter into an aligner type
4407 as well. */
4408 struct value *aligner = allocate_value (formal_type);
4409 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4410
4411 value_assign_to_component (aligner, component, actual);
4412 return aligner;
4413 }
4414
4415 return actual;
4416 }
4417
4418 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4419 type TYPE. This is usually an inefficient no-op except on some targets
4420 (such as AVR) where the representation of a pointer and an address
4421 differs. */
4422
4423 static CORE_ADDR
4424 value_pointer (struct value *value, struct type *type)
4425 {
4426 struct gdbarch *gdbarch = get_type_arch (type);
4427 unsigned len = TYPE_LENGTH (type);
4428 gdb_byte *buf = (gdb_byte *) alloca (len);
4429 CORE_ADDR addr;
4430
4431 addr = value_address (value);
4432 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4433 addr = extract_unsigned_integer (buf, len, type_byte_order (type));
4434 return addr;
4435 }
4436
4437
4438 /* Push a descriptor of type TYPE for array value ARR on the stack at
4439 *SP, updating *SP to reflect the new descriptor. Return either
4440 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4441 to-descriptor type rather than a descriptor type), a struct value *
4442 representing a pointer to this descriptor. */
4443
4444 static struct value *
4445 make_array_descriptor (struct type *type, struct value *arr)
4446 {
4447 struct type *bounds_type = desc_bounds_type (type);
4448 struct type *desc_type = desc_base_type (type);
4449 struct value *descriptor = allocate_value (desc_type);
4450 struct value *bounds = allocate_value (bounds_type);
4451 int i;
4452
4453 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4454 i > 0; i -= 1)
4455 {
4456 modify_field (value_type (bounds), value_contents_writeable (bounds),
4457 ada_array_bound (arr, i, 0),
4458 desc_bound_bitpos (bounds_type, i, 0),
4459 desc_bound_bitsize (bounds_type, i, 0));
4460 modify_field (value_type (bounds), value_contents_writeable (bounds),
4461 ada_array_bound (arr, i, 1),
4462 desc_bound_bitpos (bounds_type, i, 1),
4463 desc_bound_bitsize (bounds_type, i, 1));
4464 }
4465
4466 bounds = ensure_lval (bounds);
4467
4468 modify_field (value_type (descriptor),
4469 value_contents_writeable (descriptor),
4470 value_pointer (ensure_lval (arr),
4471 desc_type->field (0).type ()),
4472 fat_pntr_data_bitpos (desc_type),
4473 fat_pntr_data_bitsize (desc_type));
4474
4475 modify_field (value_type (descriptor),
4476 value_contents_writeable (descriptor),
4477 value_pointer (bounds,
4478 desc_type->field (1).type ()),
4479 fat_pntr_bounds_bitpos (desc_type),
4480 fat_pntr_bounds_bitsize (desc_type));
4481
4482 descriptor = ensure_lval (descriptor);
4483
4484 if (type->code () == TYPE_CODE_PTR)
4485 return value_addr (descriptor);
4486 else
4487 return descriptor;
4488 }
4489 \f
4490 /* Symbol Cache Module */
4491
4492 /* Performance measurements made as of 2010-01-15 indicate that
4493 this cache does bring some noticeable improvements. Depending
4494 on the type of entity being printed, the cache can make it as much
4495 as an order of magnitude faster than without it.
4496
4497 The descriptive type DWARF extension has significantly reduced
4498 the need for this cache, at least when DWARF is being used. However,
4499 even in this case, some expensive name-based symbol searches are still
4500 sometimes necessary - to find an XVZ variable, mostly. */
4501
4502 /* Initialize the contents of SYM_CACHE. */
4503
4504 static void
4505 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4506 {
4507 obstack_init (&sym_cache->cache_space);
4508 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4509 }
4510
4511 /* Free the memory used by SYM_CACHE. */
4512
4513 static void
4514 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4515 {
4516 obstack_free (&sym_cache->cache_space, NULL);
4517 xfree (sym_cache);
4518 }
4519
4520 /* Return the symbol cache associated to the given program space PSPACE.
4521 If not allocated for this PSPACE yet, allocate and initialize one. */
4522
4523 static struct ada_symbol_cache *
4524 ada_get_symbol_cache (struct program_space *pspace)
4525 {
4526 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4527
4528 if (pspace_data->sym_cache == NULL)
4529 {
4530 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4531 ada_init_symbol_cache (pspace_data->sym_cache);
4532 }
4533
4534 return pspace_data->sym_cache;
4535 }
4536
4537 /* Clear all entries from the symbol cache. */
4538
4539 static void
4540 ada_clear_symbol_cache (void)
4541 {
4542 struct ada_symbol_cache *sym_cache
4543 = ada_get_symbol_cache (current_program_space);
4544
4545 obstack_free (&sym_cache->cache_space, NULL);
4546 ada_init_symbol_cache (sym_cache);
4547 }
4548
4549 /* Search our cache for an entry matching NAME and DOMAIN.
4550 Return it if found, or NULL otherwise. */
4551
4552 static struct cache_entry **
4553 find_entry (const char *name, domain_enum domain)
4554 {
4555 struct ada_symbol_cache *sym_cache
4556 = ada_get_symbol_cache (current_program_space);
4557 int h = msymbol_hash (name) % HASH_SIZE;
4558 struct cache_entry **e;
4559
4560 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4561 {
4562 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4563 return e;
4564 }
4565 return NULL;
4566 }
4567
4568 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4569 Return 1 if found, 0 otherwise.
4570
4571 If an entry was found and SYM is not NULL, set *SYM to the entry's
4572 SYM. Same principle for BLOCK if not NULL. */
4573
4574 static int
4575 lookup_cached_symbol (const char *name, domain_enum domain,
4576 struct symbol **sym, const struct block **block)
4577 {
4578 struct cache_entry **e = find_entry (name, domain);
4579
4580 if (e == NULL)
4581 return 0;
4582 if (sym != NULL)
4583 *sym = (*e)->sym;
4584 if (block != NULL)
4585 *block = (*e)->block;
4586 return 1;
4587 }
4588
4589 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4590 in domain DOMAIN, save this result in our symbol cache. */
4591
4592 static void
4593 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4594 const struct block *block)
4595 {
4596 struct ada_symbol_cache *sym_cache
4597 = ada_get_symbol_cache (current_program_space);
4598 int h;
4599 struct cache_entry *e;
4600
4601 /* Symbols for builtin types don't have a block.
4602 For now don't cache such symbols. */
4603 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4604 return;
4605
4606 /* If the symbol is a local symbol, then do not cache it, as a search
4607 for that symbol depends on the context. To determine whether
4608 the symbol is local or not, we check the block where we found it
4609 against the global and static blocks of its associated symtab. */
4610 if (sym
4611 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4612 GLOBAL_BLOCK) != block
4613 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4614 STATIC_BLOCK) != block)
4615 return;
4616
4617 h = msymbol_hash (name) % HASH_SIZE;
4618 e = XOBNEW (&sym_cache->cache_space, cache_entry);
4619 e->next = sym_cache->root[h];
4620 sym_cache->root[h] = e;
4621 e->name = obstack_strdup (&sym_cache->cache_space, name);
4622 e->sym = sym;
4623 e->domain = domain;
4624 e->block = block;
4625 }
4626 \f
4627 /* Symbol Lookup */
4628
4629 /* Return the symbol name match type that should be used used when
4630 searching for all symbols matching LOOKUP_NAME.
4631
4632 LOOKUP_NAME is expected to be a symbol name after transformation
4633 for Ada lookups. */
4634
4635 static symbol_name_match_type
4636 name_match_type_from_name (const char *lookup_name)
4637 {
4638 return (strstr (lookup_name, "__") == NULL
4639 ? symbol_name_match_type::WILD
4640 : symbol_name_match_type::FULL);
4641 }
4642
4643 /* Return the result of a standard (literal, C-like) lookup of NAME in
4644 given DOMAIN, visible from lexical block BLOCK. */
4645
4646 static struct symbol *
4647 standard_lookup (const char *name, const struct block *block,
4648 domain_enum domain)
4649 {
4650 /* Initialize it just to avoid a GCC false warning. */
4651 struct block_symbol sym = {};
4652
4653 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4654 return sym.symbol;
4655 ada_lookup_encoded_symbol (name, block, domain, &sym);
4656 cache_symbol (name, domain, sym.symbol, sym.block);
4657 return sym.symbol;
4658 }
4659
4660
4661 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4662 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4663 since they contend in overloading in the same way. */
4664 static int
4665 is_nonfunction (struct block_symbol syms[], int n)
4666 {
4667 int i;
4668
4669 for (i = 0; i < n; i += 1)
4670 if (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_FUNC
4671 && (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_ENUM
4672 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4673 return 1;
4674
4675 return 0;
4676 }
4677
4678 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4679 struct types. Otherwise, they may not. */
4680
4681 static int
4682 equiv_types (struct type *type0, struct type *type1)
4683 {
4684 if (type0 == type1)
4685 return 1;
4686 if (type0 == NULL || type1 == NULL
4687 || type0->code () != type1->code ())
4688 return 0;
4689 if ((type0->code () == TYPE_CODE_STRUCT
4690 || type0->code () == TYPE_CODE_ENUM)
4691 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4692 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4693 return 1;
4694
4695 return 0;
4696 }
4697
4698 /* True iff SYM0 represents the same entity as SYM1, or one that is
4699 no more defined than that of SYM1. */
4700
4701 static int
4702 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4703 {
4704 if (sym0 == sym1)
4705 return 1;
4706 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4707 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4708 return 0;
4709
4710 switch (SYMBOL_CLASS (sym0))
4711 {
4712 case LOC_UNDEF:
4713 return 1;
4714 case LOC_TYPEDEF:
4715 {
4716 struct type *type0 = SYMBOL_TYPE (sym0);
4717 struct type *type1 = SYMBOL_TYPE (sym1);
4718 const char *name0 = sym0->linkage_name ();
4719 const char *name1 = sym1->linkage_name ();
4720 int len0 = strlen (name0);
4721
4722 return
4723 type0->code () == type1->code ()
4724 && (equiv_types (type0, type1)
4725 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4726 && startswith (name1 + len0, "___XV")));
4727 }
4728 case LOC_CONST:
4729 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4730 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4731
4732 case LOC_STATIC:
4733 {
4734 const char *name0 = sym0->linkage_name ();
4735 const char *name1 = sym1->linkage_name ();
4736 return (strcmp (name0, name1) == 0
4737 && SYMBOL_VALUE_ADDRESS (sym0) == SYMBOL_VALUE_ADDRESS (sym1));
4738 }
4739
4740 default:
4741 return 0;
4742 }
4743 }
4744
4745 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4746 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4747
4748 static void
4749 add_defn_to_vec (struct obstack *obstackp,
4750 struct symbol *sym,
4751 const struct block *block)
4752 {
4753 int i;
4754 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4755
4756 /* Do not try to complete stub types, as the debugger is probably
4757 already scanning all symbols matching a certain name at the
4758 time when this function is called. Trying to replace the stub
4759 type by its associated full type will cause us to restart a scan
4760 which may lead to an infinite recursion. Instead, the client
4761 collecting the matching symbols will end up collecting several
4762 matches, with at least one of them complete. It can then filter
4763 out the stub ones if needed. */
4764
4765 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4766 {
4767 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4768 return;
4769 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4770 {
4771 prevDefns[i].symbol = sym;
4772 prevDefns[i].block = block;
4773 return;
4774 }
4775 }
4776
4777 {
4778 struct block_symbol info;
4779
4780 info.symbol = sym;
4781 info.block = block;
4782 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4783 }
4784 }
4785
4786 /* Number of block_symbol structures currently collected in current vector in
4787 OBSTACKP. */
4788
4789 static int
4790 num_defns_collected (struct obstack *obstackp)
4791 {
4792 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4793 }
4794
4795 /* Vector of block_symbol structures currently collected in current vector in
4796 OBSTACKP. If FINISH, close off the vector and return its final address. */
4797
4798 static struct block_symbol *
4799 defns_collected (struct obstack *obstackp, int finish)
4800 {
4801 if (finish)
4802 return (struct block_symbol *) obstack_finish (obstackp);
4803 else
4804 return (struct block_symbol *) obstack_base (obstackp);
4805 }
4806
4807 /* Return a bound minimal symbol matching NAME according to Ada
4808 decoding rules. Returns an invalid symbol if there is no such
4809 minimal symbol. Names prefixed with "standard__" are handled
4810 specially: "standard__" is first stripped off, and only static and
4811 global symbols are searched. */
4812
4813 struct bound_minimal_symbol
4814 ada_lookup_simple_minsym (const char *name)
4815 {
4816 struct bound_minimal_symbol result;
4817
4818 memset (&result, 0, sizeof (result));
4819
4820 symbol_name_match_type match_type = name_match_type_from_name (name);
4821 lookup_name_info lookup_name (name, match_type);
4822
4823 symbol_name_matcher_ftype *match_name
4824 = ada_get_symbol_name_matcher (lookup_name);
4825
4826 for (objfile *objfile : current_program_space->objfiles ())
4827 {
4828 for (minimal_symbol *msymbol : objfile->msymbols ())
4829 {
4830 if (match_name (msymbol->linkage_name (), lookup_name, NULL)
4831 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4832 {
4833 result.minsym = msymbol;
4834 result.objfile = objfile;
4835 break;
4836 }
4837 }
4838 }
4839
4840 return result;
4841 }
4842
4843 /* For all subprograms that statically enclose the subprogram of the
4844 selected frame, add symbols matching identifier NAME in DOMAIN
4845 and their blocks to the list of data in OBSTACKP, as for
4846 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4847 with a wildcard prefix. */
4848
4849 static void
4850 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4851 const lookup_name_info &lookup_name,
4852 domain_enum domain)
4853 {
4854 }
4855
4856 /* True if TYPE is definitely an artificial type supplied to a symbol
4857 for which no debugging information was given in the symbol file. */
4858
4859 static int
4860 is_nondebugging_type (struct type *type)
4861 {
4862 const char *name = ada_type_name (type);
4863
4864 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4865 }
4866
4867 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4868 that are deemed "identical" for practical purposes.
4869
4870 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4871 types and that their number of enumerals is identical (in other
4872 words, type1->num_fields () == type2->num_fields ()). */
4873
4874 static int
4875 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4876 {
4877 int i;
4878
4879 /* The heuristic we use here is fairly conservative. We consider
4880 that 2 enumerate types are identical if they have the same
4881 number of enumerals and that all enumerals have the same
4882 underlying value and name. */
4883
4884 /* All enums in the type should have an identical underlying value. */
4885 for (i = 0; i < type1->num_fields (); i++)
4886 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4887 return 0;
4888
4889 /* All enumerals should also have the same name (modulo any numerical
4890 suffix). */
4891 for (i = 0; i < type1->num_fields (); i++)
4892 {
4893 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4894 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4895 int len_1 = strlen (name_1);
4896 int len_2 = strlen (name_2);
4897
4898 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4899 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4900 if (len_1 != len_2
4901 || strncmp (TYPE_FIELD_NAME (type1, i),
4902 TYPE_FIELD_NAME (type2, i),
4903 len_1) != 0)
4904 return 0;
4905 }
4906
4907 return 1;
4908 }
4909
4910 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4911 that are deemed "identical" for practical purposes. Sometimes,
4912 enumerals are not strictly identical, but their types are so similar
4913 that they can be considered identical.
4914
4915 For instance, consider the following code:
4916
4917 type Color is (Black, Red, Green, Blue, White);
4918 type RGB_Color is new Color range Red .. Blue;
4919
4920 Type RGB_Color is a subrange of an implicit type which is a copy
4921 of type Color. If we call that implicit type RGB_ColorB ("B" is
4922 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4923 As a result, when an expression references any of the enumeral
4924 by name (Eg. "print green"), the expression is technically
4925 ambiguous and the user should be asked to disambiguate. But
4926 doing so would only hinder the user, since it wouldn't matter
4927 what choice he makes, the outcome would always be the same.
4928 So, for practical purposes, we consider them as the same. */
4929
4930 static int
4931 symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
4932 {
4933 int i;
4934
4935 /* Before performing a thorough comparison check of each type,
4936 we perform a series of inexpensive checks. We expect that these
4937 checks will quickly fail in the vast majority of cases, and thus
4938 help prevent the unnecessary use of a more expensive comparison.
4939 Said comparison also expects us to make some of these checks
4940 (see ada_identical_enum_types_p). */
4941
4942 /* Quick check: All symbols should have an enum type. */
4943 for (i = 0; i < syms.size (); i++)
4944 if (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_ENUM)
4945 return 0;
4946
4947 /* Quick check: They should all have the same value. */
4948 for (i = 1; i < syms.size (); i++)
4949 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
4950 return 0;
4951
4952 /* Quick check: They should all have the same number of enumerals. */
4953 for (i = 1; i < syms.size (); i++)
4954 if (SYMBOL_TYPE (syms[i].symbol)->num_fields ()
4955 != SYMBOL_TYPE (syms[0].symbol)->num_fields ())
4956 return 0;
4957
4958 /* All the sanity checks passed, so we might have a set of
4959 identical enumeration types. Perform a more complete
4960 comparison of the type of each symbol. */
4961 for (i = 1; i < syms.size (); i++)
4962 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
4963 SYMBOL_TYPE (syms[0].symbol)))
4964 return 0;
4965
4966 return 1;
4967 }
4968
4969 /* Remove any non-debugging symbols in SYMS that definitely
4970 duplicate other symbols in the list (The only case I know of where
4971 this happens is when object files containing stabs-in-ecoff are
4972 linked with files containing ordinary ecoff debugging symbols (or no
4973 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4974 Returns the number of items in the modified list. */
4975
4976 static int
4977 remove_extra_symbols (std::vector<struct block_symbol> *syms)
4978 {
4979 int i, j;
4980
4981 /* We should never be called with less than 2 symbols, as there
4982 cannot be any extra symbol in that case. But it's easy to
4983 handle, since we have nothing to do in that case. */
4984 if (syms->size () < 2)
4985 return syms->size ();
4986
4987 i = 0;
4988 while (i < syms->size ())
4989 {
4990 int remove_p = 0;
4991
4992 /* If two symbols have the same name and one of them is a stub type,
4993 the get rid of the stub. */
4994
4995 if (SYMBOL_TYPE ((*syms)[i].symbol)->is_stub ()
4996 && (*syms)[i].symbol->linkage_name () != NULL)
4997 {
4998 for (j = 0; j < syms->size (); j++)
4999 {
5000 if (j != i
5001 && !SYMBOL_TYPE ((*syms)[j].symbol)->is_stub ()
5002 && (*syms)[j].symbol->linkage_name () != NULL
5003 && strcmp ((*syms)[i].symbol->linkage_name (),
5004 (*syms)[j].symbol->linkage_name ()) == 0)
5005 remove_p = 1;
5006 }
5007 }
5008
5009 /* Two symbols with the same name, same class and same address
5010 should be identical. */
5011
5012 else if ((*syms)[i].symbol->linkage_name () != NULL
5013 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5014 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
5015 {
5016 for (j = 0; j < syms->size (); j += 1)
5017 {
5018 if (i != j
5019 && (*syms)[j].symbol->linkage_name () != NULL
5020 && strcmp ((*syms)[i].symbol->linkage_name (),
5021 (*syms)[j].symbol->linkage_name ()) == 0
5022 && SYMBOL_CLASS ((*syms)[i].symbol)
5023 == SYMBOL_CLASS ((*syms)[j].symbol)
5024 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5025 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
5026 remove_p = 1;
5027 }
5028 }
5029
5030 if (remove_p)
5031 syms->erase (syms->begin () + i);
5032 else
5033 i += 1;
5034 }
5035
5036 /* If all the remaining symbols are identical enumerals, then
5037 just keep the first one and discard the rest.
5038
5039 Unlike what we did previously, we do not discard any entry
5040 unless they are ALL identical. This is because the symbol
5041 comparison is not a strict comparison, but rather a practical
5042 comparison. If all symbols are considered identical, then
5043 we can just go ahead and use the first one and discard the rest.
5044 But if we cannot reduce the list to a single element, we have
5045 to ask the user to disambiguate anyways. And if we have to
5046 present a multiple-choice menu, it's less confusing if the list
5047 isn't missing some choices that were identical and yet distinct. */
5048 if (symbols_are_identical_enums (*syms))
5049 syms->resize (1);
5050
5051 return syms->size ();
5052 }
5053
5054 /* Given a type that corresponds to a renaming entity, use the type name
5055 to extract the scope (package name or function name, fully qualified,
5056 and following the GNAT encoding convention) where this renaming has been
5057 defined. */
5058
5059 static std::string
5060 xget_renaming_scope (struct type *renaming_type)
5061 {
5062 /* The renaming types adhere to the following convention:
5063 <scope>__<rename>___<XR extension>.
5064 So, to extract the scope, we search for the "___XR" extension,
5065 and then backtrack until we find the first "__". */
5066
5067 const char *name = renaming_type->name ();
5068 const char *suffix = strstr (name, "___XR");
5069 const char *last;
5070
5071 /* Now, backtrack a bit until we find the first "__". Start looking
5072 at suffix - 3, as the <rename> part is at least one character long. */
5073
5074 for (last = suffix - 3; last > name; last--)
5075 if (last[0] == '_' && last[1] == '_')
5076 break;
5077
5078 /* Make a copy of scope and return it. */
5079 return std::string (name, last);
5080 }
5081
5082 /* Return nonzero if NAME corresponds to a package name. */
5083
5084 static int
5085 is_package_name (const char *name)
5086 {
5087 /* Here, We take advantage of the fact that no symbols are generated
5088 for packages, while symbols are generated for each function.
5089 So the condition for NAME represent a package becomes equivalent
5090 to NAME not existing in our list of symbols. There is only one
5091 small complication with library-level functions (see below). */
5092
5093 /* If it is a function that has not been defined at library level,
5094 then we should be able to look it up in the symbols. */
5095 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5096 return 0;
5097
5098 /* Library-level function names start with "_ada_". See if function
5099 "_ada_" followed by NAME can be found. */
5100
5101 /* Do a quick check that NAME does not contain "__", since library-level
5102 functions names cannot contain "__" in them. */
5103 if (strstr (name, "__") != NULL)
5104 return 0;
5105
5106 std::string fun_name = string_printf ("_ada_%s", name);
5107
5108 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
5109 }
5110
5111 /* Return nonzero if SYM corresponds to a renaming entity that is
5112 not visible from FUNCTION_NAME. */
5113
5114 static int
5115 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5116 {
5117 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5118 return 0;
5119
5120 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5121
5122 /* If the rename has been defined in a package, then it is visible. */
5123 if (is_package_name (scope.c_str ()))
5124 return 0;
5125
5126 /* Check that the rename is in the current function scope by checking
5127 that its name starts with SCOPE. */
5128
5129 /* If the function name starts with "_ada_", it means that it is
5130 a library-level function. Strip this prefix before doing the
5131 comparison, as the encoding for the renaming does not contain
5132 this prefix. */
5133 if (startswith (function_name, "_ada_"))
5134 function_name += 5;
5135
5136 return !startswith (function_name, scope.c_str ());
5137 }
5138
5139 /* Remove entries from SYMS that corresponds to a renaming entity that
5140 is not visible from the function associated with CURRENT_BLOCK or
5141 that is superfluous due to the presence of more specific renaming
5142 information. Places surviving symbols in the initial entries of
5143 SYMS and returns the number of surviving symbols.
5144
5145 Rationale:
5146 First, in cases where an object renaming is implemented as a
5147 reference variable, GNAT may produce both the actual reference
5148 variable and the renaming encoding. In this case, we discard the
5149 latter.
5150
5151 Second, GNAT emits a type following a specified encoding for each renaming
5152 entity. Unfortunately, STABS currently does not support the definition
5153 of types that are local to a given lexical block, so all renamings types
5154 are emitted at library level. As a consequence, if an application
5155 contains two renaming entities using the same name, and a user tries to
5156 print the value of one of these entities, the result of the ada symbol
5157 lookup will also contain the wrong renaming type.
5158
5159 This function partially covers for this limitation by attempting to
5160 remove from the SYMS list renaming symbols that should be visible
5161 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5162 method with the current information available. The implementation
5163 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5164
5165 - When the user tries to print a rename in a function while there
5166 is another rename entity defined in a package: Normally, the
5167 rename in the function has precedence over the rename in the
5168 package, so the latter should be removed from the list. This is
5169 currently not the case.
5170
5171 - This function will incorrectly remove valid renames if
5172 the CURRENT_BLOCK corresponds to a function which symbol name
5173 has been changed by an "Export" pragma. As a consequence,
5174 the user will be unable to print such rename entities. */
5175
5176 static int
5177 remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5178 const struct block *current_block)
5179 {
5180 struct symbol *current_function;
5181 const char *current_function_name;
5182 int i;
5183 int is_new_style_renaming;
5184
5185 /* If there is both a renaming foo___XR... encoded as a variable and
5186 a simple variable foo in the same block, discard the latter.
5187 First, zero out such symbols, then compress. */
5188 is_new_style_renaming = 0;
5189 for (i = 0; i < syms->size (); i += 1)
5190 {
5191 struct symbol *sym = (*syms)[i].symbol;
5192 const struct block *block = (*syms)[i].block;
5193 const char *name;
5194 const char *suffix;
5195
5196 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5197 continue;
5198 name = sym->linkage_name ();
5199 suffix = strstr (name, "___XR");
5200
5201 if (suffix != NULL)
5202 {
5203 int name_len = suffix - name;
5204 int j;
5205
5206 is_new_style_renaming = 1;
5207 for (j = 0; j < syms->size (); j += 1)
5208 if (i != j && (*syms)[j].symbol != NULL
5209 && strncmp (name, (*syms)[j].symbol->linkage_name (),
5210 name_len) == 0
5211 && block == (*syms)[j].block)
5212 (*syms)[j].symbol = NULL;
5213 }
5214 }
5215 if (is_new_style_renaming)
5216 {
5217 int j, k;
5218
5219 for (j = k = 0; j < syms->size (); j += 1)
5220 if ((*syms)[j].symbol != NULL)
5221 {
5222 (*syms)[k] = (*syms)[j];
5223 k += 1;
5224 }
5225 return k;
5226 }
5227
5228 /* Extract the function name associated to CURRENT_BLOCK.
5229 Abort if unable to do so. */
5230
5231 if (current_block == NULL)
5232 return syms->size ();
5233
5234 current_function = block_linkage_function (current_block);
5235 if (current_function == NULL)
5236 return syms->size ();
5237
5238 current_function_name = current_function->linkage_name ();
5239 if (current_function_name == NULL)
5240 return syms->size ();
5241
5242 /* Check each of the symbols, and remove it from the list if it is
5243 a type corresponding to a renaming that is out of the scope of
5244 the current block. */
5245
5246 i = 0;
5247 while (i < syms->size ())
5248 {
5249 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
5250 == ADA_OBJECT_RENAMING
5251 && old_renaming_is_invisible ((*syms)[i].symbol,
5252 current_function_name))
5253 syms->erase (syms->begin () + i);
5254 else
5255 i += 1;
5256 }
5257
5258 return syms->size ();
5259 }
5260
5261 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5262 whose name and domain match NAME and DOMAIN respectively.
5263 If no match was found, then extend the search to "enclosing"
5264 routines (in other words, if we're inside a nested function,
5265 search the symbols defined inside the enclosing functions).
5266 If WILD_MATCH_P is nonzero, perform the naming matching in
5267 "wild" mode (see function "wild_match" for more info).
5268
5269 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5270
5271 static void
5272 ada_add_local_symbols (struct obstack *obstackp,
5273 const lookup_name_info &lookup_name,
5274 const struct block *block, domain_enum domain)
5275 {
5276 int block_depth = 0;
5277
5278 while (block != NULL)
5279 {
5280 block_depth += 1;
5281 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5282
5283 /* If we found a non-function match, assume that's the one. */
5284 if (is_nonfunction (defns_collected (obstackp, 0),
5285 num_defns_collected (obstackp)))
5286 return;
5287
5288 block = BLOCK_SUPERBLOCK (block);
5289 }
5290
5291 /* If no luck so far, try to find NAME as a local symbol in some lexically
5292 enclosing subprogram. */
5293 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5294 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
5295 }
5296
5297 /* An object of this type is used as the user_data argument when
5298 calling the map_matching_symbols method. */
5299
5300 struct match_data
5301 {
5302 struct objfile *objfile;
5303 struct obstack *obstackp;
5304 struct symbol *arg_sym;
5305 int found_sym;
5306 };
5307
5308 /* A callback for add_nonlocal_symbols that adds symbol, found in BSYM,
5309 to a list of symbols. DATA is a pointer to a struct match_data *
5310 containing the obstack that collects the symbol list, the file that SYM
5311 must come from, a flag indicating whether a non-argument symbol has
5312 been found in the current block, and the last argument symbol
5313 passed in SYM within the current block (if any). When SYM is null,
5314 marking the end of a block, the argument symbol is added if no
5315 other has been found. */
5316
5317 static bool
5318 aux_add_nonlocal_symbols (struct block_symbol *bsym,
5319 struct match_data *data)
5320 {
5321 const struct block *block = bsym->block;
5322 struct symbol *sym = bsym->symbol;
5323
5324 if (sym == NULL)
5325 {
5326 if (!data->found_sym && data->arg_sym != NULL)
5327 add_defn_to_vec (data->obstackp,
5328 fixup_symbol_section (data->arg_sym, data->objfile),
5329 block);
5330 data->found_sym = 0;
5331 data->arg_sym = NULL;
5332 }
5333 else
5334 {
5335 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5336 return true;
5337 else if (SYMBOL_IS_ARGUMENT (sym))
5338 data->arg_sym = sym;
5339 else
5340 {
5341 data->found_sym = 1;
5342 add_defn_to_vec (data->obstackp,
5343 fixup_symbol_section (sym, data->objfile),
5344 block);
5345 }
5346 }
5347 return true;
5348 }
5349
5350 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5351 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5352 symbols to OBSTACKP. Return whether we found such symbols. */
5353
5354 static int
5355 ada_add_block_renamings (struct obstack *obstackp,
5356 const struct block *block,
5357 const lookup_name_info &lookup_name,
5358 domain_enum domain)
5359 {
5360 struct using_direct *renaming;
5361 int defns_mark = num_defns_collected (obstackp);
5362
5363 symbol_name_matcher_ftype *name_match
5364 = ada_get_symbol_name_matcher (lookup_name);
5365
5366 for (renaming = block_using (block);
5367 renaming != NULL;
5368 renaming = renaming->next)
5369 {
5370 const char *r_name;
5371
5372 /* Avoid infinite recursions: skip this renaming if we are actually
5373 already traversing it.
5374
5375 Currently, symbol lookup in Ada don't use the namespace machinery from
5376 C++/Fortran support: skip namespace imports that use them. */
5377 if (renaming->searched
5378 || (renaming->import_src != NULL
5379 && renaming->import_src[0] != '\0')
5380 || (renaming->import_dest != NULL
5381 && renaming->import_dest[0] != '\0'))
5382 continue;
5383 renaming->searched = 1;
5384
5385 /* TODO: here, we perform another name-based symbol lookup, which can
5386 pull its own multiple overloads. In theory, we should be able to do
5387 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5388 not a simple name. But in order to do this, we would need to enhance
5389 the DWARF reader to associate a symbol to this renaming, instead of a
5390 name. So, for now, we do something simpler: re-use the C++/Fortran
5391 namespace machinery. */
5392 r_name = (renaming->alias != NULL
5393 ? renaming->alias
5394 : renaming->declaration);
5395 if (name_match (r_name, lookup_name, NULL))
5396 {
5397 lookup_name_info decl_lookup_name (renaming->declaration,
5398 lookup_name.match_type ());
5399 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5400 1, NULL);
5401 }
5402 renaming->searched = 0;
5403 }
5404 return num_defns_collected (obstackp) != defns_mark;
5405 }
5406
5407 /* Implements compare_names, but only applying the comparision using
5408 the given CASING. */
5409
5410 static int
5411 compare_names_with_case (const char *string1, const char *string2,
5412 enum case_sensitivity casing)
5413 {
5414 while (*string1 != '\0' && *string2 != '\0')
5415 {
5416 char c1, c2;
5417
5418 if (isspace (*string1) || isspace (*string2))
5419 return strcmp_iw_ordered (string1, string2);
5420
5421 if (casing == case_sensitive_off)
5422 {
5423 c1 = tolower (*string1);
5424 c2 = tolower (*string2);
5425 }
5426 else
5427 {
5428 c1 = *string1;
5429 c2 = *string2;
5430 }
5431 if (c1 != c2)
5432 break;
5433
5434 string1 += 1;
5435 string2 += 1;
5436 }
5437
5438 switch (*string1)
5439 {
5440 case '(':
5441 return strcmp_iw_ordered (string1, string2);
5442 case '_':
5443 if (*string2 == '\0')
5444 {
5445 if (is_name_suffix (string1))
5446 return 0;
5447 else
5448 return 1;
5449 }
5450 /* FALLTHROUGH */
5451 default:
5452 if (*string2 == '(')
5453 return strcmp_iw_ordered (string1, string2);
5454 else
5455 {
5456 if (casing == case_sensitive_off)
5457 return tolower (*string1) - tolower (*string2);
5458 else
5459 return *string1 - *string2;
5460 }
5461 }
5462 }
5463
5464 /* Compare STRING1 to STRING2, with results as for strcmp.
5465 Compatible with strcmp_iw_ordered in that...
5466
5467 strcmp_iw_ordered (STRING1, STRING2) <= 0
5468
5469 ... implies...
5470
5471 compare_names (STRING1, STRING2) <= 0
5472
5473 (they may differ as to what symbols compare equal). */
5474
5475 static int
5476 compare_names (const char *string1, const char *string2)
5477 {
5478 int result;
5479
5480 /* Similar to what strcmp_iw_ordered does, we need to perform
5481 a case-insensitive comparison first, and only resort to
5482 a second, case-sensitive, comparison if the first one was
5483 not sufficient to differentiate the two strings. */
5484
5485 result = compare_names_with_case (string1, string2, case_sensitive_off);
5486 if (result == 0)
5487 result = compare_names_with_case (string1, string2, case_sensitive_on);
5488
5489 return result;
5490 }
5491
5492 /* Convenience function to get at the Ada encoded lookup name for
5493 LOOKUP_NAME, as a C string. */
5494
5495 static const char *
5496 ada_lookup_name (const lookup_name_info &lookup_name)
5497 {
5498 return lookup_name.ada ().lookup_name ().c_str ();
5499 }
5500
5501 /* Add to OBSTACKP all non-local symbols whose name and domain match
5502 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5503 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5504 symbols otherwise. */
5505
5506 static void
5507 add_nonlocal_symbols (struct obstack *obstackp,
5508 const lookup_name_info &lookup_name,
5509 domain_enum domain, int global)
5510 {
5511 struct match_data data;
5512
5513 memset (&data, 0, sizeof data);
5514 data.obstackp = obstackp;
5515
5516 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5517
5518 auto callback = [&] (struct block_symbol *bsym)
5519 {
5520 return aux_add_nonlocal_symbols (bsym, &data);
5521 };
5522
5523 for (objfile *objfile : current_program_space->objfiles ())
5524 {
5525 data.objfile = objfile;
5526
5527 objfile->sf->qf->map_matching_symbols (objfile, lookup_name,
5528 domain, global, callback,
5529 (is_wild_match
5530 ? NULL : compare_names));
5531
5532 for (compunit_symtab *cu : objfile->compunits ())
5533 {
5534 const struct block *global_block
5535 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5536
5537 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5538 domain))
5539 data.found_sym = 1;
5540 }
5541 }
5542
5543 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5544 {
5545 const char *name = ada_lookup_name (lookup_name);
5546 std::string bracket_name = std::string ("<_ada_") + name + '>';
5547 lookup_name_info name1 (bracket_name, symbol_name_match_type::FULL);
5548
5549 for (objfile *objfile : current_program_space->objfiles ())
5550 {
5551 data.objfile = objfile;
5552 objfile->sf->qf->map_matching_symbols (objfile, name1,
5553 domain, global, callback,
5554 compare_names);
5555 }
5556 }
5557 }
5558
5559 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5560 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5561 returning the number of matches. Add these to OBSTACKP.
5562
5563 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5564 symbol match within the nest of blocks whose innermost member is BLOCK,
5565 is the one match returned (no other matches in that or
5566 enclosing blocks is returned). If there are any matches in or
5567 surrounding BLOCK, then these alone are returned.
5568
5569 Names prefixed with "standard__" are handled specially:
5570 "standard__" is first stripped off (by the lookup_name
5571 constructor), and only static and global symbols are searched.
5572
5573 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5574 to lookup global symbols. */
5575
5576 static void
5577 ada_add_all_symbols (struct obstack *obstackp,
5578 const struct block *block,
5579 const lookup_name_info &lookup_name,
5580 domain_enum domain,
5581 int full_search,
5582 int *made_global_lookup_p)
5583 {
5584 struct symbol *sym;
5585
5586 if (made_global_lookup_p)
5587 *made_global_lookup_p = 0;
5588
5589 /* Special case: If the user specifies a symbol name inside package
5590 Standard, do a non-wild matching of the symbol name without
5591 the "standard__" prefix. This was primarily introduced in order
5592 to allow the user to specifically access the standard exceptions
5593 using, for instance, Standard.Constraint_Error when Constraint_Error
5594 is ambiguous (due to the user defining its own Constraint_Error
5595 entity inside its program). */
5596 if (lookup_name.ada ().standard_p ())
5597 block = NULL;
5598
5599 /* Check the non-global symbols. If we have ANY match, then we're done. */
5600
5601 if (block != NULL)
5602 {
5603 if (full_search)
5604 ada_add_local_symbols (obstackp, lookup_name, block, domain);
5605 else
5606 {
5607 /* In the !full_search case we're are being called by
5608 iterate_over_symbols, and we don't want to search
5609 superblocks. */
5610 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5611 }
5612 if (num_defns_collected (obstackp) > 0 || !full_search)
5613 return;
5614 }
5615
5616 /* No non-global symbols found. Check our cache to see if we have
5617 already performed this search before. If we have, then return
5618 the same result. */
5619
5620 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5621 domain, &sym, &block))
5622 {
5623 if (sym != NULL)
5624 add_defn_to_vec (obstackp, sym, block);
5625 return;
5626 }
5627
5628 if (made_global_lookup_p)
5629 *made_global_lookup_p = 1;
5630
5631 /* Search symbols from all global blocks. */
5632
5633 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
5634
5635 /* Now add symbols from all per-file blocks if we've gotten no hits
5636 (not strictly correct, but perhaps better than an error). */
5637
5638 if (num_defns_collected (obstackp) == 0)
5639 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
5640 }
5641
5642 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5643 is non-zero, enclosing scope and in global scopes, returning the number of
5644 matches.
5645 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5646 found and the blocks and symbol tables (if any) in which they were
5647 found.
5648
5649 When full_search is non-zero, any non-function/non-enumeral
5650 symbol match within the nest of blocks whose innermost member is BLOCK,
5651 is the one match returned (no other matches in that or
5652 enclosing blocks is returned). If there are any matches in or
5653 surrounding BLOCK, then these alone are returned.
5654
5655 Names prefixed with "standard__" are handled specially: "standard__"
5656 is first stripped off, and only static and global symbols are searched. */
5657
5658 static int
5659 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5660 const struct block *block,
5661 domain_enum domain,
5662 std::vector<struct block_symbol> *results,
5663 int full_search)
5664 {
5665 int syms_from_global_search;
5666 int ndefns;
5667 auto_obstack obstack;
5668
5669 ada_add_all_symbols (&obstack, block, lookup_name,
5670 domain, full_search, &syms_from_global_search);
5671
5672 ndefns = num_defns_collected (&obstack);
5673
5674 struct block_symbol *base = defns_collected (&obstack, 1);
5675 for (int i = 0; i < ndefns; ++i)
5676 results->push_back (base[i]);
5677
5678 ndefns = remove_extra_symbols (results);
5679
5680 if (ndefns == 0 && full_search && syms_from_global_search)
5681 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5682
5683 if (ndefns == 1 && full_search && syms_from_global_search)
5684 cache_symbol (ada_lookup_name (lookup_name), domain,
5685 (*results)[0].symbol, (*results)[0].block);
5686
5687 ndefns = remove_irrelevant_renamings (results, block);
5688
5689 return ndefns;
5690 }
5691
5692 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5693 in global scopes, returning the number of matches, and filling *RESULTS
5694 with (SYM,BLOCK) tuples.
5695
5696 See ada_lookup_symbol_list_worker for further details. */
5697
5698 int
5699 ada_lookup_symbol_list (const char *name, const struct block *block,
5700 domain_enum domain,
5701 std::vector<struct block_symbol> *results)
5702 {
5703 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5704 lookup_name_info lookup_name (name, name_match_type);
5705
5706 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
5707 }
5708
5709 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5710 to 1, but choosing the first symbol found if there are multiple
5711 choices.
5712
5713 The result is stored in *INFO, which must be non-NULL.
5714 If no match is found, INFO->SYM is set to NULL. */
5715
5716 void
5717 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5718 domain_enum domain,
5719 struct block_symbol *info)
5720 {
5721 /* Since we already have an encoded name, wrap it in '<>' to force a
5722 verbatim match. Otherwise, if the name happens to not look like
5723 an encoded name (because it doesn't include a "__"),
5724 ada_lookup_name_info would re-encode/fold it again, and that
5725 would e.g., incorrectly lowercase object renaming names like
5726 "R28b" -> "r28b". */
5727 std::string verbatim = std::string ("<") + name + '>';
5728
5729 gdb_assert (info != NULL);
5730 *info = ada_lookup_symbol (verbatim.c_str (), block, domain);
5731 }
5732
5733 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5734 scope and in global scopes, or NULL if none. NAME is folded and
5735 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5736 choosing the first symbol if there are multiple choices. */
5737
5738 struct block_symbol
5739 ada_lookup_symbol (const char *name, const struct block *block0,
5740 domain_enum domain)
5741 {
5742 std::vector<struct block_symbol> candidates;
5743 int n_candidates;
5744
5745 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
5746
5747 if (n_candidates == 0)
5748 return {};
5749
5750 block_symbol info = candidates[0];
5751 info.symbol = fixup_symbol_section (info.symbol, NULL);
5752 return info;
5753 }
5754
5755
5756 /* True iff STR is a possible encoded suffix of a normal Ada name
5757 that is to be ignored for matching purposes. Suffixes of parallel
5758 names (e.g., XVE) are not included here. Currently, the possible suffixes
5759 are given by any of the regular expressions:
5760
5761 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5762 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5763 TKB [subprogram suffix for task bodies]
5764 _E[0-9]+[bs]$ [protected object entry suffixes]
5765 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5766
5767 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5768 match is performed. This sequence is used to differentiate homonyms,
5769 is an optional part of a valid name suffix. */
5770
5771 static int
5772 is_name_suffix (const char *str)
5773 {
5774 int k;
5775 const char *matching;
5776 const int len = strlen (str);
5777
5778 /* Skip optional leading __[0-9]+. */
5779
5780 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5781 {
5782 str += 3;
5783 while (isdigit (str[0]))
5784 str += 1;
5785 }
5786
5787 /* [.$][0-9]+ */
5788
5789 if (str[0] == '.' || str[0] == '$')
5790 {
5791 matching = str + 1;
5792 while (isdigit (matching[0]))
5793 matching += 1;
5794 if (matching[0] == '\0')
5795 return 1;
5796 }
5797
5798 /* ___[0-9]+ */
5799
5800 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5801 {
5802 matching = str + 3;
5803 while (isdigit (matching[0]))
5804 matching += 1;
5805 if (matching[0] == '\0')
5806 return 1;
5807 }
5808
5809 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5810
5811 if (strcmp (str, "TKB") == 0)
5812 return 1;
5813
5814 #if 0
5815 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5816 with a N at the end. Unfortunately, the compiler uses the same
5817 convention for other internal types it creates. So treating
5818 all entity names that end with an "N" as a name suffix causes
5819 some regressions. For instance, consider the case of an enumerated
5820 type. To support the 'Image attribute, it creates an array whose
5821 name ends with N.
5822 Having a single character like this as a suffix carrying some
5823 information is a bit risky. Perhaps we should change the encoding
5824 to be something like "_N" instead. In the meantime, do not do
5825 the following check. */
5826 /* Protected Object Subprograms */
5827 if (len == 1 && str [0] == 'N')
5828 return 1;
5829 #endif
5830
5831 /* _E[0-9]+[bs]$ */
5832 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5833 {
5834 matching = str + 3;
5835 while (isdigit (matching[0]))
5836 matching += 1;
5837 if ((matching[0] == 'b' || matching[0] == 's')
5838 && matching [1] == '\0')
5839 return 1;
5840 }
5841
5842 /* ??? We should not modify STR directly, as we are doing below. This
5843 is fine in this case, but may become problematic later if we find
5844 that this alternative did not work, and want to try matching
5845 another one from the begining of STR. Since we modified it, we
5846 won't be able to find the begining of the string anymore! */
5847 if (str[0] == 'X')
5848 {
5849 str += 1;
5850 while (str[0] != '_' && str[0] != '\0')
5851 {
5852 if (str[0] != 'n' && str[0] != 'b')
5853 return 0;
5854 str += 1;
5855 }
5856 }
5857
5858 if (str[0] == '\000')
5859 return 1;
5860
5861 if (str[0] == '_')
5862 {
5863 if (str[1] != '_' || str[2] == '\000')
5864 return 0;
5865 if (str[2] == '_')
5866 {
5867 if (strcmp (str + 3, "JM") == 0)
5868 return 1;
5869 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5870 the LJM suffix in favor of the JM one. But we will
5871 still accept LJM as a valid suffix for a reasonable
5872 amount of time, just to allow ourselves to debug programs
5873 compiled using an older version of GNAT. */
5874 if (strcmp (str + 3, "LJM") == 0)
5875 return 1;
5876 if (str[3] != 'X')
5877 return 0;
5878 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5879 || str[4] == 'U' || str[4] == 'P')
5880 return 1;
5881 if (str[4] == 'R' && str[5] != 'T')
5882 return 1;
5883 return 0;
5884 }
5885 if (!isdigit (str[2]))
5886 return 0;
5887 for (k = 3; str[k] != '\0'; k += 1)
5888 if (!isdigit (str[k]) && str[k] != '_')
5889 return 0;
5890 return 1;
5891 }
5892 if (str[0] == '$' && isdigit (str[1]))
5893 {
5894 for (k = 2; str[k] != '\0'; k += 1)
5895 if (!isdigit (str[k]) && str[k] != '_')
5896 return 0;
5897 return 1;
5898 }
5899 return 0;
5900 }
5901
5902 /* Return non-zero if the string starting at NAME and ending before
5903 NAME_END contains no capital letters. */
5904
5905 static int
5906 is_valid_name_for_wild_match (const char *name0)
5907 {
5908 std::string decoded_name = ada_decode (name0);
5909 int i;
5910
5911 /* If the decoded name starts with an angle bracket, it means that
5912 NAME0 does not follow the GNAT encoding format. It should then
5913 not be allowed as a possible wild match. */
5914 if (decoded_name[0] == '<')
5915 return 0;
5916
5917 for (i=0; decoded_name[i] != '\0'; i++)
5918 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5919 return 0;
5920
5921 return 1;
5922 }
5923
5924 /* Advance *NAMEP to next occurrence in the string NAME0 of the TARGET0
5925 character which could start a simple name. Assumes that *NAMEP points
5926 somewhere inside the string beginning at NAME0. */
5927
5928 static int
5929 advance_wild_match (const char **namep, const char *name0, char target0)
5930 {
5931 const char *name = *namep;
5932
5933 while (1)
5934 {
5935 char t0, t1;
5936
5937 t0 = *name;
5938 if (t0 == '_')
5939 {
5940 t1 = name[1];
5941 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5942 {
5943 name += 1;
5944 if (name == name0 + 5 && startswith (name0, "_ada"))
5945 break;
5946 else
5947 name += 1;
5948 }
5949 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5950 || name[2] == target0))
5951 {
5952 name += 2;
5953 break;
5954 }
5955 else
5956 return 0;
5957 }
5958 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5959 name += 1;
5960 else
5961 return 0;
5962 }
5963
5964 *namep = name;
5965 return 1;
5966 }
5967
5968 /* Return true iff NAME encodes a name of the form prefix.PATN.
5969 Ignores any informational suffixes of NAME (i.e., for which
5970 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
5971 simple name. */
5972
5973 static bool
5974 wild_match (const char *name, const char *patn)
5975 {
5976 const char *p;
5977 const char *name0 = name;
5978
5979 while (1)
5980 {
5981 const char *match = name;
5982
5983 if (*name == *patn)
5984 {
5985 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5986 if (*p != *name)
5987 break;
5988 if (*p == '\0' && is_name_suffix (name))
5989 return match == name0 || is_valid_name_for_wild_match (name0);
5990
5991 if (name[-1] == '_')
5992 name -= 1;
5993 }
5994 if (!advance_wild_match (&name, name0, *patn))
5995 return false;
5996 }
5997 }
5998
5999 /* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6000 any trailing suffixes that encode debugging information or leading
6001 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6002 information that is ignored). */
6003
6004 static bool
6005 full_match (const char *sym_name, const char *search_name)
6006 {
6007 size_t search_name_len = strlen (search_name);
6008
6009 if (strncmp (sym_name, search_name, search_name_len) == 0
6010 && is_name_suffix (sym_name + search_name_len))
6011 return true;
6012
6013 if (startswith (sym_name, "_ada_")
6014 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6015 && is_name_suffix (sym_name + search_name_len + 5))
6016 return true;
6017
6018 return false;
6019 }
6020
6021 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6022 *defn_symbols, updating the list of symbols in OBSTACKP (if
6023 necessary). OBJFILE is the section containing BLOCK. */
6024
6025 static void
6026 ada_add_block_symbols (struct obstack *obstackp,
6027 const struct block *block,
6028 const lookup_name_info &lookup_name,
6029 domain_enum domain, struct objfile *objfile)
6030 {
6031 struct block_iterator iter;
6032 /* A matching argument symbol, if any. */
6033 struct symbol *arg_sym;
6034 /* Set true when we find a matching non-argument symbol. */
6035 int found_sym;
6036 struct symbol *sym;
6037
6038 arg_sym = NULL;
6039 found_sym = 0;
6040 for (sym = block_iter_match_first (block, lookup_name, &iter);
6041 sym != NULL;
6042 sym = block_iter_match_next (lookup_name, &iter))
6043 {
6044 if (symbol_matches_domain (sym->language (), SYMBOL_DOMAIN (sym), domain))
6045 {
6046 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6047 {
6048 if (SYMBOL_IS_ARGUMENT (sym))
6049 arg_sym = sym;
6050 else
6051 {
6052 found_sym = 1;
6053 add_defn_to_vec (obstackp,
6054 fixup_symbol_section (sym, objfile),
6055 block);
6056 }
6057 }
6058 }
6059 }
6060
6061 /* Handle renamings. */
6062
6063 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
6064 found_sym = 1;
6065
6066 if (!found_sym && arg_sym != NULL)
6067 {
6068 add_defn_to_vec (obstackp,
6069 fixup_symbol_section (arg_sym, objfile),
6070 block);
6071 }
6072
6073 if (!lookup_name.ada ().wild_match_p ())
6074 {
6075 arg_sym = NULL;
6076 found_sym = 0;
6077 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6078 const char *name = ada_lookup_name.c_str ();
6079 size_t name_len = ada_lookup_name.size ();
6080
6081 ALL_BLOCK_SYMBOLS (block, iter, sym)
6082 {
6083 if (symbol_matches_domain (sym->language (),
6084 SYMBOL_DOMAIN (sym), domain))
6085 {
6086 int cmp;
6087
6088 cmp = (int) '_' - (int) sym->linkage_name ()[0];
6089 if (cmp == 0)
6090 {
6091 cmp = !startswith (sym->linkage_name (), "_ada_");
6092 if (cmp == 0)
6093 cmp = strncmp (name, sym->linkage_name () + 5,
6094 name_len);
6095 }
6096
6097 if (cmp == 0
6098 && is_name_suffix (sym->linkage_name () + name_len + 5))
6099 {
6100 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6101 {
6102 if (SYMBOL_IS_ARGUMENT (sym))
6103 arg_sym = sym;
6104 else
6105 {
6106 found_sym = 1;
6107 add_defn_to_vec (obstackp,
6108 fixup_symbol_section (sym, objfile),
6109 block);
6110 }
6111 }
6112 }
6113 }
6114 }
6115
6116 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6117 They aren't parameters, right? */
6118 if (!found_sym && arg_sym != NULL)
6119 {
6120 add_defn_to_vec (obstackp,
6121 fixup_symbol_section (arg_sym, objfile),
6122 block);
6123 }
6124 }
6125 }
6126 \f
6127
6128 /* Symbol Completion */
6129
6130 /* See symtab.h. */
6131
6132 bool
6133 ada_lookup_name_info::matches
6134 (const char *sym_name,
6135 symbol_name_match_type match_type,
6136 completion_match_result *comp_match_res) const
6137 {
6138 bool match = false;
6139 const char *text = m_encoded_name.c_str ();
6140 size_t text_len = m_encoded_name.size ();
6141
6142 /* First, test against the fully qualified name of the symbol. */
6143
6144 if (strncmp (sym_name, text, text_len) == 0)
6145 match = true;
6146
6147 std::string decoded_name = ada_decode (sym_name);
6148 if (match && !m_encoded_p)
6149 {
6150 /* One needed check before declaring a positive match is to verify
6151 that iff we are doing a verbatim match, the decoded version
6152 of the symbol name starts with '<'. Otherwise, this symbol name
6153 is not a suitable completion. */
6154
6155 bool has_angle_bracket = (decoded_name[0] == '<');
6156 match = (has_angle_bracket == m_verbatim_p);
6157 }
6158
6159 if (match && !m_verbatim_p)
6160 {
6161 /* When doing non-verbatim match, another check that needs to
6162 be done is to verify that the potentially matching symbol name
6163 does not include capital letters, because the ada-mode would
6164 not be able to understand these symbol names without the
6165 angle bracket notation. */
6166 const char *tmp;
6167
6168 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6169 if (*tmp != '\0')
6170 match = false;
6171 }
6172
6173 /* Second: Try wild matching... */
6174
6175 if (!match && m_wild_match_p)
6176 {
6177 /* Since we are doing wild matching, this means that TEXT
6178 may represent an unqualified symbol name. We therefore must
6179 also compare TEXT against the unqualified name of the symbol. */
6180 sym_name = ada_unqualified_name (decoded_name.c_str ());
6181
6182 if (strncmp (sym_name, text, text_len) == 0)
6183 match = true;
6184 }
6185
6186 /* Finally: If we found a match, prepare the result to return. */
6187
6188 if (!match)
6189 return false;
6190
6191 if (comp_match_res != NULL)
6192 {
6193 std::string &match_str = comp_match_res->match.storage ();
6194
6195 if (!m_encoded_p)
6196 match_str = ada_decode (sym_name);
6197 else
6198 {
6199 if (m_verbatim_p)
6200 match_str = add_angle_brackets (sym_name);
6201 else
6202 match_str = sym_name;
6203
6204 }
6205
6206 comp_match_res->set_match (match_str.c_str ());
6207 }
6208
6209 return true;
6210 }
6211
6212 /* Field Access */
6213
6214 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6215 for tagged types. */
6216
6217 static int
6218 ada_is_dispatch_table_ptr_type (struct type *type)
6219 {
6220 const char *name;
6221
6222 if (type->code () != TYPE_CODE_PTR)
6223 return 0;
6224
6225 name = TYPE_TARGET_TYPE (type)->name ();
6226 if (name == NULL)
6227 return 0;
6228
6229 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6230 }
6231
6232 /* Return non-zero if TYPE is an interface tag. */
6233
6234 static int
6235 ada_is_interface_tag (struct type *type)
6236 {
6237 const char *name = type->name ();
6238
6239 if (name == NULL)
6240 return 0;
6241
6242 return (strcmp (name, "ada__tags__interface_tag") == 0);
6243 }
6244
6245 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6246 to be invisible to users. */
6247
6248 int
6249 ada_is_ignored_field (struct type *type, int field_num)
6250 {
6251 if (field_num < 0 || field_num > type->num_fields ())
6252 return 1;
6253
6254 /* Check the name of that field. */
6255 {
6256 const char *name = TYPE_FIELD_NAME (type, field_num);
6257
6258 /* Anonymous field names should not be printed.
6259 brobecker/2007-02-20: I don't think this can actually happen
6260 but we don't want to print the value of anonymous fields anyway. */
6261 if (name == NULL)
6262 return 1;
6263
6264 /* Normally, fields whose name start with an underscore ("_")
6265 are fields that have been internally generated by the compiler,
6266 and thus should not be printed. The "_parent" field is special,
6267 however: This is a field internally generated by the compiler
6268 for tagged types, and it contains the components inherited from
6269 the parent type. This field should not be printed as is, but
6270 should not be ignored either. */
6271 if (name[0] == '_' && !startswith (name, "_parent"))
6272 return 1;
6273 }
6274
6275 /* If this is the dispatch table of a tagged type or an interface tag,
6276 then ignore. */
6277 if (ada_is_tagged_type (type, 1)
6278 && (ada_is_dispatch_table_ptr_type (type->field (field_num).type ())
6279 || ada_is_interface_tag (type->field (field_num).type ())))
6280 return 1;
6281
6282 /* Not a special field, so it should not be ignored. */
6283 return 0;
6284 }
6285
6286 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6287 pointer or reference type whose ultimate target has a tag field. */
6288
6289 int
6290 ada_is_tagged_type (struct type *type, int refok)
6291 {
6292 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
6293 }
6294
6295 /* True iff TYPE represents the type of X'Tag */
6296
6297 int
6298 ada_is_tag_type (struct type *type)
6299 {
6300 type = ada_check_typedef (type);
6301
6302 if (type == NULL || type->code () != TYPE_CODE_PTR)
6303 return 0;
6304 else
6305 {
6306 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6307
6308 return (name != NULL
6309 && strcmp (name, "ada__tags__dispatch_table") == 0);
6310 }
6311 }
6312
6313 /* The type of the tag on VAL. */
6314
6315 static struct type *
6316 ada_tag_type (struct value *val)
6317 {
6318 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6319 }
6320
6321 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6322 retired at Ada 05). */
6323
6324 static int
6325 is_ada95_tag (struct value *tag)
6326 {
6327 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6328 }
6329
6330 /* The value of the tag on VAL. */
6331
6332 static struct value *
6333 ada_value_tag (struct value *val)
6334 {
6335 return ada_value_struct_elt (val, "_tag", 0);
6336 }
6337
6338 /* The value of the tag on the object of type TYPE whose contents are
6339 saved at VALADDR, if it is non-null, or is at memory address
6340 ADDRESS. */
6341
6342 static struct value *
6343 value_tag_from_contents_and_address (struct type *type,
6344 const gdb_byte *valaddr,
6345 CORE_ADDR address)
6346 {
6347 int tag_byte_offset;
6348 struct type *tag_type;
6349
6350 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6351 NULL, NULL, NULL))
6352 {
6353 const gdb_byte *valaddr1 = ((valaddr == NULL)
6354 ? NULL
6355 : valaddr + tag_byte_offset);
6356 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6357
6358 return value_from_contents_and_address (tag_type, valaddr1, address1);
6359 }
6360 return NULL;
6361 }
6362
6363 static struct type *
6364 type_from_tag (struct value *tag)
6365 {
6366 gdb::unique_xmalloc_ptr<char> type_name = ada_tag_name (tag);
6367
6368 if (type_name != NULL)
6369 return ada_find_any_type (ada_encode (type_name.get ()).c_str ());
6370 return NULL;
6371 }
6372
6373 /* Given a value OBJ of a tagged type, return a value of this
6374 type at the base address of the object. The base address, as
6375 defined in Ada.Tags, it is the address of the primary tag of
6376 the object, and therefore where the field values of its full
6377 view can be fetched. */
6378
6379 struct value *
6380 ada_tag_value_at_base_address (struct value *obj)
6381 {
6382 struct value *val;
6383 LONGEST offset_to_top = 0;
6384 struct type *ptr_type, *obj_type;
6385 struct value *tag;
6386 CORE_ADDR base_address;
6387
6388 obj_type = value_type (obj);
6389
6390 /* It is the responsability of the caller to deref pointers. */
6391
6392 if (obj_type->code () == TYPE_CODE_PTR || obj_type->code () == TYPE_CODE_REF)
6393 return obj;
6394
6395 tag = ada_value_tag (obj);
6396 if (!tag)
6397 return obj;
6398
6399 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6400
6401 if (is_ada95_tag (tag))
6402 return obj;
6403
6404 ptr_type = language_lookup_primitive_type
6405 (language_def (language_ada), target_gdbarch(), "storage_offset");
6406 ptr_type = lookup_pointer_type (ptr_type);
6407 val = value_cast (ptr_type, tag);
6408 if (!val)
6409 return obj;
6410
6411 /* It is perfectly possible that an exception be raised while
6412 trying to determine the base address, just like for the tag;
6413 see ada_tag_name for more details. We do not print the error
6414 message for the same reason. */
6415
6416 try
6417 {
6418 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6419 }
6420
6421 catch (const gdb_exception_error &e)
6422 {
6423 return obj;
6424 }
6425
6426 /* If offset is null, nothing to do. */
6427
6428 if (offset_to_top == 0)
6429 return obj;
6430
6431 /* -1 is a special case in Ada.Tags; however, what should be done
6432 is not quite clear from the documentation. So do nothing for
6433 now. */
6434
6435 if (offset_to_top == -1)
6436 return obj;
6437
6438 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6439 from the base address. This was however incompatible with
6440 C++ dispatch table: C++ uses a *negative* value to *add*
6441 to the base address. Ada's convention has therefore been
6442 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6443 use the same convention. Here, we support both cases by
6444 checking the sign of OFFSET_TO_TOP. */
6445
6446 if (offset_to_top > 0)
6447 offset_to_top = -offset_to_top;
6448
6449 base_address = value_address (obj) + offset_to_top;
6450 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6451
6452 /* Make sure that we have a proper tag at the new address.
6453 Otherwise, offset_to_top is bogus (which can happen when
6454 the object is not initialized yet). */
6455
6456 if (!tag)
6457 return obj;
6458
6459 obj_type = type_from_tag (tag);
6460
6461 if (!obj_type)
6462 return obj;
6463
6464 return value_from_contents_and_address (obj_type, NULL, base_address);
6465 }
6466
6467 /* Return the "ada__tags__type_specific_data" type. */
6468
6469 static struct type *
6470 ada_get_tsd_type (struct inferior *inf)
6471 {
6472 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6473
6474 if (data->tsd_type == 0)
6475 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6476 return data->tsd_type;
6477 }
6478
6479 /* Return the TSD (type-specific data) associated to the given TAG.
6480 TAG is assumed to be the tag of a tagged-type entity.
6481
6482 May return NULL if we are unable to get the TSD. */
6483
6484 static struct value *
6485 ada_get_tsd_from_tag (struct value *tag)
6486 {
6487 struct value *val;
6488 struct type *type;
6489
6490 /* First option: The TSD is simply stored as a field of our TAG.
6491 Only older versions of GNAT would use this format, but we have
6492 to test it first, because there are no visible markers for
6493 the current approach except the absence of that field. */
6494
6495 val = ada_value_struct_elt (tag, "tsd", 1);
6496 if (val)
6497 return val;
6498
6499 /* Try the second representation for the dispatch table (in which
6500 there is no explicit 'tsd' field in the referent of the tag pointer,
6501 and instead the tsd pointer is stored just before the dispatch
6502 table. */
6503
6504 type = ada_get_tsd_type (current_inferior());
6505 if (type == NULL)
6506 return NULL;
6507 type = lookup_pointer_type (lookup_pointer_type (type));
6508 val = value_cast (type, tag);
6509 if (val == NULL)
6510 return NULL;
6511 return value_ind (value_ptradd (val, -1));
6512 }
6513
6514 /* Given the TSD of a tag (type-specific data), return a string
6515 containing the name of the associated type.
6516
6517 May return NULL if we are unable to determine the tag name. */
6518
6519 static gdb::unique_xmalloc_ptr<char>
6520 ada_tag_name_from_tsd (struct value *tsd)
6521 {
6522 char *p;
6523 struct value *val;
6524
6525 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6526 if (val == NULL)
6527 return NULL;
6528 gdb::unique_xmalloc_ptr<char> buffer
6529 = target_read_string (value_as_address (val), INT_MAX);
6530 if (buffer == nullptr)
6531 return nullptr;
6532
6533 for (p = buffer.get (); *p != '\0'; ++p)
6534 {
6535 if (isalpha (*p))
6536 *p = tolower (*p);
6537 }
6538
6539 return buffer;
6540 }
6541
6542 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6543 a C string.
6544
6545 Return NULL if the TAG is not an Ada tag, or if we were unable to
6546 determine the name of that tag. */
6547
6548 gdb::unique_xmalloc_ptr<char>
6549 ada_tag_name (struct value *tag)
6550 {
6551 gdb::unique_xmalloc_ptr<char> name;
6552
6553 if (!ada_is_tag_type (value_type (tag)))
6554 return NULL;
6555
6556 /* It is perfectly possible that an exception be raised while trying
6557 to determine the TAG's name, even under normal circumstances:
6558 The associated variable may be uninitialized or corrupted, for
6559 instance. We do not let any exception propagate past this point.
6560 instead we return NULL.
6561
6562 We also do not print the error message either (which often is very
6563 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6564 the caller print a more meaningful message if necessary. */
6565 try
6566 {
6567 struct value *tsd = ada_get_tsd_from_tag (tag);
6568
6569 if (tsd != NULL)
6570 name = ada_tag_name_from_tsd (tsd);
6571 }
6572 catch (const gdb_exception_error &e)
6573 {
6574 }
6575
6576 return name;
6577 }
6578
6579 /* The parent type of TYPE, or NULL if none. */
6580
6581 struct type *
6582 ada_parent_type (struct type *type)
6583 {
6584 int i;
6585
6586 type = ada_check_typedef (type);
6587
6588 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
6589 return NULL;
6590
6591 for (i = 0; i < type->num_fields (); i += 1)
6592 if (ada_is_parent_field (type, i))
6593 {
6594 struct type *parent_type = type->field (i).type ();
6595
6596 /* If the _parent field is a pointer, then dereference it. */
6597 if (parent_type->code () == TYPE_CODE_PTR)
6598 parent_type = TYPE_TARGET_TYPE (parent_type);
6599 /* If there is a parallel XVS type, get the actual base type. */
6600 parent_type = ada_get_base_type (parent_type);
6601
6602 return ada_check_typedef (parent_type);
6603 }
6604
6605 return NULL;
6606 }
6607
6608 /* True iff field number FIELD_NUM of structure type TYPE contains the
6609 parent-type (inherited) fields of a derived type. Assumes TYPE is
6610 a structure type with at least FIELD_NUM+1 fields. */
6611
6612 int
6613 ada_is_parent_field (struct type *type, int field_num)
6614 {
6615 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6616
6617 return (name != NULL
6618 && (startswith (name, "PARENT")
6619 || startswith (name, "_parent")));
6620 }
6621
6622 /* True iff field number FIELD_NUM of structure type TYPE is a
6623 transparent wrapper field (which should be silently traversed when doing
6624 field selection and flattened when printing). Assumes TYPE is a
6625 structure type with at least FIELD_NUM+1 fields. Such fields are always
6626 structures. */
6627
6628 int
6629 ada_is_wrapper_field (struct type *type, int field_num)
6630 {
6631 const char *name = TYPE_FIELD_NAME (type, field_num);
6632
6633 if (name != NULL && strcmp (name, "RETVAL") == 0)
6634 {
6635 /* This happens in functions with "out" or "in out" parameters
6636 which are passed by copy. For such functions, GNAT describes
6637 the function's return type as being a struct where the return
6638 value is in a field called RETVAL, and where the other "out"
6639 or "in out" parameters are fields of that struct. This is not
6640 a wrapper. */
6641 return 0;
6642 }
6643
6644 return (name != NULL
6645 && (startswith (name, "PARENT")
6646 || strcmp (name, "REP") == 0
6647 || startswith (name, "_parent")
6648 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6649 }
6650
6651 /* True iff field number FIELD_NUM of structure or union type TYPE
6652 is a variant wrapper. Assumes TYPE is a structure type with at least
6653 FIELD_NUM+1 fields. */
6654
6655 int
6656 ada_is_variant_part (struct type *type, int field_num)
6657 {
6658 /* Only Ada types are eligible. */
6659 if (!ADA_TYPE_P (type))
6660 return 0;
6661
6662 struct type *field_type = type->field (field_num).type ();
6663
6664 return (field_type->code () == TYPE_CODE_UNION
6665 || (is_dynamic_field (type, field_num)
6666 && (TYPE_TARGET_TYPE (field_type)->code ()
6667 == TYPE_CODE_UNION)));
6668 }
6669
6670 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6671 whose discriminants are contained in the record type OUTER_TYPE,
6672 returns the type of the controlling discriminant for the variant.
6673 May return NULL if the type could not be found. */
6674
6675 struct type *
6676 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6677 {
6678 const char *name = ada_variant_discrim_name (var_type);
6679
6680 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
6681 }
6682
6683 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6684 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6685 represents a 'when others' clause; otherwise 0. */
6686
6687 static int
6688 ada_is_others_clause (struct type *type, int field_num)
6689 {
6690 const char *name = TYPE_FIELD_NAME (type, field_num);
6691
6692 return (name != NULL && name[0] == 'O');
6693 }
6694
6695 /* Assuming that TYPE0 is the type of the variant part of a record,
6696 returns the name of the discriminant controlling the variant.
6697 The value is valid until the next call to ada_variant_discrim_name. */
6698
6699 const char *
6700 ada_variant_discrim_name (struct type *type0)
6701 {
6702 static char *result = NULL;
6703 static size_t result_len = 0;
6704 struct type *type;
6705 const char *name;
6706 const char *discrim_end;
6707 const char *discrim_start;
6708
6709 if (type0->code () == TYPE_CODE_PTR)
6710 type = TYPE_TARGET_TYPE (type0);
6711 else
6712 type = type0;
6713
6714 name = ada_type_name (type);
6715
6716 if (name == NULL || name[0] == '\000')
6717 return "";
6718
6719 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6720 discrim_end -= 1)
6721 {
6722 if (startswith (discrim_end, "___XVN"))
6723 break;
6724 }
6725 if (discrim_end == name)
6726 return "";
6727
6728 for (discrim_start = discrim_end; discrim_start != name + 3;
6729 discrim_start -= 1)
6730 {
6731 if (discrim_start == name + 1)
6732 return "";
6733 if ((discrim_start > name + 3
6734 && startswith (discrim_start - 3, "___"))
6735 || discrim_start[-1] == '.')
6736 break;
6737 }
6738
6739 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6740 strncpy (result, discrim_start, discrim_end - discrim_start);
6741 result[discrim_end - discrim_start] = '\0';
6742 return result;
6743 }
6744
6745 /* Scan STR for a subtype-encoded number, beginning at position K.
6746 Put the position of the character just past the number scanned in
6747 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6748 Return 1 if there was a valid number at the given position, and 0
6749 otherwise. A "subtype-encoded" number consists of the absolute value
6750 in decimal, followed by the letter 'm' to indicate a negative number.
6751 Assumes 0m does not occur. */
6752
6753 int
6754 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6755 {
6756 ULONGEST RU;
6757
6758 if (!isdigit (str[k]))
6759 return 0;
6760
6761 /* Do it the hard way so as not to make any assumption about
6762 the relationship of unsigned long (%lu scan format code) and
6763 LONGEST. */
6764 RU = 0;
6765 while (isdigit (str[k]))
6766 {
6767 RU = RU * 10 + (str[k] - '0');
6768 k += 1;
6769 }
6770
6771 if (str[k] == 'm')
6772 {
6773 if (R != NULL)
6774 *R = (-(LONGEST) (RU - 1)) - 1;
6775 k += 1;
6776 }
6777 else if (R != NULL)
6778 *R = (LONGEST) RU;
6779
6780 /* NOTE on the above: Technically, C does not say what the results of
6781 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6782 number representable as a LONGEST (although either would probably work
6783 in most implementations). When RU>0, the locution in the then branch
6784 above is always equivalent to the negative of RU. */
6785
6786 if (new_k != NULL)
6787 *new_k = k;
6788 return 1;
6789 }
6790
6791 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6792 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6793 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6794
6795 static int
6796 ada_in_variant (LONGEST val, struct type *type, int field_num)
6797 {
6798 const char *name = TYPE_FIELD_NAME (type, field_num);
6799 int p;
6800
6801 p = 0;
6802 while (1)
6803 {
6804 switch (name[p])
6805 {
6806 case '\0':
6807 return 0;
6808 case 'S':
6809 {
6810 LONGEST W;
6811
6812 if (!ada_scan_number (name, p + 1, &W, &p))
6813 return 0;
6814 if (val == W)
6815 return 1;
6816 break;
6817 }
6818 case 'R':
6819 {
6820 LONGEST L, U;
6821
6822 if (!ada_scan_number (name, p + 1, &L, &p)
6823 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6824 return 0;
6825 if (val >= L && val <= U)
6826 return 1;
6827 break;
6828 }
6829 case 'O':
6830 return 1;
6831 default:
6832 return 0;
6833 }
6834 }
6835 }
6836
6837 /* FIXME: Lots of redundancy below. Try to consolidate. */
6838
6839 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6840 ARG_TYPE, extract and return the value of one of its (non-static)
6841 fields. FIELDNO says which field. Differs from value_primitive_field
6842 only in that it can handle packed values of arbitrary type. */
6843
6844 struct value *
6845 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6846 struct type *arg_type)
6847 {
6848 struct type *type;
6849
6850 arg_type = ada_check_typedef (arg_type);
6851 type = arg_type->field (fieldno).type ();
6852
6853 /* Handle packed fields. It might be that the field is not packed
6854 relative to its containing structure, but the structure itself is
6855 packed; in this case we must take the bit-field path. */
6856 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || value_bitpos (arg1) != 0)
6857 {
6858 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6859 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6860
6861 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6862 offset + bit_pos / 8,
6863 bit_pos % 8, bit_size, type);
6864 }
6865 else
6866 return value_primitive_field (arg1, offset, fieldno, arg_type);
6867 }
6868
6869 /* Find field with name NAME in object of type TYPE. If found,
6870 set the following for each argument that is non-null:
6871 - *FIELD_TYPE_P to the field's type;
6872 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6873 an object of that type;
6874 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6875 - *BIT_SIZE_P to its size in bits if the field is packed, and
6876 0 otherwise;
6877 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6878 fields up to but not including the desired field, or by the total
6879 number of fields if not found. A NULL value of NAME never
6880 matches; the function just counts visible fields in this case.
6881
6882 Notice that we need to handle when a tagged record hierarchy
6883 has some components with the same name, like in this scenario:
6884
6885 type Top_T is tagged record
6886 N : Integer := 1;
6887 U : Integer := 974;
6888 A : Integer := 48;
6889 end record;
6890
6891 type Middle_T is new Top.Top_T with record
6892 N : Character := 'a';
6893 C : Integer := 3;
6894 end record;
6895
6896 type Bottom_T is new Middle.Middle_T with record
6897 N : Float := 4.0;
6898 C : Character := '5';
6899 X : Integer := 6;
6900 A : Character := 'J';
6901 end record;
6902
6903 Let's say we now have a variable declared and initialized as follow:
6904
6905 TC : Top_A := new Bottom_T;
6906
6907 And then we use this variable to call this function
6908
6909 procedure Assign (Obj: in out Top_T; TV : Integer);
6910
6911 as follow:
6912
6913 Assign (Top_T (B), 12);
6914
6915 Now, we're in the debugger, and we're inside that procedure
6916 then and we want to print the value of obj.c:
6917
6918 Usually, the tagged record or one of the parent type owns the
6919 component to print and there's no issue but in this particular
6920 case, what does it mean to ask for Obj.C? Since the actual
6921 type for object is type Bottom_T, it could mean two things: type
6922 component C from the Middle_T view, but also component C from
6923 Bottom_T. So in that "undefined" case, when the component is
6924 not found in the non-resolved type (which includes all the
6925 components of the parent type), then resolve it and see if we
6926 get better luck once expanded.
6927
6928 In the case of homonyms in the derived tagged type, we don't
6929 guaranty anything, and pick the one that's easiest for us
6930 to program.
6931
6932 Returns 1 if found, 0 otherwise. */
6933
6934 static int
6935 find_struct_field (const char *name, struct type *type, int offset,
6936 struct type **field_type_p,
6937 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6938 int *index_p)
6939 {
6940 int i;
6941 int parent_offset = -1;
6942
6943 type = ada_check_typedef (type);
6944
6945 if (field_type_p != NULL)
6946 *field_type_p = NULL;
6947 if (byte_offset_p != NULL)
6948 *byte_offset_p = 0;
6949 if (bit_offset_p != NULL)
6950 *bit_offset_p = 0;
6951 if (bit_size_p != NULL)
6952 *bit_size_p = 0;
6953
6954 for (i = 0; i < type->num_fields (); i += 1)
6955 {
6956 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6957 int fld_offset = offset + bit_pos / 8;
6958 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6959
6960 if (t_field_name == NULL)
6961 continue;
6962
6963 else if (ada_is_parent_field (type, i))
6964 {
6965 /* This is a field pointing us to the parent type of a tagged
6966 type. As hinted in this function's documentation, we give
6967 preference to fields in the current record first, so what
6968 we do here is just record the index of this field before
6969 we skip it. If it turns out we couldn't find our field
6970 in the current record, then we'll get back to it and search
6971 inside it whether the field might exist in the parent. */
6972
6973 parent_offset = i;
6974 continue;
6975 }
6976
6977 else if (name != NULL && field_name_match (t_field_name, name))
6978 {
6979 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6980
6981 if (field_type_p != NULL)
6982 *field_type_p = type->field (i).type ();
6983 if (byte_offset_p != NULL)
6984 *byte_offset_p = fld_offset;
6985 if (bit_offset_p != NULL)
6986 *bit_offset_p = bit_pos % 8;
6987 if (bit_size_p != NULL)
6988 *bit_size_p = bit_size;
6989 return 1;
6990 }
6991 else if (ada_is_wrapper_field (type, i))
6992 {
6993 if (find_struct_field (name, type->field (i).type (), fld_offset,
6994 field_type_p, byte_offset_p, bit_offset_p,
6995 bit_size_p, index_p))
6996 return 1;
6997 }
6998 else if (ada_is_variant_part (type, i))
6999 {
7000 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7001 fixed type?? */
7002 int j;
7003 struct type *field_type
7004 = ada_check_typedef (type->field (i).type ());
7005
7006 for (j = 0; j < field_type->num_fields (); j += 1)
7007 {
7008 if (find_struct_field (name, field_type->field (j).type (),
7009 fld_offset
7010 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7011 field_type_p, byte_offset_p,
7012 bit_offset_p, bit_size_p, index_p))
7013 return 1;
7014 }
7015 }
7016 else if (index_p != NULL)
7017 *index_p += 1;
7018 }
7019
7020 /* Field not found so far. If this is a tagged type which
7021 has a parent, try finding that field in the parent now. */
7022
7023 if (parent_offset != -1)
7024 {
7025 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7026 int fld_offset = offset + bit_pos / 8;
7027
7028 if (find_struct_field (name, type->field (parent_offset).type (),
7029 fld_offset, field_type_p, byte_offset_p,
7030 bit_offset_p, bit_size_p, index_p))
7031 return 1;
7032 }
7033
7034 return 0;
7035 }
7036
7037 /* Number of user-visible fields in record type TYPE. */
7038
7039 static int
7040 num_visible_fields (struct type *type)
7041 {
7042 int n;
7043
7044 n = 0;
7045 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7046 return n;
7047 }
7048
7049 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7050 and search in it assuming it has (class) type TYPE.
7051 If found, return value, else return NULL.
7052
7053 Searches recursively through wrapper fields (e.g., '_parent').
7054
7055 In the case of homonyms in the tagged types, please refer to the
7056 long explanation in find_struct_field's function documentation. */
7057
7058 static struct value *
7059 ada_search_struct_field (const char *name, struct value *arg, int offset,
7060 struct type *type)
7061 {
7062 int i;
7063 int parent_offset = -1;
7064
7065 type = ada_check_typedef (type);
7066 for (i = 0; i < type->num_fields (); i += 1)
7067 {
7068 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7069
7070 if (t_field_name == NULL)
7071 continue;
7072
7073 else if (ada_is_parent_field (type, i))
7074 {
7075 /* This is a field pointing us to the parent type of a tagged
7076 type. As hinted in this function's documentation, we give
7077 preference to fields in the current record first, so what
7078 we do here is just record the index of this field before
7079 we skip it. If it turns out we couldn't find our field
7080 in the current record, then we'll get back to it and search
7081 inside it whether the field might exist in the parent. */
7082
7083 parent_offset = i;
7084 continue;
7085 }
7086
7087 else if (field_name_match (t_field_name, name))
7088 return ada_value_primitive_field (arg, offset, i, type);
7089
7090 else if (ada_is_wrapper_field (type, i))
7091 {
7092 struct value *v = /* Do not let indent join lines here. */
7093 ada_search_struct_field (name, arg,
7094 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7095 type->field (i).type ());
7096
7097 if (v != NULL)
7098 return v;
7099 }
7100
7101 else if (ada_is_variant_part (type, i))
7102 {
7103 /* PNH: Do we ever get here? See find_struct_field. */
7104 int j;
7105 struct type *field_type = ada_check_typedef (type->field (i).type ());
7106 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7107
7108 for (j = 0; j < field_type->num_fields (); j += 1)
7109 {
7110 struct value *v = ada_search_struct_field /* Force line
7111 break. */
7112 (name, arg,
7113 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7114 field_type->field (j).type ());
7115
7116 if (v != NULL)
7117 return v;
7118 }
7119 }
7120 }
7121
7122 /* Field not found so far. If this is a tagged type which
7123 has a parent, try finding that field in the parent now. */
7124
7125 if (parent_offset != -1)
7126 {
7127 struct value *v = ada_search_struct_field (
7128 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7129 type->field (parent_offset).type ());
7130
7131 if (v != NULL)
7132 return v;
7133 }
7134
7135 return NULL;
7136 }
7137
7138 static struct value *ada_index_struct_field_1 (int *, struct value *,
7139 int, struct type *);
7140
7141
7142 /* Return field #INDEX in ARG, where the index is that returned by
7143 * find_struct_field through its INDEX_P argument. Adjust the address
7144 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7145 * If found, return value, else return NULL. */
7146
7147 static struct value *
7148 ada_index_struct_field (int index, struct value *arg, int offset,
7149 struct type *type)
7150 {
7151 return ada_index_struct_field_1 (&index, arg, offset, type);
7152 }
7153
7154
7155 /* Auxiliary function for ada_index_struct_field. Like
7156 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7157 * *INDEX_P. */
7158
7159 static struct value *
7160 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7161 struct type *type)
7162 {
7163 int i;
7164 type = ada_check_typedef (type);
7165
7166 for (i = 0; i < type->num_fields (); i += 1)
7167 {
7168 if (TYPE_FIELD_NAME (type, i) == NULL)
7169 continue;
7170 else if (ada_is_wrapper_field (type, i))
7171 {
7172 struct value *v = /* Do not let indent join lines here. */
7173 ada_index_struct_field_1 (index_p, arg,
7174 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7175 type->field (i).type ());
7176
7177 if (v != NULL)
7178 return v;
7179 }
7180
7181 else if (ada_is_variant_part (type, i))
7182 {
7183 /* PNH: Do we ever get here? See ada_search_struct_field,
7184 find_struct_field. */
7185 error (_("Cannot assign this kind of variant record"));
7186 }
7187 else if (*index_p == 0)
7188 return ada_value_primitive_field (arg, offset, i, type);
7189 else
7190 *index_p -= 1;
7191 }
7192 return NULL;
7193 }
7194
7195 /* Return a string representation of type TYPE. */
7196
7197 static std::string
7198 type_as_string (struct type *type)
7199 {
7200 string_file tmp_stream;
7201
7202 type_print (type, "", &tmp_stream, -1);
7203
7204 return std::move (tmp_stream.string ());
7205 }
7206
7207 /* Given a type TYPE, look up the type of the component of type named NAME.
7208 If DISPP is non-null, add its byte displacement from the beginning of a
7209 structure (pointed to by a value) of type TYPE to *DISPP (does not
7210 work for packed fields).
7211
7212 Matches any field whose name has NAME as a prefix, possibly
7213 followed by "___".
7214
7215 TYPE can be either a struct or union. If REFOK, TYPE may also
7216 be a (pointer or reference)+ to a struct or union, and the
7217 ultimate target type will be searched.
7218
7219 Looks recursively into variant clauses and parent types.
7220
7221 In the case of homonyms in the tagged types, please refer to the
7222 long explanation in find_struct_field's function documentation.
7223
7224 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7225 TYPE is not a type of the right kind. */
7226
7227 static struct type *
7228 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
7229 int noerr)
7230 {
7231 int i;
7232 int parent_offset = -1;
7233
7234 if (name == NULL)
7235 goto BadName;
7236
7237 if (refok && type != NULL)
7238 while (1)
7239 {
7240 type = ada_check_typedef (type);
7241 if (type->code () != TYPE_CODE_PTR && type->code () != TYPE_CODE_REF)
7242 break;
7243 type = TYPE_TARGET_TYPE (type);
7244 }
7245
7246 if (type == NULL
7247 || (type->code () != TYPE_CODE_STRUCT
7248 && type->code () != TYPE_CODE_UNION))
7249 {
7250 if (noerr)
7251 return NULL;
7252
7253 error (_("Type %s is not a structure or union type"),
7254 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7255 }
7256
7257 type = to_static_fixed_type (type);
7258
7259 for (i = 0; i < type->num_fields (); i += 1)
7260 {
7261 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7262 struct type *t;
7263
7264 if (t_field_name == NULL)
7265 continue;
7266
7267 else if (ada_is_parent_field (type, i))
7268 {
7269 /* This is a field pointing us to the parent type of a tagged
7270 type. As hinted in this function's documentation, we give
7271 preference to fields in the current record first, so what
7272 we do here is just record the index of this field before
7273 we skip it. If it turns out we couldn't find our field
7274 in the current record, then we'll get back to it and search
7275 inside it whether the field might exist in the parent. */
7276
7277 parent_offset = i;
7278 continue;
7279 }
7280
7281 else if (field_name_match (t_field_name, name))
7282 return type->field (i).type ();
7283
7284 else if (ada_is_wrapper_field (type, i))
7285 {
7286 t = ada_lookup_struct_elt_type (type->field (i).type (), name,
7287 0, 1);
7288 if (t != NULL)
7289 return t;
7290 }
7291
7292 else if (ada_is_variant_part (type, i))
7293 {
7294 int j;
7295 struct type *field_type = ada_check_typedef (type->field (i).type ());
7296
7297 for (j = field_type->num_fields () - 1; j >= 0; j -= 1)
7298 {
7299 /* FIXME pnh 2008/01/26: We check for a field that is
7300 NOT wrapped in a struct, since the compiler sometimes
7301 generates these for unchecked variant types. Revisit
7302 if the compiler changes this practice. */
7303 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7304
7305 if (v_field_name != NULL
7306 && field_name_match (v_field_name, name))
7307 t = field_type->field (j).type ();
7308 else
7309 t = ada_lookup_struct_elt_type (field_type->field (j).type (),
7310 name, 0, 1);
7311
7312 if (t != NULL)
7313 return t;
7314 }
7315 }
7316
7317 }
7318
7319 /* Field not found so far. If this is a tagged type which
7320 has a parent, try finding that field in the parent now. */
7321
7322 if (parent_offset != -1)
7323 {
7324 struct type *t;
7325
7326 t = ada_lookup_struct_elt_type (type->field (parent_offset).type (),
7327 name, 0, 1);
7328 if (t != NULL)
7329 return t;
7330 }
7331
7332 BadName:
7333 if (!noerr)
7334 {
7335 const char *name_str = name != NULL ? name : _("<null>");
7336
7337 error (_("Type %s has no component named %s"),
7338 type_as_string (type).c_str (), name_str);
7339 }
7340
7341 return NULL;
7342 }
7343
7344 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7345 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7346 represents an unchecked union (that is, the variant part of a
7347 record that is named in an Unchecked_Union pragma). */
7348
7349 static int
7350 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7351 {
7352 const char *discrim_name = ada_variant_discrim_name (var_type);
7353
7354 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7355 }
7356
7357
7358 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7359 within OUTER, determine which variant clause (field number in VAR_TYPE,
7360 numbering from 0) is applicable. Returns -1 if none are. */
7361
7362 int
7363 ada_which_variant_applies (struct type *var_type, struct value *outer)
7364 {
7365 int others_clause;
7366 int i;
7367 const char *discrim_name = ada_variant_discrim_name (var_type);
7368 struct value *discrim;
7369 LONGEST discrim_val;
7370
7371 /* Using plain value_from_contents_and_address here causes problems
7372 because we will end up trying to resolve a type that is currently
7373 being constructed. */
7374 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7375 if (discrim == NULL)
7376 return -1;
7377 discrim_val = value_as_long (discrim);
7378
7379 others_clause = -1;
7380 for (i = 0; i < var_type->num_fields (); i += 1)
7381 {
7382 if (ada_is_others_clause (var_type, i))
7383 others_clause = i;
7384 else if (ada_in_variant (discrim_val, var_type, i))
7385 return i;
7386 }
7387
7388 return others_clause;
7389 }
7390 \f
7391
7392
7393 /* Dynamic-Sized Records */
7394
7395 /* Strategy: The type ostensibly attached to a value with dynamic size
7396 (i.e., a size that is not statically recorded in the debugging
7397 data) does not accurately reflect the size or layout of the value.
7398 Our strategy is to convert these values to values with accurate,
7399 conventional types that are constructed on the fly. */
7400
7401 /* There is a subtle and tricky problem here. In general, we cannot
7402 determine the size of dynamic records without its data. However,
7403 the 'struct value' data structure, which GDB uses to represent
7404 quantities in the inferior process (the target), requires the size
7405 of the type at the time of its allocation in order to reserve space
7406 for GDB's internal copy of the data. That's why the
7407 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7408 rather than struct value*s.
7409
7410 However, GDB's internal history variables ($1, $2, etc.) are
7411 struct value*s containing internal copies of the data that are not, in
7412 general, the same as the data at their corresponding addresses in
7413 the target. Fortunately, the types we give to these values are all
7414 conventional, fixed-size types (as per the strategy described
7415 above), so that we don't usually have to perform the
7416 'to_fixed_xxx_type' conversions to look at their values.
7417 Unfortunately, there is one exception: if one of the internal
7418 history variables is an array whose elements are unconstrained
7419 records, then we will need to create distinct fixed types for each
7420 element selected. */
7421
7422 /* The upshot of all of this is that many routines take a (type, host
7423 address, target address) triple as arguments to represent a value.
7424 The host address, if non-null, is supposed to contain an internal
7425 copy of the relevant data; otherwise, the program is to consult the
7426 target at the target address. */
7427
7428 /* Assuming that VAL0 represents a pointer value, the result of
7429 dereferencing it. Differs from value_ind in its treatment of
7430 dynamic-sized types. */
7431
7432 struct value *
7433 ada_value_ind (struct value *val0)
7434 {
7435 struct value *val = value_ind (val0);
7436
7437 if (ada_is_tagged_type (value_type (val), 0))
7438 val = ada_tag_value_at_base_address (val);
7439
7440 return ada_to_fixed_value (val);
7441 }
7442
7443 /* The value resulting from dereferencing any "reference to"
7444 qualifiers on VAL0. */
7445
7446 static struct value *
7447 ada_coerce_ref (struct value *val0)
7448 {
7449 if (value_type (val0)->code () == TYPE_CODE_REF)
7450 {
7451 struct value *val = val0;
7452
7453 val = coerce_ref (val);
7454
7455 if (ada_is_tagged_type (value_type (val), 0))
7456 val = ada_tag_value_at_base_address (val);
7457
7458 return ada_to_fixed_value (val);
7459 }
7460 else
7461 return val0;
7462 }
7463
7464 /* Return the bit alignment required for field #F of template type TYPE. */
7465
7466 static unsigned int
7467 field_alignment (struct type *type, int f)
7468 {
7469 const char *name = TYPE_FIELD_NAME (type, f);
7470 int len;
7471 int align_offset;
7472
7473 /* The field name should never be null, unless the debugging information
7474 is somehow malformed. In this case, we assume the field does not
7475 require any alignment. */
7476 if (name == NULL)
7477 return 1;
7478
7479 len = strlen (name);
7480
7481 if (!isdigit (name[len - 1]))
7482 return 1;
7483
7484 if (isdigit (name[len - 2]))
7485 align_offset = len - 2;
7486 else
7487 align_offset = len - 1;
7488
7489 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7490 return TARGET_CHAR_BIT;
7491
7492 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7493 }
7494
7495 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7496
7497 static struct symbol *
7498 ada_find_any_type_symbol (const char *name)
7499 {
7500 struct symbol *sym;
7501
7502 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7503 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7504 return sym;
7505
7506 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7507 return sym;
7508 }
7509
7510 /* Find a type named NAME. Ignores ambiguity. This routine will look
7511 solely for types defined by debug info, it will not search the GDB
7512 primitive types. */
7513
7514 static struct type *
7515 ada_find_any_type (const char *name)
7516 {
7517 struct symbol *sym = ada_find_any_type_symbol (name);
7518
7519 if (sym != NULL)
7520 return SYMBOL_TYPE (sym);
7521
7522 return NULL;
7523 }
7524
7525 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7526 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7527 symbol, in which case it is returned. Otherwise, this looks for
7528 symbols whose name is that of NAME_SYM suffixed with "___XR".
7529 Return symbol if found, and NULL otherwise. */
7530
7531 static bool
7532 ada_is_renaming_symbol (struct symbol *name_sym)
7533 {
7534 const char *name = name_sym->linkage_name ();
7535 return strstr (name, "___XR") != NULL;
7536 }
7537
7538 /* Because of GNAT encoding conventions, several GDB symbols may match a
7539 given type name. If the type denoted by TYPE0 is to be preferred to
7540 that of TYPE1 for purposes of type printing, return non-zero;
7541 otherwise return 0. */
7542
7543 int
7544 ada_prefer_type (struct type *type0, struct type *type1)
7545 {
7546 if (type1 == NULL)
7547 return 1;
7548 else if (type0 == NULL)
7549 return 0;
7550 else if (type1->code () == TYPE_CODE_VOID)
7551 return 1;
7552 else if (type0->code () == TYPE_CODE_VOID)
7553 return 0;
7554 else if (type1->name () == NULL && type0->name () != NULL)
7555 return 1;
7556 else if (ada_is_constrained_packed_array_type (type0))
7557 return 1;
7558 else if (ada_is_array_descriptor_type (type0)
7559 && !ada_is_array_descriptor_type (type1))
7560 return 1;
7561 else
7562 {
7563 const char *type0_name = type0->name ();
7564 const char *type1_name = type1->name ();
7565
7566 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7567 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7568 return 1;
7569 }
7570 return 0;
7571 }
7572
7573 /* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
7574 null. */
7575
7576 const char *
7577 ada_type_name (struct type *type)
7578 {
7579 if (type == NULL)
7580 return NULL;
7581 return type->name ();
7582 }
7583
7584 /* Search the list of "descriptive" types associated to TYPE for a type
7585 whose name is NAME. */
7586
7587 static struct type *
7588 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7589 {
7590 struct type *result, *tmp;
7591
7592 if (ada_ignore_descriptive_types_p)
7593 return NULL;
7594
7595 /* If there no descriptive-type info, then there is no parallel type
7596 to be found. */
7597 if (!HAVE_GNAT_AUX_INFO (type))
7598 return NULL;
7599
7600 result = TYPE_DESCRIPTIVE_TYPE (type);
7601 while (result != NULL)
7602 {
7603 const char *result_name = ada_type_name (result);
7604
7605 if (result_name == NULL)
7606 {
7607 warning (_("unexpected null name on descriptive type"));
7608 return NULL;
7609 }
7610
7611 /* If the names match, stop. */
7612 if (strcmp (result_name, name) == 0)
7613 break;
7614
7615 /* Otherwise, look at the next item on the list, if any. */
7616 if (HAVE_GNAT_AUX_INFO (result))
7617 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7618 else
7619 tmp = NULL;
7620
7621 /* If not found either, try after having resolved the typedef. */
7622 if (tmp != NULL)
7623 result = tmp;
7624 else
7625 {
7626 result = check_typedef (result);
7627 if (HAVE_GNAT_AUX_INFO (result))
7628 result = TYPE_DESCRIPTIVE_TYPE (result);
7629 else
7630 result = NULL;
7631 }
7632 }
7633
7634 /* If we didn't find a match, see whether this is a packed array. With
7635 older compilers, the descriptive type information is either absent or
7636 irrelevant when it comes to packed arrays so the above lookup fails.
7637 Fall back to using a parallel lookup by name in this case. */
7638 if (result == NULL && ada_is_constrained_packed_array_type (type))
7639 return ada_find_any_type (name);
7640
7641 return result;
7642 }
7643
7644 /* Find a parallel type to TYPE with the specified NAME, using the
7645 descriptive type taken from the debugging information, if available,
7646 and otherwise using the (slower) name-based method. */
7647
7648 static struct type *
7649 ada_find_parallel_type_with_name (struct type *type, const char *name)
7650 {
7651 struct type *result = NULL;
7652
7653 if (HAVE_GNAT_AUX_INFO (type))
7654 result = find_parallel_type_by_descriptive_type (type, name);
7655 else
7656 result = ada_find_any_type (name);
7657
7658 return result;
7659 }
7660
7661 /* Same as above, but specify the name of the parallel type by appending
7662 SUFFIX to the name of TYPE. */
7663
7664 struct type *
7665 ada_find_parallel_type (struct type *type, const char *suffix)
7666 {
7667 char *name;
7668 const char *type_name = ada_type_name (type);
7669 int len;
7670
7671 if (type_name == NULL)
7672 return NULL;
7673
7674 len = strlen (type_name);
7675
7676 name = (char *) alloca (len + strlen (suffix) + 1);
7677
7678 strcpy (name, type_name);
7679 strcpy (name + len, suffix);
7680
7681 return ada_find_parallel_type_with_name (type, name);
7682 }
7683
7684 /* If TYPE is a variable-size record type, return the corresponding template
7685 type describing its fields. Otherwise, return NULL. */
7686
7687 static struct type *
7688 dynamic_template_type (struct type *type)
7689 {
7690 type = ada_check_typedef (type);
7691
7692 if (type == NULL || type->code () != TYPE_CODE_STRUCT
7693 || ada_type_name (type) == NULL)
7694 return NULL;
7695 else
7696 {
7697 int len = strlen (ada_type_name (type));
7698
7699 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7700 return type;
7701 else
7702 return ada_find_parallel_type (type, "___XVE");
7703 }
7704 }
7705
7706 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7707 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7708
7709 static int
7710 is_dynamic_field (struct type *templ_type, int field_num)
7711 {
7712 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7713
7714 return name != NULL
7715 && templ_type->field (field_num).type ()->code () == TYPE_CODE_PTR
7716 && strstr (name, "___XVL") != NULL;
7717 }
7718
7719 /* The index of the variant field of TYPE, or -1 if TYPE does not
7720 represent a variant record type. */
7721
7722 static int
7723 variant_field_index (struct type *type)
7724 {
7725 int f;
7726
7727 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
7728 return -1;
7729
7730 for (f = 0; f < type->num_fields (); f += 1)
7731 {
7732 if (ada_is_variant_part (type, f))
7733 return f;
7734 }
7735 return -1;
7736 }
7737
7738 /* A record type with no fields. */
7739
7740 static struct type *
7741 empty_record (struct type *templ)
7742 {
7743 struct type *type = alloc_type_copy (templ);
7744
7745 type->set_code (TYPE_CODE_STRUCT);
7746 INIT_NONE_SPECIFIC (type);
7747 type->set_name ("<empty>");
7748 TYPE_LENGTH (type) = 0;
7749 return type;
7750 }
7751
7752 /* An ordinary record type (with fixed-length fields) that describes
7753 the value of type TYPE at VALADDR or ADDRESS (see comments at
7754 the beginning of this section) VAL according to GNAT conventions.
7755 DVAL0 should describe the (portion of a) record that contains any
7756 necessary discriminants. It should be NULL if value_type (VAL) is
7757 an outer-level type (i.e., as opposed to a branch of a variant.) A
7758 variant field (unless unchecked) is replaced by a particular branch
7759 of the variant.
7760
7761 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7762 length are not statically known are discarded. As a consequence,
7763 VALADDR, ADDRESS and DVAL0 are ignored.
7764
7765 NOTE: Limitations: For now, we assume that dynamic fields and
7766 variants occupy whole numbers of bytes. However, they need not be
7767 byte-aligned. */
7768
7769 struct type *
7770 ada_template_to_fixed_record_type_1 (struct type *type,
7771 const gdb_byte *valaddr,
7772 CORE_ADDR address, struct value *dval0,
7773 int keep_dynamic_fields)
7774 {
7775 struct value *mark = value_mark ();
7776 struct value *dval;
7777 struct type *rtype;
7778 int nfields, bit_len;
7779 int variant_field;
7780 long off;
7781 int fld_bit_len;
7782 int f;
7783
7784 /* Compute the number of fields in this record type that are going
7785 to be processed: unless keep_dynamic_fields, this includes only
7786 fields whose position and length are static will be processed. */
7787 if (keep_dynamic_fields)
7788 nfields = type->num_fields ();
7789 else
7790 {
7791 nfields = 0;
7792 while (nfields < type->num_fields ()
7793 && !ada_is_variant_part (type, nfields)
7794 && !is_dynamic_field (type, nfields))
7795 nfields++;
7796 }
7797
7798 rtype = alloc_type_copy (type);
7799 rtype->set_code (TYPE_CODE_STRUCT);
7800 INIT_NONE_SPECIFIC (rtype);
7801 rtype->set_num_fields (nfields);
7802 rtype->set_fields
7803 ((struct field *) TYPE_ZALLOC (rtype, nfields * sizeof (struct field)));
7804 rtype->set_name (ada_type_name (type));
7805 rtype->set_is_fixed_instance (true);
7806
7807 off = 0;
7808 bit_len = 0;
7809 variant_field = -1;
7810
7811 for (f = 0; f < nfields; f += 1)
7812 {
7813 off = align_up (off, field_alignment (type, f))
7814 + TYPE_FIELD_BITPOS (type, f);
7815 SET_FIELD_BITPOS (rtype->field (f), off);
7816 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7817
7818 if (ada_is_variant_part (type, f))
7819 {
7820 variant_field = f;
7821 fld_bit_len = 0;
7822 }
7823 else if (is_dynamic_field (type, f))
7824 {
7825 const gdb_byte *field_valaddr = valaddr;
7826 CORE_ADDR field_address = address;
7827 struct type *field_type =
7828 TYPE_TARGET_TYPE (type->field (f).type ());
7829
7830 if (dval0 == NULL)
7831 {
7832 /* rtype's length is computed based on the run-time
7833 value of discriminants. If the discriminants are not
7834 initialized, the type size may be completely bogus and
7835 GDB may fail to allocate a value for it. So check the
7836 size first before creating the value. */
7837 ada_ensure_varsize_limit (rtype);
7838 /* Using plain value_from_contents_and_address here
7839 causes problems because we will end up trying to
7840 resolve a type that is currently being
7841 constructed. */
7842 dval = value_from_contents_and_address_unresolved (rtype,
7843 valaddr,
7844 address);
7845 rtype = value_type (dval);
7846 }
7847 else
7848 dval = dval0;
7849
7850 /* If the type referenced by this field is an aligner type, we need
7851 to unwrap that aligner type, because its size might not be set.
7852 Keeping the aligner type would cause us to compute the wrong
7853 size for this field, impacting the offset of the all the fields
7854 that follow this one. */
7855 if (ada_is_aligner_type (field_type))
7856 {
7857 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7858
7859 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7860 field_address = cond_offset_target (field_address, field_offset);
7861 field_type = ada_aligned_type (field_type);
7862 }
7863
7864 field_valaddr = cond_offset_host (field_valaddr,
7865 off / TARGET_CHAR_BIT);
7866 field_address = cond_offset_target (field_address,
7867 off / TARGET_CHAR_BIT);
7868
7869 /* Get the fixed type of the field. Note that, in this case,
7870 we do not want to get the real type out of the tag: if
7871 the current field is the parent part of a tagged record,
7872 we will get the tag of the object. Clearly wrong: the real
7873 type of the parent is not the real type of the child. We
7874 would end up in an infinite loop. */
7875 field_type = ada_get_base_type (field_type);
7876 field_type = ada_to_fixed_type (field_type, field_valaddr,
7877 field_address, dval, 0);
7878 /* If the field size is already larger than the maximum
7879 object size, then the record itself will necessarily
7880 be larger than the maximum object size. We need to make
7881 this check now, because the size might be so ridiculously
7882 large (due to an uninitialized variable in the inferior)
7883 that it would cause an overflow when adding it to the
7884 record size. */
7885 ada_ensure_varsize_limit (field_type);
7886
7887 rtype->field (f).set_type (field_type);
7888 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7889 /* The multiplication can potentially overflow. But because
7890 the field length has been size-checked just above, and
7891 assuming that the maximum size is a reasonable value,
7892 an overflow should not happen in practice. So rather than
7893 adding overflow recovery code to this already complex code,
7894 we just assume that it's not going to happen. */
7895 fld_bit_len =
7896 TYPE_LENGTH (rtype->field (f).type ()) * TARGET_CHAR_BIT;
7897 }
7898 else
7899 {
7900 /* Note: If this field's type is a typedef, it is important
7901 to preserve the typedef layer.
7902
7903 Otherwise, we might be transforming a typedef to a fat
7904 pointer (encoding a pointer to an unconstrained array),
7905 into a basic fat pointer (encoding an unconstrained
7906 array). As both types are implemented using the same
7907 structure, the typedef is the only clue which allows us
7908 to distinguish between the two options. Stripping it
7909 would prevent us from printing this field appropriately. */
7910 rtype->field (f).set_type (type->field (f).type ());
7911 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7912 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7913 fld_bit_len =
7914 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7915 else
7916 {
7917 struct type *field_type = type->field (f).type ();
7918
7919 /* We need to be careful of typedefs when computing
7920 the length of our field. If this is a typedef,
7921 get the length of the target type, not the length
7922 of the typedef. */
7923 if (field_type->code () == TYPE_CODE_TYPEDEF)
7924 field_type = ada_typedef_target_type (field_type);
7925
7926 fld_bit_len =
7927 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7928 }
7929 }
7930 if (off + fld_bit_len > bit_len)
7931 bit_len = off + fld_bit_len;
7932 off += fld_bit_len;
7933 TYPE_LENGTH (rtype) =
7934 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7935 }
7936
7937 /* We handle the variant part, if any, at the end because of certain
7938 odd cases in which it is re-ordered so as NOT to be the last field of
7939 the record. This can happen in the presence of representation
7940 clauses. */
7941 if (variant_field >= 0)
7942 {
7943 struct type *branch_type;
7944
7945 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7946
7947 if (dval0 == NULL)
7948 {
7949 /* Using plain value_from_contents_and_address here causes
7950 problems because we will end up trying to resolve a type
7951 that is currently being constructed. */
7952 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
7953 address);
7954 rtype = value_type (dval);
7955 }
7956 else
7957 dval = dval0;
7958
7959 branch_type =
7960 to_fixed_variant_branch_type
7961 (type->field (variant_field).type (),
7962 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7963 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7964 if (branch_type == NULL)
7965 {
7966 for (f = variant_field + 1; f < rtype->num_fields (); f += 1)
7967 rtype->field (f - 1) = rtype->field (f);
7968 rtype->set_num_fields (rtype->num_fields () - 1);
7969 }
7970 else
7971 {
7972 rtype->field (variant_field).set_type (branch_type);
7973 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7974 fld_bit_len =
7975 TYPE_LENGTH (rtype->field (variant_field).type ()) *
7976 TARGET_CHAR_BIT;
7977 if (off + fld_bit_len > bit_len)
7978 bit_len = off + fld_bit_len;
7979 TYPE_LENGTH (rtype) =
7980 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7981 }
7982 }
7983
7984 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7985 should contain the alignment of that record, which should be a strictly
7986 positive value. If null or negative, then something is wrong, most
7987 probably in the debug info. In that case, we don't round up the size
7988 of the resulting type. If this record is not part of another structure,
7989 the current RTYPE length might be good enough for our purposes. */
7990 if (TYPE_LENGTH (type) <= 0)
7991 {
7992 if (rtype->name ())
7993 warning (_("Invalid type size for `%s' detected: %s."),
7994 rtype->name (), pulongest (TYPE_LENGTH (type)));
7995 else
7996 warning (_("Invalid type size for <unnamed> detected: %s."),
7997 pulongest (TYPE_LENGTH (type)));
7998 }
7999 else
8000 {
8001 TYPE_LENGTH (rtype) = align_up (TYPE_LENGTH (rtype),
8002 TYPE_LENGTH (type));
8003 }
8004
8005 value_free_to_mark (mark);
8006 if (TYPE_LENGTH (rtype) > varsize_limit)
8007 error (_("record type with dynamic size is larger than varsize-limit"));
8008 return rtype;
8009 }
8010
8011 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8012 of 1. */
8013
8014 static struct type *
8015 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8016 CORE_ADDR address, struct value *dval0)
8017 {
8018 return ada_template_to_fixed_record_type_1 (type, valaddr,
8019 address, dval0, 1);
8020 }
8021
8022 /* An ordinary record type in which ___XVL-convention fields and
8023 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8024 static approximations, containing all possible fields. Uses
8025 no runtime values. Useless for use in values, but that's OK,
8026 since the results are used only for type determinations. Works on both
8027 structs and unions. Representation note: to save space, we memorize
8028 the result of this function in the TYPE_TARGET_TYPE of the
8029 template type. */
8030
8031 static struct type *
8032 template_to_static_fixed_type (struct type *type0)
8033 {
8034 struct type *type;
8035 int nfields;
8036 int f;
8037
8038 /* No need no do anything if the input type is already fixed. */
8039 if (type0->is_fixed_instance ())
8040 return type0;
8041
8042 /* Likewise if we already have computed the static approximation. */
8043 if (TYPE_TARGET_TYPE (type0) != NULL)
8044 return TYPE_TARGET_TYPE (type0);
8045
8046 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8047 type = type0;
8048 nfields = type0->num_fields ();
8049
8050 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8051 recompute all over next time. */
8052 TYPE_TARGET_TYPE (type0) = type;
8053
8054 for (f = 0; f < nfields; f += 1)
8055 {
8056 struct type *field_type = type0->field (f).type ();
8057 struct type *new_type;
8058
8059 if (is_dynamic_field (type0, f))
8060 {
8061 field_type = ada_check_typedef (field_type);
8062 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8063 }
8064 else
8065 new_type = static_unwrap_type (field_type);
8066
8067 if (new_type != field_type)
8068 {
8069 /* Clone TYPE0 only the first time we get a new field type. */
8070 if (type == type0)
8071 {
8072 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8073 type->set_code (type0->code ());
8074 INIT_NONE_SPECIFIC (type);
8075 type->set_num_fields (nfields);
8076
8077 field *fields =
8078 ((struct field *)
8079 TYPE_ALLOC (type, nfields * sizeof (struct field)));
8080 memcpy (fields, type0->fields (),
8081 sizeof (struct field) * nfields);
8082 type->set_fields (fields);
8083
8084 type->set_name (ada_type_name (type0));
8085 type->set_is_fixed_instance (true);
8086 TYPE_LENGTH (type) = 0;
8087 }
8088 type->field (f).set_type (new_type);
8089 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8090 }
8091 }
8092
8093 return type;
8094 }
8095
8096 /* Given an object of type TYPE whose contents are at VALADDR and
8097 whose address in memory is ADDRESS, returns a revision of TYPE,
8098 which should be a non-dynamic-sized record, in which the variant
8099 part, if any, is replaced with the appropriate branch. Looks
8100 for discriminant values in DVAL0, which can be NULL if the record
8101 contains the necessary discriminant values. */
8102
8103 static struct type *
8104 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8105 CORE_ADDR address, struct value *dval0)
8106 {
8107 struct value *mark = value_mark ();
8108 struct value *dval;
8109 struct type *rtype;
8110 struct type *branch_type;
8111 int nfields = type->num_fields ();
8112 int variant_field = variant_field_index (type);
8113
8114 if (variant_field == -1)
8115 return type;
8116
8117 if (dval0 == NULL)
8118 {
8119 dval = value_from_contents_and_address (type, valaddr, address);
8120 type = value_type (dval);
8121 }
8122 else
8123 dval = dval0;
8124
8125 rtype = alloc_type_copy (type);
8126 rtype->set_code (TYPE_CODE_STRUCT);
8127 INIT_NONE_SPECIFIC (rtype);
8128 rtype->set_num_fields (nfields);
8129
8130 field *fields =
8131 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8132 memcpy (fields, type->fields (), sizeof (struct field) * nfields);
8133 rtype->set_fields (fields);
8134
8135 rtype->set_name (ada_type_name (type));
8136 rtype->set_is_fixed_instance (true);
8137 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8138
8139 branch_type = to_fixed_variant_branch_type
8140 (type->field (variant_field).type (),
8141 cond_offset_host (valaddr,
8142 TYPE_FIELD_BITPOS (type, variant_field)
8143 / TARGET_CHAR_BIT),
8144 cond_offset_target (address,
8145 TYPE_FIELD_BITPOS (type, variant_field)
8146 / TARGET_CHAR_BIT), dval);
8147 if (branch_type == NULL)
8148 {
8149 int f;
8150
8151 for (f = variant_field + 1; f < nfields; f += 1)
8152 rtype->field (f - 1) = rtype->field (f);
8153 rtype->set_num_fields (rtype->num_fields () - 1);
8154 }
8155 else
8156 {
8157 rtype->field (variant_field).set_type (branch_type);
8158 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8159 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8160 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8161 }
8162 TYPE_LENGTH (rtype) -= TYPE_LENGTH (type->field (variant_field).type ());
8163
8164 value_free_to_mark (mark);
8165 return rtype;
8166 }
8167
8168 /* An ordinary record type (with fixed-length fields) that describes
8169 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8170 beginning of this section]. Any necessary discriminants' values
8171 should be in DVAL, a record value; it may be NULL if the object
8172 at ADDR itself contains any necessary discriminant values.
8173 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8174 values from the record are needed. Except in the case that DVAL,
8175 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8176 unchecked) is replaced by a particular branch of the variant.
8177
8178 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8179 is questionable and may be removed. It can arise during the
8180 processing of an unconstrained-array-of-record type where all the
8181 variant branches have exactly the same size. This is because in
8182 such cases, the compiler does not bother to use the XVS convention
8183 when encoding the record. I am currently dubious of this
8184 shortcut and suspect the compiler should be altered. FIXME. */
8185
8186 static struct type *
8187 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8188 CORE_ADDR address, struct value *dval)
8189 {
8190 struct type *templ_type;
8191
8192 if (type0->is_fixed_instance ())
8193 return type0;
8194
8195 templ_type = dynamic_template_type (type0);
8196
8197 if (templ_type != NULL)
8198 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8199 else if (variant_field_index (type0) >= 0)
8200 {
8201 if (dval == NULL && valaddr == NULL && address == 0)
8202 return type0;
8203 return to_record_with_fixed_variant_part (type0, valaddr, address,
8204 dval);
8205 }
8206 else
8207 {
8208 type0->set_is_fixed_instance (true);
8209 return type0;
8210 }
8211
8212 }
8213
8214 /* An ordinary record type (with fixed-length fields) that describes
8215 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8216 union type. Any necessary discriminants' values should be in DVAL,
8217 a record value. That is, this routine selects the appropriate
8218 branch of the union at ADDR according to the discriminant value
8219 indicated in the union's type name. Returns VAR_TYPE0 itself if
8220 it represents a variant subject to a pragma Unchecked_Union. */
8221
8222 static struct type *
8223 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8224 CORE_ADDR address, struct value *dval)
8225 {
8226 int which;
8227 struct type *templ_type;
8228 struct type *var_type;
8229
8230 if (var_type0->code () == TYPE_CODE_PTR)
8231 var_type = TYPE_TARGET_TYPE (var_type0);
8232 else
8233 var_type = var_type0;
8234
8235 templ_type = ada_find_parallel_type (var_type, "___XVU");
8236
8237 if (templ_type != NULL)
8238 var_type = templ_type;
8239
8240 if (is_unchecked_variant (var_type, value_type (dval)))
8241 return var_type0;
8242 which = ada_which_variant_applies (var_type, dval);
8243
8244 if (which < 0)
8245 return empty_record (var_type);
8246 else if (is_dynamic_field (var_type, which))
8247 return to_fixed_record_type
8248 (TYPE_TARGET_TYPE (var_type->field (which).type ()),
8249 valaddr, address, dval);
8250 else if (variant_field_index (var_type->field (which).type ()) >= 0)
8251 return
8252 to_fixed_record_type
8253 (var_type->field (which).type (), valaddr, address, dval);
8254 else
8255 return var_type->field (which).type ();
8256 }
8257
8258 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8259 ENCODING_TYPE, a type following the GNAT conventions for discrete
8260 type encodings, only carries redundant information. */
8261
8262 static int
8263 ada_is_redundant_range_encoding (struct type *range_type,
8264 struct type *encoding_type)
8265 {
8266 const char *bounds_str;
8267 int n;
8268 LONGEST lo, hi;
8269
8270 gdb_assert (range_type->code () == TYPE_CODE_RANGE);
8271
8272 if (get_base_type (range_type)->code ()
8273 != get_base_type (encoding_type)->code ())
8274 {
8275 /* The compiler probably used a simple base type to describe
8276 the range type instead of the range's actual base type,
8277 expecting us to get the real base type from the encoding
8278 anyway. In this situation, the encoding cannot be ignored
8279 as redundant. */
8280 return 0;
8281 }
8282
8283 if (is_dynamic_type (range_type))
8284 return 0;
8285
8286 if (encoding_type->name () == NULL)
8287 return 0;
8288
8289 bounds_str = strstr (encoding_type->name (), "___XDLU_");
8290 if (bounds_str == NULL)
8291 return 0;
8292
8293 n = 8; /* Skip "___XDLU_". */
8294 if (!ada_scan_number (bounds_str, n, &lo, &n))
8295 return 0;
8296 if (range_type->bounds ()->low.const_val () != lo)
8297 return 0;
8298
8299 n += 2; /* Skip the "__" separator between the two bounds. */
8300 if (!ada_scan_number (bounds_str, n, &hi, &n))
8301 return 0;
8302 if (range_type->bounds ()->high.const_val () != hi)
8303 return 0;
8304
8305 return 1;
8306 }
8307
8308 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8309 a type following the GNAT encoding for describing array type
8310 indices, only carries redundant information. */
8311
8312 static int
8313 ada_is_redundant_index_type_desc (struct type *array_type,
8314 struct type *desc_type)
8315 {
8316 struct type *this_layer = check_typedef (array_type);
8317 int i;
8318
8319 for (i = 0; i < desc_type->num_fields (); i++)
8320 {
8321 if (!ada_is_redundant_range_encoding (this_layer->index_type (),
8322 desc_type->field (i).type ()))
8323 return 0;
8324 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8325 }
8326
8327 return 1;
8328 }
8329
8330 /* Assuming that TYPE0 is an array type describing the type of a value
8331 at ADDR, and that DVAL describes a record containing any
8332 discriminants used in TYPE0, returns a type for the value that
8333 contains no dynamic components (that is, no components whose sizes
8334 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8335 true, gives an error message if the resulting type's size is over
8336 varsize_limit. */
8337
8338 static struct type *
8339 to_fixed_array_type (struct type *type0, struct value *dval,
8340 int ignore_too_big)
8341 {
8342 struct type *index_type_desc;
8343 struct type *result;
8344 int constrained_packed_array_p;
8345 static const char *xa_suffix = "___XA";
8346
8347 type0 = ada_check_typedef (type0);
8348 if (type0->is_fixed_instance ())
8349 return type0;
8350
8351 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8352 if (constrained_packed_array_p)
8353 type0 = decode_constrained_packed_array_type (type0);
8354
8355 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8356
8357 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8358 encoding suffixed with 'P' may still be generated. If so,
8359 it should be used to find the XA type. */
8360
8361 if (index_type_desc == NULL)
8362 {
8363 const char *type_name = ada_type_name (type0);
8364
8365 if (type_name != NULL)
8366 {
8367 const int len = strlen (type_name);
8368 char *name = (char *) alloca (len + strlen (xa_suffix));
8369
8370 if (type_name[len - 1] == 'P')
8371 {
8372 strcpy (name, type_name);
8373 strcpy (name + len - 1, xa_suffix);
8374 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8375 }
8376 }
8377 }
8378
8379 ada_fixup_array_indexes_type (index_type_desc);
8380 if (index_type_desc != NULL
8381 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8382 {
8383 /* Ignore this ___XA parallel type, as it does not bring any
8384 useful information. This allows us to avoid creating fixed
8385 versions of the array's index types, which would be identical
8386 to the original ones. This, in turn, can also help avoid
8387 the creation of fixed versions of the array itself. */
8388 index_type_desc = NULL;
8389 }
8390
8391 if (index_type_desc == NULL)
8392 {
8393 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8394
8395 /* NOTE: elt_type---the fixed version of elt_type0---should never
8396 depend on the contents of the array in properly constructed
8397 debugging data. */
8398 /* Create a fixed version of the array element type.
8399 We're not providing the address of an element here,
8400 and thus the actual object value cannot be inspected to do
8401 the conversion. This should not be a problem, since arrays of
8402 unconstrained objects are not allowed. In particular, all
8403 the elements of an array of a tagged type should all be of
8404 the same type specified in the debugging info. No need to
8405 consult the object tag. */
8406 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8407
8408 /* Make sure we always create a new array type when dealing with
8409 packed array types, since we're going to fix-up the array
8410 type length and element bitsize a little further down. */
8411 if (elt_type0 == elt_type && !constrained_packed_array_p)
8412 result = type0;
8413 else
8414 result = create_array_type (alloc_type_copy (type0),
8415 elt_type, type0->index_type ());
8416 }
8417 else
8418 {
8419 int i;
8420 struct type *elt_type0;
8421
8422 elt_type0 = type0;
8423 for (i = index_type_desc->num_fields (); i > 0; i -= 1)
8424 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8425
8426 /* NOTE: result---the fixed version of elt_type0---should never
8427 depend on the contents of the array in properly constructed
8428 debugging data. */
8429 /* Create a fixed version of the array element type.
8430 We're not providing the address of an element here,
8431 and thus the actual object value cannot be inspected to do
8432 the conversion. This should not be a problem, since arrays of
8433 unconstrained objects are not allowed. In particular, all
8434 the elements of an array of a tagged type should all be of
8435 the same type specified in the debugging info. No need to
8436 consult the object tag. */
8437 result =
8438 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8439
8440 elt_type0 = type0;
8441 for (i = index_type_desc->num_fields () - 1; i >= 0; i -= 1)
8442 {
8443 struct type *range_type =
8444 to_fixed_range_type (index_type_desc->field (i).type (), dval);
8445
8446 result = create_array_type (alloc_type_copy (elt_type0),
8447 result, range_type);
8448 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8449 }
8450 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8451 error (_("array type with dynamic size is larger than varsize-limit"));
8452 }
8453
8454 /* We want to preserve the type name. This can be useful when
8455 trying to get the type name of a value that has already been
8456 printed (for instance, if the user did "print VAR; whatis $". */
8457 result->set_name (type0->name ());
8458
8459 if (constrained_packed_array_p)
8460 {
8461 /* So far, the resulting type has been created as if the original
8462 type was a regular (non-packed) array type. As a result, the
8463 bitsize of the array elements needs to be set again, and the array
8464 length needs to be recomputed based on that bitsize. */
8465 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8466 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8467
8468 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8469 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8470 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8471 TYPE_LENGTH (result)++;
8472 }
8473
8474 result->set_is_fixed_instance (true);
8475 return result;
8476 }
8477
8478
8479 /* A standard type (containing no dynamically sized components)
8480 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8481 DVAL describes a record containing any discriminants used in TYPE0,
8482 and may be NULL if there are none, or if the object of type TYPE at
8483 ADDRESS or in VALADDR contains these discriminants.
8484
8485 If CHECK_TAG is not null, in the case of tagged types, this function
8486 attempts to locate the object's tag and use it to compute the actual
8487 type. However, when ADDRESS is null, we cannot use it to determine the
8488 location of the tag, and therefore compute the tagged type's actual type.
8489 So we return the tagged type without consulting the tag. */
8490
8491 static struct type *
8492 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8493 CORE_ADDR address, struct value *dval, int check_tag)
8494 {
8495 type = ada_check_typedef (type);
8496
8497 /* Only un-fixed types need to be handled here. */
8498 if (!HAVE_GNAT_AUX_INFO (type))
8499 return type;
8500
8501 switch (type->code ())
8502 {
8503 default:
8504 return type;
8505 case TYPE_CODE_STRUCT:
8506 {
8507 struct type *static_type = to_static_fixed_type (type);
8508 struct type *fixed_record_type =
8509 to_fixed_record_type (type, valaddr, address, NULL);
8510
8511 /* If STATIC_TYPE is a tagged type and we know the object's address,
8512 then we can determine its tag, and compute the object's actual
8513 type from there. Note that we have to use the fixed record
8514 type (the parent part of the record may have dynamic fields
8515 and the way the location of _tag is expressed may depend on
8516 them). */
8517
8518 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8519 {
8520 struct value *tag =
8521 value_tag_from_contents_and_address
8522 (fixed_record_type,
8523 valaddr,
8524 address);
8525 struct type *real_type = type_from_tag (tag);
8526 struct value *obj =
8527 value_from_contents_and_address (fixed_record_type,
8528 valaddr,
8529 address);
8530 fixed_record_type = value_type (obj);
8531 if (real_type != NULL)
8532 return to_fixed_record_type
8533 (real_type, NULL,
8534 value_address (ada_tag_value_at_base_address (obj)), NULL);
8535 }
8536
8537 /* Check to see if there is a parallel ___XVZ variable.
8538 If there is, then it provides the actual size of our type. */
8539 else if (ada_type_name (fixed_record_type) != NULL)
8540 {
8541 const char *name = ada_type_name (fixed_record_type);
8542 char *xvz_name
8543 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
8544 bool xvz_found = false;
8545 LONGEST size;
8546
8547 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8548 try
8549 {
8550 xvz_found = get_int_var_value (xvz_name, size);
8551 }
8552 catch (const gdb_exception_error &except)
8553 {
8554 /* We found the variable, but somehow failed to read
8555 its value. Rethrow the same error, but with a little
8556 bit more information, to help the user understand
8557 what went wrong (Eg: the variable might have been
8558 optimized out). */
8559 throw_error (except.error,
8560 _("unable to read value of %s (%s)"),
8561 xvz_name, except.what ());
8562 }
8563
8564 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8565 {
8566 fixed_record_type = copy_type (fixed_record_type);
8567 TYPE_LENGTH (fixed_record_type) = size;
8568
8569 /* The FIXED_RECORD_TYPE may have be a stub. We have
8570 observed this when the debugging info is STABS, and
8571 apparently it is something that is hard to fix.
8572
8573 In practice, we don't need the actual type definition
8574 at all, because the presence of the XVZ variable allows us
8575 to assume that there must be a XVS type as well, which we
8576 should be able to use later, when we need the actual type
8577 definition.
8578
8579 In the meantime, pretend that the "fixed" type we are
8580 returning is NOT a stub, because this can cause trouble
8581 when using this type to create new types targeting it.
8582 Indeed, the associated creation routines often check
8583 whether the target type is a stub and will try to replace
8584 it, thus using a type with the wrong size. This, in turn,
8585 might cause the new type to have the wrong size too.
8586 Consider the case of an array, for instance, where the size
8587 of the array is computed from the number of elements in
8588 our array multiplied by the size of its element. */
8589 fixed_record_type->set_is_stub (false);
8590 }
8591 }
8592 return fixed_record_type;
8593 }
8594 case TYPE_CODE_ARRAY:
8595 return to_fixed_array_type (type, dval, 1);
8596 case TYPE_CODE_UNION:
8597 if (dval == NULL)
8598 return type;
8599 else
8600 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8601 }
8602 }
8603
8604 /* The same as ada_to_fixed_type_1, except that it preserves the type
8605 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8606
8607 The typedef layer needs be preserved in order to differentiate between
8608 arrays and array pointers when both types are implemented using the same
8609 fat pointer. In the array pointer case, the pointer is encoded as
8610 a typedef of the pointer type. For instance, considering:
8611
8612 type String_Access is access String;
8613 S1 : String_Access := null;
8614
8615 To the debugger, S1 is defined as a typedef of type String. But
8616 to the user, it is a pointer. So if the user tries to print S1,
8617 we should not dereference the array, but print the array address
8618 instead.
8619
8620 If we didn't preserve the typedef layer, we would lose the fact that
8621 the type is to be presented as a pointer (needs de-reference before
8622 being printed). And we would also use the source-level type name. */
8623
8624 struct type *
8625 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8626 CORE_ADDR address, struct value *dval, int check_tag)
8627
8628 {
8629 struct type *fixed_type =
8630 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8631
8632 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8633 then preserve the typedef layer.
8634
8635 Implementation note: We can only check the main-type portion of
8636 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8637 from TYPE now returns a type that has the same instance flags
8638 as TYPE. For instance, if TYPE is a "typedef const", and its
8639 target type is a "struct", then the typedef elimination will return
8640 a "const" version of the target type. See check_typedef for more
8641 details about how the typedef layer elimination is done.
8642
8643 brobecker/2010-11-19: It seems to me that the only case where it is
8644 useful to preserve the typedef layer is when dealing with fat pointers.
8645 Perhaps, we could add a check for that and preserve the typedef layer
8646 only in that situation. But this seems unnecessary so far, probably
8647 because we call check_typedef/ada_check_typedef pretty much everywhere.
8648 */
8649 if (type->code () == TYPE_CODE_TYPEDEF
8650 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8651 == TYPE_MAIN_TYPE (fixed_type)))
8652 return type;
8653
8654 return fixed_type;
8655 }
8656
8657 /* A standard (static-sized) type corresponding as well as possible to
8658 TYPE0, but based on no runtime data. */
8659
8660 static struct type *
8661 to_static_fixed_type (struct type *type0)
8662 {
8663 struct type *type;
8664
8665 if (type0 == NULL)
8666 return NULL;
8667
8668 if (type0->is_fixed_instance ())
8669 return type0;
8670
8671 type0 = ada_check_typedef (type0);
8672
8673 switch (type0->code ())
8674 {
8675 default:
8676 return type0;
8677 case TYPE_CODE_STRUCT:
8678 type = dynamic_template_type (type0);
8679 if (type != NULL)
8680 return template_to_static_fixed_type (type);
8681 else
8682 return template_to_static_fixed_type (type0);
8683 case TYPE_CODE_UNION:
8684 type = ada_find_parallel_type (type0, "___XVU");
8685 if (type != NULL)
8686 return template_to_static_fixed_type (type);
8687 else
8688 return template_to_static_fixed_type (type0);
8689 }
8690 }
8691
8692 /* A static approximation of TYPE with all type wrappers removed. */
8693
8694 static struct type *
8695 static_unwrap_type (struct type *type)
8696 {
8697 if (ada_is_aligner_type (type))
8698 {
8699 struct type *type1 = ada_check_typedef (type)->field (0).type ();
8700 if (ada_type_name (type1) == NULL)
8701 type1->set_name (ada_type_name (type));
8702
8703 return static_unwrap_type (type1);
8704 }
8705 else
8706 {
8707 struct type *raw_real_type = ada_get_base_type (type);
8708
8709 if (raw_real_type == type)
8710 return type;
8711 else
8712 return to_static_fixed_type (raw_real_type);
8713 }
8714 }
8715
8716 /* In some cases, incomplete and private types require
8717 cross-references that are not resolved as records (for example,
8718 type Foo;
8719 type FooP is access Foo;
8720 V: FooP;
8721 type Foo is array ...;
8722 ). In these cases, since there is no mechanism for producing
8723 cross-references to such types, we instead substitute for FooP a
8724 stub enumeration type that is nowhere resolved, and whose tag is
8725 the name of the actual type. Call these types "non-record stubs". */
8726
8727 /* A type equivalent to TYPE that is not a non-record stub, if one
8728 exists, otherwise TYPE. */
8729
8730 struct type *
8731 ada_check_typedef (struct type *type)
8732 {
8733 if (type == NULL)
8734 return NULL;
8735
8736 /* If our type is an access to an unconstrained array, which is encoded
8737 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
8738 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8739 what allows us to distinguish between fat pointers that represent
8740 array types, and fat pointers that represent array access types
8741 (in both cases, the compiler implements them as fat pointers). */
8742 if (ada_is_access_to_unconstrained_array (type))
8743 return type;
8744
8745 type = check_typedef (type);
8746 if (type == NULL || type->code () != TYPE_CODE_ENUM
8747 || !type->is_stub ()
8748 || type->name () == NULL)
8749 return type;
8750 else
8751 {
8752 const char *name = type->name ();
8753 struct type *type1 = ada_find_any_type (name);
8754
8755 if (type1 == NULL)
8756 return type;
8757
8758 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8759 stubs pointing to arrays, as we don't create symbols for array
8760 types, only for the typedef-to-array types). If that's the case,
8761 strip the typedef layer. */
8762 if (type1->code () == TYPE_CODE_TYPEDEF)
8763 type1 = ada_check_typedef (type1);
8764
8765 return type1;
8766 }
8767 }
8768
8769 /* A value representing the data at VALADDR/ADDRESS as described by
8770 type TYPE0, but with a standard (static-sized) type that correctly
8771 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8772 type, then return VAL0 [this feature is simply to avoid redundant
8773 creation of struct values]. */
8774
8775 static struct value *
8776 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8777 struct value *val0)
8778 {
8779 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8780
8781 if (type == type0 && val0 != NULL)
8782 return val0;
8783
8784 if (VALUE_LVAL (val0) != lval_memory)
8785 {
8786 /* Our value does not live in memory; it could be a convenience
8787 variable, for instance. Create a not_lval value using val0's
8788 contents. */
8789 return value_from_contents (type, value_contents (val0));
8790 }
8791
8792 return value_from_contents_and_address (type, 0, address);
8793 }
8794
8795 /* A value representing VAL, but with a standard (static-sized) type
8796 that correctly describes it. Does not necessarily create a new
8797 value. */
8798
8799 struct value *
8800 ada_to_fixed_value (struct value *val)
8801 {
8802 val = unwrap_value (val);
8803 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
8804 return val;
8805 }
8806 \f
8807
8808 /* Attributes */
8809
8810 /* Table mapping attribute numbers to names.
8811 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8812
8813 static const char * const attribute_names[] = {
8814 "<?>",
8815
8816 "first",
8817 "last",
8818 "length",
8819 "image",
8820 "max",
8821 "min",
8822 "modulus",
8823 "pos",
8824 "size",
8825 "tag",
8826 "val",
8827 0
8828 };
8829
8830 static const char *
8831 ada_attribute_name (enum exp_opcode n)
8832 {
8833 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8834 return attribute_names[n - OP_ATR_FIRST + 1];
8835 else
8836 return attribute_names[0];
8837 }
8838
8839 /* Evaluate the 'POS attribute applied to ARG. */
8840
8841 static LONGEST
8842 pos_atr (struct value *arg)
8843 {
8844 struct value *val = coerce_ref (arg);
8845 struct type *type = value_type (val);
8846 LONGEST result;
8847
8848 if (!discrete_type_p (type))
8849 error (_("'POS only defined on discrete types"));
8850
8851 if (!discrete_position (type, value_as_long (val), &result))
8852 error (_("enumeration value is invalid: can't find 'POS"));
8853
8854 return result;
8855 }
8856
8857 static struct value *
8858 value_pos_atr (struct type *type, struct value *arg)
8859 {
8860 return value_from_longest (type, pos_atr (arg));
8861 }
8862
8863 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8864
8865 static struct value *
8866 val_atr (struct type *type, LONGEST val)
8867 {
8868 gdb_assert (discrete_type_p (type));
8869 if (type->code () == TYPE_CODE_RANGE)
8870 type = TYPE_TARGET_TYPE (type);
8871 if (type->code () == TYPE_CODE_ENUM)
8872 {
8873 if (val < 0 || val >= type->num_fields ())
8874 error (_("argument to 'VAL out of range"));
8875 val = TYPE_FIELD_ENUMVAL (type, val);
8876 }
8877 return value_from_longest (type, val);
8878 }
8879
8880 static struct value *
8881 value_val_atr (struct type *type, struct value *arg)
8882 {
8883 if (!discrete_type_p (type))
8884 error (_("'VAL only defined on discrete types"));
8885 if (!integer_type_p (value_type (arg)))
8886 error (_("'VAL requires integral argument"));
8887
8888 return val_atr (type, value_as_long (arg));
8889 }
8890 \f
8891
8892 /* Evaluation */
8893
8894 /* True if TYPE appears to be an Ada character type.
8895 [At the moment, this is true only for Character and Wide_Character;
8896 It is a heuristic test that could stand improvement]. */
8897
8898 bool
8899 ada_is_character_type (struct type *type)
8900 {
8901 const char *name;
8902
8903 /* If the type code says it's a character, then assume it really is,
8904 and don't check any further. */
8905 if (type->code () == TYPE_CODE_CHAR)
8906 return true;
8907
8908 /* Otherwise, assume it's a character type iff it is a discrete type
8909 with a known character type name. */
8910 name = ada_type_name (type);
8911 return (name != NULL
8912 && (type->code () == TYPE_CODE_INT
8913 || type->code () == TYPE_CODE_RANGE)
8914 && (strcmp (name, "character") == 0
8915 || strcmp (name, "wide_character") == 0
8916 || strcmp (name, "wide_wide_character") == 0
8917 || strcmp (name, "unsigned char") == 0));
8918 }
8919
8920 /* True if TYPE appears to be an Ada string type. */
8921
8922 bool
8923 ada_is_string_type (struct type *type)
8924 {
8925 type = ada_check_typedef (type);
8926 if (type != NULL
8927 && type->code () != TYPE_CODE_PTR
8928 && (ada_is_simple_array_type (type)
8929 || ada_is_array_descriptor_type (type))
8930 && ada_array_arity (type) == 1)
8931 {
8932 struct type *elttype = ada_array_element_type (type, 1);
8933
8934 return ada_is_character_type (elttype);
8935 }
8936 else
8937 return false;
8938 }
8939
8940 /* The compiler sometimes provides a parallel XVS type for a given
8941 PAD type. Normally, it is safe to follow the PAD type directly,
8942 but older versions of the compiler have a bug that causes the offset
8943 of its "F" field to be wrong. Following that field in that case
8944 would lead to incorrect results, but this can be worked around
8945 by ignoring the PAD type and using the associated XVS type instead.
8946
8947 Set to True if the debugger should trust the contents of PAD types.
8948 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8949 static bool trust_pad_over_xvs = true;
8950
8951 /* True if TYPE is a struct type introduced by the compiler to force the
8952 alignment of a value. Such types have a single field with a
8953 distinctive name. */
8954
8955 int
8956 ada_is_aligner_type (struct type *type)
8957 {
8958 type = ada_check_typedef (type);
8959
8960 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
8961 return 0;
8962
8963 return (type->code () == TYPE_CODE_STRUCT
8964 && type->num_fields () == 1
8965 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
8966 }
8967
8968 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
8969 the parallel type. */
8970
8971 struct type *
8972 ada_get_base_type (struct type *raw_type)
8973 {
8974 struct type *real_type_namer;
8975 struct type *raw_real_type;
8976
8977 if (raw_type == NULL || raw_type->code () != TYPE_CODE_STRUCT)
8978 return raw_type;
8979
8980 if (ada_is_aligner_type (raw_type))
8981 /* The encoding specifies that we should always use the aligner type.
8982 So, even if this aligner type has an associated XVS type, we should
8983 simply ignore it.
8984
8985 According to the compiler gurus, an XVS type parallel to an aligner
8986 type may exist because of a stabs limitation. In stabs, aligner
8987 types are empty because the field has a variable-sized type, and
8988 thus cannot actually be used as an aligner type. As a result,
8989 we need the associated parallel XVS type to decode the type.
8990 Since the policy in the compiler is to not change the internal
8991 representation based on the debugging info format, we sometimes
8992 end up having a redundant XVS type parallel to the aligner type. */
8993 return raw_type;
8994
8995 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
8996 if (real_type_namer == NULL
8997 || real_type_namer->code () != TYPE_CODE_STRUCT
8998 || real_type_namer->num_fields () != 1)
8999 return raw_type;
9000
9001 if (real_type_namer->field (0).type ()->code () != TYPE_CODE_REF)
9002 {
9003 /* This is an older encoding form where the base type needs to be
9004 looked up by name. We prefer the newer encoding because it is
9005 more efficient. */
9006 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9007 if (raw_real_type == NULL)
9008 return raw_type;
9009 else
9010 return raw_real_type;
9011 }
9012
9013 /* The field in our XVS type is a reference to the base type. */
9014 return TYPE_TARGET_TYPE (real_type_namer->field (0).type ());
9015 }
9016
9017 /* The type of value designated by TYPE, with all aligners removed. */
9018
9019 struct type *
9020 ada_aligned_type (struct type *type)
9021 {
9022 if (ada_is_aligner_type (type))
9023 return ada_aligned_type (type->field (0).type ());
9024 else
9025 return ada_get_base_type (type);
9026 }
9027
9028
9029 /* The address of the aligned value in an object at address VALADDR
9030 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9031
9032 const gdb_byte *
9033 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9034 {
9035 if (ada_is_aligner_type (type))
9036 return ada_aligned_value_addr (type->field (0).type (),
9037 valaddr +
9038 TYPE_FIELD_BITPOS (type,
9039 0) / TARGET_CHAR_BIT);
9040 else
9041 return valaddr;
9042 }
9043
9044
9045
9046 /* The printed representation of an enumeration literal with encoded
9047 name NAME. The value is good to the next call of ada_enum_name. */
9048 const char *
9049 ada_enum_name (const char *name)
9050 {
9051 static char *result;
9052 static size_t result_len = 0;
9053 const char *tmp;
9054
9055 /* First, unqualify the enumeration name:
9056 1. Search for the last '.' character. If we find one, then skip
9057 all the preceding characters, the unqualified name starts
9058 right after that dot.
9059 2. Otherwise, we may be debugging on a target where the compiler
9060 translates dots into "__". Search forward for double underscores,
9061 but stop searching when we hit an overloading suffix, which is
9062 of the form "__" followed by digits. */
9063
9064 tmp = strrchr (name, '.');
9065 if (tmp != NULL)
9066 name = tmp + 1;
9067 else
9068 {
9069 while ((tmp = strstr (name, "__")) != NULL)
9070 {
9071 if (isdigit (tmp[2]))
9072 break;
9073 else
9074 name = tmp + 2;
9075 }
9076 }
9077
9078 if (name[0] == 'Q')
9079 {
9080 int v;
9081
9082 if (name[1] == 'U' || name[1] == 'W')
9083 {
9084 if (sscanf (name + 2, "%x", &v) != 1)
9085 return name;
9086 }
9087 else if (((name[1] >= '0' && name[1] <= '9')
9088 || (name[1] >= 'a' && name[1] <= 'z'))
9089 && name[2] == '\0')
9090 {
9091 GROW_VECT (result, result_len, 4);
9092 xsnprintf (result, result_len, "'%c'", name[1]);
9093 return result;
9094 }
9095 else
9096 return name;
9097
9098 GROW_VECT (result, result_len, 16);
9099 if (isascii (v) && isprint (v))
9100 xsnprintf (result, result_len, "'%c'", v);
9101 else if (name[1] == 'U')
9102 xsnprintf (result, result_len, "[\"%02x\"]", v);
9103 else
9104 xsnprintf (result, result_len, "[\"%04x\"]", v);
9105
9106 return result;
9107 }
9108 else
9109 {
9110 tmp = strstr (name, "__");
9111 if (tmp == NULL)
9112 tmp = strstr (name, "$");
9113 if (tmp != NULL)
9114 {
9115 GROW_VECT (result, result_len, tmp - name + 1);
9116 strncpy (result, name, tmp - name);
9117 result[tmp - name] = '\0';
9118 return result;
9119 }
9120
9121 return name;
9122 }
9123 }
9124
9125 /* Evaluate the subexpression of EXP starting at *POS as for
9126 evaluate_type, updating *POS to point just past the evaluated
9127 expression. */
9128
9129 static struct value *
9130 evaluate_subexp_type (struct expression *exp, int *pos)
9131 {
9132 return evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9133 }
9134
9135 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9136 value it wraps. */
9137
9138 static struct value *
9139 unwrap_value (struct value *val)
9140 {
9141 struct type *type = ada_check_typedef (value_type (val));
9142
9143 if (ada_is_aligner_type (type))
9144 {
9145 struct value *v = ada_value_struct_elt (val, "F", 0);
9146 struct type *val_type = ada_check_typedef (value_type (v));
9147
9148 if (ada_type_name (val_type) == NULL)
9149 val_type->set_name (ada_type_name (type));
9150
9151 return unwrap_value (v);
9152 }
9153 else
9154 {
9155 struct type *raw_real_type =
9156 ada_check_typedef (ada_get_base_type (type));
9157
9158 /* If there is no parallel XVS or XVE type, then the value is
9159 already unwrapped. Return it without further modification. */
9160 if ((type == raw_real_type)
9161 && ada_find_parallel_type (type, "___XVE") == NULL)
9162 return val;
9163
9164 return
9165 coerce_unspec_val_to_type
9166 (val, ada_to_fixed_type (raw_real_type, 0,
9167 value_address (val),
9168 NULL, 1));
9169 }
9170 }
9171
9172 static struct value *
9173 cast_from_fixed (struct type *type, struct value *arg)
9174 {
9175 struct value *scale = ada_scaling_factor (value_type (arg));
9176 arg = value_cast (value_type (scale), arg);
9177
9178 arg = value_binop (arg, scale, BINOP_MUL);
9179 return value_cast (type, arg);
9180 }
9181
9182 static struct value *
9183 cast_to_fixed (struct type *type, struct value *arg)
9184 {
9185 if (type == value_type (arg))
9186 return arg;
9187
9188 struct value *scale = ada_scaling_factor (type);
9189 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg)))
9190 arg = cast_from_fixed (value_type (scale), arg);
9191 else
9192 arg = value_cast (value_type (scale), arg);
9193
9194 arg = value_binop (arg, scale, BINOP_DIV);
9195 return value_cast (type, arg);
9196 }
9197
9198 /* Given two array types T1 and T2, return nonzero iff both arrays
9199 contain the same number of elements. */
9200
9201 static int
9202 ada_same_array_size_p (struct type *t1, struct type *t2)
9203 {
9204 LONGEST lo1, hi1, lo2, hi2;
9205
9206 /* Get the array bounds in order to verify that the size of
9207 the two arrays match. */
9208 if (!get_array_bounds (t1, &lo1, &hi1)
9209 || !get_array_bounds (t2, &lo2, &hi2))
9210 error (_("unable to determine array bounds"));
9211
9212 /* To make things easier for size comparison, normalize a bit
9213 the case of empty arrays by making sure that the difference
9214 between upper bound and lower bound is always -1. */
9215 if (lo1 > hi1)
9216 hi1 = lo1 - 1;
9217 if (lo2 > hi2)
9218 hi2 = lo2 - 1;
9219
9220 return (hi1 - lo1 == hi2 - lo2);
9221 }
9222
9223 /* Assuming that VAL is an array of integrals, and TYPE represents
9224 an array with the same number of elements, but with wider integral
9225 elements, return an array "casted" to TYPE. In practice, this
9226 means that the returned array is built by casting each element
9227 of the original array into TYPE's (wider) element type. */
9228
9229 static struct value *
9230 ada_promote_array_of_integrals (struct type *type, struct value *val)
9231 {
9232 struct type *elt_type = TYPE_TARGET_TYPE (type);
9233 LONGEST lo, hi;
9234 struct value *res;
9235 LONGEST i;
9236
9237 /* Verify that both val and type are arrays of scalars, and
9238 that the size of val's elements is smaller than the size
9239 of type's element. */
9240 gdb_assert (type->code () == TYPE_CODE_ARRAY);
9241 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9242 gdb_assert (value_type (val)->code () == TYPE_CODE_ARRAY);
9243 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9244 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9245 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9246
9247 if (!get_array_bounds (type, &lo, &hi))
9248 error (_("unable to determine array bounds"));
9249
9250 res = allocate_value (type);
9251
9252 /* Promote each array element. */
9253 for (i = 0; i < hi - lo + 1; i++)
9254 {
9255 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9256
9257 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9258 value_contents_all (elt), TYPE_LENGTH (elt_type));
9259 }
9260
9261 return res;
9262 }
9263
9264 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9265 return the converted value. */
9266
9267 static struct value *
9268 coerce_for_assign (struct type *type, struct value *val)
9269 {
9270 struct type *type2 = value_type (val);
9271
9272 if (type == type2)
9273 return val;
9274
9275 type2 = ada_check_typedef (type2);
9276 type = ada_check_typedef (type);
9277
9278 if (type2->code () == TYPE_CODE_PTR
9279 && type->code () == TYPE_CODE_ARRAY)
9280 {
9281 val = ada_value_ind (val);
9282 type2 = value_type (val);
9283 }
9284
9285 if (type2->code () == TYPE_CODE_ARRAY
9286 && type->code () == TYPE_CODE_ARRAY)
9287 {
9288 if (!ada_same_array_size_p (type, type2))
9289 error (_("cannot assign arrays of different length"));
9290
9291 if (is_integral_type (TYPE_TARGET_TYPE (type))
9292 && is_integral_type (TYPE_TARGET_TYPE (type2))
9293 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9294 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9295 {
9296 /* Allow implicit promotion of the array elements to
9297 a wider type. */
9298 return ada_promote_array_of_integrals (type, val);
9299 }
9300
9301 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9302 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9303 error (_("Incompatible types in assignment"));
9304 deprecated_set_value_type (val, type);
9305 }
9306 return val;
9307 }
9308
9309 static struct value *
9310 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9311 {
9312 struct value *val;
9313 struct type *type1, *type2;
9314 LONGEST v, v1, v2;
9315
9316 arg1 = coerce_ref (arg1);
9317 arg2 = coerce_ref (arg2);
9318 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9319 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9320
9321 if (type1->code () != TYPE_CODE_INT
9322 || type2->code () != TYPE_CODE_INT)
9323 return value_binop (arg1, arg2, op);
9324
9325 switch (op)
9326 {
9327 case BINOP_MOD:
9328 case BINOP_DIV:
9329 case BINOP_REM:
9330 break;
9331 default:
9332 return value_binop (arg1, arg2, op);
9333 }
9334
9335 v2 = value_as_long (arg2);
9336 if (v2 == 0)
9337 error (_("second operand of %s must not be zero."), op_string (op));
9338
9339 if (type1->is_unsigned () || op == BINOP_MOD)
9340 return value_binop (arg1, arg2, op);
9341
9342 v1 = value_as_long (arg1);
9343 switch (op)
9344 {
9345 case BINOP_DIV:
9346 v = v1 / v2;
9347 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9348 v += v > 0 ? -1 : 1;
9349 break;
9350 case BINOP_REM:
9351 v = v1 % v2;
9352 if (v * v1 < 0)
9353 v -= v2;
9354 break;
9355 default:
9356 /* Should not reach this point. */
9357 v = 0;
9358 }
9359
9360 val = allocate_value (type1);
9361 store_unsigned_integer (value_contents_raw (val),
9362 TYPE_LENGTH (value_type (val)),
9363 type_byte_order (type1), v);
9364 return val;
9365 }
9366
9367 static int
9368 ada_value_equal (struct value *arg1, struct value *arg2)
9369 {
9370 if (ada_is_direct_array_type (value_type (arg1))
9371 || ada_is_direct_array_type (value_type (arg2)))
9372 {
9373 struct type *arg1_type, *arg2_type;
9374
9375 /* Automatically dereference any array reference before
9376 we attempt to perform the comparison. */
9377 arg1 = ada_coerce_ref (arg1);
9378 arg2 = ada_coerce_ref (arg2);
9379
9380 arg1 = ada_coerce_to_simple_array (arg1);
9381 arg2 = ada_coerce_to_simple_array (arg2);
9382
9383 arg1_type = ada_check_typedef (value_type (arg1));
9384 arg2_type = ada_check_typedef (value_type (arg2));
9385
9386 if (arg1_type->code () != TYPE_CODE_ARRAY
9387 || arg2_type->code () != TYPE_CODE_ARRAY)
9388 error (_("Attempt to compare array with non-array"));
9389 /* FIXME: The following works only for types whose
9390 representations use all bits (no padding or undefined bits)
9391 and do not have user-defined equality. */
9392 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9393 && memcmp (value_contents (arg1), value_contents (arg2),
9394 TYPE_LENGTH (arg1_type)) == 0);
9395 }
9396 return value_equal (arg1, arg2);
9397 }
9398
9399 /* Total number of component associations in the aggregate starting at
9400 index PC in EXP. Assumes that index PC is the start of an
9401 OP_AGGREGATE. */
9402
9403 static int
9404 num_component_specs (struct expression *exp, int pc)
9405 {
9406 int n, m, i;
9407
9408 m = exp->elts[pc + 1].longconst;
9409 pc += 3;
9410 n = 0;
9411 for (i = 0; i < m; i += 1)
9412 {
9413 switch (exp->elts[pc].opcode)
9414 {
9415 default:
9416 n += 1;
9417 break;
9418 case OP_CHOICES:
9419 n += exp->elts[pc + 1].longconst;
9420 break;
9421 }
9422 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9423 }
9424 return n;
9425 }
9426
9427 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9428 component of LHS (a simple array or a record), updating *POS past
9429 the expression, assuming that LHS is contained in CONTAINER. Does
9430 not modify the inferior's memory, nor does it modify LHS (unless
9431 LHS == CONTAINER). */
9432
9433 static void
9434 assign_component (struct value *container, struct value *lhs, LONGEST index,
9435 struct expression *exp, int *pos)
9436 {
9437 struct value *mark = value_mark ();
9438 struct value *elt;
9439 struct type *lhs_type = check_typedef (value_type (lhs));
9440
9441 if (lhs_type->code () == TYPE_CODE_ARRAY)
9442 {
9443 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9444 struct value *index_val = value_from_longest (index_type, index);
9445
9446 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9447 }
9448 else
9449 {
9450 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9451 elt = ada_to_fixed_value (elt);
9452 }
9453
9454 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9455 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9456 else
9457 value_assign_to_component (container, elt,
9458 ada_evaluate_subexp (NULL, exp, pos,
9459 EVAL_NORMAL));
9460
9461 value_free_to_mark (mark);
9462 }
9463
9464 /* Assuming that LHS represents an lvalue having a record or array
9465 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9466 of that aggregate's value to LHS, advancing *POS past the
9467 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9468 lvalue containing LHS (possibly LHS itself). Does not modify
9469 the inferior's memory, nor does it modify the contents of
9470 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9471
9472 static struct value *
9473 assign_aggregate (struct value *container,
9474 struct value *lhs, struct expression *exp,
9475 int *pos, enum noside noside)
9476 {
9477 struct type *lhs_type;
9478 int n = exp->elts[*pos+1].longconst;
9479 LONGEST low_index, high_index;
9480 int num_specs;
9481 LONGEST *indices;
9482 int max_indices, num_indices;
9483 int i;
9484
9485 *pos += 3;
9486 if (noside != EVAL_NORMAL)
9487 {
9488 for (i = 0; i < n; i += 1)
9489 ada_evaluate_subexp (NULL, exp, pos, noside);
9490 return container;
9491 }
9492
9493 container = ada_coerce_ref (container);
9494 if (ada_is_direct_array_type (value_type (container)))
9495 container = ada_coerce_to_simple_array (container);
9496 lhs = ada_coerce_ref (lhs);
9497 if (!deprecated_value_modifiable (lhs))
9498 error (_("Left operand of assignment is not a modifiable lvalue."));
9499
9500 lhs_type = check_typedef (value_type (lhs));
9501 if (ada_is_direct_array_type (lhs_type))
9502 {
9503 lhs = ada_coerce_to_simple_array (lhs);
9504 lhs_type = check_typedef (value_type (lhs));
9505 low_index = lhs_type->bounds ()->low.const_val ();
9506 high_index = lhs_type->bounds ()->high.const_val ();
9507 }
9508 else if (lhs_type->code () == TYPE_CODE_STRUCT)
9509 {
9510 low_index = 0;
9511 high_index = num_visible_fields (lhs_type) - 1;
9512 }
9513 else
9514 error (_("Left-hand side must be array or record."));
9515
9516 num_specs = num_component_specs (exp, *pos - 3);
9517 max_indices = 4 * num_specs + 4;
9518 indices = XALLOCAVEC (LONGEST, max_indices);
9519 indices[0] = indices[1] = low_index - 1;
9520 indices[2] = indices[3] = high_index + 1;
9521 num_indices = 4;
9522
9523 for (i = 0; i < n; i += 1)
9524 {
9525 switch (exp->elts[*pos].opcode)
9526 {
9527 case OP_CHOICES:
9528 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9529 &num_indices, max_indices,
9530 low_index, high_index);
9531 break;
9532 case OP_POSITIONAL:
9533 aggregate_assign_positional (container, lhs, exp, pos, indices,
9534 &num_indices, max_indices,
9535 low_index, high_index);
9536 break;
9537 case OP_OTHERS:
9538 if (i != n-1)
9539 error (_("Misplaced 'others' clause"));
9540 aggregate_assign_others (container, lhs, exp, pos, indices,
9541 num_indices, low_index, high_index);
9542 break;
9543 default:
9544 error (_("Internal error: bad aggregate clause"));
9545 }
9546 }
9547
9548 return container;
9549 }
9550
9551 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9552 construct at *POS, updating *POS past the construct, given that
9553 the positions are relative to lower bound LOW, where HIGH is the
9554 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9555 updating *NUM_INDICES as needed. CONTAINER is as for
9556 assign_aggregate. */
9557 static void
9558 aggregate_assign_positional (struct value *container,
9559 struct value *lhs, struct expression *exp,
9560 int *pos, LONGEST *indices, int *num_indices,
9561 int max_indices, LONGEST low, LONGEST high)
9562 {
9563 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9564
9565 if (ind - 1 == high)
9566 warning (_("Extra components in aggregate ignored."));
9567 if (ind <= high)
9568 {
9569 add_component_interval (ind, ind, indices, num_indices, max_indices);
9570 *pos += 3;
9571 assign_component (container, lhs, ind, exp, pos);
9572 }
9573 else
9574 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9575 }
9576
9577 /* Assign into the components of LHS indexed by the OP_CHOICES
9578 construct at *POS, updating *POS past the construct, given that
9579 the allowable indices are LOW..HIGH. Record the indices assigned
9580 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9581 needed. CONTAINER is as for assign_aggregate. */
9582 static void
9583 aggregate_assign_from_choices (struct value *container,
9584 struct value *lhs, struct expression *exp,
9585 int *pos, LONGEST *indices, int *num_indices,
9586 int max_indices, LONGEST low, LONGEST high)
9587 {
9588 int j;
9589 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9590 int choice_pos, expr_pc;
9591 int is_array = ada_is_direct_array_type (value_type (lhs));
9592
9593 choice_pos = *pos += 3;
9594
9595 for (j = 0; j < n_choices; j += 1)
9596 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9597 expr_pc = *pos;
9598 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9599
9600 for (j = 0; j < n_choices; j += 1)
9601 {
9602 LONGEST lower, upper;
9603 enum exp_opcode op = exp->elts[choice_pos].opcode;
9604
9605 if (op == OP_DISCRETE_RANGE)
9606 {
9607 choice_pos += 1;
9608 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9609 EVAL_NORMAL));
9610 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9611 EVAL_NORMAL));
9612 }
9613 else if (is_array)
9614 {
9615 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9616 EVAL_NORMAL));
9617 upper = lower;
9618 }
9619 else
9620 {
9621 int ind;
9622 const char *name;
9623
9624 switch (op)
9625 {
9626 case OP_NAME:
9627 name = &exp->elts[choice_pos + 2].string;
9628 break;
9629 case OP_VAR_VALUE:
9630 name = exp->elts[choice_pos + 2].symbol->natural_name ();
9631 break;
9632 default:
9633 error (_("Invalid record component association."));
9634 }
9635 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9636 ind = 0;
9637 if (! find_struct_field (name, value_type (lhs), 0,
9638 NULL, NULL, NULL, NULL, &ind))
9639 error (_("Unknown component name: %s."), name);
9640 lower = upper = ind;
9641 }
9642
9643 if (lower <= upper && (lower < low || upper > high))
9644 error (_("Index in component association out of bounds."));
9645
9646 add_component_interval (lower, upper, indices, num_indices,
9647 max_indices);
9648 while (lower <= upper)
9649 {
9650 int pos1;
9651
9652 pos1 = expr_pc;
9653 assign_component (container, lhs, lower, exp, &pos1);
9654 lower += 1;
9655 }
9656 }
9657 }
9658
9659 /* Assign the value of the expression in the OP_OTHERS construct in
9660 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9661 have not been previously assigned. The index intervals already assigned
9662 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
9663 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
9664 static void
9665 aggregate_assign_others (struct value *container,
9666 struct value *lhs, struct expression *exp,
9667 int *pos, LONGEST *indices, int num_indices,
9668 LONGEST low, LONGEST high)
9669 {
9670 int i;
9671 int expr_pc = *pos + 1;
9672
9673 for (i = 0; i < num_indices - 2; i += 2)
9674 {
9675 LONGEST ind;
9676
9677 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9678 {
9679 int localpos;
9680
9681 localpos = expr_pc;
9682 assign_component (container, lhs, ind, exp, &localpos);
9683 }
9684 }
9685 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9686 }
9687
9688 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9689 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9690 modifying *SIZE as needed. It is an error if *SIZE exceeds
9691 MAX_SIZE. The resulting intervals do not overlap. */
9692 static void
9693 add_component_interval (LONGEST low, LONGEST high,
9694 LONGEST* indices, int *size, int max_size)
9695 {
9696 int i, j;
9697
9698 for (i = 0; i < *size; i += 2) {
9699 if (high >= indices[i] && low <= indices[i + 1])
9700 {
9701 int kh;
9702
9703 for (kh = i + 2; kh < *size; kh += 2)
9704 if (high < indices[kh])
9705 break;
9706 if (low < indices[i])
9707 indices[i] = low;
9708 indices[i + 1] = indices[kh - 1];
9709 if (high > indices[i + 1])
9710 indices[i + 1] = high;
9711 memcpy (indices + i + 2, indices + kh, *size - kh);
9712 *size -= kh - i - 2;
9713 return;
9714 }
9715 else if (high < indices[i])
9716 break;
9717 }
9718
9719 if (*size == max_size)
9720 error (_("Internal error: miscounted aggregate components."));
9721 *size += 2;
9722 for (j = *size-1; j >= i+2; j -= 1)
9723 indices[j] = indices[j - 2];
9724 indices[i] = low;
9725 indices[i + 1] = high;
9726 }
9727
9728 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9729 is different. */
9730
9731 static struct value *
9732 ada_value_cast (struct type *type, struct value *arg2)
9733 {
9734 if (type == ada_check_typedef (value_type (arg2)))
9735 return arg2;
9736
9737 if (ada_is_gnat_encoded_fixed_point_type (type))
9738 return cast_to_fixed (type, arg2);
9739
9740 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
9741 return cast_from_fixed (type, arg2);
9742
9743 return value_cast (type, arg2);
9744 }
9745
9746 /* Evaluating Ada expressions, and printing their result.
9747 ------------------------------------------------------
9748
9749 1. Introduction:
9750 ----------------
9751
9752 We usually evaluate an Ada expression in order to print its value.
9753 We also evaluate an expression in order to print its type, which
9754 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9755 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9756 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9757 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9758 similar.
9759
9760 Evaluating expressions is a little more complicated for Ada entities
9761 than it is for entities in languages such as C. The main reason for
9762 this is that Ada provides types whose definition might be dynamic.
9763 One example of such types is variant records. Or another example
9764 would be an array whose bounds can only be known at run time.
9765
9766 The following description is a general guide as to what should be
9767 done (and what should NOT be done) in order to evaluate an expression
9768 involving such types, and when. This does not cover how the semantic
9769 information is encoded by GNAT as this is covered separatly. For the
9770 document used as the reference for the GNAT encoding, see exp_dbug.ads
9771 in the GNAT sources.
9772
9773 Ideally, we should embed each part of this description next to its
9774 associated code. Unfortunately, the amount of code is so vast right
9775 now that it's hard to see whether the code handling a particular
9776 situation might be duplicated or not. One day, when the code is
9777 cleaned up, this guide might become redundant with the comments
9778 inserted in the code, and we might want to remove it.
9779
9780 2. ``Fixing'' an Entity, the Simple Case:
9781 -----------------------------------------
9782
9783 When evaluating Ada expressions, the tricky issue is that they may
9784 reference entities whose type contents and size are not statically
9785 known. Consider for instance a variant record:
9786
9787 type Rec (Empty : Boolean := True) is record
9788 case Empty is
9789 when True => null;
9790 when False => Value : Integer;
9791 end case;
9792 end record;
9793 Yes : Rec := (Empty => False, Value => 1);
9794 No : Rec := (empty => True);
9795
9796 The size and contents of that record depends on the value of the
9797 descriminant (Rec.Empty). At this point, neither the debugging
9798 information nor the associated type structure in GDB are able to
9799 express such dynamic types. So what the debugger does is to create
9800 "fixed" versions of the type that applies to the specific object.
9801 We also informally refer to this operation as "fixing" an object,
9802 which means creating its associated fixed type.
9803
9804 Example: when printing the value of variable "Yes" above, its fixed
9805 type would look like this:
9806
9807 type Rec is record
9808 Empty : Boolean;
9809 Value : Integer;
9810 end record;
9811
9812 On the other hand, if we printed the value of "No", its fixed type
9813 would become:
9814
9815 type Rec is record
9816 Empty : Boolean;
9817 end record;
9818
9819 Things become a little more complicated when trying to fix an entity
9820 with a dynamic type that directly contains another dynamic type,
9821 such as an array of variant records, for instance. There are
9822 two possible cases: Arrays, and records.
9823
9824 3. ``Fixing'' Arrays:
9825 ---------------------
9826
9827 The type structure in GDB describes an array in terms of its bounds,
9828 and the type of its elements. By design, all elements in the array
9829 have the same type and we cannot represent an array of variant elements
9830 using the current type structure in GDB. When fixing an array,
9831 we cannot fix the array element, as we would potentially need one
9832 fixed type per element of the array. As a result, the best we can do
9833 when fixing an array is to produce an array whose bounds and size
9834 are correct (allowing us to read it from memory), but without having
9835 touched its element type. Fixing each element will be done later,
9836 when (if) necessary.
9837
9838 Arrays are a little simpler to handle than records, because the same
9839 amount of memory is allocated for each element of the array, even if
9840 the amount of space actually used by each element differs from element
9841 to element. Consider for instance the following array of type Rec:
9842
9843 type Rec_Array is array (1 .. 2) of Rec;
9844
9845 The actual amount of memory occupied by each element might be different
9846 from element to element, depending on the value of their discriminant.
9847 But the amount of space reserved for each element in the array remains
9848 fixed regardless. So we simply need to compute that size using
9849 the debugging information available, from which we can then determine
9850 the array size (we multiply the number of elements of the array by
9851 the size of each element).
9852
9853 The simplest case is when we have an array of a constrained element
9854 type. For instance, consider the following type declarations:
9855
9856 type Bounded_String (Max_Size : Integer) is
9857 Length : Integer;
9858 Buffer : String (1 .. Max_Size);
9859 end record;
9860 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9861
9862 In this case, the compiler describes the array as an array of
9863 variable-size elements (identified by its XVS suffix) for which
9864 the size can be read in the parallel XVZ variable.
9865
9866 In the case of an array of an unconstrained element type, the compiler
9867 wraps the array element inside a private PAD type. This type should not
9868 be shown to the user, and must be "unwrap"'ed before printing. Note
9869 that we also use the adjective "aligner" in our code to designate
9870 these wrapper types.
9871
9872 In some cases, the size allocated for each element is statically
9873 known. In that case, the PAD type already has the correct size,
9874 and the array element should remain unfixed.
9875
9876 But there are cases when this size is not statically known.
9877 For instance, assuming that "Five" is an integer variable:
9878
9879 type Dynamic is array (1 .. Five) of Integer;
9880 type Wrapper (Has_Length : Boolean := False) is record
9881 Data : Dynamic;
9882 case Has_Length is
9883 when True => Length : Integer;
9884 when False => null;
9885 end case;
9886 end record;
9887 type Wrapper_Array is array (1 .. 2) of Wrapper;
9888
9889 Hello : Wrapper_Array := (others => (Has_Length => True,
9890 Data => (others => 17),
9891 Length => 1));
9892
9893
9894 The debugging info would describe variable Hello as being an
9895 array of a PAD type. The size of that PAD type is not statically
9896 known, but can be determined using a parallel XVZ variable.
9897 In that case, a copy of the PAD type with the correct size should
9898 be used for the fixed array.
9899
9900 3. ``Fixing'' record type objects:
9901 ----------------------------------
9902
9903 Things are slightly different from arrays in the case of dynamic
9904 record types. In this case, in order to compute the associated
9905 fixed type, we need to determine the size and offset of each of
9906 its components. This, in turn, requires us to compute the fixed
9907 type of each of these components.
9908
9909 Consider for instance the example:
9910
9911 type Bounded_String (Max_Size : Natural) is record
9912 Str : String (1 .. Max_Size);
9913 Length : Natural;
9914 end record;
9915 My_String : Bounded_String (Max_Size => 10);
9916
9917 In that case, the position of field "Length" depends on the size
9918 of field Str, which itself depends on the value of the Max_Size
9919 discriminant. In order to fix the type of variable My_String,
9920 we need to fix the type of field Str. Therefore, fixing a variant
9921 record requires us to fix each of its components.
9922
9923 However, if a component does not have a dynamic size, the component
9924 should not be fixed. In particular, fields that use a PAD type
9925 should not fixed. Here is an example where this might happen
9926 (assuming type Rec above):
9927
9928 type Container (Big : Boolean) is record
9929 First : Rec;
9930 After : Integer;
9931 case Big is
9932 when True => Another : Integer;
9933 when False => null;
9934 end case;
9935 end record;
9936 My_Container : Container := (Big => False,
9937 First => (Empty => True),
9938 After => 42);
9939
9940 In that example, the compiler creates a PAD type for component First,
9941 whose size is constant, and then positions the component After just
9942 right after it. The offset of component After is therefore constant
9943 in this case.
9944
9945 The debugger computes the position of each field based on an algorithm
9946 that uses, among other things, the actual position and size of the field
9947 preceding it. Let's now imagine that the user is trying to print
9948 the value of My_Container. If the type fixing was recursive, we would
9949 end up computing the offset of field After based on the size of the
9950 fixed version of field First. And since in our example First has
9951 only one actual field, the size of the fixed type is actually smaller
9952 than the amount of space allocated to that field, and thus we would
9953 compute the wrong offset of field After.
9954
9955 To make things more complicated, we need to watch out for dynamic
9956 components of variant records (identified by the ___XVL suffix in
9957 the component name). Even if the target type is a PAD type, the size
9958 of that type might not be statically known. So the PAD type needs
9959 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9960 we might end up with the wrong size for our component. This can be
9961 observed with the following type declarations:
9962
9963 type Octal is new Integer range 0 .. 7;
9964 type Octal_Array is array (Positive range <>) of Octal;
9965 pragma Pack (Octal_Array);
9966
9967 type Octal_Buffer (Size : Positive) is record
9968 Buffer : Octal_Array (1 .. Size);
9969 Length : Integer;
9970 end record;
9971
9972 In that case, Buffer is a PAD type whose size is unset and needs
9973 to be computed by fixing the unwrapped type.
9974
9975 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9976 ----------------------------------------------------------
9977
9978 Lastly, when should the sub-elements of an entity that remained unfixed
9979 thus far, be actually fixed?
9980
9981 The answer is: Only when referencing that element. For instance
9982 when selecting one component of a record, this specific component
9983 should be fixed at that point in time. Or when printing the value
9984 of a record, each component should be fixed before its value gets
9985 printed. Similarly for arrays, the element of the array should be
9986 fixed when printing each element of the array, or when extracting
9987 one element out of that array. On the other hand, fixing should
9988 not be performed on the elements when taking a slice of an array!
9989
9990 Note that one of the side effects of miscomputing the offset and
9991 size of each field is that we end up also miscomputing the size
9992 of the containing type. This can have adverse results when computing
9993 the value of an entity. GDB fetches the value of an entity based
9994 on the size of its type, and thus a wrong size causes GDB to fetch
9995 the wrong amount of memory. In the case where the computed size is
9996 too small, GDB fetches too little data to print the value of our
9997 entity. Results in this case are unpredictable, as we usually read
9998 past the buffer containing the data =:-o. */
9999
10000 /* Evaluate a subexpression of EXP, at index *POS, and return a value
10001 for that subexpression cast to TO_TYPE. Advance *POS over the
10002 subexpression. */
10003
10004 static value *
10005 ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10006 enum noside noside, struct type *to_type)
10007 {
10008 int pc = *pos;
10009
10010 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10011 || exp->elts[pc].opcode == OP_VAR_VALUE)
10012 {
10013 (*pos) += 4;
10014
10015 value *val;
10016 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10017 {
10018 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10019 return value_zero (to_type, not_lval);
10020
10021 val = evaluate_var_msym_value (noside,
10022 exp->elts[pc + 1].objfile,
10023 exp->elts[pc + 2].msymbol);
10024 }
10025 else
10026 val = evaluate_var_value (noside,
10027 exp->elts[pc + 1].block,
10028 exp->elts[pc + 2].symbol);
10029
10030 if (noside == EVAL_SKIP)
10031 return eval_skip_value (exp);
10032
10033 val = ada_value_cast (to_type, val);
10034
10035 /* Follow the Ada language semantics that do not allow taking
10036 an address of the result of a cast (view conversion in Ada). */
10037 if (VALUE_LVAL (val) == lval_memory)
10038 {
10039 if (value_lazy (val))
10040 value_fetch_lazy (val);
10041 VALUE_LVAL (val) = not_lval;
10042 }
10043 return val;
10044 }
10045
10046 value *val = evaluate_subexp (to_type, exp, pos, noside);
10047 if (noside == EVAL_SKIP)
10048 return eval_skip_value (exp);
10049 return ada_value_cast (to_type, val);
10050 }
10051
10052 /* Implement the evaluate_exp routine in the exp_descriptor structure
10053 for the Ada language. */
10054
10055 static struct value *
10056 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10057 int *pos, enum noside noside)
10058 {
10059 enum exp_opcode op;
10060 int tem;
10061 int pc;
10062 int preeval_pos;
10063 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10064 struct type *type;
10065 int nargs, oplen;
10066 struct value **argvec;
10067
10068 pc = *pos;
10069 *pos += 1;
10070 op = exp->elts[pc].opcode;
10071
10072 switch (op)
10073 {
10074 default:
10075 *pos -= 1;
10076 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10077
10078 if (noside == EVAL_NORMAL)
10079 arg1 = unwrap_value (arg1);
10080
10081 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10082 then we need to perform the conversion manually, because
10083 evaluate_subexp_standard doesn't do it. This conversion is
10084 necessary in Ada because the different kinds of float/fixed
10085 types in Ada have different representations.
10086
10087 Similarly, we need to perform the conversion from OP_LONG
10088 ourselves. */
10089 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
10090 arg1 = ada_value_cast (expect_type, arg1);
10091
10092 return arg1;
10093
10094 case OP_STRING:
10095 {
10096 struct value *result;
10097
10098 *pos -= 1;
10099 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10100 /* The result type will have code OP_STRING, bashed there from
10101 OP_ARRAY. Bash it back. */
10102 if (value_type (result)->code () == TYPE_CODE_STRING)
10103 value_type (result)->set_code (TYPE_CODE_ARRAY);
10104 return result;
10105 }
10106
10107 case UNOP_CAST:
10108 (*pos) += 2;
10109 type = exp->elts[pc + 1].type;
10110 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
10111
10112 case UNOP_QUAL:
10113 (*pos) += 2;
10114 type = exp->elts[pc + 1].type;
10115 return ada_evaluate_subexp (type, exp, pos, noside);
10116
10117 case BINOP_ASSIGN:
10118 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10119 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10120 {
10121 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10122 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10123 return arg1;
10124 return ada_value_assign (arg1, arg1);
10125 }
10126 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10127 except if the lhs of our assignment is a convenience variable.
10128 In the case of assigning to a convenience variable, the lhs
10129 should be exactly the result of the evaluation of the rhs. */
10130 type = value_type (arg1);
10131 if (VALUE_LVAL (arg1) == lval_internalvar)
10132 type = NULL;
10133 arg2 = evaluate_subexp (type, exp, pos, noside);
10134 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10135 return arg1;
10136 if (VALUE_LVAL (arg1) == lval_internalvar)
10137 {
10138 /* Nothing. */
10139 }
10140 else if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1)))
10141 arg2 = cast_to_fixed (value_type (arg1), arg2);
10142 else if (ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
10143 error
10144 (_("Fixed-point values must be assigned to fixed-point variables"));
10145 else
10146 arg2 = coerce_for_assign (value_type (arg1), arg2);
10147 return ada_value_assign (arg1, arg2);
10148
10149 case BINOP_ADD:
10150 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10151 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10152 if (noside == EVAL_SKIP)
10153 goto nosideret;
10154 if (value_type (arg1)->code () == TYPE_CODE_PTR)
10155 return (value_from_longest
10156 (value_type (arg1),
10157 value_as_long (arg1) + value_as_long (arg2)));
10158 if (value_type (arg2)->code () == TYPE_CODE_PTR)
10159 return (value_from_longest
10160 (value_type (arg2),
10161 value_as_long (arg1) + value_as_long (arg2)));
10162 if ((ada_is_gnat_encoded_fixed_point_type (value_type (arg1))
10163 || ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
10164 && value_type (arg1) != value_type (arg2))
10165 error (_("Operands of fixed-point addition must have the same type"));
10166 /* Do the addition, and cast the result to the type of the first
10167 argument. We cannot cast the result to a reference type, so if
10168 ARG1 is a reference type, find its underlying type. */
10169 type = value_type (arg1);
10170 while (type->code () == TYPE_CODE_REF)
10171 type = TYPE_TARGET_TYPE (type);
10172 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10173 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10174
10175 case BINOP_SUB:
10176 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10177 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10178 if (noside == EVAL_SKIP)
10179 goto nosideret;
10180 if (value_type (arg1)->code () == TYPE_CODE_PTR)
10181 return (value_from_longest
10182 (value_type (arg1),
10183 value_as_long (arg1) - value_as_long (arg2)));
10184 if (value_type (arg2)->code () == TYPE_CODE_PTR)
10185 return (value_from_longest
10186 (value_type (arg2),
10187 value_as_long (arg1) - value_as_long (arg2)));
10188 if ((ada_is_gnat_encoded_fixed_point_type (value_type (arg1))
10189 || ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
10190 && value_type (arg1) != value_type (arg2))
10191 error (_("Operands of fixed-point subtraction "
10192 "must have the same type"));
10193 /* Do the substraction, and cast the result to the type of the first
10194 argument. We cannot cast the result to a reference type, so if
10195 ARG1 is a reference type, find its underlying type. */
10196 type = value_type (arg1);
10197 while (type->code () == TYPE_CODE_REF)
10198 type = TYPE_TARGET_TYPE (type);
10199 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10200 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10201
10202 case BINOP_MUL:
10203 case BINOP_DIV:
10204 case BINOP_REM:
10205 case BINOP_MOD:
10206 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10207 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
10208 if (noside == EVAL_SKIP)
10209 goto nosideret;
10210 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10211 {
10212 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10213 return value_zero (value_type (arg1), not_lval);
10214 }
10215 else
10216 {
10217 type = builtin_type (exp->gdbarch)->builtin_double;
10218 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1)))
10219 arg1 = cast_from_fixed (type, arg1);
10220 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
10221 arg2 = cast_from_fixed (type, arg2);
10222 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10223 return ada_value_binop (arg1, arg2, op);
10224 }
10225
10226 case BINOP_EQUAL:
10227 case BINOP_NOTEQUAL:
10228 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10229 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10230 if (noside == EVAL_SKIP)
10231 goto nosideret;
10232 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10233 tem = 0;
10234 else
10235 {
10236 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10237 tem = ada_value_equal (arg1, arg2);
10238 }
10239 if (op == BINOP_NOTEQUAL)
10240 tem = !tem;
10241 type = language_bool_type (exp->language_defn, exp->gdbarch);
10242 return value_from_longest (type, (LONGEST) tem);
10243
10244 case UNOP_NEG:
10245 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10246 if (noside == EVAL_SKIP)
10247 goto nosideret;
10248 else if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1)))
10249 return value_cast (value_type (arg1), value_neg (arg1));
10250 else
10251 {
10252 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10253 return value_neg (arg1);
10254 }
10255
10256 case BINOP_LOGICAL_AND:
10257 case BINOP_LOGICAL_OR:
10258 case UNOP_LOGICAL_NOT:
10259 {
10260 struct value *val;
10261
10262 *pos -= 1;
10263 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10264 type = language_bool_type (exp->language_defn, exp->gdbarch);
10265 return value_cast (type, val);
10266 }
10267
10268 case BINOP_BITWISE_AND:
10269 case BINOP_BITWISE_IOR:
10270 case BINOP_BITWISE_XOR:
10271 {
10272 struct value *val;
10273
10274 arg1 = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10275 *pos = pc;
10276 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10277
10278 return value_cast (value_type (arg1), val);
10279 }
10280
10281 case OP_VAR_VALUE:
10282 *pos -= 1;
10283
10284 if (noside == EVAL_SKIP)
10285 {
10286 *pos += 4;
10287 goto nosideret;
10288 }
10289
10290 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10291 /* Only encountered when an unresolved symbol occurs in a
10292 context other than a function call, in which case, it is
10293 invalid. */
10294 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10295 exp->elts[pc + 2].symbol->print_name ());
10296
10297 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10298 {
10299 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10300 /* Check to see if this is a tagged type. We also need to handle
10301 the case where the type is a reference to a tagged type, but
10302 we have to be careful to exclude pointers to tagged types.
10303 The latter should be shown as usual (as a pointer), whereas
10304 a reference should mostly be transparent to the user. */
10305 if (ada_is_tagged_type (type, 0)
10306 || (type->code () == TYPE_CODE_REF
10307 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10308 {
10309 /* Tagged types are a little special in the fact that the real
10310 type is dynamic and can only be determined by inspecting the
10311 object's tag. This means that we need to get the object's
10312 value first (EVAL_NORMAL) and then extract the actual object
10313 type from its tag.
10314
10315 Note that we cannot skip the final step where we extract
10316 the object type from its tag, because the EVAL_NORMAL phase
10317 results in dynamic components being resolved into fixed ones.
10318 This can cause problems when trying to print the type
10319 description of tagged types whose parent has a dynamic size:
10320 We use the type name of the "_parent" component in order
10321 to print the name of the ancestor type in the type description.
10322 If that component had a dynamic size, the resolution into
10323 a fixed type would result in the loss of that type name,
10324 thus preventing us from printing the name of the ancestor
10325 type in the type description. */
10326 arg1 = evaluate_subexp (nullptr, exp, pos, EVAL_NORMAL);
10327
10328 if (type->code () != TYPE_CODE_REF)
10329 {
10330 struct type *actual_type;
10331
10332 actual_type = type_from_tag (ada_value_tag (arg1));
10333 if (actual_type == NULL)
10334 /* If, for some reason, we were unable to determine
10335 the actual type from the tag, then use the static
10336 approximation that we just computed as a fallback.
10337 This can happen if the debugging information is
10338 incomplete, for instance. */
10339 actual_type = type;
10340 return value_zero (actual_type, not_lval);
10341 }
10342 else
10343 {
10344 /* In the case of a ref, ada_coerce_ref takes care
10345 of determining the actual type. But the evaluation
10346 should return a ref as it should be valid to ask
10347 for its address; so rebuild a ref after coerce. */
10348 arg1 = ada_coerce_ref (arg1);
10349 return value_ref (arg1, TYPE_CODE_REF);
10350 }
10351 }
10352
10353 /* Records and unions for which GNAT encodings have been
10354 generated need to be statically fixed as well.
10355 Otherwise, non-static fixing produces a type where
10356 all dynamic properties are removed, which prevents "ptype"
10357 from being able to completely describe the type.
10358 For instance, a case statement in a variant record would be
10359 replaced by the relevant components based on the actual
10360 value of the discriminants. */
10361 if ((type->code () == TYPE_CODE_STRUCT
10362 && dynamic_template_type (type) != NULL)
10363 || (type->code () == TYPE_CODE_UNION
10364 && ada_find_parallel_type (type, "___XVU") != NULL))
10365 {
10366 *pos += 4;
10367 return value_zero (to_static_fixed_type (type), not_lval);
10368 }
10369 }
10370
10371 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10372 return ada_to_fixed_value (arg1);
10373
10374 case OP_FUNCALL:
10375 (*pos) += 2;
10376
10377 /* Allocate arg vector, including space for the function to be
10378 called in argvec[0] and a terminating NULL. */
10379 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10380 argvec = XALLOCAVEC (struct value *, nargs + 2);
10381
10382 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10383 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10384 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10385 exp->elts[pc + 5].symbol->print_name ());
10386 else
10387 {
10388 for (tem = 0; tem <= nargs; tem += 1)
10389 argvec[tem] = evaluate_subexp (nullptr, exp, pos, noside);
10390 argvec[tem] = 0;
10391
10392 if (noside == EVAL_SKIP)
10393 goto nosideret;
10394 }
10395
10396 if (ada_is_constrained_packed_array_type
10397 (desc_base_type (value_type (argvec[0]))))
10398 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10399 else if (value_type (argvec[0])->code () == TYPE_CODE_ARRAY
10400 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10401 /* This is a packed array that has already been fixed, and
10402 therefore already coerced to a simple array. Nothing further
10403 to do. */
10404 ;
10405 else if (value_type (argvec[0])->code () == TYPE_CODE_REF)
10406 {
10407 /* Make sure we dereference references so that all the code below
10408 feels like it's really handling the referenced value. Wrapping
10409 types (for alignment) may be there, so make sure we strip them as
10410 well. */
10411 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10412 }
10413 else if (value_type (argvec[0])->code () == TYPE_CODE_ARRAY
10414 && VALUE_LVAL (argvec[0]) == lval_memory)
10415 argvec[0] = value_addr (argvec[0]);
10416
10417 type = ada_check_typedef (value_type (argvec[0]));
10418
10419 /* Ada allows us to implicitly dereference arrays when subscripting
10420 them. So, if this is an array typedef (encoding use for array
10421 access types encoded as fat pointers), strip it now. */
10422 if (type->code () == TYPE_CODE_TYPEDEF)
10423 type = ada_typedef_target_type (type);
10424
10425 if (type->code () == TYPE_CODE_PTR)
10426 {
10427 switch (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ())
10428 {
10429 case TYPE_CODE_FUNC:
10430 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10431 break;
10432 case TYPE_CODE_ARRAY:
10433 break;
10434 case TYPE_CODE_STRUCT:
10435 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10436 argvec[0] = ada_value_ind (argvec[0]);
10437 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10438 break;
10439 default:
10440 error (_("cannot subscript or call something of type `%s'"),
10441 ada_type_name (value_type (argvec[0])));
10442 break;
10443 }
10444 }
10445
10446 switch (type->code ())
10447 {
10448 case TYPE_CODE_FUNC:
10449 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10450 {
10451 if (TYPE_TARGET_TYPE (type) == NULL)
10452 error_call_unknown_return_type (NULL);
10453 return allocate_value (TYPE_TARGET_TYPE (type));
10454 }
10455 return call_function_by_hand (argvec[0], NULL,
10456 gdb::make_array_view (argvec + 1,
10457 nargs));
10458 case TYPE_CODE_INTERNAL_FUNCTION:
10459 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10460 /* We don't know anything about what the internal
10461 function might return, but we have to return
10462 something. */
10463 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10464 not_lval);
10465 else
10466 return call_internal_function (exp->gdbarch, exp->language_defn,
10467 argvec[0], nargs, argvec + 1);
10468
10469 case TYPE_CODE_STRUCT:
10470 {
10471 int arity;
10472
10473 arity = ada_array_arity (type);
10474 type = ada_array_element_type (type, nargs);
10475 if (type == NULL)
10476 error (_("cannot subscript or call a record"));
10477 if (arity != nargs)
10478 error (_("wrong number of subscripts; expecting %d"), arity);
10479 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10480 return value_zero (ada_aligned_type (type), lval_memory);
10481 return
10482 unwrap_value (ada_value_subscript
10483 (argvec[0], nargs, argvec + 1));
10484 }
10485 case TYPE_CODE_ARRAY:
10486 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10487 {
10488 type = ada_array_element_type (type, nargs);
10489 if (type == NULL)
10490 error (_("element type of array unknown"));
10491 else
10492 return value_zero (ada_aligned_type (type), lval_memory);
10493 }
10494 return
10495 unwrap_value (ada_value_subscript
10496 (ada_coerce_to_simple_array (argvec[0]),
10497 nargs, argvec + 1));
10498 case TYPE_CODE_PTR: /* Pointer to array */
10499 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10500 {
10501 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10502 type = ada_array_element_type (type, nargs);
10503 if (type == NULL)
10504 error (_("element type of array unknown"));
10505 else
10506 return value_zero (ada_aligned_type (type), lval_memory);
10507 }
10508 return
10509 unwrap_value (ada_value_ptr_subscript (argvec[0],
10510 nargs, argvec + 1));
10511
10512 default:
10513 error (_("Attempt to index or call something other than an "
10514 "array or function"));
10515 }
10516
10517 case TERNOP_SLICE:
10518 {
10519 struct value *array = evaluate_subexp (nullptr, exp, pos, noside);
10520 struct value *low_bound_val
10521 = evaluate_subexp (nullptr, exp, pos, noside);
10522 struct value *high_bound_val
10523 = evaluate_subexp (nullptr, exp, pos, noside);
10524 LONGEST low_bound;
10525 LONGEST high_bound;
10526
10527 low_bound_val = coerce_ref (low_bound_val);
10528 high_bound_val = coerce_ref (high_bound_val);
10529 low_bound = value_as_long (low_bound_val);
10530 high_bound = value_as_long (high_bound_val);
10531
10532 if (noside == EVAL_SKIP)
10533 goto nosideret;
10534
10535 /* If this is a reference to an aligner type, then remove all
10536 the aligners. */
10537 if (value_type (array)->code () == TYPE_CODE_REF
10538 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10539 TYPE_TARGET_TYPE (value_type (array)) =
10540 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10541
10542 if (ada_is_constrained_packed_array_type (value_type (array)))
10543 error (_("cannot slice a packed array"));
10544
10545 /* If this is a reference to an array or an array lvalue,
10546 convert to a pointer. */
10547 if (value_type (array)->code () == TYPE_CODE_REF
10548 || (value_type (array)->code () == TYPE_CODE_ARRAY
10549 && VALUE_LVAL (array) == lval_memory))
10550 array = value_addr (array);
10551
10552 if (noside == EVAL_AVOID_SIDE_EFFECTS
10553 && ada_is_array_descriptor_type (ada_check_typedef
10554 (value_type (array))))
10555 return empty_array (ada_type_of_array (array, 0), low_bound,
10556 high_bound);
10557
10558 array = ada_coerce_to_simple_array_ptr (array);
10559
10560 /* If we have more than one level of pointer indirection,
10561 dereference the value until we get only one level. */
10562 while (value_type (array)->code () == TYPE_CODE_PTR
10563 && (TYPE_TARGET_TYPE (value_type (array))->code ()
10564 == TYPE_CODE_PTR))
10565 array = value_ind (array);
10566
10567 /* Make sure we really do have an array type before going further,
10568 to avoid a SEGV when trying to get the index type or the target
10569 type later down the road if the debug info generated by
10570 the compiler is incorrect or incomplete. */
10571 if (!ada_is_simple_array_type (value_type (array)))
10572 error (_("cannot take slice of non-array"));
10573
10574 if (ada_check_typedef (value_type (array))->code ()
10575 == TYPE_CODE_PTR)
10576 {
10577 struct type *type0 = ada_check_typedef (value_type (array));
10578
10579 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10580 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
10581 else
10582 {
10583 struct type *arr_type0 =
10584 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10585
10586 return ada_value_slice_from_ptr (array, arr_type0,
10587 longest_to_int (low_bound),
10588 longest_to_int (high_bound));
10589 }
10590 }
10591 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10592 return array;
10593 else if (high_bound < low_bound)
10594 return empty_array (value_type (array), low_bound, high_bound);
10595 else
10596 return ada_value_slice (array, longest_to_int (low_bound),
10597 longest_to_int (high_bound));
10598 }
10599
10600 case UNOP_IN_RANGE:
10601 (*pos) += 2;
10602 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10603 type = check_typedef (exp->elts[pc + 1].type);
10604
10605 if (noside == EVAL_SKIP)
10606 goto nosideret;
10607
10608 switch (type->code ())
10609 {
10610 default:
10611 lim_warning (_("Membership test incompletely implemented; "
10612 "always returns true"));
10613 type = language_bool_type (exp->language_defn, exp->gdbarch);
10614 return value_from_longest (type, (LONGEST) 1);
10615
10616 case TYPE_CODE_RANGE:
10617 arg2 = value_from_longest (type,
10618 type->bounds ()->low.const_val ());
10619 arg3 = value_from_longest (type,
10620 type->bounds ()->high.const_val ());
10621 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10622 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10623 type = language_bool_type (exp->language_defn, exp->gdbarch);
10624 return
10625 value_from_longest (type,
10626 (value_less (arg1, arg3)
10627 || value_equal (arg1, arg3))
10628 && (value_less (arg2, arg1)
10629 || value_equal (arg2, arg1)));
10630 }
10631
10632 case BINOP_IN_BOUNDS:
10633 (*pos) += 2;
10634 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10635 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
10636
10637 if (noside == EVAL_SKIP)
10638 goto nosideret;
10639
10640 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10641 {
10642 type = language_bool_type (exp->language_defn, exp->gdbarch);
10643 return value_zero (type, not_lval);
10644 }
10645
10646 tem = longest_to_int (exp->elts[pc + 1].longconst);
10647
10648 type = ada_index_type (value_type (arg2), tem, "range");
10649 if (!type)
10650 type = value_type (arg1);
10651
10652 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10653 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
10654
10655 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10656 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10657 type = language_bool_type (exp->language_defn, exp->gdbarch);
10658 return
10659 value_from_longest (type,
10660 (value_less (arg1, arg3)
10661 || value_equal (arg1, arg3))
10662 && (value_less (arg2, arg1)
10663 || value_equal (arg2, arg1)));
10664
10665 case TERNOP_IN_RANGE:
10666 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10667 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
10668 arg3 = evaluate_subexp (nullptr, exp, pos, noside);
10669
10670 if (noside == EVAL_SKIP)
10671 goto nosideret;
10672
10673 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10674 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10675 type = language_bool_type (exp->language_defn, exp->gdbarch);
10676 return
10677 value_from_longest (type,
10678 (value_less (arg1, arg3)
10679 || value_equal (arg1, arg3))
10680 && (value_less (arg2, arg1)
10681 || value_equal (arg2, arg1)));
10682
10683 case OP_ATR_FIRST:
10684 case OP_ATR_LAST:
10685 case OP_ATR_LENGTH:
10686 {
10687 struct type *type_arg;
10688
10689 if (exp->elts[*pos].opcode == OP_TYPE)
10690 {
10691 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
10692 arg1 = NULL;
10693 type_arg = check_typedef (exp->elts[pc + 2].type);
10694 }
10695 else
10696 {
10697 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10698 type_arg = NULL;
10699 }
10700
10701 if (exp->elts[*pos].opcode != OP_LONG)
10702 error (_("Invalid operand to '%s"), ada_attribute_name (op));
10703 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10704 *pos += 4;
10705
10706 if (noside == EVAL_SKIP)
10707 goto nosideret;
10708 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10709 {
10710 if (type_arg == NULL)
10711 type_arg = value_type (arg1);
10712
10713 if (ada_is_constrained_packed_array_type (type_arg))
10714 type_arg = decode_constrained_packed_array_type (type_arg);
10715
10716 if (!discrete_type_p (type_arg))
10717 {
10718 switch (op)
10719 {
10720 default: /* Should never happen. */
10721 error (_("unexpected attribute encountered"));
10722 case OP_ATR_FIRST:
10723 case OP_ATR_LAST:
10724 type_arg = ada_index_type (type_arg, tem,
10725 ada_attribute_name (op));
10726 break;
10727 case OP_ATR_LENGTH:
10728 type_arg = builtin_type (exp->gdbarch)->builtin_int;
10729 break;
10730 }
10731 }
10732
10733 return value_zero (type_arg, not_lval);
10734 }
10735 else if (type_arg == NULL)
10736 {
10737 arg1 = ada_coerce_ref (arg1);
10738
10739 if (ada_is_constrained_packed_array_type (value_type (arg1)))
10740 arg1 = ada_coerce_to_simple_array (arg1);
10741
10742 if (op == OP_ATR_LENGTH)
10743 type = builtin_type (exp->gdbarch)->builtin_int;
10744 else
10745 {
10746 type = ada_index_type (value_type (arg1), tem,
10747 ada_attribute_name (op));
10748 if (type == NULL)
10749 type = builtin_type (exp->gdbarch)->builtin_int;
10750 }
10751
10752 switch (op)
10753 {
10754 default: /* Should never happen. */
10755 error (_("unexpected attribute encountered"));
10756 case OP_ATR_FIRST:
10757 return value_from_longest
10758 (type, ada_array_bound (arg1, tem, 0));
10759 case OP_ATR_LAST:
10760 return value_from_longest
10761 (type, ada_array_bound (arg1, tem, 1));
10762 case OP_ATR_LENGTH:
10763 return value_from_longest
10764 (type, ada_array_length (arg1, tem));
10765 }
10766 }
10767 else if (discrete_type_p (type_arg))
10768 {
10769 struct type *range_type;
10770 const char *name = ada_type_name (type_arg);
10771
10772 range_type = NULL;
10773 if (name != NULL && type_arg->code () != TYPE_CODE_ENUM)
10774 range_type = to_fixed_range_type (type_arg, NULL);
10775 if (range_type == NULL)
10776 range_type = type_arg;
10777 switch (op)
10778 {
10779 default:
10780 error (_("unexpected attribute encountered"));
10781 case OP_ATR_FIRST:
10782 return value_from_longest
10783 (range_type, ada_discrete_type_low_bound (range_type));
10784 case OP_ATR_LAST:
10785 return value_from_longest
10786 (range_type, ada_discrete_type_high_bound (range_type));
10787 case OP_ATR_LENGTH:
10788 error (_("the 'length attribute applies only to array types"));
10789 }
10790 }
10791 else if (type_arg->code () == TYPE_CODE_FLT)
10792 error (_("unimplemented type attribute"));
10793 else
10794 {
10795 LONGEST low, high;
10796
10797 if (ada_is_constrained_packed_array_type (type_arg))
10798 type_arg = decode_constrained_packed_array_type (type_arg);
10799
10800 if (op == OP_ATR_LENGTH)
10801 type = builtin_type (exp->gdbarch)->builtin_int;
10802 else
10803 {
10804 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10805 if (type == NULL)
10806 type = builtin_type (exp->gdbarch)->builtin_int;
10807 }
10808
10809 switch (op)
10810 {
10811 default:
10812 error (_("unexpected attribute encountered"));
10813 case OP_ATR_FIRST:
10814 low = ada_array_bound_from_type (type_arg, tem, 0);
10815 return value_from_longest (type, low);
10816 case OP_ATR_LAST:
10817 high = ada_array_bound_from_type (type_arg, tem, 1);
10818 return value_from_longest (type, high);
10819 case OP_ATR_LENGTH:
10820 low = ada_array_bound_from_type (type_arg, tem, 0);
10821 high = ada_array_bound_from_type (type_arg, tem, 1);
10822 return value_from_longest (type, high - low + 1);
10823 }
10824 }
10825 }
10826
10827 case OP_ATR_TAG:
10828 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10829 if (noside == EVAL_SKIP)
10830 goto nosideret;
10831
10832 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10833 return value_zero (ada_tag_type (arg1), not_lval);
10834
10835 return ada_value_tag (arg1);
10836
10837 case OP_ATR_MIN:
10838 case OP_ATR_MAX:
10839 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
10840 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10841 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
10842 if (noside == EVAL_SKIP)
10843 goto nosideret;
10844 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10845 return value_zero (value_type (arg1), not_lval);
10846 else
10847 {
10848 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10849 return value_binop (arg1, arg2,
10850 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10851 }
10852
10853 case OP_ATR_MODULUS:
10854 {
10855 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
10856
10857 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
10858 if (noside == EVAL_SKIP)
10859 goto nosideret;
10860
10861 if (!ada_is_modular_type (type_arg))
10862 error (_("'modulus must be applied to modular type"));
10863
10864 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10865 ada_modulus (type_arg));
10866 }
10867
10868
10869 case OP_ATR_POS:
10870 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
10871 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10872 if (noside == EVAL_SKIP)
10873 goto nosideret;
10874 type = builtin_type (exp->gdbarch)->builtin_int;
10875 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10876 return value_zero (type, not_lval);
10877 else
10878 return value_pos_atr (type, arg1);
10879
10880 case OP_ATR_SIZE:
10881 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10882 type = value_type (arg1);
10883
10884 /* If the argument is a reference, then dereference its type, since
10885 the user is really asking for the size of the actual object,
10886 not the size of the pointer. */
10887 if (type->code () == TYPE_CODE_REF)
10888 type = TYPE_TARGET_TYPE (type);
10889
10890 if (noside == EVAL_SKIP)
10891 goto nosideret;
10892 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10893 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
10894 else
10895 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
10896 TARGET_CHAR_BIT * TYPE_LENGTH (type));
10897
10898 case OP_ATR_VAL:
10899 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
10900 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10901 type = exp->elts[pc + 2].type;
10902 if (noside == EVAL_SKIP)
10903 goto nosideret;
10904 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10905 return value_zero (type, not_lval);
10906 else
10907 return value_val_atr (type, arg1);
10908
10909 case BINOP_EXP:
10910 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10911 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
10912 if (noside == EVAL_SKIP)
10913 goto nosideret;
10914 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10915 return value_zero (value_type (arg1), not_lval);
10916 else
10917 {
10918 /* For integer exponentiation operations,
10919 only promote the first argument. */
10920 if (is_integral_type (value_type (arg2)))
10921 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10922 else
10923 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10924
10925 return value_binop (arg1, arg2, op);
10926 }
10927
10928 case UNOP_PLUS:
10929 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10930 if (noside == EVAL_SKIP)
10931 goto nosideret;
10932 else
10933 return arg1;
10934
10935 case UNOP_ABS:
10936 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10937 if (noside == EVAL_SKIP)
10938 goto nosideret;
10939 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10940 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
10941 return value_neg (arg1);
10942 else
10943 return arg1;
10944
10945 case UNOP_IND:
10946 preeval_pos = *pos;
10947 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10948 if (noside == EVAL_SKIP)
10949 goto nosideret;
10950 type = ada_check_typedef (value_type (arg1));
10951 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10952 {
10953 if (ada_is_array_descriptor_type (type))
10954 /* GDB allows dereferencing GNAT array descriptors. */
10955 {
10956 struct type *arrType = ada_type_of_array (arg1, 0);
10957
10958 if (arrType == NULL)
10959 error (_("Attempt to dereference null array pointer."));
10960 return value_at_lazy (arrType, 0);
10961 }
10962 else if (type->code () == TYPE_CODE_PTR
10963 || type->code () == TYPE_CODE_REF
10964 /* In C you can dereference an array to get the 1st elt. */
10965 || type->code () == TYPE_CODE_ARRAY)
10966 {
10967 /* As mentioned in the OP_VAR_VALUE case, tagged types can
10968 only be determined by inspecting the object's tag.
10969 This means that we need to evaluate completely the
10970 expression in order to get its type. */
10971
10972 if ((type->code () == TYPE_CODE_REF
10973 || type->code () == TYPE_CODE_PTR)
10974 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
10975 {
10976 arg1
10977 = evaluate_subexp (nullptr, exp, &preeval_pos, EVAL_NORMAL);
10978 type = value_type (ada_value_ind (arg1));
10979 }
10980 else
10981 {
10982 type = to_static_fixed_type
10983 (ada_aligned_type
10984 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10985 }
10986 ada_ensure_varsize_limit (type);
10987 return value_zero (type, lval_memory);
10988 }
10989 else if (type->code () == TYPE_CODE_INT)
10990 {
10991 /* GDB allows dereferencing an int. */
10992 if (expect_type == NULL)
10993 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10994 lval_memory);
10995 else
10996 {
10997 expect_type =
10998 to_static_fixed_type (ada_aligned_type (expect_type));
10999 return value_zero (expect_type, lval_memory);
11000 }
11001 }
11002 else
11003 error (_("Attempt to take contents of a non-pointer value."));
11004 }
11005 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11006 type = ada_check_typedef (value_type (arg1));
11007
11008 if (type->code () == TYPE_CODE_INT)
11009 /* GDB allows dereferencing an int. If we were given
11010 the expect_type, then use that as the target type.
11011 Otherwise, assume that the target type is an int. */
11012 {
11013 if (expect_type != NULL)
11014 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11015 arg1));
11016 else
11017 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11018 (CORE_ADDR) value_as_address (arg1));
11019 }
11020
11021 if (ada_is_array_descriptor_type (type))
11022 /* GDB allows dereferencing GNAT array descriptors. */
11023 return ada_coerce_to_simple_array (arg1);
11024 else
11025 return ada_value_ind (arg1);
11026
11027 case STRUCTOP_STRUCT:
11028 tem = longest_to_int (exp->elts[pc + 1].longconst);
11029 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11030 preeval_pos = *pos;
11031 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
11032 if (noside == EVAL_SKIP)
11033 goto nosideret;
11034 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11035 {
11036 struct type *type1 = value_type (arg1);
11037
11038 if (ada_is_tagged_type (type1, 1))
11039 {
11040 type = ada_lookup_struct_elt_type (type1,
11041 &exp->elts[pc + 2].string,
11042 1, 1);
11043
11044 /* If the field is not found, check if it exists in the
11045 extension of this object's type. This means that we
11046 need to evaluate completely the expression. */
11047
11048 if (type == NULL)
11049 {
11050 arg1
11051 = evaluate_subexp (nullptr, exp, &preeval_pos, EVAL_NORMAL);
11052 arg1 = ada_value_struct_elt (arg1,
11053 &exp->elts[pc + 2].string,
11054 0);
11055 arg1 = unwrap_value (arg1);
11056 type = value_type (ada_to_fixed_value (arg1));
11057 }
11058 }
11059 else
11060 type =
11061 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11062 0);
11063
11064 return value_zero (ada_aligned_type (type), lval_memory);
11065 }
11066 else
11067 {
11068 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11069 arg1 = unwrap_value (arg1);
11070 return ada_to_fixed_value (arg1);
11071 }
11072
11073 case OP_TYPE:
11074 /* The value is not supposed to be used. This is here to make it
11075 easier to accommodate expressions that contain types. */
11076 (*pos) += 2;
11077 if (noside == EVAL_SKIP)
11078 goto nosideret;
11079 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11080 return allocate_value (exp->elts[pc + 1].type);
11081 else
11082 error (_("Attempt to use a type name as an expression"));
11083
11084 case OP_AGGREGATE:
11085 case OP_CHOICES:
11086 case OP_OTHERS:
11087 case OP_DISCRETE_RANGE:
11088 case OP_POSITIONAL:
11089 case OP_NAME:
11090 if (noside == EVAL_NORMAL)
11091 switch (op)
11092 {
11093 case OP_NAME:
11094 error (_("Undefined name, ambiguous name, or renaming used in "
11095 "component association: %s."), &exp->elts[pc+2].string);
11096 case OP_AGGREGATE:
11097 error (_("Aggregates only allowed on the right of an assignment"));
11098 default:
11099 internal_error (__FILE__, __LINE__,
11100 _("aggregate apparently mangled"));
11101 }
11102
11103 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11104 *pos += oplen - 1;
11105 for (tem = 0; tem < nargs; tem += 1)
11106 ada_evaluate_subexp (NULL, exp, pos, noside);
11107 goto nosideret;
11108 }
11109
11110 nosideret:
11111 return eval_skip_value (exp);
11112 }
11113 \f
11114
11115 /* Fixed point */
11116
11117 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11118 type name that encodes the 'small and 'delta information.
11119 Otherwise, return NULL. */
11120
11121 static const char *
11122 gnat_encoded_fixed_type_info (struct type *type)
11123 {
11124 const char *name = ada_type_name (type);
11125 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : type->code ();
11126
11127 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11128 {
11129 const char *tail = strstr (name, "___XF_");
11130
11131 if (tail == NULL)
11132 return NULL;
11133 else
11134 return tail + 5;
11135 }
11136 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11137 return gnat_encoded_fixed_type_info (TYPE_TARGET_TYPE (type));
11138 else
11139 return NULL;
11140 }
11141
11142 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11143
11144 int
11145 ada_is_gnat_encoded_fixed_point_type (struct type *type)
11146 {
11147 return gnat_encoded_fixed_type_info (type) != NULL;
11148 }
11149
11150 /* Return non-zero iff TYPE represents a System.Address type. */
11151
11152 int
11153 ada_is_system_address_type (struct type *type)
11154 {
11155 return (type->name () && strcmp (type->name (), "system__address") == 0);
11156 }
11157
11158 /* Assuming that TYPE is the representation of an Ada fixed-point
11159 type, return the target floating-point type to be used to represent
11160 of this type during internal computation. */
11161
11162 static struct type *
11163 ada_scaling_type (struct type *type)
11164 {
11165 return builtin_type (get_type_arch (type))->builtin_long_double;
11166 }
11167
11168 /* Assuming that TYPE is the representation of an Ada fixed-point
11169 type, return its delta, or NULL if the type is malformed and the
11170 delta cannot be determined. */
11171
11172 struct value *
11173 gnat_encoded_fixed_point_delta (struct type *type)
11174 {
11175 const char *encoding = gnat_encoded_fixed_type_info (type);
11176 struct type *scale_type = ada_scaling_type (type);
11177
11178 long long num, den;
11179
11180 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11181 return nullptr;
11182 else
11183 return value_binop (value_from_longest (scale_type, num),
11184 value_from_longest (scale_type, den), BINOP_DIV);
11185 }
11186
11187 /* Assuming that ada_is_gnat_encoded_fixed_point_type (TYPE), return
11188 the scaling factor ('SMALL value) associated with the type. */
11189
11190 struct value *
11191 ada_scaling_factor (struct type *type)
11192 {
11193 const char *encoding = gnat_encoded_fixed_type_info (type);
11194 struct type *scale_type = ada_scaling_type (type);
11195
11196 long long num0, den0, num1, den1;
11197 int n;
11198
11199 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
11200 &num0, &den0, &num1, &den1);
11201
11202 if (n < 2)
11203 return value_from_longest (scale_type, 1);
11204 else if (n == 4)
11205 return value_binop (value_from_longest (scale_type, num1),
11206 value_from_longest (scale_type, den1), BINOP_DIV);
11207 else
11208 return value_binop (value_from_longest (scale_type, num0),
11209 value_from_longest (scale_type, den0), BINOP_DIV);
11210 }
11211
11212 \f
11213
11214 /* Range types */
11215
11216 /* Scan STR beginning at position K for a discriminant name, and
11217 return the value of that discriminant field of DVAL in *PX. If
11218 PNEW_K is not null, put the position of the character beyond the
11219 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11220 not alter *PX and *PNEW_K if unsuccessful. */
11221
11222 static int
11223 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11224 int *pnew_k)
11225 {
11226 static char *bound_buffer = NULL;
11227 static size_t bound_buffer_len = 0;
11228 const char *pstart, *pend, *bound;
11229 struct value *bound_val;
11230
11231 if (dval == NULL || str == NULL || str[k] == '\0')
11232 return 0;
11233
11234 pstart = str + k;
11235 pend = strstr (pstart, "__");
11236 if (pend == NULL)
11237 {
11238 bound = pstart;
11239 k += strlen (bound);
11240 }
11241 else
11242 {
11243 int len = pend - pstart;
11244
11245 /* Strip __ and beyond. */
11246 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11247 strncpy (bound_buffer, pstart, len);
11248 bound_buffer[len] = '\0';
11249
11250 bound = bound_buffer;
11251 k = pend - str;
11252 }
11253
11254 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11255 if (bound_val == NULL)
11256 return 0;
11257
11258 *px = value_as_long (bound_val);
11259 if (pnew_k != NULL)
11260 *pnew_k = k;
11261 return 1;
11262 }
11263
11264 /* Value of variable named NAME in the current environment. If
11265 no such variable found, then if ERR_MSG is null, returns 0, and
11266 otherwise causes an error with message ERR_MSG. */
11267
11268 static struct value *
11269 get_var_value (const char *name, const char *err_msg)
11270 {
11271 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
11272
11273 std::vector<struct block_symbol> syms;
11274 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11275 get_selected_block (0),
11276 VAR_DOMAIN, &syms, 1);
11277
11278 if (nsyms != 1)
11279 {
11280 if (err_msg == NULL)
11281 return 0;
11282 else
11283 error (("%s"), err_msg);
11284 }
11285
11286 return value_of_variable (syms[0].symbol, syms[0].block);
11287 }
11288
11289 /* Value of integer variable named NAME in the current environment.
11290 If no such variable is found, returns false. Otherwise, sets VALUE
11291 to the variable's value and returns true. */
11292
11293 bool
11294 get_int_var_value (const char *name, LONGEST &value)
11295 {
11296 struct value *var_val = get_var_value (name, 0);
11297
11298 if (var_val == 0)
11299 return false;
11300
11301 value = value_as_long (var_val);
11302 return true;
11303 }
11304
11305
11306 /* Return a range type whose base type is that of the range type named
11307 NAME in the current environment, and whose bounds are calculated
11308 from NAME according to the GNAT range encoding conventions.
11309 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11310 corresponding range type from debug information; fall back to using it
11311 if symbol lookup fails. If a new type must be created, allocate it
11312 like ORIG_TYPE was. The bounds information, in general, is encoded
11313 in NAME, the base type given in the named range type. */
11314
11315 static struct type *
11316 to_fixed_range_type (struct type *raw_type, struct value *dval)
11317 {
11318 const char *name;
11319 struct type *base_type;
11320 const char *subtype_info;
11321
11322 gdb_assert (raw_type != NULL);
11323 gdb_assert (raw_type->name () != NULL);
11324
11325 if (raw_type->code () == TYPE_CODE_RANGE)
11326 base_type = TYPE_TARGET_TYPE (raw_type);
11327 else
11328 base_type = raw_type;
11329
11330 name = raw_type->name ();
11331 subtype_info = strstr (name, "___XD");
11332 if (subtype_info == NULL)
11333 {
11334 LONGEST L = ada_discrete_type_low_bound (raw_type);
11335 LONGEST U = ada_discrete_type_high_bound (raw_type);
11336
11337 if (L < INT_MIN || U > INT_MAX)
11338 return raw_type;
11339 else
11340 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11341 L, U);
11342 }
11343 else
11344 {
11345 static char *name_buf = NULL;
11346 static size_t name_len = 0;
11347 int prefix_len = subtype_info - name;
11348 LONGEST L, U;
11349 struct type *type;
11350 const char *bounds_str;
11351 int n;
11352
11353 GROW_VECT (name_buf, name_len, prefix_len + 5);
11354 strncpy (name_buf, name, prefix_len);
11355 name_buf[prefix_len] = '\0';
11356
11357 subtype_info += 5;
11358 bounds_str = strchr (subtype_info, '_');
11359 n = 1;
11360
11361 if (*subtype_info == 'L')
11362 {
11363 if (!ada_scan_number (bounds_str, n, &L, &n)
11364 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11365 return raw_type;
11366 if (bounds_str[n] == '_')
11367 n += 2;
11368 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11369 n += 1;
11370 subtype_info += 1;
11371 }
11372 else
11373 {
11374 strcpy (name_buf + prefix_len, "___L");
11375 if (!get_int_var_value (name_buf, L))
11376 {
11377 lim_warning (_("Unknown lower bound, using 1."));
11378 L = 1;
11379 }
11380 }
11381
11382 if (*subtype_info == 'U')
11383 {
11384 if (!ada_scan_number (bounds_str, n, &U, &n)
11385 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11386 return raw_type;
11387 }
11388 else
11389 {
11390 strcpy (name_buf + prefix_len, "___U");
11391 if (!get_int_var_value (name_buf, U))
11392 {
11393 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11394 U = L;
11395 }
11396 }
11397
11398 type = create_static_range_type (alloc_type_copy (raw_type),
11399 base_type, L, U);
11400 /* create_static_range_type alters the resulting type's length
11401 to match the size of the base_type, which is not what we want.
11402 Set it back to the original range type's length. */
11403 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
11404 type->set_name (name);
11405 return type;
11406 }
11407 }
11408
11409 /* True iff NAME is the name of a range type. */
11410
11411 int
11412 ada_is_range_type_name (const char *name)
11413 {
11414 return (name != NULL && strstr (name, "___XD"));
11415 }
11416 \f
11417
11418 /* Modular types */
11419
11420 /* True iff TYPE is an Ada modular type. */
11421
11422 int
11423 ada_is_modular_type (struct type *type)
11424 {
11425 struct type *subranged_type = get_base_type (type);
11426
11427 return (subranged_type != NULL && type->code () == TYPE_CODE_RANGE
11428 && subranged_type->code () == TYPE_CODE_INT
11429 && subranged_type->is_unsigned ());
11430 }
11431
11432 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11433
11434 ULONGEST
11435 ada_modulus (struct type *type)
11436 {
11437 const dynamic_prop &high = type->bounds ()->high;
11438
11439 if (high.kind () == PROP_CONST)
11440 return (ULONGEST) high.const_val () + 1;
11441
11442 /* If TYPE is unresolved, the high bound might be a location list. Return
11443 0, for lack of a better value to return. */
11444 return 0;
11445 }
11446 \f
11447
11448 /* Ada exception catchpoint support:
11449 ---------------------------------
11450
11451 We support 3 kinds of exception catchpoints:
11452 . catchpoints on Ada exceptions
11453 . catchpoints on unhandled Ada exceptions
11454 . catchpoints on failed assertions
11455
11456 Exceptions raised during failed assertions, or unhandled exceptions
11457 could perfectly be caught with the general catchpoint on Ada exceptions.
11458 However, we can easily differentiate these two special cases, and having
11459 the option to distinguish these two cases from the rest can be useful
11460 to zero-in on certain situations.
11461
11462 Exception catchpoints are a specialized form of breakpoint,
11463 since they rely on inserting breakpoints inside known routines
11464 of the GNAT runtime. The implementation therefore uses a standard
11465 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11466 of breakpoint_ops.
11467
11468 Support in the runtime for exception catchpoints have been changed
11469 a few times already, and these changes affect the implementation
11470 of these catchpoints. In order to be able to support several
11471 variants of the runtime, we use a sniffer that will determine
11472 the runtime variant used by the program being debugged. */
11473
11474 /* Ada's standard exceptions.
11475
11476 The Ada 83 standard also defined Numeric_Error. But there so many
11477 situations where it was unclear from the Ada 83 Reference Manual
11478 (RM) whether Constraint_Error or Numeric_Error should be raised,
11479 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11480 Interpretation saying that anytime the RM says that Numeric_Error
11481 should be raised, the implementation may raise Constraint_Error.
11482 Ada 95 went one step further and pretty much removed Numeric_Error
11483 from the list of standard exceptions (it made it a renaming of
11484 Constraint_Error, to help preserve compatibility when compiling
11485 an Ada83 compiler). As such, we do not include Numeric_Error from
11486 this list of standard exceptions. */
11487
11488 static const char * const standard_exc[] = {
11489 "constraint_error",
11490 "program_error",
11491 "storage_error",
11492 "tasking_error"
11493 };
11494
11495 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11496
11497 /* A structure that describes how to support exception catchpoints
11498 for a given executable. */
11499
11500 struct exception_support_info
11501 {
11502 /* The name of the symbol to break on in order to insert
11503 a catchpoint on exceptions. */
11504 const char *catch_exception_sym;
11505
11506 /* The name of the symbol to break on in order to insert
11507 a catchpoint on unhandled exceptions. */
11508 const char *catch_exception_unhandled_sym;
11509
11510 /* The name of the symbol to break on in order to insert
11511 a catchpoint on failed assertions. */
11512 const char *catch_assert_sym;
11513
11514 /* The name of the symbol to break on in order to insert
11515 a catchpoint on exception handling. */
11516 const char *catch_handlers_sym;
11517
11518 /* Assuming that the inferior just triggered an unhandled exception
11519 catchpoint, this function is responsible for returning the address
11520 in inferior memory where the name of that exception is stored.
11521 Return zero if the address could not be computed. */
11522 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11523 };
11524
11525 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11526 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11527
11528 /* The following exception support info structure describes how to
11529 implement exception catchpoints with the latest version of the
11530 Ada runtime (as of 2019-08-??). */
11531
11532 static const struct exception_support_info default_exception_support_info =
11533 {
11534 "__gnat_debug_raise_exception", /* catch_exception_sym */
11535 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11536 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11537 "__gnat_begin_handler_v1", /* catch_handlers_sym */
11538 ada_unhandled_exception_name_addr
11539 };
11540
11541 /* The following exception support info structure describes how to
11542 implement exception catchpoints with an earlier version of the
11543 Ada runtime (as of 2007-03-06) using v0 of the EH ABI. */
11544
11545 static const struct exception_support_info exception_support_info_v0 =
11546 {
11547 "__gnat_debug_raise_exception", /* catch_exception_sym */
11548 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11549 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11550 "__gnat_begin_handler", /* catch_handlers_sym */
11551 ada_unhandled_exception_name_addr
11552 };
11553
11554 /* The following exception support info structure describes how to
11555 implement exception catchpoints with a slightly older version
11556 of the Ada runtime. */
11557
11558 static const struct exception_support_info exception_support_info_fallback =
11559 {
11560 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11561 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11562 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11563 "__gnat_begin_handler", /* catch_handlers_sym */
11564 ada_unhandled_exception_name_addr_from_raise
11565 };
11566
11567 /* Return nonzero if we can detect the exception support routines
11568 described in EINFO.
11569
11570 This function errors out if an abnormal situation is detected
11571 (for instance, if we find the exception support routines, but
11572 that support is found to be incomplete). */
11573
11574 static int
11575 ada_has_this_exception_support (const struct exception_support_info *einfo)
11576 {
11577 struct symbol *sym;
11578
11579 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11580 that should be compiled with debugging information. As a result, we
11581 expect to find that symbol in the symtabs. */
11582
11583 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11584 if (sym == NULL)
11585 {
11586 /* Perhaps we did not find our symbol because the Ada runtime was
11587 compiled without debugging info, or simply stripped of it.
11588 It happens on some GNU/Linux distributions for instance, where
11589 users have to install a separate debug package in order to get
11590 the runtime's debugging info. In that situation, let the user
11591 know why we cannot insert an Ada exception catchpoint.
11592
11593 Note: Just for the purpose of inserting our Ada exception
11594 catchpoint, we could rely purely on the associated minimal symbol.
11595 But we would be operating in degraded mode anyway, since we are
11596 still lacking the debugging info needed later on to extract
11597 the name of the exception being raised (this name is printed in
11598 the catchpoint message, and is also used when trying to catch
11599 a specific exception). We do not handle this case for now. */
11600 struct bound_minimal_symbol msym
11601 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11602
11603 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11604 error (_("Your Ada runtime appears to be missing some debugging "
11605 "information.\nCannot insert Ada exception catchpoint "
11606 "in this configuration."));
11607
11608 return 0;
11609 }
11610
11611 /* Make sure that the symbol we found corresponds to a function. */
11612
11613 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11614 {
11615 error (_("Symbol \"%s\" is not a function (class = %d)"),
11616 sym->linkage_name (), SYMBOL_CLASS (sym));
11617 return 0;
11618 }
11619
11620 sym = standard_lookup (einfo->catch_handlers_sym, NULL, VAR_DOMAIN);
11621 if (sym == NULL)
11622 {
11623 struct bound_minimal_symbol msym
11624 = lookup_minimal_symbol (einfo->catch_handlers_sym, NULL, NULL);
11625
11626 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11627 error (_("Your Ada runtime appears to be missing some debugging "
11628 "information.\nCannot insert Ada exception catchpoint "
11629 "in this configuration."));
11630
11631 return 0;
11632 }
11633
11634 /* Make sure that the symbol we found corresponds to a function. */
11635
11636 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11637 {
11638 error (_("Symbol \"%s\" is not a function (class = %d)"),
11639 sym->linkage_name (), SYMBOL_CLASS (sym));
11640 return 0;
11641 }
11642
11643 return 1;
11644 }
11645
11646 /* Inspect the Ada runtime and determine which exception info structure
11647 should be used to provide support for exception catchpoints.
11648
11649 This function will always set the per-inferior exception_info,
11650 or raise an error. */
11651
11652 static void
11653 ada_exception_support_info_sniffer (void)
11654 {
11655 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11656
11657 /* If the exception info is already known, then no need to recompute it. */
11658 if (data->exception_info != NULL)
11659 return;
11660
11661 /* Check the latest (default) exception support info. */
11662 if (ada_has_this_exception_support (&default_exception_support_info))
11663 {
11664 data->exception_info = &default_exception_support_info;
11665 return;
11666 }
11667
11668 /* Try the v0 exception suport info. */
11669 if (ada_has_this_exception_support (&exception_support_info_v0))
11670 {
11671 data->exception_info = &exception_support_info_v0;
11672 return;
11673 }
11674
11675 /* Try our fallback exception suport info. */
11676 if (ada_has_this_exception_support (&exception_support_info_fallback))
11677 {
11678 data->exception_info = &exception_support_info_fallback;
11679 return;
11680 }
11681
11682 /* Sometimes, it is normal for us to not be able to find the routine
11683 we are looking for. This happens when the program is linked with
11684 the shared version of the GNAT runtime, and the program has not been
11685 started yet. Inform the user of these two possible causes if
11686 applicable. */
11687
11688 if (ada_update_initial_language (language_unknown) != language_ada)
11689 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11690
11691 /* If the symbol does not exist, then check that the program is
11692 already started, to make sure that shared libraries have been
11693 loaded. If it is not started, this may mean that the symbol is
11694 in a shared library. */
11695
11696 if (inferior_ptid.pid () == 0)
11697 error (_("Unable to insert catchpoint. Try to start the program first."));
11698
11699 /* At this point, we know that we are debugging an Ada program and
11700 that the inferior has been started, but we still are not able to
11701 find the run-time symbols. That can mean that we are in
11702 configurable run time mode, or that a-except as been optimized
11703 out by the linker... In any case, at this point it is not worth
11704 supporting this feature. */
11705
11706 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11707 }
11708
11709 /* True iff FRAME is very likely to be that of a function that is
11710 part of the runtime system. This is all very heuristic, but is
11711 intended to be used as advice as to what frames are uninteresting
11712 to most users. */
11713
11714 static int
11715 is_known_support_routine (struct frame_info *frame)
11716 {
11717 enum language func_lang;
11718 int i;
11719 const char *fullname;
11720
11721 /* If this code does not have any debugging information (no symtab),
11722 This cannot be any user code. */
11723
11724 symtab_and_line sal = find_frame_sal (frame);
11725 if (sal.symtab == NULL)
11726 return 1;
11727
11728 /* If there is a symtab, but the associated source file cannot be
11729 located, then assume this is not user code: Selecting a frame
11730 for which we cannot display the code would not be very helpful
11731 for the user. This should also take care of case such as VxWorks
11732 where the kernel has some debugging info provided for a few units. */
11733
11734 fullname = symtab_to_fullname (sal.symtab);
11735 if (access (fullname, R_OK) != 0)
11736 return 1;
11737
11738 /* Check the unit filename against the Ada runtime file naming.
11739 We also check the name of the objfile against the name of some
11740 known system libraries that sometimes come with debugging info
11741 too. */
11742
11743 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11744 {
11745 re_comp (known_runtime_file_name_patterns[i]);
11746 if (re_exec (lbasename (sal.symtab->filename)))
11747 return 1;
11748 if (SYMTAB_OBJFILE (sal.symtab) != NULL
11749 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
11750 return 1;
11751 }
11752
11753 /* Check whether the function is a GNAT-generated entity. */
11754
11755 gdb::unique_xmalloc_ptr<char> func_name
11756 = find_frame_funname (frame, &func_lang, NULL);
11757 if (func_name == NULL)
11758 return 1;
11759
11760 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11761 {
11762 re_comp (known_auxiliary_function_name_patterns[i]);
11763 if (re_exec (func_name.get ()))
11764 return 1;
11765 }
11766
11767 return 0;
11768 }
11769
11770 /* Find the first frame that contains debugging information and that is not
11771 part of the Ada run-time, starting from FI and moving upward. */
11772
11773 void
11774 ada_find_printable_frame (struct frame_info *fi)
11775 {
11776 for (; fi != NULL; fi = get_prev_frame (fi))
11777 {
11778 if (!is_known_support_routine (fi))
11779 {
11780 select_frame (fi);
11781 break;
11782 }
11783 }
11784
11785 }
11786
11787 /* Assuming that the inferior just triggered an unhandled exception
11788 catchpoint, return the address in inferior memory where the name
11789 of the exception is stored.
11790
11791 Return zero if the address could not be computed. */
11792
11793 static CORE_ADDR
11794 ada_unhandled_exception_name_addr (void)
11795 {
11796 return parse_and_eval_address ("e.full_name");
11797 }
11798
11799 /* Same as ada_unhandled_exception_name_addr, except that this function
11800 should be used when the inferior uses an older version of the runtime,
11801 where the exception name needs to be extracted from a specific frame
11802 several frames up in the callstack. */
11803
11804 static CORE_ADDR
11805 ada_unhandled_exception_name_addr_from_raise (void)
11806 {
11807 int frame_level;
11808 struct frame_info *fi;
11809 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11810
11811 /* To determine the name of this exception, we need to select
11812 the frame corresponding to RAISE_SYM_NAME. This frame is
11813 at least 3 levels up, so we simply skip the first 3 frames
11814 without checking the name of their associated function. */
11815 fi = get_current_frame ();
11816 for (frame_level = 0; frame_level < 3; frame_level += 1)
11817 if (fi != NULL)
11818 fi = get_prev_frame (fi);
11819
11820 while (fi != NULL)
11821 {
11822 enum language func_lang;
11823
11824 gdb::unique_xmalloc_ptr<char> func_name
11825 = find_frame_funname (fi, &func_lang, NULL);
11826 if (func_name != NULL)
11827 {
11828 if (strcmp (func_name.get (),
11829 data->exception_info->catch_exception_sym) == 0)
11830 break; /* We found the frame we were looking for... */
11831 }
11832 fi = get_prev_frame (fi);
11833 }
11834
11835 if (fi == NULL)
11836 return 0;
11837
11838 select_frame (fi);
11839 return parse_and_eval_address ("id.full_name");
11840 }
11841
11842 /* Assuming the inferior just triggered an Ada exception catchpoint
11843 (of any type), return the address in inferior memory where the name
11844 of the exception is stored, if applicable.
11845
11846 Assumes the selected frame is the current frame.
11847
11848 Return zero if the address could not be computed, or if not relevant. */
11849
11850 static CORE_ADDR
11851 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
11852 struct breakpoint *b)
11853 {
11854 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11855
11856 switch (ex)
11857 {
11858 case ada_catch_exception:
11859 return (parse_and_eval_address ("e.full_name"));
11860 break;
11861
11862 case ada_catch_exception_unhandled:
11863 return data->exception_info->unhandled_exception_name_addr ();
11864 break;
11865
11866 case ada_catch_handlers:
11867 return 0; /* The runtimes does not provide access to the exception
11868 name. */
11869 break;
11870
11871 case ada_catch_assert:
11872 return 0; /* Exception name is not relevant in this case. */
11873 break;
11874
11875 default:
11876 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11877 break;
11878 }
11879
11880 return 0; /* Should never be reached. */
11881 }
11882
11883 /* Assuming the inferior is stopped at an exception catchpoint,
11884 return the message which was associated to the exception, if
11885 available. Return NULL if the message could not be retrieved.
11886
11887 Note: The exception message can be associated to an exception
11888 either through the use of the Raise_Exception function, or
11889 more simply (Ada 2005 and later), via:
11890
11891 raise Exception_Name with "exception message";
11892
11893 */
11894
11895 static gdb::unique_xmalloc_ptr<char>
11896 ada_exception_message_1 (void)
11897 {
11898 struct value *e_msg_val;
11899 int e_msg_len;
11900
11901 /* For runtimes that support this feature, the exception message
11902 is passed as an unbounded string argument called "message". */
11903 e_msg_val = parse_and_eval ("message");
11904 if (e_msg_val == NULL)
11905 return NULL; /* Exception message not supported. */
11906
11907 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
11908 gdb_assert (e_msg_val != NULL);
11909 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
11910
11911 /* If the message string is empty, then treat it as if there was
11912 no exception message. */
11913 if (e_msg_len <= 0)
11914 return NULL;
11915
11916 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
11917 read_memory (value_address (e_msg_val), (gdb_byte *) e_msg.get (),
11918 e_msg_len);
11919 e_msg.get ()[e_msg_len] = '\0';
11920
11921 return e_msg;
11922 }
11923
11924 /* Same as ada_exception_message_1, except that all exceptions are
11925 contained here (returning NULL instead). */
11926
11927 static gdb::unique_xmalloc_ptr<char>
11928 ada_exception_message (void)
11929 {
11930 gdb::unique_xmalloc_ptr<char> e_msg;
11931
11932 try
11933 {
11934 e_msg = ada_exception_message_1 ();
11935 }
11936 catch (const gdb_exception_error &e)
11937 {
11938 e_msg.reset (nullptr);
11939 }
11940
11941 return e_msg;
11942 }
11943
11944 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
11945 any error that ada_exception_name_addr_1 might cause to be thrown.
11946 When an error is intercepted, a warning with the error message is printed,
11947 and zero is returned. */
11948
11949 static CORE_ADDR
11950 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
11951 struct breakpoint *b)
11952 {
11953 CORE_ADDR result = 0;
11954
11955 try
11956 {
11957 result = ada_exception_name_addr_1 (ex, b);
11958 }
11959
11960 catch (const gdb_exception_error &e)
11961 {
11962 warning (_("failed to get exception name: %s"), e.what ());
11963 return 0;
11964 }
11965
11966 return result;
11967 }
11968
11969 static std::string ada_exception_catchpoint_cond_string
11970 (const char *excep_string,
11971 enum ada_exception_catchpoint_kind ex);
11972
11973 /* Ada catchpoints.
11974
11975 In the case of catchpoints on Ada exceptions, the catchpoint will
11976 stop the target on every exception the program throws. When a user
11977 specifies the name of a specific exception, we translate this
11978 request into a condition expression (in text form), and then parse
11979 it into an expression stored in each of the catchpoint's locations.
11980 We then use this condition to check whether the exception that was
11981 raised is the one the user is interested in. If not, then the
11982 target is resumed again. We store the name of the requested
11983 exception, in order to be able to re-set the condition expression
11984 when symbols change. */
11985
11986 /* An instance of this type is used to represent an Ada catchpoint
11987 breakpoint location. */
11988
11989 class ada_catchpoint_location : public bp_location
11990 {
11991 public:
11992 ada_catchpoint_location (breakpoint *owner)
11993 : bp_location (owner, bp_loc_software_breakpoint)
11994 {}
11995
11996 /* The condition that checks whether the exception that was raised
11997 is the specific exception the user specified on catchpoint
11998 creation. */
11999 expression_up excep_cond_expr;
12000 };
12001
12002 /* An instance of this type is used to represent an Ada catchpoint. */
12003
12004 struct ada_catchpoint : public breakpoint
12005 {
12006 explicit ada_catchpoint (enum ada_exception_catchpoint_kind kind)
12007 : m_kind (kind)
12008 {
12009 }
12010
12011 /* The name of the specific exception the user specified. */
12012 std::string excep_string;
12013
12014 /* What kind of catchpoint this is. */
12015 enum ada_exception_catchpoint_kind m_kind;
12016 };
12017
12018 /* Parse the exception condition string in the context of each of the
12019 catchpoint's locations, and store them for later evaluation. */
12020
12021 static void
12022 create_excep_cond_exprs (struct ada_catchpoint *c,
12023 enum ada_exception_catchpoint_kind ex)
12024 {
12025 struct bp_location *bl;
12026
12027 /* Nothing to do if there's no specific exception to catch. */
12028 if (c->excep_string.empty ())
12029 return;
12030
12031 /* Same if there are no locations... */
12032 if (c->loc == NULL)
12033 return;
12034
12035 /* Compute the condition expression in text form, from the specific
12036 expection we want to catch. */
12037 std::string cond_string
12038 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
12039
12040 /* Iterate over all the catchpoint's locations, and parse an
12041 expression for each. */
12042 for (bl = c->loc; bl != NULL; bl = bl->next)
12043 {
12044 struct ada_catchpoint_location *ada_loc
12045 = (struct ada_catchpoint_location *) bl;
12046 expression_up exp;
12047
12048 if (!bl->shlib_disabled)
12049 {
12050 const char *s;
12051
12052 s = cond_string.c_str ();
12053 try
12054 {
12055 exp = parse_exp_1 (&s, bl->address,
12056 block_for_pc (bl->address),
12057 0);
12058 }
12059 catch (const gdb_exception_error &e)
12060 {
12061 warning (_("failed to reevaluate internal exception condition "
12062 "for catchpoint %d: %s"),
12063 c->number, e.what ());
12064 }
12065 }
12066
12067 ada_loc->excep_cond_expr = std::move (exp);
12068 }
12069 }
12070
12071 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12072 structure for all exception catchpoint kinds. */
12073
12074 static struct bp_location *
12075 allocate_location_exception (struct breakpoint *self)
12076 {
12077 return new ada_catchpoint_location (self);
12078 }
12079
12080 /* Implement the RE_SET method in the breakpoint_ops structure for all
12081 exception catchpoint kinds. */
12082
12083 static void
12084 re_set_exception (struct breakpoint *b)
12085 {
12086 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12087
12088 /* Call the base class's method. This updates the catchpoint's
12089 locations. */
12090 bkpt_breakpoint_ops.re_set (b);
12091
12092 /* Reparse the exception conditional expressions. One for each
12093 location. */
12094 create_excep_cond_exprs (c, c->m_kind);
12095 }
12096
12097 /* Returns true if we should stop for this breakpoint hit. If the
12098 user specified a specific exception, we only want to cause a stop
12099 if the program thrown that exception. */
12100
12101 static int
12102 should_stop_exception (const struct bp_location *bl)
12103 {
12104 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12105 const struct ada_catchpoint_location *ada_loc
12106 = (const struct ada_catchpoint_location *) bl;
12107 int stop;
12108
12109 struct internalvar *var = lookup_internalvar ("_ada_exception");
12110 if (c->m_kind == ada_catch_assert)
12111 clear_internalvar (var);
12112 else
12113 {
12114 try
12115 {
12116 const char *expr;
12117
12118 if (c->m_kind == ada_catch_handlers)
12119 expr = ("GNAT_GCC_exception_Access(gcc_exception)"
12120 ".all.occurrence.id");
12121 else
12122 expr = "e";
12123
12124 struct value *exc = parse_and_eval (expr);
12125 set_internalvar (var, exc);
12126 }
12127 catch (const gdb_exception_error &ex)
12128 {
12129 clear_internalvar (var);
12130 }
12131 }
12132
12133 /* With no specific exception, should always stop. */
12134 if (c->excep_string.empty ())
12135 return 1;
12136
12137 if (ada_loc->excep_cond_expr == NULL)
12138 {
12139 /* We will have a NULL expression if back when we were creating
12140 the expressions, this location's had failed to parse. */
12141 return 1;
12142 }
12143
12144 stop = 1;
12145 try
12146 {
12147 struct value *mark;
12148
12149 mark = value_mark ();
12150 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12151 value_free_to_mark (mark);
12152 }
12153 catch (const gdb_exception &ex)
12154 {
12155 exception_fprintf (gdb_stderr, ex,
12156 _("Error in testing exception condition:\n"));
12157 }
12158
12159 return stop;
12160 }
12161
12162 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12163 for all exception catchpoint kinds. */
12164
12165 static void
12166 check_status_exception (bpstat bs)
12167 {
12168 bs->stop = should_stop_exception (bs->bp_location_at);
12169 }
12170
12171 /* Implement the PRINT_IT method in the breakpoint_ops structure
12172 for all exception catchpoint kinds. */
12173
12174 static enum print_stop_action
12175 print_it_exception (bpstat bs)
12176 {
12177 struct ui_out *uiout = current_uiout;
12178 struct breakpoint *b = bs->breakpoint_at;
12179
12180 annotate_catchpoint (b->number);
12181
12182 if (uiout->is_mi_like_p ())
12183 {
12184 uiout->field_string ("reason",
12185 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12186 uiout->field_string ("disp", bpdisp_text (b->disposition));
12187 }
12188
12189 uiout->text (b->disposition == disp_del
12190 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12191 uiout->field_signed ("bkptno", b->number);
12192 uiout->text (", ");
12193
12194 /* ada_exception_name_addr relies on the selected frame being the
12195 current frame. Need to do this here because this function may be
12196 called more than once when printing a stop, and below, we'll
12197 select the first frame past the Ada run-time (see
12198 ada_find_printable_frame). */
12199 select_frame (get_current_frame ());
12200
12201 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12202 switch (c->m_kind)
12203 {
12204 case ada_catch_exception:
12205 case ada_catch_exception_unhandled:
12206 case ada_catch_handlers:
12207 {
12208 const CORE_ADDR addr = ada_exception_name_addr (c->m_kind, b);
12209 char exception_name[256];
12210
12211 if (addr != 0)
12212 {
12213 read_memory (addr, (gdb_byte *) exception_name,
12214 sizeof (exception_name) - 1);
12215 exception_name [sizeof (exception_name) - 1] = '\0';
12216 }
12217 else
12218 {
12219 /* For some reason, we were unable to read the exception
12220 name. This could happen if the Runtime was compiled
12221 without debugging info, for instance. In that case,
12222 just replace the exception name by the generic string
12223 "exception" - it will read as "an exception" in the
12224 notification we are about to print. */
12225 memcpy (exception_name, "exception", sizeof ("exception"));
12226 }
12227 /* In the case of unhandled exception breakpoints, we print
12228 the exception name as "unhandled EXCEPTION_NAME", to make
12229 it clearer to the user which kind of catchpoint just got
12230 hit. We used ui_out_text to make sure that this extra
12231 info does not pollute the exception name in the MI case. */
12232 if (c->m_kind == ada_catch_exception_unhandled)
12233 uiout->text ("unhandled ");
12234 uiout->field_string ("exception-name", exception_name);
12235 }
12236 break;
12237 case ada_catch_assert:
12238 /* In this case, the name of the exception is not really
12239 important. Just print "failed assertion" to make it clearer
12240 that his program just hit an assertion-failure catchpoint.
12241 We used ui_out_text because this info does not belong in
12242 the MI output. */
12243 uiout->text ("failed assertion");
12244 break;
12245 }
12246
12247 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
12248 if (exception_message != NULL)
12249 {
12250 uiout->text (" (");
12251 uiout->field_string ("exception-message", exception_message.get ());
12252 uiout->text (")");
12253 }
12254
12255 uiout->text (" at ");
12256 ada_find_printable_frame (get_current_frame ());
12257
12258 return PRINT_SRC_AND_LOC;
12259 }
12260
12261 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12262 for all exception catchpoint kinds. */
12263
12264 static void
12265 print_one_exception (struct breakpoint *b, struct bp_location **last_loc)
12266 {
12267 struct ui_out *uiout = current_uiout;
12268 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12269 struct value_print_options opts;
12270
12271 get_user_print_options (&opts);
12272
12273 if (opts.addressprint)
12274 uiout->field_skip ("addr");
12275
12276 annotate_field (5);
12277 switch (c->m_kind)
12278 {
12279 case ada_catch_exception:
12280 if (!c->excep_string.empty ())
12281 {
12282 std::string msg = string_printf (_("`%s' Ada exception"),
12283 c->excep_string.c_str ());
12284
12285 uiout->field_string ("what", msg);
12286 }
12287 else
12288 uiout->field_string ("what", "all Ada exceptions");
12289
12290 break;
12291
12292 case ada_catch_exception_unhandled:
12293 uiout->field_string ("what", "unhandled Ada exceptions");
12294 break;
12295
12296 case ada_catch_handlers:
12297 if (!c->excep_string.empty ())
12298 {
12299 uiout->field_fmt ("what",
12300 _("`%s' Ada exception handlers"),
12301 c->excep_string.c_str ());
12302 }
12303 else
12304 uiout->field_string ("what", "all Ada exceptions handlers");
12305 break;
12306
12307 case ada_catch_assert:
12308 uiout->field_string ("what", "failed Ada assertions");
12309 break;
12310
12311 default:
12312 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12313 break;
12314 }
12315 }
12316
12317 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12318 for all exception catchpoint kinds. */
12319
12320 static void
12321 print_mention_exception (struct breakpoint *b)
12322 {
12323 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12324 struct ui_out *uiout = current_uiout;
12325
12326 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
12327 : _("Catchpoint "));
12328 uiout->field_signed ("bkptno", b->number);
12329 uiout->text (": ");
12330
12331 switch (c->m_kind)
12332 {
12333 case ada_catch_exception:
12334 if (!c->excep_string.empty ())
12335 {
12336 std::string info = string_printf (_("`%s' Ada exception"),
12337 c->excep_string.c_str ());
12338 uiout->text (info.c_str ());
12339 }
12340 else
12341 uiout->text (_("all Ada exceptions"));
12342 break;
12343
12344 case ada_catch_exception_unhandled:
12345 uiout->text (_("unhandled Ada exceptions"));
12346 break;
12347
12348 case ada_catch_handlers:
12349 if (!c->excep_string.empty ())
12350 {
12351 std::string info
12352 = string_printf (_("`%s' Ada exception handlers"),
12353 c->excep_string.c_str ());
12354 uiout->text (info.c_str ());
12355 }
12356 else
12357 uiout->text (_("all Ada exceptions handlers"));
12358 break;
12359
12360 case ada_catch_assert:
12361 uiout->text (_("failed Ada assertions"));
12362 break;
12363
12364 default:
12365 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12366 break;
12367 }
12368 }
12369
12370 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12371 for all exception catchpoint kinds. */
12372
12373 static void
12374 print_recreate_exception (struct breakpoint *b, struct ui_file *fp)
12375 {
12376 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12377
12378 switch (c->m_kind)
12379 {
12380 case ada_catch_exception:
12381 fprintf_filtered (fp, "catch exception");
12382 if (!c->excep_string.empty ())
12383 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
12384 break;
12385
12386 case ada_catch_exception_unhandled:
12387 fprintf_filtered (fp, "catch exception unhandled");
12388 break;
12389
12390 case ada_catch_handlers:
12391 fprintf_filtered (fp, "catch handlers");
12392 break;
12393
12394 case ada_catch_assert:
12395 fprintf_filtered (fp, "catch assert");
12396 break;
12397
12398 default:
12399 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12400 }
12401 print_recreate_thread (b, fp);
12402 }
12403
12404 /* Virtual tables for various breakpoint types. */
12405 static struct breakpoint_ops catch_exception_breakpoint_ops;
12406 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12407 static struct breakpoint_ops catch_assert_breakpoint_ops;
12408 static struct breakpoint_ops catch_handlers_breakpoint_ops;
12409
12410 /* See ada-lang.h. */
12411
12412 bool
12413 is_ada_exception_catchpoint (breakpoint *bp)
12414 {
12415 return (bp->ops == &catch_exception_breakpoint_ops
12416 || bp->ops == &catch_exception_unhandled_breakpoint_ops
12417 || bp->ops == &catch_assert_breakpoint_ops
12418 || bp->ops == &catch_handlers_breakpoint_ops);
12419 }
12420
12421 /* Split the arguments specified in a "catch exception" command.
12422 Set EX to the appropriate catchpoint type.
12423 Set EXCEP_STRING to the name of the specific exception if
12424 specified by the user.
12425 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12426 "catch handlers" command. False otherwise.
12427 If a condition is found at the end of the arguments, the condition
12428 expression is stored in COND_STRING (memory must be deallocated
12429 after use). Otherwise COND_STRING is set to NULL. */
12430
12431 static void
12432 catch_ada_exception_command_split (const char *args,
12433 bool is_catch_handlers_cmd,
12434 enum ada_exception_catchpoint_kind *ex,
12435 std::string *excep_string,
12436 std::string *cond_string)
12437 {
12438 std::string exception_name;
12439
12440 exception_name = extract_arg (&args);
12441 if (exception_name == "if")
12442 {
12443 /* This is not an exception name; this is the start of a condition
12444 expression for a catchpoint on all exceptions. So, "un-get"
12445 this token, and set exception_name to NULL. */
12446 exception_name.clear ();
12447 args -= 2;
12448 }
12449
12450 /* Check to see if we have a condition. */
12451
12452 args = skip_spaces (args);
12453 if (startswith (args, "if")
12454 && (isspace (args[2]) || args[2] == '\0'))
12455 {
12456 args += 2;
12457 args = skip_spaces (args);
12458
12459 if (args[0] == '\0')
12460 error (_("Condition missing after `if' keyword"));
12461 *cond_string = args;
12462
12463 args += strlen (args);
12464 }
12465
12466 /* Check that we do not have any more arguments. Anything else
12467 is unexpected. */
12468
12469 if (args[0] != '\0')
12470 error (_("Junk at end of expression"));
12471
12472 if (is_catch_handlers_cmd)
12473 {
12474 /* Catch handling of exceptions. */
12475 *ex = ada_catch_handlers;
12476 *excep_string = exception_name;
12477 }
12478 else if (exception_name.empty ())
12479 {
12480 /* Catch all exceptions. */
12481 *ex = ada_catch_exception;
12482 excep_string->clear ();
12483 }
12484 else if (exception_name == "unhandled")
12485 {
12486 /* Catch unhandled exceptions. */
12487 *ex = ada_catch_exception_unhandled;
12488 excep_string->clear ();
12489 }
12490 else
12491 {
12492 /* Catch a specific exception. */
12493 *ex = ada_catch_exception;
12494 *excep_string = exception_name;
12495 }
12496 }
12497
12498 /* Return the name of the symbol on which we should break in order to
12499 implement a catchpoint of the EX kind. */
12500
12501 static const char *
12502 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12503 {
12504 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12505
12506 gdb_assert (data->exception_info != NULL);
12507
12508 switch (ex)
12509 {
12510 case ada_catch_exception:
12511 return (data->exception_info->catch_exception_sym);
12512 break;
12513 case ada_catch_exception_unhandled:
12514 return (data->exception_info->catch_exception_unhandled_sym);
12515 break;
12516 case ada_catch_assert:
12517 return (data->exception_info->catch_assert_sym);
12518 break;
12519 case ada_catch_handlers:
12520 return (data->exception_info->catch_handlers_sym);
12521 break;
12522 default:
12523 internal_error (__FILE__, __LINE__,
12524 _("unexpected catchpoint kind (%d)"), ex);
12525 }
12526 }
12527
12528 /* Return the breakpoint ops "virtual table" used for catchpoints
12529 of the EX kind. */
12530
12531 static const struct breakpoint_ops *
12532 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12533 {
12534 switch (ex)
12535 {
12536 case ada_catch_exception:
12537 return (&catch_exception_breakpoint_ops);
12538 break;
12539 case ada_catch_exception_unhandled:
12540 return (&catch_exception_unhandled_breakpoint_ops);
12541 break;
12542 case ada_catch_assert:
12543 return (&catch_assert_breakpoint_ops);
12544 break;
12545 case ada_catch_handlers:
12546 return (&catch_handlers_breakpoint_ops);
12547 break;
12548 default:
12549 internal_error (__FILE__, __LINE__,
12550 _("unexpected catchpoint kind (%d)"), ex);
12551 }
12552 }
12553
12554 /* Return the condition that will be used to match the current exception
12555 being raised with the exception that the user wants to catch. This
12556 assumes that this condition is used when the inferior just triggered
12557 an exception catchpoint.
12558 EX: the type of catchpoints used for catching Ada exceptions. */
12559
12560 static std::string
12561 ada_exception_catchpoint_cond_string (const char *excep_string,
12562 enum ada_exception_catchpoint_kind ex)
12563 {
12564 int i;
12565 bool is_standard_exc = false;
12566 std::string result;
12567
12568 if (ex == ada_catch_handlers)
12569 {
12570 /* For exception handlers catchpoints, the condition string does
12571 not use the same parameter as for the other exceptions. */
12572 result = ("long_integer (GNAT_GCC_exception_Access"
12573 "(gcc_exception).all.occurrence.id)");
12574 }
12575 else
12576 result = "long_integer (e)";
12577
12578 /* The standard exceptions are a special case. They are defined in
12579 runtime units that have been compiled without debugging info; if
12580 EXCEP_STRING is the not-fully-qualified name of a standard
12581 exception (e.g. "constraint_error") then, during the evaluation
12582 of the condition expression, the symbol lookup on this name would
12583 *not* return this standard exception. The catchpoint condition
12584 may then be set only on user-defined exceptions which have the
12585 same not-fully-qualified name (e.g. my_package.constraint_error).
12586
12587 To avoid this unexcepted behavior, these standard exceptions are
12588 systematically prefixed by "standard". This means that "catch
12589 exception constraint_error" is rewritten into "catch exception
12590 standard.constraint_error".
12591
12592 If an exception named constraint_error is defined in another package of
12593 the inferior program, then the only way to specify this exception as a
12594 breakpoint condition is to use its fully-qualified named:
12595 e.g. my_package.constraint_error. */
12596
12597 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12598 {
12599 if (strcmp (standard_exc [i], excep_string) == 0)
12600 {
12601 is_standard_exc = true;
12602 break;
12603 }
12604 }
12605
12606 result += " = ";
12607
12608 if (is_standard_exc)
12609 string_appendf (result, "long_integer (&standard.%s)", excep_string);
12610 else
12611 string_appendf (result, "long_integer (&%s)", excep_string);
12612
12613 return result;
12614 }
12615
12616 /* Return the symtab_and_line that should be used to insert an exception
12617 catchpoint of the TYPE kind.
12618
12619 ADDR_STRING returns the name of the function where the real
12620 breakpoint that implements the catchpoints is set, depending on the
12621 type of catchpoint we need to create. */
12622
12623 static struct symtab_and_line
12624 ada_exception_sal (enum ada_exception_catchpoint_kind ex,
12625 std::string *addr_string, const struct breakpoint_ops **ops)
12626 {
12627 const char *sym_name;
12628 struct symbol *sym;
12629
12630 /* First, find out which exception support info to use. */
12631 ada_exception_support_info_sniffer ();
12632
12633 /* Then lookup the function on which we will break in order to catch
12634 the Ada exceptions requested by the user. */
12635 sym_name = ada_exception_sym_name (ex);
12636 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12637
12638 if (sym == NULL)
12639 error (_("Catchpoint symbol not found: %s"), sym_name);
12640
12641 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12642 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
12643
12644 /* Set ADDR_STRING. */
12645 *addr_string = sym_name;
12646
12647 /* Set OPS. */
12648 *ops = ada_exception_breakpoint_ops (ex);
12649
12650 return find_function_start_sal (sym, 1);
12651 }
12652
12653 /* Create an Ada exception catchpoint.
12654
12655 EX_KIND is the kind of exception catchpoint to be created.
12656
12657 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
12658 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12659 of the exception to which this catchpoint applies.
12660
12661 COND_STRING, if not empty, is the catchpoint condition.
12662
12663 TEMPFLAG, if nonzero, means that the underlying breakpoint
12664 should be temporary.
12665
12666 FROM_TTY is the usual argument passed to all commands implementations. */
12667
12668 void
12669 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12670 enum ada_exception_catchpoint_kind ex_kind,
12671 const std::string &excep_string,
12672 const std::string &cond_string,
12673 int tempflag,
12674 int disabled,
12675 int from_tty)
12676 {
12677 std::string addr_string;
12678 const struct breakpoint_ops *ops = NULL;
12679 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
12680
12681 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint (ex_kind));
12682 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
12683 ops, tempflag, disabled, from_tty);
12684 c->excep_string = excep_string;
12685 create_excep_cond_exprs (c.get (), ex_kind);
12686 if (!cond_string.empty ())
12687 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty);
12688 install_breakpoint (0, std::move (c), 1);
12689 }
12690
12691 /* Implement the "catch exception" command. */
12692
12693 static void
12694 catch_ada_exception_command (const char *arg_entry, int from_tty,
12695 struct cmd_list_element *command)
12696 {
12697 const char *arg = arg_entry;
12698 struct gdbarch *gdbarch = get_current_arch ();
12699 int tempflag;
12700 enum ada_exception_catchpoint_kind ex_kind;
12701 std::string excep_string;
12702 std::string cond_string;
12703
12704 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12705
12706 if (!arg)
12707 arg = "";
12708 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
12709 &cond_string);
12710 create_ada_exception_catchpoint (gdbarch, ex_kind,
12711 excep_string, cond_string,
12712 tempflag, 1 /* enabled */,
12713 from_tty);
12714 }
12715
12716 /* Implement the "catch handlers" command. */
12717
12718 static void
12719 catch_ada_handlers_command (const char *arg_entry, int from_tty,
12720 struct cmd_list_element *command)
12721 {
12722 const char *arg = arg_entry;
12723 struct gdbarch *gdbarch = get_current_arch ();
12724 int tempflag;
12725 enum ada_exception_catchpoint_kind ex_kind;
12726 std::string excep_string;
12727 std::string cond_string;
12728
12729 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12730
12731 if (!arg)
12732 arg = "";
12733 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
12734 &cond_string);
12735 create_ada_exception_catchpoint (gdbarch, ex_kind,
12736 excep_string, cond_string,
12737 tempflag, 1 /* enabled */,
12738 from_tty);
12739 }
12740
12741 /* Completion function for the Ada "catch" commands. */
12742
12743 static void
12744 catch_ada_completer (struct cmd_list_element *cmd, completion_tracker &tracker,
12745 const char *text, const char *word)
12746 {
12747 std::vector<ada_exc_info> exceptions = ada_exceptions_list (NULL);
12748
12749 for (const ada_exc_info &info : exceptions)
12750 {
12751 if (startswith (info.name, word))
12752 tracker.add_completion (make_unique_xstrdup (info.name));
12753 }
12754 }
12755
12756 /* Split the arguments specified in a "catch assert" command.
12757
12758 ARGS contains the command's arguments (or the empty string if
12759 no arguments were passed).
12760
12761 If ARGS contains a condition, set COND_STRING to that condition
12762 (the memory needs to be deallocated after use). */
12763
12764 static void
12765 catch_ada_assert_command_split (const char *args, std::string &cond_string)
12766 {
12767 args = skip_spaces (args);
12768
12769 /* Check whether a condition was provided. */
12770 if (startswith (args, "if")
12771 && (isspace (args[2]) || args[2] == '\0'))
12772 {
12773 args += 2;
12774 args = skip_spaces (args);
12775 if (args[0] == '\0')
12776 error (_("condition missing after `if' keyword"));
12777 cond_string.assign (args);
12778 }
12779
12780 /* Otherwise, there should be no other argument at the end of
12781 the command. */
12782 else if (args[0] != '\0')
12783 error (_("Junk at end of arguments."));
12784 }
12785
12786 /* Implement the "catch assert" command. */
12787
12788 static void
12789 catch_assert_command (const char *arg_entry, int from_tty,
12790 struct cmd_list_element *command)
12791 {
12792 const char *arg = arg_entry;
12793 struct gdbarch *gdbarch = get_current_arch ();
12794 int tempflag;
12795 std::string cond_string;
12796
12797 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12798
12799 if (!arg)
12800 arg = "";
12801 catch_ada_assert_command_split (arg, cond_string);
12802 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
12803 "", cond_string,
12804 tempflag, 1 /* enabled */,
12805 from_tty);
12806 }
12807
12808 /* Return non-zero if the symbol SYM is an Ada exception object. */
12809
12810 static int
12811 ada_is_exception_sym (struct symbol *sym)
12812 {
12813 const char *type_name = SYMBOL_TYPE (sym)->name ();
12814
12815 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
12816 && SYMBOL_CLASS (sym) != LOC_BLOCK
12817 && SYMBOL_CLASS (sym) != LOC_CONST
12818 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
12819 && type_name != NULL && strcmp (type_name, "exception") == 0);
12820 }
12821
12822 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12823 Ada exception object. This matches all exceptions except the ones
12824 defined by the Ada language. */
12825
12826 static int
12827 ada_is_non_standard_exception_sym (struct symbol *sym)
12828 {
12829 int i;
12830
12831 if (!ada_is_exception_sym (sym))
12832 return 0;
12833
12834 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12835 if (strcmp (sym->linkage_name (), standard_exc[i]) == 0)
12836 return 0; /* A standard exception. */
12837
12838 /* Numeric_Error is also a standard exception, so exclude it.
12839 See the STANDARD_EXC description for more details as to why
12840 this exception is not listed in that array. */
12841 if (strcmp (sym->linkage_name (), "numeric_error") == 0)
12842 return 0;
12843
12844 return 1;
12845 }
12846
12847 /* A helper function for std::sort, comparing two struct ada_exc_info
12848 objects.
12849
12850 The comparison is determined first by exception name, and then
12851 by exception address. */
12852
12853 bool
12854 ada_exc_info::operator< (const ada_exc_info &other) const
12855 {
12856 int result;
12857
12858 result = strcmp (name, other.name);
12859 if (result < 0)
12860 return true;
12861 if (result == 0 && addr < other.addr)
12862 return true;
12863 return false;
12864 }
12865
12866 bool
12867 ada_exc_info::operator== (const ada_exc_info &other) const
12868 {
12869 return addr == other.addr && strcmp (name, other.name) == 0;
12870 }
12871
12872 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12873 routine, but keeping the first SKIP elements untouched.
12874
12875 All duplicates are also removed. */
12876
12877 static void
12878 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
12879 int skip)
12880 {
12881 std::sort (exceptions->begin () + skip, exceptions->end ());
12882 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
12883 exceptions->end ());
12884 }
12885
12886 /* Add all exceptions defined by the Ada standard whose name match
12887 a regular expression.
12888
12889 If PREG is not NULL, then this regexp_t object is used to
12890 perform the symbol name matching. Otherwise, no name-based
12891 filtering is performed.
12892
12893 EXCEPTIONS is a vector of exceptions to which matching exceptions
12894 gets pushed. */
12895
12896 static void
12897 ada_add_standard_exceptions (compiled_regex *preg,
12898 std::vector<ada_exc_info> *exceptions)
12899 {
12900 int i;
12901
12902 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12903 {
12904 if (preg == NULL
12905 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
12906 {
12907 struct bound_minimal_symbol msymbol
12908 = ada_lookup_simple_minsym (standard_exc[i]);
12909
12910 if (msymbol.minsym != NULL)
12911 {
12912 struct ada_exc_info info
12913 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
12914
12915 exceptions->push_back (info);
12916 }
12917 }
12918 }
12919 }
12920
12921 /* Add all Ada exceptions defined locally and accessible from the given
12922 FRAME.
12923
12924 If PREG is not NULL, then this regexp_t object is used to
12925 perform the symbol name matching. Otherwise, no name-based
12926 filtering is performed.
12927
12928 EXCEPTIONS is a vector of exceptions to which matching exceptions
12929 gets pushed. */
12930
12931 static void
12932 ada_add_exceptions_from_frame (compiled_regex *preg,
12933 struct frame_info *frame,
12934 std::vector<ada_exc_info> *exceptions)
12935 {
12936 const struct block *block = get_frame_block (frame, 0);
12937
12938 while (block != 0)
12939 {
12940 struct block_iterator iter;
12941 struct symbol *sym;
12942
12943 ALL_BLOCK_SYMBOLS (block, iter, sym)
12944 {
12945 switch (SYMBOL_CLASS (sym))
12946 {
12947 case LOC_TYPEDEF:
12948 case LOC_BLOCK:
12949 case LOC_CONST:
12950 break;
12951 default:
12952 if (ada_is_exception_sym (sym))
12953 {
12954 struct ada_exc_info info = {sym->print_name (),
12955 SYMBOL_VALUE_ADDRESS (sym)};
12956
12957 exceptions->push_back (info);
12958 }
12959 }
12960 }
12961 if (BLOCK_FUNCTION (block) != NULL)
12962 break;
12963 block = BLOCK_SUPERBLOCK (block);
12964 }
12965 }
12966
12967 /* Return true if NAME matches PREG or if PREG is NULL. */
12968
12969 static bool
12970 name_matches_regex (const char *name, compiled_regex *preg)
12971 {
12972 return (preg == NULL
12973 || preg->exec (ada_decode (name).c_str (), 0, NULL, 0) == 0);
12974 }
12975
12976 /* Add all exceptions defined globally whose name name match
12977 a regular expression, excluding standard exceptions.
12978
12979 The reason we exclude standard exceptions is that they need
12980 to be handled separately: Standard exceptions are defined inside
12981 a runtime unit which is normally not compiled with debugging info,
12982 and thus usually do not show up in our symbol search. However,
12983 if the unit was in fact built with debugging info, we need to
12984 exclude them because they would duplicate the entry we found
12985 during the special loop that specifically searches for those
12986 standard exceptions.
12987
12988 If PREG is not NULL, then this regexp_t object is used to
12989 perform the symbol name matching. Otherwise, no name-based
12990 filtering is performed.
12991
12992 EXCEPTIONS is a vector of exceptions to which matching exceptions
12993 gets pushed. */
12994
12995 static void
12996 ada_add_global_exceptions (compiled_regex *preg,
12997 std::vector<ada_exc_info> *exceptions)
12998 {
12999 /* In Ada, the symbol "search name" is a linkage name, whereas the
13000 regular expression used to do the matching refers to the natural
13001 name. So match against the decoded name. */
13002 expand_symtabs_matching (NULL,
13003 lookup_name_info::match_any (),
13004 [&] (const char *search_name)
13005 {
13006 std::string decoded = ada_decode (search_name);
13007 return name_matches_regex (decoded.c_str (), preg);
13008 },
13009 NULL,
13010 VARIABLES_DOMAIN);
13011
13012 for (objfile *objfile : current_program_space->objfiles ())
13013 {
13014 for (compunit_symtab *s : objfile->compunits ())
13015 {
13016 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13017 int i;
13018
13019 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13020 {
13021 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13022 struct block_iterator iter;
13023 struct symbol *sym;
13024
13025 ALL_BLOCK_SYMBOLS (b, iter, sym)
13026 if (ada_is_non_standard_exception_sym (sym)
13027 && name_matches_regex (sym->natural_name (), preg))
13028 {
13029 struct ada_exc_info info
13030 = {sym->print_name (), SYMBOL_VALUE_ADDRESS (sym)};
13031
13032 exceptions->push_back (info);
13033 }
13034 }
13035 }
13036 }
13037 }
13038
13039 /* Implements ada_exceptions_list with the regular expression passed
13040 as a regex_t, rather than a string.
13041
13042 If not NULL, PREG is used to filter out exceptions whose names
13043 do not match. Otherwise, all exceptions are listed. */
13044
13045 static std::vector<ada_exc_info>
13046 ada_exceptions_list_1 (compiled_regex *preg)
13047 {
13048 std::vector<ada_exc_info> result;
13049 int prev_len;
13050
13051 /* First, list the known standard exceptions. These exceptions
13052 need to be handled separately, as they are usually defined in
13053 runtime units that have been compiled without debugging info. */
13054
13055 ada_add_standard_exceptions (preg, &result);
13056
13057 /* Next, find all exceptions whose scope is local and accessible
13058 from the currently selected frame. */
13059
13060 if (has_stack_frames ())
13061 {
13062 prev_len = result.size ();
13063 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13064 &result);
13065 if (result.size () > prev_len)
13066 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13067 }
13068
13069 /* Add all exceptions whose scope is global. */
13070
13071 prev_len = result.size ();
13072 ada_add_global_exceptions (preg, &result);
13073 if (result.size () > prev_len)
13074 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13075
13076 return result;
13077 }
13078
13079 /* Return a vector of ada_exc_info.
13080
13081 If REGEXP is NULL, all exceptions are included in the result.
13082 Otherwise, it should contain a valid regular expression,
13083 and only the exceptions whose names match that regular expression
13084 are included in the result.
13085
13086 The exceptions are sorted in the following order:
13087 - Standard exceptions (defined by the Ada language), in
13088 alphabetical order;
13089 - Exceptions only visible from the current frame, in
13090 alphabetical order;
13091 - Exceptions whose scope is global, in alphabetical order. */
13092
13093 std::vector<ada_exc_info>
13094 ada_exceptions_list (const char *regexp)
13095 {
13096 if (regexp == NULL)
13097 return ada_exceptions_list_1 (NULL);
13098
13099 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13100 return ada_exceptions_list_1 (&reg);
13101 }
13102
13103 /* Implement the "info exceptions" command. */
13104
13105 static void
13106 info_exceptions_command (const char *regexp, int from_tty)
13107 {
13108 struct gdbarch *gdbarch = get_current_arch ();
13109
13110 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
13111
13112 if (regexp != NULL)
13113 printf_filtered
13114 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13115 else
13116 printf_filtered (_("All defined Ada exceptions:\n"));
13117
13118 for (const ada_exc_info &info : exceptions)
13119 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
13120 }
13121
13122 /* Operators */
13123 /* Information about operators given special treatment in functions
13124 below. */
13125 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13126
13127 #define ADA_OPERATORS \
13128 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13129 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13130 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13131 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13132 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13133 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13134 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13135 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13136 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13137 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13138 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13139 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13140 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13141 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13142 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13143 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13144 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13145 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13146 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13147
13148 static void
13149 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13150 int *argsp)
13151 {
13152 switch (exp->elts[pc - 1].opcode)
13153 {
13154 default:
13155 operator_length_standard (exp, pc, oplenp, argsp);
13156 break;
13157
13158 #define OP_DEFN(op, len, args, binop) \
13159 case op: *oplenp = len; *argsp = args; break;
13160 ADA_OPERATORS;
13161 #undef OP_DEFN
13162
13163 case OP_AGGREGATE:
13164 *oplenp = 3;
13165 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13166 break;
13167
13168 case OP_CHOICES:
13169 *oplenp = 3;
13170 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13171 break;
13172 }
13173 }
13174
13175 /* Implementation of the exp_descriptor method operator_check. */
13176
13177 static int
13178 ada_operator_check (struct expression *exp, int pos,
13179 int (*objfile_func) (struct objfile *objfile, void *data),
13180 void *data)
13181 {
13182 const union exp_element *const elts = exp->elts;
13183 struct type *type = NULL;
13184
13185 switch (elts[pos].opcode)
13186 {
13187 case UNOP_IN_RANGE:
13188 case UNOP_QUAL:
13189 type = elts[pos + 1].type;
13190 break;
13191
13192 default:
13193 return operator_check_standard (exp, pos, objfile_func, data);
13194 }
13195
13196 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13197
13198 if (type && TYPE_OBJFILE (type)
13199 && (*objfile_func) (TYPE_OBJFILE (type), data))
13200 return 1;
13201
13202 return 0;
13203 }
13204
13205 static const char *
13206 ada_op_name (enum exp_opcode opcode)
13207 {
13208 switch (opcode)
13209 {
13210 default:
13211 return op_name_standard (opcode);
13212
13213 #define OP_DEFN(op, len, args, binop) case op: return #op;
13214 ADA_OPERATORS;
13215 #undef OP_DEFN
13216
13217 case OP_AGGREGATE:
13218 return "OP_AGGREGATE";
13219 case OP_CHOICES:
13220 return "OP_CHOICES";
13221 case OP_NAME:
13222 return "OP_NAME";
13223 }
13224 }
13225
13226 /* As for operator_length, but assumes PC is pointing at the first
13227 element of the operator, and gives meaningful results only for the
13228 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13229
13230 static void
13231 ada_forward_operator_length (struct expression *exp, int pc,
13232 int *oplenp, int *argsp)
13233 {
13234 switch (exp->elts[pc].opcode)
13235 {
13236 default:
13237 *oplenp = *argsp = 0;
13238 break;
13239
13240 #define OP_DEFN(op, len, args, binop) \
13241 case op: *oplenp = len; *argsp = args; break;
13242 ADA_OPERATORS;
13243 #undef OP_DEFN
13244
13245 case OP_AGGREGATE:
13246 *oplenp = 3;
13247 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13248 break;
13249
13250 case OP_CHOICES:
13251 *oplenp = 3;
13252 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13253 break;
13254
13255 case OP_STRING:
13256 case OP_NAME:
13257 {
13258 int len = longest_to_int (exp->elts[pc + 1].longconst);
13259
13260 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13261 *argsp = 0;
13262 break;
13263 }
13264 }
13265 }
13266
13267 static int
13268 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13269 {
13270 enum exp_opcode op = exp->elts[elt].opcode;
13271 int oplen, nargs;
13272 int pc = elt;
13273 int i;
13274
13275 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13276
13277 switch (op)
13278 {
13279 /* Ada attributes ('Foo). */
13280 case OP_ATR_FIRST:
13281 case OP_ATR_LAST:
13282 case OP_ATR_LENGTH:
13283 case OP_ATR_IMAGE:
13284 case OP_ATR_MAX:
13285 case OP_ATR_MIN:
13286 case OP_ATR_MODULUS:
13287 case OP_ATR_POS:
13288 case OP_ATR_SIZE:
13289 case OP_ATR_TAG:
13290 case OP_ATR_VAL:
13291 break;
13292
13293 case UNOP_IN_RANGE:
13294 case UNOP_QUAL:
13295 /* XXX: gdb_sprint_host_address, type_sprint */
13296 fprintf_filtered (stream, _("Type @"));
13297 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13298 fprintf_filtered (stream, " (");
13299 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13300 fprintf_filtered (stream, ")");
13301 break;
13302 case BINOP_IN_BOUNDS:
13303 fprintf_filtered (stream, " (%d)",
13304 longest_to_int (exp->elts[pc + 2].longconst));
13305 break;
13306 case TERNOP_IN_RANGE:
13307 break;
13308
13309 case OP_AGGREGATE:
13310 case OP_OTHERS:
13311 case OP_DISCRETE_RANGE:
13312 case OP_POSITIONAL:
13313 case OP_CHOICES:
13314 break;
13315
13316 case OP_NAME:
13317 case OP_STRING:
13318 {
13319 char *name = &exp->elts[elt + 2].string;
13320 int len = longest_to_int (exp->elts[elt + 1].longconst);
13321
13322 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13323 break;
13324 }
13325
13326 default:
13327 return dump_subexp_body_standard (exp, stream, elt);
13328 }
13329
13330 elt += oplen;
13331 for (i = 0; i < nargs; i += 1)
13332 elt = dump_subexp (exp, stream, elt);
13333
13334 return elt;
13335 }
13336
13337 /* The Ada extension of print_subexp (q.v.). */
13338
13339 static void
13340 ada_print_subexp (struct expression *exp, int *pos,
13341 struct ui_file *stream, enum precedence prec)
13342 {
13343 int oplen, nargs, i;
13344 int pc = *pos;
13345 enum exp_opcode op = exp->elts[pc].opcode;
13346
13347 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13348
13349 *pos += oplen;
13350 switch (op)
13351 {
13352 default:
13353 *pos -= oplen;
13354 print_subexp_standard (exp, pos, stream, prec);
13355 return;
13356
13357 case OP_VAR_VALUE:
13358 fputs_filtered (exp->elts[pc + 2].symbol->natural_name (), stream);
13359 return;
13360
13361 case BINOP_IN_BOUNDS:
13362 /* XXX: sprint_subexp */
13363 print_subexp (exp, pos, stream, PREC_SUFFIX);
13364 fputs_filtered (" in ", stream);
13365 print_subexp (exp, pos, stream, PREC_SUFFIX);
13366 fputs_filtered ("'range", stream);
13367 if (exp->elts[pc + 1].longconst > 1)
13368 fprintf_filtered (stream, "(%ld)",
13369 (long) exp->elts[pc + 1].longconst);
13370 return;
13371
13372 case TERNOP_IN_RANGE:
13373 if (prec >= PREC_EQUAL)
13374 fputs_filtered ("(", stream);
13375 /* XXX: sprint_subexp */
13376 print_subexp (exp, pos, stream, PREC_SUFFIX);
13377 fputs_filtered (" in ", stream);
13378 print_subexp (exp, pos, stream, PREC_EQUAL);
13379 fputs_filtered (" .. ", stream);
13380 print_subexp (exp, pos, stream, PREC_EQUAL);
13381 if (prec >= PREC_EQUAL)
13382 fputs_filtered (")", stream);
13383 return;
13384
13385 case OP_ATR_FIRST:
13386 case OP_ATR_LAST:
13387 case OP_ATR_LENGTH:
13388 case OP_ATR_IMAGE:
13389 case OP_ATR_MAX:
13390 case OP_ATR_MIN:
13391 case OP_ATR_MODULUS:
13392 case OP_ATR_POS:
13393 case OP_ATR_SIZE:
13394 case OP_ATR_TAG:
13395 case OP_ATR_VAL:
13396 if (exp->elts[*pos].opcode == OP_TYPE)
13397 {
13398 if (exp->elts[*pos + 1].type->code () != TYPE_CODE_VOID)
13399 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13400 &type_print_raw_options);
13401 *pos += 3;
13402 }
13403 else
13404 print_subexp (exp, pos, stream, PREC_SUFFIX);
13405 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13406 if (nargs > 1)
13407 {
13408 int tem;
13409
13410 for (tem = 1; tem < nargs; tem += 1)
13411 {
13412 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13413 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13414 }
13415 fputs_filtered (")", stream);
13416 }
13417 return;
13418
13419 case UNOP_QUAL:
13420 type_print (exp->elts[pc + 1].type, "", stream, 0);
13421 fputs_filtered ("'(", stream);
13422 print_subexp (exp, pos, stream, PREC_PREFIX);
13423 fputs_filtered (")", stream);
13424 return;
13425
13426 case UNOP_IN_RANGE:
13427 /* XXX: sprint_subexp */
13428 print_subexp (exp, pos, stream, PREC_SUFFIX);
13429 fputs_filtered (" in ", stream);
13430 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13431 &type_print_raw_options);
13432 return;
13433
13434 case OP_DISCRETE_RANGE:
13435 print_subexp (exp, pos, stream, PREC_SUFFIX);
13436 fputs_filtered ("..", stream);
13437 print_subexp (exp, pos, stream, PREC_SUFFIX);
13438 return;
13439
13440 case OP_OTHERS:
13441 fputs_filtered ("others => ", stream);
13442 print_subexp (exp, pos, stream, PREC_SUFFIX);
13443 return;
13444
13445 case OP_CHOICES:
13446 for (i = 0; i < nargs-1; i += 1)
13447 {
13448 if (i > 0)
13449 fputs_filtered ("|", stream);
13450 print_subexp (exp, pos, stream, PREC_SUFFIX);
13451 }
13452 fputs_filtered (" => ", stream);
13453 print_subexp (exp, pos, stream, PREC_SUFFIX);
13454 return;
13455
13456 case OP_POSITIONAL:
13457 print_subexp (exp, pos, stream, PREC_SUFFIX);
13458 return;
13459
13460 case OP_AGGREGATE:
13461 fputs_filtered ("(", stream);
13462 for (i = 0; i < nargs; i += 1)
13463 {
13464 if (i > 0)
13465 fputs_filtered (", ", stream);
13466 print_subexp (exp, pos, stream, PREC_SUFFIX);
13467 }
13468 fputs_filtered (")", stream);
13469 return;
13470 }
13471 }
13472
13473 /* Table mapping opcodes into strings for printing operators
13474 and precedences of the operators. */
13475
13476 static const struct op_print ada_op_print_tab[] = {
13477 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13478 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13479 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13480 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13481 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13482 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13483 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13484 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13485 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13486 {">=", BINOP_GEQ, PREC_ORDER, 0},
13487 {">", BINOP_GTR, PREC_ORDER, 0},
13488 {"<", BINOP_LESS, PREC_ORDER, 0},
13489 {">>", BINOP_RSH, PREC_SHIFT, 0},
13490 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13491 {"+", BINOP_ADD, PREC_ADD, 0},
13492 {"-", BINOP_SUB, PREC_ADD, 0},
13493 {"&", BINOP_CONCAT, PREC_ADD, 0},
13494 {"*", BINOP_MUL, PREC_MUL, 0},
13495 {"/", BINOP_DIV, PREC_MUL, 0},
13496 {"rem", BINOP_REM, PREC_MUL, 0},
13497 {"mod", BINOP_MOD, PREC_MUL, 0},
13498 {"**", BINOP_EXP, PREC_REPEAT, 0},
13499 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13500 {"-", UNOP_NEG, PREC_PREFIX, 0},
13501 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13502 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13503 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13504 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
13505 {".all", UNOP_IND, PREC_SUFFIX, 1},
13506 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13507 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
13508 {NULL, OP_NULL, PREC_SUFFIX, 0}
13509 };
13510 \f
13511 enum ada_primitive_types {
13512 ada_primitive_type_int,
13513 ada_primitive_type_long,
13514 ada_primitive_type_short,
13515 ada_primitive_type_char,
13516 ada_primitive_type_float,
13517 ada_primitive_type_double,
13518 ada_primitive_type_void,
13519 ada_primitive_type_long_long,
13520 ada_primitive_type_long_double,
13521 ada_primitive_type_natural,
13522 ada_primitive_type_positive,
13523 ada_primitive_type_system_address,
13524 ada_primitive_type_storage_offset,
13525 nr_ada_primitive_types
13526 };
13527
13528 \f
13529 /* Language vector */
13530
13531 static const struct exp_descriptor ada_exp_descriptor = {
13532 ada_print_subexp,
13533 ada_operator_length,
13534 ada_operator_check,
13535 ada_op_name,
13536 ada_dump_subexp_body,
13537 ada_evaluate_subexp
13538 };
13539
13540 /* symbol_name_matcher_ftype adapter for wild_match. */
13541
13542 static bool
13543 do_wild_match (const char *symbol_search_name,
13544 const lookup_name_info &lookup_name,
13545 completion_match_result *comp_match_res)
13546 {
13547 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
13548 }
13549
13550 /* symbol_name_matcher_ftype adapter for full_match. */
13551
13552 static bool
13553 do_full_match (const char *symbol_search_name,
13554 const lookup_name_info &lookup_name,
13555 completion_match_result *comp_match_res)
13556 {
13557 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
13558 }
13559
13560 /* symbol_name_matcher_ftype for exact (verbatim) matches. */
13561
13562 static bool
13563 do_exact_match (const char *symbol_search_name,
13564 const lookup_name_info &lookup_name,
13565 completion_match_result *comp_match_res)
13566 {
13567 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
13568 }
13569
13570 /* Build the Ada lookup name for LOOKUP_NAME. */
13571
13572 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
13573 {
13574 gdb::string_view user_name = lookup_name.name ();
13575
13576 if (user_name[0] == '<')
13577 {
13578 if (user_name.back () == '>')
13579 m_encoded_name
13580 = gdb::to_string (user_name.substr (1, user_name.size () - 2));
13581 else
13582 m_encoded_name
13583 = gdb::to_string (user_name.substr (1, user_name.size () - 1));
13584 m_encoded_p = true;
13585 m_verbatim_p = true;
13586 m_wild_match_p = false;
13587 m_standard_p = false;
13588 }
13589 else
13590 {
13591 m_verbatim_p = false;
13592
13593 m_encoded_p = user_name.find ("__") != gdb::string_view::npos;
13594
13595 if (!m_encoded_p)
13596 {
13597 const char *folded = ada_fold_name (user_name);
13598 m_encoded_name = ada_encode_1 (folded, false);
13599 if (m_encoded_name.empty ())
13600 m_encoded_name = gdb::to_string (user_name);
13601 }
13602 else
13603 m_encoded_name = gdb::to_string (user_name);
13604
13605 /* Handle the 'package Standard' special case. See description
13606 of m_standard_p. */
13607 if (startswith (m_encoded_name.c_str (), "standard__"))
13608 {
13609 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
13610 m_standard_p = true;
13611 }
13612 else
13613 m_standard_p = false;
13614
13615 /* If the name contains a ".", then the user is entering a fully
13616 qualified entity name, and the match must not be done in wild
13617 mode. Similarly, if the user wants to complete what looks
13618 like an encoded name, the match must not be done in wild
13619 mode. Also, in the standard__ special case always do
13620 non-wild matching. */
13621 m_wild_match_p
13622 = (lookup_name.match_type () != symbol_name_match_type::FULL
13623 && !m_encoded_p
13624 && !m_standard_p
13625 && user_name.find ('.') == std::string::npos);
13626 }
13627 }
13628
13629 /* symbol_name_matcher_ftype method for Ada. This only handles
13630 completion mode. */
13631
13632 static bool
13633 ada_symbol_name_matches (const char *symbol_search_name,
13634 const lookup_name_info &lookup_name,
13635 completion_match_result *comp_match_res)
13636 {
13637 return lookup_name.ada ().matches (symbol_search_name,
13638 lookup_name.match_type (),
13639 comp_match_res);
13640 }
13641
13642 /* A name matcher that matches the symbol name exactly, with
13643 strcmp. */
13644
13645 static bool
13646 literal_symbol_name_matcher (const char *symbol_search_name,
13647 const lookup_name_info &lookup_name,
13648 completion_match_result *comp_match_res)
13649 {
13650 gdb::string_view name_view = lookup_name.name ();
13651
13652 if (lookup_name.completion_mode ()
13653 ? (strncmp (symbol_search_name, name_view.data (),
13654 name_view.size ()) == 0)
13655 : symbol_search_name == name_view)
13656 {
13657 if (comp_match_res != NULL)
13658 comp_match_res->set_match (symbol_search_name);
13659 return true;
13660 }
13661 else
13662 return false;
13663 }
13664
13665 /* Implement the "get_symbol_name_matcher" language_defn method for
13666 Ada. */
13667
13668 static symbol_name_matcher_ftype *
13669 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
13670 {
13671 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
13672 return literal_symbol_name_matcher;
13673
13674 if (lookup_name.completion_mode ())
13675 return ada_symbol_name_matches;
13676 else
13677 {
13678 if (lookup_name.ada ().wild_match_p ())
13679 return do_wild_match;
13680 else if (lookup_name.ada ().verbatim_p ())
13681 return do_exact_match;
13682 else
13683 return do_full_match;
13684 }
13685 }
13686
13687 /* Class representing the Ada language. */
13688
13689 class ada_language : public language_defn
13690 {
13691 public:
13692 ada_language ()
13693 : language_defn (language_ada)
13694 { /* Nothing. */ }
13695
13696 /* See language.h. */
13697
13698 const char *name () const override
13699 { return "ada"; }
13700
13701 /* See language.h. */
13702
13703 const char *natural_name () const override
13704 { return "Ada"; }
13705
13706 /* See language.h. */
13707
13708 const std::vector<const char *> &filename_extensions () const override
13709 {
13710 static const std::vector<const char *> extensions
13711 = { ".adb", ".ads", ".a", ".ada", ".dg" };
13712 return extensions;
13713 }
13714
13715 /* Print an array element index using the Ada syntax. */
13716
13717 void print_array_index (struct type *index_type,
13718 LONGEST index,
13719 struct ui_file *stream,
13720 const value_print_options *options) const override
13721 {
13722 struct value *index_value = val_atr (index_type, index);
13723
13724 value_print (index_value, stream, options);
13725 fprintf_filtered (stream, " => ");
13726 }
13727
13728 /* Implement the "read_var_value" language_defn method for Ada. */
13729
13730 struct value *read_var_value (struct symbol *var,
13731 const struct block *var_block,
13732 struct frame_info *frame) const override
13733 {
13734 /* The only case where default_read_var_value is not sufficient
13735 is when VAR is a renaming... */
13736 if (frame != nullptr)
13737 {
13738 const struct block *frame_block = get_frame_block (frame, NULL);
13739 if (frame_block != nullptr && ada_is_renaming_symbol (var))
13740 return ada_read_renaming_var_value (var, frame_block);
13741 }
13742
13743 /* This is a typical case where we expect the default_read_var_value
13744 function to work. */
13745 return language_defn::read_var_value (var, var_block, frame);
13746 }
13747
13748 /* See language.h. */
13749 void language_arch_info (struct gdbarch *gdbarch,
13750 struct language_arch_info *lai) const override
13751 {
13752 const struct builtin_type *builtin = builtin_type (gdbarch);
13753
13754 lai->primitive_type_vector
13755 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
13756 struct type *);
13757
13758 lai->primitive_type_vector [ada_primitive_type_int]
13759 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13760 0, "integer");
13761 lai->primitive_type_vector [ada_primitive_type_long]
13762 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13763 0, "long_integer");
13764 lai->primitive_type_vector [ada_primitive_type_short]
13765 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13766 0, "short_integer");
13767 lai->string_char_type
13768 = lai->primitive_type_vector [ada_primitive_type_char]
13769 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13770 lai->primitive_type_vector [ada_primitive_type_float]
13771 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13772 "float", gdbarch_float_format (gdbarch));
13773 lai->primitive_type_vector [ada_primitive_type_double]
13774 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13775 "long_float", gdbarch_double_format (gdbarch));
13776 lai->primitive_type_vector [ada_primitive_type_long_long]
13777 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13778 0, "long_long_integer");
13779 lai->primitive_type_vector [ada_primitive_type_long_double]
13780 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
13781 "long_long_float", gdbarch_long_double_format (gdbarch));
13782 lai->primitive_type_vector [ada_primitive_type_natural]
13783 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13784 0, "natural");
13785 lai->primitive_type_vector [ada_primitive_type_positive]
13786 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13787 0, "positive");
13788 lai->primitive_type_vector [ada_primitive_type_void]
13789 = builtin->builtin_void;
13790
13791 lai->primitive_type_vector [ada_primitive_type_system_address]
13792 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
13793 "void"));
13794 lai->primitive_type_vector [ada_primitive_type_system_address]
13795 ->set_name ("system__address");
13796
13797 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
13798 type. This is a signed integral type whose size is the same as
13799 the size of addresses. */
13800 {
13801 unsigned int addr_length = TYPE_LENGTH
13802 (lai->primitive_type_vector [ada_primitive_type_system_address]);
13803
13804 lai->primitive_type_vector [ada_primitive_type_storage_offset]
13805 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
13806 "storage_offset");
13807 }
13808
13809 lai->bool_type_symbol = NULL;
13810 lai->bool_type_default = builtin->builtin_bool;
13811 }
13812
13813 /* See language.h. */
13814
13815 bool iterate_over_symbols
13816 (const struct block *block, const lookup_name_info &name,
13817 domain_enum domain,
13818 gdb::function_view<symbol_found_callback_ftype> callback) const override
13819 {
13820 std::vector<struct block_symbol> results;
13821
13822 ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
13823 for (block_symbol &sym : results)
13824 {
13825 if (!callback (&sym))
13826 return false;
13827 }
13828
13829 return true;
13830 }
13831
13832 /* See language.h. */
13833 bool sniff_from_mangled_name (const char *mangled,
13834 char **out) const override
13835 {
13836 std::string demangled = ada_decode (mangled);
13837
13838 *out = NULL;
13839
13840 if (demangled != mangled && demangled[0] != '<')
13841 {
13842 /* Set the gsymbol language to Ada, but still return 0.
13843 Two reasons for that:
13844
13845 1. For Ada, we prefer computing the symbol's decoded name
13846 on the fly rather than pre-compute it, in order to save
13847 memory (Ada projects are typically very large).
13848
13849 2. There are some areas in the definition of the GNAT
13850 encoding where, with a bit of bad luck, we might be able
13851 to decode a non-Ada symbol, generating an incorrect
13852 demangled name (Eg: names ending with "TB" for instance
13853 are identified as task bodies and so stripped from
13854 the decoded name returned).
13855
13856 Returning true, here, but not setting *DEMANGLED, helps us get
13857 a little bit of the best of both worlds. Because we're last,
13858 we should not affect any of the other languages that were
13859 able to demangle the symbol before us; we get to correctly
13860 tag Ada symbols as such; and even if we incorrectly tagged a
13861 non-Ada symbol, which should be rare, any routing through the
13862 Ada language should be transparent (Ada tries to behave much
13863 like C/C++ with non-Ada symbols). */
13864 return true;
13865 }
13866
13867 return false;
13868 }
13869
13870 /* See language.h. */
13871
13872 char *demangle_symbol (const char *mangled, int options) const override
13873 {
13874 return ada_la_decode (mangled, options);
13875 }
13876
13877 /* See language.h. */
13878
13879 void print_type (struct type *type, const char *varstring,
13880 struct ui_file *stream, int show, int level,
13881 const struct type_print_options *flags) const override
13882 {
13883 ada_print_type (type, varstring, stream, show, level, flags);
13884 }
13885
13886 /* See language.h. */
13887
13888 const char *word_break_characters (void) const override
13889 {
13890 return ada_completer_word_break_characters;
13891 }
13892
13893 /* See language.h. */
13894
13895 void collect_symbol_completion_matches (completion_tracker &tracker,
13896 complete_symbol_mode mode,
13897 symbol_name_match_type name_match_type,
13898 const char *text, const char *word,
13899 enum type_code code) const override
13900 {
13901 struct symbol *sym;
13902 const struct block *b, *surrounding_static_block = 0;
13903 struct block_iterator iter;
13904
13905 gdb_assert (code == TYPE_CODE_UNDEF);
13906
13907 lookup_name_info lookup_name (text, name_match_type, true);
13908
13909 /* First, look at the partial symtab symbols. */
13910 expand_symtabs_matching (NULL,
13911 lookup_name,
13912 NULL,
13913 NULL,
13914 ALL_DOMAIN);
13915
13916 /* At this point scan through the misc symbol vectors and add each
13917 symbol you find to the list. Eventually we want to ignore
13918 anything that isn't a text symbol (everything else will be
13919 handled by the psymtab code above). */
13920
13921 for (objfile *objfile : current_program_space->objfiles ())
13922 {
13923 for (minimal_symbol *msymbol : objfile->msymbols ())
13924 {
13925 QUIT;
13926
13927 if (completion_skip_symbol (mode, msymbol))
13928 continue;
13929
13930 language symbol_language = msymbol->language ();
13931
13932 /* Ada minimal symbols won't have their language set to Ada. If
13933 we let completion_list_add_name compare using the
13934 default/C-like matcher, then when completing e.g., symbols in a
13935 package named "pck", we'd match internal Ada symbols like
13936 "pckS", which are invalid in an Ada expression, unless you wrap
13937 them in '<' '>' to request a verbatim match.
13938
13939 Unfortunately, some Ada encoded names successfully demangle as
13940 C++ symbols (using an old mangling scheme), such as "name__2Xn"
13941 -> "Xn::name(void)" and thus some Ada minimal symbols end up
13942 with the wrong language set. Paper over that issue here. */
13943 if (symbol_language == language_auto
13944 || symbol_language == language_cplus)
13945 symbol_language = language_ada;
13946
13947 completion_list_add_name (tracker,
13948 symbol_language,
13949 msymbol->linkage_name (),
13950 lookup_name, text, word);
13951 }
13952 }
13953
13954 /* Search upwards from currently selected frame (so that we can
13955 complete on local vars. */
13956
13957 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
13958 {
13959 if (!BLOCK_SUPERBLOCK (b))
13960 surrounding_static_block = b; /* For elmin of dups */
13961
13962 ALL_BLOCK_SYMBOLS (b, iter, sym)
13963 {
13964 if (completion_skip_symbol (mode, sym))
13965 continue;
13966
13967 completion_list_add_name (tracker,
13968 sym->language (),
13969 sym->linkage_name (),
13970 lookup_name, text, word);
13971 }
13972 }
13973
13974 /* Go through the symtabs and check the externs and statics for
13975 symbols which match. */
13976
13977 for (objfile *objfile : current_program_space->objfiles ())
13978 {
13979 for (compunit_symtab *s : objfile->compunits ())
13980 {
13981 QUIT;
13982 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
13983 ALL_BLOCK_SYMBOLS (b, iter, sym)
13984 {
13985 if (completion_skip_symbol (mode, sym))
13986 continue;
13987
13988 completion_list_add_name (tracker,
13989 sym->language (),
13990 sym->linkage_name (),
13991 lookup_name, text, word);
13992 }
13993 }
13994 }
13995
13996 for (objfile *objfile : current_program_space->objfiles ())
13997 {
13998 for (compunit_symtab *s : objfile->compunits ())
13999 {
14000 QUIT;
14001 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
14002 /* Don't do this block twice. */
14003 if (b == surrounding_static_block)
14004 continue;
14005 ALL_BLOCK_SYMBOLS (b, iter, sym)
14006 {
14007 if (completion_skip_symbol (mode, sym))
14008 continue;
14009
14010 completion_list_add_name (tracker,
14011 sym->language (),
14012 sym->linkage_name (),
14013 lookup_name, text, word);
14014 }
14015 }
14016 }
14017 }
14018
14019 /* See language.h. */
14020
14021 gdb::unique_xmalloc_ptr<char> watch_location_expression
14022 (struct type *type, CORE_ADDR addr) const override
14023 {
14024 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
14025 std::string name = type_to_string (type);
14026 return gdb::unique_xmalloc_ptr<char>
14027 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
14028 }
14029
14030 /* See language.h. */
14031
14032 void value_print (struct value *val, struct ui_file *stream,
14033 const struct value_print_options *options) const override
14034 {
14035 return ada_value_print (val, stream, options);
14036 }
14037
14038 /* See language.h. */
14039
14040 void value_print_inner
14041 (struct value *val, struct ui_file *stream, int recurse,
14042 const struct value_print_options *options) const override
14043 {
14044 return ada_value_print_inner (val, stream, recurse, options);
14045 }
14046
14047 /* See language.h. */
14048
14049 struct block_symbol lookup_symbol_nonlocal
14050 (const char *name, const struct block *block,
14051 const domain_enum domain) const override
14052 {
14053 struct block_symbol sym;
14054
14055 sym = ada_lookup_symbol (name, block_static_block (block), domain);
14056 if (sym.symbol != NULL)
14057 return sym;
14058
14059 /* If we haven't found a match at this point, try the primitive
14060 types. In other languages, this search is performed before
14061 searching for global symbols in order to short-circuit that
14062 global-symbol search if it happens that the name corresponds
14063 to a primitive type. But we cannot do the same in Ada, because
14064 it is perfectly legitimate for a program to declare a type which
14065 has the same name as a standard type. If looking up a type in
14066 that situation, we have traditionally ignored the primitive type
14067 in favor of user-defined types. This is why, unlike most other
14068 languages, we search the primitive types this late and only after
14069 having searched the global symbols without success. */
14070
14071 if (domain == VAR_DOMAIN)
14072 {
14073 struct gdbarch *gdbarch;
14074
14075 if (block == NULL)
14076 gdbarch = target_gdbarch ();
14077 else
14078 gdbarch = block_gdbarch (block);
14079 sym.symbol
14080 = language_lookup_primitive_type_as_symbol (this, gdbarch, name);
14081 if (sym.symbol != NULL)
14082 return sym;
14083 }
14084
14085 return {};
14086 }
14087
14088 /* See language.h. */
14089
14090 int parser (struct parser_state *ps) const override
14091 {
14092 warnings_issued = 0;
14093 return ada_parse (ps);
14094 }
14095
14096 /* See language.h.
14097
14098 Same as evaluate_type (*EXP), but resolves ambiguous symbol references
14099 (marked by OP_VAR_VALUE nodes in which the symbol has an undefined
14100 namespace) and converts operators that are user-defined into
14101 appropriate function calls. If CONTEXT_TYPE is non-null, it provides
14102 a preferred result type [at the moment, only type void has any
14103 effect---causing procedures to be preferred over functions in calls].
14104 A null CONTEXT_TYPE indicates that a non-void return type is
14105 preferred. May change (expand) *EXP. */
14106
14107 void post_parser (expression_up *expp, int void_context_p, int completing,
14108 innermost_block_tracker *tracker) const override
14109 {
14110 struct type *context_type = NULL;
14111 int pc = 0;
14112
14113 if (void_context_p)
14114 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
14115
14116 resolve_subexp (expp, &pc, 1, context_type, completing, tracker);
14117 }
14118
14119 /* See language.h. */
14120
14121 void emitchar (int ch, struct type *chtype,
14122 struct ui_file *stream, int quoter) const override
14123 {
14124 ada_emit_char (ch, chtype, stream, quoter, 1);
14125 }
14126
14127 /* See language.h. */
14128
14129 void printchar (int ch, struct type *chtype,
14130 struct ui_file *stream) const override
14131 {
14132 ada_printchar (ch, chtype, stream);
14133 }
14134
14135 /* See language.h. */
14136
14137 void printstr (struct ui_file *stream, struct type *elttype,
14138 const gdb_byte *string, unsigned int length,
14139 const char *encoding, int force_ellipses,
14140 const struct value_print_options *options) const override
14141 {
14142 ada_printstr (stream, elttype, string, length, encoding,
14143 force_ellipses, options);
14144 }
14145
14146 /* See language.h. */
14147
14148 void print_typedef (struct type *type, struct symbol *new_symbol,
14149 struct ui_file *stream) const override
14150 {
14151 ada_print_typedef (type, new_symbol, stream);
14152 }
14153
14154 /* See language.h. */
14155
14156 bool is_string_type_p (struct type *type) const override
14157 {
14158 return ada_is_string_type (type);
14159 }
14160
14161 /* See language.h. */
14162
14163 const char *struct_too_deep_ellipsis () const override
14164 { return "(...)"; }
14165
14166 /* See language.h. */
14167
14168 bool c_style_arrays_p () const override
14169 { return false; }
14170
14171 /* See language.h. */
14172
14173 bool store_sym_names_in_linkage_form_p () const override
14174 { return true; }
14175
14176 /* See language.h. */
14177
14178 const struct lang_varobj_ops *varobj_ops () const override
14179 { return &ada_varobj_ops; }
14180
14181 /* See language.h. */
14182
14183 const struct exp_descriptor *expression_ops () const override
14184 { return &ada_exp_descriptor; }
14185
14186 /* See language.h. */
14187
14188 const struct op_print *opcode_print_table () const override
14189 { return ada_op_print_tab; }
14190
14191 protected:
14192 /* See language.h. */
14193
14194 symbol_name_matcher_ftype *get_symbol_name_matcher_inner
14195 (const lookup_name_info &lookup_name) const override
14196 {
14197 return ada_get_symbol_name_matcher (lookup_name);
14198 }
14199 };
14200
14201 /* Single instance of the Ada language class. */
14202
14203 static ada_language ada_language_defn;
14204
14205 /* Command-list for the "set/show ada" prefix command. */
14206 static struct cmd_list_element *set_ada_list;
14207 static struct cmd_list_element *show_ada_list;
14208
14209 static void
14210 initialize_ada_catchpoint_ops (void)
14211 {
14212 struct breakpoint_ops *ops;
14213
14214 initialize_breakpoint_ops ();
14215
14216 ops = &catch_exception_breakpoint_ops;
14217 *ops = bkpt_breakpoint_ops;
14218 ops->allocate_location = allocate_location_exception;
14219 ops->re_set = re_set_exception;
14220 ops->check_status = check_status_exception;
14221 ops->print_it = print_it_exception;
14222 ops->print_one = print_one_exception;
14223 ops->print_mention = print_mention_exception;
14224 ops->print_recreate = print_recreate_exception;
14225
14226 ops = &catch_exception_unhandled_breakpoint_ops;
14227 *ops = bkpt_breakpoint_ops;
14228 ops->allocate_location = allocate_location_exception;
14229 ops->re_set = re_set_exception;
14230 ops->check_status = check_status_exception;
14231 ops->print_it = print_it_exception;
14232 ops->print_one = print_one_exception;
14233 ops->print_mention = print_mention_exception;
14234 ops->print_recreate = print_recreate_exception;
14235
14236 ops = &catch_assert_breakpoint_ops;
14237 *ops = bkpt_breakpoint_ops;
14238 ops->allocate_location = allocate_location_exception;
14239 ops->re_set = re_set_exception;
14240 ops->check_status = check_status_exception;
14241 ops->print_it = print_it_exception;
14242 ops->print_one = print_one_exception;
14243 ops->print_mention = print_mention_exception;
14244 ops->print_recreate = print_recreate_exception;
14245
14246 ops = &catch_handlers_breakpoint_ops;
14247 *ops = bkpt_breakpoint_ops;
14248 ops->allocate_location = allocate_location_exception;
14249 ops->re_set = re_set_exception;
14250 ops->check_status = check_status_exception;
14251 ops->print_it = print_it_exception;
14252 ops->print_one = print_one_exception;
14253 ops->print_mention = print_mention_exception;
14254 ops->print_recreate = print_recreate_exception;
14255 }
14256
14257 /* This module's 'new_objfile' observer. */
14258
14259 static void
14260 ada_new_objfile_observer (struct objfile *objfile)
14261 {
14262 ada_clear_symbol_cache ();
14263 }
14264
14265 /* This module's 'free_objfile' observer. */
14266
14267 static void
14268 ada_free_objfile_observer (struct objfile *objfile)
14269 {
14270 ada_clear_symbol_cache ();
14271 }
14272
14273 void _initialize_ada_language ();
14274 void
14275 _initialize_ada_language ()
14276 {
14277 initialize_ada_catchpoint_ops ();
14278
14279 add_basic_prefix_cmd ("ada", no_class,
14280 _("Prefix command for changing Ada-specific settings."),
14281 &set_ada_list, "set ada ", 0, &setlist);
14282
14283 add_show_prefix_cmd ("ada", no_class,
14284 _("Generic command for showing Ada-specific settings."),
14285 &show_ada_list, "show ada ", 0, &showlist);
14286
14287 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14288 &trust_pad_over_xvs, _("\
14289 Enable or disable an optimization trusting PAD types over XVS types."), _("\
14290 Show whether an optimization trusting PAD types over XVS types is activated."),
14291 _("\
14292 This is related to the encoding used by the GNAT compiler. The debugger\n\
14293 should normally trust the contents of PAD types, but certain older versions\n\
14294 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14295 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14296 work around this bug. It is always safe to turn this option \"off\", but\n\
14297 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14298 this option to \"off\" unless necessary."),
14299 NULL, NULL, &set_ada_list, &show_ada_list);
14300
14301 add_setshow_boolean_cmd ("print-signatures", class_vars,
14302 &print_signatures, _("\
14303 Enable or disable the output of formal and return types for functions in the \
14304 overloads selection menu."), _("\
14305 Show whether the output of formal and return types for functions in the \
14306 overloads selection menu is activated."),
14307 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14308
14309 add_catch_command ("exception", _("\
14310 Catch Ada exceptions, when raised.\n\
14311 Usage: catch exception [ARG] [if CONDITION]\n\
14312 Without any argument, stop when any Ada exception is raised.\n\
14313 If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
14314 being raised does not have a handler (and will therefore lead to the task's\n\
14315 termination).\n\
14316 Otherwise, the catchpoint only stops when the name of the exception being\n\
14317 raised is the same as ARG.\n\
14318 CONDITION is a boolean expression that is evaluated to see whether the\n\
14319 exception should cause a stop."),
14320 catch_ada_exception_command,
14321 catch_ada_completer,
14322 CATCH_PERMANENT,
14323 CATCH_TEMPORARY);
14324
14325 add_catch_command ("handlers", _("\
14326 Catch Ada exceptions, when handled.\n\
14327 Usage: catch handlers [ARG] [if CONDITION]\n\
14328 Without any argument, stop when any Ada exception is handled.\n\
14329 With an argument, catch only exceptions with the given name.\n\
14330 CONDITION is a boolean expression that is evaluated to see whether the\n\
14331 exception should cause a stop."),
14332 catch_ada_handlers_command,
14333 catch_ada_completer,
14334 CATCH_PERMANENT,
14335 CATCH_TEMPORARY);
14336 add_catch_command ("assert", _("\
14337 Catch failed Ada assertions, when raised.\n\
14338 Usage: catch assert [if CONDITION]\n\
14339 CONDITION is a boolean expression that is evaluated to see whether the\n\
14340 exception should cause a stop."),
14341 catch_assert_command,
14342 NULL,
14343 CATCH_PERMANENT,
14344 CATCH_TEMPORARY);
14345
14346 varsize_limit = 65536;
14347 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14348 &varsize_limit, _("\
14349 Set the maximum number of bytes allowed in a variable-size object."), _("\
14350 Show the maximum number of bytes allowed in a variable-size object."), _("\
14351 Attempts to access an object whose size is not a compile-time constant\n\
14352 and exceeds this limit will cause an error."),
14353 NULL, NULL, &setlist, &showlist);
14354
14355 add_info ("exceptions", info_exceptions_command,
14356 _("\
14357 List all Ada exception names.\n\
14358 Usage: info exceptions [REGEXP]\n\
14359 If a regular expression is passed as an argument, only those matching\n\
14360 the regular expression are listed."));
14361
14362 add_basic_prefix_cmd ("ada", class_maintenance,
14363 _("Set Ada maintenance-related variables."),
14364 &maint_set_ada_cmdlist, "maintenance set ada ",
14365 0/*allow-unknown*/, &maintenance_set_cmdlist);
14366
14367 add_show_prefix_cmd ("ada", class_maintenance,
14368 _("Show Ada maintenance-related variables."),
14369 &maint_show_ada_cmdlist, "maintenance show ada ",
14370 0/*allow-unknown*/, &maintenance_show_cmdlist);
14371
14372 add_setshow_boolean_cmd
14373 ("ignore-descriptive-types", class_maintenance,
14374 &ada_ignore_descriptive_types_p,
14375 _("Set whether descriptive types generated by GNAT should be ignored."),
14376 _("Show whether descriptive types generated by GNAT should be ignored."),
14377 _("\
14378 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14379 DWARF attribute."),
14380 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14381
14382 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14383 NULL, xcalloc, xfree);
14384
14385 /* The ada-lang observers. */
14386 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14387 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14388 gdb::observers::inferior_exit.attach (ada_inferior_exit);
14389 }
This page took 0.467039 seconds and 4 git commands to generate.