gdb/gdbserver/
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-1994, 1997-2000, 2003-2005, 2007-2012 Free
4 Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include "defs.h"
23 #include <stdio.h>
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include <stdarg.h>
27 #include "demangle.h"
28 #include "gdb_regex.h"
29 #include "frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35 #include "language.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include "gdb_stat.h"
47 #ifdef UI_OUT
48 #include "ui-out.h"
49 #endif
50 #include "block.h"
51 #include "infcall.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
54 #include "annotate.h"
55 #include "valprint.h"
56 #include "source.h"
57 #include "observer.h"
58 #include "vec.h"
59 #include "stack.h"
60 #include "gdb_vecs.h"
61
62 #include "psymtab.h"
63 #include "value.h"
64 #include "mi/mi-common.h"
65 #include "arch-utils.h"
66 #include "exceptions.h"
67 #include "cli/cli-utils.h"
68
69 /* Define whether or not the C operator '/' truncates towards zero for
70 differently signed operands (truncation direction is undefined in C).
71 Copied from valarith.c. */
72
73 #ifndef TRUNCATION_TOWARDS_ZERO
74 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
75 #endif
76
77 static struct type *desc_base_type (struct type *);
78
79 static struct type *desc_bounds_type (struct type *);
80
81 static struct value *desc_bounds (struct value *);
82
83 static int fat_pntr_bounds_bitpos (struct type *);
84
85 static int fat_pntr_bounds_bitsize (struct type *);
86
87 static struct type *desc_data_target_type (struct type *);
88
89 static struct value *desc_data (struct value *);
90
91 static int fat_pntr_data_bitpos (struct type *);
92
93 static int fat_pntr_data_bitsize (struct type *);
94
95 static struct value *desc_one_bound (struct value *, int, int);
96
97 static int desc_bound_bitpos (struct type *, int, int);
98
99 static int desc_bound_bitsize (struct type *, int, int);
100
101 static struct type *desc_index_type (struct type *, int);
102
103 static int desc_arity (struct type *);
104
105 static int ada_type_match (struct type *, struct type *, int);
106
107 static int ada_args_match (struct symbol *, struct value **, int);
108
109 static int full_match (const char *, const char *);
110
111 static struct value *make_array_descriptor (struct type *, struct value *);
112
113 static void ada_add_block_symbols (struct obstack *,
114 struct block *, const char *,
115 domain_enum, struct objfile *, int);
116
117 static int is_nonfunction (struct ada_symbol_info *, int);
118
119 static void add_defn_to_vec (struct obstack *, struct symbol *,
120 struct block *);
121
122 static int num_defns_collected (struct obstack *);
123
124 static struct ada_symbol_info *defns_collected (struct obstack *, int);
125
126 static struct value *resolve_subexp (struct expression **, int *, int,
127 struct type *);
128
129 static void replace_operator_with_call (struct expression **, int, int, int,
130 struct symbol *, struct block *);
131
132 static int possible_user_operator_p (enum exp_opcode, struct value **);
133
134 static char *ada_op_name (enum exp_opcode);
135
136 static const char *ada_decoded_op_name (enum exp_opcode);
137
138 static int numeric_type_p (struct type *);
139
140 static int integer_type_p (struct type *);
141
142 static int scalar_type_p (struct type *);
143
144 static int discrete_type_p (struct type *);
145
146 static enum ada_renaming_category parse_old_style_renaming (struct type *,
147 const char **,
148 int *,
149 const char **);
150
151 static struct symbol *find_old_style_renaming_symbol (const char *,
152 struct block *);
153
154 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
155 int, int, int *);
156
157 static struct value *evaluate_subexp_type (struct expression *, int *);
158
159 static struct type *ada_find_parallel_type_with_name (struct type *,
160 const char *);
161
162 static int is_dynamic_field (struct type *, int);
163
164 static struct type *to_fixed_variant_branch_type (struct type *,
165 const gdb_byte *,
166 CORE_ADDR, struct value *);
167
168 static struct type *to_fixed_array_type (struct type *, struct value *, int);
169
170 static struct type *to_fixed_range_type (struct type *, struct value *);
171
172 static struct type *to_static_fixed_type (struct type *);
173 static struct type *static_unwrap_type (struct type *type);
174
175 static struct value *unwrap_value (struct value *);
176
177 static struct type *constrained_packed_array_type (struct type *, long *);
178
179 static struct type *decode_constrained_packed_array_type (struct type *);
180
181 static long decode_packed_array_bitsize (struct type *);
182
183 static struct value *decode_constrained_packed_array (struct value *);
184
185 static int ada_is_packed_array_type (struct type *);
186
187 static int ada_is_unconstrained_packed_array_type (struct type *);
188
189 static struct value *value_subscript_packed (struct value *, int,
190 struct value **);
191
192 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
193
194 static struct value *coerce_unspec_val_to_type (struct value *,
195 struct type *);
196
197 static struct value *get_var_value (char *, char *);
198
199 static int lesseq_defined_than (struct symbol *, struct symbol *);
200
201 static int equiv_types (struct type *, struct type *);
202
203 static int is_name_suffix (const char *);
204
205 static int advance_wild_match (const char **, const char *, int);
206
207 static int wild_match (const char *, const char *);
208
209 static struct value *ada_coerce_ref (struct value *);
210
211 static LONGEST pos_atr (struct value *);
212
213 static struct value *value_pos_atr (struct type *, struct value *);
214
215 static struct value *value_val_atr (struct type *, struct value *);
216
217 static struct symbol *standard_lookup (const char *, const struct block *,
218 domain_enum);
219
220 static struct value *ada_search_struct_field (char *, struct value *, int,
221 struct type *);
222
223 static struct value *ada_value_primitive_field (struct value *, int, int,
224 struct type *);
225
226 static int find_struct_field (char *, struct type *, int,
227 struct type **, int *, int *, int *, int *);
228
229 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
230 struct value *);
231
232 static int ada_resolve_function (struct ada_symbol_info *, int,
233 struct value **, int, const char *,
234 struct type *);
235
236 static int ada_is_direct_array_type (struct type *);
237
238 static void ada_language_arch_info (struct gdbarch *,
239 struct language_arch_info *);
240
241 static void check_size (const struct type *);
242
243 static struct value *ada_index_struct_field (int, struct value *, int,
244 struct type *);
245
246 static struct value *assign_aggregate (struct value *, struct value *,
247 struct expression *,
248 int *, enum noside);
249
250 static void aggregate_assign_from_choices (struct value *, struct value *,
251 struct expression *,
252 int *, LONGEST *, int *,
253 int, LONGEST, LONGEST);
254
255 static void aggregate_assign_positional (struct value *, struct value *,
256 struct expression *,
257 int *, LONGEST *, int *, int,
258 LONGEST, LONGEST);
259
260
261 static void aggregate_assign_others (struct value *, struct value *,
262 struct expression *,
263 int *, LONGEST *, int, LONGEST, LONGEST);
264
265
266 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
267
268
269 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
270 int *, enum noside);
271
272 static void ada_forward_operator_length (struct expression *, int, int *,
273 int *);
274 \f
275
276
277 /* Maximum-sized dynamic type. */
278 static unsigned int varsize_limit;
279
280 /* FIXME: brobecker/2003-09-17: No longer a const because it is
281 returned by a function that does not return a const char *. */
282 static char *ada_completer_word_break_characters =
283 #ifdef VMS
284 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
285 #else
286 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
287 #endif
288
289 /* The name of the symbol to use to get the name of the main subprogram. */
290 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
291 = "__gnat_ada_main_program_name";
292
293 /* Limit on the number of warnings to raise per expression evaluation. */
294 static int warning_limit = 2;
295
296 /* Number of warning messages issued; reset to 0 by cleanups after
297 expression evaluation. */
298 static int warnings_issued = 0;
299
300 static const char *known_runtime_file_name_patterns[] = {
301 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
302 };
303
304 static const char *known_auxiliary_function_name_patterns[] = {
305 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
306 };
307
308 /* Space for allocating results of ada_lookup_symbol_list. */
309 static struct obstack symbol_list_obstack;
310
311 /* Inferior-specific data. */
312
313 /* Per-inferior data for this module. */
314
315 struct ada_inferior_data
316 {
317 /* The ada__tags__type_specific_data type, which is used when decoding
318 tagged types. With older versions of GNAT, this type was directly
319 accessible through a component ("tsd") in the object tag. But this
320 is no longer the case, so we cache it for each inferior. */
321 struct type *tsd_type;
322
323 /* The exception_support_info data. This data is used to determine
324 how to implement support for Ada exception catchpoints in a given
325 inferior. */
326 const struct exception_support_info *exception_info;
327 };
328
329 /* Our key to this module's inferior data. */
330 static const struct inferior_data *ada_inferior_data;
331
332 /* A cleanup routine for our inferior data. */
333 static void
334 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
335 {
336 struct ada_inferior_data *data;
337
338 data = inferior_data (inf, ada_inferior_data);
339 if (data != NULL)
340 xfree (data);
341 }
342
343 /* Return our inferior data for the given inferior (INF).
344
345 This function always returns a valid pointer to an allocated
346 ada_inferior_data structure. If INF's inferior data has not
347 been previously set, this functions creates a new one with all
348 fields set to zero, sets INF's inferior to it, and then returns
349 a pointer to that newly allocated ada_inferior_data. */
350
351 static struct ada_inferior_data *
352 get_ada_inferior_data (struct inferior *inf)
353 {
354 struct ada_inferior_data *data;
355
356 data = inferior_data (inf, ada_inferior_data);
357 if (data == NULL)
358 {
359 data = XZALLOC (struct ada_inferior_data);
360 set_inferior_data (inf, ada_inferior_data, data);
361 }
362
363 return data;
364 }
365
366 /* Perform all necessary cleanups regarding our module's inferior data
367 that is required after the inferior INF just exited. */
368
369 static void
370 ada_inferior_exit (struct inferior *inf)
371 {
372 ada_inferior_data_cleanup (inf, NULL);
373 set_inferior_data (inf, ada_inferior_data, NULL);
374 }
375
376 /* Utilities */
377
378 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
379 all typedef layers have been peeled. Otherwise, return TYPE.
380
381 Normally, we really expect a typedef type to only have 1 typedef layer.
382 In other words, we really expect the target type of a typedef type to be
383 a non-typedef type. This is particularly true for Ada units, because
384 the language does not have a typedef vs not-typedef distinction.
385 In that respect, the Ada compiler has been trying to eliminate as many
386 typedef definitions in the debugging information, since they generally
387 do not bring any extra information (we still use typedef under certain
388 circumstances related mostly to the GNAT encoding).
389
390 Unfortunately, we have seen situations where the debugging information
391 generated by the compiler leads to such multiple typedef layers. For
392 instance, consider the following example with stabs:
393
394 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
395 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
396
397 This is an error in the debugging information which causes type
398 pck__float_array___XUP to be defined twice, and the second time,
399 it is defined as a typedef of a typedef.
400
401 This is on the fringe of legality as far as debugging information is
402 concerned, and certainly unexpected. But it is easy to handle these
403 situations correctly, so we can afford to be lenient in this case. */
404
405 static struct type *
406 ada_typedef_target_type (struct type *type)
407 {
408 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
409 type = TYPE_TARGET_TYPE (type);
410 return type;
411 }
412
413 /* Given DECODED_NAME a string holding a symbol name in its
414 decoded form (ie using the Ada dotted notation), returns
415 its unqualified name. */
416
417 static const char *
418 ada_unqualified_name (const char *decoded_name)
419 {
420 const char *result = strrchr (decoded_name, '.');
421
422 if (result != NULL)
423 result++; /* Skip the dot... */
424 else
425 result = decoded_name;
426
427 return result;
428 }
429
430 /* Return a string starting with '<', followed by STR, and '>'.
431 The result is good until the next call. */
432
433 static char *
434 add_angle_brackets (const char *str)
435 {
436 static char *result = NULL;
437
438 xfree (result);
439 result = xstrprintf ("<%s>", str);
440 return result;
441 }
442
443 static char *
444 ada_get_gdb_completer_word_break_characters (void)
445 {
446 return ada_completer_word_break_characters;
447 }
448
449 /* Print an array element index using the Ada syntax. */
450
451 static void
452 ada_print_array_index (struct value *index_value, struct ui_file *stream,
453 const struct value_print_options *options)
454 {
455 LA_VALUE_PRINT (index_value, stream, options);
456 fprintf_filtered (stream, " => ");
457 }
458
459 /* Assuming VECT points to an array of *SIZE objects of size
460 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
461 updating *SIZE as necessary and returning the (new) array. */
462
463 void *
464 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
465 {
466 if (*size < min_size)
467 {
468 *size *= 2;
469 if (*size < min_size)
470 *size = min_size;
471 vect = xrealloc (vect, *size * element_size);
472 }
473 return vect;
474 }
475
476 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
477 suffix of FIELD_NAME beginning "___". */
478
479 static int
480 field_name_match (const char *field_name, const char *target)
481 {
482 int len = strlen (target);
483
484 return
485 (strncmp (field_name, target, len) == 0
486 && (field_name[len] == '\0'
487 || (strncmp (field_name + len, "___", 3) == 0
488 && strcmp (field_name + strlen (field_name) - 6,
489 "___XVN") != 0)));
490 }
491
492
493 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
494 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
495 and return its index. This function also handles fields whose name
496 have ___ suffixes because the compiler sometimes alters their name
497 by adding such a suffix to represent fields with certain constraints.
498 If the field could not be found, return a negative number if
499 MAYBE_MISSING is set. Otherwise raise an error. */
500
501 int
502 ada_get_field_index (const struct type *type, const char *field_name,
503 int maybe_missing)
504 {
505 int fieldno;
506 struct type *struct_type = check_typedef ((struct type *) type);
507
508 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
509 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
510 return fieldno;
511
512 if (!maybe_missing)
513 error (_("Unable to find field %s in struct %s. Aborting"),
514 field_name, TYPE_NAME (struct_type));
515
516 return -1;
517 }
518
519 /* The length of the prefix of NAME prior to any "___" suffix. */
520
521 int
522 ada_name_prefix_len (const char *name)
523 {
524 if (name == NULL)
525 return 0;
526 else
527 {
528 const char *p = strstr (name, "___");
529
530 if (p == NULL)
531 return strlen (name);
532 else
533 return p - name;
534 }
535 }
536
537 /* Return non-zero if SUFFIX is a suffix of STR.
538 Return zero if STR is null. */
539
540 static int
541 is_suffix (const char *str, const char *suffix)
542 {
543 int len1, len2;
544
545 if (str == NULL)
546 return 0;
547 len1 = strlen (str);
548 len2 = strlen (suffix);
549 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
550 }
551
552 /* The contents of value VAL, treated as a value of type TYPE. The
553 result is an lval in memory if VAL is. */
554
555 static struct value *
556 coerce_unspec_val_to_type (struct value *val, struct type *type)
557 {
558 type = ada_check_typedef (type);
559 if (value_type (val) == type)
560 return val;
561 else
562 {
563 struct value *result;
564
565 /* Make sure that the object size is not unreasonable before
566 trying to allocate some memory for it. */
567 check_size (type);
568
569 if (value_lazy (val)
570 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
571 result = allocate_value_lazy (type);
572 else
573 {
574 result = allocate_value (type);
575 memcpy (value_contents_raw (result), value_contents (val),
576 TYPE_LENGTH (type));
577 }
578 set_value_component_location (result, val);
579 set_value_bitsize (result, value_bitsize (val));
580 set_value_bitpos (result, value_bitpos (val));
581 set_value_address (result, value_address (val));
582 return result;
583 }
584 }
585
586 static const gdb_byte *
587 cond_offset_host (const gdb_byte *valaddr, long offset)
588 {
589 if (valaddr == NULL)
590 return NULL;
591 else
592 return valaddr + offset;
593 }
594
595 static CORE_ADDR
596 cond_offset_target (CORE_ADDR address, long offset)
597 {
598 if (address == 0)
599 return 0;
600 else
601 return address + offset;
602 }
603
604 /* Issue a warning (as for the definition of warning in utils.c, but
605 with exactly one argument rather than ...), unless the limit on the
606 number of warnings has passed during the evaluation of the current
607 expression. */
608
609 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
610 provided by "complaint". */
611 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
612
613 static void
614 lim_warning (const char *format, ...)
615 {
616 va_list args;
617
618 va_start (args, format);
619 warnings_issued += 1;
620 if (warnings_issued <= warning_limit)
621 vwarning (format, args);
622
623 va_end (args);
624 }
625
626 /* Issue an error if the size of an object of type T is unreasonable,
627 i.e. if it would be a bad idea to allocate a value of this type in
628 GDB. */
629
630 static void
631 check_size (const struct type *type)
632 {
633 if (TYPE_LENGTH (type) > varsize_limit)
634 error (_("object size is larger than varsize-limit"));
635 }
636
637 /* Maximum value of a SIZE-byte signed integer type. */
638 static LONGEST
639 max_of_size (int size)
640 {
641 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
642
643 return top_bit | (top_bit - 1);
644 }
645
646 /* Minimum value of a SIZE-byte signed integer type. */
647 static LONGEST
648 min_of_size (int size)
649 {
650 return -max_of_size (size) - 1;
651 }
652
653 /* Maximum value of a SIZE-byte unsigned integer type. */
654 static ULONGEST
655 umax_of_size (int size)
656 {
657 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
658
659 return top_bit | (top_bit - 1);
660 }
661
662 /* Maximum value of integral type T, as a signed quantity. */
663 static LONGEST
664 max_of_type (struct type *t)
665 {
666 if (TYPE_UNSIGNED (t))
667 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
668 else
669 return max_of_size (TYPE_LENGTH (t));
670 }
671
672 /* Minimum value of integral type T, as a signed quantity. */
673 static LONGEST
674 min_of_type (struct type *t)
675 {
676 if (TYPE_UNSIGNED (t))
677 return 0;
678 else
679 return min_of_size (TYPE_LENGTH (t));
680 }
681
682 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
683 LONGEST
684 ada_discrete_type_high_bound (struct type *type)
685 {
686 switch (TYPE_CODE (type))
687 {
688 case TYPE_CODE_RANGE:
689 return TYPE_HIGH_BOUND (type);
690 case TYPE_CODE_ENUM:
691 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
692 case TYPE_CODE_BOOL:
693 return 1;
694 case TYPE_CODE_CHAR:
695 case TYPE_CODE_INT:
696 return max_of_type (type);
697 default:
698 error (_("Unexpected type in ada_discrete_type_high_bound."));
699 }
700 }
701
702 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
703 LONGEST
704 ada_discrete_type_low_bound (struct type *type)
705 {
706 switch (TYPE_CODE (type))
707 {
708 case TYPE_CODE_RANGE:
709 return TYPE_LOW_BOUND (type);
710 case TYPE_CODE_ENUM:
711 return TYPE_FIELD_BITPOS (type, 0);
712 case TYPE_CODE_BOOL:
713 return 0;
714 case TYPE_CODE_CHAR:
715 case TYPE_CODE_INT:
716 return min_of_type (type);
717 default:
718 error (_("Unexpected type in ada_discrete_type_low_bound."));
719 }
720 }
721
722 /* The identity on non-range types. For range types, the underlying
723 non-range scalar type. */
724
725 static struct type *
726 get_base_type (struct type *type)
727 {
728 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
729 {
730 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
731 return type;
732 type = TYPE_TARGET_TYPE (type);
733 }
734 return type;
735 }
736 \f
737
738 /* Language Selection */
739
740 /* If the main program is in Ada, return language_ada, otherwise return LANG
741 (the main program is in Ada iif the adainit symbol is found). */
742
743 enum language
744 ada_update_initial_language (enum language lang)
745 {
746 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
747 (struct objfile *) NULL) != NULL)
748 return language_ada;
749
750 return lang;
751 }
752
753 /* If the main procedure is written in Ada, then return its name.
754 The result is good until the next call. Return NULL if the main
755 procedure doesn't appear to be in Ada. */
756
757 char *
758 ada_main_name (void)
759 {
760 struct minimal_symbol *msym;
761 static char *main_program_name = NULL;
762
763 /* For Ada, the name of the main procedure is stored in a specific
764 string constant, generated by the binder. Look for that symbol,
765 extract its address, and then read that string. If we didn't find
766 that string, then most probably the main procedure is not written
767 in Ada. */
768 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
769
770 if (msym != NULL)
771 {
772 CORE_ADDR main_program_name_addr;
773 int err_code;
774
775 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
776 if (main_program_name_addr == 0)
777 error (_("Invalid address for Ada main program name."));
778
779 xfree (main_program_name);
780 target_read_string (main_program_name_addr, &main_program_name,
781 1024, &err_code);
782
783 if (err_code != 0)
784 return NULL;
785 return main_program_name;
786 }
787
788 /* The main procedure doesn't seem to be in Ada. */
789 return NULL;
790 }
791 \f
792 /* Symbols */
793
794 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
795 of NULLs. */
796
797 const struct ada_opname_map ada_opname_table[] = {
798 {"Oadd", "\"+\"", BINOP_ADD},
799 {"Osubtract", "\"-\"", BINOP_SUB},
800 {"Omultiply", "\"*\"", BINOP_MUL},
801 {"Odivide", "\"/\"", BINOP_DIV},
802 {"Omod", "\"mod\"", BINOP_MOD},
803 {"Orem", "\"rem\"", BINOP_REM},
804 {"Oexpon", "\"**\"", BINOP_EXP},
805 {"Olt", "\"<\"", BINOP_LESS},
806 {"Ole", "\"<=\"", BINOP_LEQ},
807 {"Ogt", "\">\"", BINOP_GTR},
808 {"Oge", "\">=\"", BINOP_GEQ},
809 {"Oeq", "\"=\"", BINOP_EQUAL},
810 {"One", "\"/=\"", BINOP_NOTEQUAL},
811 {"Oand", "\"and\"", BINOP_BITWISE_AND},
812 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
813 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
814 {"Oconcat", "\"&\"", BINOP_CONCAT},
815 {"Oabs", "\"abs\"", UNOP_ABS},
816 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
817 {"Oadd", "\"+\"", UNOP_PLUS},
818 {"Osubtract", "\"-\"", UNOP_NEG},
819 {NULL, NULL}
820 };
821
822 /* The "encoded" form of DECODED, according to GNAT conventions.
823 The result is valid until the next call to ada_encode. */
824
825 char *
826 ada_encode (const char *decoded)
827 {
828 static char *encoding_buffer = NULL;
829 static size_t encoding_buffer_size = 0;
830 const char *p;
831 int k;
832
833 if (decoded == NULL)
834 return NULL;
835
836 GROW_VECT (encoding_buffer, encoding_buffer_size,
837 2 * strlen (decoded) + 10);
838
839 k = 0;
840 for (p = decoded; *p != '\0'; p += 1)
841 {
842 if (*p == '.')
843 {
844 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
845 k += 2;
846 }
847 else if (*p == '"')
848 {
849 const struct ada_opname_map *mapping;
850
851 for (mapping = ada_opname_table;
852 mapping->encoded != NULL
853 && strncmp (mapping->decoded, p,
854 strlen (mapping->decoded)) != 0; mapping += 1)
855 ;
856 if (mapping->encoded == NULL)
857 error (_("invalid Ada operator name: %s"), p);
858 strcpy (encoding_buffer + k, mapping->encoded);
859 k += strlen (mapping->encoded);
860 break;
861 }
862 else
863 {
864 encoding_buffer[k] = *p;
865 k += 1;
866 }
867 }
868
869 encoding_buffer[k] = '\0';
870 return encoding_buffer;
871 }
872
873 /* Return NAME folded to lower case, or, if surrounded by single
874 quotes, unfolded, but with the quotes stripped away. Result good
875 to next call. */
876
877 char *
878 ada_fold_name (const char *name)
879 {
880 static char *fold_buffer = NULL;
881 static size_t fold_buffer_size = 0;
882
883 int len = strlen (name);
884 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
885
886 if (name[0] == '\'')
887 {
888 strncpy (fold_buffer, name + 1, len - 2);
889 fold_buffer[len - 2] = '\000';
890 }
891 else
892 {
893 int i;
894
895 for (i = 0; i <= len; i += 1)
896 fold_buffer[i] = tolower (name[i]);
897 }
898
899 return fold_buffer;
900 }
901
902 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
903
904 static int
905 is_lower_alphanum (const char c)
906 {
907 return (isdigit (c) || (isalpha (c) && islower (c)));
908 }
909
910 /* ENCODED is the linkage name of a symbol and LEN contains its length.
911 This function saves in LEN the length of that same symbol name but
912 without either of these suffixes:
913 . .{DIGIT}+
914 . ${DIGIT}+
915 . ___{DIGIT}+
916 . __{DIGIT}+.
917
918 These are suffixes introduced by the compiler for entities such as
919 nested subprogram for instance, in order to avoid name clashes.
920 They do not serve any purpose for the debugger. */
921
922 static void
923 ada_remove_trailing_digits (const char *encoded, int *len)
924 {
925 if (*len > 1 && isdigit (encoded[*len - 1]))
926 {
927 int i = *len - 2;
928
929 while (i > 0 && isdigit (encoded[i]))
930 i--;
931 if (i >= 0 && encoded[i] == '.')
932 *len = i;
933 else if (i >= 0 && encoded[i] == '$')
934 *len = i;
935 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
936 *len = i - 2;
937 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
938 *len = i - 1;
939 }
940 }
941
942 /* Remove the suffix introduced by the compiler for protected object
943 subprograms. */
944
945 static void
946 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
947 {
948 /* Remove trailing N. */
949
950 /* Protected entry subprograms are broken into two
951 separate subprograms: The first one is unprotected, and has
952 a 'N' suffix; the second is the protected version, and has
953 the 'P' suffix. The second calls the first one after handling
954 the protection. Since the P subprograms are internally generated,
955 we leave these names undecoded, giving the user a clue that this
956 entity is internal. */
957
958 if (*len > 1
959 && encoded[*len - 1] == 'N'
960 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
961 *len = *len - 1;
962 }
963
964 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
965
966 static void
967 ada_remove_Xbn_suffix (const char *encoded, int *len)
968 {
969 int i = *len - 1;
970
971 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
972 i--;
973
974 if (encoded[i] != 'X')
975 return;
976
977 if (i == 0)
978 return;
979
980 if (isalnum (encoded[i-1]))
981 *len = i;
982 }
983
984 /* If ENCODED follows the GNAT entity encoding conventions, then return
985 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
986 replaced by ENCODED.
987
988 The resulting string is valid until the next call of ada_decode.
989 If the string is unchanged by decoding, the original string pointer
990 is returned. */
991
992 const char *
993 ada_decode (const char *encoded)
994 {
995 int i, j;
996 int len0;
997 const char *p;
998 char *decoded;
999 int at_start_name;
1000 static char *decoding_buffer = NULL;
1001 static size_t decoding_buffer_size = 0;
1002
1003 /* The name of the Ada main procedure starts with "_ada_".
1004 This prefix is not part of the decoded name, so skip this part
1005 if we see this prefix. */
1006 if (strncmp (encoded, "_ada_", 5) == 0)
1007 encoded += 5;
1008
1009 /* If the name starts with '_', then it is not a properly encoded
1010 name, so do not attempt to decode it. Similarly, if the name
1011 starts with '<', the name should not be decoded. */
1012 if (encoded[0] == '_' || encoded[0] == '<')
1013 goto Suppress;
1014
1015 len0 = strlen (encoded);
1016
1017 ada_remove_trailing_digits (encoded, &len0);
1018 ada_remove_po_subprogram_suffix (encoded, &len0);
1019
1020 /* Remove the ___X.* suffix if present. Do not forget to verify that
1021 the suffix is located before the current "end" of ENCODED. We want
1022 to avoid re-matching parts of ENCODED that have previously been
1023 marked as discarded (by decrementing LEN0). */
1024 p = strstr (encoded, "___");
1025 if (p != NULL && p - encoded < len0 - 3)
1026 {
1027 if (p[3] == 'X')
1028 len0 = p - encoded;
1029 else
1030 goto Suppress;
1031 }
1032
1033 /* Remove any trailing TKB suffix. It tells us that this symbol
1034 is for the body of a task, but that information does not actually
1035 appear in the decoded name. */
1036
1037 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
1038 len0 -= 3;
1039
1040 /* Remove any trailing TB suffix. The TB suffix is slightly different
1041 from the TKB suffix because it is used for non-anonymous task
1042 bodies. */
1043
1044 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1045 len0 -= 2;
1046
1047 /* Remove trailing "B" suffixes. */
1048 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1049
1050 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
1051 len0 -= 1;
1052
1053 /* Make decoded big enough for possible expansion by operator name. */
1054
1055 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1056 decoded = decoding_buffer;
1057
1058 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1059
1060 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1061 {
1062 i = len0 - 2;
1063 while ((i >= 0 && isdigit (encoded[i]))
1064 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1065 i -= 1;
1066 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1067 len0 = i - 1;
1068 else if (encoded[i] == '$')
1069 len0 = i;
1070 }
1071
1072 /* The first few characters that are not alphabetic are not part
1073 of any encoding we use, so we can copy them over verbatim. */
1074
1075 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1076 decoded[j] = encoded[i];
1077
1078 at_start_name = 1;
1079 while (i < len0)
1080 {
1081 /* Is this a symbol function? */
1082 if (at_start_name && encoded[i] == 'O')
1083 {
1084 int k;
1085
1086 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1087 {
1088 int op_len = strlen (ada_opname_table[k].encoded);
1089 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1090 op_len - 1) == 0)
1091 && !isalnum (encoded[i + op_len]))
1092 {
1093 strcpy (decoded + j, ada_opname_table[k].decoded);
1094 at_start_name = 0;
1095 i += op_len;
1096 j += strlen (ada_opname_table[k].decoded);
1097 break;
1098 }
1099 }
1100 if (ada_opname_table[k].encoded != NULL)
1101 continue;
1102 }
1103 at_start_name = 0;
1104
1105 /* Replace "TK__" with "__", which will eventually be translated
1106 into "." (just below). */
1107
1108 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1109 i += 2;
1110
1111 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1112 be translated into "." (just below). These are internal names
1113 generated for anonymous blocks inside which our symbol is nested. */
1114
1115 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1116 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1117 && isdigit (encoded [i+4]))
1118 {
1119 int k = i + 5;
1120
1121 while (k < len0 && isdigit (encoded[k]))
1122 k++; /* Skip any extra digit. */
1123
1124 /* Double-check that the "__B_{DIGITS}+" sequence we found
1125 is indeed followed by "__". */
1126 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1127 i = k;
1128 }
1129
1130 /* Remove _E{DIGITS}+[sb] */
1131
1132 /* Just as for protected object subprograms, there are 2 categories
1133 of subprograms created by the compiler for each entry. The first
1134 one implements the actual entry code, and has a suffix following
1135 the convention above; the second one implements the barrier and
1136 uses the same convention as above, except that the 'E' is replaced
1137 by a 'B'.
1138
1139 Just as above, we do not decode the name of barrier functions
1140 to give the user a clue that the code he is debugging has been
1141 internally generated. */
1142
1143 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1144 && isdigit (encoded[i+2]))
1145 {
1146 int k = i + 3;
1147
1148 while (k < len0 && isdigit (encoded[k]))
1149 k++;
1150
1151 if (k < len0
1152 && (encoded[k] == 'b' || encoded[k] == 's'))
1153 {
1154 k++;
1155 /* Just as an extra precaution, make sure that if this
1156 suffix is followed by anything else, it is a '_'.
1157 Otherwise, we matched this sequence by accident. */
1158 if (k == len0
1159 || (k < len0 && encoded[k] == '_'))
1160 i = k;
1161 }
1162 }
1163
1164 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1165 the GNAT front-end in protected object subprograms. */
1166
1167 if (i < len0 + 3
1168 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1169 {
1170 /* Backtrack a bit up until we reach either the begining of
1171 the encoded name, or "__". Make sure that we only find
1172 digits or lowercase characters. */
1173 const char *ptr = encoded + i - 1;
1174
1175 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1176 ptr--;
1177 if (ptr < encoded
1178 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1179 i++;
1180 }
1181
1182 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1183 {
1184 /* This is a X[bn]* sequence not separated from the previous
1185 part of the name with a non-alpha-numeric character (in other
1186 words, immediately following an alpha-numeric character), then
1187 verify that it is placed at the end of the encoded name. If
1188 not, then the encoding is not valid and we should abort the
1189 decoding. Otherwise, just skip it, it is used in body-nested
1190 package names. */
1191 do
1192 i += 1;
1193 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1194 if (i < len0)
1195 goto Suppress;
1196 }
1197 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1198 {
1199 /* Replace '__' by '.'. */
1200 decoded[j] = '.';
1201 at_start_name = 1;
1202 i += 2;
1203 j += 1;
1204 }
1205 else
1206 {
1207 /* It's a character part of the decoded name, so just copy it
1208 over. */
1209 decoded[j] = encoded[i];
1210 i += 1;
1211 j += 1;
1212 }
1213 }
1214 decoded[j] = '\000';
1215
1216 /* Decoded names should never contain any uppercase character.
1217 Double-check this, and abort the decoding if we find one. */
1218
1219 for (i = 0; decoded[i] != '\0'; i += 1)
1220 if (isupper (decoded[i]) || decoded[i] == ' ')
1221 goto Suppress;
1222
1223 if (strcmp (decoded, encoded) == 0)
1224 return encoded;
1225 else
1226 return decoded;
1227
1228 Suppress:
1229 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1230 decoded = decoding_buffer;
1231 if (encoded[0] == '<')
1232 strcpy (decoded, encoded);
1233 else
1234 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1235 return decoded;
1236
1237 }
1238
1239 /* Table for keeping permanent unique copies of decoded names. Once
1240 allocated, names in this table are never released. While this is a
1241 storage leak, it should not be significant unless there are massive
1242 changes in the set of decoded names in successive versions of a
1243 symbol table loaded during a single session. */
1244 static struct htab *decoded_names_store;
1245
1246 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1247 in the language-specific part of GSYMBOL, if it has not been
1248 previously computed. Tries to save the decoded name in the same
1249 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1250 in any case, the decoded symbol has a lifetime at least that of
1251 GSYMBOL).
1252 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1253 const, but nevertheless modified to a semantically equivalent form
1254 when a decoded name is cached in it. */
1255
1256 char *
1257 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1258 {
1259 char **resultp =
1260 (char **) &gsymbol->language_specific.mangled_lang.demangled_name;
1261
1262 if (*resultp == NULL)
1263 {
1264 const char *decoded = ada_decode (gsymbol->name);
1265
1266 if (gsymbol->obj_section != NULL)
1267 {
1268 struct objfile *objf = gsymbol->obj_section->objfile;
1269
1270 *resultp = obsavestring (decoded, strlen (decoded),
1271 &objf->objfile_obstack);
1272 }
1273 /* Sometimes, we can't find a corresponding objfile, in which
1274 case, we put the result on the heap. Since we only decode
1275 when needed, we hope this usually does not cause a
1276 significant memory leak (FIXME). */
1277 if (*resultp == NULL)
1278 {
1279 char **slot = (char **) htab_find_slot (decoded_names_store,
1280 decoded, INSERT);
1281
1282 if (*slot == NULL)
1283 *slot = xstrdup (decoded);
1284 *resultp = *slot;
1285 }
1286 }
1287
1288 return *resultp;
1289 }
1290
1291 static char *
1292 ada_la_decode (const char *encoded, int options)
1293 {
1294 return xstrdup (ada_decode (encoded));
1295 }
1296
1297 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1298 suffixes that encode debugging information or leading _ada_ on
1299 SYM_NAME (see is_name_suffix commentary for the debugging
1300 information that is ignored). If WILD, then NAME need only match a
1301 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1302 either argument is NULL. */
1303
1304 static int
1305 match_name (const char *sym_name, const char *name, int wild)
1306 {
1307 if (sym_name == NULL || name == NULL)
1308 return 0;
1309 else if (wild)
1310 return wild_match (sym_name, name) == 0;
1311 else
1312 {
1313 int len_name = strlen (name);
1314
1315 return (strncmp (sym_name, name, len_name) == 0
1316 && is_name_suffix (sym_name + len_name))
1317 || (strncmp (sym_name, "_ada_", 5) == 0
1318 && strncmp (sym_name + 5, name, len_name) == 0
1319 && is_name_suffix (sym_name + len_name + 5));
1320 }
1321 }
1322 \f
1323
1324 /* Arrays */
1325
1326 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1327 generated by the GNAT compiler to describe the index type used
1328 for each dimension of an array, check whether it follows the latest
1329 known encoding. If not, fix it up to conform to the latest encoding.
1330 Otherwise, do nothing. This function also does nothing if
1331 INDEX_DESC_TYPE is NULL.
1332
1333 The GNAT encoding used to describle the array index type evolved a bit.
1334 Initially, the information would be provided through the name of each
1335 field of the structure type only, while the type of these fields was
1336 described as unspecified and irrelevant. The debugger was then expected
1337 to perform a global type lookup using the name of that field in order
1338 to get access to the full index type description. Because these global
1339 lookups can be very expensive, the encoding was later enhanced to make
1340 the global lookup unnecessary by defining the field type as being
1341 the full index type description.
1342
1343 The purpose of this routine is to allow us to support older versions
1344 of the compiler by detecting the use of the older encoding, and by
1345 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1346 we essentially replace each field's meaningless type by the associated
1347 index subtype). */
1348
1349 void
1350 ada_fixup_array_indexes_type (struct type *index_desc_type)
1351 {
1352 int i;
1353
1354 if (index_desc_type == NULL)
1355 return;
1356 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1357
1358 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1359 to check one field only, no need to check them all). If not, return
1360 now.
1361
1362 If our INDEX_DESC_TYPE was generated using the older encoding,
1363 the field type should be a meaningless integer type whose name
1364 is not equal to the field name. */
1365 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1366 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1367 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1368 return;
1369
1370 /* Fixup each field of INDEX_DESC_TYPE. */
1371 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1372 {
1373 char *name = TYPE_FIELD_NAME (index_desc_type, i);
1374 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1375
1376 if (raw_type)
1377 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1378 }
1379 }
1380
1381 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1382
1383 static char *bound_name[] = {
1384 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1385 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1386 };
1387
1388 /* Maximum number of array dimensions we are prepared to handle. */
1389
1390 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1391
1392
1393 /* The desc_* routines return primitive portions of array descriptors
1394 (fat pointers). */
1395
1396 /* The descriptor or array type, if any, indicated by TYPE; removes
1397 level of indirection, if needed. */
1398
1399 static struct type *
1400 desc_base_type (struct type *type)
1401 {
1402 if (type == NULL)
1403 return NULL;
1404 type = ada_check_typedef (type);
1405 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1406 type = ada_typedef_target_type (type);
1407
1408 if (type != NULL
1409 && (TYPE_CODE (type) == TYPE_CODE_PTR
1410 || TYPE_CODE (type) == TYPE_CODE_REF))
1411 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1412 else
1413 return type;
1414 }
1415
1416 /* True iff TYPE indicates a "thin" array pointer type. */
1417
1418 static int
1419 is_thin_pntr (struct type *type)
1420 {
1421 return
1422 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1423 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1424 }
1425
1426 /* The descriptor type for thin pointer type TYPE. */
1427
1428 static struct type *
1429 thin_descriptor_type (struct type *type)
1430 {
1431 struct type *base_type = desc_base_type (type);
1432
1433 if (base_type == NULL)
1434 return NULL;
1435 if (is_suffix (ada_type_name (base_type), "___XVE"))
1436 return base_type;
1437 else
1438 {
1439 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1440
1441 if (alt_type == NULL)
1442 return base_type;
1443 else
1444 return alt_type;
1445 }
1446 }
1447
1448 /* A pointer to the array data for thin-pointer value VAL. */
1449
1450 static struct value *
1451 thin_data_pntr (struct value *val)
1452 {
1453 struct type *type = ada_check_typedef (value_type (val));
1454 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1455
1456 data_type = lookup_pointer_type (data_type);
1457
1458 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1459 return value_cast (data_type, value_copy (val));
1460 else
1461 return value_from_longest (data_type, value_address (val));
1462 }
1463
1464 /* True iff TYPE indicates a "thick" array pointer type. */
1465
1466 static int
1467 is_thick_pntr (struct type *type)
1468 {
1469 type = desc_base_type (type);
1470 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1471 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1472 }
1473
1474 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1475 pointer to one, the type of its bounds data; otherwise, NULL. */
1476
1477 static struct type *
1478 desc_bounds_type (struct type *type)
1479 {
1480 struct type *r;
1481
1482 type = desc_base_type (type);
1483
1484 if (type == NULL)
1485 return NULL;
1486 else if (is_thin_pntr (type))
1487 {
1488 type = thin_descriptor_type (type);
1489 if (type == NULL)
1490 return NULL;
1491 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1492 if (r != NULL)
1493 return ada_check_typedef (r);
1494 }
1495 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1496 {
1497 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1498 if (r != NULL)
1499 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1500 }
1501 return NULL;
1502 }
1503
1504 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1505 one, a pointer to its bounds data. Otherwise NULL. */
1506
1507 static struct value *
1508 desc_bounds (struct value *arr)
1509 {
1510 struct type *type = ada_check_typedef (value_type (arr));
1511
1512 if (is_thin_pntr (type))
1513 {
1514 struct type *bounds_type =
1515 desc_bounds_type (thin_descriptor_type (type));
1516 LONGEST addr;
1517
1518 if (bounds_type == NULL)
1519 error (_("Bad GNAT array descriptor"));
1520
1521 /* NOTE: The following calculation is not really kosher, but
1522 since desc_type is an XVE-encoded type (and shouldn't be),
1523 the correct calculation is a real pain. FIXME (and fix GCC). */
1524 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1525 addr = value_as_long (arr);
1526 else
1527 addr = value_address (arr);
1528
1529 return
1530 value_from_longest (lookup_pointer_type (bounds_type),
1531 addr - TYPE_LENGTH (bounds_type));
1532 }
1533
1534 else if (is_thick_pntr (type))
1535 {
1536 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1537 _("Bad GNAT array descriptor"));
1538 struct type *p_bounds_type = value_type (p_bounds);
1539
1540 if (p_bounds_type
1541 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1542 {
1543 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1544
1545 if (TYPE_STUB (target_type))
1546 p_bounds = value_cast (lookup_pointer_type
1547 (ada_check_typedef (target_type)),
1548 p_bounds);
1549 }
1550 else
1551 error (_("Bad GNAT array descriptor"));
1552
1553 return p_bounds;
1554 }
1555 else
1556 return NULL;
1557 }
1558
1559 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1560 position of the field containing the address of the bounds data. */
1561
1562 static int
1563 fat_pntr_bounds_bitpos (struct type *type)
1564 {
1565 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1566 }
1567
1568 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1569 size of the field containing the address of the bounds data. */
1570
1571 static int
1572 fat_pntr_bounds_bitsize (struct type *type)
1573 {
1574 type = desc_base_type (type);
1575
1576 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1577 return TYPE_FIELD_BITSIZE (type, 1);
1578 else
1579 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1580 }
1581
1582 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1583 pointer to one, the type of its array data (a array-with-no-bounds type);
1584 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1585 data. */
1586
1587 static struct type *
1588 desc_data_target_type (struct type *type)
1589 {
1590 type = desc_base_type (type);
1591
1592 /* NOTE: The following is bogus; see comment in desc_bounds. */
1593 if (is_thin_pntr (type))
1594 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1595 else if (is_thick_pntr (type))
1596 {
1597 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1598
1599 if (data_type
1600 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1601 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1602 }
1603
1604 return NULL;
1605 }
1606
1607 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1608 its array data. */
1609
1610 static struct value *
1611 desc_data (struct value *arr)
1612 {
1613 struct type *type = value_type (arr);
1614
1615 if (is_thin_pntr (type))
1616 return thin_data_pntr (arr);
1617 else if (is_thick_pntr (type))
1618 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1619 _("Bad GNAT array descriptor"));
1620 else
1621 return NULL;
1622 }
1623
1624
1625 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1626 position of the field containing the address of the data. */
1627
1628 static int
1629 fat_pntr_data_bitpos (struct type *type)
1630 {
1631 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1632 }
1633
1634 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1635 size of the field containing the address of the data. */
1636
1637 static int
1638 fat_pntr_data_bitsize (struct type *type)
1639 {
1640 type = desc_base_type (type);
1641
1642 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1643 return TYPE_FIELD_BITSIZE (type, 0);
1644 else
1645 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1646 }
1647
1648 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1649 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1650 bound, if WHICH is 1. The first bound is I=1. */
1651
1652 static struct value *
1653 desc_one_bound (struct value *bounds, int i, int which)
1654 {
1655 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1656 _("Bad GNAT array descriptor bounds"));
1657 }
1658
1659 /* If BOUNDS is an array-bounds structure type, return the bit position
1660 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1661 bound, if WHICH is 1. The first bound is I=1. */
1662
1663 static int
1664 desc_bound_bitpos (struct type *type, int i, int which)
1665 {
1666 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1667 }
1668
1669 /* If BOUNDS is an array-bounds structure type, return the bit field size
1670 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1671 bound, if WHICH is 1. The first bound is I=1. */
1672
1673 static int
1674 desc_bound_bitsize (struct type *type, int i, int which)
1675 {
1676 type = desc_base_type (type);
1677
1678 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1679 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1680 else
1681 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1682 }
1683
1684 /* If TYPE is the type of an array-bounds structure, the type of its
1685 Ith bound (numbering from 1). Otherwise, NULL. */
1686
1687 static struct type *
1688 desc_index_type (struct type *type, int i)
1689 {
1690 type = desc_base_type (type);
1691
1692 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1693 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1694 else
1695 return NULL;
1696 }
1697
1698 /* The number of index positions in the array-bounds type TYPE.
1699 Return 0 if TYPE is NULL. */
1700
1701 static int
1702 desc_arity (struct type *type)
1703 {
1704 type = desc_base_type (type);
1705
1706 if (type != NULL)
1707 return TYPE_NFIELDS (type) / 2;
1708 return 0;
1709 }
1710
1711 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1712 an array descriptor type (representing an unconstrained array
1713 type). */
1714
1715 static int
1716 ada_is_direct_array_type (struct type *type)
1717 {
1718 if (type == NULL)
1719 return 0;
1720 type = ada_check_typedef (type);
1721 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1722 || ada_is_array_descriptor_type (type));
1723 }
1724
1725 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1726 * to one. */
1727
1728 static int
1729 ada_is_array_type (struct type *type)
1730 {
1731 while (type != NULL
1732 && (TYPE_CODE (type) == TYPE_CODE_PTR
1733 || TYPE_CODE (type) == TYPE_CODE_REF))
1734 type = TYPE_TARGET_TYPE (type);
1735 return ada_is_direct_array_type (type);
1736 }
1737
1738 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1739
1740 int
1741 ada_is_simple_array_type (struct type *type)
1742 {
1743 if (type == NULL)
1744 return 0;
1745 type = ada_check_typedef (type);
1746 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1747 || (TYPE_CODE (type) == TYPE_CODE_PTR
1748 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1749 == TYPE_CODE_ARRAY));
1750 }
1751
1752 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1753
1754 int
1755 ada_is_array_descriptor_type (struct type *type)
1756 {
1757 struct type *data_type = desc_data_target_type (type);
1758
1759 if (type == NULL)
1760 return 0;
1761 type = ada_check_typedef (type);
1762 return (data_type != NULL
1763 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1764 && desc_arity (desc_bounds_type (type)) > 0);
1765 }
1766
1767 /* Non-zero iff type is a partially mal-formed GNAT array
1768 descriptor. FIXME: This is to compensate for some problems with
1769 debugging output from GNAT. Re-examine periodically to see if it
1770 is still needed. */
1771
1772 int
1773 ada_is_bogus_array_descriptor (struct type *type)
1774 {
1775 return
1776 type != NULL
1777 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1778 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1779 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1780 && !ada_is_array_descriptor_type (type);
1781 }
1782
1783
1784 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1785 (fat pointer) returns the type of the array data described---specifically,
1786 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1787 in from the descriptor; otherwise, they are left unspecified. If
1788 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1789 returns NULL. The result is simply the type of ARR if ARR is not
1790 a descriptor. */
1791 struct type *
1792 ada_type_of_array (struct value *arr, int bounds)
1793 {
1794 if (ada_is_constrained_packed_array_type (value_type (arr)))
1795 return decode_constrained_packed_array_type (value_type (arr));
1796
1797 if (!ada_is_array_descriptor_type (value_type (arr)))
1798 return value_type (arr);
1799
1800 if (!bounds)
1801 {
1802 struct type *array_type =
1803 ada_check_typedef (desc_data_target_type (value_type (arr)));
1804
1805 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1806 TYPE_FIELD_BITSIZE (array_type, 0) =
1807 decode_packed_array_bitsize (value_type (arr));
1808
1809 return array_type;
1810 }
1811 else
1812 {
1813 struct type *elt_type;
1814 int arity;
1815 struct value *descriptor;
1816
1817 elt_type = ada_array_element_type (value_type (arr), -1);
1818 arity = ada_array_arity (value_type (arr));
1819
1820 if (elt_type == NULL || arity == 0)
1821 return ada_check_typedef (value_type (arr));
1822
1823 descriptor = desc_bounds (arr);
1824 if (value_as_long (descriptor) == 0)
1825 return NULL;
1826 while (arity > 0)
1827 {
1828 struct type *range_type = alloc_type_copy (value_type (arr));
1829 struct type *array_type = alloc_type_copy (value_type (arr));
1830 struct value *low = desc_one_bound (descriptor, arity, 0);
1831 struct value *high = desc_one_bound (descriptor, arity, 1);
1832
1833 arity -= 1;
1834 create_range_type (range_type, value_type (low),
1835 longest_to_int (value_as_long (low)),
1836 longest_to_int (value_as_long (high)));
1837 elt_type = create_array_type (array_type, elt_type, range_type);
1838
1839 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1840 {
1841 /* We need to store the element packed bitsize, as well as
1842 recompute the array size, because it was previously
1843 computed based on the unpacked element size. */
1844 LONGEST lo = value_as_long (low);
1845 LONGEST hi = value_as_long (high);
1846
1847 TYPE_FIELD_BITSIZE (elt_type, 0) =
1848 decode_packed_array_bitsize (value_type (arr));
1849 /* If the array has no element, then the size is already
1850 zero, and does not need to be recomputed. */
1851 if (lo < hi)
1852 {
1853 int array_bitsize =
1854 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1855
1856 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1857 }
1858 }
1859 }
1860
1861 return lookup_pointer_type (elt_type);
1862 }
1863 }
1864
1865 /* If ARR does not represent an array, returns ARR unchanged.
1866 Otherwise, returns either a standard GDB array with bounds set
1867 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1868 GDB array. Returns NULL if ARR is a null fat pointer. */
1869
1870 struct value *
1871 ada_coerce_to_simple_array_ptr (struct value *arr)
1872 {
1873 if (ada_is_array_descriptor_type (value_type (arr)))
1874 {
1875 struct type *arrType = ada_type_of_array (arr, 1);
1876
1877 if (arrType == NULL)
1878 return NULL;
1879 return value_cast (arrType, value_copy (desc_data (arr)));
1880 }
1881 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1882 return decode_constrained_packed_array (arr);
1883 else
1884 return arr;
1885 }
1886
1887 /* If ARR does not represent an array, returns ARR unchanged.
1888 Otherwise, returns a standard GDB array describing ARR (which may
1889 be ARR itself if it already is in the proper form). */
1890
1891 struct value *
1892 ada_coerce_to_simple_array (struct value *arr)
1893 {
1894 if (ada_is_array_descriptor_type (value_type (arr)))
1895 {
1896 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1897
1898 if (arrVal == NULL)
1899 error (_("Bounds unavailable for null array pointer."));
1900 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1901 return value_ind (arrVal);
1902 }
1903 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1904 return decode_constrained_packed_array (arr);
1905 else
1906 return arr;
1907 }
1908
1909 /* If TYPE represents a GNAT array type, return it translated to an
1910 ordinary GDB array type (possibly with BITSIZE fields indicating
1911 packing). For other types, is the identity. */
1912
1913 struct type *
1914 ada_coerce_to_simple_array_type (struct type *type)
1915 {
1916 if (ada_is_constrained_packed_array_type (type))
1917 return decode_constrained_packed_array_type (type);
1918
1919 if (ada_is_array_descriptor_type (type))
1920 return ada_check_typedef (desc_data_target_type (type));
1921
1922 return type;
1923 }
1924
1925 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1926
1927 static int
1928 ada_is_packed_array_type (struct type *type)
1929 {
1930 if (type == NULL)
1931 return 0;
1932 type = desc_base_type (type);
1933 type = ada_check_typedef (type);
1934 return
1935 ada_type_name (type) != NULL
1936 && strstr (ada_type_name (type), "___XP") != NULL;
1937 }
1938
1939 /* Non-zero iff TYPE represents a standard GNAT constrained
1940 packed-array type. */
1941
1942 int
1943 ada_is_constrained_packed_array_type (struct type *type)
1944 {
1945 return ada_is_packed_array_type (type)
1946 && !ada_is_array_descriptor_type (type);
1947 }
1948
1949 /* Non-zero iff TYPE represents an array descriptor for a
1950 unconstrained packed-array type. */
1951
1952 static int
1953 ada_is_unconstrained_packed_array_type (struct type *type)
1954 {
1955 return ada_is_packed_array_type (type)
1956 && ada_is_array_descriptor_type (type);
1957 }
1958
1959 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
1960 return the size of its elements in bits. */
1961
1962 static long
1963 decode_packed_array_bitsize (struct type *type)
1964 {
1965 char *raw_name;
1966 char *tail;
1967 long bits;
1968
1969 /* Access to arrays implemented as fat pointers are encoded as a typedef
1970 of the fat pointer type. We need the name of the fat pointer type
1971 to do the decoding, so strip the typedef layer. */
1972 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1973 type = ada_typedef_target_type (type);
1974
1975 raw_name = ada_type_name (ada_check_typedef (type));
1976 if (!raw_name)
1977 raw_name = ada_type_name (desc_base_type (type));
1978
1979 if (!raw_name)
1980 return 0;
1981
1982 tail = strstr (raw_name, "___XP");
1983 gdb_assert (tail != NULL);
1984
1985 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1986 {
1987 lim_warning
1988 (_("could not understand bit size information on packed array"));
1989 return 0;
1990 }
1991
1992 return bits;
1993 }
1994
1995 /* Given that TYPE is a standard GDB array type with all bounds filled
1996 in, and that the element size of its ultimate scalar constituents
1997 (that is, either its elements, or, if it is an array of arrays, its
1998 elements' elements, etc.) is *ELT_BITS, return an identical type,
1999 but with the bit sizes of its elements (and those of any
2000 constituent arrays) recorded in the BITSIZE components of its
2001 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2002 in bits. */
2003
2004 static struct type *
2005 constrained_packed_array_type (struct type *type, long *elt_bits)
2006 {
2007 struct type *new_elt_type;
2008 struct type *new_type;
2009 LONGEST low_bound, high_bound;
2010
2011 type = ada_check_typedef (type);
2012 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2013 return type;
2014
2015 new_type = alloc_type_copy (type);
2016 new_elt_type =
2017 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2018 elt_bits);
2019 create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type));
2020 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2021 TYPE_NAME (new_type) = ada_type_name (type);
2022
2023 if (get_discrete_bounds (TYPE_INDEX_TYPE (type),
2024 &low_bound, &high_bound) < 0)
2025 low_bound = high_bound = 0;
2026 if (high_bound < low_bound)
2027 *elt_bits = TYPE_LENGTH (new_type) = 0;
2028 else
2029 {
2030 *elt_bits *= (high_bound - low_bound + 1);
2031 TYPE_LENGTH (new_type) =
2032 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2033 }
2034
2035 TYPE_FIXED_INSTANCE (new_type) = 1;
2036 return new_type;
2037 }
2038
2039 /* The array type encoded by TYPE, where
2040 ada_is_constrained_packed_array_type (TYPE). */
2041
2042 static struct type *
2043 decode_constrained_packed_array_type (struct type *type)
2044 {
2045 char *raw_name = ada_type_name (ada_check_typedef (type));
2046 char *name;
2047 char *tail;
2048 struct type *shadow_type;
2049 long bits;
2050
2051 if (!raw_name)
2052 raw_name = ada_type_name (desc_base_type (type));
2053
2054 if (!raw_name)
2055 return NULL;
2056
2057 name = (char *) alloca (strlen (raw_name) + 1);
2058 tail = strstr (raw_name, "___XP");
2059 type = desc_base_type (type);
2060
2061 memcpy (name, raw_name, tail - raw_name);
2062 name[tail - raw_name] = '\000';
2063
2064 shadow_type = ada_find_parallel_type_with_name (type, name);
2065
2066 if (shadow_type == NULL)
2067 {
2068 lim_warning (_("could not find bounds information on packed array"));
2069 return NULL;
2070 }
2071 CHECK_TYPEDEF (shadow_type);
2072
2073 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2074 {
2075 lim_warning (_("could not understand bounds "
2076 "information on packed array"));
2077 return NULL;
2078 }
2079
2080 bits = decode_packed_array_bitsize (type);
2081 return constrained_packed_array_type (shadow_type, &bits);
2082 }
2083
2084 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2085 array, returns a simple array that denotes that array. Its type is a
2086 standard GDB array type except that the BITSIZEs of the array
2087 target types are set to the number of bits in each element, and the
2088 type length is set appropriately. */
2089
2090 static struct value *
2091 decode_constrained_packed_array (struct value *arr)
2092 {
2093 struct type *type;
2094
2095 arr = ada_coerce_ref (arr);
2096
2097 /* If our value is a pointer, then dererence it. Make sure that
2098 this operation does not cause the target type to be fixed, as
2099 this would indirectly cause this array to be decoded. The rest
2100 of the routine assumes that the array hasn't been decoded yet,
2101 so we use the basic "value_ind" routine to perform the dereferencing,
2102 as opposed to using "ada_value_ind". */
2103 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2104 arr = value_ind (arr);
2105
2106 type = decode_constrained_packed_array_type (value_type (arr));
2107 if (type == NULL)
2108 {
2109 error (_("can't unpack array"));
2110 return NULL;
2111 }
2112
2113 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2114 && ada_is_modular_type (value_type (arr)))
2115 {
2116 /* This is a (right-justified) modular type representing a packed
2117 array with no wrapper. In order to interpret the value through
2118 the (left-justified) packed array type we just built, we must
2119 first left-justify it. */
2120 int bit_size, bit_pos;
2121 ULONGEST mod;
2122
2123 mod = ada_modulus (value_type (arr)) - 1;
2124 bit_size = 0;
2125 while (mod > 0)
2126 {
2127 bit_size += 1;
2128 mod >>= 1;
2129 }
2130 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2131 arr = ada_value_primitive_packed_val (arr, NULL,
2132 bit_pos / HOST_CHAR_BIT,
2133 bit_pos % HOST_CHAR_BIT,
2134 bit_size,
2135 type);
2136 }
2137
2138 return coerce_unspec_val_to_type (arr, type);
2139 }
2140
2141
2142 /* The value of the element of packed array ARR at the ARITY indices
2143 given in IND. ARR must be a simple array. */
2144
2145 static struct value *
2146 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2147 {
2148 int i;
2149 int bits, elt_off, bit_off;
2150 long elt_total_bit_offset;
2151 struct type *elt_type;
2152 struct value *v;
2153
2154 bits = 0;
2155 elt_total_bit_offset = 0;
2156 elt_type = ada_check_typedef (value_type (arr));
2157 for (i = 0; i < arity; i += 1)
2158 {
2159 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2160 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2161 error
2162 (_("attempt to do packed indexing of "
2163 "something other than a packed array"));
2164 else
2165 {
2166 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2167 LONGEST lowerbound, upperbound;
2168 LONGEST idx;
2169
2170 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2171 {
2172 lim_warning (_("don't know bounds of array"));
2173 lowerbound = upperbound = 0;
2174 }
2175
2176 idx = pos_atr (ind[i]);
2177 if (idx < lowerbound || idx > upperbound)
2178 lim_warning (_("packed array index %ld out of bounds"),
2179 (long) idx);
2180 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2181 elt_total_bit_offset += (idx - lowerbound) * bits;
2182 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2183 }
2184 }
2185 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2186 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2187
2188 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2189 bits, elt_type);
2190 return v;
2191 }
2192
2193 /* Non-zero iff TYPE includes negative integer values. */
2194
2195 static int
2196 has_negatives (struct type *type)
2197 {
2198 switch (TYPE_CODE (type))
2199 {
2200 default:
2201 return 0;
2202 case TYPE_CODE_INT:
2203 return !TYPE_UNSIGNED (type);
2204 case TYPE_CODE_RANGE:
2205 return TYPE_LOW_BOUND (type) < 0;
2206 }
2207 }
2208
2209
2210 /* Create a new value of type TYPE from the contents of OBJ starting
2211 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2212 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2213 assigning through the result will set the field fetched from.
2214 VALADDR is ignored unless OBJ is NULL, in which case,
2215 VALADDR+OFFSET must address the start of storage containing the
2216 packed value. The value returned in this case is never an lval.
2217 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2218
2219 struct value *
2220 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2221 long offset, int bit_offset, int bit_size,
2222 struct type *type)
2223 {
2224 struct value *v;
2225 int src, /* Index into the source area */
2226 targ, /* Index into the target area */
2227 srcBitsLeft, /* Number of source bits left to move */
2228 nsrc, ntarg, /* Number of source and target bytes */
2229 unusedLS, /* Number of bits in next significant
2230 byte of source that are unused */
2231 accumSize; /* Number of meaningful bits in accum */
2232 unsigned char *bytes; /* First byte containing data to unpack */
2233 unsigned char *unpacked;
2234 unsigned long accum; /* Staging area for bits being transferred */
2235 unsigned char sign;
2236 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2237 /* Transmit bytes from least to most significant; delta is the direction
2238 the indices move. */
2239 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2240
2241 type = ada_check_typedef (type);
2242
2243 if (obj == NULL)
2244 {
2245 v = allocate_value (type);
2246 bytes = (unsigned char *) (valaddr + offset);
2247 }
2248 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2249 {
2250 v = value_at (type,
2251 value_address (obj) + offset);
2252 bytes = (unsigned char *) alloca (len);
2253 read_memory (value_address (v), bytes, len);
2254 }
2255 else
2256 {
2257 v = allocate_value (type);
2258 bytes = (unsigned char *) value_contents (obj) + offset;
2259 }
2260
2261 if (obj != NULL)
2262 {
2263 CORE_ADDR new_addr;
2264
2265 set_value_component_location (v, obj);
2266 new_addr = value_address (obj) + offset;
2267 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2268 set_value_bitsize (v, bit_size);
2269 if (value_bitpos (v) >= HOST_CHAR_BIT)
2270 {
2271 ++new_addr;
2272 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2273 }
2274 set_value_address (v, new_addr);
2275 }
2276 else
2277 set_value_bitsize (v, bit_size);
2278 unpacked = (unsigned char *) value_contents (v);
2279
2280 srcBitsLeft = bit_size;
2281 nsrc = len;
2282 ntarg = TYPE_LENGTH (type);
2283 sign = 0;
2284 if (bit_size == 0)
2285 {
2286 memset (unpacked, 0, TYPE_LENGTH (type));
2287 return v;
2288 }
2289 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2290 {
2291 src = len - 1;
2292 if (has_negatives (type)
2293 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2294 sign = ~0;
2295
2296 unusedLS =
2297 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2298 % HOST_CHAR_BIT;
2299
2300 switch (TYPE_CODE (type))
2301 {
2302 case TYPE_CODE_ARRAY:
2303 case TYPE_CODE_UNION:
2304 case TYPE_CODE_STRUCT:
2305 /* Non-scalar values must be aligned at a byte boundary... */
2306 accumSize =
2307 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2308 /* ... And are placed at the beginning (most-significant) bytes
2309 of the target. */
2310 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2311 ntarg = targ + 1;
2312 break;
2313 default:
2314 accumSize = 0;
2315 targ = TYPE_LENGTH (type) - 1;
2316 break;
2317 }
2318 }
2319 else
2320 {
2321 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2322
2323 src = targ = 0;
2324 unusedLS = bit_offset;
2325 accumSize = 0;
2326
2327 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2328 sign = ~0;
2329 }
2330
2331 accum = 0;
2332 while (nsrc > 0)
2333 {
2334 /* Mask for removing bits of the next source byte that are not
2335 part of the value. */
2336 unsigned int unusedMSMask =
2337 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2338 1;
2339 /* Sign-extend bits for this byte. */
2340 unsigned int signMask = sign & ~unusedMSMask;
2341
2342 accum |=
2343 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2344 accumSize += HOST_CHAR_BIT - unusedLS;
2345 if (accumSize >= HOST_CHAR_BIT)
2346 {
2347 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2348 accumSize -= HOST_CHAR_BIT;
2349 accum >>= HOST_CHAR_BIT;
2350 ntarg -= 1;
2351 targ += delta;
2352 }
2353 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2354 unusedLS = 0;
2355 nsrc -= 1;
2356 src += delta;
2357 }
2358 while (ntarg > 0)
2359 {
2360 accum |= sign << accumSize;
2361 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2362 accumSize -= HOST_CHAR_BIT;
2363 accum >>= HOST_CHAR_BIT;
2364 ntarg -= 1;
2365 targ += delta;
2366 }
2367
2368 return v;
2369 }
2370
2371 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2372 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2373 not overlap. */
2374 static void
2375 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2376 int src_offset, int n, int bits_big_endian_p)
2377 {
2378 unsigned int accum, mask;
2379 int accum_bits, chunk_size;
2380
2381 target += targ_offset / HOST_CHAR_BIT;
2382 targ_offset %= HOST_CHAR_BIT;
2383 source += src_offset / HOST_CHAR_BIT;
2384 src_offset %= HOST_CHAR_BIT;
2385 if (bits_big_endian_p)
2386 {
2387 accum = (unsigned char) *source;
2388 source += 1;
2389 accum_bits = HOST_CHAR_BIT - src_offset;
2390
2391 while (n > 0)
2392 {
2393 int unused_right;
2394
2395 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2396 accum_bits += HOST_CHAR_BIT;
2397 source += 1;
2398 chunk_size = HOST_CHAR_BIT - targ_offset;
2399 if (chunk_size > n)
2400 chunk_size = n;
2401 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2402 mask = ((1 << chunk_size) - 1) << unused_right;
2403 *target =
2404 (*target & ~mask)
2405 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2406 n -= chunk_size;
2407 accum_bits -= chunk_size;
2408 target += 1;
2409 targ_offset = 0;
2410 }
2411 }
2412 else
2413 {
2414 accum = (unsigned char) *source >> src_offset;
2415 source += 1;
2416 accum_bits = HOST_CHAR_BIT - src_offset;
2417
2418 while (n > 0)
2419 {
2420 accum = accum + ((unsigned char) *source << accum_bits);
2421 accum_bits += HOST_CHAR_BIT;
2422 source += 1;
2423 chunk_size = HOST_CHAR_BIT - targ_offset;
2424 if (chunk_size > n)
2425 chunk_size = n;
2426 mask = ((1 << chunk_size) - 1) << targ_offset;
2427 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2428 n -= chunk_size;
2429 accum_bits -= chunk_size;
2430 accum >>= chunk_size;
2431 target += 1;
2432 targ_offset = 0;
2433 }
2434 }
2435 }
2436
2437 /* Store the contents of FROMVAL into the location of TOVAL.
2438 Return a new value with the location of TOVAL and contents of
2439 FROMVAL. Handles assignment into packed fields that have
2440 floating-point or non-scalar types. */
2441
2442 static struct value *
2443 ada_value_assign (struct value *toval, struct value *fromval)
2444 {
2445 struct type *type = value_type (toval);
2446 int bits = value_bitsize (toval);
2447
2448 toval = ada_coerce_ref (toval);
2449 fromval = ada_coerce_ref (fromval);
2450
2451 if (ada_is_direct_array_type (value_type (toval)))
2452 toval = ada_coerce_to_simple_array (toval);
2453 if (ada_is_direct_array_type (value_type (fromval)))
2454 fromval = ada_coerce_to_simple_array (fromval);
2455
2456 if (!deprecated_value_modifiable (toval))
2457 error (_("Left operand of assignment is not a modifiable lvalue."));
2458
2459 if (VALUE_LVAL (toval) == lval_memory
2460 && bits > 0
2461 && (TYPE_CODE (type) == TYPE_CODE_FLT
2462 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2463 {
2464 int len = (value_bitpos (toval)
2465 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2466 int from_size;
2467 char *buffer = (char *) alloca (len);
2468 struct value *val;
2469 CORE_ADDR to_addr = value_address (toval);
2470
2471 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2472 fromval = value_cast (type, fromval);
2473
2474 read_memory (to_addr, buffer, len);
2475 from_size = value_bitsize (fromval);
2476 if (from_size == 0)
2477 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2478 if (gdbarch_bits_big_endian (get_type_arch (type)))
2479 move_bits (buffer, value_bitpos (toval),
2480 value_contents (fromval), from_size - bits, bits, 1);
2481 else
2482 move_bits (buffer, value_bitpos (toval),
2483 value_contents (fromval), 0, bits, 0);
2484 write_memory (to_addr, buffer, len);
2485 observer_notify_memory_changed (to_addr, len, buffer);
2486
2487 val = value_copy (toval);
2488 memcpy (value_contents_raw (val), value_contents (fromval),
2489 TYPE_LENGTH (type));
2490 deprecated_set_value_type (val, type);
2491
2492 return val;
2493 }
2494
2495 return value_assign (toval, fromval);
2496 }
2497
2498
2499 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2500 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2501 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2502 * COMPONENT, and not the inferior's memory. The current contents
2503 * of COMPONENT are ignored. */
2504 static void
2505 value_assign_to_component (struct value *container, struct value *component,
2506 struct value *val)
2507 {
2508 LONGEST offset_in_container =
2509 (LONGEST) (value_address (component) - value_address (container));
2510 int bit_offset_in_container =
2511 value_bitpos (component) - value_bitpos (container);
2512 int bits;
2513
2514 val = value_cast (value_type (component), val);
2515
2516 if (value_bitsize (component) == 0)
2517 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2518 else
2519 bits = value_bitsize (component);
2520
2521 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2522 move_bits (value_contents_writeable (container) + offset_in_container,
2523 value_bitpos (container) + bit_offset_in_container,
2524 value_contents (val),
2525 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2526 bits, 1);
2527 else
2528 move_bits (value_contents_writeable (container) + offset_in_container,
2529 value_bitpos (container) + bit_offset_in_container,
2530 value_contents (val), 0, bits, 0);
2531 }
2532
2533 /* The value of the element of array ARR at the ARITY indices given in IND.
2534 ARR may be either a simple array, GNAT array descriptor, or pointer
2535 thereto. */
2536
2537 struct value *
2538 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2539 {
2540 int k;
2541 struct value *elt;
2542 struct type *elt_type;
2543
2544 elt = ada_coerce_to_simple_array (arr);
2545
2546 elt_type = ada_check_typedef (value_type (elt));
2547 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2548 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2549 return value_subscript_packed (elt, arity, ind);
2550
2551 for (k = 0; k < arity; k += 1)
2552 {
2553 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2554 error (_("too many subscripts (%d expected)"), k);
2555 elt = value_subscript (elt, pos_atr (ind[k]));
2556 }
2557 return elt;
2558 }
2559
2560 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2561 value of the element of *ARR at the ARITY indices given in
2562 IND. Does not read the entire array into memory. */
2563
2564 static struct value *
2565 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2566 struct value **ind)
2567 {
2568 int k;
2569
2570 for (k = 0; k < arity; k += 1)
2571 {
2572 LONGEST lwb, upb;
2573
2574 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2575 error (_("too many subscripts (%d expected)"), k);
2576 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2577 value_copy (arr));
2578 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2579 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2580 type = TYPE_TARGET_TYPE (type);
2581 }
2582
2583 return value_ind (arr);
2584 }
2585
2586 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2587 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2588 elements starting at index LOW. The lower bound of this array is LOW, as
2589 per Ada rules. */
2590 static struct value *
2591 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2592 int low, int high)
2593 {
2594 struct type *type0 = ada_check_typedef (type);
2595 CORE_ADDR base = value_as_address (array_ptr)
2596 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2597 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2598 struct type *index_type =
2599 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
2600 low, high);
2601 struct type *slice_type =
2602 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2603
2604 return value_at_lazy (slice_type, base);
2605 }
2606
2607
2608 static struct value *
2609 ada_value_slice (struct value *array, int low, int high)
2610 {
2611 struct type *type = ada_check_typedef (value_type (array));
2612 struct type *index_type =
2613 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2614 struct type *slice_type =
2615 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2616
2617 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2618 }
2619
2620 /* If type is a record type in the form of a standard GNAT array
2621 descriptor, returns the number of dimensions for type. If arr is a
2622 simple array, returns the number of "array of"s that prefix its
2623 type designation. Otherwise, returns 0. */
2624
2625 int
2626 ada_array_arity (struct type *type)
2627 {
2628 int arity;
2629
2630 if (type == NULL)
2631 return 0;
2632
2633 type = desc_base_type (type);
2634
2635 arity = 0;
2636 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2637 return desc_arity (desc_bounds_type (type));
2638 else
2639 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2640 {
2641 arity += 1;
2642 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2643 }
2644
2645 return arity;
2646 }
2647
2648 /* If TYPE is a record type in the form of a standard GNAT array
2649 descriptor or a simple array type, returns the element type for
2650 TYPE after indexing by NINDICES indices, or by all indices if
2651 NINDICES is -1. Otherwise, returns NULL. */
2652
2653 struct type *
2654 ada_array_element_type (struct type *type, int nindices)
2655 {
2656 type = desc_base_type (type);
2657
2658 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2659 {
2660 int k;
2661 struct type *p_array_type;
2662
2663 p_array_type = desc_data_target_type (type);
2664
2665 k = ada_array_arity (type);
2666 if (k == 0)
2667 return NULL;
2668
2669 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2670 if (nindices >= 0 && k > nindices)
2671 k = nindices;
2672 while (k > 0 && p_array_type != NULL)
2673 {
2674 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2675 k -= 1;
2676 }
2677 return p_array_type;
2678 }
2679 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2680 {
2681 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2682 {
2683 type = TYPE_TARGET_TYPE (type);
2684 nindices -= 1;
2685 }
2686 return type;
2687 }
2688
2689 return NULL;
2690 }
2691
2692 /* The type of nth index in arrays of given type (n numbering from 1).
2693 Does not examine memory. Throws an error if N is invalid or TYPE
2694 is not an array type. NAME is the name of the Ada attribute being
2695 evaluated ('range, 'first, 'last, or 'length); it is used in building
2696 the error message. */
2697
2698 static struct type *
2699 ada_index_type (struct type *type, int n, const char *name)
2700 {
2701 struct type *result_type;
2702
2703 type = desc_base_type (type);
2704
2705 if (n < 0 || n > ada_array_arity (type))
2706 error (_("invalid dimension number to '%s"), name);
2707
2708 if (ada_is_simple_array_type (type))
2709 {
2710 int i;
2711
2712 for (i = 1; i < n; i += 1)
2713 type = TYPE_TARGET_TYPE (type);
2714 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2715 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2716 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2717 perhaps stabsread.c would make more sense. */
2718 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2719 result_type = NULL;
2720 }
2721 else
2722 {
2723 result_type = desc_index_type (desc_bounds_type (type), n);
2724 if (result_type == NULL)
2725 error (_("attempt to take bound of something that is not an array"));
2726 }
2727
2728 return result_type;
2729 }
2730
2731 /* Given that arr is an array type, returns the lower bound of the
2732 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2733 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2734 array-descriptor type. It works for other arrays with bounds supplied
2735 by run-time quantities other than discriminants. */
2736
2737 static LONGEST
2738 ada_array_bound_from_type (struct type * arr_type, int n, int which)
2739 {
2740 struct type *type, *elt_type, *index_type_desc, *index_type;
2741 int i;
2742
2743 gdb_assert (which == 0 || which == 1);
2744
2745 if (ada_is_constrained_packed_array_type (arr_type))
2746 arr_type = decode_constrained_packed_array_type (arr_type);
2747
2748 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2749 return (LONGEST) - which;
2750
2751 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2752 type = TYPE_TARGET_TYPE (arr_type);
2753 else
2754 type = arr_type;
2755
2756 elt_type = type;
2757 for (i = n; i > 1; i--)
2758 elt_type = TYPE_TARGET_TYPE (type);
2759
2760 index_type_desc = ada_find_parallel_type (type, "___XA");
2761 ada_fixup_array_indexes_type (index_type_desc);
2762 if (index_type_desc != NULL)
2763 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2764 NULL);
2765 else
2766 index_type = TYPE_INDEX_TYPE (elt_type);
2767
2768 return
2769 (LONGEST) (which == 0
2770 ? ada_discrete_type_low_bound (index_type)
2771 : ada_discrete_type_high_bound (index_type));
2772 }
2773
2774 /* Given that arr is an array value, returns the lower bound of the
2775 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2776 WHICH is 1. This routine will also work for arrays with bounds
2777 supplied by run-time quantities other than discriminants. */
2778
2779 static LONGEST
2780 ada_array_bound (struct value *arr, int n, int which)
2781 {
2782 struct type *arr_type = value_type (arr);
2783
2784 if (ada_is_constrained_packed_array_type (arr_type))
2785 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2786 else if (ada_is_simple_array_type (arr_type))
2787 return ada_array_bound_from_type (arr_type, n, which);
2788 else
2789 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2790 }
2791
2792 /* Given that arr is an array value, returns the length of the
2793 nth index. This routine will also work for arrays with bounds
2794 supplied by run-time quantities other than discriminants.
2795 Does not work for arrays indexed by enumeration types with representation
2796 clauses at the moment. */
2797
2798 static LONGEST
2799 ada_array_length (struct value *arr, int n)
2800 {
2801 struct type *arr_type = ada_check_typedef (value_type (arr));
2802
2803 if (ada_is_constrained_packed_array_type (arr_type))
2804 return ada_array_length (decode_constrained_packed_array (arr), n);
2805
2806 if (ada_is_simple_array_type (arr_type))
2807 return (ada_array_bound_from_type (arr_type, n, 1)
2808 - ada_array_bound_from_type (arr_type, n, 0) + 1);
2809 else
2810 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2811 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2812 }
2813
2814 /* An empty array whose type is that of ARR_TYPE (an array type),
2815 with bounds LOW to LOW-1. */
2816
2817 static struct value *
2818 empty_array (struct type *arr_type, int low)
2819 {
2820 struct type *arr_type0 = ada_check_typedef (arr_type);
2821 struct type *index_type =
2822 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)),
2823 low, low - 1);
2824 struct type *elt_type = ada_array_element_type (arr_type0, 1);
2825
2826 return allocate_value (create_array_type (NULL, elt_type, index_type));
2827 }
2828 \f
2829
2830 /* Name resolution */
2831
2832 /* The "decoded" name for the user-definable Ada operator corresponding
2833 to OP. */
2834
2835 static const char *
2836 ada_decoded_op_name (enum exp_opcode op)
2837 {
2838 int i;
2839
2840 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2841 {
2842 if (ada_opname_table[i].op == op)
2843 return ada_opname_table[i].decoded;
2844 }
2845 error (_("Could not find operator name for opcode"));
2846 }
2847
2848
2849 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2850 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2851 undefined namespace) and converts operators that are
2852 user-defined into appropriate function calls. If CONTEXT_TYPE is
2853 non-null, it provides a preferred result type [at the moment, only
2854 type void has any effect---causing procedures to be preferred over
2855 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2856 return type is preferred. May change (expand) *EXP. */
2857
2858 static void
2859 resolve (struct expression **expp, int void_context_p)
2860 {
2861 struct type *context_type = NULL;
2862 int pc = 0;
2863
2864 if (void_context_p)
2865 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2866
2867 resolve_subexp (expp, &pc, 1, context_type);
2868 }
2869
2870 /* Resolve the operator of the subexpression beginning at
2871 position *POS of *EXPP. "Resolving" consists of replacing
2872 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2873 with their resolutions, replacing built-in operators with
2874 function calls to user-defined operators, where appropriate, and,
2875 when DEPROCEDURE_P is non-zero, converting function-valued variables
2876 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2877 are as in ada_resolve, above. */
2878
2879 static struct value *
2880 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2881 struct type *context_type)
2882 {
2883 int pc = *pos;
2884 int i;
2885 struct expression *exp; /* Convenience: == *expp. */
2886 enum exp_opcode op = (*expp)->elts[pc].opcode;
2887 struct value **argvec; /* Vector of operand types (alloca'ed). */
2888 int nargs; /* Number of operands. */
2889 int oplen;
2890
2891 argvec = NULL;
2892 nargs = 0;
2893 exp = *expp;
2894
2895 /* Pass one: resolve operands, saving their types and updating *pos,
2896 if needed. */
2897 switch (op)
2898 {
2899 case OP_FUNCALL:
2900 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2901 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2902 *pos += 7;
2903 else
2904 {
2905 *pos += 3;
2906 resolve_subexp (expp, pos, 0, NULL);
2907 }
2908 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2909 break;
2910
2911 case UNOP_ADDR:
2912 *pos += 1;
2913 resolve_subexp (expp, pos, 0, NULL);
2914 break;
2915
2916 case UNOP_QUAL:
2917 *pos += 3;
2918 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
2919 break;
2920
2921 case OP_ATR_MODULUS:
2922 case OP_ATR_SIZE:
2923 case OP_ATR_TAG:
2924 case OP_ATR_FIRST:
2925 case OP_ATR_LAST:
2926 case OP_ATR_LENGTH:
2927 case OP_ATR_POS:
2928 case OP_ATR_VAL:
2929 case OP_ATR_MIN:
2930 case OP_ATR_MAX:
2931 case TERNOP_IN_RANGE:
2932 case BINOP_IN_BOUNDS:
2933 case UNOP_IN_RANGE:
2934 case OP_AGGREGATE:
2935 case OP_OTHERS:
2936 case OP_CHOICES:
2937 case OP_POSITIONAL:
2938 case OP_DISCRETE_RANGE:
2939 case OP_NAME:
2940 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2941 *pos += oplen;
2942 break;
2943
2944 case BINOP_ASSIGN:
2945 {
2946 struct value *arg1;
2947
2948 *pos += 1;
2949 arg1 = resolve_subexp (expp, pos, 0, NULL);
2950 if (arg1 == NULL)
2951 resolve_subexp (expp, pos, 1, NULL);
2952 else
2953 resolve_subexp (expp, pos, 1, value_type (arg1));
2954 break;
2955 }
2956
2957 case UNOP_CAST:
2958 *pos += 3;
2959 nargs = 1;
2960 break;
2961
2962 case BINOP_ADD:
2963 case BINOP_SUB:
2964 case BINOP_MUL:
2965 case BINOP_DIV:
2966 case BINOP_REM:
2967 case BINOP_MOD:
2968 case BINOP_EXP:
2969 case BINOP_CONCAT:
2970 case BINOP_LOGICAL_AND:
2971 case BINOP_LOGICAL_OR:
2972 case BINOP_BITWISE_AND:
2973 case BINOP_BITWISE_IOR:
2974 case BINOP_BITWISE_XOR:
2975
2976 case BINOP_EQUAL:
2977 case BINOP_NOTEQUAL:
2978 case BINOP_LESS:
2979 case BINOP_GTR:
2980 case BINOP_LEQ:
2981 case BINOP_GEQ:
2982
2983 case BINOP_REPEAT:
2984 case BINOP_SUBSCRIPT:
2985 case BINOP_COMMA:
2986 *pos += 1;
2987 nargs = 2;
2988 break;
2989
2990 case UNOP_NEG:
2991 case UNOP_PLUS:
2992 case UNOP_LOGICAL_NOT:
2993 case UNOP_ABS:
2994 case UNOP_IND:
2995 *pos += 1;
2996 nargs = 1;
2997 break;
2998
2999 case OP_LONG:
3000 case OP_DOUBLE:
3001 case OP_VAR_VALUE:
3002 *pos += 4;
3003 break;
3004
3005 case OP_TYPE:
3006 case OP_BOOL:
3007 case OP_LAST:
3008 case OP_INTERNALVAR:
3009 *pos += 3;
3010 break;
3011
3012 case UNOP_MEMVAL:
3013 *pos += 3;
3014 nargs = 1;
3015 break;
3016
3017 case OP_REGISTER:
3018 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3019 break;
3020
3021 case STRUCTOP_STRUCT:
3022 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3023 nargs = 1;
3024 break;
3025
3026 case TERNOP_SLICE:
3027 *pos += 1;
3028 nargs = 3;
3029 break;
3030
3031 case OP_STRING:
3032 break;
3033
3034 default:
3035 error (_("Unexpected operator during name resolution"));
3036 }
3037
3038 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
3039 for (i = 0; i < nargs; i += 1)
3040 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3041 argvec[i] = NULL;
3042 exp = *expp;
3043
3044 /* Pass two: perform any resolution on principal operator. */
3045 switch (op)
3046 {
3047 default:
3048 break;
3049
3050 case OP_VAR_VALUE:
3051 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3052 {
3053 struct ada_symbol_info *candidates;
3054 int n_candidates;
3055
3056 n_candidates =
3057 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3058 (exp->elts[pc + 2].symbol),
3059 exp->elts[pc + 1].block, VAR_DOMAIN,
3060 &candidates);
3061
3062 if (n_candidates > 1)
3063 {
3064 /* Types tend to get re-introduced locally, so if there
3065 are any local symbols that are not types, first filter
3066 out all types. */
3067 int j;
3068 for (j = 0; j < n_candidates; j += 1)
3069 switch (SYMBOL_CLASS (candidates[j].sym))
3070 {
3071 case LOC_REGISTER:
3072 case LOC_ARG:
3073 case LOC_REF_ARG:
3074 case LOC_REGPARM_ADDR:
3075 case LOC_LOCAL:
3076 case LOC_COMPUTED:
3077 goto FoundNonType;
3078 default:
3079 break;
3080 }
3081 FoundNonType:
3082 if (j < n_candidates)
3083 {
3084 j = 0;
3085 while (j < n_candidates)
3086 {
3087 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3088 {
3089 candidates[j] = candidates[n_candidates - 1];
3090 n_candidates -= 1;
3091 }
3092 else
3093 j += 1;
3094 }
3095 }
3096 }
3097
3098 if (n_candidates == 0)
3099 error (_("No definition found for %s"),
3100 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3101 else if (n_candidates == 1)
3102 i = 0;
3103 else if (deprocedure_p
3104 && !is_nonfunction (candidates, n_candidates))
3105 {
3106 i = ada_resolve_function
3107 (candidates, n_candidates, NULL, 0,
3108 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3109 context_type);
3110 if (i < 0)
3111 error (_("Could not find a match for %s"),
3112 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3113 }
3114 else
3115 {
3116 printf_filtered (_("Multiple matches for %s\n"),
3117 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3118 user_select_syms (candidates, n_candidates, 1);
3119 i = 0;
3120 }
3121
3122 exp->elts[pc + 1].block = candidates[i].block;
3123 exp->elts[pc + 2].symbol = candidates[i].sym;
3124 if (innermost_block == NULL
3125 || contained_in (candidates[i].block, innermost_block))
3126 innermost_block = candidates[i].block;
3127 }
3128
3129 if (deprocedure_p
3130 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3131 == TYPE_CODE_FUNC))
3132 {
3133 replace_operator_with_call (expp, pc, 0, 0,
3134 exp->elts[pc + 2].symbol,
3135 exp->elts[pc + 1].block);
3136 exp = *expp;
3137 }
3138 break;
3139
3140 case OP_FUNCALL:
3141 {
3142 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3143 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3144 {
3145 struct ada_symbol_info *candidates;
3146 int n_candidates;
3147
3148 n_candidates =
3149 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3150 (exp->elts[pc + 5].symbol),
3151 exp->elts[pc + 4].block, VAR_DOMAIN,
3152 &candidates);
3153 if (n_candidates == 1)
3154 i = 0;
3155 else
3156 {
3157 i = ada_resolve_function
3158 (candidates, n_candidates,
3159 argvec, nargs,
3160 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3161 context_type);
3162 if (i < 0)
3163 error (_("Could not find a match for %s"),
3164 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3165 }
3166
3167 exp->elts[pc + 4].block = candidates[i].block;
3168 exp->elts[pc + 5].symbol = candidates[i].sym;
3169 if (innermost_block == NULL
3170 || contained_in (candidates[i].block, innermost_block))
3171 innermost_block = candidates[i].block;
3172 }
3173 }
3174 break;
3175 case BINOP_ADD:
3176 case BINOP_SUB:
3177 case BINOP_MUL:
3178 case BINOP_DIV:
3179 case BINOP_REM:
3180 case BINOP_MOD:
3181 case BINOP_CONCAT:
3182 case BINOP_BITWISE_AND:
3183 case BINOP_BITWISE_IOR:
3184 case BINOP_BITWISE_XOR:
3185 case BINOP_EQUAL:
3186 case BINOP_NOTEQUAL:
3187 case BINOP_LESS:
3188 case BINOP_GTR:
3189 case BINOP_LEQ:
3190 case BINOP_GEQ:
3191 case BINOP_EXP:
3192 case UNOP_NEG:
3193 case UNOP_PLUS:
3194 case UNOP_LOGICAL_NOT:
3195 case UNOP_ABS:
3196 if (possible_user_operator_p (op, argvec))
3197 {
3198 struct ada_symbol_info *candidates;
3199 int n_candidates;
3200
3201 n_candidates =
3202 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3203 (struct block *) NULL, VAR_DOMAIN,
3204 &candidates);
3205 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3206 ada_decoded_op_name (op), NULL);
3207 if (i < 0)
3208 break;
3209
3210 replace_operator_with_call (expp, pc, nargs, 1,
3211 candidates[i].sym, candidates[i].block);
3212 exp = *expp;
3213 }
3214 break;
3215
3216 case OP_TYPE:
3217 case OP_REGISTER:
3218 return NULL;
3219 }
3220
3221 *pos = pc;
3222 return evaluate_subexp_type (exp, pos);
3223 }
3224
3225 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3226 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3227 a non-pointer. */
3228 /* The term "match" here is rather loose. The match is heuristic and
3229 liberal. */
3230
3231 static int
3232 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3233 {
3234 ftype = ada_check_typedef (ftype);
3235 atype = ada_check_typedef (atype);
3236
3237 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3238 ftype = TYPE_TARGET_TYPE (ftype);
3239 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3240 atype = TYPE_TARGET_TYPE (atype);
3241
3242 switch (TYPE_CODE (ftype))
3243 {
3244 default:
3245 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3246 case TYPE_CODE_PTR:
3247 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3248 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3249 TYPE_TARGET_TYPE (atype), 0);
3250 else
3251 return (may_deref
3252 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3253 case TYPE_CODE_INT:
3254 case TYPE_CODE_ENUM:
3255 case TYPE_CODE_RANGE:
3256 switch (TYPE_CODE (atype))
3257 {
3258 case TYPE_CODE_INT:
3259 case TYPE_CODE_ENUM:
3260 case TYPE_CODE_RANGE:
3261 return 1;
3262 default:
3263 return 0;
3264 }
3265
3266 case TYPE_CODE_ARRAY:
3267 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3268 || ada_is_array_descriptor_type (atype));
3269
3270 case TYPE_CODE_STRUCT:
3271 if (ada_is_array_descriptor_type (ftype))
3272 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3273 || ada_is_array_descriptor_type (atype));
3274 else
3275 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3276 && !ada_is_array_descriptor_type (atype));
3277
3278 case TYPE_CODE_UNION:
3279 case TYPE_CODE_FLT:
3280 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3281 }
3282 }
3283
3284 /* Return non-zero if the formals of FUNC "sufficiently match" the
3285 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3286 may also be an enumeral, in which case it is treated as a 0-
3287 argument function. */
3288
3289 static int
3290 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3291 {
3292 int i;
3293 struct type *func_type = SYMBOL_TYPE (func);
3294
3295 if (SYMBOL_CLASS (func) == LOC_CONST
3296 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3297 return (n_actuals == 0);
3298 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3299 return 0;
3300
3301 if (TYPE_NFIELDS (func_type) != n_actuals)
3302 return 0;
3303
3304 for (i = 0; i < n_actuals; i += 1)
3305 {
3306 if (actuals[i] == NULL)
3307 return 0;
3308 else
3309 {
3310 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3311 i));
3312 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3313
3314 if (!ada_type_match (ftype, atype, 1))
3315 return 0;
3316 }
3317 }
3318 return 1;
3319 }
3320
3321 /* False iff function type FUNC_TYPE definitely does not produce a value
3322 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3323 FUNC_TYPE is not a valid function type with a non-null return type
3324 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3325
3326 static int
3327 return_match (struct type *func_type, struct type *context_type)
3328 {
3329 struct type *return_type;
3330
3331 if (func_type == NULL)
3332 return 1;
3333
3334 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3335 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3336 else
3337 return_type = get_base_type (func_type);
3338 if (return_type == NULL)
3339 return 1;
3340
3341 context_type = get_base_type (context_type);
3342
3343 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3344 return context_type == NULL || return_type == context_type;
3345 else if (context_type == NULL)
3346 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3347 else
3348 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3349 }
3350
3351
3352 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3353 function (if any) that matches the types of the NARGS arguments in
3354 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3355 that returns that type, then eliminate matches that don't. If
3356 CONTEXT_TYPE is void and there is at least one match that does not
3357 return void, eliminate all matches that do.
3358
3359 Asks the user if there is more than one match remaining. Returns -1
3360 if there is no such symbol or none is selected. NAME is used
3361 solely for messages. May re-arrange and modify SYMS in
3362 the process; the index returned is for the modified vector. */
3363
3364 static int
3365 ada_resolve_function (struct ada_symbol_info syms[],
3366 int nsyms, struct value **args, int nargs,
3367 const char *name, struct type *context_type)
3368 {
3369 int fallback;
3370 int k;
3371 int m; /* Number of hits */
3372
3373 m = 0;
3374 /* In the first pass of the loop, we only accept functions matching
3375 context_type. If none are found, we add a second pass of the loop
3376 where every function is accepted. */
3377 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3378 {
3379 for (k = 0; k < nsyms; k += 1)
3380 {
3381 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3382
3383 if (ada_args_match (syms[k].sym, args, nargs)
3384 && (fallback || return_match (type, context_type)))
3385 {
3386 syms[m] = syms[k];
3387 m += 1;
3388 }
3389 }
3390 }
3391
3392 if (m == 0)
3393 return -1;
3394 else if (m > 1)
3395 {
3396 printf_filtered (_("Multiple matches for %s\n"), name);
3397 user_select_syms (syms, m, 1);
3398 return 0;
3399 }
3400 return 0;
3401 }
3402
3403 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3404 in a listing of choices during disambiguation (see sort_choices, below).
3405 The idea is that overloadings of a subprogram name from the
3406 same package should sort in their source order. We settle for ordering
3407 such symbols by their trailing number (__N or $N). */
3408
3409 static int
3410 encoded_ordered_before (char *N0, char *N1)
3411 {
3412 if (N1 == NULL)
3413 return 0;
3414 else if (N0 == NULL)
3415 return 1;
3416 else
3417 {
3418 int k0, k1;
3419
3420 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3421 ;
3422 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3423 ;
3424 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3425 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3426 {
3427 int n0, n1;
3428
3429 n0 = k0;
3430 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3431 n0 -= 1;
3432 n1 = k1;
3433 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3434 n1 -= 1;
3435 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3436 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3437 }
3438 return (strcmp (N0, N1) < 0);
3439 }
3440 }
3441
3442 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3443 encoded names. */
3444
3445 static void
3446 sort_choices (struct ada_symbol_info syms[], int nsyms)
3447 {
3448 int i;
3449
3450 for (i = 1; i < nsyms; i += 1)
3451 {
3452 struct ada_symbol_info sym = syms[i];
3453 int j;
3454
3455 for (j = i - 1; j >= 0; j -= 1)
3456 {
3457 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3458 SYMBOL_LINKAGE_NAME (sym.sym)))
3459 break;
3460 syms[j + 1] = syms[j];
3461 }
3462 syms[j + 1] = sym;
3463 }
3464 }
3465
3466 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3467 by asking the user (if necessary), returning the number selected,
3468 and setting the first elements of SYMS items. Error if no symbols
3469 selected. */
3470
3471 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3472 to be re-integrated one of these days. */
3473
3474 int
3475 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3476 {
3477 int i;
3478 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3479 int n_chosen;
3480 int first_choice = (max_results == 1) ? 1 : 2;
3481 const char *select_mode = multiple_symbols_select_mode ();
3482
3483 if (max_results < 1)
3484 error (_("Request to select 0 symbols!"));
3485 if (nsyms <= 1)
3486 return nsyms;
3487
3488 if (select_mode == multiple_symbols_cancel)
3489 error (_("\
3490 canceled because the command is ambiguous\n\
3491 See set/show multiple-symbol."));
3492
3493 /* If select_mode is "all", then return all possible symbols.
3494 Only do that if more than one symbol can be selected, of course.
3495 Otherwise, display the menu as usual. */
3496 if (select_mode == multiple_symbols_all && max_results > 1)
3497 return nsyms;
3498
3499 printf_unfiltered (_("[0] cancel\n"));
3500 if (max_results > 1)
3501 printf_unfiltered (_("[1] all\n"));
3502
3503 sort_choices (syms, nsyms);
3504
3505 for (i = 0; i < nsyms; i += 1)
3506 {
3507 if (syms[i].sym == NULL)
3508 continue;
3509
3510 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3511 {
3512 struct symtab_and_line sal =
3513 find_function_start_sal (syms[i].sym, 1);
3514
3515 if (sal.symtab == NULL)
3516 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3517 i + first_choice,
3518 SYMBOL_PRINT_NAME (syms[i].sym),
3519 sal.line);
3520 else
3521 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3522 SYMBOL_PRINT_NAME (syms[i].sym),
3523 sal.symtab->filename, sal.line);
3524 continue;
3525 }
3526 else
3527 {
3528 int is_enumeral =
3529 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3530 && SYMBOL_TYPE (syms[i].sym) != NULL
3531 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3532 struct symtab *symtab = syms[i].sym->symtab;
3533
3534 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3535 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3536 i + first_choice,
3537 SYMBOL_PRINT_NAME (syms[i].sym),
3538 symtab->filename, SYMBOL_LINE (syms[i].sym));
3539 else if (is_enumeral
3540 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3541 {
3542 printf_unfiltered (("[%d] "), i + first_choice);
3543 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3544 gdb_stdout, -1, 0);
3545 printf_unfiltered (_("'(%s) (enumeral)\n"),
3546 SYMBOL_PRINT_NAME (syms[i].sym));
3547 }
3548 else if (symtab != NULL)
3549 printf_unfiltered (is_enumeral
3550 ? _("[%d] %s in %s (enumeral)\n")
3551 : _("[%d] %s at %s:?\n"),
3552 i + first_choice,
3553 SYMBOL_PRINT_NAME (syms[i].sym),
3554 symtab->filename);
3555 else
3556 printf_unfiltered (is_enumeral
3557 ? _("[%d] %s (enumeral)\n")
3558 : _("[%d] %s at ?\n"),
3559 i + first_choice,
3560 SYMBOL_PRINT_NAME (syms[i].sym));
3561 }
3562 }
3563
3564 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3565 "overload-choice");
3566
3567 for (i = 0; i < n_chosen; i += 1)
3568 syms[i] = syms[chosen[i]];
3569
3570 return n_chosen;
3571 }
3572
3573 /* Read and validate a set of numeric choices from the user in the
3574 range 0 .. N_CHOICES-1. Place the results in increasing
3575 order in CHOICES[0 .. N-1], and return N.
3576
3577 The user types choices as a sequence of numbers on one line
3578 separated by blanks, encoding them as follows:
3579
3580 + A choice of 0 means to cancel the selection, throwing an error.
3581 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3582 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3583
3584 The user is not allowed to choose more than MAX_RESULTS values.
3585
3586 ANNOTATION_SUFFIX, if present, is used to annotate the input
3587 prompts (for use with the -f switch). */
3588
3589 int
3590 get_selections (int *choices, int n_choices, int max_results,
3591 int is_all_choice, char *annotation_suffix)
3592 {
3593 char *args;
3594 char *prompt;
3595 int n_chosen;
3596 int first_choice = is_all_choice ? 2 : 1;
3597
3598 prompt = getenv ("PS2");
3599 if (prompt == NULL)
3600 prompt = "> ";
3601
3602 args = command_line_input (prompt, 0, annotation_suffix);
3603
3604 if (args == NULL)
3605 error_no_arg (_("one or more choice numbers"));
3606
3607 n_chosen = 0;
3608
3609 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3610 order, as given in args. Choices are validated. */
3611 while (1)
3612 {
3613 char *args2;
3614 int choice, j;
3615
3616 args = skip_spaces (args);
3617 if (*args == '\0' && n_chosen == 0)
3618 error_no_arg (_("one or more choice numbers"));
3619 else if (*args == '\0')
3620 break;
3621
3622 choice = strtol (args, &args2, 10);
3623 if (args == args2 || choice < 0
3624 || choice > n_choices + first_choice - 1)
3625 error (_("Argument must be choice number"));
3626 args = args2;
3627
3628 if (choice == 0)
3629 error (_("cancelled"));
3630
3631 if (choice < first_choice)
3632 {
3633 n_chosen = n_choices;
3634 for (j = 0; j < n_choices; j += 1)
3635 choices[j] = j;
3636 break;
3637 }
3638 choice -= first_choice;
3639
3640 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3641 {
3642 }
3643
3644 if (j < 0 || choice != choices[j])
3645 {
3646 int k;
3647
3648 for (k = n_chosen - 1; k > j; k -= 1)
3649 choices[k + 1] = choices[k];
3650 choices[j + 1] = choice;
3651 n_chosen += 1;
3652 }
3653 }
3654
3655 if (n_chosen > max_results)
3656 error (_("Select no more than %d of the above"), max_results);
3657
3658 return n_chosen;
3659 }
3660
3661 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3662 on the function identified by SYM and BLOCK, and taking NARGS
3663 arguments. Update *EXPP as needed to hold more space. */
3664
3665 static void
3666 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3667 int oplen, struct symbol *sym,
3668 struct block *block)
3669 {
3670 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3671 symbol, -oplen for operator being replaced). */
3672 struct expression *newexp = (struct expression *)
3673 xzalloc (sizeof (struct expression)
3674 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3675 struct expression *exp = *expp;
3676
3677 newexp->nelts = exp->nelts + 7 - oplen;
3678 newexp->language_defn = exp->language_defn;
3679 newexp->gdbarch = exp->gdbarch;
3680 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3681 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3682 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3683
3684 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3685 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3686
3687 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3688 newexp->elts[pc + 4].block = block;
3689 newexp->elts[pc + 5].symbol = sym;
3690
3691 *expp = newexp;
3692 xfree (exp);
3693 }
3694
3695 /* Type-class predicates */
3696
3697 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3698 or FLOAT). */
3699
3700 static int
3701 numeric_type_p (struct type *type)
3702 {
3703 if (type == NULL)
3704 return 0;
3705 else
3706 {
3707 switch (TYPE_CODE (type))
3708 {
3709 case TYPE_CODE_INT:
3710 case TYPE_CODE_FLT:
3711 return 1;
3712 case TYPE_CODE_RANGE:
3713 return (type == TYPE_TARGET_TYPE (type)
3714 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3715 default:
3716 return 0;
3717 }
3718 }
3719 }
3720
3721 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3722
3723 static int
3724 integer_type_p (struct type *type)
3725 {
3726 if (type == NULL)
3727 return 0;
3728 else
3729 {
3730 switch (TYPE_CODE (type))
3731 {
3732 case TYPE_CODE_INT:
3733 return 1;
3734 case TYPE_CODE_RANGE:
3735 return (type == TYPE_TARGET_TYPE (type)
3736 || integer_type_p (TYPE_TARGET_TYPE (type)));
3737 default:
3738 return 0;
3739 }
3740 }
3741 }
3742
3743 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3744
3745 static int
3746 scalar_type_p (struct type *type)
3747 {
3748 if (type == NULL)
3749 return 0;
3750 else
3751 {
3752 switch (TYPE_CODE (type))
3753 {
3754 case TYPE_CODE_INT:
3755 case TYPE_CODE_RANGE:
3756 case TYPE_CODE_ENUM:
3757 case TYPE_CODE_FLT:
3758 return 1;
3759 default:
3760 return 0;
3761 }
3762 }
3763 }
3764
3765 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3766
3767 static int
3768 discrete_type_p (struct type *type)
3769 {
3770 if (type == NULL)
3771 return 0;
3772 else
3773 {
3774 switch (TYPE_CODE (type))
3775 {
3776 case TYPE_CODE_INT:
3777 case TYPE_CODE_RANGE:
3778 case TYPE_CODE_ENUM:
3779 case TYPE_CODE_BOOL:
3780 return 1;
3781 default:
3782 return 0;
3783 }
3784 }
3785 }
3786
3787 /* Returns non-zero if OP with operands in the vector ARGS could be
3788 a user-defined function. Errs on the side of pre-defined operators
3789 (i.e., result 0). */
3790
3791 static int
3792 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3793 {
3794 struct type *type0 =
3795 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3796 struct type *type1 =
3797 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3798
3799 if (type0 == NULL)
3800 return 0;
3801
3802 switch (op)
3803 {
3804 default:
3805 return 0;
3806
3807 case BINOP_ADD:
3808 case BINOP_SUB:
3809 case BINOP_MUL:
3810 case BINOP_DIV:
3811 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3812
3813 case BINOP_REM:
3814 case BINOP_MOD:
3815 case BINOP_BITWISE_AND:
3816 case BINOP_BITWISE_IOR:
3817 case BINOP_BITWISE_XOR:
3818 return (!(integer_type_p (type0) && integer_type_p (type1)));
3819
3820 case BINOP_EQUAL:
3821 case BINOP_NOTEQUAL:
3822 case BINOP_LESS:
3823 case BINOP_GTR:
3824 case BINOP_LEQ:
3825 case BINOP_GEQ:
3826 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3827
3828 case BINOP_CONCAT:
3829 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3830
3831 case BINOP_EXP:
3832 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3833
3834 case UNOP_NEG:
3835 case UNOP_PLUS:
3836 case UNOP_LOGICAL_NOT:
3837 case UNOP_ABS:
3838 return (!numeric_type_p (type0));
3839
3840 }
3841 }
3842 \f
3843 /* Renaming */
3844
3845 /* NOTES:
3846
3847 1. In the following, we assume that a renaming type's name may
3848 have an ___XD suffix. It would be nice if this went away at some
3849 point.
3850 2. We handle both the (old) purely type-based representation of
3851 renamings and the (new) variable-based encoding. At some point,
3852 it is devoutly to be hoped that the former goes away
3853 (FIXME: hilfinger-2007-07-09).
3854 3. Subprogram renamings are not implemented, although the XRS
3855 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3856
3857 /* If SYM encodes a renaming,
3858
3859 <renaming> renames <renamed entity>,
3860
3861 sets *LEN to the length of the renamed entity's name,
3862 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3863 the string describing the subcomponent selected from the renamed
3864 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3865 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3866 are undefined). Otherwise, returns a value indicating the category
3867 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3868 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3869 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3870 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3871 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3872 may be NULL, in which case they are not assigned.
3873
3874 [Currently, however, GCC does not generate subprogram renamings.] */
3875
3876 enum ada_renaming_category
3877 ada_parse_renaming (struct symbol *sym,
3878 const char **renamed_entity, int *len,
3879 const char **renaming_expr)
3880 {
3881 enum ada_renaming_category kind;
3882 const char *info;
3883 const char *suffix;
3884
3885 if (sym == NULL)
3886 return ADA_NOT_RENAMING;
3887 switch (SYMBOL_CLASS (sym))
3888 {
3889 default:
3890 return ADA_NOT_RENAMING;
3891 case LOC_TYPEDEF:
3892 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3893 renamed_entity, len, renaming_expr);
3894 case LOC_LOCAL:
3895 case LOC_STATIC:
3896 case LOC_COMPUTED:
3897 case LOC_OPTIMIZED_OUT:
3898 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3899 if (info == NULL)
3900 return ADA_NOT_RENAMING;
3901 switch (info[5])
3902 {
3903 case '_':
3904 kind = ADA_OBJECT_RENAMING;
3905 info += 6;
3906 break;
3907 case 'E':
3908 kind = ADA_EXCEPTION_RENAMING;
3909 info += 7;
3910 break;
3911 case 'P':
3912 kind = ADA_PACKAGE_RENAMING;
3913 info += 7;
3914 break;
3915 case 'S':
3916 kind = ADA_SUBPROGRAM_RENAMING;
3917 info += 7;
3918 break;
3919 default:
3920 return ADA_NOT_RENAMING;
3921 }
3922 }
3923
3924 if (renamed_entity != NULL)
3925 *renamed_entity = info;
3926 suffix = strstr (info, "___XE");
3927 if (suffix == NULL || suffix == info)
3928 return ADA_NOT_RENAMING;
3929 if (len != NULL)
3930 *len = strlen (info) - strlen (suffix);
3931 suffix += 5;
3932 if (renaming_expr != NULL)
3933 *renaming_expr = suffix;
3934 return kind;
3935 }
3936
3937 /* Assuming TYPE encodes a renaming according to the old encoding in
3938 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3939 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3940 ADA_NOT_RENAMING otherwise. */
3941 static enum ada_renaming_category
3942 parse_old_style_renaming (struct type *type,
3943 const char **renamed_entity, int *len,
3944 const char **renaming_expr)
3945 {
3946 enum ada_renaming_category kind;
3947 const char *name;
3948 const char *info;
3949 const char *suffix;
3950
3951 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3952 || TYPE_NFIELDS (type) != 1)
3953 return ADA_NOT_RENAMING;
3954
3955 name = type_name_no_tag (type);
3956 if (name == NULL)
3957 return ADA_NOT_RENAMING;
3958
3959 name = strstr (name, "___XR");
3960 if (name == NULL)
3961 return ADA_NOT_RENAMING;
3962 switch (name[5])
3963 {
3964 case '\0':
3965 case '_':
3966 kind = ADA_OBJECT_RENAMING;
3967 break;
3968 case 'E':
3969 kind = ADA_EXCEPTION_RENAMING;
3970 break;
3971 case 'P':
3972 kind = ADA_PACKAGE_RENAMING;
3973 break;
3974 case 'S':
3975 kind = ADA_SUBPROGRAM_RENAMING;
3976 break;
3977 default:
3978 return ADA_NOT_RENAMING;
3979 }
3980
3981 info = TYPE_FIELD_NAME (type, 0);
3982 if (info == NULL)
3983 return ADA_NOT_RENAMING;
3984 if (renamed_entity != NULL)
3985 *renamed_entity = info;
3986 suffix = strstr (info, "___XE");
3987 if (renaming_expr != NULL)
3988 *renaming_expr = suffix + 5;
3989 if (suffix == NULL || suffix == info)
3990 return ADA_NOT_RENAMING;
3991 if (len != NULL)
3992 *len = suffix - info;
3993 return kind;
3994 }
3995
3996 \f
3997
3998 /* Evaluation: Function Calls */
3999
4000 /* Return an lvalue containing the value VAL. This is the identity on
4001 lvalues, and otherwise has the side-effect of allocating memory
4002 in the inferior where a copy of the value contents is copied. */
4003
4004 static struct value *
4005 ensure_lval (struct value *val)
4006 {
4007 if (VALUE_LVAL (val) == not_lval
4008 || VALUE_LVAL (val) == lval_internalvar)
4009 {
4010 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4011 const CORE_ADDR addr =
4012 value_as_long (value_allocate_space_in_inferior (len));
4013
4014 set_value_address (val, addr);
4015 VALUE_LVAL (val) = lval_memory;
4016 write_memory (addr, value_contents (val), len);
4017 }
4018
4019 return val;
4020 }
4021
4022 /* Return the value ACTUAL, converted to be an appropriate value for a
4023 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4024 allocating any necessary descriptors (fat pointers), or copies of
4025 values not residing in memory, updating it as needed. */
4026
4027 struct value *
4028 ada_convert_actual (struct value *actual, struct type *formal_type0)
4029 {
4030 struct type *actual_type = ada_check_typedef (value_type (actual));
4031 struct type *formal_type = ada_check_typedef (formal_type0);
4032 struct type *formal_target =
4033 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4034 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4035 struct type *actual_target =
4036 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4037 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4038
4039 if (ada_is_array_descriptor_type (formal_target)
4040 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4041 return make_array_descriptor (formal_type, actual);
4042 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4043 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4044 {
4045 struct value *result;
4046
4047 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4048 && ada_is_array_descriptor_type (actual_target))
4049 result = desc_data (actual);
4050 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4051 {
4052 if (VALUE_LVAL (actual) != lval_memory)
4053 {
4054 struct value *val;
4055
4056 actual_type = ada_check_typedef (value_type (actual));
4057 val = allocate_value (actual_type);
4058 memcpy ((char *) value_contents_raw (val),
4059 (char *) value_contents (actual),
4060 TYPE_LENGTH (actual_type));
4061 actual = ensure_lval (val);
4062 }
4063 result = value_addr (actual);
4064 }
4065 else
4066 return actual;
4067 return value_cast_pointers (formal_type, result);
4068 }
4069 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4070 return ada_value_ind (actual);
4071
4072 return actual;
4073 }
4074
4075 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4076 type TYPE. This is usually an inefficient no-op except on some targets
4077 (such as AVR) where the representation of a pointer and an address
4078 differs. */
4079
4080 static CORE_ADDR
4081 value_pointer (struct value *value, struct type *type)
4082 {
4083 struct gdbarch *gdbarch = get_type_arch (type);
4084 unsigned len = TYPE_LENGTH (type);
4085 gdb_byte *buf = alloca (len);
4086 CORE_ADDR addr;
4087
4088 addr = value_address (value);
4089 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4090 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4091 return addr;
4092 }
4093
4094
4095 /* Push a descriptor of type TYPE for array value ARR on the stack at
4096 *SP, updating *SP to reflect the new descriptor. Return either
4097 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4098 to-descriptor type rather than a descriptor type), a struct value *
4099 representing a pointer to this descriptor. */
4100
4101 static struct value *
4102 make_array_descriptor (struct type *type, struct value *arr)
4103 {
4104 struct type *bounds_type = desc_bounds_type (type);
4105 struct type *desc_type = desc_base_type (type);
4106 struct value *descriptor = allocate_value (desc_type);
4107 struct value *bounds = allocate_value (bounds_type);
4108 int i;
4109
4110 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4111 i > 0; i -= 1)
4112 {
4113 modify_field (value_type (bounds), value_contents_writeable (bounds),
4114 ada_array_bound (arr, i, 0),
4115 desc_bound_bitpos (bounds_type, i, 0),
4116 desc_bound_bitsize (bounds_type, i, 0));
4117 modify_field (value_type (bounds), value_contents_writeable (bounds),
4118 ada_array_bound (arr, i, 1),
4119 desc_bound_bitpos (bounds_type, i, 1),
4120 desc_bound_bitsize (bounds_type, i, 1));
4121 }
4122
4123 bounds = ensure_lval (bounds);
4124
4125 modify_field (value_type (descriptor),
4126 value_contents_writeable (descriptor),
4127 value_pointer (ensure_lval (arr),
4128 TYPE_FIELD_TYPE (desc_type, 0)),
4129 fat_pntr_data_bitpos (desc_type),
4130 fat_pntr_data_bitsize (desc_type));
4131
4132 modify_field (value_type (descriptor),
4133 value_contents_writeable (descriptor),
4134 value_pointer (bounds,
4135 TYPE_FIELD_TYPE (desc_type, 1)),
4136 fat_pntr_bounds_bitpos (desc_type),
4137 fat_pntr_bounds_bitsize (desc_type));
4138
4139 descriptor = ensure_lval (descriptor);
4140
4141 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4142 return value_addr (descriptor);
4143 else
4144 return descriptor;
4145 }
4146 \f
4147 /* Dummy definitions for an experimental caching module that is not
4148 * used in the public sources. */
4149
4150 static int
4151 lookup_cached_symbol (const char *name, domain_enum namespace,
4152 struct symbol **sym, struct block **block)
4153 {
4154 return 0;
4155 }
4156
4157 static void
4158 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
4159 struct block *block)
4160 {
4161 }
4162 \f
4163 /* Symbol Lookup */
4164
4165 /* Return nonzero if wild matching should be used when searching for
4166 all symbols matching LOOKUP_NAME.
4167
4168 LOOKUP_NAME is expected to be a symbol name after transformation
4169 for Ada lookups (see ada_name_for_lookup). */
4170
4171 static int
4172 should_use_wild_match (const char *lookup_name)
4173 {
4174 return (strstr (lookup_name, "__") == NULL);
4175 }
4176
4177 /* Return the result of a standard (literal, C-like) lookup of NAME in
4178 given DOMAIN, visible from lexical block BLOCK. */
4179
4180 static struct symbol *
4181 standard_lookup (const char *name, const struct block *block,
4182 domain_enum domain)
4183 {
4184 struct symbol *sym;
4185
4186 if (lookup_cached_symbol (name, domain, &sym, NULL))
4187 return sym;
4188 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4189 cache_symbol (name, domain, sym, block_found);
4190 return sym;
4191 }
4192
4193
4194 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4195 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4196 since they contend in overloading in the same way. */
4197 static int
4198 is_nonfunction (struct ada_symbol_info syms[], int n)
4199 {
4200 int i;
4201
4202 for (i = 0; i < n; i += 1)
4203 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4204 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4205 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4206 return 1;
4207
4208 return 0;
4209 }
4210
4211 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4212 struct types. Otherwise, they may not. */
4213
4214 static int
4215 equiv_types (struct type *type0, struct type *type1)
4216 {
4217 if (type0 == type1)
4218 return 1;
4219 if (type0 == NULL || type1 == NULL
4220 || TYPE_CODE (type0) != TYPE_CODE (type1))
4221 return 0;
4222 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4223 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4224 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4225 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4226 return 1;
4227
4228 return 0;
4229 }
4230
4231 /* True iff SYM0 represents the same entity as SYM1, or one that is
4232 no more defined than that of SYM1. */
4233
4234 static int
4235 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4236 {
4237 if (sym0 == sym1)
4238 return 1;
4239 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4240 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4241 return 0;
4242
4243 switch (SYMBOL_CLASS (sym0))
4244 {
4245 case LOC_UNDEF:
4246 return 1;
4247 case LOC_TYPEDEF:
4248 {
4249 struct type *type0 = SYMBOL_TYPE (sym0);
4250 struct type *type1 = SYMBOL_TYPE (sym1);
4251 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4252 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4253 int len0 = strlen (name0);
4254
4255 return
4256 TYPE_CODE (type0) == TYPE_CODE (type1)
4257 && (equiv_types (type0, type1)
4258 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4259 && strncmp (name1 + len0, "___XV", 5) == 0));
4260 }
4261 case LOC_CONST:
4262 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4263 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4264 default:
4265 return 0;
4266 }
4267 }
4268
4269 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4270 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4271
4272 static void
4273 add_defn_to_vec (struct obstack *obstackp,
4274 struct symbol *sym,
4275 struct block *block)
4276 {
4277 int i;
4278 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4279
4280 /* Do not try to complete stub types, as the debugger is probably
4281 already scanning all symbols matching a certain name at the
4282 time when this function is called. Trying to replace the stub
4283 type by its associated full type will cause us to restart a scan
4284 which may lead to an infinite recursion. Instead, the client
4285 collecting the matching symbols will end up collecting several
4286 matches, with at least one of them complete. It can then filter
4287 out the stub ones if needed. */
4288
4289 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4290 {
4291 if (lesseq_defined_than (sym, prevDefns[i].sym))
4292 return;
4293 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4294 {
4295 prevDefns[i].sym = sym;
4296 prevDefns[i].block = block;
4297 return;
4298 }
4299 }
4300
4301 {
4302 struct ada_symbol_info info;
4303
4304 info.sym = sym;
4305 info.block = block;
4306 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4307 }
4308 }
4309
4310 /* Number of ada_symbol_info structures currently collected in
4311 current vector in *OBSTACKP. */
4312
4313 static int
4314 num_defns_collected (struct obstack *obstackp)
4315 {
4316 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4317 }
4318
4319 /* Vector of ada_symbol_info structures currently collected in current
4320 vector in *OBSTACKP. If FINISH, close off the vector and return
4321 its final address. */
4322
4323 static struct ada_symbol_info *
4324 defns_collected (struct obstack *obstackp, int finish)
4325 {
4326 if (finish)
4327 return obstack_finish (obstackp);
4328 else
4329 return (struct ada_symbol_info *) obstack_base (obstackp);
4330 }
4331
4332 /* Return a minimal symbol matching NAME according to Ada decoding
4333 rules. Returns NULL if there is no such minimal symbol. Names
4334 prefixed with "standard__" are handled specially: "standard__" is
4335 first stripped off, and only static and global symbols are searched. */
4336
4337 struct minimal_symbol *
4338 ada_lookup_simple_minsym (const char *name)
4339 {
4340 struct objfile *objfile;
4341 struct minimal_symbol *msymbol;
4342 const int wild_match = should_use_wild_match (name);
4343
4344 /* Special case: If the user specifies a symbol name inside package
4345 Standard, do a non-wild matching of the symbol name without
4346 the "standard__" prefix. This was primarily introduced in order
4347 to allow the user to specifically access the standard exceptions
4348 using, for instance, Standard.Constraint_Error when Constraint_Error
4349 is ambiguous (due to the user defining its own Constraint_Error
4350 entity inside its program). */
4351 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4352 name += sizeof ("standard__") - 1;
4353
4354 ALL_MSYMBOLS (objfile, msymbol)
4355 {
4356 if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4357 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4358 return msymbol;
4359 }
4360
4361 return NULL;
4362 }
4363
4364 /* For all subprograms that statically enclose the subprogram of the
4365 selected frame, add symbols matching identifier NAME in DOMAIN
4366 and their blocks to the list of data in OBSTACKP, as for
4367 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4368 wildcard prefix. */
4369
4370 static void
4371 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4372 const char *name, domain_enum namespace,
4373 int wild_match)
4374 {
4375 }
4376
4377 /* True if TYPE is definitely an artificial type supplied to a symbol
4378 for which no debugging information was given in the symbol file. */
4379
4380 static int
4381 is_nondebugging_type (struct type *type)
4382 {
4383 char *name = ada_type_name (type);
4384
4385 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4386 }
4387
4388 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4389 that are deemed "identical" for practical purposes.
4390
4391 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4392 types and that their number of enumerals is identical (in other
4393 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4394
4395 static int
4396 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4397 {
4398 int i;
4399
4400 /* The heuristic we use here is fairly conservative. We consider
4401 that 2 enumerate types are identical if they have the same
4402 number of enumerals and that all enumerals have the same
4403 underlying value and name. */
4404
4405 /* All enums in the type should have an identical underlying value. */
4406 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4407 if (TYPE_FIELD_BITPOS (type1, i) != TYPE_FIELD_BITPOS (type2, i))
4408 return 0;
4409
4410 /* All enumerals should also have the same name (modulo any numerical
4411 suffix). */
4412 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4413 {
4414 char *name_1 = TYPE_FIELD_NAME (type1, i);
4415 char *name_2 = TYPE_FIELD_NAME (type2, i);
4416 int len_1 = strlen (name_1);
4417 int len_2 = strlen (name_2);
4418
4419 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4420 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4421 if (len_1 != len_2
4422 || strncmp (TYPE_FIELD_NAME (type1, i),
4423 TYPE_FIELD_NAME (type2, i),
4424 len_1) != 0)
4425 return 0;
4426 }
4427
4428 return 1;
4429 }
4430
4431 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4432 that are deemed "identical" for practical purposes. Sometimes,
4433 enumerals are not strictly identical, but their types are so similar
4434 that they can be considered identical.
4435
4436 For instance, consider the following code:
4437
4438 type Color is (Black, Red, Green, Blue, White);
4439 type RGB_Color is new Color range Red .. Blue;
4440
4441 Type RGB_Color is a subrange of an implicit type which is a copy
4442 of type Color. If we call that implicit type RGB_ColorB ("B" is
4443 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4444 As a result, when an expression references any of the enumeral
4445 by name (Eg. "print green"), the expression is technically
4446 ambiguous and the user should be asked to disambiguate. But
4447 doing so would only hinder the user, since it wouldn't matter
4448 what choice he makes, the outcome would always be the same.
4449 So, for practical purposes, we consider them as the same. */
4450
4451 static int
4452 symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4453 {
4454 int i;
4455
4456 /* Before performing a thorough comparison check of each type,
4457 we perform a series of inexpensive checks. We expect that these
4458 checks will quickly fail in the vast majority of cases, and thus
4459 help prevent the unnecessary use of a more expensive comparison.
4460 Said comparison also expects us to make some of these checks
4461 (see ada_identical_enum_types_p). */
4462
4463 /* Quick check: All symbols should have an enum type. */
4464 for (i = 0; i < nsyms; i++)
4465 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4466 return 0;
4467
4468 /* Quick check: They should all have the same value. */
4469 for (i = 1; i < nsyms; i++)
4470 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4471 return 0;
4472
4473 /* Quick check: They should all have the same number of enumerals. */
4474 for (i = 1; i < nsyms; i++)
4475 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4476 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4477 return 0;
4478
4479 /* All the sanity checks passed, so we might have a set of
4480 identical enumeration types. Perform a more complete
4481 comparison of the type of each symbol. */
4482 for (i = 1; i < nsyms; i++)
4483 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4484 SYMBOL_TYPE (syms[0].sym)))
4485 return 0;
4486
4487 return 1;
4488 }
4489
4490 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4491 duplicate other symbols in the list (The only case I know of where
4492 this happens is when object files containing stabs-in-ecoff are
4493 linked with files containing ordinary ecoff debugging symbols (or no
4494 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4495 Returns the number of items in the modified list. */
4496
4497 static int
4498 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4499 {
4500 int i, j;
4501
4502 /* We should never be called with less than 2 symbols, as there
4503 cannot be any extra symbol in that case. But it's easy to
4504 handle, since we have nothing to do in that case. */
4505 if (nsyms < 2)
4506 return nsyms;
4507
4508 i = 0;
4509 while (i < nsyms)
4510 {
4511 int remove_p = 0;
4512
4513 /* If two symbols have the same name and one of them is a stub type,
4514 the get rid of the stub. */
4515
4516 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4517 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4518 {
4519 for (j = 0; j < nsyms; j++)
4520 {
4521 if (j != i
4522 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4523 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4524 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4525 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4526 remove_p = 1;
4527 }
4528 }
4529
4530 /* Two symbols with the same name, same class and same address
4531 should be identical. */
4532
4533 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4534 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4535 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4536 {
4537 for (j = 0; j < nsyms; j += 1)
4538 {
4539 if (i != j
4540 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4541 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4542 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4543 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4544 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4545 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4546 remove_p = 1;
4547 }
4548 }
4549
4550 if (remove_p)
4551 {
4552 for (j = i + 1; j < nsyms; j += 1)
4553 syms[j - 1] = syms[j];
4554 nsyms -= 1;
4555 }
4556
4557 i += 1;
4558 }
4559
4560 /* If all the remaining symbols are identical enumerals, then
4561 just keep the first one and discard the rest.
4562
4563 Unlike what we did previously, we do not discard any entry
4564 unless they are ALL identical. This is because the symbol
4565 comparison is not a strict comparison, but rather a practical
4566 comparison. If all symbols are considered identical, then
4567 we can just go ahead and use the first one and discard the rest.
4568 But if we cannot reduce the list to a single element, we have
4569 to ask the user to disambiguate anyways. And if we have to
4570 present a multiple-choice menu, it's less confusing if the list
4571 isn't missing some choices that were identical and yet distinct. */
4572 if (symbols_are_identical_enums (syms, nsyms))
4573 nsyms = 1;
4574
4575 return nsyms;
4576 }
4577
4578 /* Given a type that corresponds to a renaming entity, use the type name
4579 to extract the scope (package name or function name, fully qualified,
4580 and following the GNAT encoding convention) where this renaming has been
4581 defined. The string returned needs to be deallocated after use. */
4582
4583 static char *
4584 xget_renaming_scope (struct type *renaming_type)
4585 {
4586 /* The renaming types adhere to the following convention:
4587 <scope>__<rename>___<XR extension>.
4588 So, to extract the scope, we search for the "___XR" extension,
4589 and then backtrack until we find the first "__". */
4590
4591 const char *name = type_name_no_tag (renaming_type);
4592 char *suffix = strstr (name, "___XR");
4593 char *last;
4594 int scope_len;
4595 char *scope;
4596
4597 /* Now, backtrack a bit until we find the first "__". Start looking
4598 at suffix - 3, as the <rename> part is at least one character long. */
4599
4600 for (last = suffix - 3; last > name; last--)
4601 if (last[0] == '_' && last[1] == '_')
4602 break;
4603
4604 /* Make a copy of scope and return it. */
4605
4606 scope_len = last - name;
4607 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4608
4609 strncpy (scope, name, scope_len);
4610 scope[scope_len] = '\0';
4611
4612 return scope;
4613 }
4614
4615 /* Return nonzero if NAME corresponds to a package name. */
4616
4617 static int
4618 is_package_name (const char *name)
4619 {
4620 /* Here, We take advantage of the fact that no symbols are generated
4621 for packages, while symbols are generated for each function.
4622 So the condition for NAME represent a package becomes equivalent
4623 to NAME not existing in our list of symbols. There is only one
4624 small complication with library-level functions (see below). */
4625
4626 char *fun_name;
4627
4628 /* If it is a function that has not been defined at library level,
4629 then we should be able to look it up in the symbols. */
4630 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4631 return 0;
4632
4633 /* Library-level function names start with "_ada_". See if function
4634 "_ada_" followed by NAME can be found. */
4635
4636 /* Do a quick check that NAME does not contain "__", since library-level
4637 functions names cannot contain "__" in them. */
4638 if (strstr (name, "__") != NULL)
4639 return 0;
4640
4641 fun_name = xstrprintf ("_ada_%s", name);
4642
4643 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4644 }
4645
4646 /* Return nonzero if SYM corresponds to a renaming entity that is
4647 not visible from FUNCTION_NAME. */
4648
4649 static int
4650 old_renaming_is_invisible (const struct symbol *sym, char *function_name)
4651 {
4652 char *scope;
4653
4654 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4655 return 0;
4656
4657 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4658
4659 make_cleanup (xfree, scope);
4660
4661 /* If the rename has been defined in a package, then it is visible. */
4662 if (is_package_name (scope))
4663 return 0;
4664
4665 /* Check that the rename is in the current function scope by checking
4666 that its name starts with SCOPE. */
4667
4668 /* If the function name starts with "_ada_", it means that it is
4669 a library-level function. Strip this prefix before doing the
4670 comparison, as the encoding for the renaming does not contain
4671 this prefix. */
4672 if (strncmp (function_name, "_ada_", 5) == 0)
4673 function_name += 5;
4674
4675 return (strncmp (function_name, scope, strlen (scope)) != 0);
4676 }
4677
4678 /* Remove entries from SYMS that corresponds to a renaming entity that
4679 is not visible from the function associated with CURRENT_BLOCK or
4680 that is superfluous due to the presence of more specific renaming
4681 information. Places surviving symbols in the initial entries of
4682 SYMS and returns the number of surviving symbols.
4683
4684 Rationale:
4685 First, in cases where an object renaming is implemented as a
4686 reference variable, GNAT may produce both the actual reference
4687 variable and the renaming encoding. In this case, we discard the
4688 latter.
4689
4690 Second, GNAT emits a type following a specified encoding for each renaming
4691 entity. Unfortunately, STABS currently does not support the definition
4692 of types that are local to a given lexical block, so all renamings types
4693 are emitted at library level. As a consequence, if an application
4694 contains two renaming entities using the same name, and a user tries to
4695 print the value of one of these entities, the result of the ada symbol
4696 lookup will also contain the wrong renaming type.
4697
4698 This function partially covers for this limitation by attempting to
4699 remove from the SYMS list renaming symbols that should be visible
4700 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4701 method with the current information available. The implementation
4702 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4703
4704 - When the user tries to print a rename in a function while there
4705 is another rename entity defined in a package: Normally, the
4706 rename in the function has precedence over the rename in the
4707 package, so the latter should be removed from the list. This is
4708 currently not the case.
4709
4710 - This function will incorrectly remove valid renames if
4711 the CURRENT_BLOCK corresponds to a function which symbol name
4712 has been changed by an "Export" pragma. As a consequence,
4713 the user will be unable to print such rename entities. */
4714
4715 static int
4716 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4717 int nsyms, const struct block *current_block)
4718 {
4719 struct symbol *current_function;
4720 char *current_function_name;
4721 int i;
4722 int is_new_style_renaming;
4723
4724 /* If there is both a renaming foo___XR... encoded as a variable and
4725 a simple variable foo in the same block, discard the latter.
4726 First, zero out such symbols, then compress. */
4727 is_new_style_renaming = 0;
4728 for (i = 0; i < nsyms; i += 1)
4729 {
4730 struct symbol *sym = syms[i].sym;
4731 struct block *block = syms[i].block;
4732 const char *name;
4733 const char *suffix;
4734
4735 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4736 continue;
4737 name = SYMBOL_LINKAGE_NAME (sym);
4738 suffix = strstr (name, "___XR");
4739
4740 if (suffix != NULL)
4741 {
4742 int name_len = suffix - name;
4743 int j;
4744
4745 is_new_style_renaming = 1;
4746 for (j = 0; j < nsyms; j += 1)
4747 if (i != j && syms[j].sym != NULL
4748 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4749 name_len) == 0
4750 && block == syms[j].block)
4751 syms[j].sym = NULL;
4752 }
4753 }
4754 if (is_new_style_renaming)
4755 {
4756 int j, k;
4757
4758 for (j = k = 0; j < nsyms; j += 1)
4759 if (syms[j].sym != NULL)
4760 {
4761 syms[k] = syms[j];
4762 k += 1;
4763 }
4764 return k;
4765 }
4766
4767 /* Extract the function name associated to CURRENT_BLOCK.
4768 Abort if unable to do so. */
4769
4770 if (current_block == NULL)
4771 return nsyms;
4772
4773 current_function = block_linkage_function (current_block);
4774 if (current_function == NULL)
4775 return nsyms;
4776
4777 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4778 if (current_function_name == NULL)
4779 return nsyms;
4780
4781 /* Check each of the symbols, and remove it from the list if it is
4782 a type corresponding to a renaming that is out of the scope of
4783 the current block. */
4784
4785 i = 0;
4786 while (i < nsyms)
4787 {
4788 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4789 == ADA_OBJECT_RENAMING
4790 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4791 {
4792 int j;
4793
4794 for (j = i + 1; j < nsyms; j += 1)
4795 syms[j - 1] = syms[j];
4796 nsyms -= 1;
4797 }
4798 else
4799 i += 1;
4800 }
4801
4802 return nsyms;
4803 }
4804
4805 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4806 whose name and domain match NAME and DOMAIN respectively.
4807 If no match was found, then extend the search to "enclosing"
4808 routines (in other words, if we're inside a nested function,
4809 search the symbols defined inside the enclosing functions).
4810
4811 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4812
4813 static void
4814 ada_add_local_symbols (struct obstack *obstackp, const char *name,
4815 struct block *block, domain_enum domain,
4816 int wild_match)
4817 {
4818 int block_depth = 0;
4819
4820 while (block != NULL)
4821 {
4822 block_depth += 1;
4823 ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4824
4825 /* If we found a non-function match, assume that's the one. */
4826 if (is_nonfunction (defns_collected (obstackp, 0),
4827 num_defns_collected (obstackp)))
4828 return;
4829
4830 block = BLOCK_SUPERBLOCK (block);
4831 }
4832
4833 /* If no luck so far, try to find NAME as a local symbol in some lexically
4834 enclosing subprogram. */
4835 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4836 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4837 }
4838
4839 /* An object of this type is used as the user_data argument when
4840 calling the map_matching_symbols method. */
4841
4842 struct match_data
4843 {
4844 struct objfile *objfile;
4845 struct obstack *obstackp;
4846 struct symbol *arg_sym;
4847 int found_sym;
4848 };
4849
4850 /* A callback for add_matching_symbols that adds SYM, found in BLOCK,
4851 to a list of symbols. DATA0 is a pointer to a struct match_data *
4852 containing the obstack that collects the symbol list, the file that SYM
4853 must come from, a flag indicating whether a non-argument symbol has
4854 been found in the current block, and the last argument symbol
4855 passed in SYM within the current block (if any). When SYM is null,
4856 marking the end of a block, the argument symbol is added if no
4857 other has been found. */
4858
4859 static int
4860 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
4861 {
4862 struct match_data *data = (struct match_data *) data0;
4863
4864 if (sym == NULL)
4865 {
4866 if (!data->found_sym && data->arg_sym != NULL)
4867 add_defn_to_vec (data->obstackp,
4868 fixup_symbol_section (data->arg_sym, data->objfile),
4869 block);
4870 data->found_sym = 0;
4871 data->arg_sym = NULL;
4872 }
4873 else
4874 {
4875 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4876 return 0;
4877 else if (SYMBOL_IS_ARGUMENT (sym))
4878 data->arg_sym = sym;
4879 else
4880 {
4881 data->found_sym = 1;
4882 add_defn_to_vec (data->obstackp,
4883 fixup_symbol_section (sym, data->objfile),
4884 block);
4885 }
4886 }
4887 return 0;
4888 }
4889
4890 /* Compare STRING1 to STRING2, with results as for strcmp.
4891 Compatible with strcmp_iw in that strcmp_iw (STRING1, STRING2) <= 0
4892 implies compare_names (STRING1, STRING2) (they may differ as to
4893 what symbols compare equal). */
4894
4895 static int
4896 compare_names (const char *string1, const char *string2)
4897 {
4898 while (*string1 != '\0' && *string2 != '\0')
4899 {
4900 if (isspace (*string1) || isspace (*string2))
4901 return strcmp_iw_ordered (string1, string2);
4902 if (*string1 != *string2)
4903 break;
4904 string1 += 1;
4905 string2 += 1;
4906 }
4907 switch (*string1)
4908 {
4909 case '(':
4910 return strcmp_iw_ordered (string1, string2);
4911 case '_':
4912 if (*string2 == '\0')
4913 {
4914 if (is_name_suffix (string1))
4915 return 0;
4916 else
4917 return 1;
4918 }
4919 /* FALLTHROUGH */
4920 default:
4921 if (*string2 == '(')
4922 return strcmp_iw_ordered (string1, string2);
4923 else
4924 return *string1 - *string2;
4925 }
4926 }
4927
4928 /* Add to OBSTACKP all non-local symbols whose name and domain match
4929 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
4930 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
4931
4932 static void
4933 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
4934 domain_enum domain, int global,
4935 int is_wild_match)
4936 {
4937 struct objfile *objfile;
4938 struct match_data data;
4939
4940 memset (&data, 0, sizeof data);
4941 data.obstackp = obstackp;
4942
4943 ALL_OBJFILES (objfile)
4944 {
4945 data.objfile = objfile;
4946
4947 if (is_wild_match)
4948 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
4949 aux_add_nonlocal_symbols, &data,
4950 wild_match, NULL);
4951 else
4952 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
4953 aux_add_nonlocal_symbols, &data,
4954 full_match, compare_names);
4955 }
4956
4957 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
4958 {
4959 ALL_OBJFILES (objfile)
4960 {
4961 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
4962 strcpy (name1, "_ada_");
4963 strcpy (name1 + sizeof ("_ada_") - 1, name);
4964 data.objfile = objfile;
4965 objfile->sf->qf->map_matching_symbols (name1, domain,
4966 objfile, global,
4967 aux_add_nonlocal_symbols,
4968 &data,
4969 full_match, compare_names);
4970 }
4971 }
4972 }
4973
4974 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4975 scope and in global scopes, returning the number of matches. Sets
4976 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4977 indicating the symbols found and the blocks and symbol tables (if
4978 any) in which they were found. This vector are transient---good only to
4979 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4980 symbol match within the nest of blocks whose innermost member is BLOCK0,
4981 is the one match returned (no other matches in that or
4982 enclosing blocks is returned). If there are any matches in or
4983 surrounding BLOCK0, then these alone are returned. Otherwise, the
4984 search extends to global and file-scope (static) symbol tables.
4985 Names prefixed with "standard__" are handled specially: "standard__"
4986 is first stripped off, and only static and global symbols are searched. */
4987
4988 int
4989 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4990 domain_enum namespace,
4991 struct ada_symbol_info **results)
4992 {
4993 struct symbol *sym;
4994 struct block *block;
4995 const char *name;
4996 const int wild_match = should_use_wild_match (name0);
4997 int cacheIfUnique;
4998 int ndefns;
4999
5000 obstack_free (&symbol_list_obstack, NULL);
5001 obstack_init (&symbol_list_obstack);
5002
5003 cacheIfUnique = 0;
5004
5005 /* Search specified block and its superiors. */
5006
5007 name = name0;
5008 block = (struct block *) block0; /* FIXME: No cast ought to be
5009 needed, but adding const will
5010 have a cascade effect. */
5011
5012 /* Special case: If the user specifies a symbol name inside package
5013 Standard, do a non-wild matching of the symbol name without
5014 the "standard__" prefix. This was primarily introduced in order
5015 to allow the user to specifically access the standard exceptions
5016 using, for instance, Standard.Constraint_Error when Constraint_Error
5017 is ambiguous (due to the user defining its own Constraint_Error
5018 entity inside its program). */
5019 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
5020 {
5021 block = NULL;
5022 name = name0 + sizeof ("standard__") - 1;
5023 }
5024
5025 /* Check the non-global symbols. If we have ANY match, then we're done. */
5026
5027 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
5028 wild_match);
5029 if (num_defns_collected (&symbol_list_obstack) > 0)
5030 goto done;
5031
5032 /* No non-global symbols found. Check our cache to see if we have
5033 already performed this search before. If we have, then return
5034 the same result. */
5035
5036 cacheIfUnique = 1;
5037 if (lookup_cached_symbol (name0, namespace, &sym, &block))
5038 {
5039 if (sym != NULL)
5040 add_defn_to_vec (&symbol_list_obstack, sym, block);
5041 goto done;
5042 }
5043
5044 /* Search symbols from all global blocks. */
5045
5046 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
5047 wild_match);
5048
5049 /* Now add symbols from all per-file blocks if we've gotten no hits
5050 (not strictly correct, but perhaps better than an error). */
5051
5052 if (num_defns_collected (&symbol_list_obstack) == 0)
5053 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
5054 wild_match);
5055
5056 done:
5057 ndefns = num_defns_collected (&symbol_list_obstack);
5058 *results = defns_collected (&symbol_list_obstack, 1);
5059
5060 ndefns = remove_extra_symbols (*results, ndefns);
5061
5062 if (ndefns == 0)
5063 cache_symbol (name0, namespace, NULL, NULL);
5064
5065 if (ndefns == 1 && cacheIfUnique)
5066 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
5067
5068 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
5069
5070 return ndefns;
5071 }
5072
5073 /* If NAME is the name of an entity, return a string that should
5074 be used to look that entity up in Ada units. This string should
5075 be deallocated after use using xfree.
5076
5077 NAME can have any form that the "break" or "print" commands might
5078 recognize. In other words, it does not have to be the "natural"
5079 name, or the "encoded" name. */
5080
5081 char *
5082 ada_name_for_lookup (const char *name)
5083 {
5084 char *canon;
5085 int nlen = strlen (name);
5086
5087 if (name[0] == '<' && name[nlen - 1] == '>')
5088 {
5089 canon = xmalloc (nlen - 1);
5090 memcpy (canon, name + 1, nlen - 2);
5091 canon[nlen - 2] = '\0';
5092 }
5093 else
5094 canon = xstrdup (ada_encode (ada_fold_name (name)));
5095 return canon;
5096 }
5097
5098 /* Implementation of the la_iterate_over_symbols method. */
5099
5100 static void
5101 ada_iterate_over_symbols (const struct block *block,
5102 const char *name, domain_enum domain,
5103 int (*callback) (struct symbol *, void *),
5104 void *data)
5105 {
5106 int ndefs, i;
5107 struct ada_symbol_info *results;
5108
5109 ndefs = ada_lookup_symbol_list (name, block, domain, &results);
5110 for (i = 0; i < ndefs; ++i)
5111 {
5112 if (! (*callback) (results[i].sym, data))
5113 break;
5114 }
5115 }
5116
5117 struct symbol *
5118 ada_lookup_encoded_symbol (const char *name, const struct block *block0,
5119 domain_enum namespace, struct block **block_found)
5120 {
5121 struct ada_symbol_info *candidates;
5122 int n_candidates;
5123
5124 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
5125
5126 if (n_candidates == 0)
5127 return NULL;
5128
5129 if (block_found != NULL)
5130 *block_found = candidates[0].block;
5131
5132 return fixup_symbol_section (candidates[0].sym, NULL);
5133 }
5134
5135 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5136 scope and in global scopes, or NULL if none. NAME is folded and
5137 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5138 choosing the first symbol if there are multiple choices.
5139 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
5140 table in which the symbol was found (in both cases, these
5141 assignments occur only if the pointers are non-null). */
5142 struct symbol *
5143 ada_lookup_symbol (const char *name, const struct block *block0,
5144 domain_enum namespace, int *is_a_field_of_this)
5145 {
5146 if (is_a_field_of_this != NULL)
5147 *is_a_field_of_this = 0;
5148
5149 return
5150 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5151 block0, namespace, NULL);
5152 }
5153
5154 static struct symbol *
5155 ada_lookup_symbol_nonlocal (const char *name,
5156 const struct block *block,
5157 const domain_enum domain)
5158 {
5159 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5160 }
5161
5162
5163 /* True iff STR is a possible encoded suffix of a normal Ada name
5164 that is to be ignored for matching purposes. Suffixes of parallel
5165 names (e.g., XVE) are not included here. Currently, the possible suffixes
5166 are given by any of the regular expressions:
5167
5168 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5169 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5170 TKB [subprogram suffix for task bodies]
5171 _E[0-9]+[bs]$ [protected object entry suffixes]
5172 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5173
5174 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5175 match is performed. This sequence is used to differentiate homonyms,
5176 is an optional part of a valid name suffix. */
5177
5178 static int
5179 is_name_suffix (const char *str)
5180 {
5181 int k;
5182 const char *matching;
5183 const int len = strlen (str);
5184
5185 /* Skip optional leading __[0-9]+. */
5186
5187 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5188 {
5189 str += 3;
5190 while (isdigit (str[0]))
5191 str += 1;
5192 }
5193
5194 /* [.$][0-9]+ */
5195
5196 if (str[0] == '.' || str[0] == '$')
5197 {
5198 matching = str + 1;
5199 while (isdigit (matching[0]))
5200 matching += 1;
5201 if (matching[0] == '\0')
5202 return 1;
5203 }
5204
5205 /* ___[0-9]+ */
5206
5207 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5208 {
5209 matching = str + 3;
5210 while (isdigit (matching[0]))
5211 matching += 1;
5212 if (matching[0] == '\0')
5213 return 1;
5214 }
5215
5216 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5217
5218 if (strcmp (str, "TKB") == 0)
5219 return 1;
5220
5221 #if 0
5222 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5223 with a N at the end. Unfortunately, the compiler uses the same
5224 convention for other internal types it creates. So treating
5225 all entity names that end with an "N" as a name suffix causes
5226 some regressions. For instance, consider the case of an enumerated
5227 type. To support the 'Image attribute, it creates an array whose
5228 name ends with N.
5229 Having a single character like this as a suffix carrying some
5230 information is a bit risky. Perhaps we should change the encoding
5231 to be something like "_N" instead. In the meantime, do not do
5232 the following check. */
5233 /* Protected Object Subprograms */
5234 if (len == 1 && str [0] == 'N')
5235 return 1;
5236 #endif
5237
5238 /* _E[0-9]+[bs]$ */
5239 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5240 {
5241 matching = str + 3;
5242 while (isdigit (matching[0]))
5243 matching += 1;
5244 if ((matching[0] == 'b' || matching[0] == 's')
5245 && matching [1] == '\0')
5246 return 1;
5247 }
5248
5249 /* ??? We should not modify STR directly, as we are doing below. This
5250 is fine in this case, but may become problematic later if we find
5251 that this alternative did not work, and want to try matching
5252 another one from the begining of STR. Since we modified it, we
5253 won't be able to find the begining of the string anymore! */
5254 if (str[0] == 'X')
5255 {
5256 str += 1;
5257 while (str[0] != '_' && str[0] != '\0')
5258 {
5259 if (str[0] != 'n' && str[0] != 'b')
5260 return 0;
5261 str += 1;
5262 }
5263 }
5264
5265 if (str[0] == '\000')
5266 return 1;
5267
5268 if (str[0] == '_')
5269 {
5270 if (str[1] != '_' || str[2] == '\000')
5271 return 0;
5272 if (str[2] == '_')
5273 {
5274 if (strcmp (str + 3, "JM") == 0)
5275 return 1;
5276 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5277 the LJM suffix in favor of the JM one. But we will
5278 still accept LJM as a valid suffix for a reasonable
5279 amount of time, just to allow ourselves to debug programs
5280 compiled using an older version of GNAT. */
5281 if (strcmp (str + 3, "LJM") == 0)
5282 return 1;
5283 if (str[3] != 'X')
5284 return 0;
5285 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5286 || str[4] == 'U' || str[4] == 'P')
5287 return 1;
5288 if (str[4] == 'R' && str[5] != 'T')
5289 return 1;
5290 return 0;
5291 }
5292 if (!isdigit (str[2]))
5293 return 0;
5294 for (k = 3; str[k] != '\0'; k += 1)
5295 if (!isdigit (str[k]) && str[k] != '_')
5296 return 0;
5297 return 1;
5298 }
5299 if (str[0] == '$' && isdigit (str[1]))
5300 {
5301 for (k = 2; str[k] != '\0'; k += 1)
5302 if (!isdigit (str[k]) && str[k] != '_')
5303 return 0;
5304 return 1;
5305 }
5306 return 0;
5307 }
5308
5309 /* Return non-zero if the string starting at NAME and ending before
5310 NAME_END contains no capital letters. */
5311
5312 static int
5313 is_valid_name_for_wild_match (const char *name0)
5314 {
5315 const char *decoded_name = ada_decode (name0);
5316 int i;
5317
5318 /* If the decoded name starts with an angle bracket, it means that
5319 NAME0 does not follow the GNAT encoding format. It should then
5320 not be allowed as a possible wild match. */
5321 if (decoded_name[0] == '<')
5322 return 0;
5323
5324 for (i=0; decoded_name[i] != '\0'; i++)
5325 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5326 return 0;
5327
5328 return 1;
5329 }
5330
5331 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5332 that could start a simple name. Assumes that *NAMEP points into
5333 the string beginning at NAME0. */
5334
5335 static int
5336 advance_wild_match (const char **namep, const char *name0, int target0)
5337 {
5338 const char *name = *namep;
5339
5340 while (1)
5341 {
5342 int t0, t1;
5343
5344 t0 = *name;
5345 if (t0 == '_')
5346 {
5347 t1 = name[1];
5348 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5349 {
5350 name += 1;
5351 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5352 break;
5353 else
5354 name += 1;
5355 }
5356 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5357 || name[2] == target0))
5358 {
5359 name += 2;
5360 break;
5361 }
5362 else
5363 return 0;
5364 }
5365 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5366 name += 1;
5367 else
5368 return 0;
5369 }
5370
5371 *namep = name;
5372 return 1;
5373 }
5374
5375 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5376 informational suffixes of NAME (i.e., for which is_name_suffix is
5377 true). Assumes that PATN is a lower-cased Ada simple name. */
5378
5379 static int
5380 wild_match (const char *name, const char *patn)
5381 {
5382 const char *p, *n;
5383 const char *name0 = name;
5384
5385 while (1)
5386 {
5387 const char *match = name;
5388
5389 if (*name == *patn)
5390 {
5391 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5392 if (*p != *name)
5393 break;
5394 if (*p == '\0' && is_name_suffix (name))
5395 return match != name0 && !is_valid_name_for_wild_match (name0);
5396
5397 if (name[-1] == '_')
5398 name -= 1;
5399 }
5400 if (!advance_wild_match (&name, name0, *patn))
5401 return 1;
5402 }
5403 }
5404
5405 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5406 informational suffix. */
5407
5408 static int
5409 full_match (const char *sym_name, const char *search_name)
5410 {
5411 return !match_name (sym_name, search_name, 0);
5412 }
5413
5414
5415 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5416 vector *defn_symbols, updating the list of symbols in OBSTACKP
5417 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5418 OBJFILE is the section containing BLOCK.
5419 SYMTAB is recorded with each symbol added. */
5420
5421 static void
5422 ada_add_block_symbols (struct obstack *obstackp,
5423 struct block *block, const char *name,
5424 domain_enum domain, struct objfile *objfile,
5425 int wild)
5426 {
5427 struct dict_iterator iter;
5428 int name_len = strlen (name);
5429 /* A matching argument symbol, if any. */
5430 struct symbol *arg_sym;
5431 /* Set true when we find a matching non-argument symbol. */
5432 int found_sym;
5433 struct symbol *sym;
5434
5435 arg_sym = NULL;
5436 found_sym = 0;
5437 if (wild)
5438 {
5439 for (sym = dict_iter_match_first (BLOCK_DICT (block), name,
5440 wild_match, &iter);
5441 sym != NULL; sym = dict_iter_match_next (name, wild_match, &iter))
5442 {
5443 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5444 SYMBOL_DOMAIN (sym), domain)
5445 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
5446 {
5447 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5448 continue;
5449 else if (SYMBOL_IS_ARGUMENT (sym))
5450 arg_sym = sym;
5451 else
5452 {
5453 found_sym = 1;
5454 add_defn_to_vec (obstackp,
5455 fixup_symbol_section (sym, objfile),
5456 block);
5457 }
5458 }
5459 }
5460 }
5461 else
5462 {
5463 for (sym = dict_iter_match_first (BLOCK_DICT (block), name,
5464 full_match, &iter);
5465 sym != NULL; sym = dict_iter_match_next (name, full_match, &iter))
5466 {
5467 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5468 SYMBOL_DOMAIN (sym), domain))
5469 {
5470 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5471 {
5472 if (SYMBOL_IS_ARGUMENT (sym))
5473 arg_sym = sym;
5474 else
5475 {
5476 found_sym = 1;
5477 add_defn_to_vec (obstackp,
5478 fixup_symbol_section (sym, objfile),
5479 block);
5480 }
5481 }
5482 }
5483 }
5484 }
5485
5486 if (!found_sym && arg_sym != NULL)
5487 {
5488 add_defn_to_vec (obstackp,
5489 fixup_symbol_section (arg_sym, objfile),
5490 block);
5491 }
5492
5493 if (!wild)
5494 {
5495 arg_sym = NULL;
5496 found_sym = 0;
5497
5498 ALL_BLOCK_SYMBOLS (block, iter, sym)
5499 {
5500 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5501 SYMBOL_DOMAIN (sym), domain))
5502 {
5503 int cmp;
5504
5505 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5506 if (cmp == 0)
5507 {
5508 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5509 if (cmp == 0)
5510 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5511 name_len);
5512 }
5513
5514 if (cmp == 0
5515 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5516 {
5517 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5518 {
5519 if (SYMBOL_IS_ARGUMENT (sym))
5520 arg_sym = sym;
5521 else
5522 {
5523 found_sym = 1;
5524 add_defn_to_vec (obstackp,
5525 fixup_symbol_section (sym, objfile),
5526 block);
5527 }
5528 }
5529 }
5530 }
5531 }
5532
5533 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5534 They aren't parameters, right? */
5535 if (!found_sym && arg_sym != NULL)
5536 {
5537 add_defn_to_vec (obstackp,
5538 fixup_symbol_section (arg_sym, objfile),
5539 block);
5540 }
5541 }
5542 }
5543 \f
5544
5545 /* Symbol Completion */
5546
5547 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5548 name in a form that's appropriate for the completion. The result
5549 does not need to be deallocated, but is only good until the next call.
5550
5551 TEXT_LEN is equal to the length of TEXT.
5552 Perform a wild match if WILD_MATCH is set.
5553 ENCODED should be set if TEXT represents the start of a symbol name
5554 in its encoded form. */
5555
5556 static const char *
5557 symbol_completion_match (const char *sym_name,
5558 const char *text, int text_len,
5559 int wild_match, int encoded)
5560 {
5561 const int verbatim_match = (text[0] == '<');
5562 int match = 0;
5563
5564 if (verbatim_match)
5565 {
5566 /* Strip the leading angle bracket. */
5567 text = text + 1;
5568 text_len--;
5569 }
5570
5571 /* First, test against the fully qualified name of the symbol. */
5572
5573 if (strncmp (sym_name, text, text_len) == 0)
5574 match = 1;
5575
5576 if (match && !encoded)
5577 {
5578 /* One needed check before declaring a positive match is to verify
5579 that iff we are doing a verbatim match, the decoded version
5580 of the symbol name starts with '<'. Otherwise, this symbol name
5581 is not a suitable completion. */
5582 const char *sym_name_copy = sym_name;
5583 int has_angle_bracket;
5584
5585 sym_name = ada_decode (sym_name);
5586 has_angle_bracket = (sym_name[0] == '<');
5587 match = (has_angle_bracket == verbatim_match);
5588 sym_name = sym_name_copy;
5589 }
5590
5591 if (match && !verbatim_match)
5592 {
5593 /* When doing non-verbatim match, another check that needs to
5594 be done is to verify that the potentially matching symbol name
5595 does not include capital letters, because the ada-mode would
5596 not be able to understand these symbol names without the
5597 angle bracket notation. */
5598 const char *tmp;
5599
5600 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5601 if (*tmp != '\0')
5602 match = 0;
5603 }
5604
5605 /* Second: Try wild matching... */
5606
5607 if (!match && wild_match)
5608 {
5609 /* Since we are doing wild matching, this means that TEXT
5610 may represent an unqualified symbol name. We therefore must
5611 also compare TEXT against the unqualified name of the symbol. */
5612 sym_name = ada_unqualified_name (ada_decode (sym_name));
5613
5614 if (strncmp (sym_name, text, text_len) == 0)
5615 match = 1;
5616 }
5617
5618 /* Finally: If we found a mach, prepare the result to return. */
5619
5620 if (!match)
5621 return NULL;
5622
5623 if (verbatim_match)
5624 sym_name = add_angle_brackets (sym_name);
5625
5626 if (!encoded)
5627 sym_name = ada_decode (sym_name);
5628
5629 return sym_name;
5630 }
5631
5632 /* A companion function to ada_make_symbol_completion_list().
5633 Check if SYM_NAME represents a symbol which name would be suitable
5634 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5635 it is appended at the end of the given string vector SV.
5636
5637 ORIG_TEXT is the string original string from the user command
5638 that needs to be completed. WORD is the entire command on which
5639 completion should be performed. These two parameters are used to
5640 determine which part of the symbol name should be added to the
5641 completion vector.
5642 if WILD_MATCH is set, then wild matching is performed.
5643 ENCODED should be set if TEXT represents a symbol name in its
5644 encoded formed (in which case the completion should also be
5645 encoded). */
5646
5647 static void
5648 symbol_completion_add (VEC(char_ptr) **sv,
5649 const char *sym_name,
5650 const char *text, int text_len,
5651 const char *orig_text, const char *word,
5652 int wild_match, int encoded)
5653 {
5654 const char *match = symbol_completion_match (sym_name, text, text_len,
5655 wild_match, encoded);
5656 char *completion;
5657
5658 if (match == NULL)
5659 return;
5660
5661 /* We found a match, so add the appropriate completion to the given
5662 string vector. */
5663
5664 if (word == orig_text)
5665 {
5666 completion = xmalloc (strlen (match) + 5);
5667 strcpy (completion, match);
5668 }
5669 else if (word > orig_text)
5670 {
5671 /* Return some portion of sym_name. */
5672 completion = xmalloc (strlen (match) + 5);
5673 strcpy (completion, match + (word - orig_text));
5674 }
5675 else
5676 {
5677 /* Return some of ORIG_TEXT plus sym_name. */
5678 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5679 strncpy (completion, word, orig_text - word);
5680 completion[orig_text - word] = '\0';
5681 strcat (completion, match);
5682 }
5683
5684 VEC_safe_push (char_ptr, *sv, completion);
5685 }
5686
5687 /* An object of this type is passed as the user_data argument to the
5688 expand_partial_symbol_names method. */
5689 struct add_partial_datum
5690 {
5691 VEC(char_ptr) **completions;
5692 char *text;
5693 int text_len;
5694 char *text0;
5695 char *word;
5696 int wild_match;
5697 int encoded;
5698 };
5699
5700 /* A callback for expand_partial_symbol_names. */
5701 static int
5702 ada_expand_partial_symbol_name (const struct language_defn *language,
5703 const char *name, void *user_data)
5704 {
5705 struct add_partial_datum *data = user_data;
5706
5707 return symbol_completion_match (name, data->text, data->text_len,
5708 data->wild_match, data->encoded) != NULL;
5709 }
5710
5711 /* Return a list of possible symbol names completing TEXT0. The list
5712 is NULL terminated. WORD is the entire command on which completion
5713 is made. */
5714
5715 static char **
5716 ada_make_symbol_completion_list (char *text0, char *word)
5717 {
5718 char *text;
5719 int text_len;
5720 int wild_match;
5721 int encoded;
5722 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5723 struct symbol *sym;
5724 struct symtab *s;
5725 struct minimal_symbol *msymbol;
5726 struct objfile *objfile;
5727 struct block *b, *surrounding_static_block = 0;
5728 int i;
5729 struct dict_iterator iter;
5730
5731 if (text0[0] == '<')
5732 {
5733 text = xstrdup (text0);
5734 make_cleanup (xfree, text);
5735 text_len = strlen (text);
5736 wild_match = 0;
5737 encoded = 1;
5738 }
5739 else
5740 {
5741 text = xstrdup (ada_encode (text0));
5742 make_cleanup (xfree, text);
5743 text_len = strlen (text);
5744 for (i = 0; i < text_len; i++)
5745 text[i] = tolower (text[i]);
5746
5747 encoded = (strstr (text0, "__") != NULL);
5748 /* If the name contains a ".", then the user is entering a fully
5749 qualified entity name, and the match must not be done in wild
5750 mode. Similarly, if the user wants to complete what looks like
5751 an encoded name, the match must not be done in wild mode. */
5752 wild_match = (strchr (text0, '.') == NULL && !encoded);
5753 }
5754
5755 /* First, look at the partial symtab symbols. */
5756 {
5757 struct add_partial_datum data;
5758
5759 data.completions = &completions;
5760 data.text = text;
5761 data.text_len = text_len;
5762 data.text0 = text0;
5763 data.word = word;
5764 data.wild_match = wild_match;
5765 data.encoded = encoded;
5766 expand_partial_symbol_names (ada_expand_partial_symbol_name, &data);
5767 }
5768
5769 /* At this point scan through the misc symbol vectors and add each
5770 symbol you find to the list. Eventually we want to ignore
5771 anything that isn't a text symbol (everything else will be
5772 handled by the psymtab code above). */
5773
5774 ALL_MSYMBOLS (objfile, msymbol)
5775 {
5776 QUIT;
5777 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5778 text, text_len, text0, word, wild_match, encoded);
5779 }
5780
5781 /* Search upwards from currently selected frame (so that we can
5782 complete on local vars. */
5783
5784 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5785 {
5786 if (!BLOCK_SUPERBLOCK (b))
5787 surrounding_static_block = b; /* For elmin of dups */
5788
5789 ALL_BLOCK_SYMBOLS (b, iter, sym)
5790 {
5791 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5792 text, text_len, text0, word,
5793 wild_match, encoded);
5794 }
5795 }
5796
5797 /* Go through the symtabs and check the externs and statics for
5798 symbols which match. */
5799
5800 ALL_SYMTABS (objfile, s)
5801 {
5802 QUIT;
5803 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5804 ALL_BLOCK_SYMBOLS (b, iter, sym)
5805 {
5806 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5807 text, text_len, text0, word,
5808 wild_match, encoded);
5809 }
5810 }
5811
5812 ALL_SYMTABS (objfile, s)
5813 {
5814 QUIT;
5815 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5816 /* Don't do this block twice. */
5817 if (b == surrounding_static_block)
5818 continue;
5819 ALL_BLOCK_SYMBOLS (b, iter, sym)
5820 {
5821 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5822 text, text_len, text0, word,
5823 wild_match, encoded);
5824 }
5825 }
5826
5827 /* Append the closing NULL entry. */
5828 VEC_safe_push (char_ptr, completions, NULL);
5829
5830 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5831 return the copy. It's unfortunate that we have to make a copy
5832 of an array that we're about to destroy, but there is nothing much
5833 we can do about it. Fortunately, it's typically not a very large
5834 array. */
5835 {
5836 const size_t completions_size =
5837 VEC_length (char_ptr, completions) * sizeof (char *);
5838 char **result = xmalloc (completions_size);
5839
5840 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5841
5842 VEC_free (char_ptr, completions);
5843 return result;
5844 }
5845 }
5846
5847 /* Field Access */
5848
5849 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5850 for tagged types. */
5851
5852 static int
5853 ada_is_dispatch_table_ptr_type (struct type *type)
5854 {
5855 char *name;
5856
5857 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5858 return 0;
5859
5860 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5861 if (name == NULL)
5862 return 0;
5863
5864 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5865 }
5866
5867 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5868 to be invisible to users. */
5869
5870 int
5871 ada_is_ignored_field (struct type *type, int field_num)
5872 {
5873 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5874 return 1;
5875
5876 /* Check the name of that field. */
5877 {
5878 const char *name = TYPE_FIELD_NAME (type, field_num);
5879
5880 /* Anonymous field names should not be printed.
5881 brobecker/2007-02-20: I don't think this can actually happen
5882 but we don't want to print the value of annonymous fields anyway. */
5883 if (name == NULL)
5884 return 1;
5885
5886 /* A field named "_parent" is internally generated by GNAT for
5887 tagged types, and should not be printed either. */
5888 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5889 return 1;
5890 }
5891
5892 /* If this is the dispatch table of a tagged type, then ignore. */
5893 if (ada_is_tagged_type (type, 1)
5894 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5895 return 1;
5896
5897 /* Not a special field, so it should not be ignored. */
5898 return 0;
5899 }
5900
5901 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5902 pointer or reference type whose ultimate target has a tag field. */
5903
5904 int
5905 ada_is_tagged_type (struct type *type, int refok)
5906 {
5907 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5908 }
5909
5910 /* True iff TYPE represents the type of X'Tag */
5911
5912 int
5913 ada_is_tag_type (struct type *type)
5914 {
5915 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5916 return 0;
5917 else
5918 {
5919 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5920
5921 return (name != NULL
5922 && strcmp (name, "ada__tags__dispatch_table") == 0);
5923 }
5924 }
5925
5926 /* The type of the tag on VAL. */
5927
5928 struct type *
5929 ada_tag_type (struct value *val)
5930 {
5931 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5932 }
5933
5934 /* The value of the tag on VAL. */
5935
5936 struct value *
5937 ada_value_tag (struct value *val)
5938 {
5939 return ada_value_struct_elt (val, "_tag", 0);
5940 }
5941
5942 /* The value of the tag on the object of type TYPE whose contents are
5943 saved at VALADDR, if it is non-null, or is at memory address
5944 ADDRESS. */
5945
5946 static struct value *
5947 value_tag_from_contents_and_address (struct type *type,
5948 const gdb_byte *valaddr,
5949 CORE_ADDR address)
5950 {
5951 int tag_byte_offset;
5952 struct type *tag_type;
5953
5954 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5955 NULL, NULL, NULL))
5956 {
5957 const gdb_byte *valaddr1 = ((valaddr == NULL)
5958 ? NULL
5959 : valaddr + tag_byte_offset);
5960 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5961
5962 return value_from_contents_and_address (tag_type, valaddr1, address1);
5963 }
5964 return NULL;
5965 }
5966
5967 static struct type *
5968 type_from_tag (struct value *tag)
5969 {
5970 const char *type_name = ada_tag_name (tag);
5971
5972 if (type_name != NULL)
5973 return ada_find_any_type (ada_encode (type_name));
5974 return NULL;
5975 }
5976
5977 struct tag_args
5978 {
5979 struct value *tag;
5980 char *name;
5981 };
5982
5983
5984 static int ada_tag_name_1 (void *);
5985 static int ada_tag_name_2 (struct tag_args *);
5986
5987 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5988 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5989 The value stored in ARGS->name is valid until the next call to
5990 ada_tag_name_1. */
5991
5992 static int
5993 ada_tag_name_1 (void *args0)
5994 {
5995 struct tag_args *args = (struct tag_args *) args0;
5996 static char name[1024];
5997 char *p;
5998 struct value *val;
5999
6000 args->name = NULL;
6001 val = ada_value_struct_elt (args->tag, "tsd", 1);
6002 if (val == NULL)
6003 return ada_tag_name_2 (args);
6004 val = ada_value_struct_elt (val, "expanded_name", 1);
6005 if (val == NULL)
6006 return 0;
6007 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6008 for (p = name; *p != '\0'; p += 1)
6009 if (isalpha (*p))
6010 *p = tolower (*p);
6011 args->name = name;
6012 return 0;
6013 }
6014
6015 /* Return the "ada__tags__type_specific_data" type. */
6016
6017 static struct type *
6018 ada_get_tsd_type (struct inferior *inf)
6019 {
6020 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6021
6022 if (data->tsd_type == 0)
6023 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6024 return data->tsd_type;
6025 }
6026
6027 /* Utility function for ada_tag_name_1 that tries the second
6028 representation for the dispatch table (in which there is no
6029 explicit 'tsd' field in the referent of the tag pointer, and instead
6030 the tsd pointer is stored just before the dispatch table. */
6031
6032 static int
6033 ada_tag_name_2 (struct tag_args *args)
6034 {
6035 struct type *info_type;
6036 static char name[1024];
6037 char *p;
6038 struct value *val, *valp;
6039
6040 args->name = NULL;
6041 info_type = ada_get_tsd_type (current_inferior());
6042 if (info_type == NULL)
6043 return 0;
6044 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
6045 valp = value_cast (info_type, args->tag);
6046 if (valp == NULL)
6047 return 0;
6048 val = value_ind (value_ptradd (valp, -1));
6049 if (val == NULL)
6050 return 0;
6051 val = ada_value_struct_elt (val, "expanded_name", 1);
6052 if (val == NULL)
6053 return 0;
6054 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6055 for (p = name; *p != '\0'; p += 1)
6056 if (isalpha (*p))
6057 *p = tolower (*p);
6058 args->name = name;
6059 return 0;
6060 }
6061
6062 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6063 a C string. */
6064
6065 const char *
6066 ada_tag_name (struct value *tag)
6067 {
6068 struct tag_args args;
6069
6070 if (!ada_is_tag_type (value_type (tag)))
6071 return NULL;
6072 args.tag = tag;
6073 args.name = NULL;
6074 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
6075 return args.name;
6076 }
6077
6078 /* The parent type of TYPE, or NULL if none. */
6079
6080 struct type *
6081 ada_parent_type (struct type *type)
6082 {
6083 int i;
6084
6085 type = ada_check_typedef (type);
6086
6087 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6088 return NULL;
6089
6090 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6091 if (ada_is_parent_field (type, i))
6092 {
6093 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6094
6095 /* If the _parent field is a pointer, then dereference it. */
6096 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6097 parent_type = TYPE_TARGET_TYPE (parent_type);
6098 /* If there is a parallel XVS type, get the actual base type. */
6099 parent_type = ada_get_base_type (parent_type);
6100
6101 return ada_check_typedef (parent_type);
6102 }
6103
6104 return NULL;
6105 }
6106
6107 /* True iff field number FIELD_NUM of structure type TYPE contains the
6108 parent-type (inherited) fields of a derived type. Assumes TYPE is
6109 a structure type with at least FIELD_NUM+1 fields. */
6110
6111 int
6112 ada_is_parent_field (struct type *type, int field_num)
6113 {
6114 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6115
6116 return (name != NULL
6117 && (strncmp (name, "PARENT", 6) == 0
6118 || strncmp (name, "_parent", 7) == 0));
6119 }
6120
6121 /* True iff field number FIELD_NUM of structure type TYPE is a
6122 transparent wrapper field (which should be silently traversed when doing
6123 field selection and flattened when printing). Assumes TYPE is a
6124 structure type with at least FIELD_NUM+1 fields. Such fields are always
6125 structures. */
6126
6127 int
6128 ada_is_wrapper_field (struct type *type, int field_num)
6129 {
6130 const char *name = TYPE_FIELD_NAME (type, field_num);
6131
6132 return (name != NULL
6133 && (strncmp (name, "PARENT", 6) == 0
6134 || strcmp (name, "REP") == 0
6135 || strncmp (name, "_parent", 7) == 0
6136 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6137 }
6138
6139 /* True iff field number FIELD_NUM of structure or union type TYPE
6140 is a variant wrapper. Assumes TYPE is a structure type with at least
6141 FIELD_NUM+1 fields. */
6142
6143 int
6144 ada_is_variant_part (struct type *type, int field_num)
6145 {
6146 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6147
6148 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6149 || (is_dynamic_field (type, field_num)
6150 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6151 == TYPE_CODE_UNION)));
6152 }
6153
6154 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6155 whose discriminants are contained in the record type OUTER_TYPE,
6156 returns the type of the controlling discriminant for the variant.
6157 May return NULL if the type could not be found. */
6158
6159 struct type *
6160 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6161 {
6162 char *name = ada_variant_discrim_name (var_type);
6163
6164 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
6165 }
6166
6167 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6168 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6169 represents a 'when others' clause; otherwise 0. */
6170
6171 int
6172 ada_is_others_clause (struct type *type, int field_num)
6173 {
6174 const char *name = TYPE_FIELD_NAME (type, field_num);
6175
6176 return (name != NULL && name[0] == 'O');
6177 }
6178
6179 /* Assuming that TYPE0 is the type of the variant part of a record,
6180 returns the name of the discriminant controlling the variant.
6181 The value is valid until the next call to ada_variant_discrim_name. */
6182
6183 char *
6184 ada_variant_discrim_name (struct type *type0)
6185 {
6186 static char *result = NULL;
6187 static size_t result_len = 0;
6188 struct type *type;
6189 const char *name;
6190 const char *discrim_end;
6191 const char *discrim_start;
6192
6193 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6194 type = TYPE_TARGET_TYPE (type0);
6195 else
6196 type = type0;
6197
6198 name = ada_type_name (type);
6199
6200 if (name == NULL || name[0] == '\000')
6201 return "";
6202
6203 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6204 discrim_end -= 1)
6205 {
6206 if (strncmp (discrim_end, "___XVN", 6) == 0)
6207 break;
6208 }
6209 if (discrim_end == name)
6210 return "";
6211
6212 for (discrim_start = discrim_end; discrim_start != name + 3;
6213 discrim_start -= 1)
6214 {
6215 if (discrim_start == name + 1)
6216 return "";
6217 if ((discrim_start > name + 3
6218 && strncmp (discrim_start - 3, "___", 3) == 0)
6219 || discrim_start[-1] == '.')
6220 break;
6221 }
6222
6223 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6224 strncpy (result, discrim_start, discrim_end - discrim_start);
6225 result[discrim_end - discrim_start] = '\0';
6226 return result;
6227 }
6228
6229 /* Scan STR for a subtype-encoded number, beginning at position K.
6230 Put the position of the character just past the number scanned in
6231 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6232 Return 1 if there was a valid number at the given position, and 0
6233 otherwise. A "subtype-encoded" number consists of the absolute value
6234 in decimal, followed by the letter 'm' to indicate a negative number.
6235 Assumes 0m does not occur. */
6236
6237 int
6238 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6239 {
6240 ULONGEST RU;
6241
6242 if (!isdigit (str[k]))
6243 return 0;
6244
6245 /* Do it the hard way so as not to make any assumption about
6246 the relationship of unsigned long (%lu scan format code) and
6247 LONGEST. */
6248 RU = 0;
6249 while (isdigit (str[k]))
6250 {
6251 RU = RU * 10 + (str[k] - '0');
6252 k += 1;
6253 }
6254
6255 if (str[k] == 'm')
6256 {
6257 if (R != NULL)
6258 *R = (-(LONGEST) (RU - 1)) - 1;
6259 k += 1;
6260 }
6261 else if (R != NULL)
6262 *R = (LONGEST) RU;
6263
6264 /* NOTE on the above: Technically, C does not say what the results of
6265 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6266 number representable as a LONGEST (although either would probably work
6267 in most implementations). When RU>0, the locution in the then branch
6268 above is always equivalent to the negative of RU. */
6269
6270 if (new_k != NULL)
6271 *new_k = k;
6272 return 1;
6273 }
6274
6275 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6276 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6277 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6278
6279 int
6280 ada_in_variant (LONGEST val, struct type *type, int field_num)
6281 {
6282 const char *name = TYPE_FIELD_NAME (type, field_num);
6283 int p;
6284
6285 p = 0;
6286 while (1)
6287 {
6288 switch (name[p])
6289 {
6290 case '\0':
6291 return 0;
6292 case 'S':
6293 {
6294 LONGEST W;
6295
6296 if (!ada_scan_number (name, p + 1, &W, &p))
6297 return 0;
6298 if (val == W)
6299 return 1;
6300 break;
6301 }
6302 case 'R':
6303 {
6304 LONGEST L, U;
6305
6306 if (!ada_scan_number (name, p + 1, &L, &p)
6307 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6308 return 0;
6309 if (val >= L && val <= U)
6310 return 1;
6311 break;
6312 }
6313 case 'O':
6314 return 1;
6315 default:
6316 return 0;
6317 }
6318 }
6319 }
6320
6321 /* FIXME: Lots of redundancy below. Try to consolidate. */
6322
6323 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6324 ARG_TYPE, extract and return the value of one of its (non-static)
6325 fields. FIELDNO says which field. Differs from value_primitive_field
6326 only in that it can handle packed values of arbitrary type. */
6327
6328 static struct value *
6329 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6330 struct type *arg_type)
6331 {
6332 struct type *type;
6333
6334 arg_type = ada_check_typedef (arg_type);
6335 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6336
6337 /* Handle packed fields. */
6338
6339 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6340 {
6341 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6342 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6343
6344 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6345 offset + bit_pos / 8,
6346 bit_pos % 8, bit_size, type);
6347 }
6348 else
6349 return value_primitive_field (arg1, offset, fieldno, arg_type);
6350 }
6351
6352 /* Find field with name NAME in object of type TYPE. If found,
6353 set the following for each argument that is non-null:
6354 - *FIELD_TYPE_P to the field's type;
6355 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6356 an object of that type;
6357 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6358 - *BIT_SIZE_P to its size in bits if the field is packed, and
6359 0 otherwise;
6360 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6361 fields up to but not including the desired field, or by the total
6362 number of fields if not found. A NULL value of NAME never
6363 matches; the function just counts visible fields in this case.
6364
6365 Returns 1 if found, 0 otherwise. */
6366
6367 static int
6368 find_struct_field (char *name, struct type *type, int offset,
6369 struct type **field_type_p,
6370 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6371 int *index_p)
6372 {
6373 int i;
6374
6375 type = ada_check_typedef (type);
6376
6377 if (field_type_p != NULL)
6378 *field_type_p = NULL;
6379 if (byte_offset_p != NULL)
6380 *byte_offset_p = 0;
6381 if (bit_offset_p != NULL)
6382 *bit_offset_p = 0;
6383 if (bit_size_p != NULL)
6384 *bit_size_p = 0;
6385
6386 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6387 {
6388 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6389 int fld_offset = offset + bit_pos / 8;
6390 char *t_field_name = TYPE_FIELD_NAME (type, i);
6391
6392 if (t_field_name == NULL)
6393 continue;
6394
6395 else if (name != NULL && field_name_match (t_field_name, name))
6396 {
6397 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6398
6399 if (field_type_p != NULL)
6400 *field_type_p = TYPE_FIELD_TYPE (type, i);
6401 if (byte_offset_p != NULL)
6402 *byte_offset_p = fld_offset;
6403 if (bit_offset_p != NULL)
6404 *bit_offset_p = bit_pos % 8;
6405 if (bit_size_p != NULL)
6406 *bit_size_p = bit_size;
6407 return 1;
6408 }
6409 else if (ada_is_wrapper_field (type, i))
6410 {
6411 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6412 field_type_p, byte_offset_p, bit_offset_p,
6413 bit_size_p, index_p))
6414 return 1;
6415 }
6416 else if (ada_is_variant_part (type, i))
6417 {
6418 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6419 fixed type?? */
6420 int j;
6421 struct type *field_type
6422 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6423
6424 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6425 {
6426 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6427 fld_offset
6428 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6429 field_type_p, byte_offset_p,
6430 bit_offset_p, bit_size_p, index_p))
6431 return 1;
6432 }
6433 }
6434 else if (index_p != NULL)
6435 *index_p += 1;
6436 }
6437 return 0;
6438 }
6439
6440 /* Number of user-visible fields in record type TYPE. */
6441
6442 static int
6443 num_visible_fields (struct type *type)
6444 {
6445 int n;
6446
6447 n = 0;
6448 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6449 return n;
6450 }
6451
6452 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6453 and search in it assuming it has (class) type TYPE.
6454 If found, return value, else return NULL.
6455
6456 Searches recursively through wrapper fields (e.g., '_parent'). */
6457
6458 static struct value *
6459 ada_search_struct_field (char *name, struct value *arg, int offset,
6460 struct type *type)
6461 {
6462 int i;
6463
6464 type = ada_check_typedef (type);
6465 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6466 {
6467 char *t_field_name = TYPE_FIELD_NAME (type, i);
6468
6469 if (t_field_name == NULL)
6470 continue;
6471
6472 else if (field_name_match (t_field_name, name))
6473 return ada_value_primitive_field (arg, offset, i, type);
6474
6475 else if (ada_is_wrapper_field (type, i))
6476 {
6477 struct value *v = /* Do not let indent join lines here. */
6478 ada_search_struct_field (name, arg,
6479 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6480 TYPE_FIELD_TYPE (type, i));
6481
6482 if (v != NULL)
6483 return v;
6484 }
6485
6486 else if (ada_is_variant_part (type, i))
6487 {
6488 /* PNH: Do we ever get here? See find_struct_field. */
6489 int j;
6490 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6491 i));
6492 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6493
6494 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6495 {
6496 struct value *v = ada_search_struct_field /* Force line
6497 break. */
6498 (name, arg,
6499 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6500 TYPE_FIELD_TYPE (field_type, j));
6501
6502 if (v != NULL)
6503 return v;
6504 }
6505 }
6506 }
6507 return NULL;
6508 }
6509
6510 static struct value *ada_index_struct_field_1 (int *, struct value *,
6511 int, struct type *);
6512
6513
6514 /* Return field #INDEX in ARG, where the index is that returned by
6515 * find_struct_field through its INDEX_P argument. Adjust the address
6516 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6517 * If found, return value, else return NULL. */
6518
6519 static struct value *
6520 ada_index_struct_field (int index, struct value *arg, int offset,
6521 struct type *type)
6522 {
6523 return ada_index_struct_field_1 (&index, arg, offset, type);
6524 }
6525
6526
6527 /* Auxiliary function for ada_index_struct_field. Like
6528 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6529 * *INDEX_P. */
6530
6531 static struct value *
6532 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6533 struct type *type)
6534 {
6535 int i;
6536 type = ada_check_typedef (type);
6537
6538 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6539 {
6540 if (TYPE_FIELD_NAME (type, i) == NULL)
6541 continue;
6542 else if (ada_is_wrapper_field (type, i))
6543 {
6544 struct value *v = /* Do not let indent join lines here. */
6545 ada_index_struct_field_1 (index_p, arg,
6546 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6547 TYPE_FIELD_TYPE (type, i));
6548
6549 if (v != NULL)
6550 return v;
6551 }
6552
6553 else if (ada_is_variant_part (type, i))
6554 {
6555 /* PNH: Do we ever get here? See ada_search_struct_field,
6556 find_struct_field. */
6557 error (_("Cannot assign this kind of variant record"));
6558 }
6559 else if (*index_p == 0)
6560 return ada_value_primitive_field (arg, offset, i, type);
6561 else
6562 *index_p -= 1;
6563 }
6564 return NULL;
6565 }
6566
6567 /* Given ARG, a value of type (pointer or reference to a)*
6568 structure/union, extract the component named NAME from the ultimate
6569 target structure/union and return it as a value with its
6570 appropriate type.
6571
6572 The routine searches for NAME among all members of the structure itself
6573 and (recursively) among all members of any wrapper members
6574 (e.g., '_parent').
6575
6576 If NO_ERR, then simply return NULL in case of error, rather than
6577 calling error. */
6578
6579 struct value *
6580 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6581 {
6582 struct type *t, *t1;
6583 struct value *v;
6584
6585 v = NULL;
6586 t1 = t = ada_check_typedef (value_type (arg));
6587 if (TYPE_CODE (t) == TYPE_CODE_REF)
6588 {
6589 t1 = TYPE_TARGET_TYPE (t);
6590 if (t1 == NULL)
6591 goto BadValue;
6592 t1 = ada_check_typedef (t1);
6593 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6594 {
6595 arg = coerce_ref (arg);
6596 t = t1;
6597 }
6598 }
6599
6600 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6601 {
6602 t1 = TYPE_TARGET_TYPE (t);
6603 if (t1 == NULL)
6604 goto BadValue;
6605 t1 = ada_check_typedef (t1);
6606 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6607 {
6608 arg = value_ind (arg);
6609 t = t1;
6610 }
6611 else
6612 break;
6613 }
6614
6615 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6616 goto BadValue;
6617
6618 if (t1 == t)
6619 v = ada_search_struct_field (name, arg, 0, t);
6620 else
6621 {
6622 int bit_offset, bit_size, byte_offset;
6623 struct type *field_type;
6624 CORE_ADDR address;
6625
6626 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6627 address = value_as_address (arg);
6628 else
6629 address = unpack_pointer (t, value_contents (arg));
6630
6631 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6632 if (find_struct_field (name, t1, 0,
6633 &field_type, &byte_offset, &bit_offset,
6634 &bit_size, NULL))
6635 {
6636 if (bit_size != 0)
6637 {
6638 if (TYPE_CODE (t) == TYPE_CODE_REF)
6639 arg = ada_coerce_ref (arg);
6640 else
6641 arg = ada_value_ind (arg);
6642 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6643 bit_offset, bit_size,
6644 field_type);
6645 }
6646 else
6647 v = value_at_lazy (field_type, address + byte_offset);
6648 }
6649 }
6650
6651 if (v != NULL || no_err)
6652 return v;
6653 else
6654 error (_("There is no member named %s."), name);
6655
6656 BadValue:
6657 if (no_err)
6658 return NULL;
6659 else
6660 error (_("Attempt to extract a component of "
6661 "a value that is not a record."));
6662 }
6663
6664 /* Given a type TYPE, look up the type of the component of type named NAME.
6665 If DISPP is non-null, add its byte displacement from the beginning of a
6666 structure (pointed to by a value) of type TYPE to *DISPP (does not
6667 work for packed fields).
6668
6669 Matches any field whose name has NAME as a prefix, possibly
6670 followed by "___".
6671
6672 TYPE can be either a struct or union. If REFOK, TYPE may also
6673 be a (pointer or reference)+ to a struct or union, and the
6674 ultimate target type will be searched.
6675
6676 Looks recursively into variant clauses and parent types.
6677
6678 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6679 TYPE is not a type of the right kind. */
6680
6681 static struct type *
6682 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6683 int noerr, int *dispp)
6684 {
6685 int i;
6686
6687 if (name == NULL)
6688 goto BadName;
6689
6690 if (refok && type != NULL)
6691 while (1)
6692 {
6693 type = ada_check_typedef (type);
6694 if (TYPE_CODE (type) != TYPE_CODE_PTR
6695 && TYPE_CODE (type) != TYPE_CODE_REF)
6696 break;
6697 type = TYPE_TARGET_TYPE (type);
6698 }
6699
6700 if (type == NULL
6701 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6702 && TYPE_CODE (type) != TYPE_CODE_UNION))
6703 {
6704 if (noerr)
6705 return NULL;
6706 else
6707 {
6708 target_terminal_ours ();
6709 gdb_flush (gdb_stdout);
6710 if (type == NULL)
6711 error (_("Type (null) is not a structure or union type"));
6712 else
6713 {
6714 /* XXX: type_sprint */
6715 fprintf_unfiltered (gdb_stderr, _("Type "));
6716 type_print (type, "", gdb_stderr, -1);
6717 error (_(" is not a structure or union type"));
6718 }
6719 }
6720 }
6721
6722 type = to_static_fixed_type (type);
6723
6724 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6725 {
6726 char *t_field_name = TYPE_FIELD_NAME (type, i);
6727 struct type *t;
6728 int disp;
6729
6730 if (t_field_name == NULL)
6731 continue;
6732
6733 else if (field_name_match (t_field_name, name))
6734 {
6735 if (dispp != NULL)
6736 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6737 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6738 }
6739
6740 else if (ada_is_wrapper_field (type, i))
6741 {
6742 disp = 0;
6743 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6744 0, 1, &disp);
6745 if (t != NULL)
6746 {
6747 if (dispp != NULL)
6748 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6749 return t;
6750 }
6751 }
6752
6753 else if (ada_is_variant_part (type, i))
6754 {
6755 int j;
6756 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6757 i));
6758
6759 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6760 {
6761 /* FIXME pnh 2008/01/26: We check for a field that is
6762 NOT wrapped in a struct, since the compiler sometimes
6763 generates these for unchecked variant types. Revisit
6764 if the compiler changes this practice. */
6765 char *v_field_name = TYPE_FIELD_NAME (field_type, j);
6766 disp = 0;
6767 if (v_field_name != NULL
6768 && field_name_match (v_field_name, name))
6769 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6770 else
6771 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
6772 j),
6773 name, 0, 1, &disp);
6774
6775 if (t != NULL)
6776 {
6777 if (dispp != NULL)
6778 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6779 return t;
6780 }
6781 }
6782 }
6783
6784 }
6785
6786 BadName:
6787 if (!noerr)
6788 {
6789 target_terminal_ours ();
6790 gdb_flush (gdb_stdout);
6791 if (name == NULL)
6792 {
6793 /* XXX: type_sprint */
6794 fprintf_unfiltered (gdb_stderr, _("Type "));
6795 type_print (type, "", gdb_stderr, -1);
6796 error (_(" has no component named <null>"));
6797 }
6798 else
6799 {
6800 /* XXX: type_sprint */
6801 fprintf_unfiltered (gdb_stderr, _("Type "));
6802 type_print (type, "", gdb_stderr, -1);
6803 error (_(" has no component named %s"), name);
6804 }
6805 }
6806
6807 return NULL;
6808 }
6809
6810 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6811 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6812 represents an unchecked union (that is, the variant part of a
6813 record that is named in an Unchecked_Union pragma). */
6814
6815 static int
6816 is_unchecked_variant (struct type *var_type, struct type *outer_type)
6817 {
6818 char *discrim_name = ada_variant_discrim_name (var_type);
6819
6820 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6821 == NULL);
6822 }
6823
6824
6825 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6826 within a value of type OUTER_TYPE that is stored in GDB at
6827 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6828 numbering from 0) is applicable. Returns -1 if none are. */
6829
6830 int
6831 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6832 const gdb_byte *outer_valaddr)
6833 {
6834 int others_clause;
6835 int i;
6836 char *discrim_name = ada_variant_discrim_name (var_type);
6837 struct value *outer;
6838 struct value *discrim;
6839 LONGEST discrim_val;
6840
6841 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6842 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6843 if (discrim == NULL)
6844 return -1;
6845 discrim_val = value_as_long (discrim);
6846
6847 others_clause = -1;
6848 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6849 {
6850 if (ada_is_others_clause (var_type, i))
6851 others_clause = i;
6852 else if (ada_in_variant (discrim_val, var_type, i))
6853 return i;
6854 }
6855
6856 return others_clause;
6857 }
6858 \f
6859
6860
6861 /* Dynamic-Sized Records */
6862
6863 /* Strategy: The type ostensibly attached to a value with dynamic size
6864 (i.e., a size that is not statically recorded in the debugging
6865 data) does not accurately reflect the size or layout of the value.
6866 Our strategy is to convert these values to values with accurate,
6867 conventional types that are constructed on the fly. */
6868
6869 /* There is a subtle and tricky problem here. In general, we cannot
6870 determine the size of dynamic records without its data. However,
6871 the 'struct value' data structure, which GDB uses to represent
6872 quantities in the inferior process (the target), requires the size
6873 of the type at the time of its allocation in order to reserve space
6874 for GDB's internal copy of the data. That's why the
6875 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6876 rather than struct value*s.
6877
6878 However, GDB's internal history variables ($1, $2, etc.) are
6879 struct value*s containing internal copies of the data that are not, in
6880 general, the same as the data at their corresponding addresses in
6881 the target. Fortunately, the types we give to these values are all
6882 conventional, fixed-size types (as per the strategy described
6883 above), so that we don't usually have to perform the
6884 'to_fixed_xxx_type' conversions to look at their values.
6885 Unfortunately, there is one exception: if one of the internal
6886 history variables is an array whose elements are unconstrained
6887 records, then we will need to create distinct fixed types for each
6888 element selected. */
6889
6890 /* The upshot of all of this is that many routines take a (type, host
6891 address, target address) triple as arguments to represent a value.
6892 The host address, if non-null, is supposed to contain an internal
6893 copy of the relevant data; otherwise, the program is to consult the
6894 target at the target address. */
6895
6896 /* Assuming that VAL0 represents a pointer value, the result of
6897 dereferencing it. Differs from value_ind in its treatment of
6898 dynamic-sized types. */
6899
6900 struct value *
6901 ada_value_ind (struct value *val0)
6902 {
6903 struct value *val = unwrap_value (value_ind (val0));
6904
6905 return ada_to_fixed_value (val);
6906 }
6907
6908 /* The value resulting from dereferencing any "reference to"
6909 qualifiers on VAL0. */
6910
6911 static struct value *
6912 ada_coerce_ref (struct value *val0)
6913 {
6914 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6915 {
6916 struct value *val = val0;
6917
6918 val = coerce_ref (val);
6919 val = unwrap_value (val);
6920 return ada_to_fixed_value (val);
6921 }
6922 else
6923 return val0;
6924 }
6925
6926 /* Return OFF rounded upward if necessary to a multiple of
6927 ALIGNMENT (a power of 2). */
6928
6929 static unsigned int
6930 align_value (unsigned int off, unsigned int alignment)
6931 {
6932 return (off + alignment - 1) & ~(alignment - 1);
6933 }
6934
6935 /* Return the bit alignment required for field #F of template type TYPE. */
6936
6937 static unsigned int
6938 field_alignment (struct type *type, int f)
6939 {
6940 const char *name = TYPE_FIELD_NAME (type, f);
6941 int len;
6942 int align_offset;
6943
6944 /* The field name should never be null, unless the debugging information
6945 is somehow malformed. In this case, we assume the field does not
6946 require any alignment. */
6947 if (name == NULL)
6948 return 1;
6949
6950 len = strlen (name);
6951
6952 if (!isdigit (name[len - 1]))
6953 return 1;
6954
6955 if (isdigit (name[len - 2]))
6956 align_offset = len - 2;
6957 else
6958 align_offset = len - 1;
6959
6960 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6961 return TARGET_CHAR_BIT;
6962
6963 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6964 }
6965
6966 /* Find a symbol named NAME. Ignores ambiguity. */
6967
6968 struct symbol *
6969 ada_find_any_symbol (const char *name)
6970 {
6971 struct symbol *sym;
6972
6973 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6974 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6975 return sym;
6976
6977 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6978 return sym;
6979 }
6980
6981 /* Find a type named NAME. Ignores ambiguity. This routine will look
6982 solely for types defined by debug info, it will not search the GDB
6983 primitive types. */
6984
6985 struct type *
6986 ada_find_any_type (const char *name)
6987 {
6988 struct symbol *sym = ada_find_any_symbol (name);
6989
6990 if (sym != NULL)
6991 return SYMBOL_TYPE (sym);
6992
6993 return NULL;
6994 }
6995
6996 /* Given NAME and an associated BLOCK, search all symbols for
6997 NAME suffixed with "___XR", which is the ``renaming'' symbol
6998 associated to NAME. Return this symbol if found, return
6999 NULL otherwise. */
7000
7001 struct symbol *
7002 ada_find_renaming_symbol (const char *name, struct block *block)
7003 {
7004 struct symbol *sym;
7005
7006 sym = find_old_style_renaming_symbol (name, block);
7007
7008 if (sym != NULL)
7009 return sym;
7010
7011 /* Not right yet. FIXME pnh 7/20/2007. */
7012 sym = ada_find_any_symbol (name);
7013 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7014 return sym;
7015 else
7016 return NULL;
7017 }
7018
7019 static struct symbol *
7020 find_old_style_renaming_symbol (const char *name, struct block *block)
7021 {
7022 const struct symbol *function_sym = block_linkage_function (block);
7023 char *rename;
7024
7025 if (function_sym != NULL)
7026 {
7027 /* If the symbol is defined inside a function, NAME is not fully
7028 qualified. This means we need to prepend the function name
7029 as well as adding the ``___XR'' suffix to build the name of
7030 the associated renaming symbol. */
7031 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7032 /* Function names sometimes contain suffixes used
7033 for instance to qualify nested subprograms. When building
7034 the XR type name, we need to make sure that this suffix is
7035 not included. So do not include any suffix in the function
7036 name length below. */
7037 int function_name_len = ada_name_prefix_len (function_name);
7038 const int rename_len = function_name_len + 2 /* "__" */
7039 + strlen (name) + 6 /* "___XR\0" */ ;
7040
7041 /* Strip the suffix if necessary. */
7042 ada_remove_trailing_digits (function_name, &function_name_len);
7043 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7044 ada_remove_Xbn_suffix (function_name, &function_name_len);
7045
7046 /* Library-level functions are a special case, as GNAT adds
7047 a ``_ada_'' prefix to the function name to avoid namespace
7048 pollution. However, the renaming symbols themselves do not
7049 have this prefix, so we need to skip this prefix if present. */
7050 if (function_name_len > 5 /* "_ada_" */
7051 && strstr (function_name, "_ada_") == function_name)
7052 {
7053 function_name += 5;
7054 function_name_len -= 5;
7055 }
7056
7057 rename = (char *) alloca (rename_len * sizeof (char));
7058 strncpy (rename, function_name, function_name_len);
7059 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7060 "__%s___XR", name);
7061 }
7062 else
7063 {
7064 const int rename_len = strlen (name) + 6;
7065
7066 rename = (char *) alloca (rename_len * sizeof (char));
7067 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
7068 }
7069
7070 return ada_find_any_symbol (rename);
7071 }
7072
7073 /* Because of GNAT encoding conventions, several GDB symbols may match a
7074 given type name. If the type denoted by TYPE0 is to be preferred to
7075 that of TYPE1 for purposes of type printing, return non-zero;
7076 otherwise return 0. */
7077
7078 int
7079 ada_prefer_type (struct type *type0, struct type *type1)
7080 {
7081 if (type1 == NULL)
7082 return 1;
7083 else if (type0 == NULL)
7084 return 0;
7085 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7086 return 1;
7087 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7088 return 0;
7089 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7090 return 1;
7091 else if (ada_is_constrained_packed_array_type (type0))
7092 return 1;
7093 else if (ada_is_array_descriptor_type (type0)
7094 && !ada_is_array_descriptor_type (type1))
7095 return 1;
7096 else
7097 {
7098 const char *type0_name = type_name_no_tag (type0);
7099 const char *type1_name = type_name_no_tag (type1);
7100
7101 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7102 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7103 return 1;
7104 }
7105 return 0;
7106 }
7107
7108 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
7109 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7110
7111 char *
7112 ada_type_name (struct type *type)
7113 {
7114 if (type == NULL)
7115 return NULL;
7116 else if (TYPE_NAME (type) != NULL)
7117 return TYPE_NAME (type);
7118 else
7119 return TYPE_TAG_NAME (type);
7120 }
7121
7122 /* Search the list of "descriptive" types associated to TYPE for a type
7123 whose name is NAME. */
7124
7125 static struct type *
7126 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7127 {
7128 struct type *result;
7129
7130 /* If there no descriptive-type info, then there is no parallel type
7131 to be found. */
7132 if (!HAVE_GNAT_AUX_INFO (type))
7133 return NULL;
7134
7135 result = TYPE_DESCRIPTIVE_TYPE (type);
7136 while (result != NULL)
7137 {
7138 char *result_name = ada_type_name (result);
7139
7140 if (result_name == NULL)
7141 {
7142 warning (_("unexpected null name on descriptive type"));
7143 return NULL;
7144 }
7145
7146 /* If the names match, stop. */
7147 if (strcmp (result_name, name) == 0)
7148 break;
7149
7150 /* Otherwise, look at the next item on the list, if any. */
7151 if (HAVE_GNAT_AUX_INFO (result))
7152 result = TYPE_DESCRIPTIVE_TYPE (result);
7153 else
7154 result = NULL;
7155 }
7156
7157 /* If we didn't find a match, see whether this is a packed array. With
7158 older compilers, the descriptive type information is either absent or
7159 irrelevant when it comes to packed arrays so the above lookup fails.
7160 Fall back to using a parallel lookup by name in this case. */
7161 if (result == NULL && ada_is_constrained_packed_array_type (type))
7162 return ada_find_any_type (name);
7163
7164 return result;
7165 }
7166
7167 /* Find a parallel type to TYPE with the specified NAME, using the
7168 descriptive type taken from the debugging information, if available,
7169 and otherwise using the (slower) name-based method. */
7170
7171 static struct type *
7172 ada_find_parallel_type_with_name (struct type *type, const char *name)
7173 {
7174 struct type *result = NULL;
7175
7176 if (HAVE_GNAT_AUX_INFO (type))
7177 result = find_parallel_type_by_descriptive_type (type, name);
7178 else
7179 result = ada_find_any_type (name);
7180
7181 return result;
7182 }
7183
7184 /* Same as above, but specify the name of the parallel type by appending
7185 SUFFIX to the name of TYPE. */
7186
7187 struct type *
7188 ada_find_parallel_type (struct type *type, const char *suffix)
7189 {
7190 char *name, *typename = ada_type_name (type);
7191 int len;
7192
7193 if (typename == NULL)
7194 return NULL;
7195
7196 len = strlen (typename);
7197
7198 name = (char *) alloca (len + strlen (suffix) + 1);
7199
7200 strcpy (name, typename);
7201 strcpy (name + len, suffix);
7202
7203 return ada_find_parallel_type_with_name (type, name);
7204 }
7205
7206 /* If TYPE is a variable-size record type, return the corresponding template
7207 type describing its fields. Otherwise, return NULL. */
7208
7209 static struct type *
7210 dynamic_template_type (struct type *type)
7211 {
7212 type = ada_check_typedef (type);
7213
7214 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
7215 || ada_type_name (type) == NULL)
7216 return NULL;
7217 else
7218 {
7219 int len = strlen (ada_type_name (type));
7220
7221 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7222 return type;
7223 else
7224 return ada_find_parallel_type (type, "___XVE");
7225 }
7226 }
7227
7228 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7229 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7230
7231 static int
7232 is_dynamic_field (struct type *templ_type, int field_num)
7233 {
7234 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7235
7236 return name != NULL
7237 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7238 && strstr (name, "___XVL") != NULL;
7239 }
7240
7241 /* The index of the variant field of TYPE, or -1 if TYPE does not
7242 represent a variant record type. */
7243
7244 static int
7245 variant_field_index (struct type *type)
7246 {
7247 int f;
7248
7249 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7250 return -1;
7251
7252 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7253 {
7254 if (ada_is_variant_part (type, f))
7255 return f;
7256 }
7257 return -1;
7258 }
7259
7260 /* A record type with no fields. */
7261
7262 static struct type *
7263 empty_record (struct type *template)
7264 {
7265 struct type *type = alloc_type_copy (template);
7266
7267 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7268 TYPE_NFIELDS (type) = 0;
7269 TYPE_FIELDS (type) = NULL;
7270 INIT_CPLUS_SPECIFIC (type);
7271 TYPE_NAME (type) = "<empty>";
7272 TYPE_TAG_NAME (type) = NULL;
7273 TYPE_LENGTH (type) = 0;
7274 return type;
7275 }
7276
7277 /* An ordinary record type (with fixed-length fields) that describes
7278 the value of type TYPE at VALADDR or ADDRESS (see comments at
7279 the beginning of this section) VAL according to GNAT conventions.
7280 DVAL0 should describe the (portion of a) record that contains any
7281 necessary discriminants. It should be NULL if value_type (VAL) is
7282 an outer-level type (i.e., as opposed to a branch of a variant.) A
7283 variant field (unless unchecked) is replaced by a particular branch
7284 of the variant.
7285
7286 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7287 length are not statically known are discarded. As a consequence,
7288 VALADDR, ADDRESS and DVAL0 are ignored.
7289
7290 NOTE: Limitations: For now, we assume that dynamic fields and
7291 variants occupy whole numbers of bytes. However, they need not be
7292 byte-aligned. */
7293
7294 struct type *
7295 ada_template_to_fixed_record_type_1 (struct type *type,
7296 const gdb_byte *valaddr,
7297 CORE_ADDR address, struct value *dval0,
7298 int keep_dynamic_fields)
7299 {
7300 struct value *mark = value_mark ();
7301 struct value *dval;
7302 struct type *rtype;
7303 int nfields, bit_len;
7304 int variant_field;
7305 long off;
7306 int fld_bit_len;
7307 int f;
7308
7309 /* Compute the number of fields in this record type that are going
7310 to be processed: unless keep_dynamic_fields, this includes only
7311 fields whose position and length are static will be processed. */
7312 if (keep_dynamic_fields)
7313 nfields = TYPE_NFIELDS (type);
7314 else
7315 {
7316 nfields = 0;
7317 while (nfields < TYPE_NFIELDS (type)
7318 && !ada_is_variant_part (type, nfields)
7319 && !is_dynamic_field (type, nfields))
7320 nfields++;
7321 }
7322
7323 rtype = alloc_type_copy (type);
7324 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7325 INIT_CPLUS_SPECIFIC (rtype);
7326 TYPE_NFIELDS (rtype) = nfields;
7327 TYPE_FIELDS (rtype) = (struct field *)
7328 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7329 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7330 TYPE_NAME (rtype) = ada_type_name (type);
7331 TYPE_TAG_NAME (rtype) = NULL;
7332 TYPE_FIXED_INSTANCE (rtype) = 1;
7333
7334 off = 0;
7335 bit_len = 0;
7336 variant_field = -1;
7337
7338 for (f = 0; f < nfields; f += 1)
7339 {
7340 off = align_value (off, field_alignment (type, f))
7341 + TYPE_FIELD_BITPOS (type, f);
7342 TYPE_FIELD_BITPOS (rtype, f) = off;
7343 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7344
7345 if (ada_is_variant_part (type, f))
7346 {
7347 variant_field = f;
7348 fld_bit_len = 0;
7349 }
7350 else if (is_dynamic_field (type, f))
7351 {
7352 const gdb_byte *field_valaddr = valaddr;
7353 CORE_ADDR field_address = address;
7354 struct type *field_type =
7355 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7356
7357 if (dval0 == NULL)
7358 {
7359 /* rtype's length is computed based on the run-time
7360 value of discriminants. If the discriminants are not
7361 initialized, the type size may be completely bogus and
7362 GDB may fail to allocate a value for it. So check the
7363 size first before creating the value. */
7364 check_size (rtype);
7365 dval = value_from_contents_and_address (rtype, valaddr, address);
7366 }
7367 else
7368 dval = dval0;
7369
7370 /* If the type referenced by this field is an aligner type, we need
7371 to unwrap that aligner type, because its size might not be set.
7372 Keeping the aligner type would cause us to compute the wrong
7373 size for this field, impacting the offset of the all the fields
7374 that follow this one. */
7375 if (ada_is_aligner_type (field_type))
7376 {
7377 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7378
7379 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7380 field_address = cond_offset_target (field_address, field_offset);
7381 field_type = ada_aligned_type (field_type);
7382 }
7383
7384 field_valaddr = cond_offset_host (field_valaddr,
7385 off / TARGET_CHAR_BIT);
7386 field_address = cond_offset_target (field_address,
7387 off / TARGET_CHAR_BIT);
7388
7389 /* Get the fixed type of the field. Note that, in this case,
7390 we do not want to get the real type out of the tag: if
7391 the current field is the parent part of a tagged record,
7392 we will get the tag of the object. Clearly wrong: the real
7393 type of the parent is not the real type of the child. We
7394 would end up in an infinite loop. */
7395 field_type = ada_get_base_type (field_type);
7396 field_type = ada_to_fixed_type (field_type, field_valaddr,
7397 field_address, dval, 0);
7398 /* If the field size is already larger than the maximum
7399 object size, then the record itself will necessarily
7400 be larger than the maximum object size. We need to make
7401 this check now, because the size might be so ridiculously
7402 large (due to an uninitialized variable in the inferior)
7403 that it would cause an overflow when adding it to the
7404 record size. */
7405 check_size (field_type);
7406
7407 TYPE_FIELD_TYPE (rtype, f) = field_type;
7408 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7409 /* The multiplication can potentially overflow. But because
7410 the field length has been size-checked just above, and
7411 assuming that the maximum size is a reasonable value,
7412 an overflow should not happen in practice. So rather than
7413 adding overflow recovery code to this already complex code,
7414 we just assume that it's not going to happen. */
7415 fld_bit_len =
7416 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7417 }
7418 else
7419 {
7420 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7421
7422 /* If our field is a typedef type (most likely a typedef of
7423 a fat pointer, encoding an array access), then we need to
7424 look at its target type to determine its characteristics.
7425 In particular, we would miscompute the field size if we took
7426 the size of the typedef (zero), instead of the size of
7427 the target type. */
7428 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7429 field_type = ada_typedef_target_type (field_type);
7430
7431 TYPE_FIELD_TYPE (rtype, f) = field_type;
7432 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7433 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7434 fld_bit_len =
7435 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7436 else
7437 fld_bit_len =
7438 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7439 }
7440 if (off + fld_bit_len > bit_len)
7441 bit_len = off + fld_bit_len;
7442 off += fld_bit_len;
7443 TYPE_LENGTH (rtype) =
7444 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7445 }
7446
7447 /* We handle the variant part, if any, at the end because of certain
7448 odd cases in which it is re-ordered so as NOT to be the last field of
7449 the record. This can happen in the presence of representation
7450 clauses. */
7451 if (variant_field >= 0)
7452 {
7453 struct type *branch_type;
7454
7455 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7456
7457 if (dval0 == NULL)
7458 dval = value_from_contents_and_address (rtype, valaddr, address);
7459 else
7460 dval = dval0;
7461
7462 branch_type =
7463 to_fixed_variant_branch_type
7464 (TYPE_FIELD_TYPE (type, variant_field),
7465 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7466 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7467 if (branch_type == NULL)
7468 {
7469 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7470 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7471 TYPE_NFIELDS (rtype) -= 1;
7472 }
7473 else
7474 {
7475 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7476 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7477 fld_bit_len =
7478 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7479 TARGET_CHAR_BIT;
7480 if (off + fld_bit_len > bit_len)
7481 bit_len = off + fld_bit_len;
7482 TYPE_LENGTH (rtype) =
7483 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7484 }
7485 }
7486
7487 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7488 should contain the alignment of that record, which should be a strictly
7489 positive value. If null or negative, then something is wrong, most
7490 probably in the debug info. In that case, we don't round up the size
7491 of the resulting type. If this record is not part of another structure,
7492 the current RTYPE length might be good enough for our purposes. */
7493 if (TYPE_LENGTH (type) <= 0)
7494 {
7495 if (TYPE_NAME (rtype))
7496 warning (_("Invalid type size for `%s' detected: %d."),
7497 TYPE_NAME (rtype), TYPE_LENGTH (type));
7498 else
7499 warning (_("Invalid type size for <unnamed> detected: %d."),
7500 TYPE_LENGTH (type));
7501 }
7502 else
7503 {
7504 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7505 TYPE_LENGTH (type));
7506 }
7507
7508 value_free_to_mark (mark);
7509 if (TYPE_LENGTH (rtype) > varsize_limit)
7510 error (_("record type with dynamic size is larger than varsize-limit"));
7511 return rtype;
7512 }
7513
7514 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7515 of 1. */
7516
7517 static struct type *
7518 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
7519 CORE_ADDR address, struct value *dval0)
7520 {
7521 return ada_template_to_fixed_record_type_1 (type, valaddr,
7522 address, dval0, 1);
7523 }
7524
7525 /* An ordinary record type in which ___XVL-convention fields and
7526 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7527 static approximations, containing all possible fields. Uses
7528 no runtime values. Useless for use in values, but that's OK,
7529 since the results are used only for type determinations. Works on both
7530 structs and unions. Representation note: to save space, we memorize
7531 the result of this function in the TYPE_TARGET_TYPE of the
7532 template type. */
7533
7534 static struct type *
7535 template_to_static_fixed_type (struct type *type0)
7536 {
7537 struct type *type;
7538 int nfields;
7539 int f;
7540
7541 if (TYPE_TARGET_TYPE (type0) != NULL)
7542 return TYPE_TARGET_TYPE (type0);
7543
7544 nfields = TYPE_NFIELDS (type0);
7545 type = type0;
7546
7547 for (f = 0; f < nfields; f += 1)
7548 {
7549 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
7550 struct type *new_type;
7551
7552 if (is_dynamic_field (type0, f))
7553 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7554 else
7555 new_type = static_unwrap_type (field_type);
7556 if (type == type0 && new_type != field_type)
7557 {
7558 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
7559 TYPE_CODE (type) = TYPE_CODE (type0);
7560 INIT_CPLUS_SPECIFIC (type);
7561 TYPE_NFIELDS (type) = nfields;
7562 TYPE_FIELDS (type) = (struct field *)
7563 TYPE_ALLOC (type, nfields * sizeof (struct field));
7564 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7565 sizeof (struct field) * nfields);
7566 TYPE_NAME (type) = ada_type_name (type0);
7567 TYPE_TAG_NAME (type) = NULL;
7568 TYPE_FIXED_INSTANCE (type) = 1;
7569 TYPE_LENGTH (type) = 0;
7570 }
7571 TYPE_FIELD_TYPE (type, f) = new_type;
7572 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7573 }
7574 return type;
7575 }
7576
7577 /* Given an object of type TYPE whose contents are at VALADDR and
7578 whose address in memory is ADDRESS, returns a revision of TYPE,
7579 which should be a non-dynamic-sized record, in which the variant
7580 part, if any, is replaced with the appropriate branch. Looks
7581 for discriminant values in DVAL0, which can be NULL if the record
7582 contains the necessary discriminant values. */
7583
7584 static struct type *
7585 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7586 CORE_ADDR address, struct value *dval0)
7587 {
7588 struct value *mark = value_mark ();
7589 struct value *dval;
7590 struct type *rtype;
7591 struct type *branch_type;
7592 int nfields = TYPE_NFIELDS (type);
7593 int variant_field = variant_field_index (type);
7594
7595 if (variant_field == -1)
7596 return type;
7597
7598 if (dval0 == NULL)
7599 dval = value_from_contents_and_address (type, valaddr, address);
7600 else
7601 dval = dval0;
7602
7603 rtype = alloc_type_copy (type);
7604 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7605 INIT_CPLUS_SPECIFIC (rtype);
7606 TYPE_NFIELDS (rtype) = nfields;
7607 TYPE_FIELDS (rtype) =
7608 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7609 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
7610 sizeof (struct field) * nfields);
7611 TYPE_NAME (rtype) = ada_type_name (type);
7612 TYPE_TAG_NAME (rtype) = NULL;
7613 TYPE_FIXED_INSTANCE (rtype) = 1;
7614 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7615
7616 branch_type = to_fixed_variant_branch_type
7617 (TYPE_FIELD_TYPE (type, variant_field),
7618 cond_offset_host (valaddr,
7619 TYPE_FIELD_BITPOS (type, variant_field)
7620 / TARGET_CHAR_BIT),
7621 cond_offset_target (address,
7622 TYPE_FIELD_BITPOS (type, variant_field)
7623 / TARGET_CHAR_BIT), dval);
7624 if (branch_type == NULL)
7625 {
7626 int f;
7627
7628 for (f = variant_field + 1; f < nfields; f += 1)
7629 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7630 TYPE_NFIELDS (rtype) -= 1;
7631 }
7632 else
7633 {
7634 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7635 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7636 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7637 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7638 }
7639 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7640
7641 value_free_to_mark (mark);
7642 return rtype;
7643 }
7644
7645 /* An ordinary record type (with fixed-length fields) that describes
7646 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7647 beginning of this section]. Any necessary discriminants' values
7648 should be in DVAL, a record value; it may be NULL if the object
7649 at ADDR itself contains any necessary discriminant values.
7650 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7651 values from the record are needed. Except in the case that DVAL,
7652 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7653 unchecked) is replaced by a particular branch of the variant.
7654
7655 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7656 is questionable and may be removed. It can arise during the
7657 processing of an unconstrained-array-of-record type where all the
7658 variant branches have exactly the same size. This is because in
7659 such cases, the compiler does not bother to use the XVS convention
7660 when encoding the record. I am currently dubious of this
7661 shortcut and suspect the compiler should be altered. FIXME. */
7662
7663 static struct type *
7664 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7665 CORE_ADDR address, struct value *dval)
7666 {
7667 struct type *templ_type;
7668
7669 if (TYPE_FIXED_INSTANCE (type0))
7670 return type0;
7671
7672 templ_type = dynamic_template_type (type0);
7673
7674 if (templ_type != NULL)
7675 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7676 else if (variant_field_index (type0) >= 0)
7677 {
7678 if (dval == NULL && valaddr == NULL && address == 0)
7679 return type0;
7680 return to_record_with_fixed_variant_part (type0, valaddr, address,
7681 dval);
7682 }
7683 else
7684 {
7685 TYPE_FIXED_INSTANCE (type0) = 1;
7686 return type0;
7687 }
7688
7689 }
7690
7691 /* An ordinary record type (with fixed-length fields) that describes
7692 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7693 union type. Any necessary discriminants' values should be in DVAL,
7694 a record value. That is, this routine selects the appropriate
7695 branch of the union at ADDR according to the discriminant value
7696 indicated in the union's type name. Returns VAR_TYPE0 itself if
7697 it represents a variant subject to a pragma Unchecked_Union. */
7698
7699 static struct type *
7700 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7701 CORE_ADDR address, struct value *dval)
7702 {
7703 int which;
7704 struct type *templ_type;
7705 struct type *var_type;
7706
7707 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7708 var_type = TYPE_TARGET_TYPE (var_type0);
7709 else
7710 var_type = var_type0;
7711
7712 templ_type = ada_find_parallel_type (var_type, "___XVU");
7713
7714 if (templ_type != NULL)
7715 var_type = templ_type;
7716
7717 if (is_unchecked_variant (var_type, value_type (dval)))
7718 return var_type0;
7719 which =
7720 ada_which_variant_applies (var_type,
7721 value_type (dval), value_contents (dval));
7722
7723 if (which < 0)
7724 return empty_record (var_type);
7725 else if (is_dynamic_field (var_type, which))
7726 return to_fixed_record_type
7727 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7728 valaddr, address, dval);
7729 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7730 return
7731 to_fixed_record_type
7732 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7733 else
7734 return TYPE_FIELD_TYPE (var_type, which);
7735 }
7736
7737 /* Assuming that TYPE0 is an array type describing the type of a value
7738 at ADDR, and that DVAL describes a record containing any
7739 discriminants used in TYPE0, returns a type for the value that
7740 contains no dynamic components (that is, no components whose sizes
7741 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7742 true, gives an error message if the resulting type's size is over
7743 varsize_limit. */
7744
7745 static struct type *
7746 to_fixed_array_type (struct type *type0, struct value *dval,
7747 int ignore_too_big)
7748 {
7749 struct type *index_type_desc;
7750 struct type *result;
7751 int constrained_packed_array_p;
7752
7753 type0 = ada_check_typedef (type0);
7754 if (TYPE_FIXED_INSTANCE (type0))
7755 return type0;
7756
7757 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7758 if (constrained_packed_array_p)
7759 type0 = decode_constrained_packed_array_type (type0);
7760
7761 index_type_desc = ada_find_parallel_type (type0, "___XA");
7762 ada_fixup_array_indexes_type (index_type_desc);
7763 if (index_type_desc == NULL)
7764 {
7765 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7766
7767 /* NOTE: elt_type---the fixed version of elt_type0---should never
7768 depend on the contents of the array in properly constructed
7769 debugging data. */
7770 /* Create a fixed version of the array element type.
7771 We're not providing the address of an element here,
7772 and thus the actual object value cannot be inspected to do
7773 the conversion. This should not be a problem, since arrays of
7774 unconstrained objects are not allowed. In particular, all
7775 the elements of an array of a tagged type should all be of
7776 the same type specified in the debugging info. No need to
7777 consult the object tag. */
7778 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7779
7780 /* Make sure we always create a new array type when dealing with
7781 packed array types, since we're going to fix-up the array
7782 type length and element bitsize a little further down. */
7783 if (elt_type0 == elt_type && !constrained_packed_array_p)
7784 result = type0;
7785 else
7786 result = create_array_type (alloc_type_copy (type0),
7787 elt_type, TYPE_INDEX_TYPE (type0));
7788 }
7789 else
7790 {
7791 int i;
7792 struct type *elt_type0;
7793
7794 elt_type0 = type0;
7795 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7796 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7797
7798 /* NOTE: result---the fixed version of elt_type0---should never
7799 depend on the contents of the array in properly constructed
7800 debugging data. */
7801 /* Create a fixed version of the array element type.
7802 We're not providing the address of an element here,
7803 and thus the actual object value cannot be inspected to do
7804 the conversion. This should not be a problem, since arrays of
7805 unconstrained objects are not allowed. In particular, all
7806 the elements of an array of a tagged type should all be of
7807 the same type specified in the debugging info. No need to
7808 consult the object tag. */
7809 result =
7810 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
7811
7812 elt_type0 = type0;
7813 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
7814 {
7815 struct type *range_type =
7816 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
7817
7818 result = create_array_type (alloc_type_copy (elt_type0),
7819 result, range_type);
7820 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7821 }
7822 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7823 error (_("array type with dynamic size is larger than varsize-limit"));
7824 }
7825
7826 if (constrained_packed_array_p)
7827 {
7828 /* So far, the resulting type has been created as if the original
7829 type was a regular (non-packed) array type. As a result, the
7830 bitsize of the array elements needs to be set again, and the array
7831 length needs to be recomputed based on that bitsize. */
7832 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
7833 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
7834
7835 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
7836 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
7837 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
7838 TYPE_LENGTH (result)++;
7839 }
7840
7841 TYPE_FIXED_INSTANCE (result) = 1;
7842 return result;
7843 }
7844
7845
7846 /* A standard type (containing no dynamically sized components)
7847 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7848 DVAL describes a record containing any discriminants used in TYPE0,
7849 and may be NULL if there are none, or if the object of type TYPE at
7850 ADDRESS or in VALADDR contains these discriminants.
7851
7852 If CHECK_TAG is not null, in the case of tagged types, this function
7853 attempts to locate the object's tag and use it to compute the actual
7854 type. However, when ADDRESS is null, we cannot use it to determine the
7855 location of the tag, and therefore compute the tagged type's actual type.
7856 So we return the tagged type without consulting the tag. */
7857
7858 static struct type *
7859 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
7860 CORE_ADDR address, struct value *dval, int check_tag)
7861 {
7862 type = ada_check_typedef (type);
7863 switch (TYPE_CODE (type))
7864 {
7865 default:
7866 return type;
7867 case TYPE_CODE_STRUCT:
7868 {
7869 struct type *static_type = to_static_fixed_type (type);
7870 struct type *fixed_record_type =
7871 to_fixed_record_type (type, valaddr, address, NULL);
7872
7873 /* If STATIC_TYPE is a tagged type and we know the object's address,
7874 then we can determine its tag, and compute the object's actual
7875 type from there. Note that we have to use the fixed record
7876 type (the parent part of the record may have dynamic fields
7877 and the way the location of _tag is expressed may depend on
7878 them). */
7879
7880 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
7881 {
7882 struct type *real_type =
7883 type_from_tag (value_tag_from_contents_and_address
7884 (fixed_record_type,
7885 valaddr,
7886 address));
7887
7888 if (real_type != NULL)
7889 return to_fixed_record_type (real_type, valaddr, address, NULL);
7890 }
7891
7892 /* Check to see if there is a parallel ___XVZ variable.
7893 If there is, then it provides the actual size of our type. */
7894 else if (ada_type_name (fixed_record_type) != NULL)
7895 {
7896 char *name = ada_type_name (fixed_record_type);
7897 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7898 int xvz_found = 0;
7899 LONGEST size;
7900
7901 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
7902 size = get_int_var_value (xvz_name, &xvz_found);
7903 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
7904 {
7905 fixed_record_type = copy_type (fixed_record_type);
7906 TYPE_LENGTH (fixed_record_type) = size;
7907
7908 /* The FIXED_RECORD_TYPE may have be a stub. We have
7909 observed this when the debugging info is STABS, and
7910 apparently it is something that is hard to fix.
7911
7912 In practice, we don't need the actual type definition
7913 at all, because the presence of the XVZ variable allows us
7914 to assume that there must be a XVS type as well, which we
7915 should be able to use later, when we need the actual type
7916 definition.
7917
7918 In the meantime, pretend that the "fixed" type we are
7919 returning is NOT a stub, because this can cause trouble
7920 when using this type to create new types targeting it.
7921 Indeed, the associated creation routines often check
7922 whether the target type is a stub and will try to replace
7923 it, thus using a type with the wrong size. This, in turn,
7924 might cause the new type to have the wrong size too.
7925 Consider the case of an array, for instance, where the size
7926 of the array is computed from the number of elements in
7927 our array multiplied by the size of its element. */
7928 TYPE_STUB (fixed_record_type) = 0;
7929 }
7930 }
7931 return fixed_record_type;
7932 }
7933 case TYPE_CODE_ARRAY:
7934 return to_fixed_array_type (type, dval, 1);
7935 case TYPE_CODE_UNION:
7936 if (dval == NULL)
7937 return type;
7938 else
7939 return to_fixed_variant_branch_type (type, valaddr, address, dval);
7940 }
7941 }
7942
7943 /* The same as ada_to_fixed_type_1, except that it preserves the type
7944 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7945
7946 The typedef layer needs be preserved in order to differentiate between
7947 arrays and array pointers when both types are implemented using the same
7948 fat pointer. In the array pointer case, the pointer is encoded as
7949 a typedef of the pointer type. For instance, considering:
7950
7951 type String_Access is access String;
7952 S1 : String_Access := null;
7953
7954 To the debugger, S1 is defined as a typedef of type String. But
7955 to the user, it is a pointer. So if the user tries to print S1,
7956 we should not dereference the array, but print the array address
7957 instead.
7958
7959 If we didn't preserve the typedef layer, we would lose the fact that
7960 the type is to be presented as a pointer (needs de-reference before
7961 being printed). And we would also use the source-level type name. */
7962
7963 struct type *
7964 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7965 CORE_ADDR address, struct value *dval, int check_tag)
7966
7967 {
7968 struct type *fixed_type =
7969 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7970
7971 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
7972 then preserve the typedef layer.
7973
7974 Implementation note: We can only check the main-type portion of
7975 the TYPE and FIXED_TYPE, because eliminating the typedef layer
7976 from TYPE now returns a type that has the same instance flags
7977 as TYPE. For instance, if TYPE is a "typedef const", and its
7978 target type is a "struct", then the typedef elimination will return
7979 a "const" version of the target type. See check_typedef for more
7980 details about how the typedef layer elimination is done.
7981
7982 brobecker/2010-11-19: It seems to me that the only case where it is
7983 useful to preserve the typedef layer is when dealing with fat pointers.
7984 Perhaps, we could add a check for that and preserve the typedef layer
7985 only in that situation. But this seems unecessary so far, probably
7986 because we call check_typedef/ada_check_typedef pretty much everywhere.
7987 */
7988 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7989 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
7990 == TYPE_MAIN_TYPE (fixed_type)))
7991 return type;
7992
7993 return fixed_type;
7994 }
7995
7996 /* A standard (static-sized) type corresponding as well as possible to
7997 TYPE0, but based on no runtime data. */
7998
7999 static struct type *
8000 to_static_fixed_type (struct type *type0)
8001 {
8002 struct type *type;
8003
8004 if (type0 == NULL)
8005 return NULL;
8006
8007 if (TYPE_FIXED_INSTANCE (type0))
8008 return type0;
8009
8010 type0 = ada_check_typedef (type0);
8011
8012 switch (TYPE_CODE (type0))
8013 {
8014 default:
8015 return type0;
8016 case TYPE_CODE_STRUCT:
8017 type = dynamic_template_type (type0);
8018 if (type != NULL)
8019 return template_to_static_fixed_type (type);
8020 else
8021 return template_to_static_fixed_type (type0);
8022 case TYPE_CODE_UNION:
8023 type = ada_find_parallel_type (type0, "___XVU");
8024 if (type != NULL)
8025 return template_to_static_fixed_type (type);
8026 else
8027 return template_to_static_fixed_type (type0);
8028 }
8029 }
8030
8031 /* A static approximation of TYPE with all type wrappers removed. */
8032
8033 static struct type *
8034 static_unwrap_type (struct type *type)
8035 {
8036 if (ada_is_aligner_type (type))
8037 {
8038 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
8039 if (ada_type_name (type1) == NULL)
8040 TYPE_NAME (type1) = ada_type_name (type);
8041
8042 return static_unwrap_type (type1);
8043 }
8044 else
8045 {
8046 struct type *raw_real_type = ada_get_base_type (type);
8047
8048 if (raw_real_type == type)
8049 return type;
8050 else
8051 return to_static_fixed_type (raw_real_type);
8052 }
8053 }
8054
8055 /* In some cases, incomplete and private types require
8056 cross-references that are not resolved as records (for example,
8057 type Foo;
8058 type FooP is access Foo;
8059 V: FooP;
8060 type Foo is array ...;
8061 ). In these cases, since there is no mechanism for producing
8062 cross-references to such types, we instead substitute for FooP a
8063 stub enumeration type that is nowhere resolved, and whose tag is
8064 the name of the actual type. Call these types "non-record stubs". */
8065
8066 /* A type equivalent to TYPE that is not a non-record stub, if one
8067 exists, otherwise TYPE. */
8068
8069 struct type *
8070 ada_check_typedef (struct type *type)
8071 {
8072 if (type == NULL)
8073 return NULL;
8074
8075 /* If our type is a typedef type of a fat pointer, then we're done.
8076 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8077 what allows us to distinguish between fat pointers that represent
8078 array types, and fat pointers that represent array access types
8079 (in both cases, the compiler implements them as fat pointers). */
8080 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8081 && is_thick_pntr (ada_typedef_target_type (type)))
8082 return type;
8083
8084 CHECK_TYPEDEF (type);
8085 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
8086 || !TYPE_STUB (type)
8087 || TYPE_TAG_NAME (type) == NULL)
8088 return type;
8089 else
8090 {
8091 char *name = TYPE_TAG_NAME (type);
8092 struct type *type1 = ada_find_any_type (name);
8093
8094 if (type1 == NULL)
8095 return type;
8096
8097 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8098 stubs pointing to arrays, as we don't create symbols for array
8099 types, only for the typedef-to-array types). If that's the case,
8100 strip the typedef layer. */
8101 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8102 type1 = ada_check_typedef (type1);
8103
8104 return type1;
8105 }
8106 }
8107
8108 /* A value representing the data at VALADDR/ADDRESS as described by
8109 type TYPE0, but with a standard (static-sized) type that correctly
8110 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8111 type, then return VAL0 [this feature is simply to avoid redundant
8112 creation of struct values]. */
8113
8114 static struct value *
8115 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8116 struct value *val0)
8117 {
8118 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8119
8120 if (type == type0 && val0 != NULL)
8121 return val0;
8122 else
8123 return value_from_contents_and_address (type, 0, address);
8124 }
8125
8126 /* A value representing VAL, but with a standard (static-sized) type
8127 that correctly describes it. Does not necessarily create a new
8128 value. */
8129
8130 struct value *
8131 ada_to_fixed_value (struct value *val)
8132 {
8133 return ada_to_fixed_value_create (value_type (val),
8134 value_address (val),
8135 val);
8136 }
8137 \f
8138
8139 /* Attributes */
8140
8141 /* Table mapping attribute numbers to names.
8142 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8143
8144 static const char *attribute_names[] = {
8145 "<?>",
8146
8147 "first",
8148 "last",
8149 "length",
8150 "image",
8151 "max",
8152 "min",
8153 "modulus",
8154 "pos",
8155 "size",
8156 "tag",
8157 "val",
8158 0
8159 };
8160
8161 const char *
8162 ada_attribute_name (enum exp_opcode n)
8163 {
8164 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8165 return attribute_names[n - OP_ATR_FIRST + 1];
8166 else
8167 return attribute_names[0];
8168 }
8169
8170 /* Evaluate the 'POS attribute applied to ARG. */
8171
8172 static LONGEST
8173 pos_atr (struct value *arg)
8174 {
8175 struct value *val = coerce_ref (arg);
8176 struct type *type = value_type (val);
8177
8178 if (!discrete_type_p (type))
8179 error (_("'POS only defined on discrete types"));
8180
8181 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8182 {
8183 int i;
8184 LONGEST v = value_as_long (val);
8185
8186 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
8187 {
8188 if (v == TYPE_FIELD_BITPOS (type, i))
8189 return i;
8190 }
8191 error (_("enumeration value is invalid: can't find 'POS"));
8192 }
8193 else
8194 return value_as_long (val);
8195 }
8196
8197 static struct value *
8198 value_pos_atr (struct type *type, struct value *arg)
8199 {
8200 return value_from_longest (type, pos_atr (arg));
8201 }
8202
8203 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8204
8205 static struct value *
8206 value_val_atr (struct type *type, struct value *arg)
8207 {
8208 if (!discrete_type_p (type))
8209 error (_("'VAL only defined on discrete types"));
8210 if (!integer_type_p (value_type (arg)))
8211 error (_("'VAL requires integral argument"));
8212
8213 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8214 {
8215 long pos = value_as_long (arg);
8216
8217 if (pos < 0 || pos >= TYPE_NFIELDS (type))
8218 error (_("argument to 'VAL out of range"));
8219 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
8220 }
8221 else
8222 return value_from_longest (type, value_as_long (arg));
8223 }
8224 \f
8225
8226 /* Evaluation */
8227
8228 /* True if TYPE appears to be an Ada character type.
8229 [At the moment, this is true only for Character and Wide_Character;
8230 It is a heuristic test that could stand improvement]. */
8231
8232 int
8233 ada_is_character_type (struct type *type)
8234 {
8235 const char *name;
8236
8237 /* If the type code says it's a character, then assume it really is,
8238 and don't check any further. */
8239 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8240 return 1;
8241
8242 /* Otherwise, assume it's a character type iff it is a discrete type
8243 with a known character type name. */
8244 name = ada_type_name (type);
8245 return (name != NULL
8246 && (TYPE_CODE (type) == TYPE_CODE_INT
8247 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8248 && (strcmp (name, "character") == 0
8249 || strcmp (name, "wide_character") == 0
8250 || strcmp (name, "wide_wide_character") == 0
8251 || strcmp (name, "unsigned char") == 0));
8252 }
8253
8254 /* True if TYPE appears to be an Ada string type. */
8255
8256 int
8257 ada_is_string_type (struct type *type)
8258 {
8259 type = ada_check_typedef (type);
8260 if (type != NULL
8261 && TYPE_CODE (type) != TYPE_CODE_PTR
8262 && (ada_is_simple_array_type (type)
8263 || ada_is_array_descriptor_type (type))
8264 && ada_array_arity (type) == 1)
8265 {
8266 struct type *elttype = ada_array_element_type (type, 1);
8267
8268 return ada_is_character_type (elttype);
8269 }
8270 else
8271 return 0;
8272 }
8273
8274 /* The compiler sometimes provides a parallel XVS type for a given
8275 PAD type. Normally, it is safe to follow the PAD type directly,
8276 but older versions of the compiler have a bug that causes the offset
8277 of its "F" field to be wrong. Following that field in that case
8278 would lead to incorrect results, but this can be worked around
8279 by ignoring the PAD type and using the associated XVS type instead.
8280
8281 Set to True if the debugger should trust the contents of PAD types.
8282 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8283 static int trust_pad_over_xvs = 1;
8284
8285 /* True if TYPE is a struct type introduced by the compiler to force the
8286 alignment of a value. Such types have a single field with a
8287 distinctive name. */
8288
8289 int
8290 ada_is_aligner_type (struct type *type)
8291 {
8292 type = ada_check_typedef (type);
8293
8294 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
8295 return 0;
8296
8297 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
8298 && TYPE_NFIELDS (type) == 1
8299 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
8300 }
8301
8302 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
8303 the parallel type. */
8304
8305 struct type *
8306 ada_get_base_type (struct type *raw_type)
8307 {
8308 struct type *real_type_namer;
8309 struct type *raw_real_type;
8310
8311 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8312 return raw_type;
8313
8314 if (ada_is_aligner_type (raw_type))
8315 /* The encoding specifies that we should always use the aligner type.
8316 So, even if this aligner type has an associated XVS type, we should
8317 simply ignore it.
8318
8319 According to the compiler gurus, an XVS type parallel to an aligner
8320 type may exist because of a stabs limitation. In stabs, aligner
8321 types are empty because the field has a variable-sized type, and
8322 thus cannot actually be used as an aligner type. As a result,
8323 we need the associated parallel XVS type to decode the type.
8324 Since the policy in the compiler is to not change the internal
8325 representation based on the debugging info format, we sometimes
8326 end up having a redundant XVS type parallel to the aligner type. */
8327 return raw_type;
8328
8329 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
8330 if (real_type_namer == NULL
8331 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8332 || TYPE_NFIELDS (real_type_namer) != 1)
8333 return raw_type;
8334
8335 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8336 {
8337 /* This is an older encoding form where the base type needs to be
8338 looked up by name. We prefer the newer enconding because it is
8339 more efficient. */
8340 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8341 if (raw_real_type == NULL)
8342 return raw_type;
8343 else
8344 return raw_real_type;
8345 }
8346
8347 /* The field in our XVS type is a reference to the base type. */
8348 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
8349 }
8350
8351 /* The type of value designated by TYPE, with all aligners removed. */
8352
8353 struct type *
8354 ada_aligned_type (struct type *type)
8355 {
8356 if (ada_is_aligner_type (type))
8357 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8358 else
8359 return ada_get_base_type (type);
8360 }
8361
8362
8363 /* The address of the aligned value in an object at address VALADDR
8364 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
8365
8366 const gdb_byte *
8367 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
8368 {
8369 if (ada_is_aligner_type (type))
8370 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
8371 valaddr +
8372 TYPE_FIELD_BITPOS (type,
8373 0) / TARGET_CHAR_BIT);
8374 else
8375 return valaddr;
8376 }
8377
8378
8379
8380 /* The printed representation of an enumeration literal with encoded
8381 name NAME. The value is good to the next call of ada_enum_name. */
8382 const char *
8383 ada_enum_name (const char *name)
8384 {
8385 static char *result;
8386 static size_t result_len = 0;
8387 char *tmp;
8388
8389 /* First, unqualify the enumeration name:
8390 1. Search for the last '.' character. If we find one, then skip
8391 all the preceding characters, the unqualified name starts
8392 right after that dot.
8393 2. Otherwise, we may be debugging on a target where the compiler
8394 translates dots into "__". Search forward for double underscores,
8395 but stop searching when we hit an overloading suffix, which is
8396 of the form "__" followed by digits. */
8397
8398 tmp = strrchr (name, '.');
8399 if (tmp != NULL)
8400 name = tmp + 1;
8401 else
8402 {
8403 while ((tmp = strstr (name, "__")) != NULL)
8404 {
8405 if (isdigit (tmp[2]))
8406 break;
8407 else
8408 name = tmp + 2;
8409 }
8410 }
8411
8412 if (name[0] == 'Q')
8413 {
8414 int v;
8415
8416 if (name[1] == 'U' || name[1] == 'W')
8417 {
8418 if (sscanf (name + 2, "%x", &v) != 1)
8419 return name;
8420 }
8421 else
8422 return name;
8423
8424 GROW_VECT (result, result_len, 16);
8425 if (isascii (v) && isprint (v))
8426 xsnprintf (result, result_len, "'%c'", v);
8427 else if (name[1] == 'U')
8428 xsnprintf (result, result_len, "[\"%02x\"]", v);
8429 else
8430 xsnprintf (result, result_len, "[\"%04x\"]", v);
8431
8432 return result;
8433 }
8434 else
8435 {
8436 tmp = strstr (name, "__");
8437 if (tmp == NULL)
8438 tmp = strstr (name, "$");
8439 if (tmp != NULL)
8440 {
8441 GROW_VECT (result, result_len, tmp - name + 1);
8442 strncpy (result, name, tmp - name);
8443 result[tmp - name] = '\0';
8444 return result;
8445 }
8446
8447 return name;
8448 }
8449 }
8450
8451 /* Evaluate the subexpression of EXP starting at *POS as for
8452 evaluate_type, updating *POS to point just past the evaluated
8453 expression. */
8454
8455 static struct value *
8456 evaluate_subexp_type (struct expression *exp, int *pos)
8457 {
8458 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8459 }
8460
8461 /* If VAL is wrapped in an aligner or subtype wrapper, return the
8462 value it wraps. */
8463
8464 static struct value *
8465 unwrap_value (struct value *val)
8466 {
8467 struct type *type = ada_check_typedef (value_type (val));
8468
8469 if (ada_is_aligner_type (type))
8470 {
8471 struct value *v = ada_value_struct_elt (val, "F", 0);
8472 struct type *val_type = ada_check_typedef (value_type (v));
8473
8474 if (ada_type_name (val_type) == NULL)
8475 TYPE_NAME (val_type) = ada_type_name (type);
8476
8477 return unwrap_value (v);
8478 }
8479 else
8480 {
8481 struct type *raw_real_type =
8482 ada_check_typedef (ada_get_base_type (type));
8483
8484 /* If there is no parallel XVS or XVE type, then the value is
8485 already unwrapped. Return it without further modification. */
8486 if ((type == raw_real_type)
8487 && ada_find_parallel_type (type, "___XVE") == NULL)
8488 return val;
8489
8490 return
8491 coerce_unspec_val_to_type
8492 (val, ada_to_fixed_type (raw_real_type, 0,
8493 value_address (val),
8494 NULL, 1));
8495 }
8496 }
8497
8498 static struct value *
8499 cast_to_fixed (struct type *type, struct value *arg)
8500 {
8501 LONGEST val;
8502
8503 if (type == value_type (arg))
8504 return arg;
8505 else if (ada_is_fixed_point_type (value_type (arg)))
8506 val = ada_float_to_fixed (type,
8507 ada_fixed_to_float (value_type (arg),
8508 value_as_long (arg)));
8509 else
8510 {
8511 DOUBLEST argd = value_as_double (arg);
8512
8513 val = ada_float_to_fixed (type, argd);
8514 }
8515
8516 return value_from_longest (type, val);
8517 }
8518
8519 static struct value *
8520 cast_from_fixed (struct type *type, struct value *arg)
8521 {
8522 DOUBLEST val = ada_fixed_to_float (value_type (arg),
8523 value_as_long (arg));
8524
8525 return value_from_double (type, val);
8526 }
8527
8528 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8529 return the converted value. */
8530
8531 static struct value *
8532 coerce_for_assign (struct type *type, struct value *val)
8533 {
8534 struct type *type2 = value_type (val);
8535
8536 if (type == type2)
8537 return val;
8538
8539 type2 = ada_check_typedef (type2);
8540 type = ada_check_typedef (type);
8541
8542 if (TYPE_CODE (type2) == TYPE_CODE_PTR
8543 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8544 {
8545 val = ada_value_ind (val);
8546 type2 = value_type (val);
8547 }
8548
8549 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
8550 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8551 {
8552 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
8553 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8554 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
8555 error (_("Incompatible types in assignment"));
8556 deprecated_set_value_type (val, type);
8557 }
8558 return val;
8559 }
8560
8561 static struct value *
8562 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8563 {
8564 struct value *val;
8565 struct type *type1, *type2;
8566 LONGEST v, v1, v2;
8567
8568 arg1 = coerce_ref (arg1);
8569 arg2 = coerce_ref (arg2);
8570 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
8571 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
8572
8573 if (TYPE_CODE (type1) != TYPE_CODE_INT
8574 || TYPE_CODE (type2) != TYPE_CODE_INT)
8575 return value_binop (arg1, arg2, op);
8576
8577 switch (op)
8578 {
8579 case BINOP_MOD:
8580 case BINOP_DIV:
8581 case BINOP_REM:
8582 break;
8583 default:
8584 return value_binop (arg1, arg2, op);
8585 }
8586
8587 v2 = value_as_long (arg2);
8588 if (v2 == 0)
8589 error (_("second operand of %s must not be zero."), op_string (op));
8590
8591 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8592 return value_binop (arg1, arg2, op);
8593
8594 v1 = value_as_long (arg1);
8595 switch (op)
8596 {
8597 case BINOP_DIV:
8598 v = v1 / v2;
8599 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8600 v += v > 0 ? -1 : 1;
8601 break;
8602 case BINOP_REM:
8603 v = v1 % v2;
8604 if (v * v1 < 0)
8605 v -= v2;
8606 break;
8607 default:
8608 /* Should not reach this point. */
8609 v = 0;
8610 }
8611
8612 val = allocate_value (type1);
8613 store_unsigned_integer (value_contents_raw (val),
8614 TYPE_LENGTH (value_type (val)),
8615 gdbarch_byte_order (get_type_arch (type1)), v);
8616 return val;
8617 }
8618
8619 static int
8620 ada_value_equal (struct value *arg1, struct value *arg2)
8621 {
8622 if (ada_is_direct_array_type (value_type (arg1))
8623 || ada_is_direct_array_type (value_type (arg2)))
8624 {
8625 /* Automatically dereference any array reference before
8626 we attempt to perform the comparison. */
8627 arg1 = ada_coerce_ref (arg1);
8628 arg2 = ada_coerce_ref (arg2);
8629
8630 arg1 = ada_coerce_to_simple_array (arg1);
8631 arg2 = ada_coerce_to_simple_array (arg2);
8632 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8633 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
8634 error (_("Attempt to compare array with non-array"));
8635 /* FIXME: The following works only for types whose
8636 representations use all bits (no padding or undefined bits)
8637 and do not have user-defined equality. */
8638 return
8639 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
8640 && memcmp (value_contents (arg1), value_contents (arg2),
8641 TYPE_LENGTH (value_type (arg1))) == 0;
8642 }
8643 return value_equal (arg1, arg2);
8644 }
8645
8646 /* Total number of component associations in the aggregate starting at
8647 index PC in EXP. Assumes that index PC is the start of an
8648 OP_AGGREGATE. */
8649
8650 static int
8651 num_component_specs (struct expression *exp, int pc)
8652 {
8653 int n, m, i;
8654
8655 m = exp->elts[pc + 1].longconst;
8656 pc += 3;
8657 n = 0;
8658 for (i = 0; i < m; i += 1)
8659 {
8660 switch (exp->elts[pc].opcode)
8661 {
8662 default:
8663 n += 1;
8664 break;
8665 case OP_CHOICES:
8666 n += exp->elts[pc + 1].longconst;
8667 break;
8668 }
8669 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8670 }
8671 return n;
8672 }
8673
8674 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
8675 component of LHS (a simple array or a record), updating *POS past
8676 the expression, assuming that LHS is contained in CONTAINER. Does
8677 not modify the inferior's memory, nor does it modify LHS (unless
8678 LHS == CONTAINER). */
8679
8680 static void
8681 assign_component (struct value *container, struct value *lhs, LONGEST index,
8682 struct expression *exp, int *pos)
8683 {
8684 struct value *mark = value_mark ();
8685 struct value *elt;
8686
8687 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8688 {
8689 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
8690 struct value *index_val = value_from_longest (index_type, index);
8691
8692 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8693 }
8694 else
8695 {
8696 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8697 elt = ada_to_fixed_value (unwrap_value (elt));
8698 }
8699
8700 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8701 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8702 else
8703 value_assign_to_component (container, elt,
8704 ada_evaluate_subexp (NULL, exp, pos,
8705 EVAL_NORMAL));
8706
8707 value_free_to_mark (mark);
8708 }
8709
8710 /* Assuming that LHS represents an lvalue having a record or array
8711 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8712 of that aggregate's value to LHS, advancing *POS past the
8713 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8714 lvalue containing LHS (possibly LHS itself). Does not modify
8715 the inferior's memory, nor does it modify the contents of
8716 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8717
8718 static struct value *
8719 assign_aggregate (struct value *container,
8720 struct value *lhs, struct expression *exp,
8721 int *pos, enum noside noside)
8722 {
8723 struct type *lhs_type;
8724 int n = exp->elts[*pos+1].longconst;
8725 LONGEST low_index, high_index;
8726 int num_specs;
8727 LONGEST *indices;
8728 int max_indices, num_indices;
8729 int is_array_aggregate;
8730 int i;
8731
8732 *pos += 3;
8733 if (noside != EVAL_NORMAL)
8734 {
8735 for (i = 0; i < n; i += 1)
8736 ada_evaluate_subexp (NULL, exp, pos, noside);
8737 return container;
8738 }
8739
8740 container = ada_coerce_ref (container);
8741 if (ada_is_direct_array_type (value_type (container)))
8742 container = ada_coerce_to_simple_array (container);
8743 lhs = ada_coerce_ref (lhs);
8744 if (!deprecated_value_modifiable (lhs))
8745 error (_("Left operand of assignment is not a modifiable lvalue."));
8746
8747 lhs_type = value_type (lhs);
8748 if (ada_is_direct_array_type (lhs_type))
8749 {
8750 lhs = ada_coerce_to_simple_array (lhs);
8751 lhs_type = value_type (lhs);
8752 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8753 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8754 is_array_aggregate = 1;
8755 }
8756 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8757 {
8758 low_index = 0;
8759 high_index = num_visible_fields (lhs_type) - 1;
8760 is_array_aggregate = 0;
8761 }
8762 else
8763 error (_("Left-hand side must be array or record."));
8764
8765 num_specs = num_component_specs (exp, *pos - 3);
8766 max_indices = 4 * num_specs + 4;
8767 indices = alloca (max_indices * sizeof (indices[0]));
8768 indices[0] = indices[1] = low_index - 1;
8769 indices[2] = indices[3] = high_index + 1;
8770 num_indices = 4;
8771
8772 for (i = 0; i < n; i += 1)
8773 {
8774 switch (exp->elts[*pos].opcode)
8775 {
8776 case OP_CHOICES:
8777 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8778 &num_indices, max_indices,
8779 low_index, high_index);
8780 break;
8781 case OP_POSITIONAL:
8782 aggregate_assign_positional (container, lhs, exp, pos, indices,
8783 &num_indices, max_indices,
8784 low_index, high_index);
8785 break;
8786 case OP_OTHERS:
8787 if (i != n-1)
8788 error (_("Misplaced 'others' clause"));
8789 aggregate_assign_others (container, lhs, exp, pos, indices,
8790 num_indices, low_index, high_index);
8791 break;
8792 default:
8793 error (_("Internal error: bad aggregate clause"));
8794 }
8795 }
8796
8797 return container;
8798 }
8799
8800 /* Assign into the component of LHS indexed by the OP_POSITIONAL
8801 construct at *POS, updating *POS past the construct, given that
8802 the positions are relative to lower bound LOW, where HIGH is the
8803 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8804 updating *NUM_INDICES as needed. CONTAINER is as for
8805 assign_aggregate. */
8806 static void
8807 aggregate_assign_positional (struct value *container,
8808 struct value *lhs, struct expression *exp,
8809 int *pos, LONGEST *indices, int *num_indices,
8810 int max_indices, LONGEST low, LONGEST high)
8811 {
8812 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8813
8814 if (ind - 1 == high)
8815 warning (_("Extra components in aggregate ignored."));
8816 if (ind <= high)
8817 {
8818 add_component_interval (ind, ind, indices, num_indices, max_indices);
8819 *pos += 3;
8820 assign_component (container, lhs, ind, exp, pos);
8821 }
8822 else
8823 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8824 }
8825
8826 /* Assign into the components of LHS indexed by the OP_CHOICES
8827 construct at *POS, updating *POS past the construct, given that
8828 the allowable indices are LOW..HIGH. Record the indices assigned
8829 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8830 needed. CONTAINER is as for assign_aggregate. */
8831 static void
8832 aggregate_assign_from_choices (struct value *container,
8833 struct value *lhs, struct expression *exp,
8834 int *pos, LONGEST *indices, int *num_indices,
8835 int max_indices, LONGEST low, LONGEST high)
8836 {
8837 int j;
8838 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8839 int choice_pos, expr_pc;
8840 int is_array = ada_is_direct_array_type (value_type (lhs));
8841
8842 choice_pos = *pos += 3;
8843
8844 for (j = 0; j < n_choices; j += 1)
8845 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8846 expr_pc = *pos;
8847 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8848
8849 for (j = 0; j < n_choices; j += 1)
8850 {
8851 LONGEST lower, upper;
8852 enum exp_opcode op = exp->elts[choice_pos].opcode;
8853
8854 if (op == OP_DISCRETE_RANGE)
8855 {
8856 choice_pos += 1;
8857 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8858 EVAL_NORMAL));
8859 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8860 EVAL_NORMAL));
8861 }
8862 else if (is_array)
8863 {
8864 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8865 EVAL_NORMAL));
8866 upper = lower;
8867 }
8868 else
8869 {
8870 int ind;
8871 char *name;
8872
8873 switch (op)
8874 {
8875 case OP_NAME:
8876 name = &exp->elts[choice_pos + 2].string;
8877 break;
8878 case OP_VAR_VALUE:
8879 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8880 break;
8881 default:
8882 error (_("Invalid record component association."));
8883 }
8884 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8885 ind = 0;
8886 if (! find_struct_field (name, value_type (lhs), 0,
8887 NULL, NULL, NULL, NULL, &ind))
8888 error (_("Unknown component name: %s."), name);
8889 lower = upper = ind;
8890 }
8891
8892 if (lower <= upper && (lower < low || upper > high))
8893 error (_("Index in component association out of bounds."));
8894
8895 add_component_interval (lower, upper, indices, num_indices,
8896 max_indices);
8897 while (lower <= upper)
8898 {
8899 int pos1;
8900
8901 pos1 = expr_pc;
8902 assign_component (container, lhs, lower, exp, &pos1);
8903 lower += 1;
8904 }
8905 }
8906 }
8907
8908 /* Assign the value of the expression in the OP_OTHERS construct in
8909 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8910 have not been previously assigned. The index intervals already assigned
8911 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8912 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
8913 static void
8914 aggregate_assign_others (struct value *container,
8915 struct value *lhs, struct expression *exp,
8916 int *pos, LONGEST *indices, int num_indices,
8917 LONGEST low, LONGEST high)
8918 {
8919 int i;
8920 int expr_pc = *pos + 1;
8921
8922 for (i = 0; i < num_indices - 2; i += 2)
8923 {
8924 LONGEST ind;
8925
8926 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8927 {
8928 int localpos;
8929
8930 localpos = expr_pc;
8931 assign_component (container, lhs, ind, exp, &localpos);
8932 }
8933 }
8934 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8935 }
8936
8937 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
8938 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8939 modifying *SIZE as needed. It is an error if *SIZE exceeds
8940 MAX_SIZE. The resulting intervals do not overlap. */
8941 static void
8942 add_component_interval (LONGEST low, LONGEST high,
8943 LONGEST* indices, int *size, int max_size)
8944 {
8945 int i, j;
8946
8947 for (i = 0; i < *size; i += 2) {
8948 if (high >= indices[i] && low <= indices[i + 1])
8949 {
8950 int kh;
8951
8952 for (kh = i + 2; kh < *size; kh += 2)
8953 if (high < indices[kh])
8954 break;
8955 if (low < indices[i])
8956 indices[i] = low;
8957 indices[i + 1] = indices[kh - 1];
8958 if (high > indices[i + 1])
8959 indices[i + 1] = high;
8960 memcpy (indices + i + 2, indices + kh, *size - kh);
8961 *size -= kh - i - 2;
8962 return;
8963 }
8964 else if (high < indices[i])
8965 break;
8966 }
8967
8968 if (*size == max_size)
8969 error (_("Internal error: miscounted aggregate components."));
8970 *size += 2;
8971 for (j = *size-1; j >= i+2; j -= 1)
8972 indices[j] = indices[j - 2];
8973 indices[i] = low;
8974 indices[i + 1] = high;
8975 }
8976
8977 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8978 is different. */
8979
8980 static struct value *
8981 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8982 {
8983 if (type == ada_check_typedef (value_type (arg2)))
8984 return arg2;
8985
8986 if (ada_is_fixed_point_type (type))
8987 return (cast_to_fixed (type, arg2));
8988
8989 if (ada_is_fixed_point_type (value_type (arg2)))
8990 return cast_from_fixed (type, arg2);
8991
8992 return value_cast (type, arg2);
8993 }
8994
8995 /* Evaluating Ada expressions, and printing their result.
8996 ------------------------------------------------------
8997
8998 1. Introduction:
8999 ----------------
9000
9001 We usually evaluate an Ada expression in order to print its value.
9002 We also evaluate an expression in order to print its type, which
9003 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9004 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9005 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9006 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9007 similar.
9008
9009 Evaluating expressions is a little more complicated for Ada entities
9010 than it is for entities in languages such as C. The main reason for
9011 this is that Ada provides types whose definition might be dynamic.
9012 One example of such types is variant records. Or another example
9013 would be an array whose bounds can only be known at run time.
9014
9015 The following description is a general guide as to what should be
9016 done (and what should NOT be done) in order to evaluate an expression
9017 involving such types, and when. This does not cover how the semantic
9018 information is encoded by GNAT as this is covered separatly. For the
9019 document used as the reference for the GNAT encoding, see exp_dbug.ads
9020 in the GNAT sources.
9021
9022 Ideally, we should embed each part of this description next to its
9023 associated code. Unfortunately, the amount of code is so vast right
9024 now that it's hard to see whether the code handling a particular
9025 situation might be duplicated or not. One day, when the code is
9026 cleaned up, this guide might become redundant with the comments
9027 inserted in the code, and we might want to remove it.
9028
9029 2. ``Fixing'' an Entity, the Simple Case:
9030 -----------------------------------------
9031
9032 When evaluating Ada expressions, the tricky issue is that they may
9033 reference entities whose type contents and size are not statically
9034 known. Consider for instance a variant record:
9035
9036 type Rec (Empty : Boolean := True) is record
9037 case Empty is
9038 when True => null;
9039 when False => Value : Integer;
9040 end case;
9041 end record;
9042 Yes : Rec := (Empty => False, Value => 1);
9043 No : Rec := (empty => True);
9044
9045 The size and contents of that record depends on the value of the
9046 descriminant (Rec.Empty). At this point, neither the debugging
9047 information nor the associated type structure in GDB are able to
9048 express such dynamic types. So what the debugger does is to create
9049 "fixed" versions of the type that applies to the specific object.
9050 We also informally refer to this opperation as "fixing" an object,
9051 which means creating its associated fixed type.
9052
9053 Example: when printing the value of variable "Yes" above, its fixed
9054 type would look like this:
9055
9056 type Rec is record
9057 Empty : Boolean;
9058 Value : Integer;
9059 end record;
9060
9061 On the other hand, if we printed the value of "No", its fixed type
9062 would become:
9063
9064 type Rec is record
9065 Empty : Boolean;
9066 end record;
9067
9068 Things become a little more complicated when trying to fix an entity
9069 with a dynamic type that directly contains another dynamic type,
9070 such as an array of variant records, for instance. There are
9071 two possible cases: Arrays, and records.
9072
9073 3. ``Fixing'' Arrays:
9074 ---------------------
9075
9076 The type structure in GDB describes an array in terms of its bounds,
9077 and the type of its elements. By design, all elements in the array
9078 have the same type and we cannot represent an array of variant elements
9079 using the current type structure in GDB. When fixing an array,
9080 we cannot fix the array element, as we would potentially need one
9081 fixed type per element of the array. As a result, the best we can do
9082 when fixing an array is to produce an array whose bounds and size
9083 are correct (allowing us to read it from memory), but without having
9084 touched its element type. Fixing each element will be done later,
9085 when (if) necessary.
9086
9087 Arrays are a little simpler to handle than records, because the same
9088 amount of memory is allocated for each element of the array, even if
9089 the amount of space actually used by each element differs from element
9090 to element. Consider for instance the following array of type Rec:
9091
9092 type Rec_Array is array (1 .. 2) of Rec;
9093
9094 The actual amount of memory occupied by each element might be different
9095 from element to element, depending on the value of their discriminant.
9096 But the amount of space reserved for each element in the array remains
9097 fixed regardless. So we simply need to compute that size using
9098 the debugging information available, from which we can then determine
9099 the array size (we multiply the number of elements of the array by
9100 the size of each element).
9101
9102 The simplest case is when we have an array of a constrained element
9103 type. For instance, consider the following type declarations:
9104
9105 type Bounded_String (Max_Size : Integer) is
9106 Length : Integer;
9107 Buffer : String (1 .. Max_Size);
9108 end record;
9109 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9110
9111 In this case, the compiler describes the array as an array of
9112 variable-size elements (identified by its XVS suffix) for which
9113 the size can be read in the parallel XVZ variable.
9114
9115 In the case of an array of an unconstrained element type, the compiler
9116 wraps the array element inside a private PAD type. This type should not
9117 be shown to the user, and must be "unwrap"'ed before printing. Note
9118 that we also use the adjective "aligner" in our code to designate
9119 these wrapper types.
9120
9121 In some cases, the size allocated for each element is statically
9122 known. In that case, the PAD type already has the correct size,
9123 and the array element should remain unfixed.
9124
9125 But there are cases when this size is not statically known.
9126 For instance, assuming that "Five" is an integer variable:
9127
9128 type Dynamic is array (1 .. Five) of Integer;
9129 type Wrapper (Has_Length : Boolean := False) is record
9130 Data : Dynamic;
9131 case Has_Length is
9132 when True => Length : Integer;
9133 when False => null;
9134 end case;
9135 end record;
9136 type Wrapper_Array is array (1 .. 2) of Wrapper;
9137
9138 Hello : Wrapper_Array := (others => (Has_Length => True,
9139 Data => (others => 17),
9140 Length => 1));
9141
9142
9143 The debugging info would describe variable Hello as being an
9144 array of a PAD type. The size of that PAD type is not statically
9145 known, but can be determined using a parallel XVZ variable.
9146 In that case, a copy of the PAD type with the correct size should
9147 be used for the fixed array.
9148
9149 3. ``Fixing'' record type objects:
9150 ----------------------------------
9151
9152 Things are slightly different from arrays in the case of dynamic
9153 record types. In this case, in order to compute the associated
9154 fixed type, we need to determine the size and offset of each of
9155 its components. This, in turn, requires us to compute the fixed
9156 type of each of these components.
9157
9158 Consider for instance the example:
9159
9160 type Bounded_String (Max_Size : Natural) is record
9161 Str : String (1 .. Max_Size);
9162 Length : Natural;
9163 end record;
9164 My_String : Bounded_String (Max_Size => 10);
9165
9166 In that case, the position of field "Length" depends on the size
9167 of field Str, which itself depends on the value of the Max_Size
9168 discriminant. In order to fix the type of variable My_String,
9169 we need to fix the type of field Str. Therefore, fixing a variant
9170 record requires us to fix each of its components.
9171
9172 However, if a component does not have a dynamic size, the component
9173 should not be fixed. In particular, fields that use a PAD type
9174 should not fixed. Here is an example where this might happen
9175 (assuming type Rec above):
9176
9177 type Container (Big : Boolean) is record
9178 First : Rec;
9179 After : Integer;
9180 case Big is
9181 when True => Another : Integer;
9182 when False => null;
9183 end case;
9184 end record;
9185 My_Container : Container := (Big => False,
9186 First => (Empty => True),
9187 After => 42);
9188
9189 In that example, the compiler creates a PAD type for component First,
9190 whose size is constant, and then positions the component After just
9191 right after it. The offset of component After is therefore constant
9192 in this case.
9193
9194 The debugger computes the position of each field based on an algorithm
9195 that uses, among other things, the actual position and size of the field
9196 preceding it. Let's now imagine that the user is trying to print
9197 the value of My_Container. If the type fixing was recursive, we would
9198 end up computing the offset of field After based on the size of the
9199 fixed version of field First. And since in our example First has
9200 only one actual field, the size of the fixed type is actually smaller
9201 than the amount of space allocated to that field, and thus we would
9202 compute the wrong offset of field After.
9203
9204 To make things more complicated, we need to watch out for dynamic
9205 components of variant records (identified by the ___XVL suffix in
9206 the component name). Even if the target type is a PAD type, the size
9207 of that type might not be statically known. So the PAD type needs
9208 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9209 we might end up with the wrong size for our component. This can be
9210 observed with the following type declarations:
9211
9212 type Octal is new Integer range 0 .. 7;
9213 type Octal_Array is array (Positive range <>) of Octal;
9214 pragma Pack (Octal_Array);
9215
9216 type Octal_Buffer (Size : Positive) is record
9217 Buffer : Octal_Array (1 .. Size);
9218 Length : Integer;
9219 end record;
9220
9221 In that case, Buffer is a PAD type whose size is unset and needs
9222 to be computed by fixing the unwrapped type.
9223
9224 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9225 ----------------------------------------------------------
9226
9227 Lastly, when should the sub-elements of an entity that remained unfixed
9228 thus far, be actually fixed?
9229
9230 The answer is: Only when referencing that element. For instance
9231 when selecting one component of a record, this specific component
9232 should be fixed at that point in time. Or when printing the value
9233 of a record, each component should be fixed before its value gets
9234 printed. Similarly for arrays, the element of the array should be
9235 fixed when printing each element of the array, or when extracting
9236 one element out of that array. On the other hand, fixing should
9237 not be performed on the elements when taking a slice of an array!
9238
9239 Note that one of the side-effects of miscomputing the offset and
9240 size of each field is that we end up also miscomputing the size
9241 of the containing type. This can have adverse results when computing
9242 the value of an entity. GDB fetches the value of an entity based
9243 on the size of its type, and thus a wrong size causes GDB to fetch
9244 the wrong amount of memory. In the case where the computed size is
9245 too small, GDB fetches too little data to print the value of our
9246 entiry. Results in this case as unpredicatble, as we usually read
9247 past the buffer containing the data =:-o. */
9248
9249 /* Implement the evaluate_exp routine in the exp_descriptor structure
9250 for the Ada language. */
9251
9252 static struct value *
9253 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
9254 int *pos, enum noside noside)
9255 {
9256 enum exp_opcode op;
9257 int tem;
9258 int pc;
9259 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9260 struct type *type;
9261 int nargs, oplen;
9262 struct value **argvec;
9263
9264 pc = *pos;
9265 *pos += 1;
9266 op = exp->elts[pc].opcode;
9267
9268 switch (op)
9269 {
9270 default:
9271 *pos -= 1;
9272 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9273 arg1 = unwrap_value (arg1);
9274
9275 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9276 then we need to perform the conversion manually, because
9277 evaluate_subexp_standard doesn't do it. This conversion is
9278 necessary in Ada because the different kinds of float/fixed
9279 types in Ada have different representations.
9280
9281 Similarly, we need to perform the conversion from OP_LONG
9282 ourselves. */
9283 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9284 arg1 = ada_value_cast (expect_type, arg1, noside);
9285
9286 return arg1;
9287
9288 case OP_STRING:
9289 {
9290 struct value *result;
9291
9292 *pos -= 1;
9293 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9294 /* The result type will have code OP_STRING, bashed there from
9295 OP_ARRAY. Bash it back. */
9296 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9297 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
9298 return result;
9299 }
9300
9301 case UNOP_CAST:
9302 (*pos) += 2;
9303 type = exp->elts[pc + 1].type;
9304 arg1 = evaluate_subexp (type, exp, pos, noside);
9305 if (noside == EVAL_SKIP)
9306 goto nosideret;
9307 arg1 = ada_value_cast (type, arg1, noside);
9308 return arg1;
9309
9310 case UNOP_QUAL:
9311 (*pos) += 2;
9312 type = exp->elts[pc + 1].type;
9313 return ada_evaluate_subexp (type, exp, pos, noside);
9314
9315 case BINOP_ASSIGN:
9316 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9317 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9318 {
9319 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9320 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9321 return arg1;
9322 return ada_value_assign (arg1, arg1);
9323 }
9324 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9325 except if the lhs of our assignment is a convenience variable.
9326 In the case of assigning to a convenience variable, the lhs
9327 should be exactly the result of the evaluation of the rhs. */
9328 type = value_type (arg1);
9329 if (VALUE_LVAL (arg1) == lval_internalvar)
9330 type = NULL;
9331 arg2 = evaluate_subexp (type, exp, pos, noside);
9332 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9333 return arg1;
9334 if (ada_is_fixed_point_type (value_type (arg1)))
9335 arg2 = cast_to_fixed (value_type (arg1), arg2);
9336 else if (ada_is_fixed_point_type (value_type (arg2)))
9337 error
9338 (_("Fixed-point values must be assigned to fixed-point variables"));
9339 else
9340 arg2 = coerce_for_assign (value_type (arg1), arg2);
9341 return ada_value_assign (arg1, arg2);
9342
9343 case BINOP_ADD:
9344 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9345 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9346 if (noside == EVAL_SKIP)
9347 goto nosideret;
9348 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9349 return (value_from_longest
9350 (value_type (arg1),
9351 value_as_long (arg1) + value_as_long (arg2)));
9352 if ((ada_is_fixed_point_type (value_type (arg1))
9353 || ada_is_fixed_point_type (value_type (arg2)))
9354 && value_type (arg1) != value_type (arg2))
9355 error (_("Operands of fixed-point addition must have the same type"));
9356 /* Do the addition, and cast the result to the type of the first
9357 argument. We cannot cast the result to a reference type, so if
9358 ARG1 is a reference type, find its underlying type. */
9359 type = value_type (arg1);
9360 while (TYPE_CODE (type) == TYPE_CODE_REF)
9361 type = TYPE_TARGET_TYPE (type);
9362 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9363 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
9364
9365 case BINOP_SUB:
9366 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9367 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9368 if (noside == EVAL_SKIP)
9369 goto nosideret;
9370 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9371 return (value_from_longest
9372 (value_type (arg1),
9373 value_as_long (arg1) - value_as_long (arg2)));
9374 if ((ada_is_fixed_point_type (value_type (arg1))
9375 || ada_is_fixed_point_type (value_type (arg2)))
9376 && value_type (arg1) != value_type (arg2))
9377 error (_("Operands of fixed-point subtraction "
9378 "must have the same type"));
9379 /* Do the substraction, and cast the result to the type of the first
9380 argument. We cannot cast the result to a reference type, so if
9381 ARG1 is a reference type, find its underlying type. */
9382 type = value_type (arg1);
9383 while (TYPE_CODE (type) == TYPE_CODE_REF)
9384 type = TYPE_TARGET_TYPE (type);
9385 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9386 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
9387
9388 case BINOP_MUL:
9389 case BINOP_DIV:
9390 case BINOP_REM:
9391 case BINOP_MOD:
9392 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9393 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9394 if (noside == EVAL_SKIP)
9395 goto nosideret;
9396 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9397 {
9398 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9399 return value_zero (value_type (arg1), not_lval);
9400 }
9401 else
9402 {
9403 type = builtin_type (exp->gdbarch)->builtin_double;
9404 if (ada_is_fixed_point_type (value_type (arg1)))
9405 arg1 = cast_from_fixed (type, arg1);
9406 if (ada_is_fixed_point_type (value_type (arg2)))
9407 arg2 = cast_from_fixed (type, arg2);
9408 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9409 return ada_value_binop (arg1, arg2, op);
9410 }
9411
9412 case BINOP_EQUAL:
9413 case BINOP_NOTEQUAL:
9414 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9415 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
9416 if (noside == EVAL_SKIP)
9417 goto nosideret;
9418 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9419 tem = 0;
9420 else
9421 {
9422 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9423 tem = ada_value_equal (arg1, arg2);
9424 }
9425 if (op == BINOP_NOTEQUAL)
9426 tem = !tem;
9427 type = language_bool_type (exp->language_defn, exp->gdbarch);
9428 return value_from_longest (type, (LONGEST) tem);
9429
9430 case UNOP_NEG:
9431 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9432 if (noside == EVAL_SKIP)
9433 goto nosideret;
9434 else if (ada_is_fixed_point_type (value_type (arg1)))
9435 return value_cast (value_type (arg1), value_neg (arg1));
9436 else
9437 {
9438 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9439 return value_neg (arg1);
9440 }
9441
9442 case BINOP_LOGICAL_AND:
9443 case BINOP_LOGICAL_OR:
9444 case UNOP_LOGICAL_NOT:
9445 {
9446 struct value *val;
9447
9448 *pos -= 1;
9449 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9450 type = language_bool_type (exp->language_defn, exp->gdbarch);
9451 return value_cast (type, val);
9452 }
9453
9454 case BINOP_BITWISE_AND:
9455 case BINOP_BITWISE_IOR:
9456 case BINOP_BITWISE_XOR:
9457 {
9458 struct value *val;
9459
9460 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9461 *pos = pc;
9462 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9463
9464 return value_cast (value_type (arg1), val);
9465 }
9466
9467 case OP_VAR_VALUE:
9468 *pos -= 1;
9469
9470 if (noside == EVAL_SKIP)
9471 {
9472 *pos += 4;
9473 goto nosideret;
9474 }
9475 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
9476 /* Only encountered when an unresolved symbol occurs in a
9477 context other than a function call, in which case, it is
9478 invalid. */
9479 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9480 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
9481 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9482 {
9483 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
9484 /* Check to see if this is a tagged type. We also need to handle
9485 the case where the type is a reference to a tagged type, but
9486 we have to be careful to exclude pointers to tagged types.
9487 The latter should be shown as usual (as a pointer), whereas
9488 a reference should mostly be transparent to the user. */
9489 if (ada_is_tagged_type (type, 0)
9490 || (TYPE_CODE(type) == TYPE_CODE_REF
9491 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
9492 {
9493 /* Tagged types are a little special in the fact that the real
9494 type is dynamic and can only be determined by inspecting the
9495 object's tag. This means that we need to get the object's
9496 value first (EVAL_NORMAL) and then extract the actual object
9497 type from its tag.
9498
9499 Note that we cannot skip the final step where we extract
9500 the object type from its tag, because the EVAL_NORMAL phase
9501 results in dynamic components being resolved into fixed ones.
9502 This can cause problems when trying to print the type
9503 description of tagged types whose parent has a dynamic size:
9504 We use the type name of the "_parent" component in order
9505 to print the name of the ancestor type in the type description.
9506 If that component had a dynamic size, the resolution into
9507 a fixed type would result in the loss of that type name,
9508 thus preventing us from printing the name of the ancestor
9509 type in the type description. */
9510 struct type *actual_type;
9511
9512 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
9513 actual_type = type_from_tag (ada_value_tag (arg1));
9514 if (actual_type == NULL)
9515 /* If, for some reason, we were unable to determine
9516 the actual type from the tag, then use the static
9517 approximation that we just computed as a fallback.
9518 This can happen if the debugging information is
9519 incomplete, for instance. */
9520 actual_type = type;
9521
9522 return value_zero (actual_type, not_lval);
9523 }
9524
9525 *pos += 4;
9526 return value_zero
9527 (to_static_fixed_type
9528 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
9529 not_lval);
9530 }
9531 else
9532 {
9533 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9534 arg1 = unwrap_value (arg1);
9535 return ada_to_fixed_value (arg1);
9536 }
9537
9538 case OP_FUNCALL:
9539 (*pos) += 2;
9540
9541 /* Allocate arg vector, including space for the function to be
9542 called in argvec[0] and a terminating NULL. */
9543 nargs = longest_to_int (exp->elts[pc + 1].longconst);
9544 argvec =
9545 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
9546
9547 if (exp->elts[*pos].opcode == OP_VAR_VALUE
9548 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
9549 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9550 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
9551 else
9552 {
9553 for (tem = 0; tem <= nargs; tem += 1)
9554 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9555 argvec[tem] = 0;
9556
9557 if (noside == EVAL_SKIP)
9558 goto nosideret;
9559 }
9560
9561 if (ada_is_constrained_packed_array_type
9562 (desc_base_type (value_type (argvec[0]))))
9563 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
9564 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9565 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
9566 /* This is a packed array that has already been fixed, and
9567 therefore already coerced to a simple array. Nothing further
9568 to do. */
9569 ;
9570 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
9571 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9572 && VALUE_LVAL (argvec[0]) == lval_memory))
9573 argvec[0] = value_addr (argvec[0]);
9574
9575 type = ada_check_typedef (value_type (argvec[0]));
9576
9577 /* Ada allows us to implicitly dereference arrays when subscripting
9578 them. So, if this is an array typedef (encoding use for array
9579 access types encoded as fat pointers), strip it now. */
9580 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
9581 type = ada_typedef_target_type (type);
9582
9583 if (TYPE_CODE (type) == TYPE_CODE_PTR)
9584 {
9585 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
9586 {
9587 case TYPE_CODE_FUNC:
9588 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9589 break;
9590 case TYPE_CODE_ARRAY:
9591 break;
9592 case TYPE_CODE_STRUCT:
9593 if (noside != EVAL_AVOID_SIDE_EFFECTS)
9594 argvec[0] = ada_value_ind (argvec[0]);
9595 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9596 break;
9597 default:
9598 error (_("cannot subscript or call something of type `%s'"),
9599 ada_type_name (value_type (argvec[0])));
9600 break;
9601 }
9602 }
9603
9604 switch (TYPE_CODE (type))
9605 {
9606 case TYPE_CODE_FUNC:
9607 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9608 return allocate_value (TYPE_TARGET_TYPE (type));
9609 return call_function_by_hand (argvec[0], nargs, argvec + 1);
9610 case TYPE_CODE_STRUCT:
9611 {
9612 int arity;
9613
9614 arity = ada_array_arity (type);
9615 type = ada_array_element_type (type, nargs);
9616 if (type == NULL)
9617 error (_("cannot subscript or call a record"));
9618 if (arity != nargs)
9619 error (_("wrong number of subscripts; expecting %d"), arity);
9620 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9621 return value_zero (ada_aligned_type (type), lval_memory);
9622 return
9623 unwrap_value (ada_value_subscript
9624 (argvec[0], nargs, argvec + 1));
9625 }
9626 case TYPE_CODE_ARRAY:
9627 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9628 {
9629 type = ada_array_element_type (type, nargs);
9630 if (type == NULL)
9631 error (_("element type of array unknown"));
9632 else
9633 return value_zero (ada_aligned_type (type), lval_memory);
9634 }
9635 return
9636 unwrap_value (ada_value_subscript
9637 (ada_coerce_to_simple_array (argvec[0]),
9638 nargs, argvec + 1));
9639 case TYPE_CODE_PTR: /* Pointer to array */
9640 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
9641 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9642 {
9643 type = ada_array_element_type (type, nargs);
9644 if (type == NULL)
9645 error (_("element type of array unknown"));
9646 else
9647 return value_zero (ada_aligned_type (type), lval_memory);
9648 }
9649 return
9650 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
9651 nargs, argvec + 1));
9652
9653 default:
9654 error (_("Attempt to index or call something other than an "
9655 "array or function"));
9656 }
9657
9658 case TERNOP_SLICE:
9659 {
9660 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9661 struct value *low_bound_val =
9662 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9663 struct value *high_bound_val =
9664 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9665 LONGEST low_bound;
9666 LONGEST high_bound;
9667
9668 low_bound_val = coerce_ref (low_bound_val);
9669 high_bound_val = coerce_ref (high_bound_val);
9670 low_bound = pos_atr (low_bound_val);
9671 high_bound = pos_atr (high_bound_val);
9672
9673 if (noside == EVAL_SKIP)
9674 goto nosideret;
9675
9676 /* If this is a reference to an aligner type, then remove all
9677 the aligners. */
9678 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9679 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
9680 TYPE_TARGET_TYPE (value_type (array)) =
9681 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
9682
9683 if (ada_is_constrained_packed_array_type (value_type (array)))
9684 error (_("cannot slice a packed array"));
9685
9686 /* If this is a reference to an array or an array lvalue,
9687 convert to a pointer. */
9688 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9689 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
9690 && VALUE_LVAL (array) == lval_memory))
9691 array = value_addr (array);
9692
9693 if (noside == EVAL_AVOID_SIDE_EFFECTS
9694 && ada_is_array_descriptor_type (ada_check_typedef
9695 (value_type (array))))
9696 return empty_array (ada_type_of_array (array, 0), low_bound);
9697
9698 array = ada_coerce_to_simple_array_ptr (array);
9699
9700 /* If we have more than one level of pointer indirection,
9701 dereference the value until we get only one level. */
9702 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
9703 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
9704 == TYPE_CODE_PTR))
9705 array = value_ind (array);
9706
9707 /* Make sure we really do have an array type before going further,
9708 to avoid a SEGV when trying to get the index type or the target
9709 type later down the road if the debug info generated by
9710 the compiler is incorrect or incomplete. */
9711 if (!ada_is_simple_array_type (value_type (array)))
9712 error (_("cannot take slice of non-array"));
9713
9714 if (TYPE_CODE (ada_check_typedef (value_type (array)))
9715 == TYPE_CODE_PTR)
9716 {
9717 struct type *type0 = ada_check_typedef (value_type (array));
9718
9719 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
9720 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
9721 else
9722 {
9723 struct type *arr_type0 =
9724 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
9725
9726 return ada_value_slice_from_ptr (array, arr_type0,
9727 longest_to_int (low_bound),
9728 longest_to_int (high_bound));
9729 }
9730 }
9731 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9732 return array;
9733 else if (high_bound < low_bound)
9734 return empty_array (value_type (array), low_bound);
9735 else
9736 return ada_value_slice (array, longest_to_int (low_bound),
9737 longest_to_int (high_bound));
9738 }
9739
9740 case UNOP_IN_RANGE:
9741 (*pos) += 2;
9742 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9743 type = check_typedef (exp->elts[pc + 1].type);
9744
9745 if (noside == EVAL_SKIP)
9746 goto nosideret;
9747
9748 switch (TYPE_CODE (type))
9749 {
9750 default:
9751 lim_warning (_("Membership test incompletely implemented; "
9752 "always returns true"));
9753 type = language_bool_type (exp->language_defn, exp->gdbarch);
9754 return value_from_longest (type, (LONGEST) 1);
9755
9756 case TYPE_CODE_RANGE:
9757 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
9758 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
9759 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9760 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9761 type = language_bool_type (exp->language_defn, exp->gdbarch);
9762 return
9763 value_from_longest (type,
9764 (value_less (arg1, arg3)
9765 || value_equal (arg1, arg3))
9766 && (value_less (arg2, arg1)
9767 || value_equal (arg2, arg1)));
9768 }
9769
9770 case BINOP_IN_BOUNDS:
9771 (*pos) += 2;
9772 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9773 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9774
9775 if (noside == EVAL_SKIP)
9776 goto nosideret;
9777
9778 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9779 {
9780 type = language_bool_type (exp->language_defn, exp->gdbarch);
9781 return value_zero (type, not_lval);
9782 }
9783
9784 tem = longest_to_int (exp->elts[pc + 1].longconst);
9785
9786 type = ada_index_type (value_type (arg2), tem, "range");
9787 if (!type)
9788 type = value_type (arg1);
9789
9790 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
9791 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
9792
9793 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9794 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9795 type = language_bool_type (exp->language_defn, exp->gdbarch);
9796 return
9797 value_from_longest (type,
9798 (value_less (arg1, arg3)
9799 || value_equal (arg1, arg3))
9800 && (value_less (arg2, arg1)
9801 || value_equal (arg2, arg1)));
9802
9803 case TERNOP_IN_RANGE:
9804 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9805 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9806 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9807
9808 if (noside == EVAL_SKIP)
9809 goto nosideret;
9810
9811 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9812 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9813 type = language_bool_type (exp->language_defn, exp->gdbarch);
9814 return
9815 value_from_longest (type,
9816 (value_less (arg1, arg3)
9817 || value_equal (arg1, arg3))
9818 && (value_less (arg2, arg1)
9819 || value_equal (arg2, arg1)));
9820
9821 case OP_ATR_FIRST:
9822 case OP_ATR_LAST:
9823 case OP_ATR_LENGTH:
9824 {
9825 struct type *type_arg;
9826
9827 if (exp->elts[*pos].opcode == OP_TYPE)
9828 {
9829 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9830 arg1 = NULL;
9831 type_arg = check_typedef (exp->elts[pc + 2].type);
9832 }
9833 else
9834 {
9835 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9836 type_arg = NULL;
9837 }
9838
9839 if (exp->elts[*pos].opcode != OP_LONG)
9840 error (_("Invalid operand to '%s"), ada_attribute_name (op));
9841 tem = longest_to_int (exp->elts[*pos + 2].longconst);
9842 *pos += 4;
9843
9844 if (noside == EVAL_SKIP)
9845 goto nosideret;
9846
9847 if (type_arg == NULL)
9848 {
9849 arg1 = ada_coerce_ref (arg1);
9850
9851 if (ada_is_constrained_packed_array_type (value_type (arg1)))
9852 arg1 = ada_coerce_to_simple_array (arg1);
9853
9854 type = ada_index_type (value_type (arg1), tem,
9855 ada_attribute_name (op));
9856 if (type == NULL)
9857 type = builtin_type (exp->gdbarch)->builtin_int;
9858
9859 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9860 return allocate_value (type);
9861
9862 switch (op)
9863 {
9864 default: /* Should never happen. */
9865 error (_("unexpected attribute encountered"));
9866 case OP_ATR_FIRST:
9867 return value_from_longest
9868 (type, ada_array_bound (arg1, tem, 0));
9869 case OP_ATR_LAST:
9870 return value_from_longest
9871 (type, ada_array_bound (arg1, tem, 1));
9872 case OP_ATR_LENGTH:
9873 return value_from_longest
9874 (type, ada_array_length (arg1, tem));
9875 }
9876 }
9877 else if (discrete_type_p (type_arg))
9878 {
9879 struct type *range_type;
9880 char *name = ada_type_name (type_arg);
9881
9882 range_type = NULL;
9883 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
9884 range_type = to_fixed_range_type (type_arg, NULL);
9885 if (range_type == NULL)
9886 range_type = type_arg;
9887 switch (op)
9888 {
9889 default:
9890 error (_("unexpected attribute encountered"));
9891 case OP_ATR_FIRST:
9892 return value_from_longest
9893 (range_type, ada_discrete_type_low_bound (range_type));
9894 case OP_ATR_LAST:
9895 return value_from_longest
9896 (range_type, ada_discrete_type_high_bound (range_type));
9897 case OP_ATR_LENGTH:
9898 error (_("the 'length attribute applies only to array types"));
9899 }
9900 }
9901 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
9902 error (_("unimplemented type attribute"));
9903 else
9904 {
9905 LONGEST low, high;
9906
9907 if (ada_is_constrained_packed_array_type (type_arg))
9908 type_arg = decode_constrained_packed_array_type (type_arg);
9909
9910 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
9911 if (type == NULL)
9912 type = builtin_type (exp->gdbarch)->builtin_int;
9913
9914 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9915 return allocate_value (type);
9916
9917 switch (op)
9918 {
9919 default:
9920 error (_("unexpected attribute encountered"));
9921 case OP_ATR_FIRST:
9922 low = ada_array_bound_from_type (type_arg, tem, 0);
9923 return value_from_longest (type, low);
9924 case OP_ATR_LAST:
9925 high = ada_array_bound_from_type (type_arg, tem, 1);
9926 return value_from_longest (type, high);
9927 case OP_ATR_LENGTH:
9928 low = ada_array_bound_from_type (type_arg, tem, 0);
9929 high = ada_array_bound_from_type (type_arg, tem, 1);
9930 return value_from_longest (type, high - low + 1);
9931 }
9932 }
9933 }
9934
9935 case OP_ATR_TAG:
9936 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9937 if (noside == EVAL_SKIP)
9938 goto nosideret;
9939
9940 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9941 return value_zero (ada_tag_type (arg1), not_lval);
9942
9943 return ada_value_tag (arg1);
9944
9945 case OP_ATR_MIN:
9946 case OP_ATR_MAX:
9947 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9948 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9949 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9950 if (noside == EVAL_SKIP)
9951 goto nosideret;
9952 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9953 return value_zero (value_type (arg1), not_lval);
9954 else
9955 {
9956 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9957 return value_binop (arg1, arg2,
9958 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9959 }
9960
9961 case OP_ATR_MODULUS:
9962 {
9963 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
9964
9965 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9966 if (noside == EVAL_SKIP)
9967 goto nosideret;
9968
9969 if (!ada_is_modular_type (type_arg))
9970 error (_("'modulus must be applied to modular type"));
9971
9972 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9973 ada_modulus (type_arg));
9974 }
9975
9976
9977 case OP_ATR_POS:
9978 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9979 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9980 if (noside == EVAL_SKIP)
9981 goto nosideret;
9982 type = builtin_type (exp->gdbarch)->builtin_int;
9983 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9984 return value_zero (type, not_lval);
9985 else
9986 return value_pos_atr (type, arg1);
9987
9988 case OP_ATR_SIZE:
9989 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9990 type = value_type (arg1);
9991
9992 /* If the argument is a reference, then dereference its type, since
9993 the user is really asking for the size of the actual object,
9994 not the size of the pointer. */
9995 if (TYPE_CODE (type) == TYPE_CODE_REF)
9996 type = TYPE_TARGET_TYPE (type);
9997
9998 if (noside == EVAL_SKIP)
9999 goto nosideret;
10000 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10001 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
10002 else
10003 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
10004 TARGET_CHAR_BIT * TYPE_LENGTH (type));
10005
10006 case OP_ATR_VAL:
10007 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10008 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10009 type = exp->elts[pc + 2].type;
10010 if (noside == EVAL_SKIP)
10011 goto nosideret;
10012 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10013 return value_zero (type, not_lval);
10014 else
10015 return value_val_atr (type, arg1);
10016
10017 case BINOP_EXP:
10018 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10019 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10020 if (noside == EVAL_SKIP)
10021 goto nosideret;
10022 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10023 return value_zero (value_type (arg1), not_lval);
10024 else
10025 {
10026 /* For integer exponentiation operations,
10027 only promote the first argument. */
10028 if (is_integral_type (value_type (arg2)))
10029 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10030 else
10031 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10032
10033 return value_binop (arg1, arg2, op);
10034 }
10035
10036 case UNOP_PLUS:
10037 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10038 if (noside == EVAL_SKIP)
10039 goto nosideret;
10040 else
10041 return arg1;
10042
10043 case UNOP_ABS:
10044 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10045 if (noside == EVAL_SKIP)
10046 goto nosideret;
10047 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10048 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
10049 return value_neg (arg1);
10050 else
10051 return arg1;
10052
10053 case UNOP_IND:
10054 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10055 if (noside == EVAL_SKIP)
10056 goto nosideret;
10057 type = ada_check_typedef (value_type (arg1));
10058 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10059 {
10060 if (ada_is_array_descriptor_type (type))
10061 /* GDB allows dereferencing GNAT array descriptors. */
10062 {
10063 struct type *arrType = ada_type_of_array (arg1, 0);
10064
10065 if (arrType == NULL)
10066 error (_("Attempt to dereference null array pointer."));
10067 return value_at_lazy (arrType, 0);
10068 }
10069 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10070 || TYPE_CODE (type) == TYPE_CODE_REF
10071 /* In C you can dereference an array to get the 1st elt. */
10072 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
10073 {
10074 type = to_static_fixed_type
10075 (ada_aligned_type
10076 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10077 check_size (type);
10078 return value_zero (type, lval_memory);
10079 }
10080 else if (TYPE_CODE (type) == TYPE_CODE_INT)
10081 {
10082 /* GDB allows dereferencing an int. */
10083 if (expect_type == NULL)
10084 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10085 lval_memory);
10086 else
10087 {
10088 expect_type =
10089 to_static_fixed_type (ada_aligned_type (expect_type));
10090 return value_zero (expect_type, lval_memory);
10091 }
10092 }
10093 else
10094 error (_("Attempt to take contents of a non-pointer value."));
10095 }
10096 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
10097 type = ada_check_typedef (value_type (arg1));
10098
10099 if (TYPE_CODE (type) == TYPE_CODE_INT)
10100 /* GDB allows dereferencing an int. If we were given
10101 the expect_type, then use that as the target type.
10102 Otherwise, assume that the target type is an int. */
10103 {
10104 if (expect_type != NULL)
10105 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10106 arg1));
10107 else
10108 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10109 (CORE_ADDR) value_as_address (arg1));
10110 }
10111
10112 if (ada_is_array_descriptor_type (type))
10113 /* GDB allows dereferencing GNAT array descriptors. */
10114 return ada_coerce_to_simple_array (arg1);
10115 else
10116 return ada_value_ind (arg1);
10117
10118 case STRUCTOP_STRUCT:
10119 tem = longest_to_int (exp->elts[pc + 1].longconst);
10120 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
10121 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10122 if (noside == EVAL_SKIP)
10123 goto nosideret;
10124 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10125 {
10126 struct type *type1 = value_type (arg1);
10127
10128 if (ada_is_tagged_type (type1, 1))
10129 {
10130 type = ada_lookup_struct_elt_type (type1,
10131 &exp->elts[pc + 2].string,
10132 1, 1, NULL);
10133 if (type == NULL)
10134 /* In this case, we assume that the field COULD exist
10135 in some extension of the type. Return an object of
10136 "type" void, which will match any formal
10137 (see ada_type_match). */
10138 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
10139 lval_memory);
10140 }
10141 else
10142 type =
10143 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
10144 0, NULL);
10145
10146 return value_zero (ada_aligned_type (type), lval_memory);
10147 }
10148 else
10149 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
10150 arg1 = unwrap_value (arg1);
10151 return ada_to_fixed_value (arg1);
10152
10153 case OP_TYPE:
10154 /* The value is not supposed to be used. This is here to make it
10155 easier to accommodate expressions that contain types. */
10156 (*pos) += 2;
10157 if (noside == EVAL_SKIP)
10158 goto nosideret;
10159 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10160 return allocate_value (exp->elts[pc + 1].type);
10161 else
10162 error (_("Attempt to use a type name as an expression"));
10163
10164 case OP_AGGREGATE:
10165 case OP_CHOICES:
10166 case OP_OTHERS:
10167 case OP_DISCRETE_RANGE:
10168 case OP_POSITIONAL:
10169 case OP_NAME:
10170 if (noside == EVAL_NORMAL)
10171 switch (op)
10172 {
10173 case OP_NAME:
10174 error (_("Undefined name, ambiguous name, or renaming used in "
10175 "component association: %s."), &exp->elts[pc+2].string);
10176 case OP_AGGREGATE:
10177 error (_("Aggregates only allowed on the right of an assignment"));
10178 default:
10179 internal_error (__FILE__, __LINE__,
10180 _("aggregate apparently mangled"));
10181 }
10182
10183 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10184 *pos += oplen - 1;
10185 for (tem = 0; tem < nargs; tem += 1)
10186 ada_evaluate_subexp (NULL, exp, pos, noside);
10187 goto nosideret;
10188 }
10189
10190 nosideret:
10191 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
10192 }
10193 \f
10194
10195 /* Fixed point */
10196
10197 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
10198 type name that encodes the 'small and 'delta information.
10199 Otherwise, return NULL. */
10200
10201 static const char *
10202 fixed_type_info (struct type *type)
10203 {
10204 const char *name = ada_type_name (type);
10205 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10206
10207 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10208 {
10209 const char *tail = strstr (name, "___XF_");
10210
10211 if (tail == NULL)
10212 return NULL;
10213 else
10214 return tail + 5;
10215 }
10216 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10217 return fixed_type_info (TYPE_TARGET_TYPE (type));
10218 else
10219 return NULL;
10220 }
10221
10222 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
10223
10224 int
10225 ada_is_fixed_point_type (struct type *type)
10226 {
10227 return fixed_type_info (type) != NULL;
10228 }
10229
10230 /* Return non-zero iff TYPE represents a System.Address type. */
10231
10232 int
10233 ada_is_system_address_type (struct type *type)
10234 {
10235 return (TYPE_NAME (type)
10236 && strcmp (TYPE_NAME (type), "system__address") == 0);
10237 }
10238
10239 /* Assuming that TYPE is the representation of an Ada fixed-point
10240 type, return its delta, or -1 if the type is malformed and the
10241 delta cannot be determined. */
10242
10243 DOUBLEST
10244 ada_delta (struct type *type)
10245 {
10246 const char *encoding = fixed_type_info (type);
10247 DOUBLEST num, den;
10248
10249 /* Strictly speaking, num and den are encoded as integer. However,
10250 they may not fit into a long, and they will have to be converted
10251 to DOUBLEST anyway. So scan them as DOUBLEST. */
10252 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10253 &num, &den) < 2)
10254 return -1.0;
10255 else
10256 return num / den;
10257 }
10258
10259 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
10260 factor ('SMALL value) associated with the type. */
10261
10262 static DOUBLEST
10263 scaling_factor (struct type *type)
10264 {
10265 const char *encoding = fixed_type_info (type);
10266 DOUBLEST num0, den0, num1, den1;
10267 int n;
10268
10269 /* Strictly speaking, num's and den's are encoded as integer. However,
10270 they may not fit into a long, and they will have to be converted
10271 to DOUBLEST anyway. So scan them as DOUBLEST. */
10272 n = sscanf (encoding,
10273 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
10274 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10275 &num0, &den0, &num1, &den1);
10276
10277 if (n < 2)
10278 return 1.0;
10279 else if (n == 4)
10280 return num1 / den1;
10281 else
10282 return num0 / den0;
10283 }
10284
10285
10286 /* Assuming that X is the representation of a value of fixed-point
10287 type TYPE, return its floating-point equivalent. */
10288
10289 DOUBLEST
10290 ada_fixed_to_float (struct type *type, LONGEST x)
10291 {
10292 return (DOUBLEST) x *scaling_factor (type);
10293 }
10294
10295 /* The representation of a fixed-point value of type TYPE
10296 corresponding to the value X. */
10297
10298 LONGEST
10299 ada_float_to_fixed (struct type *type, DOUBLEST x)
10300 {
10301 return (LONGEST) (x / scaling_factor (type) + 0.5);
10302 }
10303
10304 \f
10305
10306 /* Range types */
10307
10308 /* Scan STR beginning at position K for a discriminant name, and
10309 return the value of that discriminant field of DVAL in *PX. If
10310 PNEW_K is not null, put the position of the character beyond the
10311 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
10312 not alter *PX and *PNEW_K if unsuccessful. */
10313
10314 static int
10315 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
10316 int *pnew_k)
10317 {
10318 static char *bound_buffer = NULL;
10319 static size_t bound_buffer_len = 0;
10320 char *bound;
10321 char *pend;
10322 struct value *bound_val;
10323
10324 if (dval == NULL || str == NULL || str[k] == '\0')
10325 return 0;
10326
10327 pend = strstr (str + k, "__");
10328 if (pend == NULL)
10329 {
10330 bound = str + k;
10331 k += strlen (bound);
10332 }
10333 else
10334 {
10335 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
10336 bound = bound_buffer;
10337 strncpy (bound_buffer, str + k, pend - (str + k));
10338 bound[pend - (str + k)] = '\0';
10339 k = pend - str;
10340 }
10341
10342 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
10343 if (bound_val == NULL)
10344 return 0;
10345
10346 *px = value_as_long (bound_val);
10347 if (pnew_k != NULL)
10348 *pnew_k = k;
10349 return 1;
10350 }
10351
10352 /* Value of variable named NAME in the current environment. If
10353 no such variable found, then if ERR_MSG is null, returns 0, and
10354 otherwise causes an error with message ERR_MSG. */
10355
10356 static struct value *
10357 get_var_value (char *name, char *err_msg)
10358 {
10359 struct ada_symbol_info *syms;
10360 int nsyms;
10361
10362 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
10363 &syms);
10364
10365 if (nsyms != 1)
10366 {
10367 if (err_msg == NULL)
10368 return 0;
10369 else
10370 error (("%s"), err_msg);
10371 }
10372
10373 return value_of_variable (syms[0].sym, syms[0].block);
10374 }
10375
10376 /* Value of integer variable named NAME in the current environment. If
10377 no such variable found, returns 0, and sets *FLAG to 0. If
10378 successful, sets *FLAG to 1. */
10379
10380 LONGEST
10381 get_int_var_value (char *name, int *flag)
10382 {
10383 struct value *var_val = get_var_value (name, 0);
10384
10385 if (var_val == 0)
10386 {
10387 if (flag != NULL)
10388 *flag = 0;
10389 return 0;
10390 }
10391 else
10392 {
10393 if (flag != NULL)
10394 *flag = 1;
10395 return value_as_long (var_val);
10396 }
10397 }
10398
10399
10400 /* Return a range type whose base type is that of the range type named
10401 NAME in the current environment, and whose bounds are calculated
10402 from NAME according to the GNAT range encoding conventions.
10403 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10404 corresponding range type from debug information; fall back to using it
10405 if symbol lookup fails. If a new type must be created, allocate it
10406 like ORIG_TYPE was. The bounds information, in general, is encoded
10407 in NAME, the base type given in the named range type. */
10408
10409 static struct type *
10410 to_fixed_range_type (struct type *raw_type, struct value *dval)
10411 {
10412 char *name;
10413 struct type *base_type;
10414 char *subtype_info;
10415
10416 gdb_assert (raw_type != NULL);
10417 gdb_assert (TYPE_NAME (raw_type) != NULL);
10418
10419 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
10420 base_type = TYPE_TARGET_TYPE (raw_type);
10421 else
10422 base_type = raw_type;
10423
10424 name = TYPE_NAME (raw_type);
10425 subtype_info = strstr (name, "___XD");
10426 if (subtype_info == NULL)
10427 {
10428 LONGEST L = ada_discrete_type_low_bound (raw_type);
10429 LONGEST U = ada_discrete_type_high_bound (raw_type);
10430
10431 if (L < INT_MIN || U > INT_MAX)
10432 return raw_type;
10433 else
10434 return create_range_type (alloc_type_copy (raw_type), raw_type,
10435 ada_discrete_type_low_bound (raw_type),
10436 ada_discrete_type_high_bound (raw_type));
10437 }
10438 else
10439 {
10440 static char *name_buf = NULL;
10441 static size_t name_len = 0;
10442 int prefix_len = subtype_info - name;
10443 LONGEST L, U;
10444 struct type *type;
10445 char *bounds_str;
10446 int n;
10447
10448 GROW_VECT (name_buf, name_len, prefix_len + 5);
10449 strncpy (name_buf, name, prefix_len);
10450 name_buf[prefix_len] = '\0';
10451
10452 subtype_info += 5;
10453 bounds_str = strchr (subtype_info, '_');
10454 n = 1;
10455
10456 if (*subtype_info == 'L')
10457 {
10458 if (!ada_scan_number (bounds_str, n, &L, &n)
10459 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10460 return raw_type;
10461 if (bounds_str[n] == '_')
10462 n += 2;
10463 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
10464 n += 1;
10465 subtype_info += 1;
10466 }
10467 else
10468 {
10469 int ok;
10470
10471 strcpy (name_buf + prefix_len, "___L");
10472 L = get_int_var_value (name_buf, &ok);
10473 if (!ok)
10474 {
10475 lim_warning (_("Unknown lower bound, using 1."));
10476 L = 1;
10477 }
10478 }
10479
10480 if (*subtype_info == 'U')
10481 {
10482 if (!ada_scan_number (bounds_str, n, &U, &n)
10483 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10484 return raw_type;
10485 }
10486 else
10487 {
10488 int ok;
10489
10490 strcpy (name_buf + prefix_len, "___U");
10491 U = get_int_var_value (name_buf, &ok);
10492 if (!ok)
10493 {
10494 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
10495 U = L;
10496 }
10497 }
10498
10499 type = create_range_type (alloc_type_copy (raw_type), base_type, L, U);
10500 TYPE_NAME (type) = name;
10501 return type;
10502 }
10503 }
10504
10505 /* True iff NAME is the name of a range type. */
10506
10507 int
10508 ada_is_range_type_name (const char *name)
10509 {
10510 return (name != NULL && strstr (name, "___XD"));
10511 }
10512 \f
10513
10514 /* Modular types */
10515
10516 /* True iff TYPE is an Ada modular type. */
10517
10518 int
10519 ada_is_modular_type (struct type *type)
10520 {
10521 struct type *subranged_type = get_base_type (type);
10522
10523 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
10524 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
10525 && TYPE_UNSIGNED (subranged_type));
10526 }
10527
10528 /* Try to determine the lower and upper bounds of the given modular type
10529 using the type name only. Return non-zero and set L and U as the lower
10530 and upper bounds (respectively) if successful. */
10531
10532 int
10533 ada_modulus_from_name (struct type *type, ULONGEST *modulus)
10534 {
10535 char *name = ada_type_name (type);
10536 char *suffix;
10537 int k;
10538 LONGEST U;
10539
10540 if (name == NULL)
10541 return 0;
10542
10543 /* Discrete type bounds are encoded using an __XD suffix. In our case,
10544 we are looking for static bounds, which means an __XDLU suffix.
10545 Moreover, we know that the lower bound of modular types is always
10546 zero, so the actual suffix should start with "__XDLU_0__", and
10547 then be followed by the upper bound value. */
10548 suffix = strstr (name, "__XDLU_0__");
10549 if (suffix == NULL)
10550 return 0;
10551 k = 10;
10552 if (!ada_scan_number (suffix, k, &U, NULL))
10553 return 0;
10554
10555 *modulus = (ULONGEST) U + 1;
10556 return 1;
10557 }
10558
10559 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
10560
10561 ULONGEST
10562 ada_modulus (struct type *type)
10563 {
10564 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
10565 }
10566 \f
10567
10568 /* Ada exception catchpoint support:
10569 ---------------------------------
10570
10571 We support 3 kinds of exception catchpoints:
10572 . catchpoints on Ada exceptions
10573 . catchpoints on unhandled Ada exceptions
10574 . catchpoints on failed assertions
10575
10576 Exceptions raised during failed assertions, or unhandled exceptions
10577 could perfectly be caught with the general catchpoint on Ada exceptions.
10578 However, we can easily differentiate these two special cases, and having
10579 the option to distinguish these two cases from the rest can be useful
10580 to zero-in on certain situations.
10581
10582 Exception catchpoints are a specialized form of breakpoint,
10583 since they rely on inserting breakpoints inside known routines
10584 of the GNAT runtime. The implementation therefore uses a standard
10585 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10586 of breakpoint_ops.
10587
10588 Support in the runtime for exception catchpoints have been changed
10589 a few times already, and these changes affect the implementation
10590 of these catchpoints. In order to be able to support several
10591 variants of the runtime, we use a sniffer that will determine
10592 the runtime variant used by the program being debugged. */
10593
10594 /* The different types of catchpoints that we introduced for catching
10595 Ada exceptions. */
10596
10597 enum exception_catchpoint_kind
10598 {
10599 ex_catch_exception,
10600 ex_catch_exception_unhandled,
10601 ex_catch_assert
10602 };
10603
10604 /* Ada's standard exceptions. */
10605
10606 static char *standard_exc[] = {
10607 "constraint_error",
10608 "program_error",
10609 "storage_error",
10610 "tasking_error"
10611 };
10612
10613 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
10614
10615 /* A structure that describes how to support exception catchpoints
10616 for a given executable. */
10617
10618 struct exception_support_info
10619 {
10620 /* The name of the symbol to break on in order to insert
10621 a catchpoint on exceptions. */
10622 const char *catch_exception_sym;
10623
10624 /* The name of the symbol to break on in order to insert
10625 a catchpoint on unhandled exceptions. */
10626 const char *catch_exception_unhandled_sym;
10627
10628 /* The name of the symbol to break on in order to insert
10629 a catchpoint on failed assertions. */
10630 const char *catch_assert_sym;
10631
10632 /* Assuming that the inferior just triggered an unhandled exception
10633 catchpoint, this function is responsible for returning the address
10634 in inferior memory where the name of that exception is stored.
10635 Return zero if the address could not be computed. */
10636 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
10637 };
10638
10639 static CORE_ADDR ada_unhandled_exception_name_addr (void);
10640 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
10641
10642 /* The following exception support info structure describes how to
10643 implement exception catchpoints with the latest version of the
10644 Ada runtime (as of 2007-03-06). */
10645
10646 static const struct exception_support_info default_exception_support_info =
10647 {
10648 "__gnat_debug_raise_exception", /* catch_exception_sym */
10649 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10650 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
10651 ada_unhandled_exception_name_addr
10652 };
10653
10654 /* The following exception support info structure describes how to
10655 implement exception catchpoints with a slightly older version
10656 of the Ada runtime. */
10657
10658 static const struct exception_support_info exception_support_info_fallback =
10659 {
10660 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
10661 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10662 "system__assertions__raise_assert_failure", /* catch_assert_sym */
10663 ada_unhandled_exception_name_addr_from_raise
10664 };
10665
10666 /* Return nonzero if we can detect the exception support routines
10667 described in EINFO.
10668
10669 This function errors out if an abnormal situation is detected
10670 (for instance, if we find the exception support routines, but
10671 that support is found to be incomplete). */
10672
10673 static int
10674 ada_has_this_exception_support (const struct exception_support_info *einfo)
10675 {
10676 struct symbol *sym;
10677
10678 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10679 that should be compiled with debugging information. As a result, we
10680 expect to find that symbol in the symtabs. */
10681
10682 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
10683 if (sym == NULL)
10684 {
10685 /* Perhaps we did not find our symbol because the Ada runtime was
10686 compiled without debugging info, or simply stripped of it.
10687 It happens on some GNU/Linux distributions for instance, where
10688 users have to install a separate debug package in order to get
10689 the runtime's debugging info. In that situation, let the user
10690 know why we cannot insert an Ada exception catchpoint.
10691
10692 Note: Just for the purpose of inserting our Ada exception
10693 catchpoint, we could rely purely on the associated minimal symbol.
10694 But we would be operating in degraded mode anyway, since we are
10695 still lacking the debugging info needed later on to extract
10696 the name of the exception being raised (this name is printed in
10697 the catchpoint message, and is also used when trying to catch
10698 a specific exception). We do not handle this case for now. */
10699 if (lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL))
10700 error (_("Your Ada runtime appears to be missing some debugging "
10701 "information.\nCannot insert Ada exception catchpoint "
10702 "in this configuration."));
10703
10704 return 0;
10705 }
10706
10707 /* Make sure that the symbol we found corresponds to a function. */
10708
10709 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10710 error (_("Symbol \"%s\" is not a function (class = %d)"),
10711 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
10712
10713 return 1;
10714 }
10715
10716 /* Inspect the Ada runtime and determine which exception info structure
10717 should be used to provide support for exception catchpoints.
10718
10719 This function will always set the per-inferior exception_info,
10720 or raise an error. */
10721
10722 static void
10723 ada_exception_support_info_sniffer (void)
10724 {
10725 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
10726 struct symbol *sym;
10727
10728 /* If the exception info is already known, then no need to recompute it. */
10729 if (data->exception_info != NULL)
10730 return;
10731
10732 /* Check the latest (default) exception support info. */
10733 if (ada_has_this_exception_support (&default_exception_support_info))
10734 {
10735 data->exception_info = &default_exception_support_info;
10736 return;
10737 }
10738
10739 /* Try our fallback exception suport info. */
10740 if (ada_has_this_exception_support (&exception_support_info_fallback))
10741 {
10742 data->exception_info = &exception_support_info_fallback;
10743 return;
10744 }
10745
10746 /* Sometimes, it is normal for us to not be able to find the routine
10747 we are looking for. This happens when the program is linked with
10748 the shared version of the GNAT runtime, and the program has not been
10749 started yet. Inform the user of these two possible causes if
10750 applicable. */
10751
10752 if (ada_update_initial_language (language_unknown) != language_ada)
10753 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
10754
10755 /* If the symbol does not exist, then check that the program is
10756 already started, to make sure that shared libraries have been
10757 loaded. If it is not started, this may mean that the symbol is
10758 in a shared library. */
10759
10760 if (ptid_get_pid (inferior_ptid) == 0)
10761 error (_("Unable to insert catchpoint. Try to start the program first."));
10762
10763 /* At this point, we know that we are debugging an Ada program and
10764 that the inferior has been started, but we still are not able to
10765 find the run-time symbols. That can mean that we are in
10766 configurable run time mode, or that a-except as been optimized
10767 out by the linker... In any case, at this point it is not worth
10768 supporting this feature. */
10769
10770 error (_("Cannot insert Ada exception catchpoints in this configuration."));
10771 }
10772
10773 /* True iff FRAME is very likely to be that of a function that is
10774 part of the runtime system. This is all very heuristic, but is
10775 intended to be used as advice as to what frames are uninteresting
10776 to most users. */
10777
10778 static int
10779 is_known_support_routine (struct frame_info *frame)
10780 {
10781 struct symtab_and_line sal;
10782 char *func_name;
10783 enum language func_lang;
10784 int i;
10785
10786 /* If this code does not have any debugging information (no symtab),
10787 This cannot be any user code. */
10788
10789 find_frame_sal (frame, &sal);
10790 if (sal.symtab == NULL)
10791 return 1;
10792
10793 /* If there is a symtab, but the associated source file cannot be
10794 located, then assume this is not user code: Selecting a frame
10795 for which we cannot display the code would not be very helpful
10796 for the user. This should also take care of case such as VxWorks
10797 where the kernel has some debugging info provided for a few units. */
10798
10799 if (symtab_to_fullname (sal.symtab) == NULL)
10800 return 1;
10801
10802 /* Check the unit filename againt the Ada runtime file naming.
10803 We also check the name of the objfile against the name of some
10804 known system libraries that sometimes come with debugging info
10805 too. */
10806
10807 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
10808 {
10809 re_comp (known_runtime_file_name_patterns[i]);
10810 if (re_exec (sal.symtab->filename))
10811 return 1;
10812 if (sal.symtab->objfile != NULL
10813 && re_exec (sal.symtab->objfile->name))
10814 return 1;
10815 }
10816
10817 /* Check whether the function is a GNAT-generated entity. */
10818
10819 find_frame_funname (frame, &func_name, &func_lang, NULL);
10820 if (func_name == NULL)
10821 return 1;
10822
10823 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
10824 {
10825 re_comp (known_auxiliary_function_name_patterns[i]);
10826 if (re_exec (func_name))
10827 return 1;
10828 }
10829
10830 return 0;
10831 }
10832
10833 /* Find the first frame that contains debugging information and that is not
10834 part of the Ada run-time, starting from FI and moving upward. */
10835
10836 void
10837 ada_find_printable_frame (struct frame_info *fi)
10838 {
10839 for (; fi != NULL; fi = get_prev_frame (fi))
10840 {
10841 if (!is_known_support_routine (fi))
10842 {
10843 select_frame (fi);
10844 break;
10845 }
10846 }
10847
10848 }
10849
10850 /* Assuming that the inferior just triggered an unhandled exception
10851 catchpoint, return the address in inferior memory where the name
10852 of the exception is stored.
10853
10854 Return zero if the address could not be computed. */
10855
10856 static CORE_ADDR
10857 ada_unhandled_exception_name_addr (void)
10858 {
10859 return parse_and_eval_address ("e.full_name");
10860 }
10861
10862 /* Same as ada_unhandled_exception_name_addr, except that this function
10863 should be used when the inferior uses an older version of the runtime,
10864 where the exception name needs to be extracted from a specific frame
10865 several frames up in the callstack. */
10866
10867 static CORE_ADDR
10868 ada_unhandled_exception_name_addr_from_raise (void)
10869 {
10870 int frame_level;
10871 struct frame_info *fi;
10872 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
10873
10874 /* To determine the name of this exception, we need to select
10875 the frame corresponding to RAISE_SYM_NAME. This frame is
10876 at least 3 levels up, so we simply skip the first 3 frames
10877 without checking the name of their associated function. */
10878 fi = get_current_frame ();
10879 for (frame_level = 0; frame_level < 3; frame_level += 1)
10880 if (fi != NULL)
10881 fi = get_prev_frame (fi);
10882
10883 while (fi != NULL)
10884 {
10885 char *func_name;
10886 enum language func_lang;
10887
10888 find_frame_funname (fi, &func_name, &func_lang, NULL);
10889 if (func_name != NULL
10890 && strcmp (func_name, data->exception_info->catch_exception_sym) == 0)
10891 break; /* We found the frame we were looking for... */
10892 fi = get_prev_frame (fi);
10893 }
10894
10895 if (fi == NULL)
10896 return 0;
10897
10898 select_frame (fi);
10899 return parse_and_eval_address ("id.full_name");
10900 }
10901
10902 /* Assuming the inferior just triggered an Ada exception catchpoint
10903 (of any type), return the address in inferior memory where the name
10904 of the exception is stored, if applicable.
10905
10906 Return zero if the address could not be computed, or if not relevant. */
10907
10908 static CORE_ADDR
10909 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
10910 struct breakpoint *b)
10911 {
10912 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
10913
10914 switch (ex)
10915 {
10916 case ex_catch_exception:
10917 return (parse_and_eval_address ("e.full_name"));
10918 break;
10919
10920 case ex_catch_exception_unhandled:
10921 return data->exception_info->unhandled_exception_name_addr ();
10922 break;
10923
10924 case ex_catch_assert:
10925 return 0; /* Exception name is not relevant in this case. */
10926 break;
10927
10928 default:
10929 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10930 break;
10931 }
10932
10933 return 0; /* Should never be reached. */
10934 }
10935
10936 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
10937 any error that ada_exception_name_addr_1 might cause to be thrown.
10938 When an error is intercepted, a warning with the error message is printed,
10939 and zero is returned. */
10940
10941 static CORE_ADDR
10942 ada_exception_name_addr (enum exception_catchpoint_kind ex,
10943 struct breakpoint *b)
10944 {
10945 volatile struct gdb_exception e;
10946 CORE_ADDR result = 0;
10947
10948 TRY_CATCH (e, RETURN_MASK_ERROR)
10949 {
10950 result = ada_exception_name_addr_1 (ex, b);
10951 }
10952
10953 if (e.reason < 0)
10954 {
10955 warning (_("failed to get exception name: %s"), e.message);
10956 return 0;
10957 }
10958
10959 return result;
10960 }
10961
10962 static struct symtab_and_line ada_exception_sal (enum exception_catchpoint_kind,
10963 char *, char **,
10964 const struct breakpoint_ops **);
10965 static char *ada_exception_catchpoint_cond_string (const char *excep_string);
10966
10967 /* Ada catchpoints.
10968
10969 In the case of catchpoints on Ada exceptions, the catchpoint will
10970 stop the target on every exception the program throws. When a user
10971 specifies the name of a specific exception, we translate this
10972 request into a condition expression (in text form), and then parse
10973 it into an expression stored in each of the catchpoint's locations.
10974 We then use this condition to check whether the exception that was
10975 raised is the one the user is interested in. If not, then the
10976 target is resumed again. We store the name of the requested
10977 exception, in order to be able to re-set the condition expression
10978 when symbols change. */
10979
10980 /* An instance of this type is used to represent an Ada catchpoint
10981 breakpoint location. It includes a "struct bp_location" as a kind
10982 of base class; users downcast to "struct bp_location *" when
10983 needed. */
10984
10985 struct ada_catchpoint_location
10986 {
10987 /* The base class. */
10988 struct bp_location base;
10989
10990 /* The condition that checks whether the exception that was raised
10991 is the specific exception the user specified on catchpoint
10992 creation. */
10993 struct expression *excep_cond_expr;
10994 };
10995
10996 /* Implement the DTOR method in the bp_location_ops structure for all
10997 Ada exception catchpoint kinds. */
10998
10999 static void
11000 ada_catchpoint_location_dtor (struct bp_location *bl)
11001 {
11002 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
11003
11004 xfree (al->excep_cond_expr);
11005 }
11006
11007 /* The vtable to be used in Ada catchpoint locations. */
11008
11009 static const struct bp_location_ops ada_catchpoint_location_ops =
11010 {
11011 ada_catchpoint_location_dtor
11012 };
11013
11014 /* An instance of this type is used to represent an Ada catchpoint.
11015 It includes a "struct breakpoint" as a kind of base class; users
11016 downcast to "struct breakpoint *" when needed. */
11017
11018 struct ada_catchpoint
11019 {
11020 /* The base class. */
11021 struct breakpoint base;
11022
11023 /* The name of the specific exception the user specified. */
11024 char *excep_string;
11025 };
11026
11027 /* Parse the exception condition string in the context of each of the
11028 catchpoint's locations, and store them for later evaluation. */
11029
11030 static void
11031 create_excep_cond_exprs (struct ada_catchpoint *c)
11032 {
11033 struct cleanup *old_chain;
11034 struct bp_location *bl;
11035 char *cond_string;
11036
11037 /* Nothing to do if there's no specific exception to catch. */
11038 if (c->excep_string == NULL)
11039 return;
11040
11041 /* Same if there are no locations... */
11042 if (c->base.loc == NULL)
11043 return;
11044
11045 /* Compute the condition expression in text form, from the specific
11046 expection we want to catch. */
11047 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11048 old_chain = make_cleanup (xfree, cond_string);
11049
11050 /* Iterate over all the catchpoint's locations, and parse an
11051 expression for each. */
11052 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11053 {
11054 struct ada_catchpoint_location *ada_loc
11055 = (struct ada_catchpoint_location *) bl;
11056 struct expression *exp = NULL;
11057
11058 if (!bl->shlib_disabled)
11059 {
11060 volatile struct gdb_exception e;
11061 char *s;
11062
11063 s = cond_string;
11064 TRY_CATCH (e, RETURN_MASK_ERROR)
11065 {
11066 exp = parse_exp_1 (&s, block_for_pc (bl->address), 0);
11067 }
11068 if (e.reason < 0)
11069 warning (_("failed to reevaluate internal exception condition "
11070 "for catchpoint %d: %s"),
11071 c->base.number, e.message);
11072 }
11073
11074 ada_loc->excep_cond_expr = exp;
11075 }
11076
11077 do_cleanups (old_chain);
11078 }
11079
11080 /* Implement the DTOR method in the breakpoint_ops structure for all
11081 exception catchpoint kinds. */
11082
11083 static void
11084 dtor_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11085 {
11086 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11087
11088 xfree (c->excep_string);
11089
11090 bkpt_breakpoint_ops.dtor (b);
11091 }
11092
11093 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11094 structure for all exception catchpoint kinds. */
11095
11096 static struct bp_location *
11097 allocate_location_exception (enum exception_catchpoint_kind ex,
11098 struct breakpoint *self)
11099 {
11100 struct ada_catchpoint_location *loc;
11101
11102 loc = XNEW (struct ada_catchpoint_location);
11103 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11104 loc->excep_cond_expr = NULL;
11105 return &loc->base;
11106 }
11107
11108 /* Implement the RE_SET method in the breakpoint_ops structure for all
11109 exception catchpoint kinds. */
11110
11111 static void
11112 re_set_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11113 {
11114 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11115
11116 /* Call the base class's method. This updates the catchpoint's
11117 locations. */
11118 bkpt_breakpoint_ops.re_set (b);
11119
11120 /* Reparse the exception conditional expressions. One for each
11121 location. */
11122 create_excep_cond_exprs (c);
11123 }
11124
11125 /* Returns true if we should stop for this breakpoint hit. If the
11126 user specified a specific exception, we only want to cause a stop
11127 if the program thrown that exception. */
11128
11129 static int
11130 should_stop_exception (const struct bp_location *bl)
11131 {
11132 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11133 const struct ada_catchpoint_location *ada_loc
11134 = (const struct ada_catchpoint_location *) bl;
11135 volatile struct gdb_exception ex;
11136 int stop;
11137
11138 /* With no specific exception, should always stop. */
11139 if (c->excep_string == NULL)
11140 return 1;
11141
11142 if (ada_loc->excep_cond_expr == NULL)
11143 {
11144 /* We will have a NULL expression if back when we were creating
11145 the expressions, this location's had failed to parse. */
11146 return 1;
11147 }
11148
11149 stop = 1;
11150 TRY_CATCH (ex, RETURN_MASK_ALL)
11151 {
11152 struct value *mark;
11153
11154 mark = value_mark ();
11155 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
11156 value_free_to_mark (mark);
11157 }
11158 if (ex.reason < 0)
11159 exception_fprintf (gdb_stderr, ex,
11160 _("Error in testing exception condition:\n"));
11161 return stop;
11162 }
11163
11164 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
11165 for all exception catchpoint kinds. */
11166
11167 static void
11168 check_status_exception (enum exception_catchpoint_kind ex, bpstat bs)
11169 {
11170 bs->stop = should_stop_exception (bs->bp_location_at);
11171 }
11172
11173 /* Implement the PRINT_IT method in the breakpoint_ops structure
11174 for all exception catchpoint kinds. */
11175
11176 static enum print_stop_action
11177 print_it_exception (enum exception_catchpoint_kind ex, bpstat bs)
11178 {
11179 struct ui_out *uiout = current_uiout;
11180 struct breakpoint *b = bs->breakpoint_at;
11181
11182 annotate_catchpoint (b->number);
11183
11184 if (ui_out_is_mi_like_p (uiout))
11185 {
11186 ui_out_field_string (uiout, "reason",
11187 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11188 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
11189 }
11190
11191 ui_out_text (uiout,
11192 b->disposition == disp_del ? "\nTemporary catchpoint "
11193 : "\nCatchpoint ");
11194 ui_out_field_int (uiout, "bkptno", b->number);
11195 ui_out_text (uiout, ", ");
11196
11197 switch (ex)
11198 {
11199 case ex_catch_exception:
11200 case ex_catch_exception_unhandled:
11201 {
11202 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
11203 char exception_name[256];
11204
11205 if (addr != 0)
11206 {
11207 read_memory (addr, exception_name, sizeof (exception_name) - 1);
11208 exception_name [sizeof (exception_name) - 1] = '\0';
11209 }
11210 else
11211 {
11212 /* For some reason, we were unable to read the exception
11213 name. This could happen if the Runtime was compiled
11214 without debugging info, for instance. In that case,
11215 just replace the exception name by the generic string
11216 "exception" - it will read as "an exception" in the
11217 notification we are about to print. */
11218 memcpy (exception_name, "exception", sizeof ("exception"));
11219 }
11220 /* In the case of unhandled exception breakpoints, we print
11221 the exception name as "unhandled EXCEPTION_NAME", to make
11222 it clearer to the user which kind of catchpoint just got
11223 hit. We used ui_out_text to make sure that this extra
11224 info does not pollute the exception name in the MI case. */
11225 if (ex == ex_catch_exception_unhandled)
11226 ui_out_text (uiout, "unhandled ");
11227 ui_out_field_string (uiout, "exception-name", exception_name);
11228 }
11229 break;
11230 case ex_catch_assert:
11231 /* In this case, the name of the exception is not really
11232 important. Just print "failed assertion" to make it clearer
11233 that his program just hit an assertion-failure catchpoint.
11234 We used ui_out_text because this info does not belong in
11235 the MI output. */
11236 ui_out_text (uiout, "failed assertion");
11237 break;
11238 }
11239 ui_out_text (uiout, " at ");
11240 ada_find_printable_frame (get_current_frame ());
11241
11242 return PRINT_SRC_AND_LOC;
11243 }
11244
11245 /* Implement the PRINT_ONE method in the breakpoint_ops structure
11246 for all exception catchpoint kinds. */
11247
11248 static void
11249 print_one_exception (enum exception_catchpoint_kind ex,
11250 struct breakpoint *b, struct bp_location **last_loc)
11251 {
11252 struct ui_out *uiout = current_uiout;
11253 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11254 struct value_print_options opts;
11255
11256 get_user_print_options (&opts);
11257 if (opts.addressprint)
11258 {
11259 annotate_field (4);
11260 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
11261 }
11262
11263 annotate_field (5);
11264 *last_loc = b->loc;
11265 switch (ex)
11266 {
11267 case ex_catch_exception:
11268 if (c->excep_string != NULL)
11269 {
11270 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11271
11272 ui_out_field_string (uiout, "what", msg);
11273 xfree (msg);
11274 }
11275 else
11276 ui_out_field_string (uiout, "what", "all Ada exceptions");
11277
11278 break;
11279
11280 case ex_catch_exception_unhandled:
11281 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
11282 break;
11283
11284 case ex_catch_assert:
11285 ui_out_field_string (uiout, "what", "failed Ada assertions");
11286 break;
11287
11288 default:
11289 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11290 break;
11291 }
11292 }
11293
11294 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
11295 for all exception catchpoint kinds. */
11296
11297 static void
11298 print_mention_exception (enum exception_catchpoint_kind ex,
11299 struct breakpoint *b)
11300 {
11301 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11302 struct ui_out *uiout = current_uiout;
11303
11304 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
11305 : _("Catchpoint "));
11306 ui_out_field_int (uiout, "bkptno", b->number);
11307 ui_out_text (uiout, ": ");
11308
11309 switch (ex)
11310 {
11311 case ex_catch_exception:
11312 if (c->excep_string != NULL)
11313 {
11314 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11315 struct cleanup *old_chain = make_cleanup (xfree, info);
11316
11317 ui_out_text (uiout, info);
11318 do_cleanups (old_chain);
11319 }
11320 else
11321 ui_out_text (uiout, _("all Ada exceptions"));
11322 break;
11323
11324 case ex_catch_exception_unhandled:
11325 ui_out_text (uiout, _("unhandled Ada exceptions"));
11326 break;
11327
11328 case ex_catch_assert:
11329 ui_out_text (uiout, _("failed Ada assertions"));
11330 break;
11331
11332 default:
11333 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11334 break;
11335 }
11336 }
11337
11338 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
11339 for all exception catchpoint kinds. */
11340
11341 static void
11342 print_recreate_exception (enum exception_catchpoint_kind ex,
11343 struct breakpoint *b, struct ui_file *fp)
11344 {
11345 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11346
11347 switch (ex)
11348 {
11349 case ex_catch_exception:
11350 fprintf_filtered (fp, "catch exception");
11351 if (c->excep_string != NULL)
11352 fprintf_filtered (fp, " %s", c->excep_string);
11353 break;
11354
11355 case ex_catch_exception_unhandled:
11356 fprintf_filtered (fp, "catch exception unhandled");
11357 break;
11358
11359 case ex_catch_assert:
11360 fprintf_filtered (fp, "catch assert");
11361 break;
11362
11363 default:
11364 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11365 }
11366 print_recreate_thread (b, fp);
11367 }
11368
11369 /* Virtual table for "catch exception" breakpoints. */
11370
11371 static void
11372 dtor_catch_exception (struct breakpoint *b)
11373 {
11374 dtor_exception (ex_catch_exception, b);
11375 }
11376
11377 static struct bp_location *
11378 allocate_location_catch_exception (struct breakpoint *self)
11379 {
11380 return allocate_location_exception (ex_catch_exception, self);
11381 }
11382
11383 static void
11384 re_set_catch_exception (struct breakpoint *b)
11385 {
11386 re_set_exception (ex_catch_exception, b);
11387 }
11388
11389 static void
11390 check_status_catch_exception (bpstat bs)
11391 {
11392 check_status_exception (ex_catch_exception, bs);
11393 }
11394
11395 static enum print_stop_action
11396 print_it_catch_exception (bpstat bs)
11397 {
11398 return print_it_exception (ex_catch_exception, bs);
11399 }
11400
11401 static void
11402 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
11403 {
11404 print_one_exception (ex_catch_exception, b, last_loc);
11405 }
11406
11407 static void
11408 print_mention_catch_exception (struct breakpoint *b)
11409 {
11410 print_mention_exception (ex_catch_exception, b);
11411 }
11412
11413 static void
11414 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
11415 {
11416 print_recreate_exception (ex_catch_exception, b, fp);
11417 }
11418
11419 static struct breakpoint_ops catch_exception_breakpoint_ops;
11420
11421 /* Virtual table for "catch exception unhandled" breakpoints. */
11422
11423 static void
11424 dtor_catch_exception_unhandled (struct breakpoint *b)
11425 {
11426 dtor_exception (ex_catch_exception_unhandled, b);
11427 }
11428
11429 static struct bp_location *
11430 allocate_location_catch_exception_unhandled (struct breakpoint *self)
11431 {
11432 return allocate_location_exception (ex_catch_exception_unhandled, self);
11433 }
11434
11435 static void
11436 re_set_catch_exception_unhandled (struct breakpoint *b)
11437 {
11438 re_set_exception (ex_catch_exception_unhandled, b);
11439 }
11440
11441 static void
11442 check_status_catch_exception_unhandled (bpstat bs)
11443 {
11444 check_status_exception (ex_catch_exception_unhandled, bs);
11445 }
11446
11447 static enum print_stop_action
11448 print_it_catch_exception_unhandled (bpstat bs)
11449 {
11450 return print_it_exception (ex_catch_exception_unhandled, bs);
11451 }
11452
11453 static void
11454 print_one_catch_exception_unhandled (struct breakpoint *b,
11455 struct bp_location **last_loc)
11456 {
11457 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
11458 }
11459
11460 static void
11461 print_mention_catch_exception_unhandled (struct breakpoint *b)
11462 {
11463 print_mention_exception (ex_catch_exception_unhandled, b);
11464 }
11465
11466 static void
11467 print_recreate_catch_exception_unhandled (struct breakpoint *b,
11468 struct ui_file *fp)
11469 {
11470 print_recreate_exception (ex_catch_exception_unhandled, b, fp);
11471 }
11472
11473 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
11474
11475 /* Virtual table for "catch assert" breakpoints. */
11476
11477 static void
11478 dtor_catch_assert (struct breakpoint *b)
11479 {
11480 dtor_exception (ex_catch_assert, b);
11481 }
11482
11483 static struct bp_location *
11484 allocate_location_catch_assert (struct breakpoint *self)
11485 {
11486 return allocate_location_exception (ex_catch_assert, self);
11487 }
11488
11489 static void
11490 re_set_catch_assert (struct breakpoint *b)
11491 {
11492 return re_set_exception (ex_catch_assert, b);
11493 }
11494
11495 static void
11496 check_status_catch_assert (bpstat bs)
11497 {
11498 check_status_exception (ex_catch_assert, bs);
11499 }
11500
11501 static enum print_stop_action
11502 print_it_catch_assert (bpstat bs)
11503 {
11504 return print_it_exception (ex_catch_assert, bs);
11505 }
11506
11507 static void
11508 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
11509 {
11510 print_one_exception (ex_catch_assert, b, last_loc);
11511 }
11512
11513 static void
11514 print_mention_catch_assert (struct breakpoint *b)
11515 {
11516 print_mention_exception (ex_catch_assert, b);
11517 }
11518
11519 static void
11520 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
11521 {
11522 print_recreate_exception (ex_catch_assert, b, fp);
11523 }
11524
11525 static struct breakpoint_ops catch_assert_breakpoint_ops;
11526
11527 /* Return a newly allocated copy of the first space-separated token
11528 in ARGSP, and then adjust ARGSP to point immediately after that
11529 token.
11530
11531 Return NULL if ARGPS does not contain any more tokens. */
11532
11533 static char *
11534 ada_get_next_arg (char **argsp)
11535 {
11536 char *args = *argsp;
11537 char *end;
11538 char *result;
11539
11540 args = skip_spaces (args);
11541 if (args[0] == '\0')
11542 return NULL; /* No more arguments. */
11543
11544 /* Find the end of the current argument. */
11545
11546 end = skip_to_space (args);
11547
11548 /* Adjust ARGSP to point to the start of the next argument. */
11549
11550 *argsp = end;
11551
11552 /* Make a copy of the current argument and return it. */
11553
11554 result = xmalloc (end - args + 1);
11555 strncpy (result, args, end - args);
11556 result[end - args] = '\0';
11557
11558 return result;
11559 }
11560
11561 /* Split the arguments specified in a "catch exception" command.
11562 Set EX to the appropriate catchpoint type.
11563 Set EXCEP_STRING to the name of the specific exception if
11564 specified by the user. */
11565
11566 static void
11567 catch_ada_exception_command_split (char *args,
11568 enum exception_catchpoint_kind *ex,
11569 char **excep_string)
11570 {
11571 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
11572 char *exception_name;
11573
11574 exception_name = ada_get_next_arg (&args);
11575 make_cleanup (xfree, exception_name);
11576
11577 /* Check that we do not have any more arguments. Anything else
11578 is unexpected. */
11579
11580 args = skip_spaces (args);
11581
11582 if (args[0] != '\0')
11583 error (_("Junk at end of expression"));
11584
11585 discard_cleanups (old_chain);
11586
11587 if (exception_name == NULL)
11588 {
11589 /* Catch all exceptions. */
11590 *ex = ex_catch_exception;
11591 *excep_string = NULL;
11592 }
11593 else if (strcmp (exception_name, "unhandled") == 0)
11594 {
11595 /* Catch unhandled exceptions. */
11596 *ex = ex_catch_exception_unhandled;
11597 *excep_string = NULL;
11598 }
11599 else
11600 {
11601 /* Catch a specific exception. */
11602 *ex = ex_catch_exception;
11603 *excep_string = exception_name;
11604 }
11605 }
11606
11607 /* Return the name of the symbol on which we should break in order to
11608 implement a catchpoint of the EX kind. */
11609
11610 static const char *
11611 ada_exception_sym_name (enum exception_catchpoint_kind ex)
11612 {
11613 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11614
11615 gdb_assert (data->exception_info != NULL);
11616
11617 switch (ex)
11618 {
11619 case ex_catch_exception:
11620 return (data->exception_info->catch_exception_sym);
11621 break;
11622 case ex_catch_exception_unhandled:
11623 return (data->exception_info->catch_exception_unhandled_sym);
11624 break;
11625 case ex_catch_assert:
11626 return (data->exception_info->catch_assert_sym);
11627 break;
11628 default:
11629 internal_error (__FILE__, __LINE__,
11630 _("unexpected catchpoint kind (%d)"), ex);
11631 }
11632 }
11633
11634 /* Return the breakpoint ops "virtual table" used for catchpoints
11635 of the EX kind. */
11636
11637 static const struct breakpoint_ops *
11638 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
11639 {
11640 switch (ex)
11641 {
11642 case ex_catch_exception:
11643 return (&catch_exception_breakpoint_ops);
11644 break;
11645 case ex_catch_exception_unhandled:
11646 return (&catch_exception_unhandled_breakpoint_ops);
11647 break;
11648 case ex_catch_assert:
11649 return (&catch_assert_breakpoint_ops);
11650 break;
11651 default:
11652 internal_error (__FILE__, __LINE__,
11653 _("unexpected catchpoint kind (%d)"), ex);
11654 }
11655 }
11656
11657 /* Return the condition that will be used to match the current exception
11658 being raised with the exception that the user wants to catch. This
11659 assumes that this condition is used when the inferior just triggered
11660 an exception catchpoint.
11661
11662 The string returned is a newly allocated string that needs to be
11663 deallocated later. */
11664
11665 static char *
11666 ada_exception_catchpoint_cond_string (const char *excep_string)
11667 {
11668 int i;
11669
11670 /* The standard exceptions are a special case. They are defined in
11671 runtime units that have been compiled without debugging info; if
11672 EXCEP_STRING is the not-fully-qualified name of a standard
11673 exception (e.g. "constraint_error") then, during the evaluation
11674 of the condition expression, the symbol lookup on this name would
11675 *not* return this standard exception. The catchpoint condition
11676 may then be set only on user-defined exceptions which have the
11677 same not-fully-qualified name (e.g. my_package.constraint_error).
11678
11679 To avoid this unexcepted behavior, these standard exceptions are
11680 systematically prefixed by "standard". This means that "catch
11681 exception constraint_error" is rewritten into "catch exception
11682 standard.constraint_error".
11683
11684 If an exception named contraint_error is defined in another package of
11685 the inferior program, then the only way to specify this exception as a
11686 breakpoint condition is to use its fully-qualified named:
11687 e.g. my_package.constraint_error. */
11688
11689 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
11690 {
11691 if (strcmp (standard_exc [i], excep_string) == 0)
11692 {
11693 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
11694 excep_string);
11695 }
11696 }
11697 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
11698 }
11699
11700 /* Return the symtab_and_line that should be used to insert an exception
11701 catchpoint of the TYPE kind.
11702
11703 EXCEP_STRING should contain the name of a specific exception that
11704 the catchpoint should catch, or NULL otherwise.
11705
11706 ADDR_STRING returns the name of the function where the real
11707 breakpoint that implements the catchpoints is set, depending on the
11708 type of catchpoint we need to create. */
11709
11710 static struct symtab_and_line
11711 ada_exception_sal (enum exception_catchpoint_kind ex, char *excep_string,
11712 char **addr_string, const struct breakpoint_ops **ops)
11713 {
11714 const char *sym_name;
11715 struct symbol *sym;
11716
11717 /* First, find out which exception support info to use. */
11718 ada_exception_support_info_sniffer ();
11719
11720 /* Then lookup the function on which we will break in order to catch
11721 the Ada exceptions requested by the user. */
11722 sym_name = ada_exception_sym_name (ex);
11723 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
11724
11725 /* We can assume that SYM is not NULL at this stage. If the symbol
11726 did not exist, ada_exception_support_info_sniffer would have
11727 raised an exception.
11728
11729 Also, ada_exception_support_info_sniffer should have already
11730 verified that SYM is a function symbol. */
11731 gdb_assert (sym != NULL);
11732 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
11733
11734 /* Set ADDR_STRING. */
11735 *addr_string = xstrdup (sym_name);
11736
11737 /* Set OPS. */
11738 *ops = ada_exception_breakpoint_ops (ex);
11739
11740 return find_function_start_sal (sym, 1);
11741 }
11742
11743 /* Parse the arguments (ARGS) of the "catch exception" command.
11744
11745 If the user asked the catchpoint to catch only a specific
11746 exception, then save the exception name in ADDR_STRING.
11747
11748 See ada_exception_sal for a description of all the remaining
11749 function arguments of this function. */
11750
11751 static struct symtab_and_line
11752 ada_decode_exception_location (char *args, char **addr_string,
11753 char **excep_string,
11754 const struct breakpoint_ops **ops)
11755 {
11756 enum exception_catchpoint_kind ex;
11757
11758 catch_ada_exception_command_split (args, &ex, excep_string);
11759 return ada_exception_sal (ex, *excep_string, addr_string, ops);
11760 }
11761
11762 /* Create an Ada exception catchpoint. */
11763
11764 static void
11765 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
11766 struct symtab_and_line sal,
11767 char *addr_string,
11768 char *excep_string,
11769 const struct breakpoint_ops *ops,
11770 int tempflag,
11771 int from_tty)
11772 {
11773 struct ada_catchpoint *c;
11774
11775 c = XNEW (struct ada_catchpoint);
11776 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
11777 ops, tempflag, from_tty);
11778 c->excep_string = excep_string;
11779 create_excep_cond_exprs (c);
11780 install_breakpoint (0, &c->base, 1);
11781 }
11782
11783 /* Implement the "catch exception" command. */
11784
11785 static void
11786 catch_ada_exception_command (char *arg, int from_tty,
11787 struct cmd_list_element *command)
11788 {
11789 struct gdbarch *gdbarch = get_current_arch ();
11790 int tempflag;
11791 struct symtab_and_line sal;
11792 char *addr_string = NULL;
11793 char *excep_string = NULL;
11794 const struct breakpoint_ops *ops = NULL;
11795
11796 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11797
11798 if (!arg)
11799 arg = "";
11800 sal = ada_decode_exception_location (arg, &addr_string, &excep_string, &ops);
11801 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
11802 excep_string, ops, tempflag, from_tty);
11803 }
11804
11805 static struct symtab_and_line
11806 ada_decode_assert_location (char *args, char **addr_string,
11807 const struct breakpoint_ops **ops)
11808 {
11809 /* Check that no argument where provided at the end of the command. */
11810
11811 if (args != NULL)
11812 {
11813 args = skip_spaces (args);
11814 if (*args != '\0')
11815 error (_("Junk at end of arguments."));
11816 }
11817
11818 return ada_exception_sal (ex_catch_assert, NULL, addr_string, ops);
11819 }
11820
11821 /* Implement the "catch assert" command. */
11822
11823 static void
11824 catch_assert_command (char *arg, int from_tty,
11825 struct cmd_list_element *command)
11826 {
11827 struct gdbarch *gdbarch = get_current_arch ();
11828 int tempflag;
11829 struct symtab_and_line sal;
11830 char *addr_string = NULL;
11831 const struct breakpoint_ops *ops = NULL;
11832
11833 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11834
11835 if (!arg)
11836 arg = "";
11837 sal = ada_decode_assert_location (arg, &addr_string, &ops);
11838 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
11839 NULL, ops, tempflag, from_tty);
11840 }
11841 /* Operators */
11842 /* Information about operators given special treatment in functions
11843 below. */
11844 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
11845
11846 #define ADA_OPERATORS \
11847 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
11848 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
11849 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
11850 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
11851 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
11852 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
11853 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
11854 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
11855 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
11856 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
11857 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
11858 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
11859 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
11860 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
11861 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
11862 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
11863 OP_DEFN (OP_OTHERS, 1, 1, 0) \
11864 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
11865 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
11866
11867 static void
11868 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
11869 int *argsp)
11870 {
11871 switch (exp->elts[pc - 1].opcode)
11872 {
11873 default:
11874 operator_length_standard (exp, pc, oplenp, argsp);
11875 break;
11876
11877 #define OP_DEFN(op, len, args, binop) \
11878 case op: *oplenp = len; *argsp = args; break;
11879 ADA_OPERATORS;
11880 #undef OP_DEFN
11881
11882 case OP_AGGREGATE:
11883 *oplenp = 3;
11884 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
11885 break;
11886
11887 case OP_CHOICES:
11888 *oplenp = 3;
11889 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
11890 break;
11891 }
11892 }
11893
11894 /* Implementation of the exp_descriptor method operator_check. */
11895
11896 static int
11897 ada_operator_check (struct expression *exp, int pos,
11898 int (*objfile_func) (struct objfile *objfile, void *data),
11899 void *data)
11900 {
11901 const union exp_element *const elts = exp->elts;
11902 struct type *type = NULL;
11903
11904 switch (elts[pos].opcode)
11905 {
11906 case UNOP_IN_RANGE:
11907 case UNOP_QUAL:
11908 type = elts[pos + 1].type;
11909 break;
11910
11911 default:
11912 return operator_check_standard (exp, pos, objfile_func, data);
11913 }
11914
11915 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
11916
11917 if (type && TYPE_OBJFILE (type)
11918 && (*objfile_func) (TYPE_OBJFILE (type), data))
11919 return 1;
11920
11921 return 0;
11922 }
11923
11924 static char *
11925 ada_op_name (enum exp_opcode opcode)
11926 {
11927 switch (opcode)
11928 {
11929 default:
11930 return op_name_standard (opcode);
11931
11932 #define OP_DEFN(op, len, args, binop) case op: return #op;
11933 ADA_OPERATORS;
11934 #undef OP_DEFN
11935
11936 case OP_AGGREGATE:
11937 return "OP_AGGREGATE";
11938 case OP_CHOICES:
11939 return "OP_CHOICES";
11940 case OP_NAME:
11941 return "OP_NAME";
11942 }
11943 }
11944
11945 /* As for operator_length, but assumes PC is pointing at the first
11946 element of the operator, and gives meaningful results only for the
11947 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
11948
11949 static void
11950 ada_forward_operator_length (struct expression *exp, int pc,
11951 int *oplenp, int *argsp)
11952 {
11953 switch (exp->elts[pc].opcode)
11954 {
11955 default:
11956 *oplenp = *argsp = 0;
11957 break;
11958
11959 #define OP_DEFN(op, len, args, binop) \
11960 case op: *oplenp = len; *argsp = args; break;
11961 ADA_OPERATORS;
11962 #undef OP_DEFN
11963
11964 case OP_AGGREGATE:
11965 *oplenp = 3;
11966 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
11967 break;
11968
11969 case OP_CHOICES:
11970 *oplenp = 3;
11971 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
11972 break;
11973
11974 case OP_STRING:
11975 case OP_NAME:
11976 {
11977 int len = longest_to_int (exp->elts[pc + 1].longconst);
11978
11979 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
11980 *argsp = 0;
11981 break;
11982 }
11983 }
11984 }
11985
11986 static int
11987 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
11988 {
11989 enum exp_opcode op = exp->elts[elt].opcode;
11990 int oplen, nargs;
11991 int pc = elt;
11992 int i;
11993
11994 ada_forward_operator_length (exp, elt, &oplen, &nargs);
11995
11996 switch (op)
11997 {
11998 /* Ada attributes ('Foo). */
11999 case OP_ATR_FIRST:
12000 case OP_ATR_LAST:
12001 case OP_ATR_LENGTH:
12002 case OP_ATR_IMAGE:
12003 case OP_ATR_MAX:
12004 case OP_ATR_MIN:
12005 case OP_ATR_MODULUS:
12006 case OP_ATR_POS:
12007 case OP_ATR_SIZE:
12008 case OP_ATR_TAG:
12009 case OP_ATR_VAL:
12010 break;
12011
12012 case UNOP_IN_RANGE:
12013 case UNOP_QUAL:
12014 /* XXX: gdb_sprint_host_address, type_sprint */
12015 fprintf_filtered (stream, _("Type @"));
12016 gdb_print_host_address (exp->elts[pc + 1].type, stream);
12017 fprintf_filtered (stream, " (");
12018 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
12019 fprintf_filtered (stream, ")");
12020 break;
12021 case BINOP_IN_BOUNDS:
12022 fprintf_filtered (stream, " (%d)",
12023 longest_to_int (exp->elts[pc + 2].longconst));
12024 break;
12025 case TERNOP_IN_RANGE:
12026 break;
12027
12028 case OP_AGGREGATE:
12029 case OP_OTHERS:
12030 case OP_DISCRETE_RANGE:
12031 case OP_POSITIONAL:
12032 case OP_CHOICES:
12033 break;
12034
12035 case OP_NAME:
12036 case OP_STRING:
12037 {
12038 char *name = &exp->elts[elt + 2].string;
12039 int len = longest_to_int (exp->elts[elt + 1].longconst);
12040
12041 fprintf_filtered (stream, "Text: `%.*s'", len, name);
12042 break;
12043 }
12044
12045 default:
12046 return dump_subexp_body_standard (exp, stream, elt);
12047 }
12048
12049 elt += oplen;
12050 for (i = 0; i < nargs; i += 1)
12051 elt = dump_subexp (exp, stream, elt);
12052
12053 return elt;
12054 }
12055
12056 /* The Ada extension of print_subexp (q.v.). */
12057
12058 static void
12059 ada_print_subexp (struct expression *exp, int *pos,
12060 struct ui_file *stream, enum precedence prec)
12061 {
12062 int oplen, nargs, i;
12063 int pc = *pos;
12064 enum exp_opcode op = exp->elts[pc].opcode;
12065
12066 ada_forward_operator_length (exp, pc, &oplen, &nargs);
12067
12068 *pos += oplen;
12069 switch (op)
12070 {
12071 default:
12072 *pos -= oplen;
12073 print_subexp_standard (exp, pos, stream, prec);
12074 return;
12075
12076 case OP_VAR_VALUE:
12077 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
12078 return;
12079
12080 case BINOP_IN_BOUNDS:
12081 /* XXX: sprint_subexp */
12082 print_subexp (exp, pos, stream, PREC_SUFFIX);
12083 fputs_filtered (" in ", stream);
12084 print_subexp (exp, pos, stream, PREC_SUFFIX);
12085 fputs_filtered ("'range", stream);
12086 if (exp->elts[pc + 1].longconst > 1)
12087 fprintf_filtered (stream, "(%ld)",
12088 (long) exp->elts[pc + 1].longconst);
12089 return;
12090
12091 case TERNOP_IN_RANGE:
12092 if (prec >= PREC_EQUAL)
12093 fputs_filtered ("(", stream);
12094 /* XXX: sprint_subexp */
12095 print_subexp (exp, pos, stream, PREC_SUFFIX);
12096 fputs_filtered (" in ", stream);
12097 print_subexp (exp, pos, stream, PREC_EQUAL);
12098 fputs_filtered (" .. ", stream);
12099 print_subexp (exp, pos, stream, PREC_EQUAL);
12100 if (prec >= PREC_EQUAL)
12101 fputs_filtered (")", stream);
12102 return;
12103
12104 case OP_ATR_FIRST:
12105 case OP_ATR_LAST:
12106 case OP_ATR_LENGTH:
12107 case OP_ATR_IMAGE:
12108 case OP_ATR_MAX:
12109 case OP_ATR_MIN:
12110 case OP_ATR_MODULUS:
12111 case OP_ATR_POS:
12112 case OP_ATR_SIZE:
12113 case OP_ATR_TAG:
12114 case OP_ATR_VAL:
12115 if (exp->elts[*pos].opcode == OP_TYPE)
12116 {
12117 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
12118 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
12119 *pos += 3;
12120 }
12121 else
12122 print_subexp (exp, pos, stream, PREC_SUFFIX);
12123 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
12124 if (nargs > 1)
12125 {
12126 int tem;
12127
12128 for (tem = 1; tem < nargs; tem += 1)
12129 {
12130 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
12131 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
12132 }
12133 fputs_filtered (")", stream);
12134 }
12135 return;
12136
12137 case UNOP_QUAL:
12138 type_print (exp->elts[pc + 1].type, "", stream, 0);
12139 fputs_filtered ("'(", stream);
12140 print_subexp (exp, pos, stream, PREC_PREFIX);
12141 fputs_filtered (")", stream);
12142 return;
12143
12144 case UNOP_IN_RANGE:
12145 /* XXX: sprint_subexp */
12146 print_subexp (exp, pos, stream, PREC_SUFFIX);
12147 fputs_filtered (" in ", stream);
12148 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
12149 return;
12150
12151 case OP_DISCRETE_RANGE:
12152 print_subexp (exp, pos, stream, PREC_SUFFIX);
12153 fputs_filtered ("..", stream);
12154 print_subexp (exp, pos, stream, PREC_SUFFIX);
12155 return;
12156
12157 case OP_OTHERS:
12158 fputs_filtered ("others => ", stream);
12159 print_subexp (exp, pos, stream, PREC_SUFFIX);
12160 return;
12161
12162 case OP_CHOICES:
12163 for (i = 0; i < nargs-1; i += 1)
12164 {
12165 if (i > 0)
12166 fputs_filtered ("|", stream);
12167 print_subexp (exp, pos, stream, PREC_SUFFIX);
12168 }
12169 fputs_filtered (" => ", stream);
12170 print_subexp (exp, pos, stream, PREC_SUFFIX);
12171 return;
12172
12173 case OP_POSITIONAL:
12174 print_subexp (exp, pos, stream, PREC_SUFFIX);
12175 return;
12176
12177 case OP_AGGREGATE:
12178 fputs_filtered ("(", stream);
12179 for (i = 0; i < nargs; i += 1)
12180 {
12181 if (i > 0)
12182 fputs_filtered (", ", stream);
12183 print_subexp (exp, pos, stream, PREC_SUFFIX);
12184 }
12185 fputs_filtered (")", stream);
12186 return;
12187 }
12188 }
12189
12190 /* Table mapping opcodes into strings for printing operators
12191 and precedences of the operators. */
12192
12193 static const struct op_print ada_op_print_tab[] = {
12194 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
12195 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
12196 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
12197 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
12198 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
12199 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
12200 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
12201 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
12202 {"<=", BINOP_LEQ, PREC_ORDER, 0},
12203 {">=", BINOP_GEQ, PREC_ORDER, 0},
12204 {">", BINOP_GTR, PREC_ORDER, 0},
12205 {"<", BINOP_LESS, PREC_ORDER, 0},
12206 {">>", BINOP_RSH, PREC_SHIFT, 0},
12207 {"<<", BINOP_LSH, PREC_SHIFT, 0},
12208 {"+", BINOP_ADD, PREC_ADD, 0},
12209 {"-", BINOP_SUB, PREC_ADD, 0},
12210 {"&", BINOP_CONCAT, PREC_ADD, 0},
12211 {"*", BINOP_MUL, PREC_MUL, 0},
12212 {"/", BINOP_DIV, PREC_MUL, 0},
12213 {"rem", BINOP_REM, PREC_MUL, 0},
12214 {"mod", BINOP_MOD, PREC_MUL, 0},
12215 {"**", BINOP_EXP, PREC_REPEAT, 0},
12216 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
12217 {"-", UNOP_NEG, PREC_PREFIX, 0},
12218 {"+", UNOP_PLUS, PREC_PREFIX, 0},
12219 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
12220 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
12221 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
12222 {".all", UNOP_IND, PREC_SUFFIX, 1},
12223 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
12224 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
12225 {NULL, 0, 0, 0}
12226 };
12227 \f
12228 enum ada_primitive_types {
12229 ada_primitive_type_int,
12230 ada_primitive_type_long,
12231 ada_primitive_type_short,
12232 ada_primitive_type_char,
12233 ada_primitive_type_float,
12234 ada_primitive_type_double,
12235 ada_primitive_type_void,
12236 ada_primitive_type_long_long,
12237 ada_primitive_type_long_double,
12238 ada_primitive_type_natural,
12239 ada_primitive_type_positive,
12240 ada_primitive_type_system_address,
12241 nr_ada_primitive_types
12242 };
12243
12244 static void
12245 ada_language_arch_info (struct gdbarch *gdbarch,
12246 struct language_arch_info *lai)
12247 {
12248 const struct builtin_type *builtin = builtin_type (gdbarch);
12249
12250 lai->primitive_type_vector
12251 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
12252 struct type *);
12253
12254 lai->primitive_type_vector [ada_primitive_type_int]
12255 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12256 0, "integer");
12257 lai->primitive_type_vector [ada_primitive_type_long]
12258 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
12259 0, "long_integer");
12260 lai->primitive_type_vector [ada_primitive_type_short]
12261 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
12262 0, "short_integer");
12263 lai->string_char_type
12264 = lai->primitive_type_vector [ada_primitive_type_char]
12265 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
12266 lai->primitive_type_vector [ada_primitive_type_float]
12267 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
12268 "float", NULL);
12269 lai->primitive_type_vector [ada_primitive_type_double]
12270 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12271 "long_float", NULL);
12272 lai->primitive_type_vector [ada_primitive_type_long_long]
12273 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
12274 0, "long_long_integer");
12275 lai->primitive_type_vector [ada_primitive_type_long_double]
12276 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12277 "long_long_float", NULL);
12278 lai->primitive_type_vector [ada_primitive_type_natural]
12279 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12280 0, "natural");
12281 lai->primitive_type_vector [ada_primitive_type_positive]
12282 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12283 0, "positive");
12284 lai->primitive_type_vector [ada_primitive_type_void]
12285 = builtin->builtin_void;
12286
12287 lai->primitive_type_vector [ada_primitive_type_system_address]
12288 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
12289 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
12290 = "system__address";
12291
12292 lai->bool_type_symbol = NULL;
12293 lai->bool_type_default = builtin->builtin_bool;
12294 }
12295 \f
12296 /* Language vector */
12297
12298 /* Not really used, but needed in the ada_language_defn. */
12299
12300 static void
12301 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
12302 {
12303 ada_emit_char (c, type, stream, quoter, 1);
12304 }
12305
12306 static int
12307 parse (void)
12308 {
12309 warnings_issued = 0;
12310 return ada_parse ();
12311 }
12312
12313 static const struct exp_descriptor ada_exp_descriptor = {
12314 ada_print_subexp,
12315 ada_operator_length,
12316 ada_operator_check,
12317 ada_op_name,
12318 ada_dump_subexp_body,
12319 ada_evaluate_subexp
12320 };
12321
12322 const struct language_defn ada_language_defn = {
12323 "ada", /* Language name */
12324 language_ada,
12325 range_check_off,
12326 type_check_off,
12327 case_sensitive_on, /* Yes, Ada is case-insensitive, but
12328 that's not quite what this means. */
12329 array_row_major,
12330 macro_expansion_no,
12331 &ada_exp_descriptor,
12332 parse,
12333 ada_error,
12334 resolve,
12335 ada_printchar, /* Print a character constant */
12336 ada_printstr, /* Function to print string constant */
12337 emit_char, /* Function to print single char (not used) */
12338 ada_print_type, /* Print a type using appropriate syntax */
12339 ada_print_typedef, /* Print a typedef using appropriate syntax */
12340 ada_val_print, /* Print a value using appropriate syntax */
12341 ada_value_print, /* Print a top-level value */
12342 NULL, /* Language specific skip_trampoline */
12343 NULL, /* name_of_this */
12344 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
12345 basic_lookup_transparent_type, /* lookup_transparent_type */
12346 ada_la_decode, /* Language specific symbol demangler */
12347 NULL, /* Language specific
12348 class_name_from_physname */
12349 ada_op_print_tab, /* expression operators for printing */
12350 0, /* c-style arrays */
12351 1, /* String lower bound */
12352 ada_get_gdb_completer_word_break_characters,
12353 ada_make_symbol_completion_list,
12354 ada_language_arch_info,
12355 ada_print_array_index,
12356 default_pass_by_reference,
12357 c_get_string,
12358 compare_names,
12359 ada_iterate_over_symbols,
12360 LANG_MAGIC
12361 };
12362
12363 /* Provide a prototype to silence -Wmissing-prototypes. */
12364 extern initialize_file_ftype _initialize_ada_language;
12365
12366 /* Command-list for the "set/show ada" prefix command. */
12367 static struct cmd_list_element *set_ada_list;
12368 static struct cmd_list_element *show_ada_list;
12369
12370 /* Implement the "set ada" prefix command. */
12371
12372 static void
12373 set_ada_command (char *arg, int from_tty)
12374 {
12375 printf_unfiltered (_(\
12376 "\"set ada\" must be followed by the name of a setting.\n"));
12377 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
12378 }
12379
12380 /* Implement the "show ada" prefix command. */
12381
12382 static void
12383 show_ada_command (char *args, int from_tty)
12384 {
12385 cmd_show_list (show_ada_list, from_tty, "");
12386 }
12387
12388 static void
12389 initialize_ada_catchpoint_ops (void)
12390 {
12391 struct breakpoint_ops *ops;
12392
12393 initialize_breakpoint_ops ();
12394
12395 ops = &catch_exception_breakpoint_ops;
12396 *ops = bkpt_breakpoint_ops;
12397 ops->dtor = dtor_catch_exception;
12398 ops->allocate_location = allocate_location_catch_exception;
12399 ops->re_set = re_set_catch_exception;
12400 ops->check_status = check_status_catch_exception;
12401 ops->print_it = print_it_catch_exception;
12402 ops->print_one = print_one_catch_exception;
12403 ops->print_mention = print_mention_catch_exception;
12404 ops->print_recreate = print_recreate_catch_exception;
12405
12406 ops = &catch_exception_unhandled_breakpoint_ops;
12407 *ops = bkpt_breakpoint_ops;
12408 ops->dtor = dtor_catch_exception_unhandled;
12409 ops->allocate_location = allocate_location_catch_exception_unhandled;
12410 ops->re_set = re_set_catch_exception_unhandled;
12411 ops->check_status = check_status_catch_exception_unhandled;
12412 ops->print_it = print_it_catch_exception_unhandled;
12413 ops->print_one = print_one_catch_exception_unhandled;
12414 ops->print_mention = print_mention_catch_exception_unhandled;
12415 ops->print_recreate = print_recreate_catch_exception_unhandled;
12416
12417 ops = &catch_assert_breakpoint_ops;
12418 *ops = bkpt_breakpoint_ops;
12419 ops->dtor = dtor_catch_assert;
12420 ops->allocate_location = allocate_location_catch_assert;
12421 ops->re_set = re_set_catch_assert;
12422 ops->check_status = check_status_catch_assert;
12423 ops->print_it = print_it_catch_assert;
12424 ops->print_one = print_one_catch_assert;
12425 ops->print_mention = print_mention_catch_assert;
12426 ops->print_recreate = print_recreate_catch_assert;
12427 }
12428
12429 void
12430 _initialize_ada_language (void)
12431 {
12432 add_language (&ada_language_defn);
12433
12434 initialize_ada_catchpoint_ops ();
12435
12436 add_prefix_cmd ("ada", no_class, set_ada_command,
12437 _("Prefix command for changing Ada-specfic settings"),
12438 &set_ada_list, "set ada ", 0, &setlist);
12439
12440 add_prefix_cmd ("ada", no_class, show_ada_command,
12441 _("Generic command for showing Ada-specific settings."),
12442 &show_ada_list, "show ada ", 0, &showlist);
12443
12444 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
12445 &trust_pad_over_xvs, _("\
12446 Enable or disable an optimization trusting PAD types over XVS types"), _("\
12447 Show whether an optimization trusting PAD types over XVS types is activated"),
12448 _("\
12449 This is related to the encoding used by the GNAT compiler. The debugger\n\
12450 should normally trust the contents of PAD types, but certain older versions\n\
12451 of GNAT have a bug that sometimes causes the information in the PAD type\n\
12452 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
12453 work around this bug. It is always safe to turn this option \"off\", but\n\
12454 this incurs a slight performance penalty, so it is recommended to NOT change\n\
12455 this option to \"off\" unless necessary."),
12456 NULL, NULL, &set_ada_list, &show_ada_list);
12457
12458 add_catch_command ("exception", _("\
12459 Catch Ada exceptions, when raised.\n\
12460 With an argument, catch only exceptions with the given name."),
12461 catch_ada_exception_command,
12462 NULL,
12463 CATCH_PERMANENT,
12464 CATCH_TEMPORARY);
12465 add_catch_command ("assert", _("\
12466 Catch failed Ada assertions, when raised.\n\
12467 With an argument, catch only exceptions with the given name."),
12468 catch_assert_command,
12469 NULL,
12470 CATCH_PERMANENT,
12471 CATCH_TEMPORARY);
12472
12473 varsize_limit = 65536;
12474
12475 obstack_init (&symbol_list_obstack);
12476
12477 decoded_names_store = htab_create_alloc
12478 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
12479 NULL, xcalloc, xfree);
12480
12481 /* Setup per-inferior data. */
12482 observer_attach_inferior_exit (ada_inferior_exit);
12483 ada_inferior_data
12484 = register_inferior_data_with_cleanup (ada_inferior_data_cleanup);
12485 }
This page took 0.293352 seconds and 4 git commands to generate.