2063f3de3c813fb32ae6df588bbb93dd3b80e31f
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger. Copyright (C)
2
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007, 2008,
4 2009 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include "defs.h"
23 #include <stdio.h>
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include <stdarg.h>
27 #include "demangle.h"
28 #include "gdb_regex.h"
29 #include "frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35 #include "language.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include "gdb_stat.h"
47 #ifdef UI_OUT
48 #include "ui-out.h"
49 #endif
50 #include "block.h"
51 #include "infcall.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
54 #include "annotate.h"
55 #include "valprint.h"
56 #include "source.h"
57 #include "observer.h"
58 #include "vec.h"
59 #include "stack.h"
60
61 #include "psymtab.h"
62 #include "value.h"
63
64 /* Define whether or not the C operator '/' truncates towards zero for
65 differently signed operands (truncation direction is undefined in C).
66 Copied from valarith.c. */
67
68 #ifndef TRUNCATION_TOWARDS_ZERO
69 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
70 #endif
71
72 static struct type *desc_base_type (struct type *);
73
74 static struct type *desc_bounds_type (struct type *);
75
76 static struct value *desc_bounds (struct value *);
77
78 static int fat_pntr_bounds_bitpos (struct type *);
79
80 static int fat_pntr_bounds_bitsize (struct type *);
81
82 static struct type *desc_data_target_type (struct type *);
83
84 static struct value *desc_data (struct value *);
85
86 static int fat_pntr_data_bitpos (struct type *);
87
88 static int fat_pntr_data_bitsize (struct type *);
89
90 static struct value *desc_one_bound (struct value *, int, int);
91
92 static int desc_bound_bitpos (struct type *, int, int);
93
94 static int desc_bound_bitsize (struct type *, int, int);
95
96 static struct type *desc_index_type (struct type *, int);
97
98 static int desc_arity (struct type *);
99
100 static int ada_type_match (struct type *, struct type *, int);
101
102 static int ada_args_match (struct symbol *, struct value **, int);
103
104 static int full_match (const char *, const char *);
105
106 static struct value *make_array_descriptor (struct type *, struct value *);
107
108 static void ada_add_block_symbols (struct obstack *,
109 struct block *, const char *,
110 domain_enum, struct objfile *, int);
111
112 static int is_nonfunction (struct ada_symbol_info *, int);
113
114 static void add_defn_to_vec (struct obstack *, struct symbol *,
115 struct block *);
116
117 static int num_defns_collected (struct obstack *);
118
119 static struct ada_symbol_info *defns_collected (struct obstack *, int);
120
121 static struct value *resolve_subexp (struct expression **, int *, int,
122 struct type *);
123
124 static void replace_operator_with_call (struct expression **, int, int, int,
125 struct symbol *, struct block *);
126
127 static int possible_user_operator_p (enum exp_opcode, struct value **);
128
129 static char *ada_op_name (enum exp_opcode);
130
131 static const char *ada_decoded_op_name (enum exp_opcode);
132
133 static int numeric_type_p (struct type *);
134
135 static int integer_type_p (struct type *);
136
137 static int scalar_type_p (struct type *);
138
139 static int discrete_type_p (struct type *);
140
141 static enum ada_renaming_category parse_old_style_renaming (struct type *,
142 const char **,
143 int *,
144 const char **);
145
146 static struct symbol *find_old_style_renaming_symbol (const char *,
147 struct block *);
148
149 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
150 int, int, int *);
151
152 static struct value *evaluate_subexp_type (struct expression *, int *);
153
154 static struct type *ada_find_parallel_type_with_name (struct type *,
155 const char *);
156
157 static int is_dynamic_field (struct type *, int);
158
159 static struct type *to_fixed_variant_branch_type (struct type *,
160 const gdb_byte *,
161 CORE_ADDR, struct value *);
162
163 static struct type *to_fixed_array_type (struct type *, struct value *, int);
164
165 static struct type *to_fixed_range_type (struct type *, struct value *);
166
167 static struct type *to_static_fixed_type (struct type *);
168 static struct type *static_unwrap_type (struct type *type);
169
170 static struct value *unwrap_value (struct value *);
171
172 static struct type *constrained_packed_array_type (struct type *, long *);
173
174 static struct type *decode_constrained_packed_array_type (struct type *);
175
176 static long decode_packed_array_bitsize (struct type *);
177
178 static struct value *decode_constrained_packed_array (struct value *);
179
180 static int ada_is_packed_array_type (struct type *);
181
182 static int ada_is_unconstrained_packed_array_type (struct type *);
183
184 static struct value *value_subscript_packed (struct value *, int,
185 struct value **);
186
187 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
188
189 static struct value *coerce_unspec_val_to_type (struct value *,
190 struct type *);
191
192 static struct value *get_var_value (char *, char *);
193
194 static int lesseq_defined_than (struct symbol *, struct symbol *);
195
196 static int equiv_types (struct type *, struct type *);
197
198 static int is_name_suffix (const char *);
199
200 static int advance_wild_match (const char **, const char *, int);
201
202 static int wild_match (const char *, const char *);
203
204 static struct value *ada_coerce_ref (struct value *);
205
206 static LONGEST pos_atr (struct value *);
207
208 static struct value *value_pos_atr (struct type *, struct value *);
209
210 static struct value *value_val_atr (struct type *, struct value *);
211
212 static struct symbol *standard_lookup (const char *, const struct block *,
213 domain_enum);
214
215 static struct value *ada_search_struct_field (char *, struct value *, int,
216 struct type *);
217
218 static struct value *ada_value_primitive_field (struct value *, int, int,
219 struct type *);
220
221 static int find_struct_field (char *, struct type *, int,
222 struct type **, int *, int *, int *, int *);
223
224 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
225 struct value *);
226
227 static int ada_resolve_function (struct ada_symbol_info *, int,
228 struct value **, int, const char *,
229 struct type *);
230
231 static int ada_is_direct_array_type (struct type *);
232
233 static void ada_language_arch_info (struct gdbarch *,
234 struct language_arch_info *);
235
236 static void check_size (const struct type *);
237
238 static struct value *ada_index_struct_field (int, struct value *, int,
239 struct type *);
240
241 static struct value *assign_aggregate (struct value *, struct value *,
242 struct expression *,
243 int *, enum noside);
244
245 static void aggregate_assign_from_choices (struct value *, struct value *,
246 struct expression *,
247 int *, LONGEST *, int *,
248 int, LONGEST, LONGEST);
249
250 static void aggregate_assign_positional (struct value *, struct value *,
251 struct expression *,
252 int *, LONGEST *, int *, int,
253 LONGEST, LONGEST);
254
255
256 static void aggregate_assign_others (struct value *, struct value *,
257 struct expression *,
258 int *, LONGEST *, int, LONGEST, LONGEST);
259
260
261 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
262
263
264 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
265 int *, enum noside);
266
267 static void ada_forward_operator_length (struct expression *, int, int *,
268 int *);
269 \f
270
271
272 /* Maximum-sized dynamic type. */
273 static unsigned int varsize_limit;
274
275 /* FIXME: brobecker/2003-09-17: No longer a const because it is
276 returned by a function that does not return a const char *. */
277 static char *ada_completer_word_break_characters =
278 #ifdef VMS
279 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
280 #else
281 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
282 #endif
283
284 /* The name of the symbol to use to get the name of the main subprogram. */
285 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
286 = "__gnat_ada_main_program_name";
287
288 /* Limit on the number of warnings to raise per expression evaluation. */
289 static int warning_limit = 2;
290
291 /* Number of warning messages issued; reset to 0 by cleanups after
292 expression evaluation. */
293 static int warnings_issued = 0;
294
295 static const char *known_runtime_file_name_patterns[] = {
296 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
297 };
298
299 static const char *known_auxiliary_function_name_patterns[] = {
300 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
301 };
302
303 /* Space for allocating results of ada_lookup_symbol_list. */
304 static struct obstack symbol_list_obstack;
305
306 /* Inferior-specific data. */
307
308 /* Per-inferior data for this module. */
309
310 struct ada_inferior_data
311 {
312 /* The ada__tags__type_specific_data type, which is used when decoding
313 tagged types. With older versions of GNAT, this type was directly
314 accessible through a component ("tsd") in the object tag. But this
315 is no longer the case, so we cache it for each inferior. */
316 struct type *tsd_type;
317 };
318
319 /* Our key to this module's inferior data. */
320 static const struct inferior_data *ada_inferior_data;
321
322 /* A cleanup routine for our inferior data. */
323 static void
324 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
325 {
326 struct ada_inferior_data *data;
327
328 data = inferior_data (inf, ada_inferior_data);
329 if (data != NULL)
330 xfree (data);
331 }
332
333 /* Return our inferior data for the given inferior (INF).
334
335 This function always returns a valid pointer to an allocated
336 ada_inferior_data structure. If INF's inferior data has not
337 been previously set, this functions creates a new one with all
338 fields set to zero, sets INF's inferior to it, and then returns
339 a pointer to that newly allocated ada_inferior_data. */
340
341 static struct ada_inferior_data *
342 get_ada_inferior_data (struct inferior *inf)
343 {
344 struct ada_inferior_data *data;
345
346 data = inferior_data (inf, ada_inferior_data);
347 if (data == NULL)
348 {
349 data = XZALLOC (struct ada_inferior_data);
350 set_inferior_data (inf, ada_inferior_data, data);
351 }
352
353 return data;
354 }
355
356 /* Perform all necessary cleanups regarding our module's inferior data
357 that is required after the inferior INF just exited. */
358
359 static void
360 ada_inferior_exit (struct inferior *inf)
361 {
362 ada_inferior_data_cleanup (inf, NULL);
363 set_inferior_data (inf, ada_inferior_data, NULL);
364 }
365
366 /* Utilities */
367
368 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
369 all typedef layers have been peeled. Otherwise, return TYPE.
370
371 Normally, we really expect a typedef type to only have 1 typedef layer.
372 In other words, we really expect the target type of a typedef type to be
373 a non-typedef type. This is particularly true for Ada units, because
374 the language does not have a typedef vs not-typedef distinction.
375 In that respect, the Ada compiler has been trying to eliminate as many
376 typedef definitions in the debugging information, since they generally
377 do not bring any extra information (we still use typedef under certain
378 circumstances related mostly to the GNAT encoding).
379
380 Unfortunately, we have seen situations where the debugging information
381 generated by the compiler leads to such multiple typedef layers. For
382 instance, consider the following example with stabs:
383
384 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
385 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
386
387 This is an error in the debugging information which causes type
388 pck__float_array___XUP to be defined twice, and the second time,
389 it is defined as a typedef of a typedef.
390
391 This is on the fringe of legality as far as debugging information is
392 concerned, and certainly unexpected. But it is easy to handle these
393 situations correctly, so we can afford to be lenient in this case. */
394
395 static struct type *
396 ada_typedef_target_type (struct type *type)
397 {
398 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
399 type = TYPE_TARGET_TYPE (type);
400 return type;
401 }
402
403 /* Given DECODED_NAME a string holding a symbol name in its
404 decoded form (ie using the Ada dotted notation), returns
405 its unqualified name. */
406
407 static const char *
408 ada_unqualified_name (const char *decoded_name)
409 {
410 const char *result = strrchr (decoded_name, '.');
411
412 if (result != NULL)
413 result++; /* Skip the dot... */
414 else
415 result = decoded_name;
416
417 return result;
418 }
419
420 /* Return a string starting with '<', followed by STR, and '>'.
421 The result is good until the next call. */
422
423 static char *
424 add_angle_brackets (const char *str)
425 {
426 static char *result = NULL;
427
428 xfree (result);
429 result = xstrprintf ("<%s>", str);
430 return result;
431 }
432
433 static char *
434 ada_get_gdb_completer_word_break_characters (void)
435 {
436 return ada_completer_word_break_characters;
437 }
438
439 /* Print an array element index using the Ada syntax. */
440
441 static void
442 ada_print_array_index (struct value *index_value, struct ui_file *stream,
443 const struct value_print_options *options)
444 {
445 LA_VALUE_PRINT (index_value, stream, options);
446 fprintf_filtered (stream, " => ");
447 }
448
449 /* Assuming VECT points to an array of *SIZE objects of size
450 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
451 updating *SIZE as necessary and returning the (new) array. */
452
453 void *
454 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
455 {
456 if (*size < min_size)
457 {
458 *size *= 2;
459 if (*size < min_size)
460 *size = min_size;
461 vect = xrealloc (vect, *size * element_size);
462 }
463 return vect;
464 }
465
466 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
467 suffix of FIELD_NAME beginning "___". */
468
469 static int
470 field_name_match (const char *field_name, const char *target)
471 {
472 int len = strlen (target);
473
474 return
475 (strncmp (field_name, target, len) == 0
476 && (field_name[len] == '\0'
477 || (strncmp (field_name + len, "___", 3) == 0
478 && strcmp (field_name + strlen (field_name) - 6,
479 "___XVN") != 0)));
480 }
481
482
483 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
484 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
485 and return its index. This function also handles fields whose name
486 have ___ suffixes because the compiler sometimes alters their name
487 by adding such a suffix to represent fields with certain constraints.
488 If the field could not be found, return a negative number if
489 MAYBE_MISSING is set. Otherwise raise an error. */
490
491 int
492 ada_get_field_index (const struct type *type, const char *field_name,
493 int maybe_missing)
494 {
495 int fieldno;
496 struct type *struct_type = check_typedef ((struct type *) type);
497
498 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
499 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
500 return fieldno;
501
502 if (!maybe_missing)
503 error (_("Unable to find field %s in struct %s. Aborting"),
504 field_name, TYPE_NAME (struct_type));
505
506 return -1;
507 }
508
509 /* The length of the prefix of NAME prior to any "___" suffix. */
510
511 int
512 ada_name_prefix_len (const char *name)
513 {
514 if (name == NULL)
515 return 0;
516 else
517 {
518 const char *p = strstr (name, "___");
519
520 if (p == NULL)
521 return strlen (name);
522 else
523 return p - name;
524 }
525 }
526
527 /* Return non-zero if SUFFIX is a suffix of STR.
528 Return zero if STR is null. */
529
530 static int
531 is_suffix (const char *str, const char *suffix)
532 {
533 int len1, len2;
534
535 if (str == NULL)
536 return 0;
537 len1 = strlen (str);
538 len2 = strlen (suffix);
539 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
540 }
541
542 /* The contents of value VAL, treated as a value of type TYPE. The
543 result is an lval in memory if VAL is. */
544
545 static struct value *
546 coerce_unspec_val_to_type (struct value *val, struct type *type)
547 {
548 type = ada_check_typedef (type);
549 if (value_type (val) == type)
550 return val;
551 else
552 {
553 struct value *result;
554
555 /* Make sure that the object size is not unreasonable before
556 trying to allocate some memory for it. */
557 check_size (type);
558
559 if (value_lazy (val)
560 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
561 result = allocate_value_lazy (type);
562 else
563 {
564 result = allocate_value (type);
565 memcpy (value_contents_raw (result), value_contents (val),
566 TYPE_LENGTH (type));
567 }
568 set_value_component_location (result, val);
569 set_value_bitsize (result, value_bitsize (val));
570 set_value_bitpos (result, value_bitpos (val));
571 set_value_address (result, value_address (val));
572 return result;
573 }
574 }
575
576 static const gdb_byte *
577 cond_offset_host (const gdb_byte *valaddr, long offset)
578 {
579 if (valaddr == NULL)
580 return NULL;
581 else
582 return valaddr + offset;
583 }
584
585 static CORE_ADDR
586 cond_offset_target (CORE_ADDR address, long offset)
587 {
588 if (address == 0)
589 return 0;
590 else
591 return address + offset;
592 }
593
594 /* Issue a warning (as for the definition of warning in utils.c, but
595 with exactly one argument rather than ...), unless the limit on the
596 number of warnings has passed during the evaluation of the current
597 expression. */
598
599 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
600 provided by "complaint". */
601 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
602
603 static void
604 lim_warning (const char *format, ...)
605 {
606 va_list args;
607
608 va_start (args, format);
609 warnings_issued += 1;
610 if (warnings_issued <= warning_limit)
611 vwarning (format, args);
612
613 va_end (args);
614 }
615
616 /* Issue an error if the size of an object of type T is unreasonable,
617 i.e. if it would be a bad idea to allocate a value of this type in
618 GDB. */
619
620 static void
621 check_size (const struct type *type)
622 {
623 if (TYPE_LENGTH (type) > varsize_limit)
624 error (_("object size is larger than varsize-limit"));
625 }
626
627 /* Maximum value of a SIZE-byte signed integer type. */
628 static LONGEST
629 max_of_size (int size)
630 {
631 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
632
633 return top_bit | (top_bit - 1);
634 }
635
636 /* Minimum value of a SIZE-byte signed integer type. */
637 static LONGEST
638 min_of_size (int size)
639 {
640 return -max_of_size (size) - 1;
641 }
642
643 /* Maximum value of a SIZE-byte unsigned integer type. */
644 static ULONGEST
645 umax_of_size (int size)
646 {
647 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
648
649 return top_bit | (top_bit - 1);
650 }
651
652 /* Maximum value of integral type T, as a signed quantity. */
653 static LONGEST
654 max_of_type (struct type *t)
655 {
656 if (TYPE_UNSIGNED (t))
657 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
658 else
659 return max_of_size (TYPE_LENGTH (t));
660 }
661
662 /* Minimum value of integral type T, as a signed quantity. */
663 static LONGEST
664 min_of_type (struct type *t)
665 {
666 if (TYPE_UNSIGNED (t))
667 return 0;
668 else
669 return min_of_size (TYPE_LENGTH (t));
670 }
671
672 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
673 LONGEST
674 ada_discrete_type_high_bound (struct type *type)
675 {
676 switch (TYPE_CODE (type))
677 {
678 case TYPE_CODE_RANGE:
679 return TYPE_HIGH_BOUND (type);
680 case TYPE_CODE_ENUM:
681 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
682 case TYPE_CODE_BOOL:
683 return 1;
684 case TYPE_CODE_CHAR:
685 case TYPE_CODE_INT:
686 return max_of_type (type);
687 default:
688 error (_("Unexpected type in ada_discrete_type_high_bound."));
689 }
690 }
691
692 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
693 LONGEST
694 ada_discrete_type_low_bound (struct type *type)
695 {
696 switch (TYPE_CODE (type))
697 {
698 case TYPE_CODE_RANGE:
699 return TYPE_LOW_BOUND (type);
700 case TYPE_CODE_ENUM:
701 return TYPE_FIELD_BITPOS (type, 0);
702 case TYPE_CODE_BOOL:
703 return 0;
704 case TYPE_CODE_CHAR:
705 case TYPE_CODE_INT:
706 return min_of_type (type);
707 default:
708 error (_("Unexpected type in ada_discrete_type_low_bound."));
709 }
710 }
711
712 /* The identity on non-range types. For range types, the underlying
713 non-range scalar type. */
714
715 static struct type *
716 base_type (struct type *type)
717 {
718 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
719 {
720 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
721 return type;
722 type = TYPE_TARGET_TYPE (type);
723 }
724 return type;
725 }
726 \f
727
728 /* Language Selection */
729
730 /* If the main program is in Ada, return language_ada, otherwise return LANG
731 (the main program is in Ada iif the adainit symbol is found). */
732
733 enum language
734 ada_update_initial_language (enum language lang)
735 {
736 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
737 (struct objfile *) NULL) != NULL)
738 return language_ada;
739
740 return lang;
741 }
742
743 /* If the main procedure is written in Ada, then return its name.
744 The result is good until the next call. Return NULL if the main
745 procedure doesn't appear to be in Ada. */
746
747 char *
748 ada_main_name (void)
749 {
750 struct minimal_symbol *msym;
751 static char *main_program_name = NULL;
752
753 /* For Ada, the name of the main procedure is stored in a specific
754 string constant, generated by the binder. Look for that symbol,
755 extract its address, and then read that string. If we didn't find
756 that string, then most probably the main procedure is not written
757 in Ada. */
758 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
759
760 if (msym != NULL)
761 {
762 CORE_ADDR main_program_name_addr;
763 int err_code;
764
765 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
766 if (main_program_name_addr == 0)
767 error (_("Invalid address for Ada main program name."));
768
769 xfree (main_program_name);
770 target_read_string (main_program_name_addr, &main_program_name,
771 1024, &err_code);
772
773 if (err_code != 0)
774 return NULL;
775 return main_program_name;
776 }
777
778 /* The main procedure doesn't seem to be in Ada. */
779 return NULL;
780 }
781 \f
782 /* Symbols */
783
784 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
785 of NULLs. */
786
787 const struct ada_opname_map ada_opname_table[] = {
788 {"Oadd", "\"+\"", BINOP_ADD},
789 {"Osubtract", "\"-\"", BINOP_SUB},
790 {"Omultiply", "\"*\"", BINOP_MUL},
791 {"Odivide", "\"/\"", BINOP_DIV},
792 {"Omod", "\"mod\"", BINOP_MOD},
793 {"Orem", "\"rem\"", BINOP_REM},
794 {"Oexpon", "\"**\"", BINOP_EXP},
795 {"Olt", "\"<\"", BINOP_LESS},
796 {"Ole", "\"<=\"", BINOP_LEQ},
797 {"Ogt", "\">\"", BINOP_GTR},
798 {"Oge", "\">=\"", BINOP_GEQ},
799 {"Oeq", "\"=\"", BINOP_EQUAL},
800 {"One", "\"/=\"", BINOP_NOTEQUAL},
801 {"Oand", "\"and\"", BINOP_BITWISE_AND},
802 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
803 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
804 {"Oconcat", "\"&\"", BINOP_CONCAT},
805 {"Oabs", "\"abs\"", UNOP_ABS},
806 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
807 {"Oadd", "\"+\"", UNOP_PLUS},
808 {"Osubtract", "\"-\"", UNOP_NEG},
809 {NULL, NULL}
810 };
811
812 /* The "encoded" form of DECODED, according to GNAT conventions.
813 The result is valid until the next call to ada_encode. */
814
815 char *
816 ada_encode (const char *decoded)
817 {
818 static char *encoding_buffer = NULL;
819 static size_t encoding_buffer_size = 0;
820 const char *p;
821 int k;
822
823 if (decoded == NULL)
824 return NULL;
825
826 GROW_VECT (encoding_buffer, encoding_buffer_size,
827 2 * strlen (decoded) + 10);
828
829 k = 0;
830 for (p = decoded; *p != '\0'; p += 1)
831 {
832 if (*p == '.')
833 {
834 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
835 k += 2;
836 }
837 else if (*p == '"')
838 {
839 const struct ada_opname_map *mapping;
840
841 for (mapping = ada_opname_table;
842 mapping->encoded != NULL
843 && strncmp (mapping->decoded, p,
844 strlen (mapping->decoded)) != 0; mapping += 1)
845 ;
846 if (mapping->encoded == NULL)
847 error (_("invalid Ada operator name: %s"), p);
848 strcpy (encoding_buffer + k, mapping->encoded);
849 k += strlen (mapping->encoded);
850 break;
851 }
852 else
853 {
854 encoding_buffer[k] = *p;
855 k += 1;
856 }
857 }
858
859 encoding_buffer[k] = '\0';
860 return encoding_buffer;
861 }
862
863 /* Return NAME folded to lower case, or, if surrounded by single
864 quotes, unfolded, but with the quotes stripped away. Result good
865 to next call. */
866
867 char *
868 ada_fold_name (const char *name)
869 {
870 static char *fold_buffer = NULL;
871 static size_t fold_buffer_size = 0;
872
873 int len = strlen (name);
874 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
875
876 if (name[0] == '\'')
877 {
878 strncpy (fold_buffer, name + 1, len - 2);
879 fold_buffer[len - 2] = '\000';
880 }
881 else
882 {
883 int i;
884
885 for (i = 0; i <= len; i += 1)
886 fold_buffer[i] = tolower (name[i]);
887 }
888
889 return fold_buffer;
890 }
891
892 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
893
894 static int
895 is_lower_alphanum (const char c)
896 {
897 return (isdigit (c) || (isalpha (c) && islower (c)));
898 }
899
900 /* Remove either of these suffixes:
901 . .{DIGIT}+
902 . ${DIGIT}+
903 . ___{DIGIT}+
904 . __{DIGIT}+.
905 These are suffixes introduced by the compiler for entities such as
906 nested subprogram for instance, in order to avoid name clashes.
907 They do not serve any purpose for the debugger. */
908
909 static void
910 ada_remove_trailing_digits (const char *encoded, int *len)
911 {
912 if (*len > 1 && isdigit (encoded[*len - 1]))
913 {
914 int i = *len - 2;
915
916 while (i > 0 && isdigit (encoded[i]))
917 i--;
918 if (i >= 0 && encoded[i] == '.')
919 *len = i;
920 else if (i >= 0 && encoded[i] == '$')
921 *len = i;
922 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
923 *len = i - 2;
924 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
925 *len = i - 1;
926 }
927 }
928
929 /* Remove the suffix introduced by the compiler for protected object
930 subprograms. */
931
932 static void
933 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
934 {
935 /* Remove trailing N. */
936
937 /* Protected entry subprograms are broken into two
938 separate subprograms: The first one is unprotected, and has
939 a 'N' suffix; the second is the protected version, and has
940 the 'P' suffix. The second calls the first one after handling
941 the protection. Since the P subprograms are internally generated,
942 we leave these names undecoded, giving the user a clue that this
943 entity is internal. */
944
945 if (*len > 1
946 && encoded[*len - 1] == 'N'
947 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
948 *len = *len - 1;
949 }
950
951 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
952
953 static void
954 ada_remove_Xbn_suffix (const char *encoded, int *len)
955 {
956 int i = *len - 1;
957
958 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
959 i--;
960
961 if (encoded[i] != 'X')
962 return;
963
964 if (i == 0)
965 return;
966
967 if (isalnum (encoded[i-1]))
968 *len = i;
969 }
970
971 /* If ENCODED follows the GNAT entity encoding conventions, then return
972 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
973 replaced by ENCODED.
974
975 The resulting string is valid until the next call of ada_decode.
976 If the string is unchanged by decoding, the original string pointer
977 is returned. */
978
979 const char *
980 ada_decode (const char *encoded)
981 {
982 int i, j;
983 int len0;
984 const char *p;
985 char *decoded;
986 int at_start_name;
987 static char *decoding_buffer = NULL;
988 static size_t decoding_buffer_size = 0;
989
990 /* The name of the Ada main procedure starts with "_ada_".
991 This prefix is not part of the decoded name, so skip this part
992 if we see this prefix. */
993 if (strncmp (encoded, "_ada_", 5) == 0)
994 encoded += 5;
995
996 /* If the name starts with '_', then it is not a properly encoded
997 name, so do not attempt to decode it. Similarly, if the name
998 starts with '<', the name should not be decoded. */
999 if (encoded[0] == '_' || encoded[0] == '<')
1000 goto Suppress;
1001
1002 len0 = strlen (encoded);
1003
1004 ada_remove_trailing_digits (encoded, &len0);
1005 ada_remove_po_subprogram_suffix (encoded, &len0);
1006
1007 /* Remove the ___X.* suffix if present. Do not forget to verify that
1008 the suffix is located before the current "end" of ENCODED. We want
1009 to avoid re-matching parts of ENCODED that have previously been
1010 marked as discarded (by decrementing LEN0). */
1011 p = strstr (encoded, "___");
1012 if (p != NULL && p - encoded < len0 - 3)
1013 {
1014 if (p[3] == 'X')
1015 len0 = p - encoded;
1016 else
1017 goto Suppress;
1018 }
1019
1020 /* Remove any trailing TKB suffix. It tells us that this symbol
1021 is for the body of a task, but that information does not actually
1022 appear in the decoded name. */
1023
1024 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
1025 len0 -= 3;
1026
1027 /* Remove any trailing TB suffix. The TB suffix is slightly different
1028 from the TKB suffix because it is used for non-anonymous task
1029 bodies. */
1030
1031 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1032 len0 -= 2;
1033
1034 /* Remove trailing "B" suffixes. */
1035 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1036
1037 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
1038 len0 -= 1;
1039
1040 /* Make decoded big enough for possible expansion by operator name. */
1041
1042 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1043 decoded = decoding_buffer;
1044
1045 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1046
1047 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1048 {
1049 i = len0 - 2;
1050 while ((i >= 0 && isdigit (encoded[i]))
1051 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1052 i -= 1;
1053 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1054 len0 = i - 1;
1055 else if (encoded[i] == '$')
1056 len0 = i;
1057 }
1058
1059 /* The first few characters that are not alphabetic are not part
1060 of any encoding we use, so we can copy them over verbatim. */
1061
1062 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1063 decoded[j] = encoded[i];
1064
1065 at_start_name = 1;
1066 while (i < len0)
1067 {
1068 /* Is this a symbol function? */
1069 if (at_start_name && encoded[i] == 'O')
1070 {
1071 int k;
1072
1073 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1074 {
1075 int op_len = strlen (ada_opname_table[k].encoded);
1076 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1077 op_len - 1) == 0)
1078 && !isalnum (encoded[i + op_len]))
1079 {
1080 strcpy (decoded + j, ada_opname_table[k].decoded);
1081 at_start_name = 0;
1082 i += op_len;
1083 j += strlen (ada_opname_table[k].decoded);
1084 break;
1085 }
1086 }
1087 if (ada_opname_table[k].encoded != NULL)
1088 continue;
1089 }
1090 at_start_name = 0;
1091
1092 /* Replace "TK__" with "__", which will eventually be translated
1093 into "." (just below). */
1094
1095 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1096 i += 2;
1097
1098 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1099 be translated into "." (just below). These are internal names
1100 generated for anonymous blocks inside which our symbol is nested. */
1101
1102 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1103 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1104 && isdigit (encoded [i+4]))
1105 {
1106 int k = i + 5;
1107
1108 while (k < len0 && isdigit (encoded[k]))
1109 k++; /* Skip any extra digit. */
1110
1111 /* Double-check that the "__B_{DIGITS}+" sequence we found
1112 is indeed followed by "__". */
1113 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1114 i = k;
1115 }
1116
1117 /* Remove _E{DIGITS}+[sb] */
1118
1119 /* Just as for protected object subprograms, there are 2 categories
1120 of subprograms created by the compiler for each entry. The first
1121 one implements the actual entry code, and has a suffix following
1122 the convention above; the second one implements the barrier and
1123 uses the same convention as above, except that the 'E' is replaced
1124 by a 'B'.
1125
1126 Just as above, we do not decode the name of barrier functions
1127 to give the user a clue that the code he is debugging has been
1128 internally generated. */
1129
1130 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1131 && isdigit (encoded[i+2]))
1132 {
1133 int k = i + 3;
1134
1135 while (k < len0 && isdigit (encoded[k]))
1136 k++;
1137
1138 if (k < len0
1139 && (encoded[k] == 'b' || encoded[k] == 's'))
1140 {
1141 k++;
1142 /* Just as an extra precaution, make sure that if this
1143 suffix is followed by anything else, it is a '_'.
1144 Otherwise, we matched this sequence by accident. */
1145 if (k == len0
1146 || (k < len0 && encoded[k] == '_'))
1147 i = k;
1148 }
1149 }
1150
1151 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1152 the GNAT front-end in protected object subprograms. */
1153
1154 if (i < len0 + 3
1155 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1156 {
1157 /* Backtrack a bit up until we reach either the begining of
1158 the encoded name, or "__". Make sure that we only find
1159 digits or lowercase characters. */
1160 const char *ptr = encoded + i - 1;
1161
1162 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1163 ptr--;
1164 if (ptr < encoded
1165 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1166 i++;
1167 }
1168
1169 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1170 {
1171 /* This is a X[bn]* sequence not separated from the previous
1172 part of the name with a non-alpha-numeric character (in other
1173 words, immediately following an alpha-numeric character), then
1174 verify that it is placed at the end of the encoded name. If
1175 not, then the encoding is not valid and we should abort the
1176 decoding. Otherwise, just skip it, it is used in body-nested
1177 package names. */
1178 do
1179 i += 1;
1180 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1181 if (i < len0)
1182 goto Suppress;
1183 }
1184 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1185 {
1186 /* Replace '__' by '.'. */
1187 decoded[j] = '.';
1188 at_start_name = 1;
1189 i += 2;
1190 j += 1;
1191 }
1192 else
1193 {
1194 /* It's a character part of the decoded name, so just copy it
1195 over. */
1196 decoded[j] = encoded[i];
1197 i += 1;
1198 j += 1;
1199 }
1200 }
1201 decoded[j] = '\000';
1202
1203 /* Decoded names should never contain any uppercase character.
1204 Double-check this, and abort the decoding if we find one. */
1205
1206 for (i = 0; decoded[i] != '\0'; i += 1)
1207 if (isupper (decoded[i]) || decoded[i] == ' ')
1208 goto Suppress;
1209
1210 if (strcmp (decoded, encoded) == 0)
1211 return encoded;
1212 else
1213 return decoded;
1214
1215 Suppress:
1216 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1217 decoded = decoding_buffer;
1218 if (encoded[0] == '<')
1219 strcpy (decoded, encoded);
1220 else
1221 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1222 return decoded;
1223
1224 }
1225
1226 /* Table for keeping permanent unique copies of decoded names. Once
1227 allocated, names in this table are never released. While this is a
1228 storage leak, it should not be significant unless there are massive
1229 changes in the set of decoded names in successive versions of a
1230 symbol table loaded during a single session. */
1231 static struct htab *decoded_names_store;
1232
1233 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1234 in the language-specific part of GSYMBOL, if it has not been
1235 previously computed. Tries to save the decoded name in the same
1236 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1237 in any case, the decoded symbol has a lifetime at least that of
1238 GSYMBOL).
1239 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1240 const, but nevertheless modified to a semantically equivalent form
1241 when a decoded name is cached in it. */
1242
1243 char *
1244 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1245 {
1246 char **resultp =
1247 (char **) &gsymbol->language_specific.mangled_lang.demangled_name;
1248
1249 if (*resultp == NULL)
1250 {
1251 const char *decoded = ada_decode (gsymbol->name);
1252
1253 if (gsymbol->obj_section != NULL)
1254 {
1255 struct objfile *objf = gsymbol->obj_section->objfile;
1256
1257 *resultp = obsavestring (decoded, strlen (decoded),
1258 &objf->objfile_obstack);
1259 }
1260 /* Sometimes, we can't find a corresponding objfile, in which
1261 case, we put the result on the heap. Since we only decode
1262 when needed, we hope this usually does not cause a
1263 significant memory leak (FIXME). */
1264 if (*resultp == NULL)
1265 {
1266 char **slot = (char **) htab_find_slot (decoded_names_store,
1267 decoded, INSERT);
1268
1269 if (*slot == NULL)
1270 *slot = xstrdup (decoded);
1271 *resultp = *slot;
1272 }
1273 }
1274
1275 return *resultp;
1276 }
1277
1278 static char *
1279 ada_la_decode (const char *encoded, int options)
1280 {
1281 return xstrdup (ada_decode (encoded));
1282 }
1283
1284 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1285 suffixes that encode debugging information or leading _ada_ on
1286 SYM_NAME (see is_name_suffix commentary for the debugging
1287 information that is ignored). If WILD, then NAME need only match a
1288 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1289 either argument is NULL. */
1290
1291 static int
1292 match_name (const char *sym_name, const char *name, int wild)
1293 {
1294 if (sym_name == NULL || name == NULL)
1295 return 0;
1296 else if (wild)
1297 return wild_match (sym_name, name) == 0;
1298 else
1299 {
1300 int len_name = strlen (name);
1301
1302 return (strncmp (sym_name, name, len_name) == 0
1303 && is_name_suffix (sym_name + len_name))
1304 || (strncmp (sym_name, "_ada_", 5) == 0
1305 && strncmp (sym_name + 5, name, len_name) == 0
1306 && is_name_suffix (sym_name + len_name + 5));
1307 }
1308 }
1309 \f
1310
1311 /* Arrays */
1312
1313 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1314 generated by the GNAT compiler to describe the index type used
1315 for each dimension of an array, check whether it follows the latest
1316 known encoding. If not, fix it up to conform to the latest encoding.
1317 Otherwise, do nothing. This function also does nothing if
1318 INDEX_DESC_TYPE is NULL.
1319
1320 The GNAT encoding used to describle the array index type evolved a bit.
1321 Initially, the information would be provided through the name of each
1322 field of the structure type only, while the type of these fields was
1323 described as unspecified and irrelevant. The debugger was then expected
1324 to perform a global type lookup using the name of that field in order
1325 to get access to the full index type description. Because these global
1326 lookups can be very expensive, the encoding was later enhanced to make
1327 the global lookup unnecessary by defining the field type as being
1328 the full index type description.
1329
1330 The purpose of this routine is to allow us to support older versions
1331 of the compiler by detecting the use of the older encoding, and by
1332 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1333 we essentially replace each field's meaningless type by the associated
1334 index subtype). */
1335
1336 void
1337 ada_fixup_array_indexes_type (struct type *index_desc_type)
1338 {
1339 int i;
1340
1341 if (index_desc_type == NULL)
1342 return;
1343 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1344
1345 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1346 to check one field only, no need to check them all). If not, return
1347 now.
1348
1349 If our INDEX_DESC_TYPE was generated using the older encoding,
1350 the field type should be a meaningless integer type whose name
1351 is not equal to the field name. */
1352 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1353 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1354 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1355 return;
1356
1357 /* Fixup each field of INDEX_DESC_TYPE. */
1358 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1359 {
1360 char *name = TYPE_FIELD_NAME (index_desc_type, i);
1361 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1362
1363 if (raw_type)
1364 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1365 }
1366 }
1367
1368 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1369
1370 static char *bound_name[] = {
1371 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1372 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1373 };
1374
1375 /* Maximum number of array dimensions we are prepared to handle. */
1376
1377 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1378
1379
1380 /* The desc_* routines return primitive portions of array descriptors
1381 (fat pointers). */
1382
1383 /* The descriptor or array type, if any, indicated by TYPE; removes
1384 level of indirection, if needed. */
1385
1386 static struct type *
1387 desc_base_type (struct type *type)
1388 {
1389 if (type == NULL)
1390 return NULL;
1391 type = ada_check_typedef (type);
1392 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1393 type = ada_typedef_target_type (type);
1394
1395 if (type != NULL
1396 && (TYPE_CODE (type) == TYPE_CODE_PTR
1397 || TYPE_CODE (type) == TYPE_CODE_REF))
1398 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1399 else
1400 return type;
1401 }
1402
1403 /* True iff TYPE indicates a "thin" array pointer type. */
1404
1405 static int
1406 is_thin_pntr (struct type *type)
1407 {
1408 return
1409 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1410 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1411 }
1412
1413 /* The descriptor type for thin pointer type TYPE. */
1414
1415 static struct type *
1416 thin_descriptor_type (struct type *type)
1417 {
1418 struct type *base_type = desc_base_type (type);
1419
1420 if (base_type == NULL)
1421 return NULL;
1422 if (is_suffix (ada_type_name (base_type), "___XVE"))
1423 return base_type;
1424 else
1425 {
1426 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1427
1428 if (alt_type == NULL)
1429 return base_type;
1430 else
1431 return alt_type;
1432 }
1433 }
1434
1435 /* A pointer to the array data for thin-pointer value VAL. */
1436
1437 static struct value *
1438 thin_data_pntr (struct value *val)
1439 {
1440 struct type *type = value_type (val);
1441 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1442
1443 data_type = lookup_pointer_type (data_type);
1444
1445 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1446 return value_cast (data_type, value_copy (val));
1447 else
1448 return value_from_longest (data_type, value_address (val));
1449 }
1450
1451 /* True iff TYPE indicates a "thick" array pointer type. */
1452
1453 static int
1454 is_thick_pntr (struct type *type)
1455 {
1456 type = desc_base_type (type);
1457 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1458 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1459 }
1460
1461 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1462 pointer to one, the type of its bounds data; otherwise, NULL. */
1463
1464 static struct type *
1465 desc_bounds_type (struct type *type)
1466 {
1467 struct type *r;
1468
1469 type = desc_base_type (type);
1470
1471 if (type == NULL)
1472 return NULL;
1473 else if (is_thin_pntr (type))
1474 {
1475 type = thin_descriptor_type (type);
1476 if (type == NULL)
1477 return NULL;
1478 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1479 if (r != NULL)
1480 return ada_check_typedef (r);
1481 }
1482 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1483 {
1484 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1485 if (r != NULL)
1486 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1487 }
1488 return NULL;
1489 }
1490
1491 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1492 one, a pointer to its bounds data. Otherwise NULL. */
1493
1494 static struct value *
1495 desc_bounds (struct value *arr)
1496 {
1497 struct type *type = ada_check_typedef (value_type (arr));
1498
1499 if (is_thin_pntr (type))
1500 {
1501 struct type *bounds_type =
1502 desc_bounds_type (thin_descriptor_type (type));
1503 LONGEST addr;
1504
1505 if (bounds_type == NULL)
1506 error (_("Bad GNAT array descriptor"));
1507
1508 /* NOTE: The following calculation is not really kosher, but
1509 since desc_type is an XVE-encoded type (and shouldn't be),
1510 the correct calculation is a real pain. FIXME (and fix GCC). */
1511 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1512 addr = value_as_long (arr);
1513 else
1514 addr = value_address (arr);
1515
1516 return
1517 value_from_longest (lookup_pointer_type (bounds_type),
1518 addr - TYPE_LENGTH (bounds_type));
1519 }
1520
1521 else if (is_thick_pntr (type))
1522 {
1523 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1524 _("Bad GNAT array descriptor"));
1525 struct type *p_bounds_type = value_type (p_bounds);
1526
1527 if (p_bounds_type
1528 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1529 {
1530 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1531
1532 if (TYPE_STUB (target_type))
1533 p_bounds = value_cast (lookup_pointer_type
1534 (ada_check_typedef (target_type)),
1535 p_bounds);
1536 }
1537 else
1538 error (_("Bad GNAT array descriptor"));
1539
1540 return p_bounds;
1541 }
1542 else
1543 return NULL;
1544 }
1545
1546 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1547 position of the field containing the address of the bounds data. */
1548
1549 static int
1550 fat_pntr_bounds_bitpos (struct type *type)
1551 {
1552 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1553 }
1554
1555 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1556 size of the field containing the address of the bounds data. */
1557
1558 static int
1559 fat_pntr_bounds_bitsize (struct type *type)
1560 {
1561 type = desc_base_type (type);
1562
1563 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1564 return TYPE_FIELD_BITSIZE (type, 1);
1565 else
1566 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1567 }
1568
1569 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1570 pointer to one, the type of its array data (a array-with-no-bounds type);
1571 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1572 data. */
1573
1574 static struct type *
1575 desc_data_target_type (struct type *type)
1576 {
1577 type = desc_base_type (type);
1578
1579 /* NOTE: The following is bogus; see comment in desc_bounds. */
1580 if (is_thin_pntr (type))
1581 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1582 else if (is_thick_pntr (type))
1583 {
1584 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1585
1586 if (data_type
1587 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1588 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1589 }
1590
1591 return NULL;
1592 }
1593
1594 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1595 its array data. */
1596
1597 static struct value *
1598 desc_data (struct value *arr)
1599 {
1600 struct type *type = value_type (arr);
1601
1602 if (is_thin_pntr (type))
1603 return thin_data_pntr (arr);
1604 else if (is_thick_pntr (type))
1605 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1606 _("Bad GNAT array descriptor"));
1607 else
1608 return NULL;
1609 }
1610
1611
1612 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1613 position of the field containing the address of the data. */
1614
1615 static int
1616 fat_pntr_data_bitpos (struct type *type)
1617 {
1618 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1619 }
1620
1621 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1622 size of the field containing the address of the data. */
1623
1624 static int
1625 fat_pntr_data_bitsize (struct type *type)
1626 {
1627 type = desc_base_type (type);
1628
1629 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1630 return TYPE_FIELD_BITSIZE (type, 0);
1631 else
1632 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1633 }
1634
1635 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1636 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1637 bound, if WHICH is 1. The first bound is I=1. */
1638
1639 static struct value *
1640 desc_one_bound (struct value *bounds, int i, int which)
1641 {
1642 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1643 _("Bad GNAT array descriptor bounds"));
1644 }
1645
1646 /* If BOUNDS is an array-bounds structure type, return the bit position
1647 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1648 bound, if WHICH is 1. The first bound is I=1. */
1649
1650 static int
1651 desc_bound_bitpos (struct type *type, int i, int which)
1652 {
1653 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1654 }
1655
1656 /* If BOUNDS is an array-bounds structure type, return the bit field size
1657 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1658 bound, if WHICH is 1. The first bound is I=1. */
1659
1660 static int
1661 desc_bound_bitsize (struct type *type, int i, int which)
1662 {
1663 type = desc_base_type (type);
1664
1665 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1666 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1667 else
1668 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1669 }
1670
1671 /* If TYPE is the type of an array-bounds structure, the type of its
1672 Ith bound (numbering from 1). Otherwise, NULL. */
1673
1674 static struct type *
1675 desc_index_type (struct type *type, int i)
1676 {
1677 type = desc_base_type (type);
1678
1679 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1680 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1681 else
1682 return NULL;
1683 }
1684
1685 /* The number of index positions in the array-bounds type TYPE.
1686 Return 0 if TYPE is NULL. */
1687
1688 static int
1689 desc_arity (struct type *type)
1690 {
1691 type = desc_base_type (type);
1692
1693 if (type != NULL)
1694 return TYPE_NFIELDS (type) / 2;
1695 return 0;
1696 }
1697
1698 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1699 an array descriptor type (representing an unconstrained array
1700 type). */
1701
1702 static int
1703 ada_is_direct_array_type (struct type *type)
1704 {
1705 if (type == NULL)
1706 return 0;
1707 type = ada_check_typedef (type);
1708 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1709 || ada_is_array_descriptor_type (type));
1710 }
1711
1712 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1713 * to one. */
1714
1715 static int
1716 ada_is_array_type (struct type *type)
1717 {
1718 while (type != NULL
1719 && (TYPE_CODE (type) == TYPE_CODE_PTR
1720 || TYPE_CODE (type) == TYPE_CODE_REF))
1721 type = TYPE_TARGET_TYPE (type);
1722 return ada_is_direct_array_type (type);
1723 }
1724
1725 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1726
1727 int
1728 ada_is_simple_array_type (struct type *type)
1729 {
1730 if (type == NULL)
1731 return 0;
1732 type = ada_check_typedef (type);
1733 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1734 || (TYPE_CODE (type) == TYPE_CODE_PTR
1735 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
1736 }
1737
1738 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1739
1740 int
1741 ada_is_array_descriptor_type (struct type *type)
1742 {
1743 struct type *data_type = desc_data_target_type (type);
1744
1745 if (type == NULL)
1746 return 0;
1747 type = ada_check_typedef (type);
1748 return (data_type != NULL
1749 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1750 && desc_arity (desc_bounds_type (type)) > 0);
1751 }
1752
1753 /* Non-zero iff type is a partially mal-formed GNAT array
1754 descriptor. FIXME: This is to compensate for some problems with
1755 debugging output from GNAT. Re-examine periodically to see if it
1756 is still needed. */
1757
1758 int
1759 ada_is_bogus_array_descriptor (struct type *type)
1760 {
1761 return
1762 type != NULL
1763 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1764 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1765 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1766 && !ada_is_array_descriptor_type (type);
1767 }
1768
1769
1770 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1771 (fat pointer) returns the type of the array data described---specifically,
1772 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1773 in from the descriptor; otherwise, they are left unspecified. If
1774 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1775 returns NULL. The result is simply the type of ARR if ARR is not
1776 a descriptor. */
1777 struct type *
1778 ada_type_of_array (struct value *arr, int bounds)
1779 {
1780 if (ada_is_constrained_packed_array_type (value_type (arr)))
1781 return decode_constrained_packed_array_type (value_type (arr));
1782
1783 if (!ada_is_array_descriptor_type (value_type (arr)))
1784 return value_type (arr);
1785
1786 if (!bounds)
1787 {
1788 struct type *array_type =
1789 ada_check_typedef (desc_data_target_type (value_type (arr)));
1790
1791 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1792 TYPE_FIELD_BITSIZE (array_type, 0) =
1793 decode_packed_array_bitsize (value_type (arr));
1794
1795 return array_type;
1796 }
1797 else
1798 {
1799 struct type *elt_type;
1800 int arity;
1801 struct value *descriptor;
1802
1803 elt_type = ada_array_element_type (value_type (arr), -1);
1804 arity = ada_array_arity (value_type (arr));
1805
1806 if (elt_type == NULL || arity == 0)
1807 return ada_check_typedef (value_type (arr));
1808
1809 descriptor = desc_bounds (arr);
1810 if (value_as_long (descriptor) == 0)
1811 return NULL;
1812 while (arity > 0)
1813 {
1814 struct type *range_type = alloc_type_copy (value_type (arr));
1815 struct type *array_type = alloc_type_copy (value_type (arr));
1816 struct value *low = desc_one_bound (descriptor, arity, 0);
1817 struct value *high = desc_one_bound (descriptor, arity, 1);
1818
1819 arity -= 1;
1820 create_range_type (range_type, value_type (low),
1821 longest_to_int (value_as_long (low)),
1822 longest_to_int (value_as_long (high)));
1823 elt_type = create_array_type (array_type, elt_type, range_type);
1824
1825 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1826 {
1827 /* We need to store the element packed bitsize, as well as
1828 recompute the array size, because it was previously
1829 computed based on the unpacked element size. */
1830 LONGEST lo = value_as_long (low);
1831 LONGEST hi = value_as_long (high);
1832
1833 TYPE_FIELD_BITSIZE (elt_type, 0) =
1834 decode_packed_array_bitsize (value_type (arr));
1835 /* If the array has no element, then the size is already
1836 zero, and does not need to be recomputed. */
1837 if (lo < hi)
1838 {
1839 int array_bitsize =
1840 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1841
1842 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1843 }
1844 }
1845 }
1846
1847 return lookup_pointer_type (elt_type);
1848 }
1849 }
1850
1851 /* If ARR does not represent an array, returns ARR unchanged.
1852 Otherwise, returns either a standard GDB array with bounds set
1853 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1854 GDB array. Returns NULL if ARR is a null fat pointer. */
1855
1856 struct value *
1857 ada_coerce_to_simple_array_ptr (struct value *arr)
1858 {
1859 if (ada_is_array_descriptor_type (value_type (arr)))
1860 {
1861 struct type *arrType = ada_type_of_array (arr, 1);
1862
1863 if (arrType == NULL)
1864 return NULL;
1865 return value_cast (arrType, value_copy (desc_data (arr)));
1866 }
1867 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1868 return decode_constrained_packed_array (arr);
1869 else
1870 return arr;
1871 }
1872
1873 /* If ARR does not represent an array, returns ARR unchanged.
1874 Otherwise, returns a standard GDB array describing ARR (which may
1875 be ARR itself if it already is in the proper form). */
1876
1877 struct value *
1878 ada_coerce_to_simple_array (struct value *arr)
1879 {
1880 if (ada_is_array_descriptor_type (value_type (arr)))
1881 {
1882 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1883
1884 if (arrVal == NULL)
1885 error (_("Bounds unavailable for null array pointer."));
1886 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1887 return value_ind (arrVal);
1888 }
1889 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1890 return decode_constrained_packed_array (arr);
1891 else
1892 return arr;
1893 }
1894
1895 /* If TYPE represents a GNAT array type, return it translated to an
1896 ordinary GDB array type (possibly with BITSIZE fields indicating
1897 packing). For other types, is the identity. */
1898
1899 struct type *
1900 ada_coerce_to_simple_array_type (struct type *type)
1901 {
1902 if (ada_is_constrained_packed_array_type (type))
1903 return decode_constrained_packed_array_type (type);
1904
1905 if (ada_is_array_descriptor_type (type))
1906 return ada_check_typedef (desc_data_target_type (type));
1907
1908 return type;
1909 }
1910
1911 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1912
1913 static int
1914 ada_is_packed_array_type (struct type *type)
1915 {
1916 if (type == NULL)
1917 return 0;
1918 type = desc_base_type (type);
1919 type = ada_check_typedef (type);
1920 return
1921 ada_type_name (type) != NULL
1922 && strstr (ada_type_name (type), "___XP") != NULL;
1923 }
1924
1925 /* Non-zero iff TYPE represents a standard GNAT constrained
1926 packed-array type. */
1927
1928 int
1929 ada_is_constrained_packed_array_type (struct type *type)
1930 {
1931 return ada_is_packed_array_type (type)
1932 && !ada_is_array_descriptor_type (type);
1933 }
1934
1935 /* Non-zero iff TYPE represents an array descriptor for a
1936 unconstrained packed-array type. */
1937
1938 static int
1939 ada_is_unconstrained_packed_array_type (struct type *type)
1940 {
1941 return ada_is_packed_array_type (type)
1942 && ada_is_array_descriptor_type (type);
1943 }
1944
1945 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
1946 return the size of its elements in bits. */
1947
1948 static long
1949 decode_packed_array_bitsize (struct type *type)
1950 {
1951 char *raw_name;
1952 char *tail;
1953 long bits;
1954
1955 /* Access to arrays implemented as fat pointers are encoded as a typedef
1956 of the fat pointer type. We need the name of the fat pointer type
1957 to do the decoding, so strip the typedef layer. */
1958 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1959 type = ada_typedef_target_type (type);
1960
1961 raw_name = ada_type_name (ada_check_typedef (type));
1962 if (!raw_name)
1963 raw_name = ada_type_name (desc_base_type (type));
1964
1965 if (!raw_name)
1966 return 0;
1967
1968 tail = strstr (raw_name, "___XP");
1969 gdb_assert (tail != NULL);
1970
1971 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1972 {
1973 lim_warning
1974 (_("could not understand bit size information on packed array"));
1975 return 0;
1976 }
1977
1978 return bits;
1979 }
1980
1981 /* Given that TYPE is a standard GDB array type with all bounds filled
1982 in, and that the element size of its ultimate scalar constituents
1983 (that is, either its elements, or, if it is an array of arrays, its
1984 elements' elements, etc.) is *ELT_BITS, return an identical type,
1985 but with the bit sizes of its elements (and those of any
1986 constituent arrays) recorded in the BITSIZE components of its
1987 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1988 in bits. */
1989
1990 static struct type *
1991 constrained_packed_array_type (struct type *type, long *elt_bits)
1992 {
1993 struct type *new_elt_type;
1994 struct type *new_type;
1995 LONGEST low_bound, high_bound;
1996
1997 type = ada_check_typedef (type);
1998 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1999 return type;
2000
2001 new_type = alloc_type_copy (type);
2002 new_elt_type =
2003 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2004 elt_bits);
2005 create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type));
2006 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2007 TYPE_NAME (new_type) = ada_type_name (type);
2008
2009 if (get_discrete_bounds (TYPE_INDEX_TYPE (type),
2010 &low_bound, &high_bound) < 0)
2011 low_bound = high_bound = 0;
2012 if (high_bound < low_bound)
2013 *elt_bits = TYPE_LENGTH (new_type) = 0;
2014 else
2015 {
2016 *elt_bits *= (high_bound - low_bound + 1);
2017 TYPE_LENGTH (new_type) =
2018 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2019 }
2020
2021 TYPE_FIXED_INSTANCE (new_type) = 1;
2022 return new_type;
2023 }
2024
2025 /* The array type encoded by TYPE, where
2026 ada_is_constrained_packed_array_type (TYPE). */
2027
2028 static struct type *
2029 decode_constrained_packed_array_type (struct type *type)
2030 {
2031 char *raw_name = ada_type_name (ada_check_typedef (type));
2032 char *name;
2033 char *tail;
2034 struct type *shadow_type;
2035 long bits;
2036
2037 if (!raw_name)
2038 raw_name = ada_type_name (desc_base_type (type));
2039
2040 if (!raw_name)
2041 return NULL;
2042
2043 name = (char *) alloca (strlen (raw_name) + 1);
2044 tail = strstr (raw_name, "___XP");
2045 type = desc_base_type (type);
2046
2047 memcpy (name, raw_name, tail - raw_name);
2048 name[tail - raw_name] = '\000';
2049
2050 shadow_type = ada_find_parallel_type_with_name (type, name);
2051
2052 if (shadow_type == NULL)
2053 {
2054 lim_warning (_("could not find bounds information on packed array"));
2055 return NULL;
2056 }
2057 CHECK_TYPEDEF (shadow_type);
2058
2059 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2060 {
2061 lim_warning (_("could not understand bounds "
2062 "information on packed array"));
2063 return NULL;
2064 }
2065
2066 bits = decode_packed_array_bitsize (type);
2067 return constrained_packed_array_type (shadow_type, &bits);
2068 }
2069
2070 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2071 array, returns a simple array that denotes that array. Its type is a
2072 standard GDB array type except that the BITSIZEs of the array
2073 target types are set to the number of bits in each element, and the
2074 type length is set appropriately. */
2075
2076 static struct value *
2077 decode_constrained_packed_array (struct value *arr)
2078 {
2079 struct type *type;
2080
2081 arr = ada_coerce_ref (arr);
2082
2083 /* If our value is a pointer, then dererence it. Make sure that
2084 this operation does not cause the target type to be fixed, as
2085 this would indirectly cause this array to be decoded. The rest
2086 of the routine assumes that the array hasn't been decoded yet,
2087 so we use the basic "value_ind" routine to perform the dereferencing,
2088 as opposed to using "ada_value_ind". */
2089 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
2090 arr = value_ind (arr);
2091
2092 type = decode_constrained_packed_array_type (value_type (arr));
2093 if (type == NULL)
2094 {
2095 error (_("can't unpack array"));
2096 return NULL;
2097 }
2098
2099 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2100 && ada_is_modular_type (value_type (arr)))
2101 {
2102 /* This is a (right-justified) modular type representing a packed
2103 array with no wrapper. In order to interpret the value through
2104 the (left-justified) packed array type we just built, we must
2105 first left-justify it. */
2106 int bit_size, bit_pos;
2107 ULONGEST mod;
2108
2109 mod = ada_modulus (value_type (arr)) - 1;
2110 bit_size = 0;
2111 while (mod > 0)
2112 {
2113 bit_size += 1;
2114 mod >>= 1;
2115 }
2116 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2117 arr = ada_value_primitive_packed_val (arr, NULL,
2118 bit_pos / HOST_CHAR_BIT,
2119 bit_pos % HOST_CHAR_BIT,
2120 bit_size,
2121 type);
2122 }
2123
2124 return coerce_unspec_val_to_type (arr, type);
2125 }
2126
2127
2128 /* The value of the element of packed array ARR at the ARITY indices
2129 given in IND. ARR must be a simple array. */
2130
2131 static struct value *
2132 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2133 {
2134 int i;
2135 int bits, elt_off, bit_off;
2136 long elt_total_bit_offset;
2137 struct type *elt_type;
2138 struct value *v;
2139
2140 bits = 0;
2141 elt_total_bit_offset = 0;
2142 elt_type = ada_check_typedef (value_type (arr));
2143 for (i = 0; i < arity; i += 1)
2144 {
2145 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2146 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2147 error
2148 (_("attempt to do packed indexing of "
2149 "something other than a packed array"));
2150 else
2151 {
2152 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2153 LONGEST lowerbound, upperbound;
2154 LONGEST idx;
2155
2156 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2157 {
2158 lim_warning (_("don't know bounds of array"));
2159 lowerbound = upperbound = 0;
2160 }
2161
2162 idx = pos_atr (ind[i]);
2163 if (idx < lowerbound || idx > upperbound)
2164 lim_warning (_("packed array index %ld out of bounds"),
2165 (long) idx);
2166 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2167 elt_total_bit_offset += (idx - lowerbound) * bits;
2168 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2169 }
2170 }
2171 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2172 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2173
2174 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2175 bits, elt_type);
2176 return v;
2177 }
2178
2179 /* Non-zero iff TYPE includes negative integer values. */
2180
2181 static int
2182 has_negatives (struct type *type)
2183 {
2184 switch (TYPE_CODE (type))
2185 {
2186 default:
2187 return 0;
2188 case TYPE_CODE_INT:
2189 return !TYPE_UNSIGNED (type);
2190 case TYPE_CODE_RANGE:
2191 return TYPE_LOW_BOUND (type) < 0;
2192 }
2193 }
2194
2195
2196 /* Create a new value of type TYPE from the contents of OBJ starting
2197 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2198 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2199 assigning through the result will set the field fetched from.
2200 VALADDR is ignored unless OBJ is NULL, in which case,
2201 VALADDR+OFFSET must address the start of storage containing the
2202 packed value. The value returned in this case is never an lval.
2203 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2204
2205 struct value *
2206 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2207 long offset, int bit_offset, int bit_size,
2208 struct type *type)
2209 {
2210 struct value *v;
2211 int src, /* Index into the source area */
2212 targ, /* Index into the target area */
2213 srcBitsLeft, /* Number of source bits left to move */
2214 nsrc, ntarg, /* Number of source and target bytes */
2215 unusedLS, /* Number of bits in next significant
2216 byte of source that are unused */
2217 accumSize; /* Number of meaningful bits in accum */
2218 unsigned char *bytes; /* First byte containing data to unpack */
2219 unsigned char *unpacked;
2220 unsigned long accum; /* Staging area for bits being transferred */
2221 unsigned char sign;
2222 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2223 /* Transmit bytes from least to most significant; delta is the direction
2224 the indices move. */
2225 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2226
2227 type = ada_check_typedef (type);
2228
2229 if (obj == NULL)
2230 {
2231 v = allocate_value (type);
2232 bytes = (unsigned char *) (valaddr + offset);
2233 }
2234 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2235 {
2236 v = value_at (type,
2237 value_address (obj) + offset);
2238 bytes = (unsigned char *) alloca (len);
2239 read_memory (value_address (v), bytes, len);
2240 }
2241 else
2242 {
2243 v = allocate_value (type);
2244 bytes = (unsigned char *) value_contents (obj) + offset;
2245 }
2246
2247 if (obj != NULL)
2248 {
2249 CORE_ADDR new_addr;
2250
2251 set_value_component_location (v, obj);
2252 new_addr = value_address (obj) + offset;
2253 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2254 set_value_bitsize (v, bit_size);
2255 if (value_bitpos (v) >= HOST_CHAR_BIT)
2256 {
2257 ++new_addr;
2258 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2259 }
2260 set_value_address (v, new_addr);
2261 }
2262 else
2263 set_value_bitsize (v, bit_size);
2264 unpacked = (unsigned char *) value_contents (v);
2265
2266 srcBitsLeft = bit_size;
2267 nsrc = len;
2268 ntarg = TYPE_LENGTH (type);
2269 sign = 0;
2270 if (bit_size == 0)
2271 {
2272 memset (unpacked, 0, TYPE_LENGTH (type));
2273 return v;
2274 }
2275 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2276 {
2277 src = len - 1;
2278 if (has_negatives (type)
2279 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2280 sign = ~0;
2281
2282 unusedLS =
2283 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2284 % HOST_CHAR_BIT;
2285
2286 switch (TYPE_CODE (type))
2287 {
2288 case TYPE_CODE_ARRAY:
2289 case TYPE_CODE_UNION:
2290 case TYPE_CODE_STRUCT:
2291 /* Non-scalar values must be aligned at a byte boundary... */
2292 accumSize =
2293 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2294 /* ... And are placed at the beginning (most-significant) bytes
2295 of the target. */
2296 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2297 ntarg = targ + 1;
2298 break;
2299 default:
2300 accumSize = 0;
2301 targ = TYPE_LENGTH (type) - 1;
2302 break;
2303 }
2304 }
2305 else
2306 {
2307 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2308
2309 src = targ = 0;
2310 unusedLS = bit_offset;
2311 accumSize = 0;
2312
2313 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2314 sign = ~0;
2315 }
2316
2317 accum = 0;
2318 while (nsrc > 0)
2319 {
2320 /* Mask for removing bits of the next source byte that are not
2321 part of the value. */
2322 unsigned int unusedMSMask =
2323 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2324 1;
2325 /* Sign-extend bits for this byte. */
2326 unsigned int signMask = sign & ~unusedMSMask;
2327
2328 accum |=
2329 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2330 accumSize += HOST_CHAR_BIT - unusedLS;
2331 if (accumSize >= HOST_CHAR_BIT)
2332 {
2333 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2334 accumSize -= HOST_CHAR_BIT;
2335 accum >>= HOST_CHAR_BIT;
2336 ntarg -= 1;
2337 targ += delta;
2338 }
2339 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2340 unusedLS = 0;
2341 nsrc -= 1;
2342 src += delta;
2343 }
2344 while (ntarg > 0)
2345 {
2346 accum |= sign << accumSize;
2347 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2348 accumSize -= HOST_CHAR_BIT;
2349 accum >>= HOST_CHAR_BIT;
2350 ntarg -= 1;
2351 targ += delta;
2352 }
2353
2354 return v;
2355 }
2356
2357 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2358 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2359 not overlap. */
2360 static void
2361 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2362 int src_offset, int n, int bits_big_endian_p)
2363 {
2364 unsigned int accum, mask;
2365 int accum_bits, chunk_size;
2366
2367 target += targ_offset / HOST_CHAR_BIT;
2368 targ_offset %= HOST_CHAR_BIT;
2369 source += src_offset / HOST_CHAR_BIT;
2370 src_offset %= HOST_CHAR_BIT;
2371 if (bits_big_endian_p)
2372 {
2373 accum = (unsigned char) *source;
2374 source += 1;
2375 accum_bits = HOST_CHAR_BIT - src_offset;
2376
2377 while (n > 0)
2378 {
2379 int unused_right;
2380
2381 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2382 accum_bits += HOST_CHAR_BIT;
2383 source += 1;
2384 chunk_size = HOST_CHAR_BIT - targ_offset;
2385 if (chunk_size > n)
2386 chunk_size = n;
2387 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2388 mask = ((1 << chunk_size) - 1) << unused_right;
2389 *target =
2390 (*target & ~mask)
2391 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2392 n -= chunk_size;
2393 accum_bits -= chunk_size;
2394 target += 1;
2395 targ_offset = 0;
2396 }
2397 }
2398 else
2399 {
2400 accum = (unsigned char) *source >> src_offset;
2401 source += 1;
2402 accum_bits = HOST_CHAR_BIT - src_offset;
2403
2404 while (n > 0)
2405 {
2406 accum = accum + ((unsigned char) *source << accum_bits);
2407 accum_bits += HOST_CHAR_BIT;
2408 source += 1;
2409 chunk_size = HOST_CHAR_BIT - targ_offset;
2410 if (chunk_size > n)
2411 chunk_size = n;
2412 mask = ((1 << chunk_size) - 1) << targ_offset;
2413 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2414 n -= chunk_size;
2415 accum_bits -= chunk_size;
2416 accum >>= chunk_size;
2417 target += 1;
2418 targ_offset = 0;
2419 }
2420 }
2421 }
2422
2423 /* Store the contents of FROMVAL into the location of TOVAL.
2424 Return a new value with the location of TOVAL and contents of
2425 FROMVAL. Handles assignment into packed fields that have
2426 floating-point or non-scalar types. */
2427
2428 static struct value *
2429 ada_value_assign (struct value *toval, struct value *fromval)
2430 {
2431 struct type *type = value_type (toval);
2432 int bits = value_bitsize (toval);
2433
2434 toval = ada_coerce_ref (toval);
2435 fromval = ada_coerce_ref (fromval);
2436
2437 if (ada_is_direct_array_type (value_type (toval)))
2438 toval = ada_coerce_to_simple_array (toval);
2439 if (ada_is_direct_array_type (value_type (fromval)))
2440 fromval = ada_coerce_to_simple_array (fromval);
2441
2442 if (!deprecated_value_modifiable (toval))
2443 error (_("Left operand of assignment is not a modifiable lvalue."));
2444
2445 if (VALUE_LVAL (toval) == lval_memory
2446 && bits > 0
2447 && (TYPE_CODE (type) == TYPE_CODE_FLT
2448 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2449 {
2450 int len = (value_bitpos (toval)
2451 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2452 int from_size;
2453 char *buffer = (char *) alloca (len);
2454 struct value *val;
2455 CORE_ADDR to_addr = value_address (toval);
2456
2457 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2458 fromval = value_cast (type, fromval);
2459
2460 read_memory (to_addr, buffer, len);
2461 from_size = value_bitsize (fromval);
2462 if (from_size == 0)
2463 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2464 if (gdbarch_bits_big_endian (get_type_arch (type)))
2465 move_bits (buffer, value_bitpos (toval),
2466 value_contents (fromval), from_size - bits, bits, 1);
2467 else
2468 move_bits (buffer, value_bitpos (toval),
2469 value_contents (fromval), 0, bits, 0);
2470 write_memory (to_addr, buffer, len);
2471 observer_notify_memory_changed (to_addr, len, buffer);
2472
2473 val = value_copy (toval);
2474 memcpy (value_contents_raw (val), value_contents (fromval),
2475 TYPE_LENGTH (type));
2476 deprecated_set_value_type (val, type);
2477
2478 return val;
2479 }
2480
2481 return value_assign (toval, fromval);
2482 }
2483
2484
2485 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2486 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2487 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2488 * COMPONENT, and not the inferior's memory. The current contents
2489 * of COMPONENT are ignored. */
2490 static void
2491 value_assign_to_component (struct value *container, struct value *component,
2492 struct value *val)
2493 {
2494 LONGEST offset_in_container =
2495 (LONGEST) (value_address (component) - value_address (container));
2496 int bit_offset_in_container =
2497 value_bitpos (component) - value_bitpos (container);
2498 int bits;
2499
2500 val = value_cast (value_type (component), val);
2501
2502 if (value_bitsize (component) == 0)
2503 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2504 else
2505 bits = value_bitsize (component);
2506
2507 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2508 move_bits (value_contents_writeable (container) + offset_in_container,
2509 value_bitpos (container) + bit_offset_in_container,
2510 value_contents (val),
2511 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2512 bits, 1);
2513 else
2514 move_bits (value_contents_writeable (container) + offset_in_container,
2515 value_bitpos (container) + bit_offset_in_container,
2516 value_contents (val), 0, bits, 0);
2517 }
2518
2519 /* The value of the element of array ARR at the ARITY indices given in IND.
2520 ARR may be either a simple array, GNAT array descriptor, or pointer
2521 thereto. */
2522
2523 struct value *
2524 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2525 {
2526 int k;
2527 struct value *elt;
2528 struct type *elt_type;
2529
2530 elt = ada_coerce_to_simple_array (arr);
2531
2532 elt_type = ada_check_typedef (value_type (elt));
2533 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2534 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2535 return value_subscript_packed (elt, arity, ind);
2536
2537 for (k = 0; k < arity; k += 1)
2538 {
2539 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2540 error (_("too many subscripts (%d expected)"), k);
2541 elt = value_subscript (elt, pos_atr (ind[k]));
2542 }
2543 return elt;
2544 }
2545
2546 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2547 value of the element of *ARR at the ARITY indices given in
2548 IND. Does not read the entire array into memory. */
2549
2550 static struct value *
2551 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2552 struct value **ind)
2553 {
2554 int k;
2555
2556 for (k = 0; k < arity; k += 1)
2557 {
2558 LONGEST lwb, upb;
2559
2560 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2561 error (_("too many subscripts (%d expected)"), k);
2562 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2563 value_copy (arr));
2564 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2565 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2566 type = TYPE_TARGET_TYPE (type);
2567 }
2568
2569 return value_ind (arr);
2570 }
2571
2572 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2573 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2574 elements starting at index LOW. The lower bound of this array is LOW, as
2575 per Ada rules. */
2576 static struct value *
2577 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2578 int low, int high)
2579 {
2580 CORE_ADDR base = value_as_address (array_ptr)
2581 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type)))
2582 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
2583 struct type *index_type =
2584 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
2585 low, high);
2586 struct type *slice_type =
2587 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2588
2589 return value_at_lazy (slice_type, base);
2590 }
2591
2592
2593 static struct value *
2594 ada_value_slice (struct value *array, int low, int high)
2595 {
2596 struct type *type = value_type (array);
2597 struct type *index_type =
2598 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2599 struct type *slice_type =
2600 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2601
2602 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2603 }
2604
2605 /* If type is a record type in the form of a standard GNAT array
2606 descriptor, returns the number of dimensions for type. If arr is a
2607 simple array, returns the number of "array of"s that prefix its
2608 type designation. Otherwise, returns 0. */
2609
2610 int
2611 ada_array_arity (struct type *type)
2612 {
2613 int arity;
2614
2615 if (type == NULL)
2616 return 0;
2617
2618 type = desc_base_type (type);
2619
2620 arity = 0;
2621 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2622 return desc_arity (desc_bounds_type (type));
2623 else
2624 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2625 {
2626 arity += 1;
2627 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2628 }
2629
2630 return arity;
2631 }
2632
2633 /* If TYPE is a record type in the form of a standard GNAT array
2634 descriptor or a simple array type, returns the element type for
2635 TYPE after indexing by NINDICES indices, or by all indices if
2636 NINDICES is -1. Otherwise, returns NULL. */
2637
2638 struct type *
2639 ada_array_element_type (struct type *type, int nindices)
2640 {
2641 type = desc_base_type (type);
2642
2643 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2644 {
2645 int k;
2646 struct type *p_array_type;
2647
2648 p_array_type = desc_data_target_type (type);
2649
2650 k = ada_array_arity (type);
2651 if (k == 0)
2652 return NULL;
2653
2654 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2655 if (nindices >= 0 && k > nindices)
2656 k = nindices;
2657 while (k > 0 && p_array_type != NULL)
2658 {
2659 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2660 k -= 1;
2661 }
2662 return p_array_type;
2663 }
2664 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2665 {
2666 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2667 {
2668 type = TYPE_TARGET_TYPE (type);
2669 nindices -= 1;
2670 }
2671 return type;
2672 }
2673
2674 return NULL;
2675 }
2676
2677 /* The type of nth index in arrays of given type (n numbering from 1).
2678 Does not examine memory. Throws an error if N is invalid or TYPE
2679 is not an array type. NAME is the name of the Ada attribute being
2680 evaluated ('range, 'first, 'last, or 'length); it is used in building
2681 the error message. */
2682
2683 static struct type *
2684 ada_index_type (struct type *type, int n, const char *name)
2685 {
2686 struct type *result_type;
2687
2688 type = desc_base_type (type);
2689
2690 if (n < 0 || n > ada_array_arity (type))
2691 error (_("invalid dimension number to '%s"), name);
2692
2693 if (ada_is_simple_array_type (type))
2694 {
2695 int i;
2696
2697 for (i = 1; i < n; i += 1)
2698 type = TYPE_TARGET_TYPE (type);
2699 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2700 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2701 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2702 perhaps stabsread.c would make more sense. */
2703 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2704 result_type = NULL;
2705 }
2706 else
2707 {
2708 result_type = desc_index_type (desc_bounds_type (type), n);
2709 if (result_type == NULL)
2710 error (_("attempt to take bound of something that is not an array"));
2711 }
2712
2713 return result_type;
2714 }
2715
2716 /* Given that arr is an array type, returns the lower bound of the
2717 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2718 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2719 array-descriptor type. It works for other arrays with bounds supplied
2720 by run-time quantities other than discriminants. */
2721
2722 static LONGEST
2723 ada_array_bound_from_type (struct type * arr_type, int n, int which)
2724 {
2725 struct type *type, *elt_type, *index_type_desc, *index_type;
2726 int i;
2727
2728 gdb_assert (which == 0 || which == 1);
2729
2730 if (ada_is_constrained_packed_array_type (arr_type))
2731 arr_type = decode_constrained_packed_array_type (arr_type);
2732
2733 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2734 return (LONGEST) - which;
2735
2736 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2737 type = TYPE_TARGET_TYPE (arr_type);
2738 else
2739 type = arr_type;
2740
2741 elt_type = type;
2742 for (i = n; i > 1; i--)
2743 elt_type = TYPE_TARGET_TYPE (type);
2744
2745 index_type_desc = ada_find_parallel_type (type, "___XA");
2746 ada_fixup_array_indexes_type (index_type_desc);
2747 if (index_type_desc != NULL)
2748 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2749 NULL);
2750 else
2751 index_type = TYPE_INDEX_TYPE (elt_type);
2752
2753 return
2754 (LONGEST) (which == 0
2755 ? ada_discrete_type_low_bound (index_type)
2756 : ada_discrete_type_high_bound (index_type));
2757 }
2758
2759 /* Given that arr is an array value, returns the lower bound of the
2760 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2761 WHICH is 1. This routine will also work for arrays with bounds
2762 supplied by run-time quantities other than discriminants. */
2763
2764 static LONGEST
2765 ada_array_bound (struct value *arr, int n, int which)
2766 {
2767 struct type *arr_type = value_type (arr);
2768
2769 if (ada_is_constrained_packed_array_type (arr_type))
2770 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2771 else if (ada_is_simple_array_type (arr_type))
2772 return ada_array_bound_from_type (arr_type, n, which);
2773 else
2774 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2775 }
2776
2777 /* Given that arr is an array value, returns the length of the
2778 nth index. This routine will also work for arrays with bounds
2779 supplied by run-time quantities other than discriminants.
2780 Does not work for arrays indexed by enumeration types with representation
2781 clauses at the moment. */
2782
2783 static LONGEST
2784 ada_array_length (struct value *arr, int n)
2785 {
2786 struct type *arr_type = ada_check_typedef (value_type (arr));
2787
2788 if (ada_is_constrained_packed_array_type (arr_type))
2789 return ada_array_length (decode_constrained_packed_array (arr), n);
2790
2791 if (ada_is_simple_array_type (arr_type))
2792 return (ada_array_bound_from_type (arr_type, n, 1)
2793 - ada_array_bound_from_type (arr_type, n, 0) + 1);
2794 else
2795 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2796 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2797 }
2798
2799 /* An empty array whose type is that of ARR_TYPE (an array type),
2800 with bounds LOW to LOW-1. */
2801
2802 static struct value *
2803 empty_array (struct type *arr_type, int low)
2804 {
2805 struct type *index_type =
2806 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2807 low, low - 1);
2808 struct type *elt_type = ada_array_element_type (arr_type, 1);
2809
2810 return allocate_value (create_array_type (NULL, elt_type, index_type));
2811 }
2812 \f
2813
2814 /* Name resolution */
2815
2816 /* The "decoded" name for the user-definable Ada operator corresponding
2817 to OP. */
2818
2819 static const char *
2820 ada_decoded_op_name (enum exp_opcode op)
2821 {
2822 int i;
2823
2824 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2825 {
2826 if (ada_opname_table[i].op == op)
2827 return ada_opname_table[i].decoded;
2828 }
2829 error (_("Could not find operator name for opcode"));
2830 }
2831
2832
2833 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2834 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2835 undefined namespace) and converts operators that are
2836 user-defined into appropriate function calls. If CONTEXT_TYPE is
2837 non-null, it provides a preferred result type [at the moment, only
2838 type void has any effect---causing procedures to be preferred over
2839 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2840 return type is preferred. May change (expand) *EXP. */
2841
2842 static void
2843 resolve (struct expression **expp, int void_context_p)
2844 {
2845 struct type *context_type = NULL;
2846 int pc = 0;
2847
2848 if (void_context_p)
2849 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2850
2851 resolve_subexp (expp, &pc, 1, context_type);
2852 }
2853
2854 /* Resolve the operator of the subexpression beginning at
2855 position *POS of *EXPP. "Resolving" consists of replacing
2856 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2857 with their resolutions, replacing built-in operators with
2858 function calls to user-defined operators, where appropriate, and,
2859 when DEPROCEDURE_P is non-zero, converting function-valued variables
2860 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2861 are as in ada_resolve, above. */
2862
2863 static struct value *
2864 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2865 struct type *context_type)
2866 {
2867 int pc = *pos;
2868 int i;
2869 struct expression *exp; /* Convenience: == *expp. */
2870 enum exp_opcode op = (*expp)->elts[pc].opcode;
2871 struct value **argvec; /* Vector of operand types (alloca'ed). */
2872 int nargs; /* Number of operands. */
2873 int oplen;
2874
2875 argvec = NULL;
2876 nargs = 0;
2877 exp = *expp;
2878
2879 /* Pass one: resolve operands, saving their types and updating *pos,
2880 if needed. */
2881 switch (op)
2882 {
2883 case OP_FUNCALL:
2884 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2885 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2886 *pos += 7;
2887 else
2888 {
2889 *pos += 3;
2890 resolve_subexp (expp, pos, 0, NULL);
2891 }
2892 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2893 break;
2894
2895 case UNOP_ADDR:
2896 *pos += 1;
2897 resolve_subexp (expp, pos, 0, NULL);
2898 break;
2899
2900 case UNOP_QUAL:
2901 *pos += 3;
2902 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
2903 break;
2904
2905 case OP_ATR_MODULUS:
2906 case OP_ATR_SIZE:
2907 case OP_ATR_TAG:
2908 case OP_ATR_FIRST:
2909 case OP_ATR_LAST:
2910 case OP_ATR_LENGTH:
2911 case OP_ATR_POS:
2912 case OP_ATR_VAL:
2913 case OP_ATR_MIN:
2914 case OP_ATR_MAX:
2915 case TERNOP_IN_RANGE:
2916 case BINOP_IN_BOUNDS:
2917 case UNOP_IN_RANGE:
2918 case OP_AGGREGATE:
2919 case OP_OTHERS:
2920 case OP_CHOICES:
2921 case OP_POSITIONAL:
2922 case OP_DISCRETE_RANGE:
2923 case OP_NAME:
2924 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2925 *pos += oplen;
2926 break;
2927
2928 case BINOP_ASSIGN:
2929 {
2930 struct value *arg1;
2931
2932 *pos += 1;
2933 arg1 = resolve_subexp (expp, pos, 0, NULL);
2934 if (arg1 == NULL)
2935 resolve_subexp (expp, pos, 1, NULL);
2936 else
2937 resolve_subexp (expp, pos, 1, value_type (arg1));
2938 break;
2939 }
2940
2941 case UNOP_CAST:
2942 *pos += 3;
2943 nargs = 1;
2944 break;
2945
2946 case BINOP_ADD:
2947 case BINOP_SUB:
2948 case BINOP_MUL:
2949 case BINOP_DIV:
2950 case BINOP_REM:
2951 case BINOP_MOD:
2952 case BINOP_EXP:
2953 case BINOP_CONCAT:
2954 case BINOP_LOGICAL_AND:
2955 case BINOP_LOGICAL_OR:
2956 case BINOP_BITWISE_AND:
2957 case BINOP_BITWISE_IOR:
2958 case BINOP_BITWISE_XOR:
2959
2960 case BINOP_EQUAL:
2961 case BINOP_NOTEQUAL:
2962 case BINOP_LESS:
2963 case BINOP_GTR:
2964 case BINOP_LEQ:
2965 case BINOP_GEQ:
2966
2967 case BINOP_REPEAT:
2968 case BINOP_SUBSCRIPT:
2969 case BINOP_COMMA:
2970 *pos += 1;
2971 nargs = 2;
2972 break;
2973
2974 case UNOP_NEG:
2975 case UNOP_PLUS:
2976 case UNOP_LOGICAL_NOT:
2977 case UNOP_ABS:
2978 case UNOP_IND:
2979 *pos += 1;
2980 nargs = 1;
2981 break;
2982
2983 case OP_LONG:
2984 case OP_DOUBLE:
2985 case OP_VAR_VALUE:
2986 *pos += 4;
2987 break;
2988
2989 case OP_TYPE:
2990 case OP_BOOL:
2991 case OP_LAST:
2992 case OP_INTERNALVAR:
2993 *pos += 3;
2994 break;
2995
2996 case UNOP_MEMVAL:
2997 *pos += 3;
2998 nargs = 1;
2999 break;
3000
3001 case OP_REGISTER:
3002 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3003 break;
3004
3005 case STRUCTOP_STRUCT:
3006 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3007 nargs = 1;
3008 break;
3009
3010 case TERNOP_SLICE:
3011 *pos += 1;
3012 nargs = 3;
3013 break;
3014
3015 case OP_STRING:
3016 break;
3017
3018 default:
3019 error (_("Unexpected operator during name resolution"));
3020 }
3021
3022 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
3023 for (i = 0; i < nargs; i += 1)
3024 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3025 argvec[i] = NULL;
3026 exp = *expp;
3027
3028 /* Pass two: perform any resolution on principal operator. */
3029 switch (op)
3030 {
3031 default:
3032 break;
3033
3034 case OP_VAR_VALUE:
3035 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3036 {
3037 struct ada_symbol_info *candidates;
3038 int n_candidates;
3039
3040 n_candidates =
3041 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3042 (exp->elts[pc + 2].symbol),
3043 exp->elts[pc + 1].block, VAR_DOMAIN,
3044 &candidates);
3045
3046 if (n_candidates > 1)
3047 {
3048 /* Types tend to get re-introduced locally, so if there
3049 are any local symbols that are not types, first filter
3050 out all types. */
3051 int j;
3052 for (j = 0; j < n_candidates; j += 1)
3053 switch (SYMBOL_CLASS (candidates[j].sym))
3054 {
3055 case LOC_REGISTER:
3056 case LOC_ARG:
3057 case LOC_REF_ARG:
3058 case LOC_REGPARM_ADDR:
3059 case LOC_LOCAL:
3060 case LOC_COMPUTED:
3061 goto FoundNonType;
3062 default:
3063 break;
3064 }
3065 FoundNonType:
3066 if (j < n_candidates)
3067 {
3068 j = 0;
3069 while (j < n_candidates)
3070 {
3071 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3072 {
3073 candidates[j] = candidates[n_candidates - 1];
3074 n_candidates -= 1;
3075 }
3076 else
3077 j += 1;
3078 }
3079 }
3080 }
3081
3082 if (n_candidates == 0)
3083 error (_("No definition found for %s"),
3084 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3085 else if (n_candidates == 1)
3086 i = 0;
3087 else if (deprocedure_p
3088 && !is_nonfunction (candidates, n_candidates))
3089 {
3090 i = ada_resolve_function
3091 (candidates, n_candidates, NULL, 0,
3092 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3093 context_type);
3094 if (i < 0)
3095 error (_("Could not find a match for %s"),
3096 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3097 }
3098 else
3099 {
3100 printf_filtered (_("Multiple matches for %s\n"),
3101 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3102 user_select_syms (candidates, n_candidates, 1);
3103 i = 0;
3104 }
3105
3106 exp->elts[pc + 1].block = candidates[i].block;
3107 exp->elts[pc + 2].symbol = candidates[i].sym;
3108 if (innermost_block == NULL
3109 || contained_in (candidates[i].block, innermost_block))
3110 innermost_block = candidates[i].block;
3111 }
3112
3113 if (deprocedure_p
3114 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3115 == TYPE_CODE_FUNC))
3116 {
3117 replace_operator_with_call (expp, pc, 0, 0,
3118 exp->elts[pc + 2].symbol,
3119 exp->elts[pc + 1].block);
3120 exp = *expp;
3121 }
3122 break;
3123
3124 case OP_FUNCALL:
3125 {
3126 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3127 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3128 {
3129 struct ada_symbol_info *candidates;
3130 int n_candidates;
3131
3132 n_candidates =
3133 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3134 (exp->elts[pc + 5].symbol),
3135 exp->elts[pc + 4].block, VAR_DOMAIN,
3136 &candidates);
3137 if (n_candidates == 1)
3138 i = 0;
3139 else
3140 {
3141 i = ada_resolve_function
3142 (candidates, n_candidates,
3143 argvec, nargs,
3144 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3145 context_type);
3146 if (i < 0)
3147 error (_("Could not find a match for %s"),
3148 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3149 }
3150
3151 exp->elts[pc + 4].block = candidates[i].block;
3152 exp->elts[pc + 5].symbol = candidates[i].sym;
3153 if (innermost_block == NULL
3154 || contained_in (candidates[i].block, innermost_block))
3155 innermost_block = candidates[i].block;
3156 }
3157 }
3158 break;
3159 case BINOP_ADD:
3160 case BINOP_SUB:
3161 case BINOP_MUL:
3162 case BINOP_DIV:
3163 case BINOP_REM:
3164 case BINOP_MOD:
3165 case BINOP_CONCAT:
3166 case BINOP_BITWISE_AND:
3167 case BINOP_BITWISE_IOR:
3168 case BINOP_BITWISE_XOR:
3169 case BINOP_EQUAL:
3170 case BINOP_NOTEQUAL:
3171 case BINOP_LESS:
3172 case BINOP_GTR:
3173 case BINOP_LEQ:
3174 case BINOP_GEQ:
3175 case BINOP_EXP:
3176 case UNOP_NEG:
3177 case UNOP_PLUS:
3178 case UNOP_LOGICAL_NOT:
3179 case UNOP_ABS:
3180 if (possible_user_operator_p (op, argvec))
3181 {
3182 struct ada_symbol_info *candidates;
3183 int n_candidates;
3184
3185 n_candidates =
3186 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3187 (struct block *) NULL, VAR_DOMAIN,
3188 &candidates);
3189 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3190 ada_decoded_op_name (op), NULL);
3191 if (i < 0)
3192 break;
3193
3194 replace_operator_with_call (expp, pc, nargs, 1,
3195 candidates[i].sym, candidates[i].block);
3196 exp = *expp;
3197 }
3198 break;
3199
3200 case OP_TYPE:
3201 case OP_REGISTER:
3202 return NULL;
3203 }
3204
3205 *pos = pc;
3206 return evaluate_subexp_type (exp, pos);
3207 }
3208
3209 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3210 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3211 a non-pointer. */
3212 /* The term "match" here is rather loose. The match is heuristic and
3213 liberal. */
3214
3215 static int
3216 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3217 {
3218 ftype = ada_check_typedef (ftype);
3219 atype = ada_check_typedef (atype);
3220
3221 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3222 ftype = TYPE_TARGET_TYPE (ftype);
3223 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3224 atype = TYPE_TARGET_TYPE (atype);
3225
3226 switch (TYPE_CODE (ftype))
3227 {
3228 default:
3229 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3230 case TYPE_CODE_PTR:
3231 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3232 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3233 TYPE_TARGET_TYPE (atype), 0);
3234 else
3235 return (may_deref
3236 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3237 case TYPE_CODE_INT:
3238 case TYPE_CODE_ENUM:
3239 case TYPE_CODE_RANGE:
3240 switch (TYPE_CODE (atype))
3241 {
3242 case TYPE_CODE_INT:
3243 case TYPE_CODE_ENUM:
3244 case TYPE_CODE_RANGE:
3245 return 1;
3246 default:
3247 return 0;
3248 }
3249
3250 case TYPE_CODE_ARRAY:
3251 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3252 || ada_is_array_descriptor_type (atype));
3253
3254 case TYPE_CODE_STRUCT:
3255 if (ada_is_array_descriptor_type (ftype))
3256 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3257 || ada_is_array_descriptor_type (atype));
3258 else
3259 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3260 && !ada_is_array_descriptor_type (atype));
3261
3262 case TYPE_CODE_UNION:
3263 case TYPE_CODE_FLT:
3264 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3265 }
3266 }
3267
3268 /* Return non-zero if the formals of FUNC "sufficiently match" the
3269 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3270 may also be an enumeral, in which case it is treated as a 0-
3271 argument function. */
3272
3273 static int
3274 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3275 {
3276 int i;
3277 struct type *func_type = SYMBOL_TYPE (func);
3278
3279 if (SYMBOL_CLASS (func) == LOC_CONST
3280 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3281 return (n_actuals == 0);
3282 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3283 return 0;
3284
3285 if (TYPE_NFIELDS (func_type) != n_actuals)
3286 return 0;
3287
3288 for (i = 0; i < n_actuals; i += 1)
3289 {
3290 if (actuals[i] == NULL)
3291 return 0;
3292 else
3293 {
3294 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3295 i));
3296 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3297
3298 if (!ada_type_match (ftype, atype, 1))
3299 return 0;
3300 }
3301 }
3302 return 1;
3303 }
3304
3305 /* False iff function type FUNC_TYPE definitely does not produce a value
3306 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3307 FUNC_TYPE is not a valid function type with a non-null return type
3308 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3309
3310 static int
3311 return_match (struct type *func_type, struct type *context_type)
3312 {
3313 struct type *return_type;
3314
3315 if (func_type == NULL)
3316 return 1;
3317
3318 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3319 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3320 else
3321 return_type = base_type (func_type);
3322 if (return_type == NULL)
3323 return 1;
3324
3325 context_type = base_type (context_type);
3326
3327 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3328 return context_type == NULL || return_type == context_type;
3329 else if (context_type == NULL)
3330 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3331 else
3332 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3333 }
3334
3335
3336 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3337 function (if any) that matches the types of the NARGS arguments in
3338 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3339 that returns that type, then eliminate matches that don't. If
3340 CONTEXT_TYPE is void and there is at least one match that does not
3341 return void, eliminate all matches that do.
3342
3343 Asks the user if there is more than one match remaining. Returns -1
3344 if there is no such symbol or none is selected. NAME is used
3345 solely for messages. May re-arrange and modify SYMS in
3346 the process; the index returned is for the modified vector. */
3347
3348 static int
3349 ada_resolve_function (struct ada_symbol_info syms[],
3350 int nsyms, struct value **args, int nargs,
3351 const char *name, struct type *context_type)
3352 {
3353 int fallback;
3354 int k;
3355 int m; /* Number of hits */
3356
3357 m = 0;
3358 /* In the first pass of the loop, we only accept functions matching
3359 context_type. If none are found, we add a second pass of the loop
3360 where every function is accepted. */
3361 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3362 {
3363 for (k = 0; k < nsyms; k += 1)
3364 {
3365 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3366
3367 if (ada_args_match (syms[k].sym, args, nargs)
3368 && (fallback || return_match (type, context_type)))
3369 {
3370 syms[m] = syms[k];
3371 m += 1;
3372 }
3373 }
3374 }
3375
3376 if (m == 0)
3377 return -1;
3378 else if (m > 1)
3379 {
3380 printf_filtered (_("Multiple matches for %s\n"), name);
3381 user_select_syms (syms, m, 1);
3382 return 0;
3383 }
3384 return 0;
3385 }
3386
3387 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3388 in a listing of choices during disambiguation (see sort_choices, below).
3389 The idea is that overloadings of a subprogram name from the
3390 same package should sort in their source order. We settle for ordering
3391 such symbols by their trailing number (__N or $N). */
3392
3393 static int
3394 encoded_ordered_before (char *N0, char *N1)
3395 {
3396 if (N1 == NULL)
3397 return 0;
3398 else if (N0 == NULL)
3399 return 1;
3400 else
3401 {
3402 int k0, k1;
3403
3404 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3405 ;
3406 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3407 ;
3408 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3409 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3410 {
3411 int n0, n1;
3412
3413 n0 = k0;
3414 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3415 n0 -= 1;
3416 n1 = k1;
3417 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3418 n1 -= 1;
3419 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3420 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3421 }
3422 return (strcmp (N0, N1) < 0);
3423 }
3424 }
3425
3426 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3427 encoded names. */
3428
3429 static void
3430 sort_choices (struct ada_symbol_info syms[], int nsyms)
3431 {
3432 int i;
3433
3434 for (i = 1; i < nsyms; i += 1)
3435 {
3436 struct ada_symbol_info sym = syms[i];
3437 int j;
3438
3439 for (j = i - 1; j >= 0; j -= 1)
3440 {
3441 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3442 SYMBOL_LINKAGE_NAME (sym.sym)))
3443 break;
3444 syms[j + 1] = syms[j];
3445 }
3446 syms[j + 1] = sym;
3447 }
3448 }
3449
3450 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3451 by asking the user (if necessary), returning the number selected,
3452 and setting the first elements of SYMS items. Error if no symbols
3453 selected. */
3454
3455 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3456 to be re-integrated one of these days. */
3457
3458 int
3459 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3460 {
3461 int i;
3462 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3463 int n_chosen;
3464 int first_choice = (max_results == 1) ? 1 : 2;
3465 const char *select_mode = multiple_symbols_select_mode ();
3466
3467 if (max_results < 1)
3468 error (_("Request to select 0 symbols!"));
3469 if (nsyms <= 1)
3470 return nsyms;
3471
3472 if (select_mode == multiple_symbols_cancel)
3473 error (_("\
3474 canceled because the command is ambiguous\n\
3475 See set/show multiple-symbol."));
3476
3477 /* If select_mode is "all", then return all possible symbols.
3478 Only do that if more than one symbol can be selected, of course.
3479 Otherwise, display the menu as usual. */
3480 if (select_mode == multiple_symbols_all && max_results > 1)
3481 return nsyms;
3482
3483 printf_unfiltered (_("[0] cancel\n"));
3484 if (max_results > 1)
3485 printf_unfiltered (_("[1] all\n"));
3486
3487 sort_choices (syms, nsyms);
3488
3489 for (i = 0; i < nsyms; i += 1)
3490 {
3491 if (syms[i].sym == NULL)
3492 continue;
3493
3494 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3495 {
3496 struct symtab_and_line sal =
3497 find_function_start_sal (syms[i].sym, 1);
3498
3499 if (sal.symtab == NULL)
3500 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3501 i + first_choice,
3502 SYMBOL_PRINT_NAME (syms[i].sym),
3503 sal.line);
3504 else
3505 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3506 SYMBOL_PRINT_NAME (syms[i].sym),
3507 sal.symtab->filename, sal.line);
3508 continue;
3509 }
3510 else
3511 {
3512 int is_enumeral =
3513 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3514 && SYMBOL_TYPE (syms[i].sym) != NULL
3515 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3516 struct symtab *symtab = syms[i].sym->symtab;
3517
3518 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3519 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3520 i + first_choice,
3521 SYMBOL_PRINT_NAME (syms[i].sym),
3522 symtab->filename, SYMBOL_LINE (syms[i].sym));
3523 else if (is_enumeral
3524 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3525 {
3526 printf_unfiltered (("[%d] "), i + first_choice);
3527 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3528 gdb_stdout, -1, 0);
3529 printf_unfiltered (_("'(%s) (enumeral)\n"),
3530 SYMBOL_PRINT_NAME (syms[i].sym));
3531 }
3532 else if (symtab != NULL)
3533 printf_unfiltered (is_enumeral
3534 ? _("[%d] %s in %s (enumeral)\n")
3535 : _("[%d] %s at %s:?\n"),
3536 i + first_choice,
3537 SYMBOL_PRINT_NAME (syms[i].sym),
3538 symtab->filename);
3539 else
3540 printf_unfiltered (is_enumeral
3541 ? _("[%d] %s (enumeral)\n")
3542 : _("[%d] %s at ?\n"),
3543 i + first_choice,
3544 SYMBOL_PRINT_NAME (syms[i].sym));
3545 }
3546 }
3547
3548 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3549 "overload-choice");
3550
3551 for (i = 0; i < n_chosen; i += 1)
3552 syms[i] = syms[chosen[i]];
3553
3554 return n_chosen;
3555 }
3556
3557 /* Read and validate a set of numeric choices from the user in the
3558 range 0 .. N_CHOICES-1. Place the results in increasing
3559 order in CHOICES[0 .. N-1], and return N.
3560
3561 The user types choices as a sequence of numbers on one line
3562 separated by blanks, encoding them as follows:
3563
3564 + A choice of 0 means to cancel the selection, throwing an error.
3565 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3566 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3567
3568 The user is not allowed to choose more than MAX_RESULTS values.
3569
3570 ANNOTATION_SUFFIX, if present, is used to annotate the input
3571 prompts (for use with the -f switch). */
3572
3573 int
3574 get_selections (int *choices, int n_choices, int max_results,
3575 int is_all_choice, char *annotation_suffix)
3576 {
3577 char *args;
3578 char *prompt;
3579 int n_chosen;
3580 int first_choice = is_all_choice ? 2 : 1;
3581
3582 prompt = getenv ("PS2");
3583 if (prompt == NULL)
3584 prompt = "> ";
3585
3586 args = command_line_input (prompt, 0, annotation_suffix);
3587
3588 if (args == NULL)
3589 error_no_arg (_("one or more choice numbers"));
3590
3591 n_chosen = 0;
3592
3593 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3594 order, as given in args. Choices are validated. */
3595 while (1)
3596 {
3597 char *args2;
3598 int choice, j;
3599
3600 while (isspace (*args))
3601 args += 1;
3602 if (*args == '\0' && n_chosen == 0)
3603 error_no_arg (_("one or more choice numbers"));
3604 else if (*args == '\0')
3605 break;
3606
3607 choice = strtol (args, &args2, 10);
3608 if (args == args2 || choice < 0
3609 || choice > n_choices + first_choice - 1)
3610 error (_("Argument must be choice number"));
3611 args = args2;
3612
3613 if (choice == 0)
3614 error (_("cancelled"));
3615
3616 if (choice < first_choice)
3617 {
3618 n_chosen = n_choices;
3619 for (j = 0; j < n_choices; j += 1)
3620 choices[j] = j;
3621 break;
3622 }
3623 choice -= first_choice;
3624
3625 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3626 {
3627 }
3628
3629 if (j < 0 || choice != choices[j])
3630 {
3631 int k;
3632
3633 for (k = n_chosen - 1; k > j; k -= 1)
3634 choices[k + 1] = choices[k];
3635 choices[j + 1] = choice;
3636 n_chosen += 1;
3637 }
3638 }
3639
3640 if (n_chosen > max_results)
3641 error (_("Select no more than %d of the above"), max_results);
3642
3643 return n_chosen;
3644 }
3645
3646 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3647 on the function identified by SYM and BLOCK, and taking NARGS
3648 arguments. Update *EXPP as needed to hold more space. */
3649
3650 static void
3651 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3652 int oplen, struct symbol *sym,
3653 struct block *block)
3654 {
3655 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3656 symbol, -oplen for operator being replaced). */
3657 struct expression *newexp = (struct expression *)
3658 xzalloc (sizeof (struct expression)
3659 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3660 struct expression *exp = *expp;
3661
3662 newexp->nelts = exp->nelts + 7 - oplen;
3663 newexp->language_defn = exp->language_defn;
3664 newexp->gdbarch = exp->gdbarch;
3665 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3666 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3667 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3668
3669 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3670 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3671
3672 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3673 newexp->elts[pc + 4].block = block;
3674 newexp->elts[pc + 5].symbol = sym;
3675
3676 *expp = newexp;
3677 xfree (exp);
3678 }
3679
3680 /* Type-class predicates */
3681
3682 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3683 or FLOAT). */
3684
3685 static int
3686 numeric_type_p (struct type *type)
3687 {
3688 if (type == NULL)
3689 return 0;
3690 else
3691 {
3692 switch (TYPE_CODE (type))
3693 {
3694 case TYPE_CODE_INT:
3695 case TYPE_CODE_FLT:
3696 return 1;
3697 case TYPE_CODE_RANGE:
3698 return (type == TYPE_TARGET_TYPE (type)
3699 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3700 default:
3701 return 0;
3702 }
3703 }
3704 }
3705
3706 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3707
3708 static int
3709 integer_type_p (struct type *type)
3710 {
3711 if (type == NULL)
3712 return 0;
3713 else
3714 {
3715 switch (TYPE_CODE (type))
3716 {
3717 case TYPE_CODE_INT:
3718 return 1;
3719 case TYPE_CODE_RANGE:
3720 return (type == TYPE_TARGET_TYPE (type)
3721 || integer_type_p (TYPE_TARGET_TYPE (type)));
3722 default:
3723 return 0;
3724 }
3725 }
3726 }
3727
3728 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3729
3730 static int
3731 scalar_type_p (struct type *type)
3732 {
3733 if (type == NULL)
3734 return 0;
3735 else
3736 {
3737 switch (TYPE_CODE (type))
3738 {
3739 case TYPE_CODE_INT:
3740 case TYPE_CODE_RANGE:
3741 case TYPE_CODE_ENUM:
3742 case TYPE_CODE_FLT:
3743 return 1;
3744 default:
3745 return 0;
3746 }
3747 }
3748 }
3749
3750 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3751
3752 static int
3753 discrete_type_p (struct type *type)
3754 {
3755 if (type == NULL)
3756 return 0;
3757 else
3758 {
3759 switch (TYPE_CODE (type))
3760 {
3761 case TYPE_CODE_INT:
3762 case TYPE_CODE_RANGE:
3763 case TYPE_CODE_ENUM:
3764 case TYPE_CODE_BOOL:
3765 return 1;
3766 default:
3767 return 0;
3768 }
3769 }
3770 }
3771
3772 /* Returns non-zero if OP with operands in the vector ARGS could be
3773 a user-defined function. Errs on the side of pre-defined operators
3774 (i.e., result 0). */
3775
3776 static int
3777 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3778 {
3779 struct type *type0 =
3780 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3781 struct type *type1 =
3782 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3783
3784 if (type0 == NULL)
3785 return 0;
3786
3787 switch (op)
3788 {
3789 default:
3790 return 0;
3791
3792 case BINOP_ADD:
3793 case BINOP_SUB:
3794 case BINOP_MUL:
3795 case BINOP_DIV:
3796 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3797
3798 case BINOP_REM:
3799 case BINOP_MOD:
3800 case BINOP_BITWISE_AND:
3801 case BINOP_BITWISE_IOR:
3802 case BINOP_BITWISE_XOR:
3803 return (!(integer_type_p (type0) && integer_type_p (type1)));
3804
3805 case BINOP_EQUAL:
3806 case BINOP_NOTEQUAL:
3807 case BINOP_LESS:
3808 case BINOP_GTR:
3809 case BINOP_LEQ:
3810 case BINOP_GEQ:
3811 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3812
3813 case BINOP_CONCAT:
3814 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3815
3816 case BINOP_EXP:
3817 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3818
3819 case UNOP_NEG:
3820 case UNOP_PLUS:
3821 case UNOP_LOGICAL_NOT:
3822 case UNOP_ABS:
3823 return (!numeric_type_p (type0));
3824
3825 }
3826 }
3827 \f
3828 /* Renaming */
3829
3830 /* NOTES:
3831
3832 1. In the following, we assume that a renaming type's name may
3833 have an ___XD suffix. It would be nice if this went away at some
3834 point.
3835 2. We handle both the (old) purely type-based representation of
3836 renamings and the (new) variable-based encoding. At some point,
3837 it is devoutly to be hoped that the former goes away
3838 (FIXME: hilfinger-2007-07-09).
3839 3. Subprogram renamings are not implemented, although the XRS
3840 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3841
3842 /* If SYM encodes a renaming,
3843
3844 <renaming> renames <renamed entity>,
3845
3846 sets *LEN to the length of the renamed entity's name,
3847 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3848 the string describing the subcomponent selected from the renamed
3849 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3850 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3851 are undefined). Otherwise, returns a value indicating the category
3852 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3853 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3854 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3855 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3856 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3857 may be NULL, in which case they are not assigned.
3858
3859 [Currently, however, GCC does not generate subprogram renamings.] */
3860
3861 enum ada_renaming_category
3862 ada_parse_renaming (struct symbol *sym,
3863 const char **renamed_entity, int *len,
3864 const char **renaming_expr)
3865 {
3866 enum ada_renaming_category kind;
3867 const char *info;
3868 const char *suffix;
3869
3870 if (sym == NULL)
3871 return ADA_NOT_RENAMING;
3872 switch (SYMBOL_CLASS (sym))
3873 {
3874 default:
3875 return ADA_NOT_RENAMING;
3876 case LOC_TYPEDEF:
3877 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3878 renamed_entity, len, renaming_expr);
3879 case LOC_LOCAL:
3880 case LOC_STATIC:
3881 case LOC_COMPUTED:
3882 case LOC_OPTIMIZED_OUT:
3883 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3884 if (info == NULL)
3885 return ADA_NOT_RENAMING;
3886 switch (info[5])
3887 {
3888 case '_':
3889 kind = ADA_OBJECT_RENAMING;
3890 info += 6;
3891 break;
3892 case 'E':
3893 kind = ADA_EXCEPTION_RENAMING;
3894 info += 7;
3895 break;
3896 case 'P':
3897 kind = ADA_PACKAGE_RENAMING;
3898 info += 7;
3899 break;
3900 case 'S':
3901 kind = ADA_SUBPROGRAM_RENAMING;
3902 info += 7;
3903 break;
3904 default:
3905 return ADA_NOT_RENAMING;
3906 }
3907 }
3908
3909 if (renamed_entity != NULL)
3910 *renamed_entity = info;
3911 suffix = strstr (info, "___XE");
3912 if (suffix == NULL || suffix == info)
3913 return ADA_NOT_RENAMING;
3914 if (len != NULL)
3915 *len = strlen (info) - strlen (suffix);
3916 suffix += 5;
3917 if (renaming_expr != NULL)
3918 *renaming_expr = suffix;
3919 return kind;
3920 }
3921
3922 /* Assuming TYPE encodes a renaming according to the old encoding in
3923 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3924 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3925 ADA_NOT_RENAMING otherwise. */
3926 static enum ada_renaming_category
3927 parse_old_style_renaming (struct type *type,
3928 const char **renamed_entity, int *len,
3929 const char **renaming_expr)
3930 {
3931 enum ada_renaming_category kind;
3932 const char *name;
3933 const char *info;
3934 const char *suffix;
3935
3936 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3937 || TYPE_NFIELDS (type) != 1)
3938 return ADA_NOT_RENAMING;
3939
3940 name = type_name_no_tag (type);
3941 if (name == NULL)
3942 return ADA_NOT_RENAMING;
3943
3944 name = strstr (name, "___XR");
3945 if (name == NULL)
3946 return ADA_NOT_RENAMING;
3947 switch (name[5])
3948 {
3949 case '\0':
3950 case '_':
3951 kind = ADA_OBJECT_RENAMING;
3952 break;
3953 case 'E':
3954 kind = ADA_EXCEPTION_RENAMING;
3955 break;
3956 case 'P':
3957 kind = ADA_PACKAGE_RENAMING;
3958 break;
3959 case 'S':
3960 kind = ADA_SUBPROGRAM_RENAMING;
3961 break;
3962 default:
3963 return ADA_NOT_RENAMING;
3964 }
3965
3966 info = TYPE_FIELD_NAME (type, 0);
3967 if (info == NULL)
3968 return ADA_NOT_RENAMING;
3969 if (renamed_entity != NULL)
3970 *renamed_entity = info;
3971 suffix = strstr (info, "___XE");
3972 if (renaming_expr != NULL)
3973 *renaming_expr = suffix + 5;
3974 if (suffix == NULL || suffix == info)
3975 return ADA_NOT_RENAMING;
3976 if (len != NULL)
3977 *len = suffix - info;
3978 return kind;
3979 }
3980
3981 \f
3982
3983 /* Evaluation: Function Calls */
3984
3985 /* Return an lvalue containing the value VAL. This is the identity on
3986 lvalues, and otherwise has the side-effect of allocating memory
3987 in the inferior where a copy of the value contents is copied. */
3988
3989 static struct value *
3990 ensure_lval (struct value *val)
3991 {
3992 if (VALUE_LVAL (val) == not_lval
3993 || VALUE_LVAL (val) == lval_internalvar)
3994 {
3995 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3996 const CORE_ADDR addr =
3997 value_as_long (value_allocate_space_in_inferior (len));
3998
3999 set_value_address (val, addr);
4000 VALUE_LVAL (val) = lval_memory;
4001 write_memory (addr, value_contents (val), len);
4002 }
4003
4004 return val;
4005 }
4006
4007 /* Return the value ACTUAL, converted to be an appropriate value for a
4008 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4009 allocating any necessary descriptors (fat pointers), or copies of
4010 values not residing in memory, updating it as needed. */
4011
4012 struct value *
4013 ada_convert_actual (struct value *actual, struct type *formal_type0)
4014 {
4015 struct type *actual_type = ada_check_typedef (value_type (actual));
4016 struct type *formal_type = ada_check_typedef (formal_type0);
4017 struct type *formal_target =
4018 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4019 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4020 struct type *actual_target =
4021 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4022 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4023
4024 if (ada_is_array_descriptor_type (formal_target)
4025 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4026 return make_array_descriptor (formal_type, actual);
4027 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4028 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4029 {
4030 struct value *result;
4031
4032 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4033 && ada_is_array_descriptor_type (actual_target))
4034 result = desc_data (actual);
4035 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4036 {
4037 if (VALUE_LVAL (actual) != lval_memory)
4038 {
4039 struct value *val;
4040
4041 actual_type = ada_check_typedef (value_type (actual));
4042 val = allocate_value (actual_type);
4043 memcpy ((char *) value_contents_raw (val),
4044 (char *) value_contents (actual),
4045 TYPE_LENGTH (actual_type));
4046 actual = ensure_lval (val);
4047 }
4048 result = value_addr (actual);
4049 }
4050 else
4051 return actual;
4052 return value_cast_pointers (formal_type, result);
4053 }
4054 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4055 return ada_value_ind (actual);
4056
4057 return actual;
4058 }
4059
4060 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4061 type TYPE. This is usually an inefficient no-op except on some targets
4062 (such as AVR) where the representation of a pointer and an address
4063 differs. */
4064
4065 static CORE_ADDR
4066 value_pointer (struct value *value, struct type *type)
4067 {
4068 struct gdbarch *gdbarch = get_type_arch (type);
4069 unsigned len = TYPE_LENGTH (type);
4070 gdb_byte *buf = alloca (len);
4071 CORE_ADDR addr;
4072
4073 addr = value_address (value);
4074 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4075 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4076 return addr;
4077 }
4078
4079
4080 /* Push a descriptor of type TYPE for array value ARR on the stack at
4081 *SP, updating *SP to reflect the new descriptor. Return either
4082 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4083 to-descriptor type rather than a descriptor type), a struct value *
4084 representing a pointer to this descriptor. */
4085
4086 static struct value *
4087 make_array_descriptor (struct type *type, struct value *arr)
4088 {
4089 struct type *bounds_type = desc_bounds_type (type);
4090 struct type *desc_type = desc_base_type (type);
4091 struct value *descriptor = allocate_value (desc_type);
4092 struct value *bounds = allocate_value (bounds_type);
4093 int i;
4094
4095 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4096 i > 0; i -= 1)
4097 {
4098 modify_field (value_type (bounds), value_contents_writeable (bounds),
4099 ada_array_bound (arr, i, 0),
4100 desc_bound_bitpos (bounds_type, i, 0),
4101 desc_bound_bitsize (bounds_type, i, 0));
4102 modify_field (value_type (bounds), value_contents_writeable (bounds),
4103 ada_array_bound (arr, i, 1),
4104 desc_bound_bitpos (bounds_type, i, 1),
4105 desc_bound_bitsize (bounds_type, i, 1));
4106 }
4107
4108 bounds = ensure_lval (bounds);
4109
4110 modify_field (value_type (descriptor),
4111 value_contents_writeable (descriptor),
4112 value_pointer (ensure_lval (arr),
4113 TYPE_FIELD_TYPE (desc_type, 0)),
4114 fat_pntr_data_bitpos (desc_type),
4115 fat_pntr_data_bitsize (desc_type));
4116
4117 modify_field (value_type (descriptor),
4118 value_contents_writeable (descriptor),
4119 value_pointer (bounds,
4120 TYPE_FIELD_TYPE (desc_type, 1)),
4121 fat_pntr_bounds_bitpos (desc_type),
4122 fat_pntr_bounds_bitsize (desc_type));
4123
4124 descriptor = ensure_lval (descriptor);
4125
4126 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4127 return value_addr (descriptor);
4128 else
4129 return descriptor;
4130 }
4131 \f
4132 /* Dummy definitions for an experimental caching module that is not
4133 * used in the public sources. */
4134
4135 static int
4136 lookup_cached_symbol (const char *name, domain_enum namespace,
4137 struct symbol **sym, struct block **block)
4138 {
4139 return 0;
4140 }
4141
4142 static void
4143 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
4144 struct block *block)
4145 {
4146 }
4147 \f
4148 /* Symbol Lookup */
4149
4150 /* Return the result of a standard (literal, C-like) lookup of NAME in
4151 given DOMAIN, visible from lexical block BLOCK. */
4152
4153 static struct symbol *
4154 standard_lookup (const char *name, const struct block *block,
4155 domain_enum domain)
4156 {
4157 struct symbol *sym;
4158
4159 if (lookup_cached_symbol (name, domain, &sym, NULL))
4160 return sym;
4161 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4162 cache_symbol (name, domain, sym, block_found);
4163 return sym;
4164 }
4165
4166
4167 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4168 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4169 since they contend in overloading in the same way. */
4170 static int
4171 is_nonfunction (struct ada_symbol_info syms[], int n)
4172 {
4173 int i;
4174
4175 for (i = 0; i < n; i += 1)
4176 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4177 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4178 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4179 return 1;
4180
4181 return 0;
4182 }
4183
4184 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4185 struct types. Otherwise, they may not. */
4186
4187 static int
4188 equiv_types (struct type *type0, struct type *type1)
4189 {
4190 if (type0 == type1)
4191 return 1;
4192 if (type0 == NULL || type1 == NULL
4193 || TYPE_CODE (type0) != TYPE_CODE (type1))
4194 return 0;
4195 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4196 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4197 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4198 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4199 return 1;
4200
4201 return 0;
4202 }
4203
4204 /* True iff SYM0 represents the same entity as SYM1, or one that is
4205 no more defined than that of SYM1. */
4206
4207 static int
4208 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4209 {
4210 if (sym0 == sym1)
4211 return 1;
4212 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4213 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4214 return 0;
4215
4216 switch (SYMBOL_CLASS (sym0))
4217 {
4218 case LOC_UNDEF:
4219 return 1;
4220 case LOC_TYPEDEF:
4221 {
4222 struct type *type0 = SYMBOL_TYPE (sym0);
4223 struct type *type1 = SYMBOL_TYPE (sym1);
4224 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4225 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4226 int len0 = strlen (name0);
4227
4228 return
4229 TYPE_CODE (type0) == TYPE_CODE (type1)
4230 && (equiv_types (type0, type1)
4231 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4232 && strncmp (name1 + len0, "___XV", 5) == 0));
4233 }
4234 case LOC_CONST:
4235 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4236 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4237 default:
4238 return 0;
4239 }
4240 }
4241
4242 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4243 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4244
4245 static void
4246 add_defn_to_vec (struct obstack *obstackp,
4247 struct symbol *sym,
4248 struct block *block)
4249 {
4250 int i;
4251 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4252
4253 /* Do not try to complete stub types, as the debugger is probably
4254 already scanning all symbols matching a certain name at the
4255 time when this function is called. Trying to replace the stub
4256 type by its associated full type will cause us to restart a scan
4257 which may lead to an infinite recursion. Instead, the client
4258 collecting the matching symbols will end up collecting several
4259 matches, with at least one of them complete. It can then filter
4260 out the stub ones if needed. */
4261
4262 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4263 {
4264 if (lesseq_defined_than (sym, prevDefns[i].sym))
4265 return;
4266 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4267 {
4268 prevDefns[i].sym = sym;
4269 prevDefns[i].block = block;
4270 return;
4271 }
4272 }
4273
4274 {
4275 struct ada_symbol_info info;
4276
4277 info.sym = sym;
4278 info.block = block;
4279 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4280 }
4281 }
4282
4283 /* Number of ada_symbol_info structures currently collected in
4284 current vector in *OBSTACKP. */
4285
4286 static int
4287 num_defns_collected (struct obstack *obstackp)
4288 {
4289 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4290 }
4291
4292 /* Vector of ada_symbol_info structures currently collected in current
4293 vector in *OBSTACKP. If FINISH, close off the vector and return
4294 its final address. */
4295
4296 static struct ada_symbol_info *
4297 defns_collected (struct obstack *obstackp, int finish)
4298 {
4299 if (finish)
4300 return obstack_finish (obstackp);
4301 else
4302 return (struct ada_symbol_info *) obstack_base (obstackp);
4303 }
4304
4305 /* Return a minimal symbol matching NAME according to Ada decoding
4306 rules. Returns NULL if there is no such minimal symbol. Names
4307 prefixed with "standard__" are handled specially: "standard__" is
4308 first stripped off, and only static and global symbols are searched. */
4309
4310 struct minimal_symbol *
4311 ada_lookup_simple_minsym (const char *name)
4312 {
4313 struct objfile *objfile;
4314 struct minimal_symbol *msymbol;
4315 int wild_match;
4316
4317 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4318 {
4319 name += sizeof ("standard__") - 1;
4320 wild_match = 0;
4321 }
4322 else
4323 wild_match = (strstr (name, "__") == NULL);
4324
4325 ALL_MSYMBOLS (objfile, msymbol)
4326 {
4327 if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4328 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4329 return msymbol;
4330 }
4331
4332 return NULL;
4333 }
4334
4335 /* For all subprograms that statically enclose the subprogram of the
4336 selected frame, add symbols matching identifier NAME in DOMAIN
4337 and their blocks to the list of data in OBSTACKP, as for
4338 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4339 wildcard prefix. */
4340
4341 static void
4342 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4343 const char *name, domain_enum namespace,
4344 int wild_match)
4345 {
4346 }
4347
4348 /* True if TYPE is definitely an artificial type supplied to a symbol
4349 for which no debugging information was given in the symbol file. */
4350
4351 static int
4352 is_nondebugging_type (struct type *type)
4353 {
4354 char *name = ada_type_name (type);
4355
4356 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4357 }
4358
4359 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4360 duplicate other symbols in the list (The only case I know of where
4361 this happens is when object files containing stabs-in-ecoff are
4362 linked with files containing ordinary ecoff debugging symbols (or no
4363 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4364 Returns the number of items in the modified list. */
4365
4366 static int
4367 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4368 {
4369 int i, j;
4370
4371 i = 0;
4372 while (i < nsyms)
4373 {
4374 int remove = 0;
4375
4376 /* If two symbols have the same name and one of them is a stub type,
4377 the get rid of the stub. */
4378
4379 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4380 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4381 {
4382 for (j = 0; j < nsyms; j++)
4383 {
4384 if (j != i
4385 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4386 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4387 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4388 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4389 remove = 1;
4390 }
4391 }
4392
4393 /* Two symbols with the same name, same class and same address
4394 should be identical. */
4395
4396 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4397 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4398 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4399 {
4400 for (j = 0; j < nsyms; j += 1)
4401 {
4402 if (i != j
4403 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4404 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4405 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4406 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4407 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4408 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4409 remove = 1;
4410 }
4411 }
4412
4413 if (remove)
4414 {
4415 for (j = i + 1; j < nsyms; j += 1)
4416 syms[j - 1] = syms[j];
4417 nsyms -= 1;
4418 }
4419
4420 i += 1;
4421 }
4422 return nsyms;
4423 }
4424
4425 /* Given a type that corresponds to a renaming entity, use the type name
4426 to extract the scope (package name or function name, fully qualified,
4427 and following the GNAT encoding convention) where this renaming has been
4428 defined. The string returned needs to be deallocated after use. */
4429
4430 static char *
4431 xget_renaming_scope (struct type *renaming_type)
4432 {
4433 /* The renaming types adhere to the following convention:
4434 <scope>__<rename>___<XR extension>.
4435 So, to extract the scope, we search for the "___XR" extension,
4436 and then backtrack until we find the first "__". */
4437
4438 const char *name = type_name_no_tag (renaming_type);
4439 char *suffix = strstr (name, "___XR");
4440 char *last;
4441 int scope_len;
4442 char *scope;
4443
4444 /* Now, backtrack a bit until we find the first "__". Start looking
4445 at suffix - 3, as the <rename> part is at least one character long. */
4446
4447 for (last = suffix - 3; last > name; last--)
4448 if (last[0] == '_' && last[1] == '_')
4449 break;
4450
4451 /* Make a copy of scope and return it. */
4452
4453 scope_len = last - name;
4454 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4455
4456 strncpy (scope, name, scope_len);
4457 scope[scope_len] = '\0';
4458
4459 return scope;
4460 }
4461
4462 /* Return nonzero if NAME corresponds to a package name. */
4463
4464 static int
4465 is_package_name (const char *name)
4466 {
4467 /* Here, We take advantage of the fact that no symbols are generated
4468 for packages, while symbols are generated for each function.
4469 So the condition for NAME represent a package becomes equivalent
4470 to NAME not existing in our list of symbols. There is only one
4471 small complication with library-level functions (see below). */
4472
4473 char *fun_name;
4474
4475 /* If it is a function that has not been defined at library level,
4476 then we should be able to look it up in the symbols. */
4477 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4478 return 0;
4479
4480 /* Library-level function names start with "_ada_". See if function
4481 "_ada_" followed by NAME can be found. */
4482
4483 /* Do a quick check that NAME does not contain "__", since library-level
4484 functions names cannot contain "__" in them. */
4485 if (strstr (name, "__") != NULL)
4486 return 0;
4487
4488 fun_name = xstrprintf ("_ada_%s", name);
4489
4490 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4491 }
4492
4493 /* Return nonzero if SYM corresponds to a renaming entity that is
4494 not visible from FUNCTION_NAME. */
4495
4496 static int
4497 old_renaming_is_invisible (const struct symbol *sym, char *function_name)
4498 {
4499 char *scope;
4500
4501 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4502 return 0;
4503
4504 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4505
4506 make_cleanup (xfree, scope);
4507
4508 /* If the rename has been defined in a package, then it is visible. */
4509 if (is_package_name (scope))
4510 return 0;
4511
4512 /* Check that the rename is in the current function scope by checking
4513 that its name starts with SCOPE. */
4514
4515 /* If the function name starts with "_ada_", it means that it is
4516 a library-level function. Strip this prefix before doing the
4517 comparison, as the encoding for the renaming does not contain
4518 this prefix. */
4519 if (strncmp (function_name, "_ada_", 5) == 0)
4520 function_name += 5;
4521
4522 return (strncmp (function_name, scope, strlen (scope)) != 0);
4523 }
4524
4525 /* Remove entries from SYMS that corresponds to a renaming entity that
4526 is not visible from the function associated with CURRENT_BLOCK or
4527 that is superfluous due to the presence of more specific renaming
4528 information. Places surviving symbols in the initial entries of
4529 SYMS and returns the number of surviving symbols.
4530
4531 Rationale:
4532 First, in cases where an object renaming is implemented as a
4533 reference variable, GNAT may produce both the actual reference
4534 variable and the renaming encoding. In this case, we discard the
4535 latter.
4536
4537 Second, GNAT emits a type following a specified encoding for each renaming
4538 entity. Unfortunately, STABS currently does not support the definition
4539 of types that are local to a given lexical block, so all renamings types
4540 are emitted at library level. As a consequence, if an application
4541 contains two renaming entities using the same name, and a user tries to
4542 print the value of one of these entities, the result of the ada symbol
4543 lookup will also contain the wrong renaming type.
4544
4545 This function partially covers for this limitation by attempting to
4546 remove from the SYMS list renaming symbols that should be visible
4547 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4548 method with the current information available. The implementation
4549 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4550
4551 - When the user tries to print a rename in a function while there
4552 is another rename entity defined in a package: Normally, the
4553 rename in the function has precedence over the rename in the
4554 package, so the latter should be removed from the list. This is
4555 currently not the case.
4556
4557 - This function will incorrectly remove valid renames if
4558 the CURRENT_BLOCK corresponds to a function which symbol name
4559 has been changed by an "Export" pragma. As a consequence,
4560 the user will be unable to print such rename entities. */
4561
4562 static int
4563 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4564 int nsyms, const struct block *current_block)
4565 {
4566 struct symbol *current_function;
4567 char *current_function_name;
4568 int i;
4569 int is_new_style_renaming;
4570
4571 /* If there is both a renaming foo___XR... encoded as a variable and
4572 a simple variable foo in the same block, discard the latter.
4573 First, zero out such symbols, then compress. */
4574 is_new_style_renaming = 0;
4575 for (i = 0; i < nsyms; i += 1)
4576 {
4577 struct symbol *sym = syms[i].sym;
4578 struct block *block = syms[i].block;
4579 const char *name;
4580 const char *suffix;
4581
4582 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4583 continue;
4584 name = SYMBOL_LINKAGE_NAME (sym);
4585 suffix = strstr (name, "___XR");
4586
4587 if (suffix != NULL)
4588 {
4589 int name_len = suffix - name;
4590 int j;
4591
4592 is_new_style_renaming = 1;
4593 for (j = 0; j < nsyms; j += 1)
4594 if (i != j && syms[j].sym != NULL
4595 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4596 name_len) == 0
4597 && block == syms[j].block)
4598 syms[j].sym = NULL;
4599 }
4600 }
4601 if (is_new_style_renaming)
4602 {
4603 int j, k;
4604
4605 for (j = k = 0; j < nsyms; j += 1)
4606 if (syms[j].sym != NULL)
4607 {
4608 syms[k] = syms[j];
4609 k += 1;
4610 }
4611 return k;
4612 }
4613
4614 /* Extract the function name associated to CURRENT_BLOCK.
4615 Abort if unable to do so. */
4616
4617 if (current_block == NULL)
4618 return nsyms;
4619
4620 current_function = block_linkage_function (current_block);
4621 if (current_function == NULL)
4622 return nsyms;
4623
4624 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4625 if (current_function_name == NULL)
4626 return nsyms;
4627
4628 /* Check each of the symbols, and remove it from the list if it is
4629 a type corresponding to a renaming that is out of the scope of
4630 the current block. */
4631
4632 i = 0;
4633 while (i < nsyms)
4634 {
4635 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4636 == ADA_OBJECT_RENAMING
4637 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4638 {
4639 int j;
4640
4641 for (j = i + 1; j < nsyms; j += 1)
4642 syms[j - 1] = syms[j];
4643 nsyms -= 1;
4644 }
4645 else
4646 i += 1;
4647 }
4648
4649 return nsyms;
4650 }
4651
4652 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4653 whose name and domain match NAME and DOMAIN respectively.
4654 If no match was found, then extend the search to "enclosing"
4655 routines (in other words, if we're inside a nested function,
4656 search the symbols defined inside the enclosing functions).
4657
4658 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4659
4660 static void
4661 ada_add_local_symbols (struct obstack *obstackp, const char *name,
4662 struct block *block, domain_enum domain,
4663 int wild_match)
4664 {
4665 int block_depth = 0;
4666
4667 while (block != NULL)
4668 {
4669 block_depth += 1;
4670 ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4671
4672 /* If we found a non-function match, assume that's the one. */
4673 if (is_nonfunction (defns_collected (obstackp, 0),
4674 num_defns_collected (obstackp)))
4675 return;
4676
4677 block = BLOCK_SUPERBLOCK (block);
4678 }
4679
4680 /* If no luck so far, try to find NAME as a local symbol in some lexically
4681 enclosing subprogram. */
4682 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4683 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4684 }
4685
4686 /* An object of this type is used as the user_data argument when
4687 calling the map_matching_symbols method. */
4688
4689 struct match_data
4690 {
4691 struct objfile *objfile;
4692 struct obstack *obstackp;
4693 struct symbol *arg_sym;
4694 int found_sym;
4695 };
4696
4697 /* A callback for add_matching_symbols that adds SYM, found in BLOCK,
4698 to a list of symbols. DATA0 is a pointer to a struct match_data *
4699 containing the obstack that collects the symbol list, the file that SYM
4700 must come from, a flag indicating whether a non-argument symbol has
4701 been found in the current block, and the last argument symbol
4702 passed in SYM within the current block (if any). When SYM is null,
4703 marking the end of a block, the argument symbol is added if no
4704 other has been found. */
4705
4706 static int
4707 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
4708 {
4709 struct match_data *data = (struct match_data *) data0;
4710
4711 if (sym == NULL)
4712 {
4713 if (!data->found_sym && data->arg_sym != NULL)
4714 add_defn_to_vec (data->obstackp,
4715 fixup_symbol_section (data->arg_sym, data->objfile),
4716 block);
4717 data->found_sym = 0;
4718 data->arg_sym = NULL;
4719 }
4720 else
4721 {
4722 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4723 return 0;
4724 else if (SYMBOL_IS_ARGUMENT (sym))
4725 data->arg_sym = sym;
4726 else
4727 {
4728 data->found_sym = 1;
4729 add_defn_to_vec (data->obstackp,
4730 fixup_symbol_section (sym, data->objfile),
4731 block);
4732 }
4733 }
4734 return 0;
4735 }
4736
4737 /* Compare STRING1 to STRING2, with results as for strcmp.
4738 Compatible with strcmp_iw in that strcmp_iw (STRING1, STRING2) <= 0
4739 implies compare_names (STRING1, STRING2) (they may differ as to
4740 what symbols compare equal). */
4741
4742 static int
4743 compare_names (const char *string1, const char *string2)
4744 {
4745 while (*string1 != '\0' && *string2 != '\0')
4746 {
4747 if (isspace (*string1) || isspace (*string2))
4748 return strcmp_iw_ordered (string1, string2);
4749 if (*string1 != *string2)
4750 break;
4751 string1 += 1;
4752 string2 += 1;
4753 }
4754 switch (*string1)
4755 {
4756 case '(':
4757 return strcmp_iw_ordered (string1, string2);
4758 case '_':
4759 if (*string2 == '\0')
4760 {
4761 if (is_name_suffix (string1))
4762 return 0;
4763 else
4764 return -1;
4765 }
4766 /* FALLTHROUGH */
4767 default:
4768 if (*string2 == '(')
4769 return strcmp_iw_ordered (string1, string2);
4770 else
4771 return *string1 - *string2;
4772 }
4773 }
4774
4775 /* Add to OBSTACKP all non-local symbols whose name and domain match
4776 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
4777 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
4778
4779 static void
4780 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
4781 domain_enum domain, int global,
4782 int is_wild_match)
4783 {
4784 struct objfile *objfile;
4785 struct match_data data;
4786
4787 data.obstackp = obstackp;
4788 data.arg_sym = NULL;
4789
4790 ALL_OBJFILES (objfile)
4791 {
4792 data.objfile = objfile;
4793
4794 if (is_wild_match)
4795 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
4796 aux_add_nonlocal_symbols, &data,
4797 wild_match, NULL);
4798 else
4799 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
4800 aux_add_nonlocal_symbols, &data,
4801 full_match, compare_names);
4802 }
4803
4804 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
4805 {
4806 ALL_OBJFILES (objfile)
4807 {
4808 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
4809 strcpy (name1, "_ada_");
4810 strcpy (name1 + sizeof ("_ada_") - 1, name);
4811 data.objfile = objfile;
4812 objfile->sf->qf->map_matching_symbols (name1, domain,
4813 objfile, global,
4814 aux_add_nonlocal_symbols,
4815 &data,
4816 full_match, compare_names);
4817 }
4818 }
4819 }
4820
4821 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4822 scope and in global scopes, returning the number of matches. Sets
4823 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4824 indicating the symbols found and the blocks and symbol tables (if
4825 any) in which they were found. This vector are transient---good only to
4826 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4827 symbol match within the nest of blocks whose innermost member is BLOCK0,
4828 is the one match returned (no other matches in that or
4829 enclosing blocks is returned). If there are any matches in or
4830 surrounding BLOCK0, then these alone are returned. Otherwise, the
4831 search extends to global and file-scope (static) symbol tables.
4832 Names prefixed with "standard__" are handled specially: "standard__"
4833 is first stripped off, and only static and global symbols are searched. */
4834
4835 int
4836 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4837 domain_enum namespace,
4838 struct ada_symbol_info **results)
4839 {
4840 struct symbol *sym;
4841 struct block *block;
4842 const char *name;
4843 int wild_match;
4844 int cacheIfUnique;
4845 int ndefns;
4846
4847 obstack_free (&symbol_list_obstack, NULL);
4848 obstack_init (&symbol_list_obstack);
4849
4850 cacheIfUnique = 0;
4851
4852 /* Search specified block and its superiors. */
4853
4854 wild_match = (strstr (name0, "__") == NULL);
4855 name = name0;
4856 block = (struct block *) block0; /* FIXME: No cast ought to be
4857 needed, but adding const will
4858 have a cascade effect. */
4859
4860 /* Special case: If the user specifies a symbol name inside package
4861 Standard, do a non-wild matching of the symbol name without
4862 the "standard__" prefix. This was primarily introduced in order
4863 to allow the user to specifically access the standard exceptions
4864 using, for instance, Standard.Constraint_Error when Constraint_Error
4865 is ambiguous (due to the user defining its own Constraint_Error
4866 entity inside its program). */
4867 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4868 {
4869 wild_match = 0;
4870 block = NULL;
4871 name = name0 + sizeof ("standard__") - 1;
4872 }
4873
4874 /* Check the non-global symbols. If we have ANY match, then we're done. */
4875
4876 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
4877 wild_match);
4878 if (num_defns_collected (&symbol_list_obstack) > 0)
4879 goto done;
4880
4881 /* No non-global symbols found. Check our cache to see if we have
4882 already performed this search before. If we have, then return
4883 the same result. */
4884
4885 cacheIfUnique = 1;
4886 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4887 {
4888 if (sym != NULL)
4889 add_defn_to_vec (&symbol_list_obstack, sym, block);
4890 goto done;
4891 }
4892
4893 /* Search symbols from all global blocks. */
4894
4895 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
4896 wild_match);
4897
4898 /* Now add symbols from all per-file blocks if we've gotten no hits
4899 (not strictly correct, but perhaps better than an error). */
4900
4901 if (num_defns_collected (&symbol_list_obstack) == 0)
4902 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
4903 wild_match);
4904
4905 done:
4906 ndefns = num_defns_collected (&symbol_list_obstack);
4907 *results = defns_collected (&symbol_list_obstack, 1);
4908
4909 ndefns = remove_extra_symbols (*results, ndefns);
4910
4911 if (ndefns == 0)
4912 cache_symbol (name0, namespace, NULL, NULL);
4913
4914 if (ndefns == 1 && cacheIfUnique)
4915 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
4916
4917 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
4918
4919 return ndefns;
4920 }
4921
4922 struct symbol *
4923 ada_lookup_encoded_symbol (const char *name, const struct block *block0,
4924 domain_enum namespace, struct block **block_found)
4925 {
4926 struct ada_symbol_info *candidates;
4927 int n_candidates;
4928
4929 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
4930
4931 if (n_candidates == 0)
4932 return NULL;
4933
4934 if (block_found != NULL)
4935 *block_found = candidates[0].block;
4936
4937 return fixup_symbol_section (candidates[0].sym, NULL);
4938 }
4939
4940 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4941 scope and in global scopes, or NULL if none. NAME is folded and
4942 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4943 choosing the first symbol if there are multiple choices.
4944 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4945 table in which the symbol was found (in both cases, these
4946 assignments occur only if the pointers are non-null). */
4947 struct symbol *
4948 ada_lookup_symbol (const char *name, const struct block *block0,
4949 domain_enum namespace, int *is_a_field_of_this)
4950 {
4951 if (is_a_field_of_this != NULL)
4952 *is_a_field_of_this = 0;
4953
4954 return
4955 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
4956 block0, namespace, NULL);
4957 }
4958
4959 static struct symbol *
4960 ada_lookup_symbol_nonlocal (const char *name,
4961 const struct block *block,
4962 const domain_enum domain)
4963 {
4964 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
4965 }
4966
4967
4968 /* True iff STR is a possible encoded suffix of a normal Ada name
4969 that is to be ignored for matching purposes. Suffixes of parallel
4970 names (e.g., XVE) are not included here. Currently, the possible suffixes
4971 are given by any of the regular expressions:
4972
4973 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
4974 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4975 _E[0-9]+[bs]$ [protected object entry suffixes]
4976 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4977
4978 Also, any leading "__[0-9]+" sequence is skipped before the suffix
4979 match is performed. This sequence is used to differentiate homonyms,
4980 is an optional part of a valid name suffix. */
4981
4982 static int
4983 is_name_suffix (const char *str)
4984 {
4985 int k;
4986 const char *matching;
4987 const int len = strlen (str);
4988
4989 /* Skip optional leading __[0-9]+. */
4990
4991 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4992 {
4993 str += 3;
4994 while (isdigit (str[0]))
4995 str += 1;
4996 }
4997
4998 /* [.$][0-9]+ */
4999
5000 if (str[0] == '.' || str[0] == '$')
5001 {
5002 matching = str + 1;
5003 while (isdigit (matching[0]))
5004 matching += 1;
5005 if (matching[0] == '\0')
5006 return 1;
5007 }
5008
5009 /* ___[0-9]+ */
5010
5011 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5012 {
5013 matching = str + 3;
5014 while (isdigit (matching[0]))
5015 matching += 1;
5016 if (matching[0] == '\0')
5017 return 1;
5018 }
5019
5020 #if 0
5021 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5022 with a N at the end. Unfortunately, the compiler uses the same
5023 convention for other internal types it creates. So treating
5024 all entity names that end with an "N" as a name suffix causes
5025 some regressions. For instance, consider the case of an enumerated
5026 type. To support the 'Image attribute, it creates an array whose
5027 name ends with N.
5028 Having a single character like this as a suffix carrying some
5029 information is a bit risky. Perhaps we should change the encoding
5030 to be something like "_N" instead. In the meantime, do not do
5031 the following check. */
5032 /* Protected Object Subprograms */
5033 if (len == 1 && str [0] == 'N')
5034 return 1;
5035 #endif
5036
5037 /* _E[0-9]+[bs]$ */
5038 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5039 {
5040 matching = str + 3;
5041 while (isdigit (matching[0]))
5042 matching += 1;
5043 if ((matching[0] == 'b' || matching[0] == 's')
5044 && matching [1] == '\0')
5045 return 1;
5046 }
5047
5048 /* ??? We should not modify STR directly, as we are doing below. This
5049 is fine in this case, but may become problematic later if we find
5050 that this alternative did not work, and want to try matching
5051 another one from the begining of STR. Since we modified it, we
5052 won't be able to find the begining of the string anymore! */
5053 if (str[0] == 'X')
5054 {
5055 str += 1;
5056 while (str[0] != '_' && str[0] != '\0')
5057 {
5058 if (str[0] != 'n' && str[0] != 'b')
5059 return 0;
5060 str += 1;
5061 }
5062 }
5063
5064 if (str[0] == '\000')
5065 return 1;
5066
5067 if (str[0] == '_')
5068 {
5069 if (str[1] != '_' || str[2] == '\000')
5070 return 0;
5071 if (str[2] == '_')
5072 {
5073 if (strcmp (str + 3, "JM") == 0)
5074 return 1;
5075 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5076 the LJM suffix in favor of the JM one. But we will
5077 still accept LJM as a valid suffix for a reasonable
5078 amount of time, just to allow ourselves to debug programs
5079 compiled using an older version of GNAT. */
5080 if (strcmp (str + 3, "LJM") == 0)
5081 return 1;
5082 if (str[3] != 'X')
5083 return 0;
5084 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5085 || str[4] == 'U' || str[4] == 'P')
5086 return 1;
5087 if (str[4] == 'R' && str[5] != 'T')
5088 return 1;
5089 return 0;
5090 }
5091 if (!isdigit (str[2]))
5092 return 0;
5093 for (k = 3; str[k] != '\0'; k += 1)
5094 if (!isdigit (str[k]) && str[k] != '_')
5095 return 0;
5096 return 1;
5097 }
5098 if (str[0] == '$' && isdigit (str[1]))
5099 {
5100 for (k = 2; str[k] != '\0'; k += 1)
5101 if (!isdigit (str[k]) && str[k] != '_')
5102 return 0;
5103 return 1;
5104 }
5105 return 0;
5106 }
5107
5108 /* Return non-zero if the string starting at NAME and ending before
5109 NAME_END contains no capital letters. */
5110
5111 static int
5112 is_valid_name_for_wild_match (const char *name0)
5113 {
5114 const char *decoded_name = ada_decode (name0);
5115 int i;
5116
5117 /* If the decoded name starts with an angle bracket, it means that
5118 NAME0 does not follow the GNAT encoding format. It should then
5119 not be allowed as a possible wild match. */
5120 if (decoded_name[0] == '<')
5121 return 0;
5122
5123 for (i=0; decoded_name[i] != '\0'; i++)
5124 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5125 return 0;
5126
5127 return 1;
5128 }
5129
5130 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5131 that could start a simple name. Assumes that *NAMEP points into
5132 the string beginning at NAME0. */
5133
5134 static int
5135 advance_wild_match (const char **namep, const char *name0, int target0)
5136 {
5137 const char *name = *namep;
5138
5139 while (1)
5140 {
5141 int t0, t1;
5142
5143 t0 = *name;
5144 if (t0 == '_')
5145 {
5146 t1 = name[1];
5147 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5148 {
5149 name += 1;
5150 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5151 break;
5152 else
5153 name += 1;
5154 }
5155 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5156 || name[2] == target0))
5157 {
5158 name += 2;
5159 break;
5160 }
5161 else
5162 return 0;
5163 }
5164 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5165 name += 1;
5166 else
5167 return 0;
5168 }
5169
5170 *namep = name;
5171 return 1;
5172 }
5173
5174 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5175 informational suffixes of NAME (i.e., for which is_name_suffix is
5176 true). Assumes that PATN is a lower-cased Ada simple name. */
5177
5178 static int
5179 wild_match (const char *name, const char *patn)
5180 {
5181 const char *p, *n;
5182 const char *name0 = name;
5183
5184 while (1)
5185 {
5186 const char *match = name;
5187
5188 if (*name == *patn)
5189 {
5190 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5191 if (*p != *name)
5192 break;
5193 if (*p == '\0' && is_name_suffix (name))
5194 return match != name0 && !is_valid_name_for_wild_match (name0);
5195
5196 if (name[-1] == '_')
5197 name -= 1;
5198 }
5199 if (!advance_wild_match (&name, name0, *patn))
5200 return 1;
5201 }
5202 }
5203
5204 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5205 informational suffix. */
5206
5207 static int
5208 full_match (const char *sym_name, const char *search_name)
5209 {
5210 return !match_name (sym_name, search_name, 0);
5211 }
5212
5213
5214 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5215 vector *defn_symbols, updating the list of symbols in OBSTACKP
5216 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5217 OBJFILE is the section containing BLOCK.
5218 SYMTAB is recorded with each symbol added. */
5219
5220 static void
5221 ada_add_block_symbols (struct obstack *obstackp,
5222 struct block *block, const char *name,
5223 domain_enum domain, struct objfile *objfile,
5224 int wild)
5225 {
5226 struct dict_iterator iter;
5227 int name_len = strlen (name);
5228 /* A matching argument symbol, if any. */
5229 struct symbol *arg_sym;
5230 /* Set true when we find a matching non-argument symbol. */
5231 int found_sym;
5232 struct symbol *sym;
5233
5234 arg_sym = NULL;
5235 found_sym = 0;
5236 if (wild)
5237 {
5238 for (sym = dict_iter_match_first (BLOCK_DICT (block), name,
5239 wild_match, &iter);
5240 sym != NULL; sym = dict_iter_match_next (name, wild_match, &iter))
5241 {
5242 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5243 SYMBOL_DOMAIN (sym), domain)
5244 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
5245 {
5246 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5247 continue;
5248 else if (SYMBOL_IS_ARGUMENT (sym))
5249 arg_sym = sym;
5250 else
5251 {
5252 found_sym = 1;
5253 add_defn_to_vec (obstackp,
5254 fixup_symbol_section (sym, objfile),
5255 block);
5256 }
5257 }
5258 }
5259 }
5260 else
5261 {
5262 for (sym = dict_iter_match_first (BLOCK_DICT (block), name,
5263 full_match, &iter);
5264 sym != NULL; sym = dict_iter_match_next (name, full_match, &iter))
5265 {
5266 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5267 SYMBOL_DOMAIN (sym), domain))
5268 {
5269 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5270 {
5271 if (SYMBOL_IS_ARGUMENT (sym))
5272 arg_sym = sym;
5273 else
5274 {
5275 found_sym = 1;
5276 add_defn_to_vec (obstackp,
5277 fixup_symbol_section (sym, objfile),
5278 block);
5279 }
5280 }
5281 }
5282 }
5283 }
5284
5285 if (!found_sym && arg_sym != NULL)
5286 {
5287 add_defn_to_vec (obstackp,
5288 fixup_symbol_section (arg_sym, objfile),
5289 block);
5290 }
5291
5292 if (!wild)
5293 {
5294 arg_sym = NULL;
5295 found_sym = 0;
5296
5297 ALL_BLOCK_SYMBOLS (block, iter, sym)
5298 {
5299 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5300 SYMBOL_DOMAIN (sym), domain))
5301 {
5302 int cmp;
5303
5304 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5305 if (cmp == 0)
5306 {
5307 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5308 if (cmp == 0)
5309 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5310 name_len);
5311 }
5312
5313 if (cmp == 0
5314 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5315 {
5316 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5317 {
5318 if (SYMBOL_IS_ARGUMENT (sym))
5319 arg_sym = sym;
5320 else
5321 {
5322 found_sym = 1;
5323 add_defn_to_vec (obstackp,
5324 fixup_symbol_section (sym, objfile),
5325 block);
5326 }
5327 }
5328 }
5329 }
5330 }
5331
5332 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5333 They aren't parameters, right? */
5334 if (!found_sym && arg_sym != NULL)
5335 {
5336 add_defn_to_vec (obstackp,
5337 fixup_symbol_section (arg_sym, objfile),
5338 block);
5339 }
5340 }
5341 }
5342 \f
5343
5344 /* Symbol Completion */
5345
5346 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5347 name in a form that's appropriate for the completion. The result
5348 does not need to be deallocated, but is only good until the next call.
5349
5350 TEXT_LEN is equal to the length of TEXT.
5351 Perform a wild match if WILD_MATCH is set.
5352 ENCODED should be set if TEXT represents the start of a symbol name
5353 in its encoded form. */
5354
5355 static const char *
5356 symbol_completion_match (const char *sym_name,
5357 const char *text, int text_len,
5358 int wild_match, int encoded)
5359 {
5360 const int verbatim_match = (text[0] == '<');
5361 int match = 0;
5362
5363 if (verbatim_match)
5364 {
5365 /* Strip the leading angle bracket. */
5366 text = text + 1;
5367 text_len--;
5368 }
5369
5370 /* First, test against the fully qualified name of the symbol. */
5371
5372 if (strncmp (sym_name, text, text_len) == 0)
5373 match = 1;
5374
5375 if (match && !encoded)
5376 {
5377 /* One needed check before declaring a positive match is to verify
5378 that iff we are doing a verbatim match, the decoded version
5379 of the symbol name starts with '<'. Otherwise, this symbol name
5380 is not a suitable completion. */
5381 const char *sym_name_copy = sym_name;
5382 int has_angle_bracket;
5383
5384 sym_name = ada_decode (sym_name);
5385 has_angle_bracket = (sym_name[0] == '<');
5386 match = (has_angle_bracket == verbatim_match);
5387 sym_name = sym_name_copy;
5388 }
5389
5390 if (match && !verbatim_match)
5391 {
5392 /* When doing non-verbatim match, another check that needs to
5393 be done is to verify that the potentially matching symbol name
5394 does not include capital letters, because the ada-mode would
5395 not be able to understand these symbol names without the
5396 angle bracket notation. */
5397 const char *tmp;
5398
5399 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5400 if (*tmp != '\0')
5401 match = 0;
5402 }
5403
5404 /* Second: Try wild matching... */
5405
5406 if (!match && wild_match)
5407 {
5408 /* Since we are doing wild matching, this means that TEXT
5409 may represent an unqualified symbol name. We therefore must
5410 also compare TEXT against the unqualified name of the symbol. */
5411 sym_name = ada_unqualified_name (ada_decode (sym_name));
5412
5413 if (strncmp (sym_name, text, text_len) == 0)
5414 match = 1;
5415 }
5416
5417 /* Finally: If we found a mach, prepare the result to return. */
5418
5419 if (!match)
5420 return NULL;
5421
5422 if (verbatim_match)
5423 sym_name = add_angle_brackets (sym_name);
5424
5425 if (!encoded)
5426 sym_name = ada_decode (sym_name);
5427
5428 return sym_name;
5429 }
5430
5431 DEF_VEC_P (char_ptr);
5432
5433 /* A companion function to ada_make_symbol_completion_list().
5434 Check if SYM_NAME represents a symbol which name would be suitable
5435 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5436 it is appended at the end of the given string vector SV.
5437
5438 ORIG_TEXT is the string original string from the user command
5439 that needs to be completed. WORD is the entire command on which
5440 completion should be performed. These two parameters are used to
5441 determine which part of the symbol name should be added to the
5442 completion vector.
5443 if WILD_MATCH is set, then wild matching is performed.
5444 ENCODED should be set if TEXT represents a symbol name in its
5445 encoded formed (in which case the completion should also be
5446 encoded). */
5447
5448 static void
5449 symbol_completion_add (VEC(char_ptr) **sv,
5450 const char *sym_name,
5451 const char *text, int text_len,
5452 const char *orig_text, const char *word,
5453 int wild_match, int encoded)
5454 {
5455 const char *match = symbol_completion_match (sym_name, text, text_len,
5456 wild_match, encoded);
5457 char *completion;
5458
5459 if (match == NULL)
5460 return;
5461
5462 /* We found a match, so add the appropriate completion to the given
5463 string vector. */
5464
5465 if (word == orig_text)
5466 {
5467 completion = xmalloc (strlen (match) + 5);
5468 strcpy (completion, match);
5469 }
5470 else if (word > orig_text)
5471 {
5472 /* Return some portion of sym_name. */
5473 completion = xmalloc (strlen (match) + 5);
5474 strcpy (completion, match + (word - orig_text));
5475 }
5476 else
5477 {
5478 /* Return some of ORIG_TEXT plus sym_name. */
5479 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5480 strncpy (completion, word, orig_text - word);
5481 completion[orig_text - word] = '\0';
5482 strcat (completion, match);
5483 }
5484
5485 VEC_safe_push (char_ptr, *sv, completion);
5486 }
5487
5488 /* An object of this type is passed as the user_data argument to the
5489 map_partial_symbol_names method. */
5490 struct add_partial_datum
5491 {
5492 VEC(char_ptr) **completions;
5493 char *text;
5494 int text_len;
5495 char *text0;
5496 char *word;
5497 int wild_match;
5498 int encoded;
5499 };
5500
5501 /* A callback for map_partial_symbol_names. */
5502 static void
5503 ada_add_partial_symbol_completions (const char *name, void *user_data)
5504 {
5505 struct add_partial_datum *data = user_data;
5506
5507 symbol_completion_add (data->completions, name,
5508 data->text, data->text_len, data->text0, data->word,
5509 data->wild_match, data->encoded);
5510 }
5511
5512 /* Return a list of possible symbol names completing TEXT0. The list
5513 is NULL terminated. WORD is the entire command on which completion
5514 is made. */
5515
5516 static char **
5517 ada_make_symbol_completion_list (char *text0, char *word)
5518 {
5519 char *text;
5520 int text_len;
5521 int wild_match;
5522 int encoded;
5523 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5524 struct symbol *sym;
5525 struct symtab *s;
5526 struct minimal_symbol *msymbol;
5527 struct objfile *objfile;
5528 struct block *b, *surrounding_static_block = 0;
5529 int i;
5530 struct dict_iterator iter;
5531
5532 if (text0[0] == '<')
5533 {
5534 text = xstrdup (text0);
5535 make_cleanup (xfree, text);
5536 text_len = strlen (text);
5537 wild_match = 0;
5538 encoded = 1;
5539 }
5540 else
5541 {
5542 text = xstrdup (ada_encode (text0));
5543 make_cleanup (xfree, text);
5544 text_len = strlen (text);
5545 for (i = 0; i < text_len; i++)
5546 text[i] = tolower (text[i]);
5547
5548 encoded = (strstr (text0, "__") != NULL);
5549 /* If the name contains a ".", then the user is entering a fully
5550 qualified entity name, and the match must not be done in wild
5551 mode. Similarly, if the user wants to complete what looks like
5552 an encoded name, the match must not be done in wild mode. */
5553 wild_match = (strchr (text0, '.') == NULL && !encoded);
5554 }
5555
5556 /* First, look at the partial symtab symbols. */
5557 {
5558 struct add_partial_datum data;
5559
5560 data.completions = &completions;
5561 data.text = text;
5562 data.text_len = text_len;
5563 data.text0 = text0;
5564 data.word = word;
5565 data.wild_match = wild_match;
5566 data.encoded = encoded;
5567 map_partial_symbol_names (ada_add_partial_symbol_completions, &data);
5568 }
5569
5570 /* At this point scan through the misc symbol vectors and add each
5571 symbol you find to the list. Eventually we want to ignore
5572 anything that isn't a text symbol (everything else will be
5573 handled by the psymtab code above). */
5574
5575 ALL_MSYMBOLS (objfile, msymbol)
5576 {
5577 QUIT;
5578 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5579 text, text_len, text0, word, wild_match, encoded);
5580 }
5581
5582 /* Search upwards from currently selected frame (so that we can
5583 complete on local vars. */
5584
5585 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5586 {
5587 if (!BLOCK_SUPERBLOCK (b))
5588 surrounding_static_block = b; /* For elmin of dups */
5589
5590 ALL_BLOCK_SYMBOLS (b, iter, sym)
5591 {
5592 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5593 text, text_len, text0, word,
5594 wild_match, encoded);
5595 }
5596 }
5597
5598 /* Go through the symtabs and check the externs and statics for
5599 symbols which match. */
5600
5601 ALL_SYMTABS (objfile, s)
5602 {
5603 QUIT;
5604 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5605 ALL_BLOCK_SYMBOLS (b, iter, sym)
5606 {
5607 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5608 text, text_len, text0, word,
5609 wild_match, encoded);
5610 }
5611 }
5612
5613 ALL_SYMTABS (objfile, s)
5614 {
5615 QUIT;
5616 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5617 /* Don't do this block twice. */
5618 if (b == surrounding_static_block)
5619 continue;
5620 ALL_BLOCK_SYMBOLS (b, iter, sym)
5621 {
5622 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5623 text, text_len, text0, word,
5624 wild_match, encoded);
5625 }
5626 }
5627
5628 /* Append the closing NULL entry. */
5629 VEC_safe_push (char_ptr, completions, NULL);
5630
5631 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5632 return the copy. It's unfortunate that we have to make a copy
5633 of an array that we're about to destroy, but there is nothing much
5634 we can do about it. Fortunately, it's typically not a very large
5635 array. */
5636 {
5637 const size_t completions_size =
5638 VEC_length (char_ptr, completions) * sizeof (char *);
5639 char **result = xmalloc (completions_size);
5640
5641 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5642
5643 VEC_free (char_ptr, completions);
5644 return result;
5645 }
5646 }
5647
5648 /* Field Access */
5649
5650 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5651 for tagged types. */
5652
5653 static int
5654 ada_is_dispatch_table_ptr_type (struct type *type)
5655 {
5656 char *name;
5657
5658 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5659 return 0;
5660
5661 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5662 if (name == NULL)
5663 return 0;
5664
5665 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5666 }
5667
5668 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5669 to be invisible to users. */
5670
5671 int
5672 ada_is_ignored_field (struct type *type, int field_num)
5673 {
5674 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5675 return 1;
5676
5677 /* Check the name of that field. */
5678 {
5679 const char *name = TYPE_FIELD_NAME (type, field_num);
5680
5681 /* Anonymous field names should not be printed.
5682 brobecker/2007-02-20: I don't think this can actually happen
5683 but we don't want to print the value of annonymous fields anyway. */
5684 if (name == NULL)
5685 return 1;
5686
5687 /* A field named "_parent" is internally generated by GNAT for
5688 tagged types, and should not be printed either. */
5689 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5690 return 1;
5691 }
5692
5693 /* If this is the dispatch table of a tagged type, then ignore. */
5694 if (ada_is_tagged_type (type, 1)
5695 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5696 return 1;
5697
5698 /* Not a special field, so it should not be ignored. */
5699 return 0;
5700 }
5701
5702 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5703 pointer or reference type whose ultimate target has a tag field. */
5704
5705 int
5706 ada_is_tagged_type (struct type *type, int refok)
5707 {
5708 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5709 }
5710
5711 /* True iff TYPE represents the type of X'Tag */
5712
5713 int
5714 ada_is_tag_type (struct type *type)
5715 {
5716 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5717 return 0;
5718 else
5719 {
5720 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5721
5722 return (name != NULL
5723 && strcmp (name, "ada__tags__dispatch_table") == 0);
5724 }
5725 }
5726
5727 /* The type of the tag on VAL. */
5728
5729 struct type *
5730 ada_tag_type (struct value *val)
5731 {
5732 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5733 }
5734
5735 /* The value of the tag on VAL. */
5736
5737 struct value *
5738 ada_value_tag (struct value *val)
5739 {
5740 return ada_value_struct_elt (val, "_tag", 0);
5741 }
5742
5743 /* The value of the tag on the object of type TYPE whose contents are
5744 saved at VALADDR, if it is non-null, or is at memory address
5745 ADDRESS. */
5746
5747 static struct value *
5748 value_tag_from_contents_and_address (struct type *type,
5749 const gdb_byte *valaddr,
5750 CORE_ADDR address)
5751 {
5752 int tag_byte_offset;
5753 struct type *tag_type;
5754
5755 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5756 NULL, NULL, NULL))
5757 {
5758 const gdb_byte *valaddr1 = ((valaddr == NULL)
5759 ? NULL
5760 : valaddr + tag_byte_offset);
5761 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5762
5763 return value_from_contents_and_address (tag_type, valaddr1, address1);
5764 }
5765 return NULL;
5766 }
5767
5768 static struct type *
5769 type_from_tag (struct value *tag)
5770 {
5771 const char *type_name = ada_tag_name (tag);
5772
5773 if (type_name != NULL)
5774 return ada_find_any_type (ada_encode (type_name));
5775 return NULL;
5776 }
5777
5778 struct tag_args
5779 {
5780 struct value *tag;
5781 char *name;
5782 };
5783
5784
5785 static int ada_tag_name_1 (void *);
5786 static int ada_tag_name_2 (struct tag_args *);
5787
5788 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5789 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5790 The value stored in ARGS->name is valid until the next call to
5791 ada_tag_name_1. */
5792
5793 static int
5794 ada_tag_name_1 (void *args0)
5795 {
5796 struct tag_args *args = (struct tag_args *) args0;
5797 static char name[1024];
5798 char *p;
5799 struct value *val;
5800
5801 args->name = NULL;
5802 val = ada_value_struct_elt (args->tag, "tsd", 1);
5803 if (val == NULL)
5804 return ada_tag_name_2 (args);
5805 val = ada_value_struct_elt (val, "expanded_name", 1);
5806 if (val == NULL)
5807 return 0;
5808 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5809 for (p = name; *p != '\0'; p += 1)
5810 if (isalpha (*p))
5811 *p = tolower (*p);
5812 args->name = name;
5813 return 0;
5814 }
5815
5816 /* Return the "ada__tags__type_specific_data" type. */
5817
5818 static struct type *
5819 ada_get_tsd_type (struct inferior *inf)
5820 {
5821 struct ada_inferior_data *data = get_ada_inferior_data (inf);
5822
5823 if (data->tsd_type == 0)
5824 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
5825 return data->tsd_type;
5826 }
5827
5828 /* Utility function for ada_tag_name_1 that tries the second
5829 representation for the dispatch table (in which there is no
5830 explicit 'tsd' field in the referent of the tag pointer, and instead
5831 the tsd pointer is stored just before the dispatch table. */
5832
5833 static int
5834 ada_tag_name_2 (struct tag_args *args)
5835 {
5836 struct type *info_type;
5837 static char name[1024];
5838 char *p;
5839 struct value *val, *valp;
5840
5841 args->name = NULL;
5842 info_type = ada_get_tsd_type (current_inferior());
5843 if (info_type == NULL)
5844 return 0;
5845 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5846 valp = value_cast (info_type, args->tag);
5847 if (valp == NULL)
5848 return 0;
5849 val = value_ind (value_ptradd (valp, -1));
5850 if (val == NULL)
5851 return 0;
5852 val = ada_value_struct_elt (val, "expanded_name", 1);
5853 if (val == NULL)
5854 return 0;
5855 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5856 for (p = name; *p != '\0'; p += 1)
5857 if (isalpha (*p))
5858 *p = tolower (*p);
5859 args->name = name;
5860 return 0;
5861 }
5862
5863 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5864 a C string. */
5865
5866 const char *
5867 ada_tag_name (struct value *tag)
5868 {
5869 struct tag_args args;
5870
5871 if (!ada_is_tag_type (value_type (tag)))
5872 return NULL;
5873 args.tag = tag;
5874 args.name = NULL;
5875 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5876 return args.name;
5877 }
5878
5879 /* The parent type of TYPE, or NULL if none. */
5880
5881 struct type *
5882 ada_parent_type (struct type *type)
5883 {
5884 int i;
5885
5886 type = ada_check_typedef (type);
5887
5888 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5889 return NULL;
5890
5891 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5892 if (ada_is_parent_field (type, i))
5893 {
5894 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
5895
5896 /* If the _parent field is a pointer, then dereference it. */
5897 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
5898 parent_type = TYPE_TARGET_TYPE (parent_type);
5899 /* If there is a parallel XVS type, get the actual base type. */
5900 parent_type = ada_get_base_type (parent_type);
5901
5902 return ada_check_typedef (parent_type);
5903 }
5904
5905 return NULL;
5906 }
5907
5908 /* True iff field number FIELD_NUM of structure type TYPE contains the
5909 parent-type (inherited) fields of a derived type. Assumes TYPE is
5910 a structure type with at least FIELD_NUM+1 fields. */
5911
5912 int
5913 ada_is_parent_field (struct type *type, int field_num)
5914 {
5915 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5916
5917 return (name != NULL
5918 && (strncmp (name, "PARENT", 6) == 0
5919 || strncmp (name, "_parent", 7) == 0));
5920 }
5921
5922 /* True iff field number FIELD_NUM of structure type TYPE is a
5923 transparent wrapper field (which should be silently traversed when doing
5924 field selection and flattened when printing). Assumes TYPE is a
5925 structure type with at least FIELD_NUM+1 fields. Such fields are always
5926 structures. */
5927
5928 int
5929 ada_is_wrapper_field (struct type *type, int field_num)
5930 {
5931 const char *name = TYPE_FIELD_NAME (type, field_num);
5932
5933 return (name != NULL
5934 && (strncmp (name, "PARENT", 6) == 0
5935 || strcmp (name, "REP") == 0
5936 || strncmp (name, "_parent", 7) == 0
5937 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5938 }
5939
5940 /* True iff field number FIELD_NUM of structure or union type TYPE
5941 is a variant wrapper. Assumes TYPE is a structure type with at least
5942 FIELD_NUM+1 fields. */
5943
5944 int
5945 ada_is_variant_part (struct type *type, int field_num)
5946 {
5947 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5948
5949 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5950 || (is_dynamic_field (type, field_num)
5951 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5952 == TYPE_CODE_UNION)));
5953 }
5954
5955 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5956 whose discriminants are contained in the record type OUTER_TYPE,
5957 returns the type of the controlling discriminant for the variant.
5958 May return NULL if the type could not be found. */
5959
5960 struct type *
5961 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5962 {
5963 char *name = ada_variant_discrim_name (var_type);
5964
5965 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
5966 }
5967
5968 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5969 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5970 represents a 'when others' clause; otherwise 0. */
5971
5972 int
5973 ada_is_others_clause (struct type *type, int field_num)
5974 {
5975 const char *name = TYPE_FIELD_NAME (type, field_num);
5976
5977 return (name != NULL && name[0] == 'O');
5978 }
5979
5980 /* Assuming that TYPE0 is the type of the variant part of a record,
5981 returns the name of the discriminant controlling the variant.
5982 The value is valid until the next call to ada_variant_discrim_name. */
5983
5984 char *
5985 ada_variant_discrim_name (struct type *type0)
5986 {
5987 static char *result = NULL;
5988 static size_t result_len = 0;
5989 struct type *type;
5990 const char *name;
5991 const char *discrim_end;
5992 const char *discrim_start;
5993
5994 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5995 type = TYPE_TARGET_TYPE (type0);
5996 else
5997 type = type0;
5998
5999 name = ada_type_name (type);
6000
6001 if (name == NULL || name[0] == '\000')
6002 return "";
6003
6004 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6005 discrim_end -= 1)
6006 {
6007 if (strncmp (discrim_end, "___XVN", 6) == 0)
6008 break;
6009 }
6010 if (discrim_end == name)
6011 return "";
6012
6013 for (discrim_start = discrim_end; discrim_start != name + 3;
6014 discrim_start -= 1)
6015 {
6016 if (discrim_start == name + 1)
6017 return "";
6018 if ((discrim_start > name + 3
6019 && strncmp (discrim_start - 3, "___", 3) == 0)
6020 || discrim_start[-1] == '.')
6021 break;
6022 }
6023
6024 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6025 strncpy (result, discrim_start, discrim_end - discrim_start);
6026 result[discrim_end - discrim_start] = '\0';
6027 return result;
6028 }
6029
6030 /* Scan STR for a subtype-encoded number, beginning at position K.
6031 Put the position of the character just past the number scanned in
6032 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6033 Return 1 if there was a valid number at the given position, and 0
6034 otherwise. A "subtype-encoded" number consists of the absolute value
6035 in decimal, followed by the letter 'm' to indicate a negative number.
6036 Assumes 0m does not occur. */
6037
6038 int
6039 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6040 {
6041 ULONGEST RU;
6042
6043 if (!isdigit (str[k]))
6044 return 0;
6045
6046 /* Do it the hard way so as not to make any assumption about
6047 the relationship of unsigned long (%lu scan format code) and
6048 LONGEST. */
6049 RU = 0;
6050 while (isdigit (str[k]))
6051 {
6052 RU = RU * 10 + (str[k] - '0');
6053 k += 1;
6054 }
6055
6056 if (str[k] == 'm')
6057 {
6058 if (R != NULL)
6059 *R = (-(LONGEST) (RU - 1)) - 1;
6060 k += 1;
6061 }
6062 else if (R != NULL)
6063 *R = (LONGEST) RU;
6064
6065 /* NOTE on the above: Technically, C does not say what the results of
6066 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6067 number representable as a LONGEST (although either would probably work
6068 in most implementations). When RU>0, the locution in the then branch
6069 above is always equivalent to the negative of RU. */
6070
6071 if (new_k != NULL)
6072 *new_k = k;
6073 return 1;
6074 }
6075
6076 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6077 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6078 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6079
6080 int
6081 ada_in_variant (LONGEST val, struct type *type, int field_num)
6082 {
6083 const char *name = TYPE_FIELD_NAME (type, field_num);
6084 int p;
6085
6086 p = 0;
6087 while (1)
6088 {
6089 switch (name[p])
6090 {
6091 case '\0':
6092 return 0;
6093 case 'S':
6094 {
6095 LONGEST W;
6096
6097 if (!ada_scan_number (name, p + 1, &W, &p))
6098 return 0;
6099 if (val == W)
6100 return 1;
6101 break;
6102 }
6103 case 'R':
6104 {
6105 LONGEST L, U;
6106
6107 if (!ada_scan_number (name, p + 1, &L, &p)
6108 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6109 return 0;
6110 if (val >= L && val <= U)
6111 return 1;
6112 break;
6113 }
6114 case 'O':
6115 return 1;
6116 default:
6117 return 0;
6118 }
6119 }
6120 }
6121
6122 /* FIXME: Lots of redundancy below. Try to consolidate. */
6123
6124 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6125 ARG_TYPE, extract and return the value of one of its (non-static)
6126 fields. FIELDNO says which field. Differs from value_primitive_field
6127 only in that it can handle packed values of arbitrary type. */
6128
6129 static struct value *
6130 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6131 struct type *arg_type)
6132 {
6133 struct type *type;
6134
6135 arg_type = ada_check_typedef (arg_type);
6136 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6137
6138 /* Handle packed fields. */
6139
6140 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6141 {
6142 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6143 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6144
6145 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6146 offset + bit_pos / 8,
6147 bit_pos % 8, bit_size, type);
6148 }
6149 else
6150 return value_primitive_field (arg1, offset, fieldno, arg_type);
6151 }
6152
6153 /* Find field with name NAME in object of type TYPE. If found,
6154 set the following for each argument that is non-null:
6155 - *FIELD_TYPE_P to the field's type;
6156 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6157 an object of that type;
6158 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6159 - *BIT_SIZE_P to its size in bits if the field is packed, and
6160 0 otherwise;
6161 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6162 fields up to but not including the desired field, or by the total
6163 number of fields if not found. A NULL value of NAME never
6164 matches; the function just counts visible fields in this case.
6165
6166 Returns 1 if found, 0 otherwise. */
6167
6168 static int
6169 find_struct_field (char *name, struct type *type, int offset,
6170 struct type **field_type_p,
6171 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6172 int *index_p)
6173 {
6174 int i;
6175
6176 type = ada_check_typedef (type);
6177
6178 if (field_type_p != NULL)
6179 *field_type_p = NULL;
6180 if (byte_offset_p != NULL)
6181 *byte_offset_p = 0;
6182 if (bit_offset_p != NULL)
6183 *bit_offset_p = 0;
6184 if (bit_size_p != NULL)
6185 *bit_size_p = 0;
6186
6187 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6188 {
6189 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6190 int fld_offset = offset + bit_pos / 8;
6191 char *t_field_name = TYPE_FIELD_NAME (type, i);
6192
6193 if (t_field_name == NULL)
6194 continue;
6195
6196 else if (name != NULL && field_name_match (t_field_name, name))
6197 {
6198 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6199
6200 if (field_type_p != NULL)
6201 *field_type_p = TYPE_FIELD_TYPE (type, i);
6202 if (byte_offset_p != NULL)
6203 *byte_offset_p = fld_offset;
6204 if (bit_offset_p != NULL)
6205 *bit_offset_p = bit_pos % 8;
6206 if (bit_size_p != NULL)
6207 *bit_size_p = bit_size;
6208 return 1;
6209 }
6210 else if (ada_is_wrapper_field (type, i))
6211 {
6212 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6213 field_type_p, byte_offset_p, bit_offset_p,
6214 bit_size_p, index_p))
6215 return 1;
6216 }
6217 else if (ada_is_variant_part (type, i))
6218 {
6219 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6220 fixed type?? */
6221 int j;
6222 struct type *field_type
6223 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6224
6225 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6226 {
6227 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6228 fld_offset
6229 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6230 field_type_p, byte_offset_p,
6231 bit_offset_p, bit_size_p, index_p))
6232 return 1;
6233 }
6234 }
6235 else if (index_p != NULL)
6236 *index_p += 1;
6237 }
6238 return 0;
6239 }
6240
6241 /* Number of user-visible fields in record type TYPE. */
6242
6243 static int
6244 num_visible_fields (struct type *type)
6245 {
6246 int n;
6247
6248 n = 0;
6249 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6250 return n;
6251 }
6252
6253 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6254 and search in it assuming it has (class) type TYPE.
6255 If found, return value, else return NULL.
6256
6257 Searches recursively through wrapper fields (e.g., '_parent'). */
6258
6259 static struct value *
6260 ada_search_struct_field (char *name, struct value *arg, int offset,
6261 struct type *type)
6262 {
6263 int i;
6264
6265 type = ada_check_typedef (type);
6266 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6267 {
6268 char *t_field_name = TYPE_FIELD_NAME (type, i);
6269
6270 if (t_field_name == NULL)
6271 continue;
6272
6273 else if (field_name_match (t_field_name, name))
6274 return ada_value_primitive_field (arg, offset, i, type);
6275
6276 else if (ada_is_wrapper_field (type, i))
6277 {
6278 struct value *v = /* Do not let indent join lines here. */
6279 ada_search_struct_field (name, arg,
6280 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6281 TYPE_FIELD_TYPE (type, i));
6282
6283 if (v != NULL)
6284 return v;
6285 }
6286
6287 else if (ada_is_variant_part (type, i))
6288 {
6289 /* PNH: Do we ever get here? See find_struct_field. */
6290 int j;
6291 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6292 i));
6293 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6294
6295 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6296 {
6297 struct value *v = ada_search_struct_field /* Force line
6298 break. */
6299 (name, arg,
6300 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6301 TYPE_FIELD_TYPE (field_type, j));
6302
6303 if (v != NULL)
6304 return v;
6305 }
6306 }
6307 }
6308 return NULL;
6309 }
6310
6311 static struct value *ada_index_struct_field_1 (int *, struct value *,
6312 int, struct type *);
6313
6314
6315 /* Return field #INDEX in ARG, where the index is that returned by
6316 * find_struct_field through its INDEX_P argument. Adjust the address
6317 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6318 * If found, return value, else return NULL. */
6319
6320 static struct value *
6321 ada_index_struct_field (int index, struct value *arg, int offset,
6322 struct type *type)
6323 {
6324 return ada_index_struct_field_1 (&index, arg, offset, type);
6325 }
6326
6327
6328 /* Auxiliary function for ada_index_struct_field. Like
6329 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6330 * *INDEX_P. */
6331
6332 static struct value *
6333 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6334 struct type *type)
6335 {
6336 int i;
6337 type = ada_check_typedef (type);
6338
6339 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6340 {
6341 if (TYPE_FIELD_NAME (type, i) == NULL)
6342 continue;
6343 else if (ada_is_wrapper_field (type, i))
6344 {
6345 struct value *v = /* Do not let indent join lines here. */
6346 ada_index_struct_field_1 (index_p, arg,
6347 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6348 TYPE_FIELD_TYPE (type, i));
6349
6350 if (v != NULL)
6351 return v;
6352 }
6353
6354 else if (ada_is_variant_part (type, i))
6355 {
6356 /* PNH: Do we ever get here? See ada_search_struct_field,
6357 find_struct_field. */
6358 error (_("Cannot assign this kind of variant record"));
6359 }
6360 else if (*index_p == 0)
6361 return ada_value_primitive_field (arg, offset, i, type);
6362 else
6363 *index_p -= 1;
6364 }
6365 return NULL;
6366 }
6367
6368 /* Given ARG, a value of type (pointer or reference to a)*
6369 structure/union, extract the component named NAME from the ultimate
6370 target structure/union and return it as a value with its
6371 appropriate type.
6372
6373 The routine searches for NAME among all members of the structure itself
6374 and (recursively) among all members of any wrapper members
6375 (e.g., '_parent').
6376
6377 If NO_ERR, then simply return NULL in case of error, rather than
6378 calling error. */
6379
6380 struct value *
6381 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6382 {
6383 struct type *t, *t1;
6384 struct value *v;
6385
6386 v = NULL;
6387 t1 = t = ada_check_typedef (value_type (arg));
6388 if (TYPE_CODE (t) == TYPE_CODE_REF)
6389 {
6390 t1 = TYPE_TARGET_TYPE (t);
6391 if (t1 == NULL)
6392 goto BadValue;
6393 t1 = ada_check_typedef (t1);
6394 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6395 {
6396 arg = coerce_ref (arg);
6397 t = t1;
6398 }
6399 }
6400
6401 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6402 {
6403 t1 = TYPE_TARGET_TYPE (t);
6404 if (t1 == NULL)
6405 goto BadValue;
6406 t1 = ada_check_typedef (t1);
6407 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6408 {
6409 arg = value_ind (arg);
6410 t = t1;
6411 }
6412 else
6413 break;
6414 }
6415
6416 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6417 goto BadValue;
6418
6419 if (t1 == t)
6420 v = ada_search_struct_field (name, arg, 0, t);
6421 else
6422 {
6423 int bit_offset, bit_size, byte_offset;
6424 struct type *field_type;
6425 CORE_ADDR address;
6426
6427 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6428 address = value_as_address (arg);
6429 else
6430 address = unpack_pointer (t, value_contents (arg));
6431
6432 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6433 if (find_struct_field (name, t1, 0,
6434 &field_type, &byte_offset, &bit_offset,
6435 &bit_size, NULL))
6436 {
6437 if (bit_size != 0)
6438 {
6439 if (TYPE_CODE (t) == TYPE_CODE_REF)
6440 arg = ada_coerce_ref (arg);
6441 else
6442 arg = ada_value_ind (arg);
6443 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6444 bit_offset, bit_size,
6445 field_type);
6446 }
6447 else
6448 v = value_at_lazy (field_type, address + byte_offset);
6449 }
6450 }
6451
6452 if (v != NULL || no_err)
6453 return v;
6454 else
6455 error (_("There is no member named %s."), name);
6456
6457 BadValue:
6458 if (no_err)
6459 return NULL;
6460 else
6461 error (_("Attempt to extract a component of "
6462 "a value that is not a record."));
6463 }
6464
6465 /* Given a type TYPE, look up the type of the component of type named NAME.
6466 If DISPP is non-null, add its byte displacement from the beginning of a
6467 structure (pointed to by a value) of type TYPE to *DISPP (does not
6468 work for packed fields).
6469
6470 Matches any field whose name has NAME as a prefix, possibly
6471 followed by "___".
6472
6473 TYPE can be either a struct or union. If REFOK, TYPE may also
6474 be a (pointer or reference)+ to a struct or union, and the
6475 ultimate target type will be searched.
6476
6477 Looks recursively into variant clauses and parent types.
6478
6479 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6480 TYPE is not a type of the right kind. */
6481
6482 static struct type *
6483 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6484 int noerr, int *dispp)
6485 {
6486 int i;
6487
6488 if (name == NULL)
6489 goto BadName;
6490
6491 if (refok && type != NULL)
6492 while (1)
6493 {
6494 type = ada_check_typedef (type);
6495 if (TYPE_CODE (type) != TYPE_CODE_PTR
6496 && TYPE_CODE (type) != TYPE_CODE_REF)
6497 break;
6498 type = TYPE_TARGET_TYPE (type);
6499 }
6500
6501 if (type == NULL
6502 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6503 && TYPE_CODE (type) != TYPE_CODE_UNION))
6504 {
6505 if (noerr)
6506 return NULL;
6507 else
6508 {
6509 target_terminal_ours ();
6510 gdb_flush (gdb_stdout);
6511 if (type == NULL)
6512 error (_("Type (null) is not a structure or union type"));
6513 else
6514 {
6515 /* XXX: type_sprint */
6516 fprintf_unfiltered (gdb_stderr, _("Type "));
6517 type_print (type, "", gdb_stderr, -1);
6518 error (_(" is not a structure or union type"));
6519 }
6520 }
6521 }
6522
6523 type = to_static_fixed_type (type);
6524
6525 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6526 {
6527 char *t_field_name = TYPE_FIELD_NAME (type, i);
6528 struct type *t;
6529 int disp;
6530
6531 if (t_field_name == NULL)
6532 continue;
6533
6534 else if (field_name_match (t_field_name, name))
6535 {
6536 if (dispp != NULL)
6537 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6538 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6539 }
6540
6541 else if (ada_is_wrapper_field (type, i))
6542 {
6543 disp = 0;
6544 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6545 0, 1, &disp);
6546 if (t != NULL)
6547 {
6548 if (dispp != NULL)
6549 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6550 return t;
6551 }
6552 }
6553
6554 else if (ada_is_variant_part (type, i))
6555 {
6556 int j;
6557 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6558 i));
6559
6560 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6561 {
6562 /* FIXME pnh 2008/01/26: We check for a field that is
6563 NOT wrapped in a struct, since the compiler sometimes
6564 generates these for unchecked variant types. Revisit
6565 if the compiler changes this practice. */
6566 char *v_field_name = TYPE_FIELD_NAME (field_type, j);
6567 disp = 0;
6568 if (v_field_name != NULL
6569 && field_name_match (v_field_name, name))
6570 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6571 else
6572 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
6573 j),
6574 name, 0, 1, &disp);
6575
6576 if (t != NULL)
6577 {
6578 if (dispp != NULL)
6579 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6580 return t;
6581 }
6582 }
6583 }
6584
6585 }
6586
6587 BadName:
6588 if (!noerr)
6589 {
6590 target_terminal_ours ();
6591 gdb_flush (gdb_stdout);
6592 if (name == NULL)
6593 {
6594 /* XXX: type_sprint */
6595 fprintf_unfiltered (gdb_stderr, _("Type "));
6596 type_print (type, "", gdb_stderr, -1);
6597 error (_(" has no component named <null>"));
6598 }
6599 else
6600 {
6601 /* XXX: type_sprint */
6602 fprintf_unfiltered (gdb_stderr, _("Type "));
6603 type_print (type, "", gdb_stderr, -1);
6604 error (_(" has no component named %s"), name);
6605 }
6606 }
6607
6608 return NULL;
6609 }
6610
6611 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6612 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6613 represents an unchecked union (that is, the variant part of a
6614 record that is named in an Unchecked_Union pragma). */
6615
6616 static int
6617 is_unchecked_variant (struct type *var_type, struct type *outer_type)
6618 {
6619 char *discrim_name = ada_variant_discrim_name (var_type);
6620
6621 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6622 == NULL);
6623 }
6624
6625
6626 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6627 within a value of type OUTER_TYPE that is stored in GDB at
6628 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6629 numbering from 0) is applicable. Returns -1 if none are. */
6630
6631 int
6632 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6633 const gdb_byte *outer_valaddr)
6634 {
6635 int others_clause;
6636 int i;
6637 char *discrim_name = ada_variant_discrim_name (var_type);
6638 struct value *outer;
6639 struct value *discrim;
6640 LONGEST discrim_val;
6641
6642 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6643 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6644 if (discrim == NULL)
6645 return -1;
6646 discrim_val = value_as_long (discrim);
6647
6648 others_clause = -1;
6649 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6650 {
6651 if (ada_is_others_clause (var_type, i))
6652 others_clause = i;
6653 else if (ada_in_variant (discrim_val, var_type, i))
6654 return i;
6655 }
6656
6657 return others_clause;
6658 }
6659 \f
6660
6661
6662 /* Dynamic-Sized Records */
6663
6664 /* Strategy: The type ostensibly attached to a value with dynamic size
6665 (i.e., a size that is not statically recorded in the debugging
6666 data) does not accurately reflect the size or layout of the value.
6667 Our strategy is to convert these values to values with accurate,
6668 conventional types that are constructed on the fly. */
6669
6670 /* There is a subtle and tricky problem here. In general, we cannot
6671 determine the size of dynamic records without its data. However,
6672 the 'struct value' data structure, which GDB uses to represent
6673 quantities in the inferior process (the target), requires the size
6674 of the type at the time of its allocation in order to reserve space
6675 for GDB's internal copy of the data. That's why the
6676 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6677 rather than struct value*s.
6678
6679 However, GDB's internal history variables ($1, $2, etc.) are
6680 struct value*s containing internal copies of the data that are not, in
6681 general, the same as the data at their corresponding addresses in
6682 the target. Fortunately, the types we give to these values are all
6683 conventional, fixed-size types (as per the strategy described
6684 above), so that we don't usually have to perform the
6685 'to_fixed_xxx_type' conversions to look at their values.
6686 Unfortunately, there is one exception: if one of the internal
6687 history variables is an array whose elements are unconstrained
6688 records, then we will need to create distinct fixed types for each
6689 element selected. */
6690
6691 /* The upshot of all of this is that many routines take a (type, host
6692 address, target address) triple as arguments to represent a value.
6693 The host address, if non-null, is supposed to contain an internal
6694 copy of the relevant data; otherwise, the program is to consult the
6695 target at the target address. */
6696
6697 /* Assuming that VAL0 represents a pointer value, the result of
6698 dereferencing it. Differs from value_ind in its treatment of
6699 dynamic-sized types. */
6700
6701 struct value *
6702 ada_value_ind (struct value *val0)
6703 {
6704 struct value *val = unwrap_value (value_ind (val0));
6705
6706 return ada_to_fixed_value (val);
6707 }
6708
6709 /* The value resulting from dereferencing any "reference to"
6710 qualifiers on VAL0. */
6711
6712 static struct value *
6713 ada_coerce_ref (struct value *val0)
6714 {
6715 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6716 {
6717 struct value *val = val0;
6718
6719 val = coerce_ref (val);
6720 val = unwrap_value (val);
6721 return ada_to_fixed_value (val);
6722 }
6723 else
6724 return val0;
6725 }
6726
6727 /* Return OFF rounded upward if necessary to a multiple of
6728 ALIGNMENT (a power of 2). */
6729
6730 static unsigned int
6731 align_value (unsigned int off, unsigned int alignment)
6732 {
6733 return (off + alignment - 1) & ~(alignment - 1);
6734 }
6735
6736 /* Return the bit alignment required for field #F of template type TYPE. */
6737
6738 static unsigned int
6739 field_alignment (struct type *type, int f)
6740 {
6741 const char *name = TYPE_FIELD_NAME (type, f);
6742 int len;
6743 int align_offset;
6744
6745 /* The field name should never be null, unless the debugging information
6746 is somehow malformed. In this case, we assume the field does not
6747 require any alignment. */
6748 if (name == NULL)
6749 return 1;
6750
6751 len = strlen (name);
6752
6753 if (!isdigit (name[len - 1]))
6754 return 1;
6755
6756 if (isdigit (name[len - 2]))
6757 align_offset = len - 2;
6758 else
6759 align_offset = len - 1;
6760
6761 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6762 return TARGET_CHAR_BIT;
6763
6764 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6765 }
6766
6767 /* Find a symbol named NAME. Ignores ambiguity. */
6768
6769 struct symbol *
6770 ada_find_any_symbol (const char *name)
6771 {
6772 struct symbol *sym;
6773
6774 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6775 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6776 return sym;
6777
6778 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6779 return sym;
6780 }
6781
6782 /* Find a type named NAME. Ignores ambiguity. This routine will look
6783 solely for types defined by debug info, it will not search the GDB
6784 primitive types. */
6785
6786 struct type *
6787 ada_find_any_type (const char *name)
6788 {
6789 struct symbol *sym = ada_find_any_symbol (name);
6790
6791 if (sym != NULL)
6792 return SYMBOL_TYPE (sym);
6793
6794 return NULL;
6795 }
6796
6797 /* Given NAME and an associated BLOCK, search all symbols for
6798 NAME suffixed with "___XR", which is the ``renaming'' symbol
6799 associated to NAME. Return this symbol if found, return
6800 NULL otherwise. */
6801
6802 struct symbol *
6803 ada_find_renaming_symbol (const char *name, struct block *block)
6804 {
6805 struct symbol *sym;
6806
6807 sym = find_old_style_renaming_symbol (name, block);
6808
6809 if (sym != NULL)
6810 return sym;
6811
6812 /* Not right yet. FIXME pnh 7/20/2007. */
6813 sym = ada_find_any_symbol (name);
6814 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6815 return sym;
6816 else
6817 return NULL;
6818 }
6819
6820 static struct symbol *
6821 find_old_style_renaming_symbol (const char *name, struct block *block)
6822 {
6823 const struct symbol *function_sym = block_linkage_function (block);
6824 char *rename;
6825
6826 if (function_sym != NULL)
6827 {
6828 /* If the symbol is defined inside a function, NAME is not fully
6829 qualified. This means we need to prepend the function name
6830 as well as adding the ``___XR'' suffix to build the name of
6831 the associated renaming symbol. */
6832 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
6833 /* Function names sometimes contain suffixes used
6834 for instance to qualify nested subprograms. When building
6835 the XR type name, we need to make sure that this suffix is
6836 not included. So do not include any suffix in the function
6837 name length below. */
6838 int function_name_len = ada_name_prefix_len (function_name);
6839 const int rename_len = function_name_len + 2 /* "__" */
6840 + strlen (name) + 6 /* "___XR\0" */ ;
6841
6842 /* Strip the suffix if necessary. */
6843 ada_remove_trailing_digits (function_name, &function_name_len);
6844 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
6845 ada_remove_Xbn_suffix (function_name, &function_name_len);
6846
6847 /* Library-level functions are a special case, as GNAT adds
6848 a ``_ada_'' prefix to the function name to avoid namespace
6849 pollution. However, the renaming symbols themselves do not
6850 have this prefix, so we need to skip this prefix if present. */
6851 if (function_name_len > 5 /* "_ada_" */
6852 && strstr (function_name, "_ada_") == function_name)
6853 {
6854 function_name += 5;
6855 function_name_len -= 5;
6856 }
6857
6858 rename = (char *) alloca (rename_len * sizeof (char));
6859 strncpy (rename, function_name, function_name_len);
6860 xsnprintf (rename + function_name_len, rename_len - function_name_len,
6861 "__%s___XR", name);
6862 }
6863 else
6864 {
6865 const int rename_len = strlen (name) + 6;
6866
6867 rename = (char *) alloca (rename_len * sizeof (char));
6868 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
6869 }
6870
6871 return ada_find_any_symbol (rename);
6872 }
6873
6874 /* Because of GNAT encoding conventions, several GDB symbols may match a
6875 given type name. If the type denoted by TYPE0 is to be preferred to
6876 that of TYPE1 for purposes of type printing, return non-zero;
6877 otherwise return 0. */
6878
6879 int
6880 ada_prefer_type (struct type *type0, struct type *type1)
6881 {
6882 if (type1 == NULL)
6883 return 1;
6884 else if (type0 == NULL)
6885 return 0;
6886 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6887 return 1;
6888 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6889 return 0;
6890 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6891 return 1;
6892 else if (ada_is_constrained_packed_array_type (type0))
6893 return 1;
6894 else if (ada_is_array_descriptor_type (type0)
6895 && !ada_is_array_descriptor_type (type1))
6896 return 1;
6897 else
6898 {
6899 const char *type0_name = type_name_no_tag (type0);
6900 const char *type1_name = type_name_no_tag (type1);
6901
6902 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6903 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6904 return 1;
6905 }
6906 return 0;
6907 }
6908
6909 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
6910 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6911
6912 char *
6913 ada_type_name (struct type *type)
6914 {
6915 if (type == NULL)
6916 return NULL;
6917 else if (TYPE_NAME (type) != NULL)
6918 return TYPE_NAME (type);
6919 else
6920 return TYPE_TAG_NAME (type);
6921 }
6922
6923 /* Search the list of "descriptive" types associated to TYPE for a type
6924 whose name is NAME. */
6925
6926 static struct type *
6927 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
6928 {
6929 struct type *result;
6930
6931 /* If there no descriptive-type info, then there is no parallel type
6932 to be found. */
6933 if (!HAVE_GNAT_AUX_INFO (type))
6934 return NULL;
6935
6936 result = TYPE_DESCRIPTIVE_TYPE (type);
6937 while (result != NULL)
6938 {
6939 char *result_name = ada_type_name (result);
6940
6941 if (result_name == NULL)
6942 {
6943 warning (_("unexpected null name on descriptive type"));
6944 return NULL;
6945 }
6946
6947 /* If the names match, stop. */
6948 if (strcmp (result_name, name) == 0)
6949 break;
6950
6951 /* Otherwise, look at the next item on the list, if any. */
6952 if (HAVE_GNAT_AUX_INFO (result))
6953 result = TYPE_DESCRIPTIVE_TYPE (result);
6954 else
6955 result = NULL;
6956 }
6957
6958 /* If we didn't find a match, see whether this is a packed array. With
6959 older compilers, the descriptive type information is either absent or
6960 irrelevant when it comes to packed arrays so the above lookup fails.
6961 Fall back to using a parallel lookup by name in this case. */
6962 if (result == NULL && ada_is_constrained_packed_array_type (type))
6963 return ada_find_any_type (name);
6964
6965 return result;
6966 }
6967
6968 /* Find a parallel type to TYPE with the specified NAME, using the
6969 descriptive type taken from the debugging information, if available,
6970 and otherwise using the (slower) name-based method. */
6971
6972 static struct type *
6973 ada_find_parallel_type_with_name (struct type *type, const char *name)
6974 {
6975 struct type *result = NULL;
6976
6977 if (HAVE_GNAT_AUX_INFO (type))
6978 result = find_parallel_type_by_descriptive_type (type, name);
6979 else
6980 result = ada_find_any_type (name);
6981
6982 return result;
6983 }
6984
6985 /* Same as above, but specify the name of the parallel type by appending
6986 SUFFIX to the name of TYPE. */
6987
6988 struct type *
6989 ada_find_parallel_type (struct type *type, const char *suffix)
6990 {
6991 char *name, *typename = ada_type_name (type);
6992 int len;
6993
6994 if (typename == NULL)
6995 return NULL;
6996
6997 len = strlen (typename);
6998
6999 name = (char *) alloca (len + strlen (suffix) + 1);
7000
7001 strcpy (name, typename);
7002 strcpy (name + len, suffix);
7003
7004 return ada_find_parallel_type_with_name (type, name);
7005 }
7006
7007 /* If TYPE is a variable-size record type, return the corresponding template
7008 type describing its fields. Otherwise, return NULL. */
7009
7010 static struct type *
7011 dynamic_template_type (struct type *type)
7012 {
7013 type = ada_check_typedef (type);
7014
7015 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
7016 || ada_type_name (type) == NULL)
7017 return NULL;
7018 else
7019 {
7020 int len = strlen (ada_type_name (type));
7021
7022 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7023 return type;
7024 else
7025 return ada_find_parallel_type (type, "___XVE");
7026 }
7027 }
7028
7029 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7030 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7031
7032 static int
7033 is_dynamic_field (struct type *templ_type, int field_num)
7034 {
7035 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7036
7037 return name != NULL
7038 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7039 && strstr (name, "___XVL") != NULL;
7040 }
7041
7042 /* The index of the variant field of TYPE, or -1 if TYPE does not
7043 represent a variant record type. */
7044
7045 static int
7046 variant_field_index (struct type *type)
7047 {
7048 int f;
7049
7050 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7051 return -1;
7052
7053 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7054 {
7055 if (ada_is_variant_part (type, f))
7056 return f;
7057 }
7058 return -1;
7059 }
7060
7061 /* A record type with no fields. */
7062
7063 static struct type *
7064 empty_record (struct type *template)
7065 {
7066 struct type *type = alloc_type_copy (template);
7067
7068 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7069 TYPE_NFIELDS (type) = 0;
7070 TYPE_FIELDS (type) = NULL;
7071 INIT_CPLUS_SPECIFIC (type);
7072 TYPE_NAME (type) = "<empty>";
7073 TYPE_TAG_NAME (type) = NULL;
7074 TYPE_LENGTH (type) = 0;
7075 return type;
7076 }
7077
7078 /* An ordinary record type (with fixed-length fields) that describes
7079 the value of type TYPE at VALADDR or ADDRESS (see comments at
7080 the beginning of this section) VAL according to GNAT conventions.
7081 DVAL0 should describe the (portion of a) record that contains any
7082 necessary discriminants. It should be NULL if value_type (VAL) is
7083 an outer-level type (i.e., as opposed to a branch of a variant.) A
7084 variant field (unless unchecked) is replaced by a particular branch
7085 of the variant.
7086
7087 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7088 length are not statically known are discarded. As a consequence,
7089 VALADDR, ADDRESS and DVAL0 are ignored.
7090
7091 NOTE: Limitations: For now, we assume that dynamic fields and
7092 variants occupy whole numbers of bytes. However, they need not be
7093 byte-aligned. */
7094
7095 struct type *
7096 ada_template_to_fixed_record_type_1 (struct type *type,
7097 const gdb_byte *valaddr,
7098 CORE_ADDR address, struct value *dval0,
7099 int keep_dynamic_fields)
7100 {
7101 struct value *mark = value_mark ();
7102 struct value *dval;
7103 struct type *rtype;
7104 int nfields, bit_len;
7105 int variant_field;
7106 long off;
7107 int fld_bit_len;
7108 int f;
7109
7110 /* Compute the number of fields in this record type that are going
7111 to be processed: unless keep_dynamic_fields, this includes only
7112 fields whose position and length are static will be processed. */
7113 if (keep_dynamic_fields)
7114 nfields = TYPE_NFIELDS (type);
7115 else
7116 {
7117 nfields = 0;
7118 while (nfields < TYPE_NFIELDS (type)
7119 && !ada_is_variant_part (type, nfields)
7120 && !is_dynamic_field (type, nfields))
7121 nfields++;
7122 }
7123
7124 rtype = alloc_type_copy (type);
7125 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7126 INIT_CPLUS_SPECIFIC (rtype);
7127 TYPE_NFIELDS (rtype) = nfields;
7128 TYPE_FIELDS (rtype) = (struct field *)
7129 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7130 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7131 TYPE_NAME (rtype) = ada_type_name (type);
7132 TYPE_TAG_NAME (rtype) = NULL;
7133 TYPE_FIXED_INSTANCE (rtype) = 1;
7134
7135 off = 0;
7136 bit_len = 0;
7137 variant_field = -1;
7138
7139 for (f = 0; f < nfields; f += 1)
7140 {
7141 off = align_value (off, field_alignment (type, f))
7142 + TYPE_FIELD_BITPOS (type, f);
7143 TYPE_FIELD_BITPOS (rtype, f) = off;
7144 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7145
7146 if (ada_is_variant_part (type, f))
7147 {
7148 variant_field = f;
7149 fld_bit_len = 0;
7150 }
7151 else if (is_dynamic_field (type, f))
7152 {
7153 const gdb_byte *field_valaddr = valaddr;
7154 CORE_ADDR field_address = address;
7155 struct type *field_type =
7156 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7157
7158 if (dval0 == NULL)
7159 {
7160 /* rtype's length is computed based on the run-time
7161 value of discriminants. If the discriminants are not
7162 initialized, the type size may be completely bogus and
7163 GDB may fail to allocate a value for it. So check the
7164 size first before creating the value. */
7165 check_size (rtype);
7166 dval = value_from_contents_and_address (rtype, valaddr, address);
7167 }
7168 else
7169 dval = dval0;
7170
7171 /* If the type referenced by this field is an aligner type, we need
7172 to unwrap that aligner type, because its size might not be set.
7173 Keeping the aligner type would cause us to compute the wrong
7174 size for this field, impacting the offset of the all the fields
7175 that follow this one. */
7176 if (ada_is_aligner_type (field_type))
7177 {
7178 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7179
7180 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7181 field_address = cond_offset_target (field_address, field_offset);
7182 field_type = ada_aligned_type (field_type);
7183 }
7184
7185 field_valaddr = cond_offset_host (field_valaddr,
7186 off / TARGET_CHAR_BIT);
7187 field_address = cond_offset_target (field_address,
7188 off / TARGET_CHAR_BIT);
7189
7190 /* Get the fixed type of the field. Note that, in this case,
7191 we do not want to get the real type out of the tag: if
7192 the current field is the parent part of a tagged record,
7193 we will get the tag of the object. Clearly wrong: the real
7194 type of the parent is not the real type of the child. We
7195 would end up in an infinite loop. */
7196 field_type = ada_get_base_type (field_type);
7197 field_type = ada_to_fixed_type (field_type, field_valaddr,
7198 field_address, dval, 0);
7199 /* If the field size is already larger than the maximum
7200 object size, then the record itself will necessarily
7201 be larger than the maximum object size. We need to make
7202 this check now, because the size might be so ridiculously
7203 large (due to an uninitialized variable in the inferior)
7204 that it would cause an overflow when adding it to the
7205 record size. */
7206 check_size (field_type);
7207
7208 TYPE_FIELD_TYPE (rtype, f) = field_type;
7209 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7210 /* The multiplication can potentially overflow. But because
7211 the field length has been size-checked just above, and
7212 assuming that the maximum size is a reasonable value,
7213 an overflow should not happen in practice. So rather than
7214 adding overflow recovery code to this already complex code,
7215 we just assume that it's not going to happen. */
7216 fld_bit_len =
7217 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7218 }
7219 else
7220 {
7221 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7222
7223 /* If our field is a typedef type (most likely a typedef of
7224 a fat pointer, encoding an array access), then we need to
7225 look at its target type to determine its characteristics.
7226 In particular, we would miscompute the field size if we took
7227 the size of the typedef (zero), instead of the size of
7228 the target type. */
7229 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7230 field_type = ada_typedef_target_type (field_type);
7231
7232 TYPE_FIELD_TYPE (rtype, f) = field_type;
7233 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7234 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7235 fld_bit_len =
7236 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7237 else
7238 fld_bit_len =
7239 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7240 }
7241 if (off + fld_bit_len > bit_len)
7242 bit_len = off + fld_bit_len;
7243 off += fld_bit_len;
7244 TYPE_LENGTH (rtype) =
7245 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7246 }
7247
7248 /* We handle the variant part, if any, at the end because of certain
7249 odd cases in which it is re-ordered so as NOT to be the last field of
7250 the record. This can happen in the presence of representation
7251 clauses. */
7252 if (variant_field >= 0)
7253 {
7254 struct type *branch_type;
7255
7256 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7257
7258 if (dval0 == NULL)
7259 dval = value_from_contents_and_address (rtype, valaddr, address);
7260 else
7261 dval = dval0;
7262
7263 branch_type =
7264 to_fixed_variant_branch_type
7265 (TYPE_FIELD_TYPE (type, variant_field),
7266 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7267 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7268 if (branch_type == NULL)
7269 {
7270 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7271 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7272 TYPE_NFIELDS (rtype) -= 1;
7273 }
7274 else
7275 {
7276 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7277 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7278 fld_bit_len =
7279 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7280 TARGET_CHAR_BIT;
7281 if (off + fld_bit_len > bit_len)
7282 bit_len = off + fld_bit_len;
7283 TYPE_LENGTH (rtype) =
7284 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7285 }
7286 }
7287
7288 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7289 should contain the alignment of that record, which should be a strictly
7290 positive value. If null or negative, then something is wrong, most
7291 probably in the debug info. In that case, we don't round up the size
7292 of the resulting type. If this record is not part of another structure,
7293 the current RTYPE length might be good enough for our purposes. */
7294 if (TYPE_LENGTH (type) <= 0)
7295 {
7296 if (TYPE_NAME (rtype))
7297 warning (_("Invalid type size for `%s' detected: %d."),
7298 TYPE_NAME (rtype), TYPE_LENGTH (type));
7299 else
7300 warning (_("Invalid type size for <unnamed> detected: %d."),
7301 TYPE_LENGTH (type));
7302 }
7303 else
7304 {
7305 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7306 TYPE_LENGTH (type));
7307 }
7308
7309 value_free_to_mark (mark);
7310 if (TYPE_LENGTH (rtype) > varsize_limit)
7311 error (_("record type with dynamic size is larger than varsize-limit"));
7312 return rtype;
7313 }
7314
7315 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7316 of 1. */
7317
7318 static struct type *
7319 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
7320 CORE_ADDR address, struct value *dval0)
7321 {
7322 return ada_template_to_fixed_record_type_1 (type, valaddr,
7323 address, dval0, 1);
7324 }
7325
7326 /* An ordinary record type in which ___XVL-convention fields and
7327 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7328 static approximations, containing all possible fields. Uses
7329 no runtime values. Useless for use in values, but that's OK,
7330 since the results are used only for type determinations. Works on both
7331 structs and unions. Representation note: to save space, we memorize
7332 the result of this function in the TYPE_TARGET_TYPE of the
7333 template type. */
7334
7335 static struct type *
7336 template_to_static_fixed_type (struct type *type0)
7337 {
7338 struct type *type;
7339 int nfields;
7340 int f;
7341
7342 if (TYPE_TARGET_TYPE (type0) != NULL)
7343 return TYPE_TARGET_TYPE (type0);
7344
7345 nfields = TYPE_NFIELDS (type0);
7346 type = type0;
7347
7348 for (f = 0; f < nfields; f += 1)
7349 {
7350 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
7351 struct type *new_type;
7352
7353 if (is_dynamic_field (type0, f))
7354 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7355 else
7356 new_type = static_unwrap_type (field_type);
7357 if (type == type0 && new_type != field_type)
7358 {
7359 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
7360 TYPE_CODE (type) = TYPE_CODE (type0);
7361 INIT_CPLUS_SPECIFIC (type);
7362 TYPE_NFIELDS (type) = nfields;
7363 TYPE_FIELDS (type) = (struct field *)
7364 TYPE_ALLOC (type, nfields * sizeof (struct field));
7365 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7366 sizeof (struct field) * nfields);
7367 TYPE_NAME (type) = ada_type_name (type0);
7368 TYPE_TAG_NAME (type) = NULL;
7369 TYPE_FIXED_INSTANCE (type) = 1;
7370 TYPE_LENGTH (type) = 0;
7371 }
7372 TYPE_FIELD_TYPE (type, f) = new_type;
7373 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7374 }
7375 return type;
7376 }
7377
7378 /* Given an object of type TYPE whose contents are at VALADDR and
7379 whose address in memory is ADDRESS, returns a revision of TYPE,
7380 which should be a non-dynamic-sized record, in which the variant
7381 part, if any, is replaced with the appropriate branch. Looks
7382 for discriminant values in DVAL0, which can be NULL if the record
7383 contains the necessary discriminant values. */
7384
7385 static struct type *
7386 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7387 CORE_ADDR address, struct value *dval0)
7388 {
7389 struct value *mark = value_mark ();
7390 struct value *dval;
7391 struct type *rtype;
7392 struct type *branch_type;
7393 int nfields = TYPE_NFIELDS (type);
7394 int variant_field = variant_field_index (type);
7395
7396 if (variant_field == -1)
7397 return type;
7398
7399 if (dval0 == NULL)
7400 dval = value_from_contents_and_address (type, valaddr, address);
7401 else
7402 dval = dval0;
7403
7404 rtype = alloc_type_copy (type);
7405 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7406 INIT_CPLUS_SPECIFIC (rtype);
7407 TYPE_NFIELDS (rtype) = nfields;
7408 TYPE_FIELDS (rtype) =
7409 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7410 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
7411 sizeof (struct field) * nfields);
7412 TYPE_NAME (rtype) = ada_type_name (type);
7413 TYPE_TAG_NAME (rtype) = NULL;
7414 TYPE_FIXED_INSTANCE (rtype) = 1;
7415 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7416
7417 branch_type = to_fixed_variant_branch_type
7418 (TYPE_FIELD_TYPE (type, variant_field),
7419 cond_offset_host (valaddr,
7420 TYPE_FIELD_BITPOS (type, variant_field)
7421 / TARGET_CHAR_BIT),
7422 cond_offset_target (address,
7423 TYPE_FIELD_BITPOS (type, variant_field)
7424 / TARGET_CHAR_BIT), dval);
7425 if (branch_type == NULL)
7426 {
7427 int f;
7428
7429 for (f = variant_field + 1; f < nfields; f += 1)
7430 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7431 TYPE_NFIELDS (rtype) -= 1;
7432 }
7433 else
7434 {
7435 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7436 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7437 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7438 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7439 }
7440 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7441
7442 value_free_to_mark (mark);
7443 return rtype;
7444 }
7445
7446 /* An ordinary record type (with fixed-length fields) that describes
7447 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7448 beginning of this section]. Any necessary discriminants' values
7449 should be in DVAL, a record value; it may be NULL if the object
7450 at ADDR itself contains any necessary discriminant values.
7451 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7452 values from the record are needed. Except in the case that DVAL,
7453 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7454 unchecked) is replaced by a particular branch of the variant.
7455
7456 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7457 is questionable and may be removed. It can arise during the
7458 processing of an unconstrained-array-of-record type where all the
7459 variant branches have exactly the same size. This is because in
7460 such cases, the compiler does not bother to use the XVS convention
7461 when encoding the record. I am currently dubious of this
7462 shortcut and suspect the compiler should be altered. FIXME. */
7463
7464 static struct type *
7465 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7466 CORE_ADDR address, struct value *dval)
7467 {
7468 struct type *templ_type;
7469
7470 if (TYPE_FIXED_INSTANCE (type0))
7471 return type0;
7472
7473 templ_type = dynamic_template_type (type0);
7474
7475 if (templ_type != NULL)
7476 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7477 else if (variant_field_index (type0) >= 0)
7478 {
7479 if (dval == NULL && valaddr == NULL && address == 0)
7480 return type0;
7481 return to_record_with_fixed_variant_part (type0, valaddr, address,
7482 dval);
7483 }
7484 else
7485 {
7486 TYPE_FIXED_INSTANCE (type0) = 1;
7487 return type0;
7488 }
7489
7490 }
7491
7492 /* An ordinary record type (with fixed-length fields) that describes
7493 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7494 union type. Any necessary discriminants' values should be in DVAL,
7495 a record value. That is, this routine selects the appropriate
7496 branch of the union at ADDR according to the discriminant value
7497 indicated in the union's type name. Returns VAR_TYPE0 itself if
7498 it represents a variant subject to a pragma Unchecked_Union. */
7499
7500 static struct type *
7501 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7502 CORE_ADDR address, struct value *dval)
7503 {
7504 int which;
7505 struct type *templ_type;
7506 struct type *var_type;
7507
7508 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7509 var_type = TYPE_TARGET_TYPE (var_type0);
7510 else
7511 var_type = var_type0;
7512
7513 templ_type = ada_find_parallel_type (var_type, "___XVU");
7514
7515 if (templ_type != NULL)
7516 var_type = templ_type;
7517
7518 if (is_unchecked_variant (var_type, value_type (dval)))
7519 return var_type0;
7520 which =
7521 ada_which_variant_applies (var_type,
7522 value_type (dval), value_contents (dval));
7523
7524 if (which < 0)
7525 return empty_record (var_type);
7526 else if (is_dynamic_field (var_type, which))
7527 return to_fixed_record_type
7528 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7529 valaddr, address, dval);
7530 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7531 return
7532 to_fixed_record_type
7533 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7534 else
7535 return TYPE_FIELD_TYPE (var_type, which);
7536 }
7537
7538 /* Assuming that TYPE0 is an array type describing the type of a value
7539 at ADDR, and that DVAL describes a record containing any
7540 discriminants used in TYPE0, returns a type for the value that
7541 contains no dynamic components (that is, no components whose sizes
7542 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7543 true, gives an error message if the resulting type's size is over
7544 varsize_limit. */
7545
7546 static struct type *
7547 to_fixed_array_type (struct type *type0, struct value *dval,
7548 int ignore_too_big)
7549 {
7550 struct type *index_type_desc;
7551 struct type *result;
7552 int constrained_packed_array_p;
7553
7554 if (TYPE_FIXED_INSTANCE (type0))
7555 return type0;
7556
7557 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7558 if (constrained_packed_array_p)
7559 type0 = decode_constrained_packed_array_type (type0);
7560
7561 index_type_desc = ada_find_parallel_type (type0, "___XA");
7562 ada_fixup_array_indexes_type (index_type_desc);
7563 if (index_type_desc == NULL)
7564 {
7565 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7566
7567 /* NOTE: elt_type---the fixed version of elt_type0---should never
7568 depend on the contents of the array in properly constructed
7569 debugging data. */
7570 /* Create a fixed version of the array element type.
7571 We're not providing the address of an element here,
7572 and thus the actual object value cannot be inspected to do
7573 the conversion. This should not be a problem, since arrays of
7574 unconstrained objects are not allowed. In particular, all
7575 the elements of an array of a tagged type should all be of
7576 the same type specified in the debugging info. No need to
7577 consult the object tag. */
7578 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7579
7580 /* Make sure we always create a new array type when dealing with
7581 packed array types, since we're going to fix-up the array
7582 type length and element bitsize a little further down. */
7583 if (elt_type0 == elt_type && !constrained_packed_array_p)
7584 result = type0;
7585 else
7586 result = create_array_type (alloc_type_copy (type0),
7587 elt_type, TYPE_INDEX_TYPE (type0));
7588 }
7589 else
7590 {
7591 int i;
7592 struct type *elt_type0;
7593
7594 elt_type0 = type0;
7595 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7596 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7597
7598 /* NOTE: result---the fixed version of elt_type0---should never
7599 depend on the contents of the array in properly constructed
7600 debugging data. */
7601 /* Create a fixed version of the array element type.
7602 We're not providing the address of an element here,
7603 and thus the actual object value cannot be inspected to do
7604 the conversion. This should not be a problem, since arrays of
7605 unconstrained objects are not allowed. In particular, all
7606 the elements of an array of a tagged type should all be of
7607 the same type specified in the debugging info. No need to
7608 consult the object tag. */
7609 result =
7610 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
7611
7612 elt_type0 = type0;
7613 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
7614 {
7615 struct type *range_type =
7616 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
7617
7618 result = create_array_type (alloc_type_copy (elt_type0),
7619 result, range_type);
7620 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7621 }
7622 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7623 error (_("array type with dynamic size is larger than varsize-limit"));
7624 }
7625
7626 if (constrained_packed_array_p)
7627 {
7628 /* So far, the resulting type has been created as if the original
7629 type was a regular (non-packed) array type. As a result, the
7630 bitsize of the array elements needs to be set again, and the array
7631 length needs to be recomputed based on that bitsize. */
7632 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
7633 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
7634
7635 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
7636 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
7637 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
7638 TYPE_LENGTH (result)++;
7639 }
7640
7641 TYPE_FIXED_INSTANCE (result) = 1;
7642 return result;
7643 }
7644
7645
7646 /* A standard type (containing no dynamically sized components)
7647 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7648 DVAL describes a record containing any discriminants used in TYPE0,
7649 and may be NULL if there are none, or if the object of type TYPE at
7650 ADDRESS or in VALADDR contains these discriminants.
7651
7652 If CHECK_TAG is not null, in the case of tagged types, this function
7653 attempts to locate the object's tag and use it to compute the actual
7654 type. However, when ADDRESS is null, we cannot use it to determine the
7655 location of the tag, and therefore compute the tagged type's actual type.
7656 So we return the tagged type without consulting the tag. */
7657
7658 static struct type *
7659 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
7660 CORE_ADDR address, struct value *dval, int check_tag)
7661 {
7662 type = ada_check_typedef (type);
7663 switch (TYPE_CODE (type))
7664 {
7665 default:
7666 return type;
7667 case TYPE_CODE_STRUCT:
7668 {
7669 struct type *static_type = to_static_fixed_type (type);
7670 struct type *fixed_record_type =
7671 to_fixed_record_type (type, valaddr, address, NULL);
7672
7673 /* If STATIC_TYPE is a tagged type and we know the object's address,
7674 then we can determine its tag, and compute the object's actual
7675 type from there. Note that we have to use the fixed record
7676 type (the parent part of the record may have dynamic fields
7677 and the way the location of _tag is expressed may depend on
7678 them). */
7679
7680 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
7681 {
7682 struct type *real_type =
7683 type_from_tag (value_tag_from_contents_and_address
7684 (fixed_record_type,
7685 valaddr,
7686 address));
7687
7688 if (real_type != NULL)
7689 return to_fixed_record_type (real_type, valaddr, address, NULL);
7690 }
7691
7692 /* Check to see if there is a parallel ___XVZ variable.
7693 If there is, then it provides the actual size of our type. */
7694 else if (ada_type_name (fixed_record_type) != NULL)
7695 {
7696 char *name = ada_type_name (fixed_record_type);
7697 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7698 int xvz_found = 0;
7699 LONGEST size;
7700
7701 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
7702 size = get_int_var_value (xvz_name, &xvz_found);
7703 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
7704 {
7705 fixed_record_type = copy_type (fixed_record_type);
7706 TYPE_LENGTH (fixed_record_type) = size;
7707
7708 /* The FIXED_RECORD_TYPE may have be a stub. We have
7709 observed this when the debugging info is STABS, and
7710 apparently it is something that is hard to fix.
7711
7712 In practice, we don't need the actual type definition
7713 at all, because the presence of the XVZ variable allows us
7714 to assume that there must be a XVS type as well, which we
7715 should be able to use later, when we need the actual type
7716 definition.
7717
7718 In the meantime, pretend that the "fixed" type we are
7719 returning is NOT a stub, because this can cause trouble
7720 when using this type to create new types targeting it.
7721 Indeed, the associated creation routines often check
7722 whether the target type is a stub and will try to replace
7723 it, thus using a type with the wrong size. This, in turn,
7724 might cause the new type to have the wrong size too.
7725 Consider the case of an array, for instance, where the size
7726 of the array is computed from the number of elements in
7727 our array multiplied by the size of its element. */
7728 TYPE_STUB (fixed_record_type) = 0;
7729 }
7730 }
7731 return fixed_record_type;
7732 }
7733 case TYPE_CODE_ARRAY:
7734 return to_fixed_array_type (type, dval, 1);
7735 case TYPE_CODE_UNION:
7736 if (dval == NULL)
7737 return type;
7738 else
7739 return to_fixed_variant_branch_type (type, valaddr, address, dval);
7740 }
7741 }
7742
7743 /* The same as ada_to_fixed_type_1, except that it preserves the type
7744 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7745
7746 The typedef layer needs be preserved in order to differentiate between
7747 arrays and array pointers when both types are implemented using the same
7748 fat pointer. In the array pointer case, the pointer is encoded as
7749 a typedef of the pointer type. For instance, considering:
7750
7751 type String_Access is access String;
7752 S1 : String_Access := null;
7753
7754 To the debugger, S1 is defined as a typedef of type String. But
7755 to the user, it is a pointer. So if the user tries to print S1,
7756 we should not dereference the array, but print the array address
7757 instead.
7758
7759 If we didn't preserve the typedef layer, we would lose the fact that
7760 the type is to be presented as a pointer (needs de-reference before
7761 being printed). And we would also use the source-level type name. */
7762
7763 struct type *
7764 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7765 CORE_ADDR address, struct value *dval, int check_tag)
7766
7767 {
7768 struct type *fixed_type =
7769 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7770
7771 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
7772 then preserve the typedef layer.
7773
7774 Implementation note: We can only check the main-type portion of
7775 the TYPE and FIXED_TYPE, because eliminating the typedef layer
7776 from TYPE now returns a type that has the same instance flags
7777 as TYPE. For instance, if TYPE is a "typedef const", and its
7778 target type is a "struct", then the typedef elimination will return
7779 a "const" version of the target type. See check_typedef for more
7780 details about how the typedef layer elimination is done.
7781
7782 brobecker/2010-11-19: It seems to me that the only case where it is
7783 useful to preserve the typedef layer is when dealing with fat pointers.
7784 Perhaps, we could add a check for that and preserve the typedef layer
7785 only in that situation. But this seems unecessary so far, probably
7786 because we call check_typedef/ada_check_typedef pretty much everywhere.
7787 */
7788 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7789 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
7790 == TYPE_MAIN_TYPE (fixed_type)))
7791 return type;
7792
7793 return fixed_type;
7794 }
7795
7796 /* A standard (static-sized) type corresponding as well as possible to
7797 TYPE0, but based on no runtime data. */
7798
7799 static struct type *
7800 to_static_fixed_type (struct type *type0)
7801 {
7802 struct type *type;
7803
7804 if (type0 == NULL)
7805 return NULL;
7806
7807 if (TYPE_FIXED_INSTANCE (type0))
7808 return type0;
7809
7810 type0 = ada_check_typedef (type0);
7811
7812 switch (TYPE_CODE (type0))
7813 {
7814 default:
7815 return type0;
7816 case TYPE_CODE_STRUCT:
7817 type = dynamic_template_type (type0);
7818 if (type != NULL)
7819 return template_to_static_fixed_type (type);
7820 else
7821 return template_to_static_fixed_type (type0);
7822 case TYPE_CODE_UNION:
7823 type = ada_find_parallel_type (type0, "___XVU");
7824 if (type != NULL)
7825 return template_to_static_fixed_type (type);
7826 else
7827 return template_to_static_fixed_type (type0);
7828 }
7829 }
7830
7831 /* A static approximation of TYPE with all type wrappers removed. */
7832
7833 static struct type *
7834 static_unwrap_type (struct type *type)
7835 {
7836 if (ada_is_aligner_type (type))
7837 {
7838 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
7839 if (ada_type_name (type1) == NULL)
7840 TYPE_NAME (type1) = ada_type_name (type);
7841
7842 return static_unwrap_type (type1);
7843 }
7844 else
7845 {
7846 struct type *raw_real_type = ada_get_base_type (type);
7847
7848 if (raw_real_type == type)
7849 return type;
7850 else
7851 return to_static_fixed_type (raw_real_type);
7852 }
7853 }
7854
7855 /* In some cases, incomplete and private types require
7856 cross-references that are not resolved as records (for example,
7857 type Foo;
7858 type FooP is access Foo;
7859 V: FooP;
7860 type Foo is array ...;
7861 ). In these cases, since there is no mechanism for producing
7862 cross-references to such types, we instead substitute for FooP a
7863 stub enumeration type that is nowhere resolved, and whose tag is
7864 the name of the actual type. Call these types "non-record stubs". */
7865
7866 /* A type equivalent to TYPE that is not a non-record stub, if one
7867 exists, otherwise TYPE. */
7868
7869 struct type *
7870 ada_check_typedef (struct type *type)
7871 {
7872 if (type == NULL)
7873 return NULL;
7874
7875 /* If our type is a typedef type of a fat pointer, then we're done.
7876 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
7877 what allows us to distinguish between fat pointers that represent
7878 array types, and fat pointers that represent array access types
7879 (in both cases, the compiler implements them as fat pointers). */
7880 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7881 && is_thick_pntr (ada_typedef_target_type (type)))
7882 return type;
7883
7884 CHECK_TYPEDEF (type);
7885 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
7886 || !TYPE_STUB (type)
7887 || TYPE_TAG_NAME (type) == NULL)
7888 return type;
7889 else
7890 {
7891 char *name = TYPE_TAG_NAME (type);
7892 struct type *type1 = ada_find_any_type (name);
7893
7894 if (type1 == NULL)
7895 return type;
7896
7897 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
7898 stubs pointing to arrays, as we don't create symbols for array
7899 types, only for the typedef-to-array types). If that's the case,
7900 strip the typedef layer. */
7901 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
7902 type1 = ada_check_typedef (type1);
7903
7904 return type1;
7905 }
7906 }
7907
7908 /* A value representing the data at VALADDR/ADDRESS as described by
7909 type TYPE0, but with a standard (static-sized) type that correctly
7910 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7911 type, then return VAL0 [this feature is simply to avoid redundant
7912 creation of struct values]. */
7913
7914 static struct value *
7915 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7916 struct value *val0)
7917 {
7918 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
7919
7920 if (type == type0 && val0 != NULL)
7921 return val0;
7922 else
7923 return value_from_contents_and_address (type, 0, address);
7924 }
7925
7926 /* A value representing VAL, but with a standard (static-sized) type
7927 that correctly describes it. Does not necessarily create a new
7928 value. */
7929
7930 struct value *
7931 ada_to_fixed_value (struct value *val)
7932 {
7933 return ada_to_fixed_value_create (value_type (val),
7934 value_address (val),
7935 val);
7936 }
7937 \f
7938
7939 /* Attributes */
7940
7941 /* Table mapping attribute numbers to names.
7942 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
7943
7944 static const char *attribute_names[] = {
7945 "<?>",
7946
7947 "first",
7948 "last",
7949 "length",
7950 "image",
7951 "max",
7952 "min",
7953 "modulus",
7954 "pos",
7955 "size",
7956 "tag",
7957 "val",
7958 0
7959 };
7960
7961 const char *
7962 ada_attribute_name (enum exp_opcode n)
7963 {
7964 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7965 return attribute_names[n - OP_ATR_FIRST + 1];
7966 else
7967 return attribute_names[0];
7968 }
7969
7970 /* Evaluate the 'POS attribute applied to ARG. */
7971
7972 static LONGEST
7973 pos_atr (struct value *arg)
7974 {
7975 struct value *val = coerce_ref (arg);
7976 struct type *type = value_type (val);
7977
7978 if (!discrete_type_p (type))
7979 error (_("'POS only defined on discrete types"));
7980
7981 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7982 {
7983 int i;
7984 LONGEST v = value_as_long (val);
7985
7986 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7987 {
7988 if (v == TYPE_FIELD_BITPOS (type, i))
7989 return i;
7990 }
7991 error (_("enumeration value is invalid: can't find 'POS"));
7992 }
7993 else
7994 return value_as_long (val);
7995 }
7996
7997 static struct value *
7998 value_pos_atr (struct type *type, struct value *arg)
7999 {
8000 return value_from_longest (type, pos_atr (arg));
8001 }
8002
8003 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8004
8005 static struct value *
8006 value_val_atr (struct type *type, struct value *arg)
8007 {
8008 if (!discrete_type_p (type))
8009 error (_("'VAL only defined on discrete types"));
8010 if (!integer_type_p (value_type (arg)))
8011 error (_("'VAL requires integral argument"));
8012
8013 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8014 {
8015 long pos = value_as_long (arg);
8016
8017 if (pos < 0 || pos >= TYPE_NFIELDS (type))
8018 error (_("argument to 'VAL out of range"));
8019 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
8020 }
8021 else
8022 return value_from_longest (type, value_as_long (arg));
8023 }
8024 \f
8025
8026 /* Evaluation */
8027
8028 /* True if TYPE appears to be an Ada character type.
8029 [At the moment, this is true only for Character and Wide_Character;
8030 It is a heuristic test that could stand improvement]. */
8031
8032 int
8033 ada_is_character_type (struct type *type)
8034 {
8035 const char *name;
8036
8037 /* If the type code says it's a character, then assume it really is,
8038 and don't check any further. */
8039 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8040 return 1;
8041
8042 /* Otherwise, assume it's a character type iff it is a discrete type
8043 with a known character type name. */
8044 name = ada_type_name (type);
8045 return (name != NULL
8046 && (TYPE_CODE (type) == TYPE_CODE_INT
8047 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8048 && (strcmp (name, "character") == 0
8049 || strcmp (name, "wide_character") == 0
8050 || strcmp (name, "wide_wide_character") == 0
8051 || strcmp (name, "unsigned char") == 0));
8052 }
8053
8054 /* True if TYPE appears to be an Ada string type. */
8055
8056 int
8057 ada_is_string_type (struct type *type)
8058 {
8059 type = ada_check_typedef (type);
8060 if (type != NULL
8061 && TYPE_CODE (type) != TYPE_CODE_PTR
8062 && (ada_is_simple_array_type (type)
8063 || ada_is_array_descriptor_type (type))
8064 && ada_array_arity (type) == 1)
8065 {
8066 struct type *elttype = ada_array_element_type (type, 1);
8067
8068 return ada_is_character_type (elttype);
8069 }
8070 else
8071 return 0;
8072 }
8073
8074 /* The compiler sometimes provides a parallel XVS type for a given
8075 PAD type. Normally, it is safe to follow the PAD type directly,
8076 but older versions of the compiler have a bug that causes the offset
8077 of its "F" field to be wrong. Following that field in that case
8078 would lead to incorrect results, but this can be worked around
8079 by ignoring the PAD type and using the associated XVS type instead.
8080
8081 Set to True if the debugger should trust the contents of PAD types.
8082 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8083 static int trust_pad_over_xvs = 1;
8084
8085 /* True if TYPE is a struct type introduced by the compiler to force the
8086 alignment of a value. Such types have a single field with a
8087 distinctive name. */
8088
8089 int
8090 ada_is_aligner_type (struct type *type)
8091 {
8092 type = ada_check_typedef (type);
8093
8094 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
8095 return 0;
8096
8097 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
8098 && TYPE_NFIELDS (type) == 1
8099 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
8100 }
8101
8102 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
8103 the parallel type. */
8104
8105 struct type *
8106 ada_get_base_type (struct type *raw_type)
8107 {
8108 struct type *real_type_namer;
8109 struct type *raw_real_type;
8110
8111 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8112 return raw_type;
8113
8114 if (ada_is_aligner_type (raw_type))
8115 /* The encoding specifies that we should always use the aligner type.
8116 So, even if this aligner type has an associated XVS type, we should
8117 simply ignore it.
8118
8119 According to the compiler gurus, an XVS type parallel to an aligner
8120 type may exist because of a stabs limitation. In stabs, aligner
8121 types are empty because the field has a variable-sized type, and
8122 thus cannot actually be used as an aligner type. As a result,
8123 we need the associated parallel XVS type to decode the type.
8124 Since the policy in the compiler is to not change the internal
8125 representation based on the debugging info format, we sometimes
8126 end up having a redundant XVS type parallel to the aligner type. */
8127 return raw_type;
8128
8129 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
8130 if (real_type_namer == NULL
8131 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8132 || TYPE_NFIELDS (real_type_namer) != 1)
8133 return raw_type;
8134
8135 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8136 {
8137 /* This is an older encoding form where the base type needs to be
8138 looked up by name. We prefer the newer enconding because it is
8139 more efficient. */
8140 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8141 if (raw_real_type == NULL)
8142 return raw_type;
8143 else
8144 return raw_real_type;
8145 }
8146
8147 /* The field in our XVS type is a reference to the base type. */
8148 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
8149 }
8150
8151 /* The type of value designated by TYPE, with all aligners removed. */
8152
8153 struct type *
8154 ada_aligned_type (struct type *type)
8155 {
8156 if (ada_is_aligner_type (type))
8157 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8158 else
8159 return ada_get_base_type (type);
8160 }
8161
8162
8163 /* The address of the aligned value in an object at address VALADDR
8164 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
8165
8166 const gdb_byte *
8167 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
8168 {
8169 if (ada_is_aligner_type (type))
8170 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
8171 valaddr +
8172 TYPE_FIELD_BITPOS (type,
8173 0) / TARGET_CHAR_BIT);
8174 else
8175 return valaddr;
8176 }
8177
8178
8179
8180 /* The printed representation of an enumeration literal with encoded
8181 name NAME. The value is good to the next call of ada_enum_name. */
8182 const char *
8183 ada_enum_name (const char *name)
8184 {
8185 static char *result;
8186 static size_t result_len = 0;
8187 char *tmp;
8188
8189 /* First, unqualify the enumeration name:
8190 1. Search for the last '.' character. If we find one, then skip
8191 all the preceeding characters, the unqualified name starts
8192 right after that dot.
8193 2. Otherwise, we may be debugging on a target where the compiler
8194 translates dots into "__". Search forward for double underscores,
8195 but stop searching when we hit an overloading suffix, which is
8196 of the form "__" followed by digits. */
8197
8198 tmp = strrchr (name, '.');
8199 if (tmp != NULL)
8200 name = tmp + 1;
8201 else
8202 {
8203 while ((tmp = strstr (name, "__")) != NULL)
8204 {
8205 if (isdigit (tmp[2]))
8206 break;
8207 else
8208 name = tmp + 2;
8209 }
8210 }
8211
8212 if (name[0] == 'Q')
8213 {
8214 int v;
8215
8216 if (name[1] == 'U' || name[1] == 'W')
8217 {
8218 if (sscanf (name + 2, "%x", &v) != 1)
8219 return name;
8220 }
8221 else
8222 return name;
8223
8224 GROW_VECT (result, result_len, 16);
8225 if (isascii (v) && isprint (v))
8226 xsnprintf (result, result_len, "'%c'", v);
8227 else if (name[1] == 'U')
8228 xsnprintf (result, result_len, "[\"%02x\"]", v);
8229 else
8230 xsnprintf (result, result_len, "[\"%04x\"]", v);
8231
8232 return result;
8233 }
8234 else
8235 {
8236 tmp = strstr (name, "__");
8237 if (tmp == NULL)
8238 tmp = strstr (name, "$");
8239 if (tmp != NULL)
8240 {
8241 GROW_VECT (result, result_len, tmp - name + 1);
8242 strncpy (result, name, tmp - name);
8243 result[tmp - name] = '\0';
8244 return result;
8245 }
8246
8247 return name;
8248 }
8249 }
8250
8251 /* Evaluate the subexpression of EXP starting at *POS as for
8252 evaluate_type, updating *POS to point just past the evaluated
8253 expression. */
8254
8255 static struct value *
8256 evaluate_subexp_type (struct expression *exp, int *pos)
8257 {
8258 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8259 }
8260
8261 /* If VAL is wrapped in an aligner or subtype wrapper, return the
8262 value it wraps. */
8263
8264 static struct value *
8265 unwrap_value (struct value *val)
8266 {
8267 struct type *type = ada_check_typedef (value_type (val));
8268
8269 if (ada_is_aligner_type (type))
8270 {
8271 struct value *v = ada_value_struct_elt (val, "F", 0);
8272 struct type *val_type = ada_check_typedef (value_type (v));
8273
8274 if (ada_type_name (val_type) == NULL)
8275 TYPE_NAME (val_type) = ada_type_name (type);
8276
8277 return unwrap_value (v);
8278 }
8279 else
8280 {
8281 struct type *raw_real_type =
8282 ada_check_typedef (ada_get_base_type (type));
8283
8284 /* If there is no parallel XVS or XVE type, then the value is
8285 already unwrapped. Return it without further modification. */
8286 if ((type == raw_real_type)
8287 && ada_find_parallel_type (type, "___XVE") == NULL)
8288 return val;
8289
8290 return
8291 coerce_unspec_val_to_type
8292 (val, ada_to_fixed_type (raw_real_type, 0,
8293 value_address (val),
8294 NULL, 1));
8295 }
8296 }
8297
8298 static struct value *
8299 cast_to_fixed (struct type *type, struct value *arg)
8300 {
8301 LONGEST val;
8302
8303 if (type == value_type (arg))
8304 return arg;
8305 else if (ada_is_fixed_point_type (value_type (arg)))
8306 val = ada_float_to_fixed (type,
8307 ada_fixed_to_float (value_type (arg),
8308 value_as_long (arg)));
8309 else
8310 {
8311 DOUBLEST argd = value_as_double (arg);
8312
8313 val = ada_float_to_fixed (type, argd);
8314 }
8315
8316 return value_from_longest (type, val);
8317 }
8318
8319 static struct value *
8320 cast_from_fixed (struct type *type, struct value *arg)
8321 {
8322 DOUBLEST val = ada_fixed_to_float (value_type (arg),
8323 value_as_long (arg));
8324
8325 return value_from_double (type, val);
8326 }
8327
8328 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8329 return the converted value. */
8330
8331 static struct value *
8332 coerce_for_assign (struct type *type, struct value *val)
8333 {
8334 struct type *type2 = value_type (val);
8335
8336 if (type == type2)
8337 return val;
8338
8339 type2 = ada_check_typedef (type2);
8340 type = ada_check_typedef (type);
8341
8342 if (TYPE_CODE (type2) == TYPE_CODE_PTR
8343 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8344 {
8345 val = ada_value_ind (val);
8346 type2 = value_type (val);
8347 }
8348
8349 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
8350 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8351 {
8352 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
8353 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8354 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
8355 error (_("Incompatible types in assignment"));
8356 deprecated_set_value_type (val, type);
8357 }
8358 return val;
8359 }
8360
8361 static struct value *
8362 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8363 {
8364 struct value *val;
8365 struct type *type1, *type2;
8366 LONGEST v, v1, v2;
8367
8368 arg1 = coerce_ref (arg1);
8369 arg2 = coerce_ref (arg2);
8370 type1 = base_type (ada_check_typedef (value_type (arg1)));
8371 type2 = base_type (ada_check_typedef (value_type (arg2)));
8372
8373 if (TYPE_CODE (type1) != TYPE_CODE_INT
8374 || TYPE_CODE (type2) != TYPE_CODE_INT)
8375 return value_binop (arg1, arg2, op);
8376
8377 switch (op)
8378 {
8379 case BINOP_MOD:
8380 case BINOP_DIV:
8381 case BINOP_REM:
8382 break;
8383 default:
8384 return value_binop (arg1, arg2, op);
8385 }
8386
8387 v2 = value_as_long (arg2);
8388 if (v2 == 0)
8389 error (_("second operand of %s must not be zero."), op_string (op));
8390
8391 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8392 return value_binop (arg1, arg2, op);
8393
8394 v1 = value_as_long (arg1);
8395 switch (op)
8396 {
8397 case BINOP_DIV:
8398 v = v1 / v2;
8399 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8400 v += v > 0 ? -1 : 1;
8401 break;
8402 case BINOP_REM:
8403 v = v1 % v2;
8404 if (v * v1 < 0)
8405 v -= v2;
8406 break;
8407 default:
8408 /* Should not reach this point. */
8409 v = 0;
8410 }
8411
8412 val = allocate_value (type1);
8413 store_unsigned_integer (value_contents_raw (val),
8414 TYPE_LENGTH (value_type (val)),
8415 gdbarch_byte_order (get_type_arch (type1)), v);
8416 return val;
8417 }
8418
8419 static int
8420 ada_value_equal (struct value *arg1, struct value *arg2)
8421 {
8422 if (ada_is_direct_array_type (value_type (arg1))
8423 || ada_is_direct_array_type (value_type (arg2)))
8424 {
8425 /* Automatically dereference any array reference before
8426 we attempt to perform the comparison. */
8427 arg1 = ada_coerce_ref (arg1);
8428 arg2 = ada_coerce_ref (arg2);
8429
8430 arg1 = ada_coerce_to_simple_array (arg1);
8431 arg2 = ada_coerce_to_simple_array (arg2);
8432 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8433 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
8434 error (_("Attempt to compare array with non-array"));
8435 /* FIXME: The following works only for types whose
8436 representations use all bits (no padding or undefined bits)
8437 and do not have user-defined equality. */
8438 return
8439 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
8440 && memcmp (value_contents (arg1), value_contents (arg2),
8441 TYPE_LENGTH (value_type (arg1))) == 0;
8442 }
8443 return value_equal (arg1, arg2);
8444 }
8445
8446 /* Total number of component associations in the aggregate starting at
8447 index PC in EXP. Assumes that index PC is the start of an
8448 OP_AGGREGATE. */
8449
8450 static int
8451 num_component_specs (struct expression *exp, int pc)
8452 {
8453 int n, m, i;
8454
8455 m = exp->elts[pc + 1].longconst;
8456 pc += 3;
8457 n = 0;
8458 for (i = 0; i < m; i += 1)
8459 {
8460 switch (exp->elts[pc].opcode)
8461 {
8462 default:
8463 n += 1;
8464 break;
8465 case OP_CHOICES:
8466 n += exp->elts[pc + 1].longconst;
8467 break;
8468 }
8469 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8470 }
8471 return n;
8472 }
8473
8474 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
8475 component of LHS (a simple array or a record), updating *POS past
8476 the expression, assuming that LHS is contained in CONTAINER. Does
8477 not modify the inferior's memory, nor does it modify LHS (unless
8478 LHS == CONTAINER). */
8479
8480 static void
8481 assign_component (struct value *container, struct value *lhs, LONGEST index,
8482 struct expression *exp, int *pos)
8483 {
8484 struct value *mark = value_mark ();
8485 struct value *elt;
8486
8487 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8488 {
8489 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
8490 struct value *index_val = value_from_longest (index_type, index);
8491
8492 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8493 }
8494 else
8495 {
8496 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8497 elt = ada_to_fixed_value (unwrap_value (elt));
8498 }
8499
8500 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8501 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8502 else
8503 value_assign_to_component (container, elt,
8504 ada_evaluate_subexp (NULL, exp, pos,
8505 EVAL_NORMAL));
8506
8507 value_free_to_mark (mark);
8508 }
8509
8510 /* Assuming that LHS represents an lvalue having a record or array
8511 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8512 of that aggregate's value to LHS, advancing *POS past the
8513 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8514 lvalue containing LHS (possibly LHS itself). Does not modify
8515 the inferior's memory, nor does it modify the contents of
8516 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8517
8518 static struct value *
8519 assign_aggregate (struct value *container,
8520 struct value *lhs, struct expression *exp,
8521 int *pos, enum noside noside)
8522 {
8523 struct type *lhs_type;
8524 int n = exp->elts[*pos+1].longconst;
8525 LONGEST low_index, high_index;
8526 int num_specs;
8527 LONGEST *indices;
8528 int max_indices, num_indices;
8529 int is_array_aggregate;
8530 int i;
8531
8532 *pos += 3;
8533 if (noside != EVAL_NORMAL)
8534 {
8535 int i;
8536
8537 for (i = 0; i < n; i += 1)
8538 ada_evaluate_subexp (NULL, exp, pos, noside);
8539 return container;
8540 }
8541
8542 container = ada_coerce_ref (container);
8543 if (ada_is_direct_array_type (value_type (container)))
8544 container = ada_coerce_to_simple_array (container);
8545 lhs = ada_coerce_ref (lhs);
8546 if (!deprecated_value_modifiable (lhs))
8547 error (_("Left operand of assignment is not a modifiable lvalue."));
8548
8549 lhs_type = value_type (lhs);
8550 if (ada_is_direct_array_type (lhs_type))
8551 {
8552 lhs = ada_coerce_to_simple_array (lhs);
8553 lhs_type = value_type (lhs);
8554 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8555 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8556 is_array_aggregate = 1;
8557 }
8558 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8559 {
8560 low_index = 0;
8561 high_index = num_visible_fields (lhs_type) - 1;
8562 is_array_aggregate = 0;
8563 }
8564 else
8565 error (_("Left-hand side must be array or record."));
8566
8567 num_specs = num_component_specs (exp, *pos - 3);
8568 max_indices = 4 * num_specs + 4;
8569 indices = alloca (max_indices * sizeof (indices[0]));
8570 indices[0] = indices[1] = low_index - 1;
8571 indices[2] = indices[3] = high_index + 1;
8572 num_indices = 4;
8573
8574 for (i = 0; i < n; i += 1)
8575 {
8576 switch (exp->elts[*pos].opcode)
8577 {
8578 case OP_CHOICES:
8579 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8580 &num_indices, max_indices,
8581 low_index, high_index);
8582 break;
8583 case OP_POSITIONAL:
8584 aggregate_assign_positional (container, lhs, exp, pos, indices,
8585 &num_indices, max_indices,
8586 low_index, high_index);
8587 break;
8588 case OP_OTHERS:
8589 if (i != n-1)
8590 error (_("Misplaced 'others' clause"));
8591 aggregate_assign_others (container, lhs, exp, pos, indices,
8592 num_indices, low_index, high_index);
8593 break;
8594 default:
8595 error (_("Internal error: bad aggregate clause"));
8596 }
8597 }
8598
8599 return container;
8600 }
8601
8602 /* Assign into the component of LHS indexed by the OP_POSITIONAL
8603 construct at *POS, updating *POS past the construct, given that
8604 the positions are relative to lower bound LOW, where HIGH is the
8605 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8606 updating *NUM_INDICES as needed. CONTAINER is as for
8607 assign_aggregate. */
8608 static void
8609 aggregate_assign_positional (struct value *container,
8610 struct value *lhs, struct expression *exp,
8611 int *pos, LONGEST *indices, int *num_indices,
8612 int max_indices, LONGEST low, LONGEST high)
8613 {
8614 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8615
8616 if (ind - 1 == high)
8617 warning (_("Extra components in aggregate ignored."));
8618 if (ind <= high)
8619 {
8620 add_component_interval (ind, ind, indices, num_indices, max_indices);
8621 *pos += 3;
8622 assign_component (container, lhs, ind, exp, pos);
8623 }
8624 else
8625 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8626 }
8627
8628 /* Assign into the components of LHS indexed by the OP_CHOICES
8629 construct at *POS, updating *POS past the construct, given that
8630 the allowable indices are LOW..HIGH. Record the indices assigned
8631 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8632 needed. CONTAINER is as for assign_aggregate. */
8633 static void
8634 aggregate_assign_from_choices (struct value *container,
8635 struct value *lhs, struct expression *exp,
8636 int *pos, LONGEST *indices, int *num_indices,
8637 int max_indices, LONGEST low, LONGEST high)
8638 {
8639 int j;
8640 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8641 int choice_pos, expr_pc;
8642 int is_array = ada_is_direct_array_type (value_type (lhs));
8643
8644 choice_pos = *pos += 3;
8645
8646 for (j = 0; j < n_choices; j += 1)
8647 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8648 expr_pc = *pos;
8649 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8650
8651 for (j = 0; j < n_choices; j += 1)
8652 {
8653 LONGEST lower, upper;
8654 enum exp_opcode op = exp->elts[choice_pos].opcode;
8655
8656 if (op == OP_DISCRETE_RANGE)
8657 {
8658 choice_pos += 1;
8659 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8660 EVAL_NORMAL));
8661 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8662 EVAL_NORMAL));
8663 }
8664 else if (is_array)
8665 {
8666 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8667 EVAL_NORMAL));
8668 upper = lower;
8669 }
8670 else
8671 {
8672 int ind;
8673 char *name;
8674
8675 switch (op)
8676 {
8677 case OP_NAME:
8678 name = &exp->elts[choice_pos + 2].string;
8679 break;
8680 case OP_VAR_VALUE:
8681 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8682 break;
8683 default:
8684 error (_("Invalid record component association."));
8685 }
8686 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8687 ind = 0;
8688 if (! find_struct_field (name, value_type (lhs), 0,
8689 NULL, NULL, NULL, NULL, &ind))
8690 error (_("Unknown component name: %s."), name);
8691 lower = upper = ind;
8692 }
8693
8694 if (lower <= upper && (lower < low || upper > high))
8695 error (_("Index in component association out of bounds."));
8696
8697 add_component_interval (lower, upper, indices, num_indices,
8698 max_indices);
8699 while (lower <= upper)
8700 {
8701 int pos1;
8702
8703 pos1 = expr_pc;
8704 assign_component (container, lhs, lower, exp, &pos1);
8705 lower += 1;
8706 }
8707 }
8708 }
8709
8710 /* Assign the value of the expression in the OP_OTHERS construct in
8711 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8712 have not been previously assigned. The index intervals already assigned
8713 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8714 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
8715 static void
8716 aggregate_assign_others (struct value *container,
8717 struct value *lhs, struct expression *exp,
8718 int *pos, LONGEST *indices, int num_indices,
8719 LONGEST low, LONGEST high)
8720 {
8721 int i;
8722 int expr_pc = *pos + 1;
8723
8724 for (i = 0; i < num_indices - 2; i += 2)
8725 {
8726 LONGEST ind;
8727
8728 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8729 {
8730 int localpos;
8731
8732 localpos = expr_pc;
8733 assign_component (container, lhs, ind, exp, &localpos);
8734 }
8735 }
8736 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8737 }
8738
8739 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
8740 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8741 modifying *SIZE as needed. It is an error if *SIZE exceeds
8742 MAX_SIZE. The resulting intervals do not overlap. */
8743 static void
8744 add_component_interval (LONGEST low, LONGEST high,
8745 LONGEST* indices, int *size, int max_size)
8746 {
8747 int i, j;
8748
8749 for (i = 0; i < *size; i += 2) {
8750 if (high >= indices[i] && low <= indices[i + 1])
8751 {
8752 int kh;
8753
8754 for (kh = i + 2; kh < *size; kh += 2)
8755 if (high < indices[kh])
8756 break;
8757 if (low < indices[i])
8758 indices[i] = low;
8759 indices[i + 1] = indices[kh - 1];
8760 if (high > indices[i + 1])
8761 indices[i + 1] = high;
8762 memcpy (indices + i + 2, indices + kh, *size - kh);
8763 *size -= kh - i - 2;
8764 return;
8765 }
8766 else if (high < indices[i])
8767 break;
8768 }
8769
8770 if (*size == max_size)
8771 error (_("Internal error: miscounted aggregate components."));
8772 *size += 2;
8773 for (j = *size-1; j >= i+2; j -= 1)
8774 indices[j] = indices[j - 2];
8775 indices[i] = low;
8776 indices[i + 1] = high;
8777 }
8778
8779 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8780 is different. */
8781
8782 static struct value *
8783 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8784 {
8785 if (type == ada_check_typedef (value_type (arg2)))
8786 return arg2;
8787
8788 if (ada_is_fixed_point_type (type))
8789 return (cast_to_fixed (type, arg2));
8790
8791 if (ada_is_fixed_point_type (value_type (arg2)))
8792 return cast_from_fixed (type, arg2);
8793
8794 return value_cast (type, arg2);
8795 }
8796
8797 /* Evaluating Ada expressions, and printing their result.
8798 ------------------------------------------------------
8799
8800 1. Introduction:
8801 ----------------
8802
8803 We usually evaluate an Ada expression in order to print its value.
8804 We also evaluate an expression in order to print its type, which
8805 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
8806 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
8807 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
8808 the evaluation compared to the EVAL_NORMAL, but is otherwise very
8809 similar.
8810
8811 Evaluating expressions is a little more complicated for Ada entities
8812 than it is for entities in languages such as C. The main reason for
8813 this is that Ada provides types whose definition might be dynamic.
8814 One example of such types is variant records. Or another example
8815 would be an array whose bounds can only be known at run time.
8816
8817 The following description is a general guide as to what should be
8818 done (and what should NOT be done) in order to evaluate an expression
8819 involving such types, and when. This does not cover how the semantic
8820 information is encoded by GNAT as this is covered separatly. For the
8821 document used as the reference for the GNAT encoding, see exp_dbug.ads
8822 in the GNAT sources.
8823
8824 Ideally, we should embed each part of this description next to its
8825 associated code. Unfortunately, the amount of code is so vast right
8826 now that it's hard to see whether the code handling a particular
8827 situation might be duplicated or not. One day, when the code is
8828 cleaned up, this guide might become redundant with the comments
8829 inserted in the code, and we might want to remove it.
8830
8831 2. ``Fixing'' an Entity, the Simple Case:
8832 -----------------------------------------
8833
8834 When evaluating Ada expressions, the tricky issue is that they may
8835 reference entities whose type contents and size are not statically
8836 known. Consider for instance a variant record:
8837
8838 type Rec (Empty : Boolean := True) is record
8839 case Empty is
8840 when True => null;
8841 when False => Value : Integer;
8842 end case;
8843 end record;
8844 Yes : Rec := (Empty => False, Value => 1);
8845 No : Rec := (empty => True);
8846
8847 The size and contents of that record depends on the value of the
8848 descriminant (Rec.Empty). At this point, neither the debugging
8849 information nor the associated type structure in GDB are able to
8850 express such dynamic types. So what the debugger does is to create
8851 "fixed" versions of the type that applies to the specific object.
8852 We also informally refer to this opperation as "fixing" an object,
8853 which means creating its associated fixed type.
8854
8855 Example: when printing the value of variable "Yes" above, its fixed
8856 type would look like this:
8857
8858 type Rec is record
8859 Empty : Boolean;
8860 Value : Integer;
8861 end record;
8862
8863 On the other hand, if we printed the value of "No", its fixed type
8864 would become:
8865
8866 type Rec is record
8867 Empty : Boolean;
8868 end record;
8869
8870 Things become a little more complicated when trying to fix an entity
8871 with a dynamic type that directly contains another dynamic type,
8872 such as an array of variant records, for instance. There are
8873 two possible cases: Arrays, and records.
8874
8875 3. ``Fixing'' Arrays:
8876 ---------------------
8877
8878 The type structure in GDB describes an array in terms of its bounds,
8879 and the type of its elements. By design, all elements in the array
8880 have the same type and we cannot represent an array of variant elements
8881 using the current type structure in GDB. When fixing an array,
8882 we cannot fix the array element, as we would potentially need one
8883 fixed type per element of the array. As a result, the best we can do
8884 when fixing an array is to produce an array whose bounds and size
8885 are correct (allowing us to read it from memory), but without having
8886 touched its element type. Fixing each element will be done later,
8887 when (if) necessary.
8888
8889 Arrays are a little simpler to handle than records, because the same
8890 amount of memory is allocated for each element of the array, even if
8891 the amount of space actually used by each element differs from element
8892 to element. Consider for instance the following array of type Rec:
8893
8894 type Rec_Array is array (1 .. 2) of Rec;
8895
8896 The actual amount of memory occupied by each element might be different
8897 from element to element, depending on the value of their discriminant.
8898 But the amount of space reserved for each element in the array remains
8899 fixed regardless. So we simply need to compute that size using
8900 the debugging information available, from which we can then determine
8901 the array size (we multiply the number of elements of the array by
8902 the size of each element).
8903
8904 The simplest case is when we have an array of a constrained element
8905 type. For instance, consider the following type declarations:
8906
8907 type Bounded_String (Max_Size : Integer) is
8908 Length : Integer;
8909 Buffer : String (1 .. Max_Size);
8910 end record;
8911 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
8912
8913 In this case, the compiler describes the array as an array of
8914 variable-size elements (identified by its XVS suffix) for which
8915 the size can be read in the parallel XVZ variable.
8916
8917 In the case of an array of an unconstrained element type, the compiler
8918 wraps the array element inside a private PAD type. This type should not
8919 be shown to the user, and must be "unwrap"'ed before printing. Note
8920 that we also use the adjective "aligner" in our code to designate
8921 these wrapper types.
8922
8923 In some cases, the size allocated for each element is statically
8924 known. In that case, the PAD type already has the correct size,
8925 and the array element should remain unfixed.
8926
8927 But there are cases when this size is not statically known.
8928 For instance, assuming that "Five" is an integer variable:
8929
8930 type Dynamic is array (1 .. Five) of Integer;
8931 type Wrapper (Has_Length : Boolean := False) is record
8932 Data : Dynamic;
8933 case Has_Length is
8934 when True => Length : Integer;
8935 when False => null;
8936 end case;
8937 end record;
8938 type Wrapper_Array is array (1 .. 2) of Wrapper;
8939
8940 Hello : Wrapper_Array := (others => (Has_Length => True,
8941 Data => (others => 17),
8942 Length => 1));
8943
8944
8945 The debugging info would describe variable Hello as being an
8946 array of a PAD type. The size of that PAD type is not statically
8947 known, but can be determined using a parallel XVZ variable.
8948 In that case, a copy of the PAD type with the correct size should
8949 be used for the fixed array.
8950
8951 3. ``Fixing'' record type objects:
8952 ----------------------------------
8953
8954 Things are slightly different from arrays in the case of dynamic
8955 record types. In this case, in order to compute the associated
8956 fixed type, we need to determine the size and offset of each of
8957 its components. This, in turn, requires us to compute the fixed
8958 type of each of these components.
8959
8960 Consider for instance the example:
8961
8962 type Bounded_String (Max_Size : Natural) is record
8963 Str : String (1 .. Max_Size);
8964 Length : Natural;
8965 end record;
8966 My_String : Bounded_String (Max_Size => 10);
8967
8968 In that case, the position of field "Length" depends on the size
8969 of field Str, which itself depends on the value of the Max_Size
8970 discriminant. In order to fix the type of variable My_String,
8971 we need to fix the type of field Str. Therefore, fixing a variant
8972 record requires us to fix each of its components.
8973
8974 However, if a component does not have a dynamic size, the component
8975 should not be fixed. In particular, fields that use a PAD type
8976 should not fixed. Here is an example where this might happen
8977 (assuming type Rec above):
8978
8979 type Container (Big : Boolean) is record
8980 First : Rec;
8981 After : Integer;
8982 case Big is
8983 when True => Another : Integer;
8984 when False => null;
8985 end case;
8986 end record;
8987 My_Container : Container := (Big => False,
8988 First => (Empty => True),
8989 After => 42);
8990
8991 In that example, the compiler creates a PAD type for component First,
8992 whose size is constant, and then positions the component After just
8993 right after it. The offset of component After is therefore constant
8994 in this case.
8995
8996 The debugger computes the position of each field based on an algorithm
8997 that uses, among other things, the actual position and size of the field
8998 preceding it. Let's now imagine that the user is trying to print
8999 the value of My_Container. If the type fixing was recursive, we would
9000 end up computing the offset of field After based on the size of the
9001 fixed version of field First. And since in our example First has
9002 only one actual field, the size of the fixed type is actually smaller
9003 than the amount of space allocated to that field, and thus we would
9004 compute the wrong offset of field After.
9005
9006 To make things more complicated, we need to watch out for dynamic
9007 components of variant records (identified by the ___XVL suffix in
9008 the component name). Even if the target type is a PAD type, the size
9009 of that type might not be statically known. So the PAD type needs
9010 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9011 we might end up with the wrong size for our component. This can be
9012 observed with the following type declarations:
9013
9014 type Octal is new Integer range 0 .. 7;
9015 type Octal_Array is array (Positive range <>) of Octal;
9016 pragma Pack (Octal_Array);
9017
9018 type Octal_Buffer (Size : Positive) is record
9019 Buffer : Octal_Array (1 .. Size);
9020 Length : Integer;
9021 end record;
9022
9023 In that case, Buffer is a PAD type whose size is unset and needs
9024 to be computed by fixing the unwrapped type.
9025
9026 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9027 ----------------------------------------------------------
9028
9029 Lastly, when should the sub-elements of an entity that remained unfixed
9030 thus far, be actually fixed?
9031
9032 The answer is: Only when referencing that element. For instance
9033 when selecting one component of a record, this specific component
9034 should be fixed at that point in time. Or when printing the value
9035 of a record, each component should be fixed before its value gets
9036 printed. Similarly for arrays, the element of the array should be
9037 fixed when printing each element of the array, or when extracting
9038 one element out of that array. On the other hand, fixing should
9039 not be performed on the elements when taking a slice of an array!
9040
9041 Note that one of the side-effects of miscomputing the offset and
9042 size of each field is that we end up also miscomputing the size
9043 of the containing type. This can have adverse results when computing
9044 the value of an entity. GDB fetches the value of an entity based
9045 on the size of its type, and thus a wrong size causes GDB to fetch
9046 the wrong amount of memory. In the case where the computed size is
9047 too small, GDB fetches too little data to print the value of our
9048 entiry. Results in this case as unpredicatble, as we usually read
9049 past the buffer containing the data =:-o. */
9050
9051 /* Implement the evaluate_exp routine in the exp_descriptor structure
9052 for the Ada language. */
9053
9054 static struct value *
9055 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
9056 int *pos, enum noside noside)
9057 {
9058 enum exp_opcode op;
9059 int tem;
9060 int pc;
9061 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9062 struct type *type;
9063 int nargs, oplen;
9064 struct value **argvec;
9065
9066 pc = *pos;
9067 *pos += 1;
9068 op = exp->elts[pc].opcode;
9069
9070 switch (op)
9071 {
9072 default:
9073 *pos -= 1;
9074 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9075 arg1 = unwrap_value (arg1);
9076
9077 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9078 then we need to perform the conversion manually, because
9079 evaluate_subexp_standard doesn't do it. This conversion is
9080 necessary in Ada because the different kinds of float/fixed
9081 types in Ada have different representations.
9082
9083 Similarly, we need to perform the conversion from OP_LONG
9084 ourselves. */
9085 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9086 arg1 = ada_value_cast (expect_type, arg1, noside);
9087
9088 return arg1;
9089
9090 case OP_STRING:
9091 {
9092 struct value *result;
9093
9094 *pos -= 1;
9095 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9096 /* The result type will have code OP_STRING, bashed there from
9097 OP_ARRAY. Bash it back. */
9098 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9099 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
9100 return result;
9101 }
9102
9103 case UNOP_CAST:
9104 (*pos) += 2;
9105 type = exp->elts[pc + 1].type;
9106 arg1 = evaluate_subexp (type, exp, pos, noside);
9107 if (noside == EVAL_SKIP)
9108 goto nosideret;
9109 arg1 = ada_value_cast (type, arg1, noside);
9110 return arg1;
9111
9112 case UNOP_QUAL:
9113 (*pos) += 2;
9114 type = exp->elts[pc + 1].type;
9115 return ada_evaluate_subexp (type, exp, pos, noside);
9116
9117 case BINOP_ASSIGN:
9118 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9119 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9120 {
9121 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9122 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9123 return arg1;
9124 return ada_value_assign (arg1, arg1);
9125 }
9126 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9127 except if the lhs of our assignment is a convenience variable.
9128 In the case of assigning to a convenience variable, the lhs
9129 should be exactly the result of the evaluation of the rhs. */
9130 type = value_type (arg1);
9131 if (VALUE_LVAL (arg1) == lval_internalvar)
9132 type = NULL;
9133 arg2 = evaluate_subexp (type, exp, pos, noside);
9134 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9135 return arg1;
9136 if (ada_is_fixed_point_type (value_type (arg1)))
9137 arg2 = cast_to_fixed (value_type (arg1), arg2);
9138 else if (ada_is_fixed_point_type (value_type (arg2)))
9139 error
9140 (_("Fixed-point values must be assigned to fixed-point variables"));
9141 else
9142 arg2 = coerce_for_assign (value_type (arg1), arg2);
9143 return ada_value_assign (arg1, arg2);
9144
9145 case BINOP_ADD:
9146 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9147 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9148 if (noside == EVAL_SKIP)
9149 goto nosideret;
9150 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9151 return (value_from_longest
9152 (value_type (arg1),
9153 value_as_long (arg1) + value_as_long (arg2)));
9154 if ((ada_is_fixed_point_type (value_type (arg1))
9155 || ada_is_fixed_point_type (value_type (arg2)))
9156 && value_type (arg1) != value_type (arg2))
9157 error (_("Operands of fixed-point addition must have the same type"));
9158 /* Do the addition, and cast the result to the type of the first
9159 argument. We cannot cast the result to a reference type, so if
9160 ARG1 is a reference type, find its underlying type. */
9161 type = value_type (arg1);
9162 while (TYPE_CODE (type) == TYPE_CODE_REF)
9163 type = TYPE_TARGET_TYPE (type);
9164 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9165 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
9166
9167 case BINOP_SUB:
9168 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9169 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9170 if (noside == EVAL_SKIP)
9171 goto nosideret;
9172 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9173 return (value_from_longest
9174 (value_type (arg1),
9175 value_as_long (arg1) - value_as_long (arg2)));
9176 if ((ada_is_fixed_point_type (value_type (arg1))
9177 || ada_is_fixed_point_type (value_type (arg2)))
9178 && value_type (arg1) != value_type (arg2))
9179 error (_("Operands of fixed-point subtraction "
9180 "must have the same type"));
9181 /* Do the substraction, and cast the result to the type of the first
9182 argument. We cannot cast the result to a reference type, so if
9183 ARG1 is a reference type, find its underlying type. */
9184 type = value_type (arg1);
9185 while (TYPE_CODE (type) == TYPE_CODE_REF)
9186 type = TYPE_TARGET_TYPE (type);
9187 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9188 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
9189
9190 case BINOP_MUL:
9191 case BINOP_DIV:
9192 case BINOP_REM:
9193 case BINOP_MOD:
9194 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9195 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9196 if (noside == EVAL_SKIP)
9197 goto nosideret;
9198 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9199 {
9200 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9201 return value_zero (value_type (arg1), not_lval);
9202 }
9203 else
9204 {
9205 type = builtin_type (exp->gdbarch)->builtin_double;
9206 if (ada_is_fixed_point_type (value_type (arg1)))
9207 arg1 = cast_from_fixed (type, arg1);
9208 if (ada_is_fixed_point_type (value_type (arg2)))
9209 arg2 = cast_from_fixed (type, arg2);
9210 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9211 return ada_value_binop (arg1, arg2, op);
9212 }
9213
9214 case BINOP_EQUAL:
9215 case BINOP_NOTEQUAL:
9216 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9217 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
9218 if (noside == EVAL_SKIP)
9219 goto nosideret;
9220 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9221 tem = 0;
9222 else
9223 {
9224 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9225 tem = ada_value_equal (arg1, arg2);
9226 }
9227 if (op == BINOP_NOTEQUAL)
9228 tem = !tem;
9229 type = language_bool_type (exp->language_defn, exp->gdbarch);
9230 return value_from_longest (type, (LONGEST) tem);
9231
9232 case UNOP_NEG:
9233 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9234 if (noside == EVAL_SKIP)
9235 goto nosideret;
9236 else if (ada_is_fixed_point_type (value_type (arg1)))
9237 return value_cast (value_type (arg1), value_neg (arg1));
9238 else
9239 {
9240 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9241 return value_neg (arg1);
9242 }
9243
9244 case BINOP_LOGICAL_AND:
9245 case BINOP_LOGICAL_OR:
9246 case UNOP_LOGICAL_NOT:
9247 {
9248 struct value *val;
9249
9250 *pos -= 1;
9251 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9252 type = language_bool_type (exp->language_defn, exp->gdbarch);
9253 return value_cast (type, val);
9254 }
9255
9256 case BINOP_BITWISE_AND:
9257 case BINOP_BITWISE_IOR:
9258 case BINOP_BITWISE_XOR:
9259 {
9260 struct value *val;
9261
9262 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9263 *pos = pc;
9264 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9265
9266 return value_cast (value_type (arg1), val);
9267 }
9268
9269 case OP_VAR_VALUE:
9270 *pos -= 1;
9271
9272 if (noside == EVAL_SKIP)
9273 {
9274 *pos += 4;
9275 goto nosideret;
9276 }
9277 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
9278 /* Only encountered when an unresolved symbol occurs in a
9279 context other than a function call, in which case, it is
9280 invalid. */
9281 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9282 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
9283 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9284 {
9285 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
9286 /* Check to see if this is a tagged type. We also need to handle
9287 the case where the type is a reference to a tagged type, but
9288 we have to be careful to exclude pointers to tagged types.
9289 The latter should be shown as usual (as a pointer), whereas
9290 a reference should mostly be transparent to the user. */
9291 if (ada_is_tagged_type (type, 0)
9292 || (TYPE_CODE(type) == TYPE_CODE_REF
9293 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
9294 {
9295 /* Tagged types are a little special in the fact that the real
9296 type is dynamic and can only be determined by inspecting the
9297 object's tag. This means that we need to get the object's
9298 value first (EVAL_NORMAL) and then extract the actual object
9299 type from its tag.
9300
9301 Note that we cannot skip the final step where we extract
9302 the object type from its tag, because the EVAL_NORMAL phase
9303 results in dynamic components being resolved into fixed ones.
9304 This can cause problems when trying to print the type
9305 description of tagged types whose parent has a dynamic size:
9306 We use the type name of the "_parent" component in order
9307 to print the name of the ancestor type in the type description.
9308 If that component had a dynamic size, the resolution into
9309 a fixed type would result in the loss of that type name,
9310 thus preventing us from printing the name of the ancestor
9311 type in the type description. */
9312 struct type *actual_type;
9313
9314 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
9315 actual_type = type_from_tag (ada_value_tag (arg1));
9316 if (actual_type == NULL)
9317 /* If, for some reason, we were unable to determine
9318 the actual type from the tag, then use the static
9319 approximation that we just computed as a fallback.
9320 This can happen if the debugging information is
9321 incomplete, for instance. */
9322 actual_type = type;
9323
9324 return value_zero (actual_type, not_lval);
9325 }
9326
9327 *pos += 4;
9328 return value_zero
9329 (to_static_fixed_type
9330 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
9331 not_lval);
9332 }
9333 else
9334 {
9335 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9336 arg1 = unwrap_value (arg1);
9337 return ada_to_fixed_value (arg1);
9338 }
9339
9340 case OP_FUNCALL:
9341 (*pos) += 2;
9342
9343 /* Allocate arg vector, including space for the function to be
9344 called in argvec[0] and a terminating NULL. */
9345 nargs = longest_to_int (exp->elts[pc + 1].longconst);
9346 argvec =
9347 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
9348
9349 if (exp->elts[*pos].opcode == OP_VAR_VALUE
9350 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
9351 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9352 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
9353 else
9354 {
9355 for (tem = 0; tem <= nargs; tem += 1)
9356 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9357 argvec[tem] = 0;
9358
9359 if (noside == EVAL_SKIP)
9360 goto nosideret;
9361 }
9362
9363 if (ada_is_constrained_packed_array_type
9364 (desc_base_type (value_type (argvec[0]))))
9365 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
9366 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9367 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
9368 /* This is a packed array that has already been fixed, and
9369 therefore already coerced to a simple array. Nothing further
9370 to do. */
9371 ;
9372 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
9373 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9374 && VALUE_LVAL (argvec[0]) == lval_memory))
9375 argvec[0] = value_addr (argvec[0]);
9376
9377 type = ada_check_typedef (value_type (argvec[0]));
9378
9379 /* Ada allows us to implicitly dereference arrays when subscripting
9380 them. So, if this is an typedef (encoding use for array access
9381 types encoded as fat pointers), strip it now. */
9382 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
9383 type = ada_typedef_target_type (type);
9384
9385 if (TYPE_CODE (type) == TYPE_CODE_PTR)
9386 {
9387 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
9388 {
9389 case TYPE_CODE_FUNC:
9390 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9391 break;
9392 case TYPE_CODE_ARRAY:
9393 break;
9394 case TYPE_CODE_STRUCT:
9395 if (noside != EVAL_AVOID_SIDE_EFFECTS)
9396 argvec[0] = ada_value_ind (argvec[0]);
9397 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9398 break;
9399 default:
9400 error (_("cannot subscript or call something of type `%s'"),
9401 ada_type_name (value_type (argvec[0])));
9402 break;
9403 }
9404 }
9405
9406 switch (TYPE_CODE (type))
9407 {
9408 case TYPE_CODE_FUNC:
9409 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9410 return allocate_value (TYPE_TARGET_TYPE (type));
9411 return call_function_by_hand (argvec[0], nargs, argvec + 1);
9412 case TYPE_CODE_STRUCT:
9413 {
9414 int arity;
9415
9416 arity = ada_array_arity (type);
9417 type = ada_array_element_type (type, nargs);
9418 if (type == NULL)
9419 error (_("cannot subscript or call a record"));
9420 if (arity != nargs)
9421 error (_("wrong number of subscripts; expecting %d"), arity);
9422 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9423 return value_zero (ada_aligned_type (type), lval_memory);
9424 return
9425 unwrap_value (ada_value_subscript
9426 (argvec[0], nargs, argvec + 1));
9427 }
9428 case TYPE_CODE_ARRAY:
9429 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9430 {
9431 type = ada_array_element_type (type, nargs);
9432 if (type == NULL)
9433 error (_("element type of array unknown"));
9434 else
9435 return value_zero (ada_aligned_type (type), lval_memory);
9436 }
9437 return
9438 unwrap_value (ada_value_subscript
9439 (ada_coerce_to_simple_array (argvec[0]),
9440 nargs, argvec + 1));
9441 case TYPE_CODE_PTR: /* Pointer to array */
9442 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
9443 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9444 {
9445 type = ada_array_element_type (type, nargs);
9446 if (type == NULL)
9447 error (_("element type of array unknown"));
9448 else
9449 return value_zero (ada_aligned_type (type), lval_memory);
9450 }
9451 return
9452 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
9453 nargs, argvec + 1));
9454
9455 default:
9456 error (_("Attempt to index or call something other than an "
9457 "array or function"));
9458 }
9459
9460 case TERNOP_SLICE:
9461 {
9462 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9463 struct value *low_bound_val =
9464 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9465 struct value *high_bound_val =
9466 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9467 LONGEST low_bound;
9468 LONGEST high_bound;
9469
9470 low_bound_val = coerce_ref (low_bound_val);
9471 high_bound_val = coerce_ref (high_bound_val);
9472 low_bound = pos_atr (low_bound_val);
9473 high_bound = pos_atr (high_bound_val);
9474
9475 if (noside == EVAL_SKIP)
9476 goto nosideret;
9477
9478 /* If this is a reference to an aligner type, then remove all
9479 the aligners. */
9480 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9481 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
9482 TYPE_TARGET_TYPE (value_type (array)) =
9483 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
9484
9485 if (ada_is_constrained_packed_array_type (value_type (array)))
9486 error (_("cannot slice a packed array"));
9487
9488 /* If this is a reference to an array or an array lvalue,
9489 convert to a pointer. */
9490 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9491 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
9492 && VALUE_LVAL (array) == lval_memory))
9493 array = value_addr (array);
9494
9495 if (noside == EVAL_AVOID_SIDE_EFFECTS
9496 && ada_is_array_descriptor_type (ada_check_typedef
9497 (value_type (array))))
9498 return empty_array (ada_type_of_array (array, 0), low_bound);
9499
9500 array = ada_coerce_to_simple_array_ptr (array);
9501
9502 /* If we have more than one level of pointer indirection,
9503 dereference the value until we get only one level. */
9504 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
9505 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
9506 == TYPE_CODE_PTR))
9507 array = value_ind (array);
9508
9509 /* Make sure we really do have an array type before going further,
9510 to avoid a SEGV when trying to get the index type or the target
9511 type later down the road if the debug info generated by
9512 the compiler is incorrect or incomplete. */
9513 if (!ada_is_simple_array_type (value_type (array)))
9514 error (_("cannot take slice of non-array"));
9515
9516 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
9517 {
9518 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
9519 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
9520 low_bound);
9521 else
9522 {
9523 struct type *arr_type0 =
9524 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
9525 NULL, 1);
9526
9527 return ada_value_slice_from_ptr (array, arr_type0,
9528 longest_to_int (low_bound),
9529 longest_to_int (high_bound));
9530 }
9531 }
9532 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9533 return array;
9534 else if (high_bound < low_bound)
9535 return empty_array (value_type (array), low_bound);
9536 else
9537 return ada_value_slice (array, longest_to_int (low_bound),
9538 longest_to_int (high_bound));
9539 }
9540
9541 case UNOP_IN_RANGE:
9542 (*pos) += 2;
9543 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9544 type = check_typedef (exp->elts[pc + 1].type);
9545
9546 if (noside == EVAL_SKIP)
9547 goto nosideret;
9548
9549 switch (TYPE_CODE (type))
9550 {
9551 default:
9552 lim_warning (_("Membership test incompletely implemented; "
9553 "always returns true"));
9554 type = language_bool_type (exp->language_defn, exp->gdbarch);
9555 return value_from_longest (type, (LONGEST) 1);
9556
9557 case TYPE_CODE_RANGE:
9558 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
9559 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
9560 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9561 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9562 type = language_bool_type (exp->language_defn, exp->gdbarch);
9563 return
9564 value_from_longest (type,
9565 (value_less (arg1, arg3)
9566 || value_equal (arg1, arg3))
9567 && (value_less (arg2, arg1)
9568 || value_equal (arg2, arg1)));
9569 }
9570
9571 case BINOP_IN_BOUNDS:
9572 (*pos) += 2;
9573 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9574 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9575
9576 if (noside == EVAL_SKIP)
9577 goto nosideret;
9578
9579 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9580 {
9581 type = language_bool_type (exp->language_defn, exp->gdbarch);
9582 return value_zero (type, not_lval);
9583 }
9584
9585 tem = longest_to_int (exp->elts[pc + 1].longconst);
9586
9587 type = ada_index_type (value_type (arg2), tem, "range");
9588 if (!type)
9589 type = value_type (arg1);
9590
9591 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
9592 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
9593
9594 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9595 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9596 type = language_bool_type (exp->language_defn, exp->gdbarch);
9597 return
9598 value_from_longest (type,
9599 (value_less (arg1, arg3)
9600 || value_equal (arg1, arg3))
9601 && (value_less (arg2, arg1)
9602 || value_equal (arg2, arg1)));
9603
9604 case TERNOP_IN_RANGE:
9605 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9606 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9607 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9608
9609 if (noside == EVAL_SKIP)
9610 goto nosideret;
9611
9612 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9613 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9614 type = language_bool_type (exp->language_defn, exp->gdbarch);
9615 return
9616 value_from_longest (type,
9617 (value_less (arg1, arg3)
9618 || value_equal (arg1, arg3))
9619 && (value_less (arg2, arg1)
9620 || value_equal (arg2, arg1)));
9621
9622 case OP_ATR_FIRST:
9623 case OP_ATR_LAST:
9624 case OP_ATR_LENGTH:
9625 {
9626 struct type *type_arg;
9627
9628 if (exp->elts[*pos].opcode == OP_TYPE)
9629 {
9630 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9631 arg1 = NULL;
9632 type_arg = check_typedef (exp->elts[pc + 2].type);
9633 }
9634 else
9635 {
9636 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9637 type_arg = NULL;
9638 }
9639
9640 if (exp->elts[*pos].opcode != OP_LONG)
9641 error (_("Invalid operand to '%s"), ada_attribute_name (op));
9642 tem = longest_to_int (exp->elts[*pos + 2].longconst);
9643 *pos += 4;
9644
9645 if (noside == EVAL_SKIP)
9646 goto nosideret;
9647
9648 if (type_arg == NULL)
9649 {
9650 arg1 = ada_coerce_ref (arg1);
9651
9652 if (ada_is_constrained_packed_array_type (value_type (arg1)))
9653 arg1 = ada_coerce_to_simple_array (arg1);
9654
9655 type = ada_index_type (value_type (arg1), tem,
9656 ada_attribute_name (op));
9657 if (type == NULL)
9658 type = builtin_type (exp->gdbarch)->builtin_int;
9659
9660 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9661 return allocate_value (type);
9662
9663 switch (op)
9664 {
9665 default: /* Should never happen. */
9666 error (_("unexpected attribute encountered"));
9667 case OP_ATR_FIRST:
9668 return value_from_longest
9669 (type, ada_array_bound (arg1, tem, 0));
9670 case OP_ATR_LAST:
9671 return value_from_longest
9672 (type, ada_array_bound (arg1, tem, 1));
9673 case OP_ATR_LENGTH:
9674 return value_from_longest
9675 (type, ada_array_length (arg1, tem));
9676 }
9677 }
9678 else if (discrete_type_p (type_arg))
9679 {
9680 struct type *range_type;
9681 char *name = ada_type_name (type_arg);
9682
9683 range_type = NULL;
9684 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
9685 range_type = to_fixed_range_type (type_arg, NULL);
9686 if (range_type == NULL)
9687 range_type = type_arg;
9688 switch (op)
9689 {
9690 default:
9691 error (_("unexpected attribute encountered"));
9692 case OP_ATR_FIRST:
9693 return value_from_longest
9694 (range_type, ada_discrete_type_low_bound (range_type));
9695 case OP_ATR_LAST:
9696 return value_from_longest
9697 (range_type, ada_discrete_type_high_bound (range_type));
9698 case OP_ATR_LENGTH:
9699 error (_("the 'length attribute applies only to array types"));
9700 }
9701 }
9702 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
9703 error (_("unimplemented type attribute"));
9704 else
9705 {
9706 LONGEST low, high;
9707
9708 if (ada_is_constrained_packed_array_type (type_arg))
9709 type_arg = decode_constrained_packed_array_type (type_arg);
9710
9711 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
9712 if (type == NULL)
9713 type = builtin_type (exp->gdbarch)->builtin_int;
9714
9715 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9716 return allocate_value (type);
9717
9718 switch (op)
9719 {
9720 default:
9721 error (_("unexpected attribute encountered"));
9722 case OP_ATR_FIRST:
9723 low = ada_array_bound_from_type (type_arg, tem, 0);
9724 return value_from_longest (type, low);
9725 case OP_ATR_LAST:
9726 high = ada_array_bound_from_type (type_arg, tem, 1);
9727 return value_from_longest (type, high);
9728 case OP_ATR_LENGTH:
9729 low = ada_array_bound_from_type (type_arg, tem, 0);
9730 high = ada_array_bound_from_type (type_arg, tem, 1);
9731 return value_from_longest (type, high - low + 1);
9732 }
9733 }
9734 }
9735
9736 case OP_ATR_TAG:
9737 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9738 if (noside == EVAL_SKIP)
9739 goto nosideret;
9740
9741 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9742 return value_zero (ada_tag_type (arg1), not_lval);
9743
9744 return ada_value_tag (arg1);
9745
9746 case OP_ATR_MIN:
9747 case OP_ATR_MAX:
9748 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9749 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9750 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9751 if (noside == EVAL_SKIP)
9752 goto nosideret;
9753 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9754 return value_zero (value_type (arg1), not_lval);
9755 else
9756 {
9757 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9758 return value_binop (arg1, arg2,
9759 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9760 }
9761
9762 case OP_ATR_MODULUS:
9763 {
9764 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
9765
9766 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9767 if (noside == EVAL_SKIP)
9768 goto nosideret;
9769
9770 if (!ada_is_modular_type (type_arg))
9771 error (_("'modulus must be applied to modular type"));
9772
9773 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9774 ada_modulus (type_arg));
9775 }
9776
9777
9778 case OP_ATR_POS:
9779 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9780 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9781 if (noside == EVAL_SKIP)
9782 goto nosideret;
9783 type = builtin_type (exp->gdbarch)->builtin_int;
9784 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9785 return value_zero (type, not_lval);
9786 else
9787 return value_pos_atr (type, arg1);
9788
9789 case OP_ATR_SIZE:
9790 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9791 type = value_type (arg1);
9792
9793 /* If the argument is a reference, then dereference its type, since
9794 the user is really asking for the size of the actual object,
9795 not the size of the pointer. */
9796 if (TYPE_CODE (type) == TYPE_CODE_REF)
9797 type = TYPE_TARGET_TYPE (type);
9798
9799 if (noside == EVAL_SKIP)
9800 goto nosideret;
9801 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9802 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
9803 else
9804 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
9805 TARGET_CHAR_BIT * TYPE_LENGTH (type));
9806
9807 case OP_ATR_VAL:
9808 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9809 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9810 type = exp->elts[pc + 2].type;
9811 if (noside == EVAL_SKIP)
9812 goto nosideret;
9813 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9814 return value_zero (type, not_lval);
9815 else
9816 return value_val_atr (type, arg1);
9817
9818 case BINOP_EXP:
9819 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9820 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9821 if (noside == EVAL_SKIP)
9822 goto nosideret;
9823 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9824 return value_zero (value_type (arg1), not_lval);
9825 else
9826 {
9827 /* For integer exponentiation operations,
9828 only promote the first argument. */
9829 if (is_integral_type (value_type (arg2)))
9830 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9831 else
9832 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9833
9834 return value_binop (arg1, arg2, op);
9835 }
9836
9837 case UNOP_PLUS:
9838 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9839 if (noside == EVAL_SKIP)
9840 goto nosideret;
9841 else
9842 return arg1;
9843
9844 case UNOP_ABS:
9845 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9846 if (noside == EVAL_SKIP)
9847 goto nosideret;
9848 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9849 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
9850 return value_neg (arg1);
9851 else
9852 return arg1;
9853
9854 case UNOP_IND:
9855 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9856 if (noside == EVAL_SKIP)
9857 goto nosideret;
9858 type = ada_check_typedef (value_type (arg1));
9859 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9860 {
9861 if (ada_is_array_descriptor_type (type))
9862 /* GDB allows dereferencing GNAT array descriptors. */
9863 {
9864 struct type *arrType = ada_type_of_array (arg1, 0);
9865
9866 if (arrType == NULL)
9867 error (_("Attempt to dereference null array pointer."));
9868 return value_at_lazy (arrType, 0);
9869 }
9870 else if (TYPE_CODE (type) == TYPE_CODE_PTR
9871 || TYPE_CODE (type) == TYPE_CODE_REF
9872 /* In C you can dereference an array to get the 1st elt. */
9873 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
9874 {
9875 type = to_static_fixed_type
9876 (ada_aligned_type
9877 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
9878 check_size (type);
9879 return value_zero (type, lval_memory);
9880 }
9881 else if (TYPE_CODE (type) == TYPE_CODE_INT)
9882 {
9883 /* GDB allows dereferencing an int. */
9884 if (expect_type == NULL)
9885 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9886 lval_memory);
9887 else
9888 {
9889 expect_type =
9890 to_static_fixed_type (ada_aligned_type (expect_type));
9891 return value_zero (expect_type, lval_memory);
9892 }
9893 }
9894 else
9895 error (_("Attempt to take contents of a non-pointer value."));
9896 }
9897 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
9898 type = ada_check_typedef (value_type (arg1));
9899
9900 if (TYPE_CODE (type) == TYPE_CODE_INT)
9901 /* GDB allows dereferencing an int. If we were given
9902 the expect_type, then use that as the target type.
9903 Otherwise, assume that the target type is an int. */
9904 {
9905 if (expect_type != NULL)
9906 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
9907 arg1));
9908 else
9909 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
9910 (CORE_ADDR) value_as_address (arg1));
9911 }
9912
9913 if (ada_is_array_descriptor_type (type))
9914 /* GDB allows dereferencing GNAT array descriptors. */
9915 return ada_coerce_to_simple_array (arg1);
9916 else
9917 return ada_value_ind (arg1);
9918
9919 case STRUCTOP_STRUCT:
9920 tem = longest_to_int (exp->elts[pc + 1].longconst);
9921 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
9922 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9923 if (noside == EVAL_SKIP)
9924 goto nosideret;
9925 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9926 {
9927 struct type *type1 = value_type (arg1);
9928
9929 if (ada_is_tagged_type (type1, 1))
9930 {
9931 type = ada_lookup_struct_elt_type (type1,
9932 &exp->elts[pc + 2].string,
9933 1, 1, NULL);
9934 if (type == NULL)
9935 /* In this case, we assume that the field COULD exist
9936 in some extension of the type. Return an object of
9937 "type" void, which will match any formal
9938 (see ada_type_match). */
9939 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
9940 lval_memory);
9941 }
9942 else
9943 type =
9944 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
9945 0, NULL);
9946
9947 return value_zero (ada_aligned_type (type), lval_memory);
9948 }
9949 else
9950 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
9951 arg1 = unwrap_value (arg1);
9952 return ada_to_fixed_value (arg1);
9953
9954 case OP_TYPE:
9955 /* The value is not supposed to be used. This is here to make it
9956 easier to accommodate expressions that contain types. */
9957 (*pos) += 2;
9958 if (noside == EVAL_SKIP)
9959 goto nosideret;
9960 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9961 return allocate_value (exp->elts[pc + 1].type);
9962 else
9963 error (_("Attempt to use a type name as an expression"));
9964
9965 case OP_AGGREGATE:
9966 case OP_CHOICES:
9967 case OP_OTHERS:
9968 case OP_DISCRETE_RANGE:
9969 case OP_POSITIONAL:
9970 case OP_NAME:
9971 if (noside == EVAL_NORMAL)
9972 switch (op)
9973 {
9974 case OP_NAME:
9975 error (_("Undefined name, ambiguous name, or renaming used in "
9976 "component association: %s."), &exp->elts[pc+2].string);
9977 case OP_AGGREGATE:
9978 error (_("Aggregates only allowed on the right of an assignment"));
9979 default:
9980 internal_error (__FILE__, __LINE__,
9981 _("aggregate apparently mangled"));
9982 }
9983
9984 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9985 *pos += oplen - 1;
9986 for (tem = 0; tem < nargs; tem += 1)
9987 ada_evaluate_subexp (NULL, exp, pos, noside);
9988 goto nosideret;
9989 }
9990
9991 nosideret:
9992 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
9993 }
9994 \f
9995
9996 /* Fixed point */
9997
9998 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
9999 type name that encodes the 'small and 'delta information.
10000 Otherwise, return NULL. */
10001
10002 static const char *
10003 fixed_type_info (struct type *type)
10004 {
10005 const char *name = ada_type_name (type);
10006 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10007
10008 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10009 {
10010 const char *tail = strstr (name, "___XF_");
10011
10012 if (tail == NULL)
10013 return NULL;
10014 else
10015 return tail + 5;
10016 }
10017 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10018 return fixed_type_info (TYPE_TARGET_TYPE (type));
10019 else
10020 return NULL;
10021 }
10022
10023 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
10024
10025 int
10026 ada_is_fixed_point_type (struct type *type)
10027 {
10028 return fixed_type_info (type) != NULL;
10029 }
10030
10031 /* Return non-zero iff TYPE represents a System.Address type. */
10032
10033 int
10034 ada_is_system_address_type (struct type *type)
10035 {
10036 return (TYPE_NAME (type)
10037 && strcmp (TYPE_NAME (type), "system__address") == 0);
10038 }
10039
10040 /* Assuming that TYPE is the representation of an Ada fixed-point
10041 type, return its delta, or -1 if the type is malformed and the
10042 delta cannot be determined. */
10043
10044 DOUBLEST
10045 ada_delta (struct type *type)
10046 {
10047 const char *encoding = fixed_type_info (type);
10048 DOUBLEST num, den;
10049
10050 /* Strictly speaking, num and den are encoded as integer. However,
10051 they may not fit into a long, and they will have to be converted
10052 to DOUBLEST anyway. So scan them as DOUBLEST. */
10053 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10054 &num, &den) < 2)
10055 return -1.0;
10056 else
10057 return num / den;
10058 }
10059
10060 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
10061 factor ('SMALL value) associated with the type. */
10062
10063 static DOUBLEST
10064 scaling_factor (struct type *type)
10065 {
10066 const char *encoding = fixed_type_info (type);
10067 DOUBLEST num0, den0, num1, den1;
10068 int n;
10069
10070 /* Strictly speaking, num's and den's are encoded as integer. However,
10071 they may not fit into a long, and they will have to be converted
10072 to DOUBLEST anyway. So scan them as DOUBLEST. */
10073 n = sscanf (encoding,
10074 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
10075 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10076 &num0, &den0, &num1, &den1);
10077
10078 if (n < 2)
10079 return 1.0;
10080 else if (n == 4)
10081 return num1 / den1;
10082 else
10083 return num0 / den0;
10084 }
10085
10086
10087 /* Assuming that X is the representation of a value of fixed-point
10088 type TYPE, return its floating-point equivalent. */
10089
10090 DOUBLEST
10091 ada_fixed_to_float (struct type *type, LONGEST x)
10092 {
10093 return (DOUBLEST) x *scaling_factor (type);
10094 }
10095
10096 /* The representation of a fixed-point value of type TYPE
10097 corresponding to the value X. */
10098
10099 LONGEST
10100 ada_float_to_fixed (struct type *type, DOUBLEST x)
10101 {
10102 return (LONGEST) (x / scaling_factor (type) + 0.5);
10103 }
10104
10105 \f
10106
10107 /* Range types */
10108
10109 /* Scan STR beginning at position K for a discriminant name, and
10110 return the value of that discriminant field of DVAL in *PX. If
10111 PNEW_K is not null, put the position of the character beyond the
10112 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
10113 not alter *PX and *PNEW_K if unsuccessful. */
10114
10115 static int
10116 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
10117 int *pnew_k)
10118 {
10119 static char *bound_buffer = NULL;
10120 static size_t bound_buffer_len = 0;
10121 char *bound;
10122 char *pend;
10123 struct value *bound_val;
10124
10125 if (dval == NULL || str == NULL || str[k] == '\0')
10126 return 0;
10127
10128 pend = strstr (str + k, "__");
10129 if (pend == NULL)
10130 {
10131 bound = str + k;
10132 k += strlen (bound);
10133 }
10134 else
10135 {
10136 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
10137 bound = bound_buffer;
10138 strncpy (bound_buffer, str + k, pend - (str + k));
10139 bound[pend - (str + k)] = '\0';
10140 k = pend - str;
10141 }
10142
10143 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
10144 if (bound_val == NULL)
10145 return 0;
10146
10147 *px = value_as_long (bound_val);
10148 if (pnew_k != NULL)
10149 *pnew_k = k;
10150 return 1;
10151 }
10152
10153 /* Value of variable named NAME in the current environment. If
10154 no such variable found, then if ERR_MSG is null, returns 0, and
10155 otherwise causes an error with message ERR_MSG. */
10156
10157 static struct value *
10158 get_var_value (char *name, char *err_msg)
10159 {
10160 struct ada_symbol_info *syms;
10161 int nsyms;
10162
10163 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
10164 &syms);
10165
10166 if (nsyms != 1)
10167 {
10168 if (err_msg == NULL)
10169 return 0;
10170 else
10171 error (("%s"), err_msg);
10172 }
10173
10174 return value_of_variable (syms[0].sym, syms[0].block);
10175 }
10176
10177 /* Value of integer variable named NAME in the current environment. If
10178 no such variable found, returns 0, and sets *FLAG to 0. If
10179 successful, sets *FLAG to 1. */
10180
10181 LONGEST
10182 get_int_var_value (char *name, int *flag)
10183 {
10184 struct value *var_val = get_var_value (name, 0);
10185
10186 if (var_val == 0)
10187 {
10188 if (flag != NULL)
10189 *flag = 0;
10190 return 0;
10191 }
10192 else
10193 {
10194 if (flag != NULL)
10195 *flag = 1;
10196 return value_as_long (var_val);
10197 }
10198 }
10199
10200
10201 /* Return a range type whose base type is that of the range type named
10202 NAME in the current environment, and whose bounds are calculated
10203 from NAME according to the GNAT range encoding conventions.
10204 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10205 corresponding range type from debug information; fall back to using it
10206 if symbol lookup fails. If a new type must be created, allocate it
10207 like ORIG_TYPE was. The bounds information, in general, is encoded
10208 in NAME, the base type given in the named range type. */
10209
10210 static struct type *
10211 to_fixed_range_type (struct type *raw_type, struct value *dval)
10212 {
10213 char *name;
10214 struct type *base_type;
10215 char *subtype_info;
10216
10217 gdb_assert (raw_type != NULL);
10218 gdb_assert (TYPE_NAME (raw_type) != NULL);
10219
10220 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
10221 base_type = TYPE_TARGET_TYPE (raw_type);
10222 else
10223 base_type = raw_type;
10224
10225 name = TYPE_NAME (raw_type);
10226 subtype_info = strstr (name, "___XD");
10227 if (subtype_info == NULL)
10228 {
10229 LONGEST L = ada_discrete_type_low_bound (raw_type);
10230 LONGEST U = ada_discrete_type_high_bound (raw_type);
10231
10232 if (L < INT_MIN || U > INT_MAX)
10233 return raw_type;
10234 else
10235 return create_range_type (alloc_type_copy (raw_type), raw_type,
10236 ada_discrete_type_low_bound (raw_type),
10237 ada_discrete_type_high_bound (raw_type));
10238 }
10239 else
10240 {
10241 static char *name_buf = NULL;
10242 static size_t name_len = 0;
10243 int prefix_len = subtype_info - name;
10244 LONGEST L, U;
10245 struct type *type;
10246 char *bounds_str;
10247 int n;
10248
10249 GROW_VECT (name_buf, name_len, prefix_len + 5);
10250 strncpy (name_buf, name, prefix_len);
10251 name_buf[prefix_len] = '\0';
10252
10253 subtype_info += 5;
10254 bounds_str = strchr (subtype_info, '_');
10255 n = 1;
10256
10257 if (*subtype_info == 'L')
10258 {
10259 if (!ada_scan_number (bounds_str, n, &L, &n)
10260 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10261 return raw_type;
10262 if (bounds_str[n] == '_')
10263 n += 2;
10264 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
10265 n += 1;
10266 subtype_info += 1;
10267 }
10268 else
10269 {
10270 int ok;
10271
10272 strcpy (name_buf + prefix_len, "___L");
10273 L = get_int_var_value (name_buf, &ok);
10274 if (!ok)
10275 {
10276 lim_warning (_("Unknown lower bound, using 1."));
10277 L = 1;
10278 }
10279 }
10280
10281 if (*subtype_info == 'U')
10282 {
10283 if (!ada_scan_number (bounds_str, n, &U, &n)
10284 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10285 return raw_type;
10286 }
10287 else
10288 {
10289 int ok;
10290
10291 strcpy (name_buf + prefix_len, "___U");
10292 U = get_int_var_value (name_buf, &ok);
10293 if (!ok)
10294 {
10295 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
10296 U = L;
10297 }
10298 }
10299
10300 type = create_range_type (alloc_type_copy (raw_type), base_type, L, U);
10301 TYPE_NAME (type) = name;
10302 return type;
10303 }
10304 }
10305
10306 /* True iff NAME is the name of a range type. */
10307
10308 int
10309 ada_is_range_type_name (const char *name)
10310 {
10311 return (name != NULL && strstr (name, "___XD"));
10312 }
10313 \f
10314
10315 /* Modular types */
10316
10317 /* True iff TYPE is an Ada modular type. */
10318
10319 int
10320 ada_is_modular_type (struct type *type)
10321 {
10322 struct type *subranged_type = base_type (type);
10323
10324 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
10325 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
10326 && TYPE_UNSIGNED (subranged_type));
10327 }
10328
10329 /* Try to determine the lower and upper bounds of the given modular type
10330 using the type name only. Return non-zero and set L and U as the lower
10331 and upper bounds (respectively) if successful. */
10332
10333 int
10334 ada_modulus_from_name (struct type *type, ULONGEST *modulus)
10335 {
10336 char *name = ada_type_name (type);
10337 char *suffix;
10338 int k;
10339 LONGEST U;
10340
10341 if (name == NULL)
10342 return 0;
10343
10344 /* Discrete type bounds are encoded using an __XD suffix. In our case,
10345 we are looking for static bounds, which means an __XDLU suffix.
10346 Moreover, we know that the lower bound of modular types is always
10347 zero, so the actual suffix should start with "__XDLU_0__", and
10348 then be followed by the upper bound value. */
10349 suffix = strstr (name, "__XDLU_0__");
10350 if (suffix == NULL)
10351 return 0;
10352 k = 10;
10353 if (!ada_scan_number (suffix, k, &U, NULL))
10354 return 0;
10355
10356 *modulus = (ULONGEST) U + 1;
10357 return 1;
10358 }
10359
10360 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
10361
10362 ULONGEST
10363 ada_modulus (struct type *type)
10364 {
10365 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
10366 }
10367 \f
10368
10369 /* Ada exception catchpoint support:
10370 ---------------------------------
10371
10372 We support 3 kinds of exception catchpoints:
10373 . catchpoints on Ada exceptions
10374 . catchpoints on unhandled Ada exceptions
10375 . catchpoints on failed assertions
10376
10377 Exceptions raised during failed assertions, or unhandled exceptions
10378 could perfectly be caught with the general catchpoint on Ada exceptions.
10379 However, we can easily differentiate these two special cases, and having
10380 the option to distinguish these two cases from the rest can be useful
10381 to zero-in on certain situations.
10382
10383 Exception catchpoints are a specialized form of breakpoint,
10384 since they rely on inserting breakpoints inside known routines
10385 of the GNAT runtime. The implementation therefore uses a standard
10386 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10387 of breakpoint_ops.
10388
10389 Support in the runtime for exception catchpoints have been changed
10390 a few times already, and these changes affect the implementation
10391 of these catchpoints. In order to be able to support several
10392 variants of the runtime, we use a sniffer that will determine
10393 the runtime variant used by the program being debugged.
10394
10395 At this time, we do not support the use of conditions on Ada exception
10396 catchpoints. The COND and COND_STRING fields are therefore set
10397 to NULL (most of the time, see below).
10398
10399 Conditions where EXP_STRING, COND, and COND_STRING are used:
10400
10401 When a user specifies the name of a specific exception in the case
10402 of catchpoints on Ada exceptions, we store the name of that exception
10403 in the EXP_STRING. We then translate this request into an actual
10404 condition stored in COND_STRING, and then parse it into an expression
10405 stored in COND. */
10406
10407 /* The different types of catchpoints that we introduced for catching
10408 Ada exceptions. */
10409
10410 enum exception_catchpoint_kind
10411 {
10412 ex_catch_exception,
10413 ex_catch_exception_unhandled,
10414 ex_catch_assert
10415 };
10416
10417 /* Ada's standard exceptions. */
10418
10419 static char *standard_exc[] = {
10420 "constraint_error",
10421 "program_error",
10422 "storage_error",
10423 "tasking_error"
10424 };
10425
10426 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
10427
10428 /* A structure that describes how to support exception catchpoints
10429 for a given executable. */
10430
10431 struct exception_support_info
10432 {
10433 /* The name of the symbol to break on in order to insert
10434 a catchpoint on exceptions. */
10435 const char *catch_exception_sym;
10436
10437 /* The name of the symbol to break on in order to insert
10438 a catchpoint on unhandled exceptions. */
10439 const char *catch_exception_unhandled_sym;
10440
10441 /* The name of the symbol to break on in order to insert
10442 a catchpoint on failed assertions. */
10443 const char *catch_assert_sym;
10444
10445 /* Assuming that the inferior just triggered an unhandled exception
10446 catchpoint, this function is responsible for returning the address
10447 in inferior memory where the name of that exception is stored.
10448 Return zero if the address could not be computed. */
10449 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
10450 };
10451
10452 static CORE_ADDR ada_unhandled_exception_name_addr (void);
10453 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
10454
10455 /* The following exception support info structure describes how to
10456 implement exception catchpoints with the latest version of the
10457 Ada runtime (as of 2007-03-06). */
10458
10459 static const struct exception_support_info default_exception_support_info =
10460 {
10461 "__gnat_debug_raise_exception", /* catch_exception_sym */
10462 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10463 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
10464 ada_unhandled_exception_name_addr
10465 };
10466
10467 /* The following exception support info structure describes how to
10468 implement exception catchpoints with a slightly older version
10469 of the Ada runtime. */
10470
10471 static const struct exception_support_info exception_support_info_fallback =
10472 {
10473 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
10474 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10475 "system__assertions__raise_assert_failure", /* catch_assert_sym */
10476 ada_unhandled_exception_name_addr_from_raise
10477 };
10478
10479 /* For each executable, we sniff which exception info structure to use
10480 and cache it in the following global variable. */
10481
10482 static const struct exception_support_info *exception_info = NULL;
10483
10484 /* Inspect the Ada runtime and determine which exception info structure
10485 should be used to provide support for exception catchpoints.
10486
10487 This function will always set exception_info, or raise an error. */
10488
10489 static void
10490 ada_exception_support_info_sniffer (void)
10491 {
10492 struct symbol *sym;
10493
10494 /* If the exception info is already known, then no need to recompute it. */
10495 if (exception_info != NULL)
10496 return;
10497
10498 /* Check the latest (default) exception support info. */
10499 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
10500 NULL, VAR_DOMAIN);
10501 if (sym != NULL)
10502 {
10503 exception_info = &default_exception_support_info;
10504 return;
10505 }
10506
10507 /* Try our fallback exception suport info. */
10508 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
10509 NULL, VAR_DOMAIN);
10510 if (sym != NULL)
10511 {
10512 exception_info = &exception_support_info_fallback;
10513 return;
10514 }
10515
10516 /* Sometimes, it is normal for us to not be able to find the routine
10517 we are looking for. This happens when the program is linked with
10518 the shared version of the GNAT runtime, and the program has not been
10519 started yet. Inform the user of these two possible causes if
10520 applicable. */
10521
10522 if (ada_update_initial_language (language_unknown) != language_ada)
10523 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
10524
10525 /* If the symbol does not exist, then check that the program is
10526 already started, to make sure that shared libraries have been
10527 loaded. If it is not started, this may mean that the symbol is
10528 in a shared library. */
10529
10530 if (ptid_get_pid (inferior_ptid) == 0)
10531 error (_("Unable to insert catchpoint. Try to start the program first."));
10532
10533 /* At this point, we know that we are debugging an Ada program and
10534 that the inferior has been started, but we still are not able to
10535 find the run-time symbols. That can mean that we are in
10536 configurable run time mode, or that a-except as been optimized
10537 out by the linker... In any case, at this point it is not worth
10538 supporting this feature. */
10539
10540 error (_("Cannot insert catchpoints in this configuration."));
10541 }
10542
10543 /* An observer of "executable_changed" events.
10544 Its role is to clear certain cached values that need to be recomputed
10545 each time a new executable is loaded by GDB. */
10546
10547 static void
10548 ada_executable_changed_observer (void)
10549 {
10550 /* If the executable changed, then it is possible that the Ada runtime
10551 is different. So we need to invalidate the exception support info
10552 cache. */
10553 exception_info = NULL;
10554 }
10555
10556 /* True iff FRAME is very likely to be that of a function that is
10557 part of the runtime system. This is all very heuristic, but is
10558 intended to be used as advice as to what frames are uninteresting
10559 to most users. */
10560
10561 static int
10562 is_known_support_routine (struct frame_info *frame)
10563 {
10564 struct symtab_and_line sal;
10565 char *func_name;
10566 enum language func_lang;
10567 int i;
10568
10569 /* If this code does not have any debugging information (no symtab),
10570 This cannot be any user code. */
10571
10572 find_frame_sal (frame, &sal);
10573 if (sal.symtab == NULL)
10574 return 1;
10575
10576 /* If there is a symtab, but the associated source file cannot be
10577 located, then assume this is not user code: Selecting a frame
10578 for which we cannot display the code would not be very helpful
10579 for the user. This should also take care of case such as VxWorks
10580 where the kernel has some debugging info provided for a few units. */
10581
10582 if (symtab_to_fullname (sal.symtab) == NULL)
10583 return 1;
10584
10585 /* Check the unit filename againt the Ada runtime file naming.
10586 We also check the name of the objfile against the name of some
10587 known system libraries that sometimes come with debugging info
10588 too. */
10589
10590 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
10591 {
10592 re_comp (known_runtime_file_name_patterns[i]);
10593 if (re_exec (sal.symtab->filename))
10594 return 1;
10595 if (sal.symtab->objfile != NULL
10596 && re_exec (sal.symtab->objfile->name))
10597 return 1;
10598 }
10599
10600 /* Check whether the function is a GNAT-generated entity. */
10601
10602 find_frame_funname (frame, &func_name, &func_lang, NULL);
10603 if (func_name == NULL)
10604 return 1;
10605
10606 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
10607 {
10608 re_comp (known_auxiliary_function_name_patterns[i]);
10609 if (re_exec (func_name))
10610 return 1;
10611 }
10612
10613 return 0;
10614 }
10615
10616 /* Find the first frame that contains debugging information and that is not
10617 part of the Ada run-time, starting from FI and moving upward. */
10618
10619 void
10620 ada_find_printable_frame (struct frame_info *fi)
10621 {
10622 for (; fi != NULL; fi = get_prev_frame (fi))
10623 {
10624 if (!is_known_support_routine (fi))
10625 {
10626 select_frame (fi);
10627 break;
10628 }
10629 }
10630
10631 }
10632
10633 /* Assuming that the inferior just triggered an unhandled exception
10634 catchpoint, return the address in inferior memory where the name
10635 of the exception is stored.
10636
10637 Return zero if the address could not be computed. */
10638
10639 static CORE_ADDR
10640 ada_unhandled_exception_name_addr (void)
10641 {
10642 return parse_and_eval_address ("e.full_name");
10643 }
10644
10645 /* Same as ada_unhandled_exception_name_addr, except that this function
10646 should be used when the inferior uses an older version of the runtime,
10647 where the exception name needs to be extracted from a specific frame
10648 several frames up in the callstack. */
10649
10650 static CORE_ADDR
10651 ada_unhandled_exception_name_addr_from_raise (void)
10652 {
10653 int frame_level;
10654 struct frame_info *fi;
10655
10656 /* To determine the name of this exception, we need to select
10657 the frame corresponding to RAISE_SYM_NAME. This frame is
10658 at least 3 levels up, so we simply skip the first 3 frames
10659 without checking the name of their associated function. */
10660 fi = get_current_frame ();
10661 for (frame_level = 0; frame_level < 3; frame_level += 1)
10662 if (fi != NULL)
10663 fi = get_prev_frame (fi);
10664
10665 while (fi != NULL)
10666 {
10667 char *func_name;
10668 enum language func_lang;
10669
10670 find_frame_funname (fi, &func_name, &func_lang, NULL);
10671 if (func_name != NULL
10672 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
10673 break; /* We found the frame we were looking for... */
10674 fi = get_prev_frame (fi);
10675 }
10676
10677 if (fi == NULL)
10678 return 0;
10679
10680 select_frame (fi);
10681 return parse_and_eval_address ("id.full_name");
10682 }
10683
10684 /* Assuming the inferior just triggered an Ada exception catchpoint
10685 (of any type), return the address in inferior memory where the name
10686 of the exception is stored, if applicable.
10687
10688 Return zero if the address could not be computed, or if not relevant. */
10689
10690 static CORE_ADDR
10691 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
10692 struct breakpoint *b)
10693 {
10694 switch (ex)
10695 {
10696 case ex_catch_exception:
10697 return (parse_and_eval_address ("e.full_name"));
10698 break;
10699
10700 case ex_catch_exception_unhandled:
10701 return exception_info->unhandled_exception_name_addr ();
10702 break;
10703
10704 case ex_catch_assert:
10705 return 0; /* Exception name is not relevant in this case. */
10706 break;
10707
10708 default:
10709 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10710 break;
10711 }
10712
10713 return 0; /* Should never be reached. */
10714 }
10715
10716 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
10717 any error that ada_exception_name_addr_1 might cause to be thrown.
10718 When an error is intercepted, a warning with the error message is printed,
10719 and zero is returned. */
10720
10721 static CORE_ADDR
10722 ada_exception_name_addr (enum exception_catchpoint_kind ex,
10723 struct breakpoint *b)
10724 {
10725 struct gdb_exception e;
10726 CORE_ADDR result = 0;
10727
10728 TRY_CATCH (e, RETURN_MASK_ERROR)
10729 {
10730 result = ada_exception_name_addr_1 (ex, b);
10731 }
10732
10733 if (e.reason < 0)
10734 {
10735 warning (_("failed to get exception name: %s"), e.message);
10736 return 0;
10737 }
10738
10739 return result;
10740 }
10741
10742 /* Implement the PRINT_IT method in the breakpoint_ops structure
10743 for all exception catchpoint kinds. */
10744
10745 static enum print_stop_action
10746 print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
10747 {
10748 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
10749 char exception_name[256];
10750
10751 if (addr != 0)
10752 {
10753 read_memory (addr, exception_name, sizeof (exception_name) - 1);
10754 exception_name [sizeof (exception_name) - 1] = '\0';
10755 }
10756
10757 ada_find_printable_frame (get_current_frame ());
10758
10759 annotate_catchpoint (b->number);
10760 switch (ex)
10761 {
10762 case ex_catch_exception:
10763 if (addr != 0)
10764 printf_filtered (_("\nCatchpoint %d, %s at "),
10765 b->number, exception_name);
10766 else
10767 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
10768 break;
10769 case ex_catch_exception_unhandled:
10770 if (addr != 0)
10771 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
10772 b->number, exception_name);
10773 else
10774 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
10775 b->number);
10776 break;
10777 case ex_catch_assert:
10778 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
10779 b->number);
10780 break;
10781 }
10782
10783 return PRINT_SRC_AND_LOC;
10784 }
10785
10786 /* Implement the PRINT_ONE method in the breakpoint_ops structure
10787 for all exception catchpoint kinds. */
10788
10789 static void
10790 print_one_exception (enum exception_catchpoint_kind ex,
10791 struct breakpoint *b, struct bp_location **last_loc)
10792 {
10793 struct value_print_options opts;
10794
10795 get_user_print_options (&opts);
10796 if (opts.addressprint)
10797 {
10798 annotate_field (4);
10799 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
10800 }
10801
10802 annotate_field (5);
10803 *last_loc = b->loc;
10804 switch (ex)
10805 {
10806 case ex_catch_exception:
10807 if (b->exp_string != NULL)
10808 {
10809 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
10810
10811 ui_out_field_string (uiout, "what", msg);
10812 xfree (msg);
10813 }
10814 else
10815 ui_out_field_string (uiout, "what", "all Ada exceptions");
10816
10817 break;
10818
10819 case ex_catch_exception_unhandled:
10820 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
10821 break;
10822
10823 case ex_catch_assert:
10824 ui_out_field_string (uiout, "what", "failed Ada assertions");
10825 break;
10826
10827 default:
10828 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10829 break;
10830 }
10831 }
10832
10833 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
10834 for all exception catchpoint kinds. */
10835
10836 static void
10837 print_mention_exception (enum exception_catchpoint_kind ex,
10838 struct breakpoint *b)
10839 {
10840 switch (ex)
10841 {
10842 case ex_catch_exception:
10843 if (b->exp_string != NULL)
10844 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
10845 b->number, b->exp_string);
10846 else
10847 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
10848
10849 break;
10850
10851 case ex_catch_exception_unhandled:
10852 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
10853 b->number);
10854 break;
10855
10856 case ex_catch_assert:
10857 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
10858 break;
10859
10860 default:
10861 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10862 break;
10863 }
10864 }
10865
10866 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
10867 for all exception catchpoint kinds. */
10868
10869 static void
10870 print_recreate_exception (enum exception_catchpoint_kind ex,
10871 struct breakpoint *b, struct ui_file *fp)
10872 {
10873 switch (ex)
10874 {
10875 case ex_catch_exception:
10876 fprintf_filtered (fp, "catch exception");
10877 if (b->exp_string != NULL)
10878 fprintf_filtered (fp, " %s", b->exp_string);
10879 break;
10880
10881 case ex_catch_exception_unhandled:
10882 fprintf_filtered (fp, "catch exception unhandled");
10883 break;
10884
10885 case ex_catch_assert:
10886 fprintf_filtered (fp, "catch assert");
10887 break;
10888
10889 default:
10890 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10891 }
10892 }
10893
10894 /* Virtual table for "catch exception" breakpoints. */
10895
10896 static enum print_stop_action
10897 print_it_catch_exception (struct breakpoint *b)
10898 {
10899 return print_it_exception (ex_catch_exception, b);
10900 }
10901
10902 static void
10903 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
10904 {
10905 print_one_exception (ex_catch_exception, b, last_loc);
10906 }
10907
10908 static void
10909 print_mention_catch_exception (struct breakpoint *b)
10910 {
10911 print_mention_exception (ex_catch_exception, b);
10912 }
10913
10914 static void
10915 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
10916 {
10917 print_recreate_exception (ex_catch_exception, b, fp);
10918 }
10919
10920 static struct breakpoint_ops catch_exception_breakpoint_ops =
10921 {
10922 NULL, /* insert */
10923 NULL, /* remove */
10924 NULL, /* breakpoint_hit */
10925 NULL, /* resources_needed */
10926 print_it_catch_exception,
10927 print_one_catch_exception,
10928 NULL, /* print_one_detail */
10929 print_mention_catch_exception,
10930 print_recreate_catch_exception
10931 };
10932
10933 /* Virtual table for "catch exception unhandled" breakpoints. */
10934
10935 static enum print_stop_action
10936 print_it_catch_exception_unhandled (struct breakpoint *b)
10937 {
10938 return print_it_exception (ex_catch_exception_unhandled, b);
10939 }
10940
10941 static void
10942 print_one_catch_exception_unhandled (struct breakpoint *b,
10943 struct bp_location **last_loc)
10944 {
10945 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
10946 }
10947
10948 static void
10949 print_mention_catch_exception_unhandled (struct breakpoint *b)
10950 {
10951 print_mention_exception (ex_catch_exception_unhandled, b);
10952 }
10953
10954 static void
10955 print_recreate_catch_exception_unhandled (struct breakpoint *b,
10956 struct ui_file *fp)
10957 {
10958 print_recreate_exception (ex_catch_exception_unhandled, b, fp);
10959 }
10960
10961 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
10962 NULL, /* insert */
10963 NULL, /* remove */
10964 NULL, /* breakpoint_hit */
10965 NULL, /* resources_needed */
10966 print_it_catch_exception_unhandled,
10967 print_one_catch_exception_unhandled,
10968 NULL, /* print_one_detail */
10969 print_mention_catch_exception_unhandled,
10970 print_recreate_catch_exception_unhandled
10971 };
10972
10973 /* Virtual table for "catch assert" breakpoints. */
10974
10975 static enum print_stop_action
10976 print_it_catch_assert (struct breakpoint *b)
10977 {
10978 return print_it_exception (ex_catch_assert, b);
10979 }
10980
10981 static void
10982 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
10983 {
10984 print_one_exception (ex_catch_assert, b, last_loc);
10985 }
10986
10987 static void
10988 print_mention_catch_assert (struct breakpoint *b)
10989 {
10990 print_mention_exception (ex_catch_assert, b);
10991 }
10992
10993 static void
10994 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
10995 {
10996 print_recreate_exception (ex_catch_assert, b, fp);
10997 }
10998
10999 static struct breakpoint_ops catch_assert_breakpoint_ops = {
11000 NULL, /* insert */
11001 NULL, /* remove */
11002 NULL, /* breakpoint_hit */
11003 NULL, /* resources_needed */
11004 print_it_catch_assert,
11005 print_one_catch_assert,
11006 NULL, /* print_one_detail */
11007 print_mention_catch_assert,
11008 print_recreate_catch_assert
11009 };
11010
11011 /* Return non-zero if B is an Ada exception catchpoint. */
11012
11013 int
11014 ada_exception_catchpoint_p (struct breakpoint *b)
11015 {
11016 return (b->ops == &catch_exception_breakpoint_ops
11017 || b->ops == &catch_exception_unhandled_breakpoint_ops
11018 || b->ops == &catch_assert_breakpoint_ops);
11019 }
11020
11021 /* Return a newly allocated copy of the first space-separated token
11022 in ARGSP, and then adjust ARGSP to point immediately after that
11023 token.
11024
11025 Return NULL if ARGPS does not contain any more tokens. */
11026
11027 static char *
11028 ada_get_next_arg (char **argsp)
11029 {
11030 char *args = *argsp;
11031 char *end;
11032 char *result;
11033
11034 /* Skip any leading white space. */
11035
11036 while (isspace (*args))
11037 args++;
11038
11039 if (args[0] == '\0')
11040 return NULL; /* No more arguments. */
11041
11042 /* Find the end of the current argument. */
11043
11044 end = args;
11045 while (*end != '\0' && !isspace (*end))
11046 end++;
11047
11048 /* Adjust ARGSP to point to the start of the next argument. */
11049
11050 *argsp = end;
11051
11052 /* Make a copy of the current argument and return it. */
11053
11054 result = xmalloc (end - args + 1);
11055 strncpy (result, args, end - args);
11056 result[end - args] = '\0';
11057
11058 return result;
11059 }
11060
11061 /* Split the arguments specified in a "catch exception" command.
11062 Set EX to the appropriate catchpoint type.
11063 Set EXP_STRING to the name of the specific exception if
11064 specified by the user. */
11065
11066 static void
11067 catch_ada_exception_command_split (char *args,
11068 enum exception_catchpoint_kind *ex,
11069 char **exp_string)
11070 {
11071 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
11072 char *exception_name;
11073
11074 exception_name = ada_get_next_arg (&args);
11075 make_cleanup (xfree, exception_name);
11076
11077 /* Check that we do not have any more arguments. Anything else
11078 is unexpected. */
11079
11080 while (isspace (*args))
11081 args++;
11082
11083 if (args[0] != '\0')
11084 error (_("Junk at end of expression"));
11085
11086 discard_cleanups (old_chain);
11087
11088 if (exception_name == NULL)
11089 {
11090 /* Catch all exceptions. */
11091 *ex = ex_catch_exception;
11092 *exp_string = NULL;
11093 }
11094 else if (strcmp (exception_name, "unhandled") == 0)
11095 {
11096 /* Catch unhandled exceptions. */
11097 *ex = ex_catch_exception_unhandled;
11098 *exp_string = NULL;
11099 }
11100 else
11101 {
11102 /* Catch a specific exception. */
11103 *ex = ex_catch_exception;
11104 *exp_string = exception_name;
11105 }
11106 }
11107
11108 /* Return the name of the symbol on which we should break in order to
11109 implement a catchpoint of the EX kind. */
11110
11111 static const char *
11112 ada_exception_sym_name (enum exception_catchpoint_kind ex)
11113 {
11114 gdb_assert (exception_info != NULL);
11115
11116 switch (ex)
11117 {
11118 case ex_catch_exception:
11119 return (exception_info->catch_exception_sym);
11120 break;
11121 case ex_catch_exception_unhandled:
11122 return (exception_info->catch_exception_unhandled_sym);
11123 break;
11124 case ex_catch_assert:
11125 return (exception_info->catch_assert_sym);
11126 break;
11127 default:
11128 internal_error (__FILE__, __LINE__,
11129 _("unexpected catchpoint kind (%d)"), ex);
11130 }
11131 }
11132
11133 /* Return the breakpoint ops "virtual table" used for catchpoints
11134 of the EX kind. */
11135
11136 static struct breakpoint_ops *
11137 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
11138 {
11139 switch (ex)
11140 {
11141 case ex_catch_exception:
11142 return (&catch_exception_breakpoint_ops);
11143 break;
11144 case ex_catch_exception_unhandled:
11145 return (&catch_exception_unhandled_breakpoint_ops);
11146 break;
11147 case ex_catch_assert:
11148 return (&catch_assert_breakpoint_ops);
11149 break;
11150 default:
11151 internal_error (__FILE__, __LINE__,
11152 _("unexpected catchpoint kind (%d)"), ex);
11153 }
11154 }
11155
11156 /* Return the condition that will be used to match the current exception
11157 being raised with the exception that the user wants to catch. This
11158 assumes that this condition is used when the inferior just triggered
11159 an exception catchpoint.
11160
11161 The string returned is a newly allocated string that needs to be
11162 deallocated later. */
11163
11164 static char *
11165 ada_exception_catchpoint_cond_string (const char *exp_string)
11166 {
11167 int i;
11168
11169 /* The standard exceptions are a special case. They are defined in
11170 runtime units that have been compiled without debugging info; if
11171 EXP_STRING is the not-fully-qualified name of a standard
11172 exception (e.g. "constraint_error") then, during the evaluation
11173 of the condition expression, the symbol lookup on this name would
11174 *not* return this standard exception. The catchpoint condition
11175 may then be set only on user-defined exceptions which have the
11176 same not-fully-qualified name (e.g. my_package.constraint_error).
11177
11178 To avoid this unexcepted behavior, these standard exceptions are
11179 systematically prefixed by "standard". This means that "catch
11180 exception constraint_error" is rewritten into "catch exception
11181 standard.constraint_error".
11182
11183 If an exception named contraint_error is defined in another package of
11184 the inferior program, then the only way to specify this exception as a
11185 breakpoint condition is to use its fully-qualified named:
11186 e.g. my_package.constraint_error. */
11187
11188 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
11189 {
11190 if (strcmp (standard_exc [i], exp_string) == 0)
11191 {
11192 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
11193 exp_string);
11194 }
11195 }
11196 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
11197 }
11198
11199 /* Return the expression corresponding to COND_STRING evaluated at SAL. */
11200
11201 static struct expression *
11202 ada_parse_catchpoint_condition (char *cond_string,
11203 struct symtab_and_line sal)
11204 {
11205 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
11206 }
11207
11208 /* Return the symtab_and_line that should be used to insert an exception
11209 catchpoint of the TYPE kind.
11210
11211 EX_STRING should contain the name of a specific exception
11212 that the catchpoint should catch, or NULL otherwise.
11213
11214 The idea behind all the remaining parameters is that their names match
11215 the name of certain fields in the breakpoint structure that are used to
11216 handle exception catchpoints. This function returns the value to which
11217 these fields should be set, depending on the type of catchpoint we need
11218 to create.
11219
11220 If COND and COND_STRING are both non-NULL, any value they might
11221 hold will be free'ed, and then replaced by newly allocated ones.
11222 These parameters are left untouched otherwise. */
11223
11224 static struct symtab_and_line
11225 ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
11226 char **addr_string, char **cond_string,
11227 struct expression **cond, struct breakpoint_ops **ops)
11228 {
11229 const char *sym_name;
11230 struct symbol *sym;
11231 struct symtab_and_line sal;
11232
11233 /* First, find out which exception support info to use. */
11234 ada_exception_support_info_sniffer ();
11235
11236 /* Then lookup the function on which we will break in order to catch
11237 the Ada exceptions requested by the user. */
11238
11239 sym_name = ada_exception_sym_name (ex);
11240 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
11241
11242 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11243 that should be compiled with debugging information. As a result, we
11244 expect to find that symbol in the symtabs. If we don't find it, then
11245 the target most likely does not support Ada exceptions, or we cannot
11246 insert exception breakpoints yet, because the GNAT runtime hasn't been
11247 loaded yet. */
11248
11249 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
11250 in such a way that no debugging information is produced for the symbol
11251 we are looking for. In this case, we could search the minimal symbols
11252 as a fall-back mechanism. This would still be operating in degraded
11253 mode, however, as we would still be missing the debugging information
11254 that is needed in order to extract the name of the exception being
11255 raised (this name is printed in the catchpoint message, and is also
11256 used when trying to catch a specific exception). We do not handle
11257 this case for now. */
11258
11259 if (sym == NULL)
11260 error (_("Unable to break on '%s' in this configuration."), sym_name);
11261
11262 /* Make sure that the symbol we found corresponds to a function. */
11263 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11264 error (_("Symbol \"%s\" is not a function (class = %d)"),
11265 sym_name, SYMBOL_CLASS (sym));
11266
11267 sal = find_function_start_sal (sym, 1);
11268
11269 /* Set ADDR_STRING. */
11270
11271 *addr_string = xstrdup (sym_name);
11272
11273 /* Set the COND and COND_STRING (if not NULL). */
11274
11275 if (cond_string != NULL && cond != NULL)
11276 {
11277 if (*cond_string != NULL)
11278 {
11279 xfree (*cond_string);
11280 *cond_string = NULL;
11281 }
11282 if (*cond != NULL)
11283 {
11284 xfree (*cond);
11285 *cond = NULL;
11286 }
11287 if (exp_string != NULL)
11288 {
11289 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
11290 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
11291 }
11292 }
11293
11294 /* Set OPS. */
11295 *ops = ada_exception_breakpoint_ops (ex);
11296
11297 return sal;
11298 }
11299
11300 /* Parse the arguments (ARGS) of the "catch exception" command.
11301
11302 Set TYPE to the appropriate exception catchpoint type.
11303 If the user asked the catchpoint to catch only a specific
11304 exception, then save the exception name in ADDR_STRING.
11305
11306 See ada_exception_sal for a description of all the remaining
11307 function arguments of this function. */
11308
11309 struct symtab_and_line
11310 ada_decode_exception_location (char *args, char **addr_string,
11311 char **exp_string, char **cond_string,
11312 struct expression **cond,
11313 struct breakpoint_ops **ops)
11314 {
11315 enum exception_catchpoint_kind ex;
11316
11317 catch_ada_exception_command_split (args, &ex, exp_string);
11318 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
11319 cond, ops);
11320 }
11321
11322 struct symtab_and_line
11323 ada_decode_assert_location (char *args, char **addr_string,
11324 struct breakpoint_ops **ops)
11325 {
11326 /* Check that no argument where provided at the end of the command. */
11327
11328 if (args != NULL)
11329 {
11330 while (isspace (*args))
11331 args++;
11332 if (*args != '\0')
11333 error (_("Junk at end of arguments."));
11334 }
11335
11336 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
11337 ops);
11338 }
11339
11340 /* Operators */
11341 /* Information about operators given special treatment in functions
11342 below. */
11343 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
11344
11345 #define ADA_OPERATORS \
11346 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
11347 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
11348 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
11349 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
11350 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
11351 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
11352 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
11353 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
11354 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
11355 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
11356 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
11357 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
11358 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
11359 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
11360 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
11361 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
11362 OP_DEFN (OP_OTHERS, 1, 1, 0) \
11363 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
11364 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
11365
11366 static void
11367 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
11368 int *argsp)
11369 {
11370 switch (exp->elts[pc - 1].opcode)
11371 {
11372 default:
11373 operator_length_standard (exp, pc, oplenp, argsp);
11374 break;
11375
11376 #define OP_DEFN(op, len, args, binop) \
11377 case op: *oplenp = len; *argsp = args; break;
11378 ADA_OPERATORS;
11379 #undef OP_DEFN
11380
11381 case OP_AGGREGATE:
11382 *oplenp = 3;
11383 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
11384 break;
11385
11386 case OP_CHOICES:
11387 *oplenp = 3;
11388 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
11389 break;
11390 }
11391 }
11392
11393 /* Implementation of the exp_descriptor method operator_check. */
11394
11395 static int
11396 ada_operator_check (struct expression *exp, int pos,
11397 int (*objfile_func) (struct objfile *objfile, void *data),
11398 void *data)
11399 {
11400 const union exp_element *const elts = exp->elts;
11401 struct type *type = NULL;
11402
11403 switch (elts[pos].opcode)
11404 {
11405 case UNOP_IN_RANGE:
11406 case UNOP_QUAL:
11407 type = elts[pos + 1].type;
11408 break;
11409
11410 default:
11411 return operator_check_standard (exp, pos, objfile_func, data);
11412 }
11413
11414 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
11415
11416 if (type && TYPE_OBJFILE (type)
11417 && (*objfile_func) (TYPE_OBJFILE (type), data))
11418 return 1;
11419
11420 return 0;
11421 }
11422
11423 static char *
11424 ada_op_name (enum exp_opcode opcode)
11425 {
11426 switch (opcode)
11427 {
11428 default:
11429 return op_name_standard (opcode);
11430
11431 #define OP_DEFN(op, len, args, binop) case op: return #op;
11432 ADA_OPERATORS;
11433 #undef OP_DEFN
11434
11435 case OP_AGGREGATE:
11436 return "OP_AGGREGATE";
11437 case OP_CHOICES:
11438 return "OP_CHOICES";
11439 case OP_NAME:
11440 return "OP_NAME";
11441 }
11442 }
11443
11444 /* As for operator_length, but assumes PC is pointing at the first
11445 element of the operator, and gives meaningful results only for the
11446 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
11447
11448 static void
11449 ada_forward_operator_length (struct expression *exp, int pc,
11450 int *oplenp, int *argsp)
11451 {
11452 switch (exp->elts[pc].opcode)
11453 {
11454 default:
11455 *oplenp = *argsp = 0;
11456 break;
11457
11458 #define OP_DEFN(op, len, args, binop) \
11459 case op: *oplenp = len; *argsp = args; break;
11460 ADA_OPERATORS;
11461 #undef OP_DEFN
11462
11463 case OP_AGGREGATE:
11464 *oplenp = 3;
11465 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
11466 break;
11467
11468 case OP_CHOICES:
11469 *oplenp = 3;
11470 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
11471 break;
11472
11473 case OP_STRING:
11474 case OP_NAME:
11475 {
11476 int len = longest_to_int (exp->elts[pc + 1].longconst);
11477
11478 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
11479 *argsp = 0;
11480 break;
11481 }
11482 }
11483 }
11484
11485 static int
11486 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
11487 {
11488 enum exp_opcode op = exp->elts[elt].opcode;
11489 int oplen, nargs;
11490 int pc = elt;
11491 int i;
11492
11493 ada_forward_operator_length (exp, elt, &oplen, &nargs);
11494
11495 switch (op)
11496 {
11497 /* Ada attributes ('Foo). */
11498 case OP_ATR_FIRST:
11499 case OP_ATR_LAST:
11500 case OP_ATR_LENGTH:
11501 case OP_ATR_IMAGE:
11502 case OP_ATR_MAX:
11503 case OP_ATR_MIN:
11504 case OP_ATR_MODULUS:
11505 case OP_ATR_POS:
11506 case OP_ATR_SIZE:
11507 case OP_ATR_TAG:
11508 case OP_ATR_VAL:
11509 break;
11510
11511 case UNOP_IN_RANGE:
11512 case UNOP_QUAL:
11513 /* XXX: gdb_sprint_host_address, type_sprint */
11514 fprintf_filtered (stream, _("Type @"));
11515 gdb_print_host_address (exp->elts[pc + 1].type, stream);
11516 fprintf_filtered (stream, " (");
11517 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
11518 fprintf_filtered (stream, ")");
11519 break;
11520 case BINOP_IN_BOUNDS:
11521 fprintf_filtered (stream, " (%d)",
11522 longest_to_int (exp->elts[pc + 2].longconst));
11523 break;
11524 case TERNOP_IN_RANGE:
11525 break;
11526
11527 case OP_AGGREGATE:
11528 case OP_OTHERS:
11529 case OP_DISCRETE_RANGE:
11530 case OP_POSITIONAL:
11531 case OP_CHOICES:
11532 break;
11533
11534 case OP_NAME:
11535 case OP_STRING:
11536 {
11537 char *name = &exp->elts[elt + 2].string;
11538 int len = longest_to_int (exp->elts[elt + 1].longconst);
11539
11540 fprintf_filtered (stream, "Text: `%.*s'", len, name);
11541 break;
11542 }
11543
11544 default:
11545 return dump_subexp_body_standard (exp, stream, elt);
11546 }
11547
11548 elt += oplen;
11549 for (i = 0; i < nargs; i += 1)
11550 elt = dump_subexp (exp, stream, elt);
11551
11552 return elt;
11553 }
11554
11555 /* The Ada extension of print_subexp (q.v.). */
11556
11557 static void
11558 ada_print_subexp (struct expression *exp, int *pos,
11559 struct ui_file *stream, enum precedence prec)
11560 {
11561 int oplen, nargs, i;
11562 int pc = *pos;
11563 enum exp_opcode op = exp->elts[pc].opcode;
11564
11565 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11566
11567 *pos += oplen;
11568 switch (op)
11569 {
11570 default:
11571 *pos -= oplen;
11572 print_subexp_standard (exp, pos, stream, prec);
11573 return;
11574
11575 case OP_VAR_VALUE:
11576 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
11577 return;
11578
11579 case BINOP_IN_BOUNDS:
11580 /* XXX: sprint_subexp */
11581 print_subexp (exp, pos, stream, PREC_SUFFIX);
11582 fputs_filtered (" in ", stream);
11583 print_subexp (exp, pos, stream, PREC_SUFFIX);
11584 fputs_filtered ("'range", stream);
11585 if (exp->elts[pc + 1].longconst > 1)
11586 fprintf_filtered (stream, "(%ld)",
11587 (long) exp->elts[pc + 1].longconst);
11588 return;
11589
11590 case TERNOP_IN_RANGE:
11591 if (prec >= PREC_EQUAL)
11592 fputs_filtered ("(", stream);
11593 /* XXX: sprint_subexp */
11594 print_subexp (exp, pos, stream, PREC_SUFFIX);
11595 fputs_filtered (" in ", stream);
11596 print_subexp (exp, pos, stream, PREC_EQUAL);
11597 fputs_filtered (" .. ", stream);
11598 print_subexp (exp, pos, stream, PREC_EQUAL);
11599 if (prec >= PREC_EQUAL)
11600 fputs_filtered (")", stream);
11601 return;
11602
11603 case OP_ATR_FIRST:
11604 case OP_ATR_LAST:
11605 case OP_ATR_LENGTH:
11606 case OP_ATR_IMAGE:
11607 case OP_ATR_MAX:
11608 case OP_ATR_MIN:
11609 case OP_ATR_MODULUS:
11610 case OP_ATR_POS:
11611 case OP_ATR_SIZE:
11612 case OP_ATR_TAG:
11613 case OP_ATR_VAL:
11614 if (exp->elts[*pos].opcode == OP_TYPE)
11615 {
11616 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
11617 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
11618 *pos += 3;
11619 }
11620 else
11621 print_subexp (exp, pos, stream, PREC_SUFFIX);
11622 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
11623 if (nargs > 1)
11624 {
11625 int tem;
11626
11627 for (tem = 1; tem < nargs; tem += 1)
11628 {
11629 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
11630 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
11631 }
11632 fputs_filtered (")", stream);
11633 }
11634 return;
11635
11636 case UNOP_QUAL:
11637 type_print (exp->elts[pc + 1].type, "", stream, 0);
11638 fputs_filtered ("'(", stream);
11639 print_subexp (exp, pos, stream, PREC_PREFIX);
11640 fputs_filtered (")", stream);
11641 return;
11642
11643 case UNOP_IN_RANGE:
11644 /* XXX: sprint_subexp */
11645 print_subexp (exp, pos, stream, PREC_SUFFIX);
11646 fputs_filtered (" in ", stream);
11647 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
11648 return;
11649
11650 case OP_DISCRETE_RANGE:
11651 print_subexp (exp, pos, stream, PREC_SUFFIX);
11652 fputs_filtered ("..", stream);
11653 print_subexp (exp, pos, stream, PREC_SUFFIX);
11654 return;
11655
11656 case OP_OTHERS:
11657 fputs_filtered ("others => ", stream);
11658 print_subexp (exp, pos, stream, PREC_SUFFIX);
11659 return;
11660
11661 case OP_CHOICES:
11662 for (i = 0; i < nargs-1; i += 1)
11663 {
11664 if (i > 0)
11665 fputs_filtered ("|", stream);
11666 print_subexp (exp, pos, stream, PREC_SUFFIX);
11667 }
11668 fputs_filtered (" => ", stream);
11669 print_subexp (exp, pos, stream, PREC_SUFFIX);
11670 return;
11671
11672 case OP_POSITIONAL:
11673 print_subexp (exp, pos, stream, PREC_SUFFIX);
11674 return;
11675
11676 case OP_AGGREGATE:
11677 fputs_filtered ("(", stream);
11678 for (i = 0; i < nargs; i += 1)
11679 {
11680 if (i > 0)
11681 fputs_filtered (", ", stream);
11682 print_subexp (exp, pos, stream, PREC_SUFFIX);
11683 }
11684 fputs_filtered (")", stream);
11685 return;
11686 }
11687 }
11688
11689 /* Table mapping opcodes into strings for printing operators
11690 and precedences of the operators. */
11691
11692 static const struct op_print ada_op_print_tab[] = {
11693 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
11694 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
11695 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
11696 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
11697 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
11698 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
11699 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
11700 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
11701 {"<=", BINOP_LEQ, PREC_ORDER, 0},
11702 {">=", BINOP_GEQ, PREC_ORDER, 0},
11703 {">", BINOP_GTR, PREC_ORDER, 0},
11704 {"<", BINOP_LESS, PREC_ORDER, 0},
11705 {">>", BINOP_RSH, PREC_SHIFT, 0},
11706 {"<<", BINOP_LSH, PREC_SHIFT, 0},
11707 {"+", BINOP_ADD, PREC_ADD, 0},
11708 {"-", BINOP_SUB, PREC_ADD, 0},
11709 {"&", BINOP_CONCAT, PREC_ADD, 0},
11710 {"*", BINOP_MUL, PREC_MUL, 0},
11711 {"/", BINOP_DIV, PREC_MUL, 0},
11712 {"rem", BINOP_REM, PREC_MUL, 0},
11713 {"mod", BINOP_MOD, PREC_MUL, 0},
11714 {"**", BINOP_EXP, PREC_REPEAT, 0},
11715 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
11716 {"-", UNOP_NEG, PREC_PREFIX, 0},
11717 {"+", UNOP_PLUS, PREC_PREFIX, 0},
11718 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
11719 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
11720 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
11721 {".all", UNOP_IND, PREC_SUFFIX, 1},
11722 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
11723 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
11724 {NULL, 0, 0, 0}
11725 };
11726 \f
11727 enum ada_primitive_types {
11728 ada_primitive_type_int,
11729 ada_primitive_type_long,
11730 ada_primitive_type_short,
11731 ada_primitive_type_char,
11732 ada_primitive_type_float,
11733 ada_primitive_type_double,
11734 ada_primitive_type_void,
11735 ada_primitive_type_long_long,
11736 ada_primitive_type_long_double,
11737 ada_primitive_type_natural,
11738 ada_primitive_type_positive,
11739 ada_primitive_type_system_address,
11740 nr_ada_primitive_types
11741 };
11742
11743 static void
11744 ada_language_arch_info (struct gdbarch *gdbarch,
11745 struct language_arch_info *lai)
11746 {
11747 const struct builtin_type *builtin = builtin_type (gdbarch);
11748
11749 lai->primitive_type_vector
11750 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
11751 struct type *);
11752
11753 lai->primitive_type_vector [ada_primitive_type_int]
11754 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11755 0, "integer");
11756 lai->primitive_type_vector [ada_primitive_type_long]
11757 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
11758 0, "long_integer");
11759 lai->primitive_type_vector [ada_primitive_type_short]
11760 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
11761 0, "short_integer");
11762 lai->string_char_type
11763 = lai->primitive_type_vector [ada_primitive_type_char]
11764 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
11765 lai->primitive_type_vector [ada_primitive_type_float]
11766 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
11767 "float", NULL);
11768 lai->primitive_type_vector [ada_primitive_type_double]
11769 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11770 "long_float", NULL);
11771 lai->primitive_type_vector [ada_primitive_type_long_long]
11772 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
11773 0, "long_long_integer");
11774 lai->primitive_type_vector [ada_primitive_type_long_double]
11775 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11776 "long_long_float", NULL);
11777 lai->primitive_type_vector [ada_primitive_type_natural]
11778 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11779 0, "natural");
11780 lai->primitive_type_vector [ada_primitive_type_positive]
11781 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11782 0, "positive");
11783 lai->primitive_type_vector [ada_primitive_type_void]
11784 = builtin->builtin_void;
11785
11786 lai->primitive_type_vector [ada_primitive_type_system_address]
11787 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
11788 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
11789 = "system__address";
11790
11791 lai->bool_type_symbol = NULL;
11792 lai->bool_type_default = builtin->builtin_bool;
11793 }
11794 \f
11795 /* Language vector */
11796
11797 /* Not really used, but needed in the ada_language_defn. */
11798
11799 static void
11800 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
11801 {
11802 ada_emit_char (c, type, stream, quoter, 1);
11803 }
11804
11805 static int
11806 parse (void)
11807 {
11808 warnings_issued = 0;
11809 return ada_parse ();
11810 }
11811
11812 static const struct exp_descriptor ada_exp_descriptor = {
11813 ada_print_subexp,
11814 ada_operator_length,
11815 ada_operator_check,
11816 ada_op_name,
11817 ada_dump_subexp_body,
11818 ada_evaluate_subexp
11819 };
11820
11821 const struct language_defn ada_language_defn = {
11822 "ada", /* Language name */
11823 language_ada,
11824 range_check_off,
11825 type_check_off,
11826 case_sensitive_on, /* Yes, Ada is case-insensitive, but
11827 that's not quite what this means. */
11828 array_row_major,
11829 macro_expansion_no,
11830 &ada_exp_descriptor,
11831 parse,
11832 ada_error,
11833 resolve,
11834 ada_printchar, /* Print a character constant */
11835 ada_printstr, /* Function to print string constant */
11836 emit_char, /* Function to print single char (not used) */
11837 ada_print_type, /* Print a type using appropriate syntax */
11838 ada_print_typedef, /* Print a typedef using appropriate syntax */
11839 ada_val_print, /* Print a value using appropriate syntax */
11840 ada_value_print, /* Print a top-level value */
11841 NULL, /* Language specific skip_trampoline */
11842 NULL, /* name_of_this */
11843 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
11844 basic_lookup_transparent_type, /* lookup_transparent_type */
11845 ada_la_decode, /* Language specific symbol demangler */
11846 NULL, /* Language specific
11847 class_name_from_physname */
11848 ada_op_print_tab, /* expression operators for printing */
11849 0, /* c-style arrays */
11850 1, /* String lower bound */
11851 ada_get_gdb_completer_word_break_characters,
11852 ada_make_symbol_completion_list,
11853 ada_language_arch_info,
11854 ada_print_array_index,
11855 default_pass_by_reference,
11856 c_get_string,
11857 LANG_MAGIC
11858 };
11859
11860 /* Provide a prototype to silence -Wmissing-prototypes. */
11861 extern initialize_file_ftype _initialize_ada_language;
11862
11863 /* Command-list for the "set/show ada" prefix command. */
11864 static struct cmd_list_element *set_ada_list;
11865 static struct cmd_list_element *show_ada_list;
11866
11867 /* Implement the "set ada" prefix command. */
11868
11869 static void
11870 set_ada_command (char *arg, int from_tty)
11871 {
11872 printf_unfiltered (_(\
11873 "\"set ada\" must be followed by the name of a setting.\n"));
11874 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
11875 }
11876
11877 /* Implement the "show ada" prefix command. */
11878
11879 static void
11880 show_ada_command (char *args, int from_tty)
11881 {
11882 cmd_show_list (show_ada_list, from_tty, "");
11883 }
11884
11885 void
11886 _initialize_ada_language (void)
11887 {
11888 add_language (&ada_language_defn);
11889
11890 add_prefix_cmd ("ada", no_class, set_ada_command,
11891 _("Prefix command for changing Ada-specfic settings"),
11892 &set_ada_list, "set ada ", 0, &setlist);
11893
11894 add_prefix_cmd ("ada", no_class, show_ada_command,
11895 _("Generic command for showing Ada-specific settings."),
11896 &show_ada_list, "show ada ", 0, &showlist);
11897
11898 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
11899 &trust_pad_over_xvs, _("\
11900 Enable or disable an optimization trusting PAD types over XVS types"), _("\
11901 Show whether an optimization trusting PAD types over XVS types is activated"),
11902 _("\
11903 This is related to the encoding used by the GNAT compiler. The debugger\n\
11904 should normally trust the contents of PAD types, but certain older versions\n\
11905 of GNAT have a bug that sometimes causes the information in the PAD type\n\
11906 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
11907 work around this bug. It is always safe to turn this option \"off\", but\n\
11908 this incurs a slight performance penalty, so it is recommended to NOT change\n\
11909 this option to \"off\" unless necessary."),
11910 NULL, NULL, &set_ada_list, &show_ada_list);
11911
11912 varsize_limit = 65536;
11913
11914 obstack_init (&symbol_list_obstack);
11915
11916 decoded_names_store = htab_create_alloc
11917 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
11918 NULL, xcalloc, xfree);
11919
11920 observer_attach_executable_changed (ada_executable_changed_observer);
11921
11922 /* Setup per-inferior data. */
11923 observer_attach_inferior_exit (ada_inferior_exit);
11924 ada_inferior_data
11925 = register_inferior_data_with_cleanup (ada_inferior_data_cleanup);
11926 }
This page took 0.571746 seconds and 4 git commands to generate.