daily update
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger. Copyright (C)
2
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include "defs.h"
23 #include <stdio.h>
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include <stdarg.h>
27 #include "demangle.h"
28 #include "gdb_regex.h"
29 #include "frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35 #include "language.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include "gdb_stat.h"
47 #ifdef UI_OUT
48 #include "ui-out.h"
49 #endif
50 #include "block.h"
51 #include "infcall.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
54 #include "annotate.h"
55 #include "valprint.h"
56 #include "source.h"
57 #include "observer.h"
58 #include "vec.h"
59
60 #ifndef ADA_RETAIN_DOTS
61 #define ADA_RETAIN_DOTS 0
62 #endif
63
64 /* Define whether or not the C operator '/' truncates towards zero for
65 differently signed operands (truncation direction is undefined in C).
66 Copied from valarith.c. */
67
68 #ifndef TRUNCATION_TOWARDS_ZERO
69 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
70 #endif
71
72 static void extract_string (CORE_ADDR addr, char *buf);
73
74 static void modify_general_field (char *, LONGEST, int, int);
75
76 static struct type *desc_base_type (struct type *);
77
78 static struct type *desc_bounds_type (struct type *);
79
80 static struct value *desc_bounds (struct value *);
81
82 static int fat_pntr_bounds_bitpos (struct type *);
83
84 static int fat_pntr_bounds_bitsize (struct type *);
85
86 static struct type *desc_data_type (struct type *);
87
88 static struct value *desc_data (struct value *);
89
90 static int fat_pntr_data_bitpos (struct type *);
91
92 static int fat_pntr_data_bitsize (struct type *);
93
94 static struct value *desc_one_bound (struct value *, int, int);
95
96 static int desc_bound_bitpos (struct type *, int, int);
97
98 static int desc_bound_bitsize (struct type *, int, int);
99
100 static struct type *desc_index_type (struct type *, int);
101
102 static int desc_arity (struct type *);
103
104 static int ada_type_match (struct type *, struct type *, int);
105
106 static int ada_args_match (struct symbol *, struct value **, int);
107
108 static struct value *ensure_lval (struct value *, CORE_ADDR *);
109
110 static struct value *convert_actual (struct value *, struct type *,
111 CORE_ADDR *);
112
113 static struct value *make_array_descriptor (struct type *, struct value *,
114 CORE_ADDR *);
115
116 static void ada_add_block_symbols (struct obstack *,
117 struct block *, const char *,
118 domain_enum, struct objfile *, int);
119
120 static int is_nonfunction (struct ada_symbol_info *, int);
121
122 static void add_defn_to_vec (struct obstack *, struct symbol *,
123 struct block *);
124
125 static int num_defns_collected (struct obstack *);
126
127 static struct ada_symbol_info *defns_collected (struct obstack *, int);
128
129 static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
130 *, const char *, int,
131 domain_enum, int);
132
133 static struct symtab *symtab_for_sym (struct symbol *);
134
135 static struct value *resolve_subexp (struct expression **, int *, int,
136 struct type *);
137
138 static void replace_operator_with_call (struct expression **, int, int, int,
139 struct symbol *, struct block *);
140
141 static int possible_user_operator_p (enum exp_opcode, struct value **);
142
143 static char *ada_op_name (enum exp_opcode);
144
145 static const char *ada_decoded_op_name (enum exp_opcode);
146
147 static int numeric_type_p (struct type *);
148
149 static int integer_type_p (struct type *);
150
151 static int scalar_type_p (struct type *);
152
153 static int discrete_type_p (struct type *);
154
155 static enum ada_renaming_category parse_old_style_renaming (struct type *,
156 const char **,
157 int *,
158 const char **);
159
160 static struct symbol *find_old_style_renaming_symbol (const char *,
161 struct block *);
162
163 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
164 int, int, int *);
165
166 static struct value *evaluate_subexp (struct type *, struct expression *,
167 int *, enum noside);
168
169 static struct value *evaluate_subexp_type (struct expression *, int *);
170
171 static int is_dynamic_field (struct type *, int);
172
173 static struct type *to_fixed_variant_branch_type (struct type *,
174 const gdb_byte *,
175 CORE_ADDR, struct value *);
176
177 static struct type *to_fixed_array_type (struct type *, struct value *, int);
178
179 static struct type *to_fixed_range_type (char *, struct value *,
180 struct objfile *);
181
182 static struct type *to_static_fixed_type (struct type *);
183 static struct type *static_unwrap_type (struct type *type);
184
185 static struct value *unwrap_value (struct value *);
186
187 static struct type *packed_array_type (struct type *, long *);
188
189 static struct type *decode_packed_array_type (struct type *);
190
191 static struct value *decode_packed_array (struct value *);
192
193 static struct value *value_subscript_packed (struct value *, int,
194 struct value **);
195
196 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int);
197
198 static struct value *coerce_unspec_val_to_type (struct value *,
199 struct type *);
200
201 static struct value *get_var_value (char *, char *);
202
203 static int lesseq_defined_than (struct symbol *, struct symbol *);
204
205 static int equiv_types (struct type *, struct type *);
206
207 static int is_name_suffix (const char *);
208
209 static int wild_match (const char *, int, const char *);
210
211 static struct value *ada_coerce_ref (struct value *);
212
213 static LONGEST pos_atr (struct value *);
214
215 static struct value *value_pos_atr (struct value *);
216
217 static struct value *value_val_atr (struct type *, struct value *);
218
219 static struct symbol *standard_lookup (const char *, const struct block *,
220 domain_enum);
221
222 static struct value *ada_search_struct_field (char *, struct value *, int,
223 struct type *);
224
225 static struct value *ada_value_primitive_field (struct value *, int, int,
226 struct type *);
227
228 static int find_struct_field (char *, struct type *, int,
229 struct type **, int *, int *, int *, int *);
230
231 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
232 struct value *);
233
234 static struct value *ada_to_fixed_value (struct value *);
235
236 static int ada_resolve_function (struct ada_symbol_info *, int,
237 struct value **, int, const char *,
238 struct type *);
239
240 static struct value *ada_coerce_to_simple_array (struct value *);
241
242 static int ada_is_direct_array_type (struct type *);
243
244 static void ada_language_arch_info (struct gdbarch *,
245 struct language_arch_info *);
246
247 static void check_size (const struct type *);
248
249 static struct value *ada_index_struct_field (int, struct value *, int,
250 struct type *);
251
252 static struct value *assign_aggregate (struct value *, struct value *,
253 struct expression *, int *, enum noside);
254
255 static void aggregate_assign_from_choices (struct value *, struct value *,
256 struct expression *,
257 int *, LONGEST *, int *,
258 int, LONGEST, LONGEST);
259
260 static void aggregate_assign_positional (struct value *, struct value *,
261 struct expression *,
262 int *, LONGEST *, int *, int,
263 LONGEST, LONGEST);
264
265
266 static void aggregate_assign_others (struct value *, struct value *,
267 struct expression *,
268 int *, LONGEST *, int, LONGEST, LONGEST);
269
270
271 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
272
273
274 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
275 int *, enum noside);
276
277 static void ada_forward_operator_length (struct expression *, int, int *,
278 int *);
279 \f
280
281
282 /* Maximum-sized dynamic type. */
283 static unsigned int varsize_limit;
284
285 /* FIXME: brobecker/2003-09-17: No longer a const because it is
286 returned by a function that does not return a const char *. */
287 static char *ada_completer_word_break_characters =
288 #ifdef VMS
289 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
290 #else
291 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
292 #endif
293
294 /* The name of the symbol to use to get the name of the main subprogram. */
295 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
296 = "__gnat_ada_main_program_name";
297
298 /* Limit on the number of warnings to raise per expression evaluation. */
299 static int warning_limit = 2;
300
301 /* Number of warning messages issued; reset to 0 by cleanups after
302 expression evaluation. */
303 static int warnings_issued = 0;
304
305 static const char *known_runtime_file_name_patterns[] = {
306 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
307 };
308
309 static const char *known_auxiliary_function_name_patterns[] = {
310 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
311 };
312
313 /* Space for allocating results of ada_lookup_symbol_list. */
314 static struct obstack symbol_list_obstack;
315
316 /* Utilities */
317
318 /* Given DECODED_NAME a string holding a symbol name in its
319 decoded form (ie using the Ada dotted notation), returns
320 its unqualified name. */
321
322 static const char *
323 ada_unqualified_name (const char *decoded_name)
324 {
325 const char *result = strrchr (decoded_name, '.');
326
327 if (result != NULL)
328 result++; /* Skip the dot... */
329 else
330 result = decoded_name;
331
332 return result;
333 }
334
335 /* Return a string starting with '<', followed by STR, and '>'.
336 The result is good until the next call. */
337
338 static char *
339 add_angle_brackets (const char *str)
340 {
341 static char *result = NULL;
342
343 xfree (result);
344 result = (char *) xmalloc ((strlen (str) + 3) * sizeof (char));
345
346 sprintf (result, "<%s>", str);
347 return result;
348 }
349
350 static char *
351 ada_get_gdb_completer_word_break_characters (void)
352 {
353 return ada_completer_word_break_characters;
354 }
355
356 /* Print an array element index using the Ada syntax. */
357
358 static void
359 ada_print_array_index (struct value *index_value, struct ui_file *stream,
360 int format, enum val_prettyprint pretty)
361 {
362 LA_VALUE_PRINT (index_value, stream, format, pretty);
363 fprintf_filtered (stream, " => ");
364 }
365
366 /* Read the string located at ADDR from the inferior and store the
367 result into BUF. */
368
369 static void
370 extract_string (CORE_ADDR addr, char *buf)
371 {
372 int char_index = 0;
373
374 /* Loop, reading one byte at a time, until we reach the '\000'
375 end-of-string marker. */
376 do
377 {
378 target_read_memory (addr + char_index * sizeof (char),
379 buf + char_index * sizeof (char), sizeof (char));
380 char_index++;
381 }
382 while (buf[char_index - 1] != '\000');
383 }
384
385 /* Assuming VECT points to an array of *SIZE objects of size
386 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
387 updating *SIZE as necessary and returning the (new) array. */
388
389 void *
390 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
391 {
392 if (*size < min_size)
393 {
394 *size *= 2;
395 if (*size < min_size)
396 *size = min_size;
397 vect = xrealloc (vect, *size * element_size);
398 }
399 return vect;
400 }
401
402 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
403 suffix of FIELD_NAME beginning "___". */
404
405 static int
406 field_name_match (const char *field_name, const char *target)
407 {
408 int len = strlen (target);
409 return
410 (strncmp (field_name, target, len) == 0
411 && (field_name[len] == '\0'
412 || (strncmp (field_name + len, "___", 3) == 0
413 && strcmp (field_name + strlen (field_name) - 6,
414 "___XVN") != 0)));
415 }
416
417
418 /* Assuming TYPE is a TYPE_CODE_STRUCT, find the field whose name matches
419 FIELD_NAME, and return its index. This function also handles fields
420 whose name have ___ suffixes because the compiler sometimes alters
421 their name by adding such a suffix to represent fields with certain
422 constraints. If the field could not be found, return a negative
423 number if MAYBE_MISSING is set. Otherwise raise an error. */
424
425 int
426 ada_get_field_index (const struct type *type, const char *field_name,
427 int maybe_missing)
428 {
429 int fieldno;
430 for (fieldno = 0; fieldno < TYPE_NFIELDS (type); fieldno++)
431 if (field_name_match (TYPE_FIELD_NAME (type, fieldno), field_name))
432 return fieldno;
433
434 if (!maybe_missing)
435 error (_("Unable to find field %s in struct %s. Aborting"),
436 field_name, TYPE_NAME (type));
437
438 return -1;
439 }
440
441 /* The length of the prefix of NAME prior to any "___" suffix. */
442
443 int
444 ada_name_prefix_len (const char *name)
445 {
446 if (name == NULL)
447 return 0;
448 else
449 {
450 const char *p = strstr (name, "___");
451 if (p == NULL)
452 return strlen (name);
453 else
454 return p - name;
455 }
456 }
457
458 /* Return non-zero if SUFFIX is a suffix of STR.
459 Return zero if STR is null. */
460
461 static int
462 is_suffix (const char *str, const char *suffix)
463 {
464 int len1, len2;
465 if (str == NULL)
466 return 0;
467 len1 = strlen (str);
468 len2 = strlen (suffix);
469 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
470 }
471
472 /* Create a value of type TYPE whose contents come from VALADDR, if it
473 is non-null, and whose memory address (in the inferior) is
474 ADDRESS. */
475
476 struct value *
477 value_from_contents_and_address (struct type *type,
478 const gdb_byte *valaddr,
479 CORE_ADDR address)
480 {
481 struct value *v = allocate_value (type);
482 if (valaddr == NULL)
483 set_value_lazy (v, 1);
484 else
485 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
486 VALUE_ADDRESS (v) = address;
487 if (address != 0)
488 VALUE_LVAL (v) = lval_memory;
489 return v;
490 }
491
492 /* The contents of value VAL, treated as a value of type TYPE. The
493 result is an lval in memory if VAL is. */
494
495 static struct value *
496 coerce_unspec_val_to_type (struct value *val, struct type *type)
497 {
498 type = ada_check_typedef (type);
499 if (value_type (val) == type)
500 return val;
501 else
502 {
503 struct value *result;
504
505 /* Make sure that the object size is not unreasonable before
506 trying to allocate some memory for it. */
507 check_size (type);
508
509 result = allocate_value (type);
510 VALUE_LVAL (result) = VALUE_LVAL (val);
511 set_value_bitsize (result, value_bitsize (val));
512 set_value_bitpos (result, value_bitpos (val));
513 VALUE_ADDRESS (result) = VALUE_ADDRESS (val) + value_offset (val);
514 if (value_lazy (val)
515 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
516 set_value_lazy (result, 1);
517 else
518 memcpy (value_contents_raw (result), value_contents (val),
519 TYPE_LENGTH (type));
520 return result;
521 }
522 }
523
524 static const gdb_byte *
525 cond_offset_host (const gdb_byte *valaddr, long offset)
526 {
527 if (valaddr == NULL)
528 return NULL;
529 else
530 return valaddr + offset;
531 }
532
533 static CORE_ADDR
534 cond_offset_target (CORE_ADDR address, long offset)
535 {
536 if (address == 0)
537 return 0;
538 else
539 return address + offset;
540 }
541
542 /* Issue a warning (as for the definition of warning in utils.c, but
543 with exactly one argument rather than ...), unless the limit on the
544 number of warnings has passed during the evaluation of the current
545 expression. */
546
547 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
548 provided by "complaint". */
549 static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);
550
551 static void
552 lim_warning (const char *format, ...)
553 {
554 va_list args;
555 va_start (args, format);
556
557 warnings_issued += 1;
558 if (warnings_issued <= warning_limit)
559 vwarning (format, args);
560
561 va_end (args);
562 }
563
564 /* Issue an error if the size of an object of type T is unreasonable,
565 i.e. if it would be a bad idea to allocate a value of this type in
566 GDB. */
567
568 static void
569 check_size (const struct type *type)
570 {
571 if (TYPE_LENGTH (type) > varsize_limit)
572 error (_("object size is larger than varsize-limit"));
573 }
574
575
576 /* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
577 gdbtypes.h, but some of the necessary definitions in that file
578 seem to have gone missing. */
579
580 /* Maximum value of a SIZE-byte signed integer type. */
581 static LONGEST
582 max_of_size (int size)
583 {
584 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
585 return top_bit | (top_bit - 1);
586 }
587
588 /* Minimum value of a SIZE-byte signed integer type. */
589 static LONGEST
590 min_of_size (int size)
591 {
592 return -max_of_size (size) - 1;
593 }
594
595 /* Maximum value of a SIZE-byte unsigned integer type. */
596 static ULONGEST
597 umax_of_size (int size)
598 {
599 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
600 return top_bit | (top_bit - 1);
601 }
602
603 /* Maximum value of integral type T, as a signed quantity. */
604 static LONGEST
605 max_of_type (struct type *t)
606 {
607 if (TYPE_UNSIGNED (t))
608 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
609 else
610 return max_of_size (TYPE_LENGTH (t));
611 }
612
613 /* Minimum value of integral type T, as a signed quantity. */
614 static LONGEST
615 min_of_type (struct type *t)
616 {
617 if (TYPE_UNSIGNED (t))
618 return 0;
619 else
620 return min_of_size (TYPE_LENGTH (t));
621 }
622
623 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
624 static LONGEST
625 discrete_type_high_bound (struct type *type)
626 {
627 switch (TYPE_CODE (type))
628 {
629 case TYPE_CODE_RANGE:
630 return TYPE_HIGH_BOUND (type);
631 case TYPE_CODE_ENUM:
632 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
633 case TYPE_CODE_BOOL:
634 return 1;
635 case TYPE_CODE_CHAR:
636 case TYPE_CODE_INT:
637 return max_of_type (type);
638 default:
639 error (_("Unexpected type in discrete_type_high_bound."));
640 }
641 }
642
643 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
644 static LONGEST
645 discrete_type_low_bound (struct type *type)
646 {
647 switch (TYPE_CODE (type))
648 {
649 case TYPE_CODE_RANGE:
650 return TYPE_LOW_BOUND (type);
651 case TYPE_CODE_ENUM:
652 return TYPE_FIELD_BITPOS (type, 0);
653 case TYPE_CODE_BOOL:
654 return 0;
655 case TYPE_CODE_CHAR:
656 case TYPE_CODE_INT:
657 return min_of_type (type);
658 default:
659 error (_("Unexpected type in discrete_type_low_bound."));
660 }
661 }
662
663 /* The identity on non-range types. For range types, the underlying
664 non-range scalar type. */
665
666 static struct type *
667 base_type (struct type *type)
668 {
669 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
670 {
671 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
672 return type;
673 type = TYPE_TARGET_TYPE (type);
674 }
675 return type;
676 }
677 \f
678
679 /* Language Selection */
680
681 /* If the main program is in Ada, return language_ada, otherwise return LANG
682 (the main program is in Ada iif the adainit symbol is found).
683
684 MAIN_PST is not used. */
685
686 enum language
687 ada_update_initial_language (enum language lang,
688 struct partial_symtab *main_pst)
689 {
690 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
691 (struct objfile *) NULL) != NULL)
692 return language_ada;
693
694 return lang;
695 }
696
697 /* If the main procedure is written in Ada, then return its name.
698 The result is good until the next call. Return NULL if the main
699 procedure doesn't appear to be in Ada. */
700
701 char *
702 ada_main_name (void)
703 {
704 struct minimal_symbol *msym;
705 CORE_ADDR main_program_name_addr;
706 static char main_program_name[1024];
707
708 /* For Ada, the name of the main procedure is stored in a specific
709 string constant, generated by the binder. Look for that symbol,
710 extract its address, and then read that string. If we didn't find
711 that string, then most probably the main procedure is not written
712 in Ada. */
713 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
714
715 if (msym != NULL)
716 {
717 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
718 if (main_program_name_addr == 0)
719 error (_("Invalid address for Ada main program name."));
720
721 extract_string (main_program_name_addr, main_program_name);
722 return main_program_name;
723 }
724
725 /* The main procedure doesn't seem to be in Ada. */
726 return NULL;
727 }
728 \f
729 /* Symbols */
730
731 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
732 of NULLs. */
733
734 const struct ada_opname_map ada_opname_table[] = {
735 {"Oadd", "\"+\"", BINOP_ADD},
736 {"Osubtract", "\"-\"", BINOP_SUB},
737 {"Omultiply", "\"*\"", BINOP_MUL},
738 {"Odivide", "\"/\"", BINOP_DIV},
739 {"Omod", "\"mod\"", BINOP_MOD},
740 {"Orem", "\"rem\"", BINOP_REM},
741 {"Oexpon", "\"**\"", BINOP_EXP},
742 {"Olt", "\"<\"", BINOP_LESS},
743 {"Ole", "\"<=\"", BINOP_LEQ},
744 {"Ogt", "\">\"", BINOP_GTR},
745 {"Oge", "\">=\"", BINOP_GEQ},
746 {"Oeq", "\"=\"", BINOP_EQUAL},
747 {"One", "\"/=\"", BINOP_NOTEQUAL},
748 {"Oand", "\"and\"", BINOP_BITWISE_AND},
749 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
750 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
751 {"Oconcat", "\"&\"", BINOP_CONCAT},
752 {"Oabs", "\"abs\"", UNOP_ABS},
753 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
754 {"Oadd", "\"+\"", UNOP_PLUS},
755 {"Osubtract", "\"-\"", UNOP_NEG},
756 {NULL, NULL}
757 };
758
759 /* Return non-zero if STR should be suppressed in info listings. */
760
761 static int
762 is_suppressed_name (const char *str)
763 {
764 if (strncmp (str, "_ada_", 5) == 0)
765 str += 5;
766 if (str[0] == '_' || str[0] == '\000')
767 return 1;
768 else
769 {
770 const char *p;
771 const char *suffix = strstr (str, "___");
772 if (suffix != NULL && suffix[3] != 'X')
773 return 1;
774 if (suffix == NULL)
775 suffix = str + strlen (str);
776 for (p = suffix - 1; p != str; p -= 1)
777 if (isupper (*p))
778 {
779 int i;
780 if (p[0] == 'X' && p[-1] != '_')
781 goto OK;
782 if (*p != 'O')
783 return 1;
784 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
785 if (strncmp (ada_opname_table[i].encoded, p,
786 strlen (ada_opname_table[i].encoded)) == 0)
787 goto OK;
788 return 1;
789 OK:;
790 }
791 return 0;
792 }
793 }
794
795 /* The "encoded" form of DECODED, according to GNAT conventions.
796 The result is valid until the next call to ada_encode. */
797
798 char *
799 ada_encode (const char *decoded)
800 {
801 static char *encoding_buffer = NULL;
802 static size_t encoding_buffer_size = 0;
803 const char *p;
804 int k;
805
806 if (decoded == NULL)
807 return NULL;
808
809 GROW_VECT (encoding_buffer, encoding_buffer_size,
810 2 * strlen (decoded) + 10);
811
812 k = 0;
813 for (p = decoded; *p != '\0'; p += 1)
814 {
815 if (!ADA_RETAIN_DOTS && *p == '.')
816 {
817 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
818 k += 2;
819 }
820 else if (*p == '"')
821 {
822 const struct ada_opname_map *mapping;
823
824 for (mapping = ada_opname_table;
825 mapping->encoded != NULL
826 && strncmp (mapping->decoded, p,
827 strlen (mapping->decoded)) != 0; mapping += 1)
828 ;
829 if (mapping->encoded == NULL)
830 error (_("invalid Ada operator name: %s"), p);
831 strcpy (encoding_buffer + k, mapping->encoded);
832 k += strlen (mapping->encoded);
833 break;
834 }
835 else
836 {
837 encoding_buffer[k] = *p;
838 k += 1;
839 }
840 }
841
842 encoding_buffer[k] = '\0';
843 return encoding_buffer;
844 }
845
846 /* Return NAME folded to lower case, or, if surrounded by single
847 quotes, unfolded, but with the quotes stripped away. Result good
848 to next call. */
849
850 char *
851 ada_fold_name (const char *name)
852 {
853 static char *fold_buffer = NULL;
854 static size_t fold_buffer_size = 0;
855
856 int len = strlen (name);
857 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
858
859 if (name[0] == '\'')
860 {
861 strncpy (fold_buffer, name + 1, len - 2);
862 fold_buffer[len - 2] = '\000';
863 }
864 else
865 {
866 int i;
867 for (i = 0; i <= len; i += 1)
868 fold_buffer[i] = tolower (name[i]);
869 }
870
871 return fold_buffer;
872 }
873
874 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
875
876 static int
877 is_lower_alphanum (const char c)
878 {
879 return (isdigit (c) || (isalpha (c) && islower (c)));
880 }
881
882 /* Remove either of these suffixes:
883 . .{DIGIT}+
884 . ${DIGIT}+
885 . ___{DIGIT}+
886 . __{DIGIT}+.
887 These are suffixes introduced by the compiler for entities such as
888 nested subprogram for instance, in order to avoid name clashes.
889 They do not serve any purpose for the debugger. */
890
891 static void
892 ada_remove_trailing_digits (const char *encoded, int *len)
893 {
894 if (*len > 1 && isdigit (encoded[*len - 1]))
895 {
896 int i = *len - 2;
897 while (i > 0 && isdigit (encoded[i]))
898 i--;
899 if (i >= 0 && encoded[i] == '.')
900 *len = i;
901 else if (i >= 0 && encoded[i] == '$')
902 *len = i;
903 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
904 *len = i - 2;
905 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
906 *len = i - 1;
907 }
908 }
909
910 /* Remove the suffix introduced by the compiler for protected object
911 subprograms. */
912
913 static void
914 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
915 {
916 /* Remove trailing N. */
917
918 /* Protected entry subprograms are broken into two
919 separate subprograms: The first one is unprotected, and has
920 a 'N' suffix; the second is the protected version, and has
921 the 'P' suffix. The second calls the first one after handling
922 the protection. Since the P subprograms are internally generated,
923 we leave these names undecoded, giving the user a clue that this
924 entity is internal. */
925
926 if (*len > 1
927 && encoded[*len - 1] == 'N'
928 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
929 *len = *len - 1;
930 }
931
932 /* If ENCODED follows the GNAT entity encoding conventions, then return
933 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
934 replaced by ENCODED.
935
936 The resulting string is valid until the next call of ada_decode.
937 If the string is unchanged by decoding, the original string pointer
938 is returned. */
939
940 const char *
941 ada_decode (const char *encoded)
942 {
943 int i, j;
944 int len0;
945 const char *p;
946 char *decoded;
947 int at_start_name;
948 static char *decoding_buffer = NULL;
949 static size_t decoding_buffer_size = 0;
950
951 /* The name of the Ada main procedure starts with "_ada_".
952 This prefix is not part of the decoded name, so skip this part
953 if we see this prefix. */
954 if (strncmp (encoded, "_ada_", 5) == 0)
955 encoded += 5;
956
957 /* If the name starts with '_', then it is not a properly encoded
958 name, so do not attempt to decode it. Similarly, if the name
959 starts with '<', the name should not be decoded. */
960 if (encoded[0] == '_' || encoded[0] == '<')
961 goto Suppress;
962
963 len0 = strlen (encoded);
964
965 ada_remove_trailing_digits (encoded, &len0);
966 ada_remove_po_subprogram_suffix (encoded, &len0);
967
968 /* Remove the ___X.* suffix if present. Do not forget to verify that
969 the suffix is located before the current "end" of ENCODED. We want
970 to avoid re-matching parts of ENCODED that have previously been
971 marked as discarded (by decrementing LEN0). */
972 p = strstr (encoded, "___");
973 if (p != NULL && p - encoded < len0 - 3)
974 {
975 if (p[3] == 'X')
976 len0 = p - encoded;
977 else
978 goto Suppress;
979 }
980
981 /* Remove any trailing TKB suffix. It tells us that this symbol
982 is for the body of a task, but that information does not actually
983 appear in the decoded name. */
984
985 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
986 len0 -= 3;
987
988 /* Remove trailing "B" suffixes. */
989 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
990
991 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
992 len0 -= 1;
993
994 /* Make decoded big enough for possible expansion by operator name. */
995
996 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
997 decoded = decoding_buffer;
998
999 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1000
1001 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1002 {
1003 i = len0 - 2;
1004 while ((i >= 0 && isdigit (encoded[i]))
1005 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1006 i -= 1;
1007 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1008 len0 = i - 1;
1009 else if (encoded[i] == '$')
1010 len0 = i;
1011 }
1012
1013 /* The first few characters that are not alphabetic are not part
1014 of any encoding we use, so we can copy them over verbatim. */
1015
1016 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1017 decoded[j] = encoded[i];
1018
1019 at_start_name = 1;
1020 while (i < len0)
1021 {
1022 /* Is this a symbol function? */
1023 if (at_start_name && encoded[i] == 'O')
1024 {
1025 int k;
1026 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1027 {
1028 int op_len = strlen (ada_opname_table[k].encoded);
1029 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1030 op_len - 1) == 0)
1031 && !isalnum (encoded[i + op_len]))
1032 {
1033 strcpy (decoded + j, ada_opname_table[k].decoded);
1034 at_start_name = 0;
1035 i += op_len;
1036 j += strlen (ada_opname_table[k].decoded);
1037 break;
1038 }
1039 }
1040 if (ada_opname_table[k].encoded != NULL)
1041 continue;
1042 }
1043 at_start_name = 0;
1044
1045 /* Replace "TK__" with "__", which will eventually be translated
1046 into "." (just below). */
1047
1048 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1049 i += 2;
1050
1051 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1052 be translated into "." (just below). These are internal names
1053 generated for anonymous blocks inside which our symbol is nested. */
1054
1055 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1056 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1057 && isdigit (encoded [i+4]))
1058 {
1059 int k = i + 5;
1060
1061 while (k < len0 && isdigit (encoded[k]))
1062 k++; /* Skip any extra digit. */
1063
1064 /* Double-check that the "__B_{DIGITS}+" sequence we found
1065 is indeed followed by "__". */
1066 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1067 i = k;
1068 }
1069
1070 /* Remove _E{DIGITS}+[sb] */
1071
1072 /* Just as for protected object subprograms, there are 2 categories
1073 of subprograms created by the compiler for each entry. The first
1074 one implements the actual entry code, and has a suffix following
1075 the convention above; the second one implements the barrier and
1076 uses the same convention as above, except that the 'E' is replaced
1077 by a 'B'.
1078
1079 Just as above, we do not decode the name of barrier functions
1080 to give the user a clue that the code he is debugging has been
1081 internally generated. */
1082
1083 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1084 && isdigit (encoded[i+2]))
1085 {
1086 int k = i + 3;
1087
1088 while (k < len0 && isdigit (encoded[k]))
1089 k++;
1090
1091 if (k < len0
1092 && (encoded[k] == 'b' || encoded[k] == 's'))
1093 {
1094 k++;
1095 /* Just as an extra precaution, make sure that if this
1096 suffix is followed by anything else, it is a '_'.
1097 Otherwise, we matched this sequence by accident. */
1098 if (k == len0
1099 || (k < len0 && encoded[k] == '_'))
1100 i = k;
1101 }
1102 }
1103
1104 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1105 the GNAT front-end in protected object subprograms. */
1106
1107 if (i < len0 + 3
1108 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1109 {
1110 /* Backtrack a bit up until we reach either the begining of
1111 the encoded name, or "__". Make sure that we only find
1112 digits or lowercase characters. */
1113 const char *ptr = encoded + i - 1;
1114
1115 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1116 ptr--;
1117 if (ptr < encoded
1118 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1119 i++;
1120 }
1121
1122 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1123 {
1124 /* This is a X[bn]* sequence not separated from the previous
1125 part of the name with a non-alpha-numeric character (in other
1126 words, immediately following an alpha-numeric character), then
1127 verify that it is placed at the end of the encoded name. If
1128 not, then the encoding is not valid and we should abort the
1129 decoding. Otherwise, just skip it, it is used in body-nested
1130 package names. */
1131 do
1132 i += 1;
1133 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1134 if (i < len0)
1135 goto Suppress;
1136 }
1137 else if (!ADA_RETAIN_DOTS
1138 && i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1139 {
1140 /* Replace '__' by '.'. */
1141 decoded[j] = '.';
1142 at_start_name = 1;
1143 i += 2;
1144 j += 1;
1145 }
1146 else
1147 {
1148 /* It's a character part of the decoded name, so just copy it
1149 over. */
1150 decoded[j] = encoded[i];
1151 i += 1;
1152 j += 1;
1153 }
1154 }
1155 decoded[j] = '\000';
1156
1157 /* Decoded names should never contain any uppercase character.
1158 Double-check this, and abort the decoding if we find one. */
1159
1160 for (i = 0; decoded[i] != '\0'; i += 1)
1161 if (isupper (decoded[i]) || decoded[i] == ' ')
1162 goto Suppress;
1163
1164 if (strcmp (decoded, encoded) == 0)
1165 return encoded;
1166 else
1167 return decoded;
1168
1169 Suppress:
1170 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1171 decoded = decoding_buffer;
1172 if (encoded[0] == '<')
1173 strcpy (decoded, encoded);
1174 else
1175 sprintf (decoded, "<%s>", encoded);
1176 return decoded;
1177
1178 }
1179
1180 /* Table for keeping permanent unique copies of decoded names. Once
1181 allocated, names in this table are never released. While this is a
1182 storage leak, it should not be significant unless there are massive
1183 changes in the set of decoded names in successive versions of a
1184 symbol table loaded during a single session. */
1185 static struct htab *decoded_names_store;
1186
1187 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1188 in the language-specific part of GSYMBOL, if it has not been
1189 previously computed. Tries to save the decoded name in the same
1190 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1191 in any case, the decoded symbol has a lifetime at least that of
1192 GSYMBOL).
1193 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1194 const, but nevertheless modified to a semantically equivalent form
1195 when a decoded name is cached in it.
1196 */
1197
1198 char *
1199 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1200 {
1201 char **resultp =
1202 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1203 if (*resultp == NULL)
1204 {
1205 const char *decoded = ada_decode (gsymbol->name);
1206 if (gsymbol->bfd_section != NULL)
1207 {
1208 bfd *obfd = gsymbol->bfd_section->owner;
1209 if (obfd != NULL)
1210 {
1211 struct objfile *objf;
1212 ALL_OBJFILES (objf)
1213 {
1214 if (obfd == objf->obfd)
1215 {
1216 *resultp = obsavestring (decoded, strlen (decoded),
1217 &objf->objfile_obstack);
1218 break;
1219 }
1220 }
1221 }
1222 }
1223 /* Sometimes, we can't find a corresponding objfile, in which
1224 case, we put the result on the heap. Since we only decode
1225 when needed, we hope this usually does not cause a
1226 significant memory leak (FIXME). */
1227 if (*resultp == NULL)
1228 {
1229 char **slot = (char **) htab_find_slot (decoded_names_store,
1230 decoded, INSERT);
1231 if (*slot == NULL)
1232 *slot = xstrdup (decoded);
1233 *resultp = *slot;
1234 }
1235 }
1236
1237 return *resultp;
1238 }
1239
1240 char *
1241 ada_la_decode (const char *encoded, int options)
1242 {
1243 return xstrdup (ada_decode (encoded));
1244 }
1245
1246 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1247 suffixes that encode debugging information or leading _ada_ on
1248 SYM_NAME (see is_name_suffix commentary for the debugging
1249 information that is ignored). If WILD, then NAME need only match a
1250 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1251 either argument is NULL. */
1252
1253 int
1254 ada_match_name (const char *sym_name, const char *name, int wild)
1255 {
1256 if (sym_name == NULL || name == NULL)
1257 return 0;
1258 else if (wild)
1259 return wild_match (name, strlen (name), sym_name);
1260 else
1261 {
1262 int len_name = strlen (name);
1263 return (strncmp (sym_name, name, len_name) == 0
1264 && is_name_suffix (sym_name + len_name))
1265 || (strncmp (sym_name, "_ada_", 5) == 0
1266 && strncmp (sym_name + 5, name, len_name) == 0
1267 && is_name_suffix (sym_name + len_name + 5));
1268 }
1269 }
1270
1271 /* True (non-zero) iff, in Ada mode, the symbol SYM should be
1272 suppressed in info listings. */
1273
1274 int
1275 ada_suppress_symbol_printing (struct symbol *sym)
1276 {
1277 if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN)
1278 return 1;
1279 else
1280 return is_suppressed_name (SYMBOL_LINKAGE_NAME (sym));
1281 }
1282 \f
1283
1284 /* Arrays */
1285
1286 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1287
1288 static char *bound_name[] = {
1289 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1290 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1291 };
1292
1293 /* Maximum number of array dimensions we are prepared to handle. */
1294
1295 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1296
1297 /* Like modify_field, but allows bitpos > wordlength. */
1298
1299 static void
1300 modify_general_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
1301 {
1302 modify_field (addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
1303 }
1304
1305
1306 /* The desc_* routines return primitive portions of array descriptors
1307 (fat pointers). */
1308
1309 /* The descriptor or array type, if any, indicated by TYPE; removes
1310 level of indirection, if needed. */
1311
1312 static struct type *
1313 desc_base_type (struct type *type)
1314 {
1315 if (type == NULL)
1316 return NULL;
1317 type = ada_check_typedef (type);
1318 if (type != NULL
1319 && (TYPE_CODE (type) == TYPE_CODE_PTR
1320 || TYPE_CODE (type) == TYPE_CODE_REF))
1321 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1322 else
1323 return type;
1324 }
1325
1326 /* True iff TYPE indicates a "thin" array pointer type. */
1327
1328 static int
1329 is_thin_pntr (struct type *type)
1330 {
1331 return
1332 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1333 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1334 }
1335
1336 /* The descriptor type for thin pointer type TYPE. */
1337
1338 static struct type *
1339 thin_descriptor_type (struct type *type)
1340 {
1341 struct type *base_type = desc_base_type (type);
1342 if (base_type == NULL)
1343 return NULL;
1344 if (is_suffix (ada_type_name (base_type), "___XVE"))
1345 return base_type;
1346 else
1347 {
1348 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1349 if (alt_type == NULL)
1350 return base_type;
1351 else
1352 return alt_type;
1353 }
1354 }
1355
1356 /* A pointer to the array data for thin-pointer value VAL. */
1357
1358 static struct value *
1359 thin_data_pntr (struct value *val)
1360 {
1361 struct type *type = value_type (val);
1362 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1363 return value_cast (desc_data_type (thin_descriptor_type (type)),
1364 value_copy (val));
1365 else
1366 return value_from_longest (desc_data_type (thin_descriptor_type (type)),
1367 VALUE_ADDRESS (val) + value_offset (val));
1368 }
1369
1370 /* True iff TYPE indicates a "thick" array pointer type. */
1371
1372 static int
1373 is_thick_pntr (struct type *type)
1374 {
1375 type = desc_base_type (type);
1376 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1377 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1378 }
1379
1380 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1381 pointer to one, the type of its bounds data; otherwise, NULL. */
1382
1383 static struct type *
1384 desc_bounds_type (struct type *type)
1385 {
1386 struct type *r;
1387
1388 type = desc_base_type (type);
1389
1390 if (type == NULL)
1391 return NULL;
1392 else if (is_thin_pntr (type))
1393 {
1394 type = thin_descriptor_type (type);
1395 if (type == NULL)
1396 return NULL;
1397 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1398 if (r != NULL)
1399 return ada_check_typedef (r);
1400 }
1401 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1402 {
1403 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1404 if (r != NULL)
1405 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1406 }
1407 return NULL;
1408 }
1409
1410 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1411 one, a pointer to its bounds data. Otherwise NULL. */
1412
1413 static struct value *
1414 desc_bounds (struct value *arr)
1415 {
1416 struct type *type = ada_check_typedef (value_type (arr));
1417 if (is_thin_pntr (type))
1418 {
1419 struct type *bounds_type =
1420 desc_bounds_type (thin_descriptor_type (type));
1421 LONGEST addr;
1422
1423 if (bounds_type == NULL)
1424 error (_("Bad GNAT array descriptor"));
1425
1426 /* NOTE: The following calculation is not really kosher, but
1427 since desc_type is an XVE-encoded type (and shouldn't be),
1428 the correct calculation is a real pain. FIXME (and fix GCC). */
1429 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1430 addr = value_as_long (arr);
1431 else
1432 addr = VALUE_ADDRESS (arr) + value_offset (arr);
1433
1434 return
1435 value_from_longest (lookup_pointer_type (bounds_type),
1436 addr - TYPE_LENGTH (bounds_type));
1437 }
1438
1439 else if (is_thick_pntr (type))
1440 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1441 _("Bad GNAT array descriptor"));
1442 else
1443 return NULL;
1444 }
1445
1446 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1447 position of the field containing the address of the bounds data. */
1448
1449 static int
1450 fat_pntr_bounds_bitpos (struct type *type)
1451 {
1452 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1453 }
1454
1455 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1456 size of the field containing the address of the bounds data. */
1457
1458 static int
1459 fat_pntr_bounds_bitsize (struct type *type)
1460 {
1461 type = desc_base_type (type);
1462
1463 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1464 return TYPE_FIELD_BITSIZE (type, 1);
1465 else
1466 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1467 }
1468
1469 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1470 pointer to one, the type of its array data (a
1471 pointer-to-array-with-no-bounds type); otherwise, NULL. Use
1472 ada_type_of_array to get an array type with bounds data. */
1473
1474 static struct type *
1475 desc_data_type (struct type *type)
1476 {
1477 type = desc_base_type (type);
1478
1479 /* NOTE: The following is bogus; see comment in desc_bounds. */
1480 if (is_thin_pntr (type))
1481 return lookup_pointer_type
1482 (desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)));
1483 else if (is_thick_pntr (type))
1484 return lookup_struct_elt_type (type, "P_ARRAY", 1);
1485 else
1486 return NULL;
1487 }
1488
1489 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1490 its array data. */
1491
1492 static struct value *
1493 desc_data (struct value *arr)
1494 {
1495 struct type *type = value_type (arr);
1496 if (is_thin_pntr (type))
1497 return thin_data_pntr (arr);
1498 else if (is_thick_pntr (type))
1499 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1500 _("Bad GNAT array descriptor"));
1501 else
1502 return NULL;
1503 }
1504
1505
1506 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1507 position of the field containing the address of the data. */
1508
1509 static int
1510 fat_pntr_data_bitpos (struct type *type)
1511 {
1512 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1513 }
1514
1515 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1516 size of the field containing the address of the data. */
1517
1518 static int
1519 fat_pntr_data_bitsize (struct type *type)
1520 {
1521 type = desc_base_type (type);
1522
1523 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1524 return TYPE_FIELD_BITSIZE (type, 0);
1525 else
1526 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1527 }
1528
1529 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1530 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1531 bound, if WHICH is 1. The first bound is I=1. */
1532
1533 static struct value *
1534 desc_one_bound (struct value *bounds, int i, int which)
1535 {
1536 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1537 _("Bad GNAT array descriptor bounds"));
1538 }
1539
1540 /* If BOUNDS is an array-bounds structure type, return the bit position
1541 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1542 bound, if WHICH is 1. The first bound is I=1. */
1543
1544 static int
1545 desc_bound_bitpos (struct type *type, int i, int which)
1546 {
1547 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1548 }
1549
1550 /* If BOUNDS is an array-bounds structure type, return the bit field size
1551 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1552 bound, if WHICH is 1. The first bound is I=1. */
1553
1554 static int
1555 desc_bound_bitsize (struct type *type, int i, int which)
1556 {
1557 type = desc_base_type (type);
1558
1559 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1560 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1561 else
1562 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1563 }
1564
1565 /* If TYPE is the type of an array-bounds structure, the type of its
1566 Ith bound (numbering from 1). Otherwise, NULL. */
1567
1568 static struct type *
1569 desc_index_type (struct type *type, int i)
1570 {
1571 type = desc_base_type (type);
1572
1573 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1574 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1575 else
1576 return NULL;
1577 }
1578
1579 /* The number of index positions in the array-bounds type TYPE.
1580 Return 0 if TYPE is NULL. */
1581
1582 static int
1583 desc_arity (struct type *type)
1584 {
1585 type = desc_base_type (type);
1586
1587 if (type != NULL)
1588 return TYPE_NFIELDS (type) / 2;
1589 return 0;
1590 }
1591
1592 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1593 an array descriptor type (representing an unconstrained array
1594 type). */
1595
1596 static int
1597 ada_is_direct_array_type (struct type *type)
1598 {
1599 if (type == NULL)
1600 return 0;
1601 type = ada_check_typedef (type);
1602 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1603 || ada_is_array_descriptor_type (type));
1604 }
1605
1606 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1607 * to one. */
1608
1609 int
1610 ada_is_array_type (struct type *type)
1611 {
1612 while (type != NULL
1613 && (TYPE_CODE (type) == TYPE_CODE_PTR
1614 || TYPE_CODE (type) == TYPE_CODE_REF))
1615 type = TYPE_TARGET_TYPE (type);
1616 return ada_is_direct_array_type (type);
1617 }
1618
1619 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1620
1621 int
1622 ada_is_simple_array_type (struct type *type)
1623 {
1624 if (type == NULL)
1625 return 0;
1626 type = ada_check_typedef (type);
1627 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1628 || (TYPE_CODE (type) == TYPE_CODE_PTR
1629 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
1630 }
1631
1632 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1633
1634 int
1635 ada_is_array_descriptor_type (struct type *type)
1636 {
1637 struct type *data_type = desc_data_type (type);
1638
1639 if (type == NULL)
1640 return 0;
1641 type = ada_check_typedef (type);
1642 return
1643 data_type != NULL
1644 && ((TYPE_CODE (data_type) == TYPE_CODE_PTR
1645 && TYPE_TARGET_TYPE (data_type) != NULL
1646 && TYPE_CODE (TYPE_TARGET_TYPE (data_type)) == TYPE_CODE_ARRAY)
1647 || TYPE_CODE (data_type) == TYPE_CODE_ARRAY)
1648 && desc_arity (desc_bounds_type (type)) > 0;
1649 }
1650
1651 /* Non-zero iff type is a partially mal-formed GNAT array
1652 descriptor. FIXME: This is to compensate for some problems with
1653 debugging output from GNAT. Re-examine periodically to see if it
1654 is still needed. */
1655
1656 int
1657 ada_is_bogus_array_descriptor (struct type *type)
1658 {
1659 return
1660 type != NULL
1661 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1662 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1663 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1664 && !ada_is_array_descriptor_type (type);
1665 }
1666
1667
1668 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1669 (fat pointer) returns the type of the array data described---specifically,
1670 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1671 in from the descriptor; otherwise, they are left unspecified. If
1672 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1673 returns NULL. The result is simply the type of ARR if ARR is not
1674 a descriptor. */
1675 struct type *
1676 ada_type_of_array (struct value *arr, int bounds)
1677 {
1678 if (ada_is_packed_array_type (value_type (arr)))
1679 return decode_packed_array_type (value_type (arr));
1680
1681 if (!ada_is_array_descriptor_type (value_type (arr)))
1682 return value_type (arr);
1683
1684 if (!bounds)
1685 return
1686 ada_check_typedef (TYPE_TARGET_TYPE (desc_data_type (value_type (arr))));
1687 else
1688 {
1689 struct type *elt_type;
1690 int arity;
1691 struct value *descriptor;
1692 struct objfile *objf = TYPE_OBJFILE (value_type (arr));
1693
1694 elt_type = ada_array_element_type (value_type (arr), -1);
1695 arity = ada_array_arity (value_type (arr));
1696
1697 if (elt_type == NULL || arity == 0)
1698 return ada_check_typedef (value_type (arr));
1699
1700 descriptor = desc_bounds (arr);
1701 if (value_as_long (descriptor) == 0)
1702 return NULL;
1703 while (arity > 0)
1704 {
1705 struct type *range_type = alloc_type (objf);
1706 struct type *array_type = alloc_type (objf);
1707 struct value *low = desc_one_bound (descriptor, arity, 0);
1708 struct value *high = desc_one_bound (descriptor, arity, 1);
1709 arity -= 1;
1710
1711 create_range_type (range_type, value_type (low),
1712 longest_to_int (value_as_long (low)),
1713 longest_to_int (value_as_long (high)));
1714 elt_type = create_array_type (array_type, elt_type, range_type);
1715 }
1716
1717 return lookup_pointer_type (elt_type);
1718 }
1719 }
1720
1721 /* If ARR does not represent an array, returns ARR unchanged.
1722 Otherwise, returns either a standard GDB array with bounds set
1723 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1724 GDB array. Returns NULL if ARR is a null fat pointer. */
1725
1726 struct value *
1727 ada_coerce_to_simple_array_ptr (struct value *arr)
1728 {
1729 if (ada_is_array_descriptor_type (value_type (arr)))
1730 {
1731 struct type *arrType = ada_type_of_array (arr, 1);
1732 if (arrType == NULL)
1733 return NULL;
1734 return value_cast (arrType, value_copy (desc_data (arr)));
1735 }
1736 else if (ada_is_packed_array_type (value_type (arr)))
1737 return decode_packed_array (arr);
1738 else
1739 return arr;
1740 }
1741
1742 /* If ARR does not represent an array, returns ARR unchanged.
1743 Otherwise, returns a standard GDB array describing ARR (which may
1744 be ARR itself if it already is in the proper form). */
1745
1746 static struct value *
1747 ada_coerce_to_simple_array (struct value *arr)
1748 {
1749 if (ada_is_array_descriptor_type (value_type (arr)))
1750 {
1751 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1752 if (arrVal == NULL)
1753 error (_("Bounds unavailable for null array pointer."));
1754 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1755 return value_ind (arrVal);
1756 }
1757 else if (ada_is_packed_array_type (value_type (arr)))
1758 return decode_packed_array (arr);
1759 else
1760 return arr;
1761 }
1762
1763 /* If TYPE represents a GNAT array type, return it translated to an
1764 ordinary GDB array type (possibly with BITSIZE fields indicating
1765 packing). For other types, is the identity. */
1766
1767 struct type *
1768 ada_coerce_to_simple_array_type (struct type *type)
1769 {
1770 struct value *mark = value_mark ();
1771 struct value *dummy = value_from_longest (builtin_type_long, 0);
1772 struct type *result;
1773 deprecated_set_value_type (dummy, type);
1774 result = ada_type_of_array (dummy, 0);
1775 value_free_to_mark (mark);
1776 return result;
1777 }
1778
1779 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1780
1781 int
1782 ada_is_packed_array_type (struct type *type)
1783 {
1784 if (type == NULL)
1785 return 0;
1786 type = desc_base_type (type);
1787 type = ada_check_typedef (type);
1788 return
1789 ada_type_name (type) != NULL
1790 && strstr (ada_type_name (type), "___XP") != NULL;
1791 }
1792
1793 /* Given that TYPE is a standard GDB array type with all bounds filled
1794 in, and that the element size of its ultimate scalar constituents
1795 (that is, either its elements, or, if it is an array of arrays, its
1796 elements' elements, etc.) is *ELT_BITS, return an identical type,
1797 but with the bit sizes of its elements (and those of any
1798 constituent arrays) recorded in the BITSIZE components of its
1799 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1800 in bits. */
1801
1802 static struct type *
1803 packed_array_type (struct type *type, long *elt_bits)
1804 {
1805 struct type *new_elt_type;
1806 struct type *new_type;
1807 LONGEST low_bound, high_bound;
1808
1809 type = ada_check_typedef (type);
1810 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1811 return type;
1812
1813 new_type = alloc_type (TYPE_OBJFILE (type));
1814 new_elt_type = packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
1815 elt_bits);
1816 create_array_type (new_type, new_elt_type, TYPE_FIELD_TYPE (type, 0));
1817 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1818 TYPE_NAME (new_type) = ada_type_name (type);
1819
1820 if (get_discrete_bounds (TYPE_FIELD_TYPE (type, 0),
1821 &low_bound, &high_bound) < 0)
1822 low_bound = high_bound = 0;
1823 if (high_bound < low_bound)
1824 *elt_bits = TYPE_LENGTH (new_type) = 0;
1825 else
1826 {
1827 *elt_bits *= (high_bound - low_bound + 1);
1828 TYPE_LENGTH (new_type) =
1829 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1830 }
1831
1832 TYPE_FIXED_INSTANCE (new_type) = 1;
1833 return new_type;
1834 }
1835
1836 /* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE). */
1837
1838 static struct type *
1839 decode_packed_array_type (struct type *type)
1840 {
1841 struct symbol *sym;
1842 struct block **blocks;
1843 char *raw_name = ada_type_name (ada_check_typedef (type));
1844 char *name;
1845 char *tail;
1846 struct type *shadow_type;
1847 long bits;
1848 int i, n;
1849
1850 if (!raw_name)
1851 raw_name = ada_type_name (desc_base_type (type));
1852
1853 if (!raw_name)
1854 return NULL;
1855
1856 name = (char *) alloca (strlen (raw_name) + 1);
1857 tail = strstr (raw_name, "___XP");
1858 type = desc_base_type (type);
1859
1860 memcpy (name, raw_name, tail - raw_name);
1861 name[tail - raw_name] = '\000';
1862
1863 sym = standard_lookup (name, get_selected_block (0), VAR_DOMAIN);
1864 if (sym == NULL || SYMBOL_TYPE (sym) == NULL)
1865 {
1866 lim_warning (_("could not find bounds information on packed array"));
1867 return NULL;
1868 }
1869 shadow_type = SYMBOL_TYPE (sym);
1870
1871 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1872 {
1873 lim_warning (_("could not understand bounds information on packed array"));
1874 return NULL;
1875 }
1876
1877 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1878 {
1879 lim_warning
1880 (_("could not understand bit size information on packed array"));
1881 return NULL;
1882 }
1883
1884 return packed_array_type (shadow_type, &bits);
1885 }
1886
1887 /* Given that ARR is a struct value *indicating a GNAT packed array,
1888 returns a simple array that denotes that array. Its type is a
1889 standard GDB array type except that the BITSIZEs of the array
1890 target types are set to the number of bits in each element, and the
1891 type length is set appropriately. */
1892
1893 static struct value *
1894 decode_packed_array (struct value *arr)
1895 {
1896 struct type *type;
1897
1898 arr = ada_coerce_ref (arr);
1899 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
1900 arr = ada_value_ind (arr);
1901
1902 type = decode_packed_array_type (value_type (arr));
1903 if (type == NULL)
1904 {
1905 error (_("can't unpack array"));
1906 return NULL;
1907 }
1908
1909 if (gdbarch_bits_big_endian (current_gdbarch)
1910 && ada_is_modular_type (value_type (arr)))
1911 {
1912 /* This is a (right-justified) modular type representing a packed
1913 array with no wrapper. In order to interpret the value through
1914 the (left-justified) packed array type we just built, we must
1915 first left-justify it. */
1916 int bit_size, bit_pos;
1917 ULONGEST mod;
1918
1919 mod = ada_modulus (value_type (arr)) - 1;
1920 bit_size = 0;
1921 while (mod > 0)
1922 {
1923 bit_size += 1;
1924 mod >>= 1;
1925 }
1926 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
1927 arr = ada_value_primitive_packed_val (arr, NULL,
1928 bit_pos / HOST_CHAR_BIT,
1929 bit_pos % HOST_CHAR_BIT,
1930 bit_size,
1931 type);
1932 }
1933
1934 return coerce_unspec_val_to_type (arr, type);
1935 }
1936
1937
1938 /* The value of the element of packed array ARR at the ARITY indices
1939 given in IND. ARR must be a simple array. */
1940
1941 static struct value *
1942 value_subscript_packed (struct value *arr, int arity, struct value **ind)
1943 {
1944 int i;
1945 int bits, elt_off, bit_off;
1946 long elt_total_bit_offset;
1947 struct type *elt_type;
1948 struct value *v;
1949
1950 bits = 0;
1951 elt_total_bit_offset = 0;
1952 elt_type = ada_check_typedef (value_type (arr));
1953 for (i = 0; i < arity; i += 1)
1954 {
1955 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
1956 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1957 error
1958 (_("attempt to do packed indexing of something other than a packed array"));
1959 else
1960 {
1961 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1962 LONGEST lowerbound, upperbound;
1963 LONGEST idx;
1964
1965 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1966 {
1967 lim_warning (_("don't know bounds of array"));
1968 lowerbound = upperbound = 0;
1969 }
1970
1971 idx = value_as_long (value_pos_atr (ind[i]));
1972 if (idx < lowerbound || idx > upperbound)
1973 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
1974 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1975 elt_total_bit_offset += (idx - lowerbound) * bits;
1976 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
1977 }
1978 }
1979 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1980 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
1981
1982 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
1983 bits, elt_type);
1984 return v;
1985 }
1986
1987 /* Non-zero iff TYPE includes negative integer values. */
1988
1989 static int
1990 has_negatives (struct type *type)
1991 {
1992 switch (TYPE_CODE (type))
1993 {
1994 default:
1995 return 0;
1996 case TYPE_CODE_INT:
1997 return !TYPE_UNSIGNED (type);
1998 case TYPE_CODE_RANGE:
1999 return TYPE_LOW_BOUND (type) < 0;
2000 }
2001 }
2002
2003
2004 /* Create a new value of type TYPE from the contents of OBJ starting
2005 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2006 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2007 assigning through the result will set the field fetched from.
2008 VALADDR is ignored unless OBJ is NULL, in which case,
2009 VALADDR+OFFSET must address the start of storage containing the
2010 packed value. The value returned in this case is never an lval.
2011 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2012
2013 struct value *
2014 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2015 long offset, int bit_offset, int bit_size,
2016 struct type *type)
2017 {
2018 struct value *v;
2019 int src, /* Index into the source area */
2020 targ, /* Index into the target area */
2021 srcBitsLeft, /* Number of source bits left to move */
2022 nsrc, ntarg, /* Number of source and target bytes */
2023 unusedLS, /* Number of bits in next significant
2024 byte of source that are unused */
2025 accumSize; /* Number of meaningful bits in accum */
2026 unsigned char *bytes; /* First byte containing data to unpack */
2027 unsigned char *unpacked;
2028 unsigned long accum; /* Staging area for bits being transferred */
2029 unsigned char sign;
2030 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2031 /* Transmit bytes from least to most significant; delta is the direction
2032 the indices move. */
2033 int delta = gdbarch_bits_big_endian (current_gdbarch) ? -1 : 1;
2034
2035 type = ada_check_typedef (type);
2036
2037 if (obj == NULL)
2038 {
2039 v = allocate_value (type);
2040 bytes = (unsigned char *) (valaddr + offset);
2041 }
2042 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2043 {
2044 v = value_at (type,
2045 VALUE_ADDRESS (obj) + value_offset (obj) + offset);
2046 bytes = (unsigned char *) alloca (len);
2047 read_memory (VALUE_ADDRESS (v), bytes, len);
2048 }
2049 else
2050 {
2051 v = allocate_value (type);
2052 bytes = (unsigned char *) value_contents (obj) + offset;
2053 }
2054
2055 if (obj != NULL)
2056 {
2057 VALUE_LVAL (v) = VALUE_LVAL (obj);
2058 if (VALUE_LVAL (obj) == lval_internalvar)
2059 VALUE_LVAL (v) = lval_internalvar_component;
2060 VALUE_ADDRESS (v) = VALUE_ADDRESS (obj) + value_offset (obj) + offset;
2061 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2062 set_value_bitsize (v, bit_size);
2063 if (value_bitpos (v) >= HOST_CHAR_BIT)
2064 {
2065 VALUE_ADDRESS (v) += 1;
2066 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2067 }
2068 }
2069 else
2070 set_value_bitsize (v, bit_size);
2071 unpacked = (unsigned char *) value_contents (v);
2072
2073 srcBitsLeft = bit_size;
2074 nsrc = len;
2075 ntarg = TYPE_LENGTH (type);
2076 sign = 0;
2077 if (bit_size == 0)
2078 {
2079 memset (unpacked, 0, TYPE_LENGTH (type));
2080 return v;
2081 }
2082 else if (gdbarch_bits_big_endian (current_gdbarch))
2083 {
2084 src = len - 1;
2085 if (has_negatives (type)
2086 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2087 sign = ~0;
2088
2089 unusedLS =
2090 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2091 % HOST_CHAR_BIT;
2092
2093 switch (TYPE_CODE (type))
2094 {
2095 case TYPE_CODE_ARRAY:
2096 case TYPE_CODE_UNION:
2097 case TYPE_CODE_STRUCT:
2098 /* Non-scalar values must be aligned at a byte boundary... */
2099 accumSize =
2100 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2101 /* ... And are placed at the beginning (most-significant) bytes
2102 of the target. */
2103 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2104 break;
2105 default:
2106 accumSize = 0;
2107 targ = TYPE_LENGTH (type) - 1;
2108 break;
2109 }
2110 }
2111 else
2112 {
2113 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2114
2115 src = targ = 0;
2116 unusedLS = bit_offset;
2117 accumSize = 0;
2118
2119 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2120 sign = ~0;
2121 }
2122
2123 accum = 0;
2124 while (nsrc > 0)
2125 {
2126 /* Mask for removing bits of the next source byte that are not
2127 part of the value. */
2128 unsigned int unusedMSMask =
2129 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2130 1;
2131 /* Sign-extend bits for this byte. */
2132 unsigned int signMask = sign & ~unusedMSMask;
2133 accum |=
2134 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2135 accumSize += HOST_CHAR_BIT - unusedLS;
2136 if (accumSize >= HOST_CHAR_BIT)
2137 {
2138 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2139 accumSize -= HOST_CHAR_BIT;
2140 accum >>= HOST_CHAR_BIT;
2141 ntarg -= 1;
2142 targ += delta;
2143 }
2144 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2145 unusedLS = 0;
2146 nsrc -= 1;
2147 src += delta;
2148 }
2149 while (ntarg > 0)
2150 {
2151 accum |= sign << accumSize;
2152 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2153 accumSize -= HOST_CHAR_BIT;
2154 accum >>= HOST_CHAR_BIT;
2155 ntarg -= 1;
2156 targ += delta;
2157 }
2158
2159 return v;
2160 }
2161
2162 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2163 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2164 not overlap. */
2165 static void
2166 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2167 int src_offset, int n)
2168 {
2169 unsigned int accum, mask;
2170 int accum_bits, chunk_size;
2171
2172 target += targ_offset / HOST_CHAR_BIT;
2173 targ_offset %= HOST_CHAR_BIT;
2174 source += src_offset / HOST_CHAR_BIT;
2175 src_offset %= HOST_CHAR_BIT;
2176 if (gdbarch_bits_big_endian (current_gdbarch))
2177 {
2178 accum = (unsigned char) *source;
2179 source += 1;
2180 accum_bits = HOST_CHAR_BIT - src_offset;
2181
2182 while (n > 0)
2183 {
2184 int unused_right;
2185 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2186 accum_bits += HOST_CHAR_BIT;
2187 source += 1;
2188 chunk_size = HOST_CHAR_BIT - targ_offset;
2189 if (chunk_size > n)
2190 chunk_size = n;
2191 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2192 mask = ((1 << chunk_size) - 1) << unused_right;
2193 *target =
2194 (*target & ~mask)
2195 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2196 n -= chunk_size;
2197 accum_bits -= chunk_size;
2198 target += 1;
2199 targ_offset = 0;
2200 }
2201 }
2202 else
2203 {
2204 accum = (unsigned char) *source >> src_offset;
2205 source += 1;
2206 accum_bits = HOST_CHAR_BIT - src_offset;
2207
2208 while (n > 0)
2209 {
2210 accum = accum + ((unsigned char) *source << accum_bits);
2211 accum_bits += HOST_CHAR_BIT;
2212 source += 1;
2213 chunk_size = HOST_CHAR_BIT - targ_offset;
2214 if (chunk_size > n)
2215 chunk_size = n;
2216 mask = ((1 << chunk_size) - 1) << targ_offset;
2217 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2218 n -= chunk_size;
2219 accum_bits -= chunk_size;
2220 accum >>= chunk_size;
2221 target += 1;
2222 targ_offset = 0;
2223 }
2224 }
2225 }
2226
2227 /* Store the contents of FROMVAL into the location of TOVAL.
2228 Return a new value with the location of TOVAL and contents of
2229 FROMVAL. Handles assignment into packed fields that have
2230 floating-point or non-scalar types. */
2231
2232 static struct value *
2233 ada_value_assign (struct value *toval, struct value *fromval)
2234 {
2235 struct type *type = value_type (toval);
2236 int bits = value_bitsize (toval);
2237
2238 toval = ada_coerce_ref (toval);
2239 fromval = ada_coerce_ref (fromval);
2240
2241 if (ada_is_direct_array_type (value_type (toval)))
2242 toval = ada_coerce_to_simple_array (toval);
2243 if (ada_is_direct_array_type (value_type (fromval)))
2244 fromval = ada_coerce_to_simple_array (fromval);
2245
2246 if (!deprecated_value_modifiable (toval))
2247 error (_("Left operand of assignment is not a modifiable lvalue."));
2248
2249 if (VALUE_LVAL (toval) == lval_memory
2250 && bits > 0
2251 && (TYPE_CODE (type) == TYPE_CODE_FLT
2252 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2253 {
2254 int len = (value_bitpos (toval)
2255 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2256 int from_size;
2257 char *buffer = (char *) alloca (len);
2258 struct value *val;
2259 CORE_ADDR to_addr = VALUE_ADDRESS (toval) + value_offset (toval);
2260
2261 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2262 fromval = value_cast (type, fromval);
2263
2264 read_memory (to_addr, buffer, len);
2265 from_size = value_bitsize (fromval);
2266 if (from_size == 0)
2267 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2268 if (gdbarch_bits_big_endian (current_gdbarch))
2269 move_bits (buffer, value_bitpos (toval),
2270 value_contents (fromval), from_size - bits, bits);
2271 else
2272 move_bits (buffer, value_bitpos (toval), value_contents (fromval),
2273 0, bits);
2274 write_memory (to_addr, buffer, len);
2275 if (deprecated_memory_changed_hook)
2276 deprecated_memory_changed_hook (to_addr, len);
2277
2278 val = value_copy (toval);
2279 memcpy (value_contents_raw (val), value_contents (fromval),
2280 TYPE_LENGTH (type));
2281 deprecated_set_value_type (val, type);
2282
2283 return val;
2284 }
2285
2286 return value_assign (toval, fromval);
2287 }
2288
2289
2290 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2291 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2292 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2293 * COMPONENT, and not the inferior's memory. The current contents
2294 * of COMPONENT are ignored. */
2295 static void
2296 value_assign_to_component (struct value *container, struct value *component,
2297 struct value *val)
2298 {
2299 LONGEST offset_in_container =
2300 (LONGEST) (VALUE_ADDRESS (component) + value_offset (component)
2301 - VALUE_ADDRESS (container) - value_offset (container));
2302 int bit_offset_in_container =
2303 value_bitpos (component) - value_bitpos (container);
2304 int bits;
2305
2306 val = value_cast (value_type (component), val);
2307
2308 if (value_bitsize (component) == 0)
2309 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2310 else
2311 bits = value_bitsize (component);
2312
2313 if (gdbarch_bits_big_endian (current_gdbarch))
2314 move_bits (value_contents_writeable (container) + offset_in_container,
2315 value_bitpos (container) + bit_offset_in_container,
2316 value_contents (val),
2317 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2318 bits);
2319 else
2320 move_bits (value_contents_writeable (container) + offset_in_container,
2321 value_bitpos (container) + bit_offset_in_container,
2322 value_contents (val), 0, bits);
2323 }
2324
2325 /* The value of the element of array ARR at the ARITY indices given in IND.
2326 ARR may be either a simple array, GNAT array descriptor, or pointer
2327 thereto. */
2328
2329 struct value *
2330 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2331 {
2332 int k;
2333 struct value *elt;
2334 struct type *elt_type;
2335
2336 elt = ada_coerce_to_simple_array (arr);
2337
2338 elt_type = ada_check_typedef (value_type (elt));
2339 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2340 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2341 return value_subscript_packed (elt, arity, ind);
2342
2343 for (k = 0; k < arity; k += 1)
2344 {
2345 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2346 error (_("too many subscripts (%d expected)"), k);
2347 elt = value_subscript (elt, value_pos_atr (ind[k]));
2348 }
2349 return elt;
2350 }
2351
2352 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2353 value of the element of *ARR at the ARITY indices given in
2354 IND. Does not read the entire array into memory. */
2355
2356 struct value *
2357 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2358 struct value **ind)
2359 {
2360 int k;
2361
2362 for (k = 0; k < arity; k += 1)
2363 {
2364 LONGEST lwb, upb;
2365 struct value *idx;
2366
2367 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2368 error (_("too many subscripts (%d expected)"), k);
2369 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2370 value_copy (arr));
2371 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2372 idx = value_pos_atr (ind[k]);
2373 if (lwb != 0)
2374 idx = value_sub (idx, value_from_longest (builtin_type_int, lwb));
2375 arr = value_add (arr, idx);
2376 type = TYPE_TARGET_TYPE (type);
2377 }
2378
2379 return value_ind (arr);
2380 }
2381
2382 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2383 actual type of ARRAY_PTR is ignored), returns a reference to
2384 the Ada slice of HIGH-LOW+1 elements starting at index LOW. The lower
2385 bound of this array is LOW, as per Ada rules. */
2386 static struct value *
2387 ada_value_slice_ptr (struct value *array_ptr, struct type *type,
2388 int low, int high)
2389 {
2390 CORE_ADDR base = value_as_address (array_ptr)
2391 + ((low - TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)))
2392 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
2393 struct type *index_type =
2394 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
2395 low, high);
2396 struct type *slice_type =
2397 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2398 return value_from_pointer (lookup_reference_type (slice_type), base);
2399 }
2400
2401
2402 static struct value *
2403 ada_value_slice (struct value *array, int low, int high)
2404 {
2405 struct type *type = value_type (array);
2406 struct type *index_type =
2407 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2408 struct type *slice_type =
2409 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2410 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2411 }
2412
2413 /* If type is a record type in the form of a standard GNAT array
2414 descriptor, returns the number of dimensions for type. If arr is a
2415 simple array, returns the number of "array of"s that prefix its
2416 type designation. Otherwise, returns 0. */
2417
2418 int
2419 ada_array_arity (struct type *type)
2420 {
2421 int arity;
2422
2423 if (type == NULL)
2424 return 0;
2425
2426 type = desc_base_type (type);
2427
2428 arity = 0;
2429 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2430 return desc_arity (desc_bounds_type (type));
2431 else
2432 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2433 {
2434 arity += 1;
2435 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2436 }
2437
2438 return arity;
2439 }
2440
2441 /* If TYPE is a record type in the form of a standard GNAT array
2442 descriptor or a simple array type, returns the element type for
2443 TYPE after indexing by NINDICES indices, or by all indices if
2444 NINDICES is -1. Otherwise, returns NULL. */
2445
2446 struct type *
2447 ada_array_element_type (struct type *type, int nindices)
2448 {
2449 type = desc_base_type (type);
2450
2451 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2452 {
2453 int k;
2454 struct type *p_array_type;
2455
2456 p_array_type = desc_data_type (type);
2457
2458 k = ada_array_arity (type);
2459 if (k == 0)
2460 return NULL;
2461
2462 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2463 if (nindices >= 0 && k > nindices)
2464 k = nindices;
2465 p_array_type = TYPE_TARGET_TYPE (p_array_type);
2466 while (k > 0 && p_array_type != NULL)
2467 {
2468 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2469 k -= 1;
2470 }
2471 return p_array_type;
2472 }
2473 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2474 {
2475 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2476 {
2477 type = TYPE_TARGET_TYPE (type);
2478 nindices -= 1;
2479 }
2480 return type;
2481 }
2482
2483 return NULL;
2484 }
2485
2486 /* The type of nth index in arrays of given type (n numbering from 1).
2487 Does not examine memory. */
2488
2489 struct type *
2490 ada_index_type (struct type *type, int n)
2491 {
2492 struct type *result_type;
2493
2494 type = desc_base_type (type);
2495
2496 if (n > ada_array_arity (type))
2497 return NULL;
2498
2499 if (ada_is_simple_array_type (type))
2500 {
2501 int i;
2502
2503 for (i = 1; i < n; i += 1)
2504 type = TYPE_TARGET_TYPE (type);
2505 result_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 0));
2506 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2507 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2508 perhaps stabsread.c would make more sense. */
2509 if (result_type == NULL || TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2510 result_type = builtin_type_int;
2511
2512 return result_type;
2513 }
2514 else
2515 return desc_index_type (desc_bounds_type (type), n);
2516 }
2517
2518 /* Given that arr is an array type, returns the lower bound of the
2519 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2520 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2521 array-descriptor type. If TYPEP is non-null, *TYPEP is set to the
2522 bounds type. It works for other arrays with bounds supplied by
2523 run-time quantities other than discriminants. */
2524
2525 static LONGEST
2526 ada_array_bound_from_type (struct type * arr_type, int n, int which,
2527 struct type ** typep)
2528 {
2529 struct type *type;
2530 struct type *index_type_desc;
2531
2532 if (ada_is_packed_array_type (arr_type))
2533 arr_type = decode_packed_array_type (arr_type);
2534
2535 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2536 {
2537 if (typep != NULL)
2538 *typep = builtin_type_int;
2539 return (LONGEST) - which;
2540 }
2541
2542 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2543 type = TYPE_TARGET_TYPE (arr_type);
2544 else
2545 type = arr_type;
2546
2547 index_type_desc = ada_find_parallel_type (type, "___XA");
2548 if (index_type_desc == NULL)
2549 {
2550 struct type *index_type;
2551
2552 while (n > 1)
2553 {
2554 type = TYPE_TARGET_TYPE (type);
2555 n -= 1;
2556 }
2557
2558 index_type = TYPE_INDEX_TYPE (type);
2559 if (typep != NULL)
2560 *typep = index_type;
2561
2562 /* The index type is either a range type or an enumerated type.
2563 For the range type, we have some macros that allow us to
2564 extract the value of the low and high bounds. But they
2565 do now work for enumerated types. The expressions used
2566 below work for both range and enum types. */
2567 return
2568 (LONGEST) (which == 0
2569 ? TYPE_FIELD_BITPOS (index_type, 0)
2570 : TYPE_FIELD_BITPOS (index_type,
2571 TYPE_NFIELDS (index_type) - 1));
2572 }
2573 else
2574 {
2575 struct type *index_type =
2576 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
2577 NULL, TYPE_OBJFILE (arr_type));
2578
2579 if (typep != NULL)
2580 *typep = index_type;
2581
2582 return
2583 (LONGEST) (which == 0
2584 ? TYPE_LOW_BOUND (index_type)
2585 : TYPE_HIGH_BOUND (index_type));
2586 }
2587 }
2588
2589 /* Given that arr is an array value, returns the lower bound of the
2590 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2591 WHICH is 1. This routine will also work for arrays with bounds
2592 supplied by run-time quantities other than discriminants. */
2593
2594 struct value *
2595 ada_array_bound (struct value *arr, int n, int which)
2596 {
2597 struct type *arr_type = value_type (arr);
2598
2599 if (ada_is_packed_array_type (arr_type))
2600 return ada_array_bound (decode_packed_array (arr), n, which);
2601 else if (ada_is_simple_array_type (arr_type))
2602 {
2603 struct type *type;
2604 LONGEST v = ada_array_bound_from_type (arr_type, n, which, &type);
2605 return value_from_longest (type, v);
2606 }
2607 else
2608 return desc_one_bound (desc_bounds (arr), n, which);
2609 }
2610
2611 /* Given that arr is an array value, returns the length of the
2612 nth index. This routine will also work for arrays with bounds
2613 supplied by run-time quantities other than discriminants.
2614 Does not work for arrays indexed by enumeration types with representation
2615 clauses at the moment. */
2616
2617 struct value *
2618 ada_array_length (struct value *arr, int n)
2619 {
2620 struct type *arr_type = ada_check_typedef (value_type (arr));
2621
2622 if (ada_is_packed_array_type (arr_type))
2623 return ada_array_length (decode_packed_array (arr), n);
2624
2625 if (ada_is_simple_array_type (arr_type))
2626 {
2627 struct type *type;
2628 LONGEST v =
2629 ada_array_bound_from_type (arr_type, n, 1, &type) -
2630 ada_array_bound_from_type (arr_type, n, 0, NULL) + 1;
2631 return value_from_longest (type, v);
2632 }
2633 else
2634 return
2635 value_from_longest (builtin_type_int,
2636 value_as_long (desc_one_bound (desc_bounds (arr),
2637 n, 1))
2638 - value_as_long (desc_one_bound (desc_bounds (arr),
2639 n, 0)) + 1);
2640 }
2641
2642 /* An empty array whose type is that of ARR_TYPE (an array type),
2643 with bounds LOW to LOW-1. */
2644
2645 static struct value *
2646 empty_array (struct type *arr_type, int low)
2647 {
2648 struct type *index_type =
2649 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2650 low, low - 1);
2651 struct type *elt_type = ada_array_element_type (arr_type, 1);
2652 return allocate_value (create_array_type (NULL, elt_type, index_type));
2653 }
2654 \f
2655
2656 /* Name resolution */
2657
2658 /* The "decoded" name for the user-definable Ada operator corresponding
2659 to OP. */
2660
2661 static const char *
2662 ada_decoded_op_name (enum exp_opcode op)
2663 {
2664 int i;
2665
2666 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2667 {
2668 if (ada_opname_table[i].op == op)
2669 return ada_opname_table[i].decoded;
2670 }
2671 error (_("Could not find operator name for opcode"));
2672 }
2673
2674
2675 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2676 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2677 undefined namespace) and converts operators that are
2678 user-defined into appropriate function calls. If CONTEXT_TYPE is
2679 non-null, it provides a preferred result type [at the moment, only
2680 type void has any effect---causing procedures to be preferred over
2681 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2682 return type is preferred. May change (expand) *EXP. */
2683
2684 static void
2685 resolve (struct expression **expp, int void_context_p)
2686 {
2687 int pc;
2688 pc = 0;
2689 resolve_subexp (expp, &pc, 1, void_context_p ? builtin_type_void : NULL);
2690 }
2691
2692 /* Resolve the operator of the subexpression beginning at
2693 position *POS of *EXPP. "Resolving" consists of replacing
2694 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2695 with their resolutions, replacing built-in operators with
2696 function calls to user-defined operators, where appropriate, and,
2697 when DEPROCEDURE_P is non-zero, converting function-valued variables
2698 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2699 are as in ada_resolve, above. */
2700
2701 static struct value *
2702 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2703 struct type *context_type)
2704 {
2705 int pc = *pos;
2706 int i;
2707 struct expression *exp; /* Convenience: == *expp. */
2708 enum exp_opcode op = (*expp)->elts[pc].opcode;
2709 struct value **argvec; /* Vector of operand types (alloca'ed). */
2710 int nargs; /* Number of operands. */
2711 int oplen;
2712
2713 argvec = NULL;
2714 nargs = 0;
2715 exp = *expp;
2716
2717 /* Pass one: resolve operands, saving their types and updating *pos,
2718 if needed. */
2719 switch (op)
2720 {
2721 case OP_FUNCALL:
2722 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2723 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2724 *pos += 7;
2725 else
2726 {
2727 *pos += 3;
2728 resolve_subexp (expp, pos, 0, NULL);
2729 }
2730 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2731 break;
2732
2733 case UNOP_ADDR:
2734 *pos += 1;
2735 resolve_subexp (expp, pos, 0, NULL);
2736 break;
2737
2738 case UNOP_QUAL:
2739 *pos += 3;
2740 resolve_subexp (expp, pos, 1, exp->elts[pc + 1].type);
2741 break;
2742
2743 case OP_ATR_MODULUS:
2744 case OP_ATR_SIZE:
2745 case OP_ATR_TAG:
2746 case OP_ATR_FIRST:
2747 case OP_ATR_LAST:
2748 case OP_ATR_LENGTH:
2749 case OP_ATR_POS:
2750 case OP_ATR_VAL:
2751 case OP_ATR_MIN:
2752 case OP_ATR_MAX:
2753 case TERNOP_IN_RANGE:
2754 case BINOP_IN_BOUNDS:
2755 case UNOP_IN_RANGE:
2756 case OP_AGGREGATE:
2757 case OP_OTHERS:
2758 case OP_CHOICES:
2759 case OP_POSITIONAL:
2760 case OP_DISCRETE_RANGE:
2761 case OP_NAME:
2762 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2763 *pos += oplen;
2764 break;
2765
2766 case BINOP_ASSIGN:
2767 {
2768 struct value *arg1;
2769
2770 *pos += 1;
2771 arg1 = resolve_subexp (expp, pos, 0, NULL);
2772 if (arg1 == NULL)
2773 resolve_subexp (expp, pos, 1, NULL);
2774 else
2775 resolve_subexp (expp, pos, 1, value_type (arg1));
2776 break;
2777 }
2778
2779 case UNOP_CAST:
2780 *pos += 3;
2781 nargs = 1;
2782 break;
2783
2784 case BINOP_ADD:
2785 case BINOP_SUB:
2786 case BINOP_MUL:
2787 case BINOP_DIV:
2788 case BINOP_REM:
2789 case BINOP_MOD:
2790 case BINOP_EXP:
2791 case BINOP_CONCAT:
2792 case BINOP_LOGICAL_AND:
2793 case BINOP_LOGICAL_OR:
2794 case BINOP_BITWISE_AND:
2795 case BINOP_BITWISE_IOR:
2796 case BINOP_BITWISE_XOR:
2797
2798 case BINOP_EQUAL:
2799 case BINOP_NOTEQUAL:
2800 case BINOP_LESS:
2801 case BINOP_GTR:
2802 case BINOP_LEQ:
2803 case BINOP_GEQ:
2804
2805 case BINOP_REPEAT:
2806 case BINOP_SUBSCRIPT:
2807 case BINOP_COMMA:
2808 *pos += 1;
2809 nargs = 2;
2810 break;
2811
2812 case UNOP_NEG:
2813 case UNOP_PLUS:
2814 case UNOP_LOGICAL_NOT:
2815 case UNOP_ABS:
2816 case UNOP_IND:
2817 *pos += 1;
2818 nargs = 1;
2819 break;
2820
2821 case OP_LONG:
2822 case OP_DOUBLE:
2823 case OP_VAR_VALUE:
2824 *pos += 4;
2825 break;
2826
2827 case OP_TYPE:
2828 case OP_BOOL:
2829 case OP_LAST:
2830 case OP_INTERNALVAR:
2831 *pos += 3;
2832 break;
2833
2834 case UNOP_MEMVAL:
2835 *pos += 3;
2836 nargs = 1;
2837 break;
2838
2839 case OP_REGISTER:
2840 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2841 break;
2842
2843 case STRUCTOP_STRUCT:
2844 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2845 nargs = 1;
2846 break;
2847
2848 case TERNOP_SLICE:
2849 *pos += 1;
2850 nargs = 3;
2851 break;
2852
2853 case OP_STRING:
2854 break;
2855
2856 default:
2857 error (_("Unexpected operator during name resolution"));
2858 }
2859
2860 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
2861 for (i = 0; i < nargs; i += 1)
2862 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2863 argvec[i] = NULL;
2864 exp = *expp;
2865
2866 /* Pass two: perform any resolution on principal operator. */
2867 switch (op)
2868 {
2869 default:
2870 break;
2871
2872 case OP_VAR_VALUE:
2873 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
2874 {
2875 struct ada_symbol_info *candidates;
2876 int n_candidates;
2877
2878 n_candidates =
2879 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2880 (exp->elts[pc + 2].symbol),
2881 exp->elts[pc + 1].block, VAR_DOMAIN,
2882 &candidates);
2883
2884 if (n_candidates > 1)
2885 {
2886 /* Types tend to get re-introduced locally, so if there
2887 are any local symbols that are not types, first filter
2888 out all types. */
2889 int j;
2890 for (j = 0; j < n_candidates; j += 1)
2891 switch (SYMBOL_CLASS (candidates[j].sym))
2892 {
2893 case LOC_REGISTER:
2894 case LOC_ARG:
2895 case LOC_REF_ARG:
2896 case LOC_REGPARM_ADDR:
2897 case LOC_LOCAL:
2898 case LOC_COMPUTED:
2899 goto FoundNonType;
2900 default:
2901 break;
2902 }
2903 FoundNonType:
2904 if (j < n_candidates)
2905 {
2906 j = 0;
2907 while (j < n_candidates)
2908 {
2909 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2910 {
2911 candidates[j] = candidates[n_candidates - 1];
2912 n_candidates -= 1;
2913 }
2914 else
2915 j += 1;
2916 }
2917 }
2918 }
2919
2920 if (n_candidates == 0)
2921 error (_("No definition found for %s"),
2922 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2923 else if (n_candidates == 1)
2924 i = 0;
2925 else if (deprocedure_p
2926 && !is_nonfunction (candidates, n_candidates))
2927 {
2928 i = ada_resolve_function
2929 (candidates, n_candidates, NULL, 0,
2930 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2931 context_type);
2932 if (i < 0)
2933 error (_("Could not find a match for %s"),
2934 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2935 }
2936 else
2937 {
2938 printf_filtered (_("Multiple matches for %s\n"),
2939 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2940 user_select_syms (candidates, n_candidates, 1);
2941 i = 0;
2942 }
2943
2944 exp->elts[pc + 1].block = candidates[i].block;
2945 exp->elts[pc + 2].symbol = candidates[i].sym;
2946 if (innermost_block == NULL
2947 || contained_in (candidates[i].block, innermost_block))
2948 innermost_block = candidates[i].block;
2949 }
2950
2951 if (deprocedure_p
2952 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2953 == TYPE_CODE_FUNC))
2954 {
2955 replace_operator_with_call (expp, pc, 0, 0,
2956 exp->elts[pc + 2].symbol,
2957 exp->elts[pc + 1].block);
2958 exp = *expp;
2959 }
2960 break;
2961
2962 case OP_FUNCALL:
2963 {
2964 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2965 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2966 {
2967 struct ada_symbol_info *candidates;
2968 int n_candidates;
2969
2970 n_candidates =
2971 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2972 (exp->elts[pc + 5].symbol),
2973 exp->elts[pc + 4].block, VAR_DOMAIN,
2974 &candidates);
2975 if (n_candidates == 1)
2976 i = 0;
2977 else
2978 {
2979 i = ada_resolve_function
2980 (candidates, n_candidates,
2981 argvec, nargs,
2982 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2983 context_type);
2984 if (i < 0)
2985 error (_("Could not find a match for %s"),
2986 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2987 }
2988
2989 exp->elts[pc + 4].block = candidates[i].block;
2990 exp->elts[pc + 5].symbol = candidates[i].sym;
2991 if (innermost_block == NULL
2992 || contained_in (candidates[i].block, innermost_block))
2993 innermost_block = candidates[i].block;
2994 }
2995 }
2996 break;
2997 case BINOP_ADD:
2998 case BINOP_SUB:
2999 case BINOP_MUL:
3000 case BINOP_DIV:
3001 case BINOP_REM:
3002 case BINOP_MOD:
3003 case BINOP_CONCAT:
3004 case BINOP_BITWISE_AND:
3005 case BINOP_BITWISE_IOR:
3006 case BINOP_BITWISE_XOR:
3007 case BINOP_EQUAL:
3008 case BINOP_NOTEQUAL:
3009 case BINOP_LESS:
3010 case BINOP_GTR:
3011 case BINOP_LEQ:
3012 case BINOP_GEQ:
3013 case BINOP_EXP:
3014 case UNOP_NEG:
3015 case UNOP_PLUS:
3016 case UNOP_LOGICAL_NOT:
3017 case UNOP_ABS:
3018 if (possible_user_operator_p (op, argvec))
3019 {
3020 struct ada_symbol_info *candidates;
3021 int n_candidates;
3022
3023 n_candidates =
3024 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3025 (struct block *) NULL, VAR_DOMAIN,
3026 &candidates);
3027 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3028 ada_decoded_op_name (op), NULL);
3029 if (i < 0)
3030 break;
3031
3032 replace_operator_with_call (expp, pc, nargs, 1,
3033 candidates[i].sym, candidates[i].block);
3034 exp = *expp;
3035 }
3036 break;
3037
3038 case OP_TYPE:
3039 case OP_REGISTER:
3040 return NULL;
3041 }
3042
3043 *pos = pc;
3044 return evaluate_subexp_type (exp, pos);
3045 }
3046
3047 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3048 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3049 a non-pointer. A type of 'void' (which is never a valid expression type)
3050 by convention matches anything. */
3051 /* The term "match" here is rather loose. The match is heuristic and
3052 liberal. FIXME: TOO liberal, in fact. */
3053
3054 static int
3055 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3056 {
3057 ftype = ada_check_typedef (ftype);
3058 atype = ada_check_typedef (atype);
3059
3060 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3061 ftype = TYPE_TARGET_TYPE (ftype);
3062 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3063 atype = TYPE_TARGET_TYPE (atype);
3064
3065 if (TYPE_CODE (ftype) == TYPE_CODE_VOID
3066 || TYPE_CODE (atype) == TYPE_CODE_VOID)
3067 return 1;
3068
3069 switch (TYPE_CODE (ftype))
3070 {
3071 default:
3072 return 1;
3073 case TYPE_CODE_PTR:
3074 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3075 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3076 TYPE_TARGET_TYPE (atype), 0);
3077 else
3078 return (may_deref
3079 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3080 case TYPE_CODE_INT:
3081 case TYPE_CODE_ENUM:
3082 case TYPE_CODE_RANGE:
3083 switch (TYPE_CODE (atype))
3084 {
3085 case TYPE_CODE_INT:
3086 case TYPE_CODE_ENUM:
3087 case TYPE_CODE_RANGE:
3088 return 1;
3089 default:
3090 return 0;
3091 }
3092
3093 case TYPE_CODE_ARRAY:
3094 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3095 || ada_is_array_descriptor_type (atype));
3096
3097 case TYPE_CODE_STRUCT:
3098 if (ada_is_array_descriptor_type (ftype))
3099 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3100 || ada_is_array_descriptor_type (atype));
3101 else
3102 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3103 && !ada_is_array_descriptor_type (atype));
3104
3105 case TYPE_CODE_UNION:
3106 case TYPE_CODE_FLT:
3107 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3108 }
3109 }
3110
3111 /* Return non-zero if the formals of FUNC "sufficiently match" the
3112 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3113 may also be an enumeral, in which case it is treated as a 0-
3114 argument function. */
3115
3116 static int
3117 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3118 {
3119 int i;
3120 struct type *func_type = SYMBOL_TYPE (func);
3121
3122 if (SYMBOL_CLASS (func) == LOC_CONST
3123 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3124 return (n_actuals == 0);
3125 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3126 return 0;
3127
3128 if (TYPE_NFIELDS (func_type) != n_actuals)
3129 return 0;
3130
3131 for (i = 0; i < n_actuals; i += 1)
3132 {
3133 if (actuals[i] == NULL)
3134 return 0;
3135 else
3136 {
3137 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
3138 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3139
3140 if (!ada_type_match (ftype, atype, 1))
3141 return 0;
3142 }
3143 }
3144 return 1;
3145 }
3146
3147 /* False iff function type FUNC_TYPE definitely does not produce a value
3148 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3149 FUNC_TYPE is not a valid function type with a non-null return type
3150 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3151
3152 static int
3153 return_match (struct type *func_type, struct type *context_type)
3154 {
3155 struct type *return_type;
3156
3157 if (func_type == NULL)
3158 return 1;
3159
3160 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3161 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3162 else
3163 return_type = base_type (func_type);
3164 if (return_type == NULL)
3165 return 1;
3166
3167 context_type = base_type (context_type);
3168
3169 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3170 return context_type == NULL || return_type == context_type;
3171 else if (context_type == NULL)
3172 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3173 else
3174 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3175 }
3176
3177
3178 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3179 function (if any) that matches the types of the NARGS arguments in
3180 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3181 that returns that type, then eliminate matches that don't. If
3182 CONTEXT_TYPE is void and there is at least one match that does not
3183 return void, eliminate all matches that do.
3184
3185 Asks the user if there is more than one match remaining. Returns -1
3186 if there is no such symbol or none is selected. NAME is used
3187 solely for messages. May re-arrange and modify SYMS in
3188 the process; the index returned is for the modified vector. */
3189
3190 static int
3191 ada_resolve_function (struct ada_symbol_info syms[],
3192 int nsyms, struct value **args, int nargs,
3193 const char *name, struct type *context_type)
3194 {
3195 int k;
3196 int m; /* Number of hits */
3197 struct type *fallback;
3198 struct type *return_type;
3199
3200 return_type = context_type;
3201 if (context_type == NULL)
3202 fallback = builtin_type_void;
3203 else
3204 fallback = NULL;
3205
3206 m = 0;
3207 while (1)
3208 {
3209 for (k = 0; k < nsyms; k += 1)
3210 {
3211 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3212
3213 if (ada_args_match (syms[k].sym, args, nargs)
3214 && return_match (type, return_type))
3215 {
3216 syms[m] = syms[k];
3217 m += 1;
3218 }
3219 }
3220 if (m > 0 || return_type == fallback)
3221 break;
3222 else
3223 return_type = fallback;
3224 }
3225
3226 if (m == 0)
3227 return -1;
3228 else if (m > 1)
3229 {
3230 printf_filtered (_("Multiple matches for %s\n"), name);
3231 user_select_syms (syms, m, 1);
3232 return 0;
3233 }
3234 return 0;
3235 }
3236
3237 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3238 in a listing of choices during disambiguation (see sort_choices, below).
3239 The idea is that overloadings of a subprogram name from the
3240 same package should sort in their source order. We settle for ordering
3241 such symbols by their trailing number (__N or $N). */
3242
3243 static int
3244 encoded_ordered_before (char *N0, char *N1)
3245 {
3246 if (N1 == NULL)
3247 return 0;
3248 else if (N0 == NULL)
3249 return 1;
3250 else
3251 {
3252 int k0, k1;
3253 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3254 ;
3255 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3256 ;
3257 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3258 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3259 {
3260 int n0, n1;
3261 n0 = k0;
3262 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3263 n0 -= 1;
3264 n1 = k1;
3265 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3266 n1 -= 1;
3267 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3268 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3269 }
3270 return (strcmp (N0, N1) < 0);
3271 }
3272 }
3273
3274 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3275 encoded names. */
3276
3277 static void
3278 sort_choices (struct ada_symbol_info syms[], int nsyms)
3279 {
3280 int i;
3281 for (i = 1; i < nsyms; i += 1)
3282 {
3283 struct ada_symbol_info sym = syms[i];
3284 int j;
3285
3286 for (j = i - 1; j >= 0; j -= 1)
3287 {
3288 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3289 SYMBOL_LINKAGE_NAME (sym.sym)))
3290 break;
3291 syms[j + 1] = syms[j];
3292 }
3293 syms[j + 1] = sym;
3294 }
3295 }
3296
3297 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3298 by asking the user (if necessary), returning the number selected,
3299 and setting the first elements of SYMS items. Error if no symbols
3300 selected. */
3301
3302 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3303 to be re-integrated one of these days. */
3304
3305 int
3306 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3307 {
3308 int i;
3309 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3310 int n_chosen;
3311 int first_choice = (max_results == 1) ? 1 : 2;
3312 const char *select_mode = multiple_symbols_select_mode ();
3313
3314 if (max_results < 1)
3315 error (_("Request to select 0 symbols!"));
3316 if (nsyms <= 1)
3317 return nsyms;
3318
3319 if (select_mode == multiple_symbols_cancel)
3320 error (_("\
3321 canceled because the command is ambiguous\n\
3322 See set/show multiple-symbol."));
3323
3324 /* If select_mode is "all", then return all possible symbols.
3325 Only do that if more than one symbol can be selected, of course.
3326 Otherwise, display the menu as usual. */
3327 if (select_mode == multiple_symbols_all && max_results > 1)
3328 return nsyms;
3329
3330 printf_unfiltered (_("[0] cancel\n"));
3331 if (max_results > 1)
3332 printf_unfiltered (_("[1] all\n"));
3333
3334 sort_choices (syms, nsyms);
3335
3336 for (i = 0; i < nsyms; i += 1)
3337 {
3338 if (syms[i].sym == NULL)
3339 continue;
3340
3341 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3342 {
3343 struct symtab_and_line sal =
3344 find_function_start_sal (syms[i].sym, 1);
3345 if (sal.symtab == NULL)
3346 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3347 i + first_choice,
3348 SYMBOL_PRINT_NAME (syms[i].sym),
3349 sal.line);
3350 else
3351 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3352 SYMBOL_PRINT_NAME (syms[i].sym),
3353 sal.symtab->filename, sal.line);
3354 continue;
3355 }
3356 else
3357 {
3358 int is_enumeral =
3359 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3360 && SYMBOL_TYPE (syms[i].sym) != NULL
3361 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3362 struct symtab *symtab = symtab_for_sym (syms[i].sym);
3363
3364 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3365 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3366 i + first_choice,
3367 SYMBOL_PRINT_NAME (syms[i].sym),
3368 symtab->filename, SYMBOL_LINE (syms[i].sym));
3369 else if (is_enumeral
3370 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3371 {
3372 printf_unfiltered (("[%d] "), i + first_choice);
3373 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3374 gdb_stdout, -1, 0);
3375 printf_unfiltered (_("'(%s) (enumeral)\n"),
3376 SYMBOL_PRINT_NAME (syms[i].sym));
3377 }
3378 else if (symtab != NULL)
3379 printf_unfiltered (is_enumeral
3380 ? _("[%d] %s in %s (enumeral)\n")
3381 : _("[%d] %s at %s:?\n"),
3382 i + first_choice,
3383 SYMBOL_PRINT_NAME (syms[i].sym),
3384 symtab->filename);
3385 else
3386 printf_unfiltered (is_enumeral
3387 ? _("[%d] %s (enumeral)\n")
3388 : _("[%d] %s at ?\n"),
3389 i + first_choice,
3390 SYMBOL_PRINT_NAME (syms[i].sym));
3391 }
3392 }
3393
3394 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3395 "overload-choice");
3396
3397 for (i = 0; i < n_chosen; i += 1)
3398 syms[i] = syms[chosen[i]];
3399
3400 return n_chosen;
3401 }
3402
3403 /* Read and validate a set of numeric choices from the user in the
3404 range 0 .. N_CHOICES-1. Place the results in increasing
3405 order in CHOICES[0 .. N-1], and return N.
3406
3407 The user types choices as a sequence of numbers on one line
3408 separated by blanks, encoding them as follows:
3409
3410 + A choice of 0 means to cancel the selection, throwing an error.
3411 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3412 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3413
3414 The user is not allowed to choose more than MAX_RESULTS values.
3415
3416 ANNOTATION_SUFFIX, if present, is used to annotate the input
3417 prompts (for use with the -f switch). */
3418
3419 int
3420 get_selections (int *choices, int n_choices, int max_results,
3421 int is_all_choice, char *annotation_suffix)
3422 {
3423 char *args;
3424 char *prompt;
3425 int n_chosen;
3426 int first_choice = is_all_choice ? 2 : 1;
3427
3428 prompt = getenv ("PS2");
3429 if (prompt == NULL)
3430 prompt = "> ";
3431
3432 args = command_line_input (prompt, 0, annotation_suffix);
3433
3434 if (args == NULL)
3435 error_no_arg (_("one or more choice numbers"));
3436
3437 n_chosen = 0;
3438
3439 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3440 order, as given in args. Choices are validated. */
3441 while (1)
3442 {
3443 char *args2;
3444 int choice, j;
3445
3446 while (isspace (*args))
3447 args += 1;
3448 if (*args == '\0' && n_chosen == 0)
3449 error_no_arg (_("one or more choice numbers"));
3450 else if (*args == '\0')
3451 break;
3452
3453 choice = strtol (args, &args2, 10);
3454 if (args == args2 || choice < 0
3455 || choice > n_choices + first_choice - 1)
3456 error (_("Argument must be choice number"));
3457 args = args2;
3458
3459 if (choice == 0)
3460 error (_("cancelled"));
3461
3462 if (choice < first_choice)
3463 {
3464 n_chosen = n_choices;
3465 for (j = 0; j < n_choices; j += 1)
3466 choices[j] = j;
3467 break;
3468 }
3469 choice -= first_choice;
3470
3471 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3472 {
3473 }
3474
3475 if (j < 0 || choice != choices[j])
3476 {
3477 int k;
3478 for (k = n_chosen - 1; k > j; k -= 1)
3479 choices[k + 1] = choices[k];
3480 choices[j + 1] = choice;
3481 n_chosen += 1;
3482 }
3483 }
3484
3485 if (n_chosen > max_results)
3486 error (_("Select no more than %d of the above"), max_results);
3487
3488 return n_chosen;
3489 }
3490
3491 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3492 on the function identified by SYM and BLOCK, and taking NARGS
3493 arguments. Update *EXPP as needed to hold more space. */
3494
3495 static void
3496 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3497 int oplen, struct symbol *sym,
3498 struct block *block)
3499 {
3500 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3501 symbol, -oplen for operator being replaced). */
3502 struct expression *newexp = (struct expression *)
3503 xmalloc (sizeof (struct expression)
3504 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3505 struct expression *exp = *expp;
3506
3507 newexp->nelts = exp->nelts + 7 - oplen;
3508 newexp->language_defn = exp->language_defn;
3509 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3510 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3511 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3512
3513 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3514 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3515
3516 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3517 newexp->elts[pc + 4].block = block;
3518 newexp->elts[pc + 5].symbol = sym;
3519
3520 *expp = newexp;
3521 xfree (exp);
3522 }
3523
3524 /* Type-class predicates */
3525
3526 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3527 or FLOAT). */
3528
3529 static int
3530 numeric_type_p (struct type *type)
3531 {
3532 if (type == NULL)
3533 return 0;
3534 else
3535 {
3536 switch (TYPE_CODE (type))
3537 {
3538 case TYPE_CODE_INT:
3539 case TYPE_CODE_FLT:
3540 return 1;
3541 case TYPE_CODE_RANGE:
3542 return (type == TYPE_TARGET_TYPE (type)
3543 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3544 default:
3545 return 0;
3546 }
3547 }
3548 }
3549
3550 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3551
3552 static int
3553 integer_type_p (struct type *type)
3554 {
3555 if (type == NULL)
3556 return 0;
3557 else
3558 {
3559 switch (TYPE_CODE (type))
3560 {
3561 case TYPE_CODE_INT:
3562 return 1;
3563 case TYPE_CODE_RANGE:
3564 return (type == TYPE_TARGET_TYPE (type)
3565 || integer_type_p (TYPE_TARGET_TYPE (type)));
3566 default:
3567 return 0;
3568 }
3569 }
3570 }
3571
3572 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3573
3574 static int
3575 scalar_type_p (struct type *type)
3576 {
3577 if (type == NULL)
3578 return 0;
3579 else
3580 {
3581 switch (TYPE_CODE (type))
3582 {
3583 case TYPE_CODE_INT:
3584 case TYPE_CODE_RANGE:
3585 case TYPE_CODE_ENUM:
3586 case TYPE_CODE_FLT:
3587 return 1;
3588 default:
3589 return 0;
3590 }
3591 }
3592 }
3593
3594 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3595
3596 static int
3597 discrete_type_p (struct type *type)
3598 {
3599 if (type == NULL)
3600 return 0;
3601 else
3602 {
3603 switch (TYPE_CODE (type))
3604 {
3605 case TYPE_CODE_INT:
3606 case TYPE_CODE_RANGE:
3607 case TYPE_CODE_ENUM:
3608 return 1;
3609 default:
3610 return 0;
3611 }
3612 }
3613 }
3614
3615 /* Returns non-zero if OP with operands in the vector ARGS could be
3616 a user-defined function. Errs on the side of pre-defined operators
3617 (i.e., result 0). */
3618
3619 static int
3620 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3621 {
3622 struct type *type0 =
3623 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3624 struct type *type1 =
3625 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3626
3627 if (type0 == NULL)
3628 return 0;
3629
3630 switch (op)
3631 {
3632 default:
3633 return 0;
3634
3635 case BINOP_ADD:
3636 case BINOP_SUB:
3637 case BINOP_MUL:
3638 case BINOP_DIV:
3639 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3640
3641 case BINOP_REM:
3642 case BINOP_MOD:
3643 case BINOP_BITWISE_AND:
3644 case BINOP_BITWISE_IOR:
3645 case BINOP_BITWISE_XOR:
3646 return (!(integer_type_p (type0) && integer_type_p (type1)));
3647
3648 case BINOP_EQUAL:
3649 case BINOP_NOTEQUAL:
3650 case BINOP_LESS:
3651 case BINOP_GTR:
3652 case BINOP_LEQ:
3653 case BINOP_GEQ:
3654 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3655
3656 case BINOP_CONCAT:
3657 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3658
3659 case BINOP_EXP:
3660 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3661
3662 case UNOP_NEG:
3663 case UNOP_PLUS:
3664 case UNOP_LOGICAL_NOT:
3665 case UNOP_ABS:
3666 return (!numeric_type_p (type0));
3667
3668 }
3669 }
3670 \f
3671 /* Renaming */
3672
3673 /* NOTES:
3674
3675 1. In the following, we assume that a renaming type's name may
3676 have an ___XD suffix. It would be nice if this went away at some
3677 point.
3678 2. We handle both the (old) purely type-based representation of
3679 renamings and the (new) variable-based encoding. At some point,
3680 it is devoutly to be hoped that the former goes away
3681 (FIXME: hilfinger-2007-07-09).
3682 3. Subprogram renamings are not implemented, although the XRS
3683 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3684
3685 /* If SYM encodes a renaming,
3686
3687 <renaming> renames <renamed entity>,
3688
3689 sets *LEN to the length of the renamed entity's name,
3690 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3691 the string describing the subcomponent selected from the renamed
3692 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3693 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3694 are undefined). Otherwise, returns a value indicating the category
3695 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3696 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3697 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3698 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3699 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3700 may be NULL, in which case they are not assigned.
3701
3702 [Currently, however, GCC does not generate subprogram renamings.] */
3703
3704 enum ada_renaming_category
3705 ada_parse_renaming (struct symbol *sym,
3706 const char **renamed_entity, int *len,
3707 const char **renaming_expr)
3708 {
3709 enum ada_renaming_category kind;
3710 const char *info;
3711 const char *suffix;
3712
3713 if (sym == NULL)
3714 return ADA_NOT_RENAMING;
3715 switch (SYMBOL_CLASS (sym))
3716 {
3717 default:
3718 return ADA_NOT_RENAMING;
3719 case LOC_TYPEDEF:
3720 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3721 renamed_entity, len, renaming_expr);
3722 case LOC_LOCAL:
3723 case LOC_STATIC:
3724 case LOC_COMPUTED:
3725 case LOC_OPTIMIZED_OUT:
3726 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3727 if (info == NULL)
3728 return ADA_NOT_RENAMING;
3729 switch (info[5])
3730 {
3731 case '_':
3732 kind = ADA_OBJECT_RENAMING;
3733 info += 6;
3734 break;
3735 case 'E':
3736 kind = ADA_EXCEPTION_RENAMING;
3737 info += 7;
3738 break;
3739 case 'P':
3740 kind = ADA_PACKAGE_RENAMING;
3741 info += 7;
3742 break;
3743 case 'S':
3744 kind = ADA_SUBPROGRAM_RENAMING;
3745 info += 7;
3746 break;
3747 default:
3748 return ADA_NOT_RENAMING;
3749 }
3750 }
3751
3752 if (renamed_entity != NULL)
3753 *renamed_entity = info;
3754 suffix = strstr (info, "___XE");
3755 if (suffix == NULL || suffix == info)
3756 return ADA_NOT_RENAMING;
3757 if (len != NULL)
3758 *len = strlen (info) - strlen (suffix);
3759 suffix += 5;
3760 if (renaming_expr != NULL)
3761 *renaming_expr = suffix;
3762 return kind;
3763 }
3764
3765 /* Assuming TYPE encodes a renaming according to the old encoding in
3766 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3767 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3768 ADA_NOT_RENAMING otherwise. */
3769 static enum ada_renaming_category
3770 parse_old_style_renaming (struct type *type,
3771 const char **renamed_entity, int *len,
3772 const char **renaming_expr)
3773 {
3774 enum ada_renaming_category kind;
3775 const char *name;
3776 const char *info;
3777 const char *suffix;
3778
3779 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3780 || TYPE_NFIELDS (type) != 1)
3781 return ADA_NOT_RENAMING;
3782
3783 name = type_name_no_tag (type);
3784 if (name == NULL)
3785 return ADA_NOT_RENAMING;
3786
3787 name = strstr (name, "___XR");
3788 if (name == NULL)
3789 return ADA_NOT_RENAMING;
3790 switch (name[5])
3791 {
3792 case '\0':
3793 case '_':
3794 kind = ADA_OBJECT_RENAMING;
3795 break;
3796 case 'E':
3797 kind = ADA_EXCEPTION_RENAMING;
3798 break;
3799 case 'P':
3800 kind = ADA_PACKAGE_RENAMING;
3801 break;
3802 case 'S':
3803 kind = ADA_SUBPROGRAM_RENAMING;
3804 break;
3805 default:
3806 return ADA_NOT_RENAMING;
3807 }
3808
3809 info = TYPE_FIELD_NAME (type, 0);
3810 if (info == NULL)
3811 return ADA_NOT_RENAMING;
3812 if (renamed_entity != NULL)
3813 *renamed_entity = info;
3814 suffix = strstr (info, "___XE");
3815 if (renaming_expr != NULL)
3816 *renaming_expr = suffix + 5;
3817 if (suffix == NULL || suffix == info)
3818 return ADA_NOT_RENAMING;
3819 if (len != NULL)
3820 *len = suffix - info;
3821 return kind;
3822 }
3823
3824 \f
3825
3826 /* Evaluation: Function Calls */
3827
3828 /* Return an lvalue containing the value VAL. This is the identity on
3829 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3830 on the stack, using and updating *SP as the stack pointer, and
3831 returning an lvalue whose VALUE_ADDRESS points to the copy. */
3832
3833 static struct value *
3834 ensure_lval (struct value *val, CORE_ADDR *sp)
3835 {
3836 if (! VALUE_LVAL (val))
3837 {
3838 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3839
3840 /* The following is taken from the structure-return code in
3841 call_function_by_hand. FIXME: Therefore, some refactoring seems
3842 indicated. */
3843 if (gdbarch_inner_than (current_gdbarch, 1, 2))
3844 {
3845 /* Stack grows downward. Align SP and VALUE_ADDRESS (val) after
3846 reserving sufficient space. */
3847 *sp -= len;
3848 if (gdbarch_frame_align_p (current_gdbarch))
3849 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3850 VALUE_ADDRESS (val) = *sp;
3851 }
3852 else
3853 {
3854 /* Stack grows upward. Align the frame, allocate space, and
3855 then again, re-align the frame. */
3856 if (gdbarch_frame_align_p (current_gdbarch))
3857 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3858 VALUE_ADDRESS (val) = *sp;
3859 *sp += len;
3860 if (gdbarch_frame_align_p (current_gdbarch))
3861 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3862 }
3863 VALUE_LVAL (val) = lval_memory;
3864
3865 write_memory (VALUE_ADDRESS (val), value_contents_raw (val), len);
3866 }
3867
3868 return val;
3869 }
3870
3871 /* Return the value ACTUAL, converted to be an appropriate value for a
3872 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3873 allocating any necessary descriptors (fat pointers), or copies of
3874 values not residing in memory, updating it as needed. */
3875
3876 struct value *
3877 ada_convert_actual (struct value *actual, struct type *formal_type0,
3878 CORE_ADDR *sp)
3879 {
3880 struct type *actual_type = ada_check_typedef (value_type (actual));
3881 struct type *formal_type = ada_check_typedef (formal_type0);
3882 struct type *formal_target =
3883 TYPE_CODE (formal_type) == TYPE_CODE_PTR
3884 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
3885 struct type *actual_target =
3886 TYPE_CODE (actual_type) == TYPE_CODE_PTR
3887 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
3888
3889 if (ada_is_array_descriptor_type (formal_target)
3890 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3891 return make_array_descriptor (formal_type, actual, sp);
3892 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
3893 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
3894 {
3895 struct value *result;
3896 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
3897 && ada_is_array_descriptor_type (actual_target))
3898 result = desc_data (actual);
3899 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
3900 {
3901 if (VALUE_LVAL (actual) != lval_memory)
3902 {
3903 struct value *val;
3904 actual_type = ada_check_typedef (value_type (actual));
3905 val = allocate_value (actual_type);
3906 memcpy ((char *) value_contents_raw (val),
3907 (char *) value_contents (actual),
3908 TYPE_LENGTH (actual_type));
3909 actual = ensure_lval (val, sp);
3910 }
3911 result = value_addr (actual);
3912 }
3913 else
3914 return actual;
3915 return value_cast_pointers (formal_type, result);
3916 }
3917 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3918 return ada_value_ind (actual);
3919
3920 return actual;
3921 }
3922
3923
3924 /* Push a descriptor of type TYPE for array value ARR on the stack at
3925 *SP, updating *SP to reflect the new descriptor. Return either
3926 an lvalue representing the new descriptor, or (if TYPE is a pointer-
3927 to-descriptor type rather than a descriptor type), a struct value *
3928 representing a pointer to this descriptor. */
3929
3930 static struct value *
3931 make_array_descriptor (struct type *type, struct value *arr, CORE_ADDR *sp)
3932 {
3933 struct type *bounds_type = desc_bounds_type (type);
3934 struct type *desc_type = desc_base_type (type);
3935 struct value *descriptor = allocate_value (desc_type);
3936 struct value *bounds = allocate_value (bounds_type);
3937 int i;
3938
3939 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
3940 {
3941 modify_general_field (value_contents_writeable (bounds),
3942 value_as_long (ada_array_bound (arr, i, 0)),
3943 desc_bound_bitpos (bounds_type, i, 0),
3944 desc_bound_bitsize (bounds_type, i, 0));
3945 modify_general_field (value_contents_writeable (bounds),
3946 value_as_long (ada_array_bound (arr, i, 1)),
3947 desc_bound_bitpos (bounds_type, i, 1),
3948 desc_bound_bitsize (bounds_type, i, 1));
3949 }
3950
3951 bounds = ensure_lval (bounds, sp);
3952
3953 modify_general_field (value_contents_writeable (descriptor),
3954 VALUE_ADDRESS (ensure_lval (arr, sp)),
3955 fat_pntr_data_bitpos (desc_type),
3956 fat_pntr_data_bitsize (desc_type));
3957
3958 modify_general_field (value_contents_writeable (descriptor),
3959 VALUE_ADDRESS (bounds),
3960 fat_pntr_bounds_bitpos (desc_type),
3961 fat_pntr_bounds_bitsize (desc_type));
3962
3963 descriptor = ensure_lval (descriptor, sp);
3964
3965 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3966 return value_addr (descriptor);
3967 else
3968 return descriptor;
3969 }
3970 \f
3971 /* Dummy definitions for an experimental caching module that is not
3972 * used in the public sources. */
3973
3974 static int
3975 lookup_cached_symbol (const char *name, domain_enum namespace,
3976 struct symbol **sym, struct block **block)
3977 {
3978 return 0;
3979 }
3980
3981 static void
3982 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
3983 struct block *block)
3984 {
3985 }
3986 \f
3987 /* Symbol Lookup */
3988
3989 /* Return the result of a standard (literal, C-like) lookup of NAME in
3990 given DOMAIN, visible from lexical block BLOCK. */
3991
3992 static struct symbol *
3993 standard_lookup (const char *name, const struct block *block,
3994 domain_enum domain)
3995 {
3996 struct symbol *sym;
3997
3998 if (lookup_cached_symbol (name, domain, &sym, NULL))
3999 return sym;
4000 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4001 cache_symbol (name, domain, sym, block_found);
4002 return sym;
4003 }
4004
4005
4006 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4007 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4008 since they contend in overloading in the same way. */
4009 static int
4010 is_nonfunction (struct ada_symbol_info syms[], int n)
4011 {
4012 int i;
4013
4014 for (i = 0; i < n; i += 1)
4015 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4016 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4017 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4018 return 1;
4019
4020 return 0;
4021 }
4022
4023 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4024 struct types. Otherwise, they may not. */
4025
4026 static int
4027 equiv_types (struct type *type0, struct type *type1)
4028 {
4029 if (type0 == type1)
4030 return 1;
4031 if (type0 == NULL || type1 == NULL
4032 || TYPE_CODE (type0) != TYPE_CODE (type1))
4033 return 0;
4034 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4035 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4036 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4037 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4038 return 1;
4039
4040 return 0;
4041 }
4042
4043 /* True iff SYM0 represents the same entity as SYM1, or one that is
4044 no more defined than that of SYM1. */
4045
4046 static int
4047 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4048 {
4049 if (sym0 == sym1)
4050 return 1;
4051 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4052 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4053 return 0;
4054
4055 switch (SYMBOL_CLASS (sym0))
4056 {
4057 case LOC_UNDEF:
4058 return 1;
4059 case LOC_TYPEDEF:
4060 {
4061 struct type *type0 = SYMBOL_TYPE (sym0);
4062 struct type *type1 = SYMBOL_TYPE (sym1);
4063 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4064 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4065 int len0 = strlen (name0);
4066 return
4067 TYPE_CODE (type0) == TYPE_CODE (type1)
4068 && (equiv_types (type0, type1)
4069 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4070 && strncmp (name1 + len0, "___XV", 5) == 0));
4071 }
4072 case LOC_CONST:
4073 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4074 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4075 default:
4076 return 0;
4077 }
4078 }
4079
4080 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4081 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4082
4083 static void
4084 add_defn_to_vec (struct obstack *obstackp,
4085 struct symbol *sym,
4086 struct block *block)
4087 {
4088 int i;
4089 size_t tmp;
4090 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4091
4092 /* Do not try to complete stub types, as the debugger is probably
4093 already scanning all symbols matching a certain name at the
4094 time when this function is called. Trying to replace the stub
4095 type by its associated full type will cause us to restart a scan
4096 which may lead to an infinite recursion. Instead, the client
4097 collecting the matching symbols will end up collecting several
4098 matches, with at least one of them complete. It can then filter
4099 out the stub ones if needed. */
4100
4101 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4102 {
4103 if (lesseq_defined_than (sym, prevDefns[i].sym))
4104 return;
4105 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4106 {
4107 prevDefns[i].sym = sym;
4108 prevDefns[i].block = block;
4109 return;
4110 }
4111 }
4112
4113 {
4114 struct ada_symbol_info info;
4115
4116 info.sym = sym;
4117 info.block = block;
4118 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4119 }
4120 }
4121
4122 /* Number of ada_symbol_info structures currently collected in
4123 current vector in *OBSTACKP. */
4124
4125 static int
4126 num_defns_collected (struct obstack *obstackp)
4127 {
4128 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4129 }
4130
4131 /* Vector of ada_symbol_info structures currently collected in current
4132 vector in *OBSTACKP. If FINISH, close off the vector and return
4133 its final address. */
4134
4135 static struct ada_symbol_info *
4136 defns_collected (struct obstack *obstackp, int finish)
4137 {
4138 if (finish)
4139 return obstack_finish (obstackp);
4140 else
4141 return (struct ada_symbol_info *) obstack_base (obstackp);
4142 }
4143
4144 /* Look, in partial_symtab PST, for symbol NAME in given namespace.
4145 Check the global symbols if GLOBAL, the static symbols if not.
4146 Do wild-card match if WILD. */
4147
4148 static struct partial_symbol *
4149 ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
4150 int global, domain_enum namespace, int wild)
4151 {
4152 struct partial_symbol **start;
4153 int name_len = strlen (name);
4154 int length = (global ? pst->n_global_syms : pst->n_static_syms);
4155 int i;
4156
4157 if (length == 0)
4158 {
4159 return (NULL);
4160 }
4161
4162 start = (global ?
4163 pst->objfile->global_psymbols.list + pst->globals_offset :
4164 pst->objfile->static_psymbols.list + pst->statics_offset);
4165
4166 if (wild)
4167 {
4168 for (i = 0; i < length; i += 1)
4169 {
4170 struct partial_symbol *psym = start[i];
4171
4172 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4173 SYMBOL_DOMAIN (psym), namespace)
4174 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym)))
4175 return psym;
4176 }
4177 return NULL;
4178 }
4179 else
4180 {
4181 if (global)
4182 {
4183 int U;
4184 i = 0;
4185 U = length - 1;
4186 while (U - i > 4)
4187 {
4188 int M = (U + i) >> 1;
4189 struct partial_symbol *psym = start[M];
4190 if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0])
4191 i = M + 1;
4192 else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0])
4193 U = M - 1;
4194 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0)
4195 i = M + 1;
4196 else
4197 U = M;
4198 }
4199 }
4200 else
4201 i = 0;
4202
4203 while (i < length)
4204 {
4205 struct partial_symbol *psym = start[i];
4206
4207 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4208 SYMBOL_DOMAIN (psym), namespace))
4209 {
4210 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len);
4211
4212 if (cmp < 0)
4213 {
4214 if (global)
4215 break;
4216 }
4217 else if (cmp == 0
4218 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4219 + name_len))
4220 return psym;
4221 }
4222 i += 1;
4223 }
4224
4225 if (global)
4226 {
4227 int U;
4228 i = 0;
4229 U = length - 1;
4230 while (U - i > 4)
4231 {
4232 int M = (U + i) >> 1;
4233 struct partial_symbol *psym = start[M];
4234 if (SYMBOL_LINKAGE_NAME (psym)[0] < '_')
4235 i = M + 1;
4236 else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_')
4237 U = M - 1;
4238 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0)
4239 i = M + 1;
4240 else
4241 U = M;
4242 }
4243 }
4244 else
4245 i = 0;
4246
4247 while (i < length)
4248 {
4249 struct partial_symbol *psym = start[i];
4250
4251 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4252 SYMBOL_DOMAIN (psym), namespace))
4253 {
4254 int cmp;
4255
4256 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0];
4257 if (cmp == 0)
4258 {
4259 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5);
4260 if (cmp == 0)
4261 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5,
4262 name_len);
4263 }
4264
4265 if (cmp < 0)
4266 {
4267 if (global)
4268 break;
4269 }
4270 else if (cmp == 0
4271 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4272 + name_len + 5))
4273 return psym;
4274 }
4275 i += 1;
4276 }
4277 }
4278 return NULL;
4279 }
4280
4281 /* Find a symbol table containing symbol SYM or NULL if none. */
4282
4283 static struct symtab *
4284 symtab_for_sym (struct symbol *sym)
4285 {
4286 struct symtab *s;
4287 struct objfile *objfile;
4288 struct block *b;
4289 struct symbol *tmp_sym;
4290 struct dict_iterator iter;
4291 int j;
4292
4293 ALL_PRIMARY_SYMTABS (objfile, s)
4294 {
4295 switch (SYMBOL_CLASS (sym))
4296 {
4297 case LOC_CONST:
4298 case LOC_STATIC:
4299 case LOC_TYPEDEF:
4300 case LOC_REGISTER:
4301 case LOC_LABEL:
4302 case LOC_BLOCK:
4303 case LOC_CONST_BYTES:
4304 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4305 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4306 return s;
4307 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4308 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4309 return s;
4310 break;
4311 default:
4312 break;
4313 }
4314 switch (SYMBOL_CLASS (sym))
4315 {
4316 case LOC_REGISTER:
4317 case LOC_ARG:
4318 case LOC_REF_ARG:
4319 case LOC_REGPARM_ADDR:
4320 case LOC_LOCAL:
4321 case LOC_TYPEDEF:
4322 case LOC_COMPUTED:
4323 for (j = FIRST_LOCAL_BLOCK;
4324 j < BLOCKVECTOR_NBLOCKS (BLOCKVECTOR (s)); j += 1)
4325 {
4326 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), j);
4327 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4328 return s;
4329 }
4330 break;
4331 default:
4332 break;
4333 }
4334 }
4335 return NULL;
4336 }
4337
4338 /* Return a minimal symbol matching NAME according to Ada decoding
4339 rules. Returns NULL if there is no such minimal symbol. Names
4340 prefixed with "standard__" are handled specially: "standard__" is
4341 first stripped off, and only static and global symbols are searched. */
4342
4343 struct minimal_symbol *
4344 ada_lookup_simple_minsym (const char *name)
4345 {
4346 struct objfile *objfile;
4347 struct minimal_symbol *msymbol;
4348 int wild_match;
4349
4350 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4351 {
4352 name += sizeof ("standard__") - 1;
4353 wild_match = 0;
4354 }
4355 else
4356 wild_match = (strstr (name, "__") == NULL);
4357
4358 ALL_MSYMBOLS (objfile, msymbol)
4359 {
4360 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4361 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4362 return msymbol;
4363 }
4364
4365 return NULL;
4366 }
4367
4368 /* For all subprograms that statically enclose the subprogram of the
4369 selected frame, add symbols matching identifier NAME in DOMAIN
4370 and their blocks to the list of data in OBSTACKP, as for
4371 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4372 wildcard prefix. */
4373
4374 static void
4375 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4376 const char *name, domain_enum namespace,
4377 int wild_match)
4378 {
4379 }
4380
4381 /* True if TYPE is definitely an artificial type supplied to a symbol
4382 for which no debugging information was given in the symbol file. */
4383
4384 static int
4385 is_nondebugging_type (struct type *type)
4386 {
4387 char *name = ada_type_name (type);
4388 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4389 }
4390
4391 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4392 duplicate other symbols in the list (The only case I know of where
4393 this happens is when object files containing stabs-in-ecoff are
4394 linked with files containing ordinary ecoff debugging symbols (or no
4395 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4396 Returns the number of items in the modified list. */
4397
4398 static int
4399 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4400 {
4401 int i, j;
4402
4403 i = 0;
4404 while (i < nsyms)
4405 {
4406 if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4407 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4408 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4409 {
4410 for (j = 0; j < nsyms; j += 1)
4411 {
4412 if (i != j
4413 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4414 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4415 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4416 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4417 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4418 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4419 {
4420 int k;
4421 for (k = i + 1; k < nsyms; k += 1)
4422 syms[k - 1] = syms[k];
4423 nsyms -= 1;
4424 goto NextSymbol;
4425 }
4426 }
4427 }
4428 i += 1;
4429 NextSymbol:
4430 ;
4431 }
4432 return nsyms;
4433 }
4434
4435 /* Given a type that corresponds to a renaming entity, use the type name
4436 to extract the scope (package name or function name, fully qualified,
4437 and following the GNAT encoding convention) where this renaming has been
4438 defined. The string returned needs to be deallocated after use. */
4439
4440 static char *
4441 xget_renaming_scope (struct type *renaming_type)
4442 {
4443 /* The renaming types adhere to the following convention:
4444 <scope>__<rename>___<XR extension>.
4445 So, to extract the scope, we search for the "___XR" extension,
4446 and then backtrack until we find the first "__". */
4447
4448 const char *name = type_name_no_tag (renaming_type);
4449 char *suffix = strstr (name, "___XR");
4450 char *last;
4451 int scope_len;
4452 char *scope;
4453
4454 /* Now, backtrack a bit until we find the first "__". Start looking
4455 at suffix - 3, as the <rename> part is at least one character long. */
4456
4457 for (last = suffix - 3; last > name; last--)
4458 if (last[0] == '_' && last[1] == '_')
4459 break;
4460
4461 /* Make a copy of scope and return it. */
4462
4463 scope_len = last - name;
4464 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4465
4466 strncpy (scope, name, scope_len);
4467 scope[scope_len] = '\0';
4468
4469 return scope;
4470 }
4471
4472 /* Return nonzero if NAME corresponds to a package name. */
4473
4474 static int
4475 is_package_name (const char *name)
4476 {
4477 /* Here, We take advantage of the fact that no symbols are generated
4478 for packages, while symbols are generated for each function.
4479 So the condition for NAME represent a package becomes equivalent
4480 to NAME not existing in our list of symbols. There is only one
4481 small complication with library-level functions (see below). */
4482
4483 char *fun_name;
4484
4485 /* If it is a function that has not been defined at library level,
4486 then we should be able to look it up in the symbols. */
4487 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4488 return 0;
4489
4490 /* Library-level function names start with "_ada_". See if function
4491 "_ada_" followed by NAME can be found. */
4492
4493 /* Do a quick check that NAME does not contain "__", since library-level
4494 functions names cannot contain "__" in them. */
4495 if (strstr (name, "__") != NULL)
4496 return 0;
4497
4498 fun_name = xstrprintf ("_ada_%s", name);
4499
4500 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4501 }
4502
4503 /* Return nonzero if SYM corresponds to a renaming entity that is
4504 not visible from FUNCTION_NAME. */
4505
4506 static int
4507 old_renaming_is_invisible (const struct symbol *sym, char *function_name)
4508 {
4509 char *scope;
4510
4511 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4512 return 0;
4513
4514 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4515
4516 make_cleanup (xfree, scope);
4517
4518 /* If the rename has been defined in a package, then it is visible. */
4519 if (is_package_name (scope))
4520 return 0;
4521
4522 /* Check that the rename is in the current function scope by checking
4523 that its name starts with SCOPE. */
4524
4525 /* If the function name starts with "_ada_", it means that it is
4526 a library-level function. Strip this prefix before doing the
4527 comparison, as the encoding for the renaming does not contain
4528 this prefix. */
4529 if (strncmp (function_name, "_ada_", 5) == 0)
4530 function_name += 5;
4531
4532 return (strncmp (function_name, scope, strlen (scope)) != 0);
4533 }
4534
4535 /* Remove entries from SYMS that corresponds to a renaming entity that
4536 is not visible from the function associated with CURRENT_BLOCK or
4537 that is superfluous due to the presence of more specific renaming
4538 information. Places surviving symbols in the initial entries of
4539 SYMS and returns the number of surviving symbols.
4540
4541 Rationale:
4542 First, in cases where an object renaming is implemented as a
4543 reference variable, GNAT may produce both the actual reference
4544 variable and the renaming encoding. In this case, we discard the
4545 latter.
4546
4547 Second, GNAT emits a type following a specified encoding for each renaming
4548 entity. Unfortunately, STABS currently does not support the definition
4549 of types that are local to a given lexical block, so all renamings types
4550 are emitted at library level. As a consequence, if an application
4551 contains two renaming entities using the same name, and a user tries to
4552 print the value of one of these entities, the result of the ada symbol
4553 lookup will also contain the wrong renaming type.
4554
4555 This function partially covers for this limitation by attempting to
4556 remove from the SYMS list renaming symbols that should be visible
4557 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4558 method with the current information available. The implementation
4559 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4560
4561 - When the user tries to print a rename in a function while there
4562 is another rename entity defined in a package: Normally, the
4563 rename in the function has precedence over the rename in the
4564 package, so the latter should be removed from the list. This is
4565 currently not the case.
4566
4567 - This function will incorrectly remove valid renames if
4568 the CURRENT_BLOCK corresponds to a function which symbol name
4569 has been changed by an "Export" pragma. As a consequence,
4570 the user will be unable to print such rename entities. */
4571
4572 static int
4573 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4574 int nsyms, const struct block *current_block)
4575 {
4576 struct symbol *current_function;
4577 char *current_function_name;
4578 int i;
4579 int is_new_style_renaming;
4580
4581 /* If there is both a renaming foo___XR... encoded as a variable and
4582 a simple variable foo in the same block, discard the latter.
4583 First, zero out such symbols, then compress. */
4584 is_new_style_renaming = 0;
4585 for (i = 0; i < nsyms; i += 1)
4586 {
4587 struct symbol *sym = syms[i].sym;
4588 struct block *block = syms[i].block;
4589 const char *name;
4590 const char *suffix;
4591
4592 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4593 continue;
4594 name = SYMBOL_LINKAGE_NAME (sym);
4595 suffix = strstr (name, "___XR");
4596
4597 if (suffix != NULL)
4598 {
4599 int name_len = suffix - name;
4600 int j;
4601 is_new_style_renaming = 1;
4602 for (j = 0; j < nsyms; j += 1)
4603 if (i != j && syms[j].sym != NULL
4604 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4605 name_len) == 0
4606 && block == syms[j].block)
4607 syms[j].sym = NULL;
4608 }
4609 }
4610 if (is_new_style_renaming)
4611 {
4612 int j, k;
4613
4614 for (j = k = 0; j < nsyms; j += 1)
4615 if (syms[j].sym != NULL)
4616 {
4617 syms[k] = syms[j];
4618 k += 1;
4619 }
4620 return k;
4621 }
4622
4623 /* Extract the function name associated to CURRENT_BLOCK.
4624 Abort if unable to do so. */
4625
4626 if (current_block == NULL)
4627 return nsyms;
4628
4629 current_function = block_linkage_function (current_block);
4630 if (current_function == NULL)
4631 return nsyms;
4632
4633 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4634 if (current_function_name == NULL)
4635 return nsyms;
4636
4637 /* Check each of the symbols, and remove it from the list if it is
4638 a type corresponding to a renaming that is out of the scope of
4639 the current block. */
4640
4641 i = 0;
4642 while (i < nsyms)
4643 {
4644 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4645 == ADA_OBJECT_RENAMING
4646 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4647 {
4648 int j;
4649 for (j = i + 1; j < nsyms; j += 1)
4650 syms[j - 1] = syms[j];
4651 nsyms -= 1;
4652 }
4653 else
4654 i += 1;
4655 }
4656
4657 return nsyms;
4658 }
4659
4660 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4661 scope and in global scopes, returning the number of matches. Sets
4662 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4663 indicating the symbols found and the blocks and symbol tables (if
4664 any) in which they were found. This vector are transient---good only to
4665 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4666 symbol match within the nest of blocks whose innermost member is BLOCK0,
4667 is the one match returned (no other matches in that or
4668 enclosing blocks is returned). If there are any matches in or
4669 surrounding BLOCK0, then these alone are returned. Otherwise, the
4670 search extends to global and file-scope (static) symbol tables.
4671 Names prefixed with "standard__" are handled specially: "standard__"
4672 is first stripped off, and only static and global symbols are searched. */
4673
4674 int
4675 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4676 domain_enum namespace,
4677 struct ada_symbol_info **results)
4678 {
4679 struct symbol *sym;
4680 struct symtab *s;
4681 struct partial_symtab *ps;
4682 struct blockvector *bv;
4683 struct objfile *objfile;
4684 struct block *block;
4685 const char *name;
4686 struct minimal_symbol *msymbol;
4687 int wild_match;
4688 int cacheIfUnique;
4689 int block_depth;
4690 int ndefns;
4691
4692 obstack_free (&symbol_list_obstack, NULL);
4693 obstack_init (&symbol_list_obstack);
4694
4695 cacheIfUnique = 0;
4696
4697 /* Search specified block and its superiors. */
4698
4699 wild_match = (strstr (name0, "__") == NULL);
4700 name = name0;
4701 block = (struct block *) block0; /* FIXME: No cast ought to be
4702 needed, but adding const will
4703 have a cascade effect. */
4704 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4705 {
4706 wild_match = 0;
4707 block = NULL;
4708 name = name0 + sizeof ("standard__") - 1;
4709 }
4710
4711 block_depth = 0;
4712 while (block != NULL)
4713 {
4714 block_depth += 1;
4715 ada_add_block_symbols (&symbol_list_obstack, block, name,
4716 namespace, NULL, wild_match);
4717
4718 /* If we found a non-function match, assume that's the one. */
4719 if (is_nonfunction (defns_collected (&symbol_list_obstack, 0),
4720 num_defns_collected (&symbol_list_obstack)))
4721 goto done;
4722
4723 block = BLOCK_SUPERBLOCK (block);
4724 }
4725
4726 /* If no luck so far, try to find NAME as a local symbol in some lexically
4727 enclosing subprogram. */
4728 if (num_defns_collected (&symbol_list_obstack) == 0 && block_depth > 2)
4729 add_symbols_from_enclosing_procs (&symbol_list_obstack,
4730 name, namespace, wild_match);
4731
4732 /* If we found ANY matches among non-global symbols, we're done. */
4733
4734 if (num_defns_collected (&symbol_list_obstack) > 0)
4735 goto done;
4736
4737 cacheIfUnique = 1;
4738 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4739 {
4740 if (sym != NULL)
4741 add_defn_to_vec (&symbol_list_obstack, sym, block);
4742 goto done;
4743 }
4744
4745 /* Now add symbols from all global blocks: symbol tables, minimal symbol
4746 tables, and psymtab's. */
4747
4748 ALL_PRIMARY_SYMTABS (objfile, s)
4749 {
4750 QUIT;
4751 bv = BLOCKVECTOR (s);
4752 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4753 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4754 objfile, wild_match);
4755 }
4756
4757 if (namespace == VAR_DOMAIN)
4758 {
4759 ALL_MSYMBOLS (objfile, msymbol)
4760 {
4761 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match))
4762 {
4763 switch (MSYMBOL_TYPE (msymbol))
4764 {
4765 case mst_solib_trampoline:
4766 break;
4767 default:
4768 s = find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol));
4769 if (s != NULL)
4770 {
4771 int ndefns0 = num_defns_collected (&symbol_list_obstack);
4772 QUIT;
4773 bv = BLOCKVECTOR (s);
4774 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4775 ada_add_block_symbols (&symbol_list_obstack, block,
4776 SYMBOL_LINKAGE_NAME (msymbol),
4777 namespace, objfile, wild_match);
4778
4779 if (num_defns_collected (&symbol_list_obstack) == ndefns0)
4780 {
4781 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4782 ada_add_block_symbols (&symbol_list_obstack, block,
4783 SYMBOL_LINKAGE_NAME (msymbol),
4784 namespace, objfile,
4785 wild_match);
4786 }
4787 }
4788 }
4789 }
4790 }
4791 }
4792
4793 ALL_PSYMTABS (objfile, ps)
4794 {
4795 QUIT;
4796 if (!ps->readin
4797 && ada_lookup_partial_symbol (ps, name, 1, namespace, wild_match))
4798 {
4799 s = PSYMTAB_TO_SYMTAB (ps);
4800 if (!s->primary)
4801 continue;
4802 bv = BLOCKVECTOR (s);
4803 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4804 ada_add_block_symbols (&symbol_list_obstack, block, name,
4805 namespace, objfile, wild_match);
4806 }
4807 }
4808
4809 /* Now add symbols from all per-file blocks if we've gotten no hits
4810 (Not strictly correct, but perhaps better than an error).
4811 Do the symtabs first, then check the psymtabs. */
4812
4813 if (num_defns_collected (&symbol_list_obstack) == 0)
4814 {
4815
4816 ALL_PRIMARY_SYMTABS (objfile, s)
4817 {
4818 QUIT;
4819 bv = BLOCKVECTOR (s);
4820 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4821 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4822 objfile, wild_match);
4823 }
4824
4825 ALL_PSYMTABS (objfile, ps)
4826 {
4827 QUIT;
4828 if (!ps->readin
4829 && ada_lookup_partial_symbol (ps, name, 0, namespace, wild_match))
4830 {
4831 s = PSYMTAB_TO_SYMTAB (ps);
4832 bv = BLOCKVECTOR (s);
4833 if (!s->primary)
4834 continue;
4835 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4836 ada_add_block_symbols (&symbol_list_obstack, block, name,
4837 namespace, objfile, wild_match);
4838 }
4839 }
4840 }
4841
4842 done:
4843 ndefns = num_defns_collected (&symbol_list_obstack);
4844 *results = defns_collected (&symbol_list_obstack, 1);
4845
4846 ndefns = remove_extra_symbols (*results, ndefns);
4847
4848 if (ndefns == 0)
4849 cache_symbol (name0, namespace, NULL, NULL);
4850
4851 if (ndefns == 1 && cacheIfUnique)
4852 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
4853
4854 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
4855
4856 return ndefns;
4857 }
4858
4859 struct symbol *
4860 ada_lookup_encoded_symbol (const char *name, const struct block *block0,
4861 domain_enum namespace, struct block **block_found)
4862 {
4863 struct ada_symbol_info *candidates;
4864 int n_candidates;
4865
4866 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
4867
4868 if (n_candidates == 0)
4869 return NULL;
4870
4871 if (block_found != NULL)
4872 *block_found = candidates[0].block;
4873
4874 return fixup_symbol_section (candidates[0].sym, NULL);
4875 }
4876
4877 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4878 scope and in global scopes, or NULL if none. NAME is folded and
4879 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4880 choosing the first symbol if there are multiple choices.
4881 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4882 table in which the symbol was found (in both cases, these
4883 assignments occur only if the pointers are non-null). */
4884 struct symbol *
4885 ada_lookup_symbol (const char *name, const struct block *block0,
4886 domain_enum namespace, int *is_a_field_of_this)
4887 {
4888 if (is_a_field_of_this != NULL)
4889 *is_a_field_of_this = 0;
4890
4891 return
4892 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
4893 block0, namespace, NULL);
4894 }
4895
4896 static struct symbol *
4897 ada_lookup_symbol_nonlocal (const char *name,
4898 const char *linkage_name,
4899 const struct block *block,
4900 const domain_enum domain)
4901 {
4902 if (linkage_name == NULL)
4903 linkage_name = name;
4904 return ada_lookup_symbol (linkage_name, block_static_block (block), domain,
4905 NULL);
4906 }
4907
4908
4909 /* True iff STR is a possible encoded suffix of a normal Ada name
4910 that is to be ignored for matching purposes. Suffixes of parallel
4911 names (e.g., XVE) are not included here. Currently, the possible suffixes
4912 are given by either of the regular expression:
4913
4914 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
4915 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4916 _E[0-9]+[bs]$ [protected object entry suffixes]
4917 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4918
4919 Also, any leading "__[0-9]+" sequence is skipped before the suffix
4920 match is performed. This sequence is used to differentiate homonyms,
4921 is an optional part of a valid name suffix. */
4922
4923 static int
4924 is_name_suffix (const char *str)
4925 {
4926 int k;
4927 const char *matching;
4928 const int len = strlen (str);
4929
4930 /* Skip optional leading __[0-9]+. */
4931
4932 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4933 {
4934 str += 3;
4935 while (isdigit (str[0]))
4936 str += 1;
4937 }
4938
4939 /* [.$][0-9]+ */
4940
4941 if (str[0] == '.' || str[0] == '$')
4942 {
4943 matching = str + 1;
4944 while (isdigit (matching[0]))
4945 matching += 1;
4946 if (matching[0] == '\0')
4947 return 1;
4948 }
4949
4950 /* ___[0-9]+ */
4951
4952 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4953 {
4954 matching = str + 3;
4955 while (isdigit (matching[0]))
4956 matching += 1;
4957 if (matching[0] == '\0')
4958 return 1;
4959 }
4960
4961 #if 0
4962 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4963 with a N at the end. Unfortunately, the compiler uses the same
4964 convention for other internal types it creates. So treating
4965 all entity names that end with an "N" as a name suffix causes
4966 some regressions. For instance, consider the case of an enumerated
4967 type. To support the 'Image attribute, it creates an array whose
4968 name ends with N.
4969 Having a single character like this as a suffix carrying some
4970 information is a bit risky. Perhaps we should change the encoding
4971 to be something like "_N" instead. In the meantime, do not do
4972 the following check. */
4973 /* Protected Object Subprograms */
4974 if (len == 1 && str [0] == 'N')
4975 return 1;
4976 #endif
4977
4978 /* _E[0-9]+[bs]$ */
4979 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
4980 {
4981 matching = str + 3;
4982 while (isdigit (matching[0]))
4983 matching += 1;
4984 if ((matching[0] == 'b' || matching[0] == 's')
4985 && matching [1] == '\0')
4986 return 1;
4987 }
4988
4989 /* ??? We should not modify STR directly, as we are doing below. This
4990 is fine in this case, but may become problematic later if we find
4991 that this alternative did not work, and want to try matching
4992 another one from the begining of STR. Since we modified it, we
4993 won't be able to find the begining of the string anymore! */
4994 if (str[0] == 'X')
4995 {
4996 str += 1;
4997 while (str[0] != '_' && str[0] != '\0')
4998 {
4999 if (str[0] != 'n' && str[0] != 'b')
5000 return 0;
5001 str += 1;
5002 }
5003 }
5004
5005 if (str[0] == '\000')
5006 return 1;
5007
5008 if (str[0] == '_')
5009 {
5010 if (str[1] != '_' || str[2] == '\000')
5011 return 0;
5012 if (str[2] == '_')
5013 {
5014 if (strcmp (str + 3, "JM") == 0)
5015 return 1;
5016 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5017 the LJM suffix in favor of the JM one. But we will
5018 still accept LJM as a valid suffix for a reasonable
5019 amount of time, just to allow ourselves to debug programs
5020 compiled using an older version of GNAT. */
5021 if (strcmp (str + 3, "LJM") == 0)
5022 return 1;
5023 if (str[3] != 'X')
5024 return 0;
5025 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5026 || str[4] == 'U' || str[4] == 'P')
5027 return 1;
5028 if (str[4] == 'R' && str[5] != 'T')
5029 return 1;
5030 return 0;
5031 }
5032 if (!isdigit (str[2]))
5033 return 0;
5034 for (k = 3; str[k] != '\0'; k += 1)
5035 if (!isdigit (str[k]) && str[k] != '_')
5036 return 0;
5037 return 1;
5038 }
5039 if (str[0] == '$' && isdigit (str[1]))
5040 {
5041 for (k = 2; str[k] != '\0'; k += 1)
5042 if (!isdigit (str[k]) && str[k] != '_')
5043 return 0;
5044 return 1;
5045 }
5046 return 0;
5047 }
5048
5049 /* Return nonzero if the given string starts with a dot ('.')
5050 followed by zero or more digits.
5051
5052 Note: brobecker/2003-11-10: A forward declaration has not been
5053 added at the begining of this file yet, because this function
5054 is only used to work around a problem found during wild matching
5055 when trying to match minimal symbol names against symbol names
5056 obtained from dwarf-2 data. This function is therefore currently
5057 only used in wild_match() and is likely to be deleted when the
5058 problem in dwarf-2 is fixed. */
5059
5060 static int
5061 is_dot_digits_suffix (const char *str)
5062 {
5063 if (str[0] != '.')
5064 return 0;
5065
5066 str++;
5067 while (isdigit (str[0]))
5068 str++;
5069 return (str[0] == '\0');
5070 }
5071
5072 /* Return non-zero if the string starting at NAME and ending before
5073 NAME_END contains no capital letters. */
5074
5075 static int
5076 is_valid_name_for_wild_match (const char *name0)
5077 {
5078 const char *decoded_name = ada_decode (name0);
5079 int i;
5080
5081 for (i=0; decoded_name[i] != '\0'; i++)
5082 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5083 return 0;
5084
5085 return 1;
5086 }
5087
5088 /* True if NAME represents a name of the form A1.A2....An, n>=1 and
5089 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
5090 informational suffixes of NAME (i.e., for which is_name_suffix is
5091 true). */
5092
5093 static int
5094 wild_match (const char *patn0, int patn_len, const char *name0)
5095 {
5096 int name_len;
5097 char *name;
5098 char *name_start;
5099 char *patn;
5100
5101 /* FIXME: brobecker/2003-11-10: For some reason, the symbol name
5102 stored in the symbol table for nested function names is sometimes
5103 different from the name of the associated entity stored in
5104 the dwarf-2 data: This is the case for nested subprograms, where
5105 the minimal symbol name contains a trailing ".[:digit:]+" suffix,
5106 while the symbol name from the dwarf-2 data does not.
5107
5108 Although the DWARF-2 standard documents that entity names stored
5109 in the dwarf-2 data should be identical to the name as seen in
5110 the source code, GNAT takes a different approach as we already use
5111 a special encoding mechanism to convey the information so that
5112 a C debugger can still use the information generated to debug
5113 Ada programs. A corollary is that the symbol names in the dwarf-2
5114 data should match the names found in the symbol table. I therefore
5115 consider this issue as a compiler defect.
5116
5117 Until the compiler is properly fixed, we work-around the problem
5118 by ignoring such suffixes during the match. We do so by making
5119 a copy of PATN0 and NAME0, and then by stripping such a suffix
5120 if present. We then perform the match on the resulting strings. */
5121 {
5122 char *dot;
5123 name_len = strlen (name0);
5124
5125 name = name_start = (char *) alloca ((name_len + 1) * sizeof (char));
5126 strcpy (name, name0);
5127 dot = strrchr (name, '.');
5128 if (dot != NULL && is_dot_digits_suffix (dot))
5129 *dot = '\0';
5130
5131 patn = (char *) alloca ((patn_len + 1) * sizeof (char));
5132 strncpy (patn, patn0, patn_len);
5133 patn[patn_len] = '\0';
5134 dot = strrchr (patn, '.');
5135 if (dot != NULL && is_dot_digits_suffix (dot))
5136 {
5137 *dot = '\0';
5138 patn_len = dot - patn;
5139 }
5140 }
5141
5142 /* Now perform the wild match. */
5143
5144 name_len = strlen (name);
5145 if (name_len >= patn_len + 5 && strncmp (name, "_ada_", 5) == 0
5146 && strncmp (patn, name + 5, patn_len) == 0
5147 && is_name_suffix (name + patn_len + 5))
5148 return 1;
5149
5150 while (name_len >= patn_len)
5151 {
5152 if (strncmp (patn, name, patn_len) == 0
5153 && is_name_suffix (name + patn_len))
5154 return (name == name_start || is_valid_name_for_wild_match (name0));
5155 do
5156 {
5157 name += 1;
5158 name_len -= 1;
5159 }
5160 while (name_len > 0
5161 && name[0] != '.' && (name[0] != '_' || name[1] != '_'));
5162 if (name_len <= 0)
5163 return 0;
5164 if (name[0] == '_')
5165 {
5166 if (!islower (name[2]))
5167 return 0;
5168 name += 2;
5169 name_len -= 2;
5170 }
5171 else
5172 {
5173 if (!islower (name[1]))
5174 return 0;
5175 name += 1;
5176 name_len -= 1;
5177 }
5178 }
5179
5180 return 0;
5181 }
5182
5183
5184 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5185 vector *defn_symbols, updating the list of symbols in OBSTACKP
5186 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5187 OBJFILE is the section containing BLOCK.
5188 SYMTAB is recorded with each symbol added. */
5189
5190 static void
5191 ada_add_block_symbols (struct obstack *obstackp,
5192 struct block *block, const char *name,
5193 domain_enum domain, struct objfile *objfile,
5194 int wild)
5195 {
5196 struct dict_iterator iter;
5197 int name_len = strlen (name);
5198 /* A matching argument symbol, if any. */
5199 struct symbol *arg_sym;
5200 /* Set true when we find a matching non-argument symbol. */
5201 int found_sym;
5202 struct symbol *sym;
5203
5204 arg_sym = NULL;
5205 found_sym = 0;
5206 if (wild)
5207 {
5208 struct symbol *sym;
5209 ALL_BLOCK_SYMBOLS (block, iter, sym)
5210 {
5211 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5212 SYMBOL_DOMAIN (sym), domain)
5213 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
5214 {
5215 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5216 continue;
5217 else if (SYMBOL_IS_ARGUMENT (sym))
5218 arg_sym = sym;
5219 else
5220 {
5221 found_sym = 1;
5222 add_defn_to_vec (obstackp,
5223 fixup_symbol_section (sym, objfile),
5224 block);
5225 }
5226 }
5227 }
5228 }
5229 else
5230 {
5231 ALL_BLOCK_SYMBOLS (block, iter, sym)
5232 {
5233 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5234 SYMBOL_DOMAIN (sym), domain))
5235 {
5236 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
5237 if (cmp == 0
5238 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
5239 {
5240 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5241 {
5242 if (SYMBOL_IS_ARGUMENT (sym))
5243 arg_sym = sym;
5244 else
5245 {
5246 found_sym = 1;
5247 add_defn_to_vec (obstackp,
5248 fixup_symbol_section (sym, objfile),
5249 block);
5250 }
5251 }
5252 }
5253 }
5254 }
5255 }
5256
5257 if (!found_sym && arg_sym != NULL)
5258 {
5259 add_defn_to_vec (obstackp,
5260 fixup_symbol_section (arg_sym, objfile),
5261 block);
5262 }
5263
5264 if (!wild)
5265 {
5266 arg_sym = NULL;
5267 found_sym = 0;
5268
5269 ALL_BLOCK_SYMBOLS (block, iter, sym)
5270 {
5271 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5272 SYMBOL_DOMAIN (sym), domain))
5273 {
5274 int cmp;
5275
5276 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5277 if (cmp == 0)
5278 {
5279 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5280 if (cmp == 0)
5281 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5282 name_len);
5283 }
5284
5285 if (cmp == 0
5286 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5287 {
5288 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5289 {
5290 if (SYMBOL_IS_ARGUMENT (sym))
5291 arg_sym = sym;
5292 else
5293 {
5294 found_sym = 1;
5295 add_defn_to_vec (obstackp,
5296 fixup_symbol_section (sym, objfile),
5297 block);
5298 }
5299 }
5300 }
5301 }
5302 }
5303
5304 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5305 They aren't parameters, right? */
5306 if (!found_sym && arg_sym != NULL)
5307 {
5308 add_defn_to_vec (obstackp,
5309 fixup_symbol_section (arg_sym, objfile),
5310 block);
5311 }
5312 }
5313 }
5314 \f
5315
5316 /* Symbol Completion */
5317
5318 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5319 name in a form that's appropriate for the completion. The result
5320 does not need to be deallocated, but is only good until the next call.
5321
5322 TEXT_LEN is equal to the length of TEXT.
5323 Perform a wild match if WILD_MATCH is set.
5324 ENCODED should be set if TEXT represents the start of a symbol name
5325 in its encoded form. */
5326
5327 static const char *
5328 symbol_completion_match (const char *sym_name,
5329 const char *text, int text_len,
5330 int wild_match, int encoded)
5331 {
5332 char *result;
5333 const int verbatim_match = (text[0] == '<');
5334 int match = 0;
5335
5336 if (verbatim_match)
5337 {
5338 /* Strip the leading angle bracket. */
5339 text = text + 1;
5340 text_len--;
5341 }
5342
5343 /* First, test against the fully qualified name of the symbol. */
5344
5345 if (strncmp (sym_name, text, text_len) == 0)
5346 match = 1;
5347
5348 if (match && !encoded)
5349 {
5350 /* One needed check before declaring a positive match is to verify
5351 that iff we are doing a verbatim match, the decoded version
5352 of the symbol name starts with '<'. Otherwise, this symbol name
5353 is not a suitable completion. */
5354 const char *sym_name_copy = sym_name;
5355 int has_angle_bracket;
5356
5357 sym_name = ada_decode (sym_name);
5358 has_angle_bracket = (sym_name[0] == '<');
5359 match = (has_angle_bracket == verbatim_match);
5360 sym_name = sym_name_copy;
5361 }
5362
5363 if (match && !verbatim_match)
5364 {
5365 /* When doing non-verbatim match, another check that needs to
5366 be done is to verify that the potentially matching symbol name
5367 does not include capital letters, because the ada-mode would
5368 not be able to understand these symbol names without the
5369 angle bracket notation. */
5370 const char *tmp;
5371
5372 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5373 if (*tmp != '\0')
5374 match = 0;
5375 }
5376
5377 /* Second: Try wild matching... */
5378
5379 if (!match && wild_match)
5380 {
5381 /* Since we are doing wild matching, this means that TEXT
5382 may represent an unqualified symbol name. We therefore must
5383 also compare TEXT against the unqualified name of the symbol. */
5384 sym_name = ada_unqualified_name (ada_decode (sym_name));
5385
5386 if (strncmp (sym_name, text, text_len) == 0)
5387 match = 1;
5388 }
5389
5390 /* Finally: If we found a mach, prepare the result to return. */
5391
5392 if (!match)
5393 return NULL;
5394
5395 if (verbatim_match)
5396 sym_name = add_angle_brackets (sym_name);
5397
5398 if (!encoded)
5399 sym_name = ada_decode (sym_name);
5400
5401 return sym_name;
5402 }
5403
5404 typedef char *char_ptr;
5405 DEF_VEC_P (char_ptr);
5406
5407 /* A companion function to ada_make_symbol_completion_list().
5408 Check if SYM_NAME represents a symbol which name would be suitable
5409 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5410 it is appended at the end of the given string vector SV.
5411
5412 ORIG_TEXT is the string original string from the user command
5413 that needs to be completed. WORD is the entire command on which
5414 completion should be performed. These two parameters are used to
5415 determine which part of the symbol name should be added to the
5416 completion vector.
5417 if WILD_MATCH is set, then wild matching is performed.
5418 ENCODED should be set if TEXT represents a symbol name in its
5419 encoded formed (in which case the completion should also be
5420 encoded). */
5421
5422 static void
5423 symbol_completion_add (VEC(char_ptr) **sv,
5424 const char *sym_name,
5425 const char *text, int text_len,
5426 const char *orig_text, const char *word,
5427 int wild_match, int encoded)
5428 {
5429 const char *match = symbol_completion_match (sym_name, text, text_len,
5430 wild_match, encoded);
5431 char *completion;
5432
5433 if (match == NULL)
5434 return;
5435
5436 /* We found a match, so add the appropriate completion to the given
5437 string vector. */
5438
5439 if (word == orig_text)
5440 {
5441 completion = xmalloc (strlen (match) + 5);
5442 strcpy (completion, match);
5443 }
5444 else if (word > orig_text)
5445 {
5446 /* Return some portion of sym_name. */
5447 completion = xmalloc (strlen (match) + 5);
5448 strcpy (completion, match + (word - orig_text));
5449 }
5450 else
5451 {
5452 /* Return some of ORIG_TEXT plus sym_name. */
5453 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5454 strncpy (completion, word, orig_text - word);
5455 completion[orig_text - word] = '\0';
5456 strcat (completion, match);
5457 }
5458
5459 VEC_safe_push (char_ptr, *sv, completion);
5460 }
5461
5462 /* Return a list of possible symbol names completing TEXT0. The list
5463 is NULL terminated. WORD is the entire command on which completion
5464 is made. */
5465
5466 static char **
5467 ada_make_symbol_completion_list (char *text0, char *word)
5468 {
5469 char *text;
5470 int text_len;
5471 int wild_match;
5472 int encoded;
5473 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5474 struct symbol *sym;
5475 struct symtab *s;
5476 struct partial_symtab *ps;
5477 struct minimal_symbol *msymbol;
5478 struct objfile *objfile;
5479 struct block *b, *surrounding_static_block = 0;
5480 int i;
5481 struct dict_iterator iter;
5482
5483 if (text0[0] == '<')
5484 {
5485 text = xstrdup (text0);
5486 make_cleanup (xfree, text);
5487 text_len = strlen (text);
5488 wild_match = 0;
5489 encoded = 1;
5490 }
5491 else
5492 {
5493 text = xstrdup (ada_encode (text0));
5494 make_cleanup (xfree, text);
5495 text_len = strlen (text);
5496 for (i = 0; i < text_len; i++)
5497 text[i] = tolower (text[i]);
5498
5499 encoded = (strstr (text0, "__") != NULL);
5500 /* If the name contains a ".", then the user is entering a fully
5501 qualified entity name, and the match must not be done in wild
5502 mode. Similarly, if the user wants to complete what looks like
5503 an encoded name, the match must not be done in wild mode. */
5504 wild_match = (strchr (text0, '.') == NULL && !encoded);
5505 }
5506
5507 /* First, look at the partial symtab symbols. */
5508 ALL_PSYMTABS (objfile, ps)
5509 {
5510 struct partial_symbol **psym;
5511
5512 /* If the psymtab's been read in we'll get it when we search
5513 through the blockvector. */
5514 if (ps->readin)
5515 continue;
5516
5517 for (psym = objfile->global_psymbols.list + ps->globals_offset;
5518 psym < (objfile->global_psymbols.list + ps->globals_offset
5519 + ps->n_global_syms); psym++)
5520 {
5521 QUIT;
5522 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
5523 text, text_len, text0, word,
5524 wild_match, encoded);
5525 }
5526
5527 for (psym = objfile->static_psymbols.list + ps->statics_offset;
5528 psym < (objfile->static_psymbols.list + ps->statics_offset
5529 + ps->n_static_syms); psym++)
5530 {
5531 QUIT;
5532 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
5533 text, text_len, text0, word,
5534 wild_match, encoded);
5535 }
5536 }
5537
5538 /* At this point scan through the misc symbol vectors and add each
5539 symbol you find to the list. Eventually we want to ignore
5540 anything that isn't a text symbol (everything else will be
5541 handled by the psymtab code above). */
5542
5543 ALL_MSYMBOLS (objfile, msymbol)
5544 {
5545 QUIT;
5546 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5547 text, text_len, text0, word, wild_match, encoded);
5548 }
5549
5550 /* Search upwards from currently selected frame (so that we can
5551 complete on local vars. */
5552
5553 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5554 {
5555 if (!BLOCK_SUPERBLOCK (b))
5556 surrounding_static_block = b; /* For elmin of dups */
5557
5558 ALL_BLOCK_SYMBOLS (b, iter, sym)
5559 {
5560 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5561 text, text_len, text0, word,
5562 wild_match, encoded);
5563 }
5564 }
5565
5566 /* Go through the symtabs and check the externs and statics for
5567 symbols which match. */
5568
5569 ALL_SYMTABS (objfile, s)
5570 {
5571 QUIT;
5572 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5573 ALL_BLOCK_SYMBOLS (b, iter, sym)
5574 {
5575 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5576 text, text_len, text0, word,
5577 wild_match, encoded);
5578 }
5579 }
5580
5581 ALL_SYMTABS (objfile, s)
5582 {
5583 QUIT;
5584 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5585 /* Don't do this block twice. */
5586 if (b == surrounding_static_block)
5587 continue;
5588 ALL_BLOCK_SYMBOLS (b, iter, sym)
5589 {
5590 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5591 text, text_len, text0, word,
5592 wild_match, encoded);
5593 }
5594 }
5595
5596 /* Append the closing NULL entry. */
5597 VEC_safe_push (char_ptr, completions, NULL);
5598
5599 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5600 return the copy. It's unfortunate that we have to make a copy
5601 of an array that we're about to destroy, but there is nothing much
5602 we can do about it. Fortunately, it's typically not a very large
5603 array. */
5604 {
5605 const size_t completions_size =
5606 VEC_length (char_ptr, completions) * sizeof (char *);
5607 char **result = malloc (completions_size);
5608
5609 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5610
5611 VEC_free (char_ptr, completions);
5612 return result;
5613 }
5614 }
5615
5616 /* Field Access */
5617
5618 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5619 for tagged types. */
5620
5621 static int
5622 ada_is_dispatch_table_ptr_type (struct type *type)
5623 {
5624 char *name;
5625
5626 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5627 return 0;
5628
5629 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5630 if (name == NULL)
5631 return 0;
5632
5633 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5634 }
5635
5636 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5637 to be invisible to users. */
5638
5639 int
5640 ada_is_ignored_field (struct type *type, int field_num)
5641 {
5642 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5643 return 1;
5644
5645 /* Check the name of that field. */
5646 {
5647 const char *name = TYPE_FIELD_NAME (type, field_num);
5648
5649 /* Anonymous field names should not be printed.
5650 brobecker/2007-02-20: I don't think this can actually happen
5651 but we don't want to print the value of annonymous fields anyway. */
5652 if (name == NULL)
5653 return 1;
5654
5655 /* A field named "_parent" is internally generated by GNAT for
5656 tagged types, and should not be printed either. */
5657 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5658 return 1;
5659 }
5660
5661 /* If this is the dispatch table of a tagged type, then ignore. */
5662 if (ada_is_tagged_type (type, 1)
5663 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5664 return 1;
5665
5666 /* Not a special field, so it should not be ignored. */
5667 return 0;
5668 }
5669
5670 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5671 pointer or reference type whose ultimate target has a tag field. */
5672
5673 int
5674 ada_is_tagged_type (struct type *type, int refok)
5675 {
5676 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5677 }
5678
5679 /* True iff TYPE represents the type of X'Tag */
5680
5681 int
5682 ada_is_tag_type (struct type *type)
5683 {
5684 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5685 return 0;
5686 else
5687 {
5688 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5689 return (name != NULL
5690 && strcmp (name, "ada__tags__dispatch_table") == 0);
5691 }
5692 }
5693
5694 /* The type of the tag on VAL. */
5695
5696 struct type *
5697 ada_tag_type (struct value *val)
5698 {
5699 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5700 }
5701
5702 /* The value of the tag on VAL. */
5703
5704 struct value *
5705 ada_value_tag (struct value *val)
5706 {
5707 return ada_value_struct_elt (val, "_tag", 0);
5708 }
5709
5710 /* The value of the tag on the object of type TYPE whose contents are
5711 saved at VALADDR, if it is non-null, or is at memory address
5712 ADDRESS. */
5713
5714 static struct value *
5715 value_tag_from_contents_and_address (struct type *type,
5716 const gdb_byte *valaddr,
5717 CORE_ADDR address)
5718 {
5719 int tag_byte_offset, dummy1, dummy2;
5720 struct type *tag_type;
5721 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5722 NULL, NULL, NULL))
5723 {
5724 const gdb_byte *valaddr1 = ((valaddr == NULL)
5725 ? NULL
5726 : valaddr + tag_byte_offset);
5727 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5728
5729 return value_from_contents_and_address (tag_type, valaddr1, address1);
5730 }
5731 return NULL;
5732 }
5733
5734 static struct type *
5735 type_from_tag (struct value *tag)
5736 {
5737 const char *type_name = ada_tag_name (tag);
5738 if (type_name != NULL)
5739 return ada_find_any_type (ada_encode (type_name));
5740 return NULL;
5741 }
5742
5743 struct tag_args
5744 {
5745 struct value *tag;
5746 char *name;
5747 };
5748
5749
5750 static int ada_tag_name_1 (void *);
5751 static int ada_tag_name_2 (struct tag_args *);
5752
5753 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5754 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5755 The value stored in ARGS->name is valid until the next call to
5756 ada_tag_name_1. */
5757
5758 static int
5759 ada_tag_name_1 (void *args0)
5760 {
5761 struct tag_args *args = (struct tag_args *) args0;
5762 static char name[1024];
5763 char *p;
5764 struct value *val;
5765 args->name = NULL;
5766 val = ada_value_struct_elt (args->tag, "tsd", 1);
5767 if (val == NULL)
5768 return ada_tag_name_2 (args);
5769 val = ada_value_struct_elt (val, "expanded_name", 1);
5770 if (val == NULL)
5771 return 0;
5772 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5773 for (p = name; *p != '\0'; p += 1)
5774 if (isalpha (*p))
5775 *p = tolower (*p);
5776 args->name = name;
5777 return 0;
5778 }
5779
5780 /* Utility function for ada_tag_name_1 that tries the second
5781 representation for the dispatch table (in which there is no
5782 explicit 'tsd' field in the referent of the tag pointer, and instead
5783 the tsd pointer is stored just before the dispatch table. */
5784
5785 static int
5786 ada_tag_name_2 (struct tag_args *args)
5787 {
5788 struct type *info_type;
5789 static char name[1024];
5790 char *p;
5791 struct value *val, *valp;
5792
5793 args->name = NULL;
5794 info_type = ada_find_any_type ("ada__tags__type_specific_data");
5795 if (info_type == NULL)
5796 return 0;
5797 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5798 valp = value_cast (info_type, args->tag);
5799 if (valp == NULL)
5800 return 0;
5801 val = value_ind (value_add (valp, value_from_longest (builtin_type_int, -1)));
5802 if (val == NULL)
5803 return 0;
5804 val = ada_value_struct_elt (val, "expanded_name", 1);
5805 if (val == NULL)
5806 return 0;
5807 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5808 for (p = name; *p != '\0'; p += 1)
5809 if (isalpha (*p))
5810 *p = tolower (*p);
5811 args->name = name;
5812 return 0;
5813 }
5814
5815 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5816 * a C string. */
5817
5818 const char *
5819 ada_tag_name (struct value *tag)
5820 {
5821 struct tag_args args;
5822 if (!ada_is_tag_type (value_type (tag)))
5823 return NULL;
5824 args.tag = tag;
5825 args.name = NULL;
5826 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5827 return args.name;
5828 }
5829
5830 /* The parent type of TYPE, or NULL if none. */
5831
5832 struct type *
5833 ada_parent_type (struct type *type)
5834 {
5835 int i;
5836
5837 type = ada_check_typedef (type);
5838
5839 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5840 return NULL;
5841
5842 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5843 if (ada_is_parent_field (type, i))
5844 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5845
5846 return NULL;
5847 }
5848
5849 /* True iff field number FIELD_NUM of structure type TYPE contains the
5850 parent-type (inherited) fields of a derived type. Assumes TYPE is
5851 a structure type with at least FIELD_NUM+1 fields. */
5852
5853 int
5854 ada_is_parent_field (struct type *type, int field_num)
5855 {
5856 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5857 return (name != NULL
5858 && (strncmp (name, "PARENT", 6) == 0
5859 || strncmp (name, "_parent", 7) == 0));
5860 }
5861
5862 /* True iff field number FIELD_NUM of structure type TYPE is a
5863 transparent wrapper field (which should be silently traversed when doing
5864 field selection and flattened when printing). Assumes TYPE is a
5865 structure type with at least FIELD_NUM+1 fields. Such fields are always
5866 structures. */
5867
5868 int
5869 ada_is_wrapper_field (struct type *type, int field_num)
5870 {
5871 const char *name = TYPE_FIELD_NAME (type, field_num);
5872 return (name != NULL
5873 && (strncmp (name, "PARENT", 6) == 0
5874 || strcmp (name, "REP") == 0
5875 || strncmp (name, "_parent", 7) == 0
5876 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5877 }
5878
5879 /* True iff field number FIELD_NUM of structure or union type TYPE
5880 is a variant wrapper. Assumes TYPE is a structure type with at least
5881 FIELD_NUM+1 fields. */
5882
5883 int
5884 ada_is_variant_part (struct type *type, int field_num)
5885 {
5886 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5887 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5888 || (is_dynamic_field (type, field_num)
5889 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5890 == TYPE_CODE_UNION)));
5891 }
5892
5893 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5894 whose discriminants are contained in the record type OUTER_TYPE,
5895 returns the type of the controlling discriminant for the variant. */
5896
5897 struct type *
5898 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5899 {
5900 char *name = ada_variant_discrim_name (var_type);
5901 struct type *type =
5902 ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
5903 if (type == NULL)
5904 return builtin_type_int;
5905 else
5906 return type;
5907 }
5908
5909 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5910 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5911 represents a 'when others' clause; otherwise 0. */
5912
5913 int
5914 ada_is_others_clause (struct type *type, int field_num)
5915 {
5916 const char *name = TYPE_FIELD_NAME (type, field_num);
5917 return (name != NULL && name[0] == 'O');
5918 }
5919
5920 /* Assuming that TYPE0 is the type of the variant part of a record,
5921 returns the name of the discriminant controlling the variant.
5922 The value is valid until the next call to ada_variant_discrim_name. */
5923
5924 char *
5925 ada_variant_discrim_name (struct type *type0)
5926 {
5927 static char *result = NULL;
5928 static size_t result_len = 0;
5929 struct type *type;
5930 const char *name;
5931 const char *discrim_end;
5932 const char *discrim_start;
5933
5934 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5935 type = TYPE_TARGET_TYPE (type0);
5936 else
5937 type = type0;
5938
5939 name = ada_type_name (type);
5940
5941 if (name == NULL || name[0] == '\000')
5942 return "";
5943
5944 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5945 discrim_end -= 1)
5946 {
5947 if (strncmp (discrim_end, "___XVN", 6) == 0)
5948 break;
5949 }
5950 if (discrim_end == name)
5951 return "";
5952
5953 for (discrim_start = discrim_end; discrim_start != name + 3;
5954 discrim_start -= 1)
5955 {
5956 if (discrim_start == name + 1)
5957 return "";
5958 if ((discrim_start > name + 3
5959 && strncmp (discrim_start - 3, "___", 3) == 0)
5960 || discrim_start[-1] == '.')
5961 break;
5962 }
5963
5964 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5965 strncpy (result, discrim_start, discrim_end - discrim_start);
5966 result[discrim_end - discrim_start] = '\0';
5967 return result;
5968 }
5969
5970 /* Scan STR for a subtype-encoded number, beginning at position K.
5971 Put the position of the character just past the number scanned in
5972 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5973 Return 1 if there was a valid number at the given position, and 0
5974 otherwise. A "subtype-encoded" number consists of the absolute value
5975 in decimal, followed by the letter 'm' to indicate a negative number.
5976 Assumes 0m does not occur. */
5977
5978 int
5979 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
5980 {
5981 ULONGEST RU;
5982
5983 if (!isdigit (str[k]))
5984 return 0;
5985
5986 /* Do it the hard way so as not to make any assumption about
5987 the relationship of unsigned long (%lu scan format code) and
5988 LONGEST. */
5989 RU = 0;
5990 while (isdigit (str[k]))
5991 {
5992 RU = RU * 10 + (str[k] - '0');
5993 k += 1;
5994 }
5995
5996 if (str[k] == 'm')
5997 {
5998 if (R != NULL)
5999 *R = (-(LONGEST) (RU - 1)) - 1;
6000 k += 1;
6001 }
6002 else if (R != NULL)
6003 *R = (LONGEST) RU;
6004
6005 /* NOTE on the above: Technically, C does not say what the results of
6006 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6007 number representable as a LONGEST (although either would probably work
6008 in most implementations). When RU>0, the locution in the then branch
6009 above is always equivalent to the negative of RU. */
6010
6011 if (new_k != NULL)
6012 *new_k = k;
6013 return 1;
6014 }
6015
6016 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6017 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6018 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6019
6020 int
6021 ada_in_variant (LONGEST val, struct type *type, int field_num)
6022 {
6023 const char *name = TYPE_FIELD_NAME (type, field_num);
6024 int p;
6025
6026 p = 0;
6027 while (1)
6028 {
6029 switch (name[p])
6030 {
6031 case '\0':
6032 return 0;
6033 case 'S':
6034 {
6035 LONGEST W;
6036 if (!ada_scan_number (name, p + 1, &W, &p))
6037 return 0;
6038 if (val == W)
6039 return 1;
6040 break;
6041 }
6042 case 'R':
6043 {
6044 LONGEST L, U;
6045 if (!ada_scan_number (name, p + 1, &L, &p)
6046 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6047 return 0;
6048 if (val >= L && val <= U)
6049 return 1;
6050 break;
6051 }
6052 case 'O':
6053 return 1;
6054 default:
6055 return 0;
6056 }
6057 }
6058 }
6059
6060 /* FIXME: Lots of redundancy below. Try to consolidate. */
6061
6062 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6063 ARG_TYPE, extract and return the value of one of its (non-static)
6064 fields. FIELDNO says which field. Differs from value_primitive_field
6065 only in that it can handle packed values of arbitrary type. */
6066
6067 static struct value *
6068 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6069 struct type *arg_type)
6070 {
6071 struct type *type;
6072
6073 arg_type = ada_check_typedef (arg_type);
6074 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6075
6076 /* Handle packed fields. */
6077
6078 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6079 {
6080 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6081 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6082
6083 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6084 offset + bit_pos / 8,
6085 bit_pos % 8, bit_size, type);
6086 }
6087 else
6088 return value_primitive_field (arg1, offset, fieldno, arg_type);
6089 }
6090
6091 /* Find field with name NAME in object of type TYPE. If found,
6092 set the following for each argument that is non-null:
6093 - *FIELD_TYPE_P to the field's type;
6094 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6095 an object of that type;
6096 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6097 - *BIT_SIZE_P to its size in bits if the field is packed, and
6098 0 otherwise;
6099 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6100 fields up to but not including the desired field, or by the total
6101 number of fields if not found. A NULL value of NAME never
6102 matches; the function just counts visible fields in this case.
6103
6104 Returns 1 if found, 0 otherwise. */
6105
6106 static int
6107 find_struct_field (char *name, struct type *type, int offset,
6108 struct type **field_type_p,
6109 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6110 int *index_p)
6111 {
6112 int i;
6113
6114 type = ada_check_typedef (type);
6115
6116 if (field_type_p != NULL)
6117 *field_type_p = NULL;
6118 if (byte_offset_p != NULL)
6119 *byte_offset_p = 0;
6120 if (bit_offset_p != NULL)
6121 *bit_offset_p = 0;
6122 if (bit_size_p != NULL)
6123 *bit_size_p = 0;
6124
6125 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6126 {
6127 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6128 int fld_offset = offset + bit_pos / 8;
6129 char *t_field_name = TYPE_FIELD_NAME (type, i);
6130
6131 if (t_field_name == NULL)
6132 continue;
6133
6134 else if (name != NULL && field_name_match (t_field_name, name))
6135 {
6136 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6137 if (field_type_p != NULL)
6138 *field_type_p = TYPE_FIELD_TYPE (type, i);
6139 if (byte_offset_p != NULL)
6140 *byte_offset_p = fld_offset;
6141 if (bit_offset_p != NULL)
6142 *bit_offset_p = bit_pos % 8;
6143 if (bit_size_p != NULL)
6144 *bit_size_p = bit_size;
6145 return 1;
6146 }
6147 else if (ada_is_wrapper_field (type, i))
6148 {
6149 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6150 field_type_p, byte_offset_p, bit_offset_p,
6151 bit_size_p, index_p))
6152 return 1;
6153 }
6154 else if (ada_is_variant_part (type, i))
6155 {
6156 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6157 fixed type?? */
6158 int j;
6159 struct type *field_type
6160 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6161
6162 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6163 {
6164 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6165 fld_offset
6166 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6167 field_type_p, byte_offset_p,
6168 bit_offset_p, bit_size_p, index_p))
6169 return 1;
6170 }
6171 }
6172 else if (index_p != NULL)
6173 *index_p += 1;
6174 }
6175 return 0;
6176 }
6177
6178 /* Number of user-visible fields in record type TYPE. */
6179
6180 static int
6181 num_visible_fields (struct type *type)
6182 {
6183 int n;
6184 n = 0;
6185 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6186 return n;
6187 }
6188
6189 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6190 and search in it assuming it has (class) type TYPE.
6191 If found, return value, else return NULL.
6192
6193 Searches recursively through wrapper fields (e.g., '_parent'). */
6194
6195 static struct value *
6196 ada_search_struct_field (char *name, struct value *arg, int offset,
6197 struct type *type)
6198 {
6199 int i;
6200 type = ada_check_typedef (type);
6201
6202 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6203 {
6204 char *t_field_name = TYPE_FIELD_NAME (type, i);
6205
6206 if (t_field_name == NULL)
6207 continue;
6208
6209 else if (field_name_match (t_field_name, name))
6210 return ada_value_primitive_field (arg, offset, i, type);
6211
6212 else if (ada_is_wrapper_field (type, i))
6213 {
6214 struct value *v = /* Do not let indent join lines here. */
6215 ada_search_struct_field (name, arg,
6216 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6217 TYPE_FIELD_TYPE (type, i));
6218 if (v != NULL)
6219 return v;
6220 }
6221
6222 else if (ada_is_variant_part (type, i))
6223 {
6224 /* PNH: Do we ever get here? See find_struct_field. */
6225 int j;
6226 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6227 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6228
6229 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6230 {
6231 struct value *v = ada_search_struct_field /* Force line break. */
6232 (name, arg,
6233 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6234 TYPE_FIELD_TYPE (field_type, j));
6235 if (v != NULL)
6236 return v;
6237 }
6238 }
6239 }
6240 return NULL;
6241 }
6242
6243 static struct value *ada_index_struct_field_1 (int *, struct value *,
6244 int, struct type *);
6245
6246
6247 /* Return field #INDEX in ARG, where the index is that returned by
6248 * find_struct_field through its INDEX_P argument. Adjust the address
6249 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6250 * If found, return value, else return NULL. */
6251
6252 static struct value *
6253 ada_index_struct_field (int index, struct value *arg, int offset,
6254 struct type *type)
6255 {
6256 return ada_index_struct_field_1 (&index, arg, offset, type);
6257 }
6258
6259
6260 /* Auxiliary function for ada_index_struct_field. Like
6261 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6262 * *INDEX_P. */
6263
6264 static struct value *
6265 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6266 struct type *type)
6267 {
6268 int i;
6269 type = ada_check_typedef (type);
6270
6271 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6272 {
6273 if (TYPE_FIELD_NAME (type, i) == NULL)
6274 continue;
6275 else if (ada_is_wrapper_field (type, i))
6276 {
6277 struct value *v = /* Do not let indent join lines here. */
6278 ada_index_struct_field_1 (index_p, arg,
6279 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6280 TYPE_FIELD_TYPE (type, i));
6281 if (v != NULL)
6282 return v;
6283 }
6284
6285 else if (ada_is_variant_part (type, i))
6286 {
6287 /* PNH: Do we ever get here? See ada_search_struct_field,
6288 find_struct_field. */
6289 error (_("Cannot assign this kind of variant record"));
6290 }
6291 else if (*index_p == 0)
6292 return ada_value_primitive_field (arg, offset, i, type);
6293 else
6294 *index_p -= 1;
6295 }
6296 return NULL;
6297 }
6298
6299 /* Given ARG, a value of type (pointer or reference to a)*
6300 structure/union, extract the component named NAME from the ultimate
6301 target structure/union and return it as a value with its
6302 appropriate type. If ARG is a pointer or reference and the field
6303 is not packed, returns a reference to the field, otherwise the
6304 value of the field (an lvalue if ARG is an lvalue).
6305
6306 The routine searches for NAME among all members of the structure itself
6307 and (recursively) among all members of any wrapper members
6308 (e.g., '_parent').
6309
6310 If NO_ERR, then simply return NULL in case of error, rather than
6311 calling error. */
6312
6313 struct value *
6314 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6315 {
6316 struct type *t, *t1;
6317 struct value *v;
6318
6319 v = NULL;
6320 t1 = t = ada_check_typedef (value_type (arg));
6321 if (TYPE_CODE (t) == TYPE_CODE_REF)
6322 {
6323 t1 = TYPE_TARGET_TYPE (t);
6324 if (t1 == NULL)
6325 goto BadValue;
6326 t1 = ada_check_typedef (t1);
6327 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6328 {
6329 arg = coerce_ref (arg);
6330 t = t1;
6331 }
6332 }
6333
6334 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6335 {
6336 t1 = TYPE_TARGET_TYPE (t);
6337 if (t1 == NULL)
6338 goto BadValue;
6339 t1 = ada_check_typedef (t1);
6340 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6341 {
6342 arg = value_ind (arg);
6343 t = t1;
6344 }
6345 else
6346 break;
6347 }
6348
6349 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6350 goto BadValue;
6351
6352 if (t1 == t)
6353 v = ada_search_struct_field (name, arg, 0, t);
6354 else
6355 {
6356 int bit_offset, bit_size, byte_offset;
6357 struct type *field_type;
6358 CORE_ADDR address;
6359
6360 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6361 address = value_as_address (arg);
6362 else
6363 address = unpack_pointer (t, value_contents (arg));
6364
6365 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6366 if (find_struct_field (name, t1, 0,
6367 &field_type, &byte_offset, &bit_offset,
6368 &bit_size, NULL))
6369 {
6370 if (bit_size != 0)
6371 {
6372 if (TYPE_CODE (t) == TYPE_CODE_REF)
6373 arg = ada_coerce_ref (arg);
6374 else
6375 arg = ada_value_ind (arg);
6376 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6377 bit_offset, bit_size,
6378 field_type);
6379 }
6380 else
6381 v = value_from_pointer (lookup_reference_type (field_type),
6382 address + byte_offset);
6383 }
6384 }
6385
6386 if (v != NULL || no_err)
6387 return v;
6388 else
6389 error (_("There is no member named %s."), name);
6390
6391 BadValue:
6392 if (no_err)
6393 return NULL;
6394 else
6395 error (_("Attempt to extract a component of a value that is not a record."));
6396 }
6397
6398 /* Given a type TYPE, look up the type of the component of type named NAME.
6399 If DISPP is non-null, add its byte displacement from the beginning of a
6400 structure (pointed to by a value) of type TYPE to *DISPP (does not
6401 work for packed fields).
6402
6403 Matches any field whose name has NAME as a prefix, possibly
6404 followed by "___".
6405
6406 TYPE can be either a struct or union. If REFOK, TYPE may also
6407 be a (pointer or reference)+ to a struct or union, and the
6408 ultimate target type will be searched.
6409
6410 Looks recursively into variant clauses and parent types.
6411
6412 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6413 TYPE is not a type of the right kind. */
6414
6415 static struct type *
6416 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6417 int noerr, int *dispp)
6418 {
6419 int i;
6420
6421 if (name == NULL)
6422 goto BadName;
6423
6424 if (refok && type != NULL)
6425 while (1)
6426 {
6427 type = ada_check_typedef (type);
6428 if (TYPE_CODE (type) != TYPE_CODE_PTR
6429 && TYPE_CODE (type) != TYPE_CODE_REF)
6430 break;
6431 type = TYPE_TARGET_TYPE (type);
6432 }
6433
6434 if (type == NULL
6435 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6436 && TYPE_CODE (type) != TYPE_CODE_UNION))
6437 {
6438 if (noerr)
6439 return NULL;
6440 else
6441 {
6442 target_terminal_ours ();
6443 gdb_flush (gdb_stdout);
6444 if (type == NULL)
6445 error (_("Type (null) is not a structure or union type"));
6446 else
6447 {
6448 /* XXX: type_sprint */
6449 fprintf_unfiltered (gdb_stderr, _("Type "));
6450 type_print (type, "", gdb_stderr, -1);
6451 error (_(" is not a structure or union type"));
6452 }
6453 }
6454 }
6455
6456 type = to_static_fixed_type (type);
6457
6458 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6459 {
6460 char *t_field_name = TYPE_FIELD_NAME (type, i);
6461 struct type *t;
6462 int disp;
6463
6464 if (t_field_name == NULL)
6465 continue;
6466
6467 else if (field_name_match (t_field_name, name))
6468 {
6469 if (dispp != NULL)
6470 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6471 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6472 }
6473
6474 else if (ada_is_wrapper_field (type, i))
6475 {
6476 disp = 0;
6477 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6478 0, 1, &disp);
6479 if (t != NULL)
6480 {
6481 if (dispp != NULL)
6482 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6483 return t;
6484 }
6485 }
6486
6487 else if (ada_is_variant_part (type, i))
6488 {
6489 int j;
6490 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6491
6492 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6493 {
6494 disp = 0;
6495 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
6496 name, 0, 1, &disp);
6497 if (t != NULL)
6498 {
6499 if (dispp != NULL)
6500 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6501 return t;
6502 }
6503 }
6504 }
6505
6506 }
6507
6508 BadName:
6509 if (!noerr)
6510 {
6511 target_terminal_ours ();
6512 gdb_flush (gdb_stdout);
6513 if (name == NULL)
6514 {
6515 /* XXX: type_sprint */
6516 fprintf_unfiltered (gdb_stderr, _("Type "));
6517 type_print (type, "", gdb_stderr, -1);
6518 error (_(" has no component named <null>"));
6519 }
6520 else
6521 {
6522 /* XXX: type_sprint */
6523 fprintf_unfiltered (gdb_stderr, _("Type "));
6524 type_print (type, "", gdb_stderr, -1);
6525 error (_(" has no component named %s"), name);
6526 }
6527 }
6528
6529 return NULL;
6530 }
6531
6532 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6533 within a value of type OUTER_TYPE that is stored in GDB at
6534 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6535 numbering from 0) is applicable. Returns -1 if none are. */
6536
6537 int
6538 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6539 const gdb_byte *outer_valaddr)
6540 {
6541 int others_clause;
6542 int i;
6543 char *discrim_name = ada_variant_discrim_name (var_type);
6544 struct value *outer;
6545 struct value *discrim;
6546 LONGEST discrim_val;
6547
6548 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6549 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6550 if (discrim == NULL)
6551 return -1;
6552 discrim_val = value_as_long (discrim);
6553
6554 others_clause = -1;
6555 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6556 {
6557 if (ada_is_others_clause (var_type, i))
6558 others_clause = i;
6559 else if (ada_in_variant (discrim_val, var_type, i))
6560 return i;
6561 }
6562
6563 return others_clause;
6564 }
6565 \f
6566
6567
6568 /* Dynamic-Sized Records */
6569
6570 /* Strategy: The type ostensibly attached to a value with dynamic size
6571 (i.e., a size that is not statically recorded in the debugging
6572 data) does not accurately reflect the size or layout of the value.
6573 Our strategy is to convert these values to values with accurate,
6574 conventional types that are constructed on the fly. */
6575
6576 /* There is a subtle and tricky problem here. In general, we cannot
6577 determine the size of dynamic records without its data. However,
6578 the 'struct value' data structure, which GDB uses to represent
6579 quantities in the inferior process (the target), requires the size
6580 of the type at the time of its allocation in order to reserve space
6581 for GDB's internal copy of the data. That's why the
6582 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6583 rather than struct value*s.
6584
6585 However, GDB's internal history variables ($1, $2, etc.) are
6586 struct value*s containing internal copies of the data that are not, in
6587 general, the same as the data at their corresponding addresses in
6588 the target. Fortunately, the types we give to these values are all
6589 conventional, fixed-size types (as per the strategy described
6590 above), so that we don't usually have to perform the
6591 'to_fixed_xxx_type' conversions to look at their values.
6592 Unfortunately, there is one exception: if one of the internal
6593 history variables is an array whose elements are unconstrained
6594 records, then we will need to create distinct fixed types for each
6595 element selected. */
6596
6597 /* The upshot of all of this is that many routines take a (type, host
6598 address, target address) triple as arguments to represent a value.
6599 The host address, if non-null, is supposed to contain an internal
6600 copy of the relevant data; otherwise, the program is to consult the
6601 target at the target address. */
6602
6603 /* Assuming that VAL0 represents a pointer value, the result of
6604 dereferencing it. Differs from value_ind in its treatment of
6605 dynamic-sized types. */
6606
6607 struct value *
6608 ada_value_ind (struct value *val0)
6609 {
6610 struct value *val = unwrap_value (value_ind (val0));
6611 return ada_to_fixed_value (val);
6612 }
6613
6614 /* The value resulting from dereferencing any "reference to"
6615 qualifiers on VAL0. */
6616
6617 static struct value *
6618 ada_coerce_ref (struct value *val0)
6619 {
6620 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6621 {
6622 struct value *val = val0;
6623 val = coerce_ref (val);
6624 val = unwrap_value (val);
6625 return ada_to_fixed_value (val);
6626 }
6627 else
6628 return val0;
6629 }
6630
6631 /* Return OFF rounded upward if necessary to a multiple of
6632 ALIGNMENT (a power of 2). */
6633
6634 static unsigned int
6635 align_value (unsigned int off, unsigned int alignment)
6636 {
6637 return (off + alignment - 1) & ~(alignment - 1);
6638 }
6639
6640 /* Return the bit alignment required for field #F of template type TYPE. */
6641
6642 static unsigned int
6643 field_alignment (struct type *type, int f)
6644 {
6645 const char *name = TYPE_FIELD_NAME (type, f);
6646 int len;
6647 int align_offset;
6648
6649 /* The field name should never be null, unless the debugging information
6650 is somehow malformed. In this case, we assume the field does not
6651 require any alignment. */
6652 if (name == NULL)
6653 return 1;
6654
6655 len = strlen (name);
6656
6657 if (!isdigit (name[len - 1]))
6658 return 1;
6659
6660 if (isdigit (name[len - 2]))
6661 align_offset = len - 2;
6662 else
6663 align_offset = len - 1;
6664
6665 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6666 return TARGET_CHAR_BIT;
6667
6668 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6669 }
6670
6671 /* Find a symbol named NAME. Ignores ambiguity. */
6672
6673 struct symbol *
6674 ada_find_any_symbol (const char *name)
6675 {
6676 struct symbol *sym;
6677
6678 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6679 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6680 return sym;
6681
6682 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6683 return sym;
6684 }
6685
6686 /* Find a type named NAME. Ignores ambiguity. */
6687
6688 struct type *
6689 ada_find_any_type (const char *name)
6690 {
6691 struct symbol *sym = ada_find_any_symbol (name);
6692
6693 if (sym != NULL)
6694 return SYMBOL_TYPE (sym);
6695
6696 return NULL;
6697 }
6698
6699 /* Given NAME and an associated BLOCK, search all symbols for
6700 NAME suffixed with "___XR", which is the ``renaming'' symbol
6701 associated to NAME. Return this symbol if found, return
6702 NULL otherwise. */
6703
6704 struct symbol *
6705 ada_find_renaming_symbol (const char *name, struct block *block)
6706 {
6707 struct symbol *sym;
6708
6709 sym = find_old_style_renaming_symbol (name, block);
6710
6711 if (sym != NULL)
6712 return sym;
6713
6714 /* Not right yet. FIXME pnh 7/20/2007. */
6715 sym = ada_find_any_symbol (name);
6716 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6717 return sym;
6718 else
6719 return NULL;
6720 }
6721
6722 static struct symbol *
6723 find_old_style_renaming_symbol (const char *name, struct block *block)
6724 {
6725 const struct symbol *function_sym = block_linkage_function (block);
6726 char *rename;
6727
6728 if (function_sym != NULL)
6729 {
6730 /* If the symbol is defined inside a function, NAME is not fully
6731 qualified. This means we need to prepend the function name
6732 as well as adding the ``___XR'' suffix to build the name of
6733 the associated renaming symbol. */
6734 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
6735 /* Function names sometimes contain suffixes used
6736 for instance to qualify nested subprograms. When building
6737 the XR type name, we need to make sure that this suffix is
6738 not included. So do not include any suffix in the function
6739 name length below. */
6740 const int function_name_len = ada_name_prefix_len (function_name);
6741 const int rename_len = function_name_len + 2 /* "__" */
6742 + strlen (name) + 6 /* "___XR\0" */ ;
6743
6744 /* Strip the suffix if necessary. */
6745 function_name[function_name_len] = '\0';
6746
6747 /* Library-level functions are a special case, as GNAT adds
6748 a ``_ada_'' prefix to the function name to avoid namespace
6749 pollution. However, the renaming symbols themselves do not
6750 have this prefix, so we need to skip this prefix if present. */
6751 if (function_name_len > 5 /* "_ada_" */
6752 && strstr (function_name, "_ada_") == function_name)
6753 function_name = function_name + 5;
6754
6755 rename = (char *) alloca (rename_len * sizeof (char));
6756 sprintf (rename, "%s__%s___XR", function_name, name);
6757 }
6758 else
6759 {
6760 const int rename_len = strlen (name) + 6;
6761 rename = (char *) alloca (rename_len * sizeof (char));
6762 sprintf (rename, "%s___XR", name);
6763 }
6764
6765 return ada_find_any_symbol (rename);
6766 }
6767
6768 /* Because of GNAT encoding conventions, several GDB symbols may match a
6769 given type name. If the type denoted by TYPE0 is to be preferred to
6770 that of TYPE1 for purposes of type printing, return non-zero;
6771 otherwise return 0. */
6772
6773 int
6774 ada_prefer_type (struct type *type0, struct type *type1)
6775 {
6776 if (type1 == NULL)
6777 return 1;
6778 else if (type0 == NULL)
6779 return 0;
6780 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6781 return 1;
6782 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6783 return 0;
6784 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6785 return 1;
6786 else if (ada_is_packed_array_type (type0))
6787 return 1;
6788 else if (ada_is_array_descriptor_type (type0)
6789 && !ada_is_array_descriptor_type (type1))
6790 return 1;
6791 else
6792 {
6793 const char *type0_name = type_name_no_tag (type0);
6794 const char *type1_name = type_name_no_tag (type1);
6795
6796 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6797 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6798 return 1;
6799 }
6800 return 0;
6801 }
6802
6803 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
6804 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6805
6806 char *
6807 ada_type_name (struct type *type)
6808 {
6809 if (type == NULL)
6810 return NULL;
6811 else if (TYPE_NAME (type) != NULL)
6812 return TYPE_NAME (type);
6813 else
6814 return TYPE_TAG_NAME (type);
6815 }
6816
6817 /* Find a parallel type to TYPE whose name is formed by appending
6818 SUFFIX to the name of TYPE. */
6819
6820 struct type *
6821 ada_find_parallel_type (struct type *type, const char *suffix)
6822 {
6823 static char *name;
6824 static size_t name_len = 0;
6825 int len;
6826 char *typename = ada_type_name (type);
6827
6828 if (typename == NULL)
6829 return NULL;
6830
6831 len = strlen (typename);
6832
6833 GROW_VECT (name, name_len, len + strlen (suffix) + 1);
6834
6835 strcpy (name, typename);
6836 strcpy (name + len, suffix);
6837
6838 return ada_find_any_type (name);
6839 }
6840
6841
6842 /* If TYPE is a variable-size record type, return the corresponding template
6843 type describing its fields. Otherwise, return NULL. */
6844
6845 static struct type *
6846 dynamic_template_type (struct type *type)
6847 {
6848 type = ada_check_typedef (type);
6849
6850 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
6851 || ada_type_name (type) == NULL)
6852 return NULL;
6853 else
6854 {
6855 int len = strlen (ada_type_name (type));
6856 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6857 return type;
6858 else
6859 return ada_find_parallel_type (type, "___XVE");
6860 }
6861 }
6862
6863 /* Assuming that TEMPL_TYPE is a union or struct type, returns
6864 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
6865
6866 static int
6867 is_dynamic_field (struct type *templ_type, int field_num)
6868 {
6869 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
6870 return name != NULL
6871 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6872 && strstr (name, "___XVL") != NULL;
6873 }
6874
6875 /* The index of the variant field of TYPE, or -1 if TYPE does not
6876 represent a variant record type. */
6877
6878 static int
6879 variant_field_index (struct type *type)
6880 {
6881 int f;
6882
6883 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6884 return -1;
6885
6886 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6887 {
6888 if (ada_is_variant_part (type, f))
6889 return f;
6890 }
6891 return -1;
6892 }
6893
6894 /* A record type with no fields. */
6895
6896 static struct type *
6897 empty_record (struct objfile *objfile)
6898 {
6899 struct type *type = alloc_type (objfile);
6900 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6901 TYPE_NFIELDS (type) = 0;
6902 TYPE_FIELDS (type) = NULL;
6903 TYPE_NAME (type) = "<empty>";
6904 TYPE_TAG_NAME (type) = NULL;
6905 TYPE_LENGTH (type) = 0;
6906 return type;
6907 }
6908
6909 /* An ordinary record type (with fixed-length fields) that describes
6910 the value of type TYPE at VALADDR or ADDRESS (see comments at
6911 the beginning of this section) VAL according to GNAT conventions.
6912 DVAL0 should describe the (portion of a) record that contains any
6913 necessary discriminants. It should be NULL if value_type (VAL) is
6914 an outer-level type (i.e., as opposed to a branch of a variant.) A
6915 variant field (unless unchecked) is replaced by a particular branch
6916 of the variant.
6917
6918 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6919 length are not statically known are discarded. As a consequence,
6920 VALADDR, ADDRESS and DVAL0 are ignored.
6921
6922 NOTE: Limitations: For now, we assume that dynamic fields and
6923 variants occupy whole numbers of bytes. However, they need not be
6924 byte-aligned. */
6925
6926 struct type *
6927 ada_template_to_fixed_record_type_1 (struct type *type,
6928 const gdb_byte *valaddr,
6929 CORE_ADDR address, struct value *dval0,
6930 int keep_dynamic_fields)
6931 {
6932 struct value *mark = value_mark ();
6933 struct value *dval;
6934 struct type *rtype;
6935 int nfields, bit_len;
6936 int variant_field;
6937 long off;
6938 int fld_bit_len, bit_incr;
6939 int f;
6940
6941 /* Compute the number of fields in this record type that are going
6942 to be processed: unless keep_dynamic_fields, this includes only
6943 fields whose position and length are static will be processed. */
6944 if (keep_dynamic_fields)
6945 nfields = TYPE_NFIELDS (type);
6946 else
6947 {
6948 nfields = 0;
6949 while (nfields < TYPE_NFIELDS (type)
6950 && !ada_is_variant_part (type, nfields)
6951 && !is_dynamic_field (type, nfields))
6952 nfields++;
6953 }
6954
6955 rtype = alloc_type (TYPE_OBJFILE (type));
6956 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6957 INIT_CPLUS_SPECIFIC (rtype);
6958 TYPE_NFIELDS (rtype) = nfields;
6959 TYPE_FIELDS (rtype) = (struct field *)
6960 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6961 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
6962 TYPE_NAME (rtype) = ada_type_name (type);
6963 TYPE_TAG_NAME (rtype) = NULL;
6964 TYPE_FIXED_INSTANCE (rtype) = 1;
6965
6966 off = 0;
6967 bit_len = 0;
6968 variant_field = -1;
6969
6970 for (f = 0; f < nfields; f += 1)
6971 {
6972 off = align_value (off, field_alignment (type, f))
6973 + TYPE_FIELD_BITPOS (type, f);
6974 TYPE_FIELD_BITPOS (rtype, f) = off;
6975 TYPE_FIELD_BITSIZE (rtype, f) = 0;
6976
6977 if (ada_is_variant_part (type, f))
6978 {
6979 variant_field = f;
6980 fld_bit_len = bit_incr = 0;
6981 }
6982 else if (is_dynamic_field (type, f))
6983 {
6984 if (dval0 == NULL)
6985 dval = value_from_contents_and_address (rtype, valaddr, address);
6986 else
6987 dval = dval0;
6988
6989 /* Get the fixed type of the field. Note that, in this case, we
6990 do not want to get the real type out of the tag: if the current
6991 field is the parent part of a tagged record, we will get the
6992 tag of the object. Clearly wrong: the real type of the parent
6993 is not the real type of the child. We would end up in an infinite
6994 loop. */
6995 TYPE_FIELD_TYPE (rtype, f) =
6996 ada_to_fixed_type
6997 (ada_get_base_type
6998 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f))),
6999 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7000 cond_offset_target (address, off / TARGET_CHAR_BIT), dval, 0);
7001 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7002 bit_incr = fld_bit_len =
7003 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7004 }
7005 else
7006 {
7007 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
7008 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7009 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7010 bit_incr = fld_bit_len =
7011 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7012 else
7013 bit_incr = fld_bit_len =
7014 TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT;
7015 }
7016 if (off + fld_bit_len > bit_len)
7017 bit_len = off + fld_bit_len;
7018 off += bit_incr;
7019 TYPE_LENGTH (rtype) =
7020 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7021 }
7022
7023 /* We handle the variant part, if any, at the end because of certain
7024 odd cases in which it is re-ordered so as NOT the last field of
7025 the record. This can happen in the presence of representation
7026 clauses. */
7027 if (variant_field >= 0)
7028 {
7029 struct type *branch_type;
7030
7031 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7032
7033 if (dval0 == NULL)
7034 dval = value_from_contents_and_address (rtype, valaddr, address);
7035 else
7036 dval = dval0;
7037
7038 branch_type =
7039 to_fixed_variant_branch_type
7040 (TYPE_FIELD_TYPE (type, variant_field),
7041 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7042 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7043 if (branch_type == NULL)
7044 {
7045 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7046 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7047 TYPE_NFIELDS (rtype) -= 1;
7048 }
7049 else
7050 {
7051 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7052 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7053 fld_bit_len =
7054 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7055 TARGET_CHAR_BIT;
7056 if (off + fld_bit_len > bit_len)
7057 bit_len = off + fld_bit_len;
7058 TYPE_LENGTH (rtype) =
7059 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7060 }
7061 }
7062
7063 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7064 should contain the alignment of that record, which should be a strictly
7065 positive value. If null or negative, then something is wrong, most
7066 probably in the debug info. In that case, we don't round up the size
7067 of the resulting type. If this record is not part of another structure,
7068 the current RTYPE length might be good enough for our purposes. */
7069 if (TYPE_LENGTH (type) <= 0)
7070 {
7071 if (TYPE_NAME (rtype))
7072 warning (_("Invalid type size for `%s' detected: %d."),
7073 TYPE_NAME (rtype), TYPE_LENGTH (type));
7074 else
7075 warning (_("Invalid type size for <unnamed> detected: %d."),
7076 TYPE_LENGTH (type));
7077 }
7078 else
7079 {
7080 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7081 TYPE_LENGTH (type));
7082 }
7083
7084 value_free_to_mark (mark);
7085 if (TYPE_LENGTH (rtype) > varsize_limit)
7086 error (_("record type with dynamic size is larger than varsize-limit"));
7087 return rtype;
7088 }
7089
7090 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7091 of 1. */
7092
7093 static struct type *
7094 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
7095 CORE_ADDR address, struct value *dval0)
7096 {
7097 return ada_template_to_fixed_record_type_1 (type, valaddr,
7098 address, dval0, 1);
7099 }
7100
7101 /* An ordinary record type in which ___XVL-convention fields and
7102 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7103 static approximations, containing all possible fields. Uses
7104 no runtime values. Useless for use in values, but that's OK,
7105 since the results are used only for type determinations. Works on both
7106 structs and unions. Representation note: to save space, we memorize
7107 the result of this function in the TYPE_TARGET_TYPE of the
7108 template type. */
7109
7110 static struct type *
7111 template_to_static_fixed_type (struct type *type0)
7112 {
7113 struct type *type;
7114 int nfields;
7115 int f;
7116
7117 if (TYPE_TARGET_TYPE (type0) != NULL)
7118 return TYPE_TARGET_TYPE (type0);
7119
7120 nfields = TYPE_NFIELDS (type0);
7121 type = type0;
7122
7123 for (f = 0; f < nfields; f += 1)
7124 {
7125 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
7126 struct type *new_type;
7127
7128 if (is_dynamic_field (type0, f))
7129 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7130 else
7131 new_type = static_unwrap_type (field_type);
7132 if (type == type0 && new_type != field_type)
7133 {
7134 TYPE_TARGET_TYPE (type0) = type = alloc_type (TYPE_OBJFILE (type0));
7135 TYPE_CODE (type) = TYPE_CODE (type0);
7136 INIT_CPLUS_SPECIFIC (type);
7137 TYPE_NFIELDS (type) = nfields;
7138 TYPE_FIELDS (type) = (struct field *)
7139 TYPE_ALLOC (type, nfields * sizeof (struct field));
7140 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7141 sizeof (struct field) * nfields);
7142 TYPE_NAME (type) = ada_type_name (type0);
7143 TYPE_TAG_NAME (type) = NULL;
7144 TYPE_FIXED_INSTANCE (type) = 1;
7145 TYPE_LENGTH (type) = 0;
7146 }
7147 TYPE_FIELD_TYPE (type, f) = new_type;
7148 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7149 }
7150 return type;
7151 }
7152
7153 /* Given an object of type TYPE whose contents are at VALADDR and
7154 whose address in memory is ADDRESS, returns a revision of TYPE --
7155 a non-dynamic-sized record with a variant part -- in which
7156 the variant part is replaced with the appropriate branch. Looks
7157 for discriminant values in DVAL0, which can be NULL if the record
7158 contains the necessary discriminant values. */
7159
7160 static struct type *
7161 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7162 CORE_ADDR address, struct value *dval0)
7163 {
7164 struct value *mark = value_mark ();
7165 struct value *dval;
7166 struct type *rtype;
7167 struct type *branch_type;
7168 int nfields = TYPE_NFIELDS (type);
7169 int variant_field = variant_field_index (type);
7170
7171 if (variant_field == -1)
7172 return type;
7173
7174 if (dval0 == NULL)
7175 dval = value_from_contents_and_address (type, valaddr, address);
7176 else
7177 dval = dval0;
7178
7179 rtype = alloc_type (TYPE_OBJFILE (type));
7180 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7181 INIT_CPLUS_SPECIFIC (rtype);
7182 TYPE_NFIELDS (rtype) = nfields;
7183 TYPE_FIELDS (rtype) =
7184 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7185 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
7186 sizeof (struct field) * nfields);
7187 TYPE_NAME (rtype) = ada_type_name (type);
7188 TYPE_TAG_NAME (rtype) = NULL;
7189 TYPE_FIXED_INSTANCE (rtype) = 1;
7190 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7191
7192 branch_type = to_fixed_variant_branch_type
7193 (TYPE_FIELD_TYPE (type, variant_field),
7194 cond_offset_host (valaddr,
7195 TYPE_FIELD_BITPOS (type, variant_field)
7196 / TARGET_CHAR_BIT),
7197 cond_offset_target (address,
7198 TYPE_FIELD_BITPOS (type, variant_field)
7199 / TARGET_CHAR_BIT), dval);
7200 if (branch_type == NULL)
7201 {
7202 int f;
7203 for (f = variant_field + 1; f < nfields; f += 1)
7204 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7205 TYPE_NFIELDS (rtype) -= 1;
7206 }
7207 else
7208 {
7209 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7210 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7211 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7212 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7213 }
7214 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7215
7216 value_free_to_mark (mark);
7217 return rtype;
7218 }
7219
7220 /* An ordinary record type (with fixed-length fields) that describes
7221 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7222 beginning of this section]. Any necessary discriminants' values
7223 should be in DVAL, a record value; it may be NULL if the object
7224 at ADDR itself contains any necessary discriminant values.
7225 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7226 values from the record are needed. Except in the case that DVAL,
7227 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7228 unchecked) is replaced by a particular branch of the variant.
7229
7230 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7231 is questionable and may be removed. It can arise during the
7232 processing of an unconstrained-array-of-record type where all the
7233 variant branches have exactly the same size. This is because in
7234 such cases, the compiler does not bother to use the XVS convention
7235 when encoding the record. I am currently dubious of this
7236 shortcut and suspect the compiler should be altered. FIXME. */
7237
7238 static struct type *
7239 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7240 CORE_ADDR address, struct value *dval)
7241 {
7242 struct type *templ_type;
7243
7244 if (TYPE_FIXED_INSTANCE (type0))
7245 return type0;
7246
7247 templ_type = dynamic_template_type (type0);
7248
7249 if (templ_type != NULL)
7250 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7251 else if (variant_field_index (type0) >= 0)
7252 {
7253 if (dval == NULL && valaddr == NULL && address == 0)
7254 return type0;
7255 return to_record_with_fixed_variant_part (type0, valaddr, address,
7256 dval);
7257 }
7258 else
7259 {
7260 TYPE_FIXED_INSTANCE (type0) = 1;
7261 return type0;
7262 }
7263
7264 }
7265
7266 /* An ordinary record type (with fixed-length fields) that describes
7267 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7268 union type. Any necessary discriminants' values should be in DVAL,
7269 a record value. That is, this routine selects the appropriate
7270 branch of the union at ADDR according to the discriminant value
7271 indicated in the union's type name. */
7272
7273 static struct type *
7274 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7275 CORE_ADDR address, struct value *dval)
7276 {
7277 int which;
7278 struct type *templ_type;
7279 struct type *var_type;
7280
7281 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7282 var_type = TYPE_TARGET_TYPE (var_type0);
7283 else
7284 var_type = var_type0;
7285
7286 templ_type = ada_find_parallel_type (var_type, "___XVU");
7287
7288 if (templ_type != NULL)
7289 var_type = templ_type;
7290
7291 which =
7292 ada_which_variant_applies (var_type,
7293 value_type (dval), value_contents (dval));
7294
7295 if (which < 0)
7296 return empty_record (TYPE_OBJFILE (var_type));
7297 else if (is_dynamic_field (var_type, which))
7298 return to_fixed_record_type
7299 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7300 valaddr, address, dval);
7301 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7302 return
7303 to_fixed_record_type
7304 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7305 else
7306 return TYPE_FIELD_TYPE (var_type, which);
7307 }
7308
7309 /* Assuming that TYPE0 is an array type describing the type of a value
7310 at ADDR, and that DVAL describes a record containing any
7311 discriminants used in TYPE0, returns a type for the value that
7312 contains no dynamic components (that is, no components whose sizes
7313 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7314 true, gives an error message if the resulting type's size is over
7315 varsize_limit. */
7316
7317 static struct type *
7318 to_fixed_array_type (struct type *type0, struct value *dval,
7319 int ignore_too_big)
7320 {
7321 struct type *index_type_desc;
7322 struct type *result;
7323
7324 if (ada_is_packed_array_type (type0) /* revisit? */
7325 || TYPE_FIXED_INSTANCE (type0))
7326 return type0;
7327
7328 index_type_desc = ada_find_parallel_type (type0, "___XA");
7329 if (index_type_desc == NULL)
7330 {
7331 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7332 /* NOTE: elt_type---the fixed version of elt_type0---should never
7333 depend on the contents of the array in properly constructed
7334 debugging data. */
7335 /* Create a fixed version of the array element type.
7336 We're not providing the address of an element here,
7337 and thus the actual object value cannot be inspected to do
7338 the conversion. This should not be a problem, since arrays of
7339 unconstrained objects are not allowed. In particular, all
7340 the elements of an array of a tagged type should all be of
7341 the same type specified in the debugging info. No need to
7342 consult the object tag. */
7343 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7344
7345 if (elt_type0 == elt_type)
7346 result = type0;
7347 else
7348 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7349 elt_type, TYPE_INDEX_TYPE (type0));
7350 }
7351 else
7352 {
7353 int i;
7354 struct type *elt_type0;
7355
7356 elt_type0 = type0;
7357 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7358 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7359
7360 /* NOTE: result---the fixed version of elt_type0---should never
7361 depend on the contents of the array in properly constructed
7362 debugging data. */
7363 /* Create a fixed version of the array element type.
7364 We're not providing the address of an element here,
7365 and thus the actual object value cannot be inspected to do
7366 the conversion. This should not be a problem, since arrays of
7367 unconstrained objects are not allowed. In particular, all
7368 the elements of an array of a tagged type should all be of
7369 the same type specified in the debugging info. No need to
7370 consult the object tag. */
7371 result =
7372 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
7373 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
7374 {
7375 struct type *range_type =
7376 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
7377 dval, TYPE_OBJFILE (type0));
7378 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7379 result, range_type);
7380 }
7381 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7382 error (_("array type with dynamic size is larger than varsize-limit"));
7383 }
7384
7385 TYPE_FIXED_INSTANCE (result) = 1;
7386 return result;
7387 }
7388
7389
7390 /* A standard type (containing no dynamically sized components)
7391 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7392 DVAL describes a record containing any discriminants used in TYPE0,
7393 and may be NULL if there are none, or if the object of type TYPE at
7394 ADDRESS or in VALADDR contains these discriminants.
7395
7396 If CHECK_TAG is not null, in the case of tagged types, this function
7397 attempts to locate the object's tag and use it to compute the actual
7398 type. However, when ADDRESS is null, we cannot use it to determine the
7399 location of the tag, and therefore compute the tagged type's actual type.
7400 So we return the tagged type without consulting the tag. */
7401
7402 static struct type *
7403 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
7404 CORE_ADDR address, struct value *dval, int check_tag)
7405 {
7406 type = ada_check_typedef (type);
7407 switch (TYPE_CODE (type))
7408 {
7409 default:
7410 return type;
7411 case TYPE_CODE_STRUCT:
7412 {
7413 struct type *static_type = to_static_fixed_type (type);
7414 struct type *fixed_record_type =
7415 to_fixed_record_type (type, valaddr, address, NULL);
7416 /* If STATIC_TYPE is a tagged type and we know the object's address,
7417 then we can determine its tag, and compute the object's actual
7418 type from there. Note that we have to use the fixed record
7419 type (the parent part of the record may have dynamic fields
7420 and the way the location of _tag is expressed may depend on
7421 them). */
7422
7423 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
7424 {
7425 struct type *real_type =
7426 type_from_tag (value_tag_from_contents_and_address
7427 (fixed_record_type,
7428 valaddr,
7429 address));
7430 if (real_type != NULL)
7431 return to_fixed_record_type (real_type, valaddr, address, NULL);
7432 }
7433 return fixed_record_type;
7434 }
7435 case TYPE_CODE_ARRAY:
7436 return to_fixed_array_type (type, dval, 1);
7437 case TYPE_CODE_UNION:
7438 if (dval == NULL)
7439 return type;
7440 else
7441 return to_fixed_variant_branch_type (type, valaddr, address, dval);
7442 }
7443 }
7444
7445 /* The same as ada_to_fixed_type_1, except that it preserves the type
7446 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7447 ada_to_fixed_type_1 would return the type referenced by TYPE. */
7448
7449 struct type *
7450 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7451 CORE_ADDR address, struct value *dval, int check_tag)
7452
7453 {
7454 struct type *fixed_type =
7455 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7456
7457 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7458 && TYPE_TARGET_TYPE (type) == fixed_type)
7459 return type;
7460
7461 return fixed_type;
7462 }
7463
7464 /* A standard (static-sized) type corresponding as well as possible to
7465 TYPE0, but based on no runtime data. */
7466
7467 static struct type *
7468 to_static_fixed_type (struct type *type0)
7469 {
7470 struct type *type;
7471
7472 if (type0 == NULL)
7473 return NULL;
7474
7475 if (TYPE_FIXED_INSTANCE (type0))
7476 return type0;
7477
7478 type0 = ada_check_typedef (type0);
7479
7480 switch (TYPE_CODE (type0))
7481 {
7482 default:
7483 return type0;
7484 case TYPE_CODE_STRUCT:
7485 type = dynamic_template_type (type0);
7486 if (type != NULL)
7487 return template_to_static_fixed_type (type);
7488 else
7489 return template_to_static_fixed_type (type0);
7490 case TYPE_CODE_UNION:
7491 type = ada_find_parallel_type (type0, "___XVU");
7492 if (type != NULL)
7493 return template_to_static_fixed_type (type);
7494 else
7495 return template_to_static_fixed_type (type0);
7496 }
7497 }
7498
7499 /* A static approximation of TYPE with all type wrappers removed. */
7500
7501 static struct type *
7502 static_unwrap_type (struct type *type)
7503 {
7504 if (ada_is_aligner_type (type))
7505 {
7506 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
7507 if (ada_type_name (type1) == NULL)
7508 TYPE_NAME (type1) = ada_type_name (type);
7509
7510 return static_unwrap_type (type1);
7511 }
7512 else
7513 {
7514 struct type *raw_real_type = ada_get_base_type (type);
7515 if (raw_real_type == type)
7516 return type;
7517 else
7518 return to_static_fixed_type (raw_real_type);
7519 }
7520 }
7521
7522 /* In some cases, incomplete and private types require
7523 cross-references that are not resolved as records (for example,
7524 type Foo;
7525 type FooP is access Foo;
7526 V: FooP;
7527 type Foo is array ...;
7528 ). In these cases, since there is no mechanism for producing
7529 cross-references to such types, we instead substitute for FooP a
7530 stub enumeration type that is nowhere resolved, and whose tag is
7531 the name of the actual type. Call these types "non-record stubs". */
7532
7533 /* A type equivalent to TYPE that is not a non-record stub, if one
7534 exists, otherwise TYPE. */
7535
7536 struct type *
7537 ada_check_typedef (struct type *type)
7538 {
7539 if (type == NULL)
7540 return NULL;
7541
7542 CHECK_TYPEDEF (type);
7543 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
7544 || !TYPE_STUB (type)
7545 || TYPE_TAG_NAME (type) == NULL)
7546 return type;
7547 else
7548 {
7549 char *name = TYPE_TAG_NAME (type);
7550 struct type *type1 = ada_find_any_type (name);
7551 return (type1 == NULL) ? type : type1;
7552 }
7553 }
7554
7555 /* A value representing the data at VALADDR/ADDRESS as described by
7556 type TYPE0, but with a standard (static-sized) type that correctly
7557 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7558 type, then return VAL0 [this feature is simply to avoid redundant
7559 creation of struct values]. */
7560
7561 static struct value *
7562 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7563 struct value *val0)
7564 {
7565 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
7566 if (type == type0 && val0 != NULL)
7567 return val0;
7568 else
7569 return value_from_contents_and_address (type, 0, address);
7570 }
7571
7572 /* A value representing VAL, but with a standard (static-sized) type
7573 that correctly describes it. Does not necessarily create a new
7574 value. */
7575
7576 static struct value *
7577 ada_to_fixed_value (struct value *val)
7578 {
7579 return ada_to_fixed_value_create (value_type (val),
7580 VALUE_ADDRESS (val) + value_offset (val),
7581 val);
7582 }
7583
7584 /* A value representing VAL, but with a standard (static-sized) type
7585 chosen to approximate the real type of VAL as well as possible, but
7586 without consulting any runtime values. For Ada dynamic-sized
7587 types, therefore, the type of the result is likely to be inaccurate. */
7588
7589 struct value *
7590 ada_to_static_fixed_value (struct value *val)
7591 {
7592 struct type *type =
7593 to_static_fixed_type (static_unwrap_type (value_type (val)));
7594 if (type == value_type (val))
7595 return val;
7596 else
7597 return coerce_unspec_val_to_type (val, type);
7598 }
7599 \f
7600
7601 /* Attributes */
7602
7603 /* Table mapping attribute numbers to names.
7604 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
7605
7606 static const char *attribute_names[] = {
7607 "<?>",
7608
7609 "first",
7610 "last",
7611 "length",
7612 "image",
7613 "max",
7614 "min",
7615 "modulus",
7616 "pos",
7617 "size",
7618 "tag",
7619 "val",
7620 0
7621 };
7622
7623 const char *
7624 ada_attribute_name (enum exp_opcode n)
7625 {
7626 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7627 return attribute_names[n - OP_ATR_FIRST + 1];
7628 else
7629 return attribute_names[0];
7630 }
7631
7632 /* Evaluate the 'POS attribute applied to ARG. */
7633
7634 static LONGEST
7635 pos_atr (struct value *arg)
7636 {
7637 struct value *val = coerce_ref (arg);
7638 struct type *type = value_type (val);
7639
7640 if (!discrete_type_p (type))
7641 error (_("'POS only defined on discrete types"));
7642
7643 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7644 {
7645 int i;
7646 LONGEST v = value_as_long (val);
7647
7648 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7649 {
7650 if (v == TYPE_FIELD_BITPOS (type, i))
7651 return i;
7652 }
7653 error (_("enumeration value is invalid: can't find 'POS"));
7654 }
7655 else
7656 return value_as_long (val);
7657 }
7658
7659 static struct value *
7660 value_pos_atr (struct value *arg)
7661 {
7662 return value_from_longest (builtin_type_int, pos_atr (arg));
7663 }
7664
7665 /* Evaluate the TYPE'VAL attribute applied to ARG. */
7666
7667 static struct value *
7668 value_val_atr (struct type *type, struct value *arg)
7669 {
7670 if (!discrete_type_p (type))
7671 error (_("'VAL only defined on discrete types"));
7672 if (!integer_type_p (value_type (arg)))
7673 error (_("'VAL requires integral argument"));
7674
7675 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7676 {
7677 long pos = value_as_long (arg);
7678 if (pos < 0 || pos >= TYPE_NFIELDS (type))
7679 error (_("argument to 'VAL out of range"));
7680 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
7681 }
7682 else
7683 return value_from_longest (type, value_as_long (arg));
7684 }
7685 \f
7686
7687 /* Evaluation */
7688
7689 /* True if TYPE appears to be an Ada character type.
7690 [At the moment, this is true only for Character and Wide_Character;
7691 It is a heuristic test that could stand improvement]. */
7692
7693 int
7694 ada_is_character_type (struct type *type)
7695 {
7696 const char *name;
7697
7698 /* If the type code says it's a character, then assume it really is,
7699 and don't check any further. */
7700 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
7701 return 1;
7702
7703 /* Otherwise, assume it's a character type iff it is a discrete type
7704 with a known character type name. */
7705 name = ada_type_name (type);
7706 return (name != NULL
7707 && (TYPE_CODE (type) == TYPE_CODE_INT
7708 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7709 && (strcmp (name, "character") == 0
7710 || strcmp (name, "wide_character") == 0
7711 || strcmp (name, "wide_wide_character") == 0
7712 || strcmp (name, "unsigned char") == 0));
7713 }
7714
7715 /* True if TYPE appears to be an Ada string type. */
7716
7717 int
7718 ada_is_string_type (struct type *type)
7719 {
7720 type = ada_check_typedef (type);
7721 if (type != NULL
7722 && TYPE_CODE (type) != TYPE_CODE_PTR
7723 && (ada_is_simple_array_type (type)
7724 || ada_is_array_descriptor_type (type))
7725 && ada_array_arity (type) == 1)
7726 {
7727 struct type *elttype = ada_array_element_type (type, 1);
7728
7729 return ada_is_character_type (elttype);
7730 }
7731 else
7732 return 0;
7733 }
7734
7735
7736 /* True if TYPE is a struct type introduced by the compiler to force the
7737 alignment of a value. Such types have a single field with a
7738 distinctive name. */
7739
7740 int
7741 ada_is_aligner_type (struct type *type)
7742 {
7743 type = ada_check_typedef (type);
7744
7745 /* If we can find a parallel XVS type, then the XVS type should
7746 be used instead of this type. And hence, this is not an aligner
7747 type. */
7748 if (ada_find_parallel_type (type, "___XVS") != NULL)
7749 return 0;
7750
7751 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
7752 && TYPE_NFIELDS (type) == 1
7753 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
7754 }
7755
7756 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
7757 the parallel type. */
7758
7759 struct type *
7760 ada_get_base_type (struct type *raw_type)
7761 {
7762 struct type *real_type_namer;
7763 struct type *raw_real_type;
7764
7765 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7766 return raw_type;
7767
7768 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
7769 if (real_type_namer == NULL
7770 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7771 || TYPE_NFIELDS (real_type_namer) != 1)
7772 return raw_type;
7773
7774 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
7775 if (raw_real_type == NULL)
7776 return raw_type;
7777 else
7778 return raw_real_type;
7779 }
7780
7781 /* The type of value designated by TYPE, with all aligners removed. */
7782
7783 struct type *
7784 ada_aligned_type (struct type *type)
7785 {
7786 if (ada_is_aligner_type (type))
7787 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7788 else
7789 return ada_get_base_type (type);
7790 }
7791
7792
7793 /* The address of the aligned value in an object at address VALADDR
7794 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
7795
7796 const gdb_byte *
7797 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
7798 {
7799 if (ada_is_aligner_type (type))
7800 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
7801 valaddr +
7802 TYPE_FIELD_BITPOS (type,
7803 0) / TARGET_CHAR_BIT);
7804 else
7805 return valaddr;
7806 }
7807
7808
7809
7810 /* The printed representation of an enumeration literal with encoded
7811 name NAME. The value is good to the next call of ada_enum_name. */
7812 const char *
7813 ada_enum_name (const char *name)
7814 {
7815 static char *result;
7816 static size_t result_len = 0;
7817 char *tmp;
7818
7819 /* First, unqualify the enumeration name:
7820 1. Search for the last '.' character. If we find one, then skip
7821 all the preceeding characters, the unqualified name starts
7822 right after that dot.
7823 2. Otherwise, we may be debugging on a target where the compiler
7824 translates dots into "__". Search forward for double underscores,
7825 but stop searching when we hit an overloading suffix, which is
7826 of the form "__" followed by digits. */
7827
7828 tmp = strrchr (name, '.');
7829 if (tmp != NULL)
7830 name = tmp + 1;
7831 else
7832 {
7833 while ((tmp = strstr (name, "__")) != NULL)
7834 {
7835 if (isdigit (tmp[2]))
7836 break;
7837 else
7838 name = tmp + 2;
7839 }
7840 }
7841
7842 if (name[0] == 'Q')
7843 {
7844 int v;
7845 if (name[1] == 'U' || name[1] == 'W')
7846 {
7847 if (sscanf (name + 2, "%x", &v) != 1)
7848 return name;
7849 }
7850 else
7851 return name;
7852
7853 GROW_VECT (result, result_len, 16);
7854 if (isascii (v) && isprint (v))
7855 sprintf (result, "'%c'", v);
7856 else if (name[1] == 'U')
7857 sprintf (result, "[\"%02x\"]", v);
7858 else
7859 sprintf (result, "[\"%04x\"]", v);
7860
7861 return result;
7862 }
7863 else
7864 {
7865 tmp = strstr (name, "__");
7866 if (tmp == NULL)
7867 tmp = strstr (name, "$");
7868 if (tmp != NULL)
7869 {
7870 GROW_VECT (result, result_len, tmp - name + 1);
7871 strncpy (result, name, tmp - name);
7872 result[tmp - name] = '\0';
7873 return result;
7874 }
7875
7876 return name;
7877 }
7878 }
7879
7880 static struct value *
7881 evaluate_subexp (struct type *expect_type, struct expression *exp, int *pos,
7882 enum noside noside)
7883 {
7884 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7885 (expect_type, exp, pos, noside);
7886 }
7887
7888 /* Evaluate the subexpression of EXP starting at *POS as for
7889 evaluate_type, updating *POS to point just past the evaluated
7890 expression. */
7891
7892 static struct value *
7893 evaluate_subexp_type (struct expression *exp, int *pos)
7894 {
7895 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7896 (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
7897 }
7898
7899 /* If VAL is wrapped in an aligner or subtype wrapper, return the
7900 value it wraps. */
7901
7902 static struct value *
7903 unwrap_value (struct value *val)
7904 {
7905 struct type *type = ada_check_typedef (value_type (val));
7906 if (ada_is_aligner_type (type))
7907 {
7908 struct value *v = ada_value_struct_elt (val, "F", 0);
7909 struct type *val_type = ada_check_typedef (value_type (v));
7910 if (ada_type_name (val_type) == NULL)
7911 TYPE_NAME (val_type) = ada_type_name (type);
7912
7913 return unwrap_value (v);
7914 }
7915 else
7916 {
7917 struct type *raw_real_type =
7918 ada_check_typedef (ada_get_base_type (type));
7919
7920 if (type == raw_real_type)
7921 return val;
7922
7923 return
7924 coerce_unspec_val_to_type
7925 (val, ada_to_fixed_type (raw_real_type, 0,
7926 VALUE_ADDRESS (val) + value_offset (val),
7927 NULL, 1));
7928 }
7929 }
7930
7931 static struct value *
7932 cast_to_fixed (struct type *type, struct value *arg)
7933 {
7934 LONGEST val;
7935
7936 if (type == value_type (arg))
7937 return arg;
7938 else if (ada_is_fixed_point_type (value_type (arg)))
7939 val = ada_float_to_fixed (type,
7940 ada_fixed_to_float (value_type (arg),
7941 value_as_long (arg)));
7942 else
7943 {
7944 DOUBLEST argd =
7945 value_as_double (value_cast (builtin_type_double, value_copy (arg)));
7946 val = ada_float_to_fixed (type, argd);
7947 }
7948
7949 return value_from_longest (type, val);
7950 }
7951
7952 static struct value *
7953 cast_from_fixed_to_double (struct value *arg)
7954 {
7955 DOUBLEST val = ada_fixed_to_float (value_type (arg),
7956 value_as_long (arg));
7957 return value_from_double (builtin_type_double, val);
7958 }
7959
7960 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
7961 return the converted value. */
7962
7963 static struct value *
7964 coerce_for_assign (struct type *type, struct value *val)
7965 {
7966 struct type *type2 = value_type (val);
7967 if (type == type2)
7968 return val;
7969
7970 type2 = ada_check_typedef (type2);
7971 type = ada_check_typedef (type);
7972
7973 if (TYPE_CODE (type2) == TYPE_CODE_PTR
7974 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7975 {
7976 val = ada_value_ind (val);
7977 type2 = value_type (val);
7978 }
7979
7980 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
7981 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7982 {
7983 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
7984 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
7985 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
7986 error (_("Incompatible types in assignment"));
7987 deprecated_set_value_type (val, type);
7988 }
7989 return val;
7990 }
7991
7992 static struct value *
7993 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
7994 {
7995 struct value *val;
7996 struct type *type1, *type2;
7997 LONGEST v, v1, v2;
7998
7999 arg1 = coerce_ref (arg1);
8000 arg2 = coerce_ref (arg2);
8001 type1 = base_type (ada_check_typedef (value_type (arg1)));
8002 type2 = base_type (ada_check_typedef (value_type (arg2)));
8003
8004 if (TYPE_CODE (type1) != TYPE_CODE_INT
8005 || TYPE_CODE (type2) != TYPE_CODE_INT)
8006 return value_binop (arg1, arg2, op);
8007
8008 switch (op)
8009 {
8010 case BINOP_MOD:
8011 case BINOP_DIV:
8012 case BINOP_REM:
8013 break;
8014 default:
8015 return value_binop (arg1, arg2, op);
8016 }
8017
8018 v2 = value_as_long (arg2);
8019 if (v2 == 0)
8020 error (_("second operand of %s must not be zero."), op_string (op));
8021
8022 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8023 return value_binop (arg1, arg2, op);
8024
8025 v1 = value_as_long (arg1);
8026 switch (op)
8027 {
8028 case BINOP_DIV:
8029 v = v1 / v2;
8030 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8031 v += v > 0 ? -1 : 1;
8032 break;
8033 case BINOP_REM:
8034 v = v1 % v2;
8035 if (v * v1 < 0)
8036 v -= v2;
8037 break;
8038 default:
8039 /* Should not reach this point. */
8040 v = 0;
8041 }
8042
8043 val = allocate_value (type1);
8044 store_unsigned_integer (value_contents_raw (val),
8045 TYPE_LENGTH (value_type (val)), v);
8046 return val;
8047 }
8048
8049 static int
8050 ada_value_equal (struct value *arg1, struct value *arg2)
8051 {
8052 if (ada_is_direct_array_type (value_type (arg1))
8053 || ada_is_direct_array_type (value_type (arg2)))
8054 {
8055 /* Automatically dereference any array reference before
8056 we attempt to perform the comparison. */
8057 arg1 = ada_coerce_ref (arg1);
8058 arg2 = ada_coerce_ref (arg2);
8059
8060 arg1 = ada_coerce_to_simple_array (arg1);
8061 arg2 = ada_coerce_to_simple_array (arg2);
8062 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8063 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
8064 error (_("Attempt to compare array with non-array"));
8065 /* FIXME: The following works only for types whose
8066 representations use all bits (no padding or undefined bits)
8067 and do not have user-defined equality. */
8068 return
8069 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
8070 && memcmp (value_contents (arg1), value_contents (arg2),
8071 TYPE_LENGTH (value_type (arg1))) == 0;
8072 }
8073 return value_equal (arg1, arg2);
8074 }
8075
8076 /* Total number of component associations in the aggregate starting at
8077 index PC in EXP. Assumes that index PC is the start of an
8078 OP_AGGREGATE. */
8079
8080 static int
8081 num_component_specs (struct expression *exp, int pc)
8082 {
8083 int n, m, i;
8084 m = exp->elts[pc + 1].longconst;
8085 pc += 3;
8086 n = 0;
8087 for (i = 0; i < m; i += 1)
8088 {
8089 switch (exp->elts[pc].opcode)
8090 {
8091 default:
8092 n += 1;
8093 break;
8094 case OP_CHOICES:
8095 n += exp->elts[pc + 1].longconst;
8096 break;
8097 }
8098 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8099 }
8100 return n;
8101 }
8102
8103 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
8104 component of LHS (a simple array or a record), updating *POS past
8105 the expression, assuming that LHS is contained in CONTAINER. Does
8106 not modify the inferior's memory, nor does it modify LHS (unless
8107 LHS == CONTAINER). */
8108
8109 static void
8110 assign_component (struct value *container, struct value *lhs, LONGEST index,
8111 struct expression *exp, int *pos)
8112 {
8113 struct value *mark = value_mark ();
8114 struct value *elt;
8115 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8116 {
8117 struct value *index_val = value_from_longest (builtin_type_int, index);
8118 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8119 }
8120 else
8121 {
8122 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8123 elt = ada_to_fixed_value (unwrap_value (elt));
8124 }
8125
8126 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8127 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8128 else
8129 value_assign_to_component (container, elt,
8130 ada_evaluate_subexp (NULL, exp, pos,
8131 EVAL_NORMAL));
8132
8133 value_free_to_mark (mark);
8134 }
8135
8136 /* Assuming that LHS represents an lvalue having a record or array
8137 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8138 of that aggregate's value to LHS, advancing *POS past the
8139 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8140 lvalue containing LHS (possibly LHS itself). Does not modify
8141 the inferior's memory, nor does it modify the contents of
8142 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8143
8144 static struct value *
8145 assign_aggregate (struct value *container,
8146 struct value *lhs, struct expression *exp,
8147 int *pos, enum noside noside)
8148 {
8149 struct type *lhs_type;
8150 int n = exp->elts[*pos+1].longconst;
8151 LONGEST low_index, high_index;
8152 int num_specs;
8153 LONGEST *indices;
8154 int max_indices, num_indices;
8155 int is_array_aggregate;
8156 int i;
8157 struct value *mark = value_mark ();
8158
8159 *pos += 3;
8160 if (noside != EVAL_NORMAL)
8161 {
8162 int i;
8163 for (i = 0; i < n; i += 1)
8164 ada_evaluate_subexp (NULL, exp, pos, noside);
8165 return container;
8166 }
8167
8168 container = ada_coerce_ref (container);
8169 if (ada_is_direct_array_type (value_type (container)))
8170 container = ada_coerce_to_simple_array (container);
8171 lhs = ada_coerce_ref (lhs);
8172 if (!deprecated_value_modifiable (lhs))
8173 error (_("Left operand of assignment is not a modifiable lvalue."));
8174
8175 lhs_type = value_type (lhs);
8176 if (ada_is_direct_array_type (lhs_type))
8177 {
8178 lhs = ada_coerce_to_simple_array (lhs);
8179 lhs_type = value_type (lhs);
8180 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8181 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8182 is_array_aggregate = 1;
8183 }
8184 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8185 {
8186 low_index = 0;
8187 high_index = num_visible_fields (lhs_type) - 1;
8188 is_array_aggregate = 0;
8189 }
8190 else
8191 error (_("Left-hand side must be array or record."));
8192
8193 num_specs = num_component_specs (exp, *pos - 3);
8194 max_indices = 4 * num_specs + 4;
8195 indices = alloca (max_indices * sizeof (indices[0]));
8196 indices[0] = indices[1] = low_index - 1;
8197 indices[2] = indices[3] = high_index + 1;
8198 num_indices = 4;
8199
8200 for (i = 0; i < n; i += 1)
8201 {
8202 switch (exp->elts[*pos].opcode)
8203 {
8204 case OP_CHOICES:
8205 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8206 &num_indices, max_indices,
8207 low_index, high_index);
8208 break;
8209 case OP_POSITIONAL:
8210 aggregate_assign_positional (container, lhs, exp, pos, indices,
8211 &num_indices, max_indices,
8212 low_index, high_index);
8213 break;
8214 case OP_OTHERS:
8215 if (i != n-1)
8216 error (_("Misplaced 'others' clause"));
8217 aggregate_assign_others (container, lhs, exp, pos, indices,
8218 num_indices, low_index, high_index);
8219 break;
8220 default:
8221 error (_("Internal error: bad aggregate clause"));
8222 }
8223 }
8224
8225 return container;
8226 }
8227
8228 /* Assign into the component of LHS indexed by the OP_POSITIONAL
8229 construct at *POS, updating *POS past the construct, given that
8230 the positions are relative to lower bound LOW, where HIGH is the
8231 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8232 updating *NUM_INDICES as needed. CONTAINER is as for
8233 assign_aggregate. */
8234 static void
8235 aggregate_assign_positional (struct value *container,
8236 struct value *lhs, struct expression *exp,
8237 int *pos, LONGEST *indices, int *num_indices,
8238 int max_indices, LONGEST low, LONGEST high)
8239 {
8240 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8241
8242 if (ind - 1 == high)
8243 warning (_("Extra components in aggregate ignored."));
8244 if (ind <= high)
8245 {
8246 add_component_interval (ind, ind, indices, num_indices, max_indices);
8247 *pos += 3;
8248 assign_component (container, lhs, ind, exp, pos);
8249 }
8250 else
8251 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8252 }
8253
8254 /* Assign into the components of LHS indexed by the OP_CHOICES
8255 construct at *POS, updating *POS past the construct, given that
8256 the allowable indices are LOW..HIGH. Record the indices assigned
8257 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8258 needed. CONTAINER is as for assign_aggregate. */
8259 static void
8260 aggregate_assign_from_choices (struct value *container,
8261 struct value *lhs, struct expression *exp,
8262 int *pos, LONGEST *indices, int *num_indices,
8263 int max_indices, LONGEST low, LONGEST high)
8264 {
8265 int j;
8266 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8267 int choice_pos, expr_pc;
8268 int is_array = ada_is_direct_array_type (value_type (lhs));
8269
8270 choice_pos = *pos += 3;
8271
8272 for (j = 0; j < n_choices; j += 1)
8273 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8274 expr_pc = *pos;
8275 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8276
8277 for (j = 0; j < n_choices; j += 1)
8278 {
8279 LONGEST lower, upper;
8280 enum exp_opcode op = exp->elts[choice_pos].opcode;
8281 if (op == OP_DISCRETE_RANGE)
8282 {
8283 choice_pos += 1;
8284 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8285 EVAL_NORMAL));
8286 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8287 EVAL_NORMAL));
8288 }
8289 else if (is_array)
8290 {
8291 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8292 EVAL_NORMAL));
8293 upper = lower;
8294 }
8295 else
8296 {
8297 int ind;
8298 char *name;
8299 switch (op)
8300 {
8301 case OP_NAME:
8302 name = &exp->elts[choice_pos + 2].string;
8303 break;
8304 case OP_VAR_VALUE:
8305 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8306 break;
8307 default:
8308 error (_("Invalid record component association."));
8309 }
8310 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8311 ind = 0;
8312 if (! find_struct_field (name, value_type (lhs), 0,
8313 NULL, NULL, NULL, NULL, &ind))
8314 error (_("Unknown component name: %s."), name);
8315 lower = upper = ind;
8316 }
8317
8318 if (lower <= upper && (lower < low || upper > high))
8319 error (_("Index in component association out of bounds."));
8320
8321 add_component_interval (lower, upper, indices, num_indices,
8322 max_indices);
8323 while (lower <= upper)
8324 {
8325 int pos1;
8326 pos1 = expr_pc;
8327 assign_component (container, lhs, lower, exp, &pos1);
8328 lower += 1;
8329 }
8330 }
8331 }
8332
8333 /* Assign the value of the expression in the OP_OTHERS construct in
8334 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8335 have not been previously assigned. The index intervals already assigned
8336 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8337 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
8338 static void
8339 aggregate_assign_others (struct value *container,
8340 struct value *lhs, struct expression *exp,
8341 int *pos, LONGEST *indices, int num_indices,
8342 LONGEST low, LONGEST high)
8343 {
8344 int i;
8345 int expr_pc = *pos+1;
8346
8347 for (i = 0; i < num_indices - 2; i += 2)
8348 {
8349 LONGEST ind;
8350 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8351 {
8352 int pos;
8353 pos = expr_pc;
8354 assign_component (container, lhs, ind, exp, &pos);
8355 }
8356 }
8357 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8358 }
8359
8360 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
8361 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8362 modifying *SIZE as needed. It is an error if *SIZE exceeds
8363 MAX_SIZE. The resulting intervals do not overlap. */
8364 static void
8365 add_component_interval (LONGEST low, LONGEST high,
8366 LONGEST* indices, int *size, int max_size)
8367 {
8368 int i, j;
8369 for (i = 0; i < *size; i += 2) {
8370 if (high >= indices[i] && low <= indices[i + 1])
8371 {
8372 int kh;
8373 for (kh = i + 2; kh < *size; kh += 2)
8374 if (high < indices[kh])
8375 break;
8376 if (low < indices[i])
8377 indices[i] = low;
8378 indices[i + 1] = indices[kh - 1];
8379 if (high > indices[i + 1])
8380 indices[i + 1] = high;
8381 memcpy (indices + i + 2, indices + kh, *size - kh);
8382 *size -= kh - i - 2;
8383 return;
8384 }
8385 else if (high < indices[i])
8386 break;
8387 }
8388
8389 if (*size == max_size)
8390 error (_("Internal error: miscounted aggregate components."));
8391 *size += 2;
8392 for (j = *size-1; j >= i+2; j -= 1)
8393 indices[j] = indices[j - 2];
8394 indices[i] = low;
8395 indices[i + 1] = high;
8396 }
8397
8398 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8399 is different. */
8400
8401 static struct value *
8402 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8403 {
8404 if (type == ada_check_typedef (value_type (arg2)))
8405 return arg2;
8406
8407 if (ada_is_fixed_point_type (type))
8408 return (cast_to_fixed (type, arg2));
8409
8410 if (ada_is_fixed_point_type (value_type (arg2)))
8411 return value_cast (type, cast_from_fixed_to_double (arg2));
8412
8413 return value_cast (type, arg2);
8414 }
8415
8416 static struct value *
8417 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
8418 int *pos, enum noside noside)
8419 {
8420 enum exp_opcode op;
8421 int tem, tem2, tem3;
8422 int pc;
8423 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
8424 struct type *type;
8425 int nargs, oplen;
8426 struct value **argvec;
8427
8428 pc = *pos;
8429 *pos += 1;
8430 op = exp->elts[pc].opcode;
8431
8432 switch (op)
8433 {
8434 default:
8435 *pos -= 1;
8436 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8437 arg1 = unwrap_value (arg1);
8438
8439 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
8440 then we need to perform the conversion manually, because
8441 evaluate_subexp_standard doesn't do it. This conversion is
8442 necessary in Ada because the different kinds of float/fixed
8443 types in Ada have different representations.
8444
8445 Similarly, we need to perform the conversion from OP_LONG
8446 ourselves. */
8447 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
8448 arg1 = ada_value_cast (expect_type, arg1, noside);
8449
8450 return arg1;
8451
8452 case OP_STRING:
8453 {
8454 struct value *result;
8455 *pos -= 1;
8456 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
8457 /* The result type will have code OP_STRING, bashed there from
8458 OP_ARRAY. Bash it back. */
8459 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
8460 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
8461 return result;
8462 }
8463
8464 case UNOP_CAST:
8465 (*pos) += 2;
8466 type = exp->elts[pc + 1].type;
8467 arg1 = evaluate_subexp (type, exp, pos, noside);
8468 if (noside == EVAL_SKIP)
8469 goto nosideret;
8470 arg1 = ada_value_cast (type, arg1, noside);
8471 return arg1;
8472
8473 case UNOP_QUAL:
8474 (*pos) += 2;
8475 type = exp->elts[pc + 1].type;
8476 return ada_evaluate_subexp (type, exp, pos, noside);
8477
8478 case BINOP_ASSIGN:
8479 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8480 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8481 {
8482 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
8483 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8484 return arg1;
8485 return ada_value_assign (arg1, arg1);
8486 }
8487 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
8488 except if the lhs of our assignment is a convenience variable.
8489 In the case of assigning to a convenience variable, the lhs
8490 should be exactly the result of the evaluation of the rhs. */
8491 type = value_type (arg1);
8492 if (VALUE_LVAL (arg1) == lval_internalvar)
8493 type = NULL;
8494 arg2 = evaluate_subexp (type, exp, pos, noside);
8495 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8496 return arg1;
8497 if (ada_is_fixed_point_type (value_type (arg1)))
8498 arg2 = cast_to_fixed (value_type (arg1), arg2);
8499 else if (ada_is_fixed_point_type (value_type (arg2)))
8500 error
8501 (_("Fixed-point values must be assigned to fixed-point variables"));
8502 else
8503 arg2 = coerce_for_assign (value_type (arg1), arg2);
8504 return ada_value_assign (arg1, arg2);
8505
8506 case BINOP_ADD:
8507 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8508 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8509 if (noside == EVAL_SKIP)
8510 goto nosideret;
8511 if ((ada_is_fixed_point_type (value_type (arg1))
8512 || ada_is_fixed_point_type (value_type (arg2)))
8513 && value_type (arg1) != value_type (arg2))
8514 error (_("Operands of fixed-point addition must have the same type"));
8515 /* Do the addition, and cast the result to the type of the first
8516 argument. We cannot cast the result to a reference type, so if
8517 ARG1 is a reference type, find its underlying type. */
8518 type = value_type (arg1);
8519 while (TYPE_CODE (type) == TYPE_CODE_REF)
8520 type = TYPE_TARGET_TYPE (type);
8521 return value_cast (type, value_add (arg1, arg2));
8522
8523 case BINOP_SUB:
8524 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8525 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8526 if (noside == EVAL_SKIP)
8527 goto nosideret;
8528 if ((ada_is_fixed_point_type (value_type (arg1))
8529 || ada_is_fixed_point_type (value_type (arg2)))
8530 && value_type (arg1) != value_type (arg2))
8531 error (_("Operands of fixed-point subtraction must have the same type"));
8532 /* Do the substraction, and cast the result to the type of the first
8533 argument. We cannot cast the result to a reference type, so if
8534 ARG1 is a reference type, find its underlying type. */
8535 type = value_type (arg1);
8536 while (TYPE_CODE (type) == TYPE_CODE_REF)
8537 type = TYPE_TARGET_TYPE (type);
8538 return value_cast (type, value_sub (arg1, arg2));
8539
8540 case BINOP_MUL:
8541 case BINOP_DIV:
8542 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8543 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8544 if (noside == EVAL_SKIP)
8545 goto nosideret;
8546 else if (noside == EVAL_AVOID_SIDE_EFFECTS
8547 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
8548 return value_zero (value_type (arg1), not_lval);
8549 else
8550 {
8551 if (ada_is_fixed_point_type (value_type (arg1)))
8552 arg1 = cast_from_fixed_to_double (arg1);
8553 if (ada_is_fixed_point_type (value_type (arg2)))
8554 arg2 = cast_from_fixed_to_double (arg2);
8555 return ada_value_binop (arg1, arg2, op);
8556 }
8557
8558 case BINOP_REM:
8559 case BINOP_MOD:
8560 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8561 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8562 if (noside == EVAL_SKIP)
8563 goto nosideret;
8564 else if (noside == EVAL_AVOID_SIDE_EFFECTS
8565 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
8566 return value_zero (value_type (arg1), not_lval);
8567 else
8568 return ada_value_binop (arg1, arg2, op);
8569
8570 case BINOP_EQUAL:
8571 case BINOP_NOTEQUAL:
8572 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8573 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
8574 if (noside == EVAL_SKIP)
8575 goto nosideret;
8576 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8577 tem = 0;
8578 else
8579 tem = ada_value_equal (arg1, arg2);
8580 if (op == BINOP_NOTEQUAL)
8581 tem = !tem;
8582 return value_from_longest (LA_BOOL_TYPE, (LONGEST) tem);
8583
8584 case UNOP_NEG:
8585 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8586 if (noside == EVAL_SKIP)
8587 goto nosideret;
8588 else if (ada_is_fixed_point_type (value_type (arg1)))
8589 return value_cast (value_type (arg1), value_neg (arg1));
8590 else
8591 return value_neg (arg1);
8592
8593 case BINOP_LOGICAL_AND:
8594 case BINOP_LOGICAL_OR:
8595 case UNOP_LOGICAL_NOT:
8596 {
8597 struct value *val;
8598
8599 *pos -= 1;
8600 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8601 return value_cast (LA_BOOL_TYPE, val);
8602 }
8603
8604 case BINOP_BITWISE_AND:
8605 case BINOP_BITWISE_IOR:
8606 case BINOP_BITWISE_XOR:
8607 {
8608 struct value *val;
8609
8610 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8611 *pos = pc;
8612 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8613
8614 return value_cast (value_type (arg1), val);
8615 }
8616
8617 case OP_VAR_VALUE:
8618 *pos -= 1;
8619
8620 /* Tagged types are a little special in the fact that the real type
8621 is dynamic and can only be determined by inspecting the object
8622 value. So even if we're support to do an EVAL_AVOID_SIDE_EFFECTS
8623 evaluation, we force an EVAL_NORMAL evaluation for tagged types. */
8624 if (noside == EVAL_AVOID_SIDE_EFFECTS
8625 && ada_is_tagged_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol), 1))
8626 noside = EVAL_NORMAL;
8627
8628 if (noside == EVAL_SKIP)
8629 {
8630 *pos += 4;
8631 goto nosideret;
8632 }
8633 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
8634 /* Only encountered when an unresolved symbol occurs in a
8635 context other than a function call, in which case, it is
8636 invalid. */
8637 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8638 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
8639 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8640 {
8641 *pos += 4;
8642 return value_zero
8643 (to_static_fixed_type
8644 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
8645 not_lval);
8646 }
8647 else
8648 {
8649 arg1 =
8650 unwrap_value (evaluate_subexp_standard
8651 (expect_type, exp, pos, noside));
8652 return ada_to_fixed_value (arg1);
8653 }
8654
8655 case OP_FUNCALL:
8656 (*pos) += 2;
8657
8658 /* Allocate arg vector, including space for the function to be
8659 called in argvec[0] and a terminating NULL. */
8660 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8661 argvec =
8662 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
8663
8664 if (exp->elts[*pos].opcode == OP_VAR_VALUE
8665 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
8666 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8667 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
8668 else
8669 {
8670 for (tem = 0; tem <= nargs; tem += 1)
8671 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8672 argvec[tem] = 0;
8673
8674 if (noside == EVAL_SKIP)
8675 goto nosideret;
8676 }
8677
8678 if (ada_is_packed_array_type (desc_base_type (value_type (argvec[0]))))
8679 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
8680 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
8681 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8682 && VALUE_LVAL (argvec[0]) == lval_memory))
8683 argvec[0] = value_addr (argvec[0]);
8684
8685 type = ada_check_typedef (value_type (argvec[0]));
8686 if (TYPE_CODE (type) == TYPE_CODE_PTR)
8687 {
8688 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
8689 {
8690 case TYPE_CODE_FUNC:
8691 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8692 break;
8693 case TYPE_CODE_ARRAY:
8694 break;
8695 case TYPE_CODE_STRUCT:
8696 if (noside != EVAL_AVOID_SIDE_EFFECTS)
8697 argvec[0] = ada_value_ind (argvec[0]);
8698 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8699 break;
8700 default:
8701 error (_("cannot subscript or call something of type `%s'"),
8702 ada_type_name (value_type (argvec[0])));
8703 break;
8704 }
8705 }
8706
8707 switch (TYPE_CODE (type))
8708 {
8709 case TYPE_CODE_FUNC:
8710 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8711 return allocate_value (TYPE_TARGET_TYPE (type));
8712 return call_function_by_hand (argvec[0], nargs, argvec + 1);
8713 case TYPE_CODE_STRUCT:
8714 {
8715 int arity;
8716
8717 arity = ada_array_arity (type);
8718 type = ada_array_element_type (type, nargs);
8719 if (type == NULL)
8720 error (_("cannot subscript or call a record"));
8721 if (arity != nargs)
8722 error (_("wrong number of subscripts; expecting %d"), arity);
8723 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8724 return value_zero (ada_aligned_type (type), lval_memory);
8725 return
8726 unwrap_value (ada_value_subscript
8727 (argvec[0], nargs, argvec + 1));
8728 }
8729 case TYPE_CODE_ARRAY:
8730 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8731 {
8732 type = ada_array_element_type (type, nargs);
8733 if (type == NULL)
8734 error (_("element type of array unknown"));
8735 else
8736 return value_zero (ada_aligned_type (type), lval_memory);
8737 }
8738 return
8739 unwrap_value (ada_value_subscript
8740 (ada_coerce_to_simple_array (argvec[0]),
8741 nargs, argvec + 1));
8742 case TYPE_CODE_PTR: /* Pointer to array */
8743 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
8744 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8745 {
8746 type = ada_array_element_type (type, nargs);
8747 if (type == NULL)
8748 error (_("element type of array unknown"));
8749 else
8750 return value_zero (ada_aligned_type (type), lval_memory);
8751 }
8752 return
8753 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
8754 nargs, argvec + 1));
8755
8756 default:
8757 error (_("Attempt to index or call something other than an "
8758 "array or function"));
8759 }
8760
8761 case TERNOP_SLICE:
8762 {
8763 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8764 struct value *low_bound_val =
8765 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8766 struct value *high_bound_val =
8767 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8768 LONGEST low_bound;
8769 LONGEST high_bound;
8770 low_bound_val = coerce_ref (low_bound_val);
8771 high_bound_val = coerce_ref (high_bound_val);
8772 low_bound = pos_atr (low_bound_val);
8773 high_bound = pos_atr (high_bound_val);
8774
8775 if (noside == EVAL_SKIP)
8776 goto nosideret;
8777
8778 /* If this is a reference to an aligner type, then remove all
8779 the aligners. */
8780 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8781 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
8782 TYPE_TARGET_TYPE (value_type (array)) =
8783 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
8784
8785 if (ada_is_packed_array_type (value_type (array)))
8786 error (_("cannot slice a packed array"));
8787
8788 /* If this is a reference to an array or an array lvalue,
8789 convert to a pointer. */
8790 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8791 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
8792 && VALUE_LVAL (array) == lval_memory))
8793 array = value_addr (array);
8794
8795 if (noside == EVAL_AVOID_SIDE_EFFECTS
8796 && ada_is_array_descriptor_type (ada_check_typedef
8797 (value_type (array))))
8798 return empty_array (ada_type_of_array (array, 0), low_bound);
8799
8800 array = ada_coerce_to_simple_array_ptr (array);
8801
8802 /* If we have more than one level of pointer indirection,
8803 dereference the value until we get only one level. */
8804 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
8805 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
8806 == TYPE_CODE_PTR))
8807 array = value_ind (array);
8808
8809 /* Make sure we really do have an array type before going further,
8810 to avoid a SEGV when trying to get the index type or the target
8811 type later down the road if the debug info generated by
8812 the compiler is incorrect or incomplete. */
8813 if (!ada_is_simple_array_type (value_type (array)))
8814 error (_("cannot take slice of non-array"));
8815
8816 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
8817 {
8818 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
8819 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
8820 low_bound);
8821 else
8822 {
8823 struct type *arr_type0 =
8824 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
8825 NULL, 1);
8826 return ada_value_slice_ptr (array, arr_type0,
8827 longest_to_int (low_bound),
8828 longest_to_int (high_bound));
8829 }
8830 }
8831 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8832 return array;
8833 else if (high_bound < low_bound)
8834 return empty_array (value_type (array), low_bound);
8835 else
8836 return ada_value_slice (array, longest_to_int (low_bound),
8837 longest_to_int (high_bound));
8838 }
8839
8840 case UNOP_IN_RANGE:
8841 (*pos) += 2;
8842 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8843 type = exp->elts[pc + 1].type;
8844
8845 if (noside == EVAL_SKIP)
8846 goto nosideret;
8847
8848 switch (TYPE_CODE (type))
8849 {
8850 default:
8851 lim_warning (_("Membership test incompletely implemented; "
8852 "always returns true"));
8853 return value_from_longest (builtin_type_int, (LONGEST) 1);
8854
8855 case TYPE_CODE_RANGE:
8856 arg2 = value_from_longest (builtin_type_int, TYPE_LOW_BOUND (type));
8857 arg3 = value_from_longest (builtin_type_int,
8858 TYPE_HIGH_BOUND (type));
8859 return
8860 value_from_longest (builtin_type_int,
8861 (value_less (arg1, arg3)
8862 || value_equal (arg1, arg3))
8863 && (value_less (arg2, arg1)
8864 || value_equal (arg2, arg1)));
8865 }
8866
8867 case BINOP_IN_BOUNDS:
8868 (*pos) += 2;
8869 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8870 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8871
8872 if (noside == EVAL_SKIP)
8873 goto nosideret;
8874
8875 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8876 return value_zero (builtin_type_int, not_lval);
8877
8878 tem = longest_to_int (exp->elts[pc + 1].longconst);
8879
8880 if (tem < 1 || tem > ada_array_arity (value_type (arg2)))
8881 error (_("invalid dimension number to 'range"));
8882
8883 arg3 = ada_array_bound (arg2, tem, 1);
8884 arg2 = ada_array_bound (arg2, tem, 0);
8885
8886 return
8887 value_from_longest (builtin_type_int,
8888 (value_less (arg1, arg3)
8889 || value_equal (arg1, arg3))
8890 && (value_less (arg2, arg1)
8891 || value_equal (arg2, arg1)));
8892
8893 case TERNOP_IN_RANGE:
8894 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8895 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8896 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8897
8898 if (noside == EVAL_SKIP)
8899 goto nosideret;
8900
8901 return
8902 value_from_longest (builtin_type_int,
8903 (value_less (arg1, arg3)
8904 || value_equal (arg1, arg3))
8905 && (value_less (arg2, arg1)
8906 || value_equal (arg2, arg1)));
8907
8908 case OP_ATR_FIRST:
8909 case OP_ATR_LAST:
8910 case OP_ATR_LENGTH:
8911 {
8912 struct type *type_arg;
8913 if (exp->elts[*pos].opcode == OP_TYPE)
8914 {
8915 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8916 arg1 = NULL;
8917 type_arg = exp->elts[pc + 2].type;
8918 }
8919 else
8920 {
8921 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8922 type_arg = NULL;
8923 }
8924
8925 if (exp->elts[*pos].opcode != OP_LONG)
8926 error (_("Invalid operand to '%s"), ada_attribute_name (op));
8927 tem = longest_to_int (exp->elts[*pos + 2].longconst);
8928 *pos += 4;
8929
8930 if (noside == EVAL_SKIP)
8931 goto nosideret;
8932
8933 if (type_arg == NULL)
8934 {
8935 arg1 = ada_coerce_ref (arg1);
8936
8937 if (ada_is_packed_array_type (value_type (arg1)))
8938 arg1 = ada_coerce_to_simple_array (arg1);
8939
8940 if (tem < 1 || tem > ada_array_arity (value_type (arg1)))
8941 error (_("invalid dimension number to '%s"),
8942 ada_attribute_name (op));
8943
8944 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8945 {
8946 type = ada_index_type (value_type (arg1), tem);
8947 if (type == NULL)
8948 error
8949 (_("attempt to take bound of something that is not an array"));
8950 return allocate_value (type);
8951 }
8952
8953 switch (op)
8954 {
8955 default: /* Should never happen. */
8956 error (_("unexpected attribute encountered"));
8957 case OP_ATR_FIRST:
8958 return ada_array_bound (arg1, tem, 0);
8959 case OP_ATR_LAST:
8960 return ada_array_bound (arg1, tem, 1);
8961 case OP_ATR_LENGTH:
8962 return ada_array_length (arg1, tem);
8963 }
8964 }
8965 else if (discrete_type_p (type_arg))
8966 {
8967 struct type *range_type;
8968 char *name = ada_type_name (type_arg);
8969 range_type = NULL;
8970 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
8971 range_type =
8972 to_fixed_range_type (name, NULL, TYPE_OBJFILE (type_arg));
8973 if (range_type == NULL)
8974 range_type = type_arg;
8975 switch (op)
8976 {
8977 default:
8978 error (_("unexpected attribute encountered"));
8979 case OP_ATR_FIRST:
8980 return value_from_longest
8981 (range_type, discrete_type_low_bound (range_type));
8982 case OP_ATR_LAST:
8983 return value_from_longest
8984 (range_type, discrete_type_high_bound (range_type));
8985 case OP_ATR_LENGTH:
8986 error (_("the 'length attribute applies only to array types"));
8987 }
8988 }
8989 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
8990 error (_("unimplemented type attribute"));
8991 else
8992 {
8993 LONGEST low, high;
8994
8995 if (ada_is_packed_array_type (type_arg))
8996 type_arg = decode_packed_array_type (type_arg);
8997
8998 if (tem < 1 || tem > ada_array_arity (type_arg))
8999 error (_("invalid dimension number to '%s"),
9000 ada_attribute_name (op));
9001
9002 type = ada_index_type (type_arg, tem);
9003 if (type == NULL)
9004 error
9005 (_("attempt to take bound of something that is not an array"));
9006 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9007 return allocate_value (type);
9008
9009 switch (op)
9010 {
9011 default:
9012 error (_("unexpected attribute encountered"));
9013 case OP_ATR_FIRST:
9014 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
9015 return value_from_longest (type, low);
9016 case OP_ATR_LAST:
9017 high = ada_array_bound_from_type (type_arg, tem, 1, &type);
9018 return value_from_longest (type, high);
9019 case OP_ATR_LENGTH:
9020 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
9021 high = ada_array_bound_from_type (type_arg, tem, 1, NULL);
9022 return value_from_longest (type, high - low + 1);
9023 }
9024 }
9025 }
9026
9027 case OP_ATR_TAG:
9028 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9029 if (noside == EVAL_SKIP)
9030 goto nosideret;
9031
9032 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9033 return value_zero (ada_tag_type (arg1), not_lval);
9034
9035 return ada_value_tag (arg1);
9036
9037 case OP_ATR_MIN:
9038 case OP_ATR_MAX:
9039 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9040 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9041 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9042 if (noside == EVAL_SKIP)
9043 goto nosideret;
9044 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9045 return value_zero (value_type (arg1), not_lval);
9046 else
9047 return value_binop (arg1, arg2,
9048 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9049
9050 case OP_ATR_MODULUS:
9051 {
9052 struct type *type_arg = exp->elts[pc + 2].type;
9053 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9054
9055 if (noside == EVAL_SKIP)
9056 goto nosideret;
9057
9058 if (!ada_is_modular_type (type_arg))
9059 error (_("'modulus must be applied to modular type"));
9060
9061 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9062 ada_modulus (type_arg));
9063 }
9064
9065
9066 case OP_ATR_POS:
9067 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9068 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9069 if (noside == EVAL_SKIP)
9070 goto nosideret;
9071 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9072 return value_zero (builtin_type_int, not_lval);
9073 else
9074 return value_pos_atr (arg1);
9075
9076 case OP_ATR_SIZE:
9077 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9078 if (noside == EVAL_SKIP)
9079 goto nosideret;
9080 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9081 return value_zero (builtin_type_int, not_lval);
9082 else
9083 return value_from_longest (builtin_type_int,
9084 TARGET_CHAR_BIT
9085 * TYPE_LENGTH (value_type (arg1)));
9086
9087 case OP_ATR_VAL:
9088 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9089 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9090 type = exp->elts[pc + 2].type;
9091 if (noside == EVAL_SKIP)
9092 goto nosideret;
9093 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9094 return value_zero (type, not_lval);
9095 else
9096 return value_val_atr (type, arg1);
9097
9098 case BINOP_EXP:
9099 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9100 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9101 if (noside == EVAL_SKIP)
9102 goto nosideret;
9103 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9104 return value_zero (value_type (arg1), not_lval);
9105 else
9106 return value_binop (arg1, arg2, op);
9107
9108 case UNOP_PLUS:
9109 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9110 if (noside == EVAL_SKIP)
9111 goto nosideret;
9112 else
9113 return arg1;
9114
9115 case UNOP_ABS:
9116 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9117 if (noside == EVAL_SKIP)
9118 goto nosideret;
9119 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
9120 return value_neg (arg1);
9121 else
9122 return arg1;
9123
9124 case UNOP_IND:
9125 if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
9126 expect_type = TYPE_TARGET_TYPE (ada_check_typedef (expect_type));
9127 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
9128 if (noside == EVAL_SKIP)
9129 goto nosideret;
9130 type = ada_check_typedef (value_type (arg1));
9131 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9132 {
9133 if (ada_is_array_descriptor_type (type))
9134 /* GDB allows dereferencing GNAT array descriptors. */
9135 {
9136 struct type *arrType = ada_type_of_array (arg1, 0);
9137 if (arrType == NULL)
9138 error (_("Attempt to dereference null array pointer."));
9139 return value_at_lazy (arrType, 0);
9140 }
9141 else if (TYPE_CODE (type) == TYPE_CODE_PTR
9142 || TYPE_CODE (type) == TYPE_CODE_REF
9143 /* In C you can dereference an array to get the 1st elt. */
9144 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
9145 {
9146 type = to_static_fixed_type
9147 (ada_aligned_type
9148 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
9149 check_size (type);
9150 return value_zero (type, lval_memory);
9151 }
9152 else if (TYPE_CODE (type) == TYPE_CODE_INT)
9153 /* GDB allows dereferencing an int. */
9154 return value_zero (builtin_type_int, lval_memory);
9155 else
9156 error (_("Attempt to take contents of a non-pointer value."));
9157 }
9158 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
9159 type = ada_check_typedef (value_type (arg1));
9160
9161 if (ada_is_array_descriptor_type (type))
9162 /* GDB allows dereferencing GNAT array descriptors. */
9163 return ada_coerce_to_simple_array (arg1);
9164 else
9165 return ada_value_ind (arg1);
9166
9167 case STRUCTOP_STRUCT:
9168 tem = longest_to_int (exp->elts[pc + 1].longconst);
9169 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
9170 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9171 if (noside == EVAL_SKIP)
9172 goto nosideret;
9173 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9174 {
9175 struct type *type1 = value_type (arg1);
9176 if (ada_is_tagged_type (type1, 1))
9177 {
9178 type = ada_lookup_struct_elt_type (type1,
9179 &exp->elts[pc + 2].string,
9180 1, 1, NULL);
9181 if (type == NULL)
9182 /* In this case, we assume that the field COULD exist
9183 in some extension of the type. Return an object of
9184 "type" void, which will match any formal
9185 (see ada_type_match). */
9186 return value_zero (builtin_type_void, lval_memory);
9187 }
9188 else
9189 type =
9190 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
9191 0, NULL);
9192
9193 return value_zero (ada_aligned_type (type), lval_memory);
9194 }
9195 else
9196 return
9197 ada_to_fixed_value (unwrap_value
9198 (ada_value_struct_elt
9199 (arg1, &exp->elts[pc + 2].string, 0)));
9200 case OP_TYPE:
9201 /* The value is not supposed to be used. This is here to make it
9202 easier to accommodate expressions that contain types. */
9203 (*pos) += 2;
9204 if (noside == EVAL_SKIP)
9205 goto nosideret;
9206 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9207 return allocate_value (exp->elts[pc + 1].type);
9208 else
9209 error (_("Attempt to use a type name as an expression"));
9210
9211 case OP_AGGREGATE:
9212 case OP_CHOICES:
9213 case OP_OTHERS:
9214 case OP_DISCRETE_RANGE:
9215 case OP_POSITIONAL:
9216 case OP_NAME:
9217 if (noside == EVAL_NORMAL)
9218 switch (op)
9219 {
9220 case OP_NAME:
9221 error (_("Undefined name, ambiguous name, or renaming used in "
9222 "component association: %s."), &exp->elts[pc+2].string);
9223 case OP_AGGREGATE:
9224 error (_("Aggregates only allowed on the right of an assignment"));
9225 default:
9226 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
9227 }
9228
9229 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9230 *pos += oplen - 1;
9231 for (tem = 0; tem < nargs; tem += 1)
9232 ada_evaluate_subexp (NULL, exp, pos, noside);
9233 goto nosideret;
9234 }
9235
9236 nosideret:
9237 return value_from_longest (builtin_type_long, (LONGEST) 1);
9238 }
9239 \f
9240
9241 /* Fixed point */
9242
9243 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
9244 type name that encodes the 'small and 'delta information.
9245 Otherwise, return NULL. */
9246
9247 static const char *
9248 fixed_type_info (struct type *type)
9249 {
9250 const char *name = ada_type_name (type);
9251 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
9252
9253 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
9254 {
9255 const char *tail = strstr (name, "___XF_");
9256 if (tail == NULL)
9257 return NULL;
9258 else
9259 return tail + 5;
9260 }
9261 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
9262 return fixed_type_info (TYPE_TARGET_TYPE (type));
9263 else
9264 return NULL;
9265 }
9266
9267 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
9268
9269 int
9270 ada_is_fixed_point_type (struct type *type)
9271 {
9272 return fixed_type_info (type) != NULL;
9273 }
9274
9275 /* Return non-zero iff TYPE represents a System.Address type. */
9276
9277 int
9278 ada_is_system_address_type (struct type *type)
9279 {
9280 return (TYPE_NAME (type)
9281 && strcmp (TYPE_NAME (type), "system__address") == 0);
9282 }
9283
9284 /* Assuming that TYPE is the representation of an Ada fixed-point
9285 type, return its delta, or -1 if the type is malformed and the
9286 delta cannot be determined. */
9287
9288 DOUBLEST
9289 ada_delta (struct type *type)
9290 {
9291 const char *encoding = fixed_type_info (type);
9292 long num, den;
9293
9294 if (sscanf (encoding, "_%ld_%ld", &num, &den) < 2)
9295 return -1.0;
9296 else
9297 return (DOUBLEST) num / (DOUBLEST) den;
9298 }
9299
9300 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
9301 factor ('SMALL value) associated with the type. */
9302
9303 static DOUBLEST
9304 scaling_factor (struct type *type)
9305 {
9306 const char *encoding = fixed_type_info (type);
9307 unsigned long num0, den0, num1, den1;
9308 int n;
9309
9310 n = sscanf (encoding, "_%lu_%lu_%lu_%lu", &num0, &den0, &num1, &den1);
9311
9312 if (n < 2)
9313 return 1.0;
9314 else if (n == 4)
9315 return (DOUBLEST) num1 / (DOUBLEST) den1;
9316 else
9317 return (DOUBLEST) num0 / (DOUBLEST) den0;
9318 }
9319
9320
9321 /* Assuming that X is the representation of a value of fixed-point
9322 type TYPE, return its floating-point equivalent. */
9323
9324 DOUBLEST
9325 ada_fixed_to_float (struct type *type, LONGEST x)
9326 {
9327 return (DOUBLEST) x *scaling_factor (type);
9328 }
9329
9330 /* The representation of a fixed-point value of type TYPE
9331 corresponding to the value X. */
9332
9333 LONGEST
9334 ada_float_to_fixed (struct type *type, DOUBLEST x)
9335 {
9336 return (LONGEST) (x / scaling_factor (type) + 0.5);
9337 }
9338
9339
9340 /* VAX floating formats */
9341
9342 /* Non-zero iff TYPE represents one of the special VAX floating-point
9343 types. */
9344
9345 int
9346 ada_is_vax_floating_type (struct type *type)
9347 {
9348 int name_len =
9349 (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type));
9350 return
9351 name_len > 6
9352 && (TYPE_CODE (type) == TYPE_CODE_INT
9353 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9354 && strncmp (ada_type_name (type) + name_len - 6, "___XF", 5) == 0;
9355 }
9356
9357 /* The type of special VAX floating-point type this is, assuming
9358 ada_is_vax_floating_point. */
9359
9360 int
9361 ada_vax_float_type_suffix (struct type *type)
9362 {
9363 return ada_type_name (type)[strlen (ada_type_name (type)) - 1];
9364 }
9365
9366 /* A value representing the special debugging function that outputs
9367 VAX floating-point values of the type represented by TYPE. Assumes
9368 ada_is_vax_floating_type (TYPE). */
9369
9370 struct value *
9371 ada_vax_float_print_function (struct type *type)
9372 {
9373 switch (ada_vax_float_type_suffix (type))
9374 {
9375 case 'F':
9376 return get_var_value ("DEBUG_STRING_F", 0);
9377 case 'D':
9378 return get_var_value ("DEBUG_STRING_D", 0);
9379 case 'G':
9380 return get_var_value ("DEBUG_STRING_G", 0);
9381 default:
9382 error (_("invalid VAX floating-point type"));
9383 }
9384 }
9385 \f
9386
9387 /* Range types */
9388
9389 /* Scan STR beginning at position K for a discriminant name, and
9390 return the value of that discriminant field of DVAL in *PX. If
9391 PNEW_K is not null, put the position of the character beyond the
9392 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
9393 not alter *PX and *PNEW_K if unsuccessful. */
9394
9395 static int
9396 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
9397 int *pnew_k)
9398 {
9399 static char *bound_buffer = NULL;
9400 static size_t bound_buffer_len = 0;
9401 char *bound;
9402 char *pend;
9403 struct value *bound_val;
9404
9405 if (dval == NULL || str == NULL || str[k] == '\0')
9406 return 0;
9407
9408 pend = strstr (str + k, "__");
9409 if (pend == NULL)
9410 {
9411 bound = str + k;
9412 k += strlen (bound);
9413 }
9414 else
9415 {
9416 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
9417 bound = bound_buffer;
9418 strncpy (bound_buffer, str + k, pend - (str + k));
9419 bound[pend - (str + k)] = '\0';
9420 k = pend - str;
9421 }
9422
9423 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
9424 if (bound_val == NULL)
9425 return 0;
9426
9427 *px = value_as_long (bound_val);
9428 if (pnew_k != NULL)
9429 *pnew_k = k;
9430 return 1;
9431 }
9432
9433 /* Value of variable named NAME in the current environment. If
9434 no such variable found, then if ERR_MSG is null, returns 0, and
9435 otherwise causes an error with message ERR_MSG. */
9436
9437 static struct value *
9438 get_var_value (char *name, char *err_msg)
9439 {
9440 struct ada_symbol_info *syms;
9441 int nsyms;
9442
9443 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
9444 &syms);
9445
9446 if (nsyms != 1)
9447 {
9448 if (err_msg == NULL)
9449 return 0;
9450 else
9451 error (("%s"), err_msg);
9452 }
9453
9454 return value_of_variable (syms[0].sym, syms[0].block);
9455 }
9456
9457 /* Value of integer variable named NAME in the current environment. If
9458 no such variable found, returns 0, and sets *FLAG to 0. If
9459 successful, sets *FLAG to 1. */
9460
9461 LONGEST
9462 get_int_var_value (char *name, int *flag)
9463 {
9464 struct value *var_val = get_var_value (name, 0);
9465
9466 if (var_val == 0)
9467 {
9468 if (flag != NULL)
9469 *flag = 0;
9470 return 0;
9471 }
9472 else
9473 {
9474 if (flag != NULL)
9475 *flag = 1;
9476 return value_as_long (var_val);
9477 }
9478 }
9479
9480
9481 /* Return a range type whose base type is that of the range type named
9482 NAME in the current environment, and whose bounds are calculated
9483 from NAME according to the GNAT range encoding conventions.
9484 Extract discriminant values, if needed, from DVAL. If a new type
9485 must be created, allocate in OBJFILE's space. The bounds
9486 information, in general, is encoded in NAME, the base type given in
9487 the named range type. */
9488
9489 static struct type *
9490 to_fixed_range_type (char *name, struct value *dval, struct objfile *objfile)
9491 {
9492 struct type *raw_type = ada_find_any_type (name);
9493 struct type *base_type;
9494 char *subtype_info;
9495
9496 if (raw_type == NULL)
9497 base_type = builtin_type_int;
9498 else if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
9499 base_type = TYPE_TARGET_TYPE (raw_type);
9500 else
9501 base_type = raw_type;
9502
9503 subtype_info = strstr (name, "___XD");
9504 if (subtype_info == NULL)
9505 {
9506 LONGEST L = discrete_type_low_bound (raw_type);
9507 LONGEST U = discrete_type_high_bound (raw_type);
9508 if (L < INT_MIN || U > INT_MAX)
9509 return raw_type;
9510 else
9511 return create_range_type (alloc_type (objfile), raw_type,
9512 discrete_type_low_bound (raw_type),
9513 discrete_type_high_bound (raw_type));
9514 }
9515 else
9516 {
9517 static char *name_buf = NULL;
9518 static size_t name_len = 0;
9519 int prefix_len = subtype_info - name;
9520 LONGEST L, U;
9521 struct type *type;
9522 char *bounds_str;
9523 int n;
9524
9525 GROW_VECT (name_buf, name_len, prefix_len + 5);
9526 strncpy (name_buf, name, prefix_len);
9527 name_buf[prefix_len] = '\0';
9528
9529 subtype_info += 5;
9530 bounds_str = strchr (subtype_info, '_');
9531 n = 1;
9532
9533 if (*subtype_info == 'L')
9534 {
9535 if (!ada_scan_number (bounds_str, n, &L, &n)
9536 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
9537 return raw_type;
9538 if (bounds_str[n] == '_')
9539 n += 2;
9540 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
9541 n += 1;
9542 subtype_info += 1;
9543 }
9544 else
9545 {
9546 int ok;
9547 strcpy (name_buf + prefix_len, "___L");
9548 L = get_int_var_value (name_buf, &ok);
9549 if (!ok)
9550 {
9551 lim_warning (_("Unknown lower bound, using 1."));
9552 L = 1;
9553 }
9554 }
9555
9556 if (*subtype_info == 'U')
9557 {
9558 if (!ada_scan_number (bounds_str, n, &U, &n)
9559 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
9560 return raw_type;
9561 }
9562 else
9563 {
9564 int ok;
9565 strcpy (name_buf + prefix_len, "___U");
9566 U = get_int_var_value (name_buf, &ok);
9567 if (!ok)
9568 {
9569 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
9570 U = L;
9571 }
9572 }
9573
9574 if (objfile == NULL)
9575 objfile = TYPE_OBJFILE (base_type);
9576 type = create_range_type (alloc_type (objfile), base_type, L, U);
9577 TYPE_NAME (type) = name;
9578 return type;
9579 }
9580 }
9581
9582 /* True iff NAME is the name of a range type. */
9583
9584 int
9585 ada_is_range_type_name (const char *name)
9586 {
9587 return (name != NULL && strstr (name, "___XD"));
9588 }
9589 \f
9590
9591 /* Modular types */
9592
9593 /* True iff TYPE is an Ada modular type. */
9594
9595 int
9596 ada_is_modular_type (struct type *type)
9597 {
9598 struct type *subranged_type = base_type (type);
9599
9600 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
9601 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
9602 && TYPE_UNSIGNED (subranged_type));
9603 }
9604
9605 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
9606
9607 ULONGEST
9608 ada_modulus (struct type * type)
9609 {
9610 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
9611 }
9612 \f
9613
9614 /* Ada exception catchpoint support:
9615 ---------------------------------
9616
9617 We support 3 kinds of exception catchpoints:
9618 . catchpoints on Ada exceptions
9619 . catchpoints on unhandled Ada exceptions
9620 . catchpoints on failed assertions
9621
9622 Exceptions raised during failed assertions, or unhandled exceptions
9623 could perfectly be caught with the general catchpoint on Ada exceptions.
9624 However, we can easily differentiate these two special cases, and having
9625 the option to distinguish these two cases from the rest can be useful
9626 to zero-in on certain situations.
9627
9628 Exception catchpoints are a specialized form of breakpoint,
9629 since they rely on inserting breakpoints inside known routines
9630 of the GNAT runtime. The implementation therefore uses a standard
9631 breakpoint structure of the BP_BREAKPOINT type, but with its own set
9632 of breakpoint_ops.
9633
9634 Support in the runtime for exception catchpoints have been changed
9635 a few times already, and these changes affect the implementation
9636 of these catchpoints. In order to be able to support several
9637 variants of the runtime, we use a sniffer that will determine
9638 the runtime variant used by the program being debugged.
9639
9640 At this time, we do not support the use of conditions on Ada exception
9641 catchpoints. The COND and COND_STRING fields are therefore set
9642 to NULL (most of the time, see below).
9643
9644 Conditions where EXP_STRING, COND, and COND_STRING are used:
9645
9646 When a user specifies the name of a specific exception in the case
9647 of catchpoints on Ada exceptions, we store the name of that exception
9648 in the EXP_STRING. We then translate this request into an actual
9649 condition stored in COND_STRING, and then parse it into an expression
9650 stored in COND. */
9651
9652 /* The different types of catchpoints that we introduced for catching
9653 Ada exceptions. */
9654
9655 enum exception_catchpoint_kind
9656 {
9657 ex_catch_exception,
9658 ex_catch_exception_unhandled,
9659 ex_catch_assert
9660 };
9661
9662 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
9663
9664 /* A structure that describes how to support exception catchpoints
9665 for a given executable. */
9666
9667 struct exception_support_info
9668 {
9669 /* The name of the symbol to break on in order to insert
9670 a catchpoint on exceptions. */
9671 const char *catch_exception_sym;
9672
9673 /* The name of the symbol to break on in order to insert
9674 a catchpoint on unhandled exceptions. */
9675 const char *catch_exception_unhandled_sym;
9676
9677 /* The name of the symbol to break on in order to insert
9678 a catchpoint on failed assertions. */
9679 const char *catch_assert_sym;
9680
9681 /* Assuming that the inferior just triggered an unhandled exception
9682 catchpoint, this function is responsible for returning the address
9683 in inferior memory where the name of that exception is stored.
9684 Return zero if the address could not be computed. */
9685 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
9686 };
9687
9688 static CORE_ADDR ada_unhandled_exception_name_addr (void);
9689 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
9690
9691 /* The following exception support info structure describes how to
9692 implement exception catchpoints with the latest version of the
9693 Ada runtime (as of 2007-03-06). */
9694
9695 static const struct exception_support_info default_exception_support_info =
9696 {
9697 "__gnat_debug_raise_exception", /* catch_exception_sym */
9698 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9699 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9700 ada_unhandled_exception_name_addr
9701 };
9702
9703 /* The following exception support info structure describes how to
9704 implement exception catchpoints with a slightly older version
9705 of the Ada runtime. */
9706
9707 static const struct exception_support_info exception_support_info_fallback =
9708 {
9709 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
9710 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9711 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9712 ada_unhandled_exception_name_addr_from_raise
9713 };
9714
9715 /* For each executable, we sniff which exception info structure to use
9716 and cache it in the following global variable. */
9717
9718 static const struct exception_support_info *exception_info = NULL;
9719
9720 /* Inspect the Ada runtime and determine which exception info structure
9721 should be used to provide support for exception catchpoints.
9722
9723 This function will always set exception_info, or raise an error. */
9724
9725 static void
9726 ada_exception_support_info_sniffer (void)
9727 {
9728 struct symbol *sym;
9729
9730 /* If the exception info is already known, then no need to recompute it. */
9731 if (exception_info != NULL)
9732 return;
9733
9734 /* Check the latest (default) exception support info. */
9735 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
9736 NULL, VAR_DOMAIN);
9737 if (sym != NULL)
9738 {
9739 exception_info = &default_exception_support_info;
9740 return;
9741 }
9742
9743 /* Try our fallback exception suport info. */
9744 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
9745 NULL, VAR_DOMAIN);
9746 if (sym != NULL)
9747 {
9748 exception_info = &exception_support_info_fallback;
9749 return;
9750 }
9751
9752 /* Sometimes, it is normal for us to not be able to find the routine
9753 we are looking for. This happens when the program is linked with
9754 the shared version of the GNAT runtime, and the program has not been
9755 started yet. Inform the user of these two possible causes if
9756 applicable. */
9757
9758 if (ada_update_initial_language (language_unknown, NULL) != language_ada)
9759 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
9760
9761 /* If the symbol does not exist, then check that the program is
9762 already started, to make sure that shared libraries have been
9763 loaded. If it is not started, this may mean that the symbol is
9764 in a shared library. */
9765
9766 if (ptid_get_pid (inferior_ptid) == 0)
9767 error (_("Unable to insert catchpoint. Try to start the program first."));
9768
9769 /* At this point, we know that we are debugging an Ada program and
9770 that the inferior has been started, but we still are not able to
9771 find the run-time symbols. That can mean that we are in
9772 configurable run time mode, or that a-except as been optimized
9773 out by the linker... In any case, at this point it is not worth
9774 supporting this feature. */
9775
9776 error (_("Cannot insert catchpoints in this configuration."));
9777 }
9778
9779 /* An observer of "executable_changed" events.
9780 Its role is to clear certain cached values that need to be recomputed
9781 each time a new executable is loaded by GDB. */
9782
9783 static void
9784 ada_executable_changed_observer (void)
9785 {
9786 /* If the executable changed, then it is possible that the Ada runtime
9787 is different. So we need to invalidate the exception support info
9788 cache. */
9789 exception_info = NULL;
9790 }
9791
9792 /* Return the name of the function at PC, NULL if could not find it.
9793 This function only checks the debugging information, not the symbol
9794 table. */
9795
9796 static char *
9797 function_name_from_pc (CORE_ADDR pc)
9798 {
9799 char *func_name;
9800
9801 if (!find_pc_partial_function (pc, &func_name, NULL, NULL))
9802 return NULL;
9803
9804 return func_name;
9805 }
9806
9807 /* True iff FRAME is very likely to be that of a function that is
9808 part of the runtime system. This is all very heuristic, but is
9809 intended to be used as advice as to what frames are uninteresting
9810 to most users. */
9811
9812 static int
9813 is_known_support_routine (struct frame_info *frame)
9814 {
9815 struct symtab_and_line sal;
9816 char *func_name;
9817 int i;
9818
9819 /* If this code does not have any debugging information (no symtab),
9820 This cannot be any user code. */
9821
9822 find_frame_sal (frame, &sal);
9823 if (sal.symtab == NULL)
9824 return 1;
9825
9826 /* If there is a symtab, but the associated source file cannot be
9827 located, then assume this is not user code: Selecting a frame
9828 for which we cannot display the code would not be very helpful
9829 for the user. This should also take care of case such as VxWorks
9830 where the kernel has some debugging info provided for a few units. */
9831
9832 if (symtab_to_fullname (sal.symtab) == NULL)
9833 return 1;
9834
9835 /* Check the unit filename againt the Ada runtime file naming.
9836 We also check the name of the objfile against the name of some
9837 known system libraries that sometimes come with debugging info
9838 too. */
9839
9840 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
9841 {
9842 re_comp (known_runtime_file_name_patterns[i]);
9843 if (re_exec (sal.symtab->filename))
9844 return 1;
9845 if (sal.symtab->objfile != NULL
9846 && re_exec (sal.symtab->objfile->name))
9847 return 1;
9848 }
9849
9850 /* Check whether the function is a GNAT-generated entity. */
9851
9852 func_name = function_name_from_pc (get_frame_address_in_block (frame));
9853 if (func_name == NULL)
9854 return 1;
9855
9856 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
9857 {
9858 re_comp (known_auxiliary_function_name_patterns[i]);
9859 if (re_exec (func_name))
9860 return 1;
9861 }
9862
9863 return 0;
9864 }
9865
9866 /* Find the first frame that contains debugging information and that is not
9867 part of the Ada run-time, starting from FI and moving upward. */
9868
9869 static void
9870 ada_find_printable_frame (struct frame_info *fi)
9871 {
9872 for (; fi != NULL; fi = get_prev_frame (fi))
9873 {
9874 if (!is_known_support_routine (fi))
9875 {
9876 select_frame (fi);
9877 break;
9878 }
9879 }
9880
9881 }
9882
9883 /* Assuming that the inferior just triggered an unhandled exception
9884 catchpoint, return the address in inferior memory where the name
9885 of the exception is stored.
9886
9887 Return zero if the address could not be computed. */
9888
9889 static CORE_ADDR
9890 ada_unhandled_exception_name_addr (void)
9891 {
9892 return parse_and_eval_address ("e.full_name");
9893 }
9894
9895 /* Same as ada_unhandled_exception_name_addr, except that this function
9896 should be used when the inferior uses an older version of the runtime,
9897 where the exception name needs to be extracted from a specific frame
9898 several frames up in the callstack. */
9899
9900 static CORE_ADDR
9901 ada_unhandled_exception_name_addr_from_raise (void)
9902 {
9903 int frame_level;
9904 struct frame_info *fi;
9905
9906 /* To determine the name of this exception, we need to select
9907 the frame corresponding to RAISE_SYM_NAME. This frame is
9908 at least 3 levels up, so we simply skip the first 3 frames
9909 without checking the name of their associated function. */
9910 fi = get_current_frame ();
9911 for (frame_level = 0; frame_level < 3; frame_level += 1)
9912 if (fi != NULL)
9913 fi = get_prev_frame (fi);
9914
9915 while (fi != NULL)
9916 {
9917 const char *func_name =
9918 function_name_from_pc (get_frame_address_in_block (fi));
9919 if (func_name != NULL
9920 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
9921 break; /* We found the frame we were looking for... */
9922 fi = get_prev_frame (fi);
9923 }
9924
9925 if (fi == NULL)
9926 return 0;
9927
9928 select_frame (fi);
9929 return parse_and_eval_address ("id.full_name");
9930 }
9931
9932 /* Assuming the inferior just triggered an Ada exception catchpoint
9933 (of any type), return the address in inferior memory where the name
9934 of the exception is stored, if applicable.
9935
9936 Return zero if the address could not be computed, or if not relevant. */
9937
9938 static CORE_ADDR
9939 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
9940 struct breakpoint *b)
9941 {
9942 switch (ex)
9943 {
9944 case ex_catch_exception:
9945 return (parse_and_eval_address ("e.full_name"));
9946 break;
9947
9948 case ex_catch_exception_unhandled:
9949 return exception_info->unhandled_exception_name_addr ();
9950 break;
9951
9952 case ex_catch_assert:
9953 return 0; /* Exception name is not relevant in this case. */
9954 break;
9955
9956 default:
9957 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9958 break;
9959 }
9960
9961 return 0; /* Should never be reached. */
9962 }
9963
9964 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
9965 any error that ada_exception_name_addr_1 might cause to be thrown.
9966 When an error is intercepted, a warning with the error message is printed,
9967 and zero is returned. */
9968
9969 static CORE_ADDR
9970 ada_exception_name_addr (enum exception_catchpoint_kind ex,
9971 struct breakpoint *b)
9972 {
9973 struct gdb_exception e;
9974 CORE_ADDR result = 0;
9975
9976 TRY_CATCH (e, RETURN_MASK_ERROR)
9977 {
9978 result = ada_exception_name_addr_1 (ex, b);
9979 }
9980
9981 if (e.reason < 0)
9982 {
9983 warning (_("failed to get exception name: %s"), e.message);
9984 return 0;
9985 }
9986
9987 return result;
9988 }
9989
9990 /* Implement the PRINT_IT method in the breakpoint_ops structure
9991 for all exception catchpoint kinds. */
9992
9993 static enum print_stop_action
9994 print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
9995 {
9996 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
9997 char exception_name[256];
9998
9999 if (addr != 0)
10000 {
10001 read_memory (addr, exception_name, sizeof (exception_name) - 1);
10002 exception_name [sizeof (exception_name) - 1] = '\0';
10003 }
10004
10005 ada_find_printable_frame (get_current_frame ());
10006
10007 annotate_catchpoint (b->number);
10008 switch (ex)
10009 {
10010 case ex_catch_exception:
10011 if (addr != 0)
10012 printf_filtered (_("\nCatchpoint %d, %s at "),
10013 b->number, exception_name);
10014 else
10015 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
10016 break;
10017 case ex_catch_exception_unhandled:
10018 if (addr != 0)
10019 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
10020 b->number, exception_name);
10021 else
10022 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
10023 b->number);
10024 break;
10025 case ex_catch_assert:
10026 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
10027 b->number);
10028 break;
10029 }
10030
10031 return PRINT_SRC_AND_LOC;
10032 }
10033
10034 /* Implement the PRINT_ONE method in the breakpoint_ops structure
10035 for all exception catchpoint kinds. */
10036
10037 static void
10038 print_one_exception (enum exception_catchpoint_kind ex,
10039 struct breakpoint *b, CORE_ADDR *last_addr)
10040 {
10041 if (addressprint)
10042 {
10043 annotate_field (4);
10044 ui_out_field_core_addr (uiout, "addr", b->loc->address);
10045 }
10046
10047 annotate_field (5);
10048 *last_addr = b->loc->address;
10049 switch (ex)
10050 {
10051 case ex_catch_exception:
10052 if (b->exp_string != NULL)
10053 {
10054 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
10055
10056 ui_out_field_string (uiout, "what", msg);
10057 xfree (msg);
10058 }
10059 else
10060 ui_out_field_string (uiout, "what", "all Ada exceptions");
10061
10062 break;
10063
10064 case ex_catch_exception_unhandled:
10065 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
10066 break;
10067
10068 case ex_catch_assert:
10069 ui_out_field_string (uiout, "what", "failed Ada assertions");
10070 break;
10071
10072 default:
10073 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10074 break;
10075 }
10076 }
10077
10078 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
10079 for all exception catchpoint kinds. */
10080
10081 static void
10082 print_mention_exception (enum exception_catchpoint_kind ex,
10083 struct breakpoint *b)
10084 {
10085 switch (ex)
10086 {
10087 case ex_catch_exception:
10088 if (b->exp_string != NULL)
10089 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
10090 b->number, b->exp_string);
10091 else
10092 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
10093
10094 break;
10095
10096 case ex_catch_exception_unhandled:
10097 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
10098 b->number);
10099 break;
10100
10101 case ex_catch_assert:
10102 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
10103 break;
10104
10105 default:
10106 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10107 break;
10108 }
10109 }
10110
10111 /* Virtual table for "catch exception" breakpoints. */
10112
10113 static enum print_stop_action
10114 print_it_catch_exception (struct breakpoint *b)
10115 {
10116 return print_it_exception (ex_catch_exception, b);
10117 }
10118
10119 static void
10120 print_one_catch_exception (struct breakpoint *b, CORE_ADDR *last_addr)
10121 {
10122 print_one_exception (ex_catch_exception, b, last_addr);
10123 }
10124
10125 static void
10126 print_mention_catch_exception (struct breakpoint *b)
10127 {
10128 print_mention_exception (ex_catch_exception, b);
10129 }
10130
10131 static struct breakpoint_ops catch_exception_breakpoint_ops =
10132 {
10133 print_it_catch_exception,
10134 print_one_catch_exception,
10135 print_mention_catch_exception
10136 };
10137
10138 /* Virtual table for "catch exception unhandled" breakpoints. */
10139
10140 static enum print_stop_action
10141 print_it_catch_exception_unhandled (struct breakpoint *b)
10142 {
10143 return print_it_exception (ex_catch_exception_unhandled, b);
10144 }
10145
10146 static void
10147 print_one_catch_exception_unhandled (struct breakpoint *b, CORE_ADDR *last_addr)
10148 {
10149 print_one_exception (ex_catch_exception_unhandled, b, last_addr);
10150 }
10151
10152 static void
10153 print_mention_catch_exception_unhandled (struct breakpoint *b)
10154 {
10155 print_mention_exception (ex_catch_exception_unhandled, b);
10156 }
10157
10158 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
10159 print_it_catch_exception_unhandled,
10160 print_one_catch_exception_unhandled,
10161 print_mention_catch_exception_unhandled
10162 };
10163
10164 /* Virtual table for "catch assert" breakpoints. */
10165
10166 static enum print_stop_action
10167 print_it_catch_assert (struct breakpoint *b)
10168 {
10169 return print_it_exception (ex_catch_assert, b);
10170 }
10171
10172 static void
10173 print_one_catch_assert (struct breakpoint *b, CORE_ADDR *last_addr)
10174 {
10175 print_one_exception (ex_catch_assert, b, last_addr);
10176 }
10177
10178 static void
10179 print_mention_catch_assert (struct breakpoint *b)
10180 {
10181 print_mention_exception (ex_catch_assert, b);
10182 }
10183
10184 static struct breakpoint_ops catch_assert_breakpoint_ops = {
10185 print_it_catch_assert,
10186 print_one_catch_assert,
10187 print_mention_catch_assert
10188 };
10189
10190 /* Return non-zero if B is an Ada exception catchpoint. */
10191
10192 int
10193 ada_exception_catchpoint_p (struct breakpoint *b)
10194 {
10195 return (b->ops == &catch_exception_breakpoint_ops
10196 || b->ops == &catch_exception_unhandled_breakpoint_ops
10197 || b->ops == &catch_assert_breakpoint_ops);
10198 }
10199
10200 /* Return a newly allocated copy of the first space-separated token
10201 in ARGSP, and then adjust ARGSP to point immediately after that
10202 token.
10203
10204 Return NULL if ARGPS does not contain any more tokens. */
10205
10206 static char *
10207 ada_get_next_arg (char **argsp)
10208 {
10209 char *args = *argsp;
10210 char *end;
10211 char *result;
10212
10213 /* Skip any leading white space. */
10214
10215 while (isspace (*args))
10216 args++;
10217
10218 if (args[0] == '\0')
10219 return NULL; /* No more arguments. */
10220
10221 /* Find the end of the current argument. */
10222
10223 end = args;
10224 while (*end != '\0' && !isspace (*end))
10225 end++;
10226
10227 /* Adjust ARGSP to point to the start of the next argument. */
10228
10229 *argsp = end;
10230
10231 /* Make a copy of the current argument and return it. */
10232
10233 result = xmalloc (end - args + 1);
10234 strncpy (result, args, end - args);
10235 result[end - args] = '\0';
10236
10237 return result;
10238 }
10239
10240 /* Split the arguments specified in a "catch exception" command.
10241 Set EX to the appropriate catchpoint type.
10242 Set EXP_STRING to the name of the specific exception if
10243 specified by the user. */
10244
10245 static void
10246 catch_ada_exception_command_split (char *args,
10247 enum exception_catchpoint_kind *ex,
10248 char **exp_string)
10249 {
10250 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
10251 char *exception_name;
10252
10253 exception_name = ada_get_next_arg (&args);
10254 make_cleanup (xfree, exception_name);
10255
10256 /* Check that we do not have any more arguments. Anything else
10257 is unexpected. */
10258
10259 while (isspace (*args))
10260 args++;
10261
10262 if (args[0] != '\0')
10263 error (_("Junk at end of expression"));
10264
10265 discard_cleanups (old_chain);
10266
10267 if (exception_name == NULL)
10268 {
10269 /* Catch all exceptions. */
10270 *ex = ex_catch_exception;
10271 *exp_string = NULL;
10272 }
10273 else if (strcmp (exception_name, "unhandled") == 0)
10274 {
10275 /* Catch unhandled exceptions. */
10276 *ex = ex_catch_exception_unhandled;
10277 *exp_string = NULL;
10278 }
10279 else
10280 {
10281 /* Catch a specific exception. */
10282 *ex = ex_catch_exception;
10283 *exp_string = exception_name;
10284 }
10285 }
10286
10287 /* Return the name of the symbol on which we should break in order to
10288 implement a catchpoint of the EX kind. */
10289
10290 static const char *
10291 ada_exception_sym_name (enum exception_catchpoint_kind ex)
10292 {
10293 gdb_assert (exception_info != NULL);
10294
10295 switch (ex)
10296 {
10297 case ex_catch_exception:
10298 return (exception_info->catch_exception_sym);
10299 break;
10300 case ex_catch_exception_unhandled:
10301 return (exception_info->catch_exception_unhandled_sym);
10302 break;
10303 case ex_catch_assert:
10304 return (exception_info->catch_assert_sym);
10305 break;
10306 default:
10307 internal_error (__FILE__, __LINE__,
10308 _("unexpected catchpoint kind (%d)"), ex);
10309 }
10310 }
10311
10312 /* Return the breakpoint ops "virtual table" used for catchpoints
10313 of the EX kind. */
10314
10315 static struct breakpoint_ops *
10316 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
10317 {
10318 switch (ex)
10319 {
10320 case ex_catch_exception:
10321 return (&catch_exception_breakpoint_ops);
10322 break;
10323 case ex_catch_exception_unhandled:
10324 return (&catch_exception_unhandled_breakpoint_ops);
10325 break;
10326 case ex_catch_assert:
10327 return (&catch_assert_breakpoint_ops);
10328 break;
10329 default:
10330 internal_error (__FILE__, __LINE__,
10331 _("unexpected catchpoint kind (%d)"), ex);
10332 }
10333 }
10334
10335 /* Return the condition that will be used to match the current exception
10336 being raised with the exception that the user wants to catch. This
10337 assumes that this condition is used when the inferior just triggered
10338 an exception catchpoint.
10339
10340 The string returned is a newly allocated string that needs to be
10341 deallocated later. */
10342
10343 static char *
10344 ada_exception_catchpoint_cond_string (const char *exp_string)
10345 {
10346 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
10347 }
10348
10349 /* Return the expression corresponding to COND_STRING evaluated at SAL. */
10350
10351 static struct expression *
10352 ada_parse_catchpoint_condition (char *cond_string,
10353 struct symtab_and_line sal)
10354 {
10355 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
10356 }
10357
10358 /* Return the symtab_and_line that should be used to insert an exception
10359 catchpoint of the TYPE kind.
10360
10361 EX_STRING should contain the name of a specific exception
10362 that the catchpoint should catch, or NULL otherwise.
10363
10364 The idea behind all the remaining parameters is that their names match
10365 the name of certain fields in the breakpoint structure that are used to
10366 handle exception catchpoints. This function returns the value to which
10367 these fields should be set, depending on the type of catchpoint we need
10368 to create.
10369
10370 If COND and COND_STRING are both non-NULL, any value they might
10371 hold will be free'ed, and then replaced by newly allocated ones.
10372 These parameters are left untouched otherwise. */
10373
10374 static struct symtab_and_line
10375 ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
10376 char **addr_string, char **cond_string,
10377 struct expression **cond, struct breakpoint_ops **ops)
10378 {
10379 const char *sym_name;
10380 struct symbol *sym;
10381 struct symtab_and_line sal;
10382
10383 /* First, find out which exception support info to use. */
10384 ada_exception_support_info_sniffer ();
10385
10386 /* Then lookup the function on which we will break in order to catch
10387 the Ada exceptions requested by the user. */
10388
10389 sym_name = ada_exception_sym_name (ex);
10390 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
10391
10392 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10393 that should be compiled with debugging information. As a result, we
10394 expect to find that symbol in the symtabs. If we don't find it, then
10395 the target most likely does not support Ada exceptions, or we cannot
10396 insert exception breakpoints yet, because the GNAT runtime hasn't been
10397 loaded yet. */
10398
10399 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
10400 in such a way that no debugging information is produced for the symbol
10401 we are looking for. In this case, we could search the minimal symbols
10402 as a fall-back mechanism. This would still be operating in degraded
10403 mode, however, as we would still be missing the debugging information
10404 that is needed in order to extract the name of the exception being
10405 raised (this name is printed in the catchpoint message, and is also
10406 used when trying to catch a specific exception). We do not handle
10407 this case for now. */
10408
10409 if (sym == NULL)
10410 error (_("Unable to break on '%s' in this configuration."), sym_name);
10411
10412 /* Make sure that the symbol we found corresponds to a function. */
10413 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10414 error (_("Symbol \"%s\" is not a function (class = %d)"),
10415 sym_name, SYMBOL_CLASS (sym));
10416
10417 sal = find_function_start_sal (sym, 1);
10418
10419 /* Set ADDR_STRING. */
10420
10421 *addr_string = xstrdup (sym_name);
10422
10423 /* Set the COND and COND_STRING (if not NULL). */
10424
10425 if (cond_string != NULL && cond != NULL)
10426 {
10427 if (*cond_string != NULL)
10428 {
10429 xfree (*cond_string);
10430 *cond_string = NULL;
10431 }
10432 if (*cond != NULL)
10433 {
10434 xfree (*cond);
10435 *cond = NULL;
10436 }
10437 if (exp_string != NULL)
10438 {
10439 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
10440 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
10441 }
10442 }
10443
10444 /* Set OPS. */
10445 *ops = ada_exception_breakpoint_ops (ex);
10446
10447 return sal;
10448 }
10449
10450 /* Parse the arguments (ARGS) of the "catch exception" command.
10451
10452 Set TYPE to the appropriate exception catchpoint type.
10453 If the user asked the catchpoint to catch only a specific
10454 exception, then save the exception name in ADDR_STRING.
10455
10456 See ada_exception_sal for a description of all the remaining
10457 function arguments of this function. */
10458
10459 struct symtab_and_line
10460 ada_decode_exception_location (char *args, char **addr_string,
10461 char **exp_string, char **cond_string,
10462 struct expression **cond,
10463 struct breakpoint_ops **ops)
10464 {
10465 enum exception_catchpoint_kind ex;
10466
10467 catch_ada_exception_command_split (args, &ex, exp_string);
10468 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
10469 cond, ops);
10470 }
10471
10472 struct symtab_and_line
10473 ada_decode_assert_location (char *args, char **addr_string,
10474 struct breakpoint_ops **ops)
10475 {
10476 /* Check that no argument where provided at the end of the command. */
10477
10478 if (args != NULL)
10479 {
10480 while (isspace (*args))
10481 args++;
10482 if (*args != '\0')
10483 error (_("Junk at end of arguments."));
10484 }
10485
10486 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
10487 ops);
10488 }
10489
10490 /* Operators */
10491 /* Information about operators given special treatment in functions
10492 below. */
10493 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
10494
10495 #define ADA_OPERATORS \
10496 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
10497 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
10498 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
10499 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
10500 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
10501 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
10502 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
10503 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
10504 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
10505 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
10506 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
10507 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
10508 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
10509 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
10510 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
10511 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
10512 OP_DEFN (OP_OTHERS, 1, 1, 0) \
10513 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
10514 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
10515
10516 static void
10517 ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
10518 {
10519 switch (exp->elts[pc - 1].opcode)
10520 {
10521 default:
10522 operator_length_standard (exp, pc, oplenp, argsp);
10523 break;
10524
10525 #define OP_DEFN(op, len, args, binop) \
10526 case op: *oplenp = len; *argsp = args; break;
10527 ADA_OPERATORS;
10528 #undef OP_DEFN
10529
10530 case OP_AGGREGATE:
10531 *oplenp = 3;
10532 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
10533 break;
10534
10535 case OP_CHOICES:
10536 *oplenp = 3;
10537 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
10538 break;
10539 }
10540 }
10541
10542 static char *
10543 ada_op_name (enum exp_opcode opcode)
10544 {
10545 switch (opcode)
10546 {
10547 default:
10548 return op_name_standard (opcode);
10549
10550 #define OP_DEFN(op, len, args, binop) case op: return #op;
10551 ADA_OPERATORS;
10552 #undef OP_DEFN
10553
10554 case OP_AGGREGATE:
10555 return "OP_AGGREGATE";
10556 case OP_CHOICES:
10557 return "OP_CHOICES";
10558 case OP_NAME:
10559 return "OP_NAME";
10560 }
10561 }
10562
10563 /* As for operator_length, but assumes PC is pointing at the first
10564 element of the operator, and gives meaningful results only for the
10565 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
10566
10567 static void
10568 ada_forward_operator_length (struct expression *exp, int pc,
10569 int *oplenp, int *argsp)
10570 {
10571 switch (exp->elts[pc].opcode)
10572 {
10573 default:
10574 *oplenp = *argsp = 0;
10575 break;
10576
10577 #define OP_DEFN(op, len, args, binop) \
10578 case op: *oplenp = len; *argsp = args; break;
10579 ADA_OPERATORS;
10580 #undef OP_DEFN
10581
10582 case OP_AGGREGATE:
10583 *oplenp = 3;
10584 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
10585 break;
10586
10587 case OP_CHOICES:
10588 *oplenp = 3;
10589 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
10590 break;
10591
10592 case OP_STRING:
10593 case OP_NAME:
10594 {
10595 int len = longest_to_int (exp->elts[pc + 1].longconst);
10596 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
10597 *argsp = 0;
10598 break;
10599 }
10600 }
10601 }
10602
10603 static int
10604 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
10605 {
10606 enum exp_opcode op = exp->elts[elt].opcode;
10607 int oplen, nargs;
10608 int pc = elt;
10609 int i;
10610
10611 ada_forward_operator_length (exp, elt, &oplen, &nargs);
10612
10613 switch (op)
10614 {
10615 /* Ada attributes ('Foo). */
10616 case OP_ATR_FIRST:
10617 case OP_ATR_LAST:
10618 case OP_ATR_LENGTH:
10619 case OP_ATR_IMAGE:
10620 case OP_ATR_MAX:
10621 case OP_ATR_MIN:
10622 case OP_ATR_MODULUS:
10623 case OP_ATR_POS:
10624 case OP_ATR_SIZE:
10625 case OP_ATR_TAG:
10626 case OP_ATR_VAL:
10627 break;
10628
10629 case UNOP_IN_RANGE:
10630 case UNOP_QUAL:
10631 /* XXX: gdb_sprint_host_address, type_sprint */
10632 fprintf_filtered (stream, _("Type @"));
10633 gdb_print_host_address (exp->elts[pc + 1].type, stream);
10634 fprintf_filtered (stream, " (");
10635 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
10636 fprintf_filtered (stream, ")");
10637 break;
10638 case BINOP_IN_BOUNDS:
10639 fprintf_filtered (stream, " (%d)",
10640 longest_to_int (exp->elts[pc + 2].longconst));
10641 break;
10642 case TERNOP_IN_RANGE:
10643 break;
10644
10645 case OP_AGGREGATE:
10646 case OP_OTHERS:
10647 case OP_DISCRETE_RANGE:
10648 case OP_POSITIONAL:
10649 case OP_CHOICES:
10650 break;
10651
10652 case OP_NAME:
10653 case OP_STRING:
10654 {
10655 char *name = &exp->elts[elt + 2].string;
10656 int len = longest_to_int (exp->elts[elt + 1].longconst);
10657 fprintf_filtered (stream, "Text: `%.*s'", len, name);
10658 break;
10659 }
10660
10661 default:
10662 return dump_subexp_body_standard (exp, stream, elt);
10663 }
10664
10665 elt += oplen;
10666 for (i = 0; i < nargs; i += 1)
10667 elt = dump_subexp (exp, stream, elt);
10668
10669 return elt;
10670 }
10671
10672 /* The Ada extension of print_subexp (q.v.). */
10673
10674 static void
10675 ada_print_subexp (struct expression *exp, int *pos,
10676 struct ui_file *stream, enum precedence prec)
10677 {
10678 int oplen, nargs, i;
10679 int pc = *pos;
10680 enum exp_opcode op = exp->elts[pc].opcode;
10681
10682 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10683
10684 *pos += oplen;
10685 switch (op)
10686 {
10687 default:
10688 *pos -= oplen;
10689 print_subexp_standard (exp, pos, stream, prec);
10690 return;
10691
10692 case OP_VAR_VALUE:
10693 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
10694 return;
10695
10696 case BINOP_IN_BOUNDS:
10697 /* XXX: sprint_subexp */
10698 print_subexp (exp, pos, stream, PREC_SUFFIX);
10699 fputs_filtered (" in ", stream);
10700 print_subexp (exp, pos, stream, PREC_SUFFIX);
10701 fputs_filtered ("'range", stream);
10702 if (exp->elts[pc + 1].longconst > 1)
10703 fprintf_filtered (stream, "(%ld)",
10704 (long) exp->elts[pc + 1].longconst);
10705 return;
10706
10707 case TERNOP_IN_RANGE:
10708 if (prec >= PREC_EQUAL)
10709 fputs_filtered ("(", stream);
10710 /* XXX: sprint_subexp */
10711 print_subexp (exp, pos, stream, PREC_SUFFIX);
10712 fputs_filtered (" in ", stream);
10713 print_subexp (exp, pos, stream, PREC_EQUAL);
10714 fputs_filtered (" .. ", stream);
10715 print_subexp (exp, pos, stream, PREC_EQUAL);
10716 if (prec >= PREC_EQUAL)
10717 fputs_filtered (")", stream);
10718 return;
10719
10720 case OP_ATR_FIRST:
10721 case OP_ATR_LAST:
10722 case OP_ATR_LENGTH:
10723 case OP_ATR_IMAGE:
10724 case OP_ATR_MAX:
10725 case OP_ATR_MIN:
10726 case OP_ATR_MODULUS:
10727 case OP_ATR_POS:
10728 case OP_ATR_SIZE:
10729 case OP_ATR_TAG:
10730 case OP_ATR_VAL:
10731 if (exp->elts[*pos].opcode == OP_TYPE)
10732 {
10733 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
10734 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
10735 *pos += 3;
10736 }
10737 else
10738 print_subexp (exp, pos, stream, PREC_SUFFIX);
10739 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
10740 if (nargs > 1)
10741 {
10742 int tem;
10743 for (tem = 1; tem < nargs; tem += 1)
10744 {
10745 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
10746 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
10747 }
10748 fputs_filtered (")", stream);
10749 }
10750 return;
10751
10752 case UNOP_QUAL:
10753 type_print (exp->elts[pc + 1].type, "", stream, 0);
10754 fputs_filtered ("'(", stream);
10755 print_subexp (exp, pos, stream, PREC_PREFIX);
10756 fputs_filtered (")", stream);
10757 return;
10758
10759 case UNOP_IN_RANGE:
10760 /* XXX: sprint_subexp */
10761 print_subexp (exp, pos, stream, PREC_SUFFIX);
10762 fputs_filtered (" in ", stream);
10763 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
10764 return;
10765
10766 case OP_DISCRETE_RANGE:
10767 print_subexp (exp, pos, stream, PREC_SUFFIX);
10768 fputs_filtered ("..", stream);
10769 print_subexp (exp, pos, stream, PREC_SUFFIX);
10770 return;
10771
10772 case OP_OTHERS:
10773 fputs_filtered ("others => ", stream);
10774 print_subexp (exp, pos, stream, PREC_SUFFIX);
10775 return;
10776
10777 case OP_CHOICES:
10778 for (i = 0; i < nargs-1; i += 1)
10779 {
10780 if (i > 0)
10781 fputs_filtered ("|", stream);
10782 print_subexp (exp, pos, stream, PREC_SUFFIX);
10783 }
10784 fputs_filtered (" => ", stream);
10785 print_subexp (exp, pos, stream, PREC_SUFFIX);
10786 return;
10787
10788 case OP_POSITIONAL:
10789 print_subexp (exp, pos, stream, PREC_SUFFIX);
10790 return;
10791
10792 case OP_AGGREGATE:
10793 fputs_filtered ("(", stream);
10794 for (i = 0; i < nargs; i += 1)
10795 {
10796 if (i > 0)
10797 fputs_filtered (", ", stream);
10798 print_subexp (exp, pos, stream, PREC_SUFFIX);
10799 }
10800 fputs_filtered (")", stream);
10801 return;
10802 }
10803 }
10804
10805 /* Table mapping opcodes into strings for printing operators
10806 and precedences of the operators. */
10807
10808 static const struct op_print ada_op_print_tab[] = {
10809 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
10810 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
10811 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
10812 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
10813 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
10814 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
10815 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
10816 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
10817 {"<=", BINOP_LEQ, PREC_ORDER, 0},
10818 {">=", BINOP_GEQ, PREC_ORDER, 0},
10819 {">", BINOP_GTR, PREC_ORDER, 0},
10820 {"<", BINOP_LESS, PREC_ORDER, 0},
10821 {">>", BINOP_RSH, PREC_SHIFT, 0},
10822 {"<<", BINOP_LSH, PREC_SHIFT, 0},
10823 {"+", BINOP_ADD, PREC_ADD, 0},
10824 {"-", BINOP_SUB, PREC_ADD, 0},
10825 {"&", BINOP_CONCAT, PREC_ADD, 0},
10826 {"*", BINOP_MUL, PREC_MUL, 0},
10827 {"/", BINOP_DIV, PREC_MUL, 0},
10828 {"rem", BINOP_REM, PREC_MUL, 0},
10829 {"mod", BINOP_MOD, PREC_MUL, 0},
10830 {"**", BINOP_EXP, PREC_REPEAT, 0},
10831 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
10832 {"-", UNOP_NEG, PREC_PREFIX, 0},
10833 {"+", UNOP_PLUS, PREC_PREFIX, 0},
10834 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
10835 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
10836 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
10837 {".all", UNOP_IND, PREC_SUFFIX, 1},
10838 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
10839 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
10840 {NULL, 0, 0, 0}
10841 };
10842 \f
10843 enum ada_primitive_types {
10844 ada_primitive_type_int,
10845 ada_primitive_type_long,
10846 ada_primitive_type_short,
10847 ada_primitive_type_char,
10848 ada_primitive_type_float,
10849 ada_primitive_type_double,
10850 ada_primitive_type_void,
10851 ada_primitive_type_long_long,
10852 ada_primitive_type_long_double,
10853 ada_primitive_type_natural,
10854 ada_primitive_type_positive,
10855 ada_primitive_type_system_address,
10856 nr_ada_primitive_types
10857 };
10858
10859 static void
10860 ada_language_arch_info (struct gdbarch *gdbarch,
10861 struct language_arch_info *lai)
10862 {
10863 const struct builtin_type *builtin = builtin_type (gdbarch);
10864 lai->primitive_type_vector
10865 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
10866 struct type *);
10867 lai->primitive_type_vector [ada_primitive_type_int] =
10868 init_type (TYPE_CODE_INT,
10869 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10870 0, "integer", (struct objfile *) NULL);
10871 lai->primitive_type_vector [ada_primitive_type_long] =
10872 init_type (TYPE_CODE_INT,
10873 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
10874 0, "long_integer", (struct objfile *) NULL);
10875 lai->primitive_type_vector [ada_primitive_type_short] =
10876 init_type (TYPE_CODE_INT,
10877 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
10878 0, "short_integer", (struct objfile *) NULL);
10879 lai->string_char_type =
10880 lai->primitive_type_vector [ada_primitive_type_char] =
10881 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10882 0, "character", (struct objfile *) NULL);
10883 lai->primitive_type_vector [ada_primitive_type_float] =
10884 init_type (TYPE_CODE_FLT,
10885 gdbarch_float_bit (gdbarch)/ TARGET_CHAR_BIT,
10886 0, "float", (struct objfile *) NULL);
10887 lai->primitive_type_vector [ada_primitive_type_double] =
10888 init_type (TYPE_CODE_FLT,
10889 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
10890 0, "long_float", (struct objfile *) NULL);
10891 lai->primitive_type_vector [ada_primitive_type_long_long] =
10892 init_type (TYPE_CODE_INT,
10893 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
10894 0, "long_long_integer", (struct objfile *) NULL);
10895 lai->primitive_type_vector [ada_primitive_type_long_double] =
10896 init_type (TYPE_CODE_FLT,
10897 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
10898 0, "long_long_float", (struct objfile *) NULL);
10899 lai->primitive_type_vector [ada_primitive_type_natural] =
10900 init_type (TYPE_CODE_INT,
10901 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10902 0, "natural", (struct objfile *) NULL);
10903 lai->primitive_type_vector [ada_primitive_type_positive] =
10904 init_type (TYPE_CODE_INT,
10905 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10906 0, "positive", (struct objfile *) NULL);
10907 lai->primitive_type_vector [ada_primitive_type_void] = builtin->builtin_void;
10908
10909 lai->primitive_type_vector [ada_primitive_type_system_address] =
10910 lookup_pointer_type (init_type (TYPE_CODE_VOID, 1, 0, "void",
10911 (struct objfile *) NULL));
10912 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
10913 = "system__address";
10914 }
10915 \f
10916 /* Language vector */
10917
10918 /* Not really used, but needed in the ada_language_defn. */
10919
10920 static void
10921 emit_char (int c, struct ui_file *stream, int quoter)
10922 {
10923 ada_emit_char (c, stream, quoter, 1);
10924 }
10925
10926 static int
10927 parse (void)
10928 {
10929 warnings_issued = 0;
10930 return ada_parse ();
10931 }
10932
10933 static const struct exp_descriptor ada_exp_descriptor = {
10934 ada_print_subexp,
10935 ada_operator_length,
10936 ada_op_name,
10937 ada_dump_subexp_body,
10938 ada_evaluate_subexp
10939 };
10940
10941 const struct language_defn ada_language_defn = {
10942 "ada", /* Language name */
10943 language_ada,
10944 range_check_off,
10945 type_check_off,
10946 case_sensitive_on, /* Yes, Ada is case-insensitive, but
10947 that's not quite what this means. */
10948 array_row_major,
10949 &ada_exp_descriptor,
10950 parse,
10951 ada_error,
10952 resolve,
10953 ada_printchar, /* Print a character constant */
10954 ada_printstr, /* Function to print string constant */
10955 emit_char, /* Function to print single char (not used) */
10956 ada_print_type, /* Print a type using appropriate syntax */
10957 ada_val_print, /* Print a value using appropriate syntax */
10958 ada_value_print, /* Print a top-level value */
10959 NULL, /* Language specific skip_trampoline */
10960 NULL, /* name_of_this */
10961 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
10962 basic_lookup_transparent_type, /* lookup_transparent_type */
10963 ada_la_decode, /* Language specific symbol demangler */
10964 NULL, /* Language specific class_name_from_physname */
10965 ada_op_print_tab, /* expression operators for printing */
10966 0, /* c-style arrays */
10967 1, /* String lower bound */
10968 ada_get_gdb_completer_word_break_characters,
10969 ada_make_symbol_completion_list,
10970 ada_language_arch_info,
10971 ada_print_array_index,
10972 default_pass_by_reference,
10973 LANG_MAGIC
10974 };
10975
10976 void
10977 _initialize_ada_language (void)
10978 {
10979 add_language (&ada_language_defn);
10980
10981 varsize_limit = 65536;
10982
10983 obstack_init (&symbol_list_obstack);
10984
10985 decoded_names_store = htab_create_alloc
10986 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
10987 NULL, xcalloc, xfree);
10988
10989 observer_attach_executable_changed (ada_executable_changed_observer);
10990 }
This page took 0.259443 seconds and 4 git commands to generate.