137f4a9b5bdc3e62e008be9fc6680cc62a2b5b2c
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "gdb_regex.h"
24 #include "frame.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcmd.h"
28 #include "expression.h"
29 #include "parser-defs.h"
30 #include "language.h"
31 #include "varobj.h"
32 #include "inferior.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "breakpoint.h"
36 #include "gdbcore.h"
37 #include "hashtab.h"
38 #include "gdb_obstack.h"
39 #include "ada-lang.h"
40 #include "completer.h"
41 #include "ui-out.h"
42 #include "block.h"
43 #include "infcall.h"
44 #include "annotate.h"
45 #include "valprint.h"
46 #include "source.h"
47 #include "observable.h"
48 #include "stack.h"
49 #include "typeprint.h"
50 #include "namespace.h"
51 #include "cli/cli-style.h"
52
53 #include "value.h"
54 #include "mi/mi-common.h"
55 #include "arch-utils.h"
56 #include "cli/cli-utils.h"
57 #include "gdbsupport/function-view.h"
58 #include "gdbsupport/byte-vector.h"
59 #include <algorithm>
60
61 /* Define whether or not the C operator '/' truncates towards zero for
62 differently signed operands (truncation direction is undefined in C).
63 Copied from valarith.c. */
64
65 #ifndef TRUNCATION_TOWARDS_ZERO
66 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
67 #endif
68
69 static struct type *desc_base_type (struct type *);
70
71 static struct type *desc_bounds_type (struct type *);
72
73 static struct value *desc_bounds (struct value *);
74
75 static int fat_pntr_bounds_bitpos (struct type *);
76
77 static int fat_pntr_bounds_bitsize (struct type *);
78
79 static struct type *desc_data_target_type (struct type *);
80
81 static struct value *desc_data (struct value *);
82
83 static int fat_pntr_data_bitpos (struct type *);
84
85 static int fat_pntr_data_bitsize (struct type *);
86
87 static struct value *desc_one_bound (struct value *, int, int);
88
89 static int desc_bound_bitpos (struct type *, int, int);
90
91 static int desc_bound_bitsize (struct type *, int, int);
92
93 static struct type *desc_index_type (struct type *, int);
94
95 static int desc_arity (struct type *);
96
97 static int ada_type_match (struct type *, struct type *, int);
98
99 static int ada_args_match (struct symbol *, struct value **, int);
100
101 static struct value *make_array_descriptor (struct type *, struct value *);
102
103 static void ada_add_block_symbols (struct obstack *,
104 const struct block *,
105 const lookup_name_info &lookup_name,
106 domain_enum, struct objfile *);
107
108 static void ada_add_all_symbols (struct obstack *, const struct block *,
109 const lookup_name_info &lookup_name,
110 domain_enum, int, int *);
111
112 static int is_nonfunction (struct block_symbol *, int);
113
114 static void add_defn_to_vec (struct obstack *, struct symbol *,
115 const struct block *);
116
117 static int num_defns_collected (struct obstack *);
118
119 static struct block_symbol *defns_collected (struct obstack *, int);
120
121 static struct value *resolve_subexp (expression_up *, int *, int,
122 struct type *, int,
123 innermost_block_tracker *);
124
125 static void replace_operator_with_call (expression_up *, int, int, int,
126 struct symbol *, const struct block *);
127
128 static int possible_user_operator_p (enum exp_opcode, struct value **);
129
130 static const char *ada_op_name (enum exp_opcode);
131
132 static const char *ada_decoded_op_name (enum exp_opcode);
133
134 static int numeric_type_p (struct type *);
135
136 static int integer_type_p (struct type *);
137
138 static int scalar_type_p (struct type *);
139
140 static int discrete_type_p (struct type *);
141
142 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
143 int, int);
144
145 static struct value *evaluate_subexp_type (struct expression *, int *);
146
147 static struct type *ada_find_parallel_type_with_name (struct type *,
148 const char *);
149
150 static int is_dynamic_field (struct type *, int);
151
152 static struct type *to_fixed_variant_branch_type (struct type *,
153 const gdb_byte *,
154 CORE_ADDR, struct value *);
155
156 static struct type *to_fixed_array_type (struct type *, struct value *, int);
157
158 static struct type *to_fixed_range_type (struct type *, struct value *);
159
160 static struct type *to_static_fixed_type (struct type *);
161 static struct type *static_unwrap_type (struct type *type);
162
163 static struct value *unwrap_value (struct value *);
164
165 static struct type *constrained_packed_array_type (struct type *, long *);
166
167 static struct type *decode_constrained_packed_array_type (struct type *);
168
169 static long decode_packed_array_bitsize (struct type *);
170
171 static struct value *decode_constrained_packed_array (struct value *);
172
173 static int ada_is_packed_array_type (struct type *);
174
175 static int ada_is_unconstrained_packed_array_type (struct type *);
176
177 static struct value *value_subscript_packed (struct value *, int,
178 struct value **);
179
180 static struct value *coerce_unspec_val_to_type (struct value *,
181 struct type *);
182
183 static int lesseq_defined_than (struct symbol *, struct symbol *);
184
185 static int equiv_types (struct type *, struct type *);
186
187 static int is_name_suffix (const char *);
188
189 static int advance_wild_match (const char **, const char *, int);
190
191 static bool wild_match (const char *name, const char *patn);
192
193 static struct value *ada_coerce_ref (struct value *);
194
195 static LONGEST pos_atr (struct value *);
196
197 static struct value *value_pos_atr (struct type *, struct value *);
198
199 static struct value *val_atr (struct type *, LONGEST);
200
201 static struct value *value_val_atr (struct type *, struct value *);
202
203 static struct symbol *standard_lookup (const char *, const struct block *,
204 domain_enum);
205
206 static struct value *ada_search_struct_field (const char *, struct value *, int,
207 struct type *);
208
209 static int find_struct_field (const char *, struct type *, int,
210 struct type **, int *, int *, int *, int *);
211
212 static int ada_resolve_function (struct block_symbol *, int,
213 struct value **, int, const char *,
214 struct type *, int);
215
216 static int ada_is_direct_array_type (struct type *);
217
218 static struct value *ada_index_struct_field (int, struct value *, int,
219 struct type *);
220
221 static struct value *assign_aggregate (struct value *, struct value *,
222 struct expression *,
223 int *, enum noside);
224
225 static void aggregate_assign_from_choices (struct value *, struct value *,
226 struct expression *,
227 int *, LONGEST *, int *,
228 int, LONGEST, LONGEST);
229
230 static void aggregate_assign_positional (struct value *, struct value *,
231 struct expression *,
232 int *, LONGEST *, int *, int,
233 LONGEST, LONGEST);
234
235
236 static void aggregate_assign_others (struct value *, struct value *,
237 struct expression *,
238 int *, LONGEST *, int, LONGEST, LONGEST);
239
240
241 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
242
243
244 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
245 int *, enum noside);
246
247 static void ada_forward_operator_length (struct expression *, int, int *,
248 int *);
249
250 static struct type *ada_find_any_type (const char *name);
251
252 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
253 (const lookup_name_info &lookup_name);
254
255 \f
256
257 /* The result of a symbol lookup to be stored in our symbol cache. */
258
259 struct cache_entry
260 {
261 /* The name used to perform the lookup. */
262 const char *name;
263 /* The namespace used during the lookup. */
264 domain_enum domain;
265 /* The symbol returned by the lookup, or NULL if no matching symbol
266 was found. */
267 struct symbol *sym;
268 /* The block where the symbol was found, or NULL if no matching
269 symbol was found. */
270 const struct block *block;
271 /* A pointer to the next entry with the same hash. */
272 struct cache_entry *next;
273 };
274
275 /* The Ada symbol cache, used to store the result of Ada-mode symbol
276 lookups in the course of executing the user's commands.
277
278 The cache is implemented using a simple, fixed-sized hash.
279 The size is fixed on the grounds that there are not likely to be
280 all that many symbols looked up during any given session, regardless
281 of the size of the symbol table. If we decide to go to a resizable
282 table, let's just use the stuff from libiberty instead. */
283
284 #define HASH_SIZE 1009
285
286 struct ada_symbol_cache
287 {
288 /* An obstack used to store the entries in our cache. */
289 struct obstack cache_space;
290
291 /* The root of the hash table used to implement our symbol cache. */
292 struct cache_entry *root[HASH_SIZE];
293 };
294
295 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
296
297 /* Maximum-sized dynamic type. */
298 static unsigned int varsize_limit;
299
300 static const char ada_completer_word_break_characters[] =
301 #ifdef VMS
302 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
303 #else
304 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
305 #endif
306
307 /* The name of the symbol to use to get the name of the main subprogram. */
308 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
309 = "__gnat_ada_main_program_name";
310
311 /* Limit on the number of warnings to raise per expression evaluation. */
312 static int warning_limit = 2;
313
314 /* Number of warning messages issued; reset to 0 by cleanups after
315 expression evaluation. */
316 static int warnings_issued = 0;
317
318 static const char *known_runtime_file_name_patterns[] = {
319 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
320 };
321
322 static const char *known_auxiliary_function_name_patterns[] = {
323 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
324 };
325
326 /* Maintenance-related settings for this module. */
327
328 static struct cmd_list_element *maint_set_ada_cmdlist;
329 static struct cmd_list_element *maint_show_ada_cmdlist;
330
331 /* The "maintenance ada set/show ignore-descriptive-type" value. */
332
333 static bool ada_ignore_descriptive_types_p = false;
334
335 /* Inferior-specific data. */
336
337 /* Per-inferior data for this module. */
338
339 struct ada_inferior_data
340 {
341 /* The ada__tags__type_specific_data type, which is used when decoding
342 tagged types. With older versions of GNAT, this type was directly
343 accessible through a component ("tsd") in the object tag. But this
344 is no longer the case, so we cache it for each inferior. */
345 struct type *tsd_type = nullptr;
346
347 /* The exception_support_info data. This data is used to determine
348 how to implement support for Ada exception catchpoints in a given
349 inferior. */
350 const struct exception_support_info *exception_info = nullptr;
351 };
352
353 /* Our key to this module's inferior data. */
354 static const struct inferior_key<ada_inferior_data> ada_inferior_data;
355
356 /* Return our inferior data for the given inferior (INF).
357
358 This function always returns a valid pointer to an allocated
359 ada_inferior_data structure. If INF's inferior data has not
360 been previously set, this functions creates a new one with all
361 fields set to zero, sets INF's inferior to it, and then returns
362 a pointer to that newly allocated ada_inferior_data. */
363
364 static struct ada_inferior_data *
365 get_ada_inferior_data (struct inferior *inf)
366 {
367 struct ada_inferior_data *data;
368
369 data = ada_inferior_data.get (inf);
370 if (data == NULL)
371 data = ada_inferior_data.emplace (inf);
372
373 return data;
374 }
375
376 /* Perform all necessary cleanups regarding our module's inferior data
377 that is required after the inferior INF just exited. */
378
379 static void
380 ada_inferior_exit (struct inferior *inf)
381 {
382 ada_inferior_data.clear (inf);
383 }
384
385
386 /* program-space-specific data. */
387
388 /* This module's per-program-space data. */
389 struct ada_pspace_data
390 {
391 ~ada_pspace_data ()
392 {
393 if (sym_cache != NULL)
394 ada_free_symbol_cache (sym_cache);
395 }
396
397 /* The Ada symbol cache. */
398 struct ada_symbol_cache *sym_cache = nullptr;
399 };
400
401 /* Key to our per-program-space data. */
402 static const struct program_space_key<ada_pspace_data> ada_pspace_data_handle;
403
404 /* Return this module's data for the given program space (PSPACE).
405 If not is found, add a zero'ed one now.
406
407 This function always returns a valid object. */
408
409 static struct ada_pspace_data *
410 get_ada_pspace_data (struct program_space *pspace)
411 {
412 struct ada_pspace_data *data;
413
414 data = ada_pspace_data_handle.get (pspace);
415 if (data == NULL)
416 data = ada_pspace_data_handle.emplace (pspace);
417
418 return data;
419 }
420
421 /* Utilities */
422
423 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
424 all typedef layers have been peeled. Otherwise, return TYPE.
425
426 Normally, we really expect a typedef type to only have 1 typedef layer.
427 In other words, we really expect the target type of a typedef type to be
428 a non-typedef type. This is particularly true for Ada units, because
429 the language does not have a typedef vs not-typedef distinction.
430 In that respect, the Ada compiler has been trying to eliminate as many
431 typedef definitions in the debugging information, since they generally
432 do not bring any extra information (we still use typedef under certain
433 circumstances related mostly to the GNAT encoding).
434
435 Unfortunately, we have seen situations where the debugging information
436 generated by the compiler leads to such multiple typedef layers. For
437 instance, consider the following example with stabs:
438
439 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
440 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
441
442 This is an error in the debugging information which causes type
443 pck__float_array___XUP to be defined twice, and the second time,
444 it is defined as a typedef of a typedef.
445
446 This is on the fringe of legality as far as debugging information is
447 concerned, and certainly unexpected. But it is easy to handle these
448 situations correctly, so we can afford to be lenient in this case. */
449
450 static struct type *
451 ada_typedef_target_type (struct type *type)
452 {
453 while (type->code () == TYPE_CODE_TYPEDEF)
454 type = TYPE_TARGET_TYPE (type);
455 return type;
456 }
457
458 /* Given DECODED_NAME a string holding a symbol name in its
459 decoded form (ie using the Ada dotted notation), returns
460 its unqualified name. */
461
462 static const char *
463 ada_unqualified_name (const char *decoded_name)
464 {
465 const char *result;
466
467 /* If the decoded name starts with '<', it means that the encoded
468 name does not follow standard naming conventions, and thus that
469 it is not your typical Ada symbol name. Trying to unqualify it
470 is therefore pointless and possibly erroneous. */
471 if (decoded_name[0] == '<')
472 return decoded_name;
473
474 result = strrchr (decoded_name, '.');
475 if (result != NULL)
476 result++; /* Skip the dot... */
477 else
478 result = decoded_name;
479
480 return result;
481 }
482
483 /* Return a string starting with '<', followed by STR, and '>'. */
484
485 static std::string
486 add_angle_brackets (const char *str)
487 {
488 return string_printf ("<%s>", str);
489 }
490
491 /* la_watch_location_expression for Ada. */
492
493 static gdb::unique_xmalloc_ptr<char>
494 ada_watch_location_expression (struct type *type, CORE_ADDR addr)
495 {
496 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
497 std::string name = type_to_string (type);
498 return gdb::unique_xmalloc_ptr<char>
499 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
500 }
501
502 /* Assuming V points to an array of S objects, make sure that it contains at
503 least M objects, updating V and S as necessary. */
504
505 #define GROW_VECT(v, s, m) \
506 if ((s) < (m)) (v) = (char *) grow_vect (v, &(s), m, sizeof *(v));
507
508 /* Assuming VECT points to an array of *SIZE objects of size
509 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
510 updating *SIZE as necessary and returning the (new) array. */
511
512 static void *
513 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
514 {
515 if (*size < min_size)
516 {
517 *size *= 2;
518 if (*size < min_size)
519 *size = min_size;
520 vect = xrealloc (vect, *size * element_size);
521 }
522 return vect;
523 }
524
525 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
526 suffix of FIELD_NAME beginning "___". */
527
528 static int
529 field_name_match (const char *field_name, const char *target)
530 {
531 int len = strlen (target);
532
533 return
534 (strncmp (field_name, target, len) == 0
535 && (field_name[len] == '\0'
536 || (startswith (field_name + len, "___")
537 && strcmp (field_name + strlen (field_name) - 6,
538 "___XVN") != 0)));
539 }
540
541
542 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
543 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
544 and return its index. This function also handles fields whose name
545 have ___ suffixes because the compiler sometimes alters their name
546 by adding such a suffix to represent fields with certain constraints.
547 If the field could not be found, return a negative number if
548 MAYBE_MISSING is set. Otherwise raise an error. */
549
550 int
551 ada_get_field_index (const struct type *type, const char *field_name,
552 int maybe_missing)
553 {
554 int fieldno;
555 struct type *struct_type = check_typedef ((struct type *) type);
556
557 for (fieldno = 0; fieldno < struct_type->num_fields (); fieldno++)
558 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
559 return fieldno;
560
561 if (!maybe_missing)
562 error (_("Unable to find field %s in struct %s. Aborting"),
563 field_name, struct_type->name ());
564
565 return -1;
566 }
567
568 /* The length of the prefix of NAME prior to any "___" suffix. */
569
570 int
571 ada_name_prefix_len (const char *name)
572 {
573 if (name == NULL)
574 return 0;
575 else
576 {
577 const char *p = strstr (name, "___");
578
579 if (p == NULL)
580 return strlen (name);
581 else
582 return p - name;
583 }
584 }
585
586 /* Return non-zero if SUFFIX is a suffix of STR.
587 Return zero if STR is null. */
588
589 static int
590 is_suffix (const char *str, const char *suffix)
591 {
592 int len1, len2;
593
594 if (str == NULL)
595 return 0;
596 len1 = strlen (str);
597 len2 = strlen (suffix);
598 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
599 }
600
601 /* The contents of value VAL, treated as a value of type TYPE. The
602 result is an lval in memory if VAL is. */
603
604 static struct value *
605 coerce_unspec_val_to_type (struct value *val, struct type *type)
606 {
607 type = ada_check_typedef (type);
608 if (value_type (val) == type)
609 return val;
610 else
611 {
612 struct value *result;
613
614 /* Make sure that the object size is not unreasonable before
615 trying to allocate some memory for it. */
616 ada_ensure_varsize_limit (type);
617
618 if (value_lazy (val)
619 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
620 result = allocate_value_lazy (type);
621 else
622 {
623 result = allocate_value (type);
624 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
625 }
626 set_value_component_location (result, val);
627 set_value_bitsize (result, value_bitsize (val));
628 set_value_bitpos (result, value_bitpos (val));
629 if (VALUE_LVAL (result) == lval_memory)
630 set_value_address (result, value_address (val));
631 return result;
632 }
633 }
634
635 static const gdb_byte *
636 cond_offset_host (const gdb_byte *valaddr, long offset)
637 {
638 if (valaddr == NULL)
639 return NULL;
640 else
641 return valaddr + offset;
642 }
643
644 static CORE_ADDR
645 cond_offset_target (CORE_ADDR address, long offset)
646 {
647 if (address == 0)
648 return 0;
649 else
650 return address + offset;
651 }
652
653 /* Issue a warning (as for the definition of warning in utils.c, but
654 with exactly one argument rather than ...), unless the limit on the
655 number of warnings has passed during the evaluation of the current
656 expression. */
657
658 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
659 provided by "complaint". */
660 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
661
662 static void
663 lim_warning (const char *format, ...)
664 {
665 va_list args;
666
667 va_start (args, format);
668 warnings_issued += 1;
669 if (warnings_issued <= warning_limit)
670 vwarning (format, args);
671
672 va_end (args);
673 }
674
675 /* Issue an error if the size of an object of type T is unreasonable,
676 i.e. if it would be a bad idea to allocate a value of this type in
677 GDB. */
678
679 void
680 ada_ensure_varsize_limit (const struct type *type)
681 {
682 if (TYPE_LENGTH (type) > varsize_limit)
683 error (_("object size is larger than varsize-limit"));
684 }
685
686 /* Maximum value of a SIZE-byte signed integer type. */
687 static LONGEST
688 max_of_size (int size)
689 {
690 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
691
692 return top_bit | (top_bit - 1);
693 }
694
695 /* Minimum value of a SIZE-byte signed integer type. */
696 static LONGEST
697 min_of_size (int size)
698 {
699 return -max_of_size (size) - 1;
700 }
701
702 /* Maximum value of a SIZE-byte unsigned integer type. */
703 static ULONGEST
704 umax_of_size (int size)
705 {
706 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
707
708 return top_bit | (top_bit - 1);
709 }
710
711 /* Maximum value of integral type T, as a signed quantity. */
712 static LONGEST
713 max_of_type (struct type *t)
714 {
715 if (TYPE_UNSIGNED (t))
716 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
717 else
718 return max_of_size (TYPE_LENGTH (t));
719 }
720
721 /* Minimum value of integral type T, as a signed quantity. */
722 static LONGEST
723 min_of_type (struct type *t)
724 {
725 if (TYPE_UNSIGNED (t))
726 return 0;
727 else
728 return min_of_size (TYPE_LENGTH (t));
729 }
730
731 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
732 LONGEST
733 ada_discrete_type_high_bound (struct type *type)
734 {
735 type = resolve_dynamic_type (type, {}, 0);
736 switch (type->code ())
737 {
738 case TYPE_CODE_RANGE:
739 return TYPE_HIGH_BOUND (type);
740 case TYPE_CODE_ENUM:
741 return TYPE_FIELD_ENUMVAL (type, type->num_fields () - 1);
742 case TYPE_CODE_BOOL:
743 return 1;
744 case TYPE_CODE_CHAR:
745 case TYPE_CODE_INT:
746 return max_of_type (type);
747 default:
748 error (_("Unexpected type in ada_discrete_type_high_bound."));
749 }
750 }
751
752 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
753 LONGEST
754 ada_discrete_type_low_bound (struct type *type)
755 {
756 type = resolve_dynamic_type (type, {}, 0);
757 switch (type->code ())
758 {
759 case TYPE_CODE_RANGE:
760 return TYPE_LOW_BOUND (type);
761 case TYPE_CODE_ENUM:
762 return TYPE_FIELD_ENUMVAL (type, 0);
763 case TYPE_CODE_BOOL:
764 return 0;
765 case TYPE_CODE_CHAR:
766 case TYPE_CODE_INT:
767 return min_of_type (type);
768 default:
769 error (_("Unexpected type in ada_discrete_type_low_bound."));
770 }
771 }
772
773 /* The identity on non-range types. For range types, the underlying
774 non-range scalar type. */
775
776 static struct type *
777 get_base_type (struct type *type)
778 {
779 while (type != NULL && type->code () == TYPE_CODE_RANGE)
780 {
781 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
782 return type;
783 type = TYPE_TARGET_TYPE (type);
784 }
785 return type;
786 }
787
788 /* Return a decoded version of the given VALUE. This means returning
789 a value whose type is obtained by applying all the GNAT-specific
790 encodings, making the resulting type a static but standard description
791 of the initial type. */
792
793 struct value *
794 ada_get_decoded_value (struct value *value)
795 {
796 struct type *type = ada_check_typedef (value_type (value));
797
798 if (ada_is_array_descriptor_type (type)
799 || (ada_is_constrained_packed_array_type (type)
800 && type->code () != TYPE_CODE_PTR))
801 {
802 if (type->code () == TYPE_CODE_TYPEDEF) /* array access type. */
803 value = ada_coerce_to_simple_array_ptr (value);
804 else
805 value = ada_coerce_to_simple_array (value);
806 }
807 else
808 value = ada_to_fixed_value (value);
809
810 return value;
811 }
812
813 /* Same as ada_get_decoded_value, but with the given TYPE.
814 Because there is no associated actual value for this type,
815 the resulting type might be a best-effort approximation in
816 the case of dynamic types. */
817
818 struct type *
819 ada_get_decoded_type (struct type *type)
820 {
821 type = to_static_fixed_type (type);
822 if (ada_is_constrained_packed_array_type (type))
823 type = ada_coerce_to_simple_array_type (type);
824 return type;
825 }
826
827 \f
828
829 /* Language Selection */
830
831 /* If the main program is in Ada, return language_ada, otherwise return LANG
832 (the main program is in Ada iif the adainit symbol is found). */
833
834 static enum language
835 ada_update_initial_language (enum language lang)
836 {
837 if (lookup_minimal_symbol ("adainit", NULL, NULL).minsym != NULL)
838 return language_ada;
839
840 return lang;
841 }
842
843 /* If the main procedure is written in Ada, then return its name.
844 The result is good until the next call. Return NULL if the main
845 procedure doesn't appear to be in Ada. */
846
847 char *
848 ada_main_name (void)
849 {
850 struct bound_minimal_symbol msym;
851 static gdb::unique_xmalloc_ptr<char> main_program_name;
852
853 /* For Ada, the name of the main procedure is stored in a specific
854 string constant, generated by the binder. Look for that symbol,
855 extract its address, and then read that string. If we didn't find
856 that string, then most probably the main procedure is not written
857 in Ada. */
858 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
859
860 if (msym.minsym != NULL)
861 {
862 CORE_ADDR main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
863 if (main_program_name_addr == 0)
864 error (_("Invalid address for Ada main program name."));
865
866 main_program_name = target_read_string (main_program_name_addr, 1024);
867 return main_program_name.get ();
868 }
869
870 /* The main procedure doesn't seem to be in Ada. */
871 return NULL;
872 }
873 \f
874 /* Symbols */
875
876 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
877 of NULLs. */
878
879 const struct ada_opname_map ada_opname_table[] = {
880 {"Oadd", "\"+\"", BINOP_ADD},
881 {"Osubtract", "\"-\"", BINOP_SUB},
882 {"Omultiply", "\"*\"", BINOP_MUL},
883 {"Odivide", "\"/\"", BINOP_DIV},
884 {"Omod", "\"mod\"", BINOP_MOD},
885 {"Orem", "\"rem\"", BINOP_REM},
886 {"Oexpon", "\"**\"", BINOP_EXP},
887 {"Olt", "\"<\"", BINOP_LESS},
888 {"Ole", "\"<=\"", BINOP_LEQ},
889 {"Ogt", "\">\"", BINOP_GTR},
890 {"Oge", "\">=\"", BINOP_GEQ},
891 {"Oeq", "\"=\"", BINOP_EQUAL},
892 {"One", "\"/=\"", BINOP_NOTEQUAL},
893 {"Oand", "\"and\"", BINOP_BITWISE_AND},
894 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
895 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
896 {"Oconcat", "\"&\"", BINOP_CONCAT},
897 {"Oabs", "\"abs\"", UNOP_ABS},
898 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
899 {"Oadd", "\"+\"", UNOP_PLUS},
900 {"Osubtract", "\"-\"", UNOP_NEG},
901 {NULL, NULL}
902 };
903
904 /* The "encoded" form of DECODED, according to GNAT conventions. The
905 result is valid until the next call to ada_encode. If
906 THROW_ERRORS, throw an error if invalid operator name is found.
907 Otherwise, return NULL in that case. */
908
909 static char *
910 ada_encode_1 (const char *decoded, bool throw_errors)
911 {
912 static char *encoding_buffer = NULL;
913 static size_t encoding_buffer_size = 0;
914 const char *p;
915 int k;
916
917 if (decoded == NULL)
918 return NULL;
919
920 GROW_VECT (encoding_buffer, encoding_buffer_size,
921 2 * strlen (decoded) + 10);
922
923 k = 0;
924 for (p = decoded; *p != '\0'; p += 1)
925 {
926 if (*p == '.')
927 {
928 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
929 k += 2;
930 }
931 else if (*p == '"')
932 {
933 const struct ada_opname_map *mapping;
934
935 for (mapping = ada_opname_table;
936 mapping->encoded != NULL
937 && !startswith (p, mapping->decoded); mapping += 1)
938 ;
939 if (mapping->encoded == NULL)
940 {
941 if (throw_errors)
942 error (_("invalid Ada operator name: %s"), p);
943 else
944 return NULL;
945 }
946 strcpy (encoding_buffer + k, mapping->encoded);
947 k += strlen (mapping->encoded);
948 break;
949 }
950 else
951 {
952 encoding_buffer[k] = *p;
953 k += 1;
954 }
955 }
956
957 encoding_buffer[k] = '\0';
958 return encoding_buffer;
959 }
960
961 /* The "encoded" form of DECODED, according to GNAT conventions.
962 The result is valid until the next call to ada_encode. */
963
964 char *
965 ada_encode (const char *decoded)
966 {
967 return ada_encode_1 (decoded, true);
968 }
969
970 /* Return NAME folded to lower case, or, if surrounded by single
971 quotes, unfolded, but with the quotes stripped away. Result good
972 to next call. */
973
974 static char *
975 ada_fold_name (gdb::string_view name)
976 {
977 static char *fold_buffer = NULL;
978 static size_t fold_buffer_size = 0;
979
980 int len = name.size ();
981 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
982
983 if (name[0] == '\'')
984 {
985 strncpy (fold_buffer, name.data () + 1, len - 2);
986 fold_buffer[len - 2] = '\000';
987 }
988 else
989 {
990 int i;
991
992 for (i = 0; i <= len; i += 1)
993 fold_buffer[i] = tolower (name[i]);
994 }
995
996 return fold_buffer;
997 }
998
999 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1000
1001 static int
1002 is_lower_alphanum (const char c)
1003 {
1004 return (isdigit (c) || (isalpha (c) && islower (c)));
1005 }
1006
1007 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1008 This function saves in LEN the length of that same symbol name but
1009 without either of these suffixes:
1010 . .{DIGIT}+
1011 . ${DIGIT}+
1012 . ___{DIGIT}+
1013 . __{DIGIT}+.
1014
1015 These are suffixes introduced by the compiler for entities such as
1016 nested subprogram for instance, in order to avoid name clashes.
1017 They do not serve any purpose for the debugger. */
1018
1019 static void
1020 ada_remove_trailing_digits (const char *encoded, int *len)
1021 {
1022 if (*len > 1 && isdigit (encoded[*len - 1]))
1023 {
1024 int i = *len - 2;
1025
1026 while (i > 0 && isdigit (encoded[i]))
1027 i--;
1028 if (i >= 0 && encoded[i] == '.')
1029 *len = i;
1030 else if (i >= 0 && encoded[i] == '$')
1031 *len = i;
1032 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1033 *len = i - 2;
1034 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1035 *len = i - 1;
1036 }
1037 }
1038
1039 /* Remove the suffix introduced by the compiler for protected object
1040 subprograms. */
1041
1042 static void
1043 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1044 {
1045 /* Remove trailing N. */
1046
1047 /* Protected entry subprograms are broken into two
1048 separate subprograms: The first one is unprotected, and has
1049 a 'N' suffix; the second is the protected version, and has
1050 the 'P' suffix. The second calls the first one after handling
1051 the protection. Since the P subprograms are internally generated,
1052 we leave these names undecoded, giving the user a clue that this
1053 entity is internal. */
1054
1055 if (*len > 1
1056 && encoded[*len - 1] == 'N'
1057 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1058 *len = *len - 1;
1059 }
1060
1061 /* If ENCODED follows the GNAT entity encoding conventions, then return
1062 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1063 replaced by ENCODED. */
1064
1065 std::string
1066 ada_decode (const char *encoded)
1067 {
1068 int i, j;
1069 int len0;
1070 const char *p;
1071 int at_start_name;
1072 std::string decoded;
1073
1074 /* With function descriptors on PPC64, the value of a symbol named
1075 ".FN", if it exists, is the entry point of the function "FN". */
1076 if (encoded[0] == '.')
1077 encoded += 1;
1078
1079 /* The name of the Ada main procedure starts with "_ada_".
1080 This prefix is not part of the decoded name, so skip this part
1081 if we see this prefix. */
1082 if (startswith (encoded, "_ada_"))
1083 encoded += 5;
1084
1085 /* If the name starts with '_', then it is not a properly encoded
1086 name, so do not attempt to decode it. Similarly, if the name
1087 starts with '<', the name should not be decoded. */
1088 if (encoded[0] == '_' || encoded[0] == '<')
1089 goto Suppress;
1090
1091 len0 = strlen (encoded);
1092
1093 ada_remove_trailing_digits (encoded, &len0);
1094 ada_remove_po_subprogram_suffix (encoded, &len0);
1095
1096 /* Remove the ___X.* suffix if present. Do not forget to verify that
1097 the suffix is located before the current "end" of ENCODED. We want
1098 to avoid re-matching parts of ENCODED that have previously been
1099 marked as discarded (by decrementing LEN0). */
1100 p = strstr (encoded, "___");
1101 if (p != NULL && p - encoded < len0 - 3)
1102 {
1103 if (p[3] == 'X')
1104 len0 = p - encoded;
1105 else
1106 goto Suppress;
1107 }
1108
1109 /* Remove any trailing TKB suffix. It tells us that this symbol
1110 is for the body of a task, but that information does not actually
1111 appear in the decoded name. */
1112
1113 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1114 len0 -= 3;
1115
1116 /* Remove any trailing TB suffix. The TB suffix is slightly different
1117 from the TKB suffix because it is used for non-anonymous task
1118 bodies. */
1119
1120 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1121 len0 -= 2;
1122
1123 /* Remove trailing "B" suffixes. */
1124 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1125
1126 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1127 len0 -= 1;
1128
1129 /* Make decoded big enough for possible expansion by operator name. */
1130
1131 decoded.resize (2 * len0 + 1, 'X');
1132
1133 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1134
1135 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1136 {
1137 i = len0 - 2;
1138 while ((i >= 0 && isdigit (encoded[i]))
1139 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1140 i -= 1;
1141 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1142 len0 = i - 1;
1143 else if (encoded[i] == '$')
1144 len0 = i;
1145 }
1146
1147 /* The first few characters that are not alphabetic are not part
1148 of any encoding we use, so we can copy them over verbatim. */
1149
1150 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1151 decoded[j] = encoded[i];
1152
1153 at_start_name = 1;
1154 while (i < len0)
1155 {
1156 /* Is this a symbol function? */
1157 if (at_start_name && encoded[i] == 'O')
1158 {
1159 int k;
1160
1161 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1162 {
1163 int op_len = strlen (ada_opname_table[k].encoded);
1164 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1165 op_len - 1) == 0)
1166 && !isalnum (encoded[i + op_len]))
1167 {
1168 strcpy (&decoded.front() + j, ada_opname_table[k].decoded);
1169 at_start_name = 0;
1170 i += op_len;
1171 j += strlen (ada_opname_table[k].decoded);
1172 break;
1173 }
1174 }
1175 if (ada_opname_table[k].encoded != NULL)
1176 continue;
1177 }
1178 at_start_name = 0;
1179
1180 /* Replace "TK__" with "__", which will eventually be translated
1181 into "." (just below). */
1182
1183 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1184 i += 2;
1185
1186 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1187 be translated into "." (just below). These are internal names
1188 generated for anonymous blocks inside which our symbol is nested. */
1189
1190 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1191 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1192 && isdigit (encoded [i+4]))
1193 {
1194 int k = i + 5;
1195
1196 while (k < len0 && isdigit (encoded[k]))
1197 k++; /* Skip any extra digit. */
1198
1199 /* Double-check that the "__B_{DIGITS}+" sequence we found
1200 is indeed followed by "__". */
1201 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1202 i = k;
1203 }
1204
1205 /* Remove _E{DIGITS}+[sb] */
1206
1207 /* Just as for protected object subprograms, there are 2 categories
1208 of subprograms created by the compiler for each entry. The first
1209 one implements the actual entry code, and has a suffix following
1210 the convention above; the second one implements the barrier and
1211 uses the same convention as above, except that the 'E' is replaced
1212 by a 'B'.
1213
1214 Just as above, we do not decode the name of barrier functions
1215 to give the user a clue that the code he is debugging has been
1216 internally generated. */
1217
1218 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1219 && isdigit (encoded[i+2]))
1220 {
1221 int k = i + 3;
1222
1223 while (k < len0 && isdigit (encoded[k]))
1224 k++;
1225
1226 if (k < len0
1227 && (encoded[k] == 'b' || encoded[k] == 's'))
1228 {
1229 k++;
1230 /* Just as an extra precaution, make sure that if this
1231 suffix is followed by anything else, it is a '_'.
1232 Otherwise, we matched this sequence by accident. */
1233 if (k == len0
1234 || (k < len0 && encoded[k] == '_'))
1235 i = k;
1236 }
1237 }
1238
1239 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1240 the GNAT front-end in protected object subprograms. */
1241
1242 if (i < len0 + 3
1243 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1244 {
1245 /* Backtrack a bit up until we reach either the begining of
1246 the encoded name, or "__". Make sure that we only find
1247 digits or lowercase characters. */
1248 const char *ptr = encoded + i - 1;
1249
1250 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1251 ptr--;
1252 if (ptr < encoded
1253 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1254 i++;
1255 }
1256
1257 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1258 {
1259 /* This is a X[bn]* sequence not separated from the previous
1260 part of the name with a non-alpha-numeric character (in other
1261 words, immediately following an alpha-numeric character), then
1262 verify that it is placed at the end of the encoded name. If
1263 not, then the encoding is not valid and we should abort the
1264 decoding. Otherwise, just skip it, it is used in body-nested
1265 package names. */
1266 do
1267 i += 1;
1268 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1269 if (i < len0)
1270 goto Suppress;
1271 }
1272 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1273 {
1274 /* Replace '__' by '.'. */
1275 decoded[j] = '.';
1276 at_start_name = 1;
1277 i += 2;
1278 j += 1;
1279 }
1280 else
1281 {
1282 /* It's a character part of the decoded name, so just copy it
1283 over. */
1284 decoded[j] = encoded[i];
1285 i += 1;
1286 j += 1;
1287 }
1288 }
1289 decoded.resize (j);
1290
1291 /* Decoded names should never contain any uppercase character.
1292 Double-check this, and abort the decoding if we find one. */
1293
1294 for (i = 0; i < decoded.length(); ++i)
1295 if (isupper (decoded[i]) || decoded[i] == ' ')
1296 goto Suppress;
1297
1298 return decoded;
1299
1300 Suppress:
1301 if (encoded[0] == '<')
1302 decoded = encoded;
1303 else
1304 decoded = '<' + std::string(encoded) + '>';
1305 return decoded;
1306
1307 }
1308
1309 /* Table for keeping permanent unique copies of decoded names. Once
1310 allocated, names in this table are never released. While this is a
1311 storage leak, it should not be significant unless there are massive
1312 changes in the set of decoded names in successive versions of a
1313 symbol table loaded during a single session. */
1314 static struct htab *decoded_names_store;
1315
1316 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1317 in the language-specific part of GSYMBOL, if it has not been
1318 previously computed. Tries to save the decoded name in the same
1319 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1320 in any case, the decoded symbol has a lifetime at least that of
1321 GSYMBOL).
1322 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1323 const, but nevertheless modified to a semantically equivalent form
1324 when a decoded name is cached in it. */
1325
1326 const char *
1327 ada_decode_symbol (const struct general_symbol_info *arg)
1328 {
1329 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1330 const char **resultp =
1331 &gsymbol->language_specific.demangled_name;
1332
1333 if (!gsymbol->ada_mangled)
1334 {
1335 std::string decoded = ada_decode (gsymbol->linkage_name ());
1336 struct obstack *obstack = gsymbol->language_specific.obstack;
1337
1338 gsymbol->ada_mangled = 1;
1339
1340 if (obstack != NULL)
1341 *resultp = obstack_strdup (obstack, decoded.c_str ());
1342 else
1343 {
1344 /* Sometimes, we can't find a corresponding objfile, in
1345 which case, we put the result on the heap. Since we only
1346 decode when needed, we hope this usually does not cause a
1347 significant memory leak (FIXME). */
1348
1349 char **slot = (char **) htab_find_slot (decoded_names_store,
1350 decoded.c_str (), INSERT);
1351
1352 if (*slot == NULL)
1353 *slot = xstrdup (decoded.c_str ());
1354 *resultp = *slot;
1355 }
1356 }
1357
1358 return *resultp;
1359 }
1360
1361 static char *
1362 ada_la_decode (const char *encoded, int options)
1363 {
1364 return xstrdup (ada_decode (encoded).c_str ());
1365 }
1366
1367 \f
1368
1369 /* Arrays */
1370
1371 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1372 generated by the GNAT compiler to describe the index type used
1373 for each dimension of an array, check whether it follows the latest
1374 known encoding. If not, fix it up to conform to the latest encoding.
1375 Otherwise, do nothing. This function also does nothing if
1376 INDEX_DESC_TYPE is NULL.
1377
1378 The GNAT encoding used to describe the array index type evolved a bit.
1379 Initially, the information would be provided through the name of each
1380 field of the structure type only, while the type of these fields was
1381 described as unspecified and irrelevant. The debugger was then expected
1382 to perform a global type lookup using the name of that field in order
1383 to get access to the full index type description. Because these global
1384 lookups can be very expensive, the encoding was later enhanced to make
1385 the global lookup unnecessary by defining the field type as being
1386 the full index type description.
1387
1388 The purpose of this routine is to allow us to support older versions
1389 of the compiler by detecting the use of the older encoding, and by
1390 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1391 we essentially replace each field's meaningless type by the associated
1392 index subtype). */
1393
1394 void
1395 ada_fixup_array_indexes_type (struct type *index_desc_type)
1396 {
1397 int i;
1398
1399 if (index_desc_type == NULL)
1400 return;
1401 gdb_assert (index_desc_type->num_fields () > 0);
1402
1403 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1404 to check one field only, no need to check them all). If not, return
1405 now.
1406
1407 If our INDEX_DESC_TYPE was generated using the older encoding,
1408 the field type should be a meaningless integer type whose name
1409 is not equal to the field name. */
1410 if (index_desc_type->field (0).type ()->name () != NULL
1411 && strcmp (index_desc_type->field (0).type ()->name (),
1412 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1413 return;
1414
1415 /* Fixup each field of INDEX_DESC_TYPE. */
1416 for (i = 0; i < index_desc_type->num_fields (); i++)
1417 {
1418 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1419 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1420
1421 if (raw_type)
1422 index_desc_type->field (i).set_type (raw_type);
1423 }
1424 }
1425
1426 /* The desc_* routines return primitive portions of array descriptors
1427 (fat pointers). */
1428
1429 /* The descriptor or array type, if any, indicated by TYPE; removes
1430 level of indirection, if needed. */
1431
1432 static struct type *
1433 desc_base_type (struct type *type)
1434 {
1435 if (type == NULL)
1436 return NULL;
1437 type = ada_check_typedef (type);
1438 if (type->code () == TYPE_CODE_TYPEDEF)
1439 type = ada_typedef_target_type (type);
1440
1441 if (type != NULL
1442 && (type->code () == TYPE_CODE_PTR
1443 || type->code () == TYPE_CODE_REF))
1444 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1445 else
1446 return type;
1447 }
1448
1449 /* True iff TYPE indicates a "thin" array pointer type. */
1450
1451 static int
1452 is_thin_pntr (struct type *type)
1453 {
1454 return
1455 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1456 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1457 }
1458
1459 /* The descriptor type for thin pointer type TYPE. */
1460
1461 static struct type *
1462 thin_descriptor_type (struct type *type)
1463 {
1464 struct type *base_type = desc_base_type (type);
1465
1466 if (base_type == NULL)
1467 return NULL;
1468 if (is_suffix (ada_type_name (base_type), "___XVE"))
1469 return base_type;
1470 else
1471 {
1472 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1473
1474 if (alt_type == NULL)
1475 return base_type;
1476 else
1477 return alt_type;
1478 }
1479 }
1480
1481 /* A pointer to the array data for thin-pointer value VAL. */
1482
1483 static struct value *
1484 thin_data_pntr (struct value *val)
1485 {
1486 struct type *type = ada_check_typedef (value_type (val));
1487 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1488
1489 data_type = lookup_pointer_type (data_type);
1490
1491 if (type->code () == TYPE_CODE_PTR)
1492 return value_cast (data_type, value_copy (val));
1493 else
1494 return value_from_longest (data_type, value_address (val));
1495 }
1496
1497 /* True iff TYPE indicates a "thick" array pointer type. */
1498
1499 static int
1500 is_thick_pntr (struct type *type)
1501 {
1502 type = desc_base_type (type);
1503 return (type != NULL && type->code () == TYPE_CODE_STRUCT
1504 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1505 }
1506
1507 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1508 pointer to one, the type of its bounds data; otherwise, NULL. */
1509
1510 static struct type *
1511 desc_bounds_type (struct type *type)
1512 {
1513 struct type *r;
1514
1515 type = desc_base_type (type);
1516
1517 if (type == NULL)
1518 return NULL;
1519 else if (is_thin_pntr (type))
1520 {
1521 type = thin_descriptor_type (type);
1522 if (type == NULL)
1523 return NULL;
1524 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1525 if (r != NULL)
1526 return ada_check_typedef (r);
1527 }
1528 else if (type->code () == TYPE_CODE_STRUCT)
1529 {
1530 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1531 if (r != NULL)
1532 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1533 }
1534 return NULL;
1535 }
1536
1537 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1538 one, a pointer to its bounds data. Otherwise NULL. */
1539
1540 static struct value *
1541 desc_bounds (struct value *arr)
1542 {
1543 struct type *type = ada_check_typedef (value_type (arr));
1544
1545 if (is_thin_pntr (type))
1546 {
1547 struct type *bounds_type =
1548 desc_bounds_type (thin_descriptor_type (type));
1549 LONGEST addr;
1550
1551 if (bounds_type == NULL)
1552 error (_("Bad GNAT array descriptor"));
1553
1554 /* NOTE: The following calculation is not really kosher, but
1555 since desc_type is an XVE-encoded type (and shouldn't be),
1556 the correct calculation is a real pain. FIXME (and fix GCC). */
1557 if (type->code () == TYPE_CODE_PTR)
1558 addr = value_as_long (arr);
1559 else
1560 addr = value_address (arr);
1561
1562 return
1563 value_from_longest (lookup_pointer_type (bounds_type),
1564 addr - TYPE_LENGTH (bounds_type));
1565 }
1566
1567 else if (is_thick_pntr (type))
1568 {
1569 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1570 _("Bad GNAT array descriptor"));
1571 struct type *p_bounds_type = value_type (p_bounds);
1572
1573 if (p_bounds_type
1574 && p_bounds_type->code () == TYPE_CODE_PTR)
1575 {
1576 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1577
1578 if (TYPE_STUB (target_type))
1579 p_bounds = value_cast (lookup_pointer_type
1580 (ada_check_typedef (target_type)),
1581 p_bounds);
1582 }
1583 else
1584 error (_("Bad GNAT array descriptor"));
1585
1586 return p_bounds;
1587 }
1588 else
1589 return NULL;
1590 }
1591
1592 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1593 position of the field containing the address of the bounds data. */
1594
1595 static int
1596 fat_pntr_bounds_bitpos (struct type *type)
1597 {
1598 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1599 }
1600
1601 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1602 size of the field containing the address of the bounds data. */
1603
1604 static int
1605 fat_pntr_bounds_bitsize (struct type *type)
1606 {
1607 type = desc_base_type (type);
1608
1609 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1610 return TYPE_FIELD_BITSIZE (type, 1);
1611 else
1612 return 8 * TYPE_LENGTH (ada_check_typedef (type->field (1).type ()));
1613 }
1614
1615 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1616 pointer to one, the type of its array data (a array-with-no-bounds type);
1617 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1618 data. */
1619
1620 static struct type *
1621 desc_data_target_type (struct type *type)
1622 {
1623 type = desc_base_type (type);
1624
1625 /* NOTE: The following is bogus; see comment in desc_bounds. */
1626 if (is_thin_pntr (type))
1627 return desc_base_type (thin_descriptor_type (type)->field (1).type ());
1628 else if (is_thick_pntr (type))
1629 {
1630 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1631
1632 if (data_type
1633 && ada_check_typedef (data_type)->code () == TYPE_CODE_PTR)
1634 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1635 }
1636
1637 return NULL;
1638 }
1639
1640 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1641 its array data. */
1642
1643 static struct value *
1644 desc_data (struct value *arr)
1645 {
1646 struct type *type = value_type (arr);
1647
1648 if (is_thin_pntr (type))
1649 return thin_data_pntr (arr);
1650 else if (is_thick_pntr (type))
1651 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1652 _("Bad GNAT array descriptor"));
1653 else
1654 return NULL;
1655 }
1656
1657
1658 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1659 position of the field containing the address of the data. */
1660
1661 static int
1662 fat_pntr_data_bitpos (struct type *type)
1663 {
1664 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1665 }
1666
1667 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1668 size of the field containing the address of the data. */
1669
1670 static int
1671 fat_pntr_data_bitsize (struct type *type)
1672 {
1673 type = desc_base_type (type);
1674
1675 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1676 return TYPE_FIELD_BITSIZE (type, 0);
1677 else
1678 return TARGET_CHAR_BIT * TYPE_LENGTH (type->field (0).type ());
1679 }
1680
1681 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1682 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1683 bound, if WHICH is 1. The first bound is I=1. */
1684
1685 static struct value *
1686 desc_one_bound (struct value *bounds, int i, int which)
1687 {
1688 char bound_name[20];
1689 xsnprintf (bound_name, sizeof (bound_name), "%cB%d",
1690 which ? 'U' : 'L', i - 1);
1691 return value_struct_elt (&bounds, NULL, bound_name, NULL,
1692 _("Bad GNAT array descriptor bounds"));
1693 }
1694
1695 /* If BOUNDS is an array-bounds structure type, return the bit position
1696 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1697 bound, if WHICH is 1. The first bound is I=1. */
1698
1699 static int
1700 desc_bound_bitpos (struct type *type, int i, int which)
1701 {
1702 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1703 }
1704
1705 /* If BOUNDS is an array-bounds structure type, return the bit field size
1706 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1707 bound, if WHICH is 1. The first bound is I=1. */
1708
1709 static int
1710 desc_bound_bitsize (struct type *type, int i, int which)
1711 {
1712 type = desc_base_type (type);
1713
1714 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1715 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1716 else
1717 return 8 * TYPE_LENGTH (type->field (2 * i + which - 2).type ());
1718 }
1719
1720 /* If TYPE is the type of an array-bounds structure, the type of its
1721 Ith bound (numbering from 1). Otherwise, NULL. */
1722
1723 static struct type *
1724 desc_index_type (struct type *type, int i)
1725 {
1726 type = desc_base_type (type);
1727
1728 if (type->code () == TYPE_CODE_STRUCT)
1729 {
1730 char bound_name[20];
1731 xsnprintf (bound_name, sizeof (bound_name), "LB%d", i - 1);
1732 return lookup_struct_elt_type (type, bound_name, 1);
1733 }
1734 else
1735 return NULL;
1736 }
1737
1738 /* The number of index positions in the array-bounds type TYPE.
1739 Return 0 if TYPE is NULL. */
1740
1741 static int
1742 desc_arity (struct type *type)
1743 {
1744 type = desc_base_type (type);
1745
1746 if (type != NULL)
1747 return type->num_fields () / 2;
1748 return 0;
1749 }
1750
1751 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1752 an array descriptor type (representing an unconstrained array
1753 type). */
1754
1755 static int
1756 ada_is_direct_array_type (struct type *type)
1757 {
1758 if (type == NULL)
1759 return 0;
1760 type = ada_check_typedef (type);
1761 return (type->code () == TYPE_CODE_ARRAY
1762 || ada_is_array_descriptor_type (type));
1763 }
1764
1765 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1766 * to one. */
1767
1768 static int
1769 ada_is_array_type (struct type *type)
1770 {
1771 while (type != NULL
1772 && (type->code () == TYPE_CODE_PTR
1773 || type->code () == TYPE_CODE_REF))
1774 type = TYPE_TARGET_TYPE (type);
1775 return ada_is_direct_array_type (type);
1776 }
1777
1778 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1779
1780 int
1781 ada_is_simple_array_type (struct type *type)
1782 {
1783 if (type == NULL)
1784 return 0;
1785 type = ada_check_typedef (type);
1786 return (type->code () == TYPE_CODE_ARRAY
1787 || (type->code () == TYPE_CODE_PTR
1788 && (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ()
1789 == TYPE_CODE_ARRAY)));
1790 }
1791
1792 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1793
1794 int
1795 ada_is_array_descriptor_type (struct type *type)
1796 {
1797 struct type *data_type = desc_data_target_type (type);
1798
1799 if (type == NULL)
1800 return 0;
1801 type = ada_check_typedef (type);
1802 return (data_type != NULL
1803 && data_type->code () == TYPE_CODE_ARRAY
1804 && desc_arity (desc_bounds_type (type)) > 0);
1805 }
1806
1807 /* Non-zero iff type is a partially mal-formed GNAT array
1808 descriptor. FIXME: This is to compensate for some problems with
1809 debugging output from GNAT. Re-examine periodically to see if it
1810 is still needed. */
1811
1812 int
1813 ada_is_bogus_array_descriptor (struct type *type)
1814 {
1815 return
1816 type != NULL
1817 && type->code () == TYPE_CODE_STRUCT
1818 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1819 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1820 && !ada_is_array_descriptor_type (type);
1821 }
1822
1823
1824 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1825 (fat pointer) returns the type of the array data described---specifically,
1826 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1827 in from the descriptor; otherwise, they are left unspecified. If
1828 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1829 returns NULL. The result is simply the type of ARR if ARR is not
1830 a descriptor. */
1831
1832 static struct type *
1833 ada_type_of_array (struct value *arr, int bounds)
1834 {
1835 if (ada_is_constrained_packed_array_type (value_type (arr)))
1836 return decode_constrained_packed_array_type (value_type (arr));
1837
1838 if (!ada_is_array_descriptor_type (value_type (arr)))
1839 return value_type (arr);
1840
1841 if (!bounds)
1842 {
1843 struct type *array_type =
1844 ada_check_typedef (desc_data_target_type (value_type (arr)));
1845
1846 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1847 TYPE_FIELD_BITSIZE (array_type, 0) =
1848 decode_packed_array_bitsize (value_type (arr));
1849
1850 return array_type;
1851 }
1852 else
1853 {
1854 struct type *elt_type;
1855 int arity;
1856 struct value *descriptor;
1857
1858 elt_type = ada_array_element_type (value_type (arr), -1);
1859 arity = ada_array_arity (value_type (arr));
1860
1861 if (elt_type == NULL || arity == 0)
1862 return ada_check_typedef (value_type (arr));
1863
1864 descriptor = desc_bounds (arr);
1865 if (value_as_long (descriptor) == 0)
1866 return NULL;
1867 while (arity > 0)
1868 {
1869 struct type *range_type = alloc_type_copy (value_type (arr));
1870 struct type *array_type = alloc_type_copy (value_type (arr));
1871 struct value *low = desc_one_bound (descriptor, arity, 0);
1872 struct value *high = desc_one_bound (descriptor, arity, 1);
1873
1874 arity -= 1;
1875 create_static_range_type (range_type, value_type (low),
1876 longest_to_int (value_as_long (low)),
1877 longest_to_int (value_as_long (high)));
1878 elt_type = create_array_type (array_type, elt_type, range_type);
1879
1880 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1881 {
1882 /* We need to store the element packed bitsize, as well as
1883 recompute the array size, because it was previously
1884 computed based on the unpacked element size. */
1885 LONGEST lo = value_as_long (low);
1886 LONGEST hi = value_as_long (high);
1887
1888 TYPE_FIELD_BITSIZE (elt_type, 0) =
1889 decode_packed_array_bitsize (value_type (arr));
1890 /* If the array has no element, then the size is already
1891 zero, and does not need to be recomputed. */
1892 if (lo < hi)
1893 {
1894 int array_bitsize =
1895 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1896
1897 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1898 }
1899 }
1900 }
1901
1902 return lookup_pointer_type (elt_type);
1903 }
1904 }
1905
1906 /* If ARR does not represent an array, returns ARR unchanged.
1907 Otherwise, returns either a standard GDB array with bounds set
1908 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1909 GDB array. Returns NULL if ARR is a null fat pointer. */
1910
1911 struct value *
1912 ada_coerce_to_simple_array_ptr (struct value *arr)
1913 {
1914 if (ada_is_array_descriptor_type (value_type (arr)))
1915 {
1916 struct type *arrType = ada_type_of_array (arr, 1);
1917
1918 if (arrType == NULL)
1919 return NULL;
1920 return value_cast (arrType, value_copy (desc_data (arr)));
1921 }
1922 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1923 return decode_constrained_packed_array (arr);
1924 else
1925 return arr;
1926 }
1927
1928 /* If ARR does not represent an array, returns ARR unchanged.
1929 Otherwise, returns a standard GDB array describing ARR (which may
1930 be ARR itself if it already is in the proper form). */
1931
1932 struct value *
1933 ada_coerce_to_simple_array (struct value *arr)
1934 {
1935 if (ada_is_array_descriptor_type (value_type (arr)))
1936 {
1937 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1938
1939 if (arrVal == NULL)
1940 error (_("Bounds unavailable for null array pointer."));
1941 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
1942 return value_ind (arrVal);
1943 }
1944 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1945 return decode_constrained_packed_array (arr);
1946 else
1947 return arr;
1948 }
1949
1950 /* If TYPE represents a GNAT array type, return it translated to an
1951 ordinary GDB array type (possibly with BITSIZE fields indicating
1952 packing). For other types, is the identity. */
1953
1954 struct type *
1955 ada_coerce_to_simple_array_type (struct type *type)
1956 {
1957 if (ada_is_constrained_packed_array_type (type))
1958 return decode_constrained_packed_array_type (type);
1959
1960 if (ada_is_array_descriptor_type (type))
1961 return ada_check_typedef (desc_data_target_type (type));
1962
1963 return type;
1964 }
1965
1966 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1967
1968 static int
1969 ada_is_packed_array_type (struct type *type)
1970 {
1971 if (type == NULL)
1972 return 0;
1973 type = desc_base_type (type);
1974 type = ada_check_typedef (type);
1975 return
1976 ada_type_name (type) != NULL
1977 && strstr (ada_type_name (type), "___XP") != NULL;
1978 }
1979
1980 /* Non-zero iff TYPE represents a standard GNAT constrained
1981 packed-array type. */
1982
1983 int
1984 ada_is_constrained_packed_array_type (struct type *type)
1985 {
1986 return ada_is_packed_array_type (type)
1987 && !ada_is_array_descriptor_type (type);
1988 }
1989
1990 /* Non-zero iff TYPE represents an array descriptor for a
1991 unconstrained packed-array type. */
1992
1993 static int
1994 ada_is_unconstrained_packed_array_type (struct type *type)
1995 {
1996 return ada_is_packed_array_type (type)
1997 && ada_is_array_descriptor_type (type);
1998 }
1999
2000 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2001 return the size of its elements in bits. */
2002
2003 static long
2004 decode_packed_array_bitsize (struct type *type)
2005 {
2006 const char *raw_name;
2007 const char *tail;
2008 long bits;
2009
2010 /* Access to arrays implemented as fat pointers are encoded as a typedef
2011 of the fat pointer type. We need the name of the fat pointer type
2012 to do the decoding, so strip the typedef layer. */
2013 if (type->code () == TYPE_CODE_TYPEDEF)
2014 type = ada_typedef_target_type (type);
2015
2016 raw_name = ada_type_name (ada_check_typedef (type));
2017 if (!raw_name)
2018 raw_name = ada_type_name (desc_base_type (type));
2019
2020 if (!raw_name)
2021 return 0;
2022
2023 tail = strstr (raw_name, "___XP");
2024 gdb_assert (tail != NULL);
2025
2026 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2027 {
2028 lim_warning
2029 (_("could not understand bit size information on packed array"));
2030 return 0;
2031 }
2032
2033 return bits;
2034 }
2035
2036 /* Given that TYPE is a standard GDB array type with all bounds filled
2037 in, and that the element size of its ultimate scalar constituents
2038 (that is, either its elements, or, if it is an array of arrays, its
2039 elements' elements, etc.) is *ELT_BITS, return an identical type,
2040 but with the bit sizes of its elements (and those of any
2041 constituent arrays) recorded in the BITSIZE components of its
2042 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2043 in bits.
2044
2045 Note that, for arrays whose index type has an XA encoding where
2046 a bound references a record discriminant, getting that discriminant,
2047 and therefore the actual value of that bound, is not possible
2048 because none of the given parameters gives us access to the record.
2049 This function assumes that it is OK in the context where it is being
2050 used to return an array whose bounds are still dynamic and where
2051 the length is arbitrary. */
2052
2053 static struct type *
2054 constrained_packed_array_type (struct type *type, long *elt_bits)
2055 {
2056 struct type *new_elt_type;
2057 struct type *new_type;
2058 struct type *index_type_desc;
2059 struct type *index_type;
2060 LONGEST low_bound, high_bound;
2061
2062 type = ada_check_typedef (type);
2063 if (type->code () != TYPE_CODE_ARRAY)
2064 return type;
2065
2066 index_type_desc = ada_find_parallel_type (type, "___XA");
2067 if (index_type_desc)
2068 index_type = to_fixed_range_type (index_type_desc->field (0).type (),
2069 NULL);
2070 else
2071 index_type = type->index_type ();
2072
2073 new_type = alloc_type_copy (type);
2074 new_elt_type =
2075 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2076 elt_bits);
2077 create_array_type (new_type, new_elt_type, index_type);
2078 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2079 new_type->set_name (ada_type_name (type));
2080
2081 if ((check_typedef (index_type)->code () == TYPE_CODE_RANGE
2082 && is_dynamic_type (check_typedef (index_type)))
2083 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2084 low_bound = high_bound = 0;
2085 if (high_bound < low_bound)
2086 *elt_bits = TYPE_LENGTH (new_type) = 0;
2087 else
2088 {
2089 *elt_bits *= (high_bound - low_bound + 1);
2090 TYPE_LENGTH (new_type) =
2091 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2092 }
2093
2094 TYPE_FIXED_INSTANCE (new_type) = 1;
2095 return new_type;
2096 }
2097
2098 /* The array type encoded by TYPE, where
2099 ada_is_constrained_packed_array_type (TYPE). */
2100
2101 static struct type *
2102 decode_constrained_packed_array_type (struct type *type)
2103 {
2104 const char *raw_name = ada_type_name (ada_check_typedef (type));
2105 char *name;
2106 const char *tail;
2107 struct type *shadow_type;
2108 long bits;
2109
2110 if (!raw_name)
2111 raw_name = ada_type_name (desc_base_type (type));
2112
2113 if (!raw_name)
2114 return NULL;
2115
2116 name = (char *) alloca (strlen (raw_name) + 1);
2117 tail = strstr (raw_name, "___XP");
2118 type = desc_base_type (type);
2119
2120 memcpy (name, raw_name, tail - raw_name);
2121 name[tail - raw_name] = '\000';
2122
2123 shadow_type = ada_find_parallel_type_with_name (type, name);
2124
2125 if (shadow_type == NULL)
2126 {
2127 lim_warning (_("could not find bounds information on packed array"));
2128 return NULL;
2129 }
2130 shadow_type = check_typedef (shadow_type);
2131
2132 if (shadow_type->code () != TYPE_CODE_ARRAY)
2133 {
2134 lim_warning (_("could not understand bounds "
2135 "information on packed array"));
2136 return NULL;
2137 }
2138
2139 bits = decode_packed_array_bitsize (type);
2140 return constrained_packed_array_type (shadow_type, &bits);
2141 }
2142
2143 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2144 array, returns a simple array that denotes that array. Its type is a
2145 standard GDB array type except that the BITSIZEs of the array
2146 target types are set to the number of bits in each element, and the
2147 type length is set appropriately. */
2148
2149 static struct value *
2150 decode_constrained_packed_array (struct value *arr)
2151 {
2152 struct type *type;
2153
2154 /* If our value is a pointer, then dereference it. Likewise if
2155 the value is a reference. Make sure that this operation does not
2156 cause the target type to be fixed, as this would indirectly cause
2157 this array to be decoded. The rest of the routine assumes that
2158 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2159 and "value_ind" routines to perform the dereferencing, as opposed
2160 to using "ada_coerce_ref" or "ada_value_ind". */
2161 arr = coerce_ref (arr);
2162 if (ada_check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
2163 arr = value_ind (arr);
2164
2165 type = decode_constrained_packed_array_type (value_type (arr));
2166 if (type == NULL)
2167 {
2168 error (_("can't unpack array"));
2169 return NULL;
2170 }
2171
2172 if (type_byte_order (value_type (arr)) == BFD_ENDIAN_BIG
2173 && ada_is_modular_type (value_type (arr)))
2174 {
2175 /* This is a (right-justified) modular type representing a packed
2176 array with no wrapper. In order to interpret the value through
2177 the (left-justified) packed array type we just built, we must
2178 first left-justify it. */
2179 int bit_size, bit_pos;
2180 ULONGEST mod;
2181
2182 mod = ada_modulus (value_type (arr)) - 1;
2183 bit_size = 0;
2184 while (mod > 0)
2185 {
2186 bit_size += 1;
2187 mod >>= 1;
2188 }
2189 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2190 arr = ada_value_primitive_packed_val (arr, NULL,
2191 bit_pos / HOST_CHAR_BIT,
2192 bit_pos % HOST_CHAR_BIT,
2193 bit_size,
2194 type);
2195 }
2196
2197 return coerce_unspec_val_to_type (arr, type);
2198 }
2199
2200
2201 /* The value of the element of packed array ARR at the ARITY indices
2202 given in IND. ARR must be a simple array. */
2203
2204 static struct value *
2205 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2206 {
2207 int i;
2208 int bits, elt_off, bit_off;
2209 long elt_total_bit_offset;
2210 struct type *elt_type;
2211 struct value *v;
2212
2213 bits = 0;
2214 elt_total_bit_offset = 0;
2215 elt_type = ada_check_typedef (value_type (arr));
2216 for (i = 0; i < arity; i += 1)
2217 {
2218 if (elt_type->code () != TYPE_CODE_ARRAY
2219 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2220 error
2221 (_("attempt to do packed indexing of "
2222 "something other than a packed array"));
2223 else
2224 {
2225 struct type *range_type = elt_type->index_type ();
2226 LONGEST lowerbound, upperbound;
2227 LONGEST idx;
2228
2229 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2230 {
2231 lim_warning (_("don't know bounds of array"));
2232 lowerbound = upperbound = 0;
2233 }
2234
2235 idx = pos_atr (ind[i]);
2236 if (idx < lowerbound || idx > upperbound)
2237 lim_warning (_("packed array index %ld out of bounds"),
2238 (long) idx);
2239 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2240 elt_total_bit_offset += (idx - lowerbound) * bits;
2241 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2242 }
2243 }
2244 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2245 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2246
2247 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2248 bits, elt_type);
2249 return v;
2250 }
2251
2252 /* Non-zero iff TYPE includes negative integer values. */
2253
2254 static int
2255 has_negatives (struct type *type)
2256 {
2257 switch (type->code ())
2258 {
2259 default:
2260 return 0;
2261 case TYPE_CODE_INT:
2262 return !TYPE_UNSIGNED (type);
2263 case TYPE_CODE_RANGE:
2264 return TYPE_LOW_BOUND (type) - TYPE_RANGE_DATA (type)->bias < 0;
2265 }
2266 }
2267
2268 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2269 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2270 the unpacked buffer.
2271
2272 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2273 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2274
2275 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2276 zero otherwise.
2277
2278 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2279
2280 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2281
2282 static void
2283 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2284 gdb_byte *unpacked, int unpacked_len,
2285 int is_big_endian, int is_signed_type,
2286 int is_scalar)
2287 {
2288 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2289 int src_idx; /* Index into the source area */
2290 int src_bytes_left; /* Number of source bytes left to process. */
2291 int srcBitsLeft; /* Number of source bits left to move */
2292 int unusedLS; /* Number of bits in next significant
2293 byte of source that are unused */
2294
2295 int unpacked_idx; /* Index into the unpacked buffer */
2296 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2297
2298 unsigned long accum; /* Staging area for bits being transferred */
2299 int accumSize; /* Number of meaningful bits in accum */
2300 unsigned char sign;
2301
2302 /* Transmit bytes from least to most significant; delta is the direction
2303 the indices move. */
2304 int delta = is_big_endian ? -1 : 1;
2305
2306 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2307 bits from SRC. .*/
2308 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2309 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2310 bit_size, unpacked_len);
2311
2312 srcBitsLeft = bit_size;
2313 src_bytes_left = src_len;
2314 unpacked_bytes_left = unpacked_len;
2315 sign = 0;
2316
2317 if (is_big_endian)
2318 {
2319 src_idx = src_len - 1;
2320 if (is_signed_type
2321 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2322 sign = ~0;
2323
2324 unusedLS =
2325 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2326 % HOST_CHAR_BIT;
2327
2328 if (is_scalar)
2329 {
2330 accumSize = 0;
2331 unpacked_idx = unpacked_len - 1;
2332 }
2333 else
2334 {
2335 /* Non-scalar values must be aligned at a byte boundary... */
2336 accumSize =
2337 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2338 /* ... And are placed at the beginning (most-significant) bytes
2339 of the target. */
2340 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2341 unpacked_bytes_left = unpacked_idx + 1;
2342 }
2343 }
2344 else
2345 {
2346 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2347
2348 src_idx = unpacked_idx = 0;
2349 unusedLS = bit_offset;
2350 accumSize = 0;
2351
2352 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2353 sign = ~0;
2354 }
2355
2356 accum = 0;
2357 while (src_bytes_left > 0)
2358 {
2359 /* Mask for removing bits of the next source byte that are not
2360 part of the value. */
2361 unsigned int unusedMSMask =
2362 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2363 1;
2364 /* Sign-extend bits for this byte. */
2365 unsigned int signMask = sign & ~unusedMSMask;
2366
2367 accum |=
2368 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2369 accumSize += HOST_CHAR_BIT - unusedLS;
2370 if (accumSize >= HOST_CHAR_BIT)
2371 {
2372 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2373 accumSize -= HOST_CHAR_BIT;
2374 accum >>= HOST_CHAR_BIT;
2375 unpacked_bytes_left -= 1;
2376 unpacked_idx += delta;
2377 }
2378 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2379 unusedLS = 0;
2380 src_bytes_left -= 1;
2381 src_idx += delta;
2382 }
2383 while (unpacked_bytes_left > 0)
2384 {
2385 accum |= sign << accumSize;
2386 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2387 accumSize -= HOST_CHAR_BIT;
2388 if (accumSize < 0)
2389 accumSize = 0;
2390 accum >>= HOST_CHAR_BIT;
2391 unpacked_bytes_left -= 1;
2392 unpacked_idx += delta;
2393 }
2394 }
2395
2396 /* Create a new value of type TYPE from the contents of OBJ starting
2397 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2398 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2399 assigning through the result will set the field fetched from.
2400 VALADDR is ignored unless OBJ is NULL, in which case,
2401 VALADDR+OFFSET must address the start of storage containing the
2402 packed value. The value returned in this case is never an lval.
2403 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2404
2405 struct value *
2406 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2407 long offset, int bit_offset, int bit_size,
2408 struct type *type)
2409 {
2410 struct value *v;
2411 const gdb_byte *src; /* First byte containing data to unpack */
2412 gdb_byte *unpacked;
2413 const int is_scalar = is_scalar_type (type);
2414 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
2415 gdb::byte_vector staging;
2416
2417 type = ada_check_typedef (type);
2418
2419 if (obj == NULL)
2420 src = valaddr + offset;
2421 else
2422 src = value_contents (obj) + offset;
2423
2424 if (is_dynamic_type (type))
2425 {
2426 /* The length of TYPE might by dynamic, so we need to resolve
2427 TYPE in order to know its actual size, which we then use
2428 to create the contents buffer of the value we return.
2429 The difficulty is that the data containing our object is
2430 packed, and therefore maybe not at a byte boundary. So, what
2431 we do, is unpack the data into a byte-aligned buffer, and then
2432 use that buffer as our object's value for resolving the type. */
2433 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2434 staging.resize (staging_len);
2435
2436 ada_unpack_from_contents (src, bit_offset, bit_size,
2437 staging.data (), staging.size (),
2438 is_big_endian, has_negatives (type),
2439 is_scalar);
2440 type = resolve_dynamic_type (type, staging, 0);
2441 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2442 {
2443 /* This happens when the length of the object is dynamic,
2444 and is actually smaller than the space reserved for it.
2445 For instance, in an array of variant records, the bit_size
2446 we're given is the array stride, which is constant and
2447 normally equal to the maximum size of its element.
2448 But, in reality, each element only actually spans a portion
2449 of that stride. */
2450 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2451 }
2452 }
2453
2454 if (obj == NULL)
2455 {
2456 v = allocate_value (type);
2457 src = valaddr + offset;
2458 }
2459 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2460 {
2461 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2462 gdb_byte *buf;
2463
2464 v = value_at (type, value_address (obj) + offset);
2465 buf = (gdb_byte *) alloca (src_len);
2466 read_memory (value_address (v), buf, src_len);
2467 src = buf;
2468 }
2469 else
2470 {
2471 v = allocate_value (type);
2472 src = value_contents (obj) + offset;
2473 }
2474
2475 if (obj != NULL)
2476 {
2477 long new_offset = offset;
2478
2479 set_value_component_location (v, obj);
2480 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2481 set_value_bitsize (v, bit_size);
2482 if (value_bitpos (v) >= HOST_CHAR_BIT)
2483 {
2484 ++new_offset;
2485 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2486 }
2487 set_value_offset (v, new_offset);
2488
2489 /* Also set the parent value. This is needed when trying to
2490 assign a new value (in inferior memory). */
2491 set_value_parent (v, obj);
2492 }
2493 else
2494 set_value_bitsize (v, bit_size);
2495 unpacked = value_contents_writeable (v);
2496
2497 if (bit_size == 0)
2498 {
2499 memset (unpacked, 0, TYPE_LENGTH (type));
2500 return v;
2501 }
2502
2503 if (staging.size () == TYPE_LENGTH (type))
2504 {
2505 /* Small short-cut: If we've unpacked the data into a buffer
2506 of the same size as TYPE's length, then we can reuse that,
2507 instead of doing the unpacking again. */
2508 memcpy (unpacked, staging.data (), staging.size ());
2509 }
2510 else
2511 ada_unpack_from_contents (src, bit_offset, bit_size,
2512 unpacked, TYPE_LENGTH (type),
2513 is_big_endian, has_negatives (type), is_scalar);
2514
2515 return v;
2516 }
2517
2518 /* Store the contents of FROMVAL into the location of TOVAL.
2519 Return a new value with the location of TOVAL and contents of
2520 FROMVAL. Handles assignment into packed fields that have
2521 floating-point or non-scalar types. */
2522
2523 static struct value *
2524 ada_value_assign (struct value *toval, struct value *fromval)
2525 {
2526 struct type *type = value_type (toval);
2527 int bits = value_bitsize (toval);
2528
2529 toval = ada_coerce_ref (toval);
2530 fromval = ada_coerce_ref (fromval);
2531
2532 if (ada_is_direct_array_type (value_type (toval)))
2533 toval = ada_coerce_to_simple_array (toval);
2534 if (ada_is_direct_array_type (value_type (fromval)))
2535 fromval = ada_coerce_to_simple_array (fromval);
2536
2537 if (!deprecated_value_modifiable (toval))
2538 error (_("Left operand of assignment is not a modifiable lvalue."));
2539
2540 if (VALUE_LVAL (toval) == lval_memory
2541 && bits > 0
2542 && (type->code () == TYPE_CODE_FLT
2543 || type->code () == TYPE_CODE_STRUCT))
2544 {
2545 int len = (value_bitpos (toval)
2546 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2547 int from_size;
2548 gdb_byte *buffer = (gdb_byte *) alloca (len);
2549 struct value *val;
2550 CORE_ADDR to_addr = value_address (toval);
2551
2552 if (type->code () == TYPE_CODE_FLT)
2553 fromval = value_cast (type, fromval);
2554
2555 read_memory (to_addr, buffer, len);
2556 from_size = value_bitsize (fromval);
2557 if (from_size == 0)
2558 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2559
2560 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
2561 ULONGEST from_offset = 0;
2562 if (is_big_endian && is_scalar_type (value_type (fromval)))
2563 from_offset = from_size - bits;
2564 copy_bitwise (buffer, value_bitpos (toval),
2565 value_contents (fromval), from_offset,
2566 bits, is_big_endian);
2567 write_memory_with_notification (to_addr, buffer, len);
2568
2569 val = value_copy (toval);
2570 memcpy (value_contents_raw (val), value_contents (fromval),
2571 TYPE_LENGTH (type));
2572 deprecated_set_value_type (val, type);
2573
2574 return val;
2575 }
2576
2577 return value_assign (toval, fromval);
2578 }
2579
2580
2581 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2582 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2583 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2584 COMPONENT, and not the inferior's memory. The current contents
2585 of COMPONENT are ignored.
2586
2587 Although not part of the initial design, this function also works
2588 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2589 had a null address, and COMPONENT had an address which is equal to
2590 its offset inside CONTAINER. */
2591
2592 static void
2593 value_assign_to_component (struct value *container, struct value *component,
2594 struct value *val)
2595 {
2596 LONGEST offset_in_container =
2597 (LONGEST) (value_address (component) - value_address (container));
2598 int bit_offset_in_container =
2599 value_bitpos (component) - value_bitpos (container);
2600 int bits;
2601
2602 val = value_cast (value_type (component), val);
2603
2604 if (value_bitsize (component) == 0)
2605 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2606 else
2607 bits = value_bitsize (component);
2608
2609 if (type_byte_order (value_type (container)) == BFD_ENDIAN_BIG)
2610 {
2611 int src_offset;
2612
2613 if (is_scalar_type (check_typedef (value_type (component))))
2614 src_offset
2615 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2616 else
2617 src_offset = 0;
2618 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2619 value_bitpos (container) + bit_offset_in_container,
2620 value_contents (val), src_offset, bits, 1);
2621 }
2622 else
2623 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2624 value_bitpos (container) + bit_offset_in_container,
2625 value_contents (val), 0, bits, 0);
2626 }
2627
2628 /* Determine if TYPE is an access to an unconstrained array. */
2629
2630 bool
2631 ada_is_access_to_unconstrained_array (struct type *type)
2632 {
2633 return (type->code () == TYPE_CODE_TYPEDEF
2634 && is_thick_pntr (ada_typedef_target_type (type)));
2635 }
2636
2637 /* The value of the element of array ARR at the ARITY indices given in IND.
2638 ARR may be either a simple array, GNAT array descriptor, or pointer
2639 thereto. */
2640
2641 struct value *
2642 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2643 {
2644 int k;
2645 struct value *elt;
2646 struct type *elt_type;
2647
2648 elt = ada_coerce_to_simple_array (arr);
2649
2650 elt_type = ada_check_typedef (value_type (elt));
2651 if (elt_type->code () == TYPE_CODE_ARRAY
2652 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2653 return value_subscript_packed (elt, arity, ind);
2654
2655 for (k = 0; k < arity; k += 1)
2656 {
2657 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2658
2659 if (elt_type->code () != TYPE_CODE_ARRAY)
2660 error (_("too many subscripts (%d expected)"), k);
2661
2662 elt = value_subscript (elt, pos_atr (ind[k]));
2663
2664 if (ada_is_access_to_unconstrained_array (saved_elt_type)
2665 && value_type (elt)->code () != TYPE_CODE_TYPEDEF)
2666 {
2667 /* The element is a typedef to an unconstrained array,
2668 except that the value_subscript call stripped the
2669 typedef layer. The typedef layer is GNAT's way to
2670 specify that the element is, at the source level, an
2671 access to the unconstrained array, rather than the
2672 unconstrained array. So, we need to restore that
2673 typedef layer, which we can do by forcing the element's
2674 type back to its original type. Otherwise, the returned
2675 value is going to be printed as the array, rather
2676 than as an access. Another symptom of the same issue
2677 would be that an expression trying to dereference the
2678 element would also be improperly rejected. */
2679 deprecated_set_value_type (elt, saved_elt_type);
2680 }
2681
2682 elt_type = ada_check_typedef (value_type (elt));
2683 }
2684
2685 return elt;
2686 }
2687
2688 /* Assuming ARR is a pointer to a GDB array, the value of the element
2689 of *ARR at the ARITY indices given in IND.
2690 Does not read the entire array into memory.
2691
2692 Note: Unlike what one would expect, this function is used instead of
2693 ada_value_subscript for basically all non-packed array types. The reason
2694 for this is that a side effect of doing our own pointer arithmetics instead
2695 of relying on value_subscript is that there is no implicit typedef peeling.
2696 This is important for arrays of array accesses, where it allows us to
2697 preserve the fact that the array's element is an array access, where the
2698 access part os encoded in a typedef layer. */
2699
2700 static struct value *
2701 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2702 {
2703 int k;
2704 struct value *array_ind = ada_value_ind (arr);
2705 struct type *type
2706 = check_typedef (value_enclosing_type (array_ind));
2707
2708 if (type->code () == TYPE_CODE_ARRAY
2709 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2710 return value_subscript_packed (array_ind, arity, ind);
2711
2712 for (k = 0; k < arity; k += 1)
2713 {
2714 LONGEST lwb, upb;
2715
2716 if (type->code () != TYPE_CODE_ARRAY)
2717 error (_("too many subscripts (%d expected)"), k);
2718 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2719 value_copy (arr));
2720 get_discrete_bounds (type->index_type (), &lwb, &upb);
2721 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2722 type = TYPE_TARGET_TYPE (type);
2723 }
2724
2725 return value_ind (arr);
2726 }
2727
2728 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2729 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2730 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2731 this array is LOW, as per Ada rules. */
2732 static struct value *
2733 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2734 int low, int high)
2735 {
2736 struct type *type0 = ada_check_typedef (type);
2737 struct type *base_index_type = TYPE_TARGET_TYPE (type0->index_type ());
2738 struct type *index_type
2739 = create_static_range_type (NULL, base_index_type, low, high);
2740 struct type *slice_type = create_array_type_with_stride
2741 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2742 type0->dyn_prop (DYN_PROP_BYTE_STRIDE),
2743 TYPE_FIELD_BITSIZE (type0, 0));
2744 int base_low = ada_discrete_type_low_bound (type0->index_type ());
2745 LONGEST base_low_pos, low_pos;
2746 CORE_ADDR base;
2747
2748 if (!discrete_position (base_index_type, low, &low_pos)
2749 || !discrete_position (base_index_type, base_low, &base_low_pos))
2750 {
2751 warning (_("unable to get positions in slice, use bounds instead"));
2752 low_pos = low;
2753 base_low_pos = base_low;
2754 }
2755
2756 base = value_as_address (array_ptr)
2757 + ((low_pos - base_low_pos)
2758 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2759 return value_at_lazy (slice_type, base);
2760 }
2761
2762
2763 static struct value *
2764 ada_value_slice (struct value *array, int low, int high)
2765 {
2766 struct type *type = ada_check_typedef (value_type (array));
2767 struct type *base_index_type = TYPE_TARGET_TYPE (type->index_type ());
2768 struct type *index_type
2769 = create_static_range_type (NULL, type->index_type (), low, high);
2770 struct type *slice_type = create_array_type_with_stride
2771 (NULL, TYPE_TARGET_TYPE (type), index_type,
2772 type->dyn_prop (DYN_PROP_BYTE_STRIDE),
2773 TYPE_FIELD_BITSIZE (type, 0));
2774 LONGEST low_pos, high_pos;
2775
2776 if (!discrete_position (base_index_type, low, &low_pos)
2777 || !discrete_position (base_index_type, high, &high_pos))
2778 {
2779 warning (_("unable to get positions in slice, use bounds instead"));
2780 low_pos = low;
2781 high_pos = high;
2782 }
2783
2784 return value_cast (slice_type,
2785 value_slice (array, low, high_pos - low_pos + 1));
2786 }
2787
2788 /* If type is a record type in the form of a standard GNAT array
2789 descriptor, returns the number of dimensions for type. If arr is a
2790 simple array, returns the number of "array of"s that prefix its
2791 type designation. Otherwise, returns 0. */
2792
2793 int
2794 ada_array_arity (struct type *type)
2795 {
2796 int arity;
2797
2798 if (type == NULL)
2799 return 0;
2800
2801 type = desc_base_type (type);
2802
2803 arity = 0;
2804 if (type->code () == TYPE_CODE_STRUCT)
2805 return desc_arity (desc_bounds_type (type));
2806 else
2807 while (type->code () == TYPE_CODE_ARRAY)
2808 {
2809 arity += 1;
2810 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2811 }
2812
2813 return arity;
2814 }
2815
2816 /* If TYPE is a record type in the form of a standard GNAT array
2817 descriptor or a simple array type, returns the element type for
2818 TYPE after indexing by NINDICES indices, or by all indices if
2819 NINDICES is -1. Otherwise, returns NULL. */
2820
2821 struct type *
2822 ada_array_element_type (struct type *type, int nindices)
2823 {
2824 type = desc_base_type (type);
2825
2826 if (type->code () == TYPE_CODE_STRUCT)
2827 {
2828 int k;
2829 struct type *p_array_type;
2830
2831 p_array_type = desc_data_target_type (type);
2832
2833 k = ada_array_arity (type);
2834 if (k == 0)
2835 return NULL;
2836
2837 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2838 if (nindices >= 0 && k > nindices)
2839 k = nindices;
2840 while (k > 0 && p_array_type != NULL)
2841 {
2842 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2843 k -= 1;
2844 }
2845 return p_array_type;
2846 }
2847 else if (type->code () == TYPE_CODE_ARRAY)
2848 {
2849 while (nindices != 0 && type->code () == TYPE_CODE_ARRAY)
2850 {
2851 type = TYPE_TARGET_TYPE (type);
2852 nindices -= 1;
2853 }
2854 return type;
2855 }
2856
2857 return NULL;
2858 }
2859
2860 /* The type of nth index in arrays of given type (n numbering from 1).
2861 Does not examine memory. Throws an error if N is invalid or TYPE
2862 is not an array type. NAME is the name of the Ada attribute being
2863 evaluated ('range, 'first, 'last, or 'length); it is used in building
2864 the error message. */
2865
2866 static struct type *
2867 ada_index_type (struct type *type, int n, const char *name)
2868 {
2869 struct type *result_type;
2870
2871 type = desc_base_type (type);
2872
2873 if (n < 0 || n > ada_array_arity (type))
2874 error (_("invalid dimension number to '%s"), name);
2875
2876 if (ada_is_simple_array_type (type))
2877 {
2878 int i;
2879
2880 for (i = 1; i < n; i += 1)
2881 type = TYPE_TARGET_TYPE (type);
2882 result_type = TYPE_TARGET_TYPE (type->index_type ());
2883 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2884 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2885 perhaps stabsread.c would make more sense. */
2886 if (result_type && result_type->code () == TYPE_CODE_UNDEF)
2887 result_type = NULL;
2888 }
2889 else
2890 {
2891 result_type = desc_index_type (desc_bounds_type (type), n);
2892 if (result_type == NULL)
2893 error (_("attempt to take bound of something that is not an array"));
2894 }
2895
2896 return result_type;
2897 }
2898
2899 /* Given that arr is an array type, returns the lower bound of the
2900 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2901 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2902 array-descriptor type. It works for other arrays with bounds supplied
2903 by run-time quantities other than discriminants. */
2904
2905 static LONGEST
2906 ada_array_bound_from_type (struct type *arr_type, int n, int which)
2907 {
2908 struct type *type, *index_type_desc, *index_type;
2909 int i;
2910
2911 gdb_assert (which == 0 || which == 1);
2912
2913 if (ada_is_constrained_packed_array_type (arr_type))
2914 arr_type = decode_constrained_packed_array_type (arr_type);
2915
2916 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2917 return (LONGEST) - which;
2918
2919 if (arr_type->code () == TYPE_CODE_PTR)
2920 type = TYPE_TARGET_TYPE (arr_type);
2921 else
2922 type = arr_type;
2923
2924 if (TYPE_FIXED_INSTANCE (type))
2925 {
2926 /* The array has already been fixed, so we do not need to
2927 check the parallel ___XA type again. That encoding has
2928 already been applied, so ignore it now. */
2929 index_type_desc = NULL;
2930 }
2931 else
2932 {
2933 index_type_desc = ada_find_parallel_type (type, "___XA");
2934 ada_fixup_array_indexes_type (index_type_desc);
2935 }
2936
2937 if (index_type_desc != NULL)
2938 index_type = to_fixed_range_type (index_type_desc->field (n - 1).type (),
2939 NULL);
2940 else
2941 {
2942 struct type *elt_type = check_typedef (type);
2943
2944 for (i = 1; i < n; i++)
2945 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
2946
2947 index_type = elt_type->index_type ();
2948 }
2949
2950 return
2951 (LONGEST) (which == 0
2952 ? ada_discrete_type_low_bound (index_type)
2953 : ada_discrete_type_high_bound (index_type));
2954 }
2955
2956 /* Given that arr is an array value, returns the lower bound of the
2957 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2958 WHICH is 1. This routine will also work for arrays with bounds
2959 supplied by run-time quantities other than discriminants. */
2960
2961 static LONGEST
2962 ada_array_bound (struct value *arr, int n, int which)
2963 {
2964 struct type *arr_type;
2965
2966 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
2967 arr = value_ind (arr);
2968 arr_type = value_enclosing_type (arr);
2969
2970 if (ada_is_constrained_packed_array_type (arr_type))
2971 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2972 else if (ada_is_simple_array_type (arr_type))
2973 return ada_array_bound_from_type (arr_type, n, which);
2974 else
2975 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2976 }
2977
2978 /* Given that arr is an array value, returns the length of the
2979 nth index. This routine will also work for arrays with bounds
2980 supplied by run-time quantities other than discriminants.
2981 Does not work for arrays indexed by enumeration types with representation
2982 clauses at the moment. */
2983
2984 static LONGEST
2985 ada_array_length (struct value *arr, int n)
2986 {
2987 struct type *arr_type, *index_type;
2988 int low, high;
2989
2990 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
2991 arr = value_ind (arr);
2992 arr_type = value_enclosing_type (arr);
2993
2994 if (ada_is_constrained_packed_array_type (arr_type))
2995 return ada_array_length (decode_constrained_packed_array (arr), n);
2996
2997 if (ada_is_simple_array_type (arr_type))
2998 {
2999 low = ada_array_bound_from_type (arr_type, n, 0);
3000 high = ada_array_bound_from_type (arr_type, n, 1);
3001 }
3002 else
3003 {
3004 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3005 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3006 }
3007
3008 arr_type = check_typedef (arr_type);
3009 index_type = ada_index_type (arr_type, n, "length");
3010 if (index_type != NULL)
3011 {
3012 struct type *base_type;
3013 if (index_type->code () == TYPE_CODE_RANGE)
3014 base_type = TYPE_TARGET_TYPE (index_type);
3015 else
3016 base_type = index_type;
3017
3018 low = pos_atr (value_from_longest (base_type, low));
3019 high = pos_atr (value_from_longest (base_type, high));
3020 }
3021 return high - low + 1;
3022 }
3023
3024 /* An array whose type is that of ARR_TYPE (an array type), with
3025 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3026 less than LOW, then LOW-1 is used. */
3027
3028 static struct value *
3029 empty_array (struct type *arr_type, int low, int high)
3030 {
3031 struct type *arr_type0 = ada_check_typedef (arr_type);
3032 struct type *index_type
3033 = create_static_range_type
3034 (NULL, TYPE_TARGET_TYPE (arr_type0->index_type ()), low,
3035 high < low ? low - 1 : high);
3036 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3037
3038 return allocate_value (create_array_type (NULL, elt_type, index_type));
3039 }
3040 \f
3041
3042 /* Name resolution */
3043
3044 /* The "decoded" name for the user-definable Ada operator corresponding
3045 to OP. */
3046
3047 static const char *
3048 ada_decoded_op_name (enum exp_opcode op)
3049 {
3050 int i;
3051
3052 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3053 {
3054 if (ada_opname_table[i].op == op)
3055 return ada_opname_table[i].decoded;
3056 }
3057 error (_("Could not find operator name for opcode"));
3058 }
3059
3060 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3061 in a listing of choices during disambiguation (see sort_choices, below).
3062 The idea is that overloadings of a subprogram name from the
3063 same package should sort in their source order. We settle for ordering
3064 such symbols by their trailing number (__N or $N). */
3065
3066 static int
3067 encoded_ordered_before (const char *N0, const char *N1)
3068 {
3069 if (N1 == NULL)
3070 return 0;
3071 else if (N0 == NULL)
3072 return 1;
3073 else
3074 {
3075 int k0, k1;
3076
3077 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3078 ;
3079 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3080 ;
3081 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3082 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3083 {
3084 int n0, n1;
3085
3086 n0 = k0;
3087 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3088 n0 -= 1;
3089 n1 = k1;
3090 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3091 n1 -= 1;
3092 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3093 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3094 }
3095 return (strcmp (N0, N1) < 0);
3096 }
3097 }
3098
3099 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3100 encoded names. */
3101
3102 static void
3103 sort_choices (struct block_symbol syms[], int nsyms)
3104 {
3105 int i;
3106
3107 for (i = 1; i < nsyms; i += 1)
3108 {
3109 struct block_symbol sym = syms[i];
3110 int j;
3111
3112 for (j = i - 1; j >= 0; j -= 1)
3113 {
3114 if (encoded_ordered_before (syms[j].symbol->linkage_name (),
3115 sym.symbol->linkage_name ()))
3116 break;
3117 syms[j + 1] = syms[j];
3118 }
3119 syms[j + 1] = sym;
3120 }
3121 }
3122
3123 /* Whether GDB should display formals and return types for functions in the
3124 overloads selection menu. */
3125 static bool print_signatures = true;
3126
3127 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3128 all but functions, the signature is just the name of the symbol. For
3129 functions, this is the name of the function, the list of types for formals
3130 and the return type (if any). */
3131
3132 static void
3133 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3134 const struct type_print_options *flags)
3135 {
3136 struct type *type = SYMBOL_TYPE (sym);
3137
3138 fprintf_filtered (stream, "%s", sym->print_name ());
3139 if (!print_signatures
3140 || type == NULL
3141 || type->code () != TYPE_CODE_FUNC)
3142 return;
3143
3144 if (type->num_fields () > 0)
3145 {
3146 int i;
3147
3148 fprintf_filtered (stream, " (");
3149 for (i = 0; i < type->num_fields (); ++i)
3150 {
3151 if (i > 0)
3152 fprintf_filtered (stream, "; ");
3153 ada_print_type (type->field (i).type (), NULL, stream, -1, 0,
3154 flags);
3155 }
3156 fprintf_filtered (stream, ")");
3157 }
3158 if (TYPE_TARGET_TYPE (type) != NULL
3159 && TYPE_TARGET_TYPE (type)->code () != TYPE_CODE_VOID)
3160 {
3161 fprintf_filtered (stream, " return ");
3162 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3163 }
3164 }
3165
3166 /* Read and validate a set of numeric choices from the user in the
3167 range 0 .. N_CHOICES-1. Place the results in increasing
3168 order in CHOICES[0 .. N-1], and return N.
3169
3170 The user types choices as a sequence of numbers on one line
3171 separated by blanks, encoding them as follows:
3172
3173 + A choice of 0 means to cancel the selection, throwing an error.
3174 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3175 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3176
3177 The user is not allowed to choose more than MAX_RESULTS values.
3178
3179 ANNOTATION_SUFFIX, if present, is used to annotate the input
3180 prompts (for use with the -f switch). */
3181
3182 static int
3183 get_selections (int *choices, int n_choices, int max_results,
3184 int is_all_choice, const char *annotation_suffix)
3185 {
3186 const char *args;
3187 const char *prompt;
3188 int n_chosen;
3189 int first_choice = is_all_choice ? 2 : 1;
3190
3191 prompt = getenv ("PS2");
3192 if (prompt == NULL)
3193 prompt = "> ";
3194
3195 args = command_line_input (prompt, annotation_suffix);
3196
3197 if (args == NULL)
3198 error_no_arg (_("one or more choice numbers"));
3199
3200 n_chosen = 0;
3201
3202 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3203 order, as given in args. Choices are validated. */
3204 while (1)
3205 {
3206 char *args2;
3207 int choice, j;
3208
3209 args = skip_spaces (args);
3210 if (*args == '\0' && n_chosen == 0)
3211 error_no_arg (_("one or more choice numbers"));
3212 else if (*args == '\0')
3213 break;
3214
3215 choice = strtol (args, &args2, 10);
3216 if (args == args2 || choice < 0
3217 || choice > n_choices + first_choice - 1)
3218 error (_("Argument must be choice number"));
3219 args = args2;
3220
3221 if (choice == 0)
3222 error (_("cancelled"));
3223
3224 if (choice < first_choice)
3225 {
3226 n_chosen = n_choices;
3227 for (j = 0; j < n_choices; j += 1)
3228 choices[j] = j;
3229 break;
3230 }
3231 choice -= first_choice;
3232
3233 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3234 {
3235 }
3236
3237 if (j < 0 || choice != choices[j])
3238 {
3239 int k;
3240
3241 for (k = n_chosen - 1; k > j; k -= 1)
3242 choices[k + 1] = choices[k];
3243 choices[j + 1] = choice;
3244 n_chosen += 1;
3245 }
3246 }
3247
3248 if (n_chosen > max_results)
3249 error (_("Select no more than %d of the above"), max_results);
3250
3251 return n_chosen;
3252 }
3253
3254 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3255 by asking the user (if necessary), returning the number selected,
3256 and setting the first elements of SYMS items. Error if no symbols
3257 selected. */
3258
3259 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3260 to be re-integrated one of these days. */
3261
3262 static int
3263 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3264 {
3265 int i;
3266 int *chosen = XALLOCAVEC (int , nsyms);
3267 int n_chosen;
3268 int first_choice = (max_results == 1) ? 1 : 2;
3269 const char *select_mode = multiple_symbols_select_mode ();
3270
3271 if (max_results < 1)
3272 error (_("Request to select 0 symbols!"));
3273 if (nsyms <= 1)
3274 return nsyms;
3275
3276 if (select_mode == multiple_symbols_cancel)
3277 error (_("\
3278 canceled because the command is ambiguous\n\
3279 See set/show multiple-symbol."));
3280
3281 /* If select_mode is "all", then return all possible symbols.
3282 Only do that if more than one symbol can be selected, of course.
3283 Otherwise, display the menu as usual. */
3284 if (select_mode == multiple_symbols_all && max_results > 1)
3285 return nsyms;
3286
3287 printf_filtered (_("[0] cancel\n"));
3288 if (max_results > 1)
3289 printf_filtered (_("[1] all\n"));
3290
3291 sort_choices (syms, nsyms);
3292
3293 for (i = 0; i < nsyms; i += 1)
3294 {
3295 if (syms[i].symbol == NULL)
3296 continue;
3297
3298 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3299 {
3300 struct symtab_and_line sal =
3301 find_function_start_sal (syms[i].symbol, 1);
3302
3303 printf_filtered ("[%d] ", i + first_choice);
3304 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3305 &type_print_raw_options);
3306 if (sal.symtab == NULL)
3307 printf_filtered (_(" at %p[<no source file available>%p]:%d\n"),
3308 metadata_style.style ().ptr (), nullptr, sal.line);
3309 else
3310 printf_filtered
3311 (_(" at %ps:%d\n"),
3312 styled_string (file_name_style.style (),
3313 symtab_to_filename_for_display (sal.symtab)),
3314 sal.line);
3315 continue;
3316 }
3317 else
3318 {
3319 int is_enumeral =
3320 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3321 && SYMBOL_TYPE (syms[i].symbol) != NULL
3322 && SYMBOL_TYPE (syms[i].symbol)->code () == TYPE_CODE_ENUM);
3323 struct symtab *symtab = NULL;
3324
3325 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3326 symtab = symbol_symtab (syms[i].symbol);
3327
3328 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3329 {
3330 printf_filtered ("[%d] ", i + first_choice);
3331 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3332 &type_print_raw_options);
3333 printf_filtered (_(" at %s:%d\n"),
3334 symtab_to_filename_for_display (symtab),
3335 SYMBOL_LINE (syms[i].symbol));
3336 }
3337 else if (is_enumeral
3338 && SYMBOL_TYPE (syms[i].symbol)->name () != NULL)
3339 {
3340 printf_filtered (("[%d] "), i + first_choice);
3341 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3342 gdb_stdout, -1, 0, &type_print_raw_options);
3343 printf_filtered (_("'(%s) (enumeral)\n"),
3344 syms[i].symbol->print_name ());
3345 }
3346 else
3347 {
3348 printf_filtered ("[%d] ", i + first_choice);
3349 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3350 &type_print_raw_options);
3351
3352 if (symtab != NULL)
3353 printf_filtered (is_enumeral
3354 ? _(" in %s (enumeral)\n")
3355 : _(" at %s:?\n"),
3356 symtab_to_filename_for_display (symtab));
3357 else
3358 printf_filtered (is_enumeral
3359 ? _(" (enumeral)\n")
3360 : _(" at ?\n"));
3361 }
3362 }
3363 }
3364
3365 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3366 "overload-choice");
3367
3368 for (i = 0; i < n_chosen; i += 1)
3369 syms[i] = syms[chosen[i]];
3370
3371 return n_chosen;
3372 }
3373
3374 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3375 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3376 undefined namespace) and converts operators that are
3377 user-defined into appropriate function calls. If CONTEXT_TYPE is
3378 non-null, it provides a preferred result type [at the moment, only
3379 type void has any effect---causing procedures to be preferred over
3380 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3381 return type is preferred. May change (expand) *EXP. */
3382
3383 static void
3384 resolve (expression_up *expp, int void_context_p, int parse_completion,
3385 innermost_block_tracker *tracker)
3386 {
3387 struct type *context_type = NULL;
3388 int pc = 0;
3389
3390 if (void_context_p)
3391 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3392
3393 resolve_subexp (expp, &pc, 1, context_type, parse_completion, tracker);
3394 }
3395
3396 /* Resolve the operator of the subexpression beginning at
3397 position *POS of *EXPP. "Resolving" consists of replacing
3398 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3399 with their resolutions, replacing built-in operators with
3400 function calls to user-defined operators, where appropriate, and,
3401 when DEPROCEDURE_P is non-zero, converting function-valued variables
3402 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3403 are as in ada_resolve, above. */
3404
3405 static struct value *
3406 resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
3407 struct type *context_type, int parse_completion,
3408 innermost_block_tracker *tracker)
3409 {
3410 int pc = *pos;
3411 int i;
3412 struct expression *exp; /* Convenience: == *expp. */
3413 enum exp_opcode op = (*expp)->elts[pc].opcode;
3414 struct value **argvec; /* Vector of operand types (alloca'ed). */
3415 int nargs; /* Number of operands. */
3416 int oplen;
3417
3418 argvec = NULL;
3419 nargs = 0;
3420 exp = expp->get ();
3421
3422 /* Pass one: resolve operands, saving their types and updating *pos,
3423 if needed. */
3424 switch (op)
3425 {
3426 case OP_FUNCALL:
3427 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3428 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3429 *pos += 7;
3430 else
3431 {
3432 *pos += 3;
3433 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3434 }
3435 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3436 break;
3437
3438 case UNOP_ADDR:
3439 *pos += 1;
3440 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3441 break;
3442
3443 case UNOP_QUAL:
3444 *pos += 3;
3445 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type),
3446 parse_completion, tracker);
3447 break;
3448
3449 case OP_ATR_MODULUS:
3450 case OP_ATR_SIZE:
3451 case OP_ATR_TAG:
3452 case OP_ATR_FIRST:
3453 case OP_ATR_LAST:
3454 case OP_ATR_LENGTH:
3455 case OP_ATR_POS:
3456 case OP_ATR_VAL:
3457 case OP_ATR_MIN:
3458 case OP_ATR_MAX:
3459 case TERNOP_IN_RANGE:
3460 case BINOP_IN_BOUNDS:
3461 case UNOP_IN_RANGE:
3462 case OP_AGGREGATE:
3463 case OP_OTHERS:
3464 case OP_CHOICES:
3465 case OP_POSITIONAL:
3466 case OP_DISCRETE_RANGE:
3467 case OP_NAME:
3468 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3469 *pos += oplen;
3470 break;
3471
3472 case BINOP_ASSIGN:
3473 {
3474 struct value *arg1;
3475
3476 *pos += 1;
3477 arg1 = resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3478 if (arg1 == NULL)
3479 resolve_subexp (expp, pos, 1, NULL, parse_completion, tracker);
3480 else
3481 resolve_subexp (expp, pos, 1, value_type (arg1), parse_completion,
3482 tracker);
3483 break;
3484 }
3485
3486 case UNOP_CAST:
3487 *pos += 3;
3488 nargs = 1;
3489 break;
3490
3491 case BINOP_ADD:
3492 case BINOP_SUB:
3493 case BINOP_MUL:
3494 case BINOP_DIV:
3495 case BINOP_REM:
3496 case BINOP_MOD:
3497 case BINOP_EXP:
3498 case BINOP_CONCAT:
3499 case BINOP_LOGICAL_AND:
3500 case BINOP_LOGICAL_OR:
3501 case BINOP_BITWISE_AND:
3502 case BINOP_BITWISE_IOR:
3503 case BINOP_BITWISE_XOR:
3504
3505 case BINOP_EQUAL:
3506 case BINOP_NOTEQUAL:
3507 case BINOP_LESS:
3508 case BINOP_GTR:
3509 case BINOP_LEQ:
3510 case BINOP_GEQ:
3511
3512 case BINOP_REPEAT:
3513 case BINOP_SUBSCRIPT:
3514 case BINOP_COMMA:
3515 *pos += 1;
3516 nargs = 2;
3517 break;
3518
3519 case UNOP_NEG:
3520 case UNOP_PLUS:
3521 case UNOP_LOGICAL_NOT:
3522 case UNOP_ABS:
3523 case UNOP_IND:
3524 *pos += 1;
3525 nargs = 1;
3526 break;
3527
3528 case OP_LONG:
3529 case OP_FLOAT:
3530 case OP_VAR_VALUE:
3531 case OP_VAR_MSYM_VALUE:
3532 *pos += 4;
3533 break;
3534
3535 case OP_TYPE:
3536 case OP_BOOL:
3537 case OP_LAST:
3538 case OP_INTERNALVAR:
3539 *pos += 3;
3540 break;
3541
3542 case UNOP_MEMVAL:
3543 *pos += 3;
3544 nargs = 1;
3545 break;
3546
3547 case OP_REGISTER:
3548 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3549 break;
3550
3551 case STRUCTOP_STRUCT:
3552 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3553 nargs = 1;
3554 break;
3555
3556 case TERNOP_SLICE:
3557 *pos += 1;
3558 nargs = 3;
3559 break;
3560
3561 case OP_STRING:
3562 break;
3563
3564 default:
3565 error (_("Unexpected operator during name resolution"));
3566 }
3567
3568 argvec = XALLOCAVEC (struct value *, nargs + 1);
3569 for (i = 0; i < nargs; i += 1)
3570 argvec[i] = resolve_subexp (expp, pos, 1, NULL, parse_completion,
3571 tracker);
3572 argvec[i] = NULL;
3573 exp = expp->get ();
3574
3575 /* Pass two: perform any resolution on principal operator. */
3576 switch (op)
3577 {
3578 default:
3579 break;
3580
3581 case OP_VAR_VALUE:
3582 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3583 {
3584 std::vector<struct block_symbol> candidates;
3585 int n_candidates;
3586
3587 n_candidates =
3588 ada_lookup_symbol_list (exp->elts[pc + 2].symbol->linkage_name (),
3589 exp->elts[pc + 1].block, VAR_DOMAIN,
3590 &candidates);
3591
3592 if (n_candidates > 1)
3593 {
3594 /* Types tend to get re-introduced locally, so if there
3595 are any local symbols that are not types, first filter
3596 out all types. */
3597 int j;
3598 for (j = 0; j < n_candidates; j += 1)
3599 switch (SYMBOL_CLASS (candidates[j].symbol))
3600 {
3601 case LOC_REGISTER:
3602 case LOC_ARG:
3603 case LOC_REF_ARG:
3604 case LOC_REGPARM_ADDR:
3605 case LOC_LOCAL:
3606 case LOC_COMPUTED:
3607 goto FoundNonType;
3608 default:
3609 break;
3610 }
3611 FoundNonType:
3612 if (j < n_candidates)
3613 {
3614 j = 0;
3615 while (j < n_candidates)
3616 {
3617 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3618 {
3619 candidates[j] = candidates[n_candidates - 1];
3620 n_candidates -= 1;
3621 }
3622 else
3623 j += 1;
3624 }
3625 }
3626 }
3627
3628 if (n_candidates == 0)
3629 error (_("No definition found for %s"),
3630 exp->elts[pc + 2].symbol->print_name ());
3631 else if (n_candidates == 1)
3632 i = 0;
3633 else if (deprocedure_p
3634 && !is_nonfunction (candidates.data (), n_candidates))
3635 {
3636 i = ada_resolve_function
3637 (candidates.data (), n_candidates, NULL, 0,
3638 exp->elts[pc + 2].symbol->linkage_name (),
3639 context_type, parse_completion);
3640 if (i < 0)
3641 error (_("Could not find a match for %s"),
3642 exp->elts[pc + 2].symbol->print_name ());
3643 }
3644 else
3645 {
3646 printf_filtered (_("Multiple matches for %s\n"),
3647 exp->elts[pc + 2].symbol->print_name ());
3648 user_select_syms (candidates.data (), n_candidates, 1);
3649 i = 0;
3650 }
3651
3652 exp->elts[pc + 1].block = candidates[i].block;
3653 exp->elts[pc + 2].symbol = candidates[i].symbol;
3654 tracker->update (candidates[i]);
3655 }
3656
3657 if (deprocedure_p
3658 && (SYMBOL_TYPE (exp->elts[pc + 2].symbol)->code ()
3659 == TYPE_CODE_FUNC))
3660 {
3661 replace_operator_with_call (expp, pc, 0, 4,
3662 exp->elts[pc + 2].symbol,
3663 exp->elts[pc + 1].block);
3664 exp = expp->get ();
3665 }
3666 break;
3667
3668 case OP_FUNCALL:
3669 {
3670 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3671 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3672 {
3673 std::vector<struct block_symbol> candidates;
3674 int n_candidates;
3675
3676 n_candidates =
3677 ada_lookup_symbol_list (exp->elts[pc + 5].symbol->linkage_name (),
3678 exp->elts[pc + 4].block, VAR_DOMAIN,
3679 &candidates);
3680
3681 if (n_candidates == 1)
3682 i = 0;
3683 else
3684 {
3685 i = ada_resolve_function
3686 (candidates.data (), n_candidates,
3687 argvec, nargs,
3688 exp->elts[pc + 5].symbol->linkage_name (),
3689 context_type, parse_completion);
3690 if (i < 0)
3691 error (_("Could not find a match for %s"),
3692 exp->elts[pc + 5].symbol->print_name ());
3693 }
3694
3695 exp->elts[pc + 4].block = candidates[i].block;
3696 exp->elts[pc + 5].symbol = candidates[i].symbol;
3697 tracker->update (candidates[i]);
3698 }
3699 }
3700 break;
3701 case BINOP_ADD:
3702 case BINOP_SUB:
3703 case BINOP_MUL:
3704 case BINOP_DIV:
3705 case BINOP_REM:
3706 case BINOP_MOD:
3707 case BINOP_CONCAT:
3708 case BINOP_BITWISE_AND:
3709 case BINOP_BITWISE_IOR:
3710 case BINOP_BITWISE_XOR:
3711 case BINOP_EQUAL:
3712 case BINOP_NOTEQUAL:
3713 case BINOP_LESS:
3714 case BINOP_GTR:
3715 case BINOP_LEQ:
3716 case BINOP_GEQ:
3717 case BINOP_EXP:
3718 case UNOP_NEG:
3719 case UNOP_PLUS:
3720 case UNOP_LOGICAL_NOT:
3721 case UNOP_ABS:
3722 if (possible_user_operator_p (op, argvec))
3723 {
3724 std::vector<struct block_symbol> candidates;
3725 int n_candidates;
3726
3727 n_candidates =
3728 ada_lookup_symbol_list (ada_decoded_op_name (op),
3729 NULL, VAR_DOMAIN,
3730 &candidates);
3731
3732 i = ada_resolve_function (candidates.data (), n_candidates, argvec,
3733 nargs, ada_decoded_op_name (op), NULL,
3734 parse_completion);
3735 if (i < 0)
3736 break;
3737
3738 replace_operator_with_call (expp, pc, nargs, 1,
3739 candidates[i].symbol,
3740 candidates[i].block);
3741 exp = expp->get ();
3742 }
3743 break;
3744
3745 case OP_TYPE:
3746 case OP_REGISTER:
3747 return NULL;
3748 }
3749
3750 *pos = pc;
3751 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3752 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3753 exp->elts[pc + 1].objfile,
3754 exp->elts[pc + 2].msymbol);
3755 else
3756 return evaluate_subexp_type (exp, pos);
3757 }
3758
3759 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3760 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3761 a non-pointer. */
3762 /* The term "match" here is rather loose. The match is heuristic and
3763 liberal. */
3764
3765 static int
3766 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3767 {
3768 ftype = ada_check_typedef (ftype);
3769 atype = ada_check_typedef (atype);
3770
3771 if (ftype->code () == TYPE_CODE_REF)
3772 ftype = TYPE_TARGET_TYPE (ftype);
3773 if (atype->code () == TYPE_CODE_REF)
3774 atype = TYPE_TARGET_TYPE (atype);
3775
3776 switch (ftype->code ())
3777 {
3778 default:
3779 return ftype->code () == atype->code ();
3780 case TYPE_CODE_PTR:
3781 if (atype->code () == TYPE_CODE_PTR)
3782 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3783 TYPE_TARGET_TYPE (atype), 0);
3784 else
3785 return (may_deref
3786 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3787 case TYPE_CODE_INT:
3788 case TYPE_CODE_ENUM:
3789 case TYPE_CODE_RANGE:
3790 switch (atype->code ())
3791 {
3792 case TYPE_CODE_INT:
3793 case TYPE_CODE_ENUM:
3794 case TYPE_CODE_RANGE:
3795 return 1;
3796 default:
3797 return 0;
3798 }
3799
3800 case TYPE_CODE_ARRAY:
3801 return (atype->code () == TYPE_CODE_ARRAY
3802 || ada_is_array_descriptor_type (atype));
3803
3804 case TYPE_CODE_STRUCT:
3805 if (ada_is_array_descriptor_type (ftype))
3806 return (atype->code () == TYPE_CODE_ARRAY
3807 || ada_is_array_descriptor_type (atype));
3808 else
3809 return (atype->code () == TYPE_CODE_STRUCT
3810 && !ada_is_array_descriptor_type (atype));
3811
3812 case TYPE_CODE_UNION:
3813 case TYPE_CODE_FLT:
3814 return (atype->code () == ftype->code ());
3815 }
3816 }
3817
3818 /* Return non-zero if the formals of FUNC "sufficiently match" the
3819 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3820 may also be an enumeral, in which case it is treated as a 0-
3821 argument function. */
3822
3823 static int
3824 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3825 {
3826 int i;
3827 struct type *func_type = SYMBOL_TYPE (func);
3828
3829 if (SYMBOL_CLASS (func) == LOC_CONST
3830 && func_type->code () == TYPE_CODE_ENUM)
3831 return (n_actuals == 0);
3832 else if (func_type == NULL || func_type->code () != TYPE_CODE_FUNC)
3833 return 0;
3834
3835 if (func_type->num_fields () != n_actuals)
3836 return 0;
3837
3838 for (i = 0; i < n_actuals; i += 1)
3839 {
3840 if (actuals[i] == NULL)
3841 return 0;
3842 else
3843 {
3844 struct type *ftype = ada_check_typedef (func_type->field (i).type ());
3845 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3846
3847 if (!ada_type_match (ftype, atype, 1))
3848 return 0;
3849 }
3850 }
3851 return 1;
3852 }
3853
3854 /* False iff function type FUNC_TYPE definitely does not produce a value
3855 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3856 FUNC_TYPE is not a valid function type with a non-null return type
3857 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3858
3859 static int
3860 return_match (struct type *func_type, struct type *context_type)
3861 {
3862 struct type *return_type;
3863
3864 if (func_type == NULL)
3865 return 1;
3866
3867 if (func_type->code () == TYPE_CODE_FUNC)
3868 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3869 else
3870 return_type = get_base_type (func_type);
3871 if (return_type == NULL)
3872 return 1;
3873
3874 context_type = get_base_type (context_type);
3875
3876 if (return_type->code () == TYPE_CODE_ENUM)
3877 return context_type == NULL || return_type == context_type;
3878 else if (context_type == NULL)
3879 return return_type->code () != TYPE_CODE_VOID;
3880 else
3881 return return_type->code () == context_type->code ();
3882 }
3883
3884
3885 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3886 function (if any) that matches the types of the NARGS arguments in
3887 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3888 that returns that type, then eliminate matches that don't. If
3889 CONTEXT_TYPE is void and there is at least one match that does not
3890 return void, eliminate all matches that do.
3891
3892 Asks the user if there is more than one match remaining. Returns -1
3893 if there is no such symbol or none is selected. NAME is used
3894 solely for messages. May re-arrange and modify SYMS in
3895 the process; the index returned is for the modified vector. */
3896
3897 static int
3898 ada_resolve_function (struct block_symbol syms[],
3899 int nsyms, struct value **args, int nargs,
3900 const char *name, struct type *context_type,
3901 int parse_completion)
3902 {
3903 int fallback;
3904 int k;
3905 int m; /* Number of hits */
3906
3907 m = 0;
3908 /* In the first pass of the loop, we only accept functions matching
3909 context_type. If none are found, we add a second pass of the loop
3910 where every function is accepted. */
3911 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3912 {
3913 for (k = 0; k < nsyms; k += 1)
3914 {
3915 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3916
3917 if (ada_args_match (syms[k].symbol, args, nargs)
3918 && (fallback || return_match (type, context_type)))
3919 {
3920 syms[m] = syms[k];
3921 m += 1;
3922 }
3923 }
3924 }
3925
3926 /* If we got multiple matches, ask the user which one to use. Don't do this
3927 interactive thing during completion, though, as the purpose of the
3928 completion is providing a list of all possible matches. Prompting the
3929 user to filter it down would be completely unexpected in this case. */
3930 if (m == 0)
3931 return -1;
3932 else if (m > 1 && !parse_completion)
3933 {
3934 printf_filtered (_("Multiple matches for %s\n"), name);
3935 user_select_syms (syms, m, 1);
3936 return 0;
3937 }
3938 return 0;
3939 }
3940
3941 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3942 on the function identified by SYM and BLOCK, and taking NARGS
3943 arguments. Update *EXPP as needed to hold more space. */
3944
3945 static void
3946 replace_operator_with_call (expression_up *expp, int pc, int nargs,
3947 int oplen, struct symbol *sym,
3948 const struct block *block)
3949 {
3950 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3951 symbol, -oplen for operator being replaced). */
3952 struct expression *newexp = (struct expression *)
3953 xzalloc (sizeof (struct expression)
3954 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3955 struct expression *exp = expp->get ();
3956
3957 newexp->nelts = exp->nelts + 7 - oplen;
3958 newexp->language_defn = exp->language_defn;
3959 newexp->gdbarch = exp->gdbarch;
3960 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3961 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3962 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3963
3964 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3965 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3966
3967 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3968 newexp->elts[pc + 4].block = block;
3969 newexp->elts[pc + 5].symbol = sym;
3970
3971 expp->reset (newexp);
3972 }
3973
3974 /* Type-class predicates */
3975
3976 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3977 or FLOAT). */
3978
3979 static int
3980 numeric_type_p (struct type *type)
3981 {
3982 if (type == NULL)
3983 return 0;
3984 else
3985 {
3986 switch (type->code ())
3987 {
3988 case TYPE_CODE_INT:
3989 case TYPE_CODE_FLT:
3990 return 1;
3991 case TYPE_CODE_RANGE:
3992 return (type == TYPE_TARGET_TYPE (type)
3993 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3994 default:
3995 return 0;
3996 }
3997 }
3998 }
3999
4000 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4001
4002 static int
4003 integer_type_p (struct type *type)
4004 {
4005 if (type == NULL)
4006 return 0;
4007 else
4008 {
4009 switch (type->code ())
4010 {
4011 case TYPE_CODE_INT:
4012 return 1;
4013 case TYPE_CODE_RANGE:
4014 return (type == TYPE_TARGET_TYPE (type)
4015 || integer_type_p (TYPE_TARGET_TYPE (type)));
4016 default:
4017 return 0;
4018 }
4019 }
4020 }
4021
4022 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4023
4024 static int
4025 scalar_type_p (struct type *type)
4026 {
4027 if (type == NULL)
4028 return 0;
4029 else
4030 {
4031 switch (type->code ())
4032 {
4033 case TYPE_CODE_INT:
4034 case TYPE_CODE_RANGE:
4035 case TYPE_CODE_ENUM:
4036 case TYPE_CODE_FLT:
4037 return 1;
4038 default:
4039 return 0;
4040 }
4041 }
4042 }
4043
4044 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4045
4046 static int
4047 discrete_type_p (struct type *type)
4048 {
4049 if (type == NULL)
4050 return 0;
4051 else
4052 {
4053 switch (type->code ())
4054 {
4055 case TYPE_CODE_INT:
4056 case TYPE_CODE_RANGE:
4057 case TYPE_CODE_ENUM:
4058 case TYPE_CODE_BOOL:
4059 return 1;
4060 default:
4061 return 0;
4062 }
4063 }
4064 }
4065
4066 /* Returns non-zero if OP with operands in the vector ARGS could be
4067 a user-defined function. Errs on the side of pre-defined operators
4068 (i.e., result 0). */
4069
4070 static int
4071 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4072 {
4073 struct type *type0 =
4074 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4075 struct type *type1 =
4076 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4077
4078 if (type0 == NULL)
4079 return 0;
4080
4081 switch (op)
4082 {
4083 default:
4084 return 0;
4085
4086 case BINOP_ADD:
4087 case BINOP_SUB:
4088 case BINOP_MUL:
4089 case BINOP_DIV:
4090 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4091
4092 case BINOP_REM:
4093 case BINOP_MOD:
4094 case BINOP_BITWISE_AND:
4095 case BINOP_BITWISE_IOR:
4096 case BINOP_BITWISE_XOR:
4097 return (!(integer_type_p (type0) && integer_type_p (type1)));
4098
4099 case BINOP_EQUAL:
4100 case BINOP_NOTEQUAL:
4101 case BINOP_LESS:
4102 case BINOP_GTR:
4103 case BINOP_LEQ:
4104 case BINOP_GEQ:
4105 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4106
4107 case BINOP_CONCAT:
4108 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4109
4110 case BINOP_EXP:
4111 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4112
4113 case UNOP_NEG:
4114 case UNOP_PLUS:
4115 case UNOP_LOGICAL_NOT:
4116 case UNOP_ABS:
4117 return (!numeric_type_p (type0));
4118
4119 }
4120 }
4121 \f
4122 /* Renaming */
4123
4124 /* NOTES:
4125
4126 1. In the following, we assume that a renaming type's name may
4127 have an ___XD suffix. It would be nice if this went away at some
4128 point.
4129 2. We handle both the (old) purely type-based representation of
4130 renamings and the (new) variable-based encoding. At some point,
4131 it is devoutly to be hoped that the former goes away
4132 (FIXME: hilfinger-2007-07-09).
4133 3. Subprogram renamings are not implemented, although the XRS
4134 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4135
4136 /* If SYM encodes a renaming,
4137
4138 <renaming> renames <renamed entity>,
4139
4140 sets *LEN to the length of the renamed entity's name,
4141 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4142 the string describing the subcomponent selected from the renamed
4143 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4144 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4145 are undefined). Otherwise, returns a value indicating the category
4146 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4147 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4148 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4149 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4150 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4151 may be NULL, in which case they are not assigned.
4152
4153 [Currently, however, GCC does not generate subprogram renamings.] */
4154
4155 enum ada_renaming_category
4156 ada_parse_renaming (struct symbol *sym,
4157 const char **renamed_entity, int *len,
4158 const char **renaming_expr)
4159 {
4160 enum ada_renaming_category kind;
4161 const char *info;
4162 const char *suffix;
4163
4164 if (sym == NULL)
4165 return ADA_NOT_RENAMING;
4166 switch (SYMBOL_CLASS (sym))
4167 {
4168 default:
4169 return ADA_NOT_RENAMING;
4170 case LOC_LOCAL:
4171 case LOC_STATIC:
4172 case LOC_COMPUTED:
4173 case LOC_OPTIMIZED_OUT:
4174 info = strstr (sym->linkage_name (), "___XR");
4175 if (info == NULL)
4176 return ADA_NOT_RENAMING;
4177 switch (info[5])
4178 {
4179 case '_':
4180 kind = ADA_OBJECT_RENAMING;
4181 info += 6;
4182 break;
4183 case 'E':
4184 kind = ADA_EXCEPTION_RENAMING;
4185 info += 7;
4186 break;
4187 case 'P':
4188 kind = ADA_PACKAGE_RENAMING;
4189 info += 7;
4190 break;
4191 case 'S':
4192 kind = ADA_SUBPROGRAM_RENAMING;
4193 info += 7;
4194 break;
4195 default:
4196 return ADA_NOT_RENAMING;
4197 }
4198 }
4199
4200 if (renamed_entity != NULL)
4201 *renamed_entity = info;
4202 suffix = strstr (info, "___XE");
4203 if (suffix == NULL || suffix == info)
4204 return ADA_NOT_RENAMING;
4205 if (len != NULL)
4206 *len = strlen (info) - strlen (suffix);
4207 suffix += 5;
4208 if (renaming_expr != NULL)
4209 *renaming_expr = suffix;
4210 return kind;
4211 }
4212
4213 /* Compute the value of the given RENAMING_SYM, which is expected to
4214 be a symbol encoding a renaming expression. BLOCK is the block
4215 used to evaluate the renaming. */
4216
4217 static struct value *
4218 ada_read_renaming_var_value (struct symbol *renaming_sym,
4219 const struct block *block)
4220 {
4221 const char *sym_name;
4222
4223 sym_name = renaming_sym->linkage_name ();
4224 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4225 return evaluate_expression (expr.get ());
4226 }
4227 \f
4228
4229 /* Evaluation: Function Calls */
4230
4231 /* Return an lvalue containing the value VAL. This is the identity on
4232 lvalues, and otherwise has the side-effect of allocating memory
4233 in the inferior where a copy of the value contents is copied. */
4234
4235 static struct value *
4236 ensure_lval (struct value *val)
4237 {
4238 if (VALUE_LVAL (val) == not_lval
4239 || VALUE_LVAL (val) == lval_internalvar)
4240 {
4241 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4242 const CORE_ADDR addr =
4243 value_as_long (value_allocate_space_in_inferior (len));
4244
4245 VALUE_LVAL (val) = lval_memory;
4246 set_value_address (val, addr);
4247 write_memory (addr, value_contents (val), len);
4248 }
4249
4250 return val;
4251 }
4252
4253 /* Given ARG, a value of type (pointer or reference to a)*
4254 structure/union, extract the component named NAME from the ultimate
4255 target structure/union and return it as a value with its
4256 appropriate type.
4257
4258 The routine searches for NAME among all members of the structure itself
4259 and (recursively) among all members of any wrapper members
4260 (e.g., '_parent').
4261
4262 If NO_ERR, then simply return NULL in case of error, rather than
4263 calling error. */
4264
4265 static struct value *
4266 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
4267 {
4268 struct type *t, *t1;
4269 struct value *v;
4270 int check_tag;
4271
4272 v = NULL;
4273 t1 = t = ada_check_typedef (value_type (arg));
4274 if (t->code () == TYPE_CODE_REF)
4275 {
4276 t1 = TYPE_TARGET_TYPE (t);
4277 if (t1 == NULL)
4278 goto BadValue;
4279 t1 = ada_check_typedef (t1);
4280 if (t1->code () == TYPE_CODE_PTR)
4281 {
4282 arg = coerce_ref (arg);
4283 t = t1;
4284 }
4285 }
4286
4287 while (t->code () == TYPE_CODE_PTR)
4288 {
4289 t1 = TYPE_TARGET_TYPE (t);
4290 if (t1 == NULL)
4291 goto BadValue;
4292 t1 = ada_check_typedef (t1);
4293 if (t1->code () == TYPE_CODE_PTR)
4294 {
4295 arg = value_ind (arg);
4296 t = t1;
4297 }
4298 else
4299 break;
4300 }
4301
4302 if (t1->code () != TYPE_CODE_STRUCT && t1->code () != TYPE_CODE_UNION)
4303 goto BadValue;
4304
4305 if (t1 == t)
4306 v = ada_search_struct_field (name, arg, 0, t);
4307 else
4308 {
4309 int bit_offset, bit_size, byte_offset;
4310 struct type *field_type;
4311 CORE_ADDR address;
4312
4313 if (t->code () == TYPE_CODE_PTR)
4314 address = value_address (ada_value_ind (arg));
4315 else
4316 address = value_address (ada_coerce_ref (arg));
4317
4318 /* Check to see if this is a tagged type. We also need to handle
4319 the case where the type is a reference to a tagged type, but
4320 we have to be careful to exclude pointers to tagged types.
4321 The latter should be shown as usual (as a pointer), whereas
4322 a reference should mostly be transparent to the user. */
4323
4324 if (ada_is_tagged_type (t1, 0)
4325 || (t1->code () == TYPE_CODE_REF
4326 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
4327 {
4328 /* We first try to find the searched field in the current type.
4329 If not found then let's look in the fixed type. */
4330
4331 if (!find_struct_field (name, t1, 0,
4332 &field_type, &byte_offset, &bit_offset,
4333 &bit_size, NULL))
4334 check_tag = 1;
4335 else
4336 check_tag = 0;
4337 }
4338 else
4339 check_tag = 0;
4340
4341 /* Convert to fixed type in all cases, so that we have proper
4342 offsets to each field in unconstrained record types. */
4343 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
4344 address, NULL, check_tag);
4345
4346 if (find_struct_field (name, t1, 0,
4347 &field_type, &byte_offset, &bit_offset,
4348 &bit_size, NULL))
4349 {
4350 if (bit_size != 0)
4351 {
4352 if (t->code () == TYPE_CODE_REF)
4353 arg = ada_coerce_ref (arg);
4354 else
4355 arg = ada_value_ind (arg);
4356 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
4357 bit_offset, bit_size,
4358 field_type);
4359 }
4360 else
4361 v = value_at_lazy (field_type, address + byte_offset);
4362 }
4363 }
4364
4365 if (v != NULL || no_err)
4366 return v;
4367 else
4368 error (_("There is no member named %s."), name);
4369
4370 BadValue:
4371 if (no_err)
4372 return NULL;
4373 else
4374 error (_("Attempt to extract a component of "
4375 "a value that is not a record."));
4376 }
4377
4378 /* Return the value ACTUAL, converted to be an appropriate value for a
4379 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4380 allocating any necessary descriptors (fat pointers), or copies of
4381 values not residing in memory, updating it as needed. */
4382
4383 struct value *
4384 ada_convert_actual (struct value *actual, struct type *formal_type0)
4385 {
4386 struct type *actual_type = ada_check_typedef (value_type (actual));
4387 struct type *formal_type = ada_check_typedef (formal_type0);
4388 struct type *formal_target =
4389 formal_type->code () == TYPE_CODE_PTR
4390 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4391 struct type *actual_target =
4392 actual_type->code () == TYPE_CODE_PTR
4393 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4394
4395 if (ada_is_array_descriptor_type (formal_target)
4396 && actual_target->code () == TYPE_CODE_ARRAY)
4397 return make_array_descriptor (formal_type, actual);
4398 else if (formal_type->code () == TYPE_CODE_PTR
4399 || formal_type->code () == TYPE_CODE_REF)
4400 {
4401 struct value *result;
4402
4403 if (formal_target->code () == TYPE_CODE_ARRAY
4404 && ada_is_array_descriptor_type (actual_target))
4405 result = desc_data (actual);
4406 else if (formal_type->code () != TYPE_CODE_PTR)
4407 {
4408 if (VALUE_LVAL (actual) != lval_memory)
4409 {
4410 struct value *val;
4411
4412 actual_type = ada_check_typedef (value_type (actual));
4413 val = allocate_value (actual_type);
4414 memcpy ((char *) value_contents_raw (val),
4415 (char *) value_contents (actual),
4416 TYPE_LENGTH (actual_type));
4417 actual = ensure_lval (val);
4418 }
4419 result = value_addr (actual);
4420 }
4421 else
4422 return actual;
4423 return value_cast_pointers (formal_type, result, 0);
4424 }
4425 else if (actual_type->code () == TYPE_CODE_PTR)
4426 return ada_value_ind (actual);
4427 else if (ada_is_aligner_type (formal_type))
4428 {
4429 /* We need to turn this parameter into an aligner type
4430 as well. */
4431 struct value *aligner = allocate_value (formal_type);
4432 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4433
4434 value_assign_to_component (aligner, component, actual);
4435 return aligner;
4436 }
4437
4438 return actual;
4439 }
4440
4441 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4442 type TYPE. This is usually an inefficient no-op except on some targets
4443 (such as AVR) where the representation of a pointer and an address
4444 differs. */
4445
4446 static CORE_ADDR
4447 value_pointer (struct value *value, struct type *type)
4448 {
4449 struct gdbarch *gdbarch = get_type_arch (type);
4450 unsigned len = TYPE_LENGTH (type);
4451 gdb_byte *buf = (gdb_byte *) alloca (len);
4452 CORE_ADDR addr;
4453
4454 addr = value_address (value);
4455 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4456 addr = extract_unsigned_integer (buf, len, type_byte_order (type));
4457 return addr;
4458 }
4459
4460
4461 /* Push a descriptor of type TYPE for array value ARR on the stack at
4462 *SP, updating *SP to reflect the new descriptor. Return either
4463 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4464 to-descriptor type rather than a descriptor type), a struct value *
4465 representing a pointer to this descriptor. */
4466
4467 static struct value *
4468 make_array_descriptor (struct type *type, struct value *arr)
4469 {
4470 struct type *bounds_type = desc_bounds_type (type);
4471 struct type *desc_type = desc_base_type (type);
4472 struct value *descriptor = allocate_value (desc_type);
4473 struct value *bounds = allocate_value (bounds_type);
4474 int i;
4475
4476 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4477 i > 0; i -= 1)
4478 {
4479 modify_field (value_type (bounds), value_contents_writeable (bounds),
4480 ada_array_bound (arr, i, 0),
4481 desc_bound_bitpos (bounds_type, i, 0),
4482 desc_bound_bitsize (bounds_type, i, 0));
4483 modify_field (value_type (bounds), value_contents_writeable (bounds),
4484 ada_array_bound (arr, i, 1),
4485 desc_bound_bitpos (bounds_type, i, 1),
4486 desc_bound_bitsize (bounds_type, i, 1));
4487 }
4488
4489 bounds = ensure_lval (bounds);
4490
4491 modify_field (value_type (descriptor),
4492 value_contents_writeable (descriptor),
4493 value_pointer (ensure_lval (arr),
4494 desc_type->field (0).type ()),
4495 fat_pntr_data_bitpos (desc_type),
4496 fat_pntr_data_bitsize (desc_type));
4497
4498 modify_field (value_type (descriptor),
4499 value_contents_writeable (descriptor),
4500 value_pointer (bounds,
4501 desc_type->field (1).type ()),
4502 fat_pntr_bounds_bitpos (desc_type),
4503 fat_pntr_bounds_bitsize (desc_type));
4504
4505 descriptor = ensure_lval (descriptor);
4506
4507 if (type->code () == TYPE_CODE_PTR)
4508 return value_addr (descriptor);
4509 else
4510 return descriptor;
4511 }
4512 \f
4513 /* Symbol Cache Module */
4514
4515 /* Performance measurements made as of 2010-01-15 indicate that
4516 this cache does bring some noticeable improvements. Depending
4517 on the type of entity being printed, the cache can make it as much
4518 as an order of magnitude faster than without it.
4519
4520 The descriptive type DWARF extension has significantly reduced
4521 the need for this cache, at least when DWARF is being used. However,
4522 even in this case, some expensive name-based symbol searches are still
4523 sometimes necessary - to find an XVZ variable, mostly. */
4524
4525 /* Initialize the contents of SYM_CACHE. */
4526
4527 static void
4528 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4529 {
4530 obstack_init (&sym_cache->cache_space);
4531 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4532 }
4533
4534 /* Free the memory used by SYM_CACHE. */
4535
4536 static void
4537 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4538 {
4539 obstack_free (&sym_cache->cache_space, NULL);
4540 xfree (sym_cache);
4541 }
4542
4543 /* Return the symbol cache associated to the given program space PSPACE.
4544 If not allocated for this PSPACE yet, allocate and initialize one. */
4545
4546 static struct ada_symbol_cache *
4547 ada_get_symbol_cache (struct program_space *pspace)
4548 {
4549 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4550
4551 if (pspace_data->sym_cache == NULL)
4552 {
4553 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4554 ada_init_symbol_cache (pspace_data->sym_cache);
4555 }
4556
4557 return pspace_data->sym_cache;
4558 }
4559
4560 /* Clear all entries from the symbol cache. */
4561
4562 static void
4563 ada_clear_symbol_cache (void)
4564 {
4565 struct ada_symbol_cache *sym_cache
4566 = ada_get_symbol_cache (current_program_space);
4567
4568 obstack_free (&sym_cache->cache_space, NULL);
4569 ada_init_symbol_cache (sym_cache);
4570 }
4571
4572 /* Search our cache for an entry matching NAME and DOMAIN.
4573 Return it if found, or NULL otherwise. */
4574
4575 static struct cache_entry **
4576 find_entry (const char *name, domain_enum domain)
4577 {
4578 struct ada_symbol_cache *sym_cache
4579 = ada_get_symbol_cache (current_program_space);
4580 int h = msymbol_hash (name) % HASH_SIZE;
4581 struct cache_entry **e;
4582
4583 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4584 {
4585 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4586 return e;
4587 }
4588 return NULL;
4589 }
4590
4591 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4592 Return 1 if found, 0 otherwise.
4593
4594 If an entry was found and SYM is not NULL, set *SYM to the entry's
4595 SYM. Same principle for BLOCK if not NULL. */
4596
4597 static int
4598 lookup_cached_symbol (const char *name, domain_enum domain,
4599 struct symbol **sym, const struct block **block)
4600 {
4601 struct cache_entry **e = find_entry (name, domain);
4602
4603 if (e == NULL)
4604 return 0;
4605 if (sym != NULL)
4606 *sym = (*e)->sym;
4607 if (block != NULL)
4608 *block = (*e)->block;
4609 return 1;
4610 }
4611
4612 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4613 in domain DOMAIN, save this result in our symbol cache. */
4614
4615 static void
4616 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4617 const struct block *block)
4618 {
4619 struct ada_symbol_cache *sym_cache
4620 = ada_get_symbol_cache (current_program_space);
4621 int h;
4622 struct cache_entry *e;
4623
4624 /* Symbols for builtin types don't have a block.
4625 For now don't cache such symbols. */
4626 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4627 return;
4628
4629 /* If the symbol is a local symbol, then do not cache it, as a search
4630 for that symbol depends on the context. To determine whether
4631 the symbol is local or not, we check the block where we found it
4632 against the global and static blocks of its associated symtab. */
4633 if (sym
4634 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4635 GLOBAL_BLOCK) != block
4636 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4637 STATIC_BLOCK) != block)
4638 return;
4639
4640 h = msymbol_hash (name) % HASH_SIZE;
4641 e = XOBNEW (&sym_cache->cache_space, cache_entry);
4642 e->next = sym_cache->root[h];
4643 sym_cache->root[h] = e;
4644 e->name = obstack_strdup (&sym_cache->cache_space, name);
4645 e->sym = sym;
4646 e->domain = domain;
4647 e->block = block;
4648 }
4649 \f
4650 /* Symbol Lookup */
4651
4652 /* Return the symbol name match type that should be used used when
4653 searching for all symbols matching LOOKUP_NAME.
4654
4655 LOOKUP_NAME is expected to be a symbol name after transformation
4656 for Ada lookups. */
4657
4658 static symbol_name_match_type
4659 name_match_type_from_name (const char *lookup_name)
4660 {
4661 return (strstr (lookup_name, "__") == NULL
4662 ? symbol_name_match_type::WILD
4663 : symbol_name_match_type::FULL);
4664 }
4665
4666 /* Return the result of a standard (literal, C-like) lookup of NAME in
4667 given DOMAIN, visible from lexical block BLOCK. */
4668
4669 static struct symbol *
4670 standard_lookup (const char *name, const struct block *block,
4671 domain_enum domain)
4672 {
4673 /* Initialize it just to avoid a GCC false warning. */
4674 struct block_symbol sym = {};
4675
4676 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4677 return sym.symbol;
4678 ada_lookup_encoded_symbol (name, block, domain, &sym);
4679 cache_symbol (name, domain, sym.symbol, sym.block);
4680 return sym.symbol;
4681 }
4682
4683
4684 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4685 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4686 since they contend in overloading in the same way. */
4687 static int
4688 is_nonfunction (struct block_symbol syms[], int n)
4689 {
4690 int i;
4691
4692 for (i = 0; i < n; i += 1)
4693 if (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_FUNC
4694 && (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_ENUM
4695 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4696 return 1;
4697
4698 return 0;
4699 }
4700
4701 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4702 struct types. Otherwise, they may not. */
4703
4704 static int
4705 equiv_types (struct type *type0, struct type *type1)
4706 {
4707 if (type0 == type1)
4708 return 1;
4709 if (type0 == NULL || type1 == NULL
4710 || type0->code () != type1->code ())
4711 return 0;
4712 if ((type0->code () == TYPE_CODE_STRUCT
4713 || type0->code () == TYPE_CODE_ENUM)
4714 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4715 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4716 return 1;
4717
4718 return 0;
4719 }
4720
4721 /* True iff SYM0 represents the same entity as SYM1, or one that is
4722 no more defined than that of SYM1. */
4723
4724 static int
4725 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4726 {
4727 if (sym0 == sym1)
4728 return 1;
4729 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4730 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4731 return 0;
4732
4733 switch (SYMBOL_CLASS (sym0))
4734 {
4735 case LOC_UNDEF:
4736 return 1;
4737 case LOC_TYPEDEF:
4738 {
4739 struct type *type0 = SYMBOL_TYPE (sym0);
4740 struct type *type1 = SYMBOL_TYPE (sym1);
4741 const char *name0 = sym0->linkage_name ();
4742 const char *name1 = sym1->linkage_name ();
4743 int len0 = strlen (name0);
4744
4745 return
4746 type0->code () == type1->code ()
4747 && (equiv_types (type0, type1)
4748 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4749 && startswith (name1 + len0, "___XV")));
4750 }
4751 case LOC_CONST:
4752 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4753 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4754
4755 case LOC_STATIC:
4756 {
4757 const char *name0 = sym0->linkage_name ();
4758 const char *name1 = sym1->linkage_name ();
4759 return (strcmp (name0, name1) == 0
4760 && SYMBOL_VALUE_ADDRESS (sym0) == SYMBOL_VALUE_ADDRESS (sym1));
4761 }
4762
4763 default:
4764 return 0;
4765 }
4766 }
4767
4768 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4769 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4770
4771 static void
4772 add_defn_to_vec (struct obstack *obstackp,
4773 struct symbol *sym,
4774 const struct block *block)
4775 {
4776 int i;
4777 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4778
4779 /* Do not try to complete stub types, as the debugger is probably
4780 already scanning all symbols matching a certain name at the
4781 time when this function is called. Trying to replace the stub
4782 type by its associated full type will cause us to restart a scan
4783 which may lead to an infinite recursion. Instead, the client
4784 collecting the matching symbols will end up collecting several
4785 matches, with at least one of them complete. It can then filter
4786 out the stub ones if needed. */
4787
4788 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4789 {
4790 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4791 return;
4792 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4793 {
4794 prevDefns[i].symbol = sym;
4795 prevDefns[i].block = block;
4796 return;
4797 }
4798 }
4799
4800 {
4801 struct block_symbol info;
4802
4803 info.symbol = sym;
4804 info.block = block;
4805 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4806 }
4807 }
4808
4809 /* Number of block_symbol structures currently collected in current vector in
4810 OBSTACKP. */
4811
4812 static int
4813 num_defns_collected (struct obstack *obstackp)
4814 {
4815 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4816 }
4817
4818 /* Vector of block_symbol structures currently collected in current vector in
4819 OBSTACKP. If FINISH, close off the vector and return its final address. */
4820
4821 static struct block_symbol *
4822 defns_collected (struct obstack *obstackp, int finish)
4823 {
4824 if (finish)
4825 return (struct block_symbol *) obstack_finish (obstackp);
4826 else
4827 return (struct block_symbol *) obstack_base (obstackp);
4828 }
4829
4830 /* Return a bound minimal symbol matching NAME according to Ada
4831 decoding rules. Returns an invalid symbol if there is no such
4832 minimal symbol. Names prefixed with "standard__" are handled
4833 specially: "standard__" is first stripped off, and only static and
4834 global symbols are searched. */
4835
4836 struct bound_minimal_symbol
4837 ada_lookup_simple_minsym (const char *name)
4838 {
4839 struct bound_minimal_symbol result;
4840
4841 memset (&result, 0, sizeof (result));
4842
4843 symbol_name_match_type match_type = name_match_type_from_name (name);
4844 lookup_name_info lookup_name (name, match_type);
4845
4846 symbol_name_matcher_ftype *match_name
4847 = ada_get_symbol_name_matcher (lookup_name);
4848
4849 for (objfile *objfile : current_program_space->objfiles ())
4850 {
4851 for (minimal_symbol *msymbol : objfile->msymbols ())
4852 {
4853 if (match_name (msymbol->linkage_name (), lookup_name, NULL)
4854 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4855 {
4856 result.minsym = msymbol;
4857 result.objfile = objfile;
4858 break;
4859 }
4860 }
4861 }
4862
4863 return result;
4864 }
4865
4866 /* For all subprograms that statically enclose the subprogram of the
4867 selected frame, add symbols matching identifier NAME in DOMAIN
4868 and their blocks to the list of data in OBSTACKP, as for
4869 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4870 with a wildcard prefix. */
4871
4872 static void
4873 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4874 const lookup_name_info &lookup_name,
4875 domain_enum domain)
4876 {
4877 }
4878
4879 /* True if TYPE is definitely an artificial type supplied to a symbol
4880 for which no debugging information was given in the symbol file. */
4881
4882 static int
4883 is_nondebugging_type (struct type *type)
4884 {
4885 const char *name = ada_type_name (type);
4886
4887 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4888 }
4889
4890 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4891 that are deemed "identical" for practical purposes.
4892
4893 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4894 types and that their number of enumerals is identical (in other
4895 words, type1->num_fields () == type2->num_fields ()). */
4896
4897 static int
4898 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4899 {
4900 int i;
4901
4902 /* The heuristic we use here is fairly conservative. We consider
4903 that 2 enumerate types are identical if they have the same
4904 number of enumerals and that all enumerals have the same
4905 underlying value and name. */
4906
4907 /* All enums in the type should have an identical underlying value. */
4908 for (i = 0; i < type1->num_fields (); i++)
4909 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4910 return 0;
4911
4912 /* All enumerals should also have the same name (modulo any numerical
4913 suffix). */
4914 for (i = 0; i < type1->num_fields (); i++)
4915 {
4916 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4917 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4918 int len_1 = strlen (name_1);
4919 int len_2 = strlen (name_2);
4920
4921 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4922 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4923 if (len_1 != len_2
4924 || strncmp (TYPE_FIELD_NAME (type1, i),
4925 TYPE_FIELD_NAME (type2, i),
4926 len_1) != 0)
4927 return 0;
4928 }
4929
4930 return 1;
4931 }
4932
4933 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4934 that are deemed "identical" for practical purposes. Sometimes,
4935 enumerals are not strictly identical, but their types are so similar
4936 that they can be considered identical.
4937
4938 For instance, consider the following code:
4939
4940 type Color is (Black, Red, Green, Blue, White);
4941 type RGB_Color is new Color range Red .. Blue;
4942
4943 Type RGB_Color is a subrange of an implicit type which is a copy
4944 of type Color. If we call that implicit type RGB_ColorB ("B" is
4945 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4946 As a result, when an expression references any of the enumeral
4947 by name (Eg. "print green"), the expression is technically
4948 ambiguous and the user should be asked to disambiguate. But
4949 doing so would only hinder the user, since it wouldn't matter
4950 what choice he makes, the outcome would always be the same.
4951 So, for practical purposes, we consider them as the same. */
4952
4953 static int
4954 symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
4955 {
4956 int i;
4957
4958 /* Before performing a thorough comparison check of each type,
4959 we perform a series of inexpensive checks. We expect that these
4960 checks will quickly fail in the vast majority of cases, and thus
4961 help prevent the unnecessary use of a more expensive comparison.
4962 Said comparison also expects us to make some of these checks
4963 (see ada_identical_enum_types_p). */
4964
4965 /* Quick check: All symbols should have an enum type. */
4966 for (i = 0; i < syms.size (); i++)
4967 if (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_ENUM)
4968 return 0;
4969
4970 /* Quick check: They should all have the same value. */
4971 for (i = 1; i < syms.size (); i++)
4972 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
4973 return 0;
4974
4975 /* Quick check: They should all have the same number of enumerals. */
4976 for (i = 1; i < syms.size (); i++)
4977 if (SYMBOL_TYPE (syms[i].symbol)->num_fields ()
4978 != SYMBOL_TYPE (syms[0].symbol)->num_fields ())
4979 return 0;
4980
4981 /* All the sanity checks passed, so we might have a set of
4982 identical enumeration types. Perform a more complete
4983 comparison of the type of each symbol. */
4984 for (i = 1; i < syms.size (); i++)
4985 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
4986 SYMBOL_TYPE (syms[0].symbol)))
4987 return 0;
4988
4989 return 1;
4990 }
4991
4992 /* Remove any non-debugging symbols in SYMS that definitely
4993 duplicate other symbols in the list (The only case I know of where
4994 this happens is when object files containing stabs-in-ecoff are
4995 linked with files containing ordinary ecoff debugging symbols (or no
4996 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4997 Returns the number of items in the modified list. */
4998
4999 static int
5000 remove_extra_symbols (std::vector<struct block_symbol> *syms)
5001 {
5002 int i, j;
5003
5004 /* We should never be called with less than 2 symbols, as there
5005 cannot be any extra symbol in that case. But it's easy to
5006 handle, since we have nothing to do in that case. */
5007 if (syms->size () < 2)
5008 return syms->size ();
5009
5010 i = 0;
5011 while (i < syms->size ())
5012 {
5013 int remove_p = 0;
5014
5015 /* If two symbols have the same name and one of them is a stub type,
5016 the get rid of the stub. */
5017
5018 if (TYPE_STUB (SYMBOL_TYPE ((*syms)[i].symbol))
5019 && (*syms)[i].symbol->linkage_name () != NULL)
5020 {
5021 for (j = 0; j < syms->size (); j++)
5022 {
5023 if (j != i
5024 && !TYPE_STUB (SYMBOL_TYPE ((*syms)[j].symbol))
5025 && (*syms)[j].symbol->linkage_name () != NULL
5026 && strcmp ((*syms)[i].symbol->linkage_name (),
5027 (*syms)[j].symbol->linkage_name ()) == 0)
5028 remove_p = 1;
5029 }
5030 }
5031
5032 /* Two symbols with the same name, same class and same address
5033 should be identical. */
5034
5035 else if ((*syms)[i].symbol->linkage_name () != NULL
5036 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5037 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
5038 {
5039 for (j = 0; j < syms->size (); j += 1)
5040 {
5041 if (i != j
5042 && (*syms)[j].symbol->linkage_name () != NULL
5043 && strcmp ((*syms)[i].symbol->linkage_name (),
5044 (*syms)[j].symbol->linkage_name ()) == 0
5045 && SYMBOL_CLASS ((*syms)[i].symbol)
5046 == SYMBOL_CLASS ((*syms)[j].symbol)
5047 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5048 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
5049 remove_p = 1;
5050 }
5051 }
5052
5053 if (remove_p)
5054 syms->erase (syms->begin () + i);
5055
5056 i += 1;
5057 }
5058
5059 /* If all the remaining symbols are identical enumerals, then
5060 just keep the first one and discard the rest.
5061
5062 Unlike what we did previously, we do not discard any entry
5063 unless they are ALL identical. This is because the symbol
5064 comparison is not a strict comparison, but rather a practical
5065 comparison. If all symbols are considered identical, then
5066 we can just go ahead and use the first one and discard the rest.
5067 But if we cannot reduce the list to a single element, we have
5068 to ask the user to disambiguate anyways. And if we have to
5069 present a multiple-choice menu, it's less confusing if the list
5070 isn't missing some choices that were identical and yet distinct. */
5071 if (symbols_are_identical_enums (*syms))
5072 syms->resize (1);
5073
5074 return syms->size ();
5075 }
5076
5077 /* Given a type that corresponds to a renaming entity, use the type name
5078 to extract the scope (package name or function name, fully qualified,
5079 and following the GNAT encoding convention) where this renaming has been
5080 defined. */
5081
5082 static std::string
5083 xget_renaming_scope (struct type *renaming_type)
5084 {
5085 /* The renaming types adhere to the following convention:
5086 <scope>__<rename>___<XR extension>.
5087 So, to extract the scope, we search for the "___XR" extension,
5088 and then backtrack until we find the first "__". */
5089
5090 const char *name = renaming_type->name ();
5091 const char *suffix = strstr (name, "___XR");
5092 const char *last;
5093
5094 /* Now, backtrack a bit until we find the first "__". Start looking
5095 at suffix - 3, as the <rename> part is at least one character long. */
5096
5097 for (last = suffix - 3; last > name; last--)
5098 if (last[0] == '_' && last[1] == '_')
5099 break;
5100
5101 /* Make a copy of scope and return it. */
5102 return std::string (name, last);
5103 }
5104
5105 /* Return nonzero if NAME corresponds to a package name. */
5106
5107 static int
5108 is_package_name (const char *name)
5109 {
5110 /* Here, We take advantage of the fact that no symbols are generated
5111 for packages, while symbols are generated for each function.
5112 So the condition for NAME represent a package becomes equivalent
5113 to NAME not existing in our list of symbols. There is only one
5114 small complication with library-level functions (see below). */
5115
5116 /* If it is a function that has not been defined at library level,
5117 then we should be able to look it up in the symbols. */
5118 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5119 return 0;
5120
5121 /* Library-level function names start with "_ada_". See if function
5122 "_ada_" followed by NAME can be found. */
5123
5124 /* Do a quick check that NAME does not contain "__", since library-level
5125 functions names cannot contain "__" in them. */
5126 if (strstr (name, "__") != NULL)
5127 return 0;
5128
5129 std::string fun_name = string_printf ("_ada_%s", name);
5130
5131 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
5132 }
5133
5134 /* Return nonzero if SYM corresponds to a renaming entity that is
5135 not visible from FUNCTION_NAME. */
5136
5137 static int
5138 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5139 {
5140 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5141 return 0;
5142
5143 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5144
5145 /* If the rename has been defined in a package, then it is visible. */
5146 if (is_package_name (scope.c_str ()))
5147 return 0;
5148
5149 /* Check that the rename is in the current function scope by checking
5150 that its name starts with SCOPE. */
5151
5152 /* If the function name starts with "_ada_", it means that it is
5153 a library-level function. Strip this prefix before doing the
5154 comparison, as the encoding for the renaming does not contain
5155 this prefix. */
5156 if (startswith (function_name, "_ada_"))
5157 function_name += 5;
5158
5159 return !startswith (function_name, scope.c_str ());
5160 }
5161
5162 /* Remove entries from SYMS that corresponds to a renaming entity that
5163 is not visible from the function associated with CURRENT_BLOCK or
5164 that is superfluous due to the presence of more specific renaming
5165 information. Places surviving symbols in the initial entries of
5166 SYMS and returns the number of surviving symbols.
5167
5168 Rationale:
5169 First, in cases where an object renaming is implemented as a
5170 reference variable, GNAT may produce both the actual reference
5171 variable and the renaming encoding. In this case, we discard the
5172 latter.
5173
5174 Second, GNAT emits a type following a specified encoding for each renaming
5175 entity. Unfortunately, STABS currently does not support the definition
5176 of types that are local to a given lexical block, so all renamings types
5177 are emitted at library level. As a consequence, if an application
5178 contains two renaming entities using the same name, and a user tries to
5179 print the value of one of these entities, the result of the ada symbol
5180 lookup will also contain the wrong renaming type.
5181
5182 This function partially covers for this limitation by attempting to
5183 remove from the SYMS list renaming symbols that should be visible
5184 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5185 method with the current information available. The implementation
5186 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5187
5188 - When the user tries to print a rename in a function while there
5189 is another rename entity defined in a package: Normally, the
5190 rename in the function has precedence over the rename in the
5191 package, so the latter should be removed from the list. This is
5192 currently not the case.
5193
5194 - This function will incorrectly remove valid renames if
5195 the CURRENT_BLOCK corresponds to a function which symbol name
5196 has been changed by an "Export" pragma. As a consequence,
5197 the user will be unable to print such rename entities. */
5198
5199 static int
5200 remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5201 const struct block *current_block)
5202 {
5203 struct symbol *current_function;
5204 const char *current_function_name;
5205 int i;
5206 int is_new_style_renaming;
5207
5208 /* If there is both a renaming foo___XR... encoded as a variable and
5209 a simple variable foo in the same block, discard the latter.
5210 First, zero out such symbols, then compress. */
5211 is_new_style_renaming = 0;
5212 for (i = 0; i < syms->size (); i += 1)
5213 {
5214 struct symbol *sym = (*syms)[i].symbol;
5215 const struct block *block = (*syms)[i].block;
5216 const char *name;
5217 const char *suffix;
5218
5219 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5220 continue;
5221 name = sym->linkage_name ();
5222 suffix = strstr (name, "___XR");
5223
5224 if (suffix != NULL)
5225 {
5226 int name_len = suffix - name;
5227 int j;
5228
5229 is_new_style_renaming = 1;
5230 for (j = 0; j < syms->size (); j += 1)
5231 if (i != j && (*syms)[j].symbol != NULL
5232 && strncmp (name, (*syms)[j].symbol->linkage_name (),
5233 name_len) == 0
5234 && block == (*syms)[j].block)
5235 (*syms)[j].symbol = NULL;
5236 }
5237 }
5238 if (is_new_style_renaming)
5239 {
5240 int j, k;
5241
5242 for (j = k = 0; j < syms->size (); j += 1)
5243 if ((*syms)[j].symbol != NULL)
5244 {
5245 (*syms)[k] = (*syms)[j];
5246 k += 1;
5247 }
5248 return k;
5249 }
5250
5251 /* Extract the function name associated to CURRENT_BLOCK.
5252 Abort if unable to do so. */
5253
5254 if (current_block == NULL)
5255 return syms->size ();
5256
5257 current_function = block_linkage_function (current_block);
5258 if (current_function == NULL)
5259 return syms->size ();
5260
5261 current_function_name = current_function->linkage_name ();
5262 if (current_function_name == NULL)
5263 return syms->size ();
5264
5265 /* Check each of the symbols, and remove it from the list if it is
5266 a type corresponding to a renaming that is out of the scope of
5267 the current block. */
5268
5269 i = 0;
5270 while (i < syms->size ())
5271 {
5272 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
5273 == ADA_OBJECT_RENAMING
5274 && old_renaming_is_invisible ((*syms)[i].symbol,
5275 current_function_name))
5276 syms->erase (syms->begin () + i);
5277 else
5278 i += 1;
5279 }
5280
5281 return syms->size ();
5282 }
5283
5284 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5285 whose name and domain match NAME and DOMAIN respectively.
5286 If no match was found, then extend the search to "enclosing"
5287 routines (in other words, if we're inside a nested function,
5288 search the symbols defined inside the enclosing functions).
5289 If WILD_MATCH_P is nonzero, perform the naming matching in
5290 "wild" mode (see function "wild_match" for more info).
5291
5292 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5293
5294 static void
5295 ada_add_local_symbols (struct obstack *obstackp,
5296 const lookup_name_info &lookup_name,
5297 const struct block *block, domain_enum domain)
5298 {
5299 int block_depth = 0;
5300
5301 while (block != NULL)
5302 {
5303 block_depth += 1;
5304 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5305
5306 /* If we found a non-function match, assume that's the one. */
5307 if (is_nonfunction (defns_collected (obstackp, 0),
5308 num_defns_collected (obstackp)))
5309 return;
5310
5311 block = BLOCK_SUPERBLOCK (block);
5312 }
5313
5314 /* If no luck so far, try to find NAME as a local symbol in some lexically
5315 enclosing subprogram. */
5316 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5317 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
5318 }
5319
5320 /* An object of this type is used as the user_data argument when
5321 calling the map_matching_symbols method. */
5322
5323 struct match_data
5324 {
5325 struct objfile *objfile;
5326 struct obstack *obstackp;
5327 struct symbol *arg_sym;
5328 int found_sym;
5329 };
5330
5331 /* A callback for add_nonlocal_symbols that adds symbol, found in BSYM,
5332 to a list of symbols. DATA is a pointer to a struct match_data *
5333 containing the obstack that collects the symbol list, the file that SYM
5334 must come from, a flag indicating whether a non-argument symbol has
5335 been found in the current block, and the last argument symbol
5336 passed in SYM within the current block (if any). When SYM is null,
5337 marking the end of a block, the argument symbol is added if no
5338 other has been found. */
5339
5340 static bool
5341 aux_add_nonlocal_symbols (struct block_symbol *bsym,
5342 struct match_data *data)
5343 {
5344 const struct block *block = bsym->block;
5345 struct symbol *sym = bsym->symbol;
5346
5347 if (sym == NULL)
5348 {
5349 if (!data->found_sym && data->arg_sym != NULL)
5350 add_defn_to_vec (data->obstackp,
5351 fixup_symbol_section (data->arg_sym, data->objfile),
5352 block);
5353 data->found_sym = 0;
5354 data->arg_sym = NULL;
5355 }
5356 else
5357 {
5358 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5359 return true;
5360 else if (SYMBOL_IS_ARGUMENT (sym))
5361 data->arg_sym = sym;
5362 else
5363 {
5364 data->found_sym = 1;
5365 add_defn_to_vec (data->obstackp,
5366 fixup_symbol_section (sym, data->objfile),
5367 block);
5368 }
5369 }
5370 return true;
5371 }
5372
5373 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5374 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5375 symbols to OBSTACKP. Return whether we found such symbols. */
5376
5377 static int
5378 ada_add_block_renamings (struct obstack *obstackp,
5379 const struct block *block,
5380 const lookup_name_info &lookup_name,
5381 domain_enum domain)
5382 {
5383 struct using_direct *renaming;
5384 int defns_mark = num_defns_collected (obstackp);
5385
5386 symbol_name_matcher_ftype *name_match
5387 = ada_get_symbol_name_matcher (lookup_name);
5388
5389 for (renaming = block_using (block);
5390 renaming != NULL;
5391 renaming = renaming->next)
5392 {
5393 const char *r_name;
5394
5395 /* Avoid infinite recursions: skip this renaming if we are actually
5396 already traversing it.
5397
5398 Currently, symbol lookup in Ada don't use the namespace machinery from
5399 C++/Fortran support: skip namespace imports that use them. */
5400 if (renaming->searched
5401 || (renaming->import_src != NULL
5402 && renaming->import_src[0] != '\0')
5403 || (renaming->import_dest != NULL
5404 && renaming->import_dest[0] != '\0'))
5405 continue;
5406 renaming->searched = 1;
5407
5408 /* TODO: here, we perform another name-based symbol lookup, which can
5409 pull its own multiple overloads. In theory, we should be able to do
5410 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5411 not a simple name. But in order to do this, we would need to enhance
5412 the DWARF reader to associate a symbol to this renaming, instead of a
5413 name. So, for now, we do something simpler: re-use the C++/Fortran
5414 namespace machinery. */
5415 r_name = (renaming->alias != NULL
5416 ? renaming->alias
5417 : renaming->declaration);
5418 if (name_match (r_name, lookup_name, NULL))
5419 {
5420 lookup_name_info decl_lookup_name (renaming->declaration,
5421 lookup_name.match_type ());
5422 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5423 1, NULL);
5424 }
5425 renaming->searched = 0;
5426 }
5427 return num_defns_collected (obstackp) != defns_mark;
5428 }
5429
5430 /* Implements compare_names, but only applying the comparision using
5431 the given CASING. */
5432
5433 static int
5434 compare_names_with_case (const char *string1, const char *string2,
5435 enum case_sensitivity casing)
5436 {
5437 while (*string1 != '\0' && *string2 != '\0')
5438 {
5439 char c1, c2;
5440
5441 if (isspace (*string1) || isspace (*string2))
5442 return strcmp_iw_ordered (string1, string2);
5443
5444 if (casing == case_sensitive_off)
5445 {
5446 c1 = tolower (*string1);
5447 c2 = tolower (*string2);
5448 }
5449 else
5450 {
5451 c1 = *string1;
5452 c2 = *string2;
5453 }
5454 if (c1 != c2)
5455 break;
5456
5457 string1 += 1;
5458 string2 += 1;
5459 }
5460
5461 switch (*string1)
5462 {
5463 case '(':
5464 return strcmp_iw_ordered (string1, string2);
5465 case '_':
5466 if (*string2 == '\0')
5467 {
5468 if (is_name_suffix (string1))
5469 return 0;
5470 else
5471 return 1;
5472 }
5473 /* FALLTHROUGH */
5474 default:
5475 if (*string2 == '(')
5476 return strcmp_iw_ordered (string1, string2);
5477 else
5478 {
5479 if (casing == case_sensitive_off)
5480 return tolower (*string1) - tolower (*string2);
5481 else
5482 return *string1 - *string2;
5483 }
5484 }
5485 }
5486
5487 /* Compare STRING1 to STRING2, with results as for strcmp.
5488 Compatible with strcmp_iw_ordered in that...
5489
5490 strcmp_iw_ordered (STRING1, STRING2) <= 0
5491
5492 ... implies...
5493
5494 compare_names (STRING1, STRING2) <= 0
5495
5496 (they may differ as to what symbols compare equal). */
5497
5498 static int
5499 compare_names (const char *string1, const char *string2)
5500 {
5501 int result;
5502
5503 /* Similar to what strcmp_iw_ordered does, we need to perform
5504 a case-insensitive comparison first, and only resort to
5505 a second, case-sensitive, comparison if the first one was
5506 not sufficient to differentiate the two strings. */
5507
5508 result = compare_names_with_case (string1, string2, case_sensitive_off);
5509 if (result == 0)
5510 result = compare_names_with_case (string1, string2, case_sensitive_on);
5511
5512 return result;
5513 }
5514
5515 /* Convenience function to get at the Ada encoded lookup name for
5516 LOOKUP_NAME, as a C string. */
5517
5518 static const char *
5519 ada_lookup_name (const lookup_name_info &lookup_name)
5520 {
5521 return lookup_name.ada ().lookup_name ().c_str ();
5522 }
5523
5524 /* Add to OBSTACKP all non-local symbols whose name and domain match
5525 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5526 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5527 symbols otherwise. */
5528
5529 static void
5530 add_nonlocal_symbols (struct obstack *obstackp,
5531 const lookup_name_info &lookup_name,
5532 domain_enum domain, int global)
5533 {
5534 struct match_data data;
5535
5536 memset (&data, 0, sizeof data);
5537 data.obstackp = obstackp;
5538
5539 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5540
5541 auto callback = [&] (struct block_symbol *bsym)
5542 {
5543 return aux_add_nonlocal_symbols (bsym, &data);
5544 };
5545
5546 for (objfile *objfile : current_program_space->objfiles ())
5547 {
5548 data.objfile = objfile;
5549
5550 objfile->sf->qf->map_matching_symbols (objfile, lookup_name,
5551 domain, global, callback,
5552 (is_wild_match
5553 ? NULL : compare_names));
5554
5555 for (compunit_symtab *cu : objfile->compunits ())
5556 {
5557 const struct block *global_block
5558 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5559
5560 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5561 domain))
5562 data.found_sym = 1;
5563 }
5564 }
5565
5566 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5567 {
5568 const char *name = ada_lookup_name (lookup_name);
5569 std::string bracket_name = std::string ("<_ada_") + name + '>';
5570 lookup_name_info name1 (bracket_name, symbol_name_match_type::FULL);
5571
5572 for (objfile *objfile : current_program_space->objfiles ())
5573 {
5574 data.objfile = objfile;
5575 objfile->sf->qf->map_matching_symbols (objfile, name1,
5576 domain, global, callback,
5577 compare_names);
5578 }
5579 }
5580 }
5581
5582 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5583 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5584 returning the number of matches. Add these to OBSTACKP.
5585
5586 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5587 symbol match within the nest of blocks whose innermost member is BLOCK,
5588 is the one match returned (no other matches in that or
5589 enclosing blocks is returned). If there are any matches in or
5590 surrounding BLOCK, then these alone are returned.
5591
5592 Names prefixed with "standard__" are handled specially:
5593 "standard__" is first stripped off (by the lookup_name
5594 constructor), and only static and global symbols are searched.
5595
5596 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5597 to lookup global symbols. */
5598
5599 static void
5600 ada_add_all_symbols (struct obstack *obstackp,
5601 const struct block *block,
5602 const lookup_name_info &lookup_name,
5603 domain_enum domain,
5604 int full_search,
5605 int *made_global_lookup_p)
5606 {
5607 struct symbol *sym;
5608
5609 if (made_global_lookup_p)
5610 *made_global_lookup_p = 0;
5611
5612 /* Special case: If the user specifies a symbol name inside package
5613 Standard, do a non-wild matching of the symbol name without
5614 the "standard__" prefix. This was primarily introduced in order
5615 to allow the user to specifically access the standard exceptions
5616 using, for instance, Standard.Constraint_Error when Constraint_Error
5617 is ambiguous (due to the user defining its own Constraint_Error
5618 entity inside its program). */
5619 if (lookup_name.ada ().standard_p ())
5620 block = NULL;
5621
5622 /* Check the non-global symbols. If we have ANY match, then we're done. */
5623
5624 if (block != NULL)
5625 {
5626 if (full_search)
5627 ada_add_local_symbols (obstackp, lookup_name, block, domain);
5628 else
5629 {
5630 /* In the !full_search case we're are being called by
5631 iterate_over_symbols, and we don't want to search
5632 superblocks. */
5633 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5634 }
5635 if (num_defns_collected (obstackp) > 0 || !full_search)
5636 return;
5637 }
5638
5639 /* No non-global symbols found. Check our cache to see if we have
5640 already performed this search before. If we have, then return
5641 the same result. */
5642
5643 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5644 domain, &sym, &block))
5645 {
5646 if (sym != NULL)
5647 add_defn_to_vec (obstackp, sym, block);
5648 return;
5649 }
5650
5651 if (made_global_lookup_p)
5652 *made_global_lookup_p = 1;
5653
5654 /* Search symbols from all global blocks. */
5655
5656 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
5657
5658 /* Now add symbols from all per-file blocks if we've gotten no hits
5659 (not strictly correct, but perhaps better than an error). */
5660
5661 if (num_defns_collected (obstackp) == 0)
5662 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
5663 }
5664
5665 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5666 is non-zero, enclosing scope and in global scopes, returning the number of
5667 matches.
5668 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5669 found and the blocks and symbol tables (if any) in which they were
5670 found.
5671
5672 When full_search is non-zero, any non-function/non-enumeral
5673 symbol match within the nest of blocks whose innermost member is BLOCK,
5674 is the one match returned (no other matches in that or
5675 enclosing blocks is returned). If there are any matches in or
5676 surrounding BLOCK, then these alone are returned.
5677
5678 Names prefixed with "standard__" are handled specially: "standard__"
5679 is first stripped off, and only static and global symbols are searched. */
5680
5681 static int
5682 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5683 const struct block *block,
5684 domain_enum domain,
5685 std::vector<struct block_symbol> *results,
5686 int full_search)
5687 {
5688 int syms_from_global_search;
5689 int ndefns;
5690 auto_obstack obstack;
5691
5692 ada_add_all_symbols (&obstack, block, lookup_name,
5693 domain, full_search, &syms_from_global_search);
5694
5695 ndefns = num_defns_collected (&obstack);
5696
5697 struct block_symbol *base = defns_collected (&obstack, 1);
5698 for (int i = 0; i < ndefns; ++i)
5699 results->push_back (base[i]);
5700
5701 ndefns = remove_extra_symbols (results);
5702
5703 if (ndefns == 0 && full_search && syms_from_global_search)
5704 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5705
5706 if (ndefns == 1 && full_search && syms_from_global_search)
5707 cache_symbol (ada_lookup_name (lookup_name), domain,
5708 (*results)[0].symbol, (*results)[0].block);
5709
5710 ndefns = remove_irrelevant_renamings (results, block);
5711
5712 return ndefns;
5713 }
5714
5715 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5716 in global scopes, returning the number of matches, and filling *RESULTS
5717 with (SYM,BLOCK) tuples.
5718
5719 See ada_lookup_symbol_list_worker for further details. */
5720
5721 int
5722 ada_lookup_symbol_list (const char *name, const struct block *block,
5723 domain_enum domain,
5724 std::vector<struct block_symbol> *results)
5725 {
5726 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5727 lookup_name_info lookup_name (name, name_match_type);
5728
5729 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
5730 }
5731
5732 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5733 to 1, but choosing the first symbol found if there are multiple
5734 choices.
5735
5736 The result is stored in *INFO, which must be non-NULL.
5737 If no match is found, INFO->SYM is set to NULL. */
5738
5739 void
5740 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5741 domain_enum domain,
5742 struct block_symbol *info)
5743 {
5744 /* Since we already have an encoded name, wrap it in '<>' to force a
5745 verbatim match. Otherwise, if the name happens to not look like
5746 an encoded name (because it doesn't include a "__"),
5747 ada_lookup_name_info would re-encode/fold it again, and that
5748 would e.g., incorrectly lowercase object renaming names like
5749 "R28b" -> "r28b". */
5750 std::string verbatim = std::string ("<") + name + '>';
5751
5752 gdb_assert (info != NULL);
5753 *info = ada_lookup_symbol (verbatim.c_str (), block, domain);
5754 }
5755
5756 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5757 scope and in global scopes, or NULL if none. NAME is folded and
5758 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5759 choosing the first symbol if there are multiple choices. */
5760
5761 struct block_symbol
5762 ada_lookup_symbol (const char *name, const struct block *block0,
5763 domain_enum domain)
5764 {
5765 std::vector<struct block_symbol> candidates;
5766 int n_candidates;
5767
5768 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
5769
5770 if (n_candidates == 0)
5771 return {};
5772
5773 block_symbol info = candidates[0];
5774 info.symbol = fixup_symbol_section (info.symbol, NULL);
5775 return info;
5776 }
5777
5778 static struct block_symbol
5779 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5780 const char *name,
5781 const struct block *block,
5782 const domain_enum domain)
5783 {
5784 struct block_symbol sym;
5785
5786 sym = ada_lookup_symbol (name, block_static_block (block), domain);
5787 if (sym.symbol != NULL)
5788 return sym;
5789
5790 /* If we haven't found a match at this point, try the primitive
5791 types. In other languages, this search is performed before
5792 searching for global symbols in order to short-circuit that
5793 global-symbol search if it happens that the name corresponds
5794 to a primitive type. But we cannot do the same in Ada, because
5795 it is perfectly legitimate for a program to declare a type which
5796 has the same name as a standard type. If looking up a type in
5797 that situation, we have traditionally ignored the primitive type
5798 in favor of user-defined types. This is why, unlike most other
5799 languages, we search the primitive types this late and only after
5800 having searched the global symbols without success. */
5801
5802 if (domain == VAR_DOMAIN)
5803 {
5804 struct gdbarch *gdbarch;
5805
5806 if (block == NULL)
5807 gdbarch = target_gdbarch ();
5808 else
5809 gdbarch = block_gdbarch (block);
5810 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5811 if (sym.symbol != NULL)
5812 return sym;
5813 }
5814
5815 return {};
5816 }
5817
5818
5819 /* True iff STR is a possible encoded suffix of a normal Ada name
5820 that is to be ignored for matching purposes. Suffixes of parallel
5821 names (e.g., XVE) are not included here. Currently, the possible suffixes
5822 are given by any of the regular expressions:
5823
5824 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5825 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5826 TKB [subprogram suffix for task bodies]
5827 _E[0-9]+[bs]$ [protected object entry suffixes]
5828 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5829
5830 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5831 match is performed. This sequence is used to differentiate homonyms,
5832 is an optional part of a valid name suffix. */
5833
5834 static int
5835 is_name_suffix (const char *str)
5836 {
5837 int k;
5838 const char *matching;
5839 const int len = strlen (str);
5840
5841 /* Skip optional leading __[0-9]+. */
5842
5843 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5844 {
5845 str += 3;
5846 while (isdigit (str[0]))
5847 str += 1;
5848 }
5849
5850 /* [.$][0-9]+ */
5851
5852 if (str[0] == '.' || str[0] == '$')
5853 {
5854 matching = str + 1;
5855 while (isdigit (matching[0]))
5856 matching += 1;
5857 if (matching[0] == '\0')
5858 return 1;
5859 }
5860
5861 /* ___[0-9]+ */
5862
5863 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5864 {
5865 matching = str + 3;
5866 while (isdigit (matching[0]))
5867 matching += 1;
5868 if (matching[0] == '\0')
5869 return 1;
5870 }
5871
5872 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5873
5874 if (strcmp (str, "TKB") == 0)
5875 return 1;
5876
5877 #if 0
5878 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5879 with a N at the end. Unfortunately, the compiler uses the same
5880 convention for other internal types it creates. So treating
5881 all entity names that end with an "N" as a name suffix causes
5882 some regressions. For instance, consider the case of an enumerated
5883 type. To support the 'Image attribute, it creates an array whose
5884 name ends with N.
5885 Having a single character like this as a suffix carrying some
5886 information is a bit risky. Perhaps we should change the encoding
5887 to be something like "_N" instead. In the meantime, do not do
5888 the following check. */
5889 /* Protected Object Subprograms */
5890 if (len == 1 && str [0] == 'N')
5891 return 1;
5892 #endif
5893
5894 /* _E[0-9]+[bs]$ */
5895 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5896 {
5897 matching = str + 3;
5898 while (isdigit (matching[0]))
5899 matching += 1;
5900 if ((matching[0] == 'b' || matching[0] == 's')
5901 && matching [1] == '\0')
5902 return 1;
5903 }
5904
5905 /* ??? We should not modify STR directly, as we are doing below. This
5906 is fine in this case, but may become problematic later if we find
5907 that this alternative did not work, and want to try matching
5908 another one from the begining of STR. Since we modified it, we
5909 won't be able to find the begining of the string anymore! */
5910 if (str[0] == 'X')
5911 {
5912 str += 1;
5913 while (str[0] != '_' && str[0] != '\0')
5914 {
5915 if (str[0] != 'n' && str[0] != 'b')
5916 return 0;
5917 str += 1;
5918 }
5919 }
5920
5921 if (str[0] == '\000')
5922 return 1;
5923
5924 if (str[0] == '_')
5925 {
5926 if (str[1] != '_' || str[2] == '\000')
5927 return 0;
5928 if (str[2] == '_')
5929 {
5930 if (strcmp (str + 3, "JM") == 0)
5931 return 1;
5932 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5933 the LJM suffix in favor of the JM one. But we will
5934 still accept LJM as a valid suffix for a reasonable
5935 amount of time, just to allow ourselves to debug programs
5936 compiled using an older version of GNAT. */
5937 if (strcmp (str + 3, "LJM") == 0)
5938 return 1;
5939 if (str[3] != 'X')
5940 return 0;
5941 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5942 || str[4] == 'U' || str[4] == 'P')
5943 return 1;
5944 if (str[4] == 'R' && str[5] != 'T')
5945 return 1;
5946 return 0;
5947 }
5948 if (!isdigit (str[2]))
5949 return 0;
5950 for (k = 3; str[k] != '\0'; k += 1)
5951 if (!isdigit (str[k]) && str[k] != '_')
5952 return 0;
5953 return 1;
5954 }
5955 if (str[0] == '$' && isdigit (str[1]))
5956 {
5957 for (k = 2; str[k] != '\0'; k += 1)
5958 if (!isdigit (str[k]) && str[k] != '_')
5959 return 0;
5960 return 1;
5961 }
5962 return 0;
5963 }
5964
5965 /* Return non-zero if the string starting at NAME and ending before
5966 NAME_END contains no capital letters. */
5967
5968 static int
5969 is_valid_name_for_wild_match (const char *name0)
5970 {
5971 std::string decoded_name = ada_decode (name0);
5972 int i;
5973
5974 /* If the decoded name starts with an angle bracket, it means that
5975 NAME0 does not follow the GNAT encoding format. It should then
5976 not be allowed as a possible wild match. */
5977 if (decoded_name[0] == '<')
5978 return 0;
5979
5980 for (i=0; decoded_name[i] != '\0'; i++)
5981 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5982 return 0;
5983
5984 return 1;
5985 }
5986
5987 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5988 that could start a simple name. Assumes that *NAMEP points into
5989 the string beginning at NAME0. */
5990
5991 static int
5992 advance_wild_match (const char **namep, const char *name0, int target0)
5993 {
5994 const char *name = *namep;
5995
5996 while (1)
5997 {
5998 int t0, t1;
5999
6000 t0 = *name;
6001 if (t0 == '_')
6002 {
6003 t1 = name[1];
6004 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6005 {
6006 name += 1;
6007 if (name == name0 + 5 && startswith (name0, "_ada"))
6008 break;
6009 else
6010 name += 1;
6011 }
6012 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6013 || name[2] == target0))
6014 {
6015 name += 2;
6016 break;
6017 }
6018 else
6019 return 0;
6020 }
6021 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6022 name += 1;
6023 else
6024 return 0;
6025 }
6026
6027 *namep = name;
6028 return 1;
6029 }
6030
6031 /* Return true iff NAME encodes a name of the form prefix.PATN.
6032 Ignores any informational suffixes of NAME (i.e., for which
6033 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6034 simple name. */
6035
6036 static bool
6037 wild_match (const char *name, const char *patn)
6038 {
6039 const char *p;
6040 const char *name0 = name;
6041
6042 while (1)
6043 {
6044 const char *match = name;
6045
6046 if (*name == *patn)
6047 {
6048 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6049 if (*p != *name)
6050 break;
6051 if (*p == '\0' && is_name_suffix (name))
6052 return match == name0 || is_valid_name_for_wild_match (name0);
6053
6054 if (name[-1] == '_')
6055 name -= 1;
6056 }
6057 if (!advance_wild_match (&name, name0, *patn))
6058 return false;
6059 }
6060 }
6061
6062 /* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6063 any trailing suffixes that encode debugging information or leading
6064 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6065 information that is ignored). */
6066
6067 static bool
6068 full_match (const char *sym_name, const char *search_name)
6069 {
6070 size_t search_name_len = strlen (search_name);
6071
6072 if (strncmp (sym_name, search_name, search_name_len) == 0
6073 && is_name_suffix (sym_name + search_name_len))
6074 return true;
6075
6076 if (startswith (sym_name, "_ada_")
6077 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6078 && is_name_suffix (sym_name + search_name_len + 5))
6079 return true;
6080
6081 return false;
6082 }
6083
6084 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6085 *defn_symbols, updating the list of symbols in OBSTACKP (if
6086 necessary). OBJFILE is the section containing BLOCK. */
6087
6088 static void
6089 ada_add_block_symbols (struct obstack *obstackp,
6090 const struct block *block,
6091 const lookup_name_info &lookup_name,
6092 domain_enum domain, struct objfile *objfile)
6093 {
6094 struct block_iterator iter;
6095 /* A matching argument symbol, if any. */
6096 struct symbol *arg_sym;
6097 /* Set true when we find a matching non-argument symbol. */
6098 int found_sym;
6099 struct symbol *sym;
6100
6101 arg_sym = NULL;
6102 found_sym = 0;
6103 for (sym = block_iter_match_first (block, lookup_name, &iter);
6104 sym != NULL;
6105 sym = block_iter_match_next (lookup_name, &iter))
6106 {
6107 if (symbol_matches_domain (sym->language (), SYMBOL_DOMAIN (sym), domain))
6108 {
6109 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6110 {
6111 if (SYMBOL_IS_ARGUMENT (sym))
6112 arg_sym = sym;
6113 else
6114 {
6115 found_sym = 1;
6116 add_defn_to_vec (obstackp,
6117 fixup_symbol_section (sym, objfile),
6118 block);
6119 }
6120 }
6121 }
6122 }
6123
6124 /* Handle renamings. */
6125
6126 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
6127 found_sym = 1;
6128
6129 if (!found_sym && arg_sym != NULL)
6130 {
6131 add_defn_to_vec (obstackp,
6132 fixup_symbol_section (arg_sym, objfile),
6133 block);
6134 }
6135
6136 if (!lookup_name.ada ().wild_match_p ())
6137 {
6138 arg_sym = NULL;
6139 found_sym = 0;
6140 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6141 const char *name = ada_lookup_name.c_str ();
6142 size_t name_len = ada_lookup_name.size ();
6143
6144 ALL_BLOCK_SYMBOLS (block, iter, sym)
6145 {
6146 if (symbol_matches_domain (sym->language (),
6147 SYMBOL_DOMAIN (sym), domain))
6148 {
6149 int cmp;
6150
6151 cmp = (int) '_' - (int) sym->linkage_name ()[0];
6152 if (cmp == 0)
6153 {
6154 cmp = !startswith (sym->linkage_name (), "_ada_");
6155 if (cmp == 0)
6156 cmp = strncmp (name, sym->linkage_name () + 5,
6157 name_len);
6158 }
6159
6160 if (cmp == 0
6161 && is_name_suffix (sym->linkage_name () + name_len + 5))
6162 {
6163 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6164 {
6165 if (SYMBOL_IS_ARGUMENT (sym))
6166 arg_sym = sym;
6167 else
6168 {
6169 found_sym = 1;
6170 add_defn_to_vec (obstackp,
6171 fixup_symbol_section (sym, objfile),
6172 block);
6173 }
6174 }
6175 }
6176 }
6177 }
6178
6179 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6180 They aren't parameters, right? */
6181 if (!found_sym && arg_sym != NULL)
6182 {
6183 add_defn_to_vec (obstackp,
6184 fixup_symbol_section (arg_sym, objfile),
6185 block);
6186 }
6187 }
6188 }
6189 \f
6190
6191 /* Symbol Completion */
6192
6193 /* See symtab.h. */
6194
6195 bool
6196 ada_lookup_name_info::matches
6197 (const char *sym_name,
6198 symbol_name_match_type match_type,
6199 completion_match_result *comp_match_res) const
6200 {
6201 bool match = false;
6202 const char *text = m_encoded_name.c_str ();
6203 size_t text_len = m_encoded_name.size ();
6204
6205 /* First, test against the fully qualified name of the symbol. */
6206
6207 if (strncmp (sym_name, text, text_len) == 0)
6208 match = true;
6209
6210 std::string decoded_name = ada_decode (sym_name);
6211 if (match && !m_encoded_p)
6212 {
6213 /* One needed check before declaring a positive match is to verify
6214 that iff we are doing a verbatim match, the decoded version
6215 of the symbol name starts with '<'. Otherwise, this symbol name
6216 is not a suitable completion. */
6217
6218 bool has_angle_bracket = (decoded_name[0] == '<');
6219 match = (has_angle_bracket == m_verbatim_p);
6220 }
6221
6222 if (match && !m_verbatim_p)
6223 {
6224 /* When doing non-verbatim match, another check that needs to
6225 be done is to verify that the potentially matching symbol name
6226 does not include capital letters, because the ada-mode would
6227 not be able to understand these symbol names without the
6228 angle bracket notation. */
6229 const char *tmp;
6230
6231 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6232 if (*tmp != '\0')
6233 match = false;
6234 }
6235
6236 /* Second: Try wild matching... */
6237
6238 if (!match && m_wild_match_p)
6239 {
6240 /* Since we are doing wild matching, this means that TEXT
6241 may represent an unqualified symbol name. We therefore must
6242 also compare TEXT against the unqualified name of the symbol. */
6243 sym_name = ada_unqualified_name (decoded_name.c_str ());
6244
6245 if (strncmp (sym_name, text, text_len) == 0)
6246 match = true;
6247 }
6248
6249 /* Finally: If we found a match, prepare the result to return. */
6250
6251 if (!match)
6252 return false;
6253
6254 if (comp_match_res != NULL)
6255 {
6256 std::string &match_str = comp_match_res->match.storage ();
6257
6258 if (!m_encoded_p)
6259 match_str = ada_decode (sym_name);
6260 else
6261 {
6262 if (m_verbatim_p)
6263 match_str = add_angle_brackets (sym_name);
6264 else
6265 match_str = sym_name;
6266
6267 }
6268
6269 comp_match_res->set_match (match_str.c_str ());
6270 }
6271
6272 return true;
6273 }
6274
6275 /* Add the list of possible symbol names completing TEXT to TRACKER.
6276 WORD is the entire command on which completion is made. */
6277
6278 static void
6279 ada_collect_symbol_completion_matches (completion_tracker &tracker,
6280 complete_symbol_mode mode,
6281 symbol_name_match_type name_match_type,
6282 const char *text, const char *word,
6283 enum type_code code)
6284 {
6285 struct symbol *sym;
6286 const struct block *b, *surrounding_static_block = 0;
6287 struct block_iterator iter;
6288
6289 gdb_assert (code == TYPE_CODE_UNDEF);
6290
6291 lookup_name_info lookup_name (text, name_match_type, true);
6292
6293 /* First, look at the partial symtab symbols. */
6294 expand_symtabs_matching (NULL,
6295 lookup_name,
6296 NULL,
6297 NULL,
6298 ALL_DOMAIN);
6299
6300 /* At this point scan through the misc symbol vectors and add each
6301 symbol you find to the list. Eventually we want to ignore
6302 anything that isn't a text symbol (everything else will be
6303 handled by the psymtab code above). */
6304
6305 for (objfile *objfile : current_program_space->objfiles ())
6306 {
6307 for (minimal_symbol *msymbol : objfile->msymbols ())
6308 {
6309 QUIT;
6310
6311 if (completion_skip_symbol (mode, msymbol))
6312 continue;
6313
6314 language symbol_language = msymbol->language ();
6315
6316 /* Ada minimal symbols won't have their language set to Ada. If
6317 we let completion_list_add_name compare using the
6318 default/C-like matcher, then when completing e.g., symbols in a
6319 package named "pck", we'd match internal Ada symbols like
6320 "pckS", which are invalid in an Ada expression, unless you wrap
6321 them in '<' '>' to request a verbatim match.
6322
6323 Unfortunately, some Ada encoded names successfully demangle as
6324 C++ symbols (using an old mangling scheme), such as "name__2Xn"
6325 -> "Xn::name(void)" and thus some Ada minimal symbols end up
6326 with the wrong language set. Paper over that issue here. */
6327 if (symbol_language == language_auto
6328 || symbol_language == language_cplus)
6329 symbol_language = language_ada;
6330
6331 completion_list_add_name (tracker,
6332 symbol_language,
6333 msymbol->linkage_name (),
6334 lookup_name, text, word);
6335 }
6336 }
6337
6338 /* Search upwards from currently selected frame (so that we can
6339 complete on local vars. */
6340
6341 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6342 {
6343 if (!BLOCK_SUPERBLOCK (b))
6344 surrounding_static_block = b; /* For elmin of dups */
6345
6346 ALL_BLOCK_SYMBOLS (b, iter, sym)
6347 {
6348 if (completion_skip_symbol (mode, sym))
6349 continue;
6350
6351 completion_list_add_name (tracker,
6352 sym->language (),
6353 sym->linkage_name (),
6354 lookup_name, text, word);
6355 }
6356 }
6357
6358 /* Go through the symtabs and check the externs and statics for
6359 symbols which match. */
6360
6361 for (objfile *objfile : current_program_space->objfiles ())
6362 {
6363 for (compunit_symtab *s : objfile->compunits ())
6364 {
6365 QUIT;
6366 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6367 ALL_BLOCK_SYMBOLS (b, iter, sym)
6368 {
6369 if (completion_skip_symbol (mode, sym))
6370 continue;
6371
6372 completion_list_add_name (tracker,
6373 sym->language (),
6374 sym->linkage_name (),
6375 lookup_name, text, word);
6376 }
6377 }
6378 }
6379
6380 for (objfile *objfile : current_program_space->objfiles ())
6381 {
6382 for (compunit_symtab *s : objfile->compunits ())
6383 {
6384 QUIT;
6385 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6386 /* Don't do this block twice. */
6387 if (b == surrounding_static_block)
6388 continue;
6389 ALL_BLOCK_SYMBOLS (b, iter, sym)
6390 {
6391 if (completion_skip_symbol (mode, sym))
6392 continue;
6393
6394 completion_list_add_name (tracker,
6395 sym->language (),
6396 sym->linkage_name (),
6397 lookup_name, text, word);
6398 }
6399 }
6400 }
6401 }
6402
6403 /* Field Access */
6404
6405 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6406 for tagged types. */
6407
6408 static int
6409 ada_is_dispatch_table_ptr_type (struct type *type)
6410 {
6411 const char *name;
6412
6413 if (type->code () != TYPE_CODE_PTR)
6414 return 0;
6415
6416 name = TYPE_TARGET_TYPE (type)->name ();
6417 if (name == NULL)
6418 return 0;
6419
6420 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6421 }
6422
6423 /* Return non-zero if TYPE is an interface tag. */
6424
6425 static int
6426 ada_is_interface_tag (struct type *type)
6427 {
6428 const char *name = type->name ();
6429
6430 if (name == NULL)
6431 return 0;
6432
6433 return (strcmp (name, "ada__tags__interface_tag") == 0);
6434 }
6435
6436 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6437 to be invisible to users. */
6438
6439 int
6440 ada_is_ignored_field (struct type *type, int field_num)
6441 {
6442 if (field_num < 0 || field_num > type->num_fields ())
6443 return 1;
6444
6445 /* Check the name of that field. */
6446 {
6447 const char *name = TYPE_FIELD_NAME (type, field_num);
6448
6449 /* Anonymous field names should not be printed.
6450 brobecker/2007-02-20: I don't think this can actually happen
6451 but we don't want to print the value of anonymous fields anyway. */
6452 if (name == NULL)
6453 return 1;
6454
6455 /* Normally, fields whose name start with an underscore ("_")
6456 are fields that have been internally generated by the compiler,
6457 and thus should not be printed. The "_parent" field is special,
6458 however: This is a field internally generated by the compiler
6459 for tagged types, and it contains the components inherited from
6460 the parent type. This field should not be printed as is, but
6461 should not be ignored either. */
6462 if (name[0] == '_' && !startswith (name, "_parent"))
6463 return 1;
6464 }
6465
6466 /* If this is the dispatch table of a tagged type or an interface tag,
6467 then ignore. */
6468 if (ada_is_tagged_type (type, 1)
6469 && (ada_is_dispatch_table_ptr_type (type->field (field_num).type ())
6470 || ada_is_interface_tag (type->field (field_num).type ())))
6471 return 1;
6472
6473 /* Not a special field, so it should not be ignored. */
6474 return 0;
6475 }
6476
6477 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6478 pointer or reference type whose ultimate target has a tag field. */
6479
6480 int
6481 ada_is_tagged_type (struct type *type, int refok)
6482 {
6483 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
6484 }
6485
6486 /* True iff TYPE represents the type of X'Tag */
6487
6488 int
6489 ada_is_tag_type (struct type *type)
6490 {
6491 type = ada_check_typedef (type);
6492
6493 if (type == NULL || type->code () != TYPE_CODE_PTR)
6494 return 0;
6495 else
6496 {
6497 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6498
6499 return (name != NULL
6500 && strcmp (name, "ada__tags__dispatch_table") == 0);
6501 }
6502 }
6503
6504 /* The type of the tag on VAL. */
6505
6506 static struct type *
6507 ada_tag_type (struct value *val)
6508 {
6509 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6510 }
6511
6512 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6513 retired at Ada 05). */
6514
6515 static int
6516 is_ada95_tag (struct value *tag)
6517 {
6518 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6519 }
6520
6521 /* The value of the tag on VAL. */
6522
6523 static struct value *
6524 ada_value_tag (struct value *val)
6525 {
6526 return ada_value_struct_elt (val, "_tag", 0);
6527 }
6528
6529 /* The value of the tag on the object of type TYPE whose contents are
6530 saved at VALADDR, if it is non-null, or is at memory address
6531 ADDRESS. */
6532
6533 static struct value *
6534 value_tag_from_contents_and_address (struct type *type,
6535 const gdb_byte *valaddr,
6536 CORE_ADDR address)
6537 {
6538 int tag_byte_offset;
6539 struct type *tag_type;
6540
6541 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6542 NULL, NULL, NULL))
6543 {
6544 const gdb_byte *valaddr1 = ((valaddr == NULL)
6545 ? NULL
6546 : valaddr + tag_byte_offset);
6547 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6548
6549 return value_from_contents_and_address (tag_type, valaddr1, address1);
6550 }
6551 return NULL;
6552 }
6553
6554 static struct type *
6555 type_from_tag (struct value *tag)
6556 {
6557 gdb::unique_xmalloc_ptr<char> type_name = ada_tag_name (tag);
6558
6559 if (type_name != NULL)
6560 return ada_find_any_type (ada_encode (type_name.get ()));
6561 return NULL;
6562 }
6563
6564 /* Given a value OBJ of a tagged type, return a value of this
6565 type at the base address of the object. The base address, as
6566 defined in Ada.Tags, it is the address of the primary tag of
6567 the object, and therefore where the field values of its full
6568 view can be fetched. */
6569
6570 struct value *
6571 ada_tag_value_at_base_address (struct value *obj)
6572 {
6573 struct value *val;
6574 LONGEST offset_to_top = 0;
6575 struct type *ptr_type, *obj_type;
6576 struct value *tag;
6577 CORE_ADDR base_address;
6578
6579 obj_type = value_type (obj);
6580
6581 /* It is the responsability of the caller to deref pointers. */
6582
6583 if (obj_type->code () == TYPE_CODE_PTR || obj_type->code () == TYPE_CODE_REF)
6584 return obj;
6585
6586 tag = ada_value_tag (obj);
6587 if (!tag)
6588 return obj;
6589
6590 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6591
6592 if (is_ada95_tag (tag))
6593 return obj;
6594
6595 ptr_type = language_lookup_primitive_type
6596 (language_def (language_ada), target_gdbarch(), "storage_offset");
6597 ptr_type = lookup_pointer_type (ptr_type);
6598 val = value_cast (ptr_type, tag);
6599 if (!val)
6600 return obj;
6601
6602 /* It is perfectly possible that an exception be raised while
6603 trying to determine the base address, just like for the tag;
6604 see ada_tag_name for more details. We do not print the error
6605 message for the same reason. */
6606
6607 try
6608 {
6609 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6610 }
6611
6612 catch (const gdb_exception_error &e)
6613 {
6614 return obj;
6615 }
6616
6617 /* If offset is null, nothing to do. */
6618
6619 if (offset_to_top == 0)
6620 return obj;
6621
6622 /* -1 is a special case in Ada.Tags; however, what should be done
6623 is not quite clear from the documentation. So do nothing for
6624 now. */
6625
6626 if (offset_to_top == -1)
6627 return obj;
6628
6629 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6630 from the base address. This was however incompatible with
6631 C++ dispatch table: C++ uses a *negative* value to *add*
6632 to the base address. Ada's convention has therefore been
6633 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6634 use the same convention. Here, we support both cases by
6635 checking the sign of OFFSET_TO_TOP. */
6636
6637 if (offset_to_top > 0)
6638 offset_to_top = -offset_to_top;
6639
6640 base_address = value_address (obj) + offset_to_top;
6641 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6642
6643 /* Make sure that we have a proper tag at the new address.
6644 Otherwise, offset_to_top is bogus (which can happen when
6645 the object is not initialized yet). */
6646
6647 if (!tag)
6648 return obj;
6649
6650 obj_type = type_from_tag (tag);
6651
6652 if (!obj_type)
6653 return obj;
6654
6655 return value_from_contents_and_address (obj_type, NULL, base_address);
6656 }
6657
6658 /* Return the "ada__tags__type_specific_data" type. */
6659
6660 static struct type *
6661 ada_get_tsd_type (struct inferior *inf)
6662 {
6663 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6664
6665 if (data->tsd_type == 0)
6666 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6667 return data->tsd_type;
6668 }
6669
6670 /* Return the TSD (type-specific data) associated to the given TAG.
6671 TAG is assumed to be the tag of a tagged-type entity.
6672
6673 May return NULL if we are unable to get the TSD. */
6674
6675 static struct value *
6676 ada_get_tsd_from_tag (struct value *tag)
6677 {
6678 struct value *val;
6679 struct type *type;
6680
6681 /* First option: The TSD is simply stored as a field of our TAG.
6682 Only older versions of GNAT would use this format, but we have
6683 to test it first, because there are no visible markers for
6684 the current approach except the absence of that field. */
6685
6686 val = ada_value_struct_elt (tag, "tsd", 1);
6687 if (val)
6688 return val;
6689
6690 /* Try the second representation for the dispatch table (in which
6691 there is no explicit 'tsd' field in the referent of the tag pointer,
6692 and instead the tsd pointer is stored just before the dispatch
6693 table. */
6694
6695 type = ada_get_tsd_type (current_inferior());
6696 if (type == NULL)
6697 return NULL;
6698 type = lookup_pointer_type (lookup_pointer_type (type));
6699 val = value_cast (type, tag);
6700 if (val == NULL)
6701 return NULL;
6702 return value_ind (value_ptradd (val, -1));
6703 }
6704
6705 /* Given the TSD of a tag (type-specific data), return a string
6706 containing the name of the associated type.
6707
6708 May return NULL if we are unable to determine the tag name. */
6709
6710 static gdb::unique_xmalloc_ptr<char>
6711 ada_tag_name_from_tsd (struct value *tsd)
6712 {
6713 char *p;
6714 struct value *val;
6715
6716 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6717 if (val == NULL)
6718 return NULL;
6719 gdb::unique_xmalloc_ptr<char> buffer
6720 = target_read_string (value_as_address (val), INT_MAX);
6721 if (buffer == nullptr)
6722 return nullptr;
6723
6724 for (p = buffer.get (); *p != '\0'; ++p)
6725 {
6726 if (isalpha (*p))
6727 *p = tolower (*p);
6728 }
6729
6730 return buffer;
6731 }
6732
6733 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6734 a C string.
6735
6736 Return NULL if the TAG is not an Ada tag, or if we were unable to
6737 determine the name of that tag. */
6738
6739 gdb::unique_xmalloc_ptr<char>
6740 ada_tag_name (struct value *tag)
6741 {
6742 gdb::unique_xmalloc_ptr<char> name;
6743
6744 if (!ada_is_tag_type (value_type (tag)))
6745 return NULL;
6746
6747 /* It is perfectly possible that an exception be raised while trying
6748 to determine the TAG's name, even under normal circumstances:
6749 The associated variable may be uninitialized or corrupted, for
6750 instance. We do not let any exception propagate past this point.
6751 instead we return NULL.
6752
6753 We also do not print the error message either (which often is very
6754 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6755 the caller print a more meaningful message if necessary. */
6756 try
6757 {
6758 struct value *tsd = ada_get_tsd_from_tag (tag);
6759
6760 if (tsd != NULL)
6761 name = ada_tag_name_from_tsd (tsd);
6762 }
6763 catch (const gdb_exception_error &e)
6764 {
6765 }
6766
6767 return name;
6768 }
6769
6770 /* The parent type of TYPE, or NULL if none. */
6771
6772 struct type *
6773 ada_parent_type (struct type *type)
6774 {
6775 int i;
6776
6777 type = ada_check_typedef (type);
6778
6779 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
6780 return NULL;
6781
6782 for (i = 0; i < type->num_fields (); i += 1)
6783 if (ada_is_parent_field (type, i))
6784 {
6785 struct type *parent_type = type->field (i).type ();
6786
6787 /* If the _parent field is a pointer, then dereference it. */
6788 if (parent_type->code () == TYPE_CODE_PTR)
6789 parent_type = TYPE_TARGET_TYPE (parent_type);
6790 /* If there is a parallel XVS type, get the actual base type. */
6791 parent_type = ada_get_base_type (parent_type);
6792
6793 return ada_check_typedef (parent_type);
6794 }
6795
6796 return NULL;
6797 }
6798
6799 /* True iff field number FIELD_NUM of structure type TYPE contains the
6800 parent-type (inherited) fields of a derived type. Assumes TYPE is
6801 a structure type with at least FIELD_NUM+1 fields. */
6802
6803 int
6804 ada_is_parent_field (struct type *type, int field_num)
6805 {
6806 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6807
6808 return (name != NULL
6809 && (startswith (name, "PARENT")
6810 || startswith (name, "_parent")));
6811 }
6812
6813 /* True iff field number FIELD_NUM of structure type TYPE is a
6814 transparent wrapper field (which should be silently traversed when doing
6815 field selection and flattened when printing). Assumes TYPE is a
6816 structure type with at least FIELD_NUM+1 fields. Such fields are always
6817 structures. */
6818
6819 int
6820 ada_is_wrapper_field (struct type *type, int field_num)
6821 {
6822 const char *name = TYPE_FIELD_NAME (type, field_num);
6823
6824 if (name != NULL && strcmp (name, "RETVAL") == 0)
6825 {
6826 /* This happens in functions with "out" or "in out" parameters
6827 which are passed by copy. For such functions, GNAT describes
6828 the function's return type as being a struct where the return
6829 value is in a field called RETVAL, and where the other "out"
6830 or "in out" parameters are fields of that struct. This is not
6831 a wrapper. */
6832 return 0;
6833 }
6834
6835 return (name != NULL
6836 && (startswith (name, "PARENT")
6837 || strcmp (name, "REP") == 0
6838 || startswith (name, "_parent")
6839 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6840 }
6841
6842 /* True iff field number FIELD_NUM of structure or union type TYPE
6843 is a variant wrapper. Assumes TYPE is a structure type with at least
6844 FIELD_NUM+1 fields. */
6845
6846 int
6847 ada_is_variant_part (struct type *type, int field_num)
6848 {
6849 /* Only Ada types are eligible. */
6850 if (!ADA_TYPE_P (type))
6851 return 0;
6852
6853 struct type *field_type = type->field (field_num).type ();
6854
6855 return (field_type->code () == TYPE_CODE_UNION
6856 || (is_dynamic_field (type, field_num)
6857 && (TYPE_TARGET_TYPE (field_type)->code ()
6858 == TYPE_CODE_UNION)));
6859 }
6860
6861 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6862 whose discriminants are contained in the record type OUTER_TYPE,
6863 returns the type of the controlling discriminant for the variant.
6864 May return NULL if the type could not be found. */
6865
6866 struct type *
6867 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6868 {
6869 const char *name = ada_variant_discrim_name (var_type);
6870
6871 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
6872 }
6873
6874 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6875 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6876 represents a 'when others' clause; otherwise 0. */
6877
6878 static int
6879 ada_is_others_clause (struct type *type, int field_num)
6880 {
6881 const char *name = TYPE_FIELD_NAME (type, field_num);
6882
6883 return (name != NULL && name[0] == 'O');
6884 }
6885
6886 /* Assuming that TYPE0 is the type of the variant part of a record,
6887 returns the name of the discriminant controlling the variant.
6888 The value is valid until the next call to ada_variant_discrim_name. */
6889
6890 const char *
6891 ada_variant_discrim_name (struct type *type0)
6892 {
6893 static char *result = NULL;
6894 static size_t result_len = 0;
6895 struct type *type;
6896 const char *name;
6897 const char *discrim_end;
6898 const char *discrim_start;
6899
6900 if (type0->code () == TYPE_CODE_PTR)
6901 type = TYPE_TARGET_TYPE (type0);
6902 else
6903 type = type0;
6904
6905 name = ada_type_name (type);
6906
6907 if (name == NULL || name[0] == '\000')
6908 return "";
6909
6910 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6911 discrim_end -= 1)
6912 {
6913 if (startswith (discrim_end, "___XVN"))
6914 break;
6915 }
6916 if (discrim_end == name)
6917 return "";
6918
6919 for (discrim_start = discrim_end; discrim_start != name + 3;
6920 discrim_start -= 1)
6921 {
6922 if (discrim_start == name + 1)
6923 return "";
6924 if ((discrim_start > name + 3
6925 && startswith (discrim_start - 3, "___"))
6926 || discrim_start[-1] == '.')
6927 break;
6928 }
6929
6930 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6931 strncpy (result, discrim_start, discrim_end - discrim_start);
6932 result[discrim_end - discrim_start] = '\0';
6933 return result;
6934 }
6935
6936 /* Scan STR for a subtype-encoded number, beginning at position K.
6937 Put the position of the character just past the number scanned in
6938 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6939 Return 1 if there was a valid number at the given position, and 0
6940 otherwise. A "subtype-encoded" number consists of the absolute value
6941 in decimal, followed by the letter 'm' to indicate a negative number.
6942 Assumes 0m does not occur. */
6943
6944 int
6945 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6946 {
6947 ULONGEST RU;
6948
6949 if (!isdigit (str[k]))
6950 return 0;
6951
6952 /* Do it the hard way so as not to make any assumption about
6953 the relationship of unsigned long (%lu scan format code) and
6954 LONGEST. */
6955 RU = 0;
6956 while (isdigit (str[k]))
6957 {
6958 RU = RU * 10 + (str[k] - '0');
6959 k += 1;
6960 }
6961
6962 if (str[k] == 'm')
6963 {
6964 if (R != NULL)
6965 *R = (-(LONGEST) (RU - 1)) - 1;
6966 k += 1;
6967 }
6968 else if (R != NULL)
6969 *R = (LONGEST) RU;
6970
6971 /* NOTE on the above: Technically, C does not say what the results of
6972 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6973 number representable as a LONGEST (although either would probably work
6974 in most implementations). When RU>0, the locution in the then branch
6975 above is always equivalent to the negative of RU. */
6976
6977 if (new_k != NULL)
6978 *new_k = k;
6979 return 1;
6980 }
6981
6982 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6983 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6984 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6985
6986 static int
6987 ada_in_variant (LONGEST val, struct type *type, int field_num)
6988 {
6989 const char *name = TYPE_FIELD_NAME (type, field_num);
6990 int p;
6991
6992 p = 0;
6993 while (1)
6994 {
6995 switch (name[p])
6996 {
6997 case '\0':
6998 return 0;
6999 case 'S':
7000 {
7001 LONGEST W;
7002
7003 if (!ada_scan_number (name, p + 1, &W, &p))
7004 return 0;
7005 if (val == W)
7006 return 1;
7007 break;
7008 }
7009 case 'R':
7010 {
7011 LONGEST L, U;
7012
7013 if (!ada_scan_number (name, p + 1, &L, &p)
7014 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7015 return 0;
7016 if (val >= L && val <= U)
7017 return 1;
7018 break;
7019 }
7020 case 'O':
7021 return 1;
7022 default:
7023 return 0;
7024 }
7025 }
7026 }
7027
7028 /* FIXME: Lots of redundancy below. Try to consolidate. */
7029
7030 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7031 ARG_TYPE, extract and return the value of one of its (non-static)
7032 fields. FIELDNO says which field. Differs from value_primitive_field
7033 only in that it can handle packed values of arbitrary type. */
7034
7035 struct value *
7036 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
7037 struct type *arg_type)
7038 {
7039 struct type *type;
7040
7041 arg_type = ada_check_typedef (arg_type);
7042 type = arg_type->field (fieldno).type ();
7043
7044 /* Handle packed fields. It might be that the field is not packed
7045 relative to its containing structure, but the structure itself is
7046 packed; in this case we must take the bit-field path. */
7047 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || value_bitpos (arg1) != 0)
7048 {
7049 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7050 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
7051
7052 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
7053 offset + bit_pos / 8,
7054 bit_pos % 8, bit_size, type);
7055 }
7056 else
7057 return value_primitive_field (arg1, offset, fieldno, arg_type);
7058 }
7059
7060 /* Find field with name NAME in object of type TYPE. If found,
7061 set the following for each argument that is non-null:
7062 - *FIELD_TYPE_P to the field's type;
7063 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7064 an object of that type;
7065 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7066 - *BIT_SIZE_P to its size in bits if the field is packed, and
7067 0 otherwise;
7068 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7069 fields up to but not including the desired field, or by the total
7070 number of fields if not found. A NULL value of NAME never
7071 matches; the function just counts visible fields in this case.
7072
7073 Notice that we need to handle when a tagged record hierarchy
7074 has some components with the same name, like in this scenario:
7075
7076 type Top_T is tagged record
7077 N : Integer := 1;
7078 U : Integer := 974;
7079 A : Integer := 48;
7080 end record;
7081
7082 type Middle_T is new Top.Top_T with record
7083 N : Character := 'a';
7084 C : Integer := 3;
7085 end record;
7086
7087 type Bottom_T is new Middle.Middle_T with record
7088 N : Float := 4.0;
7089 C : Character := '5';
7090 X : Integer := 6;
7091 A : Character := 'J';
7092 end record;
7093
7094 Let's say we now have a variable declared and initialized as follow:
7095
7096 TC : Top_A := new Bottom_T;
7097
7098 And then we use this variable to call this function
7099
7100 procedure Assign (Obj: in out Top_T; TV : Integer);
7101
7102 as follow:
7103
7104 Assign (Top_T (B), 12);
7105
7106 Now, we're in the debugger, and we're inside that procedure
7107 then and we want to print the value of obj.c:
7108
7109 Usually, the tagged record or one of the parent type owns the
7110 component to print and there's no issue but in this particular
7111 case, what does it mean to ask for Obj.C? Since the actual
7112 type for object is type Bottom_T, it could mean two things: type
7113 component C from the Middle_T view, but also component C from
7114 Bottom_T. So in that "undefined" case, when the component is
7115 not found in the non-resolved type (which includes all the
7116 components of the parent type), then resolve it and see if we
7117 get better luck once expanded.
7118
7119 In the case of homonyms in the derived tagged type, we don't
7120 guaranty anything, and pick the one that's easiest for us
7121 to program.
7122
7123 Returns 1 if found, 0 otherwise. */
7124
7125 static int
7126 find_struct_field (const char *name, struct type *type, int offset,
7127 struct type **field_type_p,
7128 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7129 int *index_p)
7130 {
7131 int i;
7132 int parent_offset = -1;
7133
7134 type = ada_check_typedef (type);
7135
7136 if (field_type_p != NULL)
7137 *field_type_p = NULL;
7138 if (byte_offset_p != NULL)
7139 *byte_offset_p = 0;
7140 if (bit_offset_p != NULL)
7141 *bit_offset_p = 0;
7142 if (bit_size_p != NULL)
7143 *bit_size_p = 0;
7144
7145 for (i = 0; i < type->num_fields (); i += 1)
7146 {
7147 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7148 int fld_offset = offset + bit_pos / 8;
7149 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7150
7151 if (t_field_name == NULL)
7152 continue;
7153
7154 else if (ada_is_parent_field (type, i))
7155 {
7156 /* This is a field pointing us to the parent type of a tagged
7157 type. As hinted in this function's documentation, we give
7158 preference to fields in the current record first, so what
7159 we do here is just record the index of this field before
7160 we skip it. If it turns out we couldn't find our field
7161 in the current record, then we'll get back to it and search
7162 inside it whether the field might exist in the parent. */
7163
7164 parent_offset = i;
7165 continue;
7166 }
7167
7168 else if (name != NULL && field_name_match (t_field_name, name))
7169 {
7170 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7171
7172 if (field_type_p != NULL)
7173 *field_type_p = type->field (i).type ();
7174 if (byte_offset_p != NULL)
7175 *byte_offset_p = fld_offset;
7176 if (bit_offset_p != NULL)
7177 *bit_offset_p = bit_pos % 8;
7178 if (bit_size_p != NULL)
7179 *bit_size_p = bit_size;
7180 return 1;
7181 }
7182 else if (ada_is_wrapper_field (type, i))
7183 {
7184 if (find_struct_field (name, type->field (i).type (), fld_offset,
7185 field_type_p, byte_offset_p, bit_offset_p,
7186 bit_size_p, index_p))
7187 return 1;
7188 }
7189 else if (ada_is_variant_part (type, i))
7190 {
7191 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7192 fixed type?? */
7193 int j;
7194 struct type *field_type
7195 = ada_check_typedef (type->field (i).type ());
7196
7197 for (j = 0; j < field_type->num_fields (); j += 1)
7198 {
7199 if (find_struct_field (name, field_type->field (j).type (),
7200 fld_offset
7201 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7202 field_type_p, byte_offset_p,
7203 bit_offset_p, bit_size_p, index_p))
7204 return 1;
7205 }
7206 }
7207 else if (index_p != NULL)
7208 *index_p += 1;
7209 }
7210
7211 /* Field not found so far. If this is a tagged type which
7212 has a parent, try finding that field in the parent now. */
7213
7214 if (parent_offset != -1)
7215 {
7216 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7217 int fld_offset = offset + bit_pos / 8;
7218
7219 if (find_struct_field (name, type->field (parent_offset).type (),
7220 fld_offset, field_type_p, byte_offset_p,
7221 bit_offset_p, bit_size_p, index_p))
7222 return 1;
7223 }
7224
7225 return 0;
7226 }
7227
7228 /* Number of user-visible fields in record type TYPE. */
7229
7230 static int
7231 num_visible_fields (struct type *type)
7232 {
7233 int n;
7234
7235 n = 0;
7236 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7237 return n;
7238 }
7239
7240 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7241 and search in it assuming it has (class) type TYPE.
7242 If found, return value, else return NULL.
7243
7244 Searches recursively through wrapper fields (e.g., '_parent').
7245
7246 In the case of homonyms in the tagged types, please refer to the
7247 long explanation in find_struct_field's function documentation. */
7248
7249 static struct value *
7250 ada_search_struct_field (const char *name, struct value *arg, int offset,
7251 struct type *type)
7252 {
7253 int i;
7254 int parent_offset = -1;
7255
7256 type = ada_check_typedef (type);
7257 for (i = 0; i < type->num_fields (); i += 1)
7258 {
7259 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7260
7261 if (t_field_name == NULL)
7262 continue;
7263
7264 else if (ada_is_parent_field (type, i))
7265 {
7266 /* This is a field pointing us to the parent type of a tagged
7267 type. As hinted in this function's documentation, we give
7268 preference to fields in the current record first, so what
7269 we do here is just record the index of this field before
7270 we skip it. If it turns out we couldn't find our field
7271 in the current record, then we'll get back to it and search
7272 inside it whether the field might exist in the parent. */
7273
7274 parent_offset = i;
7275 continue;
7276 }
7277
7278 else if (field_name_match (t_field_name, name))
7279 return ada_value_primitive_field (arg, offset, i, type);
7280
7281 else if (ada_is_wrapper_field (type, i))
7282 {
7283 struct value *v = /* Do not let indent join lines here. */
7284 ada_search_struct_field (name, arg,
7285 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7286 type->field (i).type ());
7287
7288 if (v != NULL)
7289 return v;
7290 }
7291
7292 else if (ada_is_variant_part (type, i))
7293 {
7294 /* PNH: Do we ever get here? See find_struct_field. */
7295 int j;
7296 struct type *field_type = ada_check_typedef (type->field (i).type ());
7297 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7298
7299 for (j = 0; j < field_type->num_fields (); j += 1)
7300 {
7301 struct value *v = ada_search_struct_field /* Force line
7302 break. */
7303 (name, arg,
7304 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7305 field_type->field (j).type ());
7306
7307 if (v != NULL)
7308 return v;
7309 }
7310 }
7311 }
7312
7313 /* Field not found so far. If this is a tagged type which
7314 has a parent, try finding that field in the parent now. */
7315
7316 if (parent_offset != -1)
7317 {
7318 struct value *v = ada_search_struct_field (
7319 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7320 type->field (parent_offset).type ());
7321
7322 if (v != NULL)
7323 return v;
7324 }
7325
7326 return NULL;
7327 }
7328
7329 static struct value *ada_index_struct_field_1 (int *, struct value *,
7330 int, struct type *);
7331
7332
7333 /* Return field #INDEX in ARG, where the index is that returned by
7334 * find_struct_field through its INDEX_P argument. Adjust the address
7335 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7336 * If found, return value, else return NULL. */
7337
7338 static struct value *
7339 ada_index_struct_field (int index, struct value *arg, int offset,
7340 struct type *type)
7341 {
7342 return ada_index_struct_field_1 (&index, arg, offset, type);
7343 }
7344
7345
7346 /* Auxiliary function for ada_index_struct_field. Like
7347 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7348 * *INDEX_P. */
7349
7350 static struct value *
7351 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7352 struct type *type)
7353 {
7354 int i;
7355 type = ada_check_typedef (type);
7356
7357 for (i = 0; i < type->num_fields (); i += 1)
7358 {
7359 if (TYPE_FIELD_NAME (type, i) == NULL)
7360 continue;
7361 else if (ada_is_wrapper_field (type, i))
7362 {
7363 struct value *v = /* Do not let indent join lines here. */
7364 ada_index_struct_field_1 (index_p, arg,
7365 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7366 type->field (i).type ());
7367
7368 if (v != NULL)
7369 return v;
7370 }
7371
7372 else if (ada_is_variant_part (type, i))
7373 {
7374 /* PNH: Do we ever get here? See ada_search_struct_field,
7375 find_struct_field. */
7376 error (_("Cannot assign this kind of variant record"));
7377 }
7378 else if (*index_p == 0)
7379 return ada_value_primitive_field (arg, offset, i, type);
7380 else
7381 *index_p -= 1;
7382 }
7383 return NULL;
7384 }
7385
7386 /* Return a string representation of type TYPE. */
7387
7388 static std::string
7389 type_as_string (struct type *type)
7390 {
7391 string_file tmp_stream;
7392
7393 type_print (type, "", &tmp_stream, -1);
7394
7395 return std::move (tmp_stream.string ());
7396 }
7397
7398 /* Given a type TYPE, look up the type of the component of type named NAME.
7399 If DISPP is non-null, add its byte displacement from the beginning of a
7400 structure (pointed to by a value) of type TYPE to *DISPP (does not
7401 work for packed fields).
7402
7403 Matches any field whose name has NAME as a prefix, possibly
7404 followed by "___".
7405
7406 TYPE can be either a struct or union. If REFOK, TYPE may also
7407 be a (pointer or reference)+ to a struct or union, and the
7408 ultimate target type will be searched.
7409
7410 Looks recursively into variant clauses and parent types.
7411
7412 In the case of homonyms in the tagged types, please refer to the
7413 long explanation in find_struct_field's function documentation.
7414
7415 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7416 TYPE is not a type of the right kind. */
7417
7418 static struct type *
7419 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
7420 int noerr)
7421 {
7422 int i;
7423 int parent_offset = -1;
7424
7425 if (name == NULL)
7426 goto BadName;
7427
7428 if (refok && type != NULL)
7429 while (1)
7430 {
7431 type = ada_check_typedef (type);
7432 if (type->code () != TYPE_CODE_PTR && type->code () != TYPE_CODE_REF)
7433 break;
7434 type = TYPE_TARGET_TYPE (type);
7435 }
7436
7437 if (type == NULL
7438 || (type->code () != TYPE_CODE_STRUCT
7439 && type->code () != TYPE_CODE_UNION))
7440 {
7441 if (noerr)
7442 return NULL;
7443
7444 error (_("Type %s is not a structure or union type"),
7445 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7446 }
7447
7448 type = to_static_fixed_type (type);
7449
7450 for (i = 0; i < type->num_fields (); i += 1)
7451 {
7452 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7453 struct type *t;
7454
7455 if (t_field_name == NULL)
7456 continue;
7457
7458 else if (ada_is_parent_field (type, i))
7459 {
7460 /* This is a field pointing us to the parent type of a tagged
7461 type. As hinted in this function's documentation, we give
7462 preference to fields in the current record first, so what
7463 we do here is just record the index of this field before
7464 we skip it. If it turns out we couldn't find our field
7465 in the current record, then we'll get back to it and search
7466 inside it whether the field might exist in the parent. */
7467
7468 parent_offset = i;
7469 continue;
7470 }
7471
7472 else if (field_name_match (t_field_name, name))
7473 return type->field (i).type ();
7474
7475 else if (ada_is_wrapper_field (type, i))
7476 {
7477 t = ada_lookup_struct_elt_type (type->field (i).type (), name,
7478 0, 1);
7479 if (t != NULL)
7480 return t;
7481 }
7482
7483 else if (ada_is_variant_part (type, i))
7484 {
7485 int j;
7486 struct type *field_type = ada_check_typedef (type->field (i).type ());
7487
7488 for (j = field_type->num_fields () - 1; j >= 0; j -= 1)
7489 {
7490 /* FIXME pnh 2008/01/26: We check for a field that is
7491 NOT wrapped in a struct, since the compiler sometimes
7492 generates these for unchecked variant types. Revisit
7493 if the compiler changes this practice. */
7494 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7495
7496 if (v_field_name != NULL
7497 && field_name_match (v_field_name, name))
7498 t = field_type->field (j).type ();
7499 else
7500 t = ada_lookup_struct_elt_type (field_type->field (j).type (),
7501 name, 0, 1);
7502
7503 if (t != NULL)
7504 return t;
7505 }
7506 }
7507
7508 }
7509
7510 /* Field not found so far. If this is a tagged type which
7511 has a parent, try finding that field in the parent now. */
7512
7513 if (parent_offset != -1)
7514 {
7515 struct type *t;
7516
7517 t = ada_lookup_struct_elt_type (type->field (parent_offset).type (),
7518 name, 0, 1);
7519 if (t != NULL)
7520 return t;
7521 }
7522
7523 BadName:
7524 if (!noerr)
7525 {
7526 const char *name_str = name != NULL ? name : _("<null>");
7527
7528 error (_("Type %s has no component named %s"),
7529 type_as_string (type).c_str (), name_str);
7530 }
7531
7532 return NULL;
7533 }
7534
7535 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7536 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7537 represents an unchecked union (that is, the variant part of a
7538 record that is named in an Unchecked_Union pragma). */
7539
7540 static int
7541 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7542 {
7543 const char *discrim_name = ada_variant_discrim_name (var_type);
7544
7545 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7546 }
7547
7548
7549 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7550 within OUTER, determine which variant clause (field number in VAR_TYPE,
7551 numbering from 0) is applicable. Returns -1 if none are. */
7552
7553 int
7554 ada_which_variant_applies (struct type *var_type, struct value *outer)
7555 {
7556 int others_clause;
7557 int i;
7558 const char *discrim_name = ada_variant_discrim_name (var_type);
7559 struct value *discrim;
7560 LONGEST discrim_val;
7561
7562 /* Using plain value_from_contents_and_address here causes problems
7563 because we will end up trying to resolve a type that is currently
7564 being constructed. */
7565 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7566 if (discrim == NULL)
7567 return -1;
7568 discrim_val = value_as_long (discrim);
7569
7570 others_clause = -1;
7571 for (i = 0; i < var_type->num_fields (); i += 1)
7572 {
7573 if (ada_is_others_clause (var_type, i))
7574 others_clause = i;
7575 else if (ada_in_variant (discrim_val, var_type, i))
7576 return i;
7577 }
7578
7579 return others_clause;
7580 }
7581 \f
7582
7583
7584 /* Dynamic-Sized Records */
7585
7586 /* Strategy: The type ostensibly attached to a value with dynamic size
7587 (i.e., a size that is not statically recorded in the debugging
7588 data) does not accurately reflect the size or layout of the value.
7589 Our strategy is to convert these values to values with accurate,
7590 conventional types that are constructed on the fly. */
7591
7592 /* There is a subtle and tricky problem here. In general, we cannot
7593 determine the size of dynamic records without its data. However,
7594 the 'struct value' data structure, which GDB uses to represent
7595 quantities in the inferior process (the target), requires the size
7596 of the type at the time of its allocation in order to reserve space
7597 for GDB's internal copy of the data. That's why the
7598 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7599 rather than struct value*s.
7600
7601 However, GDB's internal history variables ($1, $2, etc.) are
7602 struct value*s containing internal copies of the data that are not, in
7603 general, the same as the data at their corresponding addresses in
7604 the target. Fortunately, the types we give to these values are all
7605 conventional, fixed-size types (as per the strategy described
7606 above), so that we don't usually have to perform the
7607 'to_fixed_xxx_type' conversions to look at their values.
7608 Unfortunately, there is one exception: if one of the internal
7609 history variables is an array whose elements are unconstrained
7610 records, then we will need to create distinct fixed types for each
7611 element selected. */
7612
7613 /* The upshot of all of this is that many routines take a (type, host
7614 address, target address) triple as arguments to represent a value.
7615 The host address, if non-null, is supposed to contain an internal
7616 copy of the relevant data; otherwise, the program is to consult the
7617 target at the target address. */
7618
7619 /* Assuming that VAL0 represents a pointer value, the result of
7620 dereferencing it. Differs from value_ind in its treatment of
7621 dynamic-sized types. */
7622
7623 struct value *
7624 ada_value_ind (struct value *val0)
7625 {
7626 struct value *val = value_ind (val0);
7627
7628 if (ada_is_tagged_type (value_type (val), 0))
7629 val = ada_tag_value_at_base_address (val);
7630
7631 return ada_to_fixed_value (val);
7632 }
7633
7634 /* The value resulting from dereferencing any "reference to"
7635 qualifiers on VAL0. */
7636
7637 static struct value *
7638 ada_coerce_ref (struct value *val0)
7639 {
7640 if (value_type (val0)->code () == TYPE_CODE_REF)
7641 {
7642 struct value *val = val0;
7643
7644 val = coerce_ref (val);
7645
7646 if (ada_is_tagged_type (value_type (val), 0))
7647 val = ada_tag_value_at_base_address (val);
7648
7649 return ada_to_fixed_value (val);
7650 }
7651 else
7652 return val0;
7653 }
7654
7655 /* Return the bit alignment required for field #F of template type TYPE. */
7656
7657 static unsigned int
7658 field_alignment (struct type *type, int f)
7659 {
7660 const char *name = TYPE_FIELD_NAME (type, f);
7661 int len;
7662 int align_offset;
7663
7664 /* The field name should never be null, unless the debugging information
7665 is somehow malformed. In this case, we assume the field does not
7666 require any alignment. */
7667 if (name == NULL)
7668 return 1;
7669
7670 len = strlen (name);
7671
7672 if (!isdigit (name[len - 1]))
7673 return 1;
7674
7675 if (isdigit (name[len - 2]))
7676 align_offset = len - 2;
7677 else
7678 align_offset = len - 1;
7679
7680 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7681 return TARGET_CHAR_BIT;
7682
7683 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7684 }
7685
7686 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7687
7688 static struct symbol *
7689 ada_find_any_type_symbol (const char *name)
7690 {
7691 struct symbol *sym;
7692
7693 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7694 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7695 return sym;
7696
7697 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7698 return sym;
7699 }
7700
7701 /* Find a type named NAME. Ignores ambiguity. This routine will look
7702 solely for types defined by debug info, it will not search the GDB
7703 primitive types. */
7704
7705 static struct type *
7706 ada_find_any_type (const char *name)
7707 {
7708 struct symbol *sym = ada_find_any_type_symbol (name);
7709
7710 if (sym != NULL)
7711 return SYMBOL_TYPE (sym);
7712
7713 return NULL;
7714 }
7715
7716 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7717 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7718 symbol, in which case it is returned. Otherwise, this looks for
7719 symbols whose name is that of NAME_SYM suffixed with "___XR".
7720 Return symbol if found, and NULL otherwise. */
7721
7722 static bool
7723 ada_is_renaming_symbol (struct symbol *name_sym)
7724 {
7725 const char *name = name_sym->linkage_name ();
7726 return strstr (name, "___XR") != NULL;
7727 }
7728
7729 /* Because of GNAT encoding conventions, several GDB symbols may match a
7730 given type name. If the type denoted by TYPE0 is to be preferred to
7731 that of TYPE1 for purposes of type printing, return non-zero;
7732 otherwise return 0. */
7733
7734 int
7735 ada_prefer_type (struct type *type0, struct type *type1)
7736 {
7737 if (type1 == NULL)
7738 return 1;
7739 else if (type0 == NULL)
7740 return 0;
7741 else if (type1->code () == TYPE_CODE_VOID)
7742 return 1;
7743 else if (type0->code () == TYPE_CODE_VOID)
7744 return 0;
7745 else if (type1->name () == NULL && type0->name () != NULL)
7746 return 1;
7747 else if (ada_is_constrained_packed_array_type (type0))
7748 return 1;
7749 else if (ada_is_array_descriptor_type (type0)
7750 && !ada_is_array_descriptor_type (type1))
7751 return 1;
7752 else
7753 {
7754 const char *type0_name = type0->name ();
7755 const char *type1_name = type1->name ();
7756
7757 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7758 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7759 return 1;
7760 }
7761 return 0;
7762 }
7763
7764 /* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
7765 null. */
7766
7767 const char *
7768 ada_type_name (struct type *type)
7769 {
7770 if (type == NULL)
7771 return NULL;
7772 return type->name ();
7773 }
7774
7775 /* Search the list of "descriptive" types associated to TYPE for a type
7776 whose name is NAME. */
7777
7778 static struct type *
7779 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7780 {
7781 struct type *result, *tmp;
7782
7783 if (ada_ignore_descriptive_types_p)
7784 return NULL;
7785
7786 /* If there no descriptive-type info, then there is no parallel type
7787 to be found. */
7788 if (!HAVE_GNAT_AUX_INFO (type))
7789 return NULL;
7790
7791 result = TYPE_DESCRIPTIVE_TYPE (type);
7792 while (result != NULL)
7793 {
7794 const char *result_name = ada_type_name (result);
7795
7796 if (result_name == NULL)
7797 {
7798 warning (_("unexpected null name on descriptive type"));
7799 return NULL;
7800 }
7801
7802 /* If the names match, stop. */
7803 if (strcmp (result_name, name) == 0)
7804 break;
7805
7806 /* Otherwise, look at the next item on the list, if any. */
7807 if (HAVE_GNAT_AUX_INFO (result))
7808 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7809 else
7810 tmp = NULL;
7811
7812 /* If not found either, try after having resolved the typedef. */
7813 if (tmp != NULL)
7814 result = tmp;
7815 else
7816 {
7817 result = check_typedef (result);
7818 if (HAVE_GNAT_AUX_INFO (result))
7819 result = TYPE_DESCRIPTIVE_TYPE (result);
7820 else
7821 result = NULL;
7822 }
7823 }
7824
7825 /* If we didn't find a match, see whether this is a packed array. With
7826 older compilers, the descriptive type information is either absent or
7827 irrelevant when it comes to packed arrays so the above lookup fails.
7828 Fall back to using a parallel lookup by name in this case. */
7829 if (result == NULL && ada_is_constrained_packed_array_type (type))
7830 return ada_find_any_type (name);
7831
7832 return result;
7833 }
7834
7835 /* Find a parallel type to TYPE with the specified NAME, using the
7836 descriptive type taken from the debugging information, if available,
7837 and otherwise using the (slower) name-based method. */
7838
7839 static struct type *
7840 ada_find_parallel_type_with_name (struct type *type, const char *name)
7841 {
7842 struct type *result = NULL;
7843
7844 if (HAVE_GNAT_AUX_INFO (type))
7845 result = find_parallel_type_by_descriptive_type (type, name);
7846 else
7847 result = ada_find_any_type (name);
7848
7849 return result;
7850 }
7851
7852 /* Same as above, but specify the name of the parallel type by appending
7853 SUFFIX to the name of TYPE. */
7854
7855 struct type *
7856 ada_find_parallel_type (struct type *type, const char *suffix)
7857 {
7858 char *name;
7859 const char *type_name = ada_type_name (type);
7860 int len;
7861
7862 if (type_name == NULL)
7863 return NULL;
7864
7865 len = strlen (type_name);
7866
7867 name = (char *) alloca (len + strlen (suffix) + 1);
7868
7869 strcpy (name, type_name);
7870 strcpy (name + len, suffix);
7871
7872 return ada_find_parallel_type_with_name (type, name);
7873 }
7874
7875 /* If TYPE is a variable-size record type, return the corresponding template
7876 type describing its fields. Otherwise, return NULL. */
7877
7878 static struct type *
7879 dynamic_template_type (struct type *type)
7880 {
7881 type = ada_check_typedef (type);
7882
7883 if (type == NULL || type->code () != TYPE_CODE_STRUCT
7884 || ada_type_name (type) == NULL)
7885 return NULL;
7886 else
7887 {
7888 int len = strlen (ada_type_name (type));
7889
7890 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7891 return type;
7892 else
7893 return ada_find_parallel_type (type, "___XVE");
7894 }
7895 }
7896
7897 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7898 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7899
7900 static int
7901 is_dynamic_field (struct type *templ_type, int field_num)
7902 {
7903 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7904
7905 return name != NULL
7906 && templ_type->field (field_num).type ()->code () == TYPE_CODE_PTR
7907 && strstr (name, "___XVL") != NULL;
7908 }
7909
7910 /* The index of the variant field of TYPE, or -1 if TYPE does not
7911 represent a variant record type. */
7912
7913 static int
7914 variant_field_index (struct type *type)
7915 {
7916 int f;
7917
7918 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
7919 return -1;
7920
7921 for (f = 0; f < type->num_fields (); f += 1)
7922 {
7923 if (ada_is_variant_part (type, f))
7924 return f;
7925 }
7926 return -1;
7927 }
7928
7929 /* A record type with no fields. */
7930
7931 static struct type *
7932 empty_record (struct type *templ)
7933 {
7934 struct type *type = alloc_type_copy (templ);
7935
7936 type->set_code (TYPE_CODE_STRUCT);
7937 INIT_NONE_SPECIFIC (type);
7938 type->set_name ("<empty>");
7939 TYPE_LENGTH (type) = 0;
7940 return type;
7941 }
7942
7943 /* An ordinary record type (with fixed-length fields) that describes
7944 the value of type TYPE at VALADDR or ADDRESS (see comments at
7945 the beginning of this section) VAL according to GNAT conventions.
7946 DVAL0 should describe the (portion of a) record that contains any
7947 necessary discriminants. It should be NULL if value_type (VAL) is
7948 an outer-level type (i.e., as opposed to a branch of a variant.) A
7949 variant field (unless unchecked) is replaced by a particular branch
7950 of the variant.
7951
7952 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7953 length are not statically known are discarded. As a consequence,
7954 VALADDR, ADDRESS and DVAL0 are ignored.
7955
7956 NOTE: Limitations: For now, we assume that dynamic fields and
7957 variants occupy whole numbers of bytes. However, they need not be
7958 byte-aligned. */
7959
7960 struct type *
7961 ada_template_to_fixed_record_type_1 (struct type *type,
7962 const gdb_byte *valaddr,
7963 CORE_ADDR address, struct value *dval0,
7964 int keep_dynamic_fields)
7965 {
7966 struct value *mark = value_mark ();
7967 struct value *dval;
7968 struct type *rtype;
7969 int nfields, bit_len;
7970 int variant_field;
7971 long off;
7972 int fld_bit_len;
7973 int f;
7974
7975 /* Compute the number of fields in this record type that are going
7976 to be processed: unless keep_dynamic_fields, this includes only
7977 fields whose position and length are static will be processed. */
7978 if (keep_dynamic_fields)
7979 nfields = type->num_fields ();
7980 else
7981 {
7982 nfields = 0;
7983 while (nfields < type->num_fields ()
7984 && !ada_is_variant_part (type, nfields)
7985 && !is_dynamic_field (type, nfields))
7986 nfields++;
7987 }
7988
7989 rtype = alloc_type_copy (type);
7990 rtype->set_code (TYPE_CODE_STRUCT);
7991 INIT_NONE_SPECIFIC (rtype);
7992 rtype->set_num_fields (nfields);
7993 rtype->set_fields
7994 ((struct field *) TYPE_ZALLOC (rtype, nfields * sizeof (struct field)));
7995 rtype->set_name (ada_type_name (type));
7996 TYPE_FIXED_INSTANCE (rtype) = 1;
7997
7998 off = 0;
7999 bit_len = 0;
8000 variant_field = -1;
8001
8002 for (f = 0; f < nfields; f += 1)
8003 {
8004 off = align_up (off, field_alignment (type, f))
8005 + TYPE_FIELD_BITPOS (type, f);
8006 SET_FIELD_BITPOS (rtype->field (f), off);
8007 TYPE_FIELD_BITSIZE (rtype, f) = 0;
8008
8009 if (ada_is_variant_part (type, f))
8010 {
8011 variant_field = f;
8012 fld_bit_len = 0;
8013 }
8014 else if (is_dynamic_field (type, f))
8015 {
8016 const gdb_byte *field_valaddr = valaddr;
8017 CORE_ADDR field_address = address;
8018 struct type *field_type =
8019 TYPE_TARGET_TYPE (type->field (f).type ());
8020
8021 if (dval0 == NULL)
8022 {
8023 /* rtype's length is computed based on the run-time
8024 value of discriminants. If the discriminants are not
8025 initialized, the type size may be completely bogus and
8026 GDB may fail to allocate a value for it. So check the
8027 size first before creating the value. */
8028 ada_ensure_varsize_limit (rtype);
8029 /* Using plain value_from_contents_and_address here
8030 causes problems because we will end up trying to
8031 resolve a type that is currently being
8032 constructed. */
8033 dval = value_from_contents_and_address_unresolved (rtype,
8034 valaddr,
8035 address);
8036 rtype = value_type (dval);
8037 }
8038 else
8039 dval = dval0;
8040
8041 /* If the type referenced by this field is an aligner type, we need
8042 to unwrap that aligner type, because its size might not be set.
8043 Keeping the aligner type would cause us to compute the wrong
8044 size for this field, impacting the offset of the all the fields
8045 that follow this one. */
8046 if (ada_is_aligner_type (field_type))
8047 {
8048 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8049
8050 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8051 field_address = cond_offset_target (field_address, field_offset);
8052 field_type = ada_aligned_type (field_type);
8053 }
8054
8055 field_valaddr = cond_offset_host (field_valaddr,
8056 off / TARGET_CHAR_BIT);
8057 field_address = cond_offset_target (field_address,
8058 off / TARGET_CHAR_BIT);
8059
8060 /* Get the fixed type of the field. Note that, in this case,
8061 we do not want to get the real type out of the tag: if
8062 the current field is the parent part of a tagged record,
8063 we will get the tag of the object. Clearly wrong: the real
8064 type of the parent is not the real type of the child. We
8065 would end up in an infinite loop. */
8066 field_type = ada_get_base_type (field_type);
8067 field_type = ada_to_fixed_type (field_type, field_valaddr,
8068 field_address, dval, 0);
8069 /* If the field size is already larger than the maximum
8070 object size, then the record itself will necessarily
8071 be larger than the maximum object size. We need to make
8072 this check now, because the size might be so ridiculously
8073 large (due to an uninitialized variable in the inferior)
8074 that it would cause an overflow when adding it to the
8075 record size. */
8076 ada_ensure_varsize_limit (field_type);
8077
8078 rtype->field (f).set_type (field_type);
8079 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8080 /* The multiplication can potentially overflow. But because
8081 the field length has been size-checked just above, and
8082 assuming that the maximum size is a reasonable value,
8083 an overflow should not happen in practice. So rather than
8084 adding overflow recovery code to this already complex code,
8085 we just assume that it's not going to happen. */
8086 fld_bit_len =
8087 TYPE_LENGTH (rtype->field (f).type ()) * TARGET_CHAR_BIT;
8088 }
8089 else
8090 {
8091 /* Note: If this field's type is a typedef, it is important
8092 to preserve the typedef layer.
8093
8094 Otherwise, we might be transforming a typedef to a fat
8095 pointer (encoding a pointer to an unconstrained array),
8096 into a basic fat pointer (encoding an unconstrained
8097 array). As both types are implemented using the same
8098 structure, the typedef is the only clue which allows us
8099 to distinguish between the two options. Stripping it
8100 would prevent us from printing this field appropriately. */
8101 rtype->field (f).set_type (type->field (f).type ());
8102 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8103 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8104 fld_bit_len =
8105 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8106 else
8107 {
8108 struct type *field_type = type->field (f).type ();
8109
8110 /* We need to be careful of typedefs when computing
8111 the length of our field. If this is a typedef,
8112 get the length of the target type, not the length
8113 of the typedef. */
8114 if (field_type->code () == TYPE_CODE_TYPEDEF)
8115 field_type = ada_typedef_target_type (field_type);
8116
8117 fld_bit_len =
8118 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8119 }
8120 }
8121 if (off + fld_bit_len > bit_len)
8122 bit_len = off + fld_bit_len;
8123 off += fld_bit_len;
8124 TYPE_LENGTH (rtype) =
8125 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8126 }
8127
8128 /* We handle the variant part, if any, at the end because of certain
8129 odd cases in which it is re-ordered so as NOT to be the last field of
8130 the record. This can happen in the presence of representation
8131 clauses. */
8132 if (variant_field >= 0)
8133 {
8134 struct type *branch_type;
8135
8136 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8137
8138 if (dval0 == NULL)
8139 {
8140 /* Using plain value_from_contents_and_address here causes
8141 problems because we will end up trying to resolve a type
8142 that is currently being constructed. */
8143 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8144 address);
8145 rtype = value_type (dval);
8146 }
8147 else
8148 dval = dval0;
8149
8150 branch_type =
8151 to_fixed_variant_branch_type
8152 (type->field (variant_field).type (),
8153 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8154 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8155 if (branch_type == NULL)
8156 {
8157 for (f = variant_field + 1; f < rtype->num_fields (); f += 1)
8158 rtype->field (f - 1) = rtype->field (f);
8159 rtype->set_num_fields (rtype->num_fields () - 1);
8160 }
8161 else
8162 {
8163 rtype->field (variant_field).set_type (branch_type);
8164 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8165 fld_bit_len =
8166 TYPE_LENGTH (rtype->field (variant_field).type ()) *
8167 TARGET_CHAR_BIT;
8168 if (off + fld_bit_len > bit_len)
8169 bit_len = off + fld_bit_len;
8170 TYPE_LENGTH (rtype) =
8171 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8172 }
8173 }
8174
8175 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8176 should contain the alignment of that record, which should be a strictly
8177 positive value. If null or negative, then something is wrong, most
8178 probably in the debug info. In that case, we don't round up the size
8179 of the resulting type. If this record is not part of another structure,
8180 the current RTYPE length might be good enough for our purposes. */
8181 if (TYPE_LENGTH (type) <= 0)
8182 {
8183 if (rtype->name ())
8184 warning (_("Invalid type size for `%s' detected: %s."),
8185 rtype->name (), pulongest (TYPE_LENGTH (type)));
8186 else
8187 warning (_("Invalid type size for <unnamed> detected: %s."),
8188 pulongest (TYPE_LENGTH (type)));
8189 }
8190 else
8191 {
8192 TYPE_LENGTH (rtype) = align_up (TYPE_LENGTH (rtype),
8193 TYPE_LENGTH (type));
8194 }
8195
8196 value_free_to_mark (mark);
8197 if (TYPE_LENGTH (rtype) > varsize_limit)
8198 error (_("record type with dynamic size is larger than varsize-limit"));
8199 return rtype;
8200 }
8201
8202 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8203 of 1. */
8204
8205 static struct type *
8206 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8207 CORE_ADDR address, struct value *dval0)
8208 {
8209 return ada_template_to_fixed_record_type_1 (type, valaddr,
8210 address, dval0, 1);
8211 }
8212
8213 /* An ordinary record type in which ___XVL-convention fields and
8214 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8215 static approximations, containing all possible fields. Uses
8216 no runtime values. Useless for use in values, but that's OK,
8217 since the results are used only for type determinations. Works on both
8218 structs and unions. Representation note: to save space, we memorize
8219 the result of this function in the TYPE_TARGET_TYPE of the
8220 template type. */
8221
8222 static struct type *
8223 template_to_static_fixed_type (struct type *type0)
8224 {
8225 struct type *type;
8226 int nfields;
8227 int f;
8228
8229 /* No need no do anything if the input type is already fixed. */
8230 if (TYPE_FIXED_INSTANCE (type0))
8231 return type0;
8232
8233 /* Likewise if we already have computed the static approximation. */
8234 if (TYPE_TARGET_TYPE (type0) != NULL)
8235 return TYPE_TARGET_TYPE (type0);
8236
8237 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8238 type = type0;
8239 nfields = type0->num_fields ();
8240
8241 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8242 recompute all over next time. */
8243 TYPE_TARGET_TYPE (type0) = type;
8244
8245 for (f = 0; f < nfields; f += 1)
8246 {
8247 struct type *field_type = type0->field (f).type ();
8248 struct type *new_type;
8249
8250 if (is_dynamic_field (type0, f))
8251 {
8252 field_type = ada_check_typedef (field_type);
8253 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8254 }
8255 else
8256 new_type = static_unwrap_type (field_type);
8257
8258 if (new_type != field_type)
8259 {
8260 /* Clone TYPE0 only the first time we get a new field type. */
8261 if (type == type0)
8262 {
8263 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8264 type->set_code (type0->code ());
8265 INIT_NONE_SPECIFIC (type);
8266 type->set_num_fields (nfields);
8267
8268 field *fields =
8269 ((struct field *)
8270 TYPE_ALLOC (type, nfields * sizeof (struct field)));
8271 memcpy (fields, type0->fields (),
8272 sizeof (struct field) * nfields);
8273 type->set_fields (fields);
8274
8275 type->set_name (ada_type_name (type0));
8276 TYPE_FIXED_INSTANCE (type) = 1;
8277 TYPE_LENGTH (type) = 0;
8278 }
8279 type->field (f).set_type (new_type);
8280 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8281 }
8282 }
8283
8284 return type;
8285 }
8286
8287 /* Given an object of type TYPE whose contents are at VALADDR and
8288 whose address in memory is ADDRESS, returns a revision of TYPE,
8289 which should be a non-dynamic-sized record, in which the variant
8290 part, if any, is replaced with the appropriate branch. Looks
8291 for discriminant values in DVAL0, which can be NULL if the record
8292 contains the necessary discriminant values. */
8293
8294 static struct type *
8295 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8296 CORE_ADDR address, struct value *dval0)
8297 {
8298 struct value *mark = value_mark ();
8299 struct value *dval;
8300 struct type *rtype;
8301 struct type *branch_type;
8302 int nfields = type->num_fields ();
8303 int variant_field = variant_field_index (type);
8304
8305 if (variant_field == -1)
8306 return type;
8307
8308 if (dval0 == NULL)
8309 {
8310 dval = value_from_contents_and_address (type, valaddr, address);
8311 type = value_type (dval);
8312 }
8313 else
8314 dval = dval0;
8315
8316 rtype = alloc_type_copy (type);
8317 rtype->set_code (TYPE_CODE_STRUCT);
8318 INIT_NONE_SPECIFIC (rtype);
8319 rtype->set_num_fields (nfields);
8320
8321 field *fields =
8322 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8323 memcpy (fields, type->fields (), sizeof (struct field) * nfields);
8324 rtype->set_fields (fields);
8325
8326 rtype->set_name (ada_type_name (type));
8327 TYPE_FIXED_INSTANCE (rtype) = 1;
8328 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8329
8330 branch_type = to_fixed_variant_branch_type
8331 (type->field (variant_field).type (),
8332 cond_offset_host (valaddr,
8333 TYPE_FIELD_BITPOS (type, variant_field)
8334 / TARGET_CHAR_BIT),
8335 cond_offset_target (address,
8336 TYPE_FIELD_BITPOS (type, variant_field)
8337 / TARGET_CHAR_BIT), dval);
8338 if (branch_type == NULL)
8339 {
8340 int f;
8341
8342 for (f = variant_field + 1; f < nfields; f += 1)
8343 rtype->field (f - 1) = rtype->field (f);
8344 rtype->set_num_fields (rtype->num_fields () - 1);
8345 }
8346 else
8347 {
8348 rtype->field (variant_field).set_type (branch_type);
8349 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8350 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8351 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8352 }
8353 TYPE_LENGTH (rtype) -= TYPE_LENGTH (type->field (variant_field).type ());
8354
8355 value_free_to_mark (mark);
8356 return rtype;
8357 }
8358
8359 /* An ordinary record type (with fixed-length fields) that describes
8360 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8361 beginning of this section]. Any necessary discriminants' values
8362 should be in DVAL, a record value; it may be NULL if the object
8363 at ADDR itself contains any necessary discriminant values.
8364 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8365 values from the record are needed. Except in the case that DVAL,
8366 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8367 unchecked) is replaced by a particular branch of the variant.
8368
8369 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8370 is questionable and may be removed. It can arise during the
8371 processing of an unconstrained-array-of-record type where all the
8372 variant branches have exactly the same size. This is because in
8373 such cases, the compiler does not bother to use the XVS convention
8374 when encoding the record. I am currently dubious of this
8375 shortcut and suspect the compiler should be altered. FIXME. */
8376
8377 static struct type *
8378 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8379 CORE_ADDR address, struct value *dval)
8380 {
8381 struct type *templ_type;
8382
8383 if (TYPE_FIXED_INSTANCE (type0))
8384 return type0;
8385
8386 templ_type = dynamic_template_type (type0);
8387
8388 if (templ_type != NULL)
8389 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8390 else if (variant_field_index (type0) >= 0)
8391 {
8392 if (dval == NULL && valaddr == NULL && address == 0)
8393 return type0;
8394 return to_record_with_fixed_variant_part (type0, valaddr, address,
8395 dval);
8396 }
8397 else
8398 {
8399 TYPE_FIXED_INSTANCE (type0) = 1;
8400 return type0;
8401 }
8402
8403 }
8404
8405 /* An ordinary record type (with fixed-length fields) that describes
8406 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8407 union type. Any necessary discriminants' values should be in DVAL,
8408 a record value. That is, this routine selects the appropriate
8409 branch of the union at ADDR according to the discriminant value
8410 indicated in the union's type name. Returns VAR_TYPE0 itself if
8411 it represents a variant subject to a pragma Unchecked_Union. */
8412
8413 static struct type *
8414 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8415 CORE_ADDR address, struct value *dval)
8416 {
8417 int which;
8418 struct type *templ_type;
8419 struct type *var_type;
8420
8421 if (var_type0->code () == TYPE_CODE_PTR)
8422 var_type = TYPE_TARGET_TYPE (var_type0);
8423 else
8424 var_type = var_type0;
8425
8426 templ_type = ada_find_parallel_type (var_type, "___XVU");
8427
8428 if (templ_type != NULL)
8429 var_type = templ_type;
8430
8431 if (is_unchecked_variant (var_type, value_type (dval)))
8432 return var_type0;
8433 which = ada_which_variant_applies (var_type, dval);
8434
8435 if (which < 0)
8436 return empty_record (var_type);
8437 else if (is_dynamic_field (var_type, which))
8438 return to_fixed_record_type
8439 (TYPE_TARGET_TYPE (var_type->field (which).type ()),
8440 valaddr, address, dval);
8441 else if (variant_field_index (var_type->field (which).type ()) >= 0)
8442 return
8443 to_fixed_record_type
8444 (var_type->field (which).type (), valaddr, address, dval);
8445 else
8446 return var_type->field (which).type ();
8447 }
8448
8449 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8450 ENCODING_TYPE, a type following the GNAT conventions for discrete
8451 type encodings, only carries redundant information. */
8452
8453 static int
8454 ada_is_redundant_range_encoding (struct type *range_type,
8455 struct type *encoding_type)
8456 {
8457 const char *bounds_str;
8458 int n;
8459 LONGEST lo, hi;
8460
8461 gdb_assert (range_type->code () == TYPE_CODE_RANGE);
8462
8463 if (get_base_type (range_type)->code ()
8464 != get_base_type (encoding_type)->code ())
8465 {
8466 /* The compiler probably used a simple base type to describe
8467 the range type instead of the range's actual base type,
8468 expecting us to get the real base type from the encoding
8469 anyway. In this situation, the encoding cannot be ignored
8470 as redundant. */
8471 return 0;
8472 }
8473
8474 if (is_dynamic_type (range_type))
8475 return 0;
8476
8477 if (encoding_type->name () == NULL)
8478 return 0;
8479
8480 bounds_str = strstr (encoding_type->name (), "___XDLU_");
8481 if (bounds_str == NULL)
8482 return 0;
8483
8484 n = 8; /* Skip "___XDLU_". */
8485 if (!ada_scan_number (bounds_str, n, &lo, &n))
8486 return 0;
8487 if (TYPE_LOW_BOUND (range_type) != lo)
8488 return 0;
8489
8490 n += 2; /* Skip the "__" separator between the two bounds. */
8491 if (!ada_scan_number (bounds_str, n, &hi, &n))
8492 return 0;
8493 if (TYPE_HIGH_BOUND (range_type) != hi)
8494 return 0;
8495
8496 return 1;
8497 }
8498
8499 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8500 a type following the GNAT encoding for describing array type
8501 indices, only carries redundant information. */
8502
8503 static int
8504 ada_is_redundant_index_type_desc (struct type *array_type,
8505 struct type *desc_type)
8506 {
8507 struct type *this_layer = check_typedef (array_type);
8508 int i;
8509
8510 for (i = 0; i < desc_type->num_fields (); i++)
8511 {
8512 if (!ada_is_redundant_range_encoding (this_layer->index_type (),
8513 desc_type->field (i).type ()))
8514 return 0;
8515 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8516 }
8517
8518 return 1;
8519 }
8520
8521 /* Assuming that TYPE0 is an array type describing the type of a value
8522 at ADDR, and that DVAL describes a record containing any
8523 discriminants used in TYPE0, returns a type for the value that
8524 contains no dynamic components (that is, no components whose sizes
8525 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8526 true, gives an error message if the resulting type's size is over
8527 varsize_limit. */
8528
8529 static struct type *
8530 to_fixed_array_type (struct type *type0, struct value *dval,
8531 int ignore_too_big)
8532 {
8533 struct type *index_type_desc;
8534 struct type *result;
8535 int constrained_packed_array_p;
8536 static const char *xa_suffix = "___XA";
8537
8538 type0 = ada_check_typedef (type0);
8539 if (TYPE_FIXED_INSTANCE (type0))
8540 return type0;
8541
8542 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8543 if (constrained_packed_array_p)
8544 type0 = decode_constrained_packed_array_type (type0);
8545
8546 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8547
8548 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8549 encoding suffixed with 'P' may still be generated. If so,
8550 it should be used to find the XA type. */
8551
8552 if (index_type_desc == NULL)
8553 {
8554 const char *type_name = ada_type_name (type0);
8555
8556 if (type_name != NULL)
8557 {
8558 const int len = strlen (type_name);
8559 char *name = (char *) alloca (len + strlen (xa_suffix));
8560
8561 if (type_name[len - 1] == 'P')
8562 {
8563 strcpy (name, type_name);
8564 strcpy (name + len - 1, xa_suffix);
8565 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8566 }
8567 }
8568 }
8569
8570 ada_fixup_array_indexes_type (index_type_desc);
8571 if (index_type_desc != NULL
8572 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8573 {
8574 /* Ignore this ___XA parallel type, as it does not bring any
8575 useful information. This allows us to avoid creating fixed
8576 versions of the array's index types, which would be identical
8577 to the original ones. This, in turn, can also help avoid
8578 the creation of fixed versions of the array itself. */
8579 index_type_desc = NULL;
8580 }
8581
8582 if (index_type_desc == NULL)
8583 {
8584 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8585
8586 /* NOTE: elt_type---the fixed version of elt_type0---should never
8587 depend on the contents of the array in properly constructed
8588 debugging data. */
8589 /* Create a fixed version of the array element type.
8590 We're not providing the address of an element here,
8591 and thus the actual object value cannot be inspected to do
8592 the conversion. This should not be a problem, since arrays of
8593 unconstrained objects are not allowed. In particular, all
8594 the elements of an array of a tagged type should all be of
8595 the same type specified in the debugging info. No need to
8596 consult the object tag. */
8597 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8598
8599 /* Make sure we always create a new array type when dealing with
8600 packed array types, since we're going to fix-up the array
8601 type length and element bitsize a little further down. */
8602 if (elt_type0 == elt_type && !constrained_packed_array_p)
8603 result = type0;
8604 else
8605 result = create_array_type (alloc_type_copy (type0),
8606 elt_type, type0->index_type ());
8607 }
8608 else
8609 {
8610 int i;
8611 struct type *elt_type0;
8612
8613 elt_type0 = type0;
8614 for (i = index_type_desc->num_fields (); i > 0; i -= 1)
8615 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8616
8617 /* NOTE: result---the fixed version of elt_type0---should never
8618 depend on the contents of the array in properly constructed
8619 debugging data. */
8620 /* Create a fixed version of the array element type.
8621 We're not providing the address of an element here,
8622 and thus the actual object value cannot be inspected to do
8623 the conversion. This should not be a problem, since arrays of
8624 unconstrained objects are not allowed. In particular, all
8625 the elements of an array of a tagged type should all be of
8626 the same type specified in the debugging info. No need to
8627 consult the object tag. */
8628 result =
8629 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8630
8631 elt_type0 = type0;
8632 for (i = index_type_desc->num_fields () - 1; i >= 0; i -= 1)
8633 {
8634 struct type *range_type =
8635 to_fixed_range_type (index_type_desc->field (i).type (), dval);
8636
8637 result = create_array_type (alloc_type_copy (elt_type0),
8638 result, range_type);
8639 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8640 }
8641 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8642 error (_("array type with dynamic size is larger than varsize-limit"));
8643 }
8644
8645 /* We want to preserve the type name. This can be useful when
8646 trying to get the type name of a value that has already been
8647 printed (for instance, if the user did "print VAR; whatis $". */
8648 result->set_name (type0->name ());
8649
8650 if (constrained_packed_array_p)
8651 {
8652 /* So far, the resulting type has been created as if the original
8653 type was a regular (non-packed) array type. As a result, the
8654 bitsize of the array elements needs to be set again, and the array
8655 length needs to be recomputed based on that bitsize. */
8656 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8657 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8658
8659 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8660 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8661 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8662 TYPE_LENGTH (result)++;
8663 }
8664
8665 TYPE_FIXED_INSTANCE (result) = 1;
8666 return result;
8667 }
8668
8669
8670 /* A standard type (containing no dynamically sized components)
8671 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8672 DVAL describes a record containing any discriminants used in TYPE0,
8673 and may be NULL if there are none, or if the object of type TYPE at
8674 ADDRESS or in VALADDR contains these discriminants.
8675
8676 If CHECK_TAG is not null, in the case of tagged types, this function
8677 attempts to locate the object's tag and use it to compute the actual
8678 type. However, when ADDRESS is null, we cannot use it to determine the
8679 location of the tag, and therefore compute the tagged type's actual type.
8680 So we return the tagged type without consulting the tag. */
8681
8682 static struct type *
8683 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8684 CORE_ADDR address, struct value *dval, int check_tag)
8685 {
8686 type = ada_check_typedef (type);
8687
8688 /* Only un-fixed types need to be handled here. */
8689 if (!HAVE_GNAT_AUX_INFO (type))
8690 return type;
8691
8692 switch (type->code ())
8693 {
8694 default:
8695 return type;
8696 case TYPE_CODE_STRUCT:
8697 {
8698 struct type *static_type = to_static_fixed_type (type);
8699 struct type *fixed_record_type =
8700 to_fixed_record_type (type, valaddr, address, NULL);
8701
8702 /* If STATIC_TYPE is a tagged type and we know the object's address,
8703 then we can determine its tag, and compute the object's actual
8704 type from there. Note that we have to use the fixed record
8705 type (the parent part of the record may have dynamic fields
8706 and the way the location of _tag is expressed may depend on
8707 them). */
8708
8709 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8710 {
8711 struct value *tag =
8712 value_tag_from_contents_and_address
8713 (fixed_record_type,
8714 valaddr,
8715 address);
8716 struct type *real_type = type_from_tag (tag);
8717 struct value *obj =
8718 value_from_contents_and_address (fixed_record_type,
8719 valaddr,
8720 address);
8721 fixed_record_type = value_type (obj);
8722 if (real_type != NULL)
8723 return to_fixed_record_type
8724 (real_type, NULL,
8725 value_address (ada_tag_value_at_base_address (obj)), NULL);
8726 }
8727
8728 /* Check to see if there is a parallel ___XVZ variable.
8729 If there is, then it provides the actual size of our type. */
8730 else if (ada_type_name (fixed_record_type) != NULL)
8731 {
8732 const char *name = ada_type_name (fixed_record_type);
8733 char *xvz_name
8734 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
8735 bool xvz_found = false;
8736 LONGEST size;
8737
8738 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8739 try
8740 {
8741 xvz_found = get_int_var_value (xvz_name, size);
8742 }
8743 catch (const gdb_exception_error &except)
8744 {
8745 /* We found the variable, but somehow failed to read
8746 its value. Rethrow the same error, but with a little
8747 bit more information, to help the user understand
8748 what went wrong (Eg: the variable might have been
8749 optimized out). */
8750 throw_error (except.error,
8751 _("unable to read value of %s (%s)"),
8752 xvz_name, except.what ());
8753 }
8754
8755 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8756 {
8757 fixed_record_type = copy_type (fixed_record_type);
8758 TYPE_LENGTH (fixed_record_type) = size;
8759
8760 /* The FIXED_RECORD_TYPE may have be a stub. We have
8761 observed this when the debugging info is STABS, and
8762 apparently it is something that is hard to fix.
8763
8764 In practice, we don't need the actual type definition
8765 at all, because the presence of the XVZ variable allows us
8766 to assume that there must be a XVS type as well, which we
8767 should be able to use later, when we need the actual type
8768 definition.
8769
8770 In the meantime, pretend that the "fixed" type we are
8771 returning is NOT a stub, because this can cause trouble
8772 when using this type to create new types targeting it.
8773 Indeed, the associated creation routines often check
8774 whether the target type is a stub and will try to replace
8775 it, thus using a type with the wrong size. This, in turn,
8776 might cause the new type to have the wrong size too.
8777 Consider the case of an array, for instance, where the size
8778 of the array is computed from the number of elements in
8779 our array multiplied by the size of its element. */
8780 TYPE_STUB (fixed_record_type) = 0;
8781 }
8782 }
8783 return fixed_record_type;
8784 }
8785 case TYPE_CODE_ARRAY:
8786 return to_fixed_array_type (type, dval, 1);
8787 case TYPE_CODE_UNION:
8788 if (dval == NULL)
8789 return type;
8790 else
8791 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8792 }
8793 }
8794
8795 /* The same as ada_to_fixed_type_1, except that it preserves the type
8796 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8797
8798 The typedef layer needs be preserved in order to differentiate between
8799 arrays and array pointers when both types are implemented using the same
8800 fat pointer. In the array pointer case, the pointer is encoded as
8801 a typedef of the pointer type. For instance, considering:
8802
8803 type String_Access is access String;
8804 S1 : String_Access := null;
8805
8806 To the debugger, S1 is defined as a typedef of type String. But
8807 to the user, it is a pointer. So if the user tries to print S1,
8808 we should not dereference the array, but print the array address
8809 instead.
8810
8811 If we didn't preserve the typedef layer, we would lose the fact that
8812 the type is to be presented as a pointer (needs de-reference before
8813 being printed). And we would also use the source-level type name. */
8814
8815 struct type *
8816 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8817 CORE_ADDR address, struct value *dval, int check_tag)
8818
8819 {
8820 struct type *fixed_type =
8821 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8822
8823 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8824 then preserve the typedef layer.
8825
8826 Implementation note: We can only check the main-type portion of
8827 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8828 from TYPE now returns a type that has the same instance flags
8829 as TYPE. For instance, if TYPE is a "typedef const", and its
8830 target type is a "struct", then the typedef elimination will return
8831 a "const" version of the target type. See check_typedef for more
8832 details about how the typedef layer elimination is done.
8833
8834 brobecker/2010-11-19: It seems to me that the only case where it is
8835 useful to preserve the typedef layer is when dealing with fat pointers.
8836 Perhaps, we could add a check for that and preserve the typedef layer
8837 only in that situation. But this seems unnecessary so far, probably
8838 because we call check_typedef/ada_check_typedef pretty much everywhere.
8839 */
8840 if (type->code () == TYPE_CODE_TYPEDEF
8841 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8842 == TYPE_MAIN_TYPE (fixed_type)))
8843 return type;
8844
8845 return fixed_type;
8846 }
8847
8848 /* A standard (static-sized) type corresponding as well as possible to
8849 TYPE0, but based on no runtime data. */
8850
8851 static struct type *
8852 to_static_fixed_type (struct type *type0)
8853 {
8854 struct type *type;
8855
8856 if (type0 == NULL)
8857 return NULL;
8858
8859 if (TYPE_FIXED_INSTANCE (type0))
8860 return type0;
8861
8862 type0 = ada_check_typedef (type0);
8863
8864 switch (type0->code ())
8865 {
8866 default:
8867 return type0;
8868 case TYPE_CODE_STRUCT:
8869 type = dynamic_template_type (type0);
8870 if (type != NULL)
8871 return template_to_static_fixed_type (type);
8872 else
8873 return template_to_static_fixed_type (type0);
8874 case TYPE_CODE_UNION:
8875 type = ada_find_parallel_type (type0, "___XVU");
8876 if (type != NULL)
8877 return template_to_static_fixed_type (type);
8878 else
8879 return template_to_static_fixed_type (type0);
8880 }
8881 }
8882
8883 /* A static approximation of TYPE with all type wrappers removed. */
8884
8885 static struct type *
8886 static_unwrap_type (struct type *type)
8887 {
8888 if (ada_is_aligner_type (type))
8889 {
8890 struct type *type1 = ada_check_typedef (type)->field (0).type ();
8891 if (ada_type_name (type1) == NULL)
8892 type1->set_name (ada_type_name (type));
8893
8894 return static_unwrap_type (type1);
8895 }
8896 else
8897 {
8898 struct type *raw_real_type = ada_get_base_type (type);
8899
8900 if (raw_real_type == type)
8901 return type;
8902 else
8903 return to_static_fixed_type (raw_real_type);
8904 }
8905 }
8906
8907 /* In some cases, incomplete and private types require
8908 cross-references that are not resolved as records (for example,
8909 type Foo;
8910 type FooP is access Foo;
8911 V: FooP;
8912 type Foo is array ...;
8913 ). In these cases, since there is no mechanism for producing
8914 cross-references to such types, we instead substitute for FooP a
8915 stub enumeration type that is nowhere resolved, and whose tag is
8916 the name of the actual type. Call these types "non-record stubs". */
8917
8918 /* A type equivalent to TYPE that is not a non-record stub, if one
8919 exists, otherwise TYPE. */
8920
8921 struct type *
8922 ada_check_typedef (struct type *type)
8923 {
8924 if (type == NULL)
8925 return NULL;
8926
8927 /* If our type is an access to an unconstrained array, which is encoded
8928 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
8929 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8930 what allows us to distinguish between fat pointers that represent
8931 array types, and fat pointers that represent array access types
8932 (in both cases, the compiler implements them as fat pointers). */
8933 if (ada_is_access_to_unconstrained_array (type))
8934 return type;
8935
8936 type = check_typedef (type);
8937 if (type == NULL || type->code () != TYPE_CODE_ENUM
8938 || !TYPE_STUB (type)
8939 || type->name () == NULL)
8940 return type;
8941 else
8942 {
8943 const char *name = type->name ();
8944 struct type *type1 = ada_find_any_type (name);
8945
8946 if (type1 == NULL)
8947 return type;
8948
8949 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8950 stubs pointing to arrays, as we don't create symbols for array
8951 types, only for the typedef-to-array types). If that's the case,
8952 strip the typedef layer. */
8953 if (type1->code () == TYPE_CODE_TYPEDEF)
8954 type1 = ada_check_typedef (type1);
8955
8956 return type1;
8957 }
8958 }
8959
8960 /* A value representing the data at VALADDR/ADDRESS as described by
8961 type TYPE0, but with a standard (static-sized) type that correctly
8962 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8963 type, then return VAL0 [this feature is simply to avoid redundant
8964 creation of struct values]. */
8965
8966 static struct value *
8967 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8968 struct value *val0)
8969 {
8970 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8971
8972 if (type == type0 && val0 != NULL)
8973 return val0;
8974
8975 if (VALUE_LVAL (val0) != lval_memory)
8976 {
8977 /* Our value does not live in memory; it could be a convenience
8978 variable, for instance. Create a not_lval value using val0's
8979 contents. */
8980 return value_from_contents (type, value_contents (val0));
8981 }
8982
8983 return value_from_contents_and_address (type, 0, address);
8984 }
8985
8986 /* A value representing VAL, but with a standard (static-sized) type
8987 that correctly describes it. Does not necessarily create a new
8988 value. */
8989
8990 struct value *
8991 ada_to_fixed_value (struct value *val)
8992 {
8993 val = unwrap_value (val);
8994 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
8995 return val;
8996 }
8997 \f
8998
8999 /* Attributes */
9000
9001 /* Table mapping attribute numbers to names.
9002 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
9003
9004 static const char *attribute_names[] = {
9005 "<?>",
9006
9007 "first",
9008 "last",
9009 "length",
9010 "image",
9011 "max",
9012 "min",
9013 "modulus",
9014 "pos",
9015 "size",
9016 "tag",
9017 "val",
9018 0
9019 };
9020
9021 static const char *
9022 ada_attribute_name (enum exp_opcode n)
9023 {
9024 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9025 return attribute_names[n - OP_ATR_FIRST + 1];
9026 else
9027 return attribute_names[0];
9028 }
9029
9030 /* Evaluate the 'POS attribute applied to ARG. */
9031
9032 static LONGEST
9033 pos_atr (struct value *arg)
9034 {
9035 struct value *val = coerce_ref (arg);
9036 struct type *type = value_type (val);
9037 LONGEST result;
9038
9039 if (!discrete_type_p (type))
9040 error (_("'POS only defined on discrete types"));
9041
9042 if (!discrete_position (type, value_as_long (val), &result))
9043 error (_("enumeration value is invalid: can't find 'POS"));
9044
9045 return result;
9046 }
9047
9048 static struct value *
9049 value_pos_atr (struct type *type, struct value *arg)
9050 {
9051 return value_from_longest (type, pos_atr (arg));
9052 }
9053
9054 /* Evaluate the TYPE'VAL attribute applied to ARG. */
9055
9056 static struct value *
9057 val_atr (struct type *type, LONGEST val)
9058 {
9059 gdb_assert (discrete_type_p (type));
9060 if (type->code () == TYPE_CODE_RANGE)
9061 type = TYPE_TARGET_TYPE (type);
9062 if (type->code () == TYPE_CODE_ENUM)
9063 {
9064 if (val < 0 || val >= type->num_fields ())
9065 error (_("argument to 'VAL out of range"));
9066 val = TYPE_FIELD_ENUMVAL (type, val);
9067 }
9068 return value_from_longest (type, val);
9069 }
9070
9071 static struct value *
9072 value_val_atr (struct type *type, struct value *arg)
9073 {
9074 if (!discrete_type_p (type))
9075 error (_("'VAL only defined on discrete types"));
9076 if (!integer_type_p (value_type (arg)))
9077 error (_("'VAL requires integral argument"));
9078
9079 return val_atr (type, value_as_long (arg));
9080 }
9081 \f
9082
9083 /* Evaluation */
9084
9085 /* True if TYPE appears to be an Ada character type.
9086 [At the moment, this is true only for Character and Wide_Character;
9087 It is a heuristic test that could stand improvement]. */
9088
9089 bool
9090 ada_is_character_type (struct type *type)
9091 {
9092 const char *name;
9093
9094 /* If the type code says it's a character, then assume it really is,
9095 and don't check any further. */
9096 if (type->code () == TYPE_CODE_CHAR)
9097 return true;
9098
9099 /* Otherwise, assume it's a character type iff it is a discrete type
9100 with a known character type name. */
9101 name = ada_type_name (type);
9102 return (name != NULL
9103 && (type->code () == TYPE_CODE_INT
9104 || type->code () == TYPE_CODE_RANGE)
9105 && (strcmp (name, "character") == 0
9106 || strcmp (name, "wide_character") == 0
9107 || strcmp (name, "wide_wide_character") == 0
9108 || strcmp (name, "unsigned char") == 0));
9109 }
9110
9111 /* True if TYPE appears to be an Ada string type. */
9112
9113 bool
9114 ada_is_string_type (struct type *type)
9115 {
9116 type = ada_check_typedef (type);
9117 if (type != NULL
9118 && type->code () != TYPE_CODE_PTR
9119 && (ada_is_simple_array_type (type)
9120 || ada_is_array_descriptor_type (type))
9121 && ada_array_arity (type) == 1)
9122 {
9123 struct type *elttype = ada_array_element_type (type, 1);
9124
9125 return ada_is_character_type (elttype);
9126 }
9127 else
9128 return false;
9129 }
9130
9131 /* The compiler sometimes provides a parallel XVS type for a given
9132 PAD type. Normally, it is safe to follow the PAD type directly,
9133 but older versions of the compiler have a bug that causes the offset
9134 of its "F" field to be wrong. Following that field in that case
9135 would lead to incorrect results, but this can be worked around
9136 by ignoring the PAD type and using the associated XVS type instead.
9137
9138 Set to True if the debugger should trust the contents of PAD types.
9139 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9140 static bool trust_pad_over_xvs = true;
9141
9142 /* True if TYPE is a struct type introduced by the compiler to force the
9143 alignment of a value. Such types have a single field with a
9144 distinctive name. */
9145
9146 int
9147 ada_is_aligner_type (struct type *type)
9148 {
9149 type = ada_check_typedef (type);
9150
9151 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9152 return 0;
9153
9154 return (type->code () == TYPE_CODE_STRUCT
9155 && type->num_fields () == 1
9156 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9157 }
9158
9159 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9160 the parallel type. */
9161
9162 struct type *
9163 ada_get_base_type (struct type *raw_type)
9164 {
9165 struct type *real_type_namer;
9166 struct type *raw_real_type;
9167
9168 if (raw_type == NULL || raw_type->code () != TYPE_CODE_STRUCT)
9169 return raw_type;
9170
9171 if (ada_is_aligner_type (raw_type))
9172 /* The encoding specifies that we should always use the aligner type.
9173 So, even if this aligner type has an associated XVS type, we should
9174 simply ignore it.
9175
9176 According to the compiler gurus, an XVS type parallel to an aligner
9177 type may exist because of a stabs limitation. In stabs, aligner
9178 types are empty because the field has a variable-sized type, and
9179 thus cannot actually be used as an aligner type. As a result,
9180 we need the associated parallel XVS type to decode the type.
9181 Since the policy in the compiler is to not change the internal
9182 representation based on the debugging info format, we sometimes
9183 end up having a redundant XVS type parallel to the aligner type. */
9184 return raw_type;
9185
9186 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9187 if (real_type_namer == NULL
9188 || real_type_namer->code () != TYPE_CODE_STRUCT
9189 || real_type_namer->num_fields () != 1)
9190 return raw_type;
9191
9192 if (real_type_namer->field (0).type ()->code () != TYPE_CODE_REF)
9193 {
9194 /* This is an older encoding form where the base type needs to be
9195 looked up by name. We prefer the newer encoding because it is
9196 more efficient. */
9197 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9198 if (raw_real_type == NULL)
9199 return raw_type;
9200 else
9201 return raw_real_type;
9202 }
9203
9204 /* The field in our XVS type is a reference to the base type. */
9205 return TYPE_TARGET_TYPE (real_type_namer->field (0).type ());
9206 }
9207
9208 /* The type of value designated by TYPE, with all aligners removed. */
9209
9210 struct type *
9211 ada_aligned_type (struct type *type)
9212 {
9213 if (ada_is_aligner_type (type))
9214 return ada_aligned_type (type->field (0).type ());
9215 else
9216 return ada_get_base_type (type);
9217 }
9218
9219
9220 /* The address of the aligned value in an object at address VALADDR
9221 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9222
9223 const gdb_byte *
9224 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9225 {
9226 if (ada_is_aligner_type (type))
9227 return ada_aligned_value_addr (type->field (0).type (),
9228 valaddr +
9229 TYPE_FIELD_BITPOS (type,
9230 0) / TARGET_CHAR_BIT);
9231 else
9232 return valaddr;
9233 }
9234
9235
9236
9237 /* The printed representation of an enumeration literal with encoded
9238 name NAME. The value is good to the next call of ada_enum_name. */
9239 const char *
9240 ada_enum_name (const char *name)
9241 {
9242 static char *result;
9243 static size_t result_len = 0;
9244 const char *tmp;
9245
9246 /* First, unqualify the enumeration name:
9247 1. Search for the last '.' character. If we find one, then skip
9248 all the preceding characters, the unqualified name starts
9249 right after that dot.
9250 2. Otherwise, we may be debugging on a target where the compiler
9251 translates dots into "__". Search forward for double underscores,
9252 but stop searching when we hit an overloading suffix, which is
9253 of the form "__" followed by digits. */
9254
9255 tmp = strrchr (name, '.');
9256 if (tmp != NULL)
9257 name = tmp + 1;
9258 else
9259 {
9260 while ((tmp = strstr (name, "__")) != NULL)
9261 {
9262 if (isdigit (tmp[2]))
9263 break;
9264 else
9265 name = tmp + 2;
9266 }
9267 }
9268
9269 if (name[0] == 'Q')
9270 {
9271 int v;
9272
9273 if (name[1] == 'U' || name[1] == 'W')
9274 {
9275 if (sscanf (name + 2, "%x", &v) != 1)
9276 return name;
9277 }
9278 else if (((name[1] >= '0' && name[1] <= '9')
9279 || (name[1] >= 'a' && name[1] <= 'z'))
9280 && name[2] == '\0')
9281 {
9282 GROW_VECT (result, result_len, 4);
9283 xsnprintf (result, result_len, "'%c'", name[1]);
9284 return result;
9285 }
9286 else
9287 return name;
9288
9289 GROW_VECT (result, result_len, 16);
9290 if (isascii (v) && isprint (v))
9291 xsnprintf (result, result_len, "'%c'", v);
9292 else if (name[1] == 'U')
9293 xsnprintf (result, result_len, "[\"%02x\"]", v);
9294 else
9295 xsnprintf (result, result_len, "[\"%04x\"]", v);
9296
9297 return result;
9298 }
9299 else
9300 {
9301 tmp = strstr (name, "__");
9302 if (tmp == NULL)
9303 tmp = strstr (name, "$");
9304 if (tmp != NULL)
9305 {
9306 GROW_VECT (result, result_len, tmp - name + 1);
9307 strncpy (result, name, tmp - name);
9308 result[tmp - name] = '\0';
9309 return result;
9310 }
9311
9312 return name;
9313 }
9314 }
9315
9316 /* Evaluate the subexpression of EXP starting at *POS as for
9317 evaluate_type, updating *POS to point just past the evaluated
9318 expression. */
9319
9320 static struct value *
9321 evaluate_subexp_type (struct expression *exp, int *pos)
9322 {
9323 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9324 }
9325
9326 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9327 value it wraps. */
9328
9329 static struct value *
9330 unwrap_value (struct value *val)
9331 {
9332 struct type *type = ada_check_typedef (value_type (val));
9333
9334 if (ada_is_aligner_type (type))
9335 {
9336 struct value *v = ada_value_struct_elt (val, "F", 0);
9337 struct type *val_type = ada_check_typedef (value_type (v));
9338
9339 if (ada_type_name (val_type) == NULL)
9340 val_type->set_name (ada_type_name (type));
9341
9342 return unwrap_value (v);
9343 }
9344 else
9345 {
9346 struct type *raw_real_type =
9347 ada_check_typedef (ada_get_base_type (type));
9348
9349 /* If there is no parallel XVS or XVE type, then the value is
9350 already unwrapped. Return it without further modification. */
9351 if ((type == raw_real_type)
9352 && ada_find_parallel_type (type, "___XVE") == NULL)
9353 return val;
9354
9355 return
9356 coerce_unspec_val_to_type
9357 (val, ada_to_fixed_type (raw_real_type, 0,
9358 value_address (val),
9359 NULL, 1));
9360 }
9361 }
9362
9363 static struct value *
9364 cast_from_fixed (struct type *type, struct value *arg)
9365 {
9366 struct value *scale = ada_scaling_factor (value_type (arg));
9367 arg = value_cast (value_type (scale), arg);
9368
9369 arg = value_binop (arg, scale, BINOP_MUL);
9370 return value_cast (type, arg);
9371 }
9372
9373 static struct value *
9374 cast_to_fixed (struct type *type, struct value *arg)
9375 {
9376 if (type == value_type (arg))
9377 return arg;
9378
9379 struct value *scale = ada_scaling_factor (type);
9380 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg)))
9381 arg = cast_from_fixed (value_type (scale), arg);
9382 else
9383 arg = value_cast (value_type (scale), arg);
9384
9385 arg = value_binop (arg, scale, BINOP_DIV);
9386 return value_cast (type, arg);
9387 }
9388
9389 /* Given two array types T1 and T2, return nonzero iff both arrays
9390 contain the same number of elements. */
9391
9392 static int
9393 ada_same_array_size_p (struct type *t1, struct type *t2)
9394 {
9395 LONGEST lo1, hi1, lo2, hi2;
9396
9397 /* Get the array bounds in order to verify that the size of
9398 the two arrays match. */
9399 if (!get_array_bounds (t1, &lo1, &hi1)
9400 || !get_array_bounds (t2, &lo2, &hi2))
9401 error (_("unable to determine array bounds"));
9402
9403 /* To make things easier for size comparison, normalize a bit
9404 the case of empty arrays by making sure that the difference
9405 between upper bound and lower bound is always -1. */
9406 if (lo1 > hi1)
9407 hi1 = lo1 - 1;
9408 if (lo2 > hi2)
9409 hi2 = lo2 - 1;
9410
9411 return (hi1 - lo1 == hi2 - lo2);
9412 }
9413
9414 /* Assuming that VAL is an array of integrals, and TYPE represents
9415 an array with the same number of elements, but with wider integral
9416 elements, return an array "casted" to TYPE. In practice, this
9417 means that the returned array is built by casting each element
9418 of the original array into TYPE's (wider) element type. */
9419
9420 static struct value *
9421 ada_promote_array_of_integrals (struct type *type, struct value *val)
9422 {
9423 struct type *elt_type = TYPE_TARGET_TYPE (type);
9424 LONGEST lo, hi;
9425 struct value *res;
9426 LONGEST i;
9427
9428 /* Verify that both val and type are arrays of scalars, and
9429 that the size of val's elements is smaller than the size
9430 of type's element. */
9431 gdb_assert (type->code () == TYPE_CODE_ARRAY);
9432 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9433 gdb_assert (value_type (val)->code () == TYPE_CODE_ARRAY);
9434 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9435 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9436 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9437
9438 if (!get_array_bounds (type, &lo, &hi))
9439 error (_("unable to determine array bounds"));
9440
9441 res = allocate_value (type);
9442
9443 /* Promote each array element. */
9444 for (i = 0; i < hi - lo + 1; i++)
9445 {
9446 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9447
9448 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9449 value_contents_all (elt), TYPE_LENGTH (elt_type));
9450 }
9451
9452 return res;
9453 }
9454
9455 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9456 return the converted value. */
9457
9458 static struct value *
9459 coerce_for_assign (struct type *type, struct value *val)
9460 {
9461 struct type *type2 = value_type (val);
9462
9463 if (type == type2)
9464 return val;
9465
9466 type2 = ada_check_typedef (type2);
9467 type = ada_check_typedef (type);
9468
9469 if (type2->code () == TYPE_CODE_PTR
9470 && type->code () == TYPE_CODE_ARRAY)
9471 {
9472 val = ada_value_ind (val);
9473 type2 = value_type (val);
9474 }
9475
9476 if (type2->code () == TYPE_CODE_ARRAY
9477 && type->code () == TYPE_CODE_ARRAY)
9478 {
9479 if (!ada_same_array_size_p (type, type2))
9480 error (_("cannot assign arrays of different length"));
9481
9482 if (is_integral_type (TYPE_TARGET_TYPE (type))
9483 && is_integral_type (TYPE_TARGET_TYPE (type2))
9484 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9485 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9486 {
9487 /* Allow implicit promotion of the array elements to
9488 a wider type. */
9489 return ada_promote_array_of_integrals (type, val);
9490 }
9491
9492 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9493 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9494 error (_("Incompatible types in assignment"));
9495 deprecated_set_value_type (val, type);
9496 }
9497 return val;
9498 }
9499
9500 static struct value *
9501 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9502 {
9503 struct value *val;
9504 struct type *type1, *type2;
9505 LONGEST v, v1, v2;
9506
9507 arg1 = coerce_ref (arg1);
9508 arg2 = coerce_ref (arg2);
9509 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9510 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9511
9512 if (type1->code () != TYPE_CODE_INT
9513 || type2->code () != TYPE_CODE_INT)
9514 return value_binop (arg1, arg2, op);
9515
9516 switch (op)
9517 {
9518 case BINOP_MOD:
9519 case BINOP_DIV:
9520 case BINOP_REM:
9521 break;
9522 default:
9523 return value_binop (arg1, arg2, op);
9524 }
9525
9526 v2 = value_as_long (arg2);
9527 if (v2 == 0)
9528 error (_("second operand of %s must not be zero."), op_string (op));
9529
9530 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9531 return value_binop (arg1, arg2, op);
9532
9533 v1 = value_as_long (arg1);
9534 switch (op)
9535 {
9536 case BINOP_DIV:
9537 v = v1 / v2;
9538 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9539 v += v > 0 ? -1 : 1;
9540 break;
9541 case BINOP_REM:
9542 v = v1 % v2;
9543 if (v * v1 < 0)
9544 v -= v2;
9545 break;
9546 default:
9547 /* Should not reach this point. */
9548 v = 0;
9549 }
9550
9551 val = allocate_value (type1);
9552 store_unsigned_integer (value_contents_raw (val),
9553 TYPE_LENGTH (value_type (val)),
9554 type_byte_order (type1), v);
9555 return val;
9556 }
9557
9558 static int
9559 ada_value_equal (struct value *arg1, struct value *arg2)
9560 {
9561 if (ada_is_direct_array_type (value_type (arg1))
9562 || ada_is_direct_array_type (value_type (arg2)))
9563 {
9564 struct type *arg1_type, *arg2_type;
9565
9566 /* Automatically dereference any array reference before
9567 we attempt to perform the comparison. */
9568 arg1 = ada_coerce_ref (arg1);
9569 arg2 = ada_coerce_ref (arg2);
9570
9571 arg1 = ada_coerce_to_simple_array (arg1);
9572 arg2 = ada_coerce_to_simple_array (arg2);
9573
9574 arg1_type = ada_check_typedef (value_type (arg1));
9575 arg2_type = ada_check_typedef (value_type (arg2));
9576
9577 if (arg1_type->code () != TYPE_CODE_ARRAY
9578 || arg2_type->code () != TYPE_CODE_ARRAY)
9579 error (_("Attempt to compare array with non-array"));
9580 /* FIXME: The following works only for types whose
9581 representations use all bits (no padding or undefined bits)
9582 and do not have user-defined equality. */
9583 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9584 && memcmp (value_contents (arg1), value_contents (arg2),
9585 TYPE_LENGTH (arg1_type)) == 0);
9586 }
9587 return value_equal (arg1, arg2);
9588 }
9589
9590 /* Total number of component associations in the aggregate starting at
9591 index PC in EXP. Assumes that index PC is the start of an
9592 OP_AGGREGATE. */
9593
9594 static int
9595 num_component_specs (struct expression *exp, int pc)
9596 {
9597 int n, m, i;
9598
9599 m = exp->elts[pc + 1].longconst;
9600 pc += 3;
9601 n = 0;
9602 for (i = 0; i < m; i += 1)
9603 {
9604 switch (exp->elts[pc].opcode)
9605 {
9606 default:
9607 n += 1;
9608 break;
9609 case OP_CHOICES:
9610 n += exp->elts[pc + 1].longconst;
9611 break;
9612 }
9613 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9614 }
9615 return n;
9616 }
9617
9618 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9619 component of LHS (a simple array or a record), updating *POS past
9620 the expression, assuming that LHS is contained in CONTAINER. Does
9621 not modify the inferior's memory, nor does it modify LHS (unless
9622 LHS == CONTAINER). */
9623
9624 static void
9625 assign_component (struct value *container, struct value *lhs, LONGEST index,
9626 struct expression *exp, int *pos)
9627 {
9628 struct value *mark = value_mark ();
9629 struct value *elt;
9630 struct type *lhs_type = check_typedef (value_type (lhs));
9631
9632 if (lhs_type->code () == TYPE_CODE_ARRAY)
9633 {
9634 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9635 struct value *index_val = value_from_longest (index_type, index);
9636
9637 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9638 }
9639 else
9640 {
9641 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9642 elt = ada_to_fixed_value (elt);
9643 }
9644
9645 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9646 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9647 else
9648 value_assign_to_component (container, elt,
9649 ada_evaluate_subexp (NULL, exp, pos,
9650 EVAL_NORMAL));
9651
9652 value_free_to_mark (mark);
9653 }
9654
9655 /* Assuming that LHS represents an lvalue having a record or array
9656 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9657 of that aggregate's value to LHS, advancing *POS past the
9658 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9659 lvalue containing LHS (possibly LHS itself). Does not modify
9660 the inferior's memory, nor does it modify the contents of
9661 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9662
9663 static struct value *
9664 assign_aggregate (struct value *container,
9665 struct value *lhs, struct expression *exp,
9666 int *pos, enum noside noside)
9667 {
9668 struct type *lhs_type;
9669 int n = exp->elts[*pos+1].longconst;
9670 LONGEST low_index, high_index;
9671 int num_specs;
9672 LONGEST *indices;
9673 int max_indices, num_indices;
9674 int i;
9675
9676 *pos += 3;
9677 if (noside != EVAL_NORMAL)
9678 {
9679 for (i = 0; i < n; i += 1)
9680 ada_evaluate_subexp (NULL, exp, pos, noside);
9681 return container;
9682 }
9683
9684 container = ada_coerce_ref (container);
9685 if (ada_is_direct_array_type (value_type (container)))
9686 container = ada_coerce_to_simple_array (container);
9687 lhs = ada_coerce_ref (lhs);
9688 if (!deprecated_value_modifiable (lhs))
9689 error (_("Left operand of assignment is not a modifiable lvalue."));
9690
9691 lhs_type = check_typedef (value_type (lhs));
9692 if (ada_is_direct_array_type (lhs_type))
9693 {
9694 lhs = ada_coerce_to_simple_array (lhs);
9695 lhs_type = check_typedef (value_type (lhs));
9696 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9697 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9698 }
9699 else if (lhs_type->code () == TYPE_CODE_STRUCT)
9700 {
9701 low_index = 0;
9702 high_index = num_visible_fields (lhs_type) - 1;
9703 }
9704 else
9705 error (_("Left-hand side must be array or record."));
9706
9707 num_specs = num_component_specs (exp, *pos - 3);
9708 max_indices = 4 * num_specs + 4;
9709 indices = XALLOCAVEC (LONGEST, max_indices);
9710 indices[0] = indices[1] = low_index - 1;
9711 indices[2] = indices[3] = high_index + 1;
9712 num_indices = 4;
9713
9714 for (i = 0; i < n; i += 1)
9715 {
9716 switch (exp->elts[*pos].opcode)
9717 {
9718 case OP_CHOICES:
9719 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9720 &num_indices, max_indices,
9721 low_index, high_index);
9722 break;
9723 case OP_POSITIONAL:
9724 aggregate_assign_positional (container, lhs, exp, pos, indices,
9725 &num_indices, max_indices,
9726 low_index, high_index);
9727 break;
9728 case OP_OTHERS:
9729 if (i != n-1)
9730 error (_("Misplaced 'others' clause"));
9731 aggregate_assign_others (container, lhs, exp, pos, indices,
9732 num_indices, low_index, high_index);
9733 break;
9734 default:
9735 error (_("Internal error: bad aggregate clause"));
9736 }
9737 }
9738
9739 return container;
9740 }
9741
9742 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9743 construct at *POS, updating *POS past the construct, given that
9744 the positions are relative to lower bound LOW, where HIGH is the
9745 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9746 updating *NUM_INDICES as needed. CONTAINER is as for
9747 assign_aggregate. */
9748 static void
9749 aggregate_assign_positional (struct value *container,
9750 struct value *lhs, struct expression *exp,
9751 int *pos, LONGEST *indices, int *num_indices,
9752 int max_indices, LONGEST low, LONGEST high)
9753 {
9754 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9755
9756 if (ind - 1 == high)
9757 warning (_("Extra components in aggregate ignored."));
9758 if (ind <= high)
9759 {
9760 add_component_interval (ind, ind, indices, num_indices, max_indices);
9761 *pos += 3;
9762 assign_component (container, lhs, ind, exp, pos);
9763 }
9764 else
9765 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9766 }
9767
9768 /* Assign into the components of LHS indexed by the OP_CHOICES
9769 construct at *POS, updating *POS past the construct, given that
9770 the allowable indices are LOW..HIGH. Record the indices assigned
9771 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9772 needed. CONTAINER is as for assign_aggregate. */
9773 static void
9774 aggregate_assign_from_choices (struct value *container,
9775 struct value *lhs, struct expression *exp,
9776 int *pos, LONGEST *indices, int *num_indices,
9777 int max_indices, LONGEST low, LONGEST high)
9778 {
9779 int j;
9780 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9781 int choice_pos, expr_pc;
9782 int is_array = ada_is_direct_array_type (value_type (lhs));
9783
9784 choice_pos = *pos += 3;
9785
9786 for (j = 0; j < n_choices; j += 1)
9787 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9788 expr_pc = *pos;
9789 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9790
9791 for (j = 0; j < n_choices; j += 1)
9792 {
9793 LONGEST lower, upper;
9794 enum exp_opcode op = exp->elts[choice_pos].opcode;
9795
9796 if (op == OP_DISCRETE_RANGE)
9797 {
9798 choice_pos += 1;
9799 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9800 EVAL_NORMAL));
9801 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9802 EVAL_NORMAL));
9803 }
9804 else if (is_array)
9805 {
9806 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9807 EVAL_NORMAL));
9808 upper = lower;
9809 }
9810 else
9811 {
9812 int ind;
9813 const char *name;
9814
9815 switch (op)
9816 {
9817 case OP_NAME:
9818 name = &exp->elts[choice_pos + 2].string;
9819 break;
9820 case OP_VAR_VALUE:
9821 name = exp->elts[choice_pos + 2].symbol->natural_name ();
9822 break;
9823 default:
9824 error (_("Invalid record component association."));
9825 }
9826 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9827 ind = 0;
9828 if (! find_struct_field (name, value_type (lhs), 0,
9829 NULL, NULL, NULL, NULL, &ind))
9830 error (_("Unknown component name: %s."), name);
9831 lower = upper = ind;
9832 }
9833
9834 if (lower <= upper && (lower < low || upper > high))
9835 error (_("Index in component association out of bounds."));
9836
9837 add_component_interval (lower, upper, indices, num_indices,
9838 max_indices);
9839 while (lower <= upper)
9840 {
9841 int pos1;
9842
9843 pos1 = expr_pc;
9844 assign_component (container, lhs, lower, exp, &pos1);
9845 lower += 1;
9846 }
9847 }
9848 }
9849
9850 /* Assign the value of the expression in the OP_OTHERS construct in
9851 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9852 have not been previously assigned. The index intervals already assigned
9853 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
9854 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
9855 static void
9856 aggregate_assign_others (struct value *container,
9857 struct value *lhs, struct expression *exp,
9858 int *pos, LONGEST *indices, int num_indices,
9859 LONGEST low, LONGEST high)
9860 {
9861 int i;
9862 int expr_pc = *pos + 1;
9863
9864 for (i = 0; i < num_indices - 2; i += 2)
9865 {
9866 LONGEST ind;
9867
9868 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9869 {
9870 int localpos;
9871
9872 localpos = expr_pc;
9873 assign_component (container, lhs, ind, exp, &localpos);
9874 }
9875 }
9876 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9877 }
9878
9879 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9880 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9881 modifying *SIZE as needed. It is an error if *SIZE exceeds
9882 MAX_SIZE. The resulting intervals do not overlap. */
9883 static void
9884 add_component_interval (LONGEST low, LONGEST high,
9885 LONGEST* indices, int *size, int max_size)
9886 {
9887 int i, j;
9888
9889 for (i = 0; i < *size; i += 2) {
9890 if (high >= indices[i] && low <= indices[i + 1])
9891 {
9892 int kh;
9893
9894 for (kh = i + 2; kh < *size; kh += 2)
9895 if (high < indices[kh])
9896 break;
9897 if (low < indices[i])
9898 indices[i] = low;
9899 indices[i + 1] = indices[kh - 1];
9900 if (high > indices[i + 1])
9901 indices[i + 1] = high;
9902 memcpy (indices + i + 2, indices + kh, *size - kh);
9903 *size -= kh - i - 2;
9904 return;
9905 }
9906 else if (high < indices[i])
9907 break;
9908 }
9909
9910 if (*size == max_size)
9911 error (_("Internal error: miscounted aggregate components."));
9912 *size += 2;
9913 for (j = *size-1; j >= i+2; j -= 1)
9914 indices[j] = indices[j - 2];
9915 indices[i] = low;
9916 indices[i + 1] = high;
9917 }
9918
9919 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9920 is different. */
9921
9922 static struct value *
9923 ada_value_cast (struct type *type, struct value *arg2)
9924 {
9925 if (type == ada_check_typedef (value_type (arg2)))
9926 return arg2;
9927
9928 if (ada_is_gnat_encoded_fixed_point_type (type))
9929 return cast_to_fixed (type, arg2);
9930
9931 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
9932 return cast_from_fixed (type, arg2);
9933
9934 return value_cast (type, arg2);
9935 }
9936
9937 /* Evaluating Ada expressions, and printing their result.
9938 ------------------------------------------------------
9939
9940 1. Introduction:
9941 ----------------
9942
9943 We usually evaluate an Ada expression in order to print its value.
9944 We also evaluate an expression in order to print its type, which
9945 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9946 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9947 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9948 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9949 similar.
9950
9951 Evaluating expressions is a little more complicated for Ada entities
9952 than it is for entities in languages such as C. The main reason for
9953 this is that Ada provides types whose definition might be dynamic.
9954 One example of such types is variant records. Or another example
9955 would be an array whose bounds can only be known at run time.
9956
9957 The following description is a general guide as to what should be
9958 done (and what should NOT be done) in order to evaluate an expression
9959 involving such types, and when. This does not cover how the semantic
9960 information is encoded by GNAT as this is covered separatly. For the
9961 document used as the reference for the GNAT encoding, see exp_dbug.ads
9962 in the GNAT sources.
9963
9964 Ideally, we should embed each part of this description next to its
9965 associated code. Unfortunately, the amount of code is so vast right
9966 now that it's hard to see whether the code handling a particular
9967 situation might be duplicated or not. One day, when the code is
9968 cleaned up, this guide might become redundant with the comments
9969 inserted in the code, and we might want to remove it.
9970
9971 2. ``Fixing'' an Entity, the Simple Case:
9972 -----------------------------------------
9973
9974 When evaluating Ada expressions, the tricky issue is that they may
9975 reference entities whose type contents and size are not statically
9976 known. Consider for instance a variant record:
9977
9978 type Rec (Empty : Boolean := True) is record
9979 case Empty is
9980 when True => null;
9981 when False => Value : Integer;
9982 end case;
9983 end record;
9984 Yes : Rec := (Empty => False, Value => 1);
9985 No : Rec := (empty => True);
9986
9987 The size and contents of that record depends on the value of the
9988 descriminant (Rec.Empty). At this point, neither the debugging
9989 information nor the associated type structure in GDB are able to
9990 express such dynamic types. So what the debugger does is to create
9991 "fixed" versions of the type that applies to the specific object.
9992 We also informally refer to this operation as "fixing" an object,
9993 which means creating its associated fixed type.
9994
9995 Example: when printing the value of variable "Yes" above, its fixed
9996 type would look like this:
9997
9998 type Rec is record
9999 Empty : Boolean;
10000 Value : Integer;
10001 end record;
10002
10003 On the other hand, if we printed the value of "No", its fixed type
10004 would become:
10005
10006 type Rec is record
10007 Empty : Boolean;
10008 end record;
10009
10010 Things become a little more complicated when trying to fix an entity
10011 with a dynamic type that directly contains another dynamic type,
10012 such as an array of variant records, for instance. There are
10013 two possible cases: Arrays, and records.
10014
10015 3. ``Fixing'' Arrays:
10016 ---------------------
10017
10018 The type structure in GDB describes an array in terms of its bounds,
10019 and the type of its elements. By design, all elements in the array
10020 have the same type and we cannot represent an array of variant elements
10021 using the current type structure in GDB. When fixing an array,
10022 we cannot fix the array element, as we would potentially need one
10023 fixed type per element of the array. As a result, the best we can do
10024 when fixing an array is to produce an array whose bounds and size
10025 are correct (allowing us to read it from memory), but without having
10026 touched its element type. Fixing each element will be done later,
10027 when (if) necessary.
10028
10029 Arrays are a little simpler to handle than records, because the same
10030 amount of memory is allocated for each element of the array, even if
10031 the amount of space actually used by each element differs from element
10032 to element. Consider for instance the following array of type Rec:
10033
10034 type Rec_Array is array (1 .. 2) of Rec;
10035
10036 The actual amount of memory occupied by each element might be different
10037 from element to element, depending on the value of their discriminant.
10038 But the amount of space reserved for each element in the array remains
10039 fixed regardless. So we simply need to compute that size using
10040 the debugging information available, from which we can then determine
10041 the array size (we multiply the number of elements of the array by
10042 the size of each element).
10043
10044 The simplest case is when we have an array of a constrained element
10045 type. For instance, consider the following type declarations:
10046
10047 type Bounded_String (Max_Size : Integer) is
10048 Length : Integer;
10049 Buffer : String (1 .. Max_Size);
10050 end record;
10051 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10052
10053 In this case, the compiler describes the array as an array of
10054 variable-size elements (identified by its XVS suffix) for which
10055 the size can be read in the parallel XVZ variable.
10056
10057 In the case of an array of an unconstrained element type, the compiler
10058 wraps the array element inside a private PAD type. This type should not
10059 be shown to the user, and must be "unwrap"'ed before printing. Note
10060 that we also use the adjective "aligner" in our code to designate
10061 these wrapper types.
10062
10063 In some cases, the size allocated for each element is statically
10064 known. In that case, the PAD type already has the correct size,
10065 and the array element should remain unfixed.
10066
10067 But there are cases when this size is not statically known.
10068 For instance, assuming that "Five" is an integer variable:
10069
10070 type Dynamic is array (1 .. Five) of Integer;
10071 type Wrapper (Has_Length : Boolean := False) is record
10072 Data : Dynamic;
10073 case Has_Length is
10074 when True => Length : Integer;
10075 when False => null;
10076 end case;
10077 end record;
10078 type Wrapper_Array is array (1 .. 2) of Wrapper;
10079
10080 Hello : Wrapper_Array := (others => (Has_Length => True,
10081 Data => (others => 17),
10082 Length => 1));
10083
10084
10085 The debugging info would describe variable Hello as being an
10086 array of a PAD type. The size of that PAD type is not statically
10087 known, but can be determined using a parallel XVZ variable.
10088 In that case, a copy of the PAD type with the correct size should
10089 be used for the fixed array.
10090
10091 3. ``Fixing'' record type objects:
10092 ----------------------------------
10093
10094 Things are slightly different from arrays in the case of dynamic
10095 record types. In this case, in order to compute the associated
10096 fixed type, we need to determine the size and offset of each of
10097 its components. This, in turn, requires us to compute the fixed
10098 type of each of these components.
10099
10100 Consider for instance the example:
10101
10102 type Bounded_String (Max_Size : Natural) is record
10103 Str : String (1 .. Max_Size);
10104 Length : Natural;
10105 end record;
10106 My_String : Bounded_String (Max_Size => 10);
10107
10108 In that case, the position of field "Length" depends on the size
10109 of field Str, which itself depends on the value of the Max_Size
10110 discriminant. In order to fix the type of variable My_String,
10111 we need to fix the type of field Str. Therefore, fixing a variant
10112 record requires us to fix each of its components.
10113
10114 However, if a component does not have a dynamic size, the component
10115 should not be fixed. In particular, fields that use a PAD type
10116 should not fixed. Here is an example where this might happen
10117 (assuming type Rec above):
10118
10119 type Container (Big : Boolean) is record
10120 First : Rec;
10121 After : Integer;
10122 case Big is
10123 when True => Another : Integer;
10124 when False => null;
10125 end case;
10126 end record;
10127 My_Container : Container := (Big => False,
10128 First => (Empty => True),
10129 After => 42);
10130
10131 In that example, the compiler creates a PAD type for component First,
10132 whose size is constant, and then positions the component After just
10133 right after it. The offset of component After is therefore constant
10134 in this case.
10135
10136 The debugger computes the position of each field based on an algorithm
10137 that uses, among other things, the actual position and size of the field
10138 preceding it. Let's now imagine that the user is trying to print
10139 the value of My_Container. If the type fixing was recursive, we would
10140 end up computing the offset of field After based on the size of the
10141 fixed version of field First. And since in our example First has
10142 only one actual field, the size of the fixed type is actually smaller
10143 than the amount of space allocated to that field, and thus we would
10144 compute the wrong offset of field After.
10145
10146 To make things more complicated, we need to watch out for dynamic
10147 components of variant records (identified by the ___XVL suffix in
10148 the component name). Even if the target type is a PAD type, the size
10149 of that type might not be statically known. So the PAD type needs
10150 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10151 we might end up with the wrong size for our component. This can be
10152 observed with the following type declarations:
10153
10154 type Octal is new Integer range 0 .. 7;
10155 type Octal_Array is array (Positive range <>) of Octal;
10156 pragma Pack (Octal_Array);
10157
10158 type Octal_Buffer (Size : Positive) is record
10159 Buffer : Octal_Array (1 .. Size);
10160 Length : Integer;
10161 end record;
10162
10163 In that case, Buffer is a PAD type whose size is unset and needs
10164 to be computed by fixing the unwrapped type.
10165
10166 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10167 ----------------------------------------------------------
10168
10169 Lastly, when should the sub-elements of an entity that remained unfixed
10170 thus far, be actually fixed?
10171
10172 The answer is: Only when referencing that element. For instance
10173 when selecting one component of a record, this specific component
10174 should be fixed at that point in time. Or when printing the value
10175 of a record, each component should be fixed before its value gets
10176 printed. Similarly for arrays, the element of the array should be
10177 fixed when printing each element of the array, or when extracting
10178 one element out of that array. On the other hand, fixing should
10179 not be performed on the elements when taking a slice of an array!
10180
10181 Note that one of the side effects of miscomputing the offset and
10182 size of each field is that we end up also miscomputing the size
10183 of the containing type. This can have adverse results when computing
10184 the value of an entity. GDB fetches the value of an entity based
10185 on the size of its type, and thus a wrong size causes GDB to fetch
10186 the wrong amount of memory. In the case where the computed size is
10187 too small, GDB fetches too little data to print the value of our
10188 entity. Results in this case are unpredictable, as we usually read
10189 past the buffer containing the data =:-o. */
10190
10191 /* Evaluate a subexpression of EXP, at index *POS, and return a value
10192 for that subexpression cast to TO_TYPE. Advance *POS over the
10193 subexpression. */
10194
10195 static value *
10196 ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10197 enum noside noside, struct type *to_type)
10198 {
10199 int pc = *pos;
10200
10201 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10202 || exp->elts[pc].opcode == OP_VAR_VALUE)
10203 {
10204 (*pos) += 4;
10205
10206 value *val;
10207 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10208 {
10209 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10210 return value_zero (to_type, not_lval);
10211
10212 val = evaluate_var_msym_value (noside,
10213 exp->elts[pc + 1].objfile,
10214 exp->elts[pc + 2].msymbol);
10215 }
10216 else
10217 val = evaluate_var_value (noside,
10218 exp->elts[pc + 1].block,
10219 exp->elts[pc + 2].symbol);
10220
10221 if (noside == EVAL_SKIP)
10222 return eval_skip_value (exp);
10223
10224 val = ada_value_cast (to_type, val);
10225
10226 /* Follow the Ada language semantics that do not allow taking
10227 an address of the result of a cast (view conversion in Ada). */
10228 if (VALUE_LVAL (val) == lval_memory)
10229 {
10230 if (value_lazy (val))
10231 value_fetch_lazy (val);
10232 VALUE_LVAL (val) = not_lval;
10233 }
10234 return val;
10235 }
10236
10237 value *val = evaluate_subexp (to_type, exp, pos, noside);
10238 if (noside == EVAL_SKIP)
10239 return eval_skip_value (exp);
10240 return ada_value_cast (to_type, val);
10241 }
10242
10243 /* Implement the evaluate_exp routine in the exp_descriptor structure
10244 for the Ada language. */
10245
10246 static struct value *
10247 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10248 int *pos, enum noside noside)
10249 {
10250 enum exp_opcode op;
10251 int tem;
10252 int pc;
10253 int preeval_pos;
10254 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10255 struct type *type;
10256 int nargs, oplen;
10257 struct value **argvec;
10258
10259 pc = *pos;
10260 *pos += 1;
10261 op = exp->elts[pc].opcode;
10262
10263 switch (op)
10264 {
10265 default:
10266 *pos -= 1;
10267 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10268
10269 if (noside == EVAL_NORMAL)
10270 arg1 = unwrap_value (arg1);
10271
10272 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10273 then we need to perform the conversion manually, because
10274 evaluate_subexp_standard doesn't do it. This conversion is
10275 necessary in Ada because the different kinds of float/fixed
10276 types in Ada have different representations.
10277
10278 Similarly, we need to perform the conversion from OP_LONG
10279 ourselves. */
10280 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
10281 arg1 = ada_value_cast (expect_type, arg1);
10282
10283 return arg1;
10284
10285 case OP_STRING:
10286 {
10287 struct value *result;
10288
10289 *pos -= 1;
10290 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10291 /* The result type will have code OP_STRING, bashed there from
10292 OP_ARRAY. Bash it back. */
10293 if (value_type (result)->code () == TYPE_CODE_STRING)
10294 value_type (result)->set_code (TYPE_CODE_ARRAY);
10295 return result;
10296 }
10297
10298 case UNOP_CAST:
10299 (*pos) += 2;
10300 type = exp->elts[pc + 1].type;
10301 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
10302
10303 case UNOP_QUAL:
10304 (*pos) += 2;
10305 type = exp->elts[pc + 1].type;
10306 return ada_evaluate_subexp (type, exp, pos, noside);
10307
10308 case BINOP_ASSIGN:
10309 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10310 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10311 {
10312 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10313 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10314 return arg1;
10315 return ada_value_assign (arg1, arg1);
10316 }
10317 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10318 except if the lhs of our assignment is a convenience variable.
10319 In the case of assigning to a convenience variable, the lhs
10320 should be exactly the result of the evaluation of the rhs. */
10321 type = value_type (arg1);
10322 if (VALUE_LVAL (arg1) == lval_internalvar)
10323 type = NULL;
10324 arg2 = evaluate_subexp (type, exp, pos, noside);
10325 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10326 return arg1;
10327 if (VALUE_LVAL (arg1) == lval_internalvar)
10328 {
10329 /* Nothing. */
10330 }
10331 else if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1)))
10332 arg2 = cast_to_fixed (value_type (arg1), arg2);
10333 else if (ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
10334 error
10335 (_("Fixed-point values must be assigned to fixed-point variables"));
10336 else
10337 arg2 = coerce_for_assign (value_type (arg1), arg2);
10338 return ada_value_assign (arg1, arg2);
10339
10340 case BINOP_ADD:
10341 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10342 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10343 if (noside == EVAL_SKIP)
10344 goto nosideret;
10345 if (value_type (arg1)->code () == TYPE_CODE_PTR)
10346 return (value_from_longest
10347 (value_type (arg1),
10348 value_as_long (arg1) + value_as_long (arg2)));
10349 if (value_type (arg2)->code () == TYPE_CODE_PTR)
10350 return (value_from_longest
10351 (value_type (arg2),
10352 value_as_long (arg1) + value_as_long (arg2)));
10353 if ((ada_is_gnat_encoded_fixed_point_type (value_type (arg1))
10354 || ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
10355 && value_type (arg1) != value_type (arg2))
10356 error (_("Operands of fixed-point addition must have the same type"));
10357 /* Do the addition, and cast the result to the type of the first
10358 argument. We cannot cast the result to a reference type, so if
10359 ARG1 is a reference type, find its underlying type. */
10360 type = value_type (arg1);
10361 while (type->code () == TYPE_CODE_REF)
10362 type = TYPE_TARGET_TYPE (type);
10363 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10364 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10365
10366 case BINOP_SUB:
10367 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10368 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10369 if (noside == EVAL_SKIP)
10370 goto nosideret;
10371 if (value_type (arg1)->code () == TYPE_CODE_PTR)
10372 return (value_from_longest
10373 (value_type (arg1),
10374 value_as_long (arg1) - value_as_long (arg2)));
10375 if (value_type (arg2)->code () == TYPE_CODE_PTR)
10376 return (value_from_longest
10377 (value_type (arg2),
10378 value_as_long (arg1) - value_as_long (arg2)));
10379 if ((ada_is_gnat_encoded_fixed_point_type (value_type (arg1))
10380 || ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
10381 && value_type (arg1) != value_type (arg2))
10382 error (_("Operands of fixed-point subtraction "
10383 "must have the same type"));
10384 /* Do the substraction, and cast the result to the type of the first
10385 argument. We cannot cast the result to a reference type, so if
10386 ARG1 is a reference type, find its underlying type. */
10387 type = value_type (arg1);
10388 while (type->code () == TYPE_CODE_REF)
10389 type = TYPE_TARGET_TYPE (type);
10390 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10391 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10392
10393 case BINOP_MUL:
10394 case BINOP_DIV:
10395 case BINOP_REM:
10396 case BINOP_MOD:
10397 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10398 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10399 if (noside == EVAL_SKIP)
10400 goto nosideret;
10401 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10402 {
10403 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10404 return value_zero (value_type (arg1), not_lval);
10405 }
10406 else
10407 {
10408 type = builtin_type (exp->gdbarch)->builtin_double;
10409 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1)))
10410 arg1 = cast_from_fixed (type, arg1);
10411 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
10412 arg2 = cast_from_fixed (type, arg2);
10413 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10414 return ada_value_binop (arg1, arg2, op);
10415 }
10416
10417 case BINOP_EQUAL:
10418 case BINOP_NOTEQUAL:
10419 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10420 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10421 if (noside == EVAL_SKIP)
10422 goto nosideret;
10423 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10424 tem = 0;
10425 else
10426 {
10427 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10428 tem = ada_value_equal (arg1, arg2);
10429 }
10430 if (op == BINOP_NOTEQUAL)
10431 tem = !tem;
10432 type = language_bool_type (exp->language_defn, exp->gdbarch);
10433 return value_from_longest (type, (LONGEST) tem);
10434
10435 case UNOP_NEG:
10436 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10437 if (noside == EVAL_SKIP)
10438 goto nosideret;
10439 else if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1)))
10440 return value_cast (value_type (arg1), value_neg (arg1));
10441 else
10442 {
10443 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10444 return value_neg (arg1);
10445 }
10446
10447 case BINOP_LOGICAL_AND:
10448 case BINOP_LOGICAL_OR:
10449 case UNOP_LOGICAL_NOT:
10450 {
10451 struct value *val;
10452
10453 *pos -= 1;
10454 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10455 type = language_bool_type (exp->language_defn, exp->gdbarch);
10456 return value_cast (type, val);
10457 }
10458
10459 case BINOP_BITWISE_AND:
10460 case BINOP_BITWISE_IOR:
10461 case BINOP_BITWISE_XOR:
10462 {
10463 struct value *val;
10464
10465 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10466 *pos = pc;
10467 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10468
10469 return value_cast (value_type (arg1), val);
10470 }
10471
10472 case OP_VAR_VALUE:
10473 *pos -= 1;
10474
10475 if (noside == EVAL_SKIP)
10476 {
10477 *pos += 4;
10478 goto nosideret;
10479 }
10480
10481 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10482 /* Only encountered when an unresolved symbol occurs in a
10483 context other than a function call, in which case, it is
10484 invalid. */
10485 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10486 exp->elts[pc + 2].symbol->print_name ());
10487
10488 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10489 {
10490 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10491 /* Check to see if this is a tagged type. We also need to handle
10492 the case where the type is a reference to a tagged type, but
10493 we have to be careful to exclude pointers to tagged types.
10494 The latter should be shown as usual (as a pointer), whereas
10495 a reference should mostly be transparent to the user. */
10496 if (ada_is_tagged_type (type, 0)
10497 || (type->code () == TYPE_CODE_REF
10498 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10499 {
10500 /* Tagged types are a little special in the fact that the real
10501 type is dynamic and can only be determined by inspecting the
10502 object's tag. This means that we need to get the object's
10503 value first (EVAL_NORMAL) and then extract the actual object
10504 type from its tag.
10505
10506 Note that we cannot skip the final step where we extract
10507 the object type from its tag, because the EVAL_NORMAL phase
10508 results in dynamic components being resolved into fixed ones.
10509 This can cause problems when trying to print the type
10510 description of tagged types whose parent has a dynamic size:
10511 We use the type name of the "_parent" component in order
10512 to print the name of the ancestor type in the type description.
10513 If that component had a dynamic size, the resolution into
10514 a fixed type would result in the loss of that type name,
10515 thus preventing us from printing the name of the ancestor
10516 type in the type description. */
10517 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10518
10519 if (type->code () != TYPE_CODE_REF)
10520 {
10521 struct type *actual_type;
10522
10523 actual_type = type_from_tag (ada_value_tag (arg1));
10524 if (actual_type == NULL)
10525 /* If, for some reason, we were unable to determine
10526 the actual type from the tag, then use the static
10527 approximation that we just computed as a fallback.
10528 This can happen if the debugging information is
10529 incomplete, for instance. */
10530 actual_type = type;
10531 return value_zero (actual_type, not_lval);
10532 }
10533 else
10534 {
10535 /* In the case of a ref, ada_coerce_ref takes care
10536 of determining the actual type. But the evaluation
10537 should return a ref as it should be valid to ask
10538 for its address; so rebuild a ref after coerce. */
10539 arg1 = ada_coerce_ref (arg1);
10540 return value_ref (arg1, TYPE_CODE_REF);
10541 }
10542 }
10543
10544 /* Records and unions for which GNAT encodings have been
10545 generated need to be statically fixed as well.
10546 Otherwise, non-static fixing produces a type where
10547 all dynamic properties are removed, which prevents "ptype"
10548 from being able to completely describe the type.
10549 For instance, a case statement in a variant record would be
10550 replaced by the relevant components based on the actual
10551 value of the discriminants. */
10552 if ((type->code () == TYPE_CODE_STRUCT
10553 && dynamic_template_type (type) != NULL)
10554 || (type->code () == TYPE_CODE_UNION
10555 && ada_find_parallel_type (type, "___XVU") != NULL))
10556 {
10557 *pos += 4;
10558 return value_zero (to_static_fixed_type (type), not_lval);
10559 }
10560 }
10561
10562 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10563 return ada_to_fixed_value (arg1);
10564
10565 case OP_FUNCALL:
10566 (*pos) += 2;
10567
10568 /* Allocate arg vector, including space for the function to be
10569 called in argvec[0] and a terminating NULL. */
10570 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10571 argvec = XALLOCAVEC (struct value *, nargs + 2);
10572
10573 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10574 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10575 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10576 exp->elts[pc + 5].symbol->print_name ());
10577 else
10578 {
10579 for (tem = 0; tem <= nargs; tem += 1)
10580 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10581 argvec[tem] = 0;
10582
10583 if (noside == EVAL_SKIP)
10584 goto nosideret;
10585 }
10586
10587 if (ada_is_constrained_packed_array_type
10588 (desc_base_type (value_type (argvec[0]))))
10589 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10590 else if (value_type (argvec[0])->code () == TYPE_CODE_ARRAY
10591 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10592 /* This is a packed array that has already been fixed, and
10593 therefore already coerced to a simple array. Nothing further
10594 to do. */
10595 ;
10596 else if (value_type (argvec[0])->code () == TYPE_CODE_REF)
10597 {
10598 /* Make sure we dereference references so that all the code below
10599 feels like it's really handling the referenced value. Wrapping
10600 types (for alignment) may be there, so make sure we strip them as
10601 well. */
10602 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10603 }
10604 else if (value_type (argvec[0])->code () == TYPE_CODE_ARRAY
10605 && VALUE_LVAL (argvec[0]) == lval_memory)
10606 argvec[0] = value_addr (argvec[0]);
10607
10608 type = ada_check_typedef (value_type (argvec[0]));
10609
10610 /* Ada allows us to implicitly dereference arrays when subscripting
10611 them. So, if this is an array typedef (encoding use for array
10612 access types encoded as fat pointers), strip it now. */
10613 if (type->code () == TYPE_CODE_TYPEDEF)
10614 type = ada_typedef_target_type (type);
10615
10616 if (type->code () == TYPE_CODE_PTR)
10617 {
10618 switch (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ())
10619 {
10620 case TYPE_CODE_FUNC:
10621 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10622 break;
10623 case TYPE_CODE_ARRAY:
10624 break;
10625 case TYPE_CODE_STRUCT:
10626 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10627 argvec[0] = ada_value_ind (argvec[0]);
10628 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10629 break;
10630 default:
10631 error (_("cannot subscript or call something of type `%s'"),
10632 ada_type_name (value_type (argvec[0])));
10633 break;
10634 }
10635 }
10636
10637 switch (type->code ())
10638 {
10639 case TYPE_CODE_FUNC:
10640 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10641 {
10642 if (TYPE_TARGET_TYPE (type) == NULL)
10643 error_call_unknown_return_type (NULL);
10644 return allocate_value (TYPE_TARGET_TYPE (type));
10645 }
10646 return call_function_by_hand (argvec[0], NULL,
10647 gdb::make_array_view (argvec + 1,
10648 nargs));
10649 case TYPE_CODE_INTERNAL_FUNCTION:
10650 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10651 /* We don't know anything about what the internal
10652 function might return, but we have to return
10653 something. */
10654 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10655 not_lval);
10656 else
10657 return call_internal_function (exp->gdbarch, exp->language_defn,
10658 argvec[0], nargs, argvec + 1);
10659
10660 case TYPE_CODE_STRUCT:
10661 {
10662 int arity;
10663
10664 arity = ada_array_arity (type);
10665 type = ada_array_element_type (type, nargs);
10666 if (type == NULL)
10667 error (_("cannot subscript or call a record"));
10668 if (arity != nargs)
10669 error (_("wrong number of subscripts; expecting %d"), arity);
10670 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10671 return value_zero (ada_aligned_type (type), lval_memory);
10672 return
10673 unwrap_value (ada_value_subscript
10674 (argvec[0], nargs, argvec + 1));
10675 }
10676 case TYPE_CODE_ARRAY:
10677 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10678 {
10679 type = ada_array_element_type (type, nargs);
10680 if (type == NULL)
10681 error (_("element type of array unknown"));
10682 else
10683 return value_zero (ada_aligned_type (type), lval_memory);
10684 }
10685 return
10686 unwrap_value (ada_value_subscript
10687 (ada_coerce_to_simple_array (argvec[0]),
10688 nargs, argvec + 1));
10689 case TYPE_CODE_PTR: /* Pointer to array */
10690 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10691 {
10692 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10693 type = ada_array_element_type (type, nargs);
10694 if (type == NULL)
10695 error (_("element type of array unknown"));
10696 else
10697 return value_zero (ada_aligned_type (type), lval_memory);
10698 }
10699 return
10700 unwrap_value (ada_value_ptr_subscript (argvec[0],
10701 nargs, argvec + 1));
10702
10703 default:
10704 error (_("Attempt to index or call something other than an "
10705 "array or function"));
10706 }
10707
10708 case TERNOP_SLICE:
10709 {
10710 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10711 struct value *low_bound_val =
10712 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10713 struct value *high_bound_val =
10714 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10715 LONGEST low_bound;
10716 LONGEST high_bound;
10717
10718 low_bound_val = coerce_ref (low_bound_val);
10719 high_bound_val = coerce_ref (high_bound_val);
10720 low_bound = value_as_long (low_bound_val);
10721 high_bound = value_as_long (high_bound_val);
10722
10723 if (noside == EVAL_SKIP)
10724 goto nosideret;
10725
10726 /* If this is a reference to an aligner type, then remove all
10727 the aligners. */
10728 if (value_type (array)->code () == TYPE_CODE_REF
10729 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10730 TYPE_TARGET_TYPE (value_type (array)) =
10731 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10732
10733 if (ada_is_constrained_packed_array_type (value_type (array)))
10734 error (_("cannot slice a packed array"));
10735
10736 /* If this is a reference to an array or an array lvalue,
10737 convert to a pointer. */
10738 if (value_type (array)->code () == TYPE_CODE_REF
10739 || (value_type (array)->code () == TYPE_CODE_ARRAY
10740 && VALUE_LVAL (array) == lval_memory))
10741 array = value_addr (array);
10742
10743 if (noside == EVAL_AVOID_SIDE_EFFECTS
10744 && ada_is_array_descriptor_type (ada_check_typedef
10745 (value_type (array))))
10746 return empty_array (ada_type_of_array (array, 0), low_bound,
10747 high_bound);
10748
10749 array = ada_coerce_to_simple_array_ptr (array);
10750
10751 /* If we have more than one level of pointer indirection,
10752 dereference the value until we get only one level. */
10753 while (value_type (array)->code () == TYPE_CODE_PTR
10754 && (TYPE_TARGET_TYPE (value_type (array))->code ()
10755 == TYPE_CODE_PTR))
10756 array = value_ind (array);
10757
10758 /* Make sure we really do have an array type before going further,
10759 to avoid a SEGV when trying to get the index type or the target
10760 type later down the road if the debug info generated by
10761 the compiler is incorrect or incomplete. */
10762 if (!ada_is_simple_array_type (value_type (array)))
10763 error (_("cannot take slice of non-array"));
10764
10765 if (ada_check_typedef (value_type (array))->code ()
10766 == TYPE_CODE_PTR)
10767 {
10768 struct type *type0 = ada_check_typedef (value_type (array));
10769
10770 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10771 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
10772 else
10773 {
10774 struct type *arr_type0 =
10775 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10776
10777 return ada_value_slice_from_ptr (array, arr_type0,
10778 longest_to_int (low_bound),
10779 longest_to_int (high_bound));
10780 }
10781 }
10782 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10783 return array;
10784 else if (high_bound < low_bound)
10785 return empty_array (value_type (array), low_bound, high_bound);
10786 else
10787 return ada_value_slice (array, longest_to_int (low_bound),
10788 longest_to_int (high_bound));
10789 }
10790
10791 case UNOP_IN_RANGE:
10792 (*pos) += 2;
10793 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10794 type = check_typedef (exp->elts[pc + 1].type);
10795
10796 if (noside == EVAL_SKIP)
10797 goto nosideret;
10798
10799 switch (type->code ())
10800 {
10801 default:
10802 lim_warning (_("Membership test incompletely implemented; "
10803 "always returns true"));
10804 type = language_bool_type (exp->language_defn, exp->gdbarch);
10805 return value_from_longest (type, (LONGEST) 1);
10806
10807 case TYPE_CODE_RANGE:
10808 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10809 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
10810 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10811 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10812 type = language_bool_type (exp->language_defn, exp->gdbarch);
10813 return
10814 value_from_longest (type,
10815 (value_less (arg1, arg3)
10816 || value_equal (arg1, arg3))
10817 && (value_less (arg2, arg1)
10818 || value_equal (arg2, arg1)));
10819 }
10820
10821 case BINOP_IN_BOUNDS:
10822 (*pos) += 2;
10823 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10824 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10825
10826 if (noside == EVAL_SKIP)
10827 goto nosideret;
10828
10829 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10830 {
10831 type = language_bool_type (exp->language_defn, exp->gdbarch);
10832 return value_zero (type, not_lval);
10833 }
10834
10835 tem = longest_to_int (exp->elts[pc + 1].longconst);
10836
10837 type = ada_index_type (value_type (arg2), tem, "range");
10838 if (!type)
10839 type = value_type (arg1);
10840
10841 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10842 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
10843
10844 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10845 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10846 type = language_bool_type (exp->language_defn, exp->gdbarch);
10847 return
10848 value_from_longest (type,
10849 (value_less (arg1, arg3)
10850 || value_equal (arg1, arg3))
10851 && (value_less (arg2, arg1)
10852 || value_equal (arg2, arg1)));
10853
10854 case TERNOP_IN_RANGE:
10855 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10856 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10857 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10858
10859 if (noside == EVAL_SKIP)
10860 goto nosideret;
10861
10862 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10863 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10864 type = language_bool_type (exp->language_defn, exp->gdbarch);
10865 return
10866 value_from_longest (type,
10867 (value_less (arg1, arg3)
10868 || value_equal (arg1, arg3))
10869 && (value_less (arg2, arg1)
10870 || value_equal (arg2, arg1)));
10871
10872 case OP_ATR_FIRST:
10873 case OP_ATR_LAST:
10874 case OP_ATR_LENGTH:
10875 {
10876 struct type *type_arg;
10877
10878 if (exp->elts[*pos].opcode == OP_TYPE)
10879 {
10880 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10881 arg1 = NULL;
10882 type_arg = check_typedef (exp->elts[pc + 2].type);
10883 }
10884 else
10885 {
10886 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10887 type_arg = NULL;
10888 }
10889
10890 if (exp->elts[*pos].opcode != OP_LONG)
10891 error (_("Invalid operand to '%s"), ada_attribute_name (op));
10892 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10893 *pos += 4;
10894
10895 if (noside == EVAL_SKIP)
10896 goto nosideret;
10897 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10898 {
10899 if (type_arg == NULL)
10900 type_arg = value_type (arg1);
10901
10902 if (ada_is_constrained_packed_array_type (type_arg))
10903 type_arg = decode_constrained_packed_array_type (type_arg);
10904
10905 if (!discrete_type_p (type_arg))
10906 {
10907 switch (op)
10908 {
10909 default: /* Should never happen. */
10910 error (_("unexpected attribute encountered"));
10911 case OP_ATR_FIRST:
10912 case OP_ATR_LAST:
10913 type_arg = ada_index_type (type_arg, tem,
10914 ada_attribute_name (op));
10915 break;
10916 case OP_ATR_LENGTH:
10917 type_arg = builtin_type (exp->gdbarch)->builtin_int;
10918 break;
10919 }
10920 }
10921
10922 return value_zero (type_arg, not_lval);
10923 }
10924 else if (type_arg == NULL)
10925 {
10926 arg1 = ada_coerce_ref (arg1);
10927
10928 if (ada_is_constrained_packed_array_type (value_type (arg1)))
10929 arg1 = ada_coerce_to_simple_array (arg1);
10930
10931 if (op == OP_ATR_LENGTH)
10932 type = builtin_type (exp->gdbarch)->builtin_int;
10933 else
10934 {
10935 type = ada_index_type (value_type (arg1), tem,
10936 ada_attribute_name (op));
10937 if (type == NULL)
10938 type = builtin_type (exp->gdbarch)->builtin_int;
10939 }
10940
10941 switch (op)
10942 {
10943 default: /* Should never happen. */
10944 error (_("unexpected attribute encountered"));
10945 case OP_ATR_FIRST:
10946 return value_from_longest
10947 (type, ada_array_bound (arg1, tem, 0));
10948 case OP_ATR_LAST:
10949 return value_from_longest
10950 (type, ada_array_bound (arg1, tem, 1));
10951 case OP_ATR_LENGTH:
10952 return value_from_longest
10953 (type, ada_array_length (arg1, tem));
10954 }
10955 }
10956 else if (discrete_type_p (type_arg))
10957 {
10958 struct type *range_type;
10959 const char *name = ada_type_name (type_arg);
10960
10961 range_type = NULL;
10962 if (name != NULL && type_arg->code () != TYPE_CODE_ENUM)
10963 range_type = to_fixed_range_type (type_arg, NULL);
10964 if (range_type == NULL)
10965 range_type = type_arg;
10966 switch (op)
10967 {
10968 default:
10969 error (_("unexpected attribute encountered"));
10970 case OP_ATR_FIRST:
10971 return value_from_longest
10972 (range_type, ada_discrete_type_low_bound (range_type));
10973 case OP_ATR_LAST:
10974 return value_from_longest
10975 (range_type, ada_discrete_type_high_bound (range_type));
10976 case OP_ATR_LENGTH:
10977 error (_("the 'length attribute applies only to array types"));
10978 }
10979 }
10980 else if (type_arg->code () == TYPE_CODE_FLT)
10981 error (_("unimplemented type attribute"));
10982 else
10983 {
10984 LONGEST low, high;
10985
10986 if (ada_is_constrained_packed_array_type (type_arg))
10987 type_arg = decode_constrained_packed_array_type (type_arg);
10988
10989 if (op == OP_ATR_LENGTH)
10990 type = builtin_type (exp->gdbarch)->builtin_int;
10991 else
10992 {
10993 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10994 if (type == NULL)
10995 type = builtin_type (exp->gdbarch)->builtin_int;
10996 }
10997
10998 switch (op)
10999 {
11000 default:
11001 error (_("unexpected attribute encountered"));
11002 case OP_ATR_FIRST:
11003 low = ada_array_bound_from_type (type_arg, tem, 0);
11004 return value_from_longest (type, low);
11005 case OP_ATR_LAST:
11006 high = ada_array_bound_from_type (type_arg, tem, 1);
11007 return value_from_longest (type, high);
11008 case OP_ATR_LENGTH:
11009 low = ada_array_bound_from_type (type_arg, tem, 0);
11010 high = ada_array_bound_from_type (type_arg, tem, 1);
11011 return value_from_longest (type, high - low + 1);
11012 }
11013 }
11014 }
11015
11016 case OP_ATR_TAG:
11017 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11018 if (noside == EVAL_SKIP)
11019 goto nosideret;
11020
11021 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11022 return value_zero (ada_tag_type (arg1), not_lval);
11023
11024 return ada_value_tag (arg1);
11025
11026 case OP_ATR_MIN:
11027 case OP_ATR_MAX:
11028 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11029 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11030 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11031 if (noside == EVAL_SKIP)
11032 goto nosideret;
11033 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11034 return value_zero (value_type (arg1), not_lval);
11035 else
11036 {
11037 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11038 return value_binop (arg1, arg2,
11039 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11040 }
11041
11042 case OP_ATR_MODULUS:
11043 {
11044 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
11045
11046 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11047 if (noside == EVAL_SKIP)
11048 goto nosideret;
11049
11050 if (!ada_is_modular_type (type_arg))
11051 error (_("'modulus must be applied to modular type"));
11052
11053 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11054 ada_modulus (type_arg));
11055 }
11056
11057
11058 case OP_ATR_POS:
11059 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11060 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11061 if (noside == EVAL_SKIP)
11062 goto nosideret;
11063 type = builtin_type (exp->gdbarch)->builtin_int;
11064 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11065 return value_zero (type, not_lval);
11066 else
11067 return value_pos_atr (type, arg1);
11068
11069 case OP_ATR_SIZE:
11070 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11071 type = value_type (arg1);
11072
11073 /* If the argument is a reference, then dereference its type, since
11074 the user is really asking for the size of the actual object,
11075 not the size of the pointer. */
11076 if (type->code () == TYPE_CODE_REF)
11077 type = TYPE_TARGET_TYPE (type);
11078
11079 if (noside == EVAL_SKIP)
11080 goto nosideret;
11081 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11082 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
11083 else
11084 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
11085 TARGET_CHAR_BIT * TYPE_LENGTH (type));
11086
11087 case OP_ATR_VAL:
11088 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11089 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11090 type = exp->elts[pc + 2].type;
11091 if (noside == EVAL_SKIP)
11092 goto nosideret;
11093 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11094 return value_zero (type, not_lval);
11095 else
11096 return value_val_atr (type, arg1);
11097
11098 case BINOP_EXP:
11099 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11100 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11101 if (noside == EVAL_SKIP)
11102 goto nosideret;
11103 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11104 return value_zero (value_type (arg1), not_lval);
11105 else
11106 {
11107 /* For integer exponentiation operations,
11108 only promote the first argument. */
11109 if (is_integral_type (value_type (arg2)))
11110 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11111 else
11112 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11113
11114 return value_binop (arg1, arg2, op);
11115 }
11116
11117 case UNOP_PLUS:
11118 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11119 if (noside == EVAL_SKIP)
11120 goto nosideret;
11121 else
11122 return arg1;
11123
11124 case UNOP_ABS:
11125 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11126 if (noside == EVAL_SKIP)
11127 goto nosideret;
11128 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11129 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11130 return value_neg (arg1);
11131 else
11132 return arg1;
11133
11134 case UNOP_IND:
11135 preeval_pos = *pos;
11136 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11137 if (noside == EVAL_SKIP)
11138 goto nosideret;
11139 type = ada_check_typedef (value_type (arg1));
11140 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11141 {
11142 if (ada_is_array_descriptor_type (type))
11143 /* GDB allows dereferencing GNAT array descriptors. */
11144 {
11145 struct type *arrType = ada_type_of_array (arg1, 0);
11146
11147 if (arrType == NULL)
11148 error (_("Attempt to dereference null array pointer."));
11149 return value_at_lazy (arrType, 0);
11150 }
11151 else if (type->code () == TYPE_CODE_PTR
11152 || type->code () == TYPE_CODE_REF
11153 /* In C you can dereference an array to get the 1st elt. */
11154 || type->code () == TYPE_CODE_ARRAY)
11155 {
11156 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11157 only be determined by inspecting the object's tag.
11158 This means that we need to evaluate completely the
11159 expression in order to get its type. */
11160
11161 if ((type->code () == TYPE_CODE_REF
11162 || type->code () == TYPE_CODE_PTR)
11163 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11164 {
11165 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11166 EVAL_NORMAL);
11167 type = value_type (ada_value_ind (arg1));
11168 }
11169 else
11170 {
11171 type = to_static_fixed_type
11172 (ada_aligned_type
11173 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11174 }
11175 ada_ensure_varsize_limit (type);
11176 return value_zero (type, lval_memory);
11177 }
11178 else if (type->code () == TYPE_CODE_INT)
11179 {
11180 /* GDB allows dereferencing an int. */
11181 if (expect_type == NULL)
11182 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11183 lval_memory);
11184 else
11185 {
11186 expect_type =
11187 to_static_fixed_type (ada_aligned_type (expect_type));
11188 return value_zero (expect_type, lval_memory);
11189 }
11190 }
11191 else
11192 error (_("Attempt to take contents of a non-pointer value."));
11193 }
11194 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11195 type = ada_check_typedef (value_type (arg1));
11196
11197 if (type->code () == TYPE_CODE_INT)
11198 /* GDB allows dereferencing an int. If we were given
11199 the expect_type, then use that as the target type.
11200 Otherwise, assume that the target type is an int. */
11201 {
11202 if (expect_type != NULL)
11203 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11204 arg1));
11205 else
11206 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11207 (CORE_ADDR) value_as_address (arg1));
11208 }
11209
11210 if (ada_is_array_descriptor_type (type))
11211 /* GDB allows dereferencing GNAT array descriptors. */
11212 return ada_coerce_to_simple_array (arg1);
11213 else
11214 return ada_value_ind (arg1);
11215
11216 case STRUCTOP_STRUCT:
11217 tem = longest_to_int (exp->elts[pc + 1].longconst);
11218 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11219 preeval_pos = *pos;
11220 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11221 if (noside == EVAL_SKIP)
11222 goto nosideret;
11223 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11224 {
11225 struct type *type1 = value_type (arg1);
11226
11227 if (ada_is_tagged_type (type1, 1))
11228 {
11229 type = ada_lookup_struct_elt_type (type1,
11230 &exp->elts[pc + 2].string,
11231 1, 1);
11232
11233 /* If the field is not found, check if it exists in the
11234 extension of this object's type. This means that we
11235 need to evaluate completely the expression. */
11236
11237 if (type == NULL)
11238 {
11239 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11240 EVAL_NORMAL);
11241 arg1 = ada_value_struct_elt (arg1,
11242 &exp->elts[pc + 2].string,
11243 0);
11244 arg1 = unwrap_value (arg1);
11245 type = value_type (ada_to_fixed_value (arg1));
11246 }
11247 }
11248 else
11249 type =
11250 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11251 0);
11252
11253 return value_zero (ada_aligned_type (type), lval_memory);
11254 }
11255 else
11256 {
11257 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11258 arg1 = unwrap_value (arg1);
11259 return ada_to_fixed_value (arg1);
11260 }
11261
11262 case OP_TYPE:
11263 /* The value is not supposed to be used. This is here to make it
11264 easier to accommodate expressions that contain types. */
11265 (*pos) += 2;
11266 if (noside == EVAL_SKIP)
11267 goto nosideret;
11268 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11269 return allocate_value (exp->elts[pc + 1].type);
11270 else
11271 error (_("Attempt to use a type name as an expression"));
11272
11273 case OP_AGGREGATE:
11274 case OP_CHOICES:
11275 case OP_OTHERS:
11276 case OP_DISCRETE_RANGE:
11277 case OP_POSITIONAL:
11278 case OP_NAME:
11279 if (noside == EVAL_NORMAL)
11280 switch (op)
11281 {
11282 case OP_NAME:
11283 error (_("Undefined name, ambiguous name, or renaming used in "
11284 "component association: %s."), &exp->elts[pc+2].string);
11285 case OP_AGGREGATE:
11286 error (_("Aggregates only allowed on the right of an assignment"));
11287 default:
11288 internal_error (__FILE__, __LINE__,
11289 _("aggregate apparently mangled"));
11290 }
11291
11292 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11293 *pos += oplen - 1;
11294 for (tem = 0; tem < nargs; tem += 1)
11295 ada_evaluate_subexp (NULL, exp, pos, noside);
11296 goto nosideret;
11297 }
11298
11299 nosideret:
11300 return eval_skip_value (exp);
11301 }
11302 \f
11303
11304 /* Fixed point */
11305
11306 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11307 type name that encodes the 'small and 'delta information.
11308 Otherwise, return NULL. */
11309
11310 static const char *
11311 gnat_encoded_fixed_type_info (struct type *type)
11312 {
11313 const char *name = ada_type_name (type);
11314 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : type->code ();
11315
11316 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11317 {
11318 const char *tail = strstr (name, "___XF_");
11319
11320 if (tail == NULL)
11321 return NULL;
11322 else
11323 return tail + 5;
11324 }
11325 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11326 return gnat_encoded_fixed_type_info (TYPE_TARGET_TYPE (type));
11327 else
11328 return NULL;
11329 }
11330
11331 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11332
11333 int
11334 ada_is_gnat_encoded_fixed_point_type (struct type *type)
11335 {
11336 return gnat_encoded_fixed_type_info (type) != NULL;
11337 }
11338
11339 /* Return non-zero iff TYPE represents a System.Address type. */
11340
11341 int
11342 ada_is_system_address_type (struct type *type)
11343 {
11344 return (type->name () && strcmp (type->name (), "system__address") == 0);
11345 }
11346
11347 /* Assuming that TYPE is the representation of an Ada fixed-point
11348 type, return the target floating-point type to be used to represent
11349 of this type during internal computation. */
11350
11351 static struct type *
11352 ada_scaling_type (struct type *type)
11353 {
11354 return builtin_type (get_type_arch (type))->builtin_long_double;
11355 }
11356
11357 /* Assuming that TYPE is the representation of an Ada fixed-point
11358 type, return its delta, or NULL if the type is malformed and the
11359 delta cannot be determined. */
11360
11361 struct value *
11362 gnat_encoded_fixed_point_delta (struct type *type)
11363 {
11364 const char *encoding = gnat_encoded_fixed_type_info (type);
11365 struct type *scale_type = ada_scaling_type (type);
11366
11367 long long num, den;
11368
11369 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11370 return nullptr;
11371 else
11372 return value_binop (value_from_longest (scale_type, num),
11373 value_from_longest (scale_type, den), BINOP_DIV);
11374 }
11375
11376 /* Assuming that ada_is_gnat_encoded_fixed_point_type (TYPE), return
11377 the scaling factor ('SMALL value) associated with the type. */
11378
11379 struct value *
11380 ada_scaling_factor (struct type *type)
11381 {
11382 const char *encoding = gnat_encoded_fixed_type_info (type);
11383 struct type *scale_type = ada_scaling_type (type);
11384
11385 long long num0, den0, num1, den1;
11386 int n;
11387
11388 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
11389 &num0, &den0, &num1, &den1);
11390
11391 if (n < 2)
11392 return value_from_longest (scale_type, 1);
11393 else if (n == 4)
11394 return value_binop (value_from_longest (scale_type, num1),
11395 value_from_longest (scale_type, den1), BINOP_DIV);
11396 else
11397 return value_binop (value_from_longest (scale_type, num0),
11398 value_from_longest (scale_type, den0), BINOP_DIV);
11399 }
11400
11401 \f
11402
11403 /* Range types */
11404
11405 /* Scan STR beginning at position K for a discriminant name, and
11406 return the value of that discriminant field of DVAL in *PX. If
11407 PNEW_K is not null, put the position of the character beyond the
11408 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11409 not alter *PX and *PNEW_K if unsuccessful. */
11410
11411 static int
11412 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11413 int *pnew_k)
11414 {
11415 static char *bound_buffer = NULL;
11416 static size_t bound_buffer_len = 0;
11417 const char *pstart, *pend, *bound;
11418 struct value *bound_val;
11419
11420 if (dval == NULL || str == NULL || str[k] == '\0')
11421 return 0;
11422
11423 pstart = str + k;
11424 pend = strstr (pstart, "__");
11425 if (pend == NULL)
11426 {
11427 bound = pstart;
11428 k += strlen (bound);
11429 }
11430 else
11431 {
11432 int len = pend - pstart;
11433
11434 /* Strip __ and beyond. */
11435 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11436 strncpy (bound_buffer, pstart, len);
11437 bound_buffer[len] = '\0';
11438
11439 bound = bound_buffer;
11440 k = pend - str;
11441 }
11442
11443 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11444 if (bound_val == NULL)
11445 return 0;
11446
11447 *px = value_as_long (bound_val);
11448 if (pnew_k != NULL)
11449 *pnew_k = k;
11450 return 1;
11451 }
11452
11453 /* Value of variable named NAME in the current environment. If
11454 no such variable found, then if ERR_MSG is null, returns 0, and
11455 otherwise causes an error with message ERR_MSG. */
11456
11457 static struct value *
11458 get_var_value (const char *name, const char *err_msg)
11459 {
11460 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
11461
11462 std::vector<struct block_symbol> syms;
11463 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11464 get_selected_block (0),
11465 VAR_DOMAIN, &syms, 1);
11466
11467 if (nsyms != 1)
11468 {
11469 if (err_msg == NULL)
11470 return 0;
11471 else
11472 error (("%s"), err_msg);
11473 }
11474
11475 return value_of_variable (syms[0].symbol, syms[0].block);
11476 }
11477
11478 /* Value of integer variable named NAME in the current environment.
11479 If no such variable is found, returns false. Otherwise, sets VALUE
11480 to the variable's value and returns true. */
11481
11482 bool
11483 get_int_var_value (const char *name, LONGEST &value)
11484 {
11485 struct value *var_val = get_var_value (name, 0);
11486
11487 if (var_val == 0)
11488 return false;
11489
11490 value = value_as_long (var_val);
11491 return true;
11492 }
11493
11494
11495 /* Return a range type whose base type is that of the range type named
11496 NAME in the current environment, and whose bounds are calculated
11497 from NAME according to the GNAT range encoding conventions.
11498 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11499 corresponding range type from debug information; fall back to using it
11500 if symbol lookup fails. If a new type must be created, allocate it
11501 like ORIG_TYPE was. The bounds information, in general, is encoded
11502 in NAME, the base type given in the named range type. */
11503
11504 static struct type *
11505 to_fixed_range_type (struct type *raw_type, struct value *dval)
11506 {
11507 const char *name;
11508 struct type *base_type;
11509 const char *subtype_info;
11510
11511 gdb_assert (raw_type != NULL);
11512 gdb_assert (raw_type->name () != NULL);
11513
11514 if (raw_type->code () == TYPE_CODE_RANGE)
11515 base_type = TYPE_TARGET_TYPE (raw_type);
11516 else
11517 base_type = raw_type;
11518
11519 name = raw_type->name ();
11520 subtype_info = strstr (name, "___XD");
11521 if (subtype_info == NULL)
11522 {
11523 LONGEST L = ada_discrete_type_low_bound (raw_type);
11524 LONGEST U = ada_discrete_type_high_bound (raw_type);
11525
11526 if (L < INT_MIN || U > INT_MAX)
11527 return raw_type;
11528 else
11529 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11530 L, U);
11531 }
11532 else
11533 {
11534 static char *name_buf = NULL;
11535 static size_t name_len = 0;
11536 int prefix_len = subtype_info - name;
11537 LONGEST L, U;
11538 struct type *type;
11539 const char *bounds_str;
11540 int n;
11541
11542 GROW_VECT (name_buf, name_len, prefix_len + 5);
11543 strncpy (name_buf, name, prefix_len);
11544 name_buf[prefix_len] = '\0';
11545
11546 subtype_info += 5;
11547 bounds_str = strchr (subtype_info, '_');
11548 n = 1;
11549
11550 if (*subtype_info == 'L')
11551 {
11552 if (!ada_scan_number (bounds_str, n, &L, &n)
11553 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11554 return raw_type;
11555 if (bounds_str[n] == '_')
11556 n += 2;
11557 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11558 n += 1;
11559 subtype_info += 1;
11560 }
11561 else
11562 {
11563 strcpy (name_buf + prefix_len, "___L");
11564 if (!get_int_var_value (name_buf, L))
11565 {
11566 lim_warning (_("Unknown lower bound, using 1."));
11567 L = 1;
11568 }
11569 }
11570
11571 if (*subtype_info == 'U')
11572 {
11573 if (!ada_scan_number (bounds_str, n, &U, &n)
11574 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11575 return raw_type;
11576 }
11577 else
11578 {
11579 strcpy (name_buf + prefix_len, "___U");
11580 if (!get_int_var_value (name_buf, U))
11581 {
11582 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11583 U = L;
11584 }
11585 }
11586
11587 type = create_static_range_type (alloc_type_copy (raw_type),
11588 base_type, L, U);
11589 /* create_static_range_type alters the resulting type's length
11590 to match the size of the base_type, which is not what we want.
11591 Set it back to the original range type's length. */
11592 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
11593 type->set_name (name);
11594 return type;
11595 }
11596 }
11597
11598 /* True iff NAME is the name of a range type. */
11599
11600 int
11601 ada_is_range_type_name (const char *name)
11602 {
11603 return (name != NULL && strstr (name, "___XD"));
11604 }
11605 \f
11606
11607 /* Modular types */
11608
11609 /* True iff TYPE is an Ada modular type. */
11610
11611 int
11612 ada_is_modular_type (struct type *type)
11613 {
11614 struct type *subranged_type = get_base_type (type);
11615
11616 return (subranged_type != NULL && type->code () == TYPE_CODE_RANGE
11617 && subranged_type->code () == TYPE_CODE_INT
11618 && TYPE_UNSIGNED (subranged_type));
11619 }
11620
11621 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11622
11623 ULONGEST
11624 ada_modulus (struct type *type)
11625 {
11626 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11627 }
11628 \f
11629
11630 /* Ada exception catchpoint support:
11631 ---------------------------------
11632
11633 We support 3 kinds of exception catchpoints:
11634 . catchpoints on Ada exceptions
11635 . catchpoints on unhandled Ada exceptions
11636 . catchpoints on failed assertions
11637
11638 Exceptions raised during failed assertions, or unhandled exceptions
11639 could perfectly be caught with the general catchpoint on Ada exceptions.
11640 However, we can easily differentiate these two special cases, and having
11641 the option to distinguish these two cases from the rest can be useful
11642 to zero-in on certain situations.
11643
11644 Exception catchpoints are a specialized form of breakpoint,
11645 since they rely on inserting breakpoints inside known routines
11646 of the GNAT runtime. The implementation therefore uses a standard
11647 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11648 of breakpoint_ops.
11649
11650 Support in the runtime for exception catchpoints have been changed
11651 a few times already, and these changes affect the implementation
11652 of these catchpoints. In order to be able to support several
11653 variants of the runtime, we use a sniffer that will determine
11654 the runtime variant used by the program being debugged. */
11655
11656 /* Ada's standard exceptions.
11657
11658 The Ada 83 standard also defined Numeric_Error. But there so many
11659 situations where it was unclear from the Ada 83 Reference Manual
11660 (RM) whether Constraint_Error or Numeric_Error should be raised,
11661 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11662 Interpretation saying that anytime the RM says that Numeric_Error
11663 should be raised, the implementation may raise Constraint_Error.
11664 Ada 95 went one step further and pretty much removed Numeric_Error
11665 from the list of standard exceptions (it made it a renaming of
11666 Constraint_Error, to help preserve compatibility when compiling
11667 an Ada83 compiler). As such, we do not include Numeric_Error from
11668 this list of standard exceptions. */
11669
11670 static const char *standard_exc[] = {
11671 "constraint_error",
11672 "program_error",
11673 "storage_error",
11674 "tasking_error"
11675 };
11676
11677 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11678
11679 /* A structure that describes how to support exception catchpoints
11680 for a given executable. */
11681
11682 struct exception_support_info
11683 {
11684 /* The name of the symbol to break on in order to insert
11685 a catchpoint on exceptions. */
11686 const char *catch_exception_sym;
11687
11688 /* The name of the symbol to break on in order to insert
11689 a catchpoint on unhandled exceptions. */
11690 const char *catch_exception_unhandled_sym;
11691
11692 /* The name of the symbol to break on in order to insert
11693 a catchpoint on failed assertions. */
11694 const char *catch_assert_sym;
11695
11696 /* The name of the symbol to break on in order to insert
11697 a catchpoint on exception handling. */
11698 const char *catch_handlers_sym;
11699
11700 /* Assuming that the inferior just triggered an unhandled exception
11701 catchpoint, this function is responsible for returning the address
11702 in inferior memory where the name of that exception is stored.
11703 Return zero if the address could not be computed. */
11704 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11705 };
11706
11707 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11708 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11709
11710 /* The following exception support info structure describes how to
11711 implement exception catchpoints with the latest version of the
11712 Ada runtime (as of 2019-08-??). */
11713
11714 static const struct exception_support_info default_exception_support_info =
11715 {
11716 "__gnat_debug_raise_exception", /* catch_exception_sym */
11717 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11718 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11719 "__gnat_begin_handler_v1", /* catch_handlers_sym */
11720 ada_unhandled_exception_name_addr
11721 };
11722
11723 /* The following exception support info structure describes how to
11724 implement exception catchpoints with an earlier version of the
11725 Ada runtime (as of 2007-03-06) using v0 of the EH ABI. */
11726
11727 static const struct exception_support_info exception_support_info_v0 =
11728 {
11729 "__gnat_debug_raise_exception", /* catch_exception_sym */
11730 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11731 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11732 "__gnat_begin_handler", /* catch_handlers_sym */
11733 ada_unhandled_exception_name_addr
11734 };
11735
11736 /* The following exception support info structure describes how to
11737 implement exception catchpoints with a slightly older version
11738 of the Ada runtime. */
11739
11740 static const struct exception_support_info exception_support_info_fallback =
11741 {
11742 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11743 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11744 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11745 "__gnat_begin_handler", /* catch_handlers_sym */
11746 ada_unhandled_exception_name_addr_from_raise
11747 };
11748
11749 /* Return nonzero if we can detect the exception support routines
11750 described in EINFO.
11751
11752 This function errors out if an abnormal situation is detected
11753 (for instance, if we find the exception support routines, but
11754 that support is found to be incomplete). */
11755
11756 static int
11757 ada_has_this_exception_support (const struct exception_support_info *einfo)
11758 {
11759 struct symbol *sym;
11760
11761 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11762 that should be compiled with debugging information. As a result, we
11763 expect to find that symbol in the symtabs. */
11764
11765 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11766 if (sym == NULL)
11767 {
11768 /* Perhaps we did not find our symbol because the Ada runtime was
11769 compiled without debugging info, or simply stripped of it.
11770 It happens on some GNU/Linux distributions for instance, where
11771 users have to install a separate debug package in order to get
11772 the runtime's debugging info. In that situation, let the user
11773 know why we cannot insert an Ada exception catchpoint.
11774
11775 Note: Just for the purpose of inserting our Ada exception
11776 catchpoint, we could rely purely on the associated minimal symbol.
11777 But we would be operating in degraded mode anyway, since we are
11778 still lacking the debugging info needed later on to extract
11779 the name of the exception being raised (this name is printed in
11780 the catchpoint message, and is also used when trying to catch
11781 a specific exception). We do not handle this case for now. */
11782 struct bound_minimal_symbol msym
11783 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11784
11785 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11786 error (_("Your Ada runtime appears to be missing some debugging "
11787 "information.\nCannot insert Ada exception catchpoint "
11788 "in this configuration."));
11789
11790 return 0;
11791 }
11792
11793 /* Make sure that the symbol we found corresponds to a function. */
11794
11795 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11796 {
11797 error (_("Symbol \"%s\" is not a function (class = %d)"),
11798 sym->linkage_name (), SYMBOL_CLASS (sym));
11799 return 0;
11800 }
11801
11802 sym = standard_lookup (einfo->catch_handlers_sym, NULL, VAR_DOMAIN);
11803 if (sym == NULL)
11804 {
11805 struct bound_minimal_symbol msym
11806 = lookup_minimal_symbol (einfo->catch_handlers_sym, NULL, NULL);
11807
11808 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11809 error (_("Your Ada runtime appears to be missing some debugging "
11810 "information.\nCannot insert Ada exception catchpoint "
11811 "in this configuration."));
11812
11813 return 0;
11814 }
11815
11816 /* Make sure that the symbol we found corresponds to a function. */
11817
11818 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11819 {
11820 error (_("Symbol \"%s\" is not a function (class = %d)"),
11821 sym->linkage_name (), SYMBOL_CLASS (sym));
11822 return 0;
11823 }
11824
11825 return 1;
11826 }
11827
11828 /* Inspect the Ada runtime and determine which exception info structure
11829 should be used to provide support for exception catchpoints.
11830
11831 This function will always set the per-inferior exception_info,
11832 or raise an error. */
11833
11834 static void
11835 ada_exception_support_info_sniffer (void)
11836 {
11837 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11838
11839 /* If the exception info is already known, then no need to recompute it. */
11840 if (data->exception_info != NULL)
11841 return;
11842
11843 /* Check the latest (default) exception support info. */
11844 if (ada_has_this_exception_support (&default_exception_support_info))
11845 {
11846 data->exception_info = &default_exception_support_info;
11847 return;
11848 }
11849
11850 /* Try the v0 exception suport info. */
11851 if (ada_has_this_exception_support (&exception_support_info_v0))
11852 {
11853 data->exception_info = &exception_support_info_v0;
11854 return;
11855 }
11856
11857 /* Try our fallback exception suport info. */
11858 if (ada_has_this_exception_support (&exception_support_info_fallback))
11859 {
11860 data->exception_info = &exception_support_info_fallback;
11861 return;
11862 }
11863
11864 /* Sometimes, it is normal for us to not be able to find the routine
11865 we are looking for. This happens when the program is linked with
11866 the shared version of the GNAT runtime, and the program has not been
11867 started yet. Inform the user of these two possible causes if
11868 applicable. */
11869
11870 if (ada_update_initial_language (language_unknown) != language_ada)
11871 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11872
11873 /* If the symbol does not exist, then check that the program is
11874 already started, to make sure that shared libraries have been
11875 loaded. If it is not started, this may mean that the symbol is
11876 in a shared library. */
11877
11878 if (inferior_ptid.pid () == 0)
11879 error (_("Unable to insert catchpoint. Try to start the program first."));
11880
11881 /* At this point, we know that we are debugging an Ada program and
11882 that the inferior has been started, but we still are not able to
11883 find the run-time symbols. That can mean that we are in
11884 configurable run time mode, or that a-except as been optimized
11885 out by the linker... In any case, at this point it is not worth
11886 supporting this feature. */
11887
11888 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11889 }
11890
11891 /* True iff FRAME is very likely to be that of a function that is
11892 part of the runtime system. This is all very heuristic, but is
11893 intended to be used as advice as to what frames are uninteresting
11894 to most users. */
11895
11896 static int
11897 is_known_support_routine (struct frame_info *frame)
11898 {
11899 enum language func_lang;
11900 int i;
11901 const char *fullname;
11902
11903 /* If this code does not have any debugging information (no symtab),
11904 This cannot be any user code. */
11905
11906 symtab_and_line sal = find_frame_sal (frame);
11907 if (sal.symtab == NULL)
11908 return 1;
11909
11910 /* If there is a symtab, but the associated source file cannot be
11911 located, then assume this is not user code: Selecting a frame
11912 for which we cannot display the code would not be very helpful
11913 for the user. This should also take care of case such as VxWorks
11914 where the kernel has some debugging info provided for a few units. */
11915
11916 fullname = symtab_to_fullname (sal.symtab);
11917 if (access (fullname, R_OK) != 0)
11918 return 1;
11919
11920 /* Check the unit filename against the Ada runtime file naming.
11921 We also check the name of the objfile against the name of some
11922 known system libraries that sometimes come with debugging info
11923 too. */
11924
11925 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11926 {
11927 re_comp (known_runtime_file_name_patterns[i]);
11928 if (re_exec (lbasename (sal.symtab->filename)))
11929 return 1;
11930 if (SYMTAB_OBJFILE (sal.symtab) != NULL
11931 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
11932 return 1;
11933 }
11934
11935 /* Check whether the function is a GNAT-generated entity. */
11936
11937 gdb::unique_xmalloc_ptr<char> func_name
11938 = find_frame_funname (frame, &func_lang, NULL);
11939 if (func_name == NULL)
11940 return 1;
11941
11942 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11943 {
11944 re_comp (known_auxiliary_function_name_patterns[i]);
11945 if (re_exec (func_name.get ()))
11946 return 1;
11947 }
11948
11949 return 0;
11950 }
11951
11952 /* Find the first frame that contains debugging information and that is not
11953 part of the Ada run-time, starting from FI and moving upward. */
11954
11955 void
11956 ada_find_printable_frame (struct frame_info *fi)
11957 {
11958 for (; fi != NULL; fi = get_prev_frame (fi))
11959 {
11960 if (!is_known_support_routine (fi))
11961 {
11962 select_frame (fi);
11963 break;
11964 }
11965 }
11966
11967 }
11968
11969 /* Assuming that the inferior just triggered an unhandled exception
11970 catchpoint, return the address in inferior memory where the name
11971 of the exception is stored.
11972
11973 Return zero if the address could not be computed. */
11974
11975 static CORE_ADDR
11976 ada_unhandled_exception_name_addr (void)
11977 {
11978 return parse_and_eval_address ("e.full_name");
11979 }
11980
11981 /* Same as ada_unhandled_exception_name_addr, except that this function
11982 should be used when the inferior uses an older version of the runtime,
11983 where the exception name needs to be extracted from a specific frame
11984 several frames up in the callstack. */
11985
11986 static CORE_ADDR
11987 ada_unhandled_exception_name_addr_from_raise (void)
11988 {
11989 int frame_level;
11990 struct frame_info *fi;
11991 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11992
11993 /* To determine the name of this exception, we need to select
11994 the frame corresponding to RAISE_SYM_NAME. This frame is
11995 at least 3 levels up, so we simply skip the first 3 frames
11996 without checking the name of their associated function. */
11997 fi = get_current_frame ();
11998 for (frame_level = 0; frame_level < 3; frame_level += 1)
11999 if (fi != NULL)
12000 fi = get_prev_frame (fi);
12001
12002 while (fi != NULL)
12003 {
12004 enum language func_lang;
12005
12006 gdb::unique_xmalloc_ptr<char> func_name
12007 = find_frame_funname (fi, &func_lang, NULL);
12008 if (func_name != NULL)
12009 {
12010 if (strcmp (func_name.get (),
12011 data->exception_info->catch_exception_sym) == 0)
12012 break; /* We found the frame we were looking for... */
12013 }
12014 fi = get_prev_frame (fi);
12015 }
12016
12017 if (fi == NULL)
12018 return 0;
12019
12020 select_frame (fi);
12021 return parse_and_eval_address ("id.full_name");
12022 }
12023
12024 /* Assuming the inferior just triggered an Ada exception catchpoint
12025 (of any type), return the address in inferior memory where the name
12026 of the exception is stored, if applicable.
12027
12028 Assumes the selected frame is the current frame.
12029
12030 Return zero if the address could not be computed, or if not relevant. */
12031
12032 static CORE_ADDR
12033 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
12034 struct breakpoint *b)
12035 {
12036 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12037
12038 switch (ex)
12039 {
12040 case ada_catch_exception:
12041 return (parse_and_eval_address ("e.full_name"));
12042 break;
12043
12044 case ada_catch_exception_unhandled:
12045 return data->exception_info->unhandled_exception_name_addr ();
12046 break;
12047
12048 case ada_catch_handlers:
12049 return 0; /* The runtimes does not provide access to the exception
12050 name. */
12051 break;
12052
12053 case ada_catch_assert:
12054 return 0; /* Exception name is not relevant in this case. */
12055 break;
12056
12057 default:
12058 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12059 break;
12060 }
12061
12062 return 0; /* Should never be reached. */
12063 }
12064
12065 /* Assuming the inferior is stopped at an exception catchpoint,
12066 return the message which was associated to the exception, if
12067 available. Return NULL if the message could not be retrieved.
12068
12069 Note: The exception message can be associated to an exception
12070 either through the use of the Raise_Exception function, or
12071 more simply (Ada 2005 and later), via:
12072
12073 raise Exception_Name with "exception message";
12074
12075 */
12076
12077 static gdb::unique_xmalloc_ptr<char>
12078 ada_exception_message_1 (void)
12079 {
12080 struct value *e_msg_val;
12081 int e_msg_len;
12082
12083 /* For runtimes that support this feature, the exception message
12084 is passed as an unbounded string argument called "message". */
12085 e_msg_val = parse_and_eval ("message");
12086 if (e_msg_val == NULL)
12087 return NULL; /* Exception message not supported. */
12088
12089 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12090 gdb_assert (e_msg_val != NULL);
12091 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12092
12093 /* If the message string is empty, then treat it as if there was
12094 no exception message. */
12095 if (e_msg_len <= 0)
12096 return NULL;
12097
12098 return target_read_string (value_address (e_msg_val), INT_MAX);
12099 }
12100
12101 /* Same as ada_exception_message_1, except that all exceptions are
12102 contained here (returning NULL instead). */
12103
12104 static gdb::unique_xmalloc_ptr<char>
12105 ada_exception_message (void)
12106 {
12107 gdb::unique_xmalloc_ptr<char> e_msg;
12108
12109 try
12110 {
12111 e_msg = ada_exception_message_1 ();
12112 }
12113 catch (const gdb_exception_error &e)
12114 {
12115 e_msg.reset (nullptr);
12116 }
12117
12118 return e_msg;
12119 }
12120
12121 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12122 any error that ada_exception_name_addr_1 might cause to be thrown.
12123 When an error is intercepted, a warning with the error message is printed,
12124 and zero is returned. */
12125
12126 static CORE_ADDR
12127 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12128 struct breakpoint *b)
12129 {
12130 CORE_ADDR result = 0;
12131
12132 try
12133 {
12134 result = ada_exception_name_addr_1 (ex, b);
12135 }
12136
12137 catch (const gdb_exception_error &e)
12138 {
12139 warning (_("failed to get exception name: %s"), e.what ());
12140 return 0;
12141 }
12142
12143 return result;
12144 }
12145
12146 static std::string ada_exception_catchpoint_cond_string
12147 (const char *excep_string,
12148 enum ada_exception_catchpoint_kind ex);
12149
12150 /* Ada catchpoints.
12151
12152 In the case of catchpoints on Ada exceptions, the catchpoint will
12153 stop the target on every exception the program throws. When a user
12154 specifies the name of a specific exception, we translate this
12155 request into a condition expression (in text form), and then parse
12156 it into an expression stored in each of the catchpoint's locations.
12157 We then use this condition to check whether the exception that was
12158 raised is the one the user is interested in. If not, then the
12159 target is resumed again. We store the name of the requested
12160 exception, in order to be able to re-set the condition expression
12161 when symbols change. */
12162
12163 /* An instance of this type is used to represent an Ada catchpoint
12164 breakpoint location. */
12165
12166 class ada_catchpoint_location : public bp_location
12167 {
12168 public:
12169 ada_catchpoint_location (breakpoint *owner)
12170 : bp_location (owner, bp_loc_software_breakpoint)
12171 {}
12172
12173 /* The condition that checks whether the exception that was raised
12174 is the specific exception the user specified on catchpoint
12175 creation. */
12176 expression_up excep_cond_expr;
12177 };
12178
12179 /* An instance of this type is used to represent an Ada catchpoint. */
12180
12181 struct ada_catchpoint : public breakpoint
12182 {
12183 explicit ada_catchpoint (enum ada_exception_catchpoint_kind kind)
12184 : m_kind (kind)
12185 {
12186 }
12187
12188 /* The name of the specific exception the user specified. */
12189 std::string excep_string;
12190
12191 /* What kind of catchpoint this is. */
12192 enum ada_exception_catchpoint_kind m_kind;
12193 };
12194
12195 /* Parse the exception condition string in the context of each of the
12196 catchpoint's locations, and store them for later evaluation. */
12197
12198 static void
12199 create_excep_cond_exprs (struct ada_catchpoint *c,
12200 enum ada_exception_catchpoint_kind ex)
12201 {
12202 struct bp_location *bl;
12203
12204 /* Nothing to do if there's no specific exception to catch. */
12205 if (c->excep_string.empty ())
12206 return;
12207
12208 /* Same if there are no locations... */
12209 if (c->loc == NULL)
12210 return;
12211
12212 /* Compute the condition expression in text form, from the specific
12213 expection we want to catch. */
12214 std::string cond_string
12215 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
12216
12217 /* Iterate over all the catchpoint's locations, and parse an
12218 expression for each. */
12219 for (bl = c->loc; bl != NULL; bl = bl->next)
12220 {
12221 struct ada_catchpoint_location *ada_loc
12222 = (struct ada_catchpoint_location *) bl;
12223 expression_up exp;
12224
12225 if (!bl->shlib_disabled)
12226 {
12227 const char *s;
12228
12229 s = cond_string.c_str ();
12230 try
12231 {
12232 exp = parse_exp_1 (&s, bl->address,
12233 block_for_pc (bl->address),
12234 0);
12235 }
12236 catch (const gdb_exception_error &e)
12237 {
12238 warning (_("failed to reevaluate internal exception condition "
12239 "for catchpoint %d: %s"),
12240 c->number, e.what ());
12241 }
12242 }
12243
12244 ada_loc->excep_cond_expr = std::move (exp);
12245 }
12246 }
12247
12248 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12249 structure for all exception catchpoint kinds. */
12250
12251 static struct bp_location *
12252 allocate_location_exception (struct breakpoint *self)
12253 {
12254 return new ada_catchpoint_location (self);
12255 }
12256
12257 /* Implement the RE_SET method in the breakpoint_ops structure for all
12258 exception catchpoint kinds. */
12259
12260 static void
12261 re_set_exception (struct breakpoint *b)
12262 {
12263 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12264
12265 /* Call the base class's method. This updates the catchpoint's
12266 locations. */
12267 bkpt_breakpoint_ops.re_set (b);
12268
12269 /* Reparse the exception conditional expressions. One for each
12270 location. */
12271 create_excep_cond_exprs (c, c->m_kind);
12272 }
12273
12274 /* Returns true if we should stop for this breakpoint hit. If the
12275 user specified a specific exception, we only want to cause a stop
12276 if the program thrown that exception. */
12277
12278 static int
12279 should_stop_exception (const struct bp_location *bl)
12280 {
12281 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12282 const struct ada_catchpoint_location *ada_loc
12283 = (const struct ada_catchpoint_location *) bl;
12284 int stop;
12285
12286 struct internalvar *var = lookup_internalvar ("_ada_exception");
12287 if (c->m_kind == ada_catch_assert)
12288 clear_internalvar (var);
12289 else
12290 {
12291 try
12292 {
12293 const char *expr;
12294
12295 if (c->m_kind == ada_catch_handlers)
12296 expr = ("GNAT_GCC_exception_Access(gcc_exception)"
12297 ".all.occurrence.id");
12298 else
12299 expr = "e";
12300
12301 struct value *exc = parse_and_eval (expr);
12302 set_internalvar (var, exc);
12303 }
12304 catch (const gdb_exception_error &ex)
12305 {
12306 clear_internalvar (var);
12307 }
12308 }
12309
12310 /* With no specific exception, should always stop. */
12311 if (c->excep_string.empty ())
12312 return 1;
12313
12314 if (ada_loc->excep_cond_expr == NULL)
12315 {
12316 /* We will have a NULL expression if back when we were creating
12317 the expressions, this location's had failed to parse. */
12318 return 1;
12319 }
12320
12321 stop = 1;
12322 try
12323 {
12324 struct value *mark;
12325
12326 mark = value_mark ();
12327 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12328 value_free_to_mark (mark);
12329 }
12330 catch (const gdb_exception &ex)
12331 {
12332 exception_fprintf (gdb_stderr, ex,
12333 _("Error in testing exception condition:\n"));
12334 }
12335
12336 return stop;
12337 }
12338
12339 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12340 for all exception catchpoint kinds. */
12341
12342 static void
12343 check_status_exception (bpstat bs)
12344 {
12345 bs->stop = should_stop_exception (bs->bp_location_at);
12346 }
12347
12348 /* Implement the PRINT_IT method in the breakpoint_ops structure
12349 for all exception catchpoint kinds. */
12350
12351 static enum print_stop_action
12352 print_it_exception (bpstat bs)
12353 {
12354 struct ui_out *uiout = current_uiout;
12355 struct breakpoint *b = bs->breakpoint_at;
12356
12357 annotate_catchpoint (b->number);
12358
12359 if (uiout->is_mi_like_p ())
12360 {
12361 uiout->field_string ("reason",
12362 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12363 uiout->field_string ("disp", bpdisp_text (b->disposition));
12364 }
12365
12366 uiout->text (b->disposition == disp_del
12367 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12368 uiout->field_signed ("bkptno", b->number);
12369 uiout->text (", ");
12370
12371 /* ada_exception_name_addr relies on the selected frame being the
12372 current frame. Need to do this here because this function may be
12373 called more than once when printing a stop, and below, we'll
12374 select the first frame past the Ada run-time (see
12375 ada_find_printable_frame). */
12376 select_frame (get_current_frame ());
12377
12378 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12379 switch (c->m_kind)
12380 {
12381 case ada_catch_exception:
12382 case ada_catch_exception_unhandled:
12383 case ada_catch_handlers:
12384 {
12385 const CORE_ADDR addr = ada_exception_name_addr (c->m_kind, b);
12386 char exception_name[256];
12387
12388 if (addr != 0)
12389 {
12390 read_memory (addr, (gdb_byte *) exception_name,
12391 sizeof (exception_name) - 1);
12392 exception_name [sizeof (exception_name) - 1] = '\0';
12393 }
12394 else
12395 {
12396 /* For some reason, we were unable to read the exception
12397 name. This could happen if the Runtime was compiled
12398 without debugging info, for instance. In that case,
12399 just replace the exception name by the generic string
12400 "exception" - it will read as "an exception" in the
12401 notification we are about to print. */
12402 memcpy (exception_name, "exception", sizeof ("exception"));
12403 }
12404 /* In the case of unhandled exception breakpoints, we print
12405 the exception name as "unhandled EXCEPTION_NAME", to make
12406 it clearer to the user which kind of catchpoint just got
12407 hit. We used ui_out_text to make sure that this extra
12408 info does not pollute the exception name in the MI case. */
12409 if (c->m_kind == ada_catch_exception_unhandled)
12410 uiout->text ("unhandled ");
12411 uiout->field_string ("exception-name", exception_name);
12412 }
12413 break;
12414 case ada_catch_assert:
12415 /* In this case, the name of the exception is not really
12416 important. Just print "failed assertion" to make it clearer
12417 that his program just hit an assertion-failure catchpoint.
12418 We used ui_out_text because this info does not belong in
12419 the MI output. */
12420 uiout->text ("failed assertion");
12421 break;
12422 }
12423
12424 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
12425 if (exception_message != NULL)
12426 {
12427 uiout->text (" (");
12428 uiout->field_string ("exception-message", exception_message.get ());
12429 uiout->text (")");
12430 }
12431
12432 uiout->text (" at ");
12433 ada_find_printable_frame (get_current_frame ());
12434
12435 return PRINT_SRC_AND_LOC;
12436 }
12437
12438 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12439 for all exception catchpoint kinds. */
12440
12441 static void
12442 print_one_exception (struct breakpoint *b, struct bp_location **last_loc)
12443 {
12444 struct ui_out *uiout = current_uiout;
12445 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12446 struct value_print_options opts;
12447
12448 get_user_print_options (&opts);
12449
12450 if (opts.addressprint)
12451 uiout->field_skip ("addr");
12452
12453 annotate_field (5);
12454 switch (c->m_kind)
12455 {
12456 case ada_catch_exception:
12457 if (!c->excep_string.empty ())
12458 {
12459 std::string msg = string_printf (_("`%s' Ada exception"),
12460 c->excep_string.c_str ());
12461
12462 uiout->field_string ("what", msg);
12463 }
12464 else
12465 uiout->field_string ("what", "all Ada exceptions");
12466
12467 break;
12468
12469 case ada_catch_exception_unhandled:
12470 uiout->field_string ("what", "unhandled Ada exceptions");
12471 break;
12472
12473 case ada_catch_handlers:
12474 if (!c->excep_string.empty ())
12475 {
12476 uiout->field_fmt ("what",
12477 _("`%s' Ada exception handlers"),
12478 c->excep_string.c_str ());
12479 }
12480 else
12481 uiout->field_string ("what", "all Ada exceptions handlers");
12482 break;
12483
12484 case ada_catch_assert:
12485 uiout->field_string ("what", "failed Ada assertions");
12486 break;
12487
12488 default:
12489 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12490 break;
12491 }
12492 }
12493
12494 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12495 for all exception catchpoint kinds. */
12496
12497 static void
12498 print_mention_exception (struct breakpoint *b)
12499 {
12500 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12501 struct ui_out *uiout = current_uiout;
12502
12503 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
12504 : _("Catchpoint "));
12505 uiout->field_signed ("bkptno", b->number);
12506 uiout->text (": ");
12507
12508 switch (c->m_kind)
12509 {
12510 case ada_catch_exception:
12511 if (!c->excep_string.empty ())
12512 {
12513 std::string info = string_printf (_("`%s' Ada exception"),
12514 c->excep_string.c_str ());
12515 uiout->text (info.c_str ());
12516 }
12517 else
12518 uiout->text (_("all Ada exceptions"));
12519 break;
12520
12521 case ada_catch_exception_unhandled:
12522 uiout->text (_("unhandled Ada exceptions"));
12523 break;
12524
12525 case ada_catch_handlers:
12526 if (!c->excep_string.empty ())
12527 {
12528 std::string info
12529 = string_printf (_("`%s' Ada exception handlers"),
12530 c->excep_string.c_str ());
12531 uiout->text (info.c_str ());
12532 }
12533 else
12534 uiout->text (_("all Ada exceptions handlers"));
12535 break;
12536
12537 case ada_catch_assert:
12538 uiout->text (_("failed Ada assertions"));
12539 break;
12540
12541 default:
12542 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12543 break;
12544 }
12545 }
12546
12547 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12548 for all exception catchpoint kinds. */
12549
12550 static void
12551 print_recreate_exception (struct breakpoint *b, struct ui_file *fp)
12552 {
12553 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12554
12555 switch (c->m_kind)
12556 {
12557 case ada_catch_exception:
12558 fprintf_filtered (fp, "catch exception");
12559 if (!c->excep_string.empty ())
12560 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
12561 break;
12562
12563 case ada_catch_exception_unhandled:
12564 fprintf_filtered (fp, "catch exception unhandled");
12565 break;
12566
12567 case ada_catch_handlers:
12568 fprintf_filtered (fp, "catch handlers");
12569 break;
12570
12571 case ada_catch_assert:
12572 fprintf_filtered (fp, "catch assert");
12573 break;
12574
12575 default:
12576 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12577 }
12578 print_recreate_thread (b, fp);
12579 }
12580
12581 /* Virtual tables for various breakpoint types. */
12582 static struct breakpoint_ops catch_exception_breakpoint_ops;
12583 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12584 static struct breakpoint_ops catch_assert_breakpoint_ops;
12585 static struct breakpoint_ops catch_handlers_breakpoint_ops;
12586
12587 /* See ada-lang.h. */
12588
12589 bool
12590 is_ada_exception_catchpoint (breakpoint *bp)
12591 {
12592 return (bp->ops == &catch_exception_breakpoint_ops
12593 || bp->ops == &catch_exception_unhandled_breakpoint_ops
12594 || bp->ops == &catch_assert_breakpoint_ops
12595 || bp->ops == &catch_handlers_breakpoint_ops);
12596 }
12597
12598 /* Split the arguments specified in a "catch exception" command.
12599 Set EX to the appropriate catchpoint type.
12600 Set EXCEP_STRING to the name of the specific exception if
12601 specified by the user.
12602 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12603 "catch handlers" command. False otherwise.
12604 If a condition is found at the end of the arguments, the condition
12605 expression is stored in COND_STRING (memory must be deallocated
12606 after use). Otherwise COND_STRING is set to NULL. */
12607
12608 static void
12609 catch_ada_exception_command_split (const char *args,
12610 bool is_catch_handlers_cmd,
12611 enum ada_exception_catchpoint_kind *ex,
12612 std::string *excep_string,
12613 std::string *cond_string)
12614 {
12615 std::string exception_name;
12616
12617 exception_name = extract_arg (&args);
12618 if (exception_name == "if")
12619 {
12620 /* This is not an exception name; this is the start of a condition
12621 expression for a catchpoint on all exceptions. So, "un-get"
12622 this token, and set exception_name to NULL. */
12623 exception_name.clear ();
12624 args -= 2;
12625 }
12626
12627 /* Check to see if we have a condition. */
12628
12629 args = skip_spaces (args);
12630 if (startswith (args, "if")
12631 && (isspace (args[2]) || args[2] == '\0'))
12632 {
12633 args += 2;
12634 args = skip_spaces (args);
12635
12636 if (args[0] == '\0')
12637 error (_("Condition missing after `if' keyword"));
12638 *cond_string = args;
12639
12640 args += strlen (args);
12641 }
12642
12643 /* Check that we do not have any more arguments. Anything else
12644 is unexpected. */
12645
12646 if (args[0] != '\0')
12647 error (_("Junk at end of expression"));
12648
12649 if (is_catch_handlers_cmd)
12650 {
12651 /* Catch handling of exceptions. */
12652 *ex = ada_catch_handlers;
12653 *excep_string = exception_name;
12654 }
12655 else if (exception_name.empty ())
12656 {
12657 /* Catch all exceptions. */
12658 *ex = ada_catch_exception;
12659 excep_string->clear ();
12660 }
12661 else if (exception_name == "unhandled")
12662 {
12663 /* Catch unhandled exceptions. */
12664 *ex = ada_catch_exception_unhandled;
12665 excep_string->clear ();
12666 }
12667 else
12668 {
12669 /* Catch a specific exception. */
12670 *ex = ada_catch_exception;
12671 *excep_string = exception_name;
12672 }
12673 }
12674
12675 /* Return the name of the symbol on which we should break in order to
12676 implement a catchpoint of the EX kind. */
12677
12678 static const char *
12679 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12680 {
12681 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12682
12683 gdb_assert (data->exception_info != NULL);
12684
12685 switch (ex)
12686 {
12687 case ada_catch_exception:
12688 return (data->exception_info->catch_exception_sym);
12689 break;
12690 case ada_catch_exception_unhandled:
12691 return (data->exception_info->catch_exception_unhandled_sym);
12692 break;
12693 case ada_catch_assert:
12694 return (data->exception_info->catch_assert_sym);
12695 break;
12696 case ada_catch_handlers:
12697 return (data->exception_info->catch_handlers_sym);
12698 break;
12699 default:
12700 internal_error (__FILE__, __LINE__,
12701 _("unexpected catchpoint kind (%d)"), ex);
12702 }
12703 }
12704
12705 /* Return the breakpoint ops "virtual table" used for catchpoints
12706 of the EX kind. */
12707
12708 static const struct breakpoint_ops *
12709 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12710 {
12711 switch (ex)
12712 {
12713 case ada_catch_exception:
12714 return (&catch_exception_breakpoint_ops);
12715 break;
12716 case ada_catch_exception_unhandled:
12717 return (&catch_exception_unhandled_breakpoint_ops);
12718 break;
12719 case ada_catch_assert:
12720 return (&catch_assert_breakpoint_ops);
12721 break;
12722 case ada_catch_handlers:
12723 return (&catch_handlers_breakpoint_ops);
12724 break;
12725 default:
12726 internal_error (__FILE__, __LINE__,
12727 _("unexpected catchpoint kind (%d)"), ex);
12728 }
12729 }
12730
12731 /* Return the condition that will be used to match the current exception
12732 being raised with the exception that the user wants to catch. This
12733 assumes that this condition is used when the inferior just triggered
12734 an exception catchpoint.
12735 EX: the type of catchpoints used for catching Ada exceptions. */
12736
12737 static std::string
12738 ada_exception_catchpoint_cond_string (const char *excep_string,
12739 enum ada_exception_catchpoint_kind ex)
12740 {
12741 int i;
12742 bool is_standard_exc = false;
12743 std::string result;
12744
12745 if (ex == ada_catch_handlers)
12746 {
12747 /* For exception handlers catchpoints, the condition string does
12748 not use the same parameter as for the other exceptions. */
12749 result = ("long_integer (GNAT_GCC_exception_Access"
12750 "(gcc_exception).all.occurrence.id)");
12751 }
12752 else
12753 result = "long_integer (e)";
12754
12755 /* The standard exceptions are a special case. They are defined in
12756 runtime units that have been compiled without debugging info; if
12757 EXCEP_STRING is the not-fully-qualified name of a standard
12758 exception (e.g. "constraint_error") then, during the evaluation
12759 of the condition expression, the symbol lookup on this name would
12760 *not* return this standard exception. The catchpoint condition
12761 may then be set only on user-defined exceptions which have the
12762 same not-fully-qualified name (e.g. my_package.constraint_error).
12763
12764 To avoid this unexcepted behavior, these standard exceptions are
12765 systematically prefixed by "standard". This means that "catch
12766 exception constraint_error" is rewritten into "catch exception
12767 standard.constraint_error".
12768
12769 If an exception named constraint_error is defined in another package of
12770 the inferior program, then the only way to specify this exception as a
12771 breakpoint condition is to use its fully-qualified named:
12772 e.g. my_package.constraint_error. */
12773
12774 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12775 {
12776 if (strcmp (standard_exc [i], excep_string) == 0)
12777 {
12778 is_standard_exc = true;
12779 break;
12780 }
12781 }
12782
12783 result += " = ";
12784
12785 if (is_standard_exc)
12786 string_appendf (result, "long_integer (&standard.%s)", excep_string);
12787 else
12788 string_appendf (result, "long_integer (&%s)", excep_string);
12789
12790 return result;
12791 }
12792
12793 /* Return the symtab_and_line that should be used to insert an exception
12794 catchpoint of the TYPE kind.
12795
12796 ADDR_STRING returns the name of the function where the real
12797 breakpoint that implements the catchpoints is set, depending on the
12798 type of catchpoint we need to create. */
12799
12800 static struct symtab_and_line
12801 ada_exception_sal (enum ada_exception_catchpoint_kind ex,
12802 std::string *addr_string, const struct breakpoint_ops **ops)
12803 {
12804 const char *sym_name;
12805 struct symbol *sym;
12806
12807 /* First, find out which exception support info to use. */
12808 ada_exception_support_info_sniffer ();
12809
12810 /* Then lookup the function on which we will break in order to catch
12811 the Ada exceptions requested by the user. */
12812 sym_name = ada_exception_sym_name (ex);
12813 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12814
12815 if (sym == NULL)
12816 error (_("Catchpoint symbol not found: %s"), sym_name);
12817
12818 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12819 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
12820
12821 /* Set ADDR_STRING. */
12822 *addr_string = sym_name;
12823
12824 /* Set OPS. */
12825 *ops = ada_exception_breakpoint_ops (ex);
12826
12827 return find_function_start_sal (sym, 1);
12828 }
12829
12830 /* Create an Ada exception catchpoint.
12831
12832 EX_KIND is the kind of exception catchpoint to be created.
12833
12834 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
12835 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12836 of the exception to which this catchpoint applies.
12837
12838 COND_STRING, if not empty, is the catchpoint condition.
12839
12840 TEMPFLAG, if nonzero, means that the underlying breakpoint
12841 should be temporary.
12842
12843 FROM_TTY is the usual argument passed to all commands implementations. */
12844
12845 void
12846 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12847 enum ada_exception_catchpoint_kind ex_kind,
12848 const std::string &excep_string,
12849 const std::string &cond_string,
12850 int tempflag,
12851 int disabled,
12852 int from_tty)
12853 {
12854 std::string addr_string;
12855 const struct breakpoint_ops *ops = NULL;
12856 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
12857
12858 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint (ex_kind));
12859 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
12860 ops, tempflag, disabled, from_tty);
12861 c->excep_string = excep_string;
12862 create_excep_cond_exprs (c.get (), ex_kind);
12863 if (!cond_string.empty ())
12864 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty);
12865 install_breakpoint (0, std::move (c), 1);
12866 }
12867
12868 /* Implement the "catch exception" command. */
12869
12870 static void
12871 catch_ada_exception_command (const char *arg_entry, int from_tty,
12872 struct cmd_list_element *command)
12873 {
12874 const char *arg = arg_entry;
12875 struct gdbarch *gdbarch = get_current_arch ();
12876 int tempflag;
12877 enum ada_exception_catchpoint_kind ex_kind;
12878 std::string excep_string;
12879 std::string cond_string;
12880
12881 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12882
12883 if (!arg)
12884 arg = "";
12885 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
12886 &cond_string);
12887 create_ada_exception_catchpoint (gdbarch, ex_kind,
12888 excep_string, cond_string,
12889 tempflag, 1 /* enabled */,
12890 from_tty);
12891 }
12892
12893 /* Implement the "catch handlers" command. */
12894
12895 static void
12896 catch_ada_handlers_command (const char *arg_entry, int from_tty,
12897 struct cmd_list_element *command)
12898 {
12899 const char *arg = arg_entry;
12900 struct gdbarch *gdbarch = get_current_arch ();
12901 int tempflag;
12902 enum ada_exception_catchpoint_kind ex_kind;
12903 std::string excep_string;
12904 std::string cond_string;
12905
12906 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12907
12908 if (!arg)
12909 arg = "";
12910 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
12911 &cond_string);
12912 create_ada_exception_catchpoint (gdbarch, ex_kind,
12913 excep_string, cond_string,
12914 tempflag, 1 /* enabled */,
12915 from_tty);
12916 }
12917
12918 /* Completion function for the Ada "catch" commands. */
12919
12920 static void
12921 catch_ada_completer (struct cmd_list_element *cmd, completion_tracker &tracker,
12922 const char *text, const char *word)
12923 {
12924 std::vector<ada_exc_info> exceptions = ada_exceptions_list (NULL);
12925
12926 for (const ada_exc_info &info : exceptions)
12927 {
12928 if (startswith (info.name, word))
12929 tracker.add_completion (make_unique_xstrdup (info.name));
12930 }
12931 }
12932
12933 /* Split the arguments specified in a "catch assert" command.
12934
12935 ARGS contains the command's arguments (or the empty string if
12936 no arguments were passed).
12937
12938 If ARGS contains a condition, set COND_STRING to that condition
12939 (the memory needs to be deallocated after use). */
12940
12941 static void
12942 catch_ada_assert_command_split (const char *args, std::string &cond_string)
12943 {
12944 args = skip_spaces (args);
12945
12946 /* Check whether a condition was provided. */
12947 if (startswith (args, "if")
12948 && (isspace (args[2]) || args[2] == '\0'))
12949 {
12950 args += 2;
12951 args = skip_spaces (args);
12952 if (args[0] == '\0')
12953 error (_("condition missing after `if' keyword"));
12954 cond_string.assign (args);
12955 }
12956
12957 /* Otherwise, there should be no other argument at the end of
12958 the command. */
12959 else if (args[0] != '\0')
12960 error (_("Junk at end of arguments."));
12961 }
12962
12963 /* Implement the "catch assert" command. */
12964
12965 static void
12966 catch_assert_command (const char *arg_entry, int from_tty,
12967 struct cmd_list_element *command)
12968 {
12969 const char *arg = arg_entry;
12970 struct gdbarch *gdbarch = get_current_arch ();
12971 int tempflag;
12972 std::string cond_string;
12973
12974 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12975
12976 if (!arg)
12977 arg = "";
12978 catch_ada_assert_command_split (arg, cond_string);
12979 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
12980 "", cond_string,
12981 tempflag, 1 /* enabled */,
12982 from_tty);
12983 }
12984
12985 /* Return non-zero if the symbol SYM is an Ada exception object. */
12986
12987 static int
12988 ada_is_exception_sym (struct symbol *sym)
12989 {
12990 const char *type_name = SYMBOL_TYPE (sym)->name ();
12991
12992 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
12993 && SYMBOL_CLASS (sym) != LOC_BLOCK
12994 && SYMBOL_CLASS (sym) != LOC_CONST
12995 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
12996 && type_name != NULL && strcmp (type_name, "exception") == 0);
12997 }
12998
12999 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13000 Ada exception object. This matches all exceptions except the ones
13001 defined by the Ada language. */
13002
13003 static int
13004 ada_is_non_standard_exception_sym (struct symbol *sym)
13005 {
13006 int i;
13007
13008 if (!ada_is_exception_sym (sym))
13009 return 0;
13010
13011 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13012 if (strcmp (sym->linkage_name (), standard_exc[i]) == 0)
13013 return 0; /* A standard exception. */
13014
13015 /* Numeric_Error is also a standard exception, so exclude it.
13016 See the STANDARD_EXC description for more details as to why
13017 this exception is not listed in that array. */
13018 if (strcmp (sym->linkage_name (), "numeric_error") == 0)
13019 return 0;
13020
13021 return 1;
13022 }
13023
13024 /* A helper function for std::sort, comparing two struct ada_exc_info
13025 objects.
13026
13027 The comparison is determined first by exception name, and then
13028 by exception address. */
13029
13030 bool
13031 ada_exc_info::operator< (const ada_exc_info &other) const
13032 {
13033 int result;
13034
13035 result = strcmp (name, other.name);
13036 if (result < 0)
13037 return true;
13038 if (result == 0 && addr < other.addr)
13039 return true;
13040 return false;
13041 }
13042
13043 bool
13044 ada_exc_info::operator== (const ada_exc_info &other) const
13045 {
13046 return addr == other.addr && strcmp (name, other.name) == 0;
13047 }
13048
13049 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13050 routine, but keeping the first SKIP elements untouched.
13051
13052 All duplicates are also removed. */
13053
13054 static void
13055 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
13056 int skip)
13057 {
13058 std::sort (exceptions->begin () + skip, exceptions->end ());
13059 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13060 exceptions->end ());
13061 }
13062
13063 /* Add all exceptions defined by the Ada standard whose name match
13064 a regular expression.
13065
13066 If PREG is not NULL, then this regexp_t object is used to
13067 perform the symbol name matching. Otherwise, no name-based
13068 filtering is performed.
13069
13070 EXCEPTIONS is a vector of exceptions to which matching exceptions
13071 gets pushed. */
13072
13073 static void
13074 ada_add_standard_exceptions (compiled_regex *preg,
13075 std::vector<ada_exc_info> *exceptions)
13076 {
13077 int i;
13078
13079 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13080 {
13081 if (preg == NULL
13082 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
13083 {
13084 struct bound_minimal_symbol msymbol
13085 = ada_lookup_simple_minsym (standard_exc[i]);
13086
13087 if (msymbol.minsym != NULL)
13088 {
13089 struct ada_exc_info info
13090 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13091
13092 exceptions->push_back (info);
13093 }
13094 }
13095 }
13096 }
13097
13098 /* Add all Ada exceptions defined locally and accessible from the given
13099 FRAME.
13100
13101 If PREG is not NULL, then this regexp_t object is used to
13102 perform the symbol name matching. Otherwise, no name-based
13103 filtering is performed.
13104
13105 EXCEPTIONS is a vector of exceptions to which matching exceptions
13106 gets pushed. */
13107
13108 static void
13109 ada_add_exceptions_from_frame (compiled_regex *preg,
13110 struct frame_info *frame,
13111 std::vector<ada_exc_info> *exceptions)
13112 {
13113 const struct block *block = get_frame_block (frame, 0);
13114
13115 while (block != 0)
13116 {
13117 struct block_iterator iter;
13118 struct symbol *sym;
13119
13120 ALL_BLOCK_SYMBOLS (block, iter, sym)
13121 {
13122 switch (SYMBOL_CLASS (sym))
13123 {
13124 case LOC_TYPEDEF:
13125 case LOC_BLOCK:
13126 case LOC_CONST:
13127 break;
13128 default:
13129 if (ada_is_exception_sym (sym))
13130 {
13131 struct ada_exc_info info = {sym->print_name (),
13132 SYMBOL_VALUE_ADDRESS (sym)};
13133
13134 exceptions->push_back (info);
13135 }
13136 }
13137 }
13138 if (BLOCK_FUNCTION (block) != NULL)
13139 break;
13140 block = BLOCK_SUPERBLOCK (block);
13141 }
13142 }
13143
13144 /* Return true if NAME matches PREG or if PREG is NULL. */
13145
13146 static bool
13147 name_matches_regex (const char *name, compiled_regex *preg)
13148 {
13149 return (preg == NULL
13150 || preg->exec (ada_decode (name).c_str (), 0, NULL, 0) == 0);
13151 }
13152
13153 /* Add all exceptions defined globally whose name name match
13154 a regular expression, excluding standard exceptions.
13155
13156 The reason we exclude standard exceptions is that they need
13157 to be handled separately: Standard exceptions are defined inside
13158 a runtime unit which is normally not compiled with debugging info,
13159 and thus usually do not show up in our symbol search. However,
13160 if the unit was in fact built with debugging info, we need to
13161 exclude them because they would duplicate the entry we found
13162 during the special loop that specifically searches for those
13163 standard exceptions.
13164
13165 If PREG is not NULL, then this regexp_t object is used to
13166 perform the symbol name matching. Otherwise, no name-based
13167 filtering is performed.
13168
13169 EXCEPTIONS is a vector of exceptions to which matching exceptions
13170 gets pushed. */
13171
13172 static void
13173 ada_add_global_exceptions (compiled_regex *preg,
13174 std::vector<ada_exc_info> *exceptions)
13175 {
13176 /* In Ada, the symbol "search name" is a linkage name, whereas the
13177 regular expression used to do the matching refers to the natural
13178 name. So match against the decoded name. */
13179 expand_symtabs_matching (NULL,
13180 lookup_name_info::match_any (),
13181 [&] (const char *search_name)
13182 {
13183 std::string decoded = ada_decode (search_name);
13184 return name_matches_regex (decoded.c_str (), preg);
13185 },
13186 NULL,
13187 VARIABLES_DOMAIN);
13188
13189 for (objfile *objfile : current_program_space->objfiles ())
13190 {
13191 for (compunit_symtab *s : objfile->compunits ())
13192 {
13193 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13194 int i;
13195
13196 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13197 {
13198 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13199 struct block_iterator iter;
13200 struct symbol *sym;
13201
13202 ALL_BLOCK_SYMBOLS (b, iter, sym)
13203 if (ada_is_non_standard_exception_sym (sym)
13204 && name_matches_regex (sym->natural_name (), preg))
13205 {
13206 struct ada_exc_info info
13207 = {sym->print_name (), SYMBOL_VALUE_ADDRESS (sym)};
13208
13209 exceptions->push_back (info);
13210 }
13211 }
13212 }
13213 }
13214 }
13215
13216 /* Implements ada_exceptions_list with the regular expression passed
13217 as a regex_t, rather than a string.
13218
13219 If not NULL, PREG is used to filter out exceptions whose names
13220 do not match. Otherwise, all exceptions are listed. */
13221
13222 static std::vector<ada_exc_info>
13223 ada_exceptions_list_1 (compiled_regex *preg)
13224 {
13225 std::vector<ada_exc_info> result;
13226 int prev_len;
13227
13228 /* First, list the known standard exceptions. These exceptions
13229 need to be handled separately, as they are usually defined in
13230 runtime units that have been compiled without debugging info. */
13231
13232 ada_add_standard_exceptions (preg, &result);
13233
13234 /* Next, find all exceptions whose scope is local and accessible
13235 from the currently selected frame. */
13236
13237 if (has_stack_frames ())
13238 {
13239 prev_len = result.size ();
13240 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13241 &result);
13242 if (result.size () > prev_len)
13243 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13244 }
13245
13246 /* Add all exceptions whose scope is global. */
13247
13248 prev_len = result.size ();
13249 ada_add_global_exceptions (preg, &result);
13250 if (result.size () > prev_len)
13251 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13252
13253 return result;
13254 }
13255
13256 /* Return a vector of ada_exc_info.
13257
13258 If REGEXP is NULL, all exceptions are included in the result.
13259 Otherwise, it should contain a valid regular expression,
13260 and only the exceptions whose names match that regular expression
13261 are included in the result.
13262
13263 The exceptions are sorted in the following order:
13264 - Standard exceptions (defined by the Ada language), in
13265 alphabetical order;
13266 - Exceptions only visible from the current frame, in
13267 alphabetical order;
13268 - Exceptions whose scope is global, in alphabetical order. */
13269
13270 std::vector<ada_exc_info>
13271 ada_exceptions_list (const char *regexp)
13272 {
13273 if (regexp == NULL)
13274 return ada_exceptions_list_1 (NULL);
13275
13276 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13277 return ada_exceptions_list_1 (&reg);
13278 }
13279
13280 /* Implement the "info exceptions" command. */
13281
13282 static void
13283 info_exceptions_command (const char *regexp, int from_tty)
13284 {
13285 struct gdbarch *gdbarch = get_current_arch ();
13286
13287 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
13288
13289 if (regexp != NULL)
13290 printf_filtered
13291 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13292 else
13293 printf_filtered (_("All defined Ada exceptions:\n"));
13294
13295 for (const ada_exc_info &info : exceptions)
13296 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
13297 }
13298
13299 /* Operators */
13300 /* Information about operators given special treatment in functions
13301 below. */
13302 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13303
13304 #define ADA_OPERATORS \
13305 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13306 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13307 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13308 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13309 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13310 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13311 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13312 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13313 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13314 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13315 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13316 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13317 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13318 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13319 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13320 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13321 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13322 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13323 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13324
13325 static void
13326 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13327 int *argsp)
13328 {
13329 switch (exp->elts[pc - 1].opcode)
13330 {
13331 default:
13332 operator_length_standard (exp, pc, oplenp, argsp);
13333 break;
13334
13335 #define OP_DEFN(op, len, args, binop) \
13336 case op: *oplenp = len; *argsp = args; break;
13337 ADA_OPERATORS;
13338 #undef OP_DEFN
13339
13340 case OP_AGGREGATE:
13341 *oplenp = 3;
13342 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13343 break;
13344
13345 case OP_CHOICES:
13346 *oplenp = 3;
13347 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13348 break;
13349 }
13350 }
13351
13352 /* Implementation of the exp_descriptor method operator_check. */
13353
13354 static int
13355 ada_operator_check (struct expression *exp, int pos,
13356 int (*objfile_func) (struct objfile *objfile, void *data),
13357 void *data)
13358 {
13359 const union exp_element *const elts = exp->elts;
13360 struct type *type = NULL;
13361
13362 switch (elts[pos].opcode)
13363 {
13364 case UNOP_IN_RANGE:
13365 case UNOP_QUAL:
13366 type = elts[pos + 1].type;
13367 break;
13368
13369 default:
13370 return operator_check_standard (exp, pos, objfile_func, data);
13371 }
13372
13373 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13374
13375 if (type && TYPE_OBJFILE (type)
13376 && (*objfile_func) (TYPE_OBJFILE (type), data))
13377 return 1;
13378
13379 return 0;
13380 }
13381
13382 static const char *
13383 ada_op_name (enum exp_opcode opcode)
13384 {
13385 switch (opcode)
13386 {
13387 default:
13388 return op_name_standard (opcode);
13389
13390 #define OP_DEFN(op, len, args, binop) case op: return #op;
13391 ADA_OPERATORS;
13392 #undef OP_DEFN
13393
13394 case OP_AGGREGATE:
13395 return "OP_AGGREGATE";
13396 case OP_CHOICES:
13397 return "OP_CHOICES";
13398 case OP_NAME:
13399 return "OP_NAME";
13400 }
13401 }
13402
13403 /* As for operator_length, but assumes PC is pointing at the first
13404 element of the operator, and gives meaningful results only for the
13405 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13406
13407 static void
13408 ada_forward_operator_length (struct expression *exp, int pc,
13409 int *oplenp, int *argsp)
13410 {
13411 switch (exp->elts[pc].opcode)
13412 {
13413 default:
13414 *oplenp = *argsp = 0;
13415 break;
13416
13417 #define OP_DEFN(op, len, args, binop) \
13418 case op: *oplenp = len; *argsp = args; break;
13419 ADA_OPERATORS;
13420 #undef OP_DEFN
13421
13422 case OP_AGGREGATE:
13423 *oplenp = 3;
13424 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13425 break;
13426
13427 case OP_CHOICES:
13428 *oplenp = 3;
13429 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13430 break;
13431
13432 case OP_STRING:
13433 case OP_NAME:
13434 {
13435 int len = longest_to_int (exp->elts[pc + 1].longconst);
13436
13437 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13438 *argsp = 0;
13439 break;
13440 }
13441 }
13442 }
13443
13444 static int
13445 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13446 {
13447 enum exp_opcode op = exp->elts[elt].opcode;
13448 int oplen, nargs;
13449 int pc = elt;
13450 int i;
13451
13452 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13453
13454 switch (op)
13455 {
13456 /* Ada attributes ('Foo). */
13457 case OP_ATR_FIRST:
13458 case OP_ATR_LAST:
13459 case OP_ATR_LENGTH:
13460 case OP_ATR_IMAGE:
13461 case OP_ATR_MAX:
13462 case OP_ATR_MIN:
13463 case OP_ATR_MODULUS:
13464 case OP_ATR_POS:
13465 case OP_ATR_SIZE:
13466 case OP_ATR_TAG:
13467 case OP_ATR_VAL:
13468 break;
13469
13470 case UNOP_IN_RANGE:
13471 case UNOP_QUAL:
13472 /* XXX: gdb_sprint_host_address, type_sprint */
13473 fprintf_filtered (stream, _("Type @"));
13474 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13475 fprintf_filtered (stream, " (");
13476 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13477 fprintf_filtered (stream, ")");
13478 break;
13479 case BINOP_IN_BOUNDS:
13480 fprintf_filtered (stream, " (%d)",
13481 longest_to_int (exp->elts[pc + 2].longconst));
13482 break;
13483 case TERNOP_IN_RANGE:
13484 break;
13485
13486 case OP_AGGREGATE:
13487 case OP_OTHERS:
13488 case OP_DISCRETE_RANGE:
13489 case OP_POSITIONAL:
13490 case OP_CHOICES:
13491 break;
13492
13493 case OP_NAME:
13494 case OP_STRING:
13495 {
13496 char *name = &exp->elts[elt + 2].string;
13497 int len = longest_to_int (exp->elts[elt + 1].longconst);
13498
13499 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13500 break;
13501 }
13502
13503 default:
13504 return dump_subexp_body_standard (exp, stream, elt);
13505 }
13506
13507 elt += oplen;
13508 for (i = 0; i < nargs; i += 1)
13509 elt = dump_subexp (exp, stream, elt);
13510
13511 return elt;
13512 }
13513
13514 /* The Ada extension of print_subexp (q.v.). */
13515
13516 static void
13517 ada_print_subexp (struct expression *exp, int *pos,
13518 struct ui_file *stream, enum precedence prec)
13519 {
13520 int oplen, nargs, i;
13521 int pc = *pos;
13522 enum exp_opcode op = exp->elts[pc].opcode;
13523
13524 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13525
13526 *pos += oplen;
13527 switch (op)
13528 {
13529 default:
13530 *pos -= oplen;
13531 print_subexp_standard (exp, pos, stream, prec);
13532 return;
13533
13534 case OP_VAR_VALUE:
13535 fputs_filtered (exp->elts[pc + 2].symbol->natural_name (), stream);
13536 return;
13537
13538 case BINOP_IN_BOUNDS:
13539 /* XXX: sprint_subexp */
13540 print_subexp (exp, pos, stream, PREC_SUFFIX);
13541 fputs_filtered (" in ", stream);
13542 print_subexp (exp, pos, stream, PREC_SUFFIX);
13543 fputs_filtered ("'range", stream);
13544 if (exp->elts[pc + 1].longconst > 1)
13545 fprintf_filtered (stream, "(%ld)",
13546 (long) exp->elts[pc + 1].longconst);
13547 return;
13548
13549 case TERNOP_IN_RANGE:
13550 if (prec >= PREC_EQUAL)
13551 fputs_filtered ("(", stream);
13552 /* XXX: sprint_subexp */
13553 print_subexp (exp, pos, stream, PREC_SUFFIX);
13554 fputs_filtered (" in ", stream);
13555 print_subexp (exp, pos, stream, PREC_EQUAL);
13556 fputs_filtered (" .. ", stream);
13557 print_subexp (exp, pos, stream, PREC_EQUAL);
13558 if (prec >= PREC_EQUAL)
13559 fputs_filtered (")", stream);
13560 return;
13561
13562 case OP_ATR_FIRST:
13563 case OP_ATR_LAST:
13564 case OP_ATR_LENGTH:
13565 case OP_ATR_IMAGE:
13566 case OP_ATR_MAX:
13567 case OP_ATR_MIN:
13568 case OP_ATR_MODULUS:
13569 case OP_ATR_POS:
13570 case OP_ATR_SIZE:
13571 case OP_ATR_TAG:
13572 case OP_ATR_VAL:
13573 if (exp->elts[*pos].opcode == OP_TYPE)
13574 {
13575 if (exp->elts[*pos + 1].type->code () != TYPE_CODE_VOID)
13576 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13577 &type_print_raw_options);
13578 *pos += 3;
13579 }
13580 else
13581 print_subexp (exp, pos, stream, PREC_SUFFIX);
13582 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13583 if (nargs > 1)
13584 {
13585 int tem;
13586
13587 for (tem = 1; tem < nargs; tem += 1)
13588 {
13589 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13590 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13591 }
13592 fputs_filtered (")", stream);
13593 }
13594 return;
13595
13596 case UNOP_QUAL:
13597 type_print (exp->elts[pc + 1].type, "", stream, 0);
13598 fputs_filtered ("'(", stream);
13599 print_subexp (exp, pos, stream, PREC_PREFIX);
13600 fputs_filtered (")", stream);
13601 return;
13602
13603 case UNOP_IN_RANGE:
13604 /* XXX: sprint_subexp */
13605 print_subexp (exp, pos, stream, PREC_SUFFIX);
13606 fputs_filtered (" in ", stream);
13607 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13608 &type_print_raw_options);
13609 return;
13610
13611 case OP_DISCRETE_RANGE:
13612 print_subexp (exp, pos, stream, PREC_SUFFIX);
13613 fputs_filtered ("..", stream);
13614 print_subexp (exp, pos, stream, PREC_SUFFIX);
13615 return;
13616
13617 case OP_OTHERS:
13618 fputs_filtered ("others => ", stream);
13619 print_subexp (exp, pos, stream, PREC_SUFFIX);
13620 return;
13621
13622 case OP_CHOICES:
13623 for (i = 0; i < nargs-1; i += 1)
13624 {
13625 if (i > 0)
13626 fputs_filtered ("|", stream);
13627 print_subexp (exp, pos, stream, PREC_SUFFIX);
13628 }
13629 fputs_filtered (" => ", stream);
13630 print_subexp (exp, pos, stream, PREC_SUFFIX);
13631 return;
13632
13633 case OP_POSITIONAL:
13634 print_subexp (exp, pos, stream, PREC_SUFFIX);
13635 return;
13636
13637 case OP_AGGREGATE:
13638 fputs_filtered ("(", stream);
13639 for (i = 0; i < nargs; i += 1)
13640 {
13641 if (i > 0)
13642 fputs_filtered (", ", stream);
13643 print_subexp (exp, pos, stream, PREC_SUFFIX);
13644 }
13645 fputs_filtered (")", stream);
13646 return;
13647 }
13648 }
13649
13650 /* Table mapping opcodes into strings for printing operators
13651 and precedences of the operators. */
13652
13653 static const struct op_print ada_op_print_tab[] = {
13654 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13655 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13656 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13657 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13658 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13659 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13660 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13661 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13662 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13663 {">=", BINOP_GEQ, PREC_ORDER, 0},
13664 {">", BINOP_GTR, PREC_ORDER, 0},
13665 {"<", BINOP_LESS, PREC_ORDER, 0},
13666 {">>", BINOP_RSH, PREC_SHIFT, 0},
13667 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13668 {"+", BINOP_ADD, PREC_ADD, 0},
13669 {"-", BINOP_SUB, PREC_ADD, 0},
13670 {"&", BINOP_CONCAT, PREC_ADD, 0},
13671 {"*", BINOP_MUL, PREC_MUL, 0},
13672 {"/", BINOP_DIV, PREC_MUL, 0},
13673 {"rem", BINOP_REM, PREC_MUL, 0},
13674 {"mod", BINOP_MOD, PREC_MUL, 0},
13675 {"**", BINOP_EXP, PREC_REPEAT, 0},
13676 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13677 {"-", UNOP_NEG, PREC_PREFIX, 0},
13678 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13679 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13680 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13681 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
13682 {".all", UNOP_IND, PREC_SUFFIX, 1},
13683 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13684 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
13685 {NULL, OP_NULL, PREC_SUFFIX, 0}
13686 };
13687 \f
13688 enum ada_primitive_types {
13689 ada_primitive_type_int,
13690 ada_primitive_type_long,
13691 ada_primitive_type_short,
13692 ada_primitive_type_char,
13693 ada_primitive_type_float,
13694 ada_primitive_type_double,
13695 ada_primitive_type_void,
13696 ada_primitive_type_long_long,
13697 ada_primitive_type_long_double,
13698 ada_primitive_type_natural,
13699 ada_primitive_type_positive,
13700 ada_primitive_type_system_address,
13701 ada_primitive_type_storage_offset,
13702 nr_ada_primitive_types
13703 };
13704
13705 \f
13706 /* Language vector */
13707
13708 /* Not really used, but needed in the ada_language_defn. */
13709
13710 static void
13711 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
13712 {
13713 ada_emit_char (c, type, stream, quoter, 1);
13714 }
13715
13716 static int
13717 parse (struct parser_state *ps)
13718 {
13719 warnings_issued = 0;
13720 return ada_parse (ps);
13721 }
13722
13723 static const struct exp_descriptor ada_exp_descriptor = {
13724 ada_print_subexp,
13725 ada_operator_length,
13726 ada_operator_check,
13727 ada_op_name,
13728 ada_dump_subexp_body,
13729 ada_evaluate_subexp
13730 };
13731
13732 /* symbol_name_matcher_ftype adapter for wild_match. */
13733
13734 static bool
13735 do_wild_match (const char *symbol_search_name,
13736 const lookup_name_info &lookup_name,
13737 completion_match_result *comp_match_res)
13738 {
13739 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
13740 }
13741
13742 /* symbol_name_matcher_ftype adapter for full_match. */
13743
13744 static bool
13745 do_full_match (const char *symbol_search_name,
13746 const lookup_name_info &lookup_name,
13747 completion_match_result *comp_match_res)
13748 {
13749 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
13750 }
13751
13752 /* symbol_name_matcher_ftype for exact (verbatim) matches. */
13753
13754 static bool
13755 do_exact_match (const char *symbol_search_name,
13756 const lookup_name_info &lookup_name,
13757 completion_match_result *comp_match_res)
13758 {
13759 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
13760 }
13761
13762 /* Build the Ada lookup name for LOOKUP_NAME. */
13763
13764 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
13765 {
13766 gdb::string_view user_name = lookup_name.name ();
13767
13768 if (user_name[0] == '<')
13769 {
13770 if (user_name.back () == '>')
13771 m_encoded_name
13772 = user_name.substr (1, user_name.size () - 2).to_string ();
13773 else
13774 m_encoded_name
13775 = user_name.substr (1, user_name.size () - 1).to_string ();
13776 m_encoded_p = true;
13777 m_verbatim_p = true;
13778 m_wild_match_p = false;
13779 m_standard_p = false;
13780 }
13781 else
13782 {
13783 m_verbatim_p = false;
13784
13785 m_encoded_p = user_name.find ("__") != gdb::string_view::npos;
13786
13787 if (!m_encoded_p)
13788 {
13789 const char *folded = ada_fold_name (user_name);
13790 const char *encoded = ada_encode_1 (folded, false);
13791 if (encoded != NULL)
13792 m_encoded_name = encoded;
13793 else
13794 m_encoded_name = user_name.to_string ();
13795 }
13796 else
13797 m_encoded_name = user_name.to_string ();
13798
13799 /* Handle the 'package Standard' special case. See description
13800 of m_standard_p. */
13801 if (startswith (m_encoded_name.c_str (), "standard__"))
13802 {
13803 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
13804 m_standard_p = true;
13805 }
13806 else
13807 m_standard_p = false;
13808
13809 /* If the name contains a ".", then the user is entering a fully
13810 qualified entity name, and the match must not be done in wild
13811 mode. Similarly, if the user wants to complete what looks
13812 like an encoded name, the match must not be done in wild
13813 mode. Also, in the standard__ special case always do
13814 non-wild matching. */
13815 m_wild_match_p
13816 = (lookup_name.match_type () != symbol_name_match_type::FULL
13817 && !m_encoded_p
13818 && !m_standard_p
13819 && user_name.find ('.') == std::string::npos);
13820 }
13821 }
13822
13823 /* symbol_name_matcher_ftype method for Ada. This only handles
13824 completion mode. */
13825
13826 static bool
13827 ada_symbol_name_matches (const char *symbol_search_name,
13828 const lookup_name_info &lookup_name,
13829 completion_match_result *comp_match_res)
13830 {
13831 return lookup_name.ada ().matches (symbol_search_name,
13832 lookup_name.match_type (),
13833 comp_match_res);
13834 }
13835
13836 /* A name matcher that matches the symbol name exactly, with
13837 strcmp. */
13838
13839 static bool
13840 literal_symbol_name_matcher (const char *symbol_search_name,
13841 const lookup_name_info &lookup_name,
13842 completion_match_result *comp_match_res)
13843 {
13844 gdb::string_view name_view = lookup_name.name ();
13845
13846 if (lookup_name.completion_mode ()
13847 ? (strncmp (symbol_search_name, name_view.data (),
13848 name_view.size ()) == 0)
13849 : symbol_search_name == name_view)
13850 {
13851 if (comp_match_res != NULL)
13852 comp_match_res->set_match (symbol_search_name);
13853 return true;
13854 }
13855 else
13856 return false;
13857 }
13858
13859 /* Implement the "get_symbol_name_matcher" language_defn method for
13860 Ada. */
13861
13862 static symbol_name_matcher_ftype *
13863 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
13864 {
13865 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
13866 return literal_symbol_name_matcher;
13867
13868 if (lookup_name.completion_mode ())
13869 return ada_symbol_name_matches;
13870 else
13871 {
13872 if (lookup_name.ada ().wild_match_p ())
13873 return do_wild_match;
13874 else if (lookup_name.ada ().verbatim_p ())
13875 return do_exact_match;
13876 else
13877 return do_full_match;
13878 }
13879 }
13880
13881 static const char *ada_extensions[] =
13882 {
13883 ".adb", ".ads", ".a", ".ada", ".dg", NULL
13884 };
13885
13886 /* Constant data that describes the Ada language. */
13887
13888 extern const struct language_data ada_language_data =
13889 {
13890 "ada", /* Language name */
13891 "Ada",
13892 language_ada,
13893 range_check_off,
13894 case_sensitive_on, /* Yes, Ada is case-insensitive, but
13895 that's not quite what this means. */
13896 array_row_major,
13897 macro_expansion_no,
13898 ada_extensions,
13899 &ada_exp_descriptor,
13900 parse,
13901 resolve,
13902 ada_printchar, /* Print a character constant */
13903 ada_printstr, /* Function to print string constant */
13904 emit_char, /* Function to print single char (not used) */
13905 ada_print_typedef, /* Print a typedef using appropriate syntax */
13906 ada_value_print_inner, /* la_value_print_inner */
13907 ada_value_print, /* Print a top-level value */
13908 NULL, /* name_of_this */
13909 true, /* la_store_sym_names_in_linkage_form_p */
13910 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
13911 ada_op_print_tab, /* expression operators for printing */
13912 0, /* c-style arrays */
13913 1, /* String lower bound */
13914 ada_collect_symbol_completion_matches,
13915 ada_watch_location_expression,
13916 &ada_varobj_ops,
13917 ada_is_string_type,
13918 "(...)" /* la_struct_too_deep_ellipsis */
13919 };
13920
13921 /* Class representing the Ada language. */
13922
13923 class ada_language : public language_defn
13924 {
13925 public:
13926 ada_language ()
13927 : language_defn (language_ada, ada_language_data)
13928 { /* Nothing. */ }
13929
13930 /* Print an array element index using the Ada syntax. */
13931
13932 void print_array_index (struct type *index_type,
13933 LONGEST index,
13934 struct ui_file *stream,
13935 const value_print_options *options) const override
13936 {
13937 struct value *index_value = val_atr (index_type, index);
13938
13939 LA_VALUE_PRINT (index_value, stream, options);
13940 fprintf_filtered (stream, " => ");
13941 }
13942
13943 /* Implement the "read_var_value" language_defn method for Ada. */
13944
13945 struct value *read_var_value (struct symbol *var,
13946 const struct block *var_block,
13947 struct frame_info *frame) const override
13948 {
13949 /* The only case where default_read_var_value is not sufficient
13950 is when VAR is a renaming... */
13951 if (frame != nullptr)
13952 {
13953 const struct block *frame_block = get_frame_block (frame, NULL);
13954 if (frame_block != nullptr && ada_is_renaming_symbol (var))
13955 return ada_read_renaming_var_value (var, frame_block);
13956 }
13957
13958 /* This is a typical case where we expect the default_read_var_value
13959 function to work. */
13960 return language_defn::read_var_value (var, var_block, frame);
13961 }
13962
13963 /* See language.h. */
13964 void language_arch_info (struct gdbarch *gdbarch,
13965 struct language_arch_info *lai) const override
13966 {
13967 const struct builtin_type *builtin = builtin_type (gdbarch);
13968
13969 lai->primitive_type_vector
13970 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
13971 struct type *);
13972
13973 lai->primitive_type_vector [ada_primitive_type_int]
13974 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13975 0, "integer");
13976 lai->primitive_type_vector [ada_primitive_type_long]
13977 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13978 0, "long_integer");
13979 lai->primitive_type_vector [ada_primitive_type_short]
13980 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13981 0, "short_integer");
13982 lai->string_char_type
13983 = lai->primitive_type_vector [ada_primitive_type_char]
13984 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13985 lai->primitive_type_vector [ada_primitive_type_float]
13986 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13987 "float", gdbarch_float_format (gdbarch));
13988 lai->primitive_type_vector [ada_primitive_type_double]
13989 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13990 "long_float", gdbarch_double_format (gdbarch));
13991 lai->primitive_type_vector [ada_primitive_type_long_long]
13992 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13993 0, "long_long_integer");
13994 lai->primitive_type_vector [ada_primitive_type_long_double]
13995 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
13996 "long_long_float", gdbarch_long_double_format (gdbarch));
13997 lai->primitive_type_vector [ada_primitive_type_natural]
13998 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13999 0, "natural");
14000 lai->primitive_type_vector [ada_primitive_type_positive]
14001 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14002 0, "positive");
14003 lai->primitive_type_vector [ada_primitive_type_void]
14004 = builtin->builtin_void;
14005
14006 lai->primitive_type_vector [ada_primitive_type_system_address]
14007 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
14008 "void"));
14009 lai->primitive_type_vector [ada_primitive_type_system_address]
14010 ->set_name ("system__address");
14011
14012 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
14013 type. This is a signed integral type whose size is the same as
14014 the size of addresses. */
14015 {
14016 unsigned int addr_length = TYPE_LENGTH
14017 (lai->primitive_type_vector [ada_primitive_type_system_address]);
14018
14019 lai->primitive_type_vector [ada_primitive_type_storage_offset]
14020 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
14021 "storage_offset");
14022 }
14023
14024 lai->bool_type_symbol = NULL;
14025 lai->bool_type_default = builtin->builtin_bool;
14026 }
14027
14028 /* See language.h. */
14029
14030 bool iterate_over_symbols
14031 (const struct block *block, const lookup_name_info &name,
14032 domain_enum domain,
14033 gdb::function_view<symbol_found_callback_ftype> callback) const override
14034 {
14035 std::vector<struct block_symbol> results;
14036
14037 ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
14038 for (block_symbol &sym : results)
14039 {
14040 if (!callback (&sym))
14041 return false;
14042 }
14043
14044 return true;
14045 }
14046
14047 /* See language.h. */
14048 bool sniff_from_mangled_name (const char *mangled,
14049 char **out) const override
14050 {
14051 std::string demangled = ada_decode (mangled);
14052
14053 *out = NULL;
14054
14055 if (demangled != mangled && demangled[0] != '<')
14056 {
14057 /* Set the gsymbol language to Ada, but still return 0.
14058 Two reasons for that:
14059
14060 1. For Ada, we prefer computing the symbol's decoded name
14061 on the fly rather than pre-compute it, in order to save
14062 memory (Ada projects are typically very large).
14063
14064 2. There are some areas in the definition of the GNAT
14065 encoding where, with a bit of bad luck, we might be able
14066 to decode a non-Ada symbol, generating an incorrect
14067 demangled name (Eg: names ending with "TB" for instance
14068 are identified as task bodies and so stripped from
14069 the decoded name returned).
14070
14071 Returning true, here, but not setting *DEMANGLED, helps us get
14072 a little bit of the best of both worlds. Because we're last,
14073 we should not affect any of the other languages that were
14074 able to demangle the symbol before us; we get to correctly
14075 tag Ada symbols as such; and even if we incorrectly tagged a
14076 non-Ada symbol, which should be rare, any routing through the
14077 Ada language should be transparent (Ada tries to behave much
14078 like C/C++ with non-Ada symbols). */
14079 return true;
14080 }
14081
14082 return false;
14083 }
14084
14085 /* See language.h. */
14086
14087 char *demangle (const char *mangled, int options) const override
14088 {
14089 return ada_la_decode (mangled, options);
14090 }
14091
14092 /* See language.h. */
14093
14094 void print_type (struct type *type, const char *varstring,
14095 struct ui_file *stream, int show, int level,
14096 const struct type_print_options *flags) const override
14097 {
14098 ada_print_type (type, varstring, stream, show, level, flags);
14099 }
14100
14101 /* See language.h. */
14102
14103 const char *word_break_characters (void) const override
14104 {
14105 return ada_completer_word_break_characters;
14106 }
14107
14108 protected:
14109 /* See language.h. */
14110
14111 symbol_name_matcher_ftype *get_symbol_name_matcher_inner
14112 (const lookup_name_info &lookup_name) const override
14113 {
14114 return ada_get_symbol_name_matcher (lookup_name);
14115 }
14116 };
14117
14118 /* Single instance of the Ada language class. */
14119
14120 static ada_language ada_language_defn;
14121
14122 /* Command-list for the "set/show ada" prefix command. */
14123 static struct cmd_list_element *set_ada_list;
14124 static struct cmd_list_element *show_ada_list;
14125
14126 static void
14127 initialize_ada_catchpoint_ops (void)
14128 {
14129 struct breakpoint_ops *ops;
14130
14131 initialize_breakpoint_ops ();
14132
14133 ops = &catch_exception_breakpoint_ops;
14134 *ops = bkpt_breakpoint_ops;
14135 ops->allocate_location = allocate_location_exception;
14136 ops->re_set = re_set_exception;
14137 ops->check_status = check_status_exception;
14138 ops->print_it = print_it_exception;
14139 ops->print_one = print_one_exception;
14140 ops->print_mention = print_mention_exception;
14141 ops->print_recreate = print_recreate_exception;
14142
14143 ops = &catch_exception_unhandled_breakpoint_ops;
14144 *ops = bkpt_breakpoint_ops;
14145 ops->allocate_location = allocate_location_exception;
14146 ops->re_set = re_set_exception;
14147 ops->check_status = check_status_exception;
14148 ops->print_it = print_it_exception;
14149 ops->print_one = print_one_exception;
14150 ops->print_mention = print_mention_exception;
14151 ops->print_recreate = print_recreate_exception;
14152
14153 ops = &catch_assert_breakpoint_ops;
14154 *ops = bkpt_breakpoint_ops;
14155 ops->allocate_location = allocate_location_exception;
14156 ops->re_set = re_set_exception;
14157 ops->check_status = check_status_exception;
14158 ops->print_it = print_it_exception;
14159 ops->print_one = print_one_exception;
14160 ops->print_mention = print_mention_exception;
14161 ops->print_recreate = print_recreate_exception;
14162
14163 ops = &catch_handlers_breakpoint_ops;
14164 *ops = bkpt_breakpoint_ops;
14165 ops->allocate_location = allocate_location_exception;
14166 ops->re_set = re_set_exception;
14167 ops->check_status = check_status_exception;
14168 ops->print_it = print_it_exception;
14169 ops->print_one = print_one_exception;
14170 ops->print_mention = print_mention_exception;
14171 ops->print_recreate = print_recreate_exception;
14172 }
14173
14174 /* This module's 'new_objfile' observer. */
14175
14176 static void
14177 ada_new_objfile_observer (struct objfile *objfile)
14178 {
14179 ada_clear_symbol_cache ();
14180 }
14181
14182 /* This module's 'free_objfile' observer. */
14183
14184 static void
14185 ada_free_objfile_observer (struct objfile *objfile)
14186 {
14187 ada_clear_symbol_cache ();
14188 }
14189
14190 void _initialize_ada_language ();
14191 void
14192 _initialize_ada_language ()
14193 {
14194 initialize_ada_catchpoint_ops ();
14195
14196 add_basic_prefix_cmd ("ada", no_class,
14197 _("Prefix command for changing Ada-specific settings."),
14198 &set_ada_list, "set ada ", 0, &setlist);
14199
14200 add_show_prefix_cmd ("ada", no_class,
14201 _("Generic command for showing Ada-specific settings."),
14202 &show_ada_list, "show ada ", 0, &showlist);
14203
14204 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14205 &trust_pad_over_xvs, _("\
14206 Enable or disable an optimization trusting PAD types over XVS types."), _("\
14207 Show whether an optimization trusting PAD types over XVS types is activated."),
14208 _("\
14209 This is related to the encoding used by the GNAT compiler. The debugger\n\
14210 should normally trust the contents of PAD types, but certain older versions\n\
14211 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14212 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14213 work around this bug. It is always safe to turn this option \"off\", but\n\
14214 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14215 this option to \"off\" unless necessary."),
14216 NULL, NULL, &set_ada_list, &show_ada_list);
14217
14218 add_setshow_boolean_cmd ("print-signatures", class_vars,
14219 &print_signatures, _("\
14220 Enable or disable the output of formal and return types for functions in the \
14221 overloads selection menu."), _("\
14222 Show whether the output of formal and return types for functions in the \
14223 overloads selection menu is activated."),
14224 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14225
14226 add_catch_command ("exception", _("\
14227 Catch Ada exceptions, when raised.\n\
14228 Usage: catch exception [ARG] [if CONDITION]\n\
14229 Without any argument, stop when any Ada exception is raised.\n\
14230 If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
14231 being raised does not have a handler (and will therefore lead to the task's\n\
14232 termination).\n\
14233 Otherwise, the catchpoint only stops when the name of the exception being\n\
14234 raised is the same as ARG.\n\
14235 CONDITION is a boolean expression that is evaluated to see whether the\n\
14236 exception should cause a stop."),
14237 catch_ada_exception_command,
14238 catch_ada_completer,
14239 CATCH_PERMANENT,
14240 CATCH_TEMPORARY);
14241
14242 add_catch_command ("handlers", _("\
14243 Catch Ada exceptions, when handled.\n\
14244 Usage: catch handlers [ARG] [if CONDITION]\n\
14245 Without any argument, stop when any Ada exception is handled.\n\
14246 With an argument, catch only exceptions with the given name.\n\
14247 CONDITION is a boolean expression that is evaluated to see whether the\n\
14248 exception should cause a stop."),
14249 catch_ada_handlers_command,
14250 catch_ada_completer,
14251 CATCH_PERMANENT,
14252 CATCH_TEMPORARY);
14253 add_catch_command ("assert", _("\
14254 Catch failed Ada assertions, when raised.\n\
14255 Usage: catch assert [if CONDITION]\n\
14256 CONDITION is a boolean expression that is evaluated to see whether the\n\
14257 exception should cause a stop."),
14258 catch_assert_command,
14259 NULL,
14260 CATCH_PERMANENT,
14261 CATCH_TEMPORARY);
14262
14263 varsize_limit = 65536;
14264 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14265 &varsize_limit, _("\
14266 Set the maximum number of bytes allowed in a variable-size object."), _("\
14267 Show the maximum number of bytes allowed in a variable-size object."), _("\
14268 Attempts to access an object whose size is not a compile-time constant\n\
14269 and exceeds this limit will cause an error."),
14270 NULL, NULL, &setlist, &showlist);
14271
14272 add_info ("exceptions", info_exceptions_command,
14273 _("\
14274 List all Ada exception names.\n\
14275 Usage: info exceptions [REGEXP]\n\
14276 If a regular expression is passed as an argument, only those matching\n\
14277 the regular expression are listed."));
14278
14279 add_basic_prefix_cmd ("ada", class_maintenance,
14280 _("Set Ada maintenance-related variables."),
14281 &maint_set_ada_cmdlist, "maintenance set ada ",
14282 0/*allow-unknown*/, &maintenance_set_cmdlist);
14283
14284 add_show_prefix_cmd ("ada", class_maintenance,
14285 _("Show Ada maintenance-related variables."),
14286 &maint_show_ada_cmdlist, "maintenance show ada ",
14287 0/*allow-unknown*/, &maintenance_show_cmdlist);
14288
14289 add_setshow_boolean_cmd
14290 ("ignore-descriptive-types", class_maintenance,
14291 &ada_ignore_descriptive_types_p,
14292 _("Set whether descriptive types generated by GNAT should be ignored."),
14293 _("Show whether descriptive types generated by GNAT should be ignored."),
14294 _("\
14295 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14296 DWARF attribute."),
14297 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14298
14299 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14300 NULL, xcalloc, xfree);
14301
14302 /* The ada-lang observers. */
14303 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14304 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14305 gdb::observers::inferior_exit.attach (ada_inferior_exit);
14306 }
This page took 0.329885 seconds and 4 git commands to generate.