Remove usage of find_inferior when calling kill_one_lwp_callback
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "demangle.h"
24 #include "gdb_regex.h"
25 #include "frame.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcmd.h"
29 #include "expression.h"
30 #include "parser-defs.h"
31 #include "language.h"
32 #include "varobj.h"
33 #include "c-lang.h"
34 #include "inferior.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "breakpoint.h"
38 #include "gdbcore.h"
39 #include "hashtab.h"
40 #include "gdb_obstack.h"
41 #include "ada-lang.h"
42 #include "completer.h"
43 #include <sys/stat.h>
44 #include "ui-out.h"
45 #include "block.h"
46 #include "infcall.h"
47 #include "dictionary.h"
48 #include "annotate.h"
49 #include "valprint.h"
50 #include "source.h"
51 #include "observer.h"
52 #include "vec.h"
53 #include "stack.h"
54 #include "gdb_vecs.h"
55 #include "typeprint.h"
56 #include "namespace.h"
57
58 #include "psymtab.h"
59 #include "value.h"
60 #include "mi/mi-common.h"
61 #include "arch-utils.h"
62 #include "cli/cli-utils.h"
63 #include "common/function-view.h"
64 #include "common/byte-vector.h"
65 #include <algorithm>
66
67 /* Define whether or not the C operator '/' truncates towards zero for
68 differently signed operands (truncation direction is undefined in C).
69 Copied from valarith.c. */
70
71 #ifndef TRUNCATION_TOWARDS_ZERO
72 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
73 #endif
74
75 static struct type *desc_base_type (struct type *);
76
77 static struct type *desc_bounds_type (struct type *);
78
79 static struct value *desc_bounds (struct value *);
80
81 static int fat_pntr_bounds_bitpos (struct type *);
82
83 static int fat_pntr_bounds_bitsize (struct type *);
84
85 static struct type *desc_data_target_type (struct type *);
86
87 static struct value *desc_data (struct value *);
88
89 static int fat_pntr_data_bitpos (struct type *);
90
91 static int fat_pntr_data_bitsize (struct type *);
92
93 static struct value *desc_one_bound (struct value *, int, int);
94
95 static int desc_bound_bitpos (struct type *, int, int);
96
97 static int desc_bound_bitsize (struct type *, int, int);
98
99 static struct type *desc_index_type (struct type *, int);
100
101 static int desc_arity (struct type *);
102
103 static int ada_type_match (struct type *, struct type *, int);
104
105 static int ada_args_match (struct symbol *, struct value **, int);
106
107 static struct value *make_array_descriptor (struct type *, struct value *);
108
109 static void ada_add_block_symbols (struct obstack *,
110 const struct block *,
111 const lookup_name_info &lookup_name,
112 domain_enum, struct objfile *);
113
114 static void ada_add_all_symbols (struct obstack *, const struct block *,
115 const lookup_name_info &lookup_name,
116 domain_enum, int, int *);
117
118 static int is_nonfunction (struct block_symbol *, int);
119
120 static void add_defn_to_vec (struct obstack *, struct symbol *,
121 const struct block *);
122
123 static int num_defns_collected (struct obstack *);
124
125 static struct block_symbol *defns_collected (struct obstack *, int);
126
127 static struct value *resolve_subexp (struct expression **, int *, int,
128 struct type *);
129
130 static void replace_operator_with_call (struct expression **, int, int, int,
131 struct symbol *, const struct block *);
132
133 static int possible_user_operator_p (enum exp_opcode, struct value **);
134
135 static const char *ada_op_name (enum exp_opcode);
136
137 static const char *ada_decoded_op_name (enum exp_opcode);
138
139 static int numeric_type_p (struct type *);
140
141 static int integer_type_p (struct type *);
142
143 static int scalar_type_p (struct type *);
144
145 static int discrete_type_p (struct type *);
146
147 static enum ada_renaming_category parse_old_style_renaming (struct type *,
148 const char **,
149 int *,
150 const char **);
151
152 static struct symbol *find_old_style_renaming_symbol (const char *,
153 const struct block *);
154
155 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
156 int, int);
157
158 static struct value *evaluate_subexp_type (struct expression *, int *);
159
160 static struct type *ada_find_parallel_type_with_name (struct type *,
161 const char *);
162
163 static int is_dynamic_field (struct type *, int);
164
165 static struct type *to_fixed_variant_branch_type (struct type *,
166 const gdb_byte *,
167 CORE_ADDR, struct value *);
168
169 static struct type *to_fixed_array_type (struct type *, struct value *, int);
170
171 static struct type *to_fixed_range_type (struct type *, struct value *);
172
173 static struct type *to_static_fixed_type (struct type *);
174 static struct type *static_unwrap_type (struct type *type);
175
176 static struct value *unwrap_value (struct value *);
177
178 static struct type *constrained_packed_array_type (struct type *, long *);
179
180 static struct type *decode_constrained_packed_array_type (struct type *);
181
182 static long decode_packed_array_bitsize (struct type *);
183
184 static struct value *decode_constrained_packed_array (struct value *);
185
186 static int ada_is_packed_array_type (struct type *);
187
188 static int ada_is_unconstrained_packed_array_type (struct type *);
189
190 static struct value *value_subscript_packed (struct value *, int,
191 struct value **);
192
193 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
194
195 static struct value *coerce_unspec_val_to_type (struct value *,
196 struct type *);
197
198 static int lesseq_defined_than (struct symbol *, struct symbol *);
199
200 static int equiv_types (struct type *, struct type *);
201
202 static int is_name_suffix (const char *);
203
204 static int advance_wild_match (const char **, const char *, int);
205
206 static bool wild_match (const char *name, const char *patn);
207
208 static struct value *ada_coerce_ref (struct value *);
209
210 static LONGEST pos_atr (struct value *);
211
212 static struct value *value_pos_atr (struct type *, struct value *);
213
214 static struct value *value_val_atr (struct type *, struct value *);
215
216 static struct symbol *standard_lookup (const char *, const struct block *,
217 domain_enum);
218
219 static struct value *ada_search_struct_field (const char *, struct value *, int,
220 struct type *);
221
222 static struct value *ada_value_primitive_field (struct value *, int, int,
223 struct type *);
224
225 static int find_struct_field (const char *, struct type *, int,
226 struct type **, int *, int *, int *, int *);
227
228 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
229 struct value *);
230
231 static int ada_resolve_function (struct block_symbol *, int,
232 struct value **, int, const char *,
233 struct type *);
234
235 static int ada_is_direct_array_type (struct type *);
236
237 static void ada_language_arch_info (struct gdbarch *,
238 struct language_arch_info *);
239
240 static struct value *ada_index_struct_field (int, struct value *, int,
241 struct type *);
242
243 static struct value *assign_aggregate (struct value *, struct value *,
244 struct expression *,
245 int *, enum noside);
246
247 static void aggregate_assign_from_choices (struct value *, struct value *,
248 struct expression *,
249 int *, LONGEST *, int *,
250 int, LONGEST, LONGEST);
251
252 static void aggregate_assign_positional (struct value *, struct value *,
253 struct expression *,
254 int *, LONGEST *, int *, int,
255 LONGEST, LONGEST);
256
257
258 static void aggregate_assign_others (struct value *, struct value *,
259 struct expression *,
260 int *, LONGEST *, int, LONGEST, LONGEST);
261
262
263 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
264
265
266 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
267 int *, enum noside);
268
269 static void ada_forward_operator_length (struct expression *, int, int *,
270 int *);
271
272 static struct type *ada_find_any_type (const char *name);
273
274 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
275 (const lookup_name_info &lookup_name);
276
277 \f
278
279 /* The result of a symbol lookup to be stored in our symbol cache. */
280
281 struct cache_entry
282 {
283 /* The name used to perform the lookup. */
284 const char *name;
285 /* The namespace used during the lookup. */
286 domain_enum domain;
287 /* The symbol returned by the lookup, or NULL if no matching symbol
288 was found. */
289 struct symbol *sym;
290 /* The block where the symbol was found, or NULL if no matching
291 symbol was found. */
292 const struct block *block;
293 /* A pointer to the next entry with the same hash. */
294 struct cache_entry *next;
295 };
296
297 /* The Ada symbol cache, used to store the result of Ada-mode symbol
298 lookups in the course of executing the user's commands.
299
300 The cache is implemented using a simple, fixed-sized hash.
301 The size is fixed on the grounds that there are not likely to be
302 all that many symbols looked up during any given session, regardless
303 of the size of the symbol table. If we decide to go to a resizable
304 table, let's just use the stuff from libiberty instead. */
305
306 #define HASH_SIZE 1009
307
308 struct ada_symbol_cache
309 {
310 /* An obstack used to store the entries in our cache. */
311 struct obstack cache_space;
312
313 /* The root of the hash table used to implement our symbol cache. */
314 struct cache_entry *root[HASH_SIZE];
315 };
316
317 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
318
319 /* Maximum-sized dynamic type. */
320 static unsigned int varsize_limit;
321
322 static const char ada_completer_word_break_characters[] =
323 #ifdef VMS
324 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
325 #else
326 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
327 #endif
328
329 /* The name of the symbol to use to get the name of the main subprogram. */
330 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
331 = "__gnat_ada_main_program_name";
332
333 /* Limit on the number of warnings to raise per expression evaluation. */
334 static int warning_limit = 2;
335
336 /* Number of warning messages issued; reset to 0 by cleanups after
337 expression evaluation. */
338 static int warnings_issued = 0;
339
340 static const char *known_runtime_file_name_patterns[] = {
341 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
342 };
343
344 static const char *known_auxiliary_function_name_patterns[] = {
345 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
346 };
347
348 /* Space for allocating results of ada_lookup_symbol_list. */
349 static struct obstack symbol_list_obstack;
350
351 /* Maintenance-related settings for this module. */
352
353 static struct cmd_list_element *maint_set_ada_cmdlist;
354 static struct cmd_list_element *maint_show_ada_cmdlist;
355
356 /* Implement the "maintenance set ada" (prefix) command. */
357
358 static void
359 maint_set_ada_cmd (const char *args, int from_tty)
360 {
361 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
362 gdb_stdout);
363 }
364
365 /* Implement the "maintenance show ada" (prefix) command. */
366
367 static void
368 maint_show_ada_cmd (const char *args, int from_tty)
369 {
370 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
371 }
372
373 /* The "maintenance ada set/show ignore-descriptive-type" value. */
374
375 static int ada_ignore_descriptive_types_p = 0;
376
377 /* Inferior-specific data. */
378
379 /* Per-inferior data for this module. */
380
381 struct ada_inferior_data
382 {
383 /* The ada__tags__type_specific_data type, which is used when decoding
384 tagged types. With older versions of GNAT, this type was directly
385 accessible through a component ("tsd") in the object tag. But this
386 is no longer the case, so we cache it for each inferior. */
387 struct type *tsd_type;
388
389 /* The exception_support_info data. This data is used to determine
390 how to implement support for Ada exception catchpoints in a given
391 inferior. */
392 const struct exception_support_info *exception_info;
393 };
394
395 /* Our key to this module's inferior data. */
396 static const struct inferior_data *ada_inferior_data;
397
398 /* A cleanup routine for our inferior data. */
399 static void
400 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
401 {
402 struct ada_inferior_data *data;
403
404 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
405 if (data != NULL)
406 xfree (data);
407 }
408
409 /* Return our inferior data for the given inferior (INF).
410
411 This function always returns a valid pointer to an allocated
412 ada_inferior_data structure. If INF's inferior data has not
413 been previously set, this functions creates a new one with all
414 fields set to zero, sets INF's inferior to it, and then returns
415 a pointer to that newly allocated ada_inferior_data. */
416
417 static struct ada_inferior_data *
418 get_ada_inferior_data (struct inferior *inf)
419 {
420 struct ada_inferior_data *data;
421
422 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
423 if (data == NULL)
424 {
425 data = XCNEW (struct ada_inferior_data);
426 set_inferior_data (inf, ada_inferior_data, data);
427 }
428
429 return data;
430 }
431
432 /* Perform all necessary cleanups regarding our module's inferior data
433 that is required after the inferior INF just exited. */
434
435 static void
436 ada_inferior_exit (struct inferior *inf)
437 {
438 ada_inferior_data_cleanup (inf, NULL);
439 set_inferior_data (inf, ada_inferior_data, NULL);
440 }
441
442
443 /* program-space-specific data. */
444
445 /* This module's per-program-space data. */
446 struct ada_pspace_data
447 {
448 /* The Ada symbol cache. */
449 struct ada_symbol_cache *sym_cache;
450 };
451
452 /* Key to our per-program-space data. */
453 static const struct program_space_data *ada_pspace_data_handle;
454
455 /* Return this module's data for the given program space (PSPACE).
456 If not is found, add a zero'ed one now.
457
458 This function always returns a valid object. */
459
460 static struct ada_pspace_data *
461 get_ada_pspace_data (struct program_space *pspace)
462 {
463 struct ada_pspace_data *data;
464
465 data = ((struct ada_pspace_data *)
466 program_space_data (pspace, ada_pspace_data_handle));
467 if (data == NULL)
468 {
469 data = XCNEW (struct ada_pspace_data);
470 set_program_space_data (pspace, ada_pspace_data_handle, data);
471 }
472
473 return data;
474 }
475
476 /* The cleanup callback for this module's per-program-space data. */
477
478 static void
479 ada_pspace_data_cleanup (struct program_space *pspace, void *data)
480 {
481 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
482
483 if (pspace_data->sym_cache != NULL)
484 ada_free_symbol_cache (pspace_data->sym_cache);
485 xfree (pspace_data);
486 }
487
488 /* Utilities */
489
490 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
491 all typedef layers have been peeled. Otherwise, return TYPE.
492
493 Normally, we really expect a typedef type to only have 1 typedef layer.
494 In other words, we really expect the target type of a typedef type to be
495 a non-typedef type. This is particularly true for Ada units, because
496 the language does not have a typedef vs not-typedef distinction.
497 In that respect, the Ada compiler has been trying to eliminate as many
498 typedef definitions in the debugging information, since they generally
499 do not bring any extra information (we still use typedef under certain
500 circumstances related mostly to the GNAT encoding).
501
502 Unfortunately, we have seen situations where the debugging information
503 generated by the compiler leads to such multiple typedef layers. For
504 instance, consider the following example with stabs:
505
506 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
507 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
508
509 This is an error in the debugging information which causes type
510 pck__float_array___XUP to be defined twice, and the second time,
511 it is defined as a typedef of a typedef.
512
513 This is on the fringe of legality as far as debugging information is
514 concerned, and certainly unexpected. But it is easy to handle these
515 situations correctly, so we can afford to be lenient in this case. */
516
517 static struct type *
518 ada_typedef_target_type (struct type *type)
519 {
520 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
521 type = TYPE_TARGET_TYPE (type);
522 return type;
523 }
524
525 /* Given DECODED_NAME a string holding a symbol name in its
526 decoded form (ie using the Ada dotted notation), returns
527 its unqualified name. */
528
529 static const char *
530 ada_unqualified_name (const char *decoded_name)
531 {
532 const char *result;
533
534 /* If the decoded name starts with '<', it means that the encoded
535 name does not follow standard naming conventions, and thus that
536 it is not your typical Ada symbol name. Trying to unqualify it
537 is therefore pointless and possibly erroneous. */
538 if (decoded_name[0] == '<')
539 return decoded_name;
540
541 result = strrchr (decoded_name, '.');
542 if (result != NULL)
543 result++; /* Skip the dot... */
544 else
545 result = decoded_name;
546
547 return result;
548 }
549
550 /* Return a string starting with '<', followed by STR, and '>'.
551 The result is good until the next call. */
552
553 static char *
554 add_angle_brackets (const char *str)
555 {
556 static char *result = NULL;
557
558 xfree (result);
559 result = xstrprintf ("<%s>", str);
560 return result;
561 }
562
563 static const char *
564 ada_get_gdb_completer_word_break_characters (void)
565 {
566 return ada_completer_word_break_characters;
567 }
568
569 /* Print an array element index using the Ada syntax. */
570
571 static void
572 ada_print_array_index (struct value *index_value, struct ui_file *stream,
573 const struct value_print_options *options)
574 {
575 LA_VALUE_PRINT (index_value, stream, options);
576 fprintf_filtered (stream, " => ");
577 }
578
579 /* Assuming VECT points to an array of *SIZE objects of size
580 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
581 updating *SIZE as necessary and returning the (new) array. */
582
583 void *
584 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
585 {
586 if (*size < min_size)
587 {
588 *size *= 2;
589 if (*size < min_size)
590 *size = min_size;
591 vect = xrealloc (vect, *size * element_size);
592 }
593 return vect;
594 }
595
596 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
597 suffix of FIELD_NAME beginning "___". */
598
599 static int
600 field_name_match (const char *field_name, const char *target)
601 {
602 int len = strlen (target);
603
604 return
605 (strncmp (field_name, target, len) == 0
606 && (field_name[len] == '\0'
607 || (startswith (field_name + len, "___")
608 && strcmp (field_name + strlen (field_name) - 6,
609 "___XVN") != 0)));
610 }
611
612
613 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
614 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
615 and return its index. This function also handles fields whose name
616 have ___ suffixes because the compiler sometimes alters their name
617 by adding such a suffix to represent fields with certain constraints.
618 If the field could not be found, return a negative number if
619 MAYBE_MISSING is set. Otherwise raise an error. */
620
621 int
622 ada_get_field_index (const struct type *type, const char *field_name,
623 int maybe_missing)
624 {
625 int fieldno;
626 struct type *struct_type = check_typedef ((struct type *) type);
627
628 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
629 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
630 return fieldno;
631
632 if (!maybe_missing)
633 error (_("Unable to find field %s in struct %s. Aborting"),
634 field_name, TYPE_NAME (struct_type));
635
636 return -1;
637 }
638
639 /* The length of the prefix of NAME prior to any "___" suffix. */
640
641 int
642 ada_name_prefix_len (const char *name)
643 {
644 if (name == NULL)
645 return 0;
646 else
647 {
648 const char *p = strstr (name, "___");
649
650 if (p == NULL)
651 return strlen (name);
652 else
653 return p - name;
654 }
655 }
656
657 /* Return non-zero if SUFFIX is a suffix of STR.
658 Return zero if STR is null. */
659
660 static int
661 is_suffix (const char *str, const char *suffix)
662 {
663 int len1, len2;
664
665 if (str == NULL)
666 return 0;
667 len1 = strlen (str);
668 len2 = strlen (suffix);
669 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
670 }
671
672 /* The contents of value VAL, treated as a value of type TYPE. The
673 result is an lval in memory if VAL is. */
674
675 static struct value *
676 coerce_unspec_val_to_type (struct value *val, struct type *type)
677 {
678 type = ada_check_typedef (type);
679 if (value_type (val) == type)
680 return val;
681 else
682 {
683 struct value *result;
684
685 /* Make sure that the object size is not unreasonable before
686 trying to allocate some memory for it. */
687 ada_ensure_varsize_limit (type);
688
689 if (value_lazy (val)
690 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
691 result = allocate_value_lazy (type);
692 else
693 {
694 result = allocate_value (type);
695 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
696 }
697 set_value_component_location (result, val);
698 set_value_bitsize (result, value_bitsize (val));
699 set_value_bitpos (result, value_bitpos (val));
700 set_value_address (result, value_address (val));
701 return result;
702 }
703 }
704
705 static const gdb_byte *
706 cond_offset_host (const gdb_byte *valaddr, long offset)
707 {
708 if (valaddr == NULL)
709 return NULL;
710 else
711 return valaddr + offset;
712 }
713
714 static CORE_ADDR
715 cond_offset_target (CORE_ADDR address, long offset)
716 {
717 if (address == 0)
718 return 0;
719 else
720 return address + offset;
721 }
722
723 /* Issue a warning (as for the definition of warning in utils.c, but
724 with exactly one argument rather than ...), unless the limit on the
725 number of warnings has passed during the evaluation of the current
726 expression. */
727
728 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
729 provided by "complaint". */
730 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
731
732 static void
733 lim_warning (const char *format, ...)
734 {
735 va_list args;
736
737 va_start (args, format);
738 warnings_issued += 1;
739 if (warnings_issued <= warning_limit)
740 vwarning (format, args);
741
742 va_end (args);
743 }
744
745 /* Issue an error if the size of an object of type T is unreasonable,
746 i.e. if it would be a bad idea to allocate a value of this type in
747 GDB. */
748
749 void
750 ada_ensure_varsize_limit (const struct type *type)
751 {
752 if (TYPE_LENGTH (type) > varsize_limit)
753 error (_("object size is larger than varsize-limit"));
754 }
755
756 /* Maximum value of a SIZE-byte signed integer type. */
757 static LONGEST
758 max_of_size (int size)
759 {
760 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
761
762 return top_bit | (top_bit - 1);
763 }
764
765 /* Minimum value of a SIZE-byte signed integer type. */
766 static LONGEST
767 min_of_size (int size)
768 {
769 return -max_of_size (size) - 1;
770 }
771
772 /* Maximum value of a SIZE-byte unsigned integer type. */
773 static ULONGEST
774 umax_of_size (int size)
775 {
776 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
777
778 return top_bit | (top_bit - 1);
779 }
780
781 /* Maximum value of integral type T, as a signed quantity. */
782 static LONGEST
783 max_of_type (struct type *t)
784 {
785 if (TYPE_UNSIGNED (t))
786 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
787 else
788 return max_of_size (TYPE_LENGTH (t));
789 }
790
791 /* Minimum value of integral type T, as a signed quantity. */
792 static LONGEST
793 min_of_type (struct type *t)
794 {
795 if (TYPE_UNSIGNED (t))
796 return 0;
797 else
798 return min_of_size (TYPE_LENGTH (t));
799 }
800
801 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
802 LONGEST
803 ada_discrete_type_high_bound (struct type *type)
804 {
805 type = resolve_dynamic_type (type, NULL, 0);
806 switch (TYPE_CODE (type))
807 {
808 case TYPE_CODE_RANGE:
809 return TYPE_HIGH_BOUND (type);
810 case TYPE_CODE_ENUM:
811 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
812 case TYPE_CODE_BOOL:
813 return 1;
814 case TYPE_CODE_CHAR:
815 case TYPE_CODE_INT:
816 return max_of_type (type);
817 default:
818 error (_("Unexpected type in ada_discrete_type_high_bound."));
819 }
820 }
821
822 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
823 LONGEST
824 ada_discrete_type_low_bound (struct type *type)
825 {
826 type = resolve_dynamic_type (type, NULL, 0);
827 switch (TYPE_CODE (type))
828 {
829 case TYPE_CODE_RANGE:
830 return TYPE_LOW_BOUND (type);
831 case TYPE_CODE_ENUM:
832 return TYPE_FIELD_ENUMVAL (type, 0);
833 case TYPE_CODE_BOOL:
834 return 0;
835 case TYPE_CODE_CHAR:
836 case TYPE_CODE_INT:
837 return min_of_type (type);
838 default:
839 error (_("Unexpected type in ada_discrete_type_low_bound."));
840 }
841 }
842
843 /* The identity on non-range types. For range types, the underlying
844 non-range scalar type. */
845
846 static struct type *
847 get_base_type (struct type *type)
848 {
849 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
850 {
851 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
852 return type;
853 type = TYPE_TARGET_TYPE (type);
854 }
855 return type;
856 }
857
858 /* Return a decoded version of the given VALUE. This means returning
859 a value whose type is obtained by applying all the GNAT-specific
860 encondings, making the resulting type a static but standard description
861 of the initial type. */
862
863 struct value *
864 ada_get_decoded_value (struct value *value)
865 {
866 struct type *type = ada_check_typedef (value_type (value));
867
868 if (ada_is_array_descriptor_type (type)
869 || (ada_is_constrained_packed_array_type (type)
870 && TYPE_CODE (type) != TYPE_CODE_PTR))
871 {
872 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
873 value = ada_coerce_to_simple_array_ptr (value);
874 else
875 value = ada_coerce_to_simple_array (value);
876 }
877 else
878 value = ada_to_fixed_value (value);
879
880 return value;
881 }
882
883 /* Same as ada_get_decoded_value, but with the given TYPE.
884 Because there is no associated actual value for this type,
885 the resulting type might be a best-effort approximation in
886 the case of dynamic types. */
887
888 struct type *
889 ada_get_decoded_type (struct type *type)
890 {
891 type = to_static_fixed_type (type);
892 if (ada_is_constrained_packed_array_type (type))
893 type = ada_coerce_to_simple_array_type (type);
894 return type;
895 }
896
897 \f
898
899 /* Language Selection */
900
901 /* If the main program is in Ada, return language_ada, otherwise return LANG
902 (the main program is in Ada iif the adainit symbol is found). */
903
904 enum language
905 ada_update_initial_language (enum language lang)
906 {
907 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
908 (struct objfile *) NULL).minsym != NULL)
909 return language_ada;
910
911 return lang;
912 }
913
914 /* If the main procedure is written in Ada, then return its name.
915 The result is good until the next call. Return NULL if the main
916 procedure doesn't appear to be in Ada. */
917
918 char *
919 ada_main_name (void)
920 {
921 struct bound_minimal_symbol msym;
922 static char *main_program_name = NULL;
923
924 /* For Ada, the name of the main procedure is stored in a specific
925 string constant, generated by the binder. Look for that symbol,
926 extract its address, and then read that string. If we didn't find
927 that string, then most probably the main procedure is not written
928 in Ada. */
929 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
930
931 if (msym.minsym != NULL)
932 {
933 CORE_ADDR main_program_name_addr;
934 int err_code;
935
936 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
937 if (main_program_name_addr == 0)
938 error (_("Invalid address for Ada main program name."));
939
940 xfree (main_program_name);
941 target_read_string (main_program_name_addr, &main_program_name,
942 1024, &err_code);
943
944 if (err_code != 0)
945 return NULL;
946 return main_program_name;
947 }
948
949 /* The main procedure doesn't seem to be in Ada. */
950 return NULL;
951 }
952 \f
953 /* Symbols */
954
955 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
956 of NULLs. */
957
958 const struct ada_opname_map ada_opname_table[] = {
959 {"Oadd", "\"+\"", BINOP_ADD},
960 {"Osubtract", "\"-\"", BINOP_SUB},
961 {"Omultiply", "\"*\"", BINOP_MUL},
962 {"Odivide", "\"/\"", BINOP_DIV},
963 {"Omod", "\"mod\"", BINOP_MOD},
964 {"Orem", "\"rem\"", BINOP_REM},
965 {"Oexpon", "\"**\"", BINOP_EXP},
966 {"Olt", "\"<\"", BINOP_LESS},
967 {"Ole", "\"<=\"", BINOP_LEQ},
968 {"Ogt", "\">\"", BINOP_GTR},
969 {"Oge", "\">=\"", BINOP_GEQ},
970 {"Oeq", "\"=\"", BINOP_EQUAL},
971 {"One", "\"/=\"", BINOP_NOTEQUAL},
972 {"Oand", "\"and\"", BINOP_BITWISE_AND},
973 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
974 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
975 {"Oconcat", "\"&\"", BINOP_CONCAT},
976 {"Oabs", "\"abs\"", UNOP_ABS},
977 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
978 {"Oadd", "\"+\"", UNOP_PLUS},
979 {"Osubtract", "\"-\"", UNOP_NEG},
980 {NULL, NULL}
981 };
982
983 /* The "encoded" form of DECODED, according to GNAT conventions. The
984 result is valid until the next call to ada_encode. If
985 THROW_ERRORS, throw an error if invalid operator name is found.
986 Otherwise, return NULL in that case. */
987
988 static char *
989 ada_encode_1 (const char *decoded, bool throw_errors)
990 {
991 static char *encoding_buffer = NULL;
992 static size_t encoding_buffer_size = 0;
993 const char *p;
994 int k;
995
996 if (decoded == NULL)
997 return NULL;
998
999 GROW_VECT (encoding_buffer, encoding_buffer_size,
1000 2 * strlen (decoded) + 10);
1001
1002 k = 0;
1003 for (p = decoded; *p != '\0'; p += 1)
1004 {
1005 if (*p == '.')
1006 {
1007 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1008 k += 2;
1009 }
1010 else if (*p == '"')
1011 {
1012 const struct ada_opname_map *mapping;
1013
1014 for (mapping = ada_opname_table;
1015 mapping->encoded != NULL
1016 && !startswith (p, mapping->decoded); mapping += 1)
1017 ;
1018 if (mapping->encoded == NULL)
1019 {
1020 if (throw_errors)
1021 error (_("invalid Ada operator name: %s"), p);
1022 else
1023 return NULL;
1024 }
1025 strcpy (encoding_buffer + k, mapping->encoded);
1026 k += strlen (mapping->encoded);
1027 break;
1028 }
1029 else
1030 {
1031 encoding_buffer[k] = *p;
1032 k += 1;
1033 }
1034 }
1035
1036 encoding_buffer[k] = '\0';
1037 return encoding_buffer;
1038 }
1039
1040 /* The "encoded" form of DECODED, according to GNAT conventions.
1041 The result is valid until the next call to ada_encode. */
1042
1043 char *
1044 ada_encode (const char *decoded)
1045 {
1046 return ada_encode_1 (decoded, true);
1047 }
1048
1049 /* Return NAME folded to lower case, or, if surrounded by single
1050 quotes, unfolded, but with the quotes stripped away. Result good
1051 to next call. */
1052
1053 char *
1054 ada_fold_name (const char *name)
1055 {
1056 static char *fold_buffer = NULL;
1057 static size_t fold_buffer_size = 0;
1058
1059 int len = strlen (name);
1060 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1061
1062 if (name[0] == '\'')
1063 {
1064 strncpy (fold_buffer, name + 1, len - 2);
1065 fold_buffer[len - 2] = '\000';
1066 }
1067 else
1068 {
1069 int i;
1070
1071 for (i = 0; i <= len; i += 1)
1072 fold_buffer[i] = tolower (name[i]);
1073 }
1074
1075 return fold_buffer;
1076 }
1077
1078 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1079
1080 static int
1081 is_lower_alphanum (const char c)
1082 {
1083 return (isdigit (c) || (isalpha (c) && islower (c)));
1084 }
1085
1086 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1087 This function saves in LEN the length of that same symbol name but
1088 without either of these suffixes:
1089 . .{DIGIT}+
1090 . ${DIGIT}+
1091 . ___{DIGIT}+
1092 . __{DIGIT}+.
1093
1094 These are suffixes introduced by the compiler for entities such as
1095 nested subprogram for instance, in order to avoid name clashes.
1096 They do not serve any purpose for the debugger. */
1097
1098 static void
1099 ada_remove_trailing_digits (const char *encoded, int *len)
1100 {
1101 if (*len > 1 && isdigit (encoded[*len - 1]))
1102 {
1103 int i = *len - 2;
1104
1105 while (i > 0 && isdigit (encoded[i]))
1106 i--;
1107 if (i >= 0 && encoded[i] == '.')
1108 *len = i;
1109 else if (i >= 0 && encoded[i] == '$')
1110 *len = i;
1111 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1112 *len = i - 2;
1113 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1114 *len = i - 1;
1115 }
1116 }
1117
1118 /* Remove the suffix introduced by the compiler for protected object
1119 subprograms. */
1120
1121 static void
1122 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1123 {
1124 /* Remove trailing N. */
1125
1126 /* Protected entry subprograms are broken into two
1127 separate subprograms: The first one is unprotected, and has
1128 a 'N' suffix; the second is the protected version, and has
1129 the 'P' suffix. The second calls the first one after handling
1130 the protection. Since the P subprograms are internally generated,
1131 we leave these names undecoded, giving the user a clue that this
1132 entity is internal. */
1133
1134 if (*len > 1
1135 && encoded[*len - 1] == 'N'
1136 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1137 *len = *len - 1;
1138 }
1139
1140 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1141
1142 static void
1143 ada_remove_Xbn_suffix (const char *encoded, int *len)
1144 {
1145 int i = *len - 1;
1146
1147 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1148 i--;
1149
1150 if (encoded[i] != 'X')
1151 return;
1152
1153 if (i == 0)
1154 return;
1155
1156 if (isalnum (encoded[i-1]))
1157 *len = i;
1158 }
1159
1160 /* If ENCODED follows the GNAT entity encoding conventions, then return
1161 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1162 replaced by ENCODED.
1163
1164 The resulting string is valid until the next call of ada_decode.
1165 If the string is unchanged by decoding, the original string pointer
1166 is returned. */
1167
1168 const char *
1169 ada_decode (const char *encoded)
1170 {
1171 int i, j;
1172 int len0;
1173 const char *p;
1174 char *decoded;
1175 int at_start_name;
1176 static char *decoding_buffer = NULL;
1177 static size_t decoding_buffer_size = 0;
1178
1179 /* The name of the Ada main procedure starts with "_ada_".
1180 This prefix is not part of the decoded name, so skip this part
1181 if we see this prefix. */
1182 if (startswith (encoded, "_ada_"))
1183 encoded += 5;
1184
1185 /* If the name starts with '_', then it is not a properly encoded
1186 name, so do not attempt to decode it. Similarly, if the name
1187 starts with '<', the name should not be decoded. */
1188 if (encoded[0] == '_' || encoded[0] == '<')
1189 goto Suppress;
1190
1191 len0 = strlen (encoded);
1192
1193 ada_remove_trailing_digits (encoded, &len0);
1194 ada_remove_po_subprogram_suffix (encoded, &len0);
1195
1196 /* Remove the ___X.* suffix if present. Do not forget to verify that
1197 the suffix is located before the current "end" of ENCODED. We want
1198 to avoid re-matching parts of ENCODED that have previously been
1199 marked as discarded (by decrementing LEN0). */
1200 p = strstr (encoded, "___");
1201 if (p != NULL && p - encoded < len0 - 3)
1202 {
1203 if (p[3] == 'X')
1204 len0 = p - encoded;
1205 else
1206 goto Suppress;
1207 }
1208
1209 /* Remove any trailing TKB suffix. It tells us that this symbol
1210 is for the body of a task, but that information does not actually
1211 appear in the decoded name. */
1212
1213 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1214 len0 -= 3;
1215
1216 /* Remove any trailing TB suffix. The TB suffix is slightly different
1217 from the TKB suffix because it is used for non-anonymous task
1218 bodies. */
1219
1220 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1221 len0 -= 2;
1222
1223 /* Remove trailing "B" suffixes. */
1224 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1225
1226 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1227 len0 -= 1;
1228
1229 /* Make decoded big enough for possible expansion by operator name. */
1230
1231 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1232 decoded = decoding_buffer;
1233
1234 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1235
1236 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1237 {
1238 i = len0 - 2;
1239 while ((i >= 0 && isdigit (encoded[i]))
1240 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1241 i -= 1;
1242 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1243 len0 = i - 1;
1244 else if (encoded[i] == '$')
1245 len0 = i;
1246 }
1247
1248 /* The first few characters that are not alphabetic are not part
1249 of any encoding we use, so we can copy them over verbatim. */
1250
1251 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1252 decoded[j] = encoded[i];
1253
1254 at_start_name = 1;
1255 while (i < len0)
1256 {
1257 /* Is this a symbol function? */
1258 if (at_start_name && encoded[i] == 'O')
1259 {
1260 int k;
1261
1262 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1263 {
1264 int op_len = strlen (ada_opname_table[k].encoded);
1265 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1266 op_len - 1) == 0)
1267 && !isalnum (encoded[i + op_len]))
1268 {
1269 strcpy (decoded + j, ada_opname_table[k].decoded);
1270 at_start_name = 0;
1271 i += op_len;
1272 j += strlen (ada_opname_table[k].decoded);
1273 break;
1274 }
1275 }
1276 if (ada_opname_table[k].encoded != NULL)
1277 continue;
1278 }
1279 at_start_name = 0;
1280
1281 /* Replace "TK__" with "__", which will eventually be translated
1282 into "." (just below). */
1283
1284 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1285 i += 2;
1286
1287 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1288 be translated into "." (just below). These are internal names
1289 generated for anonymous blocks inside which our symbol is nested. */
1290
1291 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1292 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1293 && isdigit (encoded [i+4]))
1294 {
1295 int k = i + 5;
1296
1297 while (k < len0 && isdigit (encoded[k]))
1298 k++; /* Skip any extra digit. */
1299
1300 /* Double-check that the "__B_{DIGITS}+" sequence we found
1301 is indeed followed by "__". */
1302 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1303 i = k;
1304 }
1305
1306 /* Remove _E{DIGITS}+[sb] */
1307
1308 /* Just as for protected object subprograms, there are 2 categories
1309 of subprograms created by the compiler for each entry. The first
1310 one implements the actual entry code, and has a suffix following
1311 the convention above; the second one implements the barrier and
1312 uses the same convention as above, except that the 'E' is replaced
1313 by a 'B'.
1314
1315 Just as above, we do not decode the name of barrier functions
1316 to give the user a clue that the code he is debugging has been
1317 internally generated. */
1318
1319 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1320 && isdigit (encoded[i+2]))
1321 {
1322 int k = i + 3;
1323
1324 while (k < len0 && isdigit (encoded[k]))
1325 k++;
1326
1327 if (k < len0
1328 && (encoded[k] == 'b' || encoded[k] == 's'))
1329 {
1330 k++;
1331 /* Just as an extra precaution, make sure that if this
1332 suffix is followed by anything else, it is a '_'.
1333 Otherwise, we matched this sequence by accident. */
1334 if (k == len0
1335 || (k < len0 && encoded[k] == '_'))
1336 i = k;
1337 }
1338 }
1339
1340 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1341 the GNAT front-end in protected object subprograms. */
1342
1343 if (i < len0 + 3
1344 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1345 {
1346 /* Backtrack a bit up until we reach either the begining of
1347 the encoded name, or "__". Make sure that we only find
1348 digits or lowercase characters. */
1349 const char *ptr = encoded + i - 1;
1350
1351 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1352 ptr--;
1353 if (ptr < encoded
1354 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1355 i++;
1356 }
1357
1358 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1359 {
1360 /* This is a X[bn]* sequence not separated from the previous
1361 part of the name with a non-alpha-numeric character (in other
1362 words, immediately following an alpha-numeric character), then
1363 verify that it is placed at the end of the encoded name. If
1364 not, then the encoding is not valid and we should abort the
1365 decoding. Otherwise, just skip it, it is used in body-nested
1366 package names. */
1367 do
1368 i += 1;
1369 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1370 if (i < len0)
1371 goto Suppress;
1372 }
1373 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1374 {
1375 /* Replace '__' by '.'. */
1376 decoded[j] = '.';
1377 at_start_name = 1;
1378 i += 2;
1379 j += 1;
1380 }
1381 else
1382 {
1383 /* It's a character part of the decoded name, so just copy it
1384 over. */
1385 decoded[j] = encoded[i];
1386 i += 1;
1387 j += 1;
1388 }
1389 }
1390 decoded[j] = '\000';
1391
1392 /* Decoded names should never contain any uppercase character.
1393 Double-check this, and abort the decoding if we find one. */
1394
1395 for (i = 0; decoded[i] != '\0'; i += 1)
1396 if (isupper (decoded[i]) || decoded[i] == ' ')
1397 goto Suppress;
1398
1399 if (strcmp (decoded, encoded) == 0)
1400 return encoded;
1401 else
1402 return decoded;
1403
1404 Suppress:
1405 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1406 decoded = decoding_buffer;
1407 if (encoded[0] == '<')
1408 strcpy (decoded, encoded);
1409 else
1410 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1411 return decoded;
1412
1413 }
1414
1415 /* Table for keeping permanent unique copies of decoded names. Once
1416 allocated, names in this table are never released. While this is a
1417 storage leak, it should not be significant unless there are massive
1418 changes in the set of decoded names in successive versions of a
1419 symbol table loaded during a single session. */
1420 static struct htab *decoded_names_store;
1421
1422 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1423 in the language-specific part of GSYMBOL, if it has not been
1424 previously computed. Tries to save the decoded name in the same
1425 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1426 in any case, the decoded symbol has a lifetime at least that of
1427 GSYMBOL).
1428 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1429 const, but nevertheless modified to a semantically equivalent form
1430 when a decoded name is cached in it. */
1431
1432 const char *
1433 ada_decode_symbol (const struct general_symbol_info *arg)
1434 {
1435 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1436 const char **resultp =
1437 &gsymbol->language_specific.demangled_name;
1438
1439 if (!gsymbol->ada_mangled)
1440 {
1441 const char *decoded = ada_decode (gsymbol->name);
1442 struct obstack *obstack = gsymbol->language_specific.obstack;
1443
1444 gsymbol->ada_mangled = 1;
1445
1446 if (obstack != NULL)
1447 *resultp
1448 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
1449 else
1450 {
1451 /* Sometimes, we can't find a corresponding objfile, in
1452 which case, we put the result on the heap. Since we only
1453 decode when needed, we hope this usually does not cause a
1454 significant memory leak (FIXME). */
1455
1456 char **slot = (char **) htab_find_slot (decoded_names_store,
1457 decoded, INSERT);
1458
1459 if (*slot == NULL)
1460 *slot = xstrdup (decoded);
1461 *resultp = *slot;
1462 }
1463 }
1464
1465 return *resultp;
1466 }
1467
1468 static char *
1469 ada_la_decode (const char *encoded, int options)
1470 {
1471 return xstrdup (ada_decode (encoded));
1472 }
1473
1474 /* Implement la_sniff_from_mangled_name for Ada. */
1475
1476 static int
1477 ada_sniff_from_mangled_name (const char *mangled, char **out)
1478 {
1479 const char *demangled = ada_decode (mangled);
1480
1481 *out = NULL;
1482
1483 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1484 {
1485 /* Set the gsymbol language to Ada, but still return 0.
1486 Two reasons for that:
1487
1488 1. For Ada, we prefer computing the symbol's decoded name
1489 on the fly rather than pre-compute it, in order to save
1490 memory (Ada projects are typically very large).
1491
1492 2. There are some areas in the definition of the GNAT
1493 encoding where, with a bit of bad luck, we might be able
1494 to decode a non-Ada symbol, generating an incorrect
1495 demangled name (Eg: names ending with "TB" for instance
1496 are identified as task bodies and so stripped from
1497 the decoded name returned).
1498
1499 Returning 1, here, but not setting *DEMANGLED, helps us get a
1500 little bit of the best of both worlds. Because we're last,
1501 we should not affect any of the other languages that were
1502 able to demangle the symbol before us; we get to correctly
1503 tag Ada symbols as such; and even if we incorrectly tagged a
1504 non-Ada symbol, which should be rare, any routing through the
1505 Ada language should be transparent (Ada tries to behave much
1506 like C/C++ with non-Ada symbols). */
1507 return 1;
1508 }
1509
1510 return 0;
1511 }
1512
1513 \f
1514
1515 /* Arrays */
1516
1517 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1518 generated by the GNAT compiler to describe the index type used
1519 for each dimension of an array, check whether it follows the latest
1520 known encoding. If not, fix it up to conform to the latest encoding.
1521 Otherwise, do nothing. This function also does nothing if
1522 INDEX_DESC_TYPE is NULL.
1523
1524 The GNAT encoding used to describle the array index type evolved a bit.
1525 Initially, the information would be provided through the name of each
1526 field of the structure type only, while the type of these fields was
1527 described as unspecified and irrelevant. The debugger was then expected
1528 to perform a global type lookup using the name of that field in order
1529 to get access to the full index type description. Because these global
1530 lookups can be very expensive, the encoding was later enhanced to make
1531 the global lookup unnecessary by defining the field type as being
1532 the full index type description.
1533
1534 The purpose of this routine is to allow us to support older versions
1535 of the compiler by detecting the use of the older encoding, and by
1536 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1537 we essentially replace each field's meaningless type by the associated
1538 index subtype). */
1539
1540 void
1541 ada_fixup_array_indexes_type (struct type *index_desc_type)
1542 {
1543 int i;
1544
1545 if (index_desc_type == NULL)
1546 return;
1547 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1548
1549 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1550 to check one field only, no need to check them all). If not, return
1551 now.
1552
1553 If our INDEX_DESC_TYPE was generated using the older encoding,
1554 the field type should be a meaningless integer type whose name
1555 is not equal to the field name. */
1556 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1557 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1558 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1559 return;
1560
1561 /* Fixup each field of INDEX_DESC_TYPE. */
1562 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1563 {
1564 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1565 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1566
1567 if (raw_type)
1568 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1569 }
1570 }
1571
1572 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1573
1574 static const char *bound_name[] = {
1575 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1576 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1577 };
1578
1579 /* Maximum number of array dimensions we are prepared to handle. */
1580
1581 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1582
1583
1584 /* The desc_* routines return primitive portions of array descriptors
1585 (fat pointers). */
1586
1587 /* The descriptor or array type, if any, indicated by TYPE; removes
1588 level of indirection, if needed. */
1589
1590 static struct type *
1591 desc_base_type (struct type *type)
1592 {
1593 if (type == NULL)
1594 return NULL;
1595 type = ada_check_typedef (type);
1596 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1597 type = ada_typedef_target_type (type);
1598
1599 if (type != NULL
1600 && (TYPE_CODE (type) == TYPE_CODE_PTR
1601 || TYPE_CODE (type) == TYPE_CODE_REF))
1602 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1603 else
1604 return type;
1605 }
1606
1607 /* True iff TYPE indicates a "thin" array pointer type. */
1608
1609 static int
1610 is_thin_pntr (struct type *type)
1611 {
1612 return
1613 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1614 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1615 }
1616
1617 /* The descriptor type for thin pointer type TYPE. */
1618
1619 static struct type *
1620 thin_descriptor_type (struct type *type)
1621 {
1622 struct type *base_type = desc_base_type (type);
1623
1624 if (base_type == NULL)
1625 return NULL;
1626 if (is_suffix (ada_type_name (base_type), "___XVE"))
1627 return base_type;
1628 else
1629 {
1630 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1631
1632 if (alt_type == NULL)
1633 return base_type;
1634 else
1635 return alt_type;
1636 }
1637 }
1638
1639 /* A pointer to the array data for thin-pointer value VAL. */
1640
1641 static struct value *
1642 thin_data_pntr (struct value *val)
1643 {
1644 struct type *type = ada_check_typedef (value_type (val));
1645 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1646
1647 data_type = lookup_pointer_type (data_type);
1648
1649 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1650 return value_cast (data_type, value_copy (val));
1651 else
1652 return value_from_longest (data_type, value_address (val));
1653 }
1654
1655 /* True iff TYPE indicates a "thick" array pointer type. */
1656
1657 static int
1658 is_thick_pntr (struct type *type)
1659 {
1660 type = desc_base_type (type);
1661 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1662 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1663 }
1664
1665 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1666 pointer to one, the type of its bounds data; otherwise, NULL. */
1667
1668 static struct type *
1669 desc_bounds_type (struct type *type)
1670 {
1671 struct type *r;
1672
1673 type = desc_base_type (type);
1674
1675 if (type == NULL)
1676 return NULL;
1677 else if (is_thin_pntr (type))
1678 {
1679 type = thin_descriptor_type (type);
1680 if (type == NULL)
1681 return NULL;
1682 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1683 if (r != NULL)
1684 return ada_check_typedef (r);
1685 }
1686 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1687 {
1688 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1689 if (r != NULL)
1690 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1691 }
1692 return NULL;
1693 }
1694
1695 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1696 one, a pointer to its bounds data. Otherwise NULL. */
1697
1698 static struct value *
1699 desc_bounds (struct value *arr)
1700 {
1701 struct type *type = ada_check_typedef (value_type (arr));
1702
1703 if (is_thin_pntr (type))
1704 {
1705 struct type *bounds_type =
1706 desc_bounds_type (thin_descriptor_type (type));
1707 LONGEST addr;
1708
1709 if (bounds_type == NULL)
1710 error (_("Bad GNAT array descriptor"));
1711
1712 /* NOTE: The following calculation is not really kosher, but
1713 since desc_type is an XVE-encoded type (and shouldn't be),
1714 the correct calculation is a real pain. FIXME (and fix GCC). */
1715 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1716 addr = value_as_long (arr);
1717 else
1718 addr = value_address (arr);
1719
1720 return
1721 value_from_longest (lookup_pointer_type (bounds_type),
1722 addr - TYPE_LENGTH (bounds_type));
1723 }
1724
1725 else if (is_thick_pntr (type))
1726 {
1727 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1728 _("Bad GNAT array descriptor"));
1729 struct type *p_bounds_type = value_type (p_bounds);
1730
1731 if (p_bounds_type
1732 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1733 {
1734 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1735
1736 if (TYPE_STUB (target_type))
1737 p_bounds = value_cast (lookup_pointer_type
1738 (ada_check_typedef (target_type)),
1739 p_bounds);
1740 }
1741 else
1742 error (_("Bad GNAT array descriptor"));
1743
1744 return p_bounds;
1745 }
1746 else
1747 return NULL;
1748 }
1749
1750 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1751 position of the field containing the address of the bounds data. */
1752
1753 static int
1754 fat_pntr_bounds_bitpos (struct type *type)
1755 {
1756 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1757 }
1758
1759 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1760 size of the field containing the address of the bounds data. */
1761
1762 static int
1763 fat_pntr_bounds_bitsize (struct type *type)
1764 {
1765 type = desc_base_type (type);
1766
1767 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1768 return TYPE_FIELD_BITSIZE (type, 1);
1769 else
1770 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1771 }
1772
1773 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1774 pointer to one, the type of its array data (a array-with-no-bounds type);
1775 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1776 data. */
1777
1778 static struct type *
1779 desc_data_target_type (struct type *type)
1780 {
1781 type = desc_base_type (type);
1782
1783 /* NOTE: The following is bogus; see comment in desc_bounds. */
1784 if (is_thin_pntr (type))
1785 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1786 else if (is_thick_pntr (type))
1787 {
1788 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1789
1790 if (data_type
1791 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1792 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1793 }
1794
1795 return NULL;
1796 }
1797
1798 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1799 its array data. */
1800
1801 static struct value *
1802 desc_data (struct value *arr)
1803 {
1804 struct type *type = value_type (arr);
1805
1806 if (is_thin_pntr (type))
1807 return thin_data_pntr (arr);
1808 else if (is_thick_pntr (type))
1809 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1810 _("Bad GNAT array descriptor"));
1811 else
1812 return NULL;
1813 }
1814
1815
1816 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1817 position of the field containing the address of the data. */
1818
1819 static int
1820 fat_pntr_data_bitpos (struct type *type)
1821 {
1822 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1823 }
1824
1825 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1826 size of the field containing the address of the data. */
1827
1828 static int
1829 fat_pntr_data_bitsize (struct type *type)
1830 {
1831 type = desc_base_type (type);
1832
1833 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1834 return TYPE_FIELD_BITSIZE (type, 0);
1835 else
1836 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1837 }
1838
1839 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1840 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1841 bound, if WHICH is 1. The first bound is I=1. */
1842
1843 static struct value *
1844 desc_one_bound (struct value *bounds, int i, int which)
1845 {
1846 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1847 _("Bad GNAT array descriptor bounds"));
1848 }
1849
1850 /* If BOUNDS is an array-bounds structure type, return the bit position
1851 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1852 bound, if WHICH is 1. The first bound is I=1. */
1853
1854 static int
1855 desc_bound_bitpos (struct type *type, int i, int which)
1856 {
1857 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1858 }
1859
1860 /* If BOUNDS is an array-bounds structure type, return the bit field size
1861 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1862 bound, if WHICH is 1. The first bound is I=1. */
1863
1864 static int
1865 desc_bound_bitsize (struct type *type, int i, int which)
1866 {
1867 type = desc_base_type (type);
1868
1869 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1870 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1871 else
1872 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1873 }
1874
1875 /* If TYPE is the type of an array-bounds structure, the type of its
1876 Ith bound (numbering from 1). Otherwise, NULL. */
1877
1878 static struct type *
1879 desc_index_type (struct type *type, int i)
1880 {
1881 type = desc_base_type (type);
1882
1883 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1884 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1885 else
1886 return NULL;
1887 }
1888
1889 /* The number of index positions in the array-bounds type TYPE.
1890 Return 0 if TYPE is NULL. */
1891
1892 static int
1893 desc_arity (struct type *type)
1894 {
1895 type = desc_base_type (type);
1896
1897 if (type != NULL)
1898 return TYPE_NFIELDS (type) / 2;
1899 return 0;
1900 }
1901
1902 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1903 an array descriptor type (representing an unconstrained array
1904 type). */
1905
1906 static int
1907 ada_is_direct_array_type (struct type *type)
1908 {
1909 if (type == NULL)
1910 return 0;
1911 type = ada_check_typedef (type);
1912 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1913 || ada_is_array_descriptor_type (type));
1914 }
1915
1916 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1917 * to one. */
1918
1919 static int
1920 ada_is_array_type (struct type *type)
1921 {
1922 while (type != NULL
1923 && (TYPE_CODE (type) == TYPE_CODE_PTR
1924 || TYPE_CODE (type) == TYPE_CODE_REF))
1925 type = TYPE_TARGET_TYPE (type);
1926 return ada_is_direct_array_type (type);
1927 }
1928
1929 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1930
1931 int
1932 ada_is_simple_array_type (struct type *type)
1933 {
1934 if (type == NULL)
1935 return 0;
1936 type = ada_check_typedef (type);
1937 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1938 || (TYPE_CODE (type) == TYPE_CODE_PTR
1939 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1940 == TYPE_CODE_ARRAY));
1941 }
1942
1943 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1944
1945 int
1946 ada_is_array_descriptor_type (struct type *type)
1947 {
1948 struct type *data_type = desc_data_target_type (type);
1949
1950 if (type == NULL)
1951 return 0;
1952 type = ada_check_typedef (type);
1953 return (data_type != NULL
1954 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1955 && desc_arity (desc_bounds_type (type)) > 0);
1956 }
1957
1958 /* Non-zero iff type is a partially mal-formed GNAT array
1959 descriptor. FIXME: This is to compensate for some problems with
1960 debugging output from GNAT. Re-examine periodically to see if it
1961 is still needed. */
1962
1963 int
1964 ada_is_bogus_array_descriptor (struct type *type)
1965 {
1966 return
1967 type != NULL
1968 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1969 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1970 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1971 && !ada_is_array_descriptor_type (type);
1972 }
1973
1974
1975 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1976 (fat pointer) returns the type of the array data described---specifically,
1977 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1978 in from the descriptor; otherwise, they are left unspecified. If
1979 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1980 returns NULL. The result is simply the type of ARR if ARR is not
1981 a descriptor. */
1982 struct type *
1983 ada_type_of_array (struct value *arr, int bounds)
1984 {
1985 if (ada_is_constrained_packed_array_type (value_type (arr)))
1986 return decode_constrained_packed_array_type (value_type (arr));
1987
1988 if (!ada_is_array_descriptor_type (value_type (arr)))
1989 return value_type (arr);
1990
1991 if (!bounds)
1992 {
1993 struct type *array_type =
1994 ada_check_typedef (desc_data_target_type (value_type (arr)));
1995
1996 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1997 TYPE_FIELD_BITSIZE (array_type, 0) =
1998 decode_packed_array_bitsize (value_type (arr));
1999
2000 return array_type;
2001 }
2002 else
2003 {
2004 struct type *elt_type;
2005 int arity;
2006 struct value *descriptor;
2007
2008 elt_type = ada_array_element_type (value_type (arr), -1);
2009 arity = ada_array_arity (value_type (arr));
2010
2011 if (elt_type == NULL || arity == 0)
2012 return ada_check_typedef (value_type (arr));
2013
2014 descriptor = desc_bounds (arr);
2015 if (value_as_long (descriptor) == 0)
2016 return NULL;
2017 while (arity > 0)
2018 {
2019 struct type *range_type = alloc_type_copy (value_type (arr));
2020 struct type *array_type = alloc_type_copy (value_type (arr));
2021 struct value *low = desc_one_bound (descriptor, arity, 0);
2022 struct value *high = desc_one_bound (descriptor, arity, 1);
2023
2024 arity -= 1;
2025 create_static_range_type (range_type, value_type (low),
2026 longest_to_int (value_as_long (low)),
2027 longest_to_int (value_as_long (high)));
2028 elt_type = create_array_type (array_type, elt_type, range_type);
2029
2030 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2031 {
2032 /* We need to store the element packed bitsize, as well as
2033 recompute the array size, because it was previously
2034 computed based on the unpacked element size. */
2035 LONGEST lo = value_as_long (low);
2036 LONGEST hi = value_as_long (high);
2037
2038 TYPE_FIELD_BITSIZE (elt_type, 0) =
2039 decode_packed_array_bitsize (value_type (arr));
2040 /* If the array has no element, then the size is already
2041 zero, and does not need to be recomputed. */
2042 if (lo < hi)
2043 {
2044 int array_bitsize =
2045 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2046
2047 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2048 }
2049 }
2050 }
2051
2052 return lookup_pointer_type (elt_type);
2053 }
2054 }
2055
2056 /* If ARR does not represent an array, returns ARR unchanged.
2057 Otherwise, returns either a standard GDB array with bounds set
2058 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2059 GDB array. Returns NULL if ARR is a null fat pointer. */
2060
2061 struct value *
2062 ada_coerce_to_simple_array_ptr (struct value *arr)
2063 {
2064 if (ada_is_array_descriptor_type (value_type (arr)))
2065 {
2066 struct type *arrType = ada_type_of_array (arr, 1);
2067
2068 if (arrType == NULL)
2069 return NULL;
2070 return value_cast (arrType, value_copy (desc_data (arr)));
2071 }
2072 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2073 return decode_constrained_packed_array (arr);
2074 else
2075 return arr;
2076 }
2077
2078 /* If ARR does not represent an array, returns ARR unchanged.
2079 Otherwise, returns a standard GDB array describing ARR (which may
2080 be ARR itself if it already is in the proper form). */
2081
2082 struct value *
2083 ada_coerce_to_simple_array (struct value *arr)
2084 {
2085 if (ada_is_array_descriptor_type (value_type (arr)))
2086 {
2087 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2088
2089 if (arrVal == NULL)
2090 error (_("Bounds unavailable for null array pointer."));
2091 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2092 return value_ind (arrVal);
2093 }
2094 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2095 return decode_constrained_packed_array (arr);
2096 else
2097 return arr;
2098 }
2099
2100 /* If TYPE represents a GNAT array type, return it translated to an
2101 ordinary GDB array type (possibly with BITSIZE fields indicating
2102 packing). For other types, is the identity. */
2103
2104 struct type *
2105 ada_coerce_to_simple_array_type (struct type *type)
2106 {
2107 if (ada_is_constrained_packed_array_type (type))
2108 return decode_constrained_packed_array_type (type);
2109
2110 if (ada_is_array_descriptor_type (type))
2111 return ada_check_typedef (desc_data_target_type (type));
2112
2113 return type;
2114 }
2115
2116 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2117
2118 static int
2119 ada_is_packed_array_type (struct type *type)
2120 {
2121 if (type == NULL)
2122 return 0;
2123 type = desc_base_type (type);
2124 type = ada_check_typedef (type);
2125 return
2126 ada_type_name (type) != NULL
2127 && strstr (ada_type_name (type), "___XP") != NULL;
2128 }
2129
2130 /* Non-zero iff TYPE represents a standard GNAT constrained
2131 packed-array type. */
2132
2133 int
2134 ada_is_constrained_packed_array_type (struct type *type)
2135 {
2136 return ada_is_packed_array_type (type)
2137 && !ada_is_array_descriptor_type (type);
2138 }
2139
2140 /* Non-zero iff TYPE represents an array descriptor for a
2141 unconstrained packed-array type. */
2142
2143 static int
2144 ada_is_unconstrained_packed_array_type (struct type *type)
2145 {
2146 return ada_is_packed_array_type (type)
2147 && ada_is_array_descriptor_type (type);
2148 }
2149
2150 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2151 return the size of its elements in bits. */
2152
2153 static long
2154 decode_packed_array_bitsize (struct type *type)
2155 {
2156 const char *raw_name;
2157 const char *tail;
2158 long bits;
2159
2160 /* Access to arrays implemented as fat pointers are encoded as a typedef
2161 of the fat pointer type. We need the name of the fat pointer type
2162 to do the decoding, so strip the typedef layer. */
2163 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2164 type = ada_typedef_target_type (type);
2165
2166 raw_name = ada_type_name (ada_check_typedef (type));
2167 if (!raw_name)
2168 raw_name = ada_type_name (desc_base_type (type));
2169
2170 if (!raw_name)
2171 return 0;
2172
2173 tail = strstr (raw_name, "___XP");
2174 gdb_assert (tail != NULL);
2175
2176 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2177 {
2178 lim_warning
2179 (_("could not understand bit size information on packed array"));
2180 return 0;
2181 }
2182
2183 return bits;
2184 }
2185
2186 /* Given that TYPE is a standard GDB array type with all bounds filled
2187 in, and that the element size of its ultimate scalar constituents
2188 (that is, either its elements, or, if it is an array of arrays, its
2189 elements' elements, etc.) is *ELT_BITS, return an identical type,
2190 but with the bit sizes of its elements (and those of any
2191 constituent arrays) recorded in the BITSIZE components of its
2192 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2193 in bits.
2194
2195 Note that, for arrays whose index type has an XA encoding where
2196 a bound references a record discriminant, getting that discriminant,
2197 and therefore the actual value of that bound, is not possible
2198 because none of the given parameters gives us access to the record.
2199 This function assumes that it is OK in the context where it is being
2200 used to return an array whose bounds are still dynamic and where
2201 the length is arbitrary. */
2202
2203 static struct type *
2204 constrained_packed_array_type (struct type *type, long *elt_bits)
2205 {
2206 struct type *new_elt_type;
2207 struct type *new_type;
2208 struct type *index_type_desc;
2209 struct type *index_type;
2210 LONGEST low_bound, high_bound;
2211
2212 type = ada_check_typedef (type);
2213 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2214 return type;
2215
2216 index_type_desc = ada_find_parallel_type (type, "___XA");
2217 if (index_type_desc)
2218 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2219 NULL);
2220 else
2221 index_type = TYPE_INDEX_TYPE (type);
2222
2223 new_type = alloc_type_copy (type);
2224 new_elt_type =
2225 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2226 elt_bits);
2227 create_array_type (new_type, new_elt_type, index_type);
2228 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2229 TYPE_NAME (new_type) = ada_type_name (type);
2230
2231 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2232 && is_dynamic_type (check_typedef (index_type)))
2233 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2234 low_bound = high_bound = 0;
2235 if (high_bound < low_bound)
2236 *elt_bits = TYPE_LENGTH (new_type) = 0;
2237 else
2238 {
2239 *elt_bits *= (high_bound - low_bound + 1);
2240 TYPE_LENGTH (new_type) =
2241 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2242 }
2243
2244 TYPE_FIXED_INSTANCE (new_type) = 1;
2245 return new_type;
2246 }
2247
2248 /* The array type encoded by TYPE, where
2249 ada_is_constrained_packed_array_type (TYPE). */
2250
2251 static struct type *
2252 decode_constrained_packed_array_type (struct type *type)
2253 {
2254 const char *raw_name = ada_type_name (ada_check_typedef (type));
2255 char *name;
2256 const char *tail;
2257 struct type *shadow_type;
2258 long bits;
2259
2260 if (!raw_name)
2261 raw_name = ada_type_name (desc_base_type (type));
2262
2263 if (!raw_name)
2264 return NULL;
2265
2266 name = (char *) alloca (strlen (raw_name) + 1);
2267 tail = strstr (raw_name, "___XP");
2268 type = desc_base_type (type);
2269
2270 memcpy (name, raw_name, tail - raw_name);
2271 name[tail - raw_name] = '\000';
2272
2273 shadow_type = ada_find_parallel_type_with_name (type, name);
2274
2275 if (shadow_type == NULL)
2276 {
2277 lim_warning (_("could not find bounds information on packed array"));
2278 return NULL;
2279 }
2280 shadow_type = check_typedef (shadow_type);
2281
2282 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2283 {
2284 lim_warning (_("could not understand bounds "
2285 "information on packed array"));
2286 return NULL;
2287 }
2288
2289 bits = decode_packed_array_bitsize (type);
2290 return constrained_packed_array_type (shadow_type, &bits);
2291 }
2292
2293 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2294 array, returns a simple array that denotes that array. Its type is a
2295 standard GDB array type except that the BITSIZEs of the array
2296 target types are set to the number of bits in each element, and the
2297 type length is set appropriately. */
2298
2299 static struct value *
2300 decode_constrained_packed_array (struct value *arr)
2301 {
2302 struct type *type;
2303
2304 /* If our value is a pointer, then dereference it. Likewise if
2305 the value is a reference. Make sure that this operation does not
2306 cause the target type to be fixed, as this would indirectly cause
2307 this array to be decoded. The rest of the routine assumes that
2308 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2309 and "value_ind" routines to perform the dereferencing, as opposed
2310 to using "ada_coerce_ref" or "ada_value_ind". */
2311 arr = coerce_ref (arr);
2312 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2313 arr = value_ind (arr);
2314
2315 type = decode_constrained_packed_array_type (value_type (arr));
2316 if (type == NULL)
2317 {
2318 error (_("can't unpack array"));
2319 return NULL;
2320 }
2321
2322 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2323 && ada_is_modular_type (value_type (arr)))
2324 {
2325 /* This is a (right-justified) modular type representing a packed
2326 array with no wrapper. In order to interpret the value through
2327 the (left-justified) packed array type we just built, we must
2328 first left-justify it. */
2329 int bit_size, bit_pos;
2330 ULONGEST mod;
2331
2332 mod = ada_modulus (value_type (arr)) - 1;
2333 bit_size = 0;
2334 while (mod > 0)
2335 {
2336 bit_size += 1;
2337 mod >>= 1;
2338 }
2339 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2340 arr = ada_value_primitive_packed_val (arr, NULL,
2341 bit_pos / HOST_CHAR_BIT,
2342 bit_pos % HOST_CHAR_BIT,
2343 bit_size,
2344 type);
2345 }
2346
2347 return coerce_unspec_val_to_type (arr, type);
2348 }
2349
2350
2351 /* The value of the element of packed array ARR at the ARITY indices
2352 given in IND. ARR must be a simple array. */
2353
2354 static struct value *
2355 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2356 {
2357 int i;
2358 int bits, elt_off, bit_off;
2359 long elt_total_bit_offset;
2360 struct type *elt_type;
2361 struct value *v;
2362
2363 bits = 0;
2364 elt_total_bit_offset = 0;
2365 elt_type = ada_check_typedef (value_type (arr));
2366 for (i = 0; i < arity; i += 1)
2367 {
2368 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2369 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2370 error
2371 (_("attempt to do packed indexing of "
2372 "something other than a packed array"));
2373 else
2374 {
2375 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2376 LONGEST lowerbound, upperbound;
2377 LONGEST idx;
2378
2379 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2380 {
2381 lim_warning (_("don't know bounds of array"));
2382 lowerbound = upperbound = 0;
2383 }
2384
2385 idx = pos_atr (ind[i]);
2386 if (idx < lowerbound || idx > upperbound)
2387 lim_warning (_("packed array index %ld out of bounds"),
2388 (long) idx);
2389 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2390 elt_total_bit_offset += (idx - lowerbound) * bits;
2391 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2392 }
2393 }
2394 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2395 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2396
2397 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2398 bits, elt_type);
2399 return v;
2400 }
2401
2402 /* Non-zero iff TYPE includes negative integer values. */
2403
2404 static int
2405 has_negatives (struct type *type)
2406 {
2407 switch (TYPE_CODE (type))
2408 {
2409 default:
2410 return 0;
2411 case TYPE_CODE_INT:
2412 return !TYPE_UNSIGNED (type);
2413 case TYPE_CODE_RANGE:
2414 return TYPE_LOW_BOUND (type) < 0;
2415 }
2416 }
2417
2418 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2419 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2420 the unpacked buffer.
2421
2422 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2423 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2424
2425 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2426 zero otherwise.
2427
2428 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2429
2430 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2431
2432 static void
2433 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2434 gdb_byte *unpacked, int unpacked_len,
2435 int is_big_endian, int is_signed_type,
2436 int is_scalar)
2437 {
2438 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2439 int src_idx; /* Index into the source area */
2440 int src_bytes_left; /* Number of source bytes left to process. */
2441 int srcBitsLeft; /* Number of source bits left to move */
2442 int unusedLS; /* Number of bits in next significant
2443 byte of source that are unused */
2444
2445 int unpacked_idx; /* Index into the unpacked buffer */
2446 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2447
2448 unsigned long accum; /* Staging area for bits being transferred */
2449 int accumSize; /* Number of meaningful bits in accum */
2450 unsigned char sign;
2451
2452 /* Transmit bytes from least to most significant; delta is the direction
2453 the indices move. */
2454 int delta = is_big_endian ? -1 : 1;
2455
2456 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2457 bits from SRC. .*/
2458 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2459 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2460 bit_size, unpacked_len);
2461
2462 srcBitsLeft = bit_size;
2463 src_bytes_left = src_len;
2464 unpacked_bytes_left = unpacked_len;
2465 sign = 0;
2466
2467 if (is_big_endian)
2468 {
2469 src_idx = src_len - 1;
2470 if (is_signed_type
2471 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2472 sign = ~0;
2473
2474 unusedLS =
2475 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2476 % HOST_CHAR_BIT;
2477
2478 if (is_scalar)
2479 {
2480 accumSize = 0;
2481 unpacked_idx = unpacked_len - 1;
2482 }
2483 else
2484 {
2485 /* Non-scalar values must be aligned at a byte boundary... */
2486 accumSize =
2487 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2488 /* ... And are placed at the beginning (most-significant) bytes
2489 of the target. */
2490 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2491 unpacked_bytes_left = unpacked_idx + 1;
2492 }
2493 }
2494 else
2495 {
2496 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2497
2498 src_idx = unpacked_idx = 0;
2499 unusedLS = bit_offset;
2500 accumSize = 0;
2501
2502 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2503 sign = ~0;
2504 }
2505
2506 accum = 0;
2507 while (src_bytes_left > 0)
2508 {
2509 /* Mask for removing bits of the next source byte that are not
2510 part of the value. */
2511 unsigned int unusedMSMask =
2512 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2513 1;
2514 /* Sign-extend bits for this byte. */
2515 unsigned int signMask = sign & ~unusedMSMask;
2516
2517 accum |=
2518 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2519 accumSize += HOST_CHAR_BIT - unusedLS;
2520 if (accumSize >= HOST_CHAR_BIT)
2521 {
2522 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2523 accumSize -= HOST_CHAR_BIT;
2524 accum >>= HOST_CHAR_BIT;
2525 unpacked_bytes_left -= 1;
2526 unpacked_idx += delta;
2527 }
2528 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2529 unusedLS = 0;
2530 src_bytes_left -= 1;
2531 src_idx += delta;
2532 }
2533 while (unpacked_bytes_left > 0)
2534 {
2535 accum |= sign << accumSize;
2536 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2537 accumSize -= HOST_CHAR_BIT;
2538 if (accumSize < 0)
2539 accumSize = 0;
2540 accum >>= HOST_CHAR_BIT;
2541 unpacked_bytes_left -= 1;
2542 unpacked_idx += delta;
2543 }
2544 }
2545
2546 /* Create a new value of type TYPE from the contents of OBJ starting
2547 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2548 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2549 assigning through the result will set the field fetched from.
2550 VALADDR is ignored unless OBJ is NULL, in which case,
2551 VALADDR+OFFSET must address the start of storage containing the
2552 packed value. The value returned in this case is never an lval.
2553 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2554
2555 struct value *
2556 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2557 long offset, int bit_offset, int bit_size,
2558 struct type *type)
2559 {
2560 struct value *v;
2561 const gdb_byte *src; /* First byte containing data to unpack */
2562 gdb_byte *unpacked;
2563 const int is_scalar = is_scalar_type (type);
2564 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2565 gdb::byte_vector staging;
2566
2567 type = ada_check_typedef (type);
2568
2569 if (obj == NULL)
2570 src = valaddr + offset;
2571 else
2572 src = value_contents (obj) + offset;
2573
2574 if (is_dynamic_type (type))
2575 {
2576 /* The length of TYPE might by dynamic, so we need to resolve
2577 TYPE in order to know its actual size, which we then use
2578 to create the contents buffer of the value we return.
2579 The difficulty is that the data containing our object is
2580 packed, and therefore maybe not at a byte boundary. So, what
2581 we do, is unpack the data into a byte-aligned buffer, and then
2582 use that buffer as our object's value for resolving the type. */
2583 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2584 staging.resize (staging_len);
2585
2586 ada_unpack_from_contents (src, bit_offset, bit_size,
2587 staging.data (), staging.size (),
2588 is_big_endian, has_negatives (type),
2589 is_scalar);
2590 type = resolve_dynamic_type (type, staging.data (), 0);
2591 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2592 {
2593 /* This happens when the length of the object is dynamic,
2594 and is actually smaller than the space reserved for it.
2595 For instance, in an array of variant records, the bit_size
2596 we're given is the array stride, which is constant and
2597 normally equal to the maximum size of its element.
2598 But, in reality, each element only actually spans a portion
2599 of that stride. */
2600 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2601 }
2602 }
2603
2604 if (obj == NULL)
2605 {
2606 v = allocate_value (type);
2607 src = valaddr + offset;
2608 }
2609 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2610 {
2611 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2612 gdb_byte *buf;
2613
2614 v = value_at (type, value_address (obj) + offset);
2615 buf = (gdb_byte *) alloca (src_len);
2616 read_memory (value_address (v), buf, src_len);
2617 src = buf;
2618 }
2619 else
2620 {
2621 v = allocate_value (type);
2622 src = value_contents (obj) + offset;
2623 }
2624
2625 if (obj != NULL)
2626 {
2627 long new_offset = offset;
2628
2629 set_value_component_location (v, obj);
2630 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2631 set_value_bitsize (v, bit_size);
2632 if (value_bitpos (v) >= HOST_CHAR_BIT)
2633 {
2634 ++new_offset;
2635 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2636 }
2637 set_value_offset (v, new_offset);
2638
2639 /* Also set the parent value. This is needed when trying to
2640 assign a new value (in inferior memory). */
2641 set_value_parent (v, obj);
2642 }
2643 else
2644 set_value_bitsize (v, bit_size);
2645 unpacked = value_contents_writeable (v);
2646
2647 if (bit_size == 0)
2648 {
2649 memset (unpacked, 0, TYPE_LENGTH (type));
2650 return v;
2651 }
2652
2653 if (staging.size () == TYPE_LENGTH (type))
2654 {
2655 /* Small short-cut: If we've unpacked the data into a buffer
2656 of the same size as TYPE's length, then we can reuse that,
2657 instead of doing the unpacking again. */
2658 memcpy (unpacked, staging.data (), staging.size ());
2659 }
2660 else
2661 ada_unpack_from_contents (src, bit_offset, bit_size,
2662 unpacked, TYPE_LENGTH (type),
2663 is_big_endian, has_negatives (type), is_scalar);
2664
2665 return v;
2666 }
2667
2668 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2669 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2670 not overlap. */
2671 static void
2672 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2673 int src_offset, int n, int bits_big_endian_p)
2674 {
2675 unsigned int accum, mask;
2676 int accum_bits, chunk_size;
2677
2678 target += targ_offset / HOST_CHAR_BIT;
2679 targ_offset %= HOST_CHAR_BIT;
2680 source += src_offset / HOST_CHAR_BIT;
2681 src_offset %= HOST_CHAR_BIT;
2682 if (bits_big_endian_p)
2683 {
2684 accum = (unsigned char) *source;
2685 source += 1;
2686 accum_bits = HOST_CHAR_BIT - src_offset;
2687
2688 while (n > 0)
2689 {
2690 int unused_right;
2691
2692 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2693 accum_bits += HOST_CHAR_BIT;
2694 source += 1;
2695 chunk_size = HOST_CHAR_BIT - targ_offset;
2696 if (chunk_size > n)
2697 chunk_size = n;
2698 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2699 mask = ((1 << chunk_size) - 1) << unused_right;
2700 *target =
2701 (*target & ~mask)
2702 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2703 n -= chunk_size;
2704 accum_bits -= chunk_size;
2705 target += 1;
2706 targ_offset = 0;
2707 }
2708 }
2709 else
2710 {
2711 accum = (unsigned char) *source >> src_offset;
2712 source += 1;
2713 accum_bits = HOST_CHAR_BIT - src_offset;
2714
2715 while (n > 0)
2716 {
2717 accum = accum + ((unsigned char) *source << accum_bits);
2718 accum_bits += HOST_CHAR_BIT;
2719 source += 1;
2720 chunk_size = HOST_CHAR_BIT - targ_offset;
2721 if (chunk_size > n)
2722 chunk_size = n;
2723 mask = ((1 << chunk_size) - 1) << targ_offset;
2724 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2725 n -= chunk_size;
2726 accum_bits -= chunk_size;
2727 accum >>= chunk_size;
2728 target += 1;
2729 targ_offset = 0;
2730 }
2731 }
2732 }
2733
2734 /* Store the contents of FROMVAL into the location of TOVAL.
2735 Return a new value with the location of TOVAL and contents of
2736 FROMVAL. Handles assignment into packed fields that have
2737 floating-point or non-scalar types. */
2738
2739 static struct value *
2740 ada_value_assign (struct value *toval, struct value *fromval)
2741 {
2742 struct type *type = value_type (toval);
2743 int bits = value_bitsize (toval);
2744
2745 toval = ada_coerce_ref (toval);
2746 fromval = ada_coerce_ref (fromval);
2747
2748 if (ada_is_direct_array_type (value_type (toval)))
2749 toval = ada_coerce_to_simple_array (toval);
2750 if (ada_is_direct_array_type (value_type (fromval)))
2751 fromval = ada_coerce_to_simple_array (fromval);
2752
2753 if (!deprecated_value_modifiable (toval))
2754 error (_("Left operand of assignment is not a modifiable lvalue."));
2755
2756 if (VALUE_LVAL (toval) == lval_memory
2757 && bits > 0
2758 && (TYPE_CODE (type) == TYPE_CODE_FLT
2759 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2760 {
2761 int len = (value_bitpos (toval)
2762 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2763 int from_size;
2764 gdb_byte *buffer = (gdb_byte *) alloca (len);
2765 struct value *val;
2766 CORE_ADDR to_addr = value_address (toval);
2767
2768 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2769 fromval = value_cast (type, fromval);
2770
2771 read_memory (to_addr, buffer, len);
2772 from_size = value_bitsize (fromval);
2773 if (from_size == 0)
2774 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2775 if (gdbarch_bits_big_endian (get_type_arch (type)))
2776 move_bits (buffer, value_bitpos (toval),
2777 value_contents (fromval), from_size - bits, bits, 1);
2778 else
2779 move_bits (buffer, value_bitpos (toval),
2780 value_contents (fromval), 0, bits, 0);
2781 write_memory_with_notification (to_addr, buffer, len);
2782
2783 val = value_copy (toval);
2784 memcpy (value_contents_raw (val), value_contents (fromval),
2785 TYPE_LENGTH (type));
2786 deprecated_set_value_type (val, type);
2787
2788 return val;
2789 }
2790
2791 return value_assign (toval, fromval);
2792 }
2793
2794
2795 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2796 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2797 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2798 COMPONENT, and not the inferior's memory. The current contents
2799 of COMPONENT are ignored.
2800
2801 Although not part of the initial design, this function also works
2802 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2803 had a null address, and COMPONENT had an address which is equal to
2804 its offset inside CONTAINER. */
2805
2806 static void
2807 value_assign_to_component (struct value *container, struct value *component,
2808 struct value *val)
2809 {
2810 LONGEST offset_in_container =
2811 (LONGEST) (value_address (component) - value_address (container));
2812 int bit_offset_in_container =
2813 value_bitpos (component) - value_bitpos (container);
2814 int bits;
2815
2816 val = value_cast (value_type (component), val);
2817
2818 if (value_bitsize (component) == 0)
2819 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2820 else
2821 bits = value_bitsize (component);
2822
2823 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2824 move_bits (value_contents_writeable (container) + offset_in_container,
2825 value_bitpos (container) + bit_offset_in_container,
2826 value_contents (val),
2827 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2828 bits, 1);
2829 else
2830 move_bits (value_contents_writeable (container) + offset_in_container,
2831 value_bitpos (container) + bit_offset_in_container,
2832 value_contents (val), 0, bits, 0);
2833 }
2834
2835 /* The value of the element of array ARR at the ARITY indices given in IND.
2836 ARR may be either a simple array, GNAT array descriptor, or pointer
2837 thereto. */
2838
2839 struct value *
2840 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2841 {
2842 int k;
2843 struct value *elt;
2844 struct type *elt_type;
2845
2846 elt = ada_coerce_to_simple_array (arr);
2847
2848 elt_type = ada_check_typedef (value_type (elt));
2849 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2850 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2851 return value_subscript_packed (elt, arity, ind);
2852
2853 for (k = 0; k < arity; k += 1)
2854 {
2855 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2856 error (_("too many subscripts (%d expected)"), k);
2857 elt = value_subscript (elt, pos_atr (ind[k]));
2858 }
2859 return elt;
2860 }
2861
2862 /* Assuming ARR is a pointer to a GDB array, the value of the element
2863 of *ARR at the ARITY indices given in IND.
2864 Does not read the entire array into memory.
2865
2866 Note: Unlike what one would expect, this function is used instead of
2867 ada_value_subscript for basically all non-packed array types. The reason
2868 for this is that a side effect of doing our own pointer arithmetics instead
2869 of relying on value_subscript is that there is no implicit typedef peeling.
2870 This is important for arrays of array accesses, where it allows us to
2871 preserve the fact that the array's element is an array access, where the
2872 access part os encoded in a typedef layer. */
2873
2874 static struct value *
2875 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2876 {
2877 int k;
2878 struct value *array_ind = ada_value_ind (arr);
2879 struct type *type
2880 = check_typedef (value_enclosing_type (array_ind));
2881
2882 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2883 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2884 return value_subscript_packed (array_ind, arity, ind);
2885
2886 for (k = 0; k < arity; k += 1)
2887 {
2888 LONGEST lwb, upb;
2889 struct value *lwb_value;
2890
2891 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2892 error (_("too many subscripts (%d expected)"), k);
2893 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2894 value_copy (arr));
2895 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2896 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2897 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
2898 type = TYPE_TARGET_TYPE (type);
2899 }
2900
2901 return value_ind (arr);
2902 }
2903
2904 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2905 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2906 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2907 this array is LOW, as per Ada rules. */
2908 static struct value *
2909 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2910 int low, int high)
2911 {
2912 struct type *type0 = ada_check_typedef (type);
2913 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
2914 struct type *index_type
2915 = create_static_range_type (NULL, base_index_type, low, high);
2916 struct type *slice_type =
2917 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2918 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2919 LONGEST base_low_pos, low_pos;
2920 CORE_ADDR base;
2921
2922 if (!discrete_position (base_index_type, low, &low_pos)
2923 || !discrete_position (base_index_type, base_low, &base_low_pos))
2924 {
2925 warning (_("unable to get positions in slice, use bounds instead"));
2926 low_pos = low;
2927 base_low_pos = base_low;
2928 }
2929
2930 base = value_as_address (array_ptr)
2931 + ((low_pos - base_low_pos)
2932 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2933 return value_at_lazy (slice_type, base);
2934 }
2935
2936
2937 static struct value *
2938 ada_value_slice (struct value *array, int low, int high)
2939 {
2940 struct type *type = ada_check_typedef (value_type (array));
2941 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2942 struct type *index_type
2943 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2944 struct type *slice_type =
2945 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2946 LONGEST low_pos, high_pos;
2947
2948 if (!discrete_position (base_index_type, low, &low_pos)
2949 || !discrete_position (base_index_type, high, &high_pos))
2950 {
2951 warning (_("unable to get positions in slice, use bounds instead"));
2952 low_pos = low;
2953 high_pos = high;
2954 }
2955
2956 return value_cast (slice_type,
2957 value_slice (array, low, high_pos - low_pos + 1));
2958 }
2959
2960 /* If type is a record type in the form of a standard GNAT array
2961 descriptor, returns the number of dimensions for type. If arr is a
2962 simple array, returns the number of "array of"s that prefix its
2963 type designation. Otherwise, returns 0. */
2964
2965 int
2966 ada_array_arity (struct type *type)
2967 {
2968 int arity;
2969
2970 if (type == NULL)
2971 return 0;
2972
2973 type = desc_base_type (type);
2974
2975 arity = 0;
2976 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2977 return desc_arity (desc_bounds_type (type));
2978 else
2979 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2980 {
2981 arity += 1;
2982 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2983 }
2984
2985 return arity;
2986 }
2987
2988 /* If TYPE is a record type in the form of a standard GNAT array
2989 descriptor or a simple array type, returns the element type for
2990 TYPE after indexing by NINDICES indices, or by all indices if
2991 NINDICES is -1. Otherwise, returns NULL. */
2992
2993 struct type *
2994 ada_array_element_type (struct type *type, int nindices)
2995 {
2996 type = desc_base_type (type);
2997
2998 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2999 {
3000 int k;
3001 struct type *p_array_type;
3002
3003 p_array_type = desc_data_target_type (type);
3004
3005 k = ada_array_arity (type);
3006 if (k == 0)
3007 return NULL;
3008
3009 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
3010 if (nindices >= 0 && k > nindices)
3011 k = nindices;
3012 while (k > 0 && p_array_type != NULL)
3013 {
3014 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
3015 k -= 1;
3016 }
3017 return p_array_type;
3018 }
3019 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3020 {
3021 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
3022 {
3023 type = TYPE_TARGET_TYPE (type);
3024 nindices -= 1;
3025 }
3026 return type;
3027 }
3028
3029 return NULL;
3030 }
3031
3032 /* The type of nth index in arrays of given type (n numbering from 1).
3033 Does not examine memory. Throws an error if N is invalid or TYPE
3034 is not an array type. NAME is the name of the Ada attribute being
3035 evaluated ('range, 'first, 'last, or 'length); it is used in building
3036 the error message. */
3037
3038 static struct type *
3039 ada_index_type (struct type *type, int n, const char *name)
3040 {
3041 struct type *result_type;
3042
3043 type = desc_base_type (type);
3044
3045 if (n < 0 || n > ada_array_arity (type))
3046 error (_("invalid dimension number to '%s"), name);
3047
3048 if (ada_is_simple_array_type (type))
3049 {
3050 int i;
3051
3052 for (i = 1; i < n; i += 1)
3053 type = TYPE_TARGET_TYPE (type);
3054 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
3055 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3056 has a target type of TYPE_CODE_UNDEF. We compensate here, but
3057 perhaps stabsread.c would make more sense. */
3058 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3059 result_type = NULL;
3060 }
3061 else
3062 {
3063 result_type = desc_index_type (desc_bounds_type (type), n);
3064 if (result_type == NULL)
3065 error (_("attempt to take bound of something that is not an array"));
3066 }
3067
3068 return result_type;
3069 }
3070
3071 /* Given that arr is an array type, returns the lower bound of the
3072 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
3073 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
3074 array-descriptor type. It works for other arrays with bounds supplied
3075 by run-time quantities other than discriminants. */
3076
3077 static LONGEST
3078 ada_array_bound_from_type (struct type *arr_type, int n, int which)
3079 {
3080 struct type *type, *index_type_desc, *index_type;
3081 int i;
3082
3083 gdb_assert (which == 0 || which == 1);
3084
3085 if (ada_is_constrained_packed_array_type (arr_type))
3086 arr_type = decode_constrained_packed_array_type (arr_type);
3087
3088 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
3089 return (LONGEST) - which;
3090
3091 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3092 type = TYPE_TARGET_TYPE (arr_type);
3093 else
3094 type = arr_type;
3095
3096 if (TYPE_FIXED_INSTANCE (type))
3097 {
3098 /* The array has already been fixed, so we do not need to
3099 check the parallel ___XA type again. That encoding has
3100 already been applied, so ignore it now. */
3101 index_type_desc = NULL;
3102 }
3103 else
3104 {
3105 index_type_desc = ada_find_parallel_type (type, "___XA");
3106 ada_fixup_array_indexes_type (index_type_desc);
3107 }
3108
3109 if (index_type_desc != NULL)
3110 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3111 NULL);
3112 else
3113 {
3114 struct type *elt_type = check_typedef (type);
3115
3116 for (i = 1; i < n; i++)
3117 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3118
3119 index_type = TYPE_INDEX_TYPE (elt_type);
3120 }
3121
3122 return
3123 (LONGEST) (which == 0
3124 ? ada_discrete_type_low_bound (index_type)
3125 : ada_discrete_type_high_bound (index_type));
3126 }
3127
3128 /* Given that arr is an array value, returns the lower bound of the
3129 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3130 WHICH is 1. This routine will also work for arrays with bounds
3131 supplied by run-time quantities other than discriminants. */
3132
3133 static LONGEST
3134 ada_array_bound (struct value *arr, int n, int which)
3135 {
3136 struct type *arr_type;
3137
3138 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3139 arr = value_ind (arr);
3140 arr_type = value_enclosing_type (arr);
3141
3142 if (ada_is_constrained_packed_array_type (arr_type))
3143 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3144 else if (ada_is_simple_array_type (arr_type))
3145 return ada_array_bound_from_type (arr_type, n, which);
3146 else
3147 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3148 }
3149
3150 /* Given that arr is an array value, returns the length of the
3151 nth index. This routine will also work for arrays with bounds
3152 supplied by run-time quantities other than discriminants.
3153 Does not work for arrays indexed by enumeration types with representation
3154 clauses at the moment. */
3155
3156 static LONGEST
3157 ada_array_length (struct value *arr, int n)
3158 {
3159 struct type *arr_type, *index_type;
3160 int low, high;
3161
3162 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3163 arr = value_ind (arr);
3164 arr_type = value_enclosing_type (arr);
3165
3166 if (ada_is_constrained_packed_array_type (arr_type))
3167 return ada_array_length (decode_constrained_packed_array (arr), n);
3168
3169 if (ada_is_simple_array_type (arr_type))
3170 {
3171 low = ada_array_bound_from_type (arr_type, n, 0);
3172 high = ada_array_bound_from_type (arr_type, n, 1);
3173 }
3174 else
3175 {
3176 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3177 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3178 }
3179
3180 arr_type = check_typedef (arr_type);
3181 index_type = TYPE_INDEX_TYPE (arr_type);
3182 if (index_type != NULL)
3183 {
3184 struct type *base_type;
3185 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3186 base_type = TYPE_TARGET_TYPE (index_type);
3187 else
3188 base_type = index_type;
3189
3190 low = pos_atr (value_from_longest (base_type, low));
3191 high = pos_atr (value_from_longest (base_type, high));
3192 }
3193 return high - low + 1;
3194 }
3195
3196 /* An empty array whose type is that of ARR_TYPE (an array type),
3197 with bounds LOW to LOW-1. */
3198
3199 static struct value *
3200 empty_array (struct type *arr_type, int low)
3201 {
3202 struct type *arr_type0 = ada_check_typedef (arr_type);
3203 struct type *index_type
3204 = create_static_range_type
3205 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
3206 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3207
3208 return allocate_value (create_array_type (NULL, elt_type, index_type));
3209 }
3210 \f
3211
3212 /* Name resolution */
3213
3214 /* The "decoded" name for the user-definable Ada operator corresponding
3215 to OP. */
3216
3217 static const char *
3218 ada_decoded_op_name (enum exp_opcode op)
3219 {
3220 int i;
3221
3222 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3223 {
3224 if (ada_opname_table[i].op == op)
3225 return ada_opname_table[i].decoded;
3226 }
3227 error (_("Could not find operator name for opcode"));
3228 }
3229
3230
3231 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3232 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3233 undefined namespace) and converts operators that are
3234 user-defined into appropriate function calls. If CONTEXT_TYPE is
3235 non-null, it provides a preferred result type [at the moment, only
3236 type void has any effect---causing procedures to be preferred over
3237 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3238 return type is preferred. May change (expand) *EXP. */
3239
3240 static void
3241 resolve (struct expression **expp, int void_context_p)
3242 {
3243 struct type *context_type = NULL;
3244 int pc = 0;
3245
3246 if (void_context_p)
3247 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3248
3249 resolve_subexp (expp, &pc, 1, context_type);
3250 }
3251
3252 /* Resolve the operator of the subexpression beginning at
3253 position *POS of *EXPP. "Resolving" consists of replacing
3254 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3255 with their resolutions, replacing built-in operators with
3256 function calls to user-defined operators, where appropriate, and,
3257 when DEPROCEDURE_P is non-zero, converting function-valued variables
3258 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3259 are as in ada_resolve, above. */
3260
3261 static struct value *
3262 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
3263 struct type *context_type)
3264 {
3265 int pc = *pos;
3266 int i;
3267 struct expression *exp; /* Convenience: == *expp. */
3268 enum exp_opcode op = (*expp)->elts[pc].opcode;
3269 struct value **argvec; /* Vector of operand types (alloca'ed). */
3270 int nargs; /* Number of operands. */
3271 int oplen;
3272
3273 argvec = NULL;
3274 nargs = 0;
3275 exp = *expp;
3276
3277 /* Pass one: resolve operands, saving their types and updating *pos,
3278 if needed. */
3279 switch (op)
3280 {
3281 case OP_FUNCALL:
3282 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3283 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3284 *pos += 7;
3285 else
3286 {
3287 *pos += 3;
3288 resolve_subexp (expp, pos, 0, NULL);
3289 }
3290 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3291 break;
3292
3293 case UNOP_ADDR:
3294 *pos += 1;
3295 resolve_subexp (expp, pos, 0, NULL);
3296 break;
3297
3298 case UNOP_QUAL:
3299 *pos += 3;
3300 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
3301 break;
3302
3303 case OP_ATR_MODULUS:
3304 case OP_ATR_SIZE:
3305 case OP_ATR_TAG:
3306 case OP_ATR_FIRST:
3307 case OP_ATR_LAST:
3308 case OP_ATR_LENGTH:
3309 case OP_ATR_POS:
3310 case OP_ATR_VAL:
3311 case OP_ATR_MIN:
3312 case OP_ATR_MAX:
3313 case TERNOP_IN_RANGE:
3314 case BINOP_IN_BOUNDS:
3315 case UNOP_IN_RANGE:
3316 case OP_AGGREGATE:
3317 case OP_OTHERS:
3318 case OP_CHOICES:
3319 case OP_POSITIONAL:
3320 case OP_DISCRETE_RANGE:
3321 case OP_NAME:
3322 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3323 *pos += oplen;
3324 break;
3325
3326 case BINOP_ASSIGN:
3327 {
3328 struct value *arg1;
3329
3330 *pos += 1;
3331 arg1 = resolve_subexp (expp, pos, 0, NULL);
3332 if (arg1 == NULL)
3333 resolve_subexp (expp, pos, 1, NULL);
3334 else
3335 resolve_subexp (expp, pos, 1, value_type (arg1));
3336 break;
3337 }
3338
3339 case UNOP_CAST:
3340 *pos += 3;
3341 nargs = 1;
3342 break;
3343
3344 case BINOP_ADD:
3345 case BINOP_SUB:
3346 case BINOP_MUL:
3347 case BINOP_DIV:
3348 case BINOP_REM:
3349 case BINOP_MOD:
3350 case BINOP_EXP:
3351 case BINOP_CONCAT:
3352 case BINOP_LOGICAL_AND:
3353 case BINOP_LOGICAL_OR:
3354 case BINOP_BITWISE_AND:
3355 case BINOP_BITWISE_IOR:
3356 case BINOP_BITWISE_XOR:
3357
3358 case BINOP_EQUAL:
3359 case BINOP_NOTEQUAL:
3360 case BINOP_LESS:
3361 case BINOP_GTR:
3362 case BINOP_LEQ:
3363 case BINOP_GEQ:
3364
3365 case BINOP_REPEAT:
3366 case BINOP_SUBSCRIPT:
3367 case BINOP_COMMA:
3368 *pos += 1;
3369 nargs = 2;
3370 break;
3371
3372 case UNOP_NEG:
3373 case UNOP_PLUS:
3374 case UNOP_LOGICAL_NOT:
3375 case UNOP_ABS:
3376 case UNOP_IND:
3377 *pos += 1;
3378 nargs = 1;
3379 break;
3380
3381 case OP_LONG:
3382 case OP_FLOAT:
3383 case OP_VAR_VALUE:
3384 case OP_VAR_MSYM_VALUE:
3385 *pos += 4;
3386 break;
3387
3388 case OP_TYPE:
3389 case OP_BOOL:
3390 case OP_LAST:
3391 case OP_INTERNALVAR:
3392 *pos += 3;
3393 break;
3394
3395 case UNOP_MEMVAL:
3396 *pos += 3;
3397 nargs = 1;
3398 break;
3399
3400 case OP_REGISTER:
3401 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3402 break;
3403
3404 case STRUCTOP_STRUCT:
3405 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3406 nargs = 1;
3407 break;
3408
3409 case TERNOP_SLICE:
3410 *pos += 1;
3411 nargs = 3;
3412 break;
3413
3414 case OP_STRING:
3415 break;
3416
3417 default:
3418 error (_("Unexpected operator during name resolution"));
3419 }
3420
3421 argvec = XALLOCAVEC (struct value *, nargs + 1);
3422 for (i = 0; i < nargs; i += 1)
3423 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3424 argvec[i] = NULL;
3425 exp = *expp;
3426
3427 /* Pass two: perform any resolution on principal operator. */
3428 switch (op)
3429 {
3430 default:
3431 break;
3432
3433 case OP_VAR_VALUE:
3434 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3435 {
3436 struct block_symbol *candidates;
3437 int n_candidates;
3438
3439 n_candidates =
3440 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3441 (exp->elts[pc + 2].symbol),
3442 exp->elts[pc + 1].block, VAR_DOMAIN,
3443 &candidates);
3444
3445 if (n_candidates > 1)
3446 {
3447 /* Types tend to get re-introduced locally, so if there
3448 are any local symbols that are not types, first filter
3449 out all types. */
3450 int j;
3451 for (j = 0; j < n_candidates; j += 1)
3452 switch (SYMBOL_CLASS (candidates[j].symbol))
3453 {
3454 case LOC_REGISTER:
3455 case LOC_ARG:
3456 case LOC_REF_ARG:
3457 case LOC_REGPARM_ADDR:
3458 case LOC_LOCAL:
3459 case LOC_COMPUTED:
3460 goto FoundNonType;
3461 default:
3462 break;
3463 }
3464 FoundNonType:
3465 if (j < n_candidates)
3466 {
3467 j = 0;
3468 while (j < n_candidates)
3469 {
3470 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3471 {
3472 candidates[j] = candidates[n_candidates - 1];
3473 n_candidates -= 1;
3474 }
3475 else
3476 j += 1;
3477 }
3478 }
3479 }
3480
3481 if (n_candidates == 0)
3482 error (_("No definition found for %s"),
3483 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3484 else if (n_candidates == 1)
3485 i = 0;
3486 else if (deprocedure_p
3487 && !is_nonfunction (candidates, n_candidates))
3488 {
3489 i = ada_resolve_function
3490 (candidates, n_candidates, NULL, 0,
3491 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3492 context_type);
3493 if (i < 0)
3494 error (_("Could not find a match for %s"),
3495 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3496 }
3497 else
3498 {
3499 printf_filtered (_("Multiple matches for %s\n"),
3500 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3501 user_select_syms (candidates, n_candidates, 1);
3502 i = 0;
3503 }
3504
3505 exp->elts[pc + 1].block = candidates[i].block;
3506 exp->elts[pc + 2].symbol = candidates[i].symbol;
3507 if (innermost_block == NULL
3508 || contained_in (candidates[i].block, innermost_block))
3509 innermost_block = candidates[i].block;
3510 }
3511
3512 if (deprocedure_p
3513 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3514 == TYPE_CODE_FUNC))
3515 {
3516 replace_operator_with_call (expp, pc, 0, 0,
3517 exp->elts[pc + 2].symbol,
3518 exp->elts[pc + 1].block);
3519 exp = *expp;
3520 }
3521 break;
3522
3523 case OP_FUNCALL:
3524 {
3525 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3526 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3527 {
3528 struct block_symbol *candidates;
3529 int n_candidates;
3530
3531 n_candidates =
3532 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3533 (exp->elts[pc + 5].symbol),
3534 exp->elts[pc + 4].block, VAR_DOMAIN,
3535 &candidates);
3536 if (n_candidates == 1)
3537 i = 0;
3538 else
3539 {
3540 i = ada_resolve_function
3541 (candidates, n_candidates,
3542 argvec, nargs,
3543 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3544 context_type);
3545 if (i < 0)
3546 error (_("Could not find a match for %s"),
3547 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3548 }
3549
3550 exp->elts[pc + 4].block = candidates[i].block;
3551 exp->elts[pc + 5].symbol = candidates[i].symbol;
3552 if (innermost_block == NULL
3553 || contained_in (candidates[i].block, innermost_block))
3554 innermost_block = candidates[i].block;
3555 }
3556 }
3557 break;
3558 case BINOP_ADD:
3559 case BINOP_SUB:
3560 case BINOP_MUL:
3561 case BINOP_DIV:
3562 case BINOP_REM:
3563 case BINOP_MOD:
3564 case BINOP_CONCAT:
3565 case BINOP_BITWISE_AND:
3566 case BINOP_BITWISE_IOR:
3567 case BINOP_BITWISE_XOR:
3568 case BINOP_EQUAL:
3569 case BINOP_NOTEQUAL:
3570 case BINOP_LESS:
3571 case BINOP_GTR:
3572 case BINOP_LEQ:
3573 case BINOP_GEQ:
3574 case BINOP_EXP:
3575 case UNOP_NEG:
3576 case UNOP_PLUS:
3577 case UNOP_LOGICAL_NOT:
3578 case UNOP_ABS:
3579 if (possible_user_operator_p (op, argvec))
3580 {
3581 struct block_symbol *candidates;
3582 int n_candidates;
3583
3584 n_candidates =
3585 ada_lookup_symbol_list (ada_decoded_op_name (op),
3586 (struct block *) NULL, VAR_DOMAIN,
3587 &candidates);
3588 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3589 ada_decoded_op_name (op), NULL);
3590 if (i < 0)
3591 break;
3592
3593 replace_operator_with_call (expp, pc, nargs, 1,
3594 candidates[i].symbol,
3595 candidates[i].block);
3596 exp = *expp;
3597 }
3598 break;
3599
3600 case OP_TYPE:
3601 case OP_REGISTER:
3602 return NULL;
3603 }
3604
3605 *pos = pc;
3606 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3607 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3608 exp->elts[pc + 1].objfile,
3609 exp->elts[pc + 2].msymbol);
3610 else
3611 return evaluate_subexp_type (exp, pos);
3612 }
3613
3614 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3615 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3616 a non-pointer. */
3617 /* The term "match" here is rather loose. The match is heuristic and
3618 liberal. */
3619
3620 static int
3621 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3622 {
3623 ftype = ada_check_typedef (ftype);
3624 atype = ada_check_typedef (atype);
3625
3626 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3627 ftype = TYPE_TARGET_TYPE (ftype);
3628 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3629 atype = TYPE_TARGET_TYPE (atype);
3630
3631 switch (TYPE_CODE (ftype))
3632 {
3633 default:
3634 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3635 case TYPE_CODE_PTR:
3636 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3637 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3638 TYPE_TARGET_TYPE (atype), 0);
3639 else
3640 return (may_deref
3641 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3642 case TYPE_CODE_INT:
3643 case TYPE_CODE_ENUM:
3644 case TYPE_CODE_RANGE:
3645 switch (TYPE_CODE (atype))
3646 {
3647 case TYPE_CODE_INT:
3648 case TYPE_CODE_ENUM:
3649 case TYPE_CODE_RANGE:
3650 return 1;
3651 default:
3652 return 0;
3653 }
3654
3655 case TYPE_CODE_ARRAY:
3656 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3657 || ada_is_array_descriptor_type (atype));
3658
3659 case TYPE_CODE_STRUCT:
3660 if (ada_is_array_descriptor_type (ftype))
3661 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3662 || ada_is_array_descriptor_type (atype));
3663 else
3664 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3665 && !ada_is_array_descriptor_type (atype));
3666
3667 case TYPE_CODE_UNION:
3668 case TYPE_CODE_FLT:
3669 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3670 }
3671 }
3672
3673 /* Return non-zero if the formals of FUNC "sufficiently match" the
3674 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3675 may also be an enumeral, in which case it is treated as a 0-
3676 argument function. */
3677
3678 static int
3679 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3680 {
3681 int i;
3682 struct type *func_type = SYMBOL_TYPE (func);
3683
3684 if (SYMBOL_CLASS (func) == LOC_CONST
3685 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3686 return (n_actuals == 0);
3687 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3688 return 0;
3689
3690 if (TYPE_NFIELDS (func_type) != n_actuals)
3691 return 0;
3692
3693 for (i = 0; i < n_actuals; i += 1)
3694 {
3695 if (actuals[i] == NULL)
3696 return 0;
3697 else
3698 {
3699 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3700 i));
3701 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3702
3703 if (!ada_type_match (ftype, atype, 1))
3704 return 0;
3705 }
3706 }
3707 return 1;
3708 }
3709
3710 /* False iff function type FUNC_TYPE definitely does not produce a value
3711 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3712 FUNC_TYPE is not a valid function type with a non-null return type
3713 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3714
3715 static int
3716 return_match (struct type *func_type, struct type *context_type)
3717 {
3718 struct type *return_type;
3719
3720 if (func_type == NULL)
3721 return 1;
3722
3723 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3724 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3725 else
3726 return_type = get_base_type (func_type);
3727 if (return_type == NULL)
3728 return 1;
3729
3730 context_type = get_base_type (context_type);
3731
3732 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3733 return context_type == NULL || return_type == context_type;
3734 else if (context_type == NULL)
3735 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3736 else
3737 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3738 }
3739
3740
3741 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3742 function (if any) that matches the types of the NARGS arguments in
3743 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3744 that returns that type, then eliminate matches that don't. If
3745 CONTEXT_TYPE is void and there is at least one match that does not
3746 return void, eliminate all matches that do.
3747
3748 Asks the user if there is more than one match remaining. Returns -1
3749 if there is no such symbol or none is selected. NAME is used
3750 solely for messages. May re-arrange and modify SYMS in
3751 the process; the index returned is for the modified vector. */
3752
3753 static int
3754 ada_resolve_function (struct block_symbol syms[],
3755 int nsyms, struct value **args, int nargs,
3756 const char *name, struct type *context_type)
3757 {
3758 int fallback;
3759 int k;
3760 int m; /* Number of hits */
3761
3762 m = 0;
3763 /* In the first pass of the loop, we only accept functions matching
3764 context_type. If none are found, we add a second pass of the loop
3765 where every function is accepted. */
3766 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3767 {
3768 for (k = 0; k < nsyms; k += 1)
3769 {
3770 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3771
3772 if (ada_args_match (syms[k].symbol, args, nargs)
3773 && (fallback || return_match (type, context_type)))
3774 {
3775 syms[m] = syms[k];
3776 m += 1;
3777 }
3778 }
3779 }
3780
3781 /* If we got multiple matches, ask the user which one to use. Don't do this
3782 interactive thing during completion, though, as the purpose of the
3783 completion is providing a list of all possible matches. Prompting the
3784 user to filter it down would be completely unexpected in this case. */
3785 if (m == 0)
3786 return -1;
3787 else if (m > 1 && !parse_completion)
3788 {
3789 printf_filtered (_("Multiple matches for %s\n"), name);
3790 user_select_syms (syms, m, 1);
3791 return 0;
3792 }
3793 return 0;
3794 }
3795
3796 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3797 in a listing of choices during disambiguation (see sort_choices, below).
3798 The idea is that overloadings of a subprogram name from the
3799 same package should sort in their source order. We settle for ordering
3800 such symbols by their trailing number (__N or $N). */
3801
3802 static int
3803 encoded_ordered_before (const char *N0, const char *N1)
3804 {
3805 if (N1 == NULL)
3806 return 0;
3807 else if (N0 == NULL)
3808 return 1;
3809 else
3810 {
3811 int k0, k1;
3812
3813 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3814 ;
3815 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3816 ;
3817 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3818 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3819 {
3820 int n0, n1;
3821
3822 n0 = k0;
3823 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3824 n0 -= 1;
3825 n1 = k1;
3826 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3827 n1 -= 1;
3828 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3829 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3830 }
3831 return (strcmp (N0, N1) < 0);
3832 }
3833 }
3834
3835 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3836 encoded names. */
3837
3838 static void
3839 sort_choices (struct block_symbol syms[], int nsyms)
3840 {
3841 int i;
3842
3843 for (i = 1; i < nsyms; i += 1)
3844 {
3845 struct block_symbol sym = syms[i];
3846 int j;
3847
3848 for (j = i - 1; j >= 0; j -= 1)
3849 {
3850 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3851 SYMBOL_LINKAGE_NAME (sym.symbol)))
3852 break;
3853 syms[j + 1] = syms[j];
3854 }
3855 syms[j + 1] = sym;
3856 }
3857 }
3858
3859 /* Whether GDB should display formals and return types for functions in the
3860 overloads selection menu. */
3861 static int print_signatures = 1;
3862
3863 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3864 all but functions, the signature is just the name of the symbol. For
3865 functions, this is the name of the function, the list of types for formals
3866 and the return type (if any). */
3867
3868 static void
3869 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3870 const struct type_print_options *flags)
3871 {
3872 struct type *type = SYMBOL_TYPE (sym);
3873
3874 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3875 if (!print_signatures
3876 || type == NULL
3877 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3878 return;
3879
3880 if (TYPE_NFIELDS (type) > 0)
3881 {
3882 int i;
3883
3884 fprintf_filtered (stream, " (");
3885 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3886 {
3887 if (i > 0)
3888 fprintf_filtered (stream, "; ");
3889 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3890 flags);
3891 }
3892 fprintf_filtered (stream, ")");
3893 }
3894 if (TYPE_TARGET_TYPE (type) != NULL
3895 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3896 {
3897 fprintf_filtered (stream, " return ");
3898 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3899 }
3900 }
3901
3902 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3903 by asking the user (if necessary), returning the number selected,
3904 and setting the first elements of SYMS items. Error if no symbols
3905 selected. */
3906
3907 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3908 to be re-integrated one of these days. */
3909
3910 int
3911 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3912 {
3913 int i;
3914 int *chosen = XALLOCAVEC (int , nsyms);
3915 int n_chosen;
3916 int first_choice = (max_results == 1) ? 1 : 2;
3917 const char *select_mode = multiple_symbols_select_mode ();
3918
3919 if (max_results < 1)
3920 error (_("Request to select 0 symbols!"));
3921 if (nsyms <= 1)
3922 return nsyms;
3923
3924 if (select_mode == multiple_symbols_cancel)
3925 error (_("\
3926 canceled because the command is ambiguous\n\
3927 See set/show multiple-symbol."));
3928
3929 /* If select_mode is "all", then return all possible symbols.
3930 Only do that if more than one symbol can be selected, of course.
3931 Otherwise, display the menu as usual. */
3932 if (select_mode == multiple_symbols_all && max_results > 1)
3933 return nsyms;
3934
3935 printf_unfiltered (_("[0] cancel\n"));
3936 if (max_results > 1)
3937 printf_unfiltered (_("[1] all\n"));
3938
3939 sort_choices (syms, nsyms);
3940
3941 for (i = 0; i < nsyms; i += 1)
3942 {
3943 if (syms[i].symbol == NULL)
3944 continue;
3945
3946 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3947 {
3948 struct symtab_and_line sal =
3949 find_function_start_sal (syms[i].symbol, 1);
3950
3951 printf_unfiltered ("[%d] ", i + first_choice);
3952 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3953 &type_print_raw_options);
3954 if (sal.symtab == NULL)
3955 printf_unfiltered (_(" at <no source file available>:%d\n"),
3956 sal.line);
3957 else
3958 printf_unfiltered (_(" at %s:%d\n"),
3959 symtab_to_filename_for_display (sal.symtab),
3960 sal.line);
3961 continue;
3962 }
3963 else
3964 {
3965 int is_enumeral =
3966 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3967 && SYMBOL_TYPE (syms[i].symbol) != NULL
3968 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
3969 struct symtab *symtab = NULL;
3970
3971 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3972 symtab = symbol_symtab (syms[i].symbol);
3973
3974 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3975 {
3976 printf_unfiltered ("[%d] ", i + first_choice);
3977 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3978 &type_print_raw_options);
3979 printf_unfiltered (_(" at %s:%d\n"),
3980 symtab_to_filename_for_display (symtab),
3981 SYMBOL_LINE (syms[i].symbol));
3982 }
3983 else if (is_enumeral
3984 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
3985 {
3986 printf_unfiltered (("[%d] "), i + first_choice);
3987 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3988 gdb_stdout, -1, 0, &type_print_raw_options);
3989 printf_unfiltered (_("'(%s) (enumeral)\n"),
3990 SYMBOL_PRINT_NAME (syms[i].symbol));
3991 }
3992 else
3993 {
3994 printf_unfiltered ("[%d] ", i + first_choice);
3995 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3996 &type_print_raw_options);
3997
3998 if (symtab != NULL)
3999 printf_unfiltered (is_enumeral
4000 ? _(" in %s (enumeral)\n")
4001 : _(" at %s:?\n"),
4002 symtab_to_filename_for_display (symtab));
4003 else
4004 printf_unfiltered (is_enumeral
4005 ? _(" (enumeral)\n")
4006 : _(" at ?\n"));
4007 }
4008 }
4009 }
4010
4011 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4012 "overload-choice");
4013
4014 for (i = 0; i < n_chosen; i += 1)
4015 syms[i] = syms[chosen[i]];
4016
4017 return n_chosen;
4018 }
4019
4020 /* Read and validate a set of numeric choices from the user in the
4021 range 0 .. N_CHOICES-1. Place the results in increasing
4022 order in CHOICES[0 .. N-1], and return N.
4023
4024 The user types choices as a sequence of numbers on one line
4025 separated by blanks, encoding them as follows:
4026
4027 + A choice of 0 means to cancel the selection, throwing an error.
4028 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
4029 + The user chooses k by typing k+IS_ALL_CHOICE+1.
4030
4031 The user is not allowed to choose more than MAX_RESULTS values.
4032
4033 ANNOTATION_SUFFIX, if present, is used to annotate the input
4034 prompts (for use with the -f switch). */
4035
4036 int
4037 get_selections (int *choices, int n_choices, int max_results,
4038 int is_all_choice, const char *annotation_suffix)
4039 {
4040 char *args;
4041 const char *prompt;
4042 int n_chosen;
4043 int first_choice = is_all_choice ? 2 : 1;
4044
4045 prompt = getenv ("PS2");
4046 if (prompt == NULL)
4047 prompt = "> ";
4048
4049 args = command_line_input (prompt, 0, annotation_suffix);
4050
4051 if (args == NULL)
4052 error_no_arg (_("one or more choice numbers"));
4053
4054 n_chosen = 0;
4055
4056 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
4057 order, as given in args. Choices are validated. */
4058 while (1)
4059 {
4060 char *args2;
4061 int choice, j;
4062
4063 args = skip_spaces (args);
4064 if (*args == '\0' && n_chosen == 0)
4065 error_no_arg (_("one or more choice numbers"));
4066 else if (*args == '\0')
4067 break;
4068
4069 choice = strtol (args, &args2, 10);
4070 if (args == args2 || choice < 0
4071 || choice > n_choices + first_choice - 1)
4072 error (_("Argument must be choice number"));
4073 args = args2;
4074
4075 if (choice == 0)
4076 error (_("cancelled"));
4077
4078 if (choice < first_choice)
4079 {
4080 n_chosen = n_choices;
4081 for (j = 0; j < n_choices; j += 1)
4082 choices[j] = j;
4083 break;
4084 }
4085 choice -= first_choice;
4086
4087 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4088 {
4089 }
4090
4091 if (j < 0 || choice != choices[j])
4092 {
4093 int k;
4094
4095 for (k = n_chosen - 1; k > j; k -= 1)
4096 choices[k + 1] = choices[k];
4097 choices[j + 1] = choice;
4098 n_chosen += 1;
4099 }
4100 }
4101
4102 if (n_chosen > max_results)
4103 error (_("Select no more than %d of the above"), max_results);
4104
4105 return n_chosen;
4106 }
4107
4108 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
4109 on the function identified by SYM and BLOCK, and taking NARGS
4110 arguments. Update *EXPP as needed to hold more space. */
4111
4112 static void
4113 replace_operator_with_call (struct expression **expp, int pc, int nargs,
4114 int oplen, struct symbol *sym,
4115 const struct block *block)
4116 {
4117 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4118 symbol, -oplen for operator being replaced). */
4119 struct expression *newexp = (struct expression *)
4120 xzalloc (sizeof (struct expression)
4121 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
4122 struct expression *exp = *expp;
4123
4124 newexp->nelts = exp->nelts + 7 - oplen;
4125 newexp->language_defn = exp->language_defn;
4126 newexp->gdbarch = exp->gdbarch;
4127 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
4128 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4129 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
4130
4131 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4132 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4133
4134 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4135 newexp->elts[pc + 4].block = block;
4136 newexp->elts[pc + 5].symbol = sym;
4137
4138 *expp = newexp;
4139 xfree (exp);
4140 }
4141
4142 /* Type-class predicates */
4143
4144 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4145 or FLOAT). */
4146
4147 static int
4148 numeric_type_p (struct type *type)
4149 {
4150 if (type == NULL)
4151 return 0;
4152 else
4153 {
4154 switch (TYPE_CODE (type))
4155 {
4156 case TYPE_CODE_INT:
4157 case TYPE_CODE_FLT:
4158 return 1;
4159 case TYPE_CODE_RANGE:
4160 return (type == TYPE_TARGET_TYPE (type)
4161 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4162 default:
4163 return 0;
4164 }
4165 }
4166 }
4167
4168 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4169
4170 static int
4171 integer_type_p (struct type *type)
4172 {
4173 if (type == NULL)
4174 return 0;
4175 else
4176 {
4177 switch (TYPE_CODE (type))
4178 {
4179 case TYPE_CODE_INT:
4180 return 1;
4181 case TYPE_CODE_RANGE:
4182 return (type == TYPE_TARGET_TYPE (type)
4183 || integer_type_p (TYPE_TARGET_TYPE (type)));
4184 default:
4185 return 0;
4186 }
4187 }
4188 }
4189
4190 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4191
4192 static int
4193 scalar_type_p (struct type *type)
4194 {
4195 if (type == NULL)
4196 return 0;
4197 else
4198 {
4199 switch (TYPE_CODE (type))
4200 {
4201 case TYPE_CODE_INT:
4202 case TYPE_CODE_RANGE:
4203 case TYPE_CODE_ENUM:
4204 case TYPE_CODE_FLT:
4205 return 1;
4206 default:
4207 return 0;
4208 }
4209 }
4210 }
4211
4212 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4213
4214 static int
4215 discrete_type_p (struct type *type)
4216 {
4217 if (type == NULL)
4218 return 0;
4219 else
4220 {
4221 switch (TYPE_CODE (type))
4222 {
4223 case TYPE_CODE_INT:
4224 case TYPE_CODE_RANGE:
4225 case TYPE_CODE_ENUM:
4226 case TYPE_CODE_BOOL:
4227 return 1;
4228 default:
4229 return 0;
4230 }
4231 }
4232 }
4233
4234 /* Returns non-zero if OP with operands in the vector ARGS could be
4235 a user-defined function. Errs on the side of pre-defined operators
4236 (i.e., result 0). */
4237
4238 static int
4239 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4240 {
4241 struct type *type0 =
4242 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4243 struct type *type1 =
4244 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4245
4246 if (type0 == NULL)
4247 return 0;
4248
4249 switch (op)
4250 {
4251 default:
4252 return 0;
4253
4254 case BINOP_ADD:
4255 case BINOP_SUB:
4256 case BINOP_MUL:
4257 case BINOP_DIV:
4258 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4259
4260 case BINOP_REM:
4261 case BINOP_MOD:
4262 case BINOP_BITWISE_AND:
4263 case BINOP_BITWISE_IOR:
4264 case BINOP_BITWISE_XOR:
4265 return (!(integer_type_p (type0) && integer_type_p (type1)));
4266
4267 case BINOP_EQUAL:
4268 case BINOP_NOTEQUAL:
4269 case BINOP_LESS:
4270 case BINOP_GTR:
4271 case BINOP_LEQ:
4272 case BINOP_GEQ:
4273 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4274
4275 case BINOP_CONCAT:
4276 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4277
4278 case BINOP_EXP:
4279 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4280
4281 case UNOP_NEG:
4282 case UNOP_PLUS:
4283 case UNOP_LOGICAL_NOT:
4284 case UNOP_ABS:
4285 return (!numeric_type_p (type0));
4286
4287 }
4288 }
4289 \f
4290 /* Renaming */
4291
4292 /* NOTES:
4293
4294 1. In the following, we assume that a renaming type's name may
4295 have an ___XD suffix. It would be nice if this went away at some
4296 point.
4297 2. We handle both the (old) purely type-based representation of
4298 renamings and the (new) variable-based encoding. At some point,
4299 it is devoutly to be hoped that the former goes away
4300 (FIXME: hilfinger-2007-07-09).
4301 3. Subprogram renamings are not implemented, although the XRS
4302 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4303
4304 /* If SYM encodes a renaming,
4305
4306 <renaming> renames <renamed entity>,
4307
4308 sets *LEN to the length of the renamed entity's name,
4309 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4310 the string describing the subcomponent selected from the renamed
4311 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4312 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4313 are undefined). Otherwise, returns a value indicating the category
4314 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4315 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4316 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4317 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4318 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4319 may be NULL, in which case they are not assigned.
4320
4321 [Currently, however, GCC does not generate subprogram renamings.] */
4322
4323 enum ada_renaming_category
4324 ada_parse_renaming (struct symbol *sym,
4325 const char **renamed_entity, int *len,
4326 const char **renaming_expr)
4327 {
4328 enum ada_renaming_category kind;
4329 const char *info;
4330 const char *suffix;
4331
4332 if (sym == NULL)
4333 return ADA_NOT_RENAMING;
4334 switch (SYMBOL_CLASS (sym))
4335 {
4336 default:
4337 return ADA_NOT_RENAMING;
4338 case LOC_TYPEDEF:
4339 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4340 renamed_entity, len, renaming_expr);
4341 case LOC_LOCAL:
4342 case LOC_STATIC:
4343 case LOC_COMPUTED:
4344 case LOC_OPTIMIZED_OUT:
4345 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4346 if (info == NULL)
4347 return ADA_NOT_RENAMING;
4348 switch (info[5])
4349 {
4350 case '_':
4351 kind = ADA_OBJECT_RENAMING;
4352 info += 6;
4353 break;
4354 case 'E':
4355 kind = ADA_EXCEPTION_RENAMING;
4356 info += 7;
4357 break;
4358 case 'P':
4359 kind = ADA_PACKAGE_RENAMING;
4360 info += 7;
4361 break;
4362 case 'S':
4363 kind = ADA_SUBPROGRAM_RENAMING;
4364 info += 7;
4365 break;
4366 default:
4367 return ADA_NOT_RENAMING;
4368 }
4369 }
4370
4371 if (renamed_entity != NULL)
4372 *renamed_entity = info;
4373 suffix = strstr (info, "___XE");
4374 if (suffix == NULL || suffix == info)
4375 return ADA_NOT_RENAMING;
4376 if (len != NULL)
4377 *len = strlen (info) - strlen (suffix);
4378 suffix += 5;
4379 if (renaming_expr != NULL)
4380 *renaming_expr = suffix;
4381 return kind;
4382 }
4383
4384 /* Assuming TYPE encodes a renaming according to the old encoding in
4385 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4386 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4387 ADA_NOT_RENAMING otherwise. */
4388 static enum ada_renaming_category
4389 parse_old_style_renaming (struct type *type,
4390 const char **renamed_entity, int *len,
4391 const char **renaming_expr)
4392 {
4393 enum ada_renaming_category kind;
4394 const char *name;
4395 const char *info;
4396 const char *suffix;
4397
4398 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4399 || TYPE_NFIELDS (type) != 1)
4400 return ADA_NOT_RENAMING;
4401
4402 name = type_name_no_tag (type);
4403 if (name == NULL)
4404 return ADA_NOT_RENAMING;
4405
4406 name = strstr (name, "___XR");
4407 if (name == NULL)
4408 return ADA_NOT_RENAMING;
4409 switch (name[5])
4410 {
4411 case '\0':
4412 case '_':
4413 kind = ADA_OBJECT_RENAMING;
4414 break;
4415 case 'E':
4416 kind = ADA_EXCEPTION_RENAMING;
4417 break;
4418 case 'P':
4419 kind = ADA_PACKAGE_RENAMING;
4420 break;
4421 case 'S':
4422 kind = ADA_SUBPROGRAM_RENAMING;
4423 break;
4424 default:
4425 return ADA_NOT_RENAMING;
4426 }
4427
4428 info = TYPE_FIELD_NAME (type, 0);
4429 if (info == NULL)
4430 return ADA_NOT_RENAMING;
4431 if (renamed_entity != NULL)
4432 *renamed_entity = info;
4433 suffix = strstr (info, "___XE");
4434 if (renaming_expr != NULL)
4435 *renaming_expr = suffix + 5;
4436 if (suffix == NULL || suffix == info)
4437 return ADA_NOT_RENAMING;
4438 if (len != NULL)
4439 *len = suffix - info;
4440 return kind;
4441 }
4442
4443 /* Compute the value of the given RENAMING_SYM, which is expected to
4444 be a symbol encoding a renaming expression. BLOCK is the block
4445 used to evaluate the renaming. */
4446
4447 static struct value *
4448 ada_read_renaming_var_value (struct symbol *renaming_sym,
4449 const struct block *block)
4450 {
4451 const char *sym_name;
4452
4453 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4454 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4455 return evaluate_expression (expr.get ());
4456 }
4457 \f
4458
4459 /* Evaluation: Function Calls */
4460
4461 /* Return an lvalue containing the value VAL. This is the identity on
4462 lvalues, and otherwise has the side-effect of allocating memory
4463 in the inferior where a copy of the value contents is copied. */
4464
4465 static struct value *
4466 ensure_lval (struct value *val)
4467 {
4468 if (VALUE_LVAL (val) == not_lval
4469 || VALUE_LVAL (val) == lval_internalvar)
4470 {
4471 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4472 const CORE_ADDR addr =
4473 value_as_long (value_allocate_space_in_inferior (len));
4474
4475 VALUE_LVAL (val) = lval_memory;
4476 set_value_address (val, addr);
4477 write_memory (addr, value_contents (val), len);
4478 }
4479
4480 return val;
4481 }
4482
4483 /* Return the value ACTUAL, converted to be an appropriate value for a
4484 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4485 allocating any necessary descriptors (fat pointers), or copies of
4486 values not residing in memory, updating it as needed. */
4487
4488 struct value *
4489 ada_convert_actual (struct value *actual, struct type *formal_type0)
4490 {
4491 struct type *actual_type = ada_check_typedef (value_type (actual));
4492 struct type *formal_type = ada_check_typedef (formal_type0);
4493 struct type *formal_target =
4494 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4495 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4496 struct type *actual_target =
4497 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4498 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4499
4500 if (ada_is_array_descriptor_type (formal_target)
4501 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4502 return make_array_descriptor (formal_type, actual);
4503 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4504 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4505 {
4506 struct value *result;
4507
4508 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4509 && ada_is_array_descriptor_type (actual_target))
4510 result = desc_data (actual);
4511 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4512 {
4513 if (VALUE_LVAL (actual) != lval_memory)
4514 {
4515 struct value *val;
4516
4517 actual_type = ada_check_typedef (value_type (actual));
4518 val = allocate_value (actual_type);
4519 memcpy ((char *) value_contents_raw (val),
4520 (char *) value_contents (actual),
4521 TYPE_LENGTH (actual_type));
4522 actual = ensure_lval (val);
4523 }
4524 result = value_addr (actual);
4525 }
4526 else
4527 return actual;
4528 return value_cast_pointers (formal_type, result, 0);
4529 }
4530 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4531 return ada_value_ind (actual);
4532 else if (ada_is_aligner_type (formal_type))
4533 {
4534 /* We need to turn this parameter into an aligner type
4535 as well. */
4536 struct value *aligner = allocate_value (formal_type);
4537 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4538
4539 value_assign_to_component (aligner, component, actual);
4540 return aligner;
4541 }
4542
4543 return actual;
4544 }
4545
4546 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4547 type TYPE. This is usually an inefficient no-op except on some targets
4548 (such as AVR) where the representation of a pointer and an address
4549 differs. */
4550
4551 static CORE_ADDR
4552 value_pointer (struct value *value, struct type *type)
4553 {
4554 struct gdbarch *gdbarch = get_type_arch (type);
4555 unsigned len = TYPE_LENGTH (type);
4556 gdb_byte *buf = (gdb_byte *) alloca (len);
4557 CORE_ADDR addr;
4558
4559 addr = value_address (value);
4560 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4561 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4562 return addr;
4563 }
4564
4565
4566 /* Push a descriptor of type TYPE for array value ARR on the stack at
4567 *SP, updating *SP to reflect the new descriptor. Return either
4568 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4569 to-descriptor type rather than a descriptor type), a struct value *
4570 representing a pointer to this descriptor. */
4571
4572 static struct value *
4573 make_array_descriptor (struct type *type, struct value *arr)
4574 {
4575 struct type *bounds_type = desc_bounds_type (type);
4576 struct type *desc_type = desc_base_type (type);
4577 struct value *descriptor = allocate_value (desc_type);
4578 struct value *bounds = allocate_value (bounds_type);
4579 int i;
4580
4581 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4582 i > 0; i -= 1)
4583 {
4584 modify_field (value_type (bounds), value_contents_writeable (bounds),
4585 ada_array_bound (arr, i, 0),
4586 desc_bound_bitpos (bounds_type, i, 0),
4587 desc_bound_bitsize (bounds_type, i, 0));
4588 modify_field (value_type (bounds), value_contents_writeable (bounds),
4589 ada_array_bound (arr, i, 1),
4590 desc_bound_bitpos (bounds_type, i, 1),
4591 desc_bound_bitsize (bounds_type, i, 1));
4592 }
4593
4594 bounds = ensure_lval (bounds);
4595
4596 modify_field (value_type (descriptor),
4597 value_contents_writeable (descriptor),
4598 value_pointer (ensure_lval (arr),
4599 TYPE_FIELD_TYPE (desc_type, 0)),
4600 fat_pntr_data_bitpos (desc_type),
4601 fat_pntr_data_bitsize (desc_type));
4602
4603 modify_field (value_type (descriptor),
4604 value_contents_writeable (descriptor),
4605 value_pointer (bounds,
4606 TYPE_FIELD_TYPE (desc_type, 1)),
4607 fat_pntr_bounds_bitpos (desc_type),
4608 fat_pntr_bounds_bitsize (desc_type));
4609
4610 descriptor = ensure_lval (descriptor);
4611
4612 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4613 return value_addr (descriptor);
4614 else
4615 return descriptor;
4616 }
4617 \f
4618 /* Symbol Cache Module */
4619
4620 /* Performance measurements made as of 2010-01-15 indicate that
4621 this cache does bring some noticeable improvements. Depending
4622 on the type of entity being printed, the cache can make it as much
4623 as an order of magnitude faster than without it.
4624
4625 The descriptive type DWARF extension has significantly reduced
4626 the need for this cache, at least when DWARF is being used. However,
4627 even in this case, some expensive name-based symbol searches are still
4628 sometimes necessary - to find an XVZ variable, mostly. */
4629
4630 /* Initialize the contents of SYM_CACHE. */
4631
4632 static void
4633 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4634 {
4635 obstack_init (&sym_cache->cache_space);
4636 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4637 }
4638
4639 /* Free the memory used by SYM_CACHE. */
4640
4641 static void
4642 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4643 {
4644 obstack_free (&sym_cache->cache_space, NULL);
4645 xfree (sym_cache);
4646 }
4647
4648 /* Return the symbol cache associated to the given program space PSPACE.
4649 If not allocated for this PSPACE yet, allocate and initialize one. */
4650
4651 static struct ada_symbol_cache *
4652 ada_get_symbol_cache (struct program_space *pspace)
4653 {
4654 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4655
4656 if (pspace_data->sym_cache == NULL)
4657 {
4658 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4659 ada_init_symbol_cache (pspace_data->sym_cache);
4660 }
4661
4662 return pspace_data->sym_cache;
4663 }
4664
4665 /* Clear all entries from the symbol cache. */
4666
4667 static void
4668 ada_clear_symbol_cache (void)
4669 {
4670 struct ada_symbol_cache *sym_cache
4671 = ada_get_symbol_cache (current_program_space);
4672
4673 obstack_free (&sym_cache->cache_space, NULL);
4674 ada_init_symbol_cache (sym_cache);
4675 }
4676
4677 /* Search our cache for an entry matching NAME and DOMAIN.
4678 Return it if found, or NULL otherwise. */
4679
4680 static struct cache_entry **
4681 find_entry (const char *name, domain_enum domain)
4682 {
4683 struct ada_symbol_cache *sym_cache
4684 = ada_get_symbol_cache (current_program_space);
4685 int h = msymbol_hash (name) % HASH_SIZE;
4686 struct cache_entry **e;
4687
4688 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4689 {
4690 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4691 return e;
4692 }
4693 return NULL;
4694 }
4695
4696 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4697 Return 1 if found, 0 otherwise.
4698
4699 If an entry was found and SYM is not NULL, set *SYM to the entry's
4700 SYM. Same principle for BLOCK if not NULL. */
4701
4702 static int
4703 lookup_cached_symbol (const char *name, domain_enum domain,
4704 struct symbol **sym, const struct block **block)
4705 {
4706 struct cache_entry **e = find_entry (name, domain);
4707
4708 if (e == NULL)
4709 return 0;
4710 if (sym != NULL)
4711 *sym = (*e)->sym;
4712 if (block != NULL)
4713 *block = (*e)->block;
4714 return 1;
4715 }
4716
4717 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4718 in domain DOMAIN, save this result in our symbol cache. */
4719
4720 static void
4721 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4722 const struct block *block)
4723 {
4724 struct ada_symbol_cache *sym_cache
4725 = ada_get_symbol_cache (current_program_space);
4726 int h;
4727 char *copy;
4728 struct cache_entry *e;
4729
4730 /* Symbols for builtin types don't have a block.
4731 For now don't cache such symbols. */
4732 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4733 return;
4734
4735 /* If the symbol is a local symbol, then do not cache it, as a search
4736 for that symbol depends on the context. To determine whether
4737 the symbol is local or not, we check the block where we found it
4738 against the global and static blocks of its associated symtab. */
4739 if (sym
4740 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4741 GLOBAL_BLOCK) != block
4742 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4743 STATIC_BLOCK) != block)
4744 return;
4745
4746 h = msymbol_hash (name) % HASH_SIZE;
4747 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4748 sizeof (*e));
4749 e->next = sym_cache->root[h];
4750 sym_cache->root[h] = e;
4751 e->name = copy
4752 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4753 strcpy (copy, name);
4754 e->sym = sym;
4755 e->domain = domain;
4756 e->block = block;
4757 }
4758 \f
4759 /* Symbol Lookup */
4760
4761 /* Return the symbol name match type that should be used used when
4762 searching for all symbols matching LOOKUP_NAME.
4763
4764 LOOKUP_NAME is expected to be a symbol name after transformation
4765 for Ada lookups (see ada_name_for_lookup). */
4766
4767 static symbol_name_match_type
4768 name_match_type_from_name (const char *lookup_name)
4769 {
4770 return (strstr (lookup_name, "__") == NULL
4771 ? symbol_name_match_type::WILD
4772 : symbol_name_match_type::FULL);
4773 }
4774
4775 /* Return the result of a standard (literal, C-like) lookup of NAME in
4776 given DOMAIN, visible from lexical block BLOCK. */
4777
4778 static struct symbol *
4779 standard_lookup (const char *name, const struct block *block,
4780 domain_enum domain)
4781 {
4782 /* Initialize it just to avoid a GCC false warning. */
4783 struct block_symbol sym = {NULL, NULL};
4784
4785 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4786 return sym.symbol;
4787 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4788 cache_symbol (name, domain, sym.symbol, sym.block);
4789 return sym.symbol;
4790 }
4791
4792
4793 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4794 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4795 since they contend in overloading in the same way. */
4796 static int
4797 is_nonfunction (struct block_symbol syms[], int n)
4798 {
4799 int i;
4800
4801 for (i = 0; i < n; i += 1)
4802 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4803 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4804 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4805 return 1;
4806
4807 return 0;
4808 }
4809
4810 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4811 struct types. Otherwise, they may not. */
4812
4813 static int
4814 equiv_types (struct type *type0, struct type *type1)
4815 {
4816 if (type0 == type1)
4817 return 1;
4818 if (type0 == NULL || type1 == NULL
4819 || TYPE_CODE (type0) != TYPE_CODE (type1))
4820 return 0;
4821 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4822 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4823 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4824 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4825 return 1;
4826
4827 return 0;
4828 }
4829
4830 /* True iff SYM0 represents the same entity as SYM1, or one that is
4831 no more defined than that of SYM1. */
4832
4833 static int
4834 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4835 {
4836 if (sym0 == sym1)
4837 return 1;
4838 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4839 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4840 return 0;
4841
4842 switch (SYMBOL_CLASS (sym0))
4843 {
4844 case LOC_UNDEF:
4845 return 1;
4846 case LOC_TYPEDEF:
4847 {
4848 struct type *type0 = SYMBOL_TYPE (sym0);
4849 struct type *type1 = SYMBOL_TYPE (sym1);
4850 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4851 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4852 int len0 = strlen (name0);
4853
4854 return
4855 TYPE_CODE (type0) == TYPE_CODE (type1)
4856 && (equiv_types (type0, type1)
4857 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4858 && startswith (name1 + len0, "___XV")));
4859 }
4860 case LOC_CONST:
4861 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4862 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4863 default:
4864 return 0;
4865 }
4866 }
4867
4868 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4869 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4870
4871 static void
4872 add_defn_to_vec (struct obstack *obstackp,
4873 struct symbol *sym,
4874 const struct block *block)
4875 {
4876 int i;
4877 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4878
4879 /* Do not try to complete stub types, as the debugger is probably
4880 already scanning all symbols matching a certain name at the
4881 time when this function is called. Trying to replace the stub
4882 type by its associated full type will cause us to restart a scan
4883 which may lead to an infinite recursion. Instead, the client
4884 collecting the matching symbols will end up collecting several
4885 matches, with at least one of them complete. It can then filter
4886 out the stub ones if needed. */
4887
4888 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4889 {
4890 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4891 return;
4892 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4893 {
4894 prevDefns[i].symbol = sym;
4895 prevDefns[i].block = block;
4896 return;
4897 }
4898 }
4899
4900 {
4901 struct block_symbol info;
4902
4903 info.symbol = sym;
4904 info.block = block;
4905 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4906 }
4907 }
4908
4909 /* Number of block_symbol structures currently collected in current vector in
4910 OBSTACKP. */
4911
4912 static int
4913 num_defns_collected (struct obstack *obstackp)
4914 {
4915 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4916 }
4917
4918 /* Vector of block_symbol structures currently collected in current vector in
4919 OBSTACKP. If FINISH, close off the vector and return its final address. */
4920
4921 static struct block_symbol *
4922 defns_collected (struct obstack *obstackp, int finish)
4923 {
4924 if (finish)
4925 return (struct block_symbol *) obstack_finish (obstackp);
4926 else
4927 return (struct block_symbol *) obstack_base (obstackp);
4928 }
4929
4930 /* Return a bound minimal symbol matching NAME according to Ada
4931 decoding rules. Returns an invalid symbol if there is no such
4932 minimal symbol. Names prefixed with "standard__" are handled
4933 specially: "standard__" is first stripped off, and only static and
4934 global symbols are searched. */
4935
4936 struct bound_minimal_symbol
4937 ada_lookup_simple_minsym (const char *name)
4938 {
4939 struct bound_minimal_symbol result;
4940 struct objfile *objfile;
4941 struct minimal_symbol *msymbol;
4942
4943 memset (&result, 0, sizeof (result));
4944
4945 symbol_name_match_type match_type = name_match_type_from_name (name);
4946 lookup_name_info lookup_name (name, match_type);
4947
4948 symbol_name_matcher_ftype *match_name
4949 = ada_get_symbol_name_matcher (lookup_name);
4950
4951 ALL_MSYMBOLS (objfile, msymbol)
4952 {
4953 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
4954 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4955 {
4956 result.minsym = msymbol;
4957 result.objfile = objfile;
4958 break;
4959 }
4960 }
4961
4962 return result;
4963 }
4964
4965 /* For all subprograms that statically enclose the subprogram of the
4966 selected frame, add symbols matching identifier NAME in DOMAIN
4967 and their blocks to the list of data in OBSTACKP, as for
4968 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4969 with a wildcard prefix. */
4970
4971 static void
4972 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4973 const lookup_name_info &lookup_name,
4974 domain_enum domain)
4975 {
4976 }
4977
4978 /* True if TYPE is definitely an artificial type supplied to a symbol
4979 for which no debugging information was given in the symbol file. */
4980
4981 static int
4982 is_nondebugging_type (struct type *type)
4983 {
4984 const char *name = ada_type_name (type);
4985
4986 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4987 }
4988
4989 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4990 that are deemed "identical" for practical purposes.
4991
4992 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4993 types and that their number of enumerals is identical (in other
4994 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4995
4996 static int
4997 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4998 {
4999 int i;
5000
5001 /* The heuristic we use here is fairly conservative. We consider
5002 that 2 enumerate types are identical if they have the same
5003 number of enumerals and that all enumerals have the same
5004 underlying value and name. */
5005
5006 /* All enums in the type should have an identical underlying value. */
5007 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5008 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
5009 return 0;
5010
5011 /* All enumerals should also have the same name (modulo any numerical
5012 suffix). */
5013 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5014 {
5015 const char *name_1 = TYPE_FIELD_NAME (type1, i);
5016 const char *name_2 = TYPE_FIELD_NAME (type2, i);
5017 int len_1 = strlen (name_1);
5018 int len_2 = strlen (name_2);
5019
5020 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
5021 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
5022 if (len_1 != len_2
5023 || strncmp (TYPE_FIELD_NAME (type1, i),
5024 TYPE_FIELD_NAME (type2, i),
5025 len_1) != 0)
5026 return 0;
5027 }
5028
5029 return 1;
5030 }
5031
5032 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
5033 that are deemed "identical" for practical purposes. Sometimes,
5034 enumerals are not strictly identical, but their types are so similar
5035 that they can be considered identical.
5036
5037 For instance, consider the following code:
5038
5039 type Color is (Black, Red, Green, Blue, White);
5040 type RGB_Color is new Color range Red .. Blue;
5041
5042 Type RGB_Color is a subrange of an implicit type which is a copy
5043 of type Color. If we call that implicit type RGB_ColorB ("B" is
5044 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5045 As a result, when an expression references any of the enumeral
5046 by name (Eg. "print green"), the expression is technically
5047 ambiguous and the user should be asked to disambiguate. But
5048 doing so would only hinder the user, since it wouldn't matter
5049 what choice he makes, the outcome would always be the same.
5050 So, for practical purposes, we consider them as the same. */
5051
5052 static int
5053 symbols_are_identical_enums (struct block_symbol *syms, int nsyms)
5054 {
5055 int i;
5056
5057 /* Before performing a thorough comparison check of each type,
5058 we perform a series of inexpensive checks. We expect that these
5059 checks will quickly fail in the vast majority of cases, and thus
5060 help prevent the unnecessary use of a more expensive comparison.
5061 Said comparison also expects us to make some of these checks
5062 (see ada_identical_enum_types_p). */
5063
5064 /* Quick check: All symbols should have an enum type. */
5065 for (i = 0; i < nsyms; i++)
5066 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
5067 return 0;
5068
5069 /* Quick check: They should all have the same value. */
5070 for (i = 1; i < nsyms; i++)
5071 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
5072 return 0;
5073
5074 /* Quick check: They should all have the same number of enumerals. */
5075 for (i = 1; i < nsyms; i++)
5076 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5077 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
5078 return 0;
5079
5080 /* All the sanity checks passed, so we might have a set of
5081 identical enumeration types. Perform a more complete
5082 comparison of the type of each symbol. */
5083 for (i = 1; i < nsyms; i++)
5084 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5085 SYMBOL_TYPE (syms[0].symbol)))
5086 return 0;
5087
5088 return 1;
5089 }
5090
5091 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
5092 duplicate other symbols in the list (The only case I know of where
5093 this happens is when object files containing stabs-in-ecoff are
5094 linked with files containing ordinary ecoff debugging symbols (or no
5095 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5096 Returns the number of items in the modified list. */
5097
5098 static int
5099 remove_extra_symbols (struct block_symbol *syms, int nsyms)
5100 {
5101 int i, j;
5102
5103 /* We should never be called with less than 2 symbols, as there
5104 cannot be any extra symbol in that case. But it's easy to
5105 handle, since we have nothing to do in that case. */
5106 if (nsyms < 2)
5107 return nsyms;
5108
5109 i = 0;
5110 while (i < nsyms)
5111 {
5112 int remove_p = 0;
5113
5114 /* If two symbols have the same name and one of them is a stub type,
5115 the get rid of the stub. */
5116
5117 if (TYPE_STUB (SYMBOL_TYPE (syms[i].symbol))
5118 && SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL)
5119 {
5120 for (j = 0; j < nsyms; j++)
5121 {
5122 if (j != i
5123 && !TYPE_STUB (SYMBOL_TYPE (syms[j].symbol))
5124 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5125 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5126 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0)
5127 remove_p = 1;
5128 }
5129 }
5130
5131 /* Two symbols with the same name, same class and same address
5132 should be identical. */
5133
5134 else if (SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL
5135 && SYMBOL_CLASS (syms[i].symbol) == LOC_STATIC
5136 && is_nondebugging_type (SYMBOL_TYPE (syms[i].symbol)))
5137 {
5138 for (j = 0; j < nsyms; j += 1)
5139 {
5140 if (i != j
5141 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5142 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5143 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0
5144 && SYMBOL_CLASS (syms[i].symbol)
5145 == SYMBOL_CLASS (syms[j].symbol)
5146 && SYMBOL_VALUE_ADDRESS (syms[i].symbol)
5147 == SYMBOL_VALUE_ADDRESS (syms[j].symbol))
5148 remove_p = 1;
5149 }
5150 }
5151
5152 if (remove_p)
5153 {
5154 for (j = i + 1; j < nsyms; j += 1)
5155 syms[j - 1] = syms[j];
5156 nsyms -= 1;
5157 }
5158
5159 i += 1;
5160 }
5161
5162 /* If all the remaining symbols are identical enumerals, then
5163 just keep the first one and discard the rest.
5164
5165 Unlike what we did previously, we do not discard any entry
5166 unless they are ALL identical. This is because the symbol
5167 comparison is not a strict comparison, but rather a practical
5168 comparison. If all symbols are considered identical, then
5169 we can just go ahead and use the first one and discard the rest.
5170 But if we cannot reduce the list to a single element, we have
5171 to ask the user to disambiguate anyways. And if we have to
5172 present a multiple-choice menu, it's less confusing if the list
5173 isn't missing some choices that were identical and yet distinct. */
5174 if (symbols_are_identical_enums (syms, nsyms))
5175 nsyms = 1;
5176
5177 return nsyms;
5178 }
5179
5180 /* Given a type that corresponds to a renaming entity, use the type name
5181 to extract the scope (package name or function name, fully qualified,
5182 and following the GNAT encoding convention) where this renaming has been
5183 defined. The string returned needs to be deallocated after use. */
5184
5185 static char *
5186 xget_renaming_scope (struct type *renaming_type)
5187 {
5188 /* The renaming types adhere to the following convention:
5189 <scope>__<rename>___<XR extension>.
5190 So, to extract the scope, we search for the "___XR" extension,
5191 and then backtrack until we find the first "__". */
5192
5193 const char *name = type_name_no_tag (renaming_type);
5194 const char *suffix = strstr (name, "___XR");
5195 const char *last;
5196 int scope_len;
5197 char *scope;
5198
5199 /* Now, backtrack a bit until we find the first "__". Start looking
5200 at suffix - 3, as the <rename> part is at least one character long. */
5201
5202 for (last = suffix - 3; last > name; last--)
5203 if (last[0] == '_' && last[1] == '_')
5204 break;
5205
5206 /* Make a copy of scope and return it. */
5207
5208 scope_len = last - name;
5209 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
5210
5211 strncpy (scope, name, scope_len);
5212 scope[scope_len] = '\0';
5213
5214 return scope;
5215 }
5216
5217 /* Return nonzero if NAME corresponds to a package name. */
5218
5219 static int
5220 is_package_name (const char *name)
5221 {
5222 /* Here, We take advantage of the fact that no symbols are generated
5223 for packages, while symbols are generated for each function.
5224 So the condition for NAME represent a package becomes equivalent
5225 to NAME not existing in our list of symbols. There is only one
5226 small complication with library-level functions (see below). */
5227
5228 char *fun_name;
5229
5230 /* If it is a function that has not been defined at library level,
5231 then we should be able to look it up in the symbols. */
5232 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5233 return 0;
5234
5235 /* Library-level function names start with "_ada_". See if function
5236 "_ada_" followed by NAME can be found. */
5237
5238 /* Do a quick check that NAME does not contain "__", since library-level
5239 functions names cannot contain "__" in them. */
5240 if (strstr (name, "__") != NULL)
5241 return 0;
5242
5243 fun_name = xstrprintf ("_ada_%s", name);
5244
5245 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
5246 }
5247
5248 /* Return nonzero if SYM corresponds to a renaming entity that is
5249 not visible from FUNCTION_NAME. */
5250
5251 static int
5252 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5253 {
5254 char *scope;
5255 struct cleanup *old_chain;
5256
5257 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5258 return 0;
5259
5260 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5261 old_chain = make_cleanup (xfree, scope);
5262
5263 /* If the rename has been defined in a package, then it is visible. */
5264 if (is_package_name (scope))
5265 {
5266 do_cleanups (old_chain);
5267 return 0;
5268 }
5269
5270 /* Check that the rename is in the current function scope by checking
5271 that its name starts with SCOPE. */
5272
5273 /* If the function name starts with "_ada_", it means that it is
5274 a library-level function. Strip this prefix before doing the
5275 comparison, as the encoding for the renaming does not contain
5276 this prefix. */
5277 if (startswith (function_name, "_ada_"))
5278 function_name += 5;
5279
5280 {
5281 int is_invisible = !startswith (function_name, scope);
5282
5283 do_cleanups (old_chain);
5284 return is_invisible;
5285 }
5286 }
5287
5288 /* Remove entries from SYMS that corresponds to a renaming entity that
5289 is not visible from the function associated with CURRENT_BLOCK or
5290 that is superfluous due to the presence of more specific renaming
5291 information. Places surviving symbols in the initial entries of
5292 SYMS and returns the number of surviving symbols.
5293
5294 Rationale:
5295 First, in cases where an object renaming is implemented as a
5296 reference variable, GNAT may produce both the actual reference
5297 variable and the renaming encoding. In this case, we discard the
5298 latter.
5299
5300 Second, GNAT emits a type following a specified encoding for each renaming
5301 entity. Unfortunately, STABS currently does not support the definition
5302 of types that are local to a given lexical block, so all renamings types
5303 are emitted at library level. As a consequence, if an application
5304 contains two renaming entities using the same name, and a user tries to
5305 print the value of one of these entities, the result of the ada symbol
5306 lookup will also contain the wrong renaming type.
5307
5308 This function partially covers for this limitation by attempting to
5309 remove from the SYMS list renaming symbols that should be visible
5310 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5311 method with the current information available. The implementation
5312 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5313
5314 - When the user tries to print a rename in a function while there
5315 is another rename entity defined in a package: Normally, the
5316 rename in the function has precedence over the rename in the
5317 package, so the latter should be removed from the list. This is
5318 currently not the case.
5319
5320 - This function will incorrectly remove valid renames if
5321 the CURRENT_BLOCK corresponds to a function which symbol name
5322 has been changed by an "Export" pragma. As a consequence,
5323 the user will be unable to print such rename entities. */
5324
5325 static int
5326 remove_irrelevant_renamings (struct block_symbol *syms,
5327 int nsyms, const struct block *current_block)
5328 {
5329 struct symbol *current_function;
5330 const char *current_function_name;
5331 int i;
5332 int is_new_style_renaming;
5333
5334 /* If there is both a renaming foo___XR... encoded as a variable and
5335 a simple variable foo in the same block, discard the latter.
5336 First, zero out such symbols, then compress. */
5337 is_new_style_renaming = 0;
5338 for (i = 0; i < nsyms; i += 1)
5339 {
5340 struct symbol *sym = syms[i].symbol;
5341 const struct block *block = syms[i].block;
5342 const char *name;
5343 const char *suffix;
5344
5345 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5346 continue;
5347 name = SYMBOL_LINKAGE_NAME (sym);
5348 suffix = strstr (name, "___XR");
5349
5350 if (suffix != NULL)
5351 {
5352 int name_len = suffix - name;
5353 int j;
5354
5355 is_new_style_renaming = 1;
5356 for (j = 0; j < nsyms; j += 1)
5357 if (i != j && syms[j].symbol != NULL
5358 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].symbol),
5359 name_len) == 0
5360 && block == syms[j].block)
5361 syms[j].symbol = NULL;
5362 }
5363 }
5364 if (is_new_style_renaming)
5365 {
5366 int j, k;
5367
5368 for (j = k = 0; j < nsyms; j += 1)
5369 if (syms[j].symbol != NULL)
5370 {
5371 syms[k] = syms[j];
5372 k += 1;
5373 }
5374 return k;
5375 }
5376
5377 /* Extract the function name associated to CURRENT_BLOCK.
5378 Abort if unable to do so. */
5379
5380 if (current_block == NULL)
5381 return nsyms;
5382
5383 current_function = block_linkage_function (current_block);
5384 if (current_function == NULL)
5385 return nsyms;
5386
5387 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5388 if (current_function_name == NULL)
5389 return nsyms;
5390
5391 /* Check each of the symbols, and remove it from the list if it is
5392 a type corresponding to a renaming that is out of the scope of
5393 the current block. */
5394
5395 i = 0;
5396 while (i < nsyms)
5397 {
5398 if (ada_parse_renaming (syms[i].symbol, NULL, NULL, NULL)
5399 == ADA_OBJECT_RENAMING
5400 && old_renaming_is_invisible (syms[i].symbol, current_function_name))
5401 {
5402 int j;
5403
5404 for (j = i + 1; j < nsyms; j += 1)
5405 syms[j - 1] = syms[j];
5406 nsyms -= 1;
5407 }
5408 else
5409 i += 1;
5410 }
5411
5412 return nsyms;
5413 }
5414
5415 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5416 whose name and domain match NAME and DOMAIN respectively.
5417 If no match was found, then extend the search to "enclosing"
5418 routines (in other words, if we're inside a nested function,
5419 search the symbols defined inside the enclosing functions).
5420 If WILD_MATCH_P is nonzero, perform the naming matching in
5421 "wild" mode (see function "wild_match" for more info).
5422
5423 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5424
5425 static void
5426 ada_add_local_symbols (struct obstack *obstackp,
5427 const lookup_name_info &lookup_name,
5428 const struct block *block, domain_enum domain)
5429 {
5430 int block_depth = 0;
5431
5432 while (block != NULL)
5433 {
5434 block_depth += 1;
5435 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5436
5437 /* If we found a non-function match, assume that's the one. */
5438 if (is_nonfunction (defns_collected (obstackp, 0),
5439 num_defns_collected (obstackp)))
5440 return;
5441
5442 block = BLOCK_SUPERBLOCK (block);
5443 }
5444
5445 /* If no luck so far, try to find NAME as a local symbol in some lexically
5446 enclosing subprogram. */
5447 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5448 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
5449 }
5450
5451 /* An object of this type is used as the user_data argument when
5452 calling the map_matching_symbols method. */
5453
5454 struct match_data
5455 {
5456 struct objfile *objfile;
5457 struct obstack *obstackp;
5458 struct symbol *arg_sym;
5459 int found_sym;
5460 };
5461
5462 /* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
5463 to a list of symbols. DATA0 is a pointer to a struct match_data *
5464 containing the obstack that collects the symbol list, the file that SYM
5465 must come from, a flag indicating whether a non-argument symbol has
5466 been found in the current block, and the last argument symbol
5467 passed in SYM within the current block (if any). When SYM is null,
5468 marking the end of a block, the argument symbol is added if no
5469 other has been found. */
5470
5471 static int
5472 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
5473 {
5474 struct match_data *data = (struct match_data *) data0;
5475
5476 if (sym == NULL)
5477 {
5478 if (!data->found_sym && data->arg_sym != NULL)
5479 add_defn_to_vec (data->obstackp,
5480 fixup_symbol_section (data->arg_sym, data->objfile),
5481 block);
5482 data->found_sym = 0;
5483 data->arg_sym = NULL;
5484 }
5485 else
5486 {
5487 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5488 return 0;
5489 else if (SYMBOL_IS_ARGUMENT (sym))
5490 data->arg_sym = sym;
5491 else
5492 {
5493 data->found_sym = 1;
5494 add_defn_to_vec (data->obstackp,
5495 fixup_symbol_section (sym, data->objfile),
5496 block);
5497 }
5498 }
5499 return 0;
5500 }
5501
5502 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5503 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5504 symbols to OBSTACKP. Return whether we found such symbols. */
5505
5506 static int
5507 ada_add_block_renamings (struct obstack *obstackp,
5508 const struct block *block,
5509 const lookup_name_info &lookup_name,
5510 domain_enum domain)
5511 {
5512 struct using_direct *renaming;
5513 int defns_mark = num_defns_collected (obstackp);
5514
5515 symbol_name_matcher_ftype *name_match
5516 = ada_get_symbol_name_matcher (lookup_name);
5517
5518 for (renaming = block_using (block);
5519 renaming != NULL;
5520 renaming = renaming->next)
5521 {
5522 const char *r_name;
5523
5524 /* Avoid infinite recursions: skip this renaming if we are actually
5525 already traversing it.
5526
5527 Currently, symbol lookup in Ada don't use the namespace machinery from
5528 C++/Fortran support: skip namespace imports that use them. */
5529 if (renaming->searched
5530 || (renaming->import_src != NULL
5531 && renaming->import_src[0] != '\0')
5532 || (renaming->import_dest != NULL
5533 && renaming->import_dest[0] != '\0'))
5534 continue;
5535 renaming->searched = 1;
5536
5537 /* TODO: here, we perform another name-based symbol lookup, which can
5538 pull its own multiple overloads. In theory, we should be able to do
5539 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5540 not a simple name. But in order to do this, we would need to enhance
5541 the DWARF reader to associate a symbol to this renaming, instead of a
5542 name. So, for now, we do something simpler: re-use the C++/Fortran
5543 namespace machinery. */
5544 r_name = (renaming->alias != NULL
5545 ? renaming->alias
5546 : renaming->declaration);
5547 if (name_match (r_name, lookup_name, NULL))
5548 {
5549 lookup_name_info decl_lookup_name (renaming->declaration,
5550 lookup_name.match_type ());
5551 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5552 1, NULL);
5553 }
5554 renaming->searched = 0;
5555 }
5556 return num_defns_collected (obstackp) != defns_mark;
5557 }
5558
5559 /* Implements compare_names, but only applying the comparision using
5560 the given CASING. */
5561
5562 static int
5563 compare_names_with_case (const char *string1, const char *string2,
5564 enum case_sensitivity casing)
5565 {
5566 while (*string1 != '\0' && *string2 != '\0')
5567 {
5568 char c1, c2;
5569
5570 if (isspace (*string1) || isspace (*string2))
5571 return strcmp_iw_ordered (string1, string2);
5572
5573 if (casing == case_sensitive_off)
5574 {
5575 c1 = tolower (*string1);
5576 c2 = tolower (*string2);
5577 }
5578 else
5579 {
5580 c1 = *string1;
5581 c2 = *string2;
5582 }
5583 if (c1 != c2)
5584 break;
5585
5586 string1 += 1;
5587 string2 += 1;
5588 }
5589
5590 switch (*string1)
5591 {
5592 case '(':
5593 return strcmp_iw_ordered (string1, string2);
5594 case '_':
5595 if (*string2 == '\0')
5596 {
5597 if (is_name_suffix (string1))
5598 return 0;
5599 else
5600 return 1;
5601 }
5602 /* FALLTHROUGH */
5603 default:
5604 if (*string2 == '(')
5605 return strcmp_iw_ordered (string1, string2);
5606 else
5607 {
5608 if (casing == case_sensitive_off)
5609 return tolower (*string1) - tolower (*string2);
5610 else
5611 return *string1 - *string2;
5612 }
5613 }
5614 }
5615
5616 /* Compare STRING1 to STRING2, with results as for strcmp.
5617 Compatible with strcmp_iw_ordered in that...
5618
5619 strcmp_iw_ordered (STRING1, STRING2) <= 0
5620
5621 ... implies...
5622
5623 compare_names (STRING1, STRING2) <= 0
5624
5625 (they may differ as to what symbols compare equal). */
5626
5627 static int
5628 compare_names (const char *string1, const char *string2)
5629 {
5630 int result;
5631
5632 /* Similar to what strcmp_iw_ordered does, we need to perform
5633 a case-insensitive comparison first, and only resort to
5634 a second, case-sensitive, comparison if the first one was
5635 not sufficient to differentiate the two strings. */
5636
5637 result = compare_names_with_case (string1, string2, case_sensitive_off);
5638 if (result == 0)
5639 result = compare_names_with_case (string1, string2, case_sensitive_on);
5640
5641 return result;
5642 }
5643
5644 /* Convenience function to get at the Ada encoded lookup name for
5645 LOOKUP_NAME, as a C string. */
5646
5647 static const char *
5648 ada_lookup_name (const lookup_name_info &lookup_name)
5649 {
5650 return lookup_name.ada ().lookup_name ().c_str ();
5651 }
5652
5653 /* Add to OBSTACKP all non-local symbols whose name and domain match
5654 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5655 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5656 symbols otherwise. */
5657
5658 static void
5659 add_nonlocal_symbols (struct obstack *obstackp,
5660 const lookup_name_info &lookup_name,
5661 domain_enum domain, int global)
5662 {
5663 struct objfile *objfile;
5664 struct compunit_symtab *cu;
5665 struct match_data data;
5666
5667 memset (&data, 0, sizeof data);
5668 data.obstackp = obstackp;
5669
5670 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5671
5672 ALL_OBJFILES (objfile)
5673 {
5674 data.objfile = objfile;
5675
5676 if (is_wild_match)
5677 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5678 domain, global,
5679 aux_add_nonlocal_symbols, &data,
5680 symbol_name_match_type::WILD,
5681 NULL);
5682 else
5683 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5684 domain, global,
5685 aux_add_nonlocal_symbols, &data,
5686 symbol_name_match_type::FULL,
5687 compare_names);
5688
5689 ALL_OBJFILE_COMPUNITS (objfile, cu)
5690 {
5691 const struct block *global_block
5692 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5693
5694 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5695 domain))
5696 data.found_sym = 1;
5697 }
5698 }
5699
5700 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5701 {
5702 const char *name = ada_lookup_name (lookup_name);
5703 std::string name1 = std::string ("<_ada_") + name + '>';
5704
5705 ALL_OBJFILES (objfile)
5706 {
5707 data.objfile = objfile;
5708 objfile->sf->qf->map_matching_symbols (objfile, name1.c_str (),
5709 domain, global,
5710 aux_add_nonlocal_symbols,
5711 &data,
5712 symbol_name_match_type::FULL,
5713 compare_names);
5714 }
5715 }
5716 }
5717
5718 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5719 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5720 returning the number of matches. Add these to OBSTACKP.
5721
5722 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5723 symbol match within the nest of blocks whose innermost member is BLOCK,
5724 is the one match returned (no other matches in that or
5725 enclosing blocks is returned). If there are any matches in or
5726 surrounding BLOCK, then these alone are returned.
5727
5728 Names prefixed with "standard__" are handled specially:
5729 "standard__" is first stripped off (by the lookup_name
5730 constructor), and only static and global symbols are searched.
5731
5732 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5733 to lookup global symbols. */
5734
5735 static void
5736 ada_add_all_symbols (struct obstack *obstackp,
5737 const struct block *block,
5738 const lookup_name_info &lookup_name,
5739 domain_enum domain,
5740 int full_search,
5741 int *made_global_lookup_p)
5742 {
5743 struct symbol *sym;
5744
5745 if (made_global_lookup_p)
5746 *made_global_lookup_p = 0;
5747
5748 /* Special case: If the user specifies a symbol name inside package
5749 Standard, do a non-wild matching of the symbol name without
5750 the "standard__" prefix. This was primarily introduced in order
5751 to allow the user to specifically access the standard exceptions
5752 using, for instance, Standard.Constraint_Error when Constraint_Error
5753 is ambiguous (due to the user defining its own Constraint_Error
5754 entity inside its program). */
5755 if (lookup_name.ada ().standard_p ())
5756 block = NULL;
5757
5758 /* Check the non-global symbols. If we have ANY match, then we're done. */
5759
5760 if (block != NULL)
5761 {
5762 if (full_search)
5763 ada_add_local_symbols (obstackp, lookup_name, block, domain);
5764 else
5765 {
5766 /* In the !full_search case we're are being called by
5767 ada_iterate_over_symbols, and we don't want to search
5768 superblocks. */
5769 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5770 }
5771 if (num_defns_collected (obstackp) > 0 || !full_search)
5772 return;
5773 }
5774
5775 /* No non-global symbols found. Check our cache to see if we have
5776 already performed this search before. If we have, then return
5777 the same result. */
5778
5779 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5780 domain, &sym, &block))
5781 {
5782 if (sym != NULL)
5783 add_defn_to_vec (obstackp, sym, block);
5784 return;
5785 }
5786
5787 if (made_global_lookup_p)
5788 *made_global_lookup_p = 1;
5789
5790 /* Search symbols from all global blocks. */
5791
5792 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
5793
5794 /* Now add symbols from all per-file blocks if we've gotten no hits
5795 (not strictly correct, but perhaps better than an error). */
5796
5797 if (num_defns_collected (obstackp) == 0)
5798 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
5799 }
5800
5801 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5802 is non-zero, enclosing scope and in global scopes, returning the number of
5803 matches.
5804 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5805 indicating the symbols found and the blocks and symbol tables (if
5806 any) in which they were found. This vector is transient---good only to
5807 the next call of ada_lookup_symbol_list.
5808
5809 When full_search is non-zero, any non-function/non-enumeral
5810 symbol match within the nest of blocks whose innermost member is BLOCK,
5811 is the one match returned (no other matches in that or
5812 enclosing blocks is returned). If there are any matches in or
5813 surrounding BLOCK, then these alone are returned.
5814
5815 Names prefixed with "standard__" are handled specially: "standard__"
5816 is first stripped off, and only static and global symbols are searched. */
5817
5818 static int
5819 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5820 const struct block *block,
5821 domain_enum domain,
5822 struct block_symbol **results,
5823 int full_search)
5824 {
5825 int syms_from_global_search;
5826 int ndefns;
5827
5828 obstack_free (&symbol_list_obstack, NULL);
5829 obstack_init (&symbol_list_obstack);
5830 ada_add_all_symbols (&symbol_list_obstack, block, lookup_name,
5831 domain, full_search, &syms_from_global_search);
5832
5833 ndefns = num_defns_collected (&symbol_list_obstack);
5834 *results = defns_collected (&symbol_list_obstack, 1);
5835
5836 ndefns = remove_extra_symbols (*results, ndefns);
5837
5838 if (ndefns == 0 && full_search && syms_from_global_search)
5839 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5840
5841 if (ndefns == 1 && full_search && syms_from_global_search)
5842 cache_symbol (ada_lookup_name (lookup_name), domain,
5843 (*results)[0].symbol, (*results)[0].block);
5844
5845 ndefns = remove_irrelevant_renamings (*results, ndefns, block);
5846 return ndefns;
5847 }
5848
5849 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5850 in global scopes, returning the number of matches, and setting *RESULTS
5851 to a vector of (SYM,BLOCK) tuples.
5852 See ada_lookup_symbol_list_worker for further details. */
5853
5854 int
5855 ada_lookup_symbol_list (const char *name, const struct block *block,
5856 domain_enum domain, struct block_symbol **results)
5857 {
5858 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5859 lookup_name_info lookup_name (name, name_match_type);
5860
5861 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
5862 }
5863
5864 /* Implementation of the la_iterate_over_symbols method. */
5865
5866 static void
5867 ada_iterate_over_symbols
5868 (const struct block *block, const lookup_name_info &name,
5869 domain_enum domain,
5870 gdb::function_view<symbol_found_callback_ftype> callback)
5871 {
5872 int ndefs, i;
5873 struct block_symbol *results;
5874
5875 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5876 for (i = 0; i < ndefs; ++i)
5877 {
5878 if (!callback (results[i].symbol))
5879 break;
5880 }
5881 }
5882
5883 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5884 to 1, but choosing the first symbol found if there are multiple
5885 choices.
5886
5887 The result is stored in *INFO, which must be non-NULL.
5888 If no match is found, INFO->SYM is set to NULL. */
5889
5890 void
5891 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5892 domain_enum domain,
5893 struct block_symbol *info)
5894 {
5895 struct block_symbol *candidates;
5896 int n_candidates;
5897
5898 /* Since we already have an encoded name, wrap it in '<>' to force a
5899 verbatim match. Otherwise, if the name happens to not look like
5900 an encoded name (because it doesn't include a "__"),
5901 ada_lookup_name_info would re-encode/fold it again, and that
5902 would e.g., incorrectly lowercase object renaming names like
5903 "R28b" -> "r28b". */
5904 std::string verbatim = std::string ("<") + name + '>';
5905
5906 gdb_assert (info != NULL);
5907 memset (info, 0, sizeof (struct block_symbol));
5908
5909 n_candidates = ada_lookup_symbol_list (verbatim.c_str (), block,
5910 domain, &candidates);
5911 if (n_candidates == 0)
5912 return;
5913
5914 *info = candidates[0];
5915 info->symbol = fixup_symbol_section (info->symbol, NULL);
5916 }
5917
5918 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5919 scope and in global scopes, or NULL if none. NAME is folded and
5920 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5921 choosing the first symbol if there are multiple choices.
5922 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5923
5924 struct block_symbol
5925 ada_lookup_symbol (const char *name, const struct block *block0,
5926 domain_enum domain, int *is_a_field_of_this)
5927 {
5928 struct block_symbol info;
5929
5930 if (is_a_field_of_this != NULL)
5931 *is_a_field_of_this = 0;
5932
5933 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5934 block0, domain, &info);
5935 return info;
5936 }
5937
5938 static struct block_symbol
5939 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5940 const char *name,
5941 const struct block *block,
5942 const domain_enum domain)
5943 {
5944 struct block_symbol sym;
5945
5946 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5947 if (sym.symbol != NULL)
5948 return sym;
5949
5950 /* If we haven't found a match at this point, try the primitive
5951 types. In other languages, this search is performed before
5952 searching for global symbols in order to short-circuit that
5953 global-symbol search if it happens that the name corresponds
5954 to a primitive type. But we cannot do the same in Ada, because
5955 it is perfectly legitimate for a program to declare a type which
5956 has the same name as a standard type. If looking up a type in
5957 that situation, we have traditionally ignored the primitive type
5958 in favor of user-defined types. This is why, unlike most other
5959 languages, we search the primitive types this late and only after
5960 having searched the global symbols without success. */
5961
5962 if (domain == VAR_DOMAIN)
5963 {
5964 struct gdbarch *gdbarch;
5965
5966 if (block == NULL)
5967 gdbarch = target_gdbarch ();
5968 else
5969 gdbarch = block_gdbarch (block);
5970 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5971 if (sym.symbol != NULL)
5972 return sym;
5973 }
5974
5975 return (struct block_symbol) {NULL, NULL};
5976 }
5977
5978
5979 /* True iff STR is a possible encoded suffix of a normal Ada name
5980 that is to be ignored for matching purposes. Suffixes of parallel
5981 names (e.g., XVE) are not included here. Currently, the possible suffixes
5982 are given by any of the regular expressions:
5983
5984 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5985 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5986 TKB [subprogram suffix for task bodies]
5987 _E[0-9]+[bs]$ [protected object entry suffixes]
5988 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5989
5990 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5991 match is performed. This sequence is used to differentiate homonyms,
5992 is an optional part of a valid name suffix. */
5993
5994 static int
5995 is_name_suffix (const char *str)
5996 {
5997 int k;
5998 const char *matching;
5999 const int len = strlen (str);
6000
6001 /* Skip optional leading __[0-9]+. */
6002
6003 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
6004 {
6005 str += 3;
6006 while (isdigit (str[0]))
6007 str += 1;
6008 }
6009
6010 /* [.$][0-9]+ */
6011
6012 if (str[0] == '.' || str[0] == '$')
6013 {
6014 matching = str + 1;
6015 while (isdigit (matching[0]))
6016 matching += 1;
6017 if (matching[0] == '\0')
6018 return 1;
6019 }
6020
6021 /* ___[0-9]+ */
6022
6023 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
6024 {
6025 matching = str + 3;
6026 while (isdigit (matching[0]))
6027 matching += 1;
6028 if (matching[0] == '\0')
6029 return 1;
6030 }
6031
6032 /* "TKB" suffixes are used for subprograms implementing task bodies. */
6033
6034 if (strcmp (str, "TKB") == 0)
6035 return 1;
6036
6037 #if 0
6038 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
6039 with a N at the end. Unfortunately, the compiler uses the same
6040 convention for other internal types it creates. So treating
6041 all entity names that end with an "N" as a name suffix causes
6042 some regressions. For instance, consider the case of an enumerated
6043 type. To support the 'Image attribute, it creates an array whose
6044 name ends with N.
6045 Having a single character like this as a suffix carrying some
6046 information is a bit risky. Perhaps we should change the encoding
6047 to be something like "_N" instead. In the meantime, do not do
6048 the following check. */
6049 /* Protected Object Subprograms */
6050 if (len == 1 && str [0] == 'N')
6051 return 1;
6052 #endif
6053
6054 /* _E[0-9]+[bs]$ */
6055 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6056 {
6057 matching = str + 3;
6058 while (isdigit (matching[0]))
6059 matching += 1;
6060 if ((matching[0] == 'b' || matching[0] == 's')
6061 && matching [1] == '\0')
6062 return 1;
6063 }
6064
6065 /* ??? We should not modify STR directly, as we are doing below. This
6066 is fine in this case, but may become problematic later if we find
6067 that this alternative did not work, and want to try matching
6068 another one from the begining of STR. Since we modified it, we
6069 won't be able to find the begining of the string anymore! */
6070 if (str[0] == 'X')
6071 {
6072 str += 1;
6073 while (str[0] != '_' && str[0] != '\0')
6074 {
6075 if (str[0] != 'n' && str[0] != 'b')
6076 return 0;
6077 str += 1;
6078 }
6079 }
6080
6081 if (str[0] == '\000')
6082 return 1;
6083
6084 if (str[0] == '_')
6085 {
6086 if (str[1] != '_' || str[2] == '\000')
6087 return 0;
6088 if (str[2] == '_')
6089 {
6090 if (strcmp (str + 3, "JM") == 0)
6091 return 1;
6092 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6093 the LJM suffix in favor of the JM one. But we will
6094 still accept LJM as a valid suffix for a reasonable
6095 amount of time, just to allow ourselves to debug programs
6096 compiled using an older version of GNAT. */
6097 if (strcmp (str + 3, "LJM") == 0)
6098 return 1;
6099 if (str[3] != 'X')
6100 return 0;
6101 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6102 || str[4] == 'U' || str[4] == 'P')
6103 return 1;
6104 if (str[4] == 'R' && str[5] != 'T')
6105 return 1;
6106 return 0;
6107 }
6108 if (!isdigit (str[2]))
6109 return 0;
6110 for (k = 3; str[k] != '\0'; k += 1)
6111 if (!isdigit (str[k]) && str[k] != '_')
6112 return 0;
6113 return 1;
6114 }
6115 if (str[0] == '$' && isdigit (str[1]))
6116 {
6117 for (k = 2; str[k] != '\0'; k += 1)
6118 if (!isdigit (str[k]) && str[k] != '_')
6119 return 0;
6120 return 1;
6121 }
6122 return 0;
6123 }
6124
6125 /* Return non-zero if the string starting at NAME and ending before
6126 NAME_END contains no capital letters. */
6127
6128 static int
6129 is_valid_name_for_wild_match (const char *name0)
6130 {
6131 const char *decoded_name = ada_decode (name0);
6132 int i;
6133
6134 /* If the decoded name starts with an angle bracket, it means that
6135 NAME0 does not follow the GNAT encoding format. It should then
6136 not be allowed as a possible wild match. */
6137 if (decoded_name[0] == '<')
6138 return 0;
6139
6140 for (i=0; decoded_name[i] != '\0'; i++)
6141 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6142 return 0;
6143
6144 return 1;
6145 }
6146
6147 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6148 that could start a simple name. Assumes that *NAMEP points into
6149 the string beginning at NAME0. */
6150
6151 static int
6152 advance_wild_match (const char **namep, const char *name0, int target0)
6153 {
6154 const char *name = *namep;
6155
6156 while (1)
6157 {
6158 int t0, t1;
6159
6160 t0 = *name;
6161 if (t0 == '_')
6162 {
6163 t1 = name[1];
6164 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6165 {
6166 name += 1;
6167 if (name == name0 + 5 && startswith (name0, "_ada"))
6168 break;
6169 else
6170 name += 1;
6171 }
6172 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6173 || name[2] == target0))
6174 {
6175 name += 2;
6176 break;
6177 }
6178 else
6179 return 0;
6180 }
6181 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6182 name += 1;
6183 else
6184 return 0;
6185 }
6186
6187 *namep = name;
6188 return 1;
6189 }
6190
6191 /* Return true iff NAME encodes a name of the form prefix.PATN.
6192 Ignores any informational suffixes of NAME (i.e., for which
6193 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6194 simple name. */
6195
6196 static bool
6197 wild_match (const char *name, const char *patn)
6198 {
6199 const char *p;
6200 const char *name0 = name;
6201
6202 while (1)
6203 {
6204 const char *match = name;
6205
6206 if (*name == *patn)
6207 {
6208 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6209 if (*p != *name)
6210 break;
6211 if (*p == '\0' && is_name_suffix (name))
6212 return match == name0 || is_valid_name_for_wild_match (name0);
6213
6214 if (name[-1] == '_')
6215 name -= 1;
6216 }
6217 if (!advance_wild_match (&name, name0, *patn))
6218 return false;
6219 }
6220 }
6221
6222 /* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6223 any trailing suffixes that encode debugging information or leading
6224 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6225 information that is ignored). */
6226
6227 static bool
6228 full_match (const char *sym_name, const char *search_name)
6229 {
6230 size_t search_name_len = strlen (search_name);
6231
6232 if (strncmp (sym_name, search_name, search_name_len) == 0
6233 && is_name_suffix (sym_name + search_name_len))
6234 return true;
6235
6236 if (startswith (sym_name, "_ada_")
6237 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6238 && is_name_suffix (sym_name + search_name_len + 5))
6239 return true;
6240
6241 return false;
6242 }
6243
6244 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6245 *defn_symbols, updating the list of symbols in OBSTACKP (if
6246 necessary). OBJFILE is the section containing BLOCK. */
6247
6248 static void
6249 ada_add_block_symbols (struct obstack *obstackp,
6250 const struct block *block,
6251 const lookup_name_info &lookup_name,
6252 domain_enum domain, struct objfile *objfile)
6253 {
6254 struct block_iterator iter;
6255 /* A matching argument symbol, if any. */
6256 struct symbol *arg_sym;
6257 /* Set true when we find a matching non-argument symbol. */
6258 int found_sym;
6259 struct symbol *sym;
6260
6261 arg_sym = NULL;
6262 found_sym = 0;
6263 for (sym = block_iter_match_first (block, lookup_name, &iter);
6264 sym != NULL;
6265 sym = block_iter_match_next (lookup_name, &iter))
6266 {
6267 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6268 SYMBOL_DOMAIN (sym), domain))
6269 {
6270 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6271 {
6272 if (SYMBOL_IS_ARGUMENT (sym))
6273 arg_sym = sym;
6274 else
6275 {
6276 found_sym = 1;
6277 add_defn_to_vec (obstackp,
6278 fixup_symbol_section (sym, objfile),
6279 block);
6280 }
6281 }
6282 }
6283 }
6284
6285 /* Handle renamings. */
6286
6287 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
6288 found_sym = 1;
6289
6290 if (!found_sym && arg_sym != NULL)
6291 {
6292 add_defn_to_vec (obstackp,
6293 fixup_symbol_section (arg_sym, objfile),
6294 block);
6295 }
6296
6297 if (!lookup_name.ada ().wild_match_p ())
6298 {
6299 arg_sym = NULL;
6300 found_sym = 0;
6301 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6302 const char *name = ada_lookup_name.c_str ();
6303 size_t name_len = ada_lookup_name.size ();
6304
6305 ALL_BLOCK_SYMBOLS (block, iter, sym)
6306 {
6307 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6308 SYMBOL_DOMAIN (sym), domain))
6309 {
6310 int cmp;
6311
6312 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6313 if (cmp == 0)
6314 {
6315 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
6316 if (cmp == 0)
6317 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6318 name_len);
6319 }
6320
6321 if (cmp == 0
6322 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6323 {
6324 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6325 {
6326 if (SYMBOL_IS_ARGUMENT (sym))
6327 arg_sym = sym;
6328 else
6329 {
6330 found_sym = 1;
6331 add_defn_to_vec (obstackp,
6332 fixup_symbol_section (sym, objfile),
6333 block);
6334 }
6335 }
6336 }
6337 }
6338 }
6339
6340 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6341 They aren't parameters, right? */
6342 if (!found_sym && arg_sym != NULL)
6343 {
6344 add_defn_to_vec (obstackp,
6345 fixup_symbol_section (arg_sym, objfile),
6346 block);
6347 }
6348 }
6349 }
6350 \f
6351
6352 /* Symbol Completion */
6353
6354 /* See symtab.h. */
6355
6356 bool
6357 ada_lookup_name_info::matches
6358 (const char *sym_name,
6359 symbol_name_match_type match_type,
6360 completion_match *comp_match) const
6361 {
6362 bool match = false;
6363 const char *text = m_encoded_name.c_str ();
6364 size_t text_len = m_encoded_name.size ();
6365
6366 /* First, test against the fully qualified name of the symbol. */
6367
6368 if (strncmp (sym_name, text, text_len) == 0)
6369 match = true;
6370
6371 if (match && !m_encoded_p)
6372 {
6373 /* One needed check before declaring a positive match is to verify
6374 that iff we are doing a verbatim match, the decoded version
6375 of the symbol name starts with '<'. Otherwise, this symbol name
6376 is not a suitable completion. */
6377 const char *sym_name_copy = sym_name;
6378 bool has_angle_bracket;
6379
6380 sym_name = ada_decode (sym_name);
6381 has_angle_bracket = (sym_name[0] == '<');
6382 match = (has_angle_bracket == m_verbatim_p);
6383 sym_name = sym_name_copy;
6384 }
6385
6386 if (match && !m_verbatim_p)
6387 {
6388 /* When doing non-verbatim match, another check that needs to
6389 be done is to verify that the potentially matching symbol name
6390 does not include capital letters, because the ada-mode would
6391 not be able to understand these symbol names without the
6392 angle bracket notation. */
6393 const char *tmp;
6394
6395 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6396 if (*tmp != '\0')
6397 match = false;
6398 }
6399
6400 /* Second: Try wild matching... */
6401
6402 if (!match && m_wild_match_p)
6403 {
6404 /* Since we are doing wild matching, this means that TEXT
6405 may represent an unqualified symbol name. We therefore must
6406 also compare TEXT against the unqualified name of the symbol. */
6407 sym_name = ada_unqualified_name (ada_decode (sym_name));
6408
6409 if (strncmp (sym_name, text, text_len) == 0)
6410 match = true;
6411 }
6412
6413 /* Finally: If we found a match, prepare the result to return. */
6414
6415 if (!match)
6416 return false;
6417
6418 if (comp_match != NULL)
6419 {
6420 std::string &match_str = comp_match->storage ();
6421
6422 if (!m_encoded_p)
6423 {
6424 match_str = ada_decode (sym_name);
6425 comp_match->set_match (match_str.c_str ());
6426 }
6427 else
6428 {
6429 if (m_verbatim_p)
6430 match_str = add_angle_brackets (sym_name);
6431 else
6432 match_str = sym_name;
6433
6434 comp_match->set_match (match_str.c_str ());
6435 }
6436 }
6437
6438 return true;
6439 }
6440
6441 /* Add the list of possible symbol names completing TEXT to TRACKER.
6442 WORD is the entire command on which completion is made. */
6443
6444 static void
6445 ada_collect_symbol_completion_matches (completion_tracker &tracker,
6446 complete_symbol_mode mode,
6447 symbol_name_match_type name_match_type,
6448 const char *text, const char *word,
6449 enum type_code code)
6450 {
6451 struct symbol *sym;
6452 struct compunit_symtab *s;
6453 struct minimal_symbol *msymbol;
6454 struct objfile *objfile;
6455 const struct block *b, *surrounding_static_block = 0;
6456 int i;
6457 struct block_iterator iter;
6458 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
6459
6460 gdb_assert (code == TYPE_CODE_UNDEF);
6461
6462 lookup_name_info lookup_name (text, name_match_type, true);
6463
6464 /* First, look at the partial symtab symbols. */
6465 expand_symtabs_matching (NULL,
6466 lookup_name,
6467 NULL,
6468 NULL,
6469 ALL_DOMAIN);
6470
6471 /* At this point scan through the misc symbol vectors and add each
6472 symbol you find to the list. Eventually we want to ignore
6473 anything that isn't a text symbol (everything else will be
6474 handled by the psymtab code above). */
6475
6476 ALL_MSYMBOLS (objfile, msymbol)
6477 {
6478 QUIT;
6479
6480 if (completion_skip_symbol (mode, msymbol))
6481 continue;
6482
6483 completion_list_add_name (tracker,
6484 MSYMBOL_LANGUAGE (msymbol),
6485 MSYMBOL_LINKAGE_NAME (msymbol),
6486 lookup_name, text, word);
6487 }
6488
6489 /* Search upwards from currently selected frame (so that we can
6490 complete on local vars. */
6491
6492 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6493 {
6494 if (!BLOCK_SUPERBLOCK (b))
6495 surrounding_static_block = b; /* For elmin of dups */
6496
6497 ALL_BLOCK_SYMBOLS (b, iter, sym)
6498 {
6499 if (completion_skip_symbol (mode, sym))
6500 continue;
6501
6502 completion_list_add_name (tracker,
6503 SYMBOL_LANGUAGE (sym),
6504 SYMBOL_LINKAGE_NAME (sym),
6505 lookup_name, text, word);
6506 }
6507 }
6508
6509 /* Go through the symtabs and check the externs and statics for
6510 symbols which match. */
6511
6512 ALL_COMPUNITS (objfile, s)
6513 {
6514 QUIT;
6515 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6516 ALL_BLOCK_SYMBOLS (b, iter, sym)
6517 {
6518 if (completion_skip_symbol (mode, sym))
6519 continue;
6520
6521 completion_list_add_name (tracker,
6522 SYMBOL_LANGUAGE (sym),
6523 SYMBOL_LINKAGE_NAME (sym),
6524 lookup_name, text, word);
6525 }
6526 }
6527
6528 ALL_COMPUNITS (objfile, s)
6529 {
6530 QUIT;
6531 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6532 /* Don't do this block twice. */
6533 if (b == surrounding_static_block)
6534 continue;
6535 ALL_BLOCK_SYMBOLS (b, iter, sym)
6536 {
6537 if (completion_skip_symbol (mode, sym))
6538 continue;
6539
6540 completion_list_add_name (tracker,
6541 SYMBOL_LANGUAGE (sym),
6542 SYMBOL_LINKAGE_NAME (sym),
6543 lookup_name, text, word);
6544 }
6545 }
6546
6547 do_cleanups (old_chain);
6548 }
6549
6550 /* Field Access */
6551
6552 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6553 for tagged types. */
6554
6555 static int
6556 ada_is_dispatch_table_ptr_type (struct type *type)
6557 {
6558 const char *name;
6559
6560 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6561 return 0;
6562
6563 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6564 if (name == NULL)
6565 return 0;
6566
6567 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6568 }
6569
6570 /* Return non-zero if TYPE is an interface tag. */
6571
6572 static int
6573 ada_is_interface_tag (struct type *type)
6574 {
6575 const char *name = TYPE_NAME (type);
6576
6577 if (name == NULL)
6578 return 0;
6579
6580 return (strcmp (name, "ada__tags__interface_tag") == 0);
6581 }
6582
6583 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6584 to be invisible to users. */
6585
6586 int
6587 ada_is_ignored_field (struct type *type, int field_num)
6588 {
6589 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6590 return 1;
6591
6592 /* Check the name of that field. */
6593 {
6594 const char *name = TYPE_FIELD_NAME (type, field_num);
6595
6596 /* Anonymous field names should not be printed.
6597 brobecker/2007-02-20: I don't think this can actually happen
6598 but we don't want to print the value of annonymous fields anyway. */
6599 if (name == NULL)
6600 return 1;
6601
6602 /* Normally, fields whose name start with an underscore ("_")
6603 are fields that have been internally generated by the compiler,
6604 and thus should not be printed. The "_parent" field is special,
6605 however: This is a field internally generated by the compiler
6606 for tagged types, and it contains the components inherited from
6607 the parent type. This field should not be printed as is, but
6608 should not be ignored either. */
6609 if (name[0] == '_' && !startswith (name, "_parent"))
6610 return 1;
6611 }
6612
6613 /* If this is the dispatch table of a tagged type or an interface tag,
6614 then ignore. */
6615 if (ada_is_tagged_type (type, 1)
6616 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6617 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6618 return 1;
6619
6620 /* Not a special field, so it should not be ignored. */
6621 return 0;
6622 }
6623
6624 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6625 pointer or reference type whose ultimate target has a tag field. */
6626
6627 int
6628 ada_is_tagged_type (struct type *type, int refok)
6629 {
6630 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
6631 }
6632
6633 /* True iff TYPE represents the type of X'Tag */
6634
6635 int
6636 ada_is_tag_type (struct type *type)
6637 {
6638 type = ada_check_typedef (type);
6639
6640 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6641 return 0;
6642 else
6643 {
6644 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6645
6646 return (name != NULL
6647 && strcmp (name, "ada__tags__dispatch_table") == 0);
6648 }
6649 }
6650
6651 /* The type of the tag on VAL. */
6652
6653 struct type *
6654 ada_tag_type (struct value *val)
6655 {
6656 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6657 }
6658
6659 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6660 retired at Ada 05). */
6661
6662 static int
6663 is_ada95_tag (struct value *tag)
6664 {
6665 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6666 }
6667
6668 /* The value of the tag on VAL. */
6669
6670 struct value *
6671 ada_value_tag (struct value *val)
6672 {
6673 return ada_value_struct_elt (val, "_tag", 0);
6674 }
6675
6676 /* The value of the tag on the object of type TYPE whose contents are
6677 saved at VALADDR, if it is non-null, or is at memory address
6678 ADDRESS. */
6679
6680 static struct value *
6681 value_tag_from_contents_and_address (struct type *type,
6682 const gdb_byte *valaddr,
6683 CORE_ADDR address)
6684 {
6685 int tag_byte_offset;
6686 struct type *tag_type;
6687
6688 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6689 NULL, NULL, NULL))
6690 {
6691 const gdb_byte *valaddr1 = ((valaddr == NULL)
6692 ? NULL
6693 : valaddr + tag_byte_offset);
6694 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6695
6696 return value_from_contents_and_address (tag_type, valaddr1, address1);
6697 }
6698 return NULL;
6699 }
6700
6701 static struct type *
6702 type_from_tag (struct value *tag)
6703 {
6704 const char *type_name = ada_tag_name (tag);
6705
6706 if (type_name != NULL)
6707 return ada_find_any_type (ada_encode (type_name));
6708 return NULL;
6709 }
6710
6711 /* Given a value OBJ of a tagged type, return a value of this
6712 type at the base address of the object. The base address, as
6713 defined in Ada.Tags, it is the address of the primary tag of
6714 the object, and therefore where the field values of its full
6715 view can be fetched. */
6716
6717 struct value *
6718 ada_tag_value_at_base_address (struct value *obj)
6719 {
6720 struct value *val;
6721 LONGEST offset_to_top = 0;
6722 struct type *ptr_type, *obj_type;
6723 struct value *tag;
6724 CORE_ADDR base_address;
6725
6726 obj_type = value_type (obj);
6727
6728 /* It is the responsability of the caller to deref pointers. */
6729
6730 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6731 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6732 return obj;
6733
6734 tag = ada_value_tag (obj);
6735 if (!tag)
6736 return obj;
6737
6738 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6739
6740 if (is_ada95_tag (tag))
6741 return obj;
6742
6743 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6744 ptr_type = lookup_pointer_type (ptr_type);
6745 val = value_cast (ptr_type, tag);
6746 if (!val)
6747 return obj;
6748
6749 /* It is perfectly possible that an exception be raised while
6750 trying to determine the base address, just like for the tag;
6751 see ada_tag_name for more details. We do not print the error
6752 message for the same reason. */
6753
6754 TRY
6755 {
6756 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6757 }
6758
6759 CATCH (e, RETURN_MASK_ERROR)
6760 {
6761 return obj;
6762 }
6763 END_CATCH
6764
6765 /* If offset is null, nothing to do. */
6766
6767 if (offset_to_top == 0)
6768 return obj;
6769
6770 /* -1 is a special case in Ada.Tags; however, what should be done
6771 is not quite clear from the documentation. So do nothing for
6772 now. */
6773
6774 if (offset_to_top == -1)
6775 return obj;
6776
6777 base_address = value_address (obj) - offset_to_top;
6778 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6779
6780 /* Make sure that we have a proper tag at the new address.
6781 Otherwise, offset_to_top is bogus (which can happen when
6782 the object is not initialized yet). */
6783
6784 if (!tag)
6785 return obj;
6786
6787 obj_type = type_from_tag (tag);
6788
6789 if (!obj_type)
6790 return obj;
6791
6792 return value_from_contents_and_address (obj_type, NULL, base_address);
6793 }
6794
6795 /* Return the "ada__tags__type_specific_data" type. */
6796
6797 static struct type *
6798 ada_get_tsd_type (struct inferior *inf)
6799 {
6800 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6801
6802 if (data->tsd_type == 0)
6803 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6804 return data->tsd_type;
6805 }
6806
6807 /* Return the TSD (type-specific data) associated to the given TAG.
6808 TAG is assumed to be the tag of a tagged-type entity.
6809
6810 May return NULL if we are unable to get the TSD. */
6811
6812 static struct value *
6813 ada_get_tsd_from_tag (struct value *tag)
6814 {
6815 struct value *val;
6816 struct type *type;
6817
6818 /* First option: The TSD is simply stored as a field of our TAG.
6819 Only older versions of GNAT would use this format, but we have
6820 to test it first, because there are no visible markers for
6821 the current approach except the absence of that field. */
6822
6823 val = ada_value_struct_elt (tag, "tsd", 1);
6824 if (val)
6825 return val;
6826
6827 /* Try the second representation for the dispatch table (in which
6828 there is no explicit 'tsd' field in the referent of the tag pointer,
6829 and instead the tsd pointer is stored just before the dispatch
6830 table. */
6831
6832 type = ada_get_tsd_type (current_inferior());
6833 if (type == NULL)
6834 return NULL;
6835 type = lookup_pointer_type (lookup_pointer_type (type));
6836 val = value_cast (type, tag);
6837 if (val == NULL)
6838 return NULL;
6839 return value_ind (value_ptradd (val, -1));
6840 }
6841
6842 /* Given the TSD of a tag (type-specific data), return a string
6843 containing the name of the associated type.
6844
6845 The returned value is good until the next call. May return NULL
6846 if we are unable to determine the tag name. */
6847
6848 static char *
6849 ada_tag_name_from_tsd (struct value *tsd)
6850 {
6851 static char name[1024];
6852 char *p;
6853 struct value *val;
6854
6855 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6856 if (val == NULL)
6857 return NULL;
6858 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6859 for (p = name; *p != '\0'; p += 1)
6860 if (isalpha (*p))
6861 *p = tolower (*p);
6862 return name;
6863 }
6864
6865 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6866 a C string.
6867
6868 Return NULL if the TAG is not an Ada tag, or if we were unable to
6869 determine the name of that tag. The result is good until the next
6870 call. */
6871
6872 const char *
6873 ada_tag_name (struct value *tag)
6874 {
6875 char *name = NULL;
6876
6877 if (!ada_is_tag_type (value_type (tag)))
6878 return NULL;
6879
6880 /* It is perfectly possible that an exception be raised while trying
6881 to determine the TAG's name, even under normal circumstances:
6882 The associated variable may be uninitialized or corrupted, for
6883 instance. We do not let any exception propagate past this point.
6884 instead we return NULL.
6885
6886 We also do not print the error message either (which often is very
6887 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6888 the caller print a more meaningful message if necessary. */
6889 TRY
6890 {
6891 struct value *tsd = ada_get_tsd_from_tag (tag);
6892
6893 if (tsd != NULL)
6894 name = ada_tag_name_from_tsd (tsd);
6895 }
6896 CATCH (e, RETURN_MASK_ERROR)
6897 {
6898 }
6899 END_CATCH
6900
6901 return name;
6902 }
6903
6904 /* The parent type of TYPE, or NULL if none. */
6905
6906 struct type *
6907 ada_parent_type (struct type *type)
6908 {
6909 int i;
6910
6911 type = ada_check_typedef (type);
6912
6913 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6914 return NULL;
6915
6916 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6917 if (ada_is_parent_field (type, i))
6918 {
6919 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6920
6921 /* If the _parent field is a pointer, then dereference it. */
6922 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6923 parent_type = TYPE_TARGET_TYPE (parent_type);
6924 /* If there is a parallel XVS type, get the actual base type. */
6925 parent_type = ada_get_base_type (parent_type);
6926
6927 return ada_check_typedef (parent_type);
6928 }
6929
6930 return NULL;
6931 }
6932
6933 /* True iff field number FIELD_NUM of structure type TYPE contains the
6934 parent-type (inherited) fields of a derived type. Assumes TYPE is
6935 a structure type with at least FIELD_NUM+1 fields. */
6936
6937 int
6938 ada_is_parent_field (struct type *type, int field_num)
6939 {
6940 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6941
6942 return (name != NULL
6943 && (startswith (name, "PARENT")
6944 || startswith (name, "_parent")));
6945 }
6946
6947 /* True iff field number FIELD_NUM of structure type TYPE is a
6948 transparent wrapper field (which should be silently traversed when doing
6949 field selection and flattened when printing). Assumes TYPE is a
6950 structure type with at least FIELD_NUM+1 fields. Such fields are always
6951 structures. */
6952
6953 int
6954 ada_is_wrapper_field (struct type *type, int field_num)
6955 {
6956 const char *name = TYPE_FIELD_NAME (type, field_num);
6957
6958 if (name != NULL && strcmp (name, "RETVAL") == 0)
6959 {
6960 /* This happens in functions with "out" or "in out" parameters
6961 which are passed by copy. For such functions, GNAT describes
6962 the function's return type as being a struct where the return
6963 value is in a field called RETVAL, and where the other "out"
6964 or "in out" parameters are fields of that struct. This is not
6965 a wrapper. */
6966 return 0;
6967 }
6968
6969 return (name != NULL
6970 && (startswith (name, "PARENT")
6971 || strcmp (name, "REP") == 0
6972 || startswith (name, "_parent")
6973 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6974 }
6975
6976 /* True iff field number FIELD_NUM of structure or union type TYPE
6977 is a variant wrapper. Assumes TYPE is a structure type with at least
6978 FIELD_NUM+1 fields. */
6979
6980 int
6981 ada_is_variant_part (struct type *type, int field_num)
6982 {
6983 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6984
6985 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6986 || (is_dynamic_field (type, field_num)
6987 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6988 == TYPE_CODE_UNION)));
6989 }
6990
6991 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6992 whose discriminants are contained in the record type OUTER_TYPE,
6993 returns the type of the controlling discriminant for the variant.
6994 May return NULL if the type could not be found. */
6995
6996 struct type *
6997 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6998 {
6999 const char *name = ada_variant_discrim_name (var_type);
7000
7001 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
7002 }
7003
7004 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
7005 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
7006 represents a 'when others' clause; otherwise 0. */
7007
7008 int
7009 ada_is_others_clause (struct type *type, int field_num)
7010 {
7011 const char *name = TYPE_FIELD_NAME (type, field_num);
7012
7013 return (name != NULL && name[0] == 'O');
7014 }
7015
7016 /* Assuming that TYPE0 is the type of the variant part of a record,
7017 returns the name of the discriminant controlling the variant.
7018 The value is valid until the next call to ada_variant_discrim_name. */
7019
7020 const char *
7021 ada_variant_discrim_name (struct type *type0)
7022 {
7023 static char *result = NULL;
7024 static size_t result_len = 0;
7025 struct type *type;
7026 const char *name;
7027 const char *discrim_end;
7028 const char *discrim_start;
7029
7030 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7031 type = TYPE_TARGET_TYPE (type0);
7032 else
7033 type = type0;
7034
7035 name = ada_type_name (type);
7036
7037 if (name == NULL || name[0] == '\000')
7038 return "";
7039
7040 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7041 discrim_end -= 1)
7042 {
7043 if (startswith (discrim_end, "___XVN"))
7044 break;
7045 }
7046 if (discrim_end == name)
7047 return "";
7048
7049 for (discrim_start = discrim_end; discrim_start != name + 3;
7050 discrim_start -= 1)
7051 {
7052 if (discrim_start == name + 1)
7053 return "";
7054 if ((discrim_start > name + 3
7055 && startswith (discrim_start - 3, "___"))
7056 || discrim_start[-1] == '.')
7057 break;
7058 }
7059
7060 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7061 strncpy (result, discrim_start, discrim_end - discrim_start);
7062 result[discrim_end - discrim_start] = '\0';
7063 return result;
7064 }
7065
7066 /* Scan STR for a subtype-encoded number, beginning at position K.
7067 Put the position of the character just past the number scanned in
7068 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7069 Return 1 if there was a valid number at the given position, and 0
7070 otherwise. A "subtype-encoded" number consists of the absolute value
7071 in decimal, followed by the letter 'm' to indicate a negative number.
7072 Assumes 0m does not occur. */
7073
7074 int
7075 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
7076 {
7077 ULONGEST RU;
7078
7079 if (!isdigit (str[k]))
7080 return 0;
7081
7082 /* Do it the hard way so as not to make any assumption about
7083 the relationship of unsigned long (%lu scan format code) and
7084 LONGEST. */
7085 RU = 0;
7086 while (isdigit (str[k]))
7087 {
7088 RU = RU * 10 + (str[k] - '0');
7089 k += 1;
7090 }
7091
7092 if (str[k] == 'm')
7093 {
7094 if (R != NULL)
7095 *R = (-(LONGEST) (RU - 1)) - 1;
7096 k += 1;
7097 }
7098 else if (R != NULL)
7099 *R = (LONGEST) RU;
7100
7101 /* NOTE on the above: Technically, C does not say what the results of
7102 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7103 number representable as a LONGEST (although either would probably work
7104 in most implementations). When RU>0, the locution in the then branch
7105 above is always equivalent to the negative of RU. */
7106
7107 if (new_k != NULL)
7108 *new_k = k;
7109 return 1;
7110 }
7111
7112 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7113 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7114 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
7115
7116 int
7117 ada_in_variant (LONGEST val, struct type *type, int field_num)
7118 {
7119 const char *name = TYPE_FIELD_NAME (type, field_num);
7120 int p;
7121
7122 p = 0;
7123 while (1)
7124 {
7125 switch (name[p])
7126 {
7127 case '\0':
7128 return 0;
7129 case 'S':
7130 {
7131 LONGEST W;
7132
7133 if (!ada_scan_number (name, p + 1, &W, &p))
7134 return 0;
7135 if (val == W)
7136 return 1;
7137 break;
7138 }
7139 case 'R':
7140 {
7141 LONGEST L, U;
7142
7143 if (!ada_scan_number (name, p + 1, &L, &p)
7144 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7145 return 0;
7146 if (val >= L && val <= U)
7147 return 1;
7148 break;
7149 }
7150 case 'O':
7151 return 1;
7152 default:
7153 return 0;
7154 }
7155 }
7156 }
7157
7158 /* FIXME: Lots of redundancy below. Try to consolidate. */
7159
7160 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7161 ARG_TYPE, extract and return the value of one of its (non-static)
7162 fields. FIELDNO says which field. Differs from value_primitive_field
7163 only in that it can handle packed values of arbitrary type. */
7164
7165 static struct value *
7166 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
7167 struct type *arg_type)
7168 {
7169 struct type *type;
7170
7171 arg_type = ada_check_typedef (arg_type);
7172 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7173
7174 /* Handle packed fields. */
7175
7176 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7177 {
7178 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7179 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
7180
7181 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
7182 offset + bit_pos / 8,
7183 bit_pos % 8, bit_size, type);
7184 }
7185 else
7186 return value_primitive_field (arg1, offset, fieldno, arg_type);
7187 }
7188
7189 /* Find field with name NAME in object of type TYPE. If found,
7190 set the following for each argument that is non-null:
7191 - *FIELD_TYPE_P to the field's type;
7192 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7193 an object of that type;
7194 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7195 - *BIT_SIZE_P to its size in bits if the field is packed, and
7196 0 otherwise;
7197 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7198 fields up to but not including the desired field, or by the total
7199 number of fields if not found. A NULL value of NAME never
7200 matches; the function just counts visible fields in this case.
7201
7202 Returns 1 if found, 0 otherwise. */
7203
7204 static int
7205 find_struct_field (const char *name, struct type *type, int offset,
7206 struct type **field_type_p,
7207 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7208 int *index_p)
7209 {
7210 int i;
7211
7212 type = ada_check_typedef (type);
7213
7214 if (field_type_p != NULL)
7215 *field_type_p = NULL;
7216 if (byte_offset_p != NULL)
7217 *byte_offset_p = 0;
7218 if (bit_offset_p != NULL)
7219 *bit_offset_p = 0;
7220 if (bit_size_p != NULL)
7221 *bit_size_p = 0;
7222
7223 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7224 {
7225 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7226 int fld_offset = offset + bit_pos / 8;
7227 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7228
7229 if (t_field_name == NULL)
7230 continue;
7231
7232 else if (name != NULL && field_name_match (t_field_name, name))
7233 {
7234 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7235
7236 if (field_type_p != NULL)
7237 *field_type_p = TYPE_FIELD_TYPE (type, i);
7238 if (byte_offset_p != NULL)
7239 *byte_offset_p = fld_offset;
7240 if (bit_offset_p != NULL)
7241 *bit_offset_p = bit_pos % 8;
7242 if (bit_size_p != NULL)
7243 *bit_size_p = bit_size;
7244 return 1;
7245 }
7246 else if (ada_is_wrapper_field (type, i))
7247 {
7248 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7249 field_type_p, byte_offset_p, bit_offset_p,
7250 bit_size_p, index_p))
7251 return 1;
7252 }
7253 else if (ada_is_variant_part (type, i))
7254 {
7255 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7256 fixed type?? */
7257 int j;
7258 struct type *field_type
7259 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7260
7261 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7262 {
7263 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7264 fld_offset
7265 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7266 field_type_p, byte_offset_p,
7267 bit_offset_p, bit_size_p, index_p))
7268 return 1;
7269 }
7270 }
7271 else if (index_p != NULL)
7272 *index_p += 1;
7273 }
7274 return 0;
7275 }
7276
7277 /* Number of user-visible fields in record type TYPE. */
7278
7279 static int
7280 num_visible_fields (struct type *type)
7281 {
7282 int n;
7283
7284 n = 0;
7285 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7286 return n;
7287 }
7288
7289 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7290 and search in it assuming it has (class) type TYPE.
7291 If found, return value, else return NULL.
7292
7293 Searches recursively through wrapper fields (e.g., '_parent'). */
7294
7295 static struct value *
7296 ada_search_struct_field (const char *name, struct value *arg, int offset,
7297 struct type *type)
7298 {
7299 int i;
7300
7301 type = ada_check_typedef (type);
7302 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7303 {
7304 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7305
7306 if (t_field_name == NULL)
7307 continue;
7308
7309 else if (field_name_match (t_field_name, name))
7310 return ada_value_primitive_field (arg, offset, i, type);
7311
7312 else if (ada_is_wrapper_field (type, i))
7313 {
7314 struct value *v = /* Do not let indent join lines here. */
7315 ada_search_struct_field (name, arg,
7316 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7317 TYPE_FIELD_TYPE (type, i));
7318
7319 if (v != NULL)
7320 return v;
7321 }
7322
7323 else if (ada_is_variant_part (type, i))
7324 {
7325 /* PNH: Do we ever get here? See find_struct_field. */
7326 int j;
7327 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7328 i));
7329 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7330
7331 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7332 {
7333 struct value *v = ada_search_struct_field /* Force line
7334 break. */
7335 (name, arg,
7336 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7337 TYPE_FIELD_TYPE (field_type, j));
7338
7339 if (v != NULL)
7340 return v;
7341 }
7342 }
7343 }
7344 return NULL;
7345 }
7346
7347 static struct value *ada_index_struct_field_1 (int *, struct value *,
7348 int, struct type *);
7349
7350
7351 /* Return field #INDEX in ARG, where the index is that returned by
7352 * find_struct_field through its INDEX_P argument. Adjust the address
7353 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7354 * If found, return value, else return NULL. */
7355
7356 static struct value *
7357 ada_index_struct_field (int index, struct value *arg, int offset,
7358 struct type *type)
7359 {
7360 return ada_index_struct_field_1 (&index, arg, offset, type);
7361 }
7362
7363
7364 /* Auxiliary function for ada_index_struct_field. Like
7365 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7366 * *INDEX_P. */
7367
7368 static struct value *
7369 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7370 struct type *type)
7371 {
7372 int i;
7373 type = ada_check_typedef (type);
7374
7375 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7376 {
7377 if (TYPE_FIELD_NAME (type, i) == NULL)
7378 continue;
7379 else if (ada_is_wrapper_field (type, i))
7380 {
7381 struct value *v = /* Do not let indent join lines here. */
7382 ada_index_struct_field_1 (index_p, arg,
7383 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7384 TYPE_FIELD_TYPE (type, i));
7385
7386 if (v != NULL)
7387 return v;
7388 }
7389
7390 else if (ada_is_variant_part (type, i))
7391 {
7392 /* PNH: Do we ever get here? See ada_search_struct_field,
7393 find_struct_field. */
7394 error (_("Cannot assign this kind of variant record"));
7395 }
7396 else if (*index_p == 0)
7397 return ada_value_primitive_field (arg, offset, i, type);
7398 else
7399 *index_p -= 1;
7400 }
7401 return NULL;
7402 }
7403
7404 /* Given ARG, a value of type (pointer or reference to a)*
7405 structure/union, extract the component named NAME from the ultimate
7406 target structure/union and return it as a value with its
7407 appropriate type.
7408
7409 The routine searches for NAME among all members of the structure itself
7410 and (recursively) among all members of any wrapper members
7411 (e.g., '_parent').
7412
7413 If NO_ERR, then simply return NULL in case of error, rather than
7414 calling error. */
7415
7416 struct value *
7417 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
7418 {
7419 struct type *t, *t1;
7420 struct value *v;
7421
7422 v = NULL;
7423 t1 = t = ada_check_typedef (value_type (arg));
7424 if (TYPE_CODE (t) == TYPE_CODE_REF)
7425 {
7426 t1 = TYPE_TARGET_TYPE (t);
7427 if (t1 == NULL)
7428 goto BadValue;
7429 t1 = ada_check_typedef (t1);
7430 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7431 {
7432 arg = coerce_ref (arg);
7433 t = t1;
7434 }
7435 }
7436
7437 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7438 {
7439 t1 = TYPE_TARGET_TYPE (t);
7440 if (t1 == NULL)
7441 goto BadValue;
7442 t1 = ada_check_typedef (t1);
7443 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7444 {
7445 arg = value_ind (arg);
7446 t = t1;
7447 }
7448 else
7449 break;
7450 }
7451
7452 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7453 goto BadValue;
7454
7455 if (t1 == t)
7456 v = ada_search_struct_field (name, arg, 0, t);
7457 else
7458 {
7459 int bit_offset, bit_size, byte_offset;
7460 struct type *field_type;
7461 CORE_ADDR address;
7462
7463 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7464 address = value_address (ada_value_ind (arg));
7465 else
7466 address = value_address (ada_coerce_ref (arg));
7467
7468 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
7469 if (find_struct_field (name, t1, 0,
7470 &field_type, &byte_offset, &bit_offset,
7471 &bit_size, NULL))
7472 {
7473 if (bit_size != 0)
7474 {
7475 if (TYPE_CODE (t) == TYPE_CODE_REF)
7476 arg = ada_coerce_ref (arg);
7477 else
7478 arg = ada_value_ind (arg);
7479 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7480 bit_offset, bit_size,
7481 field_type);
7482 }
7483 else
7484 v = value_at_lazy (field_type, address + byte_offset);
7485 }
7486 }
7487
7488 if (v != NULL || no_err)
7489 return v;
7490 else
7491 error (_("There is no member named %s."), name);
7492
7493 BadValue:
7494 if (no_err)
7495 return NULL;
7496 else
7497 error (_("Attempt to extract a component of "
7498 "a value that is not a record."));
7499 }
7500
7501 /* Return a string representation of type TYPE. */
7502
7503 static std::string
7504 type_as_string (struct type *type)
7505 {
7506 string_file tmp_stream;
7507
7508 type_print (type, "", &tmp_stream, -1);
7509
7510 return std::move (tmp_stream.string ());
7511 }
7512
7513 /* Given a type TYPE, look up the type of the component of type named NAME.
7514 If DISPP is non-null, add its byte displacement from the beginning of a
7515 structure (pointed to by a value) of type TYPE to *DISPP (does not
7516 work for packed fields).
7517
7518 Matches any field whose name has NAME as a prefix, possibly
7519 followed by "___".
7520
7521 TYPE can be either a struct or union. If REFOK, TYPE may also
7522 be a (pointer or reference)+ to a struct or union, and the
7523 ultimate target type will be searched.
7524
7525 Looks recursively into variant clauses and parent types.
7526
7527 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7528 TYPE is not a type of the right kind. */
7529
7530 static struct type *
7531 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
7532 int noerr)
7533 {
7534 int i;
7535
7536 if (name == NULL)
7537 goto BadName;
7538
7539 if (refok && type != NULL)
7540 while (1)
7541 {
7542 type = ada_check_typedef (type);
7543 if (TYPE_CODE (type) != TYPE_CODE_PTR
7544 && TYPE_CODE (type) != TYPE_CODE_REF)
7545 break;
7546 type = TYPE_TARGET_TYPE (type);
7547 }
7548
7549 if (type == NULL
7550 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7551 && TYPE_CODE (type) != TYPE_CODE_UNION))
7552 {
7553 if (noerr)
7554 return NULL;
7555
7556 error (_("Type %s is not a structure or union type"),
7557 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7558 }
7559
7560 type = to_static_fixed_type (type);
7561
7562 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7563 {
7564 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7565 struct type *t;
7566
7567 if (t_field_name == NULL)
7568 continue;
7569
7570 else if (field_name_match (t_field_name, name))
7571 return TYPE_FIELD_TYPE (type, i);
7572
7573 else if (ada_is_wrapper_field (type, i))
7574 {
7575 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7576 0, 1);
7577 if (t != NULL)
7578 return t;
7579 }
7580
7581 else if (ada_is_variant_part (type, i))
7582 {
7583 int j;
7584 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7585 i));
7586
7587 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7588 {
7589 /* FIXME pnh 2008/01/26: We check for a field that is
7590 NOT wrapped in a struct, since the compiler sometimes
7591 generates these for unchecked variant types. Revisit
7592 if the compiler changes this practice. */
7593 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7594
7595 if (v_field_name != NULL
7596 && field_name_match (v_field_name, name))
7597 t = TYPE_FIELD_TYPE (field_type, j);
7598 else
7599 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7600 j),
7601 name, 0, 1);
7602
7603 if (t != NULL)
7604 return t;
7605 }
7606 }
7607
7608 }
7609
7610 BadName:
7611 if (!noerr)
7612 {
7613 const char *name_str = name != NULL ? name : _("<null>");
7614
7615 error (_("Type %s has no component named %s"),
7616 type_as_string (type).c_str (), name_str);
7617 }
7618
7619 return NULL;
7620 }
7621
7622 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7623 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7624 represents an unchecked union (that is, the variant part of a
7625 record that is named in an Unchecked_Union pragma). */
7626
7627 static int
7628 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7629 {
7630 const char *discrim_name = ada_variant_discrim_name (var_type);
7631
7632 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7633 }
7634
7635
7636 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7637 within a value of type OUTER_TYPE that is stored in GDB at
7638 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7639 numbering from 0) is applicable. Returns -1 if none are. */
7640
7641 int
7642 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7643 const gdb_byte *outer_valaddr)
7644 {
7645 int others_clause;
7646 int i;
7647 const char *discrim_name = ada_variant_discrim_name (var_type);
7648 struct value *outer;
7649 struct value *discrim;
7650 LONGEST discrim_val;
7651
7652 /* Using plain value_from_contents_and_address here causes problems
7653 because we will end up trying to resolve a type that is currently
7654 being constructed. */
7655 outer = value_from_contents_and_address_unresolved (outer_type,
7656 outer_valaddr, 0);
7657 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7658 if (discrim == NULL)
7659 return -1;
7660 discrim_val = value_as_long (discrim);
7661
7662 others_clause = -1;
7663 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7664 {
7665 if (ada_is_others_clause (var_type, i))
7666 others_clause = i;
7667 else if (ada_in_variant (discrim_val, var_type, i))
7668 return i;
7669 }
7670
7671 return others_clause;
7672 }
7673 \f
7674
7675
7676 /* Dynamic-Sized Records */
7677
7678 /* Strategy: The type ostensibly attached to a value with dynamic size
7679 (i.e., a size that is not statically recorded in the debugging
7680 data) does not accurately reflect the size or layout of the value.
7681 Our strategy is to convert these values to values with accurate,
7682 conventional types that are constructed on the fly. */
7683
7684 /* There is a subtle and tricky problem here. In general, we cannot
7685 determine the size of dynamic records without its data. However,
7686 the 'struct value' data structure, which GDB uses to represent
7687 quantities in the inferior process (the target), requires the size
7688 of the type at the time of its allocation in order to reserve space
7689 for GDB's internal copy of the data. That's why the
7690 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7691 rather than struct value*s.
7692
7693 However, GDB's internal history variables ($1, $2, etc.) are
7694 struct value*s containing internal copies of the data that are not, in
7695 general, the same as the data at their corresponding addresses in
7696 the target. Fortunately, the types we give to these values are all
7697 conventional, fixed-size types (as per the strategy described
7698 above), so that we don't usually have to perform the
7699 'to_fixed_xxx_type' conversions to look at their values.
7700 Unfortunately, there is one exception: if one of the internal
7701 history variables is an array whose elements are unconstrained
7702 records, then we will need to create distinct fixed types for each
7703 element selected. */
7704
7705 /* The upshot of all of this is that many routines take a (type, host
7706 address, target address) triple as arguments to represent a value.
7707 The host address, if non-null, is supposed to contain an internal
7708 copy of the relevant data; otherwise, the program is to consult the
7709 target at the target address. */
7710
7711 /* Assuming that VAL0 represents a pointer value, the result of
7712 dereferencing it. Differs from value_ind in its treatment of
7713 dynamic-sized types. */
7714
7715 struct value *
7716 ada_value_ind (struct value *val0)
7717 {
7718 struct value *val = value_ind (val0);
7719
7720 if (ada_is_tagged_type (value_type (val), 0))
7721 val = ada_tag_value_at_base_address (val);
7722
7723 return ada_to_fixed_value (val);
7724 }
7725
7726 /* The value resulting from dereferencing any "reference to"
7727 qualifiers on VAL0. */
7728
7729 static struct value *
7730 ada_coerce_ref (struct value *val0)
7731 {
7732 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7733 {
7734 struct value *val = val0;
7735
7736 val = coerce_ref (val);
7737
7738 if (ada_is_tagged_type (value_type (val), 0))
7739 val = ada_tag_value_at_base_address (val);
7740
7741 return ada_to_fixed_value (val);
7742 }
7743 else
7744 return val0;
7745 }
7746
7747 /* Return OFF rounded upward if necessary to a multiple of
7748 ALIGNMENT (a power of 2). */
7749
7750 static unsigned int
7751 align_value (unsigned int off, unsigned int alignment)
7752 {
7753 return (off + alignment - 1) & ~(alignment - 1);
7754 }
7755
7756 /* Return the bit alignment required for field #F of template type TYPE. */
7757
7758 static unsigned int
7759 field_alignment (struct type *type, int f)
7760 {
7761 const char *name = TYPE_FIELD_NAME (type, f);
7762 int len;
7763 int align_offset;
7764
7765 /* The field name should never be null, unless the debugging information
7766 is somehow malformed. In this case, we assume the field does not
7767 require any alignment. */
7768 if (name == NULL)
7769 return 1;
7770
7771 len = strlen (name);
7772
7773 if (!isdigit (name[len - 1]))
7774 return 1;
7775
7776 if (isdigit (name[len - 2]))
7777 align_offset = len - 2;
7778 else
7779 align_offset = len - 1;
7780
7781 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7782 return TARGET_CHAR_BIT;
7783
7784 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7785 }
7786
7787 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7788
7789 static struct symbol *
7790 ada_find_any_type_symbol (const char *name)
7791 {
7792 struct symbol *sym;
7793
7794 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7795 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7796 return sym;
7797
7798 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7799 return sym;
7800 }
7801
7802 /* Find a type named NAME. Ignores ambiguity. This routine will look
7803 solely for types defined by debug info, it will not search the GDB
7804 primitive types. */
7805
7806 static struct type *
7807 ada_find_any_type (const char *name)
7808 {
7809 struct symbol *sym = ada_find_any_type_symbol (name);
7810
7811 if (sym != NULL)
7812 return SYMBOL_TYPE (sym);
7813
7814 return NULL;
7815 }
7816
7817 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7818 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7819 symbol, in which case it is returned. Otherwise, this looks for
7820 symbols whose name is that of NAME_SYM suffixed with "___XR".
7821 Return symbol if found, and NULL otherwise. */
7822
7823 struct symbol *
7824 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
7825 {
7826 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7827 struct symbol *sym;
7828
7829 if (strstr (name, "___XR") != NULL)
7830 return name_sym;
7831
7832 sym = find_old_style_renaming_symbol (name, block);
7833
7834 if (sym != NULL)
7835 return sym;
7836
7837 /* Not right yet. FIXME pnh 7/20/2007. */
7838 sym = ada_find_any_type_symbol (name);
7839 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7840 return sym;
7841 else
7842 return NULL;
7843 }
7844
7845 static struct symbol *
7846 find_old_style_renaming_symbol (const char *name, const struct block *block)
7847 {
7848 const struct symbol *function_sym = block_linkage_function (block);
7849 char *rename;
7850
7851 if (function_sym != NULL)
7852 {
7853 /* If the symbol is defined inside a function, NAME is not fully
7854 qualified. This means we need to prepend the function name
7855 as well as adding the ``___XR'' suffix to build the name of
7856 the associated renaming symbol. */
7857 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7858 /* Function names sometimes contain suffixes used
7859 for instance to qualify nested subprograms. When building
7860 the XR type name, we need to make sure that this suffix is
7861 not included. So do not include any suffix in the function
7862 name length below. */
7863 int function_name_len = ada_name_prefix_len (function_name);
7864 const int rename_len = function_name_len + 2 /* "__" */
7865 + strlen (name) + 6 /* "___XR\0" */ ;
7866
7867 /* Strip the suffix if necessary. */
7868 ada_remove_trailing_digits (function_name, &function_name_len);
7869 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7870 ada_remove_Xbn_suffix (function_name, &function_name_len);
7871
7872 /* Library-level functions are a special case, as GNAT adds
7873 a ``_ada_'' prefix to the function name to avoid namespace
7874 pollution. However, the renaming symbols themselves do not
7875 have this prefix, so we need to skip this prefix if present. */
7876 if (function_name_len > 5 /* "_ada_" */
7877 && strstr (function_name, "_ada_") == function_name)
7878 {
7879 function_name += 5;
7880 function_name_len -= 5;
7881 }
7882
7883 rename = (char *) alloca (rename_len * sizeof (char));
7884 strncpy (rename, function_name, function_name_len);
7885 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7886 "__%s___XR", name);
7887 }
7888 else
7889 {
7890 const int rename_len = strlen (name) + 6;
7891
7892 rename = (char *) alloca (rename_len * sizeof (char));
7893 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
7894 }
7895
7896 return ada_find_any_type_symbol (rename);
7897 }
7898
7899 /* Because of GNAT encoding conventions, several GDB symbols may match a
7900 given type name. If the type denoted by TYPE0 is to be preferred to
7901 that of TYPE1 for purposes of type printing, return non-zero;
7902 otherwise return 0. */
7903
7904 int
7905 ada_prefer_type (struct type *type0, struct type *type1)
7906 {
7907 if (type1 == NULL)
7908 return 1;
7909 else if (type0 == NULL)
7910 return 0;
7911 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7912 return 1;
7913 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7914 return 0;
7915 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7916 return 1;
7917 else if (ada_is_constrained_packed_array_type (type0))
7918 return 1;
7919 else if (ada_is_array_descriptor_type (type0)
7920 && !ada_is_array_descriptor_type (type1))
7921 return 1;
7922 else
7923 {
7924 const char *type0_name = type_name_no_tag (type0);
7925 const char *type1_name = type_name_no_tag (type1);
7926
7927 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7928 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7929 return 1;
7930 }
7931 return 0;
7932 }
7933
7934 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
7935 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7936
7937 const char *
7938 ada_type_name (struct type *type)
7939 {
7940 if (type == NULL)
7941 return NULL;
7942 else if (TYPE_NAME (type) != NULL)
7943 return TYPE_NAME (type);
7944 else
7945 return TYPE_TAG_NAME (type);
7946 }
7947
7948 /* Search the list of "descriptive" types associated to TYPE for a type
7949 whose name is NAME. */
7950
7951 static struct type *
7952 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7953 {
7954 struct type *result, *tmp;
7955
7956 if (ada_ignore_descriptive_types_p)
7957 return NULL;
7958
7959 /* If there no descriptive-type info, then there is no parallel type
7960 to be found. */
7961 if (!HAVE_GNAT_AUX_INFO (type))
7962 return NULL;
7963
7964 result = TYPE_DESCRIPTIVE_TYPE (type);
7965 while (result != NULL)
7966 {
7967 const char *result_name = ada_type_name (result);
7968
7969 if (result_name == NULL)
7970 {
7971 warning (_("unexpected null name on descriptive type"));
7972 return NULL;
7973 }
7974
7975 /* If the names match, stop. */
7976 if (strcmp (result_name, name) == 0)
7977 break;
7978
7979 /* Otherwise, look at the next item on the list, if any. */
7980 if (HAVE_GNAT_AUX_INFO (result))
7981 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7982 else
7983 tmp = NULL;
7984
7985 /* If not found either, try after having resolved the typedef. */
7986 if (tmp != NULL)
7987 result = tmp;
7988 else
7989 {
7990 result = check_typedef (result);
7991 if (HAVE_GNAT_AUX_INFO (result))
7992 result = TYPE_DESCRIPTIVE_TYPE (result);
7993 else
7994 result = NULL;
7995 }
7996 }
7997
7998 /* If we didn't find a match, see whether this is a packed array. With
7999 older compilers, the descriptive type information is either absent or
8000 irrelevant when it comes to packed arrays so the above lookup fails.
8001 Fall back to using a parallel lookup by name in this case. */
8002 if (result == NULL && ada_is_constrained_packed_array_type (type))
8003 return ada_find_any_type (name);
8004
8005 return result;
8006 }
8007
8008 /* Find a parallel type to TYPE with the specified NAME, using the
8009 descriptive type taken from the debugging information, if available,
8010 and otherwise using the (slower) name-based method. */
8011
8012 static struct type *
8013 ada_find_parallel_type_with_name (struct type *type, const char *name)
8014 {
8015 struct type *result = NULL;
8016
8017 if (HAVE_GNAT_AUX_INFO (type))
8018 result = find_parallel_type_by_descriptive_type (type, name);
8019 else
8020 result = ada_find_any_type (name);
8021
8022 return result;
8023 }
8024
8025 /* Same as above, but specify the name of the parallel type by appending
8026 SUFFIX to the name of TYPE. */
8027
8028 struct type *
8029 ada_find_parallel_type (struct type *type, const char *suffix)
8030 {
8031 char *name;
8032 const char *type_name = ada_type_name (type);
8033 int len;
8034
8035 if (type_name == NULL)
8036 return NULL;
8037
8038 len = strlen (type_name);
8039
8040 name = (char *) alloca (len + strlen (suffix) + 1);
8041
8042 strcpy (name, type_name);
8043 strcpy (name + len, suffix);
8044
8045 return ada_find_parallel_type_with_name (type, name);
8046 }
8047
8048 /* If TYPE is a variable-size record type, return the corresponding template
8049 type describing its fields. Otherwise, return NULL. */
8050
8051 static struct type *
8052 dynamic_template_type (struct type *type)
8053 {
8054 type = ada_check_typedef (type);
8055
8056 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
8057 || ada_type_name (type) == NULL)
8058 return NULL;
8059 else
8060 {
8061 int len = strlen (ada_type_name (type));
8062
8063 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8064 return type;
8065 else
8066 return ada_find_parallel_type (type, "___XVE");
8067 }
8068 }
8069
8070 /* Assuming that TEMPL_TYPE is a union or struct type, returns
8071 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
8072
8073 static int
8074 is_dynamic_field (struct type *templ_type, int field_num)
8075 {
8076 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
8077
8078 return name != NULL
8079 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8080 && strstr (name, "___XVL") != NULL;
8081 }
8082
8083 /* The index of the variant field of TYPE, or -1 if TYPE does not
8084 represent a variant record type. */
8085
8086 static int
8087 variant_field_index (struct type *type)
8088 {
8089 int f;
8090
8091 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8092 return -1;
8093
8094 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8095 {
8096 if (ada_is_variant_part (type, f))
8097 return f;
8098 }
8099 return -1;
8100 }
8101
8102 /* A record type with no fields. */
8103
8104 static struct type *
8105 empty_record (struct type *templ)
8106 {
8107 struct type *type = alloc_type_copy (templ);
8108
8109 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8110 TYPE_NFIELDS (type) = 0;
8111 TYPE_FIELDS (type) = NULL;
8112 INIT_CPLUS_SPECIFIC (type);
8113 TYPE_NAME (type) = "<empty>";
8114 TYPE_TAG_NAME (type) = NULL;
8115 TYPE_LENGTH (type) = 0;
8116 return type;
8117 }
8118
8119 /* An ordinary record type (with fixed-length fields) that describes
8120 the value of type TYPE at VALADDR or ADDRESS (see comments at
8121 the beginning of this section) VAL according to GNAT conventions.
8122 DVAL0 should describe the (portion of a) record that contains any
8123 necessary discriminants. It should be NULL if value_type (VAL) is
8124 an outer-level type (i.e., as opposed to a branch of a variant.) A
8125 variant field (unless unchecked) is replaced by a particular branch
8126 of the variant.
8127
8128 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8129 length are not statically known are discarded. As a consequence,
8130 VALADDR, ADDRESS and DVAL0 are ignored.
8131
8132 NOTE: Limitations: For now, we assume that dynamic fields and
8133 variants occupy whole numbers of bytes. However, they need not be
8134 byte-aligned. */
8135
8136 struct type *
8137 ada_template_to_fixed_record_type_1 (struct type *type,
8138 const gdb_byte *valaddr,
8139 CORE_ADDR address, struct value *dval0,
8140 int keep_dynamic_fields)
8141 {
8142 struct value *mark = value_mark ();
8143 struct value *dval;
8144 struct type *rtype;
8145 int nfields, bit_len;
8146 int variant_field;
8147 long off;
8148 int fld_bit_len;
8149 int f;
8150
8151 /* Compute the number of fields in this record type that are going
8152 to be processed: unless keep_dynamic_fields, this includes only
8153 fields whose position and length are static will be processed. */
8154 if (keep_dynamic_fields)
8155 nfields = TYPE_NFIELDS (type);
8156 else
8157 {
8158 nfields = 0;
8159 while (nfields < TYPE_NFIELDS (type)
8160 && !ada_is_variant_part (type, nfields)
8161 && !is_dynamic_field (type, nfields))
8162 nfields++;
8163 }
8164
8165 rtype = alloc_type_copy (type);
8166 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8167 INIT_CPLUS_SPECIFIC (rtype);
8168 TYPE_NFIELDS (rtype) = nfields;
8169 TYPE_FIELDS (rtype) = (struct field *)
8170 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8171 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8172 TYPE_NAME (rtype) = ada_type_name (type);
8173 TYPE_TAG_NAME (rtype) = NULL;
8174 TYPE_FIXED_INSTANCE (rtype) = 1;
8175
8176 off = 0;
8177 bit_len = 0;
8178 variant_field = -1;
8179
8180 for (f = 0; f < nfields; f += 1)
8181 {
8182 off = align_value (off, field_alignment (type, f))
8183 + TYPE_FIELD_BITPOS (type, f);
8184 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
8185 TYPE_FIELD_BITSIZE (rtype, f) = 0;
8186
8187 if (ada_is_variant_part (type, f))
8188 {
8189 variant_field = f;
8190 fld_bit_len = 0;
8191 }
8192 else if (is_dynamic_field (type, f))
8193 {
8194 const gdb_byte *field_valaddr = valaddr;
8195 CORE_ADDR field_address = address;
8196 struct type *field_type =
8197 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8198
8199 if (dval0 == NULL)
8200 {
8201 /* rtype's length is computed based on the run-time
8202 value of discriminants. If the discriminants are not
8203 initialized, the type size may be completely bogus and
8204 GDB may fail to allocate a value for it. So check the
8205 size first before creating the value. */
8206 ada_ensure_varsize_limit (rtype);
8207 /* Using plain value_from_contents_and_address here
8208 causes problems because we will end up trying to
8209 resolve a type that is currently being
8210 constructed. */
8211 dval = value_from_contents_and_address_unresolved (rtype,
8212 valaddr,
8213 address);
8214 rtype = value_type (dval);
8215 }
8216 else
8217 dval = dval0;
8218
8219 /* If the type referenced by this field is an aligner type, we need
8220 to unwrap that aligner type, because its size might not be set.
8221 Keeping the aligner type would cause us to compute the wrong
8222 size for this field, impacting the offset of the all the fields
8223 that follow this one. */
8224 if (ada_is_aligner_type (field_type))
8225 {
8226 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8227
8228 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8229 field_address = cond_offset_target (field_address, field_offset);
8230 field_type = ada_aligned_type (field_type);
8231 }
8232
8233 field_valaddr = cond_offset_host (field_valaddr,
8234 off / TARGET_CHAR_BIT);
8235 field_address = cond_offset_target (field_address,
8236 off / TARGET_CHAR_BIT);
8237
8238 /* Get the fixed type of the field. Note that, in this case,
8239 we do not want to get the real type out of the tag: if
8240 the current field is the parent part of a tagged record,
8241 we will get the tag of the object. Clearly wrong: the real
8242 type of the parent is not the real type of the child. We
8243 would end up in an infinite loop. */
8244 field_type = ada_get_base_type (field_type);
8245 field_type = ada_to_fixed_type (field_type, field_valaddr,
8246 field_address, dval, 0);
8247 /* If the field size is already larger than the maximum
8248 object size, then the record itself will necessarily
8249 be larger than the maximum object size. We need to make
8250 this check now, because the size might be so ridiculously
8251 large (due to an uninitialized variable in the inferior)
8252 that it would cause an overflow when adding it to the
8253 record size. */
8254 ada_ensure_varsize_limit (field_type);
8255
8256 TYPE_FIELD_TYPE (rtype, f) = field_type;
8257 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8258 /* The multiplication can potentially overflow. But because
8259 the field length has been size-checked just above, and
8260 assuming that the maximum size is a reasonable value,
8261 an overflow should not happen in practice. So rather than
8262 adding overflow recovery code to this already complex code,
8263 we just assume that it's not going to happen. */
8264 fld_bit_len =
8265 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8266 }
8267 else
8268 {
8269 /* Note: If this field's type is a typedef, it is important
8270 to preserve the typedef layer.
8271
8272 Otherwise, we might be transforming a typedef to a fat
8273 pointer (encoding a pointer to an unconstrained array),
8274 into a basic fat pointer (encoding an unconstrained
8275 array). As both types are implemented using the same
8276 structure, the typedef is the only clue which allows us
8277 to distinguish between the two options. Stripping it
8278 would prevent us from printing this field appropriately. */
8279 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8280 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8281 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8282 fld_bit_len =
8283 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8284 else
8285 {
8286 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8287
8288 /* We need to be careful of typedefs when computing
8289 the length of our field. If this is a typedef,
8290 get the length of the target type, not the length
8291 of the typedef. */
8292 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8293 field_type = ada_typedef_target_type (field_type);
8294
8295 fld_bit_len =
8296 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8297 }
8298 }
8299 if (off + fld_bit_len > bit_len)
8300 bit_len = off + fld_bit_len;
8301 off += fld_bit_len;
8302 TYPE_LENGTH (rtype) =
8303 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8304 }
8305
8306 /* We handle the variant part, if any, at the end because of certain
8307 odd cases in which it is re-ordered so as NOT to be the last field of
8308 the record. This can happen in the presence of representation
8309 clauses. */
8310 if (variant_field >= 0)
8311 {
8312 struct type *branch_type;
8313
8314 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8315
8316 if (dval0 == NULL)
8317 {
8318 /* Using plain value_from_contents_and_address here causes
8319 problems because we will end up trying to resolve a type
8320 that is currently being constructed. */
8321 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8322 address);
8323 rtype = value_type (dval);
8324 }
8325 else
8326 dval = dval0;
8327
8328 branch_type =
8329 to_fixed_variant_branch_type
8330 (TYPE_FIELD_TYPE (type, variant_field),
8331 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8332 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8333 if (branch_type == NULL)
8334 {
8335 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8336 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8337 TYPE_NFIELDS (rtype) -= 1;
8338 }
8339 else
8340 {
8341 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8342 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8343 fld_bit_len =
8344 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8345 TARGET_CHAR_BIT;
8346 if (off + fld_bit_len > bit_len)
8347 bit_len = off + fld_bit_len;
8348 TYPE_LENGTH (rtype) =
8349 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8350 }
8351 }
8352
8353 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8354 should contain the alignment of that record, which should be a strictly
8355 positive value. If null or negative, then something is wrong, most
8356 probably in the debug info. In that case, we don't round up the size
8357 of the resulting type. If this record is not part of another structure,
8358 the current RTYPE length might be good enough for our purposes. */
8359 if (TYPE_LENGTH (type) <= 0)
8360 {
8361 if (TYPE_NAME (rtype))
8362 warning (_("Invalid type size for `%s' detected: %d."),
8363 TYPE_NAME (rtype), TYPE_LENGTH (type));
8364 else
8365 warning (_("Invalid type size for <unnamed> detected: %d."),
8366 TYPE_LENGTH (type));
8367 }
8368 else
8369 {
8370 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8371 TYPE_LENGTH (type));
8372 }
8373
8374 value_free_to_mark (mark);
8375 if (TYPE_LENGTH (rtype) > varsize_limit)
8376 error (_("record type with dynamic size is larger than varsize-limit"));
8377 return rtype;
8378 }
8379
8380 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8381 of 1. */
8382
8383 static struct type *
8384 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8385 CORE_ADDR address, struct value *dval0)
8386 {
8387 return ada_template_to_fixed_record_type_1 (type, valaddr,
8388 address, dval0, 1);
8389 }
8390
8391 /* An ordinary record type in which ___XVL-convention fields and
8392 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8393 static approximations, containing all possible fields. Uses
8394 no runtime values. Useless for use in values, but that's OK,
8395 since the results are used only for type determinations. Works on both
8396 structs and unions. Representation note: to save space, we memorize
8397 the result of this function in the TYPE_TARGET_TYPE of the
8398 template type. */
8399
8400 static struct type *
8401 template_to_static_fixed_type (struct type *type0)
8402 {
8403 struct type *type;
8404 int nfields;
8405 int f;
8406
8407 /* No need no do anything if the input type is already fixed. */
8408 if (TYPE_FIXED_INSTANCE (type0))
8409 return type0;
8410
8411 /* Likewise if we already have computed the static approximation. */
8412 if (TYPE_TARGET_TYPE (type0) != NULL)
8413 return TYPE_TARGET_TYPE (type0);
8414
8415 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8416 type = type0;
8417 nfields = TYPE_NFIELDS (type0);
8418
8419 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8420 recompute all over next time. */
8421 TYPE_TARGET_TYPE (type0) = type;
8422
8423 for (f = 0; f < nfields; f += 1)
8424 {
8425 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
8426 struct type *new_type;
8427
8428 if (is_dynamic_field (type0, f))
8429 {
8430 field_type = ada_check_typedef (field_type);
8431 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8432 }
8433 else
8434 new_type = static_unwrap_type (field_type);
8435
8436 if (new_type != field_type)
8437 {
8438 /* Clone TYPE0 only the first time we get a new field type. */
8439 if (type == type0)
8440 {
8441 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8442 TYPE_CODE (type) = TYPE_CODE (type0);
8443 INIT_CPLUS_SPECIFIC (type);
8444 TYPE_NFIELDS (type) = nfields;
8445 TYPE_FIELDS (type) = (struct field *)
8446 TYPE_ALLOC (type, nfields * sizeof (struct field));
8447 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8448 sizeof (struct field) * nfields);
8449 TYPE_NAME (type) = ada_type_name (type0);
8450 TYPE_TAG_NAME (type) = NULL;
8451 TYPE_FIXED_INSTANCE (type) = 1;
8452 TYPE_LENGTH (type) = 0;
8453 }
8454 TYPE_FIELD_TYPE (type, f) = new_type;
8455 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8456 }
8457 }
8458
8459 return type;
8460 }
8461
8462 /* Given an object of type TYPE whose contents are at VALADDR and
8463 whose address in memory is ADDRESS, returns a revision of TYPE,
8464 which should be a non-dynamic-sized record, in which the variant
8465 part, if any, is replaced with the appropriate branch. Looks
8466 for discriminant values in DVAL0, which can be NULL if the record
8467 contains the necessary discriminant values. */
8468
8469 static struct type *
8470 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8471 CORE_ADDR address, struct value *dval0)
8472 {
8473 struct value *mark = value_mark ();
8474 struct value *dval;
8475 struct type *rtype;
8476 struct type *branch_type;
8477 int nfields = TYPE_NFIELDS (type);
8478 int variant_field = variant_field_index (type);
8479
8480 if (variant_field == -1)
8481 return type;
8482
8483 if (dval0 == NULL)
8484 {
8485 dval = value_from_contents_and_address (type, valaddr, address);
8486 type = value_type (dval);
8487 }
8488 else
8489 dval = dval0;
8490
8491 rtype = alloc_type_copy (type);
8492 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8493 INIT_CPLUS_SPECIFIC (rtype);
8494 TYPE_NFIELDS (rtype) = nfields;
8495 TYPE_FIELDS (rtype) =
8496 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8497 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8498 sizeof (struct field) * nfields);
8499 TYPE_NAME (rtype) = ada_type_name (type);
8500 TYPE_TAG_NAME (rtype) = NULL;
8501 TYPE_FIXED_INSTANCE (rtype) = 1;
8502 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8503
8504 branch_type = to_fixed_variant_branch_type
8505 (TYPE_FIELD_TYPE (type, variant_field),
8506 cond_offset_host (valaddr,
8507 TYPE_FIELD_BITPOS (type, variant_field)
8508 / TARGET_CHAR_BIT),
8509 cond_offset_target (address,
8510 TYPE_FIELD_BITPOS (type, variant_field)
8511 / TARGET_CHAR_BIT), dval);
8512 if (branch_type == NULL)
8513 {
8514 int f;
8515
8516 for (f = variant_field + 1; f < nfields; f += 1)
8517 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8518 TYPE_NFIELDS (rtype) -= 1;
8519 }
8520 else
8521 {
8522 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8523 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8524 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8525 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8526 }
8527 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8528
8529 value_free_to_mark (mark);
8530 return rtype;
8531 }
8532
8533 /* An ordinary record type (with fixed-length fields) that describes
8534 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8535 beginning of this section]. Any necessary discriminants' values
8536 should be in DVAL, a record value; it may be NULL if the object
8537 at ADDR itself contains any necessary discriminant values.
8538 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8539 values from the record are needed. Except in the case that DVAL,
8540 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8541 unchecked) is replaced by a particular branch of the variant.
8542
8543 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8544 is questionable and may be removed. It can arise during the
8545 processing of an unconstrained-array-of-record type where all the
8546 variant branches have exactly the same size. This is because in
8547 such cases, the compiler does not bother to use the XVS convention
8548 when encoding the record. I am currently dubious of this
8549 shortcut and suspect the compiler should be altered. FIXME. */
8550
8551 static struct type *
8552 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8553 CORE_ADDR address, struct value *dval)
8554 {
8555 struct type *templ_type;
8556
8557 if (TYPE_FIXED_INSTANCE (type0))
8558 return type0;
8559
8560 templ_type = dynamic_template_type (type0);
8561
8562 if (templ_type != NULL)
8563 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8564 else if (variant_field_index (type0) >= 0)
8565 {
8566 if (dval == NULL && valaddr == NULL && address == 0)
8567 return type0;
8568 return to_record_with_fixed_variant_part (type0, valaddr, address,
8569 dval);
8570 }
8571 else
8572 {
8573 TYPE_FIXED_INSTANCE (type0) = 1;
8574 return type0;
8575 }
8576
8577 }
8578
8579 /* An ordinary record type (with fixed-length fields) that describes
8580 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8581 union type. Any necessary discriminants' values should be in DVAL,
8582 a record value. That is, this routine selects the appropriate
8583 branch of the union at ADDR according to the discriminant value
8584 indicated in the union's type name. Returns VAR_TYPE0 itself if
8585 it represents a variant subject to a pragma Unchecked_Union. */
8586
8587 static struct type *
8588 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8589 CORE_ADDR address, struct value *dval)
8590 {
8591 int which;
8592 struct type *templ_type;
8593 struct type *var_type;
8594
8595 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8596 var_type = TYPE_TARGET_TYPE (var_type0);
8597 else
8598 var_type = var_type0;
8599
8600 templ_type = ada_find_parallel_type (var_type, "___XVU");
8601
8602 if (templ_type != NULL)
8603 var_type = templ_type;
8604
8605 if (is_unchecked_variant (var_type, value_type (dval)))
8606 return var_type0;
8607 which =
8608 ada_which_variant_applies (var_type,
8609 value_type (dval), value_contents (dval));
8610
8611 if (which < 0)
8612 return empty_record (var_type);
8613 else if (is_dynamic_field (var_type, which))
8614 return to_fixed_record_type
8615 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8616 valaddr, address, dval);
8617 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8618 return
8619 to_fixed_record_type
8620 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8621 else
8622 return TYPE_FIELD_TYPE (var_type, which);
8623 }
8624
8625 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8626 ENCODING_TYPE, a type following the GNAT conventions for discrete
8627 type encodings, only carries redundant information. */
8628
8629 static int
8630 ada_is_redundant_range_encoding (struct type *range_type,
8631 struct type *encoding_type)
8632 {
8633 struct type *fixed_range_type;
8634 const char *bounds_str;
8635 int n;
8636 LONGEST lo, hi;
8637
8638 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8639
8640 if (TYPE_CODE (get_base_type (range_type))
8641 != TYPE_CODE (get_base_type (encoding_type)))
8642 {
8643 /* The compiler probably used a simple base type to describe
8644 the range type instead of the range's actual base type,
8645 expecting us to get the real base type from the encoding
8646 anyway. In this situation, the encoding cannot be ignored
8647 as redundant. */
8648 return 0;
8649 }
8650
8651 if (is_dynamic_type (range_type))
8652 return 0;
8653
8654 if (TYPE_NAME (encoding_type) == NULL)
8655 return 0;
8656
8657 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8658 if (bounds_str == NULL)
8659 return 0;
8660
8661 n = 8; /* Skip "___XDLU_". */
8662 if (!ada_scan_number (bounds_str, n, &lo, &n))
8663 return 0;
8664 if (TYPE_LOW_BOUND (range_type) != lo)
8665 return 0;
8666
8667 n += 2; /* Skip the "__" separator between the two bounds. */
8668 if (!ada_scan_number (bounds_str, n, &hi, &n))
8669 return 0;
8670 if (TYPE_HIGH_BOUND (range_type) != hi)
8671 return 0;
8672
8673 return 1;
8674 }
8675
8676 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8677 a type following the GNAT encoding for describing array type
8678 indices, only carries redundant information. */
8679
8680 static int
8681 ada_is_redundant_index_type_desc (struct type *array_type,
8682 struct type *desc_type)
8683 {
8684 struct type *this_layer = check_typedef (array_type);
8685 int i;
8686
8687 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8688 {
8689 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8690 TYPE_FIELD_TYPE (desc_type, i)))
8691 return 0;
8692 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8693 }
8694
8695 return 1;
8696 }
8697
8698 /* Assuming that TYPE0 is an array type describing the type of a value
8699 at ADDR, and that DVAL describes a record containing any
8700 discriminants used in TYPE0, returns a type for the value that
8701 contains no dynamic components (that is, no components whose sizes
8702 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8703 true, gives an error message if the resulting type's size is over
8704 varsize_limit. */
8705
8706 static struct type *
8707 to_fixed_array_type (struct type *type0, struct value *dval,
8708 int ignore_too_big)
8709 {
8710 struct type *index_type_desc;
8711 struct type *result;
8712 int constrained_packed_array_p;
8713 static const char *xa_suffix = "___XA";
8714
8715 type0 = ada_check_typedef (type0);
8716 if (TYPE_FIXED_INSTANCE (type0))
8717 return type0;
8718
8719 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8720 if (constrained_packed_array_p)
8721 type0 = decode_constrained_packed_array_type (type0);
8722
8723 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8724
8725 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8726 encoding suffixed with 'P' may still be generated. If so,
8727 it should be used to find the XA type. */
8728
8729 if (index_type_desc == NULL)
8730 {
8731 const char *type_name = ada_type_name (type0);
8732
8733 if (type_name != NULL)
8734 {
8735 const int len = strlen (type_name);
8736 char *name = (char *) alloca (len + strlen (xa_suffix));
8737
8738 if (type_name[len - 1] == 'P')
8739 {
8740 strcpy (name, type_name);
8741 strcpy (name + len - 1, xa_suffix);
8742 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8743 }
8744 }
8745 }
8746
8747 ada_fixup_array_indexes_type (index_type_desc);
8748 if (index_type_desc != NULL
8749 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8750 {
8751 /* Ignore this ___XA parallel type, as it does not bring any
8752 useful information. This allows us to avoid creating fixed
8753 versions of the array's index types, which would be identical
8754 to the original ones. This, in turn, can also help avoid
8755 the creation of fixed versions of the array itself. */
8756 index_type_desc = NULL;
8757 }
8758
8759 if (index_type_desc == NULL)
8760 {
8761 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8762
8763 /* NOTE: elt_type---the fixed version of elt_type0---should never
8764 depend on the contents of the array in properly constructed
8765 debugging data. */
8766 /* Create a fixed version of the array element type.
8767 We're not providing the address of an element here,
8768 and thus the actual object value cannot be inspected to do
8769 the conversion. This should not be a problem, since arrays of
8770 unconstrained objects are not allowed. In particular, all
8771 the elements of an array of a tagged type should all be of
8772 the same type specified in the debugging info. No need to
8773 consult the object tag. */
8774 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8775
8776 /* Make sure we always create a new array type when dealing with
8777 packed array types, since we're going to fix-up the array
8778 type length and element bitsize a little further down. */
8779 if (elt_type0 == elt_type && !constrained_packed_array_p)
8780 result = type0;
8781 else
8782 result = create_array_type (alloc_type_copy (type0),
8783 elt_type, TYPE_INDEX_TYPE (type0));
8784 }
8785 else
8786 {
8787 int i;
8788 struct type *elt_type0;
8789
8790 elt_type0 = type0;
8791 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8792 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8793
8794 /* NOTE: result---the fixed version of elt_type0---should never
8795 depend on the contents of the array in properly constructed
8796 debugging data. */
8797 /* Create a fixed version of the array element type.
8798 We're not providing the address of an element here,
8799 and thus the actual object value cannot be inspected to do
8800 the conversion. This should not be a problem, since arrays of
8801 unconstrained objects are not allowed. In particular, all
8802 the elements of an array of a tagged type should all be of
8803 the same type specified in the debugging info. No need to
8804 consult the object tag. */
8805 result =
8806 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8807
8808 elt_type0 = type0;
8809 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8810 {
8811 struct type *range_type =
8812 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8813
8814 result = create_array_type (alloc_type_copy (elt_type0),
8815 result, range_type);
8816 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8817 }
8818 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8819 error (_("array type with dynamic size is larger than varsize-limit"));
8820 }
8821
8822 /* We want to preserve the type name. This can be useful when
8823 trying to get the type name of a value that has already been
8824 printed (for instance, if the user did "print VAR; whatis $". */
8825 TYPE_NAME (result) = TYPE_NAME (type0);
8826
8827 if (constrained_packed_array_p)
8828 {
8829 /* So far, the resulting type has been created as if the original
8830 type was a regular (non-packed) array type. As a result, the
8831 bitsize of the array elements needs to be set again, and the array
8832 length needs to be recomputed based on that bitsize. */
8833 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8834 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8835
8836 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8837 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8838 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8839 TYPE_LENGTH (result)++;
8840 }
8841
8842 TYPE_FIXED_INSTANCE (result) = 1;
8843 return result;
8844 }
8845
8846
8847 /* A standard type (containing no dynamically sized components)
8848 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8849 DVAL describes a record containing any discriminants used in TYPE0,
8850 and may be NULL if there are none, or if the object of type TYPE at
8851 ADDRESS or in VALADDR contains these discriminants.
8852
8853 If CHECK_TAG is not null, in the case of tagged types, this function
8854 attempts to locate the object's tag and use it to compute the actual
8855 type. However, when ADDRESS is null, we cannot use it to determine the
8856 location of the tag, and therefore compute the tagged type's actual type.
8857 So we return the tagged type without consulting the tag. */
8858
8859 static struct type *
8860 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8861 CORE_ADDR address, struct value *dval, int check_tag)
8862 {
8863 type = ada_check_typedef (type);
8864 switch (TYPE_CODE (type))
8865 {
8866 default:
8867 return type;
8868 case TYPE_CODE_STRUCT:
8869 {
8870 struct type *static_type = to_static_fixed_type (type);
8871 struct type *fixed_record_type =
8872 to_fixed_record_type (type, valaddr, address, NULL);
8873
8874 /* If STATIC_TYPE is a tagged type and we know the object's address,
8875 then we can determine its tag, and compute the object's actual
8876 type from there. Note that we have to use the fixed record
8877 type (the parent part of the record may have dynamic fields
8878 and the way the location of _tag is expressed may depend on
8879 them). */
8880
8881 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8882 {
8883 struct value *tag =
8884 value_tag_from_contents_and_address
8885 (fixed_record_type,
8886 valaddr,
8887 address);
8888 struct type *real_type = type_from_tag (tag);
8889 struct value *obj =
8890 value_from_contents_and_address (fixed_record_type,
8891 valaddr,
8892 address);
8893 fixed_record_type = value_type (obj);
8894 if (real_type != NULL)
8895 return to_fixed_record_type
8896 (real_type, NULL,
8897 value_address (ada_tag_value_at_base_address (obj)), NULL);
8898 }
8899
8900 /* Check to see if there is a parallel ___XVZ variable.
8901 If there is, then it provides the actual size of our type. */
8902 else if (ada_type_name (fixed_record_type) != NULL)
8903 {
8904 const char *name = ada_type_name (fixed_record_type);
8905 char *xvz_name
8906 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
8907 LONGEST size;
8908
8909 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8910 if (get_int_var_value (xvz_name, size)
8911 && TYPE_LENGTH (fixed_record_type) != size)
8912 {
8913 fixed_record_type = copy_type (fixed_record_type);
8914 TYPE_LENGTH (fixed_record_type) = size;
8915
8916 /* The FIXED_RECORD_TYPE may have be a stub. We have
8917 observed this when the debugging info is STABS, and
8918 apparently it is something that is hard to fix.
8919
8920 In practice, we don't need the actual type definition
8921 at all, because the presence of the XVZ variable allows us
8922 to assume that there must be a XVS type as well, which we
8923 should be able to use later, when we need the actual type
8924 definition.
8925
8926 In the meantime, pretend that the "fixed" type we are
8927 returning is NOT a stub, because this can cause trouble
8928 when using this type to create new types targeting it.
8929 Indeed, the associated creation routines often check
8930 whether the target type is a stub and will try to replace
8931 it, thus using a type with the wrong size. This, in turn,
8932 might cause the new type to have the wrong size too.
8933 Consider the case of an array, for instance, where the size
8934 of the array is computed from the number of elements in
8935 our array multiplied by the size of its element. */
8936 TYPE_STUB (fixed_record_type) = 0;
8937 }
8938 }
8939 return fixed_record_type;
8940 }
8941 case TYPE_CODE_ARRAY:
8942 return to_fixed_array_type (type, dval, 1);
8943 case TYPE_CODE_UNION:
8944 if (dval == NULL)
8945 return type;
8946 else
8947 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8948 }
8949 }
8950
8951 /* The same as ada_to_fixed_type_1, except that it preserves the type
8952 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8953
8954 The typedef layer needs be preserved in order to differentiate between
8955 arrays and array pointers when both types are implemented using the same
8956 fat pointer. In the array pointer case, the pointer is encoded as
8957 a typedef of the pointer type. For instance, considering:
8958
8959 type String_Access is access String;
8960 S1 : String_Access := null;
8961
8962 To the debugger, S1 is defined as a typedef of type String. But
8963 to the user, it is a pointer. So if the user tries to print S1,
8964 we should not dereference the array, but print the array address
8965 instead.
8966
8967 If we didn't preserve the typedef layer, we would lose the fact that
8968 the type is to be presented as a pointer (needs de-reference before
8969 being printed). And we would also use the source-level type name. */
8970
8971 struct type *
8972 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8973 CORE_ADDR address, struct value *dval, int check_tag)
8974
8975 {
8976 struct type *fixed_type =
8977 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8978
8979 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8980 then preserve the typedef layer.
8981
8982 Implementation note: We can only check the main-type portion of
8983 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8984 from TYPE now returns a type that has the same instance flags
8985 as TYPE. For instance, if TYPE is a "typedef const", and its
8986 target type is a "struct", then the typedef elimination will return
8987 a "const" version of the target type. See check_typedef for more
8988 details about how the typedef layer elimination is done.
8989
8990 brobecker/2010-11-19: It seems to me that the only case where it is
8991 useful to preserve the typedef layer is when dealing with fat pointers.
8992 Perhaps, we could add a check for that and preserve the typedef layer
8993 only in that situation. But this seems unecessary so far, probably
8994 because we call check_typedef/ada_check_typedef pretty much everywhere.
8995 */
8996 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8997 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8998 == TYPE_MAIN_TYPE (fixed_type)))
8999 return type;
9000
9001 return fixed_type;
9002 }
9003
9004 /* A standard (static-sized) type corresponding as well as possible to
9005 TYPE0, but based on no runtime data. */
9006
9007 static struct type *
9008 to_static_fixed_type (struct type *type0)
9009 {
9010 struct type *type;
9011
9012 if (type0 == NULL)
9013 return NULL;
9014
9015 if (TYPE_FIXED_INSTANCE (type0))
9016 return type0;
9017
9018 type0 = ada_check_typedef (type0);
9019
9020 switch (TYPE_CODE (type0))
9021 {
9022 default:
9023 return type0;
9024 case TYPE_CODE_STRUCT:
9025 type = dynamic_template_type (type0);
9026 if (type != NULL)
9027 return template_to_static_fixed_type (type);
9028 else
9029 return template_to_static_fixed_type (type0);
9030 case TYPE_CODE_UNION:
9031 type = ada_find_parallel_type (type0, "___XVU");
9032 if (type != NULL)
9033 return template_to_static_fixed_type (type);
9034 else
9035 return template_to_static_fixed_type (type0);
9036 }
9037 }
9038
9039 /* A static approximation of TYPE with all type wrappers removed. */
9040
9041 static struct type *
9042 static_unwrap_type (struct type *type)
9043 {
9044 if (ada_is_aligner_type (type))
9045 {
9046 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
9047 if (ada_type_name (type1) == NULL)
9048 TYPE_NAME (type1) = ada_type_name (type);
9049
9050 return static_unwrap_type (type1);
9051 }
9052 else
9053 {
9054 struct type *raw_real_type = ada_get_base_type (type);
9055
9056 if (raw_real_type == type)
9057 return type;
9058 else
9059 return to_static_fixed_type (raw_real_type);
9060 }
9061 }
9062
9063 /* In some cases, incomplete and private types require
9064 cross-references that are not resolved as records (for example,
9065 type Foo;
9066 type FooP is access Foo;
9067 V: FooP;
9068 type Foo is array ...;
9069 ). In these cases, since there is no mechanism for producing
9070 cross-references to such types, we instead substitute for FooP a
9071 stub enumeration type that is nowhere resolved, and whose tag is
9072 the name of the actual type. Call these types "non-record stubs". */
9073
9074 /* A type equivalent to TYPE that is not a non-record stub, if one
9075 exists, otherwise TYPE. */
9076
9077 struct type *
9078 ada_check_typedef (struct type *type)
9079 {
9080 if (type == NULL)
9081 return NULL;
9082
9083 /* If our type is a typedef type of a fat pointer, then we're done.
9084 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9085 what allows us to distinguish between fat pointers that represent
9086 array types, and fat pointers that represent array access types
9087 (in both cases, the compiler implements them as fat pointers). */
9088 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9089 && is_thick_pntr (ada_typedef_target_type (type)))
9090 return type;
9091
9092 type = check_typedef (type);
9093 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
9094 || !TYPE_STUB (type)
9095 || TYPE_TAG_NAME (type) == NULL)
9096 return type;
9097 else
9098 {
9099 const char *name = TYPE_TAG_NAME (type);
9100 struct type *type1 = ada_find_any_type (name);
9101
9102 if (type1 == NULL)
9103 return type;
9104
9105 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9106 stubs pointing to arrays, as we don't create symbols for array
9107 types, only for the typedef-to-array types). If that's the case,
9108 strip the typedef layer. */
9109 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9110 type1 = ada_check_typedef (type1);
9111
9112 return type1;
9113 }
9114 }
9115
9116 /* A value representing the data at VALADDR/ADDRESS as described by
9117 type TYPE0, but with a standard (static-sized) type that correctly
9118 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9119 type, then return VAL0 [this feature is simply to avoid redundant
9120 creation of struct values]. */
9121
9122 static struct value *
9123 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9124 struct value *val0)
9125 {
9126 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
9127
9128 if (type == type0 && val0 != NULL)
9129 return val0;
9130 else
9131 return value_from_contents_and_address (type, 0, address);
9132 }
9133
9134 /* A value representing VAL, but with a standard (static-sized) type
9135 that correctly describes it. Does not necessarily create a new
9136 value. */
9137
9138 struct value *
9139 ada_to_fixed_value (struct value *val)
9140 {
9141 val = unwrap_value (val);
9142 val = ada_to_fixed_value_create (value_type (val),
9143 value_address (val),
9144 val);
9145 return val;
9146 }
9147 \f
9148
9149 /* Attributes */
9150
9151 /* Table mapping attribute numbers to names.
9152 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
9153
9154 static const char *attribute_names[] = {
9155 "<?>",
9156
9157 "first",
9158 "last",
9159 "length",
9160 "image",
9161 "max",
9162 "min",
9163 "modulus",
9164 "pos",
9165 "size",
9166 "tag",
9167 "val",
9168 0
9169 };
9170
9171 const char *
9172 ada_attribute_name (enum exp_opcode n)
9173 {
9174 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9175 return attribute_names[n - OP_ATR_FIRST + 1];
9176 else
9177 return attribute_names[0];
9178 }
9179
9180 /* Evaluate the 'POS attribute applied to ARG. */
9181
9182 static LONGEST
9183 pos_atr (struct value *arg)
9184 {
9185 struct value *val = coerce_ref (arg);
9186 struct type *type = value_type (val);
9187 LONGEST result;
9188
9189 if (!discrete_type_p (type))
9190 error (_("'POS only defined on discrete types"));
9191
9192 if (!discrete_position (type, value_as_long (val), &result))
9193 error (_("enumeration value is invalid: can't find 'POS"));
9194
9195 return result;
9196 }
9197
9198 static struct value *
9199 value_pos_atr (struct type *type, struct value *arg)
9200 {
9201 return value_from_longest (type, pos_atr (arg));
9202 }
9203
9204 /* Evaluate the TYPE'VAL attribute applied to ARG. */
9205
9206 static struct value *
9207 value_val_atr (struct type *type, struct value *arg)
9208 {
9209 if (!discrete_type_p (type))
9210 error (_("'VAL only defined on discrete types"));
9211 if (!integer_type_p (value_type (arg)))
9212 error (_("'VAL requires integral argument"));
9213
9214 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9215 {
9216 long pos = value_as_long (arg);
9217
9218 if (pos < 0 || pos >= TYPE_NFIELDS (type))
9219 error (_("argument to 'VAL out of range"));
9220 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
9221 }
9222 else
9223 return value_from_longest (type, value_as_long (arg));
9224 }
9225 \f
9226
9227 /* Evaluation */
9228
9229 /* True if TYPE appears to be an Ada character type.
9230 [At the moment, this is true only for Character and Wide_Character;
9231 It is a heuristic test that could stand improvement]. */
9232
9233 int
9234 ada_is_character_type (struct type *type)
9235 {
9236 const char *name;
9237
9238 /* If the type code says it's a character, then assume it really is,
9239 and don't check any further. */
9240 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9241 return 1;
9242
9243 /* Otherwise, assume it's a character type iff it is a discrete type
9244 with a known character type name. */
9245 name = ada_type_name (type);
9246 return (name != NULL
9247 && (TYPE_CODE (type) == TYPE_CODE_INT
9248 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9249 && (strcmp (name, "character") == 0
9250 || strcmp (name, "wide_character") == 0
9251 || strcmp (name, "wide_wide_character") == 0
9252 || strcmp (name, "unsigned char") == 0));
9253 }
9254
9255 /* True if TYPE appears to be an Ada string type. */
9256
9257 int
9258 ada_is_string_type (struct type *type)
9259 {
9260 type = ada_check_typedef (type);
9261 if (type != NULL
9262 && TYPE_CODE (type) != TYPE_CODE_PTR
9263 && (ada_is_simple_array_type (type)
9264 || ada_is_array_descriptor_type (type))
9265 && ada_array_arity (type) == 1)
9266 {
9267 struct type *elttype = ada_array_element_type (type, 1);
9268
9269 return ada_is_character_type (elttype);
9270 }
9271 else
9272 return 0;
9273 }
9274
9275 /* The compiler sometimes provides a parallel XVS type for a given
9276 PAD type. Normally, it is safe to follow the PAD type directly,
9277 but older versions of the compiler have a bug that causes the offset
9278 of its "F" field to be wrong. Following that field in that case
9279 would lead to incorrect results, but this can be worked around
9280 by ignoring the PAD type and using the associated XVS type instead.
9281
9282 Set to True if the debugger should trust the contents of PAD types.
9283 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9284 static int trust_pad_over_xvs = 1;
9285
9286 /* True if TYPE is a struct type introduced by the compiler to force the
9287 alignment of a value. Such types have a single field with a
9288 distinctive name. */
9289
9290 int
9291 ada_is_aligner_type (struct type *type)
9292 {
9293 type = ada_check_typedef (type);
9294
9295 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9296 return 0;
9297
9298 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
9299 && TYPE_NFIELDS (type) == 1
9300 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9301 }
9302
9303 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9304 the parallel type. */
9305
9306 struct type *
9307 ada_get_base_type (struct type *raw_type)
9308 {
9309 struct type *real_type_namer;
9310 struct type *raw_real_type;
9311
9312 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9313 return raw_type;
9314
9315 if (ada_is_aligner_type (raw_type))
9316 /* The encoding specifies that we should always use the aligner type.
9317 So, even if this aligner type has an associated XVS type, we should
9318 simply ignore it.
9319
9320 According to the compiler gurus, an XVS type parallel to an aligner
9321 type may exist because of a stabs limitation. In stabs, aligner
9322 types are empty because the field has a variable-sized type, and
9323 thus cannot actually be used as an aligner type. As a result,
9324 we need the associated parallel XVS type to decode the type.
9325 Since the policy in the compiler is to not change the internal
9326 representation based on the debugging info format, we sometimes
9327 end up having a redundant XVS type parallel to the aligner type. */
9328 return raw_type;
9329
9330 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9331 if (real_type_namer == NULL
9332 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9333 || TYPE_NFIELDS (real_type_namer) != 1)
9334 return raw_type;
9335
9336 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9337 {
9338 /* This is an older encoding form where the base type needs to be
9339 looked up by name. We prefer the newer enconding because it is
9340 more efficient. */
9341 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9342 if (raw_real_type == NULL)
9343 return raw_type;
9344 else
9345 return raw_real_type;
9346 }
9347
9348 /* The field in our XVS type is a reference to the base type. */
9349 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9350 }
9351
9352 /* The type of value designated by TYPE, with all aligners removed. */
9353
9354 struct type *
9355 ada_aligned_type (struct type *type)
9356 {
9357 if (ada_is_aligner_type (type))
9358 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9359 else
9360 return ada_get_base_type (type);
9361 }
9362
9363
9364 /* The address of the aligned value in an object at address VALADDR
9365 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9366
9367 const gdb_byte *
9368 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9369 {
9370 if (ada_is_aligner_type (type))
9371 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9372 valaddr +
9373 TYPE_FIELD_BITPOS (type,
9374 0) / TARGET_CHAR_BIT);
9375 else
9376 return valaddr;
9377 }
9378
9379
9380
9381 /* The printed representation of an enumeration literal with encoded
9382 name NAME. The value is good to the next call of ada_enum_name. */
9383 const char *
9384 ada_enum_name (const char *name)
9385 {
9386 static char *result;
9387 static size_t result_len = 0;
9388 const char *tmp;
9389
9390 /* First, unqualify the enumeration name:
9391 1. Search for the last '.' character. If we find one, then skip
9392 all the preceding characters, the unqualified name starts
9393 right after that dot.
9394 2. Otherwise, we may be debugging on a target where the compiler
9395 translates dots into "__". Search forward for double underscores,
9396 but stop searching when we hit an overloading suffix, which is
9397 of the form "__" followed by digits. */
9398
9399 tmp = strrchr (name, '.');
9400 if (tmp != NULL)
9401 name = tmp + 1;
9402 else
9403 {
9404 while ((tmp = strstr (name, "__")) != NULL)
9405 {
9406 if (isdigit (tmp[2]))
9407 break;
9408 else
9409 name = tmp + 2;
9410 }
9411 }
9412
9413 if (name[0] == 'Q')
9414 {
9415 int v;
9416
9417 if (name[1] == 'U' || name[1] == 'W')
9418 {
9419 if (sscanf (name + 2, "%x", &v) != 1)
9420 return name;
9421 }
9422 else
9423 return name;
9424
9425 GROW_VECT (result, result_len, 16);
9426 if (isascii (v) && isprint (v))
9427 xsnprintf (result, result_len, "'%c'", v);
9428 else if (name[1] == 'U')
9429 xsnprintf (result, result_len, "[\"%02x\"]", v);
9430 else
9431 xsnprintf (result, result_len, "[\"%04x\"]", v);
9432
9433 return result;
9434 }
9435 else
9436 {
9437 tmp = strstr (name, "__");
9438 if (tmp == NULL)
9439 tmp = strstr (name, "$");
9440 if (tmp != NULL)
9441 {
9442 GROW_VECT (result, result_len, tmp - name + 1);
9443 strncpy (result, name, tmp - name);
9444 result[tmp - name] = '\0';
9445 return result;
9446 }
9447
9448 return name;
9449 }
9450 }
9451
9452 /* Evaluate the subexpression of EXP starting at *POS as for
9453 evaluate_type, updating *POS to point just past the evaluated
9454 expression. */
9455
9456 static struct value *
9457 evaluate_subexp_type (struct expression *exp, int *pos)
9458 {
9459 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9460 }
9461
9462 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9463 value it wraps. */
9464
9465 static struct value *
9466 unwrap_value (struct value *val)
9467 {
9468 struct type *type = ada_check_typedef (value_type (val));
9469
9470 if (ada_is_aligner_type (type))
9471 {
9472 struct value *v = ada_value_struct_elt (val, "F", 0);
9473 struct type *val_type = ada_check_typedef (value_type (v));
9474
9475 if (ada_type_name (val_type) == NULL)
9476 TYPE_NAME (val_type) = ada_type_name (type);
9477
9478 return unwrap_value (v);
9479 }
9480 else
9481 {
9482 struct type *raw_real_type =
9483 ada_check_typedef (ada_get_base_type (type));
9484
9485 /* If there is no parallel XVS or XVE type, then the value is
9486 already unwrapped. Return it without further modification. */
9487 if ((type == raw_real_type)
9488 && ada_find_parallel_type (type, "___XVE") == NULL)
9489 return val;
9490
9491 return
9492 coerce_unspec_val_to_type
9493 (val, ada_to_fixed_type (raw_real_type, 0,
9494 value_address (val),
9495 NULL, 1));
9496 }
9497 }
9498
9499 static struct value *
9500 cast_from_fixed (struct type *type, struct value *arg)
9501 {
9502 struct value *scale = ada_scaling_factor (value_type (arg));
9503 arg = value_cast (value_type (scale), arg);
9504
9505 arg = value_binop (arg, scale, BINOP_MUL);
9506 return value_cast (type, arg);
9507 }
9508
9509 static struct value *
9510 cast_to_fixed (struct type *type, struct value *arg)
9511 {
9512 if (type == value_type (arg))
9513 return arg;
9514
9515 struct value *scale = ada_scaling_factor (type);
9516 if (ada_is_fixed_point_type (value_type (arg)))
9517 arg = cast_from_fixed (value_type (scale), arg);
9518 else
9519 arg = value_cast (value_type (scale), arg);
9520
9521 arg = value_binop (arg, scale, BINOP_DIV);
9522 return value_cast (type, arg);
9523 }
9524
9525 /* Given two array types T1 and T2, return nonzero iff both arrays
9526 contain the same number of elements. */
9527
9528 static int
9529 ada_same_array_size_p (struct type *t1, struct type *t2)
9530 {
9531 LONGEST lo1, hi1, lo2, hi2;
9532
9533 /* Get the array bounds in order to verify that the size of
9534 the two arrays match. */
9535 if (!get_array_bounds (t1, &lo1, &hi1)
9536 || !get_array_bounds (t2, &lo2, &hi2))
9537 error (_("unable to determine array bounds"));
9538
9539 /* To make things easier for size comparison, normalize a bit
9540 the case of empty arrays by making sure that the difference
9541 between upper bound and lower bound is always -1. */
9542 if (lo1 > hi1)
9543 hi1 = lo1 - 1;
9544 if (lo2 > hi2)
9545 hi2 = lo2 - 1;
9546
9547 return (hi1 - lo1 == hi2 - lo2);
9548 }
9549
9550 /* Assuming that VAL is an array of integrals, and TYPE represents
9551 an array with the same number of elements, but with wider integral
9552 elements, return an array "casted" to TYPE. In practice, this
9553 means that the returned array is built by casting each element
9554 of the original array into TYPE's (wider) element type. */
9555
9556 static struct value *
9557 ada_promote_array_of_integrals (struct type *type, struct value *val)
9558 {
9559 struct type *elt_type = TYPE_TARGET_TYPE (type);
9560 LONGEST lo, hi;
9561 struct value *res;
9562 LONGEST i;
9563
9564 /* Verify that both val and type are arrays of scalars, and
9565 that the size of val's elements is smaller than the size
9566 of type's element. */
9567 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9568 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9569 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9570 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9571 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9572 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9573
9574 if (!get_array_bounds (type, &lo, &hi))
9575 error (_("unable to determine array bounds"));
9576
9577 res = allocate_value (type);
9578
9579 /* Promote each array element. */
9580 for (i = 0; i < hi - lo + 1; i++)
9581 {
9582 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9583
9584 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9585 value_contents_all (elt), TYPE_LENGTH (elt_type));
9586 }
9587
9588 return res;
9589 }
9590
9591 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9592 return the converted value. */
9593
9594 static struct value *
9595 coerce_for_assign (struct type *type, struct value *val)
9596 {
9597 struct type *type2 = value_type (val);
9598
9599 if (type == type2)
9600 return val;
9601
9602 type2 = ada_check_typedef (type2);
9603 type = ada_check_typedef (type);
9604
9605 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9606 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9607 {
9608 val = ada_value_ind (val);
9609 type2 = value_type (val);
9610 }
9611
9612 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9613 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9614 {
9615 if (!ada_same_array_size_p (type, type2))
9616 error (_("cannot assign arrays of different length"));
9617
9618 if (is_integral_type (TYPE_TARGET_TYPE (type))
9619 && is_integral_type (TYPE_TARGET_TYPE (type2))
9620 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9621 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9622 {
9623 /* Allow implicit promotion of the array elements to
9624 a wider type. */
9625 return ada_promote_array_of_integrals (type, val);
9626 }
9627
9628 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9629 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9630 error (_("Incompatible types in assignment"));
9631 deprecated_set_value_type (val, type);
9632 }
9633 return val;
9634 }
9635
9636 static struct value *
9637 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9638 {
9639 struct value *val;
9640 struct type *type1, *type2;
9641 LONGEST v, v1, v2;
9642
9643 arg1 = coerce_ref (arg1);
9644 arg2 = coerce_ref (arg2);
9645 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9646 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9647
9648 if (TYPE_CODE (type1) != TYPE_CODE_INT
9649 || TYPE_CODE (type2) != TYPE_CODE_INT)
9650 return value_binop (arg1, arg2, op);
9651
9652 switch (op)
9653 {
9654 case BINOP_MOD:
9655 case BINOP_DIV:
9656 case BINOP_REM:
9657 break;
9658 default:
9659 return value_binop (arg1, arg2, op);
9660 }
9661
9662 v2 = value_as_long (arg2);
9663 if (v2 == 0)
9664 error (_("second operand of %s must not be zero."), op_string (op));
9665
9666 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9667 return value_binop (arg1, arg2, op);
9668
9669 v1 = value_as_long (arg1);
9670 switch (op)
9671 {
9672 case BINOP_DIV:
9673 v = v1 / v2;
9674 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9675 v += v > 0 ? -1 : 1;
9676 break;
9677 case BINOP_REM:
9678 v = v1 % v2;
9679 if (v * v1 < 0)
9680 v -= v2;
9681 break;
9682 default:
9683 /* Should not reach this point. */
9684 v = 0;
9685 }
9686
9687 val = allocate_value (type1);
9688 store_unsigned_integer (value_contents_raw (val),
9689 TYPE_LENGTH (value_type (val)),
9690 gdbarch_byte_order (get_type_arch (type1)), v);
9691 return val;
9692 }
9693
9694 static int
9695 ada_value_equal (struct value *arg1, struct value *arg2)
9696 {
9697 if (ada_is_direct_array_type (value_type (arg1))
9698 || ada_is_direct_array_type (value_type (arg2)))
9699 {
9700 /* Automatically dereference any array reference before
9701 we attempt to perform the comparison. */
9702 arg1 = ada_coerce_ref (arg1);
9703 arg2 = ada_coerce_ref (arg2);
9704
9705 arg1 = ada_coerce_to_simple_array (arg1);
9706 arg2 = ada_coerce_to_simple_array (arg2);
9707 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9708 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
9709 error (_("Attempt to compare array with non-array"));
9710 /* FIXME: The following works only for types whose
9711 representations use all bits (no padding or undefined bits)
9712 and do not have user-defined equality. */
9713 return
9714 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
9715 && memcmp (value_contents (arg1), value_contents (arg2),
9716 TYPE_LENGTH (value_type (arg1))) == 0;
9717 }
9718 return value_equal (arg1, arg2);
9719 }
9720
9721 /* Total number of component associations in the aggregate starting at
9722 index PC in EXP. Assumes that index PC is the start of an
9723 OP_AGGREGATE. */
9724
9725 static int
9726 num_component_specs (struct expression *exp, int pc)
9727 {
9728 int n, m, i;
9729
9730 m = exp->elts[pc + 1].longconst;
9731 pc += 3;
9732 n = 0;
9733 for (i = 0; i < m; i += 1)
9734 {
9735 switch (exp->elts[pc].opcode)
9736 {
9737 default:
9738 n += 1;
9739 break;
9740 case OP_CHOICES:
9741 n += exp->elts[pc + 1].longconst;
9742 break;
9743 }
9744 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9745 }
9746 return n;
9747 }
9748
9749 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9750 component of LHS (a simple array or a record), updating *POS past
9751 the expression, assuming that LHS is contained in CONTAINER. Does
9752 not modify the inferior's memory, nor does it modify LHS (unless
9753 LHS == CONTAINER). */
9754
9755 static void
9756 assign_component (struct value *container, struct value *lhs, LONGEST index,
9757 struct expression *exp, int *pos)
9758 {
9759 struct value *mark = value_mark ();
9760 struct value *elt;
9761
9762 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9763 {
9764 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9765 struct value *index_val = value_from_longest (index_type, index);
9766
9767 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9768 }
9769 else
9770 {
9771 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9772 elt = ada_to_fixed_value (elt);
9773 }
9774
9775 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9776 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9777 else
9778 value_assign_to_component (container, elt,
9779 ada_evaluate_subexp (NULL, exp, pos,
9780 EVAL_NORMAL));
9781
9782 value_free_to_mark (mark);
9783 }
9784
9785 /* Assuming that LHS represents an lvalue having a record or array
9786 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9787 of that aggregate's value to LHS, advancing *POS past the
9788 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9789 lvalue containing LHS (possibly LHS itself). Does not modify
9790 the inferior's memory, nor does it modify the contents of
9791 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9792
9793 static struct value *
9794 assign_aggregate (struct value *container,
9795 struct value *lhs, struct expression *exp,
9796 int *pos, enum noside noside)
9797 {
9798 struct type *lhs_type;
9799 int n = exp->elts[*pos+1].longconst;
9800 LONGEST low_index, high_index;
9801 int num_specs;
9802 LONGEST *indices;
9803 int max_indices, num_indices;
9804 int i;
9805
9806 *pos += 3;
9807 if (noside != EVAL_NORMAL)
9808 {
9809 for (i = 0; i < n; i += 1)
9810 ada_evaluate_subexp (NULL, exp, pos, noside);
9811 return container;
9812 }
9813
9814 container = ada_coerce_ref (container);
9815 if (ada_is_direct_array_type (value_type (container)))
9816 container = ada_coerce_to_simple_array (container);
9817 lhs = ada_coerce_ref (lhs);
9818 if (!deprecated_value_modifiable (lhs))
9819 error (_("Left operand of assignment is not a modifiable lvalue."));
9820
9821 lhs_type = value_type (lhs);
9822 if (ada_is_direct_array_type (lhs_type))
9823 {
9824 lhs = ada_coerce_to_simple_array (lhs);
9825 lhs_type = value_type (lhs);
9826 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9827 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9828 }
9829 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9830 {
9831 low_index = 0;
9832 high_index = num_visible_fields (lhs_type) - 1;
9833 }
9834 else
9835 error (_("Left-hand side must be array or record."));
9836
9837 num_specs = num_component_specs (exp, *pos - 3);
9838 max_indices = 4 * num_specs + 4;
9839 indices = XALLOCAVEC (LONGEST, max_indices);
9840 indices[0] = indices[1] = low_index - 1;
9841 indices[2] = indices[3] = high_index + 1;
9842 num_indices = 4;
9843
9844 for (i = 0; i < n; i += 1)
9845 {
9846 switch (exp->elts[*pos].opcode)
9847 {
9848 case OP_CHOICES:
9849 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9850 &num_indices, max_indices,
9851 low_index, high_index);
9852 break;
9853 case OP_POSITIONAL:
9854 aggregate_assign_positional (container, lhs, exp, pos, indices,
9855 &num_indices, max_indices,
9856 low_index, high_index);
9857 break;
9858 case OP_OTHERS:
9859 if (i != n-1)
9860 error (_("Misplaced 'others' clause"));
9861 aggregate_assign_others (container, lhs, exp, pos, indices,
9862 num_indices, low_index, high_index);
9863 break;
9864 default:
9865 error (_("Internal error: bad aggregate clause"));
9866 }
9867 }
9868
9869 return container;
9870 }
9871
9872 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9873 construct at *POS, updating *POS past the construct, given that
9874 the positions are relative to lower bound LOW, where HIGH is the
9875 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9876 updating *NUM_INDICES as needed. CONTAINER is as for
9877 assign_aggregate. */
9878 static void
9879 aggregate_assign_positional (struct value *container,
9880 struct value *lhs, struct expression *exp,
9881 int *pos, LONGEST *indices, int *num_indices,
9882 int max_indices, LONGEST low, LONGEST high)
9883 {
9884 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9885
9886 if (ind - 1 == high)
9887 warning (_("Extra components in aggregate ignored."));
9888 if (ind <= high)
9889 {
9890 add_component_interval (ind, ind, indices, num_indices, max_indices);
9891 *pos += 3;
9892 assign_component (container, lhs, ind, exp, pos);
9893 }
9894 else
9895 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9896 }
9897
9898 /* Assign into the components of LHS indexed by the OP_CHOICES
9899 construct at *POS, updating *POS past the construct, given that
9900 the allowable indices are LOW..HIGH. Record the indices assigned
9901 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9902 needed. CONTAINER is as for assign_aggregate. */
9903 static void
9904 aggregate_assign_from_choices (struct value *container,
9905 struct value *lhs, struct expression *exp,
9906 int *pos, LONGEST *indices, int *num_indices,
9907 int max_indices, LONGEST low, LONGEST high)
9908 {
9909 int j;
9910 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9911 int choice_pos, expr_pc;
9912 int is_array = ada_is_direct_array_type (value_type (lhs));
9913
9914 choice_pos = *pos += 3;
9915
9916 for (j = 0; j < n_choices; j += 1)
9917 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9918 expr_pc = *pos;
9919 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9920
9921 for (j = 0; j < n_choices; j += 1)
9922 {
9923 LONGEST lower, upper;
9924 enum exp_opcode op = exp->elts[choice_pos].opcode;
9925
9926 if (op == OP_DISCRETE_RANGE)
9927 {
9928 choice_pos += 1;
9929 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9930 EVAL_NORMAL));
9931 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9932 EVAL_NORMAL));
9933 }
9934 else if (is_array)
9935 {
9936 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9937 EVAL_NORMAL));
9938 upper = lower;
9939 }
9940 else
9941 {
9942 int ind;
9943 const char *name;
9944
9945 switch (op)
9946 {
9947 case OP_NAME:
9948 name = &exp->elts[choice_pos + 2].string;
9949 break;
9950 case OP_VAR_VALUE:
9951 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9952 break;
9953 default:
9954 error (_("Invalid record component association."));
9955 }
9956 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9957 ind = 0;
9958 if (! find_struct_field (name, value_type (lhs), 0,
9959 NULL, NULL, NULL, NULL, &ind))
9960 error (_("Unknown component name: %s."), name);
9961 lower = upper = ind;
9962 }
9963
9964 if (lower <= upper && (lower < low || upper > high))
9965 error (_("Index in component association out of bounds."));
9966
9967 add_component_interval (lower, upper, indices, num_indices,
9968 max_indices);
9969 while (lower <= upper)
9970 {
9971 int pos1;
9972
9973 pos1 = expr_pc;
9974 assign_component (container, lhs, lower, exp, &pos1);
9975 lower += 1;
9976 }
9977 }
9978 }
9979
9980 /* Assign the value of the expression in the OP_OTHERS construct in
9981 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9982 have not been previously assigned. The index intervals already assigned
9983 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
9984 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
9985 static void
9986 aggregate_assign_others (struct value *container,
9987 struct value *lhs, struct expression *exp,
9988 int *pos, LONGEST *indices, int num_indices,
9989 LONGEST low, LONGEST high)
9990 {
9991 int i;
9992 int expr_pc = *pos + 1;
9993
9994 for (i = 0; i < num_indices - 2; i += 2)
9995 {
9996 LONGEST ind;
9997
9998 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9999 {
10000 int localpos;
10001
10002 localpos = expr_pc;
10003 assign_component (container, lhs, ind, exp, &localpos);
10004 }
10005 }
10006 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10007 }
10008
10009 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
10010 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10011 modifying *SIZE as needed. It is an error if *SIZE exceeds
10012 MAX_SIZE. The resulting intervals do not overlap. */
10013 static void
10014 add_component_interval (LONGEST low, LONGEST high,
10015 LONGEST* indices, int *size, int max_size)
10016 {
10017 int i, j;
10018
10019 for (i = 0; i < *size; i += 2) {
10020 if (high >= indices[i] && low <= indices[i + 1])
10021 {
10022 int kh;
10023
10024 for (kh = i + 2; kh < *size; kh += 2)
10025 if (high < indices[kh])
10026 break;
10027 if (low < indices[i])
10028 indices[i] = low;
10029 indices[i + 1] = indices[kh - 1];
10030 if (high > indices[i + 1])
10031 indices[i + 1] = high;
10032 memcpy (indices + i + 2, indices + kh, *size - kh);
10033 *size -= kh - i - 2;
10034 return;
10035 }
10036 else if (high < indices[i])
10037 break;
10038 }
10039
10040 if (*size == max_size)
10041 error (_("Internal error: miscounted aggregate components."));
10042 *size += 2;
10043 for (j = *size-1; j >= i+2; j -= 1)
10044 indices[j] = indices[j - 2];
10045 indices[i] = low;
10046 indices[i + 1] = high;
10047 }
10048
10049 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10050 is different. */
10051
10052 static struct value *
10053 ada_value_cast (struct type *type, struct value *arg2)
10054 {
10055 if (type == ada_check_typedef (value_type (arg2)))
10056 return arg2;
10057
10058 if (ada_is_fixed_point_type (type))
10059 return (cast_to_fixed (type, arg2));
10060
10061 if (ada_is_fixed_point_type (value_type (arg2)))
10062 return cast_from_fixed (type, arg2);
10063
10064 return value_cast (type, arg2);
10065 }
10066
10067 /* Evaluating Ada expressions, and printing their result.
10068 ------------------------------------------------------
10069
10070 1. Introduction:
10071 ----------------
10072
10073 We usually evaluate an Ada expression in order to print its value.
10074 We also evaluate an expression in order to print its type, which
10075 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10076 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10077 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10078 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10079 similar.
10080
10081 Evaluating expressions is a little more complicated for Ada entities
10082 than it is for entities in languages such as C. The main reason for
10083 this is that Ada provides types whose definition might be dynamic.
10084 One example of such types is variant records. Or another example
10085 would be an array whose bounds can only be known at run time.
10086
10087 The following description is a general guide as to what should be
10088 done (and what should NOT be done) in order to evaluate an expression
10089 involving such types, and when. This does not cover how the semantic
10090 information is encoded by GNAT as this is covered separatly. For the
10091 document used as the reference for the GNAT encoding, see exp_dbug.ads
10092 in the GNAT sources.
10093
10094 Ideally, we should embed each part of this description next to its
10095 associated code. Unfortunately, the amount of code is so vast right
10096 now that it's hard to see whether the code handling a particular
10097 situation might be duplicated or not. One day, when the code is
10098 cleaned up, this guide might become redundant with the comments
10099 inserted in the code, and we might want to remove it.
10100
10101 2. ``Fixing'' an Entity, the Simple Case:
10102 -----------------------------------------
10103
10104 When evaluating Ada expressions, the tricky issue is that they may
10105 reference entities whose type contents and size are not statically
10106 known. Consider for instance a variant record:
10107
10108 type Rec (Empty : Boolean := True) is record
10109 case Empty is
10110 when True => null;
10111 when False => Value : Integer;
10112 end case;
10113 end record;
10114 Yes : Rec := (Empty => False, Value => 1);
10115 No : Rec := (empty => True);
10116
10117 The size and contents of that record depends on the value of the
10118 descriminant (Rec.Empty). At this point, neither the debugging
10119 information nor the associated type structure in GDB are able to
10120 express such dynamic types. So what the debugger does is to create
10121 "fixed" versions of the type that applies to the specific object.
10122 We also informally refer to this opperation as "fixing" an object,
10123 which means creating its associated fixed type.
10124
10125 Example: when printing the value of variable "Yes" above, its fixed
10126 type would look like this:
10127
10128 type Rec is record
10129 Empty : Boolean;
10130 Value : Integer;
10131 end record;
10132
10133 On the other hand, if we printed the value of "No", its fixed type
10134 would become:
10135
10136 type Rec is record
10137 Empty : Boolean;
10138 end record;
10139
10140 Things become a little more complicated when trying to fix an entity
10141 with a dynamic type that directly contains another dynamic type,
10142 such as an array of variant records, for instance. There are
10143 two possible cases: Arrays, and records.
10144
10145 3. ``Fixing'' Arrays:
10146 ---------------------
10147
10148 The type structure in GDB describes an array in terms of its bounds,
10149 and the type of its elements. By design, all elements in the array
10150 have the same type and we cannot represent an array of variant elements
10151 using the current type structure in GDB. When fixing an array,
10152 we cannot fix the array element, as we would potentially need one
10153 fixed type per element of the array. As a result, the best we can do
10154 when fixing an array is to produce an array whose bounds and size
10155 are correct (allowing us to read it from memory), but without having
10156 touched its element type. Fixing each element will be done later,
10157 when (if) necessary.
10158
10159 Arrays are a little simpler to handle than records, because the same
10160 amount of memory is allocated for each element of the array, even if
10161 the amount of space actually used by each element differs from element
10162 to element. Consider for instance the following array of type Rec:
10163
10164 type Rec_Array is array (1 .. 2) of Rec;
10165
10166 The actual amount of memory occupied by each element might be different
10167 from element to element, depending on the value of their discriminant.
10168 But the amount of space reserved for each element in the array remains
10169 fixed regardless. So we simply need to compute that size using
10170 the debugging information available, from which we can then determine
10171 the array size (we multiply the number of elements of the array by
10172 the size of each element).
10173
10174 The simplest case is when we have an array of a constrained element
10175 type. For instance, consider the following type declarations:
10176
10177 type Bounded_String (Max_Size : Integer) is
10178 Length : Integer;
10179 Buffer : String (1 .. Max_Size);
10180 end record;
10181 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10182
10183 In this case, the compiler describes the array as an array of
10184 variable-size elements (identified by its XVS suffix) for which
10185 the size can be read in the parallel XVZ variable.
10186
10187 In the case of an array of an unconstrained element type, the compiler
10188 wraps the array element inside a private PAD type. This type should not
10189 be shown to the user, and must be "unwrap"'ed before printing. Note
10190 that we also use the adjective "aligner" in our code to designate
10191 these wrapper types.
10192
10193 In some cases, the size allocated for each element is statically
10194 known. In that case, the PAD type already has the correct size,
10195 and the array element should remain unfixed.
10196
10197 But there are cases when this size is not statically known.
10198 For instance, assuming that "Five" is an integer variable:
10199
10200 type Dynamic is array (1 .. Five) of Integer;
10201 type Wrapper (Has_Length : Boolean := False) is record
10202 Data : Dynamic;
10203 case Has_Length is
10204 when True => Length : Integer;
10205 when False => null;
10206 end case;
10207 end record;
10208 type Wrapper_Array is array (1 .. 2) of Wrapper;
10209
10210 Hello : Wrapper_Array := (others => (Has_Length => True,
10211 Data => (others => 17),
10212 Length => 1));
10213
10214
10215 The debugging info would describe variable Hello as being an
10216 array of a PAD type. The size of that PAD type is not statically
10217 known, but can be determined using a parallel XVZ variable.
10218 In that case, a copy of the PAD type with the correct size should
10219 be used for the fixed array.
10220
10221 3. ``Fixing'' record type objects:
10222 ----------------------------------
10223
10224 Things are slightly different from arrays in the case of dynamic
10225 record types. In this case, in order to compute the associated
10226 fixed type, we need to determine the size and offset of each of
10227 its components. This, in turn, requires us to compute the fixed
10228 type of each of these components.
10229
10230 Consider for instance the example:
10231
10232 type Bounded_String (Max_Size : Natural) is record
10233 Str : String (1 .. Max_Size);
10234 Length : Natural;
10235 end record;
10236 My_String : Bounded_String (Max_Size => 10);
10237
10238 In that case, the position of field "Length" depends on the size
10239 of field Str, which itself depends on the value of the Max_Size
10240 discriminant. In order to fix the type of variable My_String,
10241 we need to fix the type of field Str. Therefore, fixing a variant
10242 record requires us to fix each of its components.
10243
10244 However, if a component does not have a dynamic size, the component
10245 should not be fixed. In particular, fields that use a PAD type
10246 should not fixed. Here is an example where this might happen
10247 (assuming type Rec above):
10248
10249 type Container (Big : Boolean) is record
10250 First : Rec;
10251 After : Integer;
10252 case Big is
10253 when True => Another : Integer;
10254 when False => null;
10255 end case;
10256 end record;
10257 My_Container : Container := (Big => False,
10258 First => (Empty => True),
10259 After => 42);
10260
10261 In that example, the compiler creates a PAD type for component First,
10262 whose size is constant, and then positions the component After just
10263 right after it. The offset of component After is therefore constant
10264 in this case.
10265
10266 The debugger computes the position of each field based on an algorithm
10267 that uses, among other things, the actual position and size of the field
10268 preceding it. Let's now imagine that the user is trying to print
10269 the value of My_Container. If the type fixing was recursive, we would
10270 end up computing the offset of field After based on the size of the
10271 fixed version of field First. And since in our example First has
10272 only one actual field, the size of the fixed type is actually smaller
10273 than the amount of space allocated to that field, and thus we would
10274 compute the wrong offset of field After.
10275
10276 To make things more complicated, we need to watch out for dynamic
10277 components of variant records (identified by the ___XVL suffix in
10278 the component name). Even if the target type is a PAD type, the size
10279 of that type might not be statically known. So the PAD type needs
10280 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10281 we might end up with the wrong size for our component. This can be
10282 observed with the following type declarations:
10283
10284 type Octal is new Integer range 0 .. 7;
10285 type Octal_Array is array (Positive range <>) of Octal;
10286 pragma Pack (Octal_Array);
10287
10288 type Octal_Buffer (Size : Positive) is record
10289 Buffer : Octal_Array (1 .. Size);
10290 Length : Integer;
10291 end record;
10292
10293 In that case, Buffer is a PAD type whose size is unset and needs
10294 to be computed by fixing the unwrapped type.
10295
10296 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10297 ----------------------------------------------------------
10298
10299 Lastly, when should the sub-elements of an entity that remained unfixed
10300 thus far, be actually fixed?
10301
10302 The answer is: Only when referencing that element. For instance
10303 when selecting one component of a record, this specific component
10304 should be fixed at that point in time. Or when printing the value
10305 of a record, each component should be fixed before its value gets
10306 printed. Similarly for arrays, the element of the array should be
10307 fixed when printing each element of the array, or when extracting
10308 one element out of that array. On the other hand, fixing should
10309 not be performed on the elements when taking a slice of an array!
10310
10311 Note that one of the side effects of miscomputing the offset and
10312 size of each field is that we end up also miscomputing the size
10313 of the containing type. This can have adverse results when computing
10314 the value of an entity. GDB fetches the value of an entity based
10315 on the size of its type, and thus a wrong size causes GDB to fetch
10316 the wrong amount of memory. In the case where the computed size is
10317 too small, GDB fetches too little data to print the value of our
10318 entity. Results in this case are unpredictable, as we usually read
10319 past the buffer containing the data =:-o. */
10320
10321 /* Evaluate a subexpression of EXP, at index *POS, and return a value
10322 for that subexpression cast to TO_TYPE. Advance *POS over the
10323 subexpression. */
10324
10325 static value *
10326 ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10327 enum noside noside, struct type *to_type)
10328 {
10329 int pc = *pos;
10330
10331 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10332 || exp->elts[pc].opcode == OP_VAR_VALUE)
10333 {
10334 (*pos) += 4;
10335
10336 value *val;
10337 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10338 {
10339 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10340 return value_zero (to_type, not_lval);
10341
10342 val = evaluate_var_msym_value (noside,
10343 exp->elts[pc + 1].objfile,
10344 exp->elts[pc + 2].msymbol);
10345 }
10346 else
10347 val = evaluate_var_value (noside,
10348 exp->elts[pc + 1].block,
10349 exp->elts[pc + 2].symbol);
10350
10351 if (noside == EVAL_SKIP)
10352 return eval_skip_value (exp);
10353
10354 val = ada_value_cast (to_type, val);
10355
10356 /* Follow the Ada language semantics that do not allow taking
10357 an address of the result of a cast (view conversion in Ada). */
10358 if (VALUE_LVAL (val) == lval_memory)
10359 {
10360 if (value_lazy (val))
10361 value_fetch_lazy (val);
10362 VALUE_LVAL (val) = not_lval;
10363 }
10364 return val;
10365 }
10366
10367 value *val = evaluate_subexp (to_type, exp, pos, noside);
10368 if (noside == EVAL_SKIP)
10369 return eval_skip_value (exp);
10370 return ada_value_cast (to_type, val);
10371 }
10372
10373 /* Implement the evaluate_exp routine in the exp_descriptor structure
10374 for the Ada language. */
10375
10376 static struct value *
10377 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10378 int *pos, enum noside noside)
10379 {
10380 enum exp_opcode op;
10381 int tem;
10382 int pc;
10383 int preeval_pos;
10384 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10385 struct type *type;
10386 int nargs, oplen;
10387 struct value **argvec;
10388
10389 pc = *pos;
10390 *pos += 1;
10391 op = exp->elts[pc].opcode;
10392
10393 switch (op)
10394 {
10395 default:
10396 *pos -= 1;
10397 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10398
10399 if (noside == EVAL_NORMAL)
10400 arg1 = unwrap_value (arg1);
10401
10402 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10403 then we need to perform the conversion manually, because
10404 evaluate_subexp_standard doesn't do it. This conversion is
10405 necessary in Ada because the different kinds of float/fixed
10406 types in Ada have different representations.
10407
10408 Similarly, we need to perform the conversion from OP_LONG
10409 ourselves. */
10410 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
10411 arg1 = ada_value_cast (expect_type, arg1);
10412
10413 return arg1;
10414
10415 case OP_STRING:
10416 {
10417 struct value *result;
10418
10419 *pos -= 1;
10420 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10421 /* The result type will have code OP_STRING, bashed there from
10422 OP_ARRAY. Bash it back. */
10423 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10424 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
10425 return result;
10426 }
10427
10428 case UNOP_CAST:
10429 (*pos) += 2;
10430 type = exp->elts[pc + 1].type;
10431 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
10432
10433 case UNOP_QUAL:
10434 (*pos) += 2;
10435 type = exp->elts[pc + 1].type;
10436 return ada_evaluate_subexp (type, exp, pos, noside);
10437
10438 case BINOP_ASSIGN:
10439 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10440 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10441 {
10442 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10443 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10444 return arg1;
10445 return ada_value_assign (arg1, arg1);
10446 }
10447 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10448 except if the lhs of our assignment is a convenience variable.
10449 In the case of assigning to a convenience variable, the lhs
10450 should be exactly the result of the evaluation of the rhs. */
10451 type = value_type (arg1);
10452 if (VALUE_LVAL (arg1) == lval_internalvar)
10453 type = NULL;
10454 arg2 = evaluate_subexp (type, exp, pos, noside);
10455 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10456 return arg1;
10457 if (ada_is_fixed_point_type (value_type (arg1)))
10458 arg2 = cast_to_fixed (value_type (arg1), arg2);
10459 else if (ada_is_fixed_point_type (value_type (arg2)))
10460 error
10461 (_("Fixed-point values must be assigned to fixed-point variables"));
10462 else
10463 arg2 = coerce_for_assign (value_type (arg1), arg2);
10464 return ada_value_assign (arg1, arg2);
10465
10466 case BINOP_ADD:
10467 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10468 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10469 if (noside == EVAL_SKIP)
10470 goto nosideret;
10471 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10472 return (value_from_longest
10473 (value_type (arg1),
10474 value_as_long (arg1) + value_as_long (arg2)));
10475 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10476 return (value_from_longest
10477 (value_type (arg2),
10478 value_as_long (arg1) + value_as_long (arg2)));
10479 if ((ada_is_fixed_point_type (value_type (arg1))
10480 || ada_is_fixed_point_type (value_type (arg2)))
10481 && value_type (arg1) != value_type (arg2))
10482 error (_("Operands of fixed-point addition must have the same type"));
10483 /* Do the addition, and cast the result to the type of the first
10484 argument. We cannot cast the result to a reference type, so if
10485 ARG1 is a reference type, find its underlying type. */
10486 type = value_type (arg1);
10487 while (TYPE_CODE (type) == TYPE_CODE_REF)
10488 type = TYPE_TARGET_TYPE (type);
10489 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10490 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10491
10492 case BINOP_SUB:
10493 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10494 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10495 if (noside == EVAL_SKIP)
10496 goto nosideret;
10497 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10498 return (value_from_longest
10499 (value_type (arg1),
10500 value_as_long (arg1) - value_as_long (arg2)));
10501 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10502 return (value_from_longest
10503 (value_type (arg2),
10504 value_as_long (arg1) - value_as_long (arg2)));
10505 if ((ada_is_fixed_point_type (value_type (arg1))
10506 || ada_is_fixed_point_type (value_type (arg2)))
10507 && value_type (arg1) != value_type (arg2))
10508 error (_("Operands of fixed-point subtraction "
10509 "must have the same type"));
10510 /* Do the substraction, and cast the result to the type of the first
10511 argument. We cannot cast the result to a reference type, so if
10512 ARG1 is a reference type, find its underlying type. */
10513 type = value_type (arg1);
10514 while (TYPE_CODE (type) == TYPE_CODE_REF)
10515 type = TYPE_TARGET_TYPE (type);
10516 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10517 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10518
10519 case BINOP_MUL:
10520 case BINOP_DIV:
10521 case BINOP_REM:
10522 case BINOP_MOD:
10523 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10524 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10525 if (noside == EVAL_SKIP)
10526 goto nosideret;
10527 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10528 {
10529 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10530 return value_zero (value_type (arg1), not_lval);
10531 }
10532 else
10533 {
10534 type = builtin_type (exp->gdbarch)->builtin_double;
10535 if (ada_is_fixed_point_type (value_type (arg1)))
10536 arg1 = cast_from_fixed (type, arg1);
10537 if (ada_is_fixed_point_type (value_type (arg2)))
10538 arg2 = cast_from_fixed (type, arg2);
10539 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10540 return ada_value_binop (arg1, arg2, op);
10541 }
10542
10543 case BINOP_EQUAL:
10544 case BINOP_NOTEQUAL:
10545 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10546 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10547 if (noside == EVAL_SKIP)
10548 goto nosideret;
10549 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10550 tem = 0;
10551 else
10552 {
10553 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10554 tem = ada_value_equal (arg1, arg2);
10555 }
10556 if (op == BINOP_NOTEQUAL)
10557 tem = !tem;
10558 type = language_bool_type (exp->language_defn, exp->gdbarch);
10559 return value_from_longest (type, (LONGEST) tem);
10560
10561 case UNOP_NEG:
10562 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10563 if (noside == EVAL_SKIP)
10564 goto nosideret;
10565 else if (ada_is_fixed_point_type (value_type (arg1)))
10566 return value_cast (value_type (arg1), value_neg (arg1));
10567 else
10568 {
10569 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10570 return value_neg (arg1);
10571 }
10572
10573 case BINOP_LOGICAL_AND:
10574 case BINOP_LOGICAL_OR:
10575 case UNOP_LOGICAL_NOT:
10576 {
10577 struct value *val;
10578
10579 *pos -= 1;
10580 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10581 type = language_bool_type (exp->language_defn, exp->gdbarch);
10582 return value_cast (type, val);
10583 }
10584
10585 case BINOP_BITWISE_AND:
10586 case BINOP_BITWISE_IOR:
10587 case BINOP_BITWISE_XOR:
10588 {
10589 struct value *val;
10590
10591 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10592 *pos = pc;
10593 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10594
10595 return value_cast (value_type (arg1), val);
10596 }
10597
10598 case OP_VAR_VALUE:
10599 *pos -= 1;
10600
10601 if (noside == EVAL_SKIP)
10602 {
10603 *pos += 4;
10604 goto nosideret;
10605 }
10606
10607 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10608 /* Only encountered when an unresolved symbol occurs in a
10609 context other than a function call, in which case, it is
10610 invalid. */
10611 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10612 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10613
10614 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10615 {
10616 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10617 /* Check to see if this is a tagged type. We also need to handle
10618 the case where the type is a reference to a tagged type, but
10619 we have to be careful to exclude pointers to tagged types.
10620 The latter should be shown as usual (as a pointer), whereas
10621 a reference should mostly be transparent to the user. */
10622 if (ada_is_tagged_type (type, 0)
10623 || (TYPE_CODE (type) == TYPE_CODE_REF
10624 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10625 {
10626 /* Tagged types are a little special in the fact that the real
10627 type is dynamic and can only be determined by inspecting the
10628 object's tag. This means that we need to get the object's
10629 value first (EVAL_NORMAL) and then extract the actual object
10630 type from its tag.
10631
10632 Note that we cannot skip the final step where we extract
10633 the object type from its tag, because the EVAL_NORMAL phase
10634 results in dynamic components being resolved into fixed ones.
10635 This can cause problems when trying to print the type
10636 description of tagged types whose parent has a dynamic size:
10637 We use the type name of the "_parent" component in order
10638 to print the name of the ancestor type in the type description.
10639 If that component had a dynamic size, the resolution into
10640 a fixed type would result in the loss of that type name,
10641 thus preventing us from printing the name of the ancestor
10642 type in the type description. */
10643 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10644
10645 if (TYPE_CODE (type) != TYPE_CODE_REF)
10646 {
10647 struct type *actual_type;
10648
10649 actual_type = type_from_tag (ada_value_tag (arg1));
10650 if (actual_type == NULL)
10651 /* If, for some reason, we were unable to determine
10652 the actual type from the tag, then use the static
10653 approximation that we just computed as a fallback.
10654 This can happen if the debugging information is
10655 incomplete, for instance. */
10656 actual_type = type;
10657 return value_zero (actual_type, not_lval);
10658 }
10659 else
10660 {
10661 /* In the case of a ref, ada_coerce_ref takes care
10662 of determining the actual type. But the evaluation
10663 should return a ref as it should be valid to ask
10664 for its address; so rebuild a ref after coerce. */
10665 arg1 = ada_coerce_ref (arg1);
10666 return value_ref (arg1, TYPE_CODE_REF);
10667 }
10668 }
10669
10670 /* Records and unions for which GNAT encodings have been
10671 generated need to be statically fixed as well.
10672 Otherwise, non-static fixing produces a type where
10673 all dynamic properties are removed, which prevents "ptype"
10674 from being able to completely describe the type.
10675 For instance, a case statement in a variant record would be
10676 replaced by the relevant components based on the actual
10677 value of the discriminants. */
10678 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10679 && dynamic_template_type (type) != NULL)
10680 || (TYPE_CODE (type) == TYPE_CODE_UNION
10681 && ada_find_parallel_type (type, "___XVU") != NULL))
10682 {
10683 *pos += 4;
10684 return value_zero (to_static_fixed_type (type), not_lval);
10685 }
10686 }
10687
10688 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10689 return ada_to_fixed_value (arg1);
10690
10691 case OP_FUNCALL:
10692 (*pos) += 2;
10693
10694 /* Allocate arg vector, including space for the function to be
10695 called in argvec[0] and a terminating NULL. */
10696 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10697 argvec = XALLOCAVEC (struct value *, nargs + 2);
10698
10699 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10700 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10701 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10702 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10703 else
10704 {
10705 for (tem = 0; tem <= nargs; tem += 1)
10706 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10707 argvec[tem] = 0;
10708
10709 if (noside == EVAL_SKIP)
10710 goto nosideret;
10711 }
10712
10713 if (ada_is_constrained_packed_array_type
10714 (desc_base_type (value_type (argvec[0]))))
10715 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10716 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10717 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10718 /* This is a packed array that has already been fixed, and
10719 therefore already coerced to a simple array. Nothing further
10720 to do. */
10721 ;
10722 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10723 {
10724 /* Make sure we dereference references so that all the code below
10725 feels like it's really handling the referenced value. Wrapping
10726 types (for alignment) may be there, so make sure we strip them as
10727 well. */
10728 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10729 }
10730 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10731 && VALUE_LVAL (argvec[0]) == lval_memory)
10732 argvec[0] = value_addr (argvec[0]);
10733
10734 type = ada_check_typedef (value_type (argvec[0]));
10735
10736 /* Ada allows us to implicitly dereference arrays when subscripting
10737 them. So, if this is an array typedef (encoding use for array
10738 access types encoded as fat pointers), strip it now. */
10739 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10740 type = ada_typedef_target_type (type);
10741
10742 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10743 {
10744 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10745 {
10746 case TYPE_CODE_FUNC:
10747 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10748 break;
10749 case TYPE_CODE_ARRAY:
10750 break;
10751 case TYPE_CODE_STRUCT:
10752 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10753 argvec[0] = ada_value_ind (argvec[0]);
10754 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10755 break;
10756 default:
10757 error (_("cannot subscript or call something of type `%s'"),
10758 ada_type_name (value_type (argvec[0])));
10759 break;
10760 }
10761 }
10762
10763 switch (TYPE_CODE (type))
10764 {
10765 case TYPE_CODE_FUNC:
10766 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10767 {
10768 if (TYPE_TARGET_TYPE (type) == NULL)
10769 error_call_unknown_return_type (NULL);
10770 return allocate_value (TYPE_TARGET_TYPE (type));
10771 }
10772 return call_function_by_hand (argvec[0], NULL, nargs, argvec + 1);
10773 case TYPE_CODE_INTERNAL_FUNCTION:
10774 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10775 /* We don't know anything about what the internal
10776 function might return, but we have to return
10777 something. */
10778 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10779 not_lval);
10780 else
10781 return call_internal_function (exp->gdbarch, exp->language_defn,
10782 argvec[0], nargs, argvec + 1);
10783
10784 case TYPE_CODE_STRUCT:
10785 {
10786 int arity;
10787
10788 arity = ada_array_arity (type);
10789 type = ada_array_element_type (type, nargs);
10790 if (type == NULL)
10791 error (_("cannot subscript or call a record"));
10792 if (arity != nargs)
10793 error (_("wrong number of subscripts; expecting %d"), arity);
10794 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10795 return value_zero (ada_aligned_type (type), lval_memory);
10796 return
10797 unwrap_value (ada_value_subscript
10798 (argvec[0], nargs, argvec + 1));
10799 }
10800 case TYPE_CODE_ARRAY:
10801 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10802 {
10803 type = ada_array_element_type (type, nargs);
10804 if (type == NULL)
10805 error (_("element type of array unknown"));
10806 else
10807 return value_zero (ada_aligned_type (type), lval_memory);
10808 }
10809 return
10810 unwrap_value (ada_value_subscript
10811 (ada_coerce_to_simple_array (argvec[0]),
10812 nargs, argvec + 1));
10813 case TYPE_CODE_PTR: /* Pointer to array */
10814 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10815 {
10816 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10817 type = ada_array_element_type (type, nargs);
10818 if (type == NULL)
10819 error (_("element type of array unknown"));
10820 else
10821 return value_zero (ada_aligned_type (type), lval_memory);
10822 }
10823 return
10824 unwrap_value (ada_value_ptr_subscript (argvec[0],
10825 nargs, argvec + 1));
10826
10827 default:
10828 error (_("Attempt to index or call something other than an "
10829 "array or function"));
10830 }
10831
10832 case TERNOP_SLICE:
10833 {
10834 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10835 struct value *low_bound_val =
10836 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10837 struct value *high_bound_val =
10838 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10839 LONGEST low_bound;
10840 LONGEST high_bound;
10841
10842 low_bound_val = coerce_ref (low_bound_val);
10843 high_bound_val = coerce_ref (high_bound_val);
10844 low_bound = value_as_long (low_bound_val);
10845 high_bound = value_as_long (high_bound_val);
10846
10847 if (noside == EVAL_SKIP)
10848 goto nosideret;
10849
10850 /* If this is a reference to an aligner type, then remove all
10851 the aligners. */
10852 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10853 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10854 TYPE_TARGET_TYPE (value_type (array)) =
10855 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10856
10857 if (ada_is_constrained_packed_array_type (value_type (array)))
10858 error (_("cannot slice a packed array"));
10859
10860 /* If this is a reference to an array or an array lvalue,
10861 convert to a pointer. */
10862 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10863 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
10864 && VALUE_LVAL (array) == lval_memory))
10865 array = value_addr (array);
10866
10867 if (noside == EVAL_AVOID_SIDE_EFFECTS
10868 && ada_is_array_descriptor_type (ada_check_typedef
10869 (value_type (array))))
10870 return empty_array (ada_type_of_array (array, 0), low_bound);
10871
10872 array = ada_coerce_to_simple_array_ptr (array);
10873
10874 /* If we have more than one level of pointer indirection,
10875 dereference the value until we get only one level. */
10876 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10877 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
10878 == TYPE_CODE_PTR))
10879 array = value_ind (array);
10880
10881 /* Make sure we really do have an array type before going further,
10882 to avoid a SEGV when trying to get the index type or the target
10883 type later down the road if the debug info generated by
10884 the compiler is incorrect or incomplete. */
10885 if (!ada_is_simple_array_type (value_type (array)))
10886 error (_("cannot take slice of non-array"));
10887
10888 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10889 == TYPE_CODE_PTR)
10890 {
10891 struct type *type0 = ada_check_typedef (value_type (array));
10892
10893 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10894 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
10895 else
10896 {
10897 struct type *arr_type0 =
10898 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10899
10900 return ada_value_slice_from_ptr (array, arr_type0,
10901 longest_to_int (low_bound),
10902 longest_to_int (high_bound));
10903 }
10904 }
10905 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10906 return array;
10907 else if (high_bound < low_bound)
10908 return empty_array (value_type (array), low_bound);
10909 else
10910 return ada_value_slice (array, longest_to_int (low_bound),
10911 longest_to_int (high_bound));
10912 }
10913
10914 case UNOP_IN_RANGE:
10915 (*pos) += 2;
10916 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10917 type = check_typedef (exp->elts[pc + 1].type);
10918
10919 if (noside == EVAL_SKIP)
10920 goto nosideret;
10921
10922 switch (TYPE_CODE (type))
10923 {
10924 default:
10925 lim_warning (_("Membership test incompletely implemented; "
10926 "always returns true"));
10927 type = language_bool_type (exp->language_defn, exp->gdbarch);
10928 return value_from_longest (type, (LONGEST) 1);
10929
10930 case TYPE_CODE_RANGE:
10931 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10932 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
10933 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10934 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10935 type = language_bool_type (exp->language_defn, exp->gdbarch);
10936 return
10937 value_from_longest (type,
10938 (value_less (arg1, arg3)
10939 || value_equal (arg1, arg3))
10940 && (value_less (arg2, arg1)
10941 || value_equal (arg2, arg1)));
10942 }
10943
10944 case BINOP_IN_BOUNDS:
10945 (*pos) += 2;
10946 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10947 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10948
10949 if (noside == EVAL_SKIP)
10950 goto nosideret;
10951
10952 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10953 {
10954 type = language_bool_type (exp->language_defn, exp->gdbarch);
10955 return value_zero (type, not_lval);
10956 }
10957
10958 tem = longest_to_int (exp->elts[pc + 1].longconst);
10959
10960 type = ada_index_type (value_type (arg2), tem, "range");
10961 if (!type)
10962 type = value_type (arg1);
10963
10964 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10965 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
10966
10967 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10968 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10969 type = language_bool_type (exp->language_defn, exp->gdbarch);
10970 return
10971 value_from_longest (type,
10972 (value_less (arg1, arg3)
10973 || value_equal (arg1, arg3))
10974 && (value_less (arg2, arg1)
10975 || value_equal (arg2, arg1)));
10976
10977 case TERNOP_IN_RANGE:
10978 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10979 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10980 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10981
10982 if (noside == EVAL_SKIP)
10983 goto nosideret;
10984
10985 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10986 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10987 type = language_bool_type (exp->language_defn, exp->gdbarch);
10988 return
10989 value_from_longest (type,
10990 (value_less (arg1, arg3)
10991 || value_equal (arg1, arg3))
10992 && (value_less (arg2, arg1)
10993 || value_equal (arg2, arg1)));
10994
10995 case OP_ATR_FIRST:
10996 case OP_ATR_LAST:
10997 case OP_ATR_LENGTH:
10998 {
10999 struct type *type_arg;
11000
11001 if (exp->elts[*pos].opcode == OP_TYPE)
11002 {
11003 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11004 arg1 = NULL;
11005 type_arg = check_typedef (exp->elts[pc + 2].type);
11006 }
11007 else
11008 {
11009 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11010 type_arg = NULL;
11011 }
11012
11013 if (exp->elts[*pos].opcode != OP_LONG)
11014 error (_("Invalid operand to '%s"), ada_attribute_name (op));
11015 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11016 *pos += 4;
11017
11018 if (noside == EVAL_SKIP)
11019 goto nosideret;
11020
11021 if (type_arg == NULL)
11022 {
11023 arg1 = ada_coerce_ref (arg1);
11024
11025 if (ada_is_constrained_packed_array_type (value_type (arg1)))
11026 arg1 = ada_coerce_to_simple_array (arg1);
11027
11028 if (op == OP_ATR_LENGTH)
11029 type = builtin_type (exp->gdbarch)->builtin_int;
11030 else
11031 {
11032 type = ada_index_type (value_type (arg1), tem,
11033 ada_attribute_name (op));
11034 if (type == NULL)
11035 type = builtin_type (exp->gdbarch)->builtin_int;
11036 }
11037
11038 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11039 return allocate_value (type);
11040
11041 switch (op)
11042 {
11043 default: /* Should never happen. */
11044 error (_("unexpected attribute encountered"));
11045 case OP_ATR_FIRST:
11046 return value_from_longest
11047 (type, ada_array_bound (arg1, tem, 0));
11048 case OP_ATR_LAST:
11049 return value_from_longest
11050 (type, ada_array_bound (arg1, tem, 1));
11051 case OP_ATR_LENGTH:
11052 return value_from_longest
11053 (type, ada_array_length (arg1, tem));
11054 }
11055 }
11056 else if (discrete_type_p (type_arg))
11057 {
11058 struct type *range_type;
11059 const char *name = ada_type_name (type_arg);
11060
11061 range_type = NULL;
11062 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
11063 range_type = to_fixed_range_type (type_arg, NULL);
11064 if (range_type == NULL)
11065 range_type = type_arg;
11066 switch (op)
11067 {
11068 default:
11069 error (_("unexpected attribute encountered"));
11070 case OP_ATR_FIRST:
11071 return value_from_longest
11072 (range_type, ada_discrete_type_low_bound (range_type));
11073 case OP_ATR_LAST:
11074 return value_from_longest
11075 (range_type, ada_discrete_type_high_bound (range_type));
11076 case OP_ATR_LENGTH:
11077 error (_("the 'length attribute applies only to array types"));
11078 }
11079 }
11080 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
11081 error (_("unimplemented type attribute"));
11082 else
11083 {
11084 LONGEST low, high;
11085
11086 if (ada_is_constrained_packed_array_type (type_arg))
11087 type_arg = decode_constrained_packed_array_type (type_arg);
11088
11089 if (op == OP_ATR_LENGTH)
11090 type = builtin_type (exp->gdbarch)->builtin_int;
11091 else
11092 {
11093 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11094 if (type == NULL)
11095 type = builtin_type (exp->gdbarch)->builtin_int;
11096 }
11097
11098 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11099 return allocate_value (type);
11100
11101 switch (op)
11102 {
11103 default:
11104 error (_("unexpected attribute encountered"));
11105 case OP_ATR_FIRST:
11106 low = ada_array_bound_from_type (type_arg, tem, 0);
11107 return value_from_longest (type, low);
11108 case OP_ATR_LAST:
11109 high = ada_array_bound_from_type (type_arg, tem, 1);
11110 return value_from_longest (type, high);
11111 case OP_ATR_LENGTH:
11112 low = ada_array_bound_from_type (type_arg, tem, 0);
11113 high = ada_array_bound_from_type (type_arg, tem, 1);
11114 return value_from_longest (type, high - low + 1);
11115 }
11116 }
11117 }
11118
11119 case OP_ATR_TAG:
11120 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11121 if (noside == EVAL_SKIP)
11122 goto nosideret;
11123
11124 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11125 return value_zero (ada_tag_type (arg1), not_lval);
11126
11127 return ada_value_tag (arg1);
11128
11129 case OP_ATR_MIN:
11130 case OP_ATR_MAX:
11131 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11132 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11133 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11134 if (noside == EVAL_SKIP)
11135 goto nosideret;
11136 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11137 return value_zero (value_type (arg1), not_lval);
11138 else
11139 {
11140 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11141 return value_binop (arg1, arg2,
11142 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11143 }
11144
11145 case OP_ATR_MODULUS:
11146 {
11147 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
11148
11149 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11150 if (noside == EVAL_SKIP)
11151 goto nosideret;
11152
11153 if (!ada_is_modular_type (type_arg))
11154 error (_("'modulus must be applied to modular type"));
11155
11156 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11157 ada_modulus (type_arg));
11158 }
11159
11160
11161 case OP_ATR_POS:
11162 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11163 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11164 if (noside == EVAL_SKIP)
11165 goto nosideret;
11166 type = builtin_type (exp->gdbarch)->builtin_int;
11167 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11168 return value_zero (type, not_lval);
11169 else
11170 return value_pos_atr (type, arg1);
11171
11172 case OP_ATR_SIZE:
11173 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11174 type = value_type (arg1);
11175
11176 /* If the argument is a reference, then dereference its type, since
11177 the user is really asking for the size of the actual object,
11178 not the size of the pointer. */
11179 if (TYPE_CODE (type) == TYPE_CODE_REF)
11180 type = TYPE_TARGET_TYPE (type);
11181
11182 if (noside == EVAL_SKIP)
11183 goto nosideret;
11184 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11185 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
11186 else
11187 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
11188 TARGET_CHAR_BIT * TYPE_LENGTH (type));
11189
11190 case OP_ATR_VAL:
11191 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11192 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11193 type = exp->elts[pc + 2].type;
11194 if (noside == EVAL_SKIP)
11195 goto nosideret;
11196 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11197 return value_zero (type, not_lval);
11198 else
11199 return value_val_atr (type, arg1);
11200
11201 case BINOP_EXP:
11202 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11203 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11204 if (noside == EVAL_SKIP)
11205 goto nosideret;
11206 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11207 return value_zero (value_type (arg1), not_lval);
11208 else
11209 {
11210 /* For integer exponentiation operations,
11211 only promote the first argument. */
11212 if (is_integral_type (value_type (arg2)))
11213 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11214 else
11215 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11216
11217 return value_binop (arg1, arg2, op);
11218 }
11219
11220 case UNOP_PLUS:
11221 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11222 if (noside == EVAL_SKIP)
11223 goto nosideret;
11224 else
11225 return arg1;
11226
11227 case UNOP_ABS:
11228 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11229 if (noside == EVAL_SKIP)
11230 goto nosideret;
11231 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11232 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11233 return value_neg (arg1);
11234 else
11235 return arg1;
11236
11237 case UNOP_IND:
11238 preeval_pos = *pos;
11239 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11240 if (noside == EVAL_SKIP)
11241 goto nosideret;
11242 type = ada_check_typedef (value_type (arg1));
11243 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11244 {
11245 if (ada_is_array_descriptor_type (type))
11246 /* GDB allows dereferencing GNAT array descriptors. */
11247 {
11248 struct type *arrType = ada_type_of_array (arg1, 0);
11249
11250 if (arrType == NULL)
11251 error (_("Attempt to dereference null array pointer."));
11252 return value_at_lazy (arrType, 0);
11253 }
11254 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11255 || TYPE_CODE (type) == TYPE_CODE_REF
11256 /* In C you can dereference an array to get the 1st elt. */
11257 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
11258 {
11259 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11260 only be determined by inspecting the object's tag.
11261 This means that we need to evaluate completely the
11262 expression in order to get its type. */
11263
11264 if ((TYPE_CODE (type) == TYPE_CODE_REF
11265 || TYPE_CODE (type) == TYPE_CODE_PTR)
11266 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11267 {
11268 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11269 EVAL_NORMAL);
11270 type = value_type (ada_value_ind (arg1));
11271 }
11272 else
11273 {
11274 type = to_static_fixed_type
11275 (ada_aligned_type
11276 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11277 }
11278 ada_ensure_varsize_limit (type);
11279 return value_zero (type, lval_memory);
11280 }
11281 else if (TYPE_CODE (type) == TYPE_CODE_INT)
11282 {
11283 /* GDB allows dereferencing an int. */
11284 if (expect_type == NULL)
11285 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11286 lval_memory);
11287 else
11288 {
11289 expect_type =
11290 to_static_fixed_type (ada_aligned_type (expect_type));
11291 return value_zero (expect_type, lval_memory);
11292 }
11293 }
11294 else
11295 error (_("Attempt to take contents of a non-pointer value."));
11296 }
11297 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11298 type = ada_check_typedef (value_type (arg1));
11299
11300 if (TYPE_CODE (type) == TYPE_CODE_INT)
11301 /* GDB allows dereferencing an int. If we were given
11302 the expect_type, then use that as the target type.
11303 Otherwise, assume that the target type is an int. */
11304 {
11305 if (expect_type != NULL)
11306 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11307 arg1));
11308 else
11309 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11310 (CORE_ADDR) value_as_address (arg1));
11311 }
11312
11313 if (ada_is_array_descriptor_type (type))
11314 /* GDB allows dereferencing GNAT array descriptors. */
11315 return ada_coerce_to_simple_array (arg1);
11316 else
11317 return ada_value_ind (arg1);
11318
11319 case STRUCTOP_STRUCT:
11320 tem = longest_to_int (exp->elts[pc + 1].longconst);
11321 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11322 preeval_pos = *pos;
11323 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11324 if (noside == EVAL_SKIP)
11325 goto nosideret;
11326 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11327 {
11328 struct type *type1 = value_type (arg1);
11329
11330 if (ada_is_tagged_type (type1, 1))
11331 {
11332 type = ada_lookup_struct_elt_type (type1,
11333 &exp->elts[pc + 2].string,
11334 1, 1);
11335
11336 /* If the field is not found, check if it exists in the
11337 extension of this object's type. This means that we
11338 need to evaluate completely the expression. */
11339
11340 if (type == NULL)
11341 {
11342 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11343 EVAL_NORMAL);
11344 arg1 = ada_value_struct_elt (arg1,
11345 &exp->elts[pc + 2].string,
11346 0);
11347 arg1 = unwrap_value (arg1);
11348 type = value_type (ada_to_fixed_value (arg1));
11349 }
11350 }
11351 else
11352 type =
11353 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11354 0);
11355
11356 return value_zero (ada_aligned_type (type), lval_memory);
11357 }
11358 else
11359 {
11360 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11361 arg1 = unwrap_value (arg1);
11362 return ada_to_fixed_value (arg1);
11363 }
11364
11365 case OP_TYPE:
11366 /* The value is not supposed to be used. This is here to make it
11367 easier to accommodate expressions that contain types. */
11368 (*pos) += 2;
11369 if (noside == EVAL_SKIP)
11370 goto nosideret;
11371 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11372 return allocate_value (exp->elts[pc + 1].type);
11373 else
11374 error (_("Attempt to use a type name as an expression"));
11375
11376 case OP_AGGREGATE:
11377 case OP_CHOICES:
11378 case OP_OTHERS:
11379 case OP_DISCRETE_RANGE:
11380 case OP_POSITIONAL:
11381 case OP_NAME:
11382 if (noside == EVAL_NORMAL)
11383 switch (op)
11384 {
11385 case OP_NAME:
11386 error (_("Undefined name, ambiguous name, or renaming used in "
11387 "component association: %s."), &exp->elts[pc+2].string);
11388 case OP_AGGREGATE:
11389 error (_("Aggregates only allowed on the right of an assignment"));
11390 default:
11391 internal_error (__FILE__, __LINE__,
11392 _("aggregate apparently mangled"));
11393 }
11394
11395 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11396 *pos += oplen - 1;
11397 for (tem = 0; tem < nargs; tem += 1)
11398 ada_evaluate_subexp (NULL, exp, pos, noside);
11399 goto nosideret;
11400 }
11401
11402 nosideret:
11403 return eval_skip_value (exp);
11404 }
11405 \f
11406
11407 /* Fixed point */
11408
11409 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11410 type name that encodes the 'small and 'delta information.
11411 Otherwise, return NULL. */
11412
11413 static const char *
11414 fixed_type_info (struct type *type)
11415 {
11416 const char *name = ada_type_name (type);
11417 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11418
11419 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11420 {
11421 const char *tail = strstr (name, "___XF_");
11422
11423 if (tail == NULL)
11424 return NULL;
11425 else
11426 return tail + 5;
11427 }
11428 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11429 return fixed_type_info (TYPE_TARGET_TYPE (type));
11430 else
11431 return NULL;
11432 }
11433
11434 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11435
11436 int
11437 ada_is_fixed_point_type (struct type *type)
11438 {
11439 return fixed_type_info (type) != NULL;
11440 }
11441
11442 /* Return non-zero iff TYPE represents a System.Address type. */
11443
11444 int
11445 ada_is_system_address_type (struct type *type)
11446 {
11447 return (TYPE_NAME (type)
11448 && strcmp (TYPE_NAME (type), "system__address") == 0);
11449 }
11450
11451 /* Assuming that TYPE is the representation of an Ada fixed-point
11452 type, return the target floating-point type to be used to represent
11453 of this type during internal computation. */
11454
11455 static struct type *
11456 ada_scaling_type (struct type *type)
11457 {
11458 return builtin_type (get_type_arch (type))->builtin_long_double;
11459 }
11460
11461 /* Assuming that TYPE is the representation of an Ada fixed-point
11462 type, return its delta, or NULL if the type is malformed and the
11463 delta cannot be determined. */
11464
11465 struct value *
11466 ada_delta (struct type *type)
11467 {
11468 const char *encoding = fixed_type_info (type);
11469 struct type *scale_type = ada_scaling_type (type);
11470
11471 long long num, den;
11472
11473 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11474 return nullptr;
11475 else
11476 return value_binop (value_from_longest (scale_type, num),
11477 value_from_longest (scale_type, den), BINOP_DIV);
11478 }
11479
11480 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11481 factor ('SMALL value) associated with the type. */
11482
11483 struct value *
11484 ada_scaling_factor (struct type *type)
11485 {
11486 const char *encoding = fixed_type_info (type);
11487 struct type *scale_type = ada_scaling_type (type);
11488
11489 long long num0, den0, num1, den1;
11490 int n;
11491
11492 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
11493 &num0, &den0, &num1, &den1);
11494
11495 if (n < 2)
11496 return value_from_longest (scale_type, 1);
11497 else if (n == 4)
11498 return value_binop (value_from_longest (scale_type, num1),
11499 value_from_longest (scale_type, den1), BINOP_DIV);
11500 else
11501 return value_binop (value_from_longest (scale_type, num0),
11502 value_from_longest (scale_type, den0), BINOP_DIV);
11503 }
11504
11505 \f
11506
11507 /* Range types */
11508
11509 /* Scan STR beginning at position K for a discriminant name, and
11510 return the value of that discriminant field of DVAL in *PX. If
11511 PNEW_K is not null, put the position of the character beyond the
11512 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11513 not alter *PX and *PNEW_K if unsuccessful. */
11514
11515 static int
11516 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11517 int *pnew_k)
11518 {
11519 static char *bound_buffer = NULL;
11520 static size_t bound_buffer_len = 0;
11521 const char *pstart, *pend, *bound;
11522 struct value *bound_val;
11523
11524 if (dval == NULL || str == NULL || str[k] == '\0')
11525 return 0;
11526
11527 pstart = str + k;
11528 pend = strstr (pstart, "__");
11529 if (pend == NULL)
11530 {
11531 bound = pstart;
11532 k += strlen (bound);
11533 }
11534 else
11535 {
11536 int len = pend - pstart;
11537
11538 /* Strip __ and beyond. */
11539 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11540 strncpy (bound_buffer, pstart, len);
11541 bound_buffer[len] = '\0';
11542
11543 bound = bound_buffer;
11544 k = pend - str;
11545 }
11546
11547 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11548 if (bound_val == NULL)
11549 return 0;
11550
11551 *px = value_as_long (bound_val);
11552 if (pnew_k != NULL)
11553 *pnew_k = k;
11554 return 1;
11555 }
11556
11557 /* Value of variable named NAME in the current environment. If
11558 no such variable found, then if ERR_MSG is null, returns 0, and
11559 otherwise causes an error with message ERR_MSG. */
11560
11561 static struct value *
11562 get_var_value (const char *name, const char *err_msg)
11563 {
11564 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
11565
11566 struct block_symbol *syms;
11567 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11568 get_selected_block (0),
11569 VAR_DOMAIN, &syms, 1);
11570
11571 if (nsyms != 1)
11572 {
11573 if (err_msg == NULL)
11574 return 0;
11575 else
11576 error (("%s"), err_msg);
11577 }
11578
11579 return value_of_variable (syms[0].symbol, syms[0].block);
11580 }
11581
11582 /* Value of integer variable named NAME in the current environment.
11583 If no such variable is found, returns false. Otherwise, sets VALUE
11584 to the variable's value and returns true. */
11585
11586 bool
11587 get_int_var_value (const char *name, LONGEST &value)
11588 {
11589 struct value *var_val = get_var_value (name, 0);
11590
11591 if (var_val == 0)
11592 return false;
11593
11594 value = value_as_long (var_val);
11595 return true;
11596 }
11597
11598
11599 /* Return a range type whose base type is that of the range type named
11600 NAME in the current environment, and whose bounds are calculated
11601 from NAME according to the GNAT range encoding conventions.
11602 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11603 corresponding range type from debug information; fall back to using it
11604 if symbol lookup fails. If a new type must be created, allocate it
11605 like ORIG_TYPE was. The bounds information, in general, is encoded
11606 in NAME, the base type given in the named range type. */
11607
11608 static struct type *
11609 to_fixed_range_type (struct type *raw_type, struct value *dval)
11610 {
11611 const char *name;
11612 struct type *base_type;
11613 const char *subtype_info;
11614
11615 gdb_assert (raw_type != NULL);
11616 gdb_assert (TYPE_NAME (raw_type) != NULL);
11617
11618 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11619 base_type = TYPE_TARGET_TYPE (raw_type);
11620 else
11621 base_type = raw_type;
11622
11623 name = TYPE_NAME (raw_type);
11624 subtype_info = strstr (name, "___XD");
11625 if (subtype_info == NULL)
11626 {
11627 LONGEST L = ada_discrete_type_low_bound (raw_type);
11628 LONGEST U = ada_discrete_type_high_bound (raw_type);
11629
11630 if (L < INT_MIN || U > INT_MAX)
11631 return raw_type;
11632 else
11633 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11634 L, U);
11635 }
11636 else
11637 {
11638 static char *name_buf = NULL;
11639 static size_t name_len = 0;
11640 int prefix_len = subtype_info - name;
11641 LONGEST L, U;
11642 struct type *type;
11643 const char *bounds_str;
11644 int n;
11645
11646 GROW_VECT (name_buf, name_len, prefix_len + 5);
11647 strncpy (name_buf, name, prefix_len);
11648 name_buf[prefix_len] = '\0';
11649
11650 subtype_info += 5;
11651 bounds_str = strchr (subtype_info, '_');
11652 n = 1;
11653
11654 if (*subtype_info == 'L')
11655 {
11656 if (!ada_scan_number (bounds_str, n, &L, &n)
11657 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11658 return raw_type;
11659 if (bounds_str[n] == '_')
11660 n += 2;
11661 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11662 n += 1;
11663 subtype_info += 1;
11664 }
11665 else
11666 {
11667 strcpy (name_buf + prefix_len, "___L");
11668 if (!get_int_var_value (name_buf, L))
11669 {
11670 lim_warning (_("Unknown lower bound, using 1."));
11671 L = 1;
11672 }
11673 }
11674
11675 if (*subtype_info == 'U')
11676 {
11677 if (!ada_scan_number (bounds_str, n, &U, &n)
11678 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11679 return raw_type;
11680 }
11681 else
11682 {
11683 strcpy (name_buf + prefix_len, "___U");
11684 if (!get_int_var_value (name_buf, U))
11685 {
11686 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11687 U = L;
11688 }
11689 }
11690
11691 type = create_static_range_type (alloc_type_copy (raw_type),
11692 base_type, L, U);
11693 TYPE_NAME (type) = name;
11694 return type;
11695 }
11696 }
11697
11698 /* True iff NAME is the name of a range type. */
11699
11700 int
11701 ada_is_range_type_name (const char *name)
11702 {
11703 return (name != NULL && strstr (name, "___XD"));
11704 }
11705 \f
11706
11707 /* Modular types */
11708
11709 /* True iff TYPE is an Ada modular type. */
11710
11711 int
11712 ada_is_modular_type (struct type *type)
11713 {
11714 struct type *subranged_type = get_base_type (type);
11715
11716 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11717 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11718 && TYPE_UNSIGNED (subranged_type));
11719 }
11720
11721 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11722
11723 ULONGEST
11724 ada_modulus (struct type *type)
11725 {
11726 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11727 }
11728 \f
11729
11730 /* Ada exception catchpoint support:
11731 ---------------------------------
11732
11733 We support 3 kinds of exception catchpoints:
11734 . catchpoints on Ada exceptions
11735 . catchpoints on unhandled Ada exceptions
11736 . catchpoints on failed assertions
11737
11738 Exceptions raised during failed assertions, or unhandled exceptions
11739 could perfectly be caught with the general catchpoint on Ada exceptions.
11740 However, we can easily differentiate these two special cases, and having
11741 the option to distinguish these two cases from the rest can be useful
11742 to zero-in on certain situations.
11743
11744 Exception catchpoints are a specialized form of breakpoint,
11745 since they rely on inserting breakpoints inside known routines
11746 of the GNAT runtime. The implementation therefore uses a standard
11747 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11748 of breakpoint_ops.
11749
11750 Support in the runtime for exception catchpoints have been changed
11751 a few times already, and these changes affect the implementation
11752 of these catchpoints. In order to be able to support several
11753 variants of the runtime, we use a sniffer that will determine
11754 the runtime variant used by the program being debugged. */
11755
11756 /* Ada's standard exceptions.
11757
11758 The Ada 83 standard also defined Numeric_Error. But there so many
11759 situations where it was unclear from the Ada 83 Reference Manual
11760 (RM) whether Constraint_Error or Numeric_Error should be raised,
11761 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11762 Interpretation saying that anytime the RM says that Numeric_Error
11763 should be raised, the implementation may raise Constraint_Error.
11764 Ada 95 went one step further and pretty much removed Numeric_Error
11765 from the list of standard exceptions (it made it a renaming of
11766 Constraint_Error, to help preserve compatibility when compiling
11767 an Ada83 compiler). As such, we do not include Numeric_Error from
11768 this list of standard exceptions. */
11769
11770 static const char *standard_exc[] = {
11771 "constraint_error",
11772 "program_error",
11773 "storage_error",
11774 "tasking_error"
11775 };
11776
11777 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11778
11779 /* A structure that describes how to support exception catchpoints
11780 for a given executable. */
11781
11782 struct exception_support_info
11783 {
11784 /* The name of the symbol to break on in order to insert
11785 a catchpoint on exceptions. */
11786 const char *catch_exception_sym;
11787
11788 /* The name of the symbol to break on in order to insert
11789 a catchpoint on unhandled exceptions. */
11790 const char *catch_exception_unhandled_sym;
11791
11792 /* The name of the symbol to break on in order to insert
11793 a catchpoint on failed assertions. */
11794 const char *catch_assert_sym;
11795
11796 /* Assuming that the inferior just triggered an unhandled exception
11797 catchpoint, this function is responsible for returning the address
11798 in inferior memory where the name of that exception is stored.
11799 Return zero if the address could not be computed. */
11800 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11801 };
11802
11803 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11804 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11805
11806 /* The following exception support info structure describes how to
11807 implement exception catchpoints with the latest version of the
11808 Ada runtime (as of 2007-03-06). */
11809
11810 static const struct exception_support_info default_exception_support_info =
11811 {
11812 "__gnat_debug_raise_exception", /* catch_exception_sym */
11813 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11814 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11815 ada_unhandled_exception_name_addr
11816 };
11817
11818 /* The following exception support info structure describes how to
11819 implement exception catchpoints with a slightly older version
11820 of the Ada runtime. */
11821
11822 static const struct exception_support_info exception_support_info_fallback =
11823 {
11824 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11825 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11826 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11827 ada_unhandled_exception_name_addr_from_raise
11828 };
11829
11830 /* Return nonzero if we can detect the exception support routines
11831 described in EINFO.
11832
11833 This function errors out if an abnormal situation is detected
11834 (for instance, if we find the exception support routines, but
11835 that support is found to be incomplete). */
11836
11837 static int
11838 ada_has_this_exception_support (const struct exception_support_info *einfo)
11839 {
11840 struct symbol *sym;
11841
11842 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11843 that should be compiled with debugging information. As a result, we
11844 expect to find that symbol in the symtabs. */
11845
11846 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11847 if (sym == NULL)
11848 {
11849 /* Perhaps we did not find our symbol because the Ada runtime was
11850 compiled without debugging info, or simply stripped of it.
11851 It happens on some GNU/Linux distributions for instance, where
11852 users have to install a separate debug package in order to get
11853 the runtime's debugging info. In that situation, let the user
11854 know why we cannot insert an Ada exception catchpoint.
11855
11856 Note: Just for the purpose of inserting our Ada exception
11857 catchpoint, we could rely purely on the associated minimal symbol.
11858 But we would be operating in degraded mode anyway, since we are
11859 still lacking the debugging info needed later on to extract
11860 the name of the exception being raised (this name is printed in
11861 the catchpoint message, and is also used when trying to catch
11862 a specific exception). We do not handle this case for now. */
11863 struct bound_minimal_symbol msym
11864 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11865
11866 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11867 error (_("Your Ada runtime appears to be missing some debugging "
11868 "information.\nCannot insert Ada exception catchpoint "
11869 "in this configuration."));
11870
11871 return 0;
11872 }
11873
11874 /* Make sure that the symbol we found corresponds to a function. */
11875
11876 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11877 error (_("Symbol \"%s\" is not a function (class = %d)"),
11878 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11879
11880 return 1;
11881 }
11882
11883 /* Inspect the Ada runtime and determine which exception info structure
11884 should be used to provide support for exception catchpoints.
11885
11886 This function will always set the per-inferior exception_info,
11887 or raise an error. */
11888
11889 static void
11890 ada_exception_support_info_sniffer (void)
11891 {
11892 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11893
11894 /* If the exception info is already known, then no need to recompute it. */
11895 if (data->exception_info != NULL)
11896 return;
11897
11898 /* Check the latest (default) exception support info. */
11899 if (ada_has_this_exception_support (&default_exception_support_info))
11900 {
11901 data->exception_info = &default_exception_support_info;
11902 return;
11903 }
11904
11905 /* Try our fallback exception suport info. */
11906 if (ada_has_this_exception_support (&exception_support_info_fallback))
11907 {
11908 data->exception_info = &exception_support_info_fallback;
11909 return;
11910 }
11911
11912 /* Sometimes, it is normal for us to not be able to find the routine
11913 we are looking for. This happens when the program is linked with
11914 the shared version of the GNAT runtime, and the program has not been
11915 started yet. Inform the user of these two possible causes if
11916 applicable. */
11917
11918 if (ada_update_initial_language (language_unknown) != language_ada)
11919 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11920
11921 /* If the symbol does not exist, then check that the program is
11922 already started, to make sure that shared libraries have been
11923 loaded. If it is not started, this may mean that the symbol is
11924 in a shared library. */
11925
11926 if (ptid_get_pid (inferior_ptid) == 0)
11927 error (_("Unable to insert catchpoint. Try to start the program first."));
11928
11929 /* At this point, we know that we are debugging an Ada program and
11930 that the inferior has been started, but we still are not able to
11931 find the run-time symbols. That can mean that we are in
11932 configurable run time mode, or that a-except as been optimized
11933 out by the linker... In any case, at this point it is not worth
11934 supporting this feature. */
11935
11936 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11937 }
11938
11939 /* True iff FRAME is very likely to be that of a function that is
11940 part of the runtime system. This is all very heuristic, but is
11941 intended to be used as advice as to what frames are uninteresting
11942 to most users. */
11943
11944 static int
11945 is_known_support_routine (struct frame_info *frame)
11946 {
11947 enum language func_lang;
11948 int i;
11949 const char *fullname;
11950
11951 /* If this code does not have any debugging information (no symtab),
11952 This cannot be any user code. */
11953
11954 symtab_and_line sal = find_frame_sal (frame);
11955 if (sal.symtab == NULL)
11956 return 1;
11957
11958 /* If there is a symtab, but the associated source file cannot be
11959 located, then assume this is not user code: Selecting a frame
11960 for which we cannot display the code would not be very helpful
11961 for the user. This should also take care of case such as VxWorks
11962 where the kernel has some debugging info provided for a few units. */
11963
11964 fullname = symtab_to_fullname (sal.symtab);
11965 if (access (fullname, R_OK) != 0)
11966 return 1;
11967
11968 /* Check the unit filename againt the Ada runtime file naming.
11969 We also check the name of the objfile against the name of some
11970 known system libraries that sometimes come with debugging info
11971 too. */
11972
11973 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11974 {
11975 re_comp (known_runtime_file_name_patterns[i]);
11976 if (re_exec (lbasename (sal.symtab->filename)))
11977 return 1;
11978 if (SYMTAB_OBJFILE (sal.symtab) != NULL
11979 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
11980 return 1;
11981 }
11982
11983 /* Check whether the function is a GNAT-generated entity. */
11984
11985 gdb::unique_xmalloc_ptr<char> func_name
11986 = find_frame_funname (frame, &func_lang, NULL);
11987 if (func_name == NULL)
11988 return 1;
11989
11990 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11991 {
11992 re_comp (known_auxiliary_function_name_patterns[i]);
11993 if (re_exec (func_name.get ()))
11994 return 1;
11995 }
11996
11997 return 0;
11998 }
11999
12000 /* Find the first frame that contains debugging information and that is not
12001 part of the Ada run-time, starting from FI and moving upward. */
12002
12003 void
12004 ada_find_printable_frame (struct frame_info *fi)
12005 {
12006 for (; fi != NULL; fi = get_prev_frame (fi))
12007 {
12008 if (!is_known_support_routine (fi))
12009 {
12010 select_frame (fi);
12011 break;
12012 }
12013 }
12014
12015 }
12016
12017 /* Assuming that the inferior just triggered an unhandled exception
12018 catchpoint, return the address in inferior memory where the name
12019 of the exception is stored.
12020
12021 Return zero if the address could not be computed. */
12022
12023 static CORE_ADDR
12024 ada_unhandled_exception_name_addr (void)
12025 {
12026 return parse_and_eval_address ("e.full_name");
12027 }
12028
12029 /* Same as ada_unhandled_exception_name_addr, except that this function
12030 should be used when the inferior uses an older version of the runtime,
12031 where the exception name needs to be extracted from a specific frame
12032 several frames up in the callstack. */
12033
12034 static CORE_ADDR
12035 ada_unhandled_exception_name_addr_from_raise (void)
12036 {
12037 int frame_level;
12038 struct frame_info *fi;
12039 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12040
12041 /* To determine the name of this exception, we need to select
12042 the frame corresponding to RAISE_SYM_NAME. This frame is
12043 at least 3 levels up, so we simply skip the first 3 frames
12044 without checking the name of their associated function. */
12045 fi = get_current_frame ();
12046 for (frame_level = 0; frame_level < 3; frame_level += 1)
12047 if (fi != NULL)
12048 fi = get_prev_frame (fi);
12049
12050 while (fi != NULL)
12051 {
12052 enum language func_lang;
12053
12054 gdb::unique_xmalloc_ptr<char> func_name
12055 = find_frame_funname (fi, &func_lang, NULL);
12056 if (func_name != NULL)
12057 {
12058 if (strcmp (func_name.get (),
12059 data->exception_info->catch_exception_sym) == 0)
12060 break; /* We found the frame we were looking for... */
12061 fi = get_prev_frame (fi);
12062 }
12063 }
12064
12065 if (fi == NULL)
12066 return 0;
12067
12068 select_frame (fi);
12069 return parse_and_eval_address ("id.full_name");
12070 }
12071
12072 /* Assuming the inferior just triggered an Ada exception catchpoint
12073 (of any type), return the address in inferior memory where the name
12074 of the exception is stored, if applicable.
12075
12076 Assumes the selected frame is the current frame.
12077
12078 Return zero if the address could not be computed, or if not relevant. */
12079
12080 static CORE_ADDR
12081 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
12082 struct breakpoint *b)
12083 {
12084 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12085
12086 switch (ex)
12087 {
12088 case ada_catch_exception:
12089 return (parse_and_eval_address ("e.full_name"));
12090 break;
12091
12092 case ada_catch_exception_unhandled:
12093 return data->exception_info->unhandled_exception_name_addr ();
12094 break;
12095
12096 case ada_catch_assert:
12097 return 0; /* Exception name is not relevant in this case. */
12098 break;
12099
12100 default:
12101 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12102 break;
12103 }
12104
12105 return 0; /* Should never be reached. */
12106 }
12107
12108 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12109 any error that ada_exception_name_addr_1 might cause to be thrown.
12110 When an error is intercepted, a warning with the error message is printed,
12111 and zero is returned. */
12112
12113 static CORE_ADDR
12114 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12115 struct breakpoint *b)
12116 {
12117 CORE_ADDR result = 0;
12118
12119 TRY
12120 {
12121 result = ada_exception_name_addr_1 (ex, b);
12122 }
12123
12124 CATCH (e, RETURN_MASK_ERROR)
12125 {
12126 warning (_("failed to get exception name: %s"), e.message);
12127 return 0;
12128 }
12129 END_CATCH
12130
12131 return result;
12132 }
12133
12134 static char *ada_exception_catchpoint_cond_string (const char *excep_string);
12135
12136 /* Ada catchpoints.
12137
12138 In the case of catchpoints on Ada exceptions, the catchpoint will
12139 stop the target on every exception the program throws. When a user
12140 specifies the name of a specific exception, we translate this
12141 request into a condition expression (in text form), and then parse
12142 it into an expression stored in each of the catchpoint's locations.
12143 We then use this condition to check whether the exception that was
12144 raised is the one the user is interested in. If not, then the
12145 target is resumed again. We store the name of the requested
12146 exception, in order to be able to re-set the condition expression
12147 when symbols change. */
12148
12149 /* An instance of this type is used to represent an Ada catchpoint
12150 breakpoint location. */
12151
12152 class ada_catchpoint_location : public bp_location
12153 {
12154 public:
12155 ada_catchpoint_location (const bp_location_ops *ops, breakpoint *owner)
12156 : bp_location (ops, owner)
12157 {}
12158
12159 /* The condition that checks whether the exception that was raised
12160 is the specific exception the user specified on catchpoint
12161 creation. */
12162 expression_up excep_cond_expr;
12163 };
12164
12165 /* Implement the DTOR method in the bp_location_ops structure for all
12166 Ada exception catchpoint kinds. */
12167
12168 static void
12169 ada_catchpoint_location_dtor (struct bp_location *bl)
12170 {
12171 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
12172
12173 al->excep_cond_expr.reset ();
12174 }
12175
12176 /* The vtable to be used in Ada catchpoint locations. */
12177
12178 static const struct bp_location_ops ada_catchpoint_location_ops =
12179 {
12180 ada_catchpoint_location_dtor
12181 };
12182
12183 /* An instance of this type is used to represent an Ada catchpoint. */
12184
12185 struct ada_catchpoint : public breakpoint
12186 {
12187 ~ada_catchpoint () override;
12188
12189 /* The name of the specific exception the user specified. */
12190 char *excep_string;
12191 };
12192
12193 /* Parse the exception condition string in the context of each of the
12194 catchpoint's locations, and store them for later evaluation. */
12195
12196 static void
12197 create_excep_cond_exprs (struct ada_catchpoint *c)
12198 {
12199 struct cleanup *old_chain;
12200 struct bp_location *bl;
12201 char *cond_string;
12202
12203 /* Nothing to do if there's no specific exception to catch. */
12204 if (c->excep_string == NULL)
12205 return;
12206
12207 /* Same if there are no locations... */
12208 if (c->loc == NULL)
12209 return;
12210
12211 /* Compute the condition expression in text form, from the specific
12212 expection we want to catch. */
12213 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
12214 old_chain = make_cleanup (xfree, cond_string);
12215
12216 /* Iterate over all the catchpoint's locations, and parse an
12217 expression for each. */
12218 for (bl = c->loc; bl != NULL; bl = bl->next)
12219 {
12220 struct ada_catchpoint_location *ada_loc
12221 = (struct ada_catchpoint_location *) bl;
12222 expression_up exp;
12223
12224 if (!bl->shlib_disabled)
12225 {
12226 const char *s;
12227
12228 s = cond_string;
12229 TRY
12230 {
12231 exp = parse_exp_1 (&s, bl->address,
12232 block_for_pc (bl->address),
12233 0);
12234 }
12235 CATCH (e, RETURN_MASK_ERROR)
12236 {
12237 warning (_("failed to reevaluate internal exception condition "
12238 "for catchpoint %d: %s"),
12239 c->number, e.message);
12240 }
12241 END_CATCH
12242 }
12243
12244 ada_loc->excep_cond_expr = std::move (exp);
12245 }
12246
12247 do_cleanups (old_chain);
12248 }
12249
12250 /* ada_catchpoint destructor. */
12251
12252 ada_catchpoint::~ada_catchpoint ()
12253 {
12254 xfree (this->excep_string);
12255 }
12256
12257 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12258 structure for all exception catchpoint kinds. */
12259
12260 static struct bp_location *
12261 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
12262 struct breakpoint *self)
12263 {
12264 return new ada_catchpoint_location (&ada_catchpoint_location_ops, self);
12265 }
12266
12267 /* Implement the RE_SET method in the breakpoint_ops structure for all
12268 exception catchpoint kinds. */
12269
12270 static void
12271 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12272 {
12273 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12274
12275 /* Call the base class's method. This updates the catchpoint's
12276 locations. */
12277 bkpt_breakpoint_ops.re_set (b);
12278
12279 /* Reparse the exception conditional expressions. One for each
12280 location. */
12281 create_excep_cond_exprs (c);
12282 }
12283
12284 /* Returns true if we should stop for this breakpoint hit. If the
12285 user specified a specific exception, we only want to cause a stop
12286 if the program thrown that exception. */
12287
12288 static int
12289 should_stop_exception (const struct bp_location *bl)
12290 {
12291 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12292 const struct ada_catchpoint_location *ada_loc
12293 = (const struct ada_catchpoint_location *) bl;
12294 int stop;
12295
12296 /* With no specific exception, should always stop. */
12297 if (c->excep_string == NULL)
12298 return 1;
12299
12300 if (ada_loc->excep_cond_expr == NULL)
12301 {
12302 /* We will have a NULL expression if back when we were creating
12303 the expressions, this location's had failed to parse. */
12304 return 1;
12305 }
12306
12307 stop = 1;
12308 TRY
12309 {
12310 struct value *mark;
12311
12312 mark = value_mark ();
12313 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12314 value_free_to_mark (mark);
12315 }
12316 CATCH (ex, RETURN_MASK_ALL)
12317 {
12318 exception_fprintf (gdb_stderr, ex,
12319 _("Error in testing exception condition:\n"));
12320 }
12321 END_CATCH
12322
12323 return stop;
12324 }
12325
12326 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12327 for all exception catchpoint kinds. */
12328
12329 static void
12330 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12331 {
12332 bs->stop = should_stop_exception (bs->bp_location_at);
12333 }
12334
12335 /* Implement the PRINT_IT method in the breakpoint_ops structure
12336 for all exception catchpoint kinds. */
12337
12338 static enum print_stop_action
12339 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12340 {
12341 struct ui_out *uiout = current_uiout;
12342 struct breakpoint *b = bs->breakpoint_at;
12343
12344 annotate_catchpoint (b->number);
12345
12346 if (uiout->is_mi_like_p ())
12347 {
12348 uiout->field_string ("reason",
12349 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12350 uiout->field_string ("disp", bpdisp_text (b->disposition));
12351 }
12352
12353 uiout->text (b->disposition == disp_del
12354 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12355 uiout->field_int ("bkptno", b->number);
12356 uiout->text (", ");
12357
12358 /* ada_exception_name_addr relies on the selected frame being the
12359 current frame. Need to do this here because this function may be
12360 called more than once when printing a stop, and below, we'll
12361 select the first frame past the Ada run-time (see
12362 ada_find_printable_frame). */
12363 select_frame (get_current_frame ());
12364
12365 switch (ex)
12366 {
12367 case ada_catch_exception:
12368 case ada_catch_exception_unhandled:
12369 {
12370 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12371 char exception_name[256];
12372
12373 if (addr != 0)
12374 {
12375 read_memory (addr, (gdb_byte *) exception_name,
12376 sizeof (exception_name) - 1);
12377 exception_name [sizeof (exception_name) - 1] = '\0';
12378 }
12379 else
12380 {
12381 /* For some reason, we were unable to read the exception
12382 name. This could happen if the Runtime was compiled
12383 without debugging info, for instance. In that case,
12384 just replace the exception name by the generic string
12385 "exception" - it will read as "an exception" in the
12386 notification we are about to print. */
12387 memcpy (exception_name, "exception", sizeof ("exception"));
12388 }
12389 /* In the case of unhandled exception breakpoints, we print
12390 the exception name as "unhandled EXCEPTION_NAME", to make
12391 it clearer to the user which kind of catchpoint just got
12392 hit. We used ui_out_text to make sure that this extra
12393 info does not pollute the exception name in the MI case. */
12394 if (ex == ada_catch_exception_unhandled)
12395 uiout->text ("unhandled ");
12396 uiout->field_string ("exception-name", exception_name);
12397 }
12398 break;
12399 case ada_catch_assert:
12400 /* In this case, the name of the exception is not really
12401 important. Just print "failed assertion" to make it clearer
12402 that his program just hit an assertion-failure catchpoint.
12403 We used ui_out_text because this info does not belong in
12404 the MI output. */
12405 uiout->text ("failed assertion");
12406 break;
12407 }
12408 uiout->text (" at ");
12409 ada_find_printable_frame (get_current_frame ());
12410
12411 return PRINT_SRC_AND_LOC;
12412 }
12413
12414 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12415 for all exception catchpoint kinds. */
12416
12417 static void
12418 print_one_exception (enum ada_exception_catchpoint_kind ex,
12419 struct breakpoint *b, struct bp_location **last_loc)
12420 {
12421 struct ui_out *uiout = current_uiout;
12422 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12423 struct value_print_options opts;
12424
12425 get_user_print_options (&opts);
12426 if (opts.addressprint)
12427 {
12428 annotate_field (4);
12429 uiout->field_core_addr ("addr", b->loc->gdbarch, b->loc->address);
12430 }
12431
12432 annotate_field (5);
12433 *last_loc = b->loc;
12434 switch (ex)
12435 {
12436 case ada_catch_exception:
12437 if (c->excep_string != NULL)
12438 {
12439 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12440
12441 uiout->field_string ("what", msg);
12442 xfree (msg);
12443 }
12444 else
12445 uiout->field_string ("what", "all Ada exceptions");
12446
12447 break;
12448
12449 case ada_catch_exception_unhandled:
12450 uiout->field_string ("what", "unhandled Ada exceptions");
12451 break;
12452
12453 case ada_catch_assert:
12454 uiout->field_string ("what", "failed Ada assertions");
12455 break;
12456
12457 default:
12458 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12459 break;
12460 }
12461 }
12462
12463 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12464 for all exception catchpoint kinds. */
12465
12466 static void
12467 print_mention_exception (enum ada_exception_catchpoint_kind ex,
12468 struct breakpoint *b)
12469 {
12470 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12471 struct ui_out *uiout = current_uiout;
12472
12473 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
12474 : _("Catchpoint "));
12475 uiout->field_int ("bkptno", b->number);
12476 uiout->text (": ");
12477
12478 switch (ex)
12479 {
12480 case ada_catch_exception:
12481 if (c->excep_string != NULL)
12482 {
12483 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12484 struct cleanup *old_chain = make_cleanup (xfree, info);
12485
12486 uiout->text (info);
12487 do_cleanups (old_chain);
12488 }
12489 else
12490 uiout->text (_("all Ada exceptions"));
12491 break;
12492
12493 case ada_catch_exception_unhandled:
12494 uiout->text (_("unhandled Ada exceptions"));
12495 break;
12496
12497 case ada_catch_assert:
12498 uiout->text (_("failed Ada assertions"));
12499 break;
12500
12501 default:
12502 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12503 break;
12504 }
12505 }
12506
12507 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12508 for all exception catchpoint kinds. */
12509
12510 static void
12511 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12512 struct breakpoint *b, struct ui_file *fp)
12513 {
12514 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12515
12516 switch (ex)
12517 {
12518 case ada_catch_exception:
12519 fprintf_filtered (fp, "catch exception");
12520 if (c->excep_string != NULL)
12521 fprintf_filtered (fp, " %s", c->excep_string);
12522 break;
12523
12524 case ada_catch_exception_unhandled:
12525 fprintf_filtered (fp, "catch exception unhandled");
12526 break;
12527
12528 case ada_catch_assert:
12529 fprintf_filtered (fp, "catch assert");
12530 break;
12531
12532 default:
12533 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12534 }
12535 print_recreate_thread (b, fp);
12536 }
12537
12538 /* Virtual table for "catch exception" breakpoints. */
12539
12540 static struct bp_location *
12541 allocate_location_catch_exception (struct breakpoint *self)
12542 {
12543 return allocate_location_exception (ada_catch_exception, self);
12544 }
12545
12546 static void
12547 re_set_catch_exception (struct breakpoint *b)
12548 {
12549 re_set_exception (ada_catch_exception, b);
12550 }
12551
12552 static void
12553 check_status_catch_exception (bpstat bs)
12554 {
12555 check_status_exception (ada_catch_exception, bs);
12556 }
12557
12558 static enum print_stop_action
12559 print_it_catch_exception (bpstat bs)
12560 {
12561 return print_it_exception (ada_catch_exception, bs);
12562 }
12563
12564 static void
12565 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12566 {
12567 print_one_exception (ada_catch_exception, b, last_loc);
12568 }
12569
12570 static void
12571 print_mention_catch_exception (struct breakpoint *b)
12572 {
12573 print_mention_exception (ada_catch_exception, b);
12574 }
12575
12576 static void
12577 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12578 {
12579 print_recreate_exception (ada_catch_exception, b, fp);
12580 }
12581
12582 static struct breakpoint_ops catch_exception_breakpoint_ops;
12583
12584 /* Virtual table for "catch exception unhandled" breakpoints. */
12585
12586 static struct bp_location *
12587 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12588 {
12589 return allocate_location_exception (ada_catch_exception_unhandled, self);
12590 }
12591
12592 static void
12593 re_set_catch_exception_unhandled (struct breakpoint *b)
12594 {
12595 re_set_exception (ada_catch_exception_unhandled, b);
12596 }
12597
12598 static void
12599 check_status_catch_exception_unhandled (bpstat bs)
12600 {
12601 check_status_exception (ada_catch_exception_unhandled, bs);
12602 }
12603
12604 static enum print_stop_action
12605 print_it_catch_exception_unhandled (bpstat bs)
12606 {
12607 return print_it_exception (ada_catch_exception_unhandled, bs);
12608 }
12609
12610 static void
12611 print_one_catch_exception_unhandled (struct breakpoint *b,
12612 struct bp_location **last_loc)
12613 {
12614 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12615 }
12616
12617 static void
12618 print_mention_catch_exception_unhandled (struct breakpoint *b)
12619 {
12620 print_mention_exception (ada_catch_exception_unhandled, b);
12621 }
12622
12623 static void
12624 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12625 struct ui_file *fp)
12626 {
12627 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12628 }
12629
12630 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12631
12632 /* Virtual table for "catch assert" breakpoints. */
12633
12634 static struct bp_location *
12635 allocate_location_catch_assert (struct breakpoint *self)
12636 {
12637 return allocate_location_exception (ada_catch_assert, self);
12638 }
12639
12640 static void
12641 re_set_catch_assert (struct breakpoint *b)
12642 {
12643 re_set_exception (ada_catch_assert, b);
12644 }
12645
12646 static void
12647 check_status_catch_assert (bpstat bs)
12648 {
12649 check_status_exception (ada_catch_assert, bs);
12650 }
12651
12652 static enum print_stop_action
12653 print_it_catch_assert (bpstat bs)
12654 {
12655 return print_it_exception (ada_catch_assert, bs);
12656 }
12657
12658 static void
12659 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12660 {
12661 print_one_exception (ada_catch_assert, b, last_loc);
12662 }
12663
12664 static void
12665 print_mention_catch_assert (struct breakpoint *b)
12666 {
12667 print_mention_exception (ada_catch_assert, b);
12668 }
12669
12670 static void
12671 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12672 {
12673 print_recreate_exception (ada_catch_assert, b, fp);
12674 }
12675
12676 static struct breakpoint_ops catch_assert_breakpoint_ops;
12677
12678 /* Return a newly allocated copy of the first space-separated token
12679 in ARGSP, and then adjust ARGSP to point immediately after that
12680 token.
12681
12682 Return NULL if ARGPS does not contain any more tokens. */
12683
12684 static char *
12685 ada_get_next_arg (const char **argsp)
12686 {
12687 const char *args = *argsp;
12688 const char *end;
12689 char *result;
12690
12691 args = skip_spaces (args);
12692 if (args[0] == '\0')
12693 return NULL; /* No more arguments. */
12694
12695 /* Find the end of the current argument. */
12696
12697 end = skip_to_space (args);
12698
12699 /* Adjust ARGSP to point to the start of the next argument. */
12700
12701 *argsp = end;
12702
12703 /* Make a copy of the current argument and return it. */
12704
12705 result = (char *) xmalloc (end - args + 1);
12706 strncpy (result, args, end - args);
12707 result[end - args] = '\0';
12708
12709 return result;
12710 }
12711
12712 /* Split the arguments specified in a "catch exception" command.
12713 Set EX to the appropriate catchpoint type.
12714 Set EXCEP_STRING to the name of the specific exception if
12715 specified by the user.
12716 If a condition is found at the end of the arguments, the condition
12717 expression is stored in COND_STRING (memory must be deallocated
12718 after use). Otherwise COND_STRING is set to NULL. */
12719
12720 static void
12721 catch_ada_exception_command_split (const char *args,
12722 enum ada_exception_catchpoint_kind *ex,
12723 char **excep_string,
12724 char **cond_string)
12725 {
12726 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
12727 char *exception_name;
12728 char *cond = NULL;
12729
12730 exception_name = ada_get_next_arg (&args);
12731 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
12732 {
12733 /* This is not an exception name; this is the start of a condition
12734 expression for a catchpoint on all exceptions. So, "un-get"
12735 this token, and set exception_name to NULL. */
12736 xfree (exception_name);
12737 exception_name = NULL;
12738 args -= 2;
12739 }
12740 make_cleanup (xfree, exception_name);
12741
12742 /* Check to see if we have a condition. */
12743
12744 args = skip_spaces (args);
12745 if (startswith (args, "if")
12746 && (isspace (args[2]) || args[2] == '\0'))
12747 {
12748 args += 2;
12749 args = skip_spaces (args);
12750
12751 if (args[0] == '\0')
12752 error (_("Condition missing after `if' keyword"));
12753 cond = xstrdup (args);
12754 make_cleanup (xfree, cond);
12755
12756 args += strlen (args);
12757 }
12758
12759 /* Check that we do not have any more arguments. Anything else
12760 is unexpected. */
12761
12762 if (args[0] != '\0')
12763 error (_("Junk at end of expression"));
12764
12765 discard_cleanups (old_chain);
12766
12767 if (exception_name == NULL)
12768 {
12769 /* Catch all exceptions. */
12770 *ex = ada_catch_exception;
12771 *excep_string = NULL;
12772 }
12773 else if (strcmp (exception_name, "unhandled") == 0)
12774 {
12775 /* Catch unhandled exceptions. */
12776 *ex = ada_catch_exception_unhandled;
12777 *excep_string = NULL;
12778 }
12779 else
12780 {
12781 /* Catch a specific exception. */
12782 *ex = ada_catch_exception;
12783 *excep_string = exception_name;
12784 }
12785 *cond_string = cond;
12786 }
12787
12788 /* Return the name of the symbol on which we should break in order to
12789 implement a catchpoint of the EX kind. */
12790
12791 static const char *
12792 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12793 {
12794 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12795
12796 gdb_assert (data->exception_info != NULL);
12797
12798 switch (ex)
12799 {
12800 case ada_catch_exception:
12801 return (data->exception_info->catch_exception_sym);
12802 break;
12803 case ada_catch_exception_unhandled:
12804 return (data->exception_info->catch_exception_unhandled_sym);
12805 break;
12806 case ada_catch_assert:
12807 return (data->exception_info->catch_assert_sym);
12808 break;
12809 default:
12810 internal_error (__FILE__, __LINE__,
12811 _("unexpected catchpoint kind (%d)"), ex);
12812 }
12813 }
12814
12815 /* Return the breakpoint ops "virtual table" used for catchpoints
12816 of the EX kind. */
12817
12818 static const struct breakpoint_ops *
12819 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12820 {
12821 switch (ex)
12822 {
12823 case ada_catch_exception:
12824 return (&catch_exception_breakpoint_ops);
12825 break;
12826 case ada_catch_exception_unhandled:
12827 return (&catch_exception_unhandled_breakpoint_ops);
12828 break;
12829 case ada_catch_assert:
12830 return (&catch_assert_breakpoint_ops);
12831 break;
12832 default:
12833 internal_error (__FILE__, __LINE__,
12834 _("unexpected catchpoint kind (%d)"), ex);
12835 }
12836 }
12837
12838 /* Return the condition that will be used to match the current exception
12839 being raised with the exception that the user wants to catch. This
12840 assumes that this condition is used when the inferior just triggered
12841 an exception catchpoint.
12842
12843 The string returned is a newly allocated string that needs to be
12844 deallocated later. */
12845
12846 static char *
12847 ada_exception_catchpoint_cond_string (const char *excep_string)
12848 {
12849 int i;
12850
12851 /* The standard exceptions are a special case. They are defined in
12852 runtime units that have been compiled without debugging info; if
12853 EXCEP_STRING is the not-fully-qualified name of a standard
12854 exception (e.g. "constraint_error") then, during the evaluation
12855 of the condition expression, the symbol lookup on this name would
12856 *not* return this standard exception. The catchpoint condition
12857 may then be set only on user-defined exceptions which have the
12858 same not-fully-qualified name (e.g. my_package.constraint_error).
12859
12860 To avoid this unexcepted behavior, these standard exceptions are
12861 systematically prefixed by "standard". This means that "catch
12862 exception constraint_error" is rewritten into "catch exception
12863 standard.constraint_error".
12864
12865 If an exception named contraint_error is defined in another package of
12866 the inferior program, then the only way to specify this exception as a
12867 breakpoint condition is to use its fully-qualified named:
12868 e.g. my_package.constraint_error. */
12869
12870 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12871 {
12872 if (strcmp (standard_exc [i], excep_string) == 0)
12873 {
12874 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
12875 excep_string);
12876 }
12877 }
12878 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
12879 }
12880
12881 /* Return the symtab_and_line that should be used to insert an exception
12882 catchpoint of the TYPE kind.
12883
12884 EXCEP_STRING should contain the name of a specific exception that
12885 the catchpoint should catch, or NULL otherwise.
12886
12887 ADDR_STRING returns the name of the function where the real
12888 breakpoint that implements the catchpoints is set, depending on the
12889 type of catchpoint we need to create. */
12890
12891 static struct symtab_and_line
12892 ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
12893 const char **addr_string, const struct breakpoint_ops **ops)
12894 {
12895 const char *sym_name;
12896 struct symbol *sym;
12897
12898 /* First, find out which exception support info to use. */
12899 ada_exception_support_info_sniffer ();
12900
12901 /* Then lookup the function on which we will break in order to catch
12902 the Ada exceptions requested by the user. */
12903 sym_name = ada_exception_sym_name (ex);
12904 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12905
12906 /* We can assume that SYM is not NULL at this stage. If the symbol
12907 did not exist, ada_exception_support_info_sniffer would have
12908 raised an exception.
12909
12910 Also, ada_exception_support_info_sniffer should have already
12911 verified that SYM is a function symbol. */
12912 gdb_assert (sym != NULL);
12913 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
12914
12915 /* Set ADDR_STRING. */
12916 *addr_string = xstrdup (sym_name);
12917
12918 /* Set OPS. */
12919 *ops = ada_exception_breakpoint_ops (ex);
12920
12921 return find_function_start_sal (sym, 1);
12922 }
12923
12924 /* Create an Ada exception catchpoint.
12925
12926 EX_KIND is the kind of exception catchpoint to be created.
12927
12928 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
12929 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12930 of the exception to which this catchpoint applies. When not NULL,
12931 the string must be allocated on the heap, and its deallocation
12932 is no longer the responsibility of the caller.
12933
12934 COND_STRING, if not NULL, is the catchpoint condition. This string
12935 must be allocated on the heap, and its deallocation is no longer
12936 the responsibility of the caller.
12937
12938 TEMPFLAG, if nonzero, means that the underlying breakpoint
12939 should be temporary.
12940
12941 FROM_TTY is the usual argument passed to all commands implementations. */
12942
12943 void
12944 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12945 enum ada_exception_catchpoint_kind ex_kind,
12946 char *excep_string,
12947 char *cond_string,
12948 int tempflag,
12949 int disabled,
12950 int from_tty)
12951 {
12952 const char *addr_string = NULL;
12953 const struct breakpoint_ops *ops = NULL;
12954 struct symtab_and_line sal
12955 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
12956
12957 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ());
12958 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string,
12959 ops, tempflag, disabled, from_tty);
12960 c->excep_string = excep_string;
12961 create_excep_cond_exprs (c.get ());
12962 if (cond_string != NULL)
12963 set_breakpoint_condition (c.get (), cond_string, from_tty);
12964 install_breakpoint (0, std::move (c), 1);
12965 }
12966
12967 /* Implement the "catch exception" command. */
12968
12969 static void
12970 catch_ada_exception_command (const char *arg_entry, int from_tty,
12971 struct cmd_list_element *command)
12972 {
12973 const char *arg = arg_entry;
12974 struct gdbarch *gdbarch = get_current_arch ();
12975 int tempflag;
12976 enum ada_exception_catchpoint_kind ex_kind;
12977 char *excep_string = NULL;
12978 char *cond_string = NULL;
12979
12980 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12981
12982 if (!arg)
12983 arg = "";
12984 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
12985 &cond_string);
12986 create_ada_exception_catchpoint (gdbarch, ex_kind,
12987 excep_string, cond_string,
12988 tempflag, 1 /* enabled */,
12989 from_tty);
12990 }
12991
12992 /* Split the arguments specified in a "catch assert" command.
12993
12994 ARGS contains the command's arguments (or the empty string if
12995 no arguments were passed).
12996
12997 If ARGS contains a condition, set COND_STRING to that condition
12998 (the memory needs to be deallocated after use). */
12999
13000 static void
13001 catch_ada_assert_command_split (const char *args, char **cond_string)
13002 {
13003 args = skip_spaces (args);
13004
13005 /* Check whether a condition was provided. */
13006 if (startswith (args, "if")
13007 && (isspace (args[2]) || args[2] == '\0'))
13008 {
13009 args += 2;
13010 args = skip_spaces (args);
13011 if (args[0] == '\0')
13012 error (_("condition missing after `if' keyword"));
13013 *cond_string = xstrdup (args);
13014 }
13015
13016 /* Otherwise, there should be no other argument at the end of
13017 the command. */
13018 else if (args[0] != '\0')
13019 error (_("Junk at end of arguments."));
13020 }
13021
13022 /* Implement the "catch assert" command. */
13023
13024 static void
13025 catch_assert_command (const char *arg_entry, int from_tty,
13026 struct cmd_list_element *command)
13027 {
13028 const char *arg = arg_entry;
13029 struct gdbarch *gdbarch = get_current_arch ();
13030 int tempflag;
13031 char *cond_string = NULL;
13032
13033 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13034
13035 if (!arg)
13036 arg = "";
13037 catch_ada_assert_command_split (arg, &cond_string);
13038 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
13039 NULL, cond_string,
13040 tempflag, 1 /* enabled */,
13041 from_tty);
13042 }
13043
13044 /* Return non-zero if the symbol SYM is an Ada exception object. */
13045
13046 static int
13047 ada_is_exception_sym (struct symbol *sym)
13048 {
13049 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
13050
13051 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13052 && SYMBOL_CLASS (sym) != LOC_BLOCK
13053 && SYMBOL_CLASS (sym) != LOC_CONST
13054 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13055 && type_name != NULL && strcmp (type_name, "exception") == 0);
13056 }
13057
13058 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13059 Ada exception object. This matches all exceptions except the ones
13060 defined by the Ada language. */
13061
13062 static int
13063 ada_is_non_standard_exception_sym (struct symbol *sym)
13064 {
13065 int i;
13066
13067 if (!ada_is_exception_sym (sym))
13068 return 0;
13069
13070 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13071 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13072 return 0; /* A standard exception. */
13073
13074 /* Numeric_Error is also a standard exception, so exclude it.
13075 See the STANDARD_EXC description for more details as to why
13076 this exception is not listed in that array. */
13077 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13078 return 0;
13079
13080 return 1;
13081 }
13082
13083 /* A helper function for std::sort, comparing two struct ada_exc_info
13084 objects.
13085
13086 The comparison is determined first by exception name, and then
13087 by exception address. */
13088
13089 bool
13090 ada_exc_info::operator< (const ada_exc_info &other) const
13091 {
13092 int result;
13093
13094 result = strcmp (name, other.name);
13095 if (result < 0)
13096 return true;
13097 if (result == 0 && addr < other.addr)
13098 return true;
13099 return false;
13100 }
13101
13102 bool
13103 ada_exc_info::operator== (const ada_exc_info &other) const
13104 {
13105 return addr == other.addr && strcmp (name, other.name) == 0;
13106 }
13107
13108 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13109 routine, but keeping the first SKIP elements untouched.
13110
13111 All duplicates are also removed. */
13112
13113 static void
13114 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
13115 int skip)
13116 {
13117 std::sort (exceptions->begin () + skip, exceptions->end ());
13118 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13119 exceptions->end ());
13120 }
13121
13122 /* Add all exceptions defined by the Ada standard whose name match
13123 a regular expression.
13124
13125 If PREG is not NULL, then this regexp_t object is used to
13126 perform the symbol name matching. Otherwise, no name-based
13127 filtering is performed.
13128
13129 EXCEPTIONS is a vector of exceptions to which matching exceptions
13130 gets pushed. */
13131
13132 static void
13133 ada_add_standard_exceptions (compiled_regex *preg,
13134 std::vector<ada_exc_info> *exceptions)
13135 {
13136 int i;
13137
13138 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13139 {
13140 if (preg == NULL
13141 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
13142 {
13143 struct bound_minimal_symbol msymbol
13144 = ada_lookup_simple_minsym (standard_exc[i]);
13145
13146 if (msymbol.minsym != NULL)
13147 {
13148 struct ada_exc_info info
13149 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13150
13151 exceptions->push_back (info);
13152 }
13153 }
13154 }
13155 }
13156
13157 /* Add all Ada exceptions defined locally and accessible from the given
13158 FRAME.
13159
13160 If PREG is not NULL, then this regexp_t object is used to
13161 perform the symbol name matching. Otherwise, no name-based
13162 filtering is performed.
13163
13164 EXCEPTIONS is a vector of exceptions to which matching exceptions
13165 gets pushed. */
13166
13167 static void
13168 ada_add_exceptions_from_frame (compiled_regex *preg,
13169 struct frame_info *frame,
13170 std::vector<ada_exc_info> *exceptions)
13171 {
13172 const struct block *block = get_frame_block (frame, 0);
13173
13174 while (block != 0)
13175 {
13176 struct block_iterator iter;
13177 struct symbol *sym;
13178
13179 ALL_BLOCK_SYMBOLS (block, iter, sym)
13180 {
13181 switch (SYMBOL_CLASS (sym))
13182 {
13183 case LOC_TYPEDEF:
13184 case LOC_BLOCK:
13185 case LOC_CONST:
13186 break;
13187 default:
13188 if (ada_is_exception_sym (sym))
13189 {
13190 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13191 SYMBOL_VALUE_ADDRESS (sym)};
13192
13193 exceptions->push_back (info);
13194 }
13195 }
13196 }
13197 if (BLOCK_FUNCTION (block) != NULL)
13198 break;
13199 block = BLOCK_SUPERBLOCK (block);
13200 }
13201 }
13202
13203 /* Return true if NAME matches PREG or if PREG is NULL. */
13204
13205 static bool
13206 name_matches_regex (const char *name, compiled_regex *preg)
13207 {
13208 return (preg == NULL
13209 || preg->exec (ada_decode (name), 0, NULL, 0) == 0);
13210 }
13211
13212 /* Add all exceptions defined globally whose name name match
13213 a regular expression, excluding standard exceptions.
13214
13215 The reason we exclude standard exceptions is that they need
13216 to be handled separately: Standard exceptions are defined inside
13217 a runtime unit which is normally not compiled with debugging info,
13218 and thus usually do not show up in our symbol search. However,
13219 if the unit was in fact built with debugging info, we need to
13220 exclude them because they would duplicate the entry we found
13221 during the special loop that specifically searches for those
13222 standard exceptions.
13223
13224 If PREG is not NULL, then this regexp_t object is used to
13225 perform the symbol name matching. Otherwise, no name-based
13226 filtering is performed.
13227
13228 EXCEPTIONS is a vector of exceptions to which matching exceptions
13229 gets pushed. */
13230
13231 static void
13232 ada_add_global_exceptions (compiled_regex *preg,
13233 std::vector<ada_exc_info> *exceptions)
13234 {
13235 struct objfile *objfile;
13236 struct compunit_symtab *s;
13237
13238 /* In Ada, the symbol "search name" is a linkage name, whereas the
13239 regular expression used to do the matching refers to the natural
13240 name. So match against the decoded name. */
13241 expand_symtabs_matching (NULL,
13242 lookup_name_info::match_any (),
13243 [&] (const char *search_name)
13244 {
13245 const char *decoded = ada_decode (search_name);
13246 return name_matches_regex (decoded, preg);
13247 },
13248 NULL,
13249 VARIABLES_DOMAIN);
13250
13251 ALL_COMPUNITS (objfile, s)
13252 {
13253 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13254 int i;
13255
13256 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13257 {
13258 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13259 struct block_iterator iter;
13260 struct symbol *sym;
13261
13262 ALL_BLOCK_SYMBOLS (b, iter, sym)
13263 if (ada_is_non_standard_exception_sym (sym)
13264 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
13265 {
13266 struct ada_exc_info info
13267 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13268
13269 exceptions->push_back (info);
13270 }
13271 }
13272 }
13273 }
13274
13275 /* Implements ada_exceptions_list with the regular expression passed
13276 as a regex_t, rather than a string.
13277
13278 If not NULL, PREG is used to filter out exceptions whose names
13279 do not match. Otherwise, all exceptions are listed. */
13280
13281 static std::vector<ada_exc_info>
13282 ada_exceptions_list_1 (compiled_regex *preg)
13283 {
13284 std::vector<ada_exc_info> result;
13285 int prev_len;
13286
13287 /* First, list the known standard exceptions. These exceptions
13288 need to be handled separately, as they are usually defined in
13289 runtime units that have been compiled without debugging info. */
13290
13291 ada_add_standard_exceptions (preg, &result);
13292
13293 /* Next, find all exceptions whose scope is local and accessible
13294 from the currently selected frame. */
13295
13296 if (has_stack_frames ())
13297 {
13298 prev_len = result.size ();
13299 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13300 &result);
13301 if (result.size () > prev_len)
13302 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13303 }
13304
13305 /* Add all exceptions whose scope is global. */
13306
13307 prev_len = result.size ();
13308 ada_add_global_exceptions (preg, &result);
13309 if (result.size () > prev_len)
13310 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13311
13312 return result;
13313 }
13314
13315 /* Return a vector of ada_exc_info.
13316
13317 If REGEXP is NULL, all exceptions are included in the result.
13318 Otherwise, it should contain a valid regular expression,
13319 and only the exceptions whose names match that regular expression
13320 are included in the result.
13321
13322 The exceptions are sorted in the following order:
13323 - Standard exceptions (defined by the Ada language), in
13324 alphabetical order;
13325 - Exceptions only visible from the current frame, in
13326 alphabetical order;
13327 - Exceptions whose scope is global, in alphabetical order. */
13328
13329 std::vector<ada_exc_info>
13330 ada_exceptions_list (const char *regexp)
13331 {
13332 if (regexp == NULL)
13333 return ada_exceptions_list_1 (NULL);
13334
13335 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13336 return ada_exceptions_list_1 (&reg);
13337 }
13338
13339 /* Implement the "info exceptions" command. */
13340
13341 static void
13342 info_exceptions_command (const char *regexp, int from_tty)
13343 {
13344 struct gdbarch *gdbarch = get_current_arch ();
13345
13346 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
13347
13348 if (regexp != NULL)
13349 printf_filtered
13350 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13351 else
13352 printf_filtered (_("All defined Ada exceptions:\n"));
13353
13354 for (const ada_exc_info &info : exceptions)
13355 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
13356 }
13357
13358 /* Operators */
13359 /* Information about operators given special treatment in functions
13360 below. */
13361 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13362
13363 #define ADA_OPERATORS \
13364 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13365 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13366 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13367 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13368 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13369 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13370 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13371 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13372 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13373 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13374 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13375 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13376 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13377 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13378 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13379 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13380 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13381 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13382 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13383
13384 static void
13385 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13386 int *argsp)
13387 {
13388 switch (exp->elts[pc - 1].opcode)
13389 {
13390 default:
13391 operator_length_standard (exp, pc, oplenp, argsp);
13392 break;
13393
13394 #define OP_DEFN(op, len, args, binop) \
13395 case op: *oplenp = len; *argsp = args; break;
13396 ADA_OPERATORS;
13397 #undef OP_DEFN
13398
13399 case OP_AGGREGATE:
13400 *oplenp = 3;
13401 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13402 break;
13403
13404 case OP_CHOICES:
13405 *oplenp = 3;
13406 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13407 break;
13408 }
13409 }
13410
13411 /* Implementation of the exp_descriptor method operator_check. */
13412
13413 static int
13414 ada_operator_check (struct expression *exp, int pos,
13415 int (*objfile_func) (struct objfile *objfile, void *data),
13416 void *data)
13417 {
13418 const union exp_element *const elts = exp->elts;
13419 struct type *type = NULL;
13420
13421 switch (elts[pos].opcode)
13422 {
13423 case UNOP_IN_RANGE:
13424 case UNOP_QUAL:
13425 type = elts[pos + 1].type;
13426 break;
13427
13428 default:
13429 return operator_check_standard (exp, pos, objfile_func, data);
13430 }
13431
13432 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13433
13434 if (type && TYPE_OBJFILE (type)
13435 && (*objfile_func) (TYPE_OBJFILE (type), data))
13436 return 1;
13437
13438 return 0;
13439 }
13440
13441 static const char *
13442 ada_op_name (enum exp_opcode opcode)
13443 {
13444 switch (opcode)
13445 {
13446 default:
13447 return op_name_standard (opcode);
13448
13449 #define OP_DEFN(op, len, args, binop) case op: return #op;
13450 ADA_OPERATORS;
13451 #undef OP_DEFN
13452
13453 case OP_AGGREGATE:
13454 return "OP_AGGREGATE";
13455 case OP_CHOICES:
13456 return "OP_CHOICES";
13457 case OP_NAME:
13458 return "OP_NAME";
13459 }
13460 }
13461
13462 /* As for operator_length, but assumes PC is pointing at the first
13463 element of the operator, and gives meaningful results only for the
13464 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13465
13466 static void
13467 ada_forward_operator_length (struct expression *exp, int pc,
13468 int *oplenp, int *argsp)
13469 {
13470 switch (exp->elts[pc].opcode)
13471 {
13472 default:
13473 *oplenp = *argsp = 0;
13474 break;
13475
13476 #define OP_DEFN(op, len, args, binop) \
13477 case op: *oplenp = len; *argsp = args; break;
13478 ADA_OPERATORS;
13479 #undef OP_DEFN
13480
13481 case OP_AGGREGATE:
13482 *oplenp = 3;
13483 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13484 break;
13485
13486 case OP_CHOICES:
13487 *oplenp = 3;
13488 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13489 break;
13490
13491 case OP_STRING:
13492 case OP_NAME:
13493 {
13494 int len = longest_to_int (exp->elts[pc + 1].longconst);
13495
13496 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13497 *argsp = 0;
13498 break;
13499 }
13500 }
13501 }
13502
13503 static int
13504 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13505 {
13506 enum exp_opcode op = exp->elts[elt].opcode;
13507 int oplen, nargs;
13508 int pc = elt;
13509 int i;
13510
13511 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13512
13513 switch (op)
13514 {
13515 /* Ada attributes ('Foo). */
13516 case OP_ATR_FIRST:
13517 case OP_ATR_LAST:
13518 case OP_ATR_LENGTH:
13519 case OP_ATR_IMAGE:
13520 case OP_ATR_MAX:
13521 case OP_ATR_MIN:
13522 case OP_ATR_MODULUS:
13523 case OP_ATR_POS:
13524 case OP_ATR_SIZE:
13525 case OP_ATR_TAG:
13526 case OP_ATR_VAL:
13527 break;
13528
13529 case UNOP_IN_RANGE:
13530 case UNOP_QUAL:
13531 /* XXX: gdb_sprint_host_address, type_sprint */
13532 fprintf_filtered (stream, _("Type @"));
13533 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13534 fprintf_filtered (stream, " (");
13535 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13536 fprintf_filtered (stream, ")");
13537 break;
13538 case BINOP_IN_BOUNDS:
13539 fprintf_filtered (stream, " (%d)",
13540 longest_to_int (exp->elts[pc + 2].longconst));
13541 break;
13542 case TERNOP_IN_RANGE:
13543 break;
13544
13545 case OP_AGGREGATE:
13546 case OP_OTHERS:
13547 case OP_DISCRETE_RANGE:
13548 case OP_POSITIONAL:
13549 case OP_CHOICES:
13550 break;
13551
13552 case OP_NAME:
13553 case OP_STRING:
13554 {
13555 char *name = &exp->elts[elt + 2].string;
13556 int len = longest_to_int (exp->elts[elt + 1].longconst);
13557
13558 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13559 break;
13560 }
13561
13562 default:
13563 return dump_subexp_body_standard (exp, stream, elt);
13564 }
13565
13566 elt += oplen;
13567 for (i = 0; i < nargs; i += 1)
13568 elt = dump_subexp (exp, stream, elt);
13569
13570 return elt;
13571 }
13572
13573 /* The Ada extension of print_subexp (q.v.). */
13574
13575 static void
13576 ada_print_subexp (struct expression *exp, int *pos,
13577 struct ui_file *stream, enum precedence prec)
13578 {
13579 int oplen, nargs, i;
13580 int pc = *pos;
13581 enum exp_opcode op = exp->elts[pc].opcode;
13582
13583 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13584
13585 *pos += oplen;
13586 switch (op)
13587 {
13588 default:
13589 *pos -= oplen;
13590 print_subexp_standard (exp, pos, stream, prec);
13591 return;
13592
13593 case OP_VAR_VALUE:
13594 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13595 return;
13596
13597 case BINOP_IN_BOUNDS:
13598 /* XXX: sprint_subexp */
13599 print_subexp (exp, pos, stream, PREC_SUFFIX);
13600 fputs_filtered (" in ", stream);
13601 print_subexp (exp, pos, stream, PREC_SUFFIX);
13602 fputs_filtered ("'range", stream);
13603 if (exp->elts[pc + 1].longconst > 1)
13604 fprintf_filtered (stream, "(%ld)",
13605 (long) exp->elts[pc + 1].longconst);
13606 return;
13607
13608 case TERNOP_IN_RANGE:
13609 if (prec >= PREC_EQUAL)
13610 fputs_filtered ("(", stream);
13611 /* XXX: sprint_subexp */
13612 print_subexp (exp, pos, stream, PREC_SUFFIX);
13613 fputs_filtered (" in ", stream);
13614 print_subexp (exp, pos, stream, PREC_EQUAL);
13615 fputs_filtered (" .. ", stream);
13616 print_subexp (exp, pos, stream, PREC_EQUAL);
13617 if (prec >= PREC_EQUAL)
13618 fputs_filtered (")", stream);
13619 return;
13620
13621 case OP_ATR_FIRST:
13622 case OP_ATR_LAST:
13623 case OP_ATR_LENGTH:
13624 case OP_ATR_IMAGE:
13625 case OP_ATR_MAX:
13626 case OP_ATR_MIN:
13627 case OP_ATR_MODULUS:
13628 case OP_ATR_POS:
13629 case OP_ATR_SIZE:
13630 case OP_ATR_TAG:
13631 case OP_ATR_VAL:
13632 if (exp->elts[*pos].opcode == OP_TYPE)
13633 {
13634 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
13635 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13636 &type_print_raw_options);
13637 *pos += 3;
13638 }
13639 else
13640 print_subexp (exp, pos, stream, PREC_SUFFIX);
13641 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13642 if (nargs > 1)
13643 {
13644 int tem;
13645
13646 for (tem = 1; tem < nargs; tem += 1)
13647 {
13648 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13649 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13650 }
13651 fputs_filtered (")", stream);
13652 }
13653 return;
13654
13655 case UNOP_QUAL:
13656 type_print (exp->elts[pc + 1].type, "", stream, 0);
13657 fputs_filtered ("'(", stream);
13658 print_subexp (exp, pos, stream, PREC_PREFIX);
13659 fputs_filtered (")", stream);
13660 return;
13661
13662 case UNOP_IN_RANGE:
13663 /* XXX: sprint_subexp */
13664 print_subexp (exp, pos, stream, PREC_SUFFIX);
13665 fputs_filtered (" in ", stream);
13666 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13667 &type_print_raw_options);
13668 return;
13669
13670 case OP_DISCRETE_RANGE:
13671 print_subexp (exp, pos, stream, PREC_SUFFIX);
13672 fputs_filtered ("..", stream);
13673 print_subexp (exp, pos, stream, PREC_SUFFIX);
13674 return;
13675
13676 case OP_OTHERS:
13677 fputs_filtered ("others => ", stream);
13678 print_subexp (exp, pos, stream, PREC_SUFFIX);
13679 return;
13680
13681 case OP_CHOICES:
13682 for (i = 0; i < nargs-1; i += 1)
13683 {
13684 if (i > 0)
13685 fputs_filtered ("|", stream);
13686 print_subexp (exp, pos, stream, PREC_SUFFIX);
13687 }
13688 fputs_filtered (" => ", stream);
13689 print_subexp (exp, pos, stream, PREC_SUFFIX);
13690 return;
13691
13692 case OP_POSITIONAL:
13693 print_subexp (exp, pos, stream, PREC_SUFFIX);
13694 return;
13695
13696 case OP_AGGREGATE:
13697 fputs_filtered ("(", stream);
13698 for (i = 0; i < nargs; i += 1)
13699 {
13700 if (i > 0)
13701 fputs_filtered (", ", stream);
13702 print_subexp (exp, pos, stream, PREC_SUFFIX);
13703 }
13704 fputs_filtered (")", stream);
13705 return;
13706 }
13707 }
13708
13709 /* Table mapping opcodes into strings for printing operators
13710 and precedences of the operators. */
13711
13712 static const struct op_print ada_op_print_tab[] = {
13713 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13714 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13715 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13716 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13717 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13718 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13719 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13720 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13721 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13722 {">=", BINOP_GEQ, PREC_ORDER, 0},
13723 {">", BINOP_GTR, PREC_ORDER, 0},
13724 {"<", BINOP_LESS, PREC_ORDER, 0},
13725 {">>", BINOP_RSH, PREC_SHIFT, 0},
13726 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13727 {"+", BINOP_ADD, PREC_ADD, 0},
13728 {"-", BINOP_SUB, PREC_ADD, 0},
13729 {"&", BINOP_CONCAT, PREC_ADD, 0},
13730 {"*", BINOP_MUL, PREC_MUL, 0},
13731 {"/", BINOP_DIV, PREC_MUL, 0},
13732 {"rem", BINOP_REM, PREC_MUL, 0},
13733 {"mod", BINOP_MOD, PREC_MUL, 0},
13734 {"**", BINOP_EXP, PREC_REPEAT, 0},
13735 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13736 {"-", UNOP_NEG, PREC_PREFIX, 0},
13737 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13738 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13739 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13740 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
13741 {".all", UNOP_IND, PREC_SUFFIX, 1},
13742 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13743 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
13744 {NULL, OP_NULL, PREC_SUFFIX, 0}
13745 };
13746 \f
13747 enum ada_primitive_types {
13748 ada_primitive_type_int,
13749 ada_primitive_type_long,
13750 ada_primitive_type_short,
13751 ada_primitive_type_char,
13752 ada_primitive_type_float,
13753 ada_primitive_type_double,
13754 ada_primitive_type_void,
13755 ada_primitive_type_long_long,
13756 ada_primitive_type_long_double,
13757 ada_primitive_type_natural,
13758 ada_primitive_type_positive,
13759 ada_primitive_type_system_address,
13760 nr_ada_primitive_types
13761 };
13762
13763 static void
13764 ada_language_arch_info (struct gdbarch *gdbarch,
13765 struct language_arch_info *lai)
13766 {
13767 const struct builtin_type *builtin = builtin_type (gdbarch);
13768
13769 lai->primitive_type_vector
13770 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
13771 struct type *);
13772
13773 lai->primitive_type_vector [ada_primitive_type_int]
13774 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13775 0, "integer");
13776 lai->primitive_type_vector [ada_primitive_type_long]
13777 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13778 0, "long_integer");
13779 lai->primitive_type_vector [ada_primitive_type_short]
13780 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13781 0, "short_integer");
13782 lai->string_char_type
13783 = lai->primitive_type_vector [ada_primitive_type_char]
13784 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13785 lai->primitive_type_vector [ada_primitive_type_float]
13786 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13787 "float", gdbarch_float_format (gdbarch));
13788 lai->primitive_type_vector [ada_primitive_type_double]
13789 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13790 "long_float", gdbarch_double_format (gdbarch));
13791 lai->primitive_type_vector [ada_primitive_type_long_long]
13792 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13793 0, "long_long_integer");
13794 lai->primitive_type_vector [ada_primitive_type_long_double]
13795 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
13796 "long_long_float", gdbarch_long_double_format (gdbarch));
13797 lai->primitive_type_vector [ada_primitive_type_natural]
13798 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13799 0, "natural");
13800 lai->primitive_type_vector [ada_primitive_type_positive]
13801 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13802 0, "positive");
13803 lai->primitive_type_vector [ada_primitive_type_void]
13804 = builtin->builtin_void;
13805
13806 lai->primitive_type_vector [ada_primitive_type_system_address]
13807 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
13808 "void"));
13809 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13810 = "system__address";
13811
13812 lai->bool_type_symbol = NULL;
13813 lai->bool_type_default = builtin->builtin_bool;
13814 }
13815 \f
13816 /* Language vector */
13817
13818 /* Not really used, but needed in the ada_language_defn. */
13819
13820 static void
13821 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
13822 {
13823 ada_emit_char (c, type, stream, quoter, 1);
13824 }
13825
13826 static int
13827 parse (struct parser_state *ps)
13828 {
13829 warnings_issued = 0;
13830 return ada_parse (ps);
13831 }
13832
13833 static const struct exp_descriptor ada_exp_descriptor = {
13834 ada_print_subexp,
13835 ada_operator_length,
13836 ada_operator_check,
13837 ada_op_name,
13838 ada_dump_subexp_body,
13839 ada_evaluate_subexp
13840 };
13841
13842 /* symbol_name_matcher_ftype adapter for wild_match. */
13843
13844 static bool
13845 do_wild_match (const char *symbol_search_name,
13846 const lookup_name_info &lookup_name,
13847 completion_match *match)
13848 {
13849 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
13850 }
13851
13852 /* symbol_name_matcher_ftype adapter for full_match. */
13853
13854 static bool
13855 do_full_match (const char *symbol_search_name,
13856 const lookup_name_info &lookup_name,
13857 completion_match *match)
13858 {
13859 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
13860 }
13861
13862 /* Build the Ada lookup name for LOOKUP_NAME. */
13863
13864 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
13865 {
13866 const std::string &user_name = lookup_name.name ();
13867
13868 if (user_name[0] == '<')
13869 {
13870 if (user_name.back () == '>')
13871 m_encoded_name = user_name.substr (1, user_name.size () - 2);
13872 else
13873 m_encoded_name = user_name.substr (1, user_name.size () - 1);
13874 m_encoded_p = true;
13875 m_verbatim_p = true;
13876 m_wild_match_p = false;
13877 m_standard_p = false;
13878 }
13879 else
13880 {
13881 m_verbatim_p = false;
13882
13883 m_encoded_p = user_name.find ("__") != std::string::npos;
13884
13885 if (!m_encoded_p)
13886 {
13887 const char *folded = ada_fold_name (user_name.c_str ());
13888 const char *encoded = ada_encode_1 (folded, false);
13889 if (encoded != NULL)
13890 m_encoded_name = encoded;
13891 else
13892 m_encoded_name = user_name;
13893 }
13894 else
13895 m_encoded_name = user_name;
13896
13897 /* Handle the 'package Standard' special case. See description
13898 of m_standard_p. */
13899 if (startswith (m_encoded_name.c_str (), "standard__"))
13900 {
13901 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
13902 m_standard_p = true;
13903 }
13904 else
13905 m_standard_p = false;
13906
13907 /* If the name contains a ".", then the user is entering a fully
13908 qualified entity name, and the match must not be done in wild
13909 mode. Similarly, if the user wants to complete what looks
13910 like an encoded name, the match must not be done in wild
13911 mode. Also, in the standard__ special case always do
13912 non-wild matching. */
13913 m_wild_match_p
13914 = (lookup_name.match_type () != symbol_name_match_type::FULL
13915 && !m_encoded_p
13916 && !m_standard_p
13917 && user_name.find ('.') == std::string::npos);
13918 }
13919 }
13920
13921 /* symbol_name_matcher_ftype method for Ada. This only handles
13922 completion mode. */
13923
13924 static bool
13925 ada_symbol_name_matches (const char *symbol_search_name,
13926 const lookup_name_info &lookup_name,
13927 completion_match *match)
13928 {
13929 return lookup_name.ada ().matches (symbol_search_name,
13930 lookup_name.match_type (),
13931 match);
13932 }
13933
13934 /* Implement the "la_get_symbol_name_matcher" language_defn method for
13935 Ada. */
13936
13937 static symbol_name_matcher_ftype *
13938 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
13939 {
13940 if (lookup_name.completion_mode ())
13941 return ada_symbol_name_matches;
13942 else
13943 {
13944 if (lookup_name.ada ().wild_match_p ())
13945 return do_wild_match;
13946 else
13947 return do_full_match;
13948 }
13949 }
13950
13951 /* Implement the "la_read_var_value" language_defn method for Ada. */
13952
13953 static struct value *
13954 ada_read_var_value (struct symbol *var, const struct block *var_block,
13955 struct frame_info *frame)
13956 {
13957 const struct block *frame_block = NULL;
13958 struct symbol *renaming_sym = NULL;
13959
13960 /* The only case where default_read_var_value is not sufficient
13961 is when VAR is a renaming... */
13962 if (frame)
13963 frame_block = get_frame_block (frame, NULL);
13964 if (frame_block)
13965 renaming_sym = ada_find_renaming_symbol (var, frame_block);
13966 if (renaming_sym != NULL)
13967 return ada_read_renaming_var_value (renaming_sym, frame_block);
13968
13969 /* This is a typical case where we expect the default_read_var_value
13970 function to work. */
13971 return default_read_var_value (var, var_block, frame);
13972 }
13973
13974 static const char *ada_extensions[] =
13975 {
13976 ".adb", ".ads", ".a", ".ada", ".dg", NULL
13977 };
13978
13979 extern const struct language_defn ada_language_defn = {
13980 "ada", /* Language name */
13981 "Ada",
13982 language_ada,
13983 range_check_off,
13984 case_sensitive_on, /* Yes, Ada is case-insensitive, but
13985 that's not quite what this means. */
13986 array_row_major,
13987 macro_expansion_no,
13988 ada_extensions,
13989 &ada_exp_descriptor,
13990 parse,
13991 ada_yyerror,
13992 resolve,
13993 ada_printchar, /* Print a character constant */
13994 ada_printstr, /* Function to print string constant */
13995 emit_char, /* Function to print single char (not used) */
13996 ada_print_type, /* Print a type using appropriate syntax */
13997 ada_print_typedef, /* Print a typedef using appropriate syntax */
13998 ada_val_print, /* Print a value using appropriate syntax */
13999 ada_value_print, /* Print a top-level value */
14000 ada_read_var_value, /* la_read_var_value */
14001 NULL, /* Language specific skip_trampoline */
14002 NULL, /* name_of_this */
14003 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14004 basic_lookup_transparent_type, /* lookup_transparent_type */
14005 ada_la_decode, /* Language specific symbol demangler */
14006 ada_sniff_from_mangled_name,
14007 NULL, /* Language specific
14008 class_name_from_physname */
14009 ada_op_print_tab, /* expression operators for printing */
14010 0, /* c-style arrays */
14011 1, /* String lower bound */
14012 ada_get_gdb_completer_word_break_characters,
14013 ada_collect_symbol_completion_matches,
14014 ada_language_arch_info,
14015 ada_print_array_index,
14016 default_pass_by_reference,
14017 c_get_string,
14018 c_watch_location_expression,
14019 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
14020 ada_iterate_over_symbols,
14021 default_search_name_hash,
14022 &ada_varobj_ops,
14023 NULL,
14024 NULL,
14025 LANG_MAGIC
14026 };
14027
14028 /* Command-list for the "set/show ada" prefix command. */
14029 static struct cmd_list_element *set_ada_list;
14030 static struct cmd_list_element *show_ada_list;
14031
14032 /* Implement the "set ada" prefix command. */
14033
14034 static void
14035 set_ada_command (const char *arg, int from_tty)
14036 {
14037 printf_unfiltered (_(\
14038 "\"set ada\" must be followed by the name of a setting.\n"));
14039 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
14040 }
14041
14042 /* Implement the "show ada" prefix command. */
14043
14044 static void
14045 show_ada_command (const char *args, int from_tty)
14046 {
14047 cmd_show_list (show_ada_list, from_tty, "");
14048 }
14049
14050 static void
14051 initialize_ada_catchpoint_ops (void)
14052 {
14053 struct breakpoint_ops *ops;
14054
14055 initialize_breakpoint_ops ();
14056
14057 ops = &catch_exception_breakpoint_ops;
14058 *ops = bkpt_breakpoint_ops;
14059 ops->allocate_location = allocate_location_catch_exception;
14060 ops->re_set = re_set_catch_exception;
14061 ops->check_status = check_status_catch_exception;
14062 ops->print_it = print_it_catch_exception;
14063 ops->print_one = print_one_catch_exception;
14064 ops->print_mention = print_mention_catch_exception;
14065 ops->print_recreate = print_recreate_catch_exception;
14066
14067 ops = &catch_exception_unhandled_breakpoint_ops;
14068 *ops = bkpt_breakpoint_ops;
14069 ops->allocate_location = allocate_location_catch_exception_unhandled;
14070 ops->re_set = re_set_catch_exception_unhandled;
14071 ops->check_status = check_status_catch_exception_unhandled;
14072 ops->print_it = print_it_catch_exception_unhandled;
14073 ops->print_one = print_one_catch_exception_unhandled;
14074 ops->print_mention = print_mention_catch_exception_unhandled;
14075 ops->print_recreate = print_recreate_catch_exception_unhandled;
14076
14077 ops = &catch_assert_breakpoint_ops;
14078 *ops = bkpt_breakpoint_ops;
14079 ops->allocate_location = allocate_location_catch_assert;
14080 ops->re_set = re_set_catch_assert;
14081 ops->check_status = check_status_catch_assert;
14082 ops->print_it = print_it_catch_assert;
14083 ops->print_one = print_one_catch_assert;
14084 ops->print_mention = print_mention_catch_assert;
14085 ops->print_recreate = print_recreate_catch_assert;
14086 }
14087
14088 /* This module's 'new_objfile' observer. */
14089
14090 static void
14091 ada_new_objfile_observer (struct objfile *objfile)
14092 {
14093 ada_clear_symbol_cache ();
14094 }
14095
14096 /* This module's 'free_objfile' observer. */
14097
14098 static void
14099 ada_free_objfile_observer (struct objfile *objfile)
14100 {
14101 ada_clear_symbol_cache ();
14102 }
14103
14104 void
14105 _initialize_ada_language (void)
14106 {
14107 initialize_ada_catchpoint_ops ();
14108
14109 add_prefix_cmd ("ada", no_class, set_ada_command,
14110 _("Prefix command for changing Ada-specfic settings"),
14111 &set_ada_list, "set ada ", 0, &setlist);
14112
14113 add_prefix_cmd ("ada", no_class, show_ada_command,
14114 _("Generic command for showing Ada-specific settings."),
14115 &show_ada_list, "show ada ", 0, &showlist);
14116
14117 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14118 &trust_pad_over_xvs, _("\
14119 Enable or disable an optimization trusting PAD types over XVS types"), _("\
14120 Show whether an optimization trusting PAD types over XVS types is activated"),
14121 _("\
14122 This is related to the encoding used by the GNAT compiler. The debugger\n\
14123 should normally trust the contents of PAD types, but certain older versions\n\
14124 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14125 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14126 work around this bug. It is always safe to turn this option \"off\", but\n\
14127 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14128 this option to \"off\" unless necessary."),
14129 NULL, NULL, &set_ada_list, &show_ada_list);
14130
14131 add_setshow_boolean_cmd ("print-signatures", class_vars,
14132 &print_signatures, _("\
14133 Enable or disable the output of formal and return types for functions in the \
14134 overloads selection menu"), _("\
14135 Show whether the output of formal and return types for functions in the \
14136 overloads selection menu is activated"),
14137 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14138
14139 add_catch_command ("exception", _("\
14140 Catch Ada exceptions, when raised.\n\
14141 With an argument, catch only exceptions with the given name."),
14142 catch_ada_exception_command,
14143 NULL,
14144 CATCH_PERMANENT,
14145 CATCH_TEMPORARY);
14146 add_catch_command ("assert", _("\
14147 Catch failed Ada assertions, when raised.\n\
14148 With an argument, catch only exceptions with the given name."),
14149 catch_assert_command,
14150 NULL,
14151 CATCH_PERMANENT,
14152 CATCH_TEMPORARY);
14153
14154 varsize_limit = 65536;
14155
14156 add_info ("exceptions", info_exceptions_command,
14157 _("\
14158 List all Ada exception names.\n\
14159 If a regular expression is passed as an argument, only those matching\n\
14160 the regular expression are listed."));
14161
14162 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14163 _("Set Ada maintenance-related variables."),
14164 &maint_set_ada_cmdlist, "maintenance set ada ",
14165 0/*allow-unknown*/, &maintenance_set_cmdlist);
14166
14167 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14168 _("Show Ada maintenance-related variables"),
14169 &maint_show_ada_cmdlist, "maintenance show ada ",
14170 0/*allow-unknown*/, &maintenance_show_cmdlist);
14171
14172 add_setshow_boolean_cmd
14173 ("ignore-descriptive-types", class_maintenance,
14174 &ada_ignore_descriptive_types_p,
14175 _("Set whether descriptive types generated by GNAT should be ignored."),
14176 _("Show whether descriptive types generated by GNAT should be ignored."),
14177 _("\
14178 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14179 DWARF attribute."),
14180 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14181
14182 obstack_init (&symbol_list_obstack);
14183
14184 decoded_names_store = htab_create_alloc
14185 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
14186 NULL, xcalloc, xfree);
14187
14188 /* The ada-lang observers. */
14189 observer_attach_new_objfile (ada_new_objfile_observer);
14190 observer_attach_free_objfile (ada_free_objfile_observer);
14191 observer_attach_inferior_exit (ada_inferior_exit);
14192
14193 /* Setup various context-specific data. */
14194 ada_inferior_data
14195 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
14196 ada_pspace_data_handle
14197 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14198 }
This page took 0.345859 seconds and 4 git commands to generate.