32f1b39340cf417ebf5dd9d10624272f37b2e676
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "demangle.h"
24 #include "gdb_regex.h"
25 #include "frame.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcmd.h"
29 #include "expression.h"
30 #include "parser-defs.h"
31 #include "language.h"
32 #include "varobj.h"
33 #include "c-lang.h"
34 #include "inferior.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "breakpoint.h"
38 #include "gdbcore.h"
39 #include "hashtab.h"
40 #include "gdb_obstack.h"
41 #include "ada-lang.h"
42 #include "completer.h"
43 #include <sys/stat.h>
44 #include "ui-out.h"
45 #include "block.h"
46 #include "infcall.h"
47 #include "dictionary.h"
48 #include "exceptions.h"
49 #include "annotate.h"
50 #include "valprint.h"
51 #include "source.h"
52 #include "observer.h"
53 #include "vec.h"
54 #include "stack.h"
55 #include "gdb_vecs.h"
56 #include "typeprint.h"
57
58 #include "psymtab.h"
59 #include "value.h"
60 #include "mi/mi-common.h"
61 #include "arch-utils.h"
62 #include "cli/cli-utils.h"
63
64 /* Define whether or not the C operator '/' truncates towards zero for
65 differently signed operands (truncation direction is undefined in C).
66 Copied from valarith.c. */
67
68 #ifndef TRUNCATION_TOWARDS_ZERO
69 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
70 #endif
71
72 static struct type *desc_base_type (struct type *);
73
74 static struct type *desc_bounds_type (struct type *);
75
76 static struct value *desc_bounds (struct value *);
77
78 static int fat_pntr_bounds_bitpos (struct type *);
79
80 static int fat_pntr_bounds_bitsize (struct type *);
81
82 static struct type *desc_data_target_type (struct type *);
83
84 static struct value *desc_data (struct value *);
85
86 static int fat_pntr_data_bitpos (struct type *);
87
88 static int fat_pntr_data_bitsize (struct type *);
89
90 static struct value *desc_one_bound (struct value *, int, int);
91
92 static int desc_bound_bitpos (struct type *, int, int);
93
94 static int desc_bound_bitsize (struct type *, int, int);
95
96 static struct type *desc_index_type (struct type *, int);
97
98 static int desc_arity (struct type *);
99
100 static int ada_type_match (struct type *, struct type *, int);
101
102 static int ada_args_match (struct symbol *, struct value **, int);
103
104 static int full_match (const char *, const char *);
105
106 static struct value *make_array_descriptor (struct type *, struct value *);
107
108 static void ada_add_block_symbols (struct obstack *,
109 const struct block *, const char *,
110 domain_enum, struct objfile *, int);
111
112 static int is_nonfunction (struct ada_symbol_info *, int);
113
114 static void add_defn_to_vec (struct obstack *, struct symbol *,
115 const struct block *);
116
117 static int num_defns_collected (struct obstack *);
118
119 static struct ada_symbol_info *defns_collected (struct obstack *, int);
120
121 static struct value *resolve_subexp (struct expression **, int *, int,
122 struct type *);
123
124 static void replace_operator_with_call (struct expression **, int, int, int,
125 struct symbol *, const struct block *);
126
127 static int possible_user_operator_p (enum exp_opcode, struct value **);
128
129 static char *ada_op_name (enum exp_opcode);
130
131 static const char *ada_decoded_op_name (enum exp_opcode);
132
133 static int numeric_type_p (struct type *);
134
135 static int integer_type_p (struct type *);
136
137 static int scalar_type_p (struct type *);
138
139 static int discrete_type_p (struct type *);
140
141 static enum ada_renaming_category parse_old_style_renaming (struct type *,
142 const char **,
143 int *,
144 const char **);
145
146 static struct symbol *find_old_style_renaming_symbol (const char *,
147 const struct block *);
148
149 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
150 int, int, int *);
151
152 static struct value *evaluate_subexp_type (struct expression *, int *);
153
154 static struct type *ada_find_parallel_type_with_name (struct type *,
155 const char *);
156
157 static int is_dynamic_field (struct type *, int);
158
159 static struct type *to_fixed_variant_branch_type (struct type *,
160 const gdb_byte *,
161 CORE_ADDR, struct value *);
162
163 static struct type *to_fixed_array_type (struct type *, struct value *, int);
164
165 static struct type *to_fixed_range_type (struct type *, struct value *);
166
167 static struct type *to_static_fixed_type (struct type *);
168 static struct type *static_unwrap_type (struct type *type);
169
170 static struct value *unwrap_value (struct value *);
171
172 static struct type *constrained_packed_array_type (struct type *, long *);
173
174 static struct type *decode_constrained_packed_array_type (struct type *);
175
176 static long decode_packed_array_bitsize (struct type *);
177
178 static struct value *decode_constrained_packed_array (struct value *);
179
180 static int ada_is_packed_array_type (struct type *);
181
182 static int ada_is_unconstrained_packed_array_type (struct type *);
183
184 static struct value *value_subscript_packed (struct value *, int,
185 struct value **);
186
187 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
188
189 static struct value *coerce_unspec_val_to_type (struct value *,
190 struct type *);
191
192 static struct value *get_var_value (char *, char *);
193
194 static int lesseq_defined_than (struct symbol *, struct symbol *);
195
196 static int equiv_types (struct type *, struct type *);
197
198 static int is_name_suffix (const char *);
199
200 static int advance_wild_match (const char **, const char *, int);
201
202 static int wild_match (const char *, const char *);
203
204 static struct value *ada_coerce_ref (struct value *);
205
206 static LONGEST pos_atr (struct value *);
207
208 static struct value *value_pos_atr (struct type *, struct value *);
209
210 static struct value *value_val_atr (struct type *, struct value *);
211
212 static struct symbol *standard_lookup (const char *, const struct block *,
213 domain_enum);
214
215 static struct value *ada_search_struct_field (char *, struct value *, int,
216 struct type *);
217
218 static struct value *ada_value_primitive_field (struct value *, int, int,
219 struct type *);
220
221 static int find_struct_field (const char *, struct type *, int,
222 struct type **, int *, int *, int *, int *);
223
224 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
225 struct value *);
226
227 static int ada_resolve_function (struct ada_symbol_info *, int,
228 struct value **, int, const char *,
229 struct type *);
230
231 static int ada_is_direct_array_type (struct type *);
232
233 static void ada_language_arch_info (struct gdbarch *,
234 struct language_arch_info *);
235
236 static void check_size (const struct type *);
237
238 static struct value *ada_index_struct_field (int, struct value *, int,
239 struct type *);
240
241 static struct value *assign_aggregate (struct value *, struct value *,
242 struct expression *,
243 int *, enum noside);
244
245 static void aggregate_assign_from_choices (struct value *, struct value *,
246 struct expression *,
247 int *, LONGEST *, int *,
248 int, LONGEST, LONGEST);
249
250 static void aggregate_assign_positional (struct value *, struct value *,
251 struct expression *,
252 int *, LONGEST *, int *, int,
253 LONGEST, LONGEST);
254
255
256 static void aggregate_assign_others (struct value *, struct value *,
257 struct expression *,
258 int *, LONGEST *, int, LONGEST, LONGEST);
259
260
261 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
262
263
264 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
265 int *, enum noside);
266
267 static void ada_forward_operator_length (struct expression *, int, int *,
268 int *);
269
270 static struct type *ada_find_any_type (const char *name);
271 \f
272
273 /* The result of a symbol lookup to be stored in our symbol cache. */
274
275 struct cache_entry
276 {
277 /* The name used to perform the lookup. */
278 const char *name;
279 /* The namespace used during the lookup. */
280 domain_enum namespace;
281 /* The symbol returned by the lookup, or NULL if no matching symbol
282 was found. */
283 struct symbol *sym;
284 /* The block where the symbol was found, or NULL if no matching
285 symbol was found. */
286 const struct block *block;
287 /* A pointer to the next entry with the same hash. */
288 struct cache_entry *next;
289 };
290
291 /* The Ada symbol cache, used to store the result of Ada-mode symbol
292 lookups in the course of executing the user's commands.
293
294 The cache is implemented using a simple, fixed-sized hash.
295 The size is fixed on the grounds that there are not likely to be
296 all that many symbols looked up during any given session, regardless
297 of the size of the symbol table. If we decide to go to a resizable
298 table, let's just use the stuff from libiberty instead. */
299
300 #define HASH_SIZE 1009
301
302 struct ada_symbol_cache
303 {
304 /* An obstack used to store the entries in our cache. */
305 struct obstack cache_space;
306
307 /* The root of the hash table used to implement our symbol cache. */
308 struct cache_entry *root[HASH_SIZE];
309 };
310
311 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
312
313 /* Maximum-sized dynamic type. */
314 static unsigned int varsize_limit;
315
316 /* FIXME: brobecker/2003-09-17: No longer a const because it is
317 returned by a function that does not return a const char *. */
318 static char *ada_completer_word_break_characters =
319 #ifdef VMS
320 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
321 #else
322 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
323 #endif
324
325 /* The name of the symbol to use to get the name of the main subprogram. */
326 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
327 = "__gnat_ada_main_program_name";
328
329 /* Limit on the number of warnings to raise per expression evaluation. */
330 static int warning_limit = 2;
331
332 /* Number of warning messages issued; reset to 0 by cleanups after
333 expression evaluation. */
334 static int warnings_issued = 0;
335
336 static const char *known_runtime_file_name_patterns[] = {
337 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
338 };
339
340 static const char *known_auxiliary_function_name_patterns[] = {
341 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
342 };
343
344 /* Space for allocating results of ada_lookup_symbol_list. */
345 static struct obstack symbol_list_obstack;
346
347 /* Maintenance-related settings for this module. */
348
349 static struct cmd_list_element *maint_set_ada_cmdlist;
350 static struct cmd_list_element *maint_show_ada_cmdlist;
351
352 /* Implement the "maintenance set ada" (prefix) command. */
353
354 static void
355 maint_set_ada_cmd (char *args, int from_tty)
356 {
357 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
358 gdb_stdout);
359 }
360
361 /* Implement the "maintenance show ada" (prefix) command. */
362
363 static void
364 maint_show_ada_cmd (char *args, int from_tty)
365 {
366 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
367 }
368
369 /* The "maintenance ada set/show ignore-descriptive-type" value. */
370
371 static int ada_ignore_descriptive_types_p = 0;
372
373 /* Inferior-specific data. */
374
375 /* Per-inferior data for this module. */
376
377 struct ada_inferior_data
378 {
379 /* The ada__tags__type_specific_data type, which is used when decoding
380 tagged types. With older versions of GNAT, this type was directly
381 accessible through a component ("tsd") in the object tag. But this
382 is no longer the case, so we cache it for each inferior. */
383 struct type *tsd_type;
384
385 /* The exception_support_info data. This data is used to determine
386 how to implement support for Ada exception catchpoints in a given
387 inferior. */
388 const struct exception_support_info *exception_info;
389 };
390
391 /* Our key to this module's inferior data. */
392 static const struct inferior_data *ada_inferior_data;
393
394 /* A cleanup routine for our inferior data. */
395 static void
396 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
397 {
398 struct ada_inferior_data *data;
399
400 data = inferior_data (inf, ada_inferior_data);
401 if (data != NULL)
402 xfree (data);
403 }
404
405 /* Return our inferior data for the given inferior (INF).
406
407 This function always returns a valid pointer to an allocated
408 ada_inferior_data structure. If INF's inferior data has not
409 been previously set, this functions creates a new one with all
410 fields set to zero, sets INF's inferior to it, and then returns
411 a pointer to that newly allocated ada_inferior_data. */
412
413 static struct ada_inferior_data *
414 get_ada_inferior_data (struct inferior *inf)
415 {
416 struct ada_inferior_data *data;
417
418 data = inferior_data (inf, ada_inferior_data);
419 if (data == NULL)
420 {
421 data = XCNEW (struct ada_inferior_data);
422 set_inferior_data (inf, ada_inferior_data, data);
423 }
424
425 return data;
426 }
427
428 /* Perform all necessary cleanups regarding our module's inferior data
429 that is required after the inferior INF just exited. */
430
431 static void
432 ada_inferior_exit (struct inferior *inf)
433 {
434 ada_inferior_data_cleanup (inf, NULL);
435 set_inferior_data (inf, ada_inferior_data, NULL);
436 }
437
438
439 /* program-space-specific data. */
440
441 /* This module's per-program-space data. */
442 struct ada_pspace_data
443 {
444 /* The Ada symbol cache. */
445 struct ada_symbol_cache *sym_cache;
446 };
447
448 /* Key to our per-program-space data. */
449 static const struct program_space_data *ada_pspace_data_handle;
450
451 /* Return this module's data for the given program space (PSPACE).
452 If not is found, add a zero'ed one now.
453
454 This function always returns a valid object. */
455
456 static struct ada_pspace_data *
457 get_ada_pspace_data (struct program_space *pspace)
458 {
459 struct ada_pspace_data *data;
460
461 data = program_space_data (pspace, ada_pspace_data_handle);
462 if (data == NULL)
463 {
464 data = XCNEW (struct ada_pspace_data);
465 set_program_space_data (pspace, ada_pspace_data_handle, data);
466 }
467
468 return data;
469 }
470
471 /* The cleanup callback for this module's per-program-space data. */
472
473 static void
474 ada_pspace_data_cleanup (struct program_space *pspace, void *data)
475 {
476 struct ada_pspace_data *pspace_data = data;
477
478 if (pspace_data->sym_cache != NULL)
479 ada_free_symbol_cache (pspace_data->sym_cache);
480 xfree (pspace_data);
481 }
482
483 /* Utilities */
484
485 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
486 all typedef layers have been peeled. Otherwise, return TYPE.
487
488 Normally, we really expect a typedef type to only have 1 typedef layer.
489 In other words, we really expect the target type of a typedef type to be
490 a non-typedef type. This is particularly true for Ada units, because
491 the language does not have a typedef vs not-typedef distinction.
492 In that respect, the Ada compiler has been trying to eliminate as many
493 typedef definitions in the debugging information, since they generally
494 do not bring any extra information (we still use typedef under certain
495 circumstances related mostly to the GNAT encoding).
496
497 Unfortunately, we have seen situations where the debugging information
498 generated by the compiler leads to such multiple typedef layers. For
499 instance, consider the following example with stabs:
500
501 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
502 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
503
504 This is an error in the debugging information which causes type
505 pck__float_array___XUP to be defined twice, and the second time,
506 it is defined as a typedef of a typedef.
507
508 This is on the fringe of legality as far as debugging information is
509 concerned, and certainly unexpected. But it is easy to handle these
510 situations correctly, so we can afford to be lenient in this case. */
511
512 static struct type *
513 ada_typedef_target_type (struct type *type)
514 {
515 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
516 type = TYPE_TARGET_TYPE (type);
517 return type;
518 }
519
520 /* Given DECODED_NAME a string holding a symbol name in its
521 decoded form (ie using the Ada dotted notation), returns
522 its unqualified name. */
523
524 static const char *
525 ada_unqualified_name (const char *decoded_name)
526 {
527 const char *result = strrchr (decoded_name, '.');
528
529 if (result != NULL)
530 result++; /* Skip the dot... */
531 else
532 result = decoded_name;
533
534 return result;
535 }
536
537 /* Return a string starting with '<', followed by STR, and '>'.
538 The result is good until the next call. */
539
540 static char *
541 add_angle_brackets (const char *str)
542 {
543 static char *result = NULL;
544
545 xfree (result);
546 result = xstrprintf ("<%s>", str);
547 return result;
548 }
549
550 static char *
551 ada_get_gdb_completer_word_break_characters (void)
552 {
553 return ada_completer_word_break_characters;
554 }
555
556 /* Print an array element index using the Ada syntax. */
557
558 static void
559 ada_print_array_index (struct value *index_value, struct ui_file *stream,
560 const struct value_print_options *options)
561 {
562 LA_VALUE_PRINT (index_value, stream, options);
563 fprintf_filtered (stream, " => ");
564 }
565
566 /* Assuming VECT points to an array of *SIZE objects of size
567 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
568 updating *SIZE as necessary and returning the (new) array. */
569
570 void *
571 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
572 {
573 if (*size < min_size)
574 {
575 *size *= 2;
576 if (*size < min_size)
577 *size = min_size;
578 vect = xrealloc (vect, *size * element_size);
579 }
580 return vect;
581 }
582
583 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
584 suffix of FIELD_NAME beginning "___". */
585
586 static int
587 field_name_match (const char *field_name, const char *target)
588 {
589 int len = strlen (target);
590
591 return
592 (strncmp (field_name, target, len) == 0
593 && (field_name[len] == '\0'
594 || (strncmp (field_name + len, "___", 3) == 0
595 && strcmp (field_name + strlen (field_name) - 6,
596 "___XVN") != 0)));
597 }
598
599
600 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
601 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
602 and return its index. This function also handles fields whose name
603 have ___ suffixes because the compiler sometimes alters their name
604 by adding such a suffix to represent fields with certain constraints.
605 If the field could not be found, return a negative number if
606 MAYBE_MISSING is set. Otherwise raise an error. */
607
608 int
609 ada_get_field_index (const struct type *type, const char *field_name,
610 int maybe_missing)
611 {
612 int fieldno;
613 struct type *struct_type = check_typedef ((struct type *) type);
614
615 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
616 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
617 return fieldno;
618
619 if (!maybe_missing)
620 error (_("Unable to find field %s in struct %s. Aborting"),
621 field_name, TYPE_NAME (struct_type));
622
623 return -1;
624 }
625
626 /* The length of the prefix of NAME prior to any "___" suffix. */
627
628 int
629 ada_name_prefix_len (const char *name)
630 {
631 if (name == NULL)
632 return 0;
633 else
634 {
635 const char *p = strstr (name, "___");
636
637 if (p == NULL)
638 return strlen (name);
639 else
640 return p - name;
641 }
642 }
643
644 /* Return non-zero if SUFFIX is a suffix of STR.
645 Return zero if STR is null. */
646
647 static int
648 is_suffix (const char *str, const char *suffix)
649 {
650 int len1, len2;
651
652 if (str == NULL)
653 return 0;
654 len1 = strlen (str);
655 len2 = strlen (suffix);
656 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
657 }
658
659 /* The contents of value VAL, treated as a value of type TYPE. The
660 result is an lval in memory if VAL is. */
661
662 static struct value *
663 coerce_unspec_val_to_type (struct value *val, struct type *type)
664 {
665 type = ada_check_typedef (type);
666 if (value_type (val) == type)
667 return val;
668 else
669 {
670 struct value *result;
671
672 /* Make sure that the object size is not unreasonable before
673 trying to allocate some memory for it. */
674 check_size (type);
675
676 if (value_lazy (val)
677 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
678 result = allocate_value_lazy (type);
679 else
680 {
681 result = allocate_value (type);
682 memcpy (value_contents_raw (result), value_contents (val),
683 TYPE_LENGTH (type));
684 }
685 set_value_component_location (result, val);
686 set_value_bitsize (result, value_bitsize (val));
687 set_value_bitpos (result, value_bitpos (val));
688 set_value_address (result, value_address (val));
689 set_value_optimized_out (result, value_optimized_out_const (val));
690 return result;
691 }
692 }
693
694 static const gdb_byte *
695 cond_offset_host (const gdb_byte *valaddr, long offset)
696 {
697 if (valaddr == NULL)
698 return NULL;
699 else
700 return valaddr + offset;
701 }
702
703 static CORE_ADDR
704 cond_offset_target (CORE_ADDR address, long offset)
705 {
706 if (address == 0)
707 return 0;
708 else
709 return address + offset;
710 }
711
712 /* Issue a warning (as for the definition of warning in utils.c, but
713 with exactly one argument rather than ...), unless the limit on the
714 number of warnings has passed during the evaluation of the current
715 expression. */
716
717 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
718 provided by "complaint". */
719 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
720
721 static void
722 lim_warning (const char *format, ...)
723 {
724 va_list args;
725
726 va_start (args, format);
727 warnings_issued += 1;
728 if (warnings_issued <= warning_limit)
729 vwarning (format, args);
730
731 va_end (args);
732 }
733
734 /* Issue an error if the size of an object of type T is unreasonable,
735 i.e. if it would be a bad idea to allocate a value of this type in
736 GDB. */
737
738 static void
739 check_size (const struct type *type)
740 {
741 if (TYPE_LENGTH (type) > varsize_limit)
742 error (_("object size is larger than varsize-limit"));
743 }
744
745 /* Maximum value of a SIZE-byte signed integer type. */
746 static LONGEST
747 max_of_size (int size)
748 {
749 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
750
751 return top_bit | (top_bit - 1);
752 }
753
754 /* Minimum value of a SIZE-byte signed integer type. */
755 static LONGEST
756 min_of_size (int size)
757 {
758 return -max_of_size (size) - 1;
759 }
760
761 /* Maximum value of a SIZE-byte unsigned integer type. */
762 static ULONGEST
763 umax_of_size (int size)
764 {
765 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
766
767 return top_bit | (top_bit - 1);
768 }
769
770 /* Maximum value of integral type T, as a signed quantity. */
771 static LONGEST
772 max_of_type (struct type *t)
773 {
774 if (TYPE_UNSIGNED (t))
775 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
776 else
777 return max_of_size (TYPE_LENGTH (t));
778 }
779
780 /* Minimum value of integral type T, as a signed quantity. */
781 static LONGEST
782 min_of_type (struct type *t)
783 {
784 if (TYPE_UNSIGNED (t))
785 return 0;
786 else
787 return min_of_size (TYPE_LENGTH (t));
788 }
789
790 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
791 LONGEST
792 ada_discrete_type_high_bound (struct type *type)
793 {
794 type = resolve_dynamic_type (type, 0);
795 switch (TYPE_CODE (type))
796 {
797 case TYPE_CODE_RANGE:
798 return TYPE_HIGH_BOUND (type);
799 case TYPE_CODE_ENUM:
800 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
801 case TYPE_CODE_BOOL:
802 return 1;
803 case TYPE_CODE_CHAR:
804 case TYPE_CODE_INT:
805 return max_of_type (type);
806 default:
807 error (_("Unexpected type in ada_discrete_type_high_bound."));
808 }
809 }
810
811 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
812 LONGEST
813 ada_discrete_type_low_bound (struct type *type)
814 {
815 type = resolve_dynamic_type (type, 0);
816 switch (TYPE_CODE (type))
817 {
818 case TYPE_CODE_RANGE:
819 return TYPE_LOW_BOUND (type);
820 case TYPE_CODE_ENUM:
821 return TYPE_FIELD_ENUMVAL (type, 0);
822 case TYPE_CODE_BOOL:
823 return 0;
824 case TYPE_CODE_CHAR:
825 case TYPE_CODE_INT:
826 return min_of_type (type);
827 default:
828 error (_("Unexpected type in ada_discrete_type_low_bound."));
829 }
830 }
831
832 /* The identity on non-range types. For range types, the underlying
833 non-range scalar type. */
834
835 static struct type *
836 get_base_type (struct type *type)
837 {
838 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
839 {
840 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
841 return type;
842 type = TYPE_TARGET_TYPE (type);
843 }
844 return type;
845 }
846
847 /* Return a decoded version of the given VALUE. This means returning
848 a value whose type is obtained by applying all the GNAT-specific
849 encondings, making the resulting type a static but standard description
850 of the initial type. */
851
852 struct value *
853 ada_get_decoded_value (struct value *value)
854 {
855 struct type *type = ada_check_typedef (value_type (value));
856
857 if (ada_is_array_descriptor_type (type)
858 || (ada_is_constrained_packed_array_type (type)
859 && TYPE_CODE (type) != TYPE_CODE_PTR))
860 {
861 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
862 value = ada_coerce_to_simple_array_ptr (value);
863 else
864 value = ada_coerce_to_simple_array (value);
865 }
866 else
867 value = ada_to_fixed_value (value);
868
869 return value;
870 }
871
872 /* Same as ada_get_decoded_value, but with the given TYPE.
873 Because there is no associated actual value for this type,
874 the resulting type might be a best-effort approximation in
875 the case of dynamic types. */
876
877 struct type *
878 ada_get_decoded_type (struct type *type)
879 {
880 type = to_static_fixed_type (type);
881 if (ada_is_constrained_packed_array_type (type))
882 type = ada_coerce_to_simple_array_type (type);
883 return type;
884 }
885
886 \f
887
888 /* Language Selection */
889
890 /* If the main program is in Ada, return language_ada, otherwise return LANG
891 (the main program is in Ada iif the adainit symbol is found). */
892
893 enum language
894 ada_update_initial_language (enum language lang)
895 {
896 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
897 (struct objfile *) NULL).minsym != NULL)
898 return language_ada;
899
900 return lang;
901 }
902
903 /* If the main procedure is written in Ada, then return its name.
904 The result is good until the next call. Return NULL if the main
905 procedure doesn't appear to be in Ada. */
906
907 char *
908 ada_main_name (void)
909 {
910 struct bound_minimal_symbol msym;
911 static char *main_program_name = NULL;
912
913 /* For Ada, the name of the main procedure is stored in a specific
914 string constant, generated by the binder. Look for that symbol,
915 extract its address, and then read that string. If we didn't find
916 that string, then most probably the main procedure is not written
917 in Ada. */
918 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
919
920 if (msym.minsym != NULL)
921 {
922 CORE_ADDR main_program_name_addr;
923 int err_code;
924
925 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
926 if (main_program_name_addr == 0)
927 error (_("Invalid address for Ada main program name."));
928
929 xfree (main_program_name);
930 target_read_string (main_program_name_addr, &main_program_name,
931 1024, &err_code);
932
933 if (err_code != 0)
934 return NULL;
935 return main_program_name;
936 }
937
938 /* The main procedure doesn't seem to be in Ada. */
939 return NULL;
940 }
941 \f
942 /* Symbols */
943
944 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
945 of NULLs. */
946
947 const struct ada_opname_map ada_opname_table[] = {
948 {"Oadd", "\"+\"", BINOP_ADD},
949 {"Osubtract", "\"-\"", BINOP_SUB},
950 {"Omultiply", "\"*\"", BINOP_MUL},
951 {"Odivide", "\"/\"", BINOP_DIV},
952 {"Omod", "\"mod\"", BINOP_MOD},
953 {"Orem", "\"rem\"", BINOP_REM},
954 {"Oexpon", "\"**\"", BINOP_EXP},
955 {"Olt", "\"<\"", BINOP_LESS},
956 {"Ole", "\"<=\"", BINOP_LEQ},
957 {"Ogt", "\">\"", BINOP_GTR},
958 {"Oge", "\">=\"", BINOP_GEQ},
959 {"Oeq", "\"=\"", BINOP_EQUAL},
960 {"One", "\"/=\"", BINOP_NOTEQUAL},
961 {"Oand", "\"and\"", BINOP_BITWISE_AND},
962 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
963 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
964 {"Oconcat", "\"&\"", BINOP_CONCAT},
965 {"Oabs", "\"abs\"", UNOP_ABS},
966 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
967 {"Oadd", "\"+\"", UNOP_PLUS},
968 {"Osubtract", "\"-\"", UNOP_NEG},
969 {NULL, NULL}
970 };
971
972 /* The "encoded" form of DECODED, according to GNAT conventions.
973 The result is valid until the next call to ada_encode. */
974
975 char *
976 ada_encode (const char *decoded)
977 {
978 static char *encoding_buffer = NULL;
979 static size_t encoding_buffer_size = 0;
980 const char *p;
981 int k;
982
983 if (decoded == NULL)
984 return NULL;
985
986 GROW_VECT (encoding_buffer, encoding_buffer_size,
987 2 * strlen (decoded) + 10);
988
989 k = 0;
990 for (p = decoded; *p != '\0'; p += 1)
991 {
992 if (*p == '.')
993 {
994 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
995 k += 2;
996 }
997 else if (*p == '"')
998 {
999 const struct ada_opname_map *mapping;
1000
1001 for (mapping = ada_opname_table;
1002 mapping->encoded != NULL
1003 && strncmp (mapping->decoded, p,
1004 strlen (mapping->decoded)) != 0; mapping += 1)
1005 ;
1006 if (mapping->encoded == NULL)
1007 error (_("invalid Ada operator name: %s"), p);
1008 strcpy (encoding_buffer + k, mapping->encoded);
1009 k += strlen (mapping->encoded);
1010 break;
1011 }
1012 else
1013 {
1014 encoding_buffer[k] = *p;
1015 k += 1;
1016 }
1017 }
1018
1019 encoding_buffer[k] = '\0';
1020 return encoding_buffer;
1021 }
1022
1023 /* Return NAME folded to lower case, or, if surrounded by single
1024 quotes, unfolded, but with the quotes stripped away. Result good
1025 to next call. */
1026
1027 char *
1028 ada_fold_name (const char *name)
1029 {
1030 static char *fold_buffer = NULL;
1031 static size_t fold_buffer_size = 0;
1032
1033 int len = strlen (name);
1034 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1035
1036 if (name[0] == '\'')
1037 {
1038 strncpy (fold_buffer, name + 1, len - 2);
1039 fold_buffer[len - 2] = '\000';
1040 }
1041 else
1042 {
1043 int i;
1044
1045 for (i = 0; i <= len; i += 1)
1046 fold_buffer[i] = tolower (name[i]);
1047 }
1048
1049 return fold_buffer;
1050 }
1051
1052 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1053
1054 static int
1055 is_lower_alphanum (const char c)
1056 {
1057 return (isdigit (c) || (isalpha (c) && islower (c)));
1058 }
1059
1060 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1061 This function saves in LEN the length of that same symbol name but
1062 without either of these suffixes:
1063 . .{DIGIT}+
1064 . ${DIGIT}+
1065 . ___{DIGIT}+
1066 . __{DIGIT}+.
1067
1068 These are suffixes introduced by the compiler for entities such as
1069 nested subprogram for instance, in order to avoid name clashes.
1070 They do not serve any purpose for the debugger. */
1071
1072 static void
1073 ada_remove_trailing_digits (const char *encoded, int *len)
1074 {
1075 if (*len > 1 && isdigit (encoded[*len - 1]))
1076 {
1077 int i = *len - 2;
1078
1079 while (i > 0 && isdigit (encoded[i]))
1080 i--;
1081 if (i >= 0 && encoded[i] == '.')
1082 *len = i;
1083 else if (i >= 0 && encoded[i] == '$')
1084 *len = i;
1085 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
1086 *len = i - 2;
1087 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
1088 *len = i - 1;
1089 }
1090 }
1091
1092 /* Remove the suffix introduced by the compiler for protected object
1093 subprograms. */
1094
1095 static void
1096 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1097 {
1098 /* Remove trailing N. */
1099
1100 /* Protected entry subprograms are broken into two
1101 separate subprograms: The first one is unprotected, and has
1102 a 'N' suffix; the second is the protected version, and has
1103 the 'P' suffix. The second calls the first one after handling
1104 the protection. Since the P subprograms are internally generated,
1105 we leave these names undecoded, giving the user a clue that this
1106 entity is internal. */
1107
1108 if (*len > 1
1109 && encoded[*len - 1] == 'N'
1110 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1111 *len = *len - 1;
1112 }
1113
1114 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1115
1116 static void
1117 ada_remove_Xbn_suffix (const char *encoded, int *len)
1118 {
1119 int i = *len - 1;
1120
1121 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1122 i--;
1123
1124 if (encoded[i] != 'X')
1125 return;
1126
1127 if (i == 0)
1128 return;
1129
1130 if (isalnum (encoded[i-1]))
1131 *len = i;
1132 }
1133
1134 /* If ENCODED follows the GNAT entity encoding conventions, then return
1135 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1136 replaced by ENCODED.
1137
1138 The resulting string is valid until the next call of ada_decode.
1139 If the string is unchanged by decoding, the original string pointer
1140 is returned. */
1141
1142 const char *
1143 ada_decode (const char *encoded)
1144 {
1145 int i, j;
1146 int len0;
1147 const char *p;
1148 char *decoded;
1149 int at_start_name;
1150 static char *decoding_buffer = NULL;
1151 static size_t decoding_buffer_size = 0;
1152
1153 /* The name of the Ada main procedure starts with "_ada_".
1154 This prefix is not part of the decoded name, so skip this part
1155 if we see this prefix. */
1156 if (strncmp (encoded, "_ada_", 5) == 0)
1157 encoded += 5;
1158
1159 /* If the name starts with '_', then it is not a properly encoded
1160 name, so do not attempt to decode it. Similarly, if the name
1161 starts with '<', the name should not be decoded. */
1162 if (encoded[0] == '_' || encoded[0] == '<')
1163 goto Suppress;
1164
1165 len0 = strlen (encoded);
1166
1167 ada_remove_trailing_digits (encoded, &len0);
1168 ada_remove_po_subprogram_suffix (encoded, &len0);
1169
1170 /* Remove the ___X.* suffix if present. Do not forget to verify that
1171 the suffix is located before the current "end" of ENCODED. We want
1172 to avoid re-matching parts of ENCODED that have previously been
1173 marked as discarded (by decrementing LEN0). */
1174 p = strstr (encoded, "___");
1175 if (p != NULL && p - encoded < len0 - 3)
1176 {
1177 if (p[3] == 'X')
1178 len0 = p - encoded;
1179 else
1180 goto Suppress;
1181 }
1182
1183 /* Remove any trailing TKB suffix. It tells us that this symbol
1184 is for the body of a task, but that information does not actually
1185 appear in the decoded name. */
1186
1187 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
1188 len0 -= 3;
1189
1190 /* Remove any trailing TB suffix. The TB suffix is slightly different
1191 from the TKB suffix because it is used for non-anonymous task
1192 bodies. */
1193
1194 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1195 len0 -= 2;
1196
1197 /* Remove trailing "B" suffixes. */
1198 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1199
1200 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
1201 len0 -= 1;
1202
1203 /* Make decoded big enough for possible expansion by operator name. */
1204
1205 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1206 decoded = decoding_buffer;
1207
1208 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1209
1210 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1211 {
1212 i = len0 - 2;
1213 while ((i >= 0 && isdigit (encoded[i]))
1214 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1215 i -= 1;
1216 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1217 len0 = i - 1;
1218 else if (encoded[i] == '$')
1219 len0 = i;
1220 }
1221
1222 /* The first few characters that are not alphabetic are not part
1223 of any encoding we use, so we can copy them over verbatim. */
1224
1225 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1226 decoded[j] = encoded[i];
1227
1228 at_start_name = 1;
1229 while (i < len0)
1230 {
1231 /* Is this a symbol function? */
1232 if (at_start_name && encoded[i] == 'O')
1233 {
1234 int k;
1235
1236 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1237 {
1238 int op_len = strlen (ada_opname_table[k].encoded);
1239 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1240 op_len - 1) == 0)
1241 && !isalnum (encoded[i + op_len]))
1242 {
1243 strcpy (decoded + j, ada_opname_table[k].decoded);
1244 at_start_name = 0;
1245 i += op_len;
1246 j += strlen (ada_opname_table[k].decoded);
1247 break;
1248 }
1249 }
1250 if (ada_opname_table[k].encoded != NULL)
1251 continue;
1252 }
1253 at_start_name = 0;
1254
1255 /* Replace "TK__" with "__", which will eventually be translated
1256 into "." (just below). */
1257
1258 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1259 i += 2;
1260
1261 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1262 be translated into "." (just below). These are internal names
1263 generated for anonymous blocks inside which our symbol is nested. */
1264
1265 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1266 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1267 && isdigit (encoded [i+4]))
1268 {
1269 int k = i + 5;
1270
1271 while (k < len0 && isdigit (encoded[k]))
1272 k++; /* Skip any extra digit. */
1273
1274 /* Double-check that the "__B_{DIGITS}+" sequence we found
1275 is indeed followed by "__". */
1276 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1277 i = k;
1278 }
1279
1280 /* Remove _E{DIGITS}+[sb] */
1281
1282 /* Just as for protected object subprograms, there are 2 categories
1283 of subprograms created by the compiler for each entry. The first
1284 one implements the actual entry code, and has a suffix following
1285 the convention above; the second one implements the barrier and
1286 uses the same convention as above, except that the 'E' is replaced
1287 by a 'B'.
1288
1289 Just as above, we do not decode the name of barrier functions
1290 to give the user a clue that the code he is debugging has been
1291 internally generated. */
1292
1293 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1294 && isdigit (encoded[i+2]))
1295 {
1296 int k = i + 3;
1297
1298 while (k < len0 && isdigit (encoded[k]))
1299 k++;
1300
1301 if (k < len0
1302 && (encoded[k] == 'b' || encoded[k] == 's'))
1303 {
1304 k++;
1305 /* Just as an extra precaution, make sure that if this
1306 suffix is followed by anything else, it is a '_'.
1307 Otherwise, we matched this sequence by accident. */
1308 if (k == len0
1309 || (k < len0 && encoded[k] == '_'))
1310 i = k;
1311 }
1312 }
1313
1314 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1315 the GNAT front-end in protected object subprograms. */
1316
1317 if (i < len0 + 3
1318 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1319 {
1320 /* Backtrack a bit up until we reach either the begining of
1321 the encoded name, or "__". Make sure that we only find
1322 digits or lowercase characters. */
1323 const char *ptr = encoded + i - 1;
1324
1325 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1326 ptr--;
1327 if (ptr < encoded
1328 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1329 i++;
1330 }
1331
1332 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1333 {
1334 /* This is a X[bn]* sequence not separated from the previous
1335 part of the name with a non-alpha-numeric character (in other
1336 words, immediately following an alpha-numeric character), then
1337 verify that it is placed at the end of the encoded name. If
1338 not, then the encoding is not valid and we should abort the
1339 decoding. Otherwise, just skip it, it is used in body-nested
1340 package names. */
1341 do
1342 i += 1;
1343 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1344 if (i < len0)
1345 goto Suppress;
1346 }
1347 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1348 {
1349 /* Replace '__' by '.'. */
1350 decoded[j] = '.';
1351 at_start_name = 1;
1352 i += 2;
1353 j += 1;
1354 }
1355 else
1356 {
1357 /* It's a character part of the decoded name, so just copy it
1358 over. */
1359 decoded[j] = encoded[i];
1360 i += 1;
1361 j += 1;
1362 }
1363 }
1364 decoded[j] = '\000';
1365
1366 /* Decoded names should never contain any uppercase character.
1367 Double-check this, and abort the decoding if we find one. */
1368
1369 for (i = 0; decoded[i] != '\0'; i += 1)
1370 if (isupper (decoded[i]) || decoded[i] == ' ')
1371 goto Suppress;
1372
1373 if (strcmp (decoded, encoded) == 0)
1374 return encoded;
1375 else
1376 return decoded;
1377
1378 Suppress:
1379 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1380 decoded = decoding_buffer;
1381 if (encoded[0] == '<')
1382 strcpy (decoded, encoded);
1383 else
1384 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1385 return decoded;
1386
1387 }
1388
1389 /* Table for keeping permanent unique copies of decoded names. Once
1390 allocated, names in this table are never released. While this is a
1391 storage leak, it should not be significant unless there are massive
1392 changes in the set of decoded names in successive versions of a
1393 symbol table loaded during a single session. */
1394 static struct htab *decoded_names_store;
1395
1396 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1397 in the language-specific part of GSYMBOL, if it has not been
1398 previously computed. Tries to save the decoded name in the same
1399 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1400 in any case, the decoded symbol has a lifetime at least that of
1401 GSYMBOL).
1402 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1403 const, but nevertheless modified to a semantically equivalent form
1404 when a decoded name is cached in it. */
1405
1406 const char *
1407 ada_decode_symbol (const struct general_symbol_info *arg)
1408 {
1409 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1410 const char **resultp =
1411 &gsymbol->language_specific.mangled_lang.demangled_name;
1412
1413 if (!gsymbol->ada_mangled)
1414 {
1415 const char *decoded = ada_decode (gsymbol->name);
1416 struct obstack *obstack = gsymbol->language_specific.obstack;
1417
1418 gsymbol->ada_mangled = 1;
1419
1420 if (obstack != NULL)
1421 *resultp = obstack_copy0 (obstack, decoded, strlen (decoded));
1422 else
1423 {
1424 /* Sometimes, we can't find a corresponding objfile, in
1425 which case, we put the result on the heap. Since we only
1426 decode when needed, we hope this usually does not cause a
1427 significant memory leak (FIXME). */
1428
1429 char **slot = (char **) htab_find_slot (decoded_names_store,
1430 decoded, INSERT);
1431
1432 if (*slot == NULL)
1433 *slot = xstrdup (decoded);
1434 *resultp = *slot;
1435 }
1436 }
1437
1438 return *resultp;
1439 }
1440
1441 static char *
1442 ada_la_decode (const char *encoded, int options)
1443 {
1444 return xstrdup (ada_decode (encoded));
1445 }
1446
1447 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1448 suffixes that encode debugging information or leading _ada_ on
1449 SYM_NAME (see is_name_suffix commentary for the debugging
1450 information that is ignored). If WILD, then NAME need only match a
1451 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1452 either argument is NULL. */
1453
1454 static int
1455 match_name (const char *sym_name, const char *name, int wild)
1456 {
1457 if (sym_name == NULL || name == NULL)
1458 return 0;
1459 else if (wild)
1460 return wild_match (sym_name, name) == 0;
1461 else
1462 {
1463 int len_name = strlen (name);
1464
1465 return (strncmp (sym_name, name, len_name) == 0
1466 && is_name_suffix (sym_name + len_name))
1467 || (strncmp (sym_name, "_ada_", 5) == 0
1468 && strncmp (sym_name + 5, name, len_name) == 0
1469 && is_name_suffix (sym_name + len_name + 5));
1470 }
1471 }
1472 \f
1473
1474 /* Arrays */
1475
1476 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1477 generated by the GNAT compiler to describe the index type used
1478 for each dimension of an array, check whether it follows the latest
1479 known encoding. If not, fix it up to conform to the latest encoding.
1480 Otherwise, do nothing. This function also does nothing if
1481 INDEX_DESC_TYPE is NULL.
1482
1483 The GNAT encoding used to describle the array index type evolved a bit.
1484 Initially, the information would be provided through the name of each
1485 field of the structure type only, while the type of these fields was
1486 described as unspecified and irrelevant. The debugger was then expected
1487 to perform a global type lookup using the name of that field in order
1488 to get access to the full index type description. Because these global
1489 lookups can be very expensive, the encoding was later enhanced to make
1490 the global lookup unnecessary by defining the field type as being
1491 the full index type description.
1492
1493 The purpose of this routine is to allow us to support older versions
1494 of the compiler by detecting the use of the older encoding, and by
1495 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1496 we essentially replace each field's meaningless type by the associated
1497 index subtype). */
1498
1499 void
1500 ada_fixup_array_indexes_type (struct type *index_desc_type)
1501 {
1502 int i;
1503
1504 if (index_desc_type == NULL)
1505 return;
1506 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1507
1508 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1509 to check one field only, no need to check them all). If not, return
1510 now.
1511
1512 If our INDEX_DESC_TYPE was generated using the older encoding,
1513 the field type should be a meaningless integer type whose name
1514 is not equal to the field name. */
1515 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1516 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1517 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1518 return;
1519
1520 /* Fixup each field of INDEX_DESC_TYPE. */
1521 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1522 {
1523 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1524 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1525
1526 if (raw_type)
1527 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1528 }
1529 }
1530
1531 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1532
1533 static char *bound_name[] = {
1534 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1535 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1536 };
1537
1538 /* Maximum number of array dimensions we are prepared to handle. */
1539
1540 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1541
1542
1543 /* The desc_* routines return primitive portions of array descriptors
1544 (fat pointers). */
1545
1546 /* The descriptor or array type, if any, indicated by TYPE; removes
1547 level of indirection, if needed. */
1548
1549 static struct type *
1550 desc_base_type (struct type *type)
1551 {
1552 if (type == NULL)
1553 return NULL;
1554 type = ada_check_typedef (type);
1555 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1556 type = ada_typedef_target_type (type);
1557
1558 if (type != NULL
1559 && (TYPE_CODE (type) == TYPE_CODE_PTR
1560 || TYPE_CODE (type) == TYPE_CODE_REF))
1561 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1562 else
1563 return type;
1564 }
1565
1566 /* True iff TYPE indicates a "thin" array pointer type. */
1567
1568 static int
1569 is_thin_pntr (struct type *type)
1570 {
1571 return
1572 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1573 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1574 }
1575
1576 /* The descriptor type for thin pointer type TYPE. */
1577
1578 static struct type *
1579 thin_descriptor_type (struct type *type)
1580 {
1581 struct type *base_type = desc_base_type (type);
1582
1583 if (base_type == NULL)
1584 return NULL;
1585 if (is_suffix (ada_type_name (base_type), "___XVE"))
1586 return base_type;
1587 else
1588 {
1589 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1590
1591 if (alt_type == NULL)
1592 return base_type;
1593 else
1594 return alt_type;
1595 }
1596 }
1597
1598 /* A pointer to the array data for thin-pointer value VAL. */
1599
1600 static struct value *
1601 thin_data_pntr (struct value *val)
1602 {
1603 struct type *type = ada_check_typedef (value_type (val));
1604 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1605
1606 data_type = lookup_pointer_type (data_type);
1607
1608 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1609 return value_cast (data_type, value_copy (val));
1610 else
1611 return value_from_longest (data_type, value_address (val));
1612 }
1613
1614 /* True iff TYPE indicates a "thick" array pointer type. */
1615
1616 static int
1617 is_thick_pntr (struct type *type)
1618 {
1619 type = desc_base_type (type);
1620 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1621 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1622 }
1623
1624 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1625 pointer to one, the type of its bounds data; otherwise, NULL. */
1626
1627 static struct type *
1628 desc_bounds_type (struct type *type)
1629 {
1630 struct type *r;
1631
1632 type = desc_base_type (type);
1633
1634 if (type == NULL)
1635 return NULL;
1636 else if (is_thin_pntr (type))
1637 {
1638 type = thin_descriptor_type (type);
1639 if (type == NULL)
1640 return NULL;
1641 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1642 if (r != NULL)
1643 return ada_check_typedef (r);
1644 }
1645 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1646 {
1647 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1648 if (r != NULL)
1649 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1650 }
1651 return NULL;
1652 }
1653
1654 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1655 one, a pointer to its bounds data. Otherwise NULL. */
1656
1657 static struct value *
1658 desc_bounds (struct value *arr)
1659 {
1660 struct type *type = ada_check_typedef (value_type (arr));
1661
1662 if (is_thin_pntr (type))
1663 {
1664 struct type *bounds_type =
1665 desc_bounds_type (thin_descriptor_type (type));
1666 LONGEST addr;
1667
1668 if (bounds_type == NULL)
1669 error (_("Bad GNAT array descriptor"));
1670
1671 /* NOTE: The following calculation is not really kosher, but
1672 since desc_type is an XVE-encoded type (and shouldn't be),
1673 the correct calculation is a real pain. FIXME (and fix GCC). */
1674 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1675 addr = value_as_long (arr);
1676 else
1677 addr = value_address (arr);
1678
1679 return
1680 value_from_longest (lookup_pointer_type (bounds_type),
1681 addr - TYPE_LENGTH (bounds_type));
1682 }
1683
1684 else if (is_thick_pntr (type))
1685 {
1686 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1687 _("Bad GNAT array descriptor"));
1688 struct type *p_bounds_type = value_type (p_bounds);
1689
1690 if (p_bounds_type
1691 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1692 {
1693 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1694
1695 if (TYPE_STUB (target_type))
1696 p_bounds = value_cast (lookup_pointer_type
1697 (ada_check_typedef (target_type)),
1698 p_bounds);
1699 }
1700 else
1701 error (_("Bad GNAT array descriptor"));
1702
1703 return p_bounds;
1704 }
1705 else
1706 return NULL;
1707 }
1708
1709 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1710 position of the field containing the address of the bounds data. */
1711
1712 static int
1713 fat_pntr_bounds_bitpos (struct type *type)
1714 {
1715 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1716 }
1717
1718 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1719 size of the field containing the address of the bounds data. */
1720
1721 static int
1722 fat_pntr_bounds_bitsize (struct type *type)
1723 {
1724 type = desc_base_type (type);
1725
1726 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1727 return TYPE_FIELD_BITSIZE (type, 1);
1728 else
1729 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1730 }
1731
1732 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1733 pointer to one, the type of its array data (a array-with-no-bounds type);
1734 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1735 data. */
1736
1737 static struct type *
1738 desc_data_target_type (struct type *type)
1739 {
1740 type = desc_base_type (type);
1741
1742 /* NOTE: The following is bogus; see comment in desc_bounds. */
1743 if (is_thin_pntr (type))
1744 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1745 else if (is_thick_pntr (type))
1746 {
1747 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1748
1749 if (data_type
1750 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1751 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1752 }
1753
1754 return NULL;
1755 }
1756
1757 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1758 its array data. */
1759
1760 static struct value *
1761 desc_data (struct value *arr)
1762 {
1763 struct type *type = value_type (arr);
1764
1765 if (is_thin_pntr (type))
1766 return thin_data_pntr (arr);
1767 else if (is_thick_pntr (type))
1768 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1769 _("Bad GNAT array descriptor"));
1770 else
1771 return NULL;
1772 }
1773
1774
1775 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1776 position of the field containing the address of the data. */
1777
1778 static int
1779 fat_pntr_data_bitpos (struct type *type)
1780 {
1781 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1782 }
1783
1784 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1785 size of the field containing the address of the data. */
1786
1787 static int
1788 fat_pntr_data_bitsize (struct type *type)
1789 {
1790 type = desc_base_type (type);
1791
1792 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1793 return TYPE_FIELD_BITSIZE (type, 0);
1794 else
1795 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1796 }
1797
1798 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1799 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1800 bound, if WHICH is 1. The first bound is I=1. */
1801
1802 static struct value *
1803 desc_one_bound (struct value *bounds, int i, int which)
1804 {
1805 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1806 _("Bad GNAT array descriptor bounds"));
1807 }
1808
1809 /* If BOUNDS is an array-bounds structure type, return the bit position
1810 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1811 bound, if WHICH is 1. The first bound is I=1. */
1812
1813 static int
1814 desc_bound_bitpos (struct type *type, int i, int which)
1815 {
1816 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1817 }
1818
1819 /* If BOUNDS is an array-bounds structure type, return the bit field size
1820 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1821 bound, if WHICH is 1. The first bound is I=1. */
1822
1823 static int
1824 desc_bound_bitsize (struct type *type, int i, int which)
1825 {
1826 type = desc_base_type (type);
1827
1828 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1829 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1830 else
1831 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1832 }
1833
1834 /* If TYPE is the type of an array-bounds structure, the type of its
1835 Ith bound (numbering from 1). Otherwise, NULL. */
1836
1837 static struct type *
1838 desc_index_type (struct type *type, int i)
1839 {
1840 type = desc_base_type (type);
1841
1842 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1843 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1844 else
1845 return NULL;
1846 }
1847
1848 /* The number of index positions in the array-bounds type TYPE.
1849 Return 0 if TYPE is NULL. */
1850
1851 static int
1852 desc_arity (struct type *type)
1853 {
1854 type = desc_base_type (type);
1855
1856 if (type != NULL)
1857 return TYPE_NFIELDS (type) / 2;
1858 return 0;
1859 }
1860
1861 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1862 an array descriptor type (representing an unconstrained array
1863 type). */
1864
1865 static int
1866 ada_is_direct_array_type (struct type *type)
1867 {
1868 if (type == NULL)
1869 return 0;
1870 type = ada_check_typedef (type);
1871 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1872 || ada_is_array_descriptor_type (type));
1873 }
1874
1875 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1876 * to one. */
1877
1878 static int
1879 ada_is_array_type (struct type *type)
1880 {
1881 while (type != NULL
1882 && (TYPE_CODE (type) == TYPE_CODE_PTR
1883 || TYPE_CODE (type) == TYPE_CODE_REF))
1884 type = TYPE_TARGET_TYPE (type);
1885 return ada_is_direct_array_type (type);
1886 }
1887
1888 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1889
1890 int
1891 ada_is_simple_array_type (struct type *type)
1892 {
1893 if (type == NULL)
1894 return 0;
1895 type = ada_check_typedef (type);
1896 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1897 || (TYPE_CODE (type) == TYPE_CODE_PTR
1898 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1899 == TYPE_CODE_ARRAY));
1900 }
1901
1902 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1903
1904 int
1905 ada_is_array_descriptor_type (struct type *type)
1906 {
1907 struct type *data_type = desc_data_target_type (type);
1908
1909 if (type == NULL)
1910 return 0;
1911 type = ada_check_typedef (type);
1912 return (data_type != NULL
1913 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1914 && desc_arity (desc_bounds_type (type)) > 0);
1915 }
1916
1917 /* Non-zero iff type is a partially mal-formed GNAT array
1918 descriptor. FIXME: This is to compensate for some problems with
1919 debugging output from GNAT. Re-examine periodically to see if it
1920 is still needed. */
1921
1922 int
1923 ada_is_bogus_array_descriptor (struct type *type)
1924 {
1925 return
1926 type != NULL
1927 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1928 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1929 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1930 && !ada_is_array_descriptor_type (type);
1931 }
1932
1933
1934 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1935 (fat pointer) returns the type of the array data described---specifically,
1936 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1937 in from the descriptor; otherwise, they are left unspecified. If
1938 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1939 returns NULL. The result is simply the type of ARR if ARR is not
1940 a descriptor. */
1941 struct type *
1942 ada_type_of_array (struct value *arr, int bounds)
1943 {
1944 if (ada_is_constrained_packed_array_type (value_type (arr)))
1945 return decode_constrained_packed_array_type (value_type (arr));
1946
1947 if (!ada_is_array_descriptor_type (value_type (arr)))
1948 return value_type (arr);
1949
1950 if (!bounds)
1951 {
1952 struct type *array_type =
1953 ada_check_typedef (desc_data_target_type (value_type (arr)));
1954
1955 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1956 TYPE_FIELD_BITSIZE (array_type, 0) =
1957 decode_packed_array_bitsize (value_type (arr));
1958
1959 return array_type;
1960 }
1961 else
1962 {
1963 struct type *elt_type;
1964 int arity;
1965 struct value *descriptor;
1966
1967 elt_type = ada_array_element_type (value_type (arr), -1);
1968 arity = ada_array_arity (value_type (arr));
1969
1970 if (elt_type == NULL || arity == 0)
1971 return ada_check_typedef (value_type (arr));
1972
1973 descriptor = desc_bounds (arr);
1974 if (value_as_long (descriptor) == 0)
1975 return NULL;
1976 while (arity > 0)
1977 {
1978 struct type *range_type = alloc_type_copy (value_type (arr));
1979 struct type *array_type = alloc_type_copy (value_type (arr));
1980 struct value *low = desc_one_bound (descriptor, arity, 0);
1981 struct value *high = desc_one_bound (descriptor, arity, 1);
1982
1983 arity -= 1;
1984 create_static_range_type (range_type, value_type (low),
1985 longest_to_int (value_as_long (low)),
1986 longest_to_int (value_as_long (high)));
1987 elt_type = create_array_type (array_type, elt_type, range_type);
1988
1989 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1990 {
1991 /* We need to store the element packed bitsize, as well as
1992 recompute the array size, because it was previously
1993 computed based on the unpacked element size. */
1994 LONGEST lo = value_as_long (low);
1995 LONGEST hi = value_as_long (high);
1996
1997 TYPE_FIELD_BITSIZE (elt_type, 0) =
1998 decode_packed_array_bitsize (value_type (arr));
1999 /* If the array has no element, then the size is already
2000 zero, and does not need to be recomputed. */
2001 if (lo < hi)
2002 {
2003 int array_bitsize =
2004 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2005
2006 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2007 }
2008 }
2009 }
2010
2011 return lookup_pointer_type (elt_type);
2012 }
2013 }
2014
2015 /* If ARR does not represent an array, returns ARR unchanged.
2016 Otherwise, returns either a standard GDB array with bounds set
2017 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2018 GDB array. Returns NULL if ARR is a null fat pointer. */
2019
2020 struct value *
2021 ada_coerce_to_simple_array_ptr (struct value *arr)
2022 {
2023 if (ada_is_array_descriptor_type (value_type (arr)))
2024 {
2025 struct type *arrType = ada_type_of_array (arr, 1);
2026
2027 if (arrType == NULL)
2028 return NULL;
2029 return value_cast (arrType, value_copy (desc_data (arr)));
2030 }
2031 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2032 return decode_constrained_packed_array (arr);
2033 else
2034 return arr;
2035 }
2036
2037 /* If ARR does not represent an array, returns ARR unchanged.
2038 Otherwise, returns a standard GDB array describing ARR (which may
2039 be ARR itself if it already is in the proper form). */
2040
2041 struct value *
2042 ada_coerce_to_simple_array (struct value *arr)
2043 {
2044 if (ada_is_array_descriptor_type (value_type (arr)))
2045 {
2046 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2047
2048 if (arrVal == NULL)
2049 error (_("Bounds unavailable for null array pointer."));
2050 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
2051 return value_ind (arrVal);
2052 }
2053 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2054 return decode_constrained_packed_array (arr);
2055 else
2056 return arr;
2057 }
2058
2059 /* If TYPE represents a GNAT array type, return it translated to an
2060 ordinary GDB array type (possibly with BITSIZE fields indicating
2061 packing). For other types, is the identity. */
2062
2063 struct type *
2064 ada_coerce_to_simple_array_type (struct type *type)
2065 {
2066 if (ada_is_constrained_packed_array_type (type))
2067 return decode_constrained_packed_array_type (type);
2068
2069 if (ada_is_array_descriptor_type (type))
2070 return ada_check_typedef (desc_data_target_type (type));
2071
2072 return type;
2073 }
2074
2075 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2076
2077 static int
2078 ada_is_packed_array_type (struct type *type)
2079 {
2080 if (type == NULL)
2081 return 0;
2082 type = desc_base_type (type);
2083 type = ada_check_typedef (type);
2084 return
2085 ada_type_name (type) != NULL
2086 && strstr (ada_type_name (type), "___XP") != NULL;
2087 }
2088
2089 /* Non-zero iff TYPE represents a standard GNAT constrained
2090 packed-array type. */
2091
2092 int
2093 ada_is_constrained_packed_array_type (struct type *type)
2094 {
2095 return ada_is_packed_array_type (type)
2096 && !ada_is_array_descriptor_type (type);
2097 }
2098
2099 /* Non-zero iff TYPE represents an array descriptor for a
2100 unconstrained packed-array type. */
2101
2102 static int
2103 ada_is_unconstrained_packed_array_type (struct type *type)
2104 {
2105 return ada_is_packed_array_type (type)
2106 && ada_is_array_descriptor_type (type);
2107 }
2108
2109 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2110 return the size of its elements in bits. */
2111
2112 static long
2113 decode_packed_array_bitsize (struct type *type)
2114 {
2115 const char *raw_name;
2116 const char *tail;
2117 long bits;
2118
2119 /* Access to arrays implemented as fat pointers are encoded as a typedef
2120 of the fat pointer type. We need the name of the fat pointer type
2121 to do the decoding, so strip the typedef layer. */
2122 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2123 type = ada_typedef_target_type (type);
2124
2125 raw_name = ada_type_name (ada_check_typedef (type));
2126 if (!raw_name)
2127 raw_name = ada_type_name (desc_base_type (type));
2128
2129 if (!raw_name)
2130 return 0;
2131
2132 tail = strstr (raw_name, "___XP");
2133 gdb_assert (tail != NULL);
2134
2135 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2136 {
2137 lim_warning
2138 (_("could not understand bit size information on packed array"));
2139 return 0;
2140 }
2141
2142 return bits;
2143 }
2144
2145 /* Given that TYPE is a standard GDB array type with all bounds filled
2146 in, and that the element size of its ultimate scalar constituents
2147 (that is, either its elements, or, if it is an array of arrays, its
2148 elements' elements, etc.) is *ELT_BITS, return an identical type,
2149 but with the bit sizes of its elements (and those of any
2150 constituent arrays) recorded in the BITSIZE components of its
2151 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2152 in bits. */
2153
2154 static struct type *
2155 constrained_packed_array_type (struct type *type, long *elt_bits)
2156 {
2157 struct type *new_elt_type;
2158 struct type *new_type;
2159 struct type *index_type_desc;
2160 struct type *index_type;
2161 LONGEST low_bound, high_bound;
2162
2163 type = ada_check_typedef (type);
2164 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2165 return type;
2166
2167 index_type_desc = ada_find_parallel_type (type, "___XA");
2168 if (index_type_desc)
2169 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2170 NULL);
2171 else
2172 index_type = TYPE_INDEX_TYPE (type);
2173
2174 new_type = alloc_type_copy (type);
2175 new_elt_type =
2176 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2177 elt_bits);
2178 create_array_type (new_type, new_elt_type, index_type);
2179 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2180 TYPE_NAME (new_type) = ada_type_name (type);
2181
2182 if (get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2183 low_bound = high_bound = 0;
2184 if (high_bound < low_bound)
2185 *elt_bits = TYPE_LENGTH (new_type) = 0;
2186 else
2187 {
2188 *elt_bits *= (high_bound - low_bound + 1);
2189 TYPE_LENGTH (new_type) =
2190 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2191 }
2192
2193 TYPE_FIXED_INSTANCE (new_type) = 1;
2194 return new_type;
2195 }
2196
2197 /* The array type encoded by TYPE, where
2198 ada_is_constrained_packed_array_type (TYPE). */
2199
2200 static struct type *
2201 decode_constrained_packed_array_type (struct type *type)
2202 {
2203 const char *raw_name = ada_type_name (ada_check_typedef (type));
2204 char *name;
2205 const char *tail;
2206 struct type *shadow_type;
2207 long bits;
2208
2209 if (!raw_name)
2210 raw_name = ada_type_name (desc_base_type (type));
2211
2212 if (!raw_name)
2213 return NULL;
2214
2215 name = (char *) alloca (strlen (raw_name) + 1);
2216 tail = strstr (raw_name, "___XP");
2217 type = desc_base_type (type);
2218
2219 memcpy (name, raw_name, tail - raw_name);
2220 name[tail - raw_name] = '\000';
2221
2222 shadow_type = ada_find_parallel_type_with_name (type, name);
2223
2224 if (shadow_type == NULL)
2225 {
2226 lim_warning (_("could not find bounds information on packed array"));
2227 return NULL;
2228 }
2229 CHECK_TYPEDEF (shadow_type);
2230
2231 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2232 {
2233 lim_warning (_("could not understand bounds "
2234 "information on packed array"));
2235 return NULL;
2236 }
2237
2238 bits = decode_packed_array_bitsize (type);
2239 return constrained_packed_array_type (shadow_type, &bits);
2240 }
2241
2242 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2243 array, returns a simple array that denotes that array. Its type is a
2244 standard GDB array type except that the BITSIZEs of the array
2245 target types are set to the number of bits in each element, and the
2246 type length is set appropriately. */
2247
2248 static struct value *
2249 decode_constrained_packed_array (struct value *arr)
2250 {
2251 struct type *type;
2252
2253 /* If our value is a pointer, then dereference it. Likewise if
2254 the value is a reference. Make sure that this operation does not
2255 cause the target type to be fixed, as this would indirectly cause
2256 this array to be decoded. The rest of the routine assumes that
2257 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2258 and "value_ind" routines to perform the dereferencing, as opposed
2259 to using "ada_coerce_ref" or "ada_value_ind". */
2260 arr = coerce_ref (arr);
2261 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2262 arr = value_ind (arr);
2263
2264 type = decode_constrained_packed_array_type (value_type (arr));
2265 if (type == NULL)
2266 {
2267 error (_("can't unpack array"));
2268 return NULL;
2269 }
2270
2271 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2272 && ada_is_modular_type (value_type (arr)))
2273 {
2274 /* This is a (right-justified) modular type representing a packed
2275 array with no wrapper. In order to interpret the value through
2276 the (left-justified) packed array type we just built, we must
2277 first left-justify it. */
2278 int bit_size, bit_pos;
2279 ULONGEST mod;
2280
2281 mod = ada_modulus (value_type (arr)) - 1;
2282 bit_size = 0;
2283 while (mod > 0)
2284 {
2285 bit_size += 1;
2286 mod >>= 1;
2287 }
2288 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2289 arr = ada_value_primitive_packed_val (arr, NULL,
2290 bit_pos / HOST_CHAR_BIT,
2291 bit_pos % HOST_CHAR_BIT,
2292 bit_size,
2293 type);
2294 }
2295
2296 return coerce_unspec_val_to_type (arr, type);
2297 }
2298
2299
2300 /* The value of the element of packed array ARR at the ARITY indices
2301 given in IND. ARR must be a simple array. */
2302
2303 static struct value *
2304 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2305 {
2306 int i;
2307 int bits, elt_off, bit_off;
2308 long elt_total_bit_offset;
2309 struct type *elt_type;
2310 struct value *v;
2311
2312 bits = 0;
2313 elt_total_bit_offset = 0;
2314 elt_type = ada_check_typedef (value_type (arr));
2315 for (i = 0; i < arity; i += 1)
2316 {
2317 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2318 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2319 error
2320 (_("attempt to do packed indexing of "
2321 "something other than a packed array"));
2322 else
2323 {
2324 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2325 LONGEST lowerbound, upperbound;
2326 LONGEST idx;
2327
2328 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2329 {
2330 lim_warning (_("don't know bounds of array"));
2331 lowerbound = upperbound = 0;
2332 }
2333
2334 idx = pos_atr (ind[i]);
2335 if (idx < lowerbound || idx > upperbound)
2336 lim_warning (_("packed array index %ld out of bounds"),
2337 (long) idx);
2338 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2339 elt_total_bit_offset += (idx - lowerbound) * bits;
2340 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2341 }
2342 }
2343 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2344 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2345
2346 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2347 bits, elt_type);
2348 return v;
2349 }
2350
2351 /* Non-zero iff TYPE includes negative integer values. */
2352
2353 static int
2354 has_negatives (struct type *type)
2355 {
2356 switch (TYPE_CODE (type))
2357 {
2358 default:
2359 return 0;
2360 case TYPE_CODE_INT:
2361 return !TYPE_UNSIGNED (type);
2362 case TYPE_CODE_RANGE:
2363 return TYPE_LOW_BOUND (type) < 0;
2364 }
2365 }
2366
2367
2368 /* Create a new value of type TYPE from the contents of OBJ starting
2369 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2370 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2371 assigning through the result will set the field fetched from.
2372 VALADDR is ignored unless OBJ is NULL, in which case,
2373 VALADDR+OFFSET must address the start of storage containing the
2374 packed value. The value returned in this case is never an lval.
2375 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2376
2377 struct value *
2378 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2379 long offset, int bit_offset, int bit_size,
2380 struct type *type)
2381 {
2382 struct value *v;
2383 int src, /* Index into the source area */
2384 targ, /* Index into the target area */
2385 srcBitsLeft, /* Number of source bits left to move */
2386 nsrc, ntarg, /* Number of source and target bytes */
2387 unusedLS, /* Number of bits in next significant
2388 byte of source that are unused */
2389 accumSize; /* Number of meaningful bits in accum */
2390 unsigned char *bytes; /* First byte containing data to unpack */
2391 unsigned char *unpacked;
2392 unsigned long accum; /* Staging area for bits being transferred */
2393 unsigned char sign;
2394 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2395 /* Transmit bytes from least to most significant; delta is the direction
2396 the indices move. */
2397 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2398
2399 type = ada_check_typedef (type);
2400
2401 if (obj == NULL)
2402 {
2403 v = allocate_value (type);
2404 bytes = (unsigned char *) (valaddr + offset);
2405 }
2406 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2407 {
2408 v = value_at (type, value_address (obj));
2409 type = value_type (v);
2410 bytes = (unsigned char *) alloca (len);
2411 read_memory (value_address (v) + offset, bytes, len);
2412 }
2413 else
2414 {
2415 v = allocate_value (type);
2416 bytes = (unsigned char *) value_contents (obj) + offset;
2417 }
2418
2419 if (obj != NULL)
2420 {
2421 long new_offset = offset;
2422
2423 set_value_component_location (v, obj);
2424 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2425 set_value_bitsize (v, bit_size);
2426 if (value_bitpos (v) >= HOST_CHAR_BIT)
2427 {
2428 ++new_offset;
2429 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2430 }
2431 set_value_offset (v, new_offset);
2432
2433 /* Also set the parent value. This is needed when trying to
2434 assign a new value (in inferior memory). */
2435 set_value_parent (v, obj);
2436 }
2437 else
2438 set_value_bitsize (v, bit_size);
2439 unpacked = (unsigned char *) value_contents (v);
2440
2441 srcBitsLeft = bit_size;
2442 nsrc = len;
2443 ntarg = TYPE_LENGTH (type);
2444 sign = 0;
2445 if (bit_size == 0)
2446 {
2447 memset (unpacked, 0, TYPE_LENGTH (type));
2448 return v;
2449 }
2450 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2451 {
2452 src = len - 1;
2453 if (has_negatives (type)
2454 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2455 sign = ~0;
2456
2457 unusedLS =
2458 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2459 % HOST_CHAR_BIT;
2460
2461 switch (TYPE_CODE (type))
2462 {
2463 case TYPE_CODE_ARRAY:
2464 case TYPE_CODE_UNION:
2465 case TYPE_CODE_STRUCT:
2466 /* Non-scalar values must be aligned at a byte boundary... */
2467 accumSize =
2468 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2469 /* ... And are placed at the beginning (most-significant) bytes
2470 of the target. */
2471 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2472 ntarg = targ + 1;
2473 break;
2474 default:
2475 accumSize = 0;
2476 targ = TYPE_LENGTH (type) - 1;
2477 break;
2478 }
2479 }
2480 else
2481 {
2482 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2483
2484 src = targ = 0;
2485 unusedLS = bit_offset;
2486 accumSize = 0;
2487
2488 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2489 sign = ~0;
2490 }
2491
2492 accum = 0;
2493 while (nsrc > 0)
2494 {
2495 /* Mask for removing bits of the next source byte that are not
2496 part of the value. */
2497 unsigned int unusedMSMask =
2498 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2499 1;
2500 /* Sign-extend bits for this byte. */
2501 unsigned int signMask = sign & ~unusedMSMask;
2502
2503 accum |=
2504 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2505 accumSize += HOST_CHAR_BIT - unusedLS;
2506 if (accumSize >= HOST_CHAR_BIT)
2507 {
2508 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2509 accumSize -= HOST_CHAR_BIT;
2510 accum >>= HOST_CHAR_BIT;
2511 ntarg -= 1;
2512 targ += delta;
2513 }
2514 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2515 unusedLS = 0;
2516 nsrc -= 1;
2517 src += delta;
2518 }
2519 while (ntarg > 0)
2520 {
2521 accum |= sign << accumSize;
2522 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2523 accumSize -= HOST_CHAR_BIT;
2524 accum >>= HOST_CHAR_BIT;
2525 ntarg -= 1;
2526 targ += delta;
2527 }
2528
2529 return v;
2530 }
2531
2532 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2533 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2534 not overlap. */
2535 static void
2536 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2537 int src_offset, int n, int bits_big_endian_p)
2538 {
2539 unsigned int accum, mask;
2540 int accum_bits, chunk_size;
2541
2542 target += targ_offset / HOST_CHAR_BIT;
2543 targ_offset %= HOST_CHAR_BIT;
2544 source += src_offset / HOST_CHAR_BIT;
2545 src_offset %= HOST_CHAR_BIT;
2546 if (bits_big_endian_p)
2547 {
2548 accum = (unsigned char) *source;
2549 source += 1;
2550 accum_bits = HOST_CHAR_BIT - src_offset;
2551
2552 while (n > 0)
2553 {
2554 int unused_right;
2555
2556 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2557 accum_bits += HOST_CHAR_BIT;
2558 source += 1;
2559 chunk_size = HOST_CHAR_BIT - targ_offset;
2560 if (chunk_size > n)
2561 chunk_size = n;
2562 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2563 mask = ((1 << chunk_size) - 1) << unused_right;
2564 *target =
2565 (*target & ~mask)
2566 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2567 n -= chunk_size;
2568 accum_bits -= chunk_size;
2569 target += 1;
2570 targ_offset = 0;
2571 }
2572 }
2573 else
2574 {
2575 accum = (unsigned char) *source >> src_offset;
2576 source += 1;
2577 accum_bits = HOST_CHAR_BIT - src_offset;
2578
2579 while (n > 0)
2580 {
2581 accum = accum + ((unsigned char) *source << accum_bits);
2582 accum_bits += HOST_CHAR_BIT;
2583 source += 1;
2584 chunk_size = HOST_CHAR_BIT - targ_offset;
2585 if (chunk_size > n)
2586 chunk_size = n;
2587 mask = ((1 << chunk_size) - 1) << targ_offset;
2588 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2589 n -= chunk_size;
2590 accum_bits -= chunk_size;
2591 accum >>= chunk_size;
2592 target += 1;
2593 targ_offset = 0;
2594 }
2595 }
2596 }
2597
2598 /* Store the contents of FROMVAL into the location of TOVAL.
2599 Return a new value with the location of TOVAL and contents of
2600 FROMVAL. Handles assignment into packed fields that have
2601 floating-point or non-scalar types. */
2602
2603 static struct value *
2604 ada_value_assign (struct value *toval, struct value *fromval)
2605 {
2606 struct type *type = value_type (toval);
2607 int bits = value_bitsize (toval);
2608
2609 toval = ada_coerce_ref (toval);
2610 fromval = ada_coerce_ref (fromval);
2611
2612 if (ada_is_direct_array_type (value_type (toval)))
2613 toval = ada_coerce_to_simple_array (toval);
2614 if (ada_is_direct_array_type (value_type (fromval)))
2615 fromval = ada_coerce_to_simple_array (fromval);
2616
2617 if (!deprecated_value_modifiable (toval))
2618 error (_("Left operand of assignment is not a modifiable lvalue."));
2619
2620 if (VALUE_LVAL (toval) == lval_memory
2621 && bits > 0
2622 && (TYPE_CODE (type) == TYPE_CODE_FLT
2623 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2624 {
2625 int len = (value_bitpos (toval)
2626 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2627 int from_size;
2628 gdb_byte *buffer = alloca (len);
2629 struct value *val;
2630 CORE_ADDR to_addr = value_address (toval);
2631
2632 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2633 fromval = value_cast (type, fromval);
2634
2635 read_memory (to_addr, buffer, len);
2636 from_size = value_bitsize (fromval);
2637 if (from_size == 0)
2638 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2639 if (gdbarch_bits_big_endian (get_type_arch (type)))
2640 move_bits (buffer, value_bitpos (toval),
2641 value_contents (fromval), from_size - bits, bits, 1);
2642 else
2643 move_bits (buffer, value_bitpos (toval),
2644 value_contents (fromval), 0, bits, 0);
2645 write_memory_with_notification (to_addr, buffer, len);
2646
2647 val = value_copy (toval);
2648 memcpy (value_contents_raw (val), value_contents (fromval),
2649 TYPE_LENGTH (type));
2650 deprecated_set_value_type (val, type);
2651
2652 return val;
2653 }
2654
2655 return value_assign (toval, fromval);
2656 }
2657
2658
2659 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2660 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2661 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2662 * COMPONENT, and not the inferior's memory. The current contents
2663 * of COMPONENT are ignored. */
2664 static void
2665 value_assign_to_component (struct value *container, struct value *component,
2666 struct value *val)
2667 {
2668 LONGEST offset_in_container =
2669 (LONGEST) (value_address (component) - value_address (container));
2670 int bit_offset_in_container =
2671 value_bitpos (component) - value_bitpos (container);
2672 int bits;
2673
2674 val = value_cast (value_type (component), val);
2675
2676 if (value_bitsize (component) == 0)
2677 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2678 else
2679 bits = value_bitsize (component);
2680
2681 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2682 move_bits (value_contents_writeable (container) + offset_in_container,
2683 value_bitpos (container) + bit_offset_in_container,
2684 value_contents (val),
2685 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2686 bits, 1);
2687 else
2688 move_bits (value_contents_writeable (container) + offset_in_container,
2689 value_bitpos (container) + bit_offset_in_container,
2690 value_contents (val), 0, bits, 0);
2691 }
2692
2693 /* The value of the element of array ARR at the ARITY indices given in IND.
2694 ARR may be either a simple array, GNAT array descriptor, or pointer
2695 thereto. */
2696
2697 struct value *
2698 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2699 {
2700 int k;
2701 struct value *elt;
2702 struct type *elt_type;
2703
2704 elt = ada_coerce_to_simple_array (arr);
2705
2706 elt_type = ada_check_typedef (value_type (elt));
2707 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2708 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2709 return value_subscript_packed (elt, arity, ind);
2710
2711 for (k = 0; k < arity; k += 1)
2712 {
2713 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2714 error (_("too many subscripts (%d expected)"), k);
2715 elt = value_subscript (elt, pos_atr (ind[k]));
2716 }
2717 return elt;
2718 }
2719
2720 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2721 value of the element of *ARR at the ARITY indices given in
2722 IND. Does not read the entire array into memory. */
2723
2724 static struct value *
2725 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2726 struct value **ind)
2727 {
2728 int k;
2729
2730 for (k = 0; k < arity; k += 1)
2731 {
2732 LONGEST lwb, upb;
2733
2734 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2735 error (_("too many subscripts (%d expected)"), k);
2736 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2737 value_copy (arr));
2738 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2739 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2740 type = TYPE_TARGET_TYPE (type);
2741 }
2742
2743 return value_ind (arr);
2744 }
2745
2746 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2747 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2748 elements starting at index LOW. The lower bound of this array is LOW, as
2749 per Ada rules. */
2750 static struct value *
2751 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2752 int low, int high)
2753 {
2754 struct type *type0 = ada_check_typedef (type);
2755 CORE_ADDR base = value_as_address (array_ptr)
2756 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2757 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2758 struct type *index_type
2759 = create_static_range_type (NULL,
2760 TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
2761 low, high);
2762 struct type *slice_type =
2763 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2764
2765 return value_at_lazy (slice_type, base);
2766 }
2767
2768
2769 static struct value *
2770 ada_value_slice (struct value *array, int low, int high)
2771 {
2772 struct type *type = ada_check_typedef (value_type (array));
2773 struct type *index_type
2774 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2775 struct type *slice_type =
2776 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2777
2778 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2779 }
2780
2781 /* If type is a record type in the form of a standard GNAT array
2782 descriptor, returns the number of dimensions for type. If arr is a
2783 simple array, returns the number of "array of"s that prefix its
2784 type designation. Otherwise, returns 0. */
2785
2786 int
2787 ada_array_arity (struct type *type)
2788 {
2789 int arity;
2790
2791 if (type == NULL)
2792 return 0;
2793
2794 type = desc_base_type (type);
2795
2796 arity = 0;
2797 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2798 return desc_arity (desc_bounds_type (type));
2799 else
2800 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2801 {
2802 arity += 1;
2803 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2804 }
2805
2806 return arity;
2807 }
2808
2809 /* If TYPE is a record type in the form of a standard GNAT array
2810 descriptor or a simple array type, returns the element type for
2811 TYPE after indexing by NINDICES indices, or by all indices if
2812 NINDICES is -1. Otherwise, returns NULL. */
2813
2814 struct type *
2815 ada_array_element_type (struct type *type, int nindices)
2816 {
2817 type = desc_base_type (type);
2818
2819 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2820 {
2821 int k;
2822 struct type *p_array_type;
2823
2824 p_array_type = desc_data_target_type (type);
2825
2826 k = ada_array_arity (type);
2827 if (k == 0)
2828 return NULL;
2829
2830 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2831 if (nindices >= 0 && k > nindices)
2832 k = nindices;
2833 while (k > 0 && p_array_type != NULL)
2834 {
2835 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2836 k -= 1;
2837 }
2838 return p_array_type;
2839 }
2840 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2841 {
2842 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2843 {
2844 type = TYPE_TARGET_TYPE (type);
2845 nindices -= 1;
2846 }
2847 return type;
2848 }
2849
2850 return NULL;
2851 }
2852
2853 /* The type of nth index in arrays of given type (n numbering from 1).
2854 Does not examine memory. Throws an error if N is invalid or TYPE
2855 is not an array type. NAME is the name of the Ada attribute being
2856 evaluated ('range, 'first, 'last, or 'length); it is used in building
2857 the error message. */
2858
2859 static struct type *
2860 ada_index_type (struct type *type, int n, const char *name)
2861 {
2862 struct type *result_type;
2863
2864 type = desc_base_type (type);
2865
2866 if (n < 0 || n > ada_array_arity (type))
2867 error (_("invalid dimension number to '%s"), name);
2868
2869 if (ada_is_simple_array_type (type))
2870 {
2871 int i;
2872
2873 for (i = 1; i < n; i += 1)
2874 type = TYPE_TARGET_TYPE (type);
2875 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2876 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2877 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2878 perhaps stabsread.c would make more sense. */
2879 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2880 result_type = NULL;
2881 }
2882 else
2883 {
2884 result_type = desc_index_type (desc_bounds_type (type), n);
2885 if (result_type == NULL)
2886 error (_("attempt to take bound of something that is not an array"));
2887 }
2888
2889 return result_type;
2890 }
2891
2892 /* Given that arr is an array type, returns the lower bound of the
2893 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2894 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2895 array-descriptor type. It works for other arrays with bounds supplied
2896 by run-time quantities other than discriminants. */
2897
2898 static LONGEST
2899 ada_array_bound_from_type (struct type *arr_type, int n, int which)
2900 {
2901 struct type *type, *index_type_desc, *index_type;
2902 int i;
2903
2904 gdb_assert (which == 0 || which == 1);
2905
2906 if (ada_is_constrained_packed_array_type (arr_type))
2907 arr_type = decode_constrained_packed_array_type (arr_type);
2908
2909 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2910 return (LONGEST) - which;
2911
2912 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2913 type = TYPE_TARGET_TYPE (arr_type);
2914 else
2915 type = arr_type;
2916
2917 index_type_desc = ada_find_parallel_type (type, "___XA");
2918 ada_fixup_array_indexes_type (index_type_desc);
2919 if (index_type_desc != NULL)
2920 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2921 NULL);
2922 else
2923 {
2924 struct type *elt_type = check_typedef (type);
2925
2926 for (i = 1; i < n; i++)
2927 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
2928
2929 index_type = TYPE_INDEX_TYPE (elt_type);
2930 }
2931
2932 return
2933 (LONGEST) (which == 0
2934 ? ada_discrete_type_low_bound (index_type)
2935 : ada_discrete_type_high_bound (index_type));
2936 }
2937
2938 /* Given that arr is an array value, returns the lower bound of the
2939 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2940 WHICH is 1. This routine will also work for arrays with bounds
2941 supplied by run-time quantities other than discriminants. */
2942
2943 static LONGEST
2944 ada_array_bound (struct value *arr, int n, int which)
2945 {
2946 struct type *arr_type = value_type (arr);
2947
2948 if (ada_is_constrained_packed_array_type (arr_type))
2949 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2950 else if (ada_is_simple_array_type (arr_type))
2951 return ada_array_bound_from_type (arr_type, n, which);
2952 else
2953 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2954 }
2955
2956 /* Given that arr is an array value, returns the length of the
2957 nth index. This routine will also work for arrays with bounds
2958 supplied by run-time quantities other than discriminants.
2959 Does not work for arrays indexed by enumeration types with representation
2960 clauses at the moment. */
2961
2962 static LONGEST
2963 ada_array_length (struct value *arr, int n)
2964 {
2965 struct type *arr_type = ada_check_typedef (value_type (arr));
2966
2967 if (ada_is_constrained_packed_array_type (arr_type))
2968 return ada_array_length (decode_constrained_packed_array (arr), n);
2969
2970 if (ada_is_simple_array_type (arr_type))
2971 return (ada_array_bound_from_type (arr_type, n, 1)
2972 - ada_array_bound_from_type (arr_type, n, 0) + 1);
2973 else
2974 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2975 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2976 }
2977
2978 /* An empty array whose type is that of ARR_TYPE (an array type),
2979 with bounds LOW to LOW-1. */
2980
2981 static struct value *
2982 empty_array (struct type *arr_type, int low)
2983 {
2984 struct type *arr_type0 = ada_check_typedef (arr_type);
2985 struct type *index_type
2986 = create_static_range_type
2987 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
2988 struct type *elt_type = ada_array_element_type (arr_type0, 1);
2989
2990 return allocate_value (create_array_type (NULL, elt_type, index_type));
2991 }
2992 \f
2993
2994 /* Name resolution */
2995
2996 /* The "decoded" name for the user-definable Ada operator corresponding
2997 to OP. */
2998
2999 static const char *
3000 ada_decoded_op_name (enum exp_opcode op)
3001 {
3002 int i;
3003
3004 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3005 {
3006 if (ada_opname_table[i].op == op)
3007 return ada_opname_table[i].decoded;
3008 }
3009 error (_("Could not find operator name for opcode"));
3010 }
3011
3012
3013 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3014 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3015 undefined namespace) and converts operators that are
3016 user-defined into appropriate function calls. If CONTEXT_TYPE is
3017 non-null, it provides a preferred result type [at the moment, only
3018 type void has any effect---causing procedures to be preferred over
3019 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3020 return type is preferred. May change (expand) *EXP. */
3021
3022 static void
3023 resolve (struct expression **expp, int void_context_p)
3024 {
3025 struct type *context_type = NULL;
3026 int pc = 0;
3027
3028 if (void_context_p)
3029 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3030
3031 resolve_subexp (expp, &pc, 1, context_type);
3032 }
3033
3034 /* Resolve the operator of the subexpression beginning at
3035 position *POS of *EXPP. "Resolving" consists of replacing
3036 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3037 with their resolutions, replacing built-in operators with
3038 function calls to user-defined operators, where appropriate, and,
3039 when DEPROCEDURE_P is non-zero, converting function-valued variables
3040 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3041 are as in ada_resolve, above. */
3042
3043 static struct value *
3044 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
3045 struct type *context_type)
3046 {
3047 int pc = *pos;
3048 int i;
3049 struct expression *exp; /* Convenience: == *expp. */
3050 enum exp_opcode op = (*expp)->elts[pc].opcode;
3051 struct value **argvec; /* Vector of operand types (alloca'ed). */
3052 int nargs; /* Number of operands. */
3053 int oplen;
3054
3055 argvec = NULL;
3056 nargs = 0;
3057 exp = *expp;
3058
3059 /* Pass one: resolve operands, saving their types and updating *pos,
3060 if needed. */
3061 switch (op)
3062 {
3063 case OP_FUNCALL:
3064 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3065 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3066 *pos += 7;
3067 else
3068 {
3069 *pos += 3;
3070 resolve_subexp (expp, pos, 0, NULL);
3071 }
3072 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3073 break;
3074
3075 case UNOP_ADDR:
3076 *pos += 1;
3077 resolve_subexp (expp, pos, 0, NULL);
3078 break;
3079
3080 case UNOP_QUAL:
3081 *pos += 3;
3082 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
3083 break;
3084
3085 case OP_ATR_MODULUS:
3086 case OP_ATR_SIZE:
3087 case OP_ATR_TAG:
3088 case OP_ATR_FIRST:
3089 case OP_ATR_LAST:
3090 case OP_ATR_LENGTH:
3091 case OP_ATR_POS:
3092 case OP_ATR_VAL:
3093 case OP_ATR_MIN:
3094 case OP_ATR_MAX:
3095 case TERNOP_IN_RANGE:
3096 case BINOP_IN_BOUNDS:
3097 case UNOP_IN_RANGE:
3098 case OP_AGGREGATE:
3099 case OP_OTHERS:
3100 case OP_CHOICES:
3101 case OP_POSITIONAL:
3102 case OP_DISCRETE_RANGE:
3103 case OP_NAME:
3104 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3105 *pos += oplen;
3106 break;
3107
3108 case BINOP_ASSIGN:
3109 {
3110 struct value *arg1;
3111
3112 *pos += 1;
3113 arg1 = resolve_subexp (expp, pos, 0, NULL);
3114 if (arg1 == NULL)
3115 resolve_subexp (expp, pos, 1, NULL);
3116 else
3117 resolve_subexp (expp, pos, 1, value_type (arg1));
3118 break;
3119 }
3120
3121 case UNOP_CAST:
3122 *pos += 3;
3123 nargs = 1;
3124 break;
3125
3126 case BINOP_ADD:
3127 case BINOP_SUB:
3128 case BINOP_MUL:
3129 case BINOP_DIV:
3130 case BINOP_REM:
3131 case BINOP_MOD:
3132 case BINOP_EXP:
3133 case BINOP_CONCAT:
3134 case BINOP_LOGICAL_AND:
3135 case BINOP_LOGICAL_OR:
3136 case BINOP_BITWISE_AND:
3137 case BINOP_BITWISE_IOR:
3138 case BINOP_BITWISE_XOR:
3139
3140 case BINOP_EQUAL:
3141 case BINOP_NOTEQUAL:
3142 case BINOP_LESS:
3143 case BINOP_GTR:
3144 case BINOP_LEQ:
3145 case BINOP_GEQ:
3146
3147 case BINOP_REPEAT:
3148 case BINOP_SUBSCRIPT:
3149 case BINOP_COMMA:
3150 *pos += 1;
3151 nargs = 2;
3152 break;
3153
3154 case UNOP_NEG:
3155 case UNOP_PLUS:
3156 case UNOP_LOGICAL_NOT:
3157 case UNOP_ABS:
3158 case UNOP_IND:
3159 *pos += 1;
3160 nargs = 1;
3161 break;
3162
3163 case OP_LONG:
3164 case OP_DOUBLE:
3165 case OP_VAR_VALUE:
3166 *pos += 4;
3167 break;
3168
3169 case OP_TYPE:
3170 case OP_BOOL:
3171 case OP_LAST:
3172 case OP_INTERNALVAR:
3173 *pos += 3;
3174 break;
3175
3176 case UNOP_MEMVAL:
3177 *pos += 3;
3178 nargs = 1;
3179 break;
3180
3181 case OP_REGISTER:
3182 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3183 break;
3184
3185 case STRUCTOP_STRUCT:
3186 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3187 nargs = 1;
3188 break;
3189
3190 case TERNOP_SLICE:
3191 *pos += 1;
3192 nargs = 3;
3193 break;
3194
3195 case OP_STRING:
3196 break;
3197
3198 default:
3199 error (_("Unexpected operator during name resolution"));
3200 }
3201
3202 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
3203 for (i = 0; i < nargs; i += 1)
3204 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3205 argvec[i] = NULL;
3206 exp = *expp;
3207
3208 /* Pass two: perform any resolution on principal operator. */
3209 switch (op)
3210 {
3211 default:
3212 break;
3213
3214 case OP_VAR_VALUE:
3215 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3216 {
3217 struct ada_symbol_info *candidates;
3218 int n_candidates;
3219
3220 n_candidates =
3221 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3222 (exp->elts[pc + 2].symbol),
3223 exp->elts[pc + 1].block, VAR_DOMAIN,
3224 &candidates);
3225
3226 if (n_candidates > 1)
3227 {
3228 /* Types tend to get re-introduced locally, so if there
3229 are any local symbols that are not types, first filter
3230 out all types. */
3231 int j;
3232 for (j = 0; j < n_candidates; j += 1)
3233 switch (SYMBOL_CLASS (candidates[j].sym))
3234 {
3235 case LOC_REGISTER:
3236 case LOC_ARG:
3237 case LOC_REF_ARG:
3238 case LOC_REGPARM_ADDR:
3239 case LOC_LOCAL:
3240 case LOC_COMPUTED:
3241 goto FoundNonType;
3242 default:
3243 break;
3244 }
3245 FoundNonType:
3246 if (j < n_candidates)
3247 {
3248 j = 0;
3249 while (j < n_candidates)
3250 {
3251 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3252 {
3253 candidates[j] = candidates[n_candidates - 1];
3254 n_candidates -= 1;
3255 }
3256 else
3257 j += 1;
3258 }
3259 }
3260 }
3261
3262 if (n_candidates == 0)
3263 error (_("No definition found for %s"),
3264 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3265 else if (n_candidates == 1)
3266 i = 0;
3267 else if (deprocedure_p
3268 && !is_nonfunction (candidates, n_candidates))
3269 {
3270 i = ada_resolve_function
3271 (candidates, n_candidates, NULL, 0,
3272 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3273 context_type);
3274 if (i < 0)
3275 error (_("Could not find a match for %s"),
3276 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3277 }
3278 else
3279 {
3280 printf_filtered (_("Multiple matches for %s\n"),
3281 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3282 user_select_syms (candidates, n_candidates, 1);
3283 i = 0;
3284 }
3285
3286 exp->elts[pc + 1].block = candidates[i].block;
3287 exp->elts[pc + 2].symbol = candidates[i].sym;
3288 if (innermost_block == NULL
3289 || contained_in (candidates[i].block, innermost_block))
3290 innermost_block = candidates[i].block;
3291 }
3292
3293 if (deprocedure_p
3294 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3295 == TYPE_CODE_FUNC))
3296 {
3297 replace_operator_with_call (expp, pc, 0, 0,
3298 exp->elts[pc + 2].symbol,
3299 exp->elts[pc + 1].block);
3300 exp = *expp;
3301 }
3302 break;
3303
3304 case OP_FUNCALL:
3305 {
3306 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3307 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3308 {
3309 struct ada_symbol_info *candidates;
3310 int n_candidates;
3311
3312 n_candidates =
3313 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3314 (exp->elts[pc + 5].symbol),
3315 exp->elts[pc + 4].block, VAR_DOMAIN,
3316 &candidates);
3317 if (n_candidates == 1)
3318 i = 0;
3319 else
3320 {
3321 i = ada_resolve_function
3322 (candidates, n_candidates,
3323 argvec, nargs,
3324 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3325 context_type);
3326 if (i < 0)
3327 error (_("Could not find a match for %s"),
3328 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3329 }
3330
3331 exp->elts[pc + 4].block = candidates[i].block;
3332 exp->elts[pc + 5].symbol = candidates[i].sym;
3333 if (innermost_block == NULL
3334 || contained_in (candidates[i].block, innermost_block))
3335 innermost_block = candidates[i].block;
3336 }
3337 }
3338 break;
3339 case BINOP_ADD:
3340 case BINOP_SUB:
3341 case BINOP_MUL:
3342 case BINOP_DIV:
3343 case BINOP_REM:
3344 case BINOP_MOD:
3345 case BINOP_CONCAT:
3346 case BINOP_BITWISE_AND:
3347 case BINOP_BITWISE_IOR:
3348 case BINOP_BITWISE_XOR:
3349 case BINOP_EQUAL:
3350 case BINOP_NOTEQUAL:
3351 case BINOP_LESS:
3352 case BINOP_GTR:
3353 case BINOP_LEQ:
3354 case BINOP_GEQ:
3355 case BINOP_EXP:
3356 case UNOP_NEG:
3357 case UNOP_PLUS:
3358 case UNOP_LOGICAL_NOT:
3359 case UNOP_ABS:
3360 if (possible_user_operator_p (op, argvec))
3361 {
3362 struct ada_symbol_info *candidates;
3363 int n_candidates;
3364
3365 n_candidates =
3366 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3367 (struct block *) NULL, VAR_DOMAIN,
3368 &candidates);
3369 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3370 ada_decoded_op_name (op), NULL);
3371 if (i < 0)
3372 break;
3373
3374 replace_operator_with_call (expp, pc, nargs, 1,
3375 candidates[i].sym, candidates[i].block);
3376 exp = *expp;
3377 }
3378 break;
3379
3380 case OP_TYPE:
3381 case OP_REGISTER:
3382 return NULL;
3383 }
3384
3385 *pos = pc;
3386 return evaluate_subexp_type (exp, pos);
3387 }
3388
3389 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3390 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3391 a non-pointer. */
3392 /* The term "match" here is rather loose. The match is heuristic and
3393 liberal. */
3394
3395 static int
3396 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3397 {
3398 ftype = ada_check_typedef (ftype);
3399 atype = ada_check_typedef (atype);
3400
3401 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3402 ftype = TYPE_TARGET_TYPE (ftype);
3403 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3404 atype = TYPE_TARGET_TYPE (atype);
3405
3406 switch (TYPE_CODE (ftype))
3407 {
3408 default:
3409 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3410 case TYPE_CODE_PTR:
3411 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3412 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3413 TYPE_TARGET_TYPE (atype), 0);
3414 else
3415 return (may_deref
3416 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3417 case TYPE_CODE_INT:
3418 case TYPE_CODE_ENUM:
3419 case TYPE_CODE_RANGE:
3420 switch (TYPE_CODE (atype))
3421 {
3422 case TYPE_CODE_INT:
3423 case TYPE_CODE_ENUM:
3424 case TYPE_CODE_RANGE:
3425 return 1;
3426 default:
3427 return 0;
3428 }
3429
3430 case TYPE_CODE_ARRAY:
3431 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3432 || ada_is_array_descriptor_type (atype));
3433
3434 case TYPE_CODE_STRUCT:
3435 if (ada_is_array_descriptor_type (ftype))
3436 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3437 || ada_is_array_descriptor_type (atype));
3438 else
3439 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3440 && !ada_is_array_descriptor_type (atype));
3441
3442 case TYPE_CODE_UNION:
3443 case TYPE_CODE_FLT:
3444 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3445 }
3446 }
3447
3448 /* Return non-zero if the formals of FUNC "sufficiently match" the
3449 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3450 may also be an enumeral, in which case it is treated as a 0-
3451 argument function. */
3452
3453 static int
3454 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3455 {
3456 int i;
3457 struct type *func_type = SYMBOL_TYPE (func);
3458
3459 if (SYMBOL_CLASS (func) == LOC_CONST
3460 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3461 return (n_actuals == 0);
3462 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3463 return 0;
3464
3465 if (TYPE_NFIELDS (func_type) != n_actuals)
3466 return 0;
3467
3468 for (i = 0; i < n_actuals; i += 1)
3469 {
3470 if (actuals[i] == NULL)
3471 return 0;
3472 else
3473 {
3474 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3475 i));
3476 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3477
3478 if (!ada_type_match (ftype, atype, 1))
3479 return 0;
3480 }
3481 }
3482 return 1;
3483 }
3484
3485 /* False iff function type FUNC_TYPE definitely does not produce a value
3486 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3487 FUNC_TYPE is not a valid function type with a non-null return type
3488 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3489
3490 static int
3491 return_match (struct type *func_type, struct type *context_type)
3492 {
3493 struct type *return_type;
3494
3495 if (func_type == NULL)
3496 return 1;
3497
3498 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3499 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3500 else
3501 return_type = get_base_type (func_type);
3502 if (return_type == NULL)
3503 return 1;
3504
3505 context_type = get_base_type (context_type);
3506
3507 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3508 return context_type == NULL || return_type == context_type;
3509 else if (context_type == NULL)
3510 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3511 else
3512 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3513 }
3514
3515
3516 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3517 function (if any) that matches the types of the NARGS arguments in
3518 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3519 that returns that type, then eliminate matches that don't. If
3520 CONTEXT_TYPE is void and there is at least one match that does not
3521 return void, eliminate all matches that do.
3522
3523 Asks the user if there is more than one match remaining. Returns -1
3524 if there is no such symbol or none is selected. NAME is used
3525 solely for messages. May re-arrange and modify SYMS in
3526 the process; the index returned is for the modified vector. */
3527
3528 static int
3529 ada_resolve_function (struct ada_symbol_info syms[],
3530 int nsyms, struct value **args, int nargs,
3531 const char *name, struct type *context_type)
3532 {
3533 int fallback;
3534 int k;
3535 int m; /* Number of hits */
3536
3537 m = 0;
3538 /* In the first pass of the loop, we only accept functions matching
3539 context_type. If none are found, we add a second pass of the loop
3540 where every function is accepted. */
3541 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3542 {
3543 for (k = 0; k < nsyms; k += 1)
3544 {
3545 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3546
3547 if (ada_args_match (syms[k].sym, args, nargs)
3548 && (fallback || return_match (type, context_type)))
3549 {
3550 syms[m] = syms[k];
3551 m += 1;
3552 }
3553 }
3554 }
3555
3556 if (m == 0)
3557 return -1;
3558 else if (m > 1)
3559 {
3560 printf_filtered (_("Multiple matches for %s\n"), name);
3561 user_select_syms (syms, m, 1);
3562 return 0;
3563 }
3564 return 0;
3565 }
3566
3567 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3568 in a listing of choices during disambiguation (see sort_choices, below).
3569 The idea is that overloadings of a subprogram name from the
3570 same package should sort in their source order. We settle for ordering
3571 such symbols by their trailing number (__N or $N). */
3572
3573 static int
3574 encoded_ordered_before (const char *N0, const char *N1)
3575 {
3576 if (N1 == NULL)
3577 return 0;
3578 else if (N0 == NULL)
3579 return 1;
3580 else
3581 {
3582 int k0, k1;
3583
3584 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3585 ;
3586 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3587 ;
3588 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3589 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3590 {
3591 int n0, n1;
3592
3593 n0 = k0;
3594 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3595 n0 -= 1;
3596 n1 = k1;
3597 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3598 n1 -= 1;
3599 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3600 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3601 }
3602 return (strcmp (N0, N1) < 0);
3603 }
3604 }
3605
3606 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3607 encoded names. */
3608
3609 static void
3610 sort_choices (struct ada_symbol_info syms[], int nsyms)
3611 {
3612 int i;
3613
3614 for (i = 1; i < nsyms; i += 1)
3615 {
3616 struct ada_symbol_info sym = syms[i];
3617 int j;
3618
3619 for (j = i - 1; j >= 0; j -= 1)
3620 {
3621 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3622 SYMBOL_LINKAGE_NAME (sym.sym)))
3623 break;
3624 syms[j + 1] = syms[j];
3625 }
3626 syms[j + 1] = sym;
3627 }
3628 }
3629
3630 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3631 by asking the user (if necessary), returning the number selected,
3632 and setting the first elements of SYMS items. Error if no symbols
3633 selected. */
3634
3635 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3636 to be re-integrated one of these days. */
3637
3638 int
3639 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3640 {
3641 int i;
3642 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3643 int n_chosen;
3644 int first_choice = (max_results == 1) ? 1 : 2;
3645 const char *select_mode = multiple_symbols_select_mode ();
3646
3647 if (max_results < 1)
3648 error (_("Request to select 0 symbols!"));
3649 if (nsyms <= 1)
3650 return nsyms;
3651
3652 if (select_mode == multiple_symbols_cancel)
3653 error (_("\
3654 canceled because the command is ambiguous\n\
3655 See set/show multiple-symbol."));
3656
3657 /* If select_mode is "all", then return all possible symbols.
3658 Only do that if more than one symbol can be selected, of course.
3659 Otherwise, display the menu as usual. */
3660 if (select_mode == multiple_symbols_all && max_results > 1)
3661 return nsyms;
3662
3663 printf_unfiltered (_("[0] cancel\n"));
3664 if (max_results > 1)
3665 printf_unfiltered (_("[1] all\n"));
3666
3667 sort_choices (syms, nsyms);
3668
3669 for (i = 0; i < nsyms; i += 1)
3670 {
3671 if (syms[i].sym == NULL)
3672 continue;
3673
3674 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3675 {
3676 struct symtab_and_line sal =
3677 find_function_start_sal (syms[i].sym, 1);
3678
3679 if (sal.symtab == NULL)
3680 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3681 i + first_choice,
3682 SYMBOL_PRINT_NAME (syms[i].sym),
3683 sal.line);
3684 else
3685 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3686 SYMBOL_PRINT_NAME (syms[i].sym),
3687 symtab_to_filename_for_display (sal.symtab),
3688 sal.line);
3689 continue;
3690 }
3691 else
3692 {
3693 int is_enumeral =
3694 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3695 && SYMBOL_TYPE (syms[i].sym) != NULL
3696 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3697 struct symtab *symtab = SYMBOL_SYMTAB (syms[i].sym);
3698
3699 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3700 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3701 i + first_choice,
3702 SYMBOL_PRINT_NAME (syms[i].sym),
3703 symtab_to_filename_for_display (symtab),
3704 SYMBOL_LINE (syms[i].sym));
3705 else if (is_enumeral
3706 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3707 {
3708 printf_unfiltered (("[%d] "), i + first_choice);
3709 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3710 gdb_stdout, -1, 0, &type_print_raw_options);
3711 printf_unfiltered (_("'(%s) (enumeral)\n"),
3712 SYMBOL_PRINT_NAME (syms[i].sym));
3713 }
3714 else if (symtab != NULL)
3715 printf_unfiltered (is_enumeral
3716 ? _("[%d] %s in %s (enumeral)\n")
3717 : _("[%d] %s at %s:?\n"),
3718 i + first_choice,
3719 SYMBOL_PRINT_NAME (syms[i].sym),
3720 symtab_to_filename_for_display (symtab));
3721 else
3722 printf_unfiltered (is_enumeral
3723 ? _("[%d] %s (enumeral)\n")
3724 : _("[%d] %s at ?\n"),
3725 i + first_choice,
3726 SYMBOL_PRINT_NAME (syms[i].sym));
3727 }
3728 }
3729
3730 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3731 "overload-choice");
3732
3733 for (i = 0; i < n_chosen; i += 1)
3734 syms[i] = syms[chosen[i]];
3735
3736 return n_chosen;
3737 }
3738
3739 /* Read and validate a set of numeric choices from the user in the
3740 range 0 .. N_CHOICES-1. Place the results in increasing
3741 order in CHOICES[0 .. N-1], and return N.
3742
3743 The user types choices as a sequence of numbers on one line
3744 separated by blanks, encoding them as follows:
3745
3746 + A choice of 0 means to cancel the selection, throwing an error.
3747 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3748 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3749
3750 The user is not allowed to choose more than MAX_RESULTS values.
3751
3752 ANNOTATION_SUFFIX, if present, is used to annotate the input
3753 prompts (for use with the -f switch). */
3754
3755 int
3756 get_selections (int *choices, int n_choices, int max_results,
3757 int is_all_choice, char *annotation_suffix)
3758 {
3759 char *args;
3760 char *prompt;
3761 int n_chosen;
3762 int first_choice = is_all_choice ? 2 : 1;
3763
3764 prompt = getenv ("PS2");
3765 if (prompt == NULL)
3766 prompt = "> ";
3767
3768 args = command_line_input (prompt, 0, annotation_suffix);
3769
3770 if (args == NULL)
3771 error_no_arg (_("one or more choice numbers"));
3772
3773 n_chosen = 0;
3774
3775 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3776 order, as given in args. Choices are validated. */
3777 while (1)
3778 {
3779 char *args2;
3780 int choice, j;
3781
3782 args = skip_spaces (args);
3783 if (*args == '\0' && n_chosen == 0)
3784 error_no_arg (_("one or more choice numbers"));
3785 else if (*args == '\0')
3786 break;
3787
3788 choice = strtol (args, &args2, 10);
3789 if (args == args2 || choice < 0
3790 || choice > n_choices + first_choice - 1)
3791 error (_("Argument must be choice number"));
3792 args = args2;
3793
3794 if (choice == 0)
3795 error (_("cancelled"));
3796
3797 if (choice < first_choice)
3798 {
3799 n_chosen = n_choices;
3800 for (j = 0; j < n_choices; j += 1)
3801 choices[j] = j;
3802 break;
3803 }
3804 choice -= first_choice;
3805
3806 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3807 {
3808 }
3809
3810 if (j < 0 || choice != choices[j])
3811 {
3812 int k;
3813
3814 for (k = n_chosen - 1; k > j; k -= 1)
3815 choices[k + 1] = choices[k];
3816 choices[j + 1] = choice;
3817 n_chosen += 1;
3818 }
3819 }
3820
3821 if (n_chosen > max_results)
3822 error (_("Select no more than %d of the above"), max_results);
3823
3824 return n_chosen;
3825 }
3826
3827 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3828 on the function identified by SYM and BLOCK, and taking NARGS
3829 arguments. Update *EXPP as needed to hold more space. */
3830
3831 static void
3832 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3833 int oplen, struct symbol *sym,
3834 const struct block *block)
3835 {
3836 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3837 symbol, -oplen for operator being replaced). */
3838 struct expression *newexp = (struct expression *)
3839 xzalloc (sizeof (struct expression)
3840 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3841 struct expression *exp = *expp;
3842
3843 newexp->nelts = exp->nelts + 7 - oplen;
3844 newexp->language_defn = exp->language_defn;
3845 newexp->gdbarch = exp->gdbarch;
3846 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3847 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3848 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3849
3850 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3851 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3852
3853 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3854 newexp->elts[pc + 4].block = block;
3855 newexp->elts[pc + 5].symbol = sym;
3856
3857 *expp = newexp;
3858 xfree (exp);
3859 }
3860
3861 /* Type-class predicates */
3862
3863 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3864 or FLOAT). */
3865
3866 static int
3867 numeric_type_p (struct type *type)
3868 {
3869 if (type == NULL)
3870 return 0;
3871 else
3872 {
3873 switch (TYPE_CODE (type))
3874 {
3875 case TYPE_CODE_INT:
3876 case TYPE_CODE_FLT:
3877 return 1;
3878 case TYPE_CODE_RANGE:
3879 return (type == TYPE_TARGET_TYPE (type)
3880 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3881 default:
3882 return 0;
3883 }
3884 }
3885 }
3886
3887 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3888
3889 static int
3890 integer_type_p (struct type *type)
3891 {
3892 if (type == NULL)
3893 return 0;
3894 else
3895 {
3896 switch (TYPE_CODE (type))
3897 {
3898 case TYPE_CODE_INT:
3899 return 1;
3900 case TYPE_CODE_RANGE:
3901 return (type == TYPE_TARGET_TYPE (type)
3902 || integer_type_p (TYPE_TARGET_TYPE (type)));
3903 default:
3904 return 0;
3905 }
3906 }
3907 }
3908
3909 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3910
3911 static int
3912 scalar_type_p (struct type *type)
3913 {
3914 if (type == NULL)
3915 return 0;
3916 else
3917 {
3918 switch (TYPE_CODE (type))
3919 {
3920 case TYPE_CODE_INT:
3921 case TYPE_CODE_RANGE:
3922 case TYPE_CODE_ENUM:
3923 case TYPE_CODE_FLT:
3924 return 1;
3925 default:
3926 return 0;
3927 }
3928 }
3929 }
3930
3931 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3932
3933 static int
3934 discrete_type_p (struct type *type)
3935 {
3936 if (type == NULL)
3937 return 0;
3938 else
3939 {
3940 switch (TYPE_CODE (type))
3941 {
3942 case TYPE_CODE_INT:
3943 case TYPE_CODE_RANGE:
3944 case TYPE_CODE_ENUM:
3945 case TYPE_CODE_BOOL:
3946 return 1;
3947 default:
3948 return 0;
3949 }
3950 }
3951 }
3952
3953 /* Returns non-zero if OP with operands in the vector ARGS could be
3954 a user-defined function. Errs on the side of pre-defined operators
3955 (i.e., result 0). */
3956
3957 static int
3958 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3959 {
3960 struct type *type0 =
3961 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3962 struct type *type1 =
3963 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3964
3965 if (type0 == NULL)
3966 return 0;
3967
3968 switch (op)
3969 {
3970 default:
3971 return 0;
3972
3973 case BINOP_ADD:
3974 case BINOP_SUB:
3975 case BINOP_MUL:
3976 case BINOP_DIV:
3977 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3978
3979 case BINOP_REM:
3980 case BINOP_MOD:
3981 case BINOP_BITWISE_AND:
3982 case BINOP_BITWISE_IOR:
3983 case BINOP_BITWISE_XOR:
3984 return (!(integer_type_p (type0) && integer_type_p (type1)));
3985
3986 case BINOP_EQUAL:
3987 case BINOP_NOTEQUAL:
3988 case BINOP_LESS:
3989 case BINOP_GTR:
3990 case BINOP_LEQ:
3991 case BINOP_GEQ:
3992 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3993
3994 case BINOP_CONCAT:
3995 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3996
3997 case BINOP_EXP:
3998 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3999
4000 case UNOP_NEG:
4001 case UNOP_PLUS:
4002 case UNOP_LOGICAL_NOT:
4003 case UNOP_ABS:
4004 return (!numeric_type_p (type0));
4005
4006 }
4007 }
4008 \f
4009 /* Renaming */
4010
4011 /* NOTES:
4012
4013 1. In the following, we assume that a renaming type's name may
4014 have an ___XD suffix. It would be nice if this went away at some
4015 point.
4016 2. We handle both the (old) purely type-based representation of
4017 renamings and the (new) variable-based encoding. At some point,
4018 it is devoutly to be hoped that the former goes away
4019 (FIXME: hilfinger-2007-07-09).
4020 3. Subprogram renamings are not implemented, although the XRS
4021 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4022
4023 /* If SYM encodes a renaming,
4024
4025 <renaming> renames <renamed entity>,
4026
4027 sets *LEN to the length of the renamed entity's name,
4028 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4029 the string describing the subcomponent selected from the renamed
4030 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4031 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4032 are undefined). Otherwise, returns a value indicating the category
4033 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4034 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4035 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4036 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4037 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4038 may be NULL, in which case they are not assigned.
4039
4040 [Currently, however, GCC does not generate subprogram renamings.] */
4041
4042 enum ada_renaming_category
4043 ada_parse_renaming (struct symbol *sym,
4044 const char **renamed_entity, int *len,
4045 const char **renaming_expr)
4046 {
4047 enum ada_renaming_category kind;
4048 const char *info;
4049 const char *suffix;
4050
4051 if (sym == NULL)
4052 return ADA_NOT_RENAMING;
4053 switch (SYMBOL_CLASS (sym))
4054 {
4055 default:
4056 return ADA_NOT_RENAMING;
4057 case LOC_TYPEDEF:
4058 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4059 renamed_entity, len, renaming_expr);
4060 case LOC_LOCAL:
4061 case LOC_STATIC:
4062 case LOC_COMPUTED:
4063 case LOC_OPTIMIZED_OUT:
4064 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4065 if (info == NULL)
4066 return ADA_NOT_RENAMING;
4067 switch (info[5])
4068 {
4069 case '_':
4070 kind = ADA_OBJECT_RENAMING;
4071 info += 6;
4072 break;
4073 case 'E':
4074 kind = ADA_EXCEPTION_RENAMING;
4075 info += 7;
4076 break;
4077 case 'P':
4078 kind = ADA_PACKAGE_RENAMING;
4079 info += 7;
4080 break;
4081 case 'S':
4082 kind = ADA_SUBPROGRAM_RENAMING;
4083 info += 7;
4084 break;
4085 default:
4086 return ADA_NOT_RENAMING;
4087 }
4088 }
4089
4090 if (renamed_entity != NULL)
4091 *renamed_entity = info;
4092 suffix = strstr (info, "___XE");
4093 if (suffix == NULL || suffix == info)
4094 return ADA_NOT_RENAMING;
4095 if (len != NULL)
4096 *len = strlen (info) - strlen (suffix);
4097 suffix += 5;
4098 if (renaming_expr != NULL)
4099 *renaming_expr = suffix;
4100 return kind;
4101 }
4102
4103 /* Assuming TYPE encodes a renaming according to the old encoding in
4104 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4105 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4106 ADA_NOT_RENAMING otherwise. */
4107 static enum ada_renaming_category
4108 parse_old_style_renaming (struct type *type,
4109 const char **renamed_entity, int *len,
4110 const char **renaming_expr)
4111 {
4112 enum ada_renaming_category kind;
4113 const char *name;
4114 const char *info;
4115 const char *suffix;
4116
4117 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4118 || TYPE_NFIELDS (type) != 1)
4119 return ADA_NOT_RENAMING;
4120
4121 name = type_name_no_tag (type);
4122 if (name == NULL)
4123 return ADA_NOT_RENAMING;
4124
4125 name = strstr (name, "___XR");
4126 if (name == NULL)
4127 return ADA_NOT_RENAMING;
4128 switch (name[5])
4129 {
4130 case '\0':
4131 case '_':
4132 kind = ADA_OBJECT_RENAMING;
4133 break;
4134 case 'E':
4135 kind = ADA_EXCEPTION_RENAMING;
4136 break;
4137 case 'P':
4138 kind = ADA_PACKAGE_RENAMING;
4139 break;
4140 case 'S':
4141 kind = ADA_SUBPROGRAM_RENAMING;
4142 break;
4143 default:
4144 return ADA_NOT_RENAMING;
4145 }
4146
4147 info = TYPE_FIELD_NAME (type, 0);
4148 if (info == NULL)
4149 return ADA_NOT_RENAMING;
4150 if (renamed_entity != NULL)
4151 *renamed_entity = info;
4152 suffix = strstr (info, "___XE");
4153 if (renaming_expr != NULL)
4154 *renaming_expr = suffix + 5;
4155 if (suffix == NULL || suffix == info)
4156 return ADA_NOT_RENAMING;
4157 if (len != NULL)
4158 *len = suffix - info;
4159 return kind;
4160 }
4161
4162 /* Compute the value of the given RENAMING_SYM, which is expected to
4163 be a symbol encoding a renaming expression. BLOCK is the block
4164 used to evaluate the renaming. */
4165
4166 static struct value *
4167 ada_read_renaming_var_value (struct symbol *renaming_sym,
4168 const struct block *block)
4169 {
4170 const char *sym_name;
4171 struct expression *expr;
4172 struct value *value;
4173 struct cleanup *old_chain = NULL;
4174
4175 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4176 expr = parse_exp_1 (&sym_name, 0, block, 0);
4177 old_chain = make_cleanup (free_current_contents, &expr);
4178 value = evaluate_expression (expr);
4179
4180 do_cleanups (old_chain);
4181 return value;
4182 }
4183 \f
4184
4185 /* Evaluation: Function Calls */
4186
4187 /* Return an lvalue containing the value VAL. This is the identity on
4188 lvalues, and otherwise has the side-effect of allocating memory
4189 in the inferior where a copy of the value contents is copied. */
4190
4191 static struct value *
4192 ensure_lval (struct value *val)
4193 {
4194 if (VALUE_LVAL (val) == not_lval
4195 || VALUE_LVAL (val) == lval_internalvar)
4196 {
4197 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4198 const CORE_ADDR addr =
4199 value_as_long (value_allocate_space_in_inferior (len));
4200
4201 set_value_address (val, addr);
4202 VALUE_LVAL (val) = lval_memory;
4203 write_memory (addr, value_contents (val), len);
4204 }
4205
4206 return val;
4207 }
4208
4209 /* Return the value ACTUAL, converted to be an appropriate value for a
4210 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4211 allocating any necessary descriptors (fat pointers), or copies of
4212 values not residing in memory, updating it as needed. */
4213
4214 struct value *
4215 ada_convert_actual (struct value *actual, struct type *formal_type0)
4216 {
4217 struct type *actual_type = ada_check_typedef (value_type (actual));
4218 struct type *formal_type = ada_check_typedef (formal_type0);
4219 struct type *formal_target =
4220 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4221 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4222 struct type *actual_target =
4223 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4224 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4225
4226 if (ada_is_array_descriptor_type (formal_target)
4227 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4228 return make_array_descriptor (formal_type, actual);
4229 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4230 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4231 {
4232 struct value *result;
4233
4234 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4235 && ada_is_array_descriptor_type (actual_target))
4236 result = desc_data (actual);
4237 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4238 {
4239 if (VALUE_LVAL (actual) != lval_memory)
4240 {
4241 struct value *val;
4242
4243 actual_type = ada_check_typedef (value_type (actual));
4244 val = allocate_value (actual_type);
4245 memcpy ((char *) value_contents_raw (val),
4246 (char *) value_contents (actual),
4247 TYPE_LENGTH (actual_type));
4248 actual = ensure_lval (val);
4249 }
4250 result = value_addr (actual);
4251 }
4252 else
4253 return actual;
4254 return value_cast_pointers (formal_type, result, 0);
4255 }
4256 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4257 return ada_value_ind (actual);
4258
4259 return actual;
4260 }
4261
4262 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4263 type TYPE. This is usually an inefficient no-op except on some targets
4264 (such as AVR) where the representation of a pointer and an address
4265 differs. */
4266
4267 static CORE_ADDR
4268 value_pointer (struct value *value, struct type *type)
4269 {
4270 struct gdbarch *gdbarch = get_type_arch (type);
4271 unsigned len = TYPE_LENGTH (type);
4272 gdb_byte *buf = alloca (len);
4273 CORE_ADDR addr;
4274
4275 addr = value_address (value);
4276 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4277 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4278 return addr;
4279 }
4280
4281
4282 /* Push a descriptor of type TYPE for array value ARR on the stack at
4283 *SP, updating *SP to reflect the new descriptor. Return either
4284 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4285 to-descriptor type rather than a descriptor type), a struct value *
4286 representing a pointer to this descriptor. */
4287
4288 static struct value *
4289 make_array_descriptor (struct type *type, struct value *arr)
4290 {
4291 struct type *bounds_type = desc_bounds_type (type);
4292 struct type *desc_type = desc_base_type (type);
4293 struct value *descriptor = allocate_value (desc_type);
4294 struct value *bounds = allocate_value (bounds_type);
4295 int i;
4296
4297 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4298 i > 0; i -= 1)
4299 {
4300 modify_field (value_type (bounds), value_contents_writeable (bounds),
4301 ada_array_bound (arr, i, 0),
4302 desc_bound_bitpos (bounds_type, i, 0),
4303 desc_bound_bitsize (bounds_type, i, 0));
4304 modify_field (value_type (bounds), value_contents_writeable (bounds),
4305 ada_array_bound (arr, i, 1),
4306 desc_bound_bitpos (bounds_type, i, 1),
4307 desc_bound_bitsize (bounds_type, i, 1));
4308 }
4309
4310 bounds = ensure_lval (bounds);
4311
4312 modify_field (value_type (descriptor),
4313 value_contents_writeable (descriptor),
4314 value_pointer (ensure_lval (arr),
4315 TYPE_FIELD_TYPE (desc_type, 0)),
4316 fat_pntr_data_bitpos (desc_type),
4317 fat_pntr_data_bitsize (desc_type));
4318
4319 modify_field (value_type (descriptor),
4320 value_contents_writeable (descriptor),
4321 value_pointer (bounds,
4322 TYPE_FIELD_TYPE (desc_type, 1)),
4323 fat_pntr_bounds_bitpos (desc_type),
4324 fat_pntr_bounds_bitsize (desc_type));
4325
4326 descriptor = ensure_lval (descriptor);
4327
4328 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4329 return value_addr (descriptor);
4330 else
4331 return descriptor;
4332 }
4333 \f
4334 /* Symbol Cache Module */
4335
4336 /* Performance measurements made as of 2010-01-15 indicate that
4337 this cache does bring some noticeable improvements. Depending
4338 on the type of entity being printed, the cache can make it as much
4339 as an order of magnitude faster than without it.
4340
4341 The descriptive type DWARF extension has significantly reduced
4342 the need for this cache, at least when DWARF is being used. However,
4343 even in this case, some expensive name-based symbol searches are still
4344 sometimes necessary - to find an XVZ variable, mostly. */
4345
4346 /* Initialize the contents of SYM_CACHE. */
4347
4348 static void
4349 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4350 {
4351 obstack_init (&sym_cache->cache_space);
4352 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4353 }
4354
4355 /* Free the memory used by SYM_CACHE. */
4356
4357 static void
4358 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4359 {
4360 obstack_free (&sym_cache->cache_space, NULL);
4361 xfree (sym_cache);
4362 }
4363
4364 /* Return the symbol cache associated to the given program space PSPACE.
4365 If not allocated for this PSPACE yet, allocate and initialize one. */
4366
4367 static struct ada_symbol_cache *
4368 ada_get_symbol_cache (struct program_space *pspace)
4369 {
4370 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4371 struct ada_symbol_cache *sym_cache = pspace_data->sym_cache;
4372
4373 if (sym_cache == NULL)
4374 {
4375 sym_cache = XCNEW (struct ada_symbol_cache);
4376 ada_init_symbol_cache (sym_cache);
4377 }
4378
4379 return sym_cache;
4380 }
4381
4382 /* Clear all entries from the symbol cache. */
4383
4384 static void
4385 ada_clear_symbol_cache (void)
4386 {
4387 struct ada_symbol_cache *sym_cache
4388 = ada_get_symbol_cache (current_program_space);
4389
4390 obstack_free (&sym_cache->cache_space, NULL);
4391 ada_init_symbol_cache (sym_cache);
4392 }
4393
4394 /* Search our cache for an entry matching NAME and NAMESPACE.
4395 Return it if found, or NULL otherwise. */
4396
4397 static struct cache_entry **
4398 find_entry (const char *name, domain_enum namespace)
4399 {
4400 struct ada_symbol_cache *sym_cache
4401 = ada_get_symbol_cache (current_program_space);
4402 int h = msymbol_hash (name) % HASH_SIZE;
4403 struct cache_entry **e;
4404
4405 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4406 {
4407 if (namespace == (*e)->namespace && strcmp (name, (*e)->name) == 0)
4408 return e;
4409 }
4410 return NULL;
4411 }
4412
4413 /* Search the symbol cache for an entry matching NAME and NAMESPACE.
4414 Return 1 if found, 0 otherwise.
4415
4416 If an entry was found and SYM is not NULL, set *SYM to the entry's
4417 SYM. Same principle for BLOCK if not NULL. */
4418
4419 static int
4420 lookup_cached_symbol (const char *name, domain_enum namespace,
4421 struct symbol **sym, const struct block **block)
4422 {
4423 struct cache_entry **e = find_entry (name, namespace);
4424
4425 if (e == NULL)
4426 return 0;
4427 if (sym != NULL)
4428 *sym = (*e)->sym;
4429 if (block != NULL)
4430 *block = (*e)->block;
4431 return 1;
4432 }
4433
4434 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4435 in domain NAMESPACE, save this result in our symbol cache. */
4436
4437 static void
4438 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
4439 const struct block *block)
4440 {
4441 struct ada_symbol_cache *sym_cache
4442 = ada_get_symbol_cache (current_program_space);
4443 int h;
4444 char *copy;
4445 struct cache_entry *e;
4446
4447 /* If the symbol is a local symbol, then do not cache it, as a search
4448 for that symbol depends on the context. To determine whether
4449 the symbol is local or not, we check the block where we found it
4450 against the global and static blocks of its associated symtab. */
4451 if (sym
4452 && BLOCKVECTOR_BLOCK (BLOCKVECTOR (sym->symtab), GLOBAL_BLOCK) != block
4453 && BLOCKVECTOR_BLOCK (BLOCKVECTOR (sym->symtab), STATIC_BLOCK) != block)
4454 return;
4455
4456 h = msymbol_hash (name) % HASH_SIZE;
4457 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4458 sizeof (*e));
4459 e->next = sym_cache->root[h];
4460 sym_cache->root[h] = e;
4461 e->name = copy = obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4462 strcpy (copy, name);
4463 e->sym = sym;
4464 e->namespace = namespace;
4465 e->block = block;
4466 }
4467 \f
4468 /* Symbol Lookup */
4469
4470 /* Return nonzero if wild matching should be used when searching for
4471 all symbols matching LOOKUP_NAME.
4472
4473 LOOKUP_NAME is expected to be a symbol name after transformation
4474 for Ada lookups (see ada_name_for_lookup). */
4475
4476 static int
4477 should_use_wild_match (const char *lookup_name)
4478 {
4479 return (strstr (lookup_name, "__") == NULL);
4480 }
4481
4482 /* Return the result of a standard (literal, C-like) lookup of NAME in
4483 given DOMAIN, visible from lexical block BLOCK. */
4484
4485 static struct symbol *
4486 standard_lookup (const char *name, const struct block *block,
4487 domain_enum domain)
4488 {
4489 /* Initialize it just to avoid a GCC false warning. */
4490 struct symbol *sym = NULL;
4491
4492 if (lookup_cached_symbol (name, domain, &sym, NULL))
4493 return sym;
4494 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4495 cache_symbol (name, domain, sym, block_found);
4496 return sym;
4497 }
4498
4499
4500 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4501 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4502 since they contend in overloading in the same way. */
4503 static int
4504 is_nonfunction (struct ada_symbol_info syms[], int n)
4505 {
4506 int i;
4507
4508 for (i = 0; i < n; i += 1)
4509 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4510 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4511 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4512 return 1;
4513
4514 return 0;
4515 }
4516
4517 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4518 struct types. Otherwise, they may not. */
4519
4520 static int
4521 equiv_types (struct type *type0, struct type *type1)
4522 {
4523 if (type0 == type1)
4524 return 1;
4525 if (type0 == NULL || type1 == NULL
4526 || TYPE_CODE (type0) != TYPE_CODE (type1))
4527 return 0;
4528 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4529 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4530 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4531 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4532 return 1;
4533
4534 return 0;
4535 }
4536
4537 /* True iff SYM0 represents the same entity as SYM1, or one that is
4538 no more defined than that of SYM1. */
4539
4540 static int
4541 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4542 {
4543 if (sym0 == sym1)
4544 return 1;
4545 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4546 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4547 return 0;
4548
4549 switch (SYMBOL_CLASS (sym0))
4550 {
4551 case LOC_UNDEF:
4552 return 1;
4553 case LOC_TYPEDEF:
4554 {
4555 struct type *type0 = SYMBOL_TYPE (sym0);
4556 struct type *type1 = SYMBOL_TYPE (sym1);
4557 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4558 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4559 int len0 = strlen (name0);
4560
4561 return
4562 TYPE_CODE (type0) == TYPE_CODE (type1)
4563 && (equiv_types (type0, type1)
4564 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4565 && strncmp (name1 + len0, "___XV", 5) == 0));
4566 }
4567 case LOC_CONST:
4568 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4569 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4570 default:
4571 return 0;
4572 }
4573 }
4574
4575 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4576 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4577
4578 static void
4579 add_defn_to_vec (struct obstack *obstackp,
4580 struct symbol *sym,
4581 const struct block *block)
4582 {
4583 int i;
4584 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4585
4586 /* Do not try to complete stub types, as the debugger is probably
4587 already scanning all symbols matching a certain name at the
4588 time when this function is called. Trying to replace the stub
4589 type by its associated full type will cause us to restart a scan
4590 which may lead to an infinite recursion. Instead, the client
4591 collecting the matching symbols will end up collecting several
4592 matches, with at least one of them complete. It can then filter
4593 out the stub ones if needed. */
4594
4595 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4596 {
4597 if (lesseq_defined_than (sym, prevDefns[i].sym))
4598 return;
4599 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4600 {
4601 prevDefns[i].sym = sym;
4602 prevDefns[i].block = block;
4603 return;
4604 }
4605 }
4606
4607 {
4608 struct ada_symbol_info info;
4609
4610 info.sym = sym;
4611 info.block = block;
4612 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4613 }
4614 }
4615
4616 /* Number of ada_symbol_info structures currently collected in
4617 current vector in *OBSTACKP. */
4618
4619 static int
4620 num_defns_collected (struct obstack *obstackp)
4621 {
4622 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4623 }
4624
4625 /* Vector of ada_symbol_info structures currently collected in current
4626 vector in *OBSTACKP. If FINISH, close off the vector and return
4627 its final address. */
4628
4629 static struct ada_symbol_info *
4630 defns_collected (struct obstack *obstackp, int finish)
4631 {
4632 if (finish)
4633 return obstack_finish (obstackp);
4634 else
4635 return (struct ada_symbol_info *) obstack_base (obstackp);
4636 }
4637
4638 /* Return a bound minimal symbol matching NAME according to Ada
4639 decoding rules. Returns an invalid symbol if there is no such
4640 minimal symbol. Names prefixed with "standard__" are handled
4641 specially: "standard__" is first stripped off, and only static and
4642 global symbols are searched. */
4643
4644 struct bound_minimal_symbol
4645 ada_lookup_simple_minsym (const char *name)
4646 {
4647 struct bound_minimal_symbol result;
4648 struct objfile *objfile;
4649 struct minimal_symbol *msymbol;
4650 const int wild_match_p = should_use_wild_match (name);
4651
4652 memset (&result, 0, sizeof (result));
4653
4654 /* Special case: If the user specifies a symbol name inside package
4655 Standard, do a non-wild matching of the symbol name without
4656 the "standard__" prefix. This was primarily introduced in order
4657 to allow the user to specifically access the standard exceptions
4658 using, for instance, Standard.Constraint_Error when Constraint_Error
4659 is ambiguous (due to the user defining its own Constraint_Error
4660 entity inside its program). */
4661 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4662 name += sizeof ("standard__") - 1;
4663
4664 ALL_MSYMBOLS (objfile, msymbol)
4665 {
4666 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
4667 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4668 {
4669 result.minsym = msymbol;
4670 result.objfile = objfile;
4671 break;
4672 }
4673 }
4674
4675 return result;
4676 }
4677
4678 /* For all subprograms that statically enclose the subprogram of the
4679 selected frame, add symbols matching identifier NAME in DOMAIN
4680 and their blocks to the list of data in OBSTACKP, as for
4681 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4682 with a wildcard prefix. */
4683
4684 static void
4685 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4686 const char *name, domain_enum namespace,
4687 int wild_match_p)
4688 {
4689 }
4690
4691 /* True if TYPE is definitely an artificial type supplied to a symbol
4692 for which no debugging information was given in the symbol file. */
4693
4694 static int
4695 is_nondebugging_type (struct type *type)
4696 {
4697 const char *name = ada_type_name (type);
4698
4699 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4700 }
4701
4702 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4703 that are deemed "identical" for practical purposes.
4704
4705 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4706 types and that their number of enumerals is identical (in other
4707 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4708
4709 static int
4710 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4711 {
4712 int i;
4713
4714 /* The heuristic we use here is fairly conservative. We consider
4715 that 2 enumerate types are identical if they have the same
4716 number of enumerals and that all enumerals have the same
4717 underlying value and name. */
4718
4719 /* All enums in the type should have an identical underlying value. */
4720 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4721 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4722 return 0;
4723
4724 /* All enumerals should also have the same name (modulo any numerical
4725 suffix). */
4726 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4727 {
4728 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4729 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4730 int len_1 = strlen (name_1);
4731 int len_2 = strlen (name_2);
4732
4733 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4734 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4735 if (len_1 != len_2
4736 || strncmp (TYPE_FIELD_NAME (type1, i),
4737 TYPE_FIELD_NAME (type2, i),
4738 len_1) != 0)
4739 return 0;
4740 }
4741
4742 return 1;
4743 }
4744
4745 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4746 that are deemed "identical" for practical purposes. Sometimes,
4747 enumerals are not strictly identical, but their types are so similar
4748 that they can be considered identical.
4749
4750 For instance, consider the following code:
4751
4752 type Color is (Black, Red, Green, Blue, White);
4753 type RGB_Color is new Color range Red .. Blue;
4754
4755 Type RGB_Color is a subrange of an implicit type which is a copy
4756 of type Color. If we call that implicit type RGB_ColorB ("B" is
4757 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4758 As a result, when an expression references any of the enumeral
4759 by name (Eg. "print green"), the expression is technically
4760 ambiguous and the user should be asked to disambiguate. But
4761 doing so would only hinder the user, since it wouldn't matter
4762 what choice he makes, the outcome would always be the same.
4763 So, for practical purposes, we consider them as the same. */
4764
4765 static int
4766 symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4767 {
4768 int i;
4769
4770 /* Before performing a thorough comparison check of each type,
4771 we perform a series of inexpensive checks. We expect that these
4772 checks will quickly fail in the vast majority of cases, and thus
4773 help prevent the unnecessary use of a more expensive comparison.
4774 Said comparison also expects us to make some of these checks
4775 (see ada_identical_enum_types_p). */
4776
4777 /* Quick check: All symbols should have an enum type. */
4778 for (i = 0; i < nsyms; i++)
4779 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4780 return 0;
4781
4782 /* Quick check: They should all have the same value. */
4783 for (i = 1; i < nsyms; i++)
4784 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4785 return 0;
4786
4787 /* Quick check: They should all have the same number of enumerals. */
4788 for (i = 1; i < nsyms; i++)
4789 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4790 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4791 return 0;
4792
4793 /* All the sanity checks passed, so we might have a set of
4794 identical enumeration types. Perform a more complete
4795 comparison of the type of each symbol. */
4796 for (i = 1; i < nsyms; i++)
4797 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4798 SYMBOL_TYPE (syms[0].sym)))
4799 return 0;
4800
4801 return 1;
4802 }
4803
4804 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4805 duplicate other symbols in the list (The only case I know of where
4806 this happens is when object files containing stabs-in-ecoff are
4807 linked with files containing ordinary ecoff debugging symbols (or no
4808 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4809 Returns the number of items in the modified list. */
4810
4811 static int
4812 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4813 {
4814 int i, j;
4815
4816 /* We should never be called with less than 2 symbols, as there
4817 cannot be any extra symbol in that case. But it's easy to
4818 handle, since we have nothing to do in that case. */
4819 if (nsyms < 2)
4820 return nsyms;
4821
4822 i = 0;
4823 while (i < nsyms)
4824 {
4825 int remove_p = 0;
4826
4827 /* If two symbols have the same name and one of them is a stub type,
4828 the get rid of the stub. */
4829
4830 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4831 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4832 {
4833 for (j = 0; j < nsyms; j++)
4834 {
4835 if (j != i
4836 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4837 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4838 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4839 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4840 remove_p = 1;
4841 }
4842 }
4843
4844 /* Two symbols with the same name, same class and same address
4845 should be identical. */
4846
4847 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4848 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4849 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4850 {
4851 for (j = 0; j < nsyms; j += 1)
4852 {
4853 if (i != j
4854 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4855 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4856 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4857 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4858 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4859 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4860 remove_p = 1;
4861 }
4862 }
4863
4864 if (remove_p)
4865 {
4866 for (j = i + 1; j < nsyms; j += 1)
4867 syms[j - 1] = syms[j];
4868 nsyms -= 1;
4869 }
4870
4871 i += 1;
4872 }
4873
4874 /* If all the remaining symbols are identical enumerals, then
4875 just keep the first one and discard the rest.
4876
4877 Unlike what we did previously, we do not discard any entry
4878 unless they are ALL identical. This is because the symbol
4879 comparison is not a strict comparison, but rather a practical
4880 comparison. If all symbols are considered identical, then
4881 we can just go ahead and use the first one and discard the rest.
4882 But if we cannot reduce the list to a single element, we have
4883 to ask the user to disambiguate anyways. And if we have to
4884 present a multiple-choice menu, it's less confusing if the list
4885 isn't missing some choices that were identical and yet distinct. */
4886 if (symbols_are_identical_enums (syms, nsyms))
4887 nsyms = 1;
4888
4889 return nsyms;
4890 }
4891
4892 /* Given a type that corresponds to a renaming entity, use the type name
4893 to extract the scope (package name or function name, fully qualified,
4894 and following the GNAT encoding convention) where this renaming has been
4895 defined. The string returned needs to be deallocated after use. */
4896
4897 static char *
4898 xget_renaming_scope (struct type *renaming_type)
4899 {
4900 /* The renaming types adhere to the following convention:
4901 <scope>__<rename>___<XR extension>.
4902 So, to extract the scope, we search for the "___XR" extension,
4903 and then backtrack until we find the first "__". */
4904
4905 const char *name = type_name_no_tag (renaming_type);
4906 char *suffix = strstr (name, "___XR");
4907 char *last;
4908 int scope_len;
4909 char *scope;
4910
4911 /* Now, backtrack a bit until we find the first "__". Start looking
4912 at suffix - 3, as the <rename> part is at least one character long. */
4913
4914 for (last = suffix - 3; last > name; last--)
4915 if (last[0] == '_' && last[1] == '_')
4916 break;
4917
4918 /* Make a copy of scope and return it. */
4919
4920 scope_len = last - name;
4921 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4922
4923 strncpy (scope, name, scope_len);
4924 scope[scope_len] = '\0';
4925
4926 return scope;
4927 }
4928
4929 /* Return nonzero if NAME corresponds to a package name. */
4930
4931 static int
4932 is_package_name (const char *name)
4933 {
4934 /* Here, We take advantage of the fact that no symbols are generated
4935 for packages, while symbols are generated for each function.
4936 So the condition for NAME represent a package becomes equivalent
4937 to NAME not existing in our list of symbols. There is only one
4938 small complication with library-level functions (see below). */
4939
4940 char *fun_name;
4941
4942 /* If it is a function that has not been defined at library level,
4943 then we should be able to look it up in the symbols. */
4944 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4945 return 0;
4946
4947 /* Library-level function names start with "_ada_". See if function
4948 "_ada_" followed by NAME can be found. */
4949
4950 /* Do a quick check that NAME does not contain "__", since library-level
4951 functions names cannot contain "__" in them. */
4952 if (strstr (name, "__") != NULL)
4953 return 0;
4954
4955 fun_name = xstrprintf ("_ada_%s", name);
4956
4957 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4958 }
4959
4960 /* Return nonzero if SYM corresponds to a renaming entity that is
4961 not visible from FUNCTION_NAME. */
4962
4963 static int
4964 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
4965 {
4966 char *scope;
4967 struct cleanup *old_chain;
4968
4969 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4970 return 0;
4971
4972 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4973 old_chain = make_cleanup (xfree, scope);
4974
4975 /* If the rename has been defined in a package, then it is visible. */
4976 if (is_package_name (scope))
4977 {
4978 do_cleanups (old_chain);
4979 return 0;
4980 }
4981
4982 /* Check that the rename is in the current function scope by checking
4983 that its name starts with SCOPE. */
4984
4985 /* If the function name starts with "_ada_", it means that it is
4986 a library-level function. Strip this prefix before doing the
4987 comparison, as the encoding for the renaming does not contain
4988 this prefix. */
4989 if (strncmp (function_name, "_ada_", 5) == 0)
4990 function_name += 5;
4991
4992 {
4993 int is_invisible = strncmp (function_name, scope, strlen (scope)) != 0;
4994
4995 do_cleanups (old_chain);
4996 return is_invisible;
4997 }
4998 }
4999
5000 /* Remove entries from SYMS that corresponds to a renaming entity that
5001 is not visible from the function associated with CURRENT_BLOCK or
5002 that is superfluous due to the presence of more specific renaming
5003 information. Places surviving symbols in the initial entries of
5004 SYMS and returns the number of surviving symbols.
5005
5006 Rationale:
5007 First, in cases where an object renaming is implemented as a
5008 reference variable, GNAT may produce both the actual reference
5009 variable and the renaming encoding. In this case, we discard the
5010 latter.
5011
5012 Second, GNAT emits a type following a specified encoding for each renaming
5013 entity. Unfortunately, STABS currently does not support the definition
5014 of types that are local to a given lexical block, so all renamings types
5015 are emitted at library level. As a consequence, if an application
5016 contains two renaming entities using the same name, and a user tries to
5017 print the value of one of these entities, the result of the ada symbol
5018 lookup will also contain the wrong renaming type.
5019
5020 This function partially covers for this limitation by attempting to
5021 remove from the SYMS list renaming symbols that should be visible
5022 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5023 method with the current information available. The implementation
5024 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5025
5026 - When the user tries to print a rename in a function while there
5027 is another rename entity defined in a package: Normally, the
5028 rename in the function has precedence over the rename in the
5029 package, so the latter should be removed from the list. This is
5030 currently not the case.
5031
5032 - This function will incorrectly remove valid renames if
5033 the CURRENT_BLOCK corresponds to a function which symbol name
5034 has been changed by an "Export" pragma. As a consequence,
5035 the user will be unable to print such rename entities. */
5036
5037 static int
5038 remove_irrelevant_renamings (struct ada_symbol_info *syms,
5039 int nsyms, const struct block *current_block)
5040 {
5041 struct symbol *current_function;
5042 const char *current_function_name;
5043 int i;
5044 int is_new_style_renaming;
5045
5046 /* If there is both a renaming foo___XR... encoded as a variable and
5047 a simple variable foo in the same block, discard the latter.
5048 First, zero out such symbols, then compress. */
5049 is_new_style_renaming = 0;
5050 for (i = 0; i < nsyms; i += 1)
5051 {
5052 struct symbol *sym = syms[i].sym;
5053 const struct block *block = syms[i].block;
5054 const char *name;
5055 const char *suffix;
5056
5057 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5058 continue;
5059 name = SYMBOL_LINKAGE_NAME (sym);
5060 suffix = strstr (name, "___XR");
5061
5062 if (suffix != NULL)
5063 {
5064 int name_len = suffix - name;
5065 int j;
5066
5067 is_new_style_renaming = 1;
5068 for (j = 0; j < nsyms; j += 1)
5069 if (i != j && syms[j].sym != NULL
5070 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
5071 name_len) == 0
5072 && block == syms[j].block)
5073 syms[j].sym = NULL;
5074 }
5075 }
5076 if (is_new_style_renaming)
5077 {
5078 int j, k;
5079
5080 for (j = k = 0; j < nsyms; j += 1)
5081 if (syms[j].sym != NULL)
5082 {
5083 syms[k] = syms[j];
5084 k += 1;
5085 }
5086 return k;
5087 }
5088
5089 /* Extract the function name associated to CURRENT_BLOCK.
5090 Abort if unable to do so. */
5091
5092 if (current_block == NULL)
5093 return nsyms;
5094
5095 current_function = block_linkage_function (current_block);
5096 if (current_function == NULL)
5097 return nsyms;
5098
5099 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5100 if (current_function_name == NULL)
5101 return nsyms;
5102
5103 /* Check each of the symbols, and remove it from the list if it is
5104 a type corresponding to a renaming that is out of the scope of
5105 the current block. */
5106
5107 i = 0;
5108 while (i < nsyms)
5109 {
5110 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
5111 == ADA_OBJECT_RENAMING
5112 && old_renaming_is_invisible (syms[i].sym, current_function_name))
5113 {
5114 int j;
5115
5116 for (j = i + 1; j < nsyms; j += 1)
5117 syms[j - 1] = syms[j];
5118 nsyms -= 1;
5119 }
5120 else
5121 i += 1;
5122 }
5123
5124 return nsyms;
5125 }
5126
5127 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5128 whose name and domain match NAME and DOMAIN respectively.
5129 If no match was found, then extend the search to "enclosing"
5130 routines (in other words, if we're inside a nested function,
5131 search the symbols defined inside the enclosing functions).
5132 If WILD_MATCH_P is nonzero, perform the naming matching in
5133 "wild" mode (see function "wild_match" for more info).
5134
5135 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5136
5137 static void
5138 ada_add_local_symbols (struct obstack *obstackp, const char *name,
5139 const struct block *block, domain_enum domain,
5140 int wild_match_p)
5141 {
5142 int block_depth = 0;
5143
5144 while (block != NULL)
5145 {
5146 block_depth += 1;
5147 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5148 wild_match_p);
5149
5150 /* If we found a non-function match, assume that's the one. */
5151 if (is_nonfunction (defns_collected (obstackp, 0),
5152 num_defns_collected (obstackp)))
5153 return;
5154
5155 block = BLOCK_SUPERBLOCK (block);
5156 }
5157
5158 /* If no luck so far, try to find NAME as a local symbol in some lexically
5159 enclosing subprogram. */
5160 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5161 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
5162 }
5163
5164 /* An object of this type is used as the user_data argument when
5165 calling the map_matching_symbols method. */
5166
5167 struct match_data
5168 {
5169 struct objfile *objfile;
5170 struct obstack *obstackp;
5171 struct symbol *arg_sym;
5172 int found_sym;
5173 };
5174
5175 /* A callback for add_matching_symbols that adds SYM, found in BLOCK,
5176 to a list of symbols. DATA0 is a pointer to a struct match_data *
5177 containing the obstack that collects the symbol list, the file that SYM
5178 must come from, a flag indicating whether a non-argument symbol has
5179 been found in the current block, and the last argument symbol
5180 passed in SYM within the current block (if any). When SYM is null,
5181 marking the end of a block, the argument symbol is added if no
5182 other has been found. */
5183
5184 static int
5185 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
5186 {
5187 struct match_data *data = (struct match_data *) data0;
5188
5189 if (sym == NULL)
5190 {
5191 if (!data->found_sym && data->arg_sym != NULL)
5192 add_defn_to_vec (data->obstackp,
5193 fixup_symbol_section (data->arg_sym, data->objfile),
5194 block);
5195 data->found_sym = 0;
5196 data->arg_sym = NULL;
5197 }
5198 else
5199 {
5200 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5201 return 0;
5202 else if (SYMBOL_IS_ARGUMENT (sym))
5203 data->arg_sym = sym;
5204 else
5205 {
5206 data->found_sym = 1;
5207 add_defn_to_vec (data->obstackp,
5208 fixup_symbol_section (sym, data->objfile),
5209 block);
5210 }
5211 }
5212 return 0;
5213 }
5214
5215 /* Implements compare_names, but only applying the comparision using
5216 the given CASING. */
5217
5218 static int
5219 compare_names_with_case (const char *string1, const char *string2,
5220 enum case_sensitivity casing)
5221 {
5222 while (*string1 != '\0' && *string2 != '\0')
5223 {
5224 char c1, c2;
5225
5226 if (isspace (*string1) || isspace (*string2))
5227 return strcmp_iw_ordered (string1, string2);
5228
5229 if (casing == case_sensitive_off)
5230 {
5231 c1 = tolower (*string1);
5232 c2 = tolower (*string2);
5233 }
5234 else
5235 {
5236 c1 = *string1;
5237 c2 = *string2;
5238 }
5239 if (c1 != c2)
5240 break;
5241
5242 string1 += 1;
5243 string2 += 1;
5244 }
5245
5246 switch (*string1)
5247 {
5248 case '(':
5249 return strcmp_iw_ordered (string1, string2);
5250 case '_':
5251 if (*string2 == '\0')
5252 {
5253 if (is_name_suffix (string1))
5254 return 0;
5255 else
5256 return 1;
5257 }
5258 /* FALLTHROUGH */
5259 default:
5260 if (*string2 == '(')
5261 return strcmp_iw_ordered (string1, string2);
5262 else
5263 {
5264 if (casing == case_sensitive_off)
5265 return tolower (*string1) - tolower (*string2);
5266 else
5267 return *string1 - *string2;
5268 }
5269 }
5270 }
5271
5272 /* Compare STRING1 to STRING2, with results as for strcmp.
5273 Compatible with strcmp_iw_ordered in that...
5274
5275 strcmp_iw_ordered (STRING1, STRING2) <= 0
5276
5277 ... implies...
5278
5279 compare_names (STRING1, STRING2) <= 0
5280
5281 (they may differ as to what symbols compare equal). */
5282
5283 static int
5284 compare_names (const char *string1, const char *string2)
5285 {
5286 int result;
5287
5288 /* Similar to what strcmp_iw_ordered does, we need to perform
5289 a case-insensitive comparison first, and only resort to
5290 a second, case-sensitive, comparison if the first one was
5291 not sufficient to differentiate the two strings. */
5292
5293 result = compare_names_with_case (string1, string2, case_sensitive_off);
5294 if (result == 0)
5295 result = compare_names_with_case (string1, string2, case_sensitive_on);
5296
5297 return result;
5298 }
5299
5300 /* Add to OBSTACKP all non-local symbols whose name and domain match
5301 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5302 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5303
5304 static void
5305 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5306 domain_enum domain, int global,
5307 int is_wild_match)
5308 {
5309 struct objfile *objfile;
5310 struct match_data data;
5311
5312 memset (&data, 0, sizeof data);
5313 data.obstackp = obstackp;
5314
5315 ALL_OBJFILES (objfile)
5316 {
5317 data.objfile = objfile;
5318
5319 if (is_wild_match)
5320 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5321 aux_add_nonlocal_symbols, &data,
5322 wild_match, NULL);
5323 else
5324 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5325 aux_add_nonlocal_symbols, &data,
5326 full_match, compare_names);
5327 }
5328
5329 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5330 {
5331 ALL_OBJFILES (objfile)
5332 {
5333 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
5334 strcpy (name1, "_ada_");
5335 strcpy (name1 + sizeof ("_ada_") - 1, name);
5336 data.objfile = objfile;
5337 objfile->sf->qf->map_matching_symbols (objfile, name1, domain,
5338 global,
5339 aux_add_nonlocal_symbols,
5340 &data,
5341 full_match, compare_names);
5342 }
5343 }
5344 }
5345
5346 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and, if full_search is
5347 non-zero, enclosing scope and in global scopes, returning the number of
5348 matches.
5349 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5350 indicating the symbols found and the blocks and symbol tables (if
5351 any) in which they were found. This vector is transient---good only to
5352 the next call of ada_lookup_symbol_list.
5353
5354 When full_search is non-zero, any non-function/non-enumeral
5355 symbol match within the nest of blocks whose innermost member is BLOCK0,
5356 is the one match returned (no other matches in that or
5357 enclosing blocks is returned). If there are any matches in or
5358 surrounding BLOCK0, then these alone are returned.
5359
5360 Names prefixed with "standard__" are handled specially: "standard__"
5361 is first stripped off, and only static and global symbols are searched. */
5362
5363 static int
5364 ada_lookup_symbol_list_worker (const char *name0, const struct block *block0,
5365 domain_enum namespace,
5366 struct ada_symbol_info **results,
5367 int full_search)
5368 {
5369 struct symbol *sym;
5370 const struct block *block;
5371 const char *name;
5372 const int wild_match_p = should_use_wild_match (name0);
5373 int cacheIfUnique;
5374 int ndefns;
5375
5376 obstack_free (&symbol_list_obstack, NULL);
5377 obstack_init (&symbol_list_obstack);
5378
5379 cacheIfUnique = 0;
5380
5381 /* Search specified block and its superiors. */
5382
5383 name = name0;
5384 block = block0;
5385
5386 /* Special case: If the user specifies a symbol name inside package
5387 Standard, do a non-wild matching of the symbol name without
5388 the "standard__" prefix. This was primarily introduced in order
5389 to allow the user to specifically access the standard exceptions
5390 using, for instance, Standard.Constraint_Error when Constraint_Error
5391 is ambiguous (due to the user defining its own Constraint_Error
5392 entity inside its program). */
5393 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
5394 {
5395 block = NULL;
5396 name = name0 + sizeof ("standard__") - 1;
5397 }
5398
5399 /* Check the non-global symbols. If we have ANY match, then we're done. */
5400
5401 if (block != NULL)
5402 {
5403 if (full_search)
5404 {
5405 ada_add_local_symbols (&symbol_list_obstack, name, block,
5406 namespace, wild_match_p);
5407 }
5408 else
5409 {
5410 /* In the !full_search case we're are being called by
5411 ada_iterate_over_symbols, and we don't want to search
5412 superblocks. */
5413 ada_add_block_symbols (&symbol_list_obstack, block, name,
5414 namespace, NULL, wild_match_p);
5415 }
5416 if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search)
5417 goto done;
5418 }
5419
5420 /* No non-global symbols found. Check our cache to see if we have
5421 already performed this search before. If we have, then return
5422 the same result. */
5423
5424 cacheIfUnique = 1;
5425 if (lookup_cached_symbol (name0, namespace, &sym, &block))
5426 {
5427 if (sym != NULL)
5428 add_defn_to_vec (&symbol_list_obstack, sym, block);
5429 goto done;
5430 }
5431
5432 /* Search symbols from all global blocks. */
5433
5434 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
5435 wild_match_p);
5436
5437 /* Now add symbols from all per-file blocks if we've gotten no hits
5438 (not strictly correct, but perhaps better than an error). */
5439
5440 if (num_defns_collected (&symbol_list_obstack) == 0)
5441 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
5442 wild_match_p);
5443
5444 done:
5445 ndefns = num_defns_collected (&symbol_list_obstack);
5446 *results = defns_collected (&symbol_list_obstack, 1);
5447
5448 ndefns = remove_extra_symbols (*results, ndefns);
5449
5450 if (ndefns == 0 && full_search)
5451 cache_symbol (name0, namespace, NULL, NULL);
5452
5453 if (ndefns == 1 && full_search && cacheIfUnique)
5454 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
5455
5456 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
5457
5458 return ndefns;
5459 }
5460
5461 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5462 in global scopes, returning the number of matches, and setting *RESULTS
5463 to a vector of (SYM,BLOCK) tuples.
5464 See ada_lookup_symbol_list_worker for further details. */
5465
5466 int
5467 ada_lookup_symbol_list (const char *name0, const struct block *block0,
5468 domain_enum domain, struct ada_symbol_info **results)
5469 {
5470 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5471 }
5472
5473 /* Implementation of the la_iterate_over_symbols method. */
5474
5475 static void
5476 ada_iterate_over_symbols (const struct block *block,
5477 const char *name, domain_enum domain,
5478 symbol_found_callback_ftype *callback,
5479 void *data)
5480 {
5481 int ndefs, i;
5482 struct ada_symbol_info *results;
5483
5484 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5485 for (i = 0; i < ndefs; ++i)
5486 {
5487 if (! (*callback) (results[i].sym, data))
5488 break;
5489 }
5490 }
5491
5492 /* If NAME is the name of an entity, return a string that should
5493 be used to look that entity up in Ada units. This string should
5494 be deallocated after use using xfree.
5495
5496 NAME can have any form that the "break" or "print" commands might
5497 recognize. In other words, it does not have to be the "natural"
5498 name, or the "encoded" name. */
5499
5500 char *
5501 ada_name_for_lookup (const char *name)
5502 {
5503 char *canon;
5504 int nlen = strlen (name);
5505
5506 if (name[0] == '<' && name[nlen - 1] == '>')
5507 {
5508 canon = xmalloc (nlen - 1);
5509 memcpy (canon, name + 1, nlen - 2);
5510 canon[nlen - 2] = '\0';
5511 }
5512 else
5513 canon = xstrdup (ada_encode (ada_fold_name (name)));
5514 return canon;
5515 }
5516
5517 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5518 to 1, but choosing the first symbol found if there are multiple
5519 choices.
5520
5521 The result is stored in *INFO, which must be non-NULL.
5522 If no match is found, INFO->SYM is set to NULL. */
5523
5524 void
5525 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5526 domain_enum namespace,
5527 struct ada_symbol_info *info)
5528 {
5529 struct ada_symbol_info *candidates;
5530 int n_candidates;
5531
5532 gdb_assert (info != NULL);
5533 memset (info, 0, sizeof (struct ada_symbol_info));
5534
5535 n_candidates = ada_lookup_symbol_list (name, block, namespace, &candidates);
5536 if (n_candidates == 0)
5537 return;
5538
5539 *info = candidates[0];
5540 info->sym = fixup_symbol_section (info->sym, NULL);
5541 }
5542
5543 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5544 scope and in global scopes, or NULL if none. NAME is folded and
5545 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5546 choosing the first symbol if there are multiple choices.
5547 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5548
5549 struct symbol *
5550 ada_lookup_symbol (const char *name, const struct block *block0,
5551 domain_enum namespace, int *is_a_field_of_this)
5552 {
5553 struct ada_symbol_info info;
5554
5555 if (is_a_field_of_this != NULL)
5556 *is_a_field_of_this = 0;
5557
5558 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5559 block0, namespace, &info);
5560 return info.sym;
5561 }
5562
5563 static struct symbol *
5564 ada_lookup_symbol_nonlocal (const char *name,
5565 const struct block *block,
5566 const domain_enum domain)
5567 {
5568 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5569 }
5570
5571
5572 /* True iff STR is a possible encoded suffix of a normal Ada name
5573 that is to be ignored for matching purposes. Suffixes of parallel
5574 names (e.g., XVE) are not included here. Currently, the possible suffixes
5575 are given by any of the regular expressions:
5576
5577 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5578 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5579 TKB [subprogram suffix for task bodies]
5580 _E[0-9]+[bs]$ [protected object entry suffixes]
5581 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5582
5583 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5584 match is performed. This sequence is used to differentiate homonyms,
5585 is an optional part of a valid name suffix. */
5586
5587 static int
5588 is_name_suffix (const char *str)
5589 {
5590 int k;
5591 const char *matching;
5592 const int len = strlen (str);
5593
5594 /* Skip optional leading __[0-9]+. */
5595
5596 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5597 {
5598 str += 3;
5599 while (isdigit (str[0]))
5600 str += 1;
5601 }
5602
5603 /* [.$][0-9]+ */
5604
5605 if (str[0] == '.' || str[0] == '$')
5606 {
5607 matching = str + 1;
5608 while (isdigit (matching[0]))
5609 matching += 1;
5610 if (matching[0] == '\0')
5611 return 1;
5612 }
5613
5614 /* ___[0-9]+ */
5615
5616 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5617 {
5618 matching = str + 3;
5619 while (isdigit (matching[0]))
5620 matching += 1;
5621 if (matching[0] == '\0')
5622 return 1;
5623 }
5624
5625 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5626
5627 if (strcmp (str, "TKB") == 0)
5628 return 1;
5629
5630 #if 0
5631 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5632 with a N at the end. Unfortunately, the compiler uses the same
5633 convention for other internal types it creates. So treating
5634 all entity names that end with an "N" as a name suffix causes
5635 some regressions. For instance, consider the case of an enumerated
5636 type. To support the 'Image attribute, it creates an array whose
5637 name ends with N.
5638 Having a single character like this as a suffix carrying some
5639 information is a bit risky. Perhaps we should change the encoding
5640 to be something like "_N" instead. In the meantime, do not do
5641 the following check. */
5642 /* Protected Object Subprograms */
5643 if (len == 1 && str [0] == 'N')
5644 return 1;
5645 #endif
5646
5647 /* _E[0-9]+[bs]$ */
5648 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5649 {
5650 matching = str + 3;
5651 while (isdigit (matching[0]))
5652 matching += 1;
5653 if ((matching[0] == 'b' || matching[0] == 's')
5654 && matching [1] == '\0')
5655 return 1;
5656 }
5657
5658 /* ??? We should not modify STR directly, as we are doing below. This
5659 is fine in this case, but may become problematic later if we find
5660 that this alternative did not work, and want to try matching
5661 another one from the begining of STR. Since we modified it, we
5662 won't be able to find the begining of the string anymore! */
5663 if (str[0] == 'X')
5664 {
5665 str += 1;
5666 while (str[0] != '_' && str[0] != '\0')
5667 {
5668 if (str[0] != 'n' && str[0] != 'b')
5669 return 0;
5670 str += 1;
5671 }
5672 }
5673
5674 if (str[0] == '\000')
5675 return 1;
5676
5677 if (str[0] == '_')
5678 {
5679 if (str[1] != '_' || str[2] == '\000')
5680 return 0;
5681 if (str[2] == '_')
5682 {
5683 if (strcmp (str + 3, "JM") == 0)
5684 return 1;
5685 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5686 the LJM suffix in favor of the JM one. But we will
5687 still accept LJM as a valid suffix for a reasonable
5688 amount of time, just to allow ourselves to debug programs
5689 compiled using an older version of GNAT. */
5690 if (strcmp (str + 3, "LJM") == 0)
5691 return 1;
5692 if (str[3] != 'X')
5693 return 0;
5694 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5695 || str[4] == 'U' || str[4] == 'P')
5696 return 1;
5697 if (str[4] == 'R' && str[5] != 'T')
5698 return 1;
5699 return 0;
5700 }
5701 if (!isdigit (str[2]))
5702 return 0;
5703 for (k = 3; str[k] != '\0'; k += 1)
5704 if (!isdigit (str[k]) && str[k] != '_')
5705 return 0;
5706 return 1;
5707 }
5708 if (str[0] == '$' && isdigit (str[1]))
5709 {
5710 for (k = 2; str[k] != '\0'; k += 1)
5711 if (!isdigit (str[k]) && str[k] != '_')
5712 return 0;
5713 return 1;
5714 }
5715 return 0;
5716 }
5717
5718 /* Return non-zero if the string starting at NAME and ending before
5719 NAME_END contains no capital letters. */
5720
5721 static int
5722 is_valid_name_for_wild_match (const char *name0)
5723 {
5724 const char *decoded_name = ada_decode (name0);
5725 int i;
5726
5727 /* If the decoded name starts with an angle bracket, it means that
5728 NAME0 does not follow the GNAT encoding format. It should then
5729 not be allowed as a possible wild match. */
5730 if (decoded_name[0] == '<')
5731 return 0;
5732
5733 for (i=0; decoded_name[i] != '\0'; i++)
5734 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5735 return 0;
5736
5737 return 1;
5738 }
5739
5740 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5741 that could start a simple name. Assumes that *NAMEP points into
5742 the string beginning at NAME0. */
5743
5744 static int
5745 advance_wild_match (const char **namep, const char *name0, int target0)
5746 {
5747 const char *name = *namep;
5748
5749 while (1)
5750 {
5751 int t0, t1;
5752
5753 t0 = *name;
5754 if (t0 == '_')
5755 {
5756 t1 = name[1];
5757 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5758 {
5759 name += 1;
5760 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5761 break;
5762 else
5763 name += 1;
5764 }
5765 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5766 || name[2] == target0))
5767 {
5768 name += 2;
5769 break;
5770 }
5771 else
5772 return 0;
5773 }
5774 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5775 name += 1;
5776 else
5777 return 0;
5778 }
5779
5780 *namep = name;
5781 return 1;
5782 }
5783
5784 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5785 informational suffixes of NAME (i.e., for which is_name_suffix is
5786 true). Assumes that PATN is a lower-cased Ada simple name. */
5787
5788 static int
5789 wild_match (const char *name, const char *patn)
5790 {
5791 const char *p;
5792 const char *name0 = name;
5793
5794 while (1)
5795 {
5796 const char *match = name;
5797
5798 if (*name == *patn)
5799 {
5800 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5801 if (*p != *name)
5802 break;
5803 if (*p == '\0' && is_name_suffix (name))
5804 return match != name0 && !is_valid_name_for_wild_match (name0);
5805
5806 if (name[-1] == '_')
5807 name -= 1;
5808 }
5809 if (!advance_wild_match (&name, name0, *patn))
5810 return 1;
5811 }
5812 }
5813
5814 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5815 informational suffix. */
5816
5817 static int
5818 full_match (const char *sym_name, const char *search_name)
5819 {
5820 return !match_name (sym_name, search_name, 0);
5821 }
5822
5823
5824 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5825 vector *defn_symbols, updating the list of symbols in OBSTACKP
5826 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5827 OBJFILE is the section containing BLOCK. */
5828
5829 static void
5830 ada_add_block_symbols (struct obstack *obstackp,
5831 const struct block *block, const char *name,
5832 domain_enum domain, struct objfile *objfile,
5833 int wild)
5834 {
5835 struct block_iterator iter;
5836 int name_len = strlen (name);
5837 /* A matching argument symbol, if any. */
5838 struct symbol *arg_sym;
5839 /* Set true when we find a matching non-argument symbol. */
5840 int found_sym;
5841 struct symbol *sym;
5842
5843 arg_sym = NULL;
5844 found_sym = 0;
5845 if (wild)
5846 {
5847 for (sym = block_iter_match_first (block, name, wild_match, &iter);
5848 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
5849 {
5850 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5851 SYMBOL_DOMAIN (sym), domain)
5852 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
5853 {
5854 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5855 continue;
5856 else if (SYMBOL_IS_ARGUMENT (sym))
5857 arg_sym = sym;
5858 else
5859 {
5860 found_sym = 1;
5861 add_defn_to_vec (obstackp,
5862 fixup_symbol_section (sym, objfile),
5863 block);
5864 }
5865 }
5866 }
5867 }
5868 else
5869 {
5870 for (sym = block_iter_match_first (block, name, full_match, &iter);
5871 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
5872 {
5873 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5874 SYMBOL_DOMAIN (sym), domain))
5875 {
5876 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5877 {
5878 if (SYMBOL_IS_ARGUMENT (sym))
5879 arg_sym = sym;
5880 else
5881 {
5882 found_sym = 1;
5883 add_defn_to_vec (obstackp,
5884 fixup_symbol_section (sym, objfile),
5885 block);
5886 }
5887 }
5888 }
5889 }
5890 }
5891
5892 if (!found_sym && arg_sym != NULL)
5893 {
5894 add_defn_to_vec (obstackp,
5895 fixup_symbol_section (arg_sym, objfile),
5896 block);
5897 }
5898
5899 if (!wild)
5900 {
5901 arg_sym = NULL;
5902 found_sym = 0;
5903
5904 ALL_BLOCK_SYMBOLS (block, iter, sym)
5905 {
5906 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5907 SYMBOL_DOMAIN (sym), domain))
5908 {
5909 int cmp;
5910
5911 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5912 if (cmp == 0)
5913 {
5914 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5915 if (cmp == 0)
5916 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5917 name_len);
5918 }
5919
5920 if (cmp == 0
5921 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5922 {
5923 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5924 {
5925 if (SYMBOL_IS_ARGUMENT (sym))
5926 arg_sym = sym;
5927 else
5928 {
5929 found_sym = 1;
5930 add_defn_to_vec (obstackp,
5931 fixup_symbol_section (sym, objfile),
5932 block);
5933 }
5934 }
5935 }
5936 }
5937 }
5938
5939 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5940 They aren't parameters, right? */
5941 if (!found_sym && arg_sym != NULL)
5942 {
5943 add_defn_to_vec (obstackp,
5944 fixup_symbol_section (arg_sym, objfile),
5945 block);
5946 }
5947 }
5948 }
5949 \f
5950
5951 /* Symbol Completion */
5952
5953 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5954 name in a form that's appropriate for the completion. The result
5955 does not need to be deallocated, but is only good until the next call.
5956
5957 TEXT_LEN is equal to the length of TEXT.
5958 Perform a wild match if WILD_MATCH_P is set.
5959 ENCODED_P should be set if TEXT represents the start of a symbol name
5960 in its encoded form. */
5961
5962 static const char *
5963 symbol_completion_match (const char *sym_name,
5964 const char *text, int text_len,
5965 int wild_match_p, int encoded_p)
5966 {
5967 const int verbatim_match = (text[0] == '<');
5968 int match = 0;
5969
5970 if (verbatim_match)
5971 {
5972 /* Strip the leading angle bracket. */
5973 text = text + 1;
5974 text_len--;
5975 }
5976
5977 /* First, test against the fully qualified name of the symbol. */
5978
5979 if (strncmp (sym_name, text, text_len) == 0)
5980 match = 1;
5981
5982 if (match && !encoded_p)
5983 {
5984 /* One needed check before declaring a positive match is to verify
5985 that iff we are doing a verbatim match, the decoded version
5986 of the symbol name starts with '<'. Otherwise, this symbol name
5987 is not a suitable completion. */
5988 const char *sym_name_copy = sym_name;
5989 int has_angle_bracket;
5990
5991 sym_name = ada_decode (sym_name);
5992 has_angle_bracket = (sym_name[0] == '<');
5993 match = (has_angle_bracket == verbatim_match);
5994 sym_name = sym_name_copy;
5995 }
5996
5997 if (match && !verbatim_match)
5998 {
5999 /* When doing non-verbatim match, another check that needs to
6000 be done is to verify that the potentially matching symbol name
6001 does not include capital letters, because the ada-mode would
6002 not be able to understand these symbol names without the
6003 angle bracket notation. */
6004 const char *tmp;
6005
6006 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6007 if (*tmp != '\0')
6008 match = 0;
6009 }
6010
6011 /* Second: Try wild matching... */
6012
6013 if (!match && wild_match_p)
6014 {
6015 /* Since we are doing wild matching, this means that TEXT
6016 may represent an unqualified symbol name. We therefore must
6017 also compare TEXT against the unqualified name of the symbol. */
6018 sym_name = ada_unqualified_name (ada_decode (sym_name));
6019
6020 if (strncmp (sym_name, text, text_len) == 0)
6021 match = 1;
6022 }
6023
6024 /* Finally: If we found a mach, prepare the result to return. */
6025
6026 if (!match)
6027 return NULL;
6028
6029 if (verbatim_match)
6030 sym_name = add_angle_brackets (sym_name);
6031
6032 if (!encoded_p)
6033 sym_name = ada_decode (sym_name);
6034
6035 return sym_name;
6036 }
6037
6038 /* A companion function to ada_make_symbol_completion_list().
6039 Check if SYM_NAME represents a symbol which name would be suitable
6040 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
6041 it is appended at the end of the given string vector SV.
6042
6043 ORIG_TEXT is the string original string from the user command
6044 that needs to be completed. WORD is the entire command on which
6045 completion should be performed. These two parameters are used to
6046 determine which part of the symbol name should be added to the
6047 completion vector.
6048 if WILD_MATCH_P is set, then wild matching is performed.
6049 ENCODED_P should be set if TEXT represents a symbol name in its
6050 encoded formed (in which case the completion should also be
6051 encoded). */
6052
6053 static void
6054 symbol_completion_add (VEC(char_ptr) **sv,
6055 const char *sym_name,
6056 const char *text, int text_len,
6057 const char *orig_text, const char *word,
6058 int wild_match_p, int encoded_p)
6059 {
6060 const char *match = symbol_completion_match (sym_name, text, text_len,
6061 wild_match_p, encoded_p);
6062 char *completion;
6063
6064 if (match == NULL)
6065 return;
6066
6067 /* We found a match, so add the appropriate completion to the given
6068 string vector. */
6069
6070 if (word == orig_text)
6071 {
6072 completion = xmalloc (strlen (match) + 5);
6073 strcpy (completion, match);
6074 }
6075 else if (word > orig_text)
6076 {
6077 /* Return some portion of sym_name. */
6078 completion = xmalloc (strlen (match) + 5);
6079 strcpy (completion, match + (word - orig_text));
6080 }
6081 else
6082 {
6083 /* Return some of ORIG_TEXT plus sym_name. */
6084 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
6085 strncpy (completion, word, orig_text - word);
6086 completion[orig_text - word] = '\0';
6087 strcat (completion, match);
6088 }
6089
6090 VEC_safe_push (char_ptr, *sv, completion);
6091 }
6092
6093 /* An object of this type is passed as the user_data argument to the
6094 expand_symtabs_matching method. */
6095 struct add_partial_datum
6096 {
6097 VEC(char_ptr) **completions;
6098 const char *text;
6099 int text_len;
6100 const char *text0;
6101 const char *word;
6102 int wild_match;
6103 int encoded;
6104 };
6105
6106 /* A callback for expand_symtabs_matching. */
6107
6108 static int
6109 ada_complete_symbol_matcher (const char *name, void *user_data)
6110 {
6111 struct add_partial_datum *data = user_data;
6112
6113 return symbol_completion_match (name, data->text, data->text_len,
6114 data->wild_match, data->encoded) != NULL;
6115 }
6116
6117 /* Return a list of possible symbol names completing TEXT0. WORD is
6118 the entire command on which completion is made. */
6119
6120 static VEC (char_ptr) *
6121 ada_make_symbol_completion_list (const char *text0, const char *word,
6122 enum type_code code)
6123 {
6124 char *text;
6125 int text_len;
6126 int wild_match_p;
6127 int encoded_p;
6128 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
6129 struct symbol *sym;
6130 struct symtab *s;
6131 struct minimal_symbol *msymbol;
6132 struct objfile *objfile;
6133 const struct block *b, *surrounding_static_block = 0;
6134 int i;
6135 struct block_iterator iter;
6136 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
6137
6138 gdb_assert (code == TYPE_CODE_UNDEF);
6139
6140 if (text0[0] == '<')
6141 {
6142 text = xstrdup (text0);
6143 make_cleanup (xfree, text);
6144 text_len = strlen (text);
6145 wild_match_p = 0;
6146 encoded_p = 1;
6147 }
6148 else
6149 {
6150 text = xstrdup (ada_encode (text0));
6151 make_cleanup (xfree, text);
6152 text_len = strlen (text);
6153 for (i = 0; i < text_len; i++)
6154 text[i] = tolower (text[i]);
6155
6156 encoded_p = (strstr (text0, "__") != NULL);
6157 /* If the name contains a ".", then the user is entering a fully
6158 qualified entity name, and the match must not be done in wild
6159 mode. Similarly, if the user wants to complete what looks like
6160 an encoded name, the match must not be done in wild mode. */
6161 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
6162 }
6163
6164 /* First, look at the partial symtab symbols. */
6165 {
6166 struct add_partial_datum data;
6167
6168 data.completions = &completions;
6169 data.text = text;
6170 data.text_len = text_len;
6171 data.text0 = text0;
6172 data.word = word;
6173 data.wild_match = wild_match_p;
6174 data.encoded = encoded_p;
6175 expand_symtabs_matching (NULL, ada_complete_symbol_matcher, ALL_DOMAIN,
6176 &data);
6177 }
6178
6179 /* At this point scan through the misc symbol vectors and add each
6180 symbol you find to the list. Eventually we want to ignore
6181 anything that isn't a text symbol (everything else will be
6182 handled by the psymtab code above). */
6183
6184 ALL_MSYMBOLS (objfile, msymbol)
6185 {
6186 QUIT;
6187 symbol_completion_add (&completions, MSYMBOL_LINKAGE_NAME (msymbol),
6188 text, text_len, text0, word, wild_match_p,
6189 encoded_p);
6190 }
6191
6192 /* Search upwards from currently selected frame (so that we can
6193 complete on local vars. */
6194
6195 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6196 {
6197 if (!BLOCK_SUPERBLOCK (b))
6198 surrounding_static_block = b; /* For elmin of dups */
6199
6200 ALL_BLOCK_SYMBOLS (b, iter, sym)
6201 {
6202 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6203 text, text_len, text0, word,
6204 wild_match_p, encoded_p);
6205 }
6206 }
6207
6208 /* Go through the symtabs and check the externs and statics for
6209 symbols which match. */
6210
6211 ALL_SYMTABS (objfile, s)
6212 {
6213 QUIT;
6214 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
6215 ALL_BLOCK_SYMBOLS (b, iter, sym)
6216 {
6217 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6218 text, text_len, text0, word,
6219 wild_match_p, encoded_p);
6220 }
6221 }
6222
6223 ALL_SYMTABS (objfile, s)
6224 {
6225 QUIT;
6226 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
6227 /* Don't do this block twice. */
6228 if (b == surrounding_static_block)
6229 continue;
6230 ALL_BLOCK_SYMBOLS (b, iter, sym)
6231 {
6232 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6233 text, text_len, text0, word,
6234 wild_match_p, encoded_p);
6235 }
6236 }
6237
6238 do_cleanups (old_chain);
6239 return completions;
6240 }
6241
6242 /* Field Access */
6243
6244 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6245 for tagged types. */
6246
6247 static int
6248 ada_is_dispatch_table_ptr_type (struct type *type)
6249 {
6250 const char *name;
6251
6252 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6253 return 0;
6254
6255 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6256 if (name == NULL)
6257 return 0;
6258
6259 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6260 }
6261
6262 /* Return non-zero if TYPE is an interface tag. */
6263
6264 static int
6265 ada_is_interface_tag (struct type *type)
6266 {
6267 const char *name = TYPE_NAME (type);
6268
6269 if (name == NULL)
6270 return 0;
6271
6272 return (strcmp (name, "ada__tags__interface_tag") == 0);
6273 }
6274
6275 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6276 to be invisible to users. */
6277
6278 int
6279 ada_is_ignored_field (struct type *type, int field_num)
6280 {
6281 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6282 return 1;
6283
6284 /* Check the name of that field. */
6285 {
6286 const char *name = TYPE_FIELD_NAME (type, field_num);
6287
6288 /* Anonymous field names should not be printed.
6289 brobecker/2007-02-20: I don't think this can actually happen
6290 but we don't want to print the value of annonymous fields anyway. */
6291 if (name == NULL)
6292 return 1;
6293
6294 /* Normally, fields whose name start with an underscore ("_")
6295 are fields that have been internally generated by the compiler,
6296 and thus should not be printed. The "_parent" field is special,
6297 however: This is a field internally generated by the compiler
6298 for tagged types, and it contains the components inherited from
6299 the parent type. This field should not be printed as is, but
6300 should not be ignored either. */
6301 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
6302 return 1;
6303 }
6304
6305 /* If this is the dispatch table of a tagged type or an interface tag,
6306 then ignore. */
6307 if (ada_is_tagged_type (type, 1)
6308 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6309 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6310 return 1;
6311
6312 /* Not a special field, so it should not be ignored. */
6313 return 0;
6314 }
6315
6316 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6317 pointer or reference type whose ultimate target has a tag field. */
6318
6319 int
6320 ada_is_tagged_type (struct type *type, int refok)
6321 {
6322 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6323 }
6324
6325 /* True iff TYPE represents the type of X'Tag */
6326
6327 int
6328 ada_is_tag_type (struct type *type)
6329 {
6330 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6331 return 0;
6332 else
6333 {
6334 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6335
6336 return (name != NULL
6337 && strcmp (name, "ada__tags__dispatch_table") == 0);
6338 }
6339 }
6340
6341 /* The type of the tag on VAL. */
6342
6343 struct type *
6344 ada_tag_type (struct value *val)
6345 {
6346 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
6347 }
6348
6349 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6350 retired at Ada 05). */
6351
6352 static int
6353 is_ada95_tag (struct value *tag)
6354 {
6355 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6356 }
6357
6358 /* The value of the tag on VAL. */
6359
6360 struct value *
6361 ada_value_tag (struct value *val)
6362 {
6363 return ada_value_struct_elt (val, "_tag", 0);
6364 }
6365
6366 /* The value of the tag on the object of type TYPE whose contents are
6367 saved at VALADDR, if it is non-null, or is at memory address
6368 ADDRESS. */
6369
6370 static struct value *
6371 value_tag_from_contents_and_address (struct type *type,
6372 const gdb_byte *valaddr,
6373 CORE_ADDR address)
6374 {
6375 int tag_byte_offset;
6376 struct type *tag_type;
6377
6378 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6379 NULL, NULL, NULL))
6380 {
6381 const gdb_byte *valaddr1 = ((valaddr == NULL)
6382 ? NULL
6383 : valaddr + tag_byte_offset);
6384 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6385
6386 return value_from_contents_and_address (tag_type, valaddr1, address1);
6387 }
6388 return NULL;
6389 }
6390
6391 static struct type *
6392 type_from_tag (struct value *tag)
6393 {
6394 const char *type_name = ada_tag_name (tag);
6395
6396 if (type_name != NULL)
6397 return ada_find_any_type (ada_encode (type_name));
6398 return NULL;
6399 }
6400
6401 /* Given a value OBJ of a tagged type, return a value of this
6402 type at the base address of the object. The base address, as
6403 defined in Ada.Tags, it is the address of the primary tag of
6404 the object, and therefore where the field values of its full
6405 view can be fetched. */
6406
6407 struct value *
6408 ada_tag_value_at_base_address (struct value *obj)
6409 {
6410 volatile struct gdb_exception e;
6411 struct value *val;
6412 LONGEST offset_to_top = 0;
6413 struct type *ptr_type, *obj_type;
6414 struct value *tag;
6415 CORE_ADDR base_address;
6416
6417 obj_type = value_type (obj);
6418
6419 /* It is the responsability of the caller to deref pointers. */
6420
6421 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6422 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6423 return obj;
6424
6425 tag = ada_value_tag (obj);
6426 if (!tag)
6427 return obj;
6428
6429 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6430
6431 if (is_ada95_tag (tag))
6432 return obj;
6433
6434 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6435 ptr_type = lookup_pointer_type (ptr_type);
6436 val = value_cast (ptr_type, tag);
6437 if (!val)
6438 return obj;
6439
6440 /* It is perfectly possible that an exception be raised while
6441 trying to determine the base address, just like for the tag;
6442 see ada_tag_name for more details. We do not print the error
6443 message for the same reason. */
6444
6445 TRY_CATCH (e, RETURN_MASK_ERROR)
6446 {
6447 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6448 }
6449
6450 if (e.reason < 0)
6451 return obj;
6452
6453 /* If offset is null, nothing to do. */
6454
6455 if (offset_to_top == 0)
6456 return obj;
6457
6458 /* -1 is a special case in Ada.Tags; however, what should be done
6459 is not quite clear from the documentation. So do nothing for
6460 now. */
6461
6462 if (offset_to_top == -1)
6463 return obj;
6464
6465 base_address = value_address (obj) - offset_to_top;
6466 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6467
6468 /* Make sure that we have a proper tag at the new address.
6469 Otherwise, offset_to_top is bogus (which can happen when
6470 the object is not initialized yet). */
6471
6472 if (!tag)
6473 return obj;
6474
6475 obj_type = type_from_tag (tag);
6476
6477 if (!obj_type)
6478 return obj;
6479
6480 return value_from_contents_and_address (obj_type, NULL, base_address);
6481 }
6482
6483 /* Return the "ada__tags__type_specific_data" type. */
6484
6485 static struct type *
6486 ada_get_tsd_type (struct inferior *inf)
6487 {
6488 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6489
6490 if (data->tsd_type == 0)
6491 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6492 return data->tsd_type;
6493 }
6494
6495 /* Return the TSD (type-specific data) associated to the given TAG.
6496 TAG is assumed to be the tag of a tagged-type entity.
6497
6498 May return NULL if we are unable to get the TSD. */
6499
6500 static struct value *
6501 ada_get_tsd_from_tag (struct value *tag)
6502 {
6503 struct value *val;
6504 struct type *type;
6505
6506 /* First option: The TSD is simply stored as a field of our TAG.
6507 Only older versions of GNAT would use this format, but we have
6508 to test it first, because there are no visible markers for
6509 the current approach except the absence of that field. */
6510
6511 val = ada_value_struct_elt (tag, "tsd", 1);
6512 if (val)
6513 return val;
6514
6515 /* Try the second representation for the dispatch table (in which
6516 there is no explicit 'tsd' field in the referent of the tag pointer,
6517 and instead the tsd pointer is stored just before the dispatch
6518 table. */
6519
6520 type = ada_get_tsd_type (current_inferior());
6521 if (type == NULL)
6522 return NULL;
6523 type = lookup_pointer_type (lookup_pointer_type (type));
6524 val = value_cast (type, tag);
6525 if (val == NULL)
6526 return NULL;
6527 return value_ind (value_ptradd (val, -1));
6528 }
6529
6530 /* Given the TSD of a tag (type-specific data), return a string
6531 containing the name of the associated type.
6532
6533 The returned value is good until the next call. May return NULL
6534 if we are unable to determine the tag name. */
6535
6536 static char *
6537 ada_tag_name_from_tsd (struct value *tsd)
6538 {
6539 static char name[1024];
6540 char *p;
6541 struct value *val;
6542
6543 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6544 if (val == NULL)
6545 return NULL;
6546 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6547 for (p = name; *p != '\0'; p += 1)
6548 if (isalpha (*p))
6549 *p = tolower (*p);
6550 return name;
6551 }
6552
6553 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6554 a C string.
6555
6556 Return NULL if the TAG is not an Ada tag, or if we were unable to
6557 determine the name of that tag. The result is good until the next
6558 call. */
6559
6560 const char *
6561 ada_tag_name (struct value *tag)
6562 {
6563 volatile struct gdb_exception e;
6564 char *name = NULL;
6565
6566 if (!ada_is_tag_type (value_type (tag)))
6567 return NULL;
6568
6569 /* It is perfectly possible that an exception be raised while trying
6570 to determine the TAG's name, even under normal circumstances:
6571 The associated variable may be uninitialized or corrupted, for
6572 instance. We do not let any exception propagate past this point.
6573 instead we return NULL.
6574
6575 We also do not print the error message either (which often is very
6576 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6577 the caller print a more meaningful message if necessary. */
6578 TRY_CATCH (e, RETURN_MASK_ERROR)
6579 {
6580 struct value *tsd = ada_get_tsd_from_tag (tag);
6581
6582 if (tsd != NULL)
6583 name = ada_tag_name_from_tsd (tsd);
6584 }
6585
6586 return name;
6587 }
6588
6589 /* The parent type of TYPE, or NULL if none. */
6590
6591 struct type *
6592 ada_parent_type (struct type *type)
6593 {
6594 int i;
6595
6596 type = ada_check_typedef (type);
6597
6598 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6599 return NULL;
6600
6601 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6602 if (ada_is_parent_field (type, i))
6603 {
6604 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6605
6606 /* If the _parent field is a pointer, then dereference it. */
6607 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6608 parent_type = TYPE_TARGET_TYPE (parent_type);
6609 /* If there is a parallel XVS type, get the actual base type. */
6610 parent_type = ada_get_base_type (parent_type);
6611
6612 return ada_check_typedef (parent_type);
6613 }
6614
6615 return NULL;
6616 }
6617
6618 /* True iff field number FIELD_NUM of structure type TYPE contains the
6619 parent-type (inherited) fields of a derived type. Assumes TYPE is
6620 a structure type with at least FIELD_NUM+1 fields. */
6621
6622 int
6623 ada_is_parent_field (struct type *type, int field_num)
6624 {
6625 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6626
6627 return (name != NULL
6628 && (strncmp (name, "PARENT", 6) == 0
6629 || strncmp (name, "_parent", 7) == 0));
6630 }
6631
6632 /* True iff field number FIELD_NUM of structure type TYPE is a
6633 transparent wrapper field (which should be silently traversed when doing
6634 field selection and flattened when printing). Assumes TYPE is a
6635 structure type with at least FIELD_NUM+1 fields. Such fields are always
6636 structures. */
6637
6638 int
6639 ada_is_wrapper_field (struct type *type, int field_num)
6640 {
6641 const char *name = TYPE_FIELD_NAME (type, field_num);
6642
6643 return (name != NULL
6644 && (strncmp (name, "PARENT", 6) == 0
6645 || strcmp (name, "REP") == 0
6646 || strncmp (name, "_parent", 7) == 0
6647 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6648 }
6649
6650 /* True iff field number FIELD_NUM of structure or union type TYPE
6651 is a variant wrapper. Assumes TYPE is a structure type with at least
6652 FIELD_NUM+1 fields. */
6653
6654 int
6655 ada_is_variant_part (struct type *type, int field_num)
6656 {
6657 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6658
6659 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6660 || (is_dynamic_field (type, field_num)
6661 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6662 == TYPE_CODE_UNION)));
6663 }
6664
6665 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6666 whose discriminants are contained in the record type OUTER_TYPE,
6667 returns the type of the controlling discriminant for the variant.
6668 May return NULL if the type could not be found. */
6669
6670 struct type *
6671 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6672 {
6673 char *name = ada_variant_discrim_name (var_type);
6674
6675 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
6676 }
6677
6678 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6679 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6680 represents a 'when others' clause; otherwise 0. */
6681
6682 int
6683 ada_is_others_clause (struct type *type, int field_num)
6684 {
6685 const char *name = TYPE_FIELD_NAME (type, field_num);
6686
6687 return (name != NULL && name[0] == 'O');
6688 }
6689
6690 /* Assuming that TYPE0 is the type of the variant part of a record,
6691 returns the name of the discriminant controlling the variant.
6692 The value is valid until the next call to ada_variant_discrim_name. */
6693
6694 char *
6695 ada_variant_discrim_name (struct type *type0)
6696 {
6697 static char *result = NULL;
6698 static size_t result_len = 0;
6699 struct type *type;
6700 const char *name;
6701 const char *discrim_end;
6702 const char *discrim_start;
6703
6704 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6705 type = TYPE_TARGET_TYPE (type0);
6706 else
6707 type = type0;
6708
6709 name = ada_type_name (type);
6710
6711 if (name == NULL || name[0] == '\000')
6712 return "";
6713
6714 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6715 discrim_end -= 1)
6716 {
6717 if (strncmp (discrim_end, "___XVN", 6) == 0)
6718 break;
6719 }
6720 if (discrim_end == name)
6721 return "";
6722
6723 for (discrim_start = discrim_end; discrim_start != name + 3;
6724 discrim_start -= 1)
6725 {
6726 if (discrim_start == name + 1)
6727 return "";
6728 if ((discrim_start > name + 3
6729 && strncmp (discrim_start - 3, "___", 3) == 0)
6730 || discrim_start[-1] == '.')
6731 break;
6732 }
6733
6734 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6735 strncpy (result, discrim_start, discrim_end - discrim_start);
6736 result[discrim_end - discrim_start] = '\0';
6737 return result;
6738 }
6739
6740 /* Scan STR for a subtype-encoded number, beginning at position K.
6741 Put the position of the character just past the number scanned in
6742 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6743 Return 1 if there was a valid number at the given position, and 0
6744 otherwise. A "subtype-encoded" number consists of the absolute value
6745 in decimal, followed by the letter 'm' to indicate a negative number.
6746 Assumes 0m does not occur. */
6747
6748 int
6749 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6750 {
6751 ULONGEST RU;
6752
6753 if (!isdigit (str[k]))
6754 return 0;
6755
6756 /* Do it the hard way so as not to make any assumption about
6757 the relationship of unsigned long (%lu scan format code) and
6758 LONGEST. */
6759 RU = 0;
6760 while (isdigit (str[k]))
6761 {
6762 RU = RU * 10 + (str[k] - '0');
6763 k += 1;
6764 }
6765
6766 if (str[k] == 'm')
6767 {
6768 if (R != NULL)
6769 *R = (-(LONGEST) (RU - 1)) - 1;
6770 k += 1;
6771 }
6772 else if (R != NULL)
6773 *R = (LONGEST) RU;
6774
6775 /* NOTE on the above: Technically, C does not say what the results of
6776 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6777 number representable as a LONGEST (although either would probably work
6778 in most implementations). When RU>0, the locution in the then branch
6779 above is always equivalent to the negative of RU. */
6780
6781 if (new_k != NULL)
6782 *new_k = k;
6783 return 1;
6784 }
6785
6786 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6787 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6788 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6789
6790 int
6791 ada_in_variant (LONGEST val, struct type *type, int field_num)
6792 {
6793 const char *name = TYPE_FIELD_NAME (type, field_num);
6794 int p;
6795
6796 p = 0;
6797 while (1)
6798 {
6799 switch (name[p])
6800 {
6801 case '\0':
6802 return 0;
6803 case 'S':
6804 {
6805 LONGEST W;
6806
6807 if (!ada_scan_number (name, p + 1, &W, &p))
6808 return 0;
6809 if (val == W)
6810 return 1;
6811 break;
6812 }
6813 case 'R':
6814 {
6815 LONGEST L, U;
6816
6817 if (!ada_scan_number (name, p + 1, &L, &p)
6818 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6819 return 0;
6820 if (val >= L && val <= U)
6821 return 1;
6822 break;
6823 }
6824 case 'O':
6825 return 1;
6826 default:
6827 return 0;
6828 }
6829 }
6830 }
6831
6832 /* FIXME: Lots of redundancy below. Try to consolidate. */
6833
6834 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6835 ARG_TYPE, extract and return the value of one of its (non-static)
6836 fields. FIELDNO says which field. Differs from value_primitive_field
6837 only in that it can handle packed values of arbitrary type. */
6838
6839 static struct value *
6840 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6841 struct type *arg_type)
6842 {
6843 struct type *type;
6844
6845 arg_type = ada_check_typedef (arg_type);
6846 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6847
6848 /* Handle packed fields. */
6849
6850 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6851 {
6852 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6853 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6854
6855 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6856 offset + bit_pos / 8,
6857 bit_pos % 8, bit_size, type);
6858 }
6859 else
6860 return value_primitive_field (arg1, offset, fieldno, arg_type);
6861 }
6862
6863 /* Find field with name NAME in object of type TYPE. If found,
6864 set the following for each argument that is non-null:
6865 - *FIELD_TYPE_P to the field's type;
6866 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6867 an object of that type;
6868 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6869 - *BIT_SIZE_P to its size in bits if the field is packed, and
6870 0 otherwise;
6871 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6872 fields up to but not including the desired field, or by the total
6873 number of fields if not found. A NULL value of NAME never
6874 matches; the function just counts visible fields in this case.
6875
6876 Returns 1 if found, 0 otherwise. */
6877
6878 static int
6879 find_struct_field (const char *name, struct type *type, int offset,
6880 struct type **field_type_p,
6881 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6882 int *index_p)
6883 {
6884 int i;
6885
6886 type = ada_check_typedef (type);
6887
6888 if (field_type_p != NULL)
6889 *field_type_p = NULL;
6890 if (byte_offset_p != NULL)
6891 *byte_offset_p = 0;
6892 if (bit_offset_p != NULL)
6893 *bit_offset_p = 0;
6894 if (bit_size_p != NULL)
6895 *bit_size_p = 0;
6896
6897 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6898 {
6899 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6900 int fld_offset = offset + bit_pos / 8;
6901 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6902
6903 if (t_field_name == NULL)
6904 continue;
6905
6906 else if (name != NULL && field_name_match (t_field_name, name))
6907 {
6908 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6909
6910 if (field_type_p != NULL)
6911 *field_type_p = TYPE_FIELD_TYPE (type, i);
6912 if (byte_offset_p != NULL)
6913 *byte_offset_p = fld_offset;
6914 if (bit_offset_p != NULL)
6915 *bit_offset_p = bit_pos % 8;
6916 if (bit_size_p != NULL)
6917 *bit_size_p = bit_size;
6918 return 1;
6919 }
6920 else if (ada_is_wrapper_field (type, i))
6921 {
6922 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6923 field_type_p, byte_offset_p, bit_offset_p,
6924 bit_size_p, index_p))
6925 return 1;
6926 }
6927 else if (ada_is_variant_part (type, i))
6928 {
6929 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6930 fixed type?? */
6931 int j;
6932 struct type *field_type
6933 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6934
6935 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6936 {
6937 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6938 fld_offset
6939 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6940 field_type_p, byte_offset_p,
6941 bit_offset_p, bit_size_p, index_p))
6942 return 1;
6943 }
6944 }
6945 else if (index_p != NULL)
6946 *index_p += 1;
6947 }
6948 return 0;
6949 }
6950
6951 /* Number of user-visible fields in record type TYPE. */
6952
6953 static int
6954 num_visible_fields (struct type *type)
6955 {
6956 int n;
6957
6958 n = 0;
6959 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6960 return n;
6961 }
6962
6963 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6964 and search in it assuming it has (class) type TYPE.
6965 If found, return value, else return NULL.
6966
6967 Searches recursively through wrapper fields (e.g., '_parent'). */
6968
6969 static struct value *
6970 ada_search_struct_field (char *name, struct value *arg, int offset,
6971 struct type *type)
6972 {
6973 int i;
6974
6975 type = ada_check_typedef (type);
6976 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6977 {
6978 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6979
6980 if (t_field_name == NULL)
6981 continue;
6982
6983 else if (field_name_match (t_field_name, name))
6984 return ada_value_primitive_field (arg, offset, i, type);
6985
6986 else if (ada_is_wrapper_field (type, i))
6987 {
6988 struct value *v = /* Do not let indent join lines here. */
6989 ada_search_struct_field (name, arg,
6990 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6991 TYPE_FIELD_TYPE (type, i));
6992
6993 if (v != NULL)
6994 return v;
6995 }
6996
6997 else if (ada_is_variant_part (type, i))
6998 {
6999 /* PNH: Do we ever get here? See find_struct_field. */
7000 int j;
7001 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7002 i));
7003 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7004
7005 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7006 {
7007 struct value *v = ada_search_struct_field /* Force line
7008 break. */
7009 (name, arg,
7010 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7011 TYPE_FIELD_TYPE (field_type, j));
7012
7013 if (v != NULL)
7014 return v;
7015 }
7016 }
7017 }
7018 return NULL;
7019 }
7020
7021 static struct value *ada_index_struct_field_1 (int *, struct value *,
7022 int, struct type *);
7023
7024
7025 /* Return field #INDEX in ARG, where the index is that returned by
7026 * find_struct_field through its INDEX_P argument. Adjust the address
7027 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7028 * If found, return value, else return NULL. */
7029
7030 static struct value *
7031 ada_index_struct_field (int index, struct value *arg, int offset,
7032 struct type *type)
7033 {
7034 return ada_index_struct_field_1 (&index, arg, offset, type);
7035 }
7036
7037
7038 /* Auxiliary function for ada_index_struct_field. Like
7039 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7040 * *INDEX_P. */
7041
7042 static struct value *
7043 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7044 struct type *type)
7045 {
7046 int i;
7047 type = ada_check_typedef (type);
7048
7049 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7050 {
7051 if (TYPE_FIELD_NAME (type, i) == NULL)
7052 continue;
7053 else if (ada_is_wrapper_field (type, i))
7054 {
7055 struct value *v = /* Do not let indent join lines here. */
7056 ada_index_struct_field_1 (index_p, arg,
7057 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7058 TYPE_FIELD_TYPE (type, i));
7059
7060 if (v != NULL)
7061 return v;
7062 }
7063
7064 else if (ada_is_variant_part (type, i))
7065 {
7066 /* PNH: Do we ever get here? See ada_search_struct_field,
7067 find_struct_field. */
7068 error (_("Cannot assign this kind of variant record"));
7069 }
7070 else if (*index_p == 0)
7071 return ada_value_primitive_field (arg, offset, i, type);
7072 else
7073 *index_p -= 1;
7074 }
7075 return NULL;
7076 }
7077
7078 /* Given ARG, a value of type (pointer or reference to a)*
7079 structure/union, extract the component named NAME from the ultimate
7080 target structure/union and return it as a value with its
7081 appropriate type.
7082
7083 The routine searches for NAME among all members of the structure itself
7084 and (recursively) among all members of any wrapper members
7085 (e.g., '_parent').
7086
7087 If NO_ERR, then simply return NULL in case of error, rather than
7088 calling error. */
7089
7090 struct value *
7091 ada_value_struct_elt (struct value *arg, char *name, int no_err)
7092 {
7093 struct type *t, *t1;
7094 struct value *v;
7095
7096 v = NULL;
7097 t1 = t = ada_check_typedef (value_type (arg));
7098 if (TYPE_CODE (t) == TYPE_CODE_REF)
7099 {
7100 t1 = TYPE_TARGET_TYPE (t);
7101 if (t1 == NULL)
7102 goto BadValue;
7103 t1 = ada_check_typedef (t1);
7104 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7105 {
7106 arg = coerce_ref (arg);
7107 t = t1;
7108 }
7109 }
7110
7111 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7112 {
7113 t1 = TYPE_TARGET_TYPE (t);
7114 if (t1 == NULL)
7115 goto BadValue;
7116 t1 = ada_check_typedef (t1);
7117 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7118 {
7119 arg = value_ind (arg);
7120 t = t1;
7121 }
7122 else
7123 break;
7124 }
7125
7126 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7127 goto BadValue;
7128
7129 if (t1 == t)
7130 v = ada_search_struct_field (name, arg, 0, t);
7131 else
7132 {
7133 int bit_offset, bit_size, byte_offset;
7134 struct type *field_type;
7135 CORE_ADDR address;
7136
7137 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7138 address = value_address (ada_value_ind (arg));
7139 else
7140 address = value_address (ada_coerce_ref (arg));
7141
7142 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
7143 if (find_struct_field (name, t1, 0,
7144 &field_type, &byte_offset, &bit_offset,
7145 &bit_size, NULL))
7146 {
7147 if (bit_size != 0)
7148 {
7149 if (TYPE_CODE (t) == TYPE_CODE_REF)
7150 arg = ada_coerce_ref (arg);
7151 else
7152 arg = ada_value_ind (arg);
7153 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7154 bit_offset, bit_size,
7155 field_type);
7156 }
7157 else
7158 v = value_at_lazy (field_type, address + byte_offset);
7159 }
7160 }
7161
7162 if (v != NULL || no_err)
7163 return v;
7164 else
7165 error (_("There is no member named %s."), name);
7166
7167 BadValue:
7168 if (no_err)
7169 return NULL;
7170 else
7171 error (_("Attempt to extract a component of "
7172 "a value that is not a record."));
7173 }
7174
7175 /* Given a type TYPE, look up the type of the component of type named NAME.
7176 If DISPP is non-null, add its byte displacement from the beginning of a
7177 structure (pointed to by a value) of type TYPE to *DISPP (does not
7178 work for packed fields).
7179
7180 Matches any field whose name has NAME as a prefix, possibly
7181 followed by "___".
7182
7183 TYPE can be either a struct or union. If REFOK, TYPE may also
7184 be a (pointer or reference)+ to a struct or union, and the
7185 ultimate target type will be searched.
7186
7187 Looks recursively into variant clauses and parent types.
7188
7189 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7190 TYPE is not a type of the right kind. */
7191
7192 static struct type *
7193 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
7194 int noerr, int *dispp)
7195 {
7196 int i;
7197
7198 if (name == NULL)
7199 goto BadName;
7200
7201 if (refok && type != NULL)
7202 while (1)
7203 {
7204 type = ada_check_typedef (type);
7205 if (TYPE_CODE (type) != TYPE_CODE_PTR
7206 && TYPE_CODE (type) != TYPE_CODE_REF)
7207 break;
7208 type = TYPE_TARGET_TYPE (type);
7209 }
7210
7211 if (type == NULL
7212 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7213 && TYPE_CODE (type) != TYPE_CODE_UNION))
7214 {
7215 if (noerr)
7216 return NULL;
7217 else
7218 {
7219 target_terminal_ours ();
7220 gdb_flush (gdb_stdout);
7221 if (type == NULL)
7222 error (_("Type (null) is not a structure or union type"));
7223 else
7224 {
7225 /* XXX: type_sprint */
7226 fprintf_unfiltered (gdb_stderr, _("Type "));
7227 type_print (type, "", gdb_stderr, -1);
7228 error (_(" is not a structure or union type"));
7229 }
7230 }
7231 }
7232
7233 type = to_static_fixed_type (type);
7234
7235 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7236 {
7237 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7238 struct type *t;
7239 int disp;
7240
7241 if (t_field_name == NULL)
7242 continue;
7243
7244 else if (field_name_match (t_field_name, name))
7245 {
7246 if (dispp != NULL)
7247 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
7248 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7249 }
7250
7251 else if (ada_is_wrapper_field (type, i))
7252 {
7253 disp = 0;
7254 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7255 0, 1, &disp);
7256 if (t != NULL)
7257 {
7258 if (dispp != NULL)
7259 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7260 return t;
7261 }
7262 }
7263
7264 else if (ada_is_variant_part (type, i))
7265 {
7266 int j;
7267 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7268 i));
7269
7270 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7271 {
7272 /* FIXME pnh 2008/01/26: We check for a field that is
7273 NOT wrapped in a struct, since the compiler sometimes
7274 generates these for unchecked variant types. Revisit
7275 if the compiler changes this practice. */
7276 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7277 disp = 0;
7278 if (v_field_name != NULL
7279 && field_name_match (v_field_name, name))
7280 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
7281 else
7282 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7283 j),
7284 name, 0, 1, &disp);
7285
7286 if (t != NULL)
7287 {
7288 if (dispp != NULL)
7289 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7290 return t;
7291 }
7292 }
7293 }
7294
7295 }
7296
7297 BadName:
7298 if (!noerr)
7299 {
7300 target_terminal_ours ();
7301 gdb_flush (gdb_stdout);
7302 if (name == NULL)
7303 {
7304 /* XXX: type_sprint */
7305 fprintf_unfiltered (gdb_stderr, _("Type "));
7306 type_print (type, "", gdb_stderr, -1);
7307 error (_(" has no component named <null>"));
7308 }
7309 else
7310 {
7311 /* XXX: type_sprint */
7312 fprintf_unfiltered (gdb_stderr, _("Type "));
7313 type_print (type, "", gdb_stderr, -1);
7314 error (_(" has no component named %s"), name);
7315 }
7316 }
7317
7318 return NULL;
7319 }
7320
7321 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7322 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7323 represents an unchecked union (that is, the variant part of a
7324 record that is named in an Unchecked_Union pragma). */
7325
7326 static int
7327 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7328 {
7329 char *discrim_name = ada_variant_discrim_name (var_type);
7330
7331 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7332 == NULL);
7333 }
7334
7335
7336 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7337 within a value of type OUTER_TYPE that is stored in GDB at
7338 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7339 numbering from 0) is applicable. Returns -1 if none are. */
7340
7341 int
7342 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7343 const gdb_byte *outer_valaddr)
7344 {
7345 int others_clause;
7346 int i;
7347 char *discrim_name = ada_variant_discrim_name (var_type);
7348 struct value *outer;
7349 struct value *discrim;
7350 LONGEST discrim_val;
7351
7352 /* Using plain value_from_contents_and_address here causes problems
7353 because we will end up trying to resolve a type that is currently
7354 being constructed. */
7355 outer = value_from_contents_and_address_unresolved (outer_type,
7356 outer_valaddr, 0);
7357 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7358 if (discrim == NULL)
7359 return -1;
7360 discrim_val = value_as_long (discrim);
7361
7362 others_clause = -1;
7363 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7364 {
7365 if (ada_is_others_clause (var_type, i))
7366 others_clause = i;
7367 else if (ada_in_variant (discrim_val, var_type, i))
7368 return i;
7369 }
7370
7371 return others_clause;
7372 }
7373 \f
7374
7375
7376 /* Dynamic-Sized Records */
7377
7378 /* Strategy: The type ostensibly attached to a value with dynamic size
7379 (i.e., a size that is not statically recorded in the debugging
7380 data) does not accurately reflect the size or layout of the value.
7381 Our strategy is to convert these values to values with accurate,
7382 conventional types that are constructed on the fly. */
7383
7384 /* There is a subtle and tricky problem here. In general, we cannot
7385 determine the size of dynamic records without its data. However,
7386 the 'struct value' data structure, which GDB uses to represent
7387 quantities in the inferior process (the target), requires the size
7388 of the type at the time of its allocation in order to reserve space
7389 for GDB's internal copy of the data. That's why the
7390 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7391 rather than struct value*s.
7392
7393 However, GDB's internal history variables ($1, $2, etc.) are
7394 struct value*s containing internal copies of the data that are not, in
7395 general, the same as the data at their corresponding addresses in
7396 the target. Fortunately, the types we give to these values are all
7397 conventional, fixed-size types (as per the strategy described
7398 above), so that we don't usually have to perform the
7399 'to_fixed_xxx_type' conversions to look at their values.
7400 Unfortunately, there is one exception: if one of the internal
7401 history variables is an array whose elements are unconstrained
7402 records, then we will need to create distinct fixed types for each
7403 element selected. */
7404
7405 /* The upshot of all of this is that many routines take a (type, host
7406 address, target address) triple as arguments to represent a value.
7407 The host address, if non-null, is supposed to contain an internal
7408 copy of the relevant data; otherwise, the program is to consult the
7409 target at the target address. */
7410
7411 /* Assuming that VAL0 represents a pointer value, the result of
7412 dereferencing it. Differs from value_ind in its treatment of
7413 dynamic-sized types. */
7414
7415 struct value *
7416 ada_value_ind (struct value *val0)
7417 {
7418 struct value *val = value_ind (val0);
7419
7420 if (ada_is_tagged_type (value_type (val), 0))
7421 val = ada_tag_value_at_base_address (val);
7422
7423 return ada_to_fixed_value (val);
7424 }
7425
7426 /* The value resulting from dereferencing any "reference to"
7427 qualifiers on VAL0. */
7428
7429 static struct value *
7430 ada_coerce_ref (struct value *val0)
7431 {
7432 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7433 {
7434 struct value *val = val0;
7435
7436 val = coerce_ref (val);
7437
7438 if (ada_is_tagged_type (value_type (val), 0))
7439 val = ada_tag_value_at_base_address (val);
7440
7441 return ada_to_fixed_value (val);
7442 }
7443 else
7444 return val0;
7445 }
7446
7447 /* Return OFF rounded upward if necessary to a multiple of
7448 ALIGNMENT (a power of 2). */
7449
7450 static unsigned int
7451 align_value (unsigned int off, unsigned int alignment)
7452 {
7453 return (off + alignment - 1) & ~(alignment - 1);
7454 }
7455
7456 /* Return the bit alignment required for field #F of template type TYPE. */
7457
7458 static unsigned int
7459 field_alignment (struct type *type, int f)
7460 {
7461 const char *name = TYPE_FIELD_NAME (type, f);
7462 int len;
7463 int align_offset;
7464
7465 /* The field name should never be null, unless the debugging information
7466 is somehow malformed. In this case, we assume the field does not
7467 require any alignment. */
7468 if (name == NULL)
7469 return 1;
7470
7471 len = strlen (name);
7472
7473 if (!isdigit (name[len - 1]))
7474 return 1;
7475
7476 if (isdigit (name[len - 2]))
7477 align_offset = len - 2;
7478 else
7479 align_offset = len - 1;
7480
7481 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
7482 return TARGET_CHAR_BIT;
7483
7484 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7485 }
7486
7487 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7488
7489 static struct symbol *
7490 ada_find_any_type_symbol (const char *name)
7491 {
7492 struct symbol *sym;
7493
7494 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7495 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7496 return sym;
7497
7498 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7499 return sym;
7500 }
7501
7502 /* Find a type named NAME. Ignores ambiguity. This routine will look
7503 solely for types defined by debug info, it will not search the GDB
7504 primitive types. */
7505
7506 static struct type *
7507 ada_find_any_type (const char *name)
7508 {
7509 struct symbol *sym = ada_find_any_type_symbol (name);
7510
7511 if (sym != NULL)
7512 return SYMBOL_TYPE (sym);
7513
7514 return NULL;
7515 }
7516
7517 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7518 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7519 symbol, in which case it is returned. Otherwise, this looks for
7520 symbols whose name is that of NAME_SYM suffixed with "___XR".
7521 Return symbol if found, and NULL otherwise. */
7522
7523 struct symbol *
7524 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
7525 {
7526 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7527 struct symbol *sym;
7528
7529 if (strstr (name, "___XR") != NULL)
7530 return name_sym;
7531
7532 sym = find_old_style_renaming_symbol (name, block);
7533
7534 if (sym != NULL)
7535 return sym;
7536
7537 /* Not right yet. FIXME pnh 7/20/2007. */
7538 sym = ada_find_any_type_symbol (name);
7539 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7540 return sym;
7541 else
7542 return NULL;
7543 }
7544
7545 static struct symbol *
7546 find_old_style_renaming_symbol (const char *name, const struct block *block)
7547 {
7548 const struct symbol *function_sym = block_linkage_function (block);
7549 char *rename;
7550
7551 if (function_sym != NULL)
7552 {
7553 /* If the symbol is defined inside a function, NAME is not fully
7554 qualified. This means we need to prepend the function name
7555 as well as adding the ``___XR'' suffix to build the name of
7556 the associated renaming symbol. */
7557 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7558 /* Function names sometimes contain suffixes used
7559 for instance to qualify nested subprograms. When building
7560 the XR type name, we need to make sure that this suffix is
7561 not included. So do not include any suffix in the function
7562 name length below. */
7563 int function_name_len = ada_name_prefix_len (function_name);
7564 const int rename_len = function_name_len + 2 /* "__" */
7565 + strlen (name) + 6 /* "___XR\0" */ ;
7566
7567 /* Strip the suffix if necessary. */
7568 ada_remove_trailing_digits (function_name, &function_name_len);
7569 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7570 ada_remove_Xbn_suffix (function_name, &function_name_len);
7571
7572 /* Library-level functions are a special case, as GNAT adds
7573 a ``_ada_'' prefix to the function name to avoid namespace
7574 pollution. However, the renaming symbols themselves do not
7575 have this prefix, so we need to skip this prefix if present. */
7576 if (function_name_len > 5 /* "_ada_" */
7577 && strstr (function_name, "_ada_") == function_name)
7578 {
7579 function_name += 5;
7580 function_name_len -= 5;
7581 }
7582
7583 rename = (char *) alloca (rename_len * sizeof (char));
7584 strncpy (rename, function_name, function_name_len);
7585 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7586 "__%s___XR", name);
7587 }
7588 else
7589 {
7590 const int rename_len = strlen (name) + 6;
7591
7592 rename = (char *) alloca (rename_len * sizeof (char));
7593 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
7594 }
7595
7596 return ada_find_any_type_symbol (rename);
7597 }
7598
7599 /* Because of GNAT encoding conventions, several GDB symbols may match a
7600 given type name. If the type denoted by TYPE0 is to be preferred to
7601 that of TYPE1 for purposes of type printing, return non-zero;
7602 otherwise return 0. */
7603
7604 int
7605 ada_prefer_type (struct type *type0, struct type *type1)
7606 {
7607 if (type1 == NULL)
7608 return 1;
7609 else if (type0 == NULL)
7610 return 0;
7611 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7612 return 1;
7613 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7614 return 0;
7615 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7616 return 1;
7617 else if (ada_is_constrained_packed_array_type (type0))
7618 return 1;
7619 else if (ada_is_array_descriptor_type (type0)
7620 && !ada_is_array_descriptor_type (type1))
7621 return 1;
7622 else
7623 {
7624 const char *type0_name = type_name_no_tag (type0);
7625 const char *type1_name = type_name_no_tag (type1);
7626
7627 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7628 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7629 return 1;
7630 }
7631 return 0;
7632 }
7633
7634 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
7635 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7636
7637 const char *
7638 ada_type_name (struct type *type)
7639 {
7640 if (type == NULL)
7641 return NULL;
7642 else if (TYPE_NAME (type) != NULL)
7643 return TYPE_NAME (type);
7644 else
7645 return TYPE_TAG_NAME (type);
7646 }
7647
7648 /* Search the list of "descriptive" types associated to TYPE for a type
7649 whose name is NAME. */
7650
7651 static struct type *
7652 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7653 {
7654 struct type *result;
7655
7656 if (ada_ignore_descriptive_types_p)
7657 return NULL;
7658
7659 /* If there no descriptive-type info, then there is no parallel type
7660 to be found. */
7661 if (!HAVE_GNAT_AUX_INFO (type))
7662 return NULL;
7663
7664 result = TYPE_DESCRIPTIVE_TYPE (type);
7665 while (result != NULL)
7666 {
7667 const char *result_name = ada_type_name (result);
7668
7669 if (result_name == NULL)
7670 {
7671 warning (_("unexpected null name on descriptive type"));
7672 return NULL;
7673 }
7674
7675 /* If the names match, stop. */
7676 if (strcmp (result_name, name) == 0)
7677 break;
7678
7679 /* Otherwise, look at the next item on the list, if any. */
7680 if (HAVE_GNAT_AUX_INFO (result))
7681 result = TYPE_DESCRIPTIVE_TYPE (result);
7682 else
7683 result = NULL;
7684 }
7685
7686 /* If we didn't find a match, see whether this is a packed array. With
7687 older compilers, the descriptive type information is either absent or
7688 irrelevant when it comes to packed arrays so the above lookup fails.
7689 Fall back to using a parallel lookup by name in this case. */
7690 if (result == NULL && ada_is_constrained_packed_array_type (type))
7691 return ada_find_any_type (name);
7692
7693 return result;
7694 }
7695
7696 /* Find a parallel type to TYPE with the specified NAME, using the
7697 descriptive type taken from the debugging information, if available,
7698 and otherwise using the (slower) name-based method. */
7699
7700 static struct type *
7701 ada_find_parallel_type_with_name (struct type *type, const char *name)
7702 {
7703 struct type *result = NULL;
7704
7705 if (HAVE_GNAT_AUX_INFO (type))
7706 result = find_parallel_type_by_descriptive_type (type, name);
7707 else
7708 result = ada_find_any_type (name);
7709
7710 return result;
7711 }
7712
7713 /* Same as above, but specify the name of the parallel type by appending
7714 SUFFIX to the name of TYPE. */
7715
7716 struct type *
7717 ada_find_parallel_type (struct type *type, const char *suffix)
7718 {
7719 char *name;
7720 const char *typename = ada_type_name (type);
7721 int len;
7722
7723 if (typename == NULL)
7724 return NULL;
7725
7726 len = strlen (typename);
7727
7728 name = (char *) alloca (len + strlen (suffix) + 1);
7729
7730 strcpy (name, typename);
7731 strcpy (name + len, suffix);
7732
7733 return ada_find_parallel_type_with_name (type, name);
7734 }
7735
7736 /* If TYPE is a variable-size record type, return the corresponding template
7737 type describing its fields. Otherwise, return NULL. */
7738
7739 static struct type *
7740 dynamic_template_type (struct type *type)
7741 {
7742 type = ada_check_typedef (type);
7743
7744 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
7745 || ada_type_name (type) == NULL)
7746 return NULL;
7747 else
7748 {
7749 int len = strlen (ada_type_name (type));
7750
7751 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7752 return type;
7753 else
7754 return ada_find_parallel_type (type, "___XVE");
7755 }
7756 }
7757
7758 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7759 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7760
7761 static int
7762 is_dynamic_field (struct type *templ_type, int field_num)
7763 {
7764 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7765
7766 return name != NULL
7767 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7768 && strstr (name, "___XVL") != NULL;
7769 }
7770
7771 /* The index of the variant field of TYPE, or -1 if TYPE does not
7772 represent a variant record type. */
7773
7774 static int
7775 variant_field_index (struct type *type)
7776 {
7777 int f;
7778
7779 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7780 return -1;
7781
7782 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7783 {
7784 if (ada_is_variant_part (type, f))
7785 return f;
7786 }
7787 return -1;
7788 }
7789
7790 /* A record type with no fields. */
7791
7792 static struct type *
7793 empty_record (struct type *template)
7794 {
7795 struct type *type = alloc_type_copy (template);
7796
7797 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7798 TYPE_NFIELDS (type) = 0;
7799 TYPE_FIELDS (type) = NULL;
7800 INIT_CPLUS_SPECIFIC (type);
7801 TYPE_NAME (type) = "<empty>";
7802 TYPE_TAG_NAME (type) = NULL;
7803 TYPE_LENGTH (type) = 0;
7804 return type;
7805 }
7806
7807 /* An ordinary record type (with fixed-length fields) that describes
7808 the value of type TYPE at VALADDR or ADDRESS (see comments at
7809 the beginning of this section) VAL according to GNAT conventions.
7810 DVAL0 should describe the (portion of a) record that contains any
7811 necessary discriminants. It should be NULL if value_type (VAL) is
7812 an outer-level type (i.e., as opposed to a branch of a variant.) A
7813 variant field (unless unchecked) is replaced by a particular branch
7814 of the variant.
7815
7816 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7817 length are not statically known are discarded. As a consequence,
7818 VALADDR, ADDRESS and DVAL0 are ignored.
7819
7820 NOTE: Limitations: For now, we assume that dynamic fields and
7821 variants occupy whole numbers of bytes. However, they need not be
7822 byte-aligned. */
7823
7824 struct type *
7825 ada_template_to_fixed_record_type_1 (struct type *type,
7826 const gdb_byte *valaddr,
7827 CORE_ADDR address, struct value *dval0,
7828 int keep_dynamic_fields)
7829 {
7830 struct value *mark = value_mark ();
7831 struct value *dval;
7832 struct type *rtype;
7833 int nfields, bit_len;
7834 int variant_field;
7835 long off;
7836 int fld_bit_len;
7837 int f;
7838
7839 /* Compute the number of fields in this record type that are going
7840 to be processed: unless keep_dynamic_fields, this includes only
7841 fields whose position and length are static will be processed. */
7842 if (keep_dynamic_fields)
7843 nfields = TYPE_NFIELDS (type);
7844 else
7845 {
7846 nfields = 0;
7847 while (nfields < TYPE_NFIELDS (type)
7848 && !ada_is_variant_part (type, nfields)
7849 && !is_dynamic_field (type, nfields))
7850 nfields++;
7851 }
7852
7853 rtype = alloc_type_copy (type);
7854 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7855 INIT_CPLUS_SPECIFIC (rtype);
7856 TYPE_NFIELDS (rtype) = nfields;
7857 TYPE_FIELDS (rtype) = (struct field *)
7858 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7859 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7860 TYPE_NAME (rtype) = ada_type_name (type);
7861 TYPE_TAG_NAME (rtype) = NULL;
7862 TYPE_FIXED_INSTANCE (rtype) = 1;
7863
7864 off = 0;
7865 bit_len = 0;
7866 variant_field = -1;
7867
7868 for (f = 0; f < nfields; f += 1)
7869 {
7870 off = align_value (off, field_alignment (type, f))
7871 + TYPE_FIELD_BITPOS (type, f);
7872 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
7873 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7874
7875 if (ada_is_variant_part (type, f))
7876 {
7877 variant_field = f;
7878 fld_bit_len = 0;
7879 }
7880 else if (is_dynamic_field (type, f))
7881 {
7882 const gdb_byte *field_valaddr = valaddr;
7883 CORE_ADDR field_address = address;
7884 struct type *field_type =
7885 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7886
7887 if (dval0 == NULL)
7888 {
7889 /* rtype's length is computed based on the run-time
7890 value of discriminants. If the discriminants are not
7891 initialized, the type size may be completely bogus and
7892 GDB may fail to allocate a value for it. So check the
7893 size first before creating the value. */
7894 check_size (rtype);
7895 /* Using plain value_from_contents_and_address here
7896 causes problems because we will end up trying to
7897 resolve a type that is currently being
7898 constructed. */
7899 dval = value_from_contents_and_address_unresolved (rtype,
7900 valaddr,
7901 address);
7902 rtype = value_type (dval);
7903 }
7904 else
7905 dval = dval0;
7906
7907 /* If the type referenced by this field is an aligner type, we need
7908 to unwrap that aligner type, because its size might not be set.
7909 Keeping the aligner type would cause us to compute the wrong
7910 size for this field, impacting the offset of the all the fields
7911 that follow this one. */
7912 if (ada_is_aligner_type (field_type))
7913 {
7914 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7915
7916 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7917 field_address = cond_offset_target (field_address, field_offset);
7918 field_type = ada_aligned_type (field_type);
7919 }
7920
7921 field_valaddr = cond_offset_host (field_valaddr,
7922 off / TARGET_CHAR_BIT);
7923 field_address = cond_offset_target (field_address,
7924 off / TARGET_CHAR_BIT);
7925
7926 /* Get the fixed type of the field. Note that, in this case,
7927 we do not want to get the real type out of the tag: if
7928 the current field is the parent part of a tagged record,
7929 we will get the tag of the object. Clearly wrong: the real
7930 type of the parent is not the real type of the child. We
7931 would end up in an infinite loop. */
7932 field_type = ada_get_base_type (field_type);
7933 field_type = ada_to_fixed_type (field_type, field_valaddr,
7934 field_address, dval, 0);
7935 /* If the field size is already larger than the maximum
7936 object size, then the record itself will necessarily
7937 be larger than the maximum object size. We need to make
7938 this check now, because the size might be so ridiculously
7939 large (due to an uninitialized variable in the inferior)
7940 that it would cause an overflow when adding it to the
7941 record size. */
7942 check_size (field_type);
7943
7944 TYPE_FIELD_TYPE (rtype, f) = field_type;
7945 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7946 /* The multiplication can potentially overflow. But because
7947 the field length has been size-checked just above, and
7948 assuming that the maximum size is a reasonable value,
7949 an overflow should not happen in practice. So rather than
7950 adding overflow recovery code to this already complex code,
7951 we just assume that it's not going to happen. */
7952 fld_bit_len =
7953 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7954 }
7955 else
7956 {
7957 /* Note: If this field's type is a typedef, it is important
7958 to preserve the typedef layer.
7959
7960 Otherwise, we might be transforming a typedef to a fat
7961 pointer (encoding a pointer to an unconstrained array),
7962 into a basic fat pointer (encoding an unconstrained
7963 array). As both types are implemented using the same
7964 structure, the typedef is the only clue which allows us
7965 to distinguish between the two options. Stripping it
7966 would prevent us from printing this field appropriately. */
7967 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
7968 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7969 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7970 fld_bit_len =
7971 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7972 else
7973 {
7974 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7975
7976 /* We need to be careful of typedefs when computing
7977 the length of our field. If this is a typedef,
7978 get the length of the target type, not the length
7979 of the typedef. */
7980 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7981 field_type = ada_typedef_target_type (field_type);
7982
7983 fld_bit_len =
7984 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7985 }
7986 }
7987 if (off + fld_bit_len > bit_len)
7988 bit_len = off + fld_bit_len;
7989 off += fld_bit_len;
7990 TYPE_LENGTH (rtype) =
7991 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7992 }
7993
7994 /* We handle the variant part, if any, at the end because of certain
7995 odd cases in which it is re-ordered so as NOT to be the last field of
7996 the record. This can happen in the presence of representation
7997 clauses. */
7998 if (variant_field >= 0)
7999 {
8000 struct type *branch_type;
8001
8002 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8003
8004 if (dval0 == NULL)
8005 {
8006 /* Using plain value_from_contents_and_address here causes
8007 problems because we will end up trying to resolve a type
8008 that is currently being constructed. */
8009 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8010 address);
8011 rtype = value_type (dval);
8012 }
8013 else
8014 dval = dval0;
8015
8016 branch_type =
8017 to_fixed_variant_branch_type
8018 (TYPE_FIELD_TYPE (type, variant_field),
8019 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8020 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8021 if (branch_type == NULL)
8022 {
8023 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8024 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8025 TYPE_NFIELDS (rtype) -= 1;
8026 }
8027 else
8028 {
8029 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8030 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8031 fld_bit_len =
8032 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8033 TARGET_CHAR_BIT;
8034 if (off + fld_bit_len > bit_len)
8035 bit_len = off + fld_bit_len;
8036 TYPE_LENGTH (rtype) =
8037 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8038 }
8039 }
8040
8041 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8042 should contain the alignment of that record, which should be a strictly
8043 positive value. If null or negative, then something is wrong, most
8044 probably in the debug info. In that case, we don't round up the size
8045 of the resulting type. If this record is not part of another structure,
8046 the current RTYPE length might be good enough for our purposes. */
8047 if (TYPE_LENGTH (type) <= 0)
8048 {
8049 if (TYPE_NAME (rtype))
8050 warning (_("Invalid type size for `%s' detected: %d."),
8051 TYPE_NAME (rtype), TYPE_LENGTH (type));
8052 else
8053 warning (_("Invalid type size for <unnamed> detected: %d."),
8054 TYPE_LENGTH (type));
8055 }
8056 else
8057 {
8058 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8059 TYPE_LENGTH (type));
8060 }
8061
8062 value_free_to_mark (mark);
8063 if (TYPE_LENGTH (rtype) > varsize_limit)
8064 error (_("record type with dynamic size is larger than varsize-limit"));
8065 return rtype;
8066 }
8067
8068 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8069 of 1. */
8070
8071 static struct type *
8072 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8073 CORE_ADDR address, struct value *dval0)
8074 {
8075 return ada_template_to_fixed_record_type_1 (type, valaddr,
8076 address, dval0, 1);
8077 }
8078
8079 /* An ordinary record type in which ___XVL-convention fields and
8080 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8081 static approximations, containing all possible fields. Uses
8082 no runtime values. Useless for use in values, but that's OK,
8083 since the results are used only for type determinations. Works on both
8084 structs and unions. Representation note: to save space, we memorize
8085 the result of this function in the TYPE_TARGET_TYPE of the
8086 template type. */
8087
8088 static struct type *
8089 template_to_static_fixed_type (struct type *type0)
8090 {
8091 struct type *type;
8092 int nfields;
8093 int f;
8094
8095 if (TYPE_TARGET_TYPE (type0) != NULL)
8096 return TYPE_TARGET_TYPE (type0);
8097
8098 nfields = TYPE_NFIELDS (type0);
8099 type = type0;
8100
8101 for (f = 0; f < nfields; f += 1)
8102 {
8103 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
8104 struct type *new_type;
8105
8106 if (is_dynamic_field (type0, f))
8107 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8108 else
8109 new_type = static_unwrap_type (field_type);
8110 if (type == type0 && new_type != field_type)
8111 {
8112 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8113 TYPE_CODE (type) = TYPE_CODE (type0);
8114 INIT_CPLUS_SPECIFIC (type);
8115 TYPE_NFIELDS (type) = nfields;
8116 TYPE_FIELDS (type) = (struct field *)
8117 TYPE_ALLOC (type, nfields * sizeof (struct field));
8118 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8119 sizeof (struct field) * nfields);
8120 TYPE_NAME (type) = ada_type_name (type0);
8121 TYPE_TAG_NAME (type) = NULL;
8122 TYPE_FIXED_INSTANCE (type) = 1;
8123 TYPE_LENGTH (type) = 0;
8124 }
8125 TYPE_FIELD_TYPE (type, f) = new_type;
8126 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8127 }
8128 return type;
8129 }
8130
8131 /* Given an object of type TYPE whose contents are at VALADDR and
8132 whose address in memory is ADDRESS, returns a revision of TYPE,
8133 which should be a non-dynamic-sized record, in which the variant
8134 part, if any, is replaced with the appropriate branch. Looks
8135 for discriminant values in DVAL0, which can be NULL if the record
8136 contains the necessary discriminant values. */
8137
8138 static struct type *
8139 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8140 CORE_ADDR address, struct value *dval0)
8141 {
8142 struct value *mark = value_mark ();
8143 struct value *dval;
8144 struct type *rtype;
8145 struct type *branch_type;
8146 int nfields = TYPE_NFIELDS (type);
8147 int variant_field = variant_field_index (type);
8148
8149 if (variant_field == -1)
8150 return type;
8151
8152 if (dval0 == NULL)
8153 {
8154 dval = value_from_contents_and_address (type, valaddr, address);
8155 type = value_type (dval);
8156 }
8157 else
8158 dval = dval0;
8159
8160 rtype = alloc_type_copy (type);
8161 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8162 INIT_CPLUS_SPECIFIC (rtype);
8163 TYPE_NFIELDS (rtype) = nfields;
8164 TYPE_FIELDS (rtype) =
8165 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8166 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8167 sizeof (struct field) * nfields);
8168 TYPE_NAME (rtype) = ada_type_name (type);
8169 TYPE_TAG_NAME (rtype) = NULL;
8170 TYPE_FIXED_INSTANCE (rtype) = 1;
8171 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8172
8173 branch_type = to_fixed_variant_branch_type
8174 (TYPE_FIELD_TYPE (type, variant_field),
8175 cond_offset_host (valaddr,
8176 TYPE_FIELD_BITPOS (type, variant_field)
8177 / TARGET_CHAR_BIT),
8178 cond_offset_target (address,
8179 TYPE_FIELD_BITPOS (type, variant_field)
8180 / TARGET_CHAR_BIT), dval);
8181 if (branch_type == NULL)
8182 {
8183 int f;
8184
8185 for (f = variant_field + 1; f < nfields; f += 1)
8186 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8187 TYPE_NFIELDS (rtype) -= 1;
8188 }
8189 else
8190 {
8191 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8192 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8193 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8194 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8195 }
8196 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8197
8198 value_free_to_mark (mark);
8199 return rtype;
8200 }
8201
8202 /* An ordinary record type (with fixed-length fields) that describes
8203 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8204 beginning of this section]. Any necessary discriminants' values
8205 should be in DVAL, a record value; it may be NULL if the object
8206 at ADDR itself contains any necessary discriminant values.
8207 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8208 values from the record are needed. Except in the case that DVAL,
8209 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8210 unchecked) is replaced by a particular branch of the variant.
8211
8212 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8213 is questionable and may be removed. It can arise during the
8214 processing of an unconstrained-array-of-record type where all the
8215 variant branches have exactly the same size. This is because in
8216 such cases, the compiler does not bother to use the XVS convention
8217 when encoding the record. I am currently dubious of this
8218 shortcut and suspect the compiler should be altered. FIXME. */
8219
8220 static struct type *
8221 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8222 CORE_ADDR address, struct value *dval)
8223 {
8224 struct type *templ_type;
8225
8226 if (TYPE_FIXED_INSTANCE (type0))
8227 return type0;
8228
8229 templ_type = dynamic_template_type (type0);
8230
8231 if (templ_type != NULL)
8232 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8233 else if (variant_field_index (type0) >= 0)
8234 {
8235 if (dval == NULL && valaddr == NULL && address == 0)
8236 return type0;
8237 return to_record_with_fixed_variant_part (type0, valaddr, address,
8238 dval);
8239 }
8240 else
8241 {
8242 TYPE_FIXED_INSTANCE (type0) = 1;
8243 return type0;
8244 }
8245
8246 }
8247
8248 /* An ordinary record type (with fixed-length fields) that describes
8249 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8250 union type. Any necessary discriminants' values should be in DVAL,
8251 a record value. That is, this routine selects the appropriate
8252 branch of the union at ADDR according to the discriminant value
8253 indicated in the union's type name. Returns VAR_TYPE0 itself if
8254 it represents a variant subject to a pragma Unchecked_Union. */
8255
8256 static struct type *
8257 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8258 CORE_ADDR address, struct value *dval)
8259 {
8260 int which;
8261 struct type *templ_type;
8262 struct type *var_type;
8263
8264 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8265 var_type = TYPE_TARGET_TYPE (var_type0);
8266 else
8267 var_type = var_type0;
8268
8269 templ_type = ada_find_parallel_type (var_type, "___XVU");
8270
8271 if (templ_type != NULL)
8272 var_type = templ_type;
8273
8274 if (is_unchecked_variant (var_type, value_type (dval)))
8275 return var_type0;
8276 which =
8277 ada_which_variant_applies (var_type,
8278 value_type (dval), value_contents (dval));
8279
8280 if (which < 0)
8281 return empty_record (var_type);
8282 else if (is_dynamic_field (var_type, which))
8283 return to_fixed_record_type
8284 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8285 valaddr, address, dval);
8286 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8287 return
8288 to_fixed_record_type
8289 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8290 else
8291 return TYPE_FIELD_TYPE (var_type, which);
8292 }
8293
8294 /* Assuming that TYPE0 is an array type describing the type of a value
8295 at ADDR, and that DVAL describes a record containing any
8296 discriminants used in TYPE0, returns a type for the value that
8297 contains no dynamic components (that is, no components whose sizes
8298 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8299 true, gives an error message if the resulting type's size is over
8300 varsize_limit. */
8301
8302 static struct type *
8303 to_fixed_array_type (struct type *type0, struct value *dval,
8304 int ignore_too_big)
8305 {
8306 struct type *index_type_desc;
8307 struct type *result;
8308 int constrained_packed_array_p;
8309
8310 type0 = ada_check_typedef (type0);
8311 if (TYPE_FIXED_INSTANCE (type0))
8312 return type0;
8313
8314 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8315 if (constrained_packed_array_p)
8316 type0 = decode_constrained_packed_array_type (type0);
8317
8318 index_type_desc = ada_find_parallel_type (type0, "___XA");
8319 ada_fixup_array_indexes_type (index_type_desc);
8320 if (index_type_desc == NULL)
8321 {
8322 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8323
8324 /* NOTE: elt_type---the fixed version of elt_type0---should never
8325 depend on the contents of the array in properly constructed
8326 debugging data. */
8327 /* Create a fixed version of the array element type.
8328 We're not providing the address of an element here,
8329 and thus the actual object value cannot be inspected to do
8330 the conversion. This should not be a problem, since arrays of
8331 unconstrained objects are not allowed. In particular, all
8332 the elements of an array of a tagged type should all be of
8333 the same type specified in the debugging info. No need to
8334 consult the object tag. */
8335 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8336
8337 /* Make sure we always create a new array type when dealing with
8338 packed array types, since we're going to fix-up the array
8339 type length and element bitsize a little further down. */
8340 if (elt_type0 == elt_type && !constrained_packed_array_p)
8341 result = type0;
8342 else
8343 result = create_array_type (alloc_type_copy (type0),
8344 elt_type, TYPE_INDEX_TYPE (type0));
8345 }
8346 else
8347 {
8348 int i;
8349 struct type *elt_type0;
8350
8351 elt_type0 = type0;
8352 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8353 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8354
8355 /* NOTE: result---the fixed version of elt_type0---should never
8356 depend on the contents of the array in properly constructed
8357 debugging data. */
8358 /* Create a fixed version of the array element type.
8359 We're not providing the address of an element here,
8360 and thus the actual object value cannot be inspected to do
8361 the conversion. This should not be a problem, since arrays of
8362 unconstrained objects are not allowed. In particular, all
8363 the elements of an array of a tagged type should all be of
8364 the same type specified in the debugging info. No need to
8365 consult the object tag. */
8366 result =
8367 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8368
8369 elt_type0 = type0;
8370 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8371 {
8372 struct type *range_type =
8373 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8374
8375 result = create_array_type (alloc_type_copy (elt_type0),
8376 result, range_type);
8377 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8378 }
8379 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8380 error (_("array type with dynamic size is larger than varsize-limit"));
8381 }
8382
8383 /* We want to preserve the type name. This can be useful when
8384 trying to get the type name of a value that has already been
8385 printed (for instance, if the user did "print VAR; whatis $". */
8386 TYPE_NAME (result) = TYPE_NAME (type0);
8387
8388 if (constrained_packed_array_p)
8389 {
8390 /* So far, the resulting type has been created as if the original
8391 type was a regular (non-packed) array type. As a result, the
8392 bitsize of the array elements needs to be set again, and the array
8393 length needs to be recomputed based on that bitsize. */
8394 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8395 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8396
8397 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8398 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8399 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8400 TYPE_LENGTH (result)++;
8401 }
8402
8403 TYPE_FIXED_INSTANCE (result) = 1;
8404 return result;
8405 }
8406
8407
8408 /* A standard type (containing no dynamically sized components)
8409 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8410 DVAL describes a record containing any discriminants used in TYPE0,
8411 and may be NULL if there are none, or if the object of type TYPE at
8412 ADDRESS or in VALADDR contains these discriminants.
8413
8414 If CHECK_TAG is not null, in the case of tagged types, this function
8415 attempts to locate the object's tag and use it to compute the actual
8416 type. However, when ADDRESS is null, we cannot use it to determine the
8417 location of the tag, and therefore compute the tagged type's actual type.
8418 So we return the tagged type without consulting the tag. */
8419
8420 static struct type *
8421 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8422 CORE_ADDR address, struct value *dval, int check_tag)
8423 {
8424 type = ada_check_typedef (type);
8425 switch (TYPE_CODE (type))
8426 {
8427 default:
8428 return type;
8429 case TYPE_CODE_STRUCT:
8430 {
8431 struct type *static_type = to_static_fixed_type (type);
8432 struct type *fixed_record_type =
8433 to_fixed_record_type (type, valaddr, address, NULL);
8434
8435 /* If STATIC_TYPE is a tagged type and we know the object's address,
8436 then we can determine its tag, and compute the object's actual
8437 type from there. Note that we have to use the fixed record
8438 type (the parent part of the record may have dynamic fields
8439 and the way the location of _tag is expressed may depend on
8440 them). */
8441
8442 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8443 {
8444 struct value *tag =
8445 value_tag_from_contents_and_address
8446 (fixed_record_type,
8447 valaddr,
8448 address);
8449 struct type *real_type = type_from_tag (tag);
8450 struct value *obj =
8451 value_from_contents_and_address (fixed_record_type,
8452 valaddr,
8453 address);
8454 fixed_record_type = value_type (obj);
8455 if (real_type != NULL)
8456 return to_fixed_record_type
8457 (real_type, NULL,
8458 value_address (ada_tag_value_at_base_address (obj)), NULL);
8459 }
8460
8461 /* Check to see if there is a parallel ___XVZ variable.
8462 If there is, then it provides the actual size of our type. */
8463 else if (ada_type_name (fixed_record_type) != NULL)
8464 {
8465 const char *name = ada_type_name (fixed_record_type);
8466 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
8467 int xvz_found = 0;
8468 LONGEST size;
8469
8470 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8471 size = get_int_var_value (xvz_name, &xvz_found);
8472 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8473 {
8474 fixed_record_type = copy_type (fixed_record_type);
8475 TYPE_LENGTH (fixed_record_type) = size;
8476
8477 /* The FIXED_RECORD_TYPE may have be a stub. We have
8478 observed this when the debugging info is STABS, and
8479 apparently it is something that is hard to fix.
8480
8481 In practice, we don't need the actual type definition
8482 at all, because the presence of the XVZ variable allows us
8483 to assume that there must be a XVS type as well, which we
8484 should be able to use later, when we need the actual type
8485 definition.
8486
8487 In the meantime, pretend that the "fixed" type we are
8488 returning is NOT a stub, because this can cause trouble
8489 when using this type to create new types targeting it.
8490 Indeed, the associated creation routines often check
8491 whether the target type is a stub and will try to replace
8492 it, thus using a type with the wrong size. This, in turn,
8493 might cause the new type to have the wrong size too.
8494 Consider the case of an array, for instance, where the size
8495 of the array is computed from the number of elements in
8496 our array multiplied by the size of its element. */
8497 TYPE_STUB (fixed_record_type) = 0;
8498 }
8499 }
8500 return fixed_record_type;
8501 }
8502 case TYPE_CODE_ARRAY:
8503 return to_fixed_array_type (type, dval, 1);
8504 case TYPE_CODE_UNION:
8505 if (dval == NULL)
8506 return type;
8507 else
8508 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8509 }
8510 }
8511
8512 /* The same as ada_to_fixed_type_1, except that it preserves the type
8513 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8514
8515 The typedef layer needs be preserved in order to differentiate between
8516 arrays and array pointers when both types are implemented using the same
8517 fat pointer. In the array pointer case, the pointer is encoded as
8518 a typedef of the pointer type. For instance, considering:
8519
8520 type String_Access is access String;
8521 S1 : String_Access := null;
8522
8523 To the debugger, S1 is defined as a typedef of type String. But
8524 to the user, it is a pointer. So if the user tries to print S1,
8525 we should not dereference the array, but print the array address
8526 instead.
8527
8528 If we didn't preserve the typedef layer, we would lose the fact that
8529 the type is to be presented as a pointer (needs de-reference before
8530 being printed). And we would also use the source-level type name. */
8531
8532 struct type *
8533 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8534 CORE_ADDR address, struct value *dval, int check_tag)
8535
8536 {
8537 struct type *fixed_type =
8538 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8539
8540 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8541 then preserve the typedef layer.
8542
8543 Implementation note: We can only check the main-type portion of
8544 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8545 from TYPE now returns a type that has the same instance flags
8546 as TYPE. For instance, if TYPE is a "typedef const", and its
8547 target type is a "struct", then the typedef elimination will return
8548 a "const" version of the target type. See check_typedef for more
8549 details about how the typedef layer elimination is done.
8550
8551 brobecker/2010-11-19: It seems to me that the only case where it is
8552 useful to preserve the typedef layer is when dealing with fat pointers.
8553 Perhaps, we could add a check for that and preserve the typedef layer
8554 only in that situation. But this seems unecessary so far, probably
8555 because we call check_typedef/ada_check_typedef pretty much everywhere.
8556 */
8557 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8558 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8559 == TYPE_MAIN_TYPE (fixed_type)))
8560 return type;
8561
8562 return fixed_type;
8563 }
8564
8565 /* A standard (static-sized) type corresponding as well as possible to
8566 TYPE0, but based on no runtime data. */
8567
8568 static struct type *
8569 to_static_fixed_type (struct type *type0)
8570 {
8571 struct type *type;
8572
8573 if (type0 == NULL)
8574 return NULL;
8575
8576 if (TYPE_FIXED_INSTANCE (type0))
8577 return type0;
8578
8579 type0 = ada_check_typedef (type0);
8580
8581 switch (TYPE_CODE (type0))
8582 {
8583 default:
8584 return type0;
8585 case TYPE_CODE_STRUCT:
8586 type = dynamic_template_type (type0);
8587 if (type != NULL)
8588 return template_to_static_fixed_type (type);
8589 else
8590 return template_to_static_fixed_type (type0);
8591 case TYPE_CODE_UNION:
8592 type = ada_find_parallel_type (type0, "___XVU");
8593 if (type != NULL)
8594 return template_to_static_fixed_type (type);
8595 else
8596 return template_to_static_fixed_type (type0);
8597 }
8598 }
8599
8600 /* A static approximation of TYPE with all type wrappers removed. */
8601
8602 static struct type *
8603 static_unwrap_type (struct type *type)
8604 {
8605 if (ada_is_aligner_type (type))
8606 {
8607 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
8608 if (ada_type_name (type1) == NULL)
8609 TYPE_NAME (type1) = ada_type_name (type);
8610
8611 return static_unwrap_type (type1);
8612 }
8613 else
8614 {
8615 struct type *raw_real_type = ada_get_base_type (type);
8616
8617 if (raw_real_type == type)
8618 return type;
8619 else
8620 return to_static_fixed_type (raw_real_type);
8621 }
8622 }
8623
8624 /* In some cases, incomplete and private types require
8625 cross-references that are not resolved as records (for example,
8626 type Foo;
8627 type FooP is access Foo;
8628 V: FooP;
8629 type Foo is array ...;
8630 ). In these cases, since there is no mechanism for producing
8631 cross-references to such types, we instead substitute for FooP a
8632 stub enumeration type that is nowhere resolved, and whose tag is
8633 the name of the actual type. Call these types "non-record stubs". */
8634
8635 /* A type equivalent to TYPE that is not a non-record stub, if one
8636 exists, otherwise TYPE. */
8637
8638 struct type *
8639 ada_check_typedef (struct type *type)
8640 {
8641 if (type == NULL)
8642 return NULL;
8643
8644 /* If our type is a typedef type of a fat pointer, then we're done.
8645 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8646 what allows us to distinguish between fat pointers that represent
8647 array types, and fat pointers that represent array access types
8648 (in both cases, the compiler implements them as fat pointers). */
8649 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8650 && is_thick_pntr (ada_typedef_target_type (type)))
8651 return type;
8652
8653 CHECK_TYPEDEF (type);
8654 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
8655 || !TYPE_STUB (type)
8656 || TYPE_TAG_NAME (type) == NULL)
8657 return type;
8658 else
8659 {
8660 const char *name = TYPE_TAG_NAME (type);
8661 struct type *type1 = ada_find_any_type (name);
8662
8663 if (type1 == NULL)
8664 return type;
8665
8666 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8667 stubs pointing to arrays, as we don't create symbols for array
8668 types, only for the typedef-to-array types). If that's the case,
8669 strip the typedef layer. */
8670 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8671 type1 = ada_check_typedef (type1);
8672
8673 return type1;
8674 }
8675 }
8676
8677 /* A value representing the data at VALADDR/ADDRESS as described by
8678 type TYPE0, but with a standard (static-sized) type that correctly
8679 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8680 type, then return VAL0 [this feature is simply to avoid redundant
8681 creation of struct values]. */
8682
8683 static struct value *
8684 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8685 struct value *val0)
8686 {
8687 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8688
8689 if (type == type0 && val0 != NULL)
8690 return val0;
8691 else
8692 return value_from_contents_and_address (type, 0, address);
8693 }
8694
8695 /* A value representing VAL, but with a standard (static-sized) type
8696 that correctly describes it. Does not necessarily create a new
8697 value. */
8698
8699 struct value *
8700 ada_to_fixed_value (struct value *val)
8701 {
8702 val = unwrap_value (val);
8703 val = ada_to_fixed_value_create (value_type (val),
8704 value_address (val),
8705 val);
8706 return val;
8707 }
8708 \f
8709
8710 /* Attributes */
8711
8712 /* Table mapping attribute numbers to names.
8713 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8714
8715 static const char *attribute_names[] = {
8716 "<?>",
8717
8718 "first",
8719 "last",
8720 "length",
8721 "image",
8722 "max",
8723 "min",
8724 "modulus",
8725 "pos",
8726 "size",
8727 "tag",
8728 "val",
8729 0
8730 };
8731
8732 const char *
8733 ada_attribute_name (enum exp_opcode n)
8734 {
8735 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8736 return attribute_names[n - OP_ATR_FIRST + 1];
8737 else
8738 return attribute_names[0];
8739 }
8740
8741 /* Evaluate the 'POS attribute applied to ARG. */
8742
8743 static LONGEST
8744 pos_atr (struct value *arg)
8745 {
8746 struct value *val = coerce_ref (arg);
8747 struct type *type = value_type (val);
8748
8749 if (!discrete_type_p (type))
8750 error (_("'POS only defined on discrete types"));
8751
8752 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8753 {
8754 int i;
8755 LONGEST v = value_as_long (val);
8756
8757 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
8758 {
8759 if (v == TYPE_FIELD_ENUMVAL (type, i))
8760 return i;
8761 }
8762 error (_("enumeration value is invalid: can't find 'POS"));
8763 }
8764 else
8765 return value_as_long (val);
8766 }
8767
8768 static struct value *
8769 value_pos_atr (struct type *type, struct value *arg)
8770 {
8771 return value_from_longest (type, pos_atr (arg));
8772 }
8773
8774 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8775
8776 static struct value *
8777 value_val_atr (struct type *type, struct value *arg)
8778 {
8779 if (!discrete_type_p (type))
8780 error (_("'VAL only defined on discrete types"));
8781 if (!integer_type_p (value_type (arg)))
8782 error (_("'VAL requires integral argument"));
8783
8784 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8785 {
8786 long pos = value_as_long (arg);
8787
8788 if (pos < 0 || pos >= TYPE_NFIELDS (type))
8789 error (_("argument to 'VAL out of range"));
8790 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
8791 }
8792 else
8793 return value_from_longest (type, value_as_long (arg));
8794 }
8795 \f
8796
8797 /* Evaluation */
8798
8799 /* True if TYPE appears to be an Ada character type.
8800 [At the moment, this is true only for Character and Wide_Character;
8801 It is a heuristic test that could stand improvement]. */
8802
8803 int
8804 ada_is_character_type (struct type *type)
8805 {
8806 const char *name;
8807
8808 /* If the type code says it's a character, then assume it really is,
8809 and don't check any further. */
8810 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8811 return 1;
8812
8813 /* Otherwise, assume it's a character type iff it is a discrete type
8814 with a known character type name. */
8815 name = ada_type_name (type);
8816 return (name != NULL
8817 && (TYPE_CODE (type) == TYPE_CODE_INT
8818 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8819 && (strcmp (name, "character") == 0
8820 || strcmp (name, "wide_character") == 0
8821 || strcmp (name, "wide_wide_character") == 0
8822 || strcmp (name, "unsigned char") == 0));
8823 }
8824
8825 /* True if TYPE appears to be an Ada string type. */
8826
8827 int
8828 ada_is_string_type (struct type *type)
8829 {
8830 type = ada_check_typedef (type);
8831 if (type != NULL
8832 && TYPE_CODE (type) != TYPE_CODE_PTR
8833 && (ada_is_simple_array_type (type)
8834 || ada_is_array_descriptor_type (type))
8835 && ada_array_arity (type) == 1)
8836 {
8837 struct type *elttype = ada_array_element_type (type, 1);
8838
8839 return ada_is_character_type (elttype);
8840 }
8841 else
8842 return 0;
8843 }
8844
8845 /* The compiler sometimes provides a parallel XVS type for a given
8846 PAD type. Normally, it is safe to follow the PAD type directly,
8847 but older versions of the compiler have a bug that causes the offset
8848 of its "F" field to be wrong. Following that field in that case
8849 would lead to incorrect results, but this can be worked around
8850 by ignoring the PAD type and using the associated XVS type instead.
8851
8852 Set to True if the debugger should trust the contents of PAD types.
8853 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8854 static int trust_pad_over_xvs = 1;
8855
8856 /* True if TYPE is a struct type introduced by the compiler to force the
8857 alignment of a value. Such types have a single field with a
8858 distinctive name. */
8859
8860 int
8861 ada_is_aligner_type (struct type *type)
8862 {
8863 type = ada_check_typedef (type);
8864
8865 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
8866 return 0;
8867
8868 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
8869 && TYPE_NFIELDS (type) == 1
8870 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
8871 }
8872
8873 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
8874 the parallel type. */
8875
8876 struct type *
8877 ada_get_base_type (struct type *raw_type)
8878 {
8879 struct type *real_type_namer;
8880 struct type *raw_real_type;
8881
8882 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8883 return raw_type;
8884
8885 if (ada_is_aligner_type (raw_type))
8886 /* The encoding specifies that we should always use the aligner type.
8887 So, even if this aligner type has an associated XVS type, we should
8888 simply ignore it.
8889
8890 According to the compiler gurus, an XVS type parallel to an aligner
8891 type may exist because of a stabs limitation. In stabs, aligner
8892 types are empty because the field has a variable-sized type, and
8893 thus cannot actually be used as an aligner type. As a result,
8894 we need the associated parallel XVS type to decode the type.
8895 Since the policy in the compiler is to not change the internal
8896 representation based on the debugging info format, we sometimes
8897 end up having a redundant XVS type parallel to the aligner type. */
8898 return raw_type;
8899
8900 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
8901 if (real_type_namer == NULL
8902 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8903 || TYPE_NFIELDS (real_type_namer) != 1)
8904 return raw_type;
8905
8906 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8907 {
8908 /* This is an older encoding form where the base type needs to be
8909 looked up by name. We prefer the newer enconding because it is
8910 more efficient. */
8911 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8912 if (raw_real_type == NULL)
8913 return raw_type;
8914 else
8915 return raw_real_type;
8916 }
8917
8918 /* The field in our XVS type is a reference to the base type. */
8919 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
8920 }
8921
8922 /* The type of value designated by TYPE, with all aligners removed. */
8923
8924 struct type *
8925 ada_aligned_type (struct type *type)
8926 {
8927 if (ada_is_aligner_type (type))
8928 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8929 else
8930 return ada_get_base_type (type);
8931 }
8932
8933
8934 /* The address of the aligned value in an object at address VALADDR
8935 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
8936
8937 const gdb_byte *
8938 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
8939 {
8940 if (ada_is_aligner_type (type))
8941 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
8942 valaddr +
8943 TYPE_FIELD_BITPOS (type,
8944 0) / TARGET_CHAR_BIT);
8945 else
8946 return valaddr;
8947 }
8948
8949
8950
8951 /* The printed representation of an enumeration literal with encoded
8952 name NAME. The value is good to the next call of ada_enum_name. */
8953 const char *
8954 ada_enum_name (const char *name)
8955 {
8956 static char *result;
8957 static size_t result_len = 0;
8958 char *tmp;
8959
8960 /* First, unqualify the enumeration name:
8961 1. Search for the last '.' character. If we find one, then skip
8962 all the preceding characters, the unqualified name starts
8963 right after that dot.
8964 2. Otherwise, we may be debugging on a target where the compiler
8965 translates dots into "__". Search forward for double underscores,
8966 but stop searching when we hit an overloading suffix, which is
8967 of the form "__" followed by digits. */
8968
8969 tmp = strrchr (name, '.');
8970 if (tmp != NULL)
8971 name = tmp + 1;
8972 else
8973 {
8974 while ((tmp = strstr (name, "__")) != NULL)
8975 {
8976 if (isdigit (tmp[2]))
8977 break;
8978 else
8979 name = tmp + 2;
8980 }
8981 }
8982
8983 if (name[0] == 'Q')
8984 {
8985 int v;
8986
8987 if (name[1] == 'U' || name[1] == 'W')
8988 {
8989 if (sscanf (name + 2, "%x", &v) != 1)
8990 return name;
8991 }
8992 else
8993 return name;
8994
8995 GROW_VECT (result, result_len, 16);
8996 if (isascii (v) && isprint (v))
8997 xsnprintf (result, result_len, "'%c'", v);
8998 else if (name[1] == 'U')
8999 xsnprintf (result, result_len, "[\"%02x\"]", v);
9000 else
9001 xsnprintf (result, result_len, "[\"%04x\"]", v);
9002
9003 return result;
9004 }
9005 else
9006 {
9007 tmp = strstr (name, "__");
9008 if (tmp == NULL)
9009 tmp = strstr (name, "$");
9010 if (tmp != NULL)
9011 {
9012 GROW_VECT (result, result_len, tmp - name + 1);
9013 strncpy (result, name, tmp - name);
9014 result[tmp - name] = '\0';
9015 return result;
9016 }
9017
9018 return name;
9019 }
9020 }
9021
9022 /* Evaluate the subexpression of EXP starting at *POS as for
9023 evaluate_type, updating *POS to point just past the evaluated
9024 expression. */
9025
9026 static struct value *
9027 evaluate_subexp_type (struct expression *exp, int *pos)
9028 {
9029 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9030 }
9031
9032 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9033 value it wraps. */
9034
9035 static struct value *
9036 unwrap_value (struct value *val)
9037 {
9038 struct type *type = ada_check_typedef (value_type (val));
9039
9040 if (ada_is_aligner_type (type))
9041 {
9042 struct value *v = ada_value_struct_elt (val, "F", 0);
9043 struct type *val_type = ada_check_typedef (value_type (v));
9044
9045 if (ada_type_name (val_type) == NULL)
9046 TYPE_NAME (val_type) = ada_type_name (type);
9047
9048 return unwrap_value (v);
9049 }
9050 else
9051 {
9052 struct type *raw_real_type =
9053 ada_check_typedef (ada_get_base_type (type));
9054
9055 /* If there is no parallel XVS or XVE type, then the value is
9056 already unwrapped. Return it without further modification. */
9057 if ((type == raw_real_type)
9058 && ada_find_parallel_type (type, "___XVE") == NULL)
9059 return val;
9060
9061 return
9062 coerce_unspec_val_to_type
9063 (val, ada_to_fixed_type (raw_real_type, 0,
9064 value_address (val),
9065 NULL, 1));
9066 }
9067 }
9068
9069 static struct value *
9070 cast_to_fixed (struct type *type, struct value *arg)
9071 {
9072 LONGEST val;
9073
9074 if (type == value_type (arg))
9075 return arg;
9076 else if (ada_is_fixed_point_type (value_type (arg)))
9077 val = ada_float_to_fixed (type,
9078 ada_fixed_to_float (value_type (arg),
9079 value_as_long (arg)));
9080 else
9081 {
9082 DOUBLEST argd = value_as_double (arg);
9083
9084 val = ada_float_to_fixed (type, argd);
9085 }
9086
9087 return value_from_longest (type, val);
9088 }
9089
9090 static struct value *
9091 cast_from_fixed (struct type *type, struct value *arg)
9092 {
9093 DOUBLEST val = ada_fixed_to_float (value_type (arg),
9094 value_as_long (arg));
9095
9096 return value_from_double (type, val);
9097 }
9098
9099 /* Given two array types T1 and T2, return nonzero iff both arrays
9100 contain the same number of elements. */
9101
9102 static int
9103 ada_same_array_size_p (struct type *t1, struct type *t2)
9104 {
9105 LONGEST lo1, hi1, lo2, hi2;
9106
9107 /* Get the array bounds in order to verify that the size of
9108 the two arrays match. */
9109 if (!get_array_bounds (t1, &lo1, &hi1)
9110 || !get_array_bounds (t2, &lo2, &hi2))
9111 error (_("unable to determine array bounds"));
9112
9113 /* To make things easier for size comparison, normalize a bit
9114 the case of empty arrays by making sure that the difference
9115 between upper bound and lower bound is always -1. */
9116 if (lo1 > hi1)
9117 hi1 = lo1 - 1;
9118 if (lo2 > hi2)
9119 hi2 = lo2 - 1;
9120
9121 return (hi1 - lo1 == hi2 - lo2);
9122 }
9123
9124 /* Assuming that VAL is an array of integrals, and TYPE represents
9125 an array with the same number of elements, but with wider integral
9126 elements, return an array "casted" to TYPE. In practice, this
9127 means that the returned array is built by casting each element
9128 of the original array into TYPE's (wider) element type. */
9129
9130 static struct value *
9131 ada_promote_array_of_integrals (struct type *type, struct value *val)
9132 {
9133 struct type *elt_type = TYPE_TARGET_TYPE (type);
9134 LONGEST lo, hi;
9135 struct value *res;
9136 LONGEST i;
9137
9138 /* Verify that both val and type are arrays of scalars, and
9139 that the size of val's elements is smaller than the size
9140 of type's element. */
9141 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9142 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9143 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9144 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9145 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9146 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9147
9148 if (!get_array_bounds (type, &lo, &hi))
9149 error (_("unable to determine array bounds"));
9150
9151 res = allocate_value (type);
9152
9153 /* Promote each array element. */
9154 for (i = 0; i < hi - lo + 1; i++)
9155 {
9156 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9157
9158 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9159 value_contents_all (elt), TYPE_LENGTH (elt_type));
9160 }
9161
9162 return res;
9163 }
9164
9165 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9166 return the converted value. */
9167
9168 static struct value *
9169 coerce_for_assign (struct type *type, struct value *val)
9170 {
9171 struct type *type2 = value_type (val);
9172
9173 if (type == type2)
9174 return val;
9175
9176 type2 = ada_check_typedef (type2);
9177 type = ada_check_typedef (type);
9178
9179 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9180 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9181 {
9182 val = ada_value_ind (val);
9183 type2 = value_type (val);
9184 }
9185
9186 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9187 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9188 {
9189 if (!ada_same_array_size_p (type, type2))
9190 error (_("cannot assign arrays of different length"));
9191
9192 if (is_integral_type (TYPE_TARGET_TYPE (type))
9193 && is_integral_type (TYPE_TARGET_TYPE (type2))
9194 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9195 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9196 {
9197 /* Allow implicit promotion of the array elements to
9198 a wider type. */
9199 return ada_promote_array_of_integrals (type, val);
9200 }
9201
9202 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9203 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9204 error (_("Incompatible types in assignment"));
9205 deprecated_set_value_type (val, type);
9206 }
9207 return val;
9208 }
9209
9210 static struct value *
9211 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9212 {
9213 struct value *val;
9214 struct type *type1, *type2;
9215 LONGEST v, v1, v2;
9216
9217 arg1 = coerce_ref (arg1);
9218 arg2 = coerce_ref (arg2);
9219 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9220 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9221
9222 if (TYPE_CODE (type1) != TYPE_CODE_INT
9223 || TYPE_CODE (type2) != TYPE_CODE_INT)
9224 return value_binop (arg1, arg2, op);
9225
9226 switch (op)
9227 {
9228 case BINOP_MOD:
9229 case BINOP_DIV:
9230 case BINOP_REM:
9231 break;
9232 default:
9233 return value_binop (arg1, arg2, op);
9234 }
9235
9236 v2 = value_as_long (arg2);
9237 if (v2 == 0)
9238 error (_("second operand of %s must not be zero."), op_string (op));
9239
9240 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9241 return value_binop (arg1, arg2, op);
9242
9243 v1 = value_as_long (arg1);
9244 switch (op)
9245 {
9246 case BINOP_DIV:
9247 v = v1 / v2;
9248 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9249 v += v > 0 ? -1 : 1;
9250 break;
9251 case BINOP_REM:
9252 v = v1 % v2;
9253 if (v * v1 < 0)
9254 v -= v2;
9255 break;
9256 default:
9257 /* Should not reach this point. */
9258 v = 0;
9259 }
9260
9261 val = allocate_value (type1);
9262 store_unsigned_integer (value_contents_raw (val),
9263 TYPE_LENGTH (value_type (val)),
9264 gdbarch_byte_order (get_type_arch (type1)), v);
9265 return val;
9266 }
9267
9268 static int
9269 ada_value_equal (struct value *arg1, struct value *arg2)
9270 {
9271 if (ada_is_direct_array_type (value_type (arg1))
9272 || ada_is_direct_array_type (value_type (arg2)))
9273 {
9274 /* Automatically dereference any array reference before
9275 we attempt to perform the comparison. */
9276 arg1 = ada_coerce_ref (arg1);
9277 arg2 = ada_coerce_ref (arg2);
9278
9279 arg1 = ada_coerce_to_simple_array (arg1);
9280 arg2 = ada_coerce_to_simple_array (arg2);
9281 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9282 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
9283 error (_("Attempt to compare array with non-array"));
9284 /* FIXME: The following works only for types whose
9285 representations use all bits (no padding or undefined bits)
9286 and do not have user-defined equality. */
9287 return
9288 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
9289 && memcmp (value_contents (arg1), value_contents (arg2),
9290 TYPE_LENGTH (value_type (arg1))) == 0;
9291 }
9292 return value_equal (arg1, arg2);
9293 }
9294
9295 /* Total number of component associations in the aggregate starting at
9296 index PC in EXP. Assumes that index PC is the start of an
9297 OP_AGGREGATE. */
9298
9299 static int
9300 num_component_specs (struct expression *exp, int pc)
9301 {
9302 int n, m, i;
9303
9304 m = exp->elts[pc + 1].longconst;
9305 pc += 3;
9306 n = 0;
9307 for (i = 0; i < m; i += 1)
9308 {
9309 switch (exp->elts[pc].opcode)
9310 {
9311 default:
9312 n += 1;
9313 break;
9314 case OP_CHOICES:
9315 n += exp->elts[pc + 1].longconst;
9316 break;
9317 }
9318 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9319 }
9320 return n;
9321 }
9322
9323 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9324 component of LHS (a simple array or a record), updating *POS past
9325 the expression, assuming that LHS is contained in CONTAINER. Does
9326 not modify the inferior's memory, nor does it modify LHS (unless
9327 LHS == CONTAINER). */
9328
9329 static void
9330 assign_component (struct value *container, struct value *lhs, LONGEST index,
9331 struct expression *exp, int *pos)
9332 {
9333 struct value *mark = value_mark ();
9334 struct value *elt;
9335
9336 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9337 {
9338 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9339 struct value *index_val = value_from_longest (index_type, index);
9340
9341 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9342 }
9343 else
9344 {
9345 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9346 elt = ada_to_fixed_value (elt);
9347 }
9348
9349 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9350 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9351 else
9352 value_assign_to_component (container, elt,
9353 ada_evaluate_subexp (NULL, exp, pos,
9354 EVAL_NORMAL));
9355
9356 value_free_to_mark (mark);
9357 }
9358
9359 /* Assuming that LHS represents an lvalue having a record or array
9360 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9361 of that aggregate's value to LHS, advancing *POS past the
9362 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9363 lvalue containing LHS (possibly LHS itself). Does not modify
9364 the inferior's memory, nor does it modify the contents of
9365 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9366
9367 static struct value *
9368 assign_aggregate (struct value *container,
9369 struct value *lhs, struct expression *exp,
9370 int *pos, enum noside noside)
9371 {
9372 struct type *lhs_type;
9373 int n = exp->elts[*pos+1].longconst;
9374 LONGEST low_index, high_index;
9375 int num_specs;
9376 LONGEST *indices;
9377 int max_indices, num_indices;
9378 int i;
9379
9380 *pos += 3;
9381 if (noside != EVAL_NORMAL)
9382 {
9383 for (i = 0; i < n; i += 1)
9384 ada_evaluate_subexp (NULL, exp, pos, noside);
9385 return container;
9386 }
9387
9388 container = ada_coerce_ref (container);
9389 if (ada_is_direct_array_type (value_type (container)))
9390 container = ada_coerce_to_simple_array (container);
9391 lhs = ada_coerce_ref (lhs);
9392 if (!deprecated_value_modifiable (lhs))
9393 error (_("Left operand of assignment is not a modifiable lvalue."));
9394
9395 lhs_type = value_type (lhs);
9396 if (ada_is_direct_array_type (lhs_type))
9397 {
9398 lhs = ada_coerce_to_simple_array (lhs);
9399 lhs_type = value_type (lhs);
9400 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9401 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9402 }
9403 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9404 {
9405 low_index = 0;
9406 high_index = num_visible_fields (lhs_type) - 1;
9407 }
9408 else
9409 error (_("Left-hand side must be array or record."));
9410
9411 num_specs = num_component_specs (exp, *pos - 3);
9412 max_indices = 4 * num_specs + 4;
9413 indices = alloca (max_indices * sizeof (indices[0]));
9414 indices[0] = indices[1] = low_index - 1;
9415 indices[2] = indices[3] = high_index + 1;
9416 num_indices = 4;
9417
9418 for (i = 0; i < n; i += 1)
9419 {
9420 switch (exp->elts[*pos].opcode)
9421 {
9422 case OP_CHOICES:
9423 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9424 &num_indices, max_indices,
9425 low_index, high_index);
9426 break;
9427 case OP_POSITIONAL:
9428 aggregate_assign_positional (container, lhs, exp, pos, indices,
9429 &num_indices, max_indices,
9430 low_index, high_index);
9431 break;
9432 case OP_OTHERS:
9433 if (i != n-1)
9434 error (_("Misplaced 'others' clause"));
9435 aggregate_assign_others (container, lhs, exp, pos, indices,
9436 num_indices, low_index, high_index);
9437 break;
9438 default:
9439 error (_("Internal error: bad aggregate clause"));
9440 }
9441 }
9442
9443 return container;
9444 }
9445
9446 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9447 construct at *POS, updating *POS past the construct, given that
9448 the positions are relative to lower bound LOW, where HIGH is the
9449 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9450 updating *NUM_INDICES as needed. CONTAINER is as for
9451 assign_aggregate. */
9452 static void
9453 aggregate_assign_positional (struct value *container,
9454 struct value *lhs, struct expression *exp,
9455 int *pos, LONGEST *indices, int *num_indices,
9456 int max_indices, LONGEST low, LONGEST high)
9457 {
9458 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9459
9460 if (ind - 1 == high)
9461 warning (_("Extra components in aggregate ignored."));
9462 if (ind <= high)
9463 {
9464 add_component_interval (ind, ind, indices, num_indices, max_indices);
9465 *pos += 3;
9466 assign_component (container, lhs, ind, exp, pos);
9467 }
9468 else
9469 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9470 }
9471
9472 /* Assign into the components of LHS indexed by the OP_CHOICES
9473 construct at *POS, updating *POS past the construct, given that
9474 the allowable indices are LOW..HIGH. Record the indices assigned
9475 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9476 needed. CONTAINER is as for assign_aggregate. */
9477 static void
9478 aggregate_assign_from_choices (struct value *container,
9479 struct value *lhs, struct expression *exp,
9480 int *pos, LONGEST *indices, int *num_indices,
9481 int max_indices, LONGEST low, LONGEST high)
9482 {
9483 int j;
9484 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9485 int choice_pos, expr_pc;
9486 int is_array = ada_is_direct_array_type (value_type (lhs));
9487
9488 choice_pos = *pos += 3;
9489
9490 for (j = 0; j < n_choices; j += 1)
9491 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9492 expr_pc = *pos;
9493 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9494
9495 for (j = 0; j < n_choices; j += 1)
9496 {
9497 LONGEST lower, upper;
9498 enum exp_opcode op = exp->elts[choice_pos].opcode;
9499
9500 if (op == OP_DISCRETE_RANGE)
9501 {
9502 choice_pos += 1;
9503 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9504 EVAL_NORMAL));
9505 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9506 EVAL_NORMAL));
9507 }
9508 else if (is_array)
9509 {
9510 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9511 EVAL_NORMAL));
9512 upper = lower;
9513 }
9514 else
9515 {
9516 int ind;
9517 const char *name;
9518
9519 switch (op)
9520 {
9521 case OP_NAME:
9522 name = &exp->elts[choice_pos + 2].string;
9523 break;
9524 case OP_VAR_VALUE:
9525 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9526 break;
9527 default:
9528 error (_("Invalid record component association."));
9529 }
9530 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9531 ind = 0;
9532 if (! find_struct_field (name, value_type (lhs), 0,
9533 NULL, NULL, NULL, NULL, &ind))
9534 error (_("Unknown component name: %s."), name);
9535 lower = upper = ind;
9536 }
9537
9538 if (lower <= upper && (lower < low || upper > high))
9539 error (_("Index in component association out of bounds."));
9540
9541 add_component_interval (lower, upper, indices, num_indices,
9542 max_indices);
9543 while (lower <= upper)
9544 {
9545 int pos1;
9546
9547 pos1 = expr_pc;
9548 assign_component (container, lhs, lower, exp, &pos1);
9549 lower += 1;
9550 }
9551 }
9552 }
9553
9554 /* Assign the value of the expression in the OP_OTHERS construct in
9555 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9556 have not been previously assigned. The index intervals already assigned
9557 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
9558 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
9559 static void
9560 aggregate_assign_others (struct value *container,
9561 struct value *lhs, struct expression *exp,
9562 int *pos, LONGEST *indices, int num_indices,
9563 LONGEST low, LONGEST high)
9564 {
9565 int i;
9566 int expr_pc = *pos + 1;
9567
9568 for (i = 0; i < num_indices - 2; i += 2)
9569 {
9570 LONGEST ind;
9571
9572 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9573 {
9574 int localpos;
9575
9576 localpos = expr_pc;
9577 assign_component (container, lhs, ind, exp, &localpos);
9578 }
9579 }
9580 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9581 }
9582
9583 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9584 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9585 modifying *SIZE as needed. It is an error if *SIZE exceeds
9586 MAX_SIZE. The resulting intervals do not overlap. */
9587 static void
9588 add_component_interval (LONGEST low, LONGEST high,
9589 LONGEST* indices, int *size, int max_size)
9590 {
9591 int i, j;
9592
9593 for (i = 0; i < *size; i += 2) {
9594 if (high >= indices[i] && low <= indices[i + 1])
9595 {
9596 int kh;
9597
9598 for (kh = i + 2; kh < *size; kh += 2)
9599 if (high < indices[kh])
9600 break;
9601 if (low < indices[i])
9602 indices[i] = low;
9603 indices[i + 1] = indices[kh - 1];
9604 if (high > indices[i + 1])
9605 indices[i + 1] = high;
9606 memcpy (indices + i + 2, indices + kh, *size - kh);
9607 *size -= kh - i - 2;
9608 return;
9609 }
9610 else if (high < indices[i])
9611 break;
9612 }
9613
9614 if (*size == max_size)
9615 error (_("Internal error: miscounted aggregate components."));
9616 *size += 2;
9617 for (j = *size-1; j >= i+2; j -= 1)
9618 indices[j] = indices[j - 2];
9619 indices[i] = low;
9620 indices[i + 1] = high;
9621 }
9622
9623 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9624 is different. */
9625
9626 static struct value *
9627 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
9628 {
9629 if (type == ada_check_typedef (value_type (arg2)))
9630 return arg2;
9631
9632 if (ada_is_fixed_point_type (type))
9633 return (cast_to_fixed (type, arg2));
9634
9635 if (ada_is_fixed_point_type (value_type (arg2)))
9636 return cast_from_fixed (type, arg2);
9637
9638 return value_cast (type, arg2);
9639 }
9640
9641 /* Evaluating Ada expressions, and printing their result.
9642 ------------------------------------------------------
9643
9644 1. Introduction:
9645 ----------------
9646
9647 We usually evaluate an Ada expression in order to print its value.
9648 We also evaluate an expression in order to print its type, which
9649 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9650 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9651 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9652 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9653 similar.
9654
9655 Evaluating expressions is a little more complicated for Ada entities
9656 than it is for entities in languages such as C. The main reason for
9657 this is that Ada provides types whose definition might be dynamic.
9658 One example of such types is variant records. Or another example
9659 would be an array whose bounds can only be known at run time.
9660
9661 The following description is a general guide as to what should be
9662 done (and what should NOT be done) in order to evaluate an expression
9663 involving such types, and when. This does not cover how the semantic
9664 information is encoded by GNAT as this is covered separatly. For the
9665 document used as the reference for the GNAT encoding, see exp_dbug.ads
9666 in the GNAT sources.
9667
9668 Ideally, we should embed each part of this description next to its
9669 associated code. Unfortunately, the amount of code is so vast right
9670 now that it's hard to see whether the code handling a particular
9671 situation might be duplicated or not. One day, when the code is
9672 cleaned up, this guide might become redundant with the comments
9673 inserted in the code, and we might want to remove it.
9674
9675 2. ``Fixing'' an Entity, the Simple Case:
9676 -----------------------------------------
9677
9678 When evaluating Ada expressions, the tricky issue is that they may
9679 reference entities whose type contents and size are not statically
9680 known. Consider for instance a variant record:
9681
9682 type Rec (Empty : Boolean := True) is record
9683 case Empty is
9684 when True => null;
9685 when False => Value : Integer;
9686 end case;
9687 end record;
9688 Yes : Rec := (Empty => False, Value => 1);
9689 No : Rec := (empty => True);
9690
9691 The size and contents of that record depends on the value of the
9692 descriminant (Rec.Empty). At this point, neither the debugging
9693 information nor the associated type structure in GDB are able to
9694 express such dynamic types. So what the debugger does is to create
9695 "fixed" versions of the type that applies to the specific object.
9696 We also informally refer to this opperation as "fixing" an object,
9697 which means creating its associated fixed type.
9698
9699 Example: when printing the value of variable "Yes" above, its fixed
9700 type would look like this:
9701
9702 type Rec is record
9703 Empty : Boolean;
9704 Value : Integer;
9705 end record;
9706
9707 On the other hand, if we printed the value of "No", its fixed type
9708 would become:
9709
9710 type Rec is record
9711 Empty : Boolean;
9712 end record;
9713
9714 Things become a little more complicated when trying to fix an entity
9715 with a dynamic type that directly contains another dynamic type,
9716 such as an array of variant records, for instance. There are
9717 two possible cases: Arrays, and records.
9718
9719 3. ``Fixing'' Arrays:
9720 ---------------------
9721
9722 The type structure in GDB describes an array in terms of its bounds,
9723 and the type of its elements. By design, all elements in the array
9724 have the same type and we cannot represent an array of variant elements
9725 using the current type structure in GDB. When fixing an array,
9726 we cannot fix the array element, as we would potentially need one
9727 fixed type per element of the array. As a result, the best we can do
9728 when fixing an array is to produce an array whose bounds and size
9729 are correct (allowing us to read it from memory), but without having
9730 touched its element type. Fixing each element will be done later,
9731 when (if) necessary.
9732
9733 Arrays are a little simpler to handle than records, because the same
9734 amount of memory is allocated for each element of the array, even if
9735 the amount of space actually used by each element differs from element
9736 to element. Consider for instance the following array of type Rec:
9737
9738 type Rec_Array is array (1 .. 2) of Rec;
9739
9740 The actual amount of memory occupied by each element might be different
9741 from element to element, depending on the value of their discriminant.
9742 But the amount of space reserved for each element in the array remains
9743 fixed regardless. So we simply need to compute that size using
9744 the debugging information available, from which we can then determine
9745 the array size (we multiply the number of elements of the array by
9746 the size of each element).
9747
9748 The simplest case is when we have an array of a constrained element
9749 type. For instance, consider the following type declarations:
9750
9751 type Bounded_String (Max_Size : Integer) is
9752 Length : Integer;
9753 Buffer : String (1 .. Max_Size);
9754 end record;
9755 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9756
9757 In this case, the compiler describes the array as an array of
9758 variable-size elements (identified by its XVS suffix) for which
9759 the size can be read in the parallel XVZ variable.
9760
9761 In the case of an array of an unconstrained element type, the compiler
9762 wraps the array element inside a private PAD type. This type should not
9763 be shown to the user, and must be "unwrap"'ed before printing. Note
9764 that we also use the adjective "aligner" in our code to designate
9765 these wrapper types.
9766
9767 In some cases, the size allocated for each element is statically
9768 known. In that case, the PAD type already has the correct size,
9769 and the array element should remain unfixed.
9770
9771 But there are cases when this size is not statically known.
9772 For instance, assuming that "Five" is an integer variable:
9773
9774 type Dynamic is array (1 .. Five) of Integer;
9775 type Wrapper (Has_Length : Boolean := False) is record
9776 Data : Dynamic;
9777 case Has_Length is
9778 when True => Length : Integer;
9779 when False => null;
9780 end case;
9781 end record;
9782 type Wrapper_Array is array (1 .. 2) of Wrapper;
9783
9784 Hello : Wrapper_Array := (others => (Has_Length => True,
9785 Data => (others => 17),
9786 Length => 1));
9787
9788
9789 The debugging info would describe variable Hello as being an
9790 array of a PAD type. The size of that PAD type is not statically
9791 known, but can be determined using a parallel XVZ variable.
9792 In that case, a copy of the PAD type with the correct size should
9793 be used for the fixed array.
9794
9795 3. ``Fixing'' record type objects:
9796 ----------------------------------
9797
9798 Things are slightly different from arrays in the case of dynamic
9799 record types. In this case, in order to compute the associated
9800 fixed type, we need to determine the size and offset of each of
9801 its components. This, in turn, requires us to compute the fixed
9802 type of each of these components.
9803
9804 Consider for instance the example:
9805
9806 type Bounded_String (Max_Size : Natural) is record
9807 Str : String (1 .. Max_Size);
9808 Length : Natural;
9809 end record;
9810 My_String : Bounded_String (Max_Size => 10);
9811
9812 In that case, the position of field "Length" depends on the size
9813 of field Str, which itself depends on the value of the Max_Size
9814 discriminant. In order to fix the type of variable My_String,
9815 we need to fix the type of field Str. Therefore, fixing a variant
9816 record requires us to fix each of its components.
9817
9818 However, if a component does not have a dynamic size, the component
9819 should not be fixed. In particular, fields that use a PAD type
9820 should not fixed. Here is an example where this might happen
9821 (assuming type Rec above):
9822
9823 type Container (Big : Boolean) is record
9824 First : Rec;
9825 After : Integer;
9826 case Big is
9827 when True => Another : Integer;
9828 when False => null;
9829 end case;
9830 end record;
9831 My_Container : Container := (Big => False,
9832 First => (Empty => True),
9833 After => 42);
9834
9835 In that example, the compiler creates a PAD type for component First,
9836 whose size is constant, and then positions the component After just
9837 right after it. The offset of component After is therefore constant
9838 in this case.
9839
9840 The debugger computes the position of each field based on an algorithm
9841 that uses, among other things, the actual position and size of the field
9842 preceding it. Let's now imagine that the user is trying to print
9843 the value of My_Container. If the type fixing was recursive, we would
9844 end up computing the offset of field After based on the size of the
9845 fixed version of field First. And since in our example First has
9846 only one actual field, the size of the fixed type is actually smaller
9847 than the amount of space allocated to that field, and thus we would
9848 compute the wrong offset of field After.
9849
9850 To make things more complicated, we need to watch out for dynamic
9851 components of variant records (identified by the ___XVL suffix in
9852 the component name). Even if the target type is a PAD type, the size
9853 of that type might not be statically known. So the PAD type needs
9854 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9855 we might end up with the wrong size for our component. This can be
9856 observed with the following type declarations:
9857
9858 type Octal is new Integer range 0 .. 7;
9859 type Octal_Array is array (Positive range <>) of Octal;
9860 pragma Pack (Octal_Array);
9861
9862 type Octal_Buffer (Size : Positive) is record
9863 Buffer : Octal_Array (1 .. Size);
9864 Length : Integer;
9865 end record;
9866
9867 In that case, Buffer is a PAD type whose size is unset and needs
9868 to be computed by fixing the unwrapped type.
9869
9870 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9871 ----------------------------------------------------------
9872
9873 Lastly, when should the sub-elements of an entity that remained unfixed
9874 thus far, be actually fixed?
9875
9876 The answer is: Only when referencing that element. For instance
9877 when selecting one component of a record, this specific component
9878 should be fixed at that point in time. Or when printing the value
9879 of a record, each component should be fixed before its value gets
9880 printed. Similarly for arrays, the element of the array should be
9881 fixed when printing each element of the array, or when extracting
9882 one element out of that array. On the other hand, fixing should
9883 not be performed on the elements when taking a slice of an array!
9884
9885 Note that one of the side-effects of miscomputing the offset and
9886 size of each field is that we end up also miscomputing the size
9887 of the containing type. This can have adverse results when computing
9888 the value of an entity. GDB fetches the value of an entity based
9889 on the size of its type, and thus a wrong size causes GDB to fetch
9890 the wrong amount of memory. In the case where the computed size is
9891 too small, GDB fetches too little data to print the value of our
9892 entiry. Results in this case as unpredicatble, as we usually read
9893 past the buffer containing the data =:-o. */
9894
9895 /* Implement the evaluate_exp routine in the exp_descriptor structure
9896 for the Ada language. */
9897
9898 static struct value *
9899 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
9900 int *pos, enum noside noside)
9901 {
9902 enum exp_opcode op;
9903 int tem;
9904 int pc;
9905 int preeval_pos;
9906 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9907 struct type *type;
9908 int nargs, oplen;
9909 struct value **argvec;
9910
9911 pc = *pos;
9912 *pos += 1;
9913 op = exp->elts[pc].opcode;
9914
9915 switch (op)
9916 {
9917 default:
9918 *pos -= 1;
9919 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9920
9921 if (noside == EVAL_NORMAL)
9922 arg1 = unwrap_value (arg1);
9923
9924 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9925 then we need to perform the conversion manually, because
9926 evaluate_subexp_standard doesn't do it. This conversion is
9927 necessary in Ada because the different kinds of float/fixed
9928 types in Ada have different representations.
9929
9930 Similarly, we need to perform the conversion from OP_LONG
9931 ourselves. */
9932 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9933 arg1 = ada_value_cast (expect_type, arg1, noside);
9934
9935 return arg1;
9936
9937 case OP_STRING:
9938 {
9939 struct value *result;
9940
9941 *pos -= 1;
9942 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9943 /* The result type will have code OP_STRING, bashed there from
9944 OP_ARRAY. Bash it back. */
9945 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9946 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
9947 return result;
9948 }
9949
9950 case UNOP_CAST:
9951 (*pos) += 2;
9952 type = exp->elts[pc + 1].type;
9953 arg1 = evaluate_subexp (type, exp, pos, noside);
9954 if (noside == EVAL_SKIP)
9955 goto nosideret;
9956 arg1 = ada_value_cast (type, arg1, noside);
9957 return arg1;
9958
9959 case UNOP_QUAL:
9960 (*pos) += 2;
9961 type = exp->elts[pc + 1].type;
9962 return ada_evaluate_subexp (type, exp, pos, noside);
9963
9964 case BINOP_ASSIGN:
9965 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9966 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9967 {
9968 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9969 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9970 return arg1;
9971 return ada_value_assign (arg1, arg1);
9972 }
9973 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9974 except if the lhs of our assignment is a convenience variable.
9975 In the case of assigning to a convenience variable, the lhs
9976 should be exactly the result of the evaluation of the rhs. */
9977 type = value_type (arg1);
9978 if (VALUE_LVAL (arg1) == lval_internalvar)
9979 type = NULL;
9980 arg2 = evaluate_subexp (type, exp, pos, noside);
9981 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9982 return arg1;
9983 if (ada_is_fixed_point_type (value_type (arg1)))
9984 arg2 = cast_to_fixed (value_type (arg1), arg2);
9985 else if (ada_is_fixed_point_type (value_type (arg2)))
9986 error
9987 (_("Fixed-point values must be assigned to fixed-point variables"));
9988 else
9989 arg2 = coerce_for_assign (value_type (arg1), arg2);
9990 return ada_value_assign (arg1, arg2);
9991
9992 case BINOP_ADD:
9993 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9994 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9995 if (noside == EVAL_SKIP)
9996 goto nosideret;
9997 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9998 return (value_from_longest
9999 (value_type (arg1),
10000 value_as_long (arg1) + value_as_long (arg2)));
10001 if ((ada_is_fixed_point_type (value_type (arg1))
10002 || ada_is_fixed_point_type (value_type (arg2)))
10003 && value_type (arg1) != value_type (arg2))
10004 error (_("Operands of fixed-point addition must have the same type"));
10005 /* Do the addition, and cast the result to the type of the first
10006 argument. We cannot cast the result to a reference type, so if
10007 ARG1 is a reference type, find its underlying type. */
10008 type = value_type (arg1);
10009 while (TYPE_CODE (type) == TYPE_CODE_REF)
10010 type = TYPE_TARGET_TYPE (type);
10011 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10012 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10013
10014 case BINOP_SUB:
10015 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10016 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10017 if (noside == EVAL_SKIP)
10018 goto nosideret;
10019 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10020 return (value_from_longest
10021 (value_type (arg1),
10022 value_as_long (arg1) - value_as_long (arg2)));
10023 if ((ada_is_fixed_point_type (value_type (arg1))
10024 || ada_is_fixed_point_type (value_type (arg2)))
10025 && value_type (arg1) != value_type (arg2))
10026 error (_("Operands of fixed-point subtraction "
10027 "must have the same type"));
10028 /* Do the substraction, and cast the result to the type of the first
10029 argument. We cannot cast the result to a reference type, so if
10030 ARG1 is a reference type, find its underlying type. */
10031 type = value_type (arg1);
10032 while (TYPE_CODE (type) == TYPE_CODE_REF)
10033 type = TYPE_TARGET_TYPE (type);
10034 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10035 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10036
10037 case BINOP_MUL:
10038 case BINOP_DIV:
10039 case BINOP_REM:
10040 case BINOP_MOD:
10041 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10042 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10043 if (noside == EVAL_SKIP)
10044 goto nosideret;
10045 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10046 {
10047 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10048 return value_zero (value_type (arg1), not_lval);
10049 }
10050 else
10051 {
10052 type = builtin_type (exp->gdbarch)->builtin_double;
10053 if (ada_is_fixed_point_type (value_type (arg1)))
10054 arg1 = cast_from_fixed (type, arg1);
10055 if (ada_is_fixed_point_type (value_type (arg2)))
10056 arg2 = cast_from_fixed (type, arg2);
10057 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10058 return ada_value_binop (arg1, arg2, op);
10059 }
10060
10061 case BINOP_EQUAL:
10062 case BINOP_NOTEQUAL:
10063 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10064 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10065 if (noside == EVAL_SKIP)
10066 goto nosideret;
10067 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10068 tem = 0;
10069 else
10070 {
10071 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10072 tem = ada_value_equal (arg1, arg2);
10073 }
10074 if (op == BINOP_NOTEQUAL)
10075 tem = !tem;
10076 type = language_bool_type (exp->language_defn, exp->gdbarch);
10077 return value_from_longest (type, (LONGEST) tem);
10078
10079 case UNOP_NEG:
10080 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10081 if (noside == EVAL_SKIP)
10082 goto nosideret;
10083 else if (ada_is_fixed_point_type (value_type (arg1)))
10084 return value_cast (value_type (arg1), value_neg (arg1));
10085 else
10086 {
10087 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10088 return value_neg (arg1);
10089 }
10090
10091 case BINOP_LOGICAL_AND:
10092 case BINOP_LOGICAL_OR:
10093 case UNOP_LOGICAL_NOT:
10094 {
10095 struct value *val;
10096
10097 *pos -= 1;
10098 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10099 type = language_bool_type (exp->language_defn, exp->gdbarch);
10100 return value_cast (type, val);
10101 }
10102
10103 case BINOP_BITWISE_AND:
10104 case BINOP_BITWISE_IOR:
10105 case BINOP_BITWISE_XOR:
10106 {
10107 struct value *val;
10108
10109 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10110 *pos = pc;
10111 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10112
10113 return value_cast (value_type (arg1), val);
10114 }
10115
10116 case OP_VAR_VALUE:
10117 *pos -= 1;
10118
10119 if (noside == EVAL_SKIP)
10120 {
10121 *pos += 4;
10122 goto nosideret;
10123 }
10124 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10125 /* Only encountered when an unresolved symbol occurs in a
10126 context other than a function call, in which case, it is
10127 invalid. */
10128 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10129 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10130 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10131 {
10132 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10133 /* Check to see if this is a tagged type. We also need to handle
10134 the case where the type is a reference to a tagged type, but
10135 we have to be careful to exclude pointers to tagged types.
10136 The latter should be shown as usual (as a pointer), whereas
10137 a reference should mostly be transparent to the user. */
10138 if (ada_is_tagged_type (type, 0)
10139 || (TYPE_CODE (type) == TYPE_CODE_REF
10140 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10141 {
10142 /* Tagged types are a little special in the fact that the real
10143 type is dynamic and can only be determined by inspecting the
10144 object's tag. This means that we need to get the object's
10145 value first (EVAL_NORMAL) and then extract the actual object
10146 type from its tag.
10147
10148 Note that we cannot skip the final step where we extract
10149 the object type from its tag, because the EVAL_NORMAL phase
10150 results in dynamic components being resolved into fixed ones.
10151 This can cause problems when trying to print the type
10152 description of tagged types whose parent has a dynamic size:
10153 We use the type name of the "_parent" component in order
10154 to print the name of the ancestor type in the type description.
10155 If that component had a dynamic size, the resolution into
10156 a fixed type would result in the loss of that type name,
10157 thus preventing us from printing the name of the ancestor
10158 type in the type description. */
10159 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10160
10161 if (TYPE_CODE (type) != TYPE_CODE_REF)
10162 {
10163 struct type *actual_type;
10164
10165 actual_type = type_from_tag (ada_value_tag (arg1));
10166 if (actual_type == NULL)
10167 /* If, for some reason, we were unable to determine
10168 the actual type from the tag, then use the static
10169 approximation that we just computed as a fallback.
10170 This can happen if the debugging information is
10171 incomplete, for instance. */
10172 actual_type = type;
10173 return value_zero (actual_type, not_lval);
10174 }
10175 else
10176 {
10177 /* In the case of a ref, ada_coerce_ref takes care
10178 of determining the actual type. But the evaluation
10179 should return a ref as it should be valid to ask
10180 for its address; so rebuild a ref after coerce. */
10181 arg1 = ada_coerce_ref (arg1);
10182 return value_ref (arg1);
10183 }
10184 }
10185
10186 *pos += 4;
10187 return value_zero (to_static_fixed_type (type), not_lval);
10188 }
10189 else
10190 {
10191 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10192 return ada_to_fixed_value (arg1);
10193 }
10194
10195 case OP_FUNCALL:
10196 (*pos) += 2;
10197
10198 /* Allocate arg vector, including space for the function to be
10199 called in argvec[0] and a terminating NULL. */
10200 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10201 argvec =
10202 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
10203
10204 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10205 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10206 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10207 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10208 else
10209 {
10210 for (tem = 0; tem <= nargs; tem += 1)
10211 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10212 argvec[tem] = 0;
10213
10214 if (noside == EVAL_SKIP)
10215 goto nosideret;
10216 }
10217
10218 if (ada_is_constrained_packed_array_type
10219 (desc_base_type (value_type (argvec[0]))))
10220 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10221 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10222 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10223 /* This is a packed array that has already been fixed, and
10224 therefore already coerced to a simple array. Nothing further
10225 to do. */
10226 ;
10227 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
10228 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10229 && VALUE_LVAL (argvec[0]) == lval_memory))
10230 argvec[0] = value_addr (argvec[0]);
10231
10232 type = ada_check_typedef (value_type (argvec[0]));
10233
10234 /* Ada allows us to implicitly dereference arrays when subscripting
10235 them. So, if this is an array typedef (encoding use for array
10236 access types encoded as fat pointers), strip it now. */
10237 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10238 type = ada_typedef_target_type (type);
10239
10240 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10241 {
10242 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10243 {
10244 case TYPE_CODE_FUNC:
10245 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10246 break;
10247 case TYPE_CODE_ARRAY:
10248 break;
10249 case TYPE_CODE_STRUCT:
10250 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10251 argvec[0] = ada_value_ind (argvec[0]);
10252 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10253 break;
10254 default:
10255 error (_("cannot subscript or call something of type `%s'"),
10256 ada_type_name (value_type (argvec[0])));
10257 break;
10258 }
10259 }
10260
10261 switch (TYPE_CODE (type))
10262 {
10263 case TYPE_CODE_FUNC:
10264 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10265 {
10266 struct type *rtype = TYPE_TARGET_TYPE (type);
10267
10268 if (TYPE_GNU_IFUNC (type))
10269 return allocate_value (TYPE_TARGET_TYPE (rtype));
10270 return allocate_value (rtype);
10271 }
10272 return call_function_by_hand (argvec[0], nargs, argvec + 1);
10273 case TYPE_CODE_INTERNAL_FUNCTION:
10274 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10275 /* We don't know anything about what the internal
10276 function might return, but we have to return
10277 something. */
10278 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10279 not_lval);
10280 else
10281 return call_internal_function (exp->gdbarch, exp->language_defn,
10282 argvec[0], nargs, argvec + 1);
10283
10284 case TYPE_CODE_STRUCT:
10285 {
10286 int arity;
10287
10288 arity = ada_array_arity (type);
10289 type = ada_array_element_type (type, nargs);
10290 if (type == NULL)
10291 error (_("cannot subscript or call a record"));
10292 if (arity != nargs)
10293 error (_("wrong number of subscripts; expecting %d"), arity);
10294 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10295 return value_zero (ada_aligned_type (type), lval_memory);
10296 return
10297 unwrap_value (ada_value_subscript
10298 (argvec[0], nargs, argvec + 1));
10299 }
10300 case TYPE_CODE_ARRAY:
10301 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10302 {
10303 type = ada_array_element_type (type, nargs);
10304 if (type == NULL)
10305 error (_("element type of array unknown"));
10306 else
10307 return value_zero (ada_aligned_type (type), lval_memory);
10308 }
10309 return
10310 unwrap_value (ada_value_subscript
10311 (ada_coerce_to_simple_array (argvec[0]),
10312 nargs, argvec + 1));
10313 case TYPE_CODE_PTR: /* Pointer to array */
10314 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10315 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10316 {
10317 type = ada_array_element_type (type, nargs);
10318 if (type == NULL)
10319 error (_("element type of array unknown"));
10320 else
10321 return value_zero (ada_aligned_type (type), lval_memory);
10322 }
10323 return
10324 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
10325 nargs, argvec + 1));
10326
10327 default:
10328 error (_("Attempt to index or call something other than an "
10329 "array or function"));
10330 }
10331
10332 case TERNOP_SLICE:
10333 {
10334 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10335 struct value *low_bound_val =
10336 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10337 struct value *high_bound_val =
10338 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10339 LONGEST low_bound;
10340 LONGEST high_bound;
10341
10342 low_bound_val = coerce_ref (low_bound_val);
10343 high_bound_val = coerce_ref (high_bound_val);
10344 low_bound = pos_atr (low_bound_val);
10345 high_bound = pos_atr (high_bound_val);
10346
10347 if (noside == EVAL_SKIP)
10348 goto nosideret;
10349
10350 /* If this is a reference to an aligner type, then remove all
10351 the aligners. */
10352 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10353 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10354 TYPE_TARGET_TYPE (value_type (array)) =
10355 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10356
10357 if (ada_is_constrained_packed_array_type (value_type (array)))
10358 error (_("cannot slice a packed array"));
10359
10360 /* If this is a reference to an array or an array lvalue,
10361 convert to a pointer. */
10362 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10363 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
10364 && VALUE_LVAL (array) == lval_memory))
10365 array = value_addr (array);
10366
10367 if (noside == EVAL_AVOID_SIDE_EFFECTS
10368 && ada_is_array_descriptor_type (ada_check_typedef
10369 (value_type (array))))
10370 return empty_array (ada_type_of_array (array, 0), low_bound);
10371
10372 array = ada_coerce_to_simple_array_ptr (array);
10373
10374 /* If we have more than one level of pointer indirection,
10375 dereference the value until we get only one level. */
10376 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10377 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
10378 == TYPE_CODE_PTR))
10379 array = value_ind (array);
10380
10381 /* Make sure we really do have an array type before going further,
10382 to avoid a SEGV when trying to get the index type or the target
10383 type later down the road if the debug info generated by
10384 the compiler is incorrect or incomplete. */
10385 if (!ada_is_simple_array_type (value_type (array)))
10386 error (_("cannot take slice of non-array"));
10387
10388 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10389 == TYPE_CODE_PTR)
10390 {
10391 struct type *type0 = ada_check_typedef (value_type (array));
10392
10393 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10394 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
10395 else
10396 {
10397 struct type *arr_type0 =
10398 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10399
10400 return ada_value_slice_from_ptr (array, arr_type0,
10401 longest_to_int (low_bound),
10402 longest_to_int (high_bound));
10403 }
10404 }
10405 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10406 return array;
10407 else if (high_bound < low_bound)
10408 return empty_array (value_type (array), low_bound);
10409 else
10410 return ada_value_slice (array, longest_to_int (low_bound),
10411 longest_to_int (high_bound));
10412 }
10413
10414 case UNOP_IN_RANGE:
10415 (*pos) += 2;
10416 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10417 type = check_typedef (exp->elts[pc + 1].type);
10418
10419 if (noside == EVAL_SKIP)
10420 goto nosideret;
10421
10422 switch (TYPE_CODE (type))
10423 {
10424 default:
10425 lim_warning (_("Membership test incompletely implemented; "
10426 "always returns true"));
10427 type = language_bool_type (exp->language_defn, exp->gdbarch);
10428 return value_from_longest (type, (LONGEST) 1);
10429
10430 case TYPE_CODE_RANGE:
10431 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10432 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
10433 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10434 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10435 type = language_bool_type (exp->language_defn, exp->gdbarch);
10436 return
10437 value_from_longest (type,
10438 (value_less (arg1, arg3)
10439 || value_equal (arg1, arg3))
10440 && (value_less (arg2, arg1)
10441 || value_equal (arg2, arg1)));
10442 }
10443
10444 case BINOP_IN_BOUNDS:
10445 (*pos) += 2;
10446 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10447 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10448
10449 if (noside == EVAL_SKIP)
10450 goto nosideret;
10451
10452 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10453 {
10454 type = language_bool_type (exp->language_defn, exp->gdbarch);
10455 return value_zero (type, not_lval);
10456 }
10457
10458 tem = longest_to_int (exp->elts[pc + 1].longconst);
10459
10460 type = ada_index_type (value_type (arg2), tem, "range");
10461 if (!type)
10462 type = value_type (arg1);
10463
10464 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10465 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
10466
10467 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10468 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10469 type = language_bool_type (exp->language_defn, exp->gdbarch);
10470 return
10471 value_from_longest (type,
10472 (value_less (arg1, arg3)
10473 || value_equal (arg1, arg3))
10474 && (value_less (arg2, arg1)
10475 || value_equal (arg2, arg1)));
10476
10477 case TERNOP_IN_RANGE:
10478 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10479 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10480 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10481
10482 if (noside == EVAL_SKIP)
10483 goto nosideret;
10484
10485 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10486 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10487 type = language_bool_type (exp->language_defn, exp->gdbarch);
10488 return
10489 value_from_longest (type,
10490 (value_less (arg1, arg3)
10491 || value_equal (arg1, arg3))
10492 && (value_less (arg2, arg1)
10493 || value_equal (arg2, arg1)));
10494
10495 case OP_ATR_FIRST:
10496 case OP_ATR_LAST:
10497 case OP_ATR_LENGTH:
10498 {
10499 struct type *type_arg;
10500
10501 if (exp->elts[*pos].opcode == OP_TYPE)
10502 {
10503 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10504 arg1 = NULL;
10505 type_arg = check_typedef (exp->elts[pc + 2].type);
10506 }
10507 else
10508 {
10509 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10510 type_arg = NULL;
10511 }
10512
10513 if (exp->elts[*pos].opcode != OP_LONG)
10514 error (_("Invalid operand to '%s"), ada_attribute_name (op));
10515 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10516 *pos += 4;
10517
10518 if (noside == EVAL_SKIP)
10519 goto nosideret;
10520
10521 if (type_arg == NULL)
10522 {
10523 arg1 = ada_coerce_ref (arg1);
10524
10525 if (ada_is_constrained_packed_array_type (value_type (arg1)))
10526 arg1 = ada_coerce_to_simple_array (arg1);
10527
10528 if (op == OP_ATR_LENGTH)
10529 type = builtin_type (exp->gdbarch)->builtin_int;
10530 else
10531 {
10532 type = ada_index_type (value_type (arg1), tem,
10533 ada_attribute_name (op));
10534 if (type == NULL)
10535 type = builtin_type (exp->gdbarch)->builtin_int;
10536 }
10537
10538 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10539 return allocate_value (type);
10540
10541 switch (op)
10542 {
10543 default: /* Should never happen. */
10544 error (_("unexpected attribute encountered"));
10545 case OP_ATR_FIRST:
10546 return value_from_longest
10547 (type, ada_array_bound (arg1, tem, 0));
10548 case OP_ATR_LAST:
10549 return value_from_longest
10550 (type, ada_array_bound (arg1, tem, 1));
10551 case OP_ATR_LENGTH:
10552 return value_from_longest
10553 (type, ada_array_length (arg1, tem));
10554 }
10555 }
10556 else if (discrete_type_p (type_arg))
10557 {
10558 struct type *range_type;
10559 const char *name = ada_type_name (type_arg);
10560
10561 range_type = NULL;
10562 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
10563 range_type = to_fixed_range_type (type_arg, NULL);
10564 if (range_type == NULL)
10565 range_type = type_arg;
10566 switch (op)
10567 {
10568 default:
10569 error (_("unexpected attribute encountered"));
10570 case OP_ATR_FIRST:
10571 return value_from_longest
10572 (range_type, ada_discrete_type_low_bound (range_type));
10573 case OP_ATR_LAST:
10574 return value_from_longest
10575 (range_type, ada_discrete_type_high_bound (range_type));
10576 case OP_ATR_LENGTH:
10577 error (_("the 'length attribute applies only to array types"));
10578 }
10579 }
10580 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
10581 error (_("unimplemented type attribute"));
10582 else
10583 {
10584 LONGEST low, high;
10585
10586 if (ada_is_constrained_packed_array_type (type_arg))
10587 type_arg = decode_constrained_packed_array_type (type_arg);
10588
10589 if (op == OP_ATR_LENGTH)
10590 type = builtin_type (exp->gdbarch)->builtin_int;
10591 else
10592 {
10593 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10594 if (type == NULL)
10595 type = builtin_type (exp->gdbarch)->builtin_int;
10596 }
10597
10598 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10599 return allocate_value (type);
10600
10601 switch (op)
10602 {
10603 default:
10604 error (_("unexpected attribute encountered"));
10605 case OP_ATR_FIRST:
10606 low = ada_array_bound_from_type (type_arg, tem, 0);
10607 return value_from_longest (type, low);
10608 case OP_ATR_LAST:
10609 high = ada_array_bound_from_type (type_arg, tem, 1);
10610 return value_from_longest (type, high);
10611 case OP_ATR_LENGTH:
10612 low = ada_array_bound_from_type (type_arg, tem, 0);
10613 high = ada_array_bound_from_type (type_arg, tem, 1);
10614 return value_from_longest (type, high - low + 1);
10615 }
10616 }
10617 }
10618
10619 case OP_ATR_TAG:
10620 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10621 if (noside == EVAL_SKIP)
10622 goto nosideret;
10623
10624 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10625 return value_zero (ada_tag_type (arg1), not_lval);
10626
10627 return ada_value_tag (arg1);
10628
10629 case OP_ATR_MIN:
10630 case OP_ATR_MAX:
10631 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10632 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10633 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10634 if (noside == EVAL_SKIP)
10635 goto nosideret;
10636 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10637 return value_zero (value_type (arg1), not_lval);
10638 else
10639 {
10640 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10641 return value_binop (arg1, arg2,
10642 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10643 }
10644
10645 case OP_ATR_MODULUS:
10646 {
10647 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
10648
10649 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10650 if (noside == EVAL_SKIP)
10651 goto nosideret;
10652
10653 if (!ada_is_modular_type (type_arg))
10654 error (_("'modulus must be applied to modular type"));
10655
10656 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10657 ada_modulus (type_arg));
10658 }
10659
10660
10661 case OP_ATR_POS:
10662 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10663 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10664 if (noside == EVAL_SKIP)
10665 goto nosideret;
10666 type = builtin_type (exp->gdbarch)->builtin_int;
10667 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10668 return value_zero (type, not_lval);
10669 else
10670 return value_pos_atr (type, arg1);
10671
10672 case OP_ATR_SIZE:
10673 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10674 type = value_type (arg1);
10675
10676 /* If the argument is a reference, then dereference its type, since
10677 the user is really asking for the size of the actual object,
10678 not the size of the pointer. */
10679 if (TYPE_CODE (type) == TYPE_CODE_REF)
10680 type = TYPE_TARGET_TYPE (type);
10681
10682 if (noside == EVAL_SKIP)
10683 goto nosideret;
10684 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10685 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
10686 else
10687 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
10688 TARGET_CHAR_BIT * TYPE_LENGTH (type));
10689
10690 case OP_ATR_VAL:
10691 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10692 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10693 type = exp->elts[pc + 2].type;
10694 if (noside == EVAL_SKIP)
10695 goto nosideret;
10696 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10697 return value_zero (type, not_lval);
10698 else
10699 return value_val_atr (type, arg1);
10700
10701 case BINOP_EXP:
10702 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10703 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10704 if (noside == EVAL_SKIP)
10705 goto nosideret;
10706 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10707 return value_zero (value_type (arg1), not_lval);
10708 else
10709 {
10710 /* For integer exponentiation operations,
10711 only promote the first argument. */
10712 if (is_integral_type (value_type (arg2)))
10713 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10714 else
10715 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10716
10717 return value_binop (arg1, arg2, op);
10718 }
10719
10720 case UNOP_PLUS:
10721 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10722 if (noside == EVAL_SKIP)
10723 goto nosideret;
10724 else
10725 return arg1;
10726
10727 case UNOP_ABS:
10728 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10729 if (noside == EVAL_SKIP)
10730 goto nosideret;
10731 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10732 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
10733 return value_neg (arg1);
10734 else
10735 return arg1;
10736
10737 case UNOP_IND:
10738 preeval_pos = *pos;
10739 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10740 if (noside == EVAL_SKIP)
10741 goto nosideret;
10742 type = ada_check_typedef (value_type (arg1));
10743 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10744 {
10745 if (ada_is_array_descriptor_type (type))
10746 /* GDB allows dereferencing GNAT array descriptors. */
10747 {
10748 struct type *arrType = ada_type_of_array (arg1, 0);
10749
10750 if (arrType == NULL)
10751 error (_("Attempt to dereference null array pointer."));
10752 return value_at_lazy (arrType, 0);
10753 }
10754 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10755 || TYPE_CODE (type) == TYPE_CODE_REF
10756 /* In C you can dereference an array to get the 1st elt. */
10757 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
10758 {
10759 /* As mentioned in the OP_VAR_VALUE case, tagged types can
10760 only be determined by inspecting the object's tag.
10761 This means that we need to evaluate completely the
10762 expression in order to get its type. */
10763
10764 if ((TYPE_CODE (type) == TYPE_CODE_REF
10765 || TYPE_CODE (type) == TYPE_CODE_PTR)
10766 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
10767 {
10768 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
10769 EVAL_NORMAL);
10770 type = value_type (ada_value_ind (arg1));
10771 }
10772 else
10773 {
10774 type = to_static_fixed_type
10775 (ada_aligned_type
10776 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10777 }
10778 check_size (type);
10779 return value_zero (type, lval_memory);
10780 }
10781 else if (TYPE_CODE (type) == TYPE_CODE_INT)
10782 {
10783 /* GDB allows dereferencing an int. */
10784 if (expect_type == NULL)
10785 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10786 lval_memory);
10787 else
10788 {
10789 expect_type =
10790 to_static_fixed_type (ada_aligned_type (expect_type));
10791 return value_zero (expect_type, lval_memory);
10792 }
10793 }
10794 else
10795 error (_("Attempt to take contents of a non-pointer value."));
10796 }
10797 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
10798 type = ada_check_typedef (value_type (arg1));
10799
10800 if (TYPE_CODE (type) == TYPE_CODE_INT)
10801 /* GDB allows dereferencing an int. If we were given
10802 the expect_type, then use that as the target type.
10803 Otherwise, assume that the target type is an int. */
10804 {
10805 if (expect_type != NULL)
10806 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10807 arg1));
10808 else
10809 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10810 (CORE_ADDR) value_as_address (arg1));
10811 }
10812
10813 if (ada_is_array_descriptor_type (type))
10814 /* GDB allows dereferencing GNAT array descriptors. */
10815 return ada_coerce_to_simple_array (arg1);
10816 else
10817 return ada_value_ind (arg1);
10818
10819 case STRUCTOP_STRUCT:
10820 tem = longest_to_int (exp->elts[pc + 1].longconst);
10821 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
10822 preeval_pos = *pos;
10823 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10824 if (noside == EVAL_SKIP)
10825 goto nosideret;
10826 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10827 {
10828 struct type *type1 = value_type (arg1);
10829
10830 if (ada_is_tagged_type (type1, 1))
10831 {
10832 type = ada_lookup_struct_elt_type (type1,
10833 &exp->elts[pc + 2].string,
10834 1, 1, NULL);
10835
10836 /* If the field is not found, check if it exists in the
10837 extension of this object's type. This means that we
10838 need to evaluate completely the expression. */
10839
10840 if (type == NULL)
10841 {
10842 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
10843 EVAL_NORMAL);
10844 arg1 = ada_value_struct_elt (arg1,
10845 &exp->elts[pc + 2].string,
10846 0);
10847 arg1 = unwrap_value (arg1);
10848 type = value_type (ada_to_fixed_value (arg1));
10849 }
10850 }
10851 else
10852 type =
10853 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
10854 0, NULL);
10855
10856 return value_zero (ada_aligned_type (type), lval_memory);
10857 }
10858 else
10859 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
10860 arg1 = unwrap_value (arg1);
10861 return ada_to_fixed_value (arg1);
10862
10863 case OP_TYPE:
10864 /* The value is not supposed to be used. This is here to make it
10865 easier to accommodate expressions that contain types. */
10866 (*pos) += 2;
10867 if (noside == EVAL_SKIP)
10868 goto nosideret;
10869 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10870 return allocate_value (exp->elts[pc + 1].type);
10871 else
10872 error (_("Attempt to use a type name as an expression"));
10873
10874 case OP_AGGREGATE:
10875 case OP_CHOICES:
10876 case OP_OTHERS:
10877 case OP_DISCRETE_RANGE:
10878 case OP_POSITIONAL:
10879 case OP_NAME:
10880 if (noside == EVAL_NORMAL)
10881 switch (op)
10882 {
10883 case OP_NAME:
10884 error (_("Undefined name, ambiguous name, or renaming used in "
10885 "component association: %s."), &exp->elts[pc+2].string);
10886 case OP_AGGREGATE:
10887 error (_("Aggregates only allowed on the right of an assignment"));
10888 default:
10889 internal_error (__FILE__, __LINE__,
10890 _("aggregate apparently mangled"));
10891 }
10892
10893 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10894 *pos += oplen - 1;
10895 for (tem = 0; tem < nargs; tem += 1)
10896 ada_evaluate_subexp (NULL, exp, pos, noside);
10897 goto nosideret;
10898 }
10899
10900 nosideret:
10901 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
10902 }
10903 \f
10904
10905 /* Fixed point */
10906
10907 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
10908 type name that encodes the 'small and 'delta information.
10909 Otherwise, return NULL. */
10910
10911 static const char *
10912 fixed_type_info (struct type *type)
10913 {
10914 const char *name = ada_type_name (type);
10915 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10916
10917 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10918 {
10919 const char *tail = strstr (name, "___XF_");
10920
10921 if (tail == NULL)
10922 return NULL;
10923 else
10924 return tail + 5;
10925 }
10926 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10927 return fixed_type_info (TYPE_TARGET_TYPE (type));
10928 else
10929 return NULL;
10930 }
10931
10932 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
10933
10934 int
10935 ada_is_fixed_point_type (struct type *type)
10936 {
10937 return fixed_type_info (type) != NULL;
10938 }
10939
10940 /* Return non-zero iff TYPE represents a System.Address type. */
10941
10942 int
10943 ada_is_system_address_type (struct type *type)
10944 {
10945 return (TYPE_NAME (type)
10946 && strcmp (TYPE_NAME (type), "system__address") == 0);
10947 }
10948
10949 /* Assuming that TYPE is the representation of an Ada fixed-point
10950 type, return its delta, or -1 if the type is malformed and the
10951 delta cannot be determined. */
10952
10953 DOUBLEST
10954 ada_delta (struct type *type)
10955 {
10956 const char *encoding = fixed_type_info (type);
10957 DOUBLEST num, den;
10958
10959 /* Strictly speaking, num and den are encoded as integer. However,
10960 they may not fit into a long, and they will have to be converted
10961 to DOUBLEST anyway. So scan them as DOUBLEST. */
10962 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10963 &num, &den) < 2)
10964 return -1.0;
10965 else
10966 return num / den;
10967 }
10968
10969 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
10970 factor ('SMALL value) associated with the type. */
10971
10972 static DOUBLEST
10973 scaling_factor (struct type *type)
10974 {
10975 const char *encoding = fixed_type_info (type);
10976 DOUBLEST num0, den0, num1, den1;
10977 int n;
10978
10979 /* Strictly speaking, num's and den's are encoded as integer. However,
10980 they may not fit into a long, and they will have to be converted
10981 to DOUBLEST anyway. So scan them as DOUBLEST. */
10982 n = sscanf (encoding,
10983 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
10984 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10985 &num0, &den0, &num1, &den1);
10986
10987 if (n < 2)
10988 return 1.0;
10989 else if (n == 4)
10990 return num1 / den1;
10991 else
10992 return num0 / den0;
10993 }
10994
10995
10996 /* Assuming that X is the representation of a value of fixed-point
10997 type TYPE, return its floating-point equivalent. */
10998
10999 DOUBLEST
11000 ada_fixed_to_float (struct type *type, LONGEST x)
11001 {
11002 return (DOUBLEST) x *scaling_factor (type);
11003 }
11004
11005 /* The representation of a fixed-point value of type TYPE
11006 corresponding to the value X. */
11007
11008 LONGEST
11009 ada_float_to_fixed (struct type *type, DOUBLEST x)
11010 {
11011 return (LONGEST) (x / scaling_factor (type) + 0.5);
11012 }
11013
11014 \f
11015
11016 /* Range types */
11017
11018 /* Scan STR beginning at position K for a discriminant name, and
11019 return the value of that discriminant field of DVAL in *PX. If
11020 PNEW_K is not null, put the position of the character beyond the
11021 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11022 not alter *PX and *PNEW_K if unsuccessful. */
11023
11024 static int
11025 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
11026 int *pnew_k)
11027 {
11028 static char *bound_buffer = NULL;
11029 static size_t bound_buffer_len = 0;
11030 char *bound;
11031 char *pend;
11032 struct value *bound_val;
11033
11034 if (dval == NULL || str == NULL || str[k] == '\0')
11035 return 0;
11036
11037 pend = strstr (str + k, "__");
11038 if (pend == NULL)
11039 {
11040 bound = str + k;
11041 k += strlen (bound);
11042 }
11043 else
11044 {
11045 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
11046 bound = bound_buffer;
11047 strncpy (bound_buffer, str + k, pend - (str + k));
11048 bound[pend - (str + k)] = '\0';
11049 k = pend - str;
11050 }
11051
11052 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11053 if (bound_val == NULL)
11054 return 0;
11055
11056 *px = value_as_long (bound_val);
11057 if (pnew_k != NULL)
11058 *pnew_k = k;
11059 return 1;
11060 }
11061
11062 /* Value of variable named NAME in the current environment. If
11063 no such variable found, then if ERR_MSG is null, returns 0, and
11064 otherwise causes an error with message ERR_MSG. */
11065
11066 static struct value *
11067 get_var_value (char *name, char *err_msg)
11068 {
11069 struct ada_symbol_info *syms;
11070 int nsyms;
11071
11072 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
11073 &syms);
11074
11075 if (nsyms != 1)
11076 {
11077 if (err_msg == NULL)
11078 return 0;
11079 else
11080 error (("%s"), err_msg);
11081 }
11082
11083 return value_of_variable (syms[0].sym, syms[0].block);
11084 }
11085
11086 /* Value of integer variable named NAME in the current environment. If
11087 no such variable found, returns 0, and sets *FLAG to 0. If
11088 successful, sets *FLAG to 1. */
11089
11090 LONGEST
11091 get_int_var_value (char *name, int *flag)
11092 {
11093 struct value *var_val = get_var_value (name, 0);
11094
11095 if (var_val == 0)
11096 {
11097 if (flag != NULL)
11098 *flag = 0;
11099 return 0;
11100 }
11101 else
11102 {
11103 if (flag != NULL)
11104 *flag = 1;
11105 return value_as_long (var_val);
11106 }
11107 }
11108
11109
11110 /* Return a range type whose base type is that of the range type named
11111 NAME in the current environment, and whose bounds are calculated
11112 from NAME according to the GNAT range encoding conventions.
11113 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11114 corresponding range type from debug information; fall back to using it
11115 if symbol lookup fails. If a new type must be created, allocate it
11116 like ORIG_TYPE was. The bounds information, in general, is encoded
11117 in NAME, the base type given in the named range type. */
11118
11119 static struct type *
11120 to_fixed_range_type (struct type *raw_type, struct value *dval)
11121 {
11122 const char *name;
11123 struct type *base_type;
11124 char *subtype_info;
11125
11126 gdb_assert (raw_type != NULL);
11127 gdb_assert (TYPE_NAME (raw_type) != NULL);
11128
11129 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11130 base_type = TYPE_TARGET_TYPE (raw_type);
11131 else
11132 base_type = raw_type;
11133
11134 name = TYPE_NAME (raw_type);
11135 subtype_info = strstr (name, "___XD");
11136 if (subtype_info == NULL)
11137 {
11138 LONGEST L = ada_discrete_type_low_bound (raw_type);
11139 LONGEST U = ada_discrete_type_high_bound (raw_type);
11140
11141 if (L < INT_MIN || U > INT_MAX)
11142 return raw_type;
11143 else
11144 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11145 L, U);
11146 }
11147 else
11148 {
11149 static char *name_buf = NULL;
11150 static size_t name_len = 0;
11151 int prefix_len = subtype_info - name;
11152 LONGEST L, U;
11153 struct type *type;
11154 char *bounds_str;
11155 int n;
11156
11157 GROW_VECT (name_buf, name_len, prefix_len + 5);
11158 strncpy (name_buf, name, prefix_len);
11159 name_buf[prefix_len] = '\0';
11160
11161 subtype_info += 5;
11162 bounds_str = strchr (subtype_info, '_');
11163 n = 1;
11164
11165 if (*subtype_info == 'L')
11166 {
11167 if (!ada_scan_number (bounds_str, n, &L, &n)
11168 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11169 return raw_type;
11170 if (bounds_str[n] == '_')
11171 n += 2;
11172 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11173 n += 1;
11174 subtype_info += 1;
11175 }
11176 else
11177 {
11178 int ok;
11179
11180 strcpy (name_buf + prefix_len, "___L");
11181 L = get_int_var_value (name_buf, &ok);
11182 if (!ok)
11183 {
11184 lim_warning (_("Unknown lower bound, using 1."));
11185 L = 1;
11186 }
11187 }
11188
11189 if (*subtype_info == 'U')
11190 {
11191 if (!ada_scan_number (bounds_str, n, &U, &n)
11192 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11193 return raw_type;
11194 }
11195 else
11196 {
11197 int ok;
11198
11199 strcpy (name_buf + prefix_len, "___U");
11200 U = get_int_var_value (name_buf, &ok);
11201 if (!ok)
11202 {
11203 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11204 U = L;
11205 }
11206 }
11207
11208 type = create_static_range_type (alloc_type_copy (raw_type),
11209 base_type, L, U);
11210 TYPE_NAME (type) = name;
11211 return type;
11212 }
11213 }
11214
11215 /* True iff NAME is the name of a range type. */
11216
11217 int
11218 ada_is_range_type_name (const char *name)
11219 {
11220 return (name != NULL && strstr (name, "___XD"));
11221 }
11222 \f
11223
11224 /* Modular types */
11225
11226 /* True iff TYPE is an Ada modular type. */
11227
11228 int
11229 ada_is_modular_type (struct type *type)
11230 {
11231 struct type *subranged_type = get_base_type (type);
11232
11233 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11234 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11235 && TYPE_UNSIGNED (subranged_type));
11236 }
11237
11238 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11239
11240 ULONGEST
11241 ada_modulus (struct type *type)
11242 {
11243 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11244 }
11245 \f
11246
11247 /* Ada exception catchpoint support:
11248 ---------------------------------
11249
11250 We support 3 kinds of exception catchpoints:
11251 . catchpoints on Ada exceptions
11252 . catchpoints on unhandled Ada exceptions
11253 . catchpoints on failed assertions
11254
11255 Exceptions raised during failed assertions, or unhandled exceptions
11256 could perfectly be caught with the general catchpoint on Ada exceptions.
11257 However, we can easily differentiate these two special cases, and having
11258 the option to distinguish these two cases from the rest can be useful
11259 to zero-in on certain situations.
11260
11261 Exception catchpoints are a specialized form of breakpoint,
11262 since they rely on inserting breakpoints inside known routines
11263 of the GNAT runtime. The implementation therefore uses a standard
11264 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11265 of breakpoint_ops.
11266
11267 Support in the runtime for exception catchpoints have been changed
11268 a few times already, and these changes affect the implementation
11269 of these catchpoints. In order to be able to support several
11270 variants of the runtime, we use a sniffer that will determine
11271 the runtime variant used by the program being debugged. */
11272
11273 /* Ada's standard exceptions.
11274
11275 The Ada 83 standard also defined Numeric_Error. But there so many
11276 situations where it was unclear from the Ada 83 Reference Manual
11277 (RM) whether Constraint_Error or Numeric_Error should be raised,
11278 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11279 Interpretation saying that anytime the RM says that Numeric_Error
11280 should be raised, the implementation may raise Constraint_Error.
11281 Ada 95 went one step further and pretty much removed Numeric_Error
11282 from the list of standard exceptions (it made it a renaming of
11283 Constraint_Error, to help preserve compatibility when compiling
11284 an Ada83 compiler). As such, we do not include Numeric_Error from
11285 this list of standard exceptions. */
11286
11287 static char *standard_exc[] = {
11288 "constraint_error",
11289 "program_error",
11290 "storage_error",
11291 "tasking_error"
11292 };
11293
11294 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11295
11296 /* A structure that describes how to support exception catchpoints
11297 for a given executable. */
11298
11299 struct exception_support_info
11300 {
11301 /* The name of the symbol to break on in order to insert
11302 a catchpoint on exceptions. */
11303 const char *catch_exception_sym;
11304
11305 /* The name of the symbol to break on in order to insert
11306 a catchpoint on unhandled exceptions. */
11307 const char *catch_exception_unhandled_sym;
11308
11309 /* The name of the symbol to break on in order to insert
11310 a catchpoint on failed assertions. */
11311 const char *catch_assert_sym;
11312
11313 /* Assuming that the inferior just triggered an unhandled exception
11314 catchpoint, this function is responsible for returning the address
11315 in inferior memory where the name of that exception is stored.
11316 Return zero if the address could not be computed. */
11317 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11318 };
11319
11320 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11321 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11322
11323 /* The following exception support info structure describes how to
11324 implement exception catchpoints with the latest version of the
11325 Ada runtime (as of 2007-03-06). */
11326
11327 static const struct exception_support_info default_exception_support_info =
11328 {
11329 "__gnat_debug_raise_exception", /* catch_exception_sym */
11330 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11331 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11332 ada_unhandled_exception_name_addr
11333 };
11334
11335 /* The following exception support info structure describes how to
11336 implement exception catchpoints with a slightly older version
11337 of the Ada runtime. */
11338
11339 static const struct exception_support_info exception_support_info_fallback =
11340 {
11341 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11342 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11343 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11344 ada_unhandled_exception_name_addr_from_raise
11345 };
11346
11347 /* Return nonzero if we can detect the exception support routines
11348 described in EINFO.
11349
11350 This function errors out if an abnormal situation is detected
11351 (for instance, if we find the exception support routines, but
11352 that support is found to be incomplete). */
11353
11354 static int
11355 ada_has_this_exception_support (const struct exception_support_info *einfo)
11356 {
11357 struct symbol *sym;
11358
11359 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11360 that should be compiled with debugging information. As a result, we
11361 expect to find that symbol in the symtabs. */
11362
11363 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11364 if (sym == NULL)
11365 {
11366 /* Perhaps we did not find our symbol because the Ada runtime was
11367 compiled without debugging info, or simply stripped of it.
11368 It happens on some GNU/Linux distributions for instance, where
11369 users have to install a separate debug package in order to get
11370 the runtime's debugging info. In that situation, let the user
11371 know why we cannot insert an Ada exception catchpoint.
11372
11373 Note: Just for the purpose of inserting our Ada exception
11374 catchpoint, we could rely purely on the associated minimal symbol.
11375 But we would be operating in degraded mode anyway, since we are
11376 still lacking the debugging info needed later on to extract
11377 the name of the exception being raised (this name is printed in
11378 the catchpoint message, and is also used when trying to catch
11379 a specific exception). We do not handle this case for now. */
11380 struct bound_minimal_symbol msym
11381 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11382
11383 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11384 error (_("Your Ada runtime appears to be missing some debugging "
11385 "information.\nCannot insert Ada exception catchpoint "
11386 "in this configuration."));
11387
11388 return 0;
11389 }
11390
11391 /* Make sure that the symbol we found corresponds to a function. */
11392
11393 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11394 error (_("Symbol \"%s\" is not a function (class = %d)"),
11395 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11396
11397 return 1;
11398 }
11399
11400 /* Inspect the Ada runtime and determine which exception info structure
11401 should be used to provide support for exception catchpoints.
11402
11403 This function will always set the per-inferior exception_info,
11404 or raise an error. */
11405
11406 static void
11407 ada_exception_support_info_sniffer (void)
11408 {
11409 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11410
11411 /* If the exception info is already known, then no need to recompute it. */
11412 if (data->exception_info != NULL)
11413 return;
11414
11415 /* Check the latest (default) exception support info. */
11416 if (ada_has_this_exception_support (&default_exception_support_info))
11417 {
11418 data->exception_info = &default_exception_support_info;
11419 return;
11420 }
11421
11422 /* Try our fallback exception suport info. */
11423 if (ada_has_this_exception_support (&exception_support_info_fallback))
11424 {
11425 data->exception_info = &exception_support_info_fallback;
11426 return;
11427 }
11428
11429 /* Sometimes, it is normal for us to not be able to find the routine
11430 we are looking for. This happens when the program is linked with
11431 the shared version of the GNAT runtime, and the program has not been
11432 started yet. Inform the user of these two possible causes if
11433 applicable. */
11434
11435 if (ada_update_initial_language (language_unknown) != language_ada)
11436 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11437
11438 /* If the symbol does not exist, then check that the program is
11439 already started, to make sure that shared libraries have been
11440 loaded. If it is not started, this may mean that the symbol is
11441 in a shared library. */
11442
11443 if (ptid_get_pid (inferior_ptid) == 0)
11444 error (_("Unable to insert catchpoint. Try to start the program first."));
11445
11446 /* At this point, we know that we are debugging an Ada program and
11447 that the inferior has been started, but we still are not able to
11448 find the run-time symbols. That can mean that we are in
11449 configurable run time mode, or that a-except as been optimized
11450 out by the linker... In any case, at this point it is not worth
11451 supporting this feature. */
11452
11453 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11454 }
11455
11456 /* True iff FRAME is very likely to be that of a function that is
11457 part of the runtime system. This is all very heuristic, but is
11458 intended to be used as advice as to what frames are uninteresting
11459 to most users. */
11460
11461 static int
11462 is_known_support_routine (struct frame_info *frame)
11463 {
11464 struct symtab_and_line sal;
11465 char *func_name;
11466 enum language func_lang;
11467 int i;
11468 const char *fullname;
11469
11470 /* If this code does not have any debugging information (no symtab),
11471 This cannot be any user code. */
11472
11473 find_frame_sal (frame, &sal);
11474 if (sal.symtab == NULL)
11475 return 1;
11476
11477 /* If there is a symtab, but the associated source file cannot be
11478 located, then assume this is not user code: Selecting a frame
11479 for which we cannot display the code would not be very helpful
11480 for the user. This should also take care of case such as VxWorks
11481 where the kernel has some debugging info provided for a few units. */
11482
11483 fullname = symtab_to_fullname (sal.symtab);
11484 if (access (fullname, R_OK) != 0)
11485 return 1;
11486
11487 /* Check the unit filename againt the Ada runtime file naming.
11488 We also check the name of the objfile against the name of some
11489 known system libraries that sometimes come with debugging info
11490 too. */
11491
11492 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11493 {
11494 re_comp (known_runtime_file_name_patterns[i]);
11495 if (re_exec (lbasename (sal.symtab->filename)))
11496 return 1;
11497 if (sal.symtab->objfile != NULL
11498 && re_exec (objfile_name (sal.symtab->objfile)))
11499 return 1;
11500 }
11501
11502 /* Check whether the function is a GNAT-generated entity. */
11503
11504 find_frame_funname (frame, &func_name, &func_lang, NULL);
11505 if (func_name == NULL)
11506 return 1;
11507
11508 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11509 {
11510 re_comp (known_auxiliary_function_name_patterns[i]);
11511 if (re_exec (func_name))
11512 {
11513 xfree (func_name);
11514 return 1;
11515 }
11516 }
11517
11518 xfree (func_name);
11519 return 0;
11520 }
11521
11522 /* Find the first frame that contains debugging information and that is not
11523 part of the Ada run-time, starting from FI and moving upward. */
11524
11525 void
11526 ada_find_printable_frame (struct frame_info *fi)
11527 {
11528 for (; fi != NULL; fi = get_prev_frame (fi))
11529 {
11530 if (!is_known_support_routine (fi))
11531 {
11532 select_frame (fi);
11533 break;
11534 }
11535 }
11536
11537 }
11538
11539 /* Assuming that the inferior just triggered an unhandled exception
11540 catchpoint, return the address in inferior memory where the name
11541 of the exception is stored.
11542
11543 Return zero if the address could not be computed. */
11544
11545 static CORE_ADDR
11546 ada_unhandled_exception_name_addr (void)
11547 {
11548 return parse_and_eval_address ("e.full_name");
11549 }
11550
11551 /* Same as ada_unhandled_exception_name_addr, except that this function
11552 should be used when the inferior uses an older version of the runtime,
11553 where the exception name needs to be extracted from a specific frame
11554 several frames up in the callstack. */
11555
11556 static CORE_ADDR
11557 ada_unhandled_exception_name_addr_from_raise (void)
11558 {
11559 int frame_level;
11560 struct frame_info *fi;
11561 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11562 struct cleanup *old_chain;
11563
11564 /* To determine the name of this exception, we need to select
11565 the frame corresponding to RAISE_SYM_NAME. This frame is
11566 at least 3 levels up, so we simply skip the first 3 frames
11567 without checking the name of their associated function. */
11568 fi = get_current_frame ();
11569 for (frame_level = 0; frame_level < 3; frame_level += 1)
11570 if (fi != NULL)
11571 fi = get_prev_frame (fi);
11572
11573 old_chain = make_cleanup (null_cleanup, NULL);
11574 while (fi != NULL)
11575 {
11576 char *func_name;
11577 enum language func_lang;
11578
11579 find_frame_funname (fi, &func_name, &func_lang, NULL);
11580 if (func_name != NULL)
11581 {
11582 make_cleanup (xfree, func_name);
11583
11584 if (strcmp (func_name,
11585 data->exception_info->catch_exception_sym) == 0)
11586 break; /* We found the frame we were looking for... */
11587 fi = get_prev_frame (fi);
11588 }
11589 }
11590 do_cleanups (old_chain);
11591
11592 if (fi == NULL)
11593 return 0;
11594
11595 select_frame (fi);
11596 return parse_and_eval_address ("id.full_name");
11597 }
11598
11599 /* Assuming the inferior just triggered an Ada exception catchpoint
11600 (of any type), return the address in inferior memory where the name
11601 of the exception is stored, if applicable.
11602
11603 Return zero if the address could not be computed, or if not relevant. */
11604
11605 static CORE_ADDR
11606 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
11607 struct breakpoint *b)
11608 {
11609 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11610
11611 switch (ex)
11612 {
11613 case ada_catch_exception:
11614 return (parse_and_eval_address ("e.full_name"));
11615 break;
11616
11617 case ada_catch_exception_unhandled:
11618 return data->exception_info->unhandled_exception_name_addr ();
11619 break;
11620
11621 case ada_catch_assert:
11622 return 0; /* Exception name is not relevant in this case. */
11623 break;
11624
11625 default:
11626 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11627 break;
11628 }
11629
11630 return 0; /* Should never be reached. */
11631 }
11632
11633 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
11634 any error that ada_exception_name_addr_1 might cause to be thrown.
11635 When an error is intercepted, a warning with the error message is printed,
11636 and zero is returned. */
11637
11638 static CORE_ADDR
11639 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
11640 struct breakpoint *b)
11641 {
11642 volatile struct gdb_exception e;
11643 CORE_ADDR result = 0;
11644
11645 TRY_CATCH (e, RETURN_MASK_ERROR)
11646 {
11647 result = ada_exception_name_addr_1 (ex, b);
11648 }
11649
11650 if (e.reason < 0)
11651 {
11652 warning (_("failed to get exception name: %s"), e.message);
11653 return 0;
11654 }
11655
11656 return result;
11657 }
11658
11659 static char *ada_exception_catchpoint_cond_string (const char *excep_string);
11660
11661 /* Ada catchpoints.
11662
11663 In the case of catchpoints on Ada exceptions, the catchpoint will
11664 stop the target on every exception the program throws. When a user
11665 specifies the name of a specific exception, we translate this
11666 request into a condition expression (in text form), and then parse
11667 it into an expression stored in each of the catchpoint's locations.
11668 We then use this condition to check whether the exception that was
11669 raised is the one the user is interested in. If not, then the
11670 target is resumed again. We store the name of the requested
11671 exception, in order to be able to re-set the condition expression
11672 when symbols change. */
11673
11674 /* An instance of this type is used to represent an Ada catchpoint
11675 breakpoint location. It includes a "struct bp_location" as a kind
11676 of base class; users downcast to "struct bp_location *" when
11677 needed. */
11678
11679 struct ada_catchpoint_location
11680 {
11681 /* The base class. */
11682 struct bp_location base;
11683
11684 /* The condition that checks whether the exception that was raised
11685 is the specific exception the user specified on catchpoint
11686 creation. */
11687 struct expression *excep_cond_expr;
11688 };
11689
11690 /* Implement the DTOR method in the bp_location_ops structure for all
11691 Ada exception catchpoint kinds. */
11692
11693 static void
11694 ada_catchpoint_location_dtor (struct bp_location *bl)
11695 {
11696 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
11697
11698 xfree (al->excep_cond_expr);
11699 }
11700
11701 /* The vtable to be used in Ada catchpoint locations. */
11702
11703 static const struct bp_location_ops ada_catchpoint_location_ops =
11704 {
11705 ada_catchpoint_location_dtor
11706 };
11707
11708 /* An instance of this type is used to represent an Ada catchpoint.
11709 It includes a "struct breakpoint" as a kind of base class; users
11710 downcast to "struct breakpoint *" when needed. */
11711
11712 struct ada_catchpoint
11713 {
11714 /* The base class. */
11715 struct breakpoint base;
11716
11717 /* The name of the specific exception the user specified. */
11718 char *excep_string;
11719 };
11720
11721 /* Parse the exception condition string in the context of each of the
11722 catchpoint's locations, and store them for later evaluation. */
11723
11724 static void
11725 create_excep_cond_exprs (struct ada_catchpoint *c)
11726 {
11727 struct cleanup *old_chain;
11728 struct bp_location *bl;
11729 char *cond_string;
11730
11731 /* Nothing to do if there's no specific exception to catch. */
11732 if (c->excep_string == NULL)
11733 return;
11734
11735 /* Same if there are no locations... */
11736 if (c->base.loc == NULL)
11737 return;
11738
11739 /* Compute the condition expression in text form, from the specific
11740 expection we want to catch. */
11741 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11742 old_chain = make_cleanup (xfree, cond_string);
11743
11744 /* Iterate over all the catchpoint's locations, and parse an
11745 expression for each. */
11746 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11747 {
11748 struct ada_catchpoint_location *ada_loc
11749 = (struct ada_catchpoint_location *) bl;
11750 struct expression *exp = NULL;
11751
11752 if (!bl->shlib_disabled)
11753 {
11754 volatile struct gdb_exception e;
11755 const char *s;
11756
11757 s = cond_string;
11758 TRY_CATCH (e, RETURN_MASK_ERROR)
11759 {
11760 exp = parse_exp_1 (&s, bl->address,
11761 block_for_pc (bl->address), 0);
11762 }
11763 if (e.reason < 0)
11764 {
11765 warning (_("failed to reevaluate internal exception condition "
11766 "for catchpoint %d: %s"),
11767 c->base.number, e.message);
11768 /* There is a bug in GCC on sparc-solaris when building with
11769 optimization which causes EXP to change unexpectedly
11770 (http://gcc.gnu.org/bugzilla/show_bug.cgi?id=56982).
11771 The problem should be fixed starting with GCC 4.9.
11772 In the meantime, work around it by forcing EXP back
11773 to NULL. */
11774 exp = NULL;
11775 }
11776 }
11777
11778 ada_loc->excep_cond_expr = exp;
11779 }
11780
11781 do_cleanups (old_chain);
11782 }
11783
11784 /* Implement the DTOR method in the breakpoint_ops structure for all
11785 exception catchpoint kinds. */
11786
11787 static void
11788 dtor_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
11789 {
11790 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11791
11792 xfree (c->excep_string);
11793
11794 bkpt_breakpoint_ops.dtor (b);
11795 }
11796
11797 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11798 structure for all exception catchpoint kinds. */
11799
11800 static struct bp_location *
11801 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
11802 struct breakpoint *self)
11803 {
11804 struct ada_catchpoint_location *loc;
11805
11806 loc = XNEW (struct ada_catchpoint_location);
11807 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11808 loc->excep_cond_expr = NULL;
11809 return &loc->base;
11810 }
11811
11812 /* Implement the RE_SET method in the breakpoint_ops structure for all
11813 exception catchpoint kinds. */
11814
11815 static void
11816 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
11817 {
11818 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11819
11820 /* Call the base class's method. This updates the catchpoint's
11821 locations. */
11822 bkpt_breakpoint_ops.re_set (b);
11823
11824 /* Reparse the exception conditional expressions. One for each
11825 location. */
11826 create_excep_cond_exprs (c);
11827 }
11828
11829 /* Returns true if we should stop for this breakpoint hit. If the
11830 user specified a specific exception, we only want to cause a stop
11831 if the program thrown that exception. */
11832
11833 static int
11834 should_stop_exception (const struct bp_location *bl)
11835 {
11836 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11837 const struct ada_catchpoint_location *ada_loc
11838 = (const struct ada_catchpoint_location *) bl;
11839 volatile struct gdb_exception ex;
11840 int stop;
11841
11842 /* With no specific exception, should always stop. */
11843 if (c->excep_string == NULL)
11844 return 1;
11845
11846 if (ada_loc->excep_cond_expr == NULL)
11847 {
11848 /* We will have a NULL expression if back when we were creating
11849 the expressions, this location's had failed to parse. */
11850 return 1;
11851 }
11852
11853 stop = 1;
11854 TRY_CATCH (ex, RETURN_MASK_ALL)
11855 {
11856 struct value *mark;
11857
11858 mark = value_mark ();
11859 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
11860 value_free_to_mark (mark);
11861 }
11862 if (ex.reason < 0)
11863 exception_fprintf (gdb_stderr, ex,
11864 _("Error in testing exception condition:\n"));
11865 return stop;
11866 }
11867
11868 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
11869 for all exception catchpoint kinds. */
11870
11871 static void
11872 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
11873 {
11874 bs->stop = should_stop_exception (bs->bp_location_at);
11875 }
11876
11877 /* Implement the PRINT_IT method in the breakpoint_ops structure
11878 for all exception catchpoint kinds. */
11879
11880 static enum print_stop_action
11881 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
11882 {
11883 struct ui_out *uiout = current_uiout;
11884 struct breakpoint *b = bs->breakpoint_at;
11885
11886 annotate_catchpoint (b->number);
11887
11888 if (ui_out_is_mi_like_p (uiout))
11889 {
11890 ui_out_field_string (uiout, "reason",
11891 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11892 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
11893 }
11894
11895 ui_out_text (uiout,
11896 b->disposition == disp_del ? "\nTemporary catchpoint "
11897 : "\nCatchpoint ");
11898 ui_out_field_int (uiout, "bkptno", b->number);
11899 ui_out_text (uiout, ", ");
11900
11901 switch (ex)
11902 {
11903 case ada_catch_exception:
11904 case ada_catch_exception_unhandled:
11905 {
11906 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
11907 char exception_name[256];
11908
11909 if (addr != 0)
11910 {
11911 read_memory (addr, (gdb_byte *) exception_name,
11912 sizeof (exception_name) - 1);
11913 exception_name [sizeof (exception_name) - 1] = '\0';
11914 }
11915 else
11916 {
11917 /* For some reason, we were unable to read the exception
11918 name. This could happen if the Runtime was compiled
11919 without debugging info, for instance. In that case,
11920 just replace the exception name by the generic string
11921 "exception" - it will read as "an exception" in the
11922 notification we are about to print. */
11923 memcpy (exception_name, "exception", sizeof ("exception"));
11924 }
11925 /* In the case of unhandled exception breakpoints, we print
11926 the exception name as "unhandled EXCEPTION_NAME", to make
11927 it clearer to the user which kind of catchpoint just got
11928 hit. We used ui_out_text to make sure that this extra
11929 info does not pollute the exception name in the MI case. */
11930 if (ex == ada_catch_exception_unhandled)
11931 ui_out_text (uiout, "unhandled ");
11932 ui_out_field_string (uiout, "exception-name", exception_name);
11933 }
11934 break;
11935 case ada_catch_assert:
11936 /* In this case, the name of the exception is not really
11937 important. Just print "failed assertion" to make it clearer
11938 that his program just hit an assertion-failure catchpoint.
11939 We used ui_out_text because this info does not belong in
11940 the MI output. */
11941 ui_out_text (uiout, "failed assertion");
11942 break;
11943 }
11944 ui_out_text (uiout, " at ");
11945 ada_find_printable_frame (get_current_frame ());
11946
11947 return PRINT_SRC_AND_LOC;
11948 }
11949
11950 /* Implement the PRINT_ONE method in the breakpoint_ops structure
11951 for all exception catchpoint kinds. */
11952
11953 static void
11954 print_one_exception (enum ada_exception_catchpoint_kind ex,
11955 struct breakpoint *b, struct bp_location **last_loc)
11956 {
11957 struct ui_out *uiout = current_uiout;
11958 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11959 struct value_print_options opts;
11960
11961 get_user_print_options (&opts);
11962 if (opts.addressprint)
11963 {
11964 annotate_field (4);
11965 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
11966 }
11967
11968 annotate_field (5);
11969 *last_loc = b->loc;
11970 switch (ex)
11971 {
11972 case ada_catch_exception:
11973 if (c->excep_string != NULL)
11974 {
11975 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11976
11977 ui_out_field_string (uiout, "what", msg);
11978 xfree (msg);
11979 }
11980 else
11981 ui_out_field_string (uiout, "what", "all Ada exceptions");
11982
11983 break;
11984
11985 case ada_catch_exception_unhandled:
11986 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
11987 break;
11988
11989 case ada_catch_assert:
11990 ui_out_field_string (uiout, "what", "failed Ada assertions");
11991 break;
11992
11993 default:
11994 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11995 break;
11996 }
11997 }
11998
11999 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12000 for all exception catchpoint kinds. */
12001
12002 static void
12003 print_mention_exception (enum ada_exception_catchpoint_kind ex,
12004 struct breakpoint *b)
12005 {
12006 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12007 struct ui_out *uiout = current_uiout;
12008
12009 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
12010 : _("Catchpoint "));
12011 ui_out_field_int (uiout, "bkptno", b->number);
12012 ui_out_text (uiout, ": ");
12013
12014 switch (ex)
12015 {
12016 case ada_catch_exception:
12017 if (c->excep_string != NULL)
12018 {
12019 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12020 struct cleanup *old_chain = make_cleanup (xfree, info);
12021
12022 ui_out_text (uiout, info);
12023 do_cleanups (old_chain);
12024 }
12025 else
12026 ui_out_text (uiout, _("all Ada exceptions"));
12027 break;
12028
12029 case ada_catch_exception_unhandled:
12030 ui_out_text (uiout, _("unhandled Ada exceptions"));
12031 break;
12032
12033 case ada_catch_assert:
12034 ui_out_text (uiout, _("failed Ada assertions"));
12035 break;
12036
12037 default:
12038 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12039 break;
12040 }
12041 }
12042
12043 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12044 for all exception catchpoint kinds. */
12045
12046 static void
12047 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12048 struct breakpoint *b, struct ui_file *fp)
12049 {
12050 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12051
12052 switch (ex)
12053 {
12054 case ada_catch_exception:
12055 fprintf_filtered (fp, "catch exception");
12056 if (c->excep_string != NULL)
12057 fprintf_filtered (fp, " %s", c->excep_string);
12058 break;
12059
12060 case ada_catch_exception_unhandled:
12061 fprintf_filtered (fp, "catch exception unhandled");
12062 break;
12063
12064 case ada_catch_assert:
12065 fprintf_filtered (fp, "catch assert");
12066 break;
12067
12068 default:
12069 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12070 }
12071 print_recreate_thread (b, fp);
12072 }
12073
12074 /* Virtual table for "catch exception" breakpoints. */
12075
12076 static void
12077 dtor_catch_exception (struct breakpoint *b)
12078 {
12079 dtor_exception (ada_catch_exception, b);
12080 }
12081
12082 static struct bp_location *
12083 allocate_location_catch_exception (struct breakpoint *self)
12084 {
12085 return allocate_location_exception (ada_catch_exception, self);
12086 }
12087
12088 static void
12089 re_set_catch_exception (struct breakpoint *b)
12090 {
12091 re_set_exception (ada_catch_exception, b);
12092 }
12093
12094 static void
12095 check_status_catch_exception (bpstat bs)
12096 {
12097 check_status_exception (ada_catch_exception, bs);
12098 }
12099
12100 static enum print_stop_action
12101 print_it_catch_exception (bpstat bs)
12102 {
12103 return print_it_exception (ada_catch_exception, bs);
12104 }
12105
12106 static void
12107 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12108 {
12109 print_one_exception (ada_catch_exception, b, last_loc);
12110 }
12111
12112 static void
12113 print_mention_catch_exception (struct breakpoint *b)
12114 {
12115 print_mention_exception (ada_catch_exception, b);
12116 }
12117
12118 static void
12119 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12120 {
12121 print_recreate_exception (ada_catch_exception, b, fp);
12122 }
12123
12124 static struct breakpoint_ops catch_exception_breakpoint_ops;
12125
12126 /* Virtual table for "catch exception unhandled" breakpoints. */
12127
12128 static void
12129 dtor_catch_exception_unhandled (struct breakpoint *b)
12130 {
12131 dtor_exception (ada_catch_exception_unhandled, b);
12132 }
12133
12134 static struct bp_location *
12135 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12136 {
12137 return allocate_location_exception (ada_catch_exception_unhandled, self);
12138 }
12139
12140 static void
12141 re_set_catch_exception_unhandled (struct breakpoint *b)
12142 {
12143 re_set_exception (ada_catch_exception_unhandled, b);
12144 }
12145
12146 static void
12147 check_status_catch_exception_unhandled (bpstat bs)
12148 {
12149 check_status_exception (ada_catch_exception_unhandled, bs);
12150 }
12151
12152 static enum print_stop_action
12153 print_it_catch_exception_unhandled (bpstat bs)
12154 {
12155 return print_it_exception (ada_catch_exception_unhandled, bs);
12156 }
12157
12158 static void
12159 print_one_catch_exception_unhandled (struct breakpoint *b,
12160 struct bp_location **last_loc)
12161 {
12162 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12163 }
12164
12165 static void
12166 print_mention_catch_exception_unhandled (struct breakpoint *b)
12167 {
12168 print_mention_exception (ada_catch_exception_unhandled, b);
12169 }
12170
12171 static void
12172 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12173 struct ui_file *fp)
12174 {
12175 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12176 }
12177
12178 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12179
12180 /* Virtual table for "catch assert" breakpoints. */
12181
12182 static void
12183 dtor_catch_assert (struct breakpoint *b)
12184 {
12185 dtor_exception (ada_catch_assert, b);
12186 }
12187
12188 static struct bp_location *
12189 allocate_location_catch_assert (struct breakpoint *self)
12190 {
12191 return allocate_location_exception (ada_catch_assert, self);
12192 }
12193
12194 static void
12195 re_set_catch_assert (struct breakpoint *b)
12196 {
12197 re_set_exception (ada_catch_assert, b);
12198 }
12199
12200 static void
12201 check_status_catch_assert (bpstat bs)
12202 {
12203 check_status_exception (ada_catch_assert, bs);
12204 }
12205
12206 static enum print_stop_action
12207 print_it_catch_assert (bpstat bs)
12208 {
12209 return print_it_exception (ada_catch_assert, bs);
12210 }
12211
12212 static void
12213 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12214 {
12215 print_one_exception (ada_catch_assert, b, last_loc);
12216 }
12217
12218 static void
12219 print_mention_catch_assert (struct breakpoint *b)
12220 {
12221 print_mention_exception (ada_catch_assert, b);
12222 }
12223
12224 static void
12225 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12226 {
12227 print_recreate_exception (ada_catch_assert, b, fp);
12228 }
12229
12230 static struct breakpoint_ops catch_assert_breakpoint_ops;
12231
12232 /* Return a newly allocated copy of the first space-separated token
12233 in ARGSP, and then adjust ARGSP to point immediately after that
12234 token.
12235
12236 Return NULL if ARGPS does not contain any more tokens. */
12237
12238 static char *
12239 ada_get_next_arg (char **argsp)
12240 {
12241 char *args = *argsp;
12242 char *end;
12243 char *result;
12244
12245 args = skip_spaces (args);
12246 if (args[0] == '\0')
12247 return NULL; /* No more arguments. */
12248
12249 /* Find the end of the current argument. */
12250
12251 end = skip_to_space (args);
12252
12253 /* Adjust ARGSP to point to the start of the next argument. */
12254
12255 *argsp = end;
12256
12257 /* Make a copy of the current argument and return it. */
12258
12259 result = xmalloc (end - args + 1);
12260 strncpy (result, args, end - args);
12261 result[end - args] = '\0';
12262
12263 return result;
12264 }
12265
12266 /* Split the arguments specified in a "catch exception" command.
12267 Set EX to the appropriate catchpoint type.
12268 Set EXCEP_STRING to the name of the specific exception if
12269 specified by the user.
12270 If a condition is found at the end of the arguments, the condition
12271 expression is stored in COND_STRING (memory must be deallocated
12272 after use). Otherwise COND_STRING is set to NULL. */
12273
12274 static void
12275 catch_ada_exception_command_split (char *args,
12276 enum ada_exception_catchpoint_kind *ex,
12277 char **excep_string,
12278 char **cond_string)
12279 {
12280 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
12281 char *exception_name;
12282 char *cond = NULL;
12283
12284 exception_name = ada_get_next_arg (&args);
12285 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
12286 {
12287 /* This is not an exception name; this is the start of a condition
12288 expression for a catchpoint on all exceptions. So, "un-get"
12289 this token, and set exception_name to NULL. */
12290 xfree (exception_name);
12291 exception_name = NULL;
12292 args -= 2;
12293 }
12294 make_cleanup (xfree, exception_name);
12295
12296 /* Check to see if we have a condition. */
12297
12298 args = skip_spaces (args);
12299 if (strncmp (args, "if", 2) == 0
12300 && (isspace (args[2]) || args[2] == '\0'))
12301 {
12302 args += 2;
12303 args = skip_spaces (args);
12304
12305 if (args[0] == '\0')
12306 error (_("Condition missing after `if' keyword"));
12307 cond = xstrdup (args);
12308 make_cleanup (xfree, cond);
12309
12310 args += strlen (args);
12311 }
12312
12313 /* Check that we do not have any more arguments. Anything else
12314 is unexpected. */
12315
12316 if (args[0] != '\0')
12317 error (_("Junk at end of expression"));
12318
12319 discard_cleanups (old_chain);
12320
12321 if (exception_name == NULL)
12322 {
12323 /* Catch all exceptions. */
12324 *ex = ada_catch_exception;
12325 *excep_string = NULL;
12326 }
12327 else if (strcmp (exception_name, "unhandled") == 0)
12328 {
12329 /* Catch unhandled exceptions. */
12330 *ex = ada_catch_exception_unhandled;
12331 *excep_string = NULL;
12332 }
12333 else
12334 {
12335 /* Catch a specific exception. */
12336 *ex = ada_catch_exception;
12337 *excep_string = exception_name;
12338 }
12339 *cond_string = cond;
12340 }
12341
12342 /* Return the name of the symbol on which we should break in order to
12343 implement a catchpoint of the EX kind. */
12344
12345 static const char *
12346 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12347 {
12348 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12349
12350 gdb_assert (data->exception_info != NULL);
12351
12352 switch (ex)
12353 {
12354 case ada_catch_exception:
12355 return (data->exception_info->catch_exception_sym);
12356 break;
12357 case ada_catch_exception_unhandled:
12358 return (data->exception_info->catch_exception_unhandled_sym);
12359 break;
12360 case ada_catch_assert:
12361 return (data->exception_info->catch_assert_sym);
12362 break;
12363 default:
12364 internal_error (__FILE__, __LINE__,
12365 _("unexpected catchpoint kind (%d)"), ex);
12366 }
12367 }
12368
12369 /* Return the breakpoint ops "virtual table" used for catchpoints
12370 of the EX kind. */
12371
12372 static const struct breakpoint_ops *
12373 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12374 {
12375 switch (ex)
12376 {
12377 case ada_catch_exception:
12378 return (&catch_exception_breakpoint_ops);
12379 break;
12380 case ada_catch_exception_unhandled:
12381 return (&catch_exception_unhandled_breakpoint_ops);
12382 break;
12383 case ada_catch_assert:
12384 return (&catch_assert_breakpoint_ops);
12385 break;
12386 default:
12387 internal_error (__FILE__, __LINE__,
12388 _("unexpected catchpoint kind (%d)"), ex);
12389 }
12390 }
12391
12392 /* Return the condition that will be used to match the current exception
12393 being raised with the exception that the user wants to catch. This
12394 assumes that this condition is used when the inferior just triggered
12395 an exception catchpoint.
12396
12397 The string returned is a newly allocated string that needs to be
12398 deallocated later. */
12399
12400 static char *
12401 ada_exception_catchpoint_cond_string (const char *excep_string)
12402 {
12403 int i;
12404
12405 /* The standard exceptions are a special case. They are defined in
12406 runtime units that have been compiled without debugging info; if
12407 EXCEP_STRING is the not-fully-qualified name of a standard
12408 exception (e.g. "constraint_error") then, during the evaluation
12409 of the condition expression, the symbol lookup on this name would
12410 *not* return this standard exception. The catchpoint condition
12411 may then be set only on user-defined exceptions which have the
12412 same not-fully-qualified name (e.g. my_package.constraint_error).
12413
12414 To avoid this unexcepted behavior, these standard exceptions are
12415 systematically prefixed by "standard". This means that "catch
12416 exception constraint_error" is rewritten into "catch exception
12417 standard.constraint_error".
12418
12419 If an exception named contraint_error is defined in another package of
12420 the inferior program, then the only way to specify this exception as a
12421 breakpoint condition is to use its fully-qualified named:
12422 e.g. my_package.constraint_error. */
12423
12424 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12425 {
12426 if (strcmp (standard_exc [i], excep_string) == 0)
12427 {
12428 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
12429 excep_string);
12430 }
12431 }
12432 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
12433 }
12434
12435 /* Return the symtab_and_line that should be used to insert an exception
12436 catchpoint of the TYPE kind.
12437
12438 EXCEP_STRING should contain the name of a specific exception that
12439 the catchpoint should catch, or NULL otherwise.
12440
12441 ADDR_STRING returns the name of the function where the real
12442 breakpoint that implements the catchpoints is set, depending on the
12443 type of catchpoint we need to create. */
12444
12445 static struct symtab_and_line
12446 ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
12447 char **addr_string, const struct breakpoint_ops **ops)
12448 {
12449 const char *sym_name;
12450 struct symbol *sym;
12451
12452 /* First, find out which exception support info to use. */
12453 ada_exception_support_info_sniffer ();
12454
12455 /* Then lookup the function on which we will break in order to catch
12456 the Ada exceptions requested by the user. */
12457 sym_name = ada_exception_sym_name (ex);
12458 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12459
12460 /* We can assume that SYM is not NULL at this stage. If the symbol
12461 did not exist, ada_exception_support_info_sniffer would have
12462 raised an exception.
12463
12464 Also, ada_exception_support_info_sniffer should have already
12465 verified that SYM is a function symbol. */
12466 gdb_assert (sym != NULL);
12467 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
12468
12469 /* Set ADDR_STRING. */
12470 *addr_string = xstrdup (sym_name);
12471
12472 /* Set OPS. */
12473 *ops = ada_exception_breakpoint_ops (ex);
12474
12475 return find_function_start_sal (sym, 1);
12476 }
12477
12478 /* Create an Ada exception catchpoint.
12479
12480 EX_KIND is the kind of exception catchpoint to be created.
12481
12482 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
12483 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12484 of the exception to which this catchpoint applies. When not NULL,
12485 the string must be allocated on the heap, and its deallocation
12486 is no longer the responsibility of the caller.
12487
12488 COND_STRING, if not NULL, is the catchpoint condition. This string
12489 must be allocated on the heap, and its deallocation is no longer
12490 the responsibility of the caller.
12491
12492 TEMPFLAG, if nonzero, means that the underlying breakpoint
12493 should be temporary.
12494
12495 FROM_TTY is the usual argument passed to all commands implementations. */
12496
12497 void
12498 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12499 enum ada_exception_catchpoint_kind ex_kind,
12500 char *excep_string,
12501 char *cond_string,
12502 int tempflag,
12503 int disabled,
12504 int from_tty)
12505 {
12506 struct ada_catchpoint *c;
12507 char *addr_string = NULL;
12508 const struct breakpoint_ops *ops = NULL;
12509 struct symtab_and_line sal
12510 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
12511
12512 c = XNEW (struct ada_catchpoint);
12513 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
12514 ops, tempflag, disabled, from_tty);
12515 c->excep_string = excep_string;
12516 create_excep_cond_exprs (c);
12517 if (cond_string != NULL)
12518 set_breakpoint_condition (&c->base, cond_string, from_tty);
12519 install_breakpoint (0, &c->base, 1);
12520 }
12521
12522 /* Implement the "catch exception" command. */
12523
12524 static void
12525 catch_ada_exception_command (char *arg, int from_tty,
12526 struct cmd_list_element *command)
12527 {
12528 struct gdbarch *gdbarch = get_current_arch ();
12529 int tempflag;
12530 enum ada_exception_catchpoint_kind ex_kind;
12531 char *excep_string = NULL;
12532 char *cond_string = NULL;
12533
12534 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12535
12536 if (!arg)
12537 arg = "";
12538 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
12539 &cond_string);
12540 create_ada_exception_catchpoint (gdbarch, ex_kind,
12541 excep_string, cond_string,
12542 tempflag, 1 /* enabled */,
12543 from_tty);
12544 }
12545
12546 /* Split the arguments specified in a "catch assert" command.
12547
12548 ARGS contains the command's arguments (or the empty string if
12549 no arguments were passed).
12550
12551 If ARGS contains a condition, set COND_STRING to that condition
12552 (the memory needs to be deallocated after use). */
12553
12554 static void
12555 catch_ada_assert_command_split (char *args, char **cond_string)
12556 {
12557 args = skip_spaces (args);
12558
12559 /* Check whether a condition was provided. */
12560 if (strncmp (args, "if", 2) == 0
12561 && (isspace (args[2]) || args[2] == '\0'))
12562 {
12563 args += 2;
12564 args = skip_spaces (args);
12565 if (args[0] == '\0')
12566 error (_("condition missing after `if' keyword"));
12567 *cond_string = xstrdup (args);
12568 }
12569
12570 /* Otherwise, there should be no other argument at the end of
12571 the command. */
12572 else if (args[0] != '\0')
12573 error (_("Junk at end of arguments."));
12574 }
12575
12576 /* Implement the "catch assert" command. */
12577
12578 static void
12579 catch_assert_command (char *arg, int from_tty,
12580 struct cmd_list_element *command)
12581 {
12582 struct gdbarch *gdbarch = get_current_arch ();
12583 int tempflag;
12584 char *cond_string = NULL;
12585
12586 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12587
12588 if (!arg)
12589 arg = "";
12590 catch_ada_assert_command_split (arg, &cond_string);
12591 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
12592 NULL, cond_string,
12593 tempflag, 1 /* enabled */,
12594 from_tty);
12595 }
12596
12597 /* Return non-zero if the symbol SYM is an Ada exception object. */
12598
12599 static int
12600 ada_is_exception_sym (struct symbol *sym)
12601 {
12602 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
12603
12604 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
12605 && SYMBOL_CLASS (sym) != LOC_BLOCK
12606 && SYMBOL_CLASS (sym) != LOC_CONST
12607 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
12608 && type_name != NULL && strcmp (type_name, "exception") == 0);
12609 }
12610
12611 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12612 Ada exception object. This matches all exceptions except the ones
12613 defined by the Ada language. */
12614
12615 static int
12616 ada_is_non_standard_exception_sym (struct symbol *sym)
12617 {
12618 int i;
12619
12620 if (!ada_is_exception_sym (sym))
12621 return 0;
12622
12623 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12624 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
12625 return 0; /* A standard exception. */
12626
12627 /* Numeric_Error is also a standard exception, so exclude it.
12628 See the STANDARD_EXC description for more details as to why
12629 this exception is not listed in that array. */
12630 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
12631 return 0;
12632
12633 return 1;
12634 }
12635
12636 /* A helper function for qsort, comparing two struct ada_exc_info
12637 objects.
12638
12639 The comparison is determined first by exception name, and then
12640 by exception address. */
12641
12642 static int
12643 compare_ada_exception_info (const void *a, const void *b)
12644 {
12645 const struct ada_exc_info *exc_a = (struct ada_exc_info *) a;
12646 const struct ada_exc_info *exc_b = (struct ada_exc_info *) b;
12647 int result;
12648
12649 result = strcmp (exc_a->name, exc_b->name);
12650 if (result != 0)
12651 return result;
12652
12653 if (exc_a->addr < exc_b->addr)
12654 return -1;
12655 if (exc_a->addr > exc_b->addr)
12656 return 1;
12657
12658 return 0;
12659 }
12660
12661 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12662 routine, but keeping the first SKIP elements untouched.
12663
12664 All duplicates are also removed. */
12665
12666 static void
12667 sort_remove_dups_ada_exceptions_list (VEC(ada_exc_info) **exceptions,
12668 int skip)
12669 {
12670 struct ada_exc_info *to_sort
12671 = VEC_address (ada_exc_info, *exceptions) + skip;
12672 int to_sort_len
12673 = VEC_length (ada_exc_info, *exceptions) - skip;
12674 int i, j;
12675
12676 qsort (to_sort, to_sort_len, sizeof (struct ada_exc_info),
12677 compare_ada_exception_info);
12678
12679 for (i = 1, j = 1; i < to_sort_len; i++)
12680 if (compare_ada_exception_info (&to_sort[i], &to_sort[j - 1]) != 0)
12681 to_sort[j++] = to_sort[i];
12682 to_sort_len = j;
12683 VEC_truncate(ada_exc_info, *exceptions, skip + to_sort_len);
12684 }
12685
12686 /* A function intended as the "name_matcher" callback in the struct
12687 quick_symbol_functions' expand_symtabs_matching method.
12688
12689 SEARCH_NAME is the symbol's search name.
12690
12691 If USER_DATA is not NULL, it is a pointer to a regext_t object
12692 used to match the symbol (by natural name). Otherwise, when USER_DATA
12693 is null, no filtering is performed, and all symbols are a positive
12694 match. */
12695
12696 static int
12697 ada_exc_search_name_matches (const char *search_name, void *user_data)
12698 {
12699 regex_t *preg = user_data;
12700
12701 if (preg == NULL)
12702 return 1;
12703
12704 /* In Ada, the symbol "search name" is a linkage name, whereas
12705 the regular expression used to do the matching refers to
12706 the natural name. So match against the decoded name. */
12707 return (regexec (preg, ada_decode (search_name), 0, NULL, 0) == 0);
12708 }
12709
12710 /* Add all exceptions defined by the Ada standard whose name match
12711 a regular expression.
12712
12713 If PREG is not NULL, then this regexp_t object is used to
12714 perform the symbol name matching. Otherwise, no name-based
12715 filtering is performed.
12716
12717 EXCEPTIONS is a vector of exceptions to which matching exceptions
12718 gets pushed. */
12719
12720 static void
12721 ada_add_standard_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
12722 {
12723 int i;
12724
12725 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12726 {
12727 if (preg == NULL
12728 || regexec (preg, standard_exc[i], 0, NULL, 0) == 0)
12729 {
12730 struct bound_minimal_symbol msymbol
12731 = ada_lookup_simple_minsym (standard_exc[i]);
12732
12733 if (msymbol.minsym != NULL)
12734 {
12735 struct ada_exc_info info
12736 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
12737
12738 VEC_safe_push (ada_exc_info, *exceptions, &info);
12739 }
12740 }
12741 }
12742 }
12743
12744 /* Add all Ada exceptions defined locally and accessible from the given
12745 FRAME.
12746
12747 If PREG is not NULL, then this regexp_t object is used to
12748 perform the symbol name matching. Otherwise, no name-based
12749 filtering is performed.
12750
12751 EXCEPTIONS is a vector of exceptions to which matching exceptions
12752 gets pushed. */
12753
12754 static void
12755 ada_add_exceptions_from_frame (regex_t *preg, struct frame_info *frame,
12756 VEC(ada_exc_info) **exceptions)
12757 {
12758 const struct block *block = get_frame_block (frame, 0);
12759
12760 while (block != 0)
12761 {
12762 struct block_iterator iter;
12763 struct symbol *sym;
12764
12765 ALL_BLOCK_SYMBOLS (block, iter, sym)
12766 {
12767 switch (SYMBOL_CLASS (sym))
12768 {
12769 case LOC_TYPEDEF:
12770 case LOC_BLOCK:
12771 case LOC_CONST:
12772 break;
12773 default:
12774 if (ada_is_exception_sym (sym))
12775 {
12776 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
12777 SYMBOL_VALUE_ADDRESS (sym)};
12778
12779 VEC_safe_push (ada_exc_info, *exceptions, &info);
12780 }
12781 }
12782 }
12783 if (BLOCK_FUNCTION (block) != NULL)
12784 break;
12785 block = BLOCK_SUPERBLOCK (block);
12786 }
12787 }
12788
12789 /* Add all exceptions defined globally whose name name match
12790 a regular expression, excluding standard exceptions.
12791
12792 The reason we exclude standard exceptions is that they need
12793 to be handled separately: Standard exceptions are defined inside
12794 a runtime unit which is normally not compiled with debugging info,
12795 and thus usually do not show up in our symbol search. However,
12796 if the unit was in fact built with debugging info, we need to
12797 exclude them because they would duplicate the entry we found
12798 during the special loop that specifically searches for those
12799 standard exceptions.
12800
12801 If PREG is not NULL, then this regexp_t object is used to
12802 perform the symbol name matching. Otherwise, no name-based
12803 filtering is performed.
12804
12805 EXCEPTIONS is a vector of exceptions to which matching exceptions
12806 gets pushed. */
12807
12808 static void
12809 ada_add_global_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
12810 {
12811 struct objfile *objfile;
12812 struct symtab *s;
12813
12814 expand_symtabs_matching (NULL, ada_exc_search_name_matches,
12815 VARIABLES_DOMAIN, preg);
12816
12817 ALL_PRIMARY_SYMTABS (objfile, s)
12818 {
12819 const struct blockvector *bv = BLOCKVECTOR (s);
12820 int i;
12821
12822 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
12823 {
12824 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
12825 struct block_iterator iter;
12826 struct symbol *sym;
12827
12828 ALL_BLOCK_SYMBOLS (b, iter, sym)
12829 if (ada_is_non_standard_exception_sym (sym)
12830 && (preg == NULL
12831 || regexec (preg, SYMBOL_NATURAL_NAME (sym),
12832 0, NULL, 0) == 0))
12833 {
12834 struct ada_exc_info info
12835 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
12836
12837 VEC_safe_push (ada_exc_info, *exceptions, &info);
12838 }
12839 }
12840 }
12841 }
12842
12843 /* Implements ada_exceptions_list with the regular expression passed
12844 as a regex_t, rather than a string.
12845
12846 If not NULL, PREG is used to filter out exceptions whose names
12847 do not match. Otherwise, all exceptions are listed. */
12848
12849 static VEC(ada_exc_info) *
12850 ada_exceptions_list_1 (regex_t *preg)
12851 {
12852 VEC(ada_exc_info) *result = NULL;
12853 struct cleanup *old_chain
12854 = make_cleanup (VEC_cleanup (ada_exc_info), &result);
12855 int prev_len;
12856
12857 /* First, list the known standard exceptions. These exceptions
12858 need to be handled separately, as they are usually defined in
12859 runtime units that have been compiled without debugging info. */
12860
12861 ada_add_standard_exceptions (preg, &result);
12862
12863 /* Next, find all exceptions whose scope is local and accessible
12864 from the currently selected frame. */
12865
12866 if (has_stack_frames ())
12867 {
12868 prev_len = VEC_length (ada_exc_info, result);
12869 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
12870 &result);
12871 if (VEC_length (ada_exc_info, result) > prev_len)
12872 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12873 }
12874
12875 /* Add all exceptions whose scope is global. */
12876
12877 prev_len = VEC_length (ada_exc_info, result);
12878 ada_add_global_exceptions (preg, &result);
12879 if (VEC_length (ada_exc_info, result) > prev_len)
12880 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12881
12882 discard_cleanups (old_chain);
12883 return result;
12884 }
12885
12886 /* Return a vector of ada_exc_info.
12887
12888 If REGEXP is NULL, all exceptions are included in the result.
12889 Otherwise, it should contain a valid regular expression,
12890 and only the exceptions whose names match that regular expression
12891 are included in the result.
12892
12893 The exceptions are sorted in the following order:
12894 - Standard exceptions (defined by the Ada language), in
12895 alphabetical order;
12896 - Exceptions only visible from the current frame, in
12897 alphabetical order;
12898 - Exceptions whose scope is global, in alphabetical order. */
12899
12900 VEC(ada_exc_info) *
12901 ada_exceptions_list (const char *regexp)
12902 {
12903 VEC(ada_exc_info) *result = NULL;
12904 struct cleanup *old_chain = NULL;
12905 regex_t reg;
12906
12907 if (regexp != NULL)
12908 old_chain = compile_rx_or_error (&reg, regexp,
12909 _("invalid regular expression"));
12910
12911 result = ada_exceptions_list_1 (regexp != NULL ? &reg : NULL);
12912
12913 if (old_chain != NULL)
12914 do_cleanups (old_chain);
12915 return result;
12916 }
12917
12918 /* Implement the "info exceptions" command. */
12919
12920 static void
12921 info_exceptions_command (char *regexp, int from_tty)
12922 {
12923 VEC(ada_exc_info) *exceptions;
12924 struct cleanup *cleanup;
12925 struct gdbarch *gdbarch = get_current_arch ();
12926 int ix;
12927 struct ada_exc_info *info;
12928
12929 exceptions = ada_exceptions_list (regexp);
12930 cleanup = make_cleanup (VEC_cleanup (ada_exc_info), &exceptions);
12931
12932 if (regexp != NULL)
12933 printf_filtered
12934 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
12935 else
12936 printf_filtered (_("All defined Ada exceptions:\n"));
12937
12938 for (ix = 0; VEC_iterate(ada_exc_info, exceptions, ix, info); ix++)
12939 printf_filtered ("%s: %s\n", info->name, paddress (gdbarch, info->addr));
12940
12941 do_cleanups (cleanup);
12942 }
12943
12944 /* Operators */
12945 /* Information about operators given special treatment in functions
12946 below. */
12947 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
12948
12949 #define ADA_OPERATORS \
12950 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
12951 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
12952 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
12953 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
12954 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
12955 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
12956 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
12957 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
12958 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
12959 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
12960 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
12961 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
12962 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
12963 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
12964 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
12965 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
12966 OP_DEFN (OP_OTHERS, 1, 1, 0) \
12967 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
12968 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
12969
12970 static void
12971 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
12972 int *argsp)
12973 {
12974 switch (exp->elts[pc - 1].opcode)
12975 {
12976 default:
12977 operator_length_standard (exp, pc, oplenp, argsp);
12978 break;
12979
12980 #define OP_DEFN(op, len, args, binop) \
12981 case op: *oplenp = len; *argsp = args; break;
12982 ADA_OPERATORS;
12983 #undef OP_DEFN
12984
12985 case OP_AGGREGATE:
12986 *oplenp = 3;
12987 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
12988 break;
12989
12990 case OP_CHOICES:
12991 *oplenp = 3;
12992 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
12993 break;
12994 }
12995 }
12996
12997 /* Implementation of the exp_descriptor method operator_check. */
12998
12999 static int
13000 ada_operator_check (struct expression *exp, int pos,
13001 int (*objfile_func) (struct objfile *objfile, void *data),
13002 void *data)
13003 {
13004 const union exp_element *const elts = exp->elts;
13005 struct type *type = NULL;
13006
13007 switch (elts[pos].opcode)
13008 {
13009 case UNOP_IN_RANGE:
13010 case UNOP_QUAL:
13011 type = elts[pos + 1].type;
13012 break;
13013
13014 default:
13015 return operator_check_standard (exp, pos, objfile_func, data);
13016 }
13017
13018 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13019
13020 if (type && TYPE_OBJFILE (type)
13021 && (*objfile_func) (TYPE_OBJFILE (type), data))
13022 return 1;
13023
13024 return 0;
13025 }
13026
13027 static char *
13028 ada_op_name (enum exp_opcode opcode)
13029 {
13030 switch (opcode)
13031 {
13032 default:
13033 return op_name_standard (opcode);
13034
13035 #define OP_DEFN(op, len, args, binop) case op: return #op;
13036 ADA_OPERATORS;
13037 #undef OP_DEFN
13038
13039 case OP_AGGREGATE:
13040 return "OP_AGGREGATE";
13041 case OP_CHOICES:
13042 return "OP_CHOICES";
13043 case OP_NAME:
13044 return "OP_NAME";
13045 }
13046 }
13047
13048 /* As for operator_length, but assumes PC is pointing at the first
13049 element of the operator, and gives meaningful results only for the
13050 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13051
13052 static void
13053 ada_forward_operator_length (struct expression *exp, int pc,
13054 int *oplenp, int *argsp)
13055 {
13056 switch (exp->elts[pc].opcode)
13057 {
13058 default:
13059 *oplenp = *argsp = 0;
13060 break;
13061
13062 #define OP_DEFN(op, len, args, binop) \
13063 case op: *oplenp = len; *argsp = args; break;
13064 ADA_OPERATORS;
13065 #undef OP_DEFN
13066
13067 case OP_AGGREGATE:
13068 *oplenp = 3;
13069 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13070 break;
13071
13072 case OP_CHOICES:
13073 *oplenp = 3;
13074 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13075 break;
13076
13077 case OP_STRING:
13078 case OP_NAME:
13079 {
13080 int len = longest_to_int (exp->elts[pc + 1].longconst);
13081
13082 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13083 *argsp = 0;
13084 break;
13085 }
13086 }
13087 }
13088
13089 static int
13090 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13091 {
13092 enum exp_opcode op = exp->elts[elt].opcode;
13093 int oplen, nargs;
13094 int pc = elt;
13095 int i;
13096
13097 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13098
13099 switch (op)
13100 {
13101 /* Ada attributes ('Foo). */
13102 case OP_ATR_FIRST:
13103 case OP_ATR_LAST:
13104 case OP_ATR_LENGTH:
13105 case OP_ATR_IMAGE:
13106 case OP_ATR_MAX:
13107 case OP_ATR_MIN:
13108 case OP_ATR_MODULUS:
13109 case OP_ATR_POS:
13110 case OP_ATR_SIZE:
13111 case OP_ATR_TAG:
13112 case OP_ATR_VAL:
13113 break;
13114
13115 case UNOP_IN_RANGE:
13116 case UNOP_QUAL:
13117 /* XXX: gdb_sprint_host_address, type_sprint */
13118 fprintf_filtered (stream, _("Type @"));
13119 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13120 fprintf_filtered (stream, " (");
13121 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13122 fprintf_filtered (stream, ")");
13123 break;
13124 case BINOP_IN_BOUNDS:
13125 fprintf_filtered (stream, " (%d)",
13126 longest_to_int (exp->elts[pc + 2].longconst));
13127 break;
13128 case TERNOP_IN_RANGE:
13129 break;
13130
13131 case OP_AGGREGATE:
13132 case OP_OTHERS:
13133 case OP_DISCRETE_RANGE:
13134 case OP_POSITIONAL:
13135 case OP_CHOICES:
13136 break;
13137
13138 case OP_NAME:
13139 case OP_STRING:
13140 {
13141 char *name = &exp->elts[elt + 2].string;
13142 int len = longest_to_int (exp->elts[elt + 1].longconst);
13143
13144 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13145 break;
13146 }
13147
13148 default:
13149 return dump_subexp_body_standard (exp, stream, elt);
13150 }
13151
13152 elt += oplen;
13153 for (i = 0; i < nargs; i += 1)
13154 elt = dump_subexp (exp, stream, elt);
13155
13156 return elt;
13157 }
13158
13159 /* The Ada extension of print_subexp (q.v.). */
13160
13161 static void
13162 ada_print_subexp (struct expression *exp, int *pos,
13163 struct ui_file *stream, enum precedence prec)
13164 {
13165 int oplen, nargs, i;
13166 int pc = *pos;
13167 enum exp_opcode op = exp->elts[pc].opcode;
13168
13169 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13170
13171 *pos += oplen;
13172 switch (op)
13173 {
13174 default:
13175 *pos -= oplen;
13176 print_subexp_standard (exp, pos, stream, prec);
13177 return;
13178
13179 case OP_VAR_VALUE:
13180 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13181 return;
13182
13183 case BINOP_IN_BOUNDS:
13184 /* XXX: sprint_subexp */
13185 print_subexp (exp, pos, stream, PREC_SUFFIX);
13186 fputs_filtered (" in ", stream);
13187 print_subexp (exp, pos, stream, PREC_SUFFIX);
13188 fputs_filtered ("'range", stream);
13189 if (exp->elts[pc + 1].longconst > 1)
13190 fprintf_filtered (stream, "(%ld)",
13191 (long) exp->elts[pc + 1].longconst);
13192 return;
13193
13194 case TERNOP_IN_RANGE:
13195 if (prec >= PREC_EQUAL)
13196 fputs_filtered ("(", stream);
13197 /* XXX: sprint_subexp */
13198 print_subexp (exp, pos, stream, PREC_SUFFIX);
13199 fputs_filtered (" in ", stream);
13200 print_subexp (exp, pos, stream, PREC_EQUAL);
13201 fputs_filtered (" .. ", stream);
13202 print_subexp (exp, pos, stream, PREC_EQUAL);
13203 if (prec >= PREC_EQUAL)
13204 fputs_filtered (")", stream);
13205 return;
13206
13207 case OP_ATR_FIRST:
13208 case OP_ATR_LAST:
13209 case OP_ATR_LENGTH:
13210 case OP_ATR_IMAGE:
13211 case OP_ATR_MAX:
13212 case OP_ATR_MIN:
13213 case OP_ATR_MODULUS:
13214 case OP_ATR_POS:
13215 case OP_ATR_SIZE:
13216 case OP_ATR_TAG:
13217 case OP_ATR_VAL:
13218 if (exp->elts[*pos].opcode == OP_TYPE)
13219 {
13220 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
13221 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13222 &type_print_raw_options);
13223 *pos += 3;
13224 }
13225 else
13226 print_subexp (exp, pos, stream, PREC_SUFFIX);
13227 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13228 if (nargs > 1)
13229 {
13230 int tem;
13231
13232 for (tem = 1; tem < nargs; tem += 1)
13233 {
13234 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13235 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13236 }
13237 fputs_filtered (")", stream);
13238 }
13239 return;
13240
13241 case UNOP_QUAL:
13242 type_print (exp->elts[pc + 1].type, "", stream, 0);
13243 fputs_filtered ("'(", stream);
13244 print_subexp (exp, pos, stream, PREC_PREFIX);
13245 fputs_filtered (")", stream);
13246 return;
13247
13248 case UNOP_IN_RANGE:
13249 /* XXX: sprint_subexp */
13250 print_subexp (exp, pos, stream, PREC_SUFFIX);
13251 fputs_filtered (" in ", stream);
13252 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13253 &type_print_raw_options);
13254 return;
13255
13256 case OP_DISCRETE_RANGE:
13257 print_subexp (exp, pos, stream, PREC_SUFFIX);
13258 fputs_filtered ("..", stream);
13259 print_subexp (exp, pos, stream, PREC_SUFFIX);
13260 return;
13261
13262 case OP_OTHERS:
13263 fputs_filtered ("others => ", stream);
13264 print_subexp (exp, pos, stream, PREC_SUFFIX);
13265 return;
13266
13267 case OP_CHOICES:
13268 for (i = 0; i < nargs-1; i += 1)
13269 {
13270 if (i > 0)
13271 fputs_filtered ("|", stream);
13272 print_subexp (exp, pos, stream, PREC_SUFFIX);
13273 }
13274 fputs_filtered (" => ", stream);
13275 print_subexp (exp, pos, stream, PREC_SUFFIX);
13276 return;
13277
13278 case OP_POSITIONAL:
13279 print_subexp (exp, pos, stream, PREC_SUFFIX);
13280 return;
13281
13282 case OP_AGGREGATE:
13283 fputs_filtered ("(", stream);
13284 for (i = 0; i < nargs; i += 1)
13285 {
13286 if (i > 0)
13287 fputs_filtered (", ", stream);
13288 print_subexp (exp, pos, stream, PREC_SUFFIX);
13289 }
13290 fputs_filtered (")", stream);
13291 return;
13292 }
13293 }
13294
13295 /* Table mapping opcodes into strings for printing operators
13296 and precedences of the operators. */
13297
13298 static const struct op_print ada_op_print_tab[] = {
13299 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13300 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13301 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13302 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13303 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13304 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13305 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13306 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13307 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13308 {">=", BINOP_GEQ, PREC_ORDER, 0},
13309 {">", BINOP_GTR, PREC_ORDER, 0},
13310 {"<", BINOP_LESS, PREC_ORDER, 0},
13311 {">>", BINOP_RSH, PREC_SHIFT, 0},
13312 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13313 {"+", BINOP_ADD, PREC_ADD, 0},
13314 {"-", BINOP_SUB, PREC_ADD, 0},
13315 {"&", BINOP_CONCAT, PREC_ADD, 0},
13316 {"*", BINOP_MUL, PREC_MUL, 0},
13317 {"/", BINOP_DIV, PREC_MUL, 0},
13318 {"rem", BINOP_REM, PREC_MUL, 0},
13319 {"mod", BINOP_MOD, PREC_MUL, 0},
13320 {"**", BINOP_EXP, PREC_REPEAT, 0},
13321 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13322 {"-", UNOP_NEG, PREC_PREFIX, 0},
13323 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13324 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13325 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13326 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
13327 {".all", UNOP_IND, PREC_SUFFIX, 1},
13328 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13329 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
13330 {NULL, 0, 0, 0}
13331 };
13332 \f
13333 enum ada_primitive_types {
13334 ada_primitive_type_int,
13335 ada_primitive_type_long,
13336 ada_primitive_type_short,
13337 ada_primitive_type_char,
13338 ada_primitive_type_float,
13339 ada_primitive_type_double,
13340 ada_primitive_type_void,
13341 ada_primitive_type_long_long,
13342 ada_primitive_type_long_double,
13343 ada_primitive_type_natural,
13344 ada_primitive_type_positive,
13345 ada_primitive_type_system_address,
13346 nr_ada_primitive_types
13347 };
13348
13349 static void
13350 ada_language_arch_info (struct gdbarch *gdbarch,
13351 struct language_arch_info *lai)
13352 {
13353 const struct builtin_type *builtin = builtin_type (gdbarch);
13354
13355 lai->primitive_type_vector
13356 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
13357 struct type *);
13358
13359 lai->primitive_type_vector [ada_primitive_type_int]
13360 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13361 0, "integer");
13362 lai->primitive_type_vector [ada_primitive_type_long]
13363 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13364 0, "long_integer");
13365 lai->primitive_type_vector [ada_primitive_type_short]
13366 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13367 0, "short_integer");
13368 lai->string_char_type
13369 = lai->primitive_type_vector [ada_primitive_type_char]
13370 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13371 lai->primitive_type_vector [ada_primitive_type_float]
13372 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13373 "float", NULL);
13374 lai->primitive_type_vector [ada_primitive_type_double]
13375 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13376 "long_float", NULL);
13377 lai->primitive_type_vector [ada_primitive_type_long_long]
13378 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13379 0, "long_long_integer");
13380 lai->primitive_type_vector [ada_primitive_type_long_double]
13381 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13382 "long_long_float", NULL);
13383 lai->primitive_type_vector [ada_primitive_type_natural]
13384 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13385 0, "natural");
13386 lai->primitive_type_vector [ada_primitive_type_positive]
13387 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13388 0, "positive");
13389 lai->primitive_type_vector [ada_primitive_type_void]
13390 = builtin->builtin_void;
13391
13392 lai->primitive_type_vector [ada_primitive_type_system_address]
13393 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
13394 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13395 = "system__address";
13396
13397 lai->bool_type_symbol = NULL;
13398 lai->bool_type_default = builtin->builtin_bool;
13399 }
13400 \f
13401 /* Language vector */
13402
13403 /* Not really used, but needed in the ada_language_defn. */
13404
13405 static void
13406 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
13407 {
13408 ada_emit_char (c, type, stream, quoter, 1);
13409 }
13410
13411 static int
13412 parse (struct parser_state *ps)
13413 {
13414 warnings_issued = 0;
13415 return ada_parse (ps);
13416 }
13417
13418 static const struct exp_descriptor ada_exp_descriptor = {
13419 ada_print_subexp,
13420 ada_operator_length,
13421 ada_operator_check,
13422 ada_op_name,
13423 ada_dump_subexp_body,
13424 ada_evaluate_subexp
13425 };
13426
13427 /* Implement the "la_get_symbol_name_cmp" language_defn method
13428 for Ada. */
13429
13430 static symbol_name_cmp_ftype
13431 ada_get_symbol_name_cmp (const char *lookup_name)
13432 {
13433 if (should_use_wild_match (lookup_name))
13434 return wild_match;
13435 else
13436 return compare_names;
13437 }
13438
13439 /* Implement the "la_read_var_value" language_defn method for Ada. */
13440
13441 static struct value *
13442 ada_read_var_value (struct symbol *var, struct frame_info *frame)
13443 {
13444 const struct block *frame_block = NULL;
13445 struct symbol *renaming_sym = NULL;
13446
13447 /* The only case where default_read_var_value is not sufficient
13448 is when VAR is a renaming... */
13449 if (frame)
13450 frame_block = get_frame_block (frame, NULL);
13451 if (frame_block)
13452 renaming_sym = ada_find_renaming_symbol (var, frame_block);
13453 if (renaming_sym != NULL)
13454 return ada_read_renaming_var_value (renaming_sym, frame_block);
13455
13456 /* This is a typical case where we expect the default_read_var_value
13457 function to work. */
13458 return default_read_var_value (var, frame);
13459 }
13460
13461 const struct language_defn ada_language_defn = {
13462 "ada", /* Language name */
13463 "Ada",
13464 language_ada,
13465 range_check_off,
13466 case_sensitive_on, /* Yes, Ada is case-insensitive, but
13467 that's not quite what this means. */
13468 array_row_major,
13469 macro_expansion_no,
13470 &ada_exp_descriptor,
13471 parse,
13472 ada_error,
13473 resolve,
13474 ada_printchar, /* Print a character constant */
13475 ada_printstr, /* Function to print string constant */
13476 emit_char, /* Function to print single char (not used) */
13477 ada_print_type, /* Print a type using appropriate syntax */
13478 ada_print_typedef, /* Print a typedef using appropriate syntax */
13479 ada_val_print, /* Print a value using appropriate syntax */
13480 ada_value_print, /* Print a top-level value */
13481 ada_read_var_value, /* la_read_var_value */
13482 NULL, /* Language specific skip_trampoline */
13483 NULL, /* name_of_this */
13484 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
13485 basic_lookup_transparent_type, /* lookup_transparent_type */
13486 ada_la_decode, /* Language specific symbol demangler */
13487 NULL, /* Language specific
13488 class_name_from_physname */
13489 ada_op_print_tab, /* expression operators for printing */
13490 0, /* c-style arrays */
13491 1, /* String lower bound */
13492 ada_get_gdb_completer_word_break_characters,
13493 ada_make_symbol_completion_list,
13494 ada_language_arch_info,
13495 ada_print_array_index,
13496 default_pass_by_reference,
13497 c_get_string,
13498 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
13499 ada_iterate_over_symbols,
13500 &ada_varobj_ops,
13501 LANG_MAGIC
13502 };
13503
13504 /* Provide a prototype to silence -Wmissing-prototypes. */
13505 extern initialize_file_ftype _initialize_ada_language;
13506
13507 /* Command-list for the "set/show ada" prefix command. */
13508 static struct cmd_list_element *set_ada_list;
13509 static struct cmd_list_element *show_ada_list;
13510
13511 /* Implement the "set ada" prefix command. */
13512
13513 static void
13514 set_ada_command (char *arg, int from_tty)
13515 {
13516 printf_unfiltered (_(\
13517 "\"set ada\" must be followed by the name of a setting.\n"));
13518 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
13519 }
13520
13521 /* Implement the "show ada" prefix command. */
13522
13523 static void
13524 show_ada_command (char *args, int from_tty)
13525 {
13526 cmd_show_list (show_ada_list, from_tty, "");
13527 }
13528
13529 static void
13530 initialize_ada_catchpoint_ops (void)
13531 {
13532 struct breakpoint_ops *ops;
13533
13534 initialize_breakpoint_ops ();
13535
13536 ops = &catch_exception_breakpoint_ops;
13537 *ops = bkpt_breakpoint_ops;
13538 ops->dtor = dtor_catch_exception;
13539 ops->allocate_location = allocate_location_catch_exception;
13540 ops->re_set = re_set_catch_exception;
13541 ops->check_status = check_status_catch_exception;
13542 ops->print_it = print_it_catch_exception;
13543 ops->print_one = print_one_catch_exception;
13544 ops->print_mention = print_mention_catch_exception;
13545 ops->print_recreate = print_recreate_catch_exception;
13546
13547 ops = &catch_exception_unhandled_breakpoint_ops;
13548 *ops = bkpt_breakpoint_ops;
13549 ops->dtor = dtor_catch_exception_unhandled;
13550 ops->allocate_location = allocate_location_catch_exception_unhandled;
13551 ops->re_set = re_set_catch_exception_unhandled;
13552 ops->check_status = check_status_catch_exception_unhandled;
13553 ops->print_it = print_it_catch_exception_unhandled;
13554 ops->print_one = print_one_catch_exception_unhandled;
13555 ops->print_mention = print_mention_catch_exception_unhandled;
13556 ops->print_recreate = print_recreate_catch_exception_unhandled;
13557
13558 ops = &catch_assert_breakpoint_ops;
13559 *ops = bkpt_breakpoint_ops;
13560 ops->dtor = dtor_catch_assert;
13561 ops->allocate_location = allocate_location_catch_assert;
13562 ops->re_set = re_set_catch_assert;
13563 ops->check_status = check_status_catch_assert;
13564 ops->print_it = print_it_catch_assert;
13565 ops->print_one = print_one_catch_assert;
13566 ops->print_mention = print_mention_catch_assert;
13567 ops->print_recreate = print_recreate_catch_assert;
13568 }
13569
13570 /* This module's 'new_objfile' observer. */
13571
13572 static void
13573 ada_new_objfile_observer (struct objfile *objfile)
13574 {
13575 ada_clear_symbol_cache ();
13576 }
13577
13578 /* This module's 'free_objfile' observer. */
13579
13580 static void
13581 ada_free_objfile_observer (struct objfile *objfile)
13582 {
13583 ada_clear_symbol_cache ();
13584 }
13585
13586 void
13587 _initialize_ada_language (void)
13588 {
13589 add_language (&ada_language_defn);
13590
13591 initialize_ada_catchpoint_ops ();
13592
13593 add_prefix_cmd ("ada", no_class, set_ada_command,
13594 _("Prefix command for changing Ada-specfic settings"),
13595 &set_ada_list, "set ada ", 0, &setlist);
13596
13597 add_prefix_cmd ("ada", no_class, show_ada_command,
13598 _("Generic command for showing Ada-specific settings."),
13599 &show_ada_list, "show ada ", 0, &showlist);
13600
13601 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
13602 &trust_pad_over_xvs, _("\
13603 Enable or disable an optimization trusting PAD types over XVS types"), _("\
13604 Show whether an optimization trusting PAD types over XVS types is activated"),
13605 _("\
13606 This is related to the encoding used by the GNAT compiler. The debugger\n\
13607 should normally trust the contents of PAD types, but certain older versions\n\
13608 of GNAT have a bug that sometimes causes the information in the PAD type\n\
13609 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
13610 work around this bug. It is always safe to turn this option \"off\", but\n\
13611 this incurs a slight performance penalty, so it is recommended to NOT change\n\
13612 this option to \"off\" unless necessary."),
13613 NULL, NULL, &set_ada_list, &show_ada_list);
13614
13615 add_catch_command ("exception", _("\
13616 Catch Ada exceptions, when raised.\n\
13617 With an argument, catch only exceptions with the given name."),
13618 catch_ada_exception_command,
13619 NULL,
13620 CATCH_PERMANENT,
13621 CATCH_TEMPORARY);
13622 add_catch_command ("assert", _("\
13623 Catch failed Ada assertions, when raised.\n\
13624 With an argument, catch only exceptions with the given name."),
13625 catch_assert_command,
13626 NULL,
13627 CATCH_PERMANENT,
13628 CATCH_TEMPORARY);
13629
13630 varsize_limit = 65536;
13631
13632 add_info ("exceptions", info_exceptions_command,
13633 _("\
13634 List all Ada exception names.\n\
13635 If a regular expression is passed as an argument, only those matching\n\
13636 the regular expression are listed."));
13637
13638 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
13639 _("Set Ada maintenance-related variables."),
13640 &maint_set_ada_cmdlist, "maintenance set ada ",
13641 0/*allow-unknown*/, &maintenance_set_cmdlist);
13642
13643 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
13644 _("Show Ada maintenance-related variables"),
13645 &maint_show_ada_cmdlist, "maintenance show ada ",
13646 0/*allow-unknown*/, &maintenance_show_cmdlist);
13647
13648 add_setshow_boolean_cmd
13649 ("ignore-descriptive-types", class_maintenance,
13650 &ada_ignore_descriptive_types_p,
13651 _("Set whether descriptive types generated by GNAT should be ignored."),
13652 _("Show whether descriptive types generated by GNAT should be ignored."),
13653 _("\
13654 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
13655 DWARF attribute."),
13656 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
13657
13658 obstack_init (&symbol_list_obstack);
13659
13660 decoded_names_store = htab_create_alloc
13661 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
13662 NULL, xcalloc, xfree);
13663
13664 /* The ada-lang observers. */
13665 observer_attach_new_objfile (ada_new_objfile_observer);
13666 observer_attach_free_objfile (ada_free_objfile_observer);
13667 observer_attach_inferior_exit (ada_inferior_exit);
13668
13669 /* Setup various context-specific data. */
13670 ada_inferior_data
13671 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
13672 ada_pspace_data_handle
13673 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
13674 }
This page took 0.390512 seconds and 4 git commands to generate.