* linux-m68k-low.c: Include <asm/ptrace.h>
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger. Copyright (C)
2
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007, 2008,
4 2009 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include "defs.h"
23 #include <stdio.h>
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include <stdarg.h>
27 #include "demangle.h"
28 #include "gdb_regex.h"
29 #include "frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35 #include "language.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include "gdb_stat.h"
47 #ifdef UI_OUT
48 #include "ui-out.h"
49 #endif
50 #include "block.h"
51 #include "infcall.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
54 #include "annotate.h"
55 #include "valprint.h"
56 #include "source.h"
57 #include "observer.h"
58 #include "vec.h"
59 #include "stack.h"
60
61 #include "psymtab.h"
62
63 /* Define whether or not the C operator '/' truncates towards zero for
64 differently signed operands (truncation direction is undefined in C).
65 Copied from valarith.c. */
66
67 #ifndef TRUNCATION_TOWARDS_ZERO
68 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
69 #endif
70
71 static void modify_general_field (struct type *, char *, LONGEST, int, int);
72
73 static struct type *desc_base_type (struct type *);
74
75 static struct type *desc_bounds_type (struct type *);
76
77 static struct value *desc_bounds (struct value *);
78
79 static int fat_pntr_bounds_bitpos (struct type *);
80
81 static int fat_pntr_bounds_bitsize (struct type *);
82
83 static struct type *desc_data_target_type (struct type *);
84
85 static struct value *desc_data (struct value *);
86
87 static int fat_pntr_data_bitpos (struct type *);
88
89 static int fat_pntr_data_bitsize (struct type *);
90
91 static struct value *desc_one_bound (struct value *, int, int);
92
93 static int desc_bound_bitpos (struct type *, int, int);
94
95 static int desc_bound_bitsize (struct type *, int, int);
96
97 static struct type *desc_index_type (struct type *, int);
98
99 static int desc_arity (struct type *);
100
101 static int ada_type_match (struct type *, struct type *, int);
102
103 static int ada_args_match (struct symbol *, struct value **, int);
104
105 static struct value *ensure_lval (struct value *,
106 struct gdbarch *, CORE_ADDR *);
107
108 static struct value *make_array_descriptor (struct type *, struct value *,
109 struct gdbarch *, CORE_ADDR *);
110
111 static void ada_add_block_symbols (struct obstack *,
112 struct block *, const char *,
113 domain_enum, struct objfile *, int);
114
115 static int is_nonfunction (struct ada_symbol_info *, int);
116
117 static void add_defn_to_vec (struct obstack *, struct symbol *,
118 struct block *);
119
120 static int num_defns_collected (struct obstack *);
121
122 static struct ada_symbol_info *defns_collected (struct obstack *, int);
123
124 static struct value *resolve_subexp (struct expression **, int *, int,
125 struct type *);
126
127 static void replace_operator_with_call (struct expression **, int, int, int,
128 struct symbol *, struct block *);
129
130 static int possible_user_operator_p (enum exp_opcode, struct value **);
131
132 static char *ada_op_name (enum exp_opcode);
133
134 static const char *ada_decoded_op_name (enum exp_opcode);
135
136 static int numeric_type_p (struct type *);
137
138 static int integer_type_p (struct type *);
139
140 static int scalar_type_p (struct type *);
141
142 static int discrete_type_p (struct type *);
143
144 static enum ada_renaming_category parse_old_style_renaming (struct type *,
145 const char **,
146 int *,
147 const char **);
148
149 static struct symbol *find_old_style_renaming_symbol (const char *,
150 struct block *);
151
152 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
153 int, int, int *);
154
155 static struct value *evaluate_subexp_type (struct expression *, int *);
156
157 static struct type *ada_find_parallel_type_with_name (struct type *,
158 const char *);
159
160 static int is_dynamic_field (struct type *, int);
161
162 static struct type *to_fixed_variant_branch_type (struct type *,
163 const gdb_byte *,
164 CORE_ADDR, struct value *);
165
166 static struct type *to_fixed_array_type (struct type *, struct value *, int);
167
168 static struct type *to_fixed_range_type (struct type *, struct value *);
169
170 static struct type *to_static_fixed_type (struct type *);
171 static struct type *static_unwrap_type (struct type *type);
172
173 static struct value *unwrap_value (struct value *);
174
175 static struct type *constrained_packed_array_type (struct type *, long *);
176
177 static struct type *decode_constrained_packed_array_type (struct type *);
178
179 static long decode_packed_array_bitsize (struct type *);
180
181 static struct value *decode_constrained_packed_array (struct value *);
182
183 static int ada_is_packed_array_type (struct type *);
184
185 static int ada_is_unconstrained_packed_array_type (struct type *);
186
187 static struct value *value_subscript_packed (struct value *, int,
188 struct value **);
189
190 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
191
192 static struct value *coerce_unspec_val_to_type (struct value *,
193 struct type *);
194
195 static struct value *get_var_value (char *, char *);
196
197 static int lesseq_defined_than (struct symbol *, struct symbol *);
198
199 static int equiv_types (struct type *, struct type *);
200
201 static int is_name_suffix (const char *);
202
203 static int wild_match (const char *, int, const char *);
204
205 static struct value *ada_coerce_ref (struct value *);
206
207 static LONGEST pos_atr (struct value *);
208
209 static struct value *value_pos_atr (struct type *, struct value *);
210
211 static struct value *value_val_atr (struct type *, struct value *);
212
213 static struct symbol *standard_lookup (const char *, const struct block *,
214 domain_enum);
215
216 static struct value *ada_search_struct_field (char *, struct value *, int,
217 struct type *);
218
219 static struct value *ada_value_primitive_field (struct value *, int, int,
220 struct type *);
221
222 static int find_struct_field (char *, struct type *, int,
223 struct type **, int *, int *, int *, int *);
224
225 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
226 struct value *);
227
228 static int ada_resolve_function (struct ada_symbol_info *, int,
229 struct value **, int, const char *,
230 struct type *);
231
232 static struct value *ada_coerce_to_simple_array (struct value *);
233
234 static int ada_is_direct_array_type (struct type *);
235
236 static void ada_language_arch_info (struct gdbarch *,
237 struct language_arch_info *);
238
239 static void check_size (const struct type *);
240
241 static struct value *ada_index_struct_field (int, struct value *, int,
242 struct type *);
243
244 static struct value *assign_aggregate (struct value *, struct value *,
245 struct expression *, int *, enum noside);
246
247 static void aggregate_assign_from_choices (struct value *, struct value *,
248 struct expression *,
249 int *, LONGEST *, int *,
250 int, LONGEST, LONGEST);
251
252 static void aggregate_assign_positional (struct value *, struct value *,
253 struct expression *,
254 int *, LONGEST *, int *, int,
255 LONGEST, LONGEST);
256
257
258 static void aggregate_assign_others (struct value *, struct value *,
259 struct expression *,
260 int *, LONGEST *, int, LONGEST, LONGEST);
261
262
263 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
264
265
266 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
267 int *, enum noside);
268
269 static void ada_forward_operator_length (struct expression *, int, int *,
270 int *);
271 \f
272
273
274 /* Maximum-sized dynamic type. */
275 static unsigned int varsize_limit;
276
277 /* FIXME: brobecker/2003-09-17: No longer a const because it is
278 returned by a function that does not return a const char *. */
279 static char *ada_completer_word_break_characters =
280 #ifdef VMS
281 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
282 #else
283 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
284 #endif
285
286 /* The name of the symbol to use to get the name of the main subprogram. */
287 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
288 = "__gnat_ada_main_program_name";
289
290 /* Limit on the number of warnings to raise per expression evaluation. */
291 static int warning_limit = 2;
292
293 /* Number of warning messages issued; reset to 0 by cleanups after
294 expression evaluation. */
295 static int warnings_issued = 0;
296
297 static const char *known_runtime_file_name_patterns[] = {
298 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
299 };
300
301 static const char *known_auxiliary_function_name_patterns[] = {
302 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
303 };
304
305 /* Space for allocating results of ada_lookup_symbol_list. */
306 static struct obstack symbol_list_obstack;
307
308 /* Utilities */
309
310 /* Given DECODED_NAME a string holding a symbol name in its
311 decoded form (ie using the Ada dotted notation), returns
312 its unqualified name. */
313
314 static const char *
315 ada_unqualified_name (const char *decoded_name)
316 {
317 const char *result = strrchr (decoded_name, '.');
318
319 if (result != NULL)
320 result++; /* Skip the dot... */
321 else
322 result = decoded_name;
323
324 return result;
325 }
326
327 /* Return a string starting with '<', followed by STR, and '>'.
328 The result is good until the next call. */
329
330 static char *
331 add_angle_brackets (const char *str)
332 {
333 static char *result = NULL;
334
335 xfree (result);
336 result = xstrprintf ("<%s>", str);
337 return result;
338 }
339
340 static char *
341 ada_get_gdb_completer_word_break_characters (void)
342 {
343 return ada_completer_word_break_characters;
344 }
345
346 /* Print an array element index using the Ada syntax. */
347
348 static void
349 ada_print_array_index (struct value *index_value, struct ui_file *stream,
350 const struct value_print_options *options)
351 {
352 LA_VALUE_PRINT (index_value, stream, options);
353 fprintf_filtered (stream, " => ");
354 }
355
356 /* Assuming VECT points to an array of *SIZE objects of size
357 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
358 updating *SIZE as necessary and returning the (new) array. */
359
360 void *
361 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
362 {
363 if (*size < min_size)
364 {
365 *size *= 2;
366 if (*size < min_size)
367 *size = min_size;
368 vect = xrealloc (vect, *size * element_size);
369 }
370 return vect;
371 }
372
373 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
374 suffix of FIELD_NAME beginning "___". */
375
376 static int
377 field_name_match (const char *field_name, const char *target)
378 {
379 int len = strlen (target);
380
381 return
382 (strncmp (field_name, target, len) == 0
383 && (field_name[len] == '\0'
384 || (strncmp (field_name + len, "___", 3) == 0
385 && strcmp (field_name + strlen (field_name) - 6,
386 "___XVN") != 0)));
387 }
388
389
390 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
391 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
392 and return its index. This function also handles fields whose name
393 have ___ suffixes because the compiler sometimes alters their name
394 by adding such a suffix to represent fields with certain constraints.
395 If the field could not be found, return a negative number if
396 MAYBE_MISSING is set. Otherwise raise an error. */
397
398 int
399 ada_get_field_index (const struct type *type, const char *field_name,
400 int maybe_missing)
401 {
402 int fieldno;
403 struct type *struct_type = check_typedef ((struct type *) type);
404
405 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
406 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
407 return fieldno;
408
409 if (!maybe_missing)
410 error (_("Unable to find field %s in struct %s. Aborting"),
411 field_name, TYPE_NAME (struct_type));
412
413 return -1;
414 }
415
416 /* The length of the prefix of NAME prior to any "___" suffix. */
417
418 int
419 ada_name_prefix_len (const char *name)
420 {
421 if (name == NULL)
422 return 0;
423 else
424 {
425 const char *p = strstr (name, "___");
426
427 if (p == NULL)
428 return strlen (name);
429 else
430 return p - name;
431 }
432 }
433
434 /* Return non-zero if SUFFIX is a suffix of STR.
435 Return zero if STR is null. */
436
437 static int
438 is_suffix (const char *str, const char *suffix)
439 {
440 int len1, len2;
441
442 if (str == NULL)
443 return 0;
444 len1 = strlen (str);
445 len2 = strlen (suffix);
446 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
447 }
448
449 /* The contents of value VAL, treated as a value of type TYPE. The
450 result is an lval in memory if VAL is. */
451
452 static struct value *
453 coerce_unspec_val_to_type (struct value *val, struct type *type)
454 {
455 type = ada_check_typedef (type);
456 if (value_type (val) == type)
457 return val;
458 else
459 {
460 struct value *result;
461
462 /* Make sure that the object size is not unreasonable before
463 trying to allocate some memory for it. */
464 check_size (type);
465
466 result = allocate_value (type);
467 set_value_component_location (result, val);
468 set_value_bitsize (result, value_bitsize (val));
469 set_value_bitpos (result, value_bitpos (val));
470 set_value_address (result, value_address (val));
471 if (value_lazy (val)
472 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
473 set_value_lazy (result, 1);
474 else
475 memcpy (value_contents_raw (result), value_contents (val),
476 TYPE_LENGTH (type));
477 return result;
478 }
479 }
480
481 static const gdb_byte *
482 cond_offset_host (const gdb_byte *valaddr, long offset)
483 {
484 if (valaddr == NULL)
485 return NULL;
486 else
487 return valaddr + offset;
488 }
489
490 static CORE_ADDR
491 cond_offset_target (CORE_ADDR address, long offset)
492 {
493 if (address == 0)
494 return 0;
495 else
496 return address + offset;
497 }
498
499 /* Issue a warning (as for the definition of warning in utils.c, but
500 with exactly one argument rather than ...), unless the limit on the
501 number of warnings has passed during the evaluation of the current
502 expression. */
503
504 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
505 provided by "complaint". */
506 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
507
508 static void
509 lim_warning (const char *format, ...)
510 {
511 va_list args;
512
513 va_start (args, format);
514 warnings_issued += 1;
515 if (warnings_issued <= warning_limit)
516 vwarning (format, args);
517
518 va_end (args);
519 }
520
521 /* Issue an error if the size of an object of type T is unreasonable,
522 i.e. if it would be a bad idea to allocate a value of this type in
523 GDB. */
524
525 static void
526 check_size (const struct type *type)
527 {
528 if (TYPE_LENGTH (type) > varsize_limit)
529 error (_("object size is larger than varsize-limit"));
530 }
531
532 /* Maximum value of a SIZE-byte signed integer type. */
533 static LONGEST
534 max_of_size (int size)
535 {
536 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
537
538 return top_bit | (top_bit - 1);
539 }
540
541 /* Minimum value of a SIZE-byte signed integer type. */
542 static LONGEST
543 min_of_size (int size)
544 {
545 return -max_of_size (size) - 1;
546 }
547
548 /* Maximum value of a SIZE-byte unsigned integer type. */
549 static ULONGEST
550 umax_of_size (int size)
551 {
552 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
553
554 return top_bit | (top_bit - 1);
555 }
556
557 /* Maximum value of integral type T, as a signed quantity. */
558 static LONGEST
559 max_of_type (struct type *t)
560 {
561 if (TYPE_UNSIGNED (t))
562 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
563 else
564 return max_of_size (TYPE_LENGTH (t));
565 }
566
567 /* Minimum value of integral type T, as a signed quantity. */
568 static LONGEST
569 min_of_type (struct type *t)
570 {
571 if (TYPE_UNSIGNED (t))
572 return 0;
573 else
574 return min_of_size (TYPE_LENGTH (t));
575 }
576
577 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
578 LONGEST
579 ada_discrete_type_high_bound (struct type *type)
580 {
581 switch (TYPE_CODE (type))
582 {
583 case TYPE_CODE_RANGE:
584 return TYPE_HIGH_BOUND (type);
585 case TYPE_CODE_ENUM:
586 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
587 case TYPE_CODE_BOOL:
588 return 1;
589 case TYPE_CODE_CHAR:
590 case TYPE_CODE_INT:
591 return max_of_type (type);
592 default:
593 error (_("Unexpected type in ada_discrete_type_high_bound."));
594 }
595 }
596
597 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
598 LONGEST
599 ada_discrete_type_low_bound (struct type *type)
600 {
601 switch (TYPE_CODE (type))
602 {
603 case TYPE_CODE_RANGE:
604 return TYPE_LOW_BOUND (type);
605 case TYPE_CODE_ENUM:
606 return TYPE_FIELD_BITPOS (type, 0);
607 case TYPE_CODE_BOOL:
608 return 0;
609 case TYPE_CODE_CHAR:
610 case TYPE_CODE_INT:
611 return min_of_type (type);
612 default:
613 error (_("Unexpected type in ada_discrete_type_low_bound."));
614 }
615 }
616
617 /* The identity on non-range types. For range types, the underlying
618 non-range scalar type. */
619
620 static struct type *
621 base_type (struct type *type)
622 {
623 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
624 {
625 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
626 return type;
627 type = TYPE_TARGET_TYPE (type);
628 }
629 return type;
630 }
631 \f
632
633 /* Language Selection */
634
635 /* If the main program is in Ada, return language_ada, otherwise return LANG
636 (the main program is in Ada iif the adainit symbol is found). */
637
638 enum language
639 ada_update_initial_language (enum language lang)
640 {
641 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
642 (struct objfile *) NULL) != NULL)
643 return language_ada;
644
645 return lang;
646 }
647
648 /* If the main procedure is written in Ada, then return its name.
649 The result is good until the next call. Return NULL if the main
650 procedure doesn't appear to be in Ada. */
651
652 char *
653 ada_main_name (void)
654 {
655 struct minimal_symbol *msym;
656 static char *main_program_name = NULL;
657
658 /* For Ada, the name of the main procedure is stored in a specific
659 string constant, generated by the binder. Look for that symbol,
660 extract its address, and then read that string. If we didn't find
661 that string, then most probably the main procedure is not written
662 in Ada. */
663 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
664
665 if (msym != NULL)
666 {
667 CORE_ADDR main_program_name_addr;
668 int err_code;
669
670 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
671 if (main_program_name_addr == 0)
672 error (_("Invalid address for Ada main program name."));
673
674 xfree (main_program_name);
675 target_read_string (main_program_name_addr, &main_program_name,
676 1024, &err_code);
677
678 if (err_code != 0)
679 return NULL;
680 return main_program_name;
681 }
682
683 /* The main procedure doesn't seem to be in Ada. */
684 return NULL;
685 }
686 \f
687 /* Symbols */
688
689 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
690 of NULLs. */
691
692 const struct ada_opname_map ada_opname_table[] = {
693 {"Oadd", "\"+\"", BINOP_ADD},
694 {"Osubtract", "\"-\"", BINOP_SUB},
695 {"Omultiply", "\"*\"", BINOP_MUL},
696 {"Odivide", "\"/\"", BINOP_DIV},
697 {"Omod", "\"mod\"", BINOP_MOD},
698 {"Orem", "\"rem\"", BINOP_REM},
699 {"Oexpon", "\"**\"", BINOP_EXP},
700 {"Olt", "\"<\"", BINOP_LESS},
701 {"Ole", "\"<=\"", BINOP_LEQ},
702 {"Ogt", "\">\"", BINOP_GTR},
703 {"Oge", "\">=\"", BINOP_GEQ},
704 {"Oeq", "\"=\"", BINOP_EQUAL},
705 {"One", "\"/=\"", BINOP_NOTEQUAL},
706 {"Oand", "\"and\"", BINOP_BITWISE_AND},
707 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
708 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
709 {"Oconcat", "\"&\"", BINOP_CONCAT},
710 {"Oabs", "\"abs\"", UNOP_ABS},
711 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
712 {"Oadd", "\"+\"", UNOP_PLUS},
713 {"Osubtract", "\"-\"", UNOP_NEG},
714 {NULL, NULL}
715 };
716
717 /* The "encoded" form of DECODED, according to GNAT conventions.
718 The result is valid until the next call to ada_encode. */
719
720 char *
721 ada_encode (const char *decoded)
722 {
723 static char *encoding_buffer = NULL;
724 static size_t encoding_buffer_size = 0;
725 const char *p;
726 int k;
727
728 if (decoded == NULL)
729 return NULL;
730
731 GROW_VECT (encoding_buffer, encoding_buffer_size,
732 2 * strlen (decoded) + 10);
733
734 k = 0;
735 for (p = decoded; *p != '\0'; p += 1)
736 {
737 if (*p == '.')
738 {
739 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
740 k += 2;
741 }
742 else if (*p == '"')
743 {
744 const struct ada_opname_map *mapping;
745
746 for (mapping = ada_opname_table;
747 mapping->encoded != NULL
748 && strncmp (mapping->decoded, p,
749 strlen (mapping->decoded)) != 0; mapping += 1)
750 ;
751 if (mapping->encoded == NULL)
752 error (_("invalid Ada operator name: %s"), p);
753 strcpy (encoding_buffer + k, mapping->encoded);
754 k += strlen (mapping->encoded);
755 break;
756 }
757 else
758 {
759 encoding_buffer[k] = *p;
760 k += 1;
761 }
762 }
763
764 encoding_buffer[k] = '\0';
765 return encoding_buffer;
766 }
767
768 /* Return NAME folded to lower case, or, if surrounded by single
769 quotes, unfolded, but with the quotes stripped away. Result good
770 to next call. */
771
772 char *
773 ada_fold_name (const char *name)
774 {
775 static char *fold_buffer = NULL;
776 static size_t fold_buffer_size = 0;
777
778 int len = strlen (name);
779 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
780
781 if (name[0] == '\'')
782 {
783 strncpy (fold_buffer, name + 1, len - 2);
784 fold_buffer[len - 2] = '\000';
785 }
786 else
787 {
788 int i;
789
790 for (i = 0; i <= len; i += 1)
791 fold_buffer[i] = tolower (name[i]);
792 }
793
794 return fold_buffer;
795 }
796
797 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
798
799 static int
800 is_lower_alphanum (const char c)
801 {
802 return (isdigit (c) || (isalpha (c) && islower (c)));
803 }
804
805 /* Remove either of these suffixes:
806 . .{DIGIT}+
807 . ${DIGIT}+
808 . ___{DIGIT}+
809 . __{DIGIT}+.
810 These are suffixes introduced by the compiler for entities such as
811 nested subprogram for instance, in order to avoid name clashes.
812 They do not serve any purpose for the debugger. */
813
814 static void
815 ada_remove_trailing_digits (const char *encoded, int *len)
816 {
817 if (*len > 1 && isdigit (encoded[*len - 1]))
818 {
819 int i = *len - 2;
820
821 while (i > 0 && isdigit (encoded[i]))
822 i--;
823 if (i >= 0 && encoded[i] == '.')
824 *len = i;
825 else if (i >= 0 && encoded[i] == '$')
826 *len = i;
827 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
828 *len = i - 2;
829 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
830 *len = i - 1;
831 }
832 }
833
834 /* Remove the suffix introduced by the compiler for protected object
835 subprograms. */
836
837 static void
838 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
839 {
840 /* Remove trailing N. */
841
842 /* Protected entry subprograms are broken into two
843 separate subprograms: The first one is unprotected, and has
844 a 'N' suffix; the second is the protected version, and has
845 the 'P' suffix. The second calls the first one after handling
846 the protection. Since the P subprograms are internally generated,
847 we leave these names undecoded, giving the user a clue that this
848 entity is internal. */
849
850 if (*len > 1
851 && encoded[*len - 1] == 'N'
852 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
853 *len = *len - 1;
854 }
855
856 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
857
858 static void
859 ada_remove_Xbn_suffix (const char *encoded, int *len)
860 {
861 int i = *len - 1;
862
863 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
864 i--;
865
866 if (encoded[i] != 'X')
867 return;
868
869 if (i == 0)
870 return;
871
872 if (isalnum (encoded[i-1]))
873 *len = i;
874 }
875
876 /* If ENCODED follows the GNAT entity encoding conventions, then return
877 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
878 replaced by ENCODED.
879
880 The resulting string is valid until the next call of ada_decode.
881 If the string is unchanged by decoding, the original string pointer
882 is returned. */
883
884 const char *
885 ada_decode (const char *encoded)
886 {
887 int i, j;
888 int len0;
889 const char *p;
890 char *decoded;
891 int at_start_name;
892 static char *decoding_buffer = NULL;
893 static size_t decoding_buffer_size = 0;
894
895 /* The name of the Ada main procedure starts with "_ada_".
896 This prefix is not part of the decoded name, so skip this part
897 if we see this prefix. */
898 if (strncmp (encoded, "_ada_", 5) == 0)
899 encoded += 5;
900
901 /* If the name starts with '_', then it is not a properly encoded
902 name, so do not attempt to decode it. Similarly, if the name
903 starts with '<', the name should not be decoded. */
904 if (encoded[0] == '_' || encoded[0] == '<')
905 goto Suppress;
906
907 len0 = strlen (encoded);
908
909 ada_remove_trailing_digits (encoded, &len0);
910 ada_remove_po_subprogram_suffix (encoded, &len0);
911
912 /* Remove the ___X.* suffix if present. Do not forget to verify that
913 the suffix is located before the current "end" of ENCODED. We want
914 to avoid re-matching parts of ENCODED that have previously been
915 marked as discarded (by decrementing LEN0). */
916 p = strstr (encoded, "___");
917 if (p != NULL && p - encoded < len0 - 3)
918 {
919 if (p[3] == 'X')
920 len0 = p - encoded;
921 else
922 goto Suppress;
923 }
924
925 /* Remove any trailing TKB suffix. It tells us that this symbol
926 is for the body of a task, but that information does not actually
927 appear in the decoded name. */
928
929 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
930 len0 -= 3;
931
932 /* Remove any trailing TB suffix. The TB suffix is slightly different
933 from the TKB suffix because it is used for non-anonymous task
934 bodies. */
935
936 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
937 len0 -= 2;
938
939 /* Remove trailing "B" suffixes. */
940 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
941
942 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
943 len0 -= 1;
944
945 /* Make decoded big enough for possible expansion by operator name. */
946
947 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
948 decoded = decoding_buffer;
949
950 /* Remove trailing __{digit}+ or trailing ${digit}+. */
951
952 if (len0 > 1 && isdigit (encoded[len0 - 1]))
953 {
954 i = len0 - 2;
955 while ((i >= 0 && isdigit (encoded[i]))
956 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
957 i -= 1;
958 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
959 len0 = i - 1;
960 else if (encoded[i] == '$')
961 len0 = i;
962 }
963
964 /* The first few characters that are not alphabetic are not part
965 of any encoding we use, so we can copy them over verbatim. */
966
967 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
968 decoded[j] = encoded[i];
969
970 at_start_name = 1;
971 while (i < len0)
972 {
973 /* Is this a symbol function? */
974 if (at_start_name && encoded[i] == 'O')
975 {
976 int k;
977
978 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
979 {
980 int op_len = strlen (ada_opname_table[k].encoded);
981 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
982 op_len - 1) == 0)
983 && !isalnum (encoded[i + op_len]))
984 {
985 strcpy (decoded + j, ada_opname_table[k].decoded);
986 at_start_name = 0;
987 i += op_len;
988 j += strlen (ada_opname_table[k].decoded);
989 break;
990 }
991 }
992 if (ada_opname_table[k].encoded != NULL)
993 continue;
994 }
995 at_start_name = 0;
996
997 /* Replace "TK__" with "__", which will eventually be translated
998 into "." (just below). */
999
1000 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1001 i += 2;
1002
1003 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1004 be translated into "." (just below). These are internal names
1005 generated for anonymous blocks inside which our symbol is nested. */
1006
1007 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1008 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1009 && isdigit (encoded [i+4]))
1010 {
1011 int k = i + 5;
1012
1013 while (k < len0 && isdigit (encoded[k]))
1014 k++; /* Skip any extra digit. */
1015
1016 /* Double-check that the "__B_{DIGITS}+" sequence we found
1017 is indeed followed by "__". */
1018 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1019 i = k;
1020 }
1021
1022 /* Remove _E{DIGITS}+[sb] */
1023
1024 /* Just as for protected object subprograms, there are 2 categories
1025 of subprograms created by the compiler for each entry. The first
1026 one implements the actual entry code, and has a suffix following
1027 the convention above; the second one implements the barrier and
1028 uses the same convention as above, except that the 'E' is replaced
1029 by a 'B'.
1030
1031 Just as above, we do not decode the name of barrier functions
1032 to give the user a clue that the code he is debugging has been
1033 internally generated. */
1034
1035 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1036 && isdigit (encoded[i+2]))
1037 {
1038 int k = i + 3;
1039
1040 while (k < len0 && isdigit (encoded[k]))
1041 k++;
1042
1043 if (k < len0
1044 && (encoded[k] == 'b' || encoded[k] == 's'))
1045 {
1046 k++;
1047 /* Just as an extra precaution, make sure that if this
1048 suffix is followed by anything else, it is a '_'.
1049 Otherwise, we matched this sequence by accident. */
1050 if (k == len0
1051 || (k < len0 && encoded[k] == '_'))
1052 i = k;
1053 }
1054 }
1055
1056 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1057 the GNAT front-end in protected object subprograms. */
1058
1059 if (i < len0 + 3
1060 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1061 {
1062 /* Backtrack a bit up until we reach either the begining of
1063 the encoded name, or "__". Make sure that we only find
1064 digits or lowercase characters. */
1065 const char *ptr = encoded + i - 1;
1066
1067 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1068 ptr--;
1069 if (ptr < encoded
1070 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1071 i++;
1072 }
1073
1074 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1075 {
1076 /* This is a X[bn]* sequence not separated from the previous
1077 part of the name with a non-alpha-numeric character (in other
1078 words, immediately following an alpha-numeric character), then
1079 verify that it is placed at the end of the encoded name. If
1080 not, then the encoding is not valid and we should abort the
1081 decoding. Otherwise, just skip it, it is used in body-nested
1082 package names. */
1083 do
1084 i += 1;
1085 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1086 if (i < len0)
1087 goto Suppress;
1088 }
1089 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1090 {
1091 /* Replace '__' by '.'. */
1092 decoded[j] = '.';
1093 at_start_name = 1;
1094 i += 2;
1095 j += 1;
1096 }
1097 else
1098 {
1099 /* It's a character part of the decoded name, so just copy it
1100 over. */
1101 decoded[j] = encoded[i];
1102 i += 1;
1103 j += 1;
1104 }
1105 }
1106 decoded[j] = '\000';
1107
1108 /* Decoded names should never contain any uppercase character.
1109 Double-check this, and abort the decoding if we find one. */
1110
1111 for (i = 0; decoded[i] != '\0'; i += 1)
1112 if (isupper (decoded[i]) || decoded[i] == ' ')
1113 goto Suppress;
1114
1115 if (strcmp (decoded, encoded) == 0)
1116 return encoded;
1117 else
1118 return decoded;
1119
1120 Suppress:
1121 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1122 decoded = decoding_buffer;
1123 if (encoded[0] == '<')
1124 strcpy (decoded, encoded);
1125 else
1126 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1127 return decoded;
1128
1129 }
1130
1131 /* Table for keeping permanent unique copies of decoded names. Once
1132 allocated, names in this table are never released. While this is a
1133 storage leak, it should not be significant unless there are massive
1134 changes in the set of decoded names in successive versions of a
1135 symbol table loaded during a single session. */
1136 static struct htab *decoded_names_store;
1137
1138 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1139 in the language-specific part of GSYMBOL, if it has not been
1140 previously computed. Tries to save the decoded name in the same
1141 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1142 in any case, the decoded symbol has a lifetime at least that of
1143 GSYMBOL).
1144 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1145 const, but nevertheless modified to a semantically equivalent form
1146 when a decoded name is cached in it.
1147 */
1148
1149 char *
1150 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1151 {
1152 char **resultp =
1153 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1154
1155 if (*resultp == NULL)
1156 {
1157 const char *decoded = ada_decode (gsymbol->name);
1158
1159 if (gsymbol->obj_section != NULL)
1160 {
1161 struct objfile *objf = gsymbol->obj_section->objfile;
1162
1163 *resultp = obsavestring (decoded, strlen (decoded),
1164 &objf->objfile_obstack);
1165 }
1166 /* Sometimes, we can't find a corresponding objfile, in which
1167 case, we put the result on the heap. Since we only decode
1168 when needed, we hope this usually does not cause a
1169 significant memory leak (FIXME). */
1170 if (*resultp == NULL)
1171 {
1172 char **slot = (char **) htab_find_slot (decoded_names_store,
1173 decoded, INSERT);
1174
1175 if (*slot == NULL)
1176 *slot = xstrdup (decoded);
1177 *resultp = *slot;
1178 }
1179 }
1180
1181 return *resultp;
1182 }
1183
1184 static char *
1185 ada_la_decode (const char *encoded, int options)
1186 {
1187 return xstrdup (ada_decode (encoded));
1188 }
1189
1190 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1191 suffixes that encode debugging information or leading _ada_ on
1192 SYM_NAME (see is_name_suffix commentary for the debugging
1193 information that is ignored). If WILD, then NAME need only match a
1194 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1195 either argument is NULL. */
1196
1197 static int
1198 ada_match_name (const char *sym_name, const char *name, int wild)
1199 {
1200 if (sym_name == NULL || name == NULL)
1201 return 0;
1202 else if (wild)
1203 return wild_match (name, strlen (name), sym_name);
1204 else
1205 {
1206 int len_name = strlen (name);
1207
1208 return (strncmp (sym_name, name, len_name) == 0
1209 && is_name_suffix (sym_name + len_name))
1210 || (strncmp (sym_name, "_ada_", 5) == 0
1211 && strncmp (sym_name + 5, name, len_name) == 0
1212 && is_name_suffix (sym_name + len_name + 5));
1213 }
1214 }
1215 \f
1216
1217 /* Arrays */
1218
1219 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1220 generated by the GNAT compiler to describe the index type used
1221 for each dimension of an array, check whether it follows the latest
1222 known encoding. If not, fix it up to conform to the latest encoding.
1223 Otherwise, do nothing. This function also does nothing if
1224 INDEX_DESC_TYPE is NULL.
1225
1226 The GNAT encoding used to describle the array index type evolved a bit.
1227 Initially, the information would be provided through the name of each
1228 field of the structure type only, while the type of these fields was
1229 described as unspecified and irrelevant. The debugger was then expected
1230 to perform a global type lookup using the name of that field in order
1231 to get access to the full index type description. Because these global
1232 lookups can be very expensive, the encoding was later enhanced to make
1233 the global lookup unnecessary by defining the field type as being
1234 the full index type description.
1235
1236 The purpose of this routine is to allow us to support older versions
1237 of the compiler by detecting the use of the older encoding, and by
1238 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1239 we essentially replace each field's meaningless type by the associated
1240 index subtype). */
1241
1242 void
1243 ada_fixup_array_indexes_type (struct type *index_desc_type)
1244 {
1245 int i;
1246
1247 if (index_desc_type == NULL)
1248 return;
1249 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1250
1251 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1252 to check one field only, no need to check them all). If not, return
1253 now.
1254
1255 If our INDEX_DESC_TYPE was generated using the older encoding,
1256 the field type should be a meaningless integer type whose name
1257 is not equal to the field name. */
1258 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1259 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1260 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1261 return;
1262
1263 /* Fixup each field of INDEX_DESC_TYPE. */
1264 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1265 {
1266 char *name = TYPE_FIELD_NAME (index_desc_type, i);
1267 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1268
1269 if (raw_type)
1270 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1271 }
1272 }
1273
1274 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1275
1276 static char *bound_name[] = {
1277 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1278 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1279 };
1280
1281 /* Maximum number of array dimensions we are prepared to handle. */
1282
1283 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1284
1285 /* Like modify_field, but allows bitpos > wordlength. */
1286
1287 static void
1288 modify_general_field (struct type *type, char *addr,
1289 LONGEST fieldval, int bitpos, int bitsize)
1290 {
1291 modify_field (type, addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
1292 }
1293
1294
1295 /* The desc_* routines return primitive portions of array descriptors
1296 (fat pointers). */
1297
1298 /* The descriptor or array type, if any, indicated by TYPE; removes
1299 level of indirection, if needed. */
1300
1301 static struct type *
1302 desc_base_type (struct type *type)
1303 {
1304 if (type == NULL)
1305 return NULL;
1306 type = ada_check_typedef (type);
1307 if (type != NULL
1308 && (TYPE_CODE (type) == TYPE_CODE_PTR
1309 || TYPE_CODE (type) == TYPE_CODE_REF))
1310 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1311 else
1312 return type;
1313 }
1314
1315 /* True iff TYPE indicates a "thin" array pointer type. */
1316
1317 static int
1318 is_thin_pntr (struct type *type)
1319 {
1320 return
1321 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1322 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1323 }
1324
1325 /* The descriptor type for thin pointer type TYPE. */
1326
1327 static struct type *
1328 thin_descriptor_type (struct type *type)
1329 {
1330 struct type *base_type = desc_base_type (type);
1331
1332 if (base_type == NULL)
1333 return NULL;
1334 if (is_suffix (ada_type_name (base_type), "___XVE"))
1335 return base_type;
1336 else
1337 {
1338 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1339
1340 if (alt_type == NULL)
1341 return base_type;
1342 else
1343 return alt_type;
1344 }
1345 }
1346
1347 /* A pointer to the array data for thin-pointer value VAL. */
1348
1349 static struct value *
1350 thin_data_pntr (struct value *val)
1351 {
1352 struct type *type = value_type (val);
1353 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1354
1355 data_type = lookup_pointer_type (data_type);
1356
1357 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1358 return value_cast (data_type, value_copy (val));
1359 else
1360 return value_from_longest (data_type, value_address (val));
1361 }
1362
1363 /* True iff TYPE indicates a "thick" array pointer type. */
1364
1365 static int
1366 is_thick_pntr (struct type *type)
1367 {
1368 type = desc_base_type (type);
1369 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1370 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1371 }
1372
1373 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1374 pointer to one, the type of its bounds data; otherwise, NULL. */
1375
1376 static struct type *
1377 desc_bounds_type (struct type *type)
1378 {
1379 struct type *r;
1380
1381 type = desc_base_type (type);
1382
1383 if (type == NULL)
1384 return NULL;
1385 else if (is_thin_pntr (type))
1386 {
1387 type = thin_descriptor_type (type);
1388 if (type == NULL)
1389 return NULL;
1390 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1391 if (r != NULL)
1392 return ada_check_typedef (r);
1393 }
1394 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1395 {
1396 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1397 if (r != NULL)
1398 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1399 }
1400 return NULL;
1401 }
1402
1403 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1404 one, a pointer to its bounds data. Otherwise NULL. */
1405
1406 static struct value *
1407 desc_bounds (struct value *arr)
1408 {
1409 struct type *type = ada_check_typedef (value_type (arr));
1410
1411 if (is_thin_pntr (type))
1412 {
1413 struct type *bounds_type =
1414 desc_bounds_type (thin_descriptor_type (type));
1415 LONGEST addr;
1416
1417 if (bounds_type == NULL)
1418 error (_("Bad GNAT array descriptor"));
1419
1420 /* NOTE: The following calculation is not really kosher, but
1421 since desc_type is an XVE-encoded type (and shouldn't be),
1422 the correct calculation is a real pain. FIXME (and fix GCC). */
1423 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1424 addr = value_as_long (arr);
1425 else
1426 addr = value_address (arr);
1427
1428 return
1429 value_from_longest (lookup_pointer_type (bounds_type),
1430 addr - TYPE_LENGTH (bounds_type));
1431 }
1432
1433 else if (is_thick_pntr (type))
1434 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1435 _("Bad GNAT array descriptor"));
1436 else
1437 return NULL;
1438 }
1439
1440 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1441 position of the field containing the address of the bounds data. */
1442
1443 static int
1444 fat_pntr_bounds_bitpos (struct type *type)
1445 {
1446 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1447 }
1448
1449 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1450 size of the field containing the address of the bounds data. */
1451
1452 static int
1453 fat_pntr_bounds_bitsize (struct type *type)
1454 {
1455 type = desc_base_type (type);
1456
1457 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1458 return TYPE_FIELD_BITSIZE (type, 1);
1459 else
1460 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1461 }
1462
1463 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1464 pointer to one, the type of its array data (a array-with-no-bounds type);
1465 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1466 data. */
1467
1468 static struct type *
1469 desc_data_target_type (struct type *type)
1470 {
1471 type = desc_base_type (type);
1472
1473 /* NOTE: The following is bogus; see comment in desc_bounds. */
1474 if (is_thin_pntr (type))
1475 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1476 else if (is_thick_pntr (type))
1477 {
1478 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1479
1480 if (data_type
1481 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1482 return TYPE_TARGET_TYPE (data_type);
1483 }
1484
1485 return NULL;
1486 }
1487
1488 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1489 its array data. */
1490
1491 static struct value *
1492 desc_data (struct value *arr)
1493 {
1494 struct type *type = value_type (arr);
1495
1496 if (is_thin_pntr (type))
1497 return thin_data_pntr (arr);
1498 else if (is_thick_pntr (type))
1499 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1500 _("Bad GNAT array descriptor"));
1501 else
1502 return NULL;
1503 }
1504
1505
1506 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1507 position of the field containing the address of the data. */
1508
1509 static int
1510 fat_pntr_data_bitpos (struct type *type)
1511 {
1512 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1513 }
1514
1515 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1516 size of the field containing the address of the data. */
1517
1518 static int
1519 fat_pntr_data_bitsize (struct type *type)
1520 {
1521 type = desc_base_type (type);
1522
1523 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1524 return TYPE_FIELD_BITSIZE (type, 0);
1525 else
1526 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1527 }
1528
1529 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1530 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1531 bound, if WHICH is 1. The first bound is I=1. */
1532
1533 static struct value *
1534 desc_one_bound (struct value *bounds, int i, int which)
1535 {
1536 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1537 _("Bad GNAT array descriptor bounds"));
1538 }
1539
1540 /* If BOUNDS is an array-bounds structure type, return the bit position
1541 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1542 bound, if WHICH is 1. The first bound is I=1. */
1543
1544 static int
1545 desc_bound_bitpos (struct type *type, int i, int which)
1546 {
1547 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1548 }
1549
1550 /* If BOUNDS is an array-bounds structure type, return the bit field size
1551 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1552 bound, if WHICH is 1. The first bound is I=1. */
1553
1554 static int
1555 desc_bound_bitsize (struct type *type, int i, int which)
1556 {
1557 type = desc_base_type (type);
1558
1559 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1560 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1561 else
1562 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1563 }
1564
1565 /* If TYPE is the type of an array-bounds structure, the type of its
1566 Ith bound (numbering from 1). Otherwise, NULL. */
1567
1568 static struct type *
1569 desc_index_type (struct type *type, int i)
1570 {
1571 type = desc_base_type (type);
1572
1573 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1574 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1575 else
1576 return NULL;
1577 }
1578
1579 /* The number of index positions in the array-bounds type TYPE.
1580 Return 0 if TYPE is NULL. */
1581
1582 static int
1583 desc_arity (struct type *type)
1584 {
1585 type = desc_base_type (type);
1586
1587 if (type != NULL)
1588 return TYPE_NFIELDS (type) / 2;
1589 return 0;
1590 }
1591
1592 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1593 an array descriptor type (representing an unconstrained array
1594 type). */
1595
1596 static int
1597 ada_is_direct_array_type (struct type *type)
1598 {
1599 if (type == NULL)
1600 return 0;
1601 type = ada_check_typedef (type);
1602 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1603 || ada_is_array_descriptor_type (type));
1604 }
1605
1606 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1607 * to one. */
1608
1609 static int
1610 ada_is_array_type (struct type *type)
1611 {
1612 while (type != NULL
1613 && (TYPE_CODE (type) == TYPE_CODE_PTR
1614 || TYPE_CODE (type) == TYPE_CODE_REF))
1615 type = TYPE_TARGET_TYPE (type);
1616 return ada_is_direct_array_type (type);
1617 }
1618
1619 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1620
1621 int
1622 ada_is_simple_array_type (struct type *type)
1623 {
1624 if (type == NULL)
1625 return 0;
1626 type = ada_check_typedef (type);
1627 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1628 || (TYPE_CODE (type) == TYPE_CODE_PTR
1629 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
1630 }
1631
1632 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1633
1634 int
1635 ada_is_array_descriptor_type (struct type *type)
1636 {
1637 struct type *data_type = desc_data_target_type (type);
1638
1639 if (type == NULL)
1640 return 0;
1641 type = ada_check_typedef (type);
1642 return (data_type != NULL
1643 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1644 && desc_arity (desc_bounds_type (type)) > 0);
1645 }
1646
1647 /* Non-zero iff type is a partially mal-formed GNAT array
1648 descriptor. FIXME: This is to compensate for some problems with
1649 debugging output from GNAT. Re-examine periodically to see if it
1650 is still needed. */
1651
1652 int
1653 ada_is_bogus_array_descriptor (struct type *type)
1654 {
1655 return
1656 type != NULL
1657 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1658 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1659 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1660 && !ada_is_array_descriptor_type (type);
1661 }
1662
1663
1664 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1665 (fat pointer) returns the type of the array data described---specifically,
1666 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1667 in from the descriptor; otherwise, they are left unspecified. If
1668 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1669 returns NULL. The result is simply the type of ARR if ARR is not
1670 a descriptor. */
1671 struct type *
1672 ada_type_of_array (struct value *arr, int bounds)
1673 {
1674 if (ada_is_constrained_packed_array_type (value_type (arr)))
1675 return decode_constrained_packed_array_type (value_type (arr));
1676
1677 if (!ada_is_array_descriptor_type (value_type (arr)))
1678 return value_type (arr);
1679
1680 if (!bounds)
1681 {
1682 struct type *array_type =
1683 ada_check_typedef (desc_data_target_type (value_type (arr)));
1684
1685 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1686 TYPE_FIELD_BITSIZE (array_type, 0) =
1687 decode_packed_array_bitsize (value_type (arr));
1688
1689 return array_type;
1690 }
1691 else
1692 {
1693 struct type *elt_type;
1694 int arity;
1695 struct value *descriptor;
1696
1697 elt_type = ada_array_element_type (value_type (arr), -1);
1698 arity = ada_array_arity (value_type (arr));
1699
1700 if (elt_type == NULL || arity == 0)
1701 return ada_check_typedef (value_type (arr));
1702
1703 descriptor = desc_bounds (arr);
1704 if (value_as_long (descriptor) == 0)
1705 return NULL;
1706 while (arity > 0)
1707 {
1708 struct type *range_type = alloc_type_copy (value_type (arr));
1709 struct type *array_type = alloc_type_copy (value_type (arr));
1710 struct value *low = desc_one_bound (descriptor, arity, 0);
1711 struct value *high = desc_one_bound (descriptor, arity, 1);
1712
1713 arity -= 1;
1714 create_range_type (range_type, value_type (low),
1715 longest_to_int (value_as_long (low)),
1716 longest_to_int (value_as_long (high)));
1717 elt_type = create_array_type (array_type, elt_type, range_type);
1718
1719 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1720 TYPE_FIELD_BITSIZE (elt_type, 0) =
1721 decode_packed_array_bitsize (value_type (arr));
1722 }
1723
1724 return lookup_pointer_type (elt_type);
1725 }
1726 }
1727
1728 /* If ARR does not represent an array, returns ARR unchanged.
1729 Otherwise, returns either a standard GDB array with bounds set
1730 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1731 GDB array. Returns NULL if ARR is a null fat pointer. */
1732
1733 struct value *
1734 ada_coerce_to_simple_array_ptr (struct value *arr)
1735 {
1736 if (ada_is_array_descriptor_type (value_type (arr)))
1737 {
1738 struct type *arrType = ada_type_of_array (arr, 1);
1739
1740 if (arrType == NULL)
1741 return NULL;
1742 return value_cast (arrType, value_copy (desc_data (arr)));
1743 }
1744 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1745 return decode_constrained_packed_array (arr);
1746 else
1747 return arr;
1748 }
1749
1750 /* If ARR does not represent an array, returns ARR unchanged.
1751 Otherwise, returns a standard GDB array describing ARR (which may
1752 be ARR itself if it already is in the proper form). */
1753
1754 static struct value *
1755 ada_coerce_to_simple_array (struct value *arr)
1756 {
1757 if (ada_is_array_descriptor_type (value_type (arr)))
1758 {
1759 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1760
1761 if (arrVal == NULL)
1762 error (_("Bounds unavailable for null array pointer."));
1763 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1764 return value_ind (arrVal);
1765 }
1766 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1767 return decode_constrained_packed_array (arr);
1768 else
1769 return arr;
1770 }
1771
1772 /* If TYPE represents a GNAT array type, return it translated to an
1773 ordinary GDB array type (possibly with BITSIZE fields indicating
1774 packing). For other types, is the identity. */
1775
1776 struct type *
1777 ada_coerce_to_simple_array_type (struct type *type)
1778 {
1779 if (ada_is_constrained_packed_array_type (type))
1780 return decode_constrained_packed_array_type (type);
1781
1782 if (ada_is_array_descriptor_type (type))
1783 return ada_check_typedef (desc_data_target_type (type));
1784
1785 return type;
1786 }
1787
1788 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1789
1790 static int
1791 ada_is_packed_array_type (struct type *type)
1792 {
1793 if (type == NULL)
1794 return 0;
1795 type = desc_base_type (type);
1796 type = ada_check_typedef (type);
1797 return
1798 ada_type_name (type) != NULL
1799 && strstr (ada_type_name (type), "___XP") != NULL;
1800 }
1801
1802 /* Non-zero iff TYPE represents a standard GNAT constrained
1803 packed-array type. */
1804
1805 int
1806 ada_is_constrained_packed_array_type (struct type *type)
1807 {
1808 return ada_is_packed_array_type (type)
1809 && !ada_is_array_descriptor_type (type);
1810 }
1811
1812 /* Non-zero iff TYPE represents an array descriptor for a
1813 unconstrained packed-array type. */
1814
1815 static int
1816 ada_is_unconstrained_packed_array_type (struct type *type)
1817 {
1818 return ada_is_packed_array_type (type)
1819 && ada_is_array_descriptor_type (type);
1820 }
1821
1822 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
1823 return the size of its elements in bits. */
1824
1825 static long
1826 decode_packed_array_bitsize (struct type *type)
1827 {
1828 char *raw_name = ada_type_name (ada_check_typedef (type));
1829 char *tail;
1830 long bits;
1831
1832 if (!raw_name)
1833 raw_name = ada_type_name (desc_base_type (type));
1834
1835 if (!raw_name)
1836 return 0;
1837
1838 tail = strstr (raw_name, "___XP");
1839
1840 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1841 {
1842 lim_warning
1843 (_("could not understand bit size information on packed array"));
1844 return 0;
1845 }
1846
1847 return bits;
1848 }
1849
1850 /* Given that TYPE is a standard GDB array type with all bounds filled
1851 in, and that the element size of its ultimate scalar constituents
1852 (that is, either its elements, or, if it is an array of arrays, its
1853 elements' elements, etc.) is *ELT_BITS, return an identical type,
1854 but with the bit sizes of its elements (and those of any
1855 constituent arrays) recorded in the BITSIZE components of its
1856 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1857 in bits. */
1858
1859 static struct type *
1860 constrained_packed_array_type (struct type *type, long *elt_bits)
1861 {
1862 struct type *new_elt_type;
1863 struct type *new_type;
1864 LONGEST low_bound, high_bound;
1865
1866 type = ada_check_typedef (type);
1867 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1868 return type;
1869
1870 new_type = alloc_type_copy (type);
1871 new_elt_type =
1872 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
1873 elt_bits);
1874 create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type));
1875 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1876 TYPE_NAME (new_type) = ada_type_name (type);
1877
1878 if (get_discrete_bounds (TYPE_INDEX_TYPE (type),
1879 &low_bound, &high_bound) < 0)
1880 low_bound = high_bound = 0;
1881 if (high_bound < low_bound)
1882 *elt_bits = TYPE_LENGTH (new_type) = 0;
1883 else
1884 {
1885 *elt_bits *= (high_bound - low_bound + 1);
1886 TYPE_LENGTH (new_type) =
1887 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1888 }
1889
1890 TYPE_FIXED_INSTANCE (new_type) = 1;
1891 return new_type;
1892 }
1893
1894 /* The array type encoded by TYPE, where
1895 ada_is_constrained_packed_array_type (TYPE). */
1896
1897 static struct type *
1898 decode_constrained_packed_array_type (struct type *type)
1899 {
1900 char *raw_name = ada_type_name (ada_check_typedef (type));
1901 char *name;
1902 char *tail;
1903 struct type *shadow_type;
1904 long bits;
1905
1906 if (!raw_name)
1907 raw_name = ada_type_name (desc_base_type (type));
1908
1909 if (!raw_name)
1910 return NULL;
1911
1912 name = (char *) alloca (strlen (raw_name) + 1);
1913 tail = strstr (raw_name, "___XP");
1914 type = desc_base_type (type);
1915
1916 memcpy (name, raw_name, tail - raw_name);
1917 name[tail - raw_name] = '\000';
1918
1919 shadow_type = ada_find_parallel_type_with_name (type, name);
1920
1921 if (shadow_type == NULL)
1922 {
1923 lim_warning (_("could not find bounds information on packed array"));
1924 return NULL;
1925 }
1926 CHECK_TYPEDEF (shadow_type);
1927
1928 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1929 {
1930 lim_warning (_("could not understand bounds information on packed array"));
1931 return NULL;
1932 }
1933
1934 bits = decode_packed_array_bitsize (type);
1935 return constrained_packed_array_type (shadow_type, &bits);
1936 }
1937
1938 /* Given that ARR is a struct value *indicating a GNAT constrained packed
1939 array, returns a simple array that denotes that array. Its type is a
1940 standard GDB array type except that the BITSIZEs of the array
1941 target types are set to the number of bits in each element, and the
1942 type length is set appropriately. */
1943
1944 static struct value *
1945 decode_constrained_packed_array (struct value *arr)
1946 {
1947 struct type *type;
1948
1949 arr = ada_coerce_ref (arr);
1950
1951 /* If our value is a pointer, then dererence it. Make sure that
1952 this operation does not cause the target type to be fixed, as
1953 this would indirectly cause this array to be decoded. The rest
1954 of the routine assumes that the array hasn't been decoded yet,
1955 so we use the basic "value_ind" routine to perform the dereferencing,
1956 as opposed to using "ada_value_ind". */
1957 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
1958 arr = value_ind (arr);
1959
1960 type = decode_constrained_packed_array_type (value_type (arr));
1961 if (type == NULL)
1962 {
1963 error (_("can't unpack array"));
1964 return NULL;
1965 }
1966
1967 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
1968 && ada_is_modular_type (value_type (arr)))
1969 {
1970 /* This is a (right-justified) modular type representing a packed
1971 array with no wrapper. In order to interpret the value through
1972 the (left-justified) packed array type we just built, we must
1973 first left-justify it. */
1974 int bit_size, bit_pos;
1975 ULONGEST mod;
1976
1977 mod = ada_modulus (value_type (arr)) - 1;
1978 bit_size = 0;
1979 while (mod > 0)
1980 {
1981 bit_size += 1;
1982 mod >>= 1;
1983 }
1984 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
1985 arr = ada_value_primitive_packed_val (arr, NULL,
1986 bit_pos / HOST_CHAR_BIT,
1987 bit_pos % HOST_CHAR_BIT,
1988 bit_size,
1989 type);
1990 }
1991
1992 return coerce_unspec_val_to_type (arr, type);
1993 }
1994
1995
1996 /* The value of the element of packed array ARR at the ARITY indices
1997 given in IND. ARR must be a simple array. */
1998
1999 static struct value *
2000 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2001 {
2002 int i;
2003 int bits, elt_off, bit_off;
2004 long elt_total_bit_offset;
2005 struct type *elt_type;
2006 struct value *v;
2007
2008 bits = 0;
2009 elt_total_bit_offset = 0;
2010 elt_type = ada_check_typedef (value_type (arr));
2011 for (i = 0; i < arity; i += 1)
2012 {
2013 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2014 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2015 error
2016 (_("attempt to do packed indexing of something other than a packed array"));
2017 else
2018 {
2019 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2020 LONGEST lowerbound, upperbound;
2021 LONGEST idx;
2022
2023 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2024 {
2025 lim_warning (_("don't know bounds of array"));
2026 lowerbound = upperbound = 0;
2027 }
2028
2029 idx = pos_atr (ind[i]);
2030 if (idx < lowerbound || idx > upperbound)
2031 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
2032 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2033 elt_total_bit_offset += (idx - lowerbound) * bits;
2034 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2035 }
2036 }
2037 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2038 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2039
2040 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2041 bits, elt_type);
2042 return v;
2043 }
2044
2045 /* Non-zero iff TYPE includes negative integer values. */
2046
2047 static int
2048 has_negatives (struct type *type)
2049 {
2050 switch (TYPE_CODE (type))
2051 {
2052 default:
2053 return 0;
2054 case TYPE_CODE_INT:
2055 return !TYPE_UNSIGNED (type);
2056 case TYPE_CODE_RANGE:
2057 return TYPE_LOW_BOUND (type) < 0;
2058 }
2059 }
2060
2061
2062 /* Create a new value of type TYPE from the contents of OBJ starting
2063 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2064 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2065 assigning through the result will set the field fetched from.
2066 VALADDR is ignored unless OBJ is NULL, in which case,
2067 VALADDR+OFFSET must address the start of storage containing the
2068 packed value. The value returned in this case is never an lval.
2069 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2070
2071 struct value *
2072 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2073 long offset, int bit_offset, int bit_size,
2074 struct type *type)
2075 {
2076 struct value *v;
2077 int src, /* Index into the source area */
2078 targ, /* Index into the target area */
2079 srcBitsLeft, /* Number of source bits left to move */
2080 nsrc, ntarg, /* Number of source and target bytes */
2081 unusedLS, /* Number of bits in next significant
2082 byte of source that are unused */
2083 accumSize; /* Number of meaningful bits in accum */
2084 unsigned char *bytes; /* First byte containing data to unpack */
2085 unsigned char *unpacked;
2086 unsigned long accum; /* Staging area for bits being transferred */
2087 unsigned char sign;
2088 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2089 /* Transmit bytes from least to most significant; delta is the direction
2090 the indices move. */
2091 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2092
2093 type = ada_check_typedef (type);
2094
2095 if (obj == NULL)
2096 {
2097 v = allocate_value (type);
2098 bytes = (unsigned char *) (valaddr + offset);
2099 }
2100 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2101 {
2102 v = value_at (type,
2103 value_address (obj) + offset);
2104 bytes = (unsigned char *) alloca (len);
2105 read_memory (value_address (v), bytes, len);
2106 }
2107 else
2108 {
2109 v = allocate_value (type);
2110 bytes = (unsigned char *) value_contents (obj) + offset;
2111 }
2112
2113 if (obj != NULL)
2114 {
2115 CORE_ADDR new_addr;
2116
2117 set_value_component_location (v, obj);
2118 new_addr = value_address (obj) + offset;
2119 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2120 set_value_bitsize (v, bit_size);
2121 if (value_bitpos (v) >= HOST_CHAR_BIT)
2122 {
2123 ++new_addr;
2124 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2125 }
2126 set_value_address (v, new_addr);
2127 }
2128 else
2129 set_value_bitsize (v, bit_size);
2130 unpacked = (unsigned char *) value_contents (v);
2131
2132 srcBitsLeft = bit_size;
2133 nsrc = len;
2134 ntarg = TYPE_LENGTH (type);
2135 sign = 0;
2136 if (bit_size == 0)
2137 {
2138 memset (unpacked, 0, TYPE_LENGTH (type));
2139 return v;
2140 }
2141 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2142 {
2143 src = len - 1;
2144 if (has_negatives (type)
2145 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2146 sign = ~0;
2147
2148 unusedLS =
2149 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2150 % HOST_CHAR_BIT;
2151
2152 switch (TYPE_CODE (type))
2153 {
2154 case TYPE_CODE_ARRAY:
2155 case TYPE_CODE_UNION:
2156 case TYPE_CODE_STRUCT:
2157 /* Non-scalar values must be aligned at a byte boundary... */
2158 accumSize =
2159 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2160 /* ... And are placed at the beginning (most-significant) bytes
2161 of the target. */
2162 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2163 ntarg = targ + 1;
2164 break;
2165 default:
2166 accumSize = 0;
2167 targ = TYPE_LENGTH (type) - 1;
2168 break;
2169 }
2170 }
2171 else
2172 {
2173 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2174
2175 src = targ = 0;
2176 unusedLS = bit_offset;
2177 accumSize = 0;
2178
2179 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2180 sign = ~0;
2181 }
2182
2183 accum = 0;
2184 while (nsrc > 0)
2185 {
2186 /* Mask for removing bits of the next source byte that are not
2187 part of the value. */
2188 unsigned int unusedMSMask =
2189 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2190 1;
2191 /* Sign-extend bits for this byte. */
2192 unsigned int signMask = sign & ~unusedMSMask;
2193
2194 accum |=
2195 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2196 accumSize += HOST_CHAR_BIT - unusedLS;
2197 if (accumSize >= HOST_CHAR_BIT)
2198 {
2199 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2200 accumSize -= HOST_CHAR_BIT;
2201 accum >>= HOST_CHAR_BIT;
2202 ntarg -= 1;
2203 targ += delta;
2204 }
2205 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2206 unusedLS = 0;
2207 nsrc -= 1;
2208 src += delta;
2209 }
2210 while (ntarg > 0)
2211 {
2212 accum |= sign << accumSize;
2213 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2214 accumSize -= HOST_CHAR_BIT;
2215 accum >>= HOST_CHAR_BIT;
2216 ntarg -= 1;
2217 targ += delta;
2218 }
2219
2220 return v;
2221 }
2222
2223 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2224 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2225 not overlap. */
2226 static void
2227 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2228 int src_offset, int n, int bits_big_endian_p)
2229 {
2230 unsigned int accum, mask;
2231 int accum_bits, chunk_size;
2232
2233 target += targ_offset / HOST_CHAR_BIT;
2234 targ_offset %= HOST_CHAR_BIT;
2235 source += src_offset / HOST_CHAR_BIT;
2236 src_offset %= HOST_CHAR_BIT;
2237 if (bits_big_endian_p)
2238 {
2239 accum = (unsigned char) *source;
2240 source += 1;
2241 accum_bits = HOST_CHAR_BIT - src_offset;
2242
2243 while (n > 0)
2244 {
2245 int unused_right;
2246
2247 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2248 accum_bits += HOST_CHAR_BIT;
2249 source += 1;
2250 chunk_size = HOST_CHAR_BIT - targ_offset;
2251 if (chunk_size > n)
2252 chunk_size = n;
2253 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2254 mask = ((1 << chunk_size) - 1) << unused_right;
2255 *target =
2256 (*target & ~mask)
2257 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2258 n -= chunk_size;
2259 accum_bits -= chunk_size;
2260 target += 1;
2261 targ_offset = 0;
2262 }
2263 }
2264 else
2265 {
2266 accum = (unsigned char) *source >> src_offset;
2267 source += 1;
2268 accum_bits = HOST_CHAR_BIT - src_offset;
2269
2270 while (n > 0)
2271 {
2272 accum = accum + ((unsigned char) *source << accum_bits);
2273 accum_bits += HOST_CHAR_BIT;
2274 source += 1;
2275 chunk_size = HOST_CHAR_BIT - targ_offset;
2276 if (chunk_size > n)
2277 chunk_size = n;
2278 mask = ((1 << chunk_size) - 1) << targ_offset;
2279 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2280 n -= chunk_size;
2281 accum_bits -= chunk_size;
2282 accum >>= chunk_size;
2283 target += 1;
2284 targ_offset = 0;
2285 }
2286 }
2287 }
2288
2289 /* Store the contents of FROMVAL into the location of TOVAL.
2290 Return a new value with the location of TOVAL and contents of
2291 FROMVAL. Handles assignment into packed fields that have
2292 floating-point or non-scalar types. */
2293
2294 static struct value *
2295 ada_value_assign (struct value *toval, struct value *fromval)
2296 {
2297 struct type *type = value_type (toval);
2298 int bits = value_bitsize (toval);
2299
2300 toval = ada_coerce_ref (toval);
2301 fromval = ada_coerce_ref (fromval);
2302
2303 if (ada_is_direct_array_type (value_type (toval)))
2304 toval = ada_coerce_to_simple_array (toval);
2305 if (ada_is_direct_array_type (value_type (fromval)))
2306 fromval = ada_coerce_to_simple_array (fromval);
2307
2308 if (!deprecated_value_modifiable (toval))
2309 error (_("Left operand of assignment is not a modifiable lvalue."));
2310
2311 if (VALUE_LVAL (toval) == lval_memory
2312 && bits > 0
2313 && (TYPE_CODE (type) == TYPE_CODE_FLT
2314 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2315 {
2316 int len = (value_bitpos (toval)
2317 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2318 int from_size;
2319 char *buffer = (char *) alloca (len);
2320 struct value *val;
2321 CORE_ADDR to_addr = value_address (toval);
2322
2323 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2324 fromval = value_cast (type, fromval);
2325
2326 read_memory (to_addr, buffer, len);
2327 from_size = value_bitsize (fromval);
2328 if (from_size == 0)
2329 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2330 if (gdbarch_bits_big_endian (get_type_arch (type)))
2331 move_bits (buffer, value_bitpos (toval),
2332 value_contents (fromval), from_size - bits, bits, 1);
2333 else
2334 move_bits (buffer, value_bitpos (toval),
2335 value_contents (fromval), 0, bits, 0);
2336 write_memory (to_addr, buffer, len);
2337 observer_notify_memory_changed (to_addr, len, buffer);
2338
2339 val = value_copy (toval);
2340 memcpy (value_contents_raw (val), value_contents (fromval),
2341 TYPE_LENGTH (type));
2342 deprecated_set_value_type (val, type);
2343
2344 return val;
2345 }
2346
2347 return value_assign (toval, fromval);
2348 }
2349
2350
2351 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2352 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2353 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2354 * COMPONENT, and not the inferior's memory. The current contents
2355 * of COMPONENT are ignored. */
2356 static void
2357 value_assign_to_component (struct value *container, struct value *component,
2358 struct value *val)
2359 {
2360 LONGEST offset_in_container =
2361 (LONGEST) (value_address (component) - value_address (container));
2362 int bit_offset_in_container =
2363 value_bitpos (component) - value_bitpos (container);
2364 int bits;
2365
2366 val = value_cast (value_type (component), val);
2367
2368 if (value_bitsize (component) == 0)
2369 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2370 else
2371 bits = value_bitsize (component);
2372
2373 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2374 move_bits (value_contents_writeable (container) + offset_in_container,
2375 value_bitpos (container) + bit_offset_in_container,
2376 value_contents (val),
2377 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2378 bits, 1);
2379 else
2380 move_bits (value_contents_writeable (container) + offset_in_container,
2381 value_bitpos (container) + bit_offset_in_container,
2382 value_contents (val), 0, bits, 0);
2383 }
2384
2385 /* The value of the element of array ARR at the ARITY indices given in IND.
2386 ARR may be either a simple array, GNAT array descriptor, or pointer
2387 thereto. */
2388
2389 struct value *
2390 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2391 {
2392 int k;
2393 struct value *elt;
2394 struct type *elt_type;
2395
2396 elt = ada_coerce_to_simple_array (arr);
2397
2398 elt_type = ada_check_typedef (value_type (elt));
2399 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2400 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2401 return value_subscript_packed (elt, arity, ind);
2402
2403 for (k = 0; k < arity; k += 1)
2404 {
2405 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2406 error (_("too many subscripts (%d expected)"), k);
2407 elt = value_subscript (elt, pos_atr (ind[k]));
2408 }
2409 return elt;
2410 }
2411
2412 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2413 value of the element of *ARR at the ARITY indices given in
2414 IND. Does not read the entire array into memory. */
2415
2416 static struct value *
2417 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2418 struct value **ind)
2419 {
2420 int k;
2421
2422 for (k = 0; k < arity; k += 1)
2423 {
2424 LONGEST lwb, upb;
2425
2426 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2427 error (_("too many subscripts (%d expected)"), k);
2428 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2429 value_copy (arr));
2430 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2431 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2432 type = TYPE_TARGET_TYPE (type);
2433 }
2434
2435 return value_ind (arr);
2436 }
2437
2438 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2439 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2440 elements starting at index LOW. The lower bound of this array is LOW, as
2441 per Ada rules. */
2442 static struct value *
2443 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2444 int low, int high)
2445 {
2446 CORE_ADDR base = value_as_address (array_ptr)
2447 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type)))
2448 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
2449 struct type *index_type =
2450 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
2451 low, high);
2452 struct type *slice_type =
2453 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2454
2455 return value_at_lazy (slice_type, base);
2456 }
2457
2458
2459 static struct value *
2460 ada_value_slice (struct value *array, int low, int high)
2461 {
2462 struct type *type = value_type (array);
2463 struct type *index_type =
2464 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2465 struct type *slice_type =
2466 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2467
2468 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2469 }
2470
2471 /* If type is a record type in the form of a standard GNAT array
2472 descriptor, returns the number of dimensions for type. If arr is a
2473 simple array, returns the number of "array of"s that prefix its
2474 type designation. Otherwise, returns 0. */
2475
2476 int
2477 ada_array_arity (struct type *type)
2478 {
2479 int arity;
2480
2481 if (type == NULL)
2482 return 0;
2483
2484 type = desc_base_type (type);
2485
2486 arity = 0;
2487 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2488 return desc_arity (desc_bounds_type (type));
2489 else
2490 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2491 {
2492 arity += 1;
2493 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2494 }
2495
2496 return arity;
2497 }
2498
2499 /* If TYPE is a record type in the form of a standard GNAT array
2500 descriptor or a simple array type, returns the element type for
2501 TYPE after indexing by NINDICES indices, or by all indices if
2502 NINDICES is -1. Otherwise, returns NULL. */
2503
2504 struct type *
2505 ada_array_element_type (struct type *type, int nindices)
2506 {
2507 type = desc_base_type (type);
2508
2509 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2510 {
2511 int k;
2512 struct type *p_array_type;
2513
2514 p_array_type = desc_data_target_type (type);
2515
2516 k = ada_array_arity (type);
2517 if (k == 0)
2518 return NULL;
2519
2520 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2521 if (nindices >= 0 && k > nindices)
2522 k = nindices;
2523 while (k > 0 && p_array_type != NULL)
2524 {
2525 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2526 k -= 1;
2527 }
2528 return p_array_type;
2529 }
2530 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2531 {
2532 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2533 {
2534 type = TYPE_TARGET_TYPE (type);
2535 nindices -= 1;
2536 }
2537 return type;
2538 }
2539
2540 return NULL;
2541 }
2542
2543 /* The type of nth index in arrays of given type (n numbering from 1).
2544 Does not examine memory. Throws an error if N is invalid or TYPE
2545 is not an array type. NAME is the name of the Ada attribute being
2546 evaluated ('range, 'first, 'last, or 'length); it is used in building
2547 the error message. */
2548
2549 static struct type *
2550 ada_index_type (struct type *type, int n, const char *name)
2551 {
2552 struct type *result_type;
2553
2554 type = desc_base_type (type);
2555
2556 if (n < 0 || n > ada_array_arity (type))
2557 error (_("invalid dimension number to '%s"), name);
2558
2559 if (ada_is_simple_array_type (type))
2560 {
2561 int i;
2562
2563 for (i = 1; i < n; i += 1)
2564 type = TYPE_TARGET_TYPE (type);
2565 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2566 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2567 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2568 perhaps stabsread.c would make more sense. */
2569 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2570 result_type = NULL;
2571 }
2572 else
2573 {
2574 result_type = desc_index_type (desc_bounds_type (type), n);
2575 if (result_type == NULL)
2576 error (_("attempt to take bound of something that is not an array"));
2577 }
2578
2579 return result_type;
2580 }
2581
2582 /* Given that arr is an array type, returns the lower bound of the
2583 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2584 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2585 array-descriptor type. It works for other arrays with bounds supplied
2586 by run-time quantities other than discriminants. */
2587
2588 static LONGEST
2589 ada_array_bound_from_type (struct type * arr_type, int n, int which)
2590 {
2591 struct type *type, *elt_type, *index_type_desc, *index_type;
2592 int i;
2593
2594 gdb_assert (which == 0 || which == 1);
2595
2596 if (ada_is_constrained_packed_array_type (arr_type))
2597 arr_type = decode_constrained_packed_array_type (arr_type);
2598
2599 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2600 return (LONGEST) - which;
2601
2602 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2603 type = TYPE_TARGET_TYPE (arr_type);
2604 else
2605 type = arr_type;
2606
2607 elt_type = type;
2608 for (i = n; i > 1; i--)
2609 elt_type = TYPE_TARGET_TYPE (type);
2610
2611 index_type_desc = ada_find_parallel_type (type, "___XA");
2612 ada_fixup_array_indexes_type (index_type_desc);
2613 if (index_type_desc != NULL)
2614 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2615 NULL);
2616 else
2617 index_type = TYPE_INDEX_TYPE (elt_type);
2618
2619 return
2620 (LONGEST) (which == 0
2621 ? ada_discrete_type_low_bound (index_type)
2622 : ada_discrete_type_high_bound (index_type));
2623 }
2624
2625 /* Given that arr is an array value, returns the lower bound of the
2626 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2627 WHICH is 1. This routine will also work for arrays with bounds
2628 supplied by run-time quantities other than discriminants. */
2629
2630 static LONGEST
2631 ada_array_bound (struct value *arr, int n, int which)
2632 {
2633 struct type *arr_type = value_type (arr);
2634
2635 if (ada_is_constrained_packed_array_type (arr_type))
2636 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2637 else if (ada_is_simple_array_type (arr_type))
2638 return ada_array_bound_from_type (arr_type, n, which);
2639 else
2640 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2641 }
2642
2643 /* Given that arr is an array value, returns the length of the
2644 nth index. This routine will also work for arrays with bounds
2645 supplied by run-time quantities other than discriminants.
2646 Does not work for arrays indexed by enumeration types with representation
2647 clauses at the moment. */
2648
2649 static LONGEST
2650 ada_array_length (struct value *arr, int n)
2651 {
2652 struct type *arr_type = ada_check_typedef (value_type (arr));
2653
2654 if (ada_is_constrained_packed_array_type (arr_type))
2655 return ada_array_length (decode_constrained_packed_array (arr), n);
2656
2657 if (ada_is_simple_array_type (arr_type))
2658 return (ada_array_bound_from_type (arr_type, n, 1)
2659 - ada_array_bound_from_type (arr_type, n, 0) + 1);
2660 else
2661 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2662 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2663 }
2664
2665 /* An empty array whose type is that of ARR_TYPE (an array type),
2666 with bounds LOW to LOW-1. */
2667
2668 static struct value *
2669 empty_array (struct type *arr_type, int low)
2670 {
2671 struct type *index_type =
2672 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2673 low, low - 1);
2674 struct type *elt_type = ada_array_element_type (arr_type, 1);
2675
2676 return allocate_value (create_array_type (NULL, elt_type, index_type));
2677 }
2678 \f
2679
2680 /* Name resolution */
2681
2682 /* The "decoded" name for the user-definable Ada operator corresponding
2683 to OP. */
2684
2685 static const char *
2686 ada_decoded_op_name (enum exp_opcode op)
2687 {
2688 int i;
2689
2690 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2691 {
2692 if (ada_opname_table[i].op == op)
2693 return ada_opname_table[i].decoded;
2694 }
2695 error (_("Could not find operator name for opcode"));
2696 }
2697
2698
2699 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2700 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2701 undefined namespace) and converts operators that are
2702 user-defined into appropriate function calls. If CONTEXT_TYPE is
2703 non-null, it provides a preferred result type [at the moment, only
2704 type void has any effect---causing procedures to be preferred over
2705 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2706 return type is preferred. May change (expand) *EXP. */
2707
2708 static void
2709 resolve (struct expression **expp, int void_context_p)
2710 {
2711 struct type *context_type = NULL;
2712 int pc = 0;
2713
2714 if (void_context_p)
2715 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2716
2717 resolve_subexp (expp, &pc, 1, context_type);
2718 }
2719
2720 /* Resolve the operator of the subexpression beginning at
2721 position *POS of *EXPP. "Resolving" consists of replacing
2722 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2723 with their resolutions, replacing built-in operators with
2724 function calls to user-defined operators, where appropriate, and,
2725 when DEPROCEDURE_P is non-zero, converting function-valued variables
2726 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2727 are as in ada_resolve, above. */
2728
2729 static struct value *
2730 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2731 struct type *context_type)
2732 {
2733 int pc = *pos;
2734 int i;
2735 struct expression *exp; /* Convenience: == *expp. */
2736 enum exp_opcode op = (*expp)->elts[pc].opcode;
2737 struct value **argvec; /* Vector of operand types (alloca'ed). */
2738 int nargs; /* Number of operands. */
2739 int oplen;
2740
2741 argvec = NULL;
2742 nargs = 0;
2743 exp = *expp;
2744
2745 /* Pass one: resolve operands, saving their types and updating *pos,
2746 if needed. */
2747 switch (op)
2748 {
2749 case OP_FUNCALL:
2750 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2751 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2752 *pos += 7;
2753 else
2754 {
2755 *pos += 3;
2756 resolve_subexp (expp, pos, 0, NULL);
2757 }
2758 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2759 break;
2760
2761 case UNOP_ADDR:
2762 *pos += 1;
2763 resolve_subexp (expp, pos, 0, NULL);
2764 break;
2765
2766 case UNOP_QUAL:
2767 *pos += 3;
2768 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
2769 break;
2770
2771 case OP_ATR_MODULUS:
2772 case OP_ATR_SIZE:
2773 case OP_ATR_TAG:
2774 case OP_ATR_FIRST:
2775 case OP_ATR_LAST:
2776 case OP_ATR_LENGTH:
2777 case OP_ATR_POS:
2778 case OP_ATR_VAL:
2779 case OP_ATR_MIN:
2780 case OP_ATR_MAX:
2781 case TERNOP_IN_RANGE:
2782 case BINOP_IN_BOUNDS:
2783 case UNOP_IN_RANGE:
2784 case OP_AGGREGATE:
2785 case OP_OTHERS:
2786 case OP_CHOICES:
2787 case OP_POSITIONAL:
2788 case OP_DISCRETE_RANGE:
2789 case OP_NAME:
2790 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2791 *pos += oplen;
2792 break;
2793
2794 case BINOP_ASSIGN:
2795 {
2796 struct value *arg1;
2797
2798 *pos += 1;
2799 arg1 = resolve_subexp (expp, pos, 0, NULL);
2800 if (arg1 == NULL)
2801 resolve_subexp (expp, pos, 1, NULL);
2802 else
2803 resolve_subexp (expp, pos, 1, value_type (arg1));
2804 break;
2805 }
2806
2807 case UNOP_CAST:
2808 *pos += 3;
2809 nargs = 1;
2810 break;
2811
2812 case BINOP_ADD:
2813 case BINOP_SUB:
2814 case BINOP_MUL:
2815 case BINOP_DIV:
2816 case BINOP_REM:
2817 case BINOP_MOD:
2818 case BINOP_EXP:
2819 case BINOP_CONCAT:
2820 case BINOP_LOGICAL_AND:
2821 case BINOP_LOGICAL_OR:
2822 case BINOP_BITWISE_AND:
2823 case BINOP_BITWISE_IOR:
2824 case BINOP_BITWISE_XOR:
2825
2826 case BINOP_EQUAL:
2827 case BINOP_NOTEQUAL:
2828 case BINOP_LESS:
2829 case BINOP_GTR:
2830 case BINOP_LEQ:
2831 case BINOP_GEQ:
2832
2833 case BINOP_REPEAT:
2834 case BINOP_SUBSCRIPT:
2835 case BINOP_COMMA:
2836 *pos += 1;
2837 nargs = 2;
2838 break;
2839
2840 case UNOP_NEG:
2841 case UNOP_PLUS:
2842 case UNOP_LOGICAL_NOT:
2843 case UNOP_ABS:
2844 case UNOP_IND:
2845 *pos += 1;
2846 nargs = 1;
2847 break;
2848
2849 case OP_LONG:
2850 case OP_DOUBLE:
2851 case OP_VAR_VALUE:
2852 *pos += 4;
2853 break;
2854
2855 case OP_TYPE:
2856 case OP_BOOL:
2857 case OP_LAST:
2858 case OP_INTERNALVAR:
2859 *pos += 3;
2860 break;
2861
2862 case UNOP_MEMVAL:
2863 *pos += 3;
2864 nargs = 1;
2865 break;
2866
2867 case OP_REGISTER:
2868 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2869 break;
2870
2871 case STRUCTOP_STRUCT:
2872 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2873 nargs = 1;
2874 break;
2875
2876 case TERNOP_SLICE:
2877 *pos += 1;
2878 nargs = 3;
2879 break;
2880
2881 case OP_STRING:
2882 break;
2883
2884 default:
2885 error (_("Unexpected operator during name resolution"));
2886 }
2887
2888 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
2889 for (i = 0; i < nargs; i += 1)
2890 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2891 argvec[i] = NULL;
2892 exp = *expp;
2893
2894 /* Pass two: perform any resolution on principal operator. */
2895 switch (op)
2896 {
2897 default:
2898 break;
2899
2900 case OP_VAR_VALUE:
2901 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
2902 {
2903 struct ada_symbol_info *candidates;
2904 int n_candidates;
2905
2906 n_candidates =
2907 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2908 (exp->elts[pc + 2].symbol),
2909 exp->elts[pc + 1].block, VAR_DOMAIN,
2910 &candidates);
2911
2912 if (n_candidates > 1)
2913 {
2914 /* Types tend to get re-introduced locally, so if there
2915 are any local symbols that are not types, first filter
2916 out all types. */
2917 int j;
2918 for (j = 0; j < n_candidates; j += 1)
2919 switch (SYMBOL_CLASS (candidates[j].sym))
2920 {
2921 case LOC_REGISTER:
2922 case LOC_ARG:
2923 case LOC_REF_ARG:
2924 case LOC_REGPARM_ADDR:
2925 case LOC_LOCAL:
2926 case LOC_COMPUTED:
2927 goto FoundNonType;
2928 default:
2929 break;
2930 }
2931 FoundNonType:
2932 if (j < n_candidates)
2933 {
2934 j = 0;
2935 while (j < n_candidates)
2936 {
2937 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2938 {
2939 candidates[j] = candidates[n_candidates - 1];
2940 n_candidates -= 1;
2941 }
2942 else
2943 j += 1;
2944 }
2945 }
2946 }
2947
2948 if (n_candidates == 0)
2949 error (_("No definition found for %s"),
2950 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2951 else if (n_candidates == 1)
2952 i = 0;
2953 else if (deprocedure_p
2954 && !is_nonfunction (candidates, n_candidates))
2955 {
2956 i = ada_resolve_function
2957 (candidates, n_candidates, NULL, 0,
2958 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2959 context_type);
2960 if (i < 0)
2961 error (_("Could not find a match for %s"),
2962 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2963 }
2964 else
2965 {
2966 printf_filtered (_("Multiple matches for %s\n"),
2967 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2968 user_select_syms (candidates, n_candidates, 1);
2969 i = 0;
2970 }
2971
2972 exp->elts[pc + 1].block = candidates[i].block;
2973 exp->elts[pc + 2].symbol = candidates[i].sym;
2974 if (innermost_block == NULL
2975 || contained_in (candidates[i].block, innermost_block))
2976 innermost_block = candidates[i].block;
2977 }
2978
2979 if (deprocedure_p
2980 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2981 == TYPE_CODE_FUNC))
2982 {
2983 replace_operator_with_call (expp, pc, 0, 0,
2984 exp->elts[pc + 2].symbol,
2985 exp->elts[pc + 1].block);
2986 exp = *expp;
2987 }
2988 break;
2989
2990 case OP_FUNCALL:
2991 {
2992 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2993 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2994 {
2995 struct ada_symbol_info *candidates;
2996 int n_candidates;
2997
2998 n_candidates =
2999 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3000 (exp->elts[pc + 5].symbol),
3001 exp->elts[pc + 4].block, VAR_DOMAIN,
3002 &candidates);
3003 if (n_candidates == 1)
3004 i = 0;
3005 else
3006 {
3007 i = ada_resolve_function
3008 (candidates, n_candidates,
3009 argvec, nargs,
3010 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3011 context_type);
3012 if (i < 0)
3013 error (_("Could not find a match for %s"),
3014 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3015 }
3016
3017 exp->elts[pc + 4].block = candidates[i].block;
3018 exp->elts[pc + 5].symbol = candidates[i].sym;
3019 if (innermost_block == NULL
3020 || contained_in (candidates[i].block, innermost_block))
3021 innermost_block = candidates[i].block;
3022 }
3023 }
3024 break;
3025 case BINOP_ADD:
3026 case BINOP_SUB:
3027 case BINOP_MUL:
3028 case BINOP_DIV:
3029 case BINOP_REM:
3030 case BINOP_MOD:
3031 case BINOP_CONCAT:
3032 case BINOP_BITWISE_AND:
3033 case BINOP_BITWISE_IOR:
3034 case BINOP_BITWISE_XOR:
3035 case BINOP_EQUAL:
3036 case BINOP_NOTEQUAL:
3037 case BINOP_LESS:
3038 case BINOP_GTR:
3039 case BINOP_LEQ:
3040 case BINOP_GEQ:
3041 case BINOP_EXP:
3042 case UNOP_NEG:
3043 case UNOP_PLUS:
3044 case UNOP_LOGICAL_NOT:
3045 case UNOP_ABS:
3046 if (possible_user_operator_p (op, argvec))
3047 {
3048 struct ada_symbol_info *candidates;
3049 int n_candidates;
3050
3051 n_candidates =
3052 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3053 (struct block *) NULL, VAR_DOMAIN,
3054 &candidates);
3055 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3056 ada_decoded_op_name (op), NULL);
3057 if (i < 0)
3058 break;
3059
3060 replace_operator_with_call (expp, pc, nargs, 1,
3061 candidates[i].sym, candidates[i].block);
3062 exp = *expp;
3063 }
3064 break;
3065
3066 case OP_TYPE:
3067 case OP_REGISTER:
3068 return NULL;
3069 }
3070
3071 *pos = pc;
3072 return evaluate_subexp_type (exp, pos);
3073 }
3074
3075 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3076 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3077 a non-pointer. */
3078 /* The term "match" here is rather loose. The match is heuristic and
3079 liberal. */
3080
3081 static int
3082 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3083 {
3084 ftype = ada_check_typedef (ftype);
3085 atype = ada_check_typedef (atype);
3086
3087 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3088 ftype = TYPE_TARGET_TYPE (ftype);
3089 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3090 atype = TYPE_TARGET_TYPE (atype);
3091
3092 switch (TYPE_CODE (ftype))
3093 {
3094 default:
3095 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3096 case TYPE_CODE_PTR:
3097 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3098 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3099 TYPE_TARGET_TYPE (atype), 0);
3100 else
3101 return (may_deref
3102 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3103 case TYPE_CODE_INT:
3104 case TYPE_CODE_ENUM:
3105 case TYPE_CODE_RANGE:
3106 switch (TYPE_CODE (atype))
3107 {
3108 case TYPE_CODE_INT:
3109 case TYPE_CODE_ENUM:
3110 case TYPE_CODE_RANGE:
3111 return 1;
3112 default:
3113 return 0;
3114 }
3115
3116 case TYPE_CODE_ARRAY:
3117 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3118 || ada_is_array_descriptor_type (atype));
3119
3120 case TYPE_CODE_STRUCT:
3121 if (ada_is_array_descriptor_type (ftype))
3122 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3123 || ada_is_array_descriptor_type (atype));
3124 else
3125 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3126 && !ada_is_array_descriptor_type (atype));
3127
3128 case TYPE_CODE_UNION:
3129 case TYPE_CODE_FLT:
3130 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3131 }
3132 }
3133
3134 /* Return non-zero if the formals of FUNC "sufficiently match" the
3135 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3136 may also be an enumeral, in which case it is treated as a 0-
3137 argument function. */
3138
3139 static int
3140 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3141 {
3142 int i;
3143 struct type *func_type = SYMBOL_TYPE (func);
3144
3145 if (SYMBOL_CLASS (func) == LOC_CONST
3146 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3147 return (n_actuals == 0);
3148 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3149 return 0;
3150
3151 if (TYPE_NFIELDS (func_type) != n_actuals)
3152 return 0;
3153
3154 for (i = 0; i < n_actuals; i += 1)
3155 {
3156 if (actuals[i] == NULL)
3157 return 0;
3158 else
3159 {
3160 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3161 i));
3162 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3163
3164 if (!ada_type_match (ftype, atype, 1))
3165 return 0;
3166 }
3167 }
3168 return 1;
3169 }
3170
3171 /* False iff function type FUNC_TYPE definitely does not produce a value
3172 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3173 FUNC_TYPE is not a valid function type with a non-null return type
3174 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3175
3176 static int
3177 return_match (struct type *func_type, struct type *context_type)
3178 {
3179 struct type *return_type;
3180
3181 if (func_type == NULL)
3182 return 1;
3183
3184 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3185 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3186 else
3187 return_type = base_type (func_type);
3188 if (return_type == NULL)
3189 return 1;
3190
3191 context_type = base_type (context_type);
3192
3193 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3194 return context_type == NULL || return_type == context_type;
3195 else if (context_type == NULL)
3196 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3197 else
3198 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3199 }
3200
3201
3202 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3203 function (if any) that matches the types of the NARGS arguments in
3204 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3205 that returns that type, then eliminate matches that don't. If
3206 CONTEXT_TYPE is void and there is at least one match that does not
3207 return void, eliminate all matches that do.
3208
3209 Asks the user if there is more than one match remaining. Returns -1
3210 if there is no such symbol or none is selected. NAME is used
3211 solely for messages. May re-arrange and modify SYMS in
3212 the process; the index returned is for the modified vector. */
3213
3214 static int
3215 ada_resolve_function (struct ada_symbol_info syms[],
3216 int nsyms, struct value **args, int nargs,
3217 const char *name, struct type *context_type)
3218 {
3219 int fallback;
3220 int k;
3221 int m; /* Number of hits */
3222
3223 m = 0;
3224 /* In the first pass of the loop, we only accept functions matching
3225 context_type. If none are found, we add a second pass of the loop
3226 where every function is accepted. */
3227 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3228 {
3229 for (k = 0; k < nsyms; k += 1)
3230 {
3231 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3232
3233 if (ada_args_match (syms[k].sym, args, nargs)
3234 && (fallback || return_match (type, context_type)))
3235 {
3236 syms[m] = syms[k];
3237 m += 1;
3238 }
3239 }
3240 }
3241
3242 if (m == 0)
3243 return -1;
3244 else if (m > 1)
3245 {
3246 printf_filtered (_("Multiple matches for %s\n"), name);
3247 user_select_syms (syms, m, 1);
3248 return 0;
3249 }
3250 return 0;
3251 }
3252
3253 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3254 in a listing of choices during disambiguation (see sort_choices, below).
3255 The idea is that overloadings of a subprogram name from the
3256 same package should sort in their source order. We settle for ordering
3257 such symbols by their trailing number (__N or $N). */
3258
3259 static int
3260 encoded_ordered_before (char *N0, char *N1)
3261 {
3262 if (N1 == NULL)
3263 return 0;
3264 else if (N0 == NULL)
3265 return 1;
3266 else
3267 {
3268 int k0, k1;
3269
3270 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3271 ;
3272 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3273 ;
3274 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3275 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3276 {
3277 int n0, n1;
3278
3279 n0 = k0;
3280 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3281 n0 -= 1;
3282 n1 = k1;
3283 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3284 n1 -= 1;
3285 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3286 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3287 }
3288 return (strcmp (N0, N1) < 0);
3289 }
3290 }
3291
3292 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3293 encoded names. */
3294
3295 static void
3296 sort_choices (struct ada_symbol_info syms[], int nsyms)
3297 {
3298 int i;
3299
3300 for (i = 1; i < nsyms; i += 1)
3301 {
3302 struct ada_symbol_info sym = syms[i];
3303 int j;
3304
3305 for (j = i - 1; j >= 0; j -= 1)
3306 {
3307 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3308 SYMBOL_LINKAGE_NAME (sym.sym)))
3309 break;
3310 syms[j + 1] = syms[j];
3311 }
3312 syms[j + 1] = sym;
3313 }
3314 }
3315
3316 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3317 by asking the user (if necessary), returning the number selected,
3318 and setting the first elements of SYMS items. Error if no symbols
3319 selected. */
3320
3321 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3322 to be re-integrated one of these days. */
3323
3324 int
3325 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3326 {
3327 int i;
3328 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3329 int n_chosen;
3330 int first_choice = (max_results == 1) ? 1 : 2;
3331 const char *select_mode = multiple_symbols_select_mode ();
3332
3333 if (max_results < 1)
3334 error (_("Request to select 0 symbols!"));
3335 if (nsyms <= 1)
3336 return nsyms;
3337
3338 if (select_mode == multiple_symbols_cancel)
3339 error (_("\
3340 canceled because the command is ambiguous\n\
3341 See set/show multiple-symbol."));
3342
3343 /* If select_mode is "all", then return all possible symbols.
3344 Only do that if more than one symbol can be selected, of course.
3345 Otherwise, display the menu as usual. */
3346 if (select_mode == multiple_symbols_all && max_results > 1)
3347 return nsyms;
3348
3349 printf_unfiltered (_("[0] cancel\n"));
3350 if (max_results > 1)
3351 printf_unfiltered (_("[1] all\n"));
3352
3353 sort_choices (syms, nsyms);
3354
3355 for (i = 0; i < nsyms; i += 1)
3356 {
3357 if (syms[i].sym == NULL)
3358 continue;
3359
3360 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3361 {
3362 struct symtab_and_line sal =
3363 find_function_start_sal (syms[i].sym, 1);
3364
3365 if (sal.symtab == NULL)
3366 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3367 i + first_choice,
3368 SYMBOL_PRINT_NAME (syms[i].sym),
3369 sal.line);
3370 else
3371 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3372 SYMBOL_PRINT_NAME (syms[i].sym),
3373 sal.symtab->filename, sal.line);
3374 continue;
3375 }
3376 else
3377 {
3378 int is_enumeral =
3379 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3380 && SYMBOL_TYPE (syms[i].sym) != NULL
3381 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3382 struct symtab *symtab = syms[i].sym->symtab;
3383
3384 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3385 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3386 i + first_choice,
3387 SYMBOL_PRINT_NAME (syms[i].sym),
3388 symtab->filename, SYMBOL_LINE (syms[i].sym));
3389 else if (is_enumeral
3390 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3391 {
3392 printf_unfiltered (("[%d] "), i + first_choice);
3393 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3394 gdb_stdout, -1, 0);
3395 printf_unfiltered (_("'(%s) (enumeral)\n"),
3396 SYMBOL_PRINT_NAME (syms[i].sym));
3397 }
3398 else if (symtab != NULL)
3399 printf_unfiltered (is_enumeral
3400 ? _("[%d] %s in %s (enumeral)\n")
3401 : _("[%d] %s at %s:?\n"),
3402 i + first_choice,
3403 SYMBOL_PRINT_NAME (syms[i].sym),
3404 symtab->filename);
3405 else
3406 printf_unfiltered (is_enumeral
3407 ? _("[%d] %s (enumeral)\n")
3408 : _("[%d] %s at ?\n"),
3409 i + first_choice,
3410 SYMBOL_PRINT_NAME (syms[i].sym));
3411 }
3412 }
3413
3414 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3415 "overload-choice");
3416
3417 for (i = 0; i < n_chosen; i += 1)
3418 syms[i] = syms[chosen[i]];
3419
3420 return n_chosen;
3421 }
3422
3423 /* Read and validate a set of numeric choices from the user in the
3424 range 0 .. N_CHOICES-1. Place the results in increasing
3425 order in CHOICES[0 .. N-1], and return N.
3426
3427 The user types choices as a sequence of numbers on one line
3428 separated by blanks, encoding them as follows:
3429
3430 + A choice of 0 means to cancel the selection, throwing an error.
3431 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3432 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3433
3434 The user is not allowed to choose more than MAX_RESULTS values.
3435
3436 ANNOTATION_SUFFIX, if present, is used to annotate the input
3437 prompts (for use with the -f switch). */
3438
3439 int
3440 get_selections (int *choices, int n_choices, int max_results,
3441 int is_all_choice, char *annotation_suffix)
3442 {
3443 char *args;
3444 char *prompt;
3445 int n_chosen;
3446 int first_choice = is_all_choice ? 2 : 1;
3447
3448 prompt = getenv ("PS2");
3449 if (prompt == NULL)
3450 prompt = "> ";
3451
3452 args = command_line_input (prompt, 0, annotation_suffix);
3453
3454 if (args == NULL)
3455 error_no_arg (_("one or more choice numbers"));
3456
3457 n_chosen = 0;
3458
3459 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3460 order, as given in args. Choices are validated. */
3461 while (1)
3462 {
3463 char *args2;
3464 int choice, j;
3465
3466 while (isspace (*args))
3467 args += 1;
3468 if (*args == '\0' && n_chosen == 0)
3469 error_no_arg (_("one or more choice numbers"));
3470 else if (*args == '\0')
3471 break;
3472
3473 choice = strtol (args, &args2, 10);
3474 if (args == args2 || choice < 0
3475 || choice > n_choices + first_choice - 1)
3476 error (_("Argument must be choice number"));
3477 args = args2;
3478
3479 if (choice == 0)
3480 error (_("cancelled"));
3481
3482 if (choice < first_choice)
3483 {
3484 n_chosen = n_choices;
3485 for (j = 0; j < n_choices; j += 1)
3486 choices[j] = j;
3487 break;
3488 }
3489 choice -= first_choice;
3490
3491 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3492 {
3493 }
3494
3495 if (j < 0 || choice != choices[j])
3496 {
3497 int k;
3498
3499 for (k = n_chosen - 1; k > j; k -= 1)
3500 choices[k + 1] = choices[k];
3501 choices[j + 1] = choice;
3502 n_chosen += 1;
3503 }
3504 }
3505
3506 if (n_chosen > max_results)
3507 error (_("Select no more than %d of the above"), max_results);
3508
3509 return n_chosen;
3510 }
3511
3512 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3513 on the function identified by SYM and BLOCK, and taking NARGS
3514 arguments. Update *EXPP as needed to hold more space. */
3515
3516 static void
3517 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3518 int oplen, struct symbol *sym,
3519 struct block *block)
3520 {
3521 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3522 symbol, -oplen for operator being replaced). */
3523 struct expression *newexp = (struct expression *)
3524 xmalloc (sizeof (struct expression)
3525 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3526 struct expression *exp = *expp;
3527
3528 newexp->nelts = exp->nelts + 7 - oplen;
3529 newexp->language_defn = exp->language_defn;
3530 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3531 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3532 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3533
3534 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3535 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3536
3537 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3538 newexp->elts[pc + 4].block = block;
3539 newexp->elts[pc + 5].symbol = sym;
3540
3541 *expp = newexp;
3542 xfree (exp);
3543 }
3544
3545 /* Type-class predicates */
3546
3547 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3548 or FLOAT). */
3549
3550 static int
3551 numeric_type_p (struct type *type)
3552 {
3553 if (type == NULL)
3554 return 0;
3555 else
3556 {
3557 switch (TYPE_CODE (type))
3558 {
3559 case TYPE_CODE_INT:
3560 case TYPE_CODE_FLT:
3561 return 1;
3562 case TYPE_CODE_RANGE:
3563 return (type == TYPE_TARGET_TYPE (type)
3564 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3565 default:
3566 return 0;
3567 }
3568 }
3569 }
3570
3571 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3572
3573 static int
3574 integer_type_p (struct type *type)
3575 {
3576 if (type == NULL)
3577 return 0;
3578 else
3579 {
3580 switch (TYPE_CODE (type))
3581 {
3582 case TYPE_CODE_INT:
3583 return 1;
3584 case TYPE_CODE_RANGE:
3585 return (type == TYPE_TARGET_TYPE (type)
3586 || integer_type_p (TYPE_TARGET_TYPE (type)));
3587 default:
3588 return 0;
3589 }
3590 }
3591 }
3592
3593 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3594
3595 static int
3596 scalar_type_p (struct type *type)
3597 {
3598 if (type == NULL)
3599 return 0;
3600 else
3601 {
3602 switch (TYPE_CODE (type))
3603 {
3604 case TYPE_CODE_INT:
3605 case TYPE_CODE_RANGE:
3606 case TYPE_CODE_ENUM:
3607 case TYPE_CODE_FLT:
3608 return 1;
3609 default:
3610 return 0;
3611 }
3612 }
3613 }
3614
3615 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3616
3617 static int
3618 discrete_type_p (struct type *type)
3619 {
3620 if (type == NULL)
3621 return 0;
3622 else
3623 {
3624 switch (TYPE_CODE (type))
3625 {
3626 case TYPE_CODE_INT:
3627 case TYPE_CODE_RANGE:
3628 case TYPE_CODE_ENUM:
3629 case TYPE_CODE_BOOL:
3630 return 1;
3631 default:
3632 return 0;
3633 }
3634 }
3635 }
3636
3637 /* Returns non-zero if OP with operands in the vector ARGS could be
3638 a user-defined function. Errs on the side of pre-defined operators
3639 (i.e., result 0). */
3640
3641 static int
3642 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3643 {
3644 struct type *type0 =
3645 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3646 struct type *type1 =
3647 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3648
3649 if (type0 == NULL)
3650 return 0;
3651
3652 switch (op)
3653 {
3654 default:
3655 return 0;
3656
3657 case BINOP_ADD:
3658 case BINOP_SUB:
3659 case BINOP_MUL:
3660 case BINOP_DIV:
3661 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3662
3663 case BINOP_REM:
3664 case BINOP_MOD:
3665 case BINOP_BITWISE_AND:
3666 case BINOP_BITWISE_IOR:
3667 case BINOP_BITWISE_XOR:
3668 return (!(integer_type_p (type0) && integer_type_p (type1)));
3669
3670 case BINOP_EQUAL:
3671 case BINOP_NOTEQUAL:
3672 case BINOP_LESS:
3673 case BINOP_GTR:
3674 case BINOP_LEQ:
3675 case BINOP_GEQ:
3676 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3677
3678 case BINOP_CONCAT:
3679 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3680
3681 case BINOP_EXP:
3682 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3683
3684 case UNOP_NEG:
3685 case UNOP_PLUS:
3686 case UNOP_LOGICAL_NOT:
3687 case UNOP_ABS:
3688 return (!numeric_type_p (type0));
3689
3690 }
3691 }
3692 \f
3693 /* Renaming */
3694
3695 /* NOTES:
3696
3697 1. In the following, we assume that a renaming type's name may
3698 have an ___XD suffix. It would be nice if this went away at some
3699 point.
3700 2. We handle both the (old) purely type-based representation of
3701 renamings and the (new) variable-based encoding. At some point,
3702 it is devoutly to be hoped that the former goes away
3703 (FIXME: hilfinger-2007-07-09).
3704 3. Subprogram renamings are not implemented, although the XRS
3705 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3706
3707 /* If SYM encodes a renaming,
3708
3709 <renaming> renames <renamed entity>,
3710
3711 sets *LEN to the length of the renamed entity's name,
3712 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3713 the string describing the subcomponent selected from the renamed
3714 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3715 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3716 are undefined). Otherwise, returns a value indicating the category
3717 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3718 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3719 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3720 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3721 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3722 may be NULL, in which case they are not assigned.
3723
3724 [Currently, however, GCC does not generate subprogram renamings.] */
3725
3726 enum ada_renaming_category
3727 ada_parse_renaming (struct symbol *sym,
3728 const char **renamed_entity, int *len,
3729 const char **renaming_expr)
3730 {
3731 enum ada_renaming_category kind;
3732 const char *info;
3733 const char *suffix;
3734
3735 if (sym == NULL)
3736 return ADA_NOT_RENAMING;
3737 switch (SYMBOL_CLASS (sym))
3738 {
3739 default:
3740 return ADA_NOT_RENAMING;
3741 case LOC_TYPEDEF:
3742 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3743 renamed_entity, len, renaming_expr);
3744 case LOC_LOCAL:
3745 case LOC_STATIC:
3746 case LOC_COMPUTED:
3747 case LOC_OPTIMIZED_OUT:
3748 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3749 if (info == NULL)
3750 return ADA_NOT_RENAMING;
3751 switch (info[5])
3752 {
3753 case '_':
3754 kind = ADA_OBJECT_RENAMING;
3755 info += 6;
3756 break;
3757 case 'E':
3758 kind = ADA_EXCEPTION_RENAMING;
3759 info += 7;
3760 break;
3761 case 'P':
3762 kind = ADA_PACKAGE_RENAMING;
3763 info += 7;
3764 break;
3765 case 'S':
3766 kind = ADA_SUBPROGRAM_RENAMING;
3767 info += 7;
3768 break;
3769 default:
3770 return ADA_NOT_RENAMING;
3771 }
3772 }
3773
3774 if (renamed_entity != NULL)
3775 *renamed_entity = info;
3776 suffix = strstr (info, "___XE");
3777 if (suffix == NULL || suffix == info)
3778 return ADA_NOT_RENAMING;
3779 if (len != NULL)
3780 *len = strlen (info) - strlen (suffix);
3781 suffix += 5;
3782 if (renaming_expr != NULL)
3783 *renaming_expr = suffix;
3784 return kind;
3785 }
3786
3787 /* Assuming TYPE encodes a renaming according to the old encoding in
3788 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3789 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3790 ADA_NOT_RENAMING otherwise. */
3791 static enum ada_renaming_category
3792 parse_old_style_renaming (struct type *type,
3793 const char **renamed_entity, int *len,
3794 const char **renaming_expr)
3795 {
3796 enum ada_renaming_category kind;
3797 const char *name;
3798 const char *info;
3799 const char *suffix;
3800
3801 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3802 || TYPE_NFIELDS (type) != 1)
3803 return ADA_NOT_RENAMING;
3804
3805 name = type_name_no_tag (type);
3806 if (name == NULL)
3807 return ADA_NOT_RENAMING;
3808
3809 name = strstr (name, "___XR");
3810 if (name == NULL)
3811 return ADA_NOT_RENAMING;
3812 switch (name[5])
3813 {
3814 case '\0':
3815 case '_':
3816 kind = ADA_OBJECT_RENAMING;
3817 break;
3818 case 'E':
3819 kind = ADA_EXCEPTION_RENAMING;
3820 break;
3821 case 'P':
3822 kind = ADA_PACKAGE_RENAMING;
3823 break;
3824 case 'S':
3825 kind = ADA_SUBPROGRAM_RENAMING;
3826 break;
3827 default:
3828 return ADA_NOT_RENAMING;
3829 }
3830
3831 info = TYPE_FIELD_NAME (type, 0);
3832 if (info == NULL)
3833 return ADA_NOT_RENAMING;
3834 if (renamed_entity != NULL)
3835 *renamed_entity = info;
3836 suffix = strstr (info, "___XE");
3837 if (renaming_expr != NULL)
3838 *renaming_expr = suffix + 5;
3839 if (suffix == NULL || suffix == info)
3840 return ADA_NOT_RENAMING;
3841 if (len != NULL)
3842 *len = suffix - info;
3843 return kind;
3844 }
3845
3846 \f
3847
3848 /* Evaluation: Function Calls */
3849
3850 /* Return an lvalue containing the value VAL. This is the identity on
3851 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3852 on the stack, using and updating *SP as the stack pointer, and
3853 returning an lvalue whose value_address points to the copy. */
3854
3855 static struct value *
3856 ensure_lval (struct value *val, struct gdbarch *gdbarch, CORE_ADDR *sp)
3857 {
3858 if (! VALUE_LVAL (val))
3859 {
3860 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3861
3862 /* The following is taken from the structure-return code in
3863 call_function_by_hand. FIXME: Therefore, some refactoring seems
3864 indicated. */
3865 if (gdbarch_inner_than (gdbarch, 1, 2))
3866 {
3867 /* Stack grows downward. Align SP and value_address (val) after
3868 reserving sufficient space. */
3869 *sp -= len;
3870 if (gdbarch_frame_align_p (gdbarch))
3871 *sp = gdbarch_frame_align (gdbarch, *sp);
3872 set_value_address (val, *sp);
3873 }
3874 else
3875 {
3876 /* Stack grows upward. Align the frame, allocate space, and
3877 then again, re-align the frame. */
3878 if (gdbarch_frame_align_p (gdbarch))
3879 *sp = gdbarch_frame_align (gdbarch, *sp);
3880 set_value_address (val, *sp);
3881 *sp += len;
3882 if (gdbarch_frame_align_p (gdbarch))
3883 *sp = gdbarch_frame_align (gdbarch, *sp);
3884 }
3885 VALUE_LVAL (val) = lval_memory;
3886
3887 write_memory (value_address (val), value_contents_raw (val), len);
3888 }
3889
3890 return val;
3891 }
3892
3893 /* Return the value ACTUAL, converted to be an appropriate value for a
3894 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3895 allocating any necessary descriptors (fat pointers), or copies of
3896 values not residing in memory, updating it as needed. */
3897
3898 struct value *
3899 ada_convert_actual (struct value *actual, struct type *formal_type0,
3900 struct gdbarch *gdbarch, CORE_ADDR *sp)
3901 {
3902 struct type *actual_type = ada_check_typedef (value_type (actual));
3903 struct type *formal_type = ada_check_typedef (formal_type0);
3904 struct type *formal_target =
3905 TYPE_CODE (formal_type) == TYPE_CODE_PTR
3906 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
3907 struct type *actual_target =
3908 TYPE_CODE (actual_type) == TYPE_CODE_PTR
3909 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
3910
3911 if (ada_is_array_descriptor_type (formal_target)
3912 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3913 return make_array_descriptor (formal_type, actual, gdbarch, sp);
3914 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
3915 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
3916 {
3917 struct value *result;
3918
3919 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
3920 && ada_is_array_descriptor_type (actual_target))
3921 result = desc_data (actual);
3922 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
3923 {
3924 if (VALUE_LVAL (actual) != lval_memory)
3925 {
3926 struct value *val;
3927
3928 actual_type = ada_check_typedef (value_type (actual));
3929 val = allocate_value (actual_type);
3930 memcpy ((char *) value_contents_raw (val),
3931 (char *) value_contents (actual),
3932 TYPE_LENGTH (actual_type));
3933 actual = ensure_lval (val, gdbarch, sp);
3934 }
3935 result = value_addr (actual);
3936 }
3937 else
3938 return actual;
3939 return value_cast_pointers (formal_type, result);
3940 }
3941 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3942 return ada_value_ind (actual);
3943
3944 return actual;
3945 }
3946
3947 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
3948 type TYPE. This is usually an inefficient no-op except on some targets
3949 (such as AVR) where the representation of a pointer and an address
3950 differs. */
3951
3952 static CORE_ADDR
3953 value_pointer (struct value *value, struct type *type)
3954 {
3955 struct gdbarch *gdbarch = get_type_arch (type);
3956 unsigned len = TYPE_LENGTH (type);
3957 gdb_byte *buf = alloca (len);
3958 CORE_ADDR addr;
3959
3960 addr = value_address (value);
3961 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
3962 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
3963 return addr;
3964 }
3965
3966
3967 /* Push a descriptor of type TYPE for array value ARR on the stack at
3968 *SP, updating *SP to reflect the new descriptor. Return either
3969 an lvalue representing the new descriptor, or (if TYPE is a pointer-
3970 to-descriptor type rather than a descriptor type), a struct value *
3971 representing a pointer to this descriptor. */
3972
3973 static struct value *
3974 make_array_descriptor (struct type *type, struct value *arr,
3975 struct gdbarch *gdbarch, CORE_ADDR *sp)
3976 {
3977 struct type *bounds_type = desc_bounds_type (type);
3978 struct type *desc_type = desc_base_type (type);
3979 struct value *descriptor = allocate_value (desc_type);
3980 struct value *bounds = allocate_value (bounds_type);
3981 int i;
3982
3983 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
3984 {
3985 modify_general_field (value_type (bounds),
3986 value_contents_writeable (bounds),
3987 ada_array_bound (arr, i, 0),
3988 desc_bound_bitpos (bounds_type, i, 0),
3989 desc_bound_bitsize (bounds_type, i, 0));
3990 modify_general_field (value_type (bounds),
3991 value_contents_writeable (bounds),
3992 ada_array_bound (arr, i, 1),
3993 desc_bound_bitpos (bounds_type, i, 1),
3994 desc_bound_bitsize (bounds_type, i, 1));
3995 }
3996
3997 bounds = ensure_lval (bounds, gdbarch, sp);
3998
3999 modify_general_field (value_type (descriptor),
4000 value_contents_writeable (descriptor),
4001 value_pointer (ensure_lval (arr, gdbarch, sp),
4002 TYPE_FIELD_TYPE (desc_type, 0)),
4003 fat_pntr_data_bitpos (desc_type),
4004 fat_pntr_data_bitsize (desc_type));
4005
4006 modify_general_field (value_type (descriptor),
4007 value_contents_writeable (descriptor),
4008 value_pointer (bounds,
4009 TYPE_FIELD_TYPE (desc_type, 1)),
4010 fat_pntr_bounds_bitpos (desc_type),
4011 fat_pntr_bounds_bitsize (desc_type));
4012
4013 descriptor = ensure_lval (descriptor, gdbarch, sp);
4014
4015 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4016 return value_addr (descriptor);
4017 else
4018 return descriptor;
4019 }
4020 \f
4021 /* Dummy definitions for an experimental caching module that is not
4022 * used in the public sources. */
4023
4024 static int
4025 lookup_cached_symbol (const char *name, domain_enum namespace,
4026 struct symbol **sym, struct block **block)
4027 {
4028 return 0;
4029 }
4030
4031 static void
4032 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
4033 struct block *block)
4034 {
4035 }
4036 \f
4037 /* Symbol Lookup */
4038
4039 /* Return the result of a standard (literal, C-like) lookup of NAME in
4040 given DOMAIN, visible from lexical block BLOCK. */
4041
4042 static struct symbol *
4043 standard_lookup (const char *name, const struct block *block,
4044 domain_enum domain)
4045 {
4046 struct symbol *sym;
4047
4048 if (lookup_cached_symbol (name, domain, &sym, NULL))
4049 return sym;
4050 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4051 cache_symbol (name, domain, sym, block_found);
4052 return sym;
4053 }
4054
4055
4056 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4057 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4058 since they contend in overloading in the same way. */
4059 static int
4060 is_nonfunction (struct ada_symbol_info syms[], int n)
4061 {
4062 int i;
4063
4064 for (i = 0; i < n; i += 1)
4065 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4066 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4067 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4068 return 1;
4069
4070 return 0;
4071 }
4072
4073 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4074 struct types. Otherwise, they may not. */
4075
4076 static int
4077 equiv_types (struct type *type0, struct type *type1)
4078 {
4079 if (type0 == type1)
4080 return 1;
4081 if (type0 == NULL || type1 == NULL
4082 || TYPE_CODE (type0) != TYPE_CODE (type1))
4083 return 0;
4084 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4085 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4086 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4087 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4088 return 1;
4089
4090 return 0;
4091 }
4092
4093 /* True iff SYM0 represents the same entity as SYM1, or one that is
4094 no more defined than that of SYM1. */
4095
4096 static int
4097 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4098 {
4099 if (sym0 == sym1)
4100 return 1;
4101 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4102 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4103 return 0;
4104
4105 switch (SYMBOL_CLASS (sym0))
4106 {
4107 case LOC_UNDEF:
4108 return 1;
4109 case LOC_TYPEDEF:
4110 {
4111 struct type *type0 = SYMBOL_TYPE (sym0);
4112 struct type *type1 = SYMBOL_TYPE (sym1);
4113 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4114 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4115 int len0 = strlen (name0);
4116
4117 return
4118 TYPE_CODE (type0) == TYPE_CODE (type1)
4119 && (equiv_types (type0, type1)
4120 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4121 && strncmp (name1 + len0, "___XV", 5) == 0));
4122 }
4123 case LOC_CONST:
4124 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4125 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4126 default:
4127 return 0;
4128 }
4129 }
4130
4131 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4132 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4133
4134 static void
4135 add_defn_to_vec (struct obstack *obstackp,
4136 struct symbol *sym,
4137 struct block *block)
4138 {
4139 int i;
4140 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4141
4142 /* Do not try to complete stub types, as the debugger is probably
4143 already scanning all symbols matching a certain name at the
4144 time when this function is called. Trying to replace the stub
4145 type by its associated full type will cause us to restart a scan
4146 which may lead to an infinite recursion. Instead, the client
4147 collecting the matching symbols will end up collecting several
4148 matches, with at least one of them complete. It can then filter
4149 out the stub ones if needed. */
4150
4151 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4152 {
4153 if (lesseq_defined_than (sym, prevDefns[i].sym))
4154 return;
4155 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4156 {
4157 prevDefns[i].sym = sym;
4158 prevDefns[i].block = block;
4159 return;
4160 }
4161 }
4162
4163 {
4164 struct ada_symbol_info info;
4165
4166 info.sym = sym;
4167 info.block = block;
4168 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4169 }
4170 }
4171
4172 /* Number of ada_symbol_info structures currently collected in
4173 current vector in *OBSTACKP. */
4174
4175 static int
4176 num_defns_collected (struct obstack *obstackp)
4177 {
4178 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4179 }
4180
4181 /* Vector of ada_symbol_info structures currently collected in current
4182 vector in *OBSTACKP. If FINISH, close off the vector and return
4183 its final address. */
4184
4185 static struct ada_symbol_info *
4186 defns_collected (struct obstack *obstackp, int finish)
4187 {
4188 if (finish)
4189 return obstack_finish (obstackp);
4190 else
4191 return (struct ada_symbol_info *) obstack_base (obstackp);
4192 }
4193
4194 /* Return a minimal symbol matching NAME according to Ada decoding
4195 rules. Returns NULL if there is no such minimal symbol. Names
4196 prefixed with "standard__" are handled specially: "standard__" is
4197 first stripped off, and only static and global symbols are searched. */
4198
4199 struct minimal_symbol *
4200 ada_lookup_simple_minsym (const char *name)
4201 {
4202 struct objfile *objfile;
4203 struct minimal_symbol *msymbol;
4204 int wild_match;
4205
4206 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4207 {
4208 name += sizeof ("standard__") - 1;
4209 wild_match = 0;
4210 }
4211 else
4212 wild_match = (strstr (name, "__") == NULL);
4213
4214 ALL_MSYMBOLS (objfile, msymbol)
4215 {
4216 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4217 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4218 return msymbol;
4219 }
4220
4221 return NULL;
4222 }
4223
4224 /* For all subprograms that statically enclose the subprogram of the
4225 selected frame, add symbols matching identifier NAME in DOMAIN
4226 and their blocks to the list of data in OBSTACKP, as for
4227 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4228 wildcard prefix. */
4229
4230 static void
4231 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4232 const char *name, domain_enum namespace,
4233 int wild_match)
4234 {
4235 }
4236
4237 /* True if TYPE is definitely an artificial type supplied to a symbol
4238 for which no debugging information was given in the symbol file. */
4239
4240 static int
4241 is_nondebugging_type (struct type *type)
4242 {
4243 char *name = ada_type_name (type);
4244
4245 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4246 }
4247
4248 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4249 duplicate other symbols in the list (The only case I know of where
4250 this happens is when object files containing stabs-in-ecoff are
4251 linked with files containing ordinary ecoff debugging symbols (or no
4252 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4253 Returns the number of items in the modified list. */
4254
4255 static int
4256 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4257 {
4258 int i, j;
4259
4260 i = 0;
4261 while (i < nsyms)
4262 {
4263 int remove = 0;
4264
4265 /* If two symbols have the same name and one of them is a stub type,
4266 the get rid of the stub. */
4267
4268 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4269 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4270 {
4271 for (j = 0; j < nsyms; j++)
4272 {
4273 if (j != i
4274 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4275 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4276 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4277 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4278 remove = 1;
4279 }
4280 }
4281
4282 /* Two symbols with the same name, same class and same address
4283 should be identical. */
4284
4285 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4286 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4287 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4288 {
4289 for (j = 0; j < nsyms; j += 1)
4290 {
4291 if (i != j
4292 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4293 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4294 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4295 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4296 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4297 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4298 remove = 1;
4299 }
4300 }
4301
4302 if (remove)
4303 {
4304 for (j = i + 1; j < nsyms; j += 1)
4305 syms[j - 1] = syms[j];
4306 nsyms -= 1;
4307 }
4308
4309 i += 1;
4310 }
4311 return nsyms;
4312 }
4313
4314 /* Given a type that corresponds to a renaming entity, use the type name
4315 to extract the scope (package name or function name, fully qualified,
4316 and following the GNAT encoding convention) where this renaming has been
4317 defined. The string returned needs to be deallocated after use. */
4318
4319 static char *
4320 xget_renaming_scope (struct type *renaming_type)
4321 {
4322 /* The renaming types adhere to the following convention:
4323 <scope>__<rename>___<XR extension>.
4324 So, to extract the scope, we search for the "___XR" extension,
4325 and then backtrack until we find the first "__". */
4326
4327 const char *name = type_name_no_tag (renaming_type);
4328 char *suffix = strstr (name, "___XR");
4329 char *last;
4330 int scope_len;
4331 char *scope;
4332
4333 /* Now, backtrack a bit until we find the first "__". Start looking
4334 at suffix - 3, as the <rename> part is at least one character long. */
4335
4336 for (last = suffix - 3; last > name; last--)
4337 if (last[0] == '_' && last[1] == '_')
4338 break;
4339
4340 /* Make a copy of scope and return it. */
4341
4342 scope_len = last - name;
4343 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4344
4345 strncpy (scope, name, scope_len);
4346 scope[scope_len] = '\0';
4347
4348 return scope;
4349 }
4350
4351 /* Return nonzero if NAME corresponds to a package name. */
4352
4353 static int
4354 is_package_name (const char *name)
4355 {
4356 /* Here, We take advantage of the fact that no symbols are generated
4357 for packages, while symbols are generated for each function.
4358 So the condition for NAME represent a package becomes equivalent
4359 to NAME not existing in our list of symbols. There is only one
4360 small complication with library-level functions (see below). */
4361
4362 char *fun_name;
4363
4364 /* If it is a function that has not been defined at library level,
4365 then we should be able to look it up in the symbols. */
4366 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4367 return 0;
4368
4369 /* Library-level function names start with "_ada_". See if function
4370 "_ada_" followed by NAME can be found. */
4371
4372 /* Do a quick check that NAME does not contain "__", since library-level
4373 functions names cannot contain "__" in them. */
4374 if (strstr (name, "__") != NULL)
4375 return 0;
4376
4377 fun_name = xstrprintf ("_ada_%s", name);
4378
4379 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4380 }
4381
4382 /* Return nonzero if SYM corresponds to a renaming entity that is
4383 not visible from FUNCTION_NAME. */
4384
4385 static int
4386 old_renaming_is_invisible (const struct symbol *sym, char *function_name)
4387 {
4388 char *scope;
4389
4390 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4391 return 0;
4392
4393 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4394
4395 make_cleanup (xfree, scope);
4396
4397 /* If the rename has been defined in a package, then it is visible. */
4398 if (is_package_name (scope))
4399 return 0;
4400
4401 /* Check that the rename is in the current function scope by checking
4402 that its name starts with SCOPE. */
4403
4404 /* If the function name starts with "_ada_", it means that it is
4405 a library-level function. Strip this prefix before doing the
4406 comparison, as the encoding for the renaming does not contain
4407 this prefix. */
4408 if (strncmp (function_name, "_ada_", 5) == 0)
4409 function_name += 5;
4410
4411 return (strncmp (function_name, scope, strlen (scope)) != 0);
4412 }
4413
4414 /* Remove entries from SYMS that corresponds to a renaming entity that
4415 is not visible from the function associated with CURRENT_BLOCK or
4416 that is superfluous due to the presence of more specific renaming
4417 information. Places surviving symbols in the initial entries of
4418 SYMS and returns the number of surviving symbols.
4419
4420 Rationale:
4421 First, in cases where an object renaming is implemented as a
4422 reference variable, GNAT may produce both the actual reference
4423 variable and the renaming encoding. In this case, we discard the
4424 latter.
4425
4426 Second, GNAT emits a type following a specified encoding for each renaming
4427 entity. Unfortunately, STABS currently does not support the definition
4428 of types that are local to a given lexical block, so all renamings types
4429 are emitted at library level. As a consequence, if an application
4430 contains two renaming entities using the same name, and a user tries to
4431 print the value of one of these entities, the result of the ada symbol
4432 lookup will also contain the wrong renaming type.
4433
4434 This function partially covers for this limitation by attempting to
4435 remove from the SYMS list renaming symbols that should be visible
4436 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4437 method with the current information available. The implementation
4438 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4439
4440 - When the user tries to print a rename in a function while there
4441 is another rename entity defined in a package: Normally, the
4442 rename in the function has precedence over the rename in the
4443 package, so the latter should be removed from the list. This is
4444 currently not the case.
4445
4446 - This function will incorrectly remove valid renames if
4447 the CURRENT_BLOCK corresponds to a function which symbol name
4448 has been changed by an "Export" pragma. As a consequence,
4449 the user will be unable to print such rename entities. */
4450
4451 static int
4452 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4453 int nsyms, const struct block *current_block)
4454 {
4455 struct symbol *current_function;
4456 char *current_function_name;
4457 int i;
4458 int is_new_style_renaming;
4459
4460 /* If there is both a renaming foo___XR... encoded as a variable and
4461 a simple variable foo in the same block, discard the latter.
4462 First, zero out such symbols, then compress. */
4463 is_new_style_renaming = 0;
4464 for (i = 0; i < nsyms; i += 1)
4465 {
4466 struct symbol *sym = syms[i].sym;
4467 struct block *block = syms[i].block;
4468 const char *name;
4469 const char *suffix;
4470
4471 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4472 continue;
4473 name = SYMBOL_LINKAGE_NAME (sym);
4474 suffix = strstr (name, "___XR");
4475
4476 if (suffix != NULL)
4477 {
4478 int name_len = suffix - name;
4479 int j;
4480
4481 is_new_style_renaming = 1;
4482 for (j = 0; j < nsyms; j += 1)
4483 if (i != j && syms[j].sym != NULL
4484 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4485 name_len) == 0
4486 && block == syms[j].block)
4487 syms[j].sym = NULL;
4488 }
4489 }
4490 if (is_new_style_renaming)
4491 {
4492 int j, k;
4493
4494 for (j = k = 0; j < nsyms; j += 1)
4495 if (syms[j].sym != NULL)
4496 {
4497 syms[k] = syms[j];
4498 k += 1;
4499 }
4500 return k;
4501 }
4502
4503 /* Extract the function name associated to CURRENT_BLOCK.
4504 Abort if unable to do so. */
4505
4506 if (current_block == NULL)
4507 return nsyms;
4508
4509 current_function = block_linkage_function (current_block);
4510 if (current_function == NULL)
4511 return nsyms;
4512
4513 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4514 if (current_function_name == NULL)
4515 return nsyms;
4516
4517 /* Check each of the symbols, and remove it from the list if it is
4518 a type corresponding to a renaming that is out of the scope of
4519 the current block. */
4520
4521 i = 0;
4522 while (i < nsyms)
4523 {
4524 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4525 == ADA_OBJECT_RENAMING
4526 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4527 {
4528 int j;
4529
4530 for (j = i + 1; j < nsyms; j += 1)
4531 syms[j - 1] = syms[j];
4532 nsyms -= 1;
4533 }
4534 else
4535 i += 1;
4536 }
4537
4538 return nsyms;
4539 }
4540
4541 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4542 whose name and domain match NAME and DOMAIN respectively.
4543 If no match was found, then extend the search to "enclosing"
4544 routines (in other words, if we're inside a nested function,
4545 search the symbols defined inside the enclosing functions).
4546
4547 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4548
4549 static void
4550 ada_add_local_symbols (struct obstack *obstackp, const char *name,
4551 struct block *block, domain_enum domain,
4552 int wild_match)
4553 {
4554 int block_depth = 0;
4555
4556 while (block != NULL)
4557 {
4558 block_depth += 1;
4559 ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4560
4561 /* If we found a non-function match, assume that's the one. */
4562 if (is_nonfunction (defns_collected (obstackp, 0),
4563 num_defns_collected (obstackp)))
4564 return;
4565
4566 block = BLOCK_SUPERBLOCK (block);
4567 }
4568
4569 /* If no luck so far, try to find NAME as a local symbol in some lexically
4570 enclosing subprogram. */
4571 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4572 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4573 }
4574
4575 /* An object of this type is used as the user_data argument when
4576 calling the map_ada_symtabs method. */
4577
4578 struct ada_psym_data
4579 {
4580 struct obstack *obstackp;
4581 const char *name;
4582 domain_enum domain;
4583 int global;
4584 int wild_match;
4585 };
4586
4587 /* Callback function for map_ada_symtabs. */
4588
4589 static void
4590 ada_add_psyms (struct objfile *objfile, struct symtab *s, void *user_data)
4591 {
4592 struct ada_psym_data *data = user_data;
4593 const int block_kind = data->global ? GLOBAL_BLOCK : STATIC_BLOCK;
4594
4595 ada_add_block_symbols (data->obstackp,
4596 BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), block_kind),
4597 data->name, data->domain, objfile, data->wild_match);
4598 }
4599
4600 /* Add to OBSTACKP all non-local symbols whose name and domain match
4601 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
4602 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
4603
4604 static void
4605 ada_add_non_local_symbols (struct obstack *obstackp, const char *name,
4606 domain_enum domain, int global,
4607 int is_wild_match)
4608 {
4609 struct objfile *objfile;
4610 struct ada_psym_data data;
4611
4612 data.obstackp = obstackp;
4613 data.name = name;
4614 data.domain = domain;
4615 data.global = global;
4616 data.wild_match = is_wild_match;
4617
4618 ALL_OBJFILES (objfile)
4619 {
4620 if (objfile->sf)
4621 objfile->sf->qf->map_ada_symtabs (objfile, wild_match, is_name_suffix,
4622 ada_add_psyms, name,
4623 global, domain,
4624 is_wild_match, &data);
4625 }
4626 }
4627
4628 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4629 scope and in global scopes, returning the number of matches. Sets
4630 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4631 indicating the symbols found and the blocks and symbol tables (if
4632 any) in which they were found. This vector are transient---good only to
4633 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4634 symbol match within the nest of blocks whose innermost member is BLOCK0,
4635 is the one match returned (no other matches in that or
4636 enclosing blocks is returned). If there are any matches in or
4637 surrounding BLOCK0, then these alone are returned. Otherwise, the
4638 search extends to global and file-scope (static) symbol tables.
4639 Names prefixed with "standard__" are handled specially: "standard__"
4640 is first stripped off, and only static and global symbols are searched. */
4641
4642 int
4643 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4644 domain_enum namespace,
4645 struct ada_symbol_info **results)
4646 {
4647 struct symbol *sym;
4648 struct block *block;
4649 const char *name;
4650 int wild_match;
4651 int cacheIfUnique;
4652 int ndefns;
4653
4654 obstack_free (&symbol_list_obstack, NULL);
4655 obstack_init (&symbol_list_obstack);
4656
4657 cacheIfUnique = 0;
4658
4659 /* Search specified block and its superiors. */
4660
4661 wild_match = (strstr (name0, "__") == NULL);
4662 name = name0;
4663 block = (struct block *) block0; /* FIXME: No cast ought to be
4664 needed, but adding const will
4665 have a cascade effect. */
4666
4667 /* Special case: If the user specifies a symbol name inside package
4668 Standard, do a non-wild matching of the symbol name without
4669 the "standard__" prefix. This was primarily introduced in order
4670 to allow the user to specifically access the standard exceptions
4671 using, for instance, Standard.Constraint_Error when Constraint_Error
4672 is ambiguous (due to the user defining its own Constraint_Error
4673 entity inside its program). */
4674 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4675 {
4676 wild_match = 0;
4677 block = NULL;
4678 name = name0 + sizeof ("standard__") - 1;
4679 }
4680
4681 /* Check the non-global symbols. If we have ANY match, then we're done. */
4682
4683 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
4684 wild_match);
4685 if (num_defns_collected (&symbol_list_obstack) > 0)
4686 goto done;
4687
4688 /* No non-global symbols found. Check our cache to see if we have
4689 already performed this search before. If we have, then return
4690 the same result. */
4691
4692 cacheIfUnique = 1;
4693 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4694 {
4695 if (sym != NULL)
4696 add_defn_to_vec (&symbol_list_obstack, sym, block);
4697 goto done;
4698 }
4699
4700 /* Search symbols from all global blocks. */
4701
4702 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 1,
4703 wild_match);
4704
4705 /* Now add symbols from all per-file blocks if we've gotten no hits
4706 (not strictly correct, but perhaps better than an error). */
4707
4708 if (num_defns_collected (&symbol_list_obstack) == 0)
4709 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 0,
4710 wild_match);
4711
4712 done:
4713 ndefns = num_defns_collected (&symbol_list_obstack);
4714 *results = defns_collected (&symbol_list_obstack, 1);
4715
4716 ndefns = remove_extra_symbols (*results, ndefns);
4717
4718 if (ndefns == 0)
4719 cache_symbol (name0, namespace, NULL, NULL);
4720
4721 if (ndefns == 1 && cacheIfUnique)
4722 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
4723
4724 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
4725
4726 return ndefns;
4727 }
4728
4729 struct symbol *
4730 ada_lookup_encoded_symbol (const char *name, const struct block *block0,
4731 domain_enum namespace, struct block **block_found)
4732 {
4733 struct ada_symbol_info *candidates;
4734 int n_candidates;
4735
4736 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
4737
4738 if (n_candidates == 0)
4739 return NULL;
4740
4741 if (block_found != NULL)
4742 *block_found = candidates[0].block;
4743
4744 return fixup_symbol_section (candidates[0].sym, NULL);
4745 }
4746
4747 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4748 scope and in global scopes, or NULL if none. NAME is folded and
4749 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4750 choosing the first symbol if there are multiple choices.
4751 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4752 table in which the symbol was found (in both cases, these
4753 assignments occur only if the pointers are non-null). */
4754 struct symbol *
4755 ada_lookup_symbol (const char *name, const struct block *block0,
4756 domain_enum namespace, int *is_a_field_of_this)
4757 {
4758 if (is_a_field_of_this != NULL)
4759 *is_a_field_of_this = 0;
4760
4761 return
4762 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
4763 block0, namespace, NULL);
4764 }
4765
4766 static struct symbol *
4767 ada_lookup_symbol_nonlocal (const char *name,
4768 const struct block *block,
4769 const domain_enum domain)
4770 {
4771 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
4772 }
4773
4774
4775 /* True iff STR is a possible encoded suffix of a normal Ada name
4776 that is to be ignored for matching purposes. Suffixes of parallel
4777 names (e.g., XVE) are not included here. Currently, the possible suffixes
4778 are given by any of the regular expressions:
4779
4780 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
4781 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4782 _E[0-9]+[bs]$ [protected object entry suffixes]
4783 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4784
4785 Also, any leading "__[0-9]+" sequence is skipped before the suffix
4786 match is performed. This sequence is used to differentiate homonyms,
4787 is an optional part of a valid name suffix. */
4788
4789 static int
4790 is_name_suffix (const char *str)
4791 {
4792 int k;
4793 const char *matching;
4794 const int len = strlen (str);
4795
4796 /* Skip optional leading __[0-9]+. */
4797
4798 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4799 {
4800 str += 3;
4801 while (isdigit (str[0]))
4802 str += 1;
4803 }
4804
4805 /* [.$][0-9]+ */
4806
4807 if (str[0] == '.' || str[0] == '$')
4808 {
4809 matching = str + 1;
4810 while (isdigit (matching[0]))
4811 matching += 1;
4812 if (matching[0] == '\0')
4813 return 1;
4814 }
4815
4816 /* ___[0-9]+ */
4817
4818 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4819 {
4820 matching = str + 3;
4821 while (isdigit (matching[0]))
4822 matching += 1;
4823 if (matching[0] == '\0')
4824 return 1;
4825 }
4826
4827 #if 0
4828 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4829 with a N at the end. Unfortunately, the compiler uses the same
4830 convention for other internal types it creates. So treating
4831 all entity names that end with an "N" as a name suffix causes
4832 some regressions. For instance, consider the case of an enumerated
4833 type. To support the 'Image attribute, it creates an array whose
4834 name ends with N.
4835 Having a single character like this as a suffix carrying some
4836 information is a bit risky. Perhaps we should change the encoding
4837 to be something like "_N" instead. In the meantime, do not do
4838 the following check. */
4839 /* Protected Object Subprograms */
4840 if (len == 1 && str [0] == 'N')
4841 return 1;
4842 #endif
4843
4844 /* _E[0-9]+[bs]$ */
4845 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
4846 {
4847 matching = str + 3;
4848 while (isdigit (matching[0]))
4849 matching += 1;
4850 if ((matching[0] == 'b' || matching[0] == 's')
4851 && matching [1] == '\0')
4852 return 1;
4853 }
4854
4855 /* ??? We should not modify STR directly, as we are doing below. This
4856 is fine in this case, but may become problematic later if we find
4857 that this alternative did not work, and want to try matching
4858 another one from the begining of STR. Since we modified it, we
4859 won't be able to find the begining of the string anymore! */
4860 if (str[0] == 'X')
4861 {
4862 str += 1;
4863 while (str[0] != '_' && str[0] != '\0')
4864 {
4865 if (str[0] != 'n' && str[0] != 'b')
4866 return 0;
4867 str += 1;
4868 }
4869 }
4870
4871 if (str[0] == '\000')
4872 return 1;
4873
4874 if (str[0] == '_')
4875 {
4876 if (str[1] != '_' || str[2] == '\000')
4877 return 0;
4878 if (str[2] == '_')
4879 {
4880 if (strcmp (str + 3, "JM") == 0)
4881 return 1;
4882 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
4883 the LJM suffix in favor of the JM one. But we will
4884 still accept LJM as a valid suffix for a reasonable
4885 amount of time, just to allow ourselves to debug programs
4886 compiled using an older version of GNAT. */
4887 if (strcmp (str + 3, "LJM") == 0)
4888 return 1;
4889 if (str[3] != 'X')
4890 return 0;
4891 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
4892 || str[4] == 'U' || str[4] == 'P')
4893 return 1;
4894 if (str[4] == 'R' && str[5] != 'T')
4895 return 1;
4896 return 0;
4897 }
4898 if (!isdigit (str[2]))
4899 return 0;
4900 for (k = 3; str[k] != '\0'; k += 1)
4901 if (!isdigit (str[k]) && str[k] != '_')
4902 return 0;
4903 return 1;
4904 }
4905 if (str[0] == '$' && isdigit (str[1]))
4906 {
4907 for (k = 2; str[k] != '\0'; k += 1)
4908 if (!isdigit (str[k]) && str[k] != '_')
4909 return 0;
4910 return 1;
4911 }
4912 return 0;
4913 }
4914
4915 /* Return non-zero if the string starting at NAME and ending before
4916 NAME_END contains no capital letters. */
4917
4918 static int
4919 is_valid_name_for_wild_match (const char *name0)
4920 {
4921 const char *decoded_name = ada_decode (name0);
4922 int i;
4923
4924 /* If the decoded name starts with an angle bracket, it means that
4925 NAME0 does not follow the GNAT encoding format. It should then
4926 not be allowed as a possible wild match. */
4927 if (decoded_name[0] == '<')
4928 return 0;
4929
4930 for (i=0; decoded_name[i] != '\0'; i++)
4931 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
4932 return 0;
4933
4934 return 1;
4935 }
4936
4937 /* True if NAME represents a name of the form A1.A2....An, n>=1 and
4938 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
4939 informational suffixes of NAME (i.e., for which is_name_suffix is
4940 true). */
4941
4942 static int
4943 wild_match (const char *patn0, int patn_len, const char *name0)
4944 {
4945 char* match;
4946 const char* start;
4947
4948 start = name0;
4949 while (1)
4950 {
4951 match = strstr (start, patn0);
4952 if (match == NULL)
4953 return 0;
4954 if ((match == name0
4955 || match[-1] == '.'
4956 || (match > name0 + 1 && match[-1] == '_' && match[-2] == '_')
4957 || (match == name0 + 5 && strncmp ("_ada_", name0, 5) == 0))
4958 && is_name_suffix (match + patn_len))
4959 return (match == name0 || is_valid_name_for_wild_match (name0));
4960 start = match + 1;
4961 }
4962 }
4963
4964 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
4965 vector *defn_symbols, updating the list of symbols in OBSTACKP
4966 (if necessary). If WILD, treat as NAME with a wildcard prefix.
4967 OBJFILE is the section containing BLOCK.
4968 SYMTAB is recorded with each symbol added. */
4969
4970 static void
4971 ada_add_block_symbols (struct obstack *obstackp,
4972 struct block *block, const char *name,
4973 domain_enum domain, struct objfile *objfile,
4974 int wild)
4975 {
4976 struct dict_iterator iter;
4977 int name_len = strlen (name);
4978 /* A matching argument symbol, if any. */
4979 struct symbol *arg_sym;
4980 /* Set true when we find a matching non-argument symbol. */
4981 int found_sym;
4982 struct symbol *sym;
4983
4984 arg_sym = NULL;
4985 found_sym = 0;
4986 if (wild)
4987 {
4988 struct symbol *sym;
4989
4990 ALL_BLOCK_SYMBOLS (block, iter, sym)
4991 {
4992 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
4993 SYMBOL_DOMAIN (sym), domain)
4994 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
4995 {
4996 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4997 continue;
4998 else if (SYMBOL_IS_ARGUMENT (sym))
4999 arg_sym = sym;
5000 else
5001 {
5002 found_sym = 1;
5003 add_defn_to_vec (obstackp,
5004 fixup_symbol_section (sym, objfile),
5005 block);
5006 }
5007 }
5008 }
5009 }
5010 else
5011 {
5012 ALL_BLOCK_SYMBOLS (block, iter, sym)
5013 {
5014 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5015 SYMBOL_DOMAIN (sym), domain))
5016 {
5017 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
5018
5019 if (cmp == 0
5020 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
5021 {
5022 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5023 {
5024 if (SYMBOL_IS_ARGUMENT (sym))
5025 arg_sym = sym;
5026 else
5027 {
5028 found_sym = 1;
5029 add_defn_to_vec (obstackp,
5030 fixup_symbol_section (sym, objfile),
5031 block);
5032 }
5033 }
5034 }
5035 }
5036 }
5037 }
5038
5039 if (!found_sym && arg_sym != NULL)
5040 {
5041 add_defn_to_vec (obstackp,
5042 fixup_symbol_section (arg_sym, objfile),
5043 block);
5044 }
5045
5046 if (!wild)
5047 {
5048 arg_sym = NULL;
5049 found_sym = 0;
5050
5051 ALL_BLOCK_SYMBOLS (block, iter, sym)
5052 {
5053 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5054 SYMBOL_DOMAIN (sym), domain))
5055 {
5056 int cmp;
5057
5058 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5059 if (cmp == 0)
5060 {
5061 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5062 if (cmp == 0)
5063 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5064 name_len);
5065 }
5066
5067 if (cmp == 0
5068 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5069 {
5070 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5071 {
5072 if (SYMBOL_IS_ARGUMENT (sym))
5073 arg_sym = sym;
5074 else
5075 {
5076 found_sym = 1;
5077 add_defn_to_vec (obstackp,
5078 fixup_symbol_section (sym, objfile),
5079 block);
5080 }
5081 }
5082 }
5083 }
5084 }
5085
5086 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5087 They aren't parameters, right? */
5088 if (!found_sym && arg_sym != NULL)
5089 {
5090 add_defn_to_vec (obstackp,
5091 fixup_symbol_section (arg_sym, objfile),
5092 block);
5093 }
5094 }
5095 }
5096 \f
5097
5098 /* Symbol Completion */
5099
5100 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5101 name in a form that's appropriate for the completion. The result
5102 does not need to be deallocated, but is only good until the next call.
5103
5104 TEXT_LEN is equal to the length of TEXT.
5105 Perform a wild match if WILD_MATCH is set.
5106 ENCODED should be set if TEXT represents the start of a symbol name
5107 in its encoded form. */
5108
5109 static const char *
5110 symbol_completion_match (const char *sym_name,
5111 const char *text, int text_len,
5112 int wild_match, int encoded)
5113 {
5114 const int verbatim_match = (text[0] == '<');
5115 int match = 0;
5116
5117 if (verbatim_match)
5118 {
5119 /* Strip the leading angle bracket. */
5120 text = text + 1;
5121 text_len--;
5122 }
5123
5124 /* First, test against the fully qualified name of the symbol. */
5125
5126 if (strncmp (sym_name, text, text_len) == 0)
5127 match = 1;
5128
5129 if (match && !encoded)
5130 {
5131 /* One needed check before declaring a positive match is to verify
5132 that iff we are doing a verbatim match, the decoded version
5133 of the symbol name starts with '<'. Otherwise, this symbol name
5134 is not a suitable completion. */
5135 const char *sym_name_copy = sym_name;
5136 int has_angle_bracket;
5137
5138 sym_name = ada_decode (sym_name);
5139 has_angle_bracket = (sym_name[0] == '<');
5140 match = (has_angle_bracket == verbatim_match);
5141 sym_name = sym_name_copy;
5142 }
5143
5144 if (match && !verbatim_match)
5145 {
5146 /* When doing non-verbatim match, another check that needs to
5147 be done is to verify that the potentially matching symbol name
5148 does not include capital letters, because the ada-mode would
5149 not be able to understand these symbol names without the
5150 angle bracket notation. */
5151 const char *tmp;
5152
5153 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5154 if (*tmp != '\0')
5155 match = 0;
5156 }
5157
5158 /* Second: Try wild matching... */
5159
5160 if (!match && wild_match)
5161 {
5162 /* Since we are doing wild matching, this means that TEXT
5163 may represent an unqualified symbol name. We therefore must
5164 also compare TEXT against the unqualified name of the symbol. */
5165 sym_name = ada_unqualified_name (ada_decode (sym_name));
5166
5167 if (strncmp (sym_name, text, text_len) == 0)
5168 match = 1;
5169 }
5170
5171 /* Finally: If we found a mach, prepare the result to return. */
5172
5173 if (!match)
5174 return NULL;
5175
5176 if (verbatim_match)
5177 sym_name = add_angle_brackets (sym_name);
5178
5179 if (!encoded)
5180 sym_name = ada_decode (sym_name);
5181
5182 return sym_name;
5183 }
5184
5185 DEF_VEC_P (char_ptr);
5186
5187 /* A companion function to ada_make_symbol_completion_list().
5188 Check if SYM_NAME represents a symbol which name would be suitable
5189 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5190 it is appended at the end of the given string vector SV.
5191
5192 ORIG_TEXT is the string original string from the user command
5193 that needs to be completed. WORD is the entire command on which
5194 completion should be performed. These two parameters are used to
5195 determine which part of the symbol name should be added to the
5196 completion vector.
5197 if WILD_MATCH is set, then wild matching is performed.
5198 ENCODED should be set if TEXT represents a symbol name in its
5199 encoded formed (in which case the completion should also be
5200 encoded). */
5201
5202 static void
5203 symbol_completion_add (VEC(char_ptr) **sv,
5204 const char *sym_name,
5205 const char *text, int text_len,
5206 const char *orig_text, const char *word,
5207 int wild_match, int encoded)
5208 {
5209 const char *match = symbol_completion_match (sym_name, text, text_len,
5210 wild_match, encoded);
5211 char *completion;
5212
5213 if (match == NULL)
5214 return;
5215
5216 /* We found a match, so add the appropriate completion to the given
5217 string vector. */
5218
5219 if (word == orig_text)
5220 {
5221 completion = xmalloc (strlen (match) + 5);
5222 strcpy (completion, match);
5223 }
5224 else if (word > orig_text)
5225 {
5226 /* Return some portion of sym_name. */
5227 completion = xmalloc (strlen (match) + 5);
5228 strcpy (completion, match + (word - orig_text));
5229 }
5230 else
5231 {
5232 /* Return some of ORIG_TEXT plus sym_name. */
5233 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5234 strncpy (completion, word, orig_text - word);
5235 completion[orig_text - word] = '\0';
5236 strcat (completion, match);
5237 }
5238
5239 VEC_safe_push (char_ptr, *sv, completion);
5240 }
5241
5242 /* An object of this type is passed as the user_data argument to the
5243 map_partial_symbol_names method. */
5244 struct add_partial_datum
5245 {
5246 VEC(char_ptr) **completions;
5247 char *text;
5248 int text_len;
5249 char *text0;
5250 char *word;
5251 int wild_match;
5252 int encoded;
5253 };
5254
5255 /* A callback for map_partial_symbol_names. */
5256 static void
5257 ada_add_partial_symbol_completions (const char *name, void *user_data)
5258 {
5259 struct add_partial_datum *data = user_data;
5260
5261 symbol_completion_add (data->completions, name,
5262 data->text, data->text_len, data->text0, data->word,
5263 data->wild_match, data->encoded);
5264 }
5265
5266 /* Return a list of possible symbol names completing TEXT0. The list
5267 is NULL terminated. WORD is the entire command on which completion
5268 is made. */
5269
5270 static char **
5271 ada_make_symbol_completion_list (char *text0, char *word)
5272 {
5273 char *text;
5274 int text_len;
5275 int wild_match;
5276 int encoded;
5277 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5278 struct symbol *sym;
5279 struct symtab *s;
5280 struct minimal_symbol *msymbol;
5281 struct objfile *objfile;
5282 struct block *b, *surrounding_static_block = 0;
5283 int i;
5284 struct dict_iterator iter;
5285
5286 if (text0[0] == '<')
5287 {
5288 text = xstrdup (text0);
5289 make_cleanup (xfree, text);
5290 text_len = strlen (text);
5291 wild_match = 0;
5292 encoded = 1;
5293 }
5294 else
5295 {
5296 text = xstrdup (ada_encode (text0));
5297 make_cleanup (xfree, text);
5298 text_len = strlen (text);
5299 for (i = 0; i < text_len; i++)
5300 text[i] = tolower (text[i]);
5301
5302 encoded = (strstr (text0, "__") != NULL);
5303 /* If the name contains a ".", then the user is entering a fully
5304 qualified entity name, and the match must not be done in wild
5305 mode. Similarly, if the user wants to complete what looks like
5306 an encoded name, the match must not be done in wild mode. */
5307 wild_match = (strchr (text0, '.') == NULL && !encoded);
5308 }
5309
5310 /* First, look at the partial symtab symbols. */
5311 {
5312 struct add_partial_datum data;
5313
5314 data.completions = &completions;
5315 data.text = text;
5316 data.text_len = text_len;
5317 data.text0 = text0;
5318 data.word = word;
5319 data.wild_match = wild_match;
5320 data.encoded = encoded;
5321 map_partial_symbol_names (ada_add_partial_symbol_completions, &data);
5322 }
5323
5324 /* At this point scan through the misc symbol vectors and add each
5325 symbol you find to the list. Eventually we want to ignore
5326 anything that isn't a text symbol (everything else will be
5327 handled by the psymtab code above). */
5328
5329 ALL_MSYMBOLS (objfile, msymbol)
5330 {
5331 QUIT;
5332 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5333 text, text_len, text0, word, wild_match, encoded);
5334 }
5335
5336 /* Search upwards from currently selected frame (so that we can
5337 complete on local vars. */
5338
5339 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5340 {
5341 if (!BLOCK_SUPERBLOCK (b))
5342 surrounding_static_block = b; /* For elmin of dups */
5343
5344 ALL_BLOCK_SYMBOLS (b, iter, sym)
5345 {
5346 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5347 text, text_len, text0, word,
5348 wild_match, encoded);
5349 }
5350 }
5351
5352 /* Go through the symtabs and check the externs and statics for
5353 symbols which match. */
5354
5355 ALL_SYMTABS (objfile, s)
5356 {
5357 QUIT;
5358 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5359 ALL_BLOCK_SYMBOLS (b, iter, sym)
5360 {
5361 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5362 text, text_len, text0, word,
5363 wild_match, encoded);
5364 }
5365 }
5366
5367 ALL_SYMTABS (objfile, s)
5368 {
5369 QUIT;
5370 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5371 /* Don't do this block twice. */
5372 if (b == surrounding_static_block)
5373 continue;
5374 ALL_BLOCK_SYMBOLS (b, iter, sym)
5375 {
5376 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5377 text, text_len, text0, word,
5378 wild_match, encoded);
5379 }
5380 }
5381
5382 /* Append the closing NULL entry. */
5383 VEC_safe_push (char_ptr, completions, NULL);
5384
5385 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5386 return the copy. It's unfortunate that we have to make a copy
5387 of an array that we're about to destroy, but there is nothing much
5388 we can do about it. Fortunately, it's typically not a very large
5389 array. */
5390 {
5391 const size_t completions_size =
5392 VEC_length (char_ptr, completions) * sizeof (char *);
5393 char **result = malloc (completions_size);
5394
5395 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5396
5397 VEC_free (char_ptr, completions);
5398 return result;
5399 }
5400 }
5401
5402 /* Field Access */
5403
5404 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5405 for tagged types. */
5406
5407 static int
5408 ada_is_dispatch_table_ptr_type (struct type *type)
5409 {
5410 char *name;
5411
5412 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5413 return 0;
5414
5415 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5416 if (name == NULL)
5417 return 0;
5418
5419 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5420 }
5421
5422 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5423 to be invisible to users. */
5424
5425 int
5426 ada_is_ignored_field (struct type *type, int field_num)
5427 {
5428 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5429 return 1;
5430
5431 /* Check the name of that field. */
5432 {
5433 const char *name = TYPE_FIELD_NAME (type, field_num);
5434
5435 /* Anonymous field names should not be printed.
5436 brobecker/2007-02-20: I don't think this can actually happen
5437 but we don't want to print the value of annonymous fields anyway. */
5438 if (name == NULL)
5439 return 1;
5440
5441 /* A field named "_parent" is internally generated by GNAT for
5442 tagged types, and should not be printed either. */
5443 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5444 return 1;
5445 }
5446
5447 /* If this is the dispatch table of a tagged type, then ignore. */
5448 if (ada_is_tagged_type (type, 1)
5449 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5450 return 1;
5451
5452 /* Not a special field, so it should not be ignored. */
5453 return 0;
5454 }
5455
5456 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5457 pointer or reference type whose ultimate target has a tag field. */
5458
5459 int
5460 ada_is_tagged_type (struct type *type, int refok)
5461 {
5462 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5463 }
5464
5465 /* True iff TYPE represents the type of X'Tag */
5466
5467 int
5468 ada_is_tag_type (struct type *type)
5469 {
5470 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5471 return 0;
5472 else
5473 {
5474 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5475
5476 return (name != NULL
5477 && strcmp (name, "ada__tags__dispatch_table") == 0);
5478 }
5479 }
5480
5481 /* The type of the tag on VAL. */
5482
5483 struct type *
5484 ada_tag_type (struct value *val)
5485 {
5486 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5487 }
5488
5489 /* The value of the tag on VAL. */
5490
5491 struct value *
5492 ada_value_tag (struct value *val)
5493 {
5494 return ada_value_struct_elt (val, "_tag", 0);
5495 }
5496
5497 /* The value of the tag on the object of type TYPE whose contents are
5498 saved at VALADDR, if it is non-null, or is at memory address
5499 ADDRESS. */
5500
5501 static struct value *
5502 value_tag_from_contents_and_address (struct type *type,
5503 const gdb_byte *valaddr,
5504 CORE_ADDR address)
5505 {
5506 int tag_byte_offset;
5507 struct type *tag_type;
5508
5509 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5510 NULL, NULL, NULL))
5511 {
5512 const gdb_byte *valaddr1 = ((valaddr == NULL)
5513 ? NULL
5514 : valaddr + tag_byte_offset);
5515 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5516
5517 return value_from_contents_and_address (tag_type, valaddr1, address1);
5518 }
5519 return NULL;
5520 }
5521
5522 static struct type *
5523 type_from_tag (struct value *tag)
5524 {
5525 const char *type_name = ada_tag_name (tag);
5526
5527 if (type_name != NULL)
5528 return ada_find_any_type (ada_encode (type_name));
5529 return NULL;
5530 }
5531
5532 struct tag_args
5533 {
5534 struct value *tag;
5535 char *name;
5536 };
5537
5538
5539 static int ada_tag_name_1 (void *);
5540 static int ada_tag_name_2 (struct tag_args *);
5541
5542 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5543 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5544 The value stored in ARGS->name is valid until the next call to
5545 ada_tag_name_1. */
5546
5547 static int
5548 ada_tag_name_1 (void *args0)
5549 {
5550 struct tag_args *args = (struct tag_args *) args0;
5551 static char name[1024];
5552 char *p;
5553 struct value *val;
5554
5555 args->name = NULL;
5556 val = ada_value_struct_elt (args->tag, "tsd", 1);
5557 if (val == NULL)
5558 return ada_tag_name_2 (args);
5559 val = ada_value_struct_elt (val, "expanded_name", 1);
5560 if (val == NULL)
5561 return 0;
5562 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5563 for (p = name; *p != '\0'; p += 1)
5564 if (isalpha (*p))
5565 *p = tolower (*p);
5566 args->name = name;
5567 return 0;
5568 }
5569
5570 /* Utility function for ada_tag_name_1 that tries the second
5571 representation for the dispatch table (in which there is no
5572 explicit 'tsd' field in the referent of the tag pointer, and instead
5573 the tsd pointer is stored just before the dispatch table. */
5574
5575 static int
5576 ada_tag_name_2 (struct tag_args *args)
5577 {
5578 struct type *info_type;
5579 static char name[1024];
5580 char *p;
5581 struct value *val, *valp;
5582
5583 args->name = NULL;
5584 info_type = ada_find_any_type ("ada__tags__type_specific_data");
5585 if (info_type == NULL)
5586 return 0;
5587 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5588 valp = value_cast (info_type, args->tag);
5589 if (valp == NULL)
5590 return 0;
5591 val = value_ind (value_ptradd (valp, -1));
5592 if (val == NULL)
5593 return 0;
5594 val = ada_value_struct_elt (val, "expanded_name", 1);
5595 if (val == NULL)
5596 return 0;
5597 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5598 for (p = name; *p != '\0'; p += 1)
5599 if (isalpha (*p))
5600 *p = tolower (*p);
5601 args->name = name;
5602 return 0;
5603 }
5604
5605 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5606 * a C string. */
5607
5608 const char *
5609 ada_tag_name (struct value *tag)
5610 {
5611 struct tag_args args;
5612
5613 if (!ada_is_tag_type (value_type (tag)))
5614 return NULL;
5615 args.tag = tag;
5616 args.name = NULL;
5617 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5618 return args.name;
5619 }
5620
5621 /* The parent type of TYPE, or NULL if none. */
5622
5623 struct type *
5624 ada_parent_type (struct type *type)
5625 {
5626 int i;
5627
5628 type = ada_check_typedef (type);
5629
5630 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5631 return NULL;
5632
5633 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5634 if (ada_is_parent_field (type, i))
5635 {
5636 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
5637
5638 /* If the _parent field is a pointer, then dereference it. */
5639 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
5640 parent_type = TYPE_TARGET_TYPE (parent_type);
5641 /* If there is a parallel XVS type, get the actual base type. */
5642 parent_type = ada_get_base_type (parent_type);
5643
5644 return ada_check_typedef (parent_type);
5645 }
5646
5647 return NULL;
5648 }
5649
5650 /* True iff field number FIELD_NUM of structure type TYPE contains the
5651 parent-type (inherited) fields of a derived type. Assumes TYPE is
5652 a structure type with at least FIELD_NUM+1 fields. */
5653
5654 int
5655 ada_is_parent_field (struct type *type, int field_num)
5656 {
5657 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5658
5659 return (name != NULL
5660 && (strncmp (name, "PARENT", 6) == 0
5661 || strncmp (name, "_parent", 7) == 0));
5662 }
5663
5664 /* True iff field number FIELD_NUM of structure type TYPE is a
5665 transparent wrapper field (which should be silently traversed when doing
5666 field selection and flattened when printing). Assumes TYPE is a
5667 structure type with at least FIELD_NUM+1 fields. Such fields are always
5668 structures. */
5669
5670 int
5671 ada_is_wrapper_field (struct type *type, int field_num)
5672 {
5673 const char *name = TYPE_FIELD_NAME (type, field_num);
5674
5675 return (name != NULL
5676 && (strncmp (name, "PARENT", 6) == 0
5677 || strcmp (name, "REP") == 0
5678 || strncmp (name, "_parent", 7) == 0
5679 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5680 }
5681
5682 /* True iff field number FIELD_NUM of structure or union type TYPE
5683 is a variant wrapper. Assumes TYPE is a structure type with at least
5684 FIELD_NUM+1 fields. */
5685
5686 int
5687 ada_is_variant_part (struct type *type, int field_num)
5688 {
5689 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5690
5691 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5692 || (is_dynamic_field (type, field_num)
5693 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5694 == TYPE_CODE_UNION)));
5695 }
5696
5697 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5698 whose discriminants are contained in the record type OUTER_TYPE,
5699 returns the type of the controlling discriminant for the variant.
5700 May return NULL if the type could not be found. */
5701
5702 struct type *
5703 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5704 {
5705 char *name = ada_variant_discrim_name (var_type);
5706
5707 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
5708 }
5709
5710 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5711 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5712 represents a 'when others' clause; otherwise 0. */
5713
5714 int
5715 ada_is_others_clause (struct type *type, int field_num)
5716 {
5717 const char *name = TYPE_FIELD_NAME (type, field_num);
5718
5719 return (name != NULL && name[0] == 'O');
5720 }
5721
5722 /* Assuming that TYPE0 is the type of the variant part of a record,
5723 returns the name of the discriminant controlling the variant.
5724 The value is valid until the next call to ada_variant_discrim_name. */
5725
5726 char *
5727 ada_variant_discrim_name (struct type *type0)
5728 {
5729 static char *result = NULL;
5730 static size_t result_len = 0;
5731 struct type *type;
5732 const char *name;
5733 const char *discrim_end;
5734 const char *discrim_start;
5735
5736 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5737 type = TYPE_TARGET_TYPE (type0);
5738 else
5739 type = type0;
5740
5741 name = ada_type_name (type);
5742
5743 if (name == NULL || name[0] == '\000')
5744 return "";
5745
5746 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5747 discrim_end -= 1)
5748 {
5749 if (strncmp (discrim_end, "___XVN", 6) == 0)
5750 break;
5751 }
5752 if (discrim_end == name)
5753 return "";
5754
5755 for (discrim_start = discrim_end; discrim_start != name + 3;
5756 discrim_start -= 1)
5757 {
5758 if (discrim_start == name + 1)
5759 return "";
5760 if ((discrim_start > name + 3
5761 && strncmp (discrim_start - 3, "___", 3) == 0)
5762 || discrim_start[-1] == '.')
5763 break;
5764 }
5765
5766 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5767 strncpy (result, discrim_start, discrim_end - discrim_start);
5768 result[discrim_end - discrim_start] = '\0';
5769 return result;
5770 }
5771
5772 /* Scan STR for a subtype-encoded number, beginning at position K.
5773 Put the position of the character just past the number scanned in
5774 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5775 Return 1 if there was a valid number at the given position, and 0
5776 otherwise. A "subtype-encoded" number consists of the absolute value
5777 in decimal, followed by the letter 'm' to indicate a negative number.
5778 Assumes 0m does not occur. */
5779
5780 int
5781 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
5782 {
5783 ULONGEST RU;
5784
5785 if (!isdigit (str[k]))
5786 return 0;
5787
5788 /* Do it the hard way so as not to make any assumption about
5789 the relationship of unsigned long (%lu scan format code) and
5790 LONGEST. */
5791 RU = 0;
5792 while (isdigit (str[k]))
5793 {
5794 RU = RU * 10 + (str[k] - '0');
5795 k += 1;
5796 }
5797
5798 if (str[k] == 'm')
5799 {
5800 if (R != NULL)
5801 *R = (-(LONGEST) (RU - 1)) - 1;
5802 k += 1;
5803 }
5804 else if (R != NULL)
5805 *R = (LONGEST) RU;
5806
5807 /* NOTE on the above: Technically, C does not say what the results of
5808 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5809 number representable as a LONGEST (although either would probably work
5810 in most implementations). When RU>0, the locution in the then branch
5811 above is always equivalent to the negative of RU. */
5812
5813 if (new_k != NULL)
5814 *new_k = k;
5815 return 1;
5816 }
5817
5818 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
5819 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
5820 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
5821
5822 int
5823 ada_in_variant (LONGEST val, struct type *type, int field_num)
5824 {
5825 const char *name = TYPE_FIELD_NAME (type, field_num);
5826 int p;
5827
5828 p = 0;
5829 while (1)
5830 {
5831 switch (name[p])
5832 {
5833 case '\0':
5834 return 0;
5835 case 'S':
5836 {
5837 LONGEST W;
5838
5839 if (!ada_scan_number (name, p + 1, &W, &p))
5840 return 0;
5841 if (val == W)
5842 return 1;
5843 break;
5844 }
5845 case 'R':
5846 {
5847 LONGEST L, U;
5848
5849 if (!ada_scan_number (name, p + 1, &L, &p)
5850 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
5851 return 0;
5852 if (val >= L && val <= U)
5853 return 1;
5854 break;
5855 }
5856 case 'O':
5857 return 1;
5858 default:
5859 return 0;
5860 }
5861 }
5862 }
5863
5864 /* FIXME: Lots of redundancy below. Try to consolidate. */
5865
5866 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
5867 ARG_TYPE, extract and return the value of one of its (non-static)
5868 fields. FIELDNO says which field. Differs from value_primitive_field
5869 only in that it can handle packed values of arbitrary type. */
5870
5871 static struct value *
5872 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
5873 struct type *arg_type)
5874 {
5875 struct type *type;
5876
5877 arg_type = ada_check_typedef (arg_type);
5878 type = TYPE_FIELD_TYPE (arg_type, fieldno);
5879
5880 /* Handle packed fields. */
5881
5882 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
5883 {
5884 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
5885 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
5886
5887 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
5888 offset + bit_pos / 8,
5889 bit_pos % 8, bit_size, type);
5890 }
5891 else
5892 return value_primitive_field (arg1, offset, fieldno, arg_type);
5893 }
5894
5895 /* Find field with name NAME in object of type TYPE. If found,
5896 set the following for each argument that is non-null:
5897 - *FIELD_TYPE_P to the field's type;
5898 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
5899 an object of that type;
5900 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
5901 - *BIT_SIZE_P to its size in bits if the field is packed, and
5902 0 otherwise;
5903 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
5904 fields up to but not including the desired field, or by the total
5905 number of fields if not found. A NULL value of NAME never
5906 matches; the function just counts visible fields in this case.
5907
5908 Returns 1 if found, 0 otherwise. */
5909
5910 static int
5911 find_struct_field (char *name, struct type *type, int offset,
5912 struct type **field_type_p,
5913 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
5914 int *index_p)
5915 {
5916 int i;
5917
5918 type = ada_check_typedef (type);
5919
5920 if (field_type_p != NULL)
5921 *field_type_p = NULL;
5922 if (byte_offset_p != NULL)
5923 *byte_offset_p = 0;
5924 if (bit_offset_p != NULL)
5925 *bit_offset_p = 0;
5926 if (bit_size_p != NULL)
5927 *bit_size_p = 0;
5928
5929 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5930 {
5931 int bit_pos = TYPE_FIELD_BITPOS (type, i);
5932 int fld_offset = offset + bit_pos / 8;
5933 char *t_field_name = TYPE_FIELD_NAME (type, i);
5934
5935 if (t_field_name == NULL)
5936 continue;
5937
5938 else if (name != NULL && field_name_match (t_field_name, name))
5939 {
5940 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5941
5942 if (field_type_p != NULL)
5943 *field_type_p = TYPE_FIELD_TYPE (type, i);
5944 if (byte_offset_p != NULL)
5945 *byte_offset_p = fld_offset;
5946 if (bit_offset_p != NULL)
5947 *bit_offset_p = bit_pos % 8;
5948 if (bit_size_p != NULL)
5949 *bit_size_p = bit_size;
5950 return 1;
5951 }
5952 else if (ada_is_wrapper_field (type, i))
5953 {
5954 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
5955 field_type_p, byte_offset_p, bit_offset_p,
5956 bit_size_p, index_p))
5957 return 1;
5958 }
5959 else if (ada_is_variant_part (type, i))
5960 {
5961 /* PNH: Wait. Do we ever execute this section, or is ARG always of
5962 fixed type?? */
5963 int j;
5964 struct type *field_type
5965 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5966
5967 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5968 {
5969 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
5970 fld_offset
5971 + TYPE_FIELD_BITPOS (field_type, j) / 8,
5972 field_type_p, byte_offset_p,
5973 bit_offset_p, bit_size_p, index_p))
5974 return 1;
5975 }
5976 }
5977 else if (index_p != NULL)
5978 *index_p += 1;
5979 }
5980 return 0;
5981 }
5982
5983 /* Number of user-visible fields in record type TYPE. */
5984
5985 static int
5986 num_visible_fields (struct type *type)
5987 {
5988 int n;
5989
5990 n = 0;
5991 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
5992 return n;
5993 }
5994
5995 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
5996 and search in it assuming it has (class) type TYPE.
5997 If found, return value, else return NULL.
5998
5999 Searches recursively through wrapper fields (e.g., '_parent'). */
6000
6001 static struct value *
6002 ada_search_struct_field (char *name, struct value *arg, int offset,
6003 struct type *type)
6004 {
6005 int i;
6006
6007 type = ada_check_typedef (type);
6008 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6009 {
6010 char *t_field_name = TYPE_FIELD_NAME (type, i);
6011
6012 if (t_field_name == NULL)
6013 continue;
6014
6015 else if (field_name_match (t_field_name, name))
6016 return ada_value_primitive_field (arg, offset, i, type);
6017
6018 else if (ada_is_wrapper_field (type, i))
6019 {
6020 struct value *v = /* Do not let indent join lines here. */
6021 ada_search_struct_field (name, arg,
6022 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6023 TYPE_FIELD_TYPE (type, i));
6024
6025 if (v != NULL)
6026 return v;
6027 }
6028
6029 else if (ada_is_variant_part (type, i))
6030 {
6031 /* PNH: Do we ever get here? See find_struct_field. */
6032 int j;
6033 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6034 i));
6035 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6036
6037 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6038 {
6039 struct value *v = ada_search_struct_field /* Force line break. */
6040 (name, arg,
6041 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6042 TYPE_FIELD_TYPE (field_type, j));
6043
6044 if (v != NULL)
6045 return v;
6046 }
6047 }
6048 }
6049 return NULL;
6050 }
6051
6052 static struct value *ada_index_struct_field_1 (int *, struct value *,
6053 int, struct type *);
6054
6055
6056 /* Return field #INDEX in ARG, where the index is that returned by
6057 * find_struct_field through its INDEX_P argument. Adjust the address
6058 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6059 * If found, return value, else return NULL. */
6060
6061 static struct value *
6062 ada_index_struct_field (int index, struct value *arg, int offset,
6063 struct type *type)
6064 {
6065 return ada_index_struct_field_1 (&index, arg, offset, type);
6066 }
6067
6068
6069 /* Auxiliary function for ada_index_struct_field. Like
6070 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6071 * *INDEX_P. */
6072
6073 static struct value *
6074 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6075 struct type *type)
6076 {
6077 int i;
6078 type = ada_check_typedef (type);
6079
6080 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6081 {
6082 if (TYPE_FIELD_NAME (type, i) == NULL)
6083 continue;
6084 else if (ada_is_wrapper_field (type, i))
6085 {
6086 struct value *v = /* Do not let indent join lines here. */
6087 ada_index_struct_field_1 (index_p, arg,
6088 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6089 TYPE_FIELD_TYPE (type, i));
6090
6091 if (v != NULL)
6092 return v;
6093 }
6094
6095 else if (ada_is_variant_part (type, i))
6096 {
6097 /* PNH: Do we ever get here? See ada_search_struct_field,
6098 find_struct_field. */
6099 error (_("Cannot assign this kind of variant record"));
6100 }
6101 else if (*index_p == 0)
6102 return ada_value_primitive_field (arg, offset, i, type);
6103 else
6104 *index_p -= 1;
6105 }
6106 return NULL;
6107 }
6108
6109 /* Given ARG, a value of type (pointer or reference to a)*
6110 structure/union, extract the component named NAME from the ultimate
6111 target structure/union and return it as a value with its
6112 appropriate type.
6113
6114 The routine searches for NAME among all members of the structure itself
6115 and (recursively) among all members of any wrapper members
6116 (e.g., '_parent').
6117
6118 If NO_ERR, then simply return NULL in case of error, rather than
6119 calling error. */
6120
6121 struct value *
6122 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6123 {
6124 struct type *t, *t1;
6125 struct value *v;
6126
6127 v = NULL;
6128 t1 = t = ada_check_typedef (value_type (arg));
6129 if (TYPE_CODE (t) == TYPE_CODE_REF)
6130 {
6131 t1 = TYPE_TARGET_TYPE (t);
6132 if (t1 == NULL)
6133 goto BadValue;
6134 t1 = ada_check_typedef (t1);
6135 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6136 {
6137 arg = coerce_ref (arg);
6138 t = t1;
6139 }
6140 }
6141
6142 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6143 {
6144 t1 = TYPE_TARGET_TYPE (t);
6145 if (t1 == NULL)
6146 goto BadValue;
6147 t1 = ada_check_typedef (t1);
6148 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6149 {
6150 arg = value_ind (arg);
6151 t = t1;
6152 }
6153 else
6154 break;
6155 }
6156
6157 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6158 goto BadValue;
6159
6160 if (t1 == t)
6161 v = ada_search_struct_field (name, arg, 0, t);
6162 else
6163 {
6164 int bit_offset, bit_size, byte_offset;
6165 struct type *field_type;
6166 CORE_ADDR address;
6167
6168 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6169 address = value_as_address (arg);
6170 else
6171 address = unpack_pointer (t, value_contents (arg));
6172
6173 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6174 if (find_struct_field (name, t1, 0,
6175 &field_type, &byte_offset, &bit_offset,
6176 &bit_size, NULL))
6177 {
6178 if (bit_size != 0)
6179 {
6180 if (TYPE_CODE (t) == TYPE_CODE_REF)
6181 arg = ada_coerce_ref (arg);
6182 else
6183 arg = ada_value_ind (arg);
6184 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6185 bit_offset, bit_size,
6186 field_type);
6187 }
6188 else
6189 v = value_at_lazy (field_type, address + byte_offset);
6190 }
6191 }
6192
6193 if (v != NULL || no_err)
6194 return v;
6195 else
6196 error (_("There is no member named %s."), name);
6197
6198 BadValue:
6199 if (no_err)
6200 return NULL;
6201 else
6202 error (_("Attempt to extract a component of a value that is not a record."));
6203 }
6204
6205 /* Given a type TYPE, look up the type of the component of type named NAME.
6206 If DISPP is non-null, add its byte displacement from the beginning of a
6207 structure (pointed to by a value) of type TYPE to *DISPP (does not
6208 work for packed fields).
6209
6210 Matches any field whose name has NAME as a prefix, possibly
6211 followed by "___".
6212
6213 TYPE can be either a struct or union. If REFOK, TYPE may also
6214 be a (pointer or reference)+ to a struct or union, and the
6215 ultimate target type will be searched.
6216
6217 Looks recursively into variant clauses and parent types.
6218
6219 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6220 TYPE is not a type of the right kind. */
6221
6222 static struct type *
6223 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6224 int noerr, int *dispp)
6225 {
6226 int i;
6227
6228 if (name == NULL)
6229 goto BadName;
6230
6231 if (refok && type != NULL)
6232 while (1)
6233 {
6234 type = ada_check_typedef (type);
6235 if (TYPE_CODE (type) != TYPE_CODE_PTR
6236 && TYPE_CODE (type) != TYPE_CODE_REF)
6237 break;
6238 type = TYPE_TARGET_TYPE (type);
6239 }
6240
6241 if (type == NULL
6242 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6243 && TYPE_CODE (type) != TYPE_CODE_UNION))
6244 {
6245 if (noerr)
6246 return NULL;
6247 else
6248 {
6249 target_terminal_ours ();
6250 gdb_flush (gdb_stdout);
6251 if (type == NULL)
6252 error (_("Type (null) is not a structure or union type"));
6253 else
6254 {
6255 /* XXX: type_sprint */
6256 fprintf_unfiltered (gdb_stderr, _("Type "));
6257 type_print (type, "", gdb_stderr, -1);
6258 error (_(" is not a structure or union type"));
6259 }
6260 }
6261 }
6262
6263 type = to_static_fixed_type (type);
6264
6265 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6266 {
6267 char *t_field_name = TYPE_FIELD_NAME (type, i);
6268 struct type *t;
6269 int disp;
6270
6271 if (t_field_name == NULL)
6272 continue;
6273
6274 else if (field_name_match (t_field_name, name))
6275 {
6276 if (dispp != NULL)
6277 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6278 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6279 }
6280
6281 else if (ada_is_wrapper_field (type, i))
6282 {
6283 disp = 0;
6284 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6285 0, 1, &disp);
6286 if (t != NULL)
6287 {
6288 if (dispp != NULL)
6289 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6290 return t;
6291 }
6292 }
6293
6294 else if (ada_is_variant_part (type, i))
6295 {
6296 int j;
6297 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6298 i));
6299
6300 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6301 {
6302 /* FIXME pnh 2008/01/26: We check for a field that is
6303 NOT wrapped in a struct, since the compiler sometimes
6304 generates these for unchecked variant types. Revisit
6305 if the compiler changes this practice. */
6306 char *v_field_name = TYPE_FIELD_NAME (field_type, j);
6307 disp = 0;
6308 if (v_field_name != NULL
6309 && field_name_match (v_field_name, name))
6310 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6311 else
6312 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
6313 name, 0, 1, &disp);
6314
6315 if (t != NULL)
6316 {
6317 if (dispp != NULL)
6318 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6319 return t;
6320 }
6321 }
6322 }
6323
6324 }
6325
6326 BadName:
6327 if (!noerr)
6328 {
6329 target_terminal_ours ();
6330 gdb_flush (gdb_stdout);
6331 if (name == NULL)
6332 {
6333 /* XXX: type_sprint */
6334 fprintf_unfiltered (gdb_stderr, _("Type "));
6335 type_print (type, "", gdb_stderr, -1);
6336 error (_(" has no component named <null>"));
6337 }
6338 else
6339 {
6340 /* XXX: type_sprint */
6341 fprintf_unfiltered (gdb_stderr, _("Type "));
6342 type_print (type, "", gdb_stderr, -1);
6343 error (_(" has no component named %s"), name);
6344 }
6345 }
6346
6347 return NULL;
6348 }
6349
6350 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6351 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6352 represents an unchecked union (that is, the variant part of a
6353 record that is named in an Unchecked_Union pragma). */
6354
6355 static int
6356 is_unchecked_variant (struct type *var_type, struct type *outer_type)
6357 {
6358 char *discrim_name = ada_variant_discrim_name (var_type);
6359
6360 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6361 == NULL);
6362 }
6363
6364
6365 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6366 within a value of type OUTER_TYPE that is stored in GDB at
6367 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6368 numbering from 0) is applicable. Returns -1 if none are. */
6369
6370 int
6371 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6372 const gdb_byte *outer_valaddr)
6373 {
6374 int others_clause;
6375 int i;
6376 char *discrim_name = ada_variant_discrim_name (var_type);
6377 struct value *outer;
6378 struct value *discrim;
6379 LONGEST discrim_val;
6380
6381 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6382 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6383 if (discrim == NULL)
6384 return -1;
6385 discrim_val = value_as_long (discrim);
6386
6387 others_clause = -1;
6388 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6389 {
6390 if (ada_is_others_clause (var_type, i))
6391 others_clause = i;
6392 else if (ada_in_variant (discrim_val, var_type, i))
6393 return i;
6394 }
6395
6396 return others_clause;
6397 }
6398 \f
6399
6400
6401 /* Dynamic-Sized Records */
6402
6403 /* Strategy: The type ostensibly attached to a value with dynamic size
6404 (i.e., a size that is not statically recorded in the debugging
6405 data) does not accurately reflect the size or layout of the value.
6406 Our strategy is to convert these values to values with accurate,
6407 conventional types that are constructed on the fly. */
6408
6409 /* There is a subtle and tricky problem here. In general, we cannot
6410 determine the size of dynamic records without its data. However,
6411 the 'struct value' data structure, which GDB uses to represent
6412 quantities in the inferior process (the target), requires the size
6413 of the type at the time of its allocation in order to reserve space
6414 for GDB's internal copy of the data. That's why the
6415 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6416 rather than struct value*s.
6417
6418 However, GDB's internal history variables ($1, $2, etc.) are
6419 struct value*s containing internal copies of the data that are not, in
6420 general, the same as the data at their corresponding addresses in
6421 the target. Fortunately, the types we give to these values are all
6422 conventional, fixed-size types (as per the strategy described
6423 above), so that we don't usually have to perform the
6424 'to_fixed_xxx_type' conversions to look at their values.
6425 Unfortunately, there is one exception: if one of the internal
6426 history variables is an array whose elements are unconstrained
6427 records, then we will need to create distinct fixed types for each
6428 element selected. */
6429
6430 /* The upshot of all of this is that many routines take a (type, host
6431 address, target address) triple as arguments to represent a value.
6432 The host address, if non-null, is supposed to contain an internal
6433 copy of the relevant data; otherwise, the program is to consult the
6434 target at the target address. */
6435
6436 /* Assuming that VAL0 represents a pointer value, the result of
6437 dereferencing it. Differs from value_ind in its treatment of
6438 dynamic-sized types. */
6439
6440 struct value *
6441 ada_value_ind (struct value *val0)
6442 {
6443 struct value *val = unwrap_value (value_ind (val0));
6444
6445 return ada_to_fixed_value (val);
6446 }
6447
6448 /* The value resulting from dereferencing any "reference to"
6449 qualifiers on VAL0. */
6450
6451 static struct value *
6452 ada_coerce_ref (struct value *val0)
6453 {
6454 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6455 {
6456 struct value *val = val0;
6457
6458 val = coerce_ref (val);
6459 val = unwrap_value (val);
6460 return ada_to_fixed_value (val);
6461 }
6462 else
6463 return val0;
6464 }
6465
6466 /* Return OFF rounded upward if necessary to a multiple of
6467 ALIGNMENT (a power of 2). */
6468
6469 static unsigned int
6470 align_value (unsigned int off, unsigned int alignment)
6471 {
6472 return (off + alignment - 1) & ~(alignment - 1);
6473 }
6474
6475 /* Return the bit alignment required for field #F of template type TYPE. */
6476
6477 static unsigned int
6478 field_alignment (struct type *type, int f)
6479 {
6480 const char *name = TYPE_FIELD_NAME (type, f);
6481 int len;
6482 int align_offset;
6483
6484 /* The field name should never be null, unless the debugging information
6485 is somehow malformed. In this case, we assume the field does not
6486 require any alignment. */
6487 if (name == NULL)
6488 return 1;
6489
6490 len = strlen (name);
6491
6492 if (!isdigit (name[len - 1]))
6493 return 1;
6494
6495 if (isdigit (name[len - 2]))
6496 align_offset = len - 2;
6497 else
6498 align_offset = len - 1;
6499
6500 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6501 return TARGET_CHAR_BIT;
6502
6503 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6504 }
6505
6506 /* Find a symbol named NAME. Ignores ambiguity. */
6507
6508 struct symbol *
6509 ada_find_any_symbol (const char *name)
6510 {
6511 struct symbol *sym;
6512
6513 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6514 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6515 return sym;
6516
6517 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6518 return sym;
6519 }
6520
6521 /* Find a type named NAME. Ignores ambiguity. This routine will look
6522 solely for types defined by debug info, it will not search the GDB
6523 primitive types. */
6524
6525 struct type *
6526 ada_find_any_type (const char *name)
6527 {
6528 struct symbol *sym = ada_find_any_symbol (name);
6529
6530 if (sym != NULL)
6531 return SYMBOL_TYPE (sym);
6532
6533 return NULL;
6534 }
6535
6536 /* Given NAME and an associated BLOCK, search all symbols for
6537 NAME suffixed with "___XR", which is the ``renaming'' symbol
6538 associated to NAME. Return this symbol if found, return
6539 NULL otherwise. */
6540
6541 struct symbol *
6542 ada_find_renaming_symbol (const char *name, struct block *block)
6543 {
6544 struct symbol *sym;
6545
6546 sym = find_old_style_renaming_symbol (name, block);
6547
6548 if (sym != NULL)
6549 return sym;
6550
6551 /* Not right yet. FIXME pnh 7/20/2007. */
6552 sym = ada_find_any_symbol (name);
6553 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6554 return sym;
6555 else
6556 return NULL;
6557 }
6558
6559 static struct symbol *
6560 find_old_style_renaming_symbol (const char *name, struct block *block)
6561 {
6562 const struct symbol *function_sym = block_linkage_function (block);
6563 char *rename;
6564
6565 if (function_sym != NULL)
6566 {
6567 /* If the symbol is defined inside a function, NAME is not fully
6568 qualified. This means we need to prepend the function name
6569 as well as adding the ``___XR'' suffix to build the name of
6570 the associated renaming symbol. */
6571 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
6572 /* Function names sometimes contain suffixes used
6573 for instance to qualify nested subprograms. When building
6574 the XR type name, we need to make sure that this suffix is
6575 not included. So do not include any suffix in the function
6576 name length below. */
6577 int function_name_len = ada_name_prefix_len (function_name);
6578 const int rename_len = function_name_len + 2 /* "__" */
6579 + strlen (name) + 6 /* "___XR\0" */ ;
6580
6581 /* Strip the suffix if necessary. */
6582 ada_remove_trailing_digits (function_name, &function_name_len);
6583 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
6584 ada_remove_Xbn_suffix (function_name, &function_name_len);
6585
6586 /* Library-level functions are a special case, as GNAT adds
6587 a ``_ada_'' prefix to the function name to avoid namespace
6588 pollution. However, the renaming symbols themselves do not
6589 have this prefix, so we need to skip this prefix if present. */
6590 if (function_name_len > 5 /* "_ada_" */
6591 && strstr (function_name, "_ada_") == function_name)
6592 {
6593 function_name += 5;
6594 function_name_len -= 5;
6595 }
6596
6597 rename = (char *) alloca (rename_len * sizeof (char));
6598 strncpy (rename, function_name, function_name_len);
6599 xsnprintf (rename + function_name_len, rename_len - function_name_len,
6600 "__%s___XR", name);
6601 }
6602 else
6603 {
6604 const int rename_len = strlen (name) + 6;
6605
6606 rename = (char *) alloca (rename_len * sizeof (char));
6607 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
6608 }
6609
6610 return ada_find_any_symbol (rename);
6611 }
6612
6613 /* Because of GNAT encoding conventions, several GDB symbols may match a
6614 given type name. If the type denoted by TYPE0 is to be preferred to
6615 that of TYPE1 for purposes of type printing, return non-zero;
6616 otherwise return 0. */
6617
6618 int
6619 ada_prefer_type (struct type *type0, struct type *type1)
6620 {
6621 if (type1 == NULL)
6622 return 1;
6623 else if (type0 == NULL)
6624 return 0;
6625 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6626 return 1;
6627 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6628 return 0;
6629 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6630 return 1;
6631 else if (ada_is_constrained_packed_array_type (type0))
6632 return 1;
6633 else if (ada_is_array_descriptor_type (type0)
6634 && !ada_is_array_descriptor_type (type1))
6635 return 1;
6636 else
6637 {
6638 const char *type0_name = type_name_no_tag (type0);
6639 const char *type1_name = type_name_no_tag (type1);
6640
6641 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6642 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6643 return 1;
6644 }
6645 return 0;
6646 }
6647
6648 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
6649 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6650
6651 char *
6652 ada_type_name (struct type *type)
6653 {
6654 if (type == NULL)
6655 return NULL;
6656 else if (TYPE_NAME (type) != NULL)
6657 return TYPE_NAME (type);
6658 else
6659 return TYPE_TAG_NAME (type);
6660 }
6661
6662 /* Search the list of "descriptive" types associated to TYPE for a type
6663 whose name is NAME. */
6664
6665 static struct type *
6666 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
6667 {
6668 struct type *result;
6669
6670 /* If there no descriptive-type info, then there is no parallel type
6671 to be found. */
6672 if (!HAVE_GNAT_AUX_INFO (type))
6673 return NULL;
6674
6675 result = TYPE_DESCRIPTIVE_TYPE (type);
6676 while (result != NULL)
6677 {
6678 char *result_name = ada_type_name (result);
6679
6680 if (result_name == NULL)
6681 {
6682 warning (_("unexpected null name on descriptive type"));
6683 return NULL;
6684 }
6685
6686 /* If the names match, stop. */
6687 if (strcmp (result_name, name) == 0)
6688 break;
6689
6690 /* Otherwise, look at the next item on the list, if any. */
6691 if (HAVE_GNAT_AUX_INFO (result))
6692 result = TYPE_DESCRIPTIVE_TYPE (result);
6693 else
6694 result = NULL;
6695 }
6696
6697 /* If we didn't find a match, see whether this is a packed array. With
6698 older compilers, the descriptive type information is either absent or
6699 irrelevant when it comes to packed arrays so the above lookup fails.
6700 Fall back to using a parallel lookup by name in this case. */
6701 if (result == NULL && ada_is_constrained_packed_array_type (type))
6702 return ada_find_any_type (name);
6703
6704 return result;
6705 }
6706
6707 /* Find a parallel type to TYPE with the specified NAME, using the
6708 descriptive type taken from the debugging information, if available,
6709 and otherwise using the (slower) name-based method. */
6710
6711 static struct type *
6712 ada_find_parallel_type_with_name (struct type *type, const char *name)
6713 {
6714 struct type *result = NULL;
6715
6716 if (HAVE_GNAT_AUX_INFO (type))
6717 result = find_parallel_type_by_descriptive_type (type, name);
6718 else
6719 result = ada_find_any_type (name);
6720
6721 return result;
6722 }
6723
6724 /* Same as above, but specify the name of the parallel type by appending
6725 SUFFIX to the name of TYPE. */
6726
6727 struct type *
6728 ada_find_parallel_type (struct type *type, const char *suffix)
6729 {
6730 char *name, *typename = ada_type_name (type);
6731 int len;
6732
6733 if (typename == NULL)
6734 return NULL;
6735
6736 len = strlen (typename);
6737
6738 name = (char *) alloca (len + strlen (suffix) + 1);
6739
6740 strcpy (name, typename);
6741 strcpy (name + len, suffix);
6742
6743 return ada_find_parallel_type_with_name (type, name);
6744 }
6745
6746 /* If TYPE is a variable-size record type, return the corresponding template
6747 type describing its fields. Otherwise, return NULL. */
6748
6749 static struct type *
6750 dynamic_template_type (struct type *type)
6751 {
6752 type = ada_check_typedef (type);
6753
6754 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
6755 || ada_type_name (type) == NULL)
6756 return NULL;
6757 else
6758 {
6759 int len = strlen (ada_type_name (type));
6760
6761 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6762 return type;
6763 else
6764 return ada_find_parallel_type (type, "___XVE");
6765 }
6766 }
6767
6768 /* Assuming that TEMPL_TYPE is a union or struct type, returns
6769 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
6770
6771 static int
6772 is_dynamic_field (struct type *templ_type, int field_num)
6773 {
6774 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
6775
6776 return name != NULL
6777 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6778 && strstr (name, "___XVL") != NULL;
6779 }
6780
6781 /* The index of the variant field of TYPE, or -1 if TYPE does not
6782 represent a variant record type. */
6783
6784 static int
6785 variant_field_index (struct type *type)
6786 {
6787 int f;
6788
6789 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6790 return -1;
6791
6792 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6793 {
6794 if (ada_is_variant_part (type, f))
6795 return f;
6796 }
6797 return -1;
6798 }
6799
6800 /* A record type with no fields. */
6801
6802 static struct type *
6803 empty_record (struct type *template)
6804 {
6805 struct type *type = alloc_type_copy (template);
6806
6807 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6808 TYPE_NFIELDS (type) = 0;
6809 TYPE_FIELDS (type) = NULL;
6810 INIT_CPLUS_SPECIFIC (type);
6811 TYPE_NAME (type) = "<empty>";
6812 TYPE_TAG_NAME (type) = NULL;
6813 TYPE_LENGTH (type) = 0;
6814 return type;
6815 }
6816
6817 /* An ordinary record type (with fixed-length fields) that describes
6818 the value of type TYPE at VALADDR or ADDRESS (see comments at
6819 the beginning of this section) VAL according to GNAT conventions.
6820 DVAL0 should describe the (portion of a) record that contains any
6821 necessary discriminants. It should be NULL if value_type (VAL) is
6822 an outer-level type (i.e., as opposed to a branch of a variant.) A
6823 variant field (unless unchecked) is replaced by a particular branch
6824 of the variant.
6825
6826 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6827 length are not statically known are discarded. As a consequence,
6828 VALADDR, ADDRESS and DVAL0 are ignored.
6829
6830 NOTE: Limitations: For now, we assume that dynamic fields and
6831 variants occupy whole numbers of bytes. However, they need not be
6832 byte-aligned. */
6833
6834 struct type *
6835 ada_template_to_fixed_record_type_1 (struct type *type,
6836 const gdb_byte *valaddr,
6837 CORE_ADDR address, struct value *dval0,
6838 int keep_dynamic_fields)
6839 {
6840 struct value *mark = value_mark ();
6841 struct value *dval;
6842 struct type *rtype;
6843 int nfields, bit_len;
6844 int variant_field;
6845 long off;
6846 int fld_bit_len, bit_incr;
6847 int f;
6848
6849 /* Compute the number of fields in this record type that are going
6850 to be processed: unless keep_dynamic_fields, this includes only
6851 fields whose position and length are static will be processed. */
6852 if (keep_dynamic_fields)
6853 nfields = TYPE_NFIELDS (type);
6854 else
6855 {
6856 nfields = 0;
6857 while (nfields < TYPE_NFIELDS (type)
6858 && !ada_is_variant_part (type, nfields)
6859 && !is_dynamic_field (type, nfields))
6860 nfields++;
6861 }
6862
6863 rtype = alloc_type_copy (type);
6864 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6865 INIT_CPLUS_SPECIFIC (rtype);
6866 TYPE_NFIELDS (rtype) = nfields;
6867 TYPE_FIELDS (rtype) = (struct field *)
6868 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6869 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
6870 TYPE_NAME (rtype) = ada_type_name (type);
6871 TYPE_TAG_NAME (rtype) = NULL;
6872 TYPE_FIXED_INSTANCE (rtype) = 1;
6873
6874 off = 0;
6875 bit_len = 0;
6876 variant_field = -1;
6877
6878 for (f = 0; f < nfields; f += 1)
6879 {
6880 off = align_value (off, field_alignment (type, f))
6881 + TYPE_FIELD_BITPOS (type, f);
6882 TYPE_FIELD_BITPOS (rtype, f) = off;
6883 TYPE_FIELD_BITSIZE (rtype, f) = 0;
6884
6885 if (ada_is_variant_part (type, f))
6886 {
6887 variant_field = f;
6888 fld_bit_len = bit_incr = 0;
6889 }
6890 else if (is_dynamic_field (type, f))
6891 {
6892 const gdb_byte *field_valaddr = valaddr;
6893 CORE_ADDR field_address = address;
6894 struct type *field_type =
6895 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
6896
6897 if (dval0 == NULL)
6898 {
6899 /* rtype's length is computed based on the run-time
6900 value of discriminants. If the discriminants are not
6901 initialized, the type size may be completely bogus and
6902 GDB may fail to allocate a value for it. So check the
6903 size first before creating the value. */
6904 check_size (rtype);
6905 dval = value_from_contents_and_address (rtype, valaddr, address);
6906 }
6907 else
6908 dval = dval0;
6909
6910 /* If the type referenced by this field is an aligner type, we need
6911 to unwrap that aligner type, because its size might not be set.
6912 Keeping the aligner type would cause us to compute the wrong
6913 size for this field, impacting the offset of the all the fields
6914 that follow this one. */
6915 if (ada_is_aligner_type (field_type))
6916 {
6917 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
6918
6919 field_valaddr = cond_offset_host (field_valaddr, field_offset);
6920 field_address = cond_offset_target (field_address, field_offset);
6921 field_type = ada_aligned_type (field_type);
6922 }
6923
6924 field_valaddr = cond_offset_host (field_valaddr,
6925 off / TARGET_CHAR_BIT);
6926 field_address = cond_offset_target (field_address,
6927 off / TARGET_CHAR_BIT);
6928
6929 /* Get the fixed type of the field. Note that, in this case,
6930 we do not want to get the real type out of the tag: if
6931 the current field is the parent part of a tagged record,
6932 we will get the tag of the object. Clearly wrong: the real
6933 type of the parent is not the real type of the child. We
6934 would end up in an infinite loop. */
6935 field_type = ada_get_base_type (field_type);
6936 field_type = ada_to_fixed_type (field_type, field_valaddr,
6937 field_address, dval, 0);
6938
6939 TYPE_FIELD_TYPE (rtype, f) = field_type;
6940 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6941 bit_incr = fld_bit_len =
6942 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
6943 }
6944 else
6945 {
6946 struct type *field_type = TYPE_FIELD_TYPE (type, f);
6947
6948 TYPE_FIELD_TYPE (rtype, f) = field_type;
6949 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6950 if (TYPE_FIELD_BITSIZE (type, f) > 0)
6951 bit_incr = fld_bit_len =
6952 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
6953 else
6954 bit_incr = fld_bit_len =
6955 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
6956 }
6957 if (off + fld_bit_len > bit_len)
6958 bit_len = off + fld_bit_len;
6959 off += bit_incr;
6960 TYPE_LENGTH (rtype) =
6961 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6962 }
6963
6964 /* We handle the variant part, if any, at the end because of certain
6965 odd cases in which it is re-ordered so as NOT to be the last field of
6966 the record. This can happen in the presence of representation
6967 clauses. */
6968 if (variant_field >= 0)
6969 {
6970 struct type *branch_type;
6971
6972 off = TYPE_FIELD_BITPOS (rtype, variant_field);
6973
6974 if (dval0 == NULL)
6975 dval = value_from_contents_and_address (rtype, valaddr, address);
6976 else
6977 dval = dval0;
6978
6979 branch_type =
6980 to_fixed_variant_branch_type
6981 (TYPE_FIELD_TYPE (type, variant_field),
6982 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6983 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6984 if (branch_type == NULL)
6985 {
6986 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
6987 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6988 TYPE_NFIELDS (rtype) -= 1;
6989 }
6990 else
6991 {
6992 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6993 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6994 fld_bit_len =
6995 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
6996 TARGET_CHAR_BIT;
6997 if (off + fld_bit_len > bit_len)
6998 bit_len = off + fld_bit_len;
6999 TYPE_LENGTH (rtype) =
7000 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7001 }
7002 }
7003
7004 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7005 should contain the alignment of that record, which should be a strictly
7006 positive value. If null or negative, then something is wrong, most
7007 probably in the debug info. In that case, we don't round up the size
7008 of the resulting type. If this record is not part of another structure,
7009 the current RTYPE length might be good enough for our purposes. */
7010 if (TYPE_LENGTH (type) <= 0)
7011 {
7012 if (TYPE_NAME (rtype))
7013 warning (_("Invalid type size for `%s' detected: %d."),
7014 TYPE_NAME (rtype), TYPE_LENGTH (type));
7015 else
7016 warning (_("Invalid type size for <unnamed> detected: %d."),
7017 TYPE_LENGTH (type));
7018 }
7019 else
7020 {
7021 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7022 TYPE_LENGTH (type));
7023 }
7024
7025 value_free_to_mark (mark);
7026 if (TYPE_LENGTH (rtype) > varsize_limit)
7027 error (_("record type with dynamic size is larger than varsize-limit"));
7028 return rtype;
7029 }
7030
7031 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7032 of 1. */
7033
7034 static struct type *
7035 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
7036 CORE_ADDR address, struct value *dval0)
7037 {
7038 return ada_template_to_fixed_record_type_1 (type, valaddr,
7039 address, dval0, 1);
7040 }
7041
7042 /* An ordinary record type in which ___XVL-convention fields and
7043 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7044 static approximations, containing all possible fields. Uses
7045 no runtime values. Useless for use in values, but that's OK,
7046 since the results are used only for type determinations. Works on both
7047 structs and unions. Representation note: to save space, we memorize
7048 the result of this function in the TYPE_TARGET_TYPE of the
7049 template type. */
7050
7051 static struct type *
7052 template_to_static_fixed_type (struct type *type0)
7053 {
7054 struct type *type;
7055 int nfields;
7056 int f;
7057
7058 if (TYPE_TARGET_TYPE (type0) != NULL)
7059 return TYPE_TARGET_TYPE (type0);
7060
7061 nfields = TYPE_NFIELDS (type0);
7062 type = type0;
7063
7064 for (f = 0; f < nfields; f += 1)
7065 {
7066 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
7067 struct type *new_type;
7068
7069 if (is_dynamic_field (type0, f))
7070 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7071 else
7072 new_type = static_unwrap_type (field_type);
7073 if (type == type0 && new_type != field_type)
7074 {
7075 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
7076 TYPE_CODE (type) = TYPE_CODE (type0);
7077 INIT_CPLUS_SPECIFIC (type);
7078 TYPE_NFIELDS (type) = nfields;
7079 TYPE_FIELDS (type) = (struct field *)
7080 TYPE_ALLOC (type, nfields * sizeof (struct field));
7081 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7082 sizeof (struct field) * nfields);
7083 TYPE_NAME (type) = ada_type_name (type0);
7084 TYPE_TAG_NAME (type) = NULL;
7085 TYPE_FIXED_INSTANCE (type) = 1;
7086 TYPE_LENGTH (type) = 0;
7087 }
7088 TYPE_FIELD_TYPE (type, f) = new_type;
7089 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7090 }
7091 return type;
7092 }
7093
7094 /* Given an object of type TYPE whose contents are at VALADDR and
7095 whose address in memory is ADDRESS, returns a revision of TYPE,
7096 which should be a non-dynamic-sized record, in which the variant
7097 part, if any, is replaced with the appropriate branch. Looks
7098 for discriminant values in DVAL0, which can be NULL if the record
7099 contains the necessary discriminant values. */
7100
7101 static struct type *
7102 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7103 CORE_ADDR address, struct value *dval0)
7104 {
7105 struct value *mark = value_mark ();
7106 struct value *dval;
7107 struct type *rtype;
7108 struct type *branch_type;
7109 int nfields = TYPE_NFIELDS (type);
7110 int variant_field = variant_field_index (type);
7111
7112 if (variant_field == -1)
7113 return type;
7114
7115 if (dval0 == NULL)
7116 dval = value_from_contents_and_address (type, valaddr, address);
7117 else
7118 dval = dval0;
7119
7120 rtype = alloc_type_copy (type);
7121 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7122 INIT_CPLUS_SPECIFIC (rtype);
7123 TYPE_NFIELDS (rtype) = nfields;
7124 TYPE_FIELDS (rtype) =
7125 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7126 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
7127 sizeof (struct field) * nfields);
7128 TYPE_NAME (rtype) = ada_type_name (type);
7129 TYPE_TAG_NAME (rtype) = NULL;
7130 TYPE_FIXED_INSTANCE (rtype) = 1;
7131 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7132
7133 branch_type = to_fixed_variant_branch_type
7134 (TYPE_FIELD_TYPE (type, variant_field),
7135 cond_offset_host (valaddr,
7136 TYPE_FIELD_BITPOS (type, variant_field)
7137 / TARGET_CHAR_BIT),
7138 cond_offset_target (address,
7139 TYPE_FIELD_BITPOS (type, variant_field)
7140 / TARGET_CHAR_BIT), dval);
7141 if (branch_type == NULL)
7142 {
7143 int f;
7144
7145 for (f = variant_field + 1; f < nfields; f += 1)
7146 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7147 TYPE_NFIELDS (rtype) -= 1;
7148 }
7149 else
7150 {
7151 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7152 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7153 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7154 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7155 }
7156 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7157
7158 value_free_to_mark (mark);
7159 return rtype;
7160 }
7161
7162 /* An ordinary record type (with fixed-length fields) that describes
7163 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7164 beginning of this section]. Any necessary discriminants' values
7165 should be in DVAL, a record value; it may be NULL if the object
7166 at ADDR itself contains any necessary discriminant values.
7167 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7168 values from the record are needed. Except in the case that DVAL,
7169 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7170 unchecked) is replaced by a particular branch of the variant.
7171
7172 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7173 is questionable and may be removed. It can arise during the
7174 processing of an unconstrained-array-of-record type where all the
7175 variant branches have exactly the same size. This is because in
7176 such cases, the compiler does not bother to use the XVS convention
7177 when encoding the record. I am currently dubious of this
7178 shortcut and suspect the compiler should be altered. FIXME. */
7179
7180 static struct type *
7181 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7182 CORE_ADDR address, struct value *dval)
7183 {
7184 struct type *templ_type;
7185
7186 if (TYPE_FIXED_INSTANCE (type0))
7187 return type0;
7188
7189 templ_type = dynamic_template_type (type0);
7190
7191 if (templ_type != NULL)
7192 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7193 else if (variant_field_index (type0) >= 0)
7194 {
7195 if (dval == NULL && valaddr == NULL && address == 0)
7196 return type0;
7197 return to_record_with_fixed_variant_part (type0, valaddr, address,
7198 dval);
7199 }
7200 else
7201 {
7202 TYPE_FIXED_INSTANCE (type0) = 1;
7203 return type0;
7204 }
7205
7206 }
7207
7208 /* An ordinary record type (with fixed-length fields) that describes
7209 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7210 union type. Any necessary discriminants' values should be in DVAL,
7211 a record value. That is, this routine selects the appropriate
7212 branch of the union at ADDR according to the discriminant value
7213 indicated in the union's type name. Returns VAR_TYPE0 itself if
7214 it represents a variant subject to a pragma Unchecked_Union. */
7215
7216 static struct type *
7217 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7218 CORE_ADDR address, struct value *dval)
7219 {
7220 int which;
7221 struct type *templ_type;
7222 struct type *var_type;
7223
7224 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7225 var_type = TYPE_TARGET_TYPE (var_type0);
7226 else
7227 var_type = var_type0;
7228
7229 templ_type = ada_find_parallel_type (var_type, "___XVU");
7230
7231 if (templ_type != NULL)
7232 var_type = templ_type;
7233
7234 if (is_unchecked_variant (var_type, value_type (dval)))
7235 return var_type0;
7236 which =
7237 ada_which_variant_applies (var_type,
7238 value_type (dval), value_contents (dval));
7239
7240 if (which < 0)
7241 return empty_record (var_type);
7242 else if (is_dynamic_field (var_type, which))
7243 return to_fixed_record_type
7244 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7245 valaddr, address, dval);
7246 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7247 return
7248 to_fixed_record_type
7249 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7250 else
7251 return TYPE_FIELD_TYPE (var_type, which);
7252 }
7253
7254 /* Assuming that TYPE0 is an array type describing the type of a value
7255 at ADDR, and that DVAL describes a record containing any
7256 discriminants used in TYPE0, returns a type for the value that
7257 contains no dynamic components (that is, no components whose sizes
7258 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7259 true, gives an error message if the resulting type's size is over
7260 varsize_limit. */
7261
7262 static struct type *
7263 to_fixed_array_type (struct type *type0, struct value *dval,
7264 int ignore_too_big)
7265 {
7266 struct type *index_type_desc;
7267 struct type *result;
7268 int constrained_packed_array_p;
7269
7270 if (TYPE_FIXED_INSTANCE (type0))
7271 return type0;
7272
7273 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7274 if (constrained_packed_array_p)
7275 type0 = decode_constrained_packed_array_type (type0);
7276
7277 index_type_desc = ada_find_parallel_type (type0, "___XA");
7278 ada_fixup_array_indexes_type (index_type_desc);
7279 if (index_type_desc == NULL)
7280 {
7281 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7282
7283 /* NOTE: elt_type---the fixed version of elt_type0---should never
7284 depend on the contents of the array in properly constructed
7285 debugging data. */
7286 /* Create a fixed version of the array element type.
7287 We're not providing the address of an element here,
7288 and thus the actual object value cannot be inspected to do
7289 the conversion. This should not be a problem, since arrays of
7290 unconstrained objects are not allowed. In particular, all
7291 the elements of an array of a tagged type should all be of
7292 the same type specified in the debugging info. No need to
7293 consult the object tag. */
7294 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7295
7296 /* Make sure we always create a new array type when dealing with
7297 packed array types, since we're going to fix-up the array
7298 type length and element bitsize a little further down. */
7299 if (elt_type0 == elt_type && !constrained_packed_array_p)
7300 result = type0;
7301 else
7302 result = create_array_type (alloc_type_copy (type0),
7303 elt_type, TYPE_INDEX_TYPE (type0));
7304 }
7305 else
7306 {
7307 int i;
7308 struct type *elt_type0;
7309
7310 elt_type0 = type0;
7311 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7312 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7313
7314 /* NOTE: result---the fixed version of elt_type0---should never
7315 depend on the contents of the array in properly constructed
7316 debugging data. */
7317 /* Create a fixed version of the array element type.
7318 We're not providing the address of an element here,
7319 and thus the actual object value cannot be inspected to do
7320 the conversion. This should not be a problem, since arrays of
7321 unconstrained objects are not allowed. In particular, all
7322 the elements of an array of a tagged type should all be of
7323 the same type specified in the debugging info. No need to
7324 consult the object tag. */
7325 result =
7326 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
7327
7328 elt_type0 = type0;
7329 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
7330 {
7331 struct type *range_type =
7332 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
7333
7334 result = create_array_type (alloc_type_copy (elt_type0),
7335 result, range_type);
7336 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7337 }
7338 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7339 error (_("array type with dynamic size is larger than varsize-limit"));
7340 }
7341
7342 if (constrained_packed_array_p)
7343 {
7344 /* So far, the resulting type has been created as if the original
7345 type was a regular (non-packed) array type. As a result, the
7346 bitsize of the array elements needs to be set again, and the array
7347 length needs to be recomputed based on that bitsize. */
7348 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
7349 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
7350
7351 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
7352 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
7353 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
7354 TYPE_LENGTH (result)++;
7355 }
7356
7357 TYPE_FIXED_INSTANCE (result) = 1;
7358 return result;
7359 }
7360
7361
7362 /* A standard type (containing no dynamically sized components)
7363 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7364 DVAL describes a record containing any discriminants used in TYPE0,
7365 and may be NULL if there are none, or if the object of type TYPE at
7366 ADDRESS or in VALADDR contains these discriminants.
7367
7368 If CHECK_TAG is not null, in the case of tagged types, this function
7369 attempts to locate the object's tag and use it to compute the actual
7370 type. However, when ADDRESS is null, we cannot use it to determine the
7371 location of the tag, and therefore compute the tagged type's actual type.
7372 So we return the tagged type without consulting the tag. */
7373
7374 static struct type *
7375 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
7376 CORE_ADDR address, struct value *dval, int check_tag)
7377 {
7378 type = ada_check_typedef (type);
7379 switch (TYPE_CODE (type))
7380 {
7381 default:
7382 return type;
7383 case TYPE_CODE_STRUCT:
7384 {
7385 struct type *static_type = to_static_fixed_type (type);
7386 struct type *fixed_record_type =
7387 to_fixed_record_type (type, valaddr, address, NULL);
7388
7389 /* If STATIC_TYPE is a tagged type and we know the object's address,
7390 then we can determine its tag, and compute the object's actual
7391 type from there. Note that we have to use the fixed record
7392 type (the parent part of the record may have dynamic fields
7393 and the way the location of _tag is expressed may depend on
7394 them). */
7395
7396 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
7397 {
7398 struct type *real_type =
7399 type_from_tag (value_tag_from_contents_and_address
7400 (fixed_record_type,
7401 valaddr,
7402 address));
7403
7404 if (real_type != NULL)
7405 return to_fixed_record_type (real_type, valaddr, address, NULL);
7406 }
7407
7408 /* Check to see if there is a parallel ___XVZ variable.
7409 If there is, then it provides the actual size of our type. */
7410 else if (ada_type_name (fixed_record_type) != NULL)
7411 {
7412 char *name = ada_type_name (fixed_record_type);
7413 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7414 int xvz_found = 0;
7415 LONGEST size;
7416
7417 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
7418 size = get_int_var_value (xvz_name, &xvz_found);
7419 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
7420 {
7421 fixed_record_type = copy_type (fixed_record_type);
7422 TYPE_LENGTH (fixed_record_type) = size;
7423
7424 /* The FIXED_RECORD_TYPE may have be a stub. We have
7425 observed this when the debugging info is STABS, and
7426 apparently it is something that is hard to fix.
7427
7428 In practice, we don't need the actual type definition
7429 at all, because the presence of the XVZ variable allows us
7430 to assume that there must be a XVS type as well, which we
7431 should be able to use later, when we need the actual type
7432 definition.
7433
7434 In the meantime, pretend that the "fixed" type we are
7435 returning is NOT a stub, because this can cause trouble
7436 when using this type to create new types targeting it.
7437 Indeed, the associated creation routines often check
7438 whether the target type is a stub and will try to replace
7439 it, thus using a type with the wrong size. This, in turn,
7440 might cause the new type to have the wrong size too.
7441 Consider the case of an array, for instance, where the size
7442 of the array is computed from the number of elements in
7443 our array multiplied by the size of its element. */
7444 TYPE_STUB (fixed_record_type) = 0;
7445 }
7446 }
7447 return fixed_record_type;
7448 }
7449 case TYPE_CODE_ARRAY:
7450 return to_fixed_array_type (type, dval, 1);
7451 case TYPE_CODE_UNION:
7452 if (dval == NULL)
7453 return type;
7454 else
7455 return to_fixed_variant_branch_type (type, valaddr, address, dval);
7456 }
7457 }
7458
7459 /* The same as ada_to_fixed_type_1, except that it preserves the type
7460 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7461 ada_to_fixed_type_1 would return the type referenced by TYPE. */
7462
7463 struct type *
7464 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7465 CORE_ADDR address, struct value *dval, int check_tag)
7466
7467 {
7468 struct type *fixed_type =
7469 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7470
7471 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7472 && TYPE_TARGET_TYPE (type) == fixed_type)
7473 return type;
7474
7475 return fixed_type;
7476 }
7477
7478 /* A standard (static-sized) type corresponding as well as possible to
7479 TYPE0, but based on no runtime data. */
7480
7481 static struct type *
7482 to_static_fixed_type (struct type *type0)
7483 {
7484 struct type *type;
7485
7486 if (type0 == NULL)
7487 return NULL;
7488
7489 if (TYPE_FIXED_INSTANCE (type0))
7490 return type0;
7491
7492 type0 = ada_check_typedef (type0);
7493
7494 switch (TYPE_CODE (type0))
7495 {
7496 default:
7497 return type0;
7498 case TYPE_CODE_STRUCT:
7499 type = dynamic_template_type (type0);
7500 if (type != NULL)
7501 return template_to_static_fixed_type (type);
7502 else
7503 return template_to_static_fixed_type (type0);
7504 case TYPE_CODE_UNION:
7505 type = ada_find_parallel_type (type0, "___XVU");
7506 if (type != NULL)
7507 return template_to_static_fixed_type (type);
7508 else
7509 return template_to_static_fixed_type (type0);
7510 }
7511 }
7512
7513 /* A static approximation of TYPE with all type wrappers removed. */
7514
7515 static struct type *
7516 static_unwrap_type (struct type *type)
7517 {
7518 if (ada_is_aligner_type (type))
7519 {
7520 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
7521 if (ada_type_name (type1) == NULL)
7522 TYPE_NAME (type1) = ada_type_name (type);
7523
7524 return static_unwrap_type (type1);
7525 }
7526 else
7527 {
7528 struct type *raw_real_type = ada_get_base_type (type);
7529
7530 if (raw_real_type == type)
7531 return type;
7532 else
7533 return to_static_fixed_type (raw_real_type);
7534 }
7535 }
7536
7537 /* In some cases, incomplete and private types require
7538 cross-references that are not resolved as records (for example,
7539 type Foo;
7540 type FooP is access Foo;
7541 V: FooP;
7542 type Foo is array ...;
7543 ). In these cases, since there is no mechanism for producing
7544 cross-references to such types, we instead substitute for FooP a
7545 stub enumeration type that is nowhere resolved, and whose tag is
7546 the name of the actual type. Call these types "non-record stubs". */
7547
7548 /* A type equivalent to TYPE that is not a non-record stub, if one
7549 exists, otherwise TYPE. */
7550
7551 struct type *
7552 ada_check_typedef (struct type *type)
7553 {
7554 if (type == NULL)
7555 return NULL;
7556
7557 CHECK_TYPEDEF (type);
7558 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
7559 || !TYPE_STUB (type)
7560 || TYPE_TAG_NAME (type) == NULL)
7561 return type;
7562 else
7563 {
7564 char *name = TYPE_TAG_NAME (type);
7565 struct type *type1 = ada_find_any_type (name);
7566
7567 return (type1 == NULL) ? type : type1;
7568 }
7569 }
7570
7571 /* A value representing the data at VALADDR/ADDRESS as described by
7572 type TYPE0, but with a standard (static-sized) type that correctly
7573 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7574 type, then return VAL0 [this feature is simply to avoid redundant
7575 creation of struct values]. */
7576
7577 static struct value *
7578 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7579 struct value *val0)
7580 {
7581 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
7582
7583 if (type == type0 && val0 != NULL)
7584 return val0;
7585 else
7586 return value_from_contents_and_address (type, 0, address);
7587 }
7588
7589 /* A value representing VAL, but with a standard (static-sized) type
7590 that correctly describes it. Does not necessarily create a new
7591 value. */
7592
7593 struct value *
7594 ada_to_fixed_value (struct value *val)
7595 {
7596 return ada_to_fixed_value_create (value_type (val),
7597 value_address (val),
7598 val);
7599 }
7600 \f
7601
7602 /* Attributes */
7603
7604 /* Table mapping attribute numbers to names.
7605 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
7606
7607 static const char *attribute_names[] = {
7608 "<?>",
7609
7610 "first",
7611 "last",
7612 "length",
7613 "image",
7614 "max",
7615 "min",
7616 "modulus",
7617 "pos",
7618 "size",
7619 "tag",
7620 "val",
7621 0
7622 };
7623
7624 const char *
7625 ada_attribute_name (enum exp_opcode n)
7626 {
7627 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7628 return attribute_names[n - OP_ATR_FIRST + 1];
7629 else
7630 return attribute_names[0];
7631 }
7632
7633 /* Evaluate the 'POS attribute applied to ARG. */
7634
7635 static LONGEST
7636 pos_atr (struct value *arg)
7637 {
7638 struct value *val = coerce_ref (arg);
7639 struct type *type = value_type (val);
7640
7641 if (!discrete_type_p (type))
7642 error (_("'POS only defined on discrete types"));
7643
7644 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7645 {
7646 int i;
7647 LONGEST v = value_as_long (val);
7648
7649 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7650 {
7651 if (v == TYPE_FIELD_BITPOS (type, i))
7652 return i;
7653 }
7654 error (_("enumeration value is invalid: can't find 'POS"));
7655 }
7656 else
7657 return value_as_long (val);
7658 }
7659
7660 static struct value *
7661 value_pos_atr (struct type *type, struct value *arg)
7662 {
7663 return value_from_longest (type, pos_atr (arg));
7664 }
7665
7666 /* Evaluate the TYPE'VAL attribute applied to ARG. */
7667
7668 static struct value *
7669 value_val_atr (struct type *type, struct value *arg)
7670 {
7671 if (!discrete_type_p (type))
7672 error (_("'VAL only defined on discrete types"));
7673 if (!integer_type_p (value_type (arg)))
7674 error (_("'VAL requires integral argument"));
7675
7676 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7677 {
7678 long pos = value_as_long (arg);
7679
7680 if (pos < 0 || pos >= TYPE_NFIELDS (type))
7681 error (_("argument to 'VAL out of range"));
7682 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
7683 }
7684 else
7685 return value_from_longest (type, value_as_long (arg));
7686 }
7687 \f
7688
7689 /* Evaluation */
7690
7691 /* True if TYPE appears to be an Ada character type.
7692 [At the moment, this is true only for Character and Wide_Character;
7693 It is a heuristic test that could stand improvement]. */
7694
7695 int
7696 ada_is_character_type (struct type *type)
7697 {
7698 const char *name;
7699
7700 /* If the type code says it's a character, then assume it really is,
7701 and don't check any further. */
7702 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
7703 return 1;
7704
7705 /* Otherwise, assume it's a character type iff it is a discrete type
7706 with a known character type name. */
7707 name = ada_type_name (type);
7708 return (name != NULL
7709 && (TYPE_CODE (type) == TYPE_CODE_INT
7710 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7711 && (strcmp (name, "character") == 0
7712 || strcmp (name, "wide_character") == 0
7713 || strcmp (name, "wide_wide_character") == 0
7714 || strcmp (name, "unsigned char") == 0));
7715 }
7716
7717 /* True if TYPE appears to be an Ada string type. */
7718
7719 int
7720 ada_is_string_type (struct type *type)
7721 {
7722 type = ada_check_typedef (type);
7723 if (type != NULL
7724 && TYPE_CODE (type) != TYPE_CODE_PTR
7725 && (ada_is_simple_array_type (type)
7726 || ada_is_array_descriptor_type (type))
7727 && ada_array_arity (type) == 1)
7728 {
7729 struct type *elttype = ada_array_element_type (type, 1);
7730
7731 return ada_is_character_type (elttype);
7732 }
7733 else
7734 return 0;
7735 }
7736
7737 /* The compiler sometimes provides a parallel XVS type for a given
7738 PAD type. Normally, it is safe to follow the PAD type directly,
7739 but older versions of the compiler have a bug that causes the offset
7740 of its "F" field to be wrong. Following that field in that case
7741 would lead to incorrect results, but this can be worked around
7742 by ignoring the PAD type and using the associated XVS type instead.
7743
7744 Set to True if the debugger should trust the contents of PAD types.
7745 Otherwise, ignore the PAD type if there is a parallel XVS type. */
7746 static int trust_pad_over_xvs = 1;
7747
7748 /* True if TYPE is a struct type introduced by the compiler to force the
7749 alignment of a value. Such types have a single field with a
7750 distinctive name. */
7751
7752 int
7753 ada_is_aligner_type (struct type *type)
7754 {
7755 type = ada_check_typedef (type);
7756
7757 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
7758 return 0;
7759
7760 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
7761 && TYPE_NFIELDS (type) == 1
7762 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
7763 }
7764
7765 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
7766 the parallel type. */
7767
7768 struct type *
7769 ada_get_base_type (struct type *raw_type)
7770 {
7771 struct type *real_type_namer;
7772 struct type *raw_real_type;
7773
7774 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7775 return raw_type;
7776
7777 if (ada_is_aligner_type (raw_type))
7778 /* The encoding specifies that we should always use the aligner type.
7779 So, even if this aligner type has an associated XVS type, we should
7780 simply ignore it.
7781
7782 According to the compiler gurus, an XVS type parallel to an aligner
7783 type may exist because of a stabs limitation. In stabs, aligner
7784 types are empty because the field has a variable-sized type, and
7785 thus cannot actually be used as an aligner type. As a result,
7786 we need the associated parallel XVS type to decode the type.
7787 Since the policy in the compiler is to not change the internal
7788 representation based on the debugging info format, we sometimes
7789 end up having a redundant XVS type parallel to the aligner type. */
7790 return raw_type;
7791
7792 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
7793 if (real_type_namer == NULL
7794 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7795 || TYPE_NFIELDS (real_type_namer) != 1)
7796 return raw_type;
7797
7798 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
7799 {
7800 /* This is an older encoding form where the base type needs to be
7801 looked up by name. We prefer the newer enconding because it is
7802 more efficient. */
7803 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
7804 if (raw_real_type == NULL)
7805 return raw_type;
7806 else
7807 return raw_real_type;
7808 }
7809
7810 /* The field in our XVS type is a reference to the base type. */
7811 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
7812 }
7813
7814 /* The type of value designated by TYPE, with all aligners removed. */
7815
7816 struct type *
7817 ada_aligned_type (struct type *type)
7818 {
7819 if (ada_is_aligner_type (type))
7820 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7821 else
7822 return ada_get_base_type (type);
7823 }
7824
7825
7826 /* The address of the aligned value in an object at address VALADDR
7827 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
7828
7829 const gdb_byte *
7830 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
7831 {
7832 if (ada_is_aligner_type (type))
7833 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
7834 valaddr +
7835 TYPE_FIELD_BITPOS (type,
7836 0) / TARGET_CHAR_BIT);
7837 else
7838 return valaddr;
7839 }
7840
7841
7842
7843 /* The printed representation of an enumeration literal with encoded
7844 name NAME. The value is good to the next call of ada_enum_name. */
7845 const char *
7846 ada_enum_name (const char *name)
7847 {
7848 static char *result;
7849 static size_t result_len = 0;
7850 char *tmp;
7851
7852 /* First, unqualify the enumeration name:
7853 1. Search for the last '.' character. If we find one, then skip
7854 all the preceeding characters, the unqualified name starts
7855 right after that dot.
7856 2. Otherwise, we may be debugging on a target where the compiler
7857 translates dots into "__". Search forward for double underscores,
7858 but stop searching when we hit an overloading suffix, which is
7859 of the form "__" followed by digits. */
7860
7861 tmp = strrchr (name, '.');
7862 if (tmp != NULL)
7863 name = tmp + 1;
7864 else
7865 {
7866 while ((tmp = strstr (name, "__")) != NULL)
7867 {
7868 if (isdigit (tmp[2]))
7869 break;
7870 else
7871 name = tmp + 2;
7872 }
7873 }
7874
7875 if (name[0] == 'Q')
7876 {
7877 int v;
7878
7879 if (name[1] == 'U' || name[1] == 'W')
7880 {
7881 if (sscanf (name + 2, "%x", &v) != 1)
7882 return name;
7883 }
7884 else
7885 return name;
7886
7887 GROW_VECT (result, result_len, 16);
7888 if (isascii (v) && isprint (v))
7889 xsnprintf (result, result_len, "'%c'", v);
7890 else if (name[1] == 'U')
7891 xsnprintf (result, result_len, "[\"%02x\"]", v);
7892 else
7893 xsnprintf (result, result_len, "[\"%04x\"]", v);
7894
7895 return result;
7896 }
7897 else
7898 {
7899 tmp = strstr (name, "__");
7900 if (tmp == NULL)
7901 tmp = strstr (name, "$");
7902 if (tmp != NULL)
7903 {
7904 GROW_VECT (result, result_len, tmp - name + 1);
7905 strncpy (result, name, tmp - name);
7906 result[tmp - name] = '\0';
7907 return result;
7908 }
7909
7910 return name;
7911 }
7912 }
7913
7914 /* Evaluate the subexpression of EXP starting at *POS as for
7915 evaluate_type, updating *POS to point just past the evaluated
7916 expression. */
7917
7918 static struct value *
7919 evaluate_subexp_type (struct expression *exp, int *pos)
7920 {
7921 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
7922 }
7923
7924 /* If VAL is wrapped in an aligner or subtype wrapper, return the
7925 value it wraps. */
7926
7927 static struct value *
7928 unwrap_value (struct value *val)
7929 {
7930 struct type *type = ada_check_typedef (value_type (val));
7931
7932 if (ada_is_aligner_type (type))
7933 {
7934 struct value *v = ada_value_struct_elt (val, "F", 0);
7935 struct type *val_type = ada_check_typedef (value_type (v));
7936
7937 if (ada_type_name (val_type) == NULL)
7938 TYPE_NAME (val_type) = ada_type_name (type);
7939
7940 return unwrap_value (v);
7941 }
7942 else
7943 {
7944 struct type *raw_real_type =
7945 ada_check_typedef (ada_get_base_type (type));
7946
7947 /* If there is no parallel XVS or XVE type, then the value is
7948 already unwrapped. Return it without further modification. */
7949 if ((type == raw_real_type)
7950 && ada_find_parallel_type (type, "___XVE") == NULL)
7951 return val;
7952
7953 return
7954 coerce_unspec_val_to_type
7955 (val, ada_to_fixed_type (raw_real_type, 0,
7956 value_address (val),
7957 NULL, 1));
7958 }
7959 }
7960
7961 static struct value *
7962 cast_to_fixed (struct type *type, struct value *arg)
7963 {
7964 LONGEST val;
7965
7966 if (type == value_type (arg))
7967 return arg;
7968 else if (ada_is_fixed_point_type (value_type (arg)))
7969 val = ada_float_to_fixed (type,
7970 ada_fixed_to_float (value_type (arg),
7971 value_as_long (arg)));
7972 else
7973 {
7974 DOUBLEST argd = value_as_double (arg);
7975
7976 val = ada_float_to_fixed (type, argd);
7977 }
7978
7979 return value_from_longest (type, val);
7980 }
7981
7982 static struct value *
7983 cast_from_fixed (struct type *type, struct value *arg)
7984 {
7985 DOUBLEST val = ada_fixed_to_float (value_type (arg),
7986 value_as_long (arg));
7987
7988 return value_from_double (type, val);
7989 }
7990
7991 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
7992 return the converted value. */
7993
7994 static struct value *
7995 coerce_for_assign (struct type *type, struct value *val)
7996 {
7997 struct type *type2 = value_type (val);
7998
7999 if (type == type2)
8000 return val;
8001
8002 type2 = ada_check_typedef (type2);
8003 type = ada_check_typedef (type);
8004
8005 if (TYPE_CODE (type2) == TYPE_CODE_PTR
8006 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8007 {
8008 val = ada_value_ind (val);
8009 type2 = value_type (val);
8010 }
8011
8012 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
8013 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8014 {
8015 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
8016 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8017 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
8018 error (_("Incompatible types in assignment"));
8019 deprecated_set_value_type (val, type);
8020 }
8021 return val;
8022 }
8023
8024 static struct value *
8025 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8026 {
8027 struct value *val;
8028 struct type *type1, *type2;
8029 LONGEST v, v1, v2;
8030
8031 arg1 = coerce_ref (arg1);
8032 arg2 = coerce_ref (arg2);
8033 type1 = base_type (ada_check_typedef (value_type (arg1)));
8034 type2 = base_type (ada_check_typedef (value_type (arg2)));
8035
8036 if (TYPE_CODE (type1) != TYPE_CODE_INT
8037 || TYPE_CODE (type2) != TYPE_CODE_INT)
8038 return value_binop (arg1, arg2, op);
8039
8040 switch (op)
8041 {
8042 case BINOP_MOD:
8043 case BINOP_DIV:
8044 case BINOP_REM:
8045 break;
8046 default:
8047 return value_binop (arg1, arg2, op);
8048 }
8049
8050 v2 = value_as_long (arg2);
8051 if (v2 == 0)
8052 error (_("second operand of %s must not be zero."), op_string (op));
8053
8054 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8055 return value_binop (arg1, arg2, op);
8056
8057 v1 = value_as_long (arg1);
8058 switch (op)
8059 {
8060 case BINOP_DIV:
8061 v = v1 / v2;
8062 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8063 v += v > 0 ? -1 : 1;
8064 break;
8065 case BINOP_REM:
8066 v = v1 % v2;
8067 if (v * v1 < 0)
8068 v -= v2;
8069 break;
8070 default:
8071 /* Should not reach this point. */
8072 v = 0;
8073 }
8074
8075 val = allocate_value (type1);
8076 store_unsigned_integer (value_contents_raw (val),
8077 TYPE_LENGTH (value_type (val)),
8078 gdbarch_byte_order (get_type_arch (type1)), v);
8079 return val;
8080 }
8081
8082 static int
8083 ada_value_equal (struct value *arg1, struct value *arg2)
8084 {
8085 if (ada_is_direct_array_type (value_type (arg1))
8086 || ada_is_direct_array_type (value_type (arg2)))
8087 {
8088 /* Automatically dereference any array reference before
8089 we attempt to perform the comparison. */
8090 arg1 = ada_coerce_ref (arg1);
8091 arg2 = ada_coerce_ref (arg2);
8092
8093 arg1 = ada_coerce_to_simple_array (arg1);
8094 arg2 = ada_coerce_to_simple_array (arg2);
8095 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8096 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
8097 error (_("Attempt to compare array with non-array"));
8098 /* FIXME: The following works only for types whose
8099 representations use all bits (no padding or undefined bits)
8100 and do not have user-defined equality. */
8101 return
8102 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
8103 && memcmp (value_contents (arg1), value_contents (arg2),
8104 TYPE_LENGTH (value_type (arg1))) == 0;
8105 }
8106 return value_equal (arg1, arg2);
8107 }
8108
8109 /* Total number of component associations in the aggregate starting at
8110 index PC in EXP. Assumes that index PC is the start of an
8111 OP_AGGREGATE. */
8112
8113 static int
8114 num_component_specs (struct expression *exp, int pc)
8115 {
8116 int n, m, i;
8117
8118 m = exp->elts[pc + 1].longconst;
8119 pc += 3;
8120 n = 0;
8121 for (i = 0; i < m; i += 1)
8122 {
8123 switch (exp->elts[pc].opcode)
8124 {
8125 default:
8126 n += 1;
8127 break;
8128 case OP_CHOICES:
8129 n += exp->elts[pc + 1].longconst;
8130 break;
8131 }
8132 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8133 }
8134 return n;
8135 }
8136
8137 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
8138 component of LHS (a simple array or a record), updating *POS past
8139 the expression, assuming that LHS is contained in CONTAINER. Does
8140 not modify the inferior's memory, nor does it modify LHS (unless
8141 LHS == CONTAINER). */
8142
8143 static void
8144 assign_component (struct value *container, struct value *lhs, LONGEST index,
8145 struct expression *exp, int *pos)
8146 {
8147 struct value *mark = value_mark ();
8148 struct value *elt;
8149
8150 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8151 {
8152 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
8153 struct value *index_val = value_from_longest (index_type, index);
8154
8155 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8156 }
8157 else
8158 {
8159 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8160 elt = ada_to_fixed_value (unwrap_value (elt));
8161 }
8162
8163 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8164 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8165 else
8166 value_assign_to_component (container, elt,
8167 ada_evaluate_subexp (NULL, exp, pos,
8168 EVAL_NORMAL));
8169
8170 value_free_to_mark (mark);
8171 }
8172
8173 /* Assuming that LHS represents an lvalue having a record or array
8174 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8175 of that aggregate's value to LHS, advancing *POS past the
8176 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8177 lvalue containing LHS (possibly LHS itself). Does not modify
8178 the inferior's memory, nor does it modify the contents of
8179 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8180
8181 static struct value *
8182 assign_aggregate (struct value *container,
8183 struct value *lhs, struct expression *exp,
8184 int *pos, enum noside noside)
8185 {
8186 struct type *lhs_type;
8187 int n = exp->elts[*pos+1].longconst;
8188 LONGEST low_index, high_index;
8189 int num_specs;
8190 LONGEST *indices;
8191 int max_indices, num_indices;
8192 int is_array_aggregate;
8193 int i;
8194
8195 *pos += 3;
8196 if (noside != EVAL_NORMAL)
8197 {
8198 int i;
8199
8200 for (i = 0; i < n; i += 1)
8201 ada_evaluate_subexp (NULL, exp, pos, noside);
8202 return container;
8203 }
8204
8205 container = ada_coerce_ref (container);
8206 if (ada_is_direct_array_type (value_type (container)))
8207 container = ada_coerce_to_simple_array (container);
8208 lhs = ada_coerce_ref (lhs);
8209 if (!deprecated_value_modifiable (lhs))
8210 error (_("Left operand of assignment is not a modifiable lvalue."));
8211
8212 lhs_type = value_type (lhs);
8213 if (ada_is_direct_array_type (lhs_type))
8214 {
8215 lhs = ada_coerce_to_simple_array (lhs);
8216 lhs_type = value_type (lhs);
8217 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8218 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8219 is_array_aggregate = 1;
8220 }
8221 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8222 {
8223 low_index = 0;
8224 high_index = num_visible_fields (lhs_type) - 1;
8225 is_array_aggregate = 0;
8226 }
8227 else
8228 error (_("Left-hand side must be array or record."));
8229
8230 num_specs = num_component_specs (exp, *pos - 3);
8231 max_indices = 4 * num_specs + 4;
8232 indices = alloca (max_indices * sizeof (indices[0]));
8233 indices[0] = indices[1] = low_index - 1;
8234 indices[2] = indices[3] = high_index + 1;
8235 num_indices = 4;
8236
8237 for (i = 0; i < n; i += 1)
8238 {
8239 switch (exp->elts[*pos].opcode)
8240 {
8241 case OP_CHOICES:
8242 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8243 &num_indices, max_indices,
8244 low_index, high_index);
8245 break;
8246 case OP_POSITIONAL:
8247 aggregate_assign_positional (container, lhs, exp, pos, indices,
8248 &num_indices, max_indices,
8249 low_index, high_index);
8250 break;
8251 case OP_OTHERS:
8252 if (i != n-1)
8253 error (_("Misplaced 'others' clause"));
8254 aggregate_assign_others (container, lhs, exp, pos, indices,
8255 num_indices, low_index, high_index);
8256 break;
8257 default:
8258 error (_("Internal error: bad aggregate clause"));
8259 }
8260 }
8261
8262 return container;
8263 }
8264
8265 /* Assign into the component of LHS indexed by the OP_POSITIONAL
8266 construct at *POS, updating *POS past the construct, given that
8267 the positions are relative to lower bound LOW, where HIGH is the
8268 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8269 updating *NUM_INDICES as needed. CONTAINER is as for
8270 assign_aggregate. */
8271 static void
8272 aggregate_assign_positional (struct value *container,
8273 struct value *lhs, struct expression *exp,
8274 int *pos, LONGEST *indices, int *num_indices,
8275 int max_indices, LONGEST low, LONGEST high)
8276 {
8277 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8278
8279 if (ind - 1 == high)
8280 warning (_("Extra components in aggregate ignored."));
8281 if (ind <= high)
8282 {
8283 add_component_interval (ind, ind, indices, num_indices, max_indices);
8284 *pos += 3;
8285 assign_component (container, lhs, ind, exp, pos);
8286 }
8287 else
8288 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8289 }
8290
8291 /* Assign into the components of LHS indexed by the OP_CHOICES
8292 construct at *POS, updating *POS past the construct, given that
8293 the allowable indices are LOW..HIGH. Record the indices assigned
8294 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8295 needed. CONTAINER is as for assign_aggregate. */
8296 static void
8297 aggregate_assign_from_choices (struct value *container,
8298 struct value *lhs, struct expression *exp,
8299 int *pos, LONGEST *indices, int *num_indices,
8300 int max_indices, LONGEST low, LONGEST high)
8301 {
8302 int j;
8303 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8304 int choice_pos, expr_pc;
8305 int is_array = ada_is_direct_array_type (value_type (lhs));
8306
8307 choice_pos = *pos += 3;
8308
8309 for (j = 0; j < n_choices; j += 1)
8310 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8311 expr_pc = *pos;
8312 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8313
8314 for (j = 0; j < n_choices; j += 1)
8315 {
8316 LONGEST lower, upper;
8317 enum exp_opcode op = exp->elts[choice_pos].opcode;
8318
8319 if (op == OP_DISCRETE_RANGE)
8320 {
8321 choice_pos += 1;
8322 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8323 EVAL_NORMAL));
8324 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8325 EVAL_NORMAL));
8326 }
8327 else if (is_array)
8328 {
8329 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8330 EVAL_NORMAL));
8331 upper = lower;
8332 }
8333 else
8334 {
8335 int ind;
8336 char *name;
8337
8338 switch (op)
8339 {
8340 case OP_NAME:
8341 name = &exp->elts[choice_pos + 2].string;
8342 break;
8343 case OP_VAR_VALUE:
8344 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8345 break;
8346 default:
8347 error (_("Invalid record component association."));
8348 }
8349 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8350 ind = 0;
8351 if (! find_struct_field (name, value_type (lhs), 0,
8352 NULL, NULL, NULL, NULL, &ind))
8353 error (_("Unknown component name: %s."), name);
8354 lower = upper = ind;
8355 }
8356
8357 if (lower <= upper && (lower < low || upper > high))
8358 error (_("Index in component association out of bounds."));
8359
8360 add_component_interval (lower, upper, indices, num_indices,
8361 max_indices);
8362 while (lower <= upper)
8363 {
8364 int pos1;
8365
8366 pos1 = expr_pc;
8367 assign_component (container, lhs, lower, exp, &pos1);
8368 lower += 1;
8369 }
8370 }
8371 }
8372
8373 /* Assign the value of the expression in the OP_OTHERS construct in
8374 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8375 have not been previously assigned. The index intervals already assigned
8376 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8377 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
8378 static void
8379 aggregate_assign_others (struct value *container,
8380 struct value *lhs, struct expression *exp,
8381 int *pos, LONGEST *indices, int num_indices,
8382 LONGEST low, LONGEST high)
8383 {
8384 int i;
8385 int expr_pc = *pos+1;
8386
8387 for (i = 0; i < num_indices - 2; i += 2)
8388 {
8389 LONGEST ind;
8390
8391 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8392 {
8393 int pos;
8394
8395 pos = expr_pc;
8396 assign_component (container, lhs, ind, exp, &pos);
8397 }
8398 }
8399 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8400 }
8401
8402 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
8403 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8404 modifying *SIZE as needed. It is an error if *SIZE exceeds
8405 MAX_SIZE. The resulting intervals do not overlap. */
8406 static void
8407 add_component_interval (LONGEST low, LONGEST high,
8408 LONGEST* indices, int *size, int max_size)
8409 {
8410 int i, j;
8411
8412 for (i = 0; i < *size; i += 2) {
8413 if (high >= indices[i] && low <= indices[i + 1])
8414 {
8415 int kh;
8416
8417 for (kh = i + 2; kh < *size; kh += 2)
8418 if (high < indices[kh])
8419 break;
8420 if (low < indices[i])
8421 indices[i] = low;
8422 indices[i + 1] = indices[kh - 1];
8423 if (high > indices[i + 1])
8424 indices[i + 1] = high;
8425 memcpy (indices + i + 2, indices + kh, *size - kh);
8426 *size -= kh - i - 2;
8427 return;
8428 }
8429 else if (high < indices[i])
8430 break;
8431 }
8432
8433 if (*size == max_size)
8434 error (_("Internal error: miscounted aggregate components."));
8435 *size += 2;
8436 for (j = *size-1; j >= i+2; j -= 1)
8437 indices[j] = indices[j - 2];
8438 indices[i] = low;
8439 indices[i + 1] = high;
8440 }
8441
8442 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8443 is different. */
8444
8445 static struct value *
8446 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8447 {
8448 if (type == ada_check_typedef (value_type (arg2)))
8449 return arg2;
8450
8451 if (ada_is_fixed_point_type (type))
8452 return (cast_to_fixed (type, arg2));
8453
8454 if (ada_is_fixed_point_type (value_type (arg2)))
8455 return cast_from_fixed (type, arg2);
8456
8457 return value_cast (type, arg2);
8458 }
8459
8460 /* Evaluating Ada expressions, and printing their result.
8461 ------------------------------------------------------
8462
8463 1. Introduction:
8464 ----------------
8465
8466 We usually evaluate an Ada expression in order to print its value.
8467 We also evaluate an expression in order to print its type, which
8468 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
8469 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
8470 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
8471 the evaluation compared to the EVAL_NORMAL, but is otherwise very
8472 similar.
8473
8474 Evaluating expressions is a little more complicated for Ada entities
8475 than it is for entities in languages such as C. The main reason for
8476 this is that Ada provides types whose definition might be dynamic.
8477 One example of such types is variant records. Or another example
8478 would be an array whose bounds can only be known at run time.
8479
8480 The following description is a general guide as to what should be
8481 done (and what should NOT be done) in order to evaluate an expression
8482 involving such types, and when. This does not cover how the semantic
8483 information is encoded by GNAT as this is covered separatly. For the
8484 document used as the reference for the GNAT encoding, see exp_dbug.ads
8485 in the GNAT sources.
8486
8487 Ideally, we should embed each part of this description next to its
8488 associated code. Unfortunately, the amount of code is so vast right
8489 now that it's hard to see whether the code handling a particular
8490 situation might be duplicated or not. One day, when the code is
8491 cleaned up, this guide might become redundant with the comments
8492 inserted in the code, and we might want to remove it.
8493
8494 2. ``Fixing'' an Entity, the Simple Case:
8495 -----------------------------------------
8496
8497 When evaluating Ada expressions, the tricky issue is that they may
8498 reference entities whose type contents and size are not statically
8499 known. Consider for instance a variant record:
8500
8501 type Rec (Empty : Boolean := True) is record
8502 case Empty is
8503 when True => null;
8504 when False => Value : Integer;
8505 end case;
8506 end record;
8507 Yes : Rec := (Empty => False, Value => 1);
8508 No : Rec := (empty => True);
8509
8510 The size and contents of that record depends on the value of the
8511 descriminant (Rec.Empty). At this point, neither the debugging
8512 information nor the associated type structure in GDB are able to
8513 express such dynamic types. So what the debugger does is to create
8514 "fixed" versions of the type that applies to the specific object.
8515 We also informally refer to this opperation as "fixing" an object,
8516 which means creating its associated fixed type.
8517
8518 Example: when printing the value of variable "Yes" above, its fixed
8519 type would look like this:
8520
8521 type Rec is record
8522 Empty : Boolean;
8523 Value : Integer;
8524 end record;
8525
8526 On the other hand, if we printed the value of "No", its fixed type
8527 would become:
8528
8529 type Rec is record
8530 Empty : Boolean;
8531 end record;
8532
8533 Things become a little more complicated when trying to fix an entity
8534 with a dynamic type that directly contains another dynamic type,
8535 such as an array of variant records, for instance. There are
8536 two possible cases: Arrays, and records.
8537
8538 3. ``Fixing'' Arrays:
8539 ---------------------
8540
8541 The type structure in GDB describes an array in terms of its bounds,
8542 and the type of its elements. By design, all elements in the array
8543 have the same type and we cannot represent an array of variant elements
8544 using the current type structure in GDB. When fixing an array,
8545 we cannot fix the array element, as we would potentially need one
8546 fixed type per element of the array. As a result, the best we can do
8547 when fixing an array is to produce an array whose bounds and size
8548 are correct (allowing us to read it from memory), but without having
8549 touched its element type. Fixing each element will be done later,
8550 when (if) necessary.
8551
8552 Arrays are a little simpler to handle than records, because the same
8553 amount of memory is allocated for each element of the array, even if
8554 the amount of space actually used by each element differs from element
8555 to element. Consider for instance the following array of type Rec:
8556
8557 type Rec_Array is array (1 .. 2) of Rec;
8558
8559 The actual amount of memory occupied by each element might be different
8560 from element to element, depending on the value of their discriminant.
8561 But the amount of space reserved for each element in the array remains
8562 fixed regardless. So we simply need to compute that size using
8563 the debugging information available, from which we can then determine
8564 the array size (we multiply the number of elements of the array by
8565 the size of each element).
8566
8567 The simplest case is when we have an array of a constrained element
8568 type. For instance, consider the following type declarations:
8569
8570 type Bounded_String (Max_Size : Integer) is
8571 Length : Integer;
8572 Buffer : String (1 .. Max_Size);
8573 end record;
8574 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
8575
8576 In this case, the compiler describes the array as an array of
8577 variable-size elements (identified by its XVS suffix) for which
8578 the size can be read in the parallel XVZ variable.
8579
8580 In the case of an array of an unconstrained element type, the compiler
8581 wraps the array element inside a private PAD type. This type should not
8582 be shown to the user, and must be "unwrap"'ed before printing. Note
8583 that we also use the adjective "aligner" in our code to designate
8584 these wrapper types.
8585
8586 In some cases, the size allocated for each element is statically
8587 known. In that case, the PAD type already has the correct size,
8588 and the array element should remain unfixed.
8589
8590 But there are cases when this size is not statically known.
8591 For instance, assuming that "Five" is an integer variable:
8592
8593 type Dynamic is array (1 .. Five) of Integer;
8594 type Wrapper (Has_Length : Boolean := False) is record
8595 Data : Dynamic;
8596 case Has_Length is
8597 when True => Length : Integer;
8598 when False => null;
8599 end case;
8600 end record;
8601 type Wrapper_Array is array (1 .. 2) of Wrapper;
8602
8603 Hello : Wrapper_Array := (others => (Has_Length => True,
8604 Data => (others => 17),
8605 Length => 1));
8606
8607
8608 The debugging info would describe variable Hello as being an
8609 array of a PAD type. The size of that PAD type is not statically
8610 known, but can be determined using a parallel XVZ variable.
8611 In that case, a copy of the PAD type with the correct size should
8612 be used for the fixed array.
8613
8614 3. ``Fixing'' record type objects:
8615 ----------------------------------
8616
8617 Things are slightly different from arrays in the case of dynamic
8618 record types. In this case, in order to compute the associated
8619 fixed type, we need to determine the size and offset of each of
8620 its components. This, in turn, requires us to compute the fixed
8621 type of each of these components.
8622
8623 Consider for instance the example:
8624
8625 type Bounded_String (Max_Size : Natural) is record
8626 Str : String (1 .. Max_Size);
8627 Length : Natural;
8628 end record;
8629 My_String : Bounded_String (Max_Size => 10);
8630
8631 In that case, the position of field "Length" depends on the size
8632 of field Str, which itself depends on the value of the Max_Size
8633 discriminant. In order to fix the type of variable My_String,
8634 we need to fix the type of field Str. Therefore, fixing a variant
8635 record requires us to fix each of its components.
8636
8637 However, if a component does not have a dynamic size, the component
8638 should not be fixed. In particular, fields that use a PAD type
8639 should not fixed. Here is an example where this might happen
8640 (assuming type Rec above):
8641
8642 type Container (Big : Boolean) is record
8643 First : Rec;
8644 After : Integer;
8645 case Big is
8646 when True => Another : Integer;
8647 when False => null;
8648 end case;
8649 end record;
8650 My_Container : Container := (Big => False,
8651 First => (Empty => True),
8652 After => 42);
8653
8654 In that example, the compiler creates a PAD type for component First,
8655 whose size is constant, and then positions the component After just
8656 right after it. The offset of component After is therefore constant
8657 in this case.
8658
8659 The debugger computes the position of each field based on an algorithm
8660 that uses, among other things, the actual position and size of the field
8661 preceding it. Let's now imagine that the user is trying to print
8662 the value of My_Container. If the type fixing was recursive, we would
8663 end up computing the offset of field After based on the size of the
8664 fixed version of field First. And since in our example First has
8665 only one actual field, the size of the fixed type is actually smaller
8666 than the amount of space allocated to that field, and thus we would
8667 compute the wrong offset of field After.
8668
8669 To make things more complicated, we need to watch out for dynamic
8670 components of variant records (identified by the ___XVL suffix in
8671 the component name). Even if the target type is a PAD type, the size
8672 of that type might not be statically known. So the PAD type needs
8673 to be unwrapped and the resulting type needs to be fixed. Otherwise,
8674 we might end up with the wrong size for our component. This can be
8675 observed with the following type declarations:
8676
8677 type Octal is new Integer range 0 .. 7;
8678 type Octal_Array is array (Positive range <>) of Octal;
8679 pragma Pack (Octal_Array);
8680
8681 type Octal_Buffer (Size : Positive) is record
8682 Buffer : Octal_Array (1 .. Size);
8683 Length : Integer;
8684 end record;
8685
8686 In that case, Buffer is a PAD type whose size is unset and needs
8687 to be computed by fixing the unwrapped type.
8688
8689 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
8690 ----------------------------------------------------------
8691
8692 Lastly, when should the sub-elements of an entity that remained unfixed
8693 thus far, be actually fixed?
8694
8695 The answer is: Only when referencing that element. For instance
8696 when selecting one component of a record, this specific component
8697 should be fixed at that point in time. Or when printing the value
8698 of a record, each component should be fixed before its value gets
8699 printed. Similarly for arrays, the element of the array should be
8700 fixed when printing each element of the array, or when extracting
8701 one element out of that array. On the other hand, fixing should
8702 not be performed on the elements when taking a slice of an array!
8703
8704 Note that one of the side-effects of miscomputing the offset and
8705 size of each field is that we end up also miscomputing the size
8706 of the containing type. This can have adverse results when computing
8707 the value of an entity. GDB fetches the value of an entity based
8708 on the size of its type, and thus a wrong size causes GDB to fetch
8709 the wrong amount of memory. In the case where the computed size is
8710 too small, GDB fetches too little data to print the value of our
8711 entiry. Results in this case as unpredicatble, as we usually read
8712 past the buffer containing the data =:-o. */
8713
8714 /* Implement the evaluate_exp routine in the exp_descriptor structure
8715 for the Ada language. */
8716
8717 static struct value *
8718 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
8719 int *pos, enum noside noside)
8720 {
8721 enum exp_opcode op;
8722 int tem;
8723 int pc;
8724 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
8725 struct type *type;
8726 int nargs, oplen;
8727 struct value **argvec;
8728
8729 pc = *pos;
8730 *pos += 1;
8731 op = exp->elts[pc].opcode;
8732
8733 switch (op)
8734 {
8735 default:
8736 *pos -= 1;
8737 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8738 arg1 = unwrap_value (arg1);
8739
8740 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
8741 then we need to perform the conversion manually, because
8742 evaluate_subexp_standard doesn't do it. This conversion is
8743 necessary in Ada because the different kinds of float/fixed
8744 types in Ada have different representations.
8745
8746 Similarly, we need to perform the conversion from OP_LONG
8747 ourselves. */
8748 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
8749 arg1 = ada_value_cast (expect_type, arg1, noside);
8750
8751 return arg1;
8752
8753 case OP_STRING:
8754 {
8755 struct value *result;
8756
8757 *pos -= 1;
8758 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
8759 /* The result type will have code OP_STRING, bashed there from
8760 OP_ARRAY. Bash it back. */
8761 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
8762 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
8763 return result;
8764 }
8765
8766 case UNOP_CAST:
8767 (*pos) += 2;
8768 type = exp->elts[pc + 1].type;
8769 arg1 = evaluate_subexp (type, exp, pos, noside);
8770 if (noside == EVAL_SKIP)
8771 goto nosideret;
8772 arg1 = ada_value_cast (type, arg1, noside);
8773 return arg1;
8774
8775 case UNOP_QUAL:
8776 (*pos) += 2;
8777 type = exp->elts[pc + 1].type;
8778 return ada_evaluate_subexp (type, exp, pos, noside);
8779
8780 case BINOP_ASSIGN:
8781 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8782 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8783 {
8784 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
8785 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8786 return arg1;
8787 return ada_value_assign (arg1, arg1);
8788 }
8789 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
8790 except if the lhs of our assignment is a convenience variable.
8791 In the case of assigning to a convenience variable, the lhs
8792 should be exactly the result of the evaluation of the rhs. */
8793 type = value_type (arg1);
8794 if (VALUE_LVAL (arg1) == lval_internalvar)
8795 type = NULL;
8796 arg2 = evaluate_subexp (type, exp, pos, noside);
8797 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8798 return arg1;
8799 if (ada_is_fixed_point_type (value_type (arg1)))
8800 arg2 = cast_to_fixed (value_type (arg1), arg2);
8801 else if (ada_is_fixed_point_type (value_type (arg2)))
8802 error
8803 (_("Fixed-point values must be assigned to fixed-point variables"));
8804 else
8805 arg2 = coerce_for_assign (value_type (arg1), arg2);
8806 return ada_value_assign (arg1, arg2);
8807
8808 case BINOP_ADD:
8809 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8810 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8811 if (noside == EVAL_SKIP)
8812 goto nosideret;
8813 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8814 return (value_from_longest
8815 (value_type (arg1),
8816 value_as_long (arg1) + value_as_long (arg2)));
8817 if ((ada_is_fixed_point_type (value_type (arg1))
8818 || ada_is_fixed_point_type (value_type (arg2)))
8819 && value_type (arg1) != value_type (arg2))
8820 error (_("Operands of fixed-point addition must have the same type"));
8821 /* Do the addition, and cast the result to the type of the first
8822 argument. We cannot cast the result to a reference type, so if
8823 ARG1 is a reference type, find its underlying type. */
8824 type = value_type (arg1);
8825 while (TYPE_CODE (type) == TYPE_CODE_REF)
8826 type = TYPE_TARGET_TYPE (type);
8827 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8828 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
8829
8830 case BINOP_SUB:
8831 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8832 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8833 if (noside == EVAL_SKIP)
8834 goto nosideret;
8835 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8836 return (value_from_longest
8837 (value_type (arg1),
8838 value_as_long (arg1) - value_as_long (arg2)));
8839 if ((ada_is_fixed_point_type (value_type (arg1))
8840 || ada_is_fixed_point_type (value_type (arg2)))
8841 && value_type (arg1) != value_type (arg2))
8842 error (_("Operands of fixed-point subtraction must have the same type"));
8843 /* Do the substraction, and cast the result to the type of the first
8844 argument. We cannot cast the result to a reference type, so if
8845 ARG1 is a reference type, find its underlying type. */
8846 type = value_type (arg1);
8847 while (TYPE_CODE (type) == TYPE_CODE_REF)
8848 type = TYPE_TARGET_TYPE (type);
8849 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8850 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
8851
8852 case BINOP_MUL:
8853 case BINOP_DIV:
8854 case BINOP_REM:
8855 case BINOP_MOD:
8856 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8857 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8858 if (noside == EVAL_SKIP)
8859 goto nosideret;
8860 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8861 {
8862 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8863 return value_zero (value_type (arg1), not_lval);
8864 }
8865 else
8866 {
8867 type = builtin_type (exp->gdbarch)->builtin_double;
8868 if (ada_is_fixed_point_type (value_type (arg1)))
8869 arg1 = cast_from_fixed (type, arg1);
8870 if (ada_is_fixed_point_type (value_type (arg2)))
8871 arg2 = cast_from_fixed (type, arg2);
8872 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8873 return ada_value_binop (arg1, arg2, op);
8874 }
8875
8876 case BINOP_EQUAL:
8877 case BINOP_NOTEQUAL:
8878 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8879 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
8880 if (noside == EVAL_SKIP)
8881 goto nosideret;
8882 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8883 tem = 0;
8884 else
8885 {
8886 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8887 tem = ada_value_equal (arg1, arg2);
8888 }
8889 if (op == BINOP_NOTEQUAL)
8890 tem = !tem;
8891 type = language_bool_type (exp->language_defn, exp->gdbarch);
8892 return value_from_longest (type, (LONGEST) tem);
8893
8894 case UNOP_NEG:
8895 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8896 if (noside == EVAL_SKIP)
8897 goto nosideret;
8898 else if (ada_is_fixed_point_type (value_type (arg1)))
8899 return value_cast (value_type (arg1), value_neg (arg1));
8900 else
8901 {
8902 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
8903 return value_neg (arg1);
8904 }
8905
8906 case BINOP_LOGICAL_AND:
8907 case BINOP_LOGICAL_OR:
8908 case UNOP_LOGICAL_NOT:
8909 {
8910 struct value *val;
8911
8912 *pos -= 1;
8913 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8914 type = language_bool_type (exp->language_defn, exp->gdbarch);
8915 return value_cast (type, val);
8916 }
8917
8918 case BINOP_BITWISE_AND:
8919 case BINOP_BITWISE_IOR:
8920 case BINOP_BITWISE_XOR:
8921 {
8922 struct value *val;
8923
8924 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8925 *pos = pc;
8926 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8927
8928 return value_cast (value_type (arg1), val);
8929 }
8930
8931 case OP_VAR_VALUE:
8932 *pos -= 1;
8933
8934 if (noside == EVAL_SKIP)
8935 {
8936 *pos += 4;
8937 goto nosideret;
8938 }
8939 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
8940 /* Only encountered when an unresolved symbol occurs in a
8941 context other than a function call, in which case, it is
8942 invalid. */
8943 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8944 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
8945 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8946 {
8947 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
8948 /* Check to see if this is a tagged type. We also need to handle
8949 the case where the type is a reference to a tagged type, but
8950 we have to be careful to exclude pointers to tagged types.
8951 The latter should be shown as usual (as a pointer), whereas
8952 a reference should mostly be transparent to the user. */
8953 if (ada_is_tagged_type (type, 0)
8954 || (TYPE_CODE(type) == TYPE_CODE_REF
8955 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
8956 {
8957 /* Tagged types are a little special in the fact that the real
8958 type is dynamic and can only be determined by inspecting the
8959 object's tag. This means that we need to get the object's
8960 value first (EVAL_NORMAL) and then extract the actual object
8961 type from its tag.
8962
8963 Note that we cannot skip the final step where we extract
8964 the object type from its tag, because the EVAL_NORMAL phase
8965 results in dynamic components being resolved into fixed ones.
8966 This can cause problems when trying to print the type
8967 description of tagged types whose parent has a dynamic size:
8968 We use the type name of the "_parent" component in order
8969 to print the name of the ancestor type in the type description.
8970 If that component had a dynamic size, the resolution into
8971 a fixed type would result in the loss of that type name,
8972 thus preventing us from printing the name of the ancestor
8973 type in the type description. */
8974 struct type *actual_type;
8975
8976 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
8977 actual_type = type_from_tag (ada_value_tag (arg1));
8978 if (actual_type == NULL)
8979 /* If, for some reason, we were unable to determine
8980 the actual type from the tag, then use the static
8981 approximation that we just computed as a fallback.
8982 This can happen if the debugging information is
8983 incomplete, for instance. */
8984 actual_type = type;
8985
8986 return value_zero (actual_type, not_lval);
8987 }
8988
8989 *pos += 4;
8990 return value_zero
8991 (to_static_fixed_type
8992 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
8993 not_lval);
8994 }
8995 else
8996 {
8997 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8998 arg1 = unwrap_value (arg1);
8999 return ada_to_fixed_value (arg1);
9000 }
9001
9002 case OP_FUNCALL:
9003 (*pos) += 2;
9004
9005 /* Allocate arg vector, including space for the function to be
9006 called in argvec[0] and a terminating NULL. */
9007 nargs = longest_to_int (exp->elts[pc + 1].longconst);
9008 argvec =
9009 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
9010
9011 if (exp->elts[*pos].opcode == OP_VAR_VALUE
9012 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
9013 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9014 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
9015 else
9016 {
9017 for (tem = 0; tem <= nargs; tem += 1)
9018 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9019 argvec[tem] = 0;
9020
9021 if (noside == EVAL_SKIP)
9022 goto nosideret;
9023 }
9024
9025 if (ada_is_constrained_packed_array_type
9026 (desc_base_type (value_type (argvec[0]))))
9027 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
9028 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9029 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
9030 /* This is a packed array that has already been fixed, and
9031 therefore already coerced to a simple array. Nothing further
9032 to do. */
9033 ;
9034 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
9035 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9036 && VALUE_LVAL (argvec[0]) == lval_memory))
9037 argvec[0] = value_addr (argvec[0]);
9038
9039 type = ada_check_typedef (value_type (argvec[0]));
9040 if (TYPE_CODE (type) == TYPE_CODE_PTR)
9041 {
9042 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
9043 {
9044 case TYPE_CODE_FUNC:
9045 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9046 break;
9047 case TYPE_CODE_ARRAY:
9048 break;
9049 case TYPE_CODE_STRUCT:
9050 if (noside != EVAL_AVOID_SIDE_EFFECTS)
9051 argvec[0] = ada_value_ind (argvec[0]);
9052 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9053 break;
9054 default:
9055 error (_("cannot subscript or call something of type `%s'"),
9056 ada_type_name (value_type (argvec[0])));
9057 break;
9058 }
9059 }
9060
9061 switch (TYPE_CODE (type))
9062 {
9063 case TYPE_CODE_FUNC:
9064 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9065 return allocate_value (TYPE_TARGET_TYPE (type));
9066 return call_function_by_hand (argvec[0], nargs, argvec + 1);
9067 case TYPE_CODE_STRUCT:
9068 {
9069 int arity;
9070
9071 arity = ada_array_arity (type);
9072 type = ada_array_element_type (type, nargs);
9073 if (type == NULL)
9074 error (_("cannot subscript or call a record"));
9075 if (arity != nargs)
9076 error (_("wrong number of subscripts; expecting %d"), arity);
9077 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9078 return value_zero (ada_aligned_type (type), lval_memory);
9079 return
9080 unwrap_value (ada_value_subscript
9081 (argvec[0], nargs, argvec + 1));
9082 }
9083 case TYPE_CODE_ARRAY:
9084 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9085 {
9086 type = ada_array_element_type (type, nargs);
9087 if (type == NULL)
9088 error (_("element type of array unknown"));
9089 else
9090 return value_zero (ada_aligned_type (type), lval_memory);
9091 }
9092 return
9093 unwrap_value (ada_value_subscript
9094 (ada_coerce_to_simple_array (argvec[0]),
9095 nargs, argvec + 1));
9096 case TYPE_CODE_PTR: /* Pointer to array */
9097 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
9098 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9099 {
9100 type = ada_array_element_type (type, nargs);
9101 if (type == NULL)
9102 error (_("element type of array unknown"));
9103 else
9104 return value_zero (ada_aligned_type (type), lval_memory);
9105 }
9106 return
9107 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
9108 nargs, argvec + 1));
9109
9110 default:
9111 error (_("Attempt to index or call something other than an "
9112 "array or function"));
9113 }
9114
9115 case TERNOP_SLICE:
9116 {
9117 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9118 struct value *low_bound_val =
9119 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9120 struct value *high_bound_val =
9121 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9122 LONGEST low_bound;
9123 LONGEST high_bound;
9124
9125 low_bound_val = coerce_ref (low_bound_val);
9126 high_bound_val = coerce_ref (high_bound_val);
9127 low_bound = pos_atr (low_bound_val);
9128 high_bound = pos_atr (high_bound_val);
9129
9130 if (noside == EVAL_SKIP)
9131 goto nosideret;
9132
9133 /* If this is a reference to an aligner type, then remove all
9134 the aligners. */
9135 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9136 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
9137 TYPE_TARGET_TYPE (value_type (array)) =
9138 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
9139
9140 if (ada_is_constrained_packed_array_type (value_type (array)))
9141 error (_("cannot slice a packed array"));
9142
9143 /* If this is a reference to an array or an array lvalue,
9144 convert to a pointer. */
9145 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9146 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
9147 && VALUE_LVAL (array) == lval_memory))
9148 array = value_addr (array);
9149
9150 if (noside == EVAL_AVOID_SIDE_EFFECTS
9151 && ada_is_array_descriptor_type (ada_check_typedef
9152 (value_type (array))))
9153 return empty_array (ada_type_of_array (array, 0), low_bound);
9154
9155 array = ada_coerce_to_simple_array_ptr (array);
9156
9157 /* If we have more than one level of pointer indirection,
9158 dereference the value until we get only one level. */
9159 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
9160 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
9161 == TYPE_CODE_PTR))
9162 array = value_ind (array);
9163
9164 /* Make sure we really do have an array type before going further,
9165 to avoid a SEGV when trying to get the index type or the target
9166 type later down the road if the debug info generated by
9167 the compiler is incorrect or incomplete. */
9168 if (!ada_is_simple_array_type (value_type (array)))
9169 error (_("cannot take slice of non-array"));
9170
9171 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
9172 {
9173 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
9174 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
9175 low_bound);
9176 else
9177 {
9178 struct type *arr_type0 =
9179 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
9180 NULL, 1);
9181
9182 return ada_value_slice_from_ptr (array, arr_type0,
9183 longest_to_int (low_bound),
9184 longest_to_int (high_bound));
9185 }
9186 }
9187 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9188 return array;
9189 else if (high_bound < low_bound)
9190 return empty_array (value_type (array), low_bound);
9191 else
9192 return ada_value_slice (array, longest_to_int (low_bound),
9193 longest_to_int (high_bound));
9194 }
9195
9196 case UNOP_IN_RANGE:
9197 (*pos) += 2;
9198 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9199 type = check_typedef (exp->elts[pc + 1].type);
9200
9201 if (noside == EVAL_SKIP)
9202 goto nosideret;
9203
9204 switch (TYPE_CODE (type))
9205 {
9206 default:
9207 lim_warning (_("Membership test incompletely implemented; "
9208 "always returns true"));
9209 type = language_bool_type (exp->language_defn, exp->gdbarch);
9210 return value_from_longest (type, (LONGEST) 1);
9211
9212 case TYPE_CODE_RANGE:
9213 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
9214 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
9215 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9216 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9217 type = language_bool_type (exp->language_defn, exp->gdbarch);
9218 return
9219 value_from_longest (type,
9220 (value_less (arg1, arg3)
9221 || value_equal (arg1, arg3))
9222 && (value_less (arg2, arg1)
9223 || value_equal (arg2, arg1)));
9224 }
9225
9226 case BINOP_IN_BOUNDS:
9227 (*pos) += 2;
9228 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9229 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9230
9231 if (noside == EVAL_SKIP)
9232 goto nosideret;
9233
9234 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9235 {
9236 type = language_bool_type (exp->language_defn, exp->gdbarch);
9237 return value_zero (type, not_lval);
9238 }
9239
9240 tem = longest_to_int (exp->elts[pc + 1].longconst);
9241
9242 type = ada_index_type (value_type (arg2), tem, "range");
9243 if (!type)
9244 type = value_type (arg1);
9245
9246 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
9247 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
9248
9249 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9250 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9251 type = language_bool_type (exp->language_defn, exp->gdbarch);
9252 return
9253 value_from_longest (type,
9254 (value_less (arg1, arg3)
9255 || value_equal (arg1, arg3))
9256 && (value_less (arg2, arg1)
9257 || value_equal (arg2, arg1)));
9258
9259 case TERNOP_IN_RANGE:
9260 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9261 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9262 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9263
9264 if (noside == EVAL_SKIP)
9265 goto nosideret;
9266
9267 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9268 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9269 type = language_bool_type (exp->language_defn, exp->gdbarch);
9270 return
9271 value_from_longest (type,
9272 (value_less (arg1, arg3)
9273 || value_equal (arg1, arg3))
9274 && (value_less (arg2, arg1)
9275 || value_equal (arg2, arg1)));
9276
9277 case OP_ATR_FIRST:
9278 case OP_ATR_LAST:
9279 case OP_ATR_LENGTH:
9280 {
9281 struct type *type_arg;
9282
9283 if (exp->elts[*pos].opcode == OP_TYPE)
9284 {
9285 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9286 arg1 = NULL;
9287 type_arg = check_typedef (exp->elts[pc + 2].type);
9288 }
9289 else
9290 {
9291 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9292 type_arg = NULL;
9293 }
9294
9295 if (exp->elts[*pos].opcode != OP_LONG)
9296 error (_("Invalid operand to '%s"), ada_attribute_name (op));
9297 tem = longest_to_int (exp->elts[*pos + 2].longconst);
9298 *pos += 4;
9299
9300 if (noside == EVAL_SKIP)
9301 goto nosideret;
9302
9303 if (type_arg == NULL)
9304 {
9305 arg1 = ada_coerce_ref (arg1);
9306
9307 if (ada_is_constrained_packed_array_type (value_type (arg1)))
9308 arg1 = ada_coerce_to_simple_array (arg1);
9309
9310 type = ada_index_type (value_type (arg1), tem,
9311 ada_attribute_name (op));
9312 if (type == NULL)
9313 type = builtin_type (exp->gdbarch)->builtin_int;
9314
9315 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9316 return allocate_value (type);
9317
9318 switch (op)
9319 {
9320 default: /* Should never happen. */
9321 error (_("unexpected attribute encountered"));
9322 case OP_ATR_FIRST:
9323 return value_from_longest
9324 (type, ada_array_bound (arg1, tem, 0));
9325 case OP_ATR_LAST:
9326 return value_from_longest
9327 (type, ada_array_bound (arg1, tem, 1));
9328 case OP_ATR_LENGTH:
9329 return value_from_longest
9330 (type, ada_array_length (arg1, tem));
9331 }
9332 }
9333 else if (discrete_type_p (type_arg))
9334 {
9335 struct type *range_type;
9336 char *name = ada_type_name (type_arg);
9337
9338 range_type = NULL;
9339 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
9340 range_type = to_fixed_range_type (type_arg, NULL);
9341 if (range_type == NULL)
9342 range_type = type_arg;
9343 switch (op)
9344 {
9345 default:
9346 error (_("unexpected attribute encountered"));
9347 case OP_ATR_FIRST:
9348 return value_from_longest
9349 (range_type, ada_discrete_type_low_bound (range_type));
9350 case OP_ATR_LAST:
9351 return value_from_longest
9352 (range_type, ada_discrete_type_high_bound (range_type));
9353 case OP_ATR_LENGTH:
9354 error (_("the 'length attribute applies only to array types"));
9355 }
9356 }
9357 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
9358 error (_("unimplemented type attribute"));
9359 else
9360 {
9361 LONGEST low, high;
9362
9363 if (ada_is_constrained_packed_array_type (type_arg))
9364 type_arg = decode_constrained_packed_array_type (type_arg);
9365
9366 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
9367 if (type == NULL)
9368 type = builtin_type (exp->gdbarch)->builtin_int;
9369
9370 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9371 return allocate_value (type);
9372
9373 switch (op)
9374 {
9375 default:
9376 error (_("unexpected attribute encountered"));
9377 case OP_ATR_FIRST:
9378 low = ada_array_bound_from_type (type_arg, tem, 0);
9379 return value_from_longest (type, low);
9380 case OP_ATR_LAST:
9381 high = ada_array_bound_from_type (type_arg, tem, 1);
9382 return value_from_longest (type, high);
9383 case OP_ATR_LENGTH:
9384 low = ada_array_bound_from_type (type_arg, tem, 0);
9385 high = ada_array_bound_from_type (type_arg, tem, 1);
9386 return value_from_longest (type, high - low + 1);
9387 }
9388 }
9389 }
9390
9391 case OP_ATR_TAG:
9392 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9393 if (noside == EVAL_SKIP)
9394 goto nosideret;
9395
9396 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9397 return value_zero (ada_tag_type (arg1), not_lval);
9398
9399 return ada_value_tag (arg1);
9400
9401 case OP_ATR_MIN:
9402 case OP_ATR_MAX:
9403 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9404 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9405 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9406 if (noside == EVAL_SKIP)
9407 goto nosideret;
9408 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9409 return value_zero (value_type (arg1), not_lval);
9410 else
9411 {
9412 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9413 return value_binop (arg1, arg2,
9414 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9415 }
9416
9417 case OP_ATR_MODULUS:
9418 {
9419 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
9420
9421 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9422 if (noside == EVAL_SKIP)
9423 goto nosideret;
9424
9425 if (!ada_is_modular_type (type_arg))
9426 error (_("'modulus must be applied to modular type"));
9427
9428 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9429 ada_modulus (type_arg));
9430 }
9431
9432
9433 case OP_ATR_POS:
9434 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9435 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9436 if (noside == EVAL_SKIP)
9437 goto nosideret;
9438 type = builtin_type (exp->gdbarch)->builtin_int;
9439 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9440 return value_zero (type, not_lval);
9441 else
9442 return value_pos_atr (type, arg1);
9443
9444 case OP_ATR_SIZE:
9445 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9446 type = value_type (arg1);
9447
9448 /* If the argument is a reference, then dereference its type, since
9449 the user is really asking for the size of the actual object,
9450 not the size of the pointer. */
9451 if (TYPE_CODE (type) == TYPE_CODE_REF)
9452 type = TYPE_TARGET_TYPE (type);
9453
9454 if (noside == EVAL_SKIP)
9455 goto nosideret;
9456 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9457 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
9458 else
9459 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
9460 TARGET_CHAR_BIT * TYPE_LENGTH (type));
9461
9462 case OP_ATR_VAL:
9463 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9464 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9465 type = exp->elts[pc + 2].type;
9466 if (noside == EVAL_SKIP)
9467 goto nosideret;
9468 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9469 return value_zero (type, not_lval);
9470 else
9471 return value_val_atr (type, arg1);
9472
9473 case BINOP_EXP:
9474 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9475 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9476 if (noside == EVAL_SKIP)
9477 goto nosideret;
9478 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9479 return value_zero (value_type (arg1), not_lval);
9480 else
9481 {
9482 /* For integer exponentiation operations,
9483 only promote the first argument. */
9484 if (is_integral_type (value_type (arg2)))
9485 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9486 else
9487 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9488
9489 return value_binop (arg1, arg2, op);
9490 }
9491
9492 case UNOP_PLUS:
9493 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9494 if (noside == EVAL_SKIP)
9495 goto nosideret;
9496 else
9497 return arg1;
9498
9499 case UNOP_ABS:
9500 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9501 if (noside == EVAL_SKIP)
9502 goto nosideret;
9503 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9504 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
9505 return value_neg (arg1);
9506 else
9507 return arg1;
9508
9509 case UNOP_IND:
9510 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9511 if (noside == EVAL_SKIP)
9512 goto nosideret;
9513 type = ada_check_typedef (value_type (arg1));
9514 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9515 {
9516 if (ada_is_array_descriptor_type (type))
9517 /* GDB allows dereferencing GNAT array descriptors. */
9518 {
9519 struct type *arrType = ada_type_of_array (arg1, 0);
9520
9521 if (arrType == NULL)
9522 error (_("Attempt to dereference null array pointer."));
9523 return value_at_lazy (arrType, 0);
9524 }
9525 else if (TYPE_CODE (type) == TYPE_CODE_PTR
9526 || TYPE_CODE (type) == TYPE_CODE_REF
9527 /* In C you can dereference an array to get the 1st elt. */
9528 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
9529 {
9530 type = to_static_fixed_type
9531 (ada_aligned_type
9532 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
9533 check_size (type);
9534 return value_zero (type, lval_memory);
9535 }
9536 else if (TYPE_CODE (type) == TYPE_CODE_INT)
9537 {
9538 /* GDB allows dereferencing an int. */
9539 if (expect_type == NULL)
9540 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9541 lval_memory);
9542 else
9543 {
9544 expect_type =
9545 to_static_fixed_type (ada_aligned_type (expect_type));
9546 return value_zero (expect_type, lval_memory);
9547 }
9548 }
9549 else
9550 error (_("Attempt to take contents of a non-pointer value."));
9551 }
9552 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
9553 type = ada_check_typedef (value_type (arg1));
9554
9555 if (TYPE_CODE (type) == TYPE_CODE_INT)
9556 /* GDB allows dereferencing an int. If we were given
9557 the expect_type, then use that as the target type.
9558 Otherwise, assume that the target type is an int. */
9559 {
9560 if (expect_type != NULL)
9561 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
9562 arg1));
9563 else
9564 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
9565 (CORE_ADDR) value_as_address (arg1));
9566 }
9567
9568 if (ada_is_array_descriptor_type (type))
9569 /* GDB allows dereferencing GNAT array descriptors. */
9570 return ada_coerce_to_simple_array (arg1);
9571 else
9572 return ada_value_ind (arg1);
9573
9574 case STRUCTOP_STRUCT:
9575 tem = longest_to_int (exp->elts[pc + 1].longconst);
9576 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
9577 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9578 if (noside == EVAL_SKIP)
9579 goto nosideret;
9580 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9581 {
9582 struct type *type1 = value_type (arg1);
9583
9584 if (ada_is_tagged_type (type1, 1))
9585 {
9586 type = ada_lookup_struct_elt_type (type1,
9587 &exp->elts[pc + 2].string,
9588 1, 1, NULL);
9589 if (type == NULL)
9590 /* In this case, we assume that the field COULD exist
9591 in some extension of the type. Return an object of
9592 "type" void, which will match any formal
9593 (see ada_type_match). */
9594 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
9595 lval_memory);
9596 }
9597 else
9598 type =
9599 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
9600 0, NULL);
9601
9602 return value_zero (ada_aligned_type (type), lval_memory);
9603 }
9604 else
9605 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
9606 arg1 = unwrap_value (arg1);
9607 return ada_to_fixed_value (arg1);
9608
9609 case OP_TYPE:
9610 /* The value is not supposed to be used. This is here to make it
9611 easier to accommodate expressions that contain types. */
9612 (*pos) += 2;
9613 if (noside == EVAL_SKIP)
9614 goto nosideret;
9615 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9616 return allocate_value (exp->elts[pc + 1].type);
9617 else
9618 error (_("Attempt to use a type name as an expression"));
9619
9620 case OP_AGGREGATE:
9621 case OP_CHOICES:
9622 case OP_OTHERS:
9623 case OP_DISCRETE_RANGE:
9624 case OP_POSITIONAL:
9625 case OP_NAME:
9626 if (noside == EVAL_NORMAL)
9627 switch (op)
9628 {
9629 case OP_NAME:
9630 error (_("Undefined name, ambiguous name, or renaming used in "
9631 "component association: %s."), &exp->elts[pc+2].string);
9632 case OP_AGGREGATE:
9633 error (_("Aggregates only allowed on the right of an assignment"));
9634 default:
9635 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
9636 }
9637
9638 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9639 *pos += oplen - 1;
9640 for (tem = 0; tem < nargs; tem += 1)
9641 ada_evaluate_subexp (NULL, exp, pos, noside);
9642 goto nosideret;
9643 }
9644
9645 nosideret:
9646 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
9647 }
9648 \f
9649
9650 /* Fixed point */
9651
9652 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
9653 type name that encodes the 'small and 'delta information.
9654 Otherwise, return NULL. */
9655
9656 static const char *
9657 fixed_type_info (struct type *type)
9658 {
9659 const char *name = ada_type_name (type);
9660 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
9661
9662 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
9663 {
9664 const char *tail = strstr (name, "___XF_");
9665
9666 if (tail == NULL)
9667 return NULL;
9668 else
9669 return tail + 5;
9670 }
9671 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
9672 return fixed_type_info (TYPE_TARGET_TYPE (type));
9673 else
9674 return NULL;
9675 }
9676
9677 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
9678
9679 int
9680 ada_is_fixed_point_type (struct type *type)
9681 {
9682 return fixed_type_info (type) != NULL;
9683 }
9684
9685 /* Return non-zero iff TYPE represents a System.Address type. */
9686
9687 int
9688 ada_is_system_address_type (struct type *type)
9689 {
9690 return (TYPE_NAME (type)
9691 && strcmp (TYPE_NAME (type), "system__address") == 0);
9692 }
9693
9694 /* Assuming that TYPE is the representation of an Ada fixed-point
9695 type, return its delta, or -1 if the type is malformed and the
9696 delta cannot be determined. */
9697
9698 DOUBLEST
9699 ada_delta (struct type *type)
9700 {
9701 const char *encoding = fixed_type_info (type);
9702 DOUBLEST num, den;
9703
9704 /* Strictly speaking, num and den are encoded as integer. However,
9705 they may not fit into a long, and they will have to be converted
9706 to DOUBLEST anyway. So scan them as DOUBLEST. */
9707 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9708 &num, &den) < 2)
9709 return -1.0;
9710 else
9711 return num / den;
9712 }
9713
9714 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
9715 factor ('SMALL value) associated with the type. */
9716
9717 static DOUBLEST
9718 scaling_factor (struct type *type)
9719 {
9720 const char *encoding = fixed_type_info (type);
9721 DOUBLEST num0, den0, num1, den1;
9722 int n;
9723
9724 /* Strictly speaking, num's and den's are encoded as integer. However,
9725 they may not fit into a long, and they will have to be converted
9726 to DOUBLEST anyway. So scan them as DOUBLEST. */
9727 n = sscanf (encoding,
9728 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
9729 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9730 &num0, &den0, &num1, &den1);
9731
9732 if (n < 2)
9733 return 1.0;
9734 else if (n == 4)
9735 return num1 / den1;
9736 else
9737 return num0 / den0;
9738 }
9739
9740
9741 /* Assuming that X is the representation of a value of fixed-point
9742 type TYPE, return its floating-point equivalent. */
9743
9744 DOUBLEST
9745 ada_fixed_to_float (struct type *type, LONGEST x)
9746 {
9747 return (DOUBLEST) x *scaling_factor (type);
9748 }
9749
9750 /* The representation of a fixed-point value of type TYPE
9751 corresponding to the value X. */
9752
9753 LONGEST
9754 ada_float_to_fixed (struct type *type, DOUBLEST x)
9755 {
9756 return (LONGEST) (x / scaling_factor (type) + 0.5);
9757 }
9758
9759 \f
9760
9761 /* Range types */
9762
9763 /* Scan STR beginning at position K for a discriminant name, and
9764 return the value of that discriminant field of DVAL in *PX. If
9765 PNEW_K is not null, put the position of the character beyond the
9766 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
9767 not alter *PX and *PNEW_K if unsuccessful. */
9768
9769 static int
9770 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
9771 int *pnew_k)
9772 {
9773 static char *bound_buffer = NULL;
9774 static size_t bound_buffer_len = 0;
9775 char *bound;
9776 char *pend;
9777 struct value *bound_val;
9778
9779 if (dval == NULL || str == NULL || str[k] == '\0')
9780 return 0;
9781
9782 pend = strstr (str + k, "__");
9783 if (pend == NULL)
9784 {
9785 bound = str + k;
9786 k += strlen (bound);
9787 }
9788 else
9789 {
9790 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
9791 bound = bound_buffer;
9792 strncpy (bound_buffer, str + k, pend - (str + k));
9793 bound[pend - (str + k)] = '\0';
9794 k = pend - str;
9795 }
9796
9797 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
9798 if (bound_val == NULL)
9799 return 0;
9800
9801 *px = value_as_long (bound_val);
9802 if (pnew_k != NULL)
9803 *pnew_k = k;
9804 return 1;
9805 }
9806
9807 /* Value of variable named NAME in the current environment. If
9808 no such variable found, then if ERR_MSG is null, returns 0, and
9809 otherwise causes an error with message ERR_MSG. */
9810
9811 static struct value *
9812 get_var_value (char *name, char *err_msg)
9813 {
9814 struct ada_symbol_info *syms;
9815 int nsyms;
9816
9817 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
9818 &syms);
9819
9820 if (nsyms != 1)
9821 {
9822 if (err_msg == NULL)
9823 return 0;
9824 else
9825 error (("%s"), err_msg);
9826 }
9827
9828 return value_of_variable (syms[0].sym, syms[0].block);
9829 }
9830
9831 /* Value of integer variable named NAME in the current environment. If
9832 no such variable found, returns 0, and sets *FLAG to 0. If
9833 successful, sets *FLAG to 1. */
9834
9835 LONGEST
9836 get_int_var_value (char *name, int *flag)
9837 {
9838 struct value *var_val = get_var_value (name, 0);
9839
9840 if (var_val == 0)
9841 {
9842 if (flag != NULL)
9843 *flag = 0;
9844 return 0;
9845 }
9846 else
9847 {
9848 if (flag != NULL)
9849 *flag = 1;
9850 return value_as_long (var_val);
9851 }
9852 }
9853
9854
9855 /* Return a range type whose base type is that of the range type named
9856 NAME in the current environment, and whose bounds are calculated
9857 from NAME according to the GNAT range encoding conventions.
9858 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
9859 corresponding range type from debug information; fall back to using it
9860 if symbol lookup fails. If a new type must be created, allocate it
9861 like ORIG_TYPE was. The bounds information, in general, is encoded
9862 in NAME, the base type given in the named range type. */
9863
9864 static struct type *
9865 to_fixed_range_type (struct type *raw_type, struct value *dval)
9866 {
9867 char *name;
9868 struct type *base_type;
9869 char *subtype_info;
9870
9871 gdb_assert (raw_type != NULL);
9872 gdb_assert (TYPE_NAME (raw_type) != NULL);
9873
9874 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
9875 base_type = TYPE_TARGET_TYPE (raw_type);
9876 else
9877 base_type = raw_type;
9878
9879 name = TYPE_NAME (raw_type);
9880 subtype_info = strstr (name, "___XD");
9881 if (subtype_info == NULL)
9882 {
9883 LONGEST L = ada_discrete_type_low_bound (raw_type);
9884 LONGEST U = ada_discrete_type_high_bound (raw_type);
9885
9886 if (L < INT_MIN || U > INT_MAX)
9887 return raw_type;
9888 else
9889 return create_range_type (alloc_type_copy (raw_type), raw_type,
9890 ada_discrete_type_low_bound (raw_type),
9891 ada_discrete_type_high_bound (raw_type));
9892 }
9893 else
9894 {
9895 static char *name_buf = NULL;
9896 static size_t name_len = 0;
9897 int prefix_len = subtype_info - name;
9898 LONGEST L, U;
9899 struct type *type;
9900 char *bounds_str;
9901 int n;
9902
9903 GROW_VECT (name_buf, name_len, prefix_len + 5);
9904 strncpy (name_buf, name, prefix_len);
9905 name_buf[prefix_len] = '\0';
9906
9907 subtype_info += 5;
9908 bounds_str = strchr (subtype_info, '_');
9909 n = 1;
9910
9911 if (*subtype_info == 'L')
9912 {
9913 if (!ada_scan_number (bounds_str, n, &L, &n)
9914 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
9915 return raw_type;
9916 if (bounds_str[n] == '_')
9917 n += 2;
9918 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
9919 n += 1;
9920 subtype_info += 1;
9921 }
9922 else
9923 {
9924 int ok;
9925
9926 strcpy (name_buf + prefix_len, "___L");
9927 L = get_int_var_value (name_buf, &ok);
9928 if (!ok)
9929 {
9930 lim_warning (_("Unknown lower bound, using 1."));
9931 L = 1;
9932 }
9933 }
9934
9935 if (*subtype_info == 'U')
9936 {
9937 if (!ada_scan_number (bounds_str, n, &U, &n)
9938 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
9939 return raw_type;
9940 }
9941 else
9942 {
9943 int ok;
9944
9945 strcpy (name_buf + prefix_len, "___U");
9946 U = get_int_var_value (name_buf, &ok);
9947 if (!ok)
9948 {
9949 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
9950 U = L;
9951 }
9952 }
9953
9954 type = create_range_type (alloc_type_copy (raw_type), base_type, L, U);
9955 TYPE_NAME (type) = name;
9956 return type;
9957 }
9958 }
9959
9960 /* True iff NAME is the name of a range type. */
9961
9962 int
9963 ada_is_range_type_name (const char *name)
9964 {
9965 return (name != NULL && strstr (name, "___XD"));
9966 }
9967 \f
9968
9969 /* Modular types */
9970
9971 /* True iff TYPE is an Ada modular type. */
9972
9973 int
9974 ada_is_modular_type (struct type *type)
9975 {
9976 struct type *subranged_type = base_type (type);
9977
9978 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
9979 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
9980 && TYPE_UNSIGNED (subranged_type));
9981 }
9982
9983 /* Try to determine the lower and upper bounds of the given modular type
9984 using the type name only. Return non-zero and set L and U as the lower
9985 and upper bounds (respectively) if successful. */
9986
9987 int
9988 ada_modulus_from_name (struct type *type, ULONGEST *modulus)
9989 {
9990 char *name = ada_type_name (type);
9991 char *suffix;
9992 int k;
9993 LONGEST U;
9994
9995 if (name == NULL)
9996 return 0;
9997
9998 /* Discrete type bounds are encoded using an __XD suffix. In our case,
9999 we are looking for static bounds, which means an __XDLU suffix.
10000 Moreover, we know that the lower bound of modular types is always
10001 zero, so the actual suffix should start with "__XDLU_0__", and
10002 then be followed by the upper bound value. */
10003 suffix = strstr (name, "__XDLU_0__");
10004 if (suffix == NULL)
10005 return 0;
10006 k = 10;
10007 if (!ada_scan_number (suffix, k, &U, NULL))
10008 return 0;
10009
10010 *modulus = (ULONGEST) U + 1;
10011 return 1;
10012 }
10013
10014 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
10015
10016 ULONGEST
10017 ada_modulus (struct type *type)
10018 {
10019 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
10020 }
10021 \f
10022
10023 /* Ada exception catchpoint support:
10024 ---------------------------------
10025
10026 We support 3 kinds of exception catchpoints:
10027 . catchpoints on Ada exceptions
10028 . catchpoints on unhandled Ada exceptions
10029 . catchpoints on failed assertions
10030
10031 Exceptions raised during failed assertions, or unhandled exceptions
10032 could perfectly be caught with the general catchpoint on Ada exceptions.
10033 However, we can easily differentiate these two special cases, and having
10034 the option to distinguish these two cases from the rest can be useful
10035 to zero-in on certain situations.
10036
10037 Exception catchpoints are a specialized form of breakpoint,
10038 since they rely on inserting breakpoints inside known routines
10039 of the GNAT runtime. The implementation therefore uses a standard
10040 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10041 of breakpoint_ops.
10042
10043 Support in the runtime for exception catchpoints have been changed
10044 a few times already, and these changes affect the implementation
10045 of these catchpoints. In order to be able to support several
10046 variants of the runtime, we use a sniffer that will determine
10047 the runtime variant used by the program being debugged.
10048
10049 At this time, we do not support the use of conditions on Ada exception
10050 catchpoints. The COND and COND_STRING fields are therefore set
10051 to NULL (most of the time, see below).
10052
10053 Conditions where EXP_STRING, COND, and COND_STRING are used:
10054
10055 When a user specifies the name of a specific exception in the case
10056 of catchpoints on Ada exceptions, we store the name of that exception
10057 in the EXP_STRING. We then translate this request into an actual
10058 condition stored in COND_STRING, and then parse it into an expression
10059 stored in COND. */
10060
10061 /* The different types of catchpoints that we introduced for catching
10062 Ada exceptions. */
10063
10064 enum exception_catchpoint_kind
10065 {
10066 ex_catch_exception,
10067 ex_catch_exception_unhandled,
10068 ex_catch_assert
10069 };
10070
10071 /* Ada's standard exceptions. */
10072
10073 static char *standard_exc[] = {
10074 "constraint_error",
10075 "program_error",
10076 "storage_error",
10077 "tasking_error"
10078 };
10079
10080 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
10081
10082 /* A structure that describes how to support exception catchpoints
10083 for a given executable. */
10084
10085 struct exception_support_info
10086 {
10087 /* The name of the symbol to break on in order to insert
10088 a catchpoint on exceptions. */
10089 const char *catch_exception_sym;
10090
10091 /* The name of the symbol to break on in order to insert
10092 a catchpoint on unhandled exceptions. */
10093 const char *catch_exception_unhandled_sym;
10094
10095 /* The name of the symbol to break on in order to insert
10096 a catchpoint on failed assertions. */
10097 const char *catch_assert_sym;
10098
10099 /* Assuming that the inferior just triggered an unhandled exception
10100 catchpoint, this function is responsible for returning the address
10101 in inferior memory where the name of that exception is stored.
10102 Return zero if the address could not be computed. */
10103 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
10104 };
10105
10106 static CORE_ADDR ada_unhandled_exception_name_addr (void);
10107 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
10108
10109 /* The following exception support info structure describes how to
10110 implement exception catchpoints with the latest version of the
10111 Ada runtime (as of 2007-03-06). */
10112
10113 static const struct exception_support_info default_exception_support_info =
10114 {
10115 "__gnat_debug_raise_exception", /* catch_exception_sym */
10116 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10117 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
10118 ada_unhandled_exception_name_addr
10119 };
10120
10121 /* The following exception support info structure describes how to
10122 implement exception catchpoints with a slightly older version
10123 of the Ada runtime. */
10124
10125 static const struct exception_support_info exception_support_info_fallback =
10126 {
10127 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
10128 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10129 "system__assertions__raise_assert_failure", /* catch_assert_sym */
10130 ada_unhandled_exception_name_addr_from_raise
10131 };
10132
10133 /* For each executable, we sniff which exception info structure to use
10134 and cache it in the following global variable. */
10135
10136 static const struct exception_support_info *exception_info = NULL;
10137
10138 /* Inspect the Ada runtime and determine which exception info structure
10139 should be used to provide support for exception catchpoints.
10140
10141 This function will always set exception_info, or raise an error. */
10142
10143 static void
10144 ada_exception_support_info_sniffer (void)
10145 {
10146 struct symbol *sym;
10147
10148 /* If the exception info is already known, then no need to recompute it. */
10149 if (exception_info != NULL)
10150 return;
10151
10152 /* Check the latest (default) exception support info. */
10153 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
10154 NULL, VAR_DOMAIN);
10155 if (sym != NULL)
10156 {
10157 exception_info = &default_exception_support_info;
10158 return;
10159 }
10160
10161 /* Try our fallback exception suport info. */
10162 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
10163 NULL, VAR_DOMAIN);
10164 if (sym != NULL)
10165 {
10166 exception_info = &exception_support_info_fallback;
10167 return;
10168 }
10169
10170 /* Sometimes, it is normal for us to not be able to find the routine
10171 we are looking for. This happens when the program is linked with
10172 the shared version of the GNAT runtime, and the program has not been
10173 started yet. Inform the user of these two possible causes if
10174 applicable. */
10175
10176 if (ada_update_initial_language (language_unknown) != language_ada)
10177 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
10178
10179 /* If the symbol does not exist, then check that the program is
10180 already started, to make sure that shared libraries have been
10181 loaded. If it is not started, this may mean that the symbol is
10182 in a shared library. */
10183
10184 if (ptid_get_pid (inferior_ptid) == 0)
10185 error (_("Unable to insert catchpoint. Try to start the program first."));
10186
10187 /* At this point, we know that we are debugging an Ada program and
10188 that the inferior has been started, but we still are not able to
10189 find the run-time symbols. That can mean that we are in
10190 configurable run time mode, or that a-except as been optimized
10191 out by the linker... In any case, at this point it is not worth
10192 supporting this feature. */
10193
10194 error (_("Cannot insert catchpoints in this configuration."));
10195 }
10196
10197 /* An observer of "executable_changed" events.
10198 Its role is to clear certain cached values that need to be recomputed
10199 each time a new executable is loaded by GDB. */
10200
10201 static void
10202 ada_executable_changed_observer (void)
10203 {
10204 /* If the executable changed, then it is possible that the Ada runtime
10205 is different. So we need to invalidate the exception support info
10206 cache. */
10207 exception_info = NULL;
10208 }
10209
10210 /* True iff FRAME is very likely to be that of a function that is
10211 part of the runtime system. This is all very heuristic, but is
10212 intended to be used as advice as to what frames are uninteresting
10213 to most users. */
10214
10215 static int
10216 is_known_support_routine (struct frame_info *frame)
10217 {
10218 struct symtab_and_line sal;
10219 char *func_name;
10220 enum language func_lang;
10221 int i;
10222
10223 /* If this code does not have any debugging information (no symtab),
10224 This cannot be any user code. */
10225
10226 find_frame_sal (frame, &sal);
10227 if (sal.symtab == NULL)
10228 return 1;
10229
10230 /* If there is a symtab, but the associated source file cannot be
10231 located, then assume this is not user code: Selecting a frame
10232 for which we cannot display the code would not be very helpful
10233 for the user. This should also take care of case such as VxWorks
10234 where the kernel has some debugging info provided for a few units. */
10235
10236 if (symtab_to_fullname (sal.symtab) == NULL)
10237 return 1;
10238
10239 /* Check the unit filename againt the Ada runtime file naming.
10240 We also check the name of the objfile against the name of some
10241 known system libraries that sometimes come with debugging info
10242 too. */
10243
10244 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
10245 {
10246 re_comp (known_runtime_file_name_patterns[i]);
10247 if (re_exec (sal.symtab->filename))
10248 return 1;
10249 if (sal.symtab->objfile != NULL
10250 && re_exec (sal.symtab->objfile->name))
10251 return 1;
10252 }
10253
10254 /* Check whether the function is a GNAT-generated entity. */
10255
10256 find_frame_funname (frame, &func_name, &func_lang);
10257 if (func_name == NULL)
10258 return 1;
10259
10260 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
10261 {
10262 re_comp (known_auxiliary_function_name_patterns[i]);
10263 if (re_exec (func_name))
10264 return 1;
10265 }
10266
10267 return 0;
10268 }
10269
10270 /* Find the first frame that contains debugging information and that is not
10271 part of the Ada run-time, starting from FI and moving upward. */
10272
10273 void
10274 ada_find_printable_frame (struct frame_info *fi)
10275 {
10276 for (; fi != NULL; fi = get_prev_frame (fi))
10277 {
10278 if (!is_known_support_routine (fi))
10279 {
10280 select_frame (fi);
10281 break;
10282 }
10283 }
10284
10285 }
10286
10287 /* Assuming that the inferior just triggered an unhandled exception
10288 catchpoint, return the address in inferior memory where the name
10289 of the exception is stored.
10290
10291 Return zero if the address could not be computed. */
10292
10293 static CORE_ADDR
10294 ada_unhandled_exception_name_addr (void)
10295 {
10296 return parse_and_eval_address ("e.full_name");
10297 }
10298
10299 /* Same as ada_unhandled_exception_name_addr, except that this function
10300 should be used when the inferior uses an older version of the runtime,
10301 where the exception name needs to be extracted from a specific frame
10302 several frames up in the callstack. */
10303
10304 static CORE_ADDR
10305 ada_unhandled_exception_name_addr_from_raise (void)
10306 {
10307 int frame_level;
10308 struct frame_info *fi;
10309
10310 /* To determine the name of this exception, we need to select
10311 the frame corresponding to RAISE_SYM_NAME. This frame is
10312 at least 3 levels up, so we simply skip the first 3 frames
10313 without checking the name of their associated function. */
10314 fi = get_current_frame ();
10315 for (frame_level = 0; frame_level < 3; frame_level += 1)
10316 if (fi != NULL)
10317 fi = get_prev_frame (fi);
10318
10319 while (fi != NULL)
10320 {
10321 char *func_name;
10322 enum language func_lang;
10323
10324 find_frame_funname (fi, &func_name, &func_lang);
10325 if (func_name != NULL
10326 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
10327 break; /* We found the frame we were looking for... */
10328 fi = get_prev_frame (fi);
10329 }
10330
10331 if (fi == NULL)
10332 return 0;
10333
10334 select_frame (fi);
10335 return parse_and_eval_address ("id.full_name");
10336 }
10337
10338 /* Assuming the inferior just triggered an Ada exception catchpoint
10339 (of any type), return the address in inferior memory where the name
10340 of the exception is stored, if applicable.
10341
10342 Return zero if the address could not be computed, or if not relevant. */
10343
10344 static CORE_ADDR
10345 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
10346 struct breakpoint *b)
10347 {
10348 switch (ex)
10349 {
10350 case ex_catch_exception:
10351 return (parse_and_eval_address ("e.full_name"));
10352 break;
10353
10354 case ex_catch_exception_unhandled:
10355 return exception_info->unhandled_exception_name_addr ();
10356 break;
10357
10358 case ex_catch_assert:
10359 return 0; /* Exception name is not relevant in this case. */
10360 break;
10361
10362 default:
10363 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10364 break;
10365 }
10366
10367 return 0; /* Should never be reached. */
10368 }
10369
10370 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
10371 any error that ada_exception_name_addr_1 might cause to be thrown.
10372 When an error is intercepted, a warning with the error message is printed,
10373 and zero is returned. */
10374
10375 static CORE_ADDR
10376 ada_exception_name_addr (enum exception_catchpoint_kind ex,
10377 struct breakpoint *b)
10378 {
10379 struct gdb_exception e;
10380 CORE_ADDR result = 0;
10381
10382 TRY_CATCH (e, RETURN_MASK_ERROR)
10383 {
10384 result = ada_exception_name_addr_1 (ex, b);
10385 }
10386
10387 if (e.reason < 0)
10388 {
10389 warning (_("failed to get exception name: %s"), e.message);
10390 return 0;
10391 }
10392
10393 return result;
10394 }
10395
10396 /* Implement the PRINT_IT method in the breakpoint_ops structure
10397 for all exception catchpoint kinds. */
10398
10399 static enum print_stop_action
10400 print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
10401 {
10402 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
10403 char exception_name[256];
10404
10405 if (addr != 0)
10406 {
10407 read_memory (addr, exception_name, sizeof (exception_name) - 1);
10408 exception_name [sizeof (exception_name) - 1] = '\0';
10409 }
10410
10411 ada_find_printable_frame (get_current_frame ());
10412
10413 annotate_catchpoint (b->number);
10414 switch (ex)
10415 {
10416 case ex_catch_exception:
10417 if (addr != 0)
10418 printf_filtered (_("\nCatchpoint %d, %s at "),
10419 b->number, exception_name);
10420 else
10421 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
10422 break;
10423 case ex_catch_exception_unhandled:
10424 if (addr != 0)
10425 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
10426 b->number, exception_name);
10427 else
10428 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
10429 b->number);
10430 break;
10431 case ex_catch_assert:
10432 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
10433 b->number);
10434 break;
10435 }
10436
10437 return PRINT_SRC_AND_LOC;
10438 }
10439
10440 /* Implement the PRINT_ONE method in the breakpoint_ops structure
10441 for all exception catchpoint kinds. */
10442
10443 static void
10444 print_one_exception (enum exception_catchpoint_kind ex,
10445 struct breakpoint *b, struct bp_location **last_loc)
10446 {
10447 struct value_print_options opts;
10448
10449 get_user_print_options (&opts);
10450 if (opts.addressprint)
10451 {
10452 annotate_field (4);
10453 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
10454 }
10455
10456 annotate_field (5);
10457 *last_loc = b->loc;
10458 switch (ex)
10459 {
10460 case ex_catch_exception:
10461 if (b->exp_string != NULL)
10462 {
10463 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
10464
10465 ui_out_field_string (uiout, "what", msg);
10466 xfree (msg);
10467 }
10468 else
10469 ui_out_field_string (uiout, "what", "all Ada exceptions");
10470
10471 break;
10472
10473 case ex_catch_exception_unhandled:
10474 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
10475 break;
10476
10477 case ex_catch_assert:
10478 ui_out_field_string (uiout, "what", "failed Ada assertions");
10479 break;
10480
10481 default:
10482 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10483 break;
10484 }
10485 }
10486
10487 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
10488 for all exception catchpoint kinds. */
10489
10490 static void
10491 print_mention_exception (enum exception_catchpoint_kind ex,
10492 struct breakpoint *b)
10493 {
10494 switch (ex)
10495 {
10496 case ex_catch_exception:
10497 if (b->exp_string != NULL)
10498 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
10499 b->number, b->exp_string);
10500 else
10501 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
10502
10503 break;
10504
10505 case ex_catch_exception_unhandled:
10506 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
10507 b->number);
10508 break;
10509
10510 case ex_catch_assert:
10511 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
10512 break;
10513
10514 default:
10515 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10516 break;
10517 }
10518 }
10519
10520 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
10521 for all exception catchpoint kinds. */
10522
10523 static void
10524 print_recreate_exception (enum exception_catchpoint_kind ex,
10525 struct breakpoint *b, struct ui_file *fp)
10526 {
10527 switch (ex)
10528 {
10529 case ex_catch_exception:
10530 fprintf_filtered (fp, "catch exception");
10531 if (b->exp_string != NULL)
10532 fprintf_filtered (fp, " %s", b->exp_string);
10533 break;
10534
10535 case ex_catch_exception_unhandled:
10536 fprintf_filtered (fp, "catch exception unhandled");
10537 break;
10538
10539 case ex_catch_assert:
10540 fprintf_filtered (fp, "catch assert");
10541 break;
10542
10543 default:
10544 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10545 }
10546 }
10547
10548 /* Virtual table for "catch exception" breakpoints. */
10549
10550 static enum print_stop_action
10551 print_it_catch_exception (struct breakpoint *b)
10552 {
10553 return print_it_exception (ex_catch_exception, b);
10554 }
10555
10556 static void
10557 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
10558 {
10559 print_one_exception (ex_catch_exception, b, last_loc);
10560 }
10561
10562 static void
10563 print_mention_catch_exception (struct breakpoint *b)
10564 {
10565 print_mention_exception (ex_catch_exception, b);
10566 }
10567
10568 static void
10569 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
10570 {
10571 print_recreate_exception (ex_catch_exception, b, fp);
10572 }
10573
10574 static struct breakpoint_ops catch_exception_breakpoint_ops =
10575 {
10576 NULL, /* insert */
10577 NULL, /* remove */
10578 NULL, /* breakpoint_hit */
10579 print_it_catch_exception,
10580 print_one_catch_exception,
10581 print_mention_catch_exception,
10582 print_recreate_catch_exception
10583 };
10584
10585 /* Virtual table for "catch exception unhandled" breakpoints. */
10586
10587 static enum print_stop_action
10588 print_it_catch_exception_unhandled (struct breakpoint *b)
10589 {
10590 return print_it_exception (ex_catch_exception_unhandled, b);
10591 }
10592
10593 static void
10594 print_one_catch_exception_unhandled (struct breakpoint *b,
10595 struct bp_location **last_loc)
10596 {
10597 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
10598 }
10599
10600 static void
10601 print_mention_catch_exception_unhandled (struct breakpoint *b)
10602 {
10603 print_mention_exception (ex_catch_exception_unhandled, b);
10604 }
10605
10606 static void
10607 print_recreate_catch_exception_unhandled (struct breakpoint *b,
10608 struct ui_file *fp)
10609 {
10610 print_recreate_exception (ex_catch_exception_unhandled, b, fp);
10611 }
10612
10613 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
10614 NULL, /* insert */
10615 NULL, /* remove */
10616 NULL, /* breakpoint_hit */
10617 print_it_catch_exception_unhandled,
10618 print_one_catch_exception_unhandled,
10619 print_mention_catch_exception_unhandled,
10620 print_recreate_catch_exception_unhandled
10621 };
10622
10623 /* Virtual table for "catch assert" breakpoints. */
10624
10625 static enum print_stop_action
10626 print_it_catch_assert (struct breakpoint *b)
10627 {
10628 return print_it_exception (ex_catch_assert, b);
10629 }
10630
10631 static void
10632 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
10633 {
10634 print_one_exception (ex_catch_assert, b, last_loc);
10635 }
10636
10637 static void
10638 print_mention_catch_assert (struct breakpoint *b)
10639 {
10640 print_mention_exception (ex_catch_assert, b);
10641 }
10642
10643 static void
10644 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
10645 {
10646 print_recreate_exception (ex_catch_assert, b, fp);
10647 }
10648
10649 static struct breakpoint_ops catch_assert_breakpoint_ops = {
10650 NULL, /* insert */
10651 NULL, /* remove */
10652 NULL, /* breakpoint_hit */
10653 print_it_catch_assert,
10654 print_one_catch_assert,
10655 print_mention_catch_assert,
10656 print_recreate_catch_assert
10657 };
10658
10659 /* Return non-zero if B is an Ada exception catchpoint. */
10660
10661 int
10662 ada_exception_catchpoint_p (struct breakpoint *b)
10663 {
10664 return (b->ops == &catch_exception_breakpoint_ops
10665 || b->ops == &catch_exception_unhandled_breakpoint_ops
10666 || b->ops == &catch_assert_breakpoint_ops);
10667 }
10668
10669 /* Return a newly allocated copy of the first space-separated token
10670 in ARGSP, and then adjust ARGSP to point immediately after that
10671 token.
10672
10673 Return NULL if ARGPS does not contain any more tokens. */
10674
10675 static char *
10676 ada_get_next_arg (char **argsp)
10677 {
10678 char *args = *argsp;
10679 char *end;
10680 char *result;
10681
10682 /* Skip any leading white space. */
10683
10684 while (isspace (*args))
10685 args++;
10686
10687 if (args[0] == '\0')
10688 return NULL; /* No more arguments. */
10689
10690 /* Find the end of the current argument. */
10691
10692 end = args;
10693 while (*end != '\0' && !isspace (*end))
10694 end++;
10695
10696 /* Adjust ARGSP to point to the start of the next argument. */
10697
10698 *argsp = end;
10699
10700 /* Make a copy of the current argument and return it. */
10701
10702 result = xmalloc (end - args + 1);
10703 strncpy (result, args, end - args);
10704 result[end - args] = '\0';
10705
10706 return result;
10707 }
10708
10709 /* Split the arguments specified in a "catch exception" command.
10710 Set EX to the appropriate catchpoint type.
10711 Set EXP_STRING to the name of the specific exception if
10712 specified by the user. */
10713
10714 static void
10715 catch_ada_exception_command_split (char *args,
10716 enum exception_catchpoint_kind *ex,
10717 char **exp_string)
10718 {
10719 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
10720 char *exception_name;
10721
10722 exception_name = ada_get_next_arg (&args);
10723 make_cleanup (xfree, exception_name);
10724
10725 /* Check that we do not have any more arguments. Anything else
10726 is unexpected. */
10727
10728 while (isspace (*args))
10729 args++;
10730
10731 if (args[0] != '\0')
10732 error (_("Junk at end of expression"));
10733
10734 discard_cleanups (old_chain);
10735
10736 if (exception_name == NULL)
10737 {
10738 /* Catch all exceptions. */
10739 *ex = ex_catch_exception;
10740 *exp_string = NULL;
10741 }
10742 else if (strcmp (exception_name, "unhandled") == 0)
10743 {
10744 /* Catch unhandled exceptions. */
10745 *ex = ex_catch_exception_unhandled;
10746 *exp_string = NULL;
10747 }
10748 else
10749 {
10750 /* Catch a specific exception. */
10751 *ex = ex_catch_exception;
10752 *exp_string = exception_name;
10753 }
10754 }
10755
10756 /* Return the name of the symbol on which we should break in order to
10757 implement a catchpoint of the EX kind. */
10758
10759 static const char *
10760 ada_exception_sym_name (enum exception_catchpoint_kind ex)
10761 {
10762 gdb_assert (exception_info != NULL);
10763
10764 switch (ex)
10765 {
10766 case ex_catch_exception:
10767 return (exception_info->catch_exception_sym);
10768 break;
10769 case ex_catch_exception_unhandled:
10770 return (exception_info->catch_exception_unhandled_sym);
10771 break;
10772 case ex_catch_assert:
10773 return (exception_info->catch_assert_sym);
10774 break;
10775 default:
10776 internal_error (__FILE__, __LINE__,
10777 _("unexpected catchpoint kind (%d)"), ex);
10778 }
10779 }
10780
10781 /* Return the breakpoint ops "virtual table" used for catchpoints
10782 of the EX kind. */
10783
10784 static struct breakpoint_ops *
10785 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
10786 {
10787 switch (ex)
10788 {
10789 case ex_catch_exception:
10790 return (&catch_exception_breakpoint_ops);
10791 break;
10792 case ex_catch_exception_unhandled:
10793 return (&catch_exception_unhandled_breakpoint_ops);
10794 break;
10795 case ex_catch_assert:
10796 return (&catch_assert_breakpoint_ops);
10797 break;
10798 default:
10799 internal_error (__FILE__, __LINE__,
10800 _("unexpected catchpoint kind (%d)"), ex);
10801 }
10802 }
10803
10804 /* Return the condition that will be used to match the current exception
10805 being raised with the exception that the user wants to catch. This
10806 assumes that this condition is used when the inferior just triggered
10807 an exception catchpoint.
10808
10809 The string returned is a newly allocated string that needs to be
10810 deallocated later. */
10811
10812 static char *
10813 ada_exception_catchpoint_cond_string (const char *exp_string)
10814 {
10815 int i;
10816
10817 /* The standard exceptions are a special case. They are defined in
10818 runtime units that have been compiled without debugging info; if
10819 EXP_STRING is the not-fully-qualified name of a standard
10820 exception (e.g. "constraint_error") then, during the evaluation
10821 of the condition expression, the symbol lookup on this name would
10822 *not* return this standard exception. The catchpoint condition
10823 may then be set only on user-defined exceptions which have the
10824 same not-fully-qualified name (e.g. my_package.constraint_error).
10825
10826 To avoid this unexcepted behavior, these standard exceptions are
10827 systematically prefixed by "standard". This means that "catch
10828 exception constraint_error" is rewritten into "catch exception
10829 standard.constraint_error".
10830
10831 If an exception named contraint_error is defined in another package of
10832 the inferior program, then the only way to specify this exception as a
10833 breakpoint condition is to use its fully-qualified named:
10834 e.g. my_package.constraint_error. */
10835
10836 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
10837 {
10838 if (strcmp (standard_exc [i], exp_string) == 0)
10839 {
10840 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
10841 exp_string);
10842 }
10843 }
10844 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
10845 }
10846
10847 /* Return the expression corresponding to COND_STRING evaluated at SAL. */
10848
10849 static struct expression *
10850 ada_parse_catchpoint_condition (char *cond_string,
10851 struct symtab_and_line sal)
10852 {
10853 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
10854 }
10855
10856 /* Return the symtab_and_line that should be used to insert an exception
10857 catchpoint of the TYPE kind.
10858
10859 EX_STRING should contain the name of a specific exception
10860 that the catchpoint should catch, or NULL otherwise.
10861
10862 The idea behind all the remaining parameters is that their names match
10863 the name of certain fields in the breakpoint structure that are used to
10864 handle exception catchpoints. This function returns the value to which
10865 these fields should be set, depending on the type of catchpoint we need
10866 to create.
10867
10868 If COND and COND_STRING are both non-NULL, any value they might
10869 hold will be free'ed, and then replaced by newly allocated ones.
10870 These parameters are left untouched otherwise. */
10871
10872 static struct symtab_and_line
10873 ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
10874 char **addr_string, char **cond_string,
10875 struct expression **cond, struct breakpoint_ops **ops)
10876 {
10877 const char *sym_name;
10878 struct symbol *sym;
10879 struct symtab_and_line sal;
10880
10881 /* First, find out which exception support info to use. */
10882 ada_exception_support_info_sniffer ();
10883
10884 /* Then lookup the function on which we will break in order to catch
10885 the Ada exceptions requested by the user. */
10886
10887 sym_name = ada_exception_sym_name (ex);
10888 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
10889
10890 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10891 that should be compiled with debugging information. As a result, we
10892 expect to find that symbol in the symtabs. If we don't find it, then
10893 the target most likely does not support Ada exceptions, or we cannot
10894 insert exception breakpoints yet, because the GNAT runtime hasn't been
10895 loaded yet. */
10896
10897 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
10898 in such a way that no debugging information is produced for the symbol
10899 we are looking for. In this case, we could search the minimal symbols
10900 as a fall-back mechanism. This would still be operating in degraded
10901 mode, however, as we would still be missing the debugging information
10902 that is needed in order to extract the name of the exception being
10903 raised (this name is printed in the catchpoint message, and is also
10904 used when trying to catch a specific exception). We do not handle
10905 this case for now. */
10906
10907 if (sym == NULL)
10908 error (_("Unable to break on '%s' in this configuration."), sym_name);
10909
10910 /* Make sure that the symbol we found corresponds to a function. */
10911 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10912 error (_("Symbol \"%s\" is not a function (class = %d)"),
10913 sym_name, SYMBOL_CLASS (sym));
10914
10915 sal = find_function_start_sal (sym, 1);
10916
10917 /* Set ADDR_STRING. */
10918
10919 *addr_string = xstrdup (sym_name);
10920
10921 /* Set the COND and COND_STRING (if not NULL). */
10922
10923 if (cond_string != NULL && cond != NULL)
10924 {
10925 if (*cond_string != NULL)
10926 {
10927 xfree (*cond_string);
10928 *cond_string = NULL;
10929 }
10930 if (*cond != NULL)
10931 {
10932 xfree (*cond);
10933 *cond = NULL;
10934 }
10935 if (exp_string != NULL)
10936 {
10937 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
10938 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
10939 }
10940 }
10941
10942 /* Set OPS. */
10943 *ops = ada_exception_breakpoint_ops (ex);
10944
10945 return sal;
10946 }
10947
10948 /* Parse the arguments (ARGS) of the "catch exception" command.
10949
10950 Set TYPE to the appropriate exception catchpoint type.
10951 If the user asked the catchpoint to catch only a specific
10952 exception, then save the exception name in ADDR_STRING.
10953
10954 See ada_exception_sal for a description of all the remaining
10955 function arguments of this function. */
10956
10957 struct symtab_and_line
10958 ada_decode_exception_location (char *args, char **addr_string,
10959 char **exp_string, char **cond_string,
10960 struct expression **cond,
10961 struct breakpoint_ops **ops)
10962 {
10963 enum exception_catchpoint_kind ex;
10964
10965 catch_ada_exception_command_split (args, &ex, exp_string);
10966 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
10967 cond, ops);
10968 }
10969
10970 struct symtab_and_line
10971 ada_decode_assert_location (char *args, char **addr_string,
10972 struct breakpoint_ops **ops)
10973 {
10974 /* Check that no argument where provided at the end of the command. */
10975
10976 if (args != NULL)
10977 {
10978 while (isspace (*args))
10979 args++;
10980 if (*args != '\0')
10981 error (_("Junk at end of arguments."));
10982 }
10983
10984 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
10985 ops);
10986 }
10987
10988 /* Operators */
10989 /* Information about operators given special treatment in functions
10990 below. */
10991 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
10992
10993 #define ADA_OPERATORS \
10994 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
10995 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
10996 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
10997 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
10998 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
10999 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
11000 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
11001 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
11002 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
11003 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
11004 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
11005 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
11006 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
11007 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
11008 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
11009 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
11010 OP_DEFN (OP_OTHERS, 1, 1, 0) \
11011 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
11012 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
11013
11014 static void
11015 ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
11016 {
11017 switch (exp->elts[pc - 1].opcode)
11018 {
11019 default:
11020 operator_length_standard (exp, pc, oplenp, argsp);
11021 break;
11022
11023 #define OP_DEFN(op, len, args, binop) \
11024 case op: *oplenp = len; *argsp = args; break;
11025 ADA_OPERATORS;
11026 #undef OP_DEFN
11027
11028 case OP_AGGREGATE:
11029 *oplenp = 3;
11030 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
11031 break;
11032
11033 case OP_CHOICES:
11034 *oplenp = 3;
11035 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
11036 break;
11037 }
11038 }
11039
11040 /* Implementation of the exp_descriptor method operator_check. */
11041
11042 static int
11043 ada_operator_check (struct expression *exp, int pos,
11044 int (*objfile_func) (struct objfile *objfile, void *data),
11045 void *data)
11046 {
11047 const union exp_element *const elts = exp->elts;
11048 struct type *type = NULL;
11049
11050 switch (elts[pos].opcode)
11051 {
11052 case UNOP_IN_RANGE:
11053 case UNOP_QUAL:
11054 type = elts[pos + 1].type;
11055 break;
11056
11057 default:
11058 return operator_check_standard (exp, pos, objfile_func, data);
11059 }
11060
11061 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
11062
11063 if (type && TYPE_OBJFILE (type)
11064 && (*objfile_func) (TYPE_OBJFILE (type), data))
11065 return 1;
11066
11067 return 0;
11068 }
11069
11070 static char *
11071 ada_op_name (enum exp_opcode opcode)
11072 {
11073 switch (opcode)
11074 {
11075 default:
11076 return op_name_standard (opcode);
11077
11078 #define OP_DEFN(op, len, args, binop) case op: return #op;
11079 ADA_OPERATORS;
11080 #undef OP_DEFN
11081
11082 case OP_AGGREGATE:
11083 return "OP_AGGREGATE";
11084 case OP_CHOICES:
11085 return "OP_CHOICES";
11086 case OP_NAME:
11087 return "OP_NAME";
11088 }
11089 }
11090
11091 /* As for operator_length, but assumes PC is pointing at the first
11092 element of the operator, and gives meaningful results only for the
11093 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
11094
11095 static void
11096 ada_forward_operator_length (struct expression *exp, int pc,
11097 int *oplenp, int *argsp)
11098 {
11099 switch (exp->elts[pc].opcode)
11100 {
11101 default:
11102 *oplenp = *argsp = 0;
11103 break;
11104
11105 #define OP_DEFN(op, len, args, binop) \
11106 case op: *oplenp = len; *argsp = args; break;
11107 ADA_OPERATORS;
11108 #undef OP_DEFN
11109
11110 case OP_AGGREGATE:
11111 *oplenp = 3;
11112 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
11113 break;
11114
11115 case OP_CHOICES:
11116 *oplenp = 3;
11117 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
11118 break;
11119
11120 case OP_STRING:
11121 case OP_NAME:
11122 {
11123 int len = longest_to_int (exp->elts[pc + 1].longconst);
11124
11125 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
11126 *argsp = 0;
11127 break;
11128 }
11129 }
11130 }
11131
11132 static int
11133 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
11134 {
11135 enum exp_opcode op = exp->elts[elt].opcode;
11136 int oplen, nargs;
11137 int pc = elt;
11138 int i;
11139
11140 ada_forward_operator_length (exp, elt, &oplen, &nargs);
11141
11142 switch (op)
11143 {
11144 /* Ada attributes ('Foo). */
11145 case OP_ATR_FIRST:
11146 case OP_ATR_LAST:
11147 case OP_ATR_LENGTH:
11148 case OP_ATR_IMAGE:
11149 case OP_ATR_MAX:
11150 case OP_ATR_MIN:
11151 case OP_ATR_MODULUS:
11152 case OP_ATR_POS:
11153 case OP_ATR_SIZE:
11154 case OP_ATR_TAG:
11155 case OP_ATR_VAL:
11156 break;
11157
11158 case UNOP_IN_RANGE:
11159 case UNOP_QUAL:
11160 /* XXX: gdb_sprint_host_address, type_sprint */
11161 fprintf_filtered (stream, _("Type @"));
11162 gdb_print_host_address (exp->elts[pc + 1].type, stream);
11163 fprintf_filtered (stream, " (");
11164 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
11165 fprintf_filtered (stream, ")");
11166 break;
11167 case BINOP_IN_BOUNDS:
11168 fprintf_filtered (stream, " (%d)",
11169 longest_to_int (exp->elts[pc + 2].longconst));
11170 break;
11171 case TERNOP_IN_RANGE:
11172 break;
11173
11174 case OP_AGGREGATE:
11175 case OP_OTHERS:
11176 case OP_DISCRETE_RANGE:
11177 case OP_POSITIONAL:
11178 case OP_CHOICES:
11179 break;
11180
11181 case OP_NAME:
11182 case OP_STRING:
11183 {
11184 char *name = &exp->elts[elt + 2].string;
11185 int len = longest_to_int (exp->elts[elt + 1].longconst);
11186
11187 fprintf_filtered (stream, "Text: `%.*s'", len, name);
11188 break;
11189 }
11190
11191 default:
11192 return dump_subexp_body_standard (exp, stream, elt);
11193 }
11194
11195 elt += oplen;
11196 for (i = 0; i < nargs; i += 1)
11197 elt = dump_subexp (exp, stream, elt);
11198
11199 return elt;
11200 }
11201
11202 /* The Ada extension of print_subexp (q.v.). */
11203
11204 static void
11205 ada_print_subexp (struct expression *exp, int *pos,
11206 struct ui_file *stream, enum precedence prec)
11207 {
11208 int oplen, nargs, i;
11209 int pc = *pos;
11210 enum exp_opcode op = exp->elts[pc].opcode;
11211
11212 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11213
11214 *pos += oplen;
11215 switch (op)
11216 {
11217 default:
11218 *pos -= oplen;
11219 print_subexp_standard (exp, pos, stream, prec);
11220 return;
11221
11222 case OP_VAR_VALUE:
11223 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
11224 return;
11225
11226 case BINOP_IN_BOUNDS:
11227 /* XXX: sprint_subexp */
11228 print_subexp (exp, pos, stream, PREC_SUFFIX);
11229 fputs_filtered (" in ", stream);
11230 print_subexp (exp, pos, stream, PREC_SUFFIX);
11231 fputs_filtered ("'range", stream);
11232 if (exp->elts[pc + 1].longconst > 1)
11233 fprintf_filtered (stream, "(%ld)",
11234 (long) exp->elts[pc + 1].longconst);
11235 return;
11236
11237 case TERNOP_IN_RANGE:
11238 if (prec >= PREC_EQUAL)
11239 fputs_filtered ("(", stream);
11240 /* XXX: sprint_subexp */
11241 print_subexp (exp, pos, stream, PREC_SUFFIX);
11242 fputs_filtered (" in ", stream);
11243 print_subexp (exp, pos, stream, PREC_EQUAL);
11244 fputs_filtered (" .. ", stream);
11245 print_subexp (exp, pos, stream, PREC_EQUAL);
11246 if (prec >= PREC_EQUAL)
11247 fputs_filtered (")", stream);
11248 return;
11249
11250 case OP_ATR_FIRST:
11251 case OP_ATR_LAST:
11252 case OP_ATR_LENGTH:
11253 case OP_ATR_IMAGE:
11254 case OP_ATR_MAX:
11255 case OP_ATR_MIN:
11256 case OP_ATR_MODULUS:
11257 case OP_ATR_POS:
11258 case OP_ATR_SIZE:
11259 case OP_ATR_TAG:
11260 case OP_ATR_VAL:
11261 if (exp->elts[*pos].opcode == OP_TYPE)
11262 {
11263 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
11264 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
11265 *pos += 3;
11266 }
11267 else
11268 print_subexp (exp, pos, stream, PREC_SUFFIX);
11269 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
11270 if (nargs > 1)
11271 {
11272 int tem;
11273
11274 for (tem = 1; tem < nargs; tem += 1)
11275 {
11276 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
11277 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
11278 }
11279 fputs_filtered (")", stream);
11280 }
11281 return;
11282
11283 case UNOP_QUAL:
11284 type_print (exp->elts[pc + 1].type, "", stream, 0);
11285 fputs_filtered ("'(", stream);
11286 print_subexp (exp, pos, stream, PREC_PREFIX);
11287 fputs_filtered (")", stream);
11288 return;
11289
11290 case UNOP_IN_RANGE:
11291 /* XXX: sprint_subexp */
11292 print_subexp (exp, pos, stream, PREC_SUFFIX);
11293 fputs_filtered (" in ", stream);
11294 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
11295 return;
11296
11297 case OP_DISCRETE_RANGE:
11298 print_subexp (exp, pos, stream, PREC_SUFFIX);
11299 fputs_filtered ("..", stream);
11300 print_subexp (exp, pos, stream, PREC_SUFFIX);
11301 return;
11302
11303 case OP_OTHERS:
11304 fputs_filtered ("others => ", stream);
11305 print_subexp (exp, pos, stream, PREC_SUFFIX);
11306 return;
11307
11308 case OP_CHOICES:
11309 for (i = 0; i < nargs-1; i += 1)
11310 {
11311 if (i > 0)
11312 fputs_filtered ("|", stream);
11313 print_subexp (exp, pos, stream, PREC_SUFFIX);
11314 }
11315 fputs_filtered (" => ", stream);
11316 print_subexp (exp, pos, stream, PREC_SUFFIX);
11317 return;
11318
11319 case OP_POSITIONAL:
11320 print_subexp (exp, pos, stream, PREC_SUFFIX);
11321 return;
11322
11323 case OP_AGGREGATE:
11324 fputs_filtered ("(", stream);
11325 for (i = 0; i < nargs; i += 1)
11326 {
11327 if (i > 0)
11328 fputs_filtered (", ", stream);
11329 print_subexp (exp, pos, stream, PREC_SUFFIX);
11330 }
11331 fputs_filtered (")", stream);
11332 return;
11333 }
11334 }
11335
11336 /* Table mapping opcodes into strings for printing operators
11337 and precedences of the operators. */
11338
11339 static const struct op_print ada_op_print_tab[] = {
11340 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
11341 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
11342 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
11343 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
11344 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
11345 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
11346 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
11347 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
11348 {"<=", BINOP_LEQ, PREC_ORDER, 0},
11349 {">=", BINOP_GEQ, PREC_ORDER, 0},
11350 {">", BINOP_GTR, PREC_ORDER, 0},
11351 {"<", BINOP_LESS, PREC_ORDER, 0},
11352 {">>", BINOP_RSH, PREC_SHIFT, 0},
11353 {"<<", BINOP_LSH, PREC_SHIFT, 0},
11354 {"+", BINOP_ADD, PREC_ADD, 0},
11355 {"-", BINOP_SUB, PREC_ADD, 0},
11356 {"&", BINOP_CONCAT, PREC_ADD, 0},
11357 {"*", BINOP_MUL, PREC_MUL, 0},
11358 {"/", BINOP_DIV, PREC_MUL, 0},
11359 {"rem", BINOP_REM, PREC_MUL, 0},
11360 {"mod", BINOP_MOD, PREC_MUL, 0},
11361 {"**", BINOP_EXP, PREC_REPEAT, 0},
11362 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
11363 {"-", UNOP_NEG, PREC_PREFIX, 0},
11364 {"+", UNOP_PLUS, PREC_PREFIX, 0},
11365 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
11366 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
11367 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
11368 {".all", UNOP_IND, PREC_SUFFIX, 1},
11369 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
11370 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
11371 {NULL, 0, 0, 0}
11372 };
11373 \f
11374 enum ada_primitive_types {
11375 ada_primitive_type_int,
11376 ada_primitive_type_long,
11377 ada_primitive_type_short,
11378 ada_primitive_type_char,
11379 ada_primitive_type_float,
11380 ada_primitive_type_double,
11381 ada_primitive_type_void,
11382 ada_primitive_type_long_long,
11383 ada_primitive_type_long_double,
11384 ada_primitive_type_natural,
11385 ada_primitive_type_positive,
11386 ada_primitive_type_system_address,
11387 nr_ada_primitive_types
11388 };
11389
11390 static void
11391 ada_language_arch_info (struct gdbarch *gdbarch,
11392 struct language_arch_info *lai)
11393 {
11394 const struct builtin_type *builtin = builtin_type (gdbarch);
11395
11396 lai->primitive_type_vector
11397 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
11398 struct type *);
11399
11400 lai->primitive_type_vector [ada_primitive_type_int]
11401 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11402 0, "integer");
11403 lai->primitive_type_vector [ada_primitive_type_long]
11404 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
11405 0, "long_integer");
11406 lai->primitive_type_vector [ada_primitive_type_short]
11407 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
11408 0, "short_integer");
11409 lai->string_char_type
11410 = lai->primitive_type_vector [ada_primitive_type_char]
11411 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
11412 lai->primitive_type_vector [ada_primitive_type_float]
11413 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
11414 "float", NULL);
11415 lai->primitive_type_vector [ada_primitive_type_double]
11416 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11417 "long_float", NULL);
11418 lai->primitive_type_vector [ada_primitive_type_long_long]
11419 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
11420 0, "long_long_integer");
11421 lai->primitive_type_vector [ada_primitive_type_long_double]
11422 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11423 "long_long_float", NULL);
11424 lai->primitive_type_vector [ada_primitive_type_natural]
11425 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11426 0, "natural");
11427 lai->primitive_type_vector [ada_primitive_type_positive]
11428 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11429 0, "positive");
11430 lai->primitive_type_vector [ada_primitive_type_void]
11431 = builtin->builtin_void;
11432
11433 lai->primitive_type_vector [ada_primitive_type_system_address]
11434 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
11435 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
11436 = "system__address";
11437
11438 lai->bool_type_symbol = NULL;
11439 lai->bool_type_default = builtin->builtin_bool;
11440 }
11441 \f
11442 /* Language vector */
11443
11444 /* Not really used, but needed in the ada_language_defn. */
11445
11446 static void
11447 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
11448 {
11449 ada_emit_char (c, type, stream, quoter, 1);
11450 }
11451
11452 static int
11453 parse (void)
11454 {
11455 warnings_issued = 0;
11456 return ada_parse ();
11457 }
11458
11459 static const struct exp_descriptor ada_exp_descriptor = {
11460 ada_print_subexp,
11461 ada_operator_length,
11462 ada_operator_check,
11463 ada_op_name,
11464 ada_dump_subexp_body,
11465 ada_evaluate_subexp
11466 };
11467
11468 const struct language_defn ada_language_defn = {
11469 "ada", /* Language name */
11470 language_ada,
11471 range_check_off,
11472 type_check_off,
11473 case_sensitive_on, /* Yes, Ada is case-insensitive, but
11474 that's not quite what this means. */
11475 array_row_major,
11476 macro_expansion_no,
11477 &ada_exp_descriptor,
11478 parse,
11479 ada_error,
11480 resolve,
11481 ada_printchar, /* Print a character constant */
11482 ada_printstr, /* Function to print string constant */
11483 emit_char, /* Function to print single char (not used) */
11484 ada_print_type, /* Print a type using appropriate syntax */
11485 ada_print_typedef, /* Print a typedef using appropriate syntax */
11486 ada_val_print, /* Print a value using appropriate syntax */
11487 ada_value_print, /* Print a top-level value */
11488 NULL, /* Language specific skip_trampoline */
11489 NULL, /* name_of_this */
11490 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
11491 basic_lookup_transparent_type, /* lookup_transparent_type */
11492 ada_la_decode, /* Language specific symbol demangler */
11493 NULL, /* Language specific class_name_from_physname */
11494 ada_op_print_tab, /* expression operators for printing */
11495 0, /* c-style arrays */
11496 1, /* String lower bound */
11497 ada_get_gdb_completer_word_break_characters,
11498 ada_make_symbol_completion_list,
11499 ada_language_arch_info,
11500 ada_print_array_index,
11501 default_pass_by_reference,
11502 c_get_string,
11503 LANG_MAGIC
11504 };
11505
11506 /* Provide a prototype to silence -Wmissing-prototypes. */
11507 extern initialize_file_ftype _initialize_ada_language;
11508
11509 /* Command-list for the "set/show ada" prefix command. */
11510 static struct cmd_list_element *set_ada_list;
11511 static struct cmd_list_element *show_ada_list;
11512
11513 /* Implement the "set ada" prefix command. */
11514
11515 static void
11516 set_ada_command (char *arg, int from_tty)
11517 {
11518 printf_unfiltered (_(\
11519 "\"set ada\" must be followed by the name of a setting.\n"));
11520 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
11521 }
11522
11523 /* Implement the "show ada" prefix command. */
11524
11525 static void
11526 show_ada_command (char *args, int from_tty)
11527 {
11528 cmd_show_list (show_ada_list, from_tty, "");
11529 }
11530
11531 void
11532 _initialize_ada_language (void)
11533 {
11534 add_language (&ada_language_defn);
11535
11536 add_prefix_cmd ("ada", no_class, set_ada_command,
11537 _("Prefix command for changing Ada-specfic settings"),
11538 &set_ada_list, "set ada ", 0, &setlist);
11539
11540 add_prefix_cmd ("ada", no_class, show_ada_command,
11541 _("Generic command for showing Ada-specific settings."),
11542 &show_ada_list, "show ada ", 0, &showlist);
11543
11544 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
11545 &trust_pad_over_xvs, _("\
11546 Enable or disable an optimization trusting PAD types over XVS types"), _("\
11547 Show whether an optimization trusting PAD types over XVS types is activated"),
11548 _("\
11549 This is related to the encoding used by the GNAT compiler. The debugger\n\
11550 should normally trust the contents of PAD types, but certain older versions\n\
11551 of GNAT have a bug that sometimes causes the information in the PAD type\n\
11552 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
11553 work around this bug. It is always safe to turn this option \"off\", but\n\
11554 this incurs a slight performance penalty, so it is recommended to NOT change\n\
11555 this option to \"off\" unless necessary."),
11556 NULL, NULL, &set_ada_list, &show_ada_list);
11557
11558 varsize_limit = 65536;
11559
11560 obstack_init (&symbol_list_obstack);
11561
11562 decoded_names_store = htab_create_alloc
11563 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
11564 NULL, xcalloc, xfree);
11565
11566 observer_attach_executable_changed (ada_executable_changed_observer);
11567 }
This page took 0.268596 seconds and 4 git commands to generate.