2010-05-14 Phil Muldoon <pmuldoon@redhat.com>
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger. Copyright (C)
2
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007, 2008,
4 2009 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include "defs.h"
23 #include <stdio.h>
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include <stdarg.h>
27 #include "demangle.h"
28 #include "gdb_regex.h"
29 #include "frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35 #include "language.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include "gdb_stat.h"
47 #ifdef UI_OUT
48 #include "ui-out.h"
49 #endif
50 #include "block.h"
51 #include "infcall.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
54 #include "annotate.h"
55 #include "valprint.h"
56 #include "source.h"
57 #include "observer.h"
58 #include "vec.h"
59 #include "stack.h"
60
61 #include "psymtab.h"
62
63 /* Define whether or not the C operator '/' truncates towards zero for
64 differently signed operands (truncation direction is undefined in C).
65 Copied from valarith.c. */
66
67 #ifndef TRUNCATION_TOWARDS_ZERO
68 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
69 #endif
70
71 static void modify_general_field (struct type *, char *, LONGEST, int, int);
72
73 static struct type *desc_base_type (struct type *);
74
75 static struct type *desc_bounds_type (struct type *);
76
77 static struct value *desc_bounds (struct value *);
78
79 static int fat_pntr_bounds_bitpos (struct type *);
80
81 static int fat_pntr_bounds_bitsize (struct type *);
82
83 static struct type *desc_data_target_type (struct type *);
84
85 static struct value *desc_data (struct value *);
86
87 static int fat_pntr_data_bitpos (struct type *);
88
89 static int fat_pntr_data_bitsize (struct type *);
90
91 static struct value *desc_one_bound (struct value *, int, int);
92
93 static int desc_bound_bitpos (struct type *, int, int);
94
95 static int desc_bound_bitsize (struct type *, int, int);
96
97 static struct type *desc_index_type (struct type *, int);
98
99 static int desc_arity (struct type *);
100
101 static int ada_type_match (struct type *, struct type *, int);
102
103 static int ada_args_match (struct symbol *, struct value **, int);
104
105 static struct value *ensure_lval (struct value *,
106 struct gdbarch *, CORE_ADDR *);
107
108 static struct value *make_array_descriptor (struct type *, struct value *,
109 struct gdbarch *, CORE_ADDR *);
110
111 static void ada_add_block_symbols (struct obstack *,
112 struct block *, const char *,
113 domain_enum, struct objfile *, int);
114
115 static int is_nonfunction (struct ada_symbol_info *, int);
116
117 static void add_defn_to_vec (struct obstack *, struct symbol *,
118 struct block *);
119
120 static int num_defns_collected (struct obstack *);
121
122 static struct ada_symbol_info *defns_collected (struct obstack *, int);
123
124 static struct value *resolve_subexp (struct expression **, int *, int,
125 struct type *);
126
127 static void replace_operator_with_call (struct expression **, int, int, int,
128 struct symbol *, struct block *);
129
130 static int possible_user_operator_p (enum exp_opcode, struct value **);
131
132 static char *ada_op_name (enum exp_opcode);
133
134 static const char *ada_decoded_op_name (enum exp_opcode);
135
136 static int numeric_type_p (struct type *);
137
138 static int integer_type_p (struct type *);
139
140 static int scalar_type_p (struct type *);
141
142 static int discrete_type_p (struct type *);
143
144 static enum ada_renaming_category parse_old_style_renaming (struct type *,
145 const char **,
146 int *,
147 const char **);
148
149 static struct symbol *find_old_style_renaming_symbol (const char *,
150 struct block *);
151
152 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
153 int, int, int *);
154
155 static struct value *evaluate_subexp_type (struct expression *, int *);
156
157 static struct type *ada_find_parallel_type_with_name (struct type *,
158 const char *);
159
160 static int is_dynamic_field (struct type *, int);
161
162 static struct type *to_fixed_variant_branch_type (struct type *,
163 const gdb_byte *,
164 CORE_ADDR, struct value *);
165
166 static struct type *to_fixed_array_type (struct type *, struct value *, int);
167
168 static struct type *to_fixed_range_type (char *, struct value *,
169 struct type *);
170
171 static struct type *to_static_fixed_type (struct type *);
172 static struct type *static_unwrap_type (struct type *type);
173
174 static struct value *unwrap_value (struct value *);
175
176 static struct type *constrained_packed_array_type (struct type *, long *);
177
178 static struct type *decode_constrained_packed_array_type (struct type *);
179
180 static long decode_packed_array_bitsize (struct type *);
181
182 static struct value *decode_constrained_packed_array (struct value *);
183
184 static int ada_is_packed_array_type (struct type *);
185
186 static int ada_is_unconstrained_packed_array_type (struct type *);
187
188 static struct value *value_subscript_packed (struct value *, int,
189 struct value **);
190
191 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
192
193 static struct value *coerce_unspec_val_to_type (struct value *,
194 struct type *);
195
196 static struct value *get_var_value (char *, char *);
197
198 static int lesseq_defined_than (struct symbol *, struct symbol *);
199
200 static int equiv_types (struct type *, struct type *);
201
202 static int is_name_suffix (const char *);
203
204 static int wild_match (const char *, int, const char *);
205
206 static struct value *ada_coerce_ref (struct value *);
207
208 static LONGEST pos_atr (struct value *);
209
210 static struct value *value_pos_atr (struct type *, struct value *);
211
212 static struct value *value_val_atr (struct type *, struct value *);
213
214 static struct symbol *standard_lookup (const char *, const struct block *,
215 domain_enum);
216
217 static struct value *ada_search_struct_field (char *, struct value *, int,
218 struct type *);
219
220 static struct value *ada_value_primitive_field (struct value *, int, int,
221 struct type *);
222
223 static int find_struct_field (char *, struct type *, int,
224 struct type **, int *, int *, int *, int *);
225
226 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
227 struct value *);
228
229 static int ada_resolve_function (struct ada_symbol_info *, int,
230 struct value **, int, const char *,
231 struct type *);
232
233 static struct value *ada_coerce_to_simple_array (struct value *);
234
235 static int ada_is_direct_array_type (struct type *);
236
237 static void ada_language_arch_info (struct gdbarch *,
238 struct language_arch_info *);
239
240 static void check_size (const struct type *);
241
242 static struct value *ada_index_struct_field (int, struct value *, int,
243 struct type *);
244
245 static struct value *assign_aggregate (struct value *, struct value *,
246 struct expression *, int *, enum noside);
247
248 static void aggregate_assign_from_choices (struct value *, struct value *,
249 struct expression *,
250 int *, LONGEST *, int *,
251 int, LONGEST, LONGEST);
252
253 static void aggregate_assign_positional (struct value *, struct value *,
254 struct expression *,
255 int *, LONGEST *, int *, int,
256 LONGEST, LONGEST);
257
258
259 static void aggregate_assign_others (struct value *, struct value *,
260 struct expression *,
261 int *, LONGEST *, int, LONGEST, LONGEST);
262
263
264 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
265
266
267 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
268 int *, enum noside);
269
270 static void ada_forward_operator_length (struct expression *, int, int *,
271 int *);
272 \f
273
274
275 /* Maximum-sized dynamic type. */
276 static unsigned int varsize_limit;
277
278 /* FIXME: brobecker/2003-09-17: No longer a const because it is
279 returned by a function that does not return a const char *. */
280 static char *ada_completer_word_break_characters =
281 #ifdef VMS
282 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
283 #else
284 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
285 #endif
286
287 /* The name of the symbol to use to get the name of the main subprogram. */
288 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
289 = "__gnat_ada_main_program_name";
290
291 /* Limit on the number of warnings to raise per expression evaluation. */
292 static int warning_limit = 2;
293
294 /* Number of warning messages issued; reset to 0 by cleanups after
295 expression evaluation. */
296 static int warnings_issued = 0;
297
298 static const char *known_runtime_file_name_patterns[] = {
299 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
300 };
301
302 static const char *known_auxiliary_function_name_patterns[] = {
303 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
304 };
305
306 /* Space for allocating results of ada_lookup_symbol_list. */
307 static struct obstack symbol_list_obstack;
308
309 /* Utilities */
310
311 /* Given DECODED_NAME a string holding a symbol name in its
312 decoded form (ie using the Ada dotted notation), returns
313 its unqualified name. */
314
315 static const char *
316 ada_unqualified_name (const char *decoded_name)
317 {
318 const char *result = strrchr (decoded_name, '.');
319
320 if (result != NULL)
321 result++; /* Skip the dot... */
322 else
323 result = decoded_name;
324
325 return result;
326 }
327
328 /* Return a string starting with '<', followed by STR, and '>'.
329 The result is good until the next call. */
330
331 static char *
332 add_angle_brackets (const char *str)
333 {
334 static char *result = NULL;
335
336 xfree (result);
337 result = xstrprintf ("<%s>", str);
338 return result;
339 }
340
341 static char *
342 ada_get_gdb_completer_word_break_characters (void)
343 {
344 return ada_completer_word_break_characters;
345 }
346
347 /* Print an array element index using the Ada syntax. */
348
349 static void
350 ada_print_array_index (struct value *index_value, struct ui_file *stream,
351 const struct value_print_options *options)
352 {
353 LA_VALUE_PRINT (index_value, stream, options);
354 fprintf_filtered (stream, " => ");
355 }
356
357 /* Assuming VECT points to an array of *SIZE objects of size
358 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
359 updating *SIZE as necessary and returning the (new) array. */
360
361 void *
362 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
363 {
364 if (*size < min_size)
365 {
366 *size *= 2;
367 if (*size < min_size)
368 *size = min_size;
369 vect = xrealloc (vect, *size * element_size);
370 }
371 return vect;
372 }
373
374 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
375 suffix of FIELD_NAME beginning "___". */
376
377 static int
378 field_name_match (const char *field_name, const char *target)
379 {
380 int len = strlen (target);
381 return
382 (strncmp (field_name, target, len) == 0
383 && (field_name[len] == '\0'
384 || (strncmp (field_name + len, "___", 3) == 0
385 && strcmp (field_name + strlen (field_name) - 6,
386 "___XVN") != 0)));
387 }
388
389
390 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
391 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
392 and return its index. This function also handles fields whose name
393 have ___ suffixes because the compiler sometimes alters their name
394 by adding such a suffix to represent fields with certain constraints.
395 If the field could not be found, return a negative number if
396 MAYBE_MISSING is set. Otherwise raise an error. */
397
398 int
399 ada_get_field_index (const struct type *type, const char *field_name,
400 int maybe_missing)
401 {
402 int fieldno;
403 struct type *struct_type = check_typedef ((struct type *) type);
404
405 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
406 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
407 return fieldno;
408
409 if (!maybe_missing)
410 error (_("Unable to find field %s in struct %s. Aborting"),
411 field_name, TYPE_NAME (struct_type));
412
413 return -1;
414 }
415
416 /* The length of the prefix of NAME prior to any "___" suffix. */
417
418 int
419 ada_name_prefix_len (const char *name)
420 {
421 if (name == NULL)
422 return 0;
423 else
424 {
425 const char *p = strstr (name, "___");
426 if (p == NULL)
427 return strlen (name);
428 else
429 return p - name;
430 }
431 }
432
433 /* Return non-zero if SUFFIX is a suffix of STR.
434 Return zero if STR is null. */
435
436 static int
437 is_suffix (const char *str, const char *suffix)
438 {
439 int len1, len2;
440 if (str == NULL)
441 return 0;
442 len1 = strlen (str);
443 len2 = strlen (suffix);
444 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
445 }
446
447 /* The contents of value VAL, treated as a value of type TYPE. The
448 result is an lval in memory if VAL is. */
449
450 static struct value *
451 coerce_unspec_val_to_type (struct value *val, struct type *type)
452 {
453 type = ada_check_typedef (type);
454 if (value_type (val) == type)
455 return val;
456 else
457 {
458 struct value *result;
459
460 /* Make sure that the object size is not unreasonable before
461 trying to allocate some memory for it. */
462 check_size (type);
463
464 result = allocate_value (type);
465 set_value_component_location (result, val);
466 set_value_bitsize (result, value_bitsize (val));
467 set_value_bitpos (result, value_bitpos (val));
468 set_value_address (result, value_address (val));
469 if (value_lazy (val)
470 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
471 set_value_lazy (result, 1);
472 else
473 memcpy (value_contents_raw (result), value_contents (val),
474 TYPE_LENGTH (type));
475 return result;
476 }
477 }
478
479 static const gdb_byte *
480 cond_offset_host (const gdb_byte *valaddr, long offset)
481 {
482 if (valaddr == NULL)
483 return NULL;
484 else
485 return valaddr + offset;
486 }
487
488 static CORE_ADDR
489 cond_offset_target (CORE_ADDR address, long offset)
490 {
491 if (address == 0)
492 return 0;
493 else
494 return address + offset;
495 }
496
497 /* Issue a warning (as for the definition of warning in utils.c, but
498 with exactly one argument rather than ...), unless the limit on the
499 number of warnings has passed during the evaluation of the current
500 expression. */
501
502 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
503 provided by "complaint". */
504 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
505
506 static void
507 lim_warning (const char *format, ...)
508 {
509 va_list args;
510 va_start (args, format);
511
512 warnings_issued += 1;
513 if (warnings_issued <= warning_limit)
514 vwarning (format, args);
515
516 va_end (args);
517 }
518
519 /* Issue an error if the size of an object of type T is unreasonable,
520 i.e. if it would be a bad idea to allocate a value of this type in
521 GDB. */
522
523 static void
524 check_size (const struct type *type)
525 {
526 if (TYPE_LENGTH (type) > varsize_limit)
527 error (_("object size is larger than varsize-limit"));
528 }
529
530 /* Maximum value of a SIZE-byte signed integer type. */
531 static LONGEST
532 max_of_size (int size)
533 {
534 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
535 return top_bit | (top_bit - 1);
536 }
537
538 /* Minimum value of a SIZE-byte signed integer type. */
539 static LONGEST
540 min_of_size (int size)
541 {
542 return -max_of_size (size) - 1;
543 }
544
545 /* Maximum value of a SIZE-byte unsigned integer type. */
546 static ULONGEST
547 umax_of_size (int size)
548 {
549 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
550 return top_bit | (top_bit - 1);
551 }
552
553 /* Maximum value of integral type T, as a signed quantity. */
554 static LONGEST
555 max_of_type (struct type *t)
556 {
557 if (TYPE_UNSIGNED (t))
558 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
559 else
560 return max_of_size (TYPE_LENGTH (t));
561 }
562
563 /* Minimum value of integral type T, as a signed quantity. */
564 static LONGEST
565 min_of_type (struct type *t)
566 {
567 if (TYPE_UNSIGNED (t))
568 return 0;
569 else
570 return min_of_size (TYPE_LENGTH (t));
571 }
572
573 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
574 LONGEST
575 ada_discrete_type_high_bound (struct type *type)
576 {
577 switch (TYPE_CODE (type))
578 {
579 case TYPE_CODE_RANGE:
580 return TYPE_HIGH_BOUND (type);
581 case TYPE_CODE_ENUM:
582 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
583 case TYPE_CODE_BOOL:
584 return 1;
585 case TYPE_CODE_CHAR:
586 case TYPE_CODE_INT:
587 return max_of_type (type);
588 default:
589 error (_("Unexpected type in ada_discrete_type_high_bound."));
590 }
591 }
592
593 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
594 LONGEST
595 ada_discrete_type_low_bound (struct type *type)
596 {
597 switch (TYPE_CODE (type))
598 {
599 case TYPE_CODE_RANGE:
600 return TYPE_LOW_BOUND (type);
601 case TYPE_CODE_ENUM:
602 return TYPE_FIELD_BITPOS (type, 0);
603 case TYPE_CODE_BOOL:
604 return 0;
605 case TYPE_CODE_CHAR:
606 case TYPE_CODE_INT:
607 return min_of_type (type);
608 default:
609 error (_("Unexpected type in ada_discrete_type_low_bound."));
610 }
611 }
612
613 /* The identity on non-range types. For range types, the underlying
614 non-range scalar type. */
615
616 static struct type *
617 base_type (struct type *type)
618 {
619 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
620 {
621 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
622 return type;
623 type = TYPE_TARGET_TYPE (type);
624 }
625 return type;
626 }
627 \f
628
629 /* Language Selection */
630
631 /* If the main program is in Ada, return language_ada, otherwise return LANG
632 (the main program is in Ada iif the adainit symbol is found). */
633
634 enum language
635 ada_update_initial_language (enum language lang)
636 {
637 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
638 (struct objfile *) NULL) != NULL)
639 return language_ada;
640
641 return lang;
642 }
643
644 /* If the main procedure is written in Ada, then return its name.
645 The result is good until the next call. Return NULL if the main
646 procedure doesn't appear to be in Ada. */
647
648 char *
649 ada_main_name (void)
650 {
651 struct minimal_symbol *msym;
652 static char *main_program_name = NULL;
653
654 /* For Ada, the name of the main procedure is stored in a specific
655 string constant, generated by the binder. Look for that symbol,
656 extract its address, and then read that string. If we didn't find
657 that string, then most probably the main procedure is not written
658 in Ada. */
659 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
660
661 if (msym != NULL)
662 {
663 CORE_ADDR main_program_name_addr;
664 int err_code;
665
666 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
667 if (main_program_name_addr == 0)
668 error (_("Invalid address for Ada main program name."));
669
670 xfree (main_program_name);
671 target_read_string (main_program_name_addr, &main_program_name,
672 1024, &err_code);
673
674 if (err_code != 0)
675 return NULL;
676 return main_program_name;
677 }
678
679 /* The main procedure doesn't seem to be in Ada. */
680 return NULL;
681 }
682 \f
683 /* Symbols */
684
685 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
686 of NULLs. */
687
688 const struct ada_opname_map ada_opname_table[] = {
689 {"Oadd", "\"+\"", BINOP_ADD},
690 {"Osubtract", "\"-\"", BINOP_SUB},
691 {"Omultiply", "\"*\"", BINOP_MUL},
692 {"Odivide", "\"/\"", BINOP_DIV},
693 {"Omod", "\"mod\"", BINOP_MOD},
694 {"Orem", "\"rem\"", BINOP_REM},
695 {"Oexpon", "\"**\"", BINOP_EXP},
696 {"Olt", "\"<\"", BINOP_LESS},
697 {"Ole", "\"<=\"", BINOP_LEQ},
698 {"Ogt", "\">\"", BINOP_GTR},
699 {"Oge", "\">=\"", BINOP_GEQ},
700 {"Oeq", "\"=\"", BINOP_EQUAL},
701 {"One", "\"/=\"", BINOP_NOTEQUAL},
702 {"Oand", "\"and\"", BINOP_BITWISE_AND},
703 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
704 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
705 {"Oconcat", "\"&\"", BINOP_CONCAT},
706 {"Oabs", "\"abs\"", UNOP_ABS},
707 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
708 {"Oadd", "\"+\"", UNOP_PLUS},
709 {"Osubtract", "\"-\"", UNOP_NEG},
710 {NULL, NULL}
711 };
712
713 /* The "encoded" form of DECODED, according to GNAT conventions.
714 The result is valid until the next call to ada_encode. */
715
716 char *
717 ada_encode (const char *decoded)
718 {
719 static char *encoding_buffer = NULL;
720 static size_t encoding_buffer_size = 0;
721 const char *p;
722 int k;
723
724 if (decoded == NULL)
725 return NULL;
726
727 GROW_VECT (encoding_buffer, encoding_buffer_size,
728 2 * strlen (decoded) + 10);
729
730 k = 0;
731 for (p = decoded; *p != '\0'; p += 1)
732 {
733 if (*p == '.')
734 {
735 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
736 k += 2;
737 }
738 else if (*p == '"')
739 {
740 const struct ada_opname_map *mapping;
741
742 for (mapping = ada_opname_table;
743 mapping->encoded != NULL
744 && strncmp (mapping->decoded, p,
745 strlen (mapping->decoded)) != 0; mapping += 1)
746 ;
747 if (mapping->encoded == NULL)
748 error (_("invalid Ada operator name: %s"), p);
749 strcpy (encoding_buffer + k, mapping->encoded);
750 k += strlen (mapping->encoded);
751 break;
752 }
753 else
754 {
755 encoding_buffer[k] = *p;
756 k += 1;
757 }
758 }
759
760 encoding_buffer[k] = '\0';
761 return encoding_buffer;
762 }
763
764 /* Return NAME folded to lower case, or, if surrounded by single
765 quotes, unfolded, but with the quotes stripped away. Result good
766 to next call. */
767
768 char *
769 ada_fold_name (const char *name)
770 {
771 static char *fold_buffer = NULL;
772 static size_t fold_buffer_size = 0;
773
774 int len = strlen (name);
775 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
776
777 if (name[0] == '\'')
778 {
779 strncpy (fold_buffer, name + 1, len - 2);
780 fold_buffer[len - 2] = '\000';
781 }
782 else
783 {
784 int i;
785 for (i = 0; i <= len; i += 1)
786 fold_buffer[i] = tolower (name[i]);
787 }
788
789 return fold_buffer;
790 }
791
792 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
793
794 static int
795 is_lower_alphanum (const char c)
796 {
797 return (isdigit (c) || (isalpha (c) && islower (c)));
798 }
799
800 /* Remove either of these suffixes:
801 . .{DIGIT}+
802 . ${DIGIT}+
803 . ___{DIGIT}+
804 . __{DIGIT}+.
805 These are suffixes introduced by the compiler for entities such as
806 nested subprogram for instance, in order to avoid name clashes.
807 They do not serve any purpose for the debugger. */
808
809 static void
810 ada_remove_trailing_digits (const char *encoded, int *len)
811 {
812 if (*len > 1 && isdigit (encoded[*len - 1]))
813 {
814 int i = *len - 2;
815 while (i > 0 && isdigit (encoded[i]))
816 i--;
817 if (i >= 0 && encoded[i] == '.')
818 *len = i;
819 else if (i >= 0 && encoded[i] == '$')
820 *len = i;
821 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
822 *len = i - 2;
823 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
824 *len = i - 1;
825 }
826 }
827
828 /* Remove the suffix introduced by the compiler for protected object
829 subprograms. */
830
831 static void
832 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
833 {
834 /* Remove trailing N. */
835
836 /* Protected entry subprograms are broken into two
837 separate subprograms: The first one is unprotected, and has
838 a 'N' suffix; the second is the protected version, and has
839 the 'P' suffix. The second calls the first one after handling
840 the protection. Since the P subprograms are internally generated,
841 we leave these names undecoded, giving the user a clue that this
842 entity is internal. */
843
844 if (*len > 1
845 && encoded[*len - 1] == 'N'
846 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
847 *len = *len - 1;
848 }
849
850 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
851
852 static void
853 ada_remove_Xbn_suffix (const char *encoded, int *len)
854 {
855 int i = *len - 1;
856
857 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
858 i--;
859
860 if (encoded[i] != 'X')
861 return;
862
863 if (i == 0)
864 return;
865
866 if (isalnum (encoded[i-1]))
867 *len = i;
868 }
869
870 /* If ENCODED follows the GNAT entity encoding conventions, then return
871 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
872 replaced by ENCODED.
873
874 The resulting string is valid until the next call of ada_decode.
875 If the string is unchanged by decoding, the original string pointer
876 is returned. */
877
878 const char *
879 ada_decode (const char *encoded)
880 {
881 int i, j;
882 int len0;
883 const char *p;
884 char *decoded;
885 int at_start_name;
886 static char *decoding_buffer = NULL;
887 static size_t decoding_buffer_size = 0;
888
889 /* The name of the Ada main procedure starts with "_ada_".
890 This prefix is not part of the decoded name, so skip this part
891 if we see this prefix. */
892 if (strncmp (encoded, "_ada_", 5) == 0)
893 encoded += 5;
894
895 /* If the name starts with '_', then it is not a properly encoded
896 name, so do not attempt to decode it. Similarly, if the name
897 starts with '<', the name should not be decoded. */
898 if (encoded[0] == '_' || encoded[0] == '<')
899 goto Suppress;
900
901 len0 = strlen (encoded);
902
903 ada_remove_trailing_digits (encoded, &len0);
904 ada_remove_po_subprogram_suffix (encoded, &len0);
905
906 /* Remove the ___X.* suffix if present. Do not forget to verify that
907 the suffix is located before the current "end" of ENCODED. We want
908 to avoid re-matching parts of ENCODED that have previously been
909 marked as discarded (by decrementing LEN0). */
910 p = strstr (encoded, "___");
911 if (p != NULL && p - encoded < len0 - 3)
912 {
913 if (p[3] == 'X')
914 len0 = p - encoded;
915 else
916 goto Suppress;
917 }
918
919 /* Remove any trailing TKB suffix. It tells us that this symbol
920 is for the body of a task, but that information does not actually
921 appear in the decoded name. */
922
923 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
924 len0 -= 3;
925
926 /* Remove any trailing TB suffix. The TB suffix is slightly different
927 from the TKB suffix because it is used for non-anonymous task
928 bodies. */
929
930 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
931 len0 -= 2;
932
933 /* Remove trailing "B" suffixes. */
934 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
935
936 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
937 len0 -= 1;
938
939 /* Make decoded big enough for possible expansion by operator name. */
940
941 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
942 decoded = decoding_buffer;
943
944 /* Remove trailing __{digit}+ or trailing ${digit}+. */
945
946 if (len0 > 1 && isdigit (encoded[len0 - 1]))
947 {
948 i = len0 - 2;
949 while ((i >= 0 && isdigit (encoded[i]))
950 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
951 i -= 1;
952 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
953 len0 = i - 1;
954 else if (encoded[i] == '$')
955 len0 = i;
956 }
957
958 /* The first few characters that are not alphabetic are not part
959 of any encoding we use, so we can copy them over verbatim. */
960
961 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
962 decoded[j] = encoded[i];
963
964 at_start_name = 1;
965 while (i < len0)
966 {
967 /* Is this a symbol function? */
968 if (at_start_name && encoded[i] == 'O')
969 {
970 int k;
971 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
972 {
973 int op_len = strlen (ada_opname_table[k].encoded);
974 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
975 op_len - 1) == 0)
976 && !isalnum (encoded[i + op_len]))
977 {
978 strcpy (decoded + j, ada_opname_table[k].decoded);
979 at_start_name = 0;
980 i += op_len;
981 j += strlen (ada_opname_table[k].decoded);
982 break;
983 }
984 }
985 if (ada_opname_table[k].encoded != NULL)
986 continue;
987 }
988 at_start_name = 0;
989
990 /* Replace "TK__" with "__", which will eventually be translated
991 into "." (just below). */
992
993 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
994 i += 2;
995
996 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
997 be translated into "." (just below). These are internal names
998 generated for anonymous blocks inside which our symbol is nested. */
999
1000 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1001 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1002 && isdigit (encoded [i+4]))
1003 {
1004 int k = i + 5;
1005
1006 while (k < len0 && isdigit (encoded[k]))
1007 k++; /* Skip any extra digit. */
1008
1009 /* Double-check that the "__B_{DIGITS}+" sequence we found
1010 is indeed followed by "__". */
1011 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1012 i = k;
1013 }
1014
1015 /* Remove _E{DIGITS}+[sb] */
1016
1017 /* Just as for protected object subprograms, there are 2 categories
1018 of subprograms created by the compiler for each entry. The first
1019 one implements the actual entry code, and has a suffix following
1020 the convention above; the second one implements the barrier and
1021 uses the same convention as above, except that the 'E' is replaced
1022 by a 'B'.
1023
1024 Just as above, we do not decode the name of barrier functions
1025 to give the user a clue that the code he is debugging has been
1026 internally generated. */
1027
1028 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1029 && isdigit (encoded[i+2]))
1030 {
1031 int k = i + 3;
1032
1033 while (k < len0 && isdigit (encoded[k]))
1034 k++;
1035
1036 if (k < len0
1037 && (encoded[k] == 'b' || encoded[k] == 's'))
1038 {
1039 k++;
1040 /* Just as an extra precaution, make sure that if this
1041 suffix is followed by anything else, it is a '_'.
1042 Otherwise, we matched this sequence by accident. */
1043 if (k == len0
1044 || (k < len0 && encoded[k] == '_'))
1045 i = k;
1046 }
1047 }
1048
1049 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1050 the GNAT front-end in protected object subprograms. */
1051
1052 if (i < len0 + 3
1053 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1054 {
1055 /* Backtrack a bit up until we reach either the begining of
1056 the encoded name, or "__". Make sure that we only find
1057 digits or lowercase characters. */
1058 const char *ptr = encoded + i - 1;
1059
1060 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1061 ptr--;
1062 if (ptr < encoded
1063 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1064 i++;
1065 }
1066
1067 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1068 {
1069 /* This is a X[bn]* sequence not separated from the previous
1070 part of the name with a non-alpha-numeric character (in other
1071 words, immediately following an alpha-numeric character), then
1072 verify that it is placed at the end of the encoded name. If
1073 not, then the encoding is not valid and we should abort the
1074 decoding. Otherwise, just skip it, it is used in body-nested
1075 package names. */
1076 do
1077 i += 1;
1078 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1079 if (i < len0)
1080 goto Suppress;
1081 }
1082 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1083 {
1084 /* Replace '__' by '.'. */
1085 decoded[j] = '.';
1086 at_start_name = 1;
1087 i += 2;
1088 j += 1;
1089 }
1090 else
1091 {
1092 /* It's a character part of the decoded name, so just copy it
1093 over. */
1094 decoded[j] = encoded[i];
1095 i += 1;
1096 j += 1;
1097 }
1098 }
1099 decoded[j] = '\000';
1100
1101 /* Decoded names should never contain any uppercase character.
1102 Double-check this, and abort the decoding if we find one. */
1103
1104 for (i = 0; decoded[i] != '\0'; i += 1)
1105 if (isupper (decoded[i]) || decoded[i] == ' ')
1106 goto Suppress;
1107
1108 if (strcmp (decoded, encoded) == 0)
1109 return encoded;
1110 else
1111 return decoded;
1112
1113 Suppress:
1114 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1115 decoded = decoding_buffer;
1116 if (encoded[0] == '<')
1117 strcpy (decoded, encoded);
1118 else
1119 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1120 return decoded;
1121
1122 }
1123
1124 /* Table for keeping permanent unique copies of decoded names. Once
1125 allocated, names in this table are never released. While this is a
1126 storage leak, it should not be significant unless there are massive
1127 changes in the set of decoded names in successive versions of a
1128 symbol table loaded during a single session. */
1129 static struct htab *decoded_names_store;
1130
1131 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1132 in the language-specific part of GSYMBOL, if it has not been
1133 previously computed. Tries to save the decoded name in the same
1134 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1135 in any case, the decoded symbol has a lifetime at least that of
1136 GSYMBOL).
1137 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1138 const, but nevertheless modified to a semantically equivalent form
1139 when a decoded name is cached in it.
1140 */
1141
1142 char *
1143 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1144 {
1145 char **resultp =
1146 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1147 if (*resultp == NULL)
1148 {
1149 const char *decoded = ada_decode (gsymbol->name);
1150 if (gsymbol->obj_section != NULL)
1151 {
1152 struct objfile *objf = gsymbol->obj_section->objfile;
1153 *resultp = obsavestring (decoded, strlen (decoded),
1154 &objf->objfile_obstack);
1155 }
1156 /* Sometimes, we can't find a corresponding objfile, in which
1157 case, we put the result on the heap. Since we only decode
1158 when needed, we hope this usually does not cause a
1159 significant memory leak (FIXME). */
1160 if (*resultp == NULL)
1161 {
1162 char **slot = (char **) htab_find_slot (decoded_names_store,
1163 decoded, INSERT);
1164 if (*slot == NULL)
1165 *slot = xstrdup (decoded);
1166 *resultp = *slot;
1167 }
1168 }
1169
1170 return *resultp;
1171 }
1172
1173 static char *
1174 ada_la_decode (const char *encoded, int options)
1175 {
1176 return xstrdup (ada_decode (encoded));
1177 }
1178
1179 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1180 suffixes that encode debugging information or leading _ada_ on
1181 SYM_NAME (see is_name_suffix commentary for the debugging
1182 information that is ignored). If WILD, then NAME need only match a
1183 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1184 either argument is NULL. */
1185
1186 static int
1187 ada_match_name (const char *sym_name, const char *name, int wild)
1188 {
1189 if (sym_name == NULL || name == NULL)
1190 return 0;
1191 else if (wild)
1192 return wild_match (name, strlen (name), sym_name);
1193 else
1194 {
1195 int len_name = strlen (name);
1196 return (strncmp (sym_name, name, len_name) == 0
1197 && is_name_suffix (sym_name + len_name))
1198 || (strncmp (sym_name, "_ada_", 5) == 0
1199 && strncmp (sym_name + 5, name, len_name) == 0
1200 && is_name_suffix (sym_name + len_name + 5));
1201 }
1202 }
1203 \f
1204
1205 /* Arrays */
1206
1207 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1208
1209 static char *bound_name[] = {
1210 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1211 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1212 };
1213
1214 /* Maximum number of array dimensions we are prepared to handle. */
1215
1216 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1217
1218 /* Like modify_field, but allows bitpos > wordlength. */
1219
1220 static void
1221 modify_general_field (struct type *type, char *addr,
1222 LONGEST fieldval, int bitpos, int bitsize)
1223 {
1224 modify_field (type, addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
1225 }
1226
1227
1228 /* The desc_* routines return primitive portions of array descriptors
1229 (fat pointers). */
1230
1231 /* The descriptor or array type, if any, indicated by TYPE; removes
1232 level of indirection, if needed. */
1233
1234 static struct type *
1235 desc_base_type (struct type *type)
1236 {
1237 if (type == NULL)
1238 return NULL;
1239 type = ada_check_typedef (type);
1240 if (type != NULL
1241 && (TYPE_CODE (type) == TYPE_CODE_PTR
1242 || TYPE_CODE (type) == TYPE_CODE_REF))
1243 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1244 else
1245 return type;
1246 }
1247
1248 /* True iff TYPE indicates a "thin" array pointer type. */
1249
1250 static int
1251 is_thin_pntr (struct type *type)
1252 {
1253 return
1254 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1255 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1256 }
1257
1258 /* The descriptor type for thin pointer type TYPE. */
1259
1260 static struct type *
1261 thin_descriptor_type (struct type *type)
1262 {
1263 struct type *base_type = desc_base_type (type);
1264 if (base_type == NULL)
1265 return NULL;
1266 if (is_suffix (ada_type_name (base_type), "___XVE"))
1267 return base_type;
1268 else
1269 {
1270 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1271 if (alt_type == NULL)
1272 return base_type;
1273 else
1274 return alt_type;
1275 }
1276 }
1277
1278 /* A pointer to the array data for thin-pointer value VAL. */
1279
1280 static struct value *
1281 thin_data_pntr (struct value *val)
1282 {
1283 struct type *type = value_type (val);
1284 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1285 data_type = lookup_pointer_type (data_type);
1286
1287 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1288 return value_cast (data_type, value_copy (val));
1289 else
1290 return value_from_longest (data_type, value_address (val));
1291 }
1292
1293 /* True iff TYPE indicates a "thick" array pointer type. */
1294
1295 static int
1296 is_thick_pntr (struct type *type)
1297 {
1298 type = desc_base_type (type);
1299 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1300 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1301 }
1302
1303 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1304 pointer to one, the type of its bounds data; otherwise, NULL. */
1305
1306 static struct type *
1307 desc_bounds_type (struct type *type)
1308 {
1309 struct type *r;
1310
1311 type = desc_base_type (type);
1312
1313 if (type == NULL)
1314 return NULL;
1315 else if (is_thin_pntr (type))
1316 {
1317 type = thin_descriptor_type (type);
1318 if (type == NULL)
1319 return NULL;
1320 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1321 if (r != NULL)
1322 return ada_check_typedef (r);
1323 }
1324 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1325 {
1326 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1327 if (r != NULL)
1328 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1329 }
1330 return NULL;
1331 }
1332
1333 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1334 one, a pointer to its bounds data. Otherwise NULL. */
1335
1336 static struct value *
1337 desc_bounds (struct value *arr)
1338 {
1339 struct type *type = ada_check_typedef (value_type (arr));
1340 if (is_thin_pntr (type))
1341 {
1342 struct type *bounds_type =
1343 desc_bounds_type (thin_descriptor_type (type));
1344 LONGEST addr;
1345
1346 if (bounds_type == NULL)
1347 error (_("Bad GNAT array descriptor"));
1348
1349 /* NOTE: The following calculation is not really kosher, but
1350 since desc_type is an XVE-encoded type (and shouldn't be),
1351 the correct calculation is a real pain. FIXME (and fix GCC). */
1352 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1353 addr = value_as_long (arr);
1354 else
1355 addr = value_address (arr);
1356
1357 return
1358 value_from_longest (lookup_pointer_type (bounds_type),
1359 addr - TYPE_LENGTH (bounds_type));
1360 }
1361
1362 else if (is_thick_pntr (type))
1363 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1364 _("Bad GNAT array descriptor"));
1365 else
1366 return NULL;
1367 }
1368
1369 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1370 position of the field containing the address of the bounds data. */
1371
1372 static int
1373 fat_pntr_bounds_bitpos (struct type *type)
1374 {
1375 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1376 }
1377
1378 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1379 size of the field containing the address of the bounds data. */
1380
1381 static int
1382 fat_pntr_bounds_bitsize (struct type *type)
1383 {
1384 type = desc_base_type (type);
1385
1386 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1387 return TYPE_FIELD_BITSIZE (type, 1);
1388 else
1389 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1390 }
1391
1392 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1393 pointer to one, the type of its array data (a array-with-no-bounds type);
1394 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1395 data. */
1396
1397 static struct type *
1398 desc_data_target_type (struct type *type)
1399 {
1400 type = desc_base_type (type);
1401
1402 /* NOTE: The following is bogus; see comment in desc_bounds. */
1403 if (is_thin_pntr (type))
1404 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1405 else if (is_thick_pntr (type))
1406 {
1407 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1408
1409 if (data_type
1410 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1411 return TYPE_TARGET_TYPE (data_type);
1412 }
1413
1414 return NULL;
1415 }
1416
1417 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1418 its array data. */
1419
1420 static struct value *
1421 desc_data (struct value *arr)
1422 {
1423 struct type *type = value_type (arr);
1424 if (is_thin_pntr (type))
1425 return thin_data_pntr (arr);
1426 else if (is_thick_pntr (type))
1427 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1428 _("Bad GNAT array descriptor"));
1429 else
1430 return NULL;
1431 }
1432
1433
1434 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1435 position of the field containing the address of the data. */
1436
1437 static int
1438 fat_pntr_data_bitpos (struct type *type)
1439 {
1440 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1441 }
1442
1443 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1444 size of the field containing the address of the data. */
1445
1446 static int
1447 fat_pntr_data_bitsize (struct type *type)
1448 {
1449 type = desc_base_type (type);
1450
1451 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1452 return TYPE_FIELD_BITSIZE (type, 0);
1453 else
1454 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1455 }
1456
1457 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1458 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1459 bound, if WHICH is 1. The first bound is I=1. */
1460
1461 static struct value *
1462 desc_one_bound (struct value *bounds, int i, int which)
1463 {
1464 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1465 _("Bad GNAT array descriptor bounds"));
1466 }
1467
1468 /* If BOUNDS is an array-bounds structure type, return the bit position
1469 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1470 bound, if WHICH is 1. The first bound is I=1. */
1471
1472 static int
1473 desc_bound_bitpos (struct type *type, int i, int which)
1474 {
1475 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1476 }
1477
1478 /* If BOUNDS is an array-bounds structure type, return the bit field size
1479 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1480 bound, if WHICH is 1. The first bound is I=1. */
1481
1482 static int
1483 desc_bound_bitsize (struct type *type, int i, int which)
1484 {
1485 type = desc_base_type (type);
1486
1487 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1488 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1489 else
1490 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1491 }
1492
1493 /* If TYPE is the type of an array-bounds structure, the type of its
1494 Ith bound (numbering from 1). Otherwise, NULL. */
1495
1496 static struct type *
1497 desc_index_type (struct type *type, int i)
1498 {
1499 type = desc_base_type (type);
1500
1501 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1502 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1503 else
1504 return NULL;
1505 }
1506
1507 /* The number of index positions in the array-bounds type TYPE.
1508 Return 0 if TYPE is NULL. */
1509
1510 static int
1511 desc_arity (struct type *type)
1512 {
1513 type = desc_base_type (type);
1514
1515 if (type != NULL)
1516 return TYPE_NFIELDS (type) / 2;
1517 return 0;
1518 }
1519
1520 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1521 an array descriptor type (representing an unconstrained array
1522 type). */
1523
1524 static int
1525 ada_is_direct_array_type (struct type *type)
1526 {
1527 if (type == NULL)
1528 return 0;
1529 type = ada_check_typedef (type);
1530 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1531 || ada_is_array_descriptor_type (type));
1532 }
1533
1534 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1535 * to one. */
1536
1537 static int
1538 ada_is_array_type (struct type *type)
1539 {
1540 while (type != NULL
1541 && (TYPE_CODE (type) == TYPE_CODE_PTR
1542 || TYPE_CODE (type) == TYPE_CODE_REF))
1543 type = TYPE_TARGET_TYPE (type);
1544 return ada_is_direct_array_type (type);
1545 }
1546
1547 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1548
1549 int
1550 ada_is_simple_array_type (struct type *type)
1551 {
1552 if (type == NULL)
1553 return 0;
1554 type = ada_check_typedef (type);
1555 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1556 || (TYPE_CODE (type) == TYPE_CODE_PTR
1557 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
1558 }
1559
1560 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1561
1562 int
1563 ada_is_array_descriptor_type (struct type *type)
1564 {
1565 struct type *data_type = desc_data_target_type (type);
1566
1567 if (type == NULL)
1568 return 0;
1569 type = ada_check_typedef (type);
1570 return (data_type != NULL
1571 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1572 && desc_arity (desc_bounds_type (type)) > 0);
1573 }
1574
1575 /* Non-zero iff type is a partially mal-formed GNAT array
1576 descriptor. FIXME: This is to compensate for some problems with
1577 debugging output from GNAT. Re-examine periodically to see if it
1578 is still needed. */
1579
1580 int
1581 ada_is_bogus_array_descriptor (struct type *type)
1582 {
1583 return
1584 type != NULL
1585 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1586 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1587 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1588 && !ada_is_array_descriptor_type (type);
1589 }
1590
1591
1592 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1593 (fat pointer) returns the type of the array data described---specifically,
1594 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1595 in from the descriptor; otherwise, they are left unspecified. If
1596 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1597 returns NULL. The result is simply the type of ARR if ARR is not
1598 a descriptor. */
1599 struct type *
1600 ada_type_of_array (struct value *arr, int bounds)
1601 {
1602 if (ada_is_constrained_packed_array_type (value_type (arr)))
1603 return decode_constrained_packed_array_type (value_type (arr));
1604
1605 if (!ada_is_array_descriptor_type (value_type (arr)))
1606 return value_type (arr);
1607
1608 if (!bounds)
1609 {
1610 struct type *array_type =
1611 ada_check_typedef (desc_data_target_type (value_type (arr)));
1612
1613 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1614 TYPE_FIELD_BITSIZE (array_type, 0) =
1615 decode_packed_array_bitsize (value_type (arr));
1616
1617 return array_type;
1618 }
1619 else
1620 {
1621 struct type *elt_type;
1622 int arity;
1623 struct value *descriptor;
1624
1625 elt_type = ada_array_element_type (value_type (arr), -1);
1626 arity = ada_array_arity (value_type (arr));
1627
1628 if (elt_type == NULL || arity == 0)
1629 return ada_check_typedef (value_type (arr));
1630
1631 descriptor = desc_bounds (arr);
1632 if (value_as_long (descriptor) == 0)
1633 return NULL;
1634 while (arity > 0)
1635 {
1636 struct type *range_type = alloc_type_copy (value_type (arr));
1637 struct type *array_type = alloc_type_copy (value_type (arr));
1638 struct value *low = desc_one_bound (descriptor, arity, 0);
1639 struct value *high = desc_one_bound (descriptor, arity, 1);
1640 arity -= 1;
1641
1642 create_range_type (range_type, value_type (low),
1643 longest_to_int (value_as_long (low)),
1644 longest_to_int (value_as_long (high)));
1645 elt_type = create_array_type (array_type, elt_type, range_type);
1646
1647 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1648 TYPE_FIELD_BITSIZE (elt_type, 0) =
1649 decode_packed_array_bitsize (value_type (arr));
1650 }
1651
1652 return lookup_pointer_type (elt_type);
1653 }
1654 }
1655
1656 /* If ARR does not represent an array, returns ARR unchanged.
1657 Otherwise, returns either a standard GDB array with bounds set
1658 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1659 GDB array. Returns NULL if ARR is a null fat pointer. */
1660
1661 struct value *
1662 ada_coerce_to_simple_array_ptr (struct value *arr)
1663 {
1664 if (ada_is_array_descriptor_type (value_type (arr)))
1665 {
1666 struct type *arrType = ada_type_of_array (arr, 1);
1667 if (arrType == NULL)
1668 return NULL;
1669 return value_cast (arrType, value_copy (desc_data (arr)));
1670 }
1671 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1672 return decode_constrained_packed_array (arr);
1673 else
1674 return arr;
1675 }
1676
1677 /* If ARR does not represent an array, returns ARR unchanged.
1678 Otherwise, returns a standard GDB array describing ARR (which may
1679 be ARR itself if it already is in the proper form). */
1680
1681 static struct value *
1682 ada_coerce_to_simple_array (struct value *arr)
1683 {
1684 if (ada_is_array_descriptor_type (value_type (arr)))
1685 {
1686 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1687 if (arrVal == NULL)
1688 error (_("Bounds unavailable for null array pointer."));
1689 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1690 return value_ind (arrVal);
1691 }
1692 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1693 return decode_constrained_packed_array (arr);
1694 else
1695 return arr;
1696 }
1697
1698 /* If TYPE represents a GNAT array type, return it translated to an
1699 ordinary GDB array type (possibly with BITSIZE fields indicating
1700 packing). For other types, is the identity. */
1701
1702 struct type *
1703 ada_coerce_to_simple_array_type (struct type *type)
1704 {
1705 if (ada_is_constrained_packed_array_type (type))
1706 return decode_constrained_packed_array_type (type);
1707
1708 if (ada_is_array_descriptor_type (type))
1709 return ada_check_typedef (desc_data_target_type (type));
1710
1711 return type;
1712 }
1713
1714 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1715
1716 static int
1717 ada_is_packed_array_type (struct type *type)
1718 {
1719 if (type == NULL)
1720 return 0;
1721 type = desc_base_type (type);
1722 type = ada_check_typedef (type);
1723 return
1724 ada_type_name (type) != NULL
1725 && strstr (ada_type_name (type), "___XP") != NULL;
1726 }
1727
1728 /* Non-zero iff TYPE represents a standard GNAT constrained
1729 packed-array type. */
1730
1731 int
1732 ada_is_constrained_packed_array_type (struct type *type)
1733 {
1734 return ada_is_packed_array_type (type)
1735 && !ada_is_array_descriptor_type (type);
1736 }
1737
1738 /* Non-zero iff TYPE represents an array descriptor for a
1739 unconstrained packed-array type. */
1740
1741 static int
1742 ada_is_unconstrained_packed_array_type (struct type *type)
1743 {
1744 return ada_is_packed_array_type (type)
1745 && ada_is_array_descriptor_type (type);
1746 }
1747
1748 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
1749 return the size of its elements in bits. */
1750
1751 static long
1752 decode_packed_array_bitsize (struct type *type)
1753 {
1754 char *raw_name = ada_type_name (ada_check_typedef (type));
1755 char *tail;
1756 long bits;
1757
1758 if (!raw_name)
1759 raw_name = ada_type_name (desc_base_type (type));
1760
1761 if (!raw_name)
1762 return 0;
1763
1764 tail = strstr (raw_name, "___XP");
1765
1766 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1767 {
1768 lim_warning
1769 (_("could not understand bit size information on packed array"));
1770 return 0;
1771 }
1772
1773 return bits;
1774 }
1775
1776 /* Given that TYPE is a standard GDB array type with all bounds filled
1777 in, and that the element size of its ultimate scalar constituents
1778 (that is, either its elements, or, if it is an array of arrays, its
1779 elements' elements, etc.) is *ELT_BITS, return an identical type,
1780 but with the bit sizes of its elements (and those of any
1781 constituent arrays) recorded in the BITSIZE components of its
1782 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1783 in bits. */
1784
1785 static struct type *
1786 constrained_packed_array_type (struct type *type, long *elt_bits)
1787 {
1788 struct type *new_elt_type;
1789 struct type *new_type;
1790 LONGEST low_bound, high_bound;
1791
1792 type = ada_check_typedef (type);
1793 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1794 return type;
1795
1796 new_type = alloc_type_copy (type);
1797 new_elt_type =
1798 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
1799 elt_bits);
1800 create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type));
1801 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1802 TYPE_NAME (new_type) = ada_type_name (type);
1803
1804 if (get_discrete_bounds (TYPE_INDEX_TYPE (type),
1805 &low_bound, &high_bound) < 0)
1806 low_bound = high_bound = 0;
1807 if (high_bound < low_bound)
1808 *elt_bits = TYPE_LENGTH (new_type) = 0;
1809 else
1810 {
1811 *elt_bits *= (high_bound - low_bound + 1);
1812 TYPE_LENGTH (new_type) =
1813 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1814 }
1815
1816 TYPE_FIXED_INSTANCE (new_type) = 1;
1817 return new_type;
1818 }
1819
1820 /* The array type encoded by TYPE, where
1821 ada_is_constrained_packed_array_type (TYPE). */
1822
1823 static struct type *
1824 decode_constrained_packed_array_type (struct type *type)
1825 {
1826 char *raw_name = ada_type_name (ada_check_typedef (type));
1827 char *name;
1828 char *tail;
1829 struct type *shadow_type;
1830 long bits;
1831
1832 if (!raw_name)
1833 raw_name = ada_type_name (desc_base_type (type));
1834
1835 if (!raw_name)
1836 return NULL;
1837
1838 name = (char *) alloca (strlen (raw_name) + 1);
1839 tail = strstr (raw_name, "___XP");
1840 type = desc_base_type (type);
1841
1842 memcpy (name, raw_name, tail - raw_name);
1843 name[tail - raw_name] = '\000';
1844
1845 shadow_type = ada_find_parallel_type_with_name (type, name);
1846
1847 if (shadow_type == NULL)
1848 {
1849 lim_warning (_("could not find bounds information on packed array"));
1850 return NULL;
1851 }
1852 CHECK_TYPEDEF (shadow_type);
1853
1854 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1855 {
1856 lim_warning (_("could not understand bounds information on packed array"));
1857 return NULL;
1858 }
1859
1860 bits = decode_packed_array_bitsize (type);
1861 return constrained_packed_array_type (shadow_type, &bits);
1862 }
1863
1864 /* Given that ARR is a struct value *indicating a GNAT constrained packed
1865 array, returns a simple array that denotes that array. Its type is a
1866 standard GDB array type except that the BITSIZEs of the array
1867 target types are set to the number of bits in each element, and the
1868 type length is set appropriately. */
1869
1870 static struct value *
1871 decode_constrained_packed_array (struct value *arr)
1872 {
1873 struct type *type;
1874
1875 arr = ada_coerce_ref (arr);
1876
1877 /* If our value is a pointer, then dererence it. Make sure that
1878 this operation does not cause the target type to be fixed, as
1879 this would indirectly cause this array to be decoded. The rest
1880 of the routine assumes that the array hasn't been decoded yet,
1881 so we use the basic "value_ind" routine to perform the dereferencing,
1882 as opposed to using "ada_value_ind". */
1883 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
1884 arr = value_ind (arr);
1885
1886 type = decode_constrained_packed_array_type (value_type (arr));
1887 if (type == NULL)
1888 {
1889 error (_("can't unpack array"));
1890 return NULL;
1891 }
1892
1893 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
1894 && ada_is_modular_type (value_type (arr)))
1895 {
1896 /* This is a (right-justified) modular type representing a packed
1897 array with no wrapper. In order to interpret the value through
1898 the (left-justified) packed array type we just built, we must
1899 first left-justify it. */
1900 int bit_size, bit_pos;
1901 ULONGEST mod;
1902
1903 mod = ada_modulus (value_type (arr)) - 1;
1904 bit_size = 0;
1905 while (mod > 0)
1906 {
1907 bit_size += 1;
1908 mod >>= 1;
1909 }
1910 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
1911 arr = ada_value_primitive_packed_val (arr, NULL,
1912 bit_pos / HOST_CHAR_BIT,
1913 bit_pos % HOST_CHAR_BIT,
1914 bit_size,
1915 type);
1916 }
1917
1918 return coerce_unspec_val_to_type (arr, type);
1919 }
1920
1921
1922 /* The value of the element of packed array ARR at the ARITY indices
1923 given in IND. ARR must be a simple array. */
1924
1925 static struct value *
1926 value_subscript_packed (struct value *arr, int arity, struct value **ind)
1927 {
1928 int i;
1929 int bits, elt_off, bit_off;
1930 long elt_total_bit_offset;
1931 struct type *elt_type;
1932 struct value *v;
1933
1934 bits = 0;
1935 elt_total_bit_offset = 0;
1936 elt_type = ada_check_typedef (value_type (arr));
1937 for (i = 0; i < arity; i += 1)
1938 {
1939 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
1940 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1941 error
1942 (_("attempt to do packed indexing of something other than a packed array"));
1943 else
1944 {
1945 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1946 LONGEST lowerbound, upperbound;
1947 LONGEST idx;
1948
1949 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1950 {
1951 lim_warning (_("don't know bounds of array"));
1952 lowerbound = upperbound = 0;
1953 }
1954
1955 idx = pos_atr (ind[i]);
1956 if (idx < lowerbound || idx > upperbound)
1957 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
1958 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1959 elt_total_bit_offset += (idx - lowerbound) * bits;
1960 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
1961 }
1962 }
1963 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1964 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
1965
1966 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
1967 bits, elt_type);
1968 return v;
1969 }
1970
1971 /* Non-zero iff TYPE includes negative integer values. */
1972
1973 static int
1974 has_negatives (struct type *type)
1975 {
1976 switch (TYPE_CODE (type))
1977 {
1978 default:
1979 return 0;
1980 case TYPE_CODE_INT:
1981 return !TYPE_UNSIGNED (type);
1982 case TYPE_CODE_RANGE:
1983 return TYPE_LOW_BOUND (type) < 0;
1984 }
1985 }
1986
1987
1988 /* Create a new value of type TYPE from the contents of OBJ starting
1989 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
1990 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
1991 assigning through the result will set the field fetched from.
1992 VALADDR is ignored unless OBJ is NULL, in which case,
1993 VALADDR+OFFSET must address the start of storage containing the
1994 packed value. The value returned in this case is never an lval.
1995 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
1996
1997 struct value *
1998 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
1999 long offset, int bit_offset, int bit_size,
2000 struct type *type)
2001 {
2002 struct value *v;
2003 int src, /* Index into the source area */
2004 targ, /* Index into the target area */
2005 srcBitsLeft, /* Number of source bits left to move */
2006 nsrc, ntarg, /* Number of source and target bytes */
2007 unusedLS, /* Number of bits in next significant
2008 byte of source that are unused */
2009 accumSize; /* Number of meaningful bits in accum */
2010 unsigned char *bytes; /* First byte containing data to unpack */
2011 unsigned char *unpacked;
2012 unsigned long accum; /* Staging area for bits being transferred */
2013 unsigned char sign;
2014 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2015 /* Transmit bytes from least to most significant; delta is the direction
2016 the indices move. */
2017 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2018
2019 type = ada_check_typedef (type);
2020
2021 if (obj == NULL)
2022 {
2023 v = allocate_value (type);
2024 bytes = (unsigned char *) (valaddr + offset);
2025 }
2026 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2027 {
2028 v = value_at (type,
2029 value_address (obj) + offset);
2030 bytes = (unsigned char *) alloca (len);
2031 read_memory (value_address (v), bytes, len);
2032 }
2033 else
2034 {
2035 v = allocate_value (type);
2036 bytes = (unsigned char *) value_contents (obj) + offset;
2037 }
2038
2039 if (obj != NULL)
2040 {
2041 CORE_ADDR new_addr;
2042 set_value_component_location (v, obj);
2043 new_addr = value_address (obj) + offset;
2044 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2045 set_value_bitsize (v, bit_size);
2046 if (value_bitpos (v) >= HOST_CHAR_BIT)
2047 {
2048 ++new_addr;
2049 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2050 }
2051 set_value_address (v, new_addr);
2052 }
2053 else
2054 set_value_bitsize (v, bit_size);
2055 unpacked = (unsigned char *) value_contents (v);
2056
2057 srcBitsLeft = bit_size;
2058 nsrc = len;
2059 ntarg = TYPE_LENGTH (type);
2060 sign = 0;
2061 if (bit_size == 0)
2062 {
2063 memset (unpacked, 0, TYPE_LENGTH (type));
2064 return v;
2065 }
2066 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2067 {
2068 src = len - 1;
2069 if (has_negatives (type)
2070 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2071 sign = ~0;
2072
2073 unusedLS =
2074 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2075 % HOST_CHAR_BIT;
2076
2077 switch (TYPE_CODE (type))
2078 {
2079 case TYPE_CODE_ARRAY:
2080 case TYPE_CODE_UNION:
2081 case TYPE_CODE_STRUCT:
2082 /* Non-scalar values must be aligned at a byte boundary... */
2083 accumSize =
2084 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2085 /* ... And are placed at the beginning (most-significant) bytes
2086 of the target. */
2087 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2088 ntarg = targ + 1;
2089 break;
2090 default:
2091 accumSize = 0;
2092 targ = TYPE_LENGTH (type) - 1;
2093 break;
2094 }
2095 }
2096 else
2097 {
2098 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2099
2100 src = targ = 0;
2101 unusedLS = bit_offset;
2102 accumSize = 0;
2103
2104 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2105 sign = ~0;
2106 }
2107
2108 accum = 0;
2109 while (nsrc > 0)
2110 {
2111 /* Mask for removing bits of the next source byte that are not
2112 part of the value. */
2113 unsigned int unusedMSMask =
2114 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2115 1;
2116 /* Sign-extend bits for this byte. */
2117 unsigned int signMask = sign & ~unusedMSMask;
2118 accum |=
2119 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2120 accumSize += HOST_CHAR_BIT - unusedLS;
2121 if (accumSize >= HOST_CHAR_BIT)
2122 {
2123 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2124 accumSize -= HOST_CHAR_BIT;
2125 accum >>= HOST_CHAR_BIT;
2126 ntarg -= 1;
2127 targ += delta;
2128 }
2129 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2130 unusedLS = 0;
2131 nsrc -= 1;
2132 src += delta;
2133 }
2134 while (ntarg > 0)
2135 {
2136 accum |= sign << accumSize;
2137 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2138 accumSize -= HOST_CHAR_BIT;
2139 accum >>= HOST_CHAR_BIT;
2140 ntarg -= 1;
2141 targ += delta;
2142 }
2143
2144 return v;
2145 }
2146
2147 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2148 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2149 not overlap. */
2150 static void
2151 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2152 int src_offset, int n, int bits_big_endian_p)
2153 {
2154 unsigned int accum, mask;
2155 int accum_bits, chunk_size;
2156
2157 target += targ_offset / HOST_CHAR_BIT;
2158 targ_offset %= HOST_CHAR_BIT;
2159 source += src_offset / HOST_CHAR_BIT;
2160 src_offset %= HOST_CHAR_BIT;
2161 if (bits_big_endian_p)
2162 {
2163 accum = (unsigned char) *source;
2164 source += 1;
2165 accum_bits = HOST_CHAR_BIT - src_offset;
2166
2167 while (n > 0)
2168 {
2169 int unused_right;
2170 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2171 accum_bits += HOST_CHAR_BIT;
2172 source += 1;
2173 chunk_size = HOST_CHAR_BIT - targ_offset;
2174 if (chunk_size > n)
2175 chunk_size = n;
2176 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2177 mask = ((1 << chunk_size) - 1) << unused_right;
2178 *target =
2179 (*target & ~mask)
2180 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2181 n -= chunk_size;
2182 accum_bits -= chunk_size;
2183 target += 1;
2184 targ_offset = 0;
2185 }
2186 }
2187 else
2188 {
2189 accum = (unsigned char) *source >> src_offset;
2190 source += 1;
2191 accum_bits = HOST_CHAR_BIT - src_offset;
2192
2193 while (n > 0)
2194 {
2195 accum = accum + ((unsigned char) *source << accum_bits);
2196 accum_bits += HOST_CHAR_BIT;
2197 source += 1;
2198 chunk_size = HOST_CHAR_BIT - targ_offset;
2199 if (chunk_size > n)
2200 chunk_size = n;
2201 mask = ((1 << chunk_size) - 1) << targ_offset;
2202 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2203 n -= chunk_size;
2204 accum_bits -= chunk_size;
2205 accum >>= chunk_size;
2206 target += 1;
2207 targ_offset = 0;
2208 }
2209 }
2210 }
2211
2212 /* Store the contents of FROMVAL into the location of TOVAL.
2213 Return a new value with the location of TOVAL and contents of
2214 FROMVAL. Handles assignment into packed fields that have
2215 floating-point or non-scalar types. */
2216
2217 static struct value *
2218 ada_value_assign (struct value *toval, struct value *fromval)
2219 {
2220 struct type *type = value_type (toval);
2221 int bits = value_bitsize (toval);
2222
2223 toval = ada_coerce_ref (toval);
2224 fromval = ada_coerce_ref (fromval);
2225
2226 if (ada_is_direct_array_type (value_type (toval)))
2227 toval = ada_coerce_to_simple_array (toval);
2228 if (ada_is_direct_array_type (value_type (fromval)))
2229 fromval = ada_coerce_to_simple_array (fromval);
2230
2231 if (!deprecated_value_modifiable (toval))
2232 error (_("Left operand of assignment is not a modifiable lvalue."));
2233
2234 if (VALUE_LVAL (toval) == lval_memory
2235 && bits > 0
2236 && (TYPE_CODE (type) == TYPE_CODE_FLT
2237 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2238 {
2239 int len = (value_bitpos (toval)
2240 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2241 int from_size;
2242 char *buffer = (char *) alloca (len);
2243 struct value *val;
2244 CORE_ADDR to_addr = value_address (toval);
2245
2246 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2247 fromval = value_cast (type, fromval);
2248
2249 read_memory (to_addr, buffer, len);
2250 from_size = value_bitsize (fromval);
2251 if (from_size == 0)
2252 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2253 if (gdbarch_bits_big_endian (get_type_arch (type)))
2254 move_bits (buffer, value_bitpos (toval),
2255 value_contents (fromval), from_size - bits, bits, 1);
2256 else
2257 move_bits (buffer, value_bitpos (toval),
2258 value_contents (fromval), 0, bits, 0);
2259 write_memory (to_addr, buffer, len);
2260 observer_notify_memory_changed (to_addr, len, buffer);
2261
2262 val = value_copy (toval);
2263 memcpy (value_contents_raw (val), value_contents (fromval),
2264 TYPE_LENGTH (type));
2265 deprecated_set_value_type (val, type);
2266
2267 return val;
2268 }
2269
2270 return value_assign (toval, fromval);
2271 }
2272
2273
2274 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2275 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2276 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2277 * COMPONENT, and not the inferior's memory. The current contents
2278 * of COMPONENT are ignored. */
2279 static void
2280 value_assign_to_component (struct value *container, struct value *component,
2281 struct value *val)
2282 {
2283 LONGEST offset_in_container =
2284 (LONGEST) (value_address (component) - value_address (container));
2285 int bit_offset_in_container =
2286 value_bitpos (component) - value_bitpos (container);
2287 int bits;
2288
2289 val = value_cast (value_type (component), val);
2290
2291 if (value_bitsize (component) == 0)
2292 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2293 else
2294 bits = value_bitsize (component);
2295
2296 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2297 move_bits (value_contents_writeable (container) + offset_in_container,
2298 value_bitpos (container) + bit_offset_in_container,
2299 value_contents (val),
2300 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2301 bits, 1);
2302 else
2303 move_bits (value_contents_writeable (container) + offset_in_container,
2304 value_bitpos (container) + bit_offset_in_container,
2305 value_contents (val), 0, bits, 0);
2306 }
2307
2308 /* The value of the element of array ARR at the ARITY indices given in IND.
2309 ARR may be either a simple array, GNAT array descriptor, or pointer
2310 thereto. */
2311
2312 struct value *
2313 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2314 {
2315 int k;
2316 struct value *elt;
2317 struct type *elt_type;
2318
2319 elt = ada_coerce_to_simple_array (arr);
2320
2321 elt_type = ada_check_typedef (value_type (elt));
2322 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2323 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2324 return value_subscript_packed (elt, arity, ind);
2325
2326 for (k = 0; k < arity; k += 1)
2327 {
2328 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2329 error (_("too many subscripts (%d expected)"), k);
2330 elt = value_subscript (elt, pos_atr (ind[k]));
2331 }
2332 return elt;
2333 }
2334
2335 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2336 value of the element of *ARR at the ARITY indices given in
2337 IND. Does not read the entire array into memory. */
2338
2339 static struct value *
2340 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2341 struct value **ind)
2342 {
2343 int k;
2344
2345 for (k = 0; k < arity; k += 1)
2346 {
2347 LONGEST lwb, upb;
2348
2349 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2350 error (_("too many subscripts (%d expected)"), k);
2351 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2352 value_copy (arr));
2353 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2354 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2355 type = TYPE_TARGET_TYPE (type);
2356 }
2357
2358 return value_ind (arr);
2359 }
2360
2361 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2362 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2363 elements starting at index LOW. The lower bound of this array is LOW, as
2364 per Ada rules. */
2365 static struct value *
2366 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2367 int low, int high)
2368 {
2369 CORE_ADDR base = value_as_address (array_ptr)
2370 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type)))
2371 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
2372 struct type *index_type =
2373 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
2374 low, high);
2375 struct type *slice_type =
2376 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2377 return value_at_lazy (slice_type, base);
2378 }
2379
2380
2381 static struct value *
2382 ada_value_slice (struct value *array, int low, int high)
2383 {
2384 struct type *type = value_type (array);
2385 struct type *index_type =
2386 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2387 struct type *slice_type =
2388 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2389 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2390 }
2391
2392 /* If type is a record type in the form of a standard GNAT array
2393 descriptor, returns the number of dimensions for type. If arr is a
2394 simple array, returns the number of "array of"s that prefix its
2395 type designation. Otherwise, returns 0. */
2396
2397 int
2398 ada_array_arity (struct type *type)
2399 {
2400 int arity;
2401
2402 if (type == NULL)
2403 return 0;
2404
2405 type = desc_base_type (type);
2406
2407 arity = 0;
2408 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2409 return desc_arity (desc_bounds_type (type));
2410 else
2411 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2412 {
2413 arity += 1;
2414 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2415 }
2416
2417 return arity;
2418 }
2419
2420 /* If TYPE is a record type in the form of a standard GNAT array
2421 descriptor or a simple array type, returns the element type for
2422 TYPE after indexing by NINDICES indices, or by all indices if
2423 NINDICES is -1. Otherwise, returns NULL. */
2424
2425 struct type *
2426 ada_array_element_type (struct type *type, int nindices)
2427 {
2428 type = desc_base_type (type);
2429
2430 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2431 {
2432 int k;
2433 struct type *p_array_type;
2434
2435 p_array_type = desc_data_target_type (type);
2436
2437 k = ada_array_arity (type);
2438 if (k == 0)
2439 return NULL;
2440
2441 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2442 if (nindices >= 0 && k > nindices)
2443 k = nindices;
2444 while (k > 0 && p_array_type != NULL)
2445 {
2446 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2447 k -= 1;
2448 }
2449 return p_array_type;
2450 }
2451 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2452 {
2453 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2454 {
2455 type = TYPE_TARGET_TYPE (type);
2456 nindices -= 1;
2457 }
2458 return type;
2459 }
2460
2461 return NULL;
2462 }
2463
2464 /* The type of nth index in arrays of given type (n numbering from 1).
2465 Does not examine memory. Throws an error if N is invalid or TYPE
2466 is not an array type. NAME is the name of the Ada attribute being
2467 evaluated ('range, 'first, 'last, or 'length); it is used in building
2468 the error message. */
2469
2470 static struct type *
2471 ada_index_type (struct type *type, int n, const char *name)
2472 {
2473 struct type *result_type;
2474
2475 type = desc_base_type (type);
2476
2477 if (n < 0 || n > ada_array_arity (type))
2478 error (_("invalid dimension number to '%s"), name);
2479
2480 if (ada_is_simple_array_type (type))
2481 {
2482 int i;
2483
2484 for (i = 1; i < n; i += 1)
2485 type = TYPE_TARGET_TYPE (type);
2486 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2487 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2488 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2489 perhaps stabsread.c would make more sense. */
2490 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2491 result_type = NULL;
2492 }
2493 else
2494 {
2495 result_type = desc_index_type (desc_bounds_type (type), n);
2496 if (result_type == NULL)
2497 error (_("attempt to take bound of something that is not an array"));
2498 }
2499
2500 return result_type;
2501 }
2502
2503 /* Given that arr is an array type, returns the lower bound of the
2504 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2505 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2506 array-descriptor type. It works for other arrays with bounds supplied
2507 by run-time quantities other than discriminants. */
2508
2509 static LONGEST
2510 ada_array_bound_from_type (struct type * arr_type, int n, int which)
2511 {
2512 struct type *type, *elt_type, *index_type_desc, *index_type;
2513 int i;
2514
2515 gdb_assert (which == 0 || which == 1);
2516
2517 if (ada_is_constrained_packed_array_type (arr_type))
2518 arr_type = decode_constrained_packed_array_type (arr_type);
2519
2520 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2521 return (LONGEST) - which;
2522
2523 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2524 type = TYPE_TARGET_TYPE (arr_type);
2525 else
2526 type = arr_type;
2527
2528 elt_type = type;
2529 for (i = n; i > 1; i--)
2530 elt_type = TYPE_TARGET_TYPE (type);
2531
2532 index_type_desc = ada_find_parallel_type (type, "___XA");
2533 if (index_type_desc != NULL)
2534 index_type = to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
2535 NULL, TYPE_INDEX_TYPE (elt_type));
2536 else
2537 index_type = TYPE_INDEX_TYPE (elt_type);
2538
2539 return
2540 (LONGEST) (which == 0
2541 ? ada_discrete_type_low_bound (index_type)
2542 : ada_discrete_type_high_bound (index_type));
2543 }
2544
2545 /* Given that arr is an array value, returns the lower bound of the
2546 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2547 WHICH is 1. This routine will also work for arrays with bounds
2548 supplied by run-time quantities other than discriminants. */
2549
2550 static LONGEST
2551 ada_array_bound (struct value *arr, int n, int which)
2552 {
2553 struct type *arr_type = value_type (arr);
2554
2555 if (ada_is_constrained_packed_array_type (arr_type))
2556 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2557 else if (ada_is_simple_array_type (arr_type))
2558 return ada_array_bound_from_type (arr_type, n, which);
2559 else
2560 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2561 }
2562
2563 /* Given that arr is an array value, returns the length of the
2564 nth index. This routine will also work for arrays with bounds
2565 supplied by run-time quantities other than discriminants.
2566 Does not work for arrays indexed by enumeration types with representation
2567 clauses at the moment. */
2568
2569 static LONGEST
2570 ada_array_length (struct value *arr, int n)
2571 {
2572 struct type *arr_type = ada_check_typedef (value_type (arr));
2573
2574 if (ada_is_constrained_packed_array_type (arr_type))
2575 return ada_array_length (decode_constrained_packed_array (arr), n);
2576
2577 if (ada_is_simple_array_type (arr_type))
2578 return (ada_array_bound_from_type (arr_type, n, 1)
2579 - ada_array_bound_from_type (arr_type, n, 0) + 1);
2580 else
2581 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2582 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2583 }
2584
2585 /* An empty array whose type is that of ARR_TYPE (an array type),
2586 with bounds LOW to LOW-1. */
2587
2588 static struct value *
2589 empty_array (struct type *arr_type, int low)
2590 {
2591 struct type *index_type =
2592 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2593 low, low - 1);
2594 struct type *elt_type = ada_array_element_type (arr_type, 1);
2595 return allocate_value (create_array_type (NULL, elt_type, index_type));
2596 }
2597 \f
2598
2599 /* Name resolution */
2600
2601 /* The "decoded" name for the user-definable Ada operator corresponding
2602 to OP. */
2603
2604 static const char *
2605 ada_decoded_op_name (enum exp_opcode op)
2606 {
2607 int i;
2608
2609 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2610 {
2611 if (ada_opname_table[i].op == op)
2612 return ada_opname_table[i].decoded;
2613 }
2614 error (_("Could not find operator name for opcode"));
2615 }
2616
2617
2618 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2619 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2620 undefined namespace) and converts operators that are
2621 user-defined into appropriate function calls. If CONTEXT_TYPE is
2622 non-null, it provides a preferred result type [at the moment, only
2623 type void has any effect---causing procedures to be preferred over
2624 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2625 return type is preferred. May change (expand) *EXP. */
2626
2627 static void
2628 resolve (struct expression **expp, int void_context_p)
2629 {
2630 struct type *context_type = NULL;
2631 int pc = 0;
2632
2633 if (void_context_p)
2634 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2635
2636 resolve_subexp (expp, &pc, 1, context_type);
2637 }
2638
2639 /* Resolve the operator of the subexpression beginning at
2640 position *POS of *EXPP. "Resolving" consists of replacing
2641 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2642 with their resolutions, replacing built-in operators with
2643 function calls to user-defined operators, where appropriate, and,
2644 when DEPROCEDURE_P is non-zero, converting function-valued variables
2645 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2646 are as in ada_resolve, above. */
2647
2648 static struct value *
2649 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2650 struct type *context_type)
2651 {
2652 int pc = *pos;
2653 int i;
2654 struct expression *exp; /* Convenience: == *expp. */
2655 enum exp_opcode op = (*expp)->elts[pc].opcode;
2656 struct value **argvec; /* Vector of operand types (alloca'ed). */
2657 int nargs; /* Number of operands. */
2658 int oplen;
2659
2660 argvec = NULL;
2661 nargs = 0;
2662 exp = *expp;
2663
2664 /* Pass one: resolve operands, saving their types and updating *pos,
2665 if needed. */
2666 switch (op)
2667 {
2668 case OP_FUNCALL:
2669 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2670 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2671 *pos += 7;
2672 else
2673 {
2674 *pos += 3;
2675 resolve_subexp (expp, pos, 0, NULL);
2676 }
2677 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2678 break;
2679
2680 case UNOP_ADDR:
2681 *pos += 1;
2682 resolve_subexp (expp, pos, 0, NULL);
2683 break;
2684
2685 case UNOP_QUAL:
2686 *pos += 3;
2687 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
2688 break;
2689
2690 case OP_ATR_MODULUS:
2691 case OP_ATR_SIZE:
2692 case OP_ATR_TAG:
2693 case OP_ATR_FIRST:
2694 case OP_ATR_LAST:
2695 case OP_ATR_LENGTH:
2696 case OP_ATR_POS:
2697 case OP_ATR_VAL:
2698 case OP_ATR_MIN:
2699 case OP_ATR_MAX:
2700 case TERNOP_IN_RANGE:
2701 case BINOP_IN_BOUNDS:
2702 case UNOP_IN_RANGE:
2703 case OP_AGGREGATE:
2704 case OP_OTHERS:
2705 case OP_CHOICES:
2706 case OP_POSITIONAL:
2707 case OP_DISCRETE_RANGE:
2708 case OP_NAME:
2709 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2710 *pos += oplen;
2711 break;
2712
2713 case BINOP_ASSIGN:
2714 {
2715 struct value *arg1;
2716
2717 *pos += 1;
2718 arg1 = resolve_subexp (expp, pos, 0, NULL);
2719 if (arg1 == NULL)
2720 resolve_subexp (expp, pos, 1, NULL);
2721 else
2722 resolve_subexp (expp, pos, 1, value_type (arg1));
2723 break;
2724 }
2725
2726 case UNOP_CAST:
2727 *pos += 3;
2728 nargs = 1;
2729 break;
2730
2731 case BINOP_ADD:
2732 case BINOP_SUB:
2733 case BINOP_MUL:
2734 case BINOP_DIV:
2735 case BINOP_REM:
2736 case BINOP_MOD:
2737 case BINOP_EXP:
2738 case BINOP_CONCAT:
2739 case BINOP_LOGICAL_AND:
2740 case BINOP_LOGICAL_OR:
2741 case BINOP_BITWISE_AND:
2742 case BINOP_BITWISE_IOR:
2743 case BINOP_BITWISE_XOR:
2744
2745 case BINOP_EQUAL:
2746 case BINOP_NOTEQUAL:
2747 case BINOP_LESS:
2748 case BINOP_GTR:
2749 case BINOP_LEQ:
2750 case BINOP_GEQ:
2751
2752 case BINOP_REPEAT:
2753 case BINOP_SUBSCRIPT:
2754 case BINOP_COMMA:
2755 *pos += 1;
2756 nargs = 2;
2757 break;
2758
2759 case UNOP_NEG:
2760 case UNOP_PLUS:
2761 case UNOP_LOGICAL_NOT:
2762 case UNOP_ABS:
2763 case UNOP_IND:
2764 *pos += 1;
2765 nargs = 1;
2766 break;
2767
2768 case OP_LONG:
2769 case OP_DOUBLE:
2770 case OP_VAR_VALUE:
2771 *pos += 4;
2772 break;
2773
2774 case OP_TYPE:
2775 case OP_BOOL:
2776 case OP_LAST:
2777 case OP_INTERNALVAR:
2778 *pos += 3;
2779 break;
2780
2781 case UNOP_MEMVAL:
2782 *pos += 3;
2783 nargs = 1;
2784 break;
2785
2786 case OP_REGISTER:
2787 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2788 break;
2789
2790 case STRUCTOP_STRUCT:
2791 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2792 nargs = 1;
2793 break;
2794
2795 case TERNOP_SLICE:
2796 *pos += 1;
2797 nargs = 3;
2798 break;
2799
2800 case OP_STRING:
2801 break;
2802
2803 default:
2804 error (_("Unexpected operator during name resolution"));
2805 }
2806
2807 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
2808 for (i = 0; i < nargs; i += 1)
2809 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2810 argvec[i] = NULL;
2811 exp = *expp;
2812
2813 /* Pass two: perform any resolution on principal operator. */
2814 switch (op)
2815 {
2816 default:
2817 break;
2818
2819 case OP_VAR_VALUE:
2820 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
2821 {
2822 struct ada_symbol_info *candidates;
2823 int n_candidates;
2824
2825 n_candidates =
2826 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2827 (exp->elts[pc + 2].symbol),
2828 exp->elts[pc + 1].block, VAR_DOMAIN,
2829 &candidates);
2830
2831 if (n_candidates > 1)
2832 {
2833 /* Types tend to get re-introduced locally, so if there
2834 are any local symbols that are not types, first filter
2835 out all types. */
2836 int j;
2837 for (j = 0; j < n_candidates; j += 1)
2838 switch (SYMBOL_CLASS (candidates[j].sym))
2839 {
2840 case LOC_REGISTER:
2841 case LOC_ARG:
2842 case LOC_REF_ARG:
2843 case LOC_REGPARM_ADDR:
2844 case LOC_LOCAL:
2845 case LOC_COMPUTED:
2846 goto FoundNonType;
2847 default:
2848 break;
2849 }
2850 FoundNonType:
2851 if (j < n_candidates)
2852 {
2853 j = 0;
2854 while (j < n_candidates)
2855 {
2856 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2857 {
2858 candidates[j] = candidates[n_candidates - 1];
2859 n_candidates -= 1;
2860 }
2861 else
2862 j += 1;
2863 }
2864 }
2865 }
2866
2867 if (n_candidates == 0)
2868 error (_("No definition found for %s"),
2869 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2870 else if (n_candidates == 1)
2871 i = 0;
2872 else if (deprocedure_p
2873 && !is_nonfunction (candidates, n_candidates))
2874 {
2875 i = ada_resolve_function
2876 (candidates, n_candidates, NULL, 0,
2877 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2878 context_type);
2879 if (i < 0)
2880 error (_("Could not find a match for %s"),
2881 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2882 }
2883 else
2884 {
2885 printf_filtered (_("Multiple matches for %s\n"),
2886 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2887 user_select_syms (candidates, n_candidates, 1);
2888 i = 0;
2889 }
2890
2891 exp->elts[pc + 1].block = candidates[i].block;
2892 exp->elts[pc + 2].symbol = candidates[i].sym;
2893 if (innermost_block == NULL
2894 || contained_in (candidates[i].block, innermost_block))
2895 innermost_block = candidates[i].block;
2896 }
2897
2898 if (deprocedure_p
2899 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2900 == TYPE_CODE_FUNC))
2901 {
2902 replace_operator_with_call (expp, pc, 0, 0,
2903 exp->elts[pc + 2].symbol,
2904 exp->elts[pc + 1].block);
2905 exp = *expp;
2906 }
2907 break;
2908
2909 case OP_FUNCALL:
2910 {
2911 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2912 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2913 {
2914 struct ada_symbol_info *candidates;
2915 int n_candidates;
2916
2917 n_candidates =
2918 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2919 (exp->elts[pc + 5].symbol),
2920 exp->elts[pc + 4].block, VAR_DOMAIN,
2921 &candidates);
2922 if (n_candidates == 1)
2923 i = 0;
2924 else
2925 {
2926 i = ada_resolve_function
2927 (candidates, n_candidates,
2928 argvec, nargs,
2929 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2930 context_type);
2931 if (i < 0)
2932 error (_("Could not find a match for %s"),
2933 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2934 }
2935
2936 exp->elts[pc + 4].block = candidates[i].block;
2937 exp->elts[pc + 5].symbol = candidates[i].sym;
2938 if (innermost_block == NULL
2939 || contained_in (candidates[i].block, innermost_block))
2940 innermost_block = candidates[i].block;
2941 }
2942 }
2943 break;
2944 case BINOP_ADD:
2945 case BINOP_SUB:
2946 case BINOP_MUL:
2947 case BINOP_DIV:
2948 case BINOP_REM:
2949 case BINOP_MOD:
2950 case BINOP_CONCAT:
2951 case BINOP_BITWISE_AND:
2952 case BINOP_BITWISE_IOR:
2953 case BINOP_BITWISE_XOR:
2954 case BINOP_EQUAL:
2955 case BINOP_NOTEQUAL:
2956 case BINOP_LESS:
2957 case BINOP_GTR:
2958 case BINOP_LEQ:
2959 case BINOP_GEQ:
2960 case BINOP_EXP:
2961 case UNOP_NEG:
2962 case UNOP_PLUS:
2963 case UNOP_LOGICAL_NOT:
2964 case UNOP_ABS:
2965 if (possible_user_operator_p (op, argvec))
2966 {
2967 struct ada_symbol_info *candidates;
2968 int n_candidates;
2969
2970 n_candidates =
2971 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
2972 (struct block *) NULL, VAR_DOMAIN,
2973 &candidates);
2974 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
2975 ada_decoded_op_name (op), NULL);
2976 if (i < 0)
2977 break;
2978
2979 replace_operator_with_call (expp, pc, nargs, 1,
2980 candidates[i].sym, candidates[i].block);
2981 exp = *expp;
2982 }
2983 break;
2984
2985 case OP_TYPE:
2986 case OP_REGISTER:
2987 return NULL;
2988 }
2989
2990 *pos = pc;
2991 return evaluate_subexp_type (exp, pos);
2992 }
2993
2994 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
2995 MAY_DEREF is non-zero, the formal may be a pointer and the actual
2996 a non-pointer. */
2997 /* The term "match" here is rather loose. The match is heuristic and
2998 liberal. */
2999
3000 static int
3001 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3002 {
3003 ftype = ada_check_typedef (ftype);
3004 atype = ada_check_typedef (atype);
3005
3006 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3007 ftype = TYPE_TARGET_TYPE (ftype);
3008 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3009 atype = TYPE_TARGET_TYPE (atype);
3010
3011 switch (TYPE_CODE (ftype))
3012 {
3013 default:
3014 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3015 case TYPE_CODE_PTR:
3016 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3017 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3018 TYPE_TARGET_TYPE (atype), 0);
3019 else
3020 return (may_deref
3021 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3022 case TYPE_CODE_INT:
3023 case TYPE_CODE_ENUM:
3024 case TYPE_CODE_RANGE:
3025 switch (TYPE_CODE (atype))
3026 {
3027 case TYPE_CODE_INT:
3028 case TYPE_CODE_ENUM:
3029 case TYPE_CODE_RANGE:
3030 return 1;
3031 default:
3032 return 0;
3033 }
3034
3035 case TYPE_CODE_ARRAY:
3036 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3037 || ada_is_array_descriptor_type (atype));
3038
3039 case TYPE_CODE_STRUCT:
3040 if (ada_is_array_descriptor_type (ftype))
3041 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3042 || ada_is_array_descriptor_type (atype));
3043 else
3044 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3045 && !ada_is_array_descriptor_type (atype));
3046
3047 case TYPE_CODE_UNION:
3048 case TYPE_CODE_FLT:
3049 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3050 }
3051 }
3052
3053 /* Return non-zero if the formals of FUNC "sufficiently match" the
3054 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3055 may also be an enumeral, in which case it is treated as a 0-
3056 argument function. */
3057
3058 static int
3059 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3060 {
3061 int i;
3062 struct type *func_type = SYMBOL_TYPE (func);
3063
3064 if (SYMBOL_CLASS (func) == LOC_CONST
3065 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3066 return (n_actuals == 0);
3067 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3068 return 0;
3069
3070 if (TYPE_NFIELDS (func_type) != n_actuals)
3071 return 0;
3072
3073 for (i = 0; i < n_actuals; i += 1)
3074 {
3075 if (actuals[i] == NULL)
3076 return 0;
3077 else
3078 {
3079 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
3080 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3081
3082 if (!ada_type_match (ftype, atype, 1))
3083 return 0;
3084 }
3085 }
3086 return 1;
3087 }
3088
3089 /* False iff function type FUNC_TYPE definitely does not produce a value
3090 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3091 FUNC_TYPE is not a valid function type with a non-null return type
3092 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3093
3094 static int
3095 return_match (struct type *func_type, struct type *context_type)
3096 {
3097 struct type *return_type;
3098
3099 if (func_type == NULL)
3100 return 1;
3101
3102 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3103 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3104 else
3105 return_type = base_type (func_type);
3106 if (return_type == NULL)
3107 return 1;
3108
3109 context_type = base_type (context_type);
3110
3111 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3112 return context_type == NULL || return_type == context_type;
3113 else if (context_type == NULL)
3114 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3115 else
3116 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3117 }
3118
3119
3120 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3121 function (if any) that matches the types of the NARGS arguments in
3122 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3123 that returns that type, then eliminate matches that don't. If
3124 CONTEXT_TYPE is void and there is at least one match that does not
3125 return void, eliminate all matches that do.
3126
3127 Asks the user if there is more than one match remaining. Returns -1
3128 if there is no such symbol or none is selected. NAME is used
3129 solely for messages. May re-arrange and modify SYMS in
3130 the process; the index returned is for the modified vector. */
3131
3132 static int
3133 ada_resolve_function (struct ada_symbol_info syms[],
3134 int nsyms, struct value **args, int nargs,
3135 const char *name, struct type *context_type)
3136 {
3137 int fallback;
3138 int k;
3139 int m; /* Number of hits */
3140
3141 m = 0;
3142 /* In the first pass of the loop, we only accept functions matching
3143 context_type. If none are found, we add a second pass of the loop
3144 where every function is accepted. */
3145 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3146 {
3147 for (k = 0; k < nsyms; k += 1)
3148 {
3149 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3150
3151 if (ada_args_match (syms[k].sym, args, nargs)
3152 && (fallback || return_match (type, context_type)))
3153 {
3154 syms[m] = syms[k];
3155 m += 1;
3156 }
3157 }
3158 }
3159
3160 if (m == 0)
3161 return -1;
3162 else if (m > 1)
3163 {
3164 printf_filtered (_("Multiple matches for %s\n"), name);
3165 user_select_syms (syms, m, 1);
3166 return 0;
3167 }
3168 return 0;
3169 }
3170
3171 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3172 in a listing of choices during disambiguation (see sort_choices, below).
3173 The idea is that overloadings of a subprogram name from the
3174 same package should sort in their source order. We settle for ordering
3175 such symbols by their trailing number (__N or $N). */
3176
3177 static int
3178 encoded_ordered_before (char *N0, char *N1)
3179 {
3180 if (N1 == NULL)
3181 return 0;
3182 else if (N0 == NULL)
3183 return 1;
3184 else
3185 {
3186 int k0, k1;
3187 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3188 ;
3189 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3190 ;
3191 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3192 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3193 {
3194 int n0, n1;
3195 n0 = k0;
3196 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3197 n0 -= 1;
3198 n1 = k1;
3199 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3200 n1 -= 1;
3201 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3202 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3203 }
3204 return (strcmp (N0, N1) < 0);
3205 }
3206 }
3207
3208 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3209 encoded names. */
3210
3211 static void
3212 sort_choices (struct ada_symbol_info syms[], int nsyms)
3213 {
3214 int i;
3215 for (i = 1; i < nsyms; i += 1)
3216 {
3217 struct ada_symbol_info sym = syms[i];
3218 int j;
3219
3220 for (j = i - 1; j >= 0; j -= 1)
3221 {
3222 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3223 SYMBOL_LINKAGE_NAME (sym.sym)))
3224 break;
3225 syms[j + 1] = syms[j];
3226 }
3227 syms[j + 1] = sym;
3228 }
3229 }
3230
3231 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3232 by asking the user (if necessary), returning the number selected,
3233 and setting the first elements of SYMS items. Error if no symbols
3234 selected. */
3235
3236 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3237 to be re-integrated one of these days. */
3238
3239 int
3240 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3241 {
3242 int i;
3243 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3244 int n_chosen;
3245 int first_choice = (max_results == 1) ? 1 : 2;
3246 const char *select_mode = multiple_symbols_select_mode ();
3247
3248 if (max_results < 1)
3249 error (_("Request to select 0 symbols!"));
3250 if (nsyms <= 1)
3251 return nsyms;
3252
3253 if (select_mode == multiple_symbols_cancel)
3254 error (_("\
3255 canceled because the command is ambiguous\n\
3256 See set/show multiple-symbol."));
3257
3258 /* If select_mode is "all", then return all possible symbols.
3259 Only do that if more than one symbol can be selected, of course.
3260 Otherwise, display the menu as usual. */
3261 if (select_mode == multiple_symbols_all && max_results > 1)
3262 return nsyms;
3263
3264 printf_unfiltered (_("[0] cancel\n"));
3265 if (max_results > 1)
3266 printf_unfiltered (_("[1] all\n"));
3267
3268 sort_choices (syms, nsyms);
3269
3270 for (i = 0; i < nsyms; i += 1)
3271 {
3272 if (syms[i].sym == NULL)
3273 continue;
3274
3275 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3276 {
3277 struct symtab_and_line sal =
3278 find_function_start_sal (syms[i].sym, 1);
3279 if (sal.symtab == NULL)
3280 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3281 i + first_choice,
3282 SYMBOL_PRINT_NAME (syms[i].sym),
3283 sal.line);
3284 else
3285 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3286 SYMBOL_PRINT_NAME (syms[i].sym),
3287 sal.symtab->filename, sal.line);
3288 continue;
3289 }
3290 else
3291 {
3292 int is_enumeral =
3293 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3294 && SYMBOL_TYPE (syms[i].sym) != NULL
3295 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3296 struct symtab *symtab = syms[i].sym->symtab;
3297
3298 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3299 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3300 i + first_choice,
3301 SYMBOL_PRINT_NAME (syms[i].sym),
3302 symtab->filename, SYMBOL_LINE (syms[i].sym));
3303 else if (is_enumeral
3304 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3305 {
3306 printf_unfiltered (("[%d] "), i + first_choice);
3307 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3308 gdb_stdout, -1, 0);
3309 printf_unfiltered (_("'(%s) (enumeral)\n"),
3310 SYMBOL_PRINT_NAME (syms[i].sym));
3311 }
3312 else if (symtab != NULL)
3313 printf_unfiltered (is_enumeral
3314 ? _("[%d] %s in %s (enumeral)\n")
3315 : _("[%d] %s at %s:?\n"),
3316 i + first_choice,
3317 SYMBOL_PRINT_NAME (syms[i].sym),
3318 symtab->filename);
3319 else
3320 printf_unfiltered (is_enumeral
3321 ? _("[%d] %s (enumeral)\n")
3322 : _("[%d] %s at ?\n"),
3323 i + first_choice,
3324 SYMBOL_PRINT_NAME (syms[i].sym));
3325 }
3326 }
3327
3328 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3329 "overload-choice");
3330
3331 for (i = 0; i < n_chosen; i += 1)
3332 syms[i] = syms[chosen[i]];
3333
3334 return n_chosen;
3335 }
3336
3337 /* Read and validate a set of numeric choices from the user in the
3338 range 0 .. N_CHOICES-1. Place the results in increasing
3339 order in CHOICES[0 .. N-1], and return N.
3340
3341 The user types choices as a sequence of numbers on one line
3342 separated by blanks, encoding them as follows:
3343
3344 + A choice of 0 means to cancel the selection, throwing an error.
3345 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3346 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3347
3348 The user is not allowed to choose more than MAX_RESULTS values.
3349
3350 ANNOTATION_SUFFIX, if present, is used to annotate the input
3351 prompts (for use with the -f switch). */
3352
3353 int
3354 get_selections (int *choices, int n_choices, int max_results,
3355 int is_all_choice, char *annotation_suffix)
3356 {
3357 char *args;
3358 char *prompt;
3359 int n_chosen;
3360 int first_choice = is_all_choice ? 2 : 1;
3361
3362 prompt = getenv ("PS2");
3363 if (prompt == NULL)
3364 prompt = "> ";
3365
3366 args = command_line_input (prompt, 0, annotation_suffix);
3367
3368 if (args == NULL)
3369 error_no_arg (_("one or more choice numbers"));
3370
3371 n_chosen = 0;
3372
3373 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3374 order, as given in args. Choices are validated. */
3375 while (1)
3376 {
3377 char *args2;
3378 int choice, j;
3379
3380 while (isspace (*args))
3381 args += 1;
3382 if (*args == '\0' && n_chosen == 0)
3383 error_no_arg (_("one or more choice numbers"));
3384 else if (*args == '\0')
3385 break;
3386
3387 choice = strtol (args, &args2, 10);
3388 if (args == args2 || choice < 0
3389 || choice > n_choices + first_choice - 1)
3390 error (_("Argument must be choice number"));
3391 args = args2;
3392
3393 if (choice == 0)
3394 error (_("cancelled"));
3395
3396 if (choice < first_choice)
3397 {
3398 n_chosen = n_choices;
3399 for (j = 0; j < n_choices; j += 1)
3400 choices[j] = j;
3401 break;
3402 }
3403 choice -= first_choice;
3404
3405 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3406 {
3407 }
3408
3409 if (j < 0 || choice != choices[j])
3410 {
3411 int k;
3412 for (k = n_chosen - 1; k > j; k -= 1)
3413 choices[k + 1] = choices[k];
3414 choices[j + 1] = choice;
3415 n_chosen += 1;
3416 }
3417 }
3418
3419 if (n_chosen > max_results)
3420 error (_("Select no more than %d of the above"), max_results);
3421
3422 return n_chosen;
3423 }
3424
3425 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3426 on the function identified by SYM and BLOCK, and taking NARGS
3427 arguments. Update *EXPP as needed to hold more space. */
3428
3429 static void
3430 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3431 int oplen, struct symbol *sym,
3432 struct block *block)
3433 {
3434 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3435 symbol, -oplen for operator being replaced). */
3436 struct expression *newexp = (struct expression *)
3437 xmalloc (sizeof (struct expression)
3438 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3439 struct expression *exp = *expp;
3440
3441 newexp->nelts = exp->nelts + 7 - oplen;
3442 newexp->language_defn = exp->language_defn;
3443 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3444 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3445 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3446
3447 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3448 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3449
3450 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3451 newexp->elts[pc + 4].block = block;
3452 newexp->elts[pc + 5].symbol = sym;
3453
3454 *expp = newexp;
3455 xfree (exp);
3456 }
3457
3458 /* Type-class predicates */
3459
3460 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3461 or FLOAT). */
3462
3463 static int
3464 numeric_type_p (struct type *type)
3465 {
3466 if (type == NULL)
3467 return 0;
3468 else
3469 {
3470 switch (TYPE_CODE (type))
3471 {
3472 case TYPE_CODE_INT:
3473 case TYPE_CODE_FLT:
3474 return 1;
3475 case TYPE_CODE_RANGE:
3476 return (type == TYPE_TARGET_TYPE (type)
3477 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3478 default:
3479 return 0;
3480 }
3481 }
3482 }
3483
3484 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3485
3486 static int
3487 integer_type_p (struct type *type)
3488 {
3489 if (type == NULL)
3490 return 0;
3491 else
3492 {
3493 switch (TYPE_CODE (type))
3494 {
3495 case TYPE_CODE_INT:
3496 return 1;
3497 case TYPE_CODE_RANGE:
3498 return (type == TYPE_TARGET_TYPE (type)
3499 || integer_type_p (TYPE_TARGET_TYPE (type)));
3500 default:
3501 return 0;
3502 }
3503 }
3504 }
3505
3506 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3507
3508 static int
3509 scalar_type_p (struct type *type)
3510 {
3511 if (type == NULL)
3512 return 0;
3513 else
3514 {
3515 switch (TYPE_CODE (type))
3516 {
3517 case TYPE_CODE_INT:
3518 case TYPE_CODE_RANGE:
3519 case TYPE_CODE_ENUM:
3520 case TYPE_CODE_FLT:
3521 return 1;
3522 default:
3523 return 0;
3524 }
3525 }
3526 }
3527
3528 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3529
3530 static int
3531 discrete_type_p (struct type *type)
3532 {
3533 if (type == NULL)
3534 return 0;
3535 else
3536 {
3537 switch (TYPE_CODE (type))
3538 {
3539 case TYPE_CODE_INT:
3540 case TYPE_CODE_RANGE:
3541 case TYPE_CODE_ENUM:
3542 case TYPE_CODE_BOOL:
3543 return 1;
3544 default:
3545 return 0;
3546 }
3547 }
3548 }
3549
3550 /* Returns non-zero if OP with operands in the vector ARGS could be
3551 a user-defined function. Errs on the side of pre-defined operators
3552 (i.e., result 0). */
3553
3554 static int
3555 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3556 {
3557 struct type *type0 =
3558 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3559 struct type *type1 =
3560 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3561
3562 if (type0 == NULL)
3563 return 0;
3564
3565 switch (op)
3566 {
3567 default:
3568 return 0;
3569
3570 case BINOP_ADD:
3571 case BINOP_SUB:
3572 case BINOP_MUL:
3573 case BINOP_DIV:
3574 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3575
3576 case BINOP_REM:
3577 case BINOP_MOD:
3578 case BINOP_BITWISE_AND:
3579 case BINOP_BITWISE_IOR:
3580 case BINOP_BITWISE_XOR:
3581 return (!(integer_type_p (type0) && integer_type_p (type1)));
3582
3583 case BINOP_EQUAL:
3584 case BINOP_NOTEQUAL:
3585 case BINOP_LESS:
3586 case BINOP_GTR:
3587 case BINOP_LEQ:
3588 case BINOP_GEQ:
3589 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3590
3591 case BINOP_CONCAT:
3592 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3593
3594 case BINOP_EXP:
3595 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3596
3597 case UNOP_NEG:
3598 case UNOP_PLUS:
3599 case UNOP_LOGICAL_NOT:
3600 case UNOP_ABS:
3601 return (!numeric_type_p (type0));
3602
3603 }
3604 }
3605 \f
3606 /* Renaming */
3607
3608 /* NOTES:
3609
3610 1. In the following, we assume that a renaming type's name may
3611 have an ___XD suffix. It would be nice if this went away at some
3612 point.
3613 2. We handle both the (old) purely type-based representation of
3614 renamings and the (new) variable-based encoding. At some point,
3615 it is devoutly to be hoped that the former goes away
3616 (FIXME: hilfinger-2007-07-09).
3617 3. Subprogram renamings are not implemented, although the XRS
3618 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3619
3620 /* If SYM encodes a renaming,
3621
3622 <renaming> renames <renamed entity>,
3623
3624 sets *LEN to the length of the renamed entity's name,
3625 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3626 the string describing the subcomponent selected from the renamed
3627 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3628 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3629 are undefined). Otherwise, returns a value indicating the category
3630 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3631 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3632 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3633 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3634 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3635 may be NULL, in which case they are not assigned.
3636
3637 [Currently, however, GCC does not generate subprogram renamings.] */
3638
3639 enum ada_renaming_category
3640 ada_parse_renaming (struct symbol *sym,
3641 const char **renamed_entity, int *len,
3642 const char **renaming_expr)
3643 {
3644 enum ada_renaming_category kind;
3645 const char *info;
3646 const char *suffix;
3647
3648 if (sym == NULL)
3649 return ADA_NOT_RENAMING;
3650 switch (SYMBOL_CLASS (sym))
3651 {
3652 default:
3653 return ADA_NOT_RENAMING;
3654 case LOC_TYPEDEF:
3655 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3656 renamed_entity, len, renaming_expr);
3657 case LOC_LOCAL:
3658 case LOC_STATIC:
3659 case LOC_COMPUTED:
3660 case LOC_OPTIMIZED_OUT:
3661 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3662 if (info == NULL)
3663 return ADA_NOT_RENAMING;
3664 switch (info[5])
3665 {
3666 case '_':
3667 kind = ADA_OBJECT_RENAMING;
3668 info += 6;
3669 break;
3670 case 'E':
3671 kind = ADA_EXCEPTION_RENAMING;
3672 info += 7;
3673 break;
3674 case 'P':
3675 kind = ADA_PACKAGE_RENAMING;
3676 info += 7;
3677 break;
3678 case 'S':
3679 kind = ADA_SUBPROGRAM_RENAMING;
3680 info += 7;
3681 break;
3682 default:
3683 return ADA_NOT_RENAMING;
3684 }
3685 }
3686
3687 if (renamed_entity != NULL)
3688 *renamed_entity = info;
3689 suffix = strstr (info, "___XE");
3690 if (suffix == NULL || suffix == info)
3691 return ADA_NOT_RENAMING;
3692 if (len != NULL)
3693 *len = strlen (info) - strlen (suffix);
3694 suffix += 5;
3695 if (renaming_expr != NULL)
3696 *renaming_expr = suffix;
3697 return kind;
3698 }
3699
3700 /* Assuming TYPE encodes a renaming according to the old encoding in
3701 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3702 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3703 ADA_NOT_RENAMING otherwise. */
3704 static enum ada_renaming_category
3705 parse_old_style_renaming (struct type *type,
3706 const char **renamed_entity, int *len,
3707 const char **renaming_expr)
3708 {
3709 enum ada_renaming_category kind;
3710 const char *name;
3711 const char *info;
3712 const char *suffix;
3713
3714 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3715 || TYPE_NFIELDS (type) != 1)
3716 return ADA_NOT_RENAMING;
3717
3718 name = type_name_no_tag (type);
3719 if (name == NULL)
3720 return ADA_NOT_RENAMING;
3721
3722 name = strstr (name, "___XR");
3723 if (name == NULL)
3724 return ADA_NOT_RENAMING;
3725 switch (name[5])
3726 {
3727 case '\0':
3728 case '_':
3729 kind = ADA_OBJECT_RENAMING;
3730 break;
3731 case 'E':
3732 kind = ADA_EXCEPTION_RENAMING;
3733 break;
3734 case 'P':
3735 kind = ADA_PACKAGE_RENAMING;
3736 break;
3737 case 'S':
3738 kind = ADA_SUBPROGRAM_RENAMING;
3739 break;
3740 default:
3741 return ADA_NOT_RENAMING;
3742 }
3743
3744 info = TYPE_FIELD_NAME (type, 0);
3745 if (info == NULL)
3746 return ADA_NOT_RENAMING;
3747 if (renamed_entity != NULL)
3748 *renamed_entity = info;
3749 suffix = strstr (info, "___XE");
3750 if (renaming_expr != NULL)
3751 *renaming_expr = suffix + 5;
3752 if (suffix == NULL || suffix == info)
3753 return ADA_NOT_RENAMING;
3754 if (len != NULL)
3755 *len = suffix - info;
3756 return kind;
3757 }
3758
3759 \f
3760
3761 /* Evaluation: Function Calls */
3762
3763 /* Return an lvalue containing the value VAL. This is the identity on
3764 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3765 on the stack, using and updating *SP as the stack pointer, and
3766 returning an lvalue whose value_address points to the copy. */
3767
3768 static struct value *
3769 ensure_lval (struct value *val, struct gdbarch *gdbarch, CORE_ADDR *sp)
3770 {
3771 if (! VALUE_LVAL (val))
3772 {
3773 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3774
3775 /* The following is taken from the structure-return code in
3776 call_function_by_hand. FIXME: Therefore, some refactoring seems
3777 indicated. */
3778 if (gdbarch_inner_than (gdbarch, 1, 2))
3779 {
3780 /* Stack grows downward. Align SP and value_address (val) after
3781 reserving sufficient space. */
3782 *sp -= len;
3783 if (gdbarch_frame_align_p (gdbarch))
3784 *sp = gdbarch_frame_align (gdbarch, *sp);
3785 set_value_address (val, *sp);
3786 }
3787 else
3788 {
3789 /* Stack grows upward. Align the frame, allocate space, and
3790 then again, re-align the frame. */
3791 if (gdbarch_frame_align_p (gdbarch))
3792 *sp = gdbarch_frame_align (gdbarch, *sp);
3793 set_value_address (val, *sp);
3794 *sp += len;
3795 if (gdbarch_frame_align_p (gdbarch))
3796 *sp = gdbarch_frame_align (gdbarch, *sp);
3797 }
3798 VALUE_LVAL (val) = lval_memory;
3799
3800 write_memory (value_address (val), value_contents_raw (val), len);
3801 }
3802
3803 return val;
3804 }
3805
3806 /* Return the value ACTUAL, converted to be an appropriate value for a
3807 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3808 allocating any necessary descriptors (fat pointers), or copies of
3809 values not residing in memory, updating it as needed. */
3810
3811 struct value *
3812 ada_convert_actual (struct value *actual, struct type *formal_type0,
3813 struct gdbarch *gdbarch, CORE_ADDR *sp)
3814 {
3815 struct type *actual_type = ada_check_typedef (value_type (actual));
3816 struct type *formal_type = ada_check_typedef (formal_type0);
3817 struct type *formal_target =
3818 TYPE_CODE (formal_type) == TYPE_CODE_PTR
3819 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
3820 struct type *actual_target =
3821 TYPE_CODE (actual_type) == TYPE_CODE_PTR
3822 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
3823
3824 if (ada_is_array_descriptor_type (formal_target)
3825 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3826 return make_array_descriptor (formal_type, actual, gdbarch, sp);
3827 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
3828 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
3829 {
3830 struct value *result;
3831 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
3832 && ada_is_array_descriptor_type (actual_target))
3833 result = desc_data (actual);
3834 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
3835 {
3836 if (VALUE_LVAL (actual) != lval_memory)
3837 {
3838 struct value *val;
3839 actual_type = ada_check_typedef (value_type (actual));
3840 val = allocate_value (actual_type);
3841 memcpy ((char *) value_contents_raw (val),
3842 (char *) value_contents (actual),
3843 TYPE_LENGTH (actual_type));
3844 actual = ensure_lval (val, gdbarch, sp);
3845 }
3846 result = value_addr (actual);
3847 }
3848 else
3849 return actual;
3850 return value_cast_pointers (formal_type, result);
3851 }
3852 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3853 return ada_value_ind (actual);
3854
3855 return actual;
3856 }
3857
3858 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
3859 type TYPE. This is usually an inefficient no-op except on some targets
3860 (such as AVR) where the representation of a pointer and an address
3861 differs. */
3862
3863 static CORE_ADDR
3864 value_pointer (struct value *value, struct type *type)
3865 {
3866 struct gdbarch *gdbarch = get_type_arch (type);
3867 unsigned len = TYPE_LENGTH (type);
3868 gdb_byte *buf = alloca (len);
3869 CORE_ADDR addr;
3870
3871 addr = value_address (value);
3872 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
3873 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
3874 return addr;
3875 }
3876
3877
3878 /* Push a descriptor of type TYPE for array value ARR on the stack at
3879 *SP, updating *SP to reflect the new descriptor. Return either
3880 an lvalue representing the new descriptor, or (if TYPE is a pointer-
3881 to-descriptor type rather than a descriptor type), a struct value *
3882 representing a pointer to this descriptor. */
3883
3884 static struct value *
3885 make_array_descriptor (struct type *type, struct value *arr,
3886 struct gdbarch *gdbarch, CORE_ADDR *sp)
3887 {
3888 struct type *bounds_type = desc_bounds_type (type);
3889 struct type *desc_type = desc_base_type (type);
3890 struct value *descriptor = allocate_value (desc_type);
3891 struct value *bounds = allocate_value (bounds_type);
3892 int i;
3893
3894 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
3895 {
3896 modify_general_field (value_type (bounds),
3897 value_contents_writeable (bounds),
3898 ada_array_bound (arr, i, 0),
3899 desc_bound_bitpos (bounds_type, i, 0),
3900 desc_bound_bitsize (bounds_type, i, 0));
3901 modify_general_field (value_type (bounds),
3902 value_contents_writeable (bounds),
3903 ada_array_bound (arr, i, 1),
3904 desc_bound_bitpos (bounds_type, i, 1),
3905 desc_bound_bitsize (bounds_type, i, 1));
3906 }
3907
3908 bounds = ensure_lval (bounds, gdbarch, sp);
3909
3910 modify_general_field (value_type (descriptor),
3911 value_contents_writeable (descriptor),
3912 value_pointer (ensure_lval (arr, gdbarch, sp),
3913 TYPE_FIELD_TYPE (desc_type, 0)),
3914 fat_pntr_data_bitpos (desc_type),
3915 fat_pntr_data_bitsize (desc_type));
3916
3917 modify_general_field (value_type (descriptor),
3918 value_contents_writeable (descriptor),
3919 value_pointer (bounds,
3920 TYPE_FIELD_TYPE (desc_type, 1)),
3921 fat_pntr_bounds_bitpos (desc_type),
3922 fat_pntr_bounds_bitsize (desc_type));
3923
3924 descriptor = ensure_lval (descriptor, gdbarch, sp);
3925
3926 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3927 return value_addr (descriptor);
3928 else
3929 return descriptor;
3930 }
3931 \f
3932 /* Dummy definitions for an experimental caching module that is not
3933 * used in the public sources. */
3934
3935 static int
3936 lookup_cached_symbol (const char *name, domain_enum namespace,
3937 struct symbol **sym, struct block **block)
3938 {
3939 return 0;
3940 }
3941
3942 static void
3943 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
3944 struct block *block)
3945 {
3946 }
3947 \f
3948 /* Symbol Lookup */
3949
3950 /* Return the result of a standard (literal, C-like) lookup of NAME in
3951 given DOMAIN, visible from lexical block BLOCK. */
3952
3953 static struct symbol *
3954 standard_lookup (const char *name, const struct block *block,
3955 domain_enum domain)
3956 {
3957 struct symbol *sym;
3958
3959 if (lookup_cached_symbol (name, domain, &sym, NULL))
3960 return sym;
3961 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
3962 cache_symbol (name, domain, sym, block_found);
3963 return sym;
3964 }
3965
3966
3967 /* Non-zero iff there is at least one non-function/non-enumeral symbol
3968 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
3969 since they contend in overloading in the same way. */
3970 static int
3971 is_nonfunction (struct ada_symbol_info syms[], int n)
3972 {
3973 int i;
3974
3975 for (i = 0; i < n; i += 1)
3976 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
3977 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
3978 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
3979 return 1;
3980
3981 return 0;
3982 }
3983
3984 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
3985 struct types. Otherwise, they may not. */
3986
3987 static int
3988 equiv_types (struct type *type0, struct type *type1)
3989 {
3990 if (type0 == type1)
3991 return 1;
3992 if (type0 == NULL || type1 == NULL
3993 || TYPE_CODE (type0) != TYPE_CODE (type1))
3994 return 0;
3995 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
3996 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
3997 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
3998 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
3999 return 1;
4000
4001 return 0;
4002 }
4003
4004 /* True iff SYM0 represents the same entity as SYM1, or one that is
4005 no more defined than that of SYM1. */
4006
4007 static int
4008 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4009 {
4010 if (sym0 == sym1)
4011 return 1;
4012 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4013 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4014 return 0;
4015
4016 switch (SYMBOL_CLASS (sym0))
4017 {
4018 case LOC_UNDEF:
4019 return 1;
4020 case LOC_TYPEDEF:
4021 {
4022 struct type *type0 = SYMBOL_TYPE (sym0);
4023 struct type *type1 = SYMBOL_TYPE (sym1);
4024 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4025 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4026 int len0 = strlen (name0);
4027 return
4028 TYPE_CODE (type0) == TYPE_CODE (type1)
4029 && (equiv_types (type0, type1)
4030 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4031 && strncmp (name1 + len0, "___XV", 5) == 0));
4032 }
4033 case LOC_CONST:
4034 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4035 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4036 default:
4037 return 0;
4038 }
4039 }
4040
4041 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4042 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4043
4044 static void
4045 add_defn_to_vec (struct obstack *obstackp,
4046 struct symbol *sym,
4047 struct block *block)
4048 {
4049 int i;
4050 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4051
4052 /* Do not try to complete stub types, as the debugger is probably
4053 already scanning all symbols matching a certain name at the
4054 time when this function is called. Trying to replace the stub
4055 type by its associated full type will cause us to restart a scan
4056 which may lead to an infinite recursion. Instead, the client
4057 collecting the matching symbols will end up collecting several
4058 matches, with at least one of them complete. It can then filter
4059 out the stub ones if needed. */
4060
4061 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4062 {
4063 if (lesseq_defined_than (sym, prevDefns[i].sym))
4064 return;
4065 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4066 {
4067 prevDefns[i].sym = sym;
4068 prevDefns[i].block = block;
4069 return;
4070 }
4071 }
4072
4073 {
4074 struct ada_symbol_info info;
4075
4076 info.sym = sym;
4077 info.block = block;
4078 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4079 }
4080 }
4081
4082 /* Number of ada_symbol_info structures currently collected in
4083 current vector in *OBSTACKP. */
4084
4085 static int
4086 num_defns_collected (struct obstack *obstackp)
4087 {
4088 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4089 }
4090
4091 /* Vector of ada_symbol_info structures currently collected in current
4092 vector in *OBSTACKP. If FINISH, close off the vector and return
4093 its final address. */
4094
4095 static struct ada_symbol_info *
4096 defns_collected (struct obstack *obstackp, int finish)
4097 {
4098 if (finish)
4099 return obstack_finish (obstackp);
4100 else
4101 return (struct ada_symbol_info *) obstack_base (obstackp);
4102 }
4103
4104 /* Return a minimal symbol matching NAME according to Ada decoding
4105 rules. Returns NULL if there is no such minimal symbol. Names
4106 prefixed with "standard__" are handled specially: "standard__" is
4107 first stripped off, and only static and global symbols are searched. */
4108
4109 struct minimal_symbol *
4110 ada_lookup_simple_minsym (const char *name)
4111 {
4112 struct objfile *objfile;
4113 struct minimal_symbol *msymbol;
4114 int wild_match;
4115
4116 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4117 {
4118 name += sizeof ("standard__") - 1;
4119 wild_match = 0;
4120 }
4121 else
4122 wild_match = (strstr (name, "__") == NULL);
4123
4124 ALL_MSYMBOLS (objfile, msymbol)
4125 {
4126 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4127 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4128 return msymbol;
4129 }
4130
4131 return NULL;
4132 }
4133
4134 /* For all subprograms that statically enclose the subprogram of the
4135 selected frame, add symbols matching identifier NAME in DOMAIN
4136 and their blocks to the list of data in OBSTACKP, as for
4137 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4138 wildcard prefix. */
4139
4140 static void
4141 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4142 const char *name, domain_enum namespace,
4143 int wild_match)
4144 {
4145 }
4146
4147 /* True if TYPE is definitely an artificial type supplied to a symbol
4148 for which no debugging information was given in the symbol file. */
4149
4150 static int
4151 is_nondebugging_type (struct type *type)
4152 {
4153 char *name = ada_type_name (type);
4154 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4155 }
4156
4157 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4158 duplicate other symbols in the list (The only case I know of where
4159 this happens is when object files containing stabs-in-ecoff are
4160 linked with files containing ordinary ecoff debugging symbols (or no
4161 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4162 Returns the number of items in the modified list. */
4163
4164 static int
4165 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4166 {
4167 int i, j;
4168
4169 i = 0;
4170 while (i < nsyms)
4171 {
4172 int remove = 0;
4173
4174 /* If two symbols have the same name and one of them is a stub type,
4175 the get rid of the stub. */
4176
4177 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4178 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4179 {
4180 for (j = 0; j < nsyms; j++)
4181 {
4182 if (j != i
4183 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4184 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4185 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4186 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4187 remove = 1;
4188 }
4189 }
4190
4191 /* Two symbols with the same name, same class and same address
4192 should be identical. */
4193
4194 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4195 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4196 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4197 {
4198 for (j = 0; j < nsyms; j += 1)
4199 {
4200 if (i != j
4201 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4202 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4203 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4204 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4205 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4206 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4207 remove = 1;
4208 }
4209 }
4210
4211 if (remove)
4212 {
4213 for (j = i + 1; j < nsyms; j += 1)
4214 syms[j - 1] = syms[j];
4215 nsyms -= 1;
4216 }
4217
4218 i += 1;
4219 }
4220 return nsyms;
4221 }
4222
4223 /* Given a type that corresponds to a renaming entity, use the type name
4224 to extract the scope (package name or function name, fully qualified,
4225 and following the GNAT encoding convention) where this renaming has been
4226 defined. The string returned needs to be deallocated after use. */
4227
4228 static char *
4229 xget_renaming_scope (struct type *renaming_type)
4230 {
4231 /* The renaming types adhere to the following convention:
4232 <scope>__<rename>___<XR extension>.
4233 So, to extract the scope, we search for the "___XR" extension,
4234 and then backtrack until we find the first "__". */
4235
4236 const char *name = type_name_no_tag (renaming_type);
4237 char *suffix = strstr (name, "___XR");
4238 char *last;
4239 int scope_len;
4240 char *scope;
4241
4242 /* Now, backtrack a bit until we find the first "__". Start looking
4243 at suffix - 3, as the <rename> part is at least one character long. */
4244
4245 for (last = suffix - 3; last > name; last--)
4246 if (last[0] == '_' && last[1] == '_')
4247 break;
4248
4249 /* Make a copy of scope and return it. */
4250
4251 scope_len = last - name;
4252 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4253
4254 strncpy (scope, name, scope_len);
4255 scope[scope_len] = '\0';
4256
4257 return scope;
4258 }
4259
4260 /* Return nonzero if NAME corresponds to a package name. */
4261
4262 static int
4263 is_package_name (const char *name)
4264 {
4265 /* Here, We take advantage of the fact that no symbols are generated
4266 for packages, while symbols are generated for each function.
4267 So the condition for NAME represent a package becomes equivalent
4268 to NAME not existing in our list of symbols. There is only one
4269 small complication with library-level functions (see below). */
4270
4271 char *fun_name;
4272
4273 /* If it is a function that has not been defined at library level,
4274 then we should be able to look it up in the symbols. */
4275 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4276 return 0;
4277
4278 /* Library-level function names start with "_ada_". See if function
4279 "_ada_" followed by NAME can be found. */
4280
4281 /* Do a quick check that NAME does not contain "__", since library-level
4282 functions names cannot contain "__" in them. */
4283 if (strstr (name, "__") != NULL)
4284 return 0;
4285
4286 fun_name = xstrprintf ("_ada_%s", name);
4287
4288 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4289 }
4290
4291 /* Return nonzero if SYM corresponds to a renaming entity that is
4292 not visible from FUNCTION_NAME. */
4293
4294 static int
4295 old_renaming_is_invisible (const struct symbol *sym, char *function_name)
4296 {
4297 char *scope;
4298
4299 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4300 return 0;
4301
4302 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4303
4304 make_cleanup (xfree, scope);
4305
4306 /* If the rename has been defined in a package, then it is visible. */
4307 if (is_package_name (scope))
4308 return 0;
4309
4310 /* Check that the rename is in the current function scope by checking
4311 that its name starts with SCOPE. */
4312
4313 /* If the function name starts with "_ada_", it means that it is
4314 a library-level function. Strip this prefix before doing the
4315 comparison, as the encoding for the renaming does not contain
4316 this prefix. */
4317 if (strncmp (function_name, "_ada_", 5) == 0)
4318 function_name += 5;
4319
4320 return (strncmp (function_name, scope, strlen (scope)) != 0);
4321 }
4322
4323 /* Remove entries from SYMS that corresponds to a renaming entity that
4324 is not visible from the function associated with CURRENT_BLOCK or
4325 that is superfluous due to the presence of more specific renaming
4326 information. Places surviving symbols in the initial entries of
4327 SYMS and returns the number of surviving symbols.
4328
4329 Rationale:
4330 First, in cases where an object renaming is implemented as a
4331 reference variable, GNAT may produce both the actual reference
4332 variable and the renaming encoding. In this case, we discard the
4333 latter.
4334
4335 Second, GNAT emits a type following a specified encoding for each renaming
4336 entity. Unfortunately, STABS currently does not support the definition
4337 of types that are local to a given lexical block, so all renamings types
4338 are emitted at library level. As a consequence, if an application
4339 contains two renaming entities using the same name, and a user tries to
4340 print the value of one of these entities, the result of the ada symbol
4341 lookup will also contain the wrong renaming type.
4342
4343 This function partially covers for this limitation by attempting to
4344 remove from the SYMS list renaming symbols that should be visible
4345 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4346 method with the current information available. The implementation
4347 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4348
4349 - When the user tries to print a rename in a function while there
4350 is another rename entity defined in a package: Normally, the
4351 rename in the function has precedence over the rename in the
4352 package, so the latter should be removed from the list. This is
4353 currently not the case.
4354
4355 - This function will incorrectly remove valid renames if
4356 the CURRENT_BLOCK corresponds to a function which symbol name
4357 has been changed by an "Export" pragma. As a consequence,
4358 the user will be unable to print such rename entities. */
4359
4360 static int
4361 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4362 int nsyms, const struct block *current_block)
4363 {
4364 struct symbol *current_function;
4365 char *current_function_name;
4366 int i;
4367 int is_new_style_renaming;
4368
4369 /* If there is both a renaming foo___XR... encoded as a variable and
4370 a simple variable foo in the same block, discard the latter.
4371 First, zero out such symbols, then compress. */
4372 is_new_style_renaming = 0;
4373 for (i = 0; i < nsyms; i += 1)
4374 {
4375 struct symbol *sym = syms[i].sym;
4376 struct block *block = syms[i].block;
4377 const char *name;
4378 const char *suffix;
4379
4380 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4381 continue;
4382 name = SYMBOL_LINKAGE_NAME (sym);
4383 suffix = strstr (name, "___XR");
4384
4385 if (suffix != NULL)
4386 {
4387 int name_len = suffix - name;
4388 int j;
4389 is_new_style_renaming = 1;
4390 for (j = 0; j < nsyms; j += 1)
4391 if (i != j && syms[j].sym != NULL
4392 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4393 name_len) == 0
4394 && block == syms[j].block)
4395 syms[j].sym = NULL;
4396 }
4397 }
4398 if (is_new_style_renaming)
4399 {
4400 int j, k;
4401
4402 for (j = k = 0; j < nsyms; j += 1)
4403 if (syms[j].sym != NULL)
4404 {
4405 syms[k] = syms[j];
4406 k += 1;
4407 }
4408 return k;
4409 }
4410
4411 /* Extract the function name associated to CURRENT_BLOCK.
4412 Abort if unable to do so. */
4413
4414 if (current_block == NULL)
4415 return nsyms;
4416
4417 current_function = block_linkage_function (current_block);
4418 if (current_function == NULL)
4419 return nsyms;
4420
4421 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4422 if (current_function_name == NULL)
4423 return nsyms;
4424
4425 /* Check each of the symbols, and remove it from the list if it is
4426 a type corresponding to a renaming that is out of the scope of
4427 the current block. */
4428
4429 i = 0;
4430 while (i < nsyms)
4431 {
4432 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4433 == ADA_OBJECT_RENAMING
4434 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4435 {
4436 int j;
4437 for (j = i + 1; j < nsyms; j += 1)
4438 syms[j - 1] = syms[j];
4439 nsyms -= 1;
4440 }
4441 else
4442 i += 1;
4443 }
4444
4445 return nsyms;
4446 }
4447
4448 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4449 whose name and domain match NAME and DOMAIN respectively.
4450 If no match was found, then extend the search to "enclosing"
4451 routines (in other words, if we're inside a nested function,
4452 search the symbols defined inside the enclosing functions).
4453
4454 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4455
4456 static void
4457 ada_add_local_symbols (struct obstack *obstackp, const char *name,
4458 struct block *block, domain_enum domain,
4459 int wild_match)
4460 {
4461 int block_depth = 0;
4462
4463 while (block != NULL)
4464 {
4465 block_depth += 1;
4466 ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4467
4468 /* If we found a non-function match, assume that's the one. */
4469 if (is_nonfunction (defns_collected (obstackp, 0),
4470 num_defns_collected (obstackp)))
4471 return;
4472
4473 block = BLOCK_SUPERBLOCK (block);
4474 }
4475
4476 /* If no luck so far, try to find NAME as a local symbol in some lexically
4477 enclosing subprogram. */
4478 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4479 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4480 }
4481
4482 /* An object of this type is used as the user_data argument when
4483 calling the map_ada_symtabs method. */
4484
4485 struct ada_psym_data
4486 {
4487 struct obstack *obstackp;
4488 const char *name;
4489 domain_enum domain;
4490 int global;
4491 int wild_match;
4492 };
4493
4494 /* Callback function for map_ada_symtabs. */
4495
4496 static void
4497 ada_add_psyms (struct objfile *objfile, struct symtab *s, void *user_data)
4498 {
4499 struct ada_psym_data *data = user_data;
4500 const int block_kind = data->global ? GLOBAL_BLOCK : STATIC_BLOCK;
4501 ada_add_block_symbols (data->obstackp,
4502 BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), block_kind),
4503 data->name, data->domain, objfile, data->wild_match);
4504 }
4505
4506 /* Add to OBSTACKP all non-local symbols whose name and domain match
4507 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
4508 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
4509
4510 static void
4511 ada_add_non_local_symbols (struct obstack *obstackp, const char *name,
4512 domain_enum domain, int global,
4513 int is_wild_match)
4514 {
4515 struct objfile *objfile;
4516 struct ada_psym_data data;
4517
4518 data.obstackp = obstackp;
4519 data.name = name;
4520 data.domain = domain;
4521 data.global = global;
4522 data.wild_match = is_wild_match;
4523
4524 ALL_OBJFILES (objfile)
4525 {
4526 if (objfile->sf)
4527 objfile->sf->qf->map_ada_symtabs (objfile, wild_match, is_name_suffix,
4528 ada_add_psyms, name,
4529 global, domain,
4530 is_wild_match, &data);
4531 }
4532 }
4533
4534 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4535 scope and in global scopes, returning the number of matches. Sets
4536 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4537 indicating the symbols found and the blocks and symbol tables (if
4538 any) in which they were found. This vector are transient---good only to
4539 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4540 symbol match within the nest of blocks whose innermost member is BLOCK0,
4541 is the one match returned (no other matches in that or
4542 enclosing blocks is returned). If there are any matches in or
4543 surrounding BLOCK0, then these alone are returned. Otherwise, the
4544 search extends to global and file-scope (static) symbol tables.
4545 Names prefixed with "standard__" are handled specially: "standard__"
4546 is first stripped off, and only static and global symbols are searched. */
4547
4548 int
4549 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4550 domain_enum namespace,
4551 struct ada_symbol_info **results)
4552 {
4553 struct symbol *sym;
4554 struct block *block;
4555 const char *name;
4556 int wild_match;
4557 int cacheIfUnique;
4558 int ndefns;
4559
4560 obstack_free (&symbol_list_obstack, NULL);
4561 obstack_init (&symbol_list_obstack);
4562
4563 cacheIfUnique = 0;
4564
4565 /* Search specified block and its superiors. */
4566
4567 wild_match = (strstr (name0, "__") == NULL);
4568 name = name0;
4569 block = (struct block *) block0; /* FIXME: No cast ought to be
4570 needed, but adding const will
4571 have a cascade effect. */
4572
4573 /* Special case: If the user specifies a symbol name inside package
4574 Standard, do a non-wild matching of the symbol name without
4575 the "standard__" prefix. This was primarily introduced in order
4576 to allow the user to specifically access the standard exceptions
4577 using, for instance, Standard.Constraint_Error when Constraint_Error
4578 is ambiguous (due to the user defining its own Constraint_Error
4579 entity inside its program). */
4580 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4581 {
4582 wild_match = 0;
4583 block = NULL;
4584 name = name0 + sizeof ("standard__") - 1;
4585 }
4586
4587 /* Check the non-global symbols. If we have ANY match, then we're done. */
4588
4589 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
4590 wild_match);
4591 if (num_defns_collected (&symbol_list_obstack) > 0)
4592 goto done;
4593
4594 /* No non-global symbols found. Check our cache to see if we have
4595 already performed this search before. If we have, then return
4596 the same result. */
4597
4598 cacheIfUnique = 1;
4599 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4600 {
4601 if (sym != NULL)
4602 add_defn_to_vec (&symbol_list_obstack, sym, block);
4603 goto done;
4604 }
4605
4606 /* Search symbols from all global blocks. */
4607
4608 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 1,
4609 wild_match);
4610
4611 /* Now add symbols from all per-file blocks if we've gotten no hits
4612 (not strictly correct, but perhaps better than an error). */
4613
4614 if (num_defns_collected (&symbol_list_obstack) == 0)
4615 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 0,
4616 wild_match);
4617
4618 done:
4619 ndefns = num_defns_collected (&symbol_list_obstack);
4620 *results = defns_collected (&symbol_list_obstack, 1);
4621
4622 ndefns = remove_extra_symbols (*results, ndefns);
4623
4624 if (ndefns == 0)
4625 cache_symbol (name0, namespace, NULL, NULL);
4626
4627 if (ndefns == 1 && cacheIfUnique)
4628 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
4629
4630 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
4631
4632 return ndefns;
4633 }
4634
4635 struct symbol *
4636 ada_lookup_encoded_symbol (const char *name, const struct block *block0,
4637 domain_enum namespace, struct block **block_found)
4638 {
4639 struct ada_symbol_info *candidates;
4640 int n_candidates;
4641
4642 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
4643
4644 if (n_candidates == 0)
4645 return NULL;
4646
4647 if (block_found != NULL)
4648 *block_found = candidates[0].block;
4649
4650 return fixup_symbol_section (candidates[0].sym, NULL);
4651 }
4652
4653 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4654 scope and in global scopes, or NULL if none. NAME is folded and
4655 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4656 choosing the first symbol if there are multiple choices.
4657 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4658 table in which the symbol was found (in both cases, these
4659 assignments occur only if the pointers are non-null). */
4660 struct symbol *
4661 ada_lookup_symbol (const char *name, const struct block *block0,
4662 domain_enum namespace, int *is_a_field_of_this)
4663 {
4664 if (is_a_field_of_this != NULL)
4665 *is_a_field_of_this = 0;
4666
4667 return
4668 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
4669 block0, namespace, NULL);
4670 }
4671
4672 static struct symbol *
4673 ada_lookup_symbol_nonlocal (const char *name,
4674 const struct block *block,
4675 const domain_enum domain)
4676 {
4677 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
4678 }
4679
4680
4681 /* True iff STR is a possible encoded suffix of a normal Ada name
4682 that is to be ignored for matching purposes. Suffixes of parallel
4683 names (e.g., XVE) are not included here. Currently, the possible suffixes
4684 are given by any of the regular expressions:
4685
4686 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
4687 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4688 _E[0-9]+[bs]$ [protected object entry suffixes]
4689 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4690
4691 Also, any leading "__[0-9]+" sequence is skipped before the suffix
4692 match is performed. This sequence is used to differentiate homonyms,
4693 is an optional part of a valid name suffix. */
4694
4695 static int
4696 is_name_suffix (const char *str)
4697 {
4698 int k;
4699 const char *matching;
4700 const int len = strlen (str);
4701
4702 /* Skip optional leading __[0-9]+. */
4703
4704 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4705 {
4706 str += 3;
4707 while (isdigit (str[0]))
4708 str += 1;
4709 }
4710
4711 /* [.$][0-9]+ */
4712
4713 if (str[0] == '.' || str[0] == '$')
4714 {
4715 matching = str + 1;
4716 while (isdigit (matching[0]))
4717 matching += 1;
4718 if (matching[0] == '\0')
4719 return 1;
4720 }
4721
4722 /* ___[0-9]+ */
4723
4724 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4725 {
4726 matching = str + 3;
4727 while (isdigit (matching[0]))
4728 matching += 1;
4729 if (matching[0] == '\0')
4730 return 1;
4731 }
4732
4733 #if 0
4734 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4735 with a N at the end. Unfortunately, the compiler uses the same
4736 convention for other internal types it creates. So treating
4737 all entity names that end with an "N" as a name suffix causes
4738 some regressions. For instance, consider the case of an enumerated
4739 type. To support the 'Image attribute, it creates an array whose
4740 name ends with N.
4741 Having a single character like this as a suffix carrying some
4742 information is a bit risky. Perhaps we should change the encoding
4743 to be something like "_N" instead. In the meantime, do not do
4744 the following check. */
4745 /* Protected Object Subprograms */
4746 if (len == 1 && str [0] == 'N')
4747 return 1;
4748 #endif
4749
4750 /* _E[0-9]+[bs]$ */
4751 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
4752 {
4753 matching = str + 3;
4754 while (isdigit (matching[0]))
4755 matching += 1;
4756 if ((matching[0] == 'b' || matching[0] == 's')
4757 && matching [1] == '\0')
4758 return 1;
4759 }
4760
4761 /* ??? We should not modify STR directly, as we are doing below. This
4762 is fine in this case, but may become problematic later if we find
4763 that this alternative did not work, and want to try matching
4764 another one from the begining of STR. Since we modified it, we
4765 won't be able to find the begining of the string anymore! */
4766 if (str[0] == 'X')
4767 {
4768 str += 1;
4769 while (str[0] != '_' && str[0] != '\0')
4770 {
4771 if (str[0] != 'n' && str[0] != 'b')
4772 return 0;
4773 str += 1;
4774 }
4775 }
4776
4777 if (str[0] == '\000')
4778 return 1;
4779
4780 if (str[0] == '_')
4781 {
4782 if (str[1] != '_' || str[2] == '\000')
4783 return 0;
4784 if (str[2] == '_')
4785 {
4786 if (strcmp (str + 3, "JM") == 0)
4787 return 1;
4788 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
4789 the LJM suffix in favor of the JM one. But we will
4790 still accept LJM as a valid suffix for a reasonable
4791 amount of time, just to allow ourselves to debug programs
4792 compiled using an older version of GNAT. */
4793 if (strcmp (str + 3, "LJM") == 0)
4794 return 1;
4795 if (str[3] != 'X')
4796 return 0;
4797 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
4798 || str[4] == 'U' || str[4] == 'P')
4799 return 1;
4800 if (str[4] == 'R' && str[5] != 'T')
4801 return 1;
4802 return 0;
4803 }
4804 if (!isdigit (str[2]))
4805 return 0;
4806 for (k = 3; str[k] != '\0'; k += 1)
4807 if (!isdigit (str[k]) && str[k] != '_')
4808 return 0;
4809 return 1;
4810 }
4811 if (str[0] == '$' && isdigit (str[1]))
4812 {
4813 for (k = 2; str[k] != '\0'; k += 1)
4814 if (!isdigit (str[k]) && str[k] != '_')
4815 return 0;
4816 return 1;
4817 }
4818 return 0;
4819 }
4820
4821 /* Return non-zero if the string starting at NAME and ending before
4822 NAME_END contains no capital letters. */
4823
4824 static int
4825 is_valid_name_for_wild_match (const char *name0)
4826 {
4827 const char *decoded_name = ada_decode (name0);
4828 int i;
4829
4830 /* If the decoded name starts with an angle bracket, it means that
4831 NAME0 does not follow the GNAT encoding format. It should then
4832 not be allowed as a possible wild match. */
4833 if (decoded_name[0] == '<')
4834 return 0;
4835
4836 for (i=0; decoded_name[i] != '\0'; i++)
4837 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
4838 return 0;
4839
4840 return 1;
4841 }
4842
4843 /* True if NAME represents a name of the form A1.A2....An, n>=1 and
4844 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
4845 informational suffixes of NAME (i.e., for which is_name_suffix is
4846 true). */
4847
4848 static int
4849 wild_match (const char *patn0, int patn_len, const char *name0)
4850 {
4851 char* match;
4852 const char* start;
4853 start = name0;
4854 while (1)
4855 {
4856 match = strstr (start, patn0);
4857 if (match == NULL)
4858 return 0;
4859 if ((match == name0
4860 || match[-1] == '.'
4861 || (match > name0 + 1 && match[-1] == '_' && match[-2] == '_')
4862 || (match == name0 + 5 && strncmp ("_ada_", name0, 5) == 0))
4863 && is_name_suffix (match + patn_len))
4864 return (match == name0 || is_valid_name_for_wild_match (name0));
4865 start = match + 1;
4866 }
4867 }
4868
4869 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
4870 vector *defn_symbols, updating the list of symbols in OBSTACKP
4871 (if necessary). If WILD, treat as NAME with a wildcard prefix.
4872 OBJFILE is the section containing BLOCK.
4873 SYMTAB is recorded with each symbol added. */
4874
4875 static void
4876 ada_add_block_symbols (struct obstack *obstackp,
4877 struct block *block, const char *name,
4878 domain_enum domain, struct objfile *objfile,
4879 int wild)
4880 {
4881 struct dict_iterator iter;
4882 int name_len = strlen (name);
4883 /* A matching argument symbol, if any. */
4884 struct symbol *arg_sym;
4885 /* Set true when we find a matching non-argument symbol. */
4886 int found_sym;
4887 struct symbol *sym;
4888
4889 arg_sym = NULL;
4890 found_sym = 0;
4891 if (wild)
4892 {
4893 struct symbol *sym;
4894 ALL_BLOCK_SYMBOLS (block, iter, sym)
4895 {
4896 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
4897 SYMBOL_DOMAIN (sym), domain)
4898 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
4899 {
4900 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4901 continue;
4902 else if (SYMBOL_IS_ARGUMENT (sym))
4903 arg_sym = sym;
4904 else
4905 {
4906 found_sym = 1;
4907 add_defn_to_vec (obstackp,
4908 fixup_symbol_section (sym, objfile),
4909 block);
4910 }
4911 }
4912 }
4913 }
4914 else
4915 {
4916 ALL_BLOCK_SYMBOLS (block, iter, sym)
4917 {
4918 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
4919 SYMBOL_DOMAIN (sym), domain))
4920 {
4921 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
4922 if (cmp == 0
4923 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
4924 {
4925 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
4926 {
4927 if (SYMBOL_IS_ARGUMENT (sym))
4928 arg_sym = sym;
4929 else
4930 {
4931 found_sym = 1;
4932 add_defn_to_vec (obstackp,
4933 fixup_symbol_section (sym, objfile),
4934 block);
4935 }
4936 }
4937 }
4938 }
4939 }
4940 }
4941
4942 if (!found_sym && arg_sym != NULL)
4943 {
4944 add_defn_to_vec (obstackp,
4945 fixup_symbol_section (arg_sym, objfile),
4946 block);
4947 }
4948
4949 if (!wild)
4950 {
4951 arg_sym = NULL;
4952 found_sym = 0;
4953
4954 ALL_BLOCK_SYMBOLS (block, iter, sym)
4955 {
4956 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
4957 SYMBOL_DOMAIN (sym), domain))
4958 {
4959 int cmp;
4960
4961 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
4962 if (cmp == 0)
4963 {
4964 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
4965 if (cmp == 0)
4966 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
4967 name_len);
4968 }
4969
4970 if (cmp == 0
4971 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
4972 {
4973 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
4974 {
4975 if (SYMBOL_IS_ARGUMENT (sym))
4976 arg_sym = sym;
4977 else
4978 {
4979 found_sym = 1;
4980 add_defn_to_vec (obstackp,
4981 fixup_symbol_section (sym, objfile),
4982 block);
4983 }
4984 }
4985 }
4986 }
4987 }
4988
4989 /* NOTE: This really shouldn't be needed for _ada_ symbols.
4990 They aren't parameters, right? */
4991 if (!found_sym && arg_sym != NULL)
4992 {
4993 add_defn_to_vec (obstackp,
4994 fixup_symbol_section (arg_sym, objfile),
4995 block);
4996 }
4997 }
4998 }
4999 \f
5000
5001 /* Symbol Completion */
5002
5003 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5004 name in a form that's appropriate for the completion. The result
5005 does not need to be deallocated, but is only good until the next call.
5006
5007 TEXT_LEN is equal to the length of TEXT.
5008 Perform a wild match if WILD_MATCH is set.
5009 ENCODED should be set if TEXT represents the start of a symbol name
5010 in its encoded form. */
5011
5012 static const char *
5013 symbol_completion_match (const char *sym_name,
5014 const char *text, int text_len,
5015 int wild_match, int encoded)
5016 {
5017 const int verbatim_match = (text[0] == '<');
5018 int match = 0;
5019
5020 if (verbatim_match)
5021 {
5022 /* Strip the leading angle bracket. */
5023 text = text + 1;
5024 text_len--;
5025 }
5026
5027 /* First, test against the fully qualified name of the symbol. */
5028
5029 if (strncmp (sym_name, text, text_len) == 0)
5030 match = 1;
5031
5032 if (match && !encoded)
5033 {
5034 /* One needed check before declaring a positive match is to verify
5035 that iff we are doing a verbatim match, the decoded version
5036 of the symbol name starts with '<'. Otherwise, this symbol name
5037 is not a suitable completion. */
5038 const char *sym_name_copy = sym_name;
5039 int has_angle_bracket;
5040
5041 sym_name = ada_decode (sym_name);
5042 has_angle_bracket = (sym_name[0] == '<');
5043 match = (has_angle_bracket == verbatim_match);
5044 sym_name = sym_name_copy;
5045 }
5046
5047 if (match && !verbatim_match)
5048 {
5049 /* When doing non-verbatim match, another check that needs to
5050 be done is to verify that the potentially matching symbol name
5051 does not include capital letters, because the ada-mode would
5052 not be able to understand these symbol names without the
5053 angle bracket notation. */
5054 const char *tmp;
5055
5056 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5057 if (*tmp != '\0')
5058 match = 0;
5059 }
5060
5061 /* Second: Try wild matching... */
5062
5063 if (!match && wild_match)
5064 {
5065 /* Since we are doing wild matching, this means that TEXT
5066 may represent an unqualified symbol name. We therefore must
5067 also compare TEXT against the unqualified name of the symbol. */
5068 sym_name = ada_unqualified_name (ada_decode (sym_name));
5069
5070 if (strncmp (sym_name, text, text_len) == 0)
5071 match = 1;
5072 }
5073
5074 /* Finally: If we found a mach, prepare the result to return. */
5075
5076 if (!match)
5077 return NULL;
5078
5079 if (verbatim_match)
5080 sym_name = add_angle_brackets (sym_name);
5081
5082 if (!encoded)
5083 sym_name = ada_decode (sym_name);
5084
5085 return sym_name;
5086 }
5087
5088 DEF_VEC_P (char_ptr);
5089
5090 /* A companion function to ada_make_symbol_completion_list().
5091 Check if SYM_NAME represents a symbol which name would be suitable
5092 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5093 it is appended at the end of the given string vector SV.
5094
5095 ORIG_TEXT is the string original string from the user command
5096 that needs to be completed. WORD is the entire command on which
5097 completion should be performed. These two parameters are used to
5098 determine which part of the symbol name should be added to the
5099 completion vector.
5100 if WILD_MATCH is set, then wild matching is performed.
5101 ENCODED should be set if TEXT represents a symbol name in its
5102 encoded formed (in which case the completion should also be
5103 encoded). */
5104
5105 static void
5106 symbol_completion_add (VEC(char_ptr) **sv,
5107 const char *sym_name,
5108 const char *text, int text_len,
5109 const char *orig_text, const char *word,
5110 int wild_match, int encoded)
5111 {
5112 const char *match = symbol_completion_match (sym_name, text, text_len,
5113 wild_match, encoded);
5114 char *completion;
5115
5116 if (match == NULL)
5117 return;
5118
5119 /* We found a match, so add the appropriate completion to the given
5120 string vector. */
5121
5122 if (word == orig_text)
5123 {
5124 completion = xmalloc (strlen (match) + 5);
5125 strcpy (completion, match);
5126 }
5127 else if (word > orig_text)
5128 {
5129 /* Return some portion of sym_name. */
5130 completion = xmalloc (strlen (match) + 5);
5131 strcpy (completion, match + (word - orig_text));
5132 }
5133 else
5134 {
5135 /* Return some of ORIG_TEXT plus sym_name. */
5136 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5137 strncpy (completion, word, orig_text - word);
5138 completion[orig_text - word] = '\0';
5139 strcat (completion, match);
5140 }
5141
5142 VEC_safe_push (char_ptr, *sv, completion);
5143 }
5144
5145 /* An object of this type is passed as the user_data argument to the
5146 map_partial_symbol_names method. */
5147 struct add_partial_datum
5148 {
5149 VEC(char_ptr) **completions;
5150 char *text;
5151 int text_len;
5152 char *text0;
5153 char *word;
5154 int wild_match;
5155 int encoded;
5156 };
5157
5158 /* A callback for map_partial_symbol_names. */
5159 static void
5160 ada_add_partial_symbol_completions (const char *name, void *user_data)
5161 {
5162 struct add_partial_datum *data = user_data;
5163 symbol_completion_add (data->completions, name,
5164 data->text, data->text_len, data->text0, data->word,
5165 data->wild_match, data->encoded);
5166 }
5167
5168 /* Return a list of possible symbol names completing TEXT0. The list
5169 is NULL terminated. WORD is the entire command on which completion
5170 is made. */
5171
5172 static char **
5173 ada_make_symbol_completion_list (char *text0, char *word)
5174 {
5175 char *text;
5176 int text_len;
5177 int wild_match;
5178 int encoded;
5179 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5180 struct symbol *sym;
5181 struct symtab *s;
5182 struct minimal_symbol *msymbol;
5183 struct objfile *objfile;
5184 struct block *b, *surrounding_static_block = 0;
5185 int i;
5186 struct dict_iterator iter;
5187
5188 if (text0[0] == '<')
5189 {
5190 text = xstrdup (text0);
5191 make_cleanup (xfree, text);
5192 text_len = strlen (text);
5193 wild_match = 0;
5194 encoded = 1;
5195 }
5196 else
5197 {
5198 text = xstrdup (ada_encode (text0));
5199 make_cleanup (xfree, text);
5200 text_len = strlen (text);
5201 for (i = 0; i < text_len; i++)
5202 text[i] = tolower (text[i]);
5203
5204 encoded = (strstr (text0, "__") != NULL);
5205 /* If the name contains a ".", then the user is entering a fully
5206 qualified entity name, and the match must not be done in wild
5207 mode. Similarly, if the user wants to complete what looks like
5208 an encoded name, the match must not be done in wild mode. */
5209 wild_match = (strchr (text0, '.') == NULL && !encoded);
5210 }
5211
5212 /* First, look at the partial symtab symbols. */
5213 {
5214 struct add_partial_datum data;
5215
5216 data.completions = &completions;
5217 data.text = text;
5218 data.text_len = text_len;
5219 data.text0 = text0;
5220 data.word = word;
5221 data.wild_match = wild_match;
5222 data.encoded = encoded;
5223 map_partial_symbol_names (ada_add_partial_symbol_completions, &data);
5224 }
5225
5226 /* At this point scan through the misc symbol vectors and add each
5227 symbol you find to the list. Eventually we want to ignore
5228 anything that isn't a text symbol (everything else will be
5229 handled by the psymtab code above). */
5230
5231 ALL_MSYMBOLS (objfile, msymbol)
5232 {
5233 QUIT;
5234 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5235 text, text_len, text0, word, wild_match, encoded);
5236 }
5237
5238 /* Search upwards from currently selected frame (so that we can
5239 complete on local vars. */
5240
5241 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5242 {
5243 if (!BLOCK_SUPERBLOCK (b))
5244 surrounding_static_block = b; /* For elmin of dups */
5245
5246 ALL_BLOCK_SYMBOLS (b, iter, sym)
5247 {
5248 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5249 text, text_len, text0, word,
5250 wild_match, encoded);
5251 }
5252 }
5253
5254 /* Go through the symtabs and check the externs and statics for
5255 symbols which match. */
5256
5257 ALL_SYMTABS (objfile, s)
5258 {
5259 QUIT;
5260 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5261 ALL_BLOCK_SYMBOLS (b, iter, sym)
5262 {
5263 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5264 text, text_len, text0, word,
5265 wild_match, encoded);
5266 }
5267 }
5268
5269 ALL_SYMTABS (objfile, s)
5270 {
5271 QUIT;
5272 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5273 /* Don't do this block twice. */
5274 if (b == surrounding_static_block)
5275 continue;
5276 ALL_BLOCK_SYMBOLS (b, iter, sym)
5277 {
5278 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5279 text, text_len, text0, word,
5280 wild_match, encoded);
5281 }
5282 }
5283
5284 /* Append the closing NULL entry. */
5285 VEC_safe_push (char_ptr, completions, NULL);
5286
5287 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5288 return the copy. It's unfortunate that we have to make a copy
5289 of an array that we're about to destroy, but there is nothing much
5290 we can do about it. Fortunately, it's typically not a very large
5291 array. */
5292 {
5293 const size_t completions_size =
5294 VEC_length (char_ptr, completions) * sizeof (char *);
5295 char **result = malloc (completions_size);
5296
5297 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5298
5299 VEC_free (char_ptr, completions);
5300 return result;
5301 }
5302 }
5303
5304 /* Field Access */
5305
5306 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5307 for tagged types. */
5308
5309 static int
5310 ada_is_dispatch_table_ptr_type (struct type *type)
5311 {
5312 char *name;
5313
5314 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5315 return 0;
5316
5317 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5318 if (name == NULL)
5319 return 0;
5320
5321 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5322 }
5323
5324 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5325 to be invisible to users. */
5326
5327 int
5328 ada_is_ignored_field (struct type *type, int field_num)
5329 {
5330 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5331 return 1;
5332
5333 /* Check the name of that field. */
5334 {
5335 const char *name = TYPE_FIELD_NAME (type, field_num);
5336
5337 /* Anonymous field names should not be printed.
5338 brobecker/2007-02-20: I don't think this can actually happen
5339 but we don't want to print the value of annonymous fields anyway. */
5340 if (name == NULL)
5341 return 1;
5342
5343 /* A field named "_parent" is internally generated by GNAT for
5344 tagged types, and should not be printed either. */
5345 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5346 return 1;
5347 }
5348
5349 /* If this is the dispatch table of a tagged type, then ignore. */
5350 if (ada_is_tagged_type (type, 1)
5351 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5352 return 1;
5353
5354 /* Not a special field, so it should not be ignored. */
5355 return 0;
5356 }
5357
5358 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5359 pointer or reference type whose ultimate target has a tag field. */
5360
5361 int
5362 ada_is_tagged_type (struct type *type, int refok)
5363 {
5364 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5365 }
5366
5367 /* True iff TYPE represents the type of X'Tag */
5368
5369 int
5370 ada_is_tag_type (struct type *type)
5371 {
5372 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5373 return 0;
5374 else
5375 {
5376 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5377 return (name != NULL
5378 && strcmp (name, "ada__tags__dispatch_table") == 0);
5379 }
5380 }
5381
5382 /* The type of the tag on VAL. */
5383
5384 struct type *
5385 ada_tag_type (struct value *val)
5386 {
5387 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5388 }
5389
5390 /* The value of the tag on VAL. */
5391
5392 struct value *
5393 ada_value_tag (struct value *val)
5394 {
5395 return ada_value_struct_elt (val, "_tag", 0);
5396 }
5397
5398 /* The value of the tag on the object of type TYPE whose contents are
5399 saved at VALADDR, if it is non-null, or is at memory address
5400 ADDRESS. */
5401
5402 static struct value *
5403 value_tag_from_contents_and_address (struct type *type,
5404 const gdb_byte *valaddr,
5405 CORE_ADDR address)
5406 {
5407 int tag_byte_offset;
5408 struct type *tag_type;
5409 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5410 NULL, NULL, NULL))
5411 {
5412 const gdb_byte *valaddr1 = ((valaddr == NULL)
5413 ? NULL
5414 : valaddr + tag_byte_offset);
5415 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5416
5417 return value_from_contents_and_address (tag_type, valaddr1, address1);
5418 }
5419 return NULL;
5420 }
5421
5422 static struct type *
5423 type_from_tag (struct value *tag)
5424 {
5425 const char *type_name = ada_tag_name (tag);
5426 if (type_name != NULL)
5427 return ada_find_any_type (ada_encode (type_name));
5428 return NULL;
5429 }
5430
5431 struct tag_args
5432 {
5433 struct value *tag;
5434 char *name;
5435 };
5436
5437
5438 static int ada_tag_name_1 (void *);
5439 static int ada_tag_name_2 (struct tag_args *);
5440
5441 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5442 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5443 The value stored in ARGS->name is valid until the next call to
5444 ada_tag_name_1. */
5445
5446 static int
5447 ada_tag_name_1 (void *args0)
5448 {
5449 struct tag_args *args = (struct tag_args *) args0;
5450 static char name[1024];
5451 char *p;
5452 struct value *val;
5453 args->name = NULL;
5454 val = ada_value_struct_elt (args->tag, "tsd", 1);
5455 if (val == NULL)
5456 return ada_tag_name_2 (args);
5457 val = ada_value_struct_elt (val, "expanded_name", 1);
5458 if (val == NULL)
5459 return 0;
5460 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5461 for (p = name; *p != '\0'; p += 1)
5462 if (isalpha (*p))
5463 *p = tolower (*p);
5464 args->name = name;
5465 return 0;
5466 }
5467
5468 /* Utility function for ada_tag_name_1 that tries the second
5469 representation for the dispatch table (in which there is no
5470 explicit 'tsd' field in the referent of the tag pointer, and instead
5471 the tsd pointer is stored just before the dispatch table. */
5472
5473 static int
5474 ada_tag_name_2 (struct tag_args *args)
5475 {
5476 struct type *info_type;
5477 static char name[1024];
5478 char *p;
5479 struct value *val, *valp;
5480
5481 args->name = NULL;
5482 info_type = ada_find_any_type ("ada__tags__type_specific_data");
5483 if (info_type == NULL)
5484 return 0;
5485 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5486 valp = value_cast (info_type, args->tag);
5487 if (valp == NULL)
5488 return 0;
5489 val = value_ind (value_ptradd (valp, -1));
5490 if (val == NULL)
5491 return 0;
5492 val = ada_value_struct_elt (val, "expanded_name", 1);
5493 if (val == NULL)
5494 return 0;
5495 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5496 for (p = name; *p != '\0'; p += 1)
5497 if (isalpha (*p))
5498 *p = tolower (*p);
5499 args->name = name;
5500 return 0;
5501 }
5502
5503 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5504 * a C string. */
5505
5506 const char *
5507 ada_tag_name (struct value *tag)
5508 {
5509 struct tag_args args;
5510 if (!ada_is_tag_type (value_type (tag)))
5511 return NULL;
5512 args.tag = tag;
5513 args.name = NULL;
5514 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5515 return args.name;
5516 }
5517
5518 /* The parent type of TYPE, or NULL if none. */
5519
5520 struct type *
5521 ada_parent_type (struct type *type)
5522 {
5523 int i;
5524
5525 type = ada_check_typedef (type);
5526
5527 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5528 return NULL;
5529
5530 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5531 if (ada_is_parent_field (type, i))
5532 {
5533 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
5534
5535 /* If the _parent field is a pointer, then dereference it. */
5536 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
5537 parent_type = TYPE_TARGET_TYPE (parent_type);
5538 /* If there is a parallel XVS type, get the actual base type. */
5539 parent_type = ada_get_base_type (parent_type);
5540
5541 return ada_check_typedef (parent_type);
5542 }
5543
5544 return NULL;
5545 }
5546
5547 /* True iff field number FIELD_NUM of structure type TYPE contains the
5548 parent-type (inherited) fields of a derived type. Assumes TYPE is
5549 a structure type with at least FIELD_NUM+1 fields. */
5550
5551 int
5552 ada_is_parent_field (struct type *type, int field_num)
5553 {
5554 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5555 return (name != NULL
5556 && (strncmp (name, "PARENT", 6) == 0
5557 || strncmp (name, "_parent", 7) == 0));
5558 }
5559
5560 /* True iff field number FIELD_NUM of structure type TYPE is a
5561 transparent wrapper field (which should be silently traversed when doing
5562 field selection and flattened when printing). Assumes TYPE is a
5563 structure type with at least FIELD_NUM+1 fields. Such fields are always
5564 structures. */
5565
5566 int
5567 ada_is_wrapper_field (struct type *type, int field_num)
5568 {
5569 const char *name = TYPE_FIELD_NAME (type, field_num);
5570 return (name != NULL
5571 && (strncmp (name, "PARENT", 6) == 0
5572 || strcmp (name, "REP") == 0
5573 || strncmp (name, "_parent", 7) == 0
5574 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5575 }
5576
5577 /* True iff field number FIELD_NUM of structure or union type TYPE
5578 is a variant wrapper. Assumes TYPE is a structure type with at least
5579 FIELD_NUM+1 fields. */
5580
5581 int
5582 ada_is_variant_part (struct type *type, int field_num)
5583 {
5584 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5585 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5586 || (is_dynamic_field (type, field_num)
5587 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5588 == TYPE_CODE_UNION)));
5589 }
5590
5591 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5592 whose discriminants are contained in the record type OUTER_TYPE,
5593 returns the type of the controlling discriminant for the variant.
5594 May return NULL if the type could not be found. */
5595
5596 struct type *
5597 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5598 {
5599 char *name = ada_variant_discrim_name (var_type);
5600 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
5601 }
5602
5603 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5604 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5605 represents a 'when others' clause; otherwise 0. */
5606
5607 int
5608 ada_is_others_clause (struct type *type, int field_num)
5609 {
5610 const char *name = TYPE_FIELD_NAME (type, field_num);
5611 return (name != NULL && name[0] == 'O');
5612 }
5613
5614 /* Assuming that TYPE0 is the type of the variant part of a record,
5615 returns the name of the discriminant controlling the variant.
5616 The value is valid until the next call to ada_variant_discrim_name. */
5617
5618 char *
5619 ada_variant_discrim_name (struct type *type0)
5620 {
5621 static char *result = NULL;
5622 static size_t result_len = 0;
5623 struct type *type;
5624 const char *name;
5625 const char *discrim_end;
5626 const char *discrim_start;
5627
5628 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5629 type = TYPE_TARGET_TYPE (type0);
5630 else
5631 type = type0;
5632
5633 name = ada_type_name (type);
5634
5635 if (name == NULL || name[0] == '\000')
5636 return "";
5637
5638 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5639 discrim_end -= 1)
5640 {
5641 if (strncmp (discrim_end, "___XVN", 6) == 0)
5642 break;
5643 }
5644 if (discrim_end == name)
5645 return "";
5646
5647 for (discrim_start = discrim_end; discrim_start != name + 3;
5648 discrim_start -= 1)
5649 {
5650 if (discrim_start == name + 1)
5651 return "";
5652 if ((discrim_start > name + 3
5653 && strncmp (discrim_start - 3, "___", 3) == 0)
5654 || discrim_start[-1] == '.')
5655 break;
5656 }
5657
5658 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5659 strncpy (result, discrim_start, discrim_end - discrim_start);
5660 result[discrim_end - discrim_start] = '\0';
5661 return result;
5662 }
5663
5664 /* Scan STR for a subtype-encoded number, beginning at position K.
5665 Put the position of the character just past the number scanned in
5666 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5667 Return 1 if there was a valid number at the given position, and 0
5668 otherwise. A "subtype-encoded" number consists of the absolute value
5669 in decimal, followed by the letter 'm' to indicate a negative number.
5670 Assumes 0m does not occur. */
5671
5672 int
5673 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
5674 {
5675 ULONGEST RU;
5676
5677 if (!isdigit (str[k]))
5678 return 0;
5679
5680 /* Do it the hard way so as not to make any assumption about
5681 the relationship of unsigned long (%lu scan format code) and
5682 LONGEST. */
5683 RU = 0;
5684 while (isdigit (str[k]))
5685 {
5686 RU = RU * 10 + (str[k] - '0');
5687 k += 1;
5688 }
5689
5690 if (str[k] == 'm')
5691 {
5692 if (R != NULL)
5693 *R = (-(LONGEST) (RU - 1)) - 1;
5694 k += 1;
5695 }
5696 else if (R != NULL)
5697 *R = (LONGEST) RU;
5698
5699 /* NOTE on the above: Technically, C does not say what the results of
5700 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5701 number representable as a LONGEST (although either would probably work
5702 in most implementations). When RU>0, the locution in the then branch
5703 above is always equivalent to the negative of RU. */
5704
5705 if (new_k != NULL)
5706 *new_k = k;
5707 return 1;
5708 }
5709
5710 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
5711 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
5712 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
5713
5714 int
5715 ada_in_variant (LONGEST val, struct type *type, int field_num)
5716 {
5717 const char *name = TYPE_FIELD_NAME (type, field_num);
5718 int p;
5719
5720 p = 0;
5721 while (1)
5722 {
5723 switch (name[p])
5724 {
5725 case '\0':
5726 return 0;
5727 case 'S':
5728 {
5729 LONGEST W;
5730 if (!ada_scan_number (name, p + 1, &W, &p))
5731 return 0;
5732 if (val == W)
5733 return 1;
5734 break;
5735 }
5736 case 'R':
5737 {
5738 LONGEST L, U;
5739 if (!ada_scan_number (name, p + 1, &L, &p)
5740 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
5741 return 0;
5742 if (val >= L && val <= U)
5743 return 1;
5744 break;
5745 }
5746 case 'O':
5747 return 1;
5748 default:
5749 return 0;
5750 }
5751 }
5752 }
5753
5754 /* FIXME: Lots of redundancy below. Try to consolidate. */
5755
5756 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
5757 ARG_TYPE, extract and return the value of one of its (non-static)
5758 fields. FIELDNO says which field. Differs from value_primitive_field
5759 only in that it can handle packed values of arbitrary type. */
5760
5761 static struct value *
5762 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
5763 struct type *arg_type)
5764 {
5765 struct type *type;
5766
5767 arg_type = ada_check_typedef (arg_type);
5768 type = TYPE_FIELD_TYPE (arg_type, fieldno);
5769
5770 /* Handle packed fields. */
5771
5772 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
5773 {
5774 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
5775 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
5776
5777 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
5778 offset + bit_pos / 8,
5779 bit_pos % 8, bit_size, type);
5780 }
5781 else
5782 return value_primitive_field (arg1, offset, fieldno, arg_type);
5783 }
5784
5785 /* Find field with name NAME in object of type TYPE. If found,
5786 set the following for each argument that is non-null:
5787 - *FIELD_TYPE_P to the field's type;
5788 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
5789 an object of that type;
5790 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
5791 - *BIT_SIZE_P to its size in bits if the field is packed, and
5792 0 otherwise;
5793 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
5794 fields up to but not including the desired field, or by the total
5795 number of fields if not found. A NULL value of NAME never
5796 matches; the function just counts visible fields in this case.
5797
5798 Returns 1 if found, 0 otherwise. */
5799
5800 static int
5801 find_struct_field (char *name, struct type *type, int offset,
5802 struct type **field_type_p,
5803 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
5804 int *index_p)
5805 {
5806 int i;
5807
5808 type = ada_check_typedef (type);
5809
5810 if (field_type_p != NULL)
5811 *field_type_p = NULL;
5812 if (byte_offset_p != NULL)
5813 *byte_offset_p = 0;
5814 if (bit_offset_p != NULL)
5815 *bit_offset_p = 0;
5816 if (bit_size_p != NULL)
5817 *bit_size_p = 0;
5818
5819 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5820 {
5821 int bit_pos = TYPE_FIELD_BITPOS (type, i);
5822 int fld_offset = offset + bit_pos / 8;
5823 char *t_field_name = TYPE_FIELD_NAME (type, i);
5824
5825 if (t_field_name == NULL)
5826 continue;
5827
5828 else if (name != NULL && field_name_match (t_field_name, name))
5829 {
5830 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5831 if (field_type_p != NULL)
5832 *field_type_p = TYPE_FIELD_TYPE (type, i);
5833 if (byte_offset_p != NULL)
5834 *byte_offset_p = fld_offset;
5835 if (bit_offset_p != NULL)
5836 *bit_offset_p = bit_pos % 8;
5837 if (bit_size_p != NULL)
5838 *bit_size_p = bit_size;
5839 return 1;
5840 }
5841 else if (ada_is_wrapper_field (type, i))
5842 {
5843 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
5844 field_type_p, byte_offset_p, bit_offset_p,
5845 bit_size_p, index_p))
5846 return 1;
5847 }
5848 else if (ada_is_variant_part (type, i))
5849 {
5850 /* PNH: Wait. Do we ever execute this section, or is ARG always of
5851 fixed type?? */
5852 int j;
5853 struct type *field_type
5854 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5855
5856 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5857 {
5858 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
5859 fld_offset
5860 + TYPE_FIELD_BITPOS (field_type, j) / 8,
5861 field_type_p, byte_offset_p,
5862 bit_offset_p, bit_size_p, index_p))
5863 return 1;
5864 }
5865 }
5866 else if (index_p != NULL)
5867 *index_p += 1;
5868 }
5869 return 0;
5870 }
5871
5872 /* Number of user-visible fields in record type TYPE. */
5873
5874 static int
5875 num_visible_fields (struct type *type)
5876 {
5877 int n;
5878 n = 0;
5879 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
5880 return n;
5881 }
5882
5883 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
5884 and search in it assuming it has (class) type TYPE.
5885 If found, return value, else return NULL.
5886
5887 Searches recursively through wrapper fields (e.g., '_parent'). */
5888
5889 static struct value *
5890 ada_search_struct_field (char *name, struct value *arg, int offset,
5891 struct type *type)
5892 {
5893 int i;
5894 type = ada_check_typedef (type);
5895
5896 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5897 {
5898 char *t_field_name = TYPE_FIELD_NAME (type, i);
5899
5900 if (t_field_name == NULL)
5901 continue;
5902
5903 else if (field_name_match (t_field_name, name))
5904 return ada_value_primitive_field (arg, offset, i, type);
5905
5906 else if (ada_is_wrapper_field (type, i))
5907 {
5908 struct value *v = /* Do not let indent join lines here. */
5909 ada_search_struct_field (name, arg,
5910 offset + TYPE_FIELD_BITPOS (type, i) / 8,
5911 TYPE_FIELD_TYPE (type, i));
5912 if (v != NULL)
5913 return v;
5914 }
5915
5916 else if (ada_is_variant_part (type, i))
5917 {
5918 /* PNH: Do we ever get here? See find_struct_field. */
5919 int j;
5920 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5921 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
5922
5923 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5924 {
5925 struct value *v = ada_search_struct_field /* Force line break. */
5926 (name, arg,
5927 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
5928 TYPE_FIELD_TYPE (field_type, j));
5929 if (v != NULL)
5930 return v;
5931 }
5932 }
5933 }
5934 return NULL;
5935 }
5936
5937 static struct value *ada_index_struct_field_1 (int *, struct value *,
5938 int, struct type *);
5939
5940
5941 /* Return field #INDEX in ARG, where the index is that returned by
5942 * find_struct_field through its INDEX_P argument. Adjust the address
5943 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
5944 * If found, return value, else return NULL. */
5945
5946 static struct value *
5947 ada_index_struct_field (int index, struct value *arg, int offset,
5948 struct type *type)
5949 {
5950 return ada_index_struct_field_1 (&index, arg, offset, type);
5951 }
5952
5953
5954 /* Auxiliary function for ada_index_struct_field. Like
5955 * ada_index_struct_field, but takes index from *INDEX_P and modifies
5956 * *INDEX_P. */
5957
5958 static struct value *
5959 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
5960 struct type *type)
5961 {
5962 int i;
5963 type = ada_check_typedef (type);
5964
5965 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5966 {
5967 if (TYPE_FIELD_NAME (type, i) == NULL)
5968 continue;
5969 else if (ada_is_wrapper_field (type, i))
5970 {
5971 struct value *v = /* Do not let indent join lines here. */
5972 ada_index_struct_field_1 (index_p, arg,
5973 offset + TYPE_FIELD_BITPOS (type, i) / 8,
5974 TYPE_FIELD_TYPE (type, i));
5975 if (v != NULL)
5976 return v;
5977 }
5978
5979 else if (ada_is_variant_part (type, i))
5980 {
5981 /* PNH: Do we ever get here? See ada_search_struct_field,
5982 find_struct_field. */
5983 error (_("Cannot assign this kind of variant record"));
5984 }
5985 else if (*index_p == 0)
5986 return ada_value_primitive_field (arg, offset, i, type);
5987 else
5988 *index_p -= 1;
5989 }
5990 return NULL;
5991 }
5992
5993 /* Given ARG, a value of type (pointer or reference to a)*
5994 structure/union, extract the component named NAME from the ultimate
5995 target structure/union and return it as a value with its
5996 appropriate type.
5997
5998 The routine searches for NAME among all members of the structure itself
5999 and (recursively) among all members of any wrapper members
6000 (e.g., '_parent').
6001
6002 If NO_ERR, then simply return NULL in case of error, rather than
6003 calling error. */
6004
6005 struct value *
6006 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6007 {
6008 struct type *t, *t1;
6009 struct value *v;
6010
6011 v = NULL;
6012 t1 = t = ada_check_typedef (value_type (arg));
6013 if (TYPE_CODE (t) == TYPE_CODE_REF)
6014 {
6015 t1 = TYPE_TARGET_TYPE (t);
6016 if (t1 == NULL)
6017 goto BadValue;
6018 t1 = ada_check_typedef (t1);
6019 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6020 {
6021 arg = coerce_ref (arg);
6022 t = t1;
6023 }
6024 }
6025
6026 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6027 {
6028 t1 = TYPE_TARGET_TYPE (t);
6029 if (t1 == NULL)
6030 goto BadValue;
6031 t1 = ada_check_typedef (t1);
6032 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6033 {
6034 arg = value_ind (arg);
6035 t = t1;
6036 }
6037 else
6038 break;
6039 }
6040
6041 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6042 goto BadValue;
6043
6044 if (t1 == t)
6045 v = ada_search_struct_field (name, arg, 0, t);
6046 else
6047 {
6048 int bit_offset, bit_size, byte_offset;
6049 struct type *field_type;
6050 CORE_ADDR address;
6051
6052 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6053 address = value_as_address (arg);
6054 else
6055 address = unpack_pointer (t, value_contents (arg));
6056
6057 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6058 if (find_struct_field (name, t1, 0,
6059 &field_type, &byte_offset, &bit_offset,
6060 &bit_size, NULL))
6061 {
6062 if (bit_size != 0)
6063 {
6064 if (TYPE_CODE (t) == TYPE_CODE_REF)
6065 arg = ada_coerce_ref (arg);
6066 else
6067 arg = ada_value_ind (arg);
6068 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6069 bit_offset, bit_size,
6070 field_type);
6071 }
6072 else
6073 v = value_at_lazy (field_type, address + byte_offset);
6074 }
6075 }
6076
6077 if (v != NULL || no_err)
6078 return v;
6079 else
6080 error (_("There is no member named %s."), name);
6081
6082 BadValue:
6083 if (no_err)
6084 return NULL;
6085 else
6086 error (_("Attempt to extract a component of a value that is not a record."));
6087 }
6088
6089 /* Given a type TYPE, look up the type of the component of type named NAME.
6090 If DISPP is non-null, add its byte displacement from the beginning of a
6091 structure (pointed to by a value) of type TYPE to *DISPP (does not
6092 work for packed fields).
6093
6094 Matches any field whose name has NAME as a prefix, possibly
6095 followed by "___".
6096
6097 TYPE can be either a struct or union. If REFOK, TYPE may also
6098 be a (pointer or reference)+ to a struct or union, and the
6099 ultimate target type will be searched.
6100
6101 Looks recursively into variant clauses and parent types.
6102
6103 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6104 TYPE is not a type of the right kind. */
6105
6106 static struct type *
6107 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6108 int noerr, int *dispp)
6109 {
6110 int i;
6111
6112 if (name == NULL)
6113 goto BadName;
6114
6115 if (refok && type != NULL)
6116 while (1)
6117 {
6118 type = ada_check_typedef (type);
6119 if (TYPE_CODE (type) != TYPE_CODE_PTR
6120 && TYPE_CODE (type) != TYPE_CODE_REF)
6121 break;
6122 type = TYPE_TARGET_TYPE (type);
6123 }
6124
6125 if (type == NULL
6126 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6127 && TYPE_CODE (type) != TYPE_CODE_UNION))
6128 {
6129 if (noerr)
6130 return NULL;
6131 else
6132 {
6133 target_terminal_ours ();
6134 gdb_flush (gdb_stdout);
6135 if (type == NULL)
6136 error (_("Type (null) is not a structure or union type"));
6137 else
6138 {
6139 /* XXX: type_sprint */
6140 fprintf_unfiltered (gdb_stderr, _("Type "));
6141 type_print (type, "", gdb_stderr, -1);
6142 error (_(" is not a structure or union type"));
6143 }
6144 }
6145 }
6146
6147 type = to_static_fixed_type (type);
6148
6149 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6150 {
6151 char *t_field_name = TYPE_FIELD_NAME (type, i);
6152 struct type *t;
6153 int disp;
6154
6155 if (t_field_name == NULL)
6156 continue;
6157
6158 else if (field_name_match (t_field_name, name))
6159 {
6160 if (dispp != NULL)
6161 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6162 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6163 }
6164
6165 else if (ada_is_wrapper_field (type, i))
6166 {
6167 disp = 0;
6168 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6169 0, 1, &disp);
6170 if (t != NULL)
6171 {
6172 if (dispp != NULL)
6173 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6174 return t;
6175 }
6176 }
6177
6178 else if (ada_is_variant_part (type, i))
6179 {
6180 int j;
6181 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6182
6183 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6184 {
6185 /* FIXME pnh 2008/01/26: We check for a field that is
6186 NOT wrapped in a struct, since the compiler sometimes
6187 generates these for unchecked variant types. Revisit
6188 if the compiler changes this practice. */
6189 char *v_field_name = TYPE_FIELD_NAME (field_type, j);
6190 disp = 0;
6191 if (v_field_name != NULL
6192 && field_name_match (v_field_name, name))
6193 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6194 else
6195 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
6196 name, 0, 1, &disp);
6197
6198 if (t != NULL)
6199 {
6200 if (dispp != NULL)
6201 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6202 return t;
6203 }
6204 }
6205 }
6206
6207 }
6208
6209 BadName:
6210 if (!noerr)
6211 {
6212 target_terminal_ours ();
6213 gdb_flush (gdb_stdout);
6214 if (name == NULL)
6215 {
6216 /* XXX: type_sprint */
6217 fprintf_unfiltered (gdb_stderr, _("Type "));
6218 type_print (type, "", gdb_stderr, -1);
6219 error (_(" has no component named <null>"));
6220 }
6221 else
6222 {
6223 /* XXX: type_sprint */
6224 fprintf_unfiltered (gdb_stderr, _("Type "));
6225 type_print (type, "", gdb_stderr, -1);
6226 error (_(" has no component named %s"), name);
6227 }
6228 }
6229
6230 return NULL;
6231 }
6232
6233 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6234 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6235 represents an unchecked union (that is, the variant part of a
6236 record that is named in an Unchecked_Union pragma). */
6237
6238 static int
6239 is_unchecked_variant (struct type *var_type, struct type *outer_type)
6240 {
6241 char *discrim_name = ada_variant_discrim_name (var_type);
6242 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6243 == NULL);
6244 }
6245
6246
6247 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6248 within a value of type OUTER_TYPE that is stored in GDB at
6249 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6250 numbering from 0) is applicable. Returns -1 if none are. */
6251
6252 int
6253 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6254 const gdb_byte *outer_valaddr)
6255 {
6256 int others_clause;
6257 int i;
6258 char *discrim_name = ada_variant_discrim_name (var_type);
6259 struct value *outer;
6260 struct value *discrim;
6261 LONGEST discrim_val;
6262
6263 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6264 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6265 if (discrim == NULL)
6266 return -1;
6267 discrim_val = value_as_long (discrim);
6268
6269 others_clause = -1;
6270 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6271 {
6272 if (ada_is_others_clause (var_type, i))
6273 others_clause = i;
6274 else if (ada_in_variant (discrim_val, var_type, i))
6275 return i;
6276 }
6277
6278 return others_clause;
6279 }
6280 \f
6281
6282
6283 /* Dynamic-Sized Records */
6284
6285 /* Strategy: The type ostensibly attached to a value with dynamic size
6286 (i.e., a size that is not statically recorded in the debugging
6287 data) does not accurately reflect the size or layout of the value.
6288 Our strategy is to convert these values to values with accurate,
6289 conventional types that are constructed on the fly. */
6290
6291 /* There is a subtle and tricky problem here. In general, we cannot
6292 determine the size of dynamic records without its data. However,
6293 the 'struct value' data structure, which GDB uses to represent
6294 quantities in the inferior process (the target), requires the size
6295 of the type at the time of its allocation in order to reserve space
6296 for GDB's internal copy of the data. That's why the
6297 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6298 rather than struct value*s.
6299
6300 However, GDB's internal history variables ($1, $2, etc.) are
6301 struct value*s containing internal copies of the data that are not, in
6302 general, the same as the data at their corresponding addresses in
6303 the target. Fortunately, the types we give to these values are all
6304 conventional, fixed-size types (as per the strategy described
6305 above), so that we don't usually have to perform the
6306 'to_fixed_xxx_type' conversions to look at their values.
6307 Unfortunately, there is one exception: if one of the internal
6308 history variables is an array whose elements are unconstrained
6309 records, then we will need to create distinct fixed types for each
6310 element selected. */
6311
6312 /* The upshot of all of this is that many routines take a (type, host
6313 address, target address) triple as arguments to represent a value.
6314 The host address, if non-null, is supposed to contain an internal
6315 copy of the relevant data; otherwise, the program is to consult the
6316 target at the target address. */
6317
6318 /* Assuming that VAL0 represents a pointer value, the result of
6319 dereferencing it. Differs from value_ind in its treatment of
6320 dynamic-sized types. */
6321
6322 struct value *
6323 ada_value_ind (struct value *val0)
6324 {
6325 struct value *val = unwrap_value (value_ind (val0));
6326 return ada_to_fixed_value (val);
6327 }
6328
6329 /* The value resulting from dereferencing any "reference to"
6330 qualifiers on VAL0. */
6331
6332 static struct value *
6333 ada_coerce_ref (struct value *val0)
6334 {
6335 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6336 {
6337 struct value *val = val0;
6338 val = coerce_ref (val);
6339 val = unwrap_value (val);
6340 return ada_to_fixed_value (val);
6341 }
6342 else
6343 return val0;
6344 }
6345
6346 /* Return OFF rounded upward if necessary to a multiple of
6347 ALIGNMENT (a power of 2). */
6348
6349 static unsigned int
6350 align_value (unsigned int off, unsigned int alignment)
6351 {
6352 return (off + alignment - 1) & ~(alignment - 1);
6353 }
6354
6355 /* Return the bit alignment required for field #F of template type TYPE. */
6356
6357 static unsigned int
6358 field_alignment (struct type *type, int f)
6359 {
6360 const char *name = TYPE_FIELD_NAME (type, f);
6361 int len;
6362 int align_offset;
6363
6364 /* The field name should never be null, unless the debugging information
6365 is somehow malformed. In this case, we assume the field does not
6366 require any alignment. */
6367 if (name == NULL)
6368 return 1;
6369
6370 len = strlen (name);
6371
6372 if (!isdigit (name[len - 1]))
6373 return 1;
6374
6375 if (isdigit (name[len - 2]))
6376 align_offset = len - 2;
6377 else
6378 align_offset = len - 1;
6379
6380 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6381 return TARGET_CHAR_BIT;
6382
6383 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6384 }
6385
6386 /* Find a symbol named NAME. Ignores ambiguity. */
6387
6388 struct symbol *
6389 ada_find_any_symbol (const char *name)
6390 {
6391 struct symbol *sym;
6392
6393 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6394 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6395 return sym;
6396
6397 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6398 return sym;
6399 }
6400
6401 /* Find a type named NAME. Ignores ambiguity. This routine will look
6402 solely for types defined by debug info, it will not search the GDB
6403 primitive types. */
6404
6405 struct type *
6406 ada_find_any_type (const char *name)
6407 {
6408 struct symbol *sym = ada_find_any_symbol (name);
6409
6410 if (sym != NULL)
6411 return SYMBOL_TYPE (sym);
6412
6413 return NULL;
6414 }
6415
6416 /* Given NAME and an associated BLOCK, search all symbols for
6417 NAME suffixed with "___XR", which is the ``renaming'' symbol
6418 associated to NAME. Return this symbol if found, return
6419 NULL otherwise. */
6420
6421 struct symbol *
6422 ada_find_renaming_symbol (const char *name, struct block *block)
6423 {
6424 struct symbol *sym;
6425
6426 sym = find_old_style_renaming_symbol (name, block);
6427
6428 if (sym != NULL)
6429 return sym;
6430
6431 /* Not right yet. FIXME pnh 7/20/2007. */
6432 sym = ada_find_any_symbol (name);
6433 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6434 return sym;
6435 else
6436 return NULL;
6437 }
6438
6439 static struct symbol *
6440 find_old_style_renaming_symbol (const char *name, struct block *block)
6441 {
6442 const struct symbol *function_sym = block_linkage_function (block);
6443 char *rename;
6444
6445 if (function_sym != NULL)
6446 {
6447 /* If the symbol is defined inside a function, NAME is not fully
6448 qualified. This means we need to prepend the function name
6449 as well as adding the ``___XR'' suffix to build the name of
6450 the associated renaming symbol. */
6451 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
6452 /* Function names sometimes contain suffixes used
6453 for instance to qualify nested subprograms. When building
6454 the XR type name, we need to make sure that this suffix is
6455 not included. So do not include any suffix in the function
6456 name length below. */
6457 int function_name_len = ada_name_prefix_len (function_name);
6458 const int rename_len = function_name_len + 2 /* "__" */
6459 + strlen (name) + 6 /* "___XR\0" */ ;
6460
6461 /* Strip the suffix if necessary. */
6462 ada_remove_trailing_digits (function_name, &function_name_len);
6463 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
6464 ada_remove_Xbn_suffix (function_name, &function_name_len);
6465
6466 /* Library-level functions are a special case, as GNAT adds
6467 a ``_ada_'' prefix to the function name to avoid namespace
6468 pollution. However, the renaming symbols themselves do not
6469 have this prefix, so we need to skip this prefix if present. */
6470 if (function_name_len > 5 /* "_ada_" */
6471 && strstr (function_name, "_ada_") == function_name)
6472 {
6473 function_name += 5;
6474 function_name_len -= 5;
6475 }
6476
6477 rename = (char *) alloca (rename_len * sizeof (char));
6478 strncpy (rename, function_name, function_name_len);
6479 xsnprintf (rename + function_name_len, rename_len - function_name_len,
6480 "__%s___XR", name);
6481 }
6482 else
6483 {
6484 const int rename_len = strlen (name) + 6;
6485 rename = (char *) alloca (rename_len * sizeof (char));
6486 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
6487 }
6488
6489 return ada_find_any_symbol (rename);
6490 }
6491
6492 /* Because of GNAT encoding conventions, several GDB symbols may match a
6493 given type name. If the type denoted by TYPE0 is to be preferred to
6494 that of TYPE1 for purposes of type printing, return non-zero;
6495 otherwise return 0. */
6496
6497 int
6498 ada_prefer_type (struct type *type0, struct type *type1)
6499 {
6500 if (type1 == NULL)
6501 return 1;
6502 else if (type0 == NULL)
6503 return 0;
6504 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6505 return 1;
6506 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6507 return 0;
6508 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6509 return 1;
6510 else if (ada_is_constrained_packed_array_type (type0))
6511 return 1;
6512 else if (ada_is_array_descriptor_type (type0)
6513 && !ada_is_array_descriptor_type (type1))
6514 return 1;
6515 else
6516 {
6517 const char *type0_name = type_name_no_tag (type0);
6518 const char *type1_name = type_name_no_tag (type1);
6519
6520 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6521 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6522 return 1;
6523 }
6524 return 0;
6525 }
6526
6527 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
6528 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6529
6530 char *
6531 ada_type_name (struct type *type)
6532 {
6533 if (type == NULL)
6534 return NULL;
6535 else if (TYPE_NAME (type) != NULL)
6536 return TYPE_NAME (type);
6537 else
6538 return TYPE_TAG_NAME (type);
6539 }
6540
6541 /* Search the list of "descriptive" types associated to TYPE for a type
6542 whose name is NAME. */
6543
6544 static struct type *
6545 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
6546 {
6547 struct type *result;
6548
6549 /* If there no descriptive-type info, then there is no parallel type
6550 to be found. */
6551 if (!HAVE_GNAT_AUX_INFO (type))
6552 return NULL;
6553
6554 result = TYPE_DESCRIPTIVE_TYPE (type);
6555 while (result != NULL)
6556 {
6557 char *result_name = ada_type_name (result);
6558
6559 if (result_name == NULL)
6560 {
6561 warning (_("unexpected null name on descriptive type"));
6562 return NULL;
6563 }
6564
6565 /* If the names match, stop. */
6566 if (strcmp (result_name, name) == 0)
6567 break;
6568
6569 /* Otherwise, look at the next item on the list, if any. */
6570 if (HAVE_GNAT_AUX_INFO (result))
6571 result = TYPE_DESCRIPTIVE_TYPE (result);
6572 else
6573 result = NULL;
6574 }
6575
6576 /* If we didn't find a match, see whether this is a packed array. With
6577 older compilers, the descriptive type information is either absent or
6578 irrelevant when it comes to packed arrays so the above lookup fails.
6579 Fall back to using a parallel lookup by name in this case. */
6580 if (result == NULL && ada_is_constrained_packed_array_type (type))
6581 return ada_find_any_type (name);
6582
6583 return result;
6584 }
6585
6586 /* Find a parallel type to TYPE with the specified NAME, using the
6587 descriptive type taken from the debugging information, if available,
6588 and otherwise using the (slower) name-based method. */
6589
6590 static struct type *
6591 ada_find_parallel_type_with_name (struct type *type, const char *name)
6592 {
6593 struct type *result = NULL;
6594
6595 if (HAVE_GNAT_AUX_INFO (type))
6596 result = find_parallel_type_by_descriptive_type (type, name);
6597 else
6598 result = ada_find_any_type (name);
6599
6600 return result;
6601 }
6602
6603 /* Same as above, but specify the name of the parallel type by appending
6604 SUFFIX to the name of TYPE. */
6605
6606 struct type *
6607 ada_find_parallel_type (struct type *type, const char *suffix)
6608 {
6609 char *name, *typename = ada_type_name (type);
6610 int len;
6611
6612 if (typename == NULL)
6613 return NULL;
6614
6615 len = strlen (typename);
6616
6617 name = (char *) alloca (len + strlen (suffix) + 1);
6618
6619 strcpy (name, typename);
6620 strcpy (name + len, suffix);
6621
6622 return ada_find_parallel_type_with_name (type, name);
6623 }
6624
6625 /* If TYPE is a variable-size record type, return the corresponding template
6626 type describing its fields. Otherwise, return NULL. */
6627
6628 static struct type *
6629 dynamic_template_type (struct type *type)
6630 {
6631 type = ada_check_typedef (type);
6632
6633 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
6634 || ada_type_name (type) == NULL)
6635 return NULL;
6636 else
6637 {
6638 int len = strlen (ada_type_name (type));
6639 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6640 return type;
6641 else
6642 return ada_find_parallel_type (type, "___XVE");
6643 }
6644 }
6645
6646 /* Assuming that TEMPL_TYPE is a union or struct type, returns
6647 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
6648
6649 static int
6650 is_dynamic_field (struct type *templ_type, int field_num)
6651 {
6652 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
6653 return name != NULL
6654 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6655 && strstr (name, "___XVL") != NULL;
6656 }
6657
6658 /* The index of the variant field of TYPE, or -1 if TYPE does not
6659 represent a variant record type. */
6660
6661 static int
6662 variant_field_index (struct type *type)
6663 {
6664 int f;
6665
6666 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6667 return -1;
6668
6669 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6670 {
6671 if (ada_is_variant_part (type, f))
6672 return f;
6673 }
6674 return -1;
6675 }
6676
6677 /* A record type with no fields. */
6678
6679 static struct type *
6680 empty_record (struct type *template)
6681 {
6682 struct type *type = alloc_type_copy (template);
6683 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6684 TYPE_NFIELDS (type) = 0;
6685 TYPE_FIELDS (type) = NULL;
6686 INIT_CPLUS_SPECIFIC (type);
6687 TYPE_NAME (type) = "<empty>";
6688 TYPE_TAG_NAME (type) = NULL;
6689 TYPE_LENGTH (type) = 0;
6690 return type;
6691 }
6692
6693 /* An ordinary record type (with fixed-length fields) that describes
6694 the value of type TYPE at VALADDR or ADDRESS (see comments at
6695 the beginning of this section) VAL according to GNAT conventions.
6696 DVAL0 should describe the (portion of a) record that contains any
6697 necessary discriminants. It should be NULL if value_type (VAL) is
6698 an outer-level type (i.e., as opposed to a branch of a variant.) A
6699 variant field (unless unchecked) is replaced by a particular branch
6700 of the variant.
6701
6702 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6703 length are not statically known are discarded. As a consequence,
6704 VALADDR, ADDRESS and DVAL0 are ignored.
6705
6706 NOTE: Limitations: For now, we assume that dynamic fields and
6707 variants occupy whole numbers of bytes. However, they need not be
6708 byte-aligned. */
6709
6710 struct type *
6711 ada_template_to_fixed_record_type_1 (struct type *type,
6712 const gdb_byte *valaddr,
6713 CORE_ADDR address, struct value *dval0,
6714 int keep_dynamic_fields)
6715 {
6716 struct value *mark = value_mark ();
6717 struct value *dval;
6718 struct type *rtype;
6719 int nfields, bit_len;
6720 int variant_field;
6721 long off;
6722 int fld_bit_len, bit_incr;
6723 int f;
6724
6725 /* Compute the number of fields in this record type that are going
6726 to be processed: unless keep_dynamic_fields, this includes only
6727 fields whose position and length are static will be processed. */
6728 if (keep_dynamic_fields)
6729 nfields = TYPE_NFIELDS (type);
6730 else
6731 {
6732 nfields = 0;
6733 while (nfields < TYPE_NFIELDS (type)
6734 && !ada_is_variant_part (type, nfields)
6735 && !is_dynamic_field (type, nfields))
6736 nfields++;
6737 }
6738
6739 rtype = alloc_type_copy (type);
6740 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6741 INIT_CPLUS_SPECIFIC (rtype);
6742 TYPE_NFIELDS (rtype) = nfields;
6743 TYPE_FIELDS (rtype) = (struct field *)
6744 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6745 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
6746 TYPE_NAME (rtype) = ada_type_name (type);
6747 TYPE_TAG_NAME (rtype) = NULL;
6748 TYPE_FIXED_INSTANCE (rtype) = 1;
6749
6750 off = 0;
6751 bit_len = 0;
6752 variant_field = -1;
6753
6754 for (f = 0; f < nfields; f += 1)
6755 {
6756 off = align_value (off, field_alignment (type, f))
6757 + TYPE_FIELD_BITPOS (type, f);
6758 TYPE_FIELD_BITPOS (rtype, f) = off;
6759 TYPE_FIELD_BITSIZE (rtype, f) = 0;
6760
6761 if (ada_is_variant_part (type, f))
6762 {
6763 variant_field = f;
6764 fld_bit_len = bit_incr = 0;
6765 }
6766 else if (is_dynamic_field (type, f))
6767 {
6768 const gdb_byte *field_valaddr = valaddr;
6769 CORE_ADDR field_address = address;
6770 struct type *field_type =
6771 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
6772
6773 if (dval0 == NULL)
6774 {
6775 /* rtype's length is computed based on the run-time
6776 value of discriminants. If the discriminants are not
6777 initialized, the type size may be completely bogus and
6778 GDB may fail to allocate a value for it. So check the
6779 size first before creating the value. */
6780 check_size (rtype);
6781 dval = value_from_contents_and_address (rtype, valaddr, address);
6782 }
6783 else
6784 dval = dval0;
6785
6786 /* If the type referenced by this field is an aligner type, we need
6787 to unwrap that aligner type, because its size might not be set.
6788 Keeping the aligner type would cause us to compute the wrong
6789 size for this field, impacting the offset of the all the fields
6790 that follow this one. */
6791 if (ada_is_aligner_type (field_type))
6792 {
6793 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
6794
6795 field_valaddr = cond_offset_host (field_valaddr, field_offset);
6796 field_address = cond_offset_target (field_address, field_offset);
6797 field_type = ada_aligned_type (field_type);
6798 }
6799
6800 field_valaddr = cond_offset_host (field_valaddr,
6801 off / TARGET_CHAR_BIT);
6802 field_address = cond_offset_target (field_address,
6803 off / TARGET_CHAR_BIT);
6804
6805 /* Get the fixed type of the field. Note that, in this case,
6806 we do not want to get the real type out of the tag: if
6807 the current field is the parent part of a tagged record,
6808 we will get the tag of the object. Clearly wrong: the real
6809 type of the parent is not the real type of the child. We
6810 would end up in an infinite loop. */
6811 field_type = ada_get_base_type (field_type);
6812 field_type = ada_to_fixed_type (field_type, field_valaddr,
6813 field_address, dval, 0);
6814
6815 TYPE_FIELD_TYPE (rtype, f) = field_type;
6816 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6817 bit_incr = fld_bit_len =
6818 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
6819 }
6820 else
6821 {
6822 struct type *field_type = TYPE_FIELD_TYPE (type, f);
6823
6824 TYPE_FIELD_TYPE (rtype, f) = field_type;
6825 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6826 if (TYPE_FIELD_BITSIZE (type, f) > 0)
6827 bit_incr = fld_bit_len =
6828 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
6829 else
6830 bit_incr = fld_bit_len =
6831 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
6832 }
6833 if (off + fld_bit_len > bit_len)
6834 bit_len = off + fld_bit_len;
6835 off += bit_incr;
6836 TYPE_LENGTH (rtype) =
6837 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6838 }
6839
6840 /* We handle the variant part, if any, at the end because of certain
6841 odd cases in which it is re-ordered so as NOT to be the last field of
6842 the record. This can happen in the presence of representation
6843 clauses. */
6844 if (variant_field >= 0)
6845 {
6846 struct type *branch_type;
6847
6848 off = TYPE_FIELD_BITPOS (rtype, variant_field);
6849
6850 if (dval0 == NULL)
6851 dval = value_from_contents_and_address (rtype, valaddr, address);
6852 else
6853 dval = dval0;
6854
6855 branch_type =
6856 to_fixed_variant_branch_type
6857 (TYPE_FIELD_TYPE (type, variant_field),
6858 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6859 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6860 if (branch_type == NULL)
6861 {
6862 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
6863 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6864 TYPE_NFIELDS (rtype) -= 1;
6865 }
6866 else
6867 {
6868 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6869 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6870 fld_bit_len =
6871 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
6872 TARGET_CHAR_BIT;
6873 if (off + fld_bit_len > bit_len)
6874 bit_len = off + fld_bit_len;
6875 TYPE_LENGTH (rtype) =
6876 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6877 }
6878 }
6879
6880 /* According to exp_dbug.ads, the size of TYPE for variable-size records
6881 should contain the alignment of that record, which should be a strictly
6882 positive value. If null or negative, then something is wrong, most
6883 probably in the debug info. In that case, we don't round up the size
6884 of the resulting type. If this record is not part of another structure,
6885 the current RTYPE length might be good enough for our purposes. */
6886 if (TYPE_LENGTH (type) <= 0)
6887 {
6888 if (TYPE_NAME (rtype))
6889 warning (_("Invalid type size for `%s' detected: %d."),
6890 TYPE_NAME (rtype), TYPE_LENGTH (type));
6891 else
6892 warning (_("Invalid type size for <unnamed> detected: %d."),
6893 TYPE_LENGTH (type));
6894 }
6895 else
6896 {
6897 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
6898 TYPE_LENGTH (type));
6899 }
6900
6901 value_free_to_mark (mark);
6902 if (TYPE_LENGTH (rtype) > varsize_limit)
6903 error (_("record type with dynamic size is larger than varsize-limit"));
6904 return rtype;
6905 }
6906
6907 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
6908 of 1. */
6909
6910 static struct type *
6911 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
6912 CORE_ADDR address, struct value *dval0)
6913 {
6914 return ada_template_to_fixed_record_type_1 (type, valaddr,
6915 address, dval0, 1);
6916 }
6917
6918 /* An ordinary record type in which ___XVL-convention fields and
6919 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
6920 static approximations, containing all possible fields. Uses
6921 no runtime values. Useless for use in values, but that's OK,
6922 since the results are used only for type determinations. Works on both
6923 structs and unions. Representation note: to save space, we memorize
6924 the result of this function in the TYPE_TARGET_TYPE of the
6925 template type. */
6926
6927 static struct type *
6928 template_to_static_fixed_type (struct type *type0)
6929 {
6930 struct type *type;
6931 int nfields;
6932 int f;
6933
6934 if (TYPE_TARGET_TYPE (type0) != NULL)
6935 return TYPE_TARGET_TYPE (type0);
6936
6937 nfields = TYPE_NFIELDS (type0);
6938 type = type0;
6939
6940 for (f = 0; f < nfields; f += 1)
6941 {
6942 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
6943 struct type *new_type;
6944
6945 if (is_dynamic_field (type0, f))
6946 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
6947 else
6948 new_type = static_unwrap_type (field_type);
6949 if (type == type0 && new_type != field_type)
6950 {
6951 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
6952 TYPE_CODE (type) = TYPE_CODE (type0);
6953 INIT_CPLUS_SPECIFIC (type);
6954 TYPE_NFIELDS (type) = nfields;
6955 TYPE_FIELDS (type) = (struct field *)
6956 TYPE_ALLOC (type, nfields * sizeof (struct field));
6957 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
6958 sizeof (struct field) * nfields);
6959 TYPE_NAME (type) = ada_type_name (type0);
6960 TYPE_TAG_NAME (type) = NULL;
6961 TYPE_FIXED_INSTANCE (type) = 1;
6962 TYPE_LENGTH (type) = 0;
6963 }
6964 TYPE_FIELD_TYPE (type, f) = new_type;
6965 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
6966 }
6967 return type;
6968 }
6969
6970 /* Given an object of type TYPE whose contents are at VALADDR and
6971 whose address in memory is ADDRESS, returns a revision of TYPE,
6972 which should be a non-dynamic-sized record, in which the variant
6973 part, if any, is replaced with the appropriate branch. Looks
6974 for discriminant values in DVAL0, which can be NULL if the record
6975 contains the necessary discriminant values. */
6976
6977 static struct type *
6978 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
6979 CORE_ADDR address, struct value *dval0)
6980 {
6981 struct value *mark = value_mark ();
6982 struct value *dval;
6983 struct type *rtype;
6984 struct type *branch_type;
6985 int nfields = TYPE_NFIELDS (type);
6986 int variant_field = variant_field_index (type);
6987
6988 if (variant_field == -1)
6989 return type;
6990
6991 if (dval0 == NULL)
6992 dval = value_from_contents_and_address (type, valaddr, address);
6993 else
6994 dval = dval0;
6995
6996 rtype = alloc_type_copy (type);
6997 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6998 INIT_CPLUS_SPECIFIC (rtype);
6999 TYPE_NFIELDS (rtype) = nfields;
7000 TYPE_FIELDS (rtype) =
7001 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7002 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
7003 sizeof (struct field) * nfields);
7004 TYPE_NAME (rtype) = ada_type_name (type);
7005 TYPE_TAG_NAME (rtype) = NULL;
7006 TYPE_FIXED_INSTANCE (rtype) = 1;
7007 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7008
7009 branch_type = to_fixed_variant_branch_type
7010 (TYPE_FIELD_TYPE (type, variant_field),
7011 cond_offset_host (valaddr,
7012 TYPE_FIELD_BITPOS (type, variant_field)
7013 / TARGET_CHAR_BIT),
7014 cond_offset_target (address,
7015 TYPE_FIELD_BITPOS (type, variant_field)
7016 / TARGET_CHAR_BIT), dval);
7017 if (branch_type == NULL)
7018 {
7019 int f;
7020 for (f = variant_field + 1; f < nfields; f += 1)
7021 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7022 TYPE_NFIELDS (rtype) -= 1;
7023 }
7024 else
7025 {
7026 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7027 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7028 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7029 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7030 }
7031 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7032
7033 value_free_to_mark (mark);
7034 return rtype;
7035 }
7036
7037 /* An ordinary record type (with fixed-length fields) that describes
7038 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7039 beginning of this section]. Any necessary discriminants' values
7040 should be in DVAL, a record value; it may be NULL if the object
7041 at ADDR itself contains any necessary discriminant values.
7042 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7043 values from the record are needed. Except in the case that DVAL,
7044 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7045 unchecked) is replaced by a particular branch of the variant.
7046
7047 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7048 is questionable and may be removed. It can arise during the
7049 processing of an unconstrained-array-of-record type where all the
7050 variant branches have exactly the same size. This is because in
7051 such cases, the compiler does not bother to use the XVS convention
7052 when encoding the record. I am currently dubious of this
7053 shortcut and suspect the compiler should be altered. FIXME. */
7054
7055 static struct type *
7056 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7057 CORE_ADDR address, struct value *dval)
7058 {
7059 struct type *templ_type;
7060
7061 if (TYPE_FIXED_INSTANCE (type0))
7062 return type0;
7063
7064 templ_type = dynamic_template_type (type0);
7065
7066 if (templ_type != NULL)
7067 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7068 else if (variant_field_index (type0) >= 0)
7069 {
7070 if (dval == NULL && valaddr == NULL && address == 0)
7071 return type0;
7072 return to_record_with_fixed_variant_part (type0, valaddr, address,
7073 dval);
7074 }
7075 else
7076 {
7077 TYPE_FIXED_INSTANCE (type0) = 1;
7078 return type0;
7079 }
7080
7081 }
7082
7083 /* An ordinary record type (with fixed-length fields) that describes
7084 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7085 union type. Any necessary discriminants' values should be in DVAL,
7086 a record value. That is, this routine selects the appropriate
7087 branch of the union at ADDR according to the discriminant value
7088 indicated in the union's type name. Returns VAR_TYPE0 itself if
7089 it represents a variant subject to a pragma Unchecked_Union. */
7090
7091 static struct type *
7092 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7093 CORE_ADDR address, struct value *dval)
7094 {
7095 int which;
7096 struct type *templ_type;
7097 struct type *var_type;
7098
7099 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7100 var_type = TYPE_TARGET_TYPE (var_type0);
7101 else
7102 var_type = var_type0;
7103
7104 templ_type = ada_find_parallel_type (var_type, "___XVU");
7105
7106 if (templ_type != NULL)
7107 var_type = templ_type;
7108
7109 if (is_unchecked_variant (var_type, value_type (dval)))
7110 return var_type0;
7111 which =
7112 ada_which_variant_applies (var_type,
7113 value_type (dval), value_contents (dval));
7114
7115 if (which < 0)
7116 return empty_record (var_type);
7117 else if (is_dynamic_field (var_type, which))
7118 return to_fixed_record_type
7119 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7120 valaddr, address, dval);
7121 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7122 return
7123 to_fixed_record_type
7124 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7125 else
7126 return TYPE_FIELD_TYPE (var_type, which);
7127 }
7128
7129 /* Assuming that TYPE0 is an array type describing the type of a value
7130 at ADDR, and that DVAL describes a record containing any
7131 discriminants used in TYPE0, returns a type for the value that
7132 contains no dynamic components (that is, no components whose sizes
7133 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7134 true, gives an error message if the resulting type's size is over
7135 varsize_limit. */
7136
7137 static struct type *
7138 to_fixed_array_type (struct type *type0, struct value *dval,
7139 int ignore_too_big)
7140 {
7141 struct type *index_type_desc;
7142 struct type *result;
7143 int constrained_packed_array_p;
7144
7145 if (TYPE_FIXED_INSTANCE (type0))
7146 return type0;
7147
7148 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7149 if (constrained_packed_array_p)
7150 type0 = decode_constrained_packed_array_type (type0);
7151
7152 index_type_desc = ada_find_parallel_type (type0, "___XA");
7153 if (index_type_desc == NULL)
7154 {
7155 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7156 /* NOTE: elt_type---the fixed version of elt_type0---should never
7157 depend on the contents of the array in properly constructed
7158 debugging data. */
7159 /* Create a fixed version of the array element type.
7160 We're not providing the address of an element here,
7161 and thus the actual object value cannot be inspected to do
7162 the conversion. This should not be a problem, since arrays of
7163 unconstrained objects are not allowed. In particular, all
7164 the elements of an array of a tagged type should all be of
7165 the same type specified in the debugging info. No need to
7166 consult the object tag. */
7167 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7168
7169 /* Make sure we always create a new array type when dealing with
7170 packed array types, since we're going to fix-up the array
7171 type length and element bitsize a little further down. */
7172 if (elt_type0 == elt_type && !constrained_packed_array_p)
7173 result = type0;
7174 else
7175 result = create_array_type (alloc_type_copy (type0),
7176 elt_type, TYPE_INDEX_TYPE (type0));
7177 }
7178 else
7179 {
7180 int i;
7181 struct type *elt_type0;
7182
7183 elt_type0 = type0;
7184 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7185 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7186
7187 /* NOTE: result---the fixed version of elt_type0---should never
7188 depend on the contents of the array in properly constructed
7189 debugging data. */
7190 /* Create a fixed version of the array element type.
7191 We're not providing the address of an element here,
7192 and thus the actual object value cannot be inspected to do
7193 the conversion. This should not be a problem, since arrays of
7194 unconstrained objects are not allowed. In particular, all
7195 the elements of an array of a tagged type should all be of
7196 the same type specified in the debugging info. No need to
7197 consult the object tag. */
7198 result =
7199 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
7200
7201 elt_type0 = type0;
7202 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
7203 {
7204 struct type *range_type =
7205 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
7206 dval, TYPE_INDEX_TYPE (elt_type0));
7207 result = create_array_type (alloc_type_copy (elt_type0),
7208 result, range_type);
7209 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7210 }
7211 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7212 error (_("array type with dynamic size is larger than varsize-limit"));
7213 }
7214
7215 if (constrained_packed_array_p)
7216 {
7217 /* So far, the resulting type has been created as if the original
7218 type was a regular (non-packed) array type. As a result, the
7219 bitsize of the array elements needs to be set again, and the array
7220 length needs to be recomputed based on that bitsize. */
7221 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
7222 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
7223
7224 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
7225 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
7226 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
7227 TYPE_LENGTH (result)++;
7228 }
7229
7230 TYPE_FIXED_INSTANCE (result) = 1;
7231 return result;
7232 }
7233
7234
7235 /* A standard type (containing no dynamically sized components)
7236 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7237 DVAL describes a record containing any discriminants used in TYPE0,
7238 and may be NULL if there are none, or if the object of type TYPE at
7239 ADDRESS or in VALADDR contains these discriminants.
7240
7241 If CHECK_TAG is not null, in the case of tagged types, this function
7242 attempts to locate the object's tag and use it to compute the actual
7243 type. However, when ADDRESS is null, we cannot use it to determine the
7244 location of the tag, and therefore compute the tagged type's actual type.
7245 So we return the tagged type without consulting the tag. */
7246
7247 static struct type *
7248 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
7249 CORE_ADDR address, struct value *dval, int check_tag)
7250 {
7251 type = ada_check_typedef (type);
7252 switch (TYPE_CODE (type))
7253 {
7254 default:
7255 return type;
7256 case TYPE_CODE_STRUCT:
7257 {
7258 struct type *static_type = to_static_fixed_type (type);
7259 struct type *fixed_record_type =
7260 to_fixed_record_type (type, valaddr, address, NULL);
7261 /* If STATIC_TYPE is a tagged type and we know the object's address,
7262 then we can determine its tag, and compute the object's actual
7263 type from there. Note that we have to use the fixed record
7264 type (the parent part of the record may have dynamic fields
7265 and the way the location of _tag is expressed may depend on
7266 them). */
7267
7268 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
7269 {
7270 struct type *real_type =
7271 type_from_tag (value_tag_from_contents_and_address
7272 (fixed_record_type,
7273 valaddr,
7274 address));
7275 if (real_type != NULL)
7276 return to_fixed_record_type (real_type, valaddr, address, NULL);
7277 }
7278
7279 /* Check to see if there is a parallel ___XVZ variable.
7280 If there is, then it provides the actual size of our type. */
7281 else if (ada_type_name (fixed_record_type) != NULL)
7282 {
7283 char *name = ada_type_name (fixed_record_type);
7284 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7285 int xvz_found = 0;
7286 LONGEST size;
7287
7288 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
7289 size = get_int_var_value (xvz_name, &xvz_found);
7290 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
7291 {
7292 fixed_record_type = copy_type (fixed_record_type);
7293 TYPE_LENGTH (fixed_record_type) = size;
7294
7295 /* The FIXED_RECORD_TYPE may have be a stub. We have
7296 observed this when the debugging info is STABS, and
7297 apparently it is something that is hard to fix.
7298
7299 In practice, we don't need the actual type definition
7300 at all, because the presence of the XVZ variable allows us
7301 to assume that there must be a XVS type as well, which we
7302 should be able to use later, when we need the actual type
7303 definition.
7304
7305 In the meantime, pretend that the "fixed" type we are
7306 returning is NOT a stub, because this can cause trouble
7307 when using this type to create new types targeting it.
7308 Indeed, the associated creation routines often check
7309 whether the target type is a stub and will try to replace
7310 it, thus using a type with the wrong size. This, in turn,
7311 might cause the new type to have the wrong size too.
7312 Consider the case of an array, for instance, where the size
7313 of the array is computed from the number of elements in
7314 our array multiplied by the size of its element. */
7315 TYPE_STUB (fixed_record_type) = 0;
7316 }
7317 }
7318 return fixed_record_type;
7319 }
7320 case TYPE_CODE_ARRAY:
7321 return to_fixed_array_type (type, dval, 1);
7322 case TYPE_CODE_UNION:
7323 if (dval == NULL)
7324 return type;
7325 else
7326 return to_fixed_variant_branch_type (type, valaddr, address, dval);
7327 }
7328 }
7329
7330 /* The same as ada_to_fixed_type_1, except that it preserves the type
7331 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7332 ada_to_fixed_type_1 would return the type referenced by TYPE. */
7333
7334 struct type *
7335 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7336 CORE_ADDR address, struct value *dval, int check_tag)
7337
7338 {
7339 struct type *fixed_type =
7340 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7341
7342 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7343 && TYPE_TARGET_TYPE (type) == fixed_type)
7344 return type;
7345
7346 return fixed_type;
7347 }
7348
7349 /* A standard (static-sized) type corresponding as well as possible to
7350 TYPE0, but based on no runtime data. */
7351
7352 static struct type *
7353 to_static_fixed_type (struct type *type0)
7354 {
7355 struct type *type;
7356
7357 if (type0 == NULL)
7358 return NULL;
7359
7360 if (TYPE_FIXED_INSTANCE (type0))
7361 return type0;
7362
7363 type0 = ada_check_typedef (type0);
7364
7365 switch (TYPE_CODE (type0))
7366 {
7367 default:
7368 return type0;
7369 case TYPE_CODE_STRUCT:
7370 type = dynamic_template_type (type0);
7371 if (type != NULL)
7372 return template_to_static_fixed_type (type);
7373 else
7374 return template_to_static_fixed_type (type0);
7375 case TYPE_CODE_UNION:
7376 type = ada_find_parallel_type (type0, "___XVU");
7377 if (type != NULL)
7378 return template_to_static_fixed_type (type);
7379 else
7380 return template_to_static_fixed_type (type0);
7381 }
7382 }
7383
7384 /* A static approximation of TYPE with all type wrappers removed. */
7385
7386 static struct type *
7387 static_unwrap_type (struct type *type)
7388 {
7389 if (ada_is_aligner_type (type))
7390 {
7391 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
7392 if (ada_type_name (type1) == NULL)
7393 TYPE_NAME (type1) = ada_type_name (type);
7394
7395 return static_unwrap_type (type1);
7396 }
7397 else
7398 {
7399 struct type *raw_real_type = ada_get_base_type (type);
7400 if (raw_real_type == type)
7401 return type;
7402 else
7403 return to_static_fixed_type (raw_real_type);
7404 }
7405 }
7406
7407 /* In some cases, incomplete and private types require
7408 cross-references that are not resolved as records (for example,
7409 type Foo;
7410 type FooP is access Foo;
7411 V: FooP;
7412 type Foo is array ...;
7413 ). In these cases, since there is no mechanism for producing
7414 cross-references to such types, we instead substitute for FooP a
7415 stub enumeration type that is nowhere resolved, and whose tag is
7416 the name of the actual type. Call these types "non-record stubs". */
7417
7418 /* A type equivalent to TYPE that is not a non-record stub, if one
7419 exists, otherwise TYPE. */
7420
7421 struct type *
7422 ada_check_typedef (struct type *type)
7423 {
7424 if (type == NULL)
7425 return NULL;
7426
7427 CHECK_TYPEDEF (type);
7428 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
7429 || !TYPE_STUB (type)
7430 || TYPE_TAG_NAME (type) == NULL)
7431 return type;
7432 else
7433 {
7434 char *name = TYPE_TAG_NAME (type);
7435 struct type *type1 = ada_find_any_type (name);
7436 return (type1 == NULL) ? type : type1;
7437 }
7438 }
7439
7440 /* A value representing the data at VALADDR/ADDRESS as described by
7441 type TYPE0, but with a standard (static-sized) type that correctly
7442 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7443 type, then return VAL0 [this feature is simply to avoid redundant
7444 creation of struct values]. */
7445
7446 static struct value *
7447 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7448 struct value *val0)
7449 {
7450 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
7451 if (type == type0 && val0 != NULL)
7452 return val0;
7453 else
7454 return value_from_contents_and_address (type, 0, address);
7455 }
7456
7457 /* A value representing VAL, but with a standard (static-sized) type
7458 that correctly describes it. Does not necessarily create a new
7459 value. */
7460
7461 struct value *
7462 ada_to_fixed_value (struct value *val)
7463 {
7464 return ada_to_fixed_value_create (value_type (val),
7465 value_address (val),
7466 val);
7467 }
7468 \f
7469
7470 /* Attributes */
7471
7472 /* Table mapping attribute numbers to names.
7473 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
7474
7475 static const char *attribute_names[] = {
7476 "<?>",
7477
7478 "first",
7479 "last",
7480 "length",
7481 "image",
7482 "max",
7483 "min",
7484 "modulus",
7485 "pos",
7486 "size",
7487 "tag",
7488 "val",
7489 0
7490 };
7491
7492 const char *
7493 ada_attribute_name (enum exp_opcode n)
7494 {
7495 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7496 return attribute_names[n - OP_ATR_FIRST + 1];
7497 else
7498 return attribute_names[0];
7499 }
7500
7501 /* Evaluate the 'POS attribute applied to ARG. */
7502
7503 static LONGEST
7504 pos_atr (struct value *arg)
7505 {
7506 struct value *val = coerce_ref (arg);
7507 struct type *type = value_type (val);
7508
7509 if (!discrete_type_p (type))
7510 error (_("'POS only defined on discrete types"));
7511
7512 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7513 {
7514 int i;
7515 LONGEST v = value_as_long (val);
7516
7517 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7518 {
7519 if (v == TYPE_FIELD_BITPOS (type, i))
7520 return i;
7521 }
7522 error (_("enumeration value is invalid: can't find 'POS"));
7523 }
7524 else
7525 return value_as_long (val);
7526 }
7527
7528 static struct value *
7529 value_pos_atr (struct type *type, struct value *arg)
7530 {
7531 return value_from_longest (type, pos_atr (arg));
7532 }
7533
7534 /* Evaluate the TYPE'VAL attribute applied to ARG. */
7535
7536 static struct value *
7537 value_val_atr (struct type *type, struct value *arg)
7538 {
7539 if (!discrete_type_p (type))
7540 error (_("'VAL only defined on discrete types"));
7541 if (!integer_type_p (value_type (arg)))
7542 error (_("'VAL requires integral argument"));
7543
7544 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7545 {
7546 long pos = value_as_long (arg);
7547 if (pos < 0 || pos >= TYPE_NFIELDS (type))
7548 error (_("argument to 'VAL out of range"));
7549 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
7550 }
7551 else
7552 return value_from_longest (type, value_as_long (arg));
7553 }
7554 \f
7555
7556 /* Evaluation */
7557
7558 /* True if TYPE appears to be an Ada character type.
7559 [At the moment, this is true only for Character and Wide_Character;
7560 It is a heuristic test that could stand improvement]. */
7561
7562 int
7563 ada_is_character_type (struct type *type)
7564 {
7565 const char *name;
7566
7567 /* If the type code says it's a character, then assume it really is,
7568 and don't check any further. */
7569 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
7570 return 1;
7571
7572 /* Otherwise, assume it's a character type iff it is a discrete type
7573 with a known character type name. */
7574 name = ada_type_name (type);
7575 return (name != NULL
7576 && (TYPE_CODE (type) == TYPE_CODE_INT
7577 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7578 && (strcmp (name, "character") == 0
7579 || strcmp (name, "wide_character") == 0
7580 || strcmp (name, "wide_wide_character") == 0
7581 || strcmp (name, "unsigned char") == 0));
7582 }
7583
7584 /* True if TYPE appears to be an Ada string type. */
7585
7586 int
7587 ada_is_string_type (struct type *type)
7588 {
7589 type = ada_check_typedef (type);
7590 if (type != NULL
7591 && TYPE_CODE (type) != TYPE_CODE_PTR
7592 && (ada_is_simple_array_type (type)
7593 || ada_is_array_descriptor_type (type))
7594 && ada_array_arity (type) == 1)
7595 {
7596 struct type *elttype = ada_array_element_type (type, 1);
7597
7598 return ada_is_character_type (elttype);
7599 }
7600 else
7601 return 0;
7602 }
7603
7604 /* The compiler sometimes provides a parallel XVS type for a given
7605 PAD type. Normally, it is safe to follow the PAD type directly,
7606 but older versions of the compiler have a bug that causes the offset
7607 of its "F" field to be wrong. Following that field in that case
7608 would lead to incorrect results, but this can be worked around
7609 by ignoring the PAD type and using the associated XVS type instead.
7610
7611 Set to True if the debugger should trust the contents of PAD types.
7612 Otherwise, ignore the PAD type if there is a parallel XVS type. */
7613 static int trust_pad_over_xvs = 1;
7614
7615 /* True if TYPE is a struct type introduced by the compiler to force the
7616 alignment of a value. Such types have a single field with a
7617 distinctive name. */
7618
7619 int
7620 ada_is_aligner_type (struct type *type)
7621 {
7622 type = ada_check_typedef (type);
7623
7624 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
7625 return 0;
7626
7627 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
7628 && TYPE_NFIELDS (type) == 1
7629 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
7630 }
7631
7632 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
7633 the parallel type. */
7634
7635 struct type *
7636 ada_get_base_type (struct type *raw_type)
7637 {
7638 struct type *real_type_namer;
7639 struct type *raw_real_type;
7640
7641 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7642 return raw_type;
7643
7644 if (ada_is_aligner_type (raw_type))
7645 /* The encoding specifies that we should always use the aligner type.
7646 So, even if this aligner type has an associated XVS type, we should
7647 simply ignore it.
7648
7649 According to the compiler gurus, an XVS type parallel to an aligner
7650 type may exist because of a stabs limitation. In stabs, aligner
7651 types are empty because the field has a variable-sized type, and
7652 thus cannot actually be used as an aligner type. As a result,
7653 we need the associated parallel XVS type to decode the type.
7654 Since the policy in the compiler is to not change the internal
7655 representation based on the debugging info format, we sometimes
7656 end up having a redundant XVS type parallel to the aligner type. */
7657 return raw_type;
7658
7659 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
7660 if (real_type_namer == NULL
7661 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7662 || TYPE_NFIELDS (real_type_namer) != 1)
7663 return raw_type;
7664
7665 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
7666 {
7667 /* This is an older encoding form where the base type needs to be
7668 looked up by name. We prefer the newer enconding because it is
7669 more efficient. */
7670 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
7671 if (raw_real_type == NULL)
7672 return raw_type;
7673 else
7674 return raw_real_type;
7675 }
7676
7677 /* The field in our XVS type is a reference to the base type. */
7678 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
7679 }
7680
7681 /* The type of value designated by TYPE, with all aligners removed. */
7682
7683 struct type *
7684 ada_aligned_type (struct type *type)
7685 {
7686 if (ada_is_aligner_type (type))
7687 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7688 else
7689 return ada_get_base_type (type);
7690 }
7691
7692
7693 /* The address of the aligned value in an object at address VALADDR
7694 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
7695
7696 const gdb_byte *
7697 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
7698 {
7699 if (ada_is_aligner_type (type))
7700 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
7701 valaddr +
7702 TYPE_FIELD_BITPOS (type,
7703 0) / TARGET_CHAR_BIT);
7704 else
7705 return valaddr;
7706 }
7707
7708
7709
7710 /* The printed representation of an enumeration literal with encoded
7711 name NAME. The value is good to the next call of ada_enum_name. */
7712 const char *
7713 ada_enum_name (const char *name)
7714 {
7715 static char *result;
7716 static size_t result_len = 0;
7717 char *tmp;
7718
7719 /* First, unqualify the enumeration name:
7720 1. Search for the last '.' character. If we find one, then skip
7721 all the preceeding characters, the unqualified name starts
7722 right after that dot.
7723 2. Otherwise, we may be debugging on a target where the compiler
7724 translates dots into "__". Search forward for double underscores,
7725 but stop searching when we hit an overloading suffix, which is
7726 of the form "__" followed by digits. */
7727
7728 tmp = strrchr (name, '.');
7729 if (tmp != NULL)
7730 name = tmp + 1;
7731 else
7732 {
7733 while ((tmp = strstr (name, "__")) != NULL)
7734 {
7735 if (isdigit (tmp[2]))
7736 break;
7737 else
7738 name = tmp + 2;
7739 }
7740 }
7741
7742 if (name[0] == 'Q')
7743 {
7744 int v;
7745 if (name[1] == 'U' || name[1] == 'W')
7746 {
7747 if (sscanf (name + 2, "%x", &v) != 1)
7748 return name;
7749 }
7750 else
7751 return name;
7752
7753 GROW_VECT (result, result_len, 16);
7754 if (isascii (v) && isprint (v))
7755 xsnprintf (result, result_len, "'%c'", v);
7756 else if (name[1] == 'U')
7757 xsnprintf (result, result_len, "[\"%02x\"]", v);
7758 else
7759 xsnprintf (result, result_len, "[\"%04x\"]", v);
7760
7761 return result;
7762 }
7763 else
7764 {
7765 tmp = strstr (name, "__");
7766 if (tmp == NULL)
7767 tmp = strstr (name, "$");
7768 if (tmp != NULL)
7769 {
7770 GROW_VECT (result, result_len, tmp - name + 1);
7771 strncpy (result, name, tmp - name);
7772 result[tmp - name] = '\0';
7773 return result;
7774 }
7775
7776 return name;
7777 }
7778 }
7779
7780 /* Evaluate the subexpression of EXP starting at *POS as for
7781 evaluate_type, updating *POS to point just past the evaluated
7782 expression. */
7783
7784 static struct value *
7785 evaluate_subexp_type (struct expression *exp, int *pos)
7786 {
7787 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
7788 }
7789
7790 /* If VAL is wrapped in an aligner or subtype wrapper, return the
7791 value it wraps. */
7792
7793 static struct value *
7794 unwrap_value (struct value *val)
7795 {
7796 struct type *type = ada_check_typedef (value_type (val));
7797 if (ada_is_aligner_type (type))
7798 {
7799 struct value *v = ada_value_struct_elt (val, "F", 0);
7800 struct type *val_type = ada_check_typedef (value_type (v));
7801 if (ada_type_name (val_type) == NULL)
7802 TYPE_NAME (val_type) = ada_type_name (type);
7803
7804 return unwrap_value (v);
7805 }
7806 else
7807 {
7808 struct type *raw_real_type =
7809 ada_check_typedef (ada_get_base_type (type));
7810
7811 /* If there is no parallel XVS or XVE type, then the value is
7812 already unwrapped. Return it without further modification. */
7813 if ((type == raw_real_type)
7814 && ada_find_parallel_type (type, "___XVE") == NULL)
7815 return val;
7816
7817 return
7818 coerce_unspec_val_to_type
7819 (val, ada_to_fixed_type (raw_real_type, 0,
7820 value_address (val),
7821 NULL, 1));
7822 }
7823 }
7824
7825 static struct value *
7826 cast_to_fixed (struct type *type, struct value *arg)
7827 {
7828 LONGEST val;
7829
7830 if (type == value_type (arg))
7831 return arg;
7832 else if (ada_is_fixed_point_type (value_type (arg)))
7833 val = ada_float_to_fixed (type,
7834 ada_fixed_to_float (value_type (arg),
7835 value_as_long (arg)));
7836 else
7837 {
7838 DOUBLEST argd = value_as_double (arg);
7839 val = ada_float_to_fixed (type, argd);
7840 }
7841
7842 return value_from_longest (type, val);
7843 }
7844
7845 static struct value *
7846 cast_from_fixed (struct type *type, struct value *arg)
7847 {
7848 DOUBLEST val = ada_fixed_to_float (value_type (arg),
7849 value_as_long (arg));
7850 return value_from_double (type, val);
7851 }
7852
7853 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
7854 return the converted value. */
7855
7856 static struct value *
7857 coerce_for_assign (struct type *type, struct value *val)
7858 {
7859 struct type *type2 = value_type (val);
7860 if (type == type2)
7861 return val;
7862
7863 type2 = ada_check_typedef (type2);
7864 type = ada_check_typedef (type);
7865
7866 if (TYPE_CODE (type2) == TYPE_CODE_PTR
7867 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7868 {
7869 val = ada_value_ind (val);
7870 type2 = value_type (val);
7871 }
7872
7873 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
7874 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7875 {
7876 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
7877 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
7878 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
7879 error (_("Incompatible types in assignment"));
7880 deprecated_set_value_type (val, type);
7881 }
7882 return val;
7883 }
7884
7885 static struct value *
7886 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
7887 {
7888 struct value *val;
7889 struct type *type1, *type2;
7890 LONGEST v, v1, v2;
7891
7892 arg1 = coerce_ref (arg1);
7893 arg2 = coerce_ref (arg2);
7894 type1 = base_type (ada_check_typedef (value_type (arg1)));
7895 type2 = base_type (ada_check_typedef (value_type (arg2)));
7896
7897 if (TYPE_CODE (type1) != TYPE_CODE_INT
7898 || TYPE_CODE (type2) != TYPE_CODE_INT)
7899 return value_binop (arg1, arg2, op);
7900
7901 switch (op)
7902 {
7903 case BINOP_MOD:
7904 case BINOP_DIV:
7905 case BINOP_REM:
7906 break;
7907 default:
7908 return value_binop (arg1, arg2, op);
7909 }
7910
7911 v2 = value_as_long (arg2);
7912 if (v2 == 0)
7913 error (_("second operand of %s must not be zero."), op_string (op));
7914
7915 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
7916 return value_binop (arg1, arg2, op);
7917
7918 v1 = value_as_long (arg1);
7919 switch (op)
7920 {
7921 case BINOP_DIV:
7922 v = v1 / v2;
7923 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
7924 v += v > 0 ? -1 : 1;
7925 break;
7926 case BINOP_REM:
7927 v = v1 % v2;
7928 if (v * v1 < 0)
7929 v -= v2;
7930 break;
7931 default:
7932 /* Should not reach this point. */
7933 v = 0;
7934 }
7935
7936 val = allocate_value (type1);
7937 store_unsigned_integer (value_contents_raw (val),
7938 TYPE_LENGTH (value_type (val)),
7939 gdbarch_byte_order (get_type_arch (type1)), v);
7940 return val;
7941 }
7942
7943 static int
7944 ada_value_equal (struct value *arg1, struct value *arg2)
7945 {
7946 if (ada_is_direct_array_type (value_type (arg1))
7947 || ada_is_direct_array_type (value_type (arg2)))
7948 {
7949 /* Automatically dereference any array reference before
7950 we attempt to perform the comparison. */
7951 arg1 = ada_coerce_ref (arg1);
7952 arg2 = ada_coerce_ref (arg2);
7953
7954 arg1 = ada_coerce_to_simple_array (arg1);
7955 arg2 = ada_coerce_to_simple_array (arg2);
7956 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
7957 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
7958 error (_("Attempt to compare array with non-array"));
7959 /* FIXME: The following works only for types whose
7960 representations use all bits (no padding or undefined bits)
7961 and do not have user-defined equality. */
7962 return
7963 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
7964 && memcmp (value_contents (arg1), value_contents (arg2),
7965 TYPE_LENGTH (value_type (arg1))) == 0;
7966 }
7967 return value_equal (arg1, arg2);
7968 }
7969
7970 /* Total number of component associations in the aggregate starting at
7971 index PC in EXP. Assumes that index PC is the start of an
7972 OP_AGGREGATE. */
7973
7974 static int
7975 num_component_specs (struct expression *exp, int pc)
7976 {
7977 int n, m, i;
7978 m = exp->elts[pc + 1].longconst;
7979 pc += 3;
7980 n = 0;
7981 for (i = 0; i < m; i += 1)
7982 {
7983 switch (exp->elts[pc].opcode)
7984 {
7985 default:
7986 n += 1;
7987 break;
7988 case OP_CHOICES:
7989 n += exp->elts[pc + 1].longconst;
7990 break;
7991 }
7992 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
7993 }
7994 return n;
7995 }
7996
7997 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
7998 component of LHS (a simple array or a record), updating *POS past
7999 the expression, assuming that LHS is contained in CONTAINER. Does
8000 not modify the inferior's memory, nor does it modify LHS (unless
8001 LHS == CONTAINER). */
8002
8003 static void
8004 assign_component (struct value *container, struct value *lhs, LONGEST index,
8005 struct expression *exp, int *pos)
8006 {
8007 struct value *mark = value_mark ();
8008 struct value *elt;
8009 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8010 {
8011 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
8012 struct value *index_val = value_from_longest (index_type, index);
8013 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8014 }
8015 else
8016 {
8017 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8018 elt = ada_to_fixed_value (unwrap_value (elt));
8019 }
8020
8021 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8022 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8023 else
8024 value_assign_to_component (container, elt,
8025 ada_evaluate_subexp (NULL, exp, pos,
8026 EVAL_NORMAL));
8027
8028 value_free_to_mark (mark);
8029 }
8030
8031 /* Assuming that LHS represents an lvalue having a record or array
8032 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8033 of that aggregate's value to LHS, advancing *POS past the
8034 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8035 lvalue containing LHS (possibly LHS itself). Does not modify
8036 the inferior's memory, nor does it modify the contents of
8037 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8038
8039 static struct value *
8040 assign_aggregate (struct value *container,
8041 struct value *lhs, struct expression *exp,
8042 int *pos, enum noside noside)
8043 {
8044 struct type *lhs_type;
8045 int n = exp->elts[*pos+1].longconst;
8046 LONGEST low_index, high_index;
8047 int num_specs;
8048 LONGEST *indices;
8049 int max_indices, num_indices;
8050 int is_array_aggregate;
8051 int i;
8052
8053 *pos += 3;
8054 if (noside != EVAL_NORMAL)
8055 {
8056 int i;
8057 for (i = 0; i < n; i += 1)
8058 ada_evaluate_subexp (NULL, exp, pos, noside);
8059 return container;
8060 }
8061
8062 container = ada_coerce_ref (container);
8063 if (ada_is_direct_array_type (value_type (container)))
8064 container = ada_coerce_to_simple_array (container);
8065 lhs = ada_coerce_ref (lhs);
8066 if (!deprecated_value_modifiable (lhs))
8067 error (_("Left operand of assignment is not a modifiable lvalue."));
8068
8069 lhs_type = value_type (lhs);
8070 if (ada_is_direct_array_type (lhs_type))
8071 {
8072 lhs = ada_coerce_to_simple_array (lhs);
8073 lhs_type = value_type (lhs);
8074 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8075 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8076 is_array_aggregate = 1;
8077 }
8078 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8079 {
8080 low_index = 0;
8081 high_index = num_visible_fields (lhs_type) - 1;
8082 is_array_aggregate = 0;
8083 }
8084 else
8085 error (_("Left-hand side must be array or record."));
8086
8087 num_specs = num_component_specs (exp, *pos - 3);
8088 max_indices = 4 * num_specs + 4;
8089 indices = alloca (max_indices * sizeof (indices[0]));
8090 indices[0] = indices[1] = low_index - 1;
8091 indices[2] = indices[3] = high_index + 1;
8092 num_indices = 4;
8093
8094 for (i = 0; i < n; i += 1)
8095 {
8096 switch (exp->elts[*pos].opcode)
8097 {
8098 case OP_CHOICES:
8099 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8100 &num_indices, max_indices,
8101 low_index, high_index);
8102 break;
8103 case OP_POSITIONAL:
8104 aggregate_assign_positional (container, lhs, exp, pos, indices,
8105 &num_indices, max_indices,
8106 low_index, high_index);
8107 break;
8108 case OP_OTHERS:
8109 if (i != n-1)
8110 error (_("Misplaced 'others' clause"));
8111 aggregate_assign_others (container, lhs, exp, pos, indices,
8112 num_indices, low_index, high_index);
8113 break;
8114 default:
8115 error (_("Internal error: bad aggregate clause"));
8116 }
8117 }
8118
8119 return container;
8120 }
8121
8122 /* Assign into the component of LHS indexed by the OP_POSITIONAL
8123 construct at *POS, updating *POS past the construct, given that
8124 the positions are relative to lower bound LOW, where HIGH is the
8125 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8126 updating *NUM_INDICES as needed. CONTAINER is as for
8127 assign_aggregate. */
8128 static void
8129 aggregate_assign_positional (struct value *container,
8130 struct value *lhs, struct expression *exp,
8131 int *pos, LONGEST *indices, int *num_indices,
8132 int max_indices, LONGEST low, LONGEST high)
8133 {
8134 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8135
8136 if (ind - 1 == high)
8137 warning (_("Extra components in aggregate ignored."));
8138 if (ind <= high)
8139 {
8140 add_component_interval (ind, ind, indices, num_indices, max_indices);
8141 *pos += 3;
8142 assign_component (container, lhs, ind, exp, pos);
8143 }
8144 else
8145 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8146 }
8147
8148 /* Assign into the components of LHS indexed by the OP_CHOICES
8149 construct at *POS, updating *POS past the construct, given that
8150 the allowable indices are LOW..HIGH. Record the indices assigned
8151 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8152 needed. CONTAINER is as for assign_aggregate. */
8153 static void
8154 aggregate_assign_from_choices (struct value *container,
8155 struct value *lhs, struct expression *exp,
8156 int *pos, LONGEST *indices, int *num_indices,
8157 int max_indices, LONGEST low, LONGEST high)
8158 {
8159 int j;
8160 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8161 int choice_pos, expr_pc;
8162 int is_array = ada_is_direct_array_type (value_type (lhs));
8163
8164 choice_pos = *pos += 3;
8165
8166 for (j = 0; j < n_choices; j += 1)
8167 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8168 expr_pc = *pos;
8169 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8170
8171 for (j = 0; j < n_choices; j += 1)
8172 {
8173 LONGEST lower, upper;
8174 enum exp_opcode op = exp->elts[choice_pos].opcode;
8175 if (op == OP_DISCRETE_RANGE)
8176 {
8177 choice_pos += 1;
8178 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8179 EVAL_NORMAL));
8180 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8181 EVAL_NORMAL));
8182 }
8183 else if (is_array)
8184 {
8185 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8186 EVAL_NORMAL));
8187 upper = lower;
8188 }
8189 else
8190 {
8191 int ind;
8192 char *name;
8193 switch (op)
8194 {
8195 case OP_NAME:
8196 name = &exp->elts[choice_pos + 2].string;
8197 break;
8198 case OP_VAR_VALUE:
8199 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8200 break;
8201 default:
8202 error (_("Invalid record component association."));
8203 }
8204 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8205 ind = 0;
8206 if (! find_struct_field (name, value_type (lhs), 0,
8207 NULL, NULL, NULL, NULL, &ind))
8208 error (_("Unknown component name: %s."), name);
8209 lower = upper = ind;
8210 }
8211
8212 if (lower <= upper && (lower < low || upper > high))
8213 error (_("Index in component association out of bounds."));
8214
8215 add_component_interval (lower, upper, indices, num_indices,
8216 max_indices);
8217 while (lower <= upper)
8218 {
8219 int pos1;
8220 pos1 = expr_pc;
8221 assign_component (container, lhs, lower, exp, &pos1);
8222 lower += 1;
8223 }
8224 }
8225 }
8226
8227 /* Assign the value of the expression in the OP_OTHERS construct in
8228 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8229 have not been previously assigned. The index intervals already assigned
8230 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8231 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
8232 static void
8233 aggregate_assign_others (struct value *container,
8234 struct value *lhs, struct expression *exp,
8235 int *pos, LONGEST *indices, int num_indices,
8236 LONGEST low, LONGEST high)
8237 {
8238 int i;
8239 int expr_pc = *pos+1;
8240
8241 for (i = 0; i < num_indices - 2; i += 2)
8242 {
8243 LONGEST ind;
8244 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8245 {
8246 int pos;
8247 pos = expr_pc;
8248 assign_component (container, lhs, ind, exp, &pos);
8249 }
8250 }
8251 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8252 }
8253
8254 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
8255 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8256 modifying *SIZE as needed. It is an error if *SIZE exceeds
8257 MAX_SIZE. The resulting intervals do not overlap. */
8258 static void
8259 add_component_interval (LONGEST low, LONGEST high,
8260 LONGEST* indices, int *size, int max_size)
8261 {
8262 int i, j;
8263 for (i = 0; i < *size; i += 2) {
8264 if (high >= indices[i] && low <= indices[i + 1])
8265 {
8266 int kh;
8267 for (kh = i + 2; kh < *size; kh += 2)
8268 if (high < indices[kh])
8269 break;
8270 if (low < indices[i])
8271 indices[i] = low;
8272 indices[i + 1] = indices[kh - 1];
8273 if (high > indices[i + 1])
8274 indices[i + 1] = high;
8275 memcpy (indices + i + 2, indices + kh, *size - kh);
8276 *size -= kh - i - 2;
8277 return;
8278 }
8279 else if (high < indices[i])
8280 break;
8281 }
8282
8283 if (*size == max_size)
8284 error (_("Internal error: miscounted aggregate components."));
8285 *size += 2;
8286 for (j = *size-1; j >= i+2; j -= 1)
8287 indices[j] = indices[j - 2];
8288 indices[i] = low;
8289 indices[i + 1] = high;
8290 }
8291
8292 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8293 is different. */
8294
8295 static struct value *
8296 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8297 {
8298 if (type == ada_check_typedef (value_type (arg2)))
8299 return arg2;
8300
8301 if (ada_is_fixed_point_type (type))
8302 return (cast_to_fixed (type, arg2));
8303
8304 if (ada_is_fixed_point_type (value_type (arg2)))
8305 return cast_from_fixed (type, arg2);
8306
8307 return value_cast (type, arg2);
8308 }
8309
8310 /* Evaluating Ada expressions, and printing their result.
8311 ------------------------------------------------------
8312
8313 1. Introduction:
8314 ----------------
8315
8316 We usually evaluate an Ada expression in order to print its value.
8317 We also evaluate an expression in order to print its type, which
8318 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
8319 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
8320 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
8321 the evaluation compared to the EVAL_NORMAL, but is otherwise very
8322 similar.
8323
8324 Evaluating expressions is a little more complicated for Ada entities
8325 than it is for entities in languages such as C. The main reason for
8326 this is that Ada provides types whose definition might be dynamic.
8327 One example of such types is variant records. Or another example
8328 would be an array whose bounds can only be known at run time.
8329
8330 The following description is a general guide as to what should be
8331 done (and what should NOT be done) in order to evaluate an expression
8332 involving such types, and when. This does not cover how the semantic
8333 information is encoded by GNAT as this is covered separatly. For the
8334 document used as the reference for the GNAT encoding, see exp_dbug.ads
8335 in the GNAT sources.
8336
8337 Ideally, we should embed each part of this description next to its
8338 associated code. Unfortunately, the amount of code is so vast right
8339 now that it's hard to see whether the code handling a particular
8340 situation might be duplicated or not. One day, when the code is
8341 cleaned up, this guide might become redundant with the comments
8342 inserted in the code, and we might want to remove it.
8343
8344 2. ``Fixing'' an Entity, the Simple Case:
8345 -----------------------------------------
8346
8347 When evaluating Ada expressions, the tricky issue is that they may
8348 reference entities whose type contents and size are not statically
8349 known. Consider for instance a variant record:
8350
8351 type Rec (Empty : Boolean := True) is record
8352 case Empty is
8353 when True => null;
8354 when False => Value : Integer;
8355 end case;
8356 end record;
8357 Yes : Rec := (Empty => False, Value => 1);
8358 No : Rec := (empty => True);
8359
8360 The size and contents of that record depends on the value of the
8361 descriminant (Rec.Empty). At this point, neither the debugging
8362 information nor the associated type structure in GDB are able to
8363 express such dynamic types. So what the debugger does is to create
8364 "fixed" versions of the type that applies to the specific object.
8365 We also informally refer to this opperation as "fixing" an object,
8366 which means creating its associated fixed type.
8367
8368 Example: when printing the value of variable "Yes" above, its fixed
8369 type would look like this:
8370
8371 type Rec is record
8372 Empty : Boolean;
8373 Value : Integer;
8374 end record;
8375
8376 On the other hand, if we printed the value of "No", its fixed type
8377 would become:
8378
8379 type Rec is record
8380 Empty : Boolean;
8381 end record;
8382
8383 Things become a little more complicated when trying to fix an entity
8384 with a dynamic type that directly contains another dynamic type,
8385 such as an array of variant records, for instance. There are
8386 two possible cases: Arrays, and records.
8387
8388 3. ``Fixing'' Arrays:
8389 ---------------------
8390
8391 The type structure in GDB describes an array in terms of its bounds,
8392 and the type of its elements. By design, all elements in the array
8393 have the same type and we cannot represent an array of variant elements
8394 using the current type structure in GDB. When fixing an array,
8395 we cannot fix the array element, as we would potentially need one
8396 fixed type per element of the array. As a result, the best we can do
8397 when fixing an array is to produce an array whose bounds and size
8398 are correct (allowing us to read it from memory), but without having
8399 touched its element type. Fixing each element will be done later,
8400 when (if) necessary.
8401
8402 Arrays are a little simpler to handle than records, because the same
8403 amount of memory is allocated for each element of the array, even if
8404 the amount of space actually used by each element differs from element
8405 to element. Consider for instance the following array of type Rec:
8406
8407 type Rec_Array is array (1 .. 2) of Rec;
8408
8409 The actual amount of memory occupied by each element might be different
8410 from element to element, depending on the value of their discriminant.
8411 But the amount of space reserved for each element in the array remains
8412 fixed regardless. So we simply need to compute that size using
8413 the debugging information available, from which we can then determine
8414 the array size (we multiply the number of elements of the array by
8415 the size of each element).
8416
8417 The simplest case is when we have an array of a constrained element
8418 type. For instance, consider the following type declarations:
8419
8420 type Bounded_String (Max_Size : Integer) is
8421 Length : Integer;
8422 Buffer : String (1 .. Max_Size);
8423 end record;
8424 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
8425
8426 In this case, the compiler describes the array as an array of
8427 variable-size elements (identified by its XVS suffix) for which
8428 the size can be read in the parallel XVZ variable.
8429
8430 In the case of an array of an unconstrained element type, the compiler
8431 wraps the array element inside a private PAD type. This type should not
8432 be shown to the user, and must be "unwrap"'ed before printing. Note
8433 that we also use the adjective "aligner" in our code to designate
8434 these wrapper types.
8435
8436 In some cases, the size allocated for each element is statically
8437 known. In that case, the PAD type already has the correct size,
8438 and the array element should remain unfixed.
8439
8440 But there are cases when this size is not statically known.
8441 For instance, assuming that "Five" is an integer variable:
8442
8443 type Dynamic is array (1 .. Five) of Integer;
8444 type Wrapper (Has_Length : Boolean := False) is record
8445 Data : Dynamic;
8446 case Has_Length is
8447 when True => Length : Integer;
8448 when False => null;
8449 end case;
8450 end record;
8451 type Wrapper_Array is array (1 .. 2) of Wrapper;
8452
8453 Hello : Wrapper_Array := (others => (Has_Length => True,
8454 Data => (others => 17),
8455 Length => 1));
8456
8457
8458 The debugging info would describe variable Hello as being an
8459 array of a PAD type. The size of that PAD type is not statically
8460 known, but can be determined using a parallel XVZ variable.
8461 In that case, a copy of the PAD type with the correct size should
8462 be used for the fixed array.
8463
8464 3. ``Fixing'' record type objects:
8465 ----------------------------------
8466
8467 Things are slightly different from arrays in the case of dynamic
8468 record types. In this case, in order to compute the associated
8469 fixed type, we need to determine the size and offset of each of
8470 its components. This, in turn, requires us to compute the fixed
8471 type of each of these components.
8472
8473 Consider for instance the example:
8474
8475 type Bounded_String (Max_Size : Natural) is record
8476 Str : String (1 .. Max_Size);
8477 Length : Natural;
8478 end record;
8479 My_String : Bounded_String (Max_Size => 10);
8480
8481 In that case, the position of field "Length" depends on the size
8482 of field Str, which itself depends on the value of the Max_Size
8483 discriminant. In order to fix the type of variable My_String,
8484 we need to fix the type of field Str. Therefore, fixing a variant
8485 record requires us to fix each of its components.
8486
8487 However, if a component does not have a dynamic size, the component
8488 should not be fixed. In particular, fields that use a PAD type
8489 should not fixed. Here is an example where this might happen
8490 (assuming type Rec above):
8491
8492 type Container (Big : Boolean) is record
8493 First : Rec;
8494 After : Integer;
8495 case Big is
8496 when True => Another : Integer;
8497 when False => null;
8498 end case;
8499 end record;
8500 My_Container : Container := (Big => False,
8501 First => (Empty => True),
8502 After => 42);
8503
8504 In that example, the compiler creates a PAD type for component First,
8505 whose size is constant, and then positions the component After just
8506 right after it. The offset of component After is therefore constant
8507 in this case.
8508
8509 The debugger computes the position of each field based on an algorithm
8510 that uses, among other things, the actual position and size of the field
8511 preceding it. Let's now imagine that the user is trying to print
8512 the value of My_Container. If the type fixing was recursive, we would
8513 end up computing the offset of field After based on the size of the
8514 fixed version of field First. And since in our example First has
8515 only one actual field, the size of the fixed type is actually smaller
8516 than the amount of space allocated to that field, and thus we would
8517 compute the wrong offset of field After.
8518
8519 To make things more complicated, we need to watch out for dynamic
8520 components of variant records (identified by the ___XVL suffix in
8521 the component name). Even if the target type is a PAD type, the size
8522 of that type might not be statically known. So the PAD type needs
8523 to be unwrapped and the resulting type needs to be fixed. Otherwise,
8524 we might end up with the wrong size for our component. This can be
8525 observed with the following type declarations:
8526
8527 type Octal is new Integer range 0 .. 7;
8528 type Octal_Array is array (Positive range <>) of Octal;
8529 pragma Pack (Octal_Array);
8530
8531 type Octal_Buffer (Size : Positive) is record
8532 Buffer : Octal_Array (1 .. Size);
8533 Length : Integer;
8534 end record;
8535
8536 In that case, Buffer is a PAD type whose size is unset and needs
8537 to be computed by fixing the unwrapped type.
8538
8539 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
8540 ----------------------------------------------------------
8541
8542 Lastly, when should the sub-elements of an entity that remained unfixed
8543 thus far, be actually fixed?
8544
8545 The answer is: Only when referencing that element. For instance
8546 when selecting one component of a record, this specific component
8547 should be fixed at that point in time. Or when printing the value
8548 of a record, each component should be fixed before its value gets
8549 printed. Similarly for arrays, the element of the array should be
8550 fixed when printing each element of the array, or when extracting
8551 one element out of that array. On the other hand, fixing should
8552 not be performed on the elements when taking a slice of an array!
8553
8554 Note that one of the side-effects of miscomputing the offset and
8555 size of each field is that we end up also miscomputing the size
8556 of the containing type. This can have adverse results when computing
8557 the value of an entity. GDB fetches the value of an entity based
8558 on the size of its type, and thus a wrong size causes GDB to fetch
8559 the wrong amount of memory. In the case where the computed size is
8560 too small, GDB fetches too little data to print the value of our
8561 entiry. Results in this case as unpredicatble, as we usually read
8562 past the buffer containing the data =:-o. */
8563
8564 /* Implement the evaluate_exp routine in the exp_descriptor structure
8565 for the Ada language. */
8566
8567 static struct value *
8568 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
8569 int *pos, enum noside noside)
8570 {
8571 enum exp_opcode op;
8572 int tem;
8573 int pc;
8574 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
8575 struct type *type;
8576 int nargs, oplen;
8577 struct value **argvec;
8578
8579 pc = *pos;
8580 *pos += 1;
8581 op = exp->elts[pc].opcode;
8582
8583 switch (op)
8584 {
8585 default:
8586 *pos -= 1;
8587 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8588 arg1 = unwrap_value (arg1);
8589
8590 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
8591 then we need to perform the conversion manually, because
8592 evaluate_subexp_standard doesn't do it. This conversion is
8593 necessary in Ada because the different kinds of float/fixed
8594 types in Ada have different representations.
8595
8596 Similarly, we need to perform the conversion from OP_LONG
8597 ourselves. */
8598 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
8599 arg1 = ada_value_cast (expect_type, arg1, noside);
8600
8601 return arg1;
8602
8603 case OP_STRING:
8604 {
8605 struct value *result;
8606 *pos -= 1;
8607 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
8608 /* The result type will have code OP_STRING, bashed there from
8609 OP_ARRAY. Bash it back. */
8610 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
8611 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
8612 return result;
8613 }
8614
8615 case UNOP_CAST:
8616 (*pos) += 2;
8617 type = exp->elts[pc + 1].type;
8618 arg1 = evaluate_subexp (type, exp, pos, noside);
8619 if (noside == EVAL_SKIP)
8620 goto nosideret;
8621 arg1 = ada_value_cast (type, arg1, noside);
8622 return arg1;
8623
8624 case UNOP_QUAL:
8625 (*pos) += 2;
8626 type = exp->elts[pc + 1].type;
8627 return ada_evaluate_subexp (type, exp, pos, noside);
8628
8629 case BINOP_ASSIGN:
8630 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8631 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8632 {
8633 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
8634 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8635 return arg1;
8636 return ada_value_assign (arg1, arg1);
8637 }
8638 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
8639 except if the lhs of our assignment is a convenience variable.
8640 In the case of assigning to a convenience variable, the lhs
8641 should be exactly the result of the evaluation of the rhs. */
8642 type = value_type (arg1);
8643 if (VALUE_LVAL (arg1) == lval_internalvar)
8644 type = NULL;
8645 arg2 = evaluate_subexp (type, exp, pos, noside);
8646 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8647 return arg1;
8648 if (ada_is_fixed_point_type (value_type (arg1)))
8649 arg2 = cast_to_fixed (value_type (arg1), arg2);
8650 else if (ada_is_fixed_point_type (value_type (arg2)))
8651 error
8652 (_("Fixed-point values must be assigned to fixed-point variables"));
8653 else
8654 arg2 = coerce_for_assign (value_type (arg1), arg2);
8655 return ada_value_assign (arg1, arg2);
8656
8657 case BINOP_ADD:
8658 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8659 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8660 if (noside == EVAL_SKIP)
8661 goto nosideret;
8662 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8663 return (value_from_longest
8664 (value_type (arg1),
8665 value_as_long (arg1) + value_as_long (arg2)));
8666 if ((ada_is_fixed_point_type (value_type (arg1))
8667 || ada_is_fixed_point_type (value_type (arg2)))
8668 && value_type (arg1) != value_type (arg2))
8669 error (_("Operands of fixed-point addition must have the same type"));
8670 /* Do the addition, and cast the result to the type of the first
8671 argument. We cannot cast the result to a reference type, so if
8672 ARG1 is a reference type, find its underlying type. */
8673 type = value_type (arg1);
8674 while (TYPE_CODE (type) == TYPE_CODE_REF)
8675 type = TYPE_TARGET_TYPE (type);
8676 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8677 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
8678
8679 case BINOP_SUB:
8680 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8681 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8682 if (noside == EVAL_SKIP)
8683 goto nosideret;
8684 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8685 return (value_from_longest
8686 (value_type (arg1),
8687 value_as_long (arg1) - value_as_long (arg2)));
8688 if ((ada_is_fixed_point_type (value_type (arg1))
8689 || ada_is_fixed_point_type (value_type (arg2)))
8690 && value_type (arg1) != value_type (arg2))
8691 error (_("Operands of fixed-point subtraction must have the same type"));
8692 /* Do the substraction, and cast the result to the type of the first
8693 argument. We cannot cast the result to a reference type, so if
8694 ARG1 is a reference type, find its underlying type. */
8695 type = value_type (arg1);
8696 while (TYPE_CODE (type) == TYPE_CODE_REF)
8697 type = TYPE_TARGET_TYPE (type);
8698 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8699 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
8700
8701 case BINOP_MUL:
8702 case BINOP_DIV:
8703 case BINOP_REM:
8704 case BINOP_MOD:
8705 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8706 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8707 if (noside == EVAL_SKIP)
8708 goto nosideret;
8709 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8710 {
8711 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8712 return value_zero (value_type (arg1), not_lval);
8713 }
8714 else
8715 {
8716 type = builtin_type (exp->gdbarch)->builtin_double;
8717 if (ada_is_fixed_point_type (value_type (arg1)))
8718 arg1 = cast_from_fixed (type, arg1);
8719 if (ada_is_fixed_point_type (value_type (arg2)))
8720 arg2 = cast_from_fixed (type, arg2);
8721 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8722 return ada_value_binop (arg1, arg2, op);
8723 }
8724
8725 case BINOP_EQUAL:
8726 case BINOP_NOTEQUAL:
8727 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8728 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
8729 if (noside == EVAL_SKIP)
8730 goto nosideret;
8731 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8732 tem = 0;
8733 else
8734 {
8735 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8736 tem = ada_value_equal (arg1, arg2);
8737 }
8738 if (op == BINOP_NOTEQUAL)
8739 tem = !tem;
8740 type = language_bool_type (exp->language_defn, exp->gdbarch);
8741 return value_from_longest (type, (LONGEST) tem);
8742
8743 case UNOP_NEG:
8744 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8745 if (noside == EVAL_SKIP)
8746 goto nosideret;
8747 else if (ada_is_fixed_point_type (value_type (arg1)))
8748 return value_cast (value_type (arg1), value_neg (arg1));
8749 else
8750 {
8751 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
8752 return value_neg (arg1);
8753 }
8754
8755 case BINOP_LOGICAL_AND:
8756 case BINOP_LOGICAL_OR:
8757 case UNOP_LOGICAL_NOT:
8758 {
8759 struct value *val;
8760
8761 *pos -= 1;
8762 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8763 type = language_bool_type (exp->language_defn, exp->gdbarch);
8764 return value_cast (type, val);
8765 }
8766
8767 case BINOP_BITWISE_AND:
8768 case BINOP_BITWISE_IOR:
8769 case BINOP_BITWISE_XOR:
8770 {
8771 struct value *val;
8772
8773 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8774 *pos = pc;
8775 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8776
8777 return value_cast (value_type (arg1), val);
8778 }
8779
8780 case OP_VAR_VALUE:
8781 *pos -= 1;
8782
8783 if (noside == EVAL_SKIP)
8784 {
8785 *pos += 4;
8786 goto nosideret;
8787 }
8788 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
8789 /* Only encountered when an unresolved symbol occurs in a
8790 context other than a function call, in which case, it is
8791 invalid. */
8792 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8793 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
8794 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8795 {
8796 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
8797 /* Check to see if this is a tagged type. We also need to handle
8798 the case where the type is a reference to a tagged type, but
8799 we have to be careful to exclude pointers to tagged types.
8800 The latter should be shown as usual (as a pointer), whereas
8801 a reference should mostly be transparent to the user. */
8802 if (ada_is_tagged_type (type, 0)
8803 || (TYPE_CODE(type) == TYPE_CODE_REF
8804 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
8805 {
8806 /* Tagged types are a little special in the fact that the real
8807 type is dynamic and can only be determined by inspecting the
8808 object's tag. This means that we need to get the object's
8809 value first (EVAL_NORMAL) and then extract the actual object
8810 type from its tag.
8811
8812 Note that we cannot skip the final step where we extract
8813 the object type from its tag, because the EVAL_NORMAL phase
8814 results in dynamic components being resolved into fixed ones.
8815 This can cause problems when trying to print the type
8816 description of tagged types whose parent has a dynamic size:
8817 We use the type name of the "_parent" component in order
8818 to print the name of the ancestor type in the type description.
8819 If that component had a dynamic size, the resolution into
8820 a fixed type would result in the loss of that type name,
8821 thus preventing us from printing the name of the ancestor
8822 type in the type description. */
8823 struct type *actual_type;
8824
8825 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
8826 actual_type = type_from_tag (ada_value_tag (arg1));
8827 if (actual_type == NULL)
8828 /* If, for some reason, we were unable to determine
8829 the actual type from the tag, then use the static
8830 approximation that we just computed as a fallback.
8831 This can happen if the debugging information is
8832 incomplete, for instance. */
8833 actual_type = type;
8834
8835 return value_zero (actual_type, not_lval);
8836 }
8837
8838 *pos += 4;
8839 return value_zero
8840 (to_static_fixed_type
8841 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
8842 not_lval);
8843 }
8844 else
8845 {
8846 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8847 arg1 = unwrap_value (arg1);
8848 return ada_to_fixed_value (arg1);
8849 }
8850
8851 case OP_FUNCALL:
8852 (*pos) += 2;
8853
8854 /* Allocate arg vector, including space for the function to be
8855 called in argvec[0] and a terminating NULL. */
8856 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8857 argvec =
8858 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
8859
8860 if (exp->elts[*pos].opcode == OP_VAR_VALUE
8861 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
8862 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8863 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
8864 else
8865 {
8866 for (tem = 0; tem <= nargs; tem += 1)
8867 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8868 argvec[tem] = 0;
8869
8870 if (noside == EVAL_SKIP)
8871 goto nosideret;
8872 }
8873
8874 if (ada_is_constrained_packed_array_type
8875 (desc_base_type (value_type (argvec[0]))))
8876 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
8877 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8878 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
8879 /* This is a packed array that has already been fixed, and
8880 therefore already coerced to a simple array. Nothing further
8881 to do. */
8882 ;
8883 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
8884 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8885 && VALUE_LVAL (argvec[0]) == lval_memory))
8886 argvec[0] = value_addr (argvec[0]);
8887
8888 type = ada_check_typedef (value_type (argvec[0]));
8889 if (TYPE_CODE (type) == TYPE_CODE_PTR)
8890 {
8891 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
8892 {
8893 case TYPE_CODE_FUNC:
8894 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8895 break;
8896 case TYPE_CODE_ARRAY:
8897 break;
8898 case TYPE_CODE_STRUCT:
8899 if (noside != EVAL_AVOID_SIDE_EFFECTS)
8900 argvec[0] = ada_value_ind (argvec[0]);
8901 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8902 break;
8903 default:
8904 error (_("cannot subscript or call something of type `%s'"),
8905 ada_type_name (value_type (argvec[0])));
8906 break;
8907 }
8908 }
8909
8910 switch (TYPE_CODE (type))
8911 {
8912 case TYPE_CODE_FUNC:
8913 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8914 return allocate_value (TYPE_TARGET_TYPE (type));
8915 return call_function_by_hand (argvec[0], nargs, argvec + 1);
8916 case TYPE_CODE_STRUCT:
8917 {
8918 int arity;
8919
8920 arity = ada_array_arity (type);
8921 type = ada_array_element_type (type, nargs);
8922 if (type == NULL)
8923 error (_("cannot subscript or call a record"));
8924 if (arity != nargs)
8925 error (_("wrong number of subscripts; expecting %d"), arity);
8926 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8927 return value_zero (ada_aligned_type (type), lval_memory);
8928 return
8929 unwrap_value (ada_value_subscript
8930 (argvec[0], nargs, argvec + 1));
8931 }
8932 case TYPE_CODE_ARRAY:
8933 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8934 {
8935 type = ada_array_element_type (type, nargs);
8936 if (type == NULL)
8937 error (_("element type of array unknown"));
8938 else
8939 return value_zero (ada_aligned_type (type), lval_memory);
8940 }
8941 return
8942 unwrap_value (ada_value_subscript
8943 (ada_coerce_to_simple_array (argvec[0]),
8944 nargs, argvec + 1));
8945 case TYPE_CODE_PTR: /* Pointer to array */
8946 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
8947 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8948 {
8949 type = ada_array_element_type (type, nargs);
8950 if (type == NULL)
8951 error (_("element type of array unknown"));
8952 else
8953 return value_zero (ada_aligned_type (type), lval_memory);
8954 }
8955 return
8956 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
8957 nargs, argvec + 1));
8958
8959 default:
8960 error (_("Attempt to index or call something other than an "
8961 "array or function"));
8962 }
8963
8964 case TERNOP_SLICE:
8965 {
8966 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8967 struct value *low_bound_val =
8968 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8969 struct value *high_bound_val =
8970 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8971 LONGEST low_bound;
8972 LONGEST high_bound;
8973 low_bound_val = coerce_ref (low_bound_val);
8974 high_bound_val = coerce_ref (high_bound_val);
8975 low_bound = pos_atr (low_bound_val);
8976 high_bound = pos_atr (high_bound_val);
8977
8978 if (noside == EVAL_SKIP)
8979 goto nosideret;
8980
8981 /* If this is a reference to an aligner type, then remove all
8982 the aligners. */
8983 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8984 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
8985 TYPE_TARGET_TYPE (value_type (array)) =
8986 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
8987
8988 if (ada_is_constrained_packed_array_type (value_type (array)))
8989 error (_("cannot slice a packed array"));
8990
8991 /* If this is a reference to an array or an array lvalue,
8992 convert to a pointer. */
8993 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8994 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
8995 && VALUE_LVAL (array) == lval_memory))
8996 array = value_addr (array);
8997
8998 if (noside == EVAL_AVOID_SIDE_EFFECTS
8999 && ada_is_array_descriptor_type (ada_check_typedef
9000 (value_type (array))))
9001 return empty_array (ada_type_of_array (array, 0), low_bound);
9002
9003 array = ada_coerce_to_simple_array_ptr (array);
9004
9005 /* If we have more than one level of pointer indirection,
9006 dereference the value until we get only one level. */
9007 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
9008 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
9009 == TYPE_CODE_PTR))
9010 array = value_ind (array);
9011
9012 /* Make sure we really do have an array type before going further,
9013 to avoid a SEGV when trying to get the index type or the target
9014 type later down the road if the debug info generated by
9015 the compiler is incorrect or incomplete. */
9016 if (!ada_is_simple_array_type (value_type (array)))
9017 error (_("cannot take slice of non-array"));
9018
9019 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
9020 {
9021 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
9022 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
9023 low_bound);
9024 else
9025 {
9026 struct type *arr_type0 =
9027 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
9028 NULL, 1);
9029 return ada_value_slice_from_ptr (array, arr_type0,
9030 longest_to_int (low_bound),
9031 longest_to_int (high_bound));
9032 }
9033 }
9034 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9035 return array;
9036 else if (high_bound < low_bound)
9037 return empty_array (value_type (array), low_bound);
9038 else
9039 return ada_value_slice (array, longest_to_int (low_bound),
9040 longest_to_int (high_bound));
9041 }
9042
9043 case UNOP_IN_RANGE:
9044 (*pos) += 2;
9045 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9046 type = check_typedef (exp->elts[pc + 1].type);
9047
9048 if (noside == EVAL_SKIP)
9049 goto nosideret;
9050
9051 switch (TYPE_CODE (type))
9052 {
9053 default:
9054 lim_warning (_("Membership test incompletely implemented; "
9055 "always returns true"));
9056 type = language_bool_type (exp->language_defn, exp->gdbarch);
9057 return value_from_longest (type, (LONGEST) 1);
9058
9059 case TYPE_CODE_RANGE:
9060 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
9061 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
9062 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9063 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9064 type = language_bool_type (exp->language_defn, exp->gdbarch);
9065 return
9066 value_from_longest (type,
9067 (value_less (arg1, arg3)
9068 || value_equal (arg1, arg3))
9069 && (value_less (arg2, arg1)
9070 || value_equal (arg2, arg1)));
9071 }
9072
9073 case BINOP_IN_BOUNDS:
9074 (*pos) += 2;
9075 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9076 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9077
9078 if (noside == EVAL_SKIP)
9079 goto nosideret;
9080
9081 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9082 {
9083 type = language_bool_type (exp->language_defn, exp->gdbarch);
9084 return value_zero (type, not_lval);
9085 }
9086
9087 tem = longest_to_int (exp->elts[pc + 1].longconst);
9088
9089 type = ada_index_type (value_type (arg2), tem, "range");
9090 if (!type)
9091 type = value_type (arg1);
9092
9093 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
9094 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
9095
9096 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9097 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9098 type = language_bool_type (exp->language_defn, exp->gdbarch);
9099 return
9100 value_from_longest (type,
9101 (value_less (arg1, arg3)
9102 || value_equal (arg1, arg3))
9103 && (value_less (arg2, arg1)
9104 || value_equal (arg2, arg1)));
9105
9106 case TERNOP_IN_RANGE:
9107 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9108 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9109 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9110
9111 if (noside == EVAL_SKIP)
9112 goto nosideret;
9113
9114 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9115 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9116 type = language_bool_type (exp->language_defn, exp->gdbarch);
9117 return
9118 value_from_longest (type,
9119 (value_less (arg1, arg3)
9120 || value_equal (arg1, arg3))
9121 && (value_less (arg2, arg1)
9122 || value_equal (arg2, arg1)));
9123
9124 case OP_ATR_FIRST:
9125 case OP_ATR_LAST:
9126 case OP_ATR_LENGTH:
9127 {
9128 struct type *type_arg;
9129 if (exp->elts[*pos].opcode == OP_TYPE)
9130 {
9131 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9132 arg1 = NULL;
9133 type_arg = check_typedef (exp->elts[pc + 2].type);
9134 }
9135 else
9136 {
9137 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9138 type_arg = NULL;
9139 }
9140
9141 if (exp->elts[*pos].opcode != OP_LONG)
9142 error (_("Invalid operand to '%s"), ada_attribute_name (op));
9143 tem = longest_to_int (exp->elts[*pos + 2].longconst);
9144 *pos += 4;
9145
9146 if (noside == EVAL_SKIP)
9147 goto nosideret;
9148
9149 if (type_arg == NULL)
9150 {
9151 arg1 = ada_coerce_ref (arg1);
9152
9153 if (ada_is_constrained_packed_array_type (value_type (arg1)))
9154 arg1 = ada_coerce_to_simple_array (arg1);
9155
9156 type = ada_index_type (value_type (arg1), tem,
9157 ada_attribute_name (op));
9158 if (type == NULL)
9159 type = builtin_type (exp->gdbarch)->builtin_int;
9160
9161 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9162 return allocate_value (type);
9163
9164 switch (op)
9165 {
9166 default: /* Should never happen. */
9167 error (_("unexpected attribute encountered"));
9168 case OP_ATR_FIRST:
9169 return value_from_longest
9170 (type, ada_array_bound (arg1, tem, 0));
9171 case OP_ATR_LAST:
9172 return value_from_longest
9173 (type, ada_array_bound (arg1, tem, 1));
9174 case OP_ATR_LENGTH:
9175 return value_from_longest
9176 (type, ada_array_length (arg1, tem));
9177 }
9178 }
9179 else if (discrete_type_p (type_arg))
9180 {
9181 struct type *range_type;
9182 char *name = ada_type_name (type_arg);
9183 range_type = NULL;
9184 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
9185 range_type = to_fixed_range_type (name, NULL, type_arg);
9186 if (range_type == NULL)
9187 range_type = type_arg;
9188 switch (op)
9189 {
9190 default:
9191 error (_("unexpected attribute encountered"));
9192 case OP_ATR_FIRST:
9193 return value_from_longest
9194 (range_type, ada_discrete_type_low_bound (range_type));
9195 case OP_ATR_LAST:
9196 return value_from_longest
9197 (range_type, ada_discrete_type_high_bound (range_type));
9198 case OP_ATR_LENGTH:
9199 error (_("the 'length attribute applies only to array types"));
9200 }
9201 }
9202 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
9203 error (_("unimplemented type attribute"));
9204 else
9205 {
9206 LONGEST low, high;
9207
9208 if (ada_is_constrained_packed_array_type (type_arg))
9209 type_arg = decode_constrained_packed_array_type (type_arg);
9210
9211 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
9212 if (type == NULL)
9213 type = builtin_type (exp->gdbarch)->builtin_int;
9214
9215 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9216 return allocate_value (type);
9217
9218 switch (op)
9219 {
9220 default:
9221 error (_("unexpected attribute encountered"));
9222 case OP_ATR_FIRST:
9223 low = ada_array_bound_from_type (type_arg, tem, 0);
9224 return value_from_longest (type, low);
9225 case OP_ATR_LAST:
9226 high = ada_array_bound_from_type (type_arg, tem, 1);
9227 return value_from_longest (type, high);
9228 case OP_ATR_LENGTH:
9229 low = ada_array_bound_from_type (type_arg, tem, 0);
9230 high = ada_array_bound_from_type (type_arg, tem, 1);
9231 return value_from_longest (type, high - low + 1);
9232 }
9233 }
9234 }
9235
9236 case OP_ATR_TAG:
9237 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9238 if (noside == EVAL_SKIP)
9239 goto nosideret;
9240
9241 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9242 return value_zero (ada_tag_type (arg1), not_lval);
9243
9244 return ada_value_tag (arg1);
9245
9246 case OP_ATR_MIN:
9247 case OP_ATR_MAX:
9248 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9249 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9250 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9251 if (noside == EVAL_SKIP)
9252 goto nosideret;
9253 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9254 return value_zero (value_type (arg1), not_lval);
9255 else
9256 {
9257 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9258 return value_binop (arg1, arg2,
9259 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9260 }
9261
9262 case OP_ATR_MODULUS:
9263 {
9264 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
9265 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9266
9267 if (noside == EVAL_SKIP)
9268 goto nosideret;
9269
9270 if (!ada_is_modular_type (type_arg))
9271 error (_("'modulus must be applied to modular type"));
9272
9273 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9274 ada_modulus (type_arg));
9275 }
9276
9277
9278 case OP_ATR_POS:
9279 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9280 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9281 if (noside == EVAL_SKIP)
9282 goto nosideret;
9283 type = builtin_type (exp->gdbarch)->builtin_int;
9284 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9285 return value_zero (type, not_lval);
9286 else
9287 return value_pos_atr (type, arg1);
9288
9289 case OP_ATR_SIZE:
9290 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9291 type = value_type (arg1);
9292
9293 /* If the argument is a reference, then dereference its type, since
9294 the user is really asking for the size of the actual object,
9295 not the size of the pointer. */
9296 if (TYPE_CODE (type) == TYPE_CODE_REF)
9297 type = TYPE_TARGET_TYPE (type);
9298
9299 if (noside == EVAL_SKIP)
9300 goto nosideret;
9301 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9302 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
9303 else
9304 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
9305 TARGET_CHAR_BIT * TYPE_LENGTH (type));
9306
9307 case OP_ATR_VAL:
9308 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9309 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9310 type = exp->elts[pc + 2].type;
9311 if (noside == EVAL_SKIP)
9312 goto nosideret;
9313 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9314 return value_zero (type, not_lval);
9315 else
9316 return value_val_atr (type, arg1);
9317
9318 case BINOP_EXP:
9319 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9320 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9321 if (noside == EVAL_SKIP)
9322 goto nosideret;
9323 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9324 return value_zero (value_type (arg1), not_lval);
9325 else
9326 {
9327 /* For integer exponentiation operations,
9328 only promote the first argument. */
9329 if (is_integral_type (value_type (arg2)))
9330 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9331 else
9332 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9333
9334 return value_binop (arg1, arg2, op);
9335 }
9336
9337 case UNOP_PLUS:
9338 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9339 if (noside == EVAL_SKIP)
9340 goto nosideret;
9341 else
9342 return arg1;
9343
9344 case UNOP_ABS:
9345 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9346 if (noside == EVAL_SKIP)
9347 goto nosideret;
9348 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9349 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
9350 return value_neg (arg1);
9351 else
9352 return arg1;
9353
9354 case UNOP_IND:
9355 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9356 if (noside == EVAL_SKIP)
9357 goto nosideret;
9358 type = ada_check_typedef (value_type (arg1));
9359 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9360 {
9361 if (ada_is_array_descriptor_type (type))
9362 /* GDB allows dereferencing GNAT array descriptors. */
9363 {
9364 struct type *arrType = ada_type_of_array (arg1, 0);
9365 if (arrType == NULL)
9366 error (_("Attempt to dereference null array pointer."));
9367 return value_at_lazy (arrType, 0);
9368 }
9369 else if (TYPE_CODE (type) == TYPE_CODE_PTR
9370 || TYPE_CODE (type) == TYPE_CODE_REF
9371 /* In C you can dereference an array to get the 1st elt. */
9372 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
9373 {
9374 type = to_static_fixed_type
9375 (ada_aligned_type
9376 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
9377 check_size (type);
9378 return value_zero (type, lval_memory);
9379 }
9380 else if (TYPE_CODE (type) == TYPE_CODE_INT)
9381 {
9382 /* GDB allows dereferencing an int. */
9383 if (expect_type == NULL)
9384 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9385 lval_memory);
9386 else
9387 {
9388 expect_type =
9389 to_static_fixed_type (ada_aligned_type (expect_type));
9390 return value_zero (expect_type, lval_memory);
9391 }
9392 }
9393 else
9394 error (_("Attempt to take contents of a non-pointer value."));
9395 }
9396 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
9397 type = ada_check_typedef (value_type (arg1));
9398
9399 if (TYPE_CODE (type) == TYPE_CODE_INT)
9400 /* GDB allows dereferencing an int. If we were given
9401 the expect_type, then use that as the target type.
9402 Otherwise, assume that the target type is an int. */
9403 {
9404 if (expect_type != NULL)
9405 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
9406 arg1));
9407 else
9408 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
9409 (CORE_ADDR) value_as_address (arg1));
9410 }
9411
9412 if (ada_is_array_descriptor_type (type))
9413 /* GDB allows dereferencing GNAT array descriptors. */
9414 return ada_coerce_to_simple_array (arg1);
9415 else
9416 return ada_value_ind (arg1);
9417
9418 case STRUCTOP_STRUCT:
9419 tem = longest_to_int (exp->elts[pc + 1].longconst);
9420 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
9421 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9422 if (noside == EVAL_SKIP)
9423 goto nosideret;
9424 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9425 {
9426 struct type *type1 = value_type (arg1);
9427 if (ada_is_tagged_type (type1, 1))
9428 {
9429 type = ada_lookup_struct_elt_type (type1,
9430 &exp->elts[pc + 2].string,
9431 1, 1, NULL);
9432 if (type == NULL)
9433 /* In this case, we assume that the field COULD exist
9434 in some extension of the type. Return an object of
9435 "type" void, which will match any formal
9436 (see ada_type_match). */
9437 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
9438 lval_memory);
9439 }
9440 else
9441 type =
9442 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
9443 0, NULL);
9444
9445 return value_zero (ada_aligned_type (type), lval_memory);
9446 }
9447 else
9448 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
9449 arg1 = unwrap_value (arg1);
9450 return ada_to_fixed_value (arg1);
9451
9452 case OP_TYPE:
9453 /* The value is not supposed to be used. This is here to make it
9454 easier to accommodate expressions that contain types. */
9455 (*pos) += 2;
9456 if (noside == EVAL_SKIP)
9457 goto nosideret;
9458 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9459 return allocate_value (exp->elts[pc + 1].type);
9460 else
9461 error (_("Attempt to use a type name as an expression"));
9462
9463 case OP_AGGREGATE:
9464 case OP_CHOICES:
9465 case OP_OTHERS:
9466 case OP_DISCRETE_RANGE:
9467 case OP_POSITIONAL:
9468 case OP_NAME:
9469 if (noside == EVAL_NORMAL)
9470 switch (op)
9471 {
9472 case OP_NAME:
9473 error (_("Undefined name, ambiguous name, or renaming used in "
9474 "component association: %s."), &exp->elts[pc+2].string);
9475 case OP_AGGREGATE:
9476 error (_("Aggregates only allowed on the right of an assignment"));
9477 default:
9478 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
9479 }
9480
9481 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9482 *pos += oplen - 1;
9483 for (tem = 0; tem < nargs; tem += 1)
9484 ada_evaluate_subexp (NULL, exp, pos, noside);
9485 goto nosideret;
9486 }
9487
9488 nosideret:
9489 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
9490 }
9491 \f
9492
9493 /* Fixed point */
9494
9495 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
9496 type name that encodes the 'small and 'delta information.
9497 Otherwise, return NULL. */
9498
9499 static const char *
9500 fixed_type_info (struct type *type)
9501 {
9502 const char *name = ada_type_name (type);
9503 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
9504
9505 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
9506 {
9507 const char *tail = strstr (name, "___XF_");
9508 if (tail == NULL)
9509 return NULL;
9510 else
9511 return tail + 5;
9512 }
9513 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
9514 return fixed_type_info (TYPE_TARGET_TYPE (type));
9515 else
9516 return NULL;
9517 }
9518
9519 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
9520
9521 int
9522 ada_is_fixed_point_type (struct type *type)
9523 {
9524 return fixed_type_info (type) != NULL;
9525 }
9526
9527 /* Return non-zero iff TYPE represents a System.Address type. */
9528
9529 int
9530 ada_is_system_address_type (struct type *type)
9531 {
9532 return (TYPE_NAME (type)
9533 && strcmp (TYPE_NAME (type), "system__address") == 0);
9534 }
9535
9536 /* Assuming that TYPE is the representation of an Ada fixed-point
9537 type, return its delta, or -1 if the type is malformed and the
9538 delta cannot be determined. */
9539
9540 DOUBLEST
9541 ada_delta (struct type *type)
9542 {
9543 const char *encoding = fixed_type_info (type);
9544 DOUBLEST num, den;
9545
9546 /* Strictly speaking, num and den are encoded as integer. However,
9547 they may not fit into a long, and they will have to be converted
9548 to DOUBLEST anyway. So scan them as DOUBLEST. */
9549 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9550 &num, &den) < 2)
9551 return -1.0;
9552 else
9553 return num / den;
9554 }
9555
9556 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
9557 factor ('SMALL value) associated with the type. */
9558
9559 static DOUBLEST
9560 scaling_factor (struct type *type)
9561 {
9562 const char *encoding = fixed_type_info (type);
9563 DOUBLEST num0, den0, num1, den1;
9564 int n;
9565
9566 /* Strictly speaking, num's and den's are encoded as integer. However,
9567 they may not fit into a long, and they will have to be converted
9568 to DOUBLEST anyway. So scan them as DOUBLEST. */
9569 n = sscanf (encoding,
9570 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
9571 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9572 &num0, &den0, &num1, &den1);
9573
9574 if (n < 2)
9575 return 1.0;
9576 else if (n == 4)
9577 return num1 / den1;
9578 else
9579 return num0 / den0;
9580 }
9581
9582
9583 /* Assuming that X is the representation of a value of fixed-point
9584 type TYPE, return its floating-point equivalent. */
9585
9586 DOUBLEST
9587 ada_fixed_to_float (struct type *type, LONGEST x)
9588 {
9589 return (DOUBLEST) x *scaling_factor (type);
9590 }
9591
9592 /* The representation of a fixed-point value of type TYPE
9593 corresponding to the value X. */
9594
9595 LONGEST
9596 ada_float_to_fixed (struct type *type, DOUBLEST x)
9597 {
9598 return (LONGEST) (x / scaling_factor (type) + 0.5);
9599 }
9600
9601 \f
9602
9603 /* Range types */
9604
9605 /* Scan STR beginning at position K for a discriminant name, and
9606 return the value of that discriminant field of DVAL in *PX. If
9607 PNEW_K is not null, put the position of the character beyond the
9608 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
9609 not alter *PX and *PNEW_K if unsuccessful. */
9610
9611 static int
9612 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
9613 int *pnew_k)
9614 {
9615 static char *bound_buffer = NULL;
9616 static size_t bound_buffer_len = 0;
9617 char *bound;
9618 char *pend;
9619 struct value *bound_val;
9620
9621 if (dval == NULL || str == NULL || str[k] == '\0')
9622 return 0;
9623
9624 pend = strstr (str + k, "__");
9625 if (pend == NULL)
9626 {
9627 bound = str + k;
9628 k += strlen (bound);
9629 }
9630 else
9631 {
9632 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
9633 bound = bound_buffer;
9634 strncpy (bound_buffer, str + k, pend - (str + k));
9635 bound[pend - (str + k)] = '\0';
9636 k = pend - str;
9637 }
9638
9639 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
9640 if (bound_val == NULL)
9641 return 0;
9642
9643 *px = value_as_long (bound_val);
9644 if (pnew_k != NULL)
9645 *pnew_k = k;
9646 return 1;
9647 }
9648
9649 /* Value of variable named NAME in the current environment. If
9650 no such variable found, then if ERR_MSG is null, returns 0, and
9651 otherwise causes an error with message ERR_MSG. */
9652
9653 static struct value *
9654 get_var_value (char *name, char *err_msg)
9655 {
9656 struct ada_symbol_info *syms;
9657 int nsyms;
9658
9659 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
9660 &syms);
9661
9662 if (nsyms != 1)
9663 {
9664 if (err_msg == NULL)
9665 return 0;
9666 else
9667 error (("%s"), err_msg);
9668 }
9669
9670 return value_of_variable (syms[0].sym, syms[0].block);
9671 }
9672
9673 /* Value of integer variable named NAME in the current environment. If
9674 no such variable found, returns 0, and sets *FLAG to 0. If
9675 successful, sets *FLAG to 1. */
9676
9677 LONGEST
9678 get_int_var_value (char *name, int *flag)
9679 {
9680 struct value *var_val = get_var_value (name, 0);
9681
9682 if (var_val == 0)
9683 {
9684 if (flag != NULL)
9685 *flag = 0;
9686 return 0;
9687 }
9688 else
9689 {
9690 if (flag != NULL)
9691 *flag = 1;
9692 return value_as_long (var_val);
9693 }
9694 }
9695
9696
9697 /* Return a range type whose base type is that of the range type named
9698 NAME in the current environment, and whose bounds are calculated
9699 from NAME according to the GNAT range encoding conventions.
9700 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
9701 corresponding range type from debug information; fall back to using it
9702 if symbol lookup fails. If a new type must be created, allocate it
9703 like ORIG_TYPE was. The bounds information, in general, is encoded
9704 in NAME, the base type given in the named range type. */
9705
9706 static struct type *
9707 to_fixed_range_type (char *name, struct value *dval, struct type *orig_type)
9708 {
9709 struct type *raw_type = ada_find_any_type (name);
9710 struct type *base_type;
9711 char *subtype_info;
9712
9713 /* Fall back to the original type if symbol lookup failed. */
9714 if (raw_type == NULL)
9715 raw_type = orig_type;
9716
9717 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
9718 base_type = TYPE_TARGET_TYPE (raw_type);
9719 else
9720 base_type = raw_type;
9721
9722 subtype_info = strstr (name, "___XD");
9723 if (subtype_info == NULL)
9724 {
9725 LONGEST L = ada_discrete_type_low_bound (raw_type);
9726 LONGEST U = ada_discrete_type_high_bound (raw_type);
9727 if (L < INT_MIN || U > INT_MAX)
9728 return raw_type;
9729 else
9730 return create_range_type (alloc_type_copy (orig_type), raw_type,
9731 ada_discrete_type_low_bound (raw_type),
9732 ada_discrete_type_high_bound (raw_type));
9733 }
9734 else
9735 {
9736 static char *name_buf = NULL;
9737 static size_t name_len = 0;
9738 int prefix_len = subtype_info - name;
9739 LONGEST L, U;
9740 struct type *type;
9741 char *bounds_str;
9742 int n;
9743
9744 GROW_VECT (name_buf, name_len, prefix_len + 5);
9745 strncpy (name_buf, name, prefix_len);
9746 name_buf[prefix_len] = '\0';
9747
9748 subtype_info += 5;
9749 bounds_str = strchr (subtype_info, '_');
9750 n = 1;
9751
9752 if (*subtype_info == 'L')
9753 {
9754 if (!ada_scan_number (bounds_str, n, &L, &n)
9755 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
9756 return raw_type;
9757 if (bounds_str[n] == '_')
9758 n += 2;
9759 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
9760 n += 1;
9761 subtype_info += 1;
9762 }
9763 else
9764 {
9765 int ok;
9766 strcpy (name_buf + prefix_len, "___L");
9767 L = get_int_var_value (name_buf, &ok);
9768 if (!ok)
9769 {
9770 lim_warning (_("Unknown lower bound, using 1."));
9771 L = 1;
9772 }
9773 }
9774
9775 if (*subtype_info == 'U')
9776 {
9777 if (!ada_scan_number (bounds_str, n, &U, &n)
9778 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
9779 return raw_type;
9780 }
9781 else
9782 {
9783 int ok;
9784 strcpy (name_buf + prefix_len, "___U");
9785 U = get_int_var_value (name_buf, &ok);
9786 if (!ok)
9787 {
9788 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
9789 U = L;
9790 }
9791 }
9792
9793 type = create_range_type (alloc_type_copy (orig_type), base_type, L, U);
9794 TYPE_NAME (type) = name;
9795 return type;
9796 }
9797 }
9798
9799 /* True iff NAME is the name of a range type. */
9800
9801 int
9802 ada_is_range_type_name (const char *name)
9803 {
9804 return (name != NULL && strstr (name, "___XD"));
9805 }
9806 \f
9807
9808 /* Modular types */
9809
9810 /* True iff TYPE is an Ada modular type. */
9811
9812 int
9813 ada_is_modular_type (struct type *type)
9814 {
9815 struct type *subranged_type = base_type (type);
9816
9817 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
9818 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
9819 && TYPE_UNSIGNED (subranged_type));
9820 }
9821
9822 /* Try to determine the lower and upper bounds of the given modular type
9823 using the type name only. Return non-zero and set L and U as the lower
9824 and upper bounds (respectively) if successful. */
9825
9826 int
9827 ada_modulus_from_name (struct type *type, ULONGEST *modulus)
9828 {
9829 char *name = ada_type_name (type);
9830 char *suffix;
9831 int k;
9832 LONGEST U;
9833
9834 if (name == NULL)
9835 return 0;
9836
9837 /* Discrete type bounds are encoded using an __XD suffix. In our case,
9838 we are looking for static bounds, which means an __XDLU suffix.
9839 Moreover, we know that the lower bound of modular types is always
9840 zero, so the actual suffix should start with "__XDLU_0__", and
9841 then be followed by the upper bound value. */
9842 suffix = strstr (name, "__XDLU_0__");
9843 if (suffix == NULL)
9844 return 0;
9845 k = 10;
9846 if (!ada_scan_number (suffix, k, &U, NULL))
9847 return 0;
9848
9849 *modulus = (ULONGEST) U + 1;
9850 return 1;
9851 }
9852
9853 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
9854
9855 ULONGEST
9856 ada_modulus (struct type *type)
9857 {
9858 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
9859 }
9860 \f
9861
9862 /* Ada exception catchpoint support:
9863 ---------------------------------
9864
9865 We support 3 kinds of exception catchpoints:
9866 . catchpoints on Ada exceptions
9867 . catchpoints on unhandled Ada exceptions
9868 . catchpoints on failed assertions
9869
9870 Exceptions raised during failed assertions, or unhandled exceptions
9871 could perfectly be caught with the general catchpoint on Ada exceptions.
9872 However, we can easily differentiate these two special cases, and having
9873 the option to distinguish these two cases from the rest can be useful
9874 to zero-in on certain situations.
9875
9876 Exception catchpoints are a specialized form of breakpoint,
9877 since they rely on inserting breakpoints inside known routines
9878 of the GNAT runtime. The implementation therefore uses a standard
9879 breakpoint structure of the BP_BREAKPOINT type, but with its own set
9880 of breakpoint_ops.
9881
9882 Support in the runtime for exception catchpoints have been changed
9883 a few times already, and these changes affect the implementation
9884 of these catchpoints. In order to be able to support several
9885 variants of the runtime, we use a sniffer that will determine
9886 the runtime variant used by the program being debugged.
9887
9888 At this time, we do not support the use of conditions on Ada exception
9889 catchpoints. The COND and COND_STRING fields are therefore set
9890 to NULL (most of the time, see below).
9891
9892 Conditions where EXP_STRING, COND, and COND_STRING are used:
9893
9894 When a user specifies the name of a specific exception in the case
9895 of catchpoints on Ada exceptions, we store the name of that exception
9896 in the EXP_STRING. We then translate this request into an actual
9897 condition stored in COND_STRING, and then parse it into an expression
9898 stored in COND. */
9899
9900 /* The different types of catchpoints that we introduced for catching
9901 Ada exceptions. */
9902
9903 enum exception_catchpoint_kind
9904 {
9905 ex_catch_exception,
9906 ex_catch_exception_unhandled,
9907 ex_catch_assert
9908 };
9909
9910 /* Ada's standard exceptions. */
9911
9912 static char *standard_exc[] = {
9913 "constraint_error",
9914 "program_error",
9915 "storage_error",
9916 "tasking_error"
9917 };
9918
9919 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
9920
9921 /* A structure that describes how to support exception catchpoints
9922 for a given executable. */
9923
9924 struct exception_support_info
9925 {
9926 /* The name of the symbol to break on in order to insert
9927 a catchpoint on exceptions. */
9928 const char *catch_exception_sym;
9929
9930 /* The name of the symbol to break on in order to insert
9931 a catchpoint on unhandled exceptions. */
9932 const char *catch_exception_unhandled_sym;
9933
9934 /* The name of the symbol to break on in order to insert
9935 a catchpoint on failed assertions. */
9936 const char *catch_assert_sym;
9937
9938 /* Assuming that the inferior just triggered an unhandled exception
9939 catchpoint, this function is responsible for returning the address
9940 in inferior memory where the name of that exception is stored.
9941 Return zero if the address could not be computed. */
9942 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
9943 };
9944
9945 static CORE_ADDR ada_unhandled_exception_name_addr (void);
9946 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
9947
9948 /* The following exception support info structure describes how to
9949 implement exception catchpoints with the latest version of the
9950 Ada runtime (as of 2007-03-06). */
9951
9952 static const struct exception_support_info default_exception_support_info =
9953 {
9954 "__gnat_debug_raise_exception", /* catch_exception_sym */
9955 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9956 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9957 ada_unhandled_exception_name_addr
9958 };
9959
9960 /* The following exception support info structure describes how to
9961 implement exception catchpoints with a slightly older version
9962 of the Ada runtime. */
9963
9964 static const struct exception_support_info exception_support_info_fallback =
9965 {
9966 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
9967 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9968 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9969 ada_unhandled_exception_name_addr_from_raise
9970 };
9971
9972 /* For each executable, we sniff which exception info structure to use
9973 and cache it in the following global variable. */
9974
9975 static const struct exception_support_info *exception_info = NULL;
9976
9977 /* Inspect the Ada runtime and determine which exception info structure
9978 should be used to provide support for exception catchpoints.
9979
9980 This function will always set exception_info, or raise an error. */
9981
9982 static void
9983 ada_exception_support_info_sniffer (void)
9984 {
9985 struct symbol *sym;
9986
9987 /* If the exception info is already known, then no need to recompute it. */
9988 if (exception_info != NULL)
9989 return;
9990
9991 /* Check the latest (default) exception support info. */
9992 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
9993 NULL, VAR_DOMAIN);
9994 if (sym != NULL)
9995 {
9996 exception_info = &default_exception_support_info;
9997 return;
9998 }
9999
10000 /* Try our fallback exception suport info. */
10001 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
10002 NULL, VAR_DOMAIN);
10003 if (sym != NULL)
10004 {
10005 exception_info = &exception_support_info_fallback;
10006 return;
10007 }
10008
10009 /* Sometimes, it is normal for us to not be able to find the routine
10010 we are looking for. This happens when the program is linked with
10011 the shared version of the GNAT runtime, and the program has not been
10012 started yet. Inform the user of these two possible causes if
10013 applicable. */
10014
10015 if (ada_update_initial_language (language_unknown) != language_ada)
10016 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
10017
10018 /* If the symbol does not exist, then check that the program is
10019 already started, to make sure that shared libraries have been
10020 loaded. If it is not started, this may mean that the symbol is
10021 in a shared library. */
10022
10023 if (ptid_get_pid (inferior_ptid) == 0)
10024 error (_("Unable to insert catchpoint. Try to start the program first."));
10025
10026 /* At this point, we know that we are debugging an Ada program and
10027 that the inferior has been started, but we still are not able to
10028 find the run-time symbols. That can mean that we are in
10029 configurable run time mode, or that a-except as been optimized
10030 out by the linker... In any case, at this point it is not worth
10031 supporting this feature. */
10032
10033 error (_("Cannot insert catchpoints in this configuration."));
10034 }
10035
10036 /* An observer of "executable_changed" events.
10037 Its role is to clear certain cached values that need to be recomputed
10038 each time a new executable is loaded by GDB. */
10039
10040 static void
10041 ada_executable_changed_observer (void)
10042 {
10043 /* If the executable changed, then it is possible that the Ada runtime
10044 is different. So we need to invalidate the exception support info
10045 cache. */
10046 exception_info = NULL;
10047 }
10048
10049 /* True iff FRAME is very likely to be that of a function that is
10050 part of the runtime system. This is all very heuristic, but is
10051 intended to be used as advice as to what frames are uninteresting
10052 to most users. */
10053
10054 static int
10055 is_known_support_routine (struct frame_info *frame)
10056 {
10057 struct symtab_and_line sal;
10058 char *func_name;
10059 enum language func_lang;
10060 int i;
10061
10062 /* If this code does not have any debugging information (no symtab),
10063 This cannot be any user code. */
10064
10065 find_frame_sal (frame, &sal);
10066 if (sal.symtab == NULL)
10067 return 1;
10068
10069 /* If there is a symtab, but the associated source file cannot be
10070 located, then assume this is not user code: Selecting a frame
10071 for which we cannot display the code would not be very helpful
10072 for the user. This should also take care of case such as VxWorks
10073 where the kernel has some debugging info provided for a few units. */
10074
10075 if (symtab_to_fullname (sal.symtab) == NULL)
10076 return 1;
10077
10078 /* Check the unit filename againt the Ada runtime file naming.
10079 We also check the name of the objfile against the name of some
10080 known system libraries that sometimes come with debugging info
10081 too. */
10082
10083 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
10084 {
10085 re_comp (known_runtime_file_name_patterns[i]);
10086 if (re_exec (sal.symtab->filename))
10087 return 1;
10088 if (sal.symtab->objfile != NULL
10089 && re_exec (sal.symtab->objfile->name))
10090 return 1;
10091 }
10092
10093 /* Check whether the function is a GNAT-generated entity. */
10094
10095 find_frame_funname (frame, &func_name, &func_lang);
10096 if (func_name == NULL)
10097 return 1;
10098
10099 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
10100 {
10101 re_comp (known_auxiliary_function_name_patterns[i]);
10102 if (re_exec (func_name))
10103 return 1;
10104 }
10105
10106 return 0;
10107 }
10108
10109 /* Find the first frame that contains debugging information and that is not
10110 part of the Ada run-time, starting from FI and moving upward. */
10111
10112 void
10113 ada_find_printable_frame (struct frame_info *fi)
10114 {
10115 for (; fi != NULL; fi = get_prev_frame (fi))
10116 {
10117 if (!is_known_support_routine (fi))
10118 {
10119 select_frame (fi);
10120 break;
10121 }
10122 }
10123
10124 }
10125
10126 /* Assuming that the inferior just triggered an unhandled exception
10127 catchpoint, return the address in inferior memory where the name
10128 of the exception is stored.
10129
10130 Return zero if the address could not be computed. */
10131
10132 static CORE_ADDR
10133 ada_unhandled_exception_name_addr (void)
10134 {
10135 return parse_and_eval_address ("e.full_name");
10136 }
10137
10138 /* Same as ada_unhandled_exception_name_addr, except that this function
10139 should be used when the inferior uses an older version of the runtime,
10140 where the exception name needs to be extracted from a specific frame
10141 several frames up in the callstack. */
10142
10143 static CORE_ADDR
10144 ada_unhandled_exception_name_addr_from_raise (void)
10145 {
10146 int frame_level;
10147 struct frame_info *fi;
10148
10149 /* To determine the name of this exception, we need to select
10150 the frame corresponding to RAISE_SYM_NAME. This frame is
10151 at least 3 levels up, so we simply skip the first 3 frames
10152 without checking the name of their associated function. */
10153 fi = get_current_frame ();
10154 for (frame_level = 0; frame_level < 3; frame_level += 1)
10155 if (fi != NULL)
10156 fi = get_prev_frame (fi);
10157
10158 while (fi != NULL)
10159 {
10160 char *func_name;
10161 enum language func_lang;
10162
10163 find_frame_funname (fi, &func_name, &func_lang);
10164 if (func_name != NULL
10165 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
10166 break; /* We found the frame we were looking for... */
10167 fi = get_prev_frame (fi);
10168 }
10169
10170 if (fi == NULL)
10171 return 0;
10172
10173 select_frame (fi);
10174 return parse_and_eval_address ("id.full_name");
10175 }
10176
10177 /* Assuming the inferior just triggered an Ada exception catchpoint
10178 (of any type), return the address in inferior memory where the name
10179 of the exception is stored, if applicable.
10180
10181 Return zero if the address could not be computed, or if not relevant. */
10182
10183 static CORE_ADDR
10184 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
10185 struct breakpoint *b)
10186 {
10187 switch (ex)
10188 {
10189 case ex_catch_exception:
10190 return (parse_and_eval_address ("e.full_name"));
10191 break;
10192
10193 case ex_catch_exception_unhandled:
10194 return exception_info->unhandled_exception_name_addr ();
10195 break;
10196
10197 case ex_catch_assert:
10198 return 0; /* Exception name is not relevant in this case. */
10199 break;
10200
10201 default:
10202 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10203 break;
10204 }
10205
10206 return 0; /* Should never be reached. */
10207 }
10208
10209 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
10210 any error that ada_exception_name_addr_1 might cause to be thrown.
10211 When an error is intercepted, a warning with the error message is printed,
10212 and zero is returned. */
10213
10214 static CORE_ADDR
10215 ada_exception_name_addr (enum exception_catchpoint_kind ex,
10216 struct breakpoint *b)
10217 {
10218 struct gdb_exception e;
10219 CORE_ADDR result = 0;
10220
10221 TRY_CATCH (e, RETURN_MASK_ERROR)
10222 {
10223 result = ada_exception_name_addr_1 (ex, b);
10224 }
10225
10226 if (e.reason < 0)
10227 {
10228 warning (_("failed to get exception name: %s"), e.message);
10229 return 0;
10230 }
10231
10232 return result;
10233 }
10234
10235 /* Implement the PRINT_IT method in the breakpoint_ops structure
10236 for all exception catchpoint kinds. */
10237
10238 static enum print_stop_action
10239 print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
10240 {
10241 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
10242 char exception_name[256];
10243
10244 if (addr != 0)
10245 {
10246 read_memory (addr, exception_name, sizeof (exception_name) - 1);
10247 exception_name [sizeof (exception_name) - 1] = '\0';
10248 }
10249
10250 ada_find_printable_frame (get_current_frame ());
10251
10252 annotate_catchpoint (b->number);
10253 switch (ex)
10254 {
10255 case ex_catch_exception:
10256 if (addr != 0)
10257 printf_filtered (_("\nCatchpoint %d, %s at "),
10258 b->number, exception_name);
10259 else
10260 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
10261 break;
10262 case ex_catch_exception_unhandled:
10263 if (addr != 0)
10264 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
10265 b->number, exception_name);
10266 else
10267 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
10268 b->number);
10269 break;
10270 case ex_catch_assert:
10271 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
10272 b->number);
10273 break;
10274 }
10275
10276 return PRINT_SRC_AND_LOC;
10277 }
10278
10279 /* Implement the PRINT_ONE method in the breakpoint_ops structure
10280 for all exception catchpoint kinds. */
10281
10282 static void
10283 print_one_exception (enum exception_catchpoint_kind ex,
10284 struct breakpoint *b, struct bp_location **last_loc)
10285 {
10286 struct value_print_options opts;
10287
10288 get_user_print_options (&opts);
10289 if (opts.addressprint)
10290 {
10291 annotate_field (4);
10292 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
10293 }
10294
10295 annotate_field (5);
10296 *last_loc = b->loc;
10297 switch (ex)
10298 {
10299 case ex_catch_exception:
10300 if (b->exp_string != NULL)
10301 {
10302 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
10303
10304 ui_out_field_string (uiout, "what", msg);
10305 xfree (msg);
10306 }
10307 else
10308 ui_out_field_string (uiout, "what", "all Ada exceptions");
10309
10310 break;
10311
10312 case ex_catch_exception_unhandled:
10313 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
10314 break;
10315
10316 case ex_catch_assert:
10317 ui_out_field_string (uiout, "what", "failed Ada assertions");
10318 break;
10319
10320 default:
10321 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10322 break;
10323 }
10324 }
10325
10326 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
10327 for all exception catchpoint kinds. */
10328
10329 static void
10330 print_mention_exception (enum exception_catchpoint_kind ex,
10331 struct breakpoint *b)
10332 {
10333 switch (ex)
10334 {
10335 case ex_catch_exception:
10336 if (b->exp_string != NULL)
10337 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
10338 b->number, b->exp_string);
10339 else
10340 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
10341
10342 break;
10343
10344 case ex_catch_exception_unhandled:
10345 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
10346 b->number);
10347 break;
10348
10349 case ex_catch_assert:
10350 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
10351 break;
10352
10353 default:
10354 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10355 break;
10356 }
10357 }
10358
10359 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
10360 for all exception catchpoint kinds. */
10361
10362 static void
10363 print_recreate_exception (enum exception_catchpoint_kind ex,
10364 struct breakpoint *b, struct ui_file *fp)
10365 {
10366 switch (ex)
10367 {
10368 case ex_catch_exception:
10369 fprintf_filtered (fp, "catch exception");
10370 if (b->exp_string != NULL)
10371 fprintf_filtered (fp, " %s", b->exp_string);
10372 break;
10373
10374 case ex_catch_exception_unhandled:
10375 fprintf_filtered (fp, "catch exception unhandled");
10376 break;
10377
10378 case ex_catch_assert:
10379 fprintf_filtered (fp, "catch assert");
10380 break;
10381
10382 default:
10383 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10384 }
10385 }
10386
10387 /* Virtual table for "catch exception" breakpoints. */
10388
10389 static enum print_stop_action
10390 print_it_catch_exception (struct breakpoint *b)
10391 {
10392 return print_it_exception (ex_catch_exception, b);
10393 }
10394
10395 static void
10396 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
10397 {
10398 print_one_exception (ex_catch_exception, b, last_loc);
10399 }
10400
10401 static void
10402 print_mention_catch_exception (struct breakpoint *b)
10403 {
10404 print_mention_exception (ex_catch_exception, b);
10405 }
10406
10407 static void
10408 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
10409 {
10410 print_recreate_exception (ex_catch_exception, b, fp);
10411 }
10412
10413 static struct breakpoint_ops catch_exception_breakpoint_ops =
10414 {
10415 NULL, /* insert */
10416 NULL, /* remove */
10417 NULL, /* breakpoint_hit */
10418 print_it_catch_exception,
10419 print_one_catch_exception,
10420 print_mention_catch_exception,
10421 print_recreate_catch_exception
10422 };
10423
10424 /* Virtual table for "catch exception unhandled" breakpoints. */
10425
10426 static enum print_stop_action
10427 print_it_catch_exception_unhandled (struct breakpoint *b)
10428 {
10429 return print_it_exception (ex_catch_exception_unhandled, b);
10430 }
10431
10432 static void
10433 print_one_catch_exception_unhandled (struct breakpoint *b,
10434 struct bp_location **last_loc)
10435 {
10436 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
10437 }
10438
10439 static void
10440 print_mention_catch_exception_unhandled (struct breakpoint *b)
10441 {
10442 print_mention_exception (ex_catch_exception_unhandled, b);
10443 }
10444
10445 static void
10446 print_recreate_catch_exception_unhandled (struct breakpoint *b,
10447 struct ui_file *fp)
10448 {
10449 print_recreate_exception (ex_catch_exception_unhandled, b, fp);
10450 }
10451
10452 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
10453 NULL, /* insert */
10454 NULL, /* remove */
10455 NULL, /* breakpoint_hit */
10456 print_it_catch_exception_unhandled,
10457 print_one_catch_exception_unhandled,
10458 print_mention_catch_exception_unhandled,
10459 print_recreate_catch_exception_unhandled
10460 };
10461
10462 /* Virtual table for "catch assert" breakpoints. */
10463
10464 static enum print_stop_action
10465 print_it_catch_assert (struct breakpoint *b)
10466 {
10467 return print_it_exception (ex_catch_assert, b);
10468 }
10469
10470 static void
10471 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
10472 {
10473 print_one_exception (ex_catch_assert, b, last_loc);
10474 }
10475
10476 static void
10477 print_mention_catch_assert (struct breakpoint *b)
10478 {
10479 print_mention_exception (ex_catch_assert, b);
10480 }
10481
10482 static void
10483 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
10484 {
10485 print_recreate_exception (ex_catch_assert, b, fp);
10486 }
10487
10488 static struct breakpoint_ops catch_assert_breakpoint_ops = {
10489 NULL, /* insert */
10490 NULL, /* remove */
10491 NULL, /* breakpoint_hit */
10492 print_it_catch_assert,
10493 print_one_catch_assert,
10494 print_mention_catch_assert,
10495 print_recreate_catch_assert
10496 };
10497
10498 /* Return non-zero if B is an Ada exception catchpoint. */
10499
10500 int
10501 ada_exception_catchpoint_p (struct breakpoint *b)
10502 {
10503 return (b->ops == &catch_exception_breakpoint_ops
10504 || b->ops == &catch_exception_unhandled_breakpoint_ops
10505 || b->ops == &catch_assert_breakpoint_ops);
10506 }
10507
10508 /* Return a newly allocated copy of the first space-separated token
10509 in ARGSP, and then adjust ARGSP to point immediately after that
10510 token.
10511
10512 Return NULL if ARGPS does not contain any more tokens. */
10513
10514 static char *
10515 ada_get_next_arg (char **argsp)
10516 {
10517 char *args = *argsp;
10518 char *end;
10519 char *result;
10520
10521 /* Skip any leading white space. */
10522
10523 while (isspace (*args))
10524 args++;
10525
10526 if (args[0] == '\0')
10527 return NULL; /* No more arguments. */
10528
10529 /* Find the end of the current argument. */
10530
10531 end = args;
10532 while (*end != '\0' && !isspace (*end))
10533 end++;
10534
10535 /* Adjust ARGSP to point to the start of the next argument. */
10536
10537 *argsp = end;
10538
10539 /* Make a copy of the current argument and return it. */
10540
10541 result = xmalloc (end - args + 1);
10542 strncpy (result, args, end - args);
10543 result[end - args] = '\0';
10544
10545 return result;
10546 }
10547
10548 /* Split the arguments specified in a "catch exception" command.
10549 Set EX to the appropriate catchpoint type.
10550 Set EXP_STRING to the name of the specific exception if
10551 specified by the user. */
10552
10553 static void
10554 catch_ada_exception_command_split (char *args,
10555 enum exception_catchpoint_kind *ex,
10556 char **exp_string)
10557 {
10558 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
10559 char *exception_name;
10560
10561 exception_name = ada_get_next_arg (&args);
10562 make_cleanup (xfree, exception_name);
10563
10564 /* Check that we do not have any more arguments. Anything else
10565 is unexpected. */
10566
10567 while (isspace (*args))
10568 args++;
10569
10570 if (args[0] != '\0')
10571 error (_("Junk at end of expression"));
10572
10573 discard_cleanups (old_chain);
10574
10575 if (exception_name == NULL)
10576 {
10577 /* Catch all exceptions. */
10578 *ex = ex_catch_exception;
10579 *exp_string = NULL;
10580 }
10581 else if (strcmp (exception_name, "unhandled") == 0)
10582 {
10583 /* Catch unhandled exceptions. */
10584 *ex = ex_catch_exception_unhandled;
10585 *exp_string = NULL;
10586 }
10587 else
10588 {
10589 /* Catch a specific exception. */
10590 *ex = ex_catch_exception;
10591 *exp_string = exception_name;
10592 }
10593 }
10594
10595 /* Return the name of the symbol on which we should break in order to
10596 implement a catchpoint of the EX kind. */
10597
10598 static const char *
10599 ada_exception_sym_name (enum exception_catchpoint_kind ex)
10600 {
10601 gdb_assert (exception_info != NULL);
10602
10603 switch (ex)
10604 {
10605 case ex_catch_exception:
10606 return (exception_info->catch_exception_sym);
10607 break;
10608 case ex_catch_exception_unhandled:
10609 return (exception_info->catch_exception_unhandled_sym);
10610 break;
10611 case ex_catch_assert:
10612 return (exception_info->catch_assert_sym);
10613 break;
10614 default:
10615 internal_error (__FILE__, __LINE__,
10616 _("unexpected catchpoint kind (%d)"), ex);
10617 }
10618 }
10619
10620 /* Return the breakpoint ops "virtual table" used for catchpoints
10621 of the EX kind. */
10622
10623 static struct breakpoint_ops *
10624 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
10625 {
10626 switch (ex)
10627 {
10628 case ex_catch_exception:
10629 return (&catch_exception_breakpoint_ops);
10630 break;
10631 case ex_catch_exception_unhandled:
10632 return (&catch_exception_unhandled_breakpoint_ops);
10633 break;
10634 case ex_catch_assert:
10635 return (&catch_assert_breakpoint_ops);
10636 break;
10637 default:
10638 internal_error (__FILE__, __LINE__,
10639 _("unexpected catchpoint kind (%d)"), ex);
10640 }
10641 }
10642
10643 /* Return the condition that will be used to match the current exception
10644 being raised with the exception that the user wants to catch. This
10645 assumes that this condition is used when the inferior just triggered
10646 an exception catchpoint.
10647
10648 The string returned is a newly allocated string that needs to be
10649 deallocated later. */
10650
10651 static char *
10652 ada_exception_catchpoint_cond_string (const char *exp_string)
10653 {
10654 int i;
10655
10656 /* The standard exceptions are a special case. They are defined in
10657 runtime units that have been compiled without debugging info; if
10658 EXP_STRING is the not-fully-qualified name of a standard
10659 exception (e.g. "constraint_error") then, during the evaluation
10660 of the condition expression, the symbol lookup on this name would
10661 *not* return this standard exception. The catchpoint condition
10662 may then be set only on user-defined exceptions which have the
10663 same not-fully-qualified name (e.g. my_package.constraint_error).
10664
10665 To avoid this unexcepted behavior, these standard exceptions are
10666 systematically prefixed by "standard". This means that "catch
10667 exception constraint_error" is rewritten into "catch exception
10668 standard.constraint_error".
10669
10670 If an exception named contraint_error is defined in another package of
10671 the inferior program, then the only way to specify this exception as a
10672 breakpoint condition is to use its fully-qualified named:
10673 e.g. my_package.constraint_error. */
10674
10675 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
10676 {
10677 if (strcmp (standard_exc [i], exp_string) == 0)
10678 {
10679 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
10680 exp_string);
10681 }
10682 }
10683 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
10684 }
10685
10686 /* Return the expression corresponding to COND_STRING evaluated at SAL. */
10687
10688 static struct expression *
10689 ada_parse_catchpoint_condition (char *cond_string,
10690 struct symtab_and_line sal)
10691 {
10692 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
10693 }
10694
10695 /* Return the symtab_and_line that should be used to insert an exception
10696 catchpoint of the TYPE kind.
10697
10698 EX_STRING should contain the name of a specific exception
10699 that the catchpoint should catch, or NULL otherwise.
10700
10701 The idea behind all the remaining parameters is that their names match
10702 the name of certain fields in the breakpoint structure that are used to
10703 handle exception catchpoints. This function returns the value to which
10704 these fields should be set, depending on the type of catchpoint we need
10705 to create.
10706
10707 If COND and COND_STRING are both non-NULL, any value they might
10708 hold will be free'ed, and then replaced by newly allocated ones.
10709 These parameters are left untouched otherwise. */
10710
10711 static struct symtab_and_line
10712 ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
10713 char **addr_string, char **cond_string,
10714 struct expression **cond, struct breakpoint_ops **ops)
10715 {
10716 const char *sym_name;
10717 struct symbol *sym;
10718 struct symtab_and_line sal;
10719
10720 /* First, find out which exception support info to use. */
10721 ada_exception_support_info_sniffer ();
10722
10723 /* Then lookup the function on which we will break in order to catch
10724 the Ada exceptions requested by the user. */
10725
10726 sym_name = ada_exception_sym_name (ex);
10727 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
10728
10729 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10730 that should be compiled with debugging information. As a result, we
10731 expect to find that symbol in the symtabs. If we don't find it, then
10732 the target most likely does not support Ada exceptions, or we cannot
10733 insert exception breakpoints yet, because the GNAT runtime hasn't been
10734 loaded yet. */
10735
10736 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
10737 in such a way that no debugging information is produced for the symbol
10738 we are looking for. In this case, we could search the minimal symbols
10739 as a fall-back mechanism. This would still be operating in degraded
10740 mode, however, as we would still be missing the debugging information
10741 that is needed in order to extract the name of the exception being
10742 raised (this name is printed in the catchpoint message, and is also
10743 used when trying to catch a specific exception). We do not handle
10744 this case for now. */
10745
10746 if (sym == NULL)
10747 error (_("Unable to break on '%s' in this configuration."), sym_name);
10748
10749 /* Make sure that the symbol we found corresponds to a function. */
10750 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10751 error (_("Symbol \"%s\" is not a function (class = %d)"),
10752 sym_name, SYMBOL_CLASS (sym));
10753
10754 sal = find_function_start_sal (sym, 1);
10755
10756 /* Set ADDR_STRING. */
10757
10758 *addr_string = xstrdup (sym_name);
10759
10760 /* Set the COND and COND_STRING (if not NULL). */
10761
10762 if (cond_string != NULL && cond != NULL)
10763 {
10764 if (*cond_string != NULL)
10765 {
10766 xfree (*cond_string);
10767 *cond_string = NULL;
10768 }
10769 if (*cond != NULL)
10770 {
10771 xfree (*cond);
10772 *cond = NULL;
10773 }
10774 if (exp_string != NULL)
10775 {
10776 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
10777 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
10778 }
10779 }
10780
10781 /* Set OPS. */
10782 *ops = ada_exception_breakpoint_ops (ex);
10783
10784 return sal;
10785 }
10786
10787 /* Parse the arguments (ARGS) of the "catch exception" command.
10788
10789 Set TYPE to the appropriate exception catchpoint type.
10790 If the user asked the catchpoint to catch only a specific
10791 exception, then save the exception name in ADDR_STRING.
10792
10793 See ada_exception_sal for a description of all the remaining
10794 function arguments of this function. */
10795
10796 struct symtab_and_line
10797 ada_decode_exception_location (char *args, char **addr_string,
10798 char **exp_string, char **cond_string,
10799 struct expression **cond,
10800 struct breakpoint_ops **ops)
10801 {
10802 enum exception_catchpoint_kind ex;
10803
10804 catch_ada_exception_command_split (args, &ex, exp_string);
10805 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
10806 cond, ops);
10807 }
10808
10809 struct symtab_and_line
10810 ada_decode_assert_location (char *args, char **addr_string,
10811 struct breakpoint_ops **ops)
10812 {
10813 /* Check that no argument where provided at the end of the command. */
10814
10815 if (args != NULL)
10816 {
10817 while (isspace (*args))
10818 args++;
10819 if (*args != '\0')
10820 error (_("Junk at end of arguments."));
10821 }
10822
10823 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
10824 ops);
10825 }
10826
10827 /* Operators */
10828 /* Information about operators given special treatment in functions
10829 below. */
10830 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
10831
10832 #define ADA_OPERATORS \
10833 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
10834 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
10835 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
10836 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
10837 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
10838 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
10839 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
10840 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
10841 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
10842 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
10843 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
10844 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
10845 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
10846 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
10847 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
10848 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
10849 OP_DEFN (OP_OTHERS, 1, 1, 0) \
10850 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
10851 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
10852
10853 static void
10854 ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
10855 {
10856 switch (exp->elts[pc - 1].opcode)
10857 {
10858 default:
10859 operator_length_standard (exp, pc, oplenp, argsp);
10860 break;
10861
10862 #define OP_DEFN(op, len, args, binop) \
10863 case op: *oplenp = len; *argsp = args; break;
10864 ADA_OPERATORS;
10865 #undef OP_DEFN
10866
10867 case OP_AGGREGATE:
10868 *oplenp = 3;
10869 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
10870 break;
10871
10872 case OP_CHOICES:
10873 *oplenp = 3;
10874 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
10875 break;
10876 }
10877 }
10878
10879 /* Implementation of the exp_descriptor method operator_check. */
10880
10881 static int
10882 ada_operator_check (struct expression *exp, int pos,
10883 int (*objfile_func) (struct objfile *objfile, void *data),
10884 void *data)
10885 {
10886 const union exp_element *const elts = exp->elts;
10887 struct type *type = NULL;
10888
10889 switch (elts[pos].opcode)
10890 {
10891 case UNOP_IN_RANGE:
10892 case UNOP_QUAL:
10893 type = elts[pos + 1].type;
10894 break;
10895
10896 default:
10897 return operator_check_standard (exp, pos, objfile_func, data);
10898 }
10899
10900 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
10901
10902 if (type && TYPE_OBJFILE (type)
10903 && (*objfile_func) (TYPE_OBJFILE (type), data))
10904 return 1;
10905
10906 return 0;
10907 }
10908
10909 static char *
10910 ada_op_name (enum exp_opcode opcode)
10911 {
10912 switch (opcode)
10913 {
10914 default:
10915 return op_name_standard (opcode);
10916
10917 #define OP_DEFN(op, len, args, binop) case op: return #op;
10918 ADA_OPERATORS;
10919 #undef OP_DEFN
10920
10921 case OP_AGGREGATE:
10922 return "OP_AGGREGATE";
10923 case OP_CHOICES:
10924 return "OP_CHOICES";
10925 case OP_NAME:
10926 return "OP_NAME";
10927 }
10928 }
10929
10930 /* As for operator_length, but assumes PC is pointing at the first
10931 element of the operator, and gives meaningful results only for the
10932 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
10933
10934 static void
10935 ada_forward_operator_length (struct expression *exp, int pc,
10936 int *oplenp, int *argsp)
10937 {
10938 switch (exp->elts[pc].opcode)
10939 {
10940 default:
10941 *oplenp = *argsp = 0;
10942 break;
10943
10944 #define OP_DEFN(op, len, args, binop) \
10945 case op: *oplenp = len; *argsp = args; break;
10946 ADA_OPERATORS;
10947 #undef OP_DEFN
10948
10949 case OP_AGGREGATE:
10950 *oplenp = 3;
10951 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
10952 break;
10953
10954 case OP_CHOICES:
10955 *oplenp = 3;
10956 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
10957 break;
10958
10959 case OP_STRING:
10960 case OP_NAME:
10961 {
10962 int len = longest_to_int (exp->elts[pc + 1].longconst);
10963 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
10964 *argsp = 0;
10965 break;
10966 }
10967 }
10968 }
10969
10970 static int
10971 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
10972 {
10973 enum exp_opcode op = exp->elts[elt].opcode;
10974 int oplen, nargs;
10975 int pc = elt;
10976 int i;
10977
10978 ada_forward_operator_length (exp, elt, &oplen, &nargs);
10979
10980 switch (op)
10981 {
10982 /* Ada attributes ('Foo). */
10983 case OP_ATR_FIRST:
10984 case OP_ATR_LAST:
10985 case OP_ATR_LENGTH:
10986 case OP_ATR_IMAGE:
10987 case OP_ATR_MAX:
10988 case OP_ATR_MIN:
10989 case OP_ATR_MODULUS:
10990 case OP_ATR_POS:
10991 case OP_ATR_SIZE:
10992 case OP_ATR_TAG:
10993 case OP_ATR_VAL:
10994 break;
10995
10996 case UNOP_IN_RANGE:
10997 case UNOP_QUAL:
10998 /* XXX: gdb_sprint_host_address, type_sprint */
10999 fprintf_filtered (stream, _("Type @"));
11000 gdb_print_host_address (exp->elts[pc + 1].type, stream);
11001 fprintf_filtered (stream, " (");
11002 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
11003 fprintf_filtered (stream, ")");
11004 break;
11005 case BINOP_IN_BOUNDS:
11006 fprintf_filtered (stream, " (%d)",
11007 longest_to_int (exp->elts[pc + 2].longconst));
11008 break;
11009 case TERNOP_IN_RANGE:
11010 break;
11011
11012 case OP_AGGREGATE:
11013 case OP_OTHERS:
11014 case OP_DISCRETE_RANGE:
11015 case OP_POSITIONAL:
11016 case OP_CHOICES:
11017 break;
11018
11019 case OP_NAME:
11020 case OP_STRING:
11021 {
11022 char *name = &exp->elts[elt + 2].string;
11023 int len = longest_to_int (exp->elts[elt + 1].longconst);
11024 fprintf_filtered (stream, "Text: `%.*s'", len, name);
11025 break;
11026 }
11027
11028 default:
11029 return dump_subexp_body_standard (exp, stream, elt);
11030 }
11031
11032 elt += oplen;
11033 for (i = 0; i < nargs; i += 1)
11034 elt = dump_subexp (exp, stream, elt);
11035
11036 return elt;
11037 }
11038
11039 /* The Ada extension of print_subexp (q.v.). */
11040
11041 static void
11042 ada_print_subexp (struct expression *exp, int *pos,
11043 struct ui_file *stream, enum precedence prec)
11044 {
11045 int oplen, nargs, i;
11046 int pc = *pos;
11047 enum exp_opcode op = exp->elts[pc].opcode;
11048
11049 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11050
11051 *pos += oplen;
11052 switch (op)
11053 {
11054 default:
11055 *pos -= oplen;
11056 print_subexp_standard (exp, pos, stream, prec);
11057 return;
11058
11059 case OP_VAR_VALUE:
11060 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
11061 return;
11062
11063 case BINOP_IN_BOUNDS:
11064 /* XXX: sprint_subexp */
11065 print_subexp (exp, pos, stream, PREC_SUFFIX);
11066 fputs_filtered (" in ", stream);
11067 print_subexp (exp, pos, stream, PREC_SUFFIX);
11068 fputs_filtered ("'range", stream);
11069 if (exp->elts[pc + 1].longconst > 1)
11070 fprintf_filtered (stream, "(%ld)",
11071 (long) exp->elts[pc + 1].longconst);
11072 return;
11073
11074 case TERNOP_IN_RANGE:
11075 if (prec >= PREC_EQUAL)
11076 fputs_filtered ("(", stream);
11077 /* XXX: sprint_subexp */
11078 print_subexp (exp, pos, stream, PREC_SUFFIX);
11079 fputs_filtered (" in ", stream);
11080 print_subexp (exp, pos, stream, PREC_EQUAL);
11081 fputs_filtered (" .. ", stream);
11082 print_subexp (exp, pos, stream, PREC_EQUAL);
11083 if (prec >= PREC_EQUAL)
11084 fputs_filtered (")", stream);
11085 return;
11086
11087 case OP_ATR_FIRST:
11088 case OP_ATR_LAST:
11089 case OP_ATR_LENGTH:
11090 case OP_ATR_IMAGE:
11091 case OP_ATR_MAX:
11092 case OP_ATR_MIN:
11093 case OP_ATR_MODULUS:
11094 case OP_ATR_POS:
11095 case OP_ATR_SIZE:
11096 case OP_ATR_TAG:
11097 case OP_ATR_VAL:
11098 if (exp->elts[*pos].opcode == OP_TYPE)
11099 {
11100 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
11101 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
11102 *pos += 3;
11103 }
11104 else
11105 print_subexp (exp, pos, stream, PREC_SUFFIX);
11106 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
11107 if (nargs > 1)
11108 {
11109 int tem;
11110 for (tem = 1; tem < nargs; tem += 1)
11111 {
11112 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
11113 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
11114 }
11115 fputs_filtered (")", stream);
11116 }
11117 return;
11118
11119 case UNOP_QUAL:
11120 type_print (exp->elts[pc + 1].type, "", stream, 0);
11121 fputs_filtered ("'(", stream);
11122 print_subexp (exp, pos, stream, PREC_PREFIX);
11123 fputs_filtered (")", stream);
11124 return;
11125
11126 case UNOP_IN_RANGE:
11127 /* XXX: sprint_subexp */
11128 print_subexp (exp, pos, stream, PREC_SUFFIX);
11129 fputs_filtered (" in ", stream);
11130 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
11131 return;
11132
11133 case OP_DISCRETE_RANGE:
11134 print_subexp (exp, pos, stream, PREC_SUFFIX);
11135 fputs_filtered ("..", stream);
11136 print_subexp (exp, pos, stream, PREC_SUFFIX);
11137 return;
11138
11139 case OP_OTHERS:
11140 fputs_filtered ("others => ", stream);
11141 print_subexp (exp, pos, stream, PREC_SUFFIX);
11142 return;
11143
11144 case OP_CHOICES:
11145 for (i = 0; i < nargs-1; i += 1)
11146 {
11147 if (i > 0)
11148 fputs_filtered ("|", stream);
11149 print_subexp (exp, pos, stream, PREC_SUFFIX);
11150 }
11151 fputs_filtered (" => ", stream);
11152 print_subexp (exp, pos, stream, PREC_SUFFIX);
11153 return;
11154
11155 case OP_POSITIONAL:
11156 print_subexp (exp, pos, stream, PREC_SUFFIX);
11157 return;
11158
11159 case OP_AGGREGATE:
11160 fputs_filtered ("(", stream);
11161 for (i = 0; i < nargs; i += 1)
11162 {
11163 if (i > 0)
11164 fputs_filtered (", ", stream);
11165 print_subexp (exp, pos, stream, PREC_SUFFIX);
11166 }
11167 fputs_filtered (")", stream);
11168 return;
11169 }
11170 }
11171
11172 /* Table mapping opcodes into strings for printing operators
11173 and precedences of the operators. */
11174
11175 static const struct op_print ada_op_print_tab[] = {
11176 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
11177 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
11178 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
11179 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
11180 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
11181 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
11182 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
11183 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
11184 {"<=", BINOP_LEQ, PREC_ORDER, 0},
11185 {">=", BINOP_GEQ, PREC_ORDER, 0},
11186 {">", BINOP_GTR, PREC_ORDER, 0},
11187 {"<", BINOP_LESS, PREC_ORDER, 0},
11188 {">>", BINOP_RSH, PREC_SHIFT, 0},
11189 {"<<", BINOP_LSH, PREC_SHIFT, 0},
11190 {"+", BINOP_ADD, PREC_ADD, 0},
11191 {"-", BINOP_SUB, PREC_ADD, 0},
11192 {"&", BINOP_CONCAT, PREC_ADD, 0},
11193 {"*", BINOP_MUL, PREC_MUL, 0},
11194 {"/", BINOP_DIV, PREC_MUL, 0},
11195 {"rem", BINOP_REM, PREC_MUL, 0},
11196 {"mod", BINOP_MOD, PREC_MUL, 0},
11197 {"**", BINOP_EXP, PREC_REPEAT, 0},
11198 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
11199 {"-", UNOP_NEG, PREC_PREFIX, 0},
11200 {"+", UNOP_PLUS, PREC_PREFIX, 0},
11201 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
11202 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
11203 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
11204 {".all", UNOP_IND, PREC_SUFFIX, 1},
11205 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
11206 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
11207 {NULL, 0, 0, 0}
11208 };
11209 \f
11210 enum ada_primitive_types {
11211 ada_primitive_type_int,
11212 ada_primitive_type_long,
11213 ada_primitive_type_short,
11214 ada_primitive_type_char,
11215 ada_primitive_type_float,
11216 ada_primitive_type_double,
11217 ada_primitive_type_void,
11218 ada_primitive_type_long_long,
11219 ada_primitive_type_long_double,
11220 ada_primitive_type_natural,
11221 ada_primitive_type_positive,
11222 ada_primitive_type_system_address,
11223 nr_ada_primitive_types
11224 };
11225
11226 static void
11227 ada_language_arch_info (struct gdbarch *gdbarch,
11228 struct language_arch_info *lai)
11229 {
11230 const struct builtin_type *builtin = builtin_type (gdbarch);
11231 lai->primitive_type_vector
11232 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
11233 struct type *);
11234
11235 lai->primitive_type_vector [ada_primitive_type_int]
11236 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11237 0, "integer");
11238 lai->primitive_type_vector [ada_primitive_type_long]
11239 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
11240 0, "long_integer");
11241 lai->primitive_type_vector [ada_primitive_type_short]
11242 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
11243 0, "short_integer");
11244 lai->string_char_type
11245 = lai->primitive_type_vector [ada_primitive_type_char]
11246 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
11247 lai->primitive_type_vector [ada_primitive_type_float]
11248 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
11249 "float", NULL);
11250 lai->primitive_type_vector [ada_primitive_type_double]
11251 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11252 "long_float", NULL);
11253 lai->primitive_type_vector [ada_primitive_type_long_long]
11254 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
11255 0, "long_long_integer");
11256 lai->primitive_type_vector [ada_primitive_type_long_double]
11257 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11258 "long_long_float", NULL);
11259 lai->primitive_type_vector [ada_primitive_type_natural]
11260 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11261 0, "natural");
11262 lai->primitive_type_vector [ada_primitive_type_positive]
11263 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11264 0, "positive");
11265 lai->primitive_type_vector [ada_primitive_type_void]
11266 = builtin->builtin_void;
11267
11268 lai->primitive_type_vector [ada_primitive_type_system_address]
11269 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
11270 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
11271 = "system__address";
11272
11273 lai->bool_type_symbol = NULL;
11274 lai->bool_type_default = builtin->builtin_bool;
11275 }
11276 \f
11277 /* Language vector */
11278
11279 /* Not really used, but needed in the ada_language_defn. */
11280
11281 static void
11282 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
11283 {
11284 ada_emit_char (c, type, stream, quoter, 1);
11285 }
11286
11287 static int
11288 parse (void)
11289 {
11290 warnings_issued = 0;
11291 return ada_parse ();
11292 }
11293
11294 static const struct exp_descriptor ada_exp_descriptor = {
11295 ada_print_subexp,
11296 ada_operator_length,
11297 ada_operator_check,
11298 ada_op_name,
11299 ada_dump_subexp_body,
11300 ada_evaluate_subexp
11301 };
11302
11303 const struct language_defn ada_language_defn = {
11304 "ada", /* Language name */
11305 language_ada,
11306 range_check_off,
11307 type_check_off,
11308 case_sensitive_on, /* Yes, Ada is case-insensitive, but
11309 that's not quite what this means. */
11310 array_row_major,
11311 macro_expansion_no,
11312 &ada_exp_descriptor,
11313 parse,
11314 ada_error,
11315 resolve,
11316 ada_printchar, /* Print a character constant */
11317 ada_printstr, /* Function to print string constant */
11318 emit_char, /* Function to print single char (not used) */
11319 ada_print_type, /* Print a type using appropriate syntax */
11320 ada_print_typedef, /* Print a typedef using appropriate syntax */
11321 ada_val_print, /* Print a value using appropriate syntax */
11322 ada_value_print, /* Print a top-level value */
11323 NULL, /* Language specific skip_trampoline */
11324 NULL, /* name_of_this */
11325 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
11326 basic_lookup_transparent_type, /* lookup_transparent_type */
11327 ada_la_decode, /* Language specific symbol demangler */
11328 NULL, /* Language specific class_name_from_physname */
11329 ada_op_print_tab, /* expression operators for printing */
11330 0, /* c-style arrays */
11331 1, /* String lower bound */
11332 ada_get_gdb_completer_word_break_characters,
11333 ada_make_symbol_completion_list,
11334 ada_language_arch_info,
11335 ada_print_array_index,
11336 default_pass_by_reference,
11337 c_get_string,
11338 LANG_MAGIC
11339 };
11340
11341 /* Provide a prototype to silence -Wmissing-prototypes. */
11342 extern initialize_file_ftype _initialize_ada_language;
11343
11344 /* Command-list for the "set/show ada" prefix command. */
11345 static struct cmd_list_element *set_ada_list;
11346 static struct cmd_list_element *show_ada_list;
11347
11348 /* Implement the "set ada" prefix command. */
11349
11350 static void
11351 set_ada_command (char *arg, int from_tty)
11352 {
11353 printf_unfiltered (_(\
11354 "\"set ada\" must be followed by the name of a setting.\n"));
11355 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
11356 }
11357
11358 /* Implement the "show ada" prefix command. */
11359
11360 static void
11361 show_ada_command (char *args, int from_tty)
11362 {
11363 cmd_show_list (show_ada_list, from_tty, "");
11364 }
11365
11366 void
11367 _initialize_ada_language (void)
11368 {
11369 add_language (&ada_language_defn);
11370
11371 add_prefix_cmd ("ada", no_class, set_ada_command,
11372 _("Prefix command for changing Ada-specfic settings"),
11373 &set_ada_list, "set ada ", 0, &setlist);
11374
11375 add_prefix_cmd ("ada", no_class, show_ada_command,
11376 _("Generic command for showing Ada-specific settings."),
11377 &show_ada_list, "show ada ", 0, &showlist);
11378
11379 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
11380 &trust_pad_over_xvs, _("\
11381 Enable or disable an optimization trusting PAD types over XVS types"), _("\
11382 Show whether an optimization trusting PAD types over XVS types is activated"),
11383 _("\
11384 This is related to the encoding used by the GNAT compiler. The debugger\n\
11385 should normally trust the contents of PAD types, but certain older versions\n\
11386 of GNAT have a bug that sometimes causes the information in the PAD type\n\
11387 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
11388 work around this bug. It is always safe to turn this option \"off\", but\n\
11389 this incurs a slight performance penalty, so it is recommended to NOT change\n\
11390 this option to \"off\" unless necessary."),
11391 NULL, NULL, &set_ada_list, &show_ada_list);
11392
11393 varsize_limit = 65536;
11394
11395 obstack_init (&symbol_list_obstack);
11396
11397 decoded_names_store = htab_create_alloc
11398 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
11399 NULL, xcalloc, xfree);
11400
11401 observer_attach_executable_changed (ada_executable_changed_observer);
11402 }
This page took 0.274658 seconds and 4 git commands to generate.